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ABSTRACT: 34 

Back analysis can provide engineers with important information for better decision-making. 35 

Over the years, research on back analysis has focused mainly on optimisation techniques, while 36 

comparative studies of data interpretation methodologies have seldom been reported. This 37 

paper examines the use of three data-interpretation methodologies on the performance of 38 

geotechnical back analysis. In general, there are two types of approaches for interpreting model 39 

predictions using field measurements, deterministic vs population-based, both of which are 40 

considered in this study. The methodologies that are compared are (a) error-domain model 41 

falsification (EDMF), (b) Bayesian model updating and (c) residual minimisation. Back 42 

analyses of an excavation case history in Singapore using the three methodologies indicate that 43 

each has strengths and limitations. Residual minimisation, though easy to implement, shows 44 

limited capabilities of interpreting measurement data with large uncertainty errors. EDMF 45 

provides robustness against incomplete information of the correlation structure. This is 46 

achieved at the expense of precision, as EDMF yields wider confidence intervals of the 47 

identified parameter values and predicted quantities compared to Bayesian model updating. In 48 

this regard, a modified EDMF implementation is proposed which can improve upon the 49 

limitations of the traditional EDMF method, thus enhancing the quality of the identification 50 

outcomes. 51 

 52 
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1. INTRODUCTION 59 

Construction activities for underground structures are usually monitored. The rich information 60 

embedded in field-response measurements can be used to enhance knowledge of material 61 

parameter values and the overall behaviour of underground structures, leading to a potential 62 

reduction in construction risks and costs. The procedure whereby material parameter values are 63 

estimated from field-response measurements is often called back analysis, which is an essential 64 

step for implementing the observational method (Hardy et al19; Peck32). 65 

Four components are needed for an effective implementation of back analyses. These include 66 

(a) a calculation model (b) field-response measurements (c) a data interpretation methodology 67 

and (d) an optimisation technique. A data-interpretation methodology is defined as the 68 

methodology that determines how model predictions are assessed and interpreted given field-69 

response measurements. An optimisation algorithm is used to facilitate the search for solutions 70 

based on the interpretations specified by the data-interpretation methodology. 71 

Over the years, research into geotechnical back analysis has focused mainly on optimisation 72 

techniques. The performance of optimisation techniques, such as gradient-based techniques 73 

(Finno and Calvello12), Heuristic algorithms (Levasseur et al27; Knabe et al24), surrogate-based 74 

optimisation (Qi and Zhou36; Pai et al35; Zhang et al45) and multi-objective optimisation (Huang 75 

et al18; Jin et al23), has been studied in the context of geotechnical back analysis. A comparative 76 

study on the performance of these optimisation algorithms has also been reported (Yin et al44). 77 

Despite receiving less attention to date, other data-interpretation methodologies, such as 78 

probabilistic approaches, play an important role because they determine, in the presence of 79 

uncertainty, how model predictions are assessed and interpreted given field-response 80 

measurements. Only when model predictions are interpreted in a reliable manner can the 81 

benefits of advanced optimisation techniques be fully realised. There are in general two 82 

approaches for interpreting field measurements using model predictions, deterministic and 83 
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population-based approaches. Residual-minimisation (Finno and Calvello12; Jofre22; Ledesma 84 

et al25) is a deterministic approach that is commonly reported in the literature, while Bayesian 85 

model updating (Juang et al17; Qi and Zhou36) is the most commonly adopted population-based 86 

approach. More recently, the population-based error-domain model falsification (EDMF) 87 

methodology, which was previously used for bridge engineering (Cao et al9; Goulet et al15; 88 

Proverbio et al34), leakage detection (Moser et al30) and wind engineering (Vernay et al42), has 89 

also been applied and adapted for geotechnical excavation back analysis (Wang et al43). To 90 

date, however, these methodologies have not been systematically compared for the same 91 

geotechnical back analysis case.  92 

In this paper, a comparative study of methodologies involving residual minimisation, Bayesian 93 

model updating and error-domain model falsification is presented. Field measurements from 94 

an excavation case history in Singapore are used to provide information for data interpretation.  95 

Results are presented and discussed to highlight the strengths and limitations of each 96 

methodology.  Arising from this study, a modified EDMF implementation is also proposed, 97 

and improved performance is illustrated through a comparison with the results from the 98 

traditional EDMF implementation. 99 

 100 

2. DATA-INTERPRETATION METHODOLOGIES 101 

2.1. Error-domain model falsification (EDMF) 102 

This method was developed based on the assertion of Sir Karl Popper in The Logic of Scientific 103 

Discovery (Popper33) that models cannot be fully validated by data and that they can only be 104 

falsified. In the context of EDMF, the analysis starts from an initial population of material 105 

parameter sets.  The falsification process is then carried out to eliminate parameter sets that do 106 

not yield predictions compatible with field-response measurements, based on some pre-defined 107 

acceptance criteria. The remaining non-falsified parameter sets, which are termed candidates, 108 
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are considered as viable inputs for use with the numerical model to assess the behaviour of the 109 

actual system. In this regard, EDMF often yields a solution that comprises a population of 110 

candidates. The more detailed mathematical formulation is provided below. 111 

A plausible physics-based model defined by nθ parameter values and a model class Gk can be 112 

identified using information provided by field-responses measurements. In the context of an 113 

excavation problem, such measurements may take the form of a retaining wall deflection 114 

profile obtained from inclinometer readings taken at nv number of measurement locations. Let 115 

Ri and ŷI denote the real response and the measured response respectively at location i ∈{1, …, 116 

nv}. Values for Θ'k, which correspond to the true parameter values, can be assigned to obtain 117 

predictions gi,k (Θ'k) of the model class at location i. Modelling uncertainties arising from model 118 

simplifications and omissions and measurement uncertainties are expressed as Ui,gk and Ui,ŷ 119 

respectively at location i. The mathematical relationship between these quantities is given in 120 

Equation 1: 121 

 122 

g
i,k

(Θ'k)+ Ui,gk
= Ri= ŷ

i
+ Ui,ŷ   ∀i∈{1,…,ny} (1) 

 123 

Upon rearrangement, the Equation 2 is obtained: 124 

 125 

g
i,k

(Θ'k)-ŷ
i
=Ui,ck      (2) 

 126 

where Ui,ck is a random variable representing the difference between the measurement 127 

uncertainty Ui,ŷ and the modelling uncertainty Ui,gk at location i. 128 

The left term of Equation 2 represents the difference between model prediction and 129 

measurement data at location i. This term is typically called the residual ri. The probability 130 
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density function (PDF) describing the modelling uncertainty in the model class fUi,gk(ui,gk) can 131 

be estimated and applied in the analysis. 132 

The implementation of EDMF starts with the definition of an initial model set, which contains 133 

nΩ  model instances Ωk = {Өk,m, m = 1,…, nΩ}. Threshold bounds are then defined by 134 

computing the narrowest interval {ui,low, ui,high} that represents a probability equal to Ød
1/nv 

 for 135 

the combined PDFs fUi,c(ui,c) at each measurement location i. This computation is performed 136 

using the following equation: 137 

 138 

Ød
1/nv 

= ∫ fui,c (ui,c)dui,c   

ui,high 

ui,low 

∀i ∈{1,…,nv}   (3) 

 139 

A value of 0.95 for the confidence level Ød ∈ [0,1] is commonly employed. The confidence 140 

level Ød is adjusted using the Šidák correction (Abdi1; Šidák40) to take into account the fact that 141 

nv measurement locations are simultaneously considered. Uniform probability distributions 142 

create a hyper-rectangular acceptance region. Under this scheme, the correlation information 143 

between sensor locations is no longer needed, which is particularly helpful because it is often 144 

difficult to determine the correlation values between sensor locations. Goulet et al15 have 145 

shown that this scheme is conservative in many situations. Falsification is then performed 146 

according to the following equation: 147 

 148 

Ωk
''
={ϴk ∈ Ωk| ∀i ∈{1,…,nv} ui,low ≤ g

i,k
(ϴk)- ŷ

i
 ≤ ui,high}  (4) 

 149 

where the candidate model set (CMS), Ωk
′′, is made up of all model instances that have not been 150 

falsified. An instance Ө*k of a model class Gk is a candidate model if for each sensor location 151 

i ∈{1, …, nv}, the residual ri value falls inside the threshold bounds derived from Equation 3. 152 
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All model instances that belong to the CMS are assigned a constant probability, as it is often 153 

difficult to justify a more sophisticated distribution in practical situations. 154 

In large-scale, multi-staged excavations, a continuous falsification and prediction framework 155 

can be established. At an early or intermediate point in the excavation process, it is often useful 156 

and desirable to perform back analysis with field-response measurements and predict the field 157 

responses of subsequent excavation stages with the identified material parameter values. In the 158 

context of EDMF, predictions are made with all candidate models. Detailed mathematical 159 

development of EDMF can be found in Goulet and Smith16 and the implementation of it on a 160 

multi-stage excavation problem can be found in Wang et al43. 161 

 162 

2.2. Bayesian model updating 163 

Bayesian model updating starts from the evaluation of the likelihood function, which is defined 164 

as the joint probability that the residuals r are equal to the values computed with a given set of 165 

material parameter value, modelling uncertainty and measurement uncertainty. Following the 166 

notation in Section 2.1, the likelihood function can be expressed in Equation 5: 167 

 168 

p(r;μ
Uck

,C)= 
1

2π
nv
2 |C|

1
2

exp
{-

1
2

(r-μUck
)

T
C-1(r-μUck

)}
 (5) 

 169 

where r denotes the difference between model predictions and measurement data. Equation 5 170 

is formulated based on the case wherein observations of multiple points are available and the 171 

modelling and the measurement uncertainties are normally distributed. Therefore, the 172 

combined uncertainty Uck also follows a normal distribution with mean μ
Uck

, which is the sum 173 

of the mean of all modelling and measurement uncertainties, and standard deviation σUck
, 174 

which is the square root of the sum of the variance of all uncertainties. The joint probability of 175 
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residuals at multiple measurement locations can then be calculated with a chosen correlation 176 

matrix C, which describes the dependency of uncertainties at these measurement locations. 177 

Two correlation schemes are examined in this study. The first scheme assumes independence 178 

or zero correlation. This scheme suggests that the magnitudes of the uncertainties at 179 

measurement locations are independent from each other. The second scheme adopts a 180 

correlation matrix following the work of Qi and Zhou36 and Ledesma et al25. The effects of 181 

correlation matrix will be discussed later in this paper. 182 

The correlation structure C is an input for the evaluation of the likelihood, and has to be 183 

estimated before the posterior distribution can be obtained. In Bayesian methodology, it is 184 

assumed that the correlations are independent from the magnitude of the uncertainties. 185 

According to Qi and Zhou36 and Ledesma et al25, the correlation structure may be calculated as 186 

follows: 187 

 188 

Cij =σ
2 ∑ lm

2

min(i,j)

m=1

   (6) 

 189 

where  190 

Cij is the covariance of the measurement uncertainties at point i and j,  191 

σ is the standard deviation of the inclinometer, which can be estimated following the work 192 

of Finno and Calvello12 , and 193 

 𝑙𝑚 is the distance between two neighboring measurement points, which is 1m in the 194 

current study. 195 
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In the Bayesian framework, the posterior distribution, which describes the conditional 196 

probability of the material parameter values given the field-response measurements, can be 197 

calculated using Equation 7: 198 

 199 

p(Ωk|ŷ
i
) = k1 ∙ p(r;μ

Uck
,C) ∙ p(Ωk) (7) 

 200 

where k1 is a normalization constant that makes the probability density function valid, and 201 

p(Ωk) represents the prior probability density function of the material parameter values to be 202 

identified. In the current study, the prior probability density function is assumed to be 203 

uniformly distributed. Also, both the modelling and measurement uncertainties are explicitly 204 

included in the evaluation of the likelihood function, which provides a basis to compare results 205 

from the Bayesian model updating approach with those obtained from EDMF analysis. In this 206 

paper, the implementation of the Bayesian model updating calculations is facilitated by the use 207 

of the Markov-chain Monte-Carlo simulation and the Metropolis-Hastings algorithm, in 208 

conjunction with the response surface method. Details of the implementation can be found in 209 

Juang et al17 and Qi and Zhou36. 210 

 211 

2.3. Residual minimization  212 

The residual minimization approach usually follows the weighted least-squares criterion, 213 

which aims to find a single set of parameter values that produces the minimum absolute error 214 

between numerical predictions and measurements. Finno and Calvello12 reported its 215 

application to an excavation back analysis problem. The objective function is expressed as: 216 

 217 

S(Ωk)=[g
i,k

(Ωk) - ŷ
i
]
T
ω [ g

i,k
(Ωk) - ŷ

i
] =ri

Tωri (8) 
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 218 

where ω  is the diagonal weighting matrix whose values correspond to the inverse of the 219 

measurement error variances.  It is noted that the implementation reported by Finno and 220 

Calvello12 does not include errors associated with modelling uncertainties.  221 

In addition to measurement errors, the residual minimisation implementation in this study also 222 

accounts for errors due to modelling uncertainties. Both measurement and modelling 223 

uncertainties are assumed to be normally distributed, and their respective mean values are 224 

adopted as the measurement and modelling errors for the deterministic calculations. The 225 

modified objective function is expressed in Equation 9: 226 

 227 

S(Ωk)=[g
i,k

(Ωk) - μ
Ui,ck

 - ŷ
i
]
T
ω [ g

i,k
(Ωk) - μ

Ui,ck
 - ŷ

i
] =ri

Tωri (9) 

 228 

Such a formulation allows a non-zero mean estimate of the modelling uncertainties to be 229 

included in the analysis, which is consistent with the consideration of such modelling errors in 230 

both the Bayesian model updating and the EDMF approaches.  231 

The search for the optimal solution is facilitated by the response surface method, which will be 232 

explained later. The search starts with a dense grid of parameter values, from which several 233 

local minima may be identified. It is noted that the search-based objective function associated 234 

with the absolute minimum derived from the original grid may not necessarily correspond to 235 

the global minimum. For this reason, refined searches are performed in the vicinities of the 236 

various local minimum zones identified. Such refinements around the local minima are carried 237 

out to account for the possibility that the parameter combination that gave the best objective 238 

function value may be located near a local minimum of the initial grid. The refinement is 239 

repeated for each local minimum three times. The final parameter combination is taken as the 240 
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one that gave the best objective function values across the refined grids of all the local minima. 241 

A similar procedure has been reported by Ieronymaki et al20, 21.  242 

 243 

3. CASE STUDY 244 

Back-analyses of an excavation case history in Singapore are performed using the three data-245 

interpretation methodologies described in Section 2. The geotechnical finite-element software 246 

package Plaxis 2D (Brinkgreve et al8) and Plaxis 3D (Brinkgreve et al7) are used to model the 247 

excavation and the wall deflection response.  Due to the large number of simulations required, 248 

the response surface method is adopted to facilitate the search of solutions. Three-dimensional 249 

excavation effects arising from the corner constraints are quantified using the approach 250 

proposed by Wang et al43.  251 

 252 

3.1. Project description 253 

The excavation is approximately 60m in length, 40m in width and 10m in depth. The support 254 

system of the excavation includes diaphragm walls, soldier pile walls, toe pins and two layers 255 

of steel struts and waler beams. Figure 1 shows the 3D finite-element model. The 800mm thick 256 

diaphragm walls are modelled as elastic plate members. The reduced lateral stiffness of the 257 

diaphragm walls due to the presence of construction joints (Dong et al10; Zdravkovic et al46) 258 

between panels is captured by releasing the rotational stiffness between the plates, following 259 

Lee et al28. Along certain sections of the excavation, the top 1 to 3m of the diaphragm walls 260 

are replaced by soldier pile walls, comprising grade 355 steel universal column sections and 261 

75mm thick concrete panels. The toe pins, which extend 2m below the toe of the diaphragm 262 

walls, consist of grade 355 circular steel hollow sections placed at 800mm spacing. As a 263 

simplification, the toe pins and the soldier pile walls are smeared and modelled as elastic plate 264 

members with equivalent properties. Struts and waler beams are modelled as node-to-node 265 
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anchors and beam elements respectively. Interface elements with zero thickness (Brinkgreve 266 

et al7, 8) are used to model the soil-wall interactions.  The properties of all structural elements 267 

are listed in Table 1. 268 

The soil stratigraphy in the 3D model was based on the information obtained from six boreholes 269 

drilled at this site, which is situated on the Bukit Timah Granite formation. The top layer, which 270 

is roughly 3m in thickness, contains mostly sandy silt and man-made backfill materials. It is 271 

underlain by a 10 to 13m thick residual soil layer of sandy silt, denoted as G(VI), across most 272 

parts of the project site. The granitic rock layer G(III) is present at approximately 15m below 273 

the ground surface. On the eastern half of the project site, there is also a 5m thick layer of 274 

coarse sand sandwiched between the G(VI) sandy silt and G(III) granitic rock. In addition, the 275 

SI report indicates that a pocket of medium to coarse gravels is present at a localised area near 276 

the centre of the pit.  277 

Figure 2 shows the 2D finite-element model of the west-to-east middle section of the 278 

excavation. The idealized 2D soil profile, excavation support system and boundary conditions 279 

are also shown in the figure. Roller supports are assigned to vertical boundaries while the base 280 

of the model is fully fixed. The fill layer and the gravels are described using the Mohr-Coulomb 281 

model while the rock layer is described using the Hoek-Brown model. Other soil layers are 282 

simulated using the Hardening Soil with Small Strain Stiffness (HS Small) model (Benz6).  283 

Representative soil parameters for the Bukit Timah formation (Rahardjo et al37, 39) are adopted 284 

and listed in Table 2, except for the grey shaded cells which indicate the parameters to be 285 

identified. 286 

In this study, four parameters are selected to be identified. They are (a) the Young’s modulus 287 

E (MPa) of the fill layer, (b) the reference Young’s modulus E50
ref(MPa) of the G(VI) sandy silt 288 

layer, (c) the reference Young’s modulus E50
ref(MPa) of the coarse sand layer and (d) the 289 

equivalent flexural rigidity EI (kNm2) of the smeared soldier pile walls. These four parameters 290 
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are selected based on the results of a sensitivity analysis. Preliminary estimated ranges of these 291 

parameter values at the start of the identification process are indicated in the shaded cells of 292 

Tables 1 and 2. Other Hardening Soil model reference moduli, e.g. Eoed
ref , Eur

ref and G0
ref

, of the 293 

sandy silt and coarse sand layers are correlated to E50
ref, as shown in the tables. The initial water 294 

table is 2m below the ground level.  295 

The construction sequence modelled in the finite-element analysis comprises 6 stages, as 296 

shown on Table 3.  As the soil layers are inclined with varying thicknesses, the initial ground 297 

stresses in stage 0A are generated using the gravity turn-on approach. The diaphragm wall is 298 

‘wished-in-place’ in stage 0B, assuming negligible installation effects. Fully coupled flow-299 

deformation calculations (Galavi14) are performed to account for the combined time-dependent 300 

effects arising from groundwater seepage and consolidation. As indicated in Figures 1 and 2, 301 

wall deflection measurements of inclinometers 04 and 09, located at the east and west sides of 302 

the excavation respectively, are included in the back analysis.  303 

 304 

3.2. Response surface method 305 

Back analysis involves repeated evaluations of the finite-element model using different 306 

combinations of the material parameters to be identified. Depending on the number of 307 

parameters and the initial ranges adopted, the number of combinations, and hence finite-308 

element simulations, may run into the thousands, which is impractical from a computational 309 

point of view. To reduce the computational time to a manageable level, the response surface 310 

method may be used as a surrogate for the finite-element analysis.  In this method, a smaller 311 

but adequate number of 2-D finite element analyses are first performed to obtain mathematical 312 

functions that can reasonably relate the material parameters of interest (e.g. Young’s modulus 313 

E of the fill layer) to the field quantities of interest (e.g. wall deflection at a given depth).  Such 314 

mathematical functions are then used in the back-analysis to obtain predictions of the field 315 
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quantities of interest for several thousand combinations of the material parameters, which can 316 

tremendously reduce the computational effort by obviating the need to perform finite element 317 

analyses for all these cases. 318 

In this study, the three-dimensional excavation effects are quantified following the approach 319 

of Wang et al.43. In this method, the 2D finite element model and its associated response 320 

surfaces are used to perform the bulk computations of the back analysis for parameter 321 

identification. The construction of the response surface starts from the generation of initial 322 

sampling points. In the current study, initial sampling points are generated by combining (i) 323 

the central composite design (Ahmadi et al2), which generates 36 samples of material parameter 324 

combinations, and (ii) Latin Hypercube sampling technique (Stein41), which generates an 325 

additional 100 combination samples. In total, these provide 136 parameter combinations for 326 

which 2D finite element analyses are performed and the results used to construct the response 327 

surfaces.  The results of the 136 finite-element analyses are mathematically related to the four 328 

parameters to be identified using the Gaussian process regression model (Rasmussen38), which 329 

was found to perform better than the polynomial regression model and radial-basis function 330 

method for this study. The machine learning toolbox in Matlab was used to generate the 331 

regression models with a quadratic basis function and an exponential kernel function, which 332 

performed better than other settings available in Matlab. 333 

As the back analyses involve wall deflection measurements made at different excavation stages 334 

and multiple measurement locations/depths, it is necessary to generate multiple response 335 

surfaces, each corresponding to a particular excavation stage and measurement location/depth.  336 

In this study, the wall deflections measured by inclinometers 04 and 09 are used, and their 337 

locations are indicated in Figures 1 and 2. A total of 106 response surfaces are needed to cover 338 

all measurement points of the four excavation stages. These response surfaces are then 339 
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validated using an additional 50 combination samples of the four parameter values that are not 340 

used in the construction of the response surfaces. 341 

 342 

3.3. Quantification of the three-dimensional effects of excavation 343 

As shown in Figures 1 and 2, the box-shaped geometry of the excavation are expected to 344 

introduce corner constraints, the effects of which cannot be captured using the 2D model (Ou 345 

et al31). While 3D analyses can be performed to generate response surfaces that account for 346 

such corner effects, the large number of 3D simulations required makes this an impractical 347 

option. The method proposed by Wang et al.43 quantifies corner effects approximately using 348 

2D analysis by introducing an error term to the wall deflection obtained from the plane-strain-349 

based computations.  At any particular measurement depth and excavation stage, the specific 350 

error term is calculated as the difference between the 2D and the 3D finite-element wall 351 

deflections (= 2DFE wall deflection – 3DFE wall deflection). Wang et al.43 showed that, using 352 

this method, it is possible to approximately quantify the three-dimensional effects at all 353 

measurement locations and excavation stages by performing only two 3D finite element 354 

analyses.  355 

 356 

4. COMPARATIVE STUDY 357 

A sound back analysis should (a) identify reasonably accurate parameter values and (b) provide 358 

good predictions of the quantities of interest. In the subsequent sections of the paper, the 359 

performance of all three data-interpretation methodologies is independently assessed from 360 

these two perspectives.  361 

During underground construction, it is often useful and desirable to predict the field responses 362 

of later excavation stages using measurements from the early or intermediate excavation stages. 363 

In the current study, four major excavation stages are considered. Hence, a back analysis can 364 
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be performed after each major excavation stage. In the subsequent discussions, the term ‘1st 365 

round of identification’ refers to the back analysis performed after excavation stage 1, using 366 

only wall deflection measurements of excavation stage 1. Similarly, the term ‘4th round of 367 

identification’ refers to the back analysis performed after excavation stage 4, wherein wall 368 

deflection measurements of excavation stages 1 to 4 are utilised.  369 

All three methodologies adopt the same set of modelling and measurement uncertainties. These 370 

uncertainty sources include inclinometer errors, model simplification from 3D to 2D, errors 371 

arising from the use of response surfaces, and others. The magnitudes of these uncertainties are 372 

obtained from the values reported in the literature (Goulet et al15; Finno and Calvelo12) and 373 

quantification methods proposed (Wang et al43). Examples of typical uncertainty ranges 374 

computed based on Equation 3 are shown in Table 4. 375 

 376 

4.1. Results of Bayesian model updating 377 

In the current study, 5000 Markov chain samples were simulated. The scaling factors adopted 378 

in the Markov chain simulations were determined based on a trial-and-error approach, which 379 

was guided by checking the means and the standard deviations of the posterior distributions as 380 

a function of the number of Markov chain samples. The scaling factors determined are 381 

reasonable, with the means and the standard deviations of the posterior distributions converging 382 

to stable values within the 5000 Markov chain samples simulated. 383 

As discussed in Section 2.2, the effects of the correlation matrix on the performance of the 384 

Bayesian approach will be examined. Two correlation schemes are implemented in this study, 385 

one assuming independence (or zero correlation) while the other follows the proposed 386 

correlation of Qi and Zhou36 and Ledesma et al25. The non-zero matrix of correlation 387 

coefficients at selected measurement points are shown in Table 5. 388 
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Figure 3 shows posterior distributions of the four identified parameters obtained via Bayesian 389 

analysis using measurement data from all four excavation stages. It is noted that, apart from 390 

the E50
ref  value of the silt layer shown in Figure 3b, the posterior distributions differ quite 391 

significantly for the two correlation schemes. The mean values of E of the fill layer, E50
ref of the 392 

sand layer and EI of the soldier pile wall differ by approximately 90%, 75% and 40% 393 

respectively across the two correlation schemes. Figure 3 also shows the typical parameter 394 

values estimated using empirical correlations with blow count data (N values) from standard 395 

penetration tests (SPT). Two typical correlations, 1.5 times the SPT-N value and 2 times the 396 

SPT-N value, are considered. Comparing the results of the Bayesian analysis with the 397 

empirically estimated parameter values, the zero correlation assumption appears to yield values 398 

that are better in line with the empirical estimates. In addition, parameter values identified with 399 

the zero correlation scheme are also more consistent and in line with laboratory and field test 400 

values reported by Leung et al26; Moon et al29; Zhang et al47 on similar soil types. 401 

Figure 4 shows, for the case of non-zero correlation, the mean and the 95% bounds of the 402 

predicted wall deflection profiles of ID 09 and ID 04 at the final excavation stage, after each 403 

round of identification. The bounds are calculated considering both the modelling and the 404 

measurement uncertainties. From the upper row of subplots for wall ID 09, it is seen that the 405 

mean predictions of wall ID 09 for each stage can capture the bulging wall profile quite 406 

reasonably. While the first three rounds of identification tend to under-predict the maximum 407 

wall deflection at the final excavation stage by about 20 to 30%, the 4th round of identification 408 

leads to a good overall prediction with the maximum deflection under-estimated by about 10%. 409 

Although the mean predictions tend to under-estimate the measurements, the 95% bounds of 410 

the predicted wall deflection profiles reasonably enclose the measurements.     411 

In contrast, the lower row subplots of Figure 4 show that the agreement between the predicted 412 

and measured deflection responses of wall ID 04 are not as good.  This could be due in part to 413 
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the ‘composite’ wall section at ID 04, which comprises a flexible soldier pile wall for the top 414 

3m and a much stiffer diaphragm wall below, as delineated by the horizontal line at Reduced 415 

Level 121 in subplots (e) to (h) of Figure 4.  The presence of the more flexible soldier pile wall 416 

results in larger measured deflections near the top of wall ID 04, so that the profile exhibits two 417 

peaks, instead of the more typical bulging profile of ID 09. However, the Bayesian predictions 418 

for ID 04 do not exhibit such a double peak profile. Furthermore, for both ID 04 and ID 09, the 419 

upper bounds of the predicted peak deflections fall very close to the measurement data in the 420 

2nd and 3rd round of identification.  This trend persists for ID 04 even after the 4th round of 421 

identification, despite incorporating measurement data from the final excavation stage itself.  422 

While the Bayesian model updating results are generally reasonable in that the measured 423 

deflections of IDs 04 and 09 as a whole fall within the two computed bounds, the proximity of 424 

the ID 04 maximum measured deflections to the predicted upper bound suggests that the 425 

predictions of ID 04 are less effectively updated as compared to those of ID 09. 426 

An examination of the likelihood values computed by the Bayesian analysis reveal a possible 427 

reason behind the observed issues related to wall ID 04 highlighted in the previous paragraph. 428 

The process of Bayesian model updating involves the calculation of the likelihood function, 429 

which is defined as the joint probability of the measurements with a given set of material 430 

parameter values, modelling uncertainty and measurement uncertainty. In the current example, 431 

measurement data from two separate inclinometers (ID 04 and ID 09) are lumped together and 432 

considered simultaneously in the analysis, which resulted in some measurement points from 433 

ID 09 exerting a stronger influence in the calculation of the joint likelihood. A total of 106 434 

measurement points are considered in the 4th round of identification. Among these 106 points, 435 

only 11 measurement points are associated with wall ID 04 at the final excavation stage. It 436 

turned out that the calculated joint likelihood from the Bayesian analysis does not differ much 437 

with and without the consideration of these 11 points, which suggest that they have weak 438 
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influence on the model updating calculations.  In contrast, the differences in the joint likelihood 439 

computed with and without consideration of the final excavation measurements of wall ID 09 440 

are more significant.   441 

An additional Bayesian analysis is performed for the same excavation, but this time using only 442 

the measurements of wall ID 04. Figure 5 shows the comparison of the computed and measured 443 

wall deflections for walls ID 04 and ID 09 after the 4th round of identification. Despite using 444 

only measurement data of wall ID 04, the predicted mean wall deflections of ID 04 and ID 09 445 

agree reasonably well with the measured profiles. In fact, the improvement is quite significant 446 

for wall ID 04, in which the overall shape and magnitude of the deflection profile is quite well 447 

captured (compared to Figure 4) by the mean predictions. Figure 5 also shows that the Bayesian 448 

analysis is able to provide reasonable predictions of both the bounds and mean deflections at 449 

wall ID 09, even though the measurement data at this location was not considered in the model 450 

updating calculations.  451 

 452 

4.2. Results of EDMF 453 

The mathematical formulation of EDMF seeks to address the correlation-related issues 454 

encountered in Bayesian model updating. As explained in Section 2.1, Šidák correction and the 455 

rectangular acceptance region are implemented in EDMF analyses to circumvent the need for 456 

correlations. The use of such techniques produces exact results under independent or 457 

uncorrelated conditions, and conservative results when correlations exist (Farcomeni13; Goulet 458 

et al15; Šidák40). In the current study, 20,000 initial model instances corresponding to different 459 

parameter combinations are generated, and the associated wall predictions are made using the 460 

response surfaces generated from the 136 2D-finite element simulations discussed in Section 461 

3.2. EDMF analyses are then performed to identify candidate models from these initial model 462 

instances. 463 
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Figure 6 shows the parallel-axis plot of the identified parameter values after the 4th round of 464 

identification. Such a plot provides a way to visualise the values and trends of the identified 465 

parameters. The horizontal axis contains, at discrete spacing, four vertical axes corresponding 466 

to the four parameters to be identified. Each vertical axis plots the values of the corresponding 467 

parameter which it represents. A parameter combination set is represented by a line that 468 

connects the parameter values across the four vertical axes. Figure 6 contains 20,000 grey lines 469 

representing the 20,000 initial model instances, with the red dashed lines representing the 678 470 

candidate models identified after the 4th round of identification.   471 

As plotted on the 2nd vertical axis from the left, the identified E50
ref values of the G(VI) silt layer 472 

fall into two clusters. The first cluster contains parameter values ranging from about 14MPa to 473 

30MPa, while the second cluster comprises a smaller range of values between 47MPa and 474 

50MPa.  There is thus a conspicuous gap in the E50
ref values between 30MPa and 47MPa. To 475 

check if this gap is due to inadequate sampling, the E50
ref values between 30MPa and 45MPa are 476 

sampled at smaller intervals for the EDMF analysis.  Even with such sampling refinements, the 477 

gap in the identified E50
ref  values still persists, indicating that its presence is not caused by 478 

inadequate sampling. Among the two clusters, the identified E50
ref values of about 47 to 50MPa 479 

contained within the second cluster appear to be too high based on the average measured SPT-480 

N value of about 18 for this G(VI) silt layer. Furthermore, parameter values reported in the 481 

literature (Leung et al26; Moon et al29; Wang et al43; Zhang et al47) suggest that this parameter 482 

should not exceed 35MPa. The identified silt layer E50
ref values of 47 to 50MPa in the second 483 

cluster are thus likely to be erroneous.  As discussed below, the parameter values in the second 484 

cluster are examples of Type II errors in statistical hypothesis testing.    485 

In the current study, measurement data at multiple depths along the wall are utilized for 486 

parameter identification, the process of which involves performing multiple hypothesis testing. 487 

Table 6 summarizes all possible outcomes of a multiple hypothesis test. While the null 488 
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hypothesis can be either true or false, the outcome of the hypothesis testing can indicate the 489 

null hypothesis to be false even though it is actually true. When this happens, a Type I error is 490 

committed, which is denoted as N1|0 in Table 6.  Conversely, the outcome of the hypothesis 491 

testing can indicate the null hypothesis to be true even though it is actually false. This results 492 

in Type II errors, which is denoted as N0|1 in Table 6.  In this respect, the Šidák correction 493 

conservatively limits the probability of committing a Type I error by reducing the significance 494 

level of each individual test (Farcomeni13).  However, type II errors are more likely to be 495 

committed. To improve the quality of predictions, it is important to minimize the population 496 

of Type II errors.  In this study, an improved EDMF implementation that aims to reduce the 497 

number of Type II errors being committed is proposed and described in Section 5. 498 

Figure 7 shows the parameter values identified by EDMF analysis, together with the posterior 499 

distributions obtained by Bayesian model updating. In general, the ranges of parameter values 500 

identified with EDMF are larger than the corresponding posterior distributions identified with 501 

the Bayesian approach. In fact, the EDMF analysis identifies parameter bounds that span the 502 

two posterior distributions calculated by the Bayesian analysis.  This is not unreasonable given 503 

that the EDMF approach adopts a rectangular acceptance region, which implicitly allows all 504 

possible correlation configurations.  505 

Figure 8 shows the the mean and the 95% bounds of predicted wall deflections at the final 506 

excavation stage after each round of identification. Compared to the predicted wall deflections 507 

shown in Figure 4 using the Bayesian technique, the EDMF analyses produce improved 508 

agreement between the predicted and measured wall deflections, especially for wall ID 04. This 509 

is reflected in the EDMF predicted mean deflection profile of ID 04, which shows reasonably 510 

good agreement with the measurement data.  This is in contrast to the trend shown in Figure 4, 511 

wherein the measured maximum deflections fall closer to the predicted upper bound from the 512 

Bayesian analysis. The EDMF methodology requiring that the falsification check be 513 
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individually performed on each and every measurement point ensures that the measurement 514 

data at all measurement locations are accorded equal weightage. This is different from the 515 

Bayesian approach which evaluates a joint likelihood value for all measurement data.  Such a 516 

function may be insensitive to the contributions of certain sets of measurement data, as was 517 

noted in Section 4.1 in which the effect of the ID 04 data was overshadowed by that of ID 09 518 

when both sets of measurements were considered simultaneously. The comparison of 519 

predictions and bounds shown in Figure 4 and 8 indicate that EDMF produced improved results 520 

when measurement data of two inclinometers at different locations are simultaneously utilised 521 

for interpretation. 522 

Figures 8e, 8f and 8g show that, after the first three rounds of identification, the mean 523 

predictions of the ID 04 wall deflections for the final excavation stage exhibit wall movements 524 

near the ground level that are larger than the measured values.  These discrepancies indicate 525 

that the identified material parameters after the 3rd round of identification, which are based only 526 

on wall measurements taken from stages 1 to 3, are not sufficiently accurate to produce good 527 

predictions of the wall behaviour at this zone.  With the additional deflection measurements 528 

from the final excavation stage included in the analysis, Figure 8h shows that the predictions 529 

near the top of wall ID 04 are improved. 530 

In addition, the slightly wider bounds in Figure 8 as compared to those in Figure 4 indicate that 531 

EDMF predicts slightly larger variations in wall deflections. This is consistent with the larger 532 

variations in parameter values among the EDMF candidate models compared with the posterior 533 

distributions of Bayesian analyses, as shown in Figure 7. 534 

 535 

4.3. Results of the residual minimisation approach 536 

Using the residual minimization approach, the parameter values identified after 4th round of 537 

identification are shown by the dotted lines in Figure 9. Being a deterministic approach, the 538 
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residual minimisation method identifies a specific and unique combination of material 539 

parameter values, and therefore information on the variations in the parameter values are not 540 

available.  Figure 9 shows that the E50
ref values of silt layers and E50

ref values of sand layers are 541 

reasonably compatible across the three data-interpretation methodologies. However, there are 542 

differences in the E values of fill layer and EI values of soldier pile wall. Such differences 543 

could be caused by inclinometer errors, which accumulate upward from the toe of the wall to 544 

the ground level. Deflection measurements taken near to the fill layer and the upper soldier pile 545 

wall are therefore subjected to larger measurement uncertainties, which, according to Equation 546 

9, will be weighted less than the deeper measurements, which have smaller errors. Therefore, 547 

the E values of the fill layer and EI values of the soldier pile wall, which are both located in 548 

the shallower zones where measurement errors are likely higher, may not be effectively 549 

identified. In contrast, population-based approaches such as EDMF and Bayesian model 550 

updating can account explicitly for the mean and standard deviation of the uncertainties, and 551 

hence are better able to identify reasonable ranges of the material parameters. 552 

Figure 10 shows the predicted wall deflections at the final stage of excavation after each round 553 

of identification using the residual minimization approach. After the 3rd and 4th round of 554 

identification, the predicted deflection profiles of wall ID 09 agree quite well with 555 

measurements, and are also quite similar to the Bayesian mean predicted deflections shown in 556 

Figure 4.  However, the residual minimization predictions for wall ID 04 are not as good, 557 

especially near the top where the soldier pile wall is present. This observation is similar to the 558 

Bayesian results shown in Figure 4.  As the residual minimization objective function evaluates 559 

the sum of the squared residuals of all measurement points, it is also likely that some data, in 560 

this case the 11 measurements of wall ID 04 at the final excavation stage, exerts a much smaller 561 

influence on the objective function compared to ID 09. This accounts for the discrepancies 562 

between the predictions and measurements for wall ID 04. 563 
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5. A MODIFIED EDMF IMPLEMENTATION 564 

A modified EDMF implementation is proposed in this section. It addresses the issue 565 

encountered in Section 4.2, where two clusters of E50
ref values are identified for the silt layer 566 

using the conventional EDMF approach.  The higher E50
ref values contained in the smaller cluster 567 

are postulated as being Type II errors arising from the use of the Šidák correction technique 568 

when performing multiple hypothesis testing.   569 

The work of De et al.11 is perhaps the first to propose the use of the Benjamini-Hochberg (BH) 570 

correction technique (Benjamini and Hochberg3) as an alternative to Šidák correction in EDMF 571 

analysis.  However, their validations were performed on conceptual problems under idealized 572 

problem settings and known values of the parameters to be identified. In contrast, full-scale 573 

engineering challenges are seldom so well-defined. In the following section, both traditional 574 

Benjamini-Hochberg correction (Benjamini and Hochberg3) and adaptive Benjamini-575 

Hochberg correction (Benjamini and Hochberg4; Benjamini et al.5) will be implemented for the 576 

EDMF analysis of the present excavation case study. A comparison of identification results 577 

with these three correction techniques are also presented. 578 

 579 

5.1. Challenge of multiple measurements 580 

The Šidák correction, which is conventionally adopted in the EDMF implementation, keeps 581 

the probability of committing a Type I error at an acceptable level (e.g. 5%) by adjusting the 582 

bounds of the individual test when there is more than one measurement. The increasing number 583 

of measurements reduces the significance level of the individual tests, and hence the bounds of 584 

the individual tests are pushed farther back along the tails of the null hypothesis distribution. 585 

While this maintains the overall reliability of identification at 5%, it may also result in the 586 

occurrence of more Type II errors. To address this limitation, Benjamini and Hochberg3, 4 587 

proposed a correction technique that restrains the false discovery rate, defined as the expected 588 
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ratio of erroneous rejections to the number of rejected hypotheses. The use of the BH correction 589 

technique results in an improved restraints on the Type II errors, without adversely affecting 590 

the avoidance of a Type I error.  In other words, the BH correction allows for a stronger 591 

rejection power than the Šidák correction and hence, its use will result in a smaller candidate 592 

model set because fewer Type II errors are committed. 593 

 594 

5.2. Adaptive Benjamini-Hochberg correction 595 

In contrast with the traditional Benjamini-Hochberg correction which adopts a fixed correction 596 

procedure, the adaptive Benjamini-Hochberg correction involves the estimation of the 597 

proportion of the null hypotheses that are actually true. These hypotheses are labelled as M0. 598 

The estimation can be visualized through a graphical approach. The procedures are summarised 599 

by Benjamini and Hochberg4 as follows: 600 

a) Calculate the p-values, which defines the probability that  the null hypothesis is true, 601 

of all residuals given the combined uncertainties, and arrange the p-values from 602 

smallest to the largest. In this study, they are annotated as pi, p(i+1),…p(m). 603 

b) Calculate Si = (1- pi)/(m+1-i), the i-th slope estimate. 604 

c) Starting with i = 1, loop through i = i + 1 as long as Si ≥ Si-1; stop at the first 605 

occurrence of Sj ≥ Sj-1, and evaluate m̂0=min[(1/Sj +1), m]. 606 

d) Compare each p(i) to 0.05i/m̂0 and reject the p-values for which p(i) ≤ 0.05i/m̂0. 607 

This procedure is based on the observation that the plot of pi versus i (the quantile plot of the 608 

p-values) should exhibit a linear relationship, wherein the slope S = 1/(m+1) passes through (a) 609 

the origin and (b) the point  (m+1,1) when m = M0. When M0 < m, the p-values corresponding 610 

to the false null hypotheses tend to be smaller than the p-values of the true null hypotheses, so 611 

they are concentrated on the left side of the plot. The relationship on the right side of the plot 612 

remains approximately linear. In this way, the adaptive BH procedure seeks to customise the 613 
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correction procedure based on the estimated M0, which differs from the traditional BH 614 

correction, which provides a universal correction procedure that does not involve the estimation 615 

of M0. 616 

 617 

5.3.  Results of adaptive Benjamini-Hochberg correction 618 

The techniques of Šidák correction, traditional BH correction and adaptive BH correction are 619 

applied to the EDMF back-analyses of the excavation case history. The size of the candidate 620 

model set (CMS) is one of the criterion to evaluate the performance of the correction techniques. 621 

A smaller CMS is expected to contain fewer Type II errors. Therefore, the size of the CMS 622 

reflects the restraints on Type II errors. Figure 11 shows the sizes of the candidate model sets 623 

obtained using the three techniques after each round of identification. For the first two rounds 624 

of identification, Šidák correction still produces a slightly smaller candidate model set, which 625 

is likely due to the smaller number of measurement data involved during these early rounds of 626 

identification. However, as more measurement data is included and processed during the 3rd 627 

and the 4th round of identification, the adaptive BH correction outperforms both the traditional 628 

BH and Šidák correction by yielding the smallest candidate model set.  629 

Figure 12 shows the parallel-axis plot of the identified parameter values using the adaptive BH 630 

correction after the 4th round of identification. In contrast to Figure 6, wherein two distinct 631 

clusters are observed for the E50
ref values of the G(VI) silt layer, the adaptive BH correction 632 

produces only one cluster of candidate models. The absence of the second cluster in this case 633 

lends support to the earlier postulate that the candidate models in this cluster are erroneous, 634 

which are eliminated through the tighter restraint on Type II errors provided by the adaptive 635 

BH correction.  636 

The performance of these three correction techniques can be further assessed using the concept 637 

of ‘statistical power’, which is defined as the probability of rejecting a model when it is invalid. 638 
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With reference to Table 6, statistical power is calculated as the ratio N1|1/(N1|1+ N0|1) (De et al11; 639 

Farcomeni13). Figure 13 shows the normalised statistical power of all three correction 640 

techniques across all four rounds of identification. The statistical power of the Šidák correction 641 

is adopted as the base for normalisation and therefore, the y-coordinate of the Šidák correction 642 

results in Figure 13 is always 1.0. It is noted that the adaptive BH correction produces the 643 

highest statistical power, thus demonstrating its improved falsification ability. This is also 644 

reflected in its ability to yield the smallest candidate model set shown in Figures 11 and 12.  645 

The effects of these correction techniques on the wall deflection predictions are shown in 646 

Figure 14. The two subplots in this figure show, for all measurement depths along wall ID 09 647 

and 04 respectively, the wall deflection range between the computed upper and lower bounds 648 

at the final excavation stage, normalized by the corresponding range predicted using Šidák 649 

correction.  The effect of choosing an alternative correction technique is more profound for 650 

wall ID 09. The predicted deflection ranges obtained with the adaptive BH correction are, on 651 

average, 40% and 10% smaller than the ranges obtained using the Šidák correction and the 652 

traditional BH correction respectively. However, its influence is not so obvious for wall ID 04. 653 

This is likely because the deflection magnitudes of wall ID 04 are less sensitive to changes in 654 

parameter values.  655 

The primary goal in adopting the BH correction technique is to reduce Type II errors. A closer 656 

examination of the candidate model sets obtained using all three correction technics reveals a 657 

significant degree of overlap. This means that almost all candidate models obtained with 658 

adaptive BH correction are also candidate models obtained using the Šidák correction. 659 

Therefore, the overall information on soil parameter values remain consistent across the three 660 

correction techniques. The falsification of more model instances by the adaptive BH correction 661 

technique, which results in a smaller candidate model set and smaller bounds in the predicted 662 

wall deflection, is due to its improved restraint on Type II errors. 663 
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6. CONCLUSIONS   664 

This paper examines in detail the performance of three data-interpretation methodologies 665 

(EDMF, Bayesian Model Updating and Residual Minimization) applied to an excavation case 666 

history. The enhanced understanding and appreciation on the strengths and limitations of each 667 

methodology allow engineers and researchers to choose the most appropriate methodology to 668 

obtain reliable and good quality back analysis results. The main conclusions are summarised 669 

as follows: 670 

i) The identified parameter values from the three data-interpretation methodologies 671 

can differ significantly, based on the current case study. The discrepancies in the 672 

identified parameter values and the resulting wall deflection predictions are related 673 

to the specific implementation details and assumptions adopted in the data-674 

interpretation methodologies.  675 

ii) In the Bayesian model updating approach implemented in the current study, the 676 

choice of correlation matrix significantly affects the values of the parameters that 677 

are identified. In the current study, the difference in parameter values between the 678 

two correlation schemes can be as high as 90%. 679 

iii) In the Bayesian and residual minimisation analyses performed in the current study, 680 

the contributions of some measurement data are not effectively recognised, which 681 

adversely affects the accuracy of the predictions. This issue is especially significant 682 

when measurement data of inclinometers at two locations are utilised 683 

simultaneously.  684 

iv) The residual minimisation method, which indirectly accounts for uncertainties in 685 

the form of deterministic weighting terms without considering their distributions, 686 

does not perform as well as Bayesian model updating and EDMF in handling 687 
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measurement data near the ground surface, where the uncertainty errors can be 688 

twice those present at deeper depths. 689 

v) EDMF, as compared to Bayesian model updating and residual minimisation, yields 690 

improved predictions and identified parameter values, especially when 691 

measurement data of inclinometers at several locations are simultaneously utilised. 692 

vi) The use of adaptive BH correction in EDMF analysis improves the restraint on Type 693 

II errors, as compared to the use of Šidák and the traditional BH correction 694 

techniques, which leads to smaller prediction ranges. 695 

 696 
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Table 1 Properties of structural elements involved in the excavation case history. 856 

 857 

 858 

 859 

Table 2 Properties of geological materials involved in the excavation case history. 860 

 861 

 862 

 863 

 864 

 865 

 866 

 Diaphragm 

Walls 
Toe Pins 

Soldier Pile 

Walls 

Concrete Waler 

Beams Type 1/2/3 

Steel Waler Beams 

Type 1/2 
Struts 

Thickness 

(m) 
0.8 - - - - - 

EA(kN) 2.0E7 18E6 - 
1.7E7/3.2E7/2.48E

7 
4.0E6/1.3E7 8.0E6 

EI(kNm2) 1.1E6 11E3  (3000-10000) 7.0E5/2.1E6/1.3E6 2.6E5/8.8E5 - 

Lspacing (m) - - - - - 10 

 Fill Gravel 
Sandy Silt 

Residual Soil 
Coarse Sand Rock 

E (MPa)  (3-20) 40 - - 2.5E3 

E50
ref(MPa) - -  (5-50)  (5-50) - 

Eoed
ref (MPa) - - 1.0 * E50

ref
 1.0 * E50

ref
 - 

Eur
ref(MPa) - - 3.0 * E50

ref
 3.0 * E50

ref
 - 

m - - 0.6 0.6 - 

c’ (kPa) 0 0 10 0 - 

φ’(o) 25 30 28 35 - 

ψ(o) 0 0 0 0 - 

ϒ0.7  - - 0.0001 0.0001 - 

G0
ref(MPa) - - 2 * Eur

ref 2 * Eur
ref - 

pref(MPa) - - 100 100 - 

σci (MPa) - - - - 80 

mi - - - - 32.7 

GSI - - - - 65 

D - - - - 0.7 

Rinter 0.7 0.5 0.7 0.7 0.75 

k (m/s) 2E-6 2E-5 5E-7 2E-6 2E-6 
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 867 

Table 3 Simplified excavation activities and remarks. 868 

 869 

 870 

 871 

 872 

 873 

 874 

 875 

  876 

Table 4 Examples of uncertainties used in the study. 877 

Uncertainty sources Magnitudes Remarks 

Inclinometer uncertainties e.g. ±3.5mm Finno and Calvelo12 

2D-model simplification e.g. 0.9mm – 2.3mm Wang et al43 

Response surface e.g. ±2.5mm - 

FEM ±5% Goulet et al15 

Others ±5% Goulet et al15 

 878 

Table 5 Correlation coefficient at selected depth. 879 

Reduced 

Level (m) 

Partial matrix of correlation coefficient 

computed from Equation 6 (Qi and Zhou36 and Ledesma et al25) 

122 1.00 0.98 0.90 0.78 0.65 0.46 0.23 

120 0.98 1.00 0.97 0.90 0.80 0.63 0.40 

118 0.90 0.97 1.00 0.98 0.91 0.78 0.56 

116 0.78 0.90 0.98 1.00 0.98 0.89 0.70 

114 0.65 0.80 0.91 0.98 1.00 0.97 0.83 

112 0.46 0.63 0.78 0.89 0.97 1.00 0.94 

110 0.23 0.40 0.56 0.70 0.83 0.94 1.00 

 880 

Table 6 Possible outcomes of a multiple hypothesis testing exercise. 881 

 882 

 883 

 884 

 885 

Stage Simplified Excavation Activities Duration (days) Calculation Type 

0A Initial Condition - Gravity Loading 

0B Wall Installation - Plastic 

1 Excavate below Strut layer 1 
20 Fully coupled flow-

deformation 

2 Install Strut layer 1  
45 Fully coupled flow-

deformation 

3 Excavate below Strut layer 2 
20 Fully coupled flow-

deformation 

4 
Install Strut layer 2 and Excavate 

to formation level 

30 Fully coupled flow-

deformation 

 H0 is accepted H0 is rejected Total 

H0 is true N0|0 N1|0 (Type I) M0 

H0 is false N0|1 (Type II) N1|1 M1 

Total m-R R m 
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Figure 2 Two-dimensional FEM model of the west-to-east section of the excavation case history. 

Figure 1 Three-dimensional FEM model of the excavation case history. With zoom-in view of the excavation pit 

and support system. 
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Figure 3 Posterior distributions of the four parameters after the 4th round of identification, from Bayesian model updating 

analysis. 
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Figure 5 Measured vs predicted (mean and 95% bounds) wall deflections of the final 

excavation stage after the 4th round of identification, using Bayesian model updating 

with non-zero correlation scheme (with measurements of ID 04 only). 

Figure 6 Parallel-axis plot of the identified parameter values from EDMF analysis with Šidák correction after the 4th 

round of identification. Each red dashed line connects the identified parameter corresponding to a candidate model. 
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Figure 7 Comparison of the distribution of parameter values identified using BMU and EDMF after the 4th round of 

identification. (BMU: Bayesian model updating. EDMF: error-domain model falsification). 
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Figure 8 Comparison of distribution of parameter values identified using BMU, EDMF and RM after the 4th round 

of identification. (BMU: Bayesian model updating. EDMF: error-domain model falsification. RM: residual 

minimisation). The RM result is a single value shown by the purple dashed line. 
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Figure 9 Comparisons of the size of the candidate model set obtained using three correction techniques, after each 

round of identification. 

Figure 10 Parallel-axis plot of the identified parameter values from EDMF analysis with adaptive BH correction after 

the 4th round of identification. 
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Figure 11 Comparison of the statistical power associated with the three correction techniques, after each round of 

identification. 

Figure 12 Comparison of the normalized wall deflection range between 95% bounds after the 4th round of 

identification, obtained using the three correction techniques. The results are normalised with respect to those 

obtained using Sidak correction.  
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