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Abstract— In this work, we present the investigation of the 

combination of p-GaN gate and tri-gate structures to achieve 

normally-off operation on GaN-on-Si MOSFETs. We have 

developed and optimized a selective and low-damage p-GaN 

etching recipe to stop at the AlGaN barrier and minimize the 

degradation in on-resistance (RON). The p-GaN length and tri-gate 

filling factor (FF) were optimized to achieve a good trade-off 

between high threshold voltage (VTH) and low RON. The excellent 

channel control capability offered by tri-gate structure led to a 

reduced OFF-state leakage current (IOFF), higher ON/OFF ratio, 

smaller sub-threshold slope (SS) compared to similar planar p-

GaN devices. These results unveil the excellent prospects of p-GaN 

tri-gate technology for future power electronics applications. 

Keywords— Gallium Nitride, p-GaN gate, normally-off, 

MOSFET, tri-gate, recess, high breakdown, low leakage 

I.  INTRODUCTION  

GaN MOSHEMTs offer a huge potential for future high-

frequency power applications with low On-resistance, low 

switching losses and high blocking voltages [1], [2]. Normally-

off is a necessary requirement to guarantee a safe operation and 

a simple gate driving configuration for power electronics 

applications [3]. It is currently challenging to demonstrate 

concurrently a sufficiently positive threshold voltage (VTH) with 

low on resistance (RON), along with high breakdown voltage 

(VBR) to achieve a high performance and reliable normally-off 

operation [4]–[6]. 

To achieve normally-off operation, techniques such as p-

GaN gate [7], fluorine-based plasma treatment [8], [9], and 

recessing the barrier [10]–[13] under the gate region were 

reported. One of the most promising method for normally-off 

operation nowadays is based on p-GaN gates, in which the 

conduction band of the AlGaN/AlN/GaN at the channel is lifted 

up by using a p-GaN gate, depleting the 2DEG under the gate. 

This results in positive VTH, but however degrades the RON. 

Reducing the p-GaN gate length can improve RON at the cost of 

a negative shift of VTH. Tri-gate structures have shown 

significant potential for power electronic devices with an 

improved gate control [14]–[16] and larger VBR compared to 

planar devices, without degrading RON [17]–[19]. In addition, a 

significant positive shift of VTH can be achieved by simply 

reducing the width of tri-gate structures. Nonetheless, a positive 

VTH relying solely on tri-gates can be achieved by very narrow 

tri-gates (down to 15 nm-wide)  [20].  

In this work, we address these challenges by combining short 

p-GaN gates with tri-gate structures, which resulted in high VTH 

and low RON simultaneously, and presented excellent normally-

off performance. The structure is based on tiny portion of p-

GaN on top of the tri-gate fins to locally lift the conduction band 

together with the tri-gate sidewalls, to yield a positive VTH. This 

combination maintains a relatively low RON by significantly 

reducing the p-GaN length. The devices presented VTH of 1.78 

V (0.9 V at 1μA/mm) and high ID
 max of 520 mA/mm. 

II. DEVICE STRUCTURE AND FABRICATION 

 Fig.1 illustrates the 3D (Fig. 1(a)) and, cross-sectional 

schematics (Fig. 1(b) of the fabricated p-GaN tri-gate GaN 

MOSFETs based on commercial p-GaN/AlGaN/GaN-on-Si 

wafers. The device fabrication started with mesa and tri-gate 

regions defined by e-beam lithography, and followed by Cl2-

based ICP etch. The major challenge for p-GaN gated HEMTs 

is to obtain uniform p-GaN etching of non-gated active regions 

and to minimize etching plasma damage [3], [7], [21]. A 200 

nm-wide p-GaN (Fig. 1 (c)) was protected with e-beam 

lithography resist, followed by a 75 nm-deep low-damage slow-

etch-rate Cl2/O2/Ar-based selective ICP etch. The slow-rate 

selective etching combined with O2 plasma/ HCl treatment is a 

critical process for smothering the etched surface, which 

minimizes the surface damage and results in low RON.  As we 

can see from Fig. 2 (a), the etch of 75 nm p-GaN took around 
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Fig. 1. (a) 3D Schematic of fabricated p-GaN tri-gate MOSHEMTs and (b) 

cross-sectional views of p-GaN tri-gate region.  (c) Top-view AFM image of 

p-GaN on top of tri-gate nanowire. 
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58 s while the etch of 20 nm Al0.25Ga0.75N took 542 s, which 

resulted in a very high selectivity of ~35:1 between p-GaN and 

Al0.25Ga0.75N. The etched surface was then treated with O2 

plasma/HCl, followed by surface annealing under 500 °C to 

further smoothen the surface and recover the dry etching 

damages. The surface morphology comparison of etched 

surface by traditional and selective recipe is shown in Fig. 3 (b-

c). A metal stack composed of Ti /Al/Ti/Ni/Au  was deposited 

in both source and drain regions, followed by rapid thermal 

annealing (RTA) at 780°C under N2 atmosphere. The 25 nm-

thick SiO2 gate dielectric was deposited by atomic layer 

deposition (ALD) at 300°C, immediately after a surface 

treatment in 37% HCl for 1 min and 500°C bake for 5 min. 

Finally, gate metal was formed by 50 nm Ni/ 150 nm Au.   

III. RESULTS AND DISCUSSION 

 The SEM picture of fabricated p-GaN-gated transistor is 

shown in Fig. 3(a) and the comparison of the DC transfer 

characteristics of planar and p-GaN-gated planar devices is 

shown in Fig. 3(b) and (c). A shift of VTH was observed from –

2.6 V for the planar devices, to -0.1 V for the 150 nm-long p-

GaN-gated planar devices and +1.3 V for the 1.5 μm-long p-

GaN planar device (VTH was defined at 1 μA/mm) (Fig. 3(b-c)). 

As the VTH shifted more positively with the increase of the p-

GaN length, the current density was reduced dramatically from 

~400 mA/mm (planar MOSHEMT), ~300 mA/mm (150 nm-

long p-GaN gate) to ~150 mA/mm (1.5 μm-long p-GaN gate). 

However, while reducing the p-GaN length diminishes the 

current degradation, the VTH is not positive enough to ensure the 

safe operation of GaN transistor.  

In this work, we have combined a short p-GaN gate with tri 

gate structures (Fig.1), which achieves high VTH and low RON 

simultaneously. We have optimized the tri-gate geometry (Fig. 

4) in the gate region (p-GaN gate length and FF of tri-gate) to 

obtain the optimum RON and VTH simultaneously. As we can see 

from Fig. 4 (a), the p-GaN length did not have a strong effect 

on VTH for p-GaN lengths over 200 nm, however, the current 

density dropped significantly with the increase of p-GaN 

length. Thus, reducing the p-GaN length is favorable, with 

length larger than 100nm (since this device exhibited low VTH 

of 0.3 V). Moreover, the tri-gate filling factor (FF) 

(wT/(wT+dT), in which the wT is the width of nanowires and dT 

is the trench spacing) had relatively strong effect on VTH and 

barely degraded the current density (Fig. 4(b)). We have 

compared the dependence of VTH and RON on p-GaN gate length 

for p-GaN planar and p-GaN tri-gate devices (Fig. 4(c)). For p-

GaN planar devices, the VTH has shifted from -0.3 V to 0.4V 

with p-GaN length varying from 100 nm to 600nm, while for 

the p-GaN tri-gate devices has changed from 0.3 V to 0.9 V. 

The slope of VTH versus p-GaN length is much smaller for p-

GaN tri-gate devices compared with p-GaN planar devices, 

since the tri-gate structure also contributes to the VTH shift.  
Fig. 2.  (a) Laser detector of ICP etching. The surface morphology after (b) 

traditional ICP etching and (c) the selective ICP etching. 
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Fig. 4.  (a) The Log and linear transfer characteristics at VDS = 5 V of normally-

off p-GaN tri-gate with different (a) p-GaN length and (b) Filling factor (FF) 

of Tri-gate ( wT/wT+dT ). The LGS, LG and LGD were 1.5, 2 and 15 μm, 
respectively. Standard deviation bars were determined from the measurement 

of 6 devices of each type, revealing their consistent performance. (c) The p-

GaN length – VTH and RON dependence of p-GaN planar and p-GaN tri-gate 
devices. (d) FF – VTH and RON dependence of Tri-gate (Normally-on) and p-

GaN tri-gate (Normally-off) transistors (The p-GaN length is fixed at 200nm). 
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Fig. 3.  (a) Top view of planar p-GaN transistors. Transfer characteristics of 

MOSHEMT and p-GaN planar MOSHEMT in (b) Linear and (c) logarithmic 
scale for VDS = 5 V.  
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However, the VTH difference between these two kinds of 

devices becomes very small with large p-GaN length (above 1 

μm). The RON of these two devices is almost linearly dependent 

on the p-GaN length. We have also compared VTH and RON 

dependence on tri-gate FF for Tri-gate (Normally-on) and p-

GaN tri-gate (Normally-off) transistors (Fig. 4 (d)). The dT is 

fixed at 100nm and the wT was varied from 200nm to 600nm, 

which corresponded to FF varying from 0.66 to 0.87. The p-

GaN length is fixed at 200nm. As the FF increase, the VTH 

dropped from 0.9 V to -0.2 V for the p-GaN tri-gate devices, in 

contrast, the VTH of tri-gate-only devices shifted from -1.3 V to 

-2.8 V (Fig. 4 (d)). When FF varied from 0.66 to 0.87, the RON 

of p-GaN tri-gate has almost remained constant with reduction 

of 0.2 Ω·mm, while the reduction of tri-gate RON was slightly 

higher up to 0.4 Ω·mm. In summary, the p-GaN length and tri-

gate FF can be tuned to obtain an optimum balance between 

VTH and RON.  

 The transfer and output characteristic of p-GaN tri-gate 

transistor with p-GaN gate length (Lp) = 200 nm and FF = 0.66 

is shown in Fig. 5(a-c), presenting VTH of 0.94 V (at IDS = 1 

μA/mm), and 1.78 V from the linear extrapolation. Thanks to 

the tri-gate structure and small gate oxide leakage, the gate 

control is excellent with ON/OFF ratio > 109, subthreshold 

slope (SS) of 98 mV/dec, large transconductance peak of 160 

mS/mm and small gate leakage of less than 1 nA/mm. The 

output characteristic is shown in Fig. 5(c), presenting large ID
max 

of 525 ± 12 mA/mm at VG = 7 V and low RON of 9.2 Ω·mm with 

LGD of 15 μm. The comparison of breakdown characteristics 

between the p-GaN planar and p-GaN tri-gate is shown in Fig. 

5(d). The VBR of p-GaN tri-gate was extracted for VG of 0 V 

with grounded substrate at 1 μA/mm (Fig.5 (d)), resulting in 

520 V and 980 V for LGD of 5 μm and 10 μm, respectively, 

compared to 380 V and 750V, for p-GaN planar devices. The 

p-GaN tri-gate devices showed higher breakdown voltage with 

lower LGD due to the integrated tri-gate field plate [22]. The p-

GaN tri-gate devices also presented lower RON with the same 

LGD, revealing an extraordinary prospect of this technology for 

future power electronics applications.    

IV. CONCLUSION 

In this work, we present the investigation of the combination 

of short p-GaN gate and tri-gate structures to achieve normally-

off and low RON in GaN-on-Si MOSFETs. P-GaN tri-gate 

devices presented VTH of 0.9 V at 1μA/mm, low RON of 9.2 

Ω·mm and high VBR  of 960 V (LGD of 10 μm) with grounded 

substrate. The results show the extraordinary prospects of p-

GaN tri-gate devices for future power electronics applications. 
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