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1 Introduction

Black hole (BH) information paradox [1, 2] has long history ever since the discovery of

BH evaporation [3]. Recently there has been a remarkable progress towards its resolution.

Within the framework of the AdS/CFT correspondence, refs. [4, 5] performed semiclassical

calculations of the entanglement entropy of an evaporating BH and demonstrated that it

follows the Page curve [6, 7], consistent with unitarity. To derive the expression for the

entanglement entropy these calculations use complex saddle points of the gravitational path

integral — replica wormholes [8–12]. It has been suggested that this approach applies also

beyond the holographic setting leading to the “island rule” for the entropy of the Hawking
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radiation [11–15]. It still remains to be understood, however, how quantum correlations

are encoded in the state of the emitted quanta. Only then the information paradox will be

completely resolved [16, 17].

A direct approach to study unitarity of BH evaporation is to compute the related

elements of the gravitational S-matrix [18]. In this case one treats BH formation and

its subsequent decay as a scattering process [18, 19] mediated by a metastable bound

state. On general grounds, consideration of this complete process appears more adequate

than its splitting into separate stages of collapse and evaporation. It was argued in [20]

that when both initial and final states of the scattering process are semiclassical, the

related amplitudes can be evaluated using complex saddle points of the path integral with

appropriate boundary conditions, cf. [21, 22].

In this paper we further develop complex semiclassical method for gravitational S-

matrix. Using this method, we compute the scattering amplitudes and probe the entropy

of black holes in (1 + 1)-dimensional dilaton gravity.

We start with an outline of the method. Consider complex quantum transition includ-

ing collapse of matter in pure initial state Ψi into a black hole and evaporation of the latter

into the state Ψf . This process interpolates between the free flat-space states Ψi and Ψf

and therefore defines a gravitational S-matrix [18]. Schematically, one can write a path

integral for the transition amplitude as

Afi ≡ 〈Ψf |Ŝ|Ψi〉 =

∫
DΦ eiS

′[Φ] Ψ∗f [Φ] Ψi[Φ] , (1.1)

where S′[Φ] is the classical action and Φ includes all fields of the model — matter fields, met-

ric, and Faddeev-Popov ghosts. Precise definition of the gravitational path integral (1.1) is

a formidable task. One can assume, however, that the initial and final states of the process

are semiclassical. In field theory this means that they contain many quanta at high oc-

cupation numbers. Then the integral can be evaluated in the saddle-point approximation,

giving Afi ' eiS
′[Φcl] Ψ∗f [Φcl] Ψi[Φcl], where the semiclassical configuration Φcl extremizes

the integrand in eq. (1.1) i.e. solves the classical field equations.

Importantly, Φcl does not coincide with the classical collapsing solution: like all con-

figurations in the path integral (1.1) it starts from the flat space in the past and arrives to

it in the future. Since real solutions with these properties do not exist, Φcl is a complex

saddle point describing an exponentially suppressed process. This is to be expected: the

intermediate black hole mainly emits Hawking radiation with low occupancies, and the

probability of producing a semiclassical state Ψf is exponentially small.

Generically, there may exist many complex saddle points for eq. (1.1), and one has to

select the physical one giving the main contribution into the path integral. To this end,

we use the method suggested in [20] (see [23, 24] for quantum mechanical applications).

The main idea is to enforce the scattering boundary conditions in the path integral (1.1)

with a special variant of a constrained instanton method. After that the physical complex

solutions are obtained by smooth deformation of the real solutions that describe classical

low-energy scattering without black hole production.
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Figure 1. Penrose diagram for the vacuum solution in the CGHS model. The boundary φ = φ0
cuts off the strongly coupled region to the left making the model semiclassically tractable. Dashed

line shows the trajectory of a particle reflecting off the boundary.

Our method reduces construction of the semiclassical gravitational S-matrix to solu-

tion of the classical field equations in the complex domain. Though this is in principle

managable, applications to four-dimensional field theories with dynamical gravity are chal-

lenging. So far this method has been applied only in spherically reduced models with

simplified matter content [20].

Below we consider another simplified model based on the two-dimensional Callan-

Giddings-Harvey-Strominger (CGHS) [25, 26] dilaton gravity. The model describes inter-

action of a non-dynamical metric gµν(x) and dilaton φ(x) with matter. The action of

this model is qualitatively similar to that of spherically-reduced multidimensional gravity,

where gµν includes the time and radial metric components and e−2φ is related to the areas

of the extra spheres [26]. The vacuum solution in this model has flat gµν and linear dila-

ton field φ changing from −∞ to +∞. For positive values of φ, gravity becomes strongly

coupled precluding the semiclassical analysis. To make the model tractable, we cut off

the strongly coupled region by introducing a reflective boundary along the line of constant

dilaton φ(x) = φ0, where φ0 is negative and large [27–31]. All fields in the path integral are

then restricted to the submanifold φ < φ0 (the rightmost region in figure 1). This model

was shown to be equivalent to the flat limit of the Jackiw-Teitelboim gravity [32, 33] with

a boundary both at the classical [34] and quantum level [35].

We also make the second radical simplification. Instead of a full-fledged field theory,

we represent the matter sector with a point particle of mass m moving along the trajectory

xµ = xµ∗ (τ). One can interpret it as a toy model for the narrow wavepacket in field

theory. We find complex semiclassical solutions Φcl = {gµν(x), φ(x), xµ∗ (τ)} and compute

the transition amplitudes of the particle. At low energies M the particle trivially scatters

off the boundary with unit probability, see the dashed line in figure 1. However, once the
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energy exceeds a certain critical value Mcr the semiclassical solutions become complex.

Initial and final parts of these solutions describe formation of an intermediate BH with

mass M from the particle and, after complex evolution, a particle in the final state. The

transition probability equals

Pfi = |Afi|2 ' e−2π(M−Mcr)/λ , M > Mcr , (1.2)

independently of the particle mass m. Here λ is the CGHS energy scale. Notably, Mcr

coincides with the minimal mass of black holes in the model. It is worth stressing that our

semiclassical method provides the phase of the amplitude, in addition to its absolute value.

One can interpret the probability (1.2) as follows [22]. The intermediate BH has en-

tropy ΣBH(M) and an exponentially large number of states exp(ΣBH). Then it is expected

to decay into the single-particle final state with probability P ∝ exp(−ΣBH). Comparing

to eq. (1.2), we find the entropy of the CGHS black holes,

ΣBH = 2π(M −Mcr)/λ . (1.3)

This expression is consistent with the results for BH entropy in similar models [36–39].

Our result, however, raises a puzzle. A naive extrapolation to our model of the

Gibbons-Hawking Euclidean calculation [40] of the BH entropy gives,

Σnaive
BH = 2πM/λ , (1.4)

independently of the boundary parameter φ0. The expression (1.4) would imply that the

entropy of the critical black hole with mass Mcr is non-zero. If this were the case, one

would see an unphysical jump of the scattering probability Pfi at M = Mcr. Our result in

eq. (1.2), quite consistently, has no jump.

Note that the constant term in BH entropy is not fixed by the laws of BH thermody-

namics. In previous Euclidean calculations of BH entropy in dilaton gravity, this constant

was added somewhat ad hoc. We show that eq. (1.3) can be recovered naturally by a suit-

able modification of the Euclidean procedure once the presence of the boundary at φ = φ0

is taken into account.

It is worth stressing that the arguments leading to eq. (1.3) do not apply to multidi-

mensional gravity, where critical BHs are known to have nonzero entropy [40, 41]. The

masses of the latter are minimal only among the black holes with given charges and/or

angular momenta, whereas the absolute minimum is reached by the neutral BH with the

Planckian mass. In this case collision of charged particles may lead to formation of a neu-

tral BH, with charge and angular momentum carried away by bremsstrahlung. Then the

corresponding scattering probability is a continuous function of energy [20].

The present paper is organized as follows. In section 2 we introduce our setup. The

scattering amplitude is calculated in section 3. In section 4 we discuss the entropic interpre-

tation of the scattering probability and the Euclidean calculation of BH entropy. Section 5

is devoted to conclusions. Several appendices contain details of the calculations.
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2 The setup

2.1 Dilaton gravity

We consider non-perturbative scattering in two-dimensional dilaton gravity with a bound-

ary [31], see also [25, 27–30, 35]. The gravitational action1

Sgr =

∫
φ<φ0

d2x
√−g e−2φ

[
R+ 4(∇φ)2 + 4λ2

]
+ 2

∫
φ=φ0

dτ0 e−2φ (K + 2λ) (2.1)

describes the CGHS model [25] with non-dynamical metric gµν(x) and dilaton φ(x). Be-

sides, it includes the timelike boundary at φ = φ0 which cuts off the region of strong

coupling. Importantly, a regulating boundary should be present in all configurations in

the path integral (1.1), otherwise the CGHS fields would become singular at the quantum

level [35, 42]. In eq. (2.1) we included the Gibbons-Hawking term [40] at φ = φ0 with

proper time τ0, extrinsic curvature K = ∇µnµ0 and outer normal2 nµ0 . Parameter λ sets

the energy scale of the model.

The semiclassical expansion is controlled by the combination e2φ0 . Indeed, a shift

φ 7→ φ+φ0 brings this parameter in front of the classical action, at the place of the Planck

constant in the path integral. In what follows we consider the case

e2φ0 � 1 , (2.2)

and work to the leading order in this parameter.

Without matter, the general solution in the bulk is,

ds2 = −f(r) dt2 +
dr2

f(r)
, φ = −λr , f(r) = 1− M

2λ
e−2λr , (2.3)

where M is the Arnowitt-Deser-Misner (ADM) mass. This constitutes the two-dimensional

analog on the Birkhoff theorem [43], which we derive in appendix A.1 for completeness.

For M = 0 the spacetime is flat, while for M > 0 it describes a black hole. In eqs. (2.3)

we use Schwarzschild coordinates with the “radius” r = −φ/λ and the orthogonal time t.

The light-like line r = rh,

rh =
1

2λ
log

(
M

2λ

)
, (2.4)

with f(rh) = 0 is a black hole horizon. Penrose diagrams of the solutions with M = 0 and

M > 0 are shown in figures 1 and 2, respectively.

It is not enough, however, to solve the bulk field equations: one should also add

the boundary. This amounts to cutting off the spacetime at φ = φ0 and imposing the

boundary condition

nµ0∇µφ = λ at φ = φ0 , (2.5)

which follows from variation of the action (2.1) with respect to the boundary metric, see

appendix A.3. The spacetime (2.3) satisfies eq. (2.5) only for M = 0 when it is flat. The

1We use the metric signature (−,+) and Greek indices µ, ν, . . . = 0, 1.
2The direction of the normal is fixed by the condition nµ0∇µφ > 0.
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Figure 2. Black hole in the CGHS model with a boundary. The field equations break down at the

line φ = φ0, indicating a singularity.

breakdown of the equations of motion at the line φ = φ0 for M 6= 0 implies that it should

be interpreted as a singularity. This line is spacelike and hidden under the black hole

horizon if rh > −φ0/λ or M > Mcr, where

Mcr = 2λe−2φ0 (2.6)

is the critical mass, see figure 2. At M < Mcr, M 6= 0 the solution (2.3) is a spacetime with

timelike naked singularity. The latter does not form in the collapse of a regular matter [31].

2.2 Classical scattering

Now we want to consider scattering of a point particle with mass m and action

Sm = −m
∫
dτ (2.7)

off the boundary. Here the parameter τ is a proper time of the particle. One can find

the particle trajectories using the well-known techniques developed for thin shells in mul-

tidimensional gravity [44]. We describe the particle trajectory with radius r = −φ/λ as a

function of the proper time r = r∗(τ). The two-dimensional Birkhoff theorem guarantees

that the empty spacetime regions to the left and to the right of the particle are either

Schwarzschild or Minkowski.

Then, if the particle starts evolution in Minkowski spacetime, the solution in the

“inner” region r < r∗ remains flat,

ds2 = −dT 2 + dr2 , φ = −λr . (2.8)

Note that we introduced the notation T for the time coordinate in the inner region to

emphasize its difference from the time t of the distant observer. Similarly, the “outer”

region r > r∗ is described by the Schwarzschild metric (2.3) with conserved gravitational

mass M .

Since the particle energy-momentum tensor is concentrated at the worldline, the deriva-

tives of the metric and dilaton change discontinuously across it. In appendix A.2 we derive

– 6 –
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the Israel junction conditions for the jumps of the extrinsic curvature and normal derivative

of the dilaton,

[nµ∇µφ] =
m

4
e2φ(r∗) , [K] = 2 [nµ∇µφ] . (2.9)

Here the square brackets represent difference of the values at r∗+0 and r∗−0; the worldline

normal nµ points towards large r. Substituting the inner and outer spacetimes (2.8), (2.3)

into eq. (2.9) one finds equation of motion for the particle,

ṙ2
∗ + Veff(r∗) = 0 , Veff(r) = 1−

(
M

m
+
m

8λ
e−2λr

)2

, (2.10)

where dot is a derivative with respect to the proper time τ . Recall that M > m is the

particle total energy measured at infinity, cf. eq. (A.10). This equation has an intuitive

form of non-relativistic “energy conservation law” with effective potential Veff . The latter is

negative everywhere, it monotonically increases from a finite value at the boundary r = r0,

r0 = −φ0/λ , (2.11)

to 1−M2/m2 < 0 as r → +∞. The details of the derivation are given in appendix A.2.

Now it is clear that the left-moving particle with energy M < Mcr always reaches the

boundary r = r0 at some moment of time τ = τ×. Then it reflects back. In appendix A.3

we demonstrate that reflection of the particle from the boundary simply flips the sign of

its radial velocity, ṙ∗(τ× + 0) = −ṙ∗(τ× − 0). At late times the particle goes to r → +∞.

The classical story changes completely if the particle energy M exceeds Mcr. In this

case it first crosses the horizon rh > r0 of the outer metric (2.3) and thus forms a black

hole. Whence the particle can be retrieved only quantum mechanically with exponentially

small probability.

3 Semiclassical scattering amplitude

3.1 Semiclassical method

Quantum S-matrix is an operator connecting initial and final Fock states of the process.

It is formally defined as

Ŝ = Û0(0, tf ) Û(tf , ti) Û0(ti, 0) , (3.1)

where Û and Û0 are the interacting and free evolution operators, and the limits ti → −∞,

tf → +∞ are assumed. In the path integral representation eq. (3.1) reads,

Afi ≡ 〈Ψf |Ŝ|Ψi〉 =

∫
DΦ eiS0(0+,tf )+iS(tf ,ti)+iS0(ti,0−) Ψ∗f [Φ] Ψi[Φ] , (3.2)

where Φ denotes all fields of the model on the time contour in figure 3, while S and S0

are the interacting and free classical actions3 on the respective parts of the contour. Note

that the fields at the endpoints of the contour t = 0− and t = 0+ do not coincide. We also

introduced the wave functions Ψi, Ψf of the free initial and final states.

3We shortly denoted S′[Φ] ≡ S0(0+, tf ) + S(tf , ti) + S0(ti, 0−) in eq. (1.1).
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<e t

=mt

0− 0+

tfti
S(tf , ti)

S0(ti, 0−) S0(0+, tf )

Figure 3. Time contour in the path integral for the scattering amplitude.

We generalize eq. (3.2) to gravity in a straightforward way. In this case Φ includes the

particle trajectory r∗(τ), metric gµν , dilaton φ and Faddeev-Popov ghosts. The interacting

action

S(tf , ti) = Sgr + Sm + SGH , (3.3)

involves gravitational and matter contributions, as well as the standard Gibbons-Hawking

term SGH at infinity; see its definition in appendix C.

Importantly, we assume that configurations Φ = {gµν(x), φ(x), r∗(τ)} in the path inte-

gral (3.2) have trivial topology expected from the scattering processes. First, they should

contain the boundary φ = φ0. Second, they should start from flat spacetime at t = ti and

arrive to it in the future. This gives a preferred choice of the asymptotic time t changing

from ti to tf by the clock of the distant observer. The free actions S0 = Sm describe a

particle in flat spacetime and Ψi,f ∝ e∓ipr are the momentum eigenstates of this particle

with p =
√
M2 −m2.

In the semiclassical limit e2φ0 � 1 the classical action S becomes large and the inte-

gral (3.2) can be evaluated in the saddle-point approximation,

Afi ' eiStot[Φcl] , (3.4)

where

Stot[Φ] = S0(0+, tf ) + S(tf , ti) + S0(ti, 0−)− i ln Ψ∗f − i ln Ψi (3.5)

is the total action and Φcl is a complex classical solution extremizing Stot. The Faddeev-

Popov ghosts can be neglected at this point as they don’t contribute to the leading expo-

nential term.

3.2 From low to high energies

It is straightforward to compute the amplitude at M < Mcr substituting the real classical

solution into eq. (3.4), see appendix C. In the overcritical case, however, the task of finding

the relevant saddle-point configuration becomes non-trivial. The ordinary collapsing solu-

tions are of no use here, since they describe formation of black holes and therefore violate

the requirement of flat spacetime in the asymptotic future.

To enforce this requirement, we introduce a positive-definite and diffeomorphism-

invariant functional Tint[Φ] estimating the duration of the scattering process from the

viewpoint of a distant observer. Namely, Tint[Φ] should be finite on any scattering config-

uration Φ interpolating between flat spacetimes at t→ ±∞, and infinite otherwise. Then

– 8 –
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we constrain the path integral (3.2) to run only over configurations with finite values of

Tint[Φ]. Technically, this is implemented by inserting the unity

1 =

+∞∫
0

dT0 δ(Tint[Φ]− T0) =

+∞∫
0

dT0

+i∞∫
−i∞

dε

2πi
e−ε(Tint−T0) (3.6)

into the integrand of eq. (3.2) and interchanging the order of integration over DΦ and dT0dε.

To have a specific example, consider the choice

Tint[Φ] =

∫
d2x
√−g L(φ)

[
λ2 − (∇φ)2

]2
, L(φ) = e−4φδ(φ− φε)/λ2 , (3.7)

where the integration is concentrated on the line φ = φε which is far away from the

boundary, |φε| � |φ0|. Clearly, Tint in eq. (3.7) is positive-definite for real gµν and φ.

Besides, in the asymptotically Schwarzschild spacetime with mass M one finds Tint =∫
dtM2/4λ. Thus, this functional estimates the asymptotic time spent by the ADM mass

M in the “interaction region” to the left of φ = φε. We stress that our method is not

specific to the choice (3.7) and can exploit any appropriate positive-definite Tint.

Inserting the unity (3.6) into eq. (3.2), one finds the path integral with the “regularized”

interacting action

Sε[Φ] = S[Φ] + iε Tint[Φ]− iε T0 (3.8)

and the additional integrations over ε and T0. The δ-function (3.6) ensures that the con-

figurations Φ leave the “interaction region” in a finite “time” T0. Besides, we can use the

positive definiteness of Tint, to improve convergence of the path integral. To this end, we

deform the contour of ε-integration into the region <e ε ≥ 0.

At fixed T0 and ε the semiclassical solutions extremize Sε[Φ]. The additional saddle-

point integrals with respect to ε and T0 give ε = 0. We therefore perform calculations at

ε > 0 and send ε → +0 in the end, restoring the original saddle-point equations. The

“regularized” semiclassical solutions at ε > 0 have three important properties [20, 23, 24].

First, they leave the “interaction region” φ > φε in finite time. Second, the corresponding

fields are generically complex-valued. Third, they can be obtained by smooth deformation

of the classical reflecting solutions.

To demonstrate these properties, we consider the “shell-like” term (3.7) concentrated

at φ = φε. Junction at this shell changes the metric to the left of the shell, at r < −φε/λ.

By Birkhoff theorem, the form of this metric is still Schwarzschild, eq. (2.3), but with the

complex mass

M 7→ Mε = M + i ε′ . (3.9)

In appendix B we show that ε′ is positive and proportional to ε. After this replacement the

regularized saddle-point configurations change continuously with energy. At M < Mcr they

are close to the real classical solutions: the particle trajectory r∗(τ) reaches the boundary

at r = r0 and reflects from it, see figure 4a. The outer time t changes almost along the

real axis (figure 4b). Importantly, the horizon of the outer metric now acquires a positive

imaginary part, =mrh > 0, see eq. (2.4). Thus, even at M > Mcr the particle continues to

– 9 –
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=mr

<e rr0

Cr
rh

(a)

<e t

=mt

tfti

(b)

=mr

<e rr0

Cr
rh

(c)

<e t

=mt

τ×

π/2λ

π/2λ

ti

tf

(d)

Figure 4. Trajectory of the particle in complex planes of the radial and temporal Schwarzschild

coordinates for the regularized solutions at M < Mcr (top) and M > Mcr (bottom). The radial

coordinate r∗(τ) varies along the almost real contour Cr as the particle’s proper time τ changes from

−∞ to +∞. The particle bypasses the event horizon which is shifted upwards in the complex plane.

evolve along the contour Cr in figure 4c. It bypasses the horizon in complex r-plane, both

on the way in and on the way out. But now the outer Schwarzschild time of the particle is

essentially complex. Equations (2.3) and (2.10) imply,

t(r∗) =

∫ r∗

ri

dr

√
f(r)− Veff(r)

f(r) ṙ∗(r)
, ṙ∗(r) = ∓

√
−Veff(r) , (3.10)

where the integral runs along the contour Cr in figure 4c and the minus (plus) sign of ṙ∗
correspond to motion prior to (after) reflection at r0. The integrand in eq. (3.10) has a

pole at the horizon giving an imaginary time change

=m (tf − ti) = 2π Res
r=rh

f−1(r) =
π

λ
. (3.11)

Notably, the time contour in eq. (3.10) is smooth at finite ε > 0, see figure 4d. Since the

regularized solutions are now connected to the classical ones, we assume that they also

represent the physical saddle points of the path integral (3.2).4 Once the amplitude (3.4)

is computed, we send ε→ +0.

3.3 The result

By construction, the regularized saddle-point configurations have trivial topology, just

like the reflective classical solutions at low energies. Their action Stot is computed in a

straightforward way, given eq. (2.10) for the particle trajectory r∗(τ) and the inner and

4This assumption has been confirmed in quantum-mechanical systems by direct comparison with the

solutions of the Schrödinger equation [23, 24, 45, 46].
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M

<e Stot

m

Mcr 2Mcr
0

−5

5

−10

(a)

M

=mStot

m Mcr 2Mcr

20

30

10

0

(b)

Figure 5. Real (a) and imaginary (b) parts of the total action (3.12) for m = Mcr/3 (solid) and

m = 0 (dashed) as functions of the particle energy M . The critical black hole mass is Mcr = 10λ.

The interval M < m is kinematically forbidden.

outer metrics (2.3), (2.8). We perform this computation in appendix C. Here is the result,

Stot =− M −Mcr

λ
log

(
1− M + iε′

Mcr

)
+
p

λ
(1 + 2φ0)

− p

λ
log

(
1

2
+

m2M

8Mcrp2
+
p×
2p

)
+

2Mcr

λ
log

(
4Mcr(p× +M) +m2

4Mcr(p× +M)−m2

)
+
M

λ
log

[
4M3 − 3m2M + (4M2 −m2)p×

(p+M)3
+
m2(4M2 +m2)

4Mcr(p+M)3

]
,

(3.12)

where

p× =
√

(M +m2/4Mcr)2 −m2 (3.13)

is the radial momentum of the particle immediately after the collision with the boundary.

This result is finite and valid at all energies. It provides the absolute value and the phase

of the amplitude (3.4). In the massless case m = 0 the expression (3.12) simplifies,

Stot = −M −Mcr

λ
log

(
1− M + iε′

Mcr

)
+
M

λ

(
1− log

Mcr

2λ

)
. (3.14)

The infinitesimal mass shift iε′ in eqs. (3.12), (3.14) fixes the branch of the first logarithm

at M > Mcr leading to the imaginary part,

=m Stot =
π

λ
(M −Mcr) θ(M −Mcr) , (3.15)

which is independent of the particle mass m. This gives the probability of overcritical

scattering Pfi = |Afi|2 in eq. (1.2). The real and imaginary parts of the expression (3.12)

are shown in figure 5.

Let us outline where the imaginary part of Stot comes from. We consider5 the space-

time contour in figures 4c,d with almost real r∗(τ). Then the particle action (2.7) is

almost real as well by eq. (2.10). In appendix C we show that the bulk CGHS Lagrangian

5The analytic integral Stot is independent of the choice of the complex contour. However, separate

contributions to it depend on this choice.
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Figure 6. Schematic representation of the regularized scattering solution. Red dashed line shows

the particle trajectory.

in eq. (2.1) is a total derivative. This means that the interacting action S is a sum of

integrals along the boundary φ = φ0, initial and final Cauchy surfaces t = ti, tf , and the

timelike surface at the spatial infinity r = r∞, see figure 6. We find that the latter term

vanishes. The integrals at t = ti, tf combined with the free action S0 and the wavefunctions

Ψi, Ψf give complex contribution into Stot. Its imaginary part comes from the residue of

the Schwarzschild time at the horizon,

=mS
(1)
tot = M=m(tf − ti) =

π

λ
M θ(M −Mcr) . (3.16)

This is similar to the results of the previous studies [20, 22]. Remarkably, the contribution

of the boundary is also complex. One may notice from figure 6 that before and after the

collision the boundary lives in flat spacetime. These parts do not contribute into Stot.

We find, however, that the collision point τ× corresponds to a non-analytic break of the

boundary with the extrinsic curvature proportional to a δ-function,

Kφ=φ0 = 2δ(τ0 − τ0,×)
[
arcsh

√
−Veff − arcsh

√
−Veff/f

] ∣∣∣
r=r0

, (3.17)

where τ0 is the boundary proper time and τ0,× is its value at the collision point. The

expression (3.17) is complex because f < 0 at r = r0 < rh. Substituting it into eq. (2.1),

one finds an imaginary term

=mS
(2)
tot =

Mcr

λ
=m log

(
1− M + iε′

Mcr

)
= −π

λ
Mcr θ(M −Mcr) . (3.18)

There are no imaginary contributions in addition to eqs. (3.16) and (3.18). Summing up

these terms, we arrive to the expression (3.15).

4 Relation to black entropy

4.1 Euclidean calculation of entropy: a puzzle

Our semiclassical result (3.15) is natural from the quantum-mechanical viewpoint: the

probability Pfi of particle reflection is a continuous function of energy M , as it should

– 12 –
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Figure 7. Geometries for Euclidean calculations of the black hole entropy.

be. At M > Mcr i.e. above the threshold for classical BH production, this probability

is exponentially suppressed. The respective transitions are interpreted as two-stage pro-

cesses. First, the left-moving particle creates the BH of mass M classically. Second, the

intermediate BH decays into the final-state particle with exponentially small probability.

One expects [22, 47] that the probability of the latter stage is suppressed by the number

of BH states exp(ΣBH). This implies the expression (1.3) for the black hole entropy ΣBH.

A following puzzle arises. There is an alternative method for calculating BH entropy

based on Euclidean path integral [40]. When applied to our model, this method apparently

gives a different result (1.4). Let us briefly review the relevant calculation [38, 39]. One

computes the thermal partition function

Z(β) =

∫
periodic

DΦ e−SE [Φ] , (4.1)

where SE is the Euclidean CGHS action, see appendix D for the precise definition. The

integral is taken over configurations with period β in Euclidean time tE = it. In the

semiclassical limit the integral is saturated by the saddle point. The instanton corresponds

to Euclidean continuation of the BH exterior with the metric

ds2 = f(r) dt2E +
dr2

f(r)
, tE ∈ [0;β] . (4.2)

This spacetime has topology of a half-tube, where tE serves as a periodic coordinate, see

figure 7a. The black hole horizon corresponds to the tip of the tube. Notably, this tip

is a conical singularity if the period β is not equal to the inverse Hawking temperature

T−1
H = 2π/λ. As a consequence, the curvature has a δ-function contribution at the tip of

the cone,

R = 4π(1− βTH)
δ(2)(x− xh)√

g
+ 2λMe−2λr . (4.3)

The singular contribution vanishes for β = T−1
H .

Now one evaluates the Euclidean action on this solution,

SE = M(β − T−1
H ) , (4.4)

and the free energy,

F (β) ≡ −β−1 logZ(β) ' β−1SE(β) . (4.5)
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Note that the only non-vanishing contribution into the action comes from the δ-function

in eq. (4.3). Then the thermodynamical formula

ΣBH = β2∂F

∂β
= β

∂SE
∂β
− SE (4.6)

yields the “naive” entropy (1.4).

Thus, we have two different expressions for the BH entropy — eqs. (1.3) and (1.4) —

and we have to decide which one is correct.6

4.2 Experiments with the thermal gas

We now present several physical arguments against eq. (1.4). To this end, we couple

the dilaton gravity to the gas of massless particles — quanta of some massless scalar

field. Notice that the BHs cannot form classically from arbitrary configuration of this

field, even if its total mass is higher than Mcr. Indeed, the gravitational Lagrangian (2.1)

is explicitly proportional to the factor e−2φ ≡ e2λr. This means that the gravitational

interaction decreases exponentially at coordinate distance ∆r ∼ λ−1 from the boundary.

Then formation of BHs requires the energy Mcr to be concentrated within the interval ∆r ∼
λ−1. A configuration satisfying this condition, however, cannot carry large coarse-grained

entropy. Indeed, the entropy reaches maximum in a thermal state providing the bound

Σgas ≤
2Mcr

Tgas
∼ e−φ0 . (4.7)

Here we related the gas temperature to its energy density Tgas =
√

6ρgas/π and substituted

ρgas ∼Mcr/∆r. On the other hand, the entropy (1.4) is parametrically larger than eq. (4.7):

Σnaive
BH = 4πe−2φ0 at M = Mcr. If this expression were correct, it would be puzzling why

the critical BH cannot be formed from states with large entropy.

Further, the results on classical subcritical scattering [31] suggest that the entropy

of the critical BH is even smaller than (4.7). Namely, near the threshold of critical BH

formation reflection of the classical field from the boundary proceeds as follows. A part of

the incoming wavepacket reflects immediately, whereas the remaining part forms a long-

lived state with mass M ≈Mcr. The latter state decays into a narrow wavepacket carrying

a few highly blue-shifted particles. This may be interpreted as formation of a slightly

subcritical black hole decaying classically into a low-entropy state. Extrapolating this

picture to the critical black hole, we conclude that it should have an order-one entropy.

Our semiclassical formula (1.3) is consistent with this picture.

One may also try to form the black hole in an essentially quantum way. Namely,

suppose the spacetime is filled with a massless gas of temperature T ∼ λ. Eventually, the

black hole of mass M may appear, eating a part of the gas and providing the first order

phase transition. According to eq. (1.3), a part of gas entropy ∆Σgas = 2Mcr/λ ∼ e−2φ0

disappears in this process even if the black hole is critical. We have argued, however,

that the black hole cannot form in classical collapse of the low-temperature gas. Thus,

6Note that both expressions agree with the first law of BH thermodynamics TH∆ΣBH = ∆M .
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the probability of this process is exponentially suppressed by the CGHS action Sgr ∝
e−2φ0 ∼ ∆Σgas. Now, we recall that the entropy of a thermal ensemble can decrease with

exponentially small probability due to large fluctuations. The above process appears to be

one of them.

It could appear that the problem with entropy might be fixed by adding to the Eu-

clidean action a topological term

∆S
(χ)
E = 4πY χ = Y

∫
φ<φ0

d2xE
√
g R+ 2Y

∫
boundary

dτ0 κK (4.8)

with κ = +1. Here χ = 2− 2g − b is the Euler characteristic of spacetime with g handles

and b boundaries. Being a topological invariant, it does not affect the semiclassical dynam-

ics. Also, the action of the flat vacuum with χ = 0 remains unchanged. At the same time,

the new term adds a constant ∆S
(χ)
E = 4πY to the action of the instanton in figure 7a and

therefore shifts the entropy in eq. (4.6) by −4πY . This reproduces eq. (1.3) if Y = e−2φ0 .

Note, however, that the term (4.8) with positive Y � 1 leads to severe divergence7 of the

path integral (4.1) due to exponentially enhanced contributions of multihandle geometries.

Thus, it introduces strong coupling and does not cure the problem.

To see this more explicitly, let us focus on the case with massless matter. Then, at the

classical level, the term (4.8) can be completely absorbed by the field redefinition

gµν =
g′µν

1 + Y e2φ′
, e−2φ = e−2φ′ + Y . (4.9)

This gives the CGHS action (2.1) for g′µν and φ′ with two different parameters: new

semiclassical constant e2φ′0 = [e−2φ0−Y ]−1 in place of e2φ0 � 1 and new “mass” parameter

λ′ = λeφ
′
0−φ0 in the boundary term.8 The choice Y = e−2φ0 corresponds to a strongly

coupled model with φ′0 = +∞.

4.3 Correcting the Euclidean calculation

We now suggest a modification of the Euclidean calculation that reproduces the result (1.3)

for the entropy. The approach of section 4.1 misses an important property of our model,

namely, the presence of the boundary at φ = φ0. This boundary is necessary because it

shields the singularities of the CGHS fields in the original Lorentzian path integral [27, 35,

42, 48–50]. Our complex scattering solutions satisfy this property, whereas the Euclidean

instanton in figure 7a does not.

We cure this problem by adding to the Euclidean spacetime a disjoint cap-like portion

with a closed boundary φ = φ0, see figure 7b. By Birkhoff theorem, the geometry of the cap

is given by the black hole metric (4.2), possibly with a different mass parameter M ′. The

latter must be larger than Mcr for the cap to be compact and satisfy the inequality φ < φ0.

The radial coordinate on the cap runs in the interval r0 < r < rh(M ′). Importantly, the

signature of the metric on the cap is (−,−) instead of (+,+) in the exterior region.

7Note that gs ∼ e4πY is a direct analog of the coupling constant in string theory.
8The bulk parameter λ remains unchanged. Recall that we related the boundary “mass” to λ by requiring

existence of a flat vacuum. This condition is not Weyl invariant and therefore broken by eq. (4.9).

– 15 –



J
H
E
P
0
8
(
2
0
2
0
)
1
4
2

This configuration does not satisfy the boundary condition (2.5) at φ = φ0 and thus it

is not an exact saddle point of the path integral (4.1). Rather, as shown in appendix D, it

should be interpreted as a constrained instanton extremizing the Euclidean action within

a subset of geometries with the boundary. Instead of solving the boundary conditions, one

minimizes the action with respect to the free parameter M ′.

The action of the additional Euclidean cap equals (see appendix D)

∆SE = M ′/TH , (4.10)

where the terms proportional to β have cancelled. The only remaining contribution comes

from the δ-function of the curvature at the horizon r′h. The latter has an opposite sign to

that in eq. (4.3) due to the metric signature (−,−). The minimum of ∆SE is reached at

the boundary M ′ →Mcr of the parameter region where the solution in figure 7b exists.

Adding up eqs. (4.4) and (4.10) at M ′ = Mcr one reproduces eq. (1.3). This restores

agreement between the semiclassical entropy and the scattering probability.

In the generalized model with topological term (4.8) one still obtains correct en-

tropy (1.3). Indeed, the additional cap in figure 7b has the same topology as the original

Gibbons-Hawking instanton, but its contribution9 into eq. (4.8) has opposite sign due to

(−, −) signature. Thus, ∆S
(χ)
E = 0 for any Y .

5 Conclusions

In this paper we further developed complex semiclassical method for calculating S-matrix

elements in gravity. We considered a simplified setup where the point-like quantum particle

scatters off the boundary in two-dimensional Callan-Giddings-Harvey-Strominger (CGHS)

model. The semiclassical method provided the amplitude of a complete transition between

the initial particle moving with energy M towards the boundary and an outgoing final

particle with the same energy. At low energies this reflection proceeds classically and

the transition probability is of order one. However, once the particle energy exceeds the

minimal mass of black holes (BHs) in the model, the amplitude becomes exponentially sup-

pressed. Then the respective transition can be interpreted as production of an intermediate

BH and its subsequent decay into an outgoing particle. The probability of such transition

is naturally identified with exp(−ΣBH), where ΣBH is the BH entropy. It is important to

stress that our analysis provides not only the absolute value of the amplitude, but also

its phase.

Our result implies that the entropy of the minimal-mass BH vanishes. This is consistent

with the expressions for BH entropy in similar two-dimensional models [36–39]. We noticed,

however, an apparent conflict between this result and the calculation of the BH entropy

using the Gibbons-Hawking Euclidean approach. We suggested a natural modification of

the Euclidean calculation that takes into account the presence of the boundary and recovers

the correct entropy obtained from the scattering probability.

Our results demonstrate that the semiclassical S-matrix provides important insights

about black holes, even if the simplified matter content is considered. It is straightforward

9In this case κ = nµ0n0µ = −1, or the term is not a topological invariant.
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to apply our approach to spherically-symmetric sectors of multidimensional gravities. In

particular, the case of 4 dimensions was considered in [23]. A simplified matter content in

this case is provided by thin spherical shells with dynamical radius R = R(τ).

Let us outline several directions for future research.

The phase of the amplitude is known to contain information about temporal properties

of the scattering process [51]. It will be interesting to extract this information from our

results and compare it to the characteristic time scales of the BH evaporation, e.g. the

scrambling time [7].

Further development of the semiclassical S-matrix approach will be inclusion of full-

fledged matter fields. In field theory, the semiclassical amplitudes can be used for studying

quantum correlations in the Hawking radiation and for direct tests of unitarity. As an

example, consider the identity satisfied in any (d+ 1)-dimensional unitary theory,

e
∫
ddk a∗kbk = 〈a|b〉 = 〈a|Ŝ†Ŝ|b〉 =

∫
Dc∗Dc e−

∫
ddk c∗kck

[
〈c|Ŝ|a〉

]∗
〈c|Ŝ|b〉 , (5.1)

where |a〉, |b〉 and |c〉 are the flat-space coherent states in the beginning and end of the

scattering process. One can write the r.h.s. in eq. (5.1) as a path integral using eq. (1.1).

At large ak and bk the initial states are semiclassical. If they are different, their overlap is

exponentially suppressed. Then the integral on the r.h.s. can be evaluated in the saddle-

point approximation. Importantly, the relevant saddle-point solutions should interpolate

between flat spacetimes in the initial and final asymptotic regions. Comparing the saddle-

point result to the l.h.s. of eq. (5.1), one will perform a nontrivial check of unitarity.

In the context of 2-dimensional dilaton gravity one can add one-loop corrections by in-

cluding the Polyakov effective action [25] and, optionally, Russo-Susskind-Thorlacius (RST)

counterterm [27, 35]. This modification may clarify relation between our semiclassical S-

matrix and the conventional black hole evaporation due to one-loop quantum corrections.

Note, however, that the Polyakov term is nonlocal and therefore introduces an additional

effective field into the model. Solving the semiclassical equations in this case will require

full field-theoretical treatment and goes beyond the scope of this paper.

Another interesting direction of research would be to relate the semiclassical S-matrix

to the new “island” method for calculating the entanglement entropy of the Hawking

radiation [4, 5, 11–15]. The latter method indicates purification of the Hawking radiation

in the final state. Technically, it makes use of “replica wormholes” [8–12], saddle points

of the gravitational path integral for the trace Tr ρ̂n, where ρ̂ is the density matrix of the

radiation and n is an arbitrary power. If BH is formed from a pure state |Ψi〉, the final

density matrix equals ρ̂ = Ŝ|Ψi〉〈Ψi|Ŝ†. Thus, Tr ρ̂n can be formally written using the path

integral (1.1) for the S-matrix. This suggests that the relevant saddle-point solutions in

the two methods may be related to each other by some kind of analytic continuation.
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A Classical solutions

In this appendix we summarize the field equations and discuss the relevant solutions.

A.1 Birkhoff theorem

Varying the action (2.1), (2.7) with respect to gµν and φ, we find,

∇µ∇νφ+ gµν
[
(∇φ)2 −�φ− λ2

]
= e2φ Tµν/4 , (A.1)

(∇φ)2 −�φ− λ2 = R/4 , (A.2)

where � ≡ ∇µ∇µ is the covariant d’Alembertian and

Tµν = − 2√−g
δSm
δgµν

(A.3)

is the matter energy-momentum tensor. It will be discussed later.

In an empty spacetime region one sets Tµν = 0 and arrives to the system

2∇µ∇νφ = gµν�φ , (∇φ)2 − 1

2
�φ = λ2 , �φ = −R/2 , (A.4)

where the second equation is a trace of eq. (A.1). It will be convenient to use the

Schwarzschild gauge,

ds2 = −h(r, t) dt2 +
dr2

f(r, t)
, φ = −λr , (A.5)

where the spatial coordinate r tracks the dilaton field φ and the time t is orthogonal to r.

The first of eqs. (A.4) gives,

∂tf = ∂r(h/f) = 0 ,

implying that the metric component f = f(r) is time-independent and h = c(t)f(r) with

arbitrary c(t). One can fix h = f(r) using the residual time reparametrization invariance

in eq. (A.5).

With these simplifications the second of eqs. (A.4) reduces to

∂rf = 2λ(1− f) , (A.6)

with general solution (2.3). The Schwarzschild mass M is an arbitrary integration con-

stant in this solution. It is straightforward to check that the third of eqs. (A.4) is now

automatically satisfied.

To summarize, we demonstrated that the static black hole spacetime (2.3) with arbi-

trary mass M is the only solution in an empty patch of spacetime. This is the analog of

the Birkhoff theorem in the present context [43].
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A.2 Junction conditions and equation of motion for the particle

It will be convenient to introduce Gaussian normal coordinates (τ, n) near the particle tra-

jectory xµ∗ (τ). Here n measures the geodesic distance to the trajectory and τ is orthogonal

to n,

ds2 = −a(τ, n) dτ2 + dn2 . (A.7)

In these coordinates the particle trajectory is n = 0. We choose τ to coincide with the

proper time along the trajectory: a(τ, 0) = 1. By construction, a(τ, n) is continuous at

n = 0, as opposed to the metric components in the Schwarzschild gauge.

Variation of the action (2.7) with respect to gµν gives the particle energy-momentum

tensor (A.3),

Tµν = mẋµ∗ ẋ
ν
∗ δ(n) ,

where (ẋτ∗ , ẋ
n
∗ ) = (1, 0) is the particle velocity. Since eq. (A.1) has a δ-function in the r.h.s.,

the normal derivatives of a and φ are discontinuous at n = 0. Equations (A.1), (A.2) take

the from

∂2
nφ = m e2φδ(n)/4 + (regular terms) ,

∂n(∂na/a) = 4∂2
nφ+ (regular terms) , (A.8)

where we have kept only the “singular” terms with the second n-derivatives, which are

proportional to δ(n). Now, we integrate eqs. (A.8) from n = −0 to n = +0 and rewrite

them in the covariant form using ∂nφ = nµ∇µφ and ∂na/(2a) = K. We arrive to the

junction conditions (2.9).

Since nµ∇µφ and K are frame-independent, one can compute them in different co-

ordinate systems (T, r) and (t, r) at the two sides of the particle trajectory. The outer

trajectory normal in these regions is

(nT , nr) = (ṙ∗, Ṫ∗) , (nt, nr) =

(
ṙ∗
f
, ṫ∗f

)
, (A.9)

where Ṫ∗ and ṫ∗ can be expressed from eqs. (2.8) and (2.3),

Ṫ∗ =
√

1 + ṙ2
∗ , ṫ∗ =

√
f(r∗) + ṙ2

∗
f(r∗)

.

Substituting the normal into the first of eqs. (2.9) one obtains the energy conservation law

M = m
√

1 + ṙ2
∗ −

m2

8λ
e−2λr∗ . (A.10)

The second junction condition in eqs. (2.9) is a time derivative of eq. (A.10). It is trivially

satisfied once eq. (A.10) is solved. Equation of motion (2.10) from the main text is obtained

by squaring eq. (A.10).
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A.3 Boundary condition and reflection law

The saddle-point configurations Φcl(x) should extremize the action (2.1) with respect to all

variables, in particular, the metrics gµν at the boundary φ = φ0. Due to the reparametriza-

tion invariance, it is enough to consider only the variations preserving the coordinate posi-

tion of this boundary. Then δφ = 0 and δn0µ ∝ n0µ at the line φ = φ0. We vary eq. (2.1)

with respect to gµν and leave only the boundary terms,

δSgr = 2e−2φ0

∫
φ=φ0

dτ0 (nκ0∇κφ− λ) τµτν δgµν ,

where τµ = dxµ/dτ0 is the unit vector along the line φ = φ0. Requiring the variation to

vanish, we obtain eq. (2.5).

To derive reflection law for the particle from the boundary, we notice that the collision

point τ× divides the particle trajectory xµ∗ (τ) into two smooth parts, see figure 6. Thus,

Sm = −m
τ×∫
τi

dτ −m
τf∫

τ×

dτ , (A.11)

where τi and τf are the initial and final times of the process. We vary eq. (A.11) with

respect to xµ∗ (τ), again keeping the position of the boundary intact: n0µδx
µ
∗ (τ×) = 0.

We obtain,

δSm = mτνδx
ν
∗ [τµ ẋ

µ
∗ (τ× + 0)− τµ ẋµ∗ (τ× − 0)] ,

where again only the boundary terms are shown. We obtain two equations,

τµ ẋ
µ
∗ (τ× − 0) = τµ ẋ

µ
∗ (τ× + 0) , n0µ ẋ

µ
∗ (τ× − 0) = −n0µ ẋ

µ
∗ (τ× + 0) , (A.12)

where the second one follows from the normalization ẋµ∗ ẋ∗µ = −1.

Now, we rewrite eqs. (A.12) in the coordinates (T, r) of flat spacetime patches imme-

diately prior to the collision and after it, see figure 6. This gives the reflection law

Ṫ∗(τ× − 0) = Ṫ∗(τ× + 0) , ṙ∗(τ× − 0) = −ṙ∗(τ× + 0) , (A.13)

which is used in the main text.

B Regularization method

Let us demonstrate that the regularization (3.7), (3.8) of the classical action is equivalent to

the imaginary shift of the Schwarzschild mass M inside the regulating “shell” r∗ < r < rε,

where rε = −φε/λ. To this end, we solve the field equations at r > r∗. Additional term in

the regularized action (3.8) produces imaginary energy-momentum tensor,

Tµν, ε = iε L(φ) (λ2 − (∇φ)2)
[
4∇µφ∇νφ+ gµν(λ2 − (∇φ)2)

]
,
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in the right-hand side of eq. (A.1). In the Schwarzschild gauge (A.5) the (rt) and (tt)

components of eq. (A.1) give

∂tf = 0 , ∂rM̃
−1(r) =

iε

4
λ2L(−λr) e−4λr , (B.1)

where M̃(r) is the coordinate-dependent mass entering the metric as

f(r) = 1− M̃(r)

2λ
e−2λr .

Integrating the second of eqs. (B.1) one arrives to the matching condition

1

M
− 1

Mε
=
iελ2

4

∫
dr L(−λr) e−4λr =

iε

4λ
. (B.2)

Here M = M̃(+∞) is the real conserved energy of the particle and Mε = M̃(r < rε) is the

Schwarzschild mass parameter inside the regulating “shell” at φ = φε. Expressing Mε from

eq. (B.2), one obtains eq. (3.9) from the main text.

C Computing the action

Let us calculate the total action (3.5) on the semiclassical solution. We work in the limit

ε → +0. To start, we note that the bulk Lagrangian in eq. (2.1) is a total derivative on

the field equation (A.2),

e−2φ
[
R+ 4(∇φ)2 + 4λ2

]
= 2�e−2φ .

Thus, the interacting action (3.3) is a sum of one-dimensional contour integrals over the

spatial infinity r = r∞ → +∞, the boundary φ = φ0, Cauchy surfaces t = ti, tf , and the

particle worldline r = r∗(τ), see figure 6,

S(tf , ti) = Sr∞ + Sφ=φ0 + Sti + Stf + Sm . (C.1)

This expression includes the Gibbons-Hawking term,

SGH = 2

∫
∞

dσ e−2φκ (K −K0) , (C.2)

over the spatial infinity r = r∞ and surfaces t = ti, tf → ∓∞. Here σ is the proper time

or the proper distance, K is the outer-normal extrinsic curvature, and κ = nµn
µ equals

+1 (−1) at the timelike line r = r∞ (spacelike curves t = ti, tf ). The parameter K0 is

introduced in eq. (C.2) to subtract the vacuum contribution; it equals 2λ at r = r∞ and

zero at t = ti, tf . Recall that in addition to the terms in eq. (C.1), the total action Stot

includes the free actions S0 and the wave functionals Ψi,f . We now evaluate all the listed

contributions one by one.
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Figure 8. Regularized boundary r = rδ in (a) the original coordinates and (b) Gaussian normal

frame attached to the particle.

Spatial infinity. It is straightforward to check that the term at r = r∞ vanishes as

e−2λr∞ ,

Sr∞ = 2

∫
r=r∞

dσ e−2φ (K − 2λ− 2nµ∇µφ)→ 0 , (C.3)

where we evaluated nµ∇µφ = −λ√f and K = f ′/2
√
f using the metric (2.3), then sent

r∞ → +∞.

The boundary. Adding the boundary term in eq. (2.1) to the contribution from the

bulk action, one obtains,

Sφ=φ0 = 2 e−2φ0

∫
φ=φ0

dτ0K , (C.4)

where the term proportional to λ has cancelled due to the boundary condition (2.5). Note

that φ = φ0 is a straight line in flat spacetime prior to and after the collision, see figure 6.

In these regions K = 0. Thus, the only non-zero contribution into Sφ=φ0 comes from the

singularity of the extrinsic curvature at the collision point.

To evaluate it, we use several technical steps. We regulate the calculation by slightly

shifting the line of integration to rδ ≡ r0 + δr, see figure 8a. In contrast to the boundary,

the regulating line intersects the particle trajectory twice, going from the flat geometry

to Schwarzschild and back. We will see that each of these intersection points gives a

δ-functional contribution into the integral (C.4).

Let us focus on the first intersection point A. In its vicinity we introduce the Gaussian

normal coordinates (τ, n) which are continuous at the particle worldline. In these coordi-

nates the line r = rδ has a break at A, see figure 8b. This is because the normal nµ0 to this

line has a discontinuity, as we now demonstrate. In the Schwarzschild and flat patches it

has the components

(nt0,+, n
r
0,+) =

(
0,−

√
f(rδ)

)
, (nT0,−, n

r
0,−) = (0,−1) .
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At the intersection point A we can decompose nµ0,± in the basis of the tangential and normal

vectors to the particle trajectory. In the two patches the former equals to

(τ t+, τ
r
+) = (ṫ∗, ṙ∗) , (τT− , τ

r
−) = (Ṫ∗, ṙ∗) ,

whereas the latter is given by eq. (A.9). In this way we find the components of nµ0 in the

Gaussian normal frame which are different on the two sides of the intersection point A,

(nτ0,±, n
n
0,±) = (− shψ±,− chψ±) , where shψ+ = −ṙ∗/

√
f(r∗) , shψ− = −ṙ∗ .

Here all the quantities are evaluated at A.

Now we regularize the break approximating the line r = rδ with a smooth curve. Its

normal is

(nτ0 , n
n
0 ) = (− shψ(τ),− chψ(τ)) , (C.5)

where ψ(τ) interpolates between ψ− and ψ+. The proper time and extrinsic curvature of

the curve are readily computed: dτ0 = dτ/ chψ, K = − chψ ∂τψ. Integrating K in the

vicinity of the point A, we obtain,∫
A

dτ0K = ψ− − ψ+ . (C.6)

We see that K contains a δ-function at A. Another δ-function with the same coefficient

comes from the second intersection point B. Taking the limit rδ → r0, we conclude that

the boundary extrinsic curvature is proportional to δ(τ0−τ0,×). Then eqs. (C.6) and (2.10)

yield eq. (3.17) from the main text.

Finally, using the formula for Veff and expressing r0 in terms of Mcr, we arrive to the

boundary action,

Sφ=φ0 =
Mcr

λ
log

(
1− M + iε′

Mcr

)
+

2Mcr

λ
log

(
4Mcr(p× +M) +m2

4Mcr(p× +M)−m2

)
, (C.7)

where p× is defined in eq. (3.13) and the imaginary part of the logarithm is fixed by the

regularization procedure from appendix B.

Initial and final Cauchy surfaces. We define them as the lines of constant

Schwarzschild time t = ti,f to the right of the initial and final particle positions ri,f contin-

ued as T = const to the left, see figure 9. The interacting action at the final surface equals

Stf = −2

∫
t=tf

dσ e−2φK . (C.8)

One can check that K = 0 on the outer and inner parts of this surface. Thus, the only

non-zero contribution comes from the jump of the normal at the particle position r = rf
where the two parts of the surface join. The same calculation as before gives,

Stf = −2 e2λrf

[
arcsh ṙ∗ − arcsh

ṙ∗√
f

]
rf

=
p

2λ
, (C.9)

where p =
√
M2 −m2 and in the second equality we have sent rf → +∞.
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Figure 9. The final Cauchy surface.

Computing the initial contribution at t = ti in a similar way, one obtains,

Sti = −2

∫
t=ti

dσ e−2φK =
p

2λ
, (C.10)

which doubles the contribution (C.9).

Particle worldline. The particle action (2.7) is already expressed as a contour integral.

We divide it into two parts, prior to the collision with the boundary and after it,

Sm = −m
∫ ri

r0

dr√
−Veff(r)

−m
∫ rf

r0

dr√
−Veff(r)

, (C.11)

where we also changed the integration variable to r ∈ Cr using eq. (2.10), see figures 4a,c,

and recalled that reflection flips the sign of ṙ∗. As before, ri,f are the particle positions at

t = ti,f . Explicitly calculating the integral (C.11) we find,

Sm =
m2

λp
log

(
1

2
+

Mm2

8Mcrp2
+
p×
2p

)
− m2

p
(ri + rf − 2r0) , (C.12)

where we extracted the asymptotics at ri,f → +∞. Note that this contribution diverges

linearly. The divergence will cancel, however, when we add the initial and final terms.

Initial and final terms. The expression (3.5) for Stot includes contributions from the

initial and final wavefunctions Ψi,f (r∓) = exp(∓ipr∓), as well as the free actions S0. The

latter describe freely moving particle with momenta ∓p,

S0(ti, 0−) = p(r− − ri)−Mti , S0(0+, tf ) = p(r+ − rf ) +Mtf ,

where r∓ are the positions of the free particle at t = 0∓. Combining the terms, one obtains

S0(ti, 0−) + S0(0+, tf )− i log Ψ∗f − i log Ψi = −p(ri + rf ) +M(tf − ti) . (C.13)

The change of the Schwarzschild time appearing here is given by the integral (3.10). Taking

it explicitly, we obtain,

M(tf − ti) = −M
λ

log

(
1− M + iε′

Mcr

)
− M2

λp
log

(
1

2
+

Mm2

8Mcrp2
+
p×
2p

)
(C.14)

+
M

λ
log

[
4M3 − 3m2M + (4M2 −m2)p×

(M + p)3
+
m2(4M2 +m2)

4Mcr(M + p)3

]
+
M2(rf + ri − 2r0)

p
.

Note that the contribution (C.13), (C.14) also diverges as ri,f → +∞.
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Collecting the terms (C.3), (C.7), (C.9), (C.10), (C.12), (C.13), and (C.14), one finally

arrives to the total action (3.12). Note that the divergences at ri,f → +∞ cancel between

eqs. (C.12) and (C.13), (C.14).

D Constrained instantons for the entropy

In this appendix we give details of the Euclidean derivation of BH entropy. Performing the

Wick rotation t = −itE in eq. (2.1), one obtains the Euclidean action,

Sgr, E = −iSgr =−
∫
d2xE

√
g e−2φ

[
R+ 4(∇φ)2 + 4λ2

]
− 2

∫
φ=φ0

dτ0 e−2φ(κK + 2λ)

− 2

∫
r=r∞

dσ e−2φ(κK − 2λ) , (D.1)

where we explicitly added the Gibbons-Hawking term at infinity. The parameter κ =

nµnµ = ±1 discriminates between the signatures (+,+) and (−,−) of the Euclidean space-

time. Note that this parameter is implicitly present10 in the original Minkowski action, or

the latter would be inconsistent.

To warm up, consider the standard Gibbons-Hawking instanton in figure 7a. Since the

solution (4.2) is stationary, one may naively expect that its Euclidean action is proportional

to
∫
dtE = β. This would give zero entropy in eq. (4.6). However, in the vicinity of the

horizon r − rh � rh the metric (4.2) takes the form

ds2 = dρ2 + ρ2dθ2 , (D.2)

where ρ =
√

2(r − rh)/λ and θ = λtE are the radial and angular coordinates. Since θ

changes between 0 and λβ, this metric describes a cone with angle deficit 2π − λβ. The

respective δ-contribution in curvature, eq. (4.3), is proportional to the angle deficit, not to

β. That is why the standard calculation gives non-zero black hole entropy.

Now, let us ensure that every single configuration in the Euclidean path integral (4.1)

includes a boundary xµ = xµb (τ0) and φ equals φ0 at this boundary. The latter condition

is enforced by a δ-function in the integration measure,∏
τ0

δ
(
φ(xb(τ0))− φ0

)
=

∫
DΛ e−

∫
dτ0 Λ(τ0) [φ(xb)−φ0] , (D.3)

with the boundary function Λ(τ0) playing the role of a Lagrange multiplier. The product

on the l.h.s. is taken over all points on the boundary. This adds an extra term to the

Euclidean action,

SE = Sgr, E +

∫
dτ0 Λ(τ0) (φb − φ0) , (D.4)

where φb ≡ φ(xb(τ0)).

10We fixed κ = +1 in eq. (2.1) because the scattering solutions included timelike boundary.
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Importantly, the term (D.4) changes the boundary conditions at x = xb. Indeed,

variations with respect to gµν and φ now give11

nµ0∇µφ = κλ− κ

4
e2φΛ (φb − φ0) , −2nµ0∇µφ+K + 2κλ = −κ

4
e2φΛ (D.5)

at x = xb(τ0). Besides, variation with respect to Λ(τ0) gives equation φb = φ0. In what

follows we find solutions at a fixed Λ and then take the limit φb → φ0.

It is clear that the Gibbons-Hawking instanton in figure 7a does not satisfy the con-

dition φb = φ0, as it has φ < φh < φ0. Thus, we have to suggest an alternative. Let

us assume that the true saddle-point configuration exists and it is real. Besides, we will

consider only the solutions with τ0-independent φb = −λrb. This is reasonable because we

will eventually send φb → φ0.

With the above assumptions, the only candidate for correct instanton is the discon-

nected configuration in figure 7b. The Birkhoff theorem guarantees that the additional

cap-like part in this configuration is described by the Schwarzschild metric (4.2) with mass

parameter M ′ in place of M . Besides, the instanton should include precisely one infinity

with fixed ADM mass M . This specifies the patch rb < r < r′h of the cap. Note that the

metric (4.2) is this case has signature (−,−) and κ = −1 in eqs. (D.5).

Substituting eq. (4.2) and constant φb into eqs. (D.5), one finds boundary conditions,

Λ(φb − φ0) = 2Mb

(
1 +

√
M ′/Mb − 1

)
, (D.6a)

(Λ/2 + 2Mb)
√
M ′/Mb − 1 = 2Mb −M ′ , (D.6b)

where Mb = 2λe−2φb . The limit φb → φ0 corresponds to Λ→∞ and M ′ →Mcr, with the

combinations on the l.h.s. of eqs. (D.6) held fixed. At this point we obtained a unique so-

lution.

The only additional contribution into the Euclidean action which is not proportional to

β comes from the conical singularity at its second horizon r′h. This time, however, the metric

in the vicinity of r′h is negative-definite: ds2 = −dρ2− ρ2dθ2, where ρ =
√

2(r′h − r)/λ and

θ = λtE . Thus, the respective δ-term of the curvature has opposite sign,

R = −4π(1− βTH)
δ(2)(x− x′h)√

g
+ 2λM ′e−2λr , (D.7)

cf. eq. (4.3). Substituting eqs. (D.6), (D.7) into eq. (D.4) one finds the action (4.10) of the

additional cap. The latter is β-independent. Note that M ′ in this expression is related to

φb via eqs. (D.6). The limit φb → φ0 implies M ′ → Mcr. Then eq. (4.6) reproduces the

entropy (1.3).

Note that alternatively one can ignore some saddle-point equations and directly min-

imize the Euclidean action over the free parameters of the solutions. In particular, the

discussion of section 4.3 corresponds to neglecting eq. (D.6b) and minimizing with respect

to the single remaining parameter M ′.

11In general, the second of eqs. (D.5) is obtained from the first by taking a derivative along the boundary

and dividing the equation by dφb/dτ0. The two equations are independent, however, if φb is constant

at x = xb(τ0).
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