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Abstract: We analyze the superposition of Cartesian multipoles to reveal the mechanisms
underlying the origin of optical forces. We show that a multipolar decomposition approach
significantly simplifies the analysis of this problem and leads to a very intuitive explanation of
optical forces based on the interference between multipoles. We provide an in-depth analysis
of the radiation coming from the object, starting from low-order multipole interactions up to
quadrupolar terms. Interestingly, by varying the phase difference between multipoles, the optical
force as well as the total radiation directivity can be well controlled. The theory developed in this
paper may also serve as a reference for ultra-directional light steering applications.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical trapping — the ability to manipulate objects from the nano and micro worlds with light —
has been instrumental in developing of many areas of physics, biology and material sciences
[1-11]. Stable trapping can be successfully performed in free space for objects with dimensions
larger or comparable to the trapping laser wavelength [12—15] and even beat the Abbe’s diffraction
limit by localizing particles within areas as small as only a few tens of nanometers with the aid of
nanotweezers [16-21].

The optical force acting on particles can be separated into gradient, absorption and scattering
components [13,22]. The gradient component drags a particle towards the laser focus, thus
enabling stable trapping [1,13]. The absorption force, caused by the intrinsic loss of the material,
and the scattering force are very rich in terms of the mechanical actions they can produce, such
as propelling, pulling and rotating particles [23-25].

The optical force may be analyzed by integrating Maxwell’s stress tensor over a virtual sphere
enclosing the scatterer [26]. Since Maxwell’s stress tensor is expressed in terms of the incident
and scattered electric and magnetic fields, it follows that the total optical force has terms consisting
of the products of these different fields. Specifically, the terms resulting from the interactions of
incident and scattered fields are usually referred to as the incident-scattered interactions, while
those resulting from the products of scattered and scattered fields are commonly referred to
as the scattered-scattered interactions [27,28]. Note that there is no interaction of the incident
fields with themselves. The incident-scattered interactions are associated with the scattering and
absorption in the material, while the scattered-scattered interactions are attributed to scattering
from the object [29]. To gain insights into the origin of both forces, it is useful to analyze them in
the framework of a multipole decomposition, by inserting different multipole contributions into
Maxwell’s stress tensor [26,27,30-33].

The scattering-scattering interactions result in a force associated with the radiation asymmetry
coming from the object. For objects radiating as only one single multipole, the scattering
force always vanishes due to the symmetrical radiation pattern of any isolated multipole [33].
The situation changes when the object radiates as the sum of several multipoles. Indeed, in
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this circumstance they can produce asymmetric radiation patterns, leading to a non-negligible
optical force. In the case of resonating scatterers, the force may even reach very high values
when driven at the resonance [34-37]. In some cases, the asymmetric radiation pattern may
be forward-directed so that it can even overcome the pushing stream of incident photons, thus
resulting in an overall pulling force [38—45]. Moreover, the radiation pattern asymmetry can also
result in an unexpected transversal force in a crossed beams illumination configuration due to a
nonnegligible transversal component of the real part of the Poynting vector [46—-50]. Additionally,
it was shown that the imaginary part of the Poynting vector can also contribute to the light-matter
momentum exchange [51], to enhance the sorting and size selectivity of optical tweezers [52]
or to rotate a particle illuminated by cylindrical vector beams without incident spin or orbital
momenta [53].

The incident-scattering interactions can also be described in terms of interactions between
multipoles. However, since it is common practice to define the incident field exciting the
scatterer as a simple plane wave, it is thus easier to resort to Taylor expansion rather than
multipole decomposition to approximate it [39,51]. Alternatively, a vector spherical harmonic
representation may be used to describe incident and scattered waves [27,54]. Please note that
care should be taken to accurately estimate the multipolar response of a structure [55,56].

Tedious calculations are required to obtain even simple expressions for the force appearing
due to different multipole combinations [27,39,51,54]. These expressions reveal how the optical
force depends on the relative magnitude and the phase difference between interacting multipoles.
Having all the equations at hand [27,39,51], the reader might still deliberate about the origin of
the force appearing due to multipoles interactions for different relative amplitudes and phases.
This leads to the first aim of this paper: providing the reader with a comprehensive visual analysis
of various interactions between multipoles and their resulting optical forces. The second aim
is to equip the nanophotonics and radiofrequency communities with a visual explanation of
radiation directivity for different multipoles interactions. This analysis has bearing on important
problems related to light steering in systems such as high refractive index materials, core-shell
nanoparticles, metamaterials, chiral materials and Huygens sources [39,57—71]. In addition,
the knowledge about the intensity distributions for higher order multipoles interactions is of
particular importance in the context of ultra-directional scattering [72—75]. This work is also
relevant for the second harmonic generation community, since the interaction between multipoles
both at the fundamental and at the second harmonic frequencies governs the second harmonic
response [62,76-84].

This paper is organized as follows: in the methods section we analyze the different multipoles
interaction terms in Maxwell’s stress tensor. We show that the knowledge of the total intensity
distribution is not required for computing the optical force resulting from the interaction of the
multipole pairs. Instead, the interference effects between those multipoles appear to be responsible
for the emergence of the force. In the results section, we present the interference and intensity
distributions for all possible multipole interactions up to the quadrupolar-quadrupolar terms,
demonstrating a strong shaping of the radiation directivity upon variation of the constituting
multipoles’ relative intensity and phase.

2. Methods

In this section, we discuss the contributions of the different terms in Maxwell’s stress tensor. We
show that a multipolar decomposition of the fields significantly simplifies the corresponding
equations and leads to an intuitive analysis of the force in the framework of the interference term.
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2.1. Computation of the optical force resulting from two interacting multipoles

The optical force acting on an arbitrary object can be found by integrating the electric (E) and
magnetic (H) fields on a virtual sphere Q with outward normal n enclosing that object [26]:

(F) = / JRe [sosrm:* 1)+ s HOH 1) = (e B )~ (o - HOm | dS, (1)
Q

where &, and y, are the relative permittivity and permeability of the surrounding medium and
dS is a surface element on the virtual sphere. The double bracket represents a time-averaging
operation. For simplicity, we hereafter assume vacuum as a background medium with g, = yu, = 1.
To analyze the scattering from a subwavelength particle and subsequently deduce the resulting
optical force, we consider that its electromagnetic response may be expressed as a superposition
of Cartesian multipoles [33,39]. The optical force is therefore determined from the contributions
of a series of interfering multipoles pairs [39]. To this end, let us consider two arbitrary Cartesian
multipoles oscillating at the same frequency w and placed at the center of the virtual sphere
Q. The first multipole radiates an electromagnetic field (E;, H;), while the second radiates an
electromagnetic field (E,, Hy). Furthermore, for a virtual sphere Q with diameter d much larger
than the wavelength, the outgoing electromagnetic waves of these multipoles become transverse
in the far-field, implying that on the virtual sphere,

Ei-n:Hi-n:O, i=1,2. (2)
Thus, Eq. (1) can be simplified to

1 1 1
® = [ 1re [E@OE “E“)n+ 3 (u0H - HO)n| dS. &)
Q

In the far-field, the electric and magnetic components of a spherical wave are related through the

impedance of vacuum [85],
o _ |E|
Zo= 2= @)
" Ne  H|

1
F) =- / ERe[(soE -E")n]ds. 4)
Q
We may now express the force resulting from the interference of the two radiating multipoles by
writing the total electric field as a sum of their contributions:

E=E; + E,. (6)

which reduces Eq. (3) to

Inserting Eq. (6) into Eq. (5), leads to
(F) = - [Re [3(20E - E*)n] dS =
Q

— [Re [3(eo[E; - E\*+E; - Ex*+E; - Ex*+E; - E;*])n] dS =
Q

X | (7
e [[11 +1+ C()Rei(eo[El . E2*+E2 . El*])] n] ds =
Q
_clo / [[11 + 12 + CoRe(SQ[El -Ez*])]n]dS,
Q
where 0
I= %OE,- ‘E/", ®)

is the intensity of the waves with ¢y being the speed of light in vacuum. Due to the fact that
single multipoles have a symmetric intensity distribution [33], the first two integrals in Eq. (7)
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vanish. It follows that the equation for the force becomes

www/ﬁM@my&mmw. ©
Q

This equation reveals that the interference between two multipoles directly determines the optical
force.

2.2. Link between optical force and Cartesian multipoles

We follow here the derivation provided by Chen et al. and start by recalling their main results for
completeness [39]. If the object is small compared to the wavelength, the radiation produced
in the far-field may be approximated (up to quadrupolar term) by the radiating electric dipole
moment p(f), electric quadrupole moment tensor ae(t), magnetic dipole moment m(r) and
magnetic quadrupole moment tensor ﬁm(t) [33,39].

For a monochromatic wave oscillating at frequency w, the oscillating multipoles can be
represented by their complex-valued time-harmonic counterparts p, m, G , q linked with
the original multipoles by the following equations p(f) = Re[e “'p], ﬁe(t) = Re[e""‘”ae],
m(?) = Re[e~“'m] and am(t) = Re[e™ am] The electric field distribution in the far-field in the
time-harmonic representation and at a point with coordinate R can then be written as [33,39]

K2 pikR=iwt

- drey R

1 ik we ik om
nx(pxn)+ —(mxn)+ —nx [nx (q n)] + —n X (q n)]
co 2 26‘0
(10
here k is a wave vector, n is a vector normal to the sphere Q.

Let us analyze the symmetry properties of the electric field produced by the different multipoles
in Eq. (10). The electric field can be classified as symmetric if it does not change in the case of a
sign substitution, i.e., n — —n, which is the case for an electric dipole and a magnetic quadrupole.
The electric field is considered antisymmetric if its sign changes, which is the case for a magnetic
dipole and an electric quadrupole. The combination of two multipoles with different symmetry
properties can lead to an asymmetric radiation pattern, which, according to Eq. (7), leads to a net
optical force. Consequently, interactions leading to an asymmetric radiation pattern are possible
only for the following pairs of multipoles: (p and m), (pand §'), mand q ), (¢ and g ), while
all other combinations lead to symmetric radiation patterns. From Eq. (7), it is apparent that this
leads to a nonzero integral of the intensity over the sphere Q and thus results in a nonzero net
optical force.

Since the electric potential satisfies the Laplace equation, the six components of the quadrupolar
tensor are not independent, which makes the tensors overdetermined [86,87]. For convenience,
the quadrupolar tensor is usually redefined to make it symmetric and traceless, which naturally
reduces the number of components to five. This also helps, for example, to circumvent the
problem of zero potential for spherical capacitors, which have a zero net charge [8§8-90]:

1
Q; = qze'j - gqsséﬁ, 1

/1 1 m m
Q) = 5} + 4. (12)

here g5, = q3, + 4¢3y + q,- We would like to mention that a Cartesian toroidal dipole usually
appears at this step as a result of quadrupoles symmetrization. However, note that the far-field
distribution of a toroidal dipole exactly matches the far-field produced by an electric dipole and
only differs by a /2 relative phase shift [87]. Therefore, we will not discuss separately the cases
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of toroidal and dipolar multipoles in the forthcoming developments. For more information, one
may refer to the very detailed analysis of the forces resulting from the interactions with toroidal
multipoles provided in [91].

The optical force along the i-axis (F); in a Cartesian coordinate system can then be found by
inserting the electric field produced by Cartesian multipoles [39]. Using the traceless multipoles
notation, Egs. (11) and (12), the equation for the force then takes the following form

_ K*
<F>i ~ T 2ngyeo Re Zkgifkpjm 407rao [Qze] ]
Js

13)

k6
407rsocl (951 = 3zomaa RE

e mE
z,,zkg”"Qlj Hc} ’

where g is the Levi-Civita tensor [92].

The understanding of this formula is at the core of this paper. For the purpose of visualization,
we hereafter consider only the force appearing along the z-axis of a Cartesian coordinate system.
From Eq. (13), the force along the z-axis can be expressed as

(F), = —#‘;mRe[pxm*,—pym;]
40m, Tors; Im[ Q%P+ 05 py+ 05 P
407r8<)c Toneg Qo+ Qmy+Qzm | (14)
0 chme* - OO0 + 05,0+

24071-80(:0 Q Qe m* _ e 1%
Xy y=ox

Only the interference terms between these multipoles lead to a force in this specific direction. The
origin of the optical force for all these combinations will be discussed in the following sections.

As a supplement to this paper, we provide an open access data containing the code used to
simulate the interference and find the optical force resulting from the interaction between an
electric dipole p, with a magnetic dipole m, [93].

3. Results

We now explore the different terms in Eq. (14) and study some typical combinations of multipole
pairs leading to interesting optical forces, taking also in consideration the phase between both
multipoles, as well as their relative magnitude.

3.1. Dipole—dipole interaction

Let us first consider the optical force resulting from the interactions between two dipoles. From
Eq. (14), it stands out that in this case the force along the z-axis appears due to the interactions
of two pairs of electric and magnetic dipoles: p, with m, or p, with m,. Consider the first
pair for which each individual radiating multipole has a centrally symmetric radiation intensity
distribution and thus does not produce any force. When combined together, they produce an
asymmetric intensity pattern giving rise to a force acting on them according to Eq. (7).

The intensity distributions for these electric and magnetic dipoles are shown in Fig. 1. We
have normalized p, and m, such that the maximum of their respective radiated power is equal. In
Fig. 1, the colors represent the intensity magnitude: white for zero values and red for maximum.
From these figures, we see that the intensity is simultaneously strong along the + z-directions
for both dipoles. Consequently, we expect to obtain, for a certain phase difference, a strong
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interference between them along the z-axis. As shown in Eq. (7), the total intensity I;,; can be
obtained as a sum of three terms:

Liot = I + I + coRe(go[E; - E27]). (15)

The first two terms in Eq. (15), corresponding to the intensity of the individual dipoles, are

plotted in Fig. 1(a) and 1(b). The third term, representing the interactions of the two multipoles,

is plotted in Fig. 1(c), where the blue colors correspond to negative values. The total intensity

distribution, I, is shown in Fig. 1(e). The dipoles oscillate at the frequency w with the phase
difference A¢ according to:

P= expxeiiwt’ (16)

m = eymye AP, (17)

Here e, and e, are Cartesian unit vectors, p, and m, are the amplitudes of the electric and
magnetic dipoles.

max

-

Force z (arb. un.)
o

'
-

_Itot
max

0 T 2T
Phase difference A¢

Fig. 1. Origin of the optical force resulting from the superposition of an electric dipole p,
with a magnetic dipole my, as a function of their relative phase difference A¢. (a) Radiation
pattern for the electric dipole. (b) Radiation pattern for the magnetic dipole. (c) Interference
pattern for Ag = 0. (d) Normalized force dependency on the relative phase difference
between both multipoles. (e) Total intensity distribution due to the sum of both multipoles.
All patterns are normalized to the maximum intensity in panel (e). (Visualization 1) Intensity
distribution for different values of the relative phase difference.

For A¢ = 0 the total intensity lobe is prominent in the + z-direction, Fig. 1(e). Such situation, in
which radiation is suppressed in one direction can be realized with the Kerker effect [52,68,94-99].
Intuitively, assuming that each scattered photon carries some momentum, one may expect a
negative force acting on the particle by conservation of momentum. This is confirmed by
evaluating Eq. (7), as indicated in Fig. 1(d). Interestingly, the directivity of the intensity lobe
can be adjusted by changing the phase difference A¢, which is illustrated in Visualization 1.
Consequently, the force also changes its magnitude and direction according to Eq. (7). The
normalized force changes as a cosines function of the phase difference, in agreement with Eq. (14).
This example provides an insightful and intuitive understanding of the total force.
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Next, we show how the total intensity depends on the amplitude ratio between both multipoles.
We have chosen the phase difference between both multipoles as A¢ = r (the force is positive in

that case, as seen from Fig. 1(d)). Then, we vary the amplitude ratio A = /175, /I from O to
1.2. The resulting intensity distribution for both multipoles, the corresponding interference term,
force and total intensity are presented in Visualization 2. From Visualization 1 and Visualization
2, it is apparent that the total intensity term presented in panel (e) strongly depends on the
amplitude ratio and the phase. Interestingly, the interference term in panel (c) is the one that
conserves its shape and is merely scaled, depending on the amplitude or the phase differences, as
follows from Eq. (9). The interference term presented in panel (c) can thus serve as a universal
parameter suitable for the analysis of experiments with arbitrary phases and amplitudes.

A separate discussion of the interaction between py and my is not required because their
corresponding radiation patterns are similar to those previously discussed. Indeed, the radiation
pattern of p, can be obtained by rotating the radiation pattern of p, by 7/2 around the z-axis.
Similarly, the radiation pattern of m, can be obtained by rotating the radiation pattern of m, by
the same angle. Consequently, the interference and total intensity patterns for py and my can
be obtained by rotating the data presented in Fig. 1. We will use this approach to expedite the
discussion for several interaction terms from Eq. (14), for which an additional visualization does
not provide further information.

3.2. Dipole—quadrupole interaction

In this section, we analyze the dipolar-quadrupolar interaction terms in Eq. (14). The corre-
sponding distribution for the p, and Qf, interaction is presented in Fig. 2 for the phase difference

max

0 T 2T
Phase difference A¢

Fig. 2. Origin of the optical force resulting from the superposition of an electric dipole
px with an electric quadrupole Q%,, as a function of their relative phase difference A¢. (a)
Radiation pattern for the electric dipole. (b) Radiation pattern for the electric quadrupole.
(c) Interference pattern for A¢p = /2. (d) Normalized force dependency on the relative
phase difference between both multipoles. (e) Total intensity distribution due to the sum
of both multipoles. All patterns are normalized to the maximum intensity in panel (e).
(Visualization 3) Intensity distribution for different values of the relative phase difference.
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A¢ = n/2. The full dependency of the total intensity and interference pattern on the phase
difference can be found in Visualization 3. From the last paragraph in Sec. 3.1, it is clear that not
all multipolar terms require a separate analysis, as soon as they can be obtained by rotations of
other terms. For instance, we can skip the consideration of py and QF, by referring to the p, and
Q¢, interaction pattern.

Next, we consider the radiation pattern for the interaction of p, and QF,, shown in Fig. 3 for the
phase difference A¢ = m/2, with the full dependency on the phase presented in Visualization 4.
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Fig. 3. Origin of the optical force resulting from the superposition of an electric dipole
p; with an electric quadrupole QF,, as a function of their relative phase difference A¢. (a)
Radiation pattern for the electric dipole. (b) Radiation pattern for electric quadrupole. (c)
Interference pattern for A¢ = /2. (d) Normalized force dependency on the relative phase
difference between both multipoles. (e) Total intensity distribution due to the sum of both
multipoles. All patterns are normalized to the maximum intensity in panel (e). (Visualization
4) Intensity distribution for different values of the relative phase difference.

The interaction of magnetic dipoles and quadrupoles is determined by the term

5

(F), = —mlm[Q;m;+ng;+ng;‘], (18)

which has the same overall far-field radiation properties in terms of intensity as its electric
counterparts. Thus, the interaction between magnetic multipoles can be fully described by Fig. 2
and 3. No rotation is required to obtain the corresponding magnetic radiation patterns in that case
since they are essentially identical. Starting from dipolar-quadrupolar interactions, the ability
to shape radiation in particular direction is clearly observed and sets a fundamental basis for
ultra-directional photonics [74].

3.3. Quadrupole—quadrupole interaction

The quadrupole — quadrupole interaction, which has the greatest number of terms to consider,
can be fully described by only three visualizations. This stems from the fact that the diagonal
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quadrupolar components are not independent because of the vanishing trace of the quadrupolar
tensor [100], i.e.,

O+ 0y, + 05, =0. (19)
Overall, these remarks suggest that, without loss of generality, we can set QF, = 0 and consider that
= - O0yy. The same considerations can be applied to the magnetic quadrupolar components.

Indeed, adding nonzero Qf, or O}, would modify the total intensity distribution in such a way
that additional terms will be symmetric with respect to the xy-plane and thus unable to produce
the force along the z-axis, as seen from Eq. (14). Therefore, the components involving Q%, and

c
Yy read,

6 6

k
—— R e O™ — 0 O™ = -2 R e m*. 2
Si0mane; RELORQ — Q0] = 2575 ——Rel 0,0 ] (20)

F). =
() 240meoco

The corresponding radiation pattern for this type of interaction is presented in Fig. 4 for A¢ = 0.
The dependence of the force and total intensity on the phase can be found in Visualization 5.

max

Force z (arb. un.)
o

-1

0 T 2T
Phase difference A¢

Fig. 4. Origin of the optical force resulting from the superposition of an electric quadrupole
e — Q§y with a magnetic quadrupole )’C”y, as a function of their relative phase difference
A¢. (a) Radiation pattern for the electric quadrupole. (b) Radiation pattern for the magnetic
quadrupole. (c) Interference pattern for A¢ = 0. (d) Normalized force dependency on the
relative phase difference between multipoles. (e) Total intensity distribution due to the
sum of both multipoles. All patterns are normalized to the maximum intensity in panel (e).

(Visualization 5) Intensity distribution for different values of the relative phase difference.

The radiation pattern resulting from the Q7, and Q7 interaction is shown in Fig. 5 for a relative
phase difference A¢ = 0, with the full dependency on the phase presented in Visualization 6.

We can see that by increasing the orders of the interacting multipoles, more complicated
radiation patterns appear, allowing higher directivity of the outgoing wave [72,73]. Remarkably,
in all visualizations presented in this paper, the interference term conserves it shape and only
scales depending on the amplitude and the relative phase difference between the multipoles.
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Fig. 5. Origin of the optical force resulting from the superposition of an electric quadrupole
0%, with a magnetic quadrupole Q7}, as a function of their relative phase difference A¢.
(a) Radiation pattern for the electric quadrupole. (b) Radiation pattern for the magnetic
quadrupole. (c) Interference pattern for A¢ = 0. (d) Normalized force dependency on the
relative phase difference between multipoles. (e) Total intensity distribution due to the
sum of both multipoles. All patterns are normalized to the maximum intensity in panel (e).
(Visualization 6) Intensity distribution for different values of the relative phase difference.

4. Conclusion and outlook

We have discussed the radiation from low-order multipoles interactions up to quadrupole —
quadrupole interactions with the goal of explaining and illustrating the emergence of optical
forces. The interference appearing as the result of the selected multipole interactions considered
here has a very strong link with the optical force along a given direction of space and is effectively
controlled by varying the relative amplitudes and phases between multipoles. The analytical
considerations along with the visualizations provide a useful handle for particle manipulation
analysis and for the development of ultra-directional scattering objects.

We also demonstrated that the total field intensity is not the only quantity, which determines the
appearance of the force. Instead, it is the interference term between the multipoles that governs
its emergence. We finally revealed that the shape of this interference term does not depend on
the relative phase or relative amplitude of both multipoles; it can therefore serve as a reference
metrics for the analysis of new and past experiments.

So far, the discussion has been carried out up to quadrupolar — quadrupolar interaction. Despite
the fact that higher order multipoles will generally have less impact on the force for small isolated
particles, they can find interesting applications in more advanced concepts, such as for example
solar sails [101-103], where gratings or metasurfaces are utilized for light steering and higher
order multipoles can be involved [104—106].

Overall, the approach developed in this paper facilitates the prediction and the analysis of the
forces acting on micro and nanostructures illuminated by arbitrary light beams. The provided
analysis can also stimulate the developments of an intuitive understanding of the forces at hand
in near-field plasmonic experiments [6,107,108]. Based on the different interactions described
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this work, one can design optical structures that will support a given set of multimodes and,

consequently, behave in a specific manner.
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