
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Wavefront shaping and deep learning in fiber endoscopy

Eirini KAKKAVA

Thèse n° 10 218

2020

Présentée le 2 octobre 2020

Prof. L. Thévenaz, président du jury
Prof. D. Psaltis, directeur de thèse
Prof. R. Piestun, rapporteur
Prof. L. Tian, rapporteur
Prof. A. Radenovic, rapporteuse

à la Faculté des sciences et techniques de l’ingénieur
Laboratoire d’optique
Programme doctoral en photonique 





 

 

 

 

 

 

 

 

 

Happiness can be found  

even in the darkest of times,  

when one only remembers to turn on  

the light… 

J.K. Rowling 

 

 

 

 

 

 

 

 





 

i 

Acknowledgements 

First and foremost, I would like to thank my thesis supervisor Prof. Demetri Psaltis for giving me 

the opportunity to join the group of the Optics Laboratory at EPFL and obtain this remarkable 

experience. His guidance and insight were always a reference point for the advancement of my 

research during this PhD. Furthermore, I would like to express the appreciation for his trust on me 

from the very beginning for several tasks such as assisting in his courses and representing our 

work in conferences worldwide as well as for his overall support in every step for these past years. 

Special thanks to Prof. Moser with whom I collaborated closely on several projects, for all his ideas 

and feedback during my PhD studies and for being always ready to help and answer my questions. 

I would also like to thank him for always being welcoming to me participating in activities of his 

group and introducing me to new members. 

Importantly, I would like to thank the members of my PhD thesis committee, Prof. Thévenaz, Prof. 

Piestun, Prof. Tian and Prof. Radenovic for reviewing my work and giving me insightful comments. 

The time they devoted on reading this thesis led to not only improving the manuscript but also my 

understanding of the various topics. 

Every beginning can be difficult but for me it could not be smoother, because of all my colleagues 

in the group being always helpful and supportive and they deserve many thanks for that. 

Especially, I would like to thank Don Conkey and Nico Stasio for their guidance through the 

practical aspects of my PhD, their patience in explaining new concepts and their unlimited 

willingness to transfer experimental and theoretical knowhow. Many thanks to Marilisa Romito 

and Giulia Panusa with whom I basically lived together in the lab all these years and they have 

been a constant support at a professional but also a very personal level thus becoming from 

colleagues to valuable friends through this process. Furthermore, I would like to thank Navid 

Borhani for collaborating always in the most efficient way from the very beginning of his 

participation in the Optics Laboratory and of course for being there for me to advice and support 

with his uniquely logical and structured thinking. I would probably need many pages to separately 

thank every person that I had the pleasure and honor to work with during my PhD in my lab but 

nevertheless I want to warmly thank: Thomas Lanvin, Ye Pu, Elizabeth Antoine, Mohammad 

Hashemi, Joowon Lim, Amir Sabba, Pooria Hadikhani, Ahmed Bassam, Ugur Tegin, Morteza 

Shoreh, Alex Goy, Ulas Dinc, Alexa Guglielmelli, Miguel Modestino. Additionally, I would like to 

thank our secretaries in the lab that made every process easy for all of us, Carole Berthet, Anne De 

Witte, Silke Jan and Sabrina Martone. 



Acknowledgments 

  ii  

Having one great lab to work in is by itself very important; in my case I was doubly lucky to have 

the opportunity to collaborate closely and almost feel like part of the Laboratory of Applied 

Photonic Devices. Therefore, I would like to thank all the LAPD group for not only their research 

feedback but also their friendship. Particularly, I would like thank Damien Loterie that he has 

always found the time to answer my questions and give me suggestions not matter how many 

times I show up at his office door and I appreciate it greatly. Moreover, special thanks to Enrico 

Chinello, Chiara Bonati, Georgia Konstantinou and Babak Rahmani for their support and friendship 

as well as for constantly hosting me in their office for coffee breaks.  

Alongside, I would also like to thank the people who made my moving in Lausanne easy and 

pleasant, Marina, Denis, Georgios and Milena Kiriakopoulos and Evita Papadopoulou. Many thanks 

to Iliana Spartali that was always there to advice, support and discuss on a personal and 

professional level, firmly believing in me in every step on the way. Furthermore, I would like to 

thank all of my people in Greece that supported my decision towards the PhD and they hold a 

special place in my heart for that, among which are Elina Petala, Dionisis Potamianos, Maria 

Kotzagianni, Irene Papagiannouli and particularly Kostas Papanikolaou who is there for me for 

more than eleven years. 

Last but not least, I owe a special thanks to the people that made sure that I had all I needed to be 

here for this PhD, namely my family. I cannot thank them enough and appreciate all their efforts in 

my life. Especially, I would like to thank my brother for being my best friend and support for as 

long as I remember myself and quote him saying that we are the best present our parents gave to 

one another. 

 



 

iii 

Abstract 

Fiber endoscopy plays an important role in clinical diagnosis and treatment processes involved in 

modern medicine. Thin fiber probes can relay information from confined places in the human 

body that are inaccessible for conventional bulky microscopes. Therefore, they can provide a 

minimally invasive platform for optical diagnosis assisting the fast recovery of patients.  

Aiming for more advanced and compact fiber endoscopic devices, we investigate different types of 

fibers that can integrate not only superior imaging modalities but also microsurgery capabilities 

while maintaining an ultrathin size (less than 400 um). In our experiments, the imaging potential of 

multimode and multicore fibers is assessed. On the one hand, multimode fibers provide high 

information capacity for small core sizes but scramble the input field after its propagation through 

the fiber length, while on the other hand, multicore fibers are able to directly relay images from 

the inspection location to the observation side and for this reason they are the most common 

choice for endoscopic probes. However, the final images produced by multicore fibers are of poor 

quality because of the discretization effect induced by the individual core sampling and the final 

resolution is dependent on the core spacing. We show that each fiber type presents certain 

advantages and the type selection can be made based on the desired application aiming to 

improve the quality of imaging results.  

Two approaches for imaging through the different fibers are investigated. In the first part of the 

present thesis, wavefront shaping using the transmission matrix approach to generate a focus spot 

at the distal fiber side is presented. The limitations concerning the maximum peak intensity guided 

through the different endoscopes is investigated for high power femtosecond pulses where 

nonlinear optical phenomena can hinder the overall performance of the system. Femtosecond 

laser ablation is demonstrated through multimode fibers for a range of materials. Furthermore, 

laser ablation is combined with two-photon fluorescence imaging in the same multimode fiber 

endoscope showing for the first time selective tissue modifications at a cellular level. 

In the second part of this thesis, deep learning of the light propagation through the two fiber types 

is studied. Datasets of known input images and their respective fiber output images are generated 

to train deep neural network algorithms to map the fiber output to the fiber input for either 

classification or image reconstruction purposes. The deep neural networks show impressive 

performance to recover the information from intensity-only images of the speckle patterns 

emerging from multimode fibers, removing the need to record the full field information, which 

usually implies experimental complexity. Moreover, a trained deep neural network model proved 

to recover successfully the information delivered by multimode fiber for imaging even in the 
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presence of noise in the datasets related to mechanical, thermal and wavelength perturbations. 

Such measurement drifts caused by perturbations are usually catastrophic for calibration-based 

techniques based on wavefront shaping. In the case of multicore fibers, deep neural networks are 

trained to remove the discretization artefact from the final image, which is generated by the 

sampling using many individual cores and resolve features with an improved resolution. Finally, 

deep learning is employed to integrate phase imaging capabilities to a bright field imaging-based 

commercial endoscope by training deep neural networks to map the intensity-only image 

delivered by the multicore fiber to its corresponding phase map. 

Overall, we demonstrate that multimode and multicore fibers can be more than just imaging 

devices and underline their potential for microsurgical applications using wavefront shaping. For 

more customized information recovery, deep learning is a robust method, which can be easily 

applied for different purposes such as classification and multimodal microscopy. 

 

Keywords: fiber endoscopy, wavefront shaping, transmission matrix, deep neural networks, image 

classification, image reconstruction 
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Résumé 

L'endoscopie par fibres optiques joue un rôle important dans les diagnostics et les traitements 

impliqués dans la médecine moderne. Les fibres optiques peuvent relayer des informations à 

partir d'endroits confinés dans le corps humain qui sont inaccessibles des microscopes 

conventionnels. Par conséquent, elles peuvent permettre la réalisation d’une plateforme peu 

invasive pour le diagnostic optique favorisant la récupération rapide des patients. 

Dans le but de contribuer au développement d’appareils d'endoscopie par fibres optiques plus 

compacts, nous étudions dans cette thèse différents types de fibres optiques qui peuvent intégrer 

non seulement des modalités d'imagerie supérieures, mais également des capacités de 

microchirurgie tout en conservant une taille ultra-mince (moins de 400 µm). Dans nos expériences, 

les fibres multimodes et multicœurs sont testées pour évaluer leur potentiel pour l'imagerie. 

D'une part, les fibres multimodes présentent une capacité d'information élevée pour les petites 

tailles de cœurs mais brouillent le champ d'entrée après propagation, tandis que, d'autre part, les 

fibres multicœurs sont le choix le plus courant pour les endoscopes, mais elles génèrent des 

images pixellisées de mauvaise qualité. Nous montrons que le choix de fibre peut être optimisé en 

fonction de l'application souhaitée. 

Deux voies sont suivies pour l'imagerie à travers les différentes fibres optiques. Dans la première 

partie de cette thèse,  la matrice de transmission est utilisée pour générer un point focale à 

l’extrémité distale de la fibre. Les limites concernant l'intensité maximale guidée à travers les 

différents endoscopes sont étudiées pour les impulsions femtosecondes de haute puissance où les 

phénomènes optiques non linéaires peuvent entraver la performance globale du système. 

L'ablation laser femtoseconde est démontrée à travers des fibres multimodes pour une gamme de 

matériaux. De plus, l'ablation au laser est combinée à l'imagerie de fluorescence par excitation à 

deux photons dans le même endoscope à fibre multimode, montrant ainsi pour la première fois 

des modifications tissulaires sélectives au niveau cellulaire. 

Dans la deuxième partie de cette thèse, nous étudions l’utilisation de l’intelligence artificielle et 

plus précisément de l’apprentissage profond de la propagation de la lumière à travers les deux 

types de fibres. Des ensembles de données d'images d'entrée connues ainsi que de leurs images 

de sortie de fibre respectives sont générés pour entraîner des algorithmes de réseaux de neurones 

profonds pour mapper la sortie à l'entrée de fibre à des fins de classification ou de reconstruction 

d'image. Les réseaux de neurones profonds affichent des performances impressionnantes pour 

récupérer les informations des images d'intensité des tavelures des fibres multimodes sans besoin 

d'enregistrer l’ensemble des informations de front d’onde. De plus, l’apprentissage profond pour 
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l'imagerie par fibre multimode s'est avéré résilient aux perturbations liées aux dérives 

mécaniques, thermiques et même de longueurs d'onde introduites pendant les mesures. Dans le 

cas des fibres multicœurs, les réseaux de neurones profonds sont entraînés à supprimer les 

artefacts de pixellisation de l'image finale et à reproduire les détails avec une résolution 

améliorée. Enfin, nous utilisons l’apprentissage profond pour ajouter un module de contraste de 

phase sur un endoscope commercialement disponible avec lequel nous enregistrons seulement 

des images à fond clair. 

Dans l'ensemble, nous démontrons que les fibres multimodes et multicœurs peuvent être plus que 

des dispositifs d'imagerie et soulignons leur potentiel pour des applications microchirurgicales 

utilisant l’ adaptation de front d’onde. Pour une récupération d'informations plus adaptée aux 

besoins particuliers, l‘apprentissage profond est une méthode robuste qui peut être facilement 

appliquée à la classification et la microscopie multimodale à travers des fibres optiques.  

Mots clés: endoscopie par fibres optiques, matrice de transmission, adaptation de front d’onde, 

réseaux de neurones profonds, classification d'image , reconstruction d'image. 
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 Introduction 

Optical fibers are nowadays implemented in a wide range of applications because of their unique 

properties in guiding light and thus information between far spaced places. The most well-known 

field where optical fibers play a key role is telecommunications  [1,2]. Apart from the revolutionary 

contribution of fiber cables in the information transmission, optical fibers also find applications in 

pressure and temperature sensing  [3,4], fiber-based laser sources [5–8] and medical imaging [9–

17].  

The current work mainly investigates different kinds of fibers in the context of endoscopy and 

material manipulation. Optical fibers are integrated in medical procedures for many decades now, 

starting as illumination tools together with camera chips for visual inspection of areas inside the 

human body  [18–22]. Many famous companies have contributed in the advances of commercial 

endoscopes such as Olympus, Pentax, Fujifilm, Karl Storz etc. In most of these endoscopes, the 

optical fiber delivers the light in the area of interest and a camera chip placed at the fiber end 

records the image. With the evolution of the fiber drawing techniques, new kinds of fibers were 

manufactured (e.g. fiber bundles, graded-index multimode fibers, photonics-crystal fibers), that 

upgraded the endoscopic role of the fibers further from simple illumination tools  [23–26]. In 

particular, fiber bundles opened the path for all-fiber imaging. Thousands of single-mode fiber 

cores inside the fiber bundle core act as individual pixels, which collect and transfer the local 

information from the sample to a camera on the user’s side forming an image. Multimode fibers 

have also shown remarkable potential in fiber imaging using new optical technologies that correct 

for the scrambling of the information along the propagation  [14,15,27–31]. Other types of fibers 

such as photonic-crystal fibers (PCFs) empowered the delivery of ultrashort pulses of high peak 

intensities which are sufficient for not only multiphoton imaging but also material modifications 

(laser ablation) [32–34]. More details on each fiber technology will follow in the next chapters of 

the present work. 

This first introductory chapter (Introduction) aims to present the basic concepts of light 

propagation and imaging through optical fibers as well as our motivation for further research on 

the topic. The rest of thesis is divided in two parts, which present two different ways for optimal 

recovery of information through fiber bundles and multimode fibers. The Part A (Wavefront 

shaping through fibers) describes the use of wavefront-shaping for controlling the light 

propagation through the aforementioned types of optical fibers and particularly the transmission 

matrix method employed to perform endoscopic nonlinear imaging and laser ablation. The Part A 

consists of three chapters, which go through the principles of Digital Holography (Chapter 2), the 

Transmission Matrix (Chapter 3) and finishes with the experimental results on High-intensity 
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focusing through fibers (Chapter 4). In the Part B (Deep learning in fiber endoscopy), the 

scrambling of the information through the various optical fibers is reversed using a deep learning 

approach. The second part starts with an introductory chapter on Deep Neural Networks (Chapter 

5) and continues with the demonstration of imaging through multimode fibers using deep learning 

(Chapter 6: Seeing through multimode fibers using deep learning). The last chapter of this part 

presents the realization of Deep learning-enhanced imaging through fiber bundles (Chapter 7). The 

thesis concludes with the Summary of the presented research work and the Outlook, which 

includes ideas for future studies.   

 

 

Figure 1. Light guiding in step-index optical fibers (left) and the refractive index profile along the fiber core (right). 

 

1.1 Basic concepts in optical fibers 

1.1.1 Light propagation through optical fibers 

Optical fibers are dielectric waveguides characterized by cylindrical symmetry. Optical fibers 

consist of a high refractive index central core 𝑛1, in which the light is guided, and the cladding that 

surrounds the core made by a material with lower refractive index 𝑛0 (Figure 1). The fiber types 

for which the radial distribution of the refractive index profile is constant in the core as shown in 

Figure 1 are called step-index fibers. As in slab waveguides, the light traps in the fiber core and 

propagates along its length as described by the principle of total internal reflection, which is 

caused by the refractive index difference between the fiber core and the cladding. However, only 

light waves with certain incoming angles θin for which the angle θ2 is greater than the critical angle 

for total internal reflection of the fiber will be guided as depicted in Figure 1. The maximum input 

angle θin at which light is guided defines the numerical aperture (NA) of the fiber and it can be 

calculated based on the Snell’s law of refraction. In order to have total internal reflection the 

minimum θ2 should be equal to 𝑛0/𝑛1. Therefore, the fiber NA is given by Equation 1 and 

determines the acceptance cone of the optical fiber as it is often called. 

𝑁𝐴 = sin 𝜃𝑖𝑛,𝑚𝑎𝑥 = 𝑛1 sin 𝜃1,𝑚𝑎𝑥 = 𝑛1 cos 𝜃2,𝑚𝑖𝑛 = 𝑛1 (√1 − 𝑠𝑖𝑛2 𝜃2,𝑚𝑖𝑛) = 𝑛1 (√1 − (
𝑛0
𝑛1
)
2

) 

 ⇒ 𝑁𝐴 = √𝑛1
2 − 𝑛0

2 

Equation 1. Optical fiber numerical aperture 
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Maxwell’s equations precisely determine the way that light propagates through an optical fiber. 

Because of the continuity of the electric and magnetic field at the boundaries between the core 

and the cladding the electromagnetic field equation needs to satisfy certain boundary 

conditions [35,36]. Consequently, there is only a finite number of incident angles θin within the 

acceptance cone of the fiber, which fulfil the boundary conditions. The different ways (angles) that 

the light can travel through the fiber are determined by the solutions of the Maxwell’s equations 

in cylindrical coordinates and they are called fiber modes (more details can be found in the 

Appendix A1) and they propagate unchanged through the fiber length. Each fiber mode is 

characterized by a certain amplitude shape, phase profile and propagation constant (phase 

velocity). The Equation 2 describes the general electric field of a fiber mode 𝐸𝑙𝑚, where 𝐴𝑙𝑚(𝑟) is 

the amplitude distribution of the mode field, 𝜑 is the corresponding phase, 𝛽𝑙𝑚 is the propagation 

constant for this mode and 𝜔 is the angular frequency for monochromatic light. The numbers 𝑙, 𝑚 

are integers and they are related to the discrete solutions for the mode field obtained by the 

Maxwell’s equations; 𝑚 determines the order of the Bessel function that describes the amplitude 

distribution of the mode and it is called azimuthal index, while 𝑙 is an integer that comes from the 

multiple solutions of the respective equations, representing the supported modes for a given fiber 

(Appendix A1) [36]. The Figure 2 shows the profile of three different propagation modes 

calculated for a 25 μm core radius fiber and an NA of 0.1; the first row depicts the intensity 

distribution of each mode field and the second the relative phase profile where white areas are of 

zero phase and gray areas of π phase. 

𝐸𝑙𝑚(𝑟, 𝜑, 𝑧, 𝑡) = 𝐴𝑙𝑚(𝑟)𝑒
−𝑖𝑚𝜑𝑒−𝑖(𝛽𝑙𝑚𝑧−𝜔𝑡) 

Equation 2. Electric field of the lm fiber mode 

The total number of supported transverse propagation modes in the fiber is governed by the fiber 

parameter or as usually called the V-number of the fiber. The V-number is defined by the Equation 

3 and depends on the physical characteristics of the optical fiber such as the NA, the core radius α 

as well as the wavelength of the incident light λ. 

𝑉 = 𝛼
2𝜋

𝜆
𝑁𝐴 

Equation 3. V-number of an optical fiber 

From the mode analysis, it can be shown that for V<2.405 the optical fiber supports only one 

spatial mode and this fiber type is called, single-mode fiber (SMF), while for larger V-numbers the 

optical fibers are called multimode fibers (MMFs). For step-index fibers that support a large 

number of propagation modes, the number of modes is approximated by Equation 4, which takes 

into consideration the degeneracy of the modes in the azimuthal term and the two polarizations. 

𝑁 ≈
4

𝜋2
𝑉2 

Equation 4. Number of propagation modes for a step-index optical fiber 
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Figure 2. Intensity (first row) and phase (second row) profiles of fiber modes, LP01 mode (a,d), LP11 (b,e) and LP44 
(c,f). 

 

It is important to mention that the different propagation constants of the modes in step-index 

fibers can obscure the information delivery along the fiber. Travelling at different velocities along 

the fiber, the modes spread in time until they reach the fiber end, which would cause time 

broadening of a pulsed input light. Moreover, bending or slight defects of the refractive index 

profile along the fiber can induce mode coupling resulting in further mixing of the information 

encoded in each mode after propagation of some distance. Modal dispersion and coupling 

degrade the performance of step-index MMFs as imaging tools, as we will discuss further in the 

following sections.  

 

 

Figure 3. Light guiding in GRIN optical fibers (left) and the refractive index profile along the fiber core (right). 

 

1.1.2 Optical fiber types 

In the previous paragraph, we discussed about the way that light is guided in step-index optical 

fibers. Different fiber types became available with the advances of modern fiber drawing 

techniques. One example is graded-index (GRIN) fibers, for which the refractive index distribution 

of the core is designed in a parabolic shape to compensate the effect of modal dispersion (Figure 

3). The refractive index profile is optimized in a way that the propagation constants 𝛽𝑙𝑚 of the 
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fiber modes are such that all the supported modes arrive at the distal end at the same time, 

implying zero modal dispersion for an ideal GRIN fiber [35,36]. Nevertheless, fabrication of a 

perfectly parabolic refractive index profile is not trivial and imperfections lead to a certain amount 

of modal dispersion for GRIN fibers too. Considering a quadratic refractive index profile GRIN 

fibers approximately support half of the number of modes N (Equation 4) compared to step-index 

MMFs for the same wavelength and refractive index difference between the cladding and the 

maximum refractive index value of the core [35,36]. The calculation of the spatial modes for the 

GRIN fibers is more complicated than for step-index fibers and more details can be found in the 

literature  [35].  

Another type of fibers commonly used in telecommunications and endoscopy is multicore fibers 

(MCFs) or fiber bundles as they are also called. MCFs consist of many small step-index cores 

densely packed in a common cladding or held together in a mesh, as they are schematically 

presented in the Figure 4. Each core of the bundle usually supports one mode at a certain 

wavelength range or few modes in others  [23,26]. Depending on the core-to-core spacing, the 

MCFs can have minimal crosstalk and therefore transfer information independently in each 

channel/core [37–39]. Considerable effort has been dedicated to optimally design MCFs 

concerning arrangement and refractive index contrast of the individual step-index fiber cores to 

minimize the crosstalk [25,40]. The individual cores in a MCF can be either fixed in a common resin 

that works as the cladding material or they can each have a separate cladding and held together 

by a mesh. The first type is less flexible but of lower manufacturing cost, while the second type is 

highly flexible but expensive. The MCFs of the second type are usually called leached fiber 

bundles. 

 

 

Figure 4. Fiber bundle scheme (left) and the refractive index profile along the bundle core (right). 

 

Finally, it is important to mention another type of optical fibers, which guide the light in a different 

way than the solid core-cladding types of fibers discussed above. The light in in these fibers 

propagates via the mechanisms of effective-index and photonic bandgap guidance and they are 

called photonic-crystal fibers (PCFs). The idea that light could be trapped in a central core by 

creating a Bragg like structure around it instead of a uniform cladding was already suggested in the 

early 70s  [32,41–43]. That first proposed structure was generated by cylinders of lower and higher 

refractive index surrounding the central core creating a lower effective refractive index cladding. 
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Another example of effective-index guiding can be achieved by introducing wavelength-scale 

cylindrical holes in a pure silica-glass (Figure 5(a)), placed periodically around an unperturbed 

central area that acts as the fiber core. In this way, a lower effective index around the core is 

generated causing the light to trap in it. The cladding of air cylinders can also be regarded as a 2D 

periodic medium (photonic crystal) which is characterized by a dispersion diagram with photonic 

bandgaps which allow the guidance of selected optical frequencies. PCFs can be solid-core or 

hollow-core (Figure 5 (b-c)). In particular, hollow-core PCFs (HC-PCFs) show unsurpassed capability 

for delivering high peak power ultrashort pulses. Light guidance in an air core implies low losses, 

negligible pulse broadening and reduces the occurrence of nonlinear effects since air is 

characterized by orders of magnitude lower nonlinear response compared to silica [32–34,41–45]. 

HC-PCFs are thus our reference point for the studies of high peak intensity focusing through MCFs 

and MMFs as described in the following chapters. More details on the working principles of the 

PCFs is out of the scope of this thesis but can be found in the literature  [32,41,43].  

 

 

Figure 5. Other fiber types: a) Silica fiber with air-hole dopants, b) solid-core PCF and c) hollow-core PCF 

 

1.1.3 Fiber imaging 

Before describing the way that fiber imaging is accomplished through MMFs and MCFs, which is 

the main topic of the present work, it is important to underline some of the basic principles for the 

formation of an image through a linear optical system. An image is considered “good” when it 

preserves the information about the imaged object. Fourier analysis is widely used in signal 

processing for analyzing the information content of a digital signal. The basic idea of the Fourier 

analysis is that every signal can be expressed as a superposition of harmonic functions that are 

characterized by different frequencies. The same principle holds for an image, which is simply a 2D 

signal and thus the 2D Fourier transform can be used to decompose and study it [46]. The 

corresponding 2D harmonic functions to which an image can be decomposed using the Fourier 

analysis are described by the equations of plane waves propagating at different angles. The angles 

of propagation are called in this case spatial frequencies. Therefore, an ideal optical system does 

not introduce any loss of frequency components and forms an exact image of the object. 

However, because of the finite apertures of the optical systems, there is a limited bandwidth of 

frequencies that can be transmitted through and contribute to the final image formation. As a 

result, if the object is also described by frequencies outside this bandwidth, the final image misses 

this part of information and its quality is not optimal.  
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The complex field of a plane wave is given by Equation 5. The wavevector 𝒌 = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) =

2𝜋/𝜆 shows the direction of the propagation for a plane wave of light with wavelength 𝜆. The 

𝑘𝑥, 𝑘𝑦 components of the wavevector are also known as transverse spatial frequencies or angular 

frequencies. For 𝑘𝑥, 𝑘𝑦 ≪ 𝑘, which implies small angles, we can consider 𝑘𝑧 ≈ 𝑘 and the final form 

of a plane wave is given as (Equation 5):  

𝑈(𝑥, 𝑦, 𝑧) = 𝐴𝑒−𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧) =  𝐴𝑒
−𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦+(√𝑘2−𝑘𝑥

2−𝑘𝑦
2) 𝑧)

= 𝐴𝑒−𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑒−𝑗𝑘𝑧  

Equation 5. Plane wave function 

Therefore, any complex field such an image 𝐼(𝑥, 𝑦) at as specific point in z can be described as a 

superposition of plane waves as described by the 2D Fourier transform (Equation 6). The 

frequencies fx and fy multiplied by 2π are equal to the corresponding spatial frequencies 𝑘𝑥, 𝑘𝑦. 

The amplitude components 𝐹(𝑓𝑥, 𝑓𝑦) of the Fourier transform describe the weight that each 

frequency pair (fx, fy) or (𝑘𝑥, 𝑘𝑦) participates in the 2D signal/image formation. The frequency map 

𝐹(𝑘𝑥, 𝑘𝑦) is known as the angular spectrum of the image/signal. 

𝐹{𝐼(𝑥, 𝑦)} = 𝐹(𝑓𝑥, 𝑓𝑦) = ∬ 𝐼(𝑥, 𝑦)

+∞

−∞

𝑒−𝑗2𝜋(𝑓𝑥𝑥+𝑓𝑦𝑦)𝑑𝑥𝑑𝑦 = ∬ 𝐼(𝑥, 𝑦)

+∞

−∞

𝑒−𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑥𝑑𝑦 

Equation 6. 2D Fourier transform formula 

 

 

Figure 6. Image decomposition in plane waves via a 2D Fourier transform. The plane wave profiles shown correspond 
to the frequency components of the angular spectrum indicated by the red arrows. 

 

A more intuitive explanation of the Fourier analysis of an image is depicted in Figure 6. We select 

an image and then we calculate its 2D Fourier transform, the amplitude of which we show in 

Figure 6. It can be seen that the image consists of different spatial frequencies, each one with a 

respective amplitude (F1, F2, F3, …). By selecting different frequencies in the Fourier domain (fx, fy), 

while setting the rest to zero each time and then calculate its inverse Fourier transform to observe 

the result in the spatial domain (x, y), we get a field with the phase distribution of a blazed grating. 
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These fields correspond to plane waves propagating at certain angles. Therefore, it can be seen 

how an image is a superposition of 2D harmonic functions that correspond to plane waves. 

Based on the brief Fourier analysis above, it is apparent that to get an image correctly propagated 

through an optical system we should be able to preserve all the spatial frequencies that it is 

composed of. However, as we mentioned before losses in the spatial frequency transmission of an 

image can be induced because of the non ideal nature of optical system, which results to “band-

passing” of the frequency spectrum of the recorded object leading to degradation of the final 

image. The high spatial frequency components (large values in the Fourier domain) of an image 

correspond to the finest details (small features in the real space) of it and their absence will induce 

image blurring. As in the case of optical fibers discussed in paragraph 1.1.1, the number of angles 

that can be accepted and guided through is determined by the NA of the fiber. In a similar manner, 

all the imaging systems are characterized by a certain NA that allows only part of the spatial 

frequencies to pass through. Considering this point, in Figure 7, we observe how the image of the 

previous example (Figure 6) would appear after propagating through a system, which limits its 

spatial frequency content, by cutting off part of high-frequency components of the initial image. It 

is clear that the resolution of the image is lower and blurring of the image is induced. 

Consequently, it is now evident that the NA of an imaging system is a crucial parameter for the 

final resolution. Based on Rayleigh’s criterion the resolution of a system can be determined by the 

NA and the illumination wavelength as λ/2ΝΑ. In the following two paragraphs, we will translate 

the imaging analysis to the case of fiber endoscopes and we will specifically discuss the cases of 

two different fiber types used in the experiments presented in this thesis, the MMFs and MCFs. 

 

 

Figure 7. Image band-passing. a) Image result when limiting some of its high frequency components as shown in b) 

 

1.1.3.1 MMF imaging 

MMFs do not simply relay an image along the fiber length. An input image distributes among the 

supported spatial modes. The coupling of the image to the supported fiber modes is determined 

by the integral overlap between the image and the mode field. If we consider z=0 at the MMF 

entrance, then the coupling coefficients of an input image Ι(r, φ) for the fiber modes 𝐸𝑙𝑚 

(Equation 2) can be calculated as: 
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𝑎𝑙𝑚(𝑧 = 0) = ∬𝛪(𝑟, 𝜑) 𝐸𝑙𝑚
∗ (𝑟, 𝜑)𝑑𝑟𝑑𝜑 

Equation 7. Coupling coefficients of an image to the fiber modes 

The image at a distance z along the fiber will be given as a linear combination of the supported 

fiber modes. Considering that each mode propagates with a different propagation constant the 

image I(r, φ) at a point z along the fiber is: 

𝐼(𝑟, 𝜑, 𝑧) =∑𝑎𝑙𝑚(𝑧 = 0)𝐸𝑙𝑚(𝑟, 𝜑) 𝑒
−𝑖𝛽𝑙𝑚𝑧 

Equation 8. The field of the input image at a distance z along the fiber 

Due to the different propagation constants of the fiber modes, the local information of the input 

decorrelates after few hundreds of micrometers after propagation in the MMF, forming a pattern 

at the fiber output that has a random intensity distribution. This interference pattern is called 

speckle and it is a result of the interference between the fiber modes emerging from the fiber as 

shown Figure 8. Therefore, a MMF completely scrambles the input image. Figure 8 was generated 

by calculating the fiber modes (Appendix A1) for a specific MMF and then decomposing the image 

to the available modes as described in Equation 8. The for different z values we calculate the 

speckle pattern by coherently adding the contribution by each excited mode. Based on the 

Equation 7 and Equation 8 the effect of image scrambling along an MMF could be undone by back 

propagating the output field. However possible for an ideal fiber, defects, bending or other 

perturbations affect the light propagation through the fiber inducing mode coupling and thus 

there is no deterministic way to process the output to recover the input. Nevertheless, MMFs are 

linear optical systems and the coupled information is not lost along propagation, but it can be 

recovered provided sufficient knowledge about the propagation through the system.  

 

 

Figure 8. Image propagation through a MMF. Snapshots at different distances from the input facet. 

 

Different optical techniques have been proposed to recover the information through MMFs. Some 

of the methods, such as phase conjugation and transmission matrix, are based on digital-

holographic recording of the fiber output to recover the phase and the amplitude of the field 

aiming to calculate the desired wavefront to control the light through a MMF. It can be easily 

shown, that the complex conjugate field of the output is also solution to the propagation equation 
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through the system, meaning that if the output field propagates back through the system, forms 

again the input image. Spatial-light modulators can be used to shape the light and propagate the 

conjugate field back through an MMF so that the image will be translated at the other side. More 

details on the principles of digital holography as a wavefront shaping technique will be given in the 

next part of the thesis. Once the relationship between the input and output fields is known the 

MMF can be used as an imaging tool.  

Other proposed methods to decipher the information through the scrambling caused by MMFs are 

based on deep learning and they are also discussed in the second part of the thesis. In these cases, 

an algorithm is trained with examples to learn the mapping between the input and the output of 

the MMF system without recording the full information (amplitude and phase) of the light field. 

The resolution of the final image in a MMF endoscope is dependent on the NA of the fiber. This 

makes MMFs an attractive choice for ultrathin endoscopic tools since the NA depends only on the 

refractive index difference between core and cladding and it can be properly tuned for improved 

resolution while maintaining the size of the fiber core constant. Apart from the NA, the number of 

supported spatial modes is also an important parameter for the quality of the formed image. The 

fiber modes can be seen as the available degrees of freedom of the system that will contribute to 

the image formation and therefore they determine the signal-to-noise ratio (SNR) of the 

image [47–49]. Ultimately, a high NA MMF is capable to provide high resolution and SNR for an 

ultrathin endoscope. The details of fiber endoscopy through MMFs will be presented in the 

following chapters. 

 

 

Figure 9. Image at the MCF a) input and b) output. 

 

1.1.3.2 MCF imaging 

As opposed to MMFs, MCFs are frequently used in endoscopic procedures because they can 

directly transfer images of a desired target illuminated with an incoherent light source without 

further processing. Each core of a MCF usually supports only one spatial mode (or few more 

depending on the wavelength) and acts as a pixel which captures the local information of the 

sample and delivers it to the far end of the fiber (Figure 9). As a result, the resolution in this case is 

defined by the core spacing, which is 5 μm on average for commercial 

endoscopes [17,23,24,26,38,50]. Reduction of the core spacing is limited because of the crosstalk 

which arises between neighboring cores. Light crosstalk in MCFs causes image blurring. 
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Consequently, the core spacing of the MCF imaging probes is chosen at a minimum value which is 

a compromise between resolution and core coupling. Higher resolution can be achieved by 

magnifying the object on the fiber facet by means of lenses attached at the fiber end, but it 

ultimately leads to a decrease of the field of view of the endoscope and an increase the final size. 

Another way to improve the resolution of the system is point scanning techniques using wavefront 

shaping to focus and scan the light through the MCF. In this way, the resolution will be given by 

the NA of each individual core. The analog of the modes for the MMF is the number of individual 

cores, which determines the total degrees of freedom available for shaping the light through an 

MCF. Consequently, the SBR of the focus spot will be proportional to the number of the available 

cores [37,51–58]. Focusing through an MCF using wavefront shaping is further discussed in the 

following chapters using the transmission matrix method. 

Apart from wavefront shaping using digital-phase conjugation techniques, deep learning can also 

achieve high resolution imaging through an MCF imaging probe as in the case of MMFs. The 

pixelation artefact in the final image delivered by MCFs can be also overcome by properly training 

neural networks on desired datasets  [59–66]. Both wavefront shaping and deep learning methods 

for fiber imaging through both fiber types are described in this thesis in the Parts A and B 

respectively.  

 

 

1.2 State-of-the-art in fiber endoscopy 

The concept of fiber endoscopy to create an image from confined places inside the body is 

considered a well-established medical approach of the 21st century, known to assist not only 

diagnosis but also treatment of various pathologies. It is interesting though to mention that the 

concept of endoscopy goes few centuries back, which underlines its importance in medicine.  

In the early 19th century, the first “light guide”, which could transfer images from cavities inside 

the human body is reported by Bozzini. In this first demonstration the endoscope consisted of an 

open tube and an eye piece on the one side [20]. Bozzini is considered the first to separate the 

illumination from the sample path for the image formation using candle light as a source and a 

mirror in the visual tract. His invention was disapproved and dismissed by the medical community 

back then, but found some solid support by the military hospitals. However, more and more 

experts realized the importance of having endoscopic access for inspection of pathologies and the 

attempts to improve the endoscopes in terms of illumination, size and image quality continued for 

many years after Bozzini’s priliminary invention. Nitze’s pivoting work in 1877 led to the first 

cystoscope, which consisted of small lenses placed at certain intervals inside a rigid tube for 

relaying the image from the sample to the eyepiece. Hopkins improved the idea of the relay lenses 

based endoscope in the 20th century by substituting them with glass rods. The working principles 

of these early prototypes of subsequent image relays has been adopted by many endoscope 

designs up to nowadays. Karl Storz, who started one of the leading endoscopic companies, highly 
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valued to today, brought Nitze’s cystoscope to industrial manufacturing. Many more scientists 

(too many to mention in this thesis) worked to develop endoscopy and bring it on the level 

existing today  [11,19,21,22,24]. Image quality, flexibility and small size have been the primary 

parameters to optimize since these early works alongside with improvement of the final mage 

recording devices.  

Nowadays, the evolution of optical components, fibers and camera chips as well as the advances 

in microscopy methods have revolutionized the capabilities of commercial endoscopes. Coherent 

fiber bundles ushered flexible endoscopy in clinical practice. As briefly discussed before, coherent 

fiber bundles consist of many single-mode fibers (SMFs) that probe the light from the sample 

locally and transfer the scattered light from one side to the other of the endoscope forming an 

image. The imaging principle is the same of camera; each core corresponds to a pixel. One of the 

most discussed drawbacks of the fiber bundles is the limited resolution, which is determined by 

the core-to-core spacing, which is as aforementioned in the order of 5 μm. At the expense of 

smaller field of view the resolution can be improved using lenses at the distal side [26,50,67–69]. 

Wavefront shaping to focus the light through MCFs so that point scanning microscopy techniques 

can be applied has been reported to improve the imaging resolution [51,52,55,55,70]. The size of 

focused spot generated through the MCF depends on the individual core NA and not the core 

spacing and as a result, the resolution can be much higher. Alternatively, digital methods have also 

been proposed for removing the pixelated look from the images using computational imaging 

means such as compressive sensing and deep learning [71–73].  

Other endoscope configurations combine a miniature camera chip placed at the distal tip of the 

flexible part and a SMF or a fiber bundle for illumination of the area of interest. The 

implementation of a housing part to hold the components at the distal end of the endoscope 

results in an average size of 10 mm for the commercial ones (by Pentax, Fujifilm, Olympus). A 

turning point in clinical medicine is currently expected by the development of scanning fiber 

endoscopes [17]. This kind of fiber endoscopes can be as small as 1-2 mm and consist of a rigid 

head that contains the end tip of a SMF and the optical lenses for high resolution as well as a piezo 

scanning mechanism to move the SMF core, so that the light spot scans the desired area of the 

sample. Scanning fiber endoscopes can be also combined with hollow-core photonics crystal fibers 

for high power delivery of ultrashort pulses opening new possibilities for endoscopic 

surgery [33,41,44]. The resolution of these endoscopes is limited by the low NA of the SMF and 

the focusing lens system. Tighter focusing of the beam implies diffraction of the fiber mode at 

longer distances, which imposes larger lens diameters and an increases of the final endoscope 

size.  

While SMFs and MCFs are often used in the design of commercial endoscopes as mentioned in the 

previous paragraph, that is not the case for MMFs because of the image distortion after 

propagation along the MMF length. However, the information capacity of a MMF can be 

extremely high, while the size of the core remains few hundreds of micrometers. Therefore, image 

transmission through a MMF has been an area of research interest from many decades now. 

Assuming that the scrambling of the information along the fiber can be compensated, high 
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resolution endoscopes with only few hundred micrometers diameter can be realized. Various 

techniques based on either wavefront shaping [15,28–30,51,52,56,74–78] or computational 

recovery using various image processing algorithms, among which deep neural networks 

(DNNs) [59–64,66], have been employed showing promising results for MMF endoscopy. 

Wavefront shaping is a well-known method originally used to control the propagation of light 

through scattering media so that the information is recovered  [47–49,77,79–81]. Light control 

takes place in various areas in optics and acoustics such as in astrophysics for optimizing the image 

quality that is diminished when light travels through the atmosphere or in biomedical imaging of 

tissue samples, for which imaging in depth is hindered by the scattering of the light cause by 

tissues. The idea of controlling the light specifically through optical fibers was introduced in 1960s. 

Optical phase conjugation was used for the first time to transmit an image through a MMF using 

holographic plates and nonlinear crystals [82–84]. The revolution on the field came with 

implementation of digital holography. In this case, the holograms are stored as an image in a 

computer and the light is modulated using spatial light modulators that consist of pixels that can 

locally assign a specific phase to the incoming wavefront related to the pixel value chosen by the 

user. Hence, focusing the light through a MMF for point scanning microscopy can be achieved by 

properly shaping the light input to the MMF. Iterative optimization algorithms or digital-

holographic methods such as digital-phase conjugation and transmission matrix can be used for 

the calculation of the optimized wavefront to create a desired pattern or to focus the light at the 

fiber distal side [14,28,30,31,52,56,57,74,76,79,85]. Impressively MMFs can perform most of the 

leading microscopy techniques ranging from linear methods: fluorescence [76,86,87], 

photoacoustic  [88,89], reflection [90], confocal  [67,75], speckle scanning  [91,92], to nonlinear 

optical methods which require higher power levels: two-photon fluorescence  [13,15,29,52,69,87], 

coherent anti-Stokes Raman scattering  [93] etc.  

Image recovery through MMFs has been also investigated using purely computational means. 

Two-early reports show that imaging is possible through MMFs without holographic methods but 

by training artificial neural network (ANN) algorithms to reconstruct the desired fiber input from 

its corresponding speckle intensity image recorded on a camera [94,95]. The ANN in this case, 

receives the intensity image of the speckle pattern as an input and it is trained to reconstruct the 

input image using backpropagation of the error between the reconstructed image and its ground 

truth. These early demonstrations used simple AAN architectures to decipher binary input 

patterns of handwritten digits from the corresponding speckle. The evolution of graphic units and 

computing memories opened the path for more complex problem solving using computational 

imaging. More complex ANNs can be realized to recover signals of high information content while 

handling large amounts of data for training  [96–99]. Modern ANNs has shown impressive 

capabilities in image classification and reconstruction after kilometer long fibers  [60,61,65,100] 

(see Part A: Chapter 6) as well as pattern projection through MMFs  [61,101]. 

Each of the methods mentioned above, wavefront shaping and ANNs, offer certain advantages in 

imaging through MMFs and MCFs that we will be discussed further in this thesis and each can be 

selected based on the application and the imaging problem under study. 
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1.3 Motivation 

Conventional microscopy can provide high-resolution images of biological samples but it is 

restricted in accessing information about the sample at depths in the centimeter range. On the 

other hand, optical fibers can recover information from confined places without fundamental 

depth limitations. Fast, accurate and non-invasive diagnosis has always been the main target of 

fiber endoscopy. The purpose of this thesis is to further investigate two main topics: the 

implementation of ultrathin endoscopes that not only accommodate imaging modalities but also 

deliver high enough power to perform local sample modifications in the same endoscopic tool and 

secondly, the improvement of the information quality of existing endoscopes and fibers using 

deep neural networks.  

The term multimodal endoscope generally refers to a probe that can create multichannel images 

using different microscopy techniques (e.g. fluorescence, Raman, confocal etc.). Apart from 

diagnosis, fiber probes have been studied for delivering high laser power to perform local 

treatment of tissues [102,103]. Material ablation using laser pulses usually implies high peak 

power delivery and poses limitations for the conventional imaging endoscopes because of their 

low damage threshold. Therefore, in laparoscopic processes endoscopic imaging and laser 

treatment are separately performed by different tools. Following though the clinical trends for 

minimally invasive processes and faster recovery times for the patients, we propose a single 

endoscopic tool based on MMFs, which can provide a high-peak power focus spot, aiming for 

selective surgical modification of tissue, while obtaining images of the desired area with cellular 

resolution, using wavefront shaping techniques. Femtosecond laser ablation (FLA) is a well-known 

technique for high precision modifications with minimal collateral damage, which attracts 

significant interest various medical fields such as ophthalmology [104,105], but also in industry for 

micro-manufacturing purposes [106,107]. At the same time, resolution beyond the diffraction 

limit, high sectioning and improved penetration depth are characteristics that make tow-photon 

fluorescence (TPF) microscopy a valuable tool for biological (and not only) sample inspection. 

Consequently, combination of the two methods in an endoscopic probe would offer important 

advantages for diagnosis and micro-surgery. The potential and limitations of a fiber endoscope 

that combines FLA for altering the sample locally and TPF imaging described in detail in the 

Chapter 4 of the Part A of the thesis.  

Wavefront shaping for focusing the light through a MMF or MCF is calibration sensitive and the 

proposed endoscope needs to be designed in a rigid way. To overcome this obstacle the potential 

use of computational means is investigated for their potential robustness against perturbations of 

the system. Specifically, Deep Neural Networks (DNNs) are implemented and trained with 

examples of experimentally measured datasets to recover the information through MMFs. DNNs 

have presented many advances in conventional microscopy, which make them a promising 

solution for fiber endoscopy. Super-resolution, translation of information among microscopy 

modalities, robustness to distortions can be potentially integrated in fiber endoscopy via deep 

learning. Therefore, DNNs are studied aiming to demonstrate a multifunctional platform that 

digitally-only improves the imaging performance of fiber endoscopes. These advantages can lead 
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to digital and thus cost efficient upgrade of the existing probes instead of optically redesigning an 

endoscope from scratch.  





 

17 

PART A:  

 

Wavefront-shaping in fiber endoscopy 
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 Digital holography 

The word holography comes from the Greek word “Ολογραφία” which consists of two parts 

“όλος=holos” + “γραφή=graphy” that respectively mean total recording. The term was first 

proposed by Dennis Gabor in 1948 to describe a lensless imaging method, which records the total 

field information, amplitude and phase, by interfering the field scattered form an object with a 

reference coherent field  [46]. Gabor called this interference pattern a hologram and received the 

Nobel Prize in Physics the 1971 for his revolutionary idea. Holography did not receive a lot of 

attention in Gabor’s time; it was only in 1960s that E.N. Leith and J. Upatnieks first applied and 

improved the idea of Gabor with their offset-reference hologram. At the same time, the invention 

of the laser provided the necessary coherence for the illumination source that revealed the full 

potential of holography to capture the full field information while using intensity-only recording 

media [46]. 

 

 

2.1 Principles of holography 

Holography is an interferometric technique, which implies the summation of two fields (one 

unknown field and a reference field) at a defined plane in space. The interference pattern 

(hologram) is an intensity pattern that contains the phase and amplitude information of the 

unknown field. In a mathematical way, we can consider 𝑆(𝑥, 𝑦) the field coming from a sample of 

interest and 𝑅(𝑥, 𝑦) the known reference field, which are described as follows (Equation 9, 

Equation 10): 

𝑆(𝑥, 𝑦) =  |𝑆(𝑥, 𝑦)|exp [𝑗𝜑𝑆(𝑥, 𝑦)] 

Equation 9. Sample field 

𝑅(𝑥, 𝑦) =  |𝑅(𝑥, 𝑦)|exp [𝑗𝜑𝑅(𝑥, 𝑦)] 

Equation 10. Reference field 

where (𝑥, 𝑦) are the coordinates in space at the interference plane and 𝜑𝑆(𝑥, 𝑦), 𝜑𝑅(𝑥, 𝑦) are the 

phase distributions related to the sample and reference fields respectively.  

The interference between the two fields results in an intensity pattern 𝐼(𝑥, 𝑦) that contains 

several terms related to the amplitude and phase information of the two fields: 
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𝐼(𝑥, 𝑦) =  |𝑆(𝑥, 𝑦 + 𝑅(𝑥, 𝑦)|2 

𝐼(𝑥, 𝑦) = [𝑆(𝑥, 𝑦) + 𝑅(𝑥, 𝑦)][𝑆(𝑥, 𝑦) + 𝑅(𝑥, 𝑦)]∗ 

𝐼(𝑥, 𝑦) = |𝑆(𝑥, 𝑦)|2 + |𝑅(𝑥, 𝑦)|2 + 𝑆(𝑥, 𝑦)𝑅(𝑥, 𝑦)∗ + 𝑅(𝑥, 𝑦)𝑆(𝑥, 𝑦)∗ 

Equation 11. Interference pattern intensity 

In Equation 11, the first two terms are only related to the intensities of the two fields, while the 

last two terms also include information about the amplitude and phase of the sample and the 

reference fields. Once the intensity of the hologram is recorded (Figure 10a), we can remove the 

object and recreate its image at its initial position by illuminating the hologram. This step is often 

called as hologram readout (Figure 10b) since the illumination beam reveals the information 

content of the recorded hologram. The holograms created by a reference beam propagating in-

line with the object wavefront are called Gabor holograms. In this thesis, we choose to use off-axis 

holography (also known as Leith-Upatnieks holography) in which the reference beam propagates 

at an angle relative to the direction of propagation of the object field as illustrated in Figure 10a. 

The Gabor hologram poses certain limitations due to the in-line reference, which creates twin 

images during reconstruction. In contrast, off-axis holography generates a clearly separated image 

of the object which does not suffer from the high background originating from the non-modulated 

light [46]. Off-axis holography will be further discussed in the following paragraphs. 

 

 

Figure 10. Holographic imaging. a) Hologram recording and b) hologram readout for image generation by illuminating 
the hologram with the conjugate reference beam 

 

 

2.2 Digital holography 

In this thesis, off-axis digital holography is used for recording the full field information (amplitude 

and phase) at the output of an optical fiber aiming to control the light propagating through. The 
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digital hologram is generated by the interference between the object (here the fiber output field) 

and the reference field on a camera detector. After the hologram is recorded, the phase and the 

amplitude can be digitally extracted. The recorded field can be then displayed using devices called 

spatial light modulators (SLMs). More information about the SLMs will be presented in the next 

paragraph. In this paragraph, we discuss the practical aspects that should be considered in digital 

holography related to the digital sampling due to the finite number of available pixels on the 

sensor, the pixel size, as well as the optimal reference angle for sufficiently recording the 

information in the digital off-axis hologram. 

 

2.2.1 Minimum reference angle 

We consider for simplicity the reference field to be a plane propagating at an angle θ=(θx,θy) with 

respect to the propagation direction of the object field. If 𝑅(𝑥, 𝑦) is the reference field and 𝑘0 =

2𝜋/𝜆 the amplitude of the wavevector in free space for a source emitting at wavelength λ, we can 

express the reference beam as a function of the transverse spatial frequencies, 𝑘′𝑥, 𝑘′𝑦, that 

determine the angle of propagation (Equation 12). For a plane wave reference R is a constant. 

𝑅(𝑥, 𝑦) =  𝑅 exp[𝑗(𝑘0 sin 𝜃𝑥𝑥 + 𝑘0 sin 𝜃𝑦𝑦)] = 𝑅 exp[𝑗(𝑘′𝑥𝑥 + 𝑘′𝑦𝑦] 

Equation 12. Off-axis reference field 

Substituting Equation 12 in the hologram equation (Equation 11), the intensity distribution on the 

camera sensor can be expressed as follows: 

𝐼(𝑥, 𝑦)𝐼(𝑥, 𝑦) = |𝑆(𝑥, 𝑦)|2 + |𝑅|2⏟          
𝐷𝐶 𝑡𝑒𝑟𝑚

+ 𝑆(𝑥, 𝑦)𝑅∗ exp[−𝑗(𝑘′𝑥𝑥 + 𝑘′𝑦𝑦]⏟                    
𝑂𝑏𝑗𝑒𝑐𝑡 𝑡𝑒𝑟𝑚

+ 𝑅 exp[𝑗(𝑘′𝑥𝑥 + 𝑘′𝑦𝑦] 𝑆(𝑥, 𝑦)
∗

⏟                  
𝐶𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 𝑜𝑏𝑗𝑒𝑐𝑡 𝑡𝑒𝑟𝑚

 

Equation 13. Off-axis hologram intensity 

The first two terms of the Equation 13 propagate with zero angle with respect to the optical axis 

when the hologram is normally illuminated and contain no information concerning the phase 

component of the object field and they will be referred as DC component of the hologram. The 

last two terms are complex conjugates of one another and they contain information for both the 

amplitude and the phase of the field related to the object. In the case of using normal illumination 

for the hologram readout, the DC term propagates along the optical axis, while the two conjugate 

images of the recorded object deflect at angles θ and –θ with respect to the optical axis as a result 

of the exponential factor originating from the reference field. Here it is apparent now that the 

reference angle used needs to be optimized in order to have these three components well 

separated so that the object is nicely formed without interfering with part of the DC term.  

As discussed in Chapter 1, each image is characterized by a specific frequency spectrum in the 

Fourier space, which should be taken into account in the calculation of the minimum reference 
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angle to avoid overlap between the hologram orders. The angular frequency spectrum of the 

recorded hologram is calculated by the Fourier transform of the hologram image (intensity 

profile). Assuming that the reference beam is a plane wave travelling at an angle, the respective 

Fourier transform is a δ function in Fourier space at the point (𝑘′𝑥 = 𝑘0 sin 𝜃𝑥, 𝑘′𝑦 = 𝑘0 sin 𝜃𝑦).  

𝐹{𝐼(𝑥, 𝑦)}(𝑘𝑥, 𝑘𝑦) =  𝐹{|𝑆(𝑥, 𝑦)|
2}(𝑘𝑥, 𝑘𝑦) + 𝐹{|𝑅|

2}(𝑘𝑥, 𝑘𝑦) + ⋯ 

𝐹{𝐼(𝑥, 𝑦)}(𝑘𝑥, 𝑘𝑦) = + 𝐹{𝑆(𝑥, 𝑦)𝑅
∗ exp[−𝑗(𝑘′

𝑥
𝑥 + 𝑘′𝑦𝑦]}(𝑘𝑥, 𝑘𝑦) +⋯ 

𝐹{𝐼(𝑥, 𝑦)}(𝑘𝑥, 𝑘𝑦) = +𝐹{𝑅 exp[𝑗(𝑘
′
𝑥
𝑥 + 𝑘′𝑦𝑦] 𝑆(𝑥, 𝑦)

∗}(𝑘𝑥, 𝑘𝑦) 

𝐹{𝐼(𝑥, 𝑦)}(𝑘𝑥, 𝑘𝑦) =  𝐹{𝑆(𝑥, 𝑦)}(𝑘𝑥, 𝑘𝑦) ⋆ 𝐹{𝑆(𝑥, 𝑦)}(𝑘𝑥, 𝑘𝑦) + 𝛿(𝑘𝑥, 𝑘𝑦) + ⋯ 

𝐹{𝐼(𝑥, 𝑦)}(𝑘𝑥, 𝑘𝑦) = + 𝑅
∗𝐹{𝑆(𝑥, 𝑦)}(𝑘𝑥 + 𝑘

′
𝑥, 𝑘𝑦 + 𝑘

′
𝑦) + 𝑅𝐹{𝑆(𝑥, 𝑦)

∗}(𝑘𝑥 − 𝑘
′
𝑥, 𝑘𝑦 − 𝑘

′
𝑦) 

Equation 14. Fourier transform of the hologram intensity 

Equation 14 gives the spatial frequency distribution of the hologram with respect to the reference 

and object field information. The first term comes from the autocorrelation theorem and is related 

to the object’s frequency spectrum while the second term is a δ function related to the reference 

intensity as a plane wave. The last two terms are proportional to the object frequency spectrum 

shifted in frequency space because of the multiplication with the reference beam. The frequency 

shift of the object’s spatial frequency spectrum is dependent on the reference angle. Figure 11 

depicts the terms of Equation 14 to show more comprehensively how the reference angle needs 

to be determined. 

 

 

Figure 11. Fourier spectral components of the hologram 

 

Without loss of generalization, 𝑘′𝑦 is considered zero in Figure 11 and B is the half-bandwidth of 

the object’s angular spectrum. The minimum 𝑘′𝑥,𝑚𝑖𝑛 to avoid overlap between the DC component 

and the terms related to the object field should be 3B as it can be easily seen in Figure 11. 

Analyzing this further, we can determine the minimum reference angle as shown in Equation 15: 

𝑘′𝑥,𝑚𝑖𝑛 = 3𝐵  

𝑘0 sin 𝜃𝑚𝑖𝑛 = 3𝛣  

sin 𝜃𝑚𝑖𝑛 = 
3𝐵𝜆

2𝜋
 

Equation 15. Theoretical minimum reference angle 
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2.2.2 Digital sampling 

When recording a hologram on a 2D detector of finite number of pixels (Nx,Ny) with pixel size 𝑑𝑝𝑖𝑥, 

the frequencies of the object in the Fourier space must be correctly sampled based on the Nyquist 

theorem. Therefore, in order to calculate the experimentally implemented angle between the 

reference and the object, the effect of sampling effect must also be considered. Based on the pixel 

size, the frequencies that can be sampled in the 2D Fourier space according to the Nyquist 

theorem lie in the range [
−𝜋

𝑑𝑝𝑖𝑥
:
𝜋

𝑑𝑝𝑖𝑥
,
−𝜋

𝑑𝑝𝑖𝑥
:
𝜋

𝑑𝑝𝑖𝑥
 ]. To maximize use of the 2D space (from a 

geometrical perspective), we consider that the two conjugate orders lie in the diagonal of the 2D 

window. If we now consider the bandwidth of the object B, we can calculate the minimum angle 

θmin which ensures both the separation of the DC term from the phase carrying terms (Equation 

15) and the correct digital sampling using the Equation 16. The factor 
3√2+2

2
 comes from the 

geometrical calculation of the diagonal with respect to the bandwidth B. According to the 

Equation 16, if we consider a detector of 8 μm pixel size and a wavelength of 1030 nm, which is 

the case for the experiments described in the following chapters, we get a minimum angle of 3.5o. 

𝜋

𝑑𝑝𝑖𝑥
= (
3 + √2

√2
)𝐵

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 12
⇒         

𝜋

𝑑𝑝𝑖𝑥
= (
3√2 + 2

2
) (
2𝜋

3𝜆
sin 𝜃𝑚𝑖𝑛) ⇒ 

sin 𝜃𝑚𝑖𝑛 =
3𝜆

(3√2 + 2)𝑑𝑝𝑖𝑥
  

Equation 16. Minimum reference angle considering Nyquist theorem 

 

 

Figure 12. a) Digital hologram recorded on the camera (the inset shows a magnified area of the hologram to observe 
the fringes), b) Fourier transform of the hologram (a), c) the +1 order of the hologram cropped and shifted in the 
center to remove the reference angle contribution in the phase, d) the amplitude and e) the phase of the object field 
obtained by calculating the inverse Fourier transform of (c).  

 

2.2.3 Reconstruction of the complex field 

Digital holography has been extensively used in various areas of optics. In microscopy, digital 

holographic microscopes are able to generate images of transparent objects that are basically 

invisible in conventional bright-field microscopy. A further development of digital holography is 
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optical diffraction tomography, which uses digital holography to recover the scattered field from 

an object after illumination at different angles, generating the 3D refractive index distribution of 

the sample [108,109]. MMF imaging utilizes digital holography to characterize the propagation of 

light through the fiber by measuring its transmission matrix, which relates the input to the output 

field. Specifically, for point scanning based imaging, the light through the fiber needs to be focused 

at a certain distance from the distal fiber facet. Figure 12 provides an example extraction of the 

amplitude and phase from the hologram of a speckle pattern (Figure 12a) recorded in one of the 

experiments discussed in the following chapters based on the reconstruction steps below. In this 

case, the speckle hologram is recorded at the plane of the distal facet of a MMF. This example is 

obtained when focusing through a MMF, which is the main target of the work presented in the 

first part of the thesis (Figure 12). Therefore, a quadratic phase profile is generated at the distal 

facet of the MMF as shown in Figure 12e. The extraction of the phase and amplitude of the digital 

hologram is performed using the following steps: 

1. Compute the Fast Fourier Transform (FFT) (Figure 12b) of the hologram image (Figure 12a). 

2. Select the desired diffraction order of the FFT (red circle, Figure 12b). 

3. Mask out all of the unwanted orders of the FFT (DC and conjugate order). 

4. Shift the real order at the center of the Fourier space to remove the angle contribution in 

the phase coming from the reference beam (Figure 12c). This step is equivalent to 

illuminating the hologram with the conjugate reference, which would also result in normal 

propagation of the object term with respect to the optical axis (Equation 13) since the 

angle dependence would vanish. 

5. Apply an inverse FFT to obtain the amplitude and phase of the field are obtained (Figure 

12d, e respectively). 

 

 

2.3 Spatial light modulators 

In the discussion above, we analyzed the correct way to record the field of an unknown object 

𝑆(𝑥, 𝑦) on a camera sensor with finite pixel number and pixel size using digital holography. How 

can we now use the recorded field in order to display the image of the object from the 

information extracted from the digital hologram? Historically photographic emulsions were used 

for holographic image projection. However the use of emulsions was severely limiting due to the 

long delays in the chemical processing and poor repeatability. The development of devices capable 

of modulating the phase and/or amplitude profile of an incident coherent wavefront, called spatial 

light modulators (SLMs), revolutionized the field of digital holography and displays. The different 

technologies are used for SLM devices including liquid crystal SLMs (LC-SLMs), magneto-optic 

SLMs, deformable mirror-based SLMs, digital micro-mirror devices (DMDs) and more [46,110]. 

Furthermore, new technologies for light modulators are emerging aiming for modulating devices 

at high speed and spatial resolution compared to the existing ones. One example are metasurface-
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based light modulators for their potential of subwavelength pixel resolution and possibly 

unsurpassed speed [111]. 

For the work presented in this thesis, phase-only LC-SLMs are used. LC-SLMs can be designed to 

function in transmission or reflection depending on the needs of each experiment. The working 

principle of the LC-SLMs is based on the electrically induced orientation of the birefringent liquid 

crystal molecules contained in each pixel of the device. By applying a different electrical signal to 

each pixel of the liquid crystal screen, an incident wavefront experiences local phase retardation 

dependent on the orientation of the molecules in each pixel, which finally creates a desired 

modified output. By projecting, the recorded field information (amplitude and/or phase) of an 

object on the SLM array and illuminating it at the correct angle of incidence, the image of the 

object will appear at a distance far from the SLM that corresponds to the initial position of the 

object. An LC-SLM device always needs to be calibrated for the wavelength used so that the 

electric signal applied in each pixel results in the desired phase value.  

LC-SLMs offer high resolution in terms of total pixel number (Full HD) and at least 8-bit dynamic 

range which favors the precise generation of complex phase profiles and linear gradients. In 

addition, they are characterized by high diffraction efficiency (modulated to unmodulated light 

ratio) which is crucial for high-power applications such as nonlinear imaging and laser ablation 

demonstrated in this thesis. Furthermore, amplitude information can be also displayed in these 

phase-only SLMs at the expense of diffraction efficiency [112]. One disadvantage of LC-SLMs is 

their low refresh rate because of the liquid crystal orientation time. The speed for displaying phase 

patterns ranges from 20Hz up to 700Hz. For low-power applications requiring high-speed pattern 

projection, DMDs can be used instead as they function in the kHz range. 

 

 

2.4 Summary 

In this chapter we explained the basic concepts of digital holography. The recording of a hologram 

corresponding to an unknown field on a camera sensor was discussed for the specific case of the 

off-axis holography. The determination of the optimal angle of the reference beam, which is 

critical for the optimal recovery of information related to the object field, is analyzed. In addition, 

it is shown that the correct digital sampling of the hologram on a finite pixel sensor is important 

for preserving the information. SLM devices are an essential tool in digital holography for light 

control applications such as wavefront shaping through optical fibers, which is investigated in this 

thesis. SLMs allow for the recorded information in a digital hologram to be afterwards displayed 

and generate the wavefront of an unknown object field at a certain location in space. Therefore, 

SLMs allow precise control of the light propagation through optical systems by shaping the light 

beam in a desired way. In the next chapters, the advantages of digital holography for wavefront 

shaping applications in microscopy and material manipulation are presented. 
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 Transmission Matrix 

In this chapter, the basic theory behind the transmission matrix method is discussed. The 

transmission matrix of an optical system is not a new concept; it has been used to describe the 

propagation of light through simple or more complicated optical systems for many decades. The 

focus of the following section is the implementation of the method for modulating the light 

propagation through optical fibers. Part of the results presented can be also accessed in the 

following published articles in accordance with the publisher’s agreement: 

 D. B. Conkey, E. Kakkava, T. Lanvin, D. Loterie, N. Stasio, E. Morales-Delgado, C. Moser, and 

D. Psaltis, "High power, ultrashort pulse control through a multi-core fiber for ablation", 

Optics Express 25, 11491 (2017)  

 E. Kakkava, M. Romito, D. B. Conkey, D. Loterie, K. M. Stankovic, C. Moser, and D. Psaltis, 

"Selective femtosecond laser ablation via two-photon fluorescence imaging through a 

multimode fiber", Biomed. Opt. Express, BOE 10, 423–433 (2019). 

 

 

3.1 Introduction 

3.1.1 Theoretical aspects 

In acoustics and optics the “transmission” or “transfer matrix” is a subpart of the full scattering 

matrix, which is used to describe the propagation of acoustic and electromagnetic waves, 

respectively, through scattering media [47,113–115]. In this study, the transmission matrix theory 

will be used to study the light propagation through multimode fibers. Multimode fibers differ from 

scattering materials since no reflections and backscattering are taken into account and therefore, 

the transmission part of the full scattering matrix can sufficiently describe the light propagation 

through the fiber. 

The transmission matrix T of the fiber relates an input complex field 𝐸𝑖𝑛 to a corresponding output 

complex field 𝐸𝑜𝑢𝑡 as described by the following equation. 

𝐸𝑜𝑢𝑡 = 𝑇 ∙ 𝐸𝑖𝑛 

Equation 17: Transmission matrix 
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Theoretically, the conservation of energy dictates that the transmission matrix is a unitary matrix. 

However, experimental losses lead to an incomplete matrix , which is not strictly unitary. These 

losses are related to the optical system and could originate from fiber inhomogeneities, bending 

losses, etc. In addition, measurement of a single polarization (for experimental simplicity) 

introduces further loss in the measured transmission matrix. Another interesting property of the 

transmission matrix is reciprocity, which implies that the transmission matrix towards one 

direction 𝑇1→2 is the non conjugate transpose of the transmission matrix towards the opposite 

direction 𝑇2→1
𝑇 .  

 

 

Figure 13. Visualization of the generation of patterns through the GRIN fiber using the measured TM of the optical 
system. a-c) The wavefront at the distal side of the fiber that results in the d-f) intensity distributions at 200um 
distance from the fiber facet. 

 

For many applications discussed in this thesis (e.g. nonlinear imaging, laser ablation), it is 

important to focus the light at the distal fiber end. Therefore, it is necessary to calculate the 

correct wavefront, which after propagation through the optical fiber, will render the desired 

quadratic phase at the distal fiber facet to create a focus spot at a chosen location in space. To do 

so, the inverse of the transmission matrix 𝑇−1is required. However, the calculation of the algebraic 

inverse of the experimentally measured transmission matrix is often prone to measurement noise. 

Instead, the phase conjugate matrix is used. Phase conjugation refers to the backward 

propagation of light with respect to the optical axis z [14,52]. As discussed in the previous 

paragraph, because of the unitary property of the transmission matrix, the inverse matrix is the 

exact Hermitian transpose 𝑇−1 = 𝑇† if experimental losses are not taken into account. 

Considering 𝑇† as the inverse matrix 𝑇𝑖𝑛𝑣 requires low computational power. Using matrix 

inversion by phase conjugation produces remarkable results in the experiments described in the 

following paragraphs. Generation of desired patterns at the distal fiber side is of high quality 

despite the existing losses and experimental limitations. In Figure 13, we present three examples 
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of projected patterns through a 400 μm core GRIN fiber using the measured transmission matrix 

to calculate the corresponding input wavefront.  

 

3.1.2 Measurement basis 

Measurement of the transmission matrix implies accurate recording of the input and respective 

output optical field. Digital holography is used to extract the amplitude and phase of the output 

field at the distal side of the fiber as it is described in the Chapter 2. The transmission matrix 

representation can be achieved using different basis as long as they completely describe the input 

and output fiber fields. Some examples found in literature describe the measurement of the 

transmission matrix using as input basis, plane waves in different angles, localized spots projected 

at the proximal facet, the fiber modes themselves or even random phase 

patterns [15,51,57,75,90,116–118]. There is no restriction to express and measure the 

transmission matrix using the same basis at the input and output since a linear transformation can 

be performed for a basis change. In the present work, we chose to measure the transmission 

matrix of the optical fibers studied in the basis of plane waves or “Fourier basis” as it is often 

called. 

Measuring the transmission matrix in the Fourier basis is advantageous both optically and 

computationally. Expressing both the inputs and the outputs in the spatial frequency domain 

reduces the memory requirements. The fiber NA and the core size determine the number of the 

available Fourier components at each side of the fiber and therefore, the transmission matrix can 

be defined in a reduced size. On the contrary, if the values of the field are stored in the space 

domain (x, y), the input and output vectors will be in the order of millions elements. Considering 

the resolution of the current spatial modulators and cameras, a single image is of 1000x1000 pixel 

size which suggests that the final transmission matrix size would end up being extremely large for 

a computer memory. In addition, the inversion of such a large matrix would require significantly 

higher computational power if not impossible to perform. On the other hand, saving the spatial 

frequency components of a wavefront is more efficient and the calculation of the field in space 

can be afterwards performed by a Fast Fourier Transform operation, which can be easily handled 

by a conventional computer.  

Another advantage of using the Fourier basis is related to the modulation efficiency of the SLM 

devices. Plane waves at different angles are simply expressed by blazed grating phase images on 

the SLM screen. A blazed grating requires phase-only modulation (no amplitude encoding needed) 

and therefore a phase-only SLM (which is used in our experiments) can accurately project this kind 

of pattern. Phase-only basis are preferred when using a phase-only SLM. Low modulation 

efficiency is tolerated for low power applications but it can be a hindering factor when high peak 

power is needed at the distal fiber facet for material manipulation, as we will discuss in the next 

chapters. 
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3.1.3 Practical requirements 

It was explained in the previous sections that the measurement of the transmission matrix of an 

optical system is constructed by recording the input and output fields. Interferometric 

measurements such as digital holography can accurately retrieve the information of an output 

field at the distal facet of the optical fiber but they are sensitive to instabilities of the 

measurement system. Phase drifts between the reference and object wave and intensity 

fluctuations of the light source over time can severely affect the measurement of the transmission 

matrix. Instabilities during the transmission matrix measurement can be caused by various factors 

such as mechanical and thermal perturbations in the environment of the experimental setup, 

wavelength drift of the light source etc. As discussed above, the inversion of the measured matrix 

of the system is performed using phase conjugation, which is based on the assumption of a time-

invariant system. Therefore, it is important during the transmission matrix measurement to 

correct for the induced drifts as much as possible. To do so, phase drift monitoring during 

measurement of the matrix is performed by recording the phase of a standard test input every five 

input plane waves. At the end of the measurement, we correlate the phase of each test hologram 

recorded to the first one and the phase change is interpolated. In this way, the elements of the 

transmission matrix are corrected. Of course, correction by interpolation using the complex 

correlation coefficient measured from the test frames can be achieved only at a certain level. The 

simplest solution is the selection of a stabilized laser source and an isolated from vibrations optical 

setup.  

Another parameter that needs further optimization for efficiently measuring the transmission 

matrix of the system is the synchronization between the camera that records the fiber output 

hologram for each input plane wave and the SLM. The phase-only LC-SLM (Pluto-NIR2, Holoeye) 

used in the experimental setup described in the following section is characterized by a certain 

refresh rate (60 Hz according to the specifications) and response time. In addition, as in most of 

the devices controlled by a computer interface, there is a time delay between the command 

execution on the computer and the action of the device. This delay time can last more than one 

refresh circle of the LC-SLM. Even when the command reaches the device the liquid crystals of the 

modulator need a certain time to orientate in the desired way in order to induce the assigned 

phase per pixel. Finally, in older SLM devices the electronic signal addressing the pixels causes 

flickering of the phase pattern projected on the device, which leads to intensity fluctuations of the 

shaped light after the SLM. A synchronization scheme is implemented to overcome the above 

timing restrictions between the detectors (cameras, photomultipliers etc.) and the SLM. To do so, 

every time a pattern is sent to the SLM a pulse is generated on the data acquisition card. From the 

time that the pulse is generated (t=0s), measurement of the SLM output is performed over time to 

determine the response curve of the SLM. Based on this curve, we define the specific delays in the 

system to ensure that the fiber output is recorded at the exact moment that the phase mask is 

projected by the SLM in an optimal way. More details about the synchronization method can be 

found in the work by D. Loterie  [119]. 
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3.2 Methods 

3.2.1 Optical apparatus 

For the transmission matrix measurement, we implemented the optical setup described Figure 14. 

A high pulse energy laser system (Satsuma, Amplitude Systèmes, λ=1030 nm, Epulse,max=40 μJ) that 

provides tunable pulse duration (τpulse,min=300 fs) and repetition rate was used. For the 

experiments presented in this thesis, the repetition rate is set at 20 kHz. The laser beam is 

expanded and collimated by combining two achromatic lenses (L1: f=50 mm, L2: f=150 mm) at the 

output of the laser before it is split into illumination and reference paths using a polarizing beam 

splitter (PBS). In the illumination path, the laser beam is reflected by a spatial light modulator 

(SLM, Pluto-NIR2, Holoeye) and the SLM plane is imaged using a 4f system at the proximal facet of 

the optical fiber. The 4f system (lens L3 and microscope objective O1) was optimized every time so 

that the SLM plane is demagnified approximately to fit the size of the fiber core under study. The 

size of the laser beam at the SLM plane was 8 mm to exploit most of the pixels available and to 

avoid damage of the device at the high pulse energy levels. Even at the maximum pulse energy 

used in the experiments (Ep=15 μJ) the peak intensity at the SLM plane is in the order of 60 

MW/cm2, which is much lower than the damage threshold specified for the device (~0.25 

TW/cm2). A second 4f system is placed at the distal facet to image the output of the fiber on a 

CMOS (MV1-D1312IE-G2-12, PhotonFocus) detector array. For the second 4f system a 40x (0.65 

NA, Newport) microscope objective (O2) was combined with an achromatic lens (L4) of 125 mm 

focal length. We chose a higher NA microscope objective at the distal side of the fiber to ensure 

the collection of most of the high frequency components of the output field. The reference beam 

is directed on the CMOS where it interferes with the fiber output resulting in a digital hologram. 

The use of a pulsed light source requires that the reference and illumination paths have the same 

optical length for interference to happen. A delay line placed in the reference path allows for 

adjusting the optical path length resulting in coherence gating of the fiber output.  

During the calibration process, plane waves at different angles (blazed grating phase profiles) are 

sequentially projected by the SLM and the corresponding holograms of the speckle pattern at the 

distal end of the fiber is recorded on the CMOS detector for each input angle. The amplitude and 

phase of the distal field are then extracted using digital holography, as described in Chapter 2, and 

stored as a column vector of the transmission matrix. After the transmission matrix is calculated 

and inverted, any desired output can be generated by calculating the proximal phase on the SLM 

by simply multiplying the desired output field with the inverse matrix. The pulse energy used for 

the transmission matrix measurement (Ep=0.2 μJ) is chosen to avoid the presence of nonlinearities 

arising along the fiber length.  

For the characterization of the focusing performance of the optical fibers used in the following 

experiments in the presence of high peak intensity pulses launched at the proximal fiber side, 

measurements of the output pulse duration and spectral profile are necessary. The pulse duration 

of the laser focus is determined by a custom-made two-photon fluorescence (TPF) interferometric 

autocorrelator that is integrated in the transmission matrix measurement setup. Two microscope 
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objectives of 40x magnification (0.65 NA, Newport) are used for focusing and collecting the light 

from the fluorescence sample (Rhodamine 6G in SU8) on CCD2 (Chameleon 3, Point Grey 

Research). The beam is redirected into the autocorrelator path by a flip mirror. The spectral 

characteristics of the distal output are measured using a spectrometer (HR4000CG-UV-NIR, Ocean 

Optics) placed in the conjugate plane of the focus spot. 

 

 

Figure 14. Transmission matrix experimental setup for focusing and scanning the light through the optical fibers, 
combined with a TPF autocorrelator and a spectrometer for characterizing the temporal and spectral profile of the 
pulse. The optical setup also includes a TPF imaging part for the creation of the sample images. (S = sample, D = 
dichroic, HWP = half-wave plate, FS = fluorescent sample for TPF autocorrelator, O = microscope objective, L = lens, 
PBS = polarizing beam splitter, BS = beam splitter) [15]. 

 

Additionally, a TPF detection system is implemented for the microscopy measurements. A dichroic 

mirror (D) and a photomultiplier (PMT, Hamamatsu, H11526-20-NN) are placed in the proximal 

side of the fiber so that the fluorescent signal emitted by the sample and collected back through 

the fiber is separated from the laser light and measured. For each focus scanned at the sample 

plane the fluorescence intensity measured by the PMT is saved as a pixel value for the image 

formation. The fluorescence signal is focused on the PMT by means of 100 mm lens. A bright field 

(BF) imaging block is also set in transmission from the sample to monitor the areas of interest 

consisting of a lens of 300 mm focal length to form an image on the CCD1 (Chameleon 3, Point 

Grey Research). 

Different types of fiber are used for the transmission matrix experiments and they are listed 

below. The length of fibers in all cases is kept 10 cm for comparison.  

 200 μm core GRIN fiber (by Fiberware) with NA of 0.29, 7800 supported spatial modes 

 400 μm core GRIN fiber (by Fiberware) with NA of 0.29, and 31,200 spatial modes  

 460 μm core MCF (FIGH-10-500N, Fujikura) with NA of 0.34 for the individual cores  
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3.2.2 Biological sample preparation 

Four ten-week old mice (NMRI strain) are used for the study presented in the paragraph 4.2. All 

animal procedures are approved by Ecole Polytechnique Fédérale de Lausanne (EPFL). The mouse 

is sacrificed, intracardially perfused and the cochlea is removed. Under the operating microscope, 

the middle turn of the cochlear bone is carefully opened with forceps while leaving the inner soft 

structures intact. The cochlea is then fixed in cold 4% paraformaldehyde (PFA) in 0.1 M phosphate-

buffered saline (PhBS) for 30 min and rinsed with PBS three times for 5 minutes each. The 

remaining cochlear bone is gently removed and the pieces of Organ of Corti were microdissected. 

The Organ of Corti pieces are permeabilized in 0.3% Triton-X 100 for 15 minutes, rinsed with PhBS, 

and stained with propidium iodide (PI, Thermofisher Scientific, 1:100 dilution of 1.5 mM stock 

solution) which is a popular red-fluorescent (λem,max=617 nm) nuclear stain. After 30 minutes, the 

stained samples are rinsed with PhBS three times for 5 minutes each, mounted in ProLong 

Diamond media (from Life Sciences Technologies), sealed between two thin coverslips (145 μm) 

and imaged using the setup schematized in Figure 14. The prepared samples are extracted from 

the middle turn of the cochlea and their thickness is about 100 μm. 
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 High-intensity focusing through 

optical fibers 

Ultrashort pulses have revolutionized conventional microscopy using nonlinear optical phenomena 

such as two-photon fluorescence (TPF) [120,121] and second-harmonic generation 

(SHG) [122,123] to improve the resolution and the quality of the obtained images. Ultrashort pulse 

delivery through fiber probes has made these imaging modalities endoscopically 

configurable  [13,29,124,125]. Apart from nonlinear microscopy, femtosecond laser ablation (FLA) 

has been also extensively used in medicine for tissue manipulation due to its high precision and 

minimal collateral damage [104,106,126,127]. Integration of FLA in an imaging probe could be a 

pivoting advancement for high-precision fiber microsurgery. However, the peak intensities needed 

to perform FLA can exceed the tolerance of common endoscopes. With at least two-orders of 

magnitude more peak intensity than the one needed for TPF imaging (~109 W/cm2), FLA may 

induce nonlinearities or even fiber damage if a single mode fiber is used [128].  

The last decade has seen a rapid growth in the development of photonic crystal fibers [8], of which 

hollow core photonic crystal fibers (HC-PCFs) have shown an unsurpassed ability to deliver high 

energy, ultrashort pulses with minimal loss and dispersion [32–34,44,45]. Similarly to TPF imaging, 

FLA is also a point scanning technique which implies that, after propagation through a fiber, the 

emitted pulse needs to be focused and scanned onto the targeted material. Consequently, 

addition of distal end optics and scanning mechanisms is necessary for a HC-PCF-based probe, 

which results to a significant increase of the final endoscope size [33,129,130].  

In the course of minimization of medical tools for less invasive clinical procedures, two different 

fiber types were studied (MCFs and GRIN MMFs) to investigate their potential capability to deliver 

a high peak intensity focus, aiming to enable both TPF and FLA through a single endoscope. 

Instead of opto-mechanical components, light focusing and scanning is achieved using wavefront 

shaping to control light propagation through the fibers, thus reducing the final size of the device. 

MCFs and GRIN MMFs present a promising choice for mitigation of fiber damage or nonlinearities 

because the input energy is spread among all the fiber cores or spatial fiber modes respectively. In 

the next paragraphs, the performance of different fiber probes for high-intensity focusing is 

characterized. The majority of the presented results and discussion in this chapter are published in 

the following journal articles and they are reproduced here according to the publisher’s 

agreement: 
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 D. B. Conkey, E. Kakkava, T. Lanvin, D. Loterie, N. Stasio, E. Morales-Delgado, C. Moser, and 

D. Psaltis, "High power, ultrashort pulse control through a multi-core fiber for ablation", 

Optics Express 25, 11491 (2017)  

 E. Kakkava, M. Romito, D. B. Conkey, D. Loterie, K. M. Stankovic, C. Moser, and D. Psaltis, 

"Selective femtosecond laser ablation via two-photon fluorescence imaging through a 

multimode fiber", Biomed. Opt. Express, BOE 10, 423–433 (2019). 

 D. Psaltis, E. Kakkava, N. Stasio, D. B. Conkey, and C. Moser, "Femtosecond pulse delivery 

through multi-core fibers for imaging and ablation", in Z. Liu, ed. (SPIE, 2017), p. 30. 

 

 

4.1 Multicore fiber probes for endoscopy 

4.1.1 Wavefront control through MCFs 

MCFs are used for direct fiber imaging of an area of interest using each core as a pixel. This raises 

the question why wavefront shaping is necessary for this kind of fiber probes. As previously 

discussed, the imaging resolution of MCF-based endoscopes is dependent on the core spacing and 

it can be only improved by adding magnifying optics at the distal fiber side at the expense of field 

of view. Here, another approach is followed for improving the imaging resolution of the MCF 

probe, which uses wavefront shaping to generate a diffraction limited focus spot at the distal fiber 

side in order to perform point scanning methods. The size of the focus spot is only dependent on 

the NA of the individual cores, which implies that the final resolution can be significantly better 

than the core spacing distance (~5 μm). In the presence of weak crosstalk between neighboring 

cores, a focusing wavefront launched at the proximal fiber facet is delivered at the distal end and 

generates at focus spot at a desired distance from the fiber facet. Small refractive index 

fluctuations and size non uniformities between the individual fiber cores have been reported to 

assist the reduction of crosstalk which ultimately allows the production of more dense 

MCFs [38,40]. However, the slight differences from core to core and the effect of core-to-core 

coupling result in a random phase distribution among the fiber cores at the distal facet, which 

implies that a desired phase profile would not propagate unchanged through the system and light 

focusing is not trivial. Due to the randomization of the phase distribution among the cores, a 

speckle pattern is generated at a distance far from the fiber facet. Previously reported work on 

MCF endoscopy has shown delivery of focused ultrashort pulses through a MCF for two-photon 

fluorescence imaging is possible using digital phase conjugation (DPC) [52]. Although DPC method 

can successfully control the light propagation through MCFs, low focusing efficiency is reported. 

We define focusing efficiency as the percentage of the total output power that is concentrated in 

the focus spot. It has been experimentally found, that the transmission matrix approach 

outperforms DPC in terms of light focusing efficiency. The main reason of the improved 

performance of the transmission matrix is related to the fact that it bypasses the complexity of 

alignment between the hologram capturing detector array and the SLM, which in turn is essential 

for DPC experiments. Like DPC, the transmission matrix accounts for the core-to-core coupling and 

allows the use of densely packed MCFs [37,52,55].  
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Nevertheless, the measurement of the transmission matrix for ultrashort pulses propagating 

through optical fibers presents further complexity, because of the coherence gating used in the 

case of pulsed laser sources. Based on the NA of the individual cores a certain number of spatial 

modes per core is supported. Therefore, modal dispersion and core-to-core coupling in addition to 

the group velocity dispersion induce temporal dispersion of the pulse, which lowers the amount of 

light that lies within the coherence length of the reference beam and consequently the overall 

focusing efficiency [51,52,124]. The temporal and spectral characteristics of the pulse propagation 

through the MCF system will be further discussed in the following paragraphs. 

In the experiments described in this section, the transmission matrix is measured by capturing the 

output fields of orthogonal input modes after propagation through a 10 cm long MCF (FIGH-10-

500N, Fujikura) as reported in the Methods paragraph 3.2 [51,75]. In order to explain in a 

comprehensive way the light focusing through the fiber probe, we define here the output field 

modes spatially, like pixels (where mode m represents a point in space of the output field), at a 

certain distance from the distal facet, while the input field is described at the fiber facet plane. The 

modes n are the fundamental modes of the individual cores. This definition is made for intuitive 

reasons since in the case of MCF we cannot talk about spatial modes as in the case of MMFs and 

each fiber core can be considered as a mode of the fiber. Once the transmission matrix is 

measured it can be used to calculate the necessary input wavefront to shape arbitrary intensity 

patterns at the output field [27]. In our case, we are interested in maximizing the focus intensity 

by creating a single focus spot at output mode m, whose intensity 𝐼𝑚 is equal to: 

𝐼𝑚 = 𝐶 |∑𝑡𝑚𝑛𝐴𝑛𝑒
𝑖𝜑𝑛

𝑁

𝑛

|

2

 

Equation 18. Intensity of the focused spot after the MCF at the output point m 

The parameter N is the number of cores, An is the amplitude at core n, ϕn is the phase on core n at 

the input, 𝑡𝑚𝑛 is the transmission matrix element which relates the input at core n to output mode 

m, and C is a factor which accounts for reduction of the focusing efficiency due to diffractive 

effects from the quasi-periodically spaced cores. The intensity  𝐼𝑚 is maximized when ϕn  

compensates for the phase delay in core n measured in 𝑡𝑚𝑛.   

Figure 15 shows experimentally obtained data to demonstrate the measurement process. Figure 

15a shows the facet of a MCF. As previously mentioned, the MCF is designed with high variability 

in the core size to reduce core-to-core coupling which allows a high core density [38,40]. Figure 

15b shows the phase of the wavefront at the proximal facet of the MCF for generating a focus at 

the distal side. The input wavefront appears to be completely random on the facet. Figure 15c 

shows the quadratic wavefront created at the distal end of the MCF using Figure 15b as the input 

wavefront. The phase was extracted using digital holography. After free space propagation, the 

quadratic phase focuses the wavefront at some distance away from the fiber facet (Figure 15e, 

intensity in log scale). Because the quadratic phase is discretized by the MCF cores, diffracted light 

appears around the focus  [37,51,52,55,131]. However, the relatively close spacing of the cores 
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and their quasi-periodic arrangement separates the diffractive effects far from the focus and 

spreads out the diffraction peak intensity  [52]. In the following sections, we experimentally 

evaluate how the focus intensity depends on input pulse energy to understand the limitations 

imposed by nonlinearities. 

 

 

Figure 15. Visualization of wavefront shaping through an MCF. (a) The MCF facet with white light illumination. (b) The 
phase field input to the MCF facet to create a focus. The color wheel in the upper right indicates the relative phase 
value from zero (blue) to 2π (red). The wavefront at the distal end of the MCF with (c) low peak power and (d) high 
peak power input after the wavefront shown in (b) has propagated through the MCF. The focus formed 800 µm from 
the facet of the MCF with (e) low peak power and (f) high peak power input. The intensity is shown in a log scale. The 
scale bar in each figure is 50 µm  [51]. 

 

4.1.2 Nonlinear degradation of focusing efficiency 

The field of nonlinear optics refers to phenomena that take place when high intensity optical fields 

interact with matter strongly enough to modify the optical properties of the material system. For 

this reason, nonlinear phenomena were only observed after the invention of laser by Maiman in 

1960. In the presence of strong optical fields, linear dependence of the polarization on the electric 

field is no longer accurate and nonlinear terms need to be taken into account as shown in 

Equation 19. The 𝜒(𝑗) parameters correspond to the j th order susceptibilities which are tensors of 

j +1 order. 

𝑷 = 𝜀0(𝜒
(1)𝑬 + 𝜒(2)𝑬2 + 𝜒(3)𝑬3 +⋯) 

Equation 19. Nonlinear polarization 

In the Appendix A1 we obtain the wave equation in the linear case, but in the presence of 

nonlinear effects the wave equation is modified and the nonlinear part of the polarization appears 

as a source term, because it describes accelerating charges (Equation 20) [128,132]. The strength 

of the nonlinear phenomena depends on the peak intensity of the light source, the interaction 
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length within the material and naturally the properties of the material itself. As a result, nonlinear 

phenomena can be severe in the case of ultrashort pulses which are characterized by extremely 

high peak intensity even for relatively low pulse energy.  

∇2𝑬 −
𝑛2

𝑐2
𝜕2𝑬

𝜕𝑡2
=
𝜕2𝑷𝑵𝑳
𝜕𝑡2

 

Equation 20. Nonlinear wave equation 

To understand the limitations imposed by nonlinearities in the MCF probe, when ultrashort pulses 

propagate through, we measure the focusing efficiency of the system across a range of input pulse 

energies and pulse widths. All the presented measurements are conducted using the optical setup 

presented in Figure 14. The Satsuma laser has the built in functionality to stretch the pulse width 

with a positive chirp, which also decreases the pulse peak power. The pulse energy coupled into 

the MCF is varied by an internal modulation device in the Satsuma as well as by adjusting the 

polarization of the beam incident on the SLM (which only modulates horizontally polarized light) 

with a half wave plate (Figure 14). 

The experiment clearly illustrates the degradation of the focus efficiency due to nonlinearities in 

the MCF. Figure 16. shows the dependence of the focusing efficiency on the input pulse energy 

(measured at the input to the MCF) for four pulse durations. The exact value of the pulse duration 

is measured by the second order interferometric autocorrelation to be 500, 750, 1000, and 2000 fs 

before the MCF (autocorrelator shown in Figure 14). These measurements show that the focusing 

efficiency is highly dependent on the pulse width. As the input pulse energy increases, the 

focusing efficiency degrades more abruptly the shorter the pulses. The measurement of the 

transmission matrix and the creation of the focus is repeated 5 times for each pulse width and the 

error bars in Figure 16 indicate the standard deviation of the measurements. In addition, the 

measurement of the transmission matrix is performed in all cases using a low input pulse energy 

below 0.2 μJ to be on the linear optical response region.  

 

 

Figure 16. The focusing efficiency when focusing ultrashort pulses of varying pulse widths through a MCF compared to 
the input pulse energy. The three regimes of the 500 fs pulse focusing efficiency are marked by I, II, and III  [51]. 
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To describe the trend observed, we divide the data into three regimes. Using the 500 fs curve as 

an example (marked in blue on Figure 16), we see that at the region of input pulse energy (I), a 

linear regime exists, where the focusing efficiency is independent of pulse width and input pulse 

energy. In the input energy region (II), above 0.30 µJ, the focusing efficiency quickly degrades with 

increasing input energy due to the raise of nonlinear effects and more specifically because of self-

phase modulation (SPM), as explained in the following section. (III) Above 1 µJ, the focusing 

efficiency decreases more slowly with increasing input pulse energy compared to the second 

regime. We suspect that in the third regime nonlinear effects have induced spectral broadening 

which, consequently, increases the effect of the group velocity dispersion (GVD) in each core 

leading to a broadened the pulse [128]. The broadened pulse is followed by a decreased intensity 

in the cores and induces less nonlinear phase shift with increasing input pulse energy. 

The focal spot at the distal end of the MCF has maximum intensity Im when the input wavefront 

compensates for the random phase delay differences between the individual cores to create the 

ideal quadratic wavefront at the distal facet (Figure 15c), which is the situation in the first regime 

(I) shown in Figure 16. To explain the behavior exhibited in the second regime, we will consider the 

consequence of the phase shift caused by SPM in the MCF. SPM is a third order nonlinear effect 

(related to χ(3) susceptibility) that generates a nonlinear phase shift in the optical field because the 

refractive index of the material becomes dependent on the intensity of the optical field. The phase 

shift in each core is dependent on the nonlinear index n2, which has a material dependent 

characteristic value, and the intensity of the propagating mode. Assuming no pulse broadening 

and no core-to-core coupling for simplicity, the phase shift in core n is: 

𝛥𝜑𝑛
𝑆𝑃𝑀 =

2𝑛2𝑃𝑛𝐿

𝜆𝜔𝑛
2  

Equation 21. Phase-shift per core because of SPM. 

In Equation 21 λ is the wavelength, ωn is the mode radius of core n, L is the length of the MCF and 

Pn is the peak power of the pulse in the core, determined by the location of the core in the MCF 

relative to the Gaussian shape of the beam incident on the MCF. By adding the SPM phase shift for 

core n from Equation 21 into Equation 18 the focal spot intensity becomes: 

𝐼𝑚 = 𝐶 |∑𝑡𝑚𝑛𝐴𝑛𝑒
𝑖(𝜑𝑛+𝛥𝜑𝑛

𝑆𝑃𝑀)

𝑁

𝑛

|

2

 

Equation 22. Intensity of the focused spot after the MCF at the output point m in the presence of SPM 

In Equation 22 ϕn is the phase of the wavefront at the input of core n that in the absence of 

nonlinearities would generate a focus after propagating through the MCF which is calculated by 

the measured transmission matrix. As stated in the previous paragraphs, for the MCFs used in this 

experiment, SPM induces to each core a unique ΔϕnSPM due to the variability of the core 

characteristics (e.g. size, shape, material properties). In turn, the phase shift in the cores degrades 

the focus intensity. For example, Figure 15d shows how by increasing the input pulse energy, the 

phase shift in the cores degrades the quadratic phase profile by introducing random phase noise. 
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The SPM phase shift is more prominent near the MCF center where the intensity in the cores is 

highest due to the Gaussian profile of the input beam. The SPM induced in the cores results in the 

decrease in focus efficiency seen in Figure 16, meaning that part of the output light does not end 

up in the focus spot. Figure 15f shows how this causes a slight increase in the background 

intensity. Although obscured by the log scale, the maximum intensity of the focus in Figure 15f is 

half that of Figure 15e. In the above analysis, for simplicity we neglect the effect of core-to-core 

coupling in the MCFs. While the MCFs were designed to limit the core-to-core coupling in the 

fiber [40], in practice the coupling modulates power and phase along the length of the MCF. When 

the input power induces a SPM phase shift on top of the core-to-core coupling, the phase and 

intensity of the pulses propagating in neighboring cores changes, further degrading the quadratic 

phase at the distal facet.  

 

 

Figure 17. Spectral and temporal measurements in the focus (blue curve) and background (orange, yellow and purple 
curves) for different input pulse energies with (a) 500 fs and (b) 750 fs input pulse width, also showing the in focus 
spectrum which did not change with input  energy. (c) The in focus pulse width dependence on input pulse 
energy [51]. 

 

As mentioned previously, the peak intensity in the cores becomes high enough to induce spectral 

and temporal broadening, which leads to the third regime shown in Figure 16. Measuring the 

pulse duration and spectrum of the output field both in and away from the focus provides some 

insight into the strength of the spectral and temporal broadening in the MCF. The pulse width and 

spectrum were measured with three different input pulse energies (0.6 µJ, 2.5 µJ and 4.5 µJ) at the 

four previous input pulse widths. For the spectroscopic measurement, a fiber input to a 

spectrometer (HR4000CG-UV-NIR, Ocean Optics) placed in a plane conjugate to the focus plane 

probes either the spectrum of the background or the focus (Figure 14). The pulse width of the 

focus is measured with an autocorrelator built after the MCF (shown in Figure 14). For temporally 

broadened pulses, the pulse durations are estimated by Fourier filtering of the second order 

interferometric autocorrelation trace to isolate the intensity autocorrelation of the pulse, as 
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explained in [133]. The laser emits a squared hyperbolic secant shaped pulse, so the pulse width 

was calculated by multiplying the FWHM of the intensity autocorrelation by a deconvolution factor 

of 0.65. However, it is important to note the temporal pulse shape of the wavefront shaping 

generated focus after the MCF is unknown, but we use the 0.65 deconvolution factor for 

consistency in all the reported values. Further pulse shape characterization could probably render 

more accurate values of the pulse broadening through the MCF because of nonlinearities and 

could be a topic to investigate in the future. 

The spectral characterization verifies that at high intensities the nonlinear effects are strong 

enough to broaden the pulse spectrum. The spectral broadening could be induced by SPM, cross 

phase modulation (XPM), four wave mixing (FWM), or other nonlinear effects [128]. The spectrum 

of the background captured for the 500 fs pulse (Figure 17a) shows significant blue-shifted 

spectral broadening as the input pulse energy increases. For input pulse energies of 0.6 µJ, 2.5 µJ, 

and 4.5 µJ the respective linewidth (1/e) in the background are 10 nm, 14 nm, and 20 nm. In 

contrast, the linewidth of the in focus radiation remains unchanged (8 nm) regardless of input 

pulse energy. It is expected that the spectrum of the focus spot remains the same because the 

light that contributes to the focus formation is the one that is optimally modulated by the 

transmission matrix. Since the transmission matrix is wavelength dependent only the wavelengths 

within its validity range will be efficiently modulated and reach the focus spot [134]. Figure 17b 

shows the in and out of focus spectrum with 750 fs input pulse width, which shows that the SPM 

induced less spectral broadening than the 500 fs case. The spectral broadening for the 1000 fs and 

2000 fs input pulse widths further decreases. 

 

 

Figure 18. The estimated peak intensity in focus plotted for increasing input pulse energy and pulse width [51]. 

 

The pulse width of the focus displayed significant temporal broadening dependent on the input 

pulse energy. Figure 17c shows how the 500, 750, 1000, and 2000 fs pulses broaden with 

increasing input pulse energy. These results imply that the nonlinear effects modified the 
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broadening rate of the pulse in the cores, in other words the pulse broadened beyond the effect of 

GVD alone [128]. Interestingly, the pulse width of the focus at low input pulse energy was 

consistently shorter than the width of the pulse measured directly from the laser. It is unclear 

whether the pulse has compressed due to material dispersion in the MCF or whether it was an 

unexpected effect of the coherence-gated hologram. Further work needs to be conducted to 

identify the source of the compression. 

Ultimately, the performance of the device for ablation depends on the peak intensity of the 

focused pulse. We estimate the peak intensity with the measured pulse durations and the energy 

in focus. Figure 18 shows the peak intensity of the created focus. Regardless of the input pulse 

width, the maximum intensity is around 1.1x1012 W/cm2. Notably, the maximum obtained peak 

intensity occurs for all pulse widths at a focusing efficiency that is ~75% of the maximum obtained 

in regime (I) (comparing Figure 16 and Figure 18). It can be assumed that at this point the best 

compromise among focusing efficiency, input power and nonlinearities is obtained. 

 

4.1.3 Comparison of two different MCFs 

In the above presented description of the limitations of using a MCF for high power ultrashort 

pulse delivery only 4,400 cores of the 10,000 cores of the MCF were used. By choosing to 

illuminate part of the MCF cores, we simulate the case of an endoscope thinner than the actual 

MCF size. In this section, we present an optimized system that utilizes optimally the entire MCF 

and maximizes the peak intensity of the focus spot. We modified the optical system for optimal 

usage of all cores in the MCF. Referring to the optical setup diagram in Figure 14, the L3 lens was 

changed from a focal length of 200 mm to 125 mm, which caused the beam to slightly overfill the 

MCF facet. The second 4f system is also changed: L4 has a 150 mm focal length lens and O2 is a 

40X objective (NA 0.65) instead of 200 mm and 20x (NA 0.4) used initially.  

 

Table 1. A comparison of the optical parameters for the two MCFs [51]. 

System Aperture 

Diameter 

Working 

Distance 

NAfoc Focus size 

(FWHM) 

4,400 cores 310 µm 700 µm 0.22 3.20 µm 

10,000 

cores 

460 µm 800 µm 0.28 2.65 µm 

 

To maximize the peak intensity, a balance between the focusing efficiency and the size of the 

focus spot must be found by selection of the distance between the MCF facet and the focus 

(working distance) [52,55]. In order to use of all of the delivered pulse energy from the MCF, the 

minimum working distance should be where all of the cores contribute to the focus, a distance 
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limited by the NA of the cores (~NA=0.3) and the diameter of the illuminated portion of the 

MCF [39]. Beyond this point, the NA of the created focus (NAfoc) is given by the ratio of the radius 

of the illuminated aperture of the MCF and the working distance. While a higher NAfoc results in a 

smaller focus spot size, a lower NAfoc increases focusing efficiency. In fact, the discretization of the 

wavefront by the cores results in undersampling near the edges of the quadratic phase profile that 

lowers the final focusing efficiency when the quadratic phase field is stronger [52]. Table 1 

presents the working distance and NAfoc utilized with 4,400 cores and the optimized 10,000 core 

system, as well as the FWHM of the final focus spot size.  

In contrast to the 4,400 core system, the 10,000 core system shows significantly reduced nonlinear 

degradation of the focus (Figure 19a). Of course, this is an expected result of dividing the pulse 

energy among more cores, which reduces the intensity of the light per individual core. Spreading 

the pulse energy into more cores decreased the spectral broadening (Figure 19b) and temporal 

broadening (Figure 19c). The focusing efficiency when using 10,000 cores was less than with 4,400 

cores at low pulse energies, because of the higher focus NA (Table 1). Despite the lower focusing 

efficiency, the smaller focus size and decrease in nonlinear effects resulted in an increased 

maximum peak intensity (Figure 19d), in this case above 4x1012 W/cm2 with a 500 fs pulse, or 

nearly 4 times higher than the 4,400 core system  [51,53]. Optimization between focusing 

efficiency and focus spot size can further increase the delivered peak intensity through the 10,000 

core system. 

 

 

Figure 19. Characterization of the 10,000 core fiber system. (a) The focusing efficiency, (b) the measured spectrum of 
the in focus and background light for different input pulse energies with 500 fs pulse width, (c) the in focus pulse 
width dependence on input pulse energy, and (b) the estimated peak intensity [51]. 
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4.1.4 Ultrashort pulse ablation through an MCF 

Laser ablation refers to the removal of a portion of material from a target sample when a high 

peak intensity laser spot interacts with its surface (or volume). The high intensity laser pulse 

induces material breakdown, which means that the light-material interaction causes ionization 

resulting to a plasma state and as a result the atoms escape the lattice within the interaction area. 

Laser ablation is also a nonlinear optical process and it consequently depends on the intensity of 

the light source. The laser-matter interaction mechanisms differ for different laser source 

properties such as the pulse duration and wavelengths [107,135,136]. In the case of ultrashort 

pulses the interaction time between the pulse and the material is so short (pulse width range), 

which prevents the energy dissipation in the lattice of the material and therefore the interaction 

volume is rather directly evaporated than melted, which produces highly precise machining result. 

Every material is characterized by an ablation threshold, defined as the intensity at which the 

probability of the laser pulse to cause material breakdown is at least 50% [107]. The laser ablation 

threshold for a material is calculated at a certain pulse width and wavelength and differs when 

these parameters change.  

As a demonstration of focusing and controlling high peak power ultrafast pulses through MCFs, we 

ablate a thin gold film (60 nm) deposited on silica. The ablation threshold of gold is 5.5x1011 

W/cm2 for a 750 fs pulse [135]. We utilize the 4,400 core system for this demonstration to show 

that gold ablation is possible even with the more constrained system, which implies that a thinner 

probe can also be employed. The output field of view for the measured transmission matrix 

enables proximal control of the light within an area with dimensions of 200 µm x 200 µm. 

Transmission matrix calculation and wavefront shaping, allow control of the distributed light 

intensity within the output field. In other words, a focus spot can be created anywhere within the 

measured output field, which allows for sequential focusing at designated locations to create an 

ablated pattern in the gold. Because the size of the ablated spot on the gold is intensity 

dependent [137], it is desirable that the focus intensity be invariant across the scanning range. 

However, when focusing away from the center of the output field, the focus intensity 

diminishes [52]. To compensate for the intensity variability, we modified the input wavefronts to 

make the focus intensities at the targeted locations uniform. To do this, we decreased the 

intensity of the higher intensity spots by adding noise to the input wavefront proportional to the 

targeted decrease in intensity. This is similar to adding random phase values to the input 

wavefront. Importantly, adding the noise to the phase mask does not affect the focus spot size.   

Figure 20 shows two examples of gold ablation through MCF with proximal control of the beam. 

An EPFL logo ablated with input pulse energy of 2 µJ, 750 fs pulse width, and a repetition rate of 1 

kHz is shown in Figure 20a. The size of the pattern is 106 µm x 82 µm with a 2 µm separation 

between ablation focal spots. Figure 20b shows an image of the Matterhorn and a Swiss shield 

ablated with input energy of 3 µJ, 750 fs pulse width, and 1 kHz repetition rate. The image is 120 

µm x 120 µm and has a 2 µm pitch between focal spots. Both ablated images show good 

uniformity of ablation spot size across the image and show the capability of proximal control to 

scan a focus spot for ablation  [51].  
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Figure 20. Widefield transmission optical images of ablated samples on thin gold films deposited on glass. (a) EPFL 
letters, 106 µm x 82 µm. (b) The Matterhorn and Swiss shield, 120 µm x 120 µm [51]. 

 

Additionally, we show that the ablation spot size and therefore the resolution of the printed 

structures can be tuned. Specifically, the diameter of the focus spot created using the measured 

transmission matrix is 2.65 μm, but the laser ablation spot can be less than 1.9 μm as shown in 

Figure 21, providing the possibility of high resolution micro-machining. Because of nonlinear 

nature of the laser ablation process discussed in the beginning of the paragraph, tuning the 

intensity of the focus spot close to the ablation threshold of the material allows for tuning the final 

resolution for micro-machining applications through an MCF (Figure 21). 

 

 

Figure 21. Laser ablation spots created using different pulse energies through the MCF. Each line of spots has been 
ablated using the same energy and corresponds to a point in the graph on the right which illustrates the spot size for 
each pulse energy [53]. 

 

4.1.5 Conclusions 

In this section, high peak power, ultrashort pulse focusing and control through MCFs has been 

demonstrated and an investigation of the ways that the nonlinearities induced within the cores 
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limit the ultimate peak intensity generated in a focus is presented. Proximal light control through 

MCFs eliminates the need for distal end optical and mechanical components for focusing and 

scanning. However, the nonlinearities induced when high peak input power is launched through 

the system degrade the percentage of output power in the focus and contribute to the temporal 

broadening of the pulse, thus limiting the peak intensity of the focused pulse. Despite of the 

observed limitations a high peak intensity focus spot can be delivered even through an ultrathin 

MCF probe of only 4,400 cores with sufficient intensity to ablate gold.  

To increase the intensity in a wavefront shaping generated focus a number of solutions are 

proposed. For example, a shorter MCF would decrease the nonlinear interaction length and 

increase focusing efficiency [53]. Additionally, as shown in the previous analysis, by spreading the 

pulse energy among more cores, the nonlinearity can be minimized and a higher intensity focus 

created. Increasing the MCF diameter or the density of the cores would allow the use of more 

cores. Although, with currently available MCFs it is not possible to use a smaller core spacing 

without significantly increasing the core-to-core coupling  [38,40]. Alternatively, small distal 

components such as a GRIN lens could be included on the distal tip to focus with a higher NA and 

increase the intensity of the focus  [124]. Other potential solutions involve further shaping of the 

wavefront and/or pulse to compensate for SPM  [138]. As with other wavefront shaping through 

fiber techniques, the transmission matrix measurement is fiber conformation dependent. While 

the MCF shows some resilience to bending  [55], new adaptive methods could overcome this 

obstacle  [139]. 

 

 

4.2 Multimode fiber probes for endoscopy 

In the previous section 4.1, the performance of MCFs in delivering high peak power focus spots 

was explored. Peak intensities in the order of 1012W/cm2 were observed. This intensity level is 

sufficient for both TPF imaging and for laser ablation of low threshold materials like metals as 

previously demonstrated, but not high enough for samples such as biological tissue or glass 

(intensity thresholds reported in the range of 1013 W/cm2) [104,140]. One of the basic hindering 

factors for further increasing the light on the generated focus in the case of MCFs, even in the 

absence of nonlinear effects, is their quasi-periodic structure, which causes the light to diffract on 

a circle around the focus resulting in a decreased focusing efficiency. To improve peak power 

delivery of a focused ultrashort pulse through a fiber endoscope, use of different fibers types 

should be also considered. Step index MMFs are excluded because of the pulse broadening caused 

by the significant modal dispersion, which enables probing of only few modes at the output using 

coherent gating and consequently decreases the overall focusing efficiency. On the contrary, GRIN 

fibers are engineered with low modal dispersion and present a good alternative for pulse inputs. In 

this section, we use the transmission matrix technique to focus and scan the light through two 

GRIN fibers of 200 μm and 400 μm diameter core size and test their performance in delivering a 
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high peak intensity femtosecond focus spot for laser ablation applications. The results are also 

compared to those obtained by the MCFs in the previous section.  

Multimodal endoscopes have been proposed [141,142] for acquiring images with several 

microscopy methods integrated in the same probe. In the following paragraphs, we report for the 

first time FLA through MMFs combined with TPF imaging at the same multimode fiber. We test the 

performance of our dual-modality endoscopic tool in the organ that hearing is taking place (Organ 

of Corti) from an extracted mouse cochlea. The Organ of Corti includes mechanosensory cells, 

named hair cells, which are responsible for the detection and transduction of sounds  [143,144]. 

TPF images of the cochlear hair cells were acquired through our endoscope and used to define the 

area of interest, which is then ablated through the same tool. By developing a technique with 

imaging modalities integrated with selective femtosecond laser ablation capabilities, we provide a 

minimally invasive system for both cellular level investigation of distinct target areas and for cell 

manipulation. 

 

 

Figure 22. Spectral measurements for the lowest and highest values of input pulse energy in the case of the 200 μm 
GRIN fiber. 

 

4.2.1 High peak intensity delivery through GRIN fibers 

For each of the two fibers, we measure the dependence of the focusing efficiency on the input 

power for three different input pulse durations in a similar manner to the MCFs studies discussed 

before. A high intensity focus spot is generated at the distal fiber end after measuring the 

transmission matrix of the system using the experimental setup presented in Figure 14. The 

maximum value of the focusing efficiency was found to be ~28% for both probes, which is 

significantly higher than that achieved by the MCFs. In the case of an ideal Airy spot 84% of the 

total power should be concentrated in the central lobe. However, in our experiments, we probe 

only one polarization. By rotating a linear polarizer placed in front of the CMOS detector we 

observe that the output is elliptically polarized which implies that more than half of the modes are 
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probed in terms of polarization during the transmission matrix measurement. Apart from the loss 

of a part of the fiber modes because of the polarization selectivity, the coherence gating of the 

fiber output also reduces the number of contributing modes on the formation of a focus spot at 

the fiber distal end. The focusing efficiency achieved is limited to about 28%, which can be 

considered optimal if taking into account the losses explained above. The light is focused at 200 

μm from the distal facet for both GRIN fibers to a spot with 2.3 μm FWHM. The spot size is slightly 

larger than the theoretical value (Rayleigh criterion) which is calculated to be 2.17 μm for the NA 

of the GRIN fibers (NA=0.29) and the laser wavelength (1030 nm) used in the experiments. 

Although modal dispersion is not considered significant for GRIN fibers because of the optimally 

designed refractive index profile of the core, in reality the existence of defects on the parabolic 

profile induces some modal dispersion. Hence, the deviation of the focus spot size from the 

theoretical value could be attributed to the fact that higher order modes are not probed by the 

system because of the coherent gating resulting in a lower effective NA [35,52,74,145].  

For focusing the light through the GRIN fiber, the phase input on the SLM is calculated using the 

measured transmission matrix so that the ideal quadratic phase is created at the distal facet. 

When this phase profile is launched at the proximal side of the fiber, the light becomes distributed 

among the supported fiber modes and each one propagates through the system with a certain 

initial phase assigned by the wavefront-shaped input. As discussed in the previous paragraphs, 

wavefront shaping using the transmission matrix is a method applied to linear systems and its 

validity and performance deviate when nonlinear phenomena occur [47,51,80]. When the laser 

pulse energy exceeds a certain threshold then nonlinear phenomena such as self-phase 

modulation (SPM) and cross-phase modulation (XPM) can arise. The spectral measurements for 

the 200 μm core GRIN fiber shows spectral broadening of 9 nm confirming the presence of 

nonlinearities (Figure 22). However, no side bands were present in the spectrum, which would 

imply FWM or Raman scattering nonlinear effects  [77,128].  

Similarly to the MCFs, the maximum phase shift induced by these phenomena affects the relative 

phase among the modes when propagating along the fiber and as a result, the final phase profile 

at the distal facet is different from the optimized by the measured transmission matrix, reducing 

the final focusing efficiency  [128]. Considering the dependence of the SPM and XPM phase shift 

on the fiber length  [128], an increase of the fiber length would result in an increase of the 

nonlinear effect on the system’s efficiency for focusing the light at the distal side. In our past work, 

we studied the dependence of the focusing efficiency of a MCF system for three different fiber 

lengths (10, 20 and 30 cm) and we observed a degradation for the longer segments  [53]. The 

result is in agreement with the nonlinear optics theory that dictates that the strength of a 

nonlinear effect is proportional to the nonlinear interaction length  [128,132]. Nevertheless, for 

practical applications, the fiber probe can be inserted in a cannula to avoid bending would be a 

part of a hand-held device, 10-20 cm length is enough to reach most of the areas of interest. 

Therefore, we selected the 10 cm long GRIN fiber for our experiments. 

Based on the discussion above, at high energy input pulses, nonlinearities arise and affect the 

propagation of the input field along the fiber, resulting in scrambling of the optimized wavefront 
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at the distal facet and compromising the focusing efficiency (Figure 23)  [51,128]. Because 

nonlinear phenomena are intensity dependent, the smaller the fiber core and the shorter the 

pulse duration for a given input pulse energy, the more significant the nonlinear effects that 

appear. We studied the performance of the two fiber probes as a function of pulse duration for 

three cases, 500 fs, 700fs and 1000fs pulses. The focusing efficiency of a 200 μm core diameter 

GRIN fiber diminishes rapidly after a certain threshold (~1 μJ) (Figure 23a), while the 400 μm core 

fiber (Figure 23c) shows a linear behavior for a wider range of input pulse energies [51]. As a 

result, increase in the input energy does not lead to a further increase in the final peak intensity in 

the focus for the thinner fiber (Figure 23b). The results agree with the findings of the MCF systems 

discussed in the previous paragraph.  

 

 

Figure 23. Focus delivery characterization of the 200 μm (a and b) and 400 μm (c and d) core diameter fibers. (a and c) 
Focusing efficiency for the 200 μm and the 400 μm core GRIN fiber respectively, and (b and d) the corresponding peak 
intensity delivered at the distal spot as a function of input pulse energy for each of the two systems respectively [15]. 

 

For calculating the peak intensity of the focus spot for the different input pulse energies, the pulse 

duration of the fiber output was measured using TPF-based autocorrelator in the same way as 

described for the MCFs. The spot size was measured on the CMOS for different input pulse 

energies (0.2, 1, 4.6 and 8.8 μJ) and no change was observed. For a 200 μm core fiber, 

nonlinearities cause temporal and spectral broadening when the power is increased above a 

certain level. For example, for 500 fs input pulse, the measured output pulse increases to about 
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700 fs when the input energy reaches 6 μJ, while the spectral width increases from 8 nm to 17 nm. 

Increase of the input power above 6 μJ was not possible for the thinner GRIN probe because of 

fiber damage (Figure 24). The quadratic profile of the refractive index in the core of a GRIN fiber 

generates focusing points with a certain periodicity along the fiber length when an plane wave is 

coupled in the core. However, the seemingly random input phase on the SLM imaged at the 

proximal facet, which results in focusing the light at the distal side, randomizes the input 

wavefront and self-focusing because of the refractive index profile is prevented. Nevertheless, 

when the input pulse energy is higher than a certain level there is enough amount of light still 

focusing at the entrance of the fiber that leads to local burns in the core. The picture shown in 

Figure 24 is captured at the experimental setup when the energy of the input pulse to the 200 μm 

core GRIN fiber is increased above 6 μJ. Self-focusing of the high power at the proximal facet is 

obvious from the luminescent spot appearing close to the proximal fiber facet possibly resulting 

from the optical breakdown of the fiber core (Figure 24), which in turn leads to fiber damage. The 

degradation of the focus spot efficiency because of the nonlinearities and the induced damage in 

the core for the 200 μm core GRIN fiber leads to a saturation of the peak intensity that can be 

delivered through the system to a maximum value of ~2.5-3x1012 W/cm2. The maximum delivered 

peak intensity by this GRIN probe is comparable to the one achieved using the MCF of double the 

core size (460 μm) [51], which demonstrates that the ultrashort pulse delivery is more efficient for 

GRIN fibers. 

 

 

Figure 24. Fiber damage of the 200 μm core GRIN when the input pulse energy increases above a certain threshold. 

 

For the 400 μm core GRIN fiber, no significant decrease in the focusing efficiency is observed for 

the range of input energies studied, including when the shortest pulse duration (500 fs) is tested 

Figure 23 c. In addition, temporal and spectral measurements of the focus spot showed no change 

even at the highest input pulse energy. Consequently, the peak intensity delivered by this probe 

shows a linear increase throughout the range studied for the 700 fs and 1000 fs input pulses. In 

the case of 500 fs input pulse duration a saturation of the delivered peak intensity is observed 

above 6 μJ. For the highest input power provided by the laser system used for the measurements, 

the maximum peak intensity measured is 1.5x1013 W/cm2 (Figure 23 d). Further increase of the 
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maximum peak intensity delivered by both systems could be achieved by pre-chirping the pulse at 

the input. In this way, pulse broadening because of group velocity dispersion (GVD) could be 

compensated and simultaneously, nonlinearities would be less significant for the stretched pulse 

(because of its lower peak power) [29].  

Another attempt for increasing the performance of the imaging endoscope is made by measuring 

the transmission matrix of the fiber at the nonlinear regime aiming to compensate at a certain 

level the randomization of the quadratic phase profile at the output due to the nonlinear effects. 

However, no significant change in the focusing efficiency was observed though. This can be 

explained by considering the linearity of the system of a MMF transmission matrix. It is true that 

by increasing the input pulse energy to be in the nonlinear peak intensity region, the input plane 

waves at different angle will propagate through the fiber experiencing nonlinear optical 

modulation. Nevertheless, this would not compensate the nonlinearities that occur for an input 

wavefront which is the combination of these plane waves (formed to generate a focus spot at the 

distal side) because the addition in the input does not correspond to an addition of the 

propagation properties of the light until the fiber output for a nonlinear system. The random input 

phase for focusing the light through the GRIN fiber will give rise to nonlinearities along the 

propagation length in non predictable way by the linear transmission matrix. 

 

 

Figure 25. Focus spot diameter as a function of the focusing distance from the distal fiber facet. 

 

Both GRIN probes studied in this work show high performance for delivery of focused 

femtosecond pulses for laser ablation or imaging applications that is comparable to the one 

achieved using HC-PCFs. Specifically, Kagome HC-PCFs have shown unsurpassed ability to deliver 

ultrashort pulses, reaching peak intensities of 4x1013 W/cm2 [146]. For endoscopic application, 

these fibers have been used to build a microsurgery scalpel by Subramanian et al.  [33] and the 

maximum peak intensity delivered is reported to be about 5x1012 W/cm2 in a focus spot of 2.5 μm 

size. The need of distal lenses for focusing the light emerging from the fiber comprises the 

maximum intensity that the endoscope can handle due to the nonlinearities raised when high-

energy pulses propagate through the optical elements. Recently, the use of different lens material 
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showed that the power throughput can be further increased for a HC-PCF endoscope  [29,74,145]. 

However, the combination of distal lenses and a piezo-based scanning mechanism result in an 

increased size of the endoscope to 5mm if compared to the original fiber diameter, which is few 

hundred microns. In our case, both GRIN fiber probes provide more than 2x1012 W/cm2 peak 

intensity pulses for microsurgery applications focused in a 2.3 μm spot thus offering improved 

spatial resolution and smaller overall size. The lateral resolution of the system was also measured 

at difference distances away from the fiber facet and remains unchanged until about 300 μm as 

shown in Figure 25. More details about the change of the 3D point spread function and the field of 

view (FOV) of a MMF as a function of distance from the fiber facet in previous works on imaging 

through fiber probes  [29,74,145,147–149]. With a range of 300 μm within which the resolution 

remains unchanged, we believe that imaging of thick samples up to 200-300 μm would be 

possible. The FOV of the system is mainly dependent on the fiber core diameter and the focusing 

distance from the fiber facet, which implies a FOV of more than 200 μm for the larger core GRIN 

fiber. Furthermore, the size of the probe can remain 200-400 μm since lens-less focusing and 

mechanic-less scanning is demonstrated by means of wavefront shaping.  

 

4.2.2 TPF imaging feedback-based selective FLA  

FLA is a technique with many biological and material processing applications. In most cases, it is 

beneficial for the ablated area needs to be defined by a feedback mechanism. In this work, we 

demonstrate for the first time an MMF probe that can perform FLA with high selectivity based on 

a TPF image of the sample, which is obtained through the same probe. TPF imaging provides high 

penetration depth for inspection of scattering samples such as biological tissues due to the use of 

infrared photons. In addition, the nonlinear character of the process results in higher resolution 

and sectioning than single-photon fluorescence imaging. Therefore, in our endoscope we use the 

TPF images as a guide for the FLA of the sample. 

 

 

Figure 26. TPF imaging of the Cochlear hair cell sample stained with PI in a) a wide image of the sample, b) zoomed 
region of interest (yellow square) and c) the same area as (b) after selectively ablating a cell marked in the white 
circle. The scale bar in all figures is 10 um [15]. 
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Biological tissues have significantly different properties than those of metals (for which we 

demonstrated ablation through MCF’s in the previous paragraph [51,53]). The basic content of 

biological samples is water and the FLA intensity threshold is close to that of water, on the order 

of ~1012 W/cm2  [104]. Because of the scattering properties of tissue, higher peak intensities than 

those for metals are needed to achieve laser ablation. Here we demonstrate that the 400 μm core 

size GRIN probe with a peak intensity focus of 1013 W/cm2 can provide enough power for tissue 

processing. 

In the TPF imaging and FLA experiments presented in this section, the maximum scanning window 

is 100 μm x 100 μm. In this observation area, there is some drop of the intensity at the corners of 

the window, which can be compensated by readjusting the phase masks on the SLM so that the 

intensity of the focus spots is equally distributed in the scanning area as previously described for 

the laser ablation of gold patterns through MCFs. Our probe can provide TPF images (using 

7.4x1010 W/cm2 intensity) of a wide field of view (FOV) of a fluorescently-stained  Organ of Corti 

(prepared as detailed in the paragraph 3.2.2), which contains precisely arranged rows of hair cells 

(Figure 26 a). We show that cellular level modifications can be obtained by digitally zooming in the 

area of interest (Figure 26 b) based on the TPF image in Figure 26 a. By increasing the power above 

the ablation threshold for biological samples to 6.9x1012 W/cm2  [104], the beam destroys the  

selected cell. Afterwards, a second TPF image (Figure 26 c) confirms ablation of the targeted cell. 

Importantly, the laser ablation selectively induced damage only in the desired area, without 

affecting the TPF signal from the surrounding cells. This suggests that the ablation process is 

limited to the cell area region approximately 7 um x 7 um. In our experiments, the TPF image 

acquisition time and the scanning time for laser ablation is mainly limited by the SLM refresh rate, 

which is at 20 Hz. As a result, to scan the area of a cell (7 um x 7 um) it takes about 1 second. 

To confirm that FLA indeed results in specific cell removal as opposed to simple photo-bleaching of 

the specimen in the scanning area, we set a bright field imaging system in transmission at the 

distal side of the fiber (Figure 14). We observe that at the FLA intensity levels, a bubble is formed 

in the sample as shown in Figure 27 [104]. The bubble appears exactly at the location of the image 

scanned with the high intensity focus spot, but no bubble is present in the focus intensities used 

for TPF imaging. Since the sample is mounted in a supporting water-based medium, the bubble 

cannot easily escape and stays trapped until it collapses. As a consequence, in some cases, TPF 

imaging is not possible immediately after the ablation since the bubble prevents the light from the 

distal end of the fiber to be focused on the sample surface. We observed the time evolution, over 

5 minutes, of the formation and disappearance of the bubble created after FLA using the BF 

imaging arm. 

There have been several studies related to the cavitation bubble dynamics after laser ablation of a 

material  [104,150]. The mechanical properties and the laser parameters can affect the time 

evolution of the bubble  [104]. We observe that the time needed until the bubble collapses varies 

from few seconds to few minutes even for areas of the same sample. Further studies are needed 

to carefully evaluate the phenomena taking place in the sample when interacting with the laser 

beam. 
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Figure 27. BF images that show the time evolution of the bubble generated after FLA of a hair cell within the organ of 
Corti. t=0 s is the time just after the FLA is finished. The scale bar in all the images is 10 μm [15]. 

 

4.2.3 FLA of a various materials through GRIN fibers 

The high peak power focus 1.5x1013 W/cm2 delivered through the GRIN fibers discussed above, 

opens the path for processing materials with a wide range of ablation thresholds, from metals and 

polymers (~1010 W/cm2), tissue (~1012 W/cm2) and glass or ceramics (~1013 W/cm2). For 

demonstration purposes, FLA is performed through the 400 μm to generate patterns on glass 

slides (Figure 28). Glass is among the material characterized by the highest FLA threshold. Glass 

laser ablation through fibers has only been reported using HC-PCFs. Debord et al. demonstrated 

glass processing using the fundamental mode of a Kagome HC-PCF with no distal 

components [146]. However, the feature size in their case directly depends on the fiber mode 

diameter, which is about 50 μm for a 19-cell Kagome HC-PCF design. On the other hand, the GRIN 

fiber probe cannot only ablate glass but the feature sizes can be also very small in the order of 2 

μm or less as shown in the Figure 28 b [151]. The square pattern in Figure 28b is made by 21x21 

spots with 10 μm distance. This findings bring the MMFs in the forefront as potential 

manufacturing tools of high precision. 
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Figure 28. a) EPFL logo and b) a square of spots ablated on a glass slide 

 

4.3 Conclusions  

Focusing of femtosecond high-power pulses was demonstrated in this chapter using two different 

types of optical fibers, MCFs and MMFs. We explored the performance and limits of each system 

in terms of total peak intensity of the generated focus spot. GRIN fibers show higher focusing 

efficiencies than MCFs which allows the use of thinner cores (200 μm) to achieve the same peak 

intensity levels. This is an important finding for the realization of ultrathin non-invasive probes. In 

particular, the 400 μm core GRIN fiber shows impressive capability in delivering focused 

femtosecond pulses in space and time reaching peak intensities at the focus spot comparable to 

the ones reported only for HC-PCFs. By controlling the intensity field at the distal end of the 

proposed fibers by optimally modulating the wavefront at the proximal side using the transmission 

matrix method, the MCFs and MMFs essentially act as long, ultrathin objectives with a high aspect 

ratio of approximately 200:1. The main disadvantage of using a GRIN fiber endoscope is the post-

calibration bending or misalignment of the system that would invalidate the measured 

transmission matrix of the fiber. To avoid that, the use of a fiber cannula could be a potential 

solution to prevent the fiber from bending and manipulate the endoscope as a thin needle. Even in 

this case, the final endoscope size would be in the order of about 1mm while offering FLA and TPF 

imaging capabilities with high spatial resolution. The ability of all the studied systems in providing 

enough power for micro structuring of materials together with the imaging modality brings MCFs 

and MMFs in the foreground of the endoscopic technology. 
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PART B:  

 

Deep learning in fiber endoscopy 
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 Deep Neural Networks 

“Inventors have long dreamed of creating machines that think. This desire dates back to at least 

the time of ancient Greece. The mythical figures Pygmalion, Daedalus, and Hephaestus may all be 

interpreted as legendary inventors, and Galatea, Talos, and Pandora may all be regarded as 

artificial life” (“Deep learning” by Ian Goodfellow, Yoshua Bengio, Aaron Courville  [152]). 

Artificial intelligence (AI) today refers to the execution of tasks that require human intelligence by 

a computer in order to achieve machine-based decision-making using data acquired from the 

environment through different sensor types [96,152]. Remarkably, AI algorithms were observed to 

easily perform tasks that a human would have difficulties to achieve when these tasks could be 

mathematically formulated, while more intuitive tasks, which were automatically perceived by a 

person were extremely difficult to teach to an AI system. Machine learning (ML) and AI are terms 

often used interchangeably but it is important to note that ML is a subset of AI. In contrast to 

hard-coding involved in AI, which is needed to fully describe the problem in a mathematical way so 

that it is solved by the computer, ML approaches the process in a different way, allowing the 

computer itself to learn and extract the important features of the given raw data [152]. As the 

definition suggests, learning makes the ML system dynamic and capable to optimize itself based 

on data to which it is exposed and enables problem-solving and decision-making for more 

subjective tasks.  

Deep learning is a subset of the ML methods, which uses the idea of hierarchy in feature 

extraction and recognition. While the conventional ML techniques were initially based on a hand-

crafted feature extraction that was afterwards used in the trainable algorithm for achieving 

various tasks, deep learning methods can learn to recognize the representations existing in the 

raw data and decompose the information using simple nonlinear functions. Therefore, deep 

learning algorithms remove the considerable work needed for engineering the data before they 

fed in the code and make possible the problem solving for abstract tasks that AI could not 

overcome for years [96].  

The origin of the representation-learning idea on which deep learning methods are based, is the 

function of the visual cortex of the brain. When a human looks at a natural scene or object, the 

eye functions as a “sensor” that records “raw data”. During years of training and learning by being 

exposed to various signals, the brain synapses are formed and connected in a very complex 

network, which analyzes a “captured” raw image in a sequence of steps using different 

representations. Although all the details about brain functionality are not yet fully understood, the 

accepted idea is that the recognition action starts from decomposing a signal into low-level 
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features such as “edges” and gradually moves to higher-level features representing more abstract 

concepts such as “a human face”. The term “deep” in deep learning refers to the total number of 

the computational layers implemented for feature extraction in an algorithm. Deep learning 

algorithms are constructed by nested layers of mathematical operations that are connected to 

each other in a nonlinear way; these are widely known as deep neural networks (DNNs). Deep 

learning assists high-dimensional data interpretation in various fields of not only science but also, 

business, government and entertainment [96,152]. Someone could say that nowadays, deep 

learning is part of most of the social media and digital devices closely associated with the modern 

daily life. In this chapter, we first discuss the concepts of DNNs applied to computational imaging 

problems. In the subsequent chapters, we apply DNNs to fiber endoscopy as an alternative to the 

wavefront shaping methods that were investigated in the Part A of the thesis.  

 

 

Figure 29. Schematic description of a) a single perceptron, b) a multilayer perceptron neural network. 

 

 

5.1 Basic concepts in Artificial Neural Networks 

5.1.1 The perceptron 

In this paragraph, we introduce some of the key components of artificial neural networks (ANNs) 

and some concepts that are extensively used in Part B of this work. As mentioned in the previous 

paragraph, the idea of ANNs is inspired by biological neural networks and their functionality. 

Simply explained, brain neuron cells consist of a main cell body where the nucleus is found, 

dendrites which receive information from other neurons and axons, which transfer the signal to 

the axon terminal based on electrochemical processes. When the input signal to a neuron exceeds 

a certain threshold, the neuron fires and the signal is transmitted. Artificial neurons, often called 

perceptrons, are mathematical functions that try to model this process. A perceptron receives 

inputs, which have some assigned weight values, sums them up and then applies a nonlinear 

function that produces an output (or not) depending on the sum of the inputs, similarly to a 
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biological neuron firing (or not) based on its input signal. Figure 29a visually describes the 

prerceptron concept: the perceptron maps an input vector 𝒙 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑖) multiplied with 

a weight coefficient vector 𝒘 = (𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑖) to an output 𝑦 through a function 𝑓. In 

addition to the weighted inputs, the function 𝑓 also receives an extra value known as the bias 

(𝑤0), which is independent of the input values and creates a shift in the axis of the output.  

A single perceptron is generally not sufficient to handle a complex nonlinear mapping problem. 

Usually, many perceptrons are organized in layers as shown in Figure 29b. Each perceptron or 

node of a layer can be connected to some or all of the nodes of the second layer, the nodes of the 

second layer can be fully or partially connected to the third layer and so on. The outputs of each 

layer are defined similarly to that of the single perceptron. Equation 23 gives the output of the k 

unit of the m layer of a multilayer structure. The summation is made over the total number of 

nodes of the previous layer to which a corresponding node is connected. Only the input layer is 

not weighted  [99]. The ANN architectures for which each node of a layer is connected to all the 

nodes of the previous layer are called fully connected networks (FCNs). FCNs are computationally 

heavy when it comes to datasets of high-dimensionality. For example, an RGB image input with 

512x512 pixels to a fully connected layer produces 786,432 weights all connected to the second 

layer. For this reason, convolutional neural networks (CNNs), a variant of DNNs described in details 

in a later sections are generally used. Unlike FCNs, in CNNs each node of a layer is connected to a 

small area of neurons in the previous layer sharing the same set of weights leading to a more 

computationally efficient algorithm. 

𝑦𝑘
𝑚 = 𝑓 (∑𝑤𝑘𝑚

𝑚−1𝑦𝑖
𝑚−1

𝑖

+ 𝑤𝑘0
𝑚−1) 

Equation 23. Output of one node of a multilayer perceptron. 

 

5.1.2 Activation functions 

The nonlinear function 𝑓 within each node is called the activation function and it can be defined 

using a range of mathematical equations. In these equations 𝑥 is the summation of the weighed 

inputs and bias. The most commonly used activation functions, which are also those used in the 

DNNs implemented in this thesis, are the following: 

 

Step function: 

𝑓(𝑥) = {
1 𝑖𝑓 𝑥 > 0
0 𝑖𝑓 𝑥 ≤ 0

 

Sigmoid function: 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 

Rectified linear function: 

𝑓(𝑥) = {
𝑥 𝑖𝑓 𝑥 ≥ 0
0 𝑖𝑓 𝑥 < 0

 

Softmax function: 

𝑓(𝑥) =
𝑒𝑥

∑ 𝑒𝑥𝑁
𝑗=1

 

Hyperbolic tangent: 
𝑓(𝑥) = tanh𝑥 

Leaky rectified linear function: 

𝑓(𝑥) = {
𝑥 𝑖𝑓 𝑥 ≥ 0

0.01𝑥 𝑖𝑓 𝑥 < 0
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The activation function determines if a neuron fires or not and the value of the neuron output that 

will reach the corresponding nodes in the next layer of the stack. Intuitively, the activation 

functions limit the output values of each neuron within a range so that the computation is more 

efficient. For example, the sigmoid function imposes a limit for input values towards infinity to 

create an output of ±1. Therefore, the choice of the activation function is not trivial and has to be 

optimized based on the task the ANN needs to perform. 

 

5.1.3 Error functions 

A perceptron is considered “trained” when it produces realistic outputs. In order for it to do so, 

the weights and the bias need to be optimized. The process of optimization of the weights of a 

DNN is called training. Initially the weights of the inputs reaching the perceptron are random 

values. In supervised learning schemes, such as those studied in this thesis, when a first forward 

pass is attempted for an input through a perceptron, an output is 𝑦𝑝𝑟𝑒𝑑 is predicted. This output is 

compared to the true value 𝑦𝑡𝑟𝑢𝑒 via an error function 𝐸(𝑦𝑝𝑟𝑒𝑑, 𝑦𝑡𝑟𝑢𝑒) to calculate how far the 

predicted value lies from the real values. The term supervised refers exactly to the case in which 

the real value, also known as ground truth is available for monitoring the performance of the 

algorithm. The weights of the perceptron are considered optimal when the error is minimized. 

Some of the common error functions or loss functions (in other words) are the following: 

 

Mean squared error (MSE): 

𝑀𝑆𝐸 =  
1

𝑁2
∑(𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒)

2
𝑁2

𝑖

 

 
Mean absolute error (MAE): 

𝑀𝐴𝐸 =  
1

𝑁2
∑|𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒|

𝑁2

𝑖

 

 
Cross entropy: 

𝐶𝐸 =∑𝜎(𝑝) log(𝑝) + (1 − 𝑝)log (1 − 𝑝)

𝑁

𝑗=1

 

 

In the case of the cross entropy (CE) loss function, 𝑝 is the probability that the values 𝑦𝑡𝑟𝑢𝑒 and 

𝑦𝑝𝑟𝑒𝑑 agree for each pixel in the case of an image processing problem. 𝜎(𝑝) = 𝑒𝑝𝑘/∑ 𝑒𝑝𝑗𝑗  for all 

the available cases 𝑘. The minimization of the error function is achieved using gradient-descent 

based error backpropagation. The backpropagation algorithm calculates the partial derivatives of 

the error function for all the weights of the specific neuron/perceptron or layer of neurons to find 

out which of the weights most affects the output predicted value. Therefore, in each 

backpropagation pass, the weights are updated in a way that minimizes the error function. Both 

the weights and the bias are trainable parameters that are tuned to optimize the performance of 
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the perceptron for a specific task. Each iteration for updating the weights of a learning unit is 

called an epoch. The change in the weights per epoch for one perceptron is described by Equation 

24, where 𝐸 is the error function and 𝜂 the learning rate. The implementation of backpropagation 

is not a trivial task; however, it is already integrated in basic deep learning platforms such as 

Tensorflow or Pytorch. In this work, the implementation of the DNN algorithms is performed in 

Keras, a high-level application programming interface (API) that works on top of Tensorflow in a 

more intuitive and user-friendly way. 

𝒘(𝑒𝑝𝑜𝑐ℎ + 1) = 𝒘(𝑒𝑝𝑜𝑐ℎ) + 𝜂 [
𝜕𝐸

𝜕𝒘
] 

Equation 24. Perceptron weights evolution per iteration step 

 

 

5.2 Convolutional neural networks 

CNNs, as implied by their name, use a convolution operation to extract information from an input 

and perform a desired mapping to an output. Instead of the weight vectors used by the 

perceptrons and fully-connected networks, CNNs instead use 2D weight matrices (also called 

convolution kernels). The elements of these small matrices are updated during the training 

process based on the same idea described for the fully-connected layer networks to minimize the 

value of the loss which is calculated by the employed error function. Once the CNN is trained, each 

kernel can be interpreted as extracting certain features from the input signal. The size of the 

kernels and the kernel stride used in the convolution should be tuned for each mapping problem. 

As kernel size we define the size of the 2D matrix of the kernel and the kernel stride refers to the 

number of pixels that the kernel shifts when convolved with the input image. For example, in the 

experiments described in the following chapters we use 3x3 kernels with stride 1 in rows and 

columns.  

The most common layers of a CNN consist of a convolutional layer, an activation layer and a 

maxpooling layer. In the first convolutional layer the input is convolved with all the kernels in the 

first filter bank, generating another matrix known as a feature map [96,99,152]. In a second step, 

the activation layer applies a nonlinear function to each of the feature maps in a similar manner to 

the perceptron described above. The most commonly used activation function is a rectified linear 

unit (ReLU) that removes all the negative values in the matrix elements of each feature map. 

Finally, maxpooling is applied at each feature map. Maxpooling is a downsampling operation in 

which the maximum value of each local patch of elements of the feature map matrix is retained. 

This process flow is intuitively depicted in Figure 30 for two example kernels that produce two 

very different feature maps after convolution: edge enhancement (first row) and Gaussian blur 

(second row). 

 Following the first block of layers, a second block is performed using the same operations. New 

feature map sets are generated while the dimensionality is further decreased. As nicely explained 
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by LeCun et al., each convolutional layer detects local conjunctions of features from the previous 

block of layers, while the pooling layer merges semantically similar features [96]. These blocks can 

be repeated several times depending on the needs of the problem, thus determining the depth of 

the desired CNN. Finally, the training step for a CNN is no different from the training used for the 

perceptron or FCNs: error backpropagation is used to update the weight elements of the kernels 

aiming to minimize the error between the prediction of the CNN and the ground truth. 

 

 

Figure 30. Example of a convolutional block. One input image is convolved with two different kernels, processed by a 
ReLU activation function and then downsampled to half the size using maxpooling. 

 

 

5.3 Computational imaging 

Computational imaging refers to the process of forming an image of an object using algorithms 

that rely on raw measurements  [108,153,154]. The estimate of the object of interest is generated 

by solving an optimization problem. The idea of computational imaging algorithms is that inherent 

information exists in the raw image, which cannot be directly observed or quantified, can be 

recovered. Computational imaging offers multiple approaches for obtaining a high-quality 

representation of an object and has many applications in microscopy, sensing, photography and 

more. For the following discussion, we split the field of computational imaging into two categories: 

conventional computational imaging and ML-based computational imaging. 

We use the term conventional computational imaging to describe an algorithm that receives the 

raw data obtained from a measurement and attempts to infer information about the object of the 

measurement using prior knowledge about the physics of the system to build a correct model. 

One example is the enhancement of an image recorded by an optical apparatus of poor quality 
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(e.g. containing aberrations and/or scattering) using an algorithm that models the propagation of 

light through the system in order to recover a high quality image. Another application of 

conventional computational imaging algorithms is optical diffraction tomography, where a 

physical forward model is used to determine the 3D refractive index distribution of an object from 

the measurements of the scattered field measured on a detector. The Rytov and Born 

approximations are two commonly used physical models in tomography [108,109]. Model-based 

computational imaging is characterized by computation time ranging from few minutes to hours 

depending on the complexity of the problem. However, this computation time corresponds to the 

optimization of a single imaging operation, meaning one set of raw data or one image, and a new 

optimization round is required for each new input [99]. 

ML-based computational imaging does not require knowledge about the physics priors of the 

problem; rather it is based on interpolating information trained on various known input-output 

example pairs. ML algorithms show significant robustness for interpreting images obtained in 

noisy conditions when compared to conventional computational imaging methods. Advances on a 

hardware level, in particular the development of GPUs (graphical processing units) have brought 

DNN-based machine learning in the forefront of current research for image processing. In terms of 

temporal performance, DNN training time can range from hours to days depending on the 

complexity of the problem and hence the DNN architecture; however, in contrast to conventional 

methods, once the training is completed the time to process a single new input is in the order on 

milliseconds, approaching real-time image processing for many applications [99]. It is important to 

mention that ML-based computational imaging often requires a large quantity of data for the 

training of the ML algorithm which is not the case for the conventional imaging models. 

Nevertheless, synthetic data augmentation can often provide a solution for digitally enlarging 

small datasets. 

DNNs have recently been implemented for more and more computational imaging problems. In 

microscopy, one of the most common challenges in computational imaging is the improvement of 

resolution. Recent studies have obtained super-resolution from wide-field microscopy by training 

a DNN with corresponding pairs of images obtained from a low resolution system (low NA 

microscope objective) and from a high-resolution one (high NA microscope objective) [155]. In this 

ML approach the DNN produces high quality images by upsampling and deblurring the low 

resolution image. The same method can be used for other imaging methods such as fluorescence 

microscopy [99,156,157]. Another challenging problem in optical microscopy is the imaging of a 

phase object and the retrieval of its complex field information. Several iterative optimization 

solutions have been proposed in the past to recover the full field information from raw intensity 

measurements using conventional computational imaging algorithms such as Gerchberg-Saxton 

and Fienup [153]. Compared with these approaches for phase retrieval from intensity 

measurements, DNNs show high performance and, if combined with constraints imposed by the 

physics of the studied system, demonstrate impressive results [158,159]. In order to further 

promote the possibilities of current biological imaging inspection, deep learning based translation 

among microscopy methods has been proposed  [156,158–160].  
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The potential of DNNs to extract desired information from raw images captured on a camera has 

been further extended in endoscopy. Imaging through multimode fibers using intensity 

measurements of their speckle patterns has been proposed by our research group and others and 

is discussed in second part of this thesis  [59–61,63,65,94,95,100,161,162]. In addition, pixelation-

free imaging through fiber bundles using DNNs is demonstrated  [64,73]. We show in the following 

sections that the advances reported for DNNs in microscopy and fiber imaging can be combined to 

serve a powerful role in the evolution of endo-microscopy applications. 
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 Seeing through multimode fibers 

using deep learning 

The great potential of the MMFs and MCFs for endoscopic imaging is widely recognized by the 

optics community, as it is clearly stated by the numerous works reported in literature. In the Part 

A of this thesis, we demonstrated that wavefront shaping methods can advance the role of MMFs 

and MCFs further than simple imaging tools by incorporating micro-surgical possibilities. However, 

perturbations of the system in such calibration-based techniques pose practical difficulties in the 

presence of temporal changes in the speckle patterns for a constant input, since it results in the 

decorrelation of the measured transmission matrix of the system rapidly with time.  

Aiming to a more robust solution for recovering the information through the different types of 

endoscopes, the capabilities of DNNs are explored. There have been two previous reports on the 

use of artificial neural networks (ANNs) for recovering the images transmitted through MMFs in 

the previous decades [94,95]. In these early demonstrations, two-layer networks were trained and 

were able to recognize a few (∼10) images after a 10 m long step-index fiber from the intensity 

images of their corresponding speckle patterns. In this work, we use state-of-the-art DNN 

architectures for not only classification purposes but also for reconstruction of the input image 

from the speckle output recorded by a camera. In addition, a number of parameters is discussed 

concerning their effect in the DNN performance such as the fiber length, the number of supported 

spatial modes, the content of the input image (amplitude and phase patterns) etc. This novel 

application of the DNNs in the field of optics for information transmission through MMFs is 

studied showing results with large potential impact in various fields. The studies described in this 

chapter are published in the following journal and conference articles: 

 N. Borhani, E. Kakkava, C. Moser, and D. Psaltis, "Learning to see through multimode 

fibers", Optica 5, 960–966 (2018). 

 E. Kakkava, B. Rahmani, N. Borhani, U. Teğin, D. Loterie, G. Konstantinou, C. Moser, and D. 

Psaltis, "Imaging through multimode fibers using deep learning: The effects of intensity 

versus holographic recording of the speckle pattern", Optical Fiber Technology 52, 101985 

(2019). 

 E. Kakkava, N. Borhani, C. Moser, and D. Psaltis, "Deep neural networks for seeing through 

multimode fibers", in High-Speed Biomedical Imaging and Spectroscopy IV, K. Goda and K. 

K. Tsia, eds. (SPIE, 2019), p. 46. 

 E. Kakkava, N. Borhani, B. Rahmani, U. Tegin, C. Moser, and D. Psaltis, "Efficient Image 

Classification through a Multimode Fiber using Deep Neural Networks in presence of 
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Wavelength Drifting," in Imaging and Applied Optics 2019 (COSI, IS, MATH, PcAOP) (OSA, 

2019), p. CW1A.4. 

 E. Kakkava, N. Borhani, B. Rahmani, U. Teğin, U. Teğin, C. Moser, and D. Psaltis, 

"Wavelength Independent Image Classification Through A Multimode Fiber Using Deep 

Neural Networks," in 2019 Conference on Lasers and Electro-Optics Europe and European 

Quantum Electronics Conference (2019), Paper Ci_2_1 (Optical Society of America, 2019), 

p. ci_2_1 

 

 

6.1 Information recovery through multimode fibers using Deep Neural 

Networks 

For the first time DNNs are introduced to reconstruct and classify input patterns through a MMF 

by receiving the intensity-only images of the corresponding speckle patterns. The dataset used to 

assess the performance of the DNNs was generated by projecting on the proximal fiber side 

images of handwritten digits [59,60,66]. These images are available online in the MNIST database, 

which is widely used for testing the capabilities of different neural network architectures  [163]. 

DNN architectures with up to 14 hidden layers were trained on a database of 20,000 handwritten 

digits-speckle image pairs. Recognition or reproduction of an image launched at the proximal end 

of the fiber was achieved by detecting only the light intensity at the distal end facet. The 

performance was evaluated for different fiber lengths up to a maximum of 1 km. 

 

 

Figure 31. The experimental setup for pattern transmission through the MMF. Amplitude or phase images a projected 
on the fiber facet by imaging the SLM by means of a 4f system (L2-OBJ2). A CCD camera is recording the 
corresponding output magnified by the 4f system OBJ3-L3. Another camera (CCD2) records the output field from the 
SLM. (L = lens, OBJ = microscope objective, HWP = half-wave plate, M = mirror, PBS = polarizing beam splitter, BS = 
beam splitter) 
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6.1.1 Methods 

6.1.1.1 Optical setup 

The optical system used to collect the data is shown in Figure 31. The laser beam of a 560nm 

wavelength diode laser is used to illuminate a graded-index (GRIN) MMF with 62.5μm core 

diameter and numerical aperture (NA) of 0.275 (GIF625, Thorlabs). The fiber supports 

approximately 1800 spatial modes at the specific wavelength. A beam expansion is achieved by a 

set of lenses (L1: f=200 mm, OBJ1: 10x, Newport) placed at the laser output to ensure that the 

beam size is large enough to illuminate spatial light modulator (SLM). A phase-only SLM (SLM, 

1920x1080 pixels, Pluto-Vis, Holoeye) is used to display the desired patterns and the SLM plane is 

imaged onto the proximal facet of the MMF by means of a 4f imaging system (lens L2: f=400 mm, 

microscope objective OBJ2: 60x, Newport). Another 4f system (same as the proximal one, OBJ3-

L3) is placed at the distal end of the fiber to image the speckle pattern emerging from the distal 

facet on a CCD camera (CCD, Chameleon 3, 1024x1280 pixels, Mono, Point Grey). An additional 

lens (L4: f=200 mm) in 2f configuration allows a second camera at the proximal side to monitor the 

images reflected by the SLM. A halfwave plate (HWP) and a linear polarizer (P) are placed before 

and after the SLM (see Figure 31) respectively in order to test both phase and amplitude patterns 

as inputs to the GRIN fiber.  

 

 

Figure 32. Details of the implemented (a) VGG type image classifier and (b) U-net type image reconstruction 
convolutional neural networks [60]. 

 

6.1.1.2 Deep neural network architectures 

A ‘VGG’ type CNN, as developed by Simonyan & Zisserman [98] is used to classify the distal speckle 

images or the reconstructed SLM input images (Figure 32 a). This network consist of a 

convolutional front end with downsampling for encoding, and a fully connected back end for 

classification; see Figure 32a for details. The use of such deep CNN with very small filter kernels 

has been shown to provide high image classification accuracies. A ‘U-net’ type CNN with 14 hidden 

layers, as developed by Ronneberger et al.  [164], was used to reconstruct the SLM input image 

from the recorded distal speckle intensity pattern (Figure 32 b). This nearly symmetric network 
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architecture comprises a convolutional encoding frontend with downsampling to capture content, 

and a deconvolutional decoding backend with upsampling for localization; see Figure 32 b for 

details. Skip connections copy feature layers produced in the contracting path with features layers 

in the expanding path of the same size, thus improving localization. For training both networks, 

the obtained 20,000 distal speckle pattern images were randomly split into 16,000 training, 2,000 

validation, and 2,000 testing sets. The training sets were processed in 50 and 500 image batches 

for the reconstruction and classification networks, respectively, with batch shuffling to minimize 

over fitting. An Adam optimizer with a learning rate of 1x10-4 was used to minimize a mean square 

error loss function. The networks were trained for a maximum of 50 epochs. For each case, 

training was carried out 10 times to provide statistics for the training accuracies. The DNNs were 

implemented using the TensorFlow 1.5 Python library on a single NVIDIA GeForce GTX 1080Ti 

graphics processing unit. 

 

6.1.2 Image reconstruction 

In our experiments, the patterns generated by the SLM were handwritten digits from the MNIST 

database. Before processed by the DNN, each image recorded by CCD1 or CCD2 is cropped to a 

1024x1024 pixels window centered on the digit and the speckle respectively. The cropped images 

were then downsampled to 32x32 pixels using bilinear interpolation and used as input for the 

DNNs. An example of the projected digits at the proximal fiber facet is shown in Figure 33, where 

the digits zero and four are shown for both amplitude (Figure 33 c-d) and phase modulation (Figure 

33 e-f) along with the corresponding speckle patterns captured at the distal fiber end for the GRIN 

fiber with 2cm length. The speckle patterns (Figure 33 g-h) look similar to one another because 

their appearance is dominated by the DC component of the light from the SLM. However, when 

we subtract the intensity patterns (Figure 33 d and h) corresponding to the two digits, we reveal 

that there is a significant difference (Figure 33 i). It is the purpose of this study to understand if this 

small difference is sufficient for the DNN to distinguish the two inputs. The results presented in 

the remainder of the paragraph are obtained by adjusting the SLM so that the patterns entering 

the fiber are either phase only or amplitude modulated images of the digits. 

 

 

Figure 33. Images of the digits 0 and 4: a-b) input pattern on the SLM, c-d) amplitude modulated output from the SLM, 
e-f) phase modulated output from the SLM, g-h) speckle patterns of each digit respectively for amplitude inputs and i) 
the difference between the speckle patterns g and h. [60] 
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In a first step, the ability of our DNN to reconstruct the input digits from the distal speckle 

intensity patterns was tested. In Figure 34, we present the results of the reconstruction for the 

four different fiber lengths used in the experiments (0.02 m, 0.1 m, 10 m and 1 km) for amplitude 

and phase modulated inputs into the proximal facet of the GRIN fiber. Although appearing 

random, the speckle patterns contain information about the propagation of the input field 

through the fiber. In fact, the results confirm the above statement, showing that the recovery of 

the input is possible with an intensity-only image of the distal speckle pattern using the U-net 

CNN. Based on the reconstructed images obtained from our experiments (Figure 34), the fidelity 

of the reconstruction decreases from 97.4% for a 2 cm fiber to 90.0% for an 1 km fiber. 

 

 

Figure 34. Examples and accuracies of the reconstructed SLM input images from the recorded distal speckle intensity 
patterns for amplitude modulated proximal inputs [60]. 

 

In the case of the 1 km long GRIN fiber, the speckle pattern at the distal end was unstable. Local 

temperature nonuniformities in the fiber induce changes in the optical path, due to both thermal 

expansion of the material and change of its refractive index. Thermal convection around the fiber 

can lead to drifting of the distal speckle pattern in time creating an extra “noise” on the acquired 
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speckle patterns acquired (Figure 35). Therefore, further care could be taken to thermally isolate 

the fiber and to maintain an isothermal environment, which might give an increase of 

performance. The high fidelity of the reconstructed SLM input images also show that this 

technique effectively denoises the system by removing artefacts associated with the optical setup. 

The fidelity was measured as the percent mean square error of the reconstruction compared to 

the input. For example, the network recovers the SLM input image shown in Figure 33a from the 

distal speckle intensity pattern shown in Figure 33g, while eliminating artefacts projected onto the 

proximal facet of the fiber, as shown in Figure 33 c and Figure 33 e, as well as subsequent artefacts 

due to flaws and dirt or even misalignments on the proximal facet of the fiber. 

In the Figure 35, one can observe changes in the distal speckle pattern over a 2s period. A movie 

was recorded at a frame rate of 83fps for the 1km long GRIN fiber with a constant blank image as 

the SLM input. Although the proximal input does not change, the speckle intensity at the distal 

end of the fiber changes rapidly with time. This can be attributed to fluctuations of the ambient 

temperature or airflow over the optical setup that induce slight perturbations on the GRIN fiber 

that become significant over its 1km length. Therefore, changes on the distal output caused by the 

projection of different digits while the training dataset is acquired can be buried in the “noise” 

caused by the drifting of the speckle pattern. In order to test the effect of the drifting distal 

speckle patterns on the accuracy of the classifications, the Unet network was trained on the first 

10,000 samples of images of an acquired dataset and tested on images from the second half 

(recorded several hours later); and vice versa. The results showed no significant change in the 

reconstruction fidelity. This suggests that the fluctuations seen in the video are not entirely 

random and the neural network has learned them.  

 

 

Figure 35. Speckle pattern decorrelation. a) Frame at 0s, b) frame at 2s and c) the difference between the two 
frames [60]. 

 

6.1.3 Image classification 

Results for the classification of the distal speckle intensity patterns are presented in Table 2 and 

Figure 36. These show that the classification accuracy, defined as the percentage of correctly 

recognized digits, decreases with increasing fiber length for both amplitude and phase modulated 

proximal facet input modes. Generally, the accuracy decreases from 90% for a 2 cm fiber to 30% 
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for a 1 km fiber. For comparison, the classification accuracy of the VGG CNN used for the 

experimental date was calculated for the original SLM input digit images and found 98.4%. This 

decrease can be attributed to increased scattering losses, mode coupling, and drifting of the distal 

speckle pattern with increasing fiber lengths. The results also show that phase modulated input 

provides slightly better classification accuracies probably due to the more uniform distribution of 

the injected light across the fiber modes. In order to improve the classification accuracies, the 

neural network was also trained with the reconstructed SLM input images by the U-net. As shown 

in Table 2 and by the normalized confusion matrices in Figure 36a and b for the 1 km fiber, this 

provided a significant increase in classification accuracy. For the 1 km case, there is a general 

confusion between the 4 and 9s digits, and between the 3, 5, 6, and 8’s. The similarities between 

these classes are also evident in the reconstructed SLM input images for the 1 km fiber shown in 

Figure 34. The confusion matrices for each fiber length and input type can be found in the 

Appendix A2. 

 

Table 2. Classification accuracy for the four different fiber lengths using amplitude or phase input patterns. 
Classification was carried out on either the intensity image of the distal speckle patterns or on the reconstructed SLM 
inputs [60]. 

 

Because of the instability of the speckle pattern intensity observed for the longer fiber system the 

mapping from input to output becomes a random mapping  [165] and objects that are similar to 

one-another at the input are dispersed in the intensity measurement at the distal end. Therefore, 

the ability of the classifier-DNN to generalize (recognize objects it has not seen before) diminishes 

for longer fibers. When we first recover the input images with a U-net DNN, the random mapping 

is partially inverted and the classification network can recognize objects of the same class it has 

not seen before. This behavior is evidenced in where the classification performance of the VGG 

network when trained with the intensity of the raw speckle patterns is plotted as a function of 

iteration number during the learning process for the 10 m (Figure 37 a) and the 1 km (Figure 37 c) 

fibers. For the 10 m fiber the classification accuracy is the same for the training and validation 

sets. On the contrary for the 1 km fiber, in steady state, the training set is memorized well but the 

Fiber length [m] Proximal input 
Classification accuracy [%] 

From distal speckle intensity From reconstructed input 

0.02 
Amplitude 92.7 ± 0.5 98.1 ± 0.4 

Phase 95.1 ± 0.6 98.1 ± 0.3 

0.1 
Amplitude 90.7 ± 0.8 97.5 ± 0.5 

Phase 92.2 ± 0.7 97.5 ± 0.3 

10 
Amplitude 81.9 ± 1.6 96.5 ± 0.4 

Phase 87.2 ± 0.9 96.8 ± 0.5 

1000 
Amplitude 29.3 ± 5.5 69.9 ± 0.9 

Phase 22.4 ± 2.2 57.0 ± 1.0 



Chapter 6: Seeing through multimode fibers using deep learning 

  74  

validation set is classified accurately only 29.3 % of the time. The discrepancy in recognition rate 

between the training set and validation sets is an indication that the network is not able to 

generalize well. Also shown in Figure 37 are the learning curves when training the VGG network 

with the reconstructed images from the U-nets. In this case, the recognition rate is the same for 

the training and validation sets. In general, we can improve the recognition rate on the validation 

and test sets while decreasing the performance on the training set by reducing the number of 

weights in the network and/or increasing the size of the training set. 

 

 

Figure 36. Normalized confusion matrices for the classification of the reconstructed SLM input images for the 1 km 
GRIN fiber for a phase modulated proximal input a) from the speckle pattern images and b) from the reconstructed by 
U-net images. c) Classification accuracy for different fiber lengths (Solid line: The inputs to the VGG-CNN are the 
recorded speckles at the distal fiber end, Dotted line: The inputs to the VGG-CNN are the reconstructed images 
obtained by the U-net-CNN, Circles: Amplitude input images Squares: Phase input images) [60]. 

 

 

Figure 37. Training and validation classification accuracies as a function of epoch for the (a) 10m fiber distal speckle 
intensity pattern, (b) 10m fiber SLM reconstructed input, (c) 1km fiber distal speckle intensity pattern, and (d) 1km 
fiber SLM reconstructed input [60]. 

 

The recognition or reconstruction of the field at the proximal end of a MMF from complex field 

measurements at the distal end can be considered as an alternative to the DNN based inversion 

methods described in this chapter. The simplicity of intensity only detection though, is a clear 
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advantage in practice. At the same time, linear inversion methods (such as the transmission 

matrix) learn the fiber not the inputs. In other words, any input can be recognized or reproduced. 

DNNs on the other hand are trained on a class of objects and rely on statistical averaging within 

that class. In principle, the performance of the transmission matrix method should be 

independent of fiber length. However, as the fiber length increased additional background noise 

accumulates at the output because of scattering at the core for the fiber and the core-cladding 

interface. In addition, the temperature and mechanical instabilities that contaminate the 

measured data are to some extend learned by the DNN, whereas they directly degrade the 

reconstructions of coherent methods. Finally, the neural network can be directly trained to 

reproduce or recognize the versions of the input images as they are stored in the computer. Any 

nonlinearities, aberrations, speckle, pixelation, phase wrapping, or other distortions that are 

introduced before the light enters the input facet of the MMF (i.e. Figure 33 a versus Figure 33 c) 

are conveniently accounted for. 

 

 

6.2 Intensity-only versus holographic data recording 

In the previous discussion, we demonstrated that DNNs model nonlinear systems and therefore 

they can be used with intensity measurements rather than holographic recordings since they can 

accommodate the square law nonlinearity between input and output. In this section, more detail 

study comparing holographic to intensity-only recording is presented to verify if the lack of the full 

field information affects the performance of the DNNs to classify the input information after 

propagation through the MMF. 

 

 

Figure 38. Optical set for the collection of the datasets consisting of fiber input-output image pairs. Amplitude or 
phase images a projected on the fiber facet by imaging the SLM by means of a 4f system (L2-OBJ2). A CCD camera is 
recording the corresponding output magnified by the 4f system OBJ3-L3. A reference arm is also directed to CCD1 
where it interferes with the fiber output forming a digital hologram. Another camera (CCD2) records the output field 
from the SLM. (L = lens, OBJ = microscope objective, HWP = half-wave plate, M = mirror, PBS = polarizing beam 
splitter, BS = beam splitter) [59]. 
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6.2.1 Methods 

The optical setup described in the previous paragraph (Figure 31) was modified to allow 

holographic recording of the MMF output. A polarizing beam splitter (PBS) is added in the laser 

path after the beam collimation, splitting the laser beam into two paths; the illumination and the 

reference path as shown in Figure 38. A half waveplate (HWP1) placed before the PBS adjusts the 

energy ratio of each path for achieving the desired contrast for the speckle hologram. An extra 

beam splitter (BS2) is added to combine the reference and the fiber output field on the detector 

to generate the hologram image. The illumination path configuration is the same as in Figure 31. 

The laser beam in the signal arm is modulated by a phase-only spatial light modulator (SLM, Pluto-

NIR2, Holoeye) and imaged onto the proximal fiber facet by means of a 4f-system. A second 4f 

system is placed at the distal side to image the fiber output on a CCD detector (CCD1, Chameleon 

3, 1024x1280 pixels, Mono, Point Grey). For monitoring the input on the fiber, we also include a 

4f-system to capture the SLM output on a second camera (CCD2).  

 

 

Figure 39. Image of the SLM output on CCD2 for the digit 6 for a) amplitude and b) phase modulation. Image of the 
speckle pattern generated at the fiber output for input (b) when the reference beam is c) blocked and d) interfering 
with the output resulting in a hologram. The inset in image (d) shows a magnified part of the hologram where the 
interference fringes are clear [59]. 

 

A 2 cm graded-index (GRIN) fiber of 62.5 μm core diameter and NA of 0.275 (by Thorlabs) is used 

in the experiments presented for the classification performance of the DNNs. The 2 cm fiber 

showed high performance for the intensity-only experiments introduced in the previous 

paragraph and kept the same for this part of the work to have a direct comparison. The inputs 

images are selected from the online available MNIST database of handwritten digits in this case 

too. In each experiment, we record 20,000 images of speckle patterns corresponding to each digit 
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projected on the SLM from which 16,000 are used for training the DNNs, 2,000 for validation and 

2,000 for testing the DNN performance. The inputs of the fiber can switch from amplitude (Figure 

39 a) to phase (Figure 39 b) and vice-versa by tuning the half waveplate (HWP2) and the polarizer 

before and after the SLM respectively. In addition, by blocking or not the reference arm we can 

either detect intensity-only images of the speckle patterns at the fiber output (Figure 39 c) or 

record the corresponding digital hologram (Figure 39 d) which is formed when the reference beam 

interferes with the speckle pattern on the CCD1. This configuration allows both amplitude and 

phase information of the speckle pattern to be obtained at the fiber distal side in order to 

compare DNNs performance with the intensity-only imaging case.  

For the classification of the inputs a VGG-type DNN was used. The structure of the architecture 

and the layer parameters are the same as in the aforementioned intensity-only case as described 

in the Figure 32 a. The network input was either 1 or 2 channel 32x32 images. The 2 channel input 

case refers to the use of the complex field information, amplitude and phase, for the DNN training 

as it will be discussed below. The classification accuracies are reported as the mean and standard 

deviation of the results of 5 different training instances. 

 

 

Figure 40. a) Amplitude modulated SLM output for the digit 8, b) hologram intensity of the fiber output for the input 
(a), c) amplitude and d) phase, e) real and f) imaginary part of the output field obtained after processing the hologram 
intensity (b) [66]. 

 

6.2.2 Speckle image classification 

Using digital holography (as explained in Chapter 2), we can recover for each output speckle 

pattern, resulting from the different images of handwritten digits (Figure 40 a), the phase and 

amplitude (Figure 40c and d) or the real and imaginary parts of the output field (Figure 40 e and f)  
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and use them in order to train the DNN. The intensity image of the hologram (Figure 40 b) was 

also used to test the classification accuracy.  

 

Table 3. Classification accuracies obtained after the DNN is trained with different input images [59]. 

VGG network input 

Classification accuracy (%) 

# Input 

channels 

Amplitude 

modulated input 

Phase 

modulated input 

Hologram Intensity Fig.33(b) 1 91.8 ± 1.0 93.46 ± 0.6 

Amplitude-only Fig.33(c) 1 94.3 ± 0.5 94.2 ± 0.7 

Phase-only Fig.33(d) 1 75.2 ± 21.1 75.8 ± 21.8 

Real part-only Fig.33(e) 1 91.0 ± 0.8 91.7 ± 0.3 

Imaginary part-only Fig.33(f) 1 91.4 ± 0.8 91.7 ± 0.5 

Complex  Fig.33(c&d) 2 94.0 ± 0.5 94.4 ± 0.3 

Complex Fig.33(e&f) 2 92.2 ± 1.1 93.4 ± 0.5 

Speckle Intensity  1 92.7 ± 0.5 95.1 ± 0.6 

 

The relative classification accuracies provided by intensity or holographic imaging of the speckle 

patterns, and the combination of different components of the recovered complex field reported in 

Table 3. The results indicate that intensity only speckle imaging provides similar classification 

accuracies as for holographic imaging. On the other hand, we find that using the phase-only 

information (Figure 40 d) as input to train the DNN leads to the least efficient image classification. 

We suspect that the main reason for that is that part of the information is affected by the 

wrapping of the phase in the image. In all the rest of the cases, the classification accuracy is almost 

equally good with a marginal improvement for amplitude inputs when using the complex field for 

training the network (Figure 40 c and d). Moreover, the classification results are better when 

phase modulated inputs are coupled into the GRIN fiber, which was also observed in the previous 

study for different fiber lengths [60]. Comparing the classification accuracies achieved between 

the speckle intensity and the hologram intensity images, we observe that the latter is always 

lower. It can be assumed that the additional information encoded in the fringes of the hologram 

intensity image is not preserved after the downsampling step.  

 

6.2.3 Dataset processing effect on Deep Neural Networks performance 

Since the information in the images projected onto the proximal fiber facet is distributed across 

the propagation modes supported by the fiber, the localized image information is spread across 

the fiber cross-section as it propagates along its length. This spreading of the localized information 

is saved in the speckle pattern generated when the light exits the fiber. As a result, the intensity of 

each pixel of the recorded distal speckle pattern is not related to single point only at the input 

image. This contribution can be higher for phase modulated inputs where a greater number of the 
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fiber modes participates in the speckle formation. To further evaluated this property of the MMFs, 

we follow different ways of processing the speckle images that form the DNN inputs to assess if 

there is sufficient information in a cropped area of a speckle image to classify the corresponding 

input images. In order to study the effects of cropping on the classification accuracy, the full 

resolution speckle patterns were center cropped to 32, 64, 128, 256, 512, and 1024 pixel sided 

square areas. These were then down-sampled to 32x32 pixel images; examples of these images 

are shown in Figure 41.  

 

 

Figure 41. Cropped images of speckle patterns recorded on the camera CCD1 after downsampling to 32x32 pixels. The 
upper row of images corresponds to intensity-only recording while the lower row to holographic recording of the 
speckle output. The size of the square cropped area on the initial image changes form 1024x1024 pixels a) and b), 
256x256 pixels c) and d) and 32x32 pixels for e) and f) [59]. 

 

Downsampling of the original speckle pattern beyond a certain level can introduce loss of 

information existing in the image and as a result, the classification success of different inputs can 

drop. For endoscopic applications this could be also the result of using a partially coherent 

illumination source. It has been already demonstrated that image reconstruction using an LED 

source that results in a blurred and almost uniform output of the MMF is possible using 

DNNs  [100]. The results shown in Table 4 indicate that the classification accuracy decreases with 

decreasing crop sizes for all input modulation and speckle imaging combinations. It is apparent 

though, that the classification degradation is not linear with respect to the crop size, on the 

contrary DNNs seem to be able to successfully classify the inputs with an 83% accuracy using only 

a quarter area of the initial speckle pattern. In particular, for a crop size of 128x128 pixels, 

equivalent to a 1.5% area of the full speckle image, the accuracy decreases by around 12%; whilst 
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for a crop size of 32x32 pixels, equivalent to a 0.1% area of the full speckle image, the accuracy 

decreases by around 30% relative to an uncropped image. Therefore, we can conclude that it is 

better using the largest possible part of the image so that the speckle grain distribution is 

somehow preserved after the downsampling step rather than cropping a smaller part of the 

speckle in the first place. In addition, it is important to notice that even though cropping and then 

downsampling can preserve better the fringes structure in the case of hologram, intensity-only 

images of the speckle pattern still relate to higher classification performance in all cases. 

 

Table 4. Classification accuracies obtained after the DNN is trained with differently sized cropped portions of the initial 
speckle image recorded either using intensity-only or holographic measurement [59]. 

 

 

 

Figure 42. Image of a speckle pattern recorded at the fiber output. The white square indicate the locations of 340x340 
pixels crop which are then down-sampled to 32x32 pixels for classification by the DNN [59]. 

 

Crop size 
[pixels] 

Classification accuracy [%] 

Amplitude input- 
Intensity recording 

Phase input- 
Intensity recording 

Amplitude input- 
Holographic 
recording 

Phase input- 
Holographic 
recording 

Mean SD Mean SD Mean SD Mean SD 

1024x1024 93.2 0.7 94.9 0.4 91.8 1 93.5 0.6 

512x512 91.2 0.8 93 3 89.6 2.2 92.2 1.1 

256x256 83.2 1.8 91.6 0.4 85.5 1.4 88.3 0.6 

128x128 76.7 1.4 85.2 0.8 79.8 1.1 83.7 1 

64x64 66.3 1.9 77.5 1.5 69.2 1.8 73.1 2.3 

32x32 59.2 2 70.5 2.1 52.9 1.8 63 2 
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Finally the effects of crop location on the classification accuracy are studied. The full resolution 

speckle images were cropped to 340x340 pixel patches at the three locations shown in Figure 42. 

These were then down-sampled to 32x32 pixel images for classification by the VGG network. The 

results, shown in Table 5, indicate that the classification accuracy is essentially independent of 

crop location on the speckle image, thus highlighting that the input image information is spread 

over the speckle pattern. Moreover, the values of the classification for the 340x340 pixel patches 

lie in between the values for the cropping sizes of 256x256 and 512x512 pixel images further 

verifying the results shown in Table 5. 

 

Table 5. Classification accuracies obtained after the DNN is trained by cropping different locations on the initial 
speckle image recorded either using intensity-only or holographic measurement [59]. 

Crop 
location 

Classification accuracy [%] 

Amplitude input 
- Intensity 
recording 

Phase input 
- Intensity 
recording 

Amplitude input 
- Holographic 

recording 

Phase input 
- Holographic 

recording 

Mean SD Mean SD Mean SD Mean SD 

1 91.1 0.5 89.6 1.8 86.6 2.3 87.2 1.3 

2 90.1 1.8 92.5 1.2 87.1 1 86.7 2.3 

3 90.6 1.2 88.7 1.1 85.9 1 87.7 1.1 

 

 

6.3 Effect of wavelength drifting on the deep learning performance 

The robustness of the DNNs to recover information through a MMF even in the presence of 

instabilities was demonstrated in the paragraph 6.1 for the 1 km long fiber. In that case, random 

thermal and mechanical vibrations in the optical setup induced perturbations during the 

measurements, which were particularly severe for the 1 km fiber length. In order to further 

investigate the learning ability of DNNs, a perturbation is induced in the system during the 

measurements in a controllable way by introducing wavelength drifting. Since the speckle pattern 

intensity is highly sensitive to the light wavelength, using MMF as a spectrometer has been 

proposed as a way to take advantage of this property in previous works [134,166].  

However, wavelength drifting is an impeding factor for multiplexing applications in 

telecommunications  [167,168] and it is interesting to investigate to which extend DNNs can 

overcome the speckle decorrelation induced by it [161,162]. Efforts to overcome the noise in the 

data generated by wavelength drifting have turned towards the stabilization of the tunable laser 

sources themselves or introducing certain synchronization schemes to separate the respective 

fiber output signals [167,168]. The latter solution is usually not preferable because of it reduces 

the overall throughput. Other works have proposed the integration of a neural network circuit in 

the multiplexing process for dynamic drift correction [169]. In the work, the performance of state-
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of-the-art DNNs to classify the input images in a MMF from their corresponding speckle patterns is 

investigated in the presence of wavelength drift of the light source. Remarkable results are 

obtained for wavelength drift bandwidth that reaches 100 nm and they are further discussed in 

the following paragraphs. 

 

6.3.1 Methods 

For the measurements presented in this paragraph, we integrated in the optical setup presented 

in the Figure 31 a wavelength tunable laser source (M-squared, SolsTiS 2000 PSX XF with Terascan 

software), emitting in the range 700-1000 nm. The laser source can shift the wavelength with 10 

fm accuracy. To simulate a situation of wavelength drifting, a Matlab code was created to control 

the laser wavelength, the speckle acquisition in the camera CCD1 (Figure 31) and the input images 

on the SLM. We firstly choose the wavelength range of the drifting in the code and then a random 

array with 100 wavelength values within this range is generated. The wavelength values are sorted 

in an ascending order for two main reasons: firstly, it leads to a more stable operation of the 

tunable laser instead of tuning the wavelength to far spaced wavelength values and secondly, the 

laser stabilization at a specific wavelength is achieved much faster. The inputs are therefore 

projected on the proximal fiber facet in batches of 100, each one at a random wavelength in the 

array. For the next 100 inputs, the random wavelength array is recalculated so that randomly 

different values of wavelength are generated for the images of the full dataset. Phase modulated 

inputs from the MNIST database are used as in the previous experiments to generate a dataset of 

speckle patterns through the MMF. The fiber length was kept 10 cm to avoid the effect of further 

perturbations, which was the case of 1 km fiber and focus on the DNN performance changes 

induced only by the wavelength drifting. 

We collect a total number of 10,000 intensity patterns from which 80% is used for training, 10% 

for validation and 10% for testing. For the classification of the data presented in the next 

paragraphs, we used the same DNN architectures described in the Figure 32 a.    

 

6.3.2 Results 

As discussed in the first part of this thesis, the number of fiber modes in MMFs determines the 

available degrees of freedom (channels) for transmitting the information. An input image 

decomposes to the fiber modes basis. Therefore, a MMF with few modes would not be able to 

transmit a complex signal. Therefore, for testing the performance of DNNs in the presence of 

wavelength drift, it is important that the classification accuracy is evaluated in for the different 

wavelengths within the drift bandwidth in no drift conditions. In this way, it can be ensured that 

any change in the classification performance is attributed to the induced “noise” in the dataset 

and not to the inherent incapability of the system to support the input images because of the low 

number of supported modes at a certain wavelength. Datasets of 10,000 images were created for 

wavelengths from 700 nm to 1,000 nm with an increment of 50 nm, by projecting phase-only 
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inputs of handwritten digits from the MNIST database on the SLM. In Figure 43, we observe that 

the DNN results do not differ for the different wavelengths in the 700-1,000 nm range. According 

to this observation, it can be assumed that if there is a difference in the classification accuracy of 

the DNN in the presence of drifting is only related to the perturbation of the system and not to an 

anyway reduced performance at a certain wavelength in the investigated bandwidth.  

 

 
Figure 43. Classification accuracy calculated for datasets collected at different laser wavelengths for phase modulated 
inputs. 

 

As a next step, we explore the effect of wavelength drifting on the DDN performance for different 

drifting bandwidths of 6 nm, 12 nm, 24 nm, 48 nm, 72 nm and 96 nm around the central 

wavelength that was chosen to be 800 nm. We investigate to different cases of drifting: a) the 

DNNs are trained with the data acquired with the laser wavelength fixed at 800nm and then 

tested on speckle patterns recorded at different wavelengths, b) the wavelengths within the 

drifting range are included in the training set by randomly acquiring speckle patterns at different 

wavelengths during the measurement as described in the Methods section before. For 

comparison, the speckle intensity correlation was calculated for a range of 100 nm around the 

central wavelength was calculated to study the DNN results as a function of the speckle 

decorrelation range. As seen from the Figure 44 a the speckle patterns decorrelate at 50% within a 

range of approximately 30 nm (FWHM). 

In the case (a), DNN is trained with data recorded at 800 nm and we test their ability to recover 

the information from data measured at 803 nm, 806 nm, 812nm and 850nm (Figure 44 b, red 

circles). The classification accuracy drops at 69% for the shortest drift of 803nm, while the speckle 

correlation has only dropped to 90% at this wavelength distance. The results become completely 

random at 812nm showing 10% classification. Hence, it is shown that generalization of the VGG 

network for wavelengths further than the one used in the training is only efficient for a very short 

narrow range. On the other hand, the classification results show a decrease with increasing the 

wavelength drifting bandwidth but in a much lower rate in the case (b). For 6 nm drift, meaning ±3 

nm around the central wavelength, the VGG DNN shows no significant change of classification 

performance 88% if compared to the one in absence of drift (Δλ =0) 90%, which is remarkably 
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better to the 69% observed in the experiments of the first case discussed before. Even for almost 

100 nm drift the VGG DNN classifies correctly 70% of the inputs (Figure 44 b, blue circles). These 

results indicate high robustness of the DNNs in the presence of severe perturbations of the system 

as long as the training dataset is collected in the presence of the disturbance under study. In 

Figure 45, we show for comparison the confusion matrices for the two cases for a drift of 3nm and 

±3nm respectively. It is evident at that many labels are mixed up of the case (a) studied and for 

example the digit 9 that is similar with at least two other digits such as 7s and 5s is highly 

misclassified. In spite of the high efficiency in recovering information for inputs within the drifting 

range, this is not the case for speckle patterns recorded at wavelengths outside this range. We 

trained the VGG classifier with data measured in a 12nm drifting situation and we tested 

afterwards the classification accuracy of the trained model for data outside the 12nm range, from 

807nm to 850nm. The results obtained follow the trend observed in the case (a) discussed before 

as show in Figure 44 c. Therefore, the DNN cannot generalize outside the selected bandwidth for 

training even when different wavelengths are included in the learning process. 

 

 

Figure 44. a) Speckle intensity correlation as a function of wavelength drifting bandwidth, b) classification accuracy for 
datasets collected in for the two cases discussed in the text: DNN trained at 800nm wavelength and tested at data 
collected at different wavelengths (red circles) and DNN trained with data that include the perturbation (blue circles), 
c) classification accuracy for a DNN trained in the presence of 12nm bandwidth drift and tested at data collected 
outside this range. 

 

Once crucial parameter usually suggested for improving the performance of the DNNs is the 

number of available samples in the dataset. At the same time, this parameter is considered one of 

the drawbacks of deep learning, because there are cases for which the number of available data is 

limited. In order to evaluate if the dataset used to train the VGG classifier in the case of drifting is 

sufficiently large, we investigate the classification accuracy for different number of training 

datasets. The classification results for different dataset sizes are presented in the Figure 46. The 

classification accuracy varies with the size of the training dataset as expected. It is apparent from 

the Figure 46 that the more grave the wavelength drifting is the more samples are needed for 

achieving higher classification accuracies. Nevertheless, for all the tested wavelength bandwidths, 

a saturation of the classification improvement is observed while increasing the size of the dataset; 
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for the largest bandwidth (96 nm) this happens at about 6,000 to 8,000 samples as suggested by 

Figure 46.  

 

 

Figure 45. Normalized confusion matrices showing the classification results for the case that the drifting wavelength is 
a) not part of the training set and be) is included in the drifting wavelengths for which the VGG classifier is trained 
with [161,162]. 

 

Interestingly, the accuracies measured for each bandwidth saturate at values dependent on the 

bandwidth which implies that even larger dataset would not improve the results. One possible 

reason for this is the randomization of the input-output mapping. Because of the large wavelength 

drift, it can happen that the speckle pattern of a specific digit captured at a certain wavelength is 

very similar to the speckle pattern of another digit captures at another wavelength. Consequently, 

if the similarity between speckle patterns of different digits is higher that same digits at different 

wavelengths, wrong classification will occur. 

Another interesting observation based on the measurements reported in the presence of 

wavelength drift, is that the classification accuracy does not notably deteriorate after increasing 

the drift bandwidth further than approximately 60 nm. It has been observed that MMFs support a 

type of modes that their shape is independent of the wavelength within a certain bandwidth, 

which are called principal modes [118,170]. Although further investigation is needed to 

conclusively prove it, it could be possible that part of the input images in the MMF is decomposed 

in the principal mode basis and therefore it remains unchanged within some drift bandwidth thus 

preserving the information at the output partially leading to the preservation of the classification 

accuracy. 

One possible solution for increasing the performance of the system is to decrease the 

downsampling factor to assess if the reduction of lost information due to the image processing 

could help the DNN more accurately relate the speckle pattern features to the input information. 

Another possibility is to increase the weights of the current VGG network architecture so that 
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more learnable parameters are available and potentially accommodate the wavelength noise 

effect.  

 

 

Figure 46. Classification accuracy of the VGG-type DNN classifier used in the experiment for increasing the number of 
available samples in the training dataset. 

 

Other works have tried to evaluate the advantages of deep learning for information recovery 

under different types of disturbances such as bending  [62]. Fan et al. showed that including data 

of different bending configurations of a MMF in the training set of the DNN algorithm makes it 

possible to learn the randomness imposed by bending the fiber. Therefore, the reported results 

concerning the wavelength perturbation are in agreement with these findings and establish that 

including in the training dataset samples of the perturbed state of the MMF makes the 

information recovery resilient to a certain extend. 

Until this point, we have discussed the aspect of training a DNN algorithm to recover information 

through a MMF system despite the wavelength changes by including the noise in the dataset. 

Nevertheless, there are cases where sensitivity in the wavelength change is actually crucial; for 

example, MMFs have been proposed as suitable systems for high-resolution 

spectrometers [134,166]. In those previous works, the speckle decorrelation with wavelength is 

used for distinguishing different wavelengths and the resolution is dependent on the speckle 

decorrelation bandwidth of the specific fiber, which becomes narrower with increases in the fiber 

length. In the results presented in this work, we observed that the classification efficiency of a 

trained DNN with data recorded at a single wavelength is sensitive to wavelength changes and 

deteriorates within a significantly narrower bandwidth (Figure 44 b, red circles) than the 

decorrelation bandwidth of the system (Figure 44 a). Therefore, what is considered unwanted for 

information recovery through the system under a wavelength drift situation, it could potentially 

be desired for achieving a resolution which is higher than the one given by the decorrelation 

bandwidth and has been previously proposed in the literature for spectroscopic applications. 
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6.4 Conclusions 

We have shown that DNNs can recognize distorted images at the output of a MMF from their 

corresponding intensity speckle patterns. In particular, the deep learning approach presents a 

remarkable robustness against wavelength drift of the light source within an extended bandwidth 

for which total decorrelation of the speckle pattern intensity is observed. Despite the 

randomization of the input–output mapping introduced by the various speckle drifting, image 

classification of high accuracy of about 70% is reported for almost 100 nm wavelength drift, while 

more than 80% classification accuracy is shown for a 50 nm bandwidth. The results presented in 

this article suggest that deep learning can overcome distortion in the signal after propagation 

through MMFs in the presence of severe wavelength drift. The potential of using a single trained 

DNN model for retrieving image information in multiple wavelengths is suggested by using the 

intensity-only images of the respective speckle patterns, which could allow multicolor illumination 

imaging without extensive system recalibration. 
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 Deep learning-enhanced imaging 

through fiber bundles 

This chapter tackles the problem of reduced resolution when using fiber bundles because of the 

structure of the individual cores. In Part A of the thesis, wavefront shaping using the transmission 

matrix method was proposed to overcome the pixelation artefact in the images by creating a high 

intensity focus through a fiber bundle, which was used to perform point scanning-based imaging 

at a superior resolution. However, as previously discussed, the sensitivity of calibration-based 

methods to external perturbations can be an issue for the stability of the imaging system 

preventing the flexibility of the final endoscope. In this chapter, the robustness of deep neural 

networks (DNNs) in the presence of noise and their super-resolution ability are exploited to 

generate high resolution and pixelation-free images through fiber bundles, while allowing bending 

insensitive measurements. In addition, the capability of DNNs to translate information between 

different imaging modalities is discussed. 

 

 

7.1 Introduction 

Fiber bundles (also called multicore fibers (MCFs)) are widely used in clinical endoscopy and they 

can be categorized in the following general groups based on their drawing method. In the first kind 

of fiber bundles, the individual cores are fixed in a common polymer like cladding while in the 

second kind, each individual core has its own cladding and they are all fixed in a honey-comb 

structure by a mesh grid forming the final bundle; this kind of bundles are often called leached-

type fiber bundles. The first kind of bundles tends to be more rigid because of the common 

cladding material. In contrast, fibers bundles of the second kind are highly flexible but, because of 

this property, they are slightly more prone to damage of individual cores leading to “burnt pixel” 

defects in the final image. In addition, leached fiber bundles cost significantly higher than the 

other type (1000$/m) but they are often preferred for their flexibility and image quality [50].  

It has been mentioned throughout the thesis that the image resolution of the fiber bundles is 

defined by the core spacing and further improvement is limited by the core-to-core coupling that 

would cause blurring in the final image. There has been a lot of work focused on the creation of 

fiber bundles with closely spaced cores but minimal coupling. It has been shown by Chen et 

al. [38,40] that inducing aperiodicity in the individual core positions as well as slight changes in the 
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core size and refractive index reduce the coupling between the neighboring cores. Addition of lens 

magnifying systems at the fiber distal facet can also be an option for increasing the resolution of 

the endoscope but it is followed by a reduction of the field of view and raise of optical 

aberrations [67]. As aforementioned, resolution improvement of the fiber bundle endoscopes has 

been also achieved by wavefront shaping techniques as described in Part A of the thesis by 

exploiting the NA of the fiber cores to create a diffraction limited spot for point scanning imaging. 

The calibration sensitivity of the holographic techniques to external perturbations limits the 

applicability of the fiber bundles to rigid endoscopic configurations. The image pixelation artefact 

generated by the fiber bundles can be also corrected using computational means which digitally 

increase the resolution of the image via image processing algorithms as proposed by Shao et 

al. [71,171]. In particular, deep learning has shown promising results for super-resolution in image 

processing and microscopy applications and it is explored in the following paragraphs as an 

alternative for removing the image discretization caused by fiber bundles [73,152,155–157,172]. 

Fiber bundles used in clinical practice mostly use conventional bright field microscopy for imaging 

the tissues and offer important information for diagnosis [24,26,68]. Many studies of fiber 

endoscopy have also shown that fiber bundles can support multiple imaging modalities, apart 

from bright field imaging, such as confocal endoscopy [67], wide-filed and two-photon 

fluorescence imaging [26,68,69]. Most of the aforementioned techniques need a certain imaging 

contrast mechanism, which is not always feasible to use for in-vivo imaging of biological samples 

because of toxicity or interference with the biological processes under inspection. For this reason, 

phase imaging is often suggested as the most well-suited technique for label-free imaging of 

transparent, low contrast samples such as tissues and cells  [108,173–176]. Therefore, combining 

phase imaging modalities in an endoscopic device presents many advantages for medical 

diagnosis [177]. In the following paragraphs, the use of deep learning is proposed for improving 

the resolution of an imaging fiber bundle and integration of phase contrast modality by properly 

trained DNNs. 

 

 

7.2 Image reconstruction of different datasets through a fiber bundle 

The evaluation of the DNN performance in reconstructing images transmitted through a fiber 

bundle is initially made using simple images from databases that are available online such as 

MNIST, MNIST-Fashion (MNIST-F) and CIFAR-10 [163,178,179]. Starting from the almost binary 

inputs obtained from the MNIST dataset to the gray-scale images of the CIFAR-10 and MNIST-F it is 

demonstrated that DNNs can reconstruct input images from their corresponding outputs after 

they propagated through a fiber bundle with a significantly superior quality to conventional 

interpolation algorithms. 
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7.2.1 Methods 

7.2.1.1 Optical setup 

The images were projected at the fiber facet by means of an SLM using the optical system 

described in paragraph 6.1.1 (Figure 31). Some lens modifications concerning the 4f systems were 

implemented so that the demagnification of the SLM screen matches the core size of the fiber 

bundles used for the experiments. Specifically, the microscope objectives OBJ2 and OBJ3 (Figure 

31) were changed from 60x to 20x magnification (Newport, NA = 0.25). A 6,000 core Fujikura 

imaging bundle of 30 cm length (FIGH-06-400N, 400 μm core size) is used to deliver the images of 

the different datasets projected on the SLM. The fiber bundle is characterized by an average core 

size of 2.5 μm and an average core spacing 4.5 μm. The laser source coupled in the system is a 

tunable wavelength laser (M-squared, SolsTiS 2000 PSX XF with Terascan software, 700-1000 nm) 

for the experiments presented in this section (as in the case of the section 6.3).  

 

7.2.1.2 Deep Neural Network architectures 

A U-net type DNN is used for the image recovery through the fiber bundle. The input and output 

images were downsampled using bilinear interpolation to 32x32 and 64x64 pixel sizes for 

comparison. The U-net DNN used in the case of 32x32 pixel size images is the same as the one 

previously described in Figure 32 b. For the U-net trained with the 64x64 pixel size inputs, two 

extra convolutional and max pooling blocks for input and output were symmetrically added in the 

U-net architecture presented in the previous chapter (paragraph 6.1.1). The added layers contain 

16 kernels each (Figure 47). An Adam optimizer with a learning rate of 1x10-4 is used to minimize a 

mean square error loss function, similarly to previous cases. A batch size of 10 and a maximum of 

50 epochs is selected. The splitting ratios of the datasets studied in this chapter for creating the 

training, validation and test sets were 90%, 5% and 5% respectively.  

 

 

Figure 47. U-net type DNN architecture used to reconstruct the input images in the fiber bundle from the intensity 
images at the fiber output. 
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In order to compare the quality of the reconstruction results among the various datasets 

presented in this chapter, some quality metrics are defined to measure the similarity between the 

reconstructed images via DNNs and their corresponding ground truth. In the discussions to follow, 

this comparison is made using the mean squared error (MSE) and the mean structural similarity 

index (SSIM), which are calculated based on the following equations: 

𝑀𝑆𝐸 = 
1

𝑁2
∑(𝑦 − 𝑥)2
𝑁2

𝑖

 

Equation 25. Mean squared error between two images 

 

𝑆𝑆𝐼𝑀 =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥2 + 𝜇𝑦2 + 𝑐1)(𝜎𝑥2 + 𝜎𝑦2 + 𝑐2)
 

Equation 26. Formula for the calculation of the structural similarity index 

In the above equations we consider x as the ground truth image vector and y the predicted images 

by the DNN. The two images have NxN pixel size which determines the averaging of the values. 

The rest of the variables used in the SSIM calculation are given below: 

 𝜇𝑥: average of x 

 𝜇𝑦: average of y 

 𝜎𝑥
2: the variance of x 

 𝜎𝑦
2: the variance of y 

 𝜎𝑥𝑦: the covariance of x and y 

 𝑐1 = (𝑘1𝐿)
2, 𝑐2 = (𝑘2𝐿)

2 : two variables used to stabilize the division with a weak 

denominator 

 𝐿 : the dynamic range of the images  

 𝑘1=0.01, 𝑘2=0.03 by default  

 

7.2.2 Amplitude modulated inputs 

The first dataset used to generate input-output pairs for the training of the U-net DNN and 

assessing its performance is the MNIST dataset that consists of images of handwritten digits, 

which we have been processed to contain either black or white pixels (binary). Amplitude 

modulated images are displayed on the SLM as shown in Figure 48 a and projected on the 30 cm 

long piece of the Fujikura fiber bundle by means of a demagnification optical system. The images 
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generated after propagation in the fiber bundle are collected by the camera at the distal fiber side 

(Figure 48 b). The distal image presented in the Figure 48 b is generated by illuminating the SLM at 

800nm. The individual cores support two modes at this wavelength. Despite the aperiodic 

structure and core variation of the Fujikura imaging bundle, which is optimized to reduce the 

crosstalk between the neighboring cores, there is still part of light escaping from the illuminated 

cores to neighboring ones and as a result areas that are supposed to be dark, light up (Figure 48 b). 

Nevertheless, the image of the digit 6 is nicely represented through the fiber without further 

processing. However, it is important to note that in case of a more detailed image, light crosstalk 

can lead to image scrambling and the recognition of the output could be more challenging. This 

issue is investigated in the following paragraphs by comparing conventional interpolation and DNN 

image reconstruction.  

 

 

Figure 48. MNIST database. a) Input image on the SLM and b) the image (a) relayed through the Fujikura fiber bundle. 
Scale bar: 50 um 

 

The DNN performance is evaluated by reconstructing the SLM input from the fiber bundle output 

for a dataset of 5000 samples of MNIST digits. The reconstruction results are presented in Figure 

49. Remarkably, the reconstruction quality is quite good for the both image sizes. In the 32x32 

case, the cores of the fiber bundle cannot be clearly resolved due to the downsampling step, while 

in the 64x64 case there are enough pixels to retain this detail of the image. This implies that the 

trained U-net model is able to find distinct features, which represent the images of the MNIST 

dataset after propagation through the fiber bundle even in the cases that the image information is 

highly compressed by the downsampling step. The quality metrics of the image reconstruction 

through the MCF bundle are presented in Table 6 where it can be observed that reduced 

downsampling of the input image can lead to better reconstruction results. In all cases, we can see 

that the DNNs can successfully result in good quality images even with after severe downsampling. 

The standard deviation values reported in the Table 6 are calculated among the images of the test 

set. 
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Figure 49. DNN reconstruction of MNIST dataset propagated through a fiber bundle for a-c) 32x32 and d-f) 64x64 
image size. The first column shows the downsampled version of the image at the fiber output (a and d), which is the 
DNN input, the second column presents the corresponding input image on the SLM, which is the ground truth for the 
DNN training (d and e) and the last column shows the DNN reconstructed image (c and f) for the corresponding input 
on the SLM. Scale bar: 100 μm 

 

 

Figure 50. Fiber bundle imaging of the distal image of the digit 6. a) Image at the distal facet, b) the amplitude of the 
Fourier transform of (a) in log scale, c) filtering of the diffraction circle and d) inverse Fourier transform of (c) showing 
the final interpolated image. 

 

For comparison, Fourier filtering is also used to remove the effect of the core sampling from the 

fiber bundle output using (Figure 50). To do so, the Fourier transform (Figure 50 b) of the fiber 

bundle generated image (Figure 50 a) is calculated. The Fourier transform shows a circle 

surrounding the central part of the frequency spectrum, which is a diffraction component 
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generated by the quasi-periodic structure of the fiber bundle core. By filtering out the diffraction 

circle (Figure 50 c) and calculating its inverse Fourier transform, the input image free from the high 

frequency sampling by the individual cores is obtained as shown in Figure 50 d. The final image 

(Figure 50 d) is further processed applying a thresholding step based on the prior knowledge that 

the input image is binary. The size of the circular mask applied in the Fourier space for filtering is 

defined based on the periodicity of the fiber bundle, which is equal to the core spacing Λ. Based 

on the Shannon sampling theory, the radius of the circular filter applied in the angular spectrum of 

the output corresponds a maximum diameter of 2π/Λ. Considering the results of Fourier 

processing of the bundle output a comparison with the images obtained by the DNNs is presented. 

In both cases the recovered images is correlated with the SLM input (Figure 49 b). The results 

presented in the Table 6 show that simple interpolation and thresholding could provide nice 

images in the case of the MNIST database. More complicated sampling and image processing 

algorithms can be also used to improve further the image quality [171]. However, as discussed in 

the Chapter 5, conventional computational imaging algorithms optimize the output of a single 

image and they must be repeated for new images, which makes them time inefficient. 

 

Table 6. MNIST and CIFAR-10 reconstruction metrics for amplitude inputs. 

Reconstruction method 
Metrics 

MSE SSIM 

 MNIST 

U-net (32x32) 0.025±0.009 0.85±0.06 

U-net (64x64) 0.014±0.015 0.92±0.05 

Interpolation 
+ Thresholding 

0.027 0.94 

 CIFAR-10 

U-net (64x64) 0.005±0.015 0.82±0.03 

Interpolation 
+ Smoothing 

0.152 0.60 

 

The results presented above do not show a clear advantage of using DNNs for recovering a good 

quality image from the corresponding pixelated output of a fiber bundle. Despite the presence of 

coupling, which is noticeable in Figure 50 a, the features of the input are still clearly 

distinguishable since the MNSIT database of handwritten digits used consists of binary images. 

Consequently, the use of DNNs can be considered excessive for this reconstruction problem. What 

happens when imaging more complicated inputs though? To examine this aspect, we use the 

CIFAR-10 database that consists of gray-scale images of ten different classes of objects such as 

cats, cars, birds and others. Like MNIST, CIFAR-10 is a widely used database for the evaluation of 

classification DNN algorithms. Here, we use it to investigate the efficiency of DNNs in image 

reconstruction through a fiber bundle. 
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Figure 51. Example of an image from the CIFAR-10 database. a) Input image on the SLM b) the image (a) relayed 
through the Fujikura fiber bundle. Scale bar: 50 μm. 

 

Figure 51 displays an example of an input image from the CIFAR-10 dataset and its corresponding 

output at the distal facet of the fiber bundle. It is already apparent that some of the details related 

to the gray scale variation as well as some fine features like the vertical thin lines are difficult to 

recognize after the sampling by the fiber bundle. The core-to-core coupling affects the light 

distribution across the image, distorting the gray level appearance of the input. In the previous 

case of the MNIST database for which the input images on the fiber bundle were processed to be 

binary, this effect can be compensated by thresholding the image to render two gray level values, 

0 and 1. Conventional interpolation techniques such as Fourier filtering and thresholding fail to 

reproduce high quality reconstruction results images when examples of the CIFAR-10 dataset are 

projected (Figure 52). The gray level values are obscured. For this reason, CIFAR-10 dataset is more 

suitable for comparing the conventional image processing methods to DNNs. 

 

 

Figure 52. Fiber bundle deconvolution of the distal image from the CIFAR-10 database. a) Image at the distal facet, b) 
the amplitude of the Fourier transform of (a) in log scale, c) filtering of the diffraction circle and d) inverse Fourier 
transform of (c) showing the reconstructed image. 
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The same U-net DNN with 64x64 image size inputs is also trained to remove the discretization 

artefacts from the images of the CIFAR-10 dataset. Figure 53 a shows an example from the dataset 

images at the distal facet after downsampling, which is then used as an input to the DNN. The 

corresponding reconstructed image (Figure 53 c) seems to preserve most of the ground truth 

features (Figure 53 b) and is characterized by quality, evidently superior to the interpolation-based 

reconstructions such as the example presented in Figure 52 d. Table 6 summarizes the quality 

metrics calculated for the CIFAR-10 dataset concerning the image reconstruction results obtained 

by the two approaches; DNNs and Fourier filtering-based interpolation. The reported results for 

the U-net are calculated for the test set, meaning image examples that were not part of the 

training set of the DNN model. Impressively, the trained U-net model is capable of reconstructing 

details of the input image that are not noticeable at the intensity image recorded at the fiber 

bundle output. Specifically, features on the horse’s face depicted in the example image in Figure 

53 b are present in the DNN reconstruction (Figure 53 c) but not in the DNN input image of the 

fiber bundle distal facet (Figure 53 a).  

Despite of the enhanced resolution achieved by removing the core sampling, certain limitations 

posed by the physics of the system are present. The U-net performance is also tested in conditions 

of better sampling of the input image by magnifying it on the proximal facet so that the physical 

resolution of the system is improved. To do so the microscope objective (Figure 31: OBJ2) of the 

experimental set is changed from 20x to 5x. The results after training the U-net on the new 

dataset of image pairs show MSE of 0.003 and 0.89 SSIM as opposed to the previous case reported 

in the Table 6 in which MSE and mean SSIM are found 0.005 and 0.82 respectively. 

 

 

Figure 53. DNN reconstruction example from the CIFAR-10 dataset propagated through a fiber bundle. a) 
Downsampled version of the fiber output image at 64x64 pixels size, b) input image at the SLM projected at the fiber 
proximal side generating the output (a) and the DNN reconstruction of the input image (b) from the fiber output (a). 
Scale bar: 50 μm. 

 

Based on the above discussion, it is concluded that DNNs can provide an efficient platform for 

quality enhancement of fiber bundle images. The U-net model can render accurate reconstruction 

results in the presence of core-to-core coupling and severe down sampling even for complex input 

shapes. For this outcome no particular hyperparameter optimization was made for the U-net 
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algorithm. More complicated DNN architectures, custom loss functions etc. can be also 

implemented to further enhance the final image quality as proposed by other works [64,73] and 

will be also demonstrated in the next paragraphs. However, for the test on the different online 

databases used to assess the imaging capabilities of the fiber bundles, a standard U-net 

configuration is used for direct comparison among the results. 

 

7.2.3 Phase modulated inputs 

In Chapter 6, we demonstrated that both amplitude and phase inputs can be efficiently 

reconstructed after propagating through a MMF. Even if the phase inputs have almost no distinct 

features in their corresponding intensity image (Figure 33 e & f), the MMF-induced mapping into 

speckle patterns enhances the contrast among different inputs. Therefore, the information 

content in the speckle patterns is enough to assist the DNN training to successfully reconstruct the 

phase inputs. It is interesting to study how phase image translation works in the case of a fiber 

bundle for which there is no particular mapping mechanism for contrast generation.  

Figure 54 a and b present the fiber bundle output before and after downsampling respectively 

when the phase image of the digit 3 selected from the MNIST database (Figure 54 c) is displayed 

on the SLM. In Figure 54 c, the highest pixel value of the image corresponds to π phase and the 

lowest to zero phase. From the Figure 54 a and b, it is obvious that recognizing the digit from the 

intensity image of the fiber bundle output is not trivial, due to the almost uniform intensity 

distribution which characterizes a phase-only input.  

 

 

Figure 54. DNN reconstruction example from the MNIST dataset propagated through a fiber bundle. a) Fiber bundle 
output for the phase image of the digit 3, b) downsampled version of the fiber output image (a) at 64x64 pixels size, c) 
input image at the SLM projected at the fiber proximal side generating the output (a) and the DNN reconstruction of 
the input image (c) from the fiber output (b). Scale bar: 100 μm. 

 

Similarly, to the amplitude input case discussed in the previous section, we generate a dataset of 

5000 pairs of fiber outputs and corresponding phase-only SLM inputs. Without modifying the 

parameters of the U-net used for the amplitude images of the MNIST database in the previous 

section in the case of 32x32 pixel size inputs, a U-net DNN is trained to reconstruct the SLM phase 

input from the intensity image of the fiber bundle output. The results of the reconstruction show 

remarkable quality despite of the downsampling of the original data as shown in Figure 54 d, while 
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the MSE and SSIM metrics are calculated 0.04 and 0.82 respectively. Comparing the metric values 

to the corresponding ones reported in the Table 6 for the amplitude modulated images of the 

MNIST database (MSE: 0.025, SSIM: 0.85), a degradation in the DNN performance to produce the 

same quality of reconstructions is observed. Phase image reconstruction is a more demanding task 

due to the uniformity of the fiber output images. Better results can be possibly achieved by 

increasing the number of examples and/or reducing the downsampling factor. However, the scope 

of this preliminary experiment is to demonstrate that imaging of not only amplitude but also 

phase inputs can be achieved using the intensity-only output of a MCF. Further work on this, is 

presented in details in the following paragraphs.  

Finally, it is important to note that in an ideal optical system for which there is no coupling among 

neighboring cores of the bundle and no high frequency loss due to the lens physical apertures or 

the NA of the cores, the intensity distribution of different phase-only images would show no 

variation. However, abrupt phase changes such as 0 to π correspond to high frequency 

components that are inevitably filtered out by the physical limitations of the experimental setup, 

thus creating small intensity variations in the intensity profile of a phase image. In addition, core-

to-core coupling in the bundle and the coherence of the source can introduce fluctuations in the 

final intensity profile of the phase image through the fiber bundle. As a result, sufficient feature 

differences among the whole dataset exist, thus assisting the training of the DNN model to train 

and reconstruct the phase profile of the input from the intensity-only recording of the fiber bundle 

output. In the following sections, it is reported that core coupling is partially essential for phase 

imaging through fiber bundles, because it creates a contrast mechanism among the various 

outputs, but on the other hand implies that the final system is sensitive to bending. Bending 

changes the way that the light couples between the individual cores changing the intensity 

distribution at the output. Therefore, it can affect the efficiency of the image reconstruction of a 

trained DNN model. The effect of bending introduced in the imaging system is investigated further 

in the next section. 

 

 

7.3 Bending sensitivity of the fiber bundle probe 

Bending affects the light propagation through optical fibers and it is one of the fundamental 

obstacles in MMF endoscopy. Bending of a MMF after measuring its transmission matrix 

invalidates the calibration and destroys the imaging capability of the system. For this reason, 

MMFs are mainly limited to rigid endoscopic configurations. Although less bending sensitive, fiber 

bundles also suffer from bending because of the core coupling. Therefore, wavefront shaping 

techniques for improving resolution are also limited by bending in the case of fiber bundles. In this 

section, deep learning approach is investigated for image recovery through fiber bundles in cases 

that the bending configuration changes. DNNs have proved remarkably robust to noise in the data 

as discussed in the case of MMFs in Chapter 6 of the thesis, which makes them a promising 

approach for super-resolution and phase imaging through fiber bundles. 
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7.3.1 Methods 

The same optical setup described in the section 7.2.1 is used to acquire the datasets of image pairs 

needed to train a U-net DNN. A 7,800 core leached fiber bundle by SCHOTT with a length of 1 m 

(IBULTRAVIEW, 450 μm core size) replaces the Fujikura imaging bundle used in the discussion 

above. Leached fiber bundles are more flexible and therefore suitable for bending experiments. In 

addition, for optimizing the system concerning the imaging quality and bending sensitivity, 

different light sources are integrated in the optical setup which was previously presented in Figure 

31 and they are mentioned below: 

 Tunable wavelength laser (M-squared, SolsTiS 2000 PSX XF with Terascan software, 700-

1000 nm) 

 Laser diode (Thorlabs, HL63163DG, 633 nm) 

 LED (Thorlabs, M625L4, 625 nm) 

 

 

Figure 55. U-net DNN architecture for input images of 256x256 pixels size. Each operation is described with a different 
color and the number of kernels and size of the image matrix in each block is written below each block. 

 

Datasets of image pairs of SLM inputs and fiber bundle output images were recorded for all the 

different cases of illumination sources described above. The projected images from the SLM are 

phase modulated, since they are the ones presenting a more challenging reconstruction problem 

for the DNNs. For each of the light sources, 10,000 image pairs are collected in one fiber 

configuration. Afterwards the fiber bundle configuration is modified and 500 extra image pairs are 

recorded to test the DNN performance in the new bending shape. In order to minimize the effect 

of downsampling in the DNN performance, the largest image size that the available computer 

memory can process considering the size of the dataset is chosen, which is 256x256 pixels. The U-

net network architecture is thus expanded for the specific image size as described in the Figure 55. 

The hyperparameters of the DNN are kept the same for all the datasets for comparison; naturally, 

further tuning might improve the results. The batch size used for the training is 10 and the 

maximum number of epochs 200. The Adam optimizer is selected with a learning rate of 10-5 to 

minimize a MAE loss function. After the DNN is trained, its performance is evaluated firstly, on the 
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test data which belong in the same dataset as the training data and on the data collected in the 

new bending configuration. In this way, the dependence of reconstruction quality on bending is 

studied. 

 

7.3.2 Results 

Achieving high fidelity of image reconstruction using DNNs was successfully demonstrated for both 

amplitude and phase inputs in the previous section; yet, bending sensitivity is another important 

parameter to be evaluated for introducing a deep learning based endoscope. In the previously 

discussed experiments the wavelength was set at 800 nm, which corresponds to the propagation 

of two-modes per fiber bundle core (V-number =3.4). Crosstalk between neighboring waveguides 

is wavelength dependent and specifically increases with the wavelength [35]. In Figure 56 a-c, the 

digit 0 is projected on the SLM and the respective output images at the distal side of the 1 m long 

SCHOTT fiber bundle are presented for three different wavelengths, 700 nm, 800 nm, 900 nm. It 

can be noticed that the light is better confined in the case of 700 nm input wavelength, resulting in 

a clear and sharp image of the input after its propagation along the fiber bundle. In contrast, for 

the longest wavelength (900 nm) the light seems to escape from neighboring cores resulting in 

blurred representation of the input. The main reason is that the mode field diameter increases for 

longer wavelengths and as a result, the coupling between closed spaced waveguides is more 

severe [35,38,40]. 

 

 

Figure 56. Fiber bundle output images digit 0 for input wavelengths of a) 700 nm, b) 800 nm and c) 900 nm. (d-f) 
Corresponding 1D waveguide simulation results of the mode coupling. The inset shows magnified the area of overlap. 
Scale bar: 25 μm. 

 

Moreover, qualitative simulations for the case of 1D waveguides that have the same physical 

characteristics with the individual cores of the fiber bundle in terms of diameter (2.5 um), spacing 

(4.6 um) and NA (0.39) are shown in Figure 56 d-f. Based on the solution of the wave equation in 
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the case of 1D planar waveguides the intensity profile of the fundamental mode for the respective 

waveguides was calculated. In Figure 56 d-f, we plot the modes of two neighboring waveguides. 

The insets in the Figure 56 (d-f) show the area of overlap magnified for visualization purposes, 

which demonstrates the increased crosstalk at larger wavelengths. The presented results only 

serve the purpose of an intuitive correlation between the wavelength changes and the crosstalk 

observed between neighboring cores. For a more quantitative assessment simulation of the actual 

2D model should be performed since the solutions of the wave equation for a cylindrical symmetry 

are based on Bessel functions and not cosine and sine functions as the planar waveguide case. 

Quantitative characterization of the crosstalk in fiber bundles has been extensively studied and 

more details can be found in literature [38]. Overall, selecting a shorter wavelength of illumination 

is suggested (if possible) since it leads to a better mode confinement and thus lower the bending 

sensitivity of the final endoscope. 

Apart from the wavelength, the effect of the source coherence on the crosstalk level is 

investigated when delivering an image through the fiber bundle. Because of the better 

confinement of shorter wavelengths as discussed above (e.g. 700nm), bending of the fiber causes 

less intensity fluctuations in the individual cores, which form the image. Nevertheless, a decreased 

reconstruction efficiency is observed when the test inputs in the trained model are images 

recorded at the distal facet after the fiber bundle is bent in a different configuration. Coupling 

between the neighboring cores in which light accumulates different phase components, causes 

interference effects that change the light intensity in a single core. Because of the coherence of 

the light source, this interference can lead to drastic changes in the intensity of each core at the 

fiber output leading to black pixels/cores as observed in the case of the 900 nm illumination 

(Figure 56 c). This effect is even more evident in the case of phase modulated inputs for which the 

intensity is almost uniform over the fiber bundle proximal surface. Because of the uniform 

illumination, bending of the fiber causes changes of the intensity to a large number of individual 

cores/pixels of the output image inflicting “confusion” in the learnable features that the DNN is 

getting trained to recognize. On the contrary, for amplitude modulated inputs, the light is more 

localized to certain pixels and the degradation is slightly less severe. 

To verify the coherence effect on bending sensitivity and thus the final reconstruction, the tunable 

laser source is replaced by laser diode emitting at 632 nm and then by an LED source emitting at 

625 nm. The coherence length of the various sources is reported in Table 7 for comparison. By 

changing the light source, it was observed that movement of the fiber in random bending 

configurations was causing less change in the intensity image recorded at the bundle output in the 

case of laser diode and no noticeable change in the case of the LED illumination. For all the 

different light sources, the rest of the experimental setup was kept the same as described in the 

Figure 31.  

In Table 7, the summary of the image reconstruction results is presented for the three datasets 

obtained for the difference sources evaluated on test images recorded before and after changing 

the bending configuration of the fiber bundle. First, it is important to notice that reduction of the 

downsampling applied on the fiber bundle output results in improved reconstruction of the MNIST 
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phase inputs; the SSIM is calculated 0.88 for the 256x256 image size as opposed to SSIM of 0.82 

obtained for the 64x64 image size reported in the previous section (Figure 54). Secondly, a 

comparison among the reconstruction results reported in Table 7 concerning the MNIST database, 

shows increase of the U-net reconstruction performance, when the coherence of the light source 

and the wavelength are decreased. In the last column of Table 7, a qualitative measure of the 

degradation of the DNN capability to recover the proximal phase image is reported. The 

degradation metric is calculated as a division between the MSE and SSIM after bending over the 

MSE and SSIM before bending; values close to one imply high resistance of the reconstruction 

against bending induced noise in the data. 

 

Table 7. Image reconstruction results for inputs obtained from MNIST and MNIST-Fashion databases in the case of 
three light sources. The results are presented for test data obtained without moving the fiber and after the fiber is set 
in a new configuration to study the effects of bending in the performance of the U-net DNN. 

Laser source Database 
Metrics 

Before bending After bending Degradation 

700nm 
(CW tunable laser) 
Lcoherence≈1x103 m 

MNIST 
MSE: 0.047±0.020 
SSIM: 0.88±0.04 

MSE: 0.103±0.031 
SSIM: 0.78±0.04 

MSE: 2.2 
SSIM: 0.88 

MNIST-F - - - 

632nm 
(Laser diode) 
Lcoherence≈1x102 m 

MNIST 
MSE: 0.043±0.019 
SSIM: 0.89±0.03 

MSE: 0.060±0.023 
SSIM: 0.85±0.04 

MSE: 1.4 
SSIM: 0.95 

MNIST-F 
MSE: 0.014±0.010 
SSIM: 0.83±0.09 

MSE: 0.049±0.024 
SSIM: 0.64±0.13 

MSE: 3.5 
SSIM: 0.75 

625nm 
(LED) 
Lcoherence≈1x10-5 m 

MNIST 
MSE: 0.041±0.022 
SSIM: 0.87±0.04 

MSE: 0.046±0.018 
SSIM: 0.88±0.03 

MSE: 1.1 
SSIM: 1.01 

MNIST-F 
MSE: 0.008±0.006 
SSIM: 0.87±0.07 

MSE: 0.006±0.004 
SSIM: 0.88±0.06 

MSE: 0.75 
SSIM: 1.01 

 

In Figure 57, the reconstruction results generated by the U-net for one example of the digit 4 is 

presented for each light source. The three columns of images refer to the different laser sources; 

the first column corresponds to CW laser illumination at 700 nm (Figure 57 a, d, g), the second to 

the laser diode (Figure 57 b, e, h) and the third to the LED (Figure 57 c, f, i). In the case CW laser, 

for which the performance degradation is severe as shown in Table 7 (MSE almost twice worse), 

the reconstructed image of the digit by the U-net is not recognizable in Figure 57 g. Remarkable 

reconstruction quality is though achieved in the case of LED illumination. The fidelity of the 

reconstructed phase images is verified by both the images presented in Figure 57 c, f, i and by the 

metrics, MSE and SSIM reported in Table 7; no significant change is observed when the trained 

model is tested on data collected after bending the fiber bundle in a new configuration (Figure 57 

i).  

As discussed in the subsection 7.2.3 of the thesis more complex images (CIFAR-10) in terms of 

features but also intensity dynamic range (gray levels) present a more challenging task for 
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reconstruction by DNN algorithms in comparison to MNIST binary like digits. Hence, degradation 

of the image quality after bending is expected to be more severe the more complicated the input 

images in the U-net are. Phase inputs from the MNIST-F dataset are used to train and test the U-

net performance in the case of gray scale inputs. The image quality of the reconstructions is 

severely lower after the fiber is bent when the laser diode source is used while it is remains 

unchanged for the image data acquired with the LED illumination. The quality metrics of the 

reconstruction of MNIST-F phase images propagating through the fiber bundle are presented in 

Table 7 together with the results obtained for MNIST for comparison. Examples of the image 

reconstructions for the two light sources in the case of MNSIT-F can be found in more detail in the 

Appendix A3. The results summarized in Table 7, support the assumptions concerning the effect of 

both wavelength and coherence of the light source on the bending sensitivity of the fiber bundle 

endoscope.  

 

 

Figure 57. U-net DNN reconstruction results for the three light sources for data acquired after bending the fiber 
bundle. a-c) Fiber bundle output downsampled at 256x256 pixels, d-f) the corresponding ground truth image and g-i) 
the reconstructed images by the DNN for the respective inputs (a-c). The light sources are indicated as: S1 for the 
tunable laser at 700nm, S2 for the laser diode at 632nm and S3 for the LED at 625nm. 

 

 

7.4 Deep learning assisted phase contrast endoscope 

In the case of amplitude modulated inputs described in previous section information could be 

accurately retrieved by conventional image processing but significantly enhanced by DNNs. 

Nevertheless, in endoscopy tissue samples usually offer low contrast for bright field microscopy 
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because they are mostly transparent, phase objects. In clinical biopsy, contrast between different 

parts of the cell such as the nucleus or mitochondria is generated either by fluorescence dyes that 

attach selectively in the desired parts of the cell or tissue or by absorption-based staining 

chemicals. Staining protocols allow fluorescence or bright field microscopy to inspect the 

morphology of the biological sample. Despite of the well-established staining protocols in 

histopathology, certain shortcomings are present related to the tissue viability and result 

reproducibility. It has been observed that the final image of a stained biological sample can differ 

from one histopathologist to another who performs a specific staining protocol, or even from 

sample to sample treated by the same protocol and expert. As a result, artefacts generated during 

the sample preparation process can introduce uncertainty in the result interpretation by the final 

user [160,180]. In addition, most of the chemical reagents used for fluorescence or absorption-

contrast microscopy are only suitable for ex vivo imaging of fixed biological specimens. Bio-

compatible staining protocols partly solve possible toxicity problems but they might interfere with 

the natural processes in the tissue, causing an unpredictable biological response.  

As a consequence, label-free imaging techniques have attracted great interest over the years for 

biomedical imaging [158,160,180–183]. Label-free microscopy can be achieved in different ways, 

namely taking advantage of the endogenous autofluorescence of the tissue, recording second-

harmonic generation signal originating from the structural properties of the specific sample, 

Raman and phase microscopy [93,121,122,154,158,160,173–176,180,181,184,185]. In particular, 

phase contrast imaging and digital holographic microscopy [173,186–188] are widely used for 

imaging of transparent (phase) objects. Inexpensive illumination sources and low-phototoxicity 

make phase imaging a suitable microscopy method for both quantitative and qualitative phase 

measurements, which can be realized both in vivo and ex vivo. Moreover, the emergence of 

machine learning has managed to bridge the gap between different microscopy methods using 

data-driven DNNs to translate the information among different modalities such as: intensity to 

phase imaging [59–61,158], phase, autofluorescence and multiphoton microscopy to H&E 

(haematoxylin and eosin) stained bright field imaging [160,180,183], confocal to stimulated 

emission depletion microscopy [156] etc. 

In this section, information translation via deep learning is introduced in the field of fiber 

endoscopy. This novel approach aims to enhance the image quality of a commercial endoscope by 

introducing further imaging modalities. Specifically, it is shown that bright field images obtained at 

the distal facet of the fiber bundle can be converted to phase images revealing details that are not 

easily (if not at all) detected in the original bright field image. It has been already demonstrated 

that phase imaging from intensity-only image recordings is possible by using the intensity 

variations caused by the Fresnel propagation [158]. In this study, the information content in the 

intensity image comes mainly from the inherent scattering of the tissue, the high-frequency 

filtering by the finite NA of the optical components and partially induced by the core-to-core 

coupling. Therefore, DNNs can be used to not only to improve the intensity image resolution 

beyond the core sampling, but also to reconstruct the phase information of the biological sample 

under examination. The presented technique could be generalized for different microscopy 
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methods such as fluorescence or confocal by properly training the DNN model to include further 

information channels allowing for digitally integrated multimodal endoscopic imaging. 

 

7.4.1 Methods 

7.4.1.1 Optical apparatus 

Figure 58 shows the experimental setup that is built to generate the necessary datasets for 

training a DNN to translate intensity images of biological samples recorded by fiber bundle 

endoscope to phase images. The optical setup consist of two parts: a digital holographic 

microscope part implemented using a diode pumped solid state (DPSS) laser emitting at 532 nm 

and the fiber bundle imaging system using a red LED (Thorlabs, M625L4, 625 nm) for sample 

illumination. The proposed configuration is built in a way to exploit the LED incoherent 

illumination, which shows good quality reconstructions results as confirmed in the previous 

paragraph even in the presence of bending, and the coherent laser source to generate high 

contrast holograms of the sample, from which the phase image of the sample is extracted. The 

phase images of the biological samples obtained by the holographic recording serve as ground 

truth for the DNN training, while the intensity images of the sample collected through the fiber 

bundle will be the inputs in the DNN algorithm. 

 

 

Figure 58. Experimental setup for collecting bright field images of tissue samples through the SCHOTT fiber bundle 
(red light path) and the digital holographic microscope used to obtain the phase information from the sample (green 
light path). The digital holography is performed using the coherent beam of a DPSS laser emitting at 532 nm. The fiber 
imaging is performed by illuminating the sample with a low power red LED source emitting at 625 nm. The two light 
sources have been properly aligned to illuminate the same area of the sample and spectral filters are used to separate 
the signal recorded by each source on the two CCD cameras. (L = lens, OBJ = microscope objective, HWP = half-wave 
plate, PBS = polarizing beam splitter, BS = beam splitter, PH: pinhole) 
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For the digital holographic microscope the beam of the green DPSS laser is spatially cleaned using 

a pinhole (PH 1: 100 μm) in front of a microscope objective of 5x magnification (Newport, 

NA=0.10) and then collimated by a 200 mm lens (L1). Similarly to the previously described 

holographic setups, the expanded beam is split into two arms, the reference and illumination arm, 

by means of a polarizing beam splitter (PBS). A halfwave plate (HWP 1) placed after the laser and 

combined with the PBS controls the laser power ratio between the two arms. A second halfwave 

plate (HWP 2) after the PBS ensures that the reference and illumination path have the same 

polarization when they recombine through the beam splitter (BS 1: Thorlabs, BS013, 50:50) to 

form digital off-axis hologram on the camera (CCD1: Chameleon 3, 1024x1280 pixels, Mono, Point 

Grey). In the illumination arm, the sample is placed in front of the laser beam and it can be moved 

in space by a 3D motorized stage (Thorlabs, T-cube). A 4f system (OBJ2: Newport, 10x, NA=0.25, 

L2: f=80 mm) magnifies the sample on the proximal fiber facet. The image plane of this first 4f 

system is split into two by another beam splitter (BS 2: Thorlabs, BS028, 90:10) as illustrated in 

Figure 58. The image plane 1 corresponds to the proximal fiber facet plane and the image plane 2 

is located at the focal distance of a second 4f system (OBJ3: Newport, 20x, NA=0.45, L3: f=150 

mm) placed in the illumination arm to further magnify the sample on the CCD1 where the digital 

hologram is formed. This part of the experimental setup is recording the digital hologram of the 

area of the sample so that its phase image can be afterwards extracted. 

The fiber imaging of the tissue sample is performed using the red LED source (Thorlabs, M625L4, 

625 nm) that is integrated in the same path with the green laser illumination arm. In order to be 

well collimated the LED is spatially filtered twice as shown in Figure 58. The LED light is tightly 

focused using a 40x microscope objective (OBJ5: Newport, NA=0.65) onto a pinhole of 200 μm (PH 

2) and then recollimated by a lens (L5: f=100 mm). Then the beam size is demagnified by a 

telescope of two lenses (L6: f=200 mm and L7: f=50 mm) and further cleaned by adding another 

pinhole (PH 3) with 500 μm diameter at the focal plane of L6. Τhe red beam is aligned in the same 

path with the green beam to ensure that they both illuminate the same area of the sample. The 4f 

system (OBJ2-L2) which is located just after the sample forms the image on the fiber bundle facet 

as described above. The fiber bundle used for this experiment is an 1 m long SCHOTT leached fiber 

bundle with 7,800 individual cores (IBULTRAVIEW, 450 μm core size). The diameter of the cores is 

approximately 2.5 μm, NA of 0.35 and the core separation 4.5 μm. The fiber bundle output is 

imaged on a second camera (CCD2: Chameleon 3, 1024x1280 pixels, Mono, Point Grey) by means 

of a magnification system (OBJ4: Newport, 10x, NA=0.25, L4: f=200 mm). A long pass filter (at 550 

nm) is placed in front of the proximal fiber facet to block the green laser beam from entering the 

fiber bundle so that the imaging of the sample is performed using the LED light only. Likewise, a 

bandpass filter with a central wavelength at 532nm (20nm bandwidth) is added in front of the 

CCD1 to prevent the LED incoherent light from generating extra background noise in the hologram 

recording.  

An important parameter for the data collection in the above system is to verify that the image of 

the sample delivered by the fiber bundle and recorded by CCD2 is aligned with the corresponding 

digital hologram generated on CCD1. This can be achieved according to the following steps: 
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Figure 59. Description of the physical and digital alignment between the proximal and distal images of the dataset. a) 
Image of the proximal fiber facet when white light illumination is used at the distal side at CCD1 in Figure 58, b) the 
amplitude mask that corresponds to the facet area at CCD1, c) the reference beam aligned at the center of the 
proximal facet region indicated in image (a), an example of a digital hologram recorded at CCD1 multiplied by (b), g) 
pattern image at the proximal camera and f) the corresponding image of (g) through the fiber bundle captured by 
CCD2. Scale bar: 100 μm. 

 

1. The sample is placed in the right position so that it is in focus at both cameras, CCD1 and 

CCD2.  

2. The laser and LED are blocked and a white light source is illuminating the fiber from the 

distal side backpropagating in the system. 

3. The sample is moved so that an empty from sample region, where only the glass coverslip 

reflects the white light, which is then imaged on the CCD1 (Figure 59a). In this way, an 

image of the core at the proximal side is formed at the same camera that records the 

hologram. 

4. A digital circular mask is then generated (Figure 59 b), based on the proximal facet image 

(Figure 59 a) and it is used to select the area of the hologram (Figure 59 c) which is the one 

that corresponds to the one imaged by the fiber bundle. 

5. Then the reference arm is unblocked and the reference is aligned to overlap exactly with 

the proximal facet image (Figure 59 d). 

6. After the proximal side is correctly aligned, there is one final step to take into account. The 

individual cores in the SCHOTT bundle are twisted and this results in a rotation of the 
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image by the distal fiber side. In addition, mirrors, beam splitters and lenses, flip up-down 

and left-right the images so it is important to make sure that the fiber bundle output is 

processed properly to match the proximal input. To do so we project a known pattern at 

the proximal side (Figure 59 e) from the USAF-1951 resolution target and record the fiber 

bundle output at CCD2 (Figure 59 f). Then the output image is transformed digitally so that 

it matches the input image captured by the CCD1. 

Following the procedure as described in these steps, alignment of both fiber facets physically can 

be achieved. Additionally, all the information needed to process and correct for the rotation or 

slight shift induced misalignments between the image pairs can be performed digitally. The data 

acquisition is implemented in Matlab. The Matlab code controls and synchronizes the 3D stage 

with the sample, the proximal hologram recording on CCD1 and the distal fiber output image 

recording on CCD2. A digital phase extraction code was also demonstrated to provide a continuous 

visual feedback of the sample phase by processing the CCD1 frames of the corresponding 

hologram images. Using this Matlab code and moving in an area outside the sample, it is also 

possible to minimize the aberrations and misalignments existing in the digital holographic part of 

the optical setup by properly moving the positions of the optical components while monitoring the 

real-time phase feed from the Matlab window, thus achieving a flat phase profile. The digital 

phase extraction is made following the same process described in the Chapter 2 of the thesis. 

 

7.4.1.2 Sample preparation 

In the experiments presented in the following paragraph the samples are thin histological tissue 

sections of mouse liver placed on thin glass coverslips (175 μm thickness). The 10 μm thick tissue 

sections are obtained by the EPFL histology core facility (HCF) using a cryostat microtome device 

and stored in the -20oC. Before the experiments, the samples were fixed using cold 4% 

paraformaldehyde (PFA) in 0.1 M phosphate-buffered saline (PhBS) for 30 min and rinsed with PBS 

three times for 5 minutes each. Afterwards the sample is sealed by another thin square coverslip 

using double sided tape as spacer to avoid dehydration during the measurement. 

 

7.4.1.3 Deep Neural Network architectures 

For the phase imaging endoscope demonstrated in this section two different DNN architectures 

are used: a U-net type and a Generative Adversarial Network (GAN) type of DNN as described in 

Figure 60. The U-net architecture used in the experiments presented in the next paragraph has the 

same structure as the one presented previously (Figure 55). GANs are advanced DNN algorithms 

that are capable of learning deep representations from data that are not annotated in detail and 

they find applications in various tasks such as image super-resolution, image classification, image 

synthesis and so on [189]. GANs consist of two DNNs that are known as generator and 

discriminator. The generator is a DNN that generates output data from noise or certain inputs and 

the discriminator is a DNN classifier that receives the generator output and characterizes them as 

fake or as true if they correspond to ground truth data. The generator and discriminator networks 
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are trained simultaneously in an adversarial process. During the training process the two networks 

compete in a way that provides high quality results, since the generator gets optimized to produce 

more realistic data, while the discriminator on the other hand tries to improve its classification 

accuracy. Another intuitive way to understand the GAN training principle is to consider the 

discriminator as a highly complex error function that enhances the quality of the images produced 

by the generator. After the training process is completed the generator model is saved and it is the 

one used to produce the desired images depending on the task.  

 

 

Figure 60. GAN-type DNN used for the reconstruction of phase images from the intensity output of the fiber bundle. 

 

In this work, a special case of GAN that is called conditional GAN because during training instead of 

receiving random noise as input, it receives the intensity images of the fiber bundle output. The U-

net architecture described in Figure 55 is integrated unchanged as the generator part of the GAN 

DNN. The discriminator part of the GAN is a classifier type DNN similar to the VGG DNN described 

in the Chapter 6. The main difference is that each convolutional block of the discriminator DNN 

consist of only one set of 2D convolution and batch normalization operations instead of two in the 

previous case (Figure 32 a). Moreover, the activation function in this case is changed from ReLU to 

Leaky ReLU as suggested in most of the works using GAN-type DNNs for super-resolution to 

achieve more stable training [190,191]. Different types of loss functions are used for the U-net and 

the GAN are explained in more detail in the following paragraphs. An Adam-type optimizer is used 

with a learning rate of 10-5 for the U-net and 10-4 for the GAN. For the implementation of the 

DNNs a computer equipped with the NVIDIA GeForce GTX 1080Ti graphics processing unit is used 

as in the previous cases presented in the previous chapter. More details on the GAN used in for 

the results presented in this section can be found in the Python code of the Appendix A4.  
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Figure 61. a) Intensity-only image of a liver tissue sample, b) intensity image of the hologram of the same liver tissue 
(the red square shows a magnified a region of the hologram to visualize the interference fringes) and c) the extracted 
phase from (b). The red arrows show low phase areas that correspond to the cell nucleus and the yellow arrows show 
small features of high phase values attributed to lipids. The scale bar is 10 μm 

 

7.4.2 Phase endoscopy of liver tissue samples using deep learning 

For many pathologies, detailed understanding is based on information available at a cellular level 

of a tissue instead of its macroscopic structural image [175,182,192,193]. Bright field endoscopy 

can only provide limited information about the cell image of a certain tissue sample based on the 

low contrast generated by the scattered and diffracted light. However, as stated before phase 

images offer sufficient contrast for the inspection of cellular structure details despite the low 

refractive index contrast among the cell components. Phase-contrast endoscopy has been 

attempted through fiber bundles using dark-field based techniques by illuminating the sample 

with sharp angles in order to detect high frequency components of the image that bright-field 

microscopy cannot because the small refractive index variations do not modify the intensity of the 

collected light through the sample [177]. In this last section of the thesis, a novel method to obtain 

not only phase contrast images but also quantitative phase measurements through a fiber bundle 

endoscope is proposed using deep learning. In the next paragraphs, without loss of generalization, 

only the normalized phase profiles between 0 and 1 are presented for the studied tissue samples 

for simplicity. The proposed method can be also translated to multiple imaging modalities and 

opens the way of low-cost digital modification of current fiber bundle based endoscopes to 

expand their imaging content. 

The biological samples investigated in the experiments described in this section consist of 

histological slices of mouse liver tissue fixed on a glass slide and placed in the experimental setup 

depicted in the Figure 58. In the digital holographic microscope part of the optical setup, both the 

intensity-only image (Figure 61 a) and the digital hologram (Figure 61 b) of the sample can be 

recorded by blocking or not the reference arm, respectively. Using the principles of digital 

holographic phase extraction, the corresponding phase map of the sample can be visualized 

(Figure 61c). The images shown in Figure 61 are masked by a circle that corresponds to the fiber 

bundle core diameter (as described in the Methods paragraph above). Because of the thickness of 
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the sample, phase wrapping can be present in the phase map extracted from the hologram. 

Therefore, an extra processing step is used for phase unwrapping using the PUMA algorithm as 

proposed by Bioucas-Dias and G. Valadao [194]. Noise or aliasing in the raw extracted phase of the 

hologram can affect the performance of the phase unwrapping and create artefacts of very high or 

very low phase values in the unwrapped image. Although further optimization of the phase 

extraction is needed to achieve accurate quantitative measurements, this method is sufficient for 

training the DNNs to perform phase imaging through the fiber bundle endoscope, as it is further 

explained in the following paragraphs. 

Figure 61 c shows that phase imaging reveals details of the sample that are otherwise 

undetectable in the intensity-only images. Specifically, the cell nuclei are well defined in the phase 

image and the red arrows indicate some of them for clarity. In addition, some bright round parts 

shown in the cell indicated by the yellow arrows are most probably related to lipid droplets often 

found in a cell  [109,195].  

The training dataset is created by cropping a rectangular region of the unwrapped phase in a way 

that matches the corresponding fiber bundle output intensity image and form a training pair as 

shown in Figure 62. Different image pairs are collected by raster scanning in x-y plane of the 

sample in front of the imaging objective (OBJ2) using a 3D motorized stage. Every step of 2 um a 

hologram and a distal intensity image is captured and 4000 images of different sample regions are 

collected. Moreover, data augmentation is performed to ensure that enough pairs are available 

for the network training. The data augmentation includes 4 rotations of 90o and a vertical flip for 

each rotation. Data augmentation is necessary in most cases to avoid long measurements, which 

could cause degradation of the sample. 

 

 

Figure 62. DNN training image pair, a) fiber bundle output and b) its proximal phase extracted by the holographic 
setup at the proximal side. Scale bar: 10 μm. 

 

7.4.2.1 Phase imaging using U-net DNNs 

After the images have been processed and cropped to have a co-registered image pair (as much as 

possible), they are downsampled to 256x256 pixels to train the DNN. The U-net type DNN 



Chapter 7: Deep learning-enhanced imaging through fiber bundles 

113 

described in the previous paragraph (Figure 55) is used to reconstruct the phase image of the 

tissue sample having as inputs the corresponding intensity images as they are recorded at the 

distal facet of the fiber bundle. The hyperparameters of the U-net are kept similar to the previous 

paragraph (loss function=MSE, Adam optimizer: learning rate=10-5, batch size=10, epochs=400). 

25,000 image pairs comprise the dataset used for the DNN training, from which 90% were part of 

the training set, 5% used for validation and 5% for testing the DNN performance. The average time 

of the training lies in the range of 5-6 h on the available computer.  

The results of the reconstruction using the above parameters render a smoothed output image of 

the phase (Figure 63 a-iii). Despite of the smoothing effect, the information content of the 

reconstructed image shown Figure 63 a-iii is much higher concerning the cellular morphology of 

the tissue sample if compared to the pure intensity image sampled by the fiber bundle (Figure 63 

a-i). Darker regions of low phase correspond to the cell nucleus. The smoothing effect of the 

reconstruction is often observed when MSE is selected as a loss function. MSE is not a pixel-wise 

loss and calculates a global error in the image reconstruction and therefore large errors in some 

pixels are compensated by small error in other areas of the image. MSE tends to keep the overall 

content of the image but it weakly assists the training of the network to improve structural details 

of the reconstructed image. 

It has been proposed by Li and Barbastathis [196] that pre-processing of an image to enhance the 

high frequency components can help to achieve a better reconstruction, because it compensates 

for the high frequency loss. In this work, an alternative way to deal with the reconstruction 

smoothing is proposed by introducing a custom loss function. The suggested custom loss consists 

of two error-determining components, the MSE and the mean Sobel error (MSoE) that are 

weighted based on the quality of the reconstruction results. To calculate the MSoE, the Sobel filter 

is applied to both the predicted image from the U-net and the ground truth and then the mean 

squared error of the Sobel convolved images is calculated.  

The Sobel filter is well-known in image processing because it is often used in edge detection 

applications. In fact, it is a 3x3 kernel matrix operator that calculated the gradient of intensity in an 

image point by point. Convolution of an image with the Sobel operator results in an edge 

enhanced version of the image that contains the areas of high intensity gradient. The Sobel 

operator consists of two 3x3 kernel matrices gx and gy (Equation 27), one for the x and one for the 

y derivative of the image. If 𝐼 is the image under processing, the final intensity gradient magnitude 

of the image 𝐼𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 is given by the square root of the sum of the convolutions of 𝐼 with each 

kernel, as described by the following equations: 

𝑔𝑥 = [
+1 0 −1
+2 0 −2
+1 0 −1

] 𝑔𝑦 = [
+1 +2 +1
0 0 0
−1 −2 −1

] 𝐼𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = √𝑔𝑥 ∗ 𝐼 + 𝑔𝑦 ∗ 𝐼 

Equation 27. Definition of the Sobel filter operator 
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Figure 63. The reconstruction results for different learning parameters are presented. In all cases i) the DNN input, ii) 
the ground truth phase image, iii) the reconstructed phase from (i), iv) and v) the maximum intensity gradient map 
after applying the Sobel operator at the phase images (ii) and (iii) respectively. The phase image is reconstructed a) 
from distal fiber output using U-net with MSE loss and b) U-net with MSE and Sobel error custom loss, c) from the 
intensity at the proximal fiber side using U-net with MSE and Sobel error custom loss and d) from distal fiber output 
using a GAN-type DNN with MSE and Sobel error custom loss for the generator. Scale bar: 10 μm. 
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In Figure 63, the high frequency gradient maps are included for both the ground truth and the 

reconstructed images calculated using the convolution with the Sobel operator. The rows iv and v 

of Figure 63 present the high frequency gradient maps for the different DNN results, in order to 

directly compare the effect of various loss functions on the high frequency content of the 

reconstructions performed by the U-net DNN. The quality metrics of the phase reconstruction 

through the fiber bundle are also summarized in Table 8.  

In the case of phase imaging using a MSE loss functions the smoothing effect is evident not only 

comparing the ground truth (Figure 63 a-ii) and the reconstructed image (Figure 63 a-iii) but also 

by their corresponding high frequency maps shown in Figure 63 a-iv and Figure 63 a-v, 

respectively. However, implementing a custom loss related to the high frequencies of the image, 

such as the MSoE, improves significantly the quality of the U-net generated images reducing the 

MSE to 0.004 and reaching a SSIM of 0.90 instead of the 0.82 achieved by simply using an MSE loss 

function. This improvement is even more evident in the respective Sobel edge maps of the ground 

truth and reconstruction presented in the Figure 63 b-iv and Figure 63 b-v. After testing different 

combinations of weights between the two error functions, the best results are reached when MSE 

and MSoE are weighted in the loss function with a ratio of 1:20 respectively.  

For further evaluation of the results of the deep learning-based phase imaging through the fiber 

bundle, it is interesting to compare the performance of U-net to reconstruct the sample phase 

from the intensity images of the sample recorded on the CCD1, before the fiber bundle (Figure 

58). The training parameters of the U-net are kept the same to correlate the results. A dataset of 

image pairs that consist of intensity-only images of the sample as they would have recorded by a 

bright-field microscope and their respective phase map is generated by analyzing the holograms. 

Specifically, the intensity images are obtained from the amplitude part of the processed hologram 

recorded at the proximal end (Figure 63 c-i) and serve as inputs to the U-net DNN instead of the 

fiber bundle outputs, while the phase part of the hologram is used again as the ground truth 

(Figure 63 c-ii).  

The results presented in the third row of Table 8 show that the reconstruction of the phase from 

the corresponding intensity image is of higher quality (Figure 63 c-iii) than the one obtained when 

the intensity of the sample is recorded at the distal facet of the fiber bundle (second row of the 

table). The pixelated imaging caused by the fiber bundle sampling is found to hinder the 

reconstruction performance. It is important to acknowledge though, that the quality of the DNN 

generated phase images in the two cases is not significantly different considering the complexity 

of the inversion problem. Furthermore, in the case of reconstruction based on the intensity 

images of the sample before the fiber bundle, the co-registration of the information between 

intensity and phase image pairs is ideal, since they are part of the same image. On the contrary, in 

the case of the fiber bundle intensity images small shifts can exist increasing the difficulty of the 

reconstruction further to core sampling effect. Although these errors are present in the phase 

recovery from the fiber distal image, the Sobel error factor in the custom loss seems to improve 

the phase reconstruction of the endoscope in a comparative fidelity to the one reported in the 

case of proximal intensity images as DNN inputs.  
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Table 8. Phase reconstruction results through the fiber bundle endoscope for different inputs and DNN learning 
parameters. 

DNN 
architecture 

Loss function DNN input Metrics 

U-net (256x256) MSE 
Fiber distal  
Intensity image 

MSE: 0.006±0.003 
SSIM: 0.82±0.02 

U-net (256x256) MSE + SOBEL 
Fiber distal  
intensity image 

MSE: 0.004±0.004 
SSIM: 0.89±0.02 

U-net (256x256)  MSE + SOBEL 
Proximal sample  
Intensity image 

MSE: 0.003±0.003 
SSIM: 0.91±0.04 

GAN (256x256) MSE + SOBEL (G) 
Fiber distal 
Intensity image 

MSE: 0.003±0.002 
SSIM: 0.92±0.03 

 

It is important to note that part of the high frequency content in the phase images, which serve as 

ground truth for the training, is attributed to the speckle noise induced by the coherence of the 

laser source. Therefore, it can be assumed that the U-net reconstruction is closer to the real 

sample phase than indicated by the comparison with the “non-perfect” ground truth. In the 

future, this problem can be addressed by using less coherent illumination in the digital holographic 

setup like a diode laser or an LED.  

 

7.4.2.2 Phase imaging using GANs 

Finally, the advantage of using a GAN-type DNN for the realization of a fiber bundle phase 

endoscope is investigated. GANs have shown remarkable results in super-resolution problems due 

to the pixel wise error monitoring during training instead of the global image one achieved by 

conventional architectures such as the U-net presented before. The GAN architecture which is 

used in the experiments discussed is described in the previous section 7.4.1.3 and it consists of a 

U-net type generator and a VGG-type classifier discriminator. Based on the promising 

reconstruction quality achieved using the custom loss of MSE and MSoE implemented in the U-net 

DNN, the same parameters are kept for the generator. For the discriminator, binary cross-entropy 

is used as a loss function. The final loss consists of the content and adversarial loss with a 

weighting ratio 1000:1. The training of the GAN takes about 3 days using a batch size of 10, 400 

epochs.  

The results of the GAN phase reconstruction are included in Figure 63 d for comparison with those 

achieved by the U-net for the same custom loss. The average MSE and SSIM among the 500 test 

images are 0.003 and 0.92 obtained by the generator after GAN training is finished. A significant 

improvement in the image quality of the reconstruction is observed with respect to the U-net with 

custom loss which is apparent from differences between the Figure 63 d-iii and the Figure 63 b-iii. 

Moreover, the quality of the recovered phase image from the intensity-only fiber bundle output 

using the GAN is equally good to the one obtained in the absence of fiber, namely using the 

intensity image of the sample at the proximal side (Figure 63 c). Conceptually, the superior quality 

of phase imaging using the GAN architecture can be better perceived looking at the related high 
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frequency maps presented in Figure 63 d-iv and Figure 63 d-v, which confirm that the majority of 

the high frequency components of the ground truth phase image are preserved and they are 

present in the reconstruction. GAN networks are usually difficult to handle in terms of 

optimization of the training parameters and memory requirements. During the training the 

generator and discriminator networks compete with each other to generate high quality data and 

therefore, their loss functions need to stay stable between the epochs. This is an important detail 

to monitor in order to determine if the GAN training was successful. In Figure 64, the losses of the 

GAN trained model, which generates the results presented in Figure 63 d, show that the model is 

properly trained and there is no unbalanced behavior between the generator and the 

discriminator over the epochs. 

 

 

Figure 64. Generator and discriminator network losses over the epochs. 

 

7.4.2.3 Bending studies for the phase imaging endoscope 

So far, it has been demonstrated that DNNs can be trained to transform an intensity image 

collected through a commercial fiber bundle to the respective phase image map of the studied 

sample, which implies that phase imaging can be integrated in current fiber bundle endoscopes in 

a digital way. Finally yet importantly, evaluation of the deep learning-based phase imaging process 

is made with respect to the bending of the fiber bundle. Preliminary results suggesting bending 

insensitivity of our system were introduced in the previous paragraph 7.3 using the MNIST and 

MNIST-Fashion datasets. In the remainder of the section, the bending tolerance of the phase 

endoscope is also verified for the image datasets of the liver tissue sample. 

A liver tissue section is prepared and a new dataset is generated for training the DNN. Taking into 

account the remarkable results observed using a GAN to reconstruct the phase from intensity 

images recorded through the fiber bundle, the same DNN architecture is kept to explore the 

bending effect on the reconstruction quality. After the generator is trained with image pairs 

collected with the fiber bundle fixed at a certain bending configuration, the fiber bundle is set to a 

different bending shape and 40 new images of a different area of the liver tissue are collected. 
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Furthermore, aiming to mimic the bending effect in real conditions of using an endoscope, which 

is more dynamic, namely the fiber configuration constantly changes, 10 more images were 

acquired while the fiber bundle simultaneously moves in a random way. These new sets of test 

images are then used as inputs to the trained model of the generator to test the reconstruction 

performance related to the bending.  

In Figure 65, the three rows of images correspond to the phase reconstruction before bending the 

fiber, after changing the fiber to a new configuration and in case of real time random bending. The 

values of the MSE and SSIM, reported next to the images for each case, show some degradation of 

the phase reconstruction when bending of the fiber bundle changes. The reduced performance of 

the DNN can be attributed to the degradation of the sample itself, since the samples for different 

bends were acquired almost a day after the end of the training dataset collection. The experiment 

could be repeated by acquiring the bending test images in the beginning of the measurement and 

the training dataset which takes longer to complete can be collected afterwards. In this way, GAN 

would probably provide more valid results.  

 

 

Figure 65. GAN reconstruction results in the presence of bending. a-c) Reconstruction from data obtained in one fiber 
bundle bending configuration, d-f) data obtained after bending the fiber at another position without retraining the 
GAN, g-i) data obtained while continuously bending the fiber in random ways without retraining the GAN. Scale bar: 
10 μm. 
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Overall, the phase reconstruction through the system is good and it actually provides good phase 

images, which in some cases are better than the available ground truth images. This result actually 

verifies the hypothesis of a faulty ground truth possibly because of sample degradation. Another 

solution would be also to acquire the training data while the fiber is bent in different 

configurations. In this way, whatever perturbation of the system in case of moving the fiber will be 

included in the training dataset information and be accounted for as it was proposed for the 

MMFs  [197].  

 

 

7.5 Conclusions 

In this chapter, it is demonstrated for the first time that DNN can be used not only to improve the 

imaging through a fiber bundle but also to provide a flexible platform to assign further imaging 

modalities in an existing endoscope. Specifically, phase imaging through a commercial fiber bundle 

endoscope is accomplished using the DNNs to translate the bright field intensity images relayed at 

the proximal camera to the corresponding phase map of the sample. Investigation of different 

light sources shows that incoherent illumination helps to a have bending tolerant imaging through 

the bundle. In addition, the importance of the DNN architecture is underlined, especially for 

delicate reconstruction processes of biological samples such as the ones presented in this thesis. 

GAN-type DNNs result in high resolution images with minimal loss of information, but they are 

computationally more heave and slow in terms of training time. At a small expense of 

reconstruction quality a simpler DNN architecture such as the U-net type, combined with a custom 

loss can achieve sufficiently good results in shorter training time. Finally, the findings of this 

chapter show a novel way of digital upgrade of fiber bundle endoscopes, which can be further 

expanded to fluorescence imaging or other microscopy techniques. 
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Summary  

Fiber endoscopy through multimode and multicore fibers was investigated in the framework of 

the present thesis in two different approaches. In the case of multimode fibers, the distribution of 

an input image among the spatial modes of the fiber does not allow the information to simply 

relay through the fiber length but results in the formation of speckle patterns. Multicore fibers on 

the other hand, can image directly an object using the individual single mode cores as pixels. 

However, the crosstalk between the cores and the inherent image pixelation result in a low 

resolution image. Therefore, the fiber imaging is attempted, by a first approach, which applies 

linear imaging transformations by calculating the transmission matrix of the fiber system using 

digital holography and wavefront shaping, while the second method follows a data driven 

interpretation based on deep learning. 

In the first part of the thesis (Part A), the principles of the transmission matrix technique for 

shaping the light through the two fiber types is explained. Using the transmission matrix method, 

we show that femtosecond pulses can be spatial and temporally focused through multimode and 

multicore fibers with high efficiency. The limitations in the focusing efficiency imposed by the 

nonlinear effects rising when high power femtosecond pulses propagate in fibers were explored 

for both fiber systems. The detailed characterization performed demonstrates that a high peak 

intensity focus spot can be generated despite the nonlinearities in the fiber reaching impressive 

peak intensity of 1.5x1013 W/cm2 (Chapter 4). These results manifest for the first time the potential 

of multimode fibers to integrate in novel applications such as material manipulation. Moreover, a 

dual modality endoscope based on multimode fiber, which provides not only imaging but also 

micro-surgery capabilities, was presented. Selective laser ablation of cochlear tissue is 

demonstrated through an ultrathin multimode fiber probe guided by the high resolution two-

photon fluoresce images obtained through the same tool.  

In the second part (Part B), we explore deep learning as an alternative approach for fiber 

endoscopy. The basic concepts of the deep neural networks are initially discussed to offer the 

required background for understanding the experimental findings. In the Chapter 6, intensity 

speckle patterns are used to train a deep neural network algorithm to reconstruct and classify 

both amplitude and phase images. Impressive results were reported for multimode fibers up to 1 

km length, despite the instabilities observed in the system, which are causing the speckle intensity 

to rapidly change even for a constant input. The recovery of information from the intensity only 

images of the speckle patterns is also compared to the case in which the full field information is 

recorded using digital holography. For the datasets tested based on the MNIST database of 

handwritten digits, no difference in the performance of the input image reconstruction and 
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classification was observed, which verifies that deep learning is suitable for nonlinear mapping 

problems in computational imaging such as phase to intensity. Furthermore, the resilience of the 

deep neural networks in the presence of perturbations induced in the system was also evaluated 

for the specific case of the wavelength drifting. Two cases of wavelength drifting were studied. In 

the first case, the training set only consists of data obtained at a certain wavelength  while the 

speckles formed in the drifting wavelength range were not included in the training. In the second 

case, the training set includes data recorded in all random wavelengths within the drifting 

bandwidth. While the results in the first attempt show poor information recovery from the speckle 

patterns at wavelengths far from the training one, the classification of the input images in the 

second case shows interestingly superior results even for almost 100 nm of wavelength drift. 

Notably, the correlation of a speckle pattern for a certain input drops to 50% within 30 nm. 

Apart from the multimode fibers, fiber bundles or also called multicore fibers show improved 

imaging results when deep learning is used to remove the core sampling from the output image. 

We show that using an incoherent source helps to reduce the effects of core-to-core crosstalk on 

the image formation leading to a more bending insensitive system. Phase imaging through a fiber 

bundle is also reported in this thesis by training the network to translate the pixelated output 

image of a fiber bundle recorded in a bright field mode to its corresponding phase profile using 

digital holography to obtain the ground truth. High fidelity of the reconstructed phase is evaluated 

by metrics of MSE and SSIM, which reach values up to 0.003 and 0.92 respectively. GAN-type DNN 

is implemented to push the performance of the phase endoscope providing exceptional 

reconstruction results even when bending the fiber. The implementation of a phase contrast-

based fiber bundle endoscope using deep neural networks is concluding the results of the current 

thesis and suggests a machine learning way to digitally improve the current clinical tools. 

Overall, the results discussed in the present work propose two different ways to recover the 

information through different types of fibers that induce a kind of distortion when the input 

propagates from the object to the observer side. Each technique is characterized by advantages 

and disadvantages and in the end depends on the problem we need to solve which one is the 

correct pathway to follow. In brief, if working with a certain category of data and access in 

multiple examples is available, deep learning is a suitable technique to recover the information 

and it shows robustness against external perturbations such as the fiber bending, thermal, 

mechanical and wavelength drifts. On the other hand, generalization of the image reconstruction 

among samples that poses completely different features is not always achieved in a deep learning 

approach. On the other hand, wavefront shaping methods like the transmission matrix presented 

in this work need more demanding optical apparatus and they suffer from misalignments, 

mechanical drifts over time and generally perturbations, because they are calibration based 

techniques. However, for a stable system configuration, that implies no fiber bending among 

others, wavefront shaping can reproduce any desired field at the fiber end without loss of 

performance. If any of the system components change though, recalibration of the system is 

essential, hindering the real-time inspection in most of the cases. For endoscopic approach light 

control through a fiber system implies a needle-like rigid design which is feasible with the write 

optical engineering and packaging of the essential components. 
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Outlook 

During the research work in the context of this thesis we explored possible ways towards the ideal 

fiber endoscope based on multimode or multicore fibers. Considering the fiber imaging 

implementations described throughout the previous chapters, it is important to close with some 

suggestions for the future work on these projects.  

Particularly, we identified that nonlinearities harm the focusing efficiency achieved when using the 

measured transmission matrix of the system at high input pulse energies. The main reason is that 

the optimized wavefront to generate a high intensity focus is getting scrambled by the additional 

nonlinear phase factors generated in the system. Consequently, reducing the effect of 

nonlinearities or compensating for them should be targeted in the future in order to increase the 

energy throughput in the multimode fiber endoscope. One simple step is to stretch the pulse to 

account for the group velocity dispersion through the fiber length, which reduces the peak 

intensity on the focus. Doing so we gain in two ways: firstly, we achieve a shorter pulse at the 

focus spot at the fiber distal side and secondly the stretched pulse will inflict less strong nonlinear 

response along the fiber thus increasing the final focusing efficiency. Another possibility to 

improve the focusing efficiency through the fiber endoscope in the nonlinear regime is to modify 

the transmission matrix of the system. The transmission matrix is a linear transformation and even 

if it is measured in the presence of the nonlinearities cannot compensate the losses because once 

the focusing wavefront is projected on the proximal fiber facet the phase of each mode will be 

changed in a nonlinear way different from the measured on in case of the calibration database. 

Nevertheless, if we can compute this perturbation component of the matrix we can invert this 

degradation effect. For example measurements of input and output wavefronts with and without 

nonlinearities could help us calculated the perturbation component of the linear transmission 

matrix and it could be interesting to investigate.  

Concerning the bending sensitivity, inserting the fiber in a cannula has been proposed as an idea 

to prevent it from changing its configuration and therefore, sustain the imaging efficiency of the 

calibrated system. It would be indeed interesting to realize a rigid optical design that includes the 

basic components of the calibration in place, namely the SLM and the 4f system projecting the 

SLM wavefront on the proximal facet, so that afterwards the whole device can be moved and 

inserted in tissue for inspection. In addition, multimode fibers with specially designed refractive 

index profile between the core and the cladding could also be a solution to reduced bending 

sensitivity. 



Outlook 

  124  

Finally, deep learning potential in fiber endoscopy gave answers to many problems in imaging 

through different types of fibers but at the same time raised many ideas for further development. 

Starting from the final result, which demonstrates a fiber bundle-based phase endoscope that uses 

deep neural networks to translate the intensity only recording to a phase image, we can think of 

adding more modalities in the currently available endoscopes by suitably choosing the training 

ground truth. For example, autofluorescence has been already demonstrated to translate to H&E 

stained images that are more familiar to the medical doctors for interpretation. Another thought 

that we aim to implement is a compact lens system in front of the fiber bundle endoscope to 

access real-time phase imaging on a trained model. 

Furthermore, classification through multimode fibers showed impressive results for the MNIST 

database used as an input. Application in real tissue samples would be a fascinating follow up to 

investigate if the deep learning algorithms can perform tissue classification based on the speckle 

pattern intensities recorded at the user’s camera. Finally yet importantly, further understanding 

on how the physical system, meaning the fiber probe itself, and the number of trainable 

parameters are interrelated and how they need to be optimized according to the dataset in a 

more consistent way, is needed. 
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Appendix 

A1. Fiber modes 

Endoscopy through optical fibers was described in this thesis. A better understanding of the light 

propagation through the optical fibers is given in this Appendix section by solving the Maxwell’s 

equations considering the weakly guiding approximation for simplicity. Knowing the propagation 

constants and the mode profiles of a fiber is important to simulate and predict at a certain level 

the distal field distribution for a desired input in the fiber. 

Firstly, we start by writing the Maxwell’s equations in their general form: 

∇ ∙ 𝑫 = 𝜌𝑓𝑟𝑒𝑒  

A1.  1 

∇ ∙ 𝑩 = 0 

A1.  2 

∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
 

A1.  3 

∇ ×𝑯 = 𝐽𝑓𝑟𝑒𝑒 +
𝜕𝑫

𝜕𝑡
 

A1.  4 

In the equations above, E is always the electric field of the electromagnetic wave and B is the 

magnetic field, ρfree is the density of free charges and Jfree the surface free current density. We also 

define below D, the electric field displacement and H the magnetizing field. In the equations, we 

indicate the vectorial values with bold. P expresses the polarization of the medium in which the 

electromagnetic wave is travelling and is linearly related to the electric field 𝑷 = 𝜀0𝜒𝑬 (where χ is 

the electric susceptibility) in the case of a dielectric medium, M is the magnetization, ε0 is the free 

space permittivity and ε the permittivity of the medium and μ0 the free space permeability and μ 

the permeability of the medium.  

𝑫 = 𝜀0𝑬 + 𝑷 = 𝜀0𝑬 + 𝜀0𝜒𝑬 = 𝜀𝑬 

A1.  5 

𝑩 = 𝜇0(𝑯 +𝑴) 

A1.  6 
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We consider propagation in a dielectric medium, meaning that the medium is non magnetic, 

homogenous and isotropic, then M, ρfree, Jfree are zero and the polarization is linearly related to the 

electric field the four Maxwell’s equations are simplified to the following forms: 

∇ ∙ 𝜠 = 0 

A1.  7 

∇ ∙ 𝜢 = 0 

A1.  8 

∇ × 𝑬 = −𝜇
𝜕𝑯

𝜕𝑡
 

A1.  9 

∇ × 𝑯 = 𝜀
𝜕𝜠

𝜕𝑡
 

A1.  10 

 

We now apply the curl operator on the equations A1.  9 and A1.  10 and taking into consideration 

the curl of the curl identity we obtain and the zero gradients of E and Η we obtain the wave 

equations for the electric and magnetization fields: 

∇2𝑬 −
1

𝜀𝜇

𝜕𝑬

𝜕𝑡
= 0

𝑛=√
𝜀𝜇

𝜀0𝜇0

⇒      ∇2𝑬 −
𝑛2

𝑐2
𝜕2𝑬

𝜕𝑡2
= 0 

A1.  11 

∇2𝑯−
𝑛2

𝑐2
𝜕2𝑯

𝜕𝑡2
= 0 

A1.  12 

The equation above are satisfied for all the components of the electric and magnetic field. We 

choose to solve the equation for the electric field in the case that the medium is a step index 

optical fiber with a refractive index 𝑛1in the core and 𝑛0 in the cladding. The system is 

characterized by cylindrical symmetry and therefore cylindrical coordinates are used to define the 

solutions. The equation A1.  11 can be rewritten for each field component as: 

𝜕2𝐸

𝜕𝑟2
+
1

𝑟

𝜕𝐸

𝜕𝑟
+
1

𝑟2
𝜕2𝐸

𝜕𝜑2
+
𝜕2𝐸

𝜕𝑧2
−
𝑛2

𝑐2
𝜕2𝐸

𝜕𝑡2
= 0 

A1.  13 

In addition, considering the weakly guiding approximation (𝑛1 ≅ 𝑛0), the longitudinal components 

of the fields are negligible, meaning 𝑬𝒛, 𝑯𝒛 → 0. To solve the wave equation for each of the 

components of the electric field we use the method of separation of variables by expressing the 
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electric field components as 𝐸 = 𝑅(𝑟)𝛷(𝜑)𝛧(𝑧)𝑇(𝑡). Plugging this expression in the equation A1.  

113 for the electric field we end up with the following equation: 

𝑅(𝑟)𝛷(𝜑)𝛧(𝑧)𝑇(𝑡) (
1

𝑅

𝜕2𝑅

𝜕𝑟2
+
1

𝑟𝑅

𝜕𝑅

𝜕𝑟
+
1

𝑟2𝛷

𝜕2𝛷

𝜕𝜑2
+
1

𝑍

𝜕2𝑍

𝜕𝑧2
−
𝑛2

𝑇𝑐2
𝜕2𝑇

𝜕𝑡2
) = 0 

A1.  14 

Since the electric field cannot be zero the term “𝑅(𝑟)𝛷(𝜑)𝛧(𝑧)𝑇(𝑡)” of the equation above 

cannot be zero either and therefore the term in the parenthesis is zero. Since we assume variables 

to be independent and the only way for the derivatives based on time to be equal to the rest of 

the terms dependent on r, φ, z, is if both are equal to a constant number. Therefore, we have: 

1

𝑅

𝜕2𝑅

𝜕𝑟2
+
1

𝑟𝑅

𝜕𝑅

𝜕𝑟
+
1

𝑟2𝛷

𝜕2𝛷

𝜕𝜑2
+
1

𝑍

𝜕2𝑍

𝜕𝑧2
= 𝑘2 

A1.  15 

𝑛2

𝑇𝑐2
𝜕2𝑇

𝜕𝑡2
= −𝑘2 ⇒

𝜕2𝑇

𝜕𝑡2
+
𝑘2𝑐2

𝑛2
𝑇 = 0 

A1.  16 

Continuing in the same way separating the independent variables we end up with the three 

harmonic oscillator equations for the terms 𝛷(𝜑), 𝛧(𝑧), 𝑇(𝑡) of the electric field and their 

solutions can be written as shown below: 

𝑇(𝑡) = 𝑒𝑖𝜔𝑡 

A1.  17 

𝑍(𝑧) = 𝑒−𝑖𝛽𝑧 

A1.  18 

𝛷(𝜑) = 𝑒𝑖𝑙𝜑 

A1.  19 

If we now plug the equations A1.  17, A1.  18 and A1.  19 in the equation A1.  154 and multiplying 

by 𝑅 we end up with a more complicated equation for the radial distribution term of the electric 

field: 

𝜕2𝑅

𝜕𝑟2
+
1

𝑟

𝜕𝑅

𝜕𝑟
− (

1

𝑟2
𝑙2 − 𝛽2 +

𝑛2𝜔2

𝑐2
)𝑅 = 0 

A1.  20 

Though not obvious at a fist sight, the equation A1.  20 is a Bessel’s equations and its solutions are 

the Bessel functions of first and second kind. To select the correct Bessel function kind we have to 

consider that for 𝑟 → ∞ the radial distribution should drop to zero and for 𝑟 → 0 does not 
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increase to infinity. Taking also into account the distribution of the refractive index for a step-

index fiber, we separate the solution in two parts: inside and outside the core area (with a radius 

α) as follows: 

𝑅(𝑟) = {
𝐴𝐽𝑙(𝑘𝑇𝑟)    𝑟 < 𝑎

𝐵𝐾𝑙(𝛾𝑟)   𝑟 > 𝑎
 

A1.  21 

The values 𝑘𝑇 , 𝛾 describe the decay of the field amplitude in the two areas of the sample and they 

are the transverse parameters related to the propagation constant β as follows: 

𝑘𝑇
2 = 𝑛1

2𝑘0
2 − 𝛽2 

A1.  22 

𝛾2 = 𝛽2 − 𝑛0
2𝑘0
2 

A1.  23 

Finally, using the continuity of the electric field and its first derivative at the boundary between 

the core and the cladding (𝑟 = 𝑎) we obtain the characteristic equation for the fiber. For simplicity 

we set 𝑘𝑇𝑎 = 𝑋 𝛾𝛼 = 𝛶.  

𝑋
𝐽𝑙±1(𝑋)

𝐽𝑙(𝑋)
=  ±𝑌

𝐾𝑙±1(𝑌)

𝐾𝑙(𝑌)
 

A1.  24 

If we consider that: 

𝑋2 + 𝑌2 = (𝑘𝑇𝑎)
2 + (𝛾𝑎)2 = 𝑘0

2(𝑛1
2 − 𝑛0

2)𝑎2 = 𝑉2 

A1.  25 

, where V is the fiber parameter related to the physical properties of the system (NA, core size, 

wavelength), it is obvious that the equation A1.  24 has only one unknown and can be solved 

graphically. For each value 𝑙 = 0,±1,±2,… , we get multiple values for the X and thus the Y in the 

intersection between the equation A1.  24 and A1.  245 while we always need to consider that 0 ≤

𝑋, 𝑌 ≤ 𝑉. After determining the X or Y we can also calculate the propagation constant for each 

mode from one of the equations A1.  22, A1.  23 and the modes of the fiber are fully determined. 

 

A2. Classification results 

The results presented in the Figure A2.1 and Figure A1.2 are complementary to the classification 

performance of DNNs as a function of fiber length presented in the paragraph 6.1.3.  
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Figure A2.1. Normalized confusion matrices for classification with amplitude modulated proximal inputs for a) 2cm 
fiber speckle patterns, b) 2cm reconstructed SLM inputs, c) 10cm fiber speckle patterns, d) 10cm reconstructed SLM 
inputs, e) 10m fiber speckle patterns, f) 10m reconstructed SLM inputs, g) 1km fiber speckle patterns, and h) 1km 
reconstructed SLM inputs. 
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Figure A1.2. Normalized confusion matrices for classification with phase modulated proximal inputs for a) 2cm fiber 
speckle patterns, b) 2cm reconstructed SLM inputs, c) 10cm fiber speckle patterns, d) 10cm reconstructed SLM inputs, 
e) 10m fiber speckle patterns, f) 10m reconstructed SLM inputs, g) 1km fiber speckle patterns, and h) 1km 
reconstructed SLM inputs 
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A3. Image reconstruction results 

 

Figure A3.1. Phase imagining using deep learning using laser diode illumination at 632 nm, before bending the fiber 
bundle (a-c) and after bending (d-f) using the already trained U-net. a,d) Fiber bundle intensity output, b,e) ground 
truth phase image on the SLM and c,f) DNN reconstruction of a) and c) respectively. 

 
Figure A3.2. Phase imagining using deep learning using LED illumination with 625 nm central wavelength, before 
bending the fiber bundle (a-c) and after bending (d-f) using the already trained U-net. a,d) Fiber bundle intensity 
output, b,e) ground truth phase image on the SLM and c,f) DNN reconstruction of a) and c) respectively. 



Appendix 

  132  

In this paragraph of the Appendix some more examples of the reconstruction results of phase 

images from the intensity output of the fiber bundle are provided. The image reconstruction is 

achieved using the U-net DNN as described in the Chapter 7 of the thesis. The figures below 

correspond to the phase imaging in the case of MNIST-F database using the laser diode 

illumination at 632nm (S2) and the red LED at 625nm (S3) as described in the relevant paragraph 

of the thesis. 

 

 

A4. Python code for the GAN model used in the present thesis 

""" 

Created on Tue Mar 26 16:45:32 2019 

 

author: Eirini Kakkava 

""" 

import numpy as np 

import pandas as pd 

import h5py   # HDF5 data file management 

import matplotlib.pyplot as plt 

from tqdm import tqdm 

import keras.backend as K 

from numpy.random import randint 

from tensorflow.python.keras.layers import Dense, Dropout, Input, LeakyReLU, Conv2D, 

BatchNormalization, Flatten 

from tensorflow.python.keras.layers import concatenate, UpSampling2D, MaxPooling2D, 

Activation, LeakyReLU 

from tensorflow.python.keras.models import Model, Sequential 

from tensorflow.python.keras.optimizers import Adam 

from sklearn.model_selection import train_test_split 

from tensorflow.python.keras.models import load_model 
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# load the data 

### Choose the folders and filenames for the experimental data 

hf = h5py.File(input_data_filename_full, 'r') 

temp = hf.get(input_data_name) 

input_data = np.array(temp[0:25000,:,:,:]) 

hf.close() 

hf = h5py.File(output_data_filename_full, 'r') 

temp = hf.get(output_data_name) 

output_data = np.array(temp[0:25000,:,:,:]) 

hf.close() 

 

# Split the data 

data_number_total = len(input_data) 

data_number_train = 0.8*data_number_total #16000 

data_number_test = 0.2*data_number_total #2000    

 

# set [train-valid] : test split state for skleanrn's train_test_split function : 

data_split_state = None 

X_train, X_test, Y_train, Y_test =  \ 

        train_test_split(input_data, output_data, \ 

        test_size=data_set_test_ratio, random_state=data_split_state)     

 

# Define auxiliary functions 

def show_2dmatrix_cb(matrix, imin, imax, clabel, colour_map):     

    plt.figure() 
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    plt.imshow(matrix, cmap=colour_map) 

    plt.xticks([]) 

    plt.yticks([]) 

    plt.colorbar(label=clabel) 

    plt.clim(imin, imax) 

    plt.show() 

    plt.close() 

 

# Define custom loss 

#this contains both X and Y sobel filters in the format (3,3,1,2) 

#size is 3 x 3, it considers 1 input channel and has two output channels: X and Y 

sobelFilter = K.variable([[[[1.,  1.]], [[0.,  2.]],[[-1.,  1.]]], 

                      [[[2.,  0.]], [[0.,  0.]],[[-2.,  0.]]], 

                      [[[1., -1.]], [[0., -2.]],[[-1., -1.]]]])     

 

def sobelLoss(yTrue,yPred): 

    filt = sobelFilter 

    #calculate the sobel filters for yTrue and yPred 

    #this generates twice the number of input channels  

    #a X and Y channel for each input channel 

    sobelTrue = K.depthwise_conv2d(yTrue,filt) 

    sobelPred = K.depthwise_conv2d(yPred,filt) 

#    K.mean(K.square(sobelTrue - sobelPred)) + 

    #now you just apply the mse: 

    return   K.mean(K.square(sobelTrue - sobelPred)) + 0.05*K.mean(K.square(yTrue - yPred)) 

verbose_fit = 2 
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verbose_early_stop = 0 

verbose_evaluate = 0 

 

#Create a Unet generator 

xsize = 256 

ysize = 256 

nn_input_num_channels = 1 

input_shape = (xsize, ysize, nn_input_num_channels) 

 

import keras.backend as K 

 

def get_optimizer(): 

    adam = Adam(lr=1E-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08) 

    return adam 

 

def create_generator(): 

    inputs = Input(shape=input_shape) 

 

# u-net convolution block [down0] input: 256x256x1, output: 128x128x8 

# linear feature size is halved but the number of features is doubled 

    

    down = Conv2D(8, (3, 3), padding='same')(inputs) 

    down = BatchNormalization()(down) 

    down = Activation('relu')(down) 

    down = Conv2D(8, (3, 3), padding='same')(down) 

    down = BatchNormalization()(down) 
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    down = Activation('relu')(down) 

    down_pool = MaxPooling2D((2, 2), strides=(2, 2))(down) 

 

# u-net convolution block [down0] input: 128x128x8, output: 64x64x16 

# linear feature size is halved but the number of features is doubled 

    down0 = Conv2D(16, (3, 3), padding='same')(down_pool) 

    down0 = BatchNormalization()(down0) 

    down0 = Activation('relu')(down0) 

    down0 = Conv2D(16, (3, 3), padding='same')(down0) 

    down0 = BatchNormalization()(down0) 

    down0 = Activation('relu')(down0) 

    down0_pool = MaxPooling2D((2, 2), strides=(2, 2))(down0) 

 

# u-net convolution block [down1] input: 64x64x16, output: 32x32x32 

    down1 = Conv2D(32, (3, 3), padding='same')(down0_pool) 

    down1 = BatchNormalization()(down1) 

    down1 = Activation('relu')(down1) 

    down1 = Conv2D(32, (3, 3), padding='same')(down1) 

    down1 = BatchNormalization()(down1) 

    down1 = Activation('relu')(down1) 

    down1_pool = MaxPooling2D((2, 2), strides=(2, 2))(down1) 

     

# u-net convolution block [down2] input: 32x32x32, output: 16x16x64 

    down2 = Conv2D(64, (3, 3), padding='same')(down1_pool) 

    down2 = BatchNormalization()(down2) 

    down2 = Activation('relu')(down2) 
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    down2 = Conv2D(64, (3, 3), padding='same')(down2) 

    down2 = BatchNormalization()(down2) 

    down2 = Activation('relu')(down2) 

    down2_pool = MaxPooling2D((2, 2), strides=(2, 2))(down2) 

 

# u-net convolution block [down3] input: 16x16x64, output: 8x8x128 

    down3 = Conv2D(128, (3, 3), padding='same')(down2_pool) 

    down3 = BatchNormalization()(down3) 

    down3 = Activation('relu')(down3) 

    down3 = Conv2D(128, (3, 3), padding='same')(down3) 

    down3 = BatchNormalization()(down3) 

    down3 = Activation('relu')(down3) 

    down3_pool = MaxPooling2D((2, 2), strides=(2, 2))(down3)     

 

# u-net convolution block [down4] input: 8x8x128, output: 4x4x256 

    down4 = Conv2D(256, (3, 3), padding='same')(down3_pool) 

    down4 = BatchNormalization()(down4) 

    down4 = Activation('relu')(down4) 

    down4 = Conv2D(256, (3, 3), padding='same')(down4) 

    down4 = BatchNormalization()(down4) 

    down4 = Activation('relu')(down4) 

    down4_pool = MaxPooling2D((2, 2), strides=(2, 2))(down4)    

     

# u-net layer [center]  

# input: 4x4x256 [down2_pool], convoluted to 4x4x512 [center] 

# linear feature size remains the same but the number of features doubles 
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    center = Conv2D(512, (3, 3), padding='same')(down4_pool) 

    center = BatchNormalization()(center) 

    center = Activation('relu')(center) 

    center = Conv2D(512, (3, 3), padding='same')(center) 

    center = BatchNormalization()(center) 

    center = Activation('relu')(center) 

     

# u-net convolution block [up4] :  

# inputs 4x4x512 from [center] which is upsampled to 8x8x256,  

# this is then concatenated with the 8x8x128 [down4] feature layers 

# via a skip connection to give 8x8x384 for convolution, which is outputed as 8x8x128 [up4] 

    up4 = UpSampling2D((2, 2))(center)      # output 8x8x256 

    up4 = concatenate([down4, up4], axis=3)     # skip connection, output 8x8x384 

    up4 = Conv2D(256, (3, 3), padding='same')(up4)  # output 8x8x128 

    up4 = BatchNormalization()(up4) 

    up4 = Activation('relu')(up4) 

    up4 = Conv2D(256, (3, 3), padding='same')(up4) 

    up4 = BatchNormalization()(up4) 

    up4 = Activation('relu')(up4) 

# u-net convolution block [up3], output: 16x16x172  

   up3 = UpSampling2D((2, 2))(up4)      

    up3 = concatenate([down3, up3], axis=3) # output 16x16x172     

    up3 = Conv2D(128, (3, 3), padding='same')(up3)  

    up3 = BatchNormalization()(up3) 

    up3 = Activation('relu')(up3) 

    up3 = Conv2D(128, (3, 3), padding='same')(up3) 
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    up3 = BatchNormalization()(up3) 

    up3 = Activation('relu')(up3) 

     

# u-net convolution block [up2], output: 32x32x96  

    up2 = UpSampling2D((2, 2))(up3)      

    up2 = concatenate([down2, up2], axis=3) # output 16x16x96     

    up2 = Conv2D(64, (3, 3), padding='same')(up2)  

    up2 = BatchNormalization()(up2) 

    up2 = Activation('relu')(up2) 

    up2 = Conv2D(64, (3, 3), padding='same')(up2) 

    up2 = BatchNormalization()(up2) 

    up2 = Activation('relu')(up2) 

     

# u-net convolution block [up1], output: 64x64x48  

    up1 = UpSampling2D((2, 2))(up2) 

    up1 = concatenate([down1, up1], axis=3) 

    up1 = Conv2D(32, (3, 3), padding='same')(up1) 

    up1 = BatchNormalization()(up1) 

    up1 = Activation('relu')(up1) 

    up1 = Conv2D(32, (3, 3), padding='same')(up1) 

    up1 = BatchNormalization()(up1) 

    up1 = Activation('relu')(up1) 

     

# u-net convolution block [up0], output: 128x128x24 

    up0 = UpSampling2D((2, 2))(up1) 

    up0 = concatenate([down0, up0], axis=3) 



Appendix 

  140  

    up0 = Conv2D(16, (3, 3), padding='same')(up0) 

    up0 = BatchNormalization()(up0) 

    up0 = Activation('relu')(up0) 

    up0 = Conv2D(16, (3, 3), padding='same')(up0) 

    up0 = BatchNormalization()(up0) 

    up0 = Activation('relu')(up0) 

     

# u-net convolution block [up], output: 256x256x8 

    up = UpSampling2D((2, 2))(up0) 

    up = concatenate([down, up], axis=3) 

    up = Conv2D(8, (3, 3), padding='same')(up) 

    up = BatchNormalization()(up) 

    up = Activation('relu')(up) 

    up = Conv2D(8, (3, 3), padding='same')(up) 

    up = BatchNormalization()(up) 

    up = Activation('relu')(up) 

    outputs = Conv2D(nn_input_num_channels, (1, 1), activation='sigmoid')(up) 

 

    # Compile neural network 

    model = Model(inputs=inputs, outputs=outputs) 

    return model 

 

def create_discriminator(): 

    inputs = Input(shape=input_shape) 

 

#convolution block [down] input: 256x256x1, output: 128x128x8 
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    down = Conv2D(8, (3, 3),  strides=(1, 1), padding='same')(inputs) 

    down = LeakyReLU(alpha=0.2)(down) 

 

# convolution block [down0] input: 128x128x8, output:64x64x16 

    down0 = Conv2D(16, (3, 3), strides=(2, 2), padding='same')(down) 

    down0 = BatchNormalization()(down0) 

    down0 = LeakyReLU(alpha=0.3)(down0) 

 

    # convolution block [down1] input: 64x64x16, output: 32x32x32 

    down1 = Conv2D(32, (3, 3),  padding='same')(down0) 

    down1 = BatchNormalization()(down1) 

    down1 = LeakyReLU(alpha=0.3)(down1) 

 

# convolution block [down2] input: 32x32x32, output: 16x16x64 

    down2 = Conv2D(64, (3, 3), strides=(2, 2), padding='same')(down1) 

    down2 = BatchNormalization()(down2) 

    down2 = LeakyReLU(alpha=0.3)(down2) 

    

# convolution block [down3] input: 16x16x64, output: 8x8x128 

    down3 = Conv2D(128, (3, 3),  padding='same')(down2) 

    down3 = BatchNormalization()(down3) 

    down3 = LeakyReLU(alpha=0.3)(down3) 

 

# convolution block [down4] input: 8x8x128, output: 4x4x256 

    down4 = Conv2D(256, (3, 3), strides=(2, 2),  padding='same')(down3) 

    down4 = BatchNormalization()(down4) 
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    down4 = LeakyReLU(alpha=0.3)(down4) 

     

# convolution block [down4] input: 4x4x256, output: 4096x1   

    down5 = Conv2D(256, (3, 3), strides=(2, 2),  padding='same')(down4) 

    down5 = BatchNormalization()(down5) 

    down5 = LeakyReLU(alpha=0.3)(down5) 

    down5 = Flatten()(down5) 

     

# fully connected layers 

    dense_01 = Dense(1024)(down5) 

    dense_02 = LeakyReLU(alpha=0.3)(dense_01) 

    dense_03 = Dense(1)(dense_02) 

    dense_03 = Activation('sigmoid')(dense_03) 

    outputs = dense_03 

    model2 = Model(inputs=inputs, outputs=outputs) 

return model2 

 

def get_gan_network(discriminator, shape, generator, optimizer, sobelLoss): 

    discriminator.trainable = False 

    gan_input = Input(shape=shape) 

    x = generator(gan_input) 

    gan_output = discriminator(x) 

    gan = Model(inputs=gan_input, outputs=[x,gan_output]) 

    gan.compile(loss=[sobelLoss, "binary_crossentropy"], loss_weights=[1., 1e-3], 

optimizer=optimizer) 

    return gan 
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# Remember to change image shape if you are having different size of images 

image_shape = input_shape 

def train(epochs, batch_size, X_train, X_test, Y_train, Y_test, model_save_dir, number_of_images, 

train_test_ratio): 

    # Loads training and test data 

#    # Create custom function, where hr_images and lr_images function can be used to get high 

resolution and low resolution images 

#    x_train_lr, x_train_hr, x_test_lr, x_test_hr = load_training_data(input_dir, '.jpg', 

number_of_images, train_test_ratio)  

    x_train_lr = X_train 

    x_test_lr = X_test 

    x_train_hr = Y_train 

    x_test_hr = Y_test 

    batch_count = int(x_train_hr.shape[0] / batch_size) 

    generator = create_generator() 

    discriminator = create_discriminator() 

    optimizer = get_optimizer() 

    generator.compile(loss=sobelLoss, optimizer=optimizer) 

    discriminator.compile(loss="binary_crossentropy", optimizer=optimizer) 

    gan = get_gan_network(discriminator, image_shape, generator, optimizer, sobelLoss) 

    loss_file = open(model_save_dir + 'losses.txt' , 'w+') 

    loss_file.close() 

 

    for e in range(1, epochs+1): 

        print ('-'*15, 'Epoch %d' % e, '-'*15) 

        for _ in tqdm(range(batch_count)): 

            rand_nums = np.random.randint(0, x_train_hr.shape[0], size=batch_size) 
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            image_batch_hr = x_train_hr[rand_nums] 

            image_batch_lr = x_train_lr[rand_nums] 

            generated_images_sr = generator.predict(image_batch_lr) 

            real_data_Y = np.ones(batch_size) - np.random.random_sample(batch_size)*0.2 

            fake_data_Y = np.random.random_sample(batch_size)*0.2 

            discriminator.trainable = True 

            d_loss_real = discriminator.train_on_batch(image_batch_hr, real_data_Y) 

            d_loss_fake = discriminator.train_on_batch(generated_images_sr, fake_data_Y) 

            discriminator_loss = 0.5 * np.add(d_loss_fake, d_loss_real) 

            rand_nums = np.random.randint(0, x_train_hr.shape[0], size=batch_size) 

            image_batch_hr = x_train_hr[rand_nums] 

            image_batch_lr = x_train_lr[rand_nums] 

            gan_Y = np.ones(batch_size) - np.random.random_sample(batch_size)*0.2 

            discriminator.trainable = False 

            gan_loss = gan.train_on_batch(image_batch_lr, [image_batch_hr,gan_Y]) 

        print("discriminator_loss : %f" % discriminator_loss) 

        print("gan_loss :", gan_loss) 

        gan_loss = str(gan_loss) 

         

        loss_file = open(model_save_dir + 'losses.txt' , 'a') 

        loss_file.write('epoch%d : gan_loss = %s ; discriminator_loss = %f\n' %(e, gan_loss, 

discriminator_loss) ) 

        loss_file.close()    

        if e % 400 == 0: 

            generator.save(model_save_dir + 'gen_model%d.h5' % e) 

            discriminator.save(model_save_dir + 'dis_model%d.h5' % e) 

    generator.save(model_save_dir + 'gen_model%d.h5' % e) 
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    discriminator.save(model_save_dir + 'dis_model%d.h5' % e) 

train(400,10, X_train, X_test, Y_train, Y_test, save_path, 25000, 0.2) 
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 Enhancement of imaging resolution through Multicore fibers using Deep Neural Networks, 
MSc. Student: Barthe Lancelot 
 

University of Patras, Department of Physics, Greece   Sep 2014– Jun 2015 
Bachelor Courses: 

 Laboratory of Geometrical and Wave optics 
 Electromagnetism 
 Laser Physics & Lasers’ Laboratory 

        
 

 

PROFESSIONAL QUALIFICATIONS 

Technical skills 

 Optics: Microscopy, digital holography, spatial light modulators, optical fibers, laser 

ablation, spectroscopy, nonlinear optics, metrology 

 Biology: Cell cultures, tissue phantoms, necrosis and apoptosis studies, histology, sample 

preparation protocols (staining, fixation) 

 Materials: Characterization techniques (UV-Vis spectroscopy, Raman, AFM, SEM), additive 

manufacturing 

 



 

  160  

Computer Skills 

 Programming: Matlab, Python 

 Data processing: Origin Pro, Microsoft Excel 

 Other software: Adobe Illustrator, Lightroom, Zemax, ImageJ 

Languages 

 Greek: native language 

 English: very good (C2) 

 German: good (B2) 

 French: basic (A2/B1) 

 

 

AWARDS 

 Scholarship by the State Scholarships Foundation-IKY (Greece), Best score of the year for 

the entry exams to the Physics Department of the University of Patras, Greece. 

 Master thesis scholarship co-financed by the European Union (European Social Fund – ESF) 

and Greek national funds through the Operational Program "Education and Lifelong 

Learning" of the National Strategic Reference Framework (NSRF)-Research Funding 

Program: Thales. Investing in knowledge society through the European Social Fund, 

Research Project PHOTOPOLIS at the University of Patras. 

 

 

PUBLICATIONS 

Peer-reviewed articles: 

1. E. Kakkava, N. Borhani, B. Rahmani, U. Teğin, C. Moser, D. Psaltis, “Deep Learning-Based 
Image Classification through a Multimode Fiber in the Presence of Wavelength Drift”, 
Applied Sciences 10, 3816 (2020) 

2. G. Konstantinou, E. Kakkava, L. Hagelüken, P. V. W. Sasikumar, J. Wang, M. Grazyna 
Makowska, G. Blugan, N. Nianias, F. Marone, H. Van Swygenhoven, J. Brugger, D. Psaltis, C. 
Moser, “Additive micro-manufacturing of crack-free PDCs by two-photon polymerization of 
a single, low-shrinkage preceramic resin”, Additive Manufacturing 101343 (2020) 

3. P. V. W. Sasikumar, E. Mueller, P. Clement, J. Jang, E. Kakkava, G. Panusa, D. Psaltis, K. 
Maniura-Weber, M. Rottmar, J. Brugger, G. Blugan, “In vitro Cytocompatibility Assessment 
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of Ti-modified Silicon-oxycarbide Based Polymer-derived Ceramic Implantable Electrodes 
under Pacing Conditions”, ACS Applied Materials & Interfaces (2020) 

4. U. Teğin, B. Rahmani, E. Kakkava, N. Borhani, C. Moser, D. Psaltis. “Controlling 
spatiotemporal nonlinearities in multimode fibers with deep neural networks”, APL 
Photonics 5 (3), 030804 (2020) 

5. U. Teğin, E.Kakkava, B. Rahmani, D. Psaltis, C. Moser , “Spatiotemporal self-similar fiber 
laser”, Optica 6, 1412-1415 (2019). 

6. E. Kakkava, B. Rahmani, N. Borhani, U. Teğin, D. Loterie, G. Konstantinou, C. Moser, and D. 
Psaltis, "Imaging through multimode fibers using deep learning: The effects of intensity 
versus holographic recording of the speckle pattern," Optical Fiber Technology 52, 101985 
(2019). 

7. E. Kakkava, M. Romito, D. B. Conkey, D. Loterie, K. M. Stankovic, C. Moser, D. Psaltis, 
"Selective femtosecond laser ablation via two-photon fluorescence imaging through a 
multimode fiber", Biomedical optics express 10 (2), 423-433 (2019). 

8. P. Vallachira Warriam, G. Blugan, N. Casati, E. Kakkava, G. Panusa, D. Psaltis, J. Kuebler, " 
Polymer derived silicon oxycarbide ceramic monoliths: Microstructure development and 
associated materials properties ", Ceramics International 44 (17), 20961-20967 (2018). 

9. N. Borhani, E. Kakkava, C. Moser, D. Psaltis, "Learning to see through multimode fibers", 
Optica 5, 960–966 (2018). 

10. DB. Conkey, E. Kakkava, T. Lanvin, D. Loterie, N. Stasio, E. Morales-Delgado, C. Moser, D. 
Psaltis, "High power, ultrashort pulse control through a multi-core fiber for ablation", 
Optics Express 25 (10), 11491-11502 (2017)   

 

Conference articles and presentations: 

1. 2019-02 SPIE Photonics West, San Francisco, California, USA, “Two-photon imaging and 

selective laser ablation of cochlea hair cells through a multimode fiber probe”, Eirini 

Kakkava, Marilisa Romito, Damien Loterie, Konstantina Stankovich, Christophe Moser, 

Demetri Psaltis (Oral presentation) 

2. 2019-02 SPIE Photonics West, San Francisco, California, USA, “Deep neural networks for 

seeing through multimode fibers”, Eirini Kakkava, Navid Borhani, Christophe Moser, 

Demetri Psaltis (Poster presentation) 

3. 2019-06 OSA Computational Optical Sensing and Imaging,  Munich, Germany, “Efficient 

Image Classification through a Multimode Fiber using Deep Neural Networks in presence of 

Wavelength Drifting”, Eirini Kakkava, Navid Borhani, Babak Rahmani, Ugur Tegin, 

Christophe Moser, Demetri Psaltis (Oral presentation) 

4. 2019-06, The European Conference on Lasers and Electro-Optics (CLEO-Europe), Munich, 

Germany, “Wavelength Independent Image Classification Through A Multimode Fiber 

Using Deep Neural Networks”, Eirini Kakkava, Navid Borhani, Babak Rahmani, Uğur Teğin, 

Christophe Moser, Demetri Psaltis (Oral presentation) 

5. 2019-07, 7th Advanced Electromagnetics Symposium, Lisbon, Portugal, “Optical imaging 

using Deep Neural Networks”, Eirini Kakkava, Navid Borhani, Babak Rahmani, Uğur Teğin, 

Christophe Moser, Demetri Psaltis (Oral presentation) 

6. 2018-02 SPIE Photonics West, San Francisco, California, USA, “Wavefront shaping for 

ultrashort pulse delivery through optical fibers for imaging and ablation”, E. Kakkava, N. 

Stasio, D. B. Conkey, Damien Loterie, C. Moser, D. Psaltis (Oral presentation) 



 

  162  

7. 2018-06 OSA Computational Optical Sensing and Imaging,  Orlando, Florida, USA, “Seeing 

through Multimode Fibers with Deep Learning”, Eirini Kakkava, Navid Borhani, Christophe 

Moser, Demetri Psaltis (Oral presentation) 

8. 2018-09, OSA Frontiers in Optics, Washington DC, USA, “Deep Neural Networks for 

Information Recovery Through Multimode Fibers”, Eirini Kakkava, Navid Borhani, 

Christophe Moser, Demetri Psaltis (Oral presentation) 

9. 2018-09, OSA Frontiers in Optics, Washington DC, USA, “Two-photon fluorescence 

microscopy and selective laser ablation through multimode fibers”, E Kakkava, BD Conckey, 

D Loterie, Christophe Moser, Demetri Psaltis (Poster) 

10. 2017-08 SPIE Optics and Photonics, San Diego, California, USA, 6-10August 2017, 

''Femtosecond pulse delivery through multi-core fibers for imaging and ablation'', E. 

Kakkava, N. Stasio, D. B. Conkey, C. Moser, D. Psaltis (Invited oral presentation) 

11. 2017-06 CLEO/Europe-EQEC 2017 Munich, Germany, 25 - 29 June 2017, ''Ultrashort pulse 

laser ablation through a multi-core fiber'', E. Kakkava, D. B. Conkey, T. Lanvin, D. Loterie, N. 

Stasio, E. Morales-Delgado, C. Moser, D. Psaltis (Oral presentation) 

 
 

PROFESSIONAL MEMBERSHIPS 

 Former delegate PhD representative for the Photonics doctoral school, EPFL (2017-2018) 
 Vice-president of the EPFL Photonics Chapter committee funded by OSA and SPIE (2018-

2019) 
 OSA and SPIE member (2017-2020) 

 




