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Abstract
Multiscale problems, such as modelling flows through porous media or predicting the mecha-

nical properties of composite materials, are of great interest in many scientific areas. Analytical

models describing these phenomena are rarely available, and one must recur to numerical

simulations. This represents a great computational challenge, because of the prohibitive

computational cost of resolving the small scales. Multiscale numerical methods are therefore

necessary to solve multiscale problems within reasonable computational time and resources.

In particular, numerical homogenization techniques aim to capture the macroscopic be-

haviour with equations whose coefficients are computed numerically from the solutions of

corrector problems at the microscale. A lack of knowledge of the coupling conditions be-

tween the micro- and the macro-scales brings in the so-called resonance error, which affects

the accuracy of all multiscale methods. This source of error often dominates the numerical

discretization errors and increasing its rate of decay is crucial for improving the accuracy of

multiscale methods.

In this work, we propose two novel upscaling schemes with arbitrarily high convergence

rates of the resonance error to approximate the homogenized coefficients of scalar, linear

second order elliptic differential equations. The first one is based on a parabolic equation,

inspired by a model employed to compute the effective diffusive coefficients in stochastic

diffusion processes. By using the approximation properties of smooth filtering functions,

the homogenized coefficients can be approximated with arbitrary rates of accuracy. This

claim is proved through an a priori convergence analysis, under the assumption of smooth

periodic multiscale coefficients. Numerical experiments verify the expected convergence rates

also under more general assumptions, such as discontinuous and random coefficients. The

second method originates from the first by integrating the parabolic equation over a finite

time interval. This method is referred to as the modified elliptic approach, because of the

presence of a right-hand side which can be interpreted in terms of continuous semigroups

and can be approximated numerically by Krylov subspace methods. The same convergence

results as in the parabolic approach hold true. As a last step, a convergence analysis of the

resonance error for the modified elliptic approach in the context of equations with random

coefficients is performed. In this case, the resonance error is composed of a variance and

a bias term, which can be bounded from above by a function decaying to zero. Numerical

experiments reveal that the convergence rate of the resonance error for random coefficients

is hampered, in comparison to the case of periodic coefficients, but the modified elliptic

approach nevertheless outperforms standard methods.
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Résumé
Les problèmes multi-échelles, comme la modélisation des écoulements dans les milieux po-

reux ou la prévision des propriétés mécaniques des matériaux composites, présentent un

grand intérêt dans de nombreux domaines scientifiques. Des modèles analytiques permettant

d’expliquer le comportement macroscopique sont rarement disponibles, et ces problèmes

doivent être traités par des simulations numériques prenant en compte la présence d’échelles

multiples. Cela représente un grand défi computationel, en raison du coût prohibitif de la

résolution de toutes les échelles. Des méthodes numériques multi-échelles sont donc néces-

saires pour résoudre les problèmes multi-échelles dans des délais et des ressources de calcul

raisonnables. En particulier, les techniques d’homogénéisation numérique visent à résoudre

des équations macroscopiques dont les coefficients sont calculés numériquement à partir des

solutions des problèmes de correction à la micro-échelle. Un manque de connaissance des

conditions de couplage entre les échelles microscopiques et macroscopiques entraîne ce que

l’on appelle l’erreur de résonance, qui affecte toutes les méthodes multi-échelles. Cette erreur

domine souvent celles dues à la discrétisation numérique et l’augmentation de son taux de

décroissance est cruciale pour améliorer la précision des méthodes multi-échelles.

Dans ce travail, nous proposons deux nouveaux schémas de couplage entre les échelles

microscopiques et macroscopiques avec des taux de convergence arbitrairement élevés de

l’erreur de résonance pour l’approximation des coefficients homogénéisés des équations

différentielles elliptiques du second ordre scalaires et linéaires. Le premier est basé sur une

équation parabolique, inspirée par un modèle de calcul des coefficients effectifs de diffusion

dans les processus de diffusion stochastique. En utilisant les propriétés d’approximation des

fonctions de filtrage lisse, les coefficients homogénéisés peuvent être approximés avec des

taux de précision arbitraires. Cette affirmation est prouvée par une analyse de convergence a

priori, sous l’hypothèse de coefficients multi-échelles périodiques et lisses. Des expériences

numériques vérifient les taux de convergence attendus également sous des hypothèses plus

générales, comme des coefficients discontinus et aléatoires. La seconde méthode est issue

de la précédente en intégrant l’équation parabolique sur un intervalle de temps fini. Cette

méthode est appelée approche elliptique modifiée, en raison de la présence d’un terme dans

le membre de droite qui peut être interprété à l’aide de semigroupes continus et qui peut être

approximé numériquement par les méthodes de Krylov. Les mêmes résultats de convergence

que dans l’approche parabolique restent valables. En dernier lieu, une analyse de convergence

de l’erreur de résonance pour l’approximation elliptique modifiée dans le contexte des coeffi-

cients aléatoires est effectuée. Dans ce cas, l’erreur de résonance est composée d’un terme de
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Résumé

variance et d’un terme de biais, qui peuvent être borné par une fonction tendant vers zéro. Les

expériences numériques révèlent que le taux de convergence de l’erreur de résonance pour

les coefficients aléatoires est fortement ralenti par rapport au cas des coefficients périodiques,

mais l’approche elliptique modifiée reste plus performante que des méthodes standards.

Mots clés : Problèmes multi-échelles, méthodes numériques multi-échelles, homogénéisation

numérique, erreur de résonance, problèmes des correcteurs, processus aléatoires station-

naires, méthode multi-échelles hétérogène, analyse de convergence a priori.

vi



Notation
We will use the following notations throughout the exposition:

• The Sobolev space W k,p (D) is defined as

W k,p (D) := { f : Dγ f ∈ Lp (D) for all multi-index γ with |γ| ≤ k}.

The norm of a function f ∈W k,p (D) is given by

‖ f ‖W k,p (D) :=


(∑
|γ|≤k

´
D |Dγ f (x)|p d x

)1/p (1 ≤ p <∞)∑
|γ|≤k ess supD |Dγ f | (p =∞).

• The space H 1
0 (D) is the closure in the W 1,2-norm of C∞

c (D), the space of infinitely

differentiable functions with compact support in D . The norm associated with H 1
0 (D) is

‖ f ‖2
H 1(D) := ‖ f ‖2

L2(D) +‖∇ f ‖2
L2(D).

Due to the Poincaré inequality, an equivalent norm in H 1
0 (D) is given by

‖ f ‖H 1
0 (D) := ‖∇ f ‖L2(D).

We will use this second notation for the H 1
0 -norm.

• We use the notation 〈 f , g 〉L2(D) := ´
D f g d x to denote the L2 inner product over D .

• H−1(D) is the dual space of H 1
0 (D). It can be characterized as the set of distributional

derivatives of L2(D)-functions: For any F ∈ H−1(D), there exist f0, f1, . . . , fd ∈ L2(D) such

that

〈F, v〉H−1(D),H 1
0 (D) = 〈 f0, v〉L2(D) +

d∑
i=1

〈 fi ,Di v〉L2(D).

• The space Hdi v (D) is defined as

Hdi v (D) := { f : f ∈ [L2(D)]d and ∇· f ∈ L2(D)}.

The norm associated with Hdi v (D) is

‖ f ‖2
Hdi v (D) := ‖ f ‖2

L2(D) +‖∇· f ‖2
L2(D).
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Notation

• The space L2
0(K ) is defined as

L2
0(K ) =

{
f ∈ L2(K ) :

ˆ
K

f d x = 0

}
.

It is an Hilbert space with respect to the L2-inner product.

• The space W 1
per (K ) is defined as the closure of{

f ∈C∞
per(K ) :

ˆ
K

f d x = 0

}
for the H 1-norm. Thanks to the Poincaré-Wirtinger inequality, an equivalent norm in

W 1
per (K ) is ∥∥ f

∥∥
W 1

per (K ) =
∥∥∇ f

∥∥
L2(K ) .

Moreover, W 1
per (K ) is an Hilbert space for the inner product

(u, v)W 1
per (K ) =

ˆ
K
∇u ·∇v.

• The space W 1
per (K )′ is the dual space of W 1

per (K ). It can be identified with the space{
F ∈ H−1(K ) : 〈F,c〉W 1

per (K )′,W 1
per (K ) = 0,∀c ∈Rd

}
.

• Let f belong to the Bochner space Lp (0,T ; X ), where X is a Banach space. Then the

norm associated with this space is defined as

‖ f ‖Lp (0,T ;X ) :=
(ˆ T

0
‖ f ‖p

X d t

) 1
p

.

• L2 (D) is the space of square-integrable vector functions f : D 7→Rd , f = (
f1, . . . , fd

)
, with

fi ∈ L2(D). L2
loc

(
Rd

)
is the space of locally square-integrable vector functions.

• L2
pot

(
Rd

)
is the space of vortex-free vector fields:

L2
pot

(
Rd

)
=

{
f ∈ L2

loc

(
Rd

)
:

ˆ
Rd

fi
∂ϕ

∂x j
− f j

∂ϕ

∂xi
d x = 0, ∀ϕ ∈C∞

0

(
Rd

)}
.

Any vortex-free (or irrotational) field can be expressed as the gradient of a potential

function u ∈ H 1
loc

(
Rd

)
: f =∇u.

• L2
sol

(
Rd

)
is the space of solenoidal (i.e., divergence-free) vector fields:

L2
sol

(
Rd

)
=

{
f ∈ L2

loc

(
Rd

)
:

ˆ
Rd

fi
∂ϕ

∂xi
= 0, ∀ϕ ∈C∞

0

(
Rd

)}
.
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Notation

• Cubes inRd are denoted by KL := (−L/2,L/2)d . In particular, K is the unit cube (−1/2,1/2)d .

• We will use the notation
ffl

D f (x) d x to denote the average 1
|D|

´
D f (x) d x over a domain

D .

• M
(
α,β,D

)
denotes the class of symmetric matrix-valued function a ∈ L∞ (

D,Rd×d
)

such that

α |ξ|2 ≤ ∣∣ξ ·aε(x)ξ
∣∣ ,

∣∣aε(x)ξ
∣∣≤β |ξ| , ∀ξ ∈Rd , a.e. x ∈ D, (1)

for 0 <α≤β. In the case D =Rd the short-hand notation M
(
α,β

)
will be used.
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1 Introduction

Multiscale phenomena are ubiquitous in many fields of science and engineering. In fact,

several problems studied in physics, chemistry, biology, material sciences and engineering are

characterized by the presence of multiple scales in space or time. Oftentimes, phenomena

taking place at different scales are not independent, but mutually influence each other. As

a consequence, studying a system at a given scale disregarding what happens at smaller

(or larger) scales often leads to wrong physical interpretations or to the need of employing

empirical models.

Multiscale problems can be very different in nature and each can even involve different

physical models. For example, the mechanical behaviour of a solid can be influenced by

its crystalline structure, hence a coupling between the continuum mechanical model and

the discrete solid state physics is needed. The multiple scales can be present in space, but

also in time, as in the case of chemical reactions where the concentrations of reagents differs

of many orders of magnitude and processes evolve at different time scales [127]. The class

of spatially multiscale problems can be separated into two sub-classes, depending on the

local or global nature of the multiscale feature. Locally multiscale problems (denoted as

type A problems in [53]) are those where the small scale heterogeneity is present only on a

small portion of the domain. Typical examples are the evolution of cracks in elastic materials

[128], the rise of boundary layers in fluid flows and small scale structures in fully developed

turbulent flows [112]. This type of problems can be solved by locally refining the mesh or by

using a local small scale model and, then, coupling this information with the macroscopic

solution. Globally multiscale problems (denoted as type B problems in [53]) are those in

which the microscale model is needed everywhere because the small scale pattern is repeated

throughout the domain. For example, groundwater pollution through infiltration of a fluid in a

porous medium [132], the effective properties of composite materials [93, 102], the use of small

scale optical elements to produce meta-materials with negative refraction index [136] and the

mechanical behaviour of porous media such as bones or soft tissue [69] are classical globally

multiscale problems. In this case we cannot use the local refinement strategy and we have

to rely on a macroscopic model in order to capture the solution. However, the macroscopic

1



Chapter 1. Introduction

constitutive relations may be missing and we need a microscopic model to recover them,

together with a coupling scheme between the two models. This is the idea behind many

multiscale numerical methods, like the Heterogeneous Multiscale Method (HMM) [54]. Other

examples of multiscale and multiphysics models are collected in [4, 53, 64, 65].

The presence of several orders of magnitude between the scale of interest and small scale

features represents a challenge under several aspects. From the analytical perspective, it

may not be possible to derive a model describing the macroscopic behaviour because of the

microscale effects. From the point of view of numerical computations, the need of resolving

all the small scale features on a much larger computational domain dramatically increases the

number of degrees of freedom, thus making the simulation of globally multiscale problems

unfeasible even on modern supercomputers. Usually, the interest is not in capturing all the

small scale variations of the phenomenon, but rather in capturing correctly the macroscopic

behaviour. This is the motivation for developing novel multiscale numerical methods that

could provide a reasonably accurate approximation of the solution with a number of degrees

of freedom not constrained by the small scale. Most of the multiscale numerical methods

suffer from the so-called resonance error, due to the coupling conditions between the micro

and the macro scales, which eventually affects the reliability of the numerical upscaled so-

lution. Therefore, many studies focused on the reduction of the resonance error and on the

improvement of its convergence rate. The goal of the present study is to propose and study

two novel micro-corrector equations with higher convergence rates of the resonance error.

1.1 General framework and multiscale problems

In this thesis we will consider the (globally) multiscale partial differential equation:−∇· (aε(x)∇uε) = f in D ⊂Rd ,

uε = 0 on ∂D,
(1.1)

where the multiscale structure is encoded in the diffusion coefficient aε, i.e. we assume that aε

oscillates at a small scale ε¿|D|, throughout the entire domain. In Figure 1.1a, an example of

a multiscale coefficient field aε(x) = a(x/ε) with oscillations only at the ε-scale is pictured. The

solution uε has a multiscale behaviour in the sense that it varies both at a scale comparable to

the size of D (the macroscale) and at a much smaller scale (the microscale), see Figure 1.1b.

The multiscale behaviour is inherited from the microscale oscillations of the coefficient aε.

The problem of multiple scales: the example of locally periodic coefficients

In connection to the feature of scale separation is the number of scales present in the problem.

In Figure 1.1a we pictured a coefficient field of the form aε(x) = a(x/ε) , with ε = 1/16. By

construction, aε(x) oscillates only at the ε-scale. However it is possible to enrich the set of
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1.1. General framework and multiscale problems

(a) aε(x). (b) uε(x).

Figure 1.1 – A multiscale diffusion field with the solution for the problem with f = 1.

Figure 1.2 – A locally periodic coefficient field.

scales of oscillation for aε(x), see, e.g., [29, 38]. In this case, we can assume, for example, that

aε(x) = a

(
x,

x

ε1
, . . . ,

x

εN

)
.

When εi+1
εi

¿ 1, we say that the scales of oscillations are well separated. Otherwise, we talk of a

continuum of scales. An example of coefficients varying at multiple well separated scales is

the case of locally periodic coefficients. These are functions of the form

aε(x) = a
(
x,

x

ε

)
, where a(x, y) is periodic in the y-argument.

An example of locally periodic coefficient is depicted in Figure 1.2.

We can take advantage of the scale separation and develop computational methods with

reduced computational complexity. As we will see in Section 2.2, some multiscale numerical

methods are more suitable for scale-separated problems, e.g. the HMM, while others are

designed to solve problems with a continuum of scales, e.g. the Multiscale Finite Element

Method. The present thesis will focus on methods to improve the convergence rate of the

3



Chapter 1. Introduction

resonance error in HMM, so it is mostly suitable for problems with scale separation.

Periodic, almost-periodic and stationary random structures

Multiscale problems with oscillating coefficients can be classified by the micro-structure

of the coefficients. Periodic problems have micro-structures that are periodically repeated

throughout the domain. Mathematically, it means that aε(x) = a(x/ε), where a(y) is periodic.

Almost-periodic coefficients are defined as elements of the closure, in the L∞-norm, of the

space of functions

a(y) = Re

(∑
k

ak e iξk ·y
)

, ak ∈C, ξk ∈Rd ,

which provide a generalization of periodic functions, still retaining some of their most impor-

tant properties. Finally, another possible structural assumption is that the coefficient is the

realization of a stationary random field. Periodic coefficients will be assumed in the analysis

of the two corrector equations of Chapters 4 and 5. Almost-periodic coefficients will only be

employed in numerical tests. Instead, stationary random coefficients will be considered in

Chapters 6 and 7.

1.2 Thesis outline and main contributions

As anticipated above, direct numerical approximations of the multiscale equation eq. (1.1)

are not viable because the mesh size has to be chosen smaller than ε, which implies that the

number of degrees of freedom blows up, since ε¿ 1. On the other hand, as ε→ 0, the fast-

oscillating solution uε converges to a smoother, non-oscillating function, which is denoted

by u0. The function u0 represents the macroscopic component of uε and solves the so-called

homogenized equation −∇· (a0(x)∇u0
)= f in D ⊂Rd ,

u0 = 0 on ∂D,
(1.2)

whose coefficients a0
i j are not known a priori. The homogenized equation is independent of ε

and can be discretized with a freely chosen mesh size. As a first step, before the discretization

of eq. (1.2), we must approximate the value of a0. The homogenized coefficients are found by

solving local corrector equations that allow to couple the microscale structure to the macro-

scopic behaviour of the original problem. Except for the case of periodic coefficients where

the exact period is known, a resonance error appears in the numerical computation of the

homogenized coefficients. As a consequence, the homogenized coefficients are only approx-

imated up to an error, which is known as resonance error. The resonance error eventually

affects the accuracy of the numerical approximation of u0 and can lead to very inaccurate

simulations.

The main contribution of this thesis to the question of high accuracy approximation of the

homogenized coefficients consists in the development and the analysis of two novel corrector
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1.2. Thesis outline and main contributions

problems to approximate a0 with high order convergence rates of the resonance error, thus

allowing to couple accurately the micro- to the macroscale. In particular, we focus on analysing

the corrector problems at the microscale, disregarding the macroscopic behaviour. For this

reason, we have only considered coefficients varying at a single scale, aε(x) = a(x/ε), ignoring

other possible coefficient structures, such as locally periodic coefficients. However, the reader

should bear in mind that the proposed novel approaches can straightforwardly be applied

to those cases: it suffices to apply them to upscale the coefficients bεx̄ (x) := a(x̄, x/ε), at each

given point x̄ ∈ D .

A rigorous mathematical derivation of the homogenized problem is given in Chapter 2. This

theoretical approach does not provide a directly applicable method to compute the homoge-

nized coefficients, except in the simple periodic case. Numerical homogenization methods

aim to solve a given corrector problem to approximate a0, but they all suffer from the so-called

resonance error, described in Section 2.4, which often dominates the discretization errors.

Several corrector problems have been studied in the past to improve the rate of decay of the

resonance error, but they either do not reach arbitrary rates or require to solve very costly

models (see Section 2.4.1).

In Chapter 3, a link between a parabolic corrector problem and the standard, elliptic corrector

problem is described. No structural assumptions on the coefficients aε(x) is needed at this

point. Thanks to the link between parabolic and elliptic partial differential equations, we

derive two novel corrector problems: a parabolic and a modified elliptic ones, which can be

used to estimate a0. In Chapter 4, the convergence rate of the parabolic approach is proved

to be of arbitrarily high order. For the proof we assume the periodicity of aε and sufficient

regularity, but numerical tests show that the results hold true also for less regular or stochastic

coefficients. A similar analysis, for a novel modified elliptic problem is given in Chapter 5.

The a priori error bounds of this chapter are established under the same assumptions as in

Chapter 4. Numerical tests for non-periodic, non-smooth cases are performed to demonstrate

the robustness of the approach. For both cases, we analyse the computational cost-accuracy

ratio and compare it to the one of the standard method. The parabolic and the modified

elliptic approach are new in the research field of numerical homogenization and their main

advantage is that they achieve an exponential decay of the resonance error.

The homogenization of stationary random coefficients has been studied since the early ’80s,

but the derivation of upper bounds with explicit rates of convergence for the homogeniza-

tion error
∥∥uε−u0

∥∥ remains mainly unsolved. In Chapter 6 we describe the framework of

homogenization for random coefficients and provide some of the most recent results in quan-

titative stochastic homogenization. Moreover, a review of some of the numerical approaches

proposed to tackle stochastic homogenization problems is outlined.

The last contribution of the thesis is developed in Chapter 7 and it regards the study and the

analysis of the modified elliptic corrector equation for random coefficients. The resonance

error is decomposed in several terms: the boundary, the systematic and the statistical error. A

5



Chapter 1. Introduction

priori bounds on the systematic error are proved by exploiting the time decay of the solution

of parabolic equations, without any regularity assumption on the coefficients. Numerical

tests are provided both to support the theoretical results on the systematic error and to verify

experimentally the convergence of the boundary and statistical errors.

6



2 Homogenization theory, multiscale
methods and the resonance error

As we anticipated in the previous chapter, multiscale problems have to be addressed by prop-

erly designed multiscale numerical methods. Although they may be based on several different

design principles, the numerical analysis of such methods cannot leave homogenization

theory out of consideration, as it provides the theoretical foundations for the analysis of differ-

ential problems with fast oscillating coefficients. A priori analysis of multiscale methods shows

that they all suffer from the so-called resonance error, due to the inexact coupling between the

micro and the macro scale. Reducing the impact of such an error is thus crucial to improve

the accuracy of multiscale algorithms.

Outline

In Section 2.1, the main results on the homogenization theory for second order elliptic opera-

tors with periodic coefficients are discussed. A non-exhaustive overview of existing multiscale

numerical methods is given in Section 2.2. One of these methods, the Finite Element Hetero-

geneous Multiscale Method (FE-HMM), is described in more details in Section 2.3. Thanks to

the results of homogenization theory, it is possible to understand the origin of the resonance

error and to derive an a priori bound in the FE-HMM context, see Section 2.3.2. In the last

decades, many works addressed the question of mitigating the effect of the resonance error

and we review some of them in Section 2.4.

2.1 Main results in homogenization theory

Homogenization theory concerns the study of the solutions of PDEs in the regime for ε→ 0,

where ε is the length scale of the oscillations of the coefficients [31, 45, 101]. We begin by

considering a sequence of ε-indexed second order elliptic equations on a bounded domain

D ⊂Rd , d ≤ 3: −∇· (aε(x)∇uε) = f in D,

uε = 0 on ∂D,
(2.1)

7



Chapter 2. Homogenization theory, multiscale methods and the resonance error

with f ∈ H−1(D). The differential problem (2.1) is well-posed, provided that the tensor

aε ∈ (L∞(D))d×d is symmetric, uniformly elliptic and bounded, i.e. there exist α,β> 0 such

that for any ε> 0,

aε(x) = [
aε(x)

]T and

α |ξ|2 ≤ ∣∣ξ ·aε(x)ξ
∣∣ ,

∣∣aε(x)ξ
∣∣≤β |ξ| , ∀ξ ∈Rd , a.e. x ∈Rd .

(2.2)

Coefficients satisfying the conditions (2.2) belong to the class M (α,β,D). When D =Rd we will

use the shorthand M (α,β). For the moment, no further structural assumptions are taken on

aε(x), even though we one can think of ε as the oscillation length of the coefficients. Structural

assumption on the coefficients will be given later on.

The convergence of the sequence
{
uε

}
ε ⊂ H 1

0 (D) solving (2.1) in the limit for ε→ 0 can be stud-

ied through the concept of G-convergence, introduced by [129]. The notion of G-convergence

was subsequently extended by [120] to H-convergence for the case of non-symmetric matrices.

Definition 2.1. The sequence
{

aε
}
ε ⊂M (α,β,D) is G-convergent to the matrix a0 ∈M (α,β,D)

if and only if, for every function f ∈ H−1(D), the function uε ∈ H 1
0 (D) that solves eq. (2.1)

converges

uε* u0 weakly in H 1
0 (D),

where u0 is the unique solution of the homogenised problem−∇· (a0(x)∇u0
)= f in D,

u0 = 0 on ∂D.
(2.3)

We will use the following notation to express the G-convergence to a0 of a sequence
{

aε
}
ε:

aε
G→ a0.

In Theorem 2.2 some of the properties satisfied by G-converging sequences are listed.

Theorem 2.2 ([45]). The following properties hold true:

i) (uniqueness) The G-limit of a G-converging sequence
{

aε
}
ε ⊂M (α,β,D) is unique.

ii) (L2 convergence) If
{

aε
}
ε ⊂M (α,β,D) and aε→ a0 strongly in

(
L2(D)

)d×d
, then aε

G→ a0.

iii) (compactness) Let
{

aε
}
ε ⊂ M (α,β,D). Then, there exist a G-converging subsequence{

aε
′}
ε′

.

iv) A sequence
{

aε
}
ε ⊂ M (α,β,D) G-converges if and only if all its G-converging subse-

quences have the same limit.
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2.1. Main results in homogenization theory

v) Let
{

aε
}
ε ⊂M (α,β,D) be a G-converging sequence to a0 ∈M (α,β,D). Then

aε∇uε* a0∇u0 in
(
L2(D)

)d
. (2.4)

Remark 2.3. It is quite interesting to interpret the G-convergence in terms of convergence of

inverse of elliptic operators. Let

Aε, A0 : H 1
0 (D) 7→ H−1(D)

be the elliptic operators defined by:

Aεv =−∇· (aε(x)∇v
)

, and A0v =−∇· (a0(x)∇v
)

,

for any v ∈ H 1
0 (D). Then, the G-convergence of the sequence

{
aε

}
ε is equivalent to the conver-

gence of (Aε)−1 f in the H 1
0 (D)-weak topology, for any f ∈ H−1(D):

(
Aε

)−1 f *
(

A0)−1
f weakly in H 1

0 (D).

The compactness results of (2.2) guarantees the existence of a homogenized equation for

some subsequence
{

aε
′}
ε′

. Without further assumptions, the G-limit may fail to be unique

for different subsequences and the homogenized equation is not uniquely defined. Even

when the full sequence
{

aε
}
ε G-converges, a closed form for the homogenized tensor is not

available, in general.

Taking further structural assumptions on the tensor aε(·) allows to prove the uniqueness

of the homogenized equation and provides a explicit form for a0. The simplest non-trivial

example is when aε(x) = a(x/ε) is Y -periodic over some parallelepiped Y ⊂Rd . Under these

assumptions, the homogenized limit is a constant matrix. The same results hold true when

a(·) is quasi-periodic or a stationary ergodic random tensor field. These are simplification

of coefficients of practical interest. For example one may be interested in the asymptotic

behaviour of locally periodic coefficients with multiple scales:aε(x) = a
(
x, x

ε1(ε) , . . . , x
εN (ε)

)
, with

lim
ε→0

εi = 0 and lim
ε→0

εi+1
εi

= 0

In this thesis, we make the assumption of single scale oscillations of the original tensor: There

exist a ∈M
(
α,β

)
such that

aε(x) = a
( x

ε

)
. (2.5)

Two classes of tensors are considered: periodic and stationary ergodic. The results derived for

periodic tensors are described in Chapters 4 and 5, while those for stationary ergodic random

fields are reported in Chapters 6 and 7.
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Chapter 2. Homogenization theory, multiscale methods and the resonance error

2.1.1 Periodic homogenization

Here, we briefly recall the convergence result for periodic homogenization. Let us assume that

the multiscale tensor can be written as

aε(x) = a(x/ε),

where a ∈ M (α,β) is Y -periodic over the parallelepiped Y = ∏d
i1

[0, li ). Then, the corrector

problem: −∇· (a(y) · (∇χi +ei
))= 0 on Y ,

χi is Y -periodic
´

Y χ
i = 0

(2.6)

has a unique solution χi ∈W 1
per (Y ) and it satisfies

∥∥∥χi
∥∥∥

W 1
per (Y )

≤ 1

α
‖aei‖L2(Y ) (2.7)

The homogenized coefficient is computed as:

a0
i j :=

 
Y

ei ·a(y)
(
∇χ j +e j

)
d y =

 
Y

(
∇χi +ei

)
·a(y)

(
∇χ j +e j

)
d y, (2.8)

where the second inequality follows from the weak formulation of (2.6). By definition, the

homogenized tensor is constant in space. Then, it is possible to prove that

uε* u0, weakly in H 1
0 (D), and aε(x)∇uε* a0∇u0, weakly in

(
L2(D)

)d
,

where u0 is the weak solution of the homogenized equation (2.3), see [31, 45, 101].

2.1.2 Stochastic homogenization

The homogenization of stochastic fields concerns the study of (2.1) when aε is the realization of

a random field. This research question was first addressed by [123, 104]. Standard assumptions

in this context are the statistical stationarity and ergodicity of the random field aε. Besides

providing a setting for proving the existence of the corrector function, stationarity implies that

the homogenized coefficients are constant. The assumption of ergodicity, instead, implies the

homogenized coefficients to be deterministic. In this setting, the corrector problem is similar

the one of the periodic case eq. (2.6), but it is posed on the whole space:

−∇·
(
a(y,ω) ·

(
∇χi +ei

))
= 0 on Rd , (2.9)

where we included the variable ω ∈ Ω, the probability space. It is possible to prove that

the corrector functions χi are uniquely defined up to an additive constant and that ∇χi is a
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2.2. Overview of multiscale numerical methods

stationary random field. The homogenized coefficients are computed as

a0
i j := E

[
ei ·a(·)

(
∇χ j +e j

)]
=
 
Rd

ei ·a(y,ω)
(
∇χ j +e j

)
d y, (2.10)

where the second equation follows from assumption of ergodicity. If the ergodicity condition

is dropped, the homogenized coefficients are measurable with respect to the sub-σ-algebra of

invariant sets:

a0
i j = E

[
ei ·a(·)

(
∇χ j +e j

)∣∣∣Fi nv

]
.

A more complete description of stochastic homogenization is postponed to Chapter 6.

2.2 Overview of multiscale numerical methods

In this section we give a general introduction to multiscale numerical methods and briefly

describe some of them. A more detailed description of the Finite Elements Heterogeneous

Multiscale Method (FE-HMM) is given in Section 2.3 with the aim of introducing the main

results of FE-HMM in Section 2.3.1 and a description of the resonance error in Section 2.3.2.

In Chapter 1, we anticipated that the aim of multiscale numerical methods is to solve multi-

scale problem with a number of degrees of freedom that is not constrained by the size of the

fine scale heterogeneities. Multiscale problem can be written in general mathematical terms

as

L εuε = f , (2.11)

where L ε is the multiscale operator, uε the solution and f represents the forcing term. The

above representation can be thought as a generalization of the model problem (2.1). The

superscript ε is a small parameter denoting the size of small scale heterogeneities.

Standard numerical methods may not be applicable to solve this kind of problems. For

example, the Finite Element Method (FEM) is not robust when used to discretize problems

with rough coefficients, [28], as the numerical error between the true and the numerical

solutions does converge to 0 only if the meshsize is sufficiently small, i.e. if H ≤ ε. For small

values of ε, the condition H ≤ ε can only be satisfied with a huge number of degrees of freedom,

that eventually blows up as ε→ 0, thus making the computation unfeasible. On the other hand,

most of the degrees of freedom are used to resolve the small scale features of the problem,

while we are mostly interested in understanding the macroscopic behaviour, which would

require far less degrees of freedom for problems with homogeneous coefficients.

Multiscale methods aim to propose a strategy to find a solution to eq. (2.11) such that the

convergence results still hold true, without the constraint on the meshsize. So, the goal is to

find a discrete operator LH which is able to capture the large scale behaviour, i.e. such that

the solution uH of

LH uH = fH ,
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Chapter 2. Homogenization theory, multiscale methods and the resonance error

converges to the leading order approximation of the multiscale solution uε.

The operator L ε can be any operator with heterogeneous coefficients. In order to fix ideas,

we consider the second order elliptic operator

L εv =−∇(
aε(x)∇v

)
.

In this case, the multiscale method will aim to approximate the homogenized operator L 0

defined by

L 0v =−∇(
a0(x)∇v

)
,

where a0 is the H-limit of the sequence
{

aε
}
ε.

A common ingredient of multiscale numerical methods is the need for solving a set of lo-

cal microscale problems in order to extract the microscopic information and pass it to the

macroscale model. As we will see, this implies using artificial conditions at the boundaries of

the microscopic domains. These boundary conditions eventually worsen the overall accuracy

of multiscale methods and improved methodologies with reduced boundary errors are needed

in computations.

Generalised Finite Elements Method (GFEM)

The Generalised Finite Element Method (GFEM) addresses multiscale problems by assembling

the stiffness matrix in a way that takes into account the small scale information. The method

was first proposed in [28] for one dimensional problems, and further elaborated in [23, 24,

25, 26, 27, 130]. The strategy of the method is to partition the computational domain D into

sub-domains D j ’s and to introduce local approximation spaces V j in which local solutions

are looked for. The global solution is then sought in the global space S, obtained by “pasting

together” the local spaces V j ’s by means of a partition of unity
{
φ j

}
j (in fact, this method is

referred to also as partition of unity method) over the sub-domains D j . This approach offers a

generalisation of FEM (hence the name) and it is possible to choose the sub-domains and the

local spaces in a way to recover the standard global Finite Elements (FE) space.

The method was originally proposed to solve problems with perforated materials or crack

dynamics, but it was also successfully applied to other multiscale problems.

The Variational Multiscale Method (VMM)

The Variational Multiscale Method (VMM) was proposed in [99, 100] and it is based on a de-

composition of the solution into two terms, u = uH +u′, the former can be treated numerically

while the latter accounts for all the sub-grid effects and must be modelled. In the same spirit,

the trial space V is decomposed into a finite dimensional space VH and a residual space V ′

such that

V =VH ⊕V ′.

12



2.2. Overview of multiscale numerical methods

One can seek the solution by solving the variational problems: Find uH ∈VH and u′ ∈V ′ such

that

B
(
uH +u′, vH

)= (
f , vH

)
, ∀vH ∈VH , (2.12)

B
(
uH +u′, v ′)= (

f , v ′) , ∀v ′ ∈V ′, (2.13)

where the bilinear from B : V ×V is defined as

B (u, v) :=
ˆ

D
∇v ·aε(x)∇u d x.

Re-writing eq. (2.13) as

B(u′, v ′) = ( f , v ′)−B(uH , v ′) = ( f −L εuH , v ′),

one can write formally u′ = M( f −L εuH ), where M is a bounded linear operator on V ′

obtained by restricting f −L εuH to V ′, to obtain a variational problem in VH :

B(uH , vH )+B(M( f −L εuH ), vH ) = ( f , vH ) ∀vH ∈VH .

For an actual numerical solution, the operator M has to be approximated and localized. The

VMM is equivalent to the residual-free bubble method, as proved in [37].

The Equation–Free Method (EFM)

The equation–free method (EFM) was proposed in [103] as a mean to solve multiscale evo-

lution problems with scale separation and unknown macroscopic model. This method was

conceived in the context of computational chemistry, in which models describing the evo-

lution of the system for short times are available, but running such models for long time

horizons and large domains (which is in the interest of researchers) is not possible due to the

large computational cost. EFM by-passes the derivation of an explicit macroscopic model

by exploiting the scale separation, common to many multiscale problems. It is based on

a lift-evolve-restrict procedure, which is used in the HMM as well. In the lifting process, a

microscale initial condition over small scale patches is reconstructed from the macroscale

distribution. The evolution at the microscale is very fast compared to the evolution at the

macroscale and it is denoted as patch dynamics. The microscale system is evolved according

to the known microscale equation until a time horizon much smaller than the time step size

at the macroscale. As a third step, the evolved microscale solution is used to estimate the

time derivative of the macroscopic variables (restriction). Finally, the macroscopic solution

is interpolated in space and extrapolated in time (by means of the Projective Forward Eu-

ler method) to reconstruct it between the patches and advance of a macro time step. The

lift-evolve-restrict procedure and the extrapolation method in time build up a coarse time

stepper.

13
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The equation-free method has some critical issues, as it is pointed out in [56]. Besides be-

ing applicable only to scale-separated systems, it fails to model problems with macroscale

stochastic nature. In fact, in this case the equation-free method is either unable to capture the

right effect or it is as expensive as the standard discretization scheme.

The Multiscale Finite Elements Method (MsFEM)

The Multiscale Finite Elements Method (MsFEM), described in [58], couples the small scale

features with the macroscopic equation by using a finite element basis of multiscale nature,

V M sF E M
H , in place of the standard Finite Element space. Each basis element of the multiscale

FE space is constructed by solving local boundary value problems posed over each macro-

mesh element, which allows to take into account the effect of microscopic oscillations. For a

given coarse mesh TH , and for each basis element Φi , i = 1, . . . ,nH , of the nH -dimensional

standard FE space VH , the i -th multiscale FE basis element ΦM sF E M
i is defined as the solution

of the variational problem: Find ΦM sF E M
i ∈Vh such that ΦM sF E M

i |∂T =Φi and

ˆ
T

a(x)∇ΦM sF E M
i ·∇ϕh d x = 0, ∀ϕh ∈Vh ,

where Vh is a full resolution (high dimensional) finite element space. The values of the standard

finite element basis function on the coarse mesh are used as boundary conditions for the local

problem, which are discretized by a fine scale mesh of size h ≤ ε. Then, the solution of the

problem eq. (2.11) is sought into the space V M sF E M
H , defined by linear combinations of the

multiscale FE basis functions: Find uH ∈V M sF E M
H such that

B (uH , vH ) = (
f , vH

)
, ∀vH ∈V M sF E M

H .

This method was first proposed in [96] and later analysed in [97, 133]. The MsFEM allows

to solve multiscale problem with and without scale separation at a cost that is only weakly

dependent on the ratio |Ω|/h, since the local computations are totally decoupled and can be

solved in parallel, while the macro-problem has a cost independent of h.

As reported in [96], the main source of error in MsFEM is due to the resonant effect whose

magnitude scales as ε/h. The resonance error can thus be quite large, especially for problems

without scale separation, for which there will always be a value ε matching the mesh size h.

This error represents the greatest challenge for MsFEM and numerical upscaling methods. In

order to mitigate this error several techniques based on non-conforming formulations have

been proposed, such as the use of oversampling [60] or a Petrov-Galerkin formulation of the

finite dimensional problem [98].
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The Localized Orthogonal Decomposition (LOD)

Localization of elliptic partial differential equations was first proposed in [114], and further

developed in [88], as an approach to reduce the resonance error in multiscale problems

without scale separation.

The method was first proposed for the solving multiscale linear second order PDEs with sym-

metric coefficients. The solution is sought in the full resolution (i.e., very high-dimensional)

finite element space Vh ⊂ H 1(D), which is decomposed into the direct sum:

Vh =VH ⊕Wh ,

where VH is a coarse finite element space (with which the macroscopic behaviour is captured),

while Wh is the kernel of a Clément-type quasi-interpolation operator IH : Vh 7→VH . The

subspace Wh contains the fine scale features of Vh which cannot be captured by the coarse

space VH . However, the fact that Wh is the kernel of an interpolation operator suggests that

the features of the (high dimensional) space Wh could be neglected. Consequently, we can

look for a splitting

Vh =V ms
H ⊕Wh ,

where dim
(
V ms

H

) = dim(VH ) and accurate approximations (in the H 1-norm) of uε can be

found in V ms
H . Hence, we look for the orthogonal complement of Wh in Vh with respect to

the scalar product B (·, ·) associated to the elliptic problem. Let Ph be the B (·, ·)-orthogonal

projection on Wh , then one can define

V ms
H = (I −Ph)(VH ). (2.14)

In relation with the construction of the multiscale finite element space V M sF E M
H we see that

in the LOD method we take a substantially different approximation space. Indeed, the space

V ms
H can be equally defined as the set of solutions Φms

H of

B
(
Φms

H ,ϕh
)= 0 ∀ϕh ∈Wh .

The support of the functions Φms
H ∈ V ms

H is not local, i.e. it may cover the whole compu-

tational domain D, in contrast to the functions ΦM sF E M
i , which are local by construction.

This represents a problem from the computational point of view, as, in order to compute

a basis for V ms
H it would be necessary to solve a full scale problem. A localization (whence,

the name) technique is then used to mitigate this issue: k-th order patches around vertices

x are introduced and denoted by ωx,k . The vector space of localized functions Wh(ωx,k ) is

defined for any patch and the local problems are solved on each patch to compute the basis

elements of V ms
H ,k . Thanks to the exponential decay in space of the difference between the

global and the local solutions, the localization error is negligible, provided that the patches are

sufficiently large. Consequently, the discretization error can be bounded by the macro-mesh

size H independently of the small scale oscillations.
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A discussion of the LOD method in comparison to MsFEM can be found in [90] and an exten-

sion to the semi-linear case in [89]. In [66] the authors describe in details how to practically

implement the LOD method. Like the MsFEM, the LOD method is more suitable for problems

without scale separation. The reason is that each local problem is solved over a domain of size

H with a mesh size h ≤ ε. Therefore, there are O
(
(H/h)d

) > O
(
(H/ε)d

)
degrees of freedom,

per local problem. In the regime for ε→ 0 the number of local degrees of freedom blows up

and the computation becomes unfeasible.

2.3 The Finite Elements Heterogeneous Multiscale Method (FE-HMM)

The Heterogeneous Multiscale Method (HMM) is a general framework for designing multiscale

algorithms for both ODEs with multiple time scales and PDEs with rough coefficients [54].

In this thesis, we will focus on applying the HMM to the solution of elliptic PDEs for which

both the micro- and the macro-models are discretized by the FEM. This case is analysed by

the Finite Elements Heterogeneous Multiscale Method (FE-HMM) [2, 14, 54, 55] which was

developed for solving general multiscale problems, for which the G-limit of the fast oscillating

tensor is not known a priori. Extension to the finite difference method [11], elasticity problems

[3], parabolic problems [116, 15] and wave propagation [12, 62, 63] exist in literature. The algo-

rithm may be used to solve problems with scale separation where the macroscopic model and

the microscopic may be of different nature. In this section we describe the main ingredients

of the methods in order to fix the notation and provide the mathematical framework to study

the resonance error.

As the equation-free method, HMM is based on a “reconstruction-compression” paradigm

(called “lifting-restriction” in the equation-free method) and it uses the microscale model

throughout the computation, while other methods such as the VMM use it only to derive the

macroscopic model. Contrarily to other approaches such as the sequential coupling, FE-HMM

allows to derive a priori and a posteriori error estimate of the overall discretization, that also

depend on the accuracy of the reconstruction of the effective operator L 0.

In this description we will consider as model problem the weak form of the elliptic equation

eq. (2.1) which is: Find uε ∈ H 1
0 (D) such that

B(uε, v) :=
ˆ

D
∇v ·aε(x)∇uεd x = 〈 f , v〉H−1(D),H 1

0 (D), ∀v ∈ H 1
0 (D).

The FE-HMM is composed of two main ingredients: a macro and a micro finite elements

spaces, which are linked through the HMM bilinear form BH (·, ·) of eq. (2.18).
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2.3. The Finite Elements Heterogeneous Multiscale Method (FE-HMM)

Macro Finite Element Space

Let us consider a macroscopic partition TH of the computational domain D and a finite

element space V p (D,TH ) on TH :

V p (D,TH ) = {
uH ∈ H 1

0 (D) : uH |E ∈Rp (E),∀E ∈TH
}

, (2.15)

where Rp (E) is the space of polynomials of total (resp. maximum) degree p over simplicial

(resp. rectangular) elements of TH . The size H of the macroscopic partition TH can be chosen

arbitrarily and it is not constrained by the scale of heterogeneities. For any element E ∈TH , we

consider an index set J , a set of point
{

x j
}

j∈J ⊂ E and weight
{
ω j

}
j∈J ⊂ (0,+∞) constituting a

quadrature formula (QF)
{

x j ,ω j
}

j∈J that exactly integrates polynomials in Rσ(E ) and satisfies

the following conditions:

• Coercivity condition. Using a QF to compute the bilinear form eq. (2.18) does not

guarantee that the coercivity condition is satisfied. Thus, we require that√∑
j∈J
ω j

∣∣∇p(x j )
∣∣ is a norm on the finite dimensional space Rσ(E)/R0(E). (2.16)

This property holds if the nodes
{

x j
}

j∈J contain an unisolvent set for the derivatives of

the considered polynomial set [44].

• Approximation condition. Let uh,QF ∈V p (D,Th) be the FEM solution of a variational

elliptic problem where the integrals are computed by the numerical QF. We will assume

that the QF is chosen such that the standard error estimates for FEM hold. Assuming

enough regularity of the solution u, this reads∥∥uh,QF −u
∥∥

H 1 ≤C hp ,
∥∥uh,QF −u

∥∥
L2 ≤C hp+1. (2.17)

For p > 1, the condition eq. (2.17) holds true if the QF is exact up to order 2p −2 (resp.

2p −1) for simplicial (resp. rectangular) elements, while for p = 1 we require the QF to

be exact up to order 1 (resp. 2) for simplicial (resp. rectangular) elements [44].

Next, we consider sampling domains centred at each quadrature point

Kδ(x j ) = x j + [−δ/2,δ/2]d ,

where d is the dimension and δ≥ ε. The macroscopic bilinear form is defined:

BH
(
v H , w H )

:= ∑
E∈TH

∑
j
ω j

 
Kδ(x j )

∇wh
j ·aε(x)∇vh

j d x, (2.18)
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where the micro function wh
j , vh

j are defined by the microscale problem eq. (2.23). The FE-

HMM solution of problem eq. (2.1) is uH ∈V p (D,TH ) such that

BH
(
uH , v H )= F

(
v H )

, ∀v H ∈V p (D,TH ) . (2.19)

The bilinear form BH (·, ·) is bounded and coercive on V p (D,TH ) and the functional F (·) is

linear and bounded. Hence, the assumption of the Lax-Milgram theorem as satisfied and the

solution uH is unique and bounded.

Micro Finite Element Space

Let us define, on each sampling domain, a microscopic partition Th and a microscopic finite

element space:

Sq (Kδ(x j ),Th) =
{

uh ∈W (Kδ(x j )) : uh |e ∈Rq (e),∀e ∈Th

}
, (2.20)

where W (Kδ(x j )) is a Sobolev space whose choice sets the boundary conditions for the cor-

rector problems and thus determines the type of coupling between the micro and the macro

problems. We consider the cases:

W (Kδ(x j )) =W 1
per

(
Kδ(x j )

)
, for periodic boundary conditions, (2.21)

W (Kδ(x j )) = H 1
0

(
Kδ(x j )

)
, for Dirichlet boundary conditions. (2.22)

Other choices for the boundary conditions are possible, but we will focus on these two. The

micro functions are set to satisfy the microscale problem: Find vh
j such that vh

j − v H
l i n, j ∈

Sq (Kδ(x j ),Th) and

ˆ
Kδ(x j )

aε(x)∇vh
j ·∇zh d x = 0, ∀zh ∈ Sq (Kδ(x j ),Th), (2.23)

where v H
li n, j is the linear approximation of v H in a neighbourhood of x j :

v H
l i n, j = v H (x j )+ (x −x j ) ·∇v H (x j ).

A schematic representation of the method is depicted in Figure 2.1, where the red square dots

represent the quadrature points in the macro mesh TH . Around each quadrature point x j a

sampling domain Kδ(x j ) is defined and discretized by the micro mesh Th .

2.3.1 A few results on the a priori error analysis of FE-HMM

Here we recall, without proofs, a few results of the a priori error analysis for FE-HMM. The

numerical error is composed of three terms, respectively accounting for the discretization

error at the macroscale (eM AC ), the coupling conditions between the two scales (eMOD ) and
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Th

x j

TH

H
Kδ(x j )

δ

h

Figure 2.1 – Schematic representation of FE-HMM.

the discretization error at the microscale (eM IC ):∥∥u0 −uH
∥∥≤ eM AC +eMOD +eM IC ,

where ‖·‖ denotes the H 1 and L2 norms. The second error, eMOD is the resonance error and it

is connected to the reconstruction of the homogenized coefficients1. In order to prove the

error decomposition above, it is sufficient to prove the coercivity of the modified bilinear form

eq. (2.18). Explicit estimates for eMOD and eM IC are only possible under further assumptions

on the coefficients aε, i.e. local periodicity with macroscopic collocation, [4]. The focus of this

thesis is on the local reconstruction of the homogenized coefficients, so we decided to ignore

the macroscopic variations of the coefficients and only consider the periodic case:

aε(x) = a(x/ε), a ∈M (α,β) is K -periodic , (2.24)

where K := [−1/2,1/2]d : However, the upscaling strategies proposed in this thesis can be

exploited in the homogenization of more general coefficients, not only periodic.

We define two “intermediate” solutions u0,H and ūH to split the global error into the three

error terms above. The two intermediate solutions are, respectively, the numerical solution of

the exact homogenized problem eq. (2.3) and the approximate solution obtained by solving

the corrector problem exactly in W (Kδ(x j )). Let us define the bilinear form on V p (D,TH )×
V p (D,TH ) for the homogenised problem eq. (2.3):

B0,H
(
v H , w H )

:= ∑
E∈TH

∑
j∈J
ω j a0∇v H (x j ) ·∇w H (x j ). (2.25)

Ellipticity and boundedness of the G-limit a0 and the coercivity condition of the QF imply

coercivity and boundedness of the bilinear form eq. (2.25). Here, any link with a microscale

problem is absent, as we are treating the numerical approximation of the eq. (2.3). The

homogenised tensor is constant, thanks to the assumption in eq. (2.24). Under the sufficient

regularity conditions and accuracy of the quadrature formula we have the classical FEM

1The resonance error is denoted as eMOD in agreement to the notation used in several papers on FE-HMM, e.g.
[4], where this term is called modelling error.
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Chapter 2. Homogenization theory, multiscale methods and the resonance error

convergence result for the homogenized problem:

Proposition 2.4 ([4]). Suppose that u0 ∈ H p+1(D) and let u0,H ∈V p (D,TH ) be the solution of

the variational problem: Find u0,H ∈V p (D,TH ) such that

B0,H
(
u0,H , v H )= F (v H ), ∀v H ∈V p (D,TH ) . (2.26)

Then,

eM AC ,H 1 := ∥∥u0 −u0,H
∥∥

H 1(D) ≤C H p , eM AC ,L2 := ∥∥u0 −u0,H
∥∥

L2(D) ≤C H p+1.

The microscopic error accounts for the propagation, at the macroscale, of the corrector

problems’ discretization error, [2]. Let us consider the bilinear form on V p (D,TH )×V p (D,TH )

with exact micro solutions:

B̄H
(
v H , w H )

:= ∑
E∈TH

∑
j∈J
ω j

 
Kδ(x j )

aε(x)∇v j ·∇w j d x, (2.27)

where v j , w j are the exact solution of eq. (2.23) in the infinite dimensional space W (Kδ(x j )).

Coercivity and boundedness of B̄H (·, ·) can be proved as for BH (·, ·), [4]. Hence, the variational

problem: Find ūH ∈V p (D,TH ) such that

B̄H
(
ūH , v H )= F (v H ), ∀v H ∈V p (D,TH ) , (2.28)

has a unique solution ūH , which is the discrete macro solution with exactly solved micro scale

problem. The micro-error measures the discrepancy between uH and ūH , which uniquely

depends on the discretization error at the microscale.

Proposition 2.5 ([4]). Let uH , ūH ∈ V p (D,TH ) be the solutions, respectively, of eqs. (2.19)

and (2.28) and based on corrector problems that satisfy the same boundary condition. Ad-

ditionally, suppose that the corrector functions defined in eq. (2.32) satisfy

ϕi
δ, j ∈W q+1,∞(Kδ(x j )), and

∥∥∥Dαϕi
δ, j

∥∥∥
L∞(Kδ(x j ))

≤Cε−|α|.

Then

eM IC ,H 1 := ∥∥ūH −uH
∥∥

H 1(D) ≤C

(
h

ε

)2q

. (2.29)

The last error to be estimated is the resonance error, which is defined and bounded in the

following Proposition 2.6. A proof of this result is given in Section 2.3.2 for the periodic case,

and an extension to the locally periodic case is given in Proposition 2.9.

Proposition 2.6 ([4]). Let a ∈W 1,∞(Rd ,Rd×d ) be K -periodic. Let u0,H and ūH be the solutions
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of eqs. (2.26) and (2.28). Then

eMOD := ∥∥u0,H − ūH
∥∥

H 1(D) ≤
0 if δ/ε ∈N and W (Kδ(x j )) =W 1

per

(
Kδ(x j )

)
,

C ε
δ if δ/ε ∉N and W (Kδ(x j )) = H 1

0 (Kδ(x j )).
(2.30)

2.3.2 Proof of the resonance error bound for periodic tensors

This section is devoted to the proof of the resonance error bound for eMOD . Such an error

arises when the boundary conditions of the micro-problems do not match the values of the

exact solution on the boundary of the sampling domains. The error
∥∥ā0(x j )−a0

∥∥
F can only be

estimated in the cases where an exact form of a0 is available, for example in the periodic case

which is analysed in this section. Under the periodicity assumption, the resonance error arises

if the boundary conditions of the corrector problems do not fit the periodic settings, e.g. when

Dirichlet boundary conditions are used in problem eq. (2.32). By contrast, if periodic boundary

conditions are considered in eq. (2.32), and δ is an integer multiple of ε, the homogenized

tensor is reconstructed exactly. In the ε-periodic case, we denote the corrector functions as

χi
ε, j (x), which solve the problem

ˆ
Knε(x j )

aε(x)
(
∇χi

ε, j +ei

)
·∇z d x = 0, ∀z ∈Wper

(
Kε(x j )

)
. (2.31)

We will compare the periodic solution withϕδ, j ∈ H 1
0

(
Kδ(x j )

)
obtained by using homogeneous

Dirichlet boundary conditions.

Before estimating the resonance error, we show that the bilinear form B̄H can be re-interpreted

as a bilinear form at the macroscale (so, it ignores the microscale effects), with modified

coefficients. By linearity, the microscale exact solution v j used in eq. (2.27) can be written as

v j = v H
j ,l i n +

d∑
i=1

∂v H
j ,l i n

∂xi
ϕi
δ, j ,

where the local corrector ϕi
δ, j ∈W

(
Kδ

(
x j

))
solves

ˆ
Kδ(x j )

aε(x)
(
∇ϕi

δ, j +ei

)
·∇z d x = 0, ∀z ∈W

(
Kδ

(
x j

))
. (2.32)

If W
(
Kδ

(
x j

))=W 1
per

(
Kδ

(
x j

))
and δ= nε, with n ∈N, then ϕi

δ, j (x) =χi
ε, j (x). Thus we have:

B̄H
(
v H , w H )

:= ∑
E∈TH

∑
j∈J
ω j

 
Kδ(x j )

aε(x)∇v j ·∇w j d x

= ∑
E∈TH

∑
j∈J
ω j

 
Kδ(x j )

aε(x)∇
(

v H
j ,l i n +

d∑
i=1

∂v H
j ,l i n

∂xi
ϕi
δ, j

)
·∇

(
w H

j ,l i n +
d∑

l=1

∂w H
j ,l i n

∂xl
ϕl
δ, j

)
d x
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= ∑
E∈TH

∑
j∈J
ω j

d∑
i ,l=1

∂v H
j ,l i n

∂xi

∂w H
j ,l i n

∂xl

 
Kδ(x j )

aε(x)
(
ei +∇ϕi

δ, j

)
·
(
el +∇ϕl

δ, j

)
d x

By the identity ∇v H
j ,l i n =∇v H (x j ) and by defining the approximate homogenised matrix at x j ,

ā0(x j ), with components

ā0
l i (x j ) :=

 
Kδ(x j )

aε(x)
(
ei +∇ϕi

δ, j

)
·
(
el +∇ϕl

δ, j

)
d x, (2.33)

and the bilinear form B̄H can be rewritten as

B̄H
(
v H , w H )= ∑

E∈TH

∑
j∈J
ω j ā0(x j )∇v H (x j ) ·∇w H (x j ). (2.34)

The difference between ā0 and the true G-limit a0 provides a bound for the resonance error

through the following Proposition 2.7.

Proposition 2.7 ([5]). Let u0,H and ūH be, respectively, the solutions of eqs. (2.26) and (2.28).

Then ∥∥u0,H − ūH
∥∥

H 1(D) ≤ sup
E∈TH
x j∈E

∥∥ā0(x j )−a0
∥∥

F (2.35)

where ‖·‖F is the Frobenius norm.

Proof. Let w H := u0,H − ūH . From the coercivity of B̄H it follows that there exist c > 0 indepen-

dent of H and ε such that

c
∥∥u0,H − ūH

∥∥2
H 1(D) ≤ B̄H

(
u0,H − ūH , w H )

= B̄H
(
u0,H , w H )−F

(
w H )

= B̄H
(
u0,H , w H )− B̄0,H

(
u0,H , w H )

.

Hence, we conclude that there exists C > 0, independent of H , such that

∥∥u0,H − ūH
∥∥

H 1(D) ≤C sup
w H∈V p (D,TH )

∣∣B̄H
(
u0,H , w H

)− B̄0,H
(
u0,H , w H

)∣∣∥∥w H
∥∥

H 1(D)

. (2.36)

We conclude by bounding the right-hand side through

∣∣B̄H
(
u0,H , w H )− B̄0,H

(
u0,H , w H )∣∣= ∣∣∣∣∣ ∑

E∈TH

∑
j∈J
ω j

(
ā0(x j )−a0)∇u0,H (x j ) ·∇w H (x j )

∣∣∣∣∣
≤ sup

K∈TH
x j∈K

∥∥ā0(x j )−a0
∥∥

F

∥∥u0,H
∥∥

H 1(D)

∥∥w H
∥∥

H 1(D) .

In conclusion, eq. (2.35) follows from the uniform bound on
∥∥u0,H

∥∥
H 1(D) ≤C

∥∥ f
∥∥

H−1 given by

the variational problem eq. (2.26).
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From Proposition 2.7, we see that the resonance error comes from the inaccurate reconstruc-

tion of the homogenized tensor and it is independent of the numerical error at the microscale,

as the analysis is done assuming that the corrector problems are solved exactly. The task is

now to bound the right-hand side of eq. (2.35). This is done by the following statement, already

proved in [55, 5].

Proposition 2.8 ([55, 5]). Let a ∈ W 1,∞(Rd ,Rd×d ) be [0,1)d -periodic, let a0 be the G-limit of

a (x/ε), for ε→ 0 and let ā(x j ) be given by eq. (2.33) for ϕδ, j ∈ H 1
0

(
Kδ

(
x j

))
and δ > ε. There

exists a constant C > 0 independent of ε,δ such that

sup
E∈TH
x j∈E

∥∥ā0(x j )−a0
∥∥

F ≤C
ε

δ
. (2.37)

Proof. Let us define n ∈N as

n =


⌊
δ
ε

⌋
if δ/ε ∉N,

δ
ε −1 if δ/ε ∈N.

By following a standard procedure to estimate
∥∥∥uε−

(
u0 +ε∑

i
∂u0

∂xi
χi

)∥∥∥
H 1

, we define the bound-

ary layer ∆ := Kδ \ Knε and a cut-off function ρε ∈C∞
0 (Kδ) such that

ρε(x) = 1 in Knε, and
∥∥∇ρε∥∥L∞(Kδ) ≤

C

ε
,

for some C > 0 independent of ε. Then, we can define the function θi
0 :=ϕδ, j −ρεχi

ε, j solving

the variational problem

ˆ
Kδ(x j )

aε(x)∇θi
0 ·∇z d x =

ˆ
Kδ(x j )

aε(x)∇
(
χi
ε, j (1−ρε)

)
·∇z d x ∀z ∈ H 1

0

(
Kδ

(
x j

))
. (2.38)

The Lax-Milgram theorem provides the bound∥∥∥∇θi
0

∥∥∥
L2(Kδ(x j ))

≤ β

α

∥∥∥∇(
χi
ε, j (1−ρε)

)∥∥∥
L2(Kδ(x j ))

,

whose right-hand side is bounded by using the assumptions on ρε and χi
ε, j ∈W 1,∞ (

Kδ

(
x j

))
:

∥∥∥∇(
χi
ε, j (1−ρε)

)∥∥∥
L2(Kδ(x j ))

≤
∥∥∥∇χi

ε, j

∥∥∥
L2(∆)

+ C

ε

∥∥∥χi
ε, j

∥∥∥
L2(∆)

≤C |∆|1/2
∥∥∥χi

∥∥∥
W 1,∞(K )

.

From the estimates above and the bound of the volume of the boundary layer |∆| ≤ d ε
δ
|Kδ|,

we deduce that ∥∥∥∇θi
0

∥∥∥
L2(Kδ(x j ))

≤C |Kδ|
1
2

( ε
δ

) 1
2

. (2.39)

The difference ā0
i k (x j )− a0

i k is decomposed into two terms, I 1
i k and I 2

i k . The former stands

for the difference between ϕδ, j and χi
ε and the latter for the mismatch between the sampling
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domain and the periodic cell:

ā0
i k (x j )−a0

i k = I 1
i k + I 2

i k ,

with

I 1
i k :=

 
Kδ(x j )

aε(x)
(
ek +∇ϕk

δ, j

)
·
(
ei +∇ϕi

δ, j

)
d x −

 
Kδ(x j )

aε(x)
(
ek +∇

(
ρεχ

k
ε

))
·
(
ei +∇

(
ρεχ

i
ε

))
d x,

I 2
i k :=

 
Kδ(x j )

aε(x)
(
ek +∇

(
ρεχ

k
ε

))
·
(
ei +∇

(
ρεχ

i
ε

))
d x −

 
Knε(x j )

aε(x)
(
ek +∇χk

ε

)
·
(
ei +∇χi

ε

)
d x.

By symmetry of aε and the weak problem eq. (2.38), the term I 1
i k equals

I 1
i k =−

 
Kδ(x j )

aε(x)∇θk
0 ·∇θi

0 d x +
 

Kδ(x j )
aε(x)

(∇ϕk +ek
) ·∇θi

0 d x︸ ︷︷ ︸
=0

+
 

Kδ(x j )
aε(x)

(∇ϕi +ei
) ·∇θk

0 d x︸ ︷︷ ︸
=0

,

and it is estimated by the Cauchy-Schwarz inequality and the bound eq. (2.39):

∣∣I 1
i k

∣∣≤β 1∣∣Kδ

(
x j

)∣∣ ∥∥∥∇θi
0

∥∥∥2

L2(Kδ(x j ))
≤C

ε

δ
. (2.40)

The second term, I 2
i k is rewritten as

I 2
i k = 1∣∣Kδ

(
x j

)∣∣
ˆ
∆

aε(x)
(
ek +∇

(
ρεχ

k
ε

))
·
(
ei +∇

(
ρεχ

i
ε

))
d x

+
(

1∣∣Kδ

(
x j

)∣∣ − 1∣∣Knε(x j )
∣∣
)ˆ

Knε(x j )
aε(x)

(
ek +∇χk

ε

)
·
(
ei +∇χi

ε

)
d x,

and it is bounded by using the Cauchy-Schwarz inequality and the fact that χi ∈W 1,∞(K ):

∣∣I 2
i k

∣∣≤ β∣∣Kδ

(
x j

)∣∣ ∥∥∥ek +∇
(
ρεχ

k
ε

)∥∥∥
L2(∆)

∥∥∥ei +∇
(
ρεχ

i
ε

)∥∥∥
L2(∆)

+ |∆|∣∣Kδ

(
x j

)∣∣ a0
i k

≤ |∆|∣∣Kδ

(
x j

)∣∣
[
β sup

1≤i≤d

(
1+C

∥∥∥χi
∥∥∥

L∞(K )
+

∥∥∥∇χi
∥∥∥

L∞(K )

)2 +a0
i k

]
.

Since the term inside the parenthesis can be bounded by a constant independent by δ and ε,

we conclude that ∣∣I 2
i k

∣∣≤C
ε

δ
, (2.41)

and eq. (2.37) follows from eqs. (2.40) and (2.41).
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2.3. The Finite Elements Heterogeneous Multiscale Method (FE-HMM)

So far, we have seen that using Dirichlet BCs in the corrector ε-problems for periodic multiscale

coefficients causes a resonance error which decays as ε/δ. As a matter of fact, the same error

decay holds true if other BCs are used or if the size of the sampling domains does not match

with the period of the coefficients. This result can be extended to the case of locally periodic

coefficients, aε(x) = a (x, x/ε) where a(·, ·) is Lipschitz continuous in its first argument and

periodic in the second:

Proposition 2.9. Let a ∈W 1,∞ (
D,L∞ (

K ,Rd×d
))

be [0,1)d -periodic in the second variable. Let

u0,H and ūH be the solutions of eqs. (2.26) and (2.28). Then

eMOD := ∥∥u0,H − ūH
∥∥

H 1(D) ≤
Cδ if δ/ε ∈N and W (Kδ(x j )) =W 1

per

(
Kδ(x j )

)
,

C
(
ε
δ +δ

)
if δ/ε ∉N and W (Kδ(x j )) = H 1

0 (Kδ(x j )).

By comparing the error estimates in Propositions 2.6 and 2.9, it can be noticed that approxi-

mating the effective coefficient over a sampling domain of size δ has the effect of introducing

an additional error term, which scales as δ. However, this term is often negligible with respect

to the ε/δ term, thus making the reduction of the latter more crucial.

2.3.3 Reduced basis method for locally periodic coefficients

In connection to the discussion above, we briefly describe here a recently developed strategy

for applying the FE-HMM to problems with locally periodic coefficients. In this case, the micro-

corrector problem should be solved for each quadrature point x j , but this is computationally

very expensive. Such an increase of the computational cost can be avoided by exploiting the

smoothness of a(x, y) with respect to the x-variable and by using the Reduced Basis method

to approximate ā0(x j ), defined in eq. (2.33), in any arbitrary point x j . Let us assume that the

locally periodic tensor satisfies the affine representation

a(x, y) =
Q∑

q=1
Θq (x)aq (y), (2.42)

where the functions Θq (x) are known and of cheap evaluation and aq ∈ L∞(Rd×d ) are [0,1)d -

periodic. Then, it is possible to compute the ā0(x j ) on few locations (the “snapshots” of the

reduced basis method) and to use them to approximate ā0(x) on arbitrary locations x. When

the affine decomposition eq. (2.42) is not available, it is possible to approximate it by the

Empirical Interpolation Method (EIM, [30, 113]). The application of the reduced basis method

to the FE-HMM is known as RB-FE-HMM and was first proposed in [10].
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Chapter 2. Homogenization theory, multiscale methods and the resonance error

2.4 The resonance error in FE-HMM and alternative corrector prob-

lems

In Section 2.3 the FE-HMM was discussed and a priori bounds on the approximation errors

were provided. Besides the macro- and micro-errors ,which are due to numerical approx-

imations, the FE-HMM suffers from the resonance error, which comes from the coupling

conditions between the micro- and the macroscales. In particular, the resonance error has

two sources: the mismatching BCs used in the corrector problems and the wrong size of

the sampling domains. We have discussed this error in the FE-HMM framework, but other

multiscale numerical methods show a similar error due to mismatching coupling conditions

between the micro and the macro scales. In the context of the MsFEM, a priori error estimates

are derived in [96, 97].

Under the assumption of periodicity of the coefficients, the resonance error vanishes only

if the corrector problems are solved with periodic boundary conditions on the periodic cell.

When the period of the microstructure is not known exactly and the sampling domains of

size δ are used to reconstruct it, the resonance error has a magnitude proportional to ε/δ.

If the periodicity assumption is relaxed, e.g. if a is random stationary ergodic or quasi-

periodic tensor, or in the case of non-linear models, it is not possible to reconstruct exactly the

homogenized coefficients a0, due to the lack of computable microscale models. For example,

if a is a stationary ergodic random field, a0 exists but one should solve and average an auxiliary

model over the whole Rd in order to evaluate a0. Therefore, the resonance error for non

periodic micro structures is not avoidable. Moreover, there are cases for which the resonant

effect is even worse than the estimate provided in Proposition 2.6. For example, for stationary

ergodic random coefficient, the resonance error scales as (ε/δ)r , where r depends on the

dimension, but is in general r < 1, [55].

From a computational point of view, the first order decay rate of the error is the efficiency

and accuracy bottleneck of numerical upscaling schemes. Indeed, while the micro and macro

discretization errors can be reduced by simultaneous refinement of the micro and macro

meshes, [2], or by increment of the FE order at both the macro and the micro scales, the

only available strategy to reduce the resonance error is to increase the size of the sampling

domains Kδ. This approach is computationally inefficient, as the numerical cost increases as

δd , while the error decays as δ−r , with r ≤ 1 ≤ d , for possibly every quadrature point in the

macro mesh. Hence, in order to reduce the resonance error down to practically reasonable

accuracies, one needs to solve the corrector problem eq. (2.23) over “large” (δ/εÀ 1) sampling

domains Kδ. This inefficiency triggered the birth and development of a number of numerical

methodologies aiming at improving the resonance error convergence rate, in order to reduce

it under acceptable accuracies without substantial enlargement of the sampling domains Kδ.
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2.4. The resonance error in FE-HMM and alternative corrector problems

2.4.1 Existing approaches for reducing the resonance error

Over the last two decades, several interesting approaches have been proposed to reduce the

resonance error. It is worth mentioning that the improvement of the resonance error decay

is an active subject of research in the MsFEM framework, too. Several strategies have been

proposed in this context , such as oversampling [97, 90], Petrov–Galerkin approach [98] and

the Localized Orthogonal Decomposition (LOD) [88, 89, 114, 66]. They are mostly based on

the choice of the FE spaces at the micro scale.

Most of the techniques proposed in the FE-HMM framework rely on modified microscale

models to achieve better accuracies in the estimation of the homogenized coefficients. Some

of these approaches are described below.

From now on, we will use the notation of the rescaled corrector problems, consistently to what

is done in the next chapters and several of the works cited below. Hence, we will not consider

the corrector problem

−∇·
(
aε(x)

(
∇ϕi

δ+ei

))
= 0 on Kδ,

but its ε-rescaled version:

−∇·
(
a(y)

(
∇χi

R +ei

))
= 0 on KR , (2.43)

where we have used the rescaling

y = x

ε
, χi

R (y) = 1

ε
ϕi
δ(x), and R = δ

ε
.

Oversampling and filtering

The first attempt to improve the convergence rate was by modifying the averaging formula

eq. (2.33). In oversampling, the microscopic corrector problem eq. (2.23) is solved over the cell

KR , while the computation of the homogenized coefficient takes place in an interior domain

KL ⊂ KR : −∇· (a(y)
(∇χi

R +ei
))= 0 on KR

χi
R = 0 on ∂KR ,

(2.44)

a0,R,L
i j :=

ˆ
KL

ei ·a(y)
(
∇χ j

R +e j

)
µL(y)d y, (2.45)

where µL is a smooth function of mass one and supported on KL (the filter). Another at-

tempt is based on exploring the combined effect of oversampling and imposing different BCs

(Dirichlet, Neumann and periodic) in eq. (2.23), see [134]. It has been found that periodic

BCs perform better than the other two. Moreover, the Dirichlet BCs tend to overestimate the

effective coefficients, while Neumann BCs underestimate them. The use of these strategies

becomes questionable if one is interested in practically relevant error tolerances, since there
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Chapter 2. Homogenization theory, multiscale methods and the resonance error

is still a need for substantially enlarging the computational domain KR to reach a satisfactory

accuracy. Additionally, the weighted averaging of the fluxes is compared with the standard

geometric average of eq. (2.33): thought the weighted average (filtering), does not improve the

convergence rate, it reduces the prefactor in the a priori bound for the resonance error.

Filtered corrector problems

As it was remarked above, the resonance error is due to two factors: mismatch in the boundary

conditions of the corrector problems and the true solution, and the averaging over a bounded

domain. In order to address these issues, a filtered corrector problem to approximate the

homogenized limit of (non-)periodic coefficients was proposed, [33]:−∇· [(a(y)
(∇χi

R +ei
)+λ)

µR (y)
]= 0 on KR´

KR
∇χi

Rµ= 0,
(2.46)

where p,λ ∈ Rd and µ is a filter, a class of functions defined later. The Lagrange multiplier

λ allows us to solve eq. (2.46) without imposing any boundary condition. Indeed, it is not

difficult to prove that eq. (2.46) is well posed in the quotient space (following the notation of

[33]) H 1
µ(KR )/R, where

L2
µ(KR ) =

{
u : KR 7→R, measurable,

ˆ
KR

u2µ<∞
}

, and

H 1
µ(KR ) =

{
u ∈ L2

µ(KR ),∇u ∈
(
L2
µ(KR )

)d
}

.

By-passing the use of boundary conditions to solve the corrector problems allows us to get rid

of the first source of the resonance error.

The homogenized coefficients are then approximated by

a0,R
i j :=

ˆ
KR

(
∇χi

R +ei

)
·a(y)

(
∇χ j

R +e j

)
µR (y)d y

=
ˆ

KR

ei ·a(y)
(
∇χ j

R +e j

)
µR (y)d y.

(2.47)

The filter µR is used here in order to address the second source of error, i.e. the averaging

over a “wrong” domain. Filters are a class of compact support functions with unit mass, q-th

order regularity up to the boundary and vanishing derivatives up to the order q −1. This

class of function is a powerful tool to average periodic and quasi-periodic functions, as it

is shown in [39, 40] and in Definition 3.7. Indeed, they allow to approximate the average

of (quasi-)periodic functions with accuracy R−q : Let us consider a quasi-periodic function

f :Rd 7→R and let us define

〈 f 〉 := lim
R→∞

 
KR

f
(
y
)

d y,
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2.4. The resonance error in FE-HMM and alternative corrector problems

then, there exists C > 0 independent of δ such that∣∣∣∣ˆ
KR

f
(
y
)
µR d y −〈 f 〉

∣∣∣∣≤C R−q . (2.48)

This approach is analysed in [33]. The resonance error
∣∣a0,R −a0

∣∣ decays as R−q for one

dimensional, periodic coefficients. By using the multiscale expansion ansatz, a second order

convergence rate R−2 is shown in higher dimension, independently of the order of the filter.

Numerical simulations demonstrate the optimality of the second order rate in dimension

d > 1.

An elliptic model with zero-th order term

Another promising strategy is to use an elliptic corrector problem with a small (i.e., converging

to zero) zero-th order regularization term, [78]:

1

T
χi

T,R −∇·
(
a(y)

(
∇χi

T,R +ei

))
= 0 on KR , (2.49)

with suitable boundary conditions to ensure well posedness. This problem is widely used in

stochastic homogenization to prove existence of the corrector functions. In the non-stochastic

case, the cell problem eq. (2.49) allows to reduce the effect that mismatching boundary

conditions have on the values of the solution inside the domain. Indeed, the exponential

decay of the Green’s function for eq. (2.49) entails exponentially fast decay of the boundary

error. The homogenized coefficients are then computed by using the filters of eq. (2.47),

rescaled in order to be supported on the smaller domain KL ⊂ KR :

a0,R,L,T
i j :=

ˆ
KR

(
∇χi

T,R +ei

)
·a(y)

(
∇χ j

T,R +e j

)
µL(y)d y (2.50)

This method suffers from a bias (or systematic error) due to added regularization term, which

limits the convergence rate to fourth order. The error bound for this approach is∣∣∣a0,R,L,T
i j −a0

i j

∣∣∣≤C

(
L−q−1 +T −2 +T 1/4 exp

(
−c

|R −L|p
T

))
. (2.51)

If an high order filter (q > 3) is chosen and the condition L Àp
T holds, then, by choosing

R = 3L/2, T = L2 log(L)−4

we have
∣∣∣a0,R,L,T

i j −a0
i j

∣∣∣≤C R−4
(
logR

)8. Numerical simulations in [78] show that the method

requires very large values of R to achieve the optimal fourth order asymptotic rate.

In [79], Richardson extrapolation is used to increase the convergence rate to higher orders at

the expense of solving the corrector problem several times with different regularization terms.
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Chapter 2. Homogenization theory, multiscale methods and the resonance error

The Richardson iterates are defined by

χT,R,k+1 =
1

2k −1

(
2kχ2T,R,k −χT,R,K

)
.

If the k-th iterate is used in eq. (2.51) to compute the approximate homogenized tensor, the

error bound improves to∣∣∣a0,R,L,T
i j −a0

i j

∣∣∣≤C

(
L−q−1 +T −2k +T 1/4 exp

(
−c

|R −L|p
2k−1T

))
.

This last error bound allows to reach arbitrary high convergence rate in the asymptotic regime

R →∞.

The wave equation approach

An interesting idea to cancel the error due to mismatching boundary condition in the cell

problem is proposed in [16, 18]. Here, a second order hyperbolic equation on KR ×(−T /2,T /2)

is solved: 
∂t tχR −∇· (a(y)

(∇χi
R +ei

))= 0 in KR × (−T /2,T /2),

χi
R = 0, in KR ×0,

∂tχ
i
R = 0, in KR ×0,

(2.52)

with suitable boundary conditions. The rationale behind this approach is that the boundary

conditions do not affect the solution in any interior subdomain sufficiently far from the

boundary, because of the finite speed of wave propagation. The approximation of a0 is

computed by averaging over a subdomain KL × (−T,T ):

a0,R
i j =

ˆ T /2

−T /2

ˆ
KL

ei ·aε(y)
(
∇χ j

R +e j

)
µL(y)d y µT (t )d t , (2.53)

where the filtering function µL and µT belong to the same class of filters used in the sections

above. The choices T = L and L ≤ R −T
√‖a‖L∞ ensure that the boundary conditions do

not pollute the solution in the averaging domain KL . The only error present in the upscaling

algorithm is thus the one connected to the averaging which, by the periodicity of aε, decays as

L−q−1. Hence, this method provides an arbitrary rate of accuracy in approximating the G-limit

of periodic media. However, there are a few computational challenges with this method:

• the spatial domain size increases linearly with the wave speed;

• the solution of the wave equation depends on time, and therefore additional degrees of

freedom are needed to approximate the cell-solution;

• practically, accurate approximations of solutions of the wave equation require high

resolutions per-wavelength, which makes the method less efficient (when compared to

solving an elliptic cell-problem).
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2.4. The resonance error in FE-HMM and alternative corrector problems

The embedded method

An embedded corrector problem is proposed in [41, 42]. The original tensor a(·) is replaced in

the (infinite) sampling domains by aR (·) defined as

aR (y) =
a(y) y ∈ KR ,

ā y ∈Rd \KR ,

where ā ∈ Rd×d is an a priori unknown constant matrix approximating the homogenized

coefficients. The embedded corrector problem is

−∇· (aR (y)
(
χR +ξ))= 0 in D′

(
Rd

)
. (2.54)

The solution χR to the corrector problem eq. (2.54) can be used to define consistent approxi-

mations of a0. Let us define the vector space

V0 :=
{

v ∈ L2
loc

(
Rd

)
,∇v ∈

(
L2

(
Rd

))d
,

ˆ
KR

v = 0

}
.

The differential equation eq. (2.54) is the Euler–Lagrange equation for the minimization

problem: Find Jp (ā) ∈R such that

Jp (ā) := min
v∈V0

1

2 |KR |
ˆ

KR

(∇v +ξ) ·aε(y) (∇v +ξ) d y

+ 1

2 |KR |
ˆ
Rd \KR

∇v · ā∇v d y − 1

|KR |
ˆ
∂KR

n · āξv dσ(y). (2.55)

Next, by linearity of the mapping ξ 7→χ
ξ
R we know that there exists a matrix G(ā) ∈Rd×d such

that
1

2
ξ ·G(ā)ξ=Jp (ā).

The following three approximations of a0 are proposed:

a0,R
1 = argmax

ā∈M (α,β)
Tr(G(ā)) , a0,R

2 =G(a0,R
1 ), a0,R

3 =G(a0,R
3 ).

Then, it can be proved that a0,R
1 , a0,R

2 → a0 as R → ∞ and that there exist a subsequence{
a0,Rk

3

}
k

such that a0,Rk
3 → a0. The embedded method shows a first order convergence rate for

a0,R
1, and a second order of convergence rate for a0,R

2 and a0,R
3 , with respect to the modelling

parameter R.

An iterative method

A new method for efficient computation of the homogenized coefficients was developed in

[119]. The method was originally proposed for the homogenization of stochastic coefficients
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Chapter 2. Homogenization theory, multiscale methods and the resonance error

on random networks and later adapted to the continuous case in [87]. The main goal is

not to provide better convergence rates of the resonance error but, rather, to propose an

iterative scheme to reconstruct the homogenized coefficients and to derive estimates for the

error introduced by the finite number of iterations. Nevertheless, we think that it is worth

to mention this method in this section, as the corrector problems proposed in Chapter 4 are

based on it.

This iterative approach can be seen as the backward Euler discretization in time of the

parabolic operator ∂t −∇· (a∇), where the spatial differential operators are to be meant in a

discrete settings. The first element of the iterative scheme is χ−1 =∇· (a(y)ξ
)
, and the k-th

iteration, for k ≤ n, is defined by solving

2−kχk −∇· (a(y)∇χk
)= 2−kχk−1 in Zd . (2.56)

By using the properties of the Green’s function, it is possible to prove that the correctors solving

eq. (2.56) can be approximated within an exponentially decaying error by the bounded domain

solutions 2−kχR,k −∇· (a(y)∇χR,k
)= 2−kχR,k−1 in KRk ,

χR,k = 0 on ∂KRk ,
(2.57)

so that the boundary error is negligible compared to the systematic and statistical errors.

These two errors are due to:

• the use of a model with the addition of a zero-th order term, and

• the computation of the homogenized tensor by averaging over bounded domains:

ξ ·a0,R,L,nξ :=
 

KL0

ξ ·a(y)ξd y +
n∑

k=0
2k
 

KLk

χk−1χk +χ2
k d y. (2.58)

In eqs. (2.57) and (2.58) we have defined

Lk = 2n−(
1
2−ε

)
k , and Rk = Lk +C (1+n)2

k
2 .

In this case, the mean square resonance error is bounded by

E
[∣∣ξ · (a0 −a0,R,L,n)

ξ
∣∣2

] 1
2 ≤C L

− d
2

n . (2.59)

2.4.2 Conclusion

As discussed above, many approaches to reconstruct the homogenized coefficients with

reduced resonance error have been proposed in the past years. Some of these methods could

only achieve a reduction of the prefactor in the error bounds, while others improved the speed
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2.4. The resonance error in FE-HMM and alternative corrector problems

of convergence with respect to the size of the sampling domain. High convergence rates for

the resonance error will allow to estimate the homogenized coefficients with better accuracy

and reduced computational cost, thus being valuable for simulating multiscale materials.

However, some of the proposed strategies have limited orders of convergence or the error

decays at the expected rate only in the asymptotic regime, i.e. for sufficiently large values of R .

This motivated us to carry out the research exposed in this thesis.
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3 New parabolic and modified elliptic
corrector problems

Let us consider the second order elliptic equation:−∇ (aε(x)∇uε) = f in D ⊂Rd ,

uε = 0 on ∂D,
(3.1)

where the tensor aε oscillates at the small scale, denoted by ε¿ 1. The macroscopic behaviour

of this equation is approximated by solving the homogenized problem:−∇(
a0(x)∇u0

)= f in D ⊂Rd ,

u0 = 0 on ∂D.

In general, the homogenized matrix a0 cannot be computed in closed form, thus multiscale

numerical methods are used to approximate it by solving auxiliary equations at the microscale.

However, such methods are affected by the resonance error which strongly limits the accuracy

of multiscale simulations. In the FE-HMM context, the resonance error depends on the size of

the sampling domains and the imposed boundary conditions (BCs) in the corrector problems.

Letting R denote the size of the sampling domain, the resonance error for periodic coefficients

decays as R−1, as proved in Section 2.3.2. Thus, the objective of many alternative corrector

problems, as those presented in Section 2.4.1, is to approximate the correct homogenized

coefficients within an improved decay of the resonance error. In this chapter, we present

two novel methods for computing the effective parameters of linear second order elliptic

PDEs with fast oscillating coefficients. The main advantage of the two methods is that their

resonance error decays with arbitrary rates of convergence.

Outline

First of all, we prove an equivalence result between the periodic elliptic correctors and the

solutions of parabolic PDEs with periodic boundary conditions. This is a fundamental result

that will be used to derive the two new schemes, as well as in the a priori error analysis. A
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Chapter 3. New parabolic and modified elliptic corrector problems

proof is given in Section 3.1.

The first upscaling method is described in Section 3.2. It relies on the solution of parabolic

problems at the microscale, which was already proved to be successful in the context of

stochastic homogenization over discrete networks, [119]. The advantage of using parabolic

corrector problems is that the correctors are minimally affected by mismatching boundary

conditions, thanks to the exponential decay of the Green’s function. This allows to prove that

the convergence rate of the resonance error for this model is arbitrarily high, as it will be

proven in Chapter 4.

As a second step, we derive a modified elliptic corrector problem as the time integral of the

parabolic one in Section 3.3. The integration in time of the parabolic correctors brings a

new term in the right-hand side of the elliptic corrector problem, so we will denote it as the

“modified elliptic” approach. The connection with the parabolic problem allows to transfer

many of its properties to the elliptic problem, for example the exponential decay of the error

due to mismatching boundary conditions. Hence, we can achieve arbitrarily high convergence

rates, as for the parabolic case. The proof of the convergence rate for this method is postponed

to Chapter 5.

The content of this chapter is based on [6].

3.1 Equivalence between the parabolic and the standard elliptic prob-

lems in the periodic setting

In this section, we discuss an approach to compute a0 based on parabolic auxiliary problems

and prove its equivalence to the use of periodic correctors. This will allow to derive two

corrector problems suitable for the computation of effective coefficients under more general

assumptions. Let us assume that the multiscale tensor aε satisfies:

i) aε(x) = a(x/ε), for a ∈M
(
α,β

)
;

ii) a(·) is K -periodic, with K := [−1/2,1/2]d .

Under assumptions i) and ii), the exact homogenized tensor can be computed as

a0
i j :=

 
K

ei ·a(x)
(
∇χ j +e j

)
d x, (3.2)

where the corrector functions χi solve the periodic auxiliary problems of Section 2.1.1:−∇· (a(x)
(∇χi +ei

))= 0 in K

χi is K -periodic,
´

K χ
i = 0.

(3.3)
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3.1. Equivalence between the parabolic and the standard elliptic problems in the
periodic setting

By symmetry of a and the weak form of eq. (3.3), a0 is equivalently computed as

a0
i j =

 
K

ai j (x)d x −
 

K
∇χi ·a(x)∇χ j d x, (3.4)

where second term of eq. (3.4) is denoted as correction term.

Let us introduce the following parabolic problem with periodic boundary conditions
∂v i

∂t
−∇· (a(x)∇v i ) = 0 in K × (0,+∞)

v i (·, t ) K -periodic,∀t ≥ 0

v i (x,0) =∇· (a(x)ei ) in K .

(3.5)

The solution of eq. (3.5) is well-posed in the space L2
(
[0,+∞),W 1

per (K )
)
∩C

(
[0,+∞),L2

0(K )
)
.

Proposition 3.1. Let a ∈M (α,β) be K -periodic and ∇· (a(x)ei ) ∈ L2
0(K ). Then, eq. (3.5) has a

unique weak solution v i such that

v i ∈ L2
(
[0,+∞),W 1

per (K )
)

,∂t v i ∈ L2
(
[0,+∞),W 1

per (K )′
)

.

It follows that v i ∈C
(
[0,+∞),L2

0(K )
)
, and there exist constants C > 0 such that the following

bounds hold true:∥∥∥v i
∥∥∥

L∞([0,+∞),L2(K ))
+

∥∥∥v i
∥∥∥

L2
(
[0,+∞),W 1

per (K )
) ≤C ‖∇· (a(x)ei )‖L2(K ) . (3.6)

Moreover, v i is Hölder continuous in K × (0,+∞).

Here, the space W 1
per (K )′ is the dual space of W 1

per (K ) (a characterization of this space can be

found in [45]). Next, we prove that a0, defined as in eq. (3.4), can be equivalently computed

through the solutions vi ’s.

Theorem 3.2. Let a(·) ∈M (α,β) be K -periodic, v i ∈C
(
[0,+∞),L2

0(K )
)

be the weak solution of

eq. (3.5) and χi ∈W 1
per (K ) be the weak solution of eq. (3.3). Then, for 1 ≤ i , j ≤ d, the following

identities hold

χi =
ˆ +∞

0
v i (·, t )d t in W 1

per (K ), (3.7)

1

2

ˆ
K
∇χi (x) ·a(x)∇χ j (x)d x =

ˆ +∞

0

ˆ
K

v i (x, t )v j (x, t )d x d t . (3.8)

Proof. We reformulate problem (3.11) as the abstract Cauchy problem in L2
0(K )

d v i

d t
+ Av i = 0

v i (0) = g i , g i (x) =∇· (a(x)ei ) in L2
0(K ).
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Chapter 3. New parabolic and modified elliptic corrector problems

Here, the operator A : W 1
per (K ) → W 1

per (K )′ is defined as Av := −∇ · (a∇v). Then, v i (t) =
e−t A g i . We know that σ(A), the spectrum of A, is contained in an open sectorial domain

α+Sω, where α ∈R, α> 0 and

Sω =
{

z ∈C :
∣∣arg z

∣∣<ω, 0 <ω< π

2

}
.

Then, the Dunford integral representation

e−t A = 1

2πi

ˆ
Γ

e−t z (zI − A)−1 d z

holds, where Γ is an infinite curve lying in ρ(A) :=C\σ(A) and surroundingσ(A) counterclock-

wise. Then, integrating in time we obtain

ˆ +∞

0
v i (t )d t =

ˆ +∞

0

1

2πi

ˆ
Γ

e−t z (zI − A)−1 g i d z d t

= 1

2πi

ˆ
Γ

ˆ +∞

0
e−t z d t (zI − A)−1 g i d z

= 1

2πi

ˆ
Γ

1

z
(zI − A)−1 g i d z = A−1g i .

The first equality is given by the Dunford integral formula. The second equality is obtained

by Fubini’s theorem. The third equality is true because the double integral is bounded,

limt→+∞ e−t z = 0 since Re(z) > 0 on Γ. The last equality follows from the fact that the function

f (z) = 1/z is holomorphic in the interior of α+Sω. Since A is an isomorphism and χi is the

weak solution of Aχi = g i , we have that A−1g i =χi and (3.7) is proved.

To prove (3.8), we write the weak formulation of (3.3) and choose χ j = ´ +∞
0 v j d t as test

function:
ˆ

KR

∇χ j ·a(x)∇χi d y =
(
∇· (aei ) ,χ j

)
L2

0(K )

=
ˆ +∞

0

(
∇· (aei ) , v j

)
L2

0(K )
d t .

Using the semigroup property of e−t A and the self-adjointness of A we obtain

ˆ
K
∇χi (x) ·a(x)∇χ j (x) d y =

ˆ +∞

0

(
v i (·,0),e−t A v i (·,0)

)
L2

0(K )
d t

=
ˆ +∞

0

(
v i (·,0),e−

t
2 Ae−

t
2 A v i (·,0)

)
L2

0(K )
d t

=
ˆ +∞

0

(
e−

t
2 A v i (·,0),e−

t
2 A v i (·,0)

)
L2

0(K )
d t
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3.2. The parabolic corrector problems

=
ˆ +∞

0

(
v i (·, t/2), v j (·, t/2)

)
L2(KR )

d t ,

and conclude the proof by the change of variable t/2 7→ t .

Theorem 3.2 implies that a0 can equivalently be computed by using the parabolic correctors

v i ’s. Indeed, we can either plug eq. (3.8) into eq. (3.4) or eq. (3.7) into eq. (3.2) to get the

equivalent formulations eq. (3.9) and eq. (3.10).

Corollary 3.3. Let a(·) ∈M (α,β) be K -periodic. Let v i ∈C
(
[0,+∞),L2

0(K )
)

solve eq. (3.5). Then

a0
i j =

 
K

ai j (x)d x −2

ˆ +∞

0

 
K

v i (x, t )v j (x, t )d x d t , (3.9)

a0
i j =

 
K

ei ·a(x)

(ˆ +∞

0
∇v j (x, t )d t +e j

)
d x. (3.10)

The two formulations, eqs. (3.9) and (3.10), will be used in Chapters 4 and 5 to prove a priori

estimates for the resonance error.

3.2 The parabolic corrector problems

In this section we propose a parabolic corrector problem to approximate a0. This approach

does not rely on the periodicity assumption for a(·), thus it is suitable for a very general classes

of tensors. The parabolic correctors are defined as the solutions ui
R , i = 1, . . . ,d of the following

problems: 
∂ui

R

∂t
−∇· (a(x)∇ui

R ) = 0 in KR × (0,+∞)

ui
R = 0 on ∂KR × (0,+∞)

ui
R (x,0) =∇· (a(x)ei ) in KR ,

(3.11)

The well-posedness of eq. (3.11) is well-known (see, e.g., [111]), and is summarized below.

Proposition 3.4. Let a ∈M (α,β,KR ) and aei ∈ Hdi v (KR ). Then, eq. (3.11) has a unique weak

solution ui
R such that

ui
R ∈ L2 (

[0,+∞), H 1
0 (KR )

)
,∂t ui

R ∈ L2 (
[0,+∞), H−1(KR )

)
.

It follows that ui
R ∈C

(
[0,+∞),L2(KR )

)
, and there exists a constant C > 0 such that the following

bound holds true:∥∥∥ui
R

∥∥∥
L∞([0,+∞),L2(KR ))

+
∥∥∥ui

R

∥∥∥
L2([0,+∞),H 1

0 (KR ))
≤C ‖∇· (a(·)ei )‖L2(KR ) .

Moreover, ui
R is Hölder continuous in KR × (0,+∞).
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Chapter 3. New parabolic and modified elliptic corrector problems

We now describe how the parabolic correctors can be used to approximate the homogenized

tensor. As a first guess, we could replace K with KR and v i (x, t) with ui
R (x, t) in eq. (3.9) and

define

a0,R,R,+∞ :=
 

KR

ai j (x)d x −2

ˆ +∞

0

 
KR

ui
R (x, t )u j

R (x, t )d x d t (3.12)

as an approximant of a0, but this strategy does not bring any advantage. The reason is that

the use of the parabolic method is equivalent to the standard approach of eq. (2.43), as the

following Proposition 3.5 and Corollary 3.6 show. The proof is essentially identical to the one

of Theorem 3.2 and is thus omitted.

Proposition 3.5. Let a(·) ∈M (α,β), ui
R ∈C

(
[0,+∞),L2(KR )

)
be the weak solution of eq. (3.11)

and χi
R ∈ H 1

0 (KR ) be the weak solution of eq. (2.43). Then, for 1 ≤ i , j ≤ d, the following identities

hold

χi
R =

ˆ +∞

0
ui

R (·, t )d t in H 1
0 (KR ),

1

2

ˆ
KR

∇χi
R (x) ·a(x)∇χ j

R (x)d x =
ˆ +∞

0

ˆ
KR

ui
R (x, t )u j

R (x, t )d x d t .

Corollary 3.6. Let a(·) ∈ M (α,β) be K -periodic, a0,R be defined by (2.45) and a0,R,R,+∞ be

defined by (3.12). Then

a0,R,R,+∞ = a0,R .

Hence, using the classical result stated in Section 2.3.2, there exist a constant C > 0 independent

of R such that ∥∥a0,R,R,+∞−a0
∥∥

F ≤ C

R
.

This result implies that the formula (3.12) must be modified in order to achieve higher conver-

gence orders. This is achieved by truncating the time integral at a finite time T and employing

the kernel averages of Definition 3.7.

Smooth averaging functions are commonly used to accurately approximate the mean of K -

periodic function f over a larger domain KR . Here, we define a class of averaging kernels

(also known as filters) that can be used to approximate a0. Filters have the property of ap-

proximating the average of periodic functions with arbitrary rate of accuracy, as stated in

Lemma 4.3.

Definition 3.7 (Definition 3.1 in [78]). We say that a function µ : [−1/2,1/2] 7→R+ belongs to

the spaceKq , q ≥ 1, if:

i) µ ∈C q ([−1/2,1/2])∩W q+1,∞((−1/2,1/2));

ii) µ(k)(−1/2) =µ(k)(1/2) = 0, ∀k ∈ {
0, . . . , q −1

}
;

iii)

ˆ 1
2

− 1
2

µ
(
y
)

d y = 1.
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3.3. The modified elliptic corrector problems

For q = 0, we define µ ∈K0 as µ(y) =1[−1/2,1/2], where 1I is the characteristic function on the

interval I .

In dimension d, a q-th order filter µL : KL ⊂Rd →R+ with L > 0 is defined by

µL(x) := L−d
d∏

i=1
µ

( xi

L

)
,

where µ is a one dimensional q-th order filter and x = (x1, x2, . . . , xd ) ∈Rd . In this case, we will

say that µL ∈Kq (KL). Note that filters µL are considered extended to 0 outside of KL .

Hence, we propose to approximate the homogenized matrix by modifying the correction part

of eq. (3.12):

a0,R,L,T
i j =

ˆ
KL

ai j (x)µL(x)d x −2

ˆ T

0

ˆ
KL

ui
R (x, t )u j

R (x, t )µL(x)d x d t , (3.13)

where L ≤ R, 0 < T <+∞ and the function µL belongs to a class of filtering functions given

in Definition 3.7. The goal of Chapter 4 is to prove that the resonance error for the parabolic

reconstruction of the homogenized coefficients decays with an arbitrary rate of convergence,

upon choosing L,T =O (R):

eMOD := ∥∥a0,R,L,T −a0
∥∥

F ≤C
[

R−(q+1) +e−
p

2λ0c(1−ko )R
]

. (3.14)

The constants q ∈N, λ0,c,C ∈R+, 0 < ko < 1 will be specified later.

3.3 The modified elliptic corrector problems

In Section 3.2 we proposed a parabolic corrector problem to compute the homogenized

coefficients. A key-point for achieving better convergence rates in the approximation of a0 is

to use a filtering function and integrate over a finite interval [0,T ] in time. Based on this last

consideration, and in view of eq. (3.10) for computing a0, we will now derive a modified elliptic

corrector problem. The statement of the following Theorem 3.8 is proved by the eigenvalue

decomposition of the operator A : H 1
0 (KR ) 7→ H−1(KR ) defined by

A :=−∇· (a∇) ,

but it could be equally proved by exploiting the Dunford integral representation, as in Theo-

rem 3.2.

Theorem 3.8. Let a ∈M (α,β,KR ) and aei ∈ Hdi v (KR ). Let ui
R be the weak solution of eq. (3.11)

and g i (x) :=∇· (a(x)ei ). Then, the function χi
T,R ∈ H 1

0 (KR ) defined as the time integral

χi
T,R (x) :=

ˆ T

0
ui

R (x, t ) d t
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Chapter 3. New parabolic and modified elliptic corrector problems

is the unique solution of−∇·
(
a(x)∇χi

T,R (x)
)
= g i (x)− [e−AT g i ](x) in KR ,

χi
T,R (x) = 0 on ∂KR ,

(3.15)

and it satisfies

‖χi
T,R‖H 1

0 (KR ) ≤C‖aei‖Hdi v (KR ),

where C 2 = 1+C 2
p

α2 , Cp is the Poincaré constant and α is the coercivity constant.

Proof. Let {ϕk }∞k=0 ⊂ H 1
0 (KR ) be the eigenfunctions of the operator A. They form an orthonor-

mal basis in L2(KR ) and the expansion of the solution ui
R on such a basis is

ui
R (t , x) =

∞∑
k=0

ui
k (t )ϕk (x), ui

R (0, x) =
∞∑

k=0
g i

kϕk (x),

where g i
k := 〈g i ,ϕk〉L2(KR ) and ui

k := 〈ui
R ,ϕk〉L2(KR ). Plugging this expansion into the equation

eq. (3.11), we obtain

∞∑
k=0

(
d

d t
ui

k (t )ϕk (x)+ui
k (t )λkϕk (x)

)
= 0, for i = 1, . . . ,d ,

where {λk }∞k=0 are the positive eigenvalues of A. From the orthogonality of the the eigenfunc-

tions basis, we conclude that

ui
k (t ) = e−λk t ui

k (0) = e−λk t g i
k .

So the semigroup e−AT : L2(KR ) → L2(KR ) can be defined as

e−AT g i :=
∞∑

k=0
e−λk T g i

k , (3.16)

from which it follows that

‖e−AT g i‖2
L2(KR ) =

∞∑
k=0

e−2λk T |g i
k |2 ≤

∞∑
k=0

|g i
k |2 = ‖g i‖2

L2(KR ), (3.17)

i.e., the semigroup e−AT is a contraction. By integrating in time, we obtain

χi
T,R (x) :=

ˆ T

0
ui

R (t , x) d t =
∞∑

k=0
g i

kϕi (x)

ˆ T

0
e−λk t d t =

∞∑
k=0

1

λk

(
1−e−λk T

)
g i

kϕk (x).

Moreover, evaluating AχT,R (x) we obtain

Aχi
T,R (x) =

∞∑
k=0

g i
kϕk (x)−

∞∑
k=0

e−λk T g i
kϕ

i
k (x) = g i (x)−e−AT g i (x).
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3.4. Conclusion

The Lax-Milgram theorem guarantees the existence and uniqueness of χT,R in the space

H 1
0 (KR ). By uniform ellipticity of the coefficients a(x) and Hölder inequality we derive that

α‖∇χi
T,R‖2

L2(KR ) ≤ ‖aei‖L2(KR )‖∇χi
T,R‖L2(KR ) +‖e−AT g i‖L2(KR )‖χi

T,R‖L2(KR ),

that, by application of eq. (3.17) and the Poincaré inequality for χT,R and Young inequality,

leads to the final bound

‖χi
T,R‖H 1

0 (KR ) ≤
√

1+C 2
p

α2 ‖aei‖H 1
di v (KR ),

where α is the ellipticity constant and Cp is the Poincaré constant.

Remark 3.9. Note that periodicity of a is not necessary for the well-posedness of χi
T,R .

The modified corrector χi
T,R plays the same role as the standard corrector χi

R , but with a

reduced influence from the boundary conditions, thanks to the additional term e−AT g i at the

right-hand side. By recalling eq. (3.10), we approximate the homogenized coefficient by

a0,R,L,T
i j =

ˆ
KL

ei ·a(x)
(
e j +∇χ j

T,R (x)
)
µL(x)d x,

where µL is a filtering function as in Definition 3.7. The goal of Chapter 5 is to prove that the

resonance error for the modified elliptic approach decays with an arbitrary rate of convergence,

upon choosing L,T =O (R):

eMOD := ∥∥a0,R,L,T −a0
∥∥

F ≤C
[

R−(q+ 1
2 ) +e−

p
2λ0c(1−ko )R

]
. (3.18)

The constants q ∈N, λ0,c,C ∈R+, 0 < ko < 1 will be specified later.

3.4 Conclusion

In this chapter we presented two novel corrector models to approximate the macroscopic

coefficients for multiscale second order elliptic problems. The former method relies on the

solution of parabolic equations to compute the effective tensor, even if the original problem

is time-independent, but has the advantage of allowing to achieve arbitrarily high orders of

convergence, as proven in Chapter 4. The modified elliptic model is directly derived from the

parabolic one and it shows similar convergence properties, see Chapter 5 for the proofs. On

the other hand, this approach has the advantage of not requiring to use the additional time

dimension.
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4 Reduction of the resonance error via
parabolic corrector problems

In Chapter 3 we proposed the use of a parabolic model to approximate the homogenized limit

of the coefficients aε(x) = a(x/ε) for the linear second order elliptic PDE:−∇ (aε(x)∇uε) = f in D ⊂Rd ,

uε = 0 on ∂D,

The approximation of a0 is defined as

a0,R,L,T
i j =

ˆ
KL

ai j (x)µL(x)d x −2

ˆ T

0

ˆ
KL

ui
R (x, t )u j

R (x, t )µL(x)d x d t , (4.1)

where the parabolic correctors solve
∂ui

R

∂t
−∇· (a(x)∇ui

R ) = 0 in KR × (0,+∞),

ui
R = 0 on ∂KR × (0,+∞),

ui
R (x,0) =∇· (a(x)ei ) in KR .

(4.2)

In this chapter we carry out the convergence analysis for the presented parabolic approach

and we provide a priori error bounds on the approximation of the homogenized coefficients

given by eq. (4.1). The following assumptions on the multiscale tensor aε are taken:

i) aε(x) = a(x/ε), for a ∈M
(
α,β

)
;

ii) a(·) is K -periodic, with K := [−1/2,1/2]d ;

iii) a(·)ei ∈ Hdi v (K ), for i = 1, . . . ,d ;

iv) a(·) ∈ [
C 1,γ(KR )

]d×d
.

By these assumptions,we prove that the resonance error decays with arbitrary convergence

rates, thus significantly improving the accuracy of numerical homogenization methods.
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Chapter 4. Reduction of the resonance error via parabolic corrector problems

Outline

The main contribution of this chapter is the proof of a priori error bounds on the resonance

error for the parabolic method. The proof is carried out in Section 4.1 and it is based on:

• the use of filters to approximate the average of periodic functions with arbitrary rates of

convergence;

• the exponential decay in time of L2-norm of the parabolic correctors;

• the exponential decay in space of the parabolic Green’s function.

As it will be more clear later on, integrating over a bounded time interval is crucial to get

arbitrary convergence rates of the resonance error. Some results for too large final integration

times T are also described. The theoretical convergence analysis is supported by several

numerical experiments, described in Section 4.2. The tests are run also for coefficients that

do not comply with the conditions above. Nevertheless, the same convergence trends are

found, suggesting that the convergence rates are valid under more general assumptions. As a

last step, we discuss the numerical complexity of this approach and compared it against the

standard approach in Section 4.3, and we show that the computational cost for the parabolic

case grows more slowly than the one for the standard approach, thus making the parabolic

method favourable for larger cells.

The content of this chapter is based on [9].

4.1 A priori analysis of the resonance error

In this section we show how one can reach high orders of convergence for the resonance error

by using the parabolic corrector problems eq. (4.2) and prove the upper bound of eq. (3.18).

The main result of the present chapter is the following Theorem 4.1.

Theorem 4.1. Let KR ⊂Rd , with d ≤ 3 and R ≥ 1. Let the coefficient matrix a(·) satisfy:

i) a(·) ∈M (α,β),

ii) a(·) is K -periodic,

iii) a(·)ei ∈ Hdi v (KR ), i = 1, . . . ,d,

iv) a(·) ∈ [
C 1,γ(KR )

]d×d
for some 0 < γ≤ 1.

Let a0,R,L,T and a0 be defined, respectively, as in eq. (3.13) and eq. (3.4), with ui
R satisfying

eq. (3.11) for any i = 1, . . . ,d. Let µL ∈Kq (KL), with 0 < L < R −3/2 and T ≤ 2c
d+1 |R −L|2, with
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4.1. A priori analysis of the resonance error

c = 1/(4β). Then, there exists constants λ0(α,d) and C > 0 independent of R, L or T (but it may

depend on d, a(·) and µL(·)) such that

∥∥a0,R,L,T −a0
∥∥

F ≤C

[
L−(q+1) +e−2λ0T + 1

T

(
Rp
T

)d−1

e−c |R−L|2
T +

(
T

|R −L|2
)3−d

e−2c |R−L|2
T

]
. (4.3)

Additionally, if ∇· (a(·)ei ) ∈W 1
per (K ), then there exists a constant C > 0 independent of R, L or

T (but it may depend on d, a(·) and µL(·)) such that

∥∥a0,R,L,T −a0
∥∥

F ≤C

[
L−(q+1) +e−2λ0T + 1

|R −L|
(

Rp
T

+1

)d−1

e−c |R−L|2
T

+ 1

|R −L|2
(

R2

T

)
e−2c |R−L|2

T

]
. (4.4)

The choice

L = koR, T = kT R,

with 0 < ko < 1 and kT =
√

c
2λ0

(1−ko) results in the following convergence rate in terms of R

∥∥a0,R,L,T −a0
∥∥

F ≤C
[

R−(q+1) +e−
p

2λ0c(1−ko )R
]

, (4.5)

for a constant C > 0 independent of R, L or T .

Remark 4.2. Note that the exponent in the exponential term
√

2λ0c ≈√
α/β depends on the

contrast ratio.

The term L−(q+1) is the averaging error induced by using the filter function µL ∈Kq (KL), and it

can be made arbitrarily small by taking higher values for q . The term e−2λ0T originates from

using a finite T for the parabolic corrector problem (3.11). The remaining terms are the errors

due to the boundary conditions, which decay exponentially provided T < |R −L|2. Moreover,

the optimal scaling L ≈ R, T = O (R) are found by equating the exponents of the truncation

and boundary errors. Note that bounds eqs. (4.3) and (4.4) are similar to the one obtained in

[78], except for the term T −2 that accounts for the effect of using a biased model equation.

4.1.1 Error decomposition

In this section we outline the steps to prove the bound stated in Theorem 4.1:

Step 1: Decomposition the error into four terms:

a0,R,L,T
i j −a0

i j =
ˆ

KL

ai j (x)µL(x)d x −
 

K
ai j (x)d x︸ ︷︷ ︸

e AV (ai j )
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+2

ˆ T

0

ˆ
KL

v i (x, t )v j (x, t )µL(x)d x d t −2

ˆ T

0

ˆ
KL

ui
R (x, t )u j

R (x, t )µL(x)d x d t︸ ︷︷ ︸
eBC

+2

ˆ T

0

 
K

v i (x, t )v j (x, t )d x d t −2

ˆ T

0

ˆ
KL

v i (x, t )v j (x, t )µL(x)d x d t︸ ︷︷ ︸
e AV (v i v j )

+2

ˆ +∞

0

 
K

v i (x, t )v j (x, t )d x d t −2

ˆ T

0

 
K

v i (x, t )v j (x, t )d x d t︸ ︷︷ ︸
eT R

, (4.6)

by exploiting the fact that the exact homogenized coefficient a0 can be equally calculated

by eq. (3.4) or eq. (3.9)

Step 2: Estimation of the averaging errors e AV (ai j ) and e AV (v i v j ) by means of Lemma 4.3.

Step 3: Estimation of the truncation error eT R by means of the exponential decrease in time

of
∥∥v i (·, t )

∥∥
L2(K ).

Step 4: Estimation of the boundary error eBC by means of upper bounds for the fundamental

solution of the parabolic problem and integration over finite time intervals [0,T ].

The coming subsections will be devoted to the derivation of upper bounds for e AV (ai j ), eBC ,

e AV (v i v j ) and eT R .

4.1.2 Averaging errors bounds

The two error terms studied in this subsection originate from the fact that we are approximat-

ing the averages of periodic functions by a weighted average over a bounded domain. For such

a reason, these errors will be referred to as averaging error for a and for v i and are denoted

by, respectively, e AV (ai j ) and e AV (v i v j ). In order to bound these terms we rely on the fact

that filtering functions approximate the average of periodic functions with arbitrary rate of

accuracy, as stated in the following lemma (see[78] for a proof).

Lemma 4.3 (Lemma 3.1 in [78]). Let µL ∈Kq (KL). Then, for any K -periodic function f ∈ Lp (K )

with 1 < p ≤ 2, we have∣∣∣∣ˆ
KL

f (x)µL(x)d x −
 

K
f (x)d x

∣∣∣∣≤C
∥∥ f

∥∥
Lp (K ) L−(q+1),

where C is a constant independent of L.

Remark 4.4. The result of Lemma 4.3 was proved in [78] for K -periodic f ∈ L2(K ) and, then,

extended to the case f ∈ Lp (K ), 1 < p < 2.

Corollary 4.5 is a direct consequence of Lemma 4.3, and therefore the proof is omitted.
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Corollary 4.5. Let a ∈M (α,β) be K -periodic. Then, there exists C1 > 0, independent of L, such

that ∣∣e AV (ai j )
∣∣≤C1L−(q+1), i , j = 1, . . . ,d .

Before providing a convergence result for e AV (v i v j ) we recall the following property about

product rule in Sobolev spaces (see [36] for a proof).

Lemma 4.6. Let Ω ⊂ Rd be a domain and u, v ∈ W 1,p (Ω)∩L∞(Ω), with 1 ≤ p ≤ +∞. Then,

uv ∈W 1,p (Ω)∩L∞(Ω) and the product rule for derivation holds:

∂

∂xi
(uv) = ∂u

∂xi
v +u

∂v

∂xi
, i = 1, . . . ,d .

Lemma 4.7. Let a(·) satisfy conditions i), ii) and iii) of Theorem 4.1, let v i ∈ L2([0,+∞),W 1
per (K ))

be the K -periodic solution of eq. (3.5) and µL ∈Kq (KL). Then, there exists C3 > 0, independent

of L, such that ∣∣∣e AV (v i v j )
∣∣∣≤C3L−(q+1).

Proof. By applying Lemma 4.3 to the function 2v i v j we get:

∣∣∣e AV (v i v j )
∣∣∣≤ ˆ T

0
C

∥∥∥v i (·, t )v j (·, t )
∥∥∥

Lp (K )
L−(q+1) d t , (4.7)

with 1 < p ≤ 2. Following the proof of Lemma 4.3 (see Appendix A, [78]), we deduce that,

for any q ≥ 2 one can also choose p = 1 in the inequality above. Therefore, by the use of

Cauchy–Schwarz and Hölder inequalities, e AV (v i v j ) can be estimated as

∣∣∣e AV (v i v j )
∣∣∣≤ ˆ T

0
C

∥∥∥v i (·, t )v j (·, t )
∥∥∥

L1(K )
L−(q+1) d t

≤C L−(q+1)
ˆ T

0

∥∥∥v i (·, t )
∥∥∥

L2(K )

∥∥∥v j (·, t )
∥∥∥

L2(K )
d t

≤C L−(q+1)
∥∥∥v i

∥∥∥
L2([0,+∞),L2(K ))

∥∥∥v j
∥∥∥

L2([0,+∞),L2(K ))
.

The result follows by choosing

C3 :=C
∥∥∥v i

∥∥∥
L2([0,+∞),L2(K ))

∥∥∥v j
∥∥∥

L2([0,+∞),L2(K ))
.

In the case q ∈ {0,1} we cannot utilize any more the L1-norm of the product. In view of eq. (4.7),
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with the choice p = 3/2, it follows that

∣∣∣e AV (v i v j )
∣∣∣≤ ˆ T

0
C

∥∥∥v i (·, t )v j (·, t )
∥∥∥

L3/2(K )
L−(q+1) d t

≤
ˆ T

0
C

∥∥∥v i (·, t )v j (·, t )
∥∥∥

W 1,1(K )
L−(q+1) d t

≤
ˆ T

0
C

∥∥∥v i (·, t )
∥∥∥

W 1
per (K )

∥∥∥v j (·, t )
∥∥∥

W 1
per (K )

L−(q+1) d t

≤C L−(q+1)
∥∥∥v i

∥∥∥
L2

(
[0,+∞),W 1

per (K )
) ∥∥∥v j

∥∥∥
L2([0,+∞),W 1

per (K ))
,

where the first inequality is a direct application of Lemma 4.3, the second inequality follows

from the continuous inclusion of W 1,1(K ) in L3/2(K ), the third inequality comes from the

embedding W 1
per (K ) ⊂W 1,1(K ) and the validity of Lemma 4.6 for functions v i which implies:∥∥∥v i (·, t )v j (·, t )

∥∥∥
W 1,1(K )

≤C
∥∥∥v i (·, t )

∥∥∥
W 1

per (K )

∥∥∥v j (·, t )
∥∥∥

W 1
per (K )

.

Finally, the last inequality is the Chauchy-Schwarz inequality. The result follows by choosing

C3 :=C
∥∥∥v i

∥∥∥
L2

(
[0,+∞),W 1

per (K )
) ∥∥∥v j

∥∥∥
L2

(
[0,+∞),W 1

per (K )
) .

4.1.3 Truncation error bound

In this subsection we derive an a priori estimate for the truncation error, which originates from

the restriction of the time integral in eq. (3.13) on the finite interval [0,T ]. As it will be more

clear from the coming analysis, the time truncation is essential for improving the convergence

rate of the resonance error, as large values of T result in a “pollution” of the correctors inside

KL . The spectral properties of the elliptic operator in the space of periodic functions are used

to derive an estimate of the truncation error.

For K -periodic coefficients a ∈M (α,β), the bilinear form B : W 1
per (K )×W 1

per (K ) 7→R defined

by

B (u, v) =
ˆ

K
∇u ·a(x)∇v d x. (4.8)

is continuous and coercive and there exists a non-decreasing sequence of strictly positive

eigenvalues
{
λ j

}∞
j=0 and a L2-orthonormal set of eigenfunctions

{
ϕ j

}∞
j=0 ⊂W 1

per (K ) such that

B
(
ϕ j , w

)=λ j 〈ϕ j , w〉L2(K ), ∀w ∈W 1
per (K ) . (4.9)

Based on this result, we can prove the following lemma on the exponential decay in time of∥∥v i (·, t )
∥∥

L2(K ).
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Lemma 4.8. Let v i ∈C
(
[0,∞),L2(K )

)
be the solution of eq. (3.5) and let λ0 > 0 be the smallest

eigenvalue of the bilinear form B introduced in eq. (4.8). Then∥∥∥v i (·, t )
∥∥∥

L2(K )
≤ e−λ0t

∥∥∥v i (·,0)
∥∥∥

L2(K )
, a.e. t ∈ [0,+∞).

Proof. The variational formulation of eq. (3.5) reads: Find v i ∈ L2
(
[0,+∞),W 1

per (K )
)

and

∂t v i ∈ L2
(
[0,+∞),W 1

per (K )′
)

such that

(
∂t v i , w

)
+B

(
v i , w

)
= 0, ∀w ∈W 1

per (K ) ,

v i (·,0) =∇· (aei ) ∈ L2
0(K ).

By using w = v i (·, t ), the second line becomes

1

2

d

d t

∥∥∥v i
∥∥∥2

L2(K )
=−B

(
v i , v i

)
.

Let
{
λ j

}
j=0 and

{
ϕ j

}
j=0 be, respectively, the eigenvalues and eigenfunctions of B and let us

denote v̂ i
j := 〈v i ,ϕ j 〉L2(K ). By orthogonality of the eigenfunctions and Parseval’s identity, it

holds

B
(
v i , v i

)
=

∞∑
j=0

λ j

∣∣∣v̂ i
j

∣∣∣2 ≥λ0

∞∑
j=0

∣∣∣v̂ i
j

∣∣∣2 =λ0

∥∥∥v i
∥∥∥2

L2(K )
.

Then, by coercivity of the bilinear form B and use of the above inequality, we get∥∥∥v i
∥∥∥

L2(K )

d

d t

∥∥∥v i
∥∥∥

L2(K )
= 1

2

d

d t

∥∥∥v i
∥∥∥2

L2(K )
=−B

(
v i , v i

)
≤−λ0

∥∥∥v i
∥∥∥2

L2(K )
.

So, the following differential inequality is derived:

d

d t

∥∥∥v i
∥∥∥

L2(K )
≤−λ0

∥∥∥v i
∥∥∥

L2(K )
.

As proved in [67],
∥∥v i (·, t )

∥∥
L2(K ) is absolutely continuous in time, and the result is obtained by

Gronwall’s inequality.

Remark 4.9. It is easy to prove that λ0 ≥ α
C 2

P
, where the Poincaré constant for a convex domain

K is CP = di am(K )
π , see [124].

Lemma 4.10 (Truncation error). Let v i ∈C ([0,+∞),L2(K )) solve eq. (3.5),

eT R := 2

ˆ +∞

T

 
K

v i (x, t )v j (x, t )d x d t

and λ0 be the smallest eigenvalue of B. Then, there exist C4 > 0, independent of T , such that

|eT R | ≤C4e−2λ0T . (4.10)
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Proof. We start by applying the Cauchy-Schwarz inequality on L2(K ):

|eT R | ≤ 2

|K |
ˆ ∞

T

∥∥∥v i (·, t )
∥∥∥

L2(K )

∥∥∥v j (·, t )
∥∥∥

L2(K )
d t . (4.11)

Then, we plug the result of lemma 4.8 into eq. (4.11):

|eT R | ≤ 2

|K |
ˆ ∞

T
e−2λ0t

∥∥∥v i (·,0)
∥∥∥

L2(K )

∥∥∥v j (·,0)
∥∥∥

L2(K )
d t

≤ 1

|K |
∥∥∥v i (·,0)

∥∥∥
L2(K )

∥∥∥v j (·,0)
∥∥∥

L2(K )

1

λ0
e−2λ0T .

The results follows by choosing

C4 = 1

λ0 |K |
∥∥∥v i (·,0)

∥∥∥
L2(K )

∥∥∥v j (·,0)
∥∥∥

L2(K )

= 1

λ0 |K | ‖∇ · (a(·)ei )‖L2(K )

∥∥∇· (a(·)e j
)∥∥

L2(K ) .

4.1.4 Boundary error bound

From the definition,

eBC :=
ˆ T

0

ˆ
KL

(
ui

R u j
R − v i v j

)
µL d x d t , (4.12)

one can notice that the source of the error eBC is the mismatch between ui
R and v i on the

boundary ∂KR . Therefore, we refer to such an error as the boundary error. The boundary error

converges to zero at an exponential rate, as stated in Lemma 4.11.

Lemma 4.11. Let a(·) satisfy conditions i), ii), iii) and iv) of Theorem 4.1, T ≤ 2c
d+1 |R −L|2 and

let eBC be defined by eq. (4.12). Then, there exist constants C ,c > 0, independent of R, L and T

such that

|eBC | ≤C

[
1

T

(
Rp
T

)d−1

e−c |R−L|2
T +

(
T

|R −L|2
)3−d

e−2c |R−L|2
T

]
.

Additionally, if ∇· (a(·)ei ) ∈ W 1
per (K ), then there exist constants C ,c > 0, independent of R, L

and T such that

|eBC | ≤C

[
1

|R −L|
(

Rp
T

+1

)d−1

e−c |R−L|2
T + 1

|R −L|2
(

R2

T

)
e−2c |R−L|2

T

]
.

The proof of Lemma 4.11 directly follows from Propositions 4.16 and 4.18. We need Defini-

tions 4.12 and 4.13 in order to define a boundary error function which will be used in the

estimation of eBC .

Definition 4.12 (Boundary layer). Let us define a sub-domain KR̃ ⊂ KR , where R̃ is defined to
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be the largest integer such that R̃ ≤ R−1/2. The boundary layer is defined as the set∆ := KR \KR̃ .

We observe that |∆| = Rd − R̃d ≤ 2dRd−1.

The boundary layer and KR̃ are depicted in Figure 4.1.

Definition 4.13 (Cut-off function). A cut-off function on KR is a function ρ ∈C∞(KR , [0,1])

such that

ρ(x) =
{

1 in KR̃

0 on ∂KR
and

∣∣∇ρ∣∣≤C on ∆,

where the subdomain KR̃ and the boundary layer ∆ are defined according to Definition 4.12.

R

R̃L

KR

KL

∆

Figure 4.1 – Scheme of the sampling domain KR and its subsets KL , KR̃ and ∆.

Let us define the boundary error function θi ∈ L2
(
[0,+∞), H 1

0 (KR )
)

through the relation

θi := ui
R −ρv i . For the analysis it is fundamental that ρ = 1 in KR̃ and that L < R̃. By the

definition of θi , we write

eBC =
ˆ T

0

ˆ
KL

[
v i v j (

ρ2 −1
)+θi v j + v iθ j +θiθ j

]
µL d x d t .

One readily notice that the first term in the integral vanishes on the integration domain, since

ρ2(x) = 1 for all x ∈ KR̃ ⊃ KL . So, we have to study the integrals

eb
BC :=

ˆ T

0

ˆ
KL

v iθ jµL d x d t , and ec
BC :=

ˆ T

0

ˆ
KL

θiθ jµL d x d t . (4.13)

As both integrals depend on the values that the functions θi take over the averaging domain KL ,

we need to provide pointwise estimates for θi (x, t ) on KL × [0,T ]. This is done in Section 4.1.4

by the use of the fundamental solution of eq. (3.11).
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Estimates for θi

Here, we derive an upper bound for θi on KL × [0,T ]. By definition and linearity of the correc-

tors problem, the function θi satisfies the problem:

∂θi

∂t
−∇· (a(x)∇θi ) =−∇(1−ρ(x)) ·a(x)∇v i −∇·

[
a(x)∇(1−ρ(x))v i

]
(4.14)

in KR × (0,+∞), with boundary and initial conditions

θi = 0 on ∂KR × (0,+∞),

θi (x,0) = v i (x,0)(1−ρ(x)) in KR .
(4.15)

As the integrals in eq. (4.13) are performed over a subset KL of the domain KR of eq. (4.14),

we are not really interested in estimating the norm of θi over the whole KR , but rather on

KL . Thus, thanks to the use of fundamental solution for problem eqs. (4.14) and (4.15), we

will derive a priori pointwise estimates for θi (x, t), for (x, t) ∈ KL × (0,T ). The legitimacy of

pointwise estimates for θi is guaranteed by the fact that ui and v i are Hölder continuous

functions for t > 0, and so is θi . Hence, for t > 0, the pointwise values of θi (x, t ) is meaningful.

Moreover, since θi (x,0) = 0 in KL , θi (x, t ) is bounded in KL × [0,+∞).

Usually, the existence of a fundamental solution for equations like eqs. (4.14) and (4.15) and

the derivation of its properties are done for parabolic problems in non-divergence form with

Hölder continuous coefficients [71, 105]. In this setting it is possible to prove pointwise

bounds (of the type of eq. (4.29)) on the spatial (up to second order) and time (up to first order)

derivatives of the fundamental solution. The existence result can be extended to the case of

equations in divergence form with discontinuous coefficients, under the only assumption

of uniform ellipticity, see [20]. In this weaker setting it is possible to prove the well-known

Nash-Aronson estimate on the fundamental solution, but there is no proof, to the best of my

knowledge, of the existence of similar bound for the derivative. Therefore, we need to assume

C 1,γ-regularity for a(·) in order to be able to write the equation in non-divergence form and

use the results of [71, 105].

We will denote by Γ(x, t ;ξ,τ) ∈C 0,γ(KR × (τ,+∞)) the fundamental solution of the parabolic

operator with homogeneous Dirichlet boundary conditions

L(x,t ) : L2([τ,+∞), H 1
0 (KR )) 7→ L2([τ,+∞), H−1(KR ))

u 7→ ∂t u −∇x · (a(x)∇x u) ,

i.e. Γ(x, t ;ξ,τ) satisfies

L(x,t )Γ(x, t ;ξ,τ) = 0, (x,ξ, t ) ∈ KR ×KR × (τ,+∞), (4.16a)

g (x) = lim
t→τ+

ˆ
KR

Γ(x, t ;ξ,τ)g (ξ)dξ, ∀g ∈C (KR ). (4.16b)
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Subscript (x, t ) in eq. (4.16a) is to indicate that the differentiation is operated with respect to the

x- and t-variables. Equation eq. (4.16b) can be interpreted as the fact that the initial condition

(given that the initial time instant is t = τ) for the fundamental solution is Γ(x,τ;ξ,τ) = δ(x−ξ),

the Dirac’s delta function centred at ξ. In the same way, one can define the adjoint operator,

given the symmetry of a, as

L∗
(y,s) : L2((−∞,τ], H 1

0 (KR )) 7→ L2((−∞,τ], H−1(KR ))

u 7→ −∂su −∇y ·
(
a(y)∇y u

)
.

The fundamental solution of L∗
(y,s) is denoted by Γ∗(y, s; x, t ) and satisfies

L∗
(y,s)Γ

∗(y, s;ξ,τ) = 0, (y,ξ, s) ∈ KR ×KR × (−∞,τ),

g (y) = lim
s→τ−

ˆ
KR

Γ∗(y, s;ξ,τ)g (ξ)dξ, ∀g ∈C (KR ).

A well-known result is that the differential problems

L(x,t )u = f and L∗
(y,s)v = f

are well-posed only for t > τ and s < τ, respectively, where τ is the time of the initial (resp.

final) condition. Thus, we formally define

Γ(x, t ;ξ,τ) = 0, for t < τ, Γ∗(y, s;ξ,τ) = 0, for s > τ.

A central property of the two fundamental solutions is

Γ(x, t ; y, s) = Γ∗(y, s; x, t ), for s < t . (4.17)

The identity between two fundamental solution is proved in Theorem 17, §3.7 [71] for the

case of Hölder continuous coefficients, but it can be extended to the discontinuous case by

following the same proof, as done in [22]. Pointwise a priori estimates for Γ are derived in [21],

following the results obtained in [121]. Such estimates can be extended to the derivatives of

the fundamental solution under additional regularity assumptions, see, e.g., [71, 105]. The

solution of eq. (4.14) can be written as

θi (x, t ) =
ˆ

KR

Γ(x, t ; y,0)v i (y,0)(1−ρ(y))d y

−
ˆ

KR

ˆ t

0
Γ(x, t ; y, s)∇y (1−ρ(y)) ·a(y)∇y v i (y, s)d s d y

+
ˆ

KR

ˆ t

0
∇yΓ(x, t ; y, s) ·a(y)∇y (1−ρ(y))v i (y, s)d s d y, (4.18)

for any t > 0. Now, we provide a lemma for rewriting eq. (4.18) in the form of boundary flux

integral.

55



Chapter 4. Reduction of the resonance error via parabolic corrector problems

Lemma 4.14. Let a(·) satisfy conditions i), ii) and iii) of Theorem 4.1, θi be the weak solution of

eq. (4.14) and let v i be Hölder continuous in KR × (0,+∞). Then, for any (x, t ) ∈ KL × (0,+∞),

θi (x, t ) =
ˆ
∂KR

ˆ t

0
n ·a(y)∇yΓ(x, t ; y, s)v i (y, s)d s dσy , (4.19)

where n denotes the unit vector orthogonal to ∂KR pointing outward.

Proof. First of all, we derive an integral equality for Γ∗. Multiplying L∗
(y,s)Γ

∗ = 0 by v i (1−ρ),

integrating over KR × (0, t ) and using integration by parts, one gets:

ˆ t

0

ˆ
KR

−∂sΓ
∗(y, s; x, t )v i (y, s)(1−ρ(y))

+∇y

(
v i (y, s)(1−ρ(y))

)
·a(y)∇yΓ

∗(y, s; x, t )d y d s

=
ˆ t

0

ˆ
∂KR

n ·a(y)∇yΓ(x, t ; y, s)v i (y, s)(1−ρ(y))dσy d s, (4.20)

since ∇yΓ(x, t ; y, s) = ∇yΓ
∗(y, s; x, t) for any s < t . Then the second and third integrals in

eq. (4.18) are rewritten as

ˆ
KR

ˆ t

0
−Γ(x, t ; y, s)∇y (1−ρ(y)) ·a(y)∇y v i (y, s)d s d y

+
ˆ

KR

ˆ t

0
∇yΓ(x, t ; y, s) ·a(y)∇y (1−ρ(y))v i (y, s)d s d y

=
ˆ

KR

ˆ t

0
−∇y

[
Γ(x, t ; y, s)(1−ρ(y))

] ·a(y)∇y v i (y, s)d s d y

+
ˆ

KR

ˆ t

0
∇yΓ(x, t ; y, s) ·a(y)∇y

[
(1−ρ(y))v i (y, s)

]
d s d y

=
ˆ

KR

ˆ t

0
Γ(x, t ; y, s)(1−ρ(y))∂s v i (y, s)d s d y

+
ˆ

KR

ˆ t

0
∇yΓ(x, t ; y, s) ·a(y)∇y

[
(1−ρ(y))v i (y, s)

]
d s d y, (4.21)

where the last equality follows from the weak form of eq. (3.5). Then, we integrate the former

of the two last integrals by parts, thus obtaining

ˆ
KR

ˆ t

0
Γ(x, t ; y, s)(1−ρ(y))∂s v i (y, s)d s d y

= lim
ε→0+

ˆ
KR

Γ(x, t ; y, t −ε)v i (y, t −ε)(1−ρ(y))d y

−
ˆ

KR

Γ(x, t ; y,0)v i (y,0)(1−ρ(y))d y
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−
ˆ

KR

ˆ t

0
∂sΓ(x, t ; y, s)(1−ρ(y))v i (y, s)d s d y. (4.22)

From the fact that ρ(x) = 1 for all x ∈ KL and from the continuity of v i we deduce

lim
ε→0+

ˆ
KR

Γ(x, t ; y, t −ε)v i (y, t −ε)(1−ρ(y))d y = v i (x, t )(1−ρ(x)) = 0,

for any x ∈ KL . By putting eqs. (4.18), (4.21) and (4.22) together we get

θi (x, t ) =
ˆ

KR

ˆ t

0
−∂sΓ(x, t ; y, s)v i (y, s)(1−ρ(y))d s d y

+
ˆ

KR

ˆ t

0
∇yΓ(x, t ; y, s) ·a(y)∇y

[
v i (y, s)(1−ρ(y))

]
d s d y.

Finally, from eqs. (4.17) and (4.20) we conclude that

θi (x, t ) =
ˆ
∂KR

ˆ t

0
n ·a(y)∇yΓ(x, t ; y, s)v i (y, s)d s dσy .

From now on we will distinguish two cases in the derivation of the estimates, based on the

regularity of the initial condition v i (·,0) =∇· (a(·)ei ), i.e. on the regularity of the tensor a(·).

Lemma 4.15. Let a(·) satisfy conditions i), ii), iii) and iv) of Theorem 4.11, let θi ∈C ([0,+∞),L2(KR ))

be the solution of eq. (4.14), and let v i ∈ L2((0,+∞),W 1
per (K )) be the solution of eq. (3.5). Then,

there exist a constant C̃ > 0, independent of R and L such that

sup
x∈KL

∣∣∣θi (x, t )
∣∣∣≤ C̃

Rd−1

|R −L|
∥∥∥∇v i

∥∥∥
L2((0,t ),L2(K ))

[
1

t
+ 1

2c |R −L|2
] d−1

2

e−c |R−L|2
t , (4.23)

for c = 1/4β.

Otherwise, if v i ∈C
(
[0,+∞)W 1

per (K )
)
, then

sup
x∈KL

∣∣∣θi (x, t )
∣∣∣≤ C̃ Rd−1

∥∥∥v i (·,0)
∥∥∥

W 1
per (K )

e−λ0t
ˆ t

0

1

s(d+1)/2
e−c |R−L|2

s eλ0s d s, (4.24)

where λ0 > 0 is the smallest eigenvalue of the bilinear form B.

Proof. From eq. (4.19) we can write

∣∣∣θi (x, t )
∣∣∣≤ ˆ t

0

ˆ
∂KR

∣∣n ·a(y)∇yΓ(x, t ; y, s)
∣∣ ∣∣∣v i (y, s)

∣∣∣ dσy d s.

1The assumption of Hölder continuity of ∂k ai j (x) is to ensure the correctness of (4.29).
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By applying the Hölder inequality we get

∣∣∣θi (x, t )
∣∣∣≤ |∂KR |1/2

ˆ t

0
sup

y∈∂KR

∣∣n ·a(y)∇yΓ(x, t ; y, s)
∣∣∥∥∥v i (·, s)

∥∥∥
L2(∂KR )

d s. (4.25)

The value of
∥∥v i (·, s)

∥∥
L2(∂KR ) is well defined for any time s > 0 (unless we have a more regular

initial condition, e.g. v i (·,0) ∈W 1
per (K ), in that case the trace is defined also for s = 0) and we

can estimate it by the following inequality∥∥∥v i (·, s)
∥∥∥

L2(∂KR )
=

∥∥∥v i (·, s)(1−ρ)
∥∥∥

L2(∂KR )
≤Ctr

∥∥∥v i (·, s)(1−ρ)
∥∥∥

H 1(∆)
,

where Ctr is fixed, thanks to the fact that the distance between KR̃ and ∂KR is larger or equal

to 1/2. As ρ ∈C 1(KR ) and ∂xk v i (·, s) ∈ L2(KR ) the product rule holds and we can write∥∥∥∇(v i (1−ρ))
∥∥∥

L2(∆)
≤

∥∥∥∇v i
∥∥∥

L2(∆)
+∥∥∇ρ∥∥

L∞(∆)

∥∥∥v i
∥∥∥

L2(∆)
.

Let us now consider a covering of∆, defined as∆K :=⋃
y∈∂K R+R̃

2

K+y . Then, |∆K | = c(d)
∣∣∣∂K R+R̃

2

∣∣∣diam(K ) ≤
C Rd−1. By exploiting the periodic structure of v i we have that

∥∥∥v i
∥∥∥

L2(∆)
≤

∥∥∥v i
∥∥∥

L2(∆K )
≤

( |∆K |
|K |

)1/2 ∥∥∥v i
∥∥∥

L2(K )
,∥∥∥∇v i

∥∥∥
L2(∆)

≤
∥∥∥∇v i

∥∥∥
L2(∆K )

≤
( |∆K |
|K |

)1/2 ∥∥∥∇v i
∥∥∥

L2(K )
.

Finally, we recall that in the space W 1
per (K ) the Poincaré-Wirtinger inequality holds:∥∥∥v i
∥∥∥

L2(K )
≤CP

∥∥∥∇v i
∥∥∥

L2(K )
(4.26)

so that ∥∥∥v i (·, s)
∥∥∥

L2(∂KR )
≤Ctr CρCP

( |∆|
|K |

)1/2 ∥∥∥∇v i (·, s)
∥∥∥

L2(K )

≤C R
d−1

2

∥∥∥∇v i (·, s)
∥∥∥

L2(K )
.

(4.27)

Now, we go back to the estimation of θi : putting together eqs. (4.25) and (4.27) (and recalling

that |∂KR | = 2dRd−1 ) we get

∣∣∣θi (x, t )
∣∣∣≤C Rd−1

ˆ t

0
sup

y∈∂KR

∣∣n ·a(y)∇yΓ(x, t ; y, s)
∣∣∥∥∥∇v i (·, s)

∥∥∥
L2(K )

d s. (4.28)

Now, we will derive different a priori estimates for different regularity assumption on the initial

condition. Both of them rely on the Nash-Aronson type estimate

∇yΓ(x, t ; y, s) ≤ C

(t − s)
d+1

2

e−c |x−y|2
t−s , (4.29)
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4.1. A priori analysis of the resonance error

with C = (4πα)−d/2 and c = (4β)−1. The bound eq. (4.29) is proved in [71, 105] for parabolic

equations in non-divergence form with Hölder continuous coefficients. In [68] the authors

claim that eq. (4.29) is valid also for parabolic equation in divergence form with Hölder

continuous coefficients, but the statement remains unproved.

Case v i (·,0) ∈ L2(K ): We apply the Hölder inequality in time and the estimates on ∇yΓ for

Hölder coefficients to get:

∣∣∣θi (x, t )
∣∣∣≤C Rd−1

∥∥∥∇v i
∥∥∥

L2((0,t ),L2(K ))

(ˆ t

0
sup

y∈∂KR

∣∣n ·a(y)∇yΓ(x, t ; y, s)
∣∣2 d s

)1/2

≤C Rd−1 ‖a‖L∞(K )

∥∥∥∇v i
∥∥∥

L2((0,t ),L2(K ))

(ˆ t

0

C 2

(t − s)(d+1)
e−2c |x−ȳ(x)|2

t−s d s

)1/2

, (4.30)

where ȳ(x) = arg min
y∈∂KR

∣∣x − y
∣∣. By the change of variables σ= 2c |x−ȳ(x)|2

t−s and the fact that the

primitive function of t N e−t (with N ∈N) is −∑N
k=0

N !
k ! t k e−t , the inequality eq. (4.30) becomes

∣∣∣θi (x, t )
∣∣∣≤C

‖a‖L∞(K )
∥∥∇v i

∥∥
L2((0,t ),L2(K )) Rd−1

(2c
∣∣x − ȳ(x)

∣∣2)d/2d−1∑
k=0

(d −1)!

k !

(
2c

∣∣x − ȳ(x)
∣∣2

t

)k
 1

2

e−c |x−ȳ(x)|2
t

≤ Cp
2c

‖a‖L∞(K )

∥∥∥∇v i
∥∥∥

L2((0,t ),L2(K ))

Rd−1∣∣x − ȳ(x)
∣∣(d −1)!

d−1∑
k=0

(
d −1

k

)
1

t k

(
1

2c
∣∣x − ȳ(x)

∣∣2

)d−1−k
 1

2

e−c |x−ȳ(x)|2
t

≤ C (d −1)!p
2c

‖a‖L∞(K )

∥∥∥∇v i
∥∥∥

L2((0,t ),L2(K ))

Rd−1∣∣x − ȳ(x)
∣∣[

1

t
+ 1

2c
∣∣x − ȳ(x)

∣∣2

] d−1
2

e−c |x−ȳ(x)|2
t .

Including all the terms that do not depend on R, L nor t in a single constant C̃ and by the

lower bound inf
x∈KL

∣∣x − ȳ(x)
∣∣≥ |R −L| we deduce

∣∣∣θi (x, t )
∣∣∣≤ C̃

Rd−1

|R −L|
∥∥∥∇v i

∥∥∥
L2((0,t ),L2(K ))

[
1

t
+ 1

2c |R −L|2
] d−1

2

e−c |R−L|2
t .

Case v i (·,0) ∈W 1
per (K ): Again, we use the eigenvalues

{
λ j

}
j=0 and eigenvectors

{
ϕ j

}
j=0 of B .

Let us denote v̂ i
j (t ) := 〈v i (·, t ),ϕ j 〉L2(K ). Then,

v̂ i
j (t ) = e−λ j t 〈v i (·,0),ϕ j 〉L2(K ).
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From the above characterization of the components v̂ i
j (t ) and the coercivity of B we have

α
∥∥∥∇v i (·, t )

∥∥∥2

L2(K )
≤ B [v i (·, t ), v i (·, t )] =

+∞∑
j=0

e−2λ j tλ j

∣∣∣〈v i (·,0),ϕ j 〉L2(K )

∣∣∣2
,

for any t ≥ 0. The Parseval’s identity also holds for t = 0, since v i (·,0) ∈W 1
per (K ), by assump-

tion. So,

α
∥∥∥∇v i (·, t )

∥∥∥2

L2(K )
≤ e−2λ0t

+∞∑
j=0

λ j

∣∣∣〈v i (·,0),ϕ j 〉L2(K )

∣∣∣2

= e−2λ0t B [v i (·,0), v i (·,0)]

≤βe−2λ0t
∥∥∥∇v i (·,0)

∥∥∥2

L2(K )
.

Thus, ∥∥∥∇v i (·, t )
∥∥∥

L2(K )
≤ e−λ0t

(
β

α

)1/2 ∥∥∥∇v i (·,0)
∥∥∥

L2(K )
. (4.31)

Then, we apply again the known inequality for ∇yΓ and the estimate in eq. (4.28) becomes

∣∣∣θi (x, t )
∣∣∣≤ Rd−1β

3/2

α1/2

∥∥∥v i (·,0)
∥∥∥

W 1
per (K )

ˆ t

0

C

(t − s)(d+1)/2
e−c |x−ȳ(x)|2

t−s e−λ0s d s

= Rd−1β
3/2

α1/2
e−λ0t

∥∥∥v i (·,0)
∥∥∥

W 1
per (K )

ˆ t

0

C

s(d+1)/2
e−c |x−ȳ(x)|2

s eλ0s d s,

and we get eq. (4.24) by posing C̃ = Cβ3/2

α1/2 and re-using the lower bound

inf
x∈KL

∣∣x − ȳ(x)
∣∣≥ |R −L| .

Term eb
BC

Proposition 4.16. Let the hypotheses of Lemma 4.15 be satisfied. Moreover, let v i ∈C ([0,+∞),L2(K )),

θi ∈ L∞(KL × [0,+∞)), let eb
BC be defined as in eq. (4.13) and let L/R be constant. Then, there

exist constants C2,b ,C ′
2,b ,c > 0 independent of R, L, T such that

∣∣∣eb
BC

∣∣∣≤ C2,b

|R −L|
∥∥∥v i

∥∥∥
L2([0,+∞),W 1

per (K ))

(
Rp
T

+C ′
2,b

)d−1

e−c |R−L|2
T , (4.32)

Otherwise, if v i (·,0) ∈W 1
per (K ) and T ≤ 2c

d+1 |R −L|2 then there exist constants C2,b ,c > 0 inde-

pendent of R, L, T such that

∣∣∣eb
BC

∣∣∣≤ C2,b

T

∥∥∥v i (·,0)
∥∥∥

W 1
per (K )

(
Rp
T

)d−1

e−c |R−L|2
T . (4.33)
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Proof. Applying Hölder inequality on the space integral, we obtain:∣∣∣∣∣
ˆ T

0

ˆ
KL

v i (x, t )θ j (x, t )µL(x)d x d t

∣∣∣∣∣≤
ˆ T

0

ˆ
KL

∣∣∣v i (x, t )θ j (x, t )µL(x)
∣∣∣ d x d t

≤
ˆ T

0

∥∥∥v i (·, t )
∥∥∥

L2(KL )

∥∥∥θ j (·, t )
∥∥∥

L∞(KL )

∥∥µL
∥∥

L2(KL ) d t .

By assumption, µL ∈ L∞(KL) ⊂ L2(KL) with continuous inclusion, and∥∥µL
∥∥

L2(KL ) ≤ |KL |1/2
∥∥µL

∥∥
L∞(KL ) ≤CµL−d/2.

Next, we estimate
∥∥v i (·, t )

∥∥
L2(KL ). Since v i , we have for integer L∥∥∥v i (·, t )

∥∥∥
L2(KL )

= Ld/2
∥∥∥v i (·, t )

∥∥∥
L2(K )

,

while, for non-integer L ∥∥∥v i (·, t )
∥∥∥

L2(KL )
≤ dLed/2

∥∥∥v i (·, t )
∥∥∥

L2(K )
.

Finally, we recall the exponential decay of
∥∥v i (·, t )

∥∥
L2(K ) and we derive the estimate:

∣∣∣∣∣
ˆ T

0

ˆ
KL

v i (x, t )θ j (x, t )µL(x)d x d t

∣∣∣∣∣≤
≤ Ld/2

∥∥∥v i (·,0)
∥∥∥

L2(K )

ˆ T

0
e−λ0t

∥∥∥θ j (·, t )
∥∥∥

L∞(KL )
d t CµL−d/2

≤Cµ

∥∥∥v i (·,0)
∥∥∥

L2(K )

ˆ T

0
e−λ0t

∥∥∥θ j (·, t )
∥∥∥

L∞(KL )
d t . (4.34)

Case v i (·,0) ∈ L2(K ): We use eq. (4.23) in lemma 4.15 to bound the last integral in eq. (4.34):

ˆ T

0
e−λ0t

∥∥∥θ j (·, t )
∥∥∥

L∞(KL )
d t ≤

≤ C̃
Rd−1

|R −L|
∥∥∥v i

∥∥∥
L2([0,+∞),W 1

per (K ))

ˆ T

0
e−λ0t

[
1

t
+ 1

2c |R −L|2
] d−1

2

e−c |R−L|2
t d t

≤ C̃

λ0

Rd−1

|R −L|
∥∥∥v i

∥∥∥
L2([0,+∞),W 1

per (K ))

[
1

T
+ 1

2c |R −L|2
] d−1

2

e−c |R−L|2
T

= C̃

λ0

∥∥∥v i
∥∥∥

L2([0,+∞),W 1
per (K ))

1

|R −L|
[

R2

T
+ R2

2c |R −L|2
] d−1

2

e−c |R−L|2
T ,

where we bounded the integral by the L1 −L∞ Hölder inequality. Then, by posing

C2,b = CµC̃

λ0

∥∥∥v i (·,0)
∥∥∥

L2(K )
, and C ′

2,b = 1p
2c(1−L/R)

, with 0 < L/R < 1,
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we get eq. (4.32).

Case v i (·,0) ∈W 1
per (K ): We can use the estimate eq. (4.24) to bound the last integral in eq. (4.34):

ˆ T

0
e−λ0t

∥∥∥θ j (·, t )
∥∥∥

L∞(KL )
d t

≤ C̃
∥∥∥v i (·,0)

∥∥∥
W 1

per (K )
Rd−1

ˆ T

0
e−2λ0t

ˆ t

0
s−(d+1)/2e−c |R−L|2

s eλ0s d s d t

= C̃
∥∥∥v i (·,0)

∥∥∥
W 1

per (K )
Rd−1

ˆ T

0

ˆ T

s
e−2λ0t d t s−(d+1)/2e−c |R−L|2

s eλ0s d s,

(4.35)

by Fubini’s theorem. We bound the double integral in time as

ˆ T

0

ˆ T

s
e−2λ0t d t s−(d+1)/2e−c |R−L|2

s eλ0s d s ≤ 1

2λ0

ˆ T

0
s−(d+1)/2e−c |R−L|2

s e−λ0s d s

≤ 1

2λ0

(
max

s∈[0,T ]
s−(d+1)/2e−c |R−L|2

s

)ˆ T

0
e−λ0s d s

≤ 1

2λ2
0

T −(d+1)/2e−c |R−L|2
T ,

under the assumption that T ≤ 2c
d+1 |R −L|2. Thus we get the final bound

ˆ T

0
e−λ0t

∥∥∥θ j (·, t )
∥∥∥

L∞(KL )
d t ≤ C̃

2λ2
0

∥∥∥v i (·,0)
∥∥∥

W 1
per (K )

(
Rp
T

)d−1 1

T
e−c |R−L|2

T ,

and the proof is complete by taking

C2,b = CµC̃

2λ2
0

∥∥∥v i (·,0)
∥∥∥

L2(K )
.

Remark 4.17. The estimates provided in Proposition 4.16 for regular initial condition are

subjected to the final time constraint T ≤ 2c
d+1 |R −L|2. If such a condition is not satisfied, then

the convergence rate of the resonance error is deteriorated as the solution is polluted by the

boundary error for longer times. The analysis for this case is postponed to Section 4.1.6.

Term ec
BC

Here, we provide estimates for the term ec
BC of eq. (4.13) under two regularity conditions. This

term decays faster than eb
BC and can be neglected.

Proposition 4.18. Let the hypotheses of Lemma 4.15 be satisfied. Moreover, let v i ∈C ([0,+∞),L2(K )),

θi ∈ L∞(KL × [0,+∞)), let ec
BC be defined as in eq. (4.13) and let L/R be constant. Then, there
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4.1. A priori analysis of the resonance error

exist a constants C2,c ,c > 0 independent of R, L, T such that

∣∣ec
BC

∣∣≤ C2,c

|R −L|2
∥∥∥v i

∥∥∥2

L2([0,+∞),W 1
per (K ))

(
R2

T

)d−1

e−
2c|R−L|2

T . (4.36)

Otherwise, if v i ∈C ([0,+∞),W 1
per (K )), then, there exist constants C2,c ,c > 0 independent of R,

L, T such that ∣∣ec
BC

∣∣≤C2,c

∥∥∥v i (·,0)
∥∥∥2

W 1
per (K )

(
T

c |R −L|2
)3−d

e−2c |R−L|2
T . (4.37)

Proof. From the positivity of µL and the fact that its integral is equal to one, we derive the

inequality∣∣∣∣∣
ˆ T

0

ˆ
KL

θi (x, t )θ j (x, t )µL(x)d x d t

∣∣∣∣∣≤
ˆ T

0
sup
x∈KL

∣∣∣θi (x, t )θ j (x, t )
∣∣∣ d t

ˆ
KL

µL(x)d x

≤ max
i

ˆ T

0
sup
x∈KL

∣∣∣θi (x, t )
∣∣∣2

d t .

Then, the task now is to estimate
´ T

0 sup
x∈KL

∣∣θi (x, t )
∣∣2

d t .

Case v i (·,0) ∈ L2(K ): By eq. (4.23) we derive

ˆ T

0
sup
x∈KL

∣∣∣θi (x, t )
∣∣∣2

d t ≤C̃ 2 R2(d−1)

|R −L|2
∥∥∥v i

∥∥∥2

L2([0,+∞),W 1
per (K ))ˆ T

0

[
1

t
+ 1

2c |R −L|2
]d−1

e−2c |R−L|2
t d t .

(4.38)

By the change of variable σ= 2c |R−L|2
t we bound the integral

ˆ T

0

[
1

t
+ 1

2c |R −L|2
]d−1

e−2c |R−L|2
t d t

=
(

1

2c |R −L|2
)d−2ˆ +∞

2c|R−L|2
T

(σ+1)d−1

σ2 e−σdσ

≤
(

1

2c |R −L|2
)d−2 (

2c |R −L|2
T

+1

)d−1 (
2c |R −L|2

T

)−2ˆ +∞

2c|R−L|2
T

e−σdσ

=
(

1

2c |R −L|2
)d−2 (

1+ T

2c |R −L|2
)d−1 (

T

2c |R −L|2
)3−d

e−
2c|R−L|2

T

≤ C

T d−1
e−

2c|R−L|2
T , (4.39)

since
(
1+ T

2c|R−L|2
)

and T 2

2c|R−L|2 can be bounded from above by a constant, due to T ≤C |R −L|.
By plugging eq. (4.39) into eq. (4.38) we get:
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ˆ T

0
sup
x∈KL

∣∣∣θi (x, t )
∣∣∣2

d t

≤ C̃ 2
∥∥∥v i

∥∥∥2

L2([0,+∞),W 1
per (K ))

(
R2

2c |R −L|2
)d−1

1

T d−1
e−

2c|R−L|2
T

≤ C̃ 2
∥∥∥v i

∥∥∥2

L2([0,+∞),W 1
per (K ))

(
R2

T

)d−1
1

2c |R −L|2 e−
2c|R−L|2

T .

We get eq. (4.36) with C2,c = C̃ 2

2c .

Case v i (·,0) ∈W 1
per (K ): We recall eq. (4.24) and apply Minkowski integral inequality:

ˆ T

0
sup
x∈KL

∣∣∣θi (x, t )
∣∣∣2

d t ≤C̃ 2R2(d−1)
∥∥∥v i (·,0)

∥∥∥2

W 1
per (K )

ˆ T

0

(
e−λ0t

ˆ t

0
s−(d+1)/2e−c |R−L|2

s eλ0s d s

)2

d t

≤C̃ 2R2(d−1)
∥∥∥v i (·,0)

∥∥∥2

W 1
per (K ){ˆ T

0

(ˆ T

s
e−2λ0t s−(d+1)e−2c |R−L|2

s e2λ0s d t

)1/2

d s

}2

≤C̃ 2R2(d−1)
∥∥∥v i (·,0)

∥∥∥2

W 1
per (K ){ˆ T

0

1√
2λ0

(
e−2λ0s −e−2λ0T

)1/2
s−(d+1)/2e−c |R−L|2

s eλ0s d s

}2

≤ C̃ 2

2λ0
R2(d−1)

∥∥∥v i (·,0)
∥∥∥2

W 1
per (K )

≤ C̃ 2

2λ0
R2(d−1)

∥∥∥v i (·,0)
∥∥∥2

W 1
per (K )

{ˆ T

0
s−(d+1)/2e−c |R−L|2

s d s

}2

,

by the fact that
(
1−e−2λ0(T−s)

) ≤ 1. We estimate the integral by the change of variables σ=
c |R−L|2

s :

ˆ T

0
s−(d+1)/2e−c |R−L|2

s d s =
(

1

c |R −L|2
) d−1

2
ˆ +∞

c |R−L|2
T

σ(d−3)/2e−σdσ

≤
(

1

c |R −L|2
) d−1

2

 sup
σ≥c |R−L|2

T

σ(d−3)/2

ˆ +∞

c |R−L|2
T

e−σdσ

≤ 1

c |R −L|2 T (3−d)/2e−c |R−L|2
T .

And by plugging the bound for the integral into the bound for
´ T

0 sup
x∈KL

∣∣θi (x, t )
∣∣2

d t we get
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ˆ T

0
sup
x∈KL

∣∣∣θi (x, t )
∣∣∣2

d t ≤ C̃ 2

2λ0
R2(d−1)

∥∥∥v i (·,0)
∥∥∥2

W 1
per (K )

1

c2 |R −L|4 T 3−d e−2c |R−L|2
T

≤ C̃ 2

2λ0

∥∥∥v i (·,0)
∥∥∥2

W 1
per (K )

(
T

c |R −L|2
)3−d (

1

c(1−L/R)

)2(d−1)

e−2c |R−L|2
T .

since 1
c(1−L/R) is constant, we get eq. (4.37) with C2,c = C̃ 2

2λ0

(
1

c(1−L/R)

)2(d−1)
.

4.1.5 A priori bound on the resonance error for the parabolic approach

We can now prove Theorem 4.1, by recalling the results of Sections 4.1.2 to 4.1.4.

Proof of Theorem 4.1. The decomposition eq. (4.6) implies∥∥a0,R,L,T −a0
∥∥

F ≤ d 2 max
i , j

(∣∣∣I 1
i j

∣∣∣+ ∣∣∣I 2
i j

∣∣∣+ ∣∣∣I 3
i j

∣∣∣+ ∣∣∣I 4
i j

∣∣∣) .

By using the upper bounds in Corollary 4.5, Lemmas 4.7 and 4.10, and Propositions 4.16

and 4.18 in the above inequality we get

∥∥a0,R,L,T −a0
∥∥

F ≤C

[
L−(q+1) +e−2λ0T + 1

|R −L|
(

Rp
T

+1

)d−1

e−c |R−L|2
T

+ 1

|R −L|2
(

R2

T

)d−1

e−2c |R−L|2
T

]
, (4.40)

for some constant C independent of R, L and T . Using the optimal values L = koR and

T = kT R, with 0 < ko < 1 and kT =
√

c
2λ0

(1−ko), we write eq. (4.40) as:

∥∥a0,R,L,T −a0
∥∥

F ≤C

[
R−(q+1) +e−

p
2λ0c(1−ko )R + 1

R

(p
R +1

)d−1
e−

p
2λ0c(1−ko )R

+Rd−3e−2
p

2λ0c(1−ko )R

]
,

The last term is of higher order than the third one, so it can be omitted. Finally, we get

∥∥a0,R,L,T −a0
∥∥

F ≤C

R−(q+1) +
1+

(p
R +1

)d−1

R

e−
p

2λ0c(1−ko )R

 . (4.41)

In the case of more regular initial conditions, ∇· (aei ) ∈W 1
per (K ), we have:

∥∥a0,R,L,T −a0
∥∥

F ≤C

[
L−(q+1) +e−2λ0T +

(
Rp
T

)d−1 1

T
e−c |R−L|2

T +
(

T

|R −L|2
)3−d

e−2c |R−L|2
T

]
.
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Also in this case, we use L = koR and T = kT R and omit the last term to get

∥∥a0,R,L,T −a0
∥∥

F ≤C
[

R−(q+1) +
(
1+R

d−3
2

)
e−

p
2λ0c(1−ko )R

]
. (4.42)

Finally, using the fact that R ≥ 1, we can bound the prefactors in front of the exponential terms

in eq. (4.41) and eq. (4.42) by a constant independent of R and get eq. (4.5).

4.1.6 Effect of integration over long time

Since the estimates provided in Lemma 4.11 for regular initial condition are derived under

the constraint of T < 2c
d+1 |R −L|2, we provide here a short analysis for the case where such a

condition is not satisfied.

Proposition 4.19. Let v i ∈C
(
[0,+∞),W 1

per (K )
)

be the weak solution of the parabolic model or

its periodic extension on KR let θi ∈ L∞ ([0,+∞)×KR ) be the solution of eq. (4.14) and let L/R

be constant. Then, there exist constants C̃2,b ,c > 0 independent of R, L, T such that, for any
2c

d+1 |R −L|2 ≤ T <+∞, ∣∣∣eb
BC

∣∣∣≤ C̃2,b

|R −L|2
∥∥∥v i (·,0)

∥∥∥
W 1

per (K )
.

Proof. From the proof of Lemma 4.11 we know that∣∣∣∣∣
ˆ T

0

ˆ
KL

v i (x, t )θ j (x, t )µL(x)d x d t

∣∣∣∣∣≤Cµ

∥∥∥v i (·,0)
∥∥∥

L2(K )

C̃

2λ0

∥∥∥v i (·,0)
∥∥∥

W 1
per (K )

Rd−1

ˆ T

0
s−(d+1)/2e−c |R−L|2

s e−λ0s d s.

We bound the last integral by L1 −L∞ Hölder inequality:

ˆ T

0
s−(d+1)/2e−c |R−L|2

s e−λ0s d s ≤ sup
s∈[0,+∞)

s−(d+1)/2e−c |R−L|2
s

ˆ +∞

0
e−λ0s d s

≤ 1

λ0

(
d +1

2ce

) d+1
2 1

|R −L|d+1
.

Thus, by putting all the results together, we get∣∣∣∣∣
ˆ T

0

ˆ
KL

v i (x, t )θ j (x, t )µL(x)d x d t

∣∣∣∣∣≤ C̃2,b

|R −L|2
∥∥∥v i (·,0)

∥∥∥
W 1

per (K )
,

where

C̃2,b = CµC̃

2λ2
0

(
d +1

2ce

) d+1
2

(
1

(1−L/R)

)d−1 ∥∥∥v i (·,0)
∥∥∥

L2(K )
.

Remark 4.20. Proposition 4.19 states that if T is chosen too large, then the convergence rate of
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the resonance error is only second order. Such a behaviour was noticed in numerical experiments

and was particularly evident in the one-dimensional simulations, see Section 4.2.4.

4.2 Numerical experiments

In this section we present several numerical tests to support the theoretical results of Sec-

tion 4.1 and experimentally verify the resonance error bound of Theorem 4.1. We illustrate the

expected convergence rates by varying the regularity parameter q of the filters, in a periodic,

smooth setting, as rigorously proven in the previous sections. Additionally, we compare the

convergence rate of the resonance error for the parabolic scheme with that of standard numer-

ical homogenization scheme. We also test non-smooth periodic and stochastic coefficients,

which violate the theoretical assumptions in the analysis. Nevertheless, we obtain results as in

the smooth periodic case.

In order to numerically assess the convergence rate of the resonance error, we compute

the approximations of the homogenized tensor through the described parabolic corrector

problems on domains of increasing size, R ∈ [1,20], and calculate the Frobenius norm of the

difference between such approximations and the exact a0. In the case of periodic coefficients

whose homogenized value could not be known exactly (i.e., without discretization error) the

reference value is computed by solving the standard elliptic corrector problem eq. (3.3) with

R = 1 and periodic boundary conditions and using formula eq. (3.4). In the random setting no

approximation is available without some resonance error. In this case, we take as reference

value for the homogenized tensor the one computed from the numerical approximation of

the parabolic correctors over the largest domain Rmax = 20.

To compute a numerical approximation of a0,R,L,T , we use a Finite Elements (FE) discretization

for the corrector problems eq. (3.11) in space, and a stabilised explicit Runge-Kutta method

with adaptive time stepping for the time discretization. A high (fourth) order method, [1],

is chosen in order to make the temporal discretization error negligible with respect to the

resonance error. As we use explicit methods in time, we need a mass matrix that is cheap to

invert. This is achieve by using either mass lumping (for low order FEMs) or discontinuous

Galerkin methods (for arbitrary order FEMs).

As a second step, the upscaled tensor is approximated by a double integration in space and

time. The spatial integral of the parabolic correctors is computed by using the FE filtered mass

matrix of components

mi j =
ˆ

KL

φi (x)φ j (x)µL(x)d x,

where {φi }i are the FE basis functions. The integration in time is performed by the use of

Newton-Cotes formulae for non-uniform discretizations.

In order to optimize the convergence rate of the error with respect to the sampling domain

size R, we take the optimal values of Theorem 4.1 for the averaging domain size L (KL ⊂ KR )
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Chapter 4. Reduction of the resonance error via parabolic corrector problems

and for the final time T given by

L = koR, and T = R −L√
8βλ0

,

where β is the continuity constant of the tensor a and λ0 is the smallest eigenvalue of the

elliptic operator −∇ · (a(·)∇) with periodic boundary conditions. The oversampling ratio,

0 < ko < 1, and the order of filters, q , can be chosen freely.

4.2.1 Two-dimensional periodic case

We consider the upscaling of the 2×2 isotropic tensor:

a(x) =
(

2+1.8sin(2πx1)

2+1.8cos(2πx2)
+ 2+ sin(2πx2)

2+1.8cos(2πx1)

)
I (4.43)

for which the homogenized tensor is

a0 ≈
(

2.757 −0.002

−0.002 3.425

)
.

Here, we compare the performances of the described parabolic approach (“par.” in the legends)

and the standard elliptic approach (“ell.” in the legends). In comparing the two methods, we

used a filtered version of (2.45), namely

a0,R,L
i j :=

ˆ
KL

ei ·a(x)
(
e j +∇χ j

R (x)
)
µL(x)d x, (4.44)

that improves the error constant for the classical approach. However, we recall that the

standard elliptic method provides a first order convergence rate, independently of the use of

oversampling or filtering, as shown in [134]. By contrast, the use of high order filters in the

parabolic scheme improves the convergence rate without affecting the computational cost.

The two approaches are solved using P1 finite element discretization in space with 64 points

per periodic cell. Mass lumping has been used in order to perform the time integration, which

is carried out via the ROCK4 method, see [1], with tol = 10−6. Finally Simpson’s quadrature

rule is used for computing the time integral defining homogenized coefficients.

Results are depicted in Figure 4.2. As expected, one cannot reach a convergence rate higher

than 1 for the standard elliptic approach, in contrast to the parabolic method. We notice

a longer “flat” region in the convergence plot for small values of ko and high order filters.

Intuitively, for any given R , the region where the filter is “not almost zero” decreases for smaller

ko and larger q . Hence, we need larger values of R for the averaging integral to contain enough

data and the error to decrease with the expected rate.
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Figure 4.2 – Comparison of the resonance error in the elliptic and parabolic models for tensor
eq. (4.43).
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4.2.2 Discontinuous coefficients

In the error analysis, we made the assumption that the initial condition ∇· (a(·)ei ) ∈ L2(KR ).

Nevertheless, the parabolic problem can also be solved for initial condition ∇ · (a(·)ei ) ∈
H−1(KR ) and we are interested in verifying numerically if the provided a priori estimates for

the resonance error hold also for this case. For simplicity, we consider the one dimensional

periodic piecewise continuous coefficient

a(x) =
1 1

4 < {x} < 3
4 ,

3 elsewhere,
(4.45)

where {x} is the fractional part of x, i.e. {x} = x −bxc. The homogenized coefficient, which

can be computed analytically, is a0 = 3
2 . Convergence plots pictured in Figure 4.3 show that

the theoretical results also apply to the case of discontinuous coefficients. The test is done

with P2 finite element discretization on a uniform grid of size h = 1/1024 and the ROCK4

time integration scheme with tol = 10−6. The results are reported in Figure 4.3 where, for the

sake of completeness, we also pictured the convergence plot for the elliptic scheme without

filtering nor oversampling (this simplifying choice is motivated from the fact that filtering

and oversampling have been proved to be ineffective for improving the convergence rate

in the elliptic case, see Section 4.2.1). Also in this case, if the filter’s order q is increased or

the oversampling ratio ko is decreased, the expected convergence rate will reached for larger

values of R.

1 10 20

10−4

10−2

100

R

q = 2

ell.

L = 2R/3

L = R/3

R−3

1 10 20

10−4

10−2

100

R

q = 4

ell.

L = 2R/3

L = R/3

R−5

Figure 4.3 – Resonance error in the elliptic and parabolic models for the discontinuous tensor
eq. (4.45). The elliptic approximation to a0 is computed without filtering nor oversampling.
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(a) Realization of the field on the square. The
colour scale is logarithmic.

1 10 2010−5

10−4

10−3

10−2

10−1

100

R

q = 0
q = 2

R−3

R−4

(b) Resonance error. L = 2R/3.

Figure 4.4 – Log-normal random field eq. (4.46) with µ= 0, σ2 = 1 and `= 0.2, and resonance
error for the parabolic ell problem with filter order q and final time T = |R−L|

10 .

4.2.3 A stochastic case

In the last numerical test, we provide an example for a stochastic tensor, which does not

comply with the periodicity assumption made in Section 4.1. With this test, we do not aim

at proving any theoretical convergence rate of the error, but rather to verify numerically that

the periodicity assumption is not necessary for achieving fast decaying rates of the boundary

error. We consider a single realization of a stationary log-normal random field with Gaussian

isotropic covariance:

log a(·) ∼N (µ,Cov(x − y)), Cov(z) =σ2e−
|z|2
2`2 , (4.46)

where µ and σ2 are the mean and the variance of the field and ` is the correlation length. An

example of such a field is depicted in Figure 4.4a. We are not interested in evaluating the

statistical error, but only the boundary error, which is∥∥a0,R,L,T −a0,∞,L,T
∥∥

F .

In practice, we will consider a0,Rmax ,L,T for the large value Rmax = 20 in place of a0,∞,L,T as a

reference for evaluating the resonance error. The new reference a0,Rmax ,L,T is computed using

the numerical approximation of the parabolic corrector on KRmax with periodic BCs. The test is

done with a P1 finite element discretization on a uniform grid of size h = 1/20 and the ROCK4

time integration scheme with tol = 10−5. In Figure 4.4b we show that the resonance error

decays with a rate comprised between 3 and 4 with respect to R.
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4.2.4 Numerical tests for long integration time

The aim of this section is to briefly illustrate the numerical results obtained for final integration

time T = 100, so that it does not satisfy the condition T ≤ 2c
d+1 |R −L|2. It was proved in

Section 4.1.6 that the error terms I 2,b
i j scale as R−2, thus overriding all other terms and limiting

the convergence rate to 2. Since the error term I 2,b
i j affects only the correction part of the

G-limit approximation,

a0,R,L,T
cor r =−2

ˆ T

0

ˆ
KL

ui
R (x, t )u j

R (x, t )µL(x)d x d t ,

we display the error committed in approximating this term:

ecor r,i j :=
∣∣∣∣∣
 

K
ei ·a(x)∇χ j d x +2

ˆ T

0

ˆ
KL

ui
R (x, t )u j

R (x, t )µL(x)d x d t

∣∣∣∣∣ .

We tested both a one dimensional case,

a(y) = 1

2+ sin(2πy)
, (4.47)

and a two dimensional case

a(y) =
(

3+ 2
p

17
8sin(2πy1)+9

)−1
0

0
(

1
20 + 2

p
17

8cos(2πy2)+9

)−1

 , (4.48)

for R ranging from 1 to 10, L = 2R/3, T = 100 and with different filter orders q . The second

order convergence rate is mostly clear in the one dimensional example depicted in Figure 4.5a,

but also the convergence plot for the two dimensional case of Figure 4.5b decays more slowly

than the plots of Figure 4.2.

4.3 Discussion over the computational cost

The goal of this section is to provide a theoretical estimate of the scaling of the computational

cost with respect to the error tolerance for the proposed parabolic approach and to compare

it to the standard elliptic approach. Since both discretization and resonance parameters

play a role in the determination of the computational cost, in our analysis we will assume

that both errors are smaller than a prescribed tolerance and we derive the computational

cost under these constraints. Our analysis shows that, for sufficiently high order filters, the

computational cost is lower for the parabolic model than for the elliptic one, i.e. the parabolic

case is asymptotically less expensive.
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(a) 1D case eq. (4.47)
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(b) 2D case eq. (4.48)

Figure 4.5 – Error in the correction term of the homogenized tensor.

4.3.1 Standard elliptic case

Let us consider the standard elliptic homogenization scheme on the rescaled sampling domain

of eq. (2.43). We partition the domain KR with uniform simplicial elements of size h and we

introduce a finite elements space Sh ⊂ H 1
0 (KR ) made of piecewise polynomial functions of

degree s on the simplices. The finite elements discretization of the corrector problem reads:

Find χi
R,h ∈ Sh such that

ˆ
KR

a(x)
(
∇χi

R,h +ei

)
·∇wh d x = 0, ∀wh ∈ Sh , i = 1, . . . ,d , (4.49)

and the upscaled tensor is defined as

a0,R,h
i j =

 
KR

ei ·a(x)
(
∇χ j

R,h +e j

)
d x. (4.50)

Hence, the total error for the upscaled coefficients is:

|a0,R,h
i j −a0

i j | ≤C
(
h2s +R−1) ,

where the first term in the error estimate is the discretization error derived in [4], while the

second term is the resonance error. The finite elements corrector χi
R,h is computed by solving

the linear system

Ahvi = bi , for i = 1, . . . ,d , (4.51)

where Ah is a N ×N symmetric positive definite matrix and vi and bi are the coordinates of,

respectively, χi
R,h and −∇· (a(x)ei ) in the finite element space given a Lagrangian basis. Here,

N =O (Rd h−d ) is the dimension of the space Sh . The linear system can be solved in several

ways using direct or iterative methods, whose cost depends on N . For example, for sparse

73



Chapter 4. Reduction of the resonance error via parabolic corrector problems

LU factorization the number of operations is2 O (N 3/2) [74], for Conjugate Gradient (CG) it is

O (
p
κN ), where κ is the condition number, while for multigrid (MG) it is O (N ), [125]. In the

following analysis we will assume that the latter method is used for solving the linear system.

We require the total errors to scale as a given tolerance tol , so R =O (tol−1) and h =O (tol 1/2s).

Hence, the total cost is

Cost =O (N ) =O (Rd h−d ) =O (tol−d− d
2s ).

4.3.2 Parabolic case with explicit stabilised time integration methods

Let us consider the parabolic corrector problem eq. (3.11) with the upscaling formula eq. (3.13).

As in the elliptic case, one can discretize eq. (3.11) in space and compute an approximation

ui
h(t ) of ui

R (·, t ) in the N -dimensional finite elements space Sh . For simplicity of notation, we

will omit the superscript i . For a given basis of Sh , the function uh(t ) is uniquely determined

by the vectorial function wh : [0,T ] 7→RN , that solve the semi-discrete problem:

d

d t
wh =−M−1

h Ahwh . (4.52)

We assume that the mass matrix Mh is easy to invert (which hold, e.g., in the case of mass

lumping or discontinuous Galerkin FEs), so that the cost of the right-hand side evaluation is

negligible with respect to the solution of the ODE system. The differential equation (4.52) is

solved by an explicit stabilised time integration scheme of order r . Examples of second order

methods are RKC2 [131] and ROCK2 [13], while ROCK4 [1] is a fourth order method. The fully

discrete problem reads

Wk =Φh(Wk−1), for k = 1, . . . , Nt ,

where the function Φh identifies the time integration method and Nt the number of time

steps. The computed sequence {Wk }Nt

k=0 ⊂ RN is an approximation, at times tk = k∆t , of

w(tk ) and it determines (via the finite elements basis) a sequence {Uk }Nt

k=0 ⊂ Sh . The discrete

approximation of the homogenized tensor is

a0,R,h,∆t
i j =

ˆ
KL

ai j (y)µL(x)d x −2Q

(ˆ
KL

UkU j
kµL(y)d x,∆t

)
,

where Q(·,∆t ) is a quadrature rule on the discretization tk = k∆t of order at least r (where r is

the order of the time integration scheme). Hence, the total error for the upscaled coefficients

is:

|a0,R,h,∆t
i j −a0

i j | ≤C
(
hs+1 +∆t r +R−(q+1)) , (4.53)

where we have assumed that, for sufficiently large R , the term R−(q+1) dominates the exponen-

tial term in the resonance error bound. This is also the convergence rate that we reported in

the numerical examples of Sections 4.2.1 and 4.2.2. Here, the constant C grows linearly with

2The constant in this asymptotic rate depends on the sparsity pattern of the matrix, which is much worse for 3D
problems than for diffusion problems in 2D.
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4.3. Discussion over the computational cost

Corrector problem Parabolic Standard Elliptic
Error R−q−1 +hs+1 +∆t r R−1 +h2s

Computational cost Rd h−d−1∆t−
1
2 Rd h−d

Computational cost (tol ) tol−
d

q+1− d+1
s+1 − 1

2r tol−d− d
2s

Table 4.1 – Error and computational cost for the parabolic and standard homogenization
approaches.

the final time T , whose optimal value scales as R −L. However, the ratio (R −L)/
√

8βλ0 is in

general O (1), so we can consider T =O (1) in the range of values used for R and L. In order for

the error to scale as tol , we require that all the three summands in (4.53) scale as tol :

R =O (tol−
1

q+1 ), h =O (tol
1

s+1 ), ∆t =O (tol
1
r ).

The global computational cost is O (N nS Nt ), where Nt = T /∆t is the number of time steps,

nS is the number of function evaluations (stages) per time step for a stabilised method and

N =O (Rd h−d ) is the cost of each function evaluation which, in the linear case, is the cost of

multiplying a sparse N ×N matrix by a vector in RN . Since we are using a stabilised method

we need to satisfy the weak stability condition ρ∆t = cn2
S , where ρ is the spectral radius of

the Jacobian of the ODE (4.52) and nS is the number of stages for each time step. As ρ is the

spectral radius of M−1
h Ah , it scales as h−2. Therefore, nS = O (∆t 1/2h−1). From the fact that

T =O (1) one derives that the total cost is

Cost =O (Rd h−d∆t 1/2h−1∆t−1) =O (tol−
d

q+1− d+1
s+1 − 1

2r ).

4.3.3 Comparison of the parabolic and the standard elliptic methods

Now, we are interested in evaluating under which condition the use of stabilised time inte-

gration methods is more efficient than the regularized elliptic approach. In Table 4.1, we

summarize the dependency of computational cost and the error on resonance and discretiza-

tion parameters, as well as the scaling of the cost for a given tolerance. In order for the

parabolic approach to be competitive with respect to the elliptic one, the condition to satisfy

is:
d

q +1
+ d +1

s +1
+ 1

2r
< d + d

2s
.

In Figure 4.6 we display the theoretical increase of the computational cost for the two con-

sidered approaches. We observe that, for high order filters, the elliptic model is much more

expensive than the parabolic corrector problem.
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10−6 10−5 10−4 10−3 10−2 10−1100

105

1010

1015

1020

tolerance

co
st

ell.
par., q = 3
par., q = 5
par., q = 7

Figure 4.6 – Theoretical computational cost for d = 3, P2-FEM, 4-th order time integration,
q = 3,5,7.

4.4 Conclusion

In this chapter, we have discussed an approach for numerical homogenization based on

the solution of parabolic corrector problems. By assuming the coefficients to be sufficiently

smooth and periodic and using Green’s function estimates, we rigorously proved that the

convergence rate of the resonance error can be arbitrarily high. Numerical tests demonstrate

the same rates also for piecewise continuous and non-periodic cases. From the point of view

of the computational complexity, the parabolic approximation obtained by high order filtering

and using stabilised explicit solvers in time is asymptotically more efficient than the inversion

of the discretized elliptic operator, required by elliptic approaches.

Despite the undoubted advantages of this method, it may seem cumbersome to solve a time

independent problem, as eq. (3.1) by a time dependent approach, may it be the parabolic case

presented here or the hyperbolic one proposed in [17, 18]. Besides having to deal with the

fictitious time variable, time integration schemes have to be implemented to solve the local

problems, which are stiff by nature. Moreover, the smooth periodic case is of purely academic

interest, as realistic simulations often deal with materials with some degree of randomness.

For this case, the analysis that is carried out in this chapter is not complete, as additional

errors arise.

These issues motivated us to:

1. Develop an elliptic approach with arbitrary order of convergence, based on the results

of this chapter and discussed in Chapter 5;

2. Explore the case of random media from both the theoretical and computational points

of view, as done in Chapter 7.
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5 Reduction of the resonance error via
modified elliptic corrector problems

In Chapter 3 we discussed a novel elliptic corrector problem, with a modified right-hand

side, to approximate the homogenized limit of multiscale coefficients in linear second order

elliptic PDE. The new correctors, which can be equivalently constructed as time integral of the

parabolic solutions of eq. (3.11), solve the equations:−∇·
(
a(x)∇χi

T,R

)
= g i (x)− [e−AT g i ](x) in KR ,

χi
T,R = 0 on ∂KR ,

(5.1)

where g i (x) =∇· (a(x)ei ). Then, the effective coefficients at the macroscale are computed as

a0,R,L,T
i j =

ˆ
KL

ei ·a(x)
(
e j +∇χ j

T,R (x)
)
µL(x)d x. (5.2)

The arbitrary convergence rate of such a modified elliptic model is derived under the same

assumptions on the multiscale tensor aε as in the parabolic model, i.e.:

i) aε(x) = a(x/ε), for a ∈M
(
α,β

)
;

ii) a(·) is K -periodic, with K := [−1/2,1/2]d ;

iii) a(·)ei ∈ Hdi v (KR ), for i = 1, . . . ,d ;

iv) a(·) ∈ [
C 1,γ(KR )

]d×d
.

As in the parabolic case, we prove arbitrary convergence rates of the resonance error for the

modified elliptic model.

Outline

The main result of this chapter is that the resonance error for this method decays with arbitrary

convergence rate. The proof is given in Section 5.1 and it is based on previous results for
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the parabolic case. In Section 5.2, we discuss some numerical techniques to pre-compute

the additional term e−AT g i without solving a time dependent PDE. This can be done by

computing the matrix exponential, for which many algorithms are currently available, see [118].

This pre-computation step increases the computational cost of the model, but the gain in

accuracy makes it more efficient than the standard elliptic method, as we discuss in Section 5.3.

The theoretical convergence analysis is supported by several numerical experiments, see

Section 5.4. The arbitrary convergence rate is also found for coefficients not satisfying the

assumptions above, suggesting that they hold true under more general assumptions.

The content of this chapter is based on [8].

5.1 A priori analysis of the resonance error

The main result of this chapter is the following theorem, which gives an error bound for the

difference between the exact homogenized coefficient a0 and the approximation eq. (5.2) for

a periodic coefficients a(x).

Theorem 5.1. Let KR ⊂Rd , with d ≤ 3 and R ≥ 1. Let the coefficient matrix a(·) satisfy:

i) a(·) ∈M (α,β),

ii) a(·) is K -periodic,

iii) a(·)ei ∈ Hdi v (KR ), i = 1, . . . ,d,

iv) a(·) ∈ [
C 1,γ(KR )

]d×d
for some 0 < γ≤ 1.

Let a0,R,L,T and a0 be defined, respectively, as in eq. (5.2) and eq. (3.4). Let µL ∈Kq (KL) be a

q-th order filter, with 0 < L < R −3/2 and T ≤ 2c
d+1 |R −L|2, with c = 1/(4β). Then, there exists a

constant C > 0 independent of R, L or T (but it may depend on d, a(·) and µL(·)) such that

‖a0,R,L,T −a0‖F ≤C

(p
T L−(q+1) +e−c1T + Rd−1T

5−d
2

|R −L|3 e−c2
|R−L|2

T

)
,

where c1 = απ2

d and c2 = 1
4β . Moreover, the choice

L = koR, T = kT R,

with 0 < ko < 1, and kT =
√

c2
c1

(1−ko) results in the following convergence rate in terms of R

‖a0,R,L,T −a0‖F ≤C
(
R−q− 1

2 +γ(R)e−
p

c1c2(1−ko )R
)

,

where γ(R) =
(
R

d−3
2 +1

)
, and C is a constant independent of R.
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5.1. A priori analysis of the resonance error

Remark 5.2. Note that the exponent in the exponential term,
p

c1c2 ≈
√
α/β, depends on the

contrast ratio. So, the exponential part of the resonance error will be dominant for high contrast

problems.

In Theorem 5.1, The error
p

T L−(q+1) is the averaging error, which is obtained by using a

filter µL ∈Kq (KL). The order q of the filter can be chosen arbitrarily large with no additional

computational cost. This allows to have better convergence rates for the resonance error.

However, for higher order filters we witness a plateau in the convergence plot of the error,

which is not present for low order filters, e.g., see Figure 5.3. The error e−c1T is related to the

solution of the parabolic PDE eq. (4.2) for a finite T . Note that eq. (4.2) is introduced only for

the analysis, but in practice, we don’t solve it. The term e−c |R−L|2
T along with its prefactor is an

upper bound for the boundary error, and it will decay exponentially fast only if T < |R −L|2.

The proof of Theorem 5.1 is split in four steps, in a way similar to the one adopted in the proof

of Theorem 4.1. The four steps are:

Step 1: Decomposition of the resonance error into four terms:∣∣∣a0,R,L,T
i j −a0

i j

∣∣∣≤ e AV (ai j )+e AV (χ j
T,R )+eT R +eBC .

Step 2: Estimation of the averaging errors e AV (ai j ) and e AV (χ j
T,R ) by means of Lemma 4.3.

Step 3: Estimation of the truncation error eT R .

Step 4: Estimation of the boundary error eBC by means of upper bounds for the function θi

derived in Section 4.1.4.

5.1.1 Error decomposition

The aim here is to show that the error can be split as∣∣∣a0,R,L,T
i j −a0

i j

∣∣∣≤ e AV (ai j )+e AV (χ j
T,R )+eBC +eT R . (5.3)

The terms e AV (ai j ) and e AV (χ j
T,R ) are the averaging error which decreases by using filters

µL ∈Kq (KL) with higher values for q . The error eT R is associated with truncation in time of the

solutions of parabolic cell-problems. The boundary error eBC quantifies the effect of boundary

conditions. To see this, we use Theorem 3.8 and write

a0,R,L,T
i j :=

ˆ
KL

ai j (x)µL(x) d x +
ˆ

KL

ei ·a(x)∇χ j
T,R (x)µL(x) d x

=
ˆ

KL

ai j (x)µL(x) d x +
ˆ T

0

ˆ
KL

ei ·a(x)∇u j
R (x, t )µL(x) d x d t ,
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Chapter 5. Reduction of the resonance error via modified elliptic corrector problems

where u j
R is the solution of the parabolic corrector problem eq. (4.2). In the same way, by

Theorem 3.2, the exact homogenized coefficient can be rewritten as

a0
i j =

 
K

ai j (x) d x +
 

K
ei ·a(x)∇χ j (x) d x

=
 

K
ai j (x) d x +

ˆ ∞

0

 
K

ei ·a(x)∇v j (x, t ) d x d t ,

where v j is the periodic parabolic solution in eq. (3.5), and χ j is the solution to the periodic

corrector problem eq. (3.3) We exploit this equality to further decompose the error as follows

∣∣∣a0,R,L,T
i j −a0

i j

∣∣∣≤ ∣∣∣∣ˆ
KL

ai j (x)µL(x) d x −
 

K
ai j (x) d x

∣∣∣∣︸ ︷︷ ︸
e AV (ai j )

+
∣∣∣∣∣
ˆ T

0

ˆ
KL

ei ·a(x)∇u j
R (x, t )µL(x) d x d t −

ˆ T

0

ˆ
KL

ei ·a(x)∇v j (x, t )µL(x) d x d t

∣∣∣∣∣︸ ︷︷ ︸
eBC

+
∣∣∣∣∣
ˆ T

0

ˆ
KL

ei ·a(x)∇v j (x, t )µL(x) d x d t −
ˆ T

0

 
K

ei ·a(x)∇v j (x, t ) d x d t

∣∣∣∣∣︸ ︷︷ ︸
e AV (χ j

T,R )

+
∣∣∣∣∣
ˆ T

0

 
K

ei ·a(x)∇v j (x, t ) d x d t −
ˆ ∞

0

 
K

ei ·a(x)∇v j (x, t ) d x d t

∣∣∣∣∣︸ ︷︷ ︸
eT R

. (5.4)

In the following steps we give bounds for all the errors.

5.1.2 Averaging errors bounds

We now give an a priori estimate on ∇v i , based on the spectral properties of the periodic

cell-problem. This will be used in the proof of Lemma 5.4.

Lemma 5.3. Let a ∈ M (α,β) be K -periodic, v i ∈ C
(
[0,+∞),L2

0(K )
)

be the weak solution of

eq. (3.5) and let g i (x) := v i (x,0) ∈W 1
per(K ). Then, there exist C (α,β) > 0 such that∥∥∥∇v i

∥∥∥
L1([0,+∞);L2(K ))

≤C
∥∥∥∇g i

∥∥∥
L2(K )

. (5.5)

Proof. Let us define the bilinear form B : W 1
per (K )×W 1

per (K ) 7→R as

B (w, ŵ) :=
ˆ

K
∇ŵ(x) ·a(x)∇w(x)d x, w, ŵ ∈W 1

per (K ),

and let us denote the eigenvalues and eigenfunctions of B (·, ·) by {λk }∞k=0 and {ϕk }∞k=0, re-

spectively. It is well known that the sequence of eigenvalues is positive and non-decreasing,
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5.1. A priori analysis of the resonance error

i.e.,

0 <λ0 ≤λ1 ≤λ2, . . . .

The eigenfunctions {ϕk }∞k=0 are orthonormal in the L2-sense and they satisfy:

B
(
ϕk , v

)=λk〈ϕk , v〉L2(K ), ∀v ∈W 1
per (K ) . (5.6)

Since the eigenvalues form a basis of W 1
per (K ), we can write the function v i (t , x) =∑∞

k=0 v i
k (t )ϕk (x).

By plugging this expression into eq. (5.6), we conclude that the components of v i decay expo-

nentially in time:

v i
k (t ) = e−λk t g i

k , where g i
k := 〈g i ,ϕk〉L2(K ). (5.7)

By eq. (5.7) and by coercivity of the bilinear form, we obtain

α
∥∥∥∇v i (t , ·)

∥∥∥2

L2(K )
≤ B

(
v i , v i

)
(t ) =

∞∑
k,`=0

e−(λk+λ`)t g i
k g i

`B
(
ϕk ,ϕ`

)
=

∞∑
k,`=0

e−(λk+λ`)t g i
k g i

`λk〈ϕk ,ϕ`〉L2(K ) =
∞∑

k=0
e−2λk t |g i

k |2λk .

Hence,

∥∥∥∇v i (t , ·)
∥∥∥

L1([0,+∞);L2(K ))
:=
ˆ +∞

0

∥∥∥∇v i (t , ·)
∥∥∥

L2(K )
d t

≤
ˆ +∞

0

√
1

α

∞∑
k=0

e−2λk tλk |g i
k |2 d t ≤

√
1

α

∞∑
k=0

λk
∣∣g i

k

∣∣2
ˆ +∞

0
e−λ0t d t

= α−1/2

λ0

√
B

(
g i , g i

)≤
√
β

α

1

λ0

∥∥∥∇g i
∥∥∥

L2(K )
.

The main result of this section is summarised in the following lemma.

Lemma 5.4. Let a ∈ M (α,β) be K -periodic, aei ∈ Hdi v (K ) and e AV (ai j ) and e AV (χ j
T,R ) be

defined as in eq. (5.4). Then, there exists a constant C > 0 independent of R,T,L (but it depends

on a and µL)such that

e AV (ai j )+e AV (χ j
T,R ) ≤

C
p

T L−q−1 if ∇· (aei ) ∈ L2(K ),

C L−q−1 if ∇· (aei ) ∈W 1
per (K ).

Proof. By Lemma 4.3, we can immediately see that

e AV (ai j ) :=
∣∣∣∣ˆ

KL

ai j (x)µL(x) d x −
 

K
ai j (x) d x

∣∣∣∣
≤C L−q−1‖ai j‖L2(K ) ≤CβL−q−1.
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Moreover,

e AV (χ j
T,R ) :=

∣∣∣∣∣
ˆ T

0

(ˆ
KL

ei ·a(x)∇v j (x, t )µL(x) d x −
 

K
ei ·a(x)∇v j (x, t ) d x

)
d t

∣∣∣∣∣
≤C L−q−1

ˆ T

0
‖ei ·a(x)∇v j (t , ·)‖L2(K ) d t ≤C L−q−1β

ˆ T

0
‖∇v j (t , ·)‖L2(K ) d t .

If the tensor a(x) has higher regularity, i.e. ∇ · (aei ) ∈ W 1
per (K ), we can directly estimate

‖∇v j‖L1(0,T ;L2(K )) := ´ T
0 ‖∇v j (t , ·)‖L2(K ) d t by eq. (5.5) in Lemma 5.3 and obtain

e AV (χ j
T,R ) ≤CβL−q−1‖∇· (ae j

)‖W 1
per (K ).

Otherwise, if ∇· (ae j
) ∈ L2(K ) only, we will apply Cauchy-Schwarz inequality which yields

ˆ T

0
‖∇v j (t , ·)‖L2(K ) d t ≤

p
T ‖∇v j‖L2(0,T ;L2(K )).

Then, by employing Equation (3.6) in Proposition 3.1, we obtain

e AV (χ j
T,R ) ≤Cβ

p
T L−q−1‖∇· (ae j

)‖L2(K ).

5.1.3 Truncation error bound

Lemma 5.5. Let a ∈M(α,β) be K -periodic and aei ∈ Hdi v (K ). Then the truncation error eT R

defined in eq. (5.4) satisfies the estimate

eT R ≤Ce−
απ2

d T ,

where α is the coercivity constant and C is a constant independent of T (but it depends on α

and d).

Proof. By using integration by parts and the Cauchy-Schwarz inequality we have

eT R :=
∣∣∣∣ˆ ∞

T

 
K

ei ·a(x)∇v j (t , x) d x d t

∣∣∣∣
=

∣∣∣∣ˆ ∞

T

 
K
∇· (aei ) v j (t , x) d x d t

∣∣∣∣
≤
ˆ ∞

T
‖∇· (aei )‖L2(K )‖v j (t , ·)‖L2(K ) d t

≤ ‖∇· (aei )‖L2(K )

ˆ ∞

T
e−λ0t‖∇· (ae j

)‖L2(K ) d t

= ∥∥∇· (ae j
)∥∥

L2(K ) ‖∇· (aei )‖L2(K )
1

λ0
e−λ0T ,
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5.1. A priori analysis of the resonance error

where λ0 ≥ αCp (K )−2, and Cp (K ) is the constant of the Poincaré-Wirtinger inequality in

W 1
per (K ), which can be bounded by

Cp (K ) ≤ di am(K )

π
=

p
d

π
,

see [124]. Hence, λ0 ≥ απ2

d and the final result follows.

5.1.4 Boundary error bound

Lemma 5.6. Let a ∈ M (α,β) be K -periodic, a(·) ∈ [
C 1,γ(KR )

]d×d
for some 0 < γ ≤ 1 and

µL ∈Kq (KL) with L < R̃, where R̃ is the largest integer such that R̃ ≤ R − 1/2. Then, there

exists a constant C > 0 independent of R, L and T (but it depends on a and µL) such that the

boundary error eBC defined in eq. (5.4) satisfies

eBC ≤C
Rd−1T

5−d
2

|R −L|3 e−c |R−L|2
T ,

where c = 1
4β .

Proof. To estimate the boundary error, we define θ j = u j −ρv j , where the smooth function

ρ ∈C∞
c (KR ) is a cut-off function of Definition 4.13. Then,

(
u j

R − v j
)

(x, t ) = θ j (x, t ) for any t > 0

and x ∈ KL ⊂ KR̃ , hence

eBC :=
∣∣∣∣∣
ˆ T

0

ˆ
KL

ei ·a(x)∇
(
u j

R − v j
)

(x, t )µL(x) d x d t

∣∣∣∣∣
=

∣∣∣∣∣
ˆ T

0

ˆ
KL

ei ·a(x)∇θ j (x, t )µL(x) d x d t

∣∣∣∣∣ .

Next, by integration by parts it follows that

eBC ≤
ˆ

KL

∣∣∇· (aeiµL
)∣∣ d x sup

x∈KL

ˆ T

0
|θ j (x, t )| d t

≤ ‖µL‖W 1,2(KL )‖aei‖Hdi v (KL ) sup
x∈KL

ˆ T

0
|θ j (x, t )| d t

≤CµL−d/2Ld/2‖aei‖Hdi v (K ) sup
x∈KL

ˆ T

0
|θ j (x, t )| d t .

By using the bound for supx∈KL

∣∣θ j (x, t )
∣∣ of Lemma 4.15, we bound supx∈KL

´ T
0

∣∣θ j (x, t )
∣∣ d t

using the change of variable s = c |R−L|2
t

sup
x∈KL

ˆ T

0

∣∣∣θ j (x, t )
∣∣∣ d t ≤C

Rd−1

|R −L| ‖∇v j‖L2([0,∞);L2(K ))

ˆ T

0

(
1

t
+ 1

2c|R −L|2
) d−1

2

e−c |R−L|2
t d t
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≤C Rd−1|R −L|2−d‖∇g j‖L2(K )

ˆ ∞

c|R−L|2
T

(s + 1
2 )

d−1
2

s2 e−s d s

≤C Rd−1|R −L|2−d‖∇g j‖L2(K )

T 2
(

c|R−L|2
T + 1

2

) d−1
2

c2|R −L|4
ˆ ∞

c|R−L|2
T

e−s d s

≤C‖∇g j‖L2(K )
Rd−1T

5−d
2

|R −L|3 e−c |R−L|2
T .

Remark 5.7. We emphasize here that one of the key arguments in proving an exponentially

decaying error bound for eBC is the requirement that L < R, as done in Chapter 4.

5.1.5 A priori bound on the resonance error for the modified elliptic approach

We can now prove Theorem 5.1, by recalling the results of Sections 5.1.1 to 5.1.4.

Proof of Theorem 5.1. The decomposition eq. (5.4) implies∥∥a0,R,L,T −a0
∥∥

F ≤ d 2 max
i , j

(∣∣e AV (ai j )
∣∣+ ∣∣∣e AV (χ j

T,R )
∣∣∣+|eT R |+ |eBC |

)
.

By using the upper bounds in Lemmas 5.4 to 5.6 in the above inequality we get

‖a0,R,L,T −a0‖F ≤C

(p
T L−(q+1) +e−c1T + Rd−1T

5−d
2

|R −L|3 e−c2
|R−L|2

T

)

for some constant C independent of R, L and T .

5.2 Approximation of the exponential operator e−T A

From a computational perspective, the right-hand side e−T A g i in eq. (5.1) must be approxi-

mated in order to compute the modified corrector χi
T,R . One can look at e−T A g i as the solution

at time T of a parabolic PDE with initial data g i . Then, the naive approach would be to, first,

discretize the equation in space and, then, solve the ensuing evolution problem by some time

discretization scheme. With such a procedure, the approximation of e−T A g i would a priori

suffer from the discretization error in both space and time and it would not lead to any gain in

the computational cost in comparison to the parabolic approach described in Chapter 4. We

will not discuss the parabolic approach further, instead, we will describe other approaches

that aim to approximate e−T A g i without the use of time-advancing schemes.

One can look for an approximation of the exponential operator before or after the semi-

discretization in space of the corrector problem. In the first case, the approximation of e−T A g i

is sought in a finite dimensional subspace Vm ⊂ H 1
0 (KR ) of dimension m. In the other case, we
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5.2. Approximation of the exponential operator e−T A

have to approximate the matrix exponential e−T Ah , where the matrix Ah ∈RN×N depends on

the discretization, and Vm ⊂RN .

The subspace Vm can be chosen in several ways: an approach based on a continuous analogue

of the Krylov subspace method has recently been proposed in [76]. The continuous Krylov

subspaces are constructed by iterative action of the operator A on the initial condition g i and

of properly chosen projection/preconditioning operators that are meant to ensure that the

product Ag i does always make sense. In Section 5.2.1, we discuss an alternative approxima-

tion, based on spectral truncation, where Vm is generated by m eigenvalues of the second

order operator A.

In the discrete setting, i.e. when the corrector problem is discretized and has the form of a

linear equation in RN , the right-hand side term is a matrix exponential, which depends on

the chosen discretization technique. For example, if the Finite Difference Method is used, the

semi-discrete parabolic corrector problem eq. (3.11) will be

d

d t
wh =−Ahwh , =⇒ wh(T ) = e−T Ah gi

h ,

where wh : R+ 7→ RN , Ah ∈ RN×N is the stiffness matrix and gh ∈ RN is the evaluation of the

initial condition g i on the mesh nodes1. Hence, the term wh(T ) will be used in the discrete

version of (5.1) in place of e−T A g i . Instead, if the Finite Element Method is chosen to discretize

the parabolic corrector problem, the following ODE system arises:

Mh
d

d t
wh =−Ahwh , =⇒ wh(T ) = e−T M−1

h Ah gi
h ,

where we have to consider also the mass matrix Mh . The computation of the matrix exponen-

tial is crucial in many applications, such as the development of exponential time integrators

for ODE systems [95]. Several methods are available to compute the matrices exponential,

or more general matrix functions, see [85, 92, 117, 118, 125]. However, these methods may

not be directly applicable due to the large size of Ah (and Mh), and approximations of the

product e−T Ah gi
h (or e−T M−1

h Ah gi
h) must be sought in smaller subspaces Vm ⊂RN . The space

Vm can be chosen as the m-th dimensional Krylov subspace generated by (Ah ,gi
h), [94], or the

rational/extended Krylov subspaces, [49, 50, 72, 86]. The convergence of the rational Krylov

subspace method does not depend on the spectral radius of the matrix (which is linked to its

size) but requires to solve m linear systems. In Section 5.2.2 we analyse the use of the standard

Krylov subspace method to approximate e−T Ah .

5.2.1 Spectral truncation

Here, we discuss a technique to approximate the exponential operator e−AT by spectral de-

composition. This method can be used for any operator A with compact, self-adjoint and

1We dropped the i superscript in gh for the sake of simplicity in notation.
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Chapter 5. Reduction of the resonance error via modified elliptic corrector problems

positive definite inverse A−1, so we will not need to assume the coefficients a to be periodic.

The correction term e−AT g i in eq. (5.1) corresponds to the solution (at time T ) of the parabolic

PDE, eq. (4.2), which can be expressed as

[e−AT g i ](x) :=
∞∑

k=0
e−λk T ĝ i

kϕk (x), with ĝ i
k := 〈g i ,ϕk〉L2(KR ),

where {λk }∞k=0 ⊂ R+ and
{
ϕk

}∞
k=0 ⊂ H 1

0 (KR ) are the eigenvalues and eigenfunctions of the

operator A. If T is not too small, most of the modes in the expansion can be neglected due

to the exponential decay with respect to the eigenvalues. Hence solving a more expensive

parabolic PDE can be avoided at the expense of computing a few dominant modes of the

operator A. To this end, let

[Sm g i ](x) :=
m−1∑
k=0

e−λk T ĝ i
kϕk (x).

Then, the cell-problem eq. (5.1) can be approximated by−∇·
(
a(x)∇χi

T,R,m

)
= (I −Sm) g i in KR ,

χ
j
T,R,m = 0 on ∂KR .

(5.8)

Similarly, the homogenized coefficient of eq. (5.2) is approximated by

a0,R,L,T,m
i j =

ˆ
KL

ei ·a(x)
(
e j +∇χ j

T,R,m

)
µL(x) d x. (5.9)

In the discretized version of eq. (5.9), the spectral truncation is performed on the matrix

exponential e−T Ah (or e−T M−1
h Ah ), not on the exponential operator. However, the a priori error

analysis for the continuous, spectrally truncated cell-problem in eq. (5.8) allows to derive error

bound which are independent on the discretization. In the following lemma, we give a bound

for the spectral error, defined as the difference between a0,R,L,T of eq. (5.2) and a0,R,L,T,m of

eq. (5.9).

Lemma 5.8. Let a ∈M (α,β,KR ), aei ∈ Hdi v (KR ), and µL ∈Kq (KL). Moreover, let a0,R,L,T and

a0,,R,L,T,m be defined as in eq. (5.2) and eq. (5.9) respectively. Then

eSP :=
∣∣∣a0,R,L,T

i j −a0,R,L,T,m
i j

∣∣∣≤C

(
R

L

) d
2

R exp

(
−cd m2/d T

R2

)
(5.10)

where C (α,β,d ,µL) and cd are constants independent of R, L, T and m.

Proof. Let

[e−AT g i ](x) =
∞∑

k=0
e−λk T ĝ i

kϕk (x), [Sm g i ](x) =
m−1∑
k=0

e−λk T ĝ i
kϕk (x),
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5.2. Approximation of the exponential operator e−T A

where {λ j ,ϕ j (x)}∞j=0 are the eigenvalue-function pairs of the operator A = −∇ · (a∇) with

Dirichlet boundary conditions on the domain KR . Moreover, let Em := e−AT g i −Sm g i , with

g i :=∇· (aei ). The eigenvalues of second order symmetric elliptic operators satisfy

λk ≥ cd k2/d |KR |−2/d = cd k2/d R−2, (5.11)

where cd is a constant that depends on the dimension2 d and the ellipticity constant α, see

[110, 126]. Then

‖Em‖2
L2(KR ) ≤

∞∑
`,k=m

e−
cd (`2/d +k2/d )T

R2 g i
`g j

k〈ϕ`ϕk〉L2(KR )

=
∞∑

k=m
e−

2cd k2/d T

R2 |ĝ j
k |2 ≤ e−

2cd m2/d T

R2 ‖g i‖2
L2(KR ).

Taking the square root of both sides, we arrive at

‖Em‖L2(KR ) ≤ e−
cd m2/d T

R2 ‖g i‖L2(KR ).

Moreover, since the difference ψ :=χi
T,R −χi

T,R,m satisfies −∇·a(x)∇ψ(x) = Em(x) with homo-

geneous Dirichlet BCs, standard elliptic regularity yields

‖χi
T,R −χi

T,R,m‖H 1
0 (KR ) ≤

Cp (KR )

α
‖Em‖L2(KR )

≤C Re−
cd m2/d T

R2 ‖g i‖L2(KR )

≤C R1+ d
2 e−

cd m2/d T

R2 ‖aei‖Hdi v (K ),

where we have used the fact that the Poincaré constant Cp (KR ) is bounded by Cp (KR ) ≤
di am(KR )/π= R21/d /π, see [124], and ‖g i‖L2(KR ) ≤ |KR |1/2‖aei‖Hdi v (K ). Finally,

∣∣∣a0,R,L,T
i j −a0,R,L,T,m

i j

∣∣∣= ˆ
KL

ei ·a(x)
(
∇χi

T,R −∇χi
T,R,m

)
µL(x) d x

≤α|KL |1/2‖∇χi
T,R −∇χi

T,R,m‖L2(KR )
1

Ld
‖µ‖L∞(K )

≤C
R1+ d

2

L
d
2

e−
cd m2/d T

R2 .

This completes the proof.

In Theorem 5.1, the optimal value for the parameter T is T =O (R). In order to get an expo-

nential decay rate, such as e−cR for some positive c, in Lemma 5.8, we then need to compute

m =O (Rd ) eigenmodes. This growth of the number of eigenmodes with respect to the dimen-

2The constant cd may depend on α and β too. The value of cd can be approximated by computing a few
eigenvalues λk and finding the largest constant so that the relation eq. (5.11) holds.
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sion is the main drawback of the naive spectral truncation leading to a high computational

burden in higher dimensions. Therefore, in the next subsection we propose a much more

efficient method based on the Krylov subspace projection, and we show that the cost of the

method will scale linearly in terms of the number of degrees of the freedom, while retaining

the desired exponential accuracy for the approximation of the homogenized coefficient.

5.2.2 Approximation by the Krylov subspace method

In this section we discuss the computation of the matrix exponential e−T Ah gh , which is the

discrete counterpart of e−T A g i . The matrix Ah ∈ RN×N comes from the Finite Difference

discretization in space of a partial differential equation and, thus, it is of large dimension and

sparse. For these conditions, standard methods for computing e−T Ah , like those reviewed

in [117], may be very inefficient. Iterative methods based on the Krylov subspace method

have successfully been applied to many problems involving large sparse matrices. When the

modified corrector problem is discretize through the Finite Elements Method, the matrix

exponential to be computed is e−T M−1
h Ah , as anticipated before. In this case, the sparsity

property is lost, because M−1
h is full. Hence, one may recur to mass-lumping in order to keep

the sparsity pattern. We will not discuss the issues due to the presence of the mass matrix any

further, instead we will focus on exploiting Krylov subspaces to approximate e−T Ah gh .

The Krylov subspace method allows to find an approximation of f (Ah)gh (for any matrix

function f , matrix Ah ∈RN×N and gh ∈RN ) within the subspace

Vm = span
{

gh , Ahgh , A2
hgh , . . . , Am−1

h gh
}

,

with m ¿ N . A basis of Vm is constructed by the Arnoldi algorithm3 which gives the decompo-

sition:

AhQm =Qm Hm +hm+1,mqm+1eT
m =⇒ QT

m AhQm = Hm ,

where Qm ∈ RN×m has orthonormal columns, Hm ∈ Rm×m is an upper-Hessenberg matrix

(tridiagonal, if Ah is symmetric), qm+1 ∈ Vm+1 ⊂ RN is orthogonal to the basis Qm and em is

the m-th basis vector of Rm . The term e−T Ah gh can then be approximated by

e−T Ah gh ≈Qme−T Hm e1,g,

where e1,g =
∣∣gh

∣∣e1 ∈Rm . Therefore, computing the computationally expensive exponential

matrix function e−T Ah of size N ×N is avoided by instead computing e−T Hm , with a smaller

computational cost. The calculation of e−T Hm can be performed, e.g., by the scaling and

squaring algorithm.

An important question regards the approximation error coming from the Arnoldi algorithm.

The following theorem from [94] provides an upper bound for such an approximation.

3In our case, it is more appropriate to use the Lanczos algorithm, as Ah is symmetric and positive definite.
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5.2. Approximation of the exponential operator e−T A

Theorem 5.9. (Hochbruck and Lubich [94]) Let B ∈RN×N be a Hermitian positive semi-definite

matrix with eigenvalues in [0,ρ]. Moreover, let Hm =QT
mBQm be a unitary transformation of B

via an Arnoldi procedure with Hm ∈Rm×m and Qm ∈RN×m . Then, for any τ≥ 0, it holds that

∣∣e−τB gh −Qme−τHm e1,g
∣∣≤


10

∣∣gh
∣∣e−4m2/(5ρτ),

p
ρτ≤ m ≤ ρτ

2 ,
40

∣∣gh
∣∣

ρτ
e−ρτ/4

(eρτ

4m

)m
m ≥ ρτ

2 .
(5.12)

Corollary 5.10. Let Ah ∈RN×N be a second order centred finite difference approximation of the

operator −∇· (a∇) on the domain KR with homogeneous Dirichlet boundary conditions and let

ρ(Ah) ≤ cρh−2 be its spectral radius. Let Hm =QT
m AhQm be a unitary transformation of Ah via

an Arnoldi procedure with Hm ∈Rm×m , Qm ∈Rm×N . Then the following estimate holds

∣∣e−T Ah gh −Qme−T Hm e1,g
∣∣≤ 10

∣∣gh
∣∣e−

4m2h2

5T ,

for
√
ρ(Ah)T ≤ m ≤ ρ(Ah)T /2. Moreover, when m =√

ρ(Ah)T /2, the estimate reads as∣∣e−T Ah gh −Qme−T Hm e1,g
∣∣≤ 10

∣∣gh
∣∣e−T /5, for T ≥ 4. (5.13)

Proof. The matrix Ah is symmetric and positive definite, so Theorem 5.9 can be directly

applied and the proof follows from the fact that the spectral radius of Ah is bounded by

cρh−2 = cρN 2/d R−2.

The advantage of using an approximation for the exponential correction term via the Arnoldi

approach is that the number of basis functions required in the Arnoldi iteration is independent

of the dimension of the problem. In other words, denoting the numbers of degrees of freedom

in d-dimensions by N = O
(
(R/h)d

)
, only m = (

p
cρT )/(2h) basis functions are needed to

obtain an exponentially accurate approximation for the exponential correction e−AT g up to a

discretization error, see the estimate of eq. (5.13). Moreover, an estimate for a fully discrete

approximation of the homogenized coefficient can also be derived similar to the analysis in the

spectral section, where the upper bound will include the exponential estimate in Corollary 5.10

in addition to an error coming from the spatial discretization.

Remark 5.11. The error estimates of Theorem 5.9 depend on the spectral radius ρ of the matrix

Ah . Thus, the error estimates deteriorates for h → 0, since ρ = O (h−2), and the dimension

of Vm must increase accordingly. This is related to the fact that the iterate application of

the operator A : H 1
0 (HR )∩H 2(KR ) 7→ L2(KR ) may not be possible if g i ∉ H 1

0 (HR )∩H 2(KR ) (or

Aq g i ∉ H 1
0 (HR )∩ H 2(KR ) for some q ≥ 1). The use of rational/extended Krylov subspaces is

known to mitigate this issue, as it is possible to derive error estimates like eq. (5.12) that are

independent on the spectral radius, [50, 86]. The extended Krylov subspaces are defined as

V γ
m,q := span

{(
γI − Ah

)−q+1 gh , . . . ,
(
γI − Ah

)−1 gh ,gh , Ahgh , . . . , Am−1
h gh

}
,
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and their use has been extended to the approximation of continuous operators in [72] with

applications in exponential integrators.

5.3 Discussion over the computational cost

The Arnoldi iteration of Section 5.2.2 can be used in different ways to approximate, in the

subspace Vm , the solution of the modified elliptic PDE eq. (5.1). A standard Finite Difference

discretization of the problem eq. (5.1) results in the following system4

Ahwh = gh −e−T Ah gh . (5.14)

Here we present two different ways based on the Arnoldi iteration to solve eq. (5.14).

Approach 1. Let f1(z) = e−t z , then the system eq. (5.14) can be approximated by

Ahwh = gh −Qm f1(Hm)Qm
∗gh . (5.15)

Approach 2. Let f2(z) = z−1(1−e−t z ), then the system eq. (5.14) can be approximated by

wh =Qm f2(Hm)Qm
∗gh . (5.16)

The matrix function f2(Ah) can be approximated by the Krylov subspace method with the

same convergence properties of f1(Ah): as a matter of fact, the results of Theorem 5.9 holds

if e−T Ah is substituted with f2(Ah), as stated in [94]. Moreover, this second approach has the

additional advantage of avoiding to solve the large linear system with the sparse matrix Ah .

Assuming that the systems in the approach is inverted by a linearly scaling algorithm, such

as the multigrid, the overall computational costs of both formulations are dominated by

computation of the Krylov subspace. The Arnoldi algorithm consists of an outer loop for

j = 1 : m, where in total m ¿ N sparse matrix vector multiplications of the form Ahgh are

needed. Moreover, there is an orthogonalisation process which occurs at an inner loop for

i = 1 : j , where the essential cost is due to a row-column vector multiplication. The overall

cost of the Arnoldi iteration, exploiting the inherent sparsity of Ah , becomes

CostAr noldi ≈
m∑

j=1

(
Cd N +4

j∑
i=1

N

)
=O (N m2).

If m is fixed a priori instead of following the scaling of Corollary 5.10, then the cost of the

algorithm will grow linearly with N . A more rigorous analysis can be done by using the

analysis in Section 5.2.2, where the optimal value of m for the approach 1 has been presented.

Following the result of Corollary 5.10, we find that m2 =O (T 2h−2). Hence, using the relation

4For simplicity all the indices are skipped in this discussion.
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Corrector problem Modified Elliptic Standard Elliptic
Error R−q−1/2 +hs R−1 +h2s

Computational cost R2+d h−d−2 Rd h−d

Computational cost (tol ) tol−
2d+4
2q+1 − d+2

s tol−d− d
2s

Table 5.1 – Error and computational cost for the modified and standard homogenization
approaches.

N = Rd h−d and the quasi-optimal choice T =O (R), the overall cost becomes

CostAr noldi =O (N m2) =O (Rd T 2h−d−2) =O (Rd+2h−d−2).

In the same way, the computational cost of the standard elliptic upscaling approach is esti-

mated as O (Rd h−d ), see Table 5.1. The global errors, which are composed of the resonance

and the discretization errors, are also reported in Table 5.1. The resonance error scales as

R−q−1/2 for the modified elliptic approach, see Theorem 5.1, while it decays as R−1 for the

standard elliptic case, according to eq. (2.43). The discretization error is assumed to be of

order O (hs) in both cases. In order to derive the scaling of the cost with respect to the accuracy,

we impose the global error to be smaller than a prescribed tolerance tol . So, for the modified

elliptic case, we choose R and h such that R−q−1/2 ≈ tol and hs ≈ tol , while R−1 ≈ tol and

h2s ≈ tol for the standard elliptic case. Therefore, the modified elliptic approach has a lower

cost to reach a certain tolerance tol when

d +2

q +1/2
+ d +2

s
< d + d

2s
,

which is easily achieved by using filters with better regularity properties (large q), as well as

high order numerical methods for the approximation of the elliptic PDE. In conclusion, the

scaling of the computational cost in comparison to the tolerance for the standard elliptic, the

parabolic and the modified elliptic methods is depicted in Figure 5.1 .

5.4 Numerical experiments

In this section, we provide examples in two dimensions to verify the theoretical results stated

in Theorem 5.1. We illustrate the expected convergence rates by varying the regularity pa-

rameter q of the filters, in a periodic, smooth setting. Moreover, additional numerical tests

are provided to show that the method performs equally well even when the regularity and

structural assumptions of the theorem are violated. In particular, the test cases include a

periodic medium, a discontinuous layered medium, a quasi-periodic medium, as well as a

random medium. These results are discussed in separate subsections below. We compute

the approximations of the homogenized tensor through the described modified elliptic cell

problems on domains of increasing size, R ∈ [1,12], and calculate the Frobenius norm of the
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Figure 5.1 – Theoretical computational cost for d = 3, P2-FEM, q = 5.

difference between such approximations and the exact a0. In the case of periodic coefficients

whose homogenized value could not be known exactly (i.e., without discretization error) the

reference value is computed by solving the standard elliptic corrector problem with R = 1

and periodic boundary conditions. In the random setting, for which an exact, computable

formulation for the homogenized coefficients does not exists, we took as reference value

for the homogenized tensor the one computed from the numerical approximation of the

parabolic correctors over the largest domain Rmax = 12.

To compute a numerical approximation of a0,R,L,T , we use a Finite Difference (FD) discretiza-

tion that allows us to compute the micro correctors through the second approach of Section 5.3,

since the mass matrix is the identity.

In order to optimize the convergence rate of the error with respect to the sampling domain

size R, we take the optimal values of Theorem 5.1 for the averaging domain size L (KL ⊂ KR )

and for the final time T given by

L = koR, and T = π

2
p

d

√
α

β
(R −L),

where α,β are, respectively, the ellipticity and continuity constants for the tensor a. The

oversampling ratio, 0 < ko < 1, and the order of filters, q , can be chosen freely.

5.4.1 A smooth periodic example

As our first example, we consider the following two-dimensional coefficient

a(x) =
2∏

j=1

(
2.1+ sin(2πx j )

)
I , (5.17)
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(a) a(x) of eq. (5.17)

1 10 13

10−6

10−4

10−2

100

R

q = 2
q = 5

R−3

R−6

(b) The resonance error.

Figure 5.2 – A two dimensional smooth medium.

where I is the 2×2 identity matrix, see the left picture in Figure 5.2 for a graphical representa-

tion of a. In this case, the homogenized coefficient is constant and given by5

a0 =
(
2.1

√
2.12 −1

)
I .

In Figure 5.2, the upscaling error ‖a0R,L,T − a0‖F is shown for increasing values of R. The

parameter values T and L are chosen optimally as stated in Theorem 5.1, with k0 = 2
3 , α =

minx∈K a(x), β= maxx∈K a(x). The number of basis functions in Arnoldi algorithm to approx-

imate the right hand side is m = min(700, N 1/d ) (where N is the total number of degrees of

freedom) for all values of R since the Arnoldi’s error is typically much smaller than the rest

of the errors. Two different kernels with q = 2 and q = 5 are used in the simulations. The

cell-problem eq. (5.8) is approximated by a second order finite difference scheme with the

stepsize h = 1/120. The numerical results show that the overall error is dominated by the

filtering error even for moderate values of R, and that arbitrarily high convergence rates are

obtained by using kernels with better regularity properties.

5.4.2 Discontinuous coefficients

The second example is a layered medium characterised by the coefficient

a(x) = ã(x)I , with ã(x) =
1

2 0 ≤ x1 < 1
2 ,

1
4

1
2 ≤ x1 < 1.

5The diagonal component of a0 can be computed by ai i =
( 1

0

(
2.1+ sin(2πxi )

)−1 d xi

)−1 1

0
2.1 +

sin(2πx j )d x j for i 6= j
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(a) ã(x) of section 5.4.2
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Figure 5.3 – A two dimensional periodic discontinuous medium

Such a choice is to test the generality of the method when the regularity assumption on the

coefficient is relaxed. The exact homogenized coefficient is again constant and given by

a0 =
(

1/3 0

0 3/8

)
.

All the numerical parameters are chosen identical to those in example 1, with an obvious

adaptation of α and β. Similar to example 1, higher order convergence rates are achieved

upon using higher order kernels, showing the generality of the method also for problems in

discontinuous media.

5.4.3 The quasi-periodic case

To test the applicability of the method beyond the periodic setting, we consider a quasi-

periodic coefficient given by

a(x) =
(

4+cos(2π(x1 +x2))+cos(2π
p

2(x1 +x2)) 0

0 6+ sin2(2πx1)+ sin2(2π
p

2x2)

)
. (5.18)

The very same coefficient has been used also in the elliptic approach proposed in [78]. In

this paper, such a choice for the coefficient has been intentional as it allows for a comparison

between the two methods. In this particular setting, the homogenized coefficient is not easy to

compute and therefore the value of a0,R,L,T with the largest R is used instead of a0 (similar to

[78]). All the parameter values are chosen identical as in Section 5.4.1. Figure 5.4 shows a fast

decay of the error down to 10−6 for moderate values of R, i.e., R ≈ 10. It is worth mentioning

that such an error tolerance is achieved only for R ≈ 40 in the zero-order approach from [78].
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Figure 5.4 – A two dimensional quasi-periodic medium

5.4.4 Random coefficients

As yet another example of a non-periodic medium, we construct a random medium as follows:

we start by choosing a large computational grid, which corresponds to a discretization of the

domain KRmax with Rmax = 40. We then generate a sequence of uniformly distributed random

variables taking values in the interval [1,2], and assign these random numbers on each grid

point. Next, we set a correlation length σ (here σ= 0.25 is chosen), and construct the random

coefficient at each discretization point xi ∈ KR (for a given R < Rmax) by taking the average of

the generated random values associated to the points x j ∈ Bσ(xi ). Since, the interest here is

not to study the statistical error, we compute only the error

eBC := ‖a0,R,L,T −a0,Rmax,L,T ‖F ,

which sees the deterministic part of the overall error only. In Figure 5.5, the generated random

coefficient along with the boundary error is depicted. All the parameter values except h = 1/40,

α= 1, and β= 2 are the same of Section 5.4.1. An exponential decay for the boundary error is

observed for three different choices of filters, consistently with the fact that the observed error

corresponds to the boundary error, and not the filtering error.

5.5 Conclusion

In this chapter we used the properties of the parabolic model of Chapter 4 to construct elliptic

corrector problems to approximate the homogenized coefficients. Such corrector problems

are characterised by the presence of an additional term, which is the solution of the parabolic

model at time T , i.e. the action of the semigroup e−AT on g i =∇· (aei ).

Under the same regularity assumptions of Chapter 4, we can derive an upper bound of
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Figure 5.5 – A two dimensional random medium

the resonance error for periodic coefficients. The error bound is composed of three terms

depending on the averaging domain KL , the truncation at time T and the mismatching

boundary conditions on KR . The first term decays with an arbitrary rate L−q , while the other

two show exponential decays, so their contribution is eventually negligible for sufficiently

high values of R and T . Finally, by balancing all the terms, we show that the quasi-optimal

parameter scaling is obtained for L,T =O (R).

Several numerical experiments supported the theoretical results. We tested the modified

elliptic method also for coefficients not satisfying the assumptions used in the theory, e.g.

discontinuous, quasi-periodic and stochastic coefficients. The results for these cases are in

agreement with the theoretical bounds, showing that it could be possible to relax the regularity

assumptions on the coefficients.

The additional term e−AT g i in the corrector problem needs to be pre-calculated to derive a

full space discretization. Many strategies are available for this task, also thanks to the double

interpretation of the additional term. One strategy is based on the use of time-advancing

schemes for the parabolic equation, up to time T . The exponential matrix e−Ah T can be

computed exactly (up to finite arithmetic errors) only for small matrices, while in our case Ah

is a large, sparse matrix. The use of standard/extended Krylov subspaces method allows to

accurately approximate the exponential matrix, with a limited computational cost. The cost

of this latter approach is compared to one of the standard elliptic and parabolic strategies.

The parabolic one is the most efficient, provided that we use a sufficiently high order time

integration scheme. The difference between the computational costs of the modified and

standard elliptic methods is less striking, even though the modified one still performs better.

The reason for such a small difference is mainly due to the assumption that the linear system

can be solve in O (N ) operations, which may not always be the case.
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5.5. Conclusion

With this chapter we conclude the study of homogenization of periodic media, as we will

consider the case of random media in Chapters 6 and 7.

97





6 Homogenization of diffusion prob-
lems in random media

In this chapter we consider the homogenization of multiscale equations with random coeffi-

cients. Let us consider the partial differential equation on the domain D ⊂Rd :−∇· (aε(x,ω)∇uε) = f in D,

uε = 0 on ∂D,
(6.1)

where f ∈ H−1(D) and aε ∈ L2 (Ω,L∞ (D))d×d is symmetric, uniformly elliptic and bounded.

The multiscale diffusion coefficient is the realization of a random field and it oscillates at the

ε-scale, i.e.

aε(x,ω) = a
( x

ε
,ω

)
.

Under suitable assumptions, one can prove that aε
G→ a0 in the limit for ε→ 0. Under the

assumptions of stationarity and ergodicity, the sequence of random coefficients converges

almost surely to a deterministic, constant tensor a0, i.e., at the large scale, the heterogeneous

random medium appears as a deterministic homogeneous medium.

The corrector equations to reconstruct a0 can be derived heuristically through the standard

asymptotic expansion procedure: we suppose that the solution uε satisfies the asymptotic

expansion

uε(x,ω) = u0(x)+εu1

(
x,

x

ε
,ω

)
+ε2u2

(
x,

x

ε
,ω

)
+o

(
ε2) . (6.2)

The change of variables y = x/ε leads to three differential problems at different orders of

magnitude:

−∇y ·
(
a

(
y,ω

)∇y u0
)= 0, (O

(
ε−2

)
)

−∇y ·
(
a

(
y,ω

)∇y u1
)−∇y ·

(
a

(
y,ω

)∇x u0
)−∇x ·

(
a

(
y,ω

)∇y u0
)= 0, (O

(
ε−1

)
)
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−∇y ·
(
a

(
y,ω

)∇y u2
)= f +∇y ·

(
a

(
y,ω

)∇x u1
)+∇x ·

(
a

(
y,ω

)∇y u1
)+∇x ·

(
a

(
y,ω

)∇x u0
)

.

(O (1))

Having assumed that u0 does not depend on y , the first equation eq. (O
(
ε−2

)
) is directly

satisfied. Moreover, by linearity, we can write the solution u1 of eq. (O
(
ε−1

)
) as

u1
(
x, y,ω

)= d∑
i=1

χi (y,ω)
∂u0

∂xi
(x),

where χi solves

−∇y ·
(
a

(
y,ω

)(∇yχ
i +ei

))
= 0. (6.3)

At this point, in the periodic setting one would solve eq. (O
(
ε−1

)
), plug the solution into

eq. (O (1)) and, by imposing the solvability conditions, find that the leading order term u0

satisfies the homogenized equation eq. (2.3) with a0 defined as in eq. (2.8). In the stochastic

setting this procedure is not as straight-forward as in the periodic case because it is still unclear

in which sense we solve the corrector equation eq. (6.3) and we do not have any solvability

condition yet for eq. (O (1)). Then, the problem reduces to the analysis of the general stochastic

partial differential equation:

−∇·
(
a

(
y,ω

)∇χi
)
= g (y,ω),

with a and g stationary random fields. In the coming sections we will provide the abstract

framework to derive the solvability conditions for the stochastic corrector problem.

Outline

This chapter is structured as follows: in Section 6.1 we provide the mathematical framework

in which stochastic homogenization is studied. The first qualitative results in stochastic

homogenization are due to the pioneering works [104, 123] and extensions to non-linear

equations were later provided by [46, 47]. In Section 6.2 the main results in quantitative

stochastic homogenization is described. Besides being interesting per se quantitative results

are useful in deriving efficient numerical methods to estimate the homogenized coefficients.

Some of these methods are discussed in Section 6.3.

6.1 The mathematical framework

In this section we explain our notation and provide a precise formulation of the proposed

corrector problems in the stochastic setting. Let (Ω,F ,P) be a probability space and let Rd

be endowed with the Borel σ-algebra B. We denote as random variables all the measurable

functions X : (Ω,F ,P) 7→Rd and as random fields all the measurable functions f :
(
Rd ,B

)×
(Ω,F ,P) 7→R and we define stationarity as follows.

Definition 6.1. A random field f : Rd ×Ω 7→ R is said stationary if, for any h ∈ Rd and any
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6.1. The mathematical framework

points y1, . . . , yn ∈Rd ,(
f (y1,ω), . . . , f (yn ,ω)

)
and

(
f (y1 +h,ω), . . . , f (yn +h,ω)

)
have the same joint distribution.

Definition 6.2. A translation group (or d-dimensional dynamical system) is a family of inverti-

ble measurable maps, indexed by x ∈Rd , τx :Ω 7→Ω such that

i) τx+y = τxτy , τ0 = Id;

ii) τx preserves the measure P: P(τx F ) =P(F ), for any F ∈F and any x ∈Rd ;

iii) for any random variable X : Ω 7→ R, the function X (τx a(·)) is Rd ×Ω measurable with

respect to the product σ-algebra.

Then, Definition 6.1 can be rephrased as

Proposition 6.3. A random variable f (y,ω) is stationary if and only if, for any h ∈Rd ,

f (y,τhω) = f (y +h,ω), a.e. y ∈Rd , P-a.s.

We now introduce the concept of ergodicity and explain how this property is used in stochastic

homogenization.

Definition 6.4. A measurable set F ∈F is called invariant if τx F ⊂ F and a random variable

X :Ω 7→R is called invariant if X (τxω) = X (ω) almost everywhere in Ω.

A translation group τx is called ergodic if the only invariant sets F have either P(F ) = 0 or

P(F ) = 1 or, alternatively, if all invariant random variables are constant almost everywhere in

Ω.

If a random field f (·,ω) is generated by a stationary extension f (0,τxω) through an ergodic

dynamical system, then we call f an ergodic random field. An important tool of ergodic theory

is the Birkhoff’s ergodic theorem, see Theorem 6.5, which establishes the equivalence between

the probabilistic and the spatial averages of a stationary ergodic random field f .

Let f ∈ L1
loc (Rd ). We denote the mean value of f as M( f ) given by

M( f ) := lim
R→∞

 
KR

f (x)d x, (6.4)

where, for simplicity, we considered KR := (−R/2,R/2)d as integration domain, but one can

equally use any domain QR = {
x ∈Rd , x/R ∈Q

}
that is the homothetic dilatation of a given
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measurable set Q ⊂Rd . Let us define fε(x) = f (x/ε); we say that fε ∈ Lp
loc

(
Rd

)
has the mean

value property if

fε
ε→0
* M( f ), weakly in Lp

loc (Rd ). (6.5)

The Birkhoff’s ergodic theorem states that, for stationary random variables defined through

ergodic translation group, the spatial and probability averages are identical.

Theorem 6.5 (Birkhoff’s ergodic theorem). Let f ∈ Lp (Ω), p ≥ 1. Then, for almost all ω ∈Ω,

the realization f (τxω) possesses the mean value property. Moreover, the mean value M( f (τxω))

considered as a function of ω ∈Ω is invariant and

E
[

f
]

:=
ˆ
Ω

f (ω)dP=
ˆ
Ω

M( f (τxω))dP.

In particular, if τx is ergodic, then

E
[

f
]= M( f (τxω)), P-a.s.

With the space Ω we aim to take into account all possible realizations of a random coefficient

field. Therefore, it is convenient to identify the space Ω with the set of all possible coefficients

a(x) that allow the solvability of eq. (6.1), i.e.

Ω=M
(
α,β

)
.

Then, we endow Ω with Borel set-indexed family of σ-algebras FB generated by{
a ∈Ω 7→

ˆ
Rd

ai j (x)ϕ(x)d x,ϕ ∈C∞
c (B), i , j = 1, . . . ,d

}
.

The largest of these σ-algebras is denoted by F ; thus, two realizations ǎ and â are considered

identical if they differ only on a set B ⊂Rd of vanishing measure.

Finally, we take the translation group τx defined by:

τx a(y) := a(x + y).

Remark 6.6. The random tensor field x 7→ a(x) is stationary.

The basis to study the correctors in stochastic homogenization is given by the extension of the

Weyl decomposition of square-integrable functions into their potential and solenoidal parts.

However, in the present situation we deal with stationary random vector fields. Stationary

random fields can be represented by their values at a given point (for instance, the origin) and,

then, extended to the whole Rd through the mapping f (x,ω) = f (0,τxω). From now on, with a

slight abuse of notation we will denote in the same way the random variable f (τxω) and its

stationary extension f (x,ω). Let Ux be a d-parameters strongly continuous group of unitary
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operators in L2(Ω) associated with τx :(
Ux f

)
(ω) = f (τxω), f ∈ L2(Ω).

The infinitesimal generator of Ux along the i -th direction are the closed and densely defined

operators ∂i
ω: (

∂i
ω f

)
(ω) := lim

h→0

f (τheiω)− f (ω)

h
.

The domains Di of the operators ∂i
ω are dense in L2(Ω), and so is their intersection, see [51]

which is denoted by:

H 1 =
d⋂

i=1
Di . (6.6)

Thus, we can define the stochastic gradient and divergence for functions f , g1, . . . , gd ∈D:

∇ω f =
(
∂1
ω f , . . . ,∂d

ω f
)

, and ∇ω ·g =
d∑

i=1
∂i
ωgi .

Since the group Ux is unitary, the infinitesimal generators ∂i
ω are skew-symmetric operators,

thus,

E
[
∂i
ω f g

]
=−E

[
f ∂i

ωg
]

, and in particular, E
[
∂i
ω f

]
= 0 for f , g ∈D.

Moreover, the stochastic derivatives of a random variable are related to the spatial derivative

of its stationary extension: (
∂i
ω f

)
(τxω) = ∂

∂xi

(
f (τxω)

)
.

So, we can say that f (·) ∈H 1 if and only if f (τx ·) ∈ H 1(D) P-a.s.

Let us introduce the spaces of, respectively, potential and solenoidal random fields:

L2
pot (Ω) = {

f ∈ L2 (Ω) : f =∇ωu, for some u ∈H 1
}
,

L2
sol (Ω) =

{
f ∈

d⊗
i=1

Di : ∇ω · f = 0

}
,

where the overline symbol means the closure in L2 (Ω). From the closedness of the operator

∇i
ω, it follows that

E [f] = 0 for all f ∈ L2
pot (Ω) and E

[
fi∂

j
ωg

]
= E

[
f j∂

i
ωg

]
for i , j = 1, . . . ,d .

We have now provided a setting in which the auxiliary problem eq. (6.3) can be solved. One

can write the weak form of eq. (6.3) as: Find ψi ∈ L2
pot (Ω) such that

E
[
ϕ ·a

(
ψi +ei

)]
= 0, ∀ϕ ∈ L2

pot (Ω) . (6.7)
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The auxiliary stochastic problem eq. (6.7) has a unique solution, as a consequence of the

Lax-Milgram theorem on the Hilbert space L2
pot (Ω). We underline that the bilinear form in

this case is
B : L2

pot (Ω)×L2
pot (Ω) 7→ R

(ϕ,ψ) 7→ E
[
ϕ ·a(x)ψ

]
,

and the coercivity condition is satisfied thanks to the ellipticity of a(·):

α
∥∥ϕ∥∥2

L2(Ω) ≤ E
[
ϕ ·a(x)ϕ

]
.

This bilinear form does not involve the weak (stochastic) gradients of H 1-functions and the

reason is that the Poincaré inequality is not valid in this setting. In contrast to the periodic

case, we cannot write the corrector problem in a way to ensure the existence and uniqueness

of the correctors χi as defined in eq. (6.3). As a matter of fact, the correctors χi cannot be

uniquely defined, as they are defined up to additive constants. In the following theorem we

summarize the well-posedness of eq. (6.7) and explain how one can select in a unique way the

corrector χi .

Theorem 6.7 ([123]). Let a(·) be a stationary and ergodic tensor field. Then, for any direction

ei , i = 1, . . . ,d, there exists a unique ψi that satisfies

E
[
ϕ ·a(x)

(
ψi +ei

)]
= 0, ∀ϕ ∈ L2

pot (Ω) .

Moreover, there exist uniquely defined processes χi (x,ω) ∈ H 1
loc (Rd ,L2(Ω)) such that

χi (0,ω) = 0, and
∂χi

∂x j
(x,ω) =ψi

j (τxω),

so that the gradients of χi are stationary, but not the functions themselves. Additionally, the

correctors χi grow sub-linearly at infinity: for every compact set K ⊂Rd ,

lim
R→∞

sup
x∈K

E

[(
χ(Rx)

R

)2]
= 0.

Remark 6.8. In the general case, the corrector χi is not statistically stationary. It is possible

to prove (see, e.g. [19, Chapter 4] or [83]) that, in dimensions d > 2, there exists a stationary

corrector χi , uniquely defined by the condition E
[
χi

]= 0.

The G-limit of the stationary ergodic random tensor aε(x) of eq. (6.1) has components:

a0
i j = E

[
ei ·a(x)

(
ψ j +e j

)]
=
 
Rd

ei ·a(x)
(
∇χ j (x,ω)+e j

)
d x, (6.8)

where the second identity follows from the Birkhoff’s ergodic theorem. The first identity can

also be written as

a0
i j = E

[(
ψi +ei

)
·a(x)

(
ψ j +e j

)]
.
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Finally, it is possible to prove the convergence uε→ u0, for ε→ 0.

Theorem 6.9 (Weak convergence, [123]). Let a(·) be a stationary ergodic random tensor field.

Let uε ∈ H 1
0 (D) solve eq. (6.1) with f ∈ H−1(D). Then, uε* u0 weakly in H 1

0 (D), where u0 ∈
H 1

0 (D) solves −∇· (a0∇u0
)= f in D,

u0 = 0 on ∂D.
(6.9)

Theorem 6.10 (Strong convergence, [123]). Let uε ∈ H 1
0

(
D,L2(Ω)

)
be the solution of eq. (6.1),

and let u0 ∈ H 1
0 (D) be the solution of eq. (6.9). Then

lim
ε→0

E
[∥∥uε−u0

∥∥
L2(D)

]
= 0, and

lim
ε→0

E

∥∥∥∥∥uε−u0 −ε
d∑

k=1
χk

( ·
ε

) ∂u0

∂xk

∥∥∥∥∥
H 1

0 (D)

= 0.

6.2 From qualitative to quantitative results in homogenization of

random media

Up to now, we only have shown that the solution uε converges to the solution u0 of the

homogenized problem, but we have not discussed the rate of convergence, i.e. whether the

difference
∥∥uε−u0

∥∥
L2 can be bounded as a function of ε. Quantifying such bounds is the

goal of quantitative stochastic homogenization. In connection to this problem (or, as an

intermediate step to solve it) one can also investigate the error rate in the approximation of a0.

Besides the theoretical interest, this is important also from the numerical point of view. Indeed,

the stochastic auxiliary problems are stated in an abstract probability space, thus it does not

give any practical recipe for constructing or approximating the effective coefficients. This is in

contrast to the periodic case for which many efficient numerical homogenization procedures

are available. The rate of convergence of the homogenization procedure is therefore a key tool

to derive convergence rates for multiscale numerical methods.

An important result in the derivation of convergence rate in stochastic homogenization was

obtained in [135], where boundary value problems for a second order divergence form operator

were studied and, under proper mixing condition, polynomial bounds for the convergence

rate were achieved.

A widely used mathematical technique to derive a priori bounds on the correctors and, conse-

quently, on the approximations of a0 is the addition of a zero-th order term in the corrector

equation:
1

T
χi

T −∇ω ·
(
a(x)

(
∇ωχi

T +ei

))
= 0. (6.10)

This problem has a unique solution in χi
T ∈ H 1, differently to the problem eq. (6.7). The

random variable χi
T can, then, generate a stationary random field that satisfies the spatial
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version of eq. (6.10)1: Find χi
T ∈ L2

(
Ω, H 1

l oc (Rd )
)

such that

E

[ˆ
Rd

1

T
χi

Tϕ+∇ϕ ·a(x)
(
∇χi

T +ei

)
d x

]
= 0, ∀ϕ ∈ L2

(
Ω,C∞

0

(
Rd

))
. (6.11)

In contrast, the correctors χi of eq. (6.3) are not stationary. Since the modified correctors χi
T

exist and are unique, they can be used to define the first order approximation:

uε(x) = u0(x)+ε
d∑

i=1
χi

T

( x

ε

) ∂u0

∂xi
(x)+o (ε) .

Yurinskii [135] provided the first result in quantitative homogenization by proving that there

exist C ,γ> 0 such that∥∥∥∇ωχi
T −ψi

∥∥∥
L2(Ω)

≤C T −γ and
∣∣∣E[

ei ·a(x)
(
∇ωχ j

T +e j

)]
−a0

i j

∣∣∣≤C T −γ,

where γ depends on the dimension d and on the exponent of the uniformly strong intermixing

condition: ∣∣E[
ξη

]−E [ξ]E
[
η
]∣∣≤Cr−γ1E

[
ξ2] 1

2 E
[
η2] 1

2 , (6.12)

where ξ is a F (A)-measurable function, η is a F (B)-measurable function, r = inf
x∈A,y∈B

∣∣x − y
∣∣

and A,B ⊂Rd . This condition is satisfied, for instance, by random chequerboard structures.

This result allows to derive an a priori convergence bound to the homogenized limit:

E

[∥∥∥∥∥uε−u0 −ε
d∑

i=1
χi

T

( ·
ε

) ∂u0

∂xi

∥∥∥∥∥
H 1(D)

]
≤Cεγ2 ,

upon choosing T = ε−2+δ, for sufficiently small δ> 0.

Neither the auxiliary problem eq. (6.10) nor its stationary extension can be solved directly by

numerical methods, since the former is posed over the abstract space H 1 and the latter over

the whole space Rd . Therefore, the discrepancy in various cut-off approximation procedures

must be considered. In numerical applications, under the same intermixing conditions as

above and by Green’s function estimates, [35] proved a priori bounds on the approximation

error for the auxiliary problem eq. (6.10) when it is posed over a bounded domain with

homogeneous Dirichlet, homogeneous Neumann or periodic BCs are proved in [35]. The

bounds for the cut-off error in eq. (6.10) can then be used to prove

E
[∥∥a0,R −a0

∥∥2
F

] 1
2 ≤C R−γ, (6.13)

1We denote in the same way the random variable and its stationary extension in order to keep the notation
simple.
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where a0,R is computed through the cut-off auxiliary equation

−∇·
(
a(x,ω)

(
∇χi

R +ei

))
= 0 in KR + BCs. (6.14)

The error estimate eq. (6.13) is proved upon choosing T = R2−δ, for sufficiently small δ> 0. We

remark that, in the analysis, one has to “pass through” the penalized equation eq. (6.10) on

cut-off domains KR because the gradient of the correctors, ∇χi
R , (and the correctors as well)

are not statistically stationary, which is a handicap from the analytical point of view. A priori

bounds similar to eq. (6.13), but with explicit exponents, were derived in [55] to estimate the

HMM resonance error for random media.

In order to simplify the analysis, several authors focused on the problem of stochastic homog-

enization over discrete networks with random conductances. This can be seen as a Finite

Difference approximation of eq. (6.11) and it has several advantages in comparison to its

continuous version. For example, one can define the conductances over the edges as i.i.d.

random variables, which directly entails stationarity and ergodicity of the coefficients. In

[81, 82], the authors consider the regularised problem eq. (6.11) over a Zd lattice with random

conductances defined on the edges e ∈ E ⊂Zd ×Zd , which reads: Find χi
T :Zd 7→R such that

1

T
χi

T (x)+ ∑
y∈Zd ,|x−y|=1

a(e)
(
χi

T (x)−χi
T (y)+1

)
= 0, (6.15)

where e is the edge connecting x and y . In order to be practically computable, the model

needs to be defined over a bounded network of size R , but, thanks to the exponential decay of

the related Green’s function, the cut-off error decays exponentially with respect to |R−L|p
T

and it

is thus negligible for sufficiently large R, in the regime
p

T .R −L. Thus, the whole-domain

problem is analysed, knowing that it can be approximated with arbitrary accuracy orders by

bounded domain solutions. For the estimation of the error, the total mean square error is first

split into two contributes, a variance term (the statistical error) and a bias term (the systematic

error):

E

[∣∣∣∣∑
e

(
ei +∇χi

T

)
·a(e)

(
e j +∇χ j

T

)
µL −a0

i j

∣∣∣∣2] 1
2

≤Var

[∑
e

(
ei +∇χi

T

)
·a(e)

(
e j +∇χ j

T

)
µL

] 1
2

+
∣∣∣E[(

∇χi
T −∇χi

)
·a(e)

(
∇χ j

T −∇χ j
)]∣∣∣ ,

where µL is the sampling on the vertices of Zd of a smooth averaging function vanishing

outside KL ∩Zd and such that
∑

x µL = 1. The main result of [81] is the proof of the following

inequality: there exist an exponent q(α,β) > 0 and a constant C > 0, independent of L and T ,

such that:

Var

[∑
e

(
ei +∇χi

T

)
·a(e)

(
e j +∇χ j

T

)
µL

]
≤C


(
L−2 +T −2

)
(logT )q for d = 2,

L−d
(
1+ L

T

)
for d > 2;

(6.16)
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in the regime of interest, L . T . L2, the two bounds can be simplified as L−2(logT )q and L−d ,

respectively. The proof of eq. (6.16) is based on the use of a spectral gap estimate to control the

variance of random variables ζ ∈ L2(Ω):

Var[X ] ≤C
∑

e
E

[(
∂ζ

∂a(e)

)2]
.

This type of estimate can be seen as a sort of Poincaré inequality with mean value zero with

respect to the infinite product measure that describes the distribution of the coefficients. In

the discrete setting, the spectral gap inequality is a direct consequence of the independence

of the conductances values (see Lemma 2.3 in [81]). An estimate for the systematic error is

derived in the companion paper [82]: there exist an exponent q(α,β) > 0 and a constant C > 0,

independent of T , such that:

∣∣∣E[(
∇χi

T −∇χi
)
·a(e)

(
∇χ j

T −∇χ j
)]∣∣∣≤C



T −1(logT )q for d = 2,

T −3/2 for d = 3,

T −2 logT for d = 4,

T −2 for d > 4.

(6.17)

Hence, in the regime T ∼ L2, the total mean square error for the homogenization of random

network can be bounded by:

E

[∣∣∣∣∑
e

(
ei +∇χi

T

)
·a(e)

(
e j +∇χ j

T

)
µL −a0

i j

∣∣∣∣2] 1
2



L−1(logL)q for d = 2,

L−d/2 for 3 ≤ d ≤ 7,

L−4 logL for d = 4,

L−4 for d > 8.

Further results can be found in [80], whose main findings is the proof of an optimal decay

in time of the semigroup associated with the corrector problem (i.e. of the generator of the

process called “random environment as seen from the particle”). As a corollary the existence

of stationary correctors (in dimensions d > 2) is recovered and new optimal estimates for

the penalized correctors (in dimensions d ≥ 2) are proved. These convergence rates were

confirmed numerically in [61].

In [83] the results of [80, 81, 82] are adapted to the continuum context. Like in the discrete

case, the mean square error for the approximation of the homogenized coefficients by the

zero-th order regularised corrector problem eq. (6.10) is split into a statistical and systematic

error terms:

E

[∣∣∣∣ˆ
KL

(
ei +∇χi

T

)
·a(e)

(
e j +∇χ j

T

)
µL −a0

i j

∣∣∣∣2] 1
2

≤ Var

[ˆ
KL

(
ei +∇χi

T

)
·a(e)

(
e j +∇χ j

T

)
µL

] 1
2

︸ ︷︷ ︸
statistical error
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+
∣∣∣E[(

∇χi
T −∇χi

)
·a(e)

(
∇χ j

T −∇χ j
)]∣∣∣︸ ︷︷ ︸

systematic error

.

As in the discrete case, we can neglect the error due to the boundary conditions because it

converges with an exponential rate in |R−L|p
T

. The systematic error is controlled by the same

upper bound of the discrete case, eq. (6.17):

∣∣∣E[(
∇χi

T −∇χi
)
·a(e)

(
∇χ j

T −∇χ j
)]∣∣∣≤C



T −1 for d = 2,

T −3/2 for d = 3,

T −2 logT for d = 4,

T −2 for d > 4.

and the proof follows from the spectral properties of the operator −∇ω ·(a(x)∇ω). On the other

hand, the statistical error can be bounded as

Var

[∑
e

(
ei +∇χi

T

)
·a(e)

(
e j +∇χ j

T

)
µL

]
≤C

L−2 log
(
2+

p
T

L

)
for d = 2,

L−d for d > 2.

This bound can be proved by using a spectral gap inequality, which, in the continuum context,

takes the form:

Definition 6.11. A probability space (Ω,F ,P) satisfies the Spectral Gap if there exists ρ > 0 and

`<∞ such that for all random variables ζ ∈ L2(Ω) we have

Var[ζ] ≤ 1

ρ

ˆ
Rd
E

[(
osc

a|B`(z)

ζ

)2]
d z, (SG)

where osc
a|B`(z)

ζ denotes the oscillation of the random field ζ with respect to the values of a(x) on

the ball B`(z): (
osc

a|B`(z)

ζ

)
(a(x)) =

(
sup

a|B`(z)

ζ

)
(a(x))−

(
inf

a|B`(z)

ζ

)
(a(x))

= sup
{
ζ(ã) : ã ∈Ω, ã|Rd \B`(z) = a|Rd \B`(z)

}
− inf

{
ζ(ã) : ã ∈Ω, ã|Rd \B`(z) = a|Rd \B`(z)

}
.

The condition eq. (SG) is stronger than ergodicity, as stated below.

Lemma 6.12 (Lemma 2.3 in [83]). If (Ω,F ,P) satisfies eq. (SG), then the translation group τx is

ergodic.

The assumption that the probability space satisfies a spectral gap inequality can be by-passed

by taking stronger assumptions such as the mixing condition of eq. (6.12), or the unit range of
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(a) Poisson random inclusions. (b) Smoothed Gaussian noise

Figure 6.1 – Two examples of random media with finite range of dependence.

dependence, as in [19]:

FA and FB are P-independent for every pair A,B ⊂Rd

of Borel subsets such that dist(A,B) ≥ 1.

Classes of random coefficient fields that satisfies the unit range of dependence (and thus the

spectral gap inequality) are, for example, the Poisson random inclusions (where spherical

inclusions are randomly placed in a uniform matrix) or the smoothed Gaussian noise, depicted

in Figure 6.1. The main drawback of the corrector problem eq. (6.11) is that the reconstruction

of a0 yields an error that saturates at T −d/2 (T −2 for dimension d ≥ 4). In order to reduce this

drawback, Richardson iterates are proposed in [79, 84]. They are defined as:

χi
T,1 =χi

T ,

χi
T,k+1 =

1

2k −1

(
2kχi

2T,k −χi
T,k

)
.

This allows to reduce the systematic error to

∣∣∣E[(
∇χi

T,k −∇χi
)
·a(e)

(
∇χ j

T,k −∇χ j
)]∣∣∣≤C


T −d/2 for 2 ≤ d ≤ 5,

T −3 log(T ) for d = 6,

T −3 for d > 6,

with an improvement of one order of convergence with respect to the case without the Richard-

son iteration. Albeit this method allows to improve the decay rate, it is not as effective as in

the periodic case where the improvement was from T −2 to T −2k .

The recent contribution [19] provides new results in stochastic homogenization for what con-

cerns the existence and uniqueness of correctors, the convergence rates for the approximation

of a0 and bounds on the homogenization error.

110



6.3. Computational approaches in stochastic homogenization

6.3 Computational approaches in stochastic homogenization

The aim of numerical upscaling schemes is to compute the best approximation of a0 with

the least possible computational cost. Above, we described how the regularised corrector

problem eq. (6.11) can be used to compute approximate homogenized matrices and discuss

the convergence rates of such an approach. In the context of stochastic homogenization, the

main source of error is due to the statistical error, with the exception of the standard cut-off

model (T =∞) for d ≤ 2. In [77], the author adopts a Monte Carlo (MC) approach to reduce

the statistical error and addresses the problem of optimizing the computational cost. The

homogenized coefficients are approximated by averaging the upscaled coefficients obtained

by N independent samplings of the conductances. The problem is solved for both the case of

a single processor and of multiple processors and the optimal value of N will depend on the

number of available processors.

6.3.1 The embedded method

We have already discussed the use of embedded corrector problems to approximate a0 in

Section 2.4.1. The method [41, 42] was developed for materials with random inclusions, as the

one depicted in Figure 6.1a, where the size of the inclusions may vary as well. The embedded

corrector problem is

−∇· (aR (y)
(
χR +ξ))= 0 in D′

(
Rd

)
. (6.18)

where the coefficient tensor aR (y) is defined as

aR (y) =
a(y) y ∈ KR ,

ā y ∈Rd \KR .

The constant matrix ā ∈Rd×d is a priori unknown, as it approximates the homogenized matrix.

For any ā ∈Rd×d , the matrix G is defined by ξ ·G(ā)ξ := 2Jp (ā), where Jp (ā) is a functional

defined in Section 2.4.1. The following three approximations of a0 are proposed:

a0,R
1 = argmax

ā∈M (α,β)
Tr(G(ā)) , a0,R

2 =G(a0,R
1 ), a0,R

3 =G(a0,R
3 ).

Numerical tests for randomly arranged inclusions showed that the errors for the second and

third method are smaller, and we have less oscillations in the convergence to a0. However,

convergence rates are difficult to evaluate in this setting.

6.3.2 Variance reduction techniques

Since the variance error is often the dominant source of error, several works addressed the

problem of reducing it. Many of those adapted variance reduction techniques to the context of

homogenization of random media, see e.g. [106]. In [34], three variance reduction techniques
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are presented:

• The method of antithetic variables, proposed in [32, 109], achieves a reduction of the

upscaled coefficients’ variance by sampling from an “antithetic” random coefficient

field, i.e. a random variable with the same distribution as the original field, but such

that their covariance is negative. For example, if we sample a random conductivity field,

a(x) from a log-normal distribution, an antithetic variable can be its inverse, 1/a(x).

This approach has a substantial efficiency, but is also limited in particular because the

technique does not fully exploit the specifics of the problem considered.

• The method of control variates, proposed in [108], requires a better knowledge of the

problem at hand. In this approach, a surrogate problem, simpler to simulate and close

to the original problem, has to be considered and concurrently solved. The technique

uses that knowledge to, effectively, obtain a much better reduction of the variance in

comparison to the method of antithetic variables. For example, in the case of periodic

structures with random defects, the surrogate model is the periodic problem without

defects, which can be solved easily on a single periodic cell.

• The method of special quasi-random structures, proposed in [107], consists in selecting

only some realizations of the random environment. For instance, one may discard

realizations of the random field if the empirical statistics (e.g., the spatial average or

the volume fraction) are sufficiently far from the moments of the random field. Mathe-

matically, this selection of suitable configurations among all possible ones amounts to

replacing the computation of an expectation by that of a conditional expectation. This

approach allows to neglect, via a cheap pre-evaluation, to compute the solution for a

very unlikely configuration and, consequently, reduces the overall cost of the Monte

Carlo sampling. This approach has been fully analysed in [70].

A different approach, to reduce the MC sampling cost, is to adopt a Multi Level Monte Carlo

(MLMC) approach, [59]: many inexpensive computations with the smallest cell size are com-

bined with fewer expensive computations performed on larger cells. An important remark is

that MLMC approaches are interesting when the exact homogenized properties are stochastic,

therefore, the MLMC approach is preferable for non-ergodic random fields2. In the case of

ergodic coefficients, the homogenized matrix is deterministic and the MLMC cost equals the

MC’s one. The mathematical reason is that the variance of the estimators of a0 decays not

only with the number of MC samples, but also with the cell’s size as R−d , as a consequence of

the Central Limit Theorem.

6.3.3 An iterative method

In Section 2.4.1, we described an iterative approach to approximate the homogenized limit

of random coefficients which was developed in the context of random networks, [119], and

2Wiener processes are examples of non-ergodic random fields.
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later adapted to the continuous case, [87]. The aim of [119] is to develop a method for the

computation of the homogenized coefficients with optimal computational complexity, having

proved that no algorithm can output an approximation aδ of a0 with error

E
[∣∣aδ−a0

∣∣2
] 1

2 ≤ δ,

with less than O (δ−2) operations. The iterative scheme proposed reaches this limit and is,

thus, optimal under the point of view of computational complexity. A bounded domain

problem is proposed for practical purposes as an approximation of the original one eq. (2.56),

which is posed on the entire Zd . The approximation error due to the spatial cut-off, which

is of exponential order and can thus be neglected. The peculiarity of this method is that the

computational domain can be reduced as the iterations go on. The auxiliary problems take

the form: 2−kχi
R,k −∇·

(
a(y)∇χi

R,k

)
= 2−kχi

R,k−1 in KRk ,

χR,k = 0 on ∂KRk ,

where

χi
−1 =∇· (a(y)ei

)
, and Rk = 2n−(

1
2−ε

)
k +C (1+n)2

k
2 .

The homogenized coefficients are reconstructed as

a0,R,L,n
i j :=

 
KL0

ai j (y)d y +
n∑

k=0
2k
 

KLk

χi
R,k−1χ

j
R,k +χi

R,kχ
j
R,k d y.

with

Lk = Rk −C (1+n)2
k
2 .

In this case, the mean square resonance error is bounded by

E

[∣∣∣a0
i j −a0,R,L,n

i j

∣∣∣2
] 1

2 ≤C L
− d

2
n , (6.19)

which is referred as the Central Limit Theorem error.

6.4 Conclusion

The subject of stochastic homogenization is far more complicated than the periodic case. First

of all, first order correctors cannot be uniquely defined. Additionally, further assumptions are

needed in order to derive convergence rates of the approximation error, for example the mixing

condition or the finite range of dependence. Even in such a case the rates of convergence are

not explicitly known, [135]. A way to overcome this gap is the use of a regularised corrector

problem, for which explicit convergence rates for the bounds on the statistical and systematic

errors were proved by Gloria and Otto, under the assumption of spectral gap inequality. The

recent monograph [19] gives a broad overview of the analysis of stochastic homogenization.
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These last researches indicate that the best approximation error estimate that can be achieved

in this context is given by the Central Limit Theorem and scales as R−d/2.

From the computational point of view, many past studies focused on verifying the error bounds

derived analytically, without proposing alternative numerical schemes to solve stochastic

multiscale problems. Legoll et al. [34, 106, 107, 108, 109] proposed several variance reduction

approaches to reduce the statistical error in the approximation of a0, with the aim of reducing

the computational cost, rather than improving the convergence rates.
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7 Modified elliptic corrector problems
for random media

As discussed in Chapter 5, the modified elliptic corrector problem eq. (5.1) can be used to

approximate the homogenized coefficients with higher convergence rates of the boundary

error. The analysis in Chapter 5 only covers periodical deterministic micro-structures, so we

aim to extend those results to the homogenization of stationary ergodic random media. Our

final goal is to assess the convergence rate of the error associated to the approximation of a0

via the modified elliptic scheme and compare it to the standard corrector problem (6.14). For

the latter case, we already know that accuracy scales at most as R−1 [35, 135].

Let ξ ∈Rd , |ξ| = 1 and e−AT be the semigroup, evaluated at time T , generated by the second

order elliptic operator A : H 1
0 (KR ) 7→ H−1(KR ) defined by Au :=−∇· (a(x)∇u). Let us consider

the cell problem −∇· (a(x)
(∇χR,T +ξ))=−e−AT [∇· (a(x)ξ)] in KR ,

χi
T,R (x) = 0 on ∂KR ,

(7.1)

where the diffusion coefficients ai j (x) are the realization of a stationary ergodic random tensor

field, as seen in Chapter 6. The choice of homogeneous Dirichlet boundary conditions is

completely arbitrary; as a matter of fact, we could replace it by, e.g., periodic or homogeneous

Neumann boundary conditions, provided that the space from which A operates is changed

accordingly. We will assume that, as proved in the periodic setting, the modified corrector over

the bounded cell, χR,T , approximates with an infinite order of accuracy the modified corrector

over the unbounded cell, χT , which is defined as the solution of

−∇· (a(x)
(∇χT +ξ))=−u(·,T ) , in Rd , (7.2)

where u(·,T ) is the solution of the Cauchy problem (7.3), evaluated at time T :
∂u

∂t
−∇· (a(x)∇u) = 0 in Rd ×(0,+∞),

u(x,0) =∇· (a(x)ξ) in Rd .
(7.3)
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The modified corrector functions χR,T and χT are employed to upscale the multiscale tensor

by the corrector average formulas:

ξ ·a0,R,L,T ξ :=
 

KL

(∇χR,T +ξ) ·a(x)
(∇χR,T +ξ) d x, and (7.4)

ξ ·a0,L,T ξ :=
 

KL

(∇χT +ξ) ·a(x)
(∇χT +ξ) d x, (7.5)

where the restriction over the smaller box KL is necessary in order to achieve the exponential

decay of the boundary error, whose upper bound depends on (R −L), as proved in Chapter 5

for the periodic setting.

Outline

In Section 7.1, we prove the well-posedness of the modified corrector problem on the un-

bounded domain (7.2) in the space of stationary random fields. An a priori upper bound

on the systematic error a0,T − a0 (a0,T being defined in (7.18)) is proved in Section 7.2 as a

consequence of the time decay of parabolic solutions. Along with the systematic error, the

statistical error is discussed as well. Finally, we demonstrate the decay of the global resonance

error a0,R,L,T −a0 by means of numerical experiments in Section 7.3. In particular, this makes it

possible to choose optimal values for the parameters T,R,L in the model problem (7.1), which

is needed for computationally efficient and accurate approximations of the homogenized

tensor in random media.

The content of this chapter is based on [7].

7.1 Well-posedness of the corrector problem

In this section we prove that the corrector problem eq. (7.2) is well-posed and that ∇χT is a

stationary random field. The well-posedness proof is based on the equivalence between the

gradient of the modified corrector ∇χT and the time integral of ∇u, for which we rely on time

decay properties of parabolic solutions. The stationarity of ∇χT , which can be compared to

the stationarity of ∇χ of eq. (6.3), is essential for applying the ergodic theorem in the definition

of a0,T . In this chapter we will use the following notation:

• L 2 denotes the space of stationary extension of square-integrable random variables:

L 2 = {
u(x,ω) = u(τxω) : u ∈ L2(Ω)

}
.

• L 2
pot denotes the space of stationary extension of square-integrable potential random

variables:

L 2
pot =

{
v(x,ω) = v(τxω) : v ∈ L2

pot (Ω)
}

.
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• H 1 denotes the space of ω-differentiable random variable, as defined in eq. (6.6).

Theorem 7.1. Let u ∈C
(
[0,+∞),L 2

)
be the solution of eq. (7.3). Then, there exists a unique

∇χT ∈L 2
pot such that

−∇· (a(∇χT +ξ)
)=−u(·,T ), in D′(Rd ), P-a.s.. (7.6)

Remark 7.2. In [19] the authors proved that for ∇u and ∇χ as above the following relation

holds true:

∇χ(x) =
ˆ +∞

0
∇u(x, t )d t , P-a.s.

This identity entails the stationarity of ∇χ, as a consequence of the stationarity of ∇u. Moreover,

the identity does not hold true for u and χ, because the time integral of u does not converge. We

will use a similar identity to prove Theorem 7.1.

The proof of Theorem 7.1 is based on the decay in time of the parabolic solution u, which are

collected in Section 7.1.1.

7.1.1 Decay of parabolic solutions

In this section we collect some results about the decay in time of the solutions to parabolic

PDEs in Rd with stationary random coefficients. The decay properties will eventually be used

in the proofs of Theorems 7.1 and 7.9. Existence and uniqueness of the solution u to eq. (7.3)

is a classical results of the theory of linear parabolic partial differential equations, [71]. First of

all, we recall a classical result on the time decay of the solutions to parabolic problems and

deduce the results of Lemma 7.4. These results are not new, for example they are proved in

[19] for the case of Zd -stationary random fields. The proof is based on writing the solution

u(x, t ) as a time integral involving the fundamental solution Γ(x, y, t ):

u(x, t , a) =−
ˆ
Rd

∇yΓ(x, y, t ) ·a(y)ξd y. (7.7)

We recall that the Γ(x, y, t ) solves:
∂Γ

∂t
(·, y, ·)−∇x · (a(x)∇xΓ(·, y, ·)) = 0,

Γ(·, y,0) = δy (·),
and


∂Γ

∂t
(x, ·, ·)−∇y · (a(y)∇yΓ(x, ·, ·)) = 0,

Γ(x, ·,0) = δx (·),

where δz is the Dirac delta function centered in z ∈Rd .

Lemma 7.3. Let u be the solution of eq. (7.3). Then, there exists a constant C (α,β,d) > 0 such

that, for every t > 0,

‖u(·, t )‖L∞(Rd ) + t
1
2 ‖∇u(·, t )‖L∞(Rd ) ≤C t−

1
2 . (7.8)
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Lemma 7.4. Let u be the solution of eq. (7.3). Then, u is a stationary random field and

E [u(x, t )] = 0, ∀t > 0,∀x ∈Rd . (7.9)

Proof. Step 1. We prove the stationarity of u. Let us recall that u can be expressed by formula

eq. (7.7). Then, by the fact that Γ(x + z, y + z, t , a) = Γ(x, y, t ,τz a)

u(x + z, t , a) =−
ˆ
Rd

∇yΓ(x + z, y, t , a) ·a(y)ξd y

=−
ˆ
Rd

∇yΓ(x + z, y + z, t , a) ·a(y + z)ξd y

=−
ˆ
Rd

∇yΓ(x, y, t ,τz a) ·τz a(y)ξd y = u(x, t ,τz a).

Step 2. Let B1 ⊂ Rd be the unit ball centred in 0, ψ ∈ C∞
0 (B1) with unit mass in L1(B1) and

ψR (x) := R−dψ(x/R). Let us write eq. (7.3) in weak form with ψR as test function and integrate

in time for 0 < t1 < t < t2:

E [u(·, t1)]−E [u(·, t2)] = lim
R→+∞

E

[ˆ t2

t1

ˆ
Rd

∇u(x, t ) ·a(x)∇ψR (x)d x d t

]
.

By the Hölder inequality, we bound the absolute value of the right-hand side from above:∣∣∣∣E[ˆ t2

t1

ˆ
Rd

∇u(x, t ) ·a(x)∇ψR (x)d x d t

]∣∣∣∣≤ E[ˆ t2

t1

β‖∇u(·, t )‖L∞(Rd )

∥∥∇ψR
∥∥

L1(Rd ) d t

]
≤βR−1

∥∥∇ψ∥∥
L1(Rd )E

[ˆ t2

t1

‖∇u(·, t )‖L∞(Rd ) d t

]

The term E
[´ t2

t1
‖∇u(·, t )‖L∞(Rd ) d t

]
is uniformly bounded in R thanks to the decay of ‖∇u(·, t )‖L∞(Rd )

of Lemma 7.3. So,

lim
R→+∞

E

[ˆ t2

t1

ˆ
Rd

∇u(x, t ) ·a(x)∇ψR (x)d x d t

]
= 0,

and we deduce that E [u(·, t )] is constant in time. From the fact that ‖u(·, t )‖L∞(Rd ) decays

to zero and from the stationarity of u, we conclude that E [u(x, t )] = 0 for any t > 0 and any

x ∈Rd .

Time decay rates of E [|u|p ] and E [|∇u|p ] for homogenization problems over discrete networks

were proved in several works, e.g. [80, Theorem 1] and [119, Lemma 9.7]:

E
[|u|p] 1

p ≤C (t +1)−
(

1
2+ d

4

)
for any p ≥ 1 and E

[|∇u|2] 1
2 ≤C (t +1)−

(
1+ d

4

)
.

More recently, similar estimates were also derived for the continuous case in [19]. Theorem 7.5

and Corollary 7.6 provide time decay bounds on the moments E [|u|p ].

118



7.1. Well-posedness of the corrector problem

Theorem 7.5 ([19, Theorem 9.1]). For every σ ∈ (0,2), there exists a constant C (σ,d ,α,β) <+∞
such that the following holds. Let a(·) ∈ L∞(Rd ) be a stationary random field such that, for every

x ∈Rd , a(x)ξ is F -measurable and let u ∈C
(
[0,+∞),L 2

)
be the solution of eq. (7.3). Then, for

every t ∈ [1,+∞) and x ∈Rd ,

E
[

exp
((

C−1t
1
2+ d

4 |u(x, t )|
)σ)]

≤ 2. (7.10)

Corollary 7.6. Let the assumptions of Theorem 7.5 be satisfied. Then, for any p ≥ 1, there exists

a constant C (p,d ,α,β) <+∞ such that, for every t ∈ [1,+∞) and x ∈Rd

E
[|u(x, t )|p] 1

p ≤C t−
(

1
2+ d

4

)
(7.11)

Proof. From Theorem 7.5, by taking σ= 1, we know that there exist C (d ,α,β) <+∞ such that

E
[

exp
(
C−1t

1
2+ d

4 |u(x, t )|
)]

≤ 2

for every t ∈ [1,+∞) and x ∈Rd . Since the exponential of a random variable X grows faster than

|X |p for any p, the integrability of e X implies the integrability of any power of X . Therefore,

there exists a constant C (p) <+∞ such that

E
[|X |p]≤C (p)E

[
e X ]

.

By taking X = C−1t
1
2+ d

4 |u(x, t )| in the previous inequality we conclude that there exists a

constant C (p,d ,α,β) <+∞ such that

E
[|u(x, t )|p] 1

p ≤C t−
(

1
2+ d

4

)
.

Corollary 7.6 shows that there is a clear difference between the time decay of parabolic so-

lutions set in bounded domains (as, for instance, in the case of periodic correctors) and in

unbounded domains (as in the stochastic homogenization setting). Indeed, in the periodic

(or bounded domain) setting, the Poincaré inequality entails exponential decay in time of

the spatial L2-norm. Such a property is fundamental in the derivation of exponential order

convergence rates of the resonance error in Chapters 4 and 5. In the stochastic setting we do

not necessarily have such an inequality in H 1.

Proposition 7.7. Let u be the solution of eq. (7.3) with ∇· (a(x)ξ) ∈L 2. Then

u ∈ L2 (
(0,+∞),H 1)∩C

(
[0,+∞),L 2) .

Proof. We first prove that u ∈ L2
(
(0,+∞),H 1

)
and, then, that u ∈C

(
[0,+∞),L 2

)
.

Step 1 - u ∈ L2
(
(0,+∞),H 1

)
:
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We already know from Lemma 7.4 that u(·, t) is stationary for any t ≥ 0. So, we only have to

prove that ˆ +∞

0
E
[
u(·, t )2] d t <+∞, and

ˆ +∞

0
E
[|∇u(·, t )|2] d t <+∞.

The function E
[
u(·, t )2

]
is decreasing in time, indeed, from eq. (7.3),

d

d t
E
[
u2]= 2E [u∂t u] =−2E [∇u ·a(x)∇u] < 0.

So, we can bound the integral using ∇· (a(x)ξ) ∈L 2 and the result of Corollary 7.6:

ˆ +∞

0
E
[
u(·, t )2] d t ≤

ˆ 1

0
E
[
u(·, t )2] d t +

ˆ +∞

1
E
[
u(·, t )2] d t

≤ E[|∇ · (a(x)ξ)|2]+C

ˆ +∞

1
t−

(
1+ d

2

)
d t <+∞.

(7.12)

Next, from the ellipticity of a(·), we have:

αE
[|∇u(·, t )|2]≤ E [∇u ·a(x)∇u] =−1

2

d

d t
E
[
u(·, t )2] .

So, since E
[
u(·, t )2

]
vanishes for t →+∞,

ˆ +∞

0
E
[|∇u(·, t )|2] d t ≤ 1

2α
E
[
u(·,0)2]<+∞. (7.13)

From eq. (7.12) and eq. (7.13) we conclude that u ∈ L2
(
(0,+∞),H 1

)
.

Step 2 - u ∈C
(
[0,+∞),L 2

)
:

Let t ≥ 0. Since f (z) =p
z is continuous in [0,+∞), it is sufficient to prove the continuity of

E
[
u2

]
:

E
[
u(·, t +h)2]−E[

u(·, t )2]= ˆ t+h

t

d

d t
E
[
u(·, t )2] d t

=−
ˆ t+h

t
E [∇u ·a(x)∇u] d t −→

h→0
0,

and the proof is concluded.

Now, we state a result on the time decay of the second moment of ∇u. The proof follows from

the one of [119, Lemma 9.7].

Proposition 7.8. Let a(·) ∈Ω and let u be the solution of eq. (7.3). Then, there exist a positive

constant C (d ,α,β) <+∞ such that, for every t ∈ [2,+∞) and x ∈Rd ,

E
[|∇u(x, t )|2] 1

2 ≤C t−( d
4 +1). (7.14)
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7.1. Well-posedness of the corrector problem

Proof. Let us begin by proving that the map t 7→ E [∇u(x, t ) ·a(x)∇u(x, t )] is nonincreasing.

Indeed, its time derivative can be expressed as:

∂tE [∇u(x, t ) ·a(x)∇u(x, t )] = 2E [∇(∂t u)(x, t ) ·a(x)∇u(x, t )]

= 2E [∇(∇· (a(x)∇u(x, t ))) ·a(x)∇u(x, t )]

=−2E
[|∇ · (a(x)∇u(x, t ))|2]≤ 0.

Thus, from the weak formulation of eq. (7.3) with u as test function and inequality eq. (7.11)

for t/2 ≥ 1 and p = 2, we can write

E [∇u(x, t ) ·a(x)∇u(x, t )] ≤ 2

t

ˆ t

t
2

E [∇u(x, s) ·a(x)∇u(x, s)] d s

≤−1

t

ˆ t

t
2

∂tE
[|u(x, s)|2] d s

≤ 1

t

[
E
[|u (x, t )|2]−E[∣∣∣∣u (

x,
t

2

)∣∣∣∣2]]
≤C t−( d

2 +2).

Then, eq. (7.14) follows from the assumption of uniform ellipticity of the coefficients.

Now we are ready to prove that the differential problem of eq. (7.2) is well-posed.

Proof of Theorem 7.1. Let us define the stationary function

Ψ :=
ˆ T

0
∇u(·, t )d t . (7.15)

Then, Ψ ∈ (L 2)d . Indeed, by Minkowski integral inequality and Proposition 7.7 we have:

E
[|Ψ(x)|2] 1

2 := E
[∣∣∣∣∣
ˆ T

0
∇u(x, t )d t

∣∣∣∣∣
2] 1

2

≤
ˆ T

0
E
[|∇u(x, t )|2] 1

2 d t <+∞.

The weak form of eq. (7.3) is: Find u ∈ L2
(
(0,+∞),H 1

)
such that

d

d t
E
[
uφ

]+E[∇φ ·a(x)∇u
]= 0, ∀φ ∈H 1.

By integration in time and eq. (7.15), we get

E
[∇φ ·a(x) (Ψ+ξ)

]=−E[
u(·,T )φ

]
, ∀φ ∈H 1.

To conclude, we have to prove thatΨ ∈L 2
pot . The function Ψ is trivially vortex-free, since it is

the gradient of
´ T

0 u(·, t )d t . Hence, we are allowed to define Ψ as ∇χT .
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The uniqueness of ∇χT trivially follows from uniqueness of solution for the standard corrector

problem eq. (6.3), proved in [123].

7.2 A priori error bounds

In this section we will discuss the a priori bounds on the resonance error. The error can be

measured in a strong sense, by the L2(Ω)-norm, or in a weak sense, as the absolute value of

the mean difference. The difference between the two is the presence/absence of the so-called

statistical error, which accounts for the fact that the we have a random approximation of a0.

7.2.1 Error decomposition

We define two measures of the resonance error: the mean square resonance error and the

mean resonance error, respectively defined as

eMS := sup
ξ∈Rd ,‖ξ‖=1

(
E
[(
ξ · (a0,R,L,T −a0)ξ

)2
]) 1

2
, and

eM := sup
ξ∈Rd ,‖ξ‖=1

∣∣ξ ·E[
a0,R,L,T −a0]ξ∣∣ .

Both errors can be decomposed into several contributions that can be estimated separately.

By the triangle inequality, the mean square error can be decomposed as

(
E
[(
ξ · (a0,R,L,T −a0)ξ

)2
]) 1

2 ≤
(
E
[(
ξ · (a0,R,L,T −a0,L,T )ξ

)2
]) 1

2

+
(
E
[(
ξ · (a0,L,T −a0,T )ξ

)2
]) 1

2 +
(
E
[(
ξ · (a0,T −a0)ξ

)2
]) 1

2
,

where a0,T is defined in eq. (7.18). The difference a0,R,L,T − a0,L,T accounts for the error

due to mismatching conditions of the corrector functions on ∂KR . Such an error has been

analysed for the periodic deterministic case and computed numerically for the periodic and

the stochastic cases [8]. The rate of convergence of the boundary error is exponential, whose

exponent depends on the contrast of coefficients. We assume that the error a0,R,L,T −a0,L,T can

be bounded by a deterministic bound depending on R, L, T and we denote it by eBD (R,L,T ).

Hence, the mean square error is thus bounded by the sum:

eMS ≤ eBD (R,L,T )+ sup
ξ∈Rd ,‖ξ‖=1

√
Var

[
ξ ·a0,T,Lξ

]
︸ ︷︷ ︸

statistical error

+ sup
ξ∈Rd ,‖ξ‖=1

∣∣ξ · (a0,T −a0)ξ
∣∣

︸ ︷︷ ︸
systematic error

.

The advantage of the error in mean is that it allows to remove the statistical error as the

difference in mean can be bounded by:

∣∣ξ ·E[
a0,R,L,T −a0]ξ∣∣≤ ∣∣ξ ·E[

a0,R,L,T −a0,L,T ]
ξ
∣∣

122



7.2. A priori error bounds

+ ∣∣ξ ·E[
a0,L,T −a0,T ]

ξ
∣∣︸ ︷︷ ︸

=0, by eq. (7.18)

+ ∣∣ξ ·E[
a0,T −a0]ξ∣∣ .

So, the error in mean can be bounded by

eM ≤ eBD (R,L,T )+ sup
ξ∈Rd ,‖ξ‖=1

∣∣ξ · (a0,T −a0)ξ
∣∣

︸ ︷︷ ︸
systematic error

. (7.16)

In Section 7.2.2 we prove an a priori bound for the systematic error, while in Section 7.2.3 the

statistical error is discussed.

7.2.2 Systematic error

The systematic error is

eSY S := sup
ξ∈Rd ,‖ξ‖=1

∣∣ξ · (a0,T −a0)ξ
∣∣ . (7.17)

We will rely on the result on the time decay of ∇u(·, t ) and on the definition of ∇χ and ∇χT as

time integral of ∇u(·, t ) in order to bound the systematic error.

Theorem 7.9 (systematic error). Let a(x) ∈Ω, a0 and a0,T be defined, respectively, as in eq. (6.8)

and by

ξ ·a0,T ξ := lim
L→+∞

 
KL

(∇χT +ξ) ·a(y)
(∇χT +ξ) d y = E[

ξ ·a0,T,Lξ
]

. (7.18)

Then, there exists a positive constant C (d ,α,β) <+∞ such that

sup
ξ∈Rd ,‖ξ‖=1

∣∣ξ · (a0,T −a0)ξ
∣∣≤C T − d

2 . (7.19)

Proof. We first notice that the two identities contained in eq. (7.18) follow from the stationarity

of a(·) and the Birkhoff ergodic theorem. Next, we prove that

ξ · (a0,T −a0)ξ= E[(∇χT −∇χ) ·a(·)(∇χT −∇χ)]
. (7.20)

By definition of a0,T and a0,

ξ · (a0,T −a0)ξ= E[(∇χT +ξ) ·a(·)(∇χT +ξ)− (∇χ+ξ) ·a(·)(∇χ+ξ)]
= E[(∇χT +ξ) ·a(·)(∇χT +ξ)− (∇χ+ξ) ·a(·)(∇χT +ξ)]

+E[(∇χT +ξ) ·a(·)(∇χ+ξ)− (∇χ+ξ) ·a(·)(∇χ+ξ)]
= E[(∇χT −∇χ) ·a(·)(∇χT +ξ)+ (∇χT −∇χ) ·a(·)(∇χ+ξ)]
= E[(∇χT −∇χ) ·a(·)(∇χT +ξ)− (∇χT −∇χ) ·a(·)(∇χ+ξ)]

= E[(∇χT −∇χ) ·a(·)(∇χT −∇χ)]
,
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where the fourth inequality comes from

E
[(∇χT −∇χ) ·a(x)

(∇χ+ξ)]= 0 =−E[(∇χT −∇χ) ·a(x)
(∇χ+ξ)] ,

for any x ∈Rd 1. Thus, by the uniform boundedness of a(·) and the Hölder inequality we have:∣∣ξ · (a0,T −a0)ξ∣∣≤βE[∣∣∇χT −∇χ∣∣2
]

.

Now, we recall that

∇χ=
ˆ +∞

0
∇u(·, t )d t , and ∇χT =

ˆ T

0
∇u(·, t )d t ,

we subsitute these equivalences in the expression above and use the Minkowski integral

inequality to switch the two integrations:

∣∣ξ · (a0,T −a0)ξ∣∣≤βE[∣∣∣∣ˆ +∞

T
∇u(·, t )d t

∣∣∣∣2
]
≤β

(ˆ +∞

T
E
[|∇u(·, t )|2] 1

2 d t

)2

.

Finally, from the time decay result for ∇u(·, t ) eq. (7.14) we conclude that

∣∣ξ · (a0,T −a0)ξ∣∣≤C

(ˆ +∞

T
t−

(
d
4 +1

)
d t

)2

≤C T − d
2 .

and eq. (7.19) follows from the fact that C does not depend on ξ.

7.2.3 On the bound of the statistical error

In this section, we describe a possible approach to bound the statistical error for the presented

homogenization model. By following a technique proposed in [83], we rely on the spectral gap

inequality eq. (SG) of Definition 6.11, applied on the random variable ξ ·a0,L,T ξ:

Var
[
ξ ·a0,L,T ξ

]≤ 1

ρ

ˆ
Rd
E

[(
osc

a|B`(z)

ξ ·a0,L,T ξ

)2]
d z. (7.21)

Unfortunately, the approach that we followed was not successful to determine a priori bounds

on the statistical error, due to a lack of control on

ˆ
B`(x)

∣∣∣∣ osc
a|B`(z)

∇χT (y)

∣∣∣∣2

d y,

resulting in incomplete estimates. Nonetheless, we describe here the followed approach to

stimulate further research in this direction or to warn other researchers on following the same

path.

1To prove it, one can test the standard corrector equation against θ(χT −χ), where θ ∈C∞
0

(
Rd

)
is such that

θ ≡ 1 on the ball BR , then, pass to the limit for R →+∞ and use the ergodic theorem.
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In order to estimate the right-hand side of the spectral gap inequality we need to provide a

preliminary bound on the quantity
´

B`(x)

∣∣∇χT +ξ∣∣2.

Lemma 7.10. Let a ∈Ω and let ∇χT ∈L 2
pot be the unique solution of eq. (7.6). Let us assume

that there exists a positive C (α,β,`) <+∞ such that

ˆ
B`(z)

∇· (a(y)ξ− ã(y)ξ
)2 d y ≤C .

Then, there exists C > 0 independent of L and T such that

sup
a|B`(z)

ˆ
B`(x)

∣∣∇χT (y)+ξ∣∣2 d y ≤C

(
1+

ˆ
B`(x)

∣∣∇χT
∣∣2 d y +

ˆ
B`(z)

∣∣∇χT
∣∣2 d y

)
. (7.22)

Proof. Let us consider a variation of a(·) over B`(z), let us denote it by ã(·) and the corre-

sponding corrector function by χ̃T . We start by estimating
´

B`(x)

∣∣∇χT (y)−∇χ̃T (y)
∣∣2 d y . The

difference χT − χ̃T satisfies

−∇· [a(x)∇(
χT − χ̃T

)]=−∇· [(a(x)− ã(x))
(∇χ̃T +ξ)]+u(x,T )− ũ(x,T ), (7.23)

and the difference u − ũ satisfies:

∂t (u − ũ)−∇· (a(y)∇ (u − ũ)
)=∇· ((a − ã)(y)∇ũ

)
,

(u − ũ)(y,0) =∇· ((a − ã)(y)ξ
)

.
(7.24)

The right-hand side of eq. (7.23) is bounded in the H−1(Rd )-norm, hence the differenceχT −χ̃T

is well defined in H 1(Rd ). The weak form thus becomes:

ˆ
Rd

(∇χT −∇χ̃T
) ·a(y)

(∇χT −∇χ̃T
)

d y

=
ˆ
Rd

(∇χT −∇χ̃T
) · (a(y)− ã(y))

(∇χ̃T +ξ) d y +
ˆ
Rd

(
u(y,T )− ũ(y,T )

)(
χT (y)− χ̃T (y)

)
d y.

(7.25)

By application of the Cauchy-Schwarz and Young inequalities we can bound the first term on

the right hand side as

ˆ
Rd

(∇χT −∇χ̃T
) · (a(y)− ã(y))

(∇χ̃T +ξ) d y

≤ 2β
∥∥∇χT −∇χ̃T

∥∥
L2(Rd )

∥∥∇χ̃T +ξ∥∥L2(B`(z))

≤ α

4

∥∥∇χT −∇χ̃T
∥∥2

L2(Rd ) +
2β2

α

∥∥∇χ̃T +ξ∥∥2
L2(B`(z)) . (7.26)

The last term can be bounded by the weak form of eq. (7.24) with χT − χ̃T as test function:
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ˆ
Rd

(
u(y,T )− ũ(y,T )

)(
χT (y)− χ̃T (y)

)
d y+

ˆ T

0

ˆ
Rd

a(y)
(∇u(y, t )−∇ũ(y, t )

)(∇χT (y)−∇χ̃T (y)
)

d y d t

=
ˆ
Rd

(
a(y)− ã(y)

)
ξ
(∇χT (y)−∇χ̃T (y)

)
d y+

ˆ T

0

ˆ
Rd

(
a(y)− ã(y)

)∇ũ(y, t )
(∇χT (y)−∇χ̃T (y)

)
d y d t .

By recalling that
´ T

0 ∇u(·, t)d t =χT and
´ T

0 ∇ũ(·, t)d t = χ̃T and from uniform ellipticity and

continuity of a, we derive that

ˆ
Rd

(
u(y,T )− ũ(y,T )

)(
χT (y)− χ̃T (y)

)
d y

≤ 2β |B`|1/2
∥∥∇χT −∇χ̃T

∥∥
L2(B`(z)) +2β

∥∥∇χ̃T
∥∥

L2(B`(z))

∥∥∇χT −∇χ̃T
∥∥

L2(B`(z))

≤ 2β2

α
|B`|+

α

4

∥∥∇χT −∇χ̃T
∥∥2

L2(B`(z)) +
2β2

α

∥∥∇χ̃T
∥∥2

L2(B`(z)) +
α

4

∥∥∇χT −∇χ̃T
∥∥2

L2(Rd ) . (7.27)

The ellipticity of a(·), eqs. (7.25) to (7.27) lead to the bound

α
∥∥∇χT −∇χ̃T

∥∥2
L2(B`(x)) ≤α

∥∥∇χT −∇χ̃T
∥∥2

L2(Rd )

≤ α

4

∥∥∇χT −∇χ̃T
∥∥2

L2(Rd ) +
2β2

α

∥∥∇χ̃T +ξ∥∥2
L2(B`(z))

+ 2β2

α
|B`|+

α

4

∥∥∇χT −∇χ̃T
∥∥2

L2(B`(z)) +
2β2

α

∥∥∇χ̃T
∥∥2

L2(B`(z)) +
α

4

∥∥∇χT −∇χ̃T
∥∥2

L2(Rd ) .

Thus, ∥∥∇χT −∇χ̃T
∥∥2

L2(B`(x)) ≤C
∥∥∇χ̃T +ξ∥∥2

L2(B`(z)) +C (α,β,`,d). (7.28)

Finally, by the triangle inequality we have that

ˆ
B`(x)

∣∣∇χT +ξ∣∣2 d y ≤
ˆ

B`(x)

∣∣∇χ̃T +ξ∣∣2 d y +
ˆ

B`(x)

∣∣∇χT −∇χ̃T
∣∣2 d y.

We conclude by plugging eq. (7.28) into the line above.

We can now prove a first result to bound the statistical error. Such a result is not conclusive in

the sense that the upper bound on the statistical error are not derived explicitly with respect

to the parameters L and T .

Theorem 7.11 (statistical error). Let a0,T,L be defined as in eq. (7.5), and let

S(x, z) :=
(

sup
a|B`(z)

ˆ
B`(x)

∣∣∇χT (y)+ξ∣∣2 d y

)1/2

, and O(x, z) :=
(ˆ

B`(x)

∣∣∣∣ osc
a|B`(z)

∇χT (y)

∣∣∣∣2

d y

)1/2

.

Then, there exists C > 0, independent of L and T , such that

Var
[
ξ ·a0,T,Lξ

]≤C L−2dE

[ˆ
Rd

ˆ
KL

ˆ
KL

S(x, z)O(x, z)S(x ′, z)O(x ′, z)d x d x ′ d z +
ˆ
Rd

S(z, z)2 d z

]
.
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7.2. A priori error bounds

Proof. We first estimate osc
a|B`(z)

ξ ·a0,T,Lξ and, then, use the spectral gap inequality eq. (7.21). We

start by defining ã0,T,L as the homogenized version of tensor ã which is a random field that

coincide with a (·) outside the ball B`(z) (we will omit the subscript of osc
a|B`(z)

), and we evaluate

the difference

ξ · (ã0,T,L −a0,T,L)
ξ=

 
KL

(∇χT +ξ) ·a(x)
(∇χT +ξ) d x −

 
KL

(∇χ̃T +ξ) · ã(x)
(∇χ̃T +ξ) d x

=
 

KL

(∇χT +ξ) ·a(x)
(∇χT −∇χ̃T

)
d x +

 
KL

(∇χ̃T +ξ) · ã(x)
(∇χT −∇χ̃T

)
d x

+
 

KL

(∇χT +ξ) · (a(x)− ã(x))
(∇χ̃T +ξ) d x.

Hence, we have the bound

∣∣ξ · (ã0,T,L −a0,T,L)
ξ
∣∣≤C

( 
KL

∣∣∇χT +ξ∣∣ ( osc
a|B`(z)

∇χT )d x +
 

KL

∣∣∇χ̃T +ξ∣∣( osc
a|B`(z)

∇χT

)
d x

+ 1

|KL |
ˆ

B`(z)

(∇χT +ξ)(∇χ̃T +ξ) d x

)
.

Before taking the supremum over all coefficients such that ã|Rd \B`(z) = a|Rd \B`(z) we introduce

the new variable y in the first integral term via the bound
ffl

KL
d x ≤C

ffl
KL

´
B`(x) d y d x, in order

to use the estimate of Lemma 7.10, and then we use Cauchy-Schwarz inequality:

osc
a|B`(z)

ξ ·a0,T,Lξ≤C

 
KL

(
sup

a|B`(z)

ˆ
B`(x)

∣∣∇χT (y)+ξ∣∣2 d y

)1/2 (ˆ
B`(x)

∣∣∣∣ osc
a|B`(z)

∇χT (y)

∣∣∣∣2

d y

)1/2

d x

+ C

|KL |
sup

a|B`(z)

ˆ
B`(z)

∣∣∇χT +ξ∣∣2 d x. (7.29)

By definition of S(x, z) and O(x, z), we conclude that

osc
a|B`(z)

ξ ·a0,T,Lξ≤C

 
KL

S(x, z)O(x, z)d x + C

|KL |
S(z, z).

Then, by applying the spectral gap inequality, we conclude:

Var
[
ξ ·a0,T,Lξ

]≤ C

|KL |2
E

[ˆ
Rd

ˆ
KL

ˆ
KL

S(x, z)O(x, z)S(x ′, z)O(x ′, z)d x d x ′ d z +
ˆ
Rd

S(z, z)2 d z

]
.

The lack of explicit estimates for the term

E

[ˆ
Rd

ˆ
KL

ˆ
KL

S(x, z)O(x, z)S(x ′, z)O(x ′, z)d x d x ′ d z +
ˆ
Rd

S(z, z)2 d z

]
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prevents us to bound the statistical error explicitly in terms of L and T . Nevertheless, from

numerical test, we expect the convergence rate of the Central Limit Theorem:

Var
[
ξ ·a0,T,Lξ

]≤C L−d .

Thus, we make the following conjecture:

Conjecture 1. Let S(x, z) and O(x, z) be defined as in Theorem 7.11. There exists C > 0, inde-

pendent on T and L such that

E

[ˆ
Rd

(ˆ
KL

S(x, z)O(x, z)d x

)2

d z

]
+E

[ˆ
Rd

S(z, z)2 d z

]
≤C Ld .

7.3 Numerical experiments

In this section we collect the results of numerical experiments performed in order to verify

numerically the correctness of the proved bound on the systematic error, Theorem 7.9, and to

compare the convergence of the global resonance error for the standard numerical homoge-

nization scheme and for the modified elliptic approach. In the coming numerical test we plot

the mean resonance error, with the aim to eliminate the statistical error. This allows to display

only the contribution of the boundary error, which is of higher order, and of the systematic

error. Computing exactly the error in mean is not possible, because it requires to solve the

integrate over the probability space Ω, but we approximate it by computing the empirical

average

ā0,R,L,T,N = 1

N

N∑
k=1

a0,R,L,T,k , (7.30)

which converges in probability to E
[
a0,R,L,T

]
, by the weak law of large numbers. Upon choos-

ing a sufficiently large number of samples, N , the difference between ā0,R,L,T,N and E
[
a0,R,L,T

]
becomes negligible. Computing the mean average does not take into account the effect of

stochastic variability of the approximations of a0, and it does not allow to conclude anything

about the convergence in the probability space. The strong resonance error includes the

convergence in the probability space, at the cost of having the additional statistical error term

in the upper bounds. The mean square error cannot be computed exactly, so we approximate

it by its empirical version

sR,L,T,N :=
√∑N

k=1

∥∥a0,R,L,T,k − ā0
∥∥2

F

N −1
, (7.31)

where ‖·‖F denotes the Frobenius norm.
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7.3.1 The covariance function of random fields

For simplicity, we will consider only isotropic media, for which the heterogeneous tensor can

be written as a(x) = f (x)I , where f :Rd 7→R and I ∈Rd×d is the identity matrix. With a slight

abuse of notation we will denote both the matrix of coefficients and the function f above by

a(x). Stationarity of the random fields implies that E [a(·)] = µId×d does not depend on the

spatial variable x and that the covariance (matrix-valued) function Cov(x, y) defined as

Cov(x, y) := E[
a(x)a(y)

]−µ2

only depends on the distance
∣∣x − y

∣∣. So, for stationary random fields, there exist a function

r :Rd 7→R such that

Cov(x, y) = r (x − y).

When the function r (·) is radial, i.e. r (t ) = r (|t |) the medium is said to be statistically isotropic.

Several choices for the covariance function are possible. For example, widely used classes

of covariance functions for one dimensional isotropic random fields are the exponential

covariance function:

r (t ) =σ2e−
∣∣ t

l

∣∣
,

and the Matèrn covariance function:

r (t ) =σ2 1

Γ(ν)2ν−1

(p
2ν

∣∣∣∣ t

l

∣∣∣∣)νKν

(p
2ν

∣∣∣∣ t

l

∣∣∣∣) ,

whereσ2 is the variance, l is the correlation length, Γ is the gamma function, Kν is the modified

Bessel function of the second kind and ν is a smoothness parameter. Another choice is the

long-range covariance function:

r (t ) = (1+|t |)−1/2 . (7.32)

All random fields considered in the numerical experiments are generated by the circulant

embedding method described in [48].

7.3.2 Optimal scaling of T vs. R

Here we briefly discuss the optimal scaling of the T parameter as a function of R (and L)

with the aim of maximizing the rate of decay of the error in mean. We will assume that the

boundary error term decays exponentially, as in the periodic case:

E
[∥∥a0,R,L,T −a0,L,T

∥∥2
F

] 1
2 ≤C1 exp

(
−c2

|R −L|2
T

)
,

for some constants C1,c2 > 0. Then, we find the regime under which none of the boundary

and systematic errors is dominating but the two are (approximately) equal by imposing that
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they are equal:

C1 exp

(
−c2

|R −L|2
T

)
=C2T − d

2 =⇒ T log

((
C1

C2

) 2
d

T

)
= 2c2

d
|R −L|2 .

The constants C1,C2 are unknown and problem-dependent, but we can conclude that the

optimal scaling is obtained for

c |R −L| ≤ T ≤C |R −L|2 , (7.33)

with c,C > 0. In the numerical experiments we will use these scaling values for T , and we take

L = koR, with 0 < ko < 1.

7.3.3 One dimensional logit-normal random coefficients

We test the convergence of the approximate homogenized coefficient for a random diffusion

coefficient distributed according to the logit-normal law. A logit-normal random field is an

isotropic random field a(·) ∈Ω of the form

a(x) = b +e−κ(Z (x)−z0)

c +e−κ(Z (x)−z0)
;

where b,c,κ, z0 ∈ R and Z is a Gaussian random field of zero average. For this example, we

set b = 2, c = 1, κ= 1 and x0 = 0 and used a Gaussian random field with Matèrn covariance

function of order ν= 3/2. A representation of such a field is depicted in Figure 7.1b. In the

one dimensional case, the homogenized coefficient can be computed by the harmonic mean:

a0 = E[
a(·)−1

]−1
. Hence, in the logit-normal case,

a0 =
(ˆ
R

a(y)−1 fZ (y)d y

)−1

,

where fZ is the Gaussian probability density function.

We computed the approximation to the homogenized coefficients by Finite Elements (FE)

discretization on a grid with mesh size h = 2−8. The modified auxiliary problem eq. (7.1) is

solved over the domain is KR := (−R/2,R/2) with periodic boundary conditions, with the values

of R ranging from 5 to 500. The other parameters are L = 2R/3, for the size of the averaging

domain KL , and T , for the modified forcing term. The approximation to the homogenized

coefficients are computed as in eq. (7.4). As an approximation of the quasi-optimal scaling

eq. (7.33), we choose

T = |R −L|2
100

.

The right-hand side of eq. (7.1) is approximated in the FE space by the exponential matrix

e−M−1
h AT g, where g is the vector of components of the projection of g (·) = d

d x a(·) in the FE

space, Mh is the lumped mass matrix and Ah is the stiffness matrix. The exponential matrix is
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7.3. Numerical experiments

not computed exactly, but it is approximated in the Krylov subspace generated by M−1
h Ahg and

computed by the Lanczos method (M−1
h Ah is symmetric and positive definite) as proposed in

[94]. The maximum number of Krylov basis elements is 2000. The error in mean between the
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Figure 7.1 – Logit-normal random field with Matèrn covariance function of order ν= 3/2.

approximate and the exact homogenized coefficient eq. (7.16) is plotted in Figure 7.1a. Since

the expected value of a0,R,L,T cannot be computed exactly, we approximate it by the empirical

average eq. (7.30) with N = 1000 i.i.d. samples. The red line shows the error decay for the

standard auxiliary problem with periodic BCs and no oversampling. In this case, the only

source of error is due to the BCs. The error for the modified elliptic approach is represented

by the blue line. In this other case, the global error is the contribution of the boundary and

systematic error. As one can see, the red curve in Figure 7.1a decays at a slow rate of R− 1
2 . The

blue curve in Figure 7.1a follows a faster convergence trend of, approximately, O (R−1), thanks
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to the scaling of T . Figure 7.1a also displays the error in mean when N = 105 Monte Carlo

samples are chosen. The plot does not show any difference with respect to the other cases, so

we conclude that the error decay does not depend on the number of samples.

In Figure 7.1c we report the mean square resonance error. It decays as R−d/2, following the

Central Limit Theorem trend. This means that the statistical error dominates the other errors

and that it satisfies the Conjecture 1.

7.3.4 One dimensional lognormal random coefficients

We test the convergence of the approximate homogenized coefficient for a random diffusion

coefficient distributed according to the lognormal law. A lognormal random field is an isotropic

random field a(·) ∈Ω for which there exist b,c > 0 such that

a(x) = cebZ (x),

where Z is a Gaussian random field of zero average and long range covariance function given

in eq. (7.32). For this test, we have chosen b = c = 1; an example of the field in shown in

Figure 7.2a. The model of lognormally distributed random coefficients is widely used in the

environmental engineering community, see e.g. [52, 57, 115]. However, such a coefficient does

not belong to M (α,β), so it is not guaranteed that it follows the theoretical estimates that we

derived in the previous sections. In the one dimensional case, the homogenized coefficient

can be computed by the harmonic mean: a0 = E[
a(·)−1

]−1
. Hence, in the lognormal case,

a0 =
(ˆ
R

a(y)−1 fZ (y)d y

)−1

= ce−b2/2,

where fZ is the Gaussian probability density function. We computed the approximation to

the homogenized coefficients by FE discretization on a grid with mesh size h = 2−8. The

modified auxiliary problem eq. (7.1) is solved over the domain is KR := (−R/2,R/2) with

periodic boundary conditions. The values of the R parameter vary from 5 to 500. The other

parameters are L = 2R/3, for the size of the averaging domain KL , and T , for the modified

forcing term. The approximation to the homogenized coefficients are computed as in eq. (7.4).

Since the lognormal random field does not belong to the class M (α,β), it is not possible to

choose the value of the T parameter according to the optimal scaling derived in eq. (7.33). So,

in our computations, we choose the value of T as

T log(T ) = |R −L|2
100

.

The right-hand side of eq. (7.1) is approximated in the FE space as in the previous example.

The error in mean between the approximate and the exact homogenized coefficient eq. (7.16)

is plotted in Figure 7.2b. The expected value of a0,R,L,T is approximated by independently

drawing N = 1000 samples of the lognormal random field. The red line of Figure 7.2b shows
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|ā
0,

R
,L

,T
,N

−ā
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Figure 7.2 – Lognormal random field with covariance function r (t ) = (1+|t |)−1/2.

the error decay for the standard auxiliary problem with periodic BCs and no oversampling,

while the blue line displays the decay of the error for the modified elliptic method. In the first

case, the only source of error are the BCs, while in the second case the error is made up of two

contributions: the boundary error which converges exponentially and is more visible in the

range of small domains (R < 100), and the the systematic error dominating for larger values of

R.

Next, we show the decay of the boundary error. The boundary error is defined as the dif-

ference E
[
a0,R,L,T −a0,L,T

]
and it is supposed to be controlled by an exponentially decaying

deterministic upper bound. The values of a0,L,T are not directly accessible (they involve

the solution of the corrector problem over the infinite domain), so we approximate them
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by a0,Rmax ,L,T ≈ a0,L,T , with Rmax = 500. Additionally, we average a0,R,L,T and a0,Rmax ,L,T over

N = 1000 i.i.d. samples. The exponentially decaying (in R) difference between the empirical

averages ā0,R,L,T,N and ā0,Rmax ,L,T,N is depicted in Figure 7.2c.

We conclude by underlying that the statistical error decays with the expected rate of R−1/2 also

in this case, Figure 7.2d.

7.3.5 Two dimensional lognormal field with exponential covariance

As a last numerical test, we study the convergence for a two dimensional lognormal random

field with exponential covariance function, such as the one depicted in Figure 7.3a. The field

is sampled by generating a Gaussian random field over the uniform grid{(
xi , y j

) ∈ KR : xi = i h − R

2
, y j = j h − R

2

}
,

coinciding with the set of vertices of the structured mesh of stepsize h = 2−5 on KR . Also in this

case we have chosen the parameters b = c = 1, as in Section 7.3.4. The covariance function of

the Gaussian field is exponential. Two representations of the field are depicted in Figures 7.3a

and 7.3b.

The correctors are computed by the finite element method with P1-elements, and the right-

hand side is calculated by the Krylov subspace method with up to 2000 basis elements. The

average is approximated by drawing N = 200 i.i.d. samples of the lognormal field. The

convergence behaviour of the mean error is pictured in Figure 7.3c for both the method

discussed in this work and the truncated domain approach of eq. (6.14). The choice of the

modelling parameters R,L,T is reported in Figure 7.3a, and R ranges from 5 to 32. In this case

we notice that the convergence rates improve to 1 and 3/2 for, respectively, the standard and

the modified elliptic approaches. Figure 7.3d proves that the statistical error decays as R−d/2.

7.4 Conclusion

In this chapter we addressed the problem of estimating the systematic error for the modified

elliptic model, defined as the difference between the true effective coefficient a0 and its

approximation by the corrector problem eq. (7.6) over the infinite domainRd and we discussed

an attempt to bound the statistical error. By exploiting the time decay properties of solutions

of linear parabolic equations, we found that the systematic error scales as T −d/2, where T

is the final time. The parabolic solution, evaluated at time T , enters as a source term into

eq. (7.2). Through the same time decay properties, it is possible to prove the existence of a

corrector ∇χT ∈L 2
pot . In comparison to the standard approach, the numerical experiments

show that the modified elliptic method slightly improves the error convergence rate with
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(a) Logarithmic colour scale.
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Figure 7.3 – Lognormal random field with exponential covariance function.

respect to the cell size R and upon choosing the final time T such that

c |R −L| ≤ T ≤C |R −L|2 ,

for some c,C > 0. Moreover, the theoretical bound of Theorem 7.9 is verified.
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8.1 Conclusion

The present study aimed to develop novel upscaling techniques to reduce the resonance

error which affects numerical homogenization methods and limits the accuracy of multiscale

simulations. If the standard correctors are employed, the resonance error decays as R−1, where

R is the size of the domain of the corrector problem, see Chapter 2. Improving the convergence

rate is thus crucial for achieving accurate solutions with a reasonable computational cost.

In this thesis, we presented, developed and analysed two novel micro-corrector problems,

defined by eqs. (4.2) and (5.1), to improve the convergence rate of the resonance error for

second order linear elliptic equations with fast oscillating coefficients. The two methods are

based on the relations derived in Theorem 3.2 that interprets the solution and the energy of

an elliptic equation as time integrals of the solution and energy of a parabolic problem. The

convergence rates of the resonance error associated to the two models were derived under the

assumptions of both periodic and stationary random coefficients in Theorems 4.1, 5.1 and 7.9.

The first approach consists in approximating a0 by solving the parabolic corrector equation

eq. (4.2) and employing eq. (4.1). The approximation of a0 and the a priori error bound on the

resonance error depend on the modelling parameters: the size of the corrector cell, denoted by

R, the size of the support of the filtering function, L, and the final time, T . Our analysis holds

under the assumption of periodicity of the coefficients, but the method that we propose can

be applied also to non-periodic structures. The use of q-fold differentiable filtering functions,

together with the weak dependence of the solution on the boundary conditions, allows to

prove a priori upper bounds on the resonance error with arbitrary convergence rate with

respect to L, T and |R −L|2 /T . By the optimal scaling L,T = O (R), it is possible to achieve

arbitrary convergence rates in R, as we proved in Theorem 4.1. The proof is based on three

results:

i) the approximation property of filtering functions stated in Lemma 4.3;
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ii) the exponential decay in time of the L2-norm of the periodic correctors;

iii) the exponential decay in space of the Green’s function for parabolic problems, as stated

by the Nash-Aronson inequality.

The parabolic approach inspired the development of a modified elliptic approach where, in

addition to the standard elliptic corrector equation, the right-hand side e−T A g i is present.

A priori resonance error bounds for this homogenization approach were derived using the

results of Lemma 4.15 on the exponential decay of the boundary layer functions θi ’s. This

approach overcomes the use of a time integration scheme to solve the parabolic equation, but

the right-hand side e−T A g i must be pre-computed. This is the main computational issue of

the modified elliptic approach and we addressed it by computing the exponential of a properly

chosen matrix, Ah . Many techniques are available to approximate e−T Ah , among which we

chose the Krylov subspace method. The modified elliptic approach is endowed with the same

convergence results as the parabolic scheme, as proved in Theorem 5.1. Many numerical

experiments supported our theoretical results, even for more general class of coefficients. Both

the parabolic and the modified elliptic methods significantly improve the convergence rates of

the resonance error, in the periodic and quasi-periodic case. Moreover, they can also be used

to alleviate the boundary error in problems with stationary random coefficients. Additionally,

these novel approaches show a more favourable cost-accuracy ratio, in comparison to the

standard method: our theoretical analysis revealed that the growth of the computational cost

for increasing desired accuracy is slower for the two approaches than for the standard one.

As a last step, we focused on a more challenging question: estimating the resonance error

for the modified elliptic approach in the framework of stochastic homogenization. Finding

efficient ways to compute the effective coefficients for random micro-structures still represents

a great challenge from the mathematical, computational and practical points of view, and

it could have tremendous applications in material sciences and engineering. In this setting,

specific micro-models and numerical techniques have to be developed, since the tools that are

employed in the periodic context, such as filtering functions, cease to be useful in the random

case. The recent monograph [19] could provide a deeper understanding of the mathematical

structure of stochastic homogenization and could be of help in the analysis of novel numerical

upscaling methods.

In Chapter 7, the resonance error is decomposed into a systematic and a statistical error

(variance) and the two terms are studied separately. The error analysis that we have carried out

reveals that the truncation/systematic error decays as T −d/2, while it shows the exponential

convergence e−αT in the periodic case. Therefore, the decay of the resonance error in the

random case is severely hampered, independently from the use of filtering functions. On

the other hand, the statistical error can be reduced by Monte Carlo iterations or by variance

reduction techniques, as described in Chapter 6. The ergodic assumption allows to reduce the

variance of the (random) upscaled coefficients by taking larger cells for the corrector problem.

Numerical tests show that the statistical error decays as L−d/2 allowing us to conclude that
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less Monte Carlo iterations are needed when larger cells are considered.

8.2 Outlook

Within the scope of the present study, many objectives are achieved and the accomplishments

are presented above. However, several challenges remain to be addressed and we suggest that

further research could focus on the aspects which are detailed below.

• In this work, we have focused on the derivation of homogenized coefficients for scalar

equations with symmetric coefficients. Further research may involve the extension

of the two approaches to systems of differential equations, such as linear elasticity

problems, or to equations with non-symmetric coefficients. In both cases the theory is

well-developed, e.g. [45], but it would be necessary to employ the heat kernel bounds

for parabolic systems, which could be found, e.g., in [43, 75] and references therein.

• Multiscale non-linear differential equations are of great interest from the point of view of

mechanical applications [73] and of mathematical theory [122]. Further research could

address the extension of the parabolic and modified elliptic methods to quasi-linear and

non-linear problems, in order to evaluate their error convergence properties. This task

could be quite challenging, as the homogenized equation is not explicitly constructed

but is defined as the G-limit of a sequence of (non-linear) operators.

• In Chapters 4 and 5, the cost-accuracy ratios are derived by theoretical speculations

on the computational cost of the time integration scheme (for the parabolic case)

or the solution of the linear system (for the modified elliptic method). This approach

explains how the cost scales with the desired accuracy, but it cannot predict the wall- and

CPU-times. In practical situations, if a rough accuracy is accepted, using the standard

upscaling scheme over a small cell could reveal more efficient than other approaches.

Computational experiments could address the question of evaluating for which values

of the cell size it is more convenient to use the standard approach or the ones that we

propose. Optimized implementation in interpreted programming language (such as

C/C++) may be necessary to conduct this study.

• In the stochastic analysis of Chapter 7, we proved numerically that the statistical error

decays as L−d/2, but a rigorous proof is still missing, though we proposed a way to

address it. Future research could focus on proving this bound.

• The resonance error in the numerical homogenization of random coefficients cannot

convergence faster than L−d/2 (see [119]), due to the statistical error. In order to make

sure that this optimal convergence behaviour is attained, it is crucial to design novel

corrector equations with high decay rates of the systematic and boundary errors, as the

one proposed in Chapter 7. However, the use of alternative corrector equation with a

faster convergence of the systematic error can be beneficial and would allow to achieve

the optimal convergence rate.
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• In connection to the point above, although the convergence rate of the statistical error

cannot be improved, several works attempted either to mitigate the computational

effort or to reduce the variance of the approximation [59, 108]. The convergence rate of

the Quasi-Monte Carlo method for scalar diffusion equations with lognormal random

diffusion fields has been analysed in [91]. This technique could be successfully applied

to improve the convergence rate with respect to the number of samples in the context of

modified elliptic corrector problems for numerical homogenization, but research works

in this direction are still missing.
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