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Abstract
An important prerequisite for developing trustworthy artificial intelligence is high quality

data. Crowdsourcing has emerged as a popular method of data collection in the past few

years. However, there is always a concern about the quality of the data thus collected. This

thesis addresses two major challenges in collecting high quality data from a crowd: 1) how to

incentivize crowd workers to report accurate data; 2) how to ensure that the data collection

mechanism is transparent and fair.

We first propose two novel peer-consistency mechanisms for crowdsourcing: the Deep

Bayesian Trust (DBT) mechanism and the Personalized Peer Truth Serum (PPTS). The DBT

mechanism incentivizes workers to report accurate answers for objective questions with

discrete ground truth answers. It is useful, for example, in collecting labels for supervised

machine learning tasks. The mechanism ensures dominant uniform strategy incentive com-

patibility and fair rewards to the workers. The PPTS incentivizes workers to truthfully report

their personal data (for example, body measurements). Since data is personal in nature, the

tasks can not be shared between two workers. We show that when individuals report combina-

tions of multiple personal data attributes, the correlation between them can be exploited to

find peers and provide guarantees on the incentive compatibility of the mechanism.

We next address the transparency issue of data collection. Smart contracts often rely on a

trusted third party (oracle) to get correct information about real-world events. We show how

peer-consistency mechanisms can be used to build decentralized, trustless and transparent

data oracles on blockchain. We derive conditions under which a peer-consistency incentive

mechanism can be used to acquire truthful information from an untrusted and self-interested

crowd, even when the crowd has outside incentives to provide wrong information. We also

show how to implement the peer-consistency mechanisms in Ethereum. We discuss various

non-trivial issues that arise in implementing peer-consistency mechanisms in Ethereum,

suggest several optimizations to reduce gas cost and provide empirical analysis.

Finally, we address the problem of fair data collection from a crowd. Sharing economy plat-

forms such as Airbnb and Uber face a major challenge in the form of peer-to-peer discrimi-

nation based on sensitive personal attributes such as race and gender. We show that how a

peer-consistency incentive mechanism can be used to encourage users to go against common

bias and provide a truthful rating about others, obtained through a more careful and deeper

evaluation. In situations where an incentive mechanism can’t be implemented, we show that

a simple post-processing approach can also be used to correct bias in the reputation scores,

while minimizing loss in the useful information provided by the scores. We also address
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Abstract

the problem of fair and diverse data collection from a crowd under budget constraints. We

propose a novel algorithm which maximizes the expected accuracy of the collected data, while

ensuring that the errors satisfy desired notions of fairness w.r.t sensitive attributes.

Key Words: Data Collection, Crowdsourcing, Incentive schemes, Game theory, Mechanism

design, Peer prediction, Fairness, Blockchain, Decentralization, Transparency
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Résumé
Une condition préalable importante pour développer une intelligence artificielle fiable est

la qualité des données. Le crowdsourcing est devenu une méthode populaire de collecte de

données au cours des dernières années. Cependant, la qualité des données ainsi collectées est

toujours préoccupante. Cette thèse aborde deux défis majeurs dans la collecte de données de

haute qualité auprès d’une foule : 1) comment inciter les travailleurs de la foule à communi-

quer des données précises ; 2) comment garantir que le mécanisme de collecte de données est

transparent et équitable.

Nous proposons d’abord deux nouveaux mécanismes de peer-consistency pour le crowdsour-

cing : le mécanisme Deep Bayesian Trust (DBT) et le Personalized Peer Truth Serum (PPTS). Le

mécanisme DBT incite les travailleurs à signaler des réponses précises à des questions objec-

tives avec des réponses discrètes. Il est utile, par exemple, pour collecter des étiquettes pour

les tâches d’apprentissage automatique supervisé. Le mécanisme garantit une compatibilité

incitative dominante de la stratégie uniforme et des récompenses équitables aux travailleurs.

Le PPTS incite les travailleurs à communiquer fidèlement leurs données personnelles (par

exemple, les mensurations). Les données étant de nature personnelle, les tâches ne peuvent

pas être partagées entre deux travailleurs. Nous montrons que lorsque des individus signalent

des combinaisons de plusieurs attributs de données personnelles, la corrélation entre eux peut

être exploitée pour trouver des peers et fournir des garanties sur la compatibilité incitative du

mécanisme.

Nous abordons ensuite la question de la transparence de la collecte de données. Les contrats

intelligents s’appuient souvent sur un tiers de confiance (oracle) pour obtenir des informa-

tions correctes sur les événements du monde réel. Nous montrons comment les mécanismes

de peer-consistency peuvent être utilisés pour construire des oracles de données décentra-

lisés, sans confiance et transparents sur la blockchain. Nous dérivons des conditions dans

lesquelles un mécanisme d’incitation à la peer-consistency peut être utilisé pour acquérir des

informations véridiques auprès d’une foule non fiable et qui cherche son avantage person-

nel, même lorsque la foule a des incitations extérieures à fournir des informations erronées.

Nous montrons aussi comment mettre en œuvre les mécanismes de cohérence par les pairs

dans Ethereum. Nous discutons de divers problèmes non triviaux qui surviennent dans la

mise en œuvre de mécanismes de cohérence entre pairs dans Ethereum, suggérons plusieurs

optimisations pour réduire le coût du gaz et fournissons une analyse empirique.

Enfin, nous abordons le problème de la collecte équitable de données auprès d’une foule. Le

partage des plateformes économiques telles qu’Airbnb et Uber est confronté à un défi ma-
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Résumé

jeur sous la forme de discrimination entre pairs basée sur des attributs personnels sensibles

tels que la race et le sexe. Nous montrons comment un mécanisme d’incitation à la peer-

consistency peut être utilisé pour encourager les utilisateurs à aller à l’encontre des préjugés

courants et à fournir une évaluation véridique des autres, obtenue grâce à une évaluation

plus minutieuse et plus approfondie. Dans les situations où un mécanisme d’incitation ne

peut pas être mis en œuvre, nous montrons qu’une approche de post-traitement simple peut

également être utilisée pour corriger le biais dans les scores de réputation, tout en minimisant

la perte des informations utiles fournies par les scores. Nous abordons également le problème

de la collecte de données équitable et diversifiée auprès d’une foule soumise à des contraintes

budgétaires. Nous proposons un nouvel algorithme qui maximise la précision attendue des

données collectées, tout en garantissant que les erreurs satisfont aux notions souhaitées

d’équité par rapport à attributs sensibles.

Mots clés : collecte de données, crowdsourcing, systèmes d’incitation, théorie des jeux, concep-

tion de mécanismes, peer-prediction, équité, blockchain, décentralisation, transparence
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1 Introduction

1.1 Motivation and Challenges

It is difficult to find any walk of life in 2020 that has not been influenced and changed by

artificial intelligence (AI). Education, commerce, healthcare, entertainment, governance, food

security, housing, employment, insurance, banking, travel, intelligence gathering, criminal

justice, etc are just a few examples from our everyday lives that have witnessed a growing

influence of AI in the past few years. While the impact of AI on our society is largely positive, it

is not uncommon to find controversies and concerns about this technology. Thus, making

AI “trustworthy" has now become one of the most important and high priority goals in the

AI research community. The Oxford dictionary defines the term “trustworthy" as something

“that you can rely on to be good, honest, sincere, etc". Clearly, it is a crucial characteristic for

wider social acceptance of the technology in the long term. Governments and organizations

across the world have recently been announcing regulations and guidelines for trustworthy AI.

For example, the European Commission recommends [87] that the development, deployment

and use of AI systems meet the seven key requirements for trustworthy AI:

1. Human agency and oversight

2. Technical robustness and safety

3. Privacy and data governance

4. Transparency

5. Diversity

6. Non-discrimination and fairness

7. Environmental and societal well-being

8. Accountability
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Similarly, the White House lists the following [1] among its principles for the stewardship of AI

applications:

1. Public trust in AI

2. Public participation

3. Information quality

4. Fairness and non-discrimination

5. Disclosure and transparency

The Australian government has recently released a similar list as part of Australia’s AI ethics

framework [24]. Private organizations like Microsoft and IBM have come up with their own sets

of principles. For example, Microsoft lists the following as its responsible AI principles [81]:

1. Fairness

2. Reliability and safety

3. Privacy and security

4. Inclusiveness

5. Transparency

6. Accountability

Similarly, IBM identifies the following as five areas of ethical focus [51]:

1. Accountability

2. Value alignment

3. Explainability

4. Fairness

5. User data rights

While there are several principles (like fairness, explainability etc) that are common across

these lists, there are also some other equally important principles in the above lists (like

information quality, public participation, transparency, user data rights etc) that don’t receive

as much attention.
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Given the fact that trustworthiness requires a number of non-trivial properties to be satisfied, it

is obvious that making AI trustworthy is a highly ambitious goal. It is not even clear what many

of these properties mean precisely. For example, both fairness and explainability may have

different meanings in different contexts and applications. Further, many of these properties

present novel trade-offs with the traditional notions of the “accuracy" of AI systems.

Modern AI systems are mostly data-driven and thus, the trustworthiness of these systems is

inherently tied to the data collection mechanisms. Data is a primary requirement for machine

learning algorithms and the algorithms are only as reliable/trustworthy as the data used for

training them. This doesn’t imply that having trustworthy data will automatically solve all

other problems related to trustworthiness in AI and machine learning, but having trustworthy

data is certainly one of the most important requirements for trustworthy AI. There are three

important questions that arise immediately in this context:

Q1. How to get highest quality data for AI?

Q2. How to ensure that the data collection process is transparent and fair for the data

providers?

Q3. How to ensure that the collected data is fair for the users affected by the applications

that make use of this data?

Let’s first discuss Q1 and Q2 in more detail. Obtaining high quality data while also ensuring

that the data collection process is transparent and fair, is a very challenging task. Ideally, the

owners of data should have complete control over what data they choose to provide (if any)

and they should receive a fair compensation for their contribution. It is not difficult to see

that this idea opens up a lot of problems related to the quality of the data thus obtained. For

example, consider the data about ratings of products on e-commerce websites like Amazon. It

is well known that online product reviews have a J-shaped distribution. However, as shown

by [50], the reviews actually follow a roughly normal distribution under controlled settings.

This discrepancy between the true data distribution and the observed data distribution is

also caused by the misalignment of reviewers’ incentives, among other reasons. For example,

unlike reviewers with polarized reviews, most reviewers with moderate reviews don’t have

incentives to express their opinions. This is true not just for online reviews but for most of the

other types of the data as well. For example, in healthcare, healthy people usually don’t have

incentives to report their data. Moreover, when there is a costly effort involved in obtaining

correct data, the data providers may even have incentives to provide non-truthful or incorrect

data. Clearly, we need incentive schemes to obtain correct and unbiased sample of the data

from the data providers. A naive incentive scheme that comes to mind is a constant payment

scheme. Unfortunately, this incentive scheme encourages free-riding but doesn’t fulfill our

objective of obtaining trustworthy data. For the incentive scheme to work, the payments

have to be contingent on the correctness of the data. This is hard problem to solve if there is

no way to verify the correctness of the data. Peer-consistency mechanisms [30] address this
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problem by using the data reported by multiple “peers". Consider a simple peer-consistency

mechanism, the output-agreement mechanism, which rewards the data providers with, say,

$1 if there is an agreement between the data provided by two peers and $0 otherwise. While

this simple mechanism provides very weak guarantees for practical applications, it motivates

the fundamental idea behind more advanced peer-consistency mechanisms like [20, 97, 104].

All these advanced mechanisms provide very strong game-theoretic guarantees that make

them suitable for practical applications. However, the mechanisms also have the following

limitations:

1. The existing peer-consistency mechanisms make truthful reporting the highest paid

Nash equilibria. But they don’t make truthful reporting the dominant strategy, which is

a more robust and desired notion of incentive compatibility in game theory.

2. The existing mechanisms can be perceived as being unfair in the sense that the reward

of a data provider is also dependent on the accuracy and the strategy of her peer. This

implies that two honest data providers who have similar accuracy are not guaranteed

to get similar expected rewards because one of them may get matched with a good

peer and the other may get matched with a bad peer. This violates the individual

fairness [27] notion for algorithms. In fact, a data provider with higher accuracy can get

lower expected reward than a data provider with lower accuracy due to the same reason.

3. The existing mechanisms work only for non-personal data, for example, opinions or

measurements about places, objects or services that can be shared between different

people. But they don’t work for personal data, for example data about one’s own body or

other personal properties like smart homes, which obviously can’t be shared between

two independent people.

4. Even though the mechanisms themselves are decentralized in the sense that the data is

collected from multiple independent data providers, they are always thought to require

a centralized system to be implemented in practice. A center is responsible for collect-

ing data from multiple providers, performing reward calculation and paying out the

corresponding rewards. This unnecessarily limits the transparency and decentralized

nature of the data collection process.

5. In many cases, data providers have outside incentives to lie about their data. This is

specially true when there is an outcome to be determined based on the collected data

and the data providers are eligible for an outside monetary reward or compensation

based on the determined outcome. The existing literature doesn’t answer whether peer-

consistency mechanisms can still be used in such cases to get truthful data, and if yes,

under what conditions.

Let’s now discuss Q3 i.e. how to ensure that the collected data is fair for the users affected by

the applications that make use of this data. There are three components of this question: data,
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algorithm and application. All three of these components are equally important in ensuring

end-to-end fairness. We mostly focus on the data component; discussion on fair algorithms

and “ethical" applications is beyond the scope of this thesis 1.

Sharing economy platforms like Airbnb, Uber, and freelancer platforms like Taskrabbit, Fiverr,

etc are increasingly becoming popular and often dominate the traditional offline systems in

the respective domains. While these platforms are considered more accessible and convenient,

they also face some major ethical challenges. For example, studies have shown that the prices

of properties offered by African-American hosts are significantly lower than those offered

by their white counterparts [29] even while accounting for other observable features about

the properties. As a more direct form of peer-to-peer discrimination, a recent study [28] has

found that having an African-American name significantly reduces the likelihood of a guest’s

accommodation request being accepted on Airbnb. A similar study on Uber [34] has shown

that having an African-American name increases the likelihood of a passenger’s ride being

canceled by the drivers. It is deeply concerning that the existing social biases are finding their

way into web-based platforms too. A combination of biased human feedback and large scale

algorithmic decision-making on the web can cause further social segregation of historically

disadvantaged groups. Thus, the problem needs urgent attention and solution. Airbnb (with

Stanford) recently conducted a user study [2] on Airbnb users and claimed that reputation

systems offset the real-world social biases by building trust between different users. However,

for this to work, the reputation systems must themselves be non-discriminatory. A reputation

system that discriminates against people based on race or gender will only further reinforce

the bias. Unfortunately, the reputation systems on these platforms are often discriminatory

towards different races and genders [41]. It is a non-trivial problem to make a reputation

system non-discriminatory because the goal of the reputation systems is really to discriminate

between users. However, this discrimination must be based on relevant attributes and not

on sensitive attributes like race or gender. Thus, the challenge is to make reputation systems

racially non-discriminatory while retaining the other useful information they provide. It is

interesting in the context of this thesis because reputation systems are based on aggregating

the ratings provided by users (humans) to one another, and thus, it directly fits within the

broader question of collecting trustworthy and fair data. We are interested in interventions that

can ensure fairness on the platforms but without manipulating any information or making it

easy for anyone to get opportunities. This subtle relation between fairness and truthfulness of

information has not been explored in the literature. Another very recent study [26] conducted

on Amazon Mechanical Turk showed that the crowdworkers are racially biased while predicting

recidivism labels for defendants. The difference in false positive rates of crowd predictions for

white and black defendants was significant and nearly equal to that of the predictions made

by the controversial COMPAS algorithm [85]. The same was true for false negative rates also.

Crowdsourcing is increasingly used to collect training data labels. More studies have shown

other forms of bias in the data collected from crowd [88, 89]. Inevitably, crowdworkers have

1We have worked on fairness in algorithms during the PhD but the results are excluded from the thesis for the
sake of coherence. Readers interested in our results about algorithmic fairness are encouraged to check [39].
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different biases, which are then reflected in the labels collected from the workers. This raises

further interesting challenges about collecting fair data from the crowd.

1.2 Summary of Main Contributions

Novel Incentive Mechanisms

We present the Deep Bayesian Trust, a novel game-theoretic mechanism that uses a limited

amount of ground truth and peer-consistency to incentivize rational agents to invest effort

and honestly report the information. This mechanism is useful, for example, in collecting

high quality labels for supervised machine learning. The mechanism ensures a strong notion

of incentive compatibility (dominant uniform strategy) and solves several scalability and

game-theoretic issues with the prior mechanisms that employed only ground truth or only

peer-consistency. Besides, this is the first (and perhaps the only) peer-based mechanism to

also guarantee individual fairness in addition to incentive compatibility. The mechanism

ensures that any two agents with the same accuracy are not differentiated by the mechanism

and receive the same reward.

To elicit personal attributes (for e.g. health and activity data) of people, we present the

Personalized Peer Truth Serum (PPTS). Since attributes are personal in nature, different people

can’t observe the same data. We show for the first time how to extend peer-consistency

incentive mechanisms to this setting for collecting continuous valued personal attributes.

The main idea is to use other correlated attributes reported by the people to find peers. We

also show on several real datasets that the scores calculated by the PPTS mechanism are also

helpful in filtering out non-truthful data points and thus, the mechanism can potentially be

used as a post-processing algorithm too for further improving the quality of collected data.

Transparent and Decentralized Oracle

Blockchain based systems allow various kinds of financial transactions to be executed in a

decentralized manner. However, these systems often rely on a trusted third party (oracle) to

get correct information about the real-world events, which trigger the financial transactions.

In this thesis, we identify two biggest challenges in building decentralized, trustless2 and

transparent oracles. The first challenge is acquiring correct information about the real-world

events without relying on a trusted information provider. We show how a peer-consistency

incentive mechanism can be used to acquire truthful information from an untrusted and self-

interested crowd, even when the crowd has outside (outcome induced) incentives to provide

wrong information. More precisely, we derive conditions under which a peer-consistency

mechanism can be used to elicit truthful data from non-trusted rational agents when an

aggregate statistic of the collected data affects the amount of their incentives to lie. Further-

more, we discuss the relative saving that can be achieved by the mechanism, compared to

2Trustless is a term increasingly used in the context of decentralized and blockchain systems, meaning not
requiring trust.
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the rational outcome, if no such mechanism was implemented. The second challenge is a

system design and implementation challenge. For the first time, we show how to implement a

trustless and transparent oracle in Ethereum. We discuss various non-trivial issues that arise

in implementing peer-consistency mechanisms in Ethereum, suggest several optimizations to

reduce gas cost and provide empirical analysis.

Fairness on Sharing Economy Platforms

To address the problem of discrimination on sharing economy platforms, we show how a

game-theoretical incentive mechanism can be used to encourage users to go against common

bias and provide truthful ratings about others, obtained through a more careful and deeper

evaluation. In situations where an incentive mechanism can’t be implemented, we show that

a simple post-processing approach can also be used to correct bias in the reputation scores,

while minimizing the loss in the useful information provided by the scores. We evaluate the

proposed solution on synthetic and real datasets from Airbnb.

Fairness and Diversity in Budget Constrained Crowdsourcing

Even when people behave honestly, they may make errors in judgments. We propose a

novel algorithm which assigns tasks to crowdworkers to maximize the expected accuracy

of the crowdsourced data, while ensuring that the errors satisfy desired notions of fairness.

We provide guarantees on the performance of our algorithm and show that the algorithm

performs well in practice through experiments on a real dataset.

1.3 Thesis Organization

The thesis is organized as follows:

• In Chapter 2, we discuss the game theoretic framework for information elicitation tasks

with objective answers and present the Deep Bayesian Trust mechanism. We discuss

the theoretical guarantees of the mechanism, followed by the results of some numerical

simulations and a preliminary user study on Mechanical Turk.

• In Chapter 3, we discuss the game theoretic framework for information elicitation tasks

involving personal data and present the Personalized Peer Truth Serum. We discuss the

theoretical guarantees of the mechanism, followed by experimental evaluation on real

datasets.

• In Chapter 4, we discuss the issue of outcome dependent lying incentives, the suitability

of peer-consistency mechanisms for designing decentralized, trustless and transparent

oracles on blockchain, followed by empirical analysis about the gas costs incurred due

to the computations involved in different mechanisms.

• In Chapter 5, we address the issue of bias and discrimination on sharing economy
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platforms like Airbnb and Uber by proposing two different approaches (a game theoretic

incentive scheme and a post-aggregation bias correction technique), and discuss the

results on a real dataset from Airbnb.

• In Chapter 6, we discuss the novel task allocation algorithm for crowdsourcing under

fairness, diversity and budget constraints, followed by the results based on a recidivism

dataset from Broward County.
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2 Deep Bayesian Trust: A Dominant
and Fair Incentive Mechanism for
Crowd
This chapter is an extended version of the following publication:

N Goel, B Faltings. Deep Bayesian Trust: A Dominant and Fair Incentive Mechanism for

Crowd. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2019.

2.1 Introduction

Crowdsourcing is a popular method for collecting data but the collected data is often noisy and

of low quality. The quality gets significantly degraded if solving the tasks require some costly

effort. The problem can be addressed by rewarding the workers with a performance based

bonus. One way to reward the workers is to use the peer based mechanisms [20, 97]. In these

mechanisms, the reward of a worker depends on her own answers and of other workers. The

mechanisms admit honesty as an equilibrium strategy (i.e. if other workers do high quality

work, the best response for any worker is also to do the same). But the mechanisms also

admit other dishonest equilibria. The other way to reward the workers is to use gold standard

tasks [86]. A common technique is to randomly mix some gold tasks in the batch of tasks

solved by every worker. Workers are then rewarded based on their performance on the gold

tasks. This incentivizes the workers for performing high quality work as a dominant strategy

(i.e. regardless of other workers’ answers). However, since every worker solves gold tasks and

the requester already knows the correct answers of the gold tasks, it leads to a waste of the

useful task budget of the requester. Moreover, to reduce the variance in the rewards, one may

require a sufficient number of gold tasks to be solved by every worker. Also, this technique

only works if the gold tasks are not identified but as shown by [15], the gold tasks can be easily

leaked because of their repeated use for all workers. Another technique is to assign gold tasks

to a worker only with a small (constant) probability and give a fixed reward (independent of

the quality of work) otherwise. While it solves many of the problems with the first technique,

the scalability of the constant probability technique remains limited because the number

of workers who need to be assigned gold tasks, grows as the total number of workers grows.
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Otherwise, this technique assumes that the rewards of the workers solving gold tasks can be

made arbitrarily large to compensate for the smaller probability1. In many practical settings,

this is undesired or not possible.

In this chapter, we introduce a scalable incentive mechanism (the Deep Bayesian Trust Mech-

anism) which guarantees strong incentive compatibility while assigning gold tasks only to a

small (constant) number of workers and rewarding the rest using the answers provided by

peer workers. Since we ensure that gold tasks are assigned to a constant number of workers

and not just with a constant probability, our mechanism is also suitable for very large scale set-

tings. Moreover, this mechanism doesn’t suffer from the problem of arbitrarily large payments

discussed earlier. When there is a non-zero cost of effort for solving the tasks, the mechanism

still ensures the desired theoretical properties if the payments are scaled appropriately only to

cover the cost of effort. This scaling constant doesn’t depend on the probability of assigning

gold tasks. The mechanism is based on the observation that in large scale crowdsourcing

settings, every worker reports answers to many similar tasks and hence the joint distribution

of the answers of any two workers can be used to infer the accuracy of one worker given the

accuracy of the other worker. It starts by rewarding a small set of workers based on gold tasks

and then uses the answers provided by the workers on non-gold tasks as contributed gold

tasks to reward more workers. It continues this deep chain of trust to an arbitrary depth, until

all the tasks have been solved by the required number of workers.

As fairness of algorithms affecting humans is becoming a critical issue, it is important to justify

the fairness of algorithms that determine payments of the workers. We, for the first time,

address the issue of fairness of crowdsourcing incentive mechanisms in a principled manner

and show that our mechanism ensures fair rewards to the workers.

2.1.1 Related Work

The research on crowdsourcing incentive mechanisms is mainly divided into two categories.

The first category of work assumes that some spot checking option (for example, gold standard

tasks) is available. The constant probability mechanism, discussed in Section 3.1, is analyzed

formally by [33]. This mechanism randomly selects a few workers and spot checks only

those workers with an oracle. The rest of the workers are given a constant amount of reward

(independent of the quality of their work). The scalability of this mechanism is limited because

the number of workers who need to be spot checked, grows as the total number of workers

grows. Otherwise, in order to compensate for the smaller probability of spot checking, the

mechanism allows the payments of the spot checked workers to be arbitrarily large.

The second category of work assumes no gold tasks to be available and uses only peer answers.

Such mechanisms are called the peer-consistency (or peer-prediction) mechanisms. The

1This can be understood using the example of penalty mechanism in public transport systems. If tickets are
checked very rarely, then the penalty for being found without ticket has to be made very high to discourage rational
people from traveling without tickets.
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early mechanisms in this category were either not detail-free (required knowledge about the

beliefs of the workers) [82] or not minimal (required workers to also submit some additional

information other than their answers on the tasks) [93, 95, 114]. On the other hand, a simple

output-agreement mechanism [110] works only under strong assumptions on the correlation

structure of workers’ observations. A seminal work in the category of minimal, detail-free

mechanisms for crowdsourcing is [20], which ensures that truth-telling is a focal equilibrium in

binary answer spaces. The Correlated Agreement mechanism [104] generalizes the mechanism

of [20] to non-binary answer spaces with moderate assumptions on the correlation structure

of workers’ observations. Both these mechanisms require that workers solve multiple tasks.

The Logarithmic Peer Truth Serum [96], which is based on an information theoretic principle,

requires no such assumptions and ensures strong-truthfulness in non-binary answer spaces.

The guarantees of the mechanism are ensured in the limit (when every task is solved by

an infinite number of workers). The Peer Truth Serum (PTSC) of [97] doesn’t require even

this assumption for the theoretical guarantees and works with a bounded number of tasks

overall. In theory, these peer-consistency mechanisms offer comparatively weaker incentive

compatibility than the gold tasks based mechanisms. They make truth-telling an equilibrium

strategy for the workers but also admit some non-truthful equilibria. While the no-effort or the

heuristic equilibria exist in these mechanisms, the equilibria are not attractive since they pay

zero reward to the workers. The mechanisms also admit the permutation equilibria, which

give the same payoff as the truthful equilibrium. [77] avoid this issue in binary answer space

by using ground truth of the answer statistics. As shown by [33], it is possible to eliminate the

undesired equilibria in the peer based mechanisms if the center can employ a limited amount

of spot checking. When spot checking is not possible, it is enough that there exist a small

fraction of honest workers. Either of these options work if the rewards are scaled appropriately

to compensate for a low probability of spot checking and a low fraction of honest agents

respectively.

Finally, the mechanism of [22] combines ideas from the two categories of work. It arranges

the workers in a hierarchy. A constant number of workers in the top level of the hierarchy

are evaluated by an oracle. The workers below that level are evaluated by the workers (peers)

in one level above them. The mechanism solves the scalability issue of the gold tasks based

mechanisms. Though it offers comparatively weaker incentive compatibility (unique Nash

equilibrium) as compared to the gold tasks based mechanisms but eliminates all the undesired

equilibria that exist in peer based mechanisms. However, it requires that workers are informed

of their level in the hierarchy. The mechanism is also ex-ante unfair towards the workers in

the sense that workers in the top level of hierarchy are evaluated more correctly than the

workers in the lower levels. Similar to [22], our work is also at the intersection of the two

categories of works. However, our mechanism doesn’t suffer from the issues (level information

requirement and unfairness) that their mechanism has and also guarantees stronger incentive

compatibility.

11



Chapter 2. Deep Bayesian Trust: A Dominant and Fair Incentive Mechanism for Crowd

2.1.2 Our Contributions

The summary of our main contributions is as follows:

• We propose a dominant uniform strategy incentive compatible (DUSIC) mechanism,

called the Deep Bayesian Trust Mechanism, which rewards a constant number of work-

ers with gold tasks and the rest using peer answers.

• On one hand, our mechanism addresses the issues with existing gold tasks based mech-

anisms and on the other hand, it also shows how the limitations of purely peer based

incentive mechanisms can be overcome in some cases by assigning gold tasks to a few

workers. Thus, it is also of interest for the peer-prediction community.

• We define a notion of fairness of rewards in crowdsourcing and show that our mecha-

nism ensures fairness.

• Through numerical experiments, we show the robustness of our mechanism under

various reporting strategies of the workers. In a preliminary study conducted on Amazon

Mechanical Turk, we observe that the mechanism helps in eliciting effort and improving

the quality of responses.

2.2 Model

We consider large scale crowdsourcing settings in which workers provide answers of many

micro-tasks requiring human intelligence. The tasks have a discrete answer space {0,1, ...,K−1}

of size K . We will use [K ] to denote this space. For any task, our model has 3 random variables.

The first is the unknown ground truth G answer for the task. The second is the worker i ’s

observed answer Xi that she obtains on solving the task. Xi is worker’s private information.

The third is the worker’s reported answer Yi that she actually reveals as her answer for the

task. We use g , xi , yi ∈ [K ] to denote realizations of these random variables and will drop the

subscript i , when the context is clear.

Definition 1 (Effort Strategy). The effort strategy of a worker i is a binary variable ei . If the

worker invests effort in solving a task, ei is 1 and is 0 otherwise.

The effort strategy captures the standard binary effort model of the incentive mechanisms

literature [20]. Whenever ei = 1, the worker incurs a strictly positive finite cost.

Definition 2 (Reporting Strategy). When ei = 1, the reporting strategy Si of a worker i is a K ×K

right stochastic matrix, where Si [x, y] (∀x, y ∈ [K ]) is the probability of her reported answer on

a task being y given that her observed answer is x. When ei = 0, the reporting strategy ~Si of a

worker is a K dimensional probabilistic vector, where ~Si [y] (∀y ∈ [K ]) is the probability of her

reported answer on a task being y.
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The effort and the reporting strategy together model possible strategies that a worker may play

in obtaining and reporting her answer and is a standard model in the literature [104]. Two

common strategies are truthful and heuristic.

Definition 3 (Truthful Strategy). A worker i ’s strategy is called truthful if ei = 1 and Si is an

identity matrix.

In a truthful strategy, a worker solves a task and reports her answer as obtained.

Definition 4 (Heuristic Strategy). A worker i ’s strategy is called heuristic either if ei = 0 or if

ei = 1 and all rows of Si are identical.

In a heuristic strategy, a worker either doesn’t solve the tasks (ei = 0) or solves the tasks (ei = 1)

but reports independently of the obtained answer. Note that a common colluding heuristic

strategy, in which workers collude using a “default" answer, is included in the model. For

example, in binary case, when ei = 0, a probabilistic vector ~Si = [1,0] means that the worker

always answers 0. Similarly, when ei = 1, a matrix Si with both rows equal to [1,0] means the

same. It is also easy to see that the model also includes mixed strategies since mixed strategies

can be written as convex combination of the pure strategies.

Definition 5 (Proficiency Matrix). The proficiency matrix Ai for a worker i is a K ×K right

stochastic matrix, where Ai [g , x] (∀g , x ∈ [K ]) is the probability of her obtained answer on a

task being x given that the ground truth is g .

This definition is due to [21], which is a widely accepted model in crowdsourcing literature.

The proficiency matrix models the ability of a worker to obtain correct answers, when she

invests effort. Every worker can have a different proficiency matrix.

Definition 6 (Trustworthiness Matrix). The trustworthiness matrix Ti of worker i is a K ×K

right stochastic matrix, where Ti [g , y] (∀g , y ∈ [K ]) is probability of her reported answer on a

task being y given that ground truth is g .

Note the difference between the proficiency and trustworthiness matrices. Proficiency models

worker’s ability while trustworthiness is a function of her ability and honesty.

Proposition 1. If ei = 1, the trustworthiness matrix Ti of a worker i is given by Ti = Ai Si . If

ei = 0, Ti is a matrix with all rows equal to reporting strategy vector ~Si .

Our model is summarized in Figure 2.1.

Until now, we defined the strategy space for the settings in which workers solve one task each.

In our work, we consider settings, in which workers solve multiple tasks and next define the

strategy space for multi-task settings.
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Figure 2.1: Model

Definition 7 (Uniform Strategies for Multi-task Settings). A worker’s strategy (effort and report-

ing) in multi-task settings is called uniform if the strategy is the same on all tasks in a given

batch solved by the worker.

The uniform strategies are sometimes also called consistent strategies in the literature. It is

important to note that the space of uniform strategies DOES INCLUDE mixed strategies. The

motivation for considering only uniform strategies in the multi-task literature is that the tasks

of similar nature can be grouped in batches so that workers don’t strategically distinguish

between tasks assigned to them.

Definition 8 (Dominant Uniform Strategy Incentive Compatibility). Given that workers can

play any strategy from the space of uniform strategies, an incentive mechanism is called dom-

inant uniform strategy incentive compatible (DUSIC) if the expected reward of any worker

is strictly maximized by playing a truthful strategy, no matter what uniform strategies other

workers use.

In this notion of incentive compatibility, the reward of a worker is strictly maximized in a

truthful strategy even if others are not truthful. Thus, the truthful strategy dominates any

heuristic strategy of not solving the tasks and non-truthful strategies of solving the tasks but

reporting non-truthfully. It also dominates any mixed uniform strategy.

Definition 9 (Oracle). An agent o is called an oracle if her trustworthiness matrix To is known

and To doesn’t have identical rows.

For example, if the oracle is the source of gold standard answers, then by definition of gold

tasks, oracle’s trustworthiness matrix is an identity matrix.

We use P (g ) to denote the prior probability of the ground truth answer of any randomly

selected task being g . It is assumed to be known and fully mixed (P (g ) > 0 ∀g ∈ [K ]). It can

also be estimated from the gold standard answers.

2.3 Finding Trustworthiness Transitively

In this section, we first explain the main building block of our mechanism: the process of

finding the trustworthiness of a worker, given the trustworthiness of another worker by using

14
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the joint distribution of their answers on shared tasks.

Definition 10 (Peer). For a worker i , the mechanism assigns another worker j as her peer.

Workers i and j are assigned sets of tasks Q i and Q j respectively such that |Q i ∩Q j |À 0.

The definition requires that some tasks are solved by both the worker and her peer. Both

workers also solve some other tasks that are not shared. It may be noted that eliciting answers

of multiple workers on same tasks is the central idea in crowdsourcing [105] and is not a new

requirement introduced in our work.

Let T j be the known trustworthiness matrix of worker j and let j be the peer of another worker

i , whose trustworthiness matrix Ti is not known. We want to find the unknown Ti using the

answers given by the two workers and the known T j . Since the worker i and her peer j solve

some shared tasks by definition, their reported answers on these shared tasks provide the

mechanism with an empirical joint distribution of their answers. We use ω(Yi = yi |Y j = y j )

to denote this conditional empirical distribution and ω(Y j = yi ) to denote the empirical

distribution of answers of peer j only.

Lemma 1. As |Q i ∩Q j |→∞, the following holds w.h.p.

ω(Yi = yi |Y j = y j ) = ∑
g∈[K ]

Ti [g , yi ] ·
(

T j [g , y j ] ·P (g )

ω(Y j = y j )

)
(2.1)

∀ yi , y j ∈ [K ] and ω(Y j = y j ) 6= 0.

The proof of Lemma 1 is provided in the appendix. The LHS in Equation 2.1 is the conditional

probability P (Yi = yi |Y j = y j ) in the limit. When we apply Bayes’ rule to write this conditional

probability in terms of other model probabilities, we get the RHS of Equation 2.1. This assumes

that the answers of workers i and j are conditionally independent given the ground truth.

In the linear system of Equations 2.1, Ti [g , yi ] ∀ g , yi ∈ [K ] are unknowns. Since the matrix Ti is

also right stochastic, we have as many equations as the number of unknowns. This system can

be solved for Ti , provided the system is well-defined. This requires that ω(Y j = y j ) 6= 0 and for

a unique solution, the coefficient matrix of this linear system must have linearly independent

rows. This system of linear equations can be solved analytically. In practice, many libraries

are also available for computing the solution efficiently. We used the numpy.linalg library in

Python for this purpose. We now use this transitive method of finding unknown Ti to develop

our mechanism in the next section.

2.4 The Deep Bayesian Trust Mechanism

The Deep Bayesian Trust mechanism is summarized in Mechanism 1 on the next page. It

maintains a pool of workers’ answers which are “informative" for evaluating other workers.

The meaning of the term informative will be explained later. The pool is initialized with some
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Mechanism 1 : The Deep Bayesian Trust Mechanism

1. Assign a set of tasks to the oracle o and obtain its answers on the tasks.

2. Initialize an Informative Answer Pool (IAP) with the answers given by oracle.

I AP =
[[

o : To : q1 −a1, q2 −a2, q3 −a3, ...
]]

o stands for oracle, To is the trustworthiness of the oracle and ql −al are the task − answer
pairs provided by the oracle.

3. Select some tasks submitted by a worker from the IAP. If there is no worker yet in the IAP,
select the oracle’s tasks.

4. Prepare a set of batches of tasks such that each batch contains tasks selected in the previous
step. Mix some fresh tasks in each of the batch.

5. Publish the batches on the platform and let workers self-select themselves to solve one
batch each.

6. For any worker i who submits her batch, solve the system of Equations in 2.1 to find the
unknown trustworthiness Ti . Reward worker i for her answers with an amount equal to

β ·Ri where, Ri =
( ∑

g∈[K ]
Ti [g , g ]

)
−1.

7. If the answers of worker i satisfy the informativeness criterion, add the answers to the IAP
and assign them trustworthiness Ti as obtained in Step 6.

For example, at a given instant, the pool may look as follows :

AP =
[[

o : To : q1 −a1, q2 −a2, ...
]

,
[

W1 : TW1
: q2 −a2, q4 −a4, ....

]
,
[

W2 : TW2
: q2 −a2, q5 −

a5, ...
]

, ...

]
Here, Wi are the identities of workers followed by their trustworthiness TWi and their
submitted task-answer pairs.

8. Asynchronously repeat steps 3, 4, 5, 6 and 7 whenever any worker submits her batch, until
desired number of answers are collected for all tasks.

tasks and their answers given by the oracle. In crowdsourcing terminology, these are the gold

task-answer pairs. The trustworthiness matrix of the oracle is initialized to be To . Since by

definition, gold tasks are the tasks whose correct answers are known, To is an identity matrix.

The mechanism then publishes several batches of tasks on the platform such that each batch

has some tasks in common with the tasks solved by the oracle and some unique new tasks in

each batch. Workers self-select themselves to solve one batch each and report their answers

for respective batches. Thus, the oracle becomes the peer of each of these workers.
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Let’s assume that the oracle solves so number of tasks. The mechanism publishes k batches

of tasks such that there are so tasks in common with the oracle and sn unique new tasks

in each batch. Thus, it publishes k · sn tasks that are new (not solved by the oracle already)

and also k instances of the same so tasks that are already solved by the oracle. k becomes

a hyper-parameter of the mechanism and so + sn becomes the size of the batches solved by

every worker.

As the workers start submitting their respective batches, the mechanism also starts rewarding

the workers for their answers, asynchronously (without waiting for other workers). To calculate

the reward, the mechanism uses Lemma 2.1 for finding the trustworthiness matrix of the

answers given by workers. Note that the lemma is applicable because the trustworthiness of the

peer (oracle) is known. The reward for worker i is given by β ·Ri , where Ri =
( ∑

g∈[K ]
Ti [g , g ]

)
−1

and β is a scaling constant.

Ri takes the summation of the diagonal entries of the trustworthiness matrix Ti . These are the

accuracy parameters of the worker (the probabilities of the workers’ answers being same as

the ground truth). Ri further subtracts 1 from this summation for technical reasons that will

be exploited later to ensure a desired incentive property.

The worker gets her reward and is out of the mechanism. The mechanism now decides

whether to reuse the answers given by the worker for evaluating more workers. If the worker’s

answers satisfy a certain “informativeness" criterion, they are added to the pool. If the worker’s

answers are added to the pool, the mechanism can immediately publish more batches such

that there are some tasks in common with the new (non-gold) tasks solved by the previous

worker and some more new tasks in each of the batches. This step is the same as described

earlier. The only difference is that now the batches being published have tasks in common

with the tasks solved by a worker, not the oracle (i.e. the peers are now other workers, not the

oracle). These steps are repeated in parallel and asynchronously until the mechanism has

obtained the desired number of answers for all its unsolved tasks. Note that non-gold tasks are

assigned to multiple workers in crowdsourcing for obtaining more accurate aggregate answers

and this is not a waste of effort/budget.

99
9

99
9

99
9

Oracle’s Answers

Informative Answer Pool

New Worker

Informative Answers

Uninformative Answers

Figure 2.2: Illustration of the Deep Bayesian Trust Mechanism

To summarize (Figure 2.2), the mechanism starts with an answer pool seeded with the oracle’s
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answers, uses the answers in the pool to assess trust in other workers’ answers, expands

this pool based on the informativeness of the workers’ answers and repeats the process.

We emphasize that the mechanism doesn’t assign any permanent reputation to workers. A

worker’s answers being added to the pool is NOT equivalent to a worker being “pre-screened".

We only evaluate the answers provided by a worker in any given batch and add them to the

answer pool together with an estimate of the trustworthiness of that batch of answers.

Informativeness Criterion

We can now discuss the informativeness criterion for workers’ answers, which was omitted
earlier. The purpose of the informativeness criterion is to check whether the answers provided
by a worker i can be used to estimate the trustworthiness of another worker or not. As
discussed in Section 2.3, this depends on whether the coefficient matrix of the linear system
of equations has linearly independent rows or not. For example, assume that the answers of
worker j are added to the pool and let i be another worker who gets j as her peer in the future.
In that case, the mechanism will solve the following equations to estimate the trustworthiness
of i :

ω(Yi = yi |Y j = y j ) = ∑
g∈[K ]

Ti [g , yi ] ·
(

T j [g , y j ] ·P (g )

ω(Y j = y j )

)
∀ yi , y j ∈ [K ]

The coefficients
T j [g ,y j ]·P (g )
ω(Y j=y j ) of this linear system don’t depend on the answers given by worker

i and the mechanism can determine in advance whether the system will be solvable by just

looking at these coefficients. If ω(Y j = y j ) 6= 0 and the coefficient matrix is full rank, the

informativeness criterion is said to be satisfied and the answers of worker j are added to

the pool. It may be noted that the informativeness criterion doesn’t require answers of only

truthful or high proficiency workers to be added to the pool. Answers from non-truthful or

low proficiency workers can also be added to the pool.

To understand this technical criterion in more depth, note that the coefficients
T j [g ,y j ]·P (g )
ω(Y j=y j )

of the linear system are equal to the posterior distribution P (G = g |Y j = y j ) by Bayes’ rule.

Thus, the answers of a worker j satisfy the informative criterion if the posterior distributions

P (G = g |Y j = y j ) over g ∈ [K ] for any two different y j ∈ [K ] are not identical. One interesting

example, where the informative criterion is not satisfied, is when the peer j plays a heuristic

strategy. In such a case, the reported answers are not correlated with the ground truth and the

posterior distributions P (g |Y j = y j ) are same as the prior distribution P (g ) or in other words,

the reported answers are not “informative" of the ground truth.

It may be noted that the informativeness criterion is fairly weak for the binary answer spaces.

It only requires that the reports of the peer j are not independent of the ground truth (T j [1,1]+
T j [2,2] 6= 1 =⇒ T j [1,1] 6= T j [2,1] =⇒ T j [2,2] 6= T j [1,2]).
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2.5 Theoretical Analysis

We now prove strong game-theoretical properties for our mechanism. In this discussion, we

will assume that a worker and her peer solve many shared tasks (|Q i ∩Q j |→∞). This is not the

same as requiring every task to be solved by large number of workers, which would have been

inefficient. In later sections, we will also discuss the empirical performance of our mechanism

without this assumption. We use C E to denote the cost of effort required to solve a batch of

tasks. Proofs are provided in the appendix.

Theorem 1. If β > C E( ∑
g∈[K ]

Ai [g ,g ]

)
−1

and Ai [g , g ] > Ai [g ′, g ], ∀g ′ 6= g , then the Deep Bayesian

Trust mechanism

(i) is dominant uniform strategy incentive compatible (DUSIC) for every worker i ;

(ii) ensures strictly positive expected reward in the truthful strategy.

Theorem 1 requires a condition on the scaling constant β to cover the cost of effort, and

reduces to β> 0 when cost of effort is 0. The condition required on proficiency matrix Ai (i.e.

Ai [g , g ] > Ai [g ′, g ], ∀g ′ 6= g )2 can be more easily understood in the case of binary answers.

In binary settings, the condition is satisfied if Ai [0,0] > 0.5 and Ai [1,1] > 0.5. This is not a

condition on the honesty of the workers but only on their ability. The condition merely ensures

that the worker can obtain answers that are positively correlated with the ground truth. Such

conditions are common in the literature [20]. Unlike the literature, the condition here only

affects the best strategy of a given worker, not of all the workers. For example, if the condition

is not satisfied for a worker, she may find it better to deviate to a non-truthful strategy but it

doesn’t affect the dominant strategy of other workers. We note that such informed deviation

by a low proficiency worker to increase the accuracy of her reported answers is not bad for the

requester.

Corollary 1. The scaling constant β of the Deep Bayesian Trust mechanism is independent of

the probability of a worker getting oracle or another truthful worker as peer.

Corollary 1 implies that to ensure incentive compatibility, our mechanism doesn’t need to

scale up the rewards of workers if the probability of a worker getting oracle or another truthful

worker as peer decreases.

Theorem 2. In the Deep Bayesian Trust mechanism, a heuristic strategy gives zero expected

reward.

It may be noted that the DUSIC result in Theorem 1 already implies that the heuristic strategies

are not in equilibrium but Theorem 2 answers the question that what if someone still plays

those strategies.

2For binary answer space, the theorem can also be shown to hold under a weaker condition Ai [0,0]+Ai [1,1] > 1.
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Limitation

If, despite all these guarantees, every single worker chooses to irrationally play a heuristic

strategy, then our mechanism will not be able to expand its pool and will be forced to behave

like other mechanisms which assign gold tasks to every worker. But (i) such workers don’t gain

anything from the mechanism; (ii) the dominant incentive compatibility of the mechanism

remains unaffected for any rational workers even in such a degenerate case; and (iii) the

heuristic strategy doesn’t become an equilibrium strategy.

2.5.1 Fairness of Rewards

Recently, concerns have been raised about fairness and other ethical considerations in al-

gorithms that affect humans [3, 53]. The discussion on fair rewards in crowdsourcing has

included issues such as minimum wages and adequate compensation for time and effort [102]

but there has not been any principled approach to address the issue of fairness in rewards

from a non-discrimination perspective. For example, if a worker with higher ability gets a

lower reward than a worker with lower ability because of the difference in the way they were

evaluated, then this is a potential case of unfairness. The unfairness is an unintentional and

undesired property of the existing mechanisms. Peer based mechanisms in the literature

randomly select peers and reward the workers based on their answers and the answers of

their respective peers. The reward of the workers is generally a function of their own ability as

well as their peers’ ability, making the rewards unfair. This unfairness issue in the peer based

mechanisms was first pointed out by [59]. The issue becomes more serious when workers

know ex-ante that they are being evaluated using peers with different proficiencies. This is the

case, for example, with the mechanism of [22]. Our mechanism doesn’t need to inform the

workers about their peers at all but as we show, the mechanism can satisfy an even stronger

definition of fairness.

Definition 11 (Fair Incentive Mechanism). An incentive mechanism is called fair if the expected

reward of any worker is directly proportional to the accuracy of the answers reported by her and

independent of the strategy and proficiency of her random peer.

This is a reasonable definition of fairness and is in agreement with the broader theory for

individual fairness of algorithms. For example, the pioneering work of [27] defines that fair

algorithms take similar decisions for individuals with similar relevant attributes. The relevant

attribute in our case is the worker’s accuracy. The definition is also non-trivial to satisfy. In

existing peer based mechanisms, the rewards also depend on the unknown ability of the peer

(even if the peer can be believed to be truthful). For example, in the mechanism of [20], the

reward of a worker in the truthful equilibrium is an increasing function of her proficiency

as well as her peer’s proficiency. On the contrary, our mechanism satisfies this definition of

fairness. The mechanism carefully uses the peer answers only to find trustworthiness of a

worker, which is completely her own accuracy parameter and doesn’t depend on her peer’s

proficiency or strategy.
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Theorem 3. The Deep Bayesian Trust Mechanism is fair.

This is perhaps a surprising result because in the existing framework of the peer based mecha-

nisms, one would perhaps reason that it is impossible for the rewards to not depend on the

accuracy of the peer.

2.6 Numerical Simulations

In this section, we evaluate the performance of our mechanism empirically. We simulate the

settings in which workers with different proficiencies Ai report answers to different tasks. The

proficiency matrices of different workers were generated independently such that the diagonal

entries Ai [g , g ] ∀g ∈ [K ] were β(5,1) distributed. The diagonal entries Ai [g , g ] ∀g ∈ [K ] for a

given worker i are not necessarily the same as they are also independently generated. Rest of

the entries are generated randomly such that every row of proficiency matrix sums to 1.

We consider following strategies that workers may play:

1. Truthful- Workers obtain answer for any given task based on their respective proficiency

matrices and report the answers truthfully.

2. Heuristic - Workers’ reported answers are generated independently of their proficiency

using a common distribution over the answer space.

3. Permutation - Workers obtain answer for any given task based on their respective profi-

ciency matrices but they apply a common permutation on the answers before reporting

it to the mechanism. In a non-truthful permutation deterministic strategy [104], workers

solve the tasks, but they apply a permutation mapping on the answers before reporting it to

the mechanism. For example, in a ternary answer space (K = 3), a permutation f can be as

follows : f (0) = 1, f (1) = 2, f (2) = 0, i.e., whenever the obtained answer is 0, workers report

1, for 1, they report 2 and for 2, they report 0. In a binary answer space, this corresponds to

reporting the opposite of the obtained answer.

In general, the simulations performed in the literature for peer based mechanisms compare

the average reward in different equilibria. For example, the average reward of workers when

all of them play a truthful strategy may be compared with the average reward when all play a

heuristic strategy. This is because such mechanisms only guarantee that different strategies

are in equilibria and that one equilibrium is more profitable than the other. But our stronger

theoretical result (dominant incentive compatibility) demands stronger simulations. We go

beyond comparing just equilibrium rewards and instead compare the rewards of workers

playing different strategies against one another at the same time. More precisely, in our

simulations, we don’t require every worker to play a common strategy. Any worker can play

a heuristic, permutation or truthful strategy with equal probability. Such settings can’t be

21



Chapter 2. Deep Bayesian Trust: A Dominant and Fair Incentive Mechanism for Crowd

Permutation

(a) Distribution of rewards for workers with differ-
ent proficiencies playing different strategies

Permutation
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(b) Average reward of workers playing different
strategies under different number of shared tasks

Figure 2.3: β distributed proficiencies

handled by mechanisms that guarantee only equilibrium results. We will show that in our

mechanism, there is a clear distinction between the rewards of workers playing different

strategies with truthful workers being nicely rewarded and others being penalized. Workers

were simulated to be hired in 4 rounds, with 5, 25, 125 and 625 workers in successive rounds.

K was set to 2 in all the experiments discussed in the chapter.

Figure 2.3a compares the distribution of rewards of workers playing the three strategies. The

rewards of the workers playing the heuristic strategy are centered around 0, as expected from

Theorem 2. The reward of workers playing truthful strategy are centered around a strictly

positive value as predicted by Theorem 1. On the contrary, the rewards of workers playing

the permutation strategy are symmetrically centered around a strictly negative value. It may

be noted that in existing peer based mechanisms, permutation strategies (in equilibria) are

equally profitable as the truthful strategy, which is clearly not the case with our mechanism.

Firstly neither heuristic nor permutation strategies are in equilibrium in our case and even if

workers use any of these strategies, they get lower reward than the truthful strategy.

We now show the robustness of our mechanism with respect to the number of shared tasks

between workers. We discussed only the asymptotic properties of the mechanism earlier in

the theoretical analysis. Hence, this simulation study is important to show the performance

of the mechanism with a finite number of shared tasks. Figure 2.3b compares the average

of rewards of the workers (with β(5,1) distributed proficiencies) playing different strategies

under different settings of the number of shared tasks. Error bars show the standard deviation

in 100 repeated runs. The trend discussed in previous experiment can be observed to be very

robust to the number of shared tasks. Thus, the Deep Bayesian Trust mechanism is attractive

even when the number of shared tasks is not large. This simulation also implies that with only

30 gold tasks (and given only to 5 workers), the mechanism can reward 5+25+125+625+ ...

workers.

We also simulated the settings in which the diagonal entries Ai [g , g ] ∀g ∈ [K ] were uniformly
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Figure 2.4: Uniformly distributed proficiencies

distributed in ( 1
K ,1] and repeated the above experiments.

2.7 Preliminary User Study

Any conclusive study on the effects of reward mechanisms requires a large budget and needs to

be conducted over a long period. Such a study is beyond the scope of this thesis. We performed

a limited scale study on Amazon Mechanical Turk to make some preliminary observations

about the ease of implementing the mechanism and workers’ response to the mechanism.

We created some synthetic tasks which resemble tasks requiring human intelligence (natural

language understanding) and elicited the answers of the crowd on MTurk with and without

our reward mechanism in place. The advantage of using synthetically generated tasks was that

we had access to ground truth and thus, we could judge the performance of workers with and

without our mechanism objectively. The structure of our task (named ‘story disentanglement

task’) was the following : we mixed a few sentences from different real news stories into

one paragraph and asked the workers to count the number of news stories in the paragraph.

Solving this task requires identifying the context of different sentences and whether they are

related. The number of sentences in paragraphs was kept independent of the number of

stories, making it harder to guess by just looking at the paragraph length. We asked workers to

give a binary answer (‘Yes’ if the number of stories is less than 3 and ‘No’ otherwise). We also

asked them to identify the sentences belonging to different stories. We will discuss only the

binary answers of the workers in this chapter. Each HIT 3 corresponds to giving an answer for

one such paragraph. We conducted the experiments under two settings.

• In the first setting, workers were told that they would be paid 0.03$ per HIT and there would

be additional performance based payments without discussing a specific reward rule. We

will refer to this setting as the unspecified reward setting.

3A single task is referred to as HIT(Human Intelligence Task) on Amazon Mechanical Turk.
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(a) Description of Payment Scheme

(b) Task Instructions

(c) Sample Task

Figure 2.5: Mechanical Turk Task
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• In the second setting, each HIT was worth 0.03$ and we explained our Deep Bayesian Trust

mechanism to the workers in plain English with almost no use of mathematical language

or notations. Figures 2.5a, 2.5b and 2.5c show screen shots of the instructions given to the

crowdworkers. We will refer to this setting as the DB Trust setting.

In the DB Trust setting, batches of 80 HITs were designed such that each batch had 40 HITs in

common with another batch to satisfy peer relationship. In both settings, we had 3 workers

giving answers for each paragraph, giving us a total 3×480 HITs from 480 paragraphs. We thus

collected a dataset of 1440 worker responses on these HITs, 720 in each setting. In total, 129

workers participated in the experiment. We judge the mechanism on two most important

criteria. First, the ability to discourage workers from heuristic reporting and second, the ability

to get more accurate answers from crowd.

Unspecified

DB Trust

Figure 2.6: Time Spent on HITs

Observations

1. Figure 2.6 compares the time workers spent on solving the tasks in the two settings. The

reported time doesn’t include time spent on reading instructions and other details about

the payment scheme. The fraction of HITs that were given very little time has significantly

decreased with our mechanism and the fraction of HITS that were given more time has

significantly increased (the green distribution with dots is more skewed towards the right

side as compared to the red distribution with slashes, which is more skewed towards the

left). This can be interpreted as a success in eliciting effort from the crowd and discouraging

low quality/heuristic reporting. We used a browser based JavaScript solution to measure

the actual time spent on solving tasks to get tight estimates of time spent in the DB Trust

setting, without workers being aware of it. Amazon uses the difference between time of

accepting and submitting a HIT as estimates of time spent, which (even after filtering very

large values) tend to be highly inflated. As one can see, even with such tight estimates in

the DB Trust setting, the time spent by workers is better.
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2. The average accuracy of workers was found to increase from 70.86% in the unspecified

setting to 79.17% in the DB Trust setting.

3. The average accuracy of all responses was also found to increase from 75.69% to 79.17%

with our scheme.

2.8 Chapter Summary

We proposed the Deep Bayesian Trust mechanism to incentivize crowdworkers in large scale

settings. The mechanism rewards the workers for the correctness of their reports without

checking every worker with gold tasks. Instead, it uses the correlation in the answers of the

workers and their peers to estimate their accuracy. The mechanism is guaranteed to be game

theoretically robust to any strategic manipulation. Thus, it is also suitable even for the settings

in which workers of very heterogeneous proficiencies and motivations solve the tasks at the

same time. The mechanism also ensures fair rewards to workers, thus contributing towards the

bigger movement of making algorithmic decisions fair. Among other issues, our mechanism

notably addresses the scalability issues in purely gold tasks based mechanisms, the incentive

compatibility issues in purely peer based mechanisms and the information requirement and

fairness issues in the mixed mechanisms.
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3 Personalized Peer Truth Serum for
Eliciting Multi-Attribute Personal
Data
This chapter is an extended version of the following publication:

N Goel, B Faltings. Personalized Peer Truth Serum for Eliciting Multi-Attribute Personal

Data. In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI), 2019.

3.1 Introduction

Crowdsourcing is a promising method to collect data in an inexpensive way. The data can be,

for example, subjective opinions such as restaurant reviews or objective measurements such

as pollution levels in a city and image labels. Measurements tasks are particularly important

in collecting features which are useful in supervised and unsupervised machine learning.

However, there is always a concern about the reliability of the data thus obtained. While

some crowdworkers (henceforth called agents) will do their best to provide accurate data,

many are not motivated to make the effort to obtain and report the data properly. This

degrades the quality of the data. For example, if the data is to be observed with a sensor device,

many may not be willing to buy and maintain the device to obtain correct measurements.

One approach to address this problem is providing the agents with incentives that cover the

cost of their effort and encourage them to provide high quality data. The incentives have to

be contingent on the quality of the data, for example, based on spot-checking the data for

agreement with a trusted ground truth. In many of the most interesting applications, however,

the ground truth is not accessible. Peer consistency is an elegant idea for designing incentive

mechanisms in this situation. The output agreement [110], the Bayesian truth serum [93, 113],

the peer prediction [82], the peer truth serum [97] and the correlated agreement [20, 104] are

all examples of the peer consistency mechanisms.

There is a lot of interest in extending this approach to collecting information such as records

of personal sports activity, physiological measurements or diet. Other examples of personal

information include sensor measurements observed at private properties such as smart homes
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Figure 3.1: Strategic agents in crowdsourcing.

or hotels. However, a fundamental limitation of the existing peer consistency mechanisms

is that they require that a group of agents, called peers, observes the same data or a noisy

version of it. For example, a group of agents should label the same image, measure pollution

at the same location or give opinion about the same service. This does not work with personal

data, since every agent is reporting data about a different object. However, we can extend the

idea of peer consistency to a setting where agents report a combination of attributes that are

known to be correlated with one another, even if the correlation structure is not known. When

rewarding the report about one of the attributes, we can identify peers based on similarity in

the other attributes reported at the same time.

In this chapter, we show how one such mechanism, the Logarithmic Peer Truth Serum (LPTS)

[96], can be extended to elicit multi-attribute personal data from a crowd. We call this novel

mechanism the Personalized Peer Truth Serum (PPTS). We introduce task settings for eliciting

continuous valued personal features from agents, exploit them to develop the PPTS and

discuss the theoretical properties and practical applicability of the new mechanism. Our

mechanism works in large scale settings when there are multiple agents reporting data and

there exist (unknown) groups of agents sharing some personal characteristics. We show the

validity of our assumptions on real datasets. We also show that even when these groups are

estimated from the data reported by agents, the incentive compatibility of the mechanism is not

affected. We then show that once the data has been collected, the PPTS reward scores can also

be used to filter the non-truthful data points with very high accuracy. The filtering scheme not

only shows better empirical performance than many outlier detection algorithms but also it

comes with a sound explanation of filtering the data based on truthfulness.

3.1.1 Related Work

Quality control in crowdsourcing [52] is a widely recognized research issue. The issue arises

mainly because of the impossibility to verify the reports due to absence of ground truth. Vari-

ous complementary approaches exist in the literature to improve the quality of crowdsourced

data. The approaches can be broadly divided into two categories. The first category includes

post-collection quality control measures, for e.g., unsupervised truth-discovery [61],[73],[120],
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which jointly estimate workers’ credibility and latent objective truth in the data, with some

recent work [112] in direction of estimating subjective truth. There are also technique de-

signed specifically for aggregating crowdsourced data coming from workers with different

competence [61, 75, 98, 121]. However, truth discovery has its limitation [111] of not working

if data comes from strategic workers [25], for example, if all workers collude to report the same

false answer. Also, it works well only if there is enough data available about every worker. Due

to these limitations, there is a parallel effort to develop techniques that help in getting as high

quality data as possible to start with. This is the second category of approaches, which includes

designing [64] and assigning [80, 122] tasks for optimal quality and providing performance

based payments or incentives [46].

The goal of information elicitation mechanisms is to encourage workers to invest effort and

honestly report their observations. Different information elicitation mechanisms exist in the

literature for two major settings. Techniques such as proper scoring rules [36] and prediction

markets [115] can be used to elicit truthful beliefs about events that are to be realized in

future, if the realized outcomes of the events are observable by the mechanism. When such

verification is not possible, peer-prediction mechanisms are a well-known solution for truthful

information elicitation. In this chapter, we are interested in the truthful mechanisms for

information elicitation without verification.

The original peer-prediction method [82] is a mechanism for information elicitation without

verification. The mechanism uses proper scoring rules to reward agents for reports that are

predictive of other agents’ reports and admits truth-telling as a Nash equilibrium. Several other

methods [55] don’t use proper scoring rules and instead use an “automated mechanism design”

approach to determine adaptive payment rules that are incentive compatible. However, these

mechanisms are not detail-free in the sense that they require agents’ beliefs to be known.

The Bayesian Truth Serum (BTS) [93] is another classic mechanism for information elicitation

without verification. BTS doesn’t use the knowledge of common beliefs to compute rewards,

but collects two reports from each agent - an ‘information’ report (agent’s own observation)

and a ‘prediction’ report (agent’s prediction about the distribution of information reports

from other agents). The reward mechanism of the BTS ensures that truthful reporting is the

highest-reward Nash equilibrium as number of agents solving a task tend to infinity. The

Robust BTS of [95, 114] generalize the BTS to small populations in binary and non-binary

answer settings respectively. These mechanisms are not minimal in the sense that they ask the

agents to submit additional information than desired.

Several minimal and detail-free game theoretic incentive mechanisms have been developed

recently for crowdsourcing. The seminal work in this category is due to [20]. The main idea

in this work is to exploit multi-task settings, in which every agent solves multiple tasks. The

mechanism rewards the agents for agreeing on a shared task and penalizes them for agreeing

on a non-shared task. This mechanism ensures that truth-telling is a focal equilibrium in bi-

nary answer settings. The Correlated Agreement mechanism [104] generalizes the mechanism
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of [20] to non-binary answer spaces with additional assumptions on the correlation structure

of workers’ observations. Both these mechanisms require that workers solve multiple tasks.

The Logarithmic Peer Truth Serum [96], which is based on an information theoretic principle,

requires no such assumptions and ensures strong-truthfulness in non-binary answer spaces.

[70] provide further complementary analysis for this information-theoretic framework. The

guarantees of the mechanism are ensured in the limit (when every task is solved by an infinite

number of workers). The Peer Truth Serum (PTSC) of [97] doesn’t require even this assumption

for the theoretical guarantees and works with a bounded number of tasks overall. The Deep

Bayesian Trust mechanism [37] ensures dominant strategy incentive compatibility and also

computes fair rewards in large scale crowdsourcing by using both peer answers and some gold

standard answers. The fundamental assumption in all of the above mechanisms is that the

task solved by an agent can be shared with another agent, who submits independent noisy

observation. [5] extend the Correlated Agreement mechanism to the settings where agents

belong to one of the k possible categories of rating behaviors (for e.g. strict and lenient rating

behavior). They cluster the agents with similar rating behavior to apply the CA mechanism.

However, in this mechanism too, the assumption of shared tasks remains.

All these mechanisms are inherently inapplicable to elicit personal data. This is because when

workers are asked to report measurements about the personal objects she owns (for example,

her body or house), no other worker can share that task (because no worker can access the

personal object owned by another worker). We extend the Logarithmic Peer Truth Serum to

this setting while using a concept similar to that of “peers”. In such a setting, these peers can

not be distinguished using the ‘shared task’ definition. Our mechanism approximates them

from the data reported by the workers while guaranteeing truthful equilibrium.

3.1.2 Our Contributions

From a technical standpoint, we address three main challenges in this work:

1. Define which agents can act as peers for one another in settings when agents can’t share

tasks.

2. Show that even if such peers are estimated from the reports submitted by the agents,

the incentive compatibility is not affected.

3. Extend the mechanism to handle continuous data values instead of only discrete an-

swers.

The summary of our contributions in the chapter is as follows:

• We propose a novel incentive mechanism to elicit continuous valued, multi-attribute

and personal data from crowd.
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• We analyze and present several interesting theoretical properties of the mechanism.

Our mechanism ensures that truthful reporting is an equilibrium and other undesired

equilibria are less attractive. We also provide a practically useful and theoretically sound

test to judge the applicability of our mechanism on a new type of data to be elicited.

• We show the performance of the mechanism on three real datasets, which are publicly

available and are relevant to the settings of the chapter.

• We show experimentally the utility of PPTS as a post-processing cleaning method to

filter out non-truthful data points with high accuracy.

3.2 Settings

We consider the settings in which a requester (center) is interested in collecting data from

a large number of agents W (|W | = n → ∞) with some personal characteristics. The data

being elicited consists of a set of attributes A (|A| = d ≥ 2). The attributes A are personal

characteristics such as body measurements of the agents. Agents independently obtain

measurements for their attributes and report them to the center. The center in turn rewards

them based on the quality of their reports. We assume the agents to be rational, seeking to

maximize their expected rewards. The agents choose a reporting strategy to maximize their

expected rewards. In a heuristic reporting strategy, they save the effort of even measuring

the attribute and just report a random measurement drawn from an arbitrary probability

distribution. In an informed reporting strategy, they obtain the measurement but report a

mapping of the obtained measurement. Our aim is to formulate our incentive mechanism as

a Bayesian game between the agents (who have probabilistic beliefs about the measurements

of one another) and make truthful reporting (i.e. informed reporting with identity mapping) a

profitable equilibrium strategy of the game for all agents. The strategic setting is described in

Figure 3.1.

3.2.1 Belief Model

We model the beliefs of an agent i using thee continuous random variables for each attribute

j . The first random variable Xi j is the attribute measurement itself. P (Xi j )1 is agent i ’s prior

belief about measurements for the attribute j . The second random variable G j models the

global factors that affect the value of the j th attribute of any random agent. P (G j ) is the agent’s

prior belief about the global factors before obtaining her measurement for attribute j and

P (G j |Xi j ) is her posterior belief after obtaining the measurement. The third random variable

models the local factors that are personal to the agent and affect her attribute value. For every

agent i , we model a set of other agents Ni ⊂ W (1 << |Ni | << |W |), called cluster of agent i

which share only these personal factors. Note that this is a much weaker modeling condition

as compared to that of sharing personal measurements. Further, the clusters are unknown

1In the chapter, we use P (·) for density functions to keep notations simple.
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to the mechanism. The random variable for personal factors is denoted by Lk j , k being the

cluster to which agent i belongs. In the rest of the chapter, we will simply use notation Li j

for Lk j such that Li j are equal for all i in the same cluster k. The P (Li j ) is the agent’s prior

belief about the personal factors before taking measurement for attribute j and P (Li j |Xi j ) is

the posterior belief after taking measurement. Li j and G j are related through the conditional

distribution P (Li j |G j ). It is easy to show that, in this model, the global distribution P (Xi j |G j )

can be modeled by a mixture distribution as follows:

P (Xi j |G j ) =
K∑

k=1
αk ·P (Xi j |Lk j )

where K (<< N ) is the number of distinct clusters in the population and αk is the mixing

probability of k th cluster. The model is summarized in Figure 3.2.

67, 879
:7

69, 899
:9

6;, 8;9
:;

Figure 3.2: (Belief Model) Left - Agent population contains clusters of agents with similar characteristics.
Right - Agents’ measurements can be modeled using Gaussian mixture.

In this chapter, we will use [79] normal distribution2 to model Xi j ’s dependence on Li j , i.e.,

P (Xi j |Li j ) =N (µLi j ,σ2
Li j

)

3.3 The PPTS Mechanism

The center collects reports from all agents for all their attributes. It then assigns each agent to

its corresponding cluster described in agent i ’s belief. The cluster assignment step is discussed

in Section 3.5. For now, let’s assume this as an oracle that provides the mechanism with every

2This assumption simplifies the analysis of the mechanism and is not crucial for the main results presented in
the chapter.
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agent’s true cluster label. We define the j th attribute score of agent i for reporting Xi j = y as :

ri j = log
f (y |µ̂Li j , σ̂2

Li j
)∑K

k=1 α̂k · f (y |µ̂Lk j , σ̂2
Lk j

)
(3.1)

where f is the Gaussian function given by

f (x|µ,σ2) = 1

σ
p

2π
e−

(x−µ)2

2σ2

µ̂Li j and σ̂2
Li j

are the mean and variance of values reported for attribute j by agents in the

cluster Ni . α̂k is the empirical relative mixing frequency of cluster k.

Agent i finally gets a cumulative reward (CR) equal to the average of attribute scores ri j for all

attributes j ∈ {1,2...d}. More formally,

C R(i ) =
∑d

j=1 ri j

d

Example: As an example for calculation of attribute scores, consider agent i who reports its

wrist measurement as 4.5 units. The reported wrist measurements of agents in the cluster of

agent i have mean 4 and s.d. 3. If there are 2 distinct clusters in the population, another with

mean 5 and s.d. 5 (with equal mixing frequencies), then the wrist attribute score of agent i is

given by:

ri j = log
f (4.5|4,32)

0.5 · ( f (4.5|4,32)+ f (4.5|5,52))

≈ log
0.1311

0.5 · (0.1311+0.0793)
≈ 0.22

On the other hand, if the means and s.d. of reports in the cluster of i are 0 and 1 respectively,

then wrist attribute score of i is

ri j = log
f (4.5|0,12)

0.5 · ( f (4.5|0,12)+ f (4.5|5,52))

≈ log
0.00002

0.5 · (0.00002+0.0793)
≈−8.2

3.4 Theoretical Analysis

Intuitively, the numerator of the fraction inside the logarithm in Equation 3.1 measures how

common (likely) a report is in its cluster while the denominator measures how likely a report

is globally. Thus, similar to the Bayesian Truth Serum, PPTS rewards ‘surprisingly common’
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reports. In the following theorems, we formally discuss the incentive compatibility and

other properties of the mechanism. For better understanding, we first discuss the theoretical

properties treating the cluster assignment step as a black box oracle and show in Section 3.5

how the mechanism obtains the clusters while preserving incentive compatibility. Proofs are

provided in the appendix.

We call a mechanism Bayes-Nash incentive compatible if truthful reporting is an equilibrium

of the mechanism i.e. if other agents report their observations truthfully, no agent has an

incentive to deviate from the truthful strategy for any observation of the agent. This is some-

times also called as the ex-post subjective equilibrium [113] since the beliefs of the agents are

different (subjective).

Theorem 4. The PPTS mechanism is Bayes-Nash incentive compatible, with strictly positive

expected payoffs in the truthful reporting equilibrium.

The theorem states that given other agents are truthful, it is the best strategy for any agent to

be truthful. The sketch of our information-theoretic proof is that from many independent

and identically distributed truthful observations of other agents, the mechanism obtains

maximum likelihood estimates of the true global and personal factors. A simple application

of Bayes rule then shows that the mechanism rewards a report for its informativeness in

predicting the personal factors, and the reward is maximized and is strictly positive for a

truthful report.

While a truthful equilibrium is a desired outcome, there are other (non-truthful) equilibria that

the mechanism admits - which is a common feature in the peer-consistency methods. It is

important to ensure that such equilibria are not more profitable than the truthful equilibrium.

They include heuristic reporting strategy equilibria. As discussed in Section 3.2, in heuristic

reporting strategy, agents save the effort of even making an observation and report a random

sample drawn from a probability distribution.

Theorem 5. Heuristic reporting equilibria result in zero expected payoff in the mechanism.

This is because when agents draw independently from a random distribution, both local and

global MLEs converge to common values and it results in a reward of log1 = 0.

There are also informed non truthful equilibria, where agents do take the measurements

but use a mapping to transform their actual measurements x into their reports y . Consider

linear transformation mappings, where agents use a function y = g (x) = ax +b to get their

reports from their measurements x. In the real world, this strategy corresponds to agents

systematically over reporting or under reporting their measurements.

Theorem 6. In the PPTS mechanism, an equilibrium strategy profile defined by a function

g (x) = ax +b is not in expectation more profitable than the truthful strategy.
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The proof uses the observation that if agents use linear transformation to report, the MLE

estimates also change accordingly and reward remains unchanged. Such equilibria don’t give

higher expected reward but choosing same g requires a lot of coordination among the agents

and hence are unlikely to be played. Agents unilaterally choosing a different linear g ′ get lower

scores than if they stay with g as well and thus such profile is not in equilibrium.

Next, we look at the ex-ante expected score of a truthful agent i.e. expected score before taking

the measurement.

Theorem 7. The ex-ante expected score of a truthful agent is equal to the conditional mutual

information (CMI) of the attribute measurements and the personal factors given the global

factors.

The CMI [19] is the expected value of the mutual information of two random variables given

the value of a third, where the mutual information of two random variables measures the

mutual dependence between two random variables. Since, CMI is always non-negative, the

ex-ante expected score of a truthful agent is always non-negative. When the CMI is 0 i.e. when

the attribute is independent of the personal factors, the mechanism can’t be used to elicit

truthful information because the expected payment is 0 regardless of the report. We discuss

an interesting use of this theorem in further sections.

3.5 Clusters Approximation

A crucial step in the mechanism described in Section 3.3 was to assign every agent to its correct

cluster. We now describe how the mechanism achieves this without affecting the incentive

compatibility. In the absence of the oracle, naturally the only option available to the center is

to use the reports of the agents themselves to approximate the clusters. However, the question

is whether doing this is game theoretically sound and preserves incentive compatibility?

Definition 12. (ε-Correct Clustering Algorithm) A clustering algorithm is called ε-correct, if

given true reports, it assigns a true report to a wrong cluster with probability at most ε and ε is

such that as |Nk |→∞, the MLE estimates {µ̂k j , σ̂2
k j } converge to {µk j ,σ2

k j } and α̂k converge to

αk , ∀k.

Note that the definition doesn’t require every point to be assigned to correct clusters but

only the approximated cluster parameters to converge to correct parameters. The conditions

required for correct estimation of Gaussian mixture parameters from a finite sample are

discussed in [58],[83]. The conditions include a lower bound on the mixing probabilities and

the statistical distance between the cluster distributions. This implies that the more separated

the clusters are, the better are the approximations of cluster parameters with fewer samples.

Theorem 8. Given an ε- correct clustering algorithm, the PPTS is Bayes-Nash incentive com-

patible even if the clusters are approximated from the reports.
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The main insight of this theorem is the following : the fact, that the mechanism doesn’t know

the cluster labels but instead uses an ε-correct clustering algorithm to cluster the reports of

the agents, doesn’t provide any agent with a more profitable non-truthful strategy to deviate

from the truthful equilibrium. This result addresses the concern that agents may strategically

manipulate their report to get assigned to a different cluster and get a better reward. Hence, an

ε-correct clustering algorithm can be applied to assign the clusters while preserving incentive

compatibility.

Implementation and Practical Considerations

In this chapter, we implement the PPTS mechanism by using the following technique to ap-

proximate the clusters. Consider approximating the cluster for calculation of the j th attribute

score of the agents. Let A− j be the set of all attributes excluding attribute j i.e. A− j = A \ { j }.

We then apply k-means clustering algorithm on attribute sets A− j to obtain the clusters used

in calculating of the j th attribute score.

It remains to discuss how one can judge if the clusters found using the above technique are

indeed fit for being used with the PPTS mechanism in practice. For this, we make use of

Theorem 7. The theorem says that if the conditional mutual information I (Xi j ;Li j |G j ) is close

to 0, then the mechanism can’t be used for truthful elicitation. If some trusted prior data (i.e.

some true observations Xi j ) is available to the center for analysis, CMI estimators [108],[109]

can be used to estimate I (Xi j ;Li j |G j ) by using µ̂Li j from the approximated clusters in place

of Li j . A low value of this CMI estimate suggests the unsuitability of the clusters for the

mechanism. In the next section, we demonstrate this method on real datasets. To understand

this in a more intuitive manner, recall that we use attribute set A− j for approximating the

clusters. If all attribute pairs are independent, observations for attribute j will be independent

of the cluster approximated using A− j , which means that the estimated clusters can’t be used

with the mechanism. Therefore, to find suitable clusters, we need to elicit interdependent

attributes.

3.6 Nearest Neighbors Scheme

Before we move to the empirical evaluation of the PPTS scheme, we discuss an alternate

reward scheme motivated by the PPTS. We call this scheme the PPTS-knn scheme. In this

alternate reward scheme, we don’t assume that the true data has separate clusters but for every

worker, we assume only the existence of many other workers who are “similar” to her in their

personal factors. Because of this slightly different assumption on the neighborhood structure,

this scheme approximates the neighborhood and the global distribution of the measurement

values in a slightly different manner. The main idea of this scheme is described in Figure 3.3.
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Figure 3.3: (PPTS-knn and Belief model) For a worker i (at the center), there exists a neighborhood
of workers who are similar to it in their personal characteristics (middle ring) and thus distinguished
from rest of the workers (outer ring). The worker is rewarded for its report being more likely in the
neighborhood than overall.

In this scheme, we define the attribute score of worker i as :

ri j = log
f (y |µ̂Li j , σ̂2

Li j
)

f (y |µ̂G j , σ̂2
G j

)
(3.2)

where f is the Gaussian function given by

f (x|µ,σ2) = 1

σ
p

2π
e−

(x−µ)2

2σ2

µ̂li j and σ̂2
li j

are the mean and variance of values reported for attribute j by workers in the

neighborhood Ni . µ̂g j and σ̂g j are the mean and variance of values reported for attribute j by

all workers in W .

The cumulative reward is defined in terms of these attribute scores in the same way as de-

scribed in original PPTS i.e. the average of the attribute scores.

The neighborhoods in this scheme are approximated using k-nearest neighbor technique

instead of clustering. More precisely, while calculating the attribute score for attribute j ,

k-workers who have minimum distance from the worker i are chosen as her neighborhood.

The distance between workers is calculated using euclidean distance between the attribute

vectors A− j of the workers.

The basic idea of this scheme is also based on the same “surprisingly common” principle. One

can view the statistical model in this approach as a Gaussian process model. The observation

of every worker is modeled by a gaussian distribution with a different mean and variance. The

mean and variance for each, are approximated from the reports of the k-nearest neighbors

of the worker. However, we conjecture that a formal proof of incentive compatibility of this
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Dataset CMI Estimate

Body Measurements

Air Quality

Seed

Census Income

0.41559387

0.98769209

0.98322659

0.0194241

Table 3.1: Average CMI estimates for different datasets

scheme would require stronger assumptions on the beliefs of the workers. Nevertheless, we

discuss the empirical performance of this scheme also in the chapter.

3.7 Experimental Evaluation

A real world validation of our mechanism by using it to collect new personal data is perhaps not

feasible in the absence of ground truth for performance evaluation. However, the manipulation

resistant properties of the mechanism can be best verified through simulations on real datasets.

We simulate, on three real datasets, the strategies that agents may adopt and discuss the

rewards that our mechanism decides for them.

3.7.1 Datasets
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Figure 3.4: Cluster Distribution in Datasets

We selected three datasets from different domains for evaluating the mechanism through

simulations. The Body Measurements [43] dataset contains 21 body dimension measurements

as well as age, weight, height, and gender of 507 individuals. The 247 men and 260 women

were mainly young adults, with a few older men and women. The Seed [14] dataset consists

of 7 measurements of 210 seeds of wheat. It has 70 samples each of three varieties of seeds

(with labels). The Air Quality [23] dataset consists of 9358 instances (852 complete instances)

of hourly averaged responses from an array of 5 metal oxide chemical sensors embedded in an

air quality multi-sensor device. The Air Quality dataset was not collected at different places
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but at a single place at different times. Another dataset that we considered for evaluation was

extracted from U.S. 1994 census data. This Census Income [67] has 15 personal information

attributes (continuous and categorical) about the population such as salary class, education

level, working hours, native country, age, sex, race, occupation etc. For simulations, we can

assume each instance (row) in a given dataset to be reported by a different agent and each

instance having multiple attributes. For example, in the Air Quality dataset, an instance has

5 attributes corresponding to the 5 metal oxide sensors. The datasets act as true private ob-

servations of agents. In Seed and Body datasets, clusters capture similarity between different

individuals and seeds. In the Air Quality dataset, clusters capture the temporal similarity

between pollution measurements. As datasets with more personal attributes are hardly avail-

able publicly, these public datasets do a good job at simulating the task settings we target

i.e. elicitation of continuous valued unique personal attributes with normal like distribution.

Figure 3.4 shows one attribute each in the Body Measurements dataset, the Seed dataset and

the Air dataset along with their normal approximations in the clusters. The body and seed

datasets are labeled but labels are used only for visualization and not for other experiments

reported in the chapter. Air dataset is unlabeled, hence we used our approximated clusters for

visualization also.

3.7.2 Cluster Fitness Evaluation

To evaluate the fitness of the clusters approximated by the k-means algorithm on these

datasets, we make use of Theorem 7. The average CMI estimates (of all attributes) from the

four datasets are shown in Table 3.1. Note that for Census Income, the average CMI estimate is

very small (close to 0). Hence, we can not use the clusters for eliciting the attributes of this

dataset for reasons explained in Section 3.5.

Results

For better understanding, we present the results in two parts - attribute scores in Section 3.7.3

and cumulative rewards in Section 3.7.4. We will be discussing the following statistics of

scores/rewards - mean (average of scores/rewards), Q1 (1st quartile of scores/rewards), Q2

(2nd quartile), Q3 (3r d quartile) and F (fraction of agents receiving strictly positive score/re-

ward), under different simulated strategies.

3.7.3 Attribute Score

We simulate the following reporting strategies that can be used by agents :

1. TR - All agents report all attributes truthfully.

2. RA - All agents report j th attribute randomly within its true range and all other attributes

truthfully.
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Figure 3.5: Statistics of Attribute Scores
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Figure 3.6: Statistics of Cumulative Rewards (Average of attribute scores of all attributes)
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Figure 3.7: Statistics of Cumulative Rewards (Median of attribute scores of all attributes)

3. R - All agents report all attributes truthfully except agent i , who reports j th attribute

randomly within its true range but other attributes truthfully.

4. GS - All agents collude to report j th attribute using a Gaussian distribution with true

mean and variance of the attribute and report all other attributes truthfully.

Figures 3.5a, 3.5b and 3.5c show statistics of attribute scores for j th attribute in each dataset

under different reporting strategies of agents. This j th at tr i bute is ‘height’ in the Body

Measurements data, ‘kernel length’ in the Seed data and ‘PT08.S2’ in the Air Quality data .

Figure 3.5b shows results for the Seed Measurements data. The first important point to note

is that the fraction of agents getting strictly positive score is more than 0.92 when agents

report truthfully but hardly goes above 0.5 in other non-truthful strategies, which means that

non-truthful strategic agents do no better in expectation than a random guesser. The other

thing to note is that the mean score when agents are non-truthful is not positive, whereas

for truthful agents, it is strictly positive with sufficient value to distinguish it from a 0 score.

A similar trend can be observed for other statistics such as Q1,Q2 and Q3, where the score
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for truthful reporting is always greater than that for non-truthful strategies. In particular, we

can observe that Q2 (i.e. the median) is also strictly positive for truthful agents and not more

than 0 for non-truthful agents. Similar results can be seen in Figures 3.5a and 3.5c for Body

and Air datasets respectively. It is worth mentioning here that the scores can be appropriately

scaled to cover the cost of participation and satisfying budget constraints without affecting

the incentive-compatibility of the mechanism.

Also to confirm our earlier conclusion of the clusters not being useful for the Census Income

dataset, we computed the rewards of agents for reporting this data truthfully and found that

only about 32% of the agents get positive score with mean score approaching 0.

3.7.4 Cumulative Reward

Here, we report simulation results for the following reporting strategies :

1. TR - All agents report all attributes truthfully.

2. RA - All agents report all attributes randomly within true ranges of respective attributes.

3. R - All agents report all attributes truthfully except agent i , who reports all attributes

randomly within true ranges of respective attributes.

4. GS - All agents collude to report all attributes using Gaussian distributions with true

means and variances of respective attributes.

In section 3.3, we defined the cumulative reward of a agent as the average of all attribute scores

of this agent. Figures 3.6a, 3.6b and 3.6c show statistics of final or cumulative rewards. Fig-

ure 3.6b shows the results for Seed data. Similar to attribute scores discussed in Section 3.7.3,

the fraction of agents with strictly positive cumulative reward is 0.93 when they report truth-

fully and is hardly more that 0.5 when they report non-truthfully. The mean cumulative reward

for truthful reporting strategy is strictly positive and is not more than 0 for non-truthful strate-

gies, attesting Theorem 4 and Theorem 5. In Figures 3.7a, 3.7b and 3.7c, we show statistics

of cumulative rewards calculated as the median of the attribute scores instead of average of

attribute scores, i.e.,

C R(i ) = median
j∈{1...d}

{
ri j

}
The median is another way to calculate CR from attribute scores and makes it robust to outliers

in attribute scores. We also find the median to perform better in simulations as it makes the

minimum reward of truthful agents non-negative.

PPTS-knn Scheme

Using the PPTS-knn Scheme also gives similar or better results for rewards. The statistics

of the cumulative rewards for the three datasets are shown in Figures 3.8a, 3.8a and 3.8c
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Figure 3.8: Statistics of Cumulative Rewards (Median of attribute scores of all attributes) k-nn approach

respectively. We can see that on all three datasets, this scheme is able to reward almost 100%

of the truthful workers with positive reward, while still nicely penalizing the non-truthful

ones. This improved performance can be explained by the fact that that nearest neighbor

based neighborhood approximation is able to better capture the personal factors of the

workers than a clustering algorithm. Because of improved correlation between reports and

the neighborhoods, the empirical performance of the scheme improves. This observation is in

agreement with Theorem 7

3.8 Application to Data Cleaning

When it is not possible to provide incentives or if the data has already been collected without

providing incentives, the PPTS scheme can still be used for data cleaning. In general, there is a

fundamental difference between reward schemes and data cleaning schemes. While reward

schemes have to reward truthful workers only in expectation to get high quality data, the data

cleaning approaches can only be applied once data has been collected and have to be very

precise to avoid throwing away truthful data or keeping non-truthful data. The data cleaning

approaches are also in general susceptible to strategic data sources and can not really add

much value to mostly incorrect data sample. Similarly, the reward schemes are also susceptible

to unexpected non-truthful behavior of some fraction of workers. In an ideal system, both

the schemes should be used in parallel to get the best quality data. Though data cleaning in

not the focus of this chapter, the high accuracy of our reward scheme on real data naturally

motivates the use of cumulative reward for also cleaning the collected data by truthfulness

criteria. In this section, we experimentally evaluate the use of calculated cumulative reward

to filter out the synthetically inserted “non-truthful” data points. Our experimental results

show a performance better than state-of-the-art implementations of the many popular outlier

detection algorithms for cleaning the data of this nature. We perform experiments on both

synthetic datasets and real datasets. Synthetic datasets were generated by sampling from a

mixture of gaussians with randomly generated means in a given range, covariance matrices

and mixing probabilities. For the purpose of experiments, we replace a fraction of data points

in the dataset with incorrect data points. The incorrect data points were generated randomly

by sampling each attribute from a uniform distribution in (µ−σ,µ+σ), where µ and σ are the

mean and s.d. of the true observations of the overall worker population.
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Figure 3.9: Performance comparison of data cleaning approaches on synthetic datasets

For cleaning the data, we propose the following steps :

1. Collect the multi-attribute reports from workers.

2. Cluster the collected reports using k means or EM for gaussian mixture.

3. Calculate the cumulative reward of each of the collected data points using the PPT S

scheme described earlier.

4. Given information about the level of contamination (fraction of incorrect data points),

remove that fraction of data points with least cumulative rewards.

We compare this data cleaning approach with commonly used state-of-the-art implemen-

tations of the one-class SVM based approach [103], an ensemble approach based on the

isolation forests [74] and a robust covariance estimate based method called the elliptic en-
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Figure 3.10: Performance comparison of data cleaning approaches on real datasets.

velop technique [99]. We used scikit-learn’s [91] implementations 3 of the above methods in

our study. The results of the experiments with synthetic datasets are shown in Figure 3.9. Due

to the randomized nature of the experiments, we performed each of the experiments 10 times

and report the aggregate (mean and median) precision and recall of different approaches. The

figures show the conditions in which our method provides superior performance as compared

to all other baseline methods, at the same time guaranteeing that the filtering is, in expectation,

on truthfulness criteria and not on outlier criteria. In Figures 3.9a, 3.9b, 3.9c, 3.9d, we can

see that keeping the number of dimensions and clusters in the data constant, our method

consistently outperforms other methods as level of contamination in the data continues to

increase. In Figures 3.9e, 3.9f, 3.9g, 3.9h, we can see the effect of number of dimensions,

keeping contamination level and number of clusters constant. Our method continues to beat

all methods but the elliptic envelope method is competitive for large number of dimensions.

In Figures 3.9i, 3.9j, 3.9k, 3.9l, we see the effect of number of clusters, keeping the number of

dimensions and contamination level constant. While the elliptic envelope method performs

better with low number of clusters, our method is the preferred choice for highly clustered

data.

The results of the experiments with the three real datasets (Body, Seed and Air) are shown in

Figure 3.10, further attesting the empirical performance our method. Since the datasets have

3http://scikit-learn.org/stable/modules/outlier_detection.html

44

http://scikit-learn.org/stable/modules/outlier_detection.html


3.8. Application to Data Cleaning

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Contamination

0.0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n

Elliptic Envelope

SVM

Ensemble

PPTS-knn

(a) Body Data Mean Pre-
cision

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Contamination

0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
a
ll

Elliptic Envelope

SVM

Ensemble

PPTS-knn

(b) Body Data Mean Re-
call

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Contamination

0.0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n

Elliptic Envelope

SVM

Ensemble

PPTS-knn

(c) Body Data Median
Precision

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Contamination

0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
a
ll

Elliptic Envelope

SVM

Ensemble

PPTS-knn

(d) Body Data Median
Recall

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Contamination

0.0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n

Elliptic Envelope

SVM

Ensemble

PPTS-knn

(e) Seed Data Mean Pre-
cision

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Contamination

0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
a
ll

Elliptic Envelope

SVM

Ensemble

PPTS-knn

(f) Seed Data Mean Re-
call

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Contamination

0.0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n

Elliptic Envelope

SVM

Ensemble

PPTS-knn

(g) Seed Data Median
Precision

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Contamination

0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
a
ll

Elliptic Envelope

SVM

Ensemble

PPTS-knn

(h) Seed Data Median Re-
call

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Contamination

0.0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n

Elliptic Envelope

SVM

Ensemble

PPTS-knn

(i) Air Data Mean Preci-
sion

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Contamination

0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
a
ll

Elliptic Envelope

SVM

Ensemble

PPTS-knn

(j) Air Data Mean Recall

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Contamination

0.0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n

Elliptic Envelope

SVM

Ensemble

PPTS-knn

(k) Air Data Median Pre-
cision

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Contamination

0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
a
ll

Elliptic Envelope

SVM

Ensemble

PPTS-knn

(l) Air Data Median Re-
call

Figure 3.11: Performance comparison of data cleaning approaches on real datasets (k-nn approach).

low number of clusters (2−3), the results are in agreement with what we observed in synthetic

experiments. Elliptic envelope method gives a competitive performance while other methods

being inferior.

Remark: The SVM based outlier detection method seems to show a zig-zag recall curve

for different values of contamination. While the reason for this is not entirely clear, it is

most certainly not a bug in our experiments, given that the experiment code is re-used for

generating results for all other methods as well. Moreover, the same experiments generated

the corresponding precision and recall data points for SVM, and the precision curves don’t

show any zig-zag behavior.

PPTS-knn Scheme

Similar to PPTS scheme, one can also use the PPTS-knn reward scheme for data cleaning. The

fraction of data points, equal to the contamination level in the data, which have the lowest

cumulative reward according the PPTS-knn scheme are filtered out. As it was the case with

cumulative reward statistics discussed in Section 3.7.4, we observe a similar performance

boost for data cleaning task also by using the k-nearest neighbor based reward scheme. The

performance comparison of this reward scheme with other baseline methods is shown in

Figures 3.11 on all three real datasets. Looking at Figures 3.11 and Figures 3.10, we can see the
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difference in filtering accuracy that the knn based scheme makes. The difference is particularly

more significant in the Air dataset, where we see upto 200% performance boost. The reason

of this performance improvement, as explained earlier, can be attributed to the learning of

better local structure in the data by k-nearest neighbors.

3.9 Chapter Summary

In this chapter, we investigated the problem of incentivizing agents to honestly report their

personal attributes such as physiological measurements. We distinguish this problem from

the problem of incentivizing agents where multiple agents can solve a common task such

as labeling a common image. We thus extend the applicability of the peer based incentive

mechanisms from discrete labels for shared objects to real valued multi-dimensional personal

features. We propose the Personalized Peer Truth Serum (PPTS) to address the problem. The

PPTS shows desired properties by making the honest reporting equilibrium more profitable

than heuristic reporting equilibria. We further investigate the problem of finding peer agents

against whom the report of an agent is to be evaluated and propose to exploit other reports of

the agent to estimate its peers. We guarantee that the incentive compatibility of the mechanism

continues to hold while doing so. We provide a theoretically sound practical test to determine

the applicability of PPTS for a given set of attributes by estimating the ex-ante expected

payment. We empirically analyze the performance of PPTS using estimated peers on real

datasets. The PPTS is able to incentivize/penalize simulated honest and heuristic reporting

strategies with a good accuracy. We further discussed the application of reward score for

data cleaning and empirically compared its performance on 3 real datasets against several

popular baseline methods. We thus provide an end-to-end solution to acquire high quality

data through incentives and enriching the quality of acquired data through data cleaning.

We envision the deployment of such systems, merging the complementary approaches of

incentives and cleaning, to become crucial in future to crowdsource high quality data for

machine learning tasks.
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4 Infochain: A Decentralized, Trust-
less and Transparent Oracle on
Blockchain
This chapter is based on the following publications:

• N Goel, A Filos-Ratsikas, B Faltings. Peer-Prediction in the Presence of Outcome De-

pendent Lying Incentives. In Proceedings of the International Joint Conference on

Artificial Intelligence (IJCAI), 2020.

• N Goel*, C van Schreven*, A Filos-Ratsikas, B Faltings. Infochain: A Decentralized,

Trustless and Transparent Oracle on Blockchain. In Proceedings of the International

Joint Conference on Artificial Intelligence (IJCAI), 2020. AI in FinTech Special Track.

4.1 Introduction

With the increasing popularity of the blockchain technology, the implementation of commer-

cial and governmental systems has witnessed a large shift towards distributed and decentral-

ized approaches. In particular, the emergence of the Ethereum platform has given rise to the

development of several applications, often referred to as decentralized apps or DAPs, which

aim to apply this latter principle to many areas such as finance, education, intellectual prop-

erty or government. At the heart of these approaches lies the concept of the smart contract,

i.e., lines of code that contain the terms of the agreement between the involved parties, which

are automatically executed once triggered by events happening in the real world. For example,

consider the case of a web service, which is typically dictated by a service level agreement

(SLA) between the service provider and the clients. The SLA can be coded into a smart contract

between the involved parties which will trigger an automatic payment upon detection of a

violation. For instance, if the service guarantees a response time of at most 1 second with high

probability, frequent slower responses would trigger automatic compensation. An important

issue here is, how to determine whether the real-world event has actually happened. In the

above example, this means how to determine that the SLA has been violated? We use the case

of the web service only as a simple running example but this is in fact a fundamental challenge
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in developing information infrastructure for FinTech.

The need for trusted information about a real-world event that triggers some conditional

financial transactions arises in applications ranging from insurance, banking, trade, gover-

nance and law etc. The entities responsible for acquiring such data about the real-world

events are called oracles. Existing solutions include Town Crier and Chainlink among others.

Traditionally, oracles are implemented using trusted third party data sources responsible for

acquiring the information. However, besides the fact that such an approach is in conflict with

the decentralized nature of the blockchain technology, it is also prone to problems such as

trustworthiness and cost.

An alternative solution would be to appeal to the “wisdom of the crowds” and ask the users

themselves about the information (for e.g., the quality of service received). The idea has also

been proposed for outcome resolution in decentralized prediction markets like Augur and

Gnosis. While this approach is more decentralized in nature, it poses a significant challenge:

the agents can not be relied on to provide correct information. The task of eliciting information

from self-interested agents is one of the fundamental problems in game theory, and has been

extensively studied. In the center of these investigations lies the literature on peer-consistency

mechanisms [30]; these are game-theoretic mechanisms that incentivize agents to report the

information truthfully, even if the information is unverifiable.

The literature on peer-consistency [30]) is quite rich. This literature includes solutions that

are guaranteed to incentivize truth-telling even when there is a cost of effort for forming an

informed report [97], but it does not address settings in which agents have other incentives de-

pendent on the aggregate feedback. Such cases arise frequently, for example, in decentralized

QoS monitoring, environmental data collection and surveys that inform policy-making.

As a concrete example, consider the case of a web service which is typically dictated by a service

level agreement (SLA) between the service provider and the clients, where the agreement

dictates that the client will be compensated if there is a violation. Traditionally, a trusted third

party monitors the quality of service (QoS) and sends the reports to a regulatory authority (or

the service provider itself for self-regulation). Depending on the collected reports from the

trusted party and the conditions of the SLA, users are issued refund. Not only this traditional

approach is costly due to the high cost of hiring a commercial third party but it is also not a

transparent and decentralized approach from the users’ perspective. On the other hand, if

we were to decide whether such a violation actually took place based on the feedback from

the clients themselves, it is clear that the clients would have incentives to report a violation

regardless, in order to be compensated. To get truthful reports from the users, their incentives

must be aligned with truthful behavior by using a game-theoretic mechanism. The main

question here is, can we still use a peer-consistency mechanisms to counter-act this type of

outside incentives?
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Figure 4.1: QoS Monitoring: A Motivating Example of Outcome Dependent Lying Incentives. Replacing
trusted third party with the users themselves creates lying incentives for the users to misreport the
true QoS received from the service provider. A game-theoretic mechanism incentivizes the users to
report truthfully. The game-theoretic mechanism itself can be implemented by a regulatory authority
in a completely decentralized, trustless and transparent manner by using the blockchain technology.
A smart contract can automatically process refunds based on the crowdsourced outcome and the
conditions of the SLA.

4.1.1 Related Work

Many decentralized systems have been proposed for crowdsourcing and information trad-

ing [6, 72, 78, 116] but none addresses the issue of providing quality based incentives for

information. In a recent and independent work, [68] also use peer-consistency for trust-free

data trading systems but the analysis in this theoretical paper focuses on a secure multi-party

computation protocol for rewarding information that loses value if revealed. [4] propose a

system for a decentralized oracle but it requires a “random assignment" of questions to agents,

which has the drawback that agents may be asked to answer questions that they may have no

information about.

The topic of outside incentives in decentralized platforms has been recently explored in the

context of prediction markets, drawing motivation from applications like Augur and Gnosis.

[12] perform equilibrium analysis when the market participants may significantly influence

the actual realization of the outcome, in a game which is played in two stages; first the agents

trade in the market and then they vote on the outcome. Their model captures the empirical

observations in prior work [13]. These works however only analyze the effects of rational

behavior, rather than aim to counteract it, by implementing appropriate mechanisms. [16]

consider similar two-stage models of prediction markets, where the agents strategize only in

the first stage to manipulate the market prices used for the predictions. The authors analyze
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information aggregation properties of the market and don’t consider outcome manipulation,

and their setting is thus quite different from ours.

[32] study a related setting, where they assume that agents trade honestly in the first stage

and only behave strategically in the second. They use a peer-consistency mechanism to elicit

truthful votes in the equilibrium of the second stage, and show that under certain conditions,

the fees charged by the market are enough to cover the side payments. Interestingly, they also

use a similar measure of signal correlation, which they refer to as the “update strength”, and

they express some of their results using this quantity.

Our work differs from [32] in two key aspects. First, our informational assumptions are weaker.

In particular, we only require access to a measure of signal correlation (the self-predictor

value) and actually, only an estimate of that measure is sufficient. In contrast, [32] use the

prior distribution of the agents’ beliefs, which they obtain from the closing price of the market,

enabled by the assumption that the agents are honest in the trading stage. While this may

be meaningful in a prediction market domain, such assumptions are far less realistic in the

more general settings that we consider. Secondly, [32] do not address the issue of non-truthful

equilibria in their work. In settings other than prediction markets, [57] consider QoS feedback

elicitation but assume full knowledge of agents’ beliefs and only constant lying incentives.

Finally, we remark that, as we mentioned earlier, [97] have already shown that the PTSC

mechanism can be tuned to overcome the cost of effort that the agents might have for coming

up with their observations, which is a constant quantity. This is therefore markedly different

from the case of outside incentives, where the “cost” that needs to be overcome crucially

depends on the reports of the other agents.

Our work draws on the recent ideas in the peer-consistency literature [5, 20, 33, 60, 69, 76, 95,

96, 97, 104, 110]; here we focus on the results related to settings with outside incentives. A

survey of the techniques in this area can be found in [30].

4.1.2 Our Contributions

We propose the employment of peer-consistency mechanisms for the design of trustless,

decentralized oracles. However, this quest imposes two major challenges:

• In many financial settings, agents also have incentives to lie about their true observations

and provide false information. In the web service example, the clients would have an

incentive to always report “bad” response times, in order for the conditions of the smart

contract to be violated in their favor. How large do the incentives have to be, to counteract

the lying incentives, and is the approach economically feasible?

• For a peer-consistency mechanism to actually work, the agents must be convinced of

its incentive properties, contrary to the traditional case, where the implementation of

the mechanism is done by a trusted third-party. How can one implement the incentive
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scheme in a transparent and trustless manner, what is the cost and how can we optimize

this cost?

In this chapter, we address the above questions. We summarize our contributions below.

1. We formally analyze the settings when agents have outside incentives to lie.

• We employ the PTSC mechanism of [97] as a side-payment scheme. We prove that,

with an appropriate choice of the scaling constant, the mechanism can be used to

ensure that truth-telling is a strict equilibrium of the induced game. This is the first

result of this nature, that shows that a peer-consistency mechanism can be applied

to the case of outcome-dependent incentives in a general information elicitation

scenario.

• Furthermore, we show that if there is any positive fraction f of honest agents

(i.e., agents that always report truthfully), the strategy profile in which the agents

exercise their outside incentives, or denial strategies (e.g., reporting “bad” service)

is no longer an equilibrium. Assuming the existence of honest agents is very

different from using trusted authorities since our method does not depend on

knowing who these honest agents are. This is a rather common scenario, as in a

large platform, one would normally expect at least a few agents to behave honestly

but we would not expect to know their identities. These properties of the PTSC

mechanism were already known in the absence of the outside lying incentives [97];

our work extends the analysis of PTSC in the presence of the outside incentives.

• Additionally, for the first time, we compute a bound on the scaling required for

ensuring a truth-telling equilibrium of the side-payment scheme, as a function of

the outside incentives. We also provide conditions under which the side-payment

scheme gives positive saving compared to the rational outcome (i.e., the denial

strategy outcome) and we prove a lower bound on this saving. We show that

as the number of agents grows large, the saving approaches the best possible

saving, attainable when all agents are honest, without any side-payments. We also

provide bounds (on the same quantities) when one has to not only ensure a truthful

equilibrium, but also eliminate the denial strategy equilibrium. Interestingly, in

the process of doing this, we find an upper bound on the fraction of honest agents

that should be present, in order for the side-payment scheme to still be profitable.

• Finally, the scaling constant, as well as the savings of PTSC depend on a quantity

δ∗, which we refer to as the self-predictor value and is essentially a measure of

correlation strength between prior and posterior signals. The assumption that

δ∗ > 0 is a standard assumption in the literature of peer-consistency (e.g. see [54],

[113]) and translates to positive correlation between the observations of the agents.

We quantify the required scaling constant as well as the saving in terms of this

quantity. Moreover, we do not need to know this quantity; an estimate is sufficient
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for the results to either hold exactly or approximately, where the approximation

error goes to 0 as the number of agents grows large.

2. We design and implement INFOCHAIN, a completely decentralized peer-consistency

based truthful information collection system in Ethereum. We address the following

technical challenges in its implementation.

• Writing data and performing computation on Ethereum’s Virtual Machine (EVM)

is expensive. Information providers must be compensated for this cost, increasing

the overall cost of information acquisition. For the first time, we discuss several

non-trivial ways of implementing three different peer-consistency mechanisms in

Solidity (Ethereum’s programming language) and empirically compare their costs.

• While transparency is a desired inherent feature of blockchain, the peer-consistency

mechanisms are compromised if an agent can see the information submitted

by their “peers" before submitting their own information. We propose to use a

commit-reveal protocol to address this challenge.

• In order to reduce computation complexity, peer-consistency mechanisms use

only one (or a few) randomly selected peer(s) for every agent. However, if the

random peer(s) can be predicted, the agents get an opportunity to collude and the

mechanisms can be compromised, and this risk is increased by the transparency of

blockchain. We show that under reasonable assumptions, random peer selection

can still be implemented safely.

4.2 Model and Objectives

We consider settings in which questions are to be resolved on a decentralized platform through

acquiring feedback from agents. No agent, however, is required to answer more than one

question. The questions can be, for example, of the following form : “Is the responseTime of

web service W less than 10 seconds?". An agent i makes a private binary observation Xi ∈ {0,1}

about a question and submits her feedback report Yi ∈ {0,1} to the platform. For any question,

n agents are asked to submit their feedback, and based on this feedback, the questions are

said to be resolved by announcing their outcomes. The outcome ow for a question w is defined

as the fraction of agents who reported 0 as their feedback. In the web service example, this

corresponds to the fraction of agents who report that the responseTime of the service was

not less than 10 seconds.

Note that we define the outcome ow to be a continuous variable, whereas the feedback is

elicited as a discrete variable. This is because of the noisy (and in some cases subjective)

nature of the feedback. In the web-service case, responseTime is a noisy measurement and

no service can promise a certain response time 100% of the time. Thus, it is important to

define the outcome as a continuous variable measuring the fraction of time that the service

did provide a good response time. We remark here that more generally, the outcome can be
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defined as any non-negative, non-decreasing function of the fraction of agents who report 0

(e.g., a threshold function that becomes 1 if, say, 70% of the agents report 0). We choose the

fraction of dissatisfied agents as our outcome function, for the reasons mentioned above, and

also following the related literature [32].

The main novelty of our setting is that the agents receive an outside incentive that is dependent

on this aggregate outcome. More precisely, the payment given to an agent is R ·ow , where

where R is a positive constant. In the web service example, such payments might arise through

the service level agreements between the web service provider and the agents 1. The focus

of this chapter is how to adapt the incentives given for the reports to overcome such lying

incentives.

After making her private observation, agent i uses a strategy σi to submit a report Yi based on

observation Xi , in order to maximize her expected payment. The agents are assumed to be

rational and therefore they may not report their true observations, if not properly incentivized

to do so. We follow the common assumptions that agents are risk-neutral and that the utilities

are non-transferable.

Definition 13 (Agent Strategy σi ). An agent i ’s strategy, denoted by σi (Yi = y |Xi = x),∀ x, y ∈
{0,1}, is the probability of the agent’s report for the question being y given that her observation

is x.

The strategy models a variety of possibilities that are available to the agent for mapping her

observation to report. Some examples are as follows:s

Definition 14 (Truth-telling Strategy). An agent’s strategy is called truth-telling if and only if

σi (Yi = y |Xi = x) = 1,∀ x = y and σi (Yi = y |Xi = x) = 0,∀ x 6= y.

In heuristic strategies, the report of the agents are independent of their observations. One

heuristic strategy of particular importance is always reporting 0, formally defined below.

Definition 15 (Denial Strategy). An agent’s strategy is called the denial strategy if and only if

σi (Yi = 0|Xi = x) = 1 and σi (Yi = 1|Xi = x) = 0.

The denial strategy is an interesting strategy in our setting because the payment that agents

receive depends on how many of them report 0 as their feedback. The following observation is

fairly easy to see.

Observation 1. In the settings described above, the denial strategy is the (strictly) dominant

strategy for all agents and gives the maximum payment R.

A strategy σi is called (strictly) dominant if it gives agent i her highest possible payment, given

any strategies of the remaining agents. Observation 1 implies that in the presence of rational

1Please see [38] for a model in which only agents who submit 0 as their answers are eligible for such payments.
In this chapter, we assume that every agent is eligible for the payment R ·ow regardless of her answer.

53



Chapter 4. Infochain: A Decentralized, Trustless and Transparent Oracle on Blockchain

agents, the outcome determined by the decentralized platform is bound to be 1.00, since every

such agent will report 0 irrespective of their true observation. Such an outcome determination

is not useful for any practical purposes; on one hand, it is not informative and hence provides

no utility in terms of the information acquired, and on the other hand, if such an outcome is

used to issue the payments to the agents, it can incur a huge loss on the platform.

Peer-consistency. To counteract this phenomenon, the agents need to be properly incen-

tivized by the platform to provide their feedback truthfully. We propose to do this, by issuing

them a side-payment in addition to the payment that they receive based on the outcome

resolution. Clearly, any constant amount of such side-payment does not achieve this objective;

the side-payments have to be contingent on the truthfulness of the agents’ reports. However,

since there is no way to directly establish the truthfulness of the feedback, we will appeal to

the power of peer-consistency mechanisms [30] to align the incentives of the agents with their

feedback. The most important constituents of the peer-consistency framework are the agents’

beliefs about the observations of their peers. We will let Pi (Xp = x ′), for x ′ ∈ {0,1}, denote

agent i ’s (prior) belief about a randomly selected peer p’s observation Xp on a question being

x ′. We will assume that all questions are a priori similar so the prior belief of the agent is same

for all questions.2 After the agent makes a private observation Xi for a question, she updates

her belief (posterior) about her peer’s observation on that question only, to Pi (Xp = x ′|Xi = x).

The first objective is to ensure that the decentralized platform can be used as an oracle, in

the sense that the outcome determined by the platform is correct. The next question is, how

large do the side-payments need to be? Is it possible to implement the side-payment scheme

suggested by the peer-consistency mechanism without incurring loss to the platform? Our

benchmark here is the amount of money that the platform would have to pay if there were

no side-payments in place, and therefore the outcome would be determined by the denial

strategies of the agents. In other words, we define the relative saving of a side-payment scheme

to be

relative saving:
nR−P

nR
,

where P is the total payment (side-payment + outcome dependent payment) under the

scheme to the agents. The reason for considering relative saving in this work and not the

actual saving in monetary units is that the absolute saving is domain and scale dependent and

not very informative in a general sense. Before we proceed, let us see what the best relative

saving that we could hope for is.

Proposition 2. If agents were honest (i.e. they reported truthfully ignoring the outcome de-

pendent payments), the platform could make an expected relative saving of up to P (1) in the

payments, where P (1) is the actual probability of a randomly selected report on the platform

being 1.

2If not all questions are a priori similar but there are known batches of a priori similar questions, our results
can be extended for each batch separately. For example, in the web-services case, this can be done by grouping
web-services with similar SLAs.
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Note that the best possible saving is not 100%, because it depends on the actual quality of the

service. In the web service example, Proposition 2 states that when the response times of the

services are generally good i.e., P (1) is high, the platform could make significant savings (up

to 100% as P (1) → 1) if the agents were honest. Also, note that we are comparing against the

ideal outcome, when agents would not need to be incentivized to act truthfully; a mechanism

that fares well against this outcome, will fare well against any other side-payment scheme,

including one in which the outcome determination is done by a costly third party.

The PTSC Mechanism. Since we are interested in relaxing the informational assumptions as

much as possible, we will use a detail-free mechanism (that doesn’t know agents’ beliefs) for

determining the side-payments on the decentralized platform. Note that it is not necessary

that a given user may be able to answer multiple questions (about different web services).

This rules out several multi-task mechanisms like [20, 104]. Thus, we will use the PTSC

mechanism [97], which we describe here for completeness. To decide the reward for an agent,

the mechanism selects another agent p who also submitted feedback for the same question.

Suppose that the agent submits Yi = y and the peer submits Yp = y ′. The side-payment of

τ(y, y ′) agent i under the PTSC mechanism is:

τ( y, y ′) =


α ·

(
1y=y ′

Ri (y)
−1

)
if Ri (y) 6= 0

0 if Ri (y) = 0

whereα is a strictly positive scaling constant. The mechanism uses Ri (y) = numi (y)/
∑

ȳ∈{0,1}
numi (ȳ),

where numi (y) is a function that counts occurrences of y in the feedback of all agents (except

i ) across all questions. The PTSC mechanism is a special case of the PTS mechanism [56] and

is based on the idea of using Ri (y) from other apriori similar questions to estimate the prior

belief of the users. It is possible to use other ways to estimate the prior in the PTS mechanism

and relax the requirement of having other questions.

Subjective Equilibrium. When referring to the “correct outcome” for rational agents, one

needs to define an appropriate solution concept is which the outcome will be obtained. The

standard objective in the peer-consistency literature is to ensure that the correct outcome is

achieved in the equilibrium, or, in other words, that truth-telling is an equilibrium. A strategy

profile σ= (σ1,σ2, . . . ,σn), which represents a collection of strategies of agents {1,2, . . . ,n}, is

a strict equilibrium if for any agent i ∈ {1,2, . . . ,n}, the agent’s expected payment is strictly

maximized when she adopts strategy σi , i.e. σi is her best response to the strategies of the

other agents. A strategy profile σ= (σ1,σ2, . . . ,σn), is an ε-approximate equilibrium if for any

agent i ∈ {1,2, . . . ,n}, the agent’s expected payment when she adopts strategy σi , is smaller

than the expected payment any other strategy σ′
i by at most ε. Since beliefs need not be

common among agents, i.e. they are subjective, the equilibrium concept that we adopt is the

ex-post subjective equilibrium [113]. In this equilibrium concept, an agent’s best response is

independent of the beliefs of others. In the chapter, we will simply use the terms “equilibrium”

and “ε-approximate equilibrium” for brevity.
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4.3 Truthful Equilibrium and Savings

We first derive the conditions under which the PTSC mechanism can be used to ensure that

the truth-telling strategy profile is an equilibrium, in the presence of outcome-dependent

lying incentives for the agents. This is certainly a critical requirement for a side-payment

scheme which elicits reliable information. In the next section, we will provide an even stronger

guarantee, ensuring that truth-telling is also a “good” equilibrium, under some reasonable

assumptions. In our analysis, we will use the following quantity.

Definition 16 (Self-Predictor Value).

δ∗ = min
i

(
Pi (Xp = 1|Xi = 1)

Pi (Xp = 1)
− Pi (Xp = 0|Xi = 1)

Pi (Xp = 0)

)

We note that δ∗ > 0, whenever the observations of agents are positively correlated; this means

that conditional on observing 1, the posterior belief of the agent about her peer also observing

1 strictly increases compared to her prior belief about the same. This positive correlation

of signals is a standard assumption in the literature of peer-consistency for binary answer

spaces, e.g. see [54, 113] and it is under this condition that PTSC guarantees that truth-telling

is an equilibrium.3 We will make the same assumption throughout this chapter, and we will

quantify the required scaling constant of PTSC as well as the relative savings of the mechanism

in terms of δ∗. Intuitively, δ∗ is a measure of correlation strength, and captures the relative

increase in the posterior compared to the prior belief, as described above. A very similar

quantity was defined in [97] capturing similar concept, differing on the fact that it was a

multiplicative parameter rather than an additive one. The parameter is also closely related to

the update strength in [32].

We emphasize here that the mechanism does not need to know the exact value of δ∗, but we

assume that an estimate of this value (δ= δ∗+β, for some β ∈R) is known.

Theorem 9. Given δ and a scaling constant α> R
n·δ , the truth-telling strategy profile is a strict

equilibrium if β≤ 0, and is a (β·Rn·δ )-approximate equilibrium if β> 0.

Note that the theorem is stated in terms of ε-approximate equilibria. This is because if the

value of δ∗ is overestimated (i.e., β > 0), then the agents might have incentive to actually

deviate from their truth-telling strategy, but that incentive is bounded by a typically small

quantity. In fact, when the overestimation imprecision tends to be negligible (i.e., β→ 0) or

when the number of agents grows large (i.e., n →∞), then ε goes to 0 and we obtain exact

equilibrium. On the other hand, if we only underestimate δ∗ (i.e., β< 0), then we obtain exact

equilibrium, regardless of the imprecision parameter or the number of agents.

Any overestimation of δ∗ does not hurt the saving compared to the case of a precise estimation;

in fact, it actually improves it. In contrast, underestimating δ∗ can diminish the saving, but the

3In the original settings for which it was proposed [97], outcome-dependent lying incentives were not present.
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loss again vanishes as the number of agents grows large. The relative savings of the mechanism

are captured in the following theorem.

Theorem 10. The expected relative saving in payments made in the truth-telling equilibrium is

at least P (1)− 1
n·δ , where P (1) is the actual probability of a randomly selected report being 1 in

the truth-telling equilibrium.

Note that as long as the condition n > 1
P (1)·δ is satisfied, the lower bound on saving is actually

a positive number. Finally, notice that as n →∞, the relative saving reaches the maximum

achievable value P (1) discussed in Proposition 2. In a more favorable setting, when the beliefs

of the workers are not arbitrary but are aligned with the real observation probabilities and the

mechanism has access to δ∗, it can be shown that for any n ≥ 2, the platform makes strictly

positive relative savings given by P (1)
(
1− 1

n

)
.

We conclude the section with the following observation. While the employment of the PTSC

mechanism with an appropriate scaling constant can guarantee that truth-telling is an equilib-

rium strategy, it is not hard to see that if no further assumption are made about agents’ beliefs,

the denial strategy is still an equilibrium strategy in addition to the truth-telling strategy.

[97] have shown that when outcome dependent lying incentives are not present, while this

uninformed equilibria does exist in PTSC, it is not profitable (pays zero expected reward).

Unfortunately, in the presence of outcome dependent lying incentives, this undesired equi-

librium becomes more profitable than the truth-telling equilibrium because every agent can

now get the maximum value of the refund R by playing the denial strategy. Any attempts

of making the truth-telling equilibrium more profitable in this setting are impaired by the

following result.

Proposition 3. If the denial strategy equilibrium exists in any mechanism in the presence of

outcome dependent lying incentives, it is not possible to make the truth-telling equilibrium

more profitable without causing loss to the platform.

Here loss means that the total payment will be higher than the maximum refund R. While this

negative result is reminiscent of the known negative result about uninformative equilibria in

the peer prediction mechanism of [82] reported in [54, 55], in our result focal uninformative

equilibria arise because of outside incentives and not due to a weakness of the incentive

mechanism.

4.4 Honest Agents

In many real-life platforms with many participants, it is natural to assume that at least a few of

them will behave honestly, regardless of the monetary incentives that the platform provides.

This can be attributed to several reasons; for example, to rational choices that are not explicitly

captured by the payments, e.g., an interest in the well-being of society or some intrinsic
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utility from “doing the right thing”, or even to some form of bounded-rationality [100] or risk-

aversion. We show that the undesirable equilibrium highlighted in the previous section can be

eliminated in our setting if it is known that there exists an arbitrary small non-zero fraction

f of honest agents on the platform. In fact, it is only necessary that the agents believe that

there is such a fraction of honest agents, which is a reasonable assumption in most real-world

platforms. As it will be evident later, neither the rational agents nor the platform know the

identity of the honest agents. Only assuming the existence of honest agents (without known

identities) is fundamentally different from using identified trusted authorities for obtaining

observations (as proposed in [54]), since the latter violates the decentralization of the platform,

while the former does not.

For the analysis, we will use an alternative definition of the self-predictor value that we defined

in Section 4.3. This definition adapts the self-predictor value to the situation when agents

believe that only a f -fraction of other agents are honest and the remaining (1− f )-fraction

always report 0 irrespective of their observations, i.e. they follow the denial strategy.

Definition 17 (Self-Predictor Value with Colluding Agents). Let Qi (Xp = 0|Xi = 1) = (1− f )+
f ·Pi (Xp = 0|Xi = 1) and Qi (Xp = 0) = (1− f )+ f ·Pi (Xp = 0). The self-predictor value with

colluding agents is defined as

δ∗c = min
i

(
Pi (Xp = 1|Xi = 1)

Pi (Xp = 1)
− Qi (Xp = 0|Xi = 1)

Qi (Xp = 0)

)

Note that when f = 1, we obtain exactly the same quantity as in Definition 16.

Lemma 2. If δ∗ > 0, then δ∗c > 0, for any 0 < f < 1.

We will exploit this property of δ∗c to show that it is possible to eliminate the denial strategy

equilibrium for any non-zero value of f . Similar to the previous section, we assume that the

mechanism knows only an estimate δc = δ∗c +βc .

Theorem 11. Given that for f > 0, (a) an f -fraction of agents are honest, (b) the remaining

(1− f )-fraction adopt the denial strategy and (c) it holds that α> R
n·δc

, the truth-telling strategy

is a strict best response if βc ≤ 0 and is an (βc ·R
n·δc

)-approximate best response if βc > 0.

The theorem implies that the collusion of the (1− f )-fraction who adopt the denial strategy

becomes unstable and the rational choice for them will be to break the collusion and deviate to

the truth-telling strategy. In other words, the denial equilibrium is eliminated and the truthful

equilibrium prevails. Thus, we get the following proposition.

Proposition 4. Under the conditions derived in Theorem 11, the denial strategy is no longer an

equilibrium strategy.

Given that δ∗c ≤ δ∗ by definition (and strictly smaller when f > 0), the scaling constant α

of PTSC in this case is actually larger than before. The reason is that we are now not only
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requiring that truth-telling is an equilibrium, but also that the denial strategy equilibrium is

eliminated. Note that δ∗c is strictly decreasing in f and achieves its maximum, which is δ∗, at

f = 1.

For the saving, we first remark that the benchmark against which we compare now naturally

becomes the rational outcome in which the honest agents report the truth and the remaining

agents play according to their denial strategies. Concretely, the saving of a side-payment

scheme, under which a total payment of P are made to the agents, now becomes:

relative saving:
nR′−P

nR′ ,

where R′ =R ·
[

(1− f )+ f · (1−P (1))
]

. Note that
[

(1− f )+ f · (1−P (1))
]

is the expected value

of the outcome when (1− f )-fraction of the agents play the denial strategy (always report 0)

and the honest f -fraction report 0 only when they actually observe 0.

Theorem 12. If 0 < f < 1, the expected relative saving made by the platform in the truth-telling

equilibrium is at least [
(1− f )P (1)− 1

nδc

]
· 1

(1− f P (1))

We remark that the baseline for computing relative saving now naturally becomes the rational

outcome in which the honest agents report the truth and the remaining agents play according

to their denial strategies and the above theorem has been derived accounting for this fact.

In theorem 12, the lower bound on n needed for the saving to be positive is given by n >
1

P (1)·δc ·(1− f ) . Note that this lower bound depends inversely on (1− f ). If n is fixed, then one

gets an upper bound on f given by

f < 1− 1

P (1) ·δc ·n

An upper bound on f , or the direct dependence of n on f may seem counter-intuitive at first;

why would one want to put a cap on the number of agents that always behave honestly? This

is explained by the fact that these are merely the conditions required for a relative saving to

be strictly positive. When there is a big enough fraction of honest agents, the effect of the

colluding agents on the outcome decreases and so does the relative saving that can be made by

incentivizing these colluding agents to deviate to the truth-telling strategy. This means that if

there are more honest agents than what the bound suggests (which tends to 1 for large n), then

the platform will not actually save any money by implementing a side-payment mechanism. It

should be noted however that Theorem 11 holds no matter how large f is, meaning that if the

platform desires, at the expense of a negative saving, it can still implement the side-payment

scheme in order to enforce that all agents are actually truth-telling in the equilibrium. The

reason for wanting to do that could be to obtain correct information from the rational agents

too, who would otherwise play denial strategy and introduce noise. It is further shown in the

proof that the relative saving in this case too approaches the optimal relative saving as n →∞.
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4.5 Simulations

In this section, we evaluate the savings of PTSC experimentally on two real-world datasets,

described below.

4.5.1 Dataset

We conducted experiments on the dataset4 of [123], which contains real-world Quality of

Service evaluation results from 339 trusted agents on 5,825 web services. The agents observe

the response time (in seconds) and throughput (in kbps) of the web-services and therefore,

the observations can be used as two different datasets for our purposes. The dataset exhibits

some missing observations but still has an overall density of 94.8% for response time and

92.74% for throughput. The observations are real values which we placed into two categories,

corresponding to “good” and “bad” performance, in order to fit them to our binary observation

setting. We treated a response time of at most 1 second as a “good” response time and the

rest as “bad”. This resulted in 83.71% good response time observations, on average across all

services. Similarly, we treated a throughput above 5 kbps as a good throughput and anything

below that as a bad. This resulted in 78.18% good throughput observations, on average

across all services. Thus, in the context of our model, P (1) ≈ 0.8371 for response time and

P (1) ≈ 0.7818 for throughput.

4.5.2 Simulation Parameters

We are interested in simulating settings in which the observations in the dataset would have

been made by self-interested agents (rather than trusted ones) who have an incentive to play

the denial strategy. Therefore, the dataset acts as the true private observations of the agents,

which they may or may not reveal truthfully to the platform depending on their incentives.

We fix a constant refund amount R in our simulations; since we will only discuss the relative

saving, the actual choice of R is not important here. We vary the number of agents that are

asked to report their observations for a service, by randomly selecting a subset of the agents

from the dataset for every web-service.

We approximate the self-predictor value δ∗ using the following process. We randomly sample,

for each web service, two true observations. We use this sample to get an empirical estimate

of the joint distribution of the observations of the agents and the prior distribution, and these

two empirical estimates are used in the expression for δ∗. The result of this process can be

thought of as a way to produce δ= δ∗+β, i.e., the value δ that appears in the statements of our

theorems. As we mentioned in Section 4.3, since the value of δ∗ is calculated as a minimum

over all the agents, overestimating this value might cause some agents to have incentives to

deviate, and in particular switch to their denial strategies. To examine the robustness of our

scheme against this phenomenon, we quantify the savings of the mechanism when a fraction

4Dataset is available at http://wsdream.github.io.
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of agents, even with PTSC implemented, play the denial strategy.

4.5.3 Experimental Results

(a) Response Time Data (b) Throughput Data

(c) Response Time Data (d) Throughput Data

Figure 4.2: Relative saving made by PTSC.

In Figures 4.2a and 4.2b, we compare the saving achieved by PTSC against the optimal saving,

which is obtained when all the agents are honest. Specifically, the optimal saving is given by

(Pd −Pα)/Pd , whereas the saving of PTSC is given by (Pd −Peq )/Pd , where Pd is the refund

payment of the denial strategy equilibrium, Pα is the refund payment when all agents are

honest and Peq is the total payment of PTSC, including the refund and side-payments. In

line with our theoretical observation in Theorem 10, the saving achieved by PTSC converges

the optimal saving, which is approximately P (1), as the number of agents increases. In fact,

the saving approaches the optimal levels quite quickly, for reasonable numbers of agents (i.e.,

approximately 40 agents). To quantify the robustness of PTSC with respect to the estimation

of δ∗, the figure also depicts the relative saving made when only a 90%, 67% and 50% fraction

of the agents receive the PTSC side-payments and report truthfully, and the rest receive the

PTSC side-payment but still use the denial strategy. While the saving naturally declines, we

observe that even with 90% of the agents being truthful, we achieve a significant saving.

We also consider the relative saving of PTSC when the side-payments are large enough to not

only make truth-telling an equilibrium, but to also eliminate the denial strategy equilibrium, as

61



Chapter 4. Infochain: A Decentralized, Trustless and Transparent Oracle on Blockchain

Infochain Smart Contract

5

1 Information requester 
deploys the smart 
contract (with required 
budget and deposit) and 
posts questions.

2 Information providers 
select questions to answer.

3

Information providers submit 
answer commitments with 
deposits. 4

Info providers reveal 
answers and secret keys.

Payments and deposits of 
requester and providers 
are processed.

Figure 4.3: Infochain Overview

discussed in Section 4.4, assuming that there exists an f -fraction of honest agents who always

report truthfully. We set the value of f to either 0.1 or 0.2, and observe how quickly the relative

savings made by PTSC can reach the maximum achievable relative saving as the number of

agents increase; this is shown in Figures 4.2c and 4.2d. Note that unlike Figures 4.2a and 4.2b,

here the relative saving starts at a lower value; this is because the scaling constant and hence

the payment made by PTSC are required to be larger as discussed after Theorem 11. Also, note

that we have a different maximum possible saving bound for each f . This is in agreement with

our discussion following Theorem 12 i.e., larger values of f lower the maximum achievable

relative saving.

4.6 Infochain

To collect truthful information from self-interested agents, we propose a completely decen-

tralized, transparent and trustless system called Infochain. Infochain enables information

requesters to post questions, which can be selected by information providers (agents). The

questions can be, for example, of the following form: “Is the responseTime of web service W

less than 1 second?". Once the agents submit information for the questions they select to an-

swer, their payments in Ether are processed by a smart contract. All the collected information

and payments are stored on a public blockchain to ensure transparency and immutability.

In addition to the Peer Truth Serum for Crowdsourcing (PTSC) [97], we also include the

following two mechanisms in Infochain.

1. The Output Agreement (OA) Mechanism [110]: This is perhaps the simplest of all peer-

consistency mechanisms. In the OA mechanism, an agent gets a reward of 1 unit only if

her answer for a question matches the answer of her peer for the same question. The

reward of the agent for a question is the average over the rewards earned by matching

with all peers. The final reward of the agent is the average of her rewards from all the

questions answered by her.

2. The Dasgupta and Ghosh (DG) Mechanism [20]: In the DG mechanism, an agent gets

a reward of 1 unit if her answer for a question matches the answer of her peer for the
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same question but also gets a penalty of 1 unit if her answers match the answers of the

peer on non-common questions. The DG mechanism requires that two agents, who are

peers of one another, must also have some non-common questions that are answered

by one of them but not by both. The final reward is calculated by averaging as described

in the OA mechanism. The Correlated Agreement mechanism [104] is a generalization

of the DG mechanism and exhibits similar computations.

The final reward in the PTSC mechanism is also calculated by averaging as for the other two

mechanisms. Traditionally, these mechanisms are implemented by a centralized trusted

third party. Implementing them in Infochain, which doesn’t assume any centralization or

trust, is challenging. In the following subsections, we address the main implementation and

theoretical challenges. An overview of Infochain is provided in Figure 4.3.

4.6.1 Commit-Reveal Protocol

Transparency is an inherent feature of blockchain. Thus, all the information submitted by

an agent is visible to all others. The peer-consistency mechanisms guarantee their incentive

compatibility assuming that an agent can only form a belief about what her peers are going to

report but doesn’t know the actual report of peers. We ensure this in Infochain by making the

agents follow a commit-reveal protocol:

1. Commit: An agent writes her commitment keccak256(y,k) on the chain, where y is the

agent’s answer for a given question and k is her secret key.

2. Reveal: Once all agents who have selected a question, have finished submitting their

commitments for the question or the commitment phase expires, they can reveal their

respective secret keys and answers. If the commitment of an agent matches her revealed

answer, the answer is written on the chain, otherwise it is discarded.

4.6.2 Cost Optimizations

Performing computations on Ethereum’s Virtual Machine (EVM) remains an expensive affair.

Computation costs on EVM are roughly 108 times higher than AWS5. [101] provides a good

summary about the costs of basic arithmetic operations and writing operations for different

data types. Agents who provide information must be compensated for this cost, increasing

the overall cost of information acquisition. We discuss below several non-trivial ways of

implementing three different peer-consistency mechanisms in Solidity so that the costs can

be minimized.

1. Optimizing Writing Cost: To minimize the costs of writing on the chain, agents on

Infochain combine multiple answers in the form of a bit vector. This is motivated by

5https://aws.amazon.com/blockchain/
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two observations. First, the answers are revealed simultaneously and thus, they do not

require separate commitments. Second, the EVM operates on 256 bit words, thus a

single bit vector is much cheaper to write than other formats.

Proposition 5. With the above scheme, each 256-bit commitment can contain up to 42

answers.

Proof. Given a hash function H with a 3k bit output, to commit the k bit message

m, Alice generates a random k bit string S and sends Bob H (S ||m). The probability

that any S ′, m′ exist where m′ 6= m such that H (S ′||m′) = H (S ||m) is ≈ 2−k . The

size of the message sent is limited to one third the size of the output of the hashing

function, thus 85 bits. Each answer requires 2 bits: the first determines if the question

was answered and the second is the answer. Therefore each commitment can contain

42 answers.

This optimization helps both commit and reveal phases.

2. Optimizing Computation Cost: To reduce the cost of computing the rewards, a set of so-

called intermediary values is introduced. These values naturally appear at intermediary

states of reward computation. They will be precomputed and reused for each agent.

What these intermediary values are, depends on the peer-consistency mechanism. This

approach allows for the computation to traverse the data a minimum number of times.

Since all rewards are computed at the same time, these intermediary values don’t need

to be written on the blockchain and can be kept in memory instead.

For an example, consider the PTSC mechanism, which requires relative frequency Ri (y)

of the value y while excluding the answer given by agent i . This quantity need not be

calculated from scratch for every agent or when every new answer is submitted and

neither it is required to be written on the chain. The intermediary values (for e.g. running

average) can be kept in memory and used to calculate or update Ri (y) as required.

4.6.3 Random Peer Selection

In peer-consistency, we can use only one or a few randomly selected peers for reward calcu-

lation instead of all peers. This is because, in expectation, the rewards of the agents remain

unchanged and thus, the mechanisms with randomly selected peers also offer the same in-

centive compatibility (except that the variance in rewards increases). This is an interesting

tradeoff between computation cost and variance in rewards. However, random peer selection

on blockchain is subtle mainly due to the fact that nothing on the chain is a “secret", including

the seed for random number generation. If random peers can be known in advance, it may

increase the risk of collusion between the agents compromising the incentive compatibility of

the mechanisms. In Infochain, we use the block timestamps as well as the mining difficulty

level as the seed. This avoids using any trusted third party for random peer selection. The

approach works under the assumption that the miners will not try to cheat the smart-contract,
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which is a reasonable assumption given that the miners have no incentive to do so since they

risk losing their mining rewards. The assumption can be violated in extreme scenarios where

the financial activity on Infochain (for e.g. the incentive amounts) exceed the mining rewards.

4.6.4 Negative Payments

The DG mechanism and the PTSC allow negative payments, which is implemented in In-

fochain by making agents submit refundable deposits. Information requesters also deposit

the payment budget and an additional refundable deposit. Any outstanding deposits of the

agents and the requester are returned after the payments and computations costs are settled.

4.7 Experiments

We now discuss the results of some experiments performed on Infochain. The performance

measure of interest in this discussion will be the total amount of gas used. Gas is a unit

measuring the computational work of running transactions or smart contracts in the Ethereum

network and is a good proxy for the cost in USD. Infochain has been deployed and tested on

the Ropsten Test Network, one of the commonly used public testing framework for Ethereum

smart contracts. To have no limitations in terms of gas, the results reported in this chapter

have been generated on a local instance of Ethereum.

4.7.1 Dataset

For this experiment, we used the response time attribute from the same dataset that was de-

scribed earlier in Section 3.7.1 . The dataset acts as the ground truth data that the information

requester is interested in eliciting from self-interested agents. We simulated agent behavior

as follows: 50% of the agents report truthfully, 25% report randomly (i.e. independent of the

ground truth) and the rest report in an adversarial way (i.e. opposite of the truth).

4.7.2 Results

In Figure 4.4a, we show the reduction in writing cost due to the proposed optimization dis-

cussed in Section 4.6.2 as compared to the baseline implementation (without any proposed

optimizations). Tasks in the figures refer to the questions that the agents answer. As expected,

the reduction becomes more significant as agents answer more questions since the optimiza-

tion can pack more and more answers into a single write operation. It may be worth noting

that the optimization doesn’t make writing cost independent of the number of answers as the

figure may suggest. Since the number of questions in the figure doesn’t exceed 42, the cost

remains same as number of questions increase. Figure 4.4b shows the reduction in computa-

tion cost due to the proposed optimizations with varying number of agents and number of

questions per agent. The figure was plotted based on the numbers obtained with the PTSC
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(a) Writing Cost Optimization (b) Comput. Cost Optimization

(c) Comparing Mechanisms (d) Random Peer Selection (DG)

Figure 4.4: Experimental Results

mechanism but we observed a similar trend for the OA and the DG mechanisms. We next

compare the cost of the three mechanisms in Figure 4.4c. While the OA mechanism and the

PTSC mechanism have similar cost, the DG mechanism is more costly. This is due to the fact

that DG mechanism involves more operations, particularly for keeping track of questions that

are not shared between agents. Finally, Figure 4.4d shows the effect of using randomly selected

peers for reward computation in the DG mechanism. We note that there may be multiple ways

to implement sampling without replacement; for e.g., 1) randomly select a peer, check if it is

already in the list of previously selected peers and repeat; and 2) sample from the list of not

selected peers, update the list of not selected peers and repeat. The first method is not suitable
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for blockchains as there is no upper bound on the number of necessary random selections

and thus the transaction may run out of gas. The results presented here correspond to the

second method. As shown in Figure 4.4d, the cost is guaranteed to reduce if we randomly

select only one peer per agent. But when multiple peers are to be selected (which is required

to reduce variance in rewards), the cost may increase to a level higher than the cost of using

all peers without any random selection. The reason for this is that as we select more random

peers, the cost of implementing random sampling exceeds the cost of simple implementation

of just using all the peers.

4.8 Chapter Summary

In this chapter, we studied settings motivated by polls and other crowdsourced data where the

agents reporting the data have a conflict of interest with the aggregate statistic of the reported

data. Such scenarios occur for example in reporting environmental data, where some reports

might downplay pollution, in polls such as the LIBOR, where reporting agents have direct

financial interest in the poll result, or our running example of self-reported Quality of Service

measurements, where reporters may hope for refunds. We showed

(i) how a detail-free peer-consistency mechanism, the PTSC mechanism, can be imple-

mented to guarantee that truth-telling is an equilibrium of the induced game, in spite of

the outside incentives to the contrary,

(ii) how the presence of honest agents, which can remain anonymous, eliminates the

undesired equilibrium where all agents report the outcome that benefits their outside

incentive; and

(iii) lower bounds on the relative saving in the net payments achieved by the mechanism,

which approach optimality as the number of agents grows large.

We only considered a scenario where the outside incentives favor the same misreport for all

agents, and do so with a particular dependence on the outcome. In ongoing work, we are

considering different forms of outcome dependence, in particular threshold functions that

require that the outcome exceeds a given threshold for the users to get refunds, and it turns

out that these lead to different results. In the future, it would also be interesting to consider

cases where agents have different and possibly opposing interests, such as in polls where

different populations want different outcomes to win. Given that PTSC provides guarantees

for non-binary signal spaces too, it would also be interesting to study similar problem beyond

the binary answer setting. However, that seems to require somewhat different formalization

for the correct determination of the outcome and the compensation schemes.

We presented a novel system called Infochain that implements decentralized, trustelss and

transparent oracles on the Ethereum blockchain. Contrary to earlier proposals on decentral-

ized crowdsourcing systems, Infochain addresses the issue of truthfulness by implementing
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game-theoretic peer-consistency mechanisms. For the first time, we discussed issues that

arise in implementing these mechanisms in blockchain. The chapter also presents an impor-

tant new criterion for comparing or evaluating these mechanisms by their implementation

complexity on the Ethereum blockchain.
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5 Tackling Peer-to-Peer Discrimination
in the Sharing Economy

This chapter is based on the following publication:

N Goel, R Maxime, B. Faltings. Tackling Peer-to-Peer Discrimination in the Sharing Econ-

omy. In Proceedings of the ACM Web Science Conference (WebSci), 2020.

5.1 Introduction and Related Work

Since the creation of eBay in 1995, the basic idea of peer-to-peer sharing of goods and services

has led to many successful commercial platforms on the web. This way of distributing goods

and services is often called as the sharing economy. The field saw a dazzling boom in the

early 2010’s when the popularity of Uber and Airbnb began to soar. Today several sharing

economy platforms are operational on the web in diverse areas such as travel, real estate,

transport, labor, finance and technology etc. The platforms offer an attractive alternative to

both the ‘producers’ and the ‘consumers’ over the traditional ways of doing business due to

being more easily accessible, sustainable and decentralized in nature. However, several recent

studies have highlighted some very important ethical challenges faced by these platforms.

For example, [28] found that Airbnb booking requests from the researchers (posing as guests)

were 16 percent less likely to be accepted when the researchers made the requests from

guests accounts with distinctively African American names relative to the case when they

used identical guests accounts with distinctively white names. Similarly, [29] found that

prices of properties on Airbnb offered by black hosts tend to be significantly lower than

their white counterparts, even while keeping other relevant factors constant. We conjecture

that less demand or trust for properties offered by black hosts is one of the reasons for the

lower prices. Beyond Airbnb, [34] have observed racial discrimination by Uber drivers via

more frequent cancellations against passengers when the researchers used African American

sounding names for passenger accounts. Thus, the discrimination exists both ways. Hosts

and drivers (providers) racially discriminate among guests and passengers (consumers) and

vice-versa. It is deeply concerning that the existing social biases are finding their way into web
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based platforms too. A combination of biased human feedback and large scale algorithmic

decision-making on the web can cause further social segregation of historically disadvantaged

groups. Thus, the problem needs an urgent attention and solution.

[2] (from Airbnb and Stanford) conducted an extensive user study on real Airbnb users and

claimed that reputation systems offset the real world social biases by building trust between

different users. The design of this user study was motivated from the concept of trust based

investment games in economics. This is indeed a very positive finding. Trust between the

users is the fundamental reason why Airbnb works in the first place [35]. However, it may be

noted that even though the study was conducted with real Airbnb users, the reputation scores

used in the study were generated synthetically. The reputation systems must themselves be

non-discriminatory for them to actually work in the expected manner. A reputation system

that discriminates against people based on race or gender will only further reinforce the

bias. Unfortunately, the reputation systems on these platforms are often discriminatory

towards different races and genders. This was analyzed in great detail by [41] for freelancer

marketplaces like taskrabbit.com and fiverr.com. We found a similar trend on Airbnb too

in our study. The findings are not very surprising because reputation systems are based on

aggregating the rating provided by users (humans) to one another and human society has a

long history of racial bias and discrimination. Unfortunately, it is a non-trivial problem to

make reputation system non-discriminatory because the goal of the reputation systems is

really to discriminate between users. However, this discrimination must be based on relevant

attributes and not on sensitive attributes like race or gender. Thus, the objective is to make

reputation systems racially non-discriminatory while retaining the other useful information

they provide. This problem is similar to the problem of making machine learning systems

non-discriminatory, where there is a trade-off between increasing the discriminative power

(classification accuracy) of the classifiers and reducing racial discrimination in their decisions

at the same time. The latter problem has received a lot of attention recently [18, 27, 31,

39, 42, 65, 117, 118, 119]. However, the solutions are specific to machine learning (mostly

classification algorithms) and don’t apply to reputation systems where humans are directly

responsible for the reputations scores.

5.1.1 Our Contributions

In this chapter, we propose two solutions to make reputations systems on sharing economy

platforms more fair and non-discriminatory. The first solution is to incentivize users (example

guests on Airbnb) to find potentially high quality service providers (example hosts on Airbnb)

from the disadvantaged group, evaluate them through deeper inspection (by using their

service) and provide a truthful review of the service. We show that a game theoretic peer-

consistency mechanism called the Peer Truth Serum for Crowdsourcing [97] can use the

knowledge about the sensitive attribute of the service providers to ensure desired incentive

compatibility in this scenario. This solution differs from the idea of offering explicit incentives

just to explore the unexplored services (for example, see [44]). We provide the incentives
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for exploration while truthfully rating the service, ensuring that the incentive mechanism

doesn’t cause a “reverse discrimination" and doesn’t make it easier for the disadvantaged

group to get business. If the design of the platform doesn’t allow an incentive mechanism to be

implemented, we propose a second solution. This solution applies to any reputation system

irrespective of the reputation aggregation algorithm and the rating behavior of the users.

We transform the aggregated reputation scores, such that the transformed scores are non-

discriminatory to desired level while ensuring as little loss in their informativeness as possible.

We model the problem as a constrained convex optimization problem and learn optimal

transformation parameters that minimize information loss while respecting the constraints

on the covariance between transformed scores and sensitive attribute(s).

5.2 Airbnb Case Study

5.2.1 Dataset

As discussed in the introduction, the phenomenon of peer-to-peer discrimination on the

sharing economy platforms is already well-documented in the literature. Since we would need

a real dataset to evaluate our proposed solutions and the datasets used in prior studies are

not publicly available, we collected a new dataset for this work. We used the data available

on Inside Airbnb 1, which is “an independent, non-commercial set of tools and data that

allows you to explore how Airbnb is really being used in cities around the world". We collected

data for the listings in the New York City. The attributes that are of interest to us in this

data include the aggregate rating (reputation scores) of the hosts, the prices of the listings,

the profile pictures of the hosts and several other characteristics of the listings (for example

number of bedrooms, bathrooms, guests, accommodates, min nights, reviews, reviews per

month, location coordinates etc). We also add two labels to each listing: the ethnicity of the

host and whether the listing is in a black majority neighborhood. To get the ethnicity of the

host, we used the profile picture of the hosts and a face recognition library API called Kairos2.

Kairos API, given the URL of an image, returns information about the people detected in

the image, including a confidence score between 0 and 1 for five possible ethnicities: asian,

black, white, hispanic or other. For each listing in our dataset, we take the ethnicity as the one

having the maximal confidence score from Kairos results, and we remove the listing if this

confidence score is not higher than a threshold (fixed at 0.7). This thresholding ensures that

we filter out the listings for which Kairos couldn’t detect the ethnicity of the hosts with enough

confidence. To determine whether a given listing is in a black majority neighborhood or not,

we used the coordinates of the listing and an additional piece of data (also available on Inside

Airbnb) that contains the coordinates of the boundaries of the neighborhoods (for example,

Harlem, Queens Village, Jamaica etc) in New York City. Using this information and a spatial

analysis library in Python (Shapely), we were able to determine the exact neighborhood of

each of the listings. We then used census data to determine whether a given neighborhood

1https://insideairbnb.com
2https://kairos.com
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is black majority or not. This classification is also available online.3. After all these pre-

processing steps, we finally get a dataset of 8218 listings on Airbnb from New York City. Based

on host ethnicity, 5716 listings are from white hosts and 2502 from non-white hosts (due

to comparatively small proportions of other ethnicities in the dataset, we merged all non-

white ethnicities). 3748 listings are in black-majority neighborhoods and 4470 are in other

neighborhoods. Note that the imbalance in the dataset is a feature of the real-world. We had

also collected similar datasets from Amsterdam, Geneva and San Francisco but the datasets

were even more imbalanced (very few listings from minority groups) and hence, we skip

discussion of those datasets in this chapter. It may also be noted that Kairos also allows us

to find the age and gender of the hosts. We skip discussion about the distribution of these

attributes as they don’t lead to any interesting findings w.r.t. discrimination.

5.2.2 Data Analysis

As discussed in the introduction, there have also been user studies on Airbnb and Uber that go

beyond just static data analysis and present more compelling evidence of discrimination. But

in this chapter, we will restrict ourselves to static data analysis. In our data, there are two main

attributes about a listing (and the corresponding host) that we focus on: the average rating

(reputation scores) of the hosts and the prices of the listings. The average ratings are direct

controlled by guests while prices are indirectly controlled by guests (due to lower demand and

trust). Thus, if we find a significant difference in the values of these attributes for different

ethnic groups, then it can be a potential case of bias. Table 5.1 shows the difference in average

prices of the listings and the average rating of white and non-white hosts. Table 5.2 shows the

difference in the listings of the hosts in black majority and other neighborhoods.

Table 5.1: Ratings and prices for different host ethnicity

White Hosts Others
Relative
Difference

Avg. Price $139.12 $105.51 31%
Avg. Rating 93.97 92.62 1.5%*

3https://en.wikipedia.org/wiki/List_of_African-American_neighborhoods
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Table 5.2: Ratings and prices for different neighborhoods

Others Black Majority
Relative
Difference

Avg. Price $155.66 $98.64 57%
Avg. Rating 94.02 93.20 0.9%*

*These values are actually more significant than they seem. Ratings on Airbnb are almost

always bigger than 85 (0.1 quantile is at 84.7), so the range of the ratings as shown above is not

really 0-100 and the relative difference could be much higher after scaling (around 18% and

10% respectively if we consider the range to be between 85 and 100).

To further confirm the bias, we perform a regression analysis on the prices of the listings

and ratings of the hosts (as target variables) with all the observable features that we could

get from Inside Airbnb, including ethnicity of the host and neighborhood type. A similar

approach was followed in [41] for confirming bias on taskrabbit and fiverr. The regression

results obtained using Python’s statsmodels library (linear model, OLS) are shown in Table

5.3 and 5.4. The ‘ceof’ columns shows the linear relationship between observed variables

and the price (or ratings) and the ‘P > |t |’ column shows the p-values for the relationship.

This confirms that even after accounting for the observable features, ethnicity of the host

(with positive correlation for white hosts) and the majority ethnicity of the neighborhoods

(with negative correlation for black majority areas) have a statistically significant effect on the

ratings and prices.

Another point to note in Table 5.3 is that, as expected, ratings also have a statistically significant

positive effect on prices. While the platform itself has no direct control over the prices, it can

definitely design better reputation systems which would then affect prices as well. In the rest

of the chapter, we will focus only on the ratings.

Remark. We will be using the example of guests discriminating among hosts throughout the

chapter, but the solutions proposed in the chapter are more general and apply for tackling

discrimination in the reverse direction as well (most platforms like Airbnb and Uber have

two-way reputation systems but it is more difficult to collect data about the reputation scores

of guests and passengers).
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Table 5.3: Regression Analysis for Price

coef std err t P>|t|
const -69.8484 19.962 -3.499 0.000
accommodates 26.7803 1.646 16.268 0.000
bathrooms 31.6218 4.180 7.565 0.000
bedrooms 16.0144 3.346 4.786 0.000
beds -7.0650 2.845 -2.483 0.013
guests 8.5204 1.756 4.852 0.000
min nights 0.4624 0.102 4.547 0.000
reviews -0.0011 0.054 -0.020 0.984
reviews/month -7.0454 1.204 -5.852 0.000
rating 0.9372 0.204 4.588 0.000
black majority area -55.7336 3.326 -16.755 0.000
white host 14.3567 3.608 3.979 0.000

Table 5.4: Regression Analysis for Ratings

coef std err t P>|t|
const 93.4629 0.313 298.216 0.000
accommodates -0.1241 0.090 -1.375 0.169
bathrooms -0.6018 0.226 -2.659 0.008
bedrooms 0.1657 0.181 0.916 0.360
beds -0.2936 0.154 -1.912 0.056
price 0.0027 0.001 4.588 0.000
guests 0.2543 0.095 2.680 0.007
min nights -0.0152 0.005 -2.772 0.006
reviews -0.0100 0.003 -3.432 0.001
reviews/month 0.3918 0.065 6.030 0.000
black majority area -0.5371 0.182 -2.943 0.003
white host 1.0296 0.195 5.291 0.000

5.3 Bias Free Rating Elicitation

Online reputation systems involve two main steps. In the first step, the users provide ratings

and in the second step, the platform aggregates the ratings into reputation scores. In this

section, we intervene in the first step and discuss how an incentive mechanism can elicit fair

ratings from users.

Incentive Mechanism Design Goals.

1. Users should be encouraged to try the services of high quality individuals belonging to

the disadvantaged class.

2. Users should provide truthful ratings about the received quality of service. Providing a

truthful rating about the service is important because we don’t want to offer uncondi-
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tional benefits for any individual belonging to any class.

While there may be several ways to achieve the first goal alone, achieving the second goal

together with the first goal is a hard problem because it also requires that user must reveal their

private information (the quality of service that they received from the individual) truthfully,

even though there is no way to verify what the user is saying is indeed true. The latter problem

is known as the problem of “information elicitation without verification" and there is a rich

literature on mechanisms for this problem. The mechanisms are commonly referred to as

the “peer-consistency" mechanisms [30]. The examples of these mechanisms include the

original peer-prediction method of [82] and the Bayesian Truth Serum of [93]). The broad idea

in these mechanisms is to “match" the information provided by different users and reward

the users based on agreement between the two pieces of information. We next show that a

state-of-the-art peer-consistency mechanism called the Peer Truth Serum for Crowdsourcing

[97] achieves both design goals listed above, if it has access to the sensitive attribute of the

individuals on the platform.

5.3.1 Preliminaries and Notation

Let the individuals providing services on a platform be categorized into two classes, based on

the value z of their sensitive attribute Z . For example, on Airbnb, hosts can be categorized

into black hosts and white hosts. In the case of freelancer platforms like taskrabbit, fiverr

[41], workers can be categorized into male and female workers. The sensitive attribute is not

necessarily required to be binary one and there can also be multiple sensitive attributes. The

discussion in the chapter can also be extended to these general cases. The users of the platform,

who take the services of these individuals, have private prior beliefs about the underlying

quality of the services provided by individuals belonging to different classes. The prior belief

of a user may be different for different classes. For example, a user may believe that male

workers are able to provide better service or that white hosts provide better accommodation.

We formalize beliefs of users as probability distributions about the quality of service. Let the

quality of service be expressed using a discrete signal Q that can take values in {1,2, . . . ,k}, 1

being worst and k being best. Then, prior belief of a user about the quality of service provided

by an individual belonging to class Z = z is given by Pz (Q = q). Once the user personally

observes the service quality q ′ offered by an individual Ψ (for example after hiring Ψ or staying

in the accommodation offered by Ψ), he updates his belief about this particular individual

Ψ. This is expressed by his posterior belief PΨ(Q = q |q ′) : given that he received a service of

quality q ′ himself, the probability that any other user on the platform will receive a service of

quality q from the same individual Ψ.

5.3.2 The Peer Truth Serum for Crowdsourcing [97]

Let r denote the rating given by a user i to an individual Ψ belonging to class Z = z and let r ′

denote the rating given by another (randomly selected) user j to the same individual. Then,
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the Peer Truth Serum rewards user i with τi given by:

τi =β(z)

[
1r=r ′

Ri z (r )
−1

]
Here1r=r ′ is an indicator function which returns 1 if the ratings r and r ′ match and 0 otherwise.

Ri z (r ) is the relative frequency of r in the ratings received by all individuals of class Z = z,

excluding the ratings given by user i . More formally, Ri z (r ) = numi z (r )∑
r̄∈{1,2,...,k} numi z (r̄ ) , where numi z (r )

is a function that counts occurrences of r in the ratings of all individuals (except i ) of class

Z = z. β(z) is a strictly positive scaling constant for the class Z = z such that the constant for

the disadvantaged class is sufficiently bigger than the constant for the other class. Rewards

can also be calculated by taking average by matching the ratings with multiple other users

instead of single user (to reduce variance).

5.3.3 Belief Update Assumption

We will make a weak and standard assumption (the self-predicting assumption [97]) about the

way users update their belief after they observe a quality of service. We assume:

PΨ(Q = q|q)

Pz (Q = q)
> PΨ(Q = q ′|q)

Pz (Q = q ′)
∀ q, q ′ ∈ {1,2, . . .K }

The assumption says that the relative change in posterior (over the prior) about what quality

other users will observe from individual Ψ is the highest for the quality that the user himself

observed. The assumption is easiest to understand in binary (good or bad quality) settings. If

the user herself observed a good service, his belief about others receiving a good service from

this individual doesn’t decrease (or remain exactly same) as compared to his prior.

5.3.4 Game-Theoretic Properties

1. Truthful Equilibrium[97]. Under the self-predicting assumption on workers’ beliefs

(which can be heterogeneous and unknown), the mechanism induces a truthful Bayes-

Nash equilibrium: if other users submit truthful ratings, it is the best strategy for any

user to submit truthful rating. Further, the expected reward in the truthful equilibrium

is strictly positive.

Proof Sketch: A rational user seeks to maximize the expected reward. The numerator in

the first term of expected reward is the posterior belief of the user about another user

receiving a certain quality of service given his own observation and the denominator

converges to his prior belief about that quality of service offered by a random individual

from that class. Then, truthful equilibrium follows from self-predicting assumption. A

formal proof can be found in [97]. It holds even if the rewards are scaled by constants.

2. Robustness to Collusion [97]. The mechanism ensures that truthful equilibrium is not
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just an equilibrium but the most profitable equilibrium. So collusion strategies are not

profitable. For example, a simple strategy in which users may always submit the same

rating (irrespective of true quality) so that their rating always match gives zero expected

reward.

Proof Sketch: If everyone gives same rating irrespective of what quality they actually

observed, then while numerator is always 1, the denominator (relative frequency of

that rating) is also always 1 (net reward is 0). More generally, for ratings provided

randomly (independent of the true quality), numerator and denominator converge to

same quantity [97].

3. Higher Reward for Truthful Ratings in the Disadvantaged Class but No Free Ride. The

mechanism gives higher reward if the users (try the service and) truthfully rate good

quality individuals from disadvantaged class but doesn’t incentivize giving good rating

for a bad service.

Proof Sketch. The scaling factor β is higher for the disadvantaged class but due to the

truthfulness property of the mechanism, the higher scaling factor only helps when the

provided rating is also truthful.

Remarks. Assuming that the rewards given by the mechanism are small compared to the cost

paid by the users and the disutility of actually receiving a bad service, the mechanism only

incentivizes the users to actively search for individuals within the disadvantaged class that

are very likely to offer high quality service (for example, based on photographs /presentation

of the service). It is true that in this way, the mechanism also benefits individuals from the

disadvantaged class who already have high ratings, but if this is not desired, one can re-define

the class of individuals taking into account other attributes also (for example prior number of

reviews) and apply the mechanism at a finer level of class definition. For example, on Airbnb

example, ‘super hosts’ status already makes this distinction. Finally, we note that the scaling

constant β can be dynamically changed and made equal for the two groups once it has served

its purpose (i.e. when there is no disparity on the platform). The mechanism then continues

to incentivize truthful reporting, leading to a sustainable long-term fairness on the platform.

5.3.5 Sensitive Attribute Information

Our mechanism uses the information about the sensitive attribute (class) of the individuals to

calculate Ri z (r ) using the ratings of all individuals across a class Z = z and also to scale the

rewards with class dependent scaling constants β(z). This information is required to ensure

that the mechanism works in the desired way.

To give a concrete example, imagine that the Ri z (r ) for some r denoting a good rating is 0.8

for the disadvantaged class and is 0.9 for the other class. Remember that Ri z (r ) is estimate of
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the prior belief. Let’s assume that after a user receives a good service from an individual, her

posterior belief that another user will also receive a good service from the same individual,

increases by 0.02. Thus, it becomes 0.82 if the individual is from the disadvantaged class

and 0.92 if the individual is from the other class. In this example, the user gets an expected

reward of β(z)

[
0.82
0.8 −1

]
= 0.025β(z) or β(z)

[
0.92
0.9 −1

]
= 0.022β(z) depending on the class of

the individual being rated. Let’s further assume for simplicity that the same happens in case

of a bad service also i.e. her posterior belief that another user will also receive a bad service

from the same individual given that she herself received bad service, increases by 0.02. Thus,

it becomes 0.22 if the individual is from the disadvantaged class and 0.12 if the individual is

from the other class. In this example, the user gets an expected reward of 0.1β(z) or 0.2β(z)

depending on the class.

Now imagine that we instead use an Ri (r ) calculated from the ratings received for all individu-

als irrespective of their class, and a class independent scaling constant β. Ri (r ) may be the

average of 0.9 and 0.8, for example. Using this Ri (r ) violates all three properties enumerated

in section 5.3.4. The first two properties are violated because a common Ri (r ) is no longer an

estimate of the different prior beliefs for the two classes and the self-predicting assumption

can not be used to guarantee truthfulness. The third property is violated because the scal-

ing constant is no longer different for the difference classes. In fact, not using the sensitive

attribute information in the mechanism may cause even more discrimination. The rewards

no longer encourage exploring good service providing individuals from the disadvantaged

class but on the contrary, may discourage doing so. In the above example, it is easy to see that

truthfully rating a good service gets a negative reward of β

[
0.82
0.85 −1

]
for the disadvantaged

class and a positive reward of β

[
0.92
0.85 −1

]
for the other class. On the other hand, truthfully

rating a bad service gets a positive reward of β

[
0.22
0.15 −1

]
for the disadvantaged class and a

negative reward of β

[
0.12
0.15 −1

]
for the other class. Indeed, it is not necessary that a similar

difference in rewards for the two classes will always be observed (depending on different priors

and belief update parameters) but the example clearly shows that it is possible that the bias

may be reinforced if the sensitive attribute information is not used in the mechanism. Hence,

it is important to use this information to achieve the desired outcome using the incentive

mechanism. This is similar to using sensitive attribute in fair machine learning (at training

and/or prediction time).

5.4 Bias Correction

While the incentive mechanism proposed in the previous section is an attractive method to

make reputation systems fair, it is possible that the design and business model of some sharing

economy platforms may not permit the implementation of such a mechanism since many

platforms may be reluctant to pay for reviews. In such cases, an ideal solution would be to
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somehow estimate the bias of the users and discount their opinions according to their bias

parameters while aggregating the ratings into the reputation scores. However, such a solution

can only work if:

• There is enough data available about every user. This means that every user must provide

enough ratings across classes.

• The data from users follows a consistent probabilistic distribution so that their biased

behavior can be learned. In our case, this requires that users provide ratings in a consistent

way.

Unfortunately, most users on the web provide very few ratings making it hard to make any

inference about their bias parameters. Further, it is difficult to model human rating behavior

using a simple probabilistic model. Hence, we take an alternative approach and propose a

“post-aggregation" correction technique.

5.4.1 Post-Aggregation Transformation

We apply a transformation on the aggregated reputation scores of all individuals such that

the transformed scores are non-discriminatory, while ensuring that the information loss due

to transformation is minimum. More formally, let x = {x1, x2, . . . xn} be the originally aggre-

gated reputation scores of individuals {1,2, ...n} and let x̃ = {x̃1, x̃2, . . . x̃n} be their transformed

scores. Let l (x̃, x) be a loss function measuring the amount of information lost due to the

transformation and let d(x̃, z) be a function measuring the discrimination in the transformed

scores, z = {z1, z2, . . . zn} being the values of the sensitive attribute. Then, we have the following

problem:
minimize l (x̃, x)

subject to d(x̃, z) ≤ δ
(5.1)

Here, δ≥ 0 is the allowed threshold of discrimination in the transformed scores. l and d can

be chosen according to the domain of application and the computational considerations.

In our work, we make the following assumptions: (1) l is the mean squared error(MSE),

which is a common choice for measuring difference in real valued ratings (for example, to

evaluate recommendation systems algorithms), (2) d is the absolute value of covariance

between the transformed scores and the sensitive attribute values, and (3) x̃i = a ·xi +b. With

these assumptions, we get a convex optimization problem in a and b, which can be solved

efficiently using existing tools. The sensitive attribute doesn’t have to be binary and it is easy

to accommodate non-binary categorical sensitive attributes using one-hot representation of

the sensitive attribute (a common trick used in data analysis and machine learning).

Remarks. The choice of covariance as a proxy to measure bias was explored by [117] in context

of machine learning classifiers. In our settings, correlation would be a more appropriate metric

than covariance due to scale invariance, but it makes the problem non-convex. Nevertheless,
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as we will show, even covariance turns out to give good performance in our experiments. Fi-

nally, we note that instead of using identical transformation parameters a,b for all individuals,

one could define x̃ to have individual specific parameters ai ,bi (at the cost of increasing the

number of optimization parameters). It is also possible to consider more complex transforma-

tion functions (for example, x̃i = a ·x2
i +b ·xi +c). However, it may not always be useful if d(x̃, z)

is still measured using covariance (covariance captures only the linear dependence between

two variables). For example, even with x̃i = a · xi +b and covariance as the measure of bias,

it is easy to show mathematically that the closed form solution for a is 1 in our optimization

problem. The same is true for coefficients of higher order terms. This was also observed

in our experiments. Thus, we only discuss simple transformations of the form a · xi +b in

this chapter. It remains an interesting future work to explore whether other transformation

functions x̃ (together with more advanced measures d(x̃, z) of discrimination) can achieve

better performance, while keeping the problem convex.

5.4.2 Range Scaling

On many platforms (including Airbnb), aggregated reputation scores always lie within a fixed

range [L,U ] (for example, [0,5] or [0,100]). It is fairly easy to address this in our proposed

solution. One natural fix is to include additional constraints on the parameters a,b in the

optimization problem such that L < x̃i = a · xi + b < U for any L < xi < U and constants

L,U . An even simpler approach is to apply a range scaling on the transformed scores (after

optimization) so that the transformed scores lie in desired range [l ,u].

x̃scaled
i = (u − l )

x̃i −min(x̃)

max(x̃)−min(x̃)
+ l

In our experiments, we set l = min(x),u =U . This ensure that the the minimum value of the

transformed scores doesn’t go below the minimum value of the original reputation scores. It

may be noted that the scaling is a constant linear function applied to all scores; hence, the

covariance between the scaled transformed scores and the sensitive attribute will stay the

same as it was before scaling, and it doesn’t alter the discrimination removal achieved by the

constrained optimization step.

Remark. Assuming the conclusions of the user study conducted by [2], a one time correction

in reputation scores should bring fairness on the platform by building trust between the users.

In a less optimistic (and perhaps more realistic) scenario, the correction can be applied only

at infrequent intervals, eventually leading to an ideal setting where no more corrections are

required and reputation scores are fair by default.

5.4.3 Experiments

We implemented the above approach in Python (using Scipy’s Sequential Least Squares Pro-

gramming) and tested it on our Airbnb dataset. The results presented here are for the case
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when host ethnicity was assumed to be the sensitive attribute but similar trends were observed

when neighborhood ethnicity was assumed to be the sensitive attribute. The value of δ was

set to 10−5.

Table 5.5: MSE and Covariance after the transformation

MSE(x, x̃) cov(x̃, z)
Before Transformation 0 0.228
After Transformation 0.246 10−5

Table 5.5 shows that the covariance between the reputation scores and the ethnicity was

reduced to 1e −05 as specified by the constraint (δ) and MSE increased to 0.246. While it is

certainly good that covariance is now close to 0, it is not clear whether the increase in MSE is

acceptable or not. Even a naive transformation technique (for example which assigns random

reputation scores to individuals independent of their true reputation) could also achieve a zero

covariance but that would clearly not be an acceptable solution. Thus, we perform a regression

analysis on the transformed reputation scores (exactly as we did in Section 5.2). Table 5.6

shows that the p-value corresponding to the host ethnicity is now 0.803 >> 0.05, which means

ethnicity is now an insignificant feature, while p-values for other relevant remain unchanged.

This shows that our technique retained the desired information while removing discrimination.

We note that if there are multiple sensitive attributes, our optimization framework can easily

accommodate multiple constraints (one for each sensitive attribute). For example, if both host

ethnicity as well as neighborhood’s majority ethnicity are specified as sensitive attributes in

the constraints, then the scores transformed using the two constraints would show no relation

with both attributes.

We now show some additional experimental results on synthetic datasets.

• Power Law Distribution. We assumed that the sensitive attribute can now take 3 differ-

ent values (for example black, white and asian hosts) and generated 5000, 10,000 and

15,000 reputation scores (one for each synthetic host) in the range 0-10 for these three

classes. We generated the scores using power-law distribution (with parameters 3, 6

and 10 respectively) to closely model the distribution observed in Airbnb data. Table 5.7

shows the results of the transformation for δ= 0.01.

• Normal Distribution. Similar observations were made when the data was generated

using truncated normal distributions (10,000 scores from N (5,1) and 10,000 from

N (8,2)). Instead of presenting duplicate trends, we instead show some other interesting

observations on the data generated using normal distribution. Figure 5.1 shows that

the our threshold constant δ in the optimization problem provides the platform direct

control over the extent to which reputation scores can be altered, leading to different

values of covariance and MSE. The flat parts of the curves show that if δ is set to a

value equal to or higher than the covariance of the original scores, then as expected our
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Table 5.6: Regression Analysis for Transformed Ratings

coef std err t P>|t|
const 94.2129 0.313 300.610 0.000
accommodates -0.1241 0.090 -1.375 0.169
bathrooms -0.6018 0.226 -2.659 0.008
bedrooms 0.1657 0.181 0.916 0.360
beds -0.2936 0.154 -1.912 0.056
price 0.0027 0.001 4.588 0.000
guests 0.2543 0.095 2.680 0.007
min nights -0.0152 0.005 -2.772 0.006
reviews -0.0100 0.003 -3.432 0.001
reviews/month 0.3918 0.065 6.030 0.000
black majority area -0.5371 0.182 -2.943 0.003
white host -0.0486 0.195 -0.250 0.803

Table 5.7: Synthetic Data Results (Power Law Distribution)

MSE(x, x̃) cov(x̃, z)
Before Transformation 0 0.264
After Transformation 0.117 0.01

algorithm does not transform the scores and return the original scores. Figure 5.2 shows

that the proposed technique scales linearly with the number of reputation scores to be

transformed. We transformed upto 1M reputation scores (equal number of samples

from two truncated normals) in under 4 minutes on a normal PC.

Figure 5.1: Controlling δ Figure 5.2: Running Time

5.5 Chapter Summary

In this chapter, we considered the problem of making reputation systems on the sharing

economy platforms more fair and proposed two solutions: an incentive mechanism and a

bias correction technique. The incentive mechanism encourages users to try the service of
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individuals belonging to the disadvantaged class and at the same time also elicits truthful

ratings about the quality of service received. This ensures that disadvantaged class doesn’t

receive unconditional benefit and the aggregated reputation scores compensate for any dis-

parate benefit in the long term. Eventually, when individuals have reputation scores that truly

reflect their quality irrespective of their class, the incentive mechanism can be easily modified

through the scaling constant to stop offering different incentives for different classes, and it

can continue to offer incentives for truthful reporting. The bias correction is also meant to be

a similar short-term intervention, albeit a more directly controlled one. Even if the platform

uses the bias correction solution instead of the payment mechanism, the mechanism can still

be used to provide feedback to the raters through artificial currency or points.

There also remain several open questions. Usually, the platforms not only display the aggre-

gated reputation scores but also each of ratings given by the users. On one hand, this further

helps in emphasizing that an incentive mechanism is an ideal way to make reputation systems

fair but on the other hand, it also means that a post-aggregation bias correction technique

loses its utility since the bias is corrected only for the aggregated reputation scores. There

is no trivial way to hide biased ratings without access to sufficient data to estimate biased

behavior of some of the users. Another open problem is to elicit truthful textual reviews or to

filter biased ones.
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6 Crowdsourcing with Fairness, Diver-
sity and Budget Constraints

This chapter is based on the following publication:

N Goel, B Faltings. Crowdsourcing with Fairness, Diversity and Budget Constraints. In Pro-

ceedings of the AAAI/ACM Conference on AI, Ethics and Society (AAAI/ACM AIES), 2019.

6.1 Introduction

Algorithmic decision-making is gaining popularity in many diverse application areas of so-

cial importance. Examples include criminal recidivism prediction, stop-and-frisk programs,

university admissions, bank loan decisions, screening job candidates, fake news control, infor-

mation filtering(personalization) and search engine rankings etc. Recently, questions were

raised about the fairness of these algorithms. An investigation [94] found COMPAS (a popular

software used by courts to predict criminal recidivism risk) racially discriminatory. Other

software systems have also been found to be biased against people of different races, genders

and political views [9, 63, 71, 90]. This has led to a widespread and legitimate concern about

the potential negative influence of such systems on the society [8, 92]. One of the several

reasons of algorithmic bias is the bias in the training datasets. In order to achieve algorithmic

fairness, the issue of data fairness also needs to be addressed. In many interesting cases, data

is directly or indirectly influenced by some kind of human feedback. The influence is obvious

and direct if human assigned labels are used as a proxy for ground truth labels. However,

human feedback can also indirectly influence the so-called “ground-truth" datasets (when

the labels are not human assigned but observed in reality). This is because the ground truth

labels can only be collected for a finite number of data points and the selection of data points

is often influenced by humans. For example, there are no ground truth labels available for

recidivism of people who were never released by the judges. There can be many other ways

in which data can be biased. In this chapter, we focus only on the direct influence of human

feedback on data fairness i.e. the case in which humans assign labels for data. In this thesis,

we view crowdsourcing data fairness as an independent objective, separate from algorithmic
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fairness. Algorithmic fairness is a more complex problem and needs further considerations

beyond data fairness.

Crowdsourcing is increasingly used to collect training data labels. Inevitably, crowdworkers

have different biases, which are then reflected in the labels collected from the workers. A very

recent study [26] conducted on Amazon Mechanical Turk showed that the crowdworkers were

equally racially biased as COMPAS in predicting recidivism. The difference in false positive

rates of crowd predictions for white and black defendants was significant and nearly equal to

that of the predictions made by COMPAS. The same was true for false negative rates also. The

bias didn’t change much even when the crowdworkers were not explicitly displayed the race

of the defendants.

We consider settings similar to [26]. Workers are asked to provide their answers (or labels)

about some tasks with unknown ground truth labels. Every task has some non-sensitive details

that are shown to the workers and a sensitive attribute (for example, race) that is not explicitly

shown. But the sensitive attribute may potentially be correlated with the non-sensitive task

details. A worker inspects the tasks assigned to her and submits labels for the tasks. Each

task is assumed to have a ground truth label but the workers don’t have any way of accessing

the ground truth. They can only use the task details, their prior knowledge and incomplete

information from other sources to make an “educated guess" about the ground truth. The

examples of such tasks are “Will a defendant with given personal history recidivate within the

next two years or not?" or “Will a candidate with given CV be successful in the job applied for?"

or “Is given political news item fake?". The sensitive attributes in these example tasks are race,

gender and political group respectively. Every worker charges a fee for answering the assigned

tasks. The requester has a budget constraint on the fees that she can pay to the workers.

6.1.1 Related Work

Empirical Studies : [26] finds racial discrimination in recidivism prediction tasks on Amazon

Mechanical Turk (AMT). [88] analyzes linguistic bias in labels collected through GWAP (Games

with a Purpose) on AMT. [89] analyzes the linguistic bias in collaboratively produced biogra-

phies. [41] finds discrimination in reputation crowdsourcing systems in online marketplaces.

Proposed Solutions : In an independent and pioneering work, [107] considers the problem

of fairness in human decision-making tasks like recidivism prediction, without budget and

diversity constraints. Criminal cases with known race information arrive in batches of known

sizes and an MDP based maximum weighted matching algorithm assigns each case to exactly

one human judge such that the overall utility from decisions of releasing or keeping any

defendant is maximized, while ensuring demographic parity of release decisions across two

races. To the best of our knowledge this is the first and the most recent work to consider

settings somewhat similar to ours but our work differs from theirs in several ways. We consider

general crowdsourcing settings, in which several assumptions from their model don’t hold.

In particular, they assume that “true" risk scores of individual defendants are known to the
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human judges and the case assignment algorithm. In general crowdsourcing settings, one

can only hope to have an overall label distribution for the population. In fact, finding the

label probability for individual tasks is the very objective of crowdsourcing. Further, it is not

immediately clear how their work can be extended for other important fairness definitions. In

their model, given true risk scores of the defendants, judges only apply different thresholds

for black and white defendants to predict recidivism. The threshold parameters alone can’t

capture unfairness measures such as unequal error rates. Even if one does improvise the

model with more parameters, it remains an open question whether the theoretical conjectures

made in the paper are still likely. This is because the conjectures assume that every time a

judge gives a decision, the model parameters of the judge are updated. This becomes an

issue with error rate parameters since the ground truth labels are not revealed for all tasks in

crowdsourcing. [84] considers a different but related problem of bias resulting from adaptive

data gathering (when the choice of whether to collect more data of a given type depends on

the data already collected) and propose a differentially private data collection process as a

solution.

There is also a lot of work on task assignment in crowdsourcing, which doesn’t consider fairness.

[106] proposes a greedy knapsack approach to satisfy limits on budget and the number of

tasks any worker can solve. [45, 47, 62] consider task assignment problem when workers arrive

online. [10] proposes optimal gold task assignment when workers’ diligence change over time.

Beyond data collection, there is also recent work on making algorithms fair and robust to bias

in the training data [27, 39, 42, 66, 118] and on correcting bias in training datasets [11, 31].

Correcting bias in a given dataset requires modifying the feature values and/or the labels

in the dataset. In this chapter, we aim to collect unbiased and high quality dataset to begin

with, relaxing the responsibility and the overhead of such post-processing from data users (for

example, data scientists and machine learning engineers).

6.1.2 Our Contributions

In this chapter, we make the following contributions:

1. We propose a novel algorithm for assigning tasks to workers, which optimizes the

expected accuracy of labels obtained from crowd while ensuring that the collected

labels satisfy desired notions of error fairness. The algorithm also ensures diversity

of responses by limiting the probability of assigning many tasks to a single worker.

Our algorithm works even when the values of the sensitive attribute of the tasks are

unavailable or can’t used because of ethical/legal reasons.

2. With a novel formulation of the task assignment strategy as a probability distribution

over the workers, we can cast the optimization problem as a linear program and avoid

the use of integer programming or other graph matching algorithms which are popular

in the task assignment literature but are harder to solve exactly and analyze. This also
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makes our algorithm suitable for online settings in which the requester is not aware of

the tasks in advance.

3. We use a limited number of gold tasks (tasks with known ground-truth answers) for

estimating workers’ parameters and then optimally assign non-gold tasks to the workers.

We provide performance bounds for our algorithm and show empirical performance on

a real dataset.

6.2 Model

Let there be a finite set of n workers and a large pool of tasks with unknown ground truth

labels. The data requester randomly chooses tasks from the pool one by one and assigns each

to one (or more) worker(s). The requester may not have knowledge of all the tasks in the pool

(not even the number of tasks in the pool) in advance. A worker i charges a constant amount

of fee ci for every label she provides. The requester has a budget constraint for the maximum

expected money to be spent on acquiring one label from a worker.

Let Z be a random variable denoting the sensitive attribute and Y denoting the (unknown)

ground truth labels of the tasks such that Z ,Y ∈ {0,1}. For the tasks attempted by a worker i ,

let Ŷi ∈ {0,1} denote the labels submitted by the worker. We denote the realizations of random

variables Z , Y and Ŷi by lower case letters z, y and ŷi respectively and will drop the subscripts

for brevity when the context is clear. We will use [n] to denote {1,2, . . . ,n}. The workers are

modeled using their accuracy matrices as follows:

Definition 18 (Accuracy Matrices of a Worker). The accuracy matrices Ai z , z ∈ {0,1} of a

worker i are two 2×2 row stochastic matrices such that, ∀y, ŷi ∈ {0,1}, the entry Ai z [y, ŷi ] is the

probability of the worker’s label on a task being ŷi given that the sensitive attribute of the task is

z and the ground truth label is y.

The two matrices Ai 0 and Ai 1 define the accuracy of the worker i for tasks belonging to the

two different values of the sensitive attribute. The accuracy matrix model, also known as

the Dawid-Skene model [21] in the crowdsourcing literature, is strong enough to capture

different errors (for e.g. false positive and false negative rates) that a worker may make for

tasks belonging to a given sensitive attribute value. If a worker is unbiased in the sense that her

errors don’t depend on the value of sensitive attribute of the task, her two accuracy matrices

are identical. Note that this model makes an implicit i.i.d. assumption on a worker’s answers.

The requester uses a probabilistic policy to assign the tasks to workers and collects the labels

from the workers.

Definition 19 (Crowdsourcing Policy). A crowdsourcing policy is an n-dimensional stochastic

vector S, such that an element S[i ], i ∈ [n] is the probability of assigning any task to worker i ,

regardless of the sensitive attribute value of the task.
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Note that the requester’s policy doesn’t depend on the value of the sensitive attribute of the

task. This is an intentional modeling choice to deal with the situations in which the sensitive

attribute values of the tasks may not be available. It may be due to missing data, privacy

reasons or legal/ethical requirements of not using the sensitive attribute.

For any task, the requester randomly selects one (or more than one) worker(s) with proba-

bilities specified by the crowdsourcing policy vector S and assigns the task to the selected

worker(s). The labels collected from the workers are obviously not guaranteed to be error

free. We can define the accuracy matrices of the crowdsourcing policy in the same way as we

defined the accuracy matrices of workers.

Definition 20 (Accuracy Matrices of a Crowdsourcing Policy). The accuracy matrices Az , z ∈
{0,1} of a crowdsourcing policy are two 2×2 row stochastic matrices such that, ∀y, ŷ ∈ {0,1}, the

entry Az [y, ŷ] is the probability that a crowdsourced label1 for a task is ŷ given that the sensitive

attribute of the task is z and the ground truth label is y.

We use the letter A to denote accuracy matrices of the crowdsourcing policy as well as that of

the workers but readers can differentiate between the two by noting that A has an additional

subscript i when referring to the matrix of a worker i . It is easy to see that we can express the

accuracy matrices of a policy in terms of the accuracy matrices of the workers as follows:

Az =
n∑

i=1
S[i ] ·Ai z ,∀z ∈ {0,1} (6.1)

The requester is interested in finding a crowdsourcing policy that maximizes the expected

accuracy of the collected labels while ensuring that the data is fair, diverse and is acquired

within budget constraints.

Crowd diversity is a subjective property and is generally defined in terms of the demographics

of crowdworkers. In this chapter, we work with a given set of crowdworkers and can’t control

such a measure of diversity. For settings like these, we define diversity as follows:

Definition 21 (β-Diverse Crowdsourcing Policy). A crowdsourcing policy is called β-diverse

if and only if ∀ i ∈ [n],S[i ] is upper bounded by β, where β is a diversity parameter such that

0 ≤β< 1.

This definition limits the influence of individual workers on the overall crowdsourced dataset

and aims to distribute the influence across more workers.

Similar to diversity, fairness is also a subjective property. We use some standard definitions of

fairness from the machine learning literature [7, 42, 118].

1We note that the accuracy of a crowdsourcing policy can also be defined in terms of aggregated label when
multiple labels per task are collected. But such definitions depend on specific label aggregation algorithms used.
However, in many cases, it may be sufficient to assume that the accuracy of a policy with aggregated labels is an
increasing function of our accuracy, which is a reasonable assumption.
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Definition 22 (False Positive Rate Parity). A crowdsourcing policy, with accuracy matrices A0

and A1, is said to satisfy false positive rate parity if and only

A0[0,1] =A1[0,1]

One can similarly define false negative rate parity, which requires A0[1,0] =A1[1,0].

Definition 23 (Error Rate Parity). A crowdsourcing policy, with accuracy matrices A0 and A1,

is said to satisfy error rate parity if and only if it satisfies both false positive rate parity and false

negative rate parity, i.e.

A0 =A1

It is easy to see that if all workers are unbiased, any crowdsourcing policy satisfies the above

fairness definitions and one only needs to select a policy that maximizes accuracy while

satisfying budget and diversity constraints. In this chapter, we address the general problem

scenario (when workers are not necessarily unbiased).

6.3 Finding Optimal Crowdsourcing Policy

Let’s first assume that the accuracy matrices of all the workers are known and the requester
is interested in finding the optimal crowdsourcing policy maximizing the expected accuracy
under budget, fairness and diversity constraints. We model this as a constrained optimization
problem. The objective function in the minimization problem is the negative of the expected
accuracy of the policy variable S:

−E[A (S)] =− ∑
z∈{0,1}

P (Z = z)
∑

y∈{0,1}
Pz (Y = y)

n∑
i=1

S[i ]Ai z [y, y] (6.2)

where P (Z = z) is the known prior probability that any random task in the pool will have

sensitive attribute value equal to z and Pz (Y = y) is the known prior probability that any

random task with sensitive attribute value z in the pool will have a ground truth label y .

Together with the fairness and diversity constraints, we get following optimization problem:

arg min
S

−∑
z∈{0,1}

P (Z = z)
∑

y∈{0,1}
Pz (Y = y)

n∑
i=1

S[i ]Ai z [y, y]

subject to
n∑

i=1
S[i ] = 1

S[i ] ≥ 0 ,∀i ∈ [n]

S[i ] ≤β ,∀i ∈ [n]

A0[0,1]−A1[0,1] ≤α
− (A0[0,1]−A1[0,1]) ≤α

n∑
i=1

S[i ] · ci ≤C

(6.3)
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The first two constraints are due to the fact that the crowdsourcing policy vectors are proba-

bilistic and so, all elements must be positive and sum to 1. The third is the diversity constraint

as formalized in Definition 21. The forth and fifth constraints together are equivalent to∣∣A0[0,1]−A1[0,1]
∣∣ ≤ α. For α = 0, we get the exact fairness constraint (false positive rate

parity) as formalized in Definition 22. Other fairness constraints can also be similarly included.

The last constraint is due to the maximum expected budget (C ) that can be spent on acquiring

one answer from a worker.

6.3.1 Estimates of Worker Accuracy Matrices

Until now, we assumed that the accuracy matrices of the workers are known. However, in

practice, we need to estimate them. As is common in the literature [86], we assume that the

requester has some limited number of gold standard tasks. Gold tasks are the tasks for which

the requester not only knows the sensitive attribute value z but also the ground truth label y .

We use gold tasks to estimate unknown worker accuracy matrices. Estimating all the entries

of the worker accuracy matrices requires that every worker answers some gold tasks of each

“type" (the type of a task is specified by its ground truth answer and its sensitive attribute

value). We assign Ng tasks of every type to each worker to estimate their accuracy matrices.

This is further explained as follows. Let Âi z be the estimate of the worker accuracy matrices

Ai z , ∀z ∈ {0,1}. If a worker i answers k tasks correctly out of Ng gold tasks of type z = 1, y = 1,

then

Âi 1[1,1] = k

Ng
and Âi 1[1,0] = 1− Âi 1[1,1]

Similarly, if she answers k ′ tasks correctly out of Ng gold tasks of type z = 1, y = 0, then

Âi 1[0,0] = k ′

Ng
and Âi 1[0,1] = 1− Âi 1[0,0]

This process is repeated with gold tasks of type z = 0, y = 1 and z = 0, y = 0 to get estimates of

all entries of the worker’s matrices.

The optimization problem 6.3 can now be written as follows, by replacing the accuracy matri-
ces with their estimates:

arg min
S

−∑
z∈{0,1}

P (Z = z)
∑

y∈{0,1}
Pz (Y = y)

n∑
i=1

S[i ]Âi z [y, y]

subject to
n∑

i=1
S[i ] = 1

S[i ] ≥ 0 ,∀i ∈ [n]

S[i ] ≤β ,∀i ∈ [n]

Â0[0,1]− Â1[0,1] ≤α
− (Â0[0,1]− Â1[0,1]) ≤α

n∑
i=1

S[i ] · ci ≤C

(6.4)
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where,

Âz =
n∑

i=1
S[i ] · Âi z ,∀z ∈ {0,1} (6.5)

This is a linear program, which can be exactly solved in polynomial time. In practice, the

simplex method [17] can be used to find the optimal solution efficiently with common opti-

mization libraries like IBM CPLEX and SciPy. Depending on the constraints, the cost and the

accuracy matrices of workers, it is possible that no feasible solution exists for the optimization

problem. In this case, the requester will have no choice but to relax the constraints.

A summary of steps of our complete crowdsourcing algorithm below.

Algorithm 1: Crowdsourcing with Fairness, Diversity and Budget Constraints
(CrowdFDB)

1 Assign Ng gold tasks of every type ((z = 0, y = 0), (z = 0, y = 1), (z = 1, y = 0), (z = 1, y = 1))
to every worker i in the provided set of n workers.

2 Get estimate of every worker i ’s accuracy matrices Âi 0 & Âi 1.
3 Solve the linear program to find the best crowdsourcing policy satisfying desired

fairness, diversity and budget constraints.
4 Pick a task randomly from the task pool of tasks with unknown ground truth labels.

Randomly select one or more workers from the set of n workers, with probabilities
specified by the crowdsourcing policy. Assign the task to the selected worker(s).

5 Repeat Step 4 for all tasks in the pool.

6.4 Theoretical Analysis

When worker accuracy matrices are known, our method is guaranteed to provide the optimal

solution, satisfying constraints. However, when estimates of the accuracy matrices are used,

two interesting questions arise:

1. Does the solution of problem 6.4 (which is optimal and satisfies fairness constraints

only according to the estimated accuracy parameters) also satisfy fairness in reality?

2. How much does the requester lose in terms of actual expected accuracy of the policy

because of using the estimated accuracy parameters in optimization?

Theorem 13. With probability at least γ, the solution Ŝ to the optimization problem 6.4 satisfies

∣∣A0[0,1]−A1[0,1]
∣∣≤α+δ

where

δ= 2

√
− ln(1− 2n

p
γ)+ ln2

2Ng
;Az =

n∑
i=1

Ŝ[i ]Ai z ,∀z ∈ {0,1}

and Ng is number of gold tasks.
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The theorem states that when we use estimates of the worker accuracy matrices instead of

the real matrices, the obtained solution Ŝ doesn’t violate the fairness constraints in reality by

more than δ, with probability at least γ.

Theorem 14. Assuming that the optimal solution Ŝ of problem 6.4 satisfies fairness constraints

of problem 6.3 and the optimal solution S of problem 6.3 satisfies fairness constraints of prob-

lem 6.4, then with probability at least γ′

E[A (S)]−E[A (Ŝ)] ≤ 2nβ

√√√√− ln(1− 4n
√
γ′)+ ln2

2Ng

where

E[A (S)] = ∑
z∈{0,1}

P (Z = z)
∑

y∈{0,1}
Pz (Y = y)

n∑
i=1

S[i ]Ai z [y, y],

E[A (Ŝ)] = ∑
z∈{0,1}

P (Z = z)
∑

y∈{0,1}
Pz (Y = y)

n∑
i=1

Ŝ[i ]Ai z [y, y]

The theorem provides an upper bound on the loss in real expected accuracy of the crowdsourc-

ing policy, when we use the estimated worker matrices instead of the real accuracy matrices for

optimization. Note that in both the theorems, the bounds get better with increasing number

of gold tasks.

The proofs of the above theorem are not difficult and depend on a simple application of the

Hoeffding’s inequality. For the sake of completeness, we provide the proofs in the appendix.

6.5 Experimental Evaluation

6.5.1 Datasets

We use the following datasets in our experiments.

1. Broward County Dataset [94] : This dataset contains information about 7214 defen-

dants arrested in Broward County, Florida between 2013 and 2014. The information

includes race of the defendants among other non-sensitive attributes such as age, prior

charges etc. The dataset also contains ground-truth whether the defendants recidivated

within 2 years or not. There are 3696 black defendants and 2454 white defendants in

the dataset and the base rate of recidivism is 51.43% among the black defendants and

39.36% among the white defendants.

2. Crowd Judgment Dataset : [26] randomly selected a subset of 1000 defendants from the

Broward County dataset and asked 20 random workers on Amazon Mechanical Turk to

predict recidivism for each individual. In total, 400 workers participated in their study
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and each worker submitted answers for 50 different defendants. The dataset contains

these answers collected from the crowd.

Experiment Outline

The idea is to split the set of defendants into two sets. The first set acts as the gold standard

set, which we use to estimate worker accuracy matrices. Once we have the estimates of

the worker accuracy matrices, we can solve the optimization problem 6.4 and learn optimal

crowdsourcing policy. We then pick non-gold defendants one by one and assign it to one of

the 400 workers, randomly selected according to the policy. The workers’ responses are then

compared with the ground-truth label to evaluate fairness and accuracy of our crowdsourcing

policy.

Handling Limitations of Datasets

Unfortunately, none of the two datasets alone can be used for such experiment. The Broward

County dataset contains ground truth labels but doesn’t contain workers’ answers. On the

other hand, the Crowd Judgment dataset does contain worker answers but is very limited

for the following reasons. In this dataset, tasks have already been assigned (randomly) to

workers and for every defendant, we have responses of only a subset of 20 workers out of

all 400 workers. If the crowdsourcing policy learned by our algorithm decides that a worker

outside that subset of 20 workers should be assigned a task, then we will need to know the

answer of that worker but the answer of this worker is not part of the dataset. The second

reason is that every worker has submitted answers for 50 defendants, which is sufficient for

getting good estimates of the accuracy parameters of the workers but not big enough to be

further split into gold and non-gold sets.

To overcome these limitations, we first create a bigger synthetic dataset using the two real

datasets as follows. We generate synthetic answers of all the 400 workers for all the 3696 black

and 2454 white defendants in the Broward County dataset. The answers are generated using

the worker accuracy parameters estimated from the entire Crowd Judgment dataset. Note that

even though this is a synthetic dataset but none of the parameters of the dataset are synthetic.

The worker accuracy parameters are derived from the entire real dataset of [26] and the base

dataset (Broward County dataset) is used as it is. Indeed, this is not ideal but is perhaps the

only option, given the limitations of the available datasets.

Worker Costs : The datasets also don’t contain workers’ costs. We create this information in

two different ways. In the first setting, we associate a uniform cost of $1 to each worker. In

the second and more interesting setting, we probabilistically associate a cost of $1 or $3. The

probability of a worker’s cost being $3 is equal to her average accuracy and of it being $1 is

equal to 1−her average accuracy. Thus, the higher the average accuracy of a worker, the higher

is the probability that she will charge a cost of $3.
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Now this complete dataset is ready to be used in the experiment outlined earlier in this

section. We compare our approach (called ‘CrowdFDB’ in the figures) with two baselines

(called ‘Random’ and ‘Greedy’ [106]). The baselines are discussed below.

6.5.2 Baselines

1. Random Policy : In the random policy, all workers are equally likely to be selected

(probability 1
400 ) for any task.

2. Greedy Optimization [106] : In this baseline, we first estimate worker accuracy matrices

using gold tasks in exactly same way as we do in our algorithm. However, the optimiza-

tion is done using a bounded knapsack algorithm instead of linear programming. This

algorithm sorts the workers in decreasing order of their “density", where density is

defined as the ratio of the expected accuracy of a worker and her cost. The expected

accuracy of a worker can be calculated in the same way as we do for our algorithm i.e.∑
z∈{0,1} P (Z = z)

∑
g∈{0,1} Pz (Y = y)Âi z [y, y]. Then, the algorithm assigns as many tasks as

possible to the highest density worker without violating the diversity constraint. If T is

the total number of tasks to be assigned, then a worker can be assigned at most βT tasks.

Note that, unlike our algorithm, this baseline has to know the total number of tasks in

advance to enforce diversity constraint. Once this worker has reached its capacity, the

algorithm starts assigning tasks to the worker with next highest density and continues

this for all tasks. However, it may be noted that the Greedy approach was originally

proposed for a bit different setting, in which there is an overall crowdsourcing budget

and the goal of the requester is to get as many tasks done as possible in that budget,

maximizing total utility/accuracy and respecting work limits of the workers.

To give extra advantage to the baselines, we don’t put an explicit budget constraint for

them and observe whether they can compete with the fairness and accuracy of our

algorithm, which operates under budget constraint.

6.5.3 Observations

We use equal error rate parity (Definition 23) as the desired fairness. All results reported in

the chapter are averages over 100 repeated runs. Parameter β was set to 0.01 in the first set

of experiments. In the uniform costs settings, C was set to $1 and in non-uniform settings,

C = $1.5.

Uniform Costs

In Figure 6.1, we keep the fairness constraint α to be fixed (0.01) and observe the effect of

increasing number of gold tasks (Ng ). Figures 6.1a and 6.1b show that as we increase Ng ,

the fairness i.e. the absolute difference in FPR (and FNR) for black and white populations,

gets closer and closer to α. In other words, the δ of Theorem 13 gets closer to 0 as expected.
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(a) Absolute Difference in FPR (b) Absolute Difference in FNR (c) Average Accuracy

Figure 6.1: Varying Ng (Number of gold tasks), Settings : Uniform Costs, β= 0.01,α= 0.01

(a) Absolute Difference in FPR (b) Absolute Difference in FNR (c) Average Accuracy

Figure 6.2: Varying α (Fairness Constraint), Settings : Uniform Costs, β= 0.01, Ng = 20

Moreover, the margin between our algorithm and the baselines also increases. However,

meeting the fairness constraints alone is not enough. This could also be done by a bad

algorithm that collects equally wrong labels for both white and black populations. Hence,

accuracy of the collected labels is also an important measure. Figure 6.1c shows that our

algorithm has an accuracy competitive to the Greedy baseline method, which is a highly

efficient baseline in the literature for accuracy optimization. Our algorithm can achieve same

level of accuracy while also providing fairness. In Figure 6.2, we keep Ng fixed (20) and observe

the effect of increasing value of α. As value of α increases, the fairness constraints are more

relaxed and the algorithm can obtain better accuracy.

Non-Uniform Costs

(a) Absolute Difference in FPR (b) Absolute Difference in FNR (c) Average Accuracy

Figure 6.3: Varying Ng (Number of gold tasks), Settings : Non-Uniform Costs, β= 0.01,α= 0.01,C = 1.5

In the non-uniform costs settings, we observe similar patterns in Figure 6.3 and 6.4. There

are a few notable differences. The accuracy of our algorithm as well as the Greedy baseline
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(a) Absolute Difference in FPR (b) Absolute Difference in FNR (c) Average Accuracy

Figure 6.4: Varying α (Fairness Constraint), Settings : Non-Uniform Costs, β= 0.01, Ng = 20,C = 1.5

are lower. Our algorithm doesn’t select more accurate workers because of budget constraints

and the Greedy baseline also finds the density of the more accurate workers comparatively

lower due to their high costs and prefers to choose other high density workers. In this case, our

algorithm beats Greedy in not just fairness but also in accuracy by better utilizing the available

budget.

(a) Absolute Difference in FPR (b) Absolute Difference in FNR (c) Average Accuracy

Figure 6.5: Varying Ng (Number of gold tasks), Settings : Non-Uniform Costs, β= 0.01,α= 0.01,C = 2.5

(a) Absolute Difference in FPR (b) Absolute Difference in FNR (c) Average Accuracy

Figure 6.6: Varying α (Fairness Constraint), Settings : Non-Uniform Costs, β= 0.01, Ng = 20,C = 2.5

Figures 6.5 and 6.6 show the results with β= 0.01,C = 2.5. Figures 6.7 and 6.8 show the results

with β= 0.005,C = 2.5. Decreasing the value of parameter β makes the algorithms (ours and

the Greedy baseline) more constrained in assigning tasks to the workers that they find to be

better. This hits the accuracy of both the algorithms but the general trends discussed above

(w.r.t. fairness and accuracy with different Ng andα) remain the same. The effect of increasing

budget from 1.5 to 2.5 is that our algorithm can get better accuracy but there is no effect on

the performance of other baselines as expected, since there was no explicit budget constraint

placed on them.
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(a) Absolute Difference in FPR (b) Absolute Difference in FNR (c) Average Accuracy

Figure 6.7: Varying Ng (Number of gold tasks), Settings : Non-Uniform Costs, β= 0.005,α= 0.01,C = 2.5

(a) Absolute Difference in FPR (b) Absolute Difference in FNR (c) Average Accuracy

Figure 6.8: Varying α (Fairness Constraint), Settings : Non-Uniform Costs, β= 0.005, Ng = 20,C = 2.5

Remark: It is possible to change Definition 19 of the crowdsourcing policy such that the

probability to assigning any task to a worker i depends on the sensitive attribute of the task. As

noted earlier, we opted for the definition in which the policy doesn’t depend on the sensitive

attribute of the task due to legal, ethical, privacy or even missing data concerns. Empirically,

we observed that a sensitive-attribute dependent policy doesn’t really improve the accuracy

by much as compared to our sensitive-attribute independent policy.

6.6 Chapter Summary

In this chapter, we addressed the problem of data fairness in crowdsourcing. We proposed

a novel crowdsourcing algorithm that learns an optimal selection probability distribution

over the available set of workers to maximize the expected accuracy of collected data, while

ensuring that the errors in the data are not unfairly discriminatory towards any particular

social group. There also remain many challenges to be addressed. These include estimating

accuracy without requiring gold standard tasks, relaxing the assumption about knowledge of

prior label distribution and the i.i.d. assumption about workers’ answers.

Another interesting challenge in slightly different settings is to define data fairness for the

case of subjective tasks, which have no ground truth labels and thus, no clear notion of errors.

Ensuring fairness in subjective data collection is also likely to create a challenging problem of

lying incentives for workers.
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Artificial intelligence has made a remarkable progress in the past few years and it has enabled

a lot of new applications that were only possible in science fiction earlier. However, a wider

social adoption of the technology will depend on whether it can be provably trustworthy and

satisfy new regulations. With data playing a key role in the modern AI systems, it is imperative

to be concerned about the trustworthiness of data and data collection mechanisms. In this

thesis, we discussed in detail three core questions around this issue: how to get highest quality

data for AI, how to ensure that the data collection process is transparent and fair for the

data providers, and how to ensure that the collected data is fair for the users affected by the

applications that make use of this data.

We presented two novel game theoretic mechanisms to elicit high quality data. The first is the

Deep Bayesian Trust mechanism to collect high quality labels for tasks that have objective

ground truth answers. The examples of such tasks include vision, natural language under-

standing, information retrieval etc. This mechanism is thus helpful, for example, in collecting

data for supervised machine learning. This is the first peer based mechanism that ensures a

dominant notion of incentive compatibility in non-binary answer space settings. This work

is also the first to formally define a notion of fairness in crowd incentive mechanisms and

propose a peer based mechanism satisfying the definition. The second mechanism is the

Personalized Peer Truth Serum for collecting personal data such as health and activity data.

This mechanism is thus useful, for example, in collecting data for unsupervised machine

learning. This is the first peer based mechanism that doesn’t need peer relationship to be

defined based on shared tasks, but instead uses the data reported by people to find peer

relationship.

We addressed the problem of building decentralized and transparent data oracles for blockchain

applications. We identified major challenges in doing so - 1) getting truthful data from in-

dependent rational agents, particularly when agents have incentives originating from the

applications to provide wrong data, and 2) implementing a truthful mechanism without re-

quiring a central authority. We showed that peer-consistency mechanisms can be used to

get truthful data for building such oracles in a profitable way. For the first time, we designed
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and implemented a completely decentralized, trustless and transparent oracle using peer-

consistency mechanisms in Ethereum. We addressed several non-trivial challenges that arise

in implementing peer-consistency mechanisms in Ethereum and empirically evaluated the

proposed optimizations to reduce gas costs.

Given that sharing economy platforms are increasingly being used as alternate and more

accessible ways to earn livelihoods, we considered an important problem of discrimination on

such platforms. Since reputation systems are often considered as a medium of building trust

on web-based platforms and recent studies have found them useful in offsetting social biases,

we focused on the challenge of making reputation systems more fair and non-discriminatory.

We proposed two solutions for this: 1) a game-theoretic incentive mechanism to encourage

providing more opportunities to the disadvantaged class and truthful reporting of the reviews

of the received service, and 2) a post-aggregation bias correction technique to correct the bias

in the reviews. The interesting observation about the incentive mechanism is that it doesn’t

give any unconditional advantage to the disadvantaged class (and thus avoid so-called ‘reverse

discrimination’) since the rewards are tied to truthful reviews of the experienced service. An

important consideration however is that the incentive mechanism must use the sensitive

attribute information, instead of ignoring it. We hope that our proposed approaches will

act as short-term interventions [49] to bring long-term and self-sustained fairness on such

platforms.

Finally, we discussed the issue of preventing sensitive attribute-based bias of crowdworkers

from appearing in the crowdsourced judgments. We showed that a novel task allocation

algorithm can be used to satisfy fairness and diversity constraints in crowdsourcing under

budget.

Future Directions:

There remain several interesting directions for future work. In Chapter 2, there are two

immediate questions: 1) can DUSIC be guaranteed with only a finite and small number of

shared tasks between the agents?, and 2) can DUSIC be further strengthened to DSIC? Based

on preliminary investigation, we conjecture that the answer to the first question is very likely

to be positive. Having a smaller number of tasks introduces error in the estimated transitive

trust and the error accumulates as the distance from the oracle increases. However, as long as

this error is such that the agents can still be classified into three classes (agents with random

answers, agents with answers positively correlated with ground truth, and agents with answers

negatively correlated with ground truth) with sufficient accuracy, it is possible to ensure

DUSIC. The issue about error accumulation can be fixed by using oracle after every few rounds

of crowdsourcing. If the first question is answered positively, the second question becomes

less significant from a practical perspective but is still interesting from theoretical perspective.

In Chapter 3, apart from the obvious questions about stronger game-theoretic guarantees,

perhaps the most interesting open question is whether the proposed incentive scheme is

easy to understand for real-world agents and if the agents react to it in the expected way. In
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collaboration with behavioral economists, we are in the early stages of a large scale user-study

to investigate this question formally. We have designed a user-study to elicit fitness data from

people. Since generating and precisely measuring fitness data requires effort, an incentive

scheme is required to collect high quality data.

In Chapter 4, we only considered a scenario where the outside incentives favor the same

misreport for all agents, and do so with a particular dependence on the outcome. In ongoing

work, we are considering different forms of outcome dependence, in particular threshold

functions that require that the outcome exceeds a given threshold for the users to get refunds,

and it turns out that these lead to different results. In the future, it would also be interesting

to consider cases where agents have different and possibly opposing interests, such as in

polls where different populations want different outcomes to win. Given that PTSC provides

guarantees for non-binary signal spaces too, it would also be interesting to study similar

problem beyond the binary answer setting.

In Chapter 5, an interesting open question is designing mechanisms to elicit truthful and

fair text reviews. We also noted in this chapter that the sensitive attribute is required in our

incentive mechanism for it to work in the desired way. While it is quite common in fair ma-

chine learning literature to use the sensitive attribute for ensuring fairness in decisions, it can

sometimes be counterintuitive and difficult to explain from a legal and ethical perspective. It

remains an interesting future work to design incentive schemes that don’t require any knowl-

edge about the sensitive attribute. Interestingly, the algorithm proposed in Chapter 6 doesn’t

require knowing the sensitive attribute of the tasks while assigning them to crowdworkers. We

also noted that knowing the sensitive attribute had only a little additional advantage from an

accuracy perspective. This observation further provides hope that it may be possible to design

a similar sensitive-attribute independent solution for the problem of Chapter 5 as well.

While we viewed fairness in crowdsourced judgments as an independent objective in Chapter

6, it will also be interesting to see how fairness in crowdsourced data affects the fairness in

algorithms and applications that eventually use that data.

Finally, we would like to emphasize the importance of viewing AI algorithms not as indepen-

dent and isolated systems but as part of a bigger system where humans are the key players.

To truly achieve our goal of building trustworthy AI, the complex nature of all the different

directions [40] of the interaction between humans and AI must be taken into account.
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A Appendix

A.1 Missing Proofs for Chapter 2

A.1.1 Proof of Lemma 1

Proof. Let’s first write the expression for the probability P (Y j = y j |Yi = yi ) by applying Bayes’

rule.

P (Y j = y j |Yi = yi ) = ∑
g∈[K ]

P (Y j = y j ,G = g |Yi = yi )

= ∑
g∈[K ]

P (Y j = y j |G = g ,Yi = yi ) ·P (G = g |Yi = yi )

Since answers of i and j are conditionally independent given the ground truth, we have

P (Y j = y j |G = g ,Yi = yi ) = P (Y j = y j |G = g ). This gives the following:

P (Y j = y j |Yi = yi ) = ∑
g∈[K ]

P (Y j = y j |G = g ) ·P (G = g |Yi = yi )

Now we apply the Bayes’ rule again and expand the term P (G = g |Y j = y j ). This gives:

P (Y j = y j |Yi = yi ) = ∑
g∈[K ]

P (Yi = yi |G = g ) · P (Y j = y j |G = g ) ·P (G = g )

P (Y j = y j )

Note that P (Yi = yi |G = g ) = Ti [g , yi ] and P (Y j = y j |G = g ) = T j [g , y j ]. We thus get,

P (Y j = y j |Yi = yi ) = ∑
g∈[K ]

Ti [g , yi ] · T j [g , y j ] ·P (G = g )

P (Y j = y j )

Assuming |Q i ∩Q j |→∞, we now use the law of large numbers and the continuous mapping
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theorem to replace P (Y j = y j |Yi = yi ) with empirical distribution ω(Y j = y j |Yi = yi ) and

P (Y j = y j ) with empirical distribution ω(Y j = y j ). This finally gives,

ω(Yi = yi |Y j = y j ) = ∑
g∈[K ]

Ti [g , yi ] ·
(

T j [k, y j ] ·P (k)

ω(Y j = y j )

)

A.1.2 Proof of Theorem 1

Proof. As |Q i ∩Q j |→∞, using lemma 1, the reward R ′
i of any worker i in the Deep Bayesian

Trust Mechanism is given by :

R ′
i =β

[( ∑
g∈[K ]

Ti [g , g ]

)
−1

]
=β

[( ∑
g∈[K ]

∑
m∈[K ]

Ai [g ,m]Si [m, g ]

)
−1

]
(Using Proposition 1)

For binary answer space (K = 2), this can be expanded as :

Ri =β
[

Ai [1,1]Si [1,1]+ Ai [1,2]Si [2,1]+ Ai [2,1]Si [1,2]+ Ai [2,2]Si [2,2]−1

]
Rearranging the terms,

Ri =β
[[

Ai [1,1]Si [1,1]+ Ai [2,1]Si [1,2]

]
+

[
Ai [1,2]Si [2,1]+ Ai [2,2]Si [2,2]

]
−1

]
Assuming Ai [1,1]+ Ai [2,2] > 1s, we get that Ai [1,1] > Ai [2,1] and Ai [2,2] > Ai [1,2].

Now, note that
[

Ai [1,1]Si [1,1]+Ai [2,1]Si [1,2]
]

is a convex combination of Ai [1,1] and Ai [1,2]

with Si [1,1] and Si [2,1] being the convex coefficients. Since Ai [1,1] > Ai [2,1], this convex sum

is maximized by using Si [1,1] = 1 and Si [1,2] = 0. A similar argument follows for the second

independent term in the reward. Thus, the total reward is maximized by the identity strategy

matrix. The reward with Si = I is thus,

Ri =β
[

Ai [1,1]+ Ai [2,2]−1

]
which is strictly positive.

The above analysis implies that whenever worker does solve the tasks, it is her best reporting

strategy to report the answer as they are. Now we just need to ensure that investing effort is

also the best effort strategy. If the worker doesn’t invest effort and report heuristically, the value
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of the term

( ∑
g∈[K ]

Ti [g , g ]

)
−1 is 0. This will be proved in the proof of Theorem 2. However,

the worker saves the cost of effort too in this case and she neither earns anything nor loses

anything. But when worker invest effort, she earns R ′
i from the mechanism and loses C E in the

form of cost of effort. For truthful strategy (ei = 1,Si = I ) to be the dominant uniform strategy,

we need the following condition:

β

[
Ai [1,1]+ Ai [2,2]−1

]
−C E > 0

This is true when

β> C E

Ai [1,1]+ Ai [2,2]−1

For non-binary answer space (K > 2), the proof follows similarly assuming Ai [k,k] > Ai [k ′,k], ∀k ′ 6=
k. The reward for truthful strategy is R ′

i = β
[ ∑

g∈[K ]
Ai [g , g ]−1

]
which is also strictly positive

under the same assumption.

A.1.3 Proof of Theorem 2

Proof. As |Q i ∩Q j |→∞, using lemma 1, the reward Ri of any worker i in the Deep Bayesian

Trust Mechanism is given by :

R ′
i =β

[( ∑
g∈[K ]

Ti [g , g ]

)
−1

]

We know that a worker’s strategy is called heuristic if either ei = 0 or ei = 1 and Si has identical

rows. In both cases, it is easy to see (using Proposition 1) that the sum of diagonal entries of

her trustworthiness matrix sum to 1, which implies,( ∑
g∈[K ]

Ti [g , g ]

)
−1 = 1−1 = 0

A.1.4 Proof of Theorem 3

Proof. The proof follows from Lemma 1, which ensures that reward of worker i converges in

the limit to

β ·
( ∑

g∈[K ]
Ti [g , g ]

)
−1

By definition, Ti [g , g ],∀g ∈ [K ] measure the accuracy of the answers reported by the worker.

Thus, even though the mechanism has only estimates of the accuracy of the workers’ answers
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and the estimates are indeed obtained using the answers of the peers and their trustworthi-

ness but the consistency property of these estimates ensures the asymptotic fairness of the

mechanism.

A.2 Missing Proofs for Chapter 3

A.2.1 Proof of Theorem 4

Proof. The attribute score of agent i is given by :

log
f (y |µ̂Li j , σ̂2

Li j
)∑K

k=1 α̂k · f (y |µ̂Lk j , σ̂2
Lk j

)

Given that all other agents report truthfully, the attribute score becomes :

log
f (y |µLi j ,σ2

Li j
)∑K

k=1αk · f (y |µLk j ,σ2
Lk j

)

This is because the maximum likelihood estimates {µ̂Li j , σ̂2
Li j

} converge to {µLi j ,σ2
Li j

} as n, |Ni |→
∞ under the assumptions of conditional independence and statistical similarity. Similarly for

α̂k . We can write the score as:

ri j = log
P (Xi j = y |Li j )

P (Xi j = y |G j )

The expected attribute score R of agent i , who observed Xi j = x and reported Xi j = y is then:

R =
∫

Li j ,G j

P (Li j ,G j |Xi j = x) log
P (Xi j = y |Li j )

P (Xi j = y |G j )
dLi j dG j

where P (Li j ,G j |Xi j = x) is agent’s posterior belief about Li j and G j conditional on observing

Xi j = x. Under the assumption that attribute value Xi j is conditionally independent of global

factors G j given the personal factors Li j , i.e., P (Xi j = y |Li j ) = P (Xi j = y |G j ,Li j ) , we get

R =
∫

Li j ,G j

P (Li j ,G j |x) · log
P (y |G j ,Li j )

P (y |G j )
dLi j dG j (A.1)

However, we know (using Bayes’ rule) that,

P (y |G j ,Li j )

P (y |G j )
= P (Li j |y,G j )

P (Li j |G j )
(A.2)
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Using Equations A.1 and A.2,

R =
∫

Li j ,G j

P (Li j ,G j |x) · log
P (Li j |y,G j )

P (Li j |G j )
dLi j dG j

=
∫

Li j ,G j

P (Li j |x,G j ) ·P (G j |x) log
P (Li j |y,G j ) ·P (Li j |x,G j )

P (Li j |G j ) ·P (Li j |x,G j )
dLi j dG j

which can be rearranged as,

R =
∫

G j

P (G j |x)

[ ∫
Li j

−P (Li j |x,G j ) log
P (Li j |x,G j )

P (Li j |y,G j )
dLi j

+
∫

Li j

P (Li j |x,G j ) log
P (Li j |x,G j )

P (Li j |G j )
dLi j

]
dG j (A.3)

for brevity,

R =
∫

G j

P (G j |x)[−K L1 +K L2]dG j

where, K L1 and K L2 are KL-divergences and hence non-negative. It is easy to see that R is

uniquely maximized when K L1 = 0, which happens only when y = x. The expected attribute

score at y = x is

RTr uth =
∫

G j

P (G j |x)K L2dG j (A.4)

which is strictly positive.

A.2.2 Proof of Theorem 5

Proof. It is easy to see that if agents collude globally to report attribute j according to a certain

strategic probability distribution πheur independent of their clusters, then both numerator

and denominator in the log term will converge to some common values. The attribute score

of agent i is then given by :

ri j = log1 = 0
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A.2.3 Proof of Theorem 6

Proof. When others are not truthful and report according to function g , the attribute score of

agent i for reporting y as the value of Xi j is given by :

log
f (y |µ̄Li j , σ̄2

Li j
)∑K

k=1αk · f (y |µ̄Lk j , σ̄2
Lk j

)

This is because the maximum likelihood estimates {µ̂Li j , σ̂2
Li j

} converge to {µ̄Li j , σ̄2
Li j

} in this

case, where, µ̄Li j = a ·µLi j +b and σ̄2
Li j

= a2 ·σ2
Li j

We can also write this as :

ri j = log
P (g−1(y)|Li j )

P (g−1(y)|G j )

where g−1(y) = y−b
a . Using a procedure similar to that followed in the proof of Theorem 1, it

can be shown that the expected attribute score of agent i , who observed Xi j = x and reported

Xi j = y is given by :

R =
∫

G j

P (G j |x)

[ ∫
Li j

−P (Li j |x,G j ) log
P (Li j |x,G j )

P (Li j |g−1(y),G j )
dLi j

+
∫

Li j

P (Li j |x,G j ) log
P (Li j |x,G j )

P (Li j |G j )
dLi j

]
dG j

which is maximized when g−1(y) = x, i.e. y = ax +b. In other words, it is the best response

for agent i to also report according to g (x) when others do so. Moreover, at g−1(y) = x, the

expected attribute score is the same as RTr uth as obtained in Equation A.4.

A.2.4 Proof of Theorem 7

Proof. The expected score of agent i for truthfully reporting attribute j , as derived in Equa-

tion A.4 is

RTr uth =
∫

G j

P (G j |x)
∫

Li j

P (Li j |x,G j ) log
P (Li j |x,G j )

P (Li j |G j )
dLi j dG j

Taking expectation over possible values of observations x, we find the ex-ante expected

payment (EP) of agent i for telling truth.
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EP =
∫
x

P (x)
∫

G j

P (G j |x)
∫

Li j

P (Li j |x,G j ) log
P (Li j |x,G j )

P (Li j |G j )
dLi j dG j d x

=
∫
x

∫
G j

P (x,G j )
∫

Li j

P (Li j |x,G j ) log
P (Li j |x,G j )

P (Li j |G j )
dLi j dG j d x

=
∫
x

∫
G j

∫
Li j

P (x,G j )P (Li j |x,G j ) log
P (Li j |x,G j )

P (Li j |G j )
dLi j dG j d x

=
∫
x

∫
G j

∫
Li j

P (x,Li j ,G j ) log
P (Li j |x,G j )

P (Li j |G j )
dLi j dG j d x

=
∫
x

∫
G j

∫
Li j

P (x,Li j ,G j ) log
P (G j ) ·P (Li j , x,G j )

P (x,G j ) ·P (Li j ,G j )
dLi j dG j d x

Thus,

EP = I (Xi j ;Li j |G j ) (A.5)

where I (Xi j ;Li j |G j ) is the conditional mutual information of Xi j and Li j given G j .

A.2.5 Proof of Theorem 8

Proof. To prove this theorem, let’s first assume that a clustering algorithm exists which can

correctly assign each true report to the cluster from which it has been generated. In this case,

if all other agents except i are truthful, the mechanism has access to the correct clusters of

each of the truthful agents. The attribute score of agent i depends on which cluster the agent

gets assigned to based on its report. If the agent gets assigned to its correct cluster, its expected

attribute score from Equation A.3 is given by :

R =
∫

G j

P (G j |x)

[ ∫
Li j

−P (Li j |x,G j ) log
P (Li j |x,G j )

P (Li j |y,G j )
dLi j

+
∫

Li j

P (Li j |x,G j ) log
P (Li j |x,G j )

P (Li j |G j )
dLi j

]
dG j

which is already shown to be maximized in expectation by truthful reporting and is strictly

positive. On the other hand, if the agent uses a misreport to get assigned assigned to a different

cluster, its expected attribute score is strictly negative. This is because the expected score from
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Equation A.3 can be written as follows :

R =
∫

G j

P (G j |x)

[ ∫
L′

i j

−P (L′
i j |x,G j ) log

P (L′
i j |x,G j )

P (L′
i j |y,G j )

dL′
i j

+
∫

L′
i j

P (L′
i j |x,G j ) log

P (L′
i j |x,G j )

P (L′
i j |G j )

dL′
i j

]
dG j

where L′
i j are the personal factors of the cluster that the agent gets assigned to. Note that x is

conditionally independent of L′
i j given G j i.e. P (L′

i j |x,G j ) = P (L′
i j |G j ). This makes the only

non-negative term in the above expression 0, leaving only with a term that is always negative

for a misreport.

R =
∫

G j

P (G j |x)
∫

L′
i j

−P (L′
i j |x,G j ) log

P (L′
i j |x,G j )

P (L′
i j |y,G j )

dL′
i j dG j

We have assumed here that our always correct clustering algorithm assigns a non-truthful

report to the correct cluster of its corresponding true observation with vanishing probability.

Hence, if others are truthful and a clustering algorithm exists to assign true reports to their

correct clusters, it is the best strategy for agent i to also be truthful.

Now, it is easy to follow the clustering error tolerance of the mechanism from the above

reasoning. Let’s assume that the clustering algorithm makes an error ε in assigning any given

true report to its correct cluster. We further assume that the error ε is small enough such that

as |Nk | →∞,∀k, the cluster parameters estimated are correct i.e. α̂k ,∀ converge to αk and

{µ̂k j , σ̂2
k j },∀k converge to {µk j ,σ2

k j }.

If others are truthful, the expected attribute score of agent i under truthful response is given

by :

R = (1−ε)R1 +εR2

Here, R1 is the expected score if the clustering algorithm assigns the agent to its correct cluster

and R2 is the expected score if the clustering algorithm makes an error and assigns its to a

wrong cluster. We have already seen that R1 is strictly positive and R2 is 0. Thus, R is strictly

positive.

On the other hand, the expected attribute score under a non-truthful response is given by :

RN = (1−ε′)RN
1 +ε′RN

2

Here, 1−ε′ is the probably of the clustering algorithm assigning a non-truthful report to the

correct cluster of the corresponding true observation (this probability was assumed to vanish

in the previous theorem). RN
1 is the expected score of the agent, if the report gets assigned
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to the correct cluster of the corresponding true observation. RN
2 is the expected score of

the agent, if the report doesn’t get assigned to the correct cluster of the corresponding true

observation. We already know that RN
1 is strictly less than R1 and R2

N is strictly negative. Hence,

only requiring (1−ε) ≥ (1−ε′) is sufficient to prove that truthful response is the best strategy.

This is a reasonable requirement for any small error clustering algorithm i.e. it should assign a

true observation to its correct cluster with higher or equal probability than that of assigning a

mapping of the true observation. Note that this is not a tight requirement but a sufficient one.

Even if such a requirement is not satisfied by the clustering algorithm, the agent has to find a

mapping for which this requirement is not satisfied, which is almost impossible given only the

true observation.

A.3 Missing Proofs for Chapter 4

A.3.1 Proof of Proposition 2

Proof. We know that relative saving is given by

relative saving:
nR−P

nR
,

where P is the total expected payment (side-payment + outcome dependent payment) under

the scheme to the agents. If the agents report honestly without getting any side-payment (i.e.,

the side-payment is 0), then the total expected payment P in this setting will be nR(1−P (1)).

This is because the only payments made in this setting are the outcome dependent payments

and the expected value of the outcome is 1−P (1), when everyone reports honestly. Thus,

relative saving:
nR−nR(1−P (1))

nR
= P (1)

This completes the proof.

A.3.2 Proof of Theorem 9

Proof. By a standard convexity argument, it is sufficient to only consider pure strategies in this

analysis, i.e. strategies where all the probability is placed on a single report. By the statement

of the theorem, we know that α>R/(n ·δ), where δ= δ∗+β.

Let us first consider the case when β≤ 0. Note that if β≤ 0, then α> R/(n ·δ) implies that

α>R/(n ·δ∗). Let x be the signal observed and y be the signal reported by an agent in ques-

tion. There are two cases :

Case 1. x = 0: We need to prove that for any agent i , given that other agents are truthful, the
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total expected payment received by reporting 0 is more than the expected payment received

by reporting 1 ,i.e., thatPi (Xp = 1|Xi = 0)

Pi (Xp = 1)
−1

+R

 (n −1)Pi (Xp = 0|Xi = 0)

n


<α

Pi (Xp = 0|Xi = 0)

Pi (Xp = 0)
−1

+R

 (n −1)Pi (Xp = 0|Xi = 0)+1

n


This inequality is always true whenever δ∗ > 0, regardless of the value of α.

Case 2 x = 1: We need to prove that for any agent i , given that other agents are truthful, the

total expected payment received by reporting 1 is more than the expected payment received

by reporting 0, i.e., that

α

Pi (Xp = 0|Xi = 1)

Pi (Xp = 0)
−1

+R

 (n −1)Pi (Xp = 0|Xi = 1)+1

n


<α

Pi (Xp = 1|Xi = 1)

Pi (Xp = 1)
−1

+R

 (n −1)Pi (Xp = 0|Xi = 1)

n



Simplifying the above expression , we get the following requirement on the scaling constant α:

α> R/n
Pi (Xp=1|Xi=1)

Pi (Xp=1) − P (Xp=0|Xi=1)
P (Xp=0)

⇒α> R

nδ∗
,

which is true since

δ∗ = min
i

(
Pi (Xp = 1|Xi = 1)

Pi (Xp = 1)
− Pi (Xp = 0|Xi = 1)

Pi (Xp = 0)

)
.

This condition on α is satisfied when β≤ 0 as noted earlier. This completes the proof for the

exact truth-telling equilibrium, when β≤ 0.

We will now prove the second part of the theorem which is approximate truth-telling equi-

librium, when β > 0. As proved earlier, when x = 0, reporting truthfully is the best strategy

regardless of the value of α and therefore regardless also of the value of β. Hence, it suffices to

argue about the case when x = 1 and note that we only need to prove that ε= (β·Rn·δ ), where ε is

the maximum difference between the expected payment that the agent receives by reporting 1

and the expected payment that she receives by reporting 0; let D denote this difference. We

have that:
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D =α
(

Pi (Xp = 0|Xi = 1)

Pi (Xp = 0)
−1

)
+R

(
(n −1)Pi (Xp = 0|Xi = 1)+1

n

)

−α
(

Pi (Xp = 1|Xi = 1)

Pi (Xp = 1)
−1

)
−R

(
(n −1)Pi (Xp = 0|Xi = 1)

n

)

=−α
(

Pi (Xp = 1|Xi = 1)

Pi (Xp = 1)
− Pi (Xp = 0|Xi = 1)

Pi (Xp = 0)

)
+ R

n

≤−αδ∗+ R

n

We also know that α>R/(nδ) and therefore,

D ≤− R

nδ
δ∗+ R

n
= R

n

(
1− δ∗

δ

)
= Rβ

nδ

Since by definition, ε is the maximum value of D, we get ε= (Rβ)/(nδ). This completes the

proof.

A.3.3 Proof of Theorem 10

Proof. We know that relative saving is given by

relative saving:
nR−P

nR
,

where P is the total expected payment (side-payment + outcome dependent payment) under

the scheme to the agents. Since we are interested in finding the relative saving in the truth-

telling equilibrium of PTSC, let P be the total expected payment (side-payment + outcome

dependent payment) in the truth-telling equilibrium. We have that:

P = nα

[
P (0)

(
P (0|0)

P (0)
−1

)
+P (1)

(
P (1|1)

P (1)
−1

)]
+nR(1−P (1)) (A.6)

The first term is due to expected side-payment in the truth-telling equilibrium and the second

term is the outcome-dependent expected compensation payment in the truth-telling equilib-

rium. Here, P (0) and P (1) are the real probabilities that an agent observes 0 and 1 respectively

for any random question. Moreover, P (0|0) is the real probability that for any question, given

that one agent reported 0, the other also reports 0 and similarly, P (1|1) is the real probability

that for any question, given that one agent reported 1, the other also reports 1. Note that

the expectation in this case is not taken with respect to any agent’s beliefs. Using this in the
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expression for the relative saving, we have that

relative saving = 1−
nα

[
P (0)

(
P (0|0)
P (0) −1

)
+P (1)

(
P (1|1)
P (1) −1

)]
+nR(1−P (1)

nR

= P (1)−
α

[
P (0)

(
P (0|0)
P (0) −1

)
+P (1)

(
P (1|1)
P (1) −1

)]
R

= P (1)−
α

(
P (0|0)+P (1|1)−1

)
R

Let α=R/(nδ). Then, we have that

relative saving = P (1)−
R
nδ

(
P (0|0)+P (1|1)−1

)
R

≥ P (1)− 1

nδ

The inequality holds because P (0|0)+P (1|1)−1 ≤ 1. This completes the proof.

A.3.4 Proof of Proposition 3

Proof. We first prove that the denial strategy remains an equilibrium strategy for the agents

even after implementing PTSC as a side-payment mechanism. For this, we need to prove that,

given that the other agents play the denial strategy, the best response for some agent i is to

also play the denial strategy. In this case, the expected payment of agent i from PTSC is:

σi (Yi = 0|Xi = x) · [α(1/1−1)
]+σi (Yi = 1|Xi = x) ·0

+R

[
σi (Yi = 0|Xi = x)+ (n −1)

n

]
where the first two terms are due to the expected side-payment given by PTSC and the third

term is due to the expected outcome dependent payment, i.e., the expected compensation

payment. Clearly, since all the remaining agents adopt the denial strategy, the payment due to

PTSC is 0 regardless of the strategy of agent i , and therefore, her expected payment is simply

R

[
σi (Yi = 0|Xi = x)+ (n −1)

n

]
This quantitiy is maximized for σi (Yi = 0|Xi = x) = 1 and the expected payment for σi (Yi =
0|Xi = x) = 1 is equal to R.

It is easy to see that the expected payment that agents receive in the truthful equilibrium

with α=R/(nδ∗) is given by (R ·P (1))/n. Therefore, the expected payment that agents get

in the denial strategy equilibrium (i.e., R) is clearly greater than the expected payment that

the agents receive in the truth-telling equilibrium, if we assume that α=R/(nδ∗). One can
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obviously make R be smaller than the expected payment that agents receive in the truthful

equilibrium by making α larger.

Now, we prove the general result, i.e., that it is not possible for any side-payment mechanism

to make the truth-telling equilibrium more profitable than the denial strategy equilibrium

without incurring net loss; by net loss, we mean here that the relative saving is negative. This

can be easily proved by contradiction: Assume that there exists a side-payment mechanism

that makes the truth-telling equilibrium more profitable than the denial strategy equilibrium

and yet achieves a positive relative saving. Since the truth-telling equilibrium is more profitable

than the denial strategy equilibrium in this mechanism, the expected total payment P in

the truth-telling equilibrium must be strictly greater than nR. This is because nR is just the

expected outcome-dependent payment that agents receive in the denial strategy equilibrium.

Now looking at the expression for the relative saving, i.e.,

relative saving:
nR−P

nR
,

we can see that this is negative because, as reasoned above, it holds that P > nR, and we

obtain a contradiction.

A.3.5 Proof of Lemma 2

Proof. It is sufficient to prove that (δ∗c )i > 0, where

(δ∗c )i =
(

Pi (Xp = 1|Xi = 1)

Pi (Xp = 1)
− Qi (Xp = 0|Xi = 1)

Qi (Xp = 0)

)
.

Replacing Qi (·|·) and Qi (·) with their respective expressions, we obtain

(δ∗c )i =
(

Pi (Xp = 1|Xi = 1)

Pi (Xp = 1)
− (1− f )+ f ·Pi (Xp = 0|Xi = 1)

(1− f )+ f ·Pi (Xp = 0)

)

=
(

f ·Pi (Xp = 1|Xi = 1)

f ·Pi (Xp = 1)
− (1− f )

(1− f )+ f ·Pi (Xp = 0)
+ f ·Pi (Xp = 0|Xi = 1)

(1− f )+ f ·Pi (Xp = 0)

)
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For brevity, we will use the following notation:

Pi (Xp = 1|Xi = 1) = P

Pi (Xp = 0|Xi = 1) = 1−P

Pi (Xp = 1) = P1

Pi (Xp = 0) = 1−P1

We have that

(δ∗c )i =
(

f ·P

f ·P1
− (1− f )

(1− f )+ f · (1−P1)
+ f · (1−P )

(1− f )+ f · (1−P1)

)

= f

[
P

f ·P1
+ (1−P )

(1− f )+ f · (1−P1)

]
− (1− f )

(1− f )+ f · (1−P1)

= f

(1− f )+ f (1−P1)

[
P −P1

P1

]
This term is always positive whenever δ∗ > 0. This completes the proof.

A.3.6 Proof of Theorem 11

Proof. Let us first consider the case when βc ≤ 0. Note that if βc ≤ 0, then α > R/(n ·δc )

implies that α>R/(n ·δ∗c ). Let x be the signal observed and y be the signal reported by an

agent in question. There are two cases :

Case 1. x = 0: We need to prove that for any agent i , given that other agents are truthful, the

total expected payment received by reporting 0 is more than the expected payment received

by reporting 1 ,i.e.

α · f ·
(

Pi (Xp = 1|Xi = 0)

f ·Pi (Xp = 1)
−1

)
+α · (1− f )(0−1)

<α · f ·
(

Pi (Xp = 0|Xi = 0)

f ·Pi (Xp = 0)+ (1− f )
−1

)
+α · (1− f )

[
1

f ·Pi (Xp = 0)+ (1− f )
−1

]
+ R

n

This inequality is always true whenever δ∗c > 0, regardless of the value of α.

Case 2 x = 1: We need to prove that for any agent i , given that other agents are truthful, the

total expected payment received by reporting 1 is more than the expected payment received
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by reporting 0, i.e., that

α · f ·
 Pi (Xp = 0|Xi = 1)

f ·Pi (Xp = 0)+ (1− f )
−1

+α · (1− f ) ·
 1

f ·Pi (Xp = 0)+ (1− f )
−1

+ R

n

<α · f

Pi (Xp = 1|Xi = 1)

f ·P (Xp = 1)
−1

+α · (1− f ) ·
(
0−1

)

Simplifying the above expression , we get the following requirement on the scaling constant α:

α> R/n
Pi (Xp=1|Xi=1)

Pi (Xp=1) − Qi (Xp=0|Xi=1)
Qi (Xp=0)

This is because (δ∗c )i > 0 as proved in Lemma 1. Moreover, since δ∗c = mini

(
Pi (Xp=1|Xi=1)

Pi (Xp=1) −
Qi (Xp=0|Xi=1)

Qi (Xp=0)

)
, we get,

α> R

nδ∗c
,

This condition on α is satisfied when βc ≤ 0 as noted earlier. This completes the proof for the

exact truth-telling equilibrium, when βc ≤ 0.

We will now prove the second part of the theorem which is approximate truth-telling equi-

librium, when βc > 0. As proved earlier, when x = 0, reporting truthfully is the best strategy

regardless of the value of α and therefore regardless also of the value of βc . Hence, it suffices to

argue about the case when x = 1 and note that we only need to prove that ε= (βc ·R
n·δc

), where ε is

the maximum difference between the expected payment that the agent receives by reporting 1

and the expected payment that she receives by reporting 0; let D denote this difference. We

have that:

D =α · f ·
(

Pi (Xp = 0|Xi = 1)

f ·Pi (Xp = 0)+ (1− f )
−1

)
+α · (1− f ) ·

(
1

f ·Pi (Xp = 0)+ (1− f )
−1

)

+ R

n
−α · f

(
Pi (Xp = 1|Xi = 1)

f ·P (Xp = 1)
−1

)
−α · (1− f ) · (0−1)

=−α
(

Pi (Xp = 1|Xi = 1)

Pi (Xp = 1)
− Qi (Xp = 0|Xi = 1)

Qi (Xp = 0)

)
+ R

n

≤−αδ∗c +
R

n
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We also know that α>R/(nδc ) and therefore,

D ≤− R

nδc
δ∗c +

R

n
= R

n

(
1− δ∗c

δc

)
= Rβc

nδc

Since by definition, ε is the maximum value of D, we get ε= (Rβc )/(nδc ). This completes the

proof.

Relative Savings with Honest Agents

The baseline for computing relative saving now naturally becomes the rational outcome in

which the honest agents report the truth and the remaining agents play according to their

denial strategies. Thus, the saving of a side-payment scheme, under which a total payment of

P is made to all the agents (including the honest ones), now becomes:

relative saving:
nR′−P

nR′ ,

where R′ =R ·
[

(1− f )+ f · (1−P (1))
]

.

A.3.7 Proof of Theorem 12

Proof. We know that in this case, the relative saving is given by

relative saving:
nR′−P

nR′ ,

where R′ = R ·
[

(1− f )+ f · (1−P (1))
]

and P is the total expected payment (side-payment

+ outcome dependent payment) under the scheme to the agents. Since we are interested in

finding the relative saving in the truth-telling equilibrium of PTSC, let P be the total expected

payment (side-payment + outcome dependent payment) in the truth-telling equilibrium. We

have that:

P = nα

[
P (0)

(
P (0|0)

P (0)
−1

)
+P (1)

(
P (1|1)

P (1)
−1

)]
+nR(1−P (1)) (A.7)

The first term is due to expected side-payment in the truth-telling equilibrium and the second

term is the outcome-dependent expected compensation payment in the truth-telling equilib-

rium. Here, P (0) and P (1) are the real probabilities that an agent observes 0 and 1 respectively

for any random question. Moreover, P (0|0) is the real probability that for any question, given

that one agent reported 0, the other also reports 0 and similarly, P (1|1) is the real probability

that for any question, given that one agent reported 1, the other also reports 1. Note that

the expectation in this case is not taken with respect to any agent’s beliefs. Using this in the
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expression for the relative saving, we have that

relative saving = 1−
nα

[
P (0)

(
P (0|0)
P (0) −1

)
+P (1)

(
P (1|1)
P (1) −1

)]
+nR(1−P (1)

nR ·
[

(1− f )+ f · (1−P (1))
]

= 1−
α

[
P (0)

(
P (0|0)
P (0) −1

)
+P (1)

(
P (1|1)
P (1) −1

)]
R ·

[
1− f ·P (1)

] − 1−P (1)

1− f ·P (1)

= 1−
α

(
P (0|0)+P (1|1)−1

)
R ·

[
1− f ·P (1)

] − 1−P (1)

1− f ·P (1)

Let α=R/(nδc ). Then, we have that

relative saving = 1−
R

nδc

(
P (0|0)+P (1|1)−1

)
R ·

[
1− f ·P (1)

] − 1−P (1)

1− f ·P (1)

≥ 1− 1

nδc · (1− f ·P (1))
− 1−P (1)

1− f ·P (1)

The inequality holds because P (0|0)+P (1|1)−1 ≤ 1. Simplifying the above, we get:

relative saving ≥
[

(1− f )P (1)− 1

nδc

]
· 1

(1− f P (1))

This completes the proof.

Optimal Relative Saving

The maximum achievable relative saving is obtained when the agents turn truthful without

any incentive mechanism (or a mechanism that pays 0 for truthful elicitation). In this case,

P = nR ·P (0). We can now calculate optimal relative saving by putting this P in the above

expression of relative saving:

relative saving:
nR′−nR ·P (0)

nR′ ,

which equals to (1− f )P (1)
1− f P (1)

Note that the relative saving derived in Theorem 4 approaches this value as n →∞
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A.4 Missing Proofs for Chapter 6

We will use the Hoeffding’s inequality [48] to prove our theorems. Let X1, X2, . . . , Xp be inde-

pendent random variables bounded by the interval [0,1] : 0 ≤ X j ≤ 1. We define the empirical

mean of these variables by

Mp = 1

p
(X1 +X2 + . . .+Xp )

then,

P (Mp ≥ E[Mp ]+ t ) ≤ e−2nt 2

P (Mp ≤ E[Mp ]− t ) ≤ e−2nt 2

and P (
∣∣∣Mp −E[Mp ]

∣∣∣≥ t ) ≤ 2e−2nt 2

A.4.1 Proof of Theorem 13

Proof. Let the solution obtained from linear program with estimated worker matrices be Ŝ.

Then, we have

A0[0,1]−A1[0,1] =
n∑

i=1
Ŝ[i ]Ai 0[0,1]−

n∑
i=1

Ŝ[i ]Ai 1[0,1] =
n∑

i=1
Ŝ[i ]

[
Ai 0[0,1]−Ai 1[0,1]

]
(A.8)

Now, using Hoeffding’s inequality, we can say that with probability at least γ,

Âi 0[0,1] ≤Ai 0[0,1]+

√√√√− ln 1−γ
2

2Ng

and Âi 0[0,1] ≥Ai 0[0,1]−

√√√√− ln 1−γ
2

2Ng

We want to bound both Âi 0[0,1] and Âi 1[0,1] for all workers i ∈ {1,2, . . .n} in the same way. So,

we can apply union bound and say that with probability at least γ, for every worker i ,

120



A.4. Missing Proofs for Chapter 6

Âi 0[0,1] ≤Ai 0[0,1]+

√√√√− ln
1− 2npγ

2

2Ng
,

Âi 0[0,1] ≥Ai 0[0,1]−

√√√√− ln
1− 2npγ

2

2Ng
,

Âi 1[0,1] ≤Ai 1[0,1]+

√√√√− ln
1− 2npγ

2

2Ng
,

and Âi 1[0,1] ≥Ai 1[0,1]−

√√√√− ln
1− 2npγ

2

2Ng
,

We now put these bounds in Equation A.8:

A0[0,1]−A1[0,1] =
n∑

i=1
Ŝ[i ]

[
Ai 0[0,1]−Ai 1[0,1]

]

≤
n∑

i=1
Ŝ[i ]

[
Âi 0[0,1]+

√√√√− ln
1− 2npγ

2

2Ng
−

(
Âi 1[0,1]−

√√√√− ln
1− 2npγ

2

2Ng

)]

=
n∑

i=1
Ŝ[i ]

[
Âi 0[0,1]− Âi 1[0,1]+2

√√√√− ln
1− 2npγ

2

2Ng

]

=
n∑

i=1
Ŝ[i ]

[
Âi 0[0,1]− Âi 1[0,1]

]
+

n∑
i=1

Ŝ[i ]2

√√√√− ln
1− 2npγ

2

2Ng

=
n∑

i=1
Ŝ[i ]

[
Âi 0[0,1]− Âi 1[0,1]

]
+2

√√√√− ln
1− 2npγ

2

2Ng

We know that Ŝ is the solution to the optimization problem with estimated accuracy matrices,

thus it must satisfy
n∑

i=1
Ŝ[i ]

[
Âi 0[0,1]− Âi 1[0,1]

]
≤α

Putting this in our bound, we get

A0[0,1]−A1[0,1] ≤α+2

√√√√− ln
1− 2npγ

2

2Ng
(A.9)
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We can similarly prove that

A0[0,1]−A1[0,1] ≥−α−2

√√√√− ln
1− 2npγ

2

2Ng
(A.10)

Combining inequalities A.9 and A.10, we get

∣∣A0[0,1]−A1[0,1]
∣∣≤α+2

√√√√− ln
1− 2npγ

2

2Ng
(A.11)

This completes the proof.

A.4.2 Proof of Theorem 14

The difference in actual expected accuracy should be defined as:

E[A (S)]−E[A (Ŝ)]

where

E[A (S)] = ∑
z∈{0,1}

P (Z = z)
∑

y∈{0,1}
Pz (Y = y)

n∑
i=1

S[i ]Ai z [y, y],

E[A (Ŝ)] = ∑
z∈{0,1}

P (Z = z)
∑

y∈{0,1}
Pz (Y = y)

n∑
i=1

Ŝ[i ]Ai z [y, y]

We definedE[A (S)] as the expected accuracy of the optimal solution S, that would have been

obtained if the real accuracy matrices were known andE[A (S)] as the expected accuracy of

the obtained solution Ŝ. Note that in both expressions, we use the real accuracy matrices of all

workers and not the estimated matrices. This is because, we are reasoning about the difference

in actual accuracy of the optimal solution and the actual accuracy of the obtained solution.

Moreover, in the statement of the theorem, we made the following assumptions : the optimal

solution Ŝ of problem 7 satisfies fairness constraints of problem 5 and the optimal solution

S of problem 5 satisfies fairness constraints of problem 7. This implies that the difference in

expected accuracy is always positive because if both S and Ŝ are feasible solutions, then S must

have higher actual accuracy because S is the optimal solution among all feasible solutions.

Now, we obtain an upper bound on this difference.

E[A (S)]−E[A (Ŝ)] =E[A (S)]−E[A (Ŝ)]+0

=E[A (S)]−E[A (Ŝ)]+E[Â (S)]−E[Â (S)]
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where we definedE[Â (S)] as

E[Â (S)] = ∑
z∈{0,1}

P (Z = z)
∑

y∈{0,1}
Pz (Y = y)

n∑
i=1

S[i ]Âi z [y, y]

Let us also defineE[Â (Ŝ)] as

E[Â (S)] = ∑
z∈{0,1}

P (Z = z)
∑

y∈{0,1}
Pz (Y = y)

n∑
i=1

Ŝ[i ]Âi z [y, y]

Note that

E[Â (S)] ≤E[Â (Ŝ)]

because Ŝ is the optimal solution according to the estimated matrices among all feasible

solutions.

Putting this inequality in the difference in expected accuracy,

E[A (S)]−E[A (Ŝ)] =E[A (S)]−E[A (Ŝ)]+E[Â (S)]−E[Â (S)]

≤E[A (S)]−E[A (Ŝ)]+E[Â (Ŝ)]−E[Â (S)]

=E[A (S)]−E[Â (S)]+E[Â (Ŝ)]−E[A (Ŝ)] (Rerrangement of terms)

= ∑
z∈{0,1}

P (Z = z)
∑

y∈{0,1}
Pz (Y = y)

[ n∑
i=1

S[i ]
(
Ai z [y, y]− Âi z [y, y]

)
+

n∑
i=1

Ŝ[i ]
(
Âi z [y, y]−Ai z [y, y]

)]

Here we use Hoeffding inequality in the same way as we did in the previous proof and use

trivial bound of β for S[i ] and Ŝ[i ]. This gives that with probability at least γ′

E[A (S)]−E[A (Ŝ)] ≤ 2nβ

√√√√√− ln
(1− 4n

p
γ′)

2

2Ng
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