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Abstract—This paper presents a method for the optimal siting
and sizing of energy storage systems (ESSs) in active distribution
networks (ADNs) to achieve their dispatchability. The problem
formulation accounts for the uncertainty inherent to the stochas-
tic nature of distributed energy sources and loads. Thanks to the
operation of ESSs, the main optimization objective is to minimize
the dispatch error, which accounts for the mismatch between
the realization and prediction of the power profile at the ADN
connecting point to the upper layer grid, while respecting the grid
voltages and ampacity constraints. The proposed formulation
relies on the so-called Augmented Relaxed Optimal Power Flow
(AR-OPF) method: it expresses a convex full AC optimal power
flow, which is proven to provide a global optimal and exact
solution in the case of radial power grids. The AR-OPF is coupled
with the proposed dispatching control resulting in a two-level
optimization problem. In the first block, the site and size of the
ESSs are decided along with the level of dispatchability that
the ADN can achieve. Then, in the second block, the adequacy
of the ESS allocations and the feasibility of the grid operating
points are verified over operating scenarios using the Benders
decomposition technique. Consequently, the optimal size and site
of the ESSs are adjusted. To validate the proposed method,
simulations are conducted on a real Swiss ADN hosting a large
amount of stochastic Photovoltaic (PV) generation.

Index Terms—Active distribution networks, dispatchability,
energy storage systems, optimal power flow, resource planning.

NOMENCLATURE
Sets and Indices
l Indices of buses and indices of lines con-
nected upstream to the buses
L Set of buses excluding the slack bus and set
of lines connected upstream to the buses
yus Set of virtual buses connected to the real

ESS candidate buses and set of virtual lines
connected upstream to the virtual buses

yey Indices and set of years

deD Indices and set of days

teT Indices and set of time intervals

¢ € Pyy Indices and set of scenarios for day d and
year y

nenN Indices and set of benders iterations

Variables

U, € {0,1} Installation status of the ESS at bus !

C Energy reservoir of the ESS at bus [

Ry Power rating of the ESS at bus [

Ditdy Average of the active load over all scenarios
at: bus [, time ¢, day d, and year y

Apig Deviation of prosumption for scenario ¢ and
time ¢ from pysqy

fltdy Average of squared longitudinal current
causing losses over all scenarios at: line [,
time ¢, day d, and year y

A fipt Deviation of squared longitudinal current
causing losses for scenario ¢ and time ¢
from fiay

DP, g, Dispatch plan associated with time ¢, day

d, and year y at the grid connecting point
(GCP)
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Uncovered dispatch error at: bus [, scenario
¢, and time ¢

Leftover dispatch error rate for scenario ¢,
time ¢

Square of current magnitude causing losses
in line [\ Auxiliary upper bound variable
Square of voltage magnitude at bus
[\ Auxiliary upper bound variable
Aggregated prosumption at bus [

Upstream complex power flow to line [
Auxiliary variable of upstream complex
power flow to line ! (upper bound of S})
Auxiliary variable of upstream complex
power flow to line [ (lower bound of S})
Downstream complex power flow to bus [
from line [

Auxiliary variable of complex power flow
to bus ! from line ! (upper bound of Slb)
Auxiliary variable of complex power flow
to bus [ from line [ (lower bound of Slb)
Complex power flow of ESS at bus [
Energy stored in ESS installed at bus [
Positive unserved active load at: bus [, sce-
nario ¢, and time ¢

Negative unserved active load at: bus [,
scenario ¢, and time ¢

Positive unserved reactive load at: bus [,
scenario ¢, and time ¢

Negative unserved reactive load at: bus [,
scenario ¢, and time ¢

Slack variable for the realized losses devia-
tion at m?" iteration of Alg. 1 for scenario
¢ and time t

Slack variable for the additional realization
of losses deviation for scenario ¢ and time
t

Time horizon of the daily OPF problem
Time duration of dispatch interval
Adjacency matrix

Half of the total shunt susceptance of line [
Total longitudinal impedance of line [
Upper limit on the squared current of line [
Upper limits of active\reacitve power flows
for line [, respectively

Upper bounds\ Lower bounds of the squared
nodal voltage magnitude

Maximum allowed state-of-energy level
Minimum allowed state-of-energy level
Initial state-of-energy level

Probability of scenario ¢
Maximum\minimum possible ESS energy
reservoir capacity at bus [
Maximum\minimum possible ESS power
rating capacity at bus [

Maximum power ramping rate of ESS
Vectors defining the slope and the inter-



cepts, respectively, of the set of lines which
approximate the power capability curve of
ESS at bus [

N, Allowed number of cycles per day chosen
as a function of the targeted ESS lifetime

1.,1.,1, ESS investment costs associated to: fixed
installation, energy reservoir, power rating

Wy, Wi, Wy Weight coefficient associated to the error
between the dispatch plan and the active
slack power in each scenario, grid losses,
unserved load, respectively

Ny Number of days in each day-type in a year

Tdis Discount rate

Y Planning horizon

I. INTRODUCTION

OWER balancing is becoming an increasingly challenging

task due to growing volatility in power systems introduced
by the high penetration of non-dispatchable and stochastic
distributed energy resources (DER). To be more specific, in
the distribution grid, the prosumption forecast uncertainties are
originated not only by the load consumption but also by the
distributed renewable energy sources (RES). Thus, in these
power grids, the deviation of the active power flow at the
grid connecting point (GCP) from the prescheduled power
intake from the upper grid, called dispatch error, should be
compensated by the bulk system operating reserve. In this way,
the spinning reserve requirement is growing to tackle not only
the peak demand but also the stochasticity of prosumption',
causing significant cost increases for transmission system
operators (TSOs) to mitigate the system imbalance through the
balancing mechanism. In this context, the central management
of system imbalance may exhibit limitations and, several
studies have called for the neccessity of modifying the market
frameworks to encourage an appropriate cooperation between
TSOs and distribution system operators (DSOs) to handle
the system imbalance [1]. Furthermore, in [2], a reformation
on the market framework is suggested to correctly allocate
the balancing responsibility to the local DSOs based on
the cost-causality principle. The new cost allocation scheme
would highly incentivise DSOs to manage the prosumption
uncertainty locally. In [3], it is studied how the so-called dis-
patched by-design distribution networks significantly reduce
the reserve requirement for the bulk power system.

In this context, there has been increasing interest in using
energy storage systems (ESSs) as a flexible resource to com-
pensate for system imbalance [4], [5]. The European Network
of Transmission System Operators for Electricity published a
draft grid code addressing the possibility for ESSs to become a
balancing serving providers [6]. However, the usage of ESSs is
limited because system operators are, in general, not allowed
to own or operate them under the current European power
system regulatory framework. Yet, in [7], the Authors pointed
out the neccessity and possibility to modify the regulatory
framework regarding the ownership of ESSs to promote their
further exploitation.

For this reason, in spite of the lack of an already established
market and regulatory framework, in this paper we assume
that: 1) a market environment with a modified regulatory
framework allows system operators to invest on ESSs and to
control them for balancing service but not for energy arbitrage;
2) the DSO is the financial representative for the imbalance

IProsumption is defined as the load consumption minus the locally gener-
ated power.

caused within its active distribution network (ADN), which
is penalized as an imbalance cost paid to the TSO. With the
above assumptions, DSOs have enough motivation to integrate
the ESSs to compensate the dispatch error, thereby enhancing
the dispatchability of their ADNs and mitigate the afore-
mentioned financial risk. The dispatchability identifies the
capability of a resource, or a network, to control the realized
active power flow through the resource, or the network, to
follow a pre-defined power schedule with high fidelity.

There have already been studies addressing the optimal
control strategies of ESSs to improve the dispatchability of the
stochastic resource [8]—-[10]. The Authors of [11] proposes an
optimal control strategy of ESS to achieve the dispatchability
of a distribution feeder. In day-ahead operation, the power
schedule is computed following the prediction point of pro-
sumption and the ESS is controlled such that the active power
flow through the GCP tracks the power schedule with small
deviation.

However, the efficient deployment of ESSs significantly
depends on the investment planning. The problem of opti-
mal siting and sizing of ESSs in ADNs has been already
extensively investigated through numerous researches thanks
to the versatile technical services that ESS can offer to DSOs
such as: minimize network losses [12]-[14], provide voltage
control [14]-[16], mitigate line congestion [14], and improve
the quality of power supply [12], [17]. Moreover, several
studies seek for the economic benefit from ESSs by providing
ancillary service to TSOs [18] and focusing on minimizing
operation cost [19]. Meanwhile, relatively few studies were
dedicated to ESS planning for achieving dispatchability of
ADNS.

The Authors of [20] and [21] proposed an algorithm to size
a wind farm ESS to achieve its dispatchability. In [20], the
ESS dispatch strategy is coupled with the assessment of its
capacity and expected lifetime based on the confidence level
of the power output w.r.t the predefined schedule. In [21],
specific ESSs control algorithms are proposed along with a
linear regression forecasting algorithm to compensate energy
imbalance between the real power output and the predefined
schedule of stochastic DERs. Furthermore, the impact of the
balance service on the battery life is assessed. To ensure the
economic optimality of decision-making, it is worth inves-
tigating the economic value of ESSs investments by taking
into account their operational benefits and installation costs.
There are few studies [22]-[25] addressing the financial risk
of DSOs in the energy market regarding the imbalance caused
within the ADNs. The work in [22] proposed a method for
the optimal allocation of ESSs through a cost-benefit analysis,
while integrating a control strategy of ESSs to compensate the
gap between the actual prosumption and the purchased energy
from the forward market, mitigating the DSO’s risk in the
real-time energy market. In [23], by using the same market
framework as in [22], the Authors proposed the strategy of
ESS planning and the optimal operation of DSOs considering
the optimal bidding strategy in the day-ahead market and the
optimal real-time operation of ESSs to minimize the imbal-
ance cost. A similar objective was considered in [24] while
considering distributed generation units along with ESSs. In
[25], the ESSs capacity is determined for multiple agents, such
as DSOs, wind farms, solar power stations and ADNs demand
aggregators. The approach is based on the game theory with
the objective to reduce the transaction cost risk of each agent
due to the resources’ forecast errors.

It is also worth observing that the capacity and placement
of ESSs should comply with the characteristics of the chosen



control strategy and the subsequent operational conditions of
the system. In this regard, the optimal power flow (OPF) that
accurately models operation and control of the ADN, should
be embedded in the ESS planning tool. However, OPF-based
ESSs planning is inherently burdensome to solve due to its
non-convexity. There exists meta-heuristic methods such as
fuzzy particle swarm optimization (PSO) algorithm used in
[22] and [25], and PSO algorithm in [24]. However, these
solution approaches cannot guarantee the global optimum
or even a feasible solution. To tackle the non-convexity of
the OPF problem, convexification approaches, such as the
semi-definite programming (SDP) [26] or the second-order
cone programming (SOCP) relaxation [15], [18], [19], [27],
have emerged as a solid and rigorous alternative. The SOCP
relaxation proposed in [28] has been implemented for the
optimal ESS allocation in radial grids due to its superior
computational efficiency referring to the SDP relaxation. In
[18], an ESS planning strategy was developed relying on the
SOCP-OPF model with the objective of providing ancillary
services to the TSO, and to cope with the wind variability.
The Authors of [19] further utilized the SOCP relaxed model
for the ESSs allocation and operation to minimize the grid
losses and imported power in the ADN. In [23], even though
the optimization problem for day-ahead operation is modeled
as a non-convex OPF problem and solved by implementing
meta-heuristic evolution method, the optimization on the real-
time operation is solved thanks to the relaxed SOCP based
OPF model.

The work in [15] tackled the ESS planning and opera-
tion problem by decomposing it into two stages: first stage
determines the total ESS size to prevent grid constraints
violations due to PV power imbalance, and the second stage
allocates ESSs with optimal sizes by employing SOCP-OPF to
minimize the energy cost. Meanwhile, the Authors addressed
that the objective function and constraints should satisfy some
necessary conditions to guarantee the exactness of the SOCP-
OPF solution, and suggested a formula to verify the exactness
a-posteriori. The main drawbacks were explicitly underlined
in [29] by the fact that the exactness of the solution cannot be
guaranteed especially in the presence of reverse line power
flows and for the cases where the upper bound of nodal
voltage and the line ampacity constraints are binding. This
brings significant limitations on the applicability of the method
to ADNs hosting DERs with large capacities. Moreover, the
model neglects the transverse elements of the lines, which can
bring an infeasibility of the solution especially when ADNs
are composed of coaxial underground cables. The work in
[30] solves this problem and proposed the Augmented Relaxed
OPF (AR-OPF) to convexify the AC-OPF for radial grids.
Their contribution demonstrates that, in the AR-OPF problem
comprising an objective function strictly increasing with the
grid losses, the conditions for the exactness of the solution are
mild and hold for realistic distribution networks. The AR-OPF
was implemented in the subsequent works on the optimal ESS
planning problem while embedding grid reconfiguration with
the objective of minimizing grid losses, voltage deviation and
the line congestion [14].

In this paper, we propose an operation-driven planning strat-
egy of ESS to achieve the dispatchability of the ADN based on
the AR-OPF model. The objective of achieving disatchability
requires a substantial and non-trivial modification on the AR-
OPF as well as on the solution approach proposed in [14] in
order to reach the exactness of the relaxed OPF. Moreover, we
formulated the sizing problem into two blocks by modifying
the objective term, constraints and variables related to the dis-

patch error. Meanwhile, we apply the Benders decomposition
to handle the multi-layered decisions with numerous scenarios
[31]. The contributions of the paper are two as follows.

1) The optimal allocation of ESS is determined based on
an exact convex model of the OPF to address the dis-
patchability of the ADN in the presence of prosumption
uncertainty, while accurately reflecting the operational
condition of the ADN.

2) The structure of the planning problem and the objective
functions are formulated accounting for the necessary
conditions to guarantee the optimality and the exactness
of the OPF relaxation.

The paper is organised as follows: in Section II, we introduce
the structure of the optimization problem and explain the key
parts in detail. In Section III, the proposed problem formula-
tion and solution approach are described. Section IV contains a
detailed application example referring to the planning of ESSs
into a real ADN. Finally, Section V concludes the paper.

II. PROBLEM STRUCTURE

A. System Description

In this paper, optimal allocation of ESS is determined based
on the operation of the ADN over the planning horizon Y,
while the prosumption profiles are expected to grow each year
with a constant rate. Each year indexed with ye{1,...,Y}=Y,
we classify days into day-types indexed with deD. The
uncertainty in prosumption in each day-type is represented
by operating scenarios indexed with ¢p€®4, with probability
Mg for each scenario. The dispatch interval is identified by the
index te{1, ..., T}=T, where T corresponds to the scheduling
horizon of the daily operation. Time indices are separated
by a constant timestep At¢. The dispatch problem at day d
accounts only for the active power. Each node of the ADN
has a non-dispatchable aggregated prosumption (s;4;) defined
at each scenario and time interval. The aggregated ADN active
powers through the GCP (which is equivalent to node 1) to an
upper layer grid in all scenarios (P4, Vo€Pq,) are expected
to follow a day-ahead determined daily dispatch plan at each
time interval (D Pyq, ) derived with the support of a forecasting
tool. Then, at each node where an ESS is allocated (i.e., U;=1,
where U;€{0,1}), it is dispatched at each scenario and time
interval according to active power (pﬂt) and reactive power
(ql]‘;;t). The dispatched active power compensates for the gap
between active power through the GCP and the dispatch plan,
which results from the deviation of realized total prosump-
tion from the total prosumption prediction. Consequently, the
observed dispatch error at GCP can be minimized.

In summary, the ESS allocation problem to achieve the
dispatchability of the ADN under study is a two-stage decision
process: the first stage which deals with the binary decision
variables on the location of the ESS (U;) and the continu-
ous decision variables on the capacity of the ESSs energy
reservoirs (C7) and their power rating (R;), and the second
stage which deals with daily dispatch problems, determining
the decision variables on the ESSs active and reactive power
for all operating scenarios.

B. Dispatch Plan of the Distribution Feeder

The operational benefit of ESSs allocation for the ADN
dispatchability is evaluated with sets of operationg scenarios,
where each set refers to a typical day. The set of day-types is
supposed to be pre-selected by the modeler.



The advantage of using scenarios is related to the use of
generic parametric and non-parametric distributions of pro-
sumptions. In this paper, the active and reactive prosumption
scenarios for each day are generated with the assumption
that the prosumption profile follow a normal distribution.
Therefore, the mean of the prosumption over the scenarios
is equal to the given prosumption prediction, and the losses
predictions are calculated by averaging the losses over the
scenarios [11]. It is understood that the variables with subscript
I, ¢,t are defined for [€L, p€Py4,, tET, respectively. In (3), a
daily dispatch plan D P;q, follows the predicted point of the
total prosumption considering the predicted grid losses.
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Py 4 represents the active power through the GCP at each sce-
nario and at time interval. In other words, it is the aggregate of
all prosumption including the total grid losses in the ADN. In
this context, the dispatch error with no dispatchable resources
in ADN is formally defined as the total error of prosumption
plus the line losses over the buses/lines as indicated in the left-
hand side of (4). As in the right-hand side of (4), the installed
ESSs in ADN can be dispatched with active power (pl]f;t) to
compensate for the error. €;4; represents the residual dispatch
error that cannot be covered at bus [, scenario ¢, and time t.
To quantify the covered or not covered error by the ESSs, we
say that the sum of the two parts, shown in the right-hand side
of (4), is equal to the dispatch error in case of no dispatchable
resources. Therefore, with ESS integrated in the ADN, the
dispatch error at the GCP is expressed as (5).
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Finally, the objective term to minimize the power deviation
from the daily dispatch plan for all scenarios and time intervals
is expressed as follows.
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C. Augmented Relaxed Optimal Power Flow
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Fig. 1. Tllustration of the adopted nomenclature with respect to the classic
two-port IT model of a transmission line adopted from [30].

The description of the variables and parameters used in
(7)-(22) is stated in the nomenclature. The above equations
can be directly derived by applying the Kirchhoff’s law to
the two-port II branch model shown in Fig. 1. For a radial
power network, the power flow equations are given in (7)-
(10). The variables with subscript [ are defined for [€L. The
upstream bus of bus [ is notated as up(l). H is the adjacency
matrix of the network, where Hy,; is defined for k,leL and
Hy ;=1 if k=up(l) or 0 if not. The line complex power
S} and Slb are determined by (7), and (8), respectively. The

squared longitudinal current that produces losses at line [ is
originally defined as (10). By applying the SOCP relaxation,
the equality is replaced with an inequality, as in (11) [28].
Hereafter, it is called as the relaxed OPF (R-OPF) model. Eq.
(9) determines the magnitude of squared nodal voltages, where
R(.) represents the real parts of a complex number.
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In order to avoid any inexact solution of R-OPF model
(i.e., any solution that makes the left-hand side of (11) strictly
greater than the right-hand side, and thus without physical
meaning), the Authors of [30] introduced auxiliary variables
f1, S;=P,+jQ;, v; and S;=PF;+5Q; to formulate the AR-OPF
model. The branch power flow, nodal voltage, and current
equations are defined as well with the set of the auxiliary
variables, as in (12)-(18). Eq. (12) and (13) indicate the lower
bound of branch power flow at the sending end and the
receiving end of line [. The upper bound nodal voltage is
determined correspondingly with (14). Likewise, the branch
power flow equations for upper bound power flow variables
are shown as (15) and (16). Eq. (17) and (18) express that
the upper bound of the squared longitudinal current f; should
be decided by the maximum of absolute complex power flow
from both sides of line [. The voltage constraint, the ampacity
constraint from the sending end and the receiving end are
modeled as in (19)-(21). Eq (22) are added to complete the
set of equations required to guarantee the exactness.
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The nodal voltages and branches’ ampacity constraints
defined with the auxiliary variables (i.e., (19)-(21)) construct



a conservative and convex set of constraints. The network
model defined with (8)-(10) and (12)-(22) is called as the
augmented-OPF (A-OPF), and its feasible set is proved to be
a subset of the feasible set of original OPF. As already shown
in [30], the set of grid constraints employing the auxiliary
variables slightly shrinks the original feasible solution space in
correspondence of undesirable operation points of the network
(e.g., near the upper bound of nodal voltages or branches’
ampacity limits).?

The AR-OPF model is obtained by replacing (10) by
(11). Under the pre-requisite conditions defined in [30], for
every feasible solution of the AR-OPF, there exists a feasible
solution of the A-OPF and also for the original OPF with
the same power injection. Moreover, every optimal solution
of the AR-OPF that satisfies (10) is an optimal solution of
the A-OPF. It is noteworthy that (10) is satisfied in the AR-
OPF model when the objective function is strictly increasing
with respect to the squared longitudinal line current f;, or
the grid losses. The pre-requisite conditions to guarantee the
exactness are defined with the grid parameters and they are
mild enough to hold for general and realistic radial distribution
networks. Since the Authors of [30] have rigorously proved all
the statement above regarding the exactness of the AR-OPF
solution [30], the readers are encouraged to refer to [30] for
further details.

For the sake of readability, the equations mentioned
above are grouped and represented by ©O(p,x)>0 where
e={S* v, f, St v, f, St s} is the set of variables and k=
{H, z,b,ymax gmin [maz pmaz (mazl jg the set of param-
eters. The notation without subscript corresponds to the vector
of variables and parameters for all buses/lines.

D. Energy Storage Systems

The ESS investment is modeled through (23)-(25). In reality,
available power ratings and energy capacities are often re-
strained as in (23) and (24) due to various physical constraints
involving, for instance, manufactural or geographical factors.
CR™** is the maximum value for the rate at which ESS is
discharged relatively to its maximum energy capacity. The
power rating and energy reservoir is determined considering
this relationship as in (25) (e.g., we set CR™**=3 based on
the typical maximum C-rate found in commercial BESSs).
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In the Ist block problem (see Sec. III-A), we consider an
ESS as an ideal battery. On the other hand, in the 2nd
block problem (see Sec. III-B2), we model the ESS losses
using the method proposed in [32], that is by adding an
additional resistive lines (equivalent resistance® for the ESS
losses) adjacent to the candidate nodes and treating them
similarly as other lines in the AC-OPF. The resistance model

2We show that the compression of the solution space caused by the
augmented constraints is small by following the steps of numerical analysis
reported in [30]. Under the case study shown in Sec. IV, We make one of two
operating constraints (voltage upper bound constraint and ampacity constraint)
binding at one node or line and relax the other one to find the difference
between the physical state variables (nodal voltage-magnitudes and original
current flow) and corresponding auxilary variables. The difference between
the nodal voltage-magnitude and the auxiliary one is 0.001%. The difference
between the original current flow and the auxiliary one is equal to 0.2%.

3The resistances are updated in proportion to the ESS capacity using the
reference value in [32]

is shown in Fig. 2. It should be noted that the positive sign of
the ESS power denotes ESS charging power. The set of the
virtual nodes corresponding to the additional lines is denoted
as L. For the virtual nodes, we introduce the ideal battery
injection (in place of load injection) to the set of equations
regarding AR-OPF model as O(pf, kF)>0, where ¢F=
{St v, f, 8,5, f, S, s¥=pP+jqP} is the set of variables and
HE:{H7 z, b7 U/ma:c7 U/min’ I/max’ Pmam’ Qmaz }4 is the set of
parameters. The notation without subscript corresponds to the
vector of variables and parameters defined for VI€LE. The
operational characteristics of an ideal battery located at node
ILF are represented as (27)-(32). Eq. (26) refers to the ESS
capability curve, which is approximated by a set of linear
constraints inscribed within the original curve as in (27). oy,
0B, and k; are vectors defining the slope and the intercepts
of the set of linear constraints. Eq. (28) expresses the ESS’
state-of-energy (SoE) with charge/discharge power for each
time interval. Eq. (29) indicates SoE limits on ESS operation
during the day. As in (30), the initial SoE is set to be equal to
SoE™ (e.g., we set SoE™=50%) and the final SoE is set to
be within £10% of the initial SoE as in (31). Moreover, we
account for the degradation of the ESS caused by its operation
by (32). This constraint keeps ESS energy exchange within
a threshold, which minimizes the cell deterioration during its
daily operation [33]. w is a positive parameter that depends on
plb; , and we chose the maximum value stated in [33] (w=1). N,
is the allowed number of cycles per day chosen as a function
of the targeted ESS lifetime (e.g., we set N.=0.96 to model
a typical ESSs according to [33]).
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Fig. 2. The resistance model of battery adopted from [32].
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EE, 1) =EE+Atpf Vi, vt 28)
SoE™"Ci<Ef; <SoE™"Cy, VI, Vt (29)
Efy=SoE™" x C},VI,Vt (30)
Eff)y — 0.1C<Efr, 1) <Ef}y + 0.1C}, VI, Vt (31)
% ‘wpg‘SNcCl,Vl,Vt (32)

In the interest of brevity, (27)-(32) are indicated by Z(n, £)>
0,VteT where n={p¥, ¢¥ E¥ U R,C} is the set of vari-
ables and £={a, 3, k, At, SoE™ SoE™" SoE™ ), N .}
is the set of parameters. The notation without subscript corre-
sponds to the vectors of variables and parameters for VI€LE.

III. PROBLEM FORMULATION

The objective of the problem is to determine the optimal
sizes and sites of ESSs so that the active power through
the GCP follows the dispatch plan with minimal deviation.
However, the dispatch error described by (6) in Sec. II-B does
not increase while the total grid losses increase (a necessary

4The value of v/™a% ¢/™Min ['MaT that apply to VIELE are given such
that the operating constraints regarding nodal voltage and line ampacity are
not imposed to the buses/lines Vi€ LF.



condition of the AR-OPF. See Sec. II-C). In order to verify this
statement, we discuss the relationship between the dispatch
error and the active power through the GCP instead of the
grid losses, based on the fact that the active power through
the GCP is strictly increasing with the grid losses [30]. The
prediction error of the prosumption and the grid losses are
random variables following normal distributions with zero
mean value. Thus, it is obvious that the dispatch error, which
is equivalent to the sum of prediction error of the prosumption
and the grid losses over all buses/lines, is also a random
variable with mean value of zero, and has neither positive
nor negative correlation with the active power through GCP.
Finally, the dispatch error does not have any correlation with
the grid losses as well. Therefore, the exactness of the solution
cannot be guaranteed if the objective value that corresponds to
the objective term (6) is significant in magnitude compared to
objective term regarding the total grid losses in the objective
function of the AR-OPF model.

Therefore, we propose to decompose the problem into two
blocks each consisting of an OPF problem. In this way, we
can exclude (6) from the AR-OPF problem and convey it
to another, approximated, OPF problem (the so-called Ist
block problem), which aims to find the optimal level of
dispatchability based on the ESSs investment cost and the im-
balance penalty. The determined dispatchability level, defined
as leftover dispatch error rate (LDER), is then introduced to
an AR-OPF model-based problem (the so-called 2nd block
problem) as an index which the ADN has to comply with.

The whole algorithm of the proposed approach is illustrated
in Fig. 3. In the 1st block problem, the optimal ESSs alloca-
tion, the daily dispatch plans, and the corresponding LDER are
calculated employing linear approximated OPF ignoring the
grid losses. Only the nodal voltage constraints are considered
regarding the operational constraints, ignoring the ampacity
limits to reduce the computational burden. Afterward, the
outputs of the Ist block, which are the ESS allocation and
the LDER, are used as inputs for the 2nd block problem.

In the 2nd block problem, the objective is to refine the
optimal allocation of the ESSs, considering several operating
scenarios and achieving the same level of LDER calculated in
the 1st block problem. In this respect, LDER is implemented as
an additional constraint to an AR-OPF model, which considers
the full AC-OPF as well as voltage constraints and branches’
ampacity limits. Then, the size and site of the ESSs are itera-
tively adjusted thanks to the Benders decomposition technique.
This iterative process starts initially with a feasibility check of
the ESS allocation resulting from the 1st block problem.

A. Ist Block Problem

We minimize the investment and total penalty costs over
the planning horizon to find out the optimal allocation of
the ESSs and the optimal dispatchability level. We embed an
approximated OPF constraints for all operating scenarios into a
two-stage mixed-integer linear programming (MILP) problem
(see Sec. II-A). The OPF is formulated by the linear Distflow
model in which shunt elements are considered, whereas the
grid losses are neglected. In this way, the reactive power
generated by the shunt impedance of the lines is accounted
for in the nodal voltage constraints. Meanwhile, neglecting
the formulation of the squared longitudinal current (f;) (i.e.,
losses) is less likely to affect the feasible solutions in this
stage since the ampacity constraint is ignored. The dispatch
plan follows the prosumption prediction, as in (33), while the
prosumption deviation at node [ is expressed as in (34). We
substitute (1) into the active power balance equation, resulting
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Fig. 3. Full algorithm of the proposed method.

in (35). The lossless Distflow power flow at both sides of
line [ including the ESS power are expressed via (35)-(37).
Eq. (38) calculates the nodal voltage, which is governed by
voltage constraint as in (39). All the variables within (34)-(39)
are defined for [€L, pc gy, t€T, d€D, and y€). To simplify
the notations, we do not show the indices for time, day, and
year.

DPiay=Y _ puay, Vt, ¥d, y (33)
lel
> Ap=) (a+pf), Y,V Vd, Wy (34)
lel lel
P/=P’=p—Ap+pf+ > Hyp P}V, Ve, VE,Vd, Vy
meL

(39)

Qi=ar+a’+ Y Him Qf—(vupy+vi)bi, V1,6, t,Vd, Vy
meL

(36)

Q?:ql"'_Q[E‘i' Z Hlmef,VZ,V(b, Vtana Vy (37)

meL
vl:vup(l)—29‘{(z;‘(5f+jvup(l)bl)),Vl,qu,Vt,Vd,Vy (38)
™I < <™ VIV, VY, Yy (39)

The objective function is defined as to minimize the investment
cost (the first line of (40)) of ESSs and the penalty cost (the
second line of (40)) regarding the uncovered dispatch error
over the planning horizon Y. The penalty cost of day d and
year y is the uncovered dispatch error over the operating
scenarios for day d multiplied by wg, which is the cost
coefficient for the imbalance. 2; and €2, represents the set of
control variables in the first and second stage decision process,
respectively. The constraints regarding the ESS allocation
and operation explained in Sec. II-D are included (i.e., (23)-
(25), (41)), along with the linear approximated lossless OPF
constraints ((33)-(39)).



minimize
YU,C,RE€1;
vStv,sF e, leL

1
+> Atrad D Nawa) > Al el

Z.U+I,R+Z.Cy)

yey deD teT ¢pedy, lel
(40)
subject to: (23)-(25), (33)-(39),
(0o, €)20, Vo€, VIET,VAED, Vyey  (41)

Once the OPF problem including the constraints related to
the dispatchability is solved, we can calculate the capability of
the ADN with the allocated ESSs. In this context, we introduce
a dispatchability index called LDER, and defined as f4;. It is
expressed in (42). It represents the ratio between the resulting
dispatch error and the anticipated dispatch error in case of no
ESS at scenario ¢ and time ¢ for the daily operation on day
d and year y (* here indicates that it is the identified optimal
solution). In the denominator, the dispatch error without ESS is
indicated while the error regarding the grid losses is ignored
because its magnitude is negligible compared to that of the
prosumption error.

_ | Eleﬁ €7¢t|
| > ier Apigt]

The two-stage MILP problem explained above can be easily
tackled with numerous solvers such as GUROBI, MOSEK, etc.
However, in the case where the sizes of the set ®4,,D, ) are
significant, the size of the given MILP problem becomes too
large-scaled to be handled by a commercial solver with limited
computation power. In this regard, decomposition techniques
(e.g., benders decomposition, alternating direction method of
multipliers method, etc.) can be employed as an effective
solution approach to break down the first and the second stage
of the optimization problem into two problems. Furthermore,
the second-stage problem can be decomposed into several
parallel problems such that the OPF problem for each day
and each year can be tackled separately.

Ot Voedy,, VIET ,VAeD, Yye)  (42)

B. 2nd Block Problem

The dispatchability level is incorporated into the 2nd block
problem as a constraint governed by the dispatchability in-
dex LDER. The objective of the 2nd block problem is to
adjust the ESS allocation from the Ist block problem to the
optimal site and size that can minimize the grid losses and
unserved load. The system condition during the operation
horizon is evaluated through solving the AR-OPF problem.
Therefore, the 2nd block problem is formulated as a Mixed-
integer second-order cone programming (MISOCP) problem.
A convex SOCP model can be obtained from the non-convex
MISOCP problem by using solution approaches that tackle
the integer variables, such as the Branch and bound algorithm.
However, the solution approach becomes computationally bur-
densome with the increase of integer variables. In this respect,
we apply the Benders decomposition technique to decompose
the 2nd block problem into a master problem and several
parallel subproblems that each represents a daily OPF problem.
The master problem determines the ESSs allocation, followed
by the fitness evaluation of the determined allocations in the
subproblems in terms of grid losses and unserved load. The
unserved load takes values to ensure the feasibility of the
subproblem regardless of the ESS allocation.

The initial step of the 2nd block is to solve parallel subprob-
lems, checking the operational condition of ADN under the
ESS allocation and the corresponding LDER calculated from
the 1st block. The objective of the subproblem and the dual
values of ESS allocation are computed and sent to the master
problem to construct the first Bender’s cut. Through multiple
iterations between the master problems and the subproblems,
the convergence is reached when the gap between the lower
bound of the total cost (LB) and the upper bound of the total
cost (UB) becomes less than a tolerance (the tolerance value
is set as 0.01% of UB). LB is determined from the master
problem, whereas UB is determined after solving subproblems.

1) Master Problem: The formulation of the master problem
is given in (43). The master problem computes the lower
bound of the planning problem by summing the investment
cost and the lower approximation of the subsequent expected
subproblem costs. Each «g4, represents the subproblem cost
for days classified into each day type. It is initially bounded
by «, which is the parameter given as the lower bound
for the subproblem cost. In every nth iteration, Benders
cuts represented by Ffiz) (see (58)) are added as additional
constraints for days d€D and years y€)), as in (44). The
lowerbound of the total cost, so-called LB, is determined
by the optimal solution of the master problem (i.e., LB=
LUAT RATCi+ Y ey Saep )

minimize LUALRAIC+ Y Y ag (43
y€Y deD
subjected to : (23)-(25),
aay>a, ag,>T5), VAED,Yye, YneN  (44)

2) Subproblem: In the subproblem associated with day
d, a daily AR-OPF model with the time-step discretization
of At evaluates the operational advantages of ESSs while
considering real operational conditions. The variables with
subscript I, ¢, t are defined for l€L, pc Py, t€T, respectively.
The sufficiency of the ESS allocation is assessed by checking
if the uncovered dispatch error (see (4)) satisfies the LDER
for day d as in (45). As indicated in (46) and (47), we
introduce positive and negative unserved active load terms
(ulplfj)t, ulpl_wGR*) and positive and negative unserved reac-
tive load terms (ulq;(;t, ulql;teR*) to the active prosumption
and reactive prosumption at bus [, scenario ¢ and time t,
respectively. They correspond to the amount that should be
curtailed from the prosumption to primarily comply with the
LDER constraint along with other operational constraints, even
in the case of insufficient capacity of ESSs.

1> ot <0611 > Apisel, Vo, Vi (45)
lel lel
Plgt=Pigt+ulply,—ulp;y,, VI,V$,Vt (46)
Qg =QsrTulqyly, —ulgpy,, V1, Yo, Vt (47)
Plot=P ttay =P, V1,0,V (48)
DPiay=> (P yray+71f11ay), Vt (49)
leL
Z(Apfw-l—mAfld,t):Z €lpt+ Z Pzizm Vo,Vt  (50)
lel leL leLk

The AR-OPF problem embedding the dispatchability for the
subproblem is formulated by replacing (1) with (48). In
other words, we replace the prosumption p;g; by p) ot 10 the
relevant equations. P’ 1tdy 18 employed in place of piqy to
determine the daily dispatch plan, as in (49). Ap;s: of (4)



is substituted with Apj,, to build (50). The ESS power is
expressed accounting for the battery losses. Similarly, p2¢t
and ql’d)t replace pjg; and qi¢; in the active power balance
equations formulated with the state variables (i.e., (7), (8))
and the auxiliary variables (i.e., (12), (13), (15), (16)). The
equations of AR-OPF model are re-defined as (51), where ¢'=
{8t v, f, 80, f, S, s'=p'+jq ,ulp™, ulp™, ulg™,ulg™} is
the set of variables and k={H, z, b, p® ymin [maz pmaz
Q™?*} is the set of parameters. The notation without subscript
corresponds to the vector of variables and parameters for
buses/lines Vi€eL. Moreover, the power injection from the
allocated ESS is introduced to the set of equations regarding
AR-OPF model as in (52) (see Sec. II-D). The notation without
subscript corresponds to the vector of variables and parameters
for buses/lines VIELF. The ESS power is governed by the set
of operational constraints as (53).

6/“0:;#’"{)207V¢a Vt (51)
O (g, £7)>0,V6, vt (52)

However, we can intuitively expect that having (50) cannot
be compliant with the mathematical formulation of the power
flow equations (i.e., (7)-(11)) in the case of insufficient capac-
ity of ESS to satisfy the LDER constraint (45). The insufficient
power rating of ESS means that possible p?, Vie LF is small,
and thus P},,, VI€L® is small. It makes ¢ too large to comply
with LDER constraint (see (50)). However, instead of making
the problem infeasible, LDER constraint and (50) are both
satisfied by reducing the prosumption deviation considering
losses (left-hand side of (50)). This leads to the violation
of the physical law of power flow because the grid losses
deviation should take an unrealistic value that has the same
order of magnitude as the prosumption deviation. In this
way, the prosumption deviation and grid losses deviation
cancel out each other to make the overall value of the left-
hand side as small as the right-hand side of (50). It would
induce the increase of the squared longitudinal current f;
such that the left-hand side of (11) becomes strictly greater
than the right-hand side, which leads to the inexactness of the
solution. Therefore, we introduce an iterative algorithm, Alg.
1, comprising two additional slack variables, ygé and (g, to
replace (50) by (54) and (55) such that the value of the internal
current would never deviate away from the real value (i.e., the
exactness of the solution is guaranteed). ~yy; represents the
realized grid losses deviation at mth iteration for scenario ¢
and time t, where meM is the index of iterations of the
algorithm. (y4; indicates the unrealized part of the grid losses
that should be updated to 7} after each iteration for scenario
¢ and time t. v} achieves the accurate value of grid losses
deviation, as the absolute value of (y4; reaches value below the
defined tolerance (we set the tolerance value as le-5 pu.).

ST (APt Afis) =Y st Y Ply, Vo,V (54)
leL lel leLE
S AP ATE=D st Y Py, Yo,V (55)

el el leLE

Algorithm 1 Iterative realization of grid losses deviation
Input : (LDER), k, s=p+jq, R*,C* (see (57))

1: Inmitialization : m=1,v'=0,(=1;

2: while |(|>tolerance do

3 Solve a subproblem including (54) and (55)
4 My (
5
6

m+m—+1
- end while

Finally, the subproblem is described with an objective of
minimization of the total grid losses and unserved load to
satisfy the LDER constraint, and the operation period spans
all days grouped into each day-type over the planning horizon.

1
minimize: SCg,=——— Ny Ao (wy rifi
e S 2 2 e e
y

+wy, Z(ulp;;t + ulpyg, + uquw + ulgyy;))

lel
(56)
subject to: (45), (46), (47) (49), (52)-(55),
Rl:Rl*:Mldy, Cl:C;k:ﬁldy7 Vi. (57)

T =[8Ch,— > (Hiay (Ri—R}) =14y (C1—C))], ¥d, Yy, ¥n
leL
(58)

where UL={ulp™, ulp™,ulq*,ulg™} is the set of variables
related to the unserved load. (57) describes that the ESS power
ratings and the energy reservoirs are fixed to the optimal
solution values of the master problem. 14, and ¥4, are the
duals of constraints related to the fixed ESS capacities, and
are used to form the benders cuts for the master problems
as in (58). The variables with subscript d, y, n are defined for
YdeD,Vye), VneN, respectively. UB is calculated summing
the optimal investment cost and the subproblem costs (i.e.,

UB=IC"+ Y,y Yuep SC)-

IV. SIMULATION

We validate the performance of the proposed methods with
an existing Swiss distribution network with 55 bus and large
capacity of RES, as shown in Fig. 4. The base voltage is 21
kV and the base 3 phase power is 6 MVA. 2.7 MWp of PV
generation capacity and 805 kVA of hydropower generation
capacity is installed. The planning horizon is set as 10 years,
and the annual growth rate of load consumption is considered
as 3%. The discout rate rq;5 is set as 7%. According to the
indications of the operator of this grid, the number of candidate
nodes for ESS installation is set as 5 out of 55 nodes (see
Table I). In order to evaluate the impact of imbalance cost
on the dispatchability, 3 representative values of imbalance
costs analyzed from the imbalance price data from 2018 to
2019 in the Swiss energy market [34] (See Table II). The
optimization problems are solved using the solver MOSEK
via the MATLAB interface YALMIP.

TABLE I
ESS PARAMETER AND CANDIDATE NODES FOR SIMULATION

Maximum power Maximum energy

. . 3 MW . b 4 MWh
rating per site IEServolr per site
Installation cost Installation cost
for energy reservoir $300/kWh for power rating $200/kVA
Capital investment cost per site $0.1 M
Candidate nodes for ESS 4, 16, 27, 41, 45




TABLE 11
IMBALANCE PRICES FOR SIMULATION

Imbalance price ($/MWh)
Mean 77
99th percentile 174
99.9th percentile 897

® 21kVnode Line of which ampacity limit is reduced
1 Non-candidate node @ Hydro power plant

1 ESS candidate node Solar PV unit
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Fig. 4. Considered real 55 bus distribution feeder.

We consider 8 typical day-types to cover the seasonal
variation of the prosumption over the year. For each day-
type, we assume that prosumption forecasts for the simulation
have been given from a reliable forecasting methodology. 1000
prosumption scenarios for each day are generated with equal
probabilities based on the assumption that the prosumption
profile follows a normal distribution as discussed in Sec. II-B.
Then, we applied a K-medoids clustering [35] based scenario
reduction technique to mitigate the computational burden. The
number of reduced number of scenarios is determined by an
algorithm explained in Appendix. A. However, it should be
noted that it is a choice of the modeler.

A. Planning with 1 Day under Hourly Dispatch

To illustrate the role of the st and 2nd block of the
problem, we demonstrate the result of the simplified simulation
considering an hourly dispatch for 1 representative day in
two cases: case 1 with the original ampacity of the lines
specified for the given grid and case 2 with the ampacity
of line between node 4 and 20 reduced from the original
value (see Fig. 4). 32 representative scenarios obtained from
the scenario reduction algorithm in Appendix. A are used as
operating scenarios. Table III indicates the optimal allocation
result of ESS, followed by the cost and operation result for 10
years as shown in Table IV. The optimal result from the 1st
block specifies the capacity in size of power rating and energy
reservoir of ESS. However, the determined allocation of ESS
cannot be guaranteed to be feasible and optimal to satisfy the
LDER for the real operation of the grid, since the grid losses
and the ampacity constraint were neglected in the Ist block
problem. After the 2nd block of the problem, as shown in
the result of case 1 in Table III, the optimal site of the ESS
considering the objective of minimization of the grid losses is
determined as node 4, resulting in the reduction of the grid
losses and unserved energy compared to the result of the 1st
block problem.

In case 2, we can observe that a part of the load consump-
tion was unserved to satisfy the LDER in the condition of
restrained ampacity limit with the determined ESS allocation
from the Ist block. In this regard, the result of the 2nd block
shows the change in the allocation of the ESS due to the
bottleneck of the line. The power rating and energy reservoir
of the ESS on Node 4 is reduced, and another ESS is allocated

on Node 27. Table IV shows that the unserved energy in case
2 decreased to near zero after re-allocating the ESS.

TABLE III
ESS ALLOCATION RESULT

Case Problem Location ~ Power rating  Energy reservoir
Tst Block 41 564.3 kVA 1.615 MWh
1 2nd Block 4 548.4 kVA 1.616 MWh
4 307.7 kVA 911.9 kWh
2 | 2ndBlock | 5, 238.7 kVA 705.4 kWh
TABLE IV
COMPARISON BETWEEN THE RESULT OF 1ST BLOCK AND 2ND BLOCK
Case Type of cost Allocation Allocation
of Ist block | of 2nd block
Investment cost ($ Million) 0.694 0.694
Dispatch error (GWh) 2.037 2.037
casel Unserved energy 0.086 2 7E-3
to satisfy the LDER (MWh) : Sl
Grid losses (MWh) 292.59 292.59
Total energy consumed (GWh) 102.90 102.90
Investment cost ($ Million) 0.694 0.794
Dispatch error (GWh) 2.037 2.037
case2
Unserved energy 279 7 1E-4
to satisfy the LDER (MWh) : :
Grid losses (MWh) 306.30 281.85
Total energy consumed (GWh) 102.92 102.89

B. Planning with Full Scenarios under 30 min Dispatch

The proposed planning procedure is applied to the full set of
scenarios with 8 typical days under 30 min interval dispatch.
We apply scenario reduction technique to 1000 scenarios of
each day-type based on the algorithm in Appendix. A. The
largest number of reduced scenarios over all day-types is
determined as 39 scenarios. Table V shows the optimal ESS
locations and sizes. We exhibit the results for three cases
corresponding to different imbalance prices (see Table II). The
cost and operation result for 10 years are indicated in Table VI.
It signifies that it may not be beneficial to install ESSs under
current imbalance prices (represented by the mean value of
recorded imbalance prices). However, as the imbalance price
grows higher with the increase of prosumption uncertainty
within the system, it will be more necessary to allocate ESS
for dispatch error compensation. Fig. 5 illustrates the operation
result for day-type 1 in 1st year, showing the prosumption
prediction considering 39 scenarios of the prosumption profiles
(thick pink line), the dispatch plan (thick black line), and
the active power infeed through GCP corresponding to each
scenario (thin lines) in the case of no ESS (see Fig. 5.(a))
and the optimal ESS allocation with imbalance price of
$897/MWh. (see Fig. 5.(b)). The dispatch result without ESS
shows that the dispatch error is significant, especially in the
time where the production from PV is high. On the other hand,
in the case with the optimal ESS allocation, the active power
infeed of every prosumption scenario follows the dispatch plan
with small error. The cost analysis between the case with
ESS and without ESS in Table VI demonstrates quantitatively
the capability of ESS to handle uncertainties within the grid.
When $897/MWh is considered for the imbalance price, the
total dispatch error of the case without ESS is about 9 times
of that in the case with ESS. The difference in the dispatch
error is translated into the significant gap in the total cost
for 10 years of operation: $12.45 Million with the default
system configuration, and $2.54 Million with the optimal
ESS allocation. Consequently, this result demonstrates the
advantages for the DSO to invest on ESS in view of their
technical and economical profit.



TABLE V
ESS ALLOCATION RESULT

Imbalance price | Location  Power rating  Energy reservoir
Mean - - -
99th percentile 4 497.78 kVA 1.85 MWh
99.9th (il 4 536.08 kVA 1.46 MWh
~7th percentile 27 356.75 kVA 1.11 MWh
TABLE VI
COST AND OPERATIONAL BENEFITS
99th 99.9th
Mean . .
percentile  percentile
Investment cost ($ Million) - 0.75 1.15
Dispatch error (GWh) 13.875 2.881 1.552
Grid losses (MWh) 609.99 564.62 539.56
Unserved energy to 1
satisfy the LDER (MWh) 0 126 1.03
Total energy
consumed (GWh) 104.84 104.77 104.77

I As the LDER is not calculated due to the lack of ESSs, the
unserved energy is determined with only operating constraints
regarding nodal voltage and ampacity limit.
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Fig. 5. Prosumption prediction, dispatch plan and active power through GCP
in each scenario (not labeled for the sake of readability): (a) Day 1(No ESS),
(b) Day 1(With ESS (Imbalance price : $897/MWh )).

C. Comparison with Planning Approach Using R-OPF Model

We compare the planning and operation results obtained
from the proposed method with the AR-OPF model and with
the R-OPF model [28]. The ESS allocation result along with
the cost and operational benefits are shown in Table VII
and Table VIII. The ESS allocation is quite similar with
only a trivial difference in energy reservoir size, while the
resulting dispatch error is same. The unserved energy to satisfy
the LDER is smaller in the AR-OPF approach than R-OPF
approach. Another comparison between two cases is analysed
in terms of the exactness of the SOCP relaxation under
the optimal allocation of ESS. The exactness is numerically
evaluated based on the error between the right-hand side
and the left-hand side of (11). The reference current value
is 165 A. Table IX shows some of the statistic values that
describe the distribution of the errors. The result verifies that
AR-OPF model is superior to the R-OPF model concerning
guaranteeing the exactness of the SOCP relaxation.

TABLE VII
ESS ALLOCATION RESULT USING AR-OPF AND R-OPF MODEL

Case Location
using AR-OPF 4
using R-OPF 4

Power rating
548.4 kVA
548.2 kVA

Energy reservoir
1.616 MWh
1.659 MWh

TABLE VIII
COST AND OPERATIONAL BENEFITS USING AR-OPF AND R-OPF MODEL

AR-OPF
0.694
2.037

292.59

0.086

R-OPF
0.707
2.036

284.95

1.759

Investment cost ($ Million)
Dispatch error (GWh)
Grid losses (MWh)
Unserved energy to

satisfy the LDER (MWh)
Total energy

consumed (GWh)

101.53 102.89

TABLE IX
ERROR IN LONGITUDINAL LINE CURRENT (A)

95th
percentile
3.1E-1
1.1E-2

99th 99.9th
percentile  percentile
9.6E-1 4.1
2.5E-1 3.7E-1

median

4.7E-3
6E-4

Case

using R-OPF
using AR-OPF

D. Sensitivity Analysis on the Initial SoE

The results of dispatching operations are sensitive to the
ESS operational condition. In the proposed planning method,
only a few days are selected as typical day-types, and they
are treated discontinuously for the operation. In Sec. II-D, the
assumption on the initial and final SoE levels for each daily
operation is discussed. In this sensitivity analysis, the initial
SoE is chosen with various values to observe whether it plays a
significant role in quantifying the optimal dispatchability level
of ADNs, and ultimately influencing the size of ESSs. Table
X, Table XI indicate the ESS allocation and cost result with
different initial SOE conditions. The dispatch error in case of
an initial SOE=50% appears to be the largest. However, when
the sum of investment cost and the cost related to the dispatch
error are compared for all cases, the results show that setting
the initial SOE=50% gives the most economic ESS allocation.

TABLE X
ESS ALLOCATION RESULT WITH DIFFERENT INITIAL SOE LEVELS

Initial SOE | Location  Power rating  Energy reservoir
30% 4 507.7 kWh 2.218 MWh
50% 4 548.4 kVA 1.616 MWh
70% 4 631.1 kVA 2.052 MWh

TABLE XI
COST AND OPERATIONAL BENEFITS WITH DIFFERENT INITIAL SOES
30 % 50 % 70 %

Investment cost ($ Million) 0.867 0.694 0.842

Dispatch error (GWh) 1.995 2.037 1.964

Grid losses (MWh) 292.63  292.59  293.26

Unserved energy

to satisfy the LDER (Mwh) | +9E-3 ~ 0086~ 2.3E-3

Total energy

consumed (GWh) 103.01 101.53  102.81

V. DISCUSSION ON THE LIMITATION OF THE RESEARCH

Modeling the prosumption uncertainty can affect the fidelity
of the optimal solution regarding the allocation of ESS and
the dispatchabiliy level of an ADN. However, as modeling of
prosumption stochasticity is not the scope of this paper, the
prosumption scenarios are generated simply assuming that the
prosumption follows a normal distribution. Nevertheless, when
a modeler is equiped with a robust scenario generator which



models accurately the prosumption uncertainty, the proposed
approach can guarantee the reliable performance. Another
limitation of the proposed approach relates to the condition
on the objective function for guaranteeing the exactness of
the solution. This condition may limit the extendibility of the
application for various control objectives of DSO’s interest.
For example, the minimization of the voltage deviation or
control on ESS energy level may not satisfy the condition
for the exactness, and having these objective terms within
the objective function may affect the quality of the solution.
Therefore, appropriate modification on the AR-OPF model
would be necessary corresponding to such control objectives.

VI. CONCLUSION

In this study, we have presented a tool for the optimal
planning of ESSs within a distribution network to achieve
its dispatchability. We have shown that the uncertainty of
the prosumption can be compensated sufficiently with the
allocation and exploitation of ESS. The non-approximated and
convex OPF model, or the AR-OPF model is implemented
to account for the operational conditions of the distribution
network accurately. The planning problem is decomposed into
two blocks to satisfy the condition for the exactness of the
solution via the AR-OPF model. In the 1st block, the allocation
of ESS is determined along with the corresponding LDER by
implementing the linearly approximated OPF model. The AR-
OPF is used in the 2nd block of the problem to check the
compatibility of the allocated capacity for the real operation
of the grid to satisfy the LDER and to determine the optimal
location of the ESS to minimize the grid losses. We validated
the effectiveness of the proposed method for a real Swiss
ADN of 55 nodes by demonstrating that the allocation of ESS
successfully reduced the dispatch error.
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APPENDIX A
SCENARIO REDUCTION ALGORITHM

Scenario reduction techniques are typically applied to select
a subset of initial scenario set. The quality of a stochastic op-
timization solution highly depends on how much the scenarios
in the subset can properly preserve the probabilistic properties
of the origianl scenario set. There have been specific studies on
the scenario reduction where the minimum number of reduced
scenarios is usually identified a-posteriori by observing the
converging trend of the objective value with different number
of reduced scenarios (e.g. [36]). However, for the sake of
simplicity, we adopted the algorithm shown in Alg. 2 to a-
priori obtain the minimum number of reduced scenarios that
can approximate the distribution function of the uncertainty.
Each of the generated scenarios is expressed as vector vg=
{vh,...vil}, Voeda, where H=Y", (T4 4TRLD)
+TPV, 7ALW) TRLM) and TPV are the time duration of the
daily active, reactive load at node [, and PV irradiation profiles,
respectively. Firstly, we construct a cumulative distribution
function (CDF) for each random Variable v with scenario
set ®4,, which is given by y?—cdf vi)=PW"<v}),Voe
Dy, he{l, ..., H}=H. cdf ! €[0, 1] represents its in-
verse functlon. The obejctive of the algorithm is to find the

minimal number of reduced scenarios such that the aver-
age distance between the CDF of the initial scenario set
and that of the reduced scenario set over number of check
points becomes smaller than a given tolerance. We define
the check points for caclulating the distance between the
CDF curve of scenario set ®4, with another CDF curve
as Cdf_l(yCde (q))a Yo, (q)6[07 1]anE{17 ~-~7Nq}' In this pa-
per, we selected N,=5, with quantiles ranging [0.05,0.95].
The scenario reduction process is initialized by applying
K-Medoids clustering method [35] based on the Euclidean
distance between each scenario pairs to reduce the origi-
nal scenario set into set ‘I):zy with a single representative
scenario. The average distance between CDFs of different
scenario set ®q, and @, is calculated by index defined by
2

) cdf (v, (q))—cdf*l(yg;& (@)
A=DqWa| 77 2on AT, (@)

wy is the weight coefficient assigned to gth check point. As the
distance is bigger than a threshold value, the scenario reduction
is re-applied to produce a scenario set with incremented num-
ber of scenarios than the previous iteration. Fig. 6(a) shows
a CDF of original scenario set with the CDFs of different
reduced scenario sets regarding a single random variable. The
proposed algorithm determines that the minimum number of
scenarios required is 39. Fig. 6(b) shows the evolution of A
w.r.t the number of reduced scenarios.

, where

1
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>
£ —1000|| 025
So05 10 | 402
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0
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Number of scenarios

(@) (b)
Fig. 6. (a) CDF of initial scenario set and reduced scenario sets with different
number of reduced scenarios, (b) Average of normalized distance between
initial and reduced scenario sets with different number of reduced scenarios

Sample value

Algorithm 2 Scenario reduction
1: Generate Ng,, scenarios for v
Draw CDF graphs of v, Vh€H with scenario set Dy,
Initialization: N¢./ =0, A 0
while \A\>t0lerance do
N. q>/ N, q>/ +1
Obtam qu ’ scenarios for v via K-medoids clustering
Draw CDF graphs of v",VheH with scenario set @/, dy-
Compute A between the two CDFs of set 4, and P/
end while
return Nq):iy

dy*
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