
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Energy- and Cost-Efficient VLSI DSP Systems Design
with Approximate Computing

Reza GHANAATIAN JAHROMI

Thèse n° 10 353

2020

Présentée le 25 septembre 2020

Dr M. Mattavelli, président du jury
Prof. A. P. Burg, directeur de thèse
Prof. N. Wehn, rapporteur
Prof. W. Burleson, rapporteur
Prof. D. Atienza, rapporteur

à la Faculté des sciences et techniques de l’ingénieur
Laboratoire de circuits pour télécommunications
Programme doctoral en microsystèmes et microélectronique

Acknowledgements

First of all, I would like to thank my thesis advisor, Prof. Andreas Burg, for giving me the

opportunity to join his laboratory and for his continuous support and guidance throughout

my doctoral studies. I deeply admire his ability to provide new paths to solve problems, as

well as his ability to create a comfortable environment where people can work together with

a great passion. I am very grateful for every technical discussion that we had, which always

pushed me to look at problems from different perspectives and to discover new opportunities.

Thanks to him and owing to the experience that I had at his laboratory, I have a better scientific

mentality and I can more easily solve new problems in my future carrier.

I would like to thank Dr. Marco Mattavelli (EPFL) for acting as president of my PhD exam jury,

Prof. David Atienza Alonso (EPFL), Prof. Norbert Wehn (University of Kaiserslautern), and

Prof. Wayne Burleson (University of Massachusetts, Amherst) for serving as examiners for my

thesis defense. Their comments and feedback improved the quality of this manuscript.

I feel very lucky for having conducted my doctoral studies at Telecommunications Circuits

Laboratory (TCL), EPFL. There, I had the chance to meet and work with talented colleges and

friends who made the laboratory a very stimulating environment to work in and a very friendly

environment to live in! They certainly made and continue making TCL a unique place. For

the great time we spent together and for all the technical and non-technical discussions that

we had, I would like to thank all my current and former colleges in alphabetic order: Orion

Afisiadis, Andrew Austin, Alexios Balatsoukas-Stimming, Pavle Belanovic, Andrea Bonetti,

Jeremy Constantin, Matthieu Cotting, Shrikanth Ganapathy, Pascal Giard, Robert Giterman,

Georgios Karakonstantis, Andreas Kristensen, Yann Kurzo, Sitian Li, Pascal Meinerzhagen,

Christoph Müller, Nicholas Preyss, Lorenz Schmid, Adrian Schumacher, Christian Senning,

Adam Teman, Marco Widmer, and Ning Xu. I could not omit thanking the administrative

assistant of TCL, Ioanna Paniara, for making everything smooth for me, so that I did not spend

any time on administrative issues.

I would like to thank all the Iranian friends that directly or indirectly become part of my

PhD studies mainly in Switzerland and also in Iran. We had great times together during

many unforgettable occasions, I had their support during many aspects of my daily life, and I

i

Acknowledgements

certainly learned how to be a better person from them. Without them, my PhD studies would

not have been so colorful. Special thanks to all the friends with whom we shared lunches and

coffee breaks at EPFL and spent weekends and vacations together outside EPFL during all

these years.

Finally, I would like to thank my family for their patience, support, encouragement, and always

being proud of me during my PhD studies while I was living abroad. Special thanks to my

parents, Karim my father and my life teacher, and Shahnaz my mother and my love teacher.

Having their unrestrained love and unconditional support, I always feel strong and blessed.

Special thanks to my little sister Negar, for her love and all the sweet chats that we had during

these years, to my big brother Ahmad, for his true support, and to my sister-in-law Hosna, for

her constant care and the love that she breathes into the family.

Lausanne, August 26th 2020 Reza Ghanaatian Jahromi

ii

Abstract

Although aggressive CMOS technology scaling into the nanometer regime has allowed the

realization of complex high performance systems, unfortunately it has also led to process vari-

ation, especially in sub-22 nm geometries. Such variations lead to transient and permanent

timing and memory failures threatening the correct functionality of future systems. Currently,

designers and manufacturers guarantee fault-free operation by introducing redundancy in

the form of voltage margins, conservative layout rules, and extra protection circuit measures,

which unfortunately lead to a significant increase in the power and cost of the integrated

circuits (ICs) diminishing the gain from technology scaling. The high-throughput data pro-

cessing demand of current and future communication systems and the high-capacity storage

requirement of emerging applications, based on artificial intelligence (AI) and machine learn-

ing (ML), however, ask to fully utilize the benefit from technology scaling, which aggravate the

issue.

Recent trends in the design of ICs propose to achieve this goal by relaxing strict requirements

on accuracy and precision and deviating from 100% error-free computation paradigm by ex-

ploiting the inherent resilience of many applications through approximate computing. In this

spirit, a broad set of techniques is used to mitigate variability and improve efficiency during

design-time and run-time and across different abstraction layers. The focus of this thesis

is on the algorithm and architectural level. To this end, we study three different directions

that address approximate computing for fault tolerance to manufacturing issues. Specifically,

we consider the usage of faulty storage elements for optimized cost and power, run-time

quality adaptation for low power, and design-time optimization while exploiting the inherent

resilience of signal processing applications in all the directions.

Due to the dominant role of storage elements in both the area and power of many modern

systems-on-chip (SoCs), they are often the source of an unreliable behavior. We propose design

methodologies that allow to drop the requirement of 100% reliable memories during test of ICs

with such memories while still guaranteeing an average-quality during operation. We provide

a realistic memory fault model and a quality assessment methodology that proposes to treat

the application quality as a distribution. We evaluate our proposal for some image processing

benchmarks using an embedded system. We further fabricate a testchip for a channel decoder

iii

Abstract

with unreliable memories and provide an extensive analysis based on the chip measurement

results, which serve as a proof to our propositions.

Although process-related variations happen at a slow time-scale, some other type of vari-

ations might happen at a fast time-scale. Fast variations often occur at run-time due to a

data-dependent behavior of algorithms and are another source of an expensive design mar-

gin in addition to process variations. In this regard, we propose a run-time adaptive power

reduction algorithm for a low-density parity check (LDPC) decoder that is based on an offline

statistical analysis of the decoding iterations and is implemented by employing dynamic

voltage and frequency scaling (DVFS). This algorithm trades the error-correcting performance

for a required power reduction gain while guaranteeing to keep the performance loss below a

predefined margin.

Design-time approximate computing techniques have been used during many years to pro-

vide a fast and efficient implementation for signal processing algorithms. In that line, we

propose multiple techniques at algorithm, architecture, and physical-implementation level

to reduce the complexity and enable a high-throughout for an LDPC decoder with an unrolled

architecture. The techniques are based on a finite-alphabet message passing algorithm for the

decoder and attribute at reducing the complexity of the arithmetic units, storage elements,

and the routing wires of the decoder achieving an ultra-high throughout while resulting in a

significant reduction in the area and power consumption of the decoder.

Key Words: Digital VLSI Circuits, Nanometer Nodes, Approximate Computing, Ergodic Pro-

cess, Quality-Yield Analysis, Embedded Systems, Gain-Cell Embedded DRAMs, LDPC Decoder,

28 nm FD-SOI, Run-Time Variations, DVFS, Design-Time Approximation, Finite-Alphabet

Decoder, Unrolled Architecture.

iv

Résumé

Bien qu’une mise à l’échelle nanométrique agressive de la technologie CMOS ait permis

la réalisation de systèmes complexes de haute performance, elle a malheureusement aussi

entraîné des variations de processus, en particulier dans les géométries inférieures à 22 nm. De

telles variations entraînent des défaillances transitoires et permanentes de la synchronisation

et de la mémoire qui menacent le bon fonctionnement des futurs systèmes. Actuellement, les

concepteurs et les fabricants garantissent un fonctionnement sans défaut en introduisant une

redondance sous la forme de marges de tension, de règles de disposition conservatrices et de

mesures de protection supplémentaires des circuits, ce qui entraîne malheureusement une

augmentation significative de la puissance et du coût des circuits intégrés (ICs), diminuant

ainsi le gain résultant de la mise à l’échelle de la technologie. La demande de traitement

de données à haut débit des systèmes de communication actuels et futurs et les besoins de

stockage à grande capacité des applications émergentes, basées sur l’intelligence artificielle

(AI) et l’apprentissage automatisé (ML), exigent cependant d’utiliser pleinement les avantages

de la mise à l’échelle technologique, ce qui aggrave le problème.

Les tendances récentes dans la conception des ICs proposent d’atteindre cet objectif en as-

souplissant les exigences strictes en matière d’exactitude et de précision et en s’écartant du

paradigme du calcul 100% sans erreur en exploitant la résilience inhérente de nombreuses

applications par le calcul approximatif. Dans cet esprit, un large ensemble de techniques est

utilisé pour atténuer la variabilité et améliorer l’efficacité pendant la conception et l’exécution

et entre les différentes couches de calcul. Cette thèse se concentre sur le niveau algorithmique

et architectural. À cette fin, nous considérons trois directions différentes qui abordent le

calcul approximatif pour la tolérance aux fautes dues aux problèmes de fabrication. Plus

précisément, nous étudions l’utilisation d’éléments de stockage défectueux pour optimiser

le coût et la puissance, l’adaptation de la qualité d’exécution pour une faible puissance, et

l’optimisation du temps de conception tout en exploitant la résilience inhérente des applica-

tions de traitement du signal en considérant toutes les directions.

En raison du rôle dominant des éléments de stockage dans la superficie et la puissance de

nombreux systèmes sur puce (SoCs) modernes, ils sont souvent la source d’un comportement

peu fiable. Nous proposons des méthodologies de conception qui permettent d’abandonner

v

Résumé

l’exigence de mémoires fiables à 100% lors des tests d’ICs avec de telles mémoires tout en

garantissant une qualité dans la moyenne en fonctionnement. Nous fournissons un modèle

réaliste de défaut de mémoire et une méthodologie d’évaluation de la qualité qui propose de

traiter la qualité de l’application comme une distribution. Nous évaluons notre proposition

pour certains standards de traitement d’images utilisant un système embarqué. Nous fab-

riquons en outre une puce de test pour un décodeur de canal avec des mémoires peu fiables

et fournissons une analyse approfondie basée sur les résultats des mesures de la puce, qui sert

de preuve à nos propositions.

Bien que les variations liées aux processus se produisent à une échelle temporelle lente,

d’autres types de variations peuvent se produire à une échelle temporelle rapide. Les variations

rapides se produisent souvent au moment de l’exécution en raison d’un comportement

dépendant des données pour la qualité de l’application et constituent une autre source de

marge de conception coûteuse en plus des variations liées au processus. À cet égard, nous

proposons un algorithme de réduction de puissance adaptatif en cours d’exécution pour un

décodeur de code LDPC (Low Density Parity Check) qui est basé sur une analyse statistique

hors ligne des itérations de décodage et est mis en œuvre en utilisant la mise à l’échelle

dynamique de la tension et de la fréquence (DVFS). Cet algorithme échange une performance

de correction d’erreur contre un gain de réduction de puissance requis tout en garantissant de

maintenir la perte de performance en dessous d’une marge prédéfinie.

Des techniques de calcul approximatif en temps réel ont été utilisées pendant de nombreuses

années pour fournir une implémentation rapide et efficace des algorithmes de traitement du

signal. Dans cette optique, nous proposons plusieurs techniques au niveau de l’algorithme,

de l’architecture et de la mise en œuvre physique afin de réduire la complexité et de permettre

un haut débit pour un décodeur LDPC avec une architecture déroulée. Les techniques sont

basées sur un algorithme de transmission de messages en alphabet fini pour le décodeur et

permettent de réduire la complexité des unités arithmétiques, des éléments de stockage et

des fils de routage du décodeur, ce qui permet d’obtenir un débit très élevé tout en réduisant

considérablement la surface et la consommation d’énergie du décodeur.

Mots Clefs: Circuits VLSI numériques, Nœuds de Nanomètre, Calcul Approximatif, Processus

Ergodique, Analyse de la Qualité et du Rendement, Systèmes Embarqués, eDRAMs, LDPC,

28 nm FD-SOI, Variations de la Durée d’Exécution, DVFS, Approximation du Temps de Con-

ception, Décodeur d’Alphabet Fini, Architecture Déroulée.

vi

Contents

Acknowledgements i

Abstract (English/Français) iii

1 Introduction 1

1.1 Background . 3

1.2 Thesis Contributions & Outline . 5

1.3 Selected Publications . 7

1.4 Third-Party Contributions . 8

1.5 Preliminaries . 9

1.5.1 Embedded Memories . 9

1.5.2 LDPC Codes and Decoders . 11

1.5.2.1 LDPC Code Construction . 11

1.5.2.2 Decoding of LDPC Codes . 12

1.5.2.3 Hardware Architectures for LDPC Decoder 12

2 Approximate Computing with Unreliable Memories by Restoring the Beauty of Ran-

domness 15

2.1 Background . 18

2.2 Proposed Application Quality Assessment with Unreliable Memories 19

vii

Contents

2.2.1 Ergodic vs. Non-Ergodic Fault Model . 19

2.2.2 Assessment of the Quality-Yield Trade-Off for Non-Ergodic Fault Models 20

2.2.3 Quality-Yield Assessment FPGA Platform 22

2.2.4 Quality-Yield Results . 24

2.3 Restoring the Ergodic Behavior . 25

2.3.1 Testing for a Minimum Quality Requirement 25

2.3.2 Proposed Design-for-Test Strategy: Restore a Random Fault Behavior . . 26

2.3.3 Restoring an Ergodic Fault behavior for Memories 27

2.4 Quality-Yield Trade-Off Results for Ergodic Faults 27

2.5 Discussion . 29

2.5.1 Impact on Testability . 29

2.5.2 Impact on Hardware Complexity . 30

2.5.3 Impact on Other Types of Variation . 31

2.6 Conclusion . 32

3 Practical Approximate Channel Decoders with Unreliable Memories 33

3.1 LDPC Decoding and Faulty Behavior . 35

3.1.1 LDPC Decoding Background . 35

3.1.2 Problems with Faulty LDPC Decoding Error Models 36

3.2 LDPC Decoder Architecture . 37

3.2.1 Reference Architecture . 38

3.2.2 Memory Design . 39

3.2.2.1 Fault Injection Mechanism . 41

3.2.2.2 Data Lifetime in the Memories and Fault Injection 42

3.2.2.3 Selective Protection of Sensitive Bits and Memories 42

viii

Contents

3.2.2.4 Hybrid Static/Dynamic SCM . 43

3.3 LDPC Decoder Quality Assessment Under memory Faults 43

3.3.1 Simulation Environments . 43

3.3.2 Memory Fault Models . 44

3.3.3 Quality Assessment Metrics for LDPC Decoder 45

3.3.4 Quality-Yield Results . 46

3.4 Improving the Performance Across the Population of Dies 47

3.4.1 Restoring the Ergodic Behavior . 50

3.4.2 Improving the Performance by Exploiting the Random Behavior of Logical

Faults . 51

3.4.3 Minimizing the Impact of Memory Faults by Exploiting Binary Data Rep-

resentation . 53

3.4.3.1 Formal Definition of The Bit-Error Probability and Memeory

Error Model . 53

3.4.3.2 Optimization for Improved Resilience Against Error 54

3.5 Integration to ErgoDEC Architecture . 58

3.5.1 Address and Bit-Index Randomization . 58

3.5.2 Repeating Unsuccessful Decoding Attempts 60

3.5.3 Optimizing the Binary Data Representation in the Memory and the Mem-

ory Faults . 61

3.6 Test Chip Architecure and Physical Implementation 61

3.6.1 Chip-Level Architecture and Operation Modes 61

3.6.2 Physical Implementation . 64

3.7 Measurement Results . 65

3.7.1 Fault Model . 67

3.7.2 Decoder Performance . 69

ix

Contents

3.8 Conclusion . 73

4 DVFS Based Power Managment for LDPC Decoders with Early Termination 75

4.1 Background . 77

4.1.1 LDPC Decoder Energy Reduction with ET and DVFS 78

4.1.2 Prior Art . 79

4.2 Energy Saving Analysis in LDPC Decoders . 80

4.2.1 Statistical Analysis of LDPC Decoder Iterations 80

4.2.2 Energy Saving of LDPC Decoder with Iteration Prediction 81

4.3 Statistical Based Prediction for Energy Saving in LDPC Decoders 82

4.3.1 SNR Based Iteration Management with Performance Penalty 82

4.3.2 Statistical Based Iteration Prediction Algorithm 83

4.3.3 Calculation of the Prediction Metric . 83

4.3.4 Simulation Results . 84

4.4 Conclusion . 87

5 Toward Energy and Area Optimization of High-Throughput LDPC Decoders by Ex-

ploiting Quantized Message Passing 89

5.1 Background . 90

5.1.1 LDPC Codes and Decoding Algorithms . 91

5.1.2 High Throughput LDPC Decoders . 92

5.2 Serial Message-Transfer LDPC Decoder . 94

5.2.1 Decoder Architecture Overview . 95

5.2.2 Decoder Stages . 95

5.2.2.1 Check Node Stage . 95

5.2.2.2 Variable Node Stage . 96

x

Contents

5.2.2.3 Decision Node Stage . 96

5.2.3 Message Transfer Mechanism . 96

5.2.4 Decoder Hardware Complexity and Performance Analysis 96

5.2.4.1 Memory Requirement . 97

5.2.4.2 Decoding Latency . 97

5.2.4.3 Decoding Throughput . 98

5.3 Finite-Alphabet Serial Message-Transfer LDPC Decoder 98

5.3.1 Mutual Information Based Finite-Alphabet Decoder 99

5.3.2 Error-Correcting Performance and Bit-Width Reduction 99

5.3.3 LUT-Based Decoder Hardware Architecture 100

5.4 Implementation . 101

5.4.1 Physical Design . 101

5.4.2 Timing and Area Optimization Flow . 101

5.5 Results and Discussions . 103

5.5.1 Delay Analysis . 104

5.5.1.1 CN Critical Path . 104

5.5.1.2 VN Critical Path . 104

5.5.1.3 Routing Critical Path . 104

5.5.2 Area Analysis . 105

5.5.3 Power Analysis . 106

5.5.4 Summary and Comparison to the State-of-the-Art 107

5.6 Conclusion . 109

6 Conclusions and Outlook 111

xi

Contents

Bibliography 128

List of figures 129

List of tables 133

Curriculum Vitae 135

List of Publications 137

xii

1 Introduction

Technology scaling has progressed to enable integrated circuits with extremely high density

enabling systems of tremendous complexity with manageable power consumption. With

the continuation of Moore’s law [1] for many years, electronic chips have been able to ac-

commodate the growing performance demand and energy-efficiency requirement of many

applications. Unfortunately, in the past decade, we have also seen diminishing returns from

the most advanced process nodes in terms of performance and power consumption. Fur-

thermore, emerging applications based on artificial intelligence (AI) and machine learning

(ML) with high computing demands expedite the increasing performance requirement and

aggravate the gap between the diminishing technology scaling benefits and the increased

computing demands. The issue lies in the fact that it has become increasingly difficult to guar-

antee a reliable operation without pessimistic and thus costly design margins in sub-22 nm

geometries due to process variations.

Fabrication processes become inaccurate, as geometries are scaled down, and lead to spatial

and temporal variations in transistor characteristics that threaten the correct functionality

of circuits [2–5]. For instance, transistor channel dopant fluctuations become more acute in

smaller geometries that affect the transistor threshold voltage and the leakage power. Such

variations can lead to delay variations in digital logic [3], for instance, and may result in

incomplete computations, which can ultimately lead to quality of service (QoS) degradation

or system failures.

To understand the failure issue, it is important to recognize the types of variation that ulti-

mately lead to unreliable behavior of the circuit. Device parameters vary between devices on a

single chip, inter-die variations, from chip to chip, intra-die variations, and across operating

conditions (circuit age, temperature, and supply voltage). Different sources of variation can

be classified according to their time scales. While, fast variations such as supply voltage and

1

Chapter 1. Introduction

input data variations are in the order of micro and nano seconds, respectively, slow variations

such as aging effects are in the order of months [6]. Additionally, some of the variations such

as process variations are often not even random, but a deterministic consequence of a random

and/or unknown phenomenon during production when considering a given die. For example,

random process variations lead to failure of some bits in a memory cell, however, these weak

bits are often frozen (stuck-at 0/1) and deterministic after manufacturing.

Traditional approaches for tolerating potential performance degradation or circuit failures due

to variations suggest frequency/voltage scaling or transistor up-sizing to create a comfortable

margin assuming worst-case conditions for each source of variability based on developed

models [4, 7, 8]. However, such worst-case conditions are usually rare, and hence, such ap-

proaches lead to over-design not allowing the full utilization of performance gains obtained

from technology scaling [9]. Such approaches do not only cause an increase in power dissi-

pation, but they also limit the circuit performance which could be unacceptable for systems

with demanding performance requirements, such as communication systems or systems for

emerging applications such as AI and ML.

In the last two decades, many efforts were devoted to the study of the sources and impact

of parametric variations [10, 11]. These efforts led for example to new approaches that try

to limit the pessimistic guard bands by building models and tools for performing a more

accurate timing analysis [12–15], which is merely a way to reduce margins, but not to avoid

them entirely. Moving beyond tighter margins, researchers have tried to further gain from

violating safety margins while trying to ensure reliable operation by mitigating the impact of

rare potential failures. Such techniques are referred to as better than worst-case design [16, 17].

One of the first attempts was Razor [18], a processor design from University of Michigan and

ARM that is based on dynamic detection and correction of timing failures of the critical paths

due to below-nominal supply voltage. On similar lines, a processor from Intel [19] places

replica circuits within the critical paths of the pipeline stages for detecting dynamic variations

and recovering for the errant instructions.

While the aforementioned efforts have improved the circuit efficiency, their potential gain is

diminishing in sub-22 nm technology nodes since they still care about detecting and correcting

all errors. In order to alleviate the impact of reliability issues even more, many researchers have

recently proposed to abandon the conservative and 100% error-free design paradigm, while

exploiting the inherent fault-tolerance of many applications through approximate computing

to avoid the need for conservative margins. In this new paradigm, the strict enforcement of

100% correct functionality is relaxed trading QoS for better cost (energy, yield) efficiency.

Approximate computing is computing efficiently by producing results that are good enough or

of sufficient quality [20]. While this core principle is not new and is shared among many fields,

recent efforts are devoted to incorporate this principle at many different design levels and

for various applications. Therefor, it is useful to define the key principles of the design using

2

1.1. Background

approximate computing techniques. First, a quality metric needs to be specified based on the

application and it is critical to develop methods to ensure that acceptable quality is maintained

while approximate computing techniques are applied. Second, an approximate computing

technique should be able to dynamically adapt to the input data or to the context in which

the outputs are used. More specifically, an approximate computing technique should be

quality-configurable across a range of qualities and not be optimized for a fixed quality. Third,

all the computations in an application are not equality important in the output quality and thus

they may or may not be subject to approximation [7,21,22]. For example, all the computations

in an image processing kernel do not equality contribute in shaping the output response and

approximations on the more important computations may lead to a non-negligible output

quality degradation. Therefore, a notion of significant-driven in the computations should

be adopted based on how significantly each computation impacts quality, and only apply

approximation to the less-significant computations avoiding a catastrophic effect in the output

quality.

Beside these key design principles, it is essential to further distinguish between the dynamics

and the determinism of the applied approximations or the related uncertainties, which are

specifically highlighted in this thesis: Static approximate computing techniques are incorpo-

rated at design-time and refer to algorithmic and/or architectural modifications to improve

efficiency at the cost of quality degradation. The impact of such techniques is identical and

fully deterministic for all manufactured chips, and therefore, they are more useful to deal with

slow variations with known impact. Dynamic approximate computing techniques, however,

refer to measures to adapt the quality at run-time or post-manufacturing while dealing with

fast variations or variations with an unknown or intractable effect. These specifically also

include techniques that deal with differences between manufactured chips or different input

data characteristics, which may be neither deterministic nor predictable. Statistical analysis

across the input data-set and fault distribution must be used to define their impact on the

quality. Consequently, instead of a straightforward quality metric, quality itself must be viewed

and analyzed as a distribution.

1.1 Background

Approximate computing is often used to broadly refer to techniques that exploit the intrinsic

resilience of applications to enable mitigating variability and improving the efficiency (i.e.,

cost and power) across different computing layers [6, 20]. First, at circuit level, techniques

to design approximate circuits that are highly efficient can be developed [23, 24]. Next, at

architecture/algorithm level, approximate architectures allow for a trade-off between effi-

ciency and output quality by exploiting the resilient nature of many algorithms [25,26]. Finally,

at software level, resilient computations within an application can be identified and can be

partially pruned or mapped to approximate platforms [27]. We note that the study of ap-

3

Chapter 1. Introduction

proximate computing techniques at multiple layers can have a considerable impact on the

manufacturing cost and energy efficiency of the integrated circuits as it allows to use less

reliable and less energy-hungry hardware while still guaranteeing acceptable quality levels.

The focus of this thesis is mainly at the algorithm and architecture level.

Some of the proposals and key principles underlying approximate computing can be traced

back to some well-established disciplines. For example, many of the algorithms in the domain

of signal processing are based on approximations [28]. In this spirit, the very-large-scale

integration (VLSI) signal processing domain contains many examples to approximate some

specific functions or arithmetic operations. Specifically, approximate recursive algorithms

that are used to compute transcendental functions [29], algebraic techniques that are used

to approximate complex-valued operations [30], and finite word-length optimizations that

are extensively employed to approximate any arithmetic operations [31], are among the well-

known examples.

Closely related to the above-mentioned techniques, but motivated more from the circuit

side, different proposals exists that modify arithmetic operations slightly in comparison to

the original ones resulting in a more efficient implementation. More specifically, it is pro-

posed to approximate the implementation of some core arithmetic functions. This includes,

for example, approximate adders [32–35] and approximate multipliers [36, 37]. Along the

same line, design automation methods to automatically derive such approximated arithmetic

components from a golden design are proposed [38, 39].

Beside the arithmetic and logic units approximation, memory elements are also the focus

of approximate computing techniques as they account for a significant fraction of area and

energy in many systems-on-chip (SoCs). To this end, various techniques are proposed to

enable the usage of memories below their reliability limits while exploiting the inherent error

resilience of many applications, which result in a more cost- or power-efficient design. An

unreliable static random-access memory (SRAM) with a dynamic quality management at the

cost of reliability is, for example, presented in [40] that shows improved energy efficiency. In

this work, bits with a more significant impact on the quality are protected while performing

voltage scaling to improve overall energy efficiency. A novel embedded DRAM (eDRAM)

optimized for a high-performance operation is proposed [41]. An energy-quality trade-off is

enabled with a limited refresh to achieve a substantial decrease in power consumption at the

cost of an increase in cell-failure probability. The authors of [42] propose to scale the supply

voltage of caches beyond their reliability limit while the supply voltage and the number of

faulty bits are monitored and controlled in software to achieve the desired energy-quality

trade-offs. A similar proposition is made in [43] for an on-chip SRAM in a Binary Neural

Network accelerator where the supply voltage is scaled well below the safe operating limit at

the cost of accuracy loss by exploiting the intrinsic bit-error resilience of the Binary (single-bit)

Neural Networks.

4

1.2. Thesis Contributions & Outline

Apart from approximation of different hardware components, it is proposed to exploit the

flexibility and robustness of some algorithms through approximate computing. For example,

iterative algorithms are a great candidate since the algorithm iterations provide a natural

means to trade the output quality for computational efforts. Also, probabilistic and heuristic

algorithms embody a trade-off between optimality of results and computational complex-

ity [44]. Communication systems are one area that can benefit from such a type of approximate

computing since they contain various iterative and probabilistic algorithms. Further, the sys-

tem has an inherent robustness [45, 46] against the potential (rare) worst-case events and

there is often an acceptable output range, which provides a good flexibility to be exploited by

approximation techniques. In addition to this system-level resilience, the fault-tolerance of

different components of communication systems have been studied [47–49] and a promising

potential for a more cost- and energy-efficient design has been shown at the cost of a negligible

communications performance degradation.

1.2 Thesis Contributions & Outline

The contributions of this thesis focus on algorithm and architecture techniques for the design

of approximate and efficient hardware for signal processing systems and are summarized

as follows: First, we propose a design methodology that allows to drop the requirement of

100% reliable operation and to accept dies with unreliable memory components. We examine

the proposed methodology for multiple applications such as image processing kernels and

a channel decoder in communication systems. Second, we propose a systematic statistical

framework to dynamically adapt the output quality of a channel decoder at run-time, as

an example of a dynamic iterative algorithm, that adjusts its effort to exploit circuit-level

power reduction mechanism for a significant reduction in the energy consumption. Finally,

we propose a static algorithmic and architectural technique at design-time to reduce the

complexity of the arithmetic units of a channel decoder resulting in a significant reduction in

both design area and energy consumption.

In the following, we outline the chapters of the thesis and we summarize the respective main

contributions.

Chapter 2: Approximate Computing with Unreliable Memories by Restoring the

Beauty of Randomness

Without pessimistic design margins, process variations result in unreliable operation of digital

circuits and lead to QoS degradation. The main challenge while dealing with unreliable circuits

lies in defining the output quality degradation due to the variations. In that light, this chapter

deals with the effect of unreliable memories in a system and proposes methods to guarantee a

minimum output quality for the corresponding application.

5

Chapter 1. Introduction

We first propose to accept dies with unreliable memories to abandon the requirement of

100% reliable operation, which avoids expensive design margins. Given the importance of

a correct quality assessment and thus the difficulty of yield analysis for such an unreliable

hardware, we then propose a methodology for analyzing the performance of a population of

unreliable dies by performing a detailed quality analysis for each die in the population. This

method requires complicated and thus expensive test procedures of the fabricated dies to

separate the well-performing dies from dies that deliver poor quality. We, therefore, propose to

randomize the errors in the memory to provide an ergodic1 fault behavior and to remove the

need for a complicated parametric test. Finally, we show that this method allows to guarantee

a minimum-quality for all the dies that are separated after production with a regular low

complexity test procedure.

Chapter 3: Practical Approximate Channel Decoders with Unreliable Memories

Communication systems are one of the domains that can benefit from the approximate

computing principles since such systems consist of various fault-tolerant algorithms that

deal with noisy data. This chapter demonstrates the ideas from the previous chapter with

the example of an low-density parity check (LDPC) decoder in a communication system and

provide a proof for them through measurement results.

We propose a LDPC decoder testchip that integrates faulty memories into the datapath to

solidly verify the non-ergodic memory fault model and the quality distribution across the

population of dies, which were initially shown in the previous chapter. Beside verifying the

fault model and quality distribution, we adopt and integrate ideas from the previous chapter

to the testchip, but specifically tailor them for the LDPC decoder example, which significantly

improve the decoder performance and enable the usage of approximate memories. As such,

memory faults are randomized to restore the ergodic quality distribution and to enable in-

dependent decoding attempts through creating different logical memories over time, and

the binary data representation and memory fault bias are jointly optimized to minimize the

impact of memory faults on the quality. The design is the first proof-of-concept demonstration

of a signal processing circuit that provides a stable quality in the presence of memory reliability

issues.

Chapter 4: DVFS Based Power Managment for LDPC Decoders with Early Termi-

nation

Data-dependent variations at run-time are a fast type of variation and another source of

expensive design margins taken between the algorithm- and architecture-level. For example,

iterative algorithms are often configured for the maximum number of iterations to achieve

1A process is ergodic, if the ensemble average corresponds to the time/data average.

6

1.3. Selected Publications

the required performance for the worst-case input scenario. We show that such variations

can also be exploited for average-case saving through approximate computing. With this in

mind, Chapter 4 deals with power management of an approximate LDPC decoder by early

termination (ET) of the decoding iterations and shows a systematic methodology of a dynamic

energy-quality trade-off adjustment.

We first propose a systematic statistical framework for reducing the energy consumption of an

LDPC decoder with dynamic voltage and frequency scaling (DVFS) based ET and characterize

the maximum theoretically-achievable savings. By exploiting the iterative nature of the decod-

ing, we then propose an algorithm to dynamically predict the decoding iterations at run-time

for each codeword that benefits from the performance-complexity trade-off. This algorithm

allows us to depart from the static and 100% predictable operation achieving the desired

energy-efficiency level at the cost of a well-controlled output quality, i.e., error-correcting

performance, degradation.

Chapter 5: Toward Energy and Area Optimization of High-Throughput LDPC De-

coders by Exploiting Quantized Message Passing

Motivated by the static approximate computing techniques, this chapter demonstrates design-

time algorithmic and architectural techniques to reduce the complexity improving the area

and energy efficiency of an ultra-fast LDPC decoder.

Unrolled LDPC decoders are a promising solution for the ultra-high decoding throughput

demands, however, their implementation remains a big challenge due to the very high number

of interconnects. Motivated by the historically very successful static approximate computing

techniques, we employ an approximate non-uniform quantization scheme to reduce the

bit-width of the arithmetic units, which highly reduces the implementation complexity. We

then propose an architecture based on serial transfer of the messages to further reduce the

interconnect complexity thus enabling the high-throughput implementation of the decoder.

We finally adapt a linear floorplan for the unrolled architecture, which results in a physical

implementation with a very good area and energy efficiency.

1.3 Selected Publications

This thesis is largely based on the following publications. A complete list of author’s publica-

tions can be found in the List of Publications as part of the back matter.

7

Chapter 1. Introduction

Chapter 2:

R. Ghanaatian, M. Widmer, and A. Burg, “Design for Test with Unreliable Memories by Restor-

ing the Beauty of Randomness”, journal publication submitted.

Chapter 3:

R. Ghanaatian, R. Giterman, A. Bonetti, A. Balatsoukas-Stimming, and A. Burg, “ErgoDEC: A

Practical Approximate LDPC Decoder in 28 nm FD-SOI with Unreliable Memories”, journal

publication submitted.

Chapter 4:

R. Ghanaatian and A. Burg, “DVFS based power management for LDPC decoders with early

termination”, IEEE International Workshop on Signal Processing Systems (SiPS), Oct. 2017.

Chapter 5:

R. Ghanaatian, A. Balatsoukas-Stimming, TC. Müller, M. Meidlinger, G. Matz, and A. Burg, “A

588-Gb/s LDPC Decoder Based on Finite-Alphabet Message Passing”, IEEE Transactions on

Very Large Scale Integration Systems (TVLSI), Feb. 2018.

A. Balatsoukas-Stimming, M. Meidlinger, R. Ghanaatian, G. Matz, and A. Burg, “A fully-unrolled

LDPC decoder based on quantized message passing”, IEEE Workshop on Signal Processing

Systems (SiPS), Oct. 2015.

1.4 Third-Party Contributions

All third-party contributions to the work presented in this thesis are listed in this section.

The work in Chapter 2 on approximate computing with unreliable memories was done using

an emulation platform that was developed by Marco Widmer. Andrea Bonetti was supporting

him during the development. Marco also gave me useful recommendations on how to modify

the emulation platform to support different memory types and memory fault models.

I worked in close collaboration with Alexios Balatsoukas-Stimming during the development

of the work provided in Chapter 3, i.e., the approximate channel decoder with unreliable

memories. He supported and supervised me in the development of the simulation framework

for the decoder with faulty memories, and by providing many ideas and suggestions for the

project. The fabricated test chip was the result of a collaboration within many people. Andrea

Bonetti set up the main floorplan and was the memory cell designer. Hanan Marinberg and

8

1.5. Preliminaries

Tzachi Noy, under the supervision of Adam Teman, helped Andrea to automate the design of

the dynamic memory arrays for the decoder. Robert Giterman continued the backend and per-

formed sign-offs. He also helped and supported me significantly for the chip measurements.

Jonathan Narinx helped Robert Giterman for the backend and designed the PCB for the chip

measurement. Finally, the measurement set-up was a customization based on a set-up that

was originally developed by Jeremy Constantin and Christoph Müller.

The work in Chapter 5 was the result of a collaboration between our lab and the Institute of

Telecommunications at university of Vienna. Micheal Meidlinger and Alexios Balatsoukas-

Stimming proposed the theory behind the finite-alphabet decoders and provided a framework

to generate a finite-alphabet LDPC decoder for multiple configurations. Alexios Balatsoukas-

Stimming supported me during the development of the decoder architecture. Christoph

Müller significantly contributed to different phases of the backend flow. Adam Teman provided

useful suggestions for the floorplan and the backend.

1.5 Preliminaries

Throughout this thesis, we focus on approximate computing for communication and signal

processing systems. We specifically consider LDPC decoders as a key component in mod-

ern communication systems that exhibit an inherent error-resilience for the case study of

Chapters 3-5. In Chapter 2 and Chapter 3, we also focus specifically on approximate comput-

ing for memory elements as they are the point of first failure in nanometer nodes [50]. As

such, in this section, we provide some background on embedded memories in modern SoCs

and on LDPC decoders. We note that we provide further and more specific background to

each chapter at the beginning of the corresponding chapter, while this section reviews some

preliminaries for the topics of all the chapters.

1.5.1 Embedded Memories

The increasing need for having more embedded memory on chip to provide a better system

integration and to reduce the speed and power penalty of off-chip memory access has shifted

the SoC design challenge from the computing logic to the on-chip memory. More specifically,

embedded memories typically consume a large share of the total area and the power budget

of modern VLSI SoCs in various applications ranging from different microprocessors [51, 52],

to communication systems [53] and AI accelerators [54, 55].

Besides the dominance of memories in the silicon area and power consumption of modern

SoCs, they are also the first-point-of-failure and limit design margins. For example, commer-

cial SRAM is more susceptible to functional failure as compared to the logic gates when the

supply voltage is scaled [50]. Further, due to high density design rules of memories, SRAMs

9

Chapter 1. Introduction

are often accounted as an important factor that limits the overall manufacturing yield in

nanometer nodes even under nominal operating conditions [56]. Therefore, memories are

often considered as a priority target for approximate computing techniques to allow for a

better energy-efficiency and a higher yield, as it is also considered in Chapter 2 and Chapter 3

of this thesis.

Although most of the techniques that are provided in this thesis to enable approximate com-

puting with unreliable memories are independent of the memory type and the corresponding

memory technology, it is useful to briefly discuss the different embedded memory types

that are in use today. Broadly speaking, embedded memories can be divided into two main

categories: 1) SRAM and 2) eDRAM [57], which are explained in more detail in the following.

SRAM uses a cross-coupled inverter pair to statically retain the stored data. SRAM has been

the mainstream memory solution in SoCs during the past decades [58]. The widespread of this

solution is mainly because of the availability of SRAM compilers and the fast read/write access

time [59]. Unfortunately, SRAM has some drawbacks that limit its usage in some applications.

For example, a typical SRAM has a large footprint, i.e., 6 transistors for each bit. Also, the

operation of SRAM macros in a low power regime with a scaled supply voltage (for example

below 600 mV) encounters several design challenges [60, 61].

To alleviate the large footprint of SRAMs, eDRAMs that are comprised of 1 transistor (1T) and 1

capacitor (1C), are used, which results in a better memory integration density. In eDRAM, the

data is stored in the form of electric charges on the capacitor. Unfortunately, the stored data

deteriorate due to a leakage and a periodic refresh is therefore required [62]. In addition to

this limitation, eDRAM requires special process options to build high-density capacitors [63],

which is often not available or requires an increase in the production cost.

In order to alleviate this extra manufacturing cost of 1T-1C eDRAM, a new type of eDRAM,

i.e., gain-cell (GC) eDRAM [59], has recently been proposed. The bit-cells in this memory are

build from 2-4 transistors [64], and the memory is fully compatible with any standard CMOS

technology. From a functional perspective, GC-eDRAM also requires a periodic refresh simi-

larly to conventional 1T-1C eDRAM. For power reduction as well as to reduce the bandwidth

overhead for refresh, there is an incentive to operate both 1T-1C eDRAM and GC-eDRAM

without conservative refresh margins [41]. However, this power/refresh overhead reduction

comes at the cost of few failures in the bit-cells with worst-case leakages.

One of the memory types that has been proposed in recent years to provide a more reliable

operation and better integration with logic gates, as compared to SRAM and eDRAM, is

standard-cell memory (SCM). SCMs are memory arrays that are described using hardware

description languages (HDL) and are mapped to standard-cell libraries. Although the bit-cell in

this type of memory has a large footprint, it is widely recognized that the SCMs are better suited

for low-power approximate memories to operate at scaled supply voltages [61]. Furthermore,

10

1.5. Preliminaries

it has also been shown that they are a good candidate for realization of small-size macros (up

to a few kbits) that are needed to be tightly coupled with logic [65].

1.5.2 LDPC Codes and Decoders

Low-density parity check (LDPC) codes are linear block codes for error correction in commu-

nication systems that were first introduced by Gallager in 1962 [66]. At that time, however,

the complexity of the encoder and the decoder was considered too high for a practical im-

plementation and they were mostly ignored for more than three decades. LDPC codes were

rediscovered by MacKay and Neal in 1997 [67]. Today, LDPC codes are adopted and used

in numerous communication standards (including the recent 3GPP 5G-NR cellular system)

because of their excellent error correcting performance and the availability of their practical

and flexible implementation for various throughput and energy requirements.

1.5.2.1 LDPC Code Construction

An LDPC code C of blocklength N is a set of codeword vectors that satisfies

C = {
c ∈ {0,1}N

∣∣Hc = 0
}

, (1.1)

where each row of the matrix multiplication defines a parity-check constraint with modulo-2

operations and H ∈ {0,1}M×N is the parity-check matrix of the LDPC code. We define the

number of non-zero elements in each column and each row of the parity-check matrix as

dv and dc , respectively. For a matrix to be low-density, the number of non-zero elements

must be much smaller than the matrix dimension, i.e., dc ¿ N and dv ¿ M . In this thesis we

only consider regular LDPC codes indicating that the parity-check matrix contains exactly

dv non-zero elements per column and dc non-zero elements per row. Such a code is called a

(dv , dc)-regular code. The rate of an LDPC code, which indicates the fraction of information

bit in a codeword vector, is given by R = 1− M
N . For a regular code, the rate can also be derived

as R = 1− dv
dc

. A low-rate code provides better error correction with a higher transmission

overhead, while a high-rate code tolerates fewer errors at a lower transmission overhead.

Beside the parity-check matrix, a Tanner graph is often used to graphically represent such a

code [68]. Tanner graphs are bipartite graphs in which the node of the graphs are separated

into two distinct sets and edges connect nodes of the two types. The two types of the nodes

in a Tanner graph are called variable nodes (VNs) (represented with circles) and check nodes

(CNs) (represented with squares). The CNs are connected to the VNs they check. Specifically,

an edge connects CN m to VN n if and only if Hm,n = 1. An example of a Tanner graph for

a (2, 4)-regular LDPC code with a blocklength of N = 6 and the corresponding parity-check

matrix is illustrated in Fig. 1.1.

11

Chapter 1. Introduction

H =
 1 1 1 0 1 0

1 0 1 1 0 1
0 1 0 1 1 1


VN1 VN2 VN3 VN4 VN5 VN6

CN1 CN2 CN3

Figure 1.1: Example of a parity check matrix (left) for a (2, 4)-regular LDPC code of blocklength
N = 6 and the corresponding Tanner graph (right).

1.5.2.2 Decoding of LDPC Codes

The decoding of an LDPC code is a process of translating received codewords into the original

codewords that were sent over a communication channel. Since performing an optimal

decoding is complex, sub-optimal decoding techniques are used that are based on iterative

message passing (MP) algorithms [69]. In these algorithms, information is exchanged between

VNs and CNs of the Tanner graph over the course of several decoding iterations. Since the

parity-check matrix of LDPC code is sparse, the number of messages that are exchanged

over the Tanner graph grows linearly with blocklength N , which means the complexity of MP

decoding only grows as O (N) [70].

In the MP algorithm, the nodes act as independent processors, collecting incoming messages

and producing outgoing messages. Therefore, each node has a local update rule, which

computes a mapping from the incoming messages for all the outgoing messages. Depending

on the update rules that are employed for the CNs and VNs, different decoding algorithms are

identified, among those, sum-product (SP) algorithm [71] and min-sum (MS) [72] algorithm

are two popular examples. SP is the optimum algorithm with respect to the decoder error-

correcting performance, however, it involves transcendental functions that impose high

complexity for hardware implementation. MS algorithm is an approximation of SP that is

more suitable for hardware implementation since it only involves addition and minimum

computation. We will provide a detailed mathematical explanation on MS update rules at the

beginning of Chapter 3 and Chapter 5.

1.5.2.3 Hardware Architectures for LDPC Decoder

Generally speaking, architectures for an LDPC decoder are comprised of three hardware

components: VN and CN processors to compute the update rules, an interconnect network

representing the edges of the Tanner graph, and memory elements to store the messages

during the decoding [73]. The MP view of the iterative decoder enables different architectural

choices based on the Tanner graph. While a parallel implementation uses distinct CN and VN

processors with minimal storage requirements, a serial implementation consists of only one

CN and VN processor with a significant storage requirement [73].

12

1.5. Preliminaries

Different communication standards that utilize LDPC codes require various throughput and

complexity (e.g., silicon area and power consumption) trade-offs. In order to meet these

diverse requirements, different hardware architectures have been proposed in literature. From

a high-level perspective, by starting from a parallel implementation [74], i.e., an isomorphic

architecture, and applying architectural transformations, different architectures can be ob-

tained. More specifically, by applying resource sharing among CN and/or VN processors,

block-parallel [75] and partial-parallel [76] architectures are obtained. Such architectures

provide a medium throughput and have a modest complexity. The decoders that are used

in Chapter 3 and Chapter 4 have a block-parallel architecture. In order to obtain a higher

throughput, iterative decomposition is applied, which results in an unrolled architecture that

has a distinct set of processing nodes for each decoding iteration and thus a high complexity

degree [77]. The decoders that are proposed in Chapter 5 have an unrolled architecture.

Beside the architectural transformations that are used to trade throughput for complexity,

early termination (ET) of the decoding iterations [78] is widely employed to improve the

energy-efficiency of LDPC decoders. ET is the process of stopping the decoding iterations

when further iterations are unlikely to alter the decoding results, which can be recognized by

checking the parity equations in (1.1). In addition to ET, we will provide different techniques

based on approximate computing paradigm to further improve the energy-efficiency of an

LDPC decoder.

13

2 Approximate Computing with Un-

reliable Memories by Restoring the

Beauty of Randomness

Process variations result in unreliable operation of the very-large-scale integration (VLSI)

circuits and lead to quality of service (QoS) degradations. As we are approaching the most

advanced technology nodes, such as 7nm and 5nm, it is becoming increasingly challenging to

guarantee reliable operations without a conservative and thus costly design margin, which

leads to a diminishing gain from technology scaling.

Memory elements are the first point of failure in many VLSI technology nodes due to the higher

density design rules [50]. At the same time, embedded memories account for most area and

energy-consumption in complex systems-on-chip (SoCs) and in many accelerators. Emerging

applications based on artificial intelligence (AI) and machine learning (ML) demand an

extremely large amount of memories, ideally embedded on-chip, which aggravates the failure

issue. The use of popular and effective low-power design techniques, such as voltage scaling,

and the sensitivity of storage elements to voltage scaling further aggravate the situation [79],

and therefore, it becomes increasingly challenging to maintain a 100% reliable operation

across all corners.

To alleviate the reliability issues, it has been proposed to accept errors in memories, as a flavor

of approximate computing, while exploiting the inherent fault-tolerance of many applications.

Many publications demonstrate the robustness of various types of algorithms and applications

against errors in embedded memories and claim considerable savings in terms of energy or

protection overhead for scaled voltages. The authors in [80] describe different energy-quality

trade-offs based on static random-access memory (SRAM), which shows an improved energy

efficiency by protecting more significant bits while jointly performing voltage scaling. Dynamic

random-access memory (DRAM) or embedded DRAM (eDRAM) is considered in [41, 81] with

a limited refresh to achieve a substantial decrease in power consumption at the cost of an

increase in cell-failure probability. The authors of [42] propose to scale the supply voltage of

15

Chapter 2. Approximate Computing with Unreliable Memories by Restoring the Beauty
of Randomness

caches beyond their reliability limit to achieve energy-quality trade-offs. The error tolerance

of a Binary Conventional Neural Network is studied [82] by considering the efficacy of the

network coefficient SRAM voltage scaling on the classification accuracy through measuring

multiple dies. In [43], it is similarly proposed to scale the supply voltage for an on-chip SRAM

in a Binary Neural Network accelerator well below the safe operating limit at the cost of

accuracy loss by exploiting the bit-error resilience of the binary network. Even though some of

the above studies are based on measurement, most of them assume an ergodic fault model

in which the time-average quality of a single faulty die is well predicted by the ensemble-

average quality across the population of manufactured dies. This model is convenient as it

allows to quickly derive a straightforward scalar average-quality metric from Monte-Carlo

simulations with random transient faults that are injected to model defects from process

variability issues. These errors are often also independent of the stored data and each other,

identically distributed, and symmetric.

Unfortunately, the above described widely-made assumption of an ergodic process is seriously

flawed and the consideration of an average quality across time/data and across a population

of dies has no relevant operational meaning. In fact, each chip with a reliability issue is

characterized by a specific failure mode that characterizes, for example, the location and

polarity (stuck-at-0 or stuck-at-1) of faulty bits. The specific realization of faults can have a

significant impact on the average quality of each individual die, which is not reflected in the

scalar average quality metric of the ergodic fault model. We will later also support these claims

with measurements in the next chapter.

As an important consequence, the quality difference between dies should be considered during

the test procedure of the fabricated dies to discard dies with insufficient quality. Unfortunately,

how to achieve this is only partially addressed by very few works. This lack of coverage of

this important issue is attributed partially to the widespread acceptance of the ergodic fault

model, which ignores the significant quality differences between dies and therefore does not

require special attention during test. The work in [83], has indeed recognized that different

dies of an unreliable digital circuit will produce a different quality and this matter needs to be

accounted for during test. Unfortunately, the procedure proposed in [83] to infer a quality-

impact from test results is only applicable to very small circuit components and is far from

being able to evaluate the impact of a fault on output quality of a complex algorithm. The work

in [84] proposes a test procedure based on a quality metric that is computed from test results

and predicts a significant yield enhancement when errors can be tolerated. Unfortunately,

this quality metric is very application-specific and is difficult to derive for more complex

applications and corresponding circuits.

To be able to drop the requirement of 100% reliable operation during design, manufacturing,

and test, it is absolutely necessary to

16

1. provide a yield analysis across the manufactured chips that requires characterizing

the performance of all the chips and determining how many chips meet a minimum

performance requirement, and

2. provide a strategy (including design-for-test and test) to separate dies that meet a

minimum-quality requirement even in the presence of defects in unreliable memories.

We note that throughout this chapter, we assume to have faults only in the memory compo-

nents, as the dominant part of the modern SoC in terms of area and power. This assumption

is important since the derivation of models for the misbehavior of other parts of the circuit,

such as the logic part, is difficult and memory faults have a more moderate impact on the

performance since different data elements are stored in different memory locations and a

single fault affects mostly a single data element. Arithmetic elements on the other hand are

typically re-used multiple times which multiplies the impact of any error.

Contributions and Outline Given the importance of a correct performance assessment for

the unreliable hardware and the difficulty of yield analysis for such hardware, we propose

a generic methodology to analyze the performance of a population of unreliable chips and

to deliver reliable performance guarantees. The methodology is based on a design-for-test

procedure that guarantees identical time-average behavior for all manufactured dies with

the same number of defects by restoring the beauty of randomness. It enables a quality-yield

analysis and a simple, low-overhead test strategy that does not require costly per-die quality

assessment.

More specifically, the contribution of this chapter are the followings:

• To characterize the faulty manufactured chips, we propose to consider a more com-

plex performance metric, i.e., the individual chip time-average quality instead of the

ensemble-average quality, to capture the quality distribution in the entire population of

dies.

• Given the quality distribution across the population of dies, we provide a yield analysis

to demonstrate how many chips meet a certain time-average quality requirement.

• We propose a new design-for-test strategy that randomizes the deterministic post-

fabrication errors to obtain a truly ergodic fault model. This measure not only enables

the analytical performance assessment under faulty hardware, but also (and more

importantly) facilitates the corresponding test procedure. The proposed randomization

scheme is implemented for a faulty memory and synthesized results are reported for

overhead comparison.

17

Chapter 2. Approximate Computing with Unreliable Memories by Restoring the Beauty
of Randomness

Figure 2.1: The fault model follows a random distribution, however, the fault mode for each
chip after manufacturing is deterministic. Therefore a performance evaluation that is accord-
ing to ensemble-average quality is invalid for the population of chips.

• We demonstrate and evaluate our methodology with practical image processing bench-

marks for an embedded system with faulty memories.

The remainder of this chapter is organized as follows. Section 2.1 provides the underlying

mathematical analysis for quality assessment, which serves as the background for the chapter.

In Section 2.2, we show the detailed quality assessment methodology with unreliable memories

for the non-ergodic fault model. Section 2.3 explains the proposed randomization scheme to

restore an ergodic behavior. Section 2.4 presents the results, Section 2.5 discusses the impact

of the proposed scheme, and Section 2.6 concludes the chapter.

2.1 Background

A convenient approach to analyze the robustness of an application against memory reliability

issues is to randomly inject errors either once in the beginning of a simulation or during the

simulation. By averaging across many simulation runs (i.e., across many error patterns), an

average quality is obtained, as illustrated in Fig. 2.1.

The simplicity of this model lies in the fact that it does not distinguish between the behavior

of a given die over different inputs (i.e., time) and the behavior of a population of dies. This

lack of distinction between these two dimensions corresponds to an ergodic fault model. In

such a model the statistical properties of errors in different dies are the same as those that are

relevant for the appearance of errors over time in a given die. Hence, a single scalar average

performance metric is sufficient to characterize the quality of an application when errors are

injected. More formally, let Pn(y(t),en(t)) be the output quality of a given die n ∈N , where

N denotes the population of dies created by the manufacturing process and en(t) denotes its

specific fault-realization. The test-data set y(t) on which the quality is evaluated is a function

of time t and the time-average quality of a given die n as observed during operation of that

18

2.2. Proposed Application Quality Assessment with Unreliable Memories

die P̄n = Et [Pn(y(t),en(t))] is the quality metric that we must ultimately guarantee for each

die that passes the production test.

However, only for an ergodic fault model we can replace the time-average Et [·] with the widely

used ensemble-average En[·]. More specifically, let P̄ = En,t [Pn(y(t),en(t))] be the average

quality of an application in the presence of unreliable hardware with random fault injection.

Then the time-average quality corresponds to the ensemble/time average quality as

P̄n = Et [Pn(y(t),en(t))] = P̄ ,

↑
only if en(t) is ergodic

(2.1)

if the fault process is indeed ergodic.

2.2 Proposed Application Quality Assessment with Unreliable Mem-

ories

In this section, we discuss our proposed quality assessment methodology. To this end, we

review the difference between the ergodic and non-ergodic fault process and provide measure-

ment results to support this difference. Given the relevance of the non-ergodic fault process,

we then present a quality assessment methodology to reflect this behavior and finally provide

the quality results.

2.2.1 Ergodic vs. Non-Ergodic Fault Model

The main issue with this ergodic fault model assumption is that errors arising from process

variations are mostly deterministic after manufacturing, at least for a given set of (voltage,

temperature) operating conditions. While these conditions may vary, it is still the outcome of

the manufacturing which significantly influences the type and locations of the faults. This post-

fabrication deterministic behavior is particularly visible for memories and can be observed

indirectly in the results of some publications (e.g., [41, 82, 85]).

To illustrate this more explicitly, we provide two examples from dedicated test chips: For SRAM,

within-die process variations determine the unstable bits that fail at low voltages. These are

clearly different for different chips, but are stable over time as shown by the three fault maps in

Fig. 2.2(a) and the percentage of tests in which the faults are visible. For DRAM and embedded

DRAM, variations determine the retention time of each individual bit in the memory. Without

a pessimistic refresh, weak cells are the first to fail. Fig. 2.2(b) shows how the retention time

distribution, and therefore, also the location of the weak cells varies from chip to chip. Both

the SRAM and DRAM behavior are clearly non-ergodic.

19

Chapter 2. Approximate Computing with Unreliable Memories by Restoring the Beauty
of Randomness

100 101 102 103 104 105
0

10

20

30

40

50

eDRAM 1 eDRAM 2 eDRAM 3

SRAM 1

SRAM 2

N
b

F
ai

lu
re

s
in

 1
00

 R
un

s

(a) (b)
Cell Number

SRAM 3

SRAM 1
SRAM 2
SRAM 3

S
R

A
M

 F
au

lt
 M

ap
s

(f
ai

li
ng

 b
it

s
in

 th
e

ar
ra

y
ar

e
m

ar
ke

d)

Figure 2.2: Measurements showing the different fault realizations in different chips: a) fault-
map of three SRAM macros with the failure rate of the faulty bits across multiple tests, b) data
retention time map of three GC-eDRAM macros.

To illustrate the impact of this non-ergodic fault model on the relevance of a quality assessment

based on an ergodic fault model, consider the following simple example: A measurement

vector y of length T is stored in an unreliable memory in B-bit 2’s-complement format. Our

quality metric is the mean-squared error of ŷn ≈ yn which is affected by errors in the memory

compared to the original data. A first issue which already illustrates the issues with the ergodic

fault model is that for a given bit-failure probability each manufactured die is affected by

a different number of errors according to a binomial distribution. However, even for those

dies that have the same number of errors K , we can observe significant differences in the

quality. With an independent and identically distributed (i.i.d.) ergodic fault model in which

K errors manifest as bit-flips, the ensemble-average error of the output is convenient to

determine analytically as En[|y− ŷn |2] ≈ K
T B

∑B−1
b=0 22b . Unfortunately, it is easy to show that for

a arbitrary die n we can only guarantee that K
T ≤ |y− ŷn |2 ≤ K

T 22(B−1). These far-apart bounds

correspond to bit flips either all in LSBs or all in MSBs representing the best-case and the

worst-case scenarios. One is significantly better, the other significantly is worse than the

ensemble-average predicted by the ergodic model.

2.2.2 Assessment of the Quality-Yield Trade-Off for Non-Ergodic Fault Models

From the discussion in the previous sub-section, it is evident that the ergodic fault model is

not realistic and therefore the assessment of the ensemble-average quality for a system with

20

2.2. Proposed Application Quality Assessment with Unreliable Memories

Figure 2.3: The proposed flow for yield assessment. In this flow, the time-average behavior is
simulated for all the fault realizations and the ensemble statistics is illustrated as an ICDF.

unreliable (memory) components is meaningless. In fact, even for a good ensemble-average

quality, the quality of different dies can be very different and an unknown, possibly a significant

percentage of dies may fail to reach the necessary minimum-quality target.

To obtain a more realistic and more meaningful measure of the impact of reliability issues, it

is absolutely necessary to perform a quality-yield analysis. This analysis generates a popu-

lation of dies N with their individual fault patterns en and studies the time-average quality

distribution across the entire population as illustrated in Fig. 2.3. The cumulative distribution

function (CDF) of the time-average quality then indicates the quality-yield, i.e., the percentage

of dies that meet a given minimum time-average quality target.

The procedure to obtain the quality-yield is as follows:

1. First, we group the manufactured dies by the number of faulty memory bits. We define

error ratio as the number of faulty bits relative to the memory size. Note that for a

given bit-failure probability the distribution of the number of errors is a very peaky

Bernoulli distribution especially for small error ratios, as illustrated in Fig. 2.4. Hence,

there are only very few relevant groups depending on the bit-failure probability and the

memory size which can be evaluated separately and then weighted by the probability of

occurrence. We approximate these few groups by only one where the error ratio is equal

to the bit-failure probability. The following steps are carried out for each group.

2. For a given number of errors, we generate a population of dies n ∈N with their individ-

ual fault locations and the type of bit errors en . These errors are different deterministic

realizations of the fault process, which can be obtained based on silicon measurement

statistics, as reported for example in [81, 86]. Here, we consider random location and

stuck-at type as the fault parameters for each error ratio.

3. Using system simulations with targeted fault injection according to en , the benchmark

time-average quality performance metric is measured for each die in the population

with two nested simulation loops. While the outer loop iterates over the different dies,

21

Chapter 2. Approximate Computing with Unreliable Memories by Restoring the Beauty
of Randomness

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·10−2

0

5 ·10−2

0.1

0.15

Fraction of Failing Bits

P
D

F

Pb = 1×10−3

Pb = 2×10−3

Pb = 5×10−3

Figure 2.4: The Probability distribution of fraction of affected bits in a memory with size of
10 Kb for multiple bit error probabilities Pb .

i.e., n ∈N , the inner loop iterates over the input statistics y(t), i.e., over time to evaluate

the time-average quality P̄n = Et [Pn(y(t),en(t))].

4. Finally, an analysis phase is conducted by plotting the CDF of all the measured qualities

P̄n . This CDF illustrates the performance of populations of dies and therefore provides

the complete information for yield assessment.

2.2.3 Quality-Yield Assessment FPGA Platform

In order to illustrate the relevance of the yield-quality trade-off we use a software-programmable

embedded system that is equipped with an emulator that can mimic faulty memories. To this

end, we integrated the emulator presented in [87] into the PULP platform [88], which allows

us to evaluate the performance of multiple benchmarks. The system architecture is shown

in Fig. 2.7(b). This architecture is a complete system-on-chip (SoC) based on a single core

32-bit RISC-V processor, PULPissimo [89], that uses a memory subsystem connected through

a single-cycle logarithmic interconnect (system bus). The memory subsystem consists of both

1024K B reliable and 512K B faulty memories. The former contains all the program code as

well as the critical, e.g., control, data of the selected benchmarks while the latter is used to

outsource less-significant large working sets of the benchmarks. While the platform is based

on the eDRAM emulator that is publicly available from [87], we use this emulator in this paper

only to model reliabilities in SRAM. Hence, we adapt the emulator for this purpose and define

22

2.2. Proposed Application Quality Assessment with Unreliable Memories

Table 2.1: Description of the analyzed benchmarks.

Name Description Quality metric

Convolution Sobel kernel for edge detec-
tion on a 128x128 px image

PSNR

Disparity
Map [90]

Depth map from two 72x54
px images from a stereo
camera

PSNR

Susan
Smooth-
ing [91]

Smoothing of a 76x95 px im-
age with SUSAN principle

PSNR

Susan Cor-
ners [91]

Corner detection in a 88x66
px image with SUSAN prin-
ciple

PPV1

MNIST [92] Handwritten digit recogni-
tion with a neural network

CID2

1 Fraction of detections being true positives with respect to a reference execution
2 Percentage of correctly identified digits

directly the bit-error rate instead of using the data-retention-time modeling feature of the

emulator.

The emulation platform is implemented on FPGA to accelerate the evaluation of the bench-

marks. After programming the FPGA, the evaluation process runs autonomously on the CPU

of the emulated embedded system, according to the proposed flow in the previous sub-section.

An initialization step is followed by two nested loops to realize Monte-Carlo simulations across

multiple instances of the memory fault model and across different input data sets, respectively.

More specifically, the outer loop programs the faulty memory emulator with a new fault map

and the inner loop iterates over the chosen benchmark and evaluates the quality of the output

for each run of the benchmark kernel, which is used to compute the time-average quality

for the current fault map. Finally, the summary of these assessments across all fault maps

(all simulated chips) allows to provide the yield-quality trade-off by considering the CDF

of the quality. This CDF shows the percentage of dies that meet a given minimum quality

requirement.

Different embedded benchmarks are implemented in C programming language and are

evaluated with the above emulation platform. For each of the analyzed benchmarks, a short

description and the used quality metric are reported in Table 2.1. For the non-reliable memory,

which contains the less significant (i.e., more robust) data of the benchmark, we consider

the fault model explained in the previous sub-section. To characterize the quality for the

non-ergodic fault behavior, we then derive 300 different fault maps with the above model,

each of which corresponds to a chip, and we derive the quality for each chip.

23

Chapter 2. Approximate Computing with Unreliable Memories by Restoring the Beauty
of Randomness

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Error Ratio
1e-4 3e-4 5e-4 1e-3

15 20 25 30 35 40 45 50
PSNR [dB]

0

25

50

75

100

Yi
el

d
[%

]

(a) Convolution

15 20 25 30 35 40 45 50
PSNR [dB]

0

25

50

75

100

Yi
el

d
[%

]

(b) Disparity map

15 20 25 30 35 40 45 50
PSNR [dB]

0

20

40

60

80

100

Yi
el

d
[%

]

(c) Susan smoothing

20 40 60 80 100
Detection Rate [%]

0

20

40

60

80

100

Yi
el

d
[%

]

(d) Susan corners

20 40 60 80 100
Detection Rate [%]

0

25

50

75

100

Yi
el

d
[%

]

(e) MNIST with 1 layer

20 40 60 80 100
Detection Rate [%]

0

25

50

75

100

Yi
el

d
[%

]

(f) MNIST

Figure 2.5: Benchmark yield-quality trade-off analysis for the fault model with four different
error ratios. The dashed black line shows en ergodic ensemble-average quality for error ratio
of 10−4.

2.2.4 Quality-Yield Results

Fig. 2.5 shows the quality-yield trade-off of the different benchmarks for different error ratios

(i.e., percentage of defect bits, corresponding for example to different supply voltages). Each

benchmark is repeated multiple times with varying and with the same input data.

We observe that for a given error ratio, the quality spreed is very large across individual dies

due to the very diverse impact of the different non-ergodic error patterns. Considering the

Disparity benchmark as an example, different chips with error ratio of 10−4 in the memory

span a quality range of 25−42dB, while the ergodic average quality, shown with a dashed line,

24

2.3. Restoring the Ergodic Behavior

is 31dB. More specifically, there exist chips that provide significantly better or more degraded

quality compared to this average due to their non-ergodic behavior. Therefore, a minimum

quality requirement equal to this average 31dB only gives a yield around 40% and the rest fails

to reach this target. This indicates that the CDF of the quality for different chips is the correct

metric for the yield characterization and the ergodic average quality across all the chips is of

no operational meaning.

2.3 Restoring the Ergodic Behavior

The quality-yield analysis allows to choose a suitable operating point for the design in terms of

the component reliability that optimizes power and other cost metrics under a given minimum

quality and yield requirement. Targeting the worst-case quality as the requirement would

allow to deliver all manufactured dies, i.e., 100% yield, without further testing. Unfortunately,

we have also seen that the quality spread across different dies can be very large and the worst-

case quality in a population of dies can be very low. Hence, the worst-case quality target is not

attractive.

In the following, we first show how a slightly better quality can be guaranteed at the cost of an

acceptable yield loss with a complex test procedure. We then show how this achievable quality

can be improved and how the yield-loss can be minimized with a small design change and a

drastically simplified and feasible test procedure.

2.3.1 Testing for a Minimum Quality Requirement

The difficulty in running a production with a minimum quality requirement that is higher

than the pessimistic worst-case quality lies in the need for a parametric test procedure. Such a

procedure identifies the quality level for each manufactured die, which can then be compared

to the quality threshold to decide if a die should be discarded. This procedure is illustrated

as a flow-graph in Fig 2.6. As it can be observed, obtaining the quality level provided by a

specific die with a faulty behavior is unfortunately extremely difficult, since it requires to run

the application quality benchmark for every fabricated die.

A straightforward approach would be to simply run a quality benchmark on each die as it is

used for the quality-yield analysis at design time. Such tests are, however, very time consuming

even in a real-time production test set-up, and thus, are uneconomic due to the excessive test

time. An alternative method would be to simply keep a table of all the potential error patterns

together with the information on the resulting quality. Unfortunately, the number of potential

error patterns grows extremely rapidly with the memory size. For example, for a maximum of

5 errors in 1 Kbit of memory, there are more than 1012 possible error patterns which is already

25

Chapter 2. Approximate Computing with Unreliable Memories by Restoring the Beauty
of Randomness

Running quality benchmark

Quality threshold

(Stimuli, Application quality function)

No

Yes
Passed

Discard Quality-Yield

Quality

<

Figure 2.6: Parametric test flow for fabricated dies through running application quality bench-
mark to separate dies that can pass the minimum quality.

prohibitive. We therefore conclude that identifying the time-average quality of a specific faulty

die (with a given and fixed fault pattern) during test is economically not feasible.

2.3.2 Proposed Design-for-Test Strategy: Restore a Random Fault Behavior

The solution to the above-described testability dilemma lies in the observation that the error

pattern of each individual die is deterministic. Hence, any averaging over different error

patterns is meaningless and cannot be used for representing the quality of each die. To

alleviate this issue, we propose to modify the design in such a way that even for a given die

(with fixed defect pattern) the time-average behavior of each die corresponds to the ensemble-

average over the entire population of dies. Specifically, we propose to randomize the errors by

a given defect pattern over different executions of the algorithm. This measure restores the

beauty of random fault injection for which the quality is ergodic (i.e., the quality delivered by

each die is the same as the average-quality over a population of dies).

More formally, by randomizing the errors over time, the error pattern instance en becomes

again time-dependent en(t) for each individual chip. The application ensemble-average

quality

P̄ = En,t [Pn(y(t),en(t))] (2.2)

= Et
[
En|t [Pn(y(t),en(t))]

]= Et [Pn(y(t),en(t))] = P̄n ,

is equal to the time-average quality for each individual chip since the stochastic process e(t)

and thus the quality P (·) are ergodic. We, therefore, make the condition in (2.1) true and

conclude a similar result.

26

2.4. Quality-Yield Trade-Off Results for Ergodic Faults

2.3.3 Restoring an Ergodic Fault behavior for Memories

In order to realize a random behavior for a faulty memory, error locations should be moved

across the memory array. Additionally, error polarities should also be altered randomly to

provide a data-independent fault behavior for stuck-at-0/1 faults.

To achieve this randomization, we distinguish between the physical XY-location of a bit in

a 2D array of bit-cells on the chip and the logical address including the index of a bit in a

word. For the program, only the logical address is relevant, while defects after manufacturing

are fixed to a physical location. A straightforward embedded systems typically implements a

direct, fixed mapping between logical address and physical location that does not change over

time. However, any unique, reversible mapping is valid and the mapping can be changed any

time the program or an isolated kernel with memory-intensive local data is restarted and the

data in the memory are re-loaded. When the mapping changes, also the location of defects in

the logical address space changes as illustrated in Fig. 2.7(a).

To implement an ideal randomized mapping (where each logical bit can be placed in each

physical location), the memory must be broken up into 1-bit wide sub-macros which are

all individually addressable. Such a memory configuration is shown on the top-left in the

system diagram in Fig. 2.7(b). The randomization is controlled by pseudo-random seeds that

are changed before each kernel execution. With this seed, hash functions derive scrambled

addresses for each sub-macro from the same logical address. A crossbar, controlled by a

hashed address then permutes the order of the bits in a word on the data bus. The bits are

routed to the memory and are further XORed with pseudo-random bits derived from the

address and the seed. This reversible logic operation randomizes the polarity of physical stuck-

at-1/0 errors in the logical data. Performing the same operations with the same seed until a

new independent kernel execution for all read- and write-operations ensures transparency of

the above described mappings.

Unfortunately, the ideal randomization is very costly, mainly due to the overhead for the

breakup of the memory into sub-macros. We therefore propose a reduced-complexity ran-

domization scheme which leaves memory macros untouched, requires fewer hash function

units, and avoids a full crossbar for the randomization of the bit location in the word. The

corresponding schematic is shown for the top-right memory in Fig. 2.7(b). A single hash

function randomizes the address, the data bits are shuffled with a cyclic shift within a word,

and all bits of a word are either inverted or not depending on the address.

2.4 Quality-Yield Trade-Off Results for Ergodic Faults

We re-evaluate the quality-yield for benchmarks of Table 2.1 using the proposed simplified

randomization circuit. We follow the procedure described in Section 2.2.2 to obtain the quality-

27

Chapter 2. Approximate Computing with Unreliable Memories by Restoring the Beauty
of Randomness

Address space / bit-index randomization
1 0 5 4 3 2
2 1 0 5 4 3
4 3 2 1 0 5
1 0 5 4 3 2
1 0 5 4 3 2
5 4 3 2 1 0
3 2 1 0 5 4
2 1 0 5 4 3
3 2 1 0 5 4
5 4 3 2 1 0
5 4 3 2 1 0

0
1
2
3

4
5
6
7
8

9

2
0
1
5

8
6
7
3
9

4

1 0 5 4 3 2
4 3 2 1 0 5
2 1 0 5 4 3
0 5 4 3 2 1
4 3 2 1 0 5
1 0 5 4 3 2
2 1 0 5 4 3
1 0 5 4 3 2
1 0 5 4 3 2
2 1 0 5 4 3
5 4 3 2 1 0

0
1
2
3

4
5
6
7
8

9

1
0
9
8

5
4
6
7
3

2

0 5 4 3 2 1
1 0 5 4 3 2
5 4 3 2 1 0
2 1 0 5 4 3
4 3 2 1 0 5
5 4 3 2 1 0
1 0 5 4 3 2
1 0 5 4 3 2
4 3 2 1 0 5
1 0 5 4 3 2
5 4 3 2 1 0

0
1
2
3

4
5
6
7
8

9

6
3
2
0

4
5
8
7
9

1

2 1 0 5 4 3
3 2 1 0 5 4
5 4 3 2 1 0
3 2 1 0 5 4
0 5 4 3 2 1
5 4 3 2 1 0
4 3 2 1 0 5
3 2 1 0 5 4
3 3 1 0 5 4
0 5 4 3 2 1

3
9
2
1

4
5
0
7
6

8

0
1
2
3

4
5
6
7
8

9

5 4 3 2 1 0
2 1 0 5 4 3
2 1 0 5 4 3
3 2 1 0 5 4
2 1 0 5 4 3
5 4 3 2 1 0
3 2 1 0 5 4
5 4 3 2 1 0
1 0 5 4 3 2
3 2 1 0 5 4
1 0 5 4 3 2

1
2
0
7

9
3
5
6
4

8

0
1
2
3

4
5
6
7
8

9

5 4 3 2 1 0
0 5 4 3 2 1
4 3 1 0 5 4
2 1 0 5 4 3
4 2 1 0 5 4
3 2 1 0 5 4
0 5 4 3 2 1
2 1 0 5 4 3
3 2 1 0 5 4
4 3 2 1 0 5
2 1 0 5 4 3

1
0
9
8

5
4
6
7
3

2

0
1
2
3

4
5
6
7
8

9

5 4 3 2 1 0

5 4 3 2 1 0

5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0

0
1
2
3

4
5
6
7
8

9

0
1
2
3

4
5
6
7
8

9

1
0
9
8

5
4
6
7
3

2

0 ... 9
0 ... 5

0 ... 9
0 ... 5

Physical row (word idx) in memoy
Physical column (bit idx) in memory

Logical word address
Logical bit index

0
1
2
3

4
5
6
7
8

9

5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0

P
h

y
s
ic

a
l
lo

c
a
ti

o
n

L
o
g

ic
a
l
a
d

d
re

s
s

1:1 mapping

Kernel
executions

1 2 3

ch
a
n

g
e

m
a
p
p
in

g

ch
a
n

g
e

m
a
p
p
in

g

(a)

(b)

Figure 2.7: (a) Illustration of a 1:1 and randomized mapping of physical locations to logical
addresses; (b) System diagram with unreliable memory (top) and logic for ideal (top-left) and
simplified (top-right) randomization.

28

2.5. Discussion

yield. After the initialization for a given number of errors for a group of dies, a fault map for

each die is generated (the faulty memory is programmed accordingly). However, we now

re-program the seed of the address space randomization logic with a different value for each

repetition of a benchmark, as shown in the CPU flow of Fig. 2.7(b). The average quality across

these repetitions with different seeds, but with the same fault map (i.e., on the same die) is

now the basis for the quality-yield assessment. This analysis reflects the distribution of the

average quality that is delivered by the individual dies when operating over an extended time

period.

Fig. 2.8 shows the quality-yield results of this analysis for the mentioned benchmarks and for

different error ratios. We observe that quality across individual dies shows a very small variance

compared to the ensemble-average quality for each error ratio. Considering the Disparity

benchmark again as an example, different chips with error ratio of 10−4 in the memory provide

a quality variance of only 2dB around the ensemble-average quality, which is 29dB and shown

with a dashed line. This negligible spread indicates that the average quality across multiple

benchmark executions on the same die now matches the ensemble-average quality of the

entire population of dies. However, while this new stability improves the quality for 50% of the

dies, it also degrades the quality of the other 50% in the population. It is noteworthy that the

small remaining quality spreed is due to the fact that the simplified fault randomization is not

fully optimal.

2.5 Discussion

In the following, we consider the impact of the proposed randomization logic on the testability,

the hardware complexity, and other types of variations.

2.5.1 Impact on Testability

The main advantage of the randomization lies in the impact on the required test procedure.

Since each die with the same number of defects now provides almost the same quality, no

parametric quality test is required anymore. In fact, the time-average quality of each die corre-

sponds closely to the ensemble-average quality across the population of dies. Consequently,

we do not need to run the application quality benchmark for each die, as shown in Fig. 2.6,

anymore. Instead, only a straightforward standard test is performed on each die which counts

the number of defects. The quality of that die then corresponds at least to the ensemble-

average quality of the corresponding group of dies with the same number of errors, possibly

discounted by a small margin to account for the imperfection of the randomization. This

tremendously simplifies the test procedure without significant quality margins or variations.

29

Chapter 2. Approximate Computing with Unreliable Memories by Restoring the Beauty
of Randomness

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Error Ratio
1e-4 3e-4 5e-4 1e-3

15 20 25 30 35 40 45 50
PSNR [dB]

0

25

50

75

100

Yi
el

d
[%

]

(a) Convolution

15 20 25 30 35 40 45 50
PSNR [dB]

0

20

40

60

80

100

Yi
el

d
[%

]

(b) Disparity map

15 20 25 30 35 40 45 50
PSNR [dB]

0

20

40

60

80

100

Yi
el

d
[%

]

(c) Susan smoothing

20 40 60 80 100
Detection Rate [%]

0

20

40

60

80

100

Yi
el

d
[%

]

(d) Susan corners

20 40 60 80 100
Detection Rate [%]

0

20

40

60

80

100

Yi
el

d
[%

]

(e) MNIST with 1 layer

20 40 60 80 100
Detection Rate [%]

0

25

50

75

100

Yi
el

d
[%

]

(f) MNIST

Figure 2.8: Benchmark yield-quality trade-off analysis for the fault model with four different
error ratios while the fault for each chip is randomized during multiple execution of the
benchmark. The dashed black line shows en ergodic ensemble-average quality for error ratio
of 10−4.

2.5.2 Impact on Hardware Complexity

In order to evaluate the hardware overhead of the proposed randomization logic, we integrate

the randomization circuit for 32-bit wide SRAM blocks with different capacities. Area results

after synthesis for a 28nm fully depleted silicon on insulator (FD-SOI) technology are reported

in Table 2.2. As the memory size increases, the randomization logic remains almost unchanged.

Hence, the area overhead becomes already negligible for small memories of only 8–16 KBytes.

30

2.5. Discussion

Table 2.2: Area overhead of the randomization logic on memories with different sizes.

SRAM size
[KB]

Area
[µm2]

Area with
randomization [µm2]

Area overhead
[%]

8 15572 16240 4.2
16 31144 31799 2.1

128 249152 250062 0.4
1 SRAM blocks of 8 KB are stacked to build bigger size memories

2.5.3 Impact on Other Types of Variation

The proposed randomization scheme enable an ergodic quality across a population of dies

despite having non-ergodic defects. Although the proposed scheme has originally been

motivated by the need to combat the determisitic effect of the process variations, it can also be

used as a means to combat the effect of other types of variation that are deterministic (or only

slowly varying), but unknown or difficult to model and/or predict. As such, we briefly review

some of these variations and how our proposed scheme could be useful in their context.

Process variation can lead to deterministic but correlated variations in some of the circuit

parameters (e.g., threshold voltage or effective channel length [93]) that may cover a larger

area of chip. For the memories, for example, this issue results in a cluster of near-by defected

bits rather than distributed randomly-located defected bits due to the correlation in the

fabrication process parameters [94]. To alleviate the issue, there have been significant efforts

in modeling the variations more accurately and then considering the corresponding effect

during the design [93–95]. Unfortunately, it is becoming increasingly challenging to provide

such accurate models in more advance technology nodes and thus is difficult to compensate

the resulting variations. Our proposed randomization scheme can be more easily used to

mitigate these variations. More specifically, the data is shuffled across the memory and is

stored on a random location during each read/write. Consequently, the correlation between

the defected bits is broken and the cluster of near-by bits transforms to randomly distributed

single bits across the memory.

A second example of deterministic (slowly varying) variations is the aging effect in non-volatile

memories. In such memories, the available number of program/erase cycles for a reliable

operation is limited and excessive stress on some of memory cells would worsen the retention

time, which leads to a read failure for those cells [96]. Therefore, such memories are prone to

stress-induced variations. To alleviate this issue, the memory controller relocates the data-

blocks over the course of different write phases (program cycles) [97, 98]. However, some of

the memory cells would still be stressed more frequently, which leads to a failure of those cells.

Since the location of the failure changes only slowly, the proposed randomization scheme can

be used to alleviate the effect of the deterministic induced errors by shuffling the data across

all the memory cells.

31

Chapter 2. Approximate Computing with Unreliable Memories by Restoring the Beauty
of Randomness

A third example for deterministic and slowly changing variations are local hotspots in high-

performance SoCs. High-performance SoCs, such as multi-core processors, host multiple

processing cores, memory macros and interconnect networks on a single die or even on a 3D

stack of dies. Due to the high integration density, the power density of such systems is also very

high, which is among one of performance limiting factors [99]. Unbalanced workloads create

energy hotspots in some of the cores or memory components, which results in reliability issues

in certain locations of the chip [100]. To alleviate this issue, most of the processors monitor

the temperature in multiple locations of chip and employ dynamic thermal management

methods [101] accordingly to minimize the hotspots. While this measure is mainly used to

avoid the creation of hotspots, the proposed randomization scheme can be used to mitigate

the resulting errors from the remaining hotspots. More specifically, since hotspost change

only slowly with the workload, the location of the induced errors are deterministic, which can

be altered over time by using the proposed randomization scheme. This approach may on the

one hand help to even avoid hotspots, but on the other hand also helps to restore an ergodic

fault model. This restoration makes it more straightforward to consider the impact on quality

as illustrated in this chapter.

2.6 Conclusion

Memories dominate the area and are the point-of-first-failure in many SoCs in advanced

nanometer nodes. Since the design of 100% reliable memories is costly in terms of area, it is

interesting to consider dropping the requirement of 100% reliable operation. Unfortunately,

any deviation from the conservative design paradigm leads to quality differences between

manufactured dies that are difficult to catch in a manageable production test. Previous studies

on approximate computing with unreliable memories often neglect this issue. We show how

the test issue can be avoided with a simple additional circuit that restores the beauty of random

faults that are independent of the manufacturing outcome which equalizes the quality across

dies. A complex parametric quality-test procedure is therefore no longer required even with

unreliable memories.

32

3 Practical Approximate Channel De-

coders with Unreliable Memories

The realization of complex and high performance systems has been enabled by very-large-

scale integration (VLSI) technology scaling. Modern integrated circuits (ICs) in advanced

nanometer nodes are able to accommodate extremely complex processing demand of many

current and emerging applications. Among those applications, communication systems

are a prominent example that require high-throughput data processing and high-capacity

data storage, which are facilitated to a great extent by the most advanced process nodes.

Unfortunately, the gain from technology scaling is diminishing and designers are pushed to

look for new sources of computing efficiency. One of the promising approaches is exploiting

the fault-tolerance of communication systems through approximate computing.

Communications systems are designed to operate reliably under channel noise and interfer-

ence, which indicates an inherent degree of error-resilience in these systems. For this reason,

such systems may also be able to cope with additional distortions introduced by unreliable

computational resources [45]. In order to better realize the fault-tolerant behavior in com-

munication systems, there have been significant efforts to understand the impact of faults in

unreliable hardware on algorithm quality of service. Among the many different components in

communications systems, decoders for error-correcting codes are a very good and promising

example since they process stochastic signals that are often highly distorted by noise and/or

interference.

Memory elements are the most energy- and area-consuming parts in most of the communica-

tion system kernels such as channel decoders, and the first point-of-failure while applying

approximate computing techniques [50]. As such, in the context of communication systems

it is typically assumed that any potential faulty behavior is due to an unreliable memory

rather than unreliable logic. To enable the usage of unreliable memories in such systems,

researchers have considered different type of memories while operating in a faulty regime.

33

Chapter 3. Practical Approximate Channel Decoders with Unreliable Memories

An unreliable static random-access memory (SRAM) with dynamic quality management is

presented in [40] that shows improved energy efficiency at the cost of reliability. An embedded

dynamic random-access memory (DRAM) is proposed in [102, 103] for a low-density parity

check (LDPC) decoder to achieve a better area and energy efficiency where the memory is

designed such that the need for the periodic refresh is eliminated. A similar idea based on

gain-cell (GC) embedded DRAM is proposed in [104] to implement high-bandwidth memories

for an area and energy-efficient Viterbi decoder. All the above studies unfortunately consider

the reliability of the memory itself by only focusing on the memory type or the underlying

technology node without considering the algorithm-level reliability.

On the algorithm-level fault-tolerance of communication systems, some studies have focused

on an inherent system-level robustness [45], or statistical fault mitigation methods extracted

from the corresponding signal [105]. In addition to the system-level fault mitigation, fault-

tolerance of different components, such as channel decoder, have been studied analytically

under certain assumptions for memory and/or logic faults. In [106] the Gallager A and the

sum-product (SP) algorithm for decoding of LDPC codes are analyzed under faulty decoding

using density evolution analysis. A similar analysis is provided in [107] for the Gallager B

algorithm. Studies of the widely used min-sum (MS) decoding with unreliable memories are

presented in [108], [109]. The work of [110] shows that faulty decoding may even be beneficial

in certain cases as it can help the decoder escape trapping sets that cause error floors. Other

types of codes have also been studied in the context of faulty decoding. For example, the

work of [111] examines faulty decoding of spatially-coupled LDPC codes, while the work

of [112] studies faulty successive cancellation decoding of polar codes. Unfortunately, most of

the mentioned references rely on a mathematical fault model with strict conditions on the

ergodicity, independence, and symmetry of the hardware defects, which we will show are not

realistic.

In turn, most studies on fault-tolerance of communication systems and channel decoders

consider an average performance across both the input and the fault distribution assuming

ergodic fault models. While such models are convenient and tractable in simulation and even

with analytical tools, they do not necessarily reflect the actual failure modes of the real VLSI

circuits, as explained in detail in the previous chapter. For example, although error locations

within the memory array are random for a given memory size and operating point, the fault

realization is deterministic for each die and very different from die to die after manufacturing,

and therefore the ensemble-average performance across different dies is meaningless.

Contributions and Outline We propose an approximate LDPC decoder testchip, ErgoDEC,

with unreliable memories that are build based on standard-cell memory (SCM) in a 28 nm

fully depleted silicon on insulator (FD-SOI) technology, as a proof of concept to the non-

ergodic fault model and the ideas initially proposed in the previous chapter. These are further

34

3.1. LDPC Decoding and Faulty Behavior

tailored and applied to an LDPC decoder in this chapter. More specifically, we propose and

prove with measurement the efficacy of enabling an ergodic behavior despite the presence of

deterministic post-fabrication faults by randomizing the faults in the memory. We also propose

to further exploit the resulting random fault behavior to improve the decoder performance

by repeating the unsuccessful decoding attempts. Additionally, the memory is designed in a

way that the faults appear with a bias toward one logic state that is jointly optimized with the

binary data representation according to the corresponding data distribution to minimize the

number of effective errors which further improves the decoder performance.

The remainder of this chapter is organized as follows. In Section 3.1, we review the basics of

LDPC codes and decoding and the faulty LDPC decoders in literature. We further argue that

the widely-assumed ergodic model for the faults in these studies are inaccurate. Section 3.2

presents the baseline decoder architecture and the memory design specifications. We propose

a realistic memory fault model and a performance evaluation methodology in Section 3.3,

and our proposed improvement schemes to restore the ergodic behavior and minimize the

fault effect across the population of dies are explained in Section 3.4 while the integration of

the techniques to the ErgoDEC architecture is discussed in Section 3.5. The ErgoDEC chip

architecure and the physical implementation details are presented in Section 3.6, the chip

specifications and measurement results are provided in Section 3.7. Section 3.8 concludes the

chapter.

3.1 LDPC Decoding and Faulty Behavior

3.1.1 LDPC Decoding Background

An LDPC code C can be defined by its m ×n sparse binary parity-check matrix H as

C = {
c ∈ {0,1}n : Hc = 0

}
, (3.1)

where additions are performed modulo-2 and 0 denotes the all-zeros vector of length m.

LDPC codes can also be represented using a Tanner graph, which contains nodes of two

types, namely variable nodes and check nodes, as explained in Chapter 1. A variable node i

is connected to a check j if, and only if, H j i = 1. Quasi-cyclic LDPC (QC-LDPC) codes are a

particular class of LDPC codes with a structured M ×N block parity-check matrix that consists

of cyclically shifted Z × Z identity matrices denoted by Iα, where Z is the lifting factor of

the code and α denotes the shift value. For completeness, we also define the all-zero matrix

35

Chapter 3. Practical Approximate Channel Decoders with Unreliable Memories

I∞ = 0Z×Z . With these definitions, we can define the parity check matrix

H =


Iα11 . . . Iα1N

...
. . .

...

IαM1 . . . IαMN

 . (3.2)

The corresponding shift coefficients of the parity check matrix are defined in the prototype

matrix α of the code. Note that for QC-LDPC codes we have n = Z N and m = Z M .

For decoding of QC-LDPC code, most practical hardware decoders use layered offset min-sum

(L-OMS) decoding [113]. In the layered decoding schedule, first all the messages flowing into

and out of the first layer (i.e., check node) are calculated. Then, the messages flowing into and

out of the second layer are calculated, using the information that has already been updated by

the first layer, etc. More formally, let Qi denote the outgoing message at variable node i and

let R j ,i denote the corresponding incoming message from layer j . When processing layer j ,

the L-OMS algorithm calculates

Ti ←Qold
i −Rold

j ,i , (3.3)

Rnew
j ,i ← max

(
0, min

k∈N j /i
|Tk |−β

) ∏
k∈N j /i

sign(Tk) , (3.4)

Qnew
i ← Ti +Rnew

j ,i , (3.5)

for every i ∈N j , where N j /i denotes the set of all variable nodes connected to check node

j except variable node i , and β is an empirical correction factor called the offset. After the

values have been updated, we set Qold
i ← Qnew

i and Rold
i , j ← Rnew

i , j . An iteration is completed

when all layers have been processed. The initial values for Qold
i are the channel LLRs, i.e.,

Qold
i = ln

(
p(yi |xi=+1)
p(yi |xi=−1)

)
, where yi is the channel output at codeword position i and xi is the

corresponding input. All Rold
j ,i are initialized to 0. When the maximum number of iterations

has been reached, decoding stops and hard decisions are taken based on the sign of each

Qnew
i .

3.1.2 Problems with Faulty LDPC Decoding Error Models

In the previous chapter, we showed that the typically-assumed expected (or average) perfor-

mance Pavg is not a meaningful metric and does not reflect the actual reality of a population

of faulty dies, as it does not distinguish between the behavior of a given die over different

inputs (i.e., time) and the behavior of a population of dies, which could vary significantly.

In this subsection, we use a specific case of the analysis in the previous chapter to formally

describe the main issues with the error models in the related literature (e.g., [106–110] and

references therein). Let PC (y,e, N ,`) denote the codeword error indicator function of an

approximate decoder for an LDPC code C of blocklength N when performing ` iterations with

36

3.2. LDPC Decoder Architecture

inputs y = c+n, where c ∈C is a codeword and n is additive noise, and a decoder memory

error pattern e. Then, Pavg(C ,`) is given by

Pavg(C ,`) = Ey,e

[
lim

N→∞
DC (y,e, N ,`)

]
(3.6)

= Ee

[
Ey|e

[
lim

N→∞
DC (y,e, N ,`)

]]
. (3.7)

The problem is that if we consider different instances of y to represent the time dimension

(i.e., a new noisy codeword is given to the decoder at every time instant) and e to be the chip

ensemble (i.e., the ensemble of all possible memory error patterns e), then DC (y,e, N ,`) is

generally not ergodic, since the different memory error patterns of each chip can have very

different (and fixed) effects on the decoder output. As such, the end-user of the decoder does

not actually experience the Pavg(C ,`) quality-of-service (QoS) value that is estimated by most

asymptotic analysis methods.

To better demonstrate the problem with ergodic fault model assumption in LDPC decoding,

we consider an example and provide the corresponding error-correcting performance. We

assume a parity-check matrix for a QC-LDPC code that uses blocks of size Z = 111 and has

N = 15 block columns and M = 3 block rows. Further, we assume the decoder architecture

in [114], which implements L-OMS decoding according to (3.3), (3.4), and (3.5). We run the

decoder with 10 iterations and we assume fixed-point bitwidth of NQ = NT = NR = 6 for the

Q-, T-, and R-memories, respectively.

Fig. 3.1 shows the frame error rate (FER) vs. Eb/N0 performance of 5 decoder instances (i.e.,

chips) with different fault maps using a deterministic stuck-at fault model with probability

of Pb = 5×10−5, which is associated with total two faulty bits in Q-, T-, and R-memories (see

section 3.3 for more details on the error model). We also plot the FER performance of the

non-faulty decoder in this figure as a reference. The results indicate that the performance of

decoders with distinct fault maps can be very different, and therefore, the average ergodic

performance is not a relevant metric to capture the behavior of the population of faulty

decoder dies.

3.2 LDPC Decoder Architecture

In the section, we describe the decoder architecture that serves as the baseline architecture of

the implemented test chip, ErgoDEC, which is used to better understand the effect of memory

faults on the decoder performance. The LDPC decoder is based on the previous work [114].

Therefore, we summarize the basic functionality to a degree that is required for the purpose

of this chapter. We then explain in detail how the faulty memories are designed and how the

baseline architecture is extended for memory fault injection in ErgoDEC.

37

Chapter 3. Practical Approximate Channel Decoders with Unreliable Memories

3 3.25 3.5 3.75 44 4.2510−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e
E

rr
o

r
R

at
e

Non-faulty decoder
Faulty decoder 1
Faulty decoder 2
Faulty decoder 3
Faulty decoder 4
Faulty decoder 5

Figure 3.1: Frame error rate of 5 randomly selected faulty LDPC decoder instances compared
with the frame error rate of a non-faulty LDPC decoder.

3.2.1 Reference Architecture

The decoder reference architecture is illustrated in Fig. 3.2. The main building blocks of

this architecture are processing units, which contain Z MIN and Z SEL units and will be

explained in the following, a shifter, which implements the cyclic shift required for processing

each block of the QC-LDPC parity check matrix, and Q-, T-, and R-memories, which store

the messages in the L-OMS algorithm, as explained in (3.3), (3.4), and (3.5). The layers are

processed one after another while the processing of each layer is decomposed into multiple

cycles. The architecture process Z independent check nodes of a layer simultaneously, using

Z processing units. To this end, the corresponding Z Q- and R-values are read from the

associated Q- and R-memories while Q-values are shifted using cyclic shifter based on the

entries of H. The temporary T-values of (3.3) are calculated by the MIN units and stored in the

T-memory. Once the MIN units have finished processing all non-zero blocks in a row of the

block parity-check matrix, the SEL units use the resulting minimum and second-minimum,

sign and T-values to update Z R-values and Q-values according to (3.4) and (3.5). In a purely

sequential architecture, the MIN and the SEL phase require one cycle per column in the

prototype matrix of the LDPC code, i.e., a total of N clock cycles for each phase. However, the

MIN units can start processing blocks of the next row which do not have data dependencies

with the rows on which the SEL units are currently operating on. Therefore, by overlapping

the two phases of two layers, a single layer can be processed with only N +2 clock cycles.

In addition to this overlap, the decoder throughput is increased by using a semi-parallel archi-

tecture for processing each layer by increasing the number of processing units as described

38

3.2. LDPC Decoder Architecture

Shift Left

ZxSEL

T-memory

R-memory

RAM

RAM

Q-memory

RAM

Shift Left

T-memory

R-memory

RAM

RAM

Q-memory

RAM

ZxCOMB

ZxMIN
LLR In 1

LLR In 2

LLR Out 1

LLR Out 2

ZxMIN

ZxSEL

Control
Unit

Shifters

8x210

8x210 8x210

8x210

28x210

28x210

Q-Memories
Processing

Units
T- & R-

Memories

S
e
q
u
e
n
ce

M
e
m

o
ry

C
o
n
tr

o
l
Lo

g
ic

Figure 3.2: Semi-parallel QC-LDPC decoder [114] used as the reference architecture for the
implemented chip.

in [114]. In this architecture, we always consider two columns of the prototype matrix in

parallel to determine two T-values and to update the minimum and the second minimum

with two new candidates. This measure effectively almost cuts the number of cycles per layer

into half, i.e., to dN /2e+2.

In addition to the datapath of the decoder, Fig. 3.2 also shows the control logic. In order to

provide the flexibility to support multiple codes, this logic uses a microprogram that is stored in

a small sequence memory to manage the datapath. Every iteration of the decoder is controlled

by a command from the sequence stored in the memory. The sequence is created offline

based on the parity-check matrix of the codes. Every command of the sequence contains all

memory addresses which have to be read from and written to, as well as information on which

pipeline stages have to be stalled and at which stages forwarding or memory bypassing has

to be performed (due to dependencies between rows). One command is issue per cycle and

the information contained in each command propagates through the pipeline. The sequence

length L is defined as the number of commands that have to be issued in order for the decoder

to complete a full iteration of the L-OMS algorithm.

3.2.2 Memory Design

The decoder architecture includes dynamic SCMs for the datapath memories. SCMs are

memory arrays that are synthesized from standard cells as first proposed in [115] and explained

in Chapter 1. The internal architecture of an SCM is essentially a 2D array of latches that

39

Chapter 3. Practical Approximate Channel Decoders with Unreliable Memories

WWL_N RWL

SN

RBL

C

WWL

WBL

Figure 3.3: GC latch for dynamic SCM.

store the data while each row of latches corresponds to a memory word. The concept of

using dynamic SCM as a memory in an accelerator was discussed in [102, 103]. It is widely

recognized that they have significant advantages over conventional SRAMs, especially for

small macros in accelerators, in terms of power consumption, robustness to voltage scaling,

and data locality. SCMs provide an interface that is comparable to that of a two-port SRAM

with one read and one write port.

The core component of the ErgoDEC datapath memories is a specific type of SCM, in which the

latch is realized based on a dynamic storage mechanism, i.e., a dynamic GC latch, as in [103].

The latch has an integrated NAND gate for the AND-OR MUX tree SCM read-multiplexer as

shown in Fig. 3.3. In this latch, the logic level of the write-bit-line (WBL) is copied onto the

parasitic capacitance (C) on the storage node (SN) whenever the write-word-line (WWL) and

its complement (WWL_N) are asserted. While the read-word-line (RWL) is inactive, the output

read-bit-line (RBL) is always driven high and has no impact on the OR tree of the SCMs output

MUX. When RWL is asserted, the state of the SN decides on the output level (0 or 1) on the

RBL.

This dynamic latch requires 7 transistors as compared to the conservative static CMOS latch

that comprises 12 transistors, owing to the fact that the dynamic latch does not include a

feedback that maintains the state of the GC storage node. Hence, the charges that are stored

on the storage node leak away over time and the memory loses its content when no new

data is written into the node. Therefore, it requires periodic refresh operations to avoid the

loss of data. The refresh period for a GC based memory is determined by its data retention

time (DRT) [59, 116] that is defined as the maximum time interval between a write operation

and a successful read operation. Both the parasitic capacitance C as well as the leakage

currents determine the DRT of the latch. Although the dynamic storage can be used for

40

3.2. LDPC Decoder Architecture

10−1 100 101
0

0.2

0.4

0.6

0.8

1
·10−2

Reliable
region

Inject
errors

Retention time [µs]

P
ro

b
ab

il
it

y
o

fo
cc

u
rr

en
ce

Figure 3.4: DRT distribution for the proposed GC acquired from a Monte-Carlo simulation on
a memory with a 10 kbit size and in a typical operating condition.

reliable operation as shown in [102, 103], they can also be used for a controlled fault injection

by relaxing the corresponding refresh period and violating the DRT of the dynamic storage

elements, as explained in the following.

3.2.2.1 Fault Injection Mechanism

Sub-threshold leakage is the most prominent and has the most substantial impact on the

DRT of the above GC latch among the different leakage mechanisms [59]. Since this leakage

depends exponentially on the threshold voltage VT of the write access transistors, which

is a manufacturing parameter that is subject to inter-die and intra-die variations, it varies

substantially, both between different chips and also between different bit-cells on the same

chip, which results in different DRT. The probability distribution of the DRT values for the

bit-cell of Fig. 3.3 is shown in Fig. 3.4. The distribution is acquired based on a Monte-Carlo

simulation for a memory with a 10 kbit size and a typical operating condition, which shows

the large variation among the DRT values. Further, the DRT distribution has a long tail toward

zero [117], which leads to a conservative and costly margin in a reliable design approach

since it requires consideration of the bit-cell with the worst-case (shortest) retention time

across dies, operating conditions, and bit-cells within the array on the same die. However,

we purposely exploit these long tails here as the key to enable a graceful degradation of the

reliability, i.e., a slow increase of the number of failing bits, over a large tuning range for the

lifetime of variables in the memory by reducing the frequency.

41

Chapter 3. Practical Approximate Channel Decoders with Unreliable Memories

Table 3.1: Data lifetime in the T- and R-memories for the considered QC-LDPC code with
N = 15 and M = 3.

Memory Data lifetime
Min clk for reliable operation

with a min DRT= 0.3µs

T 10 ·Tclk 33.3 MHz
R 30 ·Tclk 100 MHz

3.2.2.2 Data Lifetime in the Memories and Fault Injection

The errors occur in the memory due to DRT violation of the dynamics SCMs, and therefore,

timing characteristics of the decoder architecture are particularly relevant. Such errors occur

depending on the lifetime of the data in a memory, which is given by the number of cycles

between a write and the last read to the same address prior to the next write, Nc , and the

period of the clock: Tlife = Nc Tclk. In the decoder architecture, R-values are refreshed once in

each iteration and the T-values are refreshed in each layer, assuming that the prototype matrix

of the code does not include I∞ elements. Since the employed semi-parallel architecture

processes each layer in dN /2e+2 clock cycles, the R-values lifetime is M(dN /2e+2)Tclk and the

T-values lifetime is (dN /2e+2)Tclk. We summarize the data lifetime values for the considered

QC-LDPC code in Table 3.1.

Dynamic bit-cells are designed to provide a very large DRT margin compared to the lifetime of

the messages stored in the decoder memories when the decoder operates near its maximum

frequency. Therefore, the minimum clock frequency for a reliable operation assuming a

minimum DRT is well-below the decoder maximum frequency. This minimum clock frequency

is provided in Table 3.1 for a minimum DRT of ≈ 0.3µs from the distribution of Fig. 3.4. This

margin ensures that all bits are stored reliably, even for bit-cells with a comparatively high

leakage and thus a short DRT. To inject errors, based on the process variations, we can increase

the clock period and thereby increase the data lifetime in the memory without changing the

DRT of the bit-cells, as illustrated in Fig. 3.4. Due to the long tail of the DRT distribution, the

number of failing bit-cells will increase only slowly while lowering the clock frequency enables

a gradual increase in the number of failing bit-cells.

3.2.2.3 Selective Protection of Sensitive Bits and Memories

The decoding performance is particularly sensitive to faults that occur in the sign-bit of the

sign-magnitude encoded messages. We, therefore, establish a scheme in which the sign-bit

(MSB) is always protected and errors can only happen in the magnitude of the messages.

This measure ensures a more graceful quality degradation since the most significant bit is

protected [118].

42

3.3. LDPC Decoder Quality Assessment Under memory Faults

We further choose to implement the Q-memories in a fully reliable fashion, while enabling

fault injection only for the T- and R-memories. This choice is base on the fact that theoretical

studies on the robustness of LDPC decoders in the presence of errors typically assume that

errors are injected into the messages, which is aligned with injecting errors in R-memories and

the values in T-memories, rather than in Q-memories that stores the (more critical) intrinsic

log likelihood ratios (LLRs). In addition to this reason, the data lifetime in the Q-memory may

be significantly larger than in the T- and R-memory as the Q-memory is implemented as a

ping-pong memory that is used to pre-load channel LLRs and to unload decoding results. This

loading and unloading operation may take up to one entire decoding round with multiple

iterations. To avoid a loss of data, we implement this memory in a fully reliable fashion using

a standard SRAM.

3.2.2.4 Hybrid Static/Dynamic SCM

The T- and R-memories in the decoder architecture are constructed from a hybrid SCM as

required to specifically protect the sign-bit for our design. These hybrid SCMs combine

conventional static latches for the sign-bits with dynamic GC latches, as explained in the

above, for the bits encoding the magnitude of each data word. More specifically, the T- and

R-memories are each Z NR (NT = NR) bits wide and each LLR word of NR bits contains an

MSB implemented as static latch and NR −1 bits implemented as dynamic GC latch.

3.3 LDPC Decoder Quality Assessment Under memory Faults

In the previous chapter, it has been widely discussed that the ergodic fault model for the

memory misbehavior and the associated average-quality performance metric is flawed. In-

stead, the quality-yield assessment methodology was proposed, where the performance is

evaluated across the population of dies and input data and the results were illustrated using

the inverse cumulative distribution function (ICDF) of the quality for the population of faulty

dies. Since, the memory faults affect the LDPC decoder performance in a similar fashion to

the evaluated benchmarks in the previous chapter, i.e., the FER of the decoders with different

fault modes are very different as discussed and illustrated in Section 3.1 of this chapter, we

apply the described methodology to the LDPC decoder in this chapter. We further discuss a

simplified realistic memory fault model that is used throughout the analysis of this chapter.

3.3.1 Simulation Environments

In order to obtain a more meaningful understanding of the memory faults on the error-

correcting performance of the decoder, we perform the analysis over a population of dies,

similar to our proposal in the previous chapter. This analysis generates population of dies

n ∈N with their individual fault patterns en and studies the time-average performance for

43

Chapter 3. Practical Approximate Channel Decoders with Unreliable Memories

each die. More specifically, two nested loops are used to evaluate the performance of the

decoder dies. While the outer loop iterates over different dies, the inner loop iterates over

input statistics and averages over time to evaluate the error correcting performance of the

each decoder die.

We use a simulation model for the decoder, which is a bit-true model of the actual fixed-point

architecture, considering also the chosen number representation. Note that this is necessary

to model the exact behavior of what is actually stored in memory. Particularly, temporal values

Ti are derived and stored (in the T-memories), variable-to-check messages are never actually

stored as they are derived locally from previously stored check-to-variable messages (in the

R-memories) and from separately stored intrinsic LLRs (in the Q-memories), as explained in

(3.3), (3.4), and (3.5). Further, the faulty decoding is enabled by applying (injecting) bit errors

during each memory read (in each decoding iteration) according to a fault map that describes

the fault model realization for each die.

3.3.2 Memory Fault Models

The error probability of each bit in the memory depends on many parameters that are related

to the specific memory circuit design, the process, and the operating conditions. We use the bit-

error probability Pb , to abstract the implementations and as the input to our simulations [119].

Further, we consider two fault models for the LDPC decoder simulation set-up. The first

one is the ergodic model based on the typically-assumed model in the related literature,

e.g., [106–110], where the errors are assumed to be random bit-flips that are independent and

identically distributed (i.i.d.) in the memory and appear and disappear randomly over time.

However, we modified this model according to the fact that memory errors are always stuck-at,

and therefore, we consider an i.i.d. random stuck-at model with equal probability for both

polarities and the manufacturing error distribution probability of Pb .

The second model is chosen to better reflect the reality and is more accurate than the com-

monly assumed ergodic i.i.d. model. To this end, we consider a non-ergodic model with

deterministic stuck-at errors in the memory, where the exact position of the error in the fault

map is chosen with a uniform distribution and the error polarities are chosen with equal

probabilities for the realizations of the fault map. More specifically, we generate a popula-

tion of decoders where the T- and R-memories follow this model, but each decoder remains

unchanged during the entire simulation. This model is based on the observation that errors

are different for each memory as different outcome of the production process, however, they

remain stable for that specific memory over time. We will confirm this model later by providing

measurement results in Section 3.7.

In addition to the location and polarity of errors, the number of errors Ke for a given manufac-

turing bit-error probability Pb that appear in a memory instance of a given size Nb is described

44

3.3. LDPC Decoder Quality Assessment Under memory Faults

by a binomial distribution [119] as

Ke ∼
(

Nb

Ke

)
P Ke

b (1−Pb)Nb−Ke . (3.8)

We however note that for small bit-error probabilities this distribution is very peaky. Hence,

there are only very few relevant groups for the number of failing bits that are weighted by the

probability of occurrence depending on the memory size. We approximate these few groups by

only one and we define error ratio equal to the bit-error probability. Given this approximation,

and by multiplying this error ratio to the memory size Pb Nb a fixed number of errors are

dictated, which are actually injected in a memory across all instances of the simulation for

both of the error models.

3.3.3 Quality Assessment Metrics for LDPC Decoder

For most of benchmarks, when considering the issue of unreliable hardware, quality is as-

sessed based on the deviation from the result by operation of the algorithm on a fully reliable

implementation. This deviation can be measured, for example, based on an the mean square

error, as it was shown in the previous chapter. However, defining such a metric for a channel

decoder is more complex due to the fact that: i) the common quality metric for a decoder,

i.e., the FER, is a probability and an Euclidean distance metric to measure the deviation from

a probability for the fault-free decoder is not easy to interpret, and ii) the FER performance

metric needs to be evaluated over a range of different signal-to-noise ratios (SN Rs), and

therefore is no longer a scalar.

In the light of the above considerations and inspired by the quality metrics defined in the

previous chapter, we define two metrics that provide information on the quality-yield of a

channel decoder that is affected by reliability issues:

1. FER-Yield: The FER-yield is based on the assumption that a communication system has

a target operating SNR, which is used for performance assessment, but can/should not

be changed. This operating SNR is typically chosen to achieve a certain target FER in a

regular reliable implementation. Since the SNR is given, we must assume that a certain

error-rate performance deviation from the target FER is permissible under hardware

errors. We therefore analyze the fraction (yield) of decoders as a function of a relaxed

target FER.

2. SNR-Yield: the SNR-yield is based on the assumption that a communication system is

build to operate at a fixed target FER, obtained from specifications. The SNR at which

this target FER is achieved defines the quality of the implementation. By accepting

unreliable operation of the hardware, we accept a certain degradation in the SNR at

45

Chapter 3. Practical Approximate Channel Decoders with Unreliable Memories

which the target FER is reached. We therefore analyze the fraction (yield) of the decoders

as a function of the relaxed SNR at which the target FER is reached.

3.3.4 Quality-Yield Results

We demonstrate the performance result for a population of decoder dies using the above

assessment methodology and the explained fault models. These experiments are similar to

those of the previous chapter, but they are provided for the case of an LDPC decoder with the

objective to show their validity with the measurement results in Section 3.7. To this end, we

again consider the QC-LDPC code parity-check matrix mentioned at the beginning of this

chapter and recall that it uses blocks of size Z = 111 and has N = 15 and M = 3 block columns

and rows, respectively (rate = 0.8). Further, we run the decoder with 10 iterations and we

assume NQ = NT = NR = 6, which results in 8325, and 24975 bits for the faulty part of the T-

and R-memories, respectively.

Fig. 3.5 shows the FER vs. SNR for 50 decoder instances representing different realization of

the fault model in the population of dies for the two described memory fault models with

Pb = 5×10−5. The black curve corresponds to the ergodic fault model. The red curves illustrate

the performance of the decoders with the non-ergodic fault model and reflect the fact that

each die is born very differently with a fixed set of faulty bits. As can be seen from the figure,

the ensemble-average performance across the dies is meaningless and does not represent the

reality of decoders with non-ergodic faults.

To better demonstrate the difference among the two models, we show the quality-yield results

for 1000 decoder instances in Fig. 3.6. The empirical cumulative distribution function (CDF)

of the FER at a fixed SNR of 4 dB is shown in Fig. 3.6(a). As it can be seen, the decoders with

the non-ergodic fault model span a very large performance range while the decoder with the

ergodic model shows only one average-performance. The fraction of decoders with a target

FER < 10−3 is shown in Fig. 3.6(b). As it can be observed, the required SNR to reach the target

FER is different across the population of decoders and even 30% of them can never reach such

a target FER. However, the ergodic quality model erroneously suggests that the target FER can

be reached, even though with an SNR penalty.

To better understand the effect of memory faults for both models, we analyze the impact

of the probability of error Pb in the memory on the decoder performance. For this, we use

the quality-yield performance metrics for the considered code. We note that this analysis

serves mainly to understand the impact and sensitivity of a change in the number of errors

on decoder performance. While, the assumed probability of errors are not derived form a

specific type of memory circuit, they are consistent with typical assumptions on error rates of

memories with reliability issues over multiple operating conditions.

46

3.4. Improving the Performance Across the Population of Dies

2 2.5 3 3.5 4 4.5

10−4

10−3

10−2

10−1

100

SNR required for a target FER
(SNR-Yield)

FER at a target SNR
(FER-Yield)

Eb/N0 (dB)

F
E

R

Ergodic
Non-ergodic

Figure 3.5: Performance evaluation of a population of faulty LDPC decoders through FER vs.
Eb/N0 for ergodic and non-ergodic fault models with bit-error probability Pb = 5×10−5.

Fig. 3.7 shows the FER-yield at a similar target SNR of 4 dB and the SNR-yield at a similar

target FER of < 10−3 for two bit-error probabilities of Pb = 5×10−5 and Pb = 1×10−4. From the

FER-yield, we can see that the higher probability of error results in a lower yield at the given

target SNR. Also, from the SNR-yield result, we can observe that the 2× increase in the number

of errors leads to an SNR penalty for the ergodic yield model and results in a yield loss for the

non-ergodic model. We note that as opposed to the decoder with ergodic fault model, for the

non-ergodic case with a higher error probability, the percentage of decoder instances that can

reach the target FER even at a high SNR is actually low. This observation can be explained by

the fact that for a larger number of errors it becomes more likely that at least few errors land in

critical parts of the memory with a non-negligible impact on the overall quality.

3.4 Improving the Performance Across the Population of Dies

The main issue with the ergodic fault model is that memory errors are mostly deterministic

after manufacturing for each individual die, which results in a deterministic, but different

performance for each die. Among these dies, there is a considerable quality variation, which

would invalidate any average-quality analysis and complicate the quality-yield characteriza-

tion.

In this section, we discuss our proposed measures to improve the performance across the

population of decoders. First, we propose to restore the ergodic behavior across the memory

faults by restoring the beauty of randomness, similar to the previous chapter, while we verify

47

Chapter 3. Practical Approximate Channel Decoders with Unreliable Memories

10−5 10−4 10−3 10−2 10−1 100
0

0.2

0.4

0.6

0.8

1

FER at Eb/N0 = 4 dB

E
m

p
ri

ca
lC

D
F

Ergodic

Non-ergodic

Randomized non-ergodic

(a) FER-Yiled

3.5 3.7 3.9 4.1 4.3 4.5
0

0.2

0.4

0.6

0.8

1

Eb/N0

Fr
ac

ti
o

n
o

fd
ec

o
d

er
s

w
it

h
F

E
R

<
10

−3 Ergodic

Non-ergodic

Randomized non-ergodic

(b) SNR-Yiled

Figure 3.6: Performance evaluation of a population of faulty LDPC decoders through a) empiri-
cal cumulative density function of FER at a fixed Eb/N0 = 4 dB, and b) fraction of decoders with
FER< 10−3, for ergodic and non-ergodic fault models with bit-error probability Pb = 5×10−5.

48

3.4. Improving the Performance Across the Population of Dies

10−5 10−4 10−3 10−2 10−1 100
0

0.2

0.4

0.6

0.8

1

FER at Eb/N0 = 4 dB

E
m

p
ri

ca
lC

D
F

Non-ergodic Pb = 5×10−5

Non-ergodic Pb = 1×10−4

Ergodic Pb = 5×10−5

Ergodic Pb = 1×10−4

(a) FER-Yiled

3.5 3.7 3.9 4.1 4.3 4.5
0

0.2

0.4

0.6

0.8

1

Eb/N0

Fr
ac

ti
o

n
o

fd
ec

o
d

er
s

w
it

h
F

E
R

<
10

−3 Non-ergodic Pb = 5×10−5

Non-ergodic Pb = 1×10−4

Ergodic Pb = 5×10−5

Ergodic Pb = 1×10−4

(b) SNR-Yiled

Figure 3.7: Performance evaluation of a population of faulty LDPC decoders through a) empir-
ical cumulative density function of FER at a fixed Eb/N0 = 4 dB, and b) fraction of decoders
with FER< 10−3, for bit-error probabilities of Pb = 5×10−5 and Pb = 1×10−4.

49

Chapter 3. Practical Approximate Channel Decoders with Unreliable Memories

the effectiveness of this idea with silicon measurement later in Section 3.7. Next, we propose

to exploit the randomized memory faults and the resulting behavior of the decoder to improve

the performance by repeating the decoding attempts for unsuccessful codewords. Finally, we

propose to jointly optimize the binary data representation and memory faults to reduce the

number of effective faults and further improve the decoder performance.

3.4.1 Restoring the Ergodic Behavior

Motivated by the above observation and given the fact that memory errors in each individual

die are deterministic and thus any averaging across the dies is not legitimate for performance

evaluation of each die, we propose to modify the memory faults in a way that the behavior

of each die alters over time. More specifically, we propose to randomize the errors between

independent subsequent codewords as well as between the subsequent decoding iterations

of a codeword. This measure provides a different realization of a random fault map for each

execution of the decoder and leads to a more ergodic quality behavior of the faulty hardware.

As a result, the time-average behavior of each decoder die corresponds better to the chip

ensemble-average over the population of decoder dies. In another words, while the quality

of some decoders with a low FER penalty compared to the fault-free decoder degrades, the

quality of others with a high FER penalty improves. Overall, the quality variance significantly

shrinks, which allows to guarantee a significantly better minimum-quality.

In order to realize a random behavior for the decoder’s faulty memories, error locations should

be moved across the memory arrays. Additionally, error polarities should be altered randomly

to provide randomness in the stuck-at polarity. Since errors cannot be moved freely across the

memories, we propose to shuffle the bits in an LLR, shuffle LLRs across a memory word, and

shuffle the word addresses over different decoding iterations and codeword decodings. This

measure creates a logical memory with a different fault map over time while the physical faults

remain the same. If the shuffling is performed randomly each decoding iteration experiences

different fault maps, i.e., an almost ergodic process.

Fig. 3.8 illustrates how the proposed randomization scheme is effecting the memory. In this

figure, the physical view of the memory is shown on the left with errors in address and bit-

index pairs of (2, 2), (4, 5), and (9, 4). By randomizing the physical memory address and the bit

index, a logical memory is created that shows a different fault map. Three examples of this

logical view are provided on the right side of the figure. In the first example, which corresponds

to one realization of the randomization, the above physical address and bit-index pairs are

converted into logical pairs of (9, 5), (5, 4), and (2, 1), while this conversion is different for

other realizations. Since the logical faults are relevant from the viewpoint of the decoder, the

proposed method converts a non-ergodic fault map into an ergodic process.

50

3.4. Improving the Performance Across the Population of Dies

Logical views with randomization

5 4 3 2 1 0

5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0
5 4 3 2 1 0

0
1
2
3

4
5
6
7
8

9

Physical view

2 1 0 5 4 3
3 2 1 0 5 4
5 4 3 2 1 0
3 2 1 0 5 4
0 5 4 3 2 1
5 4 3 2 1 0
4 3 2 1 0 5
3 2 1 0 5 4
3 3 1 0 5 4
0 5 4 3 2 1

3
9
2
1

4
5
0
7
6

8

0
1
2
3

4
5
6
7
8

9

5 4 3 2 1 0
2 1 0 5 4 3
2 1 0 5 4 3
3 2 1 0 5 4
2 1 0 5 4 3
5 4 3 2 1 0
3 2 1 0 5 4
5 4 3 2 1 0
1 0 5 4 3 2
3 2 1 0 5 4
1 0 5 4 3 2

1
2
0
7

9
3
5
6
4

8

0
1
2
3

4
5
6
7
8

9

5 4 3 2 1 0
0 5 4 3 2 1
4 3 1 0 5 4
2 1 0 5 4 3
4 2 1 0 5 4
3 2 1 0 5 4
0 5 4 3 2 1
2 1 0 5 4 3
3 2 1 0 5 4
4 3 2 1 0 5
2 1 0 5 4 3

1
0
9
8

5
4
6
7
3

2

0
1
2
3

4
5
6
7
8

9

5 4 3 2 1 0

Figure 3.8: Different logical memory fault maps (right) are created for a memory with a
constant physical fault map (left).

We re-evaluate the performance of the decoder using the simulation environment while the

decoder simulation model is verified so that the memory faults are randomized, as explained.

The curves in Fig. 3.6 that are colored in blue, show the quality-yield for 1000 decoders while

the proposed memory fault randomization is used during the decoding. In the FER-yield result,

we observe that the variance across different dies becomes very small and is heavily reduced

as compared to the plot corresponding to the non-ergodic fault model, colored in red. This

smaller performance variance indicates that the fault behavior becomes ergodic, and therefore,

the time-average behavior for each decoder approximately matches the ensemble-average

behavior of all the decoder dies. We can also observe that the performance of inferior decoder

dies improves and matches the chip ensemble-average performance. This observation is

better illustrated in the SNR-yield results. We observe that all the decoders with a randomized

fault model can reach the target FER with a difference in the required SNR, while at least

30% of the decoders with non-ergodic fault model fail to reach this FER even at a very high

SNR. Therefore, a minimum performance can be guaranteed for all the dies with the ergodic

behavior.

3.4.2 Improving the Performance by Exploiting the Random Behavior of Logical

Faults

The proposed randomization technique essentially converts the deterministic physical mem-

ory faults into random logical faults. In other words, each decoding attempt experiences

a different fault realization, which results in a similar time-average quality across multiple

decoder dies, as already discussed. In addition to this ergodic behavior of the decoders, the

randomized faults are (ideally) independent from each other, which would result in an in-

dependent behavior for different decoding attempts even with an identical codeword. This

51

Chapter 3. Practical Approximate Channel Decoders with Unreliable Memories

property can be exploited to improve the decoder performance, which provides the motivation

for our proposition.

Recall that if multiple events Bi are independent the following holds

Pr
(⋂

i
Bi

)=∏
i

Pr(Bi). (3.9)

In another words, the joint probability of multiple independent events is the product of the

probabilities, which is always smaller than each of their individual probabilities. We therefore

propose to exploit the relation in (3.9) to reduce the probability of failure in the decoder.

Specifically, we propose to repeat the decoding for the codewords that are unsuccessfully

decoded with a different realization of the randomized faults. Since the decoding attempts

are (ideally) independent from each other as the result of independent logical faults, the joint

probability of an unsuccessful decoding over all repetitions decreases as compared to one

repetition. For example, it is less likely to have two subsequent decoding failures as compared

to only one failure attempt. Therefore, by repeating the decoding attempts, it becomes more

likely that one of the decoding attempts succeeds. In practice, the repetitions can continue

until a maximum is reached or the codeword is decoded successfully.

We evaluate the performance over the population of decoders with the randomized non-

ergodic faults while we enable the above-explained repetition for the unsuccessful decoding

attempts. Note that the unsuccessful decodings can be trivially recognized by monitoring

the syndrome (see (3.1)). We allow up to 1, 2, or 3 extra repetitions and we show the FER-

yield results in Fig. 3.9. By comparing the plot with 1 extra decoding attempt, colored in

green, against the reference plot without any extra attempt, colored in blue, we can observe a

significant improvement in the decoder performance, which is up to an order of magnitude

for some of the decoders such that the FER penalty compared to the non-faulty decoder,

shown with a black dashed curve, becomes small. The improvement saturates as we move to

higher number of repetitions due to the fact that the decoding attempts are not completely

independent, as they still process an identical codeword. We further see that the variance

across multiple decoders is reduced compared to the reference plot since the inferior decoders

(with higher frame error probability) get more chances to repeat the decoding as compare to

the superior decoders (with lower frame error probability). Such a lower performance variance

indicates a higher yield at a target FER. We note that the key ingredient for the success of this

idea is the proposed randomization techniques as it allows to realize different independent

memory faults and enable the above improvement, while the performance of a decoder with

deterministic memory faults would not change by repeating the decoding iterations.

52

3.4. Improving the Performance Across the Population of Dies

10−4 10−3 10−2 10−1 100
0

0.2

0.4

0.6

0.8

1

FER at Eb/N0 = 4 dB

E
m

p
ri

ca
lC

D
F

Randomized with no repeat

Randomized with repeat=1

Randomized with repeat=2

Randomized with repeat=3

Non-faulty decoder

Figure 3.9: Performance evaluation of a population of faulty LDPC decoders through empirical
cumulative density function of FER at a fixed Eb/N0 = 4 dB, for non-ergodic fault model with
bit-error probability Pb = 5×10−5 with fault randomization, while the unsuccessful decoding
are repeating 1, 2, or 3 times.

3.4.3 Minimizing the Impact of Memory Faults by Exploiting Binary Data Repre-

sentation

The non-ergodic fault model reflects the reality of memory faults, where the error positions

are fixed after manufacturing, as discussed. In order to minimize the impact of deterministic

faults, we adapt the proposition in [119] according to the data distribution in the decoder

memories. While [119] only considers binary data representation optimization, we jointly

consider and optimize memory faults and the memory binary data representation. To this end,

we first define the error probability for each bit of the memory considering the non-ergodic

model in a more general form than Section 3.3.2 and then discuss the proposed idea.

3.4.3.1 Formal Definition of The Bit-Error Probability and Memeory Error Model

In Section 3.3.2 we assumed that the bit-error probability for a faulty memory can be defined

according to the technology node and operating conditions. Given this bit-error probability,

the number of faulty bits are described by a binomial distribution. We then assumed i.i.d.

faults across the memory bits and approximated the post-fabricated bit-error probability as

Pr ∈ {0,1} to derive the fault map for our simulation analysis.

To generalize the above fault model, we consider a memory of Nb bits and we define the

data that is written to the memory as a bit vector d = [d1, · · · ,dNb] with di ∈ {0,1} and the

53

Chapter 3. Practical Approximate Channel Decoders with Unreliable Memories

corresponding random variable D . We also define the error-indicator of bit i ei ∈ {0,1}, and

the memory fault map e = [e1, · · · ,eNb] with the corresponding random variable E . The data

in the memory is denoted by d ′ = [d ′
1, · · · ,d ′

Nb
] with d ′ ∈ {0,1} and random variable D ′. With

these definitions, the error occurrence for each memory bit is described by

d ′
i = di

⊕
ei , (3.10)

where
⊕

is the binary XOR operation.

Based on the above definition, we now formally define the error model. We first focus on a

specific die. To generalize our definition, we assume that the errors are data-dependent.1

Hence, we need to condition the error on the data that is written to the memory. We therefore

consider the conditional probability mas function (PMF) of error as

fEi |D (ei ,d) = Pr(Ei = ei |D = d). (3.11)

Unfortunately, the above model is incredibly complex since the large dimension of d (Nb bits)

makes the enumeration of all possible conditions even for a single error event on a single bit

impossible. Also, some other dependencies, such as history of the memory, are not captured

by the conditioning on d . To avoid this issue and to circumvent our inability to model the

exact dependency of the probability of errors on the entire data in the memory, we marginalize

over the data, except for the data in the bit under consideration. With this simplification, we

consider only Ei |Di and its PMF as

fEi |Di (ei ,di) = Pr(Ei = ei |Di = di). (3.12)

Next, according to the non-ergodic behavior, we need to define fEi |Di (ei ,di) for each individual

die with index n ∈ N . We therefore consider f (n)
Ei |Di

(ei ,di) as the PMF of error for die n and

suggest to empirically obtain this probability across all the dies through measurements. Under

the assumption of no structural preferences for individual bit-cells, we can assume that the

parameters of the error follow an i.i.d. distribution. We finally obtain the probability density

function (PDF) of manufacturing fault model that leads to the fault map for each die as

g fE |D
(

f (n)
E |D ,e,d

)= ∑
i∈Nb

Pr(fEi |Di = f (n)
Ei |Di

). (3.13)

3.4.3.2 Optimization for Improved Resilience Against Error

We describe our proposition that allows to significantly mitigate the impact of faults on

the decoder performance based on the above-described error model. We first consider the

1Note that we revisit and verify this assumption in Section 3.7.

54

3.4. Improving the Performance Across the Population of Dies

impact of the errors on the magnitude of a signed random variable x ∈Z with a B-bit binary

representation [xB · · ·x1]. This binary representation can be achieved via different mappings.

For the well-known 2’s-complement (2C) and sign-magnitude (SM) mappings, x can be

expressed as

x(2C) =−xB 2(B−1) +
B−1∑
b=1

xb2(b−1), (3.14)

and as

x(SM) = (−1)xB +
B−1∑
b=1

xb2(b−1). (3.15)

We consider that the sign-bit is protected, and for simplicity, we assume one error in a memory

word.2 If a word is affected by an error in bit-position ε (i.e., eε = 1), the bit position xε becomes

its binary complement x̄ε. We not that the error magnitude depends on the binary data

representation in the memory. For the mappings 2C and SM, since the bits are exponentially

weighted, it is straightforward to show the corresponding error magnitude as

|x −xε| = 2ε−1. (3.16)

Since errors in the more significant bits have an exponentially-growing impact on the error

magnitude, unequal error protection [120,121], or customized binary data representation [119]

have been suggested to minimize the error magnitude.

Motivated by the above observation, and given the fact that the binary data representation

in the memory can be customized, we are interested in minimizing the error magnitude.

Our interest is however not the impact of a specific error event. Instead, we are interested

in minimizing the mean error magnitude Ē across all manufactured dies, across all single-

error locations ε, and across all possible logic-states of the bit in the error locations dε . This

averaging can be expressed as follows

Ē = En

{
Eε

{
Edε

{|x −xε|
}}}

, (3.17)

where Ez {·} corresponds to taking the expectation over z. The outer-most expectation runs

over all dies in the population. The middle expectation runs over all bits (except the protected

sign bit) in a word and we slightly abuse our notation from the initial fault model by limiting

the memory size to a single word and setting i = ε. Finally, the inner-most expectation runs

2Note that multi-bit errors in a single word may occur, but are highly unlikely for low error probabilities.

55

Chapter 3. Practical Approximate Channel Decoders with Unreliable Memories

over the data dε ∈ {0,1}. Therefore, we can express (3.17) using (3.12) and (3.16) as

Ē = En

{
Eε

{
2(ε−1) · (Pr(dε = 0) f (n)

Eε|Dε
(eε = 1,dε = 0)+ (3.18)

Pr(dε = 1) f (n)
Eε|Dε

(eε = 1,dε = 1)
)}}

.

The above explicit form for the mean error provides the core motivation for our proposed

error-minimization approach. It can be seen that the mean error magnitude is strongly

impacted by the relationship between the probability of the data polarities Pr(dε = d) and

their corresponding error probabilities f (n)
Eε|Dε

(eε = 1,dε = d) for d ∈ {0,1}. While Pr(dε = 0)+
Pr(dε = 0) = 1, we refer to Pb = f (n)

Eε|Dε
(eε = 1,dε = 0)+ f (n)

Eε|Dε
(eε = 1,dε = 1) as the average error

probability across the data. It is commonly noticed that for error magnitude Ē , if either

the data is symmetric
(
Pr(dε = 0) = Pr(dε = 0) = 1/2

)
or the error probability is symmetric(

f (n)
Eε|Dε

(eε = 1,dε = 0) = f (n)
Eε|Dε

(eε = 1,dε = 1)
)
, any asymmetry in the other is irrelevant. However,

if neither of the two conditions above holds, the mean error magnitude can be influenced by

adjusting the asymmetry in either the data or the errors.

Based on the above-described observation, we propose to reduce the impact of error and

thereby improve the decoder performance as follows:

• encourage an asymmetric binary data representation, i.e., Pr(di = d) > Pr(di = d̄), and

• skew the error pattern of the memory to be asymmetric in the opposite direction of data,

such that f (n)
Eε|Dε

(eε = 1,dε = d) < f (n)
Eε|Dε

(eε = 1,dε = d̄).

While the above strategy can be applied to individual bits, the choice of binary data represen-

tation dictates the data statistics for all the bits in the data word. Additionally, from (3.18) we

note that the impact of errors on the mean error magnitude grows exponentially with the bit

index in the word. It is therefore favorable in most cases to reduce on the error contribution of

the most significant bits.

In order to apply the above, we first study the data distribution in R-memories of the decoder.

We show the corresponding value statistics in Fig. 3.10 for different codewords and chan-

nel realizations. We observe that the data in R-memories is tightly distributed around zero

and mainly covers the lower magnitude range while it is symmetric around zero. With the

knowledge of the data distribution, we analyze the distribution of the bit values. We again

consider the well-known 2C and SM mappings and note that for 2C there exist an inherent

symmetry around zeros that results in a symmetric distribution of logic-1 and logic-0, i.e.,

Pr(d (2S)
i = 0) = Pr(d (2S)

i = 1) = 1/2, independent of the magnitude distribution. However for

SM, the probability of logic-1 drops rapidly for the corresponding statistics in Fig. 3.10 when

56

3.4. Improving the Performance Across the Population of Dies

−15 −10 −5 0 5 10 15

10−4

10−3

10−2

10−1

100

R-message values

P
M

F

Figure 3.10: Probability of occurrence for R-message values averaged among multiple code-
words and channel realizations.

the distribution of magnitude tightens toward zero, i.e., Pr(d (SM)
i = 0) > Pr(d (SM)

i = 1) for i

toward MSBs.

We illustrate the above observations by a small artificial example. Assume a random variable

x which is represented by a 5-bit vector (bit-5 is the sign bit) with binary entries in 2C and

SM format. If x is uniformly distributed between −15 and +15, all bits in both mappings have

50/50 chance for being 0 or 1. If x is uniformly distributed between −3 and +3, all bits in the

2C mapping are still 50/50 distributed across 0 and 1, however, in SM mapping, bits 3 and 4

are always 0.

With the above-provided insight in mind, and by exploiting the R-message distribution in

Fig. 3.10, the choice of a SM binary data representation allows us to skew the distribution

of the MSBs of the data toward logic-0. By skewing the error pattern of the memory toward

logic-1 the mean error magnitude will be minimized, as can be observed by (3.18).

In order to analyze the effectiveness of this approach, we run simulations under the assump-

tion of a skewed fault model while the data is stored in the memory with a SM representation.

Fig. 3.11(a) shows the performance of the population of decoders by demonstrating the empir-

ical CDF of FER while comparing two cases for the non-ergodic fault model with Pb = 5×10−4.

The first plot colored in red, corresponds to a non-skewed fault model with error polarities of

1 and 0 (stuck-at-0 and 1) with equal probabilities. The second plot colored in blue, however,

corresponds to a skewed fault model with an error probability of zero for logic-1 indicating

only error polarities of 0 (stuck-at-0). It can be clearly observed that the asymmetric errors

57

Chapter 3. Practical Approximate Channel Decoders with Unreliable Memories

provide a considerable FER gain. In fact, for the chosen 4 dB SNR operating point, most dies

with symmetric faults and the chosen fault rate of 5×10−4 do not manage to decode any

codeword correctly, i.e., FER≈ 1. However, by setting a target FER< 10−1, we can observe from

Fig. 3.11(b) that most of the die, i.e., ≈ 80%, with the asymmetric memory faults manage to

decode most of the codewords at SNR> 3.75 dB.

3.5 Integration to ErgoDEC Architecture

In this section, we discuss the integration of the improvement techniques to ErgoDEC ar-

chitecture and we evaluate the potential overheads. We explain the address and bit-index

randomization to enable the ergodic behavior and the imposed overhead, and we discuss the

overhead of repeating the unsuccessful decodings. Finally, we explain how the skewed fault

model can be implemented.

3.5.1 Address and Bit-Index Randomization

In order to realize the ergodic fault statistics in the decoder memories, error locations and

polarities should alter over time. More specifically, memory address and data should be

scrambled to create different logical memories with random faults over the course of decoder

iterations or processing of the layers. In the previous chapter, we proposed to add random-

ization circuits to the memory of an embedded system. Our proposition for the decoder

in the current chapter follows a similar basic idea, however, it is tailored according to the

decoder architecture and the faulty memories dimension. More specifically, enabling an ideal

randomization for the decoder memories with a wide memory bus imposes a non-negligible

overhead as it requires to shuffle the bits across different LLRs in such a wide bus. The over-

head unfortunately remains large relative to the memory size since the depth of the decoder

memories is low. Therefore, we choose to implement the randomization circuit differently

compared to the previous chapter as follows.

We propose to enable the above by integrating randomization circuits to the decoder memory

macros at different granularities, i.e., bit-level, LLR-level (note that a memory word spans 111

LLRs each comprised of 6 bits), and address-level, as illustrated in Fig. 3.12. At bit-level, all

the bits are XOR-ed with the same random bit to create an inversion in stuck-at errors. At

LLR-level, a barrel-shifter is used to rotate the bit orders in an LLR according to a random

number. The random number is generated/updated with a LUT-based random number

generator, where a seed is used for the initialization. Despite the simplicity of the LUT-based

random number generator, it has strong theoretical properties, such as universality and

high independence degree, as compared to other random number generation methods [122].

Further, a similar configuration for all the shifters in each memory word is applied and no

word-level randomization across the LLRs in a memory word is implemented to reduce the

58

3.5. Integration to ErgoDEC Architecture

10−4 10−3 10−2 10−1 100
0

0.2

0.4

0.6

0.8

1

FER at Eb/N0 = 4 dB

E
m

p
ri

ca
lC

D
F

stuck-at-0 and 1
stuck-at-0 only

(a) FER-Yiled

2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

Eb/N0

Fr
ac

ti
o

n
o

fd
ec

o
d

er
s

w
it

h
F

E
R

<
10

−1 stuck-at-0 and 1
stuck-at-0 only

(b) SNR-Yiled

Figure 3.11: Performance evaluation of a population of faulty LDPC decoders through a)
empirical cumulative density function of FER at a fixed Eb/N0 = 4 dB, and b) fraction of
decoders with FER< 10−1, for non-ergodic fault model with bit-error probability Pb = 5×10−4

and error polarities of 1 and 0 vs. error polarity of 0 only.

59

Chapter 3. Practical Approximate Channel Decoders with Unreliable Memories

Hash function with
configurable seed

Barrel shifter

XOR gate

. . .

. . .

Wr addr.

LUT-based rand
generator with

configurable seed

.
.

.

0
1
2
3

4
5

Wr data

Rd addr. Rd data

. . .

Figure 3.12: The faulty memory macro with randomization logic that is used to create an
ergodic fault process.

overhead. At address-level, the memory address is scrambled by a hash function that is also

initialized with a seed. All the operations are applied during write and the reverse operations

is applied during read to recover the original data.

A new seed is applied for each codeword and is updated during each decoding iteration.

The random number engine used for configuring the shifters and XOR gates receives a key

from concatenation of the seed and the memory address. Beside ensuring the generation of

a different random number for each memory rows and thus enabling a more ergodic fault

behavior, this measure provides a natural means to revert the write randomization operation

during read without a need for an additional storage element to preserve random numbers

during the data lifetime of the datapath memories. We note that as opposed to the random

number generator, the seed of the address scrambler hash function remains unchanged

during the entire decoding due to the fact that R-messages are updated over the course of

iterations and thus the memory address should remain unchanged to avoid any data loss due

to overwriting of valid messages.

3.5.2 Repeating Unsuccessful Decoding Attempts

Unsuccessful decoding attempts can trivially be recognized by monitoring the codeword

syndrome, which naturally gets computed after each decoding iteration. Note that for the

60

3.6. Test Chip Architecure and Physical Implementation

decoders with layered decoding algorithm, such as the decoder of this chapter, a partial

syndrome is computed [123], which can similarly be used for this purpose. Therefore, no

extra circuitry is required for detecting the unsuccessful attempts. However, the decoder FSM

needs to be modified to repeat the decoding for such codewords while configuring the above-

described randomization circuit differently, i.e., with a different seed. Overall, implementation

of repeating the decoding attempt does not impose an overhead in hardware.

3.5.3 Optimizing the Binary Data Representation in the Memory and the Memory

Faults

Recall that the binary data representation and the memory faults need to be jointly considered

to achieve a minimized impact for the memory faults. To this end, we use a SM binary data

representation for the messages in decoder allowing to skew the MSB distribution toward

logic-0 together with designing a bit-cell that has a lower probability of logic-0 failure than

logic-1. We recall the bit-cell schematic in Fig. 3.3 and note that the employed bit-cell features

a skewed reliability. In fact, in this schematic logic-0 bits enjoy an infinite retention time as

opposed to logic-1 values as the NMOS transistors are typically more leaky than the PMOS and

the SN charge degrades toward ground, which skews the fault toward stuck-at-0. Even though,

this behavior appears naturally, it can be reverted by artificially inverting all the information

bits during write and inverting them back during read in case of a need for a skewed fault

behavior toward logic-1.

3.6 Test Chip Architecure and Physical Implementation

In this section, we explain the fabricated test chip architecure and the infrastructure that

is added to enable monitoring the faults in the memories. We also discuss the physical

implementation of the architecture given the large number and the special dimension of the

memories in the design.

3.6.1 Chip-Level Architecture and Operation Modes

An overview of ErgoDEC chip-level architecture is provided in Fig. 3.13. The architecture

consist of the decoder core, interface memories for the decoder, a test controller, and a serial

interface to access the memories externally, which are explained in details in the following.

The decoder main building blocks are the Q-, T-, R-memories, and the decoder logic, as previ-

ously explained. The key feature of ErgoDEC is its ability to closely monitor and analyze the

type and the impact of errors in the memory. To this end, T- and R-memories are wrapped

into test structures, containing debug memories and logic, that aim at recording the faulty

memory behavior during the decoding process. The purpose of this (costly and area consum-

61

Chapter 3. Practical Approximate Channel Decoders with Unreliable Memories

Q
-m

em
 1

/2
R

/T
-m

em
 te

st
st

ru
ct

ur
e

Decoder
Logic

Comand
mem

LLR In 1/2

Req/Ack

Comand

In-Out FSM

LLR Out 1/2

Test Ctrl
FSM

 LLR In 1/2
 mem

 LLR Out 1/2
mem

Decoder
Decoder
Interface

FLL

Ctrl

Ext Clk
Clk Box

Serial Interface

32-bit Bus Inteface

Conf./Ctrl Reg. GPIO Muxto all blocks

FLL Clk Domain

Ext Clk Domain

Conf.

R/T
mem

Debug
mem

Debug logic

Figure 3.13: ErgoDEC chip-level architecture overview.

ing) measure is to be able to identify errors in the faulty memories during the decoding. To

this end, in parallel to the dynamic SCM, during the write operations, the data is loaded into a

shadow memory that is built from a SRAM and stores a reliable copy of the data, as shown in

Fig. 3.14. During read operations, both the dynamic SCM and the reliable copy are read and

compared while the difference is logged in an additional SRAM (difference memory) to obtain

a fault map. In addition to storing a reliable copy of the data to track the fault, the shadow

memory provides a fully reliable decoder operation even for low frequencies since it can be

used as a reliable static datapath memory instead of the dynamic SCM.

The interface memories are comprised of two buffers for each of the input and output LLRs

to store two codewords, which allow the decoder to ping-pong between two codewords in

a configurable loop. Additionally, the decoder core integrates two pairs of Q-memories for

continuous operation with two codewords. Once the LLR buffers are pre-loaded with channel

LLRs, the decoder starts by loading its first internal pair of Q-memories. After this initial

loading process, the decoding is started. During the decoding process, the second pair of

Q-memories can be loaded from the interface buffer. Once the decoding of the first codeword

is complete, the decoder starts to decode the second codeword and it dumps the results of

the first codeword to the buffer memory and loads again the pair of Q-memories with the

channel LLRs of the first codeword. Therefore, the integrated test harness around the LDPC

decoder core enables continuous operation with two codewords, which is suitable for an

average power measurement. It also allows a single codeword decoding by loading only one

of the interface buffers and configuring the decoder for the decoding of one codeword. To

62

3.6. Test Chip Architecure and Physical Implementation

Dynamic
SCM

Shadow
SRAM

Diff
SRAM

Decoder
wr-data

Wr-addr

Counter

0

Decoder
rd-data

Decoder
rd-addr

Figure 3.14: Test structure of the T- and R-memory with debug (shadow and difference)
memories and logic to enable multiple operating modes.

perform FER measurements with a larger number of different codewords, ErgoDEC interface

buffers need to be loaded multiple times with fresh codewords and the results need to be

checked externally by a test set-up.

A serial interface provides access to all the storage elements of ErgoDEC, i.e., test structures

and interface memories as well as configuration registers, as in Fig. 3.13. While this serial

interface requires only few pins, it is also slow and therefore data can neither be provided

nor be checked in real-time from outside the chip. Instead, it is used to load the stimuli and

the configuration into the corresponding storage elements, trigger the decoder, and read out

the result. It is worth noting that parallel-to-serial and serial-to-parallel shift registers are

integrated to enable reading from/writing to the memory macros with the wide 666 word

length.

ErgoDEC provides multiple operating modes. While a free running mode over repeated

codewords is used to measure an average power, multiple runs of the decoder over different

codewords is used to measure the FER or memory fault maps by reading the corresponding

memories. Further, the test structure around T- and R-memories can be used to record faults

in any phase of the decoding process or can log aggregated fault maps over the entire decoding

of a codeword (spacial mode). In addition to this mode, a history of a specific address in

the faulty memories can be logged, which provides information on the evolution of faults

throughout the decoding process (temporal mode).

63

Chapter 3. Practical Approximate Channel Decoders with Unreliable Memories

Table 3.2: List of memories and their sizes in ErgoDEC for the implemented QC-LDPC code
with Z = 111 and message quantization bit of 6.

Memory Type Quantity Depth×Width

T SCM 2 8×666
R SCM 2 24×666

T shadow SRAM 2 8×666
T diff SRAM 2 30×666

R shadow SRAM 2 24×666
R diff SRAM 2 24×666

Q SRAM 4 8×666
Interface SRAM 4 16×666

3.6.2 Physical Implementation

The physical implementation of ErgoDEC requires special scrutiny since there exist a large

number of memory elements with a very wide dimensions, which imposes a large number of

global wires and thus a complex routing. To better explain the issue, we list all the memories

in ErgoDEC along with their dimension and type in Table 3.23. The SRAMs are based on the

standard foundry macros. In order to build the required dimensions, we use macros with

dimension of 16×222 and 32×222 and we stacked 3 macros to build the wordlenght of 666.

The SCMs are compiled based on the proposed hybrid static and GC latches [65], and therefore,

the SCM macro dimension can be customized according to the required wordlength.

The above large number of physical SRAM macros and their connection to the SCMs and the

decoder logic provides multiple floorplan configuration options for the physical implementa-

tion. For example, the physical macros corresponding to a memory can be stacked horizontally

or vertically to facilitate the local (between the memory and the corresponding logic) or the

global (between multiple memories and across the chip) routing, respectively. Additionally,

the position of each memory in the chip can be optimized according to its connection to other

memories and the decoder logic.

Fig. 3.15 illustrates the proposed physical floorplan for ErgoDEC. In this floorplan, SRAM

macros are stacked vertically to reduce the global routing congestion. Also, Q-memories are

placed on one side of the decoder logic, while T- and R-memories are placed on the other side

to provide an easier access for all the memories to the decoder logic. The interface memories

are placed next to the Q-memories and the R- and T- debug memories (shadow and diff) are

placed next to the faulty T- and R-memories, which altogether, eliminate unnecessary routings

over the decoder core.

3Two more memories are used in ErgoDEC to store the decoder commands and decoder sequences, which are
not listed in the table since their dimensions are negligible as compared to other memories.

64

3.7. Measurement Results

LLR-In 1 LLR-Out 1 LLR-In 2 LLR-Out 2

Q 1-1 Q 2-1 Q 1-2 Q 2-2

R 1 R 2
T 1 T 2

R Shadow 1

R Diff 1

T Shadow 1

T Diff 1

R Shadow 2

R Diff 2

T Shadow 2

T Diff 2

Figure 3.15: The proposed floorplan for ErgoDEC which highlights the SRAMs (annotated with
white color) and SCMs (annotated with black color) macro locations (left), and the controlled
placed SCMs (right).

The SCMs are composed of the proprietary dynamic latch and standard cells (including a static

latch for the sign bits). Therefore, the SCM array can be implemented as part of the standard

digital placement and routing flow. However, the memory arrays have a regular structure in its

address decoder, clock tree and storage nodes. We therefore, follow the controlled placement

methodology of [65] to optimize the physical implementation, as shown in Fig. 3.15 (right).

Also, we vertically stack 6 arrays with worldlength of 114 bits4 to build the required worldlength

of 666 bits. This choice is made to match the width of each SCM array with the corresponding

debug SRAM macros, as it can be seen in Fig. 3.15. As a result, each bit from the SCM array

data port more easily reaches the corresponding index in the SRAM data port with a vertical

routing and unnecessary horizontal routing across the SRAM macros and across the SCM

arrays is avoided.

3.7 Measurement Results

The ErgoDEC architecture, described in Section 3.6, was fabricated in a 28 nm FD-SOI regular-VT

CMOS technology, utilizing 1.44 mm2 of a complete 3 mm2 die. The micrograph and main

features of the chip are shown in Fig. 3.16. In addition to the area, we report the reliable

frequency ranges and the corresponding power consumptions for two supply voltages. The

minimum reliable frequency is the lowest frequency with no memory error (no DRT violation)

and the maximum reliable frequency is the highest frequency that the decoder can achieve

without setup-timing violation.

4Each memory array contains 19 LLR words with 6 bit each. The last macro thereby contains 3 redundant words
to keep all macros of the same width, while avoiding breaking data words across macro boundaries for regularity.

65

Chapter 3. Practical Approximate Channel Decoders with Unreliable Memories

Technology 28 FD-SOI
Die area [mm2] 3
Decoder core area [mm2] 1.44
Vdd [V] 0.9 0.7
Reliable freq. range [MHz] 57−190 10−52
Power range [mW] 32.8−78.8 4.2−18.3

Figure 3.16: ErgoDEC chip micrograph and main features.

A measurement set-up is developed for ErgoDEC that is comprised of a XILINX FPGA on an

evaluation board, which communicates with ErgoDEC through the serial interface and with

the measurement computer through an RS232 interface. ErgoDEC is placed on a separate

board, which contains the power supply, level shifters, and a phase-locked loop (PLL) to adjust

the interface clock. The operation clock is generated on-chip using an embedded frequency-

locked loop (FLL). This FLL provides the necessary flexibility to adjust the clock in small steps

to explore the reliability (i.e., retention time limit) of the embedded memories. Fig. 3.17 shows

a picture of the measurement set-up.

The test programs are fully automated and have been developed based on a proprietary IC test

and characterization application programming interface (API). Each test program reads the

measurement stimuli and configuration data for different test scenarios from the computer

and writes them to the chip through the serial interface using the FPGA. The program also

reads the output results from the chip back to the computer. In the following, we report the

measured results. Our aim is to verify the underlying assumptions that are made for the fault

map and validate the proposed performance improvement schemes. To this end, we first

study the fault map and then measure the FER of the decoder.

66

3.7. Measurement Results

Figure 3.17: ErgoDEC measurement set-up, comprised of a custom validation PCB on the
right-hand side hosting the ErgoDEC IC, connected to a Xilinx XUPV5-LX110T FPGA board on
the left-hand side.

3.7.1 Fault Model

A key hypothesis underlying the fault model of this chapter is that the majority of errors in

memories are caused by process variations. Under this assumption, specific error patterns

are imprinted on each individual die during production. These error patterns are different

for different dies and remain mostly unchanged during operation, which correspond to a

non-ergodic fault behavior.

To verify the above behavior, we provide measurements that focus only on extracting the

fault map of ErgoDEC dynamic SCMs using the test structure around the T- and R- memories.

To this end, we use the spacial mode of ErgoDEC and read and compare the faulty memory

contents against the reliable shadow memory after the first iteration of the decoder to avoid

accumulation of errors over multiple iterations.

We obtain the memories fault map by re-running a measurement for an example die with a

single test pattern and configuration, i.e., codeword and frequency, and we average over 50

repetitions. Fig. 3.18(a) show the R-memory fault map at one SNR while only 60 bits out of 666

word width are illustrated for better visibility. The brightest color in this figure implies that

the cell fails all the time (Pr=1), while the darkest color implies that the cell never fails (Pr=0).

The figure shows a clear dependency between the frequency and number of errors, as was

intended and explained, in which the fault ratio decreases as the frequency increases since

the data lifetime in memory reduces and fewer bit-cells show a faulty behavior. Additionally,

we observe that the majority of the failing bits have a failure probability close to one. This

observation verifies our assumption for the simplified error model of Section 3.3.2, where the

probability of error was approximated to be in {0,1}. Further, it confirms stability of the errors

67

Chapter 3. Practical Approximate Channel Decoders with Unreliable Memories

10 20 30 40 50 60

10

20

Bit Position

A
d

d
re

ss

Freq= 1 MHz

10 20 30 40 50 60

10

20

Bit Position

A
d

d
re

ss

Freq= 3 MHz

0

0.5

1

Pb

(a) Chip i

10 20 30 40 50 60

10

20

Bit Position

A
d

d
re

ss

Freq= 1 MHz

10 20 30 40 50 60

10

20

Bit Position

A
d

d
re

ss

Freq= 3 MHz

0

0.5

1

Pb

(b) Chip ii

10 20 30 40 50 60

10

20

Bit Position

A
d

d
re

ss

Freq= 1 MHz

10 20 30 40 50 60

10

20

Bit Position

A
d

d
re

ss

Freq= 3 MHz

0

0.5

1

Pb

(c) Chip iii

Figure 3.18: Fault map of the R-memory for three chips at SNR of 3.7 dB and frequencies of
1 MHz and 3 MHz.

during multiple runs and thus proves the deterministic nature of the error patterns imprinted

by the manufacturing.

Following the above observation, we re-run the explained fault map test for multiple dies and

illustrate the result for three dies in Fig. 3.18 for comparison. We clearly observe the difference

in the faulty bits between these dies, which confirms that errors are different for different

dies, as various outcomes of the manufacturing process. In fact, as already explained, the

dies (may) show different computation outcomes in the end of the decoding, and therefore,

the commonly-assumed performance evaluation based on the chip-ensemble average is

meaningless.

In addition to the above, we claimed the asymmetric behavior of the GC latch in Section 3.5,

which was exploited to minimize the fault impact. This special design creates a data-dependent

68

3.7. Measurement Results

10 20 30 40 50 60

10

20

Bit Position

A
d

d
re

ss

Freq= 1 MHz

0

0.1

0.2

0.3

Pb

10 20 30 40 50 60

10

20

Bit Position

A
d

d
re

ss

Freq= 3 MHz

0

0.1

0.2

Pb

Figure 3.19: Fault map of the R-memory averaged over 500 codewords at SNR of 3.7 dB and
frequencies of 1 MHz and 3 MHz.

behavior for memory faults since only logic-1 fails. In order to verify this data-dependent

behavior, we analyze the memory fault map for multiple codewords and compare it with the

above-described fault map. To this end, we run a measurement for 500 codewords at one

SNR and different frequencies and illustrate the R-memory fault map by averaging over all

the measurement results in Fig. 3.19. We observe that the probability of failure is not close

to one anymore and is significantly lower than that of Fig. 3.18, while more errors are dis-

tributed around the memory bits. The higher number of errors with lower probability implies

that the faults are data-dependent and different bit-cells fail during the decoding of different

codewords.

3.7.2 Decoder Performance

A major claim that motivates the study of this chapter is that the ergodic fault model does

not reflect the reality of the manufactured dies and indeed there is a distinction between

the quality of different dies. To confirm the non-ergodic assumption, we need to consider

the ultimate decoder performance, i.e., the FER, as it was shown in the simulation results in

Section 3.4. To this end, we measure the FER of the decoder chips for 17 different dies from two

(typical and slow) fabricated wafers to better extract the statistics. In order to have comparable

results among all the dies, we first calibrate the operating frequency such that each test die

yields the same number of errors (same Pb) in their memories, while the difference between

dies only lie in the fault locations and characteristics. The calibrated frequencies for the dies is

69

Chapter 3. Practical Approximate Channel Decoders with Unreliable Memories

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
3

3.5

4

4.5

5

5.5

6

6.5

Chip id

C
al

ib
ra

te
d

fr
eq

u
en

cy
[M

H
z]

Figure 3.20: The calibrated frequencies for the 17 tested dies for R-memory fault probability of
Pb ≈ 5×10−4.

sorted and illustrated in Fig. 3.20. We then measure the FER by reading the decoded codewords

from the output LLR interface buffer and compare them against the expected (reference) result

for different codewords.

We have also proposed to randomize the memory errors to restore the pre-manufacturing

ergodic behavior across the population of manufactured dies. To show the improvement

made by the proposed randomization technique, we run the FER measurement with two

different configurations. The first configuration relates to the normal operation of the decoder,

while the second one corresponds to the case where the randomization circuits are enabled.

To this end, the data is XOR-ed with a random number, the LLR bits are shuffled, and the

address is scrambled for the T-memories as in Fig. 3.12, however, XOR gates are disabled for

the R-memories to benefit from the skewed fault pattern and the strong logic-0 bias of the

data in the R-memories.

Fig. 3.21 shows the FER measurement results vs. SNR and the empirical CDF for the dies at a

fixed SNR of 3.7 dB for a fault ratio of Pb = 2.5×10−4 (Pb = 5×10−4) in T-memory (R-memory).

The red curves pertain to the normal operation mode of the decoder and the dashed black

curve corresponds to the non-faulty decoder from the simulation model. We can see clearly

in this figure how the FER performance across SNR is different for different dies, despite the

calibration for the same number of errors. We also see the spreed among the dies in the CDF of

FER at one SNR. This observation proves the non-ergodic behavior of the quality and thus the

decoder performance across the population of decoder dies, as predicted in the simulation

results provided in Section 3.3

70

3.7. Measurement Results

2.6 2.8 3 3.2 3.4 3.610−2

10−1

100

Eb/N0 (dB)

F
E

R

No randomization
With randomization
Non-faulty decoder

(a) FER vs. Eb/N0

10−1.4 10−1.2 10−1 10−0.8
0

0.2

0.4

0.6

0.8

1

FER at Eb/N0 = 3.7 dB

E
m

p
ri

ca
lC

D
F

No randomization
With randomization

(b) FER-Yiled

Figure 3.21: Measured frame error rate results of 17 faulty LDPC decoder chips with R-memory
(T-memory) fault probability of Pb ≈ 5×10−4 (Pb ≈ 2.5×10−4) with and without randomization.

71

Chapter 3. Practical Approximate Channel Decoders with Unreliable Memories

2.6 2.8 3 3.2 3.4 3.6 3.810−3

10−2

10−1

100

Eb/N0 (dB)

F
E

R

No randomization
Randomization, repeat=0
Randomization, repeat=1
Randomization, repeat=2
Non-faulty decoder

Figure 3.22: Measured frame error rate results of a faulty LDPC decoder chip with R-memory
(T-memory) fault probability of Pb ≈ 5×10−4 (Pb ≈ 2.5×10−4) while the unsuccessful decoding
are repeated 1 or 2 times.

The blue curves in this figure pertain to the case where the randomization circuits are enabled

while each die is running at the same calibrated frequency similar to the above. As we can

clearly observe, the quality spread is reduced by employing our randomization technique.5

This smaller quality variance among the dies indicates that the quality becomes ergodic.

Therefore, the time-average performance of each die approximates the ensemble-average of

the population of dies. This stabilization now enables a confident and extremely easier testing

procedure for a minimum quality, as proposed in the previous chapter and further explored

in Section 3.4. To this end, dies need only be sorted by the fault ratio in the memory and a

minimum quality for all the dies in each group can be guaranteed as they now have a similar

time-average quality.

Along with the randomization technique, we have also proposed to repeat the decoding for

the unsuccessful codewords with a different fault realization, which showed a significant

performance improvement in simulations. To verify this proposition, we run a measurement

on the measured die that showed the worst error rate performance without randomization

among all the measured dies. We allow up to 2 more decoding repetitions for the unsuccessful

codewords, while in each repetition we initialize the random number generator and the

hash function with a different seed (see Fig. 3.12) to ensure an independent behavior for the

logical memory faults. During the post processing, we consider the codeword as correctly

decoded if any of the corresponding decoding attempts were successful. We show the FER

vs. SNR for this example chip in Fig. 3.22. As we can observe, the FER improves as we enable

5We note that the small divergence in the tail of the blue curve pertain to the fact that the frequency calibration
across the dies cannot be made such that all the dies have the exact same probability of error in their memories.

72

3.8. Conclusion

repeating the decoding of unsuccessful codewords compared to the case with no repetition

and to the case without randomization. This improvement is significant specially for the

curve with 2 extra repetitions, colored in pink, such that the performance of the faulty decoder

approaches that of the non-faulty decoder, colored in black. This observation proves the

efficacy of our proposition in Section 3.4, and shows a methodology to improve the faulty

decoder performance at a negligible overhead while this improvement can only be enabled

with the proposed randomization scheme.

3.8 Conclusion

We proposed an approximate ergodic LDPC decoder in a 28 nm FD-SOI technology, ErgoDEC.

We showed with measurement that the memory faults as well as the quality across a pop-

ulation of dies are non-ergodic, and therefore, the fault model commonly-assumed in the

previous literature is not correct. Beside verifying of the non-ergodic fault model and quality

distribution, we proposed and proved with measurement novel approaches to improve the

quality of faulty dies by equalizing the quality across the dies and minimizing the impact of

memory faults. Altogether, ErgoDEC is the first measured example of an integrated circuit that

delivers stable performance across a population of dies despite the presence of errors in its

memories. As such, it shows that approximate computing is feasible without a complex test

procedure and acceptable quality.

73

4 DVFS Based Power Managment for

LDPC Decoders with Early Termina-

tion

While the previous chapters have focused on the issue of unknown, but static (over time)

variations, we now focus on uncertainties that do vary naturally over the lifetime of a circuit.

Data-dependent variation is such a type of uncertainty, which appears on a fast time-scale

at run-time and can affect the output quality especially in iterative (data-dependent) algo-

rithms. Traditionally, even iterative algorithms and corresponding architectures are designed

to operate reliably or achieve the minimum required quality for the worst-case scenario of the

input data. For instance, the critical path delay is naturally evaluated for the worst-case input

transition, or iterative algorithms are often configured for maximum iterations to achieve

the required quality for the worst-case scenario. However, such worst-case conditions are

usually rare, and hence, such an approach leads to over-design by imposing a conservative

design-time margin, which is not required for most of the cases at run-time.

To avoid the costly margin and to design extremely efficient circuits and architectures, which

can gain from data-dependent variations, it has been proposed to exploit the flexibility and ro-

bustness of some algorithms through dynamic approximate computing [124, 125]. Specifically,

iterative algorithms are a great candidate since the algorithm iterations provide an effective

means at run-time to adapt to fast data-dependent variations trading the output quality for

computational efforts.

As already mentioned in previous chapters, wireless communication is a domain that can ben-

efit from dynamic approximate computing since it contains various iterative and probabilistic

algorithms and the system has inherent robustness against the potential rare worst-case

events. Among such algorithms, decoders for error-correcting codes are very promising ex-

amples since they process stochastic signals that are often highly distorted by noise and/or

interference. Further, for such input signals, there is often an acceptable output range thus

indicating a high degree of flexibility on the output quality. Among the most well-known cod-

75

Chapter 4. DVFS Based Power Managment for LDPC Decoders with Early Termination

ing schemes, low-density parity check (LDPC) codes have been widely used in high data-rate

communication standards [71]. Throughout this chapter, we therefore continue to focus on

this error-correcting code. As opposed to the previous chapters, where we have randomized

static errors to improve yield, we now show how dynamic approximate computing techniques

are used to effectively trade the error-correcting performance for computational complexity

by exploiting run-time variations due to the random input data. To this end, we dive slightly

deeper into the algorithm and exploit algorithm/architecture interactions.

LDPC codes are commonly decoded using iterative message passing (MP) algorithms through

a message exchange process between decoder computation nodes, as already explained. This

iterative decoding process for LDPC codes naturally provides an effective means to adjust the

performance-complexity trade-off. In practice, the decoder is configured for a maximum num-

ber of iterations, Imax, which is chosen to achieve the required error-correcting performance

in a worst-case signal-to-noise ratio (SN R) scenario. However, the initial iterations will be

more significant in decoding the received signals and the following iterations are only useful

for recovering the data in low SN R regimes. Thus, early termination (ET) was proposed [78] to

avoid redundant iterations by stopping the decoder when extra decoding effort is not required.

With this measure, the decoder energy has a natural first-order data-dependent behavior since

the decoding energy per bit decreases linearly with the actual required number of iterations

for each code-block at run-time.

While avoiding redundant iterations with ET effectively reduces the decoding effort per code-

block and adapts the computational effort to run-time variations, this measure does not

reduce the energy consumed per iteration. However, when fewer iterations are required, more

time may be allocated to each iteration without affecting the throughput. dynamic voltage and

frequency scaling (DVFS) [126, 127] provides an effective means to exploit this additional time

to also reduce the energy for each individual iteration. To this end, both frequency and supply

voltage are adjusted accordingly to still meet timing requirements while taking advantage of

the quadratic dependency of the power on the supply voltage. Together with ET, this measure

then results in a second-order data-dependent energy behavior, which further improves the

energy-efficiency of the decoder at high SN R.

Unfortunately, to apply DVFS to the decoding process, the number of required iterations

(RIs) must be predicted before or at least during the decoding process of a code-block to

properly reduce both voltage and frequency to match the actually required decoding effort

without missing the deadline for the decoding of that block. This iteration prediction can

be categorized as either static or dynamic, where static prediction is performed only once

during initialization of the decoding process while dynamic predictions are updated after

each iteration. The objective is thereby to keep the number of predicted iterations as low as

possible to maximize the gain from run-time variations, while avoiding an underestimation of

the number of RIs, which would lead to an unsuccessfully decoded data frame and decoder

76

4.1. Background

performance degradations. Different algorithms in both approaches have been proposed to

enable the use of DVFS. The authors of [128,129] proposed a static iteration prediction and the

dynamic iteration prediction was later addressed in [130, 131]. Unfortunately, none of these

prior works provides a fully systematic approach to jointly analyze and adjust the trade-off

between power savings from DVFS with more aggressive prediction strategies on one side and

a potential error-rate performance degradation on the other side.

Contributions and Outline Given the importance of the correct trade-off analysis between

the potential energy saving and the output error-correcting performance degradation, we

propose a systematic statistical framework for reducing the energy consumption of an LDPC

decoder with DVFS based ET and characterize the maximum theoretically-achievable saving.

We then propose an algorithm, within this framework, to dynamically predict the RI for each

codeword that benefits from the performance/complexity trade-off. This algorithm exploits

the data-dependent variations at run-time through approximate computing and thereby

allows to slightly relax the error-correcting performance by a well-defined margin in order to

achieve the desired energy-efficiency improvements.

The remainder of this chapter is organized as follows. Section 4.1 gives a brief introduction to

LDPC codes, as well as more details on the decoder power reduction through iteration manage-

ment. Section 4.2 describes our proposed statistical framework for the energy consumption

of an LDPC decoder with iteration prediction. In Section 4.3, our algorithm to minimize the

decoder energy consumption is presented and its performance is evaluated in simulation

results, and finally, Section 4.4 concludes the chapter.

4.1 Background

A binary LDPC code is a set of codewords which are defined through an M ×N binary-valued

sparse parity check matrix as

{
c ∈ {0,1}N |Hc = 0

}
, (4.1)

where all operations are performed modulo 2. If the parity check matrix contains exactly dv

ones per column and exactly dc ones per row, the code is called a (dv ,dc)-regular LDPC code.

LDPC codes are usually represented with a Tanner graph which contains N variable nodes

(VNs) and M check nodes (CNs) and VN n is connected to CN m if and only if H mn = 1.

As already discussed in the introductory part of this chapter and also previously in the thesis,

LDPC codes can be decoded using MP algorithms, where information is exchanged as mes-

sages between the VNs and the CNs over the course of several decoding iterations. With early

77

Chapter 4. DVFS Based Power Managment for LDPC Decoders with Early Termination

termination (ET), messages are exchanged until a valid codeword ĉ is found for which the

syndrome s = H ĉ = 0 or until the maximum number of iterations Imax has been reached.

4.1.1 LDPC Decoder Energy Reduction with ET and DVFS

The total energy expenditure of an LDPC decoder with I decoding iterations per codeword is

defined by

E(I) =
I∑

i=1
Pi Titer , (4.2)

where Pi is the decoder power consumption during the i -th iteration and Titer is the time

required for this iteration. We note that for high throughput LDPC decoders Pi can be ap-

proximated by the switching power of a CMOS circuit as Pi =αi CVdd
2 fCLK, where αi is the

expected value of the decoder-circuit activity factor during the i -th iteration and C is the

total capacitance of the switching decoder-circuit elements, Vdd is the supply Voltage, and

fCLK is the clock frequency [58, 132]. Interestingly, according to our experimental analysis,

the activity factor αi turns out to be independent of the decoder iteration. Furthermore, in a

typical system, decoding is performed within a given time limit T that must be sufficient for

Imax decoding iterations. If each decoding iteration uses n clock cycles, this requires a clock

frequency of fCLK = nImax
T and a supply voltage of f−1(fCLK), where f(·) relates voltage to the

maximum clock frequency of a circuit as shown in Table 4.1. From these relationships, we

obtain the baseline energy consumption for decoding one code-block as

Ē =αC

[
f−1

(
nImax

T

)]2

nImax (4.3)

With straightforward ET, the number of required iterations (RIs) ri for a codeword becomes a

random variable (RV) RI with

RI ∼ PrRI (ri) =P(RI = ri), ri ∈I , (4.4)

where I = {1,2, ..., Imax} and where PrRI (ri) is the empirical probability mass function (pmf) of

RI, which can be obtained from Monte-Carlo (MC) simulations. However, the supply voltage

is still selected based on the maximum number of RIs to guarantee that the decoding deadline

is always met. Hence the average decoding energy per codeword with ET is obtained from

ĒET =
Imax∑
ri=1

PrRI (ri)αC

[
f−1

(
nImax

T

)]2

nri, (4.5)

which trivially shows the first order energy reduction.

78

4.1. Background

If we could further reduce fCLK and the corresponding supply voltage for each codeword to

the minimum frequency that is sufficient to just complete ri < Imax decoding iterations within

the time budget T , the total energy can be further reduced

ĒDVFS =
Imax∑
ri=1

PrRI (ri)αC
[

f−1
(nri

T

)]2
nri, (4.6)

due to the quadratic relationship of the energy and the supply voltage [132] and since the

actual number of iterations ri which is always smaller than Imax now enters f−1. This is the

principle idea to achieve second-order energy savings with DVFS based ET.

4.1.2 Prior Art

A key requirement to be able to effectively apply DVFS to LDPC decoders with ET is that the

number of RIs to accomplish the decoding task can be anticipated to properly select fCLK and

Vdd . To this end, various algorithms and prediction metrics have been studied in the literature.

The authors of [128] consider the Hamming weight of the syndrome s as their prediction

metric, since the severity of the noise corruption is correlated with the number of failing parity

checks. They then use a look-up table (LUT) to translate this number into an appropriate

setting for the DVFS controller assuming that the expected number of iterations is not greater

than 1.5 times the average number of decoding iterations in each tabulated prediction metric

interval. The prediction accuracy was improved in [129] with a pre-processing phase, defined

as three (3) sub-iterations, and by using the updated syndrome s as the input to the prediction

algorithm. Since the effectiveness of a static approach relies only on a single prediction ob-

tained during the early decoding stages, [130] and [131] propose an online power management.

Both works first try to fit a linear approximation function for the number of iterations to the

Hamming weight of the syndrome s and then employ that function as the prediction metric to

dynamically adjust voltage and frequency accordingly.

Unfortunately, these previous publications do not provide a rigorous mathematical link be-

tween their prediction of the number of RIs, the chosen DVFS setting, and the impact on

the error correction performance. Furthermore, especially for decoders that rely on layered

MP [123], the overhead for the calculation of the syndrome s is usually not negligible, which

makes the power saving offered by ET and DVFS less effective. Therefore, it is essential to si-

multaneously analyze the power reduction and the performance degradation. To this end, we

first formulate the energy expenditure of the decoder with iteration prediction in the following

section in a rigorous way and we then elaborate on the corresponding proposed algorithm for

DVFS management with a well-defined error rate performance loss in Section 4.3.

79

Chapter 4. DVFS Based Power Managment for LDPC Decoders with Early Termination

2 3 4 5 6 7 8 9 1010−6

10−5

10−4

10−3

10−2

10−1

100

ri

P
r R

I(
ri
|sn

r)

SN R = 2

SN R = 2.5

SN R = 3

SN R = 3.5

Figure 4.1: Probability distribution of RI for LDPC decoder for IEEE 802.11ad code conditioned
on different SN Rs.

4.2 Energy Saving Analysis in LDPC Decoders

The efficiency of DVFS based power reduction for LDPC decoders depends on the accuracy of

the iteration prediction algorithm. In essence, an earlier correct choice of the DVFS-setting

leads to longer operation in a more energy efficient regime. In this section, we adopt a rigorous

statistical model for the number of RIs as well as for the energy consumption for decoding of

each codeword and employ that model to formulate the impact of the prediction algorithm

on energy efficiency and error rate. For the rest of the chapter, we consider the decoder

for the quasi-cyclic (QC)-LDPC code in the IEEE 802.11ad standard [133] for the purpose of

simulation, while the analyses remain general and can be applied to any LDPC code. We note

that in Chapter 3 we used a similar decoder (and the corresponding architecture), but for a

different code than that of this chapter.

4.2.1 Statistical Analysis of LDPC Decoder Iterations

Due to the correlation between the number of RIs and the codeword SN R, we propose to first

examine the probability of the number of RIs conditioned on SN R, as PrRI (ri|snr) (cf. (4.4)).

The PrRI (ri|snr) for our decoder for the IEEE 802.11ad LDPC code with layered min-sum (MS)

decoding and Imax = 10 is illustrated in Fig. 4.1. This figure indicates that the average number

of RIs, E{RI}, decreases as SN R increases and thus more (average) energy saving becomes

available at higher SN Rs.

80

4.2. Energy Saving Analysis in LDPC Decoders

4.2.2 Energy Saving of LDPC Decoder with Iteration Prediction

The DVFS based energy saving approach sets the iteration limit (IL) il, i.e., the maximum

number of allowed iterations for each codeword, and the corresponding decoder frequency

and voltage based on some properties of the received data. Hence, we also treat il as a RV

IL with the pmf PrIL (il) =P(IL = il). With this, we establish the expectation of total energy

consumption Ē IL per codeword as the algorithm optimization metric defined by1

Ē IL = T
Imax∑
il=1

PrIL (il)Pil , (4.7)

where we omit the conditioning on SN R for brevity and where Pil =αC
[
f−1

(
nil
T

)]2 nil
T is the

decoding power consumption in the operation mode associated with il. Thus, the algorithm

effort to minimize the average decoder energy consumption consists of shaping the distribu-

tion PrIL (il) to minimize (4.7), while keeping the risk of setting a too restrictive IL, where ri > il,

low.

To understand the theoretical limit on energy reduction of an LDPC decoder, we evaluate

(4.7) for the case of a genie-aided prediction algorithm that always chooses the IL il to match

exactly the number of RI ri before even starting the first decoding iteration. In this case, we

note that PrIL (il) = PrRI (ri). Further, we assume a fine-grained ideal DVFS controller that is

able to tune the clock frequency and voltage sufficiently according to the required throughput

for the entire decoding period. This allows us to obtain the corresponding minimum average

energy expenditure

Ē∗
DVFS = T

Imax∑
r i=1

PrRI (ri)Pri , (4.8)

which corresponds to (4.6) when choosing Pri as the dynamic power in the operation mode in

which the IL is set to ri.

We have calculated (4.8) for the decoder of IEEE 802.11ad code according to an ideal DVFS

controller for typical operating conditions in 28 nm FD-SOI, shown in Table 4.1. By plugging Pri

of the corresponding operation mode from this table into (4.8) and the PrRI (ri) for SN R = 3dB

from Fig. 4.1, the minimum average energy expenditure adds up to Ē∗
DVFS = 0.146 Ē . This

calculation shows the maximum theoretically-available energy reduction at this SN R for the

above decoder in 28 nm FD-SOI when the iteration prediction approach is employed. Note

that this genie-aided limit has no penalty in terms of error-correction performance.

1For this derivation, we assumed that the algorithm sets the IL il at the start of the decoding.

81

Chapter 4. DVFS Based Power Managment for LDPC Decoders with Early Termination

Table 4.1: Ideal DVFS controller in 28 nm FD-SOI.

Operation
Mode

Voltage Frequency Power
Slowdown

Factor

M0 Vmax fmax Pmax 1.0
M1 0.95Vmax 0.89 fmax 0.78Pmax 1.1
M2 0.90Vmax 0.78 fmax 0.62Pmax 1.2
M3 0.85Vmax 0.68 fmax 0.48Pmax 1.4
M4 0.80Vmax 0.57 fmax 0.35Pmax 1.7
M5 0.75Vmax 0.44 fmax 0.24Pmax 2.2
M6 0.70Vmax 0.35 fmax 0.16Pmax 2.8
M7 0.65Vmax 0.25 fmax 0.10Pmax 4.0
M8 0.60Vmax 0.16 fmax 0.05Pmax 6.1

4.3 Statistical Based Prediction for Energy Saving in LDPC Decoders

In the previous section we have examined the energy saving offered by DVFS based on a

genie-aided iteration prediction. Even though a non-ideal prediction algorithm for the IL

reduces the decoder energy consumption compared to ET without DVFS in a similar way,

it also degrades the error correction performance when the IL is occasionally set too low

(il < ri). To properly account for this issue, we rigorously formulate the trade-off between

the error correction performance penalty and the IL prediction pessimism and propose a

prediction algorithm that can be tuned for maximum energy savings with a maximum error

rate performance penalty constraint.

4.3.1 SNR Based Iteration Management with Performance Penalty

Since the IL prediction algorithm entails a small performance loss in return for energy saving,

the idea of iteration management pertains to the area of approximate computing, as discussed

in this thesis. To quantify the performance loss, we formulate the frame-error rate performance

degradation that occurs due to inaccurate (optimistic) predictions of the IL. To this end, we

first define the probability of a frame error at a given SN R caused by incomplete decoding of a

codeword due to pre-mature termination of the decoding procedure when ri > il as

Pre (il) =P(RI > il), (4.9)

where we omit the additional conditioning on the SN R for brevity. We note that Pre (il) can

be considered as a frame error rate (FER) penalty which can be added to the decoder FER

without DVFS to obtain a union upper-bound on the FER with DVFS based ET. By limiting

the FER penalty Pre (il) to a user-defined threshold (Bu) we can now derive the corresponding

82

4.3. Statistical Based Prediction for Energy Saving in LDPC Decoders

constrained energy-optimal IL ilopt as

ilopt = min
{il:Pre (il)≤Bu }

il. (4.10)

Due to the small number of choices il ∈ {1,2, ..., Imax}, a corresponding DVFS controller can

easily evaluate (4.10) with an exhaustive search in a small SN R-specific LUT for Pre (il). The

content of this LUT is derived off-line from (4.4) (cf. Fig. 4.1) as obtained from MC simulations.

4.3.2 Statistical Based Iteration Prediction Algorithm

Unfortunately, we observe that the above-described SN R based prediction of the IL only leads

to a small energy efficiency improvement compared to straightforward ET without DVFS if the

target FER performance degradation is set to be small. The reason for this behavior is that the

tail of the distribution of the number of RIs PrRI (ri) is fat compared to the permissible error

rate performance degradation Bu which follows the FER. Hence, conditioning on only the

SN R leads to a conservative choice of il and thus only to small energy savings.

To alleviate this problem, we follow the proposal of the original work in [128] which performs

a more fine-grained adjustment of the IL based on a metric C (e.g., the Hamming weight

of s) that is derived from each individual received codeword. We adjust our algorithm by

introducing the pmf of the number of RIs conditioned on the metric C as PrRI|C (ri|c) and the

pmf of C as PrC (c). We then rewrite (4.9) as

Pre|C(il) =P(RI > il|C = c) (4.11)

and adjust the selection of the IL in (4.10) accordingly to obtain the refined IL ilopt|C from

ilopt|C = min
{il:Pre|C (il)PrC (c)≤Bu }

il, (4.12)

which keeps the average (across all instances of the metric c) FER penalty from not reserving

enough iterations for decoding a frame below Bu . Similar to the SN R based algorithm, this

selection can also be performed based on LUTs. However, we now require a separate LUT for

different values of c and for each SN R. By partitioning both c and the SN R into intervals, the

number of LUTs can be reduced. The intervals can be chosen based on different upper limit

for c that result in the different values for the ilopt|C .

4.3.3 Calculation of the Prediction Metric

We note that there are two parameters that affect the correlation between the metric c and

the number of RIs and hence also the accuracy of the IL and the corresponding power savings

83

Chapter 4. DVFS Based Power Managment for LDPC Decoders with Early Termination

for a given error rate degradation: the conditioning metric c itself and when it is calculated

during the decoding process.

A straightforward choice for the conditioning metric is the Hamming weight of the syndrome s.

Unfortunately, the calculation of this metric for each codeword requires significant overhead

in MP decoders with a layered schedule. We therefore propose to use the codeword LLR

sign change (LSC) after each iteration, which is the number of changes in the sign-bit of the

decoded LLRs compared to the previous iteration, as an alternative metric. This metric comes

with only a negligible computational overhead as it can be updated on-the-fly.

Further, we note that the correlation between the conditioning metric and the number of

required remaining iterations increases at later iterations of the decoding process. Hence, it

can be advantageous to start the decoding process without voltage-frequency down-scaling

under the assumption that Imax iterations may be required. The prediction metric c is then

only computed after a few initial decoder iterations and DVFS based ET is applied only to the

remaining iterations. While in this case a few initial (e.g., one or two) iterations cannot take

advantage of DVFS, the subsequent iterations profit from a more reliable and less pessimistic

choice of the IL.

4.3.4 Simulation Results

We have simulated the proposed iteration prediction algorithm for the QC-LDPC decoder

for the IEEE 802.11ad code, which has a codeword length N = 672 with blocks of Z = 42 bits,

for a rate of R = 1/2. We use layered MS decoding with Imax = 10 and we carry out the first

two iterations without DVFS at nominal voltage. After the second iteration, we compute the

metric c using either the Hamming weight of the syndrome s or the LSC and apply DVFS for

the remaining iterations. Furthermore, we always apply regular ET, even on top of DVFS to

avoid any unnecessary iterations.

We first illustrate the algorithm efficiency compared to the SN R based DVFS approach. Fig. 4.2

shows the conditional probability distributions of RI times the condition probability, i.e.,

Pr(ri|c)Pr(c), at SN R = 3dB and for the three intervals of the Hamming weight of s, as the

condition metric c . These intervals are chosen such that they result in the three most frequent

choices of the IL for Bu = 10−3 with respect to (4.12). These choices amount to a total of

3, 4, and 5 iterations for the above Bu , as can be derived from Fig. 4.2, and are selected

with probabilities of 47%, 11%, and 20% after the second iteration. When comparing the

distributions in Fig. 4.2 to those in Fig. 4.1, we notice that the tails are much thinner, which

favors the choice of a smaller IL for each condition metric c. Furthermore, we note that the

metric interval I1, which leads to smallest IL, is also the one that is relevant for the majority of

the frames.

84

4.3. Statistical Based Prediction for Energy Saving in LDPC Decoders

2 3 4 5 6 7 8 9 1010−6

10−5

10−4

10−3

10−2

10−1

100

ri

P
r(

r i
|c)

P
r(

c)

s ∈ I1

s ∈ I2

s ∈ I3

Figure 4.2: Conditional probability distribution of RI times the conditions probability
Pr(ri|c)Pr(c) at SN R = 3dB , where c = |s| and where the conditioning is performed after the
second iteration for three intervals with Pr(s ∈ I1) = 0.47, Pr(s ∈ I2) = 0.11, and Pr(s ∈ I3) = 0.20.

In order to illustrate the effect of the proposed algorithm on the decoder performance, we show

the FER for the two discussed conditioning metrics and two approximation levels Bu in Fig. 4.3.

For fairness, we also show the FER of a decoder with Imax < 10 that benefits from running

continuously at an operation mode with lower power than M0 and has almost the same

performance degradation as the decoder with DVFS based ET with Imax = 10. Specifically, the

decoders with Imax = 9 and Imax = 8 have similar error rates to the decoder with Imax = 10 and

iteration prediction algorithm with Bu,1 and Bu,2, as shown in Fig. 4.3a and 4.3b, respectively.

To determine the impact on power, we first calculate Pr(il) for il = {3, ..., Imax} at SN R = 3dB

and note the results in Table 4.2. We then estimate the average power of the decoder by

combining Pr(il) with the power consumption of the corresponding mode2 from Table 4.1

according to (4.7). We correct the results for the fact that we always run the first two iterations

without DVFS in anticipation of Imax. We further include the impact of regular ET on top

of DVFS to finally calculate the total average energy per codeword, which is shown as the

percentage of Ē in Table 4.2.

According to this calculation, regular ET without DVFS reduces the consumed energy per

codeword by 62.7%. If we also apply voltage scaling according to iteration prediction with Bu,1,

the average energy is further reduced (compared to the first column in the table) by 22% and

18.5% for the Hamming weight of the syndrome s and LSC as prediction metrics, respectively.

However, this reduction is only 12.6% if we compare to simply reducing the maximum number

2The corresponding mode to each entry of Table 4.2 can be found with respect to il, Imax, and the slowdown
factor.

85

Chapter 4. DVFS Based Power Managment for LDPC Decoders with Early Termination

1 1.5 2 2.5 3 3.5 410−6

10−5

10−4

10−3

10−2

10−1

100

SN R

Fr
am

e
E

rr
o

r
R

at
e

Imax = 10

Imax = 9

C = s

C = LSC

(a)

1 1.5 2 2.5 3 3.5 410−6

10−5

10−4

10−3

10−2

10−1

100

SN R

Fr
am

e
E

rr
o

r
R

at
e

Imax = 10

Imax = 8

C = s

C = LSC

(b)

Figure 4.3: FER of the decoder for IEEE 802.11ad code with Imax = 10 and a) the decoder
with Imax = 9 in comparison with the decoders with iteration prediction algorithm with
the two conditioning metrics and approximation level Bu,1; b) the decoder with Imax = 8 in
comparison with the decoders with iteration prediction algorithm with the two conditioning
metrics and approximation level Bu,2.

86

4.4. Conclusion

Table 4.2: The probabilities of IL Pr(il) (shown in %) for the proposed algorithm with two differ-
ent bounds at SN R = 3dB when conditioning metric is the Hamming weight of the syndrome
s or LSC , the corresponding average energy expenditure per codeword after ET (shown as
percentage of Ē , cf. (4.3)), and the corresponding improvement (shown as percentage of ĒET,
cf. (4.5)) for the IEEE 802.11ad decoder.

no prediction,
I max =

prediction with
Bu,1 = 10−3

prediction with
Bu,2 = 2×10−3

il 10 9 8 C = |s| C = LSC C = |s| C = LSC

3 0 0 0 47.8 5.8 47.8 10.5

4 0 0 0 11.9 33.6 27.1 44.5

5 0 0 0 20.2 29 9 23.9

6 0 0 0 4 10.4 9.5 7.5

7 0 0 0 5.7 7.5 2.5 5.1

8 0 0 100 3.7 5.1 1.6 3.4

9 0 100 0 0 0 0 0

10 100 0 0 6.6 8.4 2.6 5

100× ĒET/DVFS

Ē
37.3 32.6 29.6 29.1 30.4 27.9 29.4

100× (1− ĒDVFS

ĒET
) − 12.6 20.6 22 18.5 25.2 21.2

of iteration to Imax = 9. If we further relax the performance by choosing Bu,2 for the algorithm

with the two metrics or by reducing the maximum number of iteration to Imax = 8, we get

25.2%, 21.2%, and 20.6% reductions, respectively. Note that the preceding percentages have

been calculated with respect to the total energy consumption after regular ET, which are

shown in the last line of Table 4.2.

The results prove the efficiency of the proposed iteration prediction algorithm over the simple

reduction of Imax while both approaches have the same performance penalty. Further, they

indicate that using the Hamming weight of the syndrome s as the conditioning metric is more

beneficial than LSC . However, the computational overhead for the Hamming weight of the

syndrome s is not negligible and thus we have implemented the algorithm using LSC for

the decoder previously presented in [114]. According to our postlayout analysis, the power

overhead of the iteration prediction unit is below 1% and therefore the reported energy savings

remain legitimate.

4.4 Conclusion

A DVFS based power management framework was proposed in this chapter that provides

second-order energy proportionality in an LDPC decoder by exploiting run-time variations.

87

Chapter 4. DVFS Based Power Managment for LDPC Decoders with Early Termination

The algorithm predicts an iteration limit for each codeword according to a conditional prob-

abilities table, which is calculated offline using MC simulation on decoding iterations, and

configures the DVFS controller for the appropriate operation mode. The algorithm can deliver

variable power reductions for different approximation levels that can be selected through a

user-defined upper bound. Implementation results ensure that the proposed framework and

the corresponding algorithm notably reduce the power consumption of the decoder while a

minimum error correction performance is guaranteed.

88

5 Toward Energy and Area Optimization

of High-Throughput LDPC Decoders

by Exploiting Quantized Message

Passing

Approximate computing broadly refers to methods that exploit the intrinsic resilience of

applications to realize improvement in efficiency of operations. Despite the recent interest, the

core principles of approximate computing are not new and the techniques have been widely

employed in many applications to avoid unnecessary operations or other (e.g., storage) costs.

The history of signal processing is filled with examples that utilize approximate computing

principles [28]. Specifically, the domain of very-large-scale integration (VLSI) signal processing

contains many examples from approximation of algorithms or some specific functions to

approximate arithmetic operations and finite word-length optimization.

Most of the ancient techniques in VLSI signal processing refer to measures at design-time. We

refer to these measures as static approximate computing. The impact of such techniques is

fully known and deterministic and the output quality (degradation) is often measured easily

at design-time with analytical considerations or using simulations. Such techniques are then

useful to improve the efficiency of the operations. However, they are unrelated to uncertainties

or variations. On the contrary, dynamic approximate computing techniques are effective while

dealing with variations using run-time measures. During the previous chapters of this thesis,

we have emphasized on dynamic approximate computing, while the focus of this chapter is

on static approximate computing.

Different well-established design-time approximation techniques are used to improve the

efficiency of the operations and arithmetic units for signal processing applications. For exam-

ple, approximate recursive algorithms are used to compute some specific functions, such as

transcendental functions [29]. Algebraic techniques are used to approximate complex opera-

tions [30]. Finite word-length optimizations are heavily used to approximate any arithmetic

operation [31]. Along the same lines, non-uniform quantization is used to improve the signal

89

Chapter 5. Toward Energy and Area Optimization of High-Throughput LDPC Decoders
by Exploiting Quantized Message Passing

to quantization noise level and thus provides a better approximation with a shorter word-

length in comparison to uniform quantization [134]. This idea is beneficial for applications

that demand a high dynamic range for a signal represented with a finite word-length [135].

Among the applications with a need for high dynamic range numbers, fast decoders for low-

density parity check (LDPC) codes have recently attracted a lot of attention [77, 136]. Such

decoders are often based on an unrolled architecture with duplicated processing nodes and a

complex interconnect network between the processing nodes, which poses a challenge to an

efficient implementation. Non-uniform quantization can reduce the complexity and improve

the efficiency of the implementation by decreasing the required word-length and thus the

interconnect network complexity.

Contributions and Outline Motivated by the static approximate computing techniques, we

employ a recent non-uniform quantization scheme to reduce the word-length of the arithmetic

units for a high-throughput LDPC decoder, which significantly reduces the implementation

complexity. The arithmetic units are optimized based on an information-theoretic criterion

to prevent a loss in the decoder performance. This non-uniform quantization scheme is

employed in an architecture based on a serial transfer of the message bits, which together

enable the high-throughput implementation of the decoder with a very good area and energy

efficiency.

The remainder of the chapter is organized as follows. Section 5.1 gives a more detailed intro-

duction to decoding of LDPC codes compared to the previous chapters to follow the details

of this contribution, as well as more details on existing high-throughput implementations of

LDPC decoders. The associated challenges and limitations are also summarized in this section.

Section 5.2 describes the proposed ultra-high throughout decoder architecture that employs

a serial message-transfer technique and serves as the baseline architecture for this chapter.

In Section 5.3, the approximate computing based algorithm to design a finite-alphabet de-

coder with non-uniform quantization is explained and applied to the serial message-transfer

decoder architecture. Section 5.4 describes the proposed approach for the physical implemen-

tation and the timing and area optimization of the serial message-transfer decoders. Finally,

Section 5.5 analyzes the implementation results, and Section 5.6 concludes the chapter.

5.1 Background

In this section, we first briefly summarize the fundamentals of LDPC codes and provide further

details of the iterative MP algorithm for the decoding, as compared to the previous chapters of

the thesis. We then review the state-of-the-art in high speed LDPC decoder architectures to

set the stage for the description of our implementation.

90

5.1. Background

5.1.1 LDPC Codes and Decoding Algorithms

A binary LDPC code is a set of codewords which are defined through an M ×N binary-valued

sparse parity check matrix as

{
c ∈ {0,1}N |Hc = 0

}
, (5.1)

where all operations are performed modulo-2. If the parity check matrix contains exactly dv

ones per column and exactly dc ones per row, the code is called a (dv ,dc)-regular LDPC code.

Such codes are usually represented with a Tanner graph, which contains N variable nodes

(VNs) and M check nodes (CNs) and VN n is connected to CN m if and only if H mn = 1.

LDPC codes are traditionally decoded using message passing (MP) algorithms, where infor-

mation is exchanged as messages between the VNs and the CNs over the course of several

decoding iterations and where the exchanged messages represent log likelihood ratios (LLRs).

At each iteration the message from VN n to CN m is computed using a mapping Φv :Rdv →R,

which is defined as

µn→m =Φv
(
Ln ,µ̄N (n)\m→n

)
, (5.2)

where N (n) denotes the neighbors of node n in the Tanner graph, µ̄N (n)\m→n ∈ Rdv−1 is a

vector that contains the incoming messages from all neighboring CNs except m, and Ln ∈R
denotes the channel LLR corresponding to VN n. Similarly, the CN-to-VN messages are

computed using a mapping Φc :Rdc−1 →R, which is defined as

µ̄m→n =Φc
(
µN (m)\n→m

)
. (5.3)

Fig. 5.1 illustrates the message updates in the Tanner graph. In addition to Φv and Φc , a third

mapping Φd :Rdv+1 → {0,1} is needed to provide an estimate of the transmitted codeword bits

in the last VN iteration based on the incoming CN messages and the channel LLR Ln according

to

ĉn =Φd (Ln ,µ̄N (n)→n). (5.4)

Messages are exchanged until a valid codeword has been decoded or until the maximum

number of iterations I has been reached.

Among the various MP decoding algorithms, the min-sum (MS) decoding algorithm [72]

and its variants (e.g., offset MS, scaled MS) are the most common choices for hardware

implementation. For the widely used MS algorithm, the mappings (5.2) and (5.3) are

ΦMS
v (L,µ̄

)= L+∑
i
µ̄i , (5.5)

91

Chapter 5. Toward Energy and Area Optimization of High-Throughput LDPC Decoders
by Exploiting Quantized Message Passing

m1 . . . mdv−1 m

n
Φv

µ̄m1→n µ̄mdv −1→n

µn→m

Ln

(a)

n1 . . . ndc−1 n

m
Φc

µn1→m
µndc−1→m

µ̄m→n

(b)

Figure 5.1: (a) VN update and (b) CN update for N (n) = {m,m1, . . . ,mdv−1} and N (m) =
{n,n1, . . . ,ndc−1}.

and,

ΦMS
c (µ

)= signµmin |µ|, (5.6)

where min |µ| denotes the minimum of the absolute values of the vector components and

signµ=∏
j signµ j . The decision mapping Φd is defined as

ΦMS
d (L,µ̄) = 1

2

(
1− sign

(
L+∑

i
µ̄i

))
. (5.7)

5.1.2 High Throughput LDPC Decoders

Different hardware architectures for LDPC decoders have been proposed in the literature in

order to fulfill the power and throughput requirements of various standards. More specifically,

various degrees of resource sharing result in flexible decoders with different area require-

ments. On the one hand, partial-parallel LDPC decoders [76, 137] and block-parallel LDPC

decoders [75, 138] are designed for medium throughput, with modest silicon area. such as

decoder architecture considered in Chapter 3 and Chapter 4. Full-parallel [74, 139] and un-

rolled LDPC decoders [77, 140], on the other hand, achieve very high throughput (in the order

of several tens or hundreds of Gbps) at the expense of large area requirements. In this chapter,

we focus on this type of high-throughput decoders.

Several high throughput LDPC decoders have been developed during the past decade in

order to satisfy the high data-rate requirements of some applications, such as optical and

high-speed Ethernet networks. These decoders usually rely on a full-parallel isomorphic [58]

architecture and a flooding schedule, which directly maps the algorithm for one iteration to

hardware. More specifically, the CN and VN update equations are directly mapped to M CN

and N VN processing units and a hard-wired routing network is responsible for passing the

messages between them. From an implementation perspective, while such an architecture

enables a very high throughput by fully exploiting the inherent parallelism of each iteration,

the complexity of the highly unstructured routing network turns out to be a severe bottleneck.

92

5.1. Background

In addition to this routing problem, such full-parallel decoders usually require one or two

clock cycles for each iteration and in the worst case as many cycles as the maximum number

of iterations for each codeword, which is another throughput limitation factor.

Several solutions have been proposed to alleviate the routing problem in full-parallel decoders,

on both architectural and algorithmic levels. The authors of [141,142] suggest using a bit-serial

architecture, which only requires a single wire for each variable-to-check and check-to-variable

node connection. While this approach can reduce the routing congestion, it also leads to a

significant reduction in the decoding throughput. The decoder in [142], for example, only

achieves a throughput of 3.3 Gbps when implemented using a 130 nm CMOS technology.

Another architectural technique is reported in [139], where the long wires of the decoder are

partitioned into several short wires with pipeline registers. As a result, the critical path is

broken down into shorter paths, but the decoder throughput is also affected since more cycles

are required to accomplish each iteration. Nevertheless, the decoder of [139] is still able to

achieve 13.2 Gbps in 90 nm CMOS with 16 iterations.

On an algorithmic level, the authors of [143] propose a MP algorithm, called MS split-row

threshold, which uses a column-wise division of the H matrix into Spn partitions. Each

partition contains N /Spn VNs and M CNs, and global interconnects are minimized by only

sharing the minimum signs between the CNs of each partition. This algorithmic modification

was used to implement a full-parallel decoder for the challenging (2048,1723) LDPC code in

65 nm CMOS, which achieves a throughput of 36.2 Gbps with 11 decoding iterations. Another

decoder, reported in [144], uses a hybrid hard/soft decoding algorithm, called differential

binary MP algorithm, which reduces the interconnect complexity at the cost of some error-

correcting performance degradation. A full-parallel (2048,1723) LDPC decoder using this

algorithm was implemented in 65 nm CMOS technology, achieving a throughput of up to

126 Gbps [145]. The work of [146] also proposes another algorithmic level modification,

called the probabilistic MS algorithm, where a probabilistic second minimum value is used

instead of the true second minimum value to simplify the CN operation and to facilitate high-

throughput implementation of full-parallel LDPC decoders. Further, a mix of tree and butterfly

interconnect network is proposed in the CN unit to balance the interconnect complexity and

the logic overhead and to reduce the routing complexity. The implementation of a decoder

for the (2048,1723) LDPC code with the proposed techniques in 90 nm CMOS technology

achieves a throughput of 45.42 Gbps.

To solve the problem of throughput limitations in full-parallel decoders from potentially using

multiple iterations for decoding, the work of [140] presents an unrolled full-parallel LDPC

decoder exploring an additional degree of parallelism. In the proposed architecture, each

decoding iteration is mapped to distinct hardware resources, leading to a decoder with I itera-

tions that can decode one codeword per clock cycle, at the cost of significantly increased area

requirements with respect to non-unrolled full-parallel decoders. This unrolled architecture

93

Chapter 5. Toward Energy and Area Optimization of High-Throughput LDPC Decoders
by Exploiting Quantized Message Passing

S/P-1

S/P-2

S/P-dc

Q

Q

Q

C
N

 P
rocessor

Q

Q

Q

P/S-2

P/S-1

P/S-dc

CN Unit-1

CN Unit-2

CN Unit-M

S/P-1

S/P-2

S/P-dv

Q

Q

Q

V
N

 P
rocessor

Q

Q

Q

P/S-2

P/S-1

P/S-dv

VN Unit-1

S/P-ch P/S-ch

VN Unit-2

VN Unit-N

N

C
N

-V
N

 R
outing

N

V
N

-C
N

 R
outing

N

1

1

1

1

1

1

1

1

1

1

1

1

1

1

S/P-1

S/P-2

S/P-dv

Q

Q

Q

D
N

 P
rocessor

DN Unit-1

S/P-ch

DN Unit-2

DN Unit-N

1

Decision Node
 Stage

Variable Node
 Stage

Check Node
 Stage

Out-1
1

1

1

Input
LLRs

Qch Qch

m
es

sa
ge

s

channel

Figure 5.2: Serial message-transfer decoder architecture.

achieves a throughput of 161 Gbps for a (672,546) LDPC code with dv = 3 and dc = 6, when

implemented in a 65 nm CMOS technology. It is noteworthy that an unrolled decoder has

50% reduced wires between adjacent stages compared to a non-unrolled decoder since one

stage of variable nodes is connected to one stage of check nodes with uni-directional data

flow per decoding iteration. Even though this measure leads to a lower routing congestion,

it is still challenging to fully place and route such a decoder. This routing issue becomes

more and more severe when considering longer LDPC codes and especially with increasing

CN and VN degrees to achieve better error-correcting performance, as required in wireline

applications such as for the (2048,1723) code with dv = 6 and dc = 32 used in the IEEE 802.3an

standard [147].

5.2 Serial Message-Transfer LDPC Decoder

In this section, we first propose an unrolled full-parallel LDPC decoder architecture that

employs a serial message-transfer technique between CNs and VNs based on conventional

fixed-point arithmetic. This architecture is similar to the bit-serial implementations of [141,

142] in the way the messages are transferred, however, the iterations are unrolled to increase

the throughput. In the subsequent section we will then show how approximate computing

with a custom message format together with corresponding new processing nodes reduces

the message-transfer overhead.

94

5.2. Serial Message-Transfer LDPC Decoder

5.2.1 Decoder Architecture Overview

An overview of the proposed unrolled serial message-transfer LDPC decoder architecture is

shown in Fig. 5.2. As with all unrolled LDPC decoders, each decoding iteration is mapped

to a distinct set of N VN and M CN units, which form a processing pipeline. In essence, the

unrolled LDPC decoder is a systolic array, in which a new set of N channel LLRs is read in

every clock cycle and a decoded codeword is put out in every clock cycle.

Even though both the CNs and VNs can compute their outgoing messages in a single clock

cycle, similar to the architecture in [77], in the proposed serial message-transfer architecture

each message is transfered one bit at a time between the consecutive variable node and check

node stages over the course of Qmsg clock cycles, where Qmsg is the number of bits used for

the messages. More specifically, each CN and VN unit contains a serial-to-parallel (S/P) and

parallel-to-serial (P/S) conversion unit at the input and output, respectively, which are clocked

Qmsg times faster than the processing clock to collect and transfer messages serially, while

keeping the overall decoding throughput constant. More details on the architecture of the CN

and VN units as well as the proposed serial message-transfer mechanism are provided in the

sequel.

5.2.2 Decoder Stages

The unrolled LDPC decoder, illustrated in Fig. 5.2, consists of three types of processing stages,

which are described in more detail below. We note that the CN/VN processors of this reference

decoder are similar to those of a standard MS decoder, and our modifications for these parts

(to realize a finite-alphabet decoder) are discussed in Section 5.3.

5.2.2.1 Check Node Stage

Each check node stage consists of M CN units, each of which contains three components:

a CN processor, which implements (5.6) similarly to [77, 140], dc S/P units for the dc input

messages, and dc P/S units for the dc output messages. The CN processor consists of a sorting

unit that identifies the two smallest-magnitude messages among all dc input messages and

an output unit which selects the first or the second minimum for each output, along with

the appropriate sign. The sorting unit contains 4-input compare-and-select (CAS) units in a

tree structure, which identify and output the two smallest values out of the four input values.

Moreover, the complete check node stage contains a register bank that is used to store the

channel LLRs, which are not directly needed by the check node stage, but nevertheless must

be forwarded to the following variable node stage and thus need to be buffered. Hence, no S/P

and P/S units are required for the channel LLR buffers in the check node stages as they are

simply forwarded serially to the following variable node stage.

95

Chapter 5. Toward Energy and Area Optimization of High-Throughput LDPC Decoders
by Exploiting Quantized Message Passing

5.2.2.2 Variable Node Stage

Each variable node stage consists of N VN units, each of which contains a VN processor and

S/P and P/S units at the inputs and outputs, respectively, similar to the CN unit structure. Each

VN processor implements the update rule (5.5). Specifically, all input messages are added and

then the input message corresponding to each output is subtracted from the sum in order to

form the output message, thus implementing the conventional MS update rule.

5.2.2.3 Decision Node Stage

The last variable node stage is called a decision node stage because it is responsible for taking

the final hard decisions on the decoded codeword bits. The structure of this stage is similar to

a variable node stage, but a decision node (DN) has a simpler version of the VN processor that

only computes sum of all inputs and put out its sign, and thus no P/S unit is required at its

output.

5.2.3 Message Transfer Mechanism

One of the modifications, compared to [140] and [77], is the serial transfer of the channel

and message LLRs between the stages of the decoder, which reduces the required routing

resources by factor of Qmsg. This modification is applied to make the placement and routing

of the decoder feasible, especially for large values of dv and dc . To this end, as explained in

the previous section, a S/P and a P/S shift register are added to each input and each output

of the CN and VN units, as illustrated in Fig. 5.3. We see that the S/P unit consists of a

(Qmsg−1)-bit shift register and Qmsg memory registers, while the P/S unit has Qmsg registers

with multiplexed inputs. The serial messages are transfered with a fast clock, denoted by CLKF,

that is Qmsg times faster than the slow processing clock, denoted by CLKS. More specifically,

at each CN unit and VN unit input, data is loaded serially into the S/P shift register using the

fast CLKF, and after the Qmsg-th cycle all message bits are stored in memory registers, clocked

by the slow CLKS. The CN/VN processing can then be performed in one CLKS cycle and the

output messages are saved in the output P/S shift register and transferred serially to the next

stage using again CLKF. At the same time, a new set of messages is serially loaded into the

input shift register. We note that for simpler clock tree generation, all registers in Fig. 5.3 are

clocked by CLKF, while CLKS is actually implemented as a pulsed clock, which is generated

using a clock-gating cell controlled by a finite state machine.

5.2.4 Decoder Hardware Complexity and Performance Analysis

In this section, we describe the required memory complexity of the proposed decoder as well

as the decoding latency and the throughput. The results from this analysis then motivate a

96

5.2. Serial Message-Transfer LDPC Decoder

Q’4 Q’3 Q’2 Q’1 Q’0

Load/Shift

Q4 Q3 Q2 Q1 Q0

Fast Serial In

Fast Serial Out

. . .

CLK

D Q

D Q

D Q D Q D Q

D Q D Q D Q D Q

Slow CN/VN Processor

D Q

Serial-to-Parallel

Shift Registers

Memory Registers

D Q D Q D Q D Q

Other outputs

Other inputs
. . .

Parallel-to-Serial

F

CLKS

CLKF

CLKF

CLKS

Figure 5.3: The message receive and transfer mechanism by S/P and P/S shift registers, enabled
by the fast clock (CLKF), and the message process enabled by the slow clock (CLKS) for
Qmsg = 5.

message approximation that is better and at the same time more accurate than the traditional

fixed-point format (see Section 5.3).

5.2.4.1 Memory Requirement

The memory complexity can easily be characterized by counting the number of required

registers and can be approximated by

Rtot ≈ N (dv +1)Q(6I −1), (5.8)

where I is the number of decoding iterations (which in unrolled decoders strongly affects the

memory requirements) and Q =Qmsg =Qch, which is often the case for MS LDPC decoders.

From (5.8), one can easily see that the quantization bit-width linearly increases the memory

requirement for the proposed architecture.

5.2.4.2 Decoding Latency

Since each stage has a delay of two CLKS cycles and there are two stages for each decoding

iteration, the decoder latency is 4I CLKS cycles or, equivalently, 4IQmax CLKF cycles, where

Qmax = max(Qmsg,Qch).

97

Chapter 5. Toward Energy and Area Optimization of High-Throughput LDPC Decoders
by Exploiting Quantized Message Passing

5.2.4.3 Decoding Throughput

In the proposed unrolled architecture, one decoder codeword is output in each CLKS cycle.

Therefore, the coded throughput of the decoder is

T = N fSmax , (5.9)

where fSmax is the maximum frequency of CLKS while the maximum frequency of CLKF or

simply maximum frequency of the decoder is fmax = fFmax = Qmax fSmax . For the proposed

architecture, we have

fSmax =
{

max
(
(QmaxTCP,route), (TCP,VN), (TCP,CN)

)}−1, (5.10)

where TCP,VN and TCP,CN are the delay of the critical paths of the CN unit and the VN unit,

respectively, and TCP,route is the critical path delay of the (serial) routing between the decoding

stages. Thus, the decoder throughput will be limited by the routing, if the VN/CN delay is

smaller than Qmax times the routing delay. Hence, on the one hand, the serial message-transfer

decoder alleviates the routing problem by reducing the required number of wires, but on the

other hand, the decoder throughput for large quantization bit-widths may be affected, as the

serial message-transfer delay will become the limiting factor.

5.3 Finite-Alphabet Serial Message-Transfer LDPC Decoder

Even though the serial message-transfer architecture alleviates the routing congestion of an

unrolled full-parallel LDPC decoder, it has a negative impact on both throughput and hardware

complexity, as discussed in the previous section. The issue increases with increasing number

of bits required to represent the messages for sufficient decoding error rate performance.

Hence, it is desirable to approximate the full-precision messages with fewer bits and higher

accuracy.

Recently, there has been significant interest in the design of finite-alphabet decoders for LDPC

codes [77, 136, 148–152]. The main idea behind finite-alphabet LDPC decoders is to start

from one or multiple arbitrary message alphabets, which can be encoded with a bit-width

that is acceptable from an implementation complexity perspective. The message update

rules are then crafted as generic mapping functions to operate on this alphabet, as (5.2),

(5.3), and (5.4). The main advantage of such finite-alphabet decoders is that the message bit-

width can be reduced significantly with respect to a conventional fixed-point decoder, while

maintaining the same error-correcting performance [77, 136], which makes it very promising

for the serial message-transfer decoder. The downside of this approach, however, is that the

message update rules of finite-alphabet decoders usually cannot be described using fast and

area-efficient standard arithmetic circuits.

98

5.3. Finite-Alphabet Serial Message-Transfer LDPC Decoder

3 3.5 4 4.5 5 5.5

100

10−2

10−4

10−6

10−8

10−10

Eb/N0 [dB]

Fr
am

e
E

rr
o

r
R

at
e

LUT, (Qch = 4,Qmsg = 3)

MS, (Qch = 4,Qmsg = 4)

MS, (Qch = 5,Qmsg = 5)

MS, (floating-point)

OMS, (Floating-point)

Figure 5.4: Frame error rate of the IEEE 802.3an LDPC code under floating-point MS decoding,
fixed-point MS decoding with different bit-widths, LUT based decoding, and floating-point
offset min-sum (OMS) decoding (offset=0.5) as reference, all with I = 5 decoding iterations.

In this section, we will review the basic idea and our design method for this new type of

decoders and then show how the bit-width reduction technique of [77, 136] can be applied in

order to increase the throughput and reduce the area of the serial message-transfer architec-

ture.

5.3.1 Mutual Information Based Finite-Alphabet Decoder

In the approach of [77, 136], the standard MP decoding algorithm update rules are replaced by

custom update rules that can be implemented as simple look-up tables (LUTs). These LUTs

take integer-valued input messages and produce a corresponding output message. Moreover,

the input-output mapping that is represented by the LUTs is designed in a way that maximizes

the mutual information between the LUT output messages and the codeword bit that these

messages correspond to. We note that a similar approach was also used in [150], but the

corresponding hardware implementation would have a much higher hardware complexity

than the method of [77, 136]. This happens because, contrary to [150], in [77, 136] LUTs are

only used for the VNs while the CNs use the standard min-sum update rule.

5.3.2 Error-Correcting Performance and Bit-Width Reduction

In Fig. 5.4, we compare the performance of the IEEE 802.3an LDPC code under floating-point

MS decoding, fixed-point MS decoding (with Qch =Qmsg ∈ {4,5}), and LUT-based decoding

99

Chapter 5. Toward Energy and Area Optimization of High-Throughput LDPC Decoders
by Exploiting Quantized Message Passing

(with Qch = 4 and Qmsg = 3) when performing I = 5 decoding iterations with a flooding

schedule. We also show the performance of a floating-point offset min-sum (OMS) decoder as

a reference.1 We observe that the fixed-point decoder with Qch =Qmsg = 5 has almost the same

performance as the floating-point decoder, while the fixed-point decoder with Qch =Qmsg = 4

shows a significant loss with respect to the floating-point implementation. Thus, a standard

MS decoder would need to use at least Qch = Qmsg = 5 quantization bits. The LUT-based

decoder, however, can match the performance of the floating-point decoder with only Qch = 4

channel quantization bits and Qmsg = 3 message quantization bits.2 Additionally, with the

above quantization bit choices, no noticeable error floor has been observed for both the MS

decoder and LUT-based decoder when 1010 frames have been transmitted (which corresponds

to a BER ≈ 10−12 with the current block length). We note that, for the LUT-based decoder, the

performance in the error floor region can be traded with the performance in the waterfall

region by an appropriate choice of the design SNR for the LUTs [136].

5.3.3 LUT-Based Decoder Hardware Architecture

The LUT-based serial message-transfer decoder hardware architecture is very similar to the

MS decoder architecture, described in Section 5.2. However, the LUT-based decoder can

take advantage of the significantly fewer message bits that need to be transferred from one

decoding stage to the next. This reduction reduces the number of CLKF cycles per iteration,

which in turn increases the throughput of the decoder according to (5.10) provided that the

CN/VN logic is sufficiently fast. Moreover, the size of the buffers needed for the S/P and P/S

conversions is also reduced significantly, which directly reduces the memory complexity of

the decoder (see (5.8)).

On the negative side, we remark that the VN units for each variable node stage (decoder

iteration) of the LUT-based decoder are different, which slightly complicates the hierarchical

physical implementation as we will see later. Furthermore, since Qch >Qmsg, we now need to

transfer the channel LLRs with multiple (two) bits per cycle to avoid the need to artificially

limit the number of CLKF cycles per iteration to Qch rather than to the smaller Qmsg. To

reflect this modification, we redefine (5.10) as Qmax = max(Qmsg,dQch
2 e). While this partially

parallel transfer of the channel LLRs impacts routing congestion, we note that the overhead

is negligible since the number of channel LLRs is small compared to the total number of

messages.

1The reference simulation was obtained and matched with our simulation by using the open-source simulator
provided by: Adrien Cassagne; Romain Tajan; Mathieu Léonardon; Baptiste Petit; Guillaume Delbergue; Thibaud
Tonnellier; Camille Leroux; Olivier Hartmann, “AFF3CT: A Fast Forward Error Correction Tool,” 2016. [Online].
Available: https://doi.org/10.5281/zenodo.167837

2We note that reducing Qch further results in a non-negligible loss with respect to the floating-point decoder.

100

5.4. Implementation

5.4 Implementation

Despite the use of a serial message-transfer and the low bit-width approximation of the

messages, the physical implementation of the decoders proposed in the previous sections

requires special scrutiny since the number of global wires is still significant and the overall area

is particularly large. Therefore, in this section, we propose and describe a pseudo-hierarchical

design methodology to implement the serial message-transfer architecture.

5.4.1 Physical Design

Due to the large number of identical blocks in the decoder architecture, a bottom-up flow is

expected to provide the best results. The CN, VN, and DN units are first placed and routed

individually to build hard macros,3 and their timing and physical information are extracted.

These macros are then instantiated as large cells in the decoder top level. We propose to treat

the macros as custom standard-cells with identical height to be able to perform the placement

using the standard-cell placement engine, rather than the less capable macro placement

engine of the backend tool, since in our case the number of hard macro instances is extremely

large and the interconnect pattern is complex and highly irregular.

Fig. 5.5 illustrates the proposed physical floorplan for the decoders with the unrolled architec-

ture. In this floorplan, the CN and VN macros within each stage are constrained to be placed

into dedicated regions (placement regions in Fig. 5.5a). This measure enforces the high-level

structure of systolic array pipeline, but it also leaves freedom to the placement tool to choose

the location for the macros in each stage to minimize routing congestion between stages. Note

that the linear floorplan has also the advantage of being scalable in the number of iterations

since little interaction or interference exists between stages. Furthermore, the CN and VN

macros are placed in dedicated rows while the area between these rows is left for repeaters

and for the register standard-cells for the channel LLRs in the check node stages, as shown

in Fig. 5.5b. We note that the proposed floorplan and the encapsulation of the VN and CN

macros as large standard-cells exploit the automated algorithm to optimize both custom and

conventional standard-cells placement in order to alleviate the significant routing congestion.

5.4.2 Timing and Area Optimization Flow

Although the synthesis results can give an approximate evaluation for timing and area of the

physical implementation, several iterations with different constraints are required to reach an

optimal layout. To this end, we propose the methodology illustrated in the flowchart of Fig. 5.6

to effectively implement the serial message-transfer architecture. The main idea behind this

methodology is that three main factors directly contribute to the decoder throughput and

3Note that for the LUT-based decoder there are different macros for each variable node stage as apposed to the
MS decoder.

101

Chapter 5. Toward Energy and Area Optimization of High-Throughput LDPC Decoders
by Exploiting Quantized Message Passing

Placement region for CN stage 1

Placement region for CN stage 2

.

.

.

Placement region for VN stage 1

Placement region for DN stage

Placement region for VN stage 2

(a)

Area for macros

.

.

.

Area for registers

and repeaters

(b)

Figure 5.5: The physical floorplan for serial message-transfer architecture, (a) high level
overview of the floorplan with dedicated placement regions for each decoder stage; and (b)
zoomed in overview showing rows structure for custom macros (large colored blocks) and
conventional standard-cells (small colored blocks) placement.

also indirectly to the decoder area, as discussed in Section 5.2 and specifically summarized in

(5.10). Our goal is to maximize the throughput with minimum area.

We define the timing constraint applied to CLKS as TCSTR,CLKS , and the timing constrain

applied to CLKF as TCSTR,CLKF . The first step is to place and route the CN/VN macros based

on TCSTR,CLKS . This step is followed by the implementation of the decoder using TCSTR,CLKF .

(The initial constraints for the backend are thereby extracted from synthesis timing results.)

The fully placed and routed design can provide an accurate routing delay, which will be used

to update TCSTR,CLKF and then TCSTR,CLKS according to (5.10). The updated TCSTR,CLKS will be

used to re-implement the CN and VN macros within the minimum achievable area.

We note that for a long LDPC code with a large area and long routing delay (such as the one of

the IEEE 802.3an standard), the first implementation starts with TCSTR,CLKS <QmaxTCSTR,CLKF .

After obtaining a realistic value for the CLKF period (and hence for TCSTR,CLKF) at the end of

the implementation, the TCSTR,CLKS will be updated to a larger value to approach TCSTR,CLKS

≈QmaxTCSTR,CLKF . Consequently, the CN and VN macro area and thus the decoder area will

shrink in the second iteration, which result in larger achievable CLKF frequency and hence

smaller TCSTR,CLKF and TCSTR,CLKS . The feedback loop will reach the optimum point after a few

iterations.

102

5.5. Results and Discussions

Synthesis

Implement CN/VN macros with
TCSTR,CLKS and minimum area

Implement the decoder toplevel
with TCSTR,CLKF and extract the

minimum achievable CLKF period

Update TCSTR,CLKF

to the minimum
achievable CLKF period

TCSTR,CLKS =
QmaxTCSTR,CLKF

TCSTR,CLKS ≈
QmaxTCSTR,CLKF

Stop

TCSTR,CLKS

TCSTR,CLKF

no

yes

TCSTR,CLKS : timing constraint applied to CLKS

TCSTR,CLKF : timing constraint applied to CLKF

Figure 5.6: The proposed flowchart to optimize timing and area for the serial message-transfer
architecture.

5.5 Results and Discussions

To study the impact of the serial message-transfer architecture and the finite-alphabet decod-

ing scheme, we have implemented the proposed architecture by employing the methodology

explained in Section 5.4 and we analyzed the results for both MS and LUT-based decoding.

We used the parity check matrix of the LDPC code defined in the IEEE 802.3an standard [147],

i.e., a (2048,1723) LDPC code of R = 0.8413 with dv = 6 and dc = 32. We used I = 5 for both

decoders and Qmsg =Qch = 5 for the MS decoder and Qmsg = 3 and Qch = 4 for the LUT-based

decoder to achieve the same error-correction performance, as described in Section 5.3. The

decoders were synthesized from a VHDL description using Synopsys Design Compiler and

placed and routed using Cadence Encounter Digital Implementation. The layouts are shown in

Fig. 5.7. The results are reported for a 28nm FD-SOI library under typical operating conditions

(VDD = 1V, T = 25◦ C).

103

Chapter 5. Toward Energy and Area Optimization of High-Throughput LDPC Decoders
by Exploiting Quantized Message Passing

2.99 mm

7.78
 mm

(a)

2.45 mm

6.61
 mm

(b)

Figure 5.7: Layouts for (a) the MS decoder and (b) the LUT-based decoder.

5.5.1 Delay Analysis

In the serial message-transfer architecture, the critical path and, hence, the maximum de-

coding frequency are defined by (5.10). To investigate the impact of serially transferring the

messages on the decoder throughput, we consider the delay of the following register-to-register

critical paths for both the MS and LUT-based decoder.

5.5.1.1 CN Critical Path

The CN critical path (TCP,CN) is the path from the S/P memory registers to the P/S shift register

within the CN unit. For both decoders, this path is essentially comprised of the logic cells for a

sorter tree with a depth of four.

5.5.1.2 VN Critical Path

The VN critical path (TCP,VN) is the path from S/P memory registers to P/S shift register within

the VN unit. This path is dominated by an adder tree for the MS decoder and an LUT tree for

the LUT-based decoder.

5.5.1.3 Routing Critical Path

The routing critical path (TCP,route) comprises mainly the interconnect wires (and buffers) that

connect the CN/VN unit S/P shift register to the VN/CN unit P/S shift register.

104

5.5. Results and Discussions

Table 5.1: Critical path delays for MS and LUT-based decoder.

Path MS decoder LUT-based decoder

CN [ns] 2.38 1.42
VN [ns] 0.96 1.24

Routing [ns] 1.51 1.16

Table 5.1 summarizes the critical path delays of the CN/VN and the routing path. Together with

(5.10), the values in the table dictate the maximum achievable frequency for CLKS and CLKF,

respectively, for both of the decoders with the proposed serial message-transfer architecture.

We note that the critical paths are reported after the timing and area constraints for the CN/VN

macros and for the decoder toplevel are jointly optimized according to the flow shown in

Fig. 5.6. According to (5.10), we observe that in both decoders the message transfer limits

the slow clock CLKS to a period of 5×1.51ns = 7.55ns and 3×1.16ns = 3.48ns for the MS

and the LUT-based decoder, respectively, where 1.51ns and 1.16ns are the corresponding

minimum CLKF periods. Consequently, in our flow, the VN and CN units end up as optimized

for minimum area only with relaxed and easy to meet timing constraints.

5.5.2 Area Analysis

Fig. 5.8 illustrates the area distribution among the various components after the layout. The

area utilization is approximately 67% for both decoders. While almost 62% of the layout is

filled with CN/VN macros and registers, the clock tree and routing buffers occupy around

5%. Furthermore, we see a 44% difference in total area between the decoders due to the fact

that the total area for CN and VN macros is 14.12mm2 in the MS decoder, as opposed to only

9.56mm2 in the LUT-based decoder.

To understand this fact, we list the area of each CN/VN macro in Table 5.2. According to

this table, the finite-alphabet message passing algorithm leads to significantly smaller CN

processors because of two important factors: first, the bit-width reduction of the messages

directly affects the data-path area, and second, the quantized messages in the LUT-based

decoder are processed directly in the sorter tree of the CNs without the need to compute their

absolute values. However, VN processors are less area-efficient in the LUT-based decoder

in comparison with the ones of the MS decoder. This is caused by the fact that the LUT-

based computations are, in general, less area-efficient than the conventional arithmetic based

update rules. Thus, the logic area of the VN in the LUT-based decoder is larger, even though

their input/output bit-width is smaller. Another contributing factor in the Table 5.2 is the

register area, which is defined by the number of S/P and P/S registers. For those, the 40%

reduction of bit-width in the LUT-based decoder is directly noticeable in the register area for

both CN and VN units. Altogether, the CN and VN macros in the LUT-based decoder are 58%

and 14% smaller, respectively, compared to those of the MS decoder.

105

Chapter 5. Toward Energy and Area Optimization of High-Throughput LDPC Decoders
by Exploiting Quantized Message Passing

CN/V
N

m
acro

s

Channel LLR

re
gist

ers

Clk
tre

e and

ro
utin

g buffe
rs

Routin
g

0

5

10

15

9.56

0.18
0.84

5.41

14.12

0.15
1.03

7.95

A
re

a
(m

m
2

)

LUT-based decoder MS decoder

Figure 5.8: Detailed area results for the LUT-based and MS decoder with total area of 16.2mm2

and 23.3mm2, respectively.

5.5.3 Power Analysis

The energy which is consumed by each decoder is proportional to the capacitance, which in

turn is related to the decoder area. Also, the number of required CLKF cycles for the serial

message-transfer to decode one codeword, which is inversely proportional to the decoding

throughput at a constant frequency, directly contributes to the consumed energy for each

decoded bit. Therefore, we analyze both the total power and the energy efficiency of the

decoders using post-layout vector-based power analysis.4 The results are reported in Ta-

ble 5.3. We note that the total powers are calculated at fmax for both decoders. Also, for

comparison purpose, we have calculated the total powers at a constant CLKF frequency, here

min(fmax,MS, fmax,LUT) = 662MHz, for both decoders and note them in the Table 5.3. According

to this table, the total power consumption of the LUT-based decoder is 16.2% smaller than that

of the MS decoder. Furthermore, by considering the fact that the LUT-based decoder has 66.7%

higher throughput than the MS decoder at a similar CLKF frequency, the energy efficiency of

the LUT-based decoder is almost 2 times better in comparison with the MS decoder.

4We first extract the parasitic information of both the hard macros and the top level from the placement and
routing tool and then read and link them using a power computation tool to generate the complete parasitic
information.

106

5.5. Results and Discussions

Table 5.2: Detailed area for CN/VN unit?.

Component MS decoder LUT-based decoder

CN unit logic [µm2] 1578 485

CN unit register [µm2] 1695 971

CN macro [µm2] 3607 1510
VN unit logic [µm2] 315 403†

VN unit register [µm2] 381 235†

VN macro [µm2] 755 646†

?Logic and register areas are obtained form synthesis, and macro areas are the final post-layout results.
†Although the VNs are different for each stage of the LUT-based decoder, their areas are similar and the result for
one of them is reported here.

Table 5.3: Power and energy efficiency comparison for MS and LUT-based decoder.

MS decoder LUT-based decoder

Total power @ fmax [mW] 12248 13350
Total power @ 662MHz [mW] 12248 10257
Leakage power [mW] 7.44 5.27
Energy efficiency [pJ/bit] 45.2 22.7

5.5.4 Summary and Comparison to the State-of-the-Art

The final post-layout results for our MS and LUT-based decoders and also for some other

recently implemented decoders are summarized in Table 5.4. Our LUT-based decoder runs

at a maximum CLKF frequency of fmax,LUT = 862MHz and delivers a sustained throughput

of 588Gbps, while it occupies 16.2mm2 area and dissipates 22.7pJ/bit. Compared to the MS

decoder, the LUT-based decoder is 1.4× smaller, 2.2× faster, and thus 3.1× more area efficient.

It also has 16.2% lower power dissipation and 2× better energy efficiency, when the decoding

throughout is taken into account.

The work in [140] is the only other unrolled full-parallel decoder in literature, but it is designed

for the IEEE 802.11ad [133] code, which has a shorter block length and smaller node degrees

(dv = 3 and dc = 6 as opposed to dv = 6 and dc = 32 for the code used in the design reported in

this chapter). The work of [76], [143, 146, 154], and [153] are for the same IEEE 802.3an code

considered in this chapter, but with partial-parallel and full-parallel architectures. The pro-

posed LUT-based decoder has more than an order of magnitude higher throughput compared

to [143] and [146], and three times higher throughput compared to [154], while the maximum

throughput of the proposed decoder is maintained for all SNR scenarios as it does not require

early termination to achieve a high throughput. The area efficiency of the proposed unrolled

full-parallel architecture, however, is inferior to the one of the decoders in [143, 146] and [153]

with full-parallel architecture due to the repeated routing overhead between the decoder

stages in our design.

107

Chapter 5. Toward Energy and Area Optimization of High-Throughput LDPC Decoders
by Exploiting Quantized Message Passing

Tab
le

5.4:Im
p

lem
en

tatio
n

resu
lts

fo
r

M
S

an
d

LU
T-b

ased
d

eco
d

er
an

d
co

m
p

ariso
n

w
ith

o
th

er
w

o
rks.

M
S

d
eco

d
er

LU
T-b

ased
d

eco
d

er
[140]

[76]
[143]

[146]
[153]

[154]

P
ro

cess
tech

n
o

lo
gy

28
n

m
F

D
-SO

I
65

n
m

C
M

O
S

65
n

m
C

M
O

S
low

-p
ow

er
65

n
m

C
M

O
S

90
n

m
C

M
O

S
90

n
m

C
M

O
S

90
n

m
C

M
O

S

Su
p

p
ly

vo
ltage

[V
]

1.0
1.2

1.2
1.3

0.9
1.2

1.0

LD
P

C
co

d
e

(2048,1723)
(672,546)

(2048,1723)
(2048,1723)

(2048,1723)
(2048,1723)

(2048,1723)
N

o
d

e
d

egree
(d

v ,d
c)

(6,32)
(3,6)

(6,32)
(6,32)

(6,32)
(6,32)

(6,32)

A
lgo

rith
m

m
in

-su
m

fi
n

ite-alp
h

ab
et

m
in

-su
m

o
ffsetm

in
-su

m
w

ith
p

o
stp

ro
cesso

r
sp

lit-row
n

o
rm

alized
p

ro
b

ab
listic

m
in

-su
m

red
u

ced
-co

m
p

lexity
m

in
-su

m
d

elayed
sto

ch
astic

Im
ax

5
9

8
11

9
30

−
Q

u
an

tizatio
n

b
its

5
3

4
4

5
4

6
5

E
b /N

0
@

B
E

R=
10 −

7
[d

B
]

4.97
4.95

−
4.25

4.55
4.4

4.32
4.7

A
rch

itectu
re

u
n

ro
lled

fu
ll-p

arallel
u

n
ro

lled
fu

ll-p
arallel

p
artial-p

arallel
fu

ll-p
arallel

fu
ll-p

arallel
fu

ll-p
arallel

fu
ll-p

arallel

C
o

re
area

[m
m

2]
23.3

16.2
12.9

5.05
4.84

9.6
3.84

3.93
A

rea
u

tilizatio
n

[%
]

66.4
65.9

76
84.5

97
91

−
93

M
ax.freq

u
en

cy
(fm

ax)
[M

H
z]

662
862

257
700

195
199.6

226
750

Laten
cy

[n
s]

151
69.6

105
137

56.4
45.09

−
800

T
h

ro
u

gh
p

u
t@

Im
ax

[G
b

p
s]

271
588

160.8
13.3

36.3
45.42

12.8
172.4

?

Pow
er

@
fm

ax
[m

W
]

12248
13350

5360
2800

1359
1110

1040
−

A
rea

eff.[G
b

p
s/m

m
2]

11.6
36.3

12.5
2.63

7.5
4.73

3.34
43.86

E
n

ergy
p

er
b

it@
Im

ax
[p

J/b
it]

45.2
22.7

33.3
210.5

37.4
24.44

81.2
−

Scaled
area

eff. †
[G

b
p

s/m
m

2]
11.6

36.3
156.4

32.9
93.8

157.1
110.9

1456.8
Scaled

en
ergy

p
er

b
it ‡

[p
J/b

it]
45.2

22.7
10

63
9.5

9.4
17.5

−
?

M
axim

u
m

th
rou

gh
p

u
t@

E
b

/N
0 =

5.5
d

B
(N

ote
th

atth
rou

gh
p

u
t@

Im
ax

is
n

otrep
orted

in
th

e
origin

alp
ap

er)
†Scalin

g
is

d
on

e
by

S
3

w
h

ere
S

is
th

e
relative

d
im

en
sion

to
28

(N
ote

th
atth

is
is

very
rou

gh
an

d
op

tim
istic

sin
ce

itd
oes

n
otap

p
ly

to
th

e
in

tercon
n

ects)
‡Scalin

g
is

d
on

e
by

1/SU
2

w
h

ere
U

is
th

e
relative

voltage
to

1.0

108

5.6. Conclusion

5.6 Conclusion

An ultra high throughput LDPC decoder with a serial message-transfer architecture and

based on non-uniform quantization of messages, inspired by static approximate computing

techniques, was proposed to achieve the highest decoding throughput in literature. The

proposed decoder architecture is an unrolled full-parallel architecture with serialized messages

for CN/VN units, which was enabled by employing S/P and P/S shift registers at the inputs

and outputs of each unit. The proposed quantized message passing algorithm replaces

conventional MS, resulting in 40% reduction in message bit-width without any performance

penalty. This algorithm was implemented by using generic LUTs instead of adders for VNs

while the CNs remained unchanged compared to MS decoding. Placement and routing

results in 28nm FD-SOI show that the LUT-based serial message-transfer decoder delivers

0.588Tbps throughput and is 3.1 times more area efficient and 2 times more energy efficient

in comparison with the MS decoder with serial message-transfer architecture.

109

6 Conclusions and Outlook

The gap created by diminishing returns from technology scaling on the one hand, and expand-

ing computing demand on the other hand, has led to a quest for a new source of efficiency in

computing. Approximate computing is a paradigm that can serve as a promising solution to

optimize computing platforms by adding a new dimension to the design space. Throughout

this thesis, we identified two groups for approximate computing techniques, namely static

and dynamic, and we proposed multiple algorithmic- and architectural-level techniques

within these groups for the design of approximate and efficient hardware. More specifically,

we examined the effect of unreliable memory components on the output quality of multi-

ple applications. Further, we proposed a statistical framework for run-time adaptation of

the quality-performance trade-off for an iterative algorithm. Finally, we exploited algorithm

and architectural techniques at design time to optimize arithmetic units of a decoder in a

communication system.

In the remainder of this concluding chapter, we will summarize the results of each chapter

and we will describe some interesting open problems and future research directions that we

have identified for each of the topics that were investigated in this thesis.

Chapter 2: Approximate Computing with Unreliable Memories by

Restoring the Beauty of Randomness

A design-for-test methodology is proposed that allows to drop the requirement of 100%

reliable operation for dies with defects in their memory elements, as the dominant part of

many modern SoCs and the point-of-first-failure in advanced nano-meter technologies. The

methodology facilitates the test procedure for faulty dies to a great-extent by equalizing the

quality across dies and thus removing the need for a complex parametric test for all the

111

Chapter 6. Conclusions and Outlook

dies. The results for the proposed method were demonstrated and evaluated with practical

image processing benchmarks for an embedded system with faulty memories. The key idea

underlying the proposition was to add a small additional circuit that restores the beauty of

random faults that are independent of the manufacturing outcome of the memory. This

additional circuit creates different logical memories with the same physical fault map across

the algorithm iterations.

Chapter 3: Practical Approximate Channel Decoders with Unreli-

able Memories

An approximate LDPC decoder in a 28 nm fully depleted silicon on insulator (FD-SOI) technol-

ogy, ErgoDEC, was proposed, which was used to verify the assumption that errors are statically

determined by the manufacturing outcome. The chip employed gain-cell (GC) embedded dy-

namic random-access memorys (DRAMs) as the faulty memory while the operating frequency

was used as a knob to tune the fault ratio during the decoding operation. Beside serving

the verification of the fault model, ErgoDEC demonstrates novel approaches to improve the

performance and enable the usage of approximate memories, including the randomization

introduced in Chapter 2. To this end, asymmetric logic-level distribution in the data in combi-

nation with an asymmetric reliability in the memory are used to minimize the memory faults

impacts, and memory faults are randomized to enable the ergodic quality distribution and

independent decoding attempts through creating different logical memories over time. As

a result, the time-average behavior of each chip matched the ensemble-average across the

population of chips.

Chapter 4: DVFS Based Power Managment for LDPC Decoders with

Early Termination

A power management framework to control the energy-quality trade-off of an LDPC decoder

was proposed by exploiting run-time variations in the LDPC algorithm. The framework sets

the iteration limit on a per-codeword basis and configures a dynamic voltage and frequency

scaling (DVFS) controller for the corresponding appropriate operation mode. The iteration

limits are selected according to a conditional probabilities table of the decoding iterations,

which is calculated offline using Monte-Carlo (MC) simulation. The framework can deliver

variable power reductions for different output quality degradation levels. The results showed

that a noticeable power reduction is achieved while a minimum quality is ensured.

112

Chapter 5: Toward Energy and Area Optimization of High-Throughput

LDPC Decoders by Exploiting Quantized Message Passing

An ultra high throughput LDPC decoder with a serial message-transfer architecture and

extremely optimized processing nodes based on non-uniform quantization of the decoding

messages, inspired by approximate computing techniques, was proposed and the performance

was evaluated for the challenging (2048, 1723) LDPC decoder. The proposed decoder was

based on a min-LUT decoding algorithm and an unrolled full-parallel architecture with serial

interconnect between processing nodes. The decoding algorithm was based on a quantized

message passing algorithm, which replaces conventional min-sum decoding by using generic

LUTs instead of standard arithmetic units for the variable nodes (VNs) while the check nodes

(CNs) remains unchanged, resulting in 40% reduction in messages bit-width. Placement and

routing results for the min-LUT decoder in 28 nm FDSOI showed 3.1 times more area efficiency

and 2 times more energy efficiency in comparison to the min-sum decoder while achieving

the best-in-class throughput.

Outlook

The central idea in the work of Chapter 2 and Chapter 3 attributes to the non-ergodic quality

distribution of the population of dies and how to equalize such a distribution across the dies. As

a result of this equalization, the quality of superior dies was degraded and the quality of inferior

dies was improved while both of the qualities approached the die ensemble-average quality.

The fault randomization succeeds to transform the quality of each die across the quality

distribution of the population by shuffling the memory faults. In fact, an ideal randomization

is capable of realizing any quality transformation from a single die. Even though the original

purpose of the randomization was to enable the ensemble-average quality for each die in the

population, it can be further exploited to realize the best quality across the quality distribution

for each die in the population. The naive approach to enable this idea is to try all the possible

realizations of the randomization for the input data-set and select the one with the best quality.

However, this approach can heavily be improved and a more smart methodology can be used

to learn the best quality across the quality distribution.

For the work of Chapter 4, LDPC decoders are used that are a great example of iterative

algorithms where incrementing the number of iterations improves the output quality but

increases the energy consumption. The proposed framework in this chapter delivers a second-

order energy reduction for such an algorithm. The general idea behind this framework is the

early prediction of the required iteration, which comes with a probability of miss prediction

for the case of LDPC decoder, as illustrated in this chapter. However, this idea can be applied

to other iterative algorithms in the domain of signal processing systems. The critical remark

is to find an upper bound for the quality degradation or to ensure a minimum quality. This

113

Chapter 6. Conclusions and Outlook

minimum quality may be calculated analytically or using MC simulation, as provided in this

chapter.

The work of Chapter 5 is based on an unrolled full-parallel architecture. Such architectures

enable ultra-high throughput implementation of LDPC decoders by exploiting another degree

of parallelism in such decoders. While the throughput of such architecture improves, the

energy efficiency degrades, as compared to the full-parallel architecture. The degradation in

energy efficiency occurs due to the fact that early termination of the decoding iterations cannot

be trivially employed as all the iterations are mapped to distinct hardware units. However,

early termination can be implemented in a different way for such an architecture by applying

clock-gating to the pipeline registers that correspond to the extra decoding iterations. This

practice would reduce the energy expenditure for most of the codewords and thus would

improve the energy efficiency.

The unrolled LDPC decoder architecture is a perfect candidate for the constraints of the min-

LUT decoding algorithm, however, it is an architecture that is quite specialized to ultra-high

throughput applications. Thus, it would be useful to identify other kinds of LDPC decoder

architecture, which could also benefit from the reduced quantization bit-width offered by

the min-LUT decoding algorithm, as a flavor of static approximate computing. Finally, the

main idea behind this algorithm could be applied to other applications, such as deep Neural

Networks, to reduce the complexity of the processing nodes.

114

Bibliography

[1] G. E. Moore et al., “Cramming more components onto integrated circuits,” 1965.

[2] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De, “Parameter

variations and impact on circuits and microarchitecture,” in Proceedings 2003. Design

Automation Conference (IEEE Cat. No. 03CH37451). IEEE, 2003, pp. 338–342.

[3] K. A. Bowman, S. G. Duvall, and J. D. Meindl, “Impact of die-to-die and within-die

parameter fluctuations on the maximum clock frequency distribution for gigascale

integration,” IEEE Journal of solid-state circuits, vol. 37, no. 2, pp. 183–190, 2002.

[4] W. Wang, S. Yang, S. Bhardwaj, R. Vattikonda, S. Vrudhula, F. Liu, and Y. Cao, “The impact

of NBTI on the performance of combinational and sequential circuits,” in Proceedings

of the 44th annual Design Automation Conference. ACM, 2007, pp. 364–369.

[5] S. Ghosh and K. Roy, “Parameter variation tolerance and error resiliency: New design

paradigm for the nanoscale era,” Proceedings of the IEEE, vol. 98, no. 10, pp. 1718–1751,

2010.

[6] A. Rahimi, L. Benini, and R. K. Gupta, “Variability mitigation in nanometer CMOS

integrated systems: A survey of techniques from circuits to software,” Proceedings of the

IEEE, vol. 104, no. 7, pp. 1410–1448, 2016.

[7] S. Bhunia and S. Mukhopadhyay, Low-power variation-tolerant design in nanometer

silicon. Springer, 2010.

[8] S. Chandra, A. Raghunathan, and S. Dey, “Variation-aware voltage level selection,” IEEE

transactions on very large scale integration (VLSI) systems, vol. 20, no. 5, pp. 925–936,

2011.

[9] A. Srivastava, D. Sylvester, and D. Blaauw, Statistical analysis and optimization for VLSI:

Timing and power. Springer Science & Business Media, 2006.

[10] A. Asenov, A. Cathignol, B. Cheng, K. McKenna, A. Brown, A. Shluger, D. Chanemougame,

K. Rochereau, and G. Ghibaudo, “Origin of the asymmetry in the magnitude of the

115

Bibliography

statistical variability of n-and p-channel poly-Si gate bulk MOSFETs,” IEEE Electron

Device Letters, vol. 29, no. 8, pp. 913–915, 2008.

[11] S. Reda and S. R. Nassif, “Analyzing the impact of process variations on parametric

measurements: Novel models and applications,” in Proceedings of the Conference on

Design, Automation and Test in Europe. European Design and Automation Association,

2009, pp. 375–380.

[12] M. Miranda, B. Dierickx, P. Zuber, P. Dobrovoln, F. Kutscherauer, P. Roussel, and P. Po-

liakov, “Variability aware modeling of SoCs: From device variations to manufactured

system yield,” in 2009 10th International Symposium on Quality Electronic Design. IEEE,

2009, pp. 547–553.

[13] N. Aymerich, A. Asenov, A. Brown, R. Canal, B. Cheng, J. Figueras, A. González, E. Herrero,

S. Markov, M. Miranda et al., “New reliability mechanisms in memory design for sub-

22nm technologies,” in 2011 IEEE 17th International On-Line Testing Symposium. IEEE,

2011, pp. 111–114.

[14] M. Cho, S. T. Kim, C. Tokunaga, C. Augustine, J. P. Kulkarni, K. Ravichandran, J. W.

Tschanz, M. M. Khellah, and V. De, “Postsilicon voltage guard-band reduction in a 22

nm graphics execution core using adaptive voltage scaling and dynamic power gating,”

IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 50–63, 2016.

[15] D. Mishagli, E. Blokhina, T. J. Brazil, and S. Hollands, “Analytical approach to statistical

logic cell delay analysis and its extension to a timing graph,” in The 2018 ACM Interna-

tional Workshop on Timing Issues in the Specification and Synthesis of Digital Systems,

Monterey, California, 15-16 March 2018. ACM, 2018.

[16] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge, “Opportunities and challenges for

better than worst-case design,” in Proceedings of the 2005 Asia and South Pacific Design

Automation Conference. ACM, 2005, pp. 2–7.

[17] J. Cong, H. Duwe, R. Kumar, and S. Li, “Better-than-worst-case design: Progress and

opportunities,” Journal of computer science and technology, vol. 29, no. 4, pp. 656–663,

2014.

[18] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim, and K. Flautner, “Razor:

circuit-level correction of timing errors for low-power operation,” IEEE Micro, vol. 24,

no. 6, pp. 10–20, 2004.

[19] K. A. Bowman, J. W. Tschanz, S.-L. L. Lu, P. A. Aseron, M. M. Khellah, A. Raychowdhury,

B. M. Geuskens, C. Tokunaga, C. B. Wilkerson, T. Karnik et al., “A 45 nm resilient micro-

processor core for dynamic variation tolerance,” IEEE Journal of Solid-State Circuits,

vol. 46, no. 1, pp. 194–208, 2010.

116

Bibliography

[20] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Approximate comput-

ing and the quest for computing efficiency,” in Proceedings of the 52nd Annual Design

Automation Conference. ACM, 2015, p. 120.

[21] I. J. Chang, D. Mohapatra, and K. Roy, “A priority-based 6T/8T hybrid SRAM architecture

for aggressive voltage scaling in video applications,” IEEE transactions on circuits and

systems for video technology, vol. 21, no. 2, pp. 101–112, 2011.

[22] D. Mohapatra, G. Karakonstantis, and K. Roy, “Significance driven computation: a

voltage-scalable, variation-aware, quality-tuning motion estimator,” in Proceedings of

the 2009 ACM/IEEE international symposium on Low power electronics and design, 2009,

pp. 195–200.

[23] S.-L. Lu, “Speeding up processing with approximation circuits,” Computer, vol. 37, no. 3,

pp. 67–73, 2004.

[24] K. Palem and A. Lingamneni, “Ten years of building broken chips: The physics and

engineering of inexact computing,” ACM Transactions on Embedded Computing Systems

(TECS), vol. 12, no. 2s, pp. 1–23, 2013.

[25] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy, “Design of voltage-scalable

meta-functions for approximate computing,” in 2011 Design, Automation & Test in

Europe. IEEE, 2011, pp. 1–6.

[26] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “ERSA: Error resilient system

architecture for probabilistic applications,” in 2010 Design, Automation & Test in Europe

Conference & Exhibition (DATE 2010). IEEE, 2010, pp. 1560–1565.

[27] L. Renganarayana, V. Srinivasan, R. Nair, and D. Prener, “Programming with relaxed

synchronization,” in Proceedings of the 2012 ACM workshop on Relaxing synchronization

for multicore and manycore scalability, 2012, pp. 41–50.

[28] S. H. Nawab, A. V. Oppenheim, A. P. Chandrakasan, J. M. Winograd, and J. T. Ludwig,

“Approximate signal processing,” Journal of VLSI signal processing systems for signal,

image and video technology, vol. 15, no. 1-2, pp. 177–200, 1997.

[29] P. K. Meher, J. Valls, T.-B. Juang, K. Sridharan, and K. Maharatna, “50 years of CORDIC:

Algorithms, architectures, and applications,” IEEE Transactions on Circuits and Systems

I: Regular Papers, vol. 56, no. 9, pp. 1893–1907, 2009.

[30] R. G. Lyons, Understanding digital signal processing, 3/E. Pearson Education India,

2004.

[31] R. Yates, “Fixed-point arithmetic: An introduction,” Digital Signal Labs, vol. 81, no. 83, p.

198, 2009.

117

Bibliography

[32] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, “A low latency generic accuracy con-

figurable adder,” in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC).

IEEE, 2015, pp. 1–6.

[33] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy, “IMPACT: imprecise

adders for low-power approximate computing,” in IEEE/ACM International Symposium

on Low Power Electronics and Design. IEEE, 2011, pp. 409–414.

[34] V. Camus, J. Schlachter, and C. Enz, “A low-power carry cut-back approximate

adder with fixed-point implementation and floating-point precision,” in 2016 53nd

ACM/EDAC/IEEE Design Automation Conference (DAC). Ieee, 2016, pp. 1–6.

[35] F. Ebrahimi-Azandaryani, O. Akbari, M. Kamal, A. Afzali-Kusha, and M. Pedram, “Block-

based carry speculative approximate adder for energy-efficient applications,” IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 1, pp. 137–141, 2019.

[36] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power with an underde-

signed multiplier architecture,” in 2011 24th Internatioal Conference on VLSI Design.

IEEE, 2011, pp. 346–351.

[37] W. Liu, L. Qian, C. Wang, H. Jiang, J. Han, and F. Lombardi, “Design of approximate radix-

4 booth multipliers for error-tolerant computing,” IEEE Transactions on Computers,

vol. 66, no. 8, pp. 1435–1441, 2017.

[38] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan, “ASLAN: Synthe-

sis of approximate sequential circuits,” in 2014 Design, Automation & Test in Europe

Conference & Exhibition (DATE). IEEE, 2014, pp. 1–6.

[39] J. Schlachter, V. Camus, K. V. Palem, and C. Enz, “Design and applications of approximate

circuits by gate-level pruning,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 25, no. 5, pp. 1694–1702, 2017.

[40] F. Frustaci, M. Khayatzadeh, D. Blaauw, D. Sylvester, and M. Alioto, “SRAM for error-

tolerant applications with dynamic energy-quality management in 28 nm CMOS,” IEEE

Journal of Solid-state circuits, vol. 50, no. 5, pp. 1310–1323, 2015.

[41] R. Giterman, A. Fish, N. Geuli, E. Mentovich, A. Burg, and A. Teman, “An 800-MHz

mixed-VT 4T IFGC embedded DRAM in 28-nm CMOS bulk process for approximate

storage applications,” IEEE Journal of Solid-State Circuits, vol. 53, no. 7, pp. 2136–2148,

2018.

[42] M. Shoushtari et al., “Exploiting partially-forgetful memories for approximate comput-

ing,” IEEE Embedded Systems Letters, vol. 7, no. 1, pp. 19–22, March 2015.

118

Bibliography

[43] A. Di Mauro, F. Conti, P. D. Schiavone, D. Rossi, and L. Benini, “Pushing on-chip memo-

ries beyond reliability boundaries in micropower machine learning applications,” in

2019 IEEE International Electron Devices Meeting (IEDM). IEEE, 2019, pp. 30–4.

[44] M. Mitzenmacher and E. Upfal, Probability and computing: Randomization and proba-

bilistic techniques in algorithms and data analysis. Cambridge university press, 2017.

[45] G. Karakonstantis, C. Roth, C. Benkeser, and A. Burg, “On the exploitation of the inherent

error resilience of wireless systems under unreliable silicon,” in DAC Design Automation

Conference 2012. IEEE, 2012, pp. 510–515.

[46] N. Zompakis, A. Papanikolaou, P. Raghavan, D. Soudris, and F. Catthoor, “Enabling effi-

cient system configurations for dynamic wireless applications using system scenarios,”

International journal of wireless information networks, vol. 20, no. 2, pp. 140–156, 2013.

[47] R. A. Abdallah and N. R. Shanbhag, “Error-resilient low-power viterbi decoder architec-

tures,” IEEE transactions on signal processing, vol. 57, no. 12, pp. 4906–4917, 2009.

[48] M. May, M. Alles, and N. Wehn, “A case study in reliability-aware design: A resilient

LDPC code decoder,” in Proceedings of the conference on Design, automation and test in

Europe, 2008, pp. 456–461.

[49] Y. Liu, T. Zhang, and J. Hu, “Design of voltage overscaled low-power trellis decoders in

presence of process variations,” IEEE transactions on very large scale integration (VLSI)

systems, vol. 17, no. 3, pp. 439–443, 2009.

[50] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Modeling of failure probability and

statistical design of SRAM array for yield enhancement in nanoscaled CMOS,” IEEE

transactions on computer-aided design of integrated circuits and systems, vol. 24, no. 12,

pp. 1859–1880, 2005.

[51] C. Berry, J. Warnock, J. Isakson, J. Badar, B. Bell, F. Malgioglio, G. Mayer, D. Hamid,

J. Surprise, D. Wolpert et al., “IBM z14™: 14nm microprocessor for the next-generation

mainframe,” in 2018 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE,

2018, pp. 36–38.

[52] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi, E. Flamand, F. K.

Gürkaynak, and L. Benini, “Near-threshold RISC-V core with DSP extensions for scalable

IoT endpoint devices,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 25, no. 10, pp. 2700–2713, 2017.

[53] A. Burg, S. Haene, M. Borgmann, D. Baum, T. Thaler, F. Carbognani, S. Zwicky, L. Barbero,

C. Senning, P. Greisen et al., “A 4-stream 802.11 n baseband transceiver in 0.13 µm

CMOS,” in 2009 Symposium on VLSI Circuits. IEEE, 2009, pp. 282–283.

119

Bibliography

[54] F. Tu, W. Wu, S. Yin, L. Liu, and S. Wei, “RANA: Towards efficient neural acceleration

with refresh-optimized embedded DRAM,” in 2018 ACM/IEEE 45th Annual International

Symposium on Computer Architecture (ISCA). IEEE, 2018, pp. 340–352.

[55] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient reconfigurable

accelerator for deep convolutional neural networks,” IEEE journal of solid-state circuits,

vol. 52, no. 1, pp. 127–138, 2016.

[56] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge, “Near-threshold

computing: Reclaiming moore’s law through energy efficient integrated circuits,” Pro-

ceedings of the IEEE, vol. 98, no. 2, pp. 253–266, 2010.

[57] P. A. Meinerzhagen, “Novel approaches toward area- and energy-efficient embedded

memories,” Ph.D. dissertation, EPFL, 2014.

[58] H. Kaeslin, Digital integrated circuit design: from VLSI architectures to CMOS fabrication.

Cambridge University Press, 2008.

[59] P. Meinerzhagen, A. Teman, R. Giterman, N. Edri, A. Burg, and A. Fish, Gain-cell Embed-

ded DRAMs for Low-power VLSI Systems-on-chip. Springer, 2018.

[60] B. H. Calhoun and A. P. Chandrakasan, “A 256-kb 65-nm sub-threshold SRAM design

for ultra-low-voltage operation,” IEEE journal of solid-state circuits, vol. 42, no. 3, pp.

680–688, 2007.

[61] P. Meinerzhagen, S. Y. Sherazi, A. Burg, and J. N. Rodrigues, “Benchmarking of standard-

cell based memories in the Sub-VT domain in 65-nm CMOS technology,” IEEE Journal

on Emerging and Selected Topics in Circuits and Systems, vol. 1, no. 2, pp. 173–182, 2011.

[62] S. Mittal, J. S. Vetter, and D. Li, “A survey of architectural approaches for managing

embedded dram and non-volatile on-chip caches,” IEEE Transactions on Parallel and

Distributed Systems, vol. 26, no. 6, pp. 1524–1537, 2014.

[63] Y. Leblebici and S.-M. Kang, CMOS digital integrated circuits: analysis and design.

McGraw-Hill, 1996.

[64] A. Teman, P. Meinerzhagen, A. Burg, and A. Fish, “Review and classification of gain cell

edram implementations,” in 2012 IEEE 27th Convention of Electrical and Electronics

Engineers in Israel. IEEE, 2012, pp. 1–5.

[65] A. Teman, D. Rossi, P. Meinerzhagen, L. Benini, and A. Burg, “Controlled placement of

standard cell memory arrays for high density and low power in 28nm FD-SOI,” in The

20th Asia and South Pacific Design Automation Conference. IEEE, 2015, pp. 81–86.

[66] R. Gallager, “Low-density parity-check codes,” IRE Transactions on information theory,

vol. 8, no. 1, pp. 21–28, 1962.

120

Bibliography

[67] D. J. MacKay and R. M. Neal, “Near shannon limit performance of low density parity

check codes,” Electronics letters, vol. 32, no. 18, pp. 1645–1646, 1996.

[68] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product

algorithm,” IEEE Transactions on information theory, vol. 47, no. 2, pp. 498–519, 2001.

[69] F. R. Kschischang and B. J. Frey, “Iterative decoding of compound codes by probability

propagation in graphical models,” IEEE Journal on Selected Areas in Communications,

vol. 16, no. 2, pp. 219–230, 1998.

[70] A. K. B. Stimming, “Hardware implementation aspects of polar decoders and ultra

high-speed ldpc decoders,” Ph.D. dissertation, EPFL, 2016.

[71] D. J. MacKay, “Good error-correcting codes based on very sparse matrices,” vol. 45, no. 2,

pp. 399–431, 1999.

[72] M. P. Fossorier, M. Mihaljević, and H. Imai, “Reduced complexity iterative decoding of

low-density parity check codes based on belief propagation,” vol. 47, no. 5, pp. 673–680,

1999.

[73] C. Roth, A. Cevrero, C. Studer, Y. Leblebici, and A. Burg, “Area, throughput, and energy-

efficiency trade-offs in the VLSI implementation of LDPC decoders,” in 2011 IEEE

International Symposium of Circuits and Systems (ISCAS). IEEE, 2011, pp. 1772–1775.

[74] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-

check code decoder,” vol. 37, no. 3, pp. 404–412, 2002.

[75] C. Roth, P. Meinerzhagen, C. Studer, and A. Burg, “A 15.8 pJ/bit/iter quasi-cyclic LDPC

decoder for IEEE 802.11n in 90 nm CMOS,” in IEEE Asian Solid-State Circuits Conf.

(A-SSCC), 2010, pp. 1–4.

[76] Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolić, “An efficient 10GBASE-T

Ethernet LDPC decoder design with low error floors,” vol. 45, no. 4, pp. 843–855, 2010.

[77] A. Balatsoukas-Stimming, M. Meidlinger, R. Ghanaatian, G. Matz, and A. Burg, “A fully-

unrolled LDPC decoder based on quantized message passing,” in IEEE Int. Workshop on

Signal Process. Syst. (SiPS), Oct 2015, pp. 1–6.

[78] J. Li, X. hu You, and J. Li, “Early stopping for LDPC decoding: convergence of mean

magnitude (CMM),” IEEE Communications Letters, vol. 10, no. 9, pp. 667–669, Sept 2006.

[79] G. Chen, D. Sylvester, D. Blaauw, and T. Mudge, “Yield-driven near-threshold SRAM

design,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 11,

pp. 1590–1598, Nov 2010.

121

Bibliography

[80] F. Frustaci, D. Blaauw, D. Sylvester, and M. Alioto, “Approximate SRAMs with dynamic

energy-quality management,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 24, no. 6, pp. 2128–2141, June 2016.

[81] R. Giterman, A. Fish, N. Geuli, E. Mentovich, A. P. Burg, and A. Teman, “An 800 Mhz

mixed-VT 4T gain-cell embedded DRAM in 28 nm CMOS bulk process for approximate

computing applications,” IEEE European Solid State Circuits Conf. (ESSCIRC), pp. 308–

311, 2017.

[82] L. Yang, D. Bankman, B. Moons, M. Verhelst, and B. Murmann, “Bit error tolerance of a

CIFAR-10 binarized convolutional neural network processor,” in 2018 IEEE International

Symposium on Circuits and Systems (ISCAS). IEEE, 2018, pp. 1–5.

[83] M. A. , “Intelligible test techniques to support error-tolerance,” in 13th Asian Test Sym-

posium, Nov 2004, pp. 386–393.

[84] M. A. Breuer and H. Zhu, “An illustrated methodology for analysis of error tolerance,”

IEEE Design Test of Computers, vol. 25, no. 2, pp. 168–177, March 2008.

[85] R. Liu, H. Wu, Y. Pang, H. Qian, and S. Yu, “Experimental characterization of physical

unclonable function based on 1 kb resistive random access memory arrays,” IEEE

Electron Device Letters, vol. 36, no. 12, pp. 1380–1383, 2015.

[86] D. Bortolotti, H. Mamaghanian, A. Bartolini, M. Ashouei, J. Stuijt, D. Atienza, P. Van-

dergheynst, and L. Benini, “Approximate compressed sensing: ultra-low power biosignal

processing via aggressive voltage scaling on a hybrid memory multi-core processor,” in

Int. Symp. Low Power Electronics and Design. ACM, 2014, pp. 45–50.

[87] M. Widmer, A. Bonetti, and A. Burg, “FPGA-Based emulation of embedded DRAMs for

statistical error resilience evaluation of approximate computing systems,” in 2019 56th

ACM/IEEE Design Automation Conference (DAC). ACM/IEEE, 2019, pp. 1–6.

[88] D. Rossi, A. Pullini, I. Loi, M. Gautschi, F. K. Gürkaynak, A. Teman, J. Constantin, A. Burg,

I. Miro-Panades, E. Beignè et al., “Energy-efficient near-threshold parallel computing:

The pulpv2 cluster,” Ieee Micro, vol. 37, no. 5, pp. 20–31, 2017.

[89] A. Pullini, D. Rossi, G. Haugou, and L. Benini, “µDMA: An autonomous i/o subsystem for

iot end-nodes,” in 2017 27th International Symposium on Power and Timing Modeling,

Optimization and Simulation (PATMOS). IEEE, 2017, pp. 1–8.

[90] S. K. Venkata et al., “SD-VBS: The san diego vision benchmark suite,” in 2009 IEEE IISWC,

Oct 2009, pp. 55–64.

[91] M. R. Guthaus et al., “MiBench: A free, commercially representative embedded bench-

mark suite,” in 2001 IEEE IWWC, Dec 2001, pp. 3–14.

122

Bibliography

[92] A. Carter, “MNIST neural network in C,” available at https://github.com/

AndrewCarterUK/mnist-neural-network-plain-c.

[93] W. Zhao and Y. Cao, “New generation of predictive technology model for sub-45 nm

early design exploration,” IEEE Transactions on Electron Devices, vol. 53, no. 11, pp.

2816–2823, 2006.

[94] D. Boning and S. Nassif, “Models of process variations in device and interconnect,”

Design of high performance microprocessor circuits, p. 6, 2000.

[95] V. M. Van Santen, J. Martin-Martinez, H. Amrouch, M. M. Nafria, and J. Henkel, “Reliabil-

ity in super-and near-threshold computing: A unified model of RTN, BTI, and PV,” IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 1, pp. 293–306, 2017.

[96] E. I. Vatajelu, H. Aziza, and C. Zambelli, “Nonvolatile memories: Present and future

challenges,” in 2014 9th International Design and Test Symposium (IDT). IEEE, 2014,

pp. 61–66.

[97] F. Mühlbauer, L. Schröder, P. Skoncej, and M. Schölzel, “Handling manufacturing and

aging faults with software-based techniques in tiny embedded systems,” in 2017 18th

IEEE Latin American Test Symposium (LATS). IEEE, 2017, pp. 1–6.

[98] M. Schölzel and P. Skoncej, “Software-based repair for memories in tiny embedded

systems,” in 2015 20th IEEE European Test Symposium (ETS). IEEE, 2015, pp. 1–2.

[99] P. K. Chundi, Y. Zhou, M. Kim, E. Kursun, and M. Seok, “Hotspot monitoring and tem-

perature estimation with miniature on-chip temperature sensors,” in 2017 IEEE/ACM

International Symposium on Low Power Electronics and Design (ISLPED). IEEE, 2017,

pp. 1–6.

[100] M. F. Reza, D. Zhao, H. Wu, and M. Bayoumi, “Hotspot-aware task-resource co-allocation

for heterogeneous many-core networks-on-chip,” Computers & Electrical Engineering,

vol. 68, pp. 581–602, 2018.

[101] A. K. Coskun, J. L. Ayala, D. Atienza, T. S. Rosing, and Y. Leblebici, “Dynamic thermal

management in 3D multicore architectures,” in 2009 Design, Automation & Test in

Europe Conference & Exhibition. IEEE, 2009, pp. 1410–1415.

[102] Y. S. Park, D. Blaauw, D. Sylvester, and Z. Zhang, “Low-power high-throughput LDPC

decoder using non-refresh embedded DRAM,” IEEE Journal of Solid-State Circuits,

vol. 49, no. 3, pp. 783–794, 2014.

[103] P. Meinerzhagen, A. Bonetti, G. Karakonstantis, C. Roth, F. Giirkaynak, and A. Burg,

“Refresh-free dynamic standard-cell based memories: Application to a QC-LDPC de-

coder,” in 2015 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE,

2015, pp. 1426–1429.

123

https://github.com/AndrewCarterUK/mnist-neural-network-plain-c
https://github.com/AndrewCarterUK/mnist-neural-network-plain-c

Bibliography

[104] W. Choi, G. Kang, and J. Park, “A refresh-less eDRAM macro with embedded voltage

reference and selective read for an area and power efficient Viterbi decoder,” IEEE

Journal of Solid-State Circuits, vol. 50, no. 10, pp. 2451–2462, 2015.

[105] C. Roth, C. Studer, G. Karakonstantis, and A. Burgi, “Statistical data correction for unreli-

able memories,” in 2014 48th Asilomar Conference on Signals, Systems and Computers.

IEEE, 2014, pp. 1890–1894.

[106] L. R. Varshney, “Performance of LDPC codes under faulty iterative decoding,” IEEE

Transactions on Information Theory, vol. 57, no. 7, pp. 4427–4444, 2011.

[107] S. S. T. Yazdi, H. Cho, and L. Dolecek, “Gallager B decoder on noisy hardware,” IEEE

Transactions on Communications, vol. 61, no. 5, pp. 1660–1673, 2013.

[108] A. Balatsoukas-Stimming and A. Burg, “Density evolution for min-sum decoding of

LDPC codes under unreliable message storage,” IEEE Communications Letters, vol. 18,

no. 5, pp. 849–852, 2014.

[109] C. K. Ngassa, V. Savin, and D. Declercq, “Min-sum-based decoders running on noisy

hardware,” in 2013 IEEE Global Communications Conference (GLOBECOM). IEEE, 2013,

pp. 1879–1884.

[110] P. Ivaniš and B. Vasić, “Error errore eicitur: A stochastic resonance paradigm for reliable

storage of information on unreliable media,” IEEE Transactions on Communications,

vol. 64, no. 9, pp. 3596–3608, 2016.

[111] J. Mu, A. Vosoughi, J. Andrade, A. Balatsoukas-Stimming, G. Karakonstantis, A. Burg,

G. Falcao, V. Silva, and J. R. Cavallaro, “The impact of faulty memory bit cells on the

decoding of spatially-coupled LDPC codes,” in 2015 49th Asilomar Conference on Signals,

Systems and Computers. IEEE, 2015, pp. 1627–1631.

[112] A. Balatsoukas-Stimming and A. Burg, “Faulty successive cancellation decoding of polar

codes for the binary erasure channel,” IEEE Transactions on Communications, vol. 66,

no. 6, pp. 2322–2332, 2017.

[113] E. Sharon, S. Litsyn, and J. Goldberger, “Efficient serial message-passing schedules for

LDPC decoding,” IEEE Transactions on Information Theory, vol. 53, no. 11, pp. 4076–

4091, 2007.

[114] A. Balatsoukas-Stimming, N. Preyss, A. Cevrero, A. Burg, and C. Roth, “A parallelized

layered QC-LDPC decoder for IEEE 802.11 ad,” in IEEE International New Circuits and

Systems Conference (NEWCAS). IEEE, 2013, pp. 1–4.

[115] P. Meinerzhagen, C. Roth, and A. Burg, “Towards generic low-power area-efficient stan-

dard cell based memory architectures,” in 2010 53rd IEEE International Midwest Sympo-

sium on Circuits and Systems. IEEE, 2010, pp. 129–132.

124

Bibliography

[116] R. Giterman, A. Bonetti, E. V. Bravo, T. Noy, A. Teman, and A. Burg, “Current-Based Data-

Retention-Time characterization of Gain-Cell embedded DRAMs across the design and

variations space,” IEEE Transactions on Circuits and Systems I: Regular Papers, 2020.

[117] A. Teman, G. Karakonstantis, R. Giterman, P. Meinerzhagen, and A. Burg, “Energy versus

data integrity trade-offs in embedded high-density logic compatible dynamic mem-

ories,” in 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE).

IEEE, 2015, pp. 489–494.

[118] S. Ganapathy, G. Karakonstantis, A. Teman, and A. Burg, “Mitigating the impact of faults

in unreliable memories for error-resilient applications,” in 2015 52nd ACM/EDAC/IEEE

Design Automation Conference (DAC). IEEE, 2015, pp. 1–6.

[119] C. Roth, C. Benkeser, C. Studer, G. Karakonstantis, and A. Burg, “Data mapping for

unreliable memories,” in 2012 50th Annual Allerton Conference on Communication,

Control, and Computing (Allerton). IEEE, 2012, pp. 679–685.

[120] I. Lee, J. Kwon, J. Park, and J. Park, “Priority based error correction code (ECC) for the

embedded SRAM memories in H. 264 system,” Journal of Signal Processing Systems,

vol. 73, no. 2, pp. 123–136, 2013.

[121] F. Frustaci, M. Khayatzadeh, D. Blaauw, D. Sylvester, and M. Alioto, “13.8 A 32kb SRAM

for error-free and error-tolerant applications with dynamic energy-quality management

in 28nm CMOS,” in 2014 IEEE International Solid-State Circuits Conference Digest of

Technical Papers (ISSCC). IEEE, 2014, pp. 244–245.

[122] M. Pǎtraşcu and M. Thorup, “The power of simple tabulation hashing,” Journal of the

ACM (JACM), vol. 59, no. 3, pp. 1–50, 2012.

[123] C. Studer, N. Preyss, C. Roth, and A. Burg, “Configurable high-throughput decoder

architecture for quasi-cyclic LDPC codes,” in 2008 42nd Asilomar Conference on Signals,

Systems and Computers. IEEE, 2008, pp. 1137–1142.

[124] Q. Zhang, F. Yuan, R. Ye, and Q. Xu, “Approxit: An approximate computing framework

for iterative methods,” in Proceedings of the 51st Annual Design Automation Conference,

2014, pp. 1–6.

[125] A. Roldao-Lopes, A. Shahzad, G. A. Constantinides, and E. C. Kerrigan, “More flops or

more precision? accuracy parameterizable linear equation solvers for model predictive

control,” in 2009 17th IEEE Symposium on Field Programmable Custom Computing

Machines. IEEE, 2009, pp. 209–216.

[126] P. Macken, M. Degrauwe, M. Van Paemel, and H. Oguey, “A voltage reduction technique

for digital systems,” in IEEE International Solid-State Circuits Conference (ISSCC), Digest

of Technical Papers. IEEE, 1990, pp. 238–239.

125

Bibliography

[127] T. Kuroda, K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A. Chiba, Y. Watanabe, K. Mat-

suda, T. Maeda et al., “Variable supply-voltage scheme for low-power high-speed CMOS

digital design,” IEEE Journal of Solid-State Circuits, vol. 33, no. 3, pp. 454–462, 1998.

[128] W. Wang and G. Choi, “Minimum-energy LDPC decoder for real-time mobile applica-

tion,” in Proceeding on the Conference on Design, Automation and Test in Europe (DATE).

EDA Consortium, 2007, pp. 343–348.

[129] W. Wang, G. Choi, and K. K. Gunnam, “Low-power VLSI design of LDPC decoder using

DVFS for AWGN channels,” in International Conference on VLSI Design. IEEE, 2009, pp.

51–56.

[130] E. Amador, R. Knopp, V. Rezard, and R. Pacalet, “Dynamic power management on LDPC

decoders,” in IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2010,

pp. 416–421.

[131] X. Zhang, F. Cai, and C. R. Shi, “Low-power LDPC decoding based on iteration prediction,”

in IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2012, pp.

3041–3044.

[132] N. H. Weste and D. M. Harris, CMOS VLSI design: a circuits and systems perspective.

Addison-Wesley/Pearson, 2011.

[133] “ISO/IEC/IEEE International Standard for Information technology–

Telecommunications and information exchange between systems–Local and

metropolitan area networks–Specific requirements-Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: En-

hancements for Very High Throughput in the 60 GHz Band (adoption of IEEE Std

802.11ad-2012),” ISO/IEC/IEEE 8802-11:2012/Amd.3:2014(E), pp. 1–634, March 2014.

[134] E. Lai, Practical digital signal processing. Elsevier, 2003.

[135] M. Gautschi, M. Schaffner, F. K. Gürkaynak, and L. Benini, “4.6 A 65nm CMOS 6.4-to-

29.2 pJ/FLOP 0.8 V shared logarithmic floating point unit for acceleration of nonlinear

function kernels in a tightly coupled processor cluster,” in 2016 IEEE International

Solid-State Circuits Conference (ISSCC). IEEE, 2016, pp. 82–83.

[136] M. Meidlinger, A. Balatsoukas-Stimming, A. Burg, and G. Matz, “Quantized message

passing for LDPC codes,” in Asilomar Conf. on Signals, Syst., and Comput. (ACSSC), Nov

2015, pp. 1606–1610.

[137] A. Cevrero, Y. Leblebici, P. Ienne, and A. Burg, “A 5.35 mm2 10GBASE-T Ethernet LDPC

decoder chip in 90 nm CMOS,” in IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2010,

pp. 1–4.

126

Bibliography

[138] T.-C. Kuo and A. N. Willson Jr, “A flexible decoder IC for WiMAX QC-LDPC codes,” in

IEEE Custom Integrated Circuits Conf. (CICC), 2008, pp. 527–530.

[139] N. Onizawa, T. Hanyu, and V. C. Gaudet, “Design of high-throughput fully parallel LDPC

decoders based on wire partitioning,” vol. 18, no. 3, pp. 482–489, 2010.

[140] P. Schlafer, N. Wehn, M. Alles, and T. Lehnigk-Emden, “A new dimension of parallelism

in ultra high throughput LDPC decoding,” in IEEE Int. Workshop on Signal Process. Syst.

(SiPS), 2013, pp. 153–158.

[141] A. Darabiha, A. C. Carusone, and F. R. Kschischang, “A 3.3-Gbps bit-serial block-

interlaced min-sum LDPC decoder in 0.13-µm CMOS,” in IEEE Custom Integrated

Circuits Conf. (CICC), 2007, pp. 459–462.

[142] A. Darabiha, A. C. Carusone, and R. Kschischang, “Power reduction techniques for LDPC

decoders,” vol. 43, no. 8, pp. 1835–1845, 2008.

[143] T. Mohsenin, D. N. Truong, and B. M. Baas, “A low-complexity message-passing algo-

rithm for reduced routing congestion in LDPC decoders,” vol. 57, no. 5, pp. 1048–1061,

2010.

[144] N. Mobini, A. H. Banihashemi, and S. Hemati, “A differential binary message-passing

LDPC decoder,” vol. 57, no. 9, pp. 2518–2523, 2009.

[145] K. Cushon, S. Hemati, C. Leroux, S. Mannor, and W. J. Gross, “High-throughput energy-

efficient LDPC decoders using differential binary message passing,” vol. 62, no. 3, pp.

619–631, 2014.

[146] C.-C. Cheng, J.-D. Yang, H.-C. Lee, C.-H. Yang, and Y.-L. Ueng, “A fully parallel LDPC

decoder architecture using probabilistic min-sum algorithm for high-throughput appli-

cations,” vol. 61, no. 9, pp. 2738–2746, 2014.

[147] “IEEE Standard for Information Technology – Telecommunications and Information

Exchange between Systems – Local and Metropolitan Area Networks – Specific Require-

ments Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access

Method and Physical Layer Specifications,” IEEE Std. 802.3an, Sep. 2006.

[148] S. K. Planjery, D. Declercq, L. Danjean, and B. Vasic, “Finite alphabet iterative de-

coders—part i: Decoding beyond belief propagation on the binary symmetric channel,”

vol. 61, no. 10, pp. 4033–4045, 2013.

[149] B. Kurkoski, K. Yamaguchi, and K. Kobayashi, “Noise thresholds for discrete LDPC

decoding mappings,” in IEEE Global Telecommun. Conf. (GLOBECOM), Nov. 2008, pp.

1–5.

127

Bibliography

[150] F. J. C. Romero and B. M. Kurkoski, “Decoding LDPC codes with mutual information-

maximizing lookup tables,” in IEEE Int. Symp. on Inf. Theory (ISIT), Jun. 2015, pp. 426–

430.

[151] J. Lewandowsky and G. Bauch, “Information-optimum LDPC decoders based on the

information bottleneck method,” IEEE Access, vol. 6, pp. 4054–4071, 2018.

[152] J. Lewandowsky, M. Stark, and G. Bauch, “Optimum message mapping LDPC decoders

derived from the sum-product algorithm,” in 2016 IEEE International Conference on

Communications (ICC). IEEE, 2016, pp. 1–6.

[153] F. Angarita, J. Valls, V. Almenar, and V. Torres, “Reduced-complexity min-sum algorithm

for decoding LDPC codes with low error-floor,” vol. 61, no. 7, pp. 2150–2158, 2014.

[154] A. Naderi, S. Mannor, M. Sawan, and W. J. Gross, “Delayed stochastic decoding of LDPC

codes,” vol. 59, no. 11, pp. 5617–5626, 2011.

128

List of Figures

1.1 Example of a parity check matrix (left) for a (2, 4)-regular LDPC code of block-

length N = 6 and the corresponding Tanner graph (right). 12

2.1 The fault model follows a random distribution, however, the fault mode for each

chip after manufacturing is deterministic. Therefore a performance evaluation

that is according to ensemble-average quality is invalid for the population of chips. 18

2.2 Measurements showing the different fault realizations in different chips: a) fault-

map of three SRAM macros with the failure rate of the faulty bits across multiple

tests, b) data retention time map of three GC-eDRAM macros. 20

2.3 The proposed flow for yield assessment. In this flow, the time-average behavior

is simulated for all the fault realizations and the ensemble statistics is illustrated

as an ICDF. 21

2.4 The Probability distribution of fraction of affected bits in a memory with size of

10 Kb for multiple bit error probabilities Pb . 22

2.5 Benchmark yield-quality trade-off analysis for the fault model with four different

error ratios. The dashed black line shows en ergodic ensemble-average quality

for error ratio of 10−4. 24

2.6 Parametric test flow for fabricated dies through running application quality

benchmark to separate dies that can pass the minimum quality. 26

2.7 (a) Illustration of a 1:1 and randomized mapping of physical locations to logical

addresses; (b) System diagram with unreliable memory (top) and logic for ideal

(top-left) and simplified (top-right) randomization. 28

129

List of Figures

2.8 Benchmark yield-quality trade-off analysis for the fault model with four different

error ratios while the fault for each chip is randomized during multiple execution

of the benchmark. The dashed black line shows en ergodic ensemble-average

quality for error ratio of 10−4. 30

3.1 Frame error rate of 5 randomly selected faulty LDPC decoder instances com-

pared with the frame error rate of a non-faulty LDPC decoder. 38

3.2 Semi-parallel QC-LDPC decoder [114] used as the reference architecture for the

implemented chip. 39

3.3 GC latch for dynamic standard-cell memory (SCM). 40

3.4 DRT distribution for the proposed GC acquired from a Monte-Carlo simulation

on a memory with a 10 kbit size and in a typical operating condition. 41

3.5 Performance evaluation of a population of faulty LDPC decoders through FER

vs. Eb/N0 for ergodic and non-ergodic fault models with bit-error probability

Pb = 5×10−5. 47

3.6 Performance evaluation of a population of faulty LDPC decoders through a)

empirical cumulative density function of FER at a fixed Eb/N0 = 4 dB, and b)

fraction of decoders with FER< 10−3, for ergodic and non-ergodic fault models

with bit-error probability Pb = 5×10−5. 48

3.7 Performance evaluation of a population of faulty LDPC decoders through a)

empirical cumulative density function of FER at a fixed Eb/N0 = 4 dB, and b)

fraction of decoders with FER< 10−3, for bit-error probabilities of Pb = 5×10−5

and Pb = 1×10−4. 49

3.8 Different logical memory fault maps (right) are created for a memory with a

constant physical fault map (left). 51

3.9 Performance evaluation of a population of faulty LDPC decoders through empir-

ical cumulative density function of FER at a fixed Eb/N0 = 4 dB, for non-ergodic

fault model with bit-error probability Pb = 5×10−5 with fault randomization,

while the unsuccessful decoding are repeating 1, 2, or 3 times. 53

3.10 Probability of occurrence for R-message values averaged among multiple code-

words and channel realizations. 57

130

List of Figures

3.11 Performance evaluation of a population of faulty LDPC decoders through a)

empirical cumulative density function of FER at a fixed Eb/N0 = 4 dB, and b)

fraction of decoders with FER< 10−1, for non-ergodic fault model with bit-error

probability Pb = 5×10−4 and error polarities of 1 and 0 vs. error polarity of 0 only. 59

3.12 The faulty memory macro with randomization logic that is used to create an

ergodic fault process. 60

3.13 ErgoDEC chip-level architecture overview. 62

3.14 Test structure of the T- and R-memory with debug (shadow and difference)

memories and logic to enable multiple operating modes. 63

3.15 The proposed floorplan for ErgoDEC which highlights the SRAMs (annotated

with white color) and SCMs (annotated with black color) macro locations (left),

and the controlled placed SCMs (right). 65

3.16 ErgoDEC chip micrograph and main features. 66

3.17 ErgoDEC measurement set-up, comprised of a custom validation PCB on the

right-hand side hosting the ErgoDEC IC, connected to a Xilinx XUPV5-LX110T

FPGA board on the left-hand side. 67

3.18 Fault map of the R-memory for three chips at SNR of 3.7 dB and frequencies of

1 MHz and 3 MHz. 68

3.19 Fault map of the R-memory averaged over 500 codewords at SNR of 3.7 dB and

frequencies of 1 MHz and 3 MHz. 69

3.20 The calibrated frequencies for the 17 tested dies for R-memory fault probability

of Pb ≈ 5×10−4. 70

3.21 Measured frame error rate results of 17 faulty LDPC decoder chips with R-

memory (T-memory) fault probability of Pb ≈ 5×10−4 (Pb ≈ 2.5×10−4) with and

without randomization. 71

3.22 Measured frame error rate results of a faulty LDPC decoder chip with R-memory

(T-memory) fault probability of Pb ≈ 5×10−4 (Pb ≈ 2.5×10−4) while the unsuc-

cessful decoding are repeated 1 or 2 times. 72

4.1 Probability distribution of RI for LDPC decoder for IEEE 802.11ad code condi-

tioned on different signal-to-noise ratios (SN Rs). 80

131

List of Figures

4.2 Conditional probability distribution of RI times the conditions probability Pr(ri|c)Pr(c)

at SN R = 3dB , where c = |s| and where the conditioning is performed after the

second iteration for three intervals with Pr(s ∈ I1) = 0.47, Pr(s ∈ I2) = 0.11, and

Pr(s ∈ I3) = 0.20. 85

4.3 frame error rate (FER) of the decoder for IEEE 802.11ad code with Imax = 10 and

a) the decoder with Imax = 9 in comparison with the decoders with iteration

prediction algorithm with the two conditioning metrics and approximation level

Bu,1; b) the decoder with Imax = 8 in comparison with the decoders with iteration

prediction algorithm with the two conditioning metrics and approximation level

Bu,2. 86

5.1 (a) VN update and (b) CN update for N (n) = {m,m1, . . . ,mdv−1} and N (m) =
{n,n1, . . . ,ndc−1}. 92

5.2 Serial message-transfer decoder architecture. 94

5.3 The message receive and transfer mechanism by serial-to-parallel (S/P) and

parallel-to-serial (P/S) shift registers, enabled by the fast clock (CLKF), and the

message process enabled by the slow clock (CLKS) for Qmsg = 5. 97

5.4 Frame error rate of the IEEE 802.3an LDPC code under floating-point MS de-

coding, fixed-point MS decoding with different bit-widths, LUT based decoding,

and floating-point offset min-sum (OMS) decoding (offset=0.5) as reference, all

with I = 5 decoding iterations. 99

5.5 The physical floorplan for serial message-transfer architecture, (a) high level

overview of the floorplan with dedicated placement regions for each decoder

stage; and (b) zoomed in overview showing rows structure for custom macros

(large colored blocks) and conventional standard-cells (small colored blocks)

placement. 102

5.6 The proposed flowchart to optimize timing and area for the serial message-

transfer architecture. 103

5.7 Layouts for (a) the MS decoder and (b) the LUT-based decoder. 104

5.8 Detailed area results for the LUT-based and MS decoder with total area of

16.2mm2 and 23.3mm2, respectively. 106

132

List of Tables

2.1 Description of the analyzed benchmarks. 23

2.2 Area overhead of the randomization logic on memories with different sizes. . . 31

3.1 Data lifetime in the T- and R-memories for the considered QC-LDPC code with

N = 15 and M = 3. 42

3.2 List of memories and their sizes in ErgoDEC for the implemented QC-LDPC

code with Z = 111 and message quantization bit of 6. 64

4.1 Ideal DVFS controller in 28 nm FD-SOI. 82

4.2 The probabilities of iteration limit (IL) Pr(il) (shown in %) for the proposed al-

gorithm with two different bounds at SN R = 3dB when conditioning metric

is the Hamming weight of the syndrome s or LLR sign change (LSC), the cor-

responding average energy expenditure per codeword after early termination

(ET) (shown as percentage of Ē , cf. (4.3)), and the corresponding improvement

(shown as percentage of ĒET, cf. (4.5)) for the IEEE 802.11ad decoder. 87

5.1 Critical path delays for min-sum (MS) and LUT-based decoder. 105

5.2 Detailed area for CN/VN unit?. 107

5.3 Power and energy efficiency comparison for MS and LUT-based decoder. 107

5.4 Implementation results for MS and LUT-based decoder and comparison with

other works. 108

133

Curriculum Vitae

Name: Reza GHANAATIAN JAHROMI

Date of Birth: 13.05.1988

Nationality: Iranian

Address: EPFL, STI-IEL-TCL, Station 11

CH-1015 Lausanne

E-Mail: reza.ghanaatian@epfl.ch

reza.ghanaatian@gmail.com

Education

02.2015 – 08.2020 École Polytechnique Fédérale de Lausanne, Lausanne (VD), CH

Ph.D Degree in Electrical Engineering

09.2010 – 08.2012 Sharif University of Technology, Tehran, IR

Master’s Degree in Digital Systems

09.2006 – 08.2010 Khaje Nasir Toosi University of Technology, Tehran, IR

Bachelor’s Degree in Electrical Engineering

Professional Experience

02.2015 – 08.2020 École Polytechnique Fédérale de Lausanne, Lausanne (VD), CH

Doctoral Assistant at Telecommunications Circuits Laboratory

07.2019 – 10.2019 Swisscom AG, Bern, CH

Technical Intern at Enterprise Architecture & Innovation

09.2012 – 06.2014 Electronic Research Center, Sharif University of Technology, Tehran, IR

FPGA-based system developer

09.2010 – 08.2012 Sharif University of Technology, Tehran, IR

Research Assistant at Advanced Integrated Circuit Design Laboratory

135

mailto:reza.ghanaatian@epfl.ch
mailto:reza.ghanaatian@gmail.com

List of Publications

List of Publications

Journal Papers

R. Ghanaatian, M. Widmer, and A. Burg, “Design for Test with Unreliable Memories by Restor-

ing the Beauty of Randomness”, journal publication submitted.

R. Ghanaatian, R. Giterman, A. Bonetti, A. Balatsoukas-Stimming, and A. Burg, “ErgoDEC: A

Practical Approximate LDPC Decoder in 28 nm FD-SOI with Unreliable Memories”, journal

publication submitted.

R. Ghanaatian, A. Balatsoukas-Stimming, TC. Müller, M. Meidlinger, G. Matz, and A. Burg, “A

588-Gb/s LDPC Decoder Based on Finite-Alphabet Message Passing”, IEEE Transactions on

Very Large Scale Integration Systems (TVLSI), 2018.

R. Ghanaatian, M. Shabany and M. H. Shoreh, “A High-Throughput VLSI Architecture for

Real-Time Optical OFDM Systems With an Efficient Phase Equalizer”, IEEE Canadian Journal

of Electrical and Computer Engineering, 2014. *

Conference Papers

R. Ghanaatian, O. Afisiadis, M. Cotting, and A. Burg, “LoRa Digital Receiver Analysis and Im-

plementation”, International Conference on Acoustics, Speech, and Signal Processing (ICASSP)

2019, Brighton, UK. *

R. Ghanaatian, V. Jamali, A. Burg, and R. Schober, “Feedback-Aware Precoding in Millimeter

Wave MIMO Systems”, IEEE International Symposium on Personal, Indoor and Mobile Radio

Communications (PIMRC) 2019, Istanbul, Turkey. *

R. Ghanaatian and A. Burg, “DVFS based power management for LDPC decoders with early

termination”, IEEE International Workshop on Signal Processing Systems (SiPS) 2017, Lorient,

France.

137

List of Publications

R. Ghanaatian, P. N. Whatmough, J. Constantin, A. Teman and A. Burg, “A Low-Power Correla-

tor for Wakeup Receivers with Algorithm Pruning through Early Termination”, IEEE Interna-

tional Symposium on Circuits and Systems (ISCAS) 2016, Montreal, QC, Canada. *

A. Balatsoukas-Stimming, M. Meidlinger, R. Ghanaatian, G. Matz, and A. Burg, “A fully-unrolled

LDPC decoder based on quantized message passing”, IEEE Workshop on Signal Processing

Systems (SiPS) 2015, Hangzhou, China.

M. H. Shoreh, R. Ghanaatian and J. A. Salehi, “Channel Estimation and Iterative Equalization

for Long-Haul Coherent Optical OFDM Communication Systems”, International Conference

on Telecommunications (ConTEL) 2015, Graz, Austria. *

R. Ghanaatian, M. Shabany and M. Sharifkhani, “An Efficient High-Throughput VLSI Archi-

tecture for a Synchronization Block Applied to Real-Time Optical OFDM Systems”, IEEE

International Symposium on Circuits and Systems (ISCAS) 2014, Melbourne VIC, Australia. *

* The contents of these publications do not form a part of this thesis.

138

	Acknowledgements
	Abstract (English/Français)
	Introduction
	Background
	Thesis Contributions & Outline
	Selected Publications
	Third-Party Contributions
	Preliminaries
	Embedded Memories
	LDPC Codes and Decoders
	LDPC Code Construction
	Decoding of LDPC Codes
	Hardware Architectures for LDPC Decoder

	 Approximate Computing with Unreliable Memories by Restoring the Beauty of Randomness
	Background
	Proposed Application Quality Assessment with Unreliable Memories
	Ergodic vs. Non-Ergodic Fault Model
	Assessment of the Quality-Yield Trade-Off for Non-Ergodic Fault Models
	Quality-Yield Assessment FPGA Platform
	Quality-Yield Results

	Restoring the Ergodic Behavior
	Testing for a Minimum Quality Requirement
	Proposed Design-for-Test Strategy: Restore a Random Fault Behavior
	Restoring an Ergodic Fault behavior for Memories

	Quality-Yield Trade-Off Results for Ergodic Faults
	Discussion
	Impact on Testability
	Impact on Hardware Complexity
	Impact on Other Types of Variation

	Conclusion

	 Practical Approximate Channel Decoders with Unreliable Memories
	LDPC Decoding and Faulty Behavior
	LDPC Decoding Background
	Problems with Faulty LDPC Decoding Error Models

	LDPC Decoder Architecture
	Reference Architecture
	Memory Design
	Fault Injection Mechanism
	Data Lifetime in the Memories and Fault Injection
	Selective Protection of Sensitive Bits and Memories
	Hybrid Static/Dynamic SCM

	LDPC Decoder Quality Assessment Under memory Faults
	Simulation Environments
	Memory Fault Models
	Quality Assessment Metrics for LDPC Decoder
	Quality-Yield Results

	Improving the Performance Across the Population of Dies
	Restoring the Ergodic Behavior
	Improving the Performance by Exploiting the Random Behavior of Logical Faults
	Minimizing the Impact of Memory Faults by Exploiting Binary Data Representation
	Formal Definition of The Bit-Error Probability and Memeory Error Model
	Optimization for Improved Resilience Against Error

	Integration to ErgoDEC Architecture
	Address and Bit-Index Randomization
	Repeating Unsuccessful Decoding Attempts
	Optimizing the Binary Data Representation in the Memory and the Memory Faults

	Test Chip Architecure and Physical Implementation
	Chip-Level Architecture and Operation Modes
	Physical Implementation

	Measurement Results
	Fault Model
	Decoder Performance

	Conclusion

	 DVFS Based Power Managment for LDPC Decoders with Early Termination
	Background
	LDPC Decoder Energy Reduction with ET and DVFS
	Prior Art

	Energy Saving Analysis in LDPC Decoders
	Statistical Analysis of LDPC Decoder Iterations
	Energy Saving of LDPC Decoder with Iteration Prediction

	Statistical Based Prediction for Energy Saving in LDPC Decoders
	SNR Based Iteration Management with Performance Penalty
	Statistical Based Iteration Prediction Algorithm
	Calculation of the Prediction Metric
	Simulation Results

	Conclusion

	 Toward Energy and Area Optimization of High-Throughput LDPC Decoders by Exploiting Quantized Message Passing
	Background
	LDPC Codes and Decoding Algorithms
	High Throughput LDPC Decoders

	Serial Message-Transfer LDPC Decoder
	Decoder Architecture Overview
	Decoder Stages
	Check Node Stage
	Variable Node Stage
	Decision Node Stage

	Message Transfer Mechanism
	Decoder Hardware Complexity and Performance Analysis
	Memory Requirement
	Decoding Latency
	Decoding Throughput

	Finite-Alphabet Serial Message-Transfer LDPC Decoder
	Mutual Information Based Finite-Alphabet Decoder
	Error-Correcting Performance and Bit-Width Reduction
	LUT-Based Decoder Hardware Architecture

	Implementation
	Physical Design
	Timing and Area Optimization Flow

	Results and Discussions
	Delay Analysis
	CN Critical Path
	VN Critical Path
	Routing Critical Path

	Area Analysis
	Power Analysis
	Summary and Comparison to the State-of-the-Art

	Conclusion

	Conclusions and Outlook
	Bibliography
	List of figures
	List of tables
	Curriculum Vitae
	List of Publications

