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1 Introduction

The conformal bootstrap has enjoyed remarkable success in the last decade, employing

both numerical [1–4] and analytic [5–8] methods to solve general consistency conditions.

Some of the primary methods of the analytic bootstrap include: light-cone expansions of

the crossing equations, large N expansions, AdS/CFT, and causality constraints.

Implications of causality are often effectively captured by dispersion relations, following

the work of Kramers and Kronig in optics. These authors related (in 1926) the dispersive

(real) and absorptive (imaginary) part of the index of refraction, exploiting analyticity of

the index of refraction in the upper-half complex frequency plane. Dispersion relations were

later used to try and constrain the relativistic S-matrix [9–11]. This was an important tool

for physicists in the 1950’s and 60’s who, in the absence of a microscopic theory, attempted

to solve or “bootstrap” the strong interactions using consistency with the principles of

causality, unitarity, and crossing; a program which waned down at the time with the

advent of QCD as a microscopic description of the strong force.

Dispersion relations are typically most useful when one knows more about the absorp-

tive part than the real part. For the strong force at low energies, the imaginary part is often

saturated by narrow resonances, leading to phenomenologically interesting sum rules [12].

It may also happen that the imaginary part (or the absolute value of the amplitude) is the

only quantity measured experimentally. Theoretically, the imaginary part enjoys useful

properties such as positivity (for example in the forward limit), related to probabilities

being nonnegative; applications include the first proof of irreversibility of renormalization

group flow in four spacetime dimensions [13]. In perturbative scattering amplitudes, ab-

sorptive parts can be efficiently computed in terms of lower-order amplitudes through the

Cutkosky rules, a foundational insight that is now built into successful methods such as

generalized unitarity [14–17]. Given that crossing symmetry and general principles ap-

pear to be particularly powerful in conformal field theories, it is natural to expect a CFT

dispersion relation to be a useful tool in constraining CFT correlators.

In this paper we derive a dispersion relation for CFT 4-point correlators G(z, z̄):

Gt(z, z̄) =

∫ 1

0
dwdw̄K(z, z̄, w, w̄)dDisc[G(w, w̄)] (1.1)

where we separate the t and u channel contributions and a possible finite sum of non-

normalizable blocks (see section 4.2.1):

G(z, z̄) = Gt(z, z̄) + Gu(z, z̄) + (non-norm.) . (1.2)

The input dDisc[G(z, z̄)] represents the double-discontinuity of the correlator around z̄ =

1, defined below, and is interpreted physically as its absorptive part. We notice that

the correlator is a function of two cross-ratios (z, z̄): the kernel K(z, z̄, w, w̄) is thus a

function of two pairs of cross-ratios, one pair being integrated over (with w, w̄ real in

the integration region). This is to be contrasted with more familiar Kramers-Kronig type

dispersion relations, in which a single variable is integrated over. We will argue that such
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a complication is unavoidable if we insist that the input be the “absorptive part” dDisc[G],

as the analytic properties of the correlators G(z, z̄) entangle its two arguments.

The existence of a formula such as (1.1), reconstructing correlators from (double)

discontinuities, is suggested by the Lorentzian inversion formula of [18–20]. That for-

mula reconstructs operator product expansion data from knowledge of the discontinuities

dDisc[G(z, z̄)] of the CFT 4-point correlator, and has been used notably to streamline

light-cone and large-N expansions. Examples suggest that a crude approximation to the

dDisc (ie. including the simplest few exchanged operators) can lead to accurate results

to the OPE data itself. These examples range from the low-twist spectrum in 3D Ising

and related models [21–25], mean field theory [26], the calculation of Witten diagrams in

strongly coupled (holographic) gauge theories [27, 28], as well as defect CFTs and certain

finite temperature effects [29, 30].

We find it is extremely encouraging that good first approximations to the dDisc are

easy to come by. This begs the question of systematic improvement. One limitation of

the Lorentzian inversion formula is that it is difficult to iterate it. For example, its out-

put cannot simply be fed back into it, in a way that would lead to successively better

approximations (while the formula produces a generating function for the spectrum, com-

puting the dDisc requires resolving the dimensions of individual operators, a step which

requires a numerically difficult analytic continuation). The dispersion relation (1.1) offers

a step forward, since it enables crossing equations to be formulated directly on the positive

dDisc. As we will see, it will also circumvent technical limitations regarding convergence

at low spins.

In this paper we derive the dispersion relation (1.1), and in particular the kernel K

entering it, by resumming the OPE data extracted via the Lorentzian inversion formula.

The result can be split into a two-dimensional bulk integral KB and a one-dimensional

contact integral KC :1

K(z, z̄, w, w̄) = KBθ(ρzρ̄zρ̄w − ρw) +KC
dρw
dw

δ(ρw − ρzρ̄zρ̄w) (1.3)

where θ(x) is the unit step function and δ(x) is the Dirac δ-function. In the case of operators

of equal external scaling dimensions, our main result is the explicit form:

KB = − 1

64π

( zz̄
ww̄

)3/2 (w̄ − w)( 1
w + 1

w̄ + 1
z + 1

z̄ − 2)

((1− z)(1− z̄)(1− w)(1− w̄))
3
4

x
3
2 2F1(

1

2
,

3

2
, 2, 1− x),

KC =
4

π

1

w̄2

(
1− ρ2

zρ̄
2
zρ̄

2
w

(1− ρ2
z)(1− ρ̄2

z)(1− ρ̄2
w)

)1/2
1− ρzρ̄zρ̄2

w

(1− ρzρ̄w)(1− ρ̄zρ̄w)
.

(1.4)

The first involves a rather special combination of cross ratios:

x ≡ ρzρ̄zρwρ̄w(1− ρ2
z)(1− ρ̄2

z)(1− ρ2
w)(1− ρ̄2

w)

(ρ̄zρ̄w − ρwρz)(ρzρ̄w − ρwρ̄z)(ρzρ̄z − ρwρ̄w)(1− ρwρzρ̄wρ̄z)
. (1.5)

The bulk integral contributes only for ρw < ρzρ̄wρ̄z (due to the step function), and is

proportional to a hypergeometric function, which can equivalently be written as a combi-

nation of elliptic integral functions, see eq. (3.24). The contact integral, proportional to

1The ρ-variables, defined in eq. (2.12), is: ρz ≡ 1−
√

1−z
1+
√

1−z , and similarly for z̄, w, w̄.
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a δ-function, is effectively integrated over a single variable w̄ ∈ [0, 1]. An alternative but

equivalent form, which unites the bulk and contact terms, is given in eq. (4.5).

We find it remarkable that a function of four complex variable can be written in closed

form as in eq. (1.4). As we will see in section 4, each factor plays a role, and K above is

arguably the simplest possible kernel able to fulfil the difficult task assigned to it.

The outline of the paper is as follows. In section 2.1 we review the amplitude dispersion

relation and the Froissart-Gribov inversion formula, and how one can derive the former from

the latter. This exercise will prepare us for the more difficult case of the CFT dispersion

relation. In section 3 we show the full details of derivation of the CFT dispersion relation

in d = 2 for scalars with equal external scaling dimensions. We obtain an analytic result for

the kernel, in terms of elliptic integral functions. The same kernel is valid in any dimension,

and we show that in section 3.3 that indeed repeating the calculation in d = 4 yields the

same kernel. In section 3.4 we derive the dispersion relation for unequal external scaling

dimension. The kernel satisfies a differential equation, giving Taylor expansions for it. For

a specific simple case, a = 0 and b = 1
2 , we also find an analytic form for the kernel. In

section 4 we establish the validity of the dispersion relation by a direct contour deformation

argument. This allows to overcome some of the original assumptions, and in particular we

obtain a subtracted dispersion relation that is valid in any unitary CFT. In section 5 we

explore possible applications of the dispersion relation: to strong coupling N = 4 SYM, to

obtain novel identities relating inverted and conformal blocks, and to the 3D Ising model

and new bootstrap functionals. We conclude by discussing future directions in section 6.

Note added. While this paper was being completed, the work [31] appeared on arxiv

who introduced a single-variable dispersion relation that reconstructs correlators from a

single-discontinuity. This appears to be quite distinct from the formulas considered here:

the input in this case (to our knowledge) is neither sign-definite nor admits a physical

interpretation as an absorptive part.

2 Preliminaries

2.1 Review of amplitude dispersion relation

Dispersion relations enable to construct a function from a knowledge of it’s discontinuities.

The most common type of a dispersion relation is the single variable dispersion relation,

where one variable is being integrated over. For definiteness, we will discuss this here in the

context of the relativistic 4-particle scattering amplitude, although the reader may wish to

keep in mind that the construction is more general. We will review two derivations, the

first involving a contour deformation argument which is perhaps the most familiar.

Consider the 4-particle scattering amplitude M(s, t) for scalars with mass m

(figure 1 left). M(s, t) is a function of the two Mandelstam variables s ≡ −(p1 + p2)2

and t ≡ −(p1 − p3)2, with the energy conservation constraint s+ t+ u = 4m2. For s con-

stant and in a suitable range, the complex t-plane has the structure depicted in figure 2,

with two branch cuts along the real axis for t > t0 and t < 4m2−s−t0. These are called the

s- and t-channel cuts (the second condition corresponding to u > u0). The single variable
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Figure 1. Left: The 4-particle scattering amplitude M(s, t), with external momenta pi. Right:

t-channel tree level exchange diagram of particle with spin J .

t

⇒

Figure 2. Left: The amplitude can be written as a contour integral by using Cauchy’s theorem.

Right: Upon deforming the contour, there will be contributions from the branch cuts and from the

arcs at infinity.

dispersion relation to be considered is:

M(s, t) =
1

2π

∫ ∞
t0

dt′

t′ − t
Disct′ [M(s, t′)] + (t↔ u) (2.1)

The integral runs over the branch cuts of M(s, t′), and i Disct′ [M(s, t′)] ≡M(s, t′ + i0)−
M(s, t′ − i0) is the discontinuity across the cuts in the t′-plane. Note that the variable s

just goes along for the ride.2

A common way to derive this is to start with a contour integral in the complex t′ plane

surrounding the point t (see figure 2); by Cauchy’s residue theorem:

M(s, t) =
1

2πi

∮
dt′

t′ − t
M(s, t′). (2.2)

Then one deforms the contour of integration as in figure 2. If M(s, t′) decays fast enough

at |t′| → ∞ that the arcs at infinity can be neglected, only the branch cuts contribute,

reproducing eq. (2.1) as desired.

What if M(s, t′) does not decay fast enough? If it is polynomially bounded, one can

still obtain a subtracted dispersion relation. The idea is to improve the behavior on large

arcs by subtracting the amplitude at some reference t = t∗:

M(s, t)−M(s, t∗) =
1

2π

∫ ∞
t0

dt′
[

1

t′ − t
− 1

t′ − t∗

]
Disct′ [M(s, t′)] + u-channel, (2.3)

2One could alternatively write a dispersion relation in the s-plane, with fixed t.
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which has improved convergence since the bracket ∼ 1/|t′|2. One can generalize by applying

more subtractions as needed. A perhaps more illuminating way to write this is to use

elementary algebra to rewrite the bracket as t−t∗
(t′−t)(t′−t∗) , and divide both sides by (t− t∗);

the once-subtracted dispersion relation (2.3) becomes:

M(s, t)

t− t∗
=

1

2π

∫ ∞
t0

dt′

t′ − t
Disct′

[
M(s, t′)

t′ − t∗

]
+ u-channel. (2.4)

This is nothing but the original dispersion relation, now applied to the rescaled function3

M(s, t)/(t− t∗). This viewpoint will be useful below.

In the amplitude context, the dispersion integral generally runs over unphysical regions

of the (s, t′)-plane, where Disct′M is neither positive-definite nor physically measurable.

An exception is for the range 0 ≤ s < 4m2 in a theory with mass gap m: there the

discontinuity is positive-definite, and is a smooth extrapolation (to imaginary angles) of

physically measurable t- and u-channel scattering amplitudes. This is an important result

of Martin, used in his celebrated proof of the Froissard bound on the high-energy growth

of total cross-sections [32]. The CFT dispersion relation discussed in this paper will share

the nice features of this special region.

For more on applications of scattering amplitude dispersion relations, the reader may

consult [9–11]. For a more recent application, see the following works on the S-matrix

bootstrap [33, 34].

2.1.1 Dispersion relation from the Froissart-Gribov formula

We turn to a perhaps less familiar derivation of the dispersion relation, starting from

the Froissart-Gribov formula expressing partial wave coefficients from the discontinuity of

the amplitude.

Consider the partial wave decomposition of the amplitude in the s-channel (figure 1

right), for definiteness working in d = 4 dimensions:

M(s, t(z)) =
1

2

∞∑
J=0

(2J + 1)aJ(s)PJ(z), z ≡ cos θ, t(z) =
4m2 − s

2
(1− z). (2.5)

Physically, θ is the scattering angle and the coefficients aJ(s) encode the decomposition of

the amplitude into spherical harmonics at a given energy-squared s.

Using the orthogonality of the Legendre polynomials,
∫ 1
−1 dzPJ ′(z)PJ(z) =

2δJJ′
2J+1 , one

may readily obtain a “Euclidean inversion formula” expressing the coefficients as an integral

over the amplitude. A less obvious formula, first derived by Froissart and Gribov [35, 36],

expresses the same data in terms of the discontinuity of the amplitude:

atJ(s) =
1

π

∫ ∞
1

dz′QJ(z′) DisctM(s, t(z′)), aJ(s) = atJ(s) + (−1)JauJ(s), (2.6)

where QJ(z′s) is the Legendre function of the second kind. atJ(s) and auJ(s) are the contri-

butions from the t-channel and u-channel cuts respectively. The Frossart-Gribov formula

3In this form, we have assumed that t∗ is inside the integration range, so that the discontinuity contains

a term −2πδ(t′ − t∗)M(s, t∗).
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plays a foundational role in Regge theory, as it establishes analyticity in spin of the partial

waves (as well as providing quantitative large-spin estimates).

A proof of eq. (2.6) starts from the orthogonality relation, rewriting the integral over

z ∈ [−1, 1] as a contour integral using that PJ ∝ Disc QJ . One then deforms the contour

exactly as in figure 2 above (see [18] for recent discussion with two derivations). The

Froissart-Gribov formula and dispersion relation are thus closely related, and it should

come as no surprise that one can derive either one from the other.

To go the other way, the trick is simply to plug the coefficient obtained from eq. (2.6)

into the partial wave sum in eq. (2.5), and interchange the summation and integration:

M(s, t(z)) =

∞∑
J=0

(2J + 1)PJ(z)
1

2π

∫ ∞
1

dz′QJ(z′)DisctM(s, t(z′)) + (t↔ u)

=
1

2π

∫ ∞
1

dz′DisctM(s, t(z′))

∞∑
J=0

(2J + 1)PJ(z)QJ(z′) + (t↔ u). (2.7)

The latter sum then turns into the following identity (for |z| < |z′|):4

∞∑
J=0

(2J + 1)PJ(z)QJ(z′) =
1

z′ − z
(2.8)

which is recognized as the kernel of the dispersion relation (2.1). (One needs only the

change of variable dz′

z′−z 7→
dt′

t′−t .)

We call the measure dt′

t′−t , which multiplies the discontinuity, the “kernel”. Interestingly,

even though the form of the special functions PJ and QJ changes in a complicated way as

a function of spacetime dimension, and the left-hand-side of eq. (2.8) acquires a measure

factor [(1− z′2)/(1− z)2](d−4)/2, one can show that the sum produces the same right-hand-

side in any dimension. This was to be expected physically, since the dimension simply did

not enter the earlier derivation anywhere.

The reader may wonder why one would want to derive a dispersion relation starting

from the Froissart-Gribov formula (2.6), as opposed to simply writing down the more ele-

mentary Cauchy kernel dt′

t′−t . The reason is that the substitution PJ 7→ Disc QJ underlying

the former has a group-theoretical explanation (ie. both functions satisfy the same Casimir

differential equation), whereas writing down the Cauchy kernel requires an educated guess.

For conformal correlators, the group-theoretic approach was successfully carried out in

ref. [18], whereas the guessing approach turns out to be much more challenging.

2.2 Review of CFT kinematics

In this paper we will focus on a correlator of four scalar primary operators in a CFT. This

can be written as a function of cross ratios z and z̄ multiplied by an overall factor which

4This can be proved by combining the following two equations:

1

2

∞∑
J=0

(2J + 1)PJ(z)PJ(z′) = δ(z − z′), and QJ(z) =
1

2

∫ 1

−1

dz′PJ(z′)

z′ − z .

The latter shows that PJ(z) equals the discontinuity across the cut of QJ(z).

– 6 –
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is determined by the conformal symmetry:

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =

(
x2

14

x2
24

)a(x2
14

x2
13

)b
(x2

12)
1
2

(∆1+∆2)(x2
34)

1
2

(∆3+∆4)
G(z, z̄) , (2.9)

where we defined the differences of the external scaling dimensions:

a =
1

2
(∆2 −∆1), b =

1

2
(∆3 −∆4) (2.10)

and the cross ratios z, z̄ are defined through:

u = zz̄ =
x2

12x
2
34

x2
13x

2
24

, v = (1− z)(1− z̄) =
x2

23x
2
14

x2
13x

2
24

. (2.11)

We will often use the so-called radial or ρ-coordinates of ref. [37],

ρz ≡
1−
√

1− z
1 +
√

1− z
, ρ̄z ≡

1−
√

1− z̄
1 +
√

1− z̄
, z =

4ρz
(1 + ρz)2

, z̄ =
4ρ̄z

(1 + ρ̄z)2
(2.12)

which provide a double cover of the complex z-plane.

We will be focusing on the s-channel operator product expansion (OPE):

G(z, z̄) =
∑
J,∆

f12OJ,∆f43OJ,∆GJ,∆(z, z̄) (2.13)

where fijO are the OPE coefficients and GJ,∆(z, z̄) are s-channel conformal blocks for ex-

change of a primary operator with spin J and scaling dimension ∆, and its descendants.

For our purposes the OPE may also be written as an integral over principal series represen-

tations (harmonic functions), in which the scaling dimension is continuous (see [38–40]):

G(z, z̄) =

∞∑
J=0

∫ d
2

+i∞

d
2
−i∞

d∆

2πi
c(J,∆)FJ,∆(z, z̄) + (non-norm.). (2.14)

The “non-normalizable” part includes the s-channel identity operator as well as a possible

finite sum of F functions for scalar operators with dimension less than d/2. The CFT

data is then encoded in the poles of cJ,∆, which occur on the real axis of the complex ∆

plane at the position of the physical scaling dimensions, and whose residue are the squared

OPE coefficients:

f12OJ,∆f43OJ,∆ = −Res∆′=∆

[
c(J,∆′)

]
. (2.15)

The F stand for harmonic functions, which combine a block and its shadow

FJ,∆(z, z̄) =
1

2

(
GJ,∆(z, z̄) + #GJ,d−∆(z, z̄)

)
, (2.16)

with a specific coefficient that will not be important below. (It ensures that F is single-

valued in Euclidean space where z̄ = z∗, a necessary condition for the F ’s to form a

complete orthogonal basis.)

– 7 –
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Using the orthogonality for FJ,∆(z, z̄), one may readily write an Euclidean inversion

formula expressing the OPE data cJ,∆ as an integral over correlators, in analogy to that

for Legendre polynomials discussed below eq. (2.5). Instead we will use the Lorentzian

inversion formula, which reconstructs the same data from an “absorptive part” [18–20]

ct(J,∆) =
κJ+∆

4

∫ 1

0
dwdw̄ µ(w, w̄) G∆+1−d,J+d−1(w, w̄) dDisc[G(w, w̄)] (2.17)

where the integration region is the square 0 ≤ w, w̄ ≤ 1, the normalization and measure are

κβ =
Γ(β2 − a)Γ(β2 + a)Γ(β2 − b)Γ(β2 + b)

2π2Γ(β − 1)Γ(β)
, µ(w, w̄) =

∣∣∣w − w̄
ww̄

∣∣∣d−2 ((1− w)(1− w̄))a+b

(ww̄)2
,

(2.18)

and the OPE data itself is the sum of t- and u-channel contributions (as in eq. (2.6)):

c(J,∆) = ct(J,∆) + (−1)Jcu(J,∆). (2.19)

The u-channel contribution may be obtained by applying the integral (2.17) to the corre-

lator with operators 1 and 2 swapped.

Notice that the conformal block G∆+1−d,J+d−1(w, w̄) appearing in the inversion for-

mula above is not the usual block, it has the roles of J and ∆ reversed; we may call it the

“inverted block”. (This reversal is a Weyl reflection of the so(d, 2) Lie algebra.) This is

analogous to the substitution PJ 7→ QJ in eq. (2.6). One can draw a close analogy between

4-point CFT correlators and 4-particle amplitude scattering amplitudes, see table 1.

The “dDisc” is primarily defined as a expectation value of the double-commutator

−1
2〈0|[O2, O3][O1, O4]|0〉, divided by the normalization factor in eq. (2.9). It can be com-

puted as a double discontinuity, or difference between three analytic continuations, around

the point z̄ = 1:

dDisc [G(ρ, ρ̄)] ≡ cos(π(a+b))G(ρ, ρ̄)

− 1

2
eiπ(a+b)G(ρ, ρ̄−1−i0)− 1

2
e−iπ(a+b)G(ρ, ρ̄−1+i0) (2.20)

where we assume 0 < ρ, ρ̄ < 1. This represents a discontinuity since ρ̄z and ρ̄−1
z map onto

the same cross-ratio z̄, see eq. (2.12).

Physically, the dDisc is interpreted as an absorptive part because it represents one

minus the survival probability of a certain state. In particular it is positive-definite by

unitarity, see section 2.2 of [18]. In holographic theories, the double discontinuity effectively

puts bulk propagators on-shell (as seen in specific tree and one-loop examples, see ref. [27]),

furthering the analogy with DiscM and the Cutkowski rules. The idea that it is sometimes

easier to approximate the dDisc than the correlator itself, as reviewed in introduction,

motivates us to try and reconstruct the correlator itself from this data.

2.2.1 CFT dispersion relation from Lorentzian inversion formula

Given the formula which extracts OPE data from the absorptive part (dDisc) in eq. (2.17),

it is only natural to insert it back into the OPE to obtain a dispersion relation for the
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M(s, t) CJ(cos θ) QJ(cos η) Mt(s, t) =
∫∞
t0

dt′

t′−tDisc[M(s, t)]

G(z, z̄) FJ,∆(z, z̄) G∆+1−d,J+d−1(z, z̄) Gt(z, z̄) =
∫ 1

0 dwdw̄K(z, z̄, w, w̄)dDisc[G(w, w̄)]

Table 1. Analogous quantities between the 4-particle scattering amplitude (top row) and the CFT

4-point correlator (bottom row). The right most column shows the dispersion relation.

correlator itself. This is the procedure which led in subsection 2.1.1 to a dispersion relation

for scattering amplitudes. We thus plug eqs. (2.19) and (2.17) inside eq. (2.14):

G(z, z̄) = Gt(z, z̄) + Gu(z, z̄) + (non-norm.) (2.21)

where

Gt(z, z̄) =

∞∑
J=0

∫
d∆

2πi
FJ,∆(z, z̄)

κJ+∆

4

×
∫ 1

0
dwdw̄ µ(w, w̄) G∆+1−d,J+d−1(w, w̄) dDisc[G(w, w̄)] (2.22)

and similarly for Gu(z, z̄). Exchanging the order of integrals and sum then gives a dispersion

relation in the form quoted in eq. (1.1), that is:

Gt(z, z̄) =

∫ 1

0
dwdw̄K(z, z̄, w, w̄)dDisc[G(w, w̄)], (2.23)

where the kernel is now given explicitly as:

K(z, z̄, w, w̄) =
µ(w, w̄)

8πi

∞∑
J=0

∫ d
2

+i∞

d
2
−i∞

d∆ κJ+∆FJ,∆(z, z̄)G∆+1−d,J+d−1(w, w̄). (2.24)

This is a key formula, and the main goal of this paper will be to evaluate this kernel

K(z, z̄, w, w̄) explicitly.5 The integrand consists of the Euclidean harmonic function F ,

times the inverted block G and times κ∆+J (the latter turns out to be crucial).

3 Computing the CFT dispersion relation kernel

In this section we analytically perform the sum-integral (2.24), thus obtaining the kernel

of the dispersion relation. A few observations will simplify this endeavour:

• We expect the kernel K to be independent of space-time dimension, because eq. (2.23)

is a mathematical identity which should hold for any two-variable function G(z, z̄)

satisfying certain analyticity properties (that are dimension-independent). Indeed

this is what happened in eq. (2.8) for the amplitude dispersion relation. We will thus

now set d = 2, where the blocks are simpler, and verify in subsection 3.3 that the

same result is obtained in d = 4.

5The kernel K reported in introduction equals K here upon symmetrization in w ↔ w̄.
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Figure 3. Left: The original integration contour of the principle series representation. One can

close the contour either to the left or to the right, depending on the behaviour of the integrand at

|∆| → ∞. The integrand has poles on the real ∆ axis.

• In a generic CFT, the integral (2.17) only converges to the OPE data for large enough

spin. Even for a unitary theory, it may fail for J = 0 and/or J = 1. It is unclear how

to improve the Lorentzian inversion formula to reach these. Our strategy will be to

first glibly ignore this issue and assume convergence. After the kernel is obtained, in

the next section (see 4.2.1) we will extend its validity by means of a subtraction.

• We will first perform the sum assuming identical external operator dimensions; this

will require rather nontrivial identities. We will then realize that the agreement

between the d = 2 and d = 4 sums amount to interesting differential equations,

which will largely explain the form of the result and help attack the general case.

3.1 Performing the ∆ integration in d = 2

Our first step to compute (2.24) is to perform the ∆ integral. The idea, as shown in figure 3,

is to close the contour and use the residue theorem to get a sum over the residues of the

poles. We will need the explicit form of conformal blocks in d = 2:

GJ,∆(z, z̄) =
k∆−J(z)k∆+J(z̄) + k∆+J(z)k∆−J(z̄)

1 + δJ,0
,

kβ(z) ≡ z
β
2 2F1

(
β

2
+ a,

β

2
+ b, β, z

)
.

(3.1)

Plugging into eq. (2.24), this yields two terms for the block G(w, w̄), and four terms for

F (z, z̄) the average of block and shadow. We can use the w↔w̄ symmetry of the correlator

to remove one of the former, and shadow symmetry of the other factors to neglect the

shadow symmetrization, reducing the number of terms to 2:6

K(z, z̄, w, w̄) =
µ(w, w̄)

4πi

∑̃
J

∫ 1+i∞

1−i∞
d∆ κJ+∆k∆−J(z)k∆+J(z̄)kJ−∆+2(w)k∆+J(w̄)+(z↔z̄).

(3.2)

From now on until subsection 3.4 we consider the case of equal external scaling di-

mensions: a = b = 0. We close the integration contour in the ∆ plane with a semi-circle

6For conciseness we define the J sum with a tilde as
∑̃
J AJ(z, z̄) ≡

∑∞
J=0

AJ (z,z̄)
1+δJ,0

.
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at |∆| → ∞, figure 3. The integrand of eq. (3.2) has the following asymptotic behaviour

as |∆| → ∞:

κJ+∆k∆−J(z)k∆+J(z̄)kJ−∆+2(w)k∆+J(w̄)→ 16

π

ρ
1+J

2
w ρ̄

J
2
wρ
−J

2
z ρ̄

J
2
z (ρzρ̄zρ

−1
w ρ̄w)

∆
2√

(1− ρ2
w)(1− ρ̄2

w)(1− ρ2
z)(1− ρ̄2

z)
.

(3.3)

From this we see that when the cross-ratios are such that ρzρ̄zρ
−1
w ρ̄w = 1, the ∆ integral

is divergent and the kernel will have a contact term proportional to a delta function. We

compute this contact term in the next subsection. Otherwise, the magnitude of ρzρ̄zρ
−1
w ρ̄w

determines whether we close the ∆-contour to the left or to the right. Thus we expect our

kernel to contain a step function as well, ie. both “bulk term” and “contact terms” as in

eq. (1.3), which we reproduce for convenience:

K(z, z̄, w, w̄) = KBθ(ρzρ̄zρ̄w − ρw) +KC
dρw
dw

δ(ρw − ρzρ̄zρ̄w) +K∅θ(ρw − ρzρ̄zρ̄w). (3.4)

The notation K∅ anticipates that the third term vanishes.

3.1.1 The contact term KC

Performing the ∆ integral using the asymptotics in eq. (3.3) gives a delta function:

1

4πi

∫ 1+i∞

1−i∞
d∆(ρ−1

w ρzρ̄zρ̄w)
∆
2 = δ(ρ−1

w ρzρ̄zρ̄w − 1). (3.5)

The J sum from eqs. (3.2) and (3.3) is then simply a geometric sum:

∑̃
J

ρ
1+J

2
w ρ̄

J
2
wρ
−J

2
z ρ̄

J
2
z + (z↔z̄) = ρzρ̄zρ̄w

1− ρzρ̄zρ̄2
w

(1− ρzρ̄w)(1− ρ̄zρ̄w)
(3.6)

where we have used the constraint from the δ-function to eliminate ρw from the result.

Combining eqs. (3.2)–(3.6) gives the result for the contact term of the kernel:

K ⊃ 16

π

1

(ww̄)2

ρ2
wδ(ρw − ρzρ̄zρ̄w)√

(1− ρ2
w)(1− ρ̄2

w)(1− ρ2
z)(1− ρ̄2

z)

1− ρzρ̄zρ̄2
w

(1− ρzρ̄w)(1− ρ̄zρ̄w)
. (3.7)

Dividing by the δ-function and Jacobian dρw
dw included in eq. (3.4), this gives the formula

recorded in the introduction, namely:

KC(z, z̄, w̄) =
4

π

1

w̄2

(
1− ρ2

zρ̄
2
zρ̄

2
w

(1− ρ2
z)(1− ρ̄2

z)(1− ρ̄2
w)

)1/2
1− ρzρ̄zρ̄2

w

(1− ρzρ̄w)(1− ρ̄zρ̄w)
. (3.8)

The notation choice (3.4), with the Jacobian factored out, allows to directly integrate out

w, leaving a single integral over w̄:

Gt(z, z̄)
∣∣∣
contact

=

∫ 1

0
dw̄ KC(z, z̄, w̄) dDisc[G(w, w̄)]

∣∣∣
ρw=ρz ρ̄z ρ̄w

. (3.9)
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3.1.2 The bulk term KB

We now move on to compute the kernel when ρzρ̄zρ
−1
w ρ̄w 6= 1. From eq. (3.3) we see that

when the cross-ratios are in the regime ρzρ̄zρ
−1
w ρ̄w > 1, we can close the contour to the

left (ie. Re(∆) < 1), and the contribution from the arc at infinity will give zero. Likewise,

when ρzρ̄zρ
−1
w ρ̄w < 1 we close the contour to the right (ie. Re(∆) > 1) in order to drop

the contribution from the arc at infinity, figure 3.

Now we use the residue theorem to compute the ∆ integral as a sum over residues of

all the poles of the integrand of eq. (3.2). Each one of the four hypergeometric functions k’s

has a tower of poles, and also κβ has a tower of poles. Performing the residue analysis, we

find a few remarkable cancelations which significantly simplify the analysis. The first major

simplification is that the poles of the conformal blocks always cancel in pairs after summing

over J , and thus they give a zero contribution. This is the same mechanism as underlies

the cancellation of spurious poles in the harmonic decomposition (2.14), see [18, 19, 41].

Furthermore, κ∆+J does not have any poles on the right (see eq. (2.18) with a = b = 0),

thus all the poles cancel. The kernel is identically zero in this region!

K(z, z̄, w, w̄) = 0 for ρw > ρzρ̄zρ̄w. (3.10)

In other words the kernel is proportional to a unit step function K(z, z̄, w, w̄) ∝
θ(ρzρ̄zρ

−1
w ρ̄w − 1). This was expected physically, since the Lorentzian inversion formula

is known to commute with the lightcone expansion: the step function ensures that the

z → 0 limit of the correlator is determined by the w → 0 limit of the dDisc.

In the kinematics in which we close to the left, the kernel is non-zero. Again the

spurious poles of the conformal blocks cancel out, but now there is a tower of double poles

coming from κ∆+J . These can be exhibited from the definition:

κβ ≡
1

2π2

Γ4(β2 )

Γ(β)Γ(β − 1)
= −

cot2(πβ2 )

π2

1

κ2−β
. (3.11)

Since β = ∆ + J , we can label the poles by a positive integer m:

∆pole = −J − 2m, with m = 0, 1, 2, . . .∞. (3.12)

Thus from eqs. (3.2), (3.11), and the residue theorem, we have:

KB =
2

π2

1

w2w̄2

∑̃
J

∞∑
m=0

d

dm′

(
k−2J−2m′(z)k−2m′(z̄)k2J+2m′+2(w)k−2m′(w̄)

2π2κ2m′+2

)∣∣∣∣∣
m′=m

+(z↔z̄),

(3.13)

where we took the derivative with respect to m′ (as required by the residue theorem for

the case of double poles), and then plugged the integer value m. Now we notice that J

appears in only two hypergeometric functions; in fact the J-sum is telescopic and can be

computed exactly, see eq. (A.4). Performing the J-sum first we thus obtain

KB =
4

π2

1

w2w̄2
D2

∞∑
m=0

d

dm′

(
Γ2(2m′ + 1)

2Γ4(m′ + 1)
k−2m′(z)k−2m′(z̄)k−2m′(w̄)k2m′+2(w)

)∣∣∣∣∣
m′=m

,

(3.14)
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where D2 is a first-order differential operator acting on z, z̄ and w and defined in eq. (A.3).

To summarize, the dispersion kernel K defined by eq. (2.23) is now written explicitly in

the form (3.4) with the contact term (3.8) plus the bulk part (3.14), the latter still to be

simplified. It remains to perform the sum m over the tower of poles. This sum seems

formidable: the summand is a derivative d
dm′ of a product of 4 hypergeometric functions.

Amazingly, it can be performed exactly!

3.2 Main result from Legendre PPPQ sum

We will now perform the sum in eq. (3.14), namely:

S ≡
∞∑
m=0

d

dm′

(
Γ2(2m′ + 1)

2Γ4(m′ + 1)
k−2m′(z)k−2m′(z̄)k−2m′(w̄)k2m′+2(w)

)∣∣∣∣∣
m′=m

. (3.15)

To get some intuition, we first notice that, near w̄ → 1, each term has at most a logarithmic

singularity. This is because k−2m′(w̄) is polynomial for integer m′; a singularity can only

appear when the d
dm′ derivative acts on k−2m′(w̄),

dk−2m′(w̄)

dm′

∣∣∣
m′=m

=
Γ2(m+ 1)

Γ(2m+ 1)
Pm( ˆ̄w)× 1

2
log(1− w̄) + (non-singular) (3.16)

where for conciseness in this section we use a hat notation in which ŵ ≡ 2
w −1. Let us first

focus on the coefficient of the log term, that is the discontinuity around w̄ = 1.

We also notice that plugging m′ = m = integer, the hypergeometric functions reduce

to Legendre functions:

k−2m(z) =
Γ2(m+ 1)

Γ(2m+ 1)
Pm(ẑ), kβ(z) = 2

Γ(β)

Γ2(β2 )
Qβ

2
−1

(ẑ), (3.17)

where Pm(ẑ) and Qm(ẑ) are Legendre polynomials and Legendre functions of the second

kind, respectively.7 Thus the log part of the sum becomes:

S
∣∣∣

1
2

log(1−w̄)
=
∞∑
m=0

(2m+ 1)Pm(ẑ)Pm(ˆ̄z)Pm( ˆ̄w)Qm(ŵ). (3.18)

So we must now compute this (2m + 1)PmPmPmQm sum. Luckily, the coefficient (2m +

1) in the sum is the canonical coefficient which often appears with Legendre functions!

Encouragingly, we further notice that a similar sum appeared for the scattering amplitude

dispersion relation in eq. (2.8), involving (2m + 1)PmQm — which can be realized in the

limit z̄, w̄ → 1 of the current one.

It turns out that such sums (with precisely the coefficient (2m+1)) have been evaluated

in the mathematics literature, dating back to Watson who computed a PPP sum [42].

Specifically, we use the result in eqs. (3.8)-(3.10) of [43], who computed the PPPP sum.

To uplift his result to our PPPQ sum in eq. (3.18), we need simply replace the PJ(ŵ) with

7We pick the branch of Qm(x) which is analytic at large m, where it decays like x−m−1; we warn the

reader that this is not the default branch picked by e.g. Mathematica.
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a QJ(ŵ), which can be done using the single-variable dispersion relation in the footnote

below eq. (2.7). In fact this step is completely trivial: the PPPP sum given in [43] is

defined in the interval ˆ̄w ∈ [−1, 1], and has square-root branch points at the boundary.

The function whose discontinuity is this, has exactly the same functional form, but now

viewed as a function of the complex plane minus the interval. The result of the sum is thus

(see also [44, 45]):

S
∣∣∣

1
2

log(1−w̄)
=

4ρwρ̄wρzρ̄zK(x)

π
√

(ρ̄wρz − ρwρ̄z)(ρ̄wρ̄z − ρwρz)(ρzρ̄z − ρwρ̄w)(1− ρwρ̄wρzρ̄z)
, (3.19)

where K(x) is the elliptic integral of the first kind:

K(x) ≡
∫ π

2

0

dθ√
1− x sin2 θ

=
π

2
2F1

(
1

2
,

1

2
, 1, x

)
, (3.20)

and x is the following combination of ρ’s, recorded previously in eq. (1.5):

x ≡ ρzρ̄zρwρ̄w(1− ρ2
z)(1− ρ̄2

z)(1− ρ2
w)(1− ρ̄2

w)

(ρ̄wρz − ρwρ̄z)(ρ̄wρ̄z − ρwρz)(ρzρ̄z − ρwρ̄w)(1− ρwρ̄wρzρ̄z)
. (3.21)

We are not quite done yet — recalling eq. (3.15), we need to account for the derivative

d/dm′, or, equivalently, we need to find the function whose log term is eq. (3.19). This

appears to be a difficult task, and so we try instead to make an educated guess. As

boundary data, one can directly show that eq. (3.15) should be regular at ρw → ρzρ̄zρw̄,

corresponding to x→ 1. The 1
2 log(1−w̄) term we have found corresponds to log x as x→ 0.

Our guess is to look for a second solution to the same hypergeometric differential equation,

but satisfying these other boundary conditions. In fact there is a unique candidate, which

turns out to be also an elliptic function:

−πK(1− x) = K(x) log(x) + non-singular. (3.22)

This equation states that the coefficient of the log singular terms of an elliptic function

is itself an elliptic function, with a changed argument. Our educated guess, extending

eq. (3.19), is thus:

S =
−4ρwρ̄wρzρ̄zK(1− x)√

(ρ̄wρz − ρwρ̄z)(ρ̄wρ̄z − ρwρz)(ρzρ̄z − ρwρ̄w)(1− ρwρ̄wρzρ̄z)
. (3.23)

A numerical evaluation of eq. (3.15), or its series expansion at small w̄, both confirm that

this ansatz is correct!

We are now done; the bulk term in the kernel is obtained as KB = 4
π2

1
w2w̄2D2S, from

eq. (3.14). Performing some simplifications, this gives us the form recorded in eq. (1.4),

namely:8

KB(z, z̄, w, w̄) = − 1

64π

( zz̄
ww̄

) 3
2 (w̄ − w)(1

z + 1
z̄ + 1

w + 1
w̄ − 2)(

(1− z)(1− z̄)(1− w)(1− w̄)
) 3

4

x
3
2 2F1

(
1

2
,

3

2
, 2, 1− x

)
.

(3.25)

8This hypergeometric function is a linear combination of elliptic integrals of the first and second kind:

2F1

(
1

2
,

3

2
, 2, 1− x

)
=

4

π(1− x)
(K(1− x)−E(1− x)) (3.24)
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An equivalent expression, suitable for integrating with respect to ρ-variables, is:

KB(z, z̄, w, w̄)dwdw̄ = − 1

π

dρwdρ̄w

(ρwρ̄w)3/2

(
ρzρ̄z

(1− ρ2
z)(1− ρ̄2

z)

)3/2(1

z
+

1

z̄
+

1

w
+

1

w̄
− 2

)
× (ρw − ρ̄w)(1− ρwρ̄w)√

(1− ρ2
w)(1− ρ̄2

w)
x

3
2 2F1

(
1

2
,
3

2
, 2, 1− x

)
.

(3.26)

3.3 Match with d = 4 and differential equation

We will now similarly derive the dispersion relation in d = 4 spacetime dimension and

show that it equals the one in d = 2, due to interesting identities. Since the steps are very

similar, we omit details and emphasize the few changes. The conformal blocks in d = 4 are

given by:

GJ,∆(z, z̄) =
zz̄

z̄ − z

(
k∆−J−2(z)k∆+J(z̄)− k∆+J(z)k∆−J−2(z̄)

)
. (3.27)

The extra prefactor, different measure, and shift in the argument of k functions (to ∆−J−2)

lead to mild changes in eq. (3.2):

K(d=4) =
1

4πi

zz̄

z − z̄
w̄ − w
w3w̄3

×
∞∑
J=0

∫ 2+i∞

2−i∞
d∆ κJ+∆k∆−J−2(z)k∆+J(z̄)kJ−∆+4(w)k∆+J(w̄) + (z ↔ z̄).

(3.28)

As in the d = 2 case, we close the contour in the ∆ plane and pick up the residues of the

poles, being careful with the behavior at infinity which gives rise to contact terms.

3.3.1 Contact term

We first compare the contact terms, which originate from the large-∆ asymptotics given

in eq. (3.3). Following the steps leading to eq. (3.6) we find that the kernels match due to

the following identity:

ρw
w̄ − w
ww̄

zz̄

z − z̄

∞∑
J=0

(
ρ−1
z (ρwρ̄wρ

−1
z ρ̄z)

J
2 − ρ̄−1

z (ρwρ̄wρ̄
−1
z ρz)

J
2

)∣∣∣
ρw=ρ̄wρz ρ̄z

=
∑̃∞

J=0

(
(ρwρ̄wρ

−1
z ρ̄z)

J
2 + (ρwρ̄wρ̄

−1
z ρz)

J
2

)∣∣∣
ρw=ρ̄wρz ρ̄z

(3.29)

which is rather surprising but can be verified by explicit computation on both sides. We

thus find that the contact term in d = 4 matches that of d = 2:

K
(d=2)
C (ρ̄w, ρz, ρ̄z) = K

(d=4)
C (ρ̄w, ρz, ρ̄z). (3.30)

3.3.2 Bulk term

The agreement for the bulk term will be rather more remarkable. Again we find that

spurious poles from the blocks cancel out pairwise, so we only need to keep the poles

from κ in eq. (3.28), which are in the left-hand ∆-plane. The summation over J can be
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performed similarly to eq. (3.14), and leads to a different operator acting on the same sum

S defined in eq. (3.15):

K
(d=4)
B =

4

π2

1

w2w̄2
D4S (3.31)

with

D4 ≡
zz̄

z − z̄
w − w̄
ww̄

((
zw (1− w)

z − w
− z̄w (1− w)

z̄ − w

)
∂w −

zw (1− z)

z − w
∂z +

z̄w(1− z̄)

z̄ − w
∂z̄

)
,

(3.32)

instead of D2 given in eq. (A.3). Remarkably, however, it is possible to verify using the

explicit form of S in eq. (3.23) that the two kernels agree:(
D4 −D2

)
S = 0. (3.33)

As a result, the 4d bulk kernel is equal to the 2d one!

K
(d=4)
B (z, z̄, w, w̄) = K

(d=2)
B (z, z̄, w, w̄). (3.34)

In summary, we showed that the dispersion relation is the same in d = 4 and d = 2. This

strengthens our intuition that the dispersion relation should not depend on the space-time

dimension d; it would be interesting to show this in other dimensions.

The agreement between the d = 2 and d = 4 kernels gives us an interesting first-order

differential equation satisfied by the PPPQ sum S. Turning the logic around, we can now

use this differential equation to help determine the kernel in the general case of unequal

scaling dimensions.

3.4 Differential equation for unequal scaling dimensions

We turn to the case of a generic 4-point correlator 〈O1 . . .O4〉 of scalars with unequal

scaling dimension: a = 1
2(∆2 − ∆1) 6= 0 and b = 1

2(∆3 − ∆4) 6= 0. We will be brief and

emphasize the main points. There is formally no change to eq. (3.2), namely:

K(a,b) =
µ(w, w̄)(a,b)

4πi

∑̃
J

∫ 1+i∞

1−i∞
d∆ κ

(a,b)
J+∆k

(a,b)
∆−J(z)k

(a,b)
∆+J(z̄)k

(a,b)
J−∆+2(w)k

(a,b)
∆+J(w̄) + (z↔z̄),

(3.35)

where we have simply made explicit the dependence on a and b of the various factors. One

may easily derive the contact term, by making a simple replacement in eq. (3.8):

K
(a,b)
C (z, z̄, w, w̄) =

(
(1− w)(1− w̄)

(1− z)(1− z̄)

)a+b
2

K
(0,0)
C (z, z̄, w, w̄). (3.36)

The bulk term comes from poles of κ∆+J , since spurious poles from the conformal blocks

cancel in pairs just as in the a = b = 0 case. As opposed to that case, however, the poles

of κ∆+J are now single poles instead of double poles. After performing the J sum using

the identity in eq. (A.2), we find the generalization of eq. (3.14):

K
(a,b)
B (z, z̄, w, w̄) = µ(a,b)(w, w̄) D2

(
S(a,b)
a + S

(a,b)
−a + S

(b,a)
b + S

(b,a)
−b

)
(3.37)
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whereD2, given in eq. (A.3), is the same differential operator as before, and we have defined:

S
(a,b)
a′ ≡

∞∑
m=0

sin(2πa′)

2π m!

Γ2
1+2a′+2mk

(a,b)
−2m−2a′(z)k

(a,b)
−2m−2a′(z̄)k

(a,b)
−2m−2a′(w̄)k

(a,b)
2m+2+2a′(w)

Γ1+2a′+mΓ1+a′−b+mΓ1+a′+b+m sin(π(a− b)) sin(π(a+ b))

(3.38)

using the notation Γx ≡ Γ(x). The sum in eq. (3.38) contains products of four hyper-

geometric functions which cannot be reduced to Legendre functions. Thus it may seem

hopeless to try to compute it directly. However, we may say a lot about the result using

differential equations.

A key observation is that dimension-independence still holds, that is:

(D2 −D4)S
(a,b)
a′ = 0. (3.39)

We could prove this using hypergeometric identities to rewrite the derivatives as shift on

the index m of the k functions, and showing that m sum becomes telescopic; it may also be

readily verified order by order in w. Notice that both D2 and D4 are first-order differential

operators (and independent of a and b). In fact, thanks to the manifest permutation sym-

metry of S
(a,b)
a′ in (z, z̄, w̄), this identity and its permutations give two linearly independent

differential equations. The fact that a function is annihilated by two first-order equations

implies that it factors through the two variables which represent its zero-modes, up to an

overall factor:

S
(a,b)
a′ =

√
zz̄ww̄

y1/2+a+b
× S̃(a,b)

a′ (x, y) (3.40)

where x is in eq. (1.5), reproduced here for convenience, and y is:

x =
ρzρ̄zρwρ̄w(1− ρ2

z)(1− ρ̄2
z)(1− ρ2

w)(1− ρ̄2
w)

(ρ̄wρ̄z − ρwρz)(ρ̄wρz − ρwρ̄z)(ρ̄zρz − ρ̄wρw)(1− ρwρzρ̄wρ̄z)
, (3.41)

y =
(1− ρz)(1− ρz̄)(1− ρw)(1− ρw̄)

(1 + ρz)(1 + ρz̄)(1 + ρw)(1 + ρw̄)
=
√

(1− z)(1− z̄)(1− w)(1− w̄) . (3.42)

The sums S̃
(a,b)
a′ are further constrained by second-order differential equations, which encode

that the SL(2,R) Casimir eigenvalue with respect to each of the four variable are the same

as can be seen from eq. (3.38). From these we find two equations on S̃:

0 =

[
x2 (1− x) ∂2

x − x2∂x + y2∂2
y + y∂y −

1

2
x2
(
1− y2

)
∂x∂y +

(
1

4
− a2 − b2

)]
S̃

(a,b)
a′ ,

0 =
[
(x2(1− y)2 + 4xy)∂x∂y − 2y∂y − 4ab

]
S̃

(a,b)
a′ .

(3.43)

These two, together with the boundary condition that S
(a,b)
a′ (x, y) ∝ x1/2+a′(1 + O(x)) as

x → 0, with a constant easily determined from the m = 0 term in eq. (3.38), completely

determine the functions S.

Before discussing solutions, let us make an observation about the a = b = 0 case: the

second equation can be used to fix the y dependence of each term recursively in a series

in x; when ab = 0, it implies that the solution is independent of y: ∂yS̃
(a,b)
a′ = 0. The
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first equation then reduces to that satisfied by the elliptic function
√
xK(1 − x). With

this method it is thus straightforward to derive the result (3.23) which we previously only

guessed. The key is the identity in eq. (3.39), which states that the kernels in d = 2 and

d = 4 are the same and which leads to eq. (3.40).

Instead of looking at the individual sums S̃
(a,b)
a′ we now focus on the specific com-

bination in eq. (3.37) and the actual kernel. It is convenient to explicitly act with the

differential operator D2 on the prefactor in eq. (3.40). In a convenient normalization the

kernel is then

K
(a,b)
B = − 1

64π

( zz̄
ww̄

) 3
2 (w̄ − w)(1

z + 1
z̄ + 1

w + 1
w̄ − 2)

y3/2+a+b
K̃

(a,b)
B (x, y) (3.44)

where

K̃
(a,b)
B (x, y) ≡ −8πx2∂x

(
S̃(a,b)
a + S̃

(a,b)
−a + S̃

(b,a)
b + S̃

(b,a)
−b

)
. (3.45)

From eqs. (3.43) we derive differential equations satisfied by K̃:

0 =

[
x2(1− x)∂2

x − 2x∂x + y2∂2
y + y∂y −

1

2
x2(1− y2)∂x∂y +

(
9

4
− a2 − b2

)]
K̃

(a,b)
B (x, y),

0 =
[
(x2(1− y)2 + 4xy)∂x∂y − 6y∂y − 4ab

]
K̃

(a,b)
B (x, y).

(3.46)

These conditions ensure that the dispersion relation commutes with the s-channel quadratic

Casimir.9 While we have not been able to solve these in closed form, we can state the

following results:

• The kernel K̃
(a,b)
B (x, y) is regular around x = 1. While this is not true for the

individual sums in eq. (3.38) (each has a logarithmic singularity), this is a special

property of the combination in eq. (3.37). The kernel is then the unique regular

solution to (3.44) with the boundary condition

lim
x→1

K̃
(a,b)
B (x, y) = 1− 4(a+ b)2 + 16ab

y

y + 1
. (3.47)

(We could get the constant by combining the eqs. (3.46) into a single fourth-order

one with no y-derivatives, and solving it along the y = 1 line in terms of 4F3 hyper-

geometric functions.)

• The limits as y → 0 and y →∞ are regular, and equal to a simply generalization of

eq. (3.8):10

lim
y→0

K̃
(a,b)
B (x, y) = (1− 4(a+ b)2)x3/2+a+b

2F1

(
1

2
+ a+ b,

3

2
+ a+ b, 2, 1− x

)
,

lim
y→∞

K̃
(a,b)
B (x, y) = (1− 4(a− b)2)x3/2+a−b

2F1

(
1

2
+ a− b, 3

2
+ a− b, 2, 1− x

)
.

(3.48)

9We found that the resulting dispersion in fact commutes with the quadratic Casimir in any dimension.

The dimension-dependence of the Casimir is a first-order differential operator which it might be interesting

to relate to the constraint in eq. (3.39).
10The limits x → 0 and y → 0 (or y → ∞) do not commute: to compare with the x → 0 limit given

below eqs. (3.43), one needs to carefully cross the region x ∼ y → 0.

– 18 –



J
H
E
P
0
9
(
2
0
2
0
)
0
0
9

• A Taylor series in (1−x) can be obtained using just the second of eqs. (3.46), together

with the previous limits; each term is polynomial in y
1+y .

In summary, for unequal scalar operators, the kernel takes the form in eq. (1.1), with the

contact term given explicitly in eq. (3.36), and bulk term in eq. (3.44) implicitly described

by the above.

Let us briefly comment on the special case: a = 0 and b = 1
2 , where the bulk term KB

identically vanishes. (This could be seen directly from the lack of poles of κ in eq. (2.18).)

This corresponds physically to a case where the double-discontinuity (2.20) is effectively

a single discontinuity!11 Only the contact term (3.36) remains. We observe also that it

is free of square roots (when written in terms of ρ’s). (More generally, when a is integer

and b is half-integer, the contact kernel K̃C(z, z̄, w̄) does not contain square roots.) The

dispersion relation then reduces to

Gt,(0,
1
2

)(z, z̄) =
1

π

∫ 1

0

dρ̄w
ρ̄2
w

1− ρzρ̄zρ̄2
w

(1− ρzρ̄w)(1− ρ̄zρ̄w)

(1− ρw)(1− ρ̄w)

(1− ρz)(1− ρ̄z)
dDisc

[
G(w, w̄)

]
ρw=ρz ρ̄z ρ̄w

.

(3.49)

Upon further inspection, this could be recognized as a single-variable dispersion relation of

the form of section 2.1, taken with fixed value of the ratio ρ̄w/ρw and acting on a certain

rescaling of the correlator. This ratio more generally will play an important role in the

next section.

4 Direct proof of dispersion relation

Having now obtained its kernel, we will now prove directly that the dispersion integral (1.1)

indeed reconstructs correlators. This may be viewed as a theorem in complex analysis,

independent of the CFT origin of the formula. This will show directly the validity of

the formula in any dimension, and will enable us to go beyond the situations where the

Lorentzian inversion formula converges.

We begin by observing that the contact term and bulk term of the kernel (see eqs. (3.4),

(3.8) and (3.25)), are not independent, disparate entities. Rather, they combine into the

discontinuity of a single “pre-kernel”:

Kpre(z, z̄, w, w̄) = − 1

32

w̄ − w
ww̄

(zz̄ww̄)
3
2 (1
z + 1

z̄ + 1
w + 1

w̄ − 2)

((1− w)(1− w̄)(1− z)(1− z̄))
3
4

x
3
2 2F1

(
1

2
,

3

2
, 1, x

)
. (4.1)

Near x = 1, the hypergeometric function above satisfies:

2F1

(
1

2
,
3

2
, 1, x

)
=

2

π(1− x)
− 1

2π
2F1

(
1

2
,

3

2
, 2, 1− x

)
log(1− x) + (non-singular). (4.2)

Using that

1− x =
(ρz − ρ̄zρwρ̄w)(ρ̄z − ρzρwρ̄w)(ρ̄w − ρwρzρ̄z)(ρzρ̄zρ̄w − ρw)

(ρ̄zρ̄w − ρwρz)(ρzρ̄w − ρwρ̄z)(ρzρ̄z − ρwρ̄w)(1− ρwρzρ̄wρ̄z)
, (4.3)

11We thank Dalimil Mazac for this observation.
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we see that the pre-kernel has both a pole and branch cut at ρw → ρzρ̄zρ̄w, whose residue

and discontinuity precisely match, respectively, the contact term and bulk terms:

KC = Resρw=ρz ρ̄z ρ̄w [Kpre], KB =
1

2π
Discρw→ρz ρ̄z ρ̄w [Kpre] (ρw < ρzρ̄zρ̄w). (4.4)

This enables to combine these terms into a single contour integral:

Gt(z, z̄) =
1

2πi

∫
Cw
dw

∫ 1

0
dw̄ Kpre(z, z̄, w, w̄) dDisc[G(w, w̄)] (4.5)

where Cw is a “keyhole” contour going from the origin to the origin counter-clockwise

around its maximum wmax corresponding to ρw = ρzρ̄zρ̄w (similar to the contour Cσ in

figure 4(a)). The existence of such a pre-kernel is very suggestive of a contour deformation

argument leading to the dispersion relation.

4.1 Contour deformation trick

We will now describe a contour in two complex variables, which, fortunately for us, takes

on a simple factorized form in suitable variables. The “good variables”, as suggested by

the degenerate case in eq. (3.49), are the geometric mean and ratio of ρ-coordinates:

σz =
√
ρzρ̄z, ηz =

√
ρz/ρ̄z, σw =

√
ρwρ̄w, ηw =

√
ρw/ρ̄w. (4.6)

Physically, in the Euclidean cylinder, σ is a radial coordinate and η = eiθ is an angu-

lar variable. The singularities which will be relevant for our argument are shown in fig-

ure 4. The complete list of singularities of the kernel and pre-kernel come from where

x = 0, 1,∞, namely:

x = 0 : ηw ∈ {±σw,±σ−1
w }, σw ∈ {0,±ηw,±η−1

w ,∞},
x = 1 : ηw ∈ {±σz,±σ−1

z }, σw ∈ {±ηz,±η−1
z },

x =∞ : ηw ∈ {±ηz,±η−1
z }, σw ∈ {±σz,±σ−1

z }.
(4.7)

Notice that each ηw-plane singularity is reflected four-fold: by η 7→ η−1, which is parity

w↔w̄, and by η 7→ −η, which interchanges the t and u channels (ie. swaps operators 1

and 2 in the four-point correlator).

We will now see that the dispersion relation can be derived starting from the identity:

0 =

∮
Cσ×{|ηw|=1}

Kpre(z, z̄, w, w̄)G(w, w̄) (4.8)

where the original contour, shown in figure 4, is a product of a keyhole in σw (similar to

eq. (4.5)), times the unit circle ηw = 1, and then deforming the contour.12 This will hinge

on several properties that the pre-kernel (4.1) (remarkably!) combines:

1. It is odd under w↔w̄ due to the factor (w − w̄).

12The variable ηw was called w in ref. [18] and a similar contour deformation starting from the unit circle

|ηw| = 1 was used there to derive the Lorentzian inversion formula.
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σw
ηw

σz

∞
Cσ

ηz

ηw

ηzσw σz

00 1 ∞ 1∞ 1 ∞∞

(a) (b)

Figure 4. The integration contour used in eq. (4.8) to prove the dispersion relation is a product of

a keyhole and a circle. (a) σw-plane: the keyhole Cσ starts and ends at σw = 0. (b) ηw-plane: the

integral over the circle |ηw| = 1 vanishes and is equal to the sum of the pole and cuts in its interior.

The pole gives minus the correlator G(z, z̄) and the cuts give the dispersion integral. Values of x

are shown in light gray above the axis.

2. The branch cut at x =∞ is only logarithmic.

3. It has a simultaneous double pole when (σw, ηw) = (σz, ηz), e.g. 1
(ηw−ηz)(σw−σz) .

4. An analogous pole at ηw = −ηz is canceled by the factor ( 1
z + 1

z̄ + 1
w + 1

w̄ − 2).

5. The pre-kernel is symmetrical under ρ̄w 7→ ρ̄−1
w (x 7→ x

x−1) in the region x < 1.

This symmetry survives for the average of the two branch choices after going around

x =∞.

Notice that each factor in the pre-kernel (4.1) has some role to play.

The vanishing of the integral along the unit circle |ηw| = 1 (4.8) is basically due to

symmetry property 1. This is valid for generic 0 < z < z̄ < 1. Note however that property

2 is also implicitly used here, since at fixed σw the unit circle contour would not be well-

defined due to a branch cut at x = ∞. However, thanks to property 2, the discontinuity

across that cut cancels when integrated along the σw keyhole. Only the two-dimensional

contour is well-defined.

The trick now is to deform the ηw contour inward from the unit circle. Property 3

ensures there is a pole at ηw = ηz, with residue −G(z, z̄). There is no branch cut at this

point (thanks to point 2, ie. there is an expansion similar to (4.2) around x→∞, and we

are already taking a discontinuity in σ), so we can keep shrinking the contour until it hits

the cut at the smaller radius ηw = σz.

In doing so, one might worry about a reflected pole at ηw = −ηz, denoted by a circle in

figure 4(b). Its residue would be the u-channel correlator G(z/(z− 1), z̄/(z̄− 1)). Property

4 ensures that this undesired pole does not contribute, since the numerator of the pre-

kernel (4.1) vanishes when (w, w̄) = ( z
z−1 ,

z̄
z̄−1):(

1

z
+

1

z̄
+

1

w
+

1

w̄
− 2

)
=

(
−z − 1

z
− z̄ − 1

z̄
+

1

w
+

1

w̄

)
. (4.9)

This explains the role of this mysterious factor!
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It remains to show that the cut organizes into dDisc’s. We organize the cut into four

segments. On the positive axis there is the Regge region (0, σw) and the Euclidean region

(σw, σz). They connect at ηw = σw or ρ̄w = 1, where a lightcone is crossed (x2
14x

2
23 = 0).

Each has a u-channel reflection on the negative axis. In the Regge region we have 0 < ρw <

1 < ρ̄w with the constraint ρwρ̄w < ρzρ̄z. To map it to our reference region (inside the

unit square) we simply need to use the symmetry under inversion ρ̄w 7→ ρ̄−1
w in property 5

(which interchanges ηw and σw):13 to write it to a form similar to eq. (4.5)

eq. (4.8) ⊃
∮
Cw

∫ 1

0
dw̄Kpre × G(ρw, ρ̄

−1
w −i0), (4.10)

where Cw is the keyhole covering 0 < ρw < ρzρ̄zρ̄w. Notice that there is a Regge region

above the axis, and one below the axis. The kernel is identical in both (because its branch

point at infinity is only logarithmic), so the two sides of the t-channel region simply replace:

G(ρw, ρ̄
−1
w −i0) 7→ G(ρw, ρ̄

−1
w −i0) + G(ρw, ρ̄

−1
w +i0) ≡ G	 + G� (4.11)

where the notation emphasizes that we have gone a full circle around w̄ = 1 in the original

cross-ratios. The Euclidean region can similarly be combined, however in this case we do

not need to change variables but we need to use a symmetry of the kernel. A subtlety

is that the pre-kernel (4.1) (after x has been around ∞) has a log branch point at the

boundary x = 0 between the Regge and Euclidean regions; however, we need the average

between the two sides of the real axis (K	
pre +K�

pre = 2Kpre, property 5), leaving the desired

double-discontinuity:∮
Cw

∫ 1

0
dw̄
(
Kpre

(
G	 + G�

)
−
(
K	

pre +K�
pre

)
G
)

=

∮
Cw

∫ 1

0
dw̄Kpre ×

(
G	 + G� − 2G

)
∝
∮
Cw

∫ 1

0
dw̄Kpre × dDisc[G] .

(4.12)

The cut segments on the negative real axis similarly organize into a double discontinuity

around the u-channel limit w̄ →∞.

Let us summarize. We have proved a general result on single-valued functions of two

complex variables G(ρz, ρ̄z). We call a function “single-valued” if it satisfies the following:

• It is analytic in a cut plane C \
{

[1,∞) ∪ (−∞, 0]
}

for each variable ρz and ρ̄z

• It is devoid of branch cuts when restricted to the Euclidean region ρ̄z = (ρz)
∗

• It satisfies G(ρz, ρ̄z) = G(ρ̄z, ρz) = G(ρ−1
z , ρ̄−1

z ) in the Euclidean region.

These properties are satisfied by any CFT correlator (as reviewed in [18]). (The third

condition is simply because of the way the ρ variables cover the u, v cross-ratios.) The

Euclidean OPE limit is (ρz, ρ̄z)→ (0, 0) and the Regge limit is (ρz, ρ̄z)→ (0,∞) (both of

which map to (z, z̄)→ (0, 0) but on different sheets). Then we showed:

13It may be verified through the hypergeometric identity, valid for x < 1: 2F1( 1
2
, 3

2
, 1, x) = (1 −

x)3/2
2F1( 1

2
, 3

2
, 1, x

x−1
).

– 22 –



J
H
E
P
0
9
(
2
0
2
0
)
0
0
9

Theorem. Let G(ρz, ρ̄z) be a single-valued function of two complex variables, which

vanishes sufficiently fast in the Euclidean and Regge limits. Then the function can be

recovered from its double-discontinuity

G(z, z̄) = Gt(z, z̄) + Gu(z, z̄), Gt(z, z̄) ≡
∫ 1

0
dwdw̄K(z, z̄, w, w̄)dDisc[G(w, w̄)], (4.13)

with the kernel as quoted in introduction (eq. (1.3)). The necessary rate of vanishing can

be estimated from convergence at σw = 0, and along the small arc at ηw = 0 which connect

the t- and u-channel Regge limits in the preceding argument. By expanding Kpre in these

limits, we find that these arcs can be ignored provided that G(z, z̄) vanishes faster than

(zz̄)1/2 in both limits. (Convergence as w̄ = 1 also naively requires a singularity no worse

than (1 − w̄)−3/4, however in reality this is naturally resolved by retaining certain arcs in

the contour there, shown below, and there is no real constraint there.14)

Viewing eq. (4.13) as a result in complex analysis, rather than a result in conformal

theory, will be helpful for generalizations below.

4.1.1 Why two variables?

The kernel in (4.13) is quite nontrivial, and it is interesting to ask whether a dispersion

relation with a simpler kernel than could have been possible.

It is of course possible to fix one variable, say z, and simply reconstruct the correlator

from its discontinuity in z̄ using the logic of Cauchy’s theorem, as usually done for ampli-

tudes (see section 2.1). However, such a formula will not feed on the double discontinuity,

which has a clear physical interpretation as an absorptive part. Rather, it would feed on the

correlator in regions such as (z, z̄) ∈ (0, 1)×(1,∞), whose physical interpretation remain

unclear to us. We take the viewpoint that the physical goal of a “dispersion relation” is to

reconstruct data from some kind of “absorptive part”. One could try to repeat the process

with respect to say z̄ to try and get a second discontinuity, but the basic issue which we

couldn’t solve is that this wouldn’t avoid unphysical regions. Variables (ρz, ρ̄z) suffer from

the same issue.

One might hope to get more appealing formulas by choosing better variables, perhaps

integrating over η =
√
ρz/ρ̄z in figure 4b with σ fixed. Indeed, taking η negative does

take us to the physical u-channel (which is why this variable was so useful above). The

issue however is that for the integrand to organize into a dDisc, there would have to be a

corresponding integral where η is fixed and σ is integrated over (to provide the Euclidean

correlator part of the dDisc). The formula obtained in this paper achieves this by having

a two-dimensional integral over both ηw and σw, and a nontrivial symmetry when they are

exchanged (see eq. (4.10)).

4.2 Convergence and subtractions

We are now positioned to overcome the limiting assumptions made in section 3, and obtain

a subtracted dispersion relation that is applicable in an arbitrary unitary CFT.

14The cross-channel arcs near w̄ = 1, unlike arcs near w̄ = 0, do not invalidate the physical interpretation

of the formula as building on the dDisc.
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4.2.1 Subtracted dispersion relation

Let us first see how the theorem (4.13) clarifies the non-renormalizable terms in the for-

mula (1.2) quoted in the introduction. One such mode that is generically present is the

s-channel identity exchange, which leads to limz,z̄→0 G(z, z̄) = 1,. This violates the as-

sumptions of the theorem.

A solution is simply to apply the theorem to the function [G − 1], which is also single-

valued, has exactly the same double-discontinuity, but vanishes faster in the Euclidean OPE

limit z, z̄ → 0. In general, harmonic functions (single-valued combinations of blocks and

their shadows) should be subtracted for each operator of dimension less than 1 (the same

as in the harmonic analysis formula (2.14) with d = 2). This explains the non-normalizable

terms in eq. (1.2).

There remains the question of whether the function
[
G(z, z̄) − (non-norm.)

]
vanishes

faster than
√
zz̄ in the Regge limit (the limit as z, z̄ → 0 with z̄ on a second sheet),

corresponding to
√
zz̄

1−J
with exchange of a spin J = 0 excitation [40]. Unitarity implies

only that the correlator stays bounded, so in general this will not be the case. This reflects

the fact that the Lorentzian inversion formula (which was the starting point of the preceding

section) may fail to converge to the OPE data for spins J ≤ 1 [18].

The theorem (4.13) offers a simple way out: apply it to a rescaled correlator Gu/v =

G zz̄
(1−z)(1−z̄) . This is similar to the amplitude subtraction in eq. (2.4). Since G is bounded in

both the Euclidean and Regge limits (in any unitary CFT), this rescaled correlator vanishes

like zz̄ in both limits, and amply satisfies the assumptions of the theorem. Explicitly

showing the t- and u-channel contributions, this gives:

zz̄

(1− z)(1− z̄)
G(z, z̄) =

∫ 1

0
dwdw̄ K(z, z̄, w, w̄) dDisc

[
ww̄

(1− w)(1− w̄)
G(w, w̄)

]
+

∫ 1

0
dwdw̄ K

(
z

z − 1
,

z̄

z̄ − 1
, w, w̄

)
dDisc

[
ww̄G′(w, w̄)

]
,

(4.14)

where G′ denotes the correlator with operators 1 and 2 interchanged. The subtracted

dispersion relation (4.14) is a main result of this paper: it is guaranteed to converge in any

unitary CFT. Notice that the “non-normalizable” terms are gone: the extra power of zz̄

has made their subtraction unwarranted (and incorrect).

The price for better convergence at w, w̄ → 0 is poorer convergence near the cross-

channel limit w̄ → 1. This is addressed shortly; the bottom line is that 1/(1−w̄) means that

the dDisc operation, which normally suppresses double-trace operators in the t-channel,

will leave unsuppressed the lowest double-twist family (ie. t-channel operators of twist

∆′ − J ′ ≈ 2∆ext). (Out of possible other choices, we chose u
v so that the dDisc still

suppresses higher double-twists.)

4.2.2 Keyhole contour near cross-channel singularity

We finally address convergence near w̄ → 1. A basic fact is that the original integration

contour (see figure 4) does not touch that point, so there can’t be any real divergence

there. Rather, the contour encircles that point, and any apparent divergence at w̄ = 1 is

an artifact of incorrectly shrinking the circle to zero size.
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ρw̄

10 ρmax ρ−1
max

A

B−

B+ region ρ̄w correlator F

A ρ̄w ∈ [0, ] dDisc[G](t, ρ̄w)

B+ ρ̄w = ()e
−iθ −1

2
G	(t+ i0, ρ̄w)

B− ρ̄w = ()e
iθ −1

2
G�(t− i0, ρ̄w)

Figure 5. Keyhole contour in the ρ̄w variable to avoid cross-channel singularity (at w̄ = 1). The

angle runs over θ ∈ [0, π]. The radius of the circle shrinks as ρmax → 1.

The solution is to integrate ρ̄w over a “keyhole” type contour. We write the result in

full in the case of identical external operators. This is best done in the following variables.

First, we parametrize the integration in terms of t and ρ̄w by setting ρw = ρzρ̄zρ̄wt, so the

dispersion relation becomes:∫ 1

0
dwdw̄ K(z, z̄, w, w̄) dDisc[G̃(w, w̄)] 7→

∫ 1

0
dt

∫
A,B+,B−

dρ̄w JK(z, z̄, w, w̄)F
∣∣∣
ρw=ρz ρ̄z ρ̄wt

(4.15)

where J = ρzρ̄zρ̄w
dw
dρw

dw̄
dρ̄w

is a Jacobian for the change of variable (w, w̄) 7→ (t, ρw), and G̃

stand for either of the combinations entering in eq. (4.14). Recall that the kernel is a sum

of a bulk and contact part, which are supported on 0 < t < 1 and t = 1, respectively; they

have simple expressions in ρ-coordinates, eq. (3.26).

If regularization were not needed, the ρ̄w contour would be simply the interval [0, 1],

and the correlator F = dDisc[G̃] evaluated for w, w̄ given in terms of t, ρ̄w. Keeping the full

key-hole contour, it is instead the sum of a regulated interval [0, ρmax] and two half-circles

[ρmax, ρ
−1
max]. Explicit parametrizations and corresponding integrands are shown in figure 5.

The −1/2’s in the formula originate from the dDisc, which we recall (see eq. (2.20))

for identical operators (the case considered here) is dDisc[G] = G − 1
2G

	− 1
2G

�. Validity of

the formula require that the contour not enclose the poles at ρ̄w = 1/(ρz
√
t) and 1/(ρ̄z

√
t);

for real ρz, ρ̄z this is simply achieved by requiring ρmax ≥ max(ρz, ρ̄z). In practice, in

numerical examples below we chose ρmax = 0.9 (adequate for z, z̄ < 0.997), and we verified

that the integral is independent of ρmax. The t ± i0 notation indicates that the t-contour

must avoid a branch point on the real axis (at t = ρ2
max).15 (We note that the integrand is

not analytic at the point ρ̄w = ρ−1
max where B± meet. At this point, the integrand matches

onto the Euclidean correlator part of dDisc[G] at ρ̄w = ρmax.) We find that the keyhole

integral is quite practical numerically.

5 Checks and discussion

In this section we illustrate various checks and possible applications of the formula.

15In practice, we parametrize t ± i0 ≡ τ ± iετ(1 − τ) where τ ∈ [0, 1] is a real integration variable. The

offset ε doesn’t need to be small, and we used ε = 1 in all numerical examples.
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Figure 6. The tree-level exchange diagram for the N = 4 stress tensor multiplet.

5.1 Numerical check for generalized free fields

A first sanity check is to compare both sides of the dispersion relation in the simple example

of generalized free field. We consider:

G(w, w̄) = up1vp2 = (ww̄)p1((1− w)(1− w̄))p2 (5.1)

Then taking the double discontinuity (for non-integer exponents), gives for the t and u

channel contributions respectively:

dDisct[G(u, v)] = 2 sin2(πp2)(ww̄)p1((1− w)(1− w̄))p2 ,

dDisct[G(u/v, 1/v)] = 2 sin2(π(p1 + p2))(ww̄)p1((1− w)(1− w̄))−p1−p2 . (5.2)

Now we can plug this on the right hand side of eq. (4.13). There is a nonempty range

of p1 and p2 for which that formula converges without subtlety, namely: p1 > 1
2 and

−3
4 < p2 <

3
4−p1. Computing numerically these integrals for various values of p1 and p2 in

this range (and various values of z, z̄) we found perfect match with the l.h.s. of eq. (4.13)!

If we relax the condition on p1, we need the subtracted dispersion relation (4.14). And

if p2 is such that convergence is not satisfied at 1 (or ∞), we need to use the keyhole

contour in figure 5. Again we find perfect agreement, for example when p1 = p2 = 0, or

p2 = 2.25 with either p1 = 1 or p1 = 2.25 (in the later case there is only the t-channel cut).

In particular, the first test confirms that the subtracted dispersion relation (4.14) correctly

reconstructs even the identity exchange, from the dDisc of the correlators times u/v.

For unequal scaling dimensions, we did not attempt numerics because we do not have

a closed form for the kernel (3.44). However, we performed numerical tests in the special

case a = 0 and b = 1
2 using eq. (3.49), and also found perfect agreement.

5.2 Holographic correlators

The double-discontinuity is particularly simple to compute in holographic theories, as it

is saturated at tree-level by exchange of a finite number of light single-trace operators.
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In some sense the dispersion relation give novel “closed form” expressions for tree-level

holographic correlators as an integral over conformal blocks.

For illustration, consider the correlator of stress-tensor multiplets in planar N = 4 at

large ’t Hooft coupling, dual to tree-level gravity in AdS5 × S5. We follow the notation

of [27]. (In short: because of supersymmetry, the stress tensor lies in a supermultiplet

which includes scalars of dimensions ∆i = 2 in the [0, 2, 0] representation of the SU(4)R
global symmetry. We study the correlation functions of these scalars, projected onto the s-

channel [0, 4, 0] representation, which is known to determine all other representations. This

projection has good high-energy behavior, allowing to use the unsubtracted dispersion

relation.) The double-discontinuity in this limit is saturated by exchange of a single t-

channel (super)conformal block corresponding to the stress tensor multiplet, or graviton

exchange in the bulk (figure 6); it admits a particularly concise form [27, 46]:

dDisc[G(w, w̄)](1) = dDisc

[
1

1− w̄

]
×
(
w2 − 4w3 + 3w4 − 2w4 logw

(1− w)4
≡ X(w)

)
. (5.3)

The correlator itself is the only single-value function with this double-discontinuity (and

correct Regge behavior) and is given as [47, 48] (see [49] for the D̄ functions):

G(z, z̄)(1) =
u2

v
− u4D̄2422(u, v),

D̄2422 = ∂u∂v(1 + u∂v + v∂v)Φ
(1)(u, v),

Φ(1)(u, v) =
2Li2(z)− 2Li2(z̄) + log[1−z

1−z̄ ] log(zz̄)

(z − z̄)
.

(5.4)

We would like to see here how the dispersion relation reconstructs (5.4) starting from the

elementary dDisc given above it.

First we note that the dDisc is naively zero (no branch cut), so it is really a sort

of delta-function around w̄ = 1. This can be seen explicitly from the keyhole contour in

figure 5: only the semi-circles survive. In fact it is possible to directly integrate numerically

over the semi-circles and compare (successfully) with (5.4). Let us see how the integral

could be done analytically. In fact, the two half-circles would precisely cancel each other

were it not for the fact that the kernel has a log. So dDisc[1/(1 − w̄)] is effectively −2π2

times a sort of δ-function which extracts the coefficient of log(1 − w̄) in the kernel, and

eq. (4.15) becomes

G(z, z̄)(1) =

∫ wmax

0
dw

[
− 2u2(1− w)(u/w + 1− v)

]
+ (u-channel)(

u2 − 2wu(1 + v) + w2(1− v)2
)3/2 ×X(w) (5.5)

where wmax = u
(1+
√
v)2 is where ρw = ρzρ̄z. Adding the u-channel term simply cancels the

(1 − v) term in the numerator, and doubles the remaining u/w term. A comment is in

order: the integration endpoint is a branch point of the denominator, so it appears that by

shrinking the circles to get a δ-function we have created a new divergence as w = wmax. One

can show that the proper treatment simply amounts to integrating w itself on a keyhole,∫ wmax

0 7→ 1
2

∫ 0
0 , as in figure 4a. The integral is then unambiguous, and can also be checked

numerically (giving a nontrivial confirmation of the form of the dispersion relation).
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The form of the integrand of eq. (5.5) makes manifest the fact that the integral gives

a combination of dilogarithms and simpler functions — the most complicated part can

be written in the form
∫
d log(· · · ) log(w), to which standard integration algorithm can be

applied, see for example [50]. (Since the square root has two branch points with respect to

w, one has to first go to a double-cover where the square root is gone.) It could be interesting

to use this method to help understand the functions which can appear at higher loops.

5.3 An integral relation between conformal blocks

The validity of the dispersion relation predicts a new relation between harmonic functions

and the inverted block which enters the Lorentzian inversion formula (and accessorily

rederive the latter). Recall the dispersion relation:

G(z, z̄) =

∫
dwdw̄ K(w, w̄, z, z̄) dDisc[G(w, w̄)] + (t↔ u) (5.6)

The Euclidean inversion formula, in the conventions of [18], is:

c(J,∆) = N(J,∆)

∫
Eucl

dzdz̄ µ(z, z̄) FJ,∆(z, z̄) G(z, z̄) (5.7)

where the normalization is N(J,∆) ≡ Γ(J+ d−2
2

)Γ(J+ d
2

)KJ,∆
2πΓ(J+1)Γ(J+d−2)KJ,d−∆

. Plugging eq. (5.6) inside

eq. (5.7) gives:

c(J,∆) = N(J,∆)

∫
dwdw̄ µ(w, w̄) dDisc[G(w, w̄)]

×
∫
dzdz̄

µ(z, z̄)

µ(w, w̄)
FJ,∆(z, z̄)K(w, w̄, z, z̄) + (t↔ u)

(5.8)

where we exchanged integration orders, and multiplied and divided by µ(w, w̄). This has

precisely the form of the Lorentzian inversion formula (2.17): Euclidean inversion plus

dispersion relation gives Lorentzian inversion. The interesting thing is that comparison

reveals the following identity:

G∆+1−d,J+d−1(w, w̄) =
4N(J,∆)

κJ+∆

∫
Eucl

dzdz̄
µ(z, z̄)

µ(w, w̄)
FJ,∆(z, z̄)K(w, w̄, z, z̄) (5.9)

This is predicted to hold for any d, J , and ∆. The integration is over the complex z plane,

i.e z̄ = z∗. This equation is the analog of the relation between the Legendre polynomials

of the first and second kind (See table 1):

QJ(x) =
1

2

∫ 1

−1

dyPJ(y)

y − x
. (5.10)

While we haven’t checked this relation in the general case, in appendix B we verify it in

the special case that d = 2 and (a, b) = (0, 1
2). It would be interesting to understand the

relationship between this identity and the light transform of [20].
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5.4 3D Ising model and analytic functionals

In the 3D Ising model, we now present numerical tests for the correlator of four Z2-odd

operators (〈σσσσ〉), and discuss a possible way to reorganize the crossing equations.

A straightforward exercise (if somewhat technical) is to numerically integrate the sub-

tracted dispersion relation in eq. (4.14), using the OPE data tabulated in [3] to compute

dDisc[G] as a sum over t-channel blocks. It is important conceptually that the t-channel

OPE commutes with the dispersion relation. The basic reason is that the interior of the

integration region, w, w̄ ∈ (0, 1), lies within the convergence radius of the OPE. It is also

important to be careful near endpoints which lie at the boundary of convergence [51]. In

our case these are the collinear limit w = 0 and Regge corner w, w̄ → 0. Due to absolute

convergence of the (subtracted) kernel against the full correlator, and thanks to positivity

of the OPE, we expect that the operations safely commute.

The most important numbers (with uncertainty in the last digit, see [3]) are:

∆σ = 0.518149, ∆ε = 1.41263, fσσε = 1.051854. (5.11)

We used the 3D→2D dimensional reduction formulas of ref. [52] to efficiently compute the

3D conformal blocks. Breaking the contributions into those of dominant operators and

families, we find for example the correlator at a specific point (z, z̄) = (1
2 ,

1
4)

v∆σG
(

1

2
,
1

4

)
= 0.368781 + 0.29685ε + 0.16493T + 0.00568[σσ]0,≥4

+ 0.00030ε′ + 0.00018

≈ 0.83672 (5.12)

where the superscript label the cross-channel operator(s), and the last term collects all

the other operators ([σσ]1 and [εε]0 families) recorded in [3]. Some comments are in order

about the lowest twist trajectory [σσ]0. We separated the spin-2 contribution (stress-tensor

T ) from the others of spin J ≥ 4. Naively, one may have expect the whole trajectory

to be suppressed by a sin2(π(τ/2 − ∆σ)) factor, however, as explained below eq. (4.14),

the subtracted dispersion relation involves dDisc[Gu/v] which prevents that cancelation

for the lowest twist (the usual suppressions still operate for [σσ]1). As indicated in fig-

ure 7a, by evaluating the contribution of these operators up to spins O(20) and fitting to a

power-law, we find that we can accurately resum the trajectory (the fit in the figure used

spins 20,22,24).

Performing the similar calculation at crossing-related points ( 1
2 ,

3
4) we find:

v∆σG
(

1

2
,
3

4

)
= 0.616351 + 0.19655ε + 0.02951T − 0.00597[σσ]0,≥4

+ 0.00011ε′ + 0.00003

≈ 0.83659. (5.13)

The difference of these two numbers is a crossing equation, satisfied at the 10−4 level:

X

(
1

2
,

1

4

)
= −0.00013, X(z, z̄) ≡

(
v∆σG(u, v)− u∆σG(v, u)

)
. (5.14)
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Figure 7. (a) High-spin tail of the contribution of the lowest-twist family [σσ]0,J to the correlator in

eq. (5.12). Operators of spin 28 and higher were resummed using the power-law fit. (b) “Bootstrap

functional” obtained by evaluating the contribution of spin-0 and spin-2 exchanged operators of

dimension ∆ to the dispersion integral X( 1
2 ,

1
4 ) in eq. (5.14), with external dimensions fixed to

∆σ. A rescaling envelope was applied. Note that the curves have double zeros at non-leading

double-twist dimensions.

For comparison, calculating the same correlators vG at these particular points using the

Euclidean OPE (and same OPE coefficients), we find a compatible value vG = 0.83657

(with a change of ±2 in the last digit between the two crossing-related positions). The

agreement convincingly shows that the dispersion relation indeed reconstructs the correla-

tor. It is presently not clear whether the (small, but significant) 10−4 error in (5.12) is due

to numerical integration or truncation of the spectrum.

Conceptually, one may be concerned that the sensitivity to the lowest twist trajectory

means that the formula requires more than the absorptive part. However, in practice, the

lowest-twist data is particularly well understood from the Lorentzian inversion formula. A

very crude approximation (simply feeding the identity and ε into the inversion formula,

following [23]), for example reproduces the OPE coefficients of [3] to per-mil accuracy; we

used this approximation in the above, for spins 12 and higher. Conceptually, one may

view the first four contributions in eq. (5.12) as accurately parametrized (to per-mil level)

simply by three parameters: (∆σ,∆ε, fσσε).

It is amusing to try to constraint this crude model, for example for a given ∆σ one can

find (∆ε, fσσε) which minimizes the error in the crossing relation (and in the twist of the

stress tensor). Preliminary investigations yield a curve(s) passing through the numerical

bootstrap solution (5.11), with values of ∆ε differing by less than ±0.01 when considering

different crossing equations (we did not observe any kink). Possibly, to close the system

and also fix ∆σ by such methods, one will need to consider mixed correlators.

It is interesting that the contributions of individual blocks are very different between

the Euclidean OPE and dispersion relation: the dispersion relation is not a term-wise

rewriting of the OPE. This becomes particularly sharp if we plot the contribution to a

crossing equation, say X(1
2 ,

1
4), from a given cross-channel operator. This gives a “boot-

strap functional”, shown in figure 7b, which must be orthogonal to the OPE data. That

– 30 –



J
H
E
P
0
9
(
2
0
2
0
)
0
0
9

particular functional has double zeros at all (non-leading) double-twist operators, and is

mostly positive (with the exception of the identity contribution, and some lowest-twist

operators at high spin, not shown). In contrast, Euclidean functionals display no such

oscillatory behavior.

One can create a few more functionals of this type. For example, t↔u crossing sym-

metry is not manifest because of the subtraction (4.14), giving a nontrivial constraint:

X̃(z, z̄) ≡ G(z, z̄)− G
(

z

z − 1
,

z̄

z̄ − 1

)
= 0. (5.15)

A special case includes the Regge limit, for example the correlator should be real for

imaginary ρ’s:

Im G(ρz = ia, ρ̄z = −ib) = 0, (0 < a < 1 < b real). (5.16)

Such functionals will likely not form a complete basis (all have double zeros at the double-

twists, unlike some of those in [53]), but it would be interesting to compare and perhaps

combine them with other functionals like those found in [54, 55].

6 Conclusion

In this work we obtained a dispersion relation for four-point correlators of conformal field

theories, reconstructing them from an “absorptive part” (double discontinuity). It’s ker-

nel (given in eqs. (3.4), (3.8) and (3.25)) was found by explicitly resuming the Lorentzian

inversion formula of [18–20]. For non-equal external operators, a differential equation was

obtained, eq. (3.46). A subtracted dispersion relation, in eq. (4.14), overcomes the limita-

tions of the inversion formula fully reconstructs the correlators in an arbitrary (unitary)

conformal field theories. Various tests were performed, including in holographic theories

and the 3D Ising model.

The dispersion relation holds for d ≥ 2. For d = 1 there is only one cross ratio z, and

thus one could expect a simpler dispersion relation. Ref. [56] obtained a crossing symmetric

inversion formula in d = 1. The kernel in this inversion formula is quite complicated for

general scaling dimensions, precisely because it needs to give rise to a crossing symmetric

correlator. Combining a known d = 1 inversion formula with the methods that we pre-

sented in this note, one can obtain a d = 1 dispersion relation [57] containing the double-

discontinuity. It is also possible [57] to obtain dispersion relations for boundary/defect

CFTs by starting from the Lorentzian inversion formulas of [58, 59]. Investigating the flat

space limit of the dispersion relation would also be interesting, as well as comparison with

momentum space approaches (for example [60]).

In our view, the most appealing feature is that the “absorptive part” (or dDisc) on

which the dispersion relation feeds can often be rather accurately approximated by just

the simplest exchanges, as discussed below eq. (5.14). This strongly suggests that this

is the right data around which to build a systematic expansion. Our hope is that the

dispersion relation presented here will help achieve that, as crossing symmetry can now be

directly formulated as a constraint on the dDisc. After subtracting the simplest exchanges,
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the remainder of the dDisc should be a small, positive, and regular function on a square

(0<z, z̄<1). Finding how to “close” the equations and bootstrap this function is in our

view a key next question.
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A Identities for spin sums

In this appendix we collect some of mathematical results that we use in the main text. In

eq. (3.13) we used the following J sum which contains 2 hypergeometric functions, which

one can easily check by series expanding in w:

∞∑
J=0

k−2J−2m′(z)k2J+2m′+2(w)

1 + δJ,0

=
zw

z − w

(
k−2m′(z)k2m′(w)− m′2k−2m′+2(z)k2m′+2(w)

4(4m′2 − 1)

)
− k−2m′(z)k2m′+2(w)

2

=
1

2m′ + 1

[
zw

z − w

(
(1− w)∂w − (1− z)∂z

)
− 1

2

]
k−2m′(z)k2m′+2(w).

(A.1)

The idea behind the first equality is that (1/z − 1/w) times the summand on the first

line can be rewritten, using hypergeometric identities, in terms of k-functions with shifted

arguments so as to turn the sum into a telescopic one. The second line similarly re-interpret

shifted k-functions in terms of derivatives on simple term. The above identity is valid for

arbitrary offset m′, but a = b = 0. For non-zero a and b, the second line form of the above

identity becomes more complicated, but the derivative form remains unchanged:

∞∑
J=0

k
(a,b)
−2J−2m′(z)k

(a,b)
2J+2m′+2(w)

1 + δJ,0

=
1

2m′ + 1

[
zw

z − w

(
(1− w)∂w − (1− z)∂z

)
− 1

2

]
k

(a,b)
−2m′(z)k

(a,b)
2m′+2(w).

(A.2)

– 32 –



J
H
E
P
0
9
(
2
0
2
0
)
0
0
9

Introducing the differential operator (the subscripts stands for d = 2):16

D2 ≡
zw

z − w

(
(1− w)∂w − (1− z)∂z

)
+

z̄w

z̄ − w

(
(1− w)∂w − (1− z̄)∂z̄

)
− 1, (A.3)

this allows us to rewrite the sum (3.13) in a concise form:

∞∑
J=0

k−2J−2m′−2a(z)k−2m′−2a(z̄)k−2m′−2a(w̄)(k2J+2m′+2+2a(w)

1 + δJ,0
+ (z↔z̄) (A.4)

=
1

2m′ + 1
D2

[
k−2m′(z)k−2m′(z̄)k−2m′(w̄)k2m′+2(w)

]
. (A.5)

B Inverted block from harmonic function when a = 0, b = 1
2

In order to check the integral relation in eq. (5.9), we fix d = 2 and a = 0, b = 1
2 . In this

case the dispersion relation contains only the contact term KC and not the bulk term KB,

as we saw in eq. (3.49). Thus eq. (5.9) becomes:17

π
2κJ+2−∆

1 + δJ,0
G∆−1,J+1(w, w̄) =

∫
Eucl

dzdz̄
µ(z, z̄)

µ(w, w̄)
FJ,∆(z, z̄)δ(ρw − ρ̄wρzρ̄z)KC

dρw
dw

(B.1)

For a = 0, b = 1
2 the 2F1’s of the conformal block basically simplifies to powers of ρ:

GJ,∆(z, z̄) =
1

1 + δJ,0
(k∆−J(z)k∆+J(z̄) + k∆+J(z)k∆−J(z̄))

=
22∆

1 + δJ,0

(ρz)
∆−J

2 (ρ̄z)
∆+J

2 + (ρz)
∆+J

2 (ρ̄z)
∆−J

2

(1− ρz)(1− ρ̄z)
=

22∆r∆(eiθJ + e−iθJ)

(1 + δJ,0)|1− reiθ|2
(B.2)

where in the last equality we changed to polar coordinates ρz = reiθ, and used the fact

that in Euclidean we have ρ̄z = ρ∗z. Similarly, we can write KC and the inverted block

in polar coordinates. Plugging these ingredients back in eq. (B.1), we can now check that

eq. (B.1) gives a correct result:

1
π
2κJ+2−∆G∆−1,J+1(w, w̄)

∫
Eucl

dzdz̄
µ(z, z̄)

µ(w, w̄)
FJ,∆(z, z̄)δ(ρw − ρ̄wρzρ̄z)KC

dρw
dw

=
ρ

5
2
wρ̄
− 3

2
w (1− ρwρ̄w)(ρwρ̄w)

−J
2

(ρw)
2−∆

2 (ρ̄w)
∆
2 + (ρw)

∆
2 (ρ̄w)

2−∆
2

∫ 2π

0
dθ

∫ ∞
0

dr
r∆ + r2−∆

4πr5

(eiθJ + e−iθJ)δ(r −
√

ρw
ρ̄w

)

|
√
ρwρ̄w − e−iθ|2

=
(1− ρwρ̄w)

4π(ρwρ̄w)
J
2

∫ 2π

0

(eiθJ + e−iθJ)dθ

|
√
ρwρ̄w − e−iθ|2

=
(1− ρwρ̄w)

4πi(ρwρ̄w)
J
2

∫
|Z|=1

(ZJ−1 + Z−J−1)dZ

(Z −
√
ρwρ̄w)(Z−1 −

√
ρwρ̄w)

= 1 (B.3)

16In terms of the ρ coordinates:

D2 ≡
ρzρw

(
(1− ρ2

w)∂ρw − (1− ρ2
z)∂ρz

)
(ρz − ρw)(1− ρwρz)

+
ρz̄ρw

(
(1− ρ2

w)∂ρw − (1− ρ2
z̄)∂ρ̄z

)
(ρz̄ − ρw)(1− ρwρz̄)

− 1.

17Where we used 4N(J,∆)
κJ+∆

=
2(1+δJ,0)

πκJ+2−∆
.
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Where in the third line we performed the r integral over the delta function, in the third

line wrote the remaining θ integral as a contour integral in the complex Z ≡ eiθ plane, and

then used the residue theorem in the complex Z plane to get 1.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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