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Abstract
Many important problems in contemporary machine learning involve solving highly non-

convex problems in sampling, optimization, or games. The absence of convexity poses signifi-

cant challenges to convergence analysis of most training algorithms, and in some cases (such

as min-max games) it is not even known whether common training algorithms converge or

not. In this thesis, we aim to partially bridge the gap by

1. Proposing a new sampling framework to transform non-convex problems into convex

ones.

2. Characterizing the convergent sets of a wide family of popular algorithms for min-max

optimization.

3. Devising provably convergent algorithms for finding mixed Nash Equilibria of infinite-

dimensional bi-affine games.

Our theory has several important implications. First, we resolve a decade-old open problem

in Bayesian learning via our non-convex sampling framework. Second, our algorithms for bi-

affine games apply to the formidably difficult training of generative adversarial networks and

robust reinforcement learning, and on both examples we demonstrate promising empirical

performance. Finally, our results on min-max optimization lead to a series of negative results

for state-of-the-art algorithms, suggesting that one requires fundamentally new tools to

advance the theory.
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Résumé
De nombreux problèmes importants dans l’apprentissage automatique contemporain néces-

sitent la résolution de problèmes hautement non-convexes d’échantillonnage, d’optimisation

ou de jeux. Malheureusement, l’absence de convexité pose des défis importants à l’analyse de

convergence de la plupart des algorithmes de formation, et dans certains cas (comme les jeux

min-max), on ne sait même pas si les algorithmes de formation communs convergent ou non.

Dans cette thèse, nous visons à combler partiellement ce déficit en

1. Proposant un nouveau cadre d’échantillonnage pour transformer les problèmes non-

convexes en problèmes convexes.

2. Caractérisant les ensembles convergents d’une grande famille d’algorithmes populaires

pour l’optimisation min-max.

3. Développant des algorithmes à convergence prouvée pour trouver des équilibres de

Nash mixtes de jeux bidimensionnels à dimension infinie.

Notre théorie a plusieurs implications importantes : Premièrement, nous résolvons un pro-

blème ouvert de dix ans dans l’apprentissage Bayésien via notre cadre d’échantillonnage

non-convexe. Deuxièmement, nos algorithmes pour les jeux bi-affines s’appliquent à l’en-

traînement extrêmement difficile des réseaux antagonistes génératifs et à l’apprentissage

par renforcement robuste, et nous démontrons, pour les deux exemples, des performances

empiriques prometteuses. Enfin, nos résultats sur l’optimisation min-max conduisent à une

série de résultats négatifs pour les algorithmes de pointe, ce qui suggère qu’on a besoin d’outils

fondamentalement nouveaux pour faire avancer la théorie.

ix
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1 Introduction

1.1 The three fundamental tasks in machine learning

Modern machine learning (ML) can be viewed as a field of engineering whose primary goal

is to automate decision making based on past observations, i.e., the data. The keyword

“engineering” above emphasizes the interdisciplinary nature of ML, which has been strongly

influenced by the theory of computer science, statistics, optimization, and control. To illustrate

such a perspective, [Jor19] vividly drew an analogy to the development of civil and chemical

engineering:

“Whereas civil engineering and chemical engineering built upon physics and

chemistry, this new engineering discipline (ML) will build on ideas that the preced-

ing century gave substance to, such as information, algorithm, data, uncertainty,

computing, inference, and optimization.”

Despite the vast generality and all-encompassing scope of ML, there are a few fundamental

tasks that lie at the heart of almost every single application. First, by the very definition of

ML, the ultimate goal is to identify the “best decision” given data. Mathematically, this can be

concisely formulated as:

Task 1: Optimization. Given a function f (xxx), find xxx? := argminxxx∈X f (xxx).

Next, due to the ubiquitous noise in data, computing systems, and algorithms, many applica-

tions require to incorporate, quantify, and even exploit the stochasticity in learning decision

rules. In this regard, the most convenient paradigm is given by sampling:

Task 2: Sampling. Given a probability distribution dµ(xxx) ∝ e−V (xxx)dxxx, generate a random

variable (called a “sample”) XXX whose distribution is (approximately) dµ.

Finally, we will focus on an important scenario in modern ML where each learner no longer

makes decision in isolation. Instead, multiple agents are simultaneously involved in a single

task, and the “optimal decision” of one agent will invariably depend on all others’. As a simple
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Chapter 1. Introduction

example, suppose, on a beautiful Sunday, we ask Google map to take us from Geneva to Paris

by car. In terms of avoiding traffic, it will be highly suboptimal for Google to recommend

everyone the same road, even though it might be the shortest path connecting the two cities.

The very same principle applies to most of the recommendation systems (restaurants, movies,

etc.), which are foreseen to be a major application of ML in the coming decade.

Mathematically, multi-agent learning is best described as a generic game in the sense of

[vN28, Nas50]. In this thesis, however, we will particularize to the special case of min-max

games, which is synonymous to two-player zero-sum games. Our purpose is three-fold:

1. Two-player games already capture many of the fundamental challenges of multi-player

games.

2. The theoretical understanding of games are limited even for two-player games.

3. Min-max optimization naturally arises also in a number of other important applica-

tions, such as generative adversarial network (GAN) [GPAM+14], robust reinforcement

learning [PDSG17], and adversarial training [MMS+18].

Formally, our final fundamental task is:

Task 3: Min-max games. Let xxx, yyy be the decision variables for two players and F (xxx, yyy) be the

loss (resp. reward) function for the xxx (resp. yyy) player. Find a saddle-point (also known as an

equilibrium [vN28, Nas50]) of the min-max objective:

min
xxx∈X

max
yyy∈Y

F (xxx, yyy).

1.2 State-of-the-arts: the critical role of non-convexity

All the tasks mentioned above are classical and have been studied for at least a century.

However, what sets modern ML apart from these classical inspection is the assumptions on

the objectives ( f , V , and F ). Specifically, the distinguishing feature is that we no longer assume

convexity.

Take Task 1 as an illustration. Until a decade ago, the most intensely studied subjects of

optimization (at least in ML) were linear and convex programming. Then came 2012, the

year which witnessed the advent of AlexNet [KSH12] and its astounding accuracy in image

classification, marking the dawn of the “deep learning revolution”. Shortly after, it was recog-

nized that the success of deep learning is in large part due to the ability of empirically solving

non-convex optimization problems. Nowadays, non-convex optimization has become one

of the most active and impactful areas in ML, and many conditions are proposed so that

non-convex minimization provably converges.

Similar to optimization, the scopes of sampling and min-max games haven been strongly
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influenced by deep learning, and hence give rise to inherently non-convex tasks. In addition,

there exist several classical problems in sampling that are also non-convex (meaning V in Task

2 is non-convex) and have remained open for decades. Collectively, Tasks 1-3 with non-convex

f ,V and non-convex/non-concave F present the most pivotal and pressing challenges in

contemporary ML, both in theory and practice.

1.3 Contributions and organization

This thesis is devoted to solving certain important non-convex problems in modern ML. We

stress that we put equal emphasis in theory and practice, and therefore by “solving” we mean

proposing a provably convergent solution that either works well empirically, or provides

immediate practical implications.

We now summarize the contributions as follows.

1.3.1 Review of convex techniques: finite games

Before diving into non-convex problems, we will first revisit finite games in Chapter 2. This is

because finite games are themselves sampling problems from finite distributions, which can

be solved via online (convex) optimization techniques. As such, they lie at the intersection of

Tasks 1-3 and serve as a great illustration of the chapters to come.

In Chapter 2, we will resolve an open problem of simultaneously achieving the optimal honest

and adversarial regret via modifying a key algorithmic idea, the mirror descent (MD). We will

also take the opportunity to set up the notations.

Next, we turn to non-convex problems. In full generality, it is well-known that Tasks 1-3

are NP-Hard. Fortunately, many important applications in ML do admit rich structures that

allow for elegant solutions. In this thesis, we will demonstrate three approaches to solving

non-convex problems:

1.3.2 Exploiting hidden convexity

While a problem, given in its most natural formulation, might seem non-convex, it is possible

that an alternative viewpoint is able to reveal the hidden convexity.

In Chapter 3, we show that this is actually the case for a decades-old open problem in Bayesian

learning, the Latent Dirichlet Allocation (LDA) [BNJ03]. LDA is of paramount importance in

Bayesian learning, and in particular presents a powerful paradigm for text modeling. Unfortu-

nately, LDA corresponds to Task 2 with a non-convex V . In spite of tremendous efforts, LDA is

still devoid of an efficiently sampler which possesses convergence guarantees.

Our work [HKRC18] resolves this open problem by showing that LDA is in fact a convex
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sampling task in disguise, whose convexity is unveiled only when we look at the corresponding

dual distribution, not the original one. As a result, we prove that LDA is essentially as easy

as convex sampling problems, for which a plethora of algorithms with strong convergence

guarantees exist.

1.3.3 Asymptotic behaviors via dynamical system

Our second approach is to reduce the long-term behaviors of practical, discrete algorithms to

their continuous-time counterparts, which greatly simplifies the analysis.

The most general framework to enact such an approach is via theory of dynamical systems

[Ben99]. In Chapter 4, we show that, under mild assumptions on the objective F and step-

size policies, most algorithms proposed for solving non-convex/non-concave Task 3 exhibit

exactly the same asymptotic behavior. Furthermore, we rigorously prove that such a behavior

is in fact undesirable, in the sense that these state-of-the-art algorithms collectively fail on

some simple, polynomial objectives.

1.3.4 Convex reformulation of non-convex problems

Our final approach for solving non-convex problems is to propose a convex alternative which

is equally meaningful as the original one.

The best instantiation of this is approach is von Neumann’s formulation of a two-player, finite

game [vNM44]: whereas pure strategy equilibrium might seem the most intuitive concept from

the first glance, it is well-known to be ill-defined and hence lead to imprecise mathematical

questions. Instead, one should consider the mixed equilibrium, which is always well-defined

by von Neumann’s min-max principle.

In Chapter 5, we show that this very same strategy can be carried out to solve challenging

min-max optimization problems that are non-convex/non-concave. Specifically, given any

non-convex/non-concave min-max problem, we show how to extend von Neumann’s min-

max principle, and then solve the mixed equilibrium formulation using infinite-dimensional

convex optimization techniques.
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2 Warmup: zero-sum finite games

This chapter resolves an open problem in finite games where we aim to design an algorithm

that simultaneously achieves the optimal honest regret, adversarial regret, and convergence

to the game value.

Although the problem is convex and online, our core techniques for the solution, in particular

the algorithmic idea of mirror descent (MD), will continue to serve as the backbone of the

chapters to come.

2.1 Introduction

An (offline) two-player zero-sum game with payoff matrix A refers to the solving the min-max

problem:

V := min
yyy∈∆n

max
xxx∈∆m

〈
xxx, Ayyy

〉
(2.1)

where ∆d is a d-dimensional simplex, representing the mixed strategies over d actions. The

quantity V in (2.1) is called the value of the game. Any pair (x̄xx, ȳyy) attaining the game value is

called an equilibrium strategy.

In this chapter, we are interested in the decentralized setting (aka., the “strongly uncoupled”

setting), where the payoff matrix and the number of opponent’s strategies are unknown to

both players, and their goal is to learn a pair of equilibrium strategy through repeated game

plays. Moreover, each player aims to suffer a low individual regret, even in the presence of

an adversary or a corrupted channel that distorts the feedback. Such a setting is of great

interest in optimization and behavioral economics [Mye99], especially under communication

constraints.

Specifically, at each round t , the players take actions xxx t and yyy t , and then receive the loss

vectors −Ayyy t (for xxx-player) and A>xxx t (for yyy-player). In the honest setting, we assume that

the two players take actions according to a prescribed algorithm, and we say the setting is

7
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Honest RT Adversarial RT Game Value Oracle Algorithm

[DDK11] O(logT ) O(
p

T ) O(T −1log
3
2 T ) |A|max Complicated

[RS13b] ? O(
p

T logT ) O
(
T −1logT

)
T, |A|max Simple

This chapter O(logT ) O(
p

T ) O
(
T −1

) |A|max Simple

Table 2.1: A convergence rate comparison in the context of assumptions.

adversarial if only one player (the xxx-player in this chapter) adheres to the prescribed algorithm

and the other player arbitrary.

As in previous work, we assume that an upper bound |A|max on the maximum absolute entry

of A is available to both players. The goal is to achieve∣∣V −〈
xxxT , AyyyT

〉∣∣≤ r1(T ),

RT := max
xxx∈∆m

T∑
t=1

〈
xxx t −xxx,−Ayyy t

〉≤ r2(T )

for fast-decaying r1 and sublinear r2 in T . The first requirement is to approximate the game

value in (2.1), and the second one asks to minimize the regret RT .

An open problem proposed by [DDK11] posits the existence of a simple algorithm that con-

verges at optimal rates for both regret and the value of the game in an uncoupled manner,

both against honest (i.e., cooperative) and dishonest (i.e., arbitrarily adversarial) behavior.

The chapter precisely resolves this challenge:

Theorem 2.1 (Main result of Chapter 2, informal). For (2.1), there is a simple decentralized

algorithm with non-adaptive step-size such that

r1(T ) =O

(
1

T

)
, r2(T ) =O

(
logT

)
,

if the opponent is honest (i.e., playing collaboratively to solve the game). Moreover, against any

adversary, we have

r2(T ) =O
(p

T
)

.

Except for the O
(
logT

)
honest regret, these rates are known to be optimal [CBL06, DDK15].

We are also the first to remove logT factors in convergence to the value of the game, an

open question posed by the very first work in learning decentralized games [DDK11]. An

comparison of our rates against the prior arts is summarized in Table 2.1.

2.2 Preliminaries and notation

Let h be a function over the convex domain D that is 1-strongly convex with respect to the

norm ‖·‖, and let D(·, ·) be the Bregman divergence associated with h. We will make heavy use

8



2.3. A family of optimistic mirror descents: classical, robust, and let’s be honest

of the three-point identity for Bregman divergence in the sequel:

D(xxx, yyy)+D(yyy ,zzz) = D(xxx,zzz)+〈
xxx − yyy ,∇h(zzz)−∇h(yyy)

〉
.

We use the notation zzz = MDη(xxx,ggg ) to denote:

zzz =∇h?
(
∇h(xxx)−ηggg

)
where h? is the Fenchel dual of h.

We define

D2 := max

{
sup

xxx,xxx ′∈D
1

2
‖xxx −xxx ′‖2, sup

xxx∈D
D(xxx,xxxc )

}

where xxxc := argminxxx∈D h(xxx) is the prox center. Hence D controls both the diameter (in ‖ · ‖)

and the Bregman divergence to the prox center.

We frequently use the fact that〈
xxx, Ayyy

〉≤ |A|max ∀xxx ∈∆m , yyy ∈∆n

where |A|max is the maximum entry of A in absolute value, and∆m := {xxx ∈Rm | ∑m
i=1 xi = 1, xi ≥

0} is the standard simplex. On a simplex, we will only consider the entropic mirror map:

h(xxx) =
k∑

i=1
xi log xi , k = m or n (2.2)

which is well-known to be 1-strongly convex in ‖ ·‖1.

We use 1
m 1m to denote the uniform distribution on ∆m .

2.3 A family of optimistic mirror descents: classical, robust, and

let’s be honest

We first illustrate the high-level ideas to prove Theorem 2.1 in Section 2.3.1. A novel analysis

for OMD in the honest setting is given in Section 2.3.2, and we propose a new algorithm for

the adversarial setting in Section 2.3.3. Finally, the full algorithm is presented in Section 2.3.4,

along with the rigorous version of the main result (cf. Theorem 2.4).
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Algorithm 1: Optimistic Mirror Descent: xxx-Player

Set η= 1
2|A|max

Play zzz1 = zzz2 = zzz3 = 1
m 1m

For t ≥ 3:

1: Compute xxx t+1 = MDη(xxx t ,−2(t −2)Awww t +3(t −3)Awww t−1 − (t −4)Awww t−2)
2: Play zzz t+1 = 1

t−1

∑t+1
i=3 xxxi

3: Observe −Awww t+1

Algorithm 2: Optimistic Mirror Descent: yyy-Player

Set η= 1
2|A|max

Play www1 =www2 =www3 = 1
n 1n

For t ≥ 3:

1: Compute yyy t+1 = MDη(yyy t ,2(t −2)A>zzz t −3(t −3)A>zzz t−1 + (t −4)A>zzz t−2)
2: Play www t+1 = 1

t−1

∑t+1
i=3 yyy i

3: Observe A>zzz t+1

2.3.1 High-level ideas

Our algorithms are inspired by the iterates of the form:{
xxx t+1 = MDη(xxx t ,−2Ayyy t + Ayyy t−1)

yyy t+1 = MDη(yyy t ,2A>xxx t − A>xxx t−1)
, (2.3)

which are equivalent to the OMD in [RS13b] (see Appendix A.1). It is known that directly

applying (2.3) to (2.1) yields O
( 1

T

)
convergence in the game value, however without any

guarantee on the regret.

To make OMD optimal for zero-sum games, we improve (2.3) on two fronts. First, in the honest

setting, we make the following simple observation: although the iterates xxx t are not guaranteed

to possess sublinear regret, the averaged iterates 1
t

∑t
i=1 xxxi do enjoy logarithmic regret, and

hence, it suffices to play the averaged iterates in the honest setting.

Second, in order to make OMD robust against any adversary, we utilize the “mixing steps” of

[RS13b] with an important improvement: our step-sizes do not depend on the time horizon.

This new feature is crucial in removing logT factors in both the convergence to game value

and adversarial regret. In fact, our analysis is arguably simpler than [RS13b].

2.3.2 Optimistic mirror descent

As alluded to in Section 2.3.1, we will play OMD with the averaged iterates. The algorithms are

given explicitly in Algorithms 1–2.

Remark 2.3.1. Note that there is no need to play 1
m 1m and 1

n 1n three times in Algorithms 1–2.

The players could just play once
( 1

m 1m
)>

A
( 1

n 1n
)

and would have enough information to run

OMD from xxx4 and yyy4. Our choices are motivated by the resulting ease of the notation.

10



2.3. A family of optimistic mirror descents: classical, robust, and let’s be honest

We analyze our version of OMD below. The crux of our analysis is to first look at the regrets

of auxiliary sequences xxx t and yyy t , and we show that the sum of the auxiliary regrets, not any

individual of them, controls both the convergence to the value of the game and the honest

regret for the averaged sequences zzz t and www t .

Theorem 2.2. Suppose two players of a zero-sum game have played T rounds according to the

OMD algorithm with η= 1
2|A|max

. Then

1. The xxx-player suffers an O
(
logT

)
regret:

max
zzz∈∆m

T∑
t=3

〈zzz t −zzz,−Awww t 〉 ≤ log2(T −2)|A|max ×
(
20+ logm + logn

)
(2.4)

=O
(
logT

)
and similarly for the yyy-player.

2. The strategies (zzzT ,wwwT ) constitutes an O
( 1

T

)
-approximate equilibrium to the value of the

game:

|V −〈zzzT , AwwwT 〉| ≤
(
20+ logm + logn

)
|A|max

T −2
(2.5)

=O

(
1

T

)
.

Proof. See Appendix A.2. �

2.3.3 Robust optimistic mirror descent

In this section, we introduce the robust optimistic mirror descent (ROMD), which is a novel

algorithm even for online convex optimization.

Let h be 1-strongly convex with respect to ‖ · ‖, and suppose we are minimizing the regret

against an arbitrary sequence of convex functions f1, f2, . . . in a constraint set D. Assume that

each function is G-Lipschitz in ‖ ·‖. Assume also that no Bregman projection is needed (i.e.,

MDη(xxx,ggg ) ∈D for any xxx and ggg ); this is, for instance, the case for the entropic mirror map.

We state ROMD in the general form in Algorithm 3.

Theorem 2.3 (O(
p

T )-Adversarial Regret). Suppose that ‖∇ ft‖∗ ≤G for all t . Then playing T

rounds of Algorithm 3 with ηt = 1
G
p

t
against an arbitrary sequence of convex functions has the

following guarantee on the regret:

max
xxx∈∆m

T∑
t=1

〈
xxx t −xxx,∇ ft (xxx t )

〉≤G
p

T
(
18+2D2)+GD

(
3
p

2+4D
)

=O
(p

T
)

.

11



Chapter 2. Warmup: zero-sum finite games

Algorithm 3: Robust Optimistic Mirror Descent

1: Initialize xxx1 = xxxc , ∇ f0 = 0, ηt = 1
G
p

t
2: for t = 1,2, ..., do
3: x̃xx t = ( t−1

t )xxx t + 1
t xxxc

4: Set ∇̃t = 2∇ ft (xxx t )−∇ ft−1(xxx t−1),
5: play xxx t+1 = MDηt (x̃xx t ,∇̃t )
6: Observe ft+1

7: end for

Proof. See Appendix A.3. �

When specialized to zero-sum games, it suffices to take xxxc = 1
m 1m , G = |A|max, D = logm, and

h being the entropic mirror map.

2.3.4 Let’s be honest: the full framework

We now present our approach for solving (2.1).

To ease the notation, define

zzz∗
t := arg min

xxx∈∆m

〈xxx,−Awww t 〉

and

www∗
t = arg min

yyy∈∆n

〈
zzz t , Ayyy

〉
.

Let constants C1,C2, and C3 be such that (see Theorems 2.2–2.3 and (A.14))

〈
zzz t −zzz∗

t ,−Awww t
〉≤ C1

t
, zzz t ,www t from OMD, (2.6)〈

www t −www∗
t , A>zzz t

〉≤ C1

t
, zzz t ,www t from OMD, (2.7)

T∑
t=1

〈
zzz t −zzz∗,−Ayyy t

〉≤C2

p
T , zzz t from ROMD and yyy t arbitrary, (2.8)

|V −zzzT AwwwT | ≤ C3

T
, zzzT ,wwwT from OMD. (2.9)

From a high-level, our approach exploits the following simple observation: suppose that we

know C1 above. If the instantaneous regret bound (2.6) and (2.7) hold true for all t , then we

would trivially have the desired convergence.

In contrast, if at any round the bound (2.6) is violated for the xxx-player, then it must be due to

an adversarial play, and we can simply switch to ROMD to get O(
p

T ) regret. However, since

C1 (cf., (A.14)) involves n, the number of opponent’s strategies, the xxx-player cannot compute

12



2.3. A family of optimistic mirror descents: classical, robust, and let’s be honest

Algorithm 4: Let’s Be Honest Optimistic Mirror Descent: xxx-Player

1: Initialize b = 1, t = 1,www0 = 1
n 1n and zzz0 = 1

m 1m

2: Play t-th round of OMD-xxx, observe −Apt

3: if Gwww
t := 〈

www t−1, A>zzz t−1
〉−〈

pt , A>zzz t−1
〉> b

t−1 then
4: Play b4 −1 rounds of ROMD
5: t ← t +1
6: b ← 2b
7: Go to line 2.
8: end if
9: −Awww t ←−Apt

10: if Gzzz
t := 〈zzz t ,−Awww t 〉−

〈
zzz∗

t ,−Awww t
〉> b

t then
11: Play x̌xx t+1 := zzz∗

t
12: Play b4 −1 rounds of ROMD
13: t ← t +2
14: b ← 2b
15: Go to line 2.
16: end if
17: t ← t +1
18: Go to line 2.

it exactly. The situation is similar for the yyy-player. We hence need to come up with a way to

estimate C1 for both players.

It is important to note that one can not naïvely estimate C1 by binary search separately on

both players. The reason, and the major difficultly to the above approach, is as follows: since

in general
〈

zzz t −zzz∗
t ,−Awww t

〉 6= 〈
www t −www∗

t , A>zzz t
〉

, it could be the case that, at the same round, the

xxx-player detects a bad instantaneous regret and switch to ROMD, while the yyy-player remains

in OMD, even though two players are both honest. However, our entire analysis of OMD would

breakdown if the OMD is not played cohesively.

Furthermore, recall that we also want robustness against any adversary. Therefore, a bad

instantaneous regret indicates the possibility of receiving an adversarial play, and we need to

switch to ROMD whenever this occurs.

To resolve such issues, we devise a simple signaling scheme (x̌xx t and y̌yy t in Algorithms 4–5),

which synchronizes both players’ C1 estimate and also the OMD plays while guaranteeing

robustness.

In words, our signaling scheme is a “Let’s be honest” message to the opponent: “I am having

a bad instantaneous regret. Please update your C1 with me, and please pretend that I am

adversarial for a small number of rounds, so that we can play honest OMD cohesively.” It turns

out that doing these extra signaling rounds do not hurt the convergence rates in OMD and

ROMD at all.

Our full algorithm, termed Let’s Be Honest (LbH) Optimistic Mirror Descent, is presented in

13



Chapter 2. Warmup: zero-sum finite games

Algorithm 5: Let’s Be Honest Optimistic Mirror Descent: yyy-Player

1: Initialize b = 1, t = 1,www0 = 1
n 1n and zzz0 = 1

m 1m

2: Play t-th round of OMD-yyy , observe A>ot

3: if Gzzz
t := 〈zzz t−1,−Awww t−1〉−〈ot ,−Awww t−1〉 > b

t−1 then
4: Play b4 −1 rounds of ROMD
5: t ← t +1
6: b ← 2b
7: Go to line 2.
8: end if
9: Azzz t ← A>ot

10: if Gwww
t := 〈

www t , A>zzz t
〉−〈

www∗
t , A>zzz t

〉> b
t then

11: Play y̌yy t+1 :=www∗
t

12: Play b4 −1 rounds of ROMD
13: t ← t +2
14: b ← 2b
15: Go to line 2.
16: end if
17: t ← t +1
18: Go to line 2.

Algorithms 4–5.

Remark 2.3.2. In Algorithms 4–5, the role of b is to estimate the constant C1 in (2.6). Since our

analysis requires b to be the same for both players throughout the algorithm run, a simple

way is to assume that, say, m = n = 5, compute the corresponding C̃1, and set the initial

b ← C̃1. Doing so indeed improves upon constants in our convergence; we chose b = 1 only

for simplicity.

Remark 2.3.3. There are some degree of freedom in Algorithms 4–5. For instance, instead of

doubling b in Line 16, one can do b ← (1+ ε)b for some ε > 0. In Line 5, one can also play

b2 −1 rounds, rather than b4 −1. As will become apparent in Theorem 2.4, these variants only

effect the constants but not the convergence rates. However, they do have impact on empirical

performance; cf. Section 2.4.

The following key lemma ensures the two players to enter the ROMD plays coherently.

Lemma 2.1. If the yyy-player enters Line 12 of Algorithm 5 at the t-th round, then the xxx-player

enters Line 4 of Algorithm 4 at the (t +1)-th round. Conversely, if, at the t-th round, the yyy-player

does not enter Line 12 of Algorithm 5, then the xxx-player does not enter Line 4 of Algorithm 4 at

the (t +1)-th round.

Exactly the same statements hold when the xxx- and yyy-player are reversed above.

Proof. If the yyy-player enters Line 12 of Algorithm 5 at the t-th round, then y̌yy t+1 is signalled

at the (t + 1)-th round, and it must be the case that
〈

www t −www∗
t , A>zzz t

〉 > b
t (cf. Line 12 of

Algorithm 5). Therefore, at the (t +1)-th round, the xxx-player would receive −Ay̌yy t+1 =−Awww∗
t

14



2.3. A family of optimistic mirror descents: classical, robust, and let’s be honest

and compute

Gwww
t+1 =

〈
www t , A>zzz t

〉−〈
y̌yy t+1, A>zzz t

〉
= 〈

www t −www∗
t , A>zzz t

〉> b

t

which then enters the Line 4 of Algorithm 4.

Conversely, suppose that the yyy-player does not enter Line 12 of Algorithm 5 at the t-th round

(or, equivalently, plays OMD at the (t +1)-th round). Then
〈

www t −www∗
t , A>zzz t

〉≤ b
t , implying that

Gwww
t+1 =

〈
www t −www t+1, A>zzz t

〉
≤ 〈

www t −www∗
t , A>zzz t

〉≤ b

t

hence preventing the xxx-player from entering Line 4 of Algorithm 4.

Exactly the same computation holds when we reverse the role of xxx- and yyy-player. �

Given Lemma 2.1, we now know that the xxx-player switches to ROMD if and only if the yyy-player

does. The rest of the proof then readily follows from Theorems 2.2–2.3.

Theorem 2.4. Suppose the xxx-player plays according to Algorithm 4 for T rounds, and let RT be

the regret up to time T . Then

1. Let T = T1+T2+T3 where T1 is the number of OMD plays, T2 is the number of ROMD plays,

and T3 is the number of signaling rounds (playing x̌xx t or y̌yy t ). Then there are constants C

and C ′, depending only on m,n and |A|max, such that

1

T
RT ≤ C logT1 +C ′pT2

T1 +T2
. (2.10)

In particular, if the opponent plays honestly, then RT =O(logT1) =O(logT ). If the oppo-

nent is adversarial, we have RT =O(
p

T2) =O(
p

T ).

2. Suppose that the honest yyy-player plays Algorithm 5. Then the pair (zzzT ,wwwT ) constitutes

an O
( 1

T

)
-approximate equilibrium:

|V −〈zzzT , AwwwT 〉 | ≤ C ′′

T
(2.11)

for some constant C ′′.

Proof. Suppose first that both players are honest.
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Chapter 2. Warmup: zero-sum finite games

We first prove the individual regret for the xxx-player. We split the terms as follows:

RT = RT1 (playing OMD)+RT2 (playing ROMD)+RT3 (signaling). (2.12)

Recall (2.6)-(2.9). We claim that

(a) T3 ≤ dlogC1e.

(b) T2 ≤ 16 · 16T3−1−1
15 :=C ′

1.

Indeed, after dlogC1e-times signaling, we would have b = 2T3 >C1. Then (2.6) and (2.7) imply

that we will never enter Line 12 again. On the other hand, we have

T2 ≤
T3∑

r=1
24r = 16T3−1 −1

15
.

Combining (a), (b) and using (2.6), (2.8) in (2.12), we conclude that

RT ≤C1 logT1 +C2

√
T2 +2|A|maxT3

≤C1 logT1 +C2

√
C ′

1 +2|A|maxdlogC1e
=O(logT1) =O(logT )

which establishes (2.10) in the honest case.

For convergence to the value of the game, we have, by (2.9),

|V −〈zzzT , AwwwT 〉 | ≤ C3

T −T2 −T3
≤ C3

T −C∗

where C∗ = dlogC1e+C ′
1. The proof of (2.11) is completed by using the fact that 1

T−C∗ ≤ C∗
T

when T ≥ C∗2

C∗−1 .

Finally, we show (2.10) in the adversarial case.

Let T1,T2, and T3 be as before, and we again split the regret into:

RT = RT1 (playing OMD)+RT2 (playing ROMD)+RT3 (signaling).

Notice that this time the inequalities (2.6) and (2.7) do not apply since the opponent no longer

plays OMD collaboratively. However, by Line 12 of Algorithm 4, for every OMD play we must

have

〈zzz t ,−Awww t 〉−
〈

zzz∗
t ,−Awww t

〉≤ b

t
≤ 2T3

t
.
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2.4. Experiments

Following the analysis as in the honest setting, we may further write

RT ≤ 2T3 logT1 +C2

√
T2 +2|A|maxT3.

It hence suffices to show that

2T3 logT1 ≤C∗∗√
T1 +T2. (2.13)

for some constant C∗∗. To see (2.13), recall that

T2 = 16(16T3 −1)

15
≥ 16T3−1.

But then

2T3 logT1p
T1 +T2

≤ 2T3 logT1√
2
p

T1T2

≤ 2T3 logT1

2T3−1 ·p2 · 4
p

T1
≤C∗∗

for some universal constant C∗∗. �

2.4 Experiments

The purpose of this section is to provide numerical evidence to the following claims of our

theory:

1. The LbH algorithm does not require knowing the time horizon beforehand, and our

step-sizes are non-adaptive. Therefore, all quantities of interest, such as regrets or game

value, should steadily decrease along the algorithm run.

2. The LbH algorithm automatically adjusts to honest and adversarial opponents.

For comparison, we include the modified OMD (henceforth abbreviated as m-OMD) of

[RS13b] in our experiment, for different choices of time horizon.

We generate the entries of A uniformly at random in the interval [−1,1], and we set m = 200

and n = 300.

We consider two scenarios:

1. Honest setting: Both players adhere to the prescribed algorithms and try to reach the

Nash equilibrium collaboratively.

2. Adversarial setting: The yyy-player greedily maximizes the instantaneous regret of the

xxx-player.
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Figure 2.1: Honest setting.

2.4.1 Honest setting

The convergence for the honest setting is reported in Fig. 2.1, for two different parameter

choices of LbH and m-OMD.

For both convergence to the game value and individual regret, after a short burn-in period (due

to not knowing the C1 in (2.6) and (2.7)), the LbH algorithm enters a steady O
( 1

T

)
-decreasing

phase, as expected from our theory. On the other hand, as the m-OMD chooses step-sizes

according to the time horizon, it eventually saturates in both plots.

As noted by [RS13b], it is possible to prevent the saturation of m-OMD by employing the

doubling trick or the techniques in [ACBG02]. However, doing so not only complicates the

algorithm, but also introduces extra logT factors in the convergence of honest regret, since

the doubling trick loses a logT factor for logarithmic regrets. Such rates are sub-optimal given

our results.

2.4.2 Adversarial setting

We report the regret comparison in Fig. 2.2.

In the adversarial setting, the LbH algorithm is essentially running the ROMD, and hence we

see a straight O(T − 1
2 ) decrease in the regret, as dictated by our upper bound in Theorem 2.3;

see Fig. 2.2(b). The parameter choice does not effect the performance.

The m-OMD slightly outperforms LbH for a short period, but eventually blows up in regret.

We remark that the short-term good empirical performance is due to the adaptive step-sizes

of m-OMD, which require additional work per-iteration. Our LbH algorithm is non-adaptive,

but is already competitive in terms of empirical performance.

18



2.4. Experiments

t

100 101 102 103 104 105 106

R
eg
re
t

10−3

10−2

10−1

100
Regret for x-player

m-OMD, T = 101

m-OMD, T = 102

LbH

(a) Regret comparison.

t

100 101 102 103 104 105 106

R
eg
re
t

10−4

10−3

10−2

10−1

100

101

102
Regret for x-player

Upper Bound

LbH

(b) Upper bound.

Figure 2.2: Adversarial setting.
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3 Mirrored Langevin dynamics

In this chapter, we resolve the challenging task of provably sampling from Latent Dirichlet

Allocation (LDA).

The difficulty of LDA stems from the fact that it is a non-convex sampling problem. However,

by tapping into a connection between Langevin dynamics (LD) and MD (defined in Chapter 2),

we discover that LDA in fact amounts to a simple convex sampling task, thus providing an

elegant solution to a decades-old open problem.

3.1 Introduction

Many modern learning tasks involve sampling from a high-dimensional and large-scale distri-

bution, which calls for algorithms that are scalable with respect to both the dimension and the

data size. To this end, an powerful approach [WT11] is to discretize the Langevin dynamics

(LD):

dXXX t =−∇V (XXX t )dt +p
2dBBB t , (3.1)

where e−V (xxx)dxxx presents a target distribution and BBB t is a d-dimensional Brownian motion.

Such a framework has inspired numerous first-order sampling algorithms and has found wide

empirical success [AKW12, CFG14, DFB+14, DSM+16, LS16, LZS16, PT13, SBCR16].

However, (3.1) is only known to converge when e−V (xxx)dxxx is log-concave (meaning V is con-

vex) and unconstrained. On the other hand, many important distributions in ML are both

non-log-concave and constrained. The focus of this chapter, the Latent Dirichlet Allocation

(LDA), presents a typical and prominent example that is of paramount practical importance.

Nonetheless, due to the reasons described above, there exists no provably convergent algo-

rithm for Latent Dirichlet Allocation (LDA), in spite of the presence of several tailor-made

schemes [LS16, PT13].

In this chapter, we resolve LDA by revealing that it is in fact a log-concave distribution in
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Chapter 3. Mirrored Langevin dynamics

disguise. Concretely, our solution consists of three steps:

1. We first transform the constrained, non-log-concave LDA via the entropic mirror map

to the dual distribution.

2. We show that the dual distribution of LDA is, surprisingly, unconstrained and log-

concave!

3. Building upon a deep result in the theory of optimal transport [Vil08], we show that

convergence in the primal and dual distributions are equivalent.

Combining 1-3, we readily prove that LD applied to the dual distribution of LDA is provably

convergent. Finally, we demonstrate that the algorithm empirically outperforms the state-of-

the-art.

3.2 Preliminaries

3.2.1 Notation

We use Ck to denote k-times differentiable functions with continuous kth derivative. The

Fenchel dual [Roc15] of a function h is denoted by h?. Given two mappings T,F of proper

dimensions, we denote their composite map by T ◦F . For a probability measure µ, we write

XXX ∼µ to mean that “XXX is a random variable whose probability law is µ”.

3.2.2 Push-forward and optimal transport

Let dµ= e−V (xxx)dxxx be a probability measure with support X := dom(V ) = {xxx ∈Rd | V (xxx) <+∞},

and h be a convex function on X . We assume:

The function h is closed, proper, h ∈ C2, and ∇2h Â 0 on X ⊂Rd . (A3.1)

All measures have finite second moments. (A3.2)

All measures vanish on sets with Hausdorff dimension [Man83] at most d −1. (A3.3)

The gradient map ∇h induces a new probability measure dν := e−W (yyy)dyyy through ν(E) =
µ

(∇h−1(E)
)

for every Borel set E on Rd . We say that ν is the push-forward measure of µ under

∇h, and we denote it by ∇h#µ= ν. If XXX ∼µ and YYY ∼ ν, we will sometimes abuse the notation

by writing ∇h#XXX =YYY to mean ∇h#µ= ν.

If ∇h#µ= ν, the triplet (µ,ν,h) must satisfy the Monge-Ampère equation:

e−V = e−W ◦∇h det∇2h. (3.2)
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3.3. Mirrored Langevin dynamics

Using (∇h)−1 =∇h? and ∇2h ◦∇h? = (∇2h?
)−1

, we see that (3.2) is equivalent to

e−W = e−V ◦∇h? det∇2h? (3.3)

which implies ∇h?#ν=µ.

The 2-Wasserstein distance between µ1 and µ2 is defined by

W2
2 (µ1,µ2) := inf

T :T #µ1=µ2

∫
‖xxx −T (xxx)‖2dµ1(xxx). (3.4)

3.3 Mirrored Langevin dynamics

3.3.1 Motivation and algorithm

We begin by briefly recalling the mirror descent (MD) algorithm for optimization. In order to

minimize a function over a bounded domain, say minxxx∈X f (xxx), MD uses a mirror map h to

transform the primal variable xxx into the dual space yyy :=∇h(xxx), and then performs gradient

updates in the dual: yyy+ = yyy −β∇ f (xxx) for some step-size β. The mirror map h is chosen to

adapt to the geometry of the constraint X , which can often lead to faster convergence [NY83]

or, more pivotal to this work, an unconstrained optimization problem [BT03].

Inspired by the MD framework, we would like to use the mirror map idea to remove the

constraint for sampling problems. Toward this end, we first establish a simple fact [Vil03]:

Theorem 3.1. Let h satisfy Assumption (A3.1). Suppose that XXX ∼ µ and YYY = ∇h(XXX ). Then

YYY ∼ ν :=∇h#µ and ∇h?(YYY ) ∼µ.

Proof. For any Borel set E , we have ν(E) = P (YYY ∈ E) = P(
XXX ∈∇h−1(E)

) = µ
(∇h−1(E)

)
. Since

∇h is one-to-one, YYY =∇h(XXX ) if and only if XXX =∇h−1(YYY ) =∇h?(YYY ). �

In the context of sampling, Theorem 3.1 suggests the following simple procedure: For any

target distribution e−V (xxx)dxxx with support X , we choose a mirror map h on X satisfying

Assumption (A3.1), and we consider the dual distribution associated with e−V (xxx)dxxx and h:

e−W (yyy)dyyy :=∇h#e−V (xxx)dxxx. (3.5)

Theorem 3.1 dictates that if we are able to draw a sample YYY from e−W (yyy)dyyy , then ∇h?(YYY )

immediately gives a sample for the desired distribution e−V (xxx)dxxx. Furthermore, suppose for

the moment that dom(h?) = Rd , so that e−W (yyy)dyyy is unconstrained. Then we can simply

exploit the classical Langevin Dynamics (3.1) to efficiently take samples from e−W (yyy)dyyy .
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Chapter 3. Mirrored Langevin dynamics

The above reasoning leads us to set up the mirrored Langevin dynamics (MLD):

MLD ≡
{

dYYY t =−(∇W ◦∇h)(XXX t )dt +p
2dBBB t

XXX t =∇h?(YYY t )
. (3.6)

Notice that the stationary distribution of YYY t in MLD is e−W (yyy)dyyy , since dYYY t is nothing but the

Langevin Dynamics (3.1) with ∇V ←∇W . As a result, we have XXX t → XXX ∞ ∼ e−V (xxx)dxxx.

Using (3.2), we can equivalently write the dYYY t term in (3.6) as

dYYY t =−∇2h(XXX t )−1
(
∇V (XXX t )+∇ logdet∇2h(XXX t )

)
dt +p

2dBBB t .

In order to arrive at a practical algorithm, we then discretize the MLD, giving rise to the

following equivalent iterations:

yyy t+1 − yyy t =
{ −βt∇W (yyy t )+√

2βtξξξt

−βt∇2h(xxx t )−1
(
∇V (xxx t )+∇ logdet∇2h(xxx t )

)
+√

2βtξξξt (3.7)

where in both cases xxx t+1 =∇h?(yyy t+1), ξξξt ’s are i.i.d. standard Gaussian, and βt ’s are step-sizes.

The first formulation in (3.7) is useful when ∇W has a tractable form, while the second one

can be computed using solely the information of V and h.

Next, we turn to the convergence of discretized MLD. Since dYYY t in (3.6) is the classical Langevin

Dynamics, and since we have assumed that W is unconstrained, it is typically not difficult to

prove the convergence of yyy t to YYY ∞ ∼ e−W (yyy)dyyy . However, what we ultimately care about is the

guarantee on the primal distribution e−V (xxx)dxxx. The purpose of the next theorem is to fill the

gap between primal and dual convergence.

We consider three most common metrics in evaluating approximate sampling schemes,

namely the 2-Wasserstein distance W2, the total variation dTV, and the relative entropy D(·‖·).

Theorem 3.2 (Convergence in yyy t implies convergence in xxx t ). For any h satisfying Assump-

tion (A3.1), we have dTV(∇h#µ1,∇h#µ2) = dTV(µ1,µ2) and D(∇h#µ1‖∇h#µ2) = D(µ1‖µ2). In

particular, we have dTV(yyy t ,YYY ∞) = dTV(xxx t ,XXX ∞) and D(yyy t‖YYY ∞) = D(xxx t‖XXX ∞) in (3.7).

If, furthermore, h is ρ-strongly convex: ∇2h º ρI . Then W2(xxx t ,XXX ∞) ≤ 1
ρW2(yyy t ,YYY ∞).

Proof. See Appendix B.1. �

3.3.2 Sampling algorithms on simplex and LDA

We apply the discretized MLD (3.7) to the task of sampling from distributions on the probability

simplex ∆d := {xxx ∈ Rd | ∑d
i=1 xi ≤ 1, xi ≥ 0}, which is instrumental in many fields of machine

learning and statistics.
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3.3. Mirrored Langevin dynamics

On a simplex, the most natural choice of h is the entropic mirror map [BT03], which is well-

known to be 1-strongly convex:

h(xxx) =
d∑
`=1

xi log x`+
(

1−
d∑
`=1

x`

)
log

(
1−

d∑
`=1

x`

)
, where 0log0 := 0. (3.8)

In this case, the associated dual distribution can be computed explicitly.

Lemma 3.1 (Sampling on a simplex with entropic mirror map). Let e−V (xxx)dxxx be the target

distribution on ∆d , h be the entropic mirror map (3.8), and e−W (yyy)dyyy :=∇h#e−V (xxx)dxxx. Then

the potential W of the push-forward measure admits the expression

W (yyy) =V ◦∇h?(yyy)−
d∑
`=1

y`+ (d +1)h?(yyy) (3.9)

where h?(yyy) = log
(
1+∑d

`=1 e y`
)

is the Fenchel dual of h, which is strictly convex and 1-Lipschitz

gradient.

Proof. See Appendix B.2. �

Crucially, we have dom(h?) = Rd , so that the Langevin Dynamics for e−W (yyy)dyyy is uncon-

strained.

Based on Lemma 3.1, we now present the surprising case of the non-log-concave Dirichlet

posteriors, a distribution of central importance in topic modeling [BNJ03], for which the dual

distribution e−W (yyy)dyyy becomes strictly log-concave. Sampling from the Dirichlet posteriors is

the major building block for LDA.

H Example 3.3.1 (Dirichlet Posteriors). Given parameters α1,α2, ...,αd+1 > 0 and observations

n1,n2, ...,nd+1 where n` is the number of appearance of category `, the probability density

function of the Dirichlet posterior is

p(xxx) = 1

C

d+1∏
`=1

xn`+α`−1
`

, xxx ∈ int(∆d ) (3.10)

where C is a normalizing constant and xd+1 := 1−∑d
`=1 x`. The corresponding V is

V (xxx) =− log p(xxx) = logC −
d+1∑
`=1

(n`+α`−1)log x`, xxx ∈ int(∆d ) .

The interesting regime of the Dirichlet posterior is when it is sparse, meaning the majority of the

n`’s are zero and a few nk ’s are large, say of order O(d). It is also common to setα` < 1 for all ` in

practice. Evidently, V is neither convex nor concave in this case, and no existing non-asymptotic
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Chapter 3. Mirrored Langevin dynamics

Algorithm 6: Stochastic Mirrored Langevin Dynamics (SMLD)

Require: Target distribution e−V (xxx)dxxx where V =∑N
i=1 Vi , step-sizes βt , batch-size b

1: Find Wi such that e−NWi ∝∇h#e−NVi for all i .
2: for t ← 0,1, · · · ,T −1 do
3: Pick a mini-batch B of size b uniformly at random.

4: Update yyy t+1 = yyy t − βt N
b

∑
i∈B ∇Wi (yyy t )+√

2βtξξξt

5: xxx t+1 =∇h?(yyy t+1) # Update only when necessary.
6: end for

return xxxT

rate can be applied. However, plugging V into (3.9) gives

W (yyy) = logC −
d∑
`=1

(n`+α`)y`+
(

d+1∑
`=1

(n`+α`)

)
h?(yyy) (3.11)

which, magically, becomes strictly convex and O(d)-Lipschitz gradient no matter what the

observations and parameters are! In view of Theorem 3.2 and [DMM18, Corollary 7], one

can then apply (3.7) to obtain an Õ
(
ε−2d 2R0

)
convergence in relative entropy, where R0 :=

W2
2 (yyy0,e−W (yyy)dyyy) is the initial Wasserstein distance to the target. �

3.4 Stochastic mirrored Langevin dynamics

We have thus far only considered deterministic methods based on exact gradients. In practice,

however, evaluating gradients typically involves one pass over the full data, which can be time-

consuming in large-scale applications. In this section, we turn attention to the mini-batch

setting, where one can use a small subset of data to form stochastic gradients.

Toward this end, we assume:

The distribution e−V (xxx)dxxx admits a decomposable structure V =
N∑

i=1
Vi . (3.12)

Consider the following common scheme in obtaining stochastic gradients. Given a batch-size

b, we randomly pick a mini-batch B from {1,2, . . . , N } with |B | = b, and form an unbiased

estimate of ∇V by computing

∇̃V := N

b

∑
i∈B

∇Vi . (3.13)

The following lemma asserts that exactly the same procedure can be carried out in the dual.

Lemma 3.2. Assume that h is 1-strongly convex. For i = 1,2, ..., N , let Wi be such that

e−NWi =∇h#
e−NVi∫
e−NVi

. (3.14)
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3.4. Stochastic mirrored Langevin dynamics

Define W :=∑N
i=1 Wi and ∇̃W := N

b

∑
i∈B ∇Wi , where B is chosen as in (3.13). Then:

1. Primal decomposibility implies dual decomposability: There is a constant C such that

e−(W +C ) =∇h#e−V .

2. For each i , the gradient ∇Wi depends only on ∇Vi and the mirror map h.

3. The gradient estimate is unbiased: E∇̃W =∇W .

4. The dual stochastic gradient is more accurate: E‖∇̃W −∇W ‖2 ≤ E‖∇̃V −∇V ‖2.

Proof. See Appendix B.3. �

Lemma 3.2 furnishes a template for the mini-batch extension of MLD. The pseudocode is

detailed in Algorithm 6, whose convergence rate is given by the next theorem.

Theorem 3.3. Let e−V (xxx)dxxx be a distribution satisfying Assumption (3.12), and h a 1-strongly

convex mirror map. Let σ2 := E‖∇̃V −∇V ‖2 be the variance of the stochastic gradient of V

in (3.13). Suppose that the corresponding dual distribution e−W (yyy)dyyy =∇h#e−V (xxx)dxxx satisfies

LI º∇2W º 0. Then, applying SMLD with constant step-size βt =β yields1:

D
(
xxxT ‖e−V (xxx)dxxx

)≤
√

2W2
2

(
yyy0,e−W (yyy)dyyy

)(
Ld +σ2

)
T

=O

√
Ld +σ2

T

 , (3.15)

provided that β≤ min
{[

2TW2
2

(
yyy0,e−W (yyy)dyyy

)(
Ld +σ2

)]− 1
2 , 1

L

}
.

Proof. See Appendix B.4. �

H Example 3.4.1 (SMLD for Dirichlet Posteriors). For the case of Dirichlet posteriors, we have

seen in (3.11) that the corresponding dual distribution satisfies (N +Γ)I º ∇2W Â 0, where

N :=∑d+1
`=1 n` and Γ :=∑d+1

`=1 α`. Furthermore, it is easy to see that the stochastic gradient ∇̃W

can be efficiently computed (see Appendix B.5):

∇̃W (yyy)` := N

b

∑
i∈B

∇Wi (yyy)` =−
(

N m`

b
+α`

)
+ (N +Γ)

e y`

1+∑d
k=1 e yk

, (3.16)

where m` is the number of observations of category ` in the mini-batch B. As a result, Theo-

rem 3.3 states that SMLD achieves

D
(
xxxT ‖e−V (xxx)dxxx

)≤
√√√√2W2

2

(
yyy0,e−W (yyy)dyyy

)(
(N +Γ)(d +1)+σ2

)
T

=O

√
(N +Γ)d +σ2

T


1Our guarantee is given on a randomly chosen iterate from {xxx1,xxx2, ...,xxxT }, instead of the final iterate xxxT . In

practice, we observe that the final iterate always gives the best performance, and we will ignore this minor
difference in the theorem statement.
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Chapter 3. Mirrored Langevin dynamics

with a constant step-size. �

3.5 Experiments

We conduct experiments with a two-fold purpose. First, we use a low-dimensional synthetic

data, where we can evaluate the total variation error by comparing histograms, to verify the

convergence rates in our theory. Second, We demonstrate that the SMLD, modulo a necessary

modification for resolving numerical issues, outperforms state-of-the-art first-order methods

on the Latent Dirichlet Allocation (LDA) application with Wikipedia corpus.

3.5.1 Synthetic experiment for Dirichlet posterior

We implement the deterministic MLD for sampling from an 11-dimensional Dirichlet posterior

(3.10) with n1 = 10000, n2 = n3 = 10, and n4 = n5 = ·· · = n11 = 0, which aims to capture the

sparse nature of real observations in topic modeling. We set α` = 0.1 for all `.

As a baseline comparison, we include the Stochastic Gradient Riemannian Langevin Dynamics

(SGRLD) [PT13] with the expanded-mean parametrization. SGRLD is a tailor-made first-order

scheme for simplex constraints, and it remains one of the state-of-the-art algorithms for

LDA. For fair comparison, we use deterministic gradients for SGRLD.

We perform a grid search over the constant step-size for both algorithms, and we keep the best

three for MLD and SGRLD.

Fig. 3.1(a) reports the total variation error along the first dimension, where we can see that

MLD outperforms SGRLD by a substantial margin. As dictated by our theory, all the MLD

curves decay at the O(T − 1
2 ) rate until they saturate at the dicretization error level. In contrast,

SGRLD lacks non-asymptotic guarantees, and there is no clear convergence rate we can infer

from Fig. 3.1(a).

The improvement along all other dimensions (i.e., topics with less observations) are even

more significant; see Appendix B.6.1.

3.5.2 Latent Dirichlet Allocation with Wikipedia corpus

An influential framework for topic modeling is the Latent Dirichlet Allocation (LDA) [BNJ03],

which, given a text collection, requires to infer the posterior word distributions without

knowing the exact topic for each word. The full model description is standard but somewhat

convoluted; we refer to the classic [BNJ03] for details.

Each topic k in LDA determines a word distributionπππk , and suppose there are in total K topics

and W +1 words. The variable of interest is thereforeπππ := (πππ1,πππ2, ...,πππK ) ∈∆W ×∆W ×·· ·∆W .

Since this domain is a Cartesian product of simplices, we propose to use h̃(πππ) :=∑K
k=1 h(πππk ),
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3.5. Experiments

(a) Synthetic data, first dimension. (b) LDA on Wikipedia corpus.

where h is the entropic mirror map (3.8), for SMLD. It is easy to see that all of our computations

for Dirichlet posteriors generalize to this setting.

Experimental setup

We implement the SMLD for LDA on the Wikipedia corpus with 100000 documents, and we

compare the performance against the SGRLD [PT13]. In order to keep the comparison fair, we

adopt exactly the same setting as in [PT13], including the model parameters, the batch-size,

the Gibbs sampler steps, etc. See Section 4 and 5 in [PT13] for omitted details.

Another state-of-the-art first-order algorithm for LDA is the SGRHMC in [MCF15], for which

we skip the implementation, due to not knowing how the B̂t was chosen in [MCF15]. Instead,

we will repeat the same experimental setting as [MCF15] and directly compare our results

versus the ones reported in [MCF15]. See Appendix B.6.2 for comparison against SGRHMC.

A numerical trick and the SMLD-approximate algorithm

A major drawback of the SMLD in practice is that the stochastic gradients (3.16) involve

exponential functions, which are unstable for large-scale problems. For instance, in python,

np.exp(800) = inf, whereas the relevant variable regime in this experiment extends to 1600.

To resolve such numerical issues, we appeal to the linear approximation2 exp(yyy) ' max{0,1+yyy}.

Admittedly, our theory no longer holds under such numerical tricks, and we shall not claim

that our algorithm is provably convergent for LDA. Instead, the contribution of MLD here is to

identify the dual dynamics associated with (3.11), which would have been otherwise difficult

to perceive. We name the resulting algorithm “SMLD-approximate” to indicate its heuristic

nature.

2One can also use a higher-order Taylor approximation for exp(yyy), or add a small threshold exp(yyy) ' max{ε,1+yyy}
to prevent the iterates from going to the boundary. In practice, we observe that these variants do not make a huge
impact on the performance.
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Chapter 3. Mirrored Langevin dynamics

Results

Fig. 3.1(b) reports the perplexity on the test data up to 100000 documents, with the five best

step-sizes we found via grid search for SMLD-approximate. For SGRLD, we use the best

step-sizes reported in [PT13].

From the figure, we can see a clear improvement, both in terms of convergence speed and

the saturation level, of the SMLD-approximate over SGRLD. One plausible explanation for

such phenomenon is that our MLD, as a simple unconstrained Langevin Dynamics, is less

sensitive to discretization. On the other hand, the underlying dynamics for SGRLD is a more

sophisticated Riemannian diffusion, which requires finer discretization than MLD to achieve

the same level of approximation to the original continuous-time dynamics, and this is true

even in the presence of noisy gradients and our numerical heuristics
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4 Spurious convergence of min-max
optimization algorithms

Non-convex/non-concave min-max optimization is a subject of intensive study. However, in

this chapter, we rigorously establish the negative result that most algorithms proposed for

solving non-convex/non-concave Task 3 exhibit problematic asymptotic behavior and cannot

serve as general solutions.

4.1 Introduction

Consider a min-max optimization – or saddle-point – problem of the form

min
xxx∈X

max
yyy∈Y

F (xxx, yyy) (SP)

where X , Y are subsets of a Euclidean space and F : X ×Y → R may be non-convex/non-

concave. Given an algorithm for solving (SP), the following fundamental questions arise:

When does the algorithm converge? Where does the algorithm converge to? (?)

The goal of this chapter is to provide concrete answers to (?) and to study their practical

implications for a wide array of existing methods.

Min-max problems of this type have found widespread applications in machine learning in the

context of GANs [GPAM+14], robust reinforcement learning [PDSG17], and other models of

adversarial training [MMS+18]. In this broad setting, it has become empirically clear that the

joint training of two neural networks (NNs) with competing objectives is fundamentally more

difficult than training a single NN of similar size and architecture. The latter task boils down

to successfully finding a (good) local minimum of a non-convex function, so it is instructive to

revisit (?) in the context of (non-convex) minimization problems.

In this case, much of the theory on stochastic gradient descent (SGD) methods – the “gold

standard” for deep NN training – can be informally summed up as follows:
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Chapter 4. Spurious convergence of min-max optimization algorithms

1. Bounded trajectories of SGD always converge to a set of critical points [Lju77, Lju86,

BT00].

2. The limits of SGD do not contain saddle points or other spurious solutions [Pem90,

BD96, GHJY15].

At first glance, these positive results might raise high expectations for solving (SP). Unfor-

tunately, one can easily find counterexamples with very simple bilinear games of the form

F (xxx, yyy) = xxx>Ayyy : naïvely applying stochastic gradient descent/ascent (SGDA) methods in this

case leads to recurrent orbits that do not contain any critical point of F . Such a phenomenon

has no counterpart in non-convex minimization, and is fundamentally tied to the min-max

structure of (SP).

The failure of SGDA in bilinear games has been studied extensively [YSX+18, GBV+19, ALW19,

AMLJG19, GHP+19, MOP19, MPP18, LS19, SA19, ZY19, PDZC20], leading to more sophisti-

cated schemes such as stochastic extra-gradient (SEG) methods and their variants [DISZ18,

MLZ+19, GBV+19, HIMM19, CGFLJ19]. Meanwhile, to bypass such globally oscillatory issues,

another thread of research [HRU+17, NK17, DP18, MLZ+19, ADLH19, MJS19, NSH+19, JNJ19,

LMR+19, RCJ19, MRS20] has shifted its attention to local analysis. Essentially, these works

either analyze the algorithmic behaviors only “sufficiently close” to critical points, or impose

stringent assumptions on F (such as “coherence” [MLZ+19] or the existence of solutions to a

Minty variational inequality [LMR+19]) to ensure the equivalence between global and local

convergence.

Although these studies have certainly led to fruitful results, the realm beyond bilinear games

and (locally) idealized objectives remains somewhat unexplored (with a few exceptions that

we discuss in detail below). In particular, a convergence theory for general non-convex/non-

concave problems is still lacking.

Our contributions. In this chapter, we aim to bridge this gap by providing precise answers

to (?) for a wide range of min-max optimization algorithms that can be seen as generalized

Robbins–Monro (RM) schemes [RM51]. Mirrorring the minimization perspective, we prove

that, for any such algorithm A:

1. Bounded trajectories of A always converge to an internally chain-transitive (ICT) set.

2. Trajectories of A may converge with arbitrarily high probability to spurious attractors

that contain no critical point of F .

The most critical implication of our theory is that one can reduce the long-term behavior of a

training algorithm to its associated ICT sets, a notion deeply rooted in the study of dynamical

systems [Bow75, Con78, BH96, Ben99, BHS05] that formalizes the idea of “discrete limits of

continuous flows”; cf. Section 4.4. As an example, in minimization problems, one can prove
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that the ICT sets of SGD consist solely of components of critical points; on the other hand,

we show that ICT sets in min-max optimization can exhibit drastically more complicated

structures, even when X =Y =R. In particular, we establish the following negative results:

• An ICT set may contain (almost) globally attracting limit cycles, and the algorithms

designed to eliminate periodic orbits in bilinear games cannot escape them. This obser-

vation corroborates the persistence of non-convergent behaviors in GAN training, and

suggests that bilinear games may be insufficient as models for such applications.

• There exist unstable critical points whose neighborhood contains an (almost) globally

stable ICT set. Therefore, in sharp contrast to minimization problems, “avoiding un-

stable critical points” does not imply “escaping unstable critical points” in min-max

problems.

• There exist stable min-max points whose basin of attraction is “shielded” by an unstable

ICT set. As a result, existing algorithms are repelled from a desirable solution with high

probability, even if initialized arbitrarily close to it.

Finally, we provide numerical illustrations of the above, which further show that common prac-

tical tweaks (such as averaging or adaptive algorithms) also fail to address these problematic

cases.

Further related work. To our knowledge, the convergence to non-critical sets in (SP) has

only been systematically studied in a few settings. Besides the bilinear games alluded to above,

other instances include the “almost bilinear games” [ALW19] and deterministic gradient de-

scent/ascent (GDA) applied to “hidden bilinear games” [FVGP19]. In contrast to these works,

our framework does not impose any structural assumption and requires only mild regularity

of F , and our results apply to many existing methods beyond (S)GDA; cf. Section 4.3. The

generality of our approach is made possible by foundational results in dynamical systems

[Ben99, BH96], which have not been exploited before in the context of min-max optimization,

and have only recently been applied to learning in games with the aim of showing conver-

gence to (local) Nash equilibria [PL12, BHS05, BHS06, PML17, MRS20, CHM17, BM17, BLM18,

MZ19, BBF18].

Another work [Let20] has a similar motivation to our study. The focus of [Let20] is on providing

counterexamples that rule out the convergence of deterministic “reasonable” and “global” al-

gorithms. There are two major distinctions that make our approaches complementary: [Let20]

focuses on the impossibility of desirable convergence guarantees in a purely deterministc

setting; in contrast, our paper focuses squarely on the occurrence of undesirable convergence

phenomena with probability 1 in stochastic algorithms. Taken together, the work [Let20] and

our own paint a fairly complete picture of the fundamental limits of min-max optimization

algorithms.
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4.2 Setup and preliminaries

We focus on general problems of the form (SP) with X =RdX , Y =RdY , and F assumed C 1. To

ease notation, we will denote z = (xxx, yyy), Z =X ×Y and d = dX +dY . In addition, we will write

V (z) ≡ (Vxxx (xxx, yyy),Vyyy (xxx, yyy)) := (−∇xxx F (xxx, yyy),∇yyy F (xxx, yyy)) (4.1)

for the (min-max) gradient field of F , and we will assume that V is Lipschitz. In some cases we

will also require V to be C 1 and we will write J (z) for its Jacobian; this additional assumption

will be stated explicitly whenever invoked.

A solution of (SP) is a tuple z? = (xxx?, yyy?) with F (xxx?, yyy) ≤ F (xxx?, yyy?) ≤ F (xxx, yyy?) for all xxx ∈ X ,

yyy ∈Y ; likewise, a local solution of (SP) is a tuple (xxx?, yyy?) that satisfies this inequality locally.

Finally, a state z? with V (z?) = 0 is said to be a critical (or stationary) point of F . When V is C 1,

any local solution is a stable critical point [JNJ19], i.e., ∇2
xxx F (xxx?, yyy?) º 0 and ∇2

yyy F (xxx?, yyy?) ¹ 0.

From an algorithmic standpoint, we will focus exclusively on the black-box optimization

paradigm [Nes04] with stochastic first-order oracle (SFO) feedback; algorithms with a more

complicated feedback structure (such as a best-response oracle [JNJ19, NI19, FCR19]) or

based on mixed-strategy sampling [HLC19, DEJM+20] are not considered in this chapter. In

detail, when called at z = (xxx, yyy) with random seed ω ∈ Ω, an SFO returns a random vector

V(z;ω) ≡ (Vxxx (z;ω),Vyyy (z;ω)) of the form

V(z;ω) =V (z)+U(z;ω) (SFO)

where the error term U(z;ω) captures all sources of uncertainty in the model (e.g., the selection

of a minibatch in GAN training models, system state observations in reinforcement learning,

etc.). Regarding this error term, we will assume throughout that it is zero-mean and sub-

Gaussian:

E[U(z;ω)] = 0 and P(‖U(z;ω)‖ ≥ t ) ≤ 2e−
t2

2σ2 (4.2)

for some σ> 0 and all z ∈Z . The sub-Gaussian tail assumption is standard in the literature

[Nes04, Nes09, NJLS09, JNT11], and it can be further relaxed with little loss of generality to

finite variance E[‖U(z;ω)‖2] ≤σ2. To streamline our discussion, we will present our results in

the sub-Gaussian regime and we will rely on a series of remarks to explain any modifications

required for different assumptions on U.
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4.3. Core algorithmic framework

4.3 Core algorithmic framework

4.3.1 The Robbins–Monro template

Much of our analysis will focus on iterative algorithms that can be cast in the abstract Rob-

bins–Monro framework of stochastic approximation [RM51]:

Zn+1 = Zn +γn[V (Zn)+Wn] (RM)

where:

1. Zn = (Xn ,Yn) ∈Z denotes the state of the algorithm at each stage n = 1,2, . . .

2. Wn is a generalized error term (described in detail below).

3. γn is the step-size (a hyperparameter, typically of the form γn ∝ 1/np , p ≥ 0).

In the above, the error term Wn is generated after Zn ; thus, by default, Wn is not adapted to

the history (natural filtration) Fn :=H(Z1, . . . , Zn) of Zn . For concision, we will write

Vn =V (Zn)+Wn (4.3)

so Vn can be seen as a noisy estimate of V (Zn). In more detail, to differentiate between

“random” (zero-mean) and “systematic” (non-zero-mean) errors in Vn , it will be convenient to

further decompose the error process Wn as

Wn =Un +bn (4.4)

where bn = E[Wn |Fn] represents the systematic component of the error and Un = Wn −bn

captures the random, zero-mean part. In view of all this, we will consider the following

descriptors for Wn :

a) Bias: Bn = ‖bn‖ (4.5a)

b) Variance: σ2
n = E[‖Un‖2] (4.5b)

The precise behavior of Bn and σ2
n will be examined on a case-by-case basis below.

4.3.2 Specific algorithms

In the rest of this section, we discuss how a wide range of algorithms used in the literature can

be seen as special instances of the general template (RM) above.

H Algorithm 4.1 (Stochastic gradient descent/ascent). The basic SGDA algorithm – also

known as the Arrow–Hurwicz method [AHU58] – queries an SFO and proceeds as:

Zn+1 = Zn +γn V(Zn ;ωn), (SGDA)
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where ωn ∈Ω (n = 1,2, . . . ) is an independent and identically distributed (i.i.d.) sequence of

oracle seeds. As such, (SGDA) admits a straightforward RM representation by taking Wn =
Un =U(Zn ;ωn) and bn = 0. N

HAlgorithm 4.2 (Alternating stochastic gradient descent/ascent). A common variant of SGDA,

is to alternate the updates of the min/max variables, resulting in the alternating stochastic

gradient descent/ascent (alt-SGDA) method:

Xn+1 = Xn +γn Vxxx (Xn ,Yn ;ωn) = Xn +γn[Vxxx (Xn ,Yn)+Uxxx,n]

Yn+1 = Yn +γn Vyyy (Xn+1,Yn ;ω+
n ) = Yn +γn[Vyyy (Xn+1,Yn)+Uyyy ,n]

(alt-SGDA)

where ωn ,ω+
n (n = 1,2, . . . ) are sequences of i.i.d. random seeds, Uxxx,n :=Uxxx (Xn ,Yn ;ωn), and

Uyyy ,n := Uyyy (Xn+1,Yn ;ω+
n ). The RM representation of (alt-SGDA) is obtained by taking Zn =

(Xn ,Yn), bn = (0,Vyyy (Xn+1,Yn)−Vyyy (Xn ,Yn)), and Un = (Uxxx,n ,Uyyy ,n). N

H Algorithm 4.3 (Stochastic extra-gradient). Going beyond (SGDA), the (stochastic) extra-

gradient algorithm exploits the following principle [Kor76, Nem04, JNT11]: given a “base” state

Zn , the algorithm queries the oracle at Zn to generate a leading state Z+
n and then updates

Zn with oracle information from Z+
n . Assuming SFO feedback as above, this process may be

described as follows:

Z+
n = Zn +γn V(Zn ;ωn),

Zn+1 = Zn +γn V(Z+
n ;ω+

n ).
(SEG)

To recast (SEG) in the Robbins–Monro framework, simply take Wn =V(Z+
n ;ω+

n )−V (Zn), i.e.,

Un =U(Z+
n ;ω+

n ) and bn =V (Z+
n )−V (Zn). N

H Algorithm 4.4 (Optimistic gradient / Popov’s extra-gradient). Compared to (SGDA), the

scheme (SEG) involves two oracle queries per iteration, which is considerably more costly. An

alternative iterative method with a single oracle query per iteration was proposed by [Pop80]:

Z+
n = Zn +γn V(Z+

n−1;ωn−1),

Zn+1 = Zn +γn V(Z+
n ;ωn).

(OG/PEG)

Its Robbins–Monro representation is obtained by setting Wn =V(Z+
n ;ωn)−V (Zn), i.e., Un =

U(Z+
n ;ωn) and bn =V (Z+

n )−V (Zn).

Popov’s extra-gradient has been rediscovered several times and is more widely known as the

optimistic gradient (OG) method in the machine learning literature [RS13a, CYL+12, DISZ18,

HIMM19]. In unconstrained min-max optimization, (OG/PEG) turns out to be equivalent

to a number of other existing methods, including “extrapolation from the past” [GBV+19],

reflected gradient [MT20], and the “prediction method” of [YSX+18]. N
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H Algorithm 4.5 (Kiefer–Wolfowitz). When first-order feedback is unavailable, a popular

alternative is to obtain gradient information of F via zeroth-order observations [LLC+19]. This

idea can be traced back to the seminal work of [KW52] and the subsequent development of

the simultaneous perturbation stochastic approximation (SPSA) method by [Spa92]. In our

setting, this leads to the recursion:

Vn =±(d/δn)F (Zn +δnωn)ωn

Zn+1 = Zn +γnVn
(SPSA)

where δn ↘ 0 is a vanishing “sampling radius” parameter, ωn is drawn uniformly at random

from the composite basisΩ= EX ∪EY of Z =X ×Y , and the “±” sign is equal to −1 if ωn ∈ EX
and +1 if ωn ∈ EY . Viewed this way, the interpretation of (SPSA) as a Robbins–Monro method

is immediate; furthermore, a straightforward calculation (that we defer to the appendix) shows

that the sequence of gradient estimators Vn in (SPSA) has Bn =O(δn) and σ2
n =O(1/δ2

n). N

Further examples that can be cast in the general framework (RM) include the negative mo-

mentum method [GHP+19], generalized OG schemes [MOP19], and centripetal acceleration

[PDZC20]; the analysis is similar and we omit the details. Certain scalable second-order meth-

ods can also be viewed as Robbins–Monro schemes, but the driving vector field V is no longer

the gradient field of F ; we discuss this in Example 4.5.3 and the appendix.

4.4 Convergence analysis

4.4.1 Continuous vs. discrete time

The main idea of our approach will be to treat (RM) as a noisy discretization of the mean

dynamics

ż(t ) =V (z(t )). (MD)

This is motivated by the fact that ż(t) can be seen as the continuous-time limit of the finite

difference quotient (Zn+1 − Zn)/γn : in this way, if the error term Wn in (RM) is sufficiently

well-behaved, it is plausible to expect that the iterates of (RM) and the solutions of (MD)

eventually come together. This approach has proved very fruitful when the mean dynamics

(MD) comprise a gradient system, i.e., V =−∇ f for some (possibly non-convex) f : Z →R. In

this case (and modulo mild assumptions), the systems (RM) and (MD) both converge to the

critical set of f , see e.g., [Lju77, KC78, BMP90, KY97, BT00].

On the other hand, the min-max landscape is considerably more involved. The most widely

known illustration is given by the bilinear objective F (xxx, yyy) = xxxyyy : in this case (see Fig. 4.1),

the trajectories (MD) comprise periodic orbits of perfect circles centered at the origin (the

unique critical point of F ). However, the behavior of different RM schemes can vary wildly,

even in the absence of noise (σ= 0): trajectories of (SGDA) spiral outwards, each converging
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Figure 4.1: Comparison of different RM schemes for bilinear games F (xxx, yyy) = xxxyyy , xxx, yyy ∈R. From left to
right: (a) gradient descent/ascent; (b) the mean dynamics (MD); (c) extra-gradient.

to an (initialization-dependent) periodic orbit; instead, trajectories of (SEG) spiral inwards,

eventually converging to the solution z? = (0,0).

This particular difference between gradient and extra-gradient schemes has been well-documented

in the literature, cf. [DISZ18, GBV+19, MLZ+19]. More pertinent to our theory, it also raises

several key questions:

1. What is the precise link between RM methods and the mean dynamics (MD)?

2. When can (MD) accurately predict the long-run behavior of an RM method?

The rest of this section is devoted to providing precise answers to these questions.

4.4.2 Stochastic approximation

We begin by introducing a measure of “closeness” between the iterates of (RM) and the solution

orbits of (MD). To do so, let τn =∑n
k=1γk denote the “effective time” that has elapsed at the

n-th iteration of (RM), and define the continuous-time interpolation Z(t ) of Zn as

Z(t ) = Zn + t −τn

τn+1 −τn
(Zn+1 −Zn) (4.6)

for all t ∈ [τn ,τn+1], n ≥ 1. To compare Z(t) to the solution orbits of (MD), we will further

consider the flowΘ : R+×Z →Z of (MD), which is simply the orbit of (MD) at time t ∈R+ with

an initial condition z(0) = z ∈Z . We then have the following notion of “asymptotic closeness”

due to [BH96, BH95]:

Definition 4.1. Z(t ) is an asymptotic pseudotrajectory (APT) of (MD) if, for all T > 0, we have:

limt→∞ sup0≤h≤T ‖Z(t +h)−Θh(Z(t ))‖ = 0. (4.7)

This comparison criterion is due to [BH96] and it plays a central role in our analysis. In

words, it simply posits that Z(t) eventually tracks the flow of (MD) with arbitrary accuracy
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4.4. Convergence analysis

over windows of arbitrary length; as a result, if Zn is an APT of (MD), it is reasonable to expect

its behavior to be closely correlated to that of (MD).

Our first result below makes this link precise. To state it, we will make the following assump-

tions:

limn→∞ Bn = 0, (A5.1)∑∞
n=1γ

2
nσ

2
n <∞, (A5.2)

both assumed to hold with probability 1. Under these blanket requirements, we have:

Theorem 4.1. Suppose that (RM) is run with a step-size policy γn such that
∑

n γn = ∞,

limn γn = 0, and Assumptions (A5.1)–(A5.2) hold. Then, with probability 1, one of the fol-

lowing holds: a) Zn is an APT of (MD); or b) Zn is unbounded (and hence, non-convergent).

A key challenge in proving Theorem 4.1 is that Assumptions (A5.1) and (A5.2) allow for very gen-

eral error processes Wn in (RM), including cases where Wn is non-zero-mean (bn 6= 0) and/or

unbounded, either with positive probability or in all its moments (e.g., supn E[‖Wn‖q ] =∞
for all q ≥ 2). Because of this, earlier foundational results on asymptotic pseudotrajectories

[BH96, Ben99] do not apply, and we need to employ a series of direct (sub)martingale conver-

gence arguments to control the quadratic variation of Zn . The precise argument relies on a

pathwise version of the Burkholder–Davis–Gundy (BDG) maximal inequality [HH80], but the

details are fairly involved so we defer them to the appendix.

4.4.3 Applications and examples

Applying Theorem 4.1 requires verifying Assumptions (A5.1) and (A5.2) for the algorithmic

framework of Section 4.3. However, even though the noise U(z;ω) in (SFO) is assumed zero-

mean and sub-Gaussian, this does not imply that the generalized error term Wn =Un +bn

in Algorithms 4.1–4.5 enjoys the same guarantees. For example, the RM representation of

Algorithms 4.2–4.4 has non-zero bias, while Algorithm 4.5 exhibits both non-zero bias and

unbounded variance (the latter behaving as O(1/δ2
n) with δn → 0 as n →∞).

In the following proposition we prove that, for a wide range of parameters, Algorithms 4.1–4.5

indeed generate asymptotic pseudotrajectories of (MD).

Proposition 4.1. Let Zn be a sequence generated by any of the Algorithms 4.1–4.5. Assume

further that:

a) For first-order methods (Algorithms 4.1–4.4), the algorithm is run with SFO feedback

satisfying (4.2) and a step-size γn such that A/n ≤ γn ≤ B/(logn)1+ε for some A,B ,ε> 0.

b) For zeroth-order methods (Algorithm 4.5), the algorithm is run with parameters γn and δn

such that limn(γn +δn) = 0,
∑

n γn =∞, and
∑

n γ
2
n/δ2

n <∞ (e.g., γn = 1/n, δn = 1/n1/3).
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Chapter 4. Spurious convergence of min-max optimization algorithms

Then, with probability 1, one of the following holds: a) Zn is an APT of (MD); or b) Zn is

unbounded.

Remark 4.4.1. We note that the requirements for (SFO) are closely linked to the assumptions

for γn : for instance, one can remove the sub-Gaussian tail and impose only that U(z;ω) in

(SFO) is bounded in Lq for some q ≥ 2, and the conclusion of Proposition 4.1 still holds as long

as
∑

n γ
1+q/2
n <∞.

We conclude this discussion with a remark on the boundedness clause for Zn in Theorem 4.1

and Proposition 4.1. Clearly, if Zn is unbounded, it cannot converge to a solution of (SP),

so we need not go further in examining the failure of (RM) as a solution method. Still, for

completeness, we provide in the appendix a coercivity condition for F which guarantees that

Zn is bounded with probability 1.

4.4.4 Convergence analysis

To proceed, it is important to recall that critical points alone cannot capture the broad spec-

trum of algorithmic behaviors when (MD) is not a gradient system: already in Fig. 4.1 we see a

critical point surrounded by an ensemble of periodic orbits. To account for this considerably

richer landscape, we will need some more notions from the theory of dynamical systems:

Definition 4.2. Let S be a nonempty compact subset of Z . We then say that:

a) S is invariant ifΘt (S) ⊆S for all t ≥ 0.

b) S is attracting if it is invariant and there exists a compact neighborhood K of S such that

limt→∞ dist(Θt (z),S) = 0 for all z ∈K.

c) S is internally chain-transitive (ICT) if it is invariant andΘ|S admits no attractors other

than S .

Heuristically, ICT sets are characterized by the property that any two points in such a set

may be joined by a piecewise continuous chain of arbitrarily long segments of orbits of (MD)

broken by arbitrarily small jump discontinuities. As such, they account for a wide range of

invariant sets of (MD), ranging from stationary points and periodic orbits (cf. Fig. 4.1), to

homoclinic loops (trajectories that join a unstable critical point to itself), limit cycles (isolated

periodic orbits), and many others.

Our next result shows that, with probability 1, any limit point of (RM) lies in an ICT set of F :

Theorem 4.2. Suppose that (RM) is run with a step-size sequence γn such that
∑

n γn = ∞,

limn γn = 0. If Assumptions (A5.1) and (A5.2) hold, then, with probability 1, we have: a) Zn

converges to an ICT set of F ; or b) Zn is unbounded (and hence, non-convergent).

Corollary 4.1. Let Zn be a sequence generated by any of the Algorithms 4.1–4.5 with parameters

as in Proposition 4.1. If Zn is bounded, then, with probability 1, it converges to an ICT set of F .
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The proof of Theorem 4.2 builds on a series of deep results in [BH96]; see the appendix. In

plain terms, the theorem asserts that any trajectory of (RM) is either unbounded or eventually

converges to an ICT set, which is “infinitely close” to the long-term orbits of the mean dynamics

(MD). In particular, it rules out any other type of asymptotic behavior (convergent or non-

convergent).

In gradient systems – i.e., when V =−∇ f for some f : Z →R – the only ICT sets of (MD) are

connected sets of critical points of f (for a detailed statement and proof, see the appendix).

As a result, we can effortlessly conclude that any RM scheme exhibits the same asymptotic

behavior in minimization problems: they converge to connected components of critical points

of f .

At the other end of the spectrum, in the bilinear objective F (xxx, yyy) = xxxyyy , we show in the appendix

that any tuple (xxx, yyy) ∈ R2 belongs to an ICT set of F . The most crucial implication of this

observation is that although there exist many non-critical convergent sets in bilinear games,

none of these can be an attractor: for any bounded region S , there always exists z ∉S such that,

no matter how close z is to S , the mean dynamics (MD) initialized at z will stay at a positive

distance from S .

Importantly, in the full space of min-max problems, the two settings described above are

both outliers: mixing a gradient system with a bilinear component can give rise to isolated

periodic attractors (limit cycles) and other forms of attracting ICT sets that cannot be observed

in either gradient systems or bilinear games. Indeed, our final result in this section shows

that, while (SEG) and/or (OG/PEG) might be capable of eliminating periodic orbits in bilinear

games [DISZ18, GBV+19, AMLJG19, LS19, MLZ+19], these methods fail to escape spurious

(i.e., non-critical) attractors arising in generic non-convex/non-concave objectives (see also

Example 4.5.1 for a visual illustration). The formal statement is as follows:

Theorem 4.3. Let S be an attractor of (MD) and fix some confidence level α > 0. If γn is

small enough and Assumptions (A5.1) and (A5.2) hold, there exists a neighborhood U of S ,

independent of α, such that P(Zn converges to S |Z1 ∈U ) ≥ 1−α.

Corollary 4.2. Let Zn be a sequence generated by any of the Algorithms 4.1–4.5 with sufficiently

small γn satisfying the conditions of Proposition 4.1. Then P(Zn converges to S |Z1 ∈U ) ≥ 1−α.

As we show in the next section, Corollary 4.2 can have catastrophic implications for the

convergence of min-max optimization algorithms.

4.5 Spurious attractors: illustrations and examples

We now provide concrete examples of attracting ICT sets consisting entirely of non-critical

points. For illustration purposes, we focus on the simple case X = Y = R with polynomial

objectives; of course, all examples below can be suitably generalized to higher dimensions.
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Despite their rudimentary character, these examples already reveal many unexpected phe-

nomena that are unknown in the context of non-convex minimization (or convex-concave

saddle-point problems).

H Example 4.5.1 (Almost bilinear 6≈ bilinear, instability 6≈ escape). Consider an arbitrarily

small perturbation of a bilinear game:

F (xxx, yyy) = xxxyyy +εφ(yyy), (4.8)

where ε> 0 and φ(yyy) = 1
2 yyy2 − 1

4 yyy4. This problem admits an unstable critical point at the origin;

further, using a general criterion provided in the appendix, one can prove, for ε small enough,

the existence of an attracting ICT set S in a neighborhood of the circle {z : ‖z‖2 = 4/3}. Thus,

any of the RM schemes of Section 4.3 gets trapped by S ; see Fig. 4.2(a) for an illustration for

(SEG).

This example brings two issues of existing studies to light. First, it shows that “almost bilinear

games” can still trap many methods for solving exact bilinear games. Second, in contrast to

minimization problems, the region around an unstable critical point can in fact be fully stable.

Because of this, care needs to be taken when interpreting algorithms that are characterized

as “locally avoiding unstable critical points”, since they might be incapable of escaping their

neighborhoods. N

H Example 4.5.2 (“Forsaken” min-max points). Suppose we apply Algorithms 4.1–4.5 to the

objective

F (xxx, yyy) = xxx(yyy −0.5)+φ(xxx)−φ(yyy) (4.9)

where φ(z) = 1
4 z2 − 1

2 z4 + 1
6 z6. This problem has a desirable min-max solution at (xxx?, yyy?) =

(0,0.5). However, we prove in the appendix that there exist two spurious limit cycles that do

not contain any critical point of F . Worse, the limit cycle closer to (xxx?, yyy?) is unstable and

repels any trajectory that comes close to the solution; see Fig. 4.2(b) for an illustration for

(SEG). Solutions that are “shielded” by spurious limit cycles in this way are unlikely to be

visited by existing algorithms; to the best of our knowledge, no research has been conducted

to tackle such problematic cases. N

H Example 4.5.3 (Second-order methods). Thanks to the efficient implementation of Hessian-

gradient multiplications [Pea94], a popular second-order method for min-max optimization

in machine learning is the Hamiltonian descent method [ALW19]. The idea is simply to run

SGD on f = ‖∇F‖2/2, giving

Zn+1 = Zn −γn J (Zn)∇F (Zn). (HD)

As a (discretized) gradient system, our theory in Section 4.4 shows that (HD) does not possess

ICT sets other than critical points. However, a serious issue of (HD) is that it ignores the sign of

gradients, i.e., it does not distinguish between minimization and maximization. For this reason,
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Figure 4.2: Spurious limits of min-max optimization algorithms. From left to right: (a) (SEG) for (4.8)
with ε= 0.01; (b) “forsaken solutions” of (SEG); (c) “forsaken solutions” of SGA. The red curves present
trajectories with different initialization; non-critical ICT sets are depicted in white; the blue curves
represent an time-averaged sample orbit.

it has mostly been used as a gradient penalty scheme by mixing (HD) (or its variants) with

(SGDA), giving rise to a number of other second-order methods such as symplectic gradient

adjustment (SGA) [BRM+18] and consensus optimization (ConO) [MNG17]. As in Section 4.3,

one can cast these algorithms as RM schemes with V (Zn) replaced by (I−λJ (Zn))V (Zn), where

λ is the regularization parameter. The analysis can then proceed as in Section 4.4 by replacing

(MD) with the appropriate continuous system.

Fig. 4.2(c) shows the spurious convergence of SGA with λ = 0.2 applied to (4.9). The ICT

sets of SGA are only slightly different from Algorithms 4.1–4.5 and, in a certain precise sense,

are perturbations thereof (so they suffer the same symptoms); see the appendix for more

algorithms and details. N

We conclude with two remarks of a practical nature. First, Fig. 4.2 shows that the common

tweak of averaging the iterates can force the trajectories to halt at non-critical points, and this

convergence is by no means min-max optimal. To our knowledge, this provides the first explicit

instances where training can get stuck even with non-vanishing gradients, a phenomenon

often observed in training GANs.

Second, in Sections 4.5–4.5, we report the behaviors of popular adaptive algorithms in training

GANs, including Adam [KB14] and its extra-gradient variant [GBV+19], both with hyperpa-

rameters set to the default values in PyTorch. The result reveals a worrisome trend: while

both Adam and ExtraAdam are able to somewhat mitigate the cycling of (4.8), this nonetheless

comes at the price of converging to the unstable critical point (0,0) (which is in fact a local

max-min, the opposite of a desirable solution). On the other hand, as all RM schemes, both

adaptive methods fail to reach the “forsaken” solutions in Example 4.5.2.

Finally, we stress that the purpose of examining these practical tweaks is not to prove that they

will always fail (we have not performed extensive hyperparameter search). Rather, our aim is

to point out that they cannot consistently serve as off-the-shelf solutions to the pathological

ICT sets, and thus warrant a novel approach in studying min-max optimization problems.
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5 Mixed Nash equilibria of min-max
optimization problems

In Chapter 2, we learned that the entropic mirrored descent can be used to solve a sampling

problem (i.e., finding the mixed Nash equilibrium) of finite games. In Chapter 3, we demon-

strated how to draw samples from distributions that are defined over a continuum of variables.

The goal of this chapter is to show that, by combining the two techniques, we can solve min-

max games with any number of strategies via a lifting trick. We further discuss the practical

impact of our framework applied to important applications, such as generative adversarial

networks (GANs) and robust reinforcement learning (RL).

5.1 Introduction

In Chapter 4, we have seen that many of the most challenging training problems in contempo-

rary ML, including GANs and robust RL, amount to solving a min-max optimization problem

(SP). In addition, we had rigorously shown that existing algorithms provably fail even in simple

polynomial objectives. These negative results naturally prompt the question:

Does there exist a provably convergent algorithm for min-max games?

The goal of this chapter is to answer the question in the affirmative, with the important tweak

that we will modify the notion of “solution” from Chapter 4 (the so-called local pure Nash

equilibrium (NE)) to mixed NE. We show that mixed NE can be solved via the classical prox

methods in optimization, which include MD as a special case.

However, a downside of our solutions is the quadratic running time in the input parameters,

rendering them impractical to training neural networks. To this end, we will further deduce a

computationally efficient variant of our solutions, and showcase its empirical power on GANs

and robust RL.
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Notation. Throughout the chapter, we use zzz to denote a generic variable and Z ⊆ Rd its

domain. We denote the set of all (sufficiently regular) Borel probability measures on Z by

M(Z), and the set of all (sufficiently regular)1 functions on Z by F (Z). We write dµ= ρdzzz

to mean that the density function of µ ∈M(Z) with respect to the Lebesgue measure is ρ.

All integrals without specifying the measure are understood to be with respect to Lebesgue.

For any objective of the form minxxx maxyyy F (xxx, yyy), we say that (xxxT , yyyT ) is an O
(
T − 1

2

)
-NE if

maxxxx,yyy {F (xxxT , yyy)−F (xxx, yyyT )} =O
(
T − 1

2

)
. Similarly we can define O

(
T −1

)
-NE. The symbol ‖·‖L∞

denotes the L∞-norm of functions, and ‖·‖TV denotes the total variation norm of probability

measures.

5.2 Mixed Nash equilibria and infinite-dimensional bi-affine games

We review standard results in game theory in Section 5.2.1, whose proof can be found in

[Bub13a, Bub13b, Bub13c]. Section 5.2.2 performs a lifting trick to transform min-max objec-

tives into the mixed NE formulation, and then relates the training of the min-max problem to

the two-player game in Section 5.2.1, thereby suggesting to generalize the prox methods to

infinite dimension.

5.2.1 Preliminary: finite bi-affine games

As a slight variant of the finite games in Chapter 2, consider the following two-player game

with finitely many strategies:

min
ppp∈∆m

max
qqq∈∆n

〈
qqq ,aaa

〉−〈
qqq , Appp

〉
, (5.1)

where A is a payoff matrix, aaa is a vector, and ∆d := {
zzz ∈Rd | ∑d

i=1 zi = 1
}

is the probability

simplex, representing the mixed strategies (i.e., probability distributions) over d pure strategies.

A pair (pppNE,qqqNE) achieving the min-max value in (5.1) is called a mixed NE.

Assume that the matrix A is too expensive to evaluate whereas the (stochastic) gradients of

(5.1) are easy to obtain. Under such settings, a celebrated algorithm, the so-called entropic

Mirror Descent (entropic MD), learns an O
(
T − 1

2

)
-NE: Let h(zzz) :=∑d

i=1 zi log zi be the entropy

function and h?(yyy) := log
∑d

i=1 e yi = supzzz∈∆d

{〈
zzz, yyy

〉−h(zzz)
}

be its Fenchel dual. For a learning

rate η and an arbitrary vector bbb ∈Rd , define the MD iterates as

zzz ′ = MDη

(
zzz,bbb

)≡ zzz ′ =∇h?
(∇h(zzz)−ηbbb

)
≡ z ′

i =
zi e−ηbi∑d

i=1 zi e−ηbi
, ∀1 ≤ i ≤ d . (5.2)

The update rule takes linear time in dimension, which is highly scalable.

1See (D.1) and (D.2) for precise definitions.
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5.2. Mixed Nash equilibria and infinite-dimensional bi-affine games

Denote by p̄ppT := 1
T

∑T
t=1 ppp t and q̄qqT := 1

T

∑T
t=1 qqq t the ergodic average of two sequences {ppp t }T

t=1

and {qqq t }T
t=1. Then, with a properly chosen step-size η, the iterates{
ppp t+1 = MDη

(
ppp t ,−A>qqq t

)
qqq t+1 = MDη

(
qqq t ,−aaa + Appp t

)
come with the guarantee that (p̄ppT , q̄qqT ) is an O

(
T − 1

2

)
-NE. Moreover, a slightly more complicated

algorithm, called the entropic Mirror-Prox (entropic MP) [Nem04], achieves faster rate than

the entropic MD:
ppp t = MDη

(
p̃pp t ,−A>q̃qq t

)
qqq t = MDη

(
q̃qq t ,−aaa + Ap̃pp t

)
p̃pp t+1 = MDη

(
p̃pp t ,−A>qqq t

)
q̃qq t+1 = MDη

(
q̃qq t ,−aaa + Appp t

)
implies that (p̄ppT , q̄qqT ) is an O

(
T −1

)
-NE. If, instead of deterministic gradients, one uses unbi-

ased stochastic gradients for entropic MD and MP, then both algorithms achieve O
(
T − 1

2

)
-NE

in expectation.

5.2.2 Mixed strategy formulation for min-max games

For illustration, let us take Wasserstein GAN [ACB17] as an example, whereas the derivation in

this section applies to any min-max objective. We perform a common bilinearization trick

that dates back at least to the early literature in game theory [Gli52].

The training objective of Wasserstein GAN is

min
θθθ∈Θ

max
www∈W

EX∼Preal [ fwww(X )]−EX∼Pθθθ [ fwww(X )], (5.3)

whereΘ is the set of parameters for the generator and W the set of parameters for the discrim-

inator f , typically both taken to be neural nets.

The high-level idea of our approach is, instead of solving (5.3) directly, we focus on the mixed

strategy formulation of (5.3). In other words, we consider the set of all probability distributions

overΘ and W , and we search for the optimal distribution that solves the following program:

min
ν∈M(Θ)

max
µ∈M(W)

Ewww∼µEX∼Preal [ fwww (X )]−Ewww∼µEθθθ∼νEX∼Pθθθ [ fwww (X )]. (5.4)

Define the function g :W →R by g (www) := EX∼Preal [ fwww (X )] and the operator G :M(Θ) →F (W)

as (Gν)(www) := Eθθθ∼ν,XXX∼Pθθθ [ fwww(X )]. Denoting
〈
µ,h

〉
:= Eµh for any probability measure µ and

function h, we may rewrite (5.4) as

min
ν∈M(Θ)

max
µ∈M(W)

〈
µ, g

〉−〈
µ,Gν

〉
. (5.5)
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Chapter 5. Mixed Nash equilibria of min-max optimization problems

Algorithm 7: INFINITE-DIMENSIONAL ENTROPIC MD

Require: Initial distributions µ1,ν1, learning rate η
1: for t = 1,2, . . . ,T −1 do
2: νt+1 = MDη

(
νt ,−G†µt

)
3: µt+1 = MDη

(
µt ,−g +Gνt

)
4: end for

return ν̄T = 1
T

∑T
t=1νt and µ̄T = 1

T

∑T
t=1µt .

Furthermore, the derivative (the analogue of gradient in infinite dimension) of (5.5) with

respect to µ is simply g −Gν, and the derivative of (5.5) with respect to ν is −G†µ, where

G† :M(W) →F (Θ) is the adjoint operator of G defined via the relation

∀µ ∈M(W),ν ∈M(Θ),
〈
µ,Gν

〉= 〈
ν,G†µ

〉
. (5.6)

One can easily check that (G†µ)(θθθ) := EX∼Pθθθ ,www∼µ[ fwww (X )] achieves the equality in (5.6).

To summarize, the mixed strategy formulation of Wasserstein GAN is (5.5), whose derivatives

can be expressed in terms of g and G .

Now, observe that (5.5) is exactly the infinite-dimensional analogue of (5.1): The distributions

over finite strategies are replaced with probability measures over a continuous parameter set,

the vector aaa is replaced with a function g , the matrix A is replaced with a linear operator2 G ,

and the gradients are replaced with derivatives. Based on Section 5.2.1, it is then natural to

ask:

Can the entropic Mirror Descent and Mirror-Prox be extended to infinite dimension

to solve (5.5)? Are there scalable implementations of these algorithms, at least

approximately?

We provide an affirmative answer to the first question in Section 5.3. The so obtained al-

gorithms, nonetheless, are infinite-dimensional and requires infinite computational power

to implement. For practical interest, in Section 5.4 we propose a sampling framework to

approximate the infinite-dimensional prox methods in Section 5.3.

5.3 Infinite-dimensional prox methods

This section builds a rigorous infinite-dimensional formalism in parallel to the finite-dimensional

prox methods and proves their convergence rates. We remark that these results are folklore

among optimization experts and hence we adopt an informal presentation here, deferring all

the technical details to the appendix. However, to our knowledge, they are not published until

our paper [HLC19].

2The linearity of G trivially follows from the linearity of expectation.
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Algorithm 8: INFINITE-DIMENSIONAL ENTROPIC MP

Require: Initial distributions µ̃1, ν̃1, learning rate η
1: for t = 1,2, . . . ,T do
2: νt = MDη

(
ν̃t ,−G†µ̃t

)
3: µt = MDη

(
µ̃t ,−g +Gν̃t

)
4: ν̃t+1 = MDη

(
ν̃t ,−G†µt

)
5: µ̃t+1 = MDη

(
µ̃t ,−g +Gνt

)
6: end for

return ν̄T = 1
T

∑T
t=1νt and µ̄T = 1

T

∑T
t=1µt .

We first recall the notion of derivative in infinite-dimensional spaces. A (nonlinear) functional

Φ :M(Z) →R is said to possess a derivative atµ ∈M(Z) if there exists a function dΦ(µ) ∈F (Z)

such that, for all µ′ ∈M(Z), we have

Φ(µ+εµ′) =Φ(µ)+ε〈µ′,dΦ(µ)
〉+o(ε).

Similarly, a (nonlinear) functionalΦ? :F (Z) →R is said to possess a derivative at h ∈F (Z) if

there exists a measure dΦ?(h) ∈M(Z) such that, for all h′ ∈F (Z), we have

Φ?(h +εh′) =Φ?(h)+ε〈dΦ?(h),h′〉+o(ε).

The most important functionals in this paper are the (negative) Shannon entropy

µ ∈M(Z), Φ(µ) :=
∫

dµ log
dµ

dzzz

and its Fenchel dual

h ∈F (Z), Φ?(h) := log
∫

ehdzzz.

The first result of our paper is to show that, in direct analogy to (5.2), the infinite-dimensional

MD iterates can be expressed as:

Theorem 5.1 (Infinite-Dimensional Mirror Descent, informal). For a learning rate η and an

arbitrary function h, we can equivalently define

µ+ = MDη

(
µ,h

)≡µ+ = dΦ?
(
dΦ(µ)−ηh

)
≡ dµ+ = e−ηhdµ∫

e−ηhdµ
. (5.7)

Moreover, most of the essential ingredients in the analysis of finite-dimensional prox methods

can be generalized to infinite dimension.

See Theorem D.2 for precise statements and a long list of “essential ingredients of prox meth-

ods” generalizable to infinite dimension.
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Chapter 5. Mixed Nash equilibria of min-max optimization problems

We are now ready introduce two “conceptual” algorithms for solving the mixed NE of Wasser-

stein GANs: The infinite-dimensional entropic MD in Algorithm 7 and MP in Algorithm 8.

Theorem 5.2 (Convergence Rates, informal). LetΦ(µ) = ∫
dµ log dµ

dzzz , and let D(·, ·) be the rela-

tive entropy. Then, with a properly chosen step-size η, we have

• Assume that we have access to the deterministic derivatives. Then Algorithm 7 achieves

O
(
T − 1

2

)
-NE, and Algorithm 8 achieves O

(
T −1

)
-NE.

• Assume that we have access to stochastic derivatives such that the bias and the variance are

small. Then Algorithm 7 with stochastic derivatives achieves O
(
T − 1

2

)
-NE in expectation,

and Algorithm 8 with stochastic derivatives achieves O
(
T − 1

2

)
-NE in expectation.

The precise statements of Theorem 5.2 and their proofs can be found in Appendix D.2.

5.4 A sampling framework for approximate infinite-dimensional prox

methods

Section 5.4.1 reduces Algorithms 7–8 to a sampling routine [WT11] that has widely been used

in machine learning. Section 5.4.2 proposes to further simplify the algorithms by summarizing

a batch of samples by their mean.

For simplicity, we will only derive the algorithm for entropic MD; the case for entropic MP is

similar but requires more computation. To ease the notation, we assume η= 1 throughout

this section as η does not play an important role in the derivation below.

5.4.1 Implementable entropic MD: from probability measure to samples

We demonstrate how Algorithm 7 with stochastic derivatives can be reduced to simple sam-

pling tasks. The reduction consists of three steps.

Step 1: Reformulating entropic mirror descent iterates

The definition of the MD iterate (5.7) relates the updated probability measure µt+1 to the

current probability measure µt , but it tells us nothing about the density function of µt+1,

from which we want to sample. Our first step is to express (5.7) in a more tractable form. By
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5.4. A sampling framework for approximate infinite-dimensional prox methods

recursively applying (5.7) and using Theorem D.2.10, we have, for some constants C1, ...,CT−1,

dΦ(µT ) = dΦ(µT−1)− (−g +GνT−1
)+CT−1

= dΦ(µT−2)− (−g +GνT−2
)

− (−g +GνT−1
)+CT−1 +Ct−2

= ·· ·

= dΦ(µ1)−
(
−(T −1)g +G

T−1∑
s=1

νs

)
+

T−1∑
s=1

Cs .

For simplicity, assume that µ1 is uniform so that dΦ(µ1) is a constant function. Then, by

(D.7) and that dΦ?
(
dΦ(µT )

) = dµT , we see that the density function of µT is simply dµT =
exp

{
(T−1)g−G

∑T−1
s=1 νs

}
dwww∫

exp
{
(T−1)g−G

∑T−1
s=1 νs

}
dwww

. Similarly, we have dνT = exp
{
G† ∑T−1

s=1 µs
}
dθθθ∫

exp
{
G†

∑T−1
s=1 µs

}
dθθθ

.

Step 2: Empirical approximation for stochastic derivatives

The derivatives of (5.5) involve the function g and operator G . Recall that g requires taking

expectation over the real data distribution, which we do not have access to. A common

approach is to replace the true expectation with its empirical average:

g (www) = EX∼Preal [ fwww (X )] ' 1

n

n∑
i=1

fwww (X real
i ), ĝ (www)

where Xi ’s are real data and n is the batch size. Clearly, ĝ is an unbiased estimator of g .

On the other hand, Gνt and G†µt involve expectation over νt and µt , respectively, and also

over the fake data distribution Pθθθ. Therefore, if we are able to draw samples from µt and νt ,

then we can again approximate the expectation via the empirical average:

θθθ(1),θθθ(2), ...,θθθ(n′) ∼ νt ,
{

X ( j )
i

}n

i=1
∼Pθθθ( j ) ,

Ĝνt (www) ' 1

nn′
n∑

i=1

n′∑
j=1

fwww

(
X ( j )

i

)
,

and similarly,

www (1),www (2), ...,www (n′) ∼µt , {Xi }n
i=1 ∼Pθθθ,

Ĝ†µt (θθθ) ' 1

nn′
n∑

i=1

n′∑
j=1

fwww ( j ) (Xi ) .

Now, assuming that we have obtained unbiased stochastic derivatives−∑t
s=1 Ĝ†µs and

∑t
s=1

(−ĝ +Ĝνs
)
,

how do we actually draw samples from µt+1 and νt+1? Provided we can answer this question,

then we can start with two easy-to-sample distributions (µ1,ν1), and then we will be able to

draw samples from (µ2,ν2). These samples in turn will allow us to draw samples from (µ3,ν3),
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Chapter 5. Mixed Nash equilibria of min-max optimization problems

and so on. Therefore, it only remains to answer the above question. This leads us to:

Step 3: Sampling by stochastic gradient Langevin dynamics

For any probability distribution with density function e−hdzzz, the Stochastic Gradient Langevin

Dynamics (SGLD) [WT11] iterates as

zzzk+1 = zzzk −γ∇̂h(zzzk )+√
2γεξk , (5.8)

where γ is the step-size, ∇̂h is an unbiased estimator of ∇h, ε is the thermal noise, and

ξk ∼N (0, I ) is a standard normal vector, independently drawn across different iterations.

Suppose we start at (µ1,ν1). Plugging h ←−Ĝ†µ1 and h ←−ĝ +Ĝν1 into (5.8), we obtain, for

{Xi }n
i=1 ∼Pθθθk

, {www ( j )}n′
j=1 ∼µ1, standard normal ξk ,ξ′k , and X real

i ∼Preal, {θθθ( j )}n′
j=1 ∼ ν1, {X ( j )

i } ∼
Pθθθ( j ) , the following update rules:

θθθk+1 =θθθk +γ∇θθθ
(

1

nn′
n∑

i=1

n′∑
j=1

fwww ( j ) (Xi )

)
+√

2γεξk ,

wwwk+1 =wwwk +γ∇www

(
1

n

n∑
i=1

fwww k (X real
i )− 1

nn′
n∑

i=1

n′∑
j=1

fwww k

(
X ( j )

i

))+√
2γεξ′k .

The theory of [WT11, TTV16] states that, for large enough k, the iterates of SGLD above

(approximately) generate samples according to the probability measures (µ2,ν2). We can then

apply this process recursively to obtain samples from (µ3,ν3), (µ4,ν4), ...(µT ,νT ). Finally, since

the entropic MD and MP output the averaged measure (µ̄T , ν̄T ), it suffices to pick a random

index t̂ ∈ {1,2, ...,T } and then output samples from (µt̂ ,νt̂ ).

Putting Steps 1-3 together, we obtain Algorithms 10–11 in Appendix D.3.

Remark 5.4.1. In principle, any first-order sampling method is valid above. In the experimental

section, we also use a RMSProp-preconditioned version of the SGLD [LCCC16].

5.4.2 Summarizing samples by averaging: a simple yet effective heuristic

Although Algorithms 10–11 are implementable, they are quite complicated and resource-

intensive, as the total computational complexity is O(T 2). This high complexity comes from

the fact that, when computing the stochastic derivatives, we need to store all the historical

samples and evaluate new gradients at these samples.

An intuitive approach to alleviate the above issue is to try to summarize each distribution by

only one parameter. To this end, the mean of the distribution is the most natural candidate,

which has also proven effective in practice. Moreover, the mean is often easier to acquire than

the actual samples. For instance, computing the mean of distributions of the form e−hdzzz,

where h is a loss function defined by deep neural networks, has been empirically proven
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Algorithm 9: MixedNE-LD

Input: step-size
{
ηt

}T
t=1, thermal noise {εt }T

t=1, warmup steps {Kt }T
t=1, exponential damping

factor β.
Initialize (randomly) ω1,θ1

for t = 1,2, . . . ,T −1 do
ω̄t ,ω(1)

t ←ωt ; θ̄t ,θ(1)
t ← θt

for k = 1,2, . . . ,Kt do
ξ,ξ′ ∼N (0, I )

θ(k+1)
t ← θ(k)

t +ηt
á∇θh
(
θ(k)

t ,ωt

)
+√

2ηtεtξ

ω(k+1)
t ←ω(k)

t −ηt
á∇ωh

(
θt ,ω(k)

t

)
+√

2ηtεtξ
′

ω̄t ←
(
1−β)

ω̄t +βω(k+1)
t

θ̄t ←
(
1−β)

θ̄t +βθ(k+1)
t

end for
ωt+1 ←

(
1−β)

ωt +βω̄t

θt+1 ←
(
1−β)

θt +βθ̄t

end for

return ωT , θT .

successful in [CCS+17, COO+18, DR18] via SGLD. In this paper, we adopt the same approach

as in [CCS+17] where we use exponential damping (the β term in Algorithm 9) to increase

stability. Algorithm 9, dubbed the MixedNE-LD, shows how to encompass this idea into

entropic MD; the pseudocode for the similar Mirror-Prox-GAN can be found in Algorithm 12

of Appendix D.3.

5.5 Empirical justification of MixedNE-LD

The goal of the present section is to demonstrate that solving (SP) as in its mixed NE formula-

tion has superior performance over methods that seek pure NE for non-convex/non-concave

objectives. We do so by providing theoretical and empirical justifications on several simple, yet

nontrivial, low-dimensional examples. Since it is customary to maximize the reward function

in RL, we will abuse the notation and consider the following formulation of robust RL:

max
xxx∈X

min
yyy∈Y

F (xxx, yyy).

Pseudocodes for all algorithms in the section and the omitted proofs can be found in Ap-

pendix D.4.

5.5.1 Existing algorithms

We will consider three algorithmic frameworks:

53



Chapter 5. Mixed Nash equilibria of min-max optimization problems
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Figure 5.1: F (xxx, yyy) = xxx2yyy2−xxxyyy . The NE is (0,0) with reward value 0. The dashed curve xxxyyy = 0.5 describe
all stationary points that are not NE. (a), (b) shows the objective value and the training dynamics when
initializing far away from NE. (c), (d) shows the objective value and the training dynamics when (xxx1, yyy1)
is initializing close to NE.
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Figure 5.2: F (xxx, yyy) = xxx y −xxx2yyy2. The NE is (0,0) with reward value 0. The dashed curve xxxyyy = 0.5 are
stationary points that are not NE. (a), (b) shows the objective value and the training dynamics when
initializing far away from NE. (c), (d) shows the objective value and the training dynamics when
initializing close to NE.
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Figure 5.3: F (xxx, yyy) = xxx2yyy2. The NE are represented with the line {(xxx,0) | xxx arbitrary} with reward value
0. (a), (b) shows the objective value and the training dynamics when initializing far away from NE. (c),
(d) shows the objective value and the training dynamics when initializing close to NE.

1. GAD: Finding pure NE via Gradient ascent-descent.

2. EG: Finding pure NE via Extra-gradient methods.

3. MixedNE-LD: Finding mixed NE via Algorithm 9.

Here, GAD can be considered as the most naïve approach, while EG presents the state-of-the-

art for GANs and robust RL.

It is common in practice to asymptotically decrease the step-size for GAD and EG to 0. Ac-
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cording to the theory in Chapter 4, these first-order methods with vanishing step-size behave

asymptotically the same as their continuous-time counterpart, i.e., (MD):[
dxxx
dt (t )
dyyy
dt (t )

]
=

[
∇xxx F (xxx, yyy)

−∇yyy F (xxx, yyy)

]
(5.9)

Moreover, this result is robust to gradient noise, and so applies to stochastic variants of GAD

and EG. Therefore, we will henceforth focus on (5.9) in our theory.

In Section 4.5, we have presented a number of problematic cases where state-of-the-art

algorithms provably fail. In Appendix D.4.2, we show that our Algorithm 9 can somehow

alleviate the failure of existing methods when complicated ICT sets arise. However, in the

following section, we shall demonstrate another important feature of Algorithm 9 over existing

methods: escaping undesirable stationary points in non-concave/non-convex objectives.

5.5.2 Degree-2 polynomials: stationary points vs. NE

Suppose that the objective F in (SP) is non-concave/non-convex in d directions. Since in

practice one rarely acquires information higher than second-order, we will only consider

quadratic local approximations of F . Finally, let us consider optimizing each dimension

separately, each leading to a 2-dimensional subproblem.

We will show, in Theorem 5.3 below, that even under this extremely simplified setting, and

under simple non-convexity as in (5.10) or (5.11), existing approaches can only succeed if

the initialization is close enough to the equilibrium along every direction. As a result, the

probability of successful training for existing algorithms will be exponential small in the

number of non-convex non-concave directions.

We now construct nontrivial examples where there exist stationary points that are not NE. To

this end, we may simply use the degree-2 polynomials:

max
xxx∈[−2,2]

min
yyy∈[−2,2]

F (xxx, yyy) = xxx2yyy2 −xxxyyy (5.10)

and

max
xxx∈[−2,2]

min
yyy∈[−2,2]

F (xxx, yyy) = xxxyyy −xxx2yyy2. (5.11)

The constraint interval [−2,2] is included only for ease of presentation; it has no impact on

our conclusion. Moreover, the following facts can be readily verified:

• The pure and mixed NE are the same: (0,0).

• The curve
{
(xxx, yyy) | xxxyyy = 0.5

}
presents stationary points that are not NE.
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5.5.3 Main result

We now present the main result in this section.

Theorem 5.3. Consider the (continuous-time) GAD and EG dynamics (5.9) where F (xxx, yyy) is either

(5.10) or (5.11). Suppose that the initial point (xxx(0), yyy(0)) is far away from NE: xxx(0) · yyy(0) > 0.5.

Then (5.9) converges to a non-equilibrium stationary point on {xxxyyy = 0.5}.

On the other hand, even when initialized at a stationary point such that xxx1 · yyy1 = 0.5, the

MixedNE-LD still decreases the distance to NE in expectation:

Exxx3 · yyy3 = xxx1yyy1 −4η2 (
η

(
xxx2

1 + yyy2
1

)+14η2)< xxx1 · yyy1 (5.12)

where η is the step-size, and the expectation is over the randomness of the algorithm.

In words, depending on the initialization, the (continuous-time) training dynamics of GAD

and EG will either get trapped by non-equilibrium stationary points, or converge to NE. In

contrast, the MixedNE-LD is always able to escape non-equilibrium stationary points in

expectation.

Figs. 5.1–5.2 demonstrate the empirical behavior of the three algorithms, which is in per-

fect accordance with the theory. When initialized far away from NE, Figs. 5.1(a)–5.1(b)

and Figs. 5.2(a)–5.2(b) show that GAD and EG get trapped by local stationary points, while

MixedNE-LD is able to escape after staying a few iterations near the non-equilibrium states.

On the other hand, if initialized sufficiently close to NE, then EG tends to perform better than

GAD, as indicated by previous work; see Figs. 5.1(c)–5.1(d) and Figs. 5.2(c)–5.2(d).

Finally, one can ask whether the negative results for GAD and EG are sensitive to the choice

of step-size. For instance, we have implemented the vanilla GAD and EG, while in practice

one always uses adaptive step-size based on approximate second-order information [DHS11,

KB14]. However, our next theorem shows that, even with perfect second-order information,

the training dynamics of GAD and EG still are unable to escape stationary points.

Theorem 5.4. Consider the Newton’s dynamics for solving either (5.10) or (5.11):[
dxxx
dt (t )
dyyy
dt (t )

]
=

[
∇2

xxx F (xxx, yyy) 0

0 ∇2
yyy F (xxx, yyy)]

]−1 [
∇xxx F (xxx, yyy)

−∇yyy F (xxx, yyy)

]
. (5.13)

Then we have xxx(t ) · yyy(t ) = xxx(0) · yyy(0).

A consequence of Theorem 5.4 is that if we initialize at any point such that xxx(0) · yyy(0) 6= 0,

the training dynamics will remain far away from (0,0), which is the desired NE. Indeed, in

Section 5.7, we shall see that MixedNE-LD outperforms GAD and EG even with adaptivity.
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5.5.4 A digression: sampling vs. optimization

We would like to demonstrate an additional intriguing behavior of the sampling nature of

MixedNE-LD, which we deem as a benefit over deterministic optimization algorithms. Con-

sider the following min-max problem:

max
xxx∈[−2,2]

min
yyy∈[−2,2]

F (xxx, yyy) = xxx2yyy2. (5.14)

This is a simple objective where the stationary points {(xxx,0) | xxx ∈ [−2,2]} are all NE. Con-

sequently, both GAD and EG succeed in finding an NE, regardless of the initialization; see

Fig. 5.3.

The MixedNE-LD, nonetheless, does something slightly more than finding an NE: The MixedNE-

LD explores among all the NE, inducing a distribution on the set of all equilibria; see Figs. 5.3(b)–5.3(d).

As exploration is a desirable property in RL, our experiments illustrate yet another advantage

of pursuing the mixed NE over pure NE.

5.6 Experiment I: GANs

We now provide empirical evidence demonstrating that our sampling algorithms for mixed

NE consistently outperform existing methods that seek pure NE. In this section, we focus on

GANs.

We use visual quality of the generated images to evaluate different algorithms. We avoid

reporting numerical metrics, as recent studies [BS18, Bor18, LKM+18] suggest that these

metrics might be flawed. Setting of the hyperparameters and more auxiliary results can be

found in Appendix D.5.

5.6.1 Synthetic data

We repeat the synthetic setup as in [GAA+17]. The tasks include learning the distribution of

8 Gaussian mixtures, 25 Gaussian mixtures, and the Swiss Roll. For both the generator and

discriminator, we use two MLPs with three hidden layers of 512 neurons. We choose SGD

and Adam as baselines, and we compare them to MixedNE-LD and Mirror-Prox-GAN. We

also incorporate two contemporary algorithms, namely the Optimistic Adam [DISZ18] and

(Simultaneous) Extra-Adam [GBV+19]. The step-sizes for all algorithms are determined via

parameter sweeping.

All algorithms are run up to 105 iterations3. The results of 25 Gaussian mixtures are shown

in Fig. 5.4; An enlarged figure of 25 Gaussian Mixtures and other cases can be found in

Appendix D.5.1.

3One iteration here means using one mini-batch of data. It does not correspond to the T in our algorithms, as
there might be multiple SGLD iterations within each time step t .
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Figure 5.4: Fitting 25 Gaussian mixtures up to 105 iterations. Blue dots represent the true distribution
and red ones are from the trained generator.

As Fig. 5.4 shows, SGD performs poorly in this task, while the other algorithms yield reason-

able results. However, compared to Adam, MixedNE-LD and Mirror-Prox-GAN fit the true

distribution better in two aspects. First, the modes found by MixedNE-LD and Mirror-Prox-

GAN are more accurate than the ones by Adam, Optimistic Adam, and Extra-Adam, which

are perceptibly biased. Second, MixedNE-LD and Mirror-Prox-GAN perform much better in

capturing the variance (how spread the blue dots are), while Adam-based algorithms tend to

collapse to modes. These observations are consistent throughout the synthetic experiments;

see Appendix D.5.1.

We also report that MixedNE-LD and Mirror-Prox-GAN are not only better in terms of solution

quality, but also in speed: see Fig. D.4 in Appendix D.5.1.

5.6.2 Real data

For real images, we use the LSUN bedroom dataset [YSZ+15]. We have also conducted a similar

study with MNIST; more results can be found in Appendix D.5.2.

We use the same architecture (DCGAN) as in [RMC15] with batch normalization. As the

networks become deeper in this case, the gradient magnitudes differ significantly across

different layers. As a result, non-adaptive methods such as SGD or SGLD do not perform well

in this scenario. To alleviate such issues, we replace SGLD by the RMSProp-preconditioned

SGLD [LCCC16] for our sampling routines. For baselines, we consider two adaptive gradient

methods: RMSprop and Adam.

We also include the Extra-Adam, along with its alternated version [GBV+19]. However, we
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(a) True Samples (b) RMSProp (c) Adam

(d) MixedNE-LD (e) Simultaneous Extra-Adam (f) Alternated Extra-Adam

Figure 5.5: Dataset LSUN bedroom, 105 iterations.

remark that the theory of [GBV+19] only provides motivations for simultaneous updates, and

Alternated Extra-Adam should be considered as a heuristics. We drop Optimistic Adam in the

this experiment since it is reported by [GBV+19] to be outperformed by Extra-Adam.

Fig. 5.5 shows the results at the 105th iteration, where step-sizes for all algorithms are de-

termined by parameter sweeping. The RMSProp, Alternated Extra-Adam and MixedNE-LD

produce images with reasonable quality, while Adam and simultaneous Extra-Adam fail to

learn the distributions. The visual quality of Alternated Extra-Adam and MixedNE-LD are

comparable, and are better than RMSProp, as RMSProp sometimes generates blurry images

(the (3,3)- and (1,5)-th entry of Fig. D.6.(b)).

It is worth mentioning that Adam can learn the true distribution at intermediate iterations,

but later on suffers from mode collapse and finally degenerates to noise; see Appendix D.5.2.

5.7 Experiment II: robust reinforcement learning

In this section, we demonstrate the effectiveness of using the MixedNE-LD framework to solve

the robust RL problem.
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5.7.1 Off-policy (DDPG) experiments

As a case study, we consider the noisy robust Markov decision process NR-MDP setting with

δ = 0.1 [TEM19]. This setting can cover only the changes in the transition dynamics that

can be simulated via the changes in the action. In the H∞ control literature [DFT13, MD05],

an equivalence between environmental and action robustness has already been noted. The

NR-MDP setting cannot handle:

1. the adversarial disturbances considered in [PDSG17], as the action spaces of both the

agent and adversary are same in the NR-MDP setting.

2. the feature changes like style, and illumination.

Nevertheless, the MixedNE-LD framework applies to general two-player Markov Games as

well.

Two-Player DDPG: We design a two-player variant of DDPG [LHP+15] algorithm by adapt-

ing the Algorithm 9. As opposed to standard DDPG, in two-player DDPG two actor networks

output two deterministic policies, the protagonist and adversary policies, denoted by µθ and

νω. The critic is trained to estimate the Q-function of the joint-policy. The gradients of the

protagonist and adversary parameters are given in Proposition 5 of [TEM19]. The resulting

algorithm is given in Algorithm 14.

We compare the performance of our algorithm against the baseline algorithm proposed

in [TEM19] (see Algorithm 15 with GAD). [TEM19] have suggested a training ratio of 1 : 1

for actors and critic updates. Note that the action noise is injected while collecting transi-

tions for the replay buffer. In [FvHM18], authors noted that the action noise drawn from

the Ornstein-Uhlenbeck [UO30] process offered no performance benefits. Thus we also con-

sider uncorrelated Gaussian noise. In addition to the baseline from [TEM19], we have also

considered another baseline, namely Algorithm 15 with Extra-Adam [GBV+19].

Setup: We evaluate the performance of Algorithm 14 and Algorithm 15 (with GAD and

Extra-Adam) on standard continuous control benchmarks available on OpenAI Gym [BCP+16]

utilizing the MuJoCo environment [TET12]. Specifically, we benchmark on eight tasks: Walker,

Hopper, Half-Cheetah, Ant, Swimmer, Reacher, Humanoid, and InvertedPendulum. Details of

these environments can be found in [BCP+16] and on the GitHub website.

The Algorithm 14 implementation is based on the codebase from [TEM19]. For all the algo-

rithms, we use a two-layer feedforward neural network structure of (64, 64, tanh) for both

actors (agent and adversary) and critic. The optimizer we use to update the critic is Adam

[KB15] with a learning rate of 10−3. The target networks are soft-updated with τ= 0.999.

For the GAD baseline, the actors are trained with RMSProp optimizer. For our algorithm
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Figure 5.6: Average performance (over 5 seeds) of Algorithm 14, and Algorithm 15 (with GAD and
Extra-Adam), under the NR-MDP setting with δ= 0.1. The evaluation is performed without adversarial
perturbations, on a range of mass values not encountered during training.

(MixedNE-LD), the actors are updated according to Algorithm 9 with warmup steps Kt =
min

{
15,b(1+10−5)t c}, and thermal noise σt = σ0 × (1− 5× 10−5)t . The hyperparameters

that are not related to exploration (see Table D.3) are identical to all the algorithms that are
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Figure 5.7: Average performance (over 5 seeds) of Algorithm 14, and Algorithm 15 (with GAD and
Extra-Adam), under the NR-MDP setting with δ= 0. The evaluation is performed without adversarial
perturbations, on a range of mass values not encountered during training.

compared.

And we tuned only the exploration-related hyperparameters (for all the algorithms) by grid
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Figure 5.8: Average performance (over 5 seeds) of Algorithm 14, and Algorithm 15 (with GAD and
Extra-Adam), under the NR-MDP setting with δ= 0.1. The evaluation is performed without adversarial
perturbations, on a range of friction values not encountered during training.

search: (a) Algorithm 14 with (σ0,σ) ∈ {
10−2,10−3,10−4,10−5

}× {0,0.01,0.1,0.2,0.3,0.4} ; (b)

Algorithm 15 with σ ∈ {0,0.01,0.1,0.2,0.3,0.4}. For each algorithm-environment pair, we

identified the best performing exploration hyperparameter configuration (see Tables D.4–D.5).
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Figure 5.9: Average performance (over 5 seeds) of Algorithm 14, and Algorithm 15 (with GAD and
Extra-Adam), under the NR-MDP setting with δ= 0. The evaluation is performed without adversarial
perturbations, on a range of friction values not encountered during training.

Each algorithm is trained on 0.5M samples (i.e., 0.5M time steps in the environment). We run

our experiments, for each environment, with 5 different seeds. The exploration noise is turned

off for evaluation.
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Evaluation: We evaluate the robustness of all the algorithms under different testing condi-

tions, and in the presence of adversarial disturbances in the testing environment. We train

the algorithms with the standard mass and friction variables in OpenAI Gym. At test time, we

evaluate the learned policies by changing the mass and friction values (without adversarial

perturbations) and estimating the cumulative rewards. As shown in Fig. 5.6 and Fig. 5.8, our

Algorithm 14 outperforms the baselines Algorithm 15 (with GAD and Extra-Adam) in terms of

robustness. Note that we obtain superior performance on the inverted pendulum, which is a

failure case for [TEM19]. We also evaluate the robustness of the learned policies under both

test condition changes, and adversarial disturbances (cf. Appendix D.6.1).

5.7.2 On-Policy (VPG) Experiments

In addition to the off-policy experiments, we test the effectiveness of the MixedNE-LD strategy

with the vanilla policy gradient (VPG) method on a toy MDP problem. In particular, we design a

two-player variant of VPG [SMSM00] algorithm (cf. Algorithm 16) by adapting the Algorithm 9.

Setup: We compare the performance of Algorithm 16 and Algorithm 17 (with GAD and

Extra-Adam) on a parametrized class of MDPs
{
Mρ =

(
S ,A,Tρ ,γ,P0,R

)
: ρ ∈ [0,0.4]

}
. Here

S = [−10,10], A= [−1,1], and R(s) = sin(
p

1.7s)+cos(
p

0.3s)+3. The transition dynamics Tρ
is defined as follows: given the current state and action (st , at ), the next state is st+1 = st +at

with probability 1−ρ, and st+1 = st +a′ (where a′ ∼ unif([−1,1])) with probability ρ. We also

ensure that st+1 ∈ [−10,10].

For all the algorithms, we use a two-layer feedforward neural network structure of (16, 16,

relu) for both actors (agent and adversary). The relevant hyperparameters are given in Ta-

bles D.6–D.8. Each algorithm is trained for 5000 steps. We run our experiments with 5 different

seeds.

Evaluation: We train the algorithms with a nominal environment parameter ρ = 0.2, and

evaluate the learned policies on a range of ρ ∈ [0,0.4] values. As shown in Fig. D.19 (cf. Ap-

pendix D.6.2), our Algorithm 16 outperforms the baselines Algorithm 17 (with GAD and

Extra-Adam) in terms of robustness (in both two-player and one-player settings).
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6 Conclusion and future work

6.1 Summary of the thesis

For the three fundamental tasks introduced in Chapter 1, we have shown that many important

non-convex instances admit elegant solutions. Specifically, in the thesis, we have achieved the

following:

• In Chapter 3, we have resolved a decades-old open problem, the Latent Dirichlet Alloca-

tion (LDA), by providing the first efficient and provably convergent sampling scheme for

the non-convex Dirichlet distribution. Our approach relies on a classical idea of mirror

descent (MD) from the optimization theory. By combining Langevin dynamics and MD,

our theory revealed that the Dirichlet distributions are in fact convex distributions in

disguise. We further developed analytical tools for converting convergence guarantees

between the primal and the dual distributions, akin to the optimization theory of MD.

On real datasets, our algorithm achieves the state-of-the-art.

• For min-max games, we developed a framework for studying the long-term behavior of

training algorithms in Chapter 4. For any algorithm that can be cast as an generalized

Robbins–Monro (RM) scheme, a generic template that subsumes most of the existing

algorithms, our theory dictates the asymptotic convergence to the internally chain-

transitive (ICT) sets of the mean dynamics (MD). Using this connection, we provided

negative examples showing that state-of-the-art algorithms for min-max games suffer

from convergence to spurious sets which are no way min-max optimal, thus theoretically

corroborating the formidable difficulty of training generative adversarial networks and

robust reinforcement learning.

• Finally, in Chapter 5, we showed how min-max games can be lifted to infinite dimension

and solved using the classical prox techniques in optimization theory. Our approach

leverages an intimate connection between the infinite-dimensional iterates and first-

order sampling, which gives rise to practically efficient schemes. Our experiments

demonstrated that our approach consistently outperforms state-of-the-arts on real
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applications.

6.2 Future directions

This thesis left a number of important questions open, which we plan to investigate in the

future:

6.2.1 Mirrored Langevin dynamics and non-convex sampling

The Dirichlet distribution is but one of the many examples of constrained and non-convex

distributions. Our theory of mirrored Langevin dynamics suggests that a highly symmetric

constraint, which is typically the case in real world applications, often hides convexity that

is implicit in the primal form. Akin to the Latent Dirichlet Allocation, we expect mirrored

Langevin dynamics to be widely applicable for these distributions by transforming them into

the dual formulation, for which the non-convexity disappears (or at least alleviated).

6.2.2 Theoretical guarantees of Langevin dynamics for min-max games

Our approach in Chapter 5 exploits the optimization perspective of Langevin dynamics, i.e.,

how Langevin dynamics serves as a subsolver for iterates of an infinite-dimensional optimiza-

tion algorithm. However, many natural questions remained untouched by our perspective:

1. From the sampling perspective, does the stationary distribution of Langevin dynamics

always exist?

2. If yes, is the stationary distribution unique?

3. Does the stationary distribution behave similar to the ICT sets of (MD) (say, concentrat-

ing around these ICT sets)?

From a high-level point of view, these are the sampling counterparts of the questions that we

answered in Chapter 4 for min-max games. As Langevin dynamics often serves as a bridge

between optimization and sampling, we expect the above questions to provide valuable

insights into solving min-max games, in a fashion that is similar to how Langevin dynamics

characterizes non-convex optimization [ZLC17, RRT17].

6.2.3 Limit cycles in min-max games

Our negative examples Examples 4.5.1–4.5.3 raise an immediate question: how can we elimi-

nate limit cycles in min-max games using optimization techniques?

One natural idea would be to modify the driving vector fields of the min-max optimization

algorithm. For instance, [BRM+18] considered decomposing the gradient fields into a “de-
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scending” (potential) and a “rotating” (Hamiltonian) component, and our theory in Chapter 4

implies that the limit cycles can arise in a complicated manner due to the Hamiltonian com-

ponent. Therefore, it is reasonable to first “single out” the Hamiltonian component (or at least

approximately) of the gradient fields of min-max games.

Physical theory suggests that evaluating the Hamiltonian component at a point amounts to a

contour integration. We expect this new ingredient to play a key role in the future development

of min-max optimization algorithms, as the Hamiltonian component is precisely the culprit

for cycling.
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A Appendix for Chapter 2

A.1 Equivalence formulations of optimistic mirror descent

In this appendix, we show that the xxx t iterates in (2.3) of the main text is equivalent to the

following iterates given in [CYL+12, RS13a]:{
xxx t = MDη

(
x̃xx t ,−Ayyy t−1

)
x̃xx t+1 = MDη

(
x̃xx t ,−Ayyy t

) . (A.1)

By the optimality condition for (A.1), we have

∇h(xxx t ) =∇h(x̃xx t )−η(−Ayyy t−1
)

, (A.2)

∇h(x̃xx t ) =∇h(x̃xx t−1)−η(−Ayyy t−1
)

, (A.3)

∇h(x̃xx t−1) =∇h(xxx t−1)+η(−Ayyy t−2
)

. (A.4)

We hence get (2.3) by applying (A.4) to (A.3) and then (A.3) to (A.2).

A.2 Optimistic mirror descent

In this appendix, we prove Theorem 2.2, restated below for convenience.

Theorem A.1. Suppose two players of a zero-sum game have played T rounds according to

Algorithms 1–2 with η= 1
2|A|max

. Then

1. The xxx-player suffers a O
(

log(T )
T

)
regret:

max
zzz∈∆m

T∑
t=3

〈zzz t −zzz,−Awww t 〉 ≤
(

log(T −2)+1
)(

20+ logm + logn
)
|A|max (A.5)

=O
(
logT

)
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and similarly for the yyy-player.

2. The strategies (zzzT ,wwwT ) constitutes an O
( 1

T

)
-approximate equilibrium to the value of the

game:

|V −〈zzzT , AwwwT 〉| ≤
(
20+ logm + logn

)
|A|max

T −2
=O

(
1

T

)
. (A.6)

Proof. Define xxx∗ as

xxx∗ = arg min
xxx∈∆m

〈
xxx,−A

(
1

T −2

T∑
t=3

yyy t

)〉
. (A.7)

We define an auxiliary individual regret Rxxx
T as

Rxxx
T :=

T∑
t=3

〈xxx t −xxx∗,−Ayyy t 〉. (A.8)

Notice that this is the regret on the xxx t sequence versus yyy t sequence, while we are playing zzz t ’s

and www t ’s in the algorithm.

We then have

Rxxx
T =

T∑
t=3

〈xxx t −xxx∗,−Ayyy t 〉

= 〈xxx3 −xxx∗,−Ayyy3〉+
T∑

t=4
〈xxx t −xxx∗,−Ayyy t 〉

≤ 2|A|max +
T∑

t=4
〈xxx t −xxx∗,−Ayyy t −ggg t−1〉+

T∑
t=4

〈xxx t −xxx∗,ggg t−1〉

where ggg t :=−2(t −2)Awww t +3(t −3)Awww t−1 − (t −4)Awww t−2. Inserting www t = 1
t−2

∑t
i=3 yyy i into the

72



A.2. Optimistic mirror descent

definition of ggg t , we get ggg t =−2Ayyy t + Ayyy t−1. Straightforward calculation then shows:

Rxxx
T ≤ 2|A|max +

T∑
t=4

〈xxx t −xxx∗,−Ayyy t +2Ayyy t−1 − Ayyy t−2〉+
T∑

t=4
〈xxx t −xxx∗,−2Ayyy t−1 + Ayyy t−2〉

= 2|A|max +
T∑

t=4
〈xxx t −xxx∗, (−Ayyy t + Ayyy t−1)− (−Ayyy t−1 + Ayyy t−2)〉

+ 1

η

T∑
t=4

(
D(xxx∗,xxx t−1)−D(xxx∗,xxx t )−D(xxx t ,xxx t−1)

)
= 2|A|max +

T−1∑
t=4

〈xxx t −xxx t+1,−Ayyy t + Ayyy t−1〉+〈xxx4 −xxx∗, Ayyy3 − Ayyy2〉

+〈xxxT −xxx∗,−AyyyT + AyyyT−1〉+ 1

η

T∑
t=4

(
D(xxx∗,xxx t−1)−D(xxx∗,xxx t )−D(xxx t ,xxx t−1)

)
≤ 10|A|max +

T−1∑
t=4

〈xxx t −xxx t+1,−Ayyy t + Ayyy t−1〉

+ 1

η

T∑
t=4

(
D(xxx∗,xxx t−1)−D(xxx∗,xxx t )−D(xxx t ,xxx t−1)

)
≤ 10|A|max +

T−1∑
t=4

‖xxx t −xt+1‖1 · |A|max · ‖yyy t − yyy t−1‖1

+ 1

η

(
D(xxx∗,xxx3)−D(xxx∗,xxxT )

)
+

T∑
t=4

−1

η
D(xxx t ,xxx t−1)

≤ 10|A|max + 1

2

T−1∑
t=4

(
|A|max · ‖xxx t −xxx t+1‖2

1 +|A|max · ‖yyy t − yyy t−1‖2
1

)
+ 1

η

(
D(xxx∗,xxx3)−D(xxx∗,xxxT )

)
+

T∑
t=4

−1

η
D(xxx t ,xxx t−1).

Using the fact that h is 1-strongly convex with respect to the `1-norm, we have −D(xxx,xxx ′) ≤
−1

2‖xxx −xxx ′‖2
1 ≤ 0. Also, we have D(xxx∗,xxx3) ≤ logm. Combining these facts in the last inequality

gives:

Rxxx
T ≤ 10|A|max + logm

η
+ |A|max

2

T−1∑
t=4

‖xxx t −xxx t+1‖2
1

+ |A|max

2

T−1∑
t=4

‖yyy t − yyy t−1‖2
1 −

1

2η

T∑
t=4

‖xxx t−1 −xxx t‖2
1.

Similarly, for the second player we define

Ryyy
T :=

T∑
t=3

〈
yyy t − yyy∗, A>xxx t

〉
(A.9)
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where yyy∗ := argminyyy
〈

yyy , A> ( 1
T−2

∑T
t=3 xxx t

)〉
. We then have

Ryyy
T ≤ 10|A|max + logn

η
+ |A|max

2

T−1∑
t=4

‖yyy t − yyy t+1‖2
1

+ |A|max

2

T−1∑
t=4

‖xxx t −xxx t−1‖2
1 −

1

2η

T∑
t=4

‖yyy t−1 − yyy t‖2
1.

Setting η= 1
2|A|max

, we get

Rxxx
T +Ryyy

T ≤
(
20+ logm + logn

)
|A|max. (A.10)

Now, recalling that zzzT =
∑T

t=3 xxx t

T−2 and wwwT =
∑T

t=3 yyy t

T−2 and using the definition of Rxxx
T and Ryyy

T , we get

1

T −2

(
Rxxx

T +Ryyy
T

)
= max

xxx∈∆m

〈xxx, AwwwT 〉−min
yyy∈∆n

〈
zzzT , Ayyy

〉
. (A.11)

Furthermore, by the definition of the value of the game, we have

min
yyy∈∆n

〈
zzzT , Ayyy

〉≤V ≤ max
xxx∈∆m

〈xxx, AwwwT 〉 . (A.12)

We also trivially have

min
yyy∈∆n

〈
zzzT , Ayyy

〉≤ 〈zzzT , AwwwT 〉 ≤ max
xxx∈∆m

〈xxx, AwwwT 〉 . (A.13)

Combining (A.11) - (A.13) in (A.10) then establishes (2.5):

|V −〈zzzT , AwwwT 〉| ≤
(
20+ logm + logn

)
|A|max

T −2
.

We now turn to (2.4).

Let Rzzz
T := maxzzz∈∆m

∑T
t=3 〈zzz t −zzz,−Awww t 〉 and let R̃

zzz
T :=∑T

t=3

〈
zzz t −zzz∗

t ,−Awww t
〉

where zzz∗
t = argminzzz∈∆m 〈zzz,−Awww t 〉.

Evidently we have Rzzz
T ≤ R̃

zzz
T . Notice that (with www∗

t similarly defined)〈
zzz t −zzz∗

t ,−Awww t
〉= 〈

zzz∗
t , Awww t

〉−〈zzz t , Awww t 〉
≤ 〈

zzz∗
t , Awww t

〉−〈
zzz t , Awww∗

t

〉
≤

(
20+ logm + logn

)
|A|max

t −2
(A.14)
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by (A.10) and (A.11). Using these inequalities, we get

1

T −2
Rzzz

T ≤ 1

T −2
R̃

zzz
T = 1

T −2

T∑
t=3

〈
zzz t −zzz∗

t ,−Awww t
〉

≤ 1

T −2

T∑
t=3

(
20+ logm + logn

)
|A|max

t −2

≤
(

log(T −2)+1
)(

20+ logm + logn
)
|A|max

T −2

which finishes the proof. �

A.3 Robust optimistic mirror descent

In this appendix, we prove Theorem 2.3, repeated below for convenience.

Theorem A.2 (O(
p

T )-Adversarial Regret). Suppose that ‖∇ ft‖∗ ≤G for all t . Then playing T

rounds of Algorithm 3 with ηt = 1
G
p

t
against an arbitrary sequence of convex functions has the

following guarantee on the regret:

max
xxx∈∆m

T∑
t=1

〈
xxx t −xxx,∇ ft (xxx t )

〉≤G
p

T
(
18+2D2)+GD

(
3
p

2+4D
)

=O
(p

T
)

.

Proof. Define Rxxx
T := ∑T

t=1

〈
xxx t −xxx∗,∇ ft (xxx t )

〉
where xxx∗ := argminxxx∈∆m

〈
xxx,

∑T
t=1∇ ft (xxx t )

〉
. Let

∇̃t = 2∇ ft (xxx t )−∇ ft−1(xxx t−1), and let ηt = 1
α
p

t
for some α> 0 to be chosen later. Then

Rxxx
T =

T∑
t=1

〈xxx t −xxx∗,∇ ft (xxx t )〉

≤p
2DG +

T∑
t=2

〈xxx t −xxx∗,∇ ft (xxx t )−∇̃t−1〉+
T∑

t=2
〈xxx t −xxx∗,∇̃t−1〉

≤
p

2DG +
T∑

t=2
〈xxx t −xxx∗,∇ ft (xxx t )−∇ ft−1(xxx t−1)〉

−
T∑

t=2
〈xxx t −xxx∗,∇ ft−1(xxx t−1)−∇ ft−2(xxx t−2)〉+

T∑
t=2

〈xxx t −xxx∗,∇̃t−1〉

≤ 3
p

2DG +
T−1∑
t=2

〈xxx t −xxx t+1,∇ ft (xxx t )−∇ ft−1(xxx t−1)〉+
T∑

t=2

1

ηt

(
D(xxx∗, x̃xx t−1)−D(xxx∗,xxx t )−D(xxx t , x̃xx t−1)

)
≤ 3

p
2DG +

T−1∑
t=2

(p
tG

9
‖xxx t −xxx t+1‖2 + 9Gp

t

)

+α
T∑

t=1

p
t
(
D(xxx∗, x̃xx t−1)−D(xxx∗,xxx t )−D(xxx t , x̃xx t−1)

)
.
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Using the joint convexity of D(xxx, yyy) in xxx and yyy and the strong convexity of the entropic mirror

map, we get:

−D(xxx t , x̃xx t−1) ≤−1

2
‖x̃xx t −xxx t+1‖2

≤−1

4

∥∥∥∥ t −1

t
(xxx t −xxx t+1)

∥∥∥∥2

+ 1

2

(
1

t

)2

‖xxxc −xxx t+1‖2

≤− (t −1)2

4t 2 ‖xxx t −xxx t+1‖2 + D2

t 2 ,

and

D(xxx∗, x̃xx t ) ≤ t −1

t
D(xxx∗,xxx t )+ 1

t
D

(
xxx∗,xxxc

)
.

Meanwhile, straightforward calculations show that

T∑
t=2

D (xxx∗,xxxc )p
t

≤ 2D2
p

T ,

and

T∑
t=2

(p
t · t −1

t
D(xxx∗,xxx t−1)−p

tD(xxx∗,xxx t )

)
≤

T∑
t=2

(p
t −1D(xxx∗,xxx t−1)−p

tD(xxx∗,xxx t )
)

≤ D(xxx∗,xxx1) ≤ D2.

We can hence continue as

Rxxx
T ≤ 3

p
2DG +

T−1∑
t=2

(p
t

9
G‖xxx t −xxx t+1‖2 + 9Gp

t

)
+2αD2

p
T

+αD2 − α

4

T∑
t=2

p
t ·

(
t −1

t

)2

‖xxx t−1 −xxx t‖2 +αD2
T∑

t=2

p
t

t 2 . (A.15)

Elementary calculations further show

T−1∑
t=2

9Gp
t
≤ 18G

p
T ,

T∑
t=2

1

t
p

t
≤ 3.

Finally, since ( t−1
t )2 ≥ 4

9 for t ≥ 3, we can further bound (A.15) as

Rxxx
t ≤ 3

p
2DG +18G

p
T +2αD2

p
T +4αD2

+
(

G

9

T−1∑
t=2

p
t‖xxx t −xxx t+1‖2 − α

4
· 4

9

T−1∑
t=2

p
t +1‖xxx t −xxx t+1‖2

)
.

The proof is finished by choosing α=G . �
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B.1 Proof of Theorem 3.2

We first focus on the convergence for total variation and relative entropy, since they are in fact

quite trivial. The proof for the 2-Wasserstein distance requires a bit more work.

B.1.1 Total variation and relative entropy

Since h is strictly convex, ∇h is one-to-one, and hence

dTV(∇h#µ1,∇h#µ2) = 1

2
sup

E
|∇h#µ1(E)−∇h#µ2(E)|

= 1

2
sup

E

∣∣µ1
(∇h−1(E)

)−µ2
(∇h−1(E)

)∣∣
= dTV(µ1,µ2).

On the other hand, it is well-known that applying a one-to-one mapping to distributions

leaves the relative entropy intact. Alternatively, we may also simply write (letting νi =∇h#µi ):

D(ν1‖ν2) =
∫

log
dν1

dν2
dν1

=
∫

log

(
dν1

dν2
◦∇h

)
dµ1 by (B.5) below

=
∫

log
dµ1

dµ2
dµ1 by (3.2)

= D(µ1‖µ2)

The “in particular” part follows from noticing that yyy t ∼∇h#xxx t and YYY ∞ ∼∇h#XXX ∞.
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B.1.2 2-Wasserstein distance

Now, let h be ρ-strongly convex. The most important ingredient of the proof is Lemma B.1

below, which is conceptually clean. Unfortunately, for the sake of rigor, we must deal with

certain intricate regularity issues in the Optimal Transport theory. If the reader wishes, she/he

can simply assume that the quantities (B.1) and (B.2) below are well-defined, which is always

satisfied by any practical mirror map, and skip all the technical part about the well-definedness

proof.

For the moment, assume h ∈ C5; the general case is given at the end. Every convex h generates

a Bregman divergence via Bh(xxx,xxx ′) := h(xxx)−h(xxx ′)−〈∇h(xxx ′),xxx −xxx ′〉. The following key lemma

allows us to relate guarantees in W2 between xxx t ’s and yyy t ’s. It can be seen as a generalization of

the classical duality relation (B.4) in the space of probability measures.

Lemma B.1 (Duality of Wasserstein Distances). Let µ1, µ2 be probability measures satisfying

Assumptions (A3.2)–(A3.3). If h is ρ-strongly convex and C5, then the (B.1) and (B.2) below are

well-defined:

WBh (µ1,µ2) := inf
T :T #µ1=µ2

∫
Bh (xxx,T (xxx))dµ1(xxx) (B.1)

and (notice the exchange of inputs on the right-hand side)

WB?
h

(ν1,ν2) := inf
T :T #ν1=ν2

∫
B?

h

(
T (yyy), yyy

)
dν1(yyy). (B.2)

Furthermore, we have

WBh (µ1,µ2) =WB?
h

(∇h#µ1,∇h#µ2). (B.3)

Before proving the lemma, let us see that the relation in W2 is a simple corollary of Lemma B.1.

Since h is ρ-strongly convex, it is classical that, for any xxx and xxx ′,

ρ

2
‖xxx −xxx ′‖2 ≤ Bh(xxx,xxx ′) = B?

h (∇h(xxx ′),∇h(xxx)) ≤ 1

2ρ
‖∇h(xxx)−∇h(xxx ′)‖2. (B.4)

Using Lemma B.1 and the fact that yyy t ∼∇h#xxx t and YYY ∞ ∼∇h#XXX ∞, we conclude W2(xxx t ,XXX ∞) ≤
1
ρW2(yyy t ,XXX ∞). It hence remains to prove Lemma B.1 when h ∈ C5.

Proof of Lemma B.1 when h ∈ C5

We first prove that (B.2) is well-defined by verifying the sufficient conditions in Theorem 3.6 of

[DPF14]. Specifically, we will verify (C0)-(C2) in p.554 of [DPF14] when the transport cost is

B?
h .

Since h is ρ-strongly convex, ∇h is injective, and hence ∇h? = (∇h)−1 is also injective, which
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implies that h? is strictly convex. On the other hand, the strong convexity of h implies

∇2h? ¹ 1
ρ I , and hence B?

h is globally upper bounded by a quadratic function.

We now show that the conditions (C0)-(C2) are satisfied. Since we have assumed h ∈ C5,

we have B?
h ∈ C4. Since B?

h is upper bounded by a quadratic function, the condition (C0) is

trivially satisfied. On the other hand, since h? is strictly convex, simple calculation reveals

that, for any yyy ′, the mapping yyy →∇yyy ′Bh?(yyy , yyy ′) is injective, which is (C1). Similarly, for any

yyy , the mapping yyy ′ →∇yyy Bh?(yyy , yyy ′) is also injective, which is (C2). By Theorem 3.6 in [DPF14],

(B.2) is well-defined.

We now turn to (B.3), which will automatically establish the well-definedness of (B.1). We first

need the following equivalent characterization of ∇h#µ= ν [Vil08]:∫
f dν=

∫
f ◦∇hdµ (B.5)

for all measurable f . Using (B.5) in the definition of WB?
h

, we get

WB?
h

(∇h#µ1,∇h#µ2) = inf
T

∫
B?

h

(
T (yyy), yyy

)
d∇h#µ1(yyy)

= inf
T

∫
B?

h

(
(T ◦∇h)(xxx),∇h(xxx)

)
dµ1(xxx),

where the infimum is over all T such that T #(∇h#µ1) = ∇h#µ2. Using the classical duality

Bh(xxx,xxx ′) = B?
h (∇h(xxx ′),∇h(xxx)) and ∇h ◦∇h?(xxx) = xxx, we may further write

WB?
h

(∇h#µ1,∇h#µ2) = inf
T

∫
Bh

(
xxx, (∇h? ◦T ◦∇h)(xxx)

)
dµ1(xxx) (B.6)

where the infimum is again over all T such that T #(∇h#µ1) =∇h#µ2. In view of (B.6), the proof

would be complete if we can show that T #(∇h#µ1) =∇h#µ2 if and only if (∇h? ◦T ◦∇h)#µ1 =
µ2.

For any two maps T1 and T2, we claim that

(T1 ◦T2)#µ= T1#
(
T2#µ

)
. (B.7)

Indeed, for any Borel set E , we have, by definition of the push-forward,

(T1 ◦T2)#µ(E) =µ(
(T1 ◦T2)−1(E)

)
=µ(

(T −1
2 ◦T −1

1 )(E)
)
.

On the other hand, recursively applying the definition of push-forward to T1#
(
T2#µ

)
gives

T1#
(
T2#µ

)
(E) = T2#µ

(
T −1(E)

)
=µ(

(T −1
2 ◦T −1

1 )(E)
)
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which establishes (B.7).

Assume that T #(∇h#µ1) =∇h#µ2. Then we have

(∇h? ◦T ◦∇h)#µ1 =∇h?#(T #(∇h#µ1)) by (B.7)

=∇h?#(∇h#µ2) since T #(∇h#µ1) =∇h#µ2

= (∇h? ◦∇h)#µ2 by (B.7) again

=µ2.

On the other hand, if (∇h?◦T ◦∇h)#µ1 =µ2, then composing both sides by ∇h and using (B.7)

yields T #(∇h#µ1) =∇h#µ2, which finishes the proof.

When h is only C2

When h is only C2, we will directly resort to (B.4). Let T be any map such that T #(∇h#µ1) =
∇h#µ2, and consider the optimal transportation problem infT

∫ ‖yyy −T (yyy)‖2d∇h#µ1(yyy). By

(B.4) and (B.5), we have

inf
T

∫
‖yyy −T (yyy)‖2d∇h#µ1(yyy) = inf

T

∫
‖∇h(xxx)− (T ◦∇h)(xxx))‖2dµ1(xxx)

≥ ρ2 inf
T

∫
‖xxx − (∇h? ◦T ◦∇h)(xxx))‖2dµ1(xxx)

where the infimum is over all T such that T #(∇h#µ1) =∇h#µ2. But as shown in Appendix B.1.2,

this is equivalent to (∇h? ◦T ◦∇h)#µ1 = µ2. The proof is finished by noting yyy t ∼∇h#xxx t and

YYY ∞ ∼∇h#XXX ∞.

B.2 Proof of Lemma 3.1

Straightforward calculations in convex analysis shows

∂h

∂xi
= log

xi

xd+1
,

∂2h

∂xi∂x j
= δi j x−1

i +x−1
d+1,

h?(yyy) = log

(
1+

d∑
i=1

e yi

)
,

∂h?

∂yi
= e yi

1+∑d
i=1 e yi

, (B.8)

which proves that h is 1-strongly convex.

Let µ= e−V (xxx)dxxx be the target distribution and define ν= e−W (yyy)dyyy :=∇h#µ. By (3.2), we have

W ◦∇h =V + logdet∇2h. (B.9)

Since ∇2h(xxx) = diag[x−1
i ]+x−1

d+111
> where 1 is the all 1 vector, the well-known matrix deter-
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minant lemma “det(A+uv>) = (1+v>A−1u)det A” gives

logdet∇2h(xxx) = log

(
1+x−1

d+1

d∑
i=1

xi

)
·

d∏
i=1

x−1
i

=−
d+1∑
i=1

log xi =−
d∑

i=1
log xi − log

(
1−

d∑
i=1

xi

)
. (B.10)

Composing both sides of (B.9) with ∇h? and using (B.8), (B.10), we then finish the proof by

computing

W (yyy) =V ◦∇h?(yyy)−
d∑

i=1
yi + (d +1)log

(
1+

d∑
i=1

e yi

)

=V ◦∇h?(yyy)−
d∑

i=1
yi + (d +1)h?(yyy).

B.3 Proof of Lemma 3.2

The proof relies on rather straightforward computations.

1. In order to show e−(W +C ) = ∇h#e−V for some constant C , we will verify the Monge-

Ampère equation:

e−V = e−(W ◦∇h+C )det∇2h (B.11)

for V =∑N
i=1 Vi and W =∑N

i=1 Wi , where Wi is defined via (3.14). By (3.14), it holds that

1

Ci
e−NVi = e−NWi ◦∇h det∇2h, Ci := 1∫

e−NVi
. (B.12)

Multiplying (B.12) for i = 1,2, ..., N , we get

N∏
i=1

1

Ci
e−NV = e−NW ◦∇h (

det∇2h
)N

. (B.13)

The first claim follows by taking the N th root of (B.13).

2. The second claim directly follows by (B.12).

3. Trivial.

4. By (B.11) and (B.12) and using ∇h? ◦∇h(xxx) = xxx, we get

Wi =Vi ◦∇h?+ 1

N
logdet∇2h(∇h?)− logCi , (B.14)

W =V ◦∇h?+ logdet∇2h(∇h?)−C , (B.15)
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which implies N∇Wi −∇W = ∇2h?
(
N∇Vi ◦∇h?−∇V ◦∇h?

)
. Since h is 1-strongly

convex, h? is 1-Lipschitz gradient, and therefore the spectral norm of ∇2h? is upper

bounded by 1. In the case of b = 1, the final claim follows by noticing

E‖∇̃W −∇W ‖2 = 1

N

N∑
i=1

‖N∇Wi −∇W ‖2 (B.16)

= 1

N

N∑
i=1

‖∇2h?
(
N∇Vi ◦∇h?−∇V ◦∇h?

)‖2 (B.17)

≤
‖∇2h?‖2

spec

N

N∑
i=1

‖N∇Vi ◦∇h?−∇V ◦∇h?‖2 (B.18)

≤ E‖∇̃V −∇V ‖2. (B.19)

The proof for general batch-size b is exactly the same, albeit with more cumbersome

notation.

B.4 Proof of Theorem 3.3

The proof is a simple combination of the existing result in [DMM18] and our theory in Sec-

tion 3.3.

By Theorem 3.2, we only need to prove that the inequality (3.15) holds for D(ỹyyT ‖e−W (yyy)dyyy),

where ỹyyT is to be defined below. By assumption, W is unconstrained and satisfies LI º∇2W º
0. By Lemma 3.2, the stochastic gradient ∇̃W is unbiased and satisfies

E‖∇̃W −∇W ‖2 ≤ E‖∇̃V −∇V ‖2 =σ2.

Pick a random index1 t ∈ {1,2, ...,T } and set ỹyyT := yyy t . Then Corollary 18 of [DMM18] with

D2 =σ2 and M2 = 0 implies D(ỹyyT ‖e−W (yyy)dyyy) ≤ ε, provided

β≤ min

{
ε

2
(
Ld +σ2

) ,
1

L

}
, T ≥ W2

2 (yyy0,e−W (yyy)dyyy)

βε
. (B.20)

Solving for T in terms of ε establishes the theorem.

B.5 Stochastic gradients for Dirichlet posteriors

In order to apply SMLD, one must have, for each term Vi , the corresponding dual Wi defined

via (3.14). In this appendix, we derive a closed-form expression in the case of the Dirichlet

posterior (3.10).

1The analysis in [DMM18] provides guarantees on the probability measure νT := 1
N

∑T
t=1νt where yyy t ∼ νt . The

ỹyyT defined here has law νT .
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Recall that the Dirichlet posterior (3.10) consists of a Dirichlet prior and categorical data obser-

vations [FKG10]. Let N :=∑d+1
`=1 n`, where n` is the number of observations for category `, and

suppose that the parameters α`’s are given. If the ith data is in category ci ∈ {1,2, ...,d +1}, then

we can define Vi (xxx) := −∑d+1
`=1 I{`=ci } log x`− 1

N

∑d+1
`=1 (α`−1)log x` so that Assumption (3.12)

holds. In view of Lemma 3.1, The corresponding dual Wi is, up to a constant, given by

Wi (yyy) =−
d∑
`=1

I{`=ci } y`−
d∑
`=1

α`

N
y`+h?+

(
d+1∑
`=1

α`

N

)
h?(yyy). (B.21)

Similarly, if we take a mini-batch B of the data with |B | = b, then

N

b
W̃ (yyy) := N

b

∑
i∈B

Wi (yyy) =−
d∑
`=1

(
N m`

b
+α`

)
y`+

(
N +

d+1∑
`=1

α`

)
h?(yyy), (B.22)

where m` is the number of observations of category ` in the set B . Apparently, the gradient of

(B.22) is (3.16).

B.6 More on experiments

B.6.1 Synthetic Data

Fig. B.1(a) reports the total variation error along the 8th dimension of the synthetic experiment

in Section 3.5.1. Compared to Fig. 3.1(a) in the main text, it is evident that MLD achieves an

even stronger performance than SGRLD, especially in the saturation error phase.

B.6.2 Comparison against SGRHMC for Latent Dirichlet Allocation

The only difference between the experimental setting of [MCF15] and the main text is the

number of topics (50 vs. 100). In this appendix, we run SMLD-approximate under the setting of

[MCF15] and directly compare against the results reported in [MCF15]. We have also included

the SGRLD as a baseline.

Fig. B.1(b) reports the perplexity on the test data. According to [MCF15], the best perplexity

achieved by SGRHMC up to 10000 documents is approximately 1400, which is worse than the

1323 by SMLD-approximate. Moreover, from Figure 3 of [MCF15], we see that the SGRHMC

yields comparable performance as SGRLD for 2 out 3 independent runs, especially in the

beginning phase, whereas the SMLD-approximate has sizable lead over SGRLD at any stage

of the experiment. The potential reason for this improvement is, similar to SGRLD, that the

SGRHMC exploits the Riemannian Hamiltonian dynamics, which is more complicated than

MLD and hence more sensitive to the discretization error.
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(a) Synthetic data, 8th dimension. (b) LDA on Wikipedia corpus, 50 topics.
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C Appendix for Chapter 4

C.1 Asymptotic pseudotrajectories

In this appendix, we discuss how the algorithms discussed in Section 4.3 fit within the general

stochastic approximation framework of Section 4.4.2. Specifically, we prove the general

conditions of Theorem 4.1 and Proposition 4.1 which guarantee that Algorithms 4.1–4.5

generate asymptotic pseudotrajectories of the mean dynamics (MD).

C.1.1 Generalities and preliminaries

Before doing so, we will require some background material on asymptotic pseudotrajectories.

Following [BH96] and [Ben99], we first recall the definition of the “effective time” τn =∑n
k=1γk

as the time that has elapsed at the n-th iteration of the discrete-time process Zn ; recall also

the definition (4.6) of the continuous-time interpolation Z(t ) of Zn as

Z(t ) = Zn + t −τn

τn+1 −τn
(Zn+1 −Zn) (4.6)

We will further require the “continuous-to-discrete” correspondence

M(t ) = sup{n ≥ 1 : t ≥ τn} (C.1)

which measures the number of iterations required for the effective time τn of the process to

reach the timestamp t ; for future use, we also define the quantity

Mn ≡ Mn(T ) = M(τn +T ). (C.2)

Finally, given an arbitrary sequence An , we will denote its piecewise constant interpolation as

A(t ) = An for all t ∈ [τn ,τn+1], n ≥ 1. (C.3)
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Using this notation, the (affinely) interpolated process Z(t ) can be expressed in integral form

as

Z(t ) = Z(0)+
∫ t

0
[V (Z (s))+W (s)] d s (C.4)

where Wn denotes the generalized error term of (RM).

With all this in hand, [Ben99, Prop. 4.1] provides the following general condition for Z(t ) to be

an APT of the mean dynamics (4.7):

Proposition C.1. Suppose that Z(t ) is bounded and satisfies the general condition

lim
t→∞∆(t ;T ) = 0 for all T > 0, (C.5)

where

∆(t ;T ) = sup0≤h≤T

∥∥∥∫ t+h
t W (s) d s

∥∥∥. (C.6)

Then, Z(t ) is an APT of (MD).

C.1.2 Proof of Theorem 4.1

Our proof of Theorem 4.1 revolves around the direct verification of the requirement (C.5)

of Proposition C.1 via the use of maximal inequalities and martingale limit theory.1 For

convenience, we restate the theorem below in full:

Theorem 4.1. Suppose that (RM) is run with a step-size policyγn such that
∑

n γn =∞, limn γn =
0, and Assumptions (A5.1)–(A5.2) hold. Then, with probability 1, one of the following holds:

a) Zn is an APT of (MD); or b) Zn is unbounded (and hence, non-convergent).

Proof. Our proof relies on the Burkholder–Davis–Gundy (BDG) inequality [Bur73, HH80]

which bounds the maximal value of a martingale Sn via its quadratic variation as

c2E

[
n∑

k=1
(Sk −Sk−1)2

]
≤ E

[
max

k=1,...,n
|Sk |2

]
≤C2E

[
n∑

k=1
(Sk −Sk−1)2

]
, (BDG)

where c2,C2 > 0 are universal constants. As such, applying (BDG) to the martingale Sm =

1[Ben99] provides a set of sufficient conditions for (C.5) to hold when Z(t ) is generated by a RM scheme with
Bn = 0 and supn σn <∞; however, our setting requires a more general treatment.
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∑m
k=n γkUk (after an appropriate shift of the starting time), we get

E

[
sup

n≤m≤Mn

∥∥∥∥∥ m∑
k=n

γkUk

∥∥∥∥∥
2]

≤C2E

[
Mn∑

k=n
γ2

k‖Uk‖2

]

=C2

Mn∑
k=n

γ2
kσ

2
k =C2

∫ τn+T

τn

γ2(s)σ2(s) d s, (C.7)

where Mn = Mn(T ) = M(τn +T ) is defined as in (C.2). Now, mimicking (C.6), let

∆0(t ;T ) = sup
0≤h≤T

∥∥∥∥∫ t+h

t
U (s) d s

∥∥∥∥. (C.8)

so our previous bound shows that

E[∆0(t ;T )2] ≤C2

∫ t+T

t
γ2(s)σ2(s) d s. (C.9)

We will proceed to show that limt→∞∆0(t ;T ) = 0 for all T > 0 by considering the sequence

of intervals [kT, (k +1)T ] and using the Borel-Cantelli lemma to show that ∆0(kT ;T ) → 0 as

k →∞. Indeed, we have

∞∑
k=1

E[∆0(kT ;T )2] ≤C2

∫ ∞

0
γ2(s)σ2(s) d s =C2

∞∑
n=1

γ2
nσ

2
n <∞ (C.10)

with the last step following from Assumption (A5.2). Then, if we consider the event Ek (ε) =
{∆0(kT ;T ) > ε}, Chebysev’s inequality gives

∞∑
k=1

P(Ek (ε)) ≤
∑∞

k=1E[∆0(kT ;T )2]

ε2 <∞, (C.11)

and hence, by the Borel-Cantelli lemma, we get

P

(
limsup

k→∞
Ek (ε)

)
= 0. (C.12)

This shows that, with probability 1, we have ∆0(kT ;T ) ≤ ε for all but a finite number of

k; put differently, the event E(ε) = {∆0(kT ;T ) occurs infinitely often} = ⋂∞
n=1

⋃∞
k=n Ek (ε) has

P(E(ε)) = 0. Therefore, as a union of probability zero events, we have

P

(
liminf

k→∞
∆0(kT ;T ) > 0

)
=P

( ∞⋃
n=1

E(1/n)

)
≤

∞∑
n=1

P(E(1/n)) = 0, (C.13)

i.e., ∆0(kT ;T ) → 0 with probability 1.
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Thus, going back to the requirements of Proposition C.1, we get

∆(kT ;T ) = sup
0≤h≤T

∥∥∥∥∫ kT+h

kT
W (t ) d t

∥∥∥∥= sup
0≤h≤T

∥∥∥∥∫ kT+h

kT
[U (t )+b(t )] d t

∥∥∥∥
≤∆0(kT ;T )+ sup

0≤h≤T

∫ kT+h

kT
B(t ) d t .

≤∆0(kT ;T )+T max
0≤h≤T

B(kT +h). (C.14)

Given that limk→∞ Bk = 0, the above shows that ∆(kT ;T ) → 0 as k →∞. Moreover, for all

t ∈ [kT, (k +1)T ], we have ∆(t ;T ) ≤ 2∆(kT ;T )+∆((k +1)T ;T ) so ∆(t ;T ) → 0 with probability 1.

With T > 0 arbitrary, we conclude that (C.5) holds with probability 1, and our claim follows

from Proposition C.1. �

To proceed, it will be convenient to consider a stronger version of Assumption (A5.2):

P(‖Un‖ ≥ t |Fn) ≤ 2e−
t2

2σ2 (A5.2′)

for some σ≥ 0 and all n = 1,2, . . . , t ≥ 0. Some of the RM schemes presented in Section 4.3 will

verify this stronger criterion; see Appendix C.1.3 below.

Under this assumption, we obtain the following generalization of a criterion due to [BH96]:

Proposition C.2. Suppose that (RM) is run with a step-size policy γn such that A/n ≤ γn ≤
B/(logn)1+ε for some B ,ε> 0. If Assumptions (A5.1) and (A5.2′) hold, then, with probability 1,

a) Zn is an APT of (MD); or b) Zn is unbounded (and hence, non-convergent).

Proof. As in the proof of Theorem 4.1, our approach will hinge on the proviso (C.5) of Propo-

sition C.1 and, in particular, controlling the quantity ∆0(t ;T ) defined in (C.8). We proceed

step-by-step:

Step 1: A union bound for the tails of supn≤m≤Mn
‖∑m

k=n γkUk‖. Up to a multiplicative con-

stant that depends only on the dimension of the problem, we can assume without loss of

generality that ‖·‖ is the sup-norm ‖z‖ = maxi |zi |. In this case, we have ‖z‖ ≥ t if and only if

there exists a basis vector ei of Rd such that 〈z,ei 〉 ≥ t or 〈z,ei 〉 ≤ −t . We thus get the union

bound

P

(
sup

n≤m≤Mn

∥∥∥∥∥ m∑
k=n

γkUk

∥∥∥∥∥≥ t

)
≤

d∑
i=1

P

(
sup

n≤m≤Mn

m∑
k=n

〈γkUk ,ei 〉 ≥ t

)

+
d∑

i=1
P

(
sup

n≤m≤Mn

m∑
k=n

〈γkUk ,−ei 〉 ≥ t

)
. (C.15)

In view of this, we will focus below on the tail probability P(supn≤m≤Mn

∑m
k=n〈γkUk , z〉) for

arbitrary z ∈Rd .
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Step 2: Exponential tail concentration. By standard arguments, Assumption (A5.2′) is

equivalent to asking that

E[exp(〈z,Un〉) |Fn] ≤ exp(σ2‖z‖2/2). (C.16)

With this reformulation in mind, consider the process

Qn(z) = exp

(
n∑

k=1
〈z,γkUk〉−

σ2

2

n∑
k=1

γ2
k‖z‖2

)
. (C.17)

Then, by construction

E[Qn(z) |Fn] = E
[

exp

(
n∑

k=1
〈z,γkUk〉−

σ2

2

n∑
k=1

γ2
k‖z‖2

)∣∣∣∣∣Fn

]

=Qn−1(z)E

[
exp

(
〈z,γnUn〉− σ2

2
γ2

n‖z‖2
)∣∣∣∣Fn

]
≤Qn−1(z), (C.18)

i.e., Qn(z) is a supermartingale relative to Fn .2 Moreover, we have:

P

(
sup

n≤m≤Mn

m∑
k=n

〈γkUk , z〉 ≥α
)
=P

(
sup

n≤m≤Mn

Qm(z)

Qn(z)
exp

(
σ2

2

m∑
k=n

γ2
k‖z‖2

)
≥ exp(α)

)

=P
(

sup
n≤m≤Mn

Qm(z)

Qn(z)
exp

(
σ2

2

Mn∑
k=n

γ2
k‖z‖2

)
≥ exp(α)

)

=P
(

sup
n≤m≤Mn

Qm(z)

Qn(z)
≥ exp

(
α− σ2

2

Mn∑
k=n

γ2
k‖z‖2

))

≤ E
[

sup
n≤m≤Mn

Qm(z)

Qn(z)

]
·exp

(
σ2

2

Mn∑
k=n

γ2
k‖z‖2 −α

)

≤ exp

(
σ2

2

Mn∑
k=n

γ2
k‖z‖2 −α

)
(C.19)

where we used Markov’s inequality in the last step and the fact that Qn(z) is a submartingale

in the penultimate one. Thus, letting Σ=σ2 ∑Mn

k=n γ
2
k‖z‖2 and taking z ← (t/Σ)ei , t ← t 2/Σ, we

get

P
(

sup
n≤m≤Mn

m∑
k=n

〈γkUk ,ei 〉 ≥ t
)
≤ exp

(
− σ2t 2

2
∑Mn

k=n γ
2
k

)
. (C.20)

2Recall here that, by the definition of the filtration Fn , Un is Fn+1-measurable but not Fn -measurable.
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Step 3: Closing the gap. By assumption,
∑Mn

k=n γ
2
n ≤ Tγ2

n ≤ T /(logn)2+2ε. Hence

exp

(
− σ2t 2

2
∑Mn

k=n γ
2
k

)
≤ exp

(
−σ

2

2

(logn)2+2ε

T

)
= n− σ2

2
(logn)1+2ε

T . (C.21)

Therefore

P

(
sup

n≤m≤Mn

∥∥∥∥∥ m∑
k=n

γkUk

∥∥∥∥∥≥ t

)
≤ C ′

2

n2 (C.22)

for some suitable constant C ′
2 > 0. With notation as in the proof of Theorem 4.1, this implies

that

∞∑
k=1

P(∆0(kT ;T ) ≤α) =O
( ∞∑

k=1

1

k2

)
<∞. (C.23)

Thus, by applying the Borel-Cantelli lemma as in the proof of Theorem 4.1, we conclude

that ∆0(kT ;T ) → 0 with probability 1. The rest of the arguments required to show that

limt→0∆(t ;T ) = 0 for all T follow the lines of the proof of Theorem 4.1, so we omit them. �

C.1.3 Proof of Proposition 4.1

We are now in a position to prove that the generalized RM schemes presented in Section 4.3

comprise asymptotic pseudotrajectories of the mean dynamics (MD). For convenience, we

state the relevant result below:

Proposition 4.1. Let Zn be a sequence generated by any of the Algorithms 4.1–4.5. Assume

further that:

a) For first-order methods (Algorithms 4.1–4.4), the algorithm is run with SFO feedback

satisfying (4.2) and a step-size γn such that A/n ≤ γn ≤ B/(logn)1+ε for some A,B ,ε> 0.

b) For zeroth-order methods (Algorithm 4.5), the algorithm is run with parameters γn and δn

such that limn(γn +δn) = 0,
∑

n γn =∞, and
∑

n γ
2
n/δ2

n <∞ (e.g., γn = 1/n, δn = 1/n1/3).

Then, with probability 1, one of the following holds: a) Zn is an APT of (MD); or b) Zn is

unbounded.

Proof. We proceed method-by-method:

Algorithm 4.1: Stochastic gradient descent/ascent. For (SGDA), we have Wn =Un =U(ωn)

and bn = 0, so Assumption (A5.1) is satisfied automatically (since Bn = 0). Moreover, under the

stated assumptions for (SFO), Un is sub-Gaussian, so our claim follows from Proposition C.2.
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Algorithm 4.2: Alternating stochastic gradient descent/ascent. For (alt-SGDA), we have

bn = (0,Vyyy (Xn+1,Yn)−Vyyy (Xn ,Yn)), and Un = (Uxxx,n ,Uyyy ,n). Under the stated assumptions for

(SFO), Un satisfies Assumption (A5.2′), so we are left to show that Assumption (A5.1) holds,

i.e., that bn → 0. To that end, since V is Lipschitz, we have

‖bn‖ = ‖Vyyy (Xn+1,Yn)−Vyyy (Xn ,Yn)‖ ≤ L‖Xn+1 −Xn‖, (C.24)

where L denotes the Lipschitz modulus of V . Hence, by the definition of (alt-SGDA), we get

‖bn‖ ≤ γnL‖Vyyy (Xn+1,Yn)+Uyyy ,n‖ ≤ γnL‖Vyyy (Xn+1,Yn)‖+γnL‖Uyyy ,n‖ (C.25)

If Zn is bounded, we also have supn‖Vyyy (Xn+1,Yn)‖ <∞, so the first term above vanishes as

n →∞ (recall that limn γn = 0). As for the second, we have

P(‖Un‖ ≥ logn) ≤ 2e−(logn)2/(2σ2) = 2n− logn/(2σ2) (C.26)

In turn, this implies that
∑∞

n=1P(‖Un‖ ≥ logn) <∞ so, by the Borel-Cantelli lemma, we have

‖Un‖ =O(logn) with probability 1. Hence, by our assumptions for the method’s step-size, we

get

γn‖Uyyy ,n‖ ≤ γn‖Un‖ =O
(

logn

(logn)1+ε

)
=O

(
1

(logn)ε

)
(C.27)

i.e., Bn → 0 with probability 1. Our claim then follows from Proposition C.2.

Algorithm 4.3: Stochastic extra-gradient. For (SEG), we have Un = U(Z+
n ;ω+

n ) and bn =
V (Z+

n )−V (Zn), so Assumption (A5.2′) holds by default. For Assumption (A5.1), arguing as in

the case of Algorithm 4.2 above, we have

‖bn‖ = ‖V (Z+
n )−V (Zn)‖ ≤ L‖Z+

n −Zn‖
= γn‖V(ωn)‖ = γnL‖V (Zn)+U(ωn)‖
≤ γnL‖V (Zn)‖+γnL‖U(ωn)‖, (C.28)

Thus, by Proposition C.2, we conclude that Zn is an APT of (MD).

Algorithm 4.4: Optimistic gradient. For (OG/PEG), we have Un =U(ω+
n ) and bn =V (Z+

n )−
V (Zn). so Assumption (A5.2′) again holds by default. The bias term can then be bounded

exactly as in the case of Algorithm 4.3, so our APT claim follows again by Proposition C.2.

Algorithm 4.5: Simultaneous perturbation stochastic approximation. Because of the al-

gorithm’s different oracle structure (zeroth- vs. first-order feedback), the analysis of (SPSA) is
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different. We begin with the algorithm’s bias term, given here by

bn = E[Vn |Fn]−V (Zn) (C.29)

with

Vn =±(d/δn)F (Zn +δnωn)ωn (C.30)

denoting the method’s one-shot SPSA estimator. To bound it, let

vi ,n = E[Vi ,n |Fn] (C.31)

denote the i -th component of Vn ∈ Rd after having averaged out the choice of the random

seed ωn (which, by default, is not Fn-measurable). We then have

vi ,n =± d

δn
· 1

2d

[
F (Zn +δnei )−F (Zn −δnei )

]
(C.32)

where, as per our discussion in Section 4.3, the “±” sign is equal to −1 if ei ∈ EX and +1 if

ei ∈ EY . Then, by the mean value theorem, there exists some Z̃n in the line segment
[

Zn −
δnei , Zn +δnei

]
such that

vi ,n =±∂i F (Z̃n) =Vi ,n(Z̃n). (C.33)

Since V is Lipschitz continuous, it follows that

|vi ,n −Vi ,n(Zn)| = |Vi ,n(Z̃n)−Vi ,n(Zn)| ≤ L‖Z̃n −Zn‖ =O(δn) (C.34)

since Z̃n ∈ [
Zn −δnei , Zn +δnei

]
. Finally, for the oracle’s variance, we have ‖Vn‖2 =O(1/δ2

n)

by construction so, under the stated assumptions for γn and δn , Assumption (A5.2) is satisfied

and our claim follows from Theorem 4.1. �

We conclude this appendix with a simple coercivity criterion which guarantees that the iterates

of an iterative method of the general form (RM) remain bounded:

Proposition C.3. Suppose that V satisfies the coercivity condition

liminf
‖z‖→∞

〈V (z), z〉
‖z‖2 < 0. (A5.3)

Then, under Assumptions (A5.1) and (A5.2), the sequence Zn generated by (RM) is bounded

(a.s.).

Corollary C.1. Under Assumptions (A5.1)–(A5.3), the iterates Zn of (RM) comprise an APT of

(MD).

Proof. To begin, observe that, under Assumption (A5.3), the quadratic penalty function E (z) =
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∑
i z2

i /2 is a Lyapunov function for (MD) as ‖z‖ →∞. Indeed, by Assumption (A5.3), there

exists some R > 0 such that, whenever ‖z‖ ≥ R, we have

dE

d t
= 〈∇E(z), ż〉 = 〈∇E(z),V (z)〉 ≤−κ

2
‖z‖2 (C.35)

where κ = − liminf‖z‖→∞〈V (z), z〉/‖z‖2 > 0.3 This shows that trajectories of (MD) cannot

escape to infinity so it is plausible to expect the same to hold for (RM).

Our proof of this fact follows a direct stabilization technique due to [KY97]. Specifically, going

back to (RM), a simple expansion gives

E(Zn+1) = E(Zn)+γn〈Vn , Zn〉+ 1

2
γ2

n‖Vn‖2

≤ E(Zn)+γn〈V (Zn), Zn〉+γn〈Wn , Zn〉+γ2
n‖Vn‖2 (C.36)

Hence, taking (conditional) expectations, we obtain:

E[E(Zn+1) |Fn] ≤ E(Zn)+γn〈V (Zn)+bn , Zn〉+γ2
n E[‖Vn‖2 |Fn]. (C.37)

To proceed, note that, by Assumptions (A5.1) and (A5.2), we have

E

[ ∞∑
n=1

γ2
n‖V 2

n ‖1{‖Zn‖≤R}

]
<∞, (C.38)

while, otherwise

E
[‖Vn‖2

∣∣Fn
]≤C

(
σ2

n + (κ/2)‖Zn‖2) whenever ‖Zn‖ ≥ R. (C.39)

Consider now the process

Sn = E[∑k≥n γ
2
k‖Vn‖21{‖Zk‖≤R}

∣∣Fn
]

(C.40)

and let En = E(Zn)+Sn . By definition, En is non-negative; moreover, by (C.36), we get

E[En+1 −En |Fn] ≤−κγn

2
‖Zn‖2 + Cγ2

n

2
‖Zn‖2. (C.41)

Since γn → 0, it follows that En is eventually a supermartingale: specifically, if n0 = sup{n :

Cγn > κ} (with the standard convention sup∅=−∞), we have E[En+1 |Fn] ≤ En for all n ≥ n0.

Since E[En0 ] <∞, Doob’s submartingale convergence theorem subsequently implies that En

converges with probability 1 to some non-negative random variable E∞. Since Sn → 0 with

probability 1 (by Assumption (A5.2)), we conclude that ‖Zn‖ = (2/κ)E(Zn) → (2/κ)E∞ (a.s.),

and our claim follows. �

3In the above and throughout this proof, we assume that ‖·‖ is the ordinary Euclidean norm on Rd ; this
assumption is only made for notational convenience and to avoid carrying around many multiplicative constants.
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C.2 Convergence analysis

With all this preliminary work in hand, we are finally in a position to prove Theorems 4.2

and 4.3. The heavy lifting for the former is provided by the fact that, under the requirements of

Theorem 4.1 and/or Proposition 4.1, Zn is an APT of the mean dynamics (MD), so it inherits

its limit structure. The latter requires completely different techniques and involves a much

finer analysis of the process in hand.

C.2.1 Convergence to ICTs

We begin with Theorem 4.2, which we restate below for convenience:

Theorem 4.2. Suppose that (RM) is run with a step-size sequence γn such that
∑

n γn = ∞,

limn γn = 0. If Assumptions (A5.1) and (A5.2) hold, then, with probability 1, we have: a) Zn

converges to an ICT set of F ; or b) Zn is unbounded (and hence, non-convergent).

Proof. We consider two cases. First, if Zn is unbounded, there is nothing to show. Otherwise,

if Zn is bounded, Theorem 4.2 shows that it is an APT of the mean dynamics (MD). Now, let

L=⋂
t≥0 cl(Z(t ,∞)) be the limit set of Z(t ), i.e., the set of limit points of convergent sequences

Z(tn) with limn tn =∞. Our claim then follows by the limit set theorem of [BH96, Theorem

8.2]. �

As we discussed in the main part of our paper, the ICT sets of F may exhibit a wide variety

of structural properties (limit cycles, heteroclinic networks, etc.). As a complement to this,

we show below that, in gradient systems (V =−∇ f for some f : Z →R), ICT sets can only be

compoments of equilibria. Specifically, building on a general result by [Ben99], we have:

Proposition C.4. Suppose that V (z) =−∇ f (z) for some C d -smooth potential function f : Z →R

with a compact critical set crit( f ) = {z? : ∇ f (z?) = 0}. Then, every ICT setS of (MD) is contained

in crit( f ); moreover, f is constant on S . In particular, any ICT set of (MD) consists solely of

critical points of f .

Proof. Under the stated conditions, the critical set Z? := crit( f ) of f coincides with the set of

rest points of (MD). Moreover, by Sard’s theorem [Lee03], f (Z?) has zero Lebesgue measure

and hence empty interior. Our claim then follows from Proposition 6.4 of [Ben99]. �

As another elementary illustration in addition to the gradient systems, one can show that for

bilinear games F (xxx, yyy) = xxxyyy , the ICT sets are annular regions of the form {z : r ≤ ‖z‖ ≤ R, 0 ≤ r ≤
R}. This can be easily seen by considering the widely known Hamiltonian function H(xxx, yyy) =
xxx2 + yyy2, which satisfies Ḣ = 0 provided (xxx, yyy) follows (MD). An immediate consequence of this

fact is that any point on R2 lies in some ICT set of (MD), which further implies that there is no

bounded attracting region, i.e., attractors.
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C.2.2 Convergence to attractors

We now proceed with the analysis of RM schemes in the presence of an attractor; the relevant

result is Theorem 4.3:

Theorem 4.3. Let S be an attractor of (MD) and fix some confidence level α > 0. If γn is

small enough and Assumptions (A5.1) and (A5.2) hold, there exists a neighborhood U of S ,

independent of α, such that P(Zn converges to S |Z1 ∈U ) ≥ 1−α.

Because of the generality of our assumptions, the proof of Theorem 4.3 requires a range of

completely different arguments and techniques. We illustrate the main steps of our technical

trajectory below:

1. The first crucial component of our proof is to establish an energy function for (RM)

in a neighborhood of S . To do this, we rely on Conley’s decomposition theorem (the

so-called “fundamental theorem of dynamical systems”) which states that the mean

dynamics (MD) are “gradient-like” in a neighborhood of an attractor, i.e., they admit a

(local) Lyapunov function.

2. Because of the noise in (RM), the evolution of E along the trajectories of (RM) could

present signifcant jumps: in particular, a single “bad” realization of the noise could carry

Zn out of the basin of attraction of S , possibly never to return. A major difficulty here is

that the driving vector field V is not assumed bounded, so it is not straightforward to

establish proper control over the error terms of (RM). However, we show that, with high

probability (and, in particular, with probability at least 1−α), the aggregation of these

errors remains controllably small; this is the most technically challenging part of our

argument and it unfolds in a series of lemmas below.

3. Conditioning on the above, we will show that, with probability at least 1−α, the value of

the trajectory’s energy cannot grow more than a token threshold ε; as a result, if (RM)

is initialized close to S , it will remain in a neighborhood thereof for all n (again, with

probability at least 1−α).

4. Thanks to this “stochastic Lyapunov stability” result, we can regain control of the vari-

ance of the process and use martingale limit and maximal inequality arguments to show

that Zn converges to S .

In the rest of this section, we make this roadmap precise via a series of technical lemmas and

intermediate results.

A local energy function for (RM). We begin by providing a suitable (local) energy function

for (MD). Indeed, since S is an attractor, there exists a compact neighborhood K of S , called

the fundamental neighborhood of S , and having the defining property that dist(Θt (z),S) → 0

as t →∞ uniformly in z ∈K. Since all trajectories of (MD) that start in K converge to S , there
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are no other non-trivial invariant sets in K except S . As a result, with K compact, Conley’s

decomposition theorem for dynamical systems [Con78] shows that there exists a smooth

Lyapunov – or “energy” – function E : K→R such that (i) E(z) ≥ 0 with equality if and only if

z ∈S ; and (ii) Ė(z) := 〈∇E(z),V (z)〉 < 0 for all z ∈K \S (implying in particular that E(Θt (z)) is

strictly decreasing in t whenever z ∈K \S).

In the discrete-time context of (RM), the energy En := E(Zn) of Zn may fail to be decreasing

(strictly or otherwise). However, a simple Taylor expansion with Lagrange remainder yields

the basic energy bound

En+1 ≤ En +γn〈∇E(Zn),V (Zn)〉+γnξn +γnψn +γ2
nθ

2
n , (C.42)

where the error terms ξn , ψn and θn are defined as

ξn = 〈∇E(Zn),Un〉 (C.43a)

ψn = Bn‖∇E(Zn)‖+γnβB 2
n (C.43b)

θ2
n =β‖V (Zn)+Un‖2 (C.43c)

with β denoting the strong smoothness modulus of E over the compact set K. Clearly, each of

these error terms can be positive, so En may fail to be decreasing; we discuss how these errors

can be controlled below.

Error control. We begin by encoding the aggregation of the error terms in (C.42) as

Mn =
n∑

k=1
γkξk (C.44a)

and

Sn =
n∑

k=1
[γkψk +γ2

kθ
2
k ] (C.44b)

Since E[ξn |Fn] = 0, we have E[Mn |Fn] = Mn−1, so Mn is a martingale; likewise, E[Sn |Fn] ≥
Sn−1, so Sn is a submartingale. Interestingly, even though Mn appears more “balanced” as

an error (because ξn is zero-mean), it is more difficult to control because the variance of its

increments is

E[|γnξn |2 |Fn] = γ2
n E[|〈∇E(Zn),Un〉|2 |Fn], (C.45)

so the jumps of Mn can become arbitrarily big if Zn escapes K (which is the event we are

trying to discount in the first place). On that account, we will instead bound the total error

increments by conditioning everything on the event that Zn remains within K.
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To make this precise, consider the “mean square” error process

Rn = M 2
n +Sn (C.46)

and the indicator events

En ≡ En(K) = {Zn ∈K for all k = 1,2, . . . ,n} (C.47)

Hn ≡Hn(ε) = {Rk ≤ ε for all k = 1,2, . . . ,n}, (C.48)

with the convention E0 =H0 =Ω. Moving forward, with significant hindsight, we will choose ε

small enough so that

{z ∈Z : E(z) ≤ 2ε+p
ε} ⊆K. (C.49)

and we will assume that Z1 is initialized in a neighborhood U ⊆K such that

U ⊆ {z ∈Z : E(z) ≤ ε} (C.50)

We then have the following estimates:

Lemma C.1. Suppose that Z1 ∈U and Assumptions (A5.1) and (A5.2) hold. Then

1. En+1 ⊆ En and Hn+1 ⊆Hn .

2. Hn−1 ⊆ En .

3. Consider the “bad realization” event

H̃n :=Hn−1 \Hn =Hn−1 ∩ {Rn > ε}

= {
Rk ≤ ε for k = 1,2, . . . ,n −1 and Rn > ε}, (C.51)

and let R̃n = Rn1Hn−1 denote the cumulative error subject to the noise being “small” until

time n. Then:

E[R̃n] ≤ E[R̃n−1]+γnGBn +γ2
n[2βG2 + (2β+G2)σ2

n +βB 2
n]−εP(H̃n−1), (C.52)

where G2 = supz∈K{‖∇E(z)‖2 +‖V (z)‖2} and, by convention, H̃0 =∅, R̃0 = 0.

Proof. The first claim is obvious. For the second, we proceed inductively:

1. For the base case n = 1, we have E1 = {Z1 ∈K} ⊇ {Z1 ∈U } =Ω (recall that Z1 is initialized

in U ⊆K). Since H0 =Ω, our claim follows.

2. Inductively, suppose that Hn−1 ⊆ En for some n ≥ 1. To show that Hn ⊆ En+1, suppose

that Rk ≤ ε for all k = 1,2, . . . ,n. Since Hn ⊆Hn−1, this implies that En also occurs, i.e.,

Zk ∈K for all k = 1,2, . . . ,n; as such, it suffices to show that Zn+1 ∈K.
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To do so, given that Zk ∈U ⊆K for all k = 1,2, . . .n, the bound (C.42) gives

Ek+1 ≤ Ek +γnξn +γnψn +γ2
nθ

2
n , for all k = 1,2, . . .n, (C.53)

and hence, after telescoping over k = 1,2, . . . ,n, we get

En+1 ≤ E1 +Mn +Sn ≤ E1 +
√

Rn +Rn ≤ ε+p
ε+ε= 2ε+p

ε. (C.54)

We conclude that E(Zn+1) ≤ 2ε+p
ε, i.e., Zn+1 ∈K, as required for the induction.

For our third claim, note first that

Rn = (Mn−1 +γnξn)2 +Sn−1 +γnψn +γ2
nθ

2
n

= Rn−1 +2γnξn Mn−1 +γ2
nξ

2
n +γnψn +γ2

nθ
2
n , (C.55)

so, after taking expectations:

E[Rn |Fn] = Rn−1 +2Mn−1γn E[ξn |Fn]+E[γ2
nξ

2
n +γnψn +γ2

nθ
2
n |Fn] ≥ Rn−1 (C.56)

i.e., Rn is a submartingale. To proceed, let R̃n = Rn1Hn−1 so

R̃n = Rn−11Hn−1 +(Rn −Rn−1)1Hn−1

= Rn−11Hn−2 −Rn−11H̃n−1
+(Rn −Rn−1)1Hn−1 ,

= R̃n−1 + (Rn −Rn−1)1Hn−1 −Rn−11H̃n−1
, (C.57)

where we used the fact that Hn−1 =Hn−2 \H̃n−1 so 1Hn−1 =1Hn−2 −1H̃n−1
. Then, (C.55) yields

Rn −Rn−1 = 2Mn−1γnξn +γ2
nξ

2
n +γnψn +γ2

nθ
2
n (C.58)

so

E[(Rn −Rn−1)1Hn−1 ] = 2E[γn Mn−1ξn1Hn−1 ] (C.59a)

+E[γ2
nξ

2
n1Hn−1 ] (C.59b)

+E[(γnψn +γ2
nθ

2
n)1Hn−1 ] (C.59c)

However, since Hn−1 and Mn−1 are both Fn-measurable, we have the following estimates:

1. For the noise term in (C.59a), we have:

E[Mn−1ξn1Hn−1 ] = E[Mn−11Hn−1 E[ξn |Fn]] = 0. (C.60)
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2. The term (C.59b) is where the reduction to Hn−1 kicks in; indeed:

E[ξ2
n1Hn−1 ] = E[1Hn−1 E[|〈∇E(Zn),Un〉|2 |Fn]]

≤ E[1Hn−1‖∇E(Zn)‖2E[‖Un‖2 |Fn]] {by Cauchy–Schwarz}

≤ E[1En‖∇E(Zn)‖2E[‖Un‖2 |Fn]] {because Hn−1 ⊆ En}

≤G2σ2
n , {by Eq. (4.5b)}

where G2 = supz∈K{‖∇E(z)‖2 +‖V (z)‖2}.

3. Finally, for the term (C.59c), we have:

E[θ2
n1Hn−1 ] ≤ 2βE[‖V (Zn)‖21En +‖Un‖2] ≤ 2β(G2 +σ2

n), (C.61)

where we used the fact that 1Hn−1 ≤1En ≤ 1. Likewise,

E[ψn1Hn−1 ] ≤GBn +γnβB 2
n . (C.62)

Thus, putting together all of the above, we obtain:

E[(Rn −Rn−1)1Hn−1 ] ≤ γnGBn +γ2
n[2βG2 + (2β+G2)σ2

n +βB 2
n]. (C.63)

Going back to (C.57), we have Rn−1 > ε if H̃n−1 occurs, so the last term becomes

E[Rn−11H̃n−1
] ≥ εE[1H̃n−1

] = εP(H̃n−1). (C.64)

Our claim then follows by combining Eqs. (C.57), (C.61), (C.62) and (C.64). �

Containment probability. Lemma C.1 is the key to showing that Zn remains close to S with

high probability: we formalize this in a final intermediate result below.

Proposition C.5. Fix some confidence threshold α> 0. If (RM) is run with sufficiently small γn

satisfying the conditions of Proposition 4.1, then

P(Hn |Z1 ∈U ) ≥ 1−α for all n = 1,2, . . . (C.65)

i.e., Z remains within the basin of attraction K of S with probability at least 1−α.

Proof. We begin by bounding the probability of the “bad realization” event H̃n =Hn−1 \Hn .
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Indeed, if Z1 ∈U , we have:

P(H̃n) =P(Hn−1 \Hn) =P(Hn−1 ∩ {Rn > ε})

= E[1Hn−1 ×1{Rn>ε}]

≤ E[1Hn−1 ×(Rn/ε)]

= E[R̃n]/ε (C.66)

where, in the second-to-last line, we used the fact that Rn ≥ 0 (so 1{Rn>ε} ≤ Rn/ε). Telescoping

(C.52) yields

E[R̃n] ≤ E[R̃0]+G
n∑

k=1
γk Bk +

n∑
k=1

γ2
k%

2
k −ε

n∑
k=1

P(H̃k−1) (C.67)

where we set %2
n = 2βG2+(2β+G2)σ2

n+βB 2
n . Hence, combining (C.66) and (C.67) and invoking

Assumptions (A5.1) and (A5.2), we get
∑n

k=1P(H̃k ) ≤ 1
ε

∑n
k=1[γkGBk +γ2

k%
2
k ] ≤ Γ/ε for some

Γ> 0. Now, by choosing γn sufficiently small, we can ensure that Γ/ε<α; therefore, given that

the events H̃k are disjoint for all k = 1,2, . . . , we get

P

(
n⋃

k=1
H̃k

)
=

n∑
k=1

P(H̃k ) ≤α (C.68)

and hence:

P(Hn) =P
(

n⋂
k=1

H̃c
k

)
≥ 1−α, (C.69)

as claimed. �

Convergence with high probability. We are finally in a position to prove the convergence

of generalized RM algorithms:

Proof of Theorem 4.3. By Proposition C.5, if Zn is initialized within the neighborhood U de-

fined in (C.50), we have P(Zn ∈ K | Z1 ∈ U ) ≥ 1−α (note also that the neighborhood U is

independent of the required confidence level α). Since K is compact, if Zn ∈K for all n, we

conclude by Theorem 4.1 that the continuous-time interpoloation Z(t) of Zn is an APT of

(MD).

Now, if we write L = ⋂
t≥0 cl(Z(t ,∞)) for the limit set of Z(t), we have K∩L 6= ∅ by the

compactness of K and the fact that Zn ∈ K for all n ≥ 1; moreover, L is itself compact as

a closed subset of the compact set {Θt (z) : 0 ≤ t ≤ T, z ∈ K}. Since points in L∩K are a

fortiori attracted to S under (MD) and L is invariant under (MD), we conclude that L∩S 6=∅.

However, since L is internally chain-transitive (by Theorem 4.2) and internally chain-transitive
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sets do not contain any proper attractors, we conclude that L⊆S . This shows that Z(t ) – and,

by consequence, Zn – converges to S , as claimed. �

C.3 Omitted proofs for Section 4.5

C.3.1 A general criterion for spurious ICT sets in almost bilinear games

We first provide a generic criterion for the existence of spurious ICT sets in almost bilinear

games (4.8); cf. Lemma C.2. We then verify that the perturbation φ(yyy) = 1
2 yyy2 − 1

4 yyy4 employed

in Example 4.5.1 indeed satisfies the required conditions.

Lemma C.2. Let φ(yyy) =∑
k ak yyyk be an analytic function such that

∑
k

a2k kh2k
k∏

i=1

2i −1

2i
= 0 (C.70)

has a solution with h > 0. Then, for small enough ε, there is an ICT set of mean dynamics (MD)

with objective F (xxx, yyy) = xxxyyy +εφ(yyy) such that it does not contain any critical point.

Proof. Recall the mean dynamics (MD):

ż(t ) =V (z(t )).

In the case of F (xxx, yyy) = xxxyyy +εφ(yyy), (MD) reads:{
ẋxx =−yyy

ẏyy = xxx +εφ′(yyy)
. (C.71)

The most important tool of the proof is the Abelian integral [CL07]:

I (h) :=−
∮
γh

φ′dxxx (AI)

where h > 0 is a parameter and γh is a family of ovals defined as in (2.3) of [CL07].

Suppose φ(yyy) = ak yyyk , so that φ′(yyy) = kak yyyk−1. We choose γh = {z : ‖z‖ = h}. Then, using the

polar coordinate representation, we get

I (h) =−
∮
γh

φ′dxxx

= kak

∫ 2π

0
hk sink (θ)dθ

= kak ·
0 if k is odd,

2πhk ∏ k
2
i=1

2i−1
2i if k is even.

(C.72)
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Since contour integrals are linear in the integrands, when φ(yyy) =∑
k ak yyyk in (AI), we have

I (h) = 4π
∑
k

a2k kh2k
k∏

i=1

2i −1

2i
.

Therefore, I (h) = 0 if and only if (C.70) holds. By Theorem 2.4 in [CL07], the solution h∗ of

I (h∗) = 0 then implies the existence of a limit cycle in a neighborhood of the oval γh∗ := {z :

‖z‖ = h∗}. �

Finally, it is easy to verify that for φ(yyy) = 1
2 yyy2 − 1

4 yyy4, the condition (C.70) is satisfied with h∗ =√
4
3 , thus implying the existence of a spurious ICT set near the neighborhood of {z : ‖z‖ =

√
4
3 }.

C.3.2 Proof of spurious ICT sets in Example 4.5.2

We show the existence of two spurious ICT sets in Example 4.5.2.

The mean dynamics (MD) for (4.9) reads:{
ẋxx =−(yyy −0.5)− 1

2xxx +2xxx3 −xxx5

ẏyy = xxx − 1
2 yyy +2yyy3 − yyy5 . (C.73)

Define r 2 := xxx2 + yyy2. Then straightforward calculations show that:

1

2

d

dt
r 2 = xxxẋxx + yyyẏyy

=−xxx(yyy −0.5)− 1

2
xxx2 +2xxx4 −xxx6 +xxxyyy − 1

2
yyy2 +2yyy4 − yyy6

= 0.5xxx − 1

2
r 2 +2r 4 − r 6 +3xxx4yyy2 +3xxx2yyy4 −4xxx2yyy2

= 0.5xxx − 1

2
r 2 +2r 4 − r 6 +xxx2yyy2 (

3r 2 −4
)

. (C.74)

Substituting the value r 2 = 4
3 into (C.74), we get

1

2

d

dt
r 2 = 0.5xxx + 1

2
· 4

3
+2 · 16

9
− 64

27

= 0.5xxx + 14

27

> 0

since |xxx| ≤
√

4
3 on {r ≥ 0 : r 2 = 4

3 }, whence ṙ > 0 on {r ≥ 0 : r 2 = 4
3 }. Likewise, one can check that

ṙ < 0 on {r ≥ 0 : r 2 = 2}, and that there is no stationary point in the region S := {r ≥ 0 : 4
3 ≤ r 2 ≤

2}. By the Poincaré-Bendixson theorem [Wig03], there exists at least a limit cycle in S .

Finally, it is easy to see that (xxx?, yyy?) = (0,0.5) is a stable critical point of (4.9). Since the region
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S is trapping, Poincaré’s index theorem then dictates that there exists at least another unstable

limit cycle inside S , establishing the claim.

C.3.3 Second-order methods in Example 4.5.3 as perturbations

In this section, we discuss how to cast existing second-order methods as an RM scheme

with different driving vector fields, and show that their ICT sets are similar to the first-order

methods under practical settings.

We will showcase on the consensus optimization (ConO):

Zn+1 = Zn +γn(I −λJ (Zn))V (Zn) (ConO)

where λ> 0 is the regularization parameter. Recalling the efficient implementation scheme of

Hessian-gradient multiplication [Pea94], we make the following assumption on the stochastic

second-order oracles (SSO): when called at z = (xxx, yyy) with random seed ω′ ∈Ω, an SSO returns

a random vector JV(z;ω′) of the form

JV(z;ω′) = J (z)V (z)+U′(z;ω′) (SSO)

where U′(z;ω′) is assumed to be unbiased and sub-Gaussian as in (4.2). With these assump-

tions, one can then proceed exactly as in Appendix C.1.3 for the (SGDA) and (alt-SGDA) cases

to show that ConO, and its alternating version, give rise to asymptotic pseudotrajectories of

the continuous-time dynamics:

ż(t ) =
(
I −λJ (z(t ))

)
V (z(t )).

Similarly, one can show (under appropriate assumptions of the oracles) the continuous-time

dynamics of symplectic gradient adjustment (SGA) is

ż(t ) =
(

I −λ
(

J (z(t ))− J (z(t ))>

2

))
V (z(t )).

As explained in Example 4.5.3, it is undesirable to set a large number of λ, since then we

are essentially treating minmax and maxmin as the same problem. However, if λ is small,

then by continuity, any stable (unstable) ICT set of (MD) remains stable (unstable) under

perturbations [Wig03]. We therefore expect the ICT sets of various second-order algorithms in

Example 4.5.3 be to similar to that of first-order RM schemes.

C.3.4 Further comparisons

This section includes further comparison of the ICT sets of various algorithms, and show that

these existing methods all suffer from the spurious convergence depicted in Section 4.5.
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Figure C.1: ConO with λ= 0.2 applied to (4.9).

Figure C.2: Spurious limits of min-max optimization algorithms from the same initialization. From left
to right: (a) CGA for (4.9); (b) (OG/PEG) for (4.9); (c) Algorithms for (4.8).

First, Fig. C.1 demonstrates that the spurious ICT sets of ConO for (4.9) is similar to that of

SGA; cf. Fig. 4.2(c).

Second, we have included yet another second-order method, the Competitive Gradient De-

scent (CGD) [SA19], in Fig. C.2(a). For ease of comparison, we run (OG/PEG) with the same

initialization in Fig. C.2(b). As is evident from the figure, both algorithms perform similarly

and converge straight to the spurious ICT set.

Finally, we report the bahvior of various algorithms applied to the “almost bilinear game” (4.8).

In this case, all algorithms fail to escape the spurious ICT set, with the sole exception of ConO.

Intriguingly, ConO converges to the unstable critical point. A plausible explanation of this

phenomenon is provided by [ALW19], where it is shown that the Hamiltonian descent (HD)

converges to critical points for any almost bilinear game. Therefore, it is not surprising that

ConO, being a mixture of SGDA and HD, also enjoys similar guarantees. Such a convergence is

nonetheless highly undesirable in our example, echoing the concern that gradient penalty

schemes cannot distinguish (local) minmax from maxmin.
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D Appendix for Chapter 5

D.1 A framework for infinite-dimensional mirror descent

D.1.1 A note on the regularity

It is known that the (negative) Shannon entropy is not Fréchet differentiable in general. How-

ever, below we show that the Fréchet derive can be well-defined if we restrict the probability

measures to within the set

M(Z) :={all probability measures on Z that admit densities w.r.t. the Lebesgue measure,

and the density is continuous and positive almost everywhere on Z}. (D.1)

We will also restrict the set of functions to be bounded and integrable:

F (Z) :=
{

all bounded continuous functions f on Z such that
∫

e− f <∞
}

. (D.2)

These assumptions on the probability measures and functions are sufficient for most practical

applications.

It is important to notice that µ ∈M(Z) and h ∈F (Z) implies µ′ = MDη

(
µ,h

) ∈M(Z); this

readily follows from the formula (5.7).

D.1.2 Properties of entropic mirror map

The total variation of a (possibly non-probability) measure µ ∈M(Z) is defined as [Hal13]

‖µ‖TV = sup
‖h‖L∞≤1

∫
hdµ= sup

‖h‖L∞≤1

〈
µ,h

〉
.

Recall the standard topology induced by ‖·‖TV and ‖·‖L∞ for measures and functions [Hal13],

respectively. Whenever we speak about continuity or differentiability below, it is understood to
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be w.r.t. to the standard topology. Notice also that the G operator defined in (5.5) is bounded if

the discriminator fwww is bounded, and hence continuous [Hal13].

We depart from the fundamental Gibbs Variational Principle, which dates back to the earliest

work of statistical mechanics [Gib02]. For two probability measures µ,µ′, denote their relative

entropy by (the reason for this notation will become clear in (D.8))

DΦ(µ,µ′) :=
∫
Z

dµ log
dµ

dµ′ .

By the definition of M(Z), it is clear that the relative entropy is well-defined for any µ,µ′ ∈
M(Z).

Theorem D.1 (Gibbs Variation Principle). Let h ∈F (Z) and µ′ ∈M(Z) be a reference measure.

Then

log
∫
Z

ehdµ′ = sup
µ∈M(Z)

〈
µ,h

〉−DΦ(µ,µ′), (D.3)

and equality is achieved by dµ? = eh dµ′∫
Z eh dµ′ .

Part of the following theorem is folklore in the mathematics and learning community. However,

to the best of our knowledge, the relation to the entropic MD has not been systematically

studied before, as we now do.

Theorem D.2. For a probability measure dµ= ρdzzz, let Φ(µ) = ∫
ρ logρdzzz be the negative Shan-

non entropy, and letΦ?(h) = log
∫
Z ehdzzz. Then

1. Φ? is the Fenchel conjugate ofΦ:

Φ?(h) = sup
µ∈M(Z)

〈
µ,h

〉−Φ(µ); (D.4)

Φ(µ) = sup
h∈F (Z)

〈
µ,h

〉−Φ?(h). (D.5)

2. The derivatives admit the expression

dΦ(µ) = 1+ logρ = argmax
h∈F (Z)

〈
µ,h

〉−Φ?(h); (D.6)

dΦ?(h) = ehdzzz∫
Z ehdzzz

= argmax
µ∈M(Z)

〈
µ,h

〉−Φ(µ). (D.7)

3. The Bregman divergence ofΦ is the relative entropy:

DΦ(µ,µ′) =Φ(µ)−Φ(µ′)−〈
µ−µ′,dΦ(µ′)

〉= ∫
Z

dµ log
dµ

dµ′ . (D.8)
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4. Φ is 4-strongly convex with respect to the total variation norm: For all λ ∈ (0,1),

Φ(λµ+ (1−λ)µ′) ≤λΦ(µ)+ (1−λ)Φ(µ′)− 1

2
·4λ(1−λ)‖µ−µ′‖2

TV. (D.9)

5. The following duality relation holds: For any constant C , we have

∀µ,µ′ ∈M(Z), DΦ(µ,µ′) = DΦ?
(
dΦ(µ′),dΦ(µ)

)= DΦ?
(
dΦ(µ′)+C ,dΦ(µ)

)
. (D.10)

6. Φ? is 1
4 -smooth with respect to ‖ ·‖L∞ :

∀h,h′ ∈F (Z),
∥∥dΦ?(h)−dΦ?(h′)

∥∥
TV ≤ 1

4

∥∥h −h′∥∥
L∞ . (D.11)

7. Alternative to (D.11), we have the equivalent characterization ofΦ?:

∀h,h′ ∈F (Z), Φ?(h) ≤Φ?(h′)+〈
dΦ?(h′),h −h′〉+ 1

2
· 1

4

∥∥h −h′∥∥2
L∞ . (D.12)

8. Similar to (D.10), we have

∀h,h′, DΦ?(h,h′) = DΦ(dΦ?(h′),dΦ?(h)). (D.13)

9. The following three-point identity holds for all µ,µ′,µ′′ ∈M(Z):〈
µ′′−µ,dΦ(µ′)−dΦ(µ)

〉= DΦ(µ,µ′)+DΦ(µ′′,µ)−DΦ(µ′′,µ′). (D.14)

10. Let the Mirror Descent iterate be defined as in (5.7). Then the following statements are

equivalent:

(a) µ+ = MDη

(
µ,h

)
.

(b) There exists a constant C such that dΦ(µ+) = dΦ(µ)−ηh +C .

In particular, for any µ′,µ′′ ∈M(Z) we have

Let
〈
µ′−µ′′,ηh

〉= 〈
µ′−µ′′,dΦ(µ)−dΦ(µ+)

〉
. (D.15)

Proof.

1. Equation (D.4) is simply the Gibbs variational principle (D.3) with dµ← dzzz.

By (D.4), we know that

∀h ∈F (Z), Φ(µ) ≥ 〈
µ,h

〉− log
∫
Z

ehdzzz. (D.16)

But for dµ= ρdzzz, the function h := 1+ logρ saturates the equality in (D.16).

107



Appendix D. Appendix for Chapter 5

2. We prove a more general result on the Bregman divergence DΦ in (D.17) below.

Let dµ = ρdzzz,dµ′ = ρ′dzzz, and dµ′′ = ρ′′dzzz ∈ M(Z). Let ε > 0 be small enough such

that (ρ+ερ′′)dzzz is absolutely continuous with respect to dµ′; note that this is possible

because µ,µ′, and µ′′ ∈M(Z). We compute

DΦ(ρ+ερ′′,ρ′) =
∫
Z

(
ρ+ερ′′) log

ρ+ερ′′

ρ′

=
∫
Z
ρ log

ρ

ρ′ +
∫
Z
ρ log

(
1+ερ

′′

ρ

)
+ε

∫
Z
ρ′′ log

ρ

ρ′ +ε
∫
Z
ρ′′ log

(
1+ερ

′′

ρ

)
(i)=

∫
Z
ρ log

ρ

ρ′ +ε
∫
Z
ρ′′+ε

∫
Z
ρ′′ log

ρ

ρ′ +ε2
∫
Z

ρ′′2

ρ
+o(ε)

= DΦ(ρ,ρ′)+ε
∫
Z
ρ′′

(
1+ log

ρ

ρ′

)
+o(ε),

where (i) uses log(1+ t ) = t +o(t ) as t → 0. In short, for all µ′,µ′′ ∈M(Z),

dµDΦ(µ,µ′)(µ′′) =
〈
µ′′,1+ log

ρ

ρ′

〉
(D.17)

which means dµDΦ(µ,µ′) = 1+ log ρ
ρ′ . The formula (D.6) is the special case when dµ′ ←

dzzz.

We now turn to (D.7). For every h ∈F (Z), we need to show that the following holds for

every h′ ∈F (Z):

Φ?(h+εh′)−Φ?(h) = log
∫
Z

eh+εh′
dzzz − log

∫
Z

ehdzzz = ε
∫
Z

h′ eh∫
Z eh

dzzz +o(ε). (D.18)

Define an auxiliary function

T (ε) := log
∫
Z

eh∫
Z eh

eεh′
dzzz.

Notice that T (0) = 0 and T is smooth as a function of ε. Thus, by the Intermediate Value

Theorem,

Φ?(h +εh′)−Φ?(h) = T (ε)−T (0)

= (ε−0) · d

dε
T (·)

∣∣∣
ε′

for some ε′ ∈ [0,ε]. A direct computation shows

d

dε
T (·)

∣∣∣
ε′
=

∫
Z

h′ eh+ε′h′∫
Z eh+ε′h′ dzzz.

Hence it suffices to prove eh+ε′h′∫
Z eh+ε′h′ = eh∫

Z eh +o(1) in ε. To this end, let C = sup |h′| <∞.
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Then

eh∫
Z eh

e−2ε′C ≤ eh+ε′h′∫
Z eh+ε′h′ ≤

eh∫
Z eh

e2ε′C .

It remains to use e t = 1+ t +o(t ) and ε′ ≤ ε.

3. Let dµ= ρdzzz and dµ′ = ρ′dzzz. We compute

DΦ(µ,µ′) =Φ(µ)−Φ(µ′)−〈
µ−µ′,dΦ(µ′)

〉
=

∫
Z
ρ logρdzzz −

∫
Z
ρ′ logρ′dzzz −〈

µ−µ′,1+ logρ′〉 by (D.6)

=
∫
Z
ρ log

ρ

ρ′ dzzz

=
∫
Z

dµ log
dµ

dµ′ .

4. Define µλ = λµ+ (1−λ)µ′. By (D.8) and the classical Pinsker’s inequality [Gra11], we

have

Φ(µ) ≥Φ(µλ)+〈
(1−λ)(µ−µ′),dΦ(µλ)

〉+2‖(1−λ)(µ−µ′)‖2
TV, (D.19)

Φ(µ′) ≥Φ(µλ)+〈
λ(µ′−µ),dΦ(µλ)

〉+2‖λ(µ−µ′)‖2
TV. (D.20)

Equation (D.9) follows by multiplying with λ and 1−λ respectively and summing the

two inequalities up.

5. Let µ = ρdzzz and µ′ = ρ′dzzz. Then, by the definition of Bregman divergence and (D.6),

(D.7),

DΦ?(dΦ(µ′),dΦ(µ)) =Φ?(dΦ(µ′))−Φ?(dΦ(µ))−
〈

e1+logρdzzz∫
Z e1+logρ

,1+ logρ′−1− logρ

〉

= log
∫
Z

e1+logρ′ − log
∫
Z

e1+logρ+
∫
Z
ρ log

ρ

ρ′

=
∫
Z
ρ log

ρ

ρ′ = DΦ(µ,µ′)

since
∫
Z ρdzzz = ∫

Z ρ
′dzzz = 1. This proves the first equality.

For the second equality, we write

DΦ?(dΦ(µ′)+C ,dΦ(µ)) =Φ?(dΦ(µ′)+C )−Φ?(dΦ(µ))−
〈

e1+logρdzzz∫
Z e1+logρ

,1+ logρ′+C −1− logρ

〉

= log
∫
Z

e1+logρ′+C − log
∫
Z

e1+logρ+
∫
Z
ρ log

ρ

ρ′ −C

=
∫
Z
ρ log

ρ

ρ′

= DΦ(µ,µ′) = DΦ?(dΦ(µ′),dΦ(µ))
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where we have used the first equality in the last step.

6. Letµh = dΦ?(h), µh′ = dΦ?(h′), and µλ =λµh+(1−λ)µh′ for someλ ∈ (0,1). By Pinsker’s

inequality and (D.8), we have

Φ(µλ) ≥Φ(µh)+〈
µλ−µh ,dΦ(µh)

〉+2‖µλ−µh‖2
TV, (D.21)

Φ(µλ) ≥Φ(µh′)+〈
µλ−µh′ ,dΦ(µh′)

〉+2‖µλ−µh′‖2
TV. (D.22)

Now, notice that〈
µλ−µh ,dΦ(µh)

〉= 〈
µλ−µh ,dΦ(dΦ?(h))

〉
=

〈
µλ−µh ,dΦ

(
ehdzzz∫
Z eh

)〉
by (D.7)

=
〈
µλ−µh ,1+h − log

∫
Z

eh
〉

by (D.6)

= 〈
µλ−µh ,h

〉
and, similarly, we have

〈
µλ−µh′ ,dΦ(µh′)

〉= 〈
µλ−µh′ ,h′〉. Multiplying (D.21) by λ and

(D.22) by 1−λ, summing the two up, and using the above equalities, we get

Φ(µλ)−
(
λΦ(µh)+ (1−λ)Φ(µh′)

)
+λ(1−λ)

〈
µh −µh′ ,h −h′〉≥ 2λ(1−λ)

∥∥µh −µh′
∥∥2

TV .

By (D.9), we know that

Φ(µλ)−
(
λΦ(µh)+ (1−λ)F (µh′)

)
≤−2λ(1−λ)

∥∥µh −µh′
∥∥2

TV .

Moreover, by definition of the total variation norm, it is clear that〈
µh −µh′ ,h −h′〉≤ ∥∥µh −µh′

∥∥
TV

∥∥h −h′∥∥
L∞ . (D.23)

Combing the last three inequalities gives (D.11).

7. Let K be a positive integer and k ∈ {0,1,2, . . . ,K }. Set λk = k
K and h′′ = h −h′. Then

Φ?(h)−Φ?(h′) =Φ?(h′+λK h′′)−Φ?(h′+λ0h′′)

=
K−1∑
k=0

(
Φ?(h′+λk+1h′′)−Φ?(h′+λk h′′)

)
. (D.24)

By convexity ofΦ?, we have

Φ?(h′+λk+1h′′)−Φ?(h′+λk h′′) ≤ 〈
dΦ?(h′+λk+1h′′), (λk+1 −λk )h′′〉

= 1

K

〈
dΦ?(h′+λk+1h′′),h′′〉 . (D.25)
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By (D.23) and (D.11), we may further upper bound (D.25) as

Φ?(h′+λk+1h′′)−Φ?(h′+λk h′′) ≤ 1

K

(〈
dΦ?(h′),h′′〉+〈

dΦ?(h′+λk+1h′′)−dΦ?(h′),h′′〉)
≤ 1

K

(〈
dΦ?(h′),h′′〉+∥∥dΦ?(h′+λk+1h′′)−dΦ?(h′)

∥∥
TV

∥∥h′′∥∥
L∞

)
≤ 1

K

(〈
dΦ?(h′),h′′〉+ λk+1

4

∥∥h′′∥∥2
L∞

)
. (D.26)

Summing up (D.26) over k, we get, in view of (D.24),

Φ?(h)−Φ?(h′) ≤ 〈
dΦ?(h′),h′′〉+ 1

4

∥∥h′′∥∥2
L∞

K−1∑
k=0

λk+1

= 〈
dΦ?(h′),h′′〉+ 1

4
· K +1

2K

∥∥h′′∥∥2
L∞ . (D.27)

Since K is arbitrary, we may take K →∞ in (D.27), which is (D.12).

8. Straightforward calculation shows

DΦ?(h,h′) = log
∫
Z

eh − log
∫
Z

eh′ −
∫
Z

eh′∫
eh′

(
h −h′) .

On the other hand, by definition of the Bregman divergence and (D.6), (D.7), we have

DΦ(dΦ?(h′),dΦ?(h)) =
∫
Z

eh′∫
Z eh′ h′− log

∫
Z

eh′ −
∫
Z

eh∫
Z eh

h + log
∫
Z

eh

−
∫
Z

(
1+h − log

∫
Z

eh
)(

eh′∫
Z eh′ −

eh∫
Z eh

)

=
∫
Z

eh′∫
eh′

(
h′−h

)− log
∫
Z

eh′ + log
∫
Z

eh

=Φ?(h)−Φ?(h′)−〈
dΦ?(h′),h −h′〉

= DΦ?(h,h′).

9. By definition of the Bregman divergence, we have

DΦ(µ,µ′) =Φ(µ)−Φ(µ′)−〈
µ−µ′,dΦ(µ′)

〉
,

DΦ(µ′′,µ) =Φ(µ′′)−Φ(µ)−〈
µ′′−µ,dΦ(µ)

〉
,

DΦ(µ′′,µ′) =Φ(µ′′)−Φ(µ′)−〈
µ′′−µ′,dΦ(µ′)

〉
.

Equation (D.14) then follows by straightforward calculations.

10. First, let µ+ = MDη

(
µ,h

)
. Then if µ+ = ρ+dzzz and µ= ρdzzz, then (5.7) implies

ρ+ = ρe−ηh∫
Z ρe−ηh

.
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By (D.6), we therefore have

dΦ(µ+) = 1+ logρ+

= 1+ logρ−ηh − log
∫
Z
ρe−ηh

whence (D.15) holds with C =− log
∫
Z ρe−ηh .

Conversely, assume that dΦ(µ+) = dΦ(µ)−ηh +C for some constant C , and apply dΦ?

to both sides. The left-hand side becomes

dΦ?
(
dΦ(µ+)

)
= dΦ?(1+ logρ+)

= ρ+dzzz∫
ρ+dzzz

= ρ+dzzz = dµ+,

where as the formula (D.7) implies that

dΦ?
(
dΦ(µ)−ηh +C

)= e1+logρ−ηh+C∫
Z e1+logρ−ηh+C

dzzz

= ρe−ηhdzzz∫
Z ρe−ηh

= e−ηhdµ∫
Z e−ηhdµ

.

Combining the two equalities gives dµ+ = e−ηh dµ∫
Z e−ηh dµ

which exactly meansµ+ = MDη

(
µ,h

)
.

�

D.2 Convergence rates for infinite-dimensional prox methods

D.2.1 Rigorous Statements

For Algorithms 7–8, we have the following guarantees:

Theorem D.3 (Convergence Rates). Let Φ(µ) = ∫
dµ log dµ

dzzz . Let M be a constant such that

max
[∥∥−g +Gν

∥∥
L∞ ,

∥∥G†µ
∥∥
L∞

]≤ M, and L be such that
∥∥G(ν−ν′)∥∥

L∞ ≤ L
∥∥ν−ν′∥∥TV and

∥∥G†(µ−µ′)
∥∥
L∞ ≤

L
∥∥µ−µ′∥∥

TV. Let D(·, ·) be the relative entropy, and denote by D0 := D(µNE,µ1)+D(νNE,ν1) the

initial distance to the mixed NE. Then

1. Assume that we have access to the deterministic derivatives
{−G†µt

}T
t=1 and

{
g −Gν

}T
t=1.

Then Algorithm 7 achieves O
(
T − 1

2

)
-NE with η = 2

M

√
D0
T , and Algorithm 8 achieves

O
(
T −1

)
-NE with η= 4

L .

2. Assume that we have access to stochastic derivatives
{−Ĝ†µt

}T
t=1 and

{
ĝ −Ĝν

}T
t=1 such

that max
[
E
∥∥−ĝ +Ĝν

∥∥
L∞ ,E

∥∥Ĝ†µ
∥∥
L∞

] ≤ M ′, and the variance is upper bounded by σ2.
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Assume also that the bias of stochastic derivatives satisfies

max
[∥∥E[−ĝ +Ĝν]+ g −Gν

∥∥
L∞ ,

∥∥∥E[Ĝ†µ]−G†µ
∥∥∥
L∞

]
≤ τ.

Then Algorithm 7 with stochastic derivatives achieves O
(
T − 1

2

)
-NE in expectation with

η=
√

D0

T
(
4τ+ M ′

4

) , and Algorithm 8 with stochastic derivatives achieves
(
O

(
T − 1

2

)
+O(τ)

)
-NE

in expectation with η= min
[

4p
3L

,
√

2D0

3Tσ2

]
.

D.2.2 Proof of convergence rates for infinite-dimensional mirror descent

Mirror descent, deterministic derivatives

By the definition of the algorithm, (D.15), and the three-point identity (D.14), we have, for any

µ ∈M(W),

〈
µt −µ,−g +Gνt

〉= 1

η

〈
µt −µ,dΦ(µt )−dΦ(µt+1)

〉
= 1

η

(
DΦ(µ,µt )−DΦ(µ,µt+1)+DΦ(µt ,µt+1)

)
. (D.28)

By Theorem D.2.10, there exists a constant Ct such that

dΦ(µt+1) = dΦ(µt )−η(−g +Gνt
)+Ct . (D.29)

Using (D.10), we see that

DΦ(µt ,µt+1) = DΦ?(dΦ(µt+1),dΦ(µt ))

= DΦ?

(
dΦ(µt+1)−Ct ,dΦ(µt )

)
≤ 1

8

∥∥dΦ(µt+1)−Ct −dΦ(µt )
∥∥2
L∞ by (D.12)

= η2

8

∥∥−g +Gνt
∥∥2
L∞ by (D.29)

≤ η2M 2

8
.

Consequently, we have

T∑
t=1

〈
µt −µ,−g +Gνt

〉= T∑
t=1

1

η

(
DΦ(µ,µt )−DΦ(µ,µt+1)+DΦ(µt ,µt+1)

)
≤ DΦ(µ,µ1)

η
+ ηM 2T

8
. (D.30)
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Exactly the same argument applied to νt ’s yields, for any ν ∈M(Θ),

T∑
t=1

〈
νt −ν,−G†µt

〉
≤ DΦ(ν,ν1)

η
+ ηM 2T

8
. (D.31)

Summing up (D.30) and (D.31), substituting µ←µNE,ν← νNE and dividing by T , we get

1

T

T∑
t=1

(〈
µt −µNE,−g +Gνt

〉+〈
νt −νNE,−G†µt )

〉)
≤ D0

ηT
+ ηM 2

4
. (D.32)

The left-hand side of (D.32) can be simplified to

1

T

T∑
t=1

(〈
µt −µNE,−g +Gνt

〉+〈
νt −νNE,−G†µt

〉)
= 1

T

T∑
t=1

(〈
µNE −µt , g

〉−〈
µNE,Gνt

〉+〈
µt ,GνNE

〉)
= 〈

µNE, g −Gν̄T
〉−〈

µ̄T , g −GνNE
〉

.

(D.33)

By definition of the Nash Equilibrium, we have〈
µ̄T , g −GνNE

〉≤ 〈
µNE, g −GνNE

〉≤ 〈
µNE, g −Gν̄T

〉
, (D.34)〈

µ̄T , g −GνNE
〉≤ 〈

µ̄T , g −Gν̄T
〉 ≤ 〈

µNE, g −Gν̄T
〉

,

which implies∣∣〈µ̄T , g −Gν̄T
〉−〈

µNE, g −GνNE
〉∣∣≤ 〈

µNE, g −Gν̄T
〉−〈

µ̄T , g −GνNE
〉

. (D.35)

Combining (D.45)-(D.48), we conclude that

η= 2

M

√
D0

T
⇒ ∣∣〈µ̄T , g −Gν̄T

〉−〈
µNE, g −GνNE

〉∣∣≤ M

√
D0

T
.

Mirror descent, stochastic derivatives

We first write〈
µt −µ,η(−ĝ +Ĝνt )

〉= 〈
µt −µ,η(−g +Gνt )

〉+〈
µt −µ,η

[
− ĝ +Ĝνt + g −Gνt

]〉
.

Taking conditional expectation and using the bias estimate of stochastic derivatives, we

conclude that

E
〈
µt −µ,η(−ĝ +Ĝνt )

〉≤ 〈
µt −µ,η(−g +Gνt )

〉+∥∥µt −µ
∥∥

TV ·ητ
≤ 〈

µt −µ,η(−g +Gνt )
〉+2ητ.
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Therefore, using exactly the same argument leading to (D.30), we may obtain

E
T∑

t=1

〈
µt −µ,−ĝ +Ĝνt

〉≤ EDΦ(µ,µ1)

η
+ ηM ′2T

8
+2ηTτ.

The rest is the same as with deterministic derivatives.

D.2.3 Proof of convergence rates for infinite-dimensional Mirror-Prox

We first need a technical lemma, which is Lemma 6.2 of [JN11] tailored to our infinite-

dimensional setting. We give a slightly different proof.

Lemma D.1. Given any µ ∈M(Z) and h,h′ ∈F (Z), let µ= MDη

(
µ̃,h

)
and µ̃+ = MDη

(
µ̃,h′).

Let Φ be α-strongly convex (recall that α= 4 whenΦ is the entropy). Then, for any µ? ∈M(Z),

we have

〈
µ−µ?,ηh′〉≤ DΦ(µ?, µ̃)−DΦ(µ?, µ̃+)+ η2

2α

∥∥h −h′∥∥2
L∞ − α

2

∥∥µ− µ̃∥∥2
TV . (D.36)

Proof. Recall from (D.9) that entropy is α-strongly convex with respect to ‖·‖TV. We first write〈
µ−µ?,ηh′〉= 〈

µ̃+−µ?,ηh′〉+〈
µ− µ̃+,ηh

〉+〈
µ− µ̃+,η(h′−h)

〉
. (D.37)

For the first term, (D.14) and (D.15) implies〈
µ̃+−µ?,ηh′〉= 〈

µ̃+−µ?,dΦ(µ̃)−dΦ(µ̃+)
〉

=−DΦ(µ̃+, µ̃)−DΦ(µ?, µ̃+)+DΦ(µ?, µ̃). (D.38)

Similarly, the second term of the right-hand side of (D.37) can be written as〈
µ− µ̃+,ηh

〉=−DΦ(µ, µ̃)−DΦ(µ̃+,µ)+DΦ(µ̃+, µ̃). (D.39)

Hölder’s inequality for the third term gives〈
µ− µ̃+,η(h′−h)

〉≤ ∥∥µ− µ̃+
∥∥

TV

∥∥η(h′−h)
∥∥
L∞

≤ α

2

∥∥µ− µ̃+
∥∥2

TV +
1

2α

∥∥η(h′−h)
∥∥2
L∞ . (D.40)

Finally, recall thatΦ is α-strongly convex, and hence we have

−DΦ(µ̃+,µ) ≤−α
2

∥∥µ− µ̃+
∥∥2

TV , −DΦ(µ, µ̃) ≤−α
2

∥∥µ− µ̃∥∥2
TV . (D.41)

The lemma follows by combining inequalities (D.38)-(D.41) in (D.37). �
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Mirror-Prox, deterministic derivatives

Let α= 4, µ̄T := 1
T

∑T
t=1µt , and ν̄T := 1

T

∑T
t=1νt .

In Lemma D.1, substitutingµ?←µNE, µ̃← µ̃t ,h ←−g+Gν̃t (so thatµ=µt ) and h′ ←−g+Gνt

(so that µ̃+ = µ̃t+1), we get

〈
µt −µNE,η(−g +Gνt )

〉≤ DΦ(µNE, µ̃t )−DΦ(µNE, µ̃t+1)+ η2

2α
‖G(νt − ν̃t )‖2

L∞−α
2

∥∥µ̃t −µt
∥∥2

TV .

(D.42)

Similarly, we have

〈
νt −νNE,−ηG†µt

〉
≤ DΦ(νNE, ν̃t )−DΦ(νNE, ν̃t+1)+ η2

2α

∥∥∥G†(µt − µ̃t )
∥∥∥2

L∞
− α

2
‖ν̃t −νt‖2

TV .

(D.43)

Since ‖G(νt − ν̃t )‖L∞ ≤ L·‖νt − ν̃t‖TV and
∥∥G†(µt − µ̃t )

∥∥
L∞ ≤ L·∥∥µt − µ̃t

∥∥
TV, summing up (D.42)

and (D.43) yields〈
µt −µNE,η(−g +Gνt )

〉+〈
νt −νNE,−ηG†µt )

〉
≤ DΦ(µNE, µ̃t )−DΦ(µNE, µ̃t+1)+DΦ(νNE, ν̃t )−DΦ(νNE, ν̃t+1)

+
(
η2L2

2α
− α

2

)(∥∥µ̃t −µt
∥∥2

TV +‖ν̃t −νt‖2
TV

)
≤ DΦ(µNE, µ̃t )−DΦ(µNE, µ̃t+1)+DΦ(νNE, ν̃t )−DΦ(νNE, ν̃t+1)

if η≤ α
L = 4

L . Summing up the last inequality over t and using DΦ(·, ·) ≥ 0, we obtain

1

T

T∑
t=1

(〈
µt −µNE,η(−g +Gνt )

〉+〈
νt −νNE,−ηG†µt )

〉)
≤ DΦ(µNE, µ̃1)+DΦ(νNE, ν̃1)

T
= D0

T
.

(D.44)

The left-hand side of (D.44) can be simplified to

1

T

T∑
t=1

(〈
µt −µNE,η(−g +Gνt )

〉+〈
νt −νNE,−ηG†µt )

〉
) = η

T

T∑
t=1

(〈
µNE −µt , g

〉−〈
µNE,Gνt

〉+〈
µt ,GνNE

〉)
= η

(〈
µNE, g −Gν̄T

〉−〈
µ̄T , g −GνNE

〉)
.

(D.45)

By definition of the (µNE,νNE), we have〈
µ̄T , g −GνNE

〉≤ 〈
µNE, g −GνNE

〉≤ 〈
µNE, g −Gν̄T

〉
, (D.46)〈

µ̄T , g −GνNE
〉≤ 〈

µ̄T , g −Gν̄T
〉 ≤ 〈

µNE, g −Gν̄T
〉

,
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which implies

|〈µ̄T , g −Gν̄T
〉−〈

µNE, g −GνNE
〉 | ≤ 〈

µNE, g −Gν̄T
〉−〈

µ̄T , g −GνNE
〉

. (D.47)

Combining (D.44)-(D.47), we conclude

η≤ 4

L
⇒ |〈µ̄T , g −Gν̄T

〉−〈
µNE, g −GνNE

〉 | ≤ D0

Tη
.

Mirror-Prox, stochastic derivatives

Let α= 4, µ̄T := 1
T

∑T
t=1µt , and ν̄T := 1

T

∑T
t=1νt . Set the step-size to η= min

[
αp
3L

,
√

αD0

6Tσ2

]
.

In Lemma D.1, substituting µ? ← µNE, µ̃ ← µ̃t ,h ← −ĝ + Ĝν̃t (so that µ = µt ), and h′ ←
−ĝ +Ĝνt (so that µ̃+ = µ̃t+1), we get

〈
µt −µNE,η(−ĝ +Ĝνt )

〉≤ DΦ(µNE, µ̃t )−DΦ(µNE, µ̃t+1)+ η2

2α

∥∥Ĝνt −Ĝν̃t
∥∥2
L∞−α

2

∥∥µ̃t −µt
∥∥2

TV .

(D.48)

Note that

E
∥∥Ĝνt −Ĝν̃t

∥∥2
L∞ ≤ 3

(
E
∥∥Ĝνt −Gνt

∥∥2
L∞ +E‖Gνt −Gν̃t‖2

L∞ +E∥∥Gν̃t −Ĝν̃t
∥∥2
L∞

)
≤ 6σ2 +3L2E‖νt − ν̃t‖2

TV .

Therefore, taking expectation conditioned on the history for both sides of (D.48) and using the

bias estimates of the stochastic derivatives, we get

〈
µt −µNE,η(−g +Gνt )

〉≤ EDΦ(µNE, µ̃t )−EDΦ(µNE, µ̃t+1)+ 3η2σ2

α

+ 3η2L2

2α
E‖νt − ν̃t‖2

TV −
α

2
E
∥∥µ̃t −µt

∥∥2
TV +2ητ.

Similarly, we have

〈
νt −νNE,−ηG†µt

〉
≤ EDΦ(νNE, ν̃t )−EDΦ(νNE, ν̃t+1)+ 3η2σ2

α

+ 3η2L2

2α
E
∥∥µt − µ̃t

∥∥2
TV −

α

2
E‖ν̃t −νt‖2

TV +2ητ.
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Summing up the last two inequalities over t with η≤ αp
3L

then yields

1

T

T∑
t=1

(〈
µt −µNE,−g +Gνt

〉+〈
νt −νNE,−G†µt )

〉)
≤ D0

ηT
+ 6ησ2

α
+4τ

≤ max

2

√
6σ2D0

αT
,

2
p

3LD0

αT

+4τ.

by definition of η. The rest is the same as with deterministic derivatives.
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Algorithm 10: APPROX INF MIRROR DECENT

Require: W [1],Θ[1] ← n′ samples from random initialization, {γt }T−1
t=1 , {εt }T−1

t=1 , {K }T−1
t=1 ,n,n′,

standard normal noise ξk ,ξ′k .
for t = 1,2, . . . ,T −1 do

C ←∪t
s=1W [s], D ←∪t

s=1Θ[s]

www (1)
t ← UNIF(W [t ]), θθθ(1)

t ← UNIF(Θ[t ])
for k = 1,2, . . . ,Kt , . . . ,Kt +n′ do

Generate A = {X1, . . . , Xn} ∼P
θθθ(k)

t

θθθ(k+1)
t =θθθ(k)

t + γt

nn′∇θθθ
∑

Xi∈A
∑

www∈C fwww (Xi )+√
2γtεtξk

Generate B = {X real
1 , . . . , X real

n } ∼Preal

B ′ ← {}
for each θθθ ∈ D do

Generate B̃ = {X ′
1, . . . , X ′

n} ∼Pθθθ
B ′ ← B ′∪ B̃

end for

www (k+1)
t =www (k)

t + γt t

n
∇www

∑
X real

i ∈B

fwww (k)
t

(X real
i )− γt

nn′∇www
∑

X ′
i∈B ′

fwww (k)
t

(X ′
i )+√

2γtεtξ
′
k

end for
W [t +1] ←

{
www (K+1)

t , . . . ,www (K+n′)
t

}
, Θ[t +1] ←

{
θθθ(K+1)

t , . . . ,θθθ(K+n′)
t

}
end for
idx← UNIF(1,2, . . . ,T )

return W [idx],Θ[idx].

D.3 Omitted Pseudocodes in the Main Text

We use the following notation for the hyperparameters of our algorithms:

n : number of samples in the data batch.

n′ : number of samples for each probability measure.

γt : SGLD step-size at iteration t .

εt : thermal noise of SGLD at iteration t .

Kt : warmup steps for SGLD at iteration t .

β : exponential damping factor in the weighted average.

The approximate infinite-dimensional entropic MD and MP in Section 5.4.1 are depicted

in Algorithms 10–11, respectively. Algorithm 12 gives the heuristic version of the entropic

Mirror-Prox.
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Algorithm 11: APPROX INF MIRROR-PROX

Require: W̃ [1],Θ̃[1] ← n′ samples from random initialization, {γt }T
t=1, {εt }T

t=1, {Kt }T
t=1,n,n′,

standard normal noise ξk ,ξ′k ,ξ′′k ,ξ′′′k .
for t = 1,2, . . . ,T do

C ← W̃ [t ]∪ (∪t−1
s=1W [s]

)
, D ← Θ̃[t ]∪ (∪t−1

s=1Θ[s]
)

www (1)
t ← UNIF(W̃ [t ]), θθθ(1)

t ← UNIF(Θ̃[t ])
for k = 1,2, . . . ,Kt , . . . ,Kt +n′ do

Generate A = {X1, . . . , Xn} ∼P
θθθ(k)

t

θθθ(k+1)
t =θθθ(k)

t + γt

nn′∇θθθ
∑

Xi∈A
∑

www∈C fwww (Xi )+√
2γtεtξk

Generate B = {X real
1 , . . . , X real

n } ∼Preal

B ′ ← {}
for each θθθ ∈ D do

Generate B̃ = {X ′
1, . . . , X ′

n} ∼Pθθθ
B ′ ← B ′∪ B̃

end for

www (k+1)
t =www (k)

t + γt t

n
∇www

∑
X real

i ∈B

fwww (k)
t

(X real
i )− γt

nn′∇www
∑

X ′
i∈B ′

fwww (k)
t

(X ′
i )+√

2γtεtξ
′
k

end for
W [t ] ←

{
www (K+1)

t , . . . ,www (K+n′)
t

}
, Θ[t ] ←

{
θθθ(K+1)

t , . . . ,θθθ(K+n′)
t

}
C ′ ←∪t

s=1W [s], D ′ ←∪t
s=1Θ[s]

w̃ww (1)
t+1 ← UNIF(W̃ [t ]), θ̃θθ

(1)
t+1 ← UNIF(Θ̃[t ])

for k = 1,2, . . . ,Kt , . . . ,Kt +n′ do
Generate A = {X1, . . . , Xn} ∼P

θ̃θθ
(k)
t

θ̃θθ
(k+1)
t+1 = θ̃θθ(k)

t+1 + γt

nn′∇θθθ
∑

Xi∈A
∑

www∈C ′ fwww (Xi )+√
2γtεtξ

′′
k

Generate B = {X real
1 , . . . , X real

n } ∼Preal

B ′ ← {}
for each θθθ ∈ D ′ do

Generate B̃ = {X ′
1, . . . , X ′

n} ∼Pθθθ
B ′ ← B ′∪ B̃

end for

w̃ww (k+1)
t+1 = w̃ww (k)

t+1 +
γt t

n
∇www

∑
X real

i ∈B

fw̃ww (k)
t+1

(X real
i )− γt

nn′∇www
∑

X ′
i∈B ′

fw̃ww (k)
t+1

(X ′
i )+√

2γtεtξ
′′′
k )

end for
W̃ [t +1] ←

{
w̃ww (K+1)

t+1 , . . . ,w̃ww (K+n′)
t+1

}
, Θ̃[t +1] ←

{
θ̃θθ

(K+1)
t+1 , . . . ,θ̃θθ

(K+n′)
t+1

}
end for
idx← UNIF(1,2, . . . ,T )

return W [idx],Θ[idx].
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Algorithm 12: MIRROR-PROX-GAN: APPROXIMATE MIRROR-PROX FOR GANS

Require: w̃ww1,θ̃θθ1 ← random initialization, www0 ← w̃ww1,θθθ0 ← θ̃θθ1, {γt }T
t=1, {εt }T

t=1, {Kt }T
t=1,β, stan-

dard normal noise ξk ,ξ′k ,ξ′′k ,ξ′′′k .
for t = 1,2, . . . ,T do

w̄ww t ,w̄ww t+1,w̃ww (1)
t ,w̃ww (1)

t+1 ← w̃ww t , θ̄θθt ,θ̄θθt+1,θ̃θθ
(1)
t ,θ̃θθ

(1)
t+1 ← θ̃θθt

for k = 1,2, . . . ,Kt do
Generate A = {X1, . . . , Xn} ∼P

θθθ(k)
t

θθθ(k+1)
t =θθθ(k)

t + γt

n ∇θθθ
∑

Xi∈A fw̃ww t (Xi )+√
2γtεtξk

Generate B = {X real
1 , . . . , X real

n } ∼Preal

Generate B ′ = {X ′
1, . . . , X ′

n} ∼Pθ̃θθt

www (k+1)
t =www (k)

t + γt

n ∇www
∑

X real
i ∈B fwww (k)

t
(X real

i )− γt

n ∇www
∑

X ′
i∈B ′ fwww (k)

t
(X ′

i )+√
2γtεtξ

′
k

w̄ww t ← (1−β)w̄ww t +βwww (k+1)
t

θ̄θθt ← (1−β)θ̄θθt +βθθθ(k+1)
t

end for
www t ← (1−β)www t−1 +βw̄ww t

θθθt ← (1−β)θθθt−1 +βθ̄θθt

for k = 1,2, . . . ,Kt do
Generate A = {X1, . . . , Xn} ∼P

θ̃θθ
(k)
t+1

θ̃θθ
(k+1)
t+1 = θ̃θθ(k)

t+1 + γt

n ∇θθθ
∑

Xi∈A fwww t (Xi )+√
2γtεtξ

′′
k

Generate B = {X real
1 , . . . , X real

n } ∼Preal

Generate B ′ = {X ′
1, . . . , X ′

n} ∼Pθθθt

www (k+1)
t+1 =www (k)

t+1 +
γt

n
∇www

∑
X real

i ∈B

fwww (k)
t+1

(X real
i )− γt

n
∇www

∑
X ′

i∈B ′
fwww (k)

t+1
(X ′

i )+√
2γtεtξ

′′′
k

w̄ww t+1 ← (1−β)w̄ww t+1 +βwww (k+1)
t+1

θ̄θθt+1 ← (1−β)θ̄θθt+1 +βθθθ(k+1)
t+1

end for
w̃ww t+1 ← (1−β)w̃ww t +βw̄ww t+1

θ̃θθt+1 ← (1−β)θ̃θθt +βθ̄θθt+1

end for

return wwwT ,θθθT .

D.4 Algorithms and omitted proofs for Section 5.5

D.4.1 Algorithms and hyperparameters

The pseudocode of the algorithms can be found in Algorithm 13 (the symbolΠ denotes the

projection). The hyperparameter setting for experiments in Section 5.5 is:

• Algorithm 13 with GDA, and ηt = 0.1

• Algorithm 13 with EG, and ηt = 0.1

• Algorithm 13 with MixedNE-LD, ηt = 0.1, εt = 0.01, Kt = 50, and β= 0.5.
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We also note that we focus on the “last iterate” convergence for EG [ALW19, DP19], instead

of the usual ergodic average in convex optimization literature. This is because, in practice,

people almost exclusively use the last iterate.

D.4.2 MixedNE-LD on Example 4.5.2

2 1 0 1 2

2

1

0

1

2

Forsaken: Trajectories

(a) Different runs of MixedNE-LD.

2 1 0 1 2

2

1

0

1

2

Forsaken: Last iterate

(b) Last iterates of MixedNE-LD.

Figs. D.1(a)–D.1(b) illustrate our MixedNE-LD applied to the objective in Example 4.5.2, on

which most existing methods provably fail, as established in Section 4.5. In contrast, as can be

inferred from Fig. D.1(b), MixedNE-LD can sometimes approach the desirable solutions.

D.4.3 Proof of Theorem 5.3

We will focus on the case F (xxx, yyy) = xxx2yyy2 −xxxyyy . Without loss of generality, we may also assume

that yyy(0) > xxx(0) > 0; the proof of the other cases follows the same argument.

Let (xxx(t), yyy(t)) follow the dynamics (5.9) with xxx(0) · yyy(0) > 0.5. Assume, for the moment, that

both xxx and yyy are without constraint. Then we have

1

2

d

dt

(
xxx(t )2 + yyy(t )2)= xxx

dxxx

dt
+ yyy

dyyy

dt

= 2xxx2yyy2 −xxxyyy + (−2xxx2yyy2 +xxxyyy)

= 0

implying that xxx2(t)+ yyy2(t) = xxx2(0)+ yyy2(0) for all t . Therefore
(
r cos

(
t +φ1

)
,r sin

(
t +φ2

))
,

where (r cosφ1,r sinφ2) = (xxx(0), yyy(0)), is a solution for dynamics for small enough t .
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On the other hand, we have

d

dt

(
xxx(t )yyy(t )

)= dxxx

dt
(t ) · yyy(t )+xxx(t ) · dyyy

dt
(t )

= 2xxx(t )yyy3(t )− yyy2(t )+ (−2xxx3(t )yyy(t )+xxx2(t )
)

= (
xxx2(t )− yyy2(t )

)(
1−2xxx(t )yyy(t )

)
= (

xxx2(t )− yyy2(t )
)(

1−2r 2 cos
(
t +φ1

)
sin

(
t +φ2

))
.

When t = 0, we have 1−2r 2 cos
(
t +φ1

)
sin

(
t +φ2

)= 1−2xxx(0)yyy(0) < 0. When t = π
t , we have

2r 2 cos
(
t +φ1

)
sin

(
t +φ2

)= 2r 2

(p
2

2
cosφ1 −

p
2

2
sinφ1

)(p
2

2
cosφ2 +

p
2

2
sinφ2

)

=
(
xxx(0)−

√
r 2 −xxx(0)2

)(√
r 2 − yyy(0)2 + yyy(0)

)
= (xxx2(0)− yyy2(0)) < 0

whence 1−2r 2 cos
(
t +φ1

)
sin

(
t +φ2

)> 0. The intermediate value theorem then implies that

there exists a t̃ such that 1−2xxx(t̃ )yyy(t̃ ) = 0. But since {(xxx, yyy) | 2xxxyyy = 1} are the stationary points

of the dynamics (5.9), we conclude that d
dt

(
xxx(t )yyy(t )

) = 0 whenever t ≥ t̃ ; that is, (xxx(t), yyy(t))

gets trapped at the stationary point (xxx(t̃ ), yyy(t̃ )). The concludes the first part the theorem when

there is no boundary.

If the boundary is present, the dynamics (5.9) should be modified to the projected dynamics

[BCL+18] and the proof remains the same, except that when (xxx(t ), yyy(t )) hits the boundary, the

curve needs to traverse along the boundary to decrease the norm.

We now turn to the statement for MixedNE-LD. Let (xxx1, yyy1) be initialized at any stationary

point: xxx1yyy1 = 0.5. Consider the two-step evolution of MixedNE-LD:

xxx2 = xxx1 +
√

2ηξ,

yyy2 = yyy1 +
√

2ηξ′,

xxx3 = xxx2 +η
(
2xxx2yyy2

2 − yyy2

)+√
2ηξ′′,

yyy3 = yyy2 −η
(
2xxx2

2yyy2 −xxx2
)+√

2ηξ′′′

where ξ,ξ′,ξ′′, and ξ′′′ are independent standard Gaussian. Since we initialize at a stationary

point xxx1yyy1 = 0.5, we have

2xxx2yyy2 −1 = 2xxx1yyy1 +
√

2ηyyy1ξ+
√

2ηxxx1ξ
′+2ηξξ′−1

=√
2ηyyy1ξ+

√
2ηxxx1ξ

′+2ηξξ′. (D.49)

Using the towering property of the expectation, (D.49), and the fact that ξ,ξ′,ξ′′, and ξ′′′ are
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independent standard Gaussian, we compute

Exxx3yyy3 = E
[
E
[
xxx3yyy3 | xxx2, yyy2

]]
= E

[
E
[(

xxx2 +η
(
2xxx2yyy2

2 − yyy2

)+√
2ηξ′′

)(
yyy2 −η

(
2xxx2

2yyy2 −xxx2
)+√

2ηξ′′′
)
| xxx2, yyy2

]]
= E[

E
[(

xxx2 +η
(
2xxx2yyy2

2 − yyy2

))(
yyy2 −η

(
2xxx2

2yyy2 −xxx2
)) | xxx2, yyy2

]]
= E[(

xxx2 +ηyyy2

(
2xxx2yyy2 −1

))(
yyy2 −ηxxx2

(
2xxx2yyy2 −1

))]
= E

[
xxx2yyy2 −ηxxx2

2

(
2xxx2yyy2 −1

)+ηyyy2
2

(
2xxx2yyy2 −1

)−η2xxx2yyy2

(
2xxx2yyy2 −1

)2
]

= E
[

xxx1yyy1 −η
(
xxx2

1 +2ηξ2 +2
√

2ηxxx1ξ− yyy2
1 −2ηξ′2 −2

√
2ηyyy1ξ

′
)(√

2ηyyy1ξ+
√

2ηxxx1ξ
′+2ηξξ′

)
−4η2

(√
2ηyyy1ξ+

√
2ηxxx1ξ

′+2ηξξ′
)(

2ηyyy2
1ξ

2 +2ηxxx2
1ξ

′2 +4η2ξ2ξ′2 +2ηξξ′+4
p

2η
3
2 xxx1ξξ

′2

+4
p

2η
3
2 yyy2ξ

2ξ′
)]

= xxx1yyy1 −0−4η2 (
ηyyy2

2 +ηxxx2
1 +2η2 +4η2 +4η2 +4η2)

= xxx1yyy1 −4η2 (
η

(
xxx2

1 + yyy2
1

)+14η2)
which is (5.12).

D.4.4 Proof of Theorem 5.4

Spelling out the Newton dynamics (5.13), we get

dxxx

dt
(t ) = 1

2yyy2(t )

(
2xxx(t )yyy2(t )− yyy(t )

)
= xxx(t )− 1

2yyy(t )

and similarly dyyy
dt (t ) =−yyy(t )+ 1

2xxx(t ) . As a result, we have

d

dt

(
xxx(t )yyy(t )

)= dxxx

dt
(t ) · yyy(t )+xxx(t ) · dyyy

dt
(t )

= xxx(t )yyy(t )− 1

2
−xxx(t )yyy(t )+ 1

2

= 0

which concludes the proof.

D.5 Details and further results for Section 5.6

This section contains all the details regarding our experiments in Section 5.6, as well as more

results on synthetic and real datasets.

Network Architectures: For all experiments, we consider the gradient-penalized discriminator
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Algorithm SGD RMSProp Adam Entropic MD/MP

Dataset S M L S M L S M L

Step-size γ 10−2 10−4 10−4 10−2 10−4

Gradient penalty λ 0.1 10 0.1 10 0.1 10

Noise ε 10−2 10−3 10−6

Batch Size n 1024 50 64 1024 50 64 1024 50 64

Table D.1: Hyperparameter setting. “S”, “M”, “L” stands for synthetic data, MNIST and LSUN bedroom,
respectively. MD for LSUN bedroom uses a RMSProp preconditioner, so the step-size is the same as
one in RMSProp.

[GAA+17] as a soft constraint alternative to the original Wasserstein GANs, as it is known to

achieve much better performance. The gradient penalty parameter is denoted by λ below.

For synthetic data, we use fully connected networks for both the generator and discriminator.

They consist of three layers, each of them containing 512 neurons, with ReLU as nonlinearity.

For MNIST, we use convolutional neural networks identical to [GAA+17] as the generator and

discriminator.1 The generator uses a sigmoid function to map the output to range [0,1].

For LSUN bedroom, we use DCGAN [RMC15], except that the number of the channels in

each layer is half of the original model, and the last sigmoid function of the discriminator is

removed. The output of the generator is mapped to [0,1] by hyperbolic tangent and a linear

transformation. The architecture contains batch normalization layer to ensure the stability of

the training. For our MixedNE-LD and Mirror-Prox-GAN, the Gaussian noise from SGLD is

not added to parameters in batch normalization layers, as the batch normalization creates

strong dependence among entries of the weight matrix and was not covered by our theory.

Hyperparameter setting: The hyperparameter setting is summarized in Table D.1. For base-

lines (SGD, RMSProp, Adam), we use the settings identical to [GAA+17]. For our proposed

MixedNE-LD and Mirror-Prox-GAN, we set the damping factor β to be 0.9. For Kt ,γt and εt ,

we use the simple exponential scheduling:

Kt = b(1+10−5)t c.

γt = γ× (1−10−5)t , γ in Table D.1.

εt = ε× (1−5×10−5)t , ε in Table D.1.

The idea is that the initial iterations are very noisy, and hence it makes sense to take less SGLD

steps. As the iteration counts grow, the algorithms learn more meaningful parameters, and we

should increase the number of SGLD steps as well as decreasing the step-size γt and thermal

noise εt to make the sampling more accurate. This is akin to the warmup steps in the sampling

literature.

1Their code is available on https://github.com/igul222/improved_wgan_training.
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D.5.1 Synthetic Data

Figs. D.1–D.3 show results on learning 8 Gaussian mixtures, 25 Gaussian mixtures, and the

Swiss Roll. As in the case for 25 Gaussian mixtures, we find that MixedNE-LD and Mirror-Prox-

GAN can better capture the variance of the true distribution, as well as finding the unbiased

modes.

In Fig. D.4, we plot the data generated after 104,2×104,5×104,8×104, and 105 iterations by

different algorithms fro 25 Gaussian mixtures. It is clear that MixedNE-LD and Mirror-Prox-

GAN find the modes of the distribution faster. In practice, it was observed that the noise

introduced by SGLD quickly drives the iterates to non-trivial parameter regions, whereas SGD

tends to get stuck at very bad local minima. Adam, as an adaptive algorithm, is capable of

escaping bad local minima, however at a rate slower than MixedNE-LD and Mirror-Prox-GAN.

The quality of Adam-based algorithms’ final solutions are also not as good as MixedNE-LD

and Mirror-Prox-GAN; see the discussions in Section 5.6.1.
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(h) Mirror-Prox-GAN

Figure D.1: Fitting 8 Gaussian mixtures up to 105 iterations.
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Figure D.2: Fitting the ‘Swiss Roll’ up to 105 iterations.
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(f) Mirror-Prox-GAN

Figure D.3: Fitting 25 Gaussian mixtures up to 105 iterations.
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(f) Mirror-Prox-GAN

Figure D.4: Learning 25 Gaussian mixtures accross different iterations.

D.5.2 Real Data

MNSIT

Results on MNIST dataset are shown in Fig. D.5. The models are trained by each algorithm for

105 iterations. We can see that all algorithms achieve comparable performance. Therefore, the
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dataset seems too weak to be a discriminator for different algorithms.

LSUN Bedroom

Algorithm RMSProp Adam Entropic MD Extra-Adam

Simultaneous - - 3.0955 2.0015

Alternated 3.0555 1.3730 - 3.1620

Table D.2: Inception Score of generator trained on LSUN dataset. The reported scores are based on the
average of 6400 images from each generator.

More results on the LSUN bedroom dataset are shown in Fig. D.6. We show images generated

after 4×104,8×104, and 105 iterations by each algorithm. We can see that the MixedNE-LD

and Alternated Extra-Adam outperform vanilla RMSProp. Adam was able to obtain meaningful

images in early stages of training. However, further iterations do not improve the image quality

of Adam. In contrast, they lead to severe mode collapse at the 8×104th iteration, and converge

to noise later on. Simultaneous Extra-Adam completely fails in this task.

Finally, for reference, we report the Inception Score in Table D.2.
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(a) True Data

(b) SGD (c) Adam

(d) MixedNE-LD (e) Mirror-Prox-GAN

Figure D.5: True MNIST images and samples generated by different algorithms.
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4×104 ite 8×104 ite 105 ite

(a) RMSProp

(b) Adam

(c) MixedNE-LD, Algorithm 9

D.6 Details and further results for Section 5.7

D.6.1 Off-policy (DDPG) experiments: algorithms, hyperparameters, and results

• Algorithms:

1. MixedNE-LD: Algorithm 14

2. Baselines: Algorithm 15 (with GAD and Extra-Adam)
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(d) Simultaneous Extra-Adam

(e) Alternated Extra-Adam

Figure D.6: Image generated by RMSProp, Simultaneous and Alternated Extra-Adam, Adam, and
MixedNE-LD on the LSUN bedroom dataset.
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• Hyperparameters:

1. Common hyperparameters for Algorithm 14 and Algorithm 15: Table D.3

2. Exploration-related hyperparameters for Algorithm 14 and Algorithm 15 (the best

performing values for every environment are presented): Tables D.4–D.5

• Results:

1. Heat maps (mass-noise) for NR-MDP setting with δ= 0.1 (Figs. D.7–D.8)

2. Heat maps (mass-noise) for NR-MDP setting with δ= 0 (Figs. D.9–D.10)

3. Heat maps (friction-noise) for NR-MDP setting with δ= 0.1 (Figs. D.11–D.12)

4. Heat maps (friction-noise) for NR-MDP setting with δ= 0 (Figs. D.13–D.14)

5. Heat maps (mass-friction) for NR-MDP setting with δ= 0.1 (Figs. D.15–D.16)

6. Heat maps (mass-friction) for NR-MDP setting with δ= 0 (Figs. D.17–D.18)

D.6.2 On-Policy (VPG) experiments: algorithms, and hyperparameters, and re-
sults

• Algorithms:

1. MixedNE-LD: Algorithm 16

2. Baselines: Algorithm 17 (with GAD and Extra-Adam)

• Hyperparameters:

1. Common hyperparameters for Algorithm 16 and Algorithm 17: Table D.6

2. Additional hyperparameters for Algorithm 16 and Algorithm 17 (the best perform-

ing values are presented): Tables D.7–D.8

• Results:

1. NR-MDP setting with δ= 0.1 (Fig. D.19(a))

2. NR-MDP setting with δ= 0 (Fig. D.19(b))

D.6.3 Ablation study

• Ablation on
(
β,Kt

)
: see Figs. D.20–D.22.

• Ablation on δ: see Figs. D.23–D.25. If the δ value is way larger (overly conservative)

than the requirement (range of environmental changes), it could negatively impact the

generalization ability. Choosing the appropriate value of delta is problem dependent.

• HalfCheetah-v2 is trained over 2M steps (cf. Figs. D.28–D.31).
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D.6.4 Code

The code repository (for all the experiments): https://github.com/DaDaCheng/LIONS-RL/

tree/master/Robust-Reinforcement-Learning-via-Adversarial-training-with-Langevin-Dynamics.

Table D.3: Common hyperparameters for Algorithm 14 and Algorithm 15, where most of the values are
chosen from [DHK+17].

Hyperparameter Value

critic optimizer Adam
critic learning rate 10−3

target update rate τ 0.999
mini-batch size N 128
discount factor γ 0.99
damping factor β 0.9
replay buffer size 106

action noise parameter σ {0,0.01,0.1,0.2,0.3,0.4}
RMSProp parameter α 0.999
RMSProp parameter ε 10−8

RMSProp parameter η 10−4

thermal noise σt (Algorithm 14) σ0 × (1−5×10−5)t , where σ0 ∈
{
10−2,10−3,10−4,10−5

}
warmup steps Kt (Algorithm 14) min

{
15,b(1+10−5)t c}

Table D.4: Exploration-related hyperparameters for Algorithm 14 and Algorithm 15 chosen via grid
search (for NR-MDP setting with δ= 0.1).

Algorithm 14: (σ0,σ) Algorithm 15 (with GAD): σ Algorithm 15
(with Extra-Adam): σ

Walker-v2 (10−2,0.01) 0 0.3
HalfCheetah-v2 (10−2,0) 0.2 0.01
Hopper-v2 (10−3,0.2) 0.2 0.3
Ant-v2 (10−4,0.2) 0.4 0.01
Swimmer-v2 (10−5,0.4) 0.4 0.4
Reacher-v2 (10−3,0.2) 0.4 0.2
Humanoid-v2 (10−4,0.01) 0 0.01
InvertedPendulum-v2 (10−3,0.01) 0.1 0.01
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Table D.5: Exploration-related hyperparameters for Algorithm 14 and Algorithm 15 chosen via grid
search (for NR-MDP setting with δ= 0).

Algorithm 14: (σ0,σ) Algorithm 15 (with GAD): σ Algorithm 15
(with Extra-Adam): σ

Walker-v2 (10−2,0.1) 0.01 0.2
HalfCheetah-v2 (10−2,0.01) 0.4 0.01
Hopper-v2 (10−5,0.3) 0.4 0.1
Ant-v2 (10−2,0.4) 0.4 0.01
Swimmer-v2 (10−2,0.2) 0.3 0.3
Reacher-v2 (10−3,0.2) 0.3 0.2
Humanoid-v2 (10−2,0.1) 0 0.01
InvertedPendulum-v2 (10−3,0) 0.01 0.01

Table D.6: Common hyperparameters for Algorithm 16 and Algorithm 17.

Hyperparameter Value

discount factor γ 0.99
trajectory length H 500
number of trajectories per step |Dk | 1
RMSProp parameter α 0.99
RMSProp parameter ε 10−8

learning rate η
{
10−3,10−4,10−5

}
damping factor β 0.9

Table D.7: Additional hyperparameters for Algorithm 16 and Algorithm 17 chosen via grid search (for
NR-MDP setting with δ= 0.1)

Algorithm 16: (σ0,η, Nk ) Algorithm 17 (with GAD): η Algorithm 17 (with Extra-Adam): η

ρ = 0.2 (10−5,10−3,1) 10−4 10−4

Table D.8: Additional hyperparameters for Algorithm 16 and Algorithm 17 chosen via grid search (for
NR-MDP setting with δ= 0)

Algorithm 16: (σ0,η, Nk ) Algorithm 17 (with GAD): η Algorithm 17 (with Extra-Adam): η

ρ = 0.2 (10−4,10−4,10) 10−4 10−3
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Algorithm 13: Algorithms in Section 5.5 (MixedNE-LD / GAD / EG)

Input: step-size
{
ηt

}T
t=1, thermal-noise {εt }T

t=1, warmup steps {Kt }T
t=1, exponential damping

factor β.
for t = 1,2, . . . ,T −1 do

MixedNE-LD:
ȳyy t , yyy (1)

t ← yyy t ; x̄xx t ,xxx(1)
t ← xxx t

for k = 1,2, . . . ,Kt do
ξ,ξ′ ∼N (0, I )

xxx(k+1)
t ← Πxxx

(
xxx(k)

t +ηt∇xxx F (xxx(k)
t , yyy t )+εt

√
2ηtξ

′
)

yyy (k+1)
t ← Πyyy

(
yyy (k)

t −ηt∇yyy F (xxx t , yyy (k)
t )+εt

√
2ηtξ

)
ȳyy t ←

(
1−β)

ȳyy t +βyyy (k+1)
t

x̄xx t ←
(
1−β)

x̄xx t +βxxx(k+1)
t

end for
xxx t+1 ←

(
1−β)

xxx t +βx̄xx t

yyy t+1 ←
(
1−β)

yyy t +βȳyy t

GAD (Gradient Ascent Descent):

xxx t+1 ←Πxxx
(
xxx t +ηt∇xxx F (xxx t , yyy t )

)
yyy t+1 ←Πyyy

(
yyy t −ηt∇yyy F (xxx t+1, yyy t )

)
EG (Extra-Gradient):

xxx t+ 1
2
←Πxxx

(
xxx t +ηt∇xxx F (xxx t , yyy t ))

)
yyy t+ 1

2
←Πyyy

(
yyy t −ηt∇yyy F (xxx t , yyy t )

)
xxx t+1 ←Πxxx

(
xxx t +ηt∇xxx F (xxx t+ 1

2
, yyy t+ 1

2
)
)

yyy t+1 ←Πyyy

(
yyy t −ηt∇xxx F (xxx t+ 1

2
, yyy t+ 1

2
)
)

end for
Output: yyyT , xxxT .
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Algorithm 14: DDPG with MixedNE-LD (pre-conditioner = RMSProp)

Hyperparameters: see Table D.3
Initialize (randomly) policy parameters xxx1, yyy1, and Q-function parameter φ.
Initialize the target network parameters xxxtarg ← xxx1, yyy targ ← yyy1, and φtarg ←φ.
Initialize replay buffer D.
Initialize m ← 0 ; m′ ← 0.
t ← 1.
repeat

Observe state s, and select actions a =µyyy t
(s)+ξ ; a′ = νxxx t (s)+ξ′, where ξ,ξ′ ∼N (0,σI )

Execute the action ā = (1−δ)a +δa′ in the environment.
Observe reward r , next state s′, and done signal d to indicate whether s′ is terminal.
Store

(
s, ā,r, s′,d

)
in replay buffer D.

If s′ is terminal, reset the environment state.
if it’s time to update then

for however many updates do
x̄xx t ,xxx(1)

t ← xxx t ; ȳyy t , yyy (1)
t ← yyy t

for k = 1,2, . . . ,Kt do
Sample a random minibatch of N transitions B = {(

s, ā,r, s′,d
)}

from D.

Compute targets y
(
r, s′,d

)= r +γ (1−d)Qφtarg

(
s′, (1−δ)µyyy targ

(
s′

)+δνxxxtarg

(
s′

))
.

Update critic by one step of (preconditioned) gradient descent using ∇φL
(
φ

)
,

where

L
(
φ

) = 1

N

∑
(s,ā,r,s′,d)∈B

(
y

(
r, s′,d

)−Qφ (s, ā)
)2 .

Compute the (agent and adversary) policy gradient estimates:

á∇yyy F
(
yyy ,xxx t

) = 1−δ
N

∑
s∈D

∇yyyµyyy (s)∇āQφ (s, ā) |ā=(1−δ)µyyy (s)+δνxxxt (s)

á∇xxx F
(
yyy t ,xxx

) = δ

N

∑
s∈D

∇xxxνxxx (s)∇āQφ (s, ā) |ā=(1−δ)µyyy t (s)+δνxxx (s).

g ←
[ á∇yyy F

(
yyy ,xxx t

)]
yyy=yyy (k)

t

; m ←αm + (1−α) g ¯ g ; C ← diag
(p

m +ε)
yyy (k+1)

t ← yyy (k)
t +ηC−1g +√

2ησtC− 1
2 ξ, where ξ∼N (0, I )

g ′ ←
[ á∇xxx F

(
yyy t ,xxx

)]
xxx=xxx(k)

t

; m′ ←αm′+ (1−α) g ′¯ g ′ ; D ← diag
(p

m′+ε
)

xxx(k+1)
t ← xxx(k)

t −ηD−1g ′+√
2ησt D− 1

2 ξ′, where ξ′ ∼N (0, I )

x̄xx t ←
(
1−β)

x̄xx t +βxxx(k+1)
t ; ȳyy t ←

(
1−β)

ȳyy t +βyyy (k+1)
t

Update the target networks:

φtarg ← τφtarg + (1−τ)φ

yyy targ ← τyyy targ + (1−τ)yyy (k+1)
t

xxxtarg ← τxxxtarg + (1−τ)xxx(k+1)
t

end for
xxx t+1 ←

(
1−β)

xxx t +βx̄xx t ; yyy t+1 ←
(
1−β)

yyy t +βȳyy t
t ← t +1.

end for
end if

until convergence
Output: xxxT , yyyT .
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Algorithm 15: DDPG with GAD (pre-conditioner = RMSProp) / Extra-Adam

Hyperparameters: see Table D.3
Initialize (randomly) policy parameters xxx1, yyy1, and Q-function parameter φ.
Initialize the target network parameters xxxtarg ← xxx1, yyy targ ← yyy1, and φtarg ←φ.
Initialize replay buffer D.
Initialize m ← 0 ; m′ ← 0.
t ← 1.
repeat

Observe state s, and select actions a =µyyy t
(s)+ξ ; a′ = νxxx t (s)+ξ′, where ξ,ξ′ ∼N (0,σI )

Execute the action ā = (1−δ)a +δa′ in the environment.
Observe reward r , next state s′, and done signal d to indicate whether s′ is terminal.
Store

(
s, ā,r, s′,d

)
in replay buffer D.

If s′ is terminal, reset the environment state.
if it’s time to update then

for however many updates do
Sample a random minibatch of N transitions B = {(

s, ā,r, s′,d
)}

from D.

Compute targets y
(
r, s′,d

)= r +γ (1−d)Qφtarg

(
s′, (1−δ)µyyy targ

(
s′

)+δνxxxtarg

(
s′

))
.

Update critic by one step of (preconditioned) gradient descent using ∇φL
(
φ

)
,

where

L
(
φ

) = 1

N

∑
(s,ā,r,s′,d)∈B

(
y

(
r, s′,d

)−Qφ (s, ā)
)2 .

Compute the (agent and adversary) policy gradient estimates:

á∇yyy F
(
yyy ,xxx t

) = 1−δ
N

∑
s∈D

∇yyyµyyy (s)∇āQφ (s, ā) |ā=(1−δ)µyyy (s)+δνxxxt (s)

á∇xxx F
(
yyy t ,xxx

) = δ

N

∑
s∈D

∇xxxνxxx (s)∇āQφ (s, ā) |ā=(1−δ)µyyy t (s)+δνxxx (s).

GAD (pre-conditioner = RMSProp):

g ←
[ á∇yyy F

(
yyy ,xxx t

)]
yyy=yyy t

; m ←αm + (1−α) g ¯ g ; C ← diag
(p

m +ε)
yyy t+1 ← yyy t +ηC−1g

g ′ ←
[ á∇xxx F

(
yyy t ,xxx

)]
xxx=xxx t

; m′ ←αm′+ (1−α) g ′¯ g ′ ; D ← diag
(p

m′+ε
)

xxx t+1 ← xxx t −ηD−1g ′

Extra-Adam: use Algorithm 4 from [GBV+19].
Update the target networks:

φtarg ← τφtarg + (1−τ)φ

yyy targ ← τyyy targ + (1−τ)yyy t+1

xxxtarg ← τxxxtarg + (1−τ)xxx t+1

t ← t +1.
end for

end if
until convergence
Output: xxxT , yyyT .
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Figure D.7: Average performance (over 5 seeds) of Algorithm 14, and Algorithm 15 (with GAD and
Extra-Adam), under the NR-MDP setting with δ= 0.1. The evaluation is performed on a range of noise
probability and mass values not encountered during training. Environments: Walker, HalfCheetah,
Hopper, and Ant.
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Figure D.8: Average performance (over 5 seeds) of Algorithm 14, and Algorithm 15 (with GAD and
Extra-Adam), under the NR-MDP setting with δ = 0.1. The evaluation is performed on a range of
noise probability and mass values not encountered during training. Environments: Swimmer, Reacher,
Humanoid, and InvertedPendulum.
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Figure D.9: Average performance (over 5 seeds) of Algorithm 14, and Algorithm 15 (with GAD and
Extra-Adam), under the NR-MDP setting with δ= 0. The evaluation is performed on a range of noise
probability and mass values not encountered during training. Environments: Walker, HalfCheetah,
Hopper, and Ant.
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Figure D.10: Average performance (over 5 seeds) of Algorithm 14, and Algorithm 15 (with GAD and
Extra-Adam), under the NR-MDP setting with δ= 0. The evaluation is performed on a range of noise
probability and mass values not encountered during training. Environments: Swimmer, Reacher,
Humanoid, and InvertedPendulum.
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Figure D.11: Average performance (over 5 seeds) of Algorithm 14, and Algorithm 15 (with GAD and
Extra-Adam), under the NR-MDP setting with δ= 0.1. The evaluation is performed on a range of noise
probability and friction values not encountered during training. Environments: Walker, HalfCheetah,
Hopper, and Ant.
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Figure D.12: Average performance (over 5 seeds) of Algorithm 14, and Algorithm 15 (with GAD and
Extra-Adam), under the NR-MDP setting with δ= 0.1. The evaluation is performed on a range of noise
probability and friction values not encountered during training. Environments: Swimmer, Reacher,
Humanoid, and InvertedPendulum.
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Figure D.13: Average performance (over 5 seeds) of Algorithm 14, and Algorithm 15 (with GAD and
Extra-Adam), under the NR-MDP setting with δ= 0. The evaluation is performed on a range of noise
probability and friction values not encountered during training. Environments: Walker, HalfCheetah,
Hopper, and Ant.
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Figure D.14: Average performance (over 5 seeds) of Algorithm 14, and Algorithm 15 (with GAD and
Extra-Adam), under the NR-MDP setting with δ= 0. The evaluation is performed on a range of noise
probability and friction values not encountered during training. Environments: Swimmer, Reacher,
Humanoid, and InvertedPendulum.
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Figure D.15: Average performance (over 5 seeds) of Algorithm 14, and Algorithm 15 (with GAD and
Extra-Adam), under the NR-MDP setting with δ= 0.1. The evaluation is performed on a range of friction
and mass values not encountered during training. Environments: Walker, HalfCheetah, Hopper, and
Ant.
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Figure D.16: Average performance (over 5 seeds) of Algorithm 14, and Algorithm 15 (with GAD and
Extra-Adam), under the NR-MDP setting with δ= 0.1. The evaluation is performed on a range of friction
and mass values not encountered during training. Environments: Swimmer, Reacher, Humanoid, and
InvertedPendulum.
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Figure D.17: Average performance (over 5 seeds) of Algorithm 14, and Algorithm 15 (with GAD and
Extra-Adam), under the NR-MDP setting with δ= 0. The evaluation is performed on a range of friction
and mass values not encountered during training. Environments: Walker, HalfCheetah, Hopper, and
Ant.
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Figure D.18: Average performance (over 5 seeds) of Algorithm 14, and Algorithm 15 (with GAD and
Extra-Adam), under the NR-MDP setting with δ= 0. The evaluation is performed on a range of friction
and mass values not encountered during training. Environments: Swimmer, Reacher, Humanoid, and
InvertedPendulum.
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Algorithm 16: VPG with MixedNE-LD (pre-conditioner = RMSProp)

Hyperparameters: see Table D.6
Initialize (randomly) policy parameters yyy0, w0

for k = 0,1,2, . . . do
ȳyyk , yyy (0)

k ← yyyk ; w̄k , w (0)
k ← wk

for n = 0,1, . . . , Nk do
Collect set of trajectories D(n)

k = {(. . . , s(τ)
t , ā(τ)

t ,r (τ)
t , . . . )}τ by running πyyy (n)

k
, and π′

w (n)
k

in

M, i.e., at ∼πyyy (n)
k

(st ), a′
t ∼π′

w (n)
k

(st ), āt = (1−δ)at +δa′
t , and st+1 ∼ Tρ(· | st , āt ).

Estimate the policy gradient (where Gt =∑T
s=0γ

srt+s)

g = 1−δ
|D(n)

k |
∑

τ∈D(n)
k

∑
t
γtG (τ)

t

[
∇yyy logπyyy (a(τ)

t | s(τ)
t )

]
yyy=yyy (n)

k

g ′ = δ

|D(n)
k |

∑
τ∈D(n)

k

∑
t
γtG (τ)

t

[
∇w logπw (a′

t
(τ) | s(τ)

t )
]

w=w (n)
k

m ←αm + (1−α) g ¯ g ; C ← diag
(p

m +ε)
yyy (n+1)

k ← yyy (n)
k +ηC−1g +√

2ησkC− 1
2 ξ, where ξ∼N (0, I )

ȳyyk ← (
1−β)

ȳyyk +βyyy (n+1)
k

m′ ←αm′+ (1−α) g ′¯ g ′ ; D ← diag
(p

m′+ε
)

w (n+1)
k ← w (n)

k −ηD−1g +√
2ησk D− 1

2 ξ′, where ξ′ ∼N (0, I )

w̄k ← (
1−β)

w̄k +βw (n+1)
k

end for
yyyk+1 ←

(
1−β)

yyyk +βȳyyk
wk+1 ←

(
1−β)

wk +βw̄k

end for
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Algorithm 17: VPG with GAD (pre-conditioner = RMSProp) / Extra-Adam

Hyperparameters: see Table D.6
Initialize (randomly) policy parameters yyy0, w0

for k = 0,1,2, . . . do
Collect set of trajectories Dk = {(. . . , s(τ)

t , ā(τ)
t ,r (τ)

t , . . . )}τ by running πyyyk
, and π′

wk
in M,

i.e., at ∼πyyyk
(st ), a′

t ∼π′
wk

(st ), āt = (1−δ)at +δa′
t , and st+1 ∼ Tρ(· | st , āt ).

Estimate the policy gradient (where Gt =∑T
s=0γ

srt+s)

g = 1−δ
|Dk |

∑
τ∈Dk

∑
t
γtG (τ)

t

[
∇yyy logπyyy (a(τ)

t | s(τ)
t )

]
yyy=yyyk

g ′ = δ

|Dk |
∑
τ∈Dk

∑
t
γtG (τ)

t

[
∇w logπ′

w (a′
t

(τ) | s(τ)
t )

]
w=wk

GAD (pre-conditioner = RMSProp):
m ←αm + (1−α) g ¯ g ; C ← diag

(p
m +ε)

yyyk+1 ← yyyk +ηC−1g

m′ ←αm′+ (1−α) g ′¯ g ′ ; D ← diag
(p

m′+ε
)

wk+1 ← wk −ηD−1g ′

Extra-Adam: use Algorithm 4 from [GBV+19].
end for

154



D.6. Details and further results for Section 5.7

0.0 0.1 0.2 0.3 0.4
Environment parameter 

600

650

700

750

800

Re
wa

rd

GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

(a) δ= 0.1

0.0 0.1 0.2 0.3 0.4
Environment parameter 

600

650

700

750

800

850

900

Re
wa

rd

GAD (RMSprop)
Extra-Adam
MixedNE-LD (RMSProp)

(b) δ= 0

Figure D.19: Average performance (over 5 seeds) of Algorithm 16, and Algorithm 17 (with GAD and
Extra-Adam), under the NR-MDP setting with δ= 0.1 and 0 (training on nominal environment ρ0 = 0.2).
The evaluation is performed without adversarial perturbations, on a range of environment parameters
not encountered during training.

155



Appendix D. Appendix for Chapter 5

0 0.1 0.2 0.3 0.4 0.5
Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e 

M
as

s

= 0.5, Kt=1

0

200

400

600

800

0 0.1 0.2 0.3 0.4 0.5
Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e 

M
as

s

= 0.5, Kt=2

0

200

400

600

800

0 0.1 0.2 0.3 0.4 0.5
Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e 

M
as

s

= 0.5, Kt=5

0

200

400

600

800

0 0.1 0.2 0.3 0.4 0.5
Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e 

M
as

s

= 0.9, Kt=1

0

200

400

600

800

0 0.1 0.2 0.3 0.4 0.5
Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e 

M
as

s

= 0.9, Kt=2

0

200

400

600

800

0 0.1 0.2 0.3 0.4 0.5
Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e 

M
as

s

= 0.9, Kt=5

0

200

400

600

800

0 0.1 0.2 0.3 0.4 0.5
Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e 

M
as

s

= 1.0, Kt=1

0

200

400

600

800

0 0.1 0.2 0.3 0.4 0.5
Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e 

M
as

s

= 1.0, Kt=2

0

200

400

600

800

0 0.1 0.2 0.3 0.4 0.5
Noise Probability

0.5

0.7

0.9

1.2

1.6

2.0

Re
la

tiv
e 

M
as

s

= 1.0, Kt=5

0

200

400

600

800

Figure D.20: Ablation study: Average performance (over 5 seeds) of MixedNE-LD (with different β,Kt )
under the NR-MDP setting with δ= 0.1 (training on Half-cheetah with relative mass 1). The evaluation
is performed on a range of noise probability and mass values not encountered during training.
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Figure D.21: Ablation study: Average performance (over 5 seeds) of MixedNE-LD (with different β,Kt )
under the NR-MDP setting with δ= 0.1 (training on Half-cheetah with relative mass 1). The evaluation
is performed without adversarial perturbations, on a range of mass values not encountered during
training.
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Figure D.22: Ablation study: Average performance (over 5 seeds) of MixedNE-LD (with different β,Kt )
under the NR-MDP setting with δ= 0 (training on nominal environment ρ0 = 0.2). The evaluation is
performed without adversarial perturbations, on a range of environment parameters not encountered
during training.
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Figure D.23: Ablation study: Average performance (over 5 seeds) of Algorithm 14, and Algorithm 15
(with GAD and Extra-Adam), under the NR-MDP setting with δ= 0.1 (solid lines) and δ= 0 (dashed
lines). The evaluation is performed without adversarial perturbations, on a range of mass values not
encountered during training.
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Figure D.24: Ablation study: Average performance (over 5 seeds) of Algorithm 14, and Algorithm 15
(with GAD and Extra-Adam), under the NR-MDP setting with δ= 0.1 (solid lines) and δ= 0 (dashed
lines). The evaluation is performed without adversarial perturbations, on a range of friction values not
encountered during training.
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Figure D.25: Ablation study: Average performance (over 5 seeds) of different algorithms under the
NR-MDP setting with δ= 0.1 (solid lines) and δ= 0 (dashed lines). The evaluation (after training on
the nominal environment ρ0 = 0.2) is performed without adversarial perturbations, on a range of
environment parameters not encountered during training.
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Figure D.26: δ= 0.1
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Figure D.27: δ= 0

Figure D.28: HalfCheetah-v2 is trained over 2M steps. Average performance (over 5 seeds) of Algo-
rithm 14, and Algorithm 15 (with GAD and Extra-Adam), under the NR-MDP setting with δ= 0.1 (solid
lines) and δ= 0 (dashed lines). The evaluation is performed without adversarial perturbations, on a
range of mass values not encountered during training.
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Figure D.29: δ= 0.1
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Figure D.30: δ= 0

Figure D.31: HalfCheetah-v2 is trained over 2M steps. Average performance (over 5 seeds) of Algo-
rithm 14, and Algorithm 15 (with GAD and Extra-Adam), under the NR-MDP setting with δ= 0.1 (solid
lines) and δ= 0 (dashed lines). The evaluation is performed without adversarial perturbations, on a
range of friction values not encountered during training.
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