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Abstract

The regulation of several processes inside and outside the cell depends on the action of a
particular class of enzymes, called allosteric. In allosteric macromolecules, binding a ligand
at one site affects the binding activity at a distal functional site, providing a reliable tool to
regulate the corresponding function. The physical mechanisms underpinning allostery and its
long-range communication are not yet fully understood, despite a great number of advances
were made possible by significant works spanning 60 years, in between biology, bioinformatics
and physics.

In physics terms, proteins can be viewed as amorphous materials that however underwent
billions of years of evolution to be functional as observed today. The framework introduced in
this dissertation allows to explore how the structural organisation of an allosteric system is
constrained by the function that it has evolved to perform. It allows a classification of allosteric
architectures and suggests a physical explanation behind the emergence of such long-range
allosteric coupling. Furthermore, it is also apt to build in silico a large amount of allosteric
architectures that share the same evolutionary history. The constraints imprinted by evolution
on sequences that share a common ancestor motivate the exploration of inference methods
that try to predict the fitness of a protein solely from the knowledge of sequences.

The strategy used to build this framework is to resort to a coarse-grained model of a protein,
on the line of elastic network models resulted successful in the description of the large-scale
dynamics of proteins. Ideas on how to pursue these research directions further are discussed
throughout the chapters.

Firstly, we introduce an in-silico model for the evolution of allosteric behaviour in discrete
lattices of harmonic springs. The in-silico evolution is performed for two different allosteric
tasks: one optimising for the transmission of strain between the allosteric and active site,
while the other maximising the cooperative binding energy between the two. To optimise the
transmission of strain, the network develops a lever that amplifies the response at the active
site. In such a way, our model proposes a novel allosteric architecture, potentially in use in
proteins as well. Cooperative architectures show, among others, hinge and shear motions
and rationalise the observation of a low energy mode that describes conformational changes
in proteins. Indeed, to achieve proper function, the mode is predicted to get softer as the
size of the system increases. This prediction is tested by collecting a database of 34 high
resolution structures of allosteric proteins and is proven valid even when elastic nonlinearities
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are introduced.

Secondly, the sequences generated with the in-silico model serve to benchmark existing meth-
ods that infer co-evolutionary couplings between amino acids, proven to be successful in
predicting local structural constraints, but with unclear performance in the presence of global
allosteric constraints. These models do predict local features reflecting structure, but fail in
the prediction of long-range functional dependencies and are not able to generate synthetic
sequences that function as native ones. Thus, the exploration of new directions is needed.

Keywords: Allostery, protein function, mechanical networks, amorphous materials, co-evolution,
inference methods, normal mode analysis, population shift, induced fit.

viii



Sinossi

La regolazione di numerosi processi all'interno e all’esterno delle nostre cellule dipende dal-
I’'azione di una particolare classe di enzimi, chiamati allosterici. Il legame di un ligando a
un sito di una macromolecola allosterica influenza I'attivita di un altro sito ad esso distante,
fornendo uno strumento per controllare in maniera precisa la funzione corrispondente. I
meccanismi fisici che sottostanno all’allosteria, tra cui la comunicazione a lungo raggio tra i
due siti, non sono ad oggi ancora pienamenti compresi, nonostante i numerosi progressi degli
ultimi sessanta anni provenienti da campi diversi come biologia, bioinformatica e fisica.

In fisica, una proteina puo essere vista come un solido amorfo che ha subito miliardi di anni
di evoluzione per esibire la funzione che si osserva oggigiorno. Le idee introdotte in questa
dissertazione permettono di esplorare la relazione tra I'organizzazione strutturale di un siste-
ma allosterico e i vincoli evolutivi dovuti alla sua funzione: lo sviluppo della comunicazione a
distanza puo essere spiegato in termini fisici e cid rende possibile una classificazione delle
diverse architetture allosteriche. L'approccio usato si basa su modelli di reti elastiche che,
nonostante le forti approssimazioni, riescono a riprodurre la dinamica soggiacente a cambia-
menti conformazionali in alcune proteine.

II modello qui introdotto esegue evoluzioni in silico di reti elastiche che esibiscono un dato
comportamento allosterico. Le reti elastiche sono descritte da un reticolo di nodi connessi
da molle, cioe da oscillatori armonici. Per esplorare la relazione tra architettura e funzione,
I'evoluzione in silico avviene considerando due diverse funzioni. La prima ottimizza per la
propagazione di deformazione elastica tra il sito allosterico e il sito attivo, mentre la seconda
seleziona architetture che mostrano grande energia cooperativa di legame tra i due siti. Si
osserva che la rete, per ottimizzare la propagazione della deformazione elastica, sviluppa
una leva che amplifica la risposta dal sito allosterico al sito attivo, proponendo una nuova
architettura allosterica, possibilmente in uso anche nelle proteine. Le architetture evolute
per ottimizzare i legami cooperativi tra i siti sono invece caratterizzate da movimenti simili
a quelli di taglio e cerniera, gia osservati in diverse proteine. Queste architetture giustifi-
cano la presenza di un modo vibrazionale a bassa energia osservato che spesso descrive il
cambiamento conformazionale nelle proteine. Infatti, la frequenza di questo modo deve
decrescere al crescere della taglia del sistema per far si che funzioni. Questa previsione &
studiata raccogliendo una banca dati contenente la struttura di 34 proteine allosteriche ed &
confermata anche quando delle nonlinearita sono introdotte nel sistema.
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Inoltre, il modello & anche in grado di generare un numero di sequenze che condividono la
stessa storia evolutiva. Si puo cosi studiare il comportamento di metodi di inferenza che usano
I'informazione evolutiva per tentare una predizione dell’energia di una proteina a partire
solamente dalle sequenze di amminoacidi. Metodi di inferenza esistenti hanno mostrato
comprovato successo nel predirre quali amminoacidi sono in contatto nella struttura tridi-
mensionale, sebbene falliscano sia nel catturare relazioni funzionali tra amminoacidi distanti,
quali possono essere quelle allosteriche, che nel generare sequenze sintetiche che funzionano
come quelle native. Questi fallimenti motivano la ricerca di nuovi metodi che siano pitt adatti
a trattare la complessita della funzione allosterica.

Parole chiave: Allosteria, proteine, reti meccaniche, materiali amorfi, coevoluzione, metodi
di inferenza, analisi dei modi normali, population shift, induced fit.
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Introduction

Preamble

This thesis deals with different fields: physics and biology. Like before the advent of thermo-
dynamics there was no clarity about the functioning of engines, in biology there is currently
no understanding of the general principles that rule evolution and function of biological
systems. There is a tendency of studying the microscopic details without connecting to their
defining principles. In this dissertation, we provide theoretical results on the mechanics of an
ubiquitous kind of protein regulation, allostery, that involves communication between distant
regions in the protein structure. Instead of focusing on the study of an individual protein where
details of its architecture might be distracting, we introduce an in-silico evolution scheme of
such allosteric behaviour in discrete elastic materials. The model is an extremely simplified
description of what is a protein. Yet, it still shows rich features. It provides means to classify
the mechanics of allosteric architectures, to assess the relationship between structure and
function and to explore the sequence-to-function pardigm and its inference. Hence, despite
its simplicity, it proves useful in proposing principles for allosteric communication that can be
tested experimentally. Behold and beware.

Background

In the complex and crowded environment inside and outside cells a multitude of events
takes place, leading to control the functioning of our organism. Inside the cell, metabolic
pathways constitute the series of biochemical reactions resulting in the synthesis of molecules,
from amino acids, the building blocks of proteins, to Adenosine TriPhosphate (ATP), the
energy source of most processes in living cells. Outside, signal-transduction pathways create
a communication between the surrounding environment and the cell, and ultimately result
in cellular response, e.g. allowing the cell to keep growing and avoid imminent death. In
healthy organisms, these processes do not happen by chance, but are regulated thanks to some
specific macromolecules, enzymes, among which allosteric enzymes are responsible for the
control of most. In allosteric macromolecules, binding a ligand at one site affects the binding
activity at a distal functional site, allowing the regulation of the corresponding function. The
world of allostery is largely diverse: from enzymes, Aspartate TransCarbamoylase (ATCase)



Introduction

responsible to start off the biosynthesis of pyramidines — fundamental units of our genetic

code — to proteins like haemoglobin, efficiently transporting oxygen in our blood.

Pedestrian introduction to proteins

The focus in this dissertation will be on protein allostery. Proteins are the protagonists in

cells [1]: they constitute most of the cell’s dry mass and they are both the building blocks and

the regulators of almost all cell’s functions. Moreover, they display the most complex structures
and sophisticated functions among molecules, which have been fine-tuned during billions of
years of evolution. Yet, this evolutionary process not only contributed in a fine-tuning of their

functions, but also with a surprising versatility of proteins to adapt to different environments.
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Figure 1 - Figure made by Thomas Shafee under the
creative common license. This figure summarises the
hierarchical structure of proteins into different level of
characterisation, from its sequence to the way different
proteins structurally form a protein complex. The pro-
tein is the proliferating cell nuclear antigen with Protein
Data Bank (PDB) code 1AXC.

Each protein has its own sequence of
amino acids — also called residues,
which can be of 20 types with different
chemical properties. The link between
one amino acid in the chain to the next
is guaranteed through a covalent bond,
the peptide bond. In the core of the pro-
tein there is a repeating sequences of
atoms, the backbone, where the portions
of amino acids not involved in peptide
bonds are attached, forming side chains
that confer the special properties to pro-
teins, as shown in the top panel of Fig. 1.
Indeed, each side chain obeys to the
chemical properties of the correspond-
ing amino acid: either hydrophobic or
positively charged, and so on. The typi-
cal length of the chain is 300 amino acids
for bacteria and 400 for eukaryotes [2].

At this point the protein is just a polypep-
tide chain. How does it fold? The
three-dimensional structure of a pro-
tein is determined by several interac-
tions. First, steric constraints limit
the three-dimensional arrangement of
atoms. Nonetheless the protein chain
being flexible, it has an extremely large

number of ways to fold!, constrained by different weak noncovalent bonds — hydrogen bonds,

nterestingly, the Levinthal's paradox states that finding the native fold of a sequence composed of 100 amino
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electrostatic and Van der Waals attractions — that form between two different parts of the
chain.

Finally, the organisation of amino acids closely depends also on their degree of hydrophobicity:
hydrophobic amino acids will tend to cluster in the interior of the protein, while the others at
the exterior, in contact with water molecules of the cell. As a result of these interactions, the
protein assumes a given conformation, typically found to be the one that minimises its free
energy. Overall, the resulting fold is stable, even if upon changes in the environment it can
modify its structure, which is fundamental to protein function.

From this discussion it emerges that a protein has a hierarchical structure organised in different
levels of characterisation, as summarised in Fig. 1. The amino acid sequence is defined as
the primary structure. The three-dimensional structures have commonalities in the way they
fold locally. Two common patterns are found: a-helix and g-sheet, constituing the secondary
structure of the protein. The global fold is the tertiary structure and the way proteins organise
in space to form a protein complex is called quaternary structure.

Even if the folded conformation is stable, proteins are not rigid agglomerates of matter. They
show a level of design and engineering as they present architectures that allow for mechanical
motions under chemical events, like a ligand binding at a site. The coupling between mechan-
ics and chemistry is responsible for the extraordinary spectrum of functionalities in proteins
that underlie the dynamic processes happening in cells. Allosteric proteins fall in even a more
special class given their ability to regulate function at a distal site from where the ligand has
bound.

General questions arise from this pedestrian introduction to what is a protein. What can
be learnt from the long evolution that proteins have undergone? Do sequences of the same
kind of protein that has evolved under different conditions contain a trace of the constraints
imposed by the mantaining of its structure and function? Is it possible to classify allosteric
proteins into groups according to mechanical properties and allosteric tasks? Are the chosen
architectures optimal to perform the corresponding allosteric function?

The role of crystallography in understanding protein allostery

In 1904, Christian Bohr already noticed that one molecule — carbon dioxide — affects the
binding affinity of another molecule — oxygen — to a protein — haemoglobin [5]. This
phenomenon was known as the Bohr effect and it was studied as cooperative binding of
ligands to distinct protein sites leading to different equations describing such effects [6-
9]. The term allostery was introduced almost 60 years later when Monod and Jacob [10]
described several works where the inhibitor is not a steric analog of the substrate, as it is the

acids by exploring all of these conformations would take 1075 years at the speed of light [3]. However, as shown
by Anfinsen, folding in nature is guided by the principle of free energy minimisation and thus takes only few
milliseconds for a protein to fold in its native conformation in a funnel-like landscape [4].
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case in the experiments by Changeux on the L-threonine deaminase [11, 12]. Indeed, its
etimology combines allos for other and steric for arrangement of atoms in space. At the same
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Figure 2 - Figure adapted from [13]. (A) Ribbon diagram representation of tetrameric haemoglobin
rendered with the software Pymol [14]. A proposed pathway responsible for the cooperative transition
from the deoxygenated and the oxygenated state is shown as red spheres. The pathway is identified by
considering residues that are related in their evolutionary history, see the next section for a precise defi-
nition and discussion. The haem groups are represented as light blue sticks. (B) Allosteric transition of
tetrameric haemoglobin, as proposed by Perutz model based on structural changes [15, 16]. Tetrameric
haemoglobin in the deoxygenated state is depicted on the left with the two alpha-subunits (blue) and
the two beta-subunits (purple) each with their own haem group (light blue). Salt bridges, depicted
as the red positive and blue negative charges, hold the molecule in the deoxygenated conformation.
These salt bridges are released upon binding of oxygen (orange oval) in the transition to the oxygenated
conformation (on the right) accompanied by a 15° turn of the subunits relative to each another. In
physiological conditions, also 60 additional water molecules contribute to the allosteric transition,
preferentially binding the oxygenated state.

time, a phenomenological model — the Monod-Wyman-Changeux (MWC) model — was
published, predicting the thermodynamics and kinetics of the allosteric transition discovered
in macromolecules like haemoglobin, where oxygen molecules bind cooperatively. This
transition involves a conformational change between two well-defined structural states — the
deoxygenated and the oxygenated state, which has higher affinity towards oxygen binding —
that is so evident that Perutz noticed it decades before he could solve the X-ray structure [17].
Air could enter a sample of haemoglobin crystals which consequently started shattering from
the point where air leaked in. This was a hint for a structural change upon oxygen binding
that was large enough to break the bonds responsible for keeping the proteins in a crystal.
The presence of an action at a distance was surely not assessed in the absence of structural
information. Later on, the crystal structures of haemoglobin in the two states were solved,
giving acess to the allosteric response upon oxygen binding [18], see Fig. 2. The clarification of
heamoglobin structure made the problem of allosteric regulation even more challenging since
it revealed that the oxygen binding sites are all distant one from the other in the molecule.
How is it possible to couple energetically two distant sites? The answer to this question is still
debated and it is one of the motivation of the work presented in this dissertation.

4
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Phenomenological models of allostery

The availability of X-ray data of proteins in the two conformations, before and after the ligand
binds at the allosteric site, opened the way to the study of allostery. Indeed, already the discov-
ery of associated structural and functional changes in haemoglobin upong oxygen binding
and in other systems as well [19] triggered the development of theoretical works implementing
the observed features of the allosteric transition. This effort resulted in two phenomenolog-
icals models, the Monod-Wyman-Changeux (MWC or later known as population shift) [20]
and Koshland-Némethy-Filmer (KNF) or induced fit [21] model, both well describing the
cooperative thermodynamics and kinetics of oxygen binding in haemoglobin [22] and other
proteins [23].

The Monod-Wyman-Changeux model

For simplicity, two states of the macromolecule with different binding affinities, “Inactive”
(In) and “Active” (Ac), are present — even in the absence of ligands — in the energy landscape
of the MWC model, whose relative stability depends upon ligand binding. Supposing two
binding sites, the macromolecule can be in four binding configurations, result of the binding
combinations of the effector and the other ligand, see Fig. 3, where the effector is generally a
small molecule that by binding preferentially to the allosteric site of the protein it regulates its
activity.

01
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Figure 3 - Sketch of the four possible binding configurations of the network with two binding sites,
xy, the allosteric site (x) and the active site (y). The values of x, y = 0, 1 specify the occupancy of the
two binding sites. If no ligands are bound x = 0 and y = 0, if a ligand is bound at the allosteric site
x=1and y =0, and so on. Two paths are possible to get to the final configuration 11. A good allosteric
function that favours cooperation between the two sites is Zyw ¢ = (Fo1 — Foo) — (F11 — F10). Indeed,
a macromolecule that obeys %y ¢ the path 00 — 10 — 11 is favoured since the energy difference
(F11 — F10) needs to be small, while the other path becomes very costly, since (Fy; — Foo) gets at the same
time larger and larger. Note that the two paths are not equivalent once the position of the allosteric site
is chosen.

Let us consider the paradigmatic allosteric scenario where the effector binds at the allosteric

5
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site and elicits a change in binding activity at the active site, where the other ligand can now
bind with a higher affinity. In the MWC model, the binding of the effector at the allosteric
site shifts the equilibrium of the macromolecule from the inactive to the active state where
the affinity of binding the other ligand is higher. Hence, it provides a simple mechanistic
description of the cooperative allosteric transition.

effector unbound effector bound
inactive Foo=Fin, Fio=F—kgTln (ﬁ
active Fo1=Fs Fi1 =FAC—ICBT1H(#

Table 1 - Statistical mechanics of the MWC model for a macromolecule with two binding sites. The
concentration of effectors is denoted with ¢ and the dissociation constants of the inactive and active
states with K¢ < K", the inverse of the dissociation constant being proportional to the binding affinity.
It is defined as Ky, = cexp (— ﬁFbind,In)y where Fying i is the amount of energy gained after binding one
ligand, Fyind,in = Fin — F1o.

The free energy of the macromolecule, F, can be written down for each configuration, resulting
in a statistical mechanics description of the MWC model, see Tab. 1, which is useful since it
allows to compute the probability for the macromolecule to be in the active state [17]. The
cooperative behaviour between the allosteric and active site can be translated in a functional
form describing cooperative fitness. Indeed, cooperative binding occurs when binding at
one site lowers the energy cost of binding at the other site, and it is described by %ywc =
Fyg + Fo1 — Foo — F11. Given the free energies in Tab. 1, &y ¢ reads

Fmwc = Fio+ Fo1 — Fi1 — Foo )]
C C
=F1n—kBTln(ﬁ)+FAc— [FAC—kBTln(W)] —Fp, )
K,
=kBTln( “’)>o Kac < Kin 3)
Ac
= Fyind,in — Fvind,Ac» 4)

indeed describing cooperativity (Fywc > 0 for Kac < Kj,,) — note that if K4, = Kj,, there is
no cooperativity in the MWC model.

Generalisation of the MWC model

The models of allostery here discussed were specifically built thinking of the structural tran-
sitions like the one of haemoglobin upon oxygen binding as reported in Fig. 2. Hence, they
depend on many details and in this context are not presented as in the original form. Thanks to
the increase of experimental works exploring various allosteric systems, the view on allostery
changed over time [13,24]. Indeed, allosteric behaviour has been identified in macromolecules
composed of a sole subunit — monomers [25,26], without a significant structural change of the
backbone in the case of nearby allosteric and active sites [27-29] and in proteins not classified
to be allosteric [30-33], that display allostery when few point mutation are engineered or a

6



Introduction

ligand with a stronger affinity is introduced. These results contributed in a more general view
of allostery as an ensemble of states [13]. The macromolecule is seen as having several possible
states separated by energy barriers, changing the thermodynamic view of two pre-existing
structures — inactive and active — to a dynamic free energy landscape that can be reshaped
upon physiological conditions. The allosteric behaviour results from a weighted-average
over all states that the macromolecule can be in and cannot thus be obtained from a single
high-resolution structure. Indeed, functionally relevant conformational changes are often
achieved through a shift in the equilibrium populations of the states [13, 34, 35] as can be
measured by using NMR instead of X-ray data [36]. From this view comes the term population
shift, used also in a more modern view of the MWC model.

The induced fit model

Few years after the works by Monod, Wyman and Changeux, the induced fit model was
introduced [21], expanding the seminal ideas already present in [8]. This model still well
describes cooperative thermodynamics and kinetics in haemoglobin even though differing
in nature from the MWC model [22]. Moreover, the induced fit model also predicts that the

induced fit

free

3
"
.
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energy l .

conformation @00 sasssasssasasasassasasaassaaas o

population shift
+
YN
A
°

Figure 4 — The idea behind the population shift and induced fit scenario is sketched. The protein
starts in the conformation with a binding pocket shape that does not match the ligand present in the
solution — see illustration in the box. The direction taken in the two scenarios is indicated via dashed
arrows. The population shift scenario predicts that the protein changes conformational state — from
the inactive to the active state — so that the shape of the ligand is accomodated and can therein bind.
The resulting energy landscape reproduces the two states. In the induced fit scenario, the protein also
starts in the configuration with the wrong shape, but it is the ligand that by binding induces a change
in the shape until it is matched, without another conformational state being populated. Hence, only
one state is present in the energy landscape of the induced fit scenario.

binding of the first ligand can decrease the affinity to binding of subsequent ligands, in a
negative cooperative manner observed in several proteins [37], feature that has been later
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introduced in an extended MWC model [38].

The MWC and induced fit models are based on two different scenarios for which a protein
binding pocket changes its shape to let the ligand dock. As sketched in Fig. 4, the protein
with the wrong configuration for binding the ligand has two ways of adapting its shape;
either, driven by physiological conditions, it switches to a conformational state with the right
geometry — population shift scenario — or the binding of the ligand makes the protein
arrange via sequential events so that the shape is matched without switching from a state
to another — induced fit scenario. Hence, the MWC model is characterised by a free energy
landscape composed of two states separated by a barrier and the induced fit model just by one
state, whose free energy changes during the allosteric transition, as sketched in Fig. 4 where
free energy is viewed as a function of conformation. The two scenarios can be used by the
same enzyme depending on ligand concentration and on the difference in free energy between
the inactive and active state so that a continuous switching between the two is possible [39].

Hence, in the induced fit model, there is no concept of a shift between two states: ligand
binding at the allosteric site of the macromolecule induces an adaptation of the — supposed
flexible — active site so that the effector can bind. In an energy landscape picture, only one
state is present and it changes in energy when the effector is bound.

Limitations of phenomenological models

Although the MWC and induced fit models presumably apply to various proteins, they do
not specify which designs allow for efficient action at a distance — i.e. do not provide an
explanation on how the protein is able to transmit allosterically the effect of ligand binding
to the active site [13,40-42] — and how robust these designs are to mutations, as discussed
in this seminal article by Hopfield [43]. How is it possible to couple energetically two distant
sites? The purely structural-based model of cooperative allostery by Perutz [15, 16], illustrated
in Fig. 2, was the first to give insight on how the three-dimensional structure facilitates the
allosteric communication between the sites in haemoglobin, suggesting that allostery can be
understood via structural changes by inspecting the high-resolution structure. As discussed,
this thermodynamic approach is successful, but is not complete without a mechanical picture
of allostery.

Classification of allosteric motions

The increase in number of X-ray structures allowed to study the possible local motions that
proteins exhibit when going from one conformation to the other upon ligand binding, defining
the allosteric response as the displacement occurring between the two states. Small and large-
scale protein motions could then be systematically observed. Allosteric proteins were found
to be special for displaying on average more than double the percent of motion with respect to
non allosteric proteins upon ligand binding [44], while noticing that in both cases the motion
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is more likely to occurr in weakly constrained regions, as loops or outer parts of the protein.

Figure 5 - Figure A is adapted from [45], figure B is adapted from [46] and figure C is adapted from [47].
(A) An example of the protein mechanics study of [45] from an analysis of high-resolution structures
is shown. Lactoferrin displays a coupling of two simple hinges in a -sheet. The rotation points
(amino acids 90 and 250) are indicated by red circles. (B) The biological assembly of E. Coli ATCase
is shown. The amount of shear per residue is displayed as color code (in log scale) increasing from
grey to red — also only the most sheared residues are opaque. It seems that shear is transmitted from
the allosteric sites (blue) to the buried active sites (green) via sliding of the unsheared regions of the
catalytic domains. Indeed, a shear plane appears between the two halves of the protein complex. (C)
Conserved motions of backbone atoms due to ligand binding in high-resolution structures of 11 diverse
homologues of the PDZ family. The two active sites are located around the a1 helix and 52 — 83 loop,
while the ligand binds in the pocket between the §2 sheet and a2 helix.

Hinge design. An attempt of classification found two main types of motions, hinge and
shear [45]. Fig. 5A illustrates an example of hinge motion, which is also the one used by
haemoglobin as is shown in Fig. 2. These designs implement simple architectures that allow
to propagate elastic information at long distance and are also common in daily-life objects
as sketched in the bottom panels of Fig. 5. Indeed, a small displacement of the handles of a
scissors makes the blades move at the other side. This is possible thanks to the presence of
the hinge mechanism that can be easily excited. The very same mechanism is exploited by
proteins as well.

Shear design. The shear design displays a weakly connected region between two rigid blocks,
as exemplified by the mint box in Fig. 5B that opens by sliding. The allosteric response can be
characterised further by looking at how much and which kind of deformation is associated to
it. The strain tensor quantifies the amount of deformation occurring at each amino acid in the
protein where shear and bulk components are disentangled. A significant amount of shear
deformation can be measured residue by residue, showing that the allosteric response of a set
of proteins studied in [46] is associated with large shear-like deformation. A shearing plane is
also identified, see Fig. 5B.
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Currently unclassified. Proteins whose allosteric architecture does not conform to these two
groups are also found. An example is the PDZ domain, which is a structural domain composed
of 80-90 amino acids that is commonly present in signaling proteins. Its response upon ligand
binding is shown in Fig. 5C. Hence, new tools are needed to make a catalogue of allosteric
responses and associated task.

Surely, X-ray structures have also their limitations. Given the importance of enviromental
conditions in the allosteric transition, some proteins might not show any relevant confor-
mational change when looked in their crystalline state even though they would undergo a
conformational change when in solution with physiological conditions in a dynamical envi-
ronment [48,49]. Hence, when conformational change is not detected it does not mean that it
is not present.

Relating motion to structure: elastic network models

As the classification presented in the previous section suggests, see Fig. 1, many allosteric
proteins are composed of semi-rigid domains that can move relative to each others via softer
flexible regions. Hence, this observation can justify substituting atomistic interactions for a
more coarse-grained mechanical model of allosteric transition. An example is elastic networks
where springs connect the amino acids in a protein with the assumption that its dynamics is
fully determined by the topology of contacts. Such model relates structure to motion by giving
direct access to the dynamics of the protein with collective motions at low-frequency. These
motions are identified via normal modes that describe the intrinsic structural rearrangements
of the considered protein as harmonic vibrational oscillations around its mean minimum
energy structure, which should be close to its native state.

Definition of the model

An elastic network of springs can be directly built given the resolved positions of amino acids in
the three-dimensional structure of the protein, which is supposed to be in the native minimum
of the protein free energy landscape. This representation of a protein as masses and springs
allows to access the mechanical features of the protein long-time and large-scale dynamics
from structural data, as discussed in the following.

In the anisotropic network model [50], the harmonic potential between the residues i and j
with stiffness constant k simply reads

1 0y2_1 01°
Vij = 5kl = 1097 = Sk {\ =52+ i = 3% + (i = 2% - 1 (5)
where l? i is the equilibrium distance between i and j, as illustrated in Fig. 6 where the beads

represent protein residues with positions (x, y, z) in the three-dimensional crystalline structure.
This model is distinguished from the previous gaussian network model [51] by taking into
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1=(Xi, Yi, Zj)

Figure 6 — Schema of an elastic network model where the metallic beads represent residues among
which harmonic springs are inserted when their distance is below a chosen cutoff radius. The position

vectors r; and rj = (x;j,;,z;) are highlighted, and [;; = ||r;;I| = \/(xi—xj)2+(y,- - y)?+(zi — zj)2.
Public domain figure adapted from Wikipedia.

account the three-dimensionality of motion instead of just its radial component describing
the expansion or compression of the spring.

Normal modes

The idea of supposing harmonic interactions between the residues of a protein to perform
normal mode analysis was introduced by Tirion [52] and was consequently discussed in several
works, notably by Hinsen [53, 54]. In Ref. [52] Tirion showed that the lowest energy modes
obtained by supposing harmonic interactions where almost identical to the ones found with
detailed force fields, thus supporting the use of elastic network models.

The potential in Eq. 5 acts for all residues at a distance within a chosen cutoff radius, R., whose
value needs to be chosen to avoid a definition of neighborhood containing very few residues.
Indeed, a poorly connected residue might create instabilities leading to more than the six zero
modes associated to translations and rotations, i.e. the directions along which the system can
move without any energy cost.

The Hessian matrix is obtained from Eq. 5 by computing its second derivatives and then
it is evaluated in the equilibrium configuration, l? i The normal modes — and associated
frequencies — are directly calculated via diagonalisation of the Hessian matrix, which reads

4 (xj — x;)? xj—x)j—y)  (xj—x)(zj—2)
Hij= = |j-yx-x)  j-y)*  0j-ydz-a)|. (6)
Y-z -x)  (zj—z0(— i) (zj — 2)?
Connection to allostery

Given the frequencies w and the normal modes R, the flexibility of the structure in this
harmonic approximation can be directly obtained from the definition of B-factor [55] — also
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known as Debye-Waller factor in condensed-matter physics

. 1 ; .
B(i)= ) —Ry,()-Ry(), @)
w>0 W

where, in this instance, the index i refers to a given residue. Elastic Network Models (ENM)
predict accurately experimental temperature factors — of some proteins — with the B-factor
computed in the harmonic approximation via Eq. 7. In a good quality model, the experimental
factors indeed measure the flexibility of each component by the degree of uncertainty of
observing that given atom position.

Moreover, the empirical allosteric response is found to be well described by few low energy,
global normal modes — often mainly by just one of them [56-58]. Thus, the structural organi-
sation of the protein in the unliganded state displays an intrinsic flexibility — in particular
described by the low energy vibrational modes — that is exploited to perform the functional
conformational change upon ligand binding. This result supports that in at least some proteins
elasticity — possibly non-linear [59] — is an appropriate language to describe allostery?. How-
ever, ENMs do not provide any insight on the underlying protein structure that allows this soft
mode to appear or on how the mode has to be designed for proper allosteric communication,
thus other frameworks are needed, as argued in Chapter 1.

The choice of harmonic springs all of equal stiffness and defined by an arbitrary cutoff radius
as proxy for native interactions is a major oversimplification [60]. Other works built refined
versions of ENMs — yet still based on the same concept — aiming to describe some of the basic
features of proteins not taken into account in anisotropic network models — e.g. side-chain
interactions [61], and the presence of more rigid regions, as the backbone [62]. Such refined
versions improved the prediction of motion and dynamics from structural data with respect to
the usual ENM — the anisotropic network model, which still gives surprisingly good results.

Summary and open questions

Communication between distant sites in proteins that results in a change in activity has
been posited since the works of Bohr who noticed that carbon dioxide affects the binding
affinity of oxygen to haemoglobin [5]. Monod and Jacob [10] coined the word allostery and a
phenomenological model, the Monod-Wyman-Changeux model, was later discussed, which
was then followed by the induced fit model. Both models successfully describe allosteric
cooperative effects of oxygen binding in haemoglobin. In the meanwhile, Perutz succeeded
in crystallising haemoglobin in both the unliganded and liganded state, opening the way
to understanding the role of structure in the allosteric communication. As discussed, the
increasing availability of high-resolution structures made possible to attempt a classification
of motions [44, 45], to access dynamical features via elasticity [50] and to characterise the

2There are however cases of intrinsically disordered proteins that may be considered more as liquids than solids,
and for which elasticity is thus inappropriate.
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mechanical properties of the allosteric response [46].

Some unanswered questions emerge from the (partial) description of the contributions to
understand allosteric behaviour.

* Nature of the information. As discussed by Hopfield in [43], the phenomenological
models introduced above do not clarify which is the nature of the information that
propagates in the protein. What is the origin of the coupling between allosteric and
active site? Which quantity is transmitted: strain or energy?

* Designs. Do the designs depend on the information that is transmitted? Are there other
designs than hinge and shear that are apt to achieve such propagations of information
atlong distances?

¢ Classification. The classification presented in [44, 45] is an attempt. Is it possible to
properly classify the designs and unravel which mechanical principles are responsible
for making them work? Have these designs evolved to be close to optimality for the task
they have to perform?

* Elastic description. The typical elastic network model involves linear elasticity, while
proteins are intrinsically nonlinear, as discussed in the population shift scenario. How
are the questions just raised affected by the presence of nonlinearities in the elastic
description of the protein?

The role of sequence data in understanding protein allostery

The footprints left by the evolution that shaped proteins during billions of years are a rich
source of information, putatively also for protein allostery. Mechanisms that occasionally
duplicate genes allow one copy of the gene to evolve independently to enable it to perform a
new function; these two divergent genes are called paralogs. Speciation is also responsible for
a divergence, where genes usually share similarities in function and are called orthologs. Both
processes have been abundant in the history of evolution [1], a sketch of an evolutionary tree
summarising these effects is shown in Fig. 7.

As a consequence, many proteins that exist today possess similar sequence and structure so
to be grouped in a protein family, even though they can express different biological activities
depending on the required degree of sequence similarity. It happens also that the sequences of
two proteins have diverged so much that their family relationship cannot be assessed without
a structure determination. With the recent increase of the number of sequenced proteins
in the same family, researchers started to ask how to extract information from the sequence
variability acquired during evolution. In the following, the relevant ideas to progress in this
directions are outlined, starting from the role of co-evolution [63], commonly defined as
reciprocal evolutionary change in interacting species [64].
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Figure 7 - A sketch of the phylogenetic tree of globins shows the divergence of the evolutionary path
from the common ancestor, globin, to the appearance of myoglobin and heamoglobin chains as
separation of branches in the tree — called paralogs. Each branching point indicates a common
ancestor for the following lines. Smaller evolutionary differences are seen when the two haemoglobin
chains form and differentiate in different organisms — called orthologs.

Proteins, big data and co-evolution

In the last 15 years (i.e. since 2005) massively parallel techniques for sequencing DNA known
as next generation sequencing became commercially available [65], marking the steep growth
of the number of protein sequences recorded on online databases, like UniProt. Indeed, DNA
sequencing is the most efficient way to date to perform protein sequencing. This progress
allowed to build protein families with a considerable amount of entries, frequently up to
10° - 10° sequences per family, and made the use of big data in bioinformatics possible.

But what is the relevance of a protein family? A protein family is defined as a set of proteins
that have common evolutionary history, known as homologs®, conserved three-dimensional
structure and function, but whose sequences have diverged in evolution — given the different
organisms they are taken from or paths they have followed, see Fig. 7 — thus displaying
only 20-30% of sequence identity. Indeed, mutations occurred in the course of evolution are
responsible for the considerable amount of variability observed between sequences in the
family. Nonetheless, this variability is not meaningless. Few mutations introduced at random
in one protein are found to be enough to break its structure and function [67-69]. Hence, traces
of what makes structure and function conserved in the protein family must be present in the
observed variability. Indeed, two positions in the amino acid sequence can be found to have
evolved together — co-evolved — to obey structural or functional constraints, even though
singularly they would present large variability. This gives the hope to find information about
the evolutionary constraints acting on a given protein that reflect structure and function from
sequence data alone. Since a large amount of sequence entries in UniProt are not annotated —
note that more than 5000 protein family do not have an example structure — the acquisition
of information solely from sequences is of great interest.

3As an example, haemoglobin and myoglobin are homologous proteins since they share the same evolutionary
history, as sketched in Fig. 7. Protein families can also be defined as being composed of solely orthologs. This
definition would allow to explore the landscape that associates fitness to a sequence, see Fig. 13, around one native
minimum, in contrast to a protein family between homologs that considers proteins better distributed over the
space of all possible sequences [66].
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Proteins in the same family may be composed of different numbers of amino acids, thus with
sequences of different lengths that cannot be compared. An alignment of these sequences is
then needed to be able to compute their statistical properties. Building a matrix composed of
aligned sequences, the Multiple Sequence Alignment (MSA), constitutes a research field on its
own [70] and the quality of the alignment deeply influences the outcome of any analysis that
uses the MSA as starting point. Several methods exist to deal with the high complexity of the
task, but they are overall based on adding gaps (—) until all sequences have the same length
and both repetitive and conserved regions are matched without the possibility that a column
in the matrix consists only of gaps.

variable residue conserved residue
| |
—-—CO0—0000 0000
rat | D H L K HN T active site
human LN G L RHD T
mnkey E R Q ET G HE K L <«
; constraints
; ]Z\ l\-I/-l E \L/ -CI-]- E 3 K k of evolution contact
QK EELAHNKG

L ]
co-evolving residues

Figure 8 - Members of a protein family have evolved in different environments while still displaying
overall the same structure and function. The interplay between these evolutionary constraints and the
sequences in the MSA are summarised in this figure. On the left, few sequences in an example MSA are
shown, where conserved, variable and co-evolved position are highlighted with colours. On the right, a
sample sequence from the MSA is folded in the corresponding protein, where the connection between
statistical properties of the MSA and evolutionary constraint is sketched.

Given an MSA, statistical observables can be directly measured. Conservation of amino acids
among sequences is the most immediate observable to extract functional information from
the MSA [71-75]. Indeed, from Fig. 8 it emerges that a position in the sequence diplays large
conservation as a footprint of the crucial role it plays in the protein, as could be the case for a
functional site (represented as a green circle in Fig. 8) or a position located in the core of the
protein. Indeed, evolution will most likely keep the functional site of a protein in the family
conserved, then imprinting this constraint in the MSA.

Further, more subtle information can be extracted if measuring correlations between amino
acids in two different positions [76-78]. Fig. 8 shows that two positions co-evolve together
when the interaction between the two is crucial, as it happens e.g. for two contacting residues
shown as red disks in the figure. More generally, co-evolution appears when two positions
display coordinated changes that occur to maintain or refine functional interactions between
them, thus suggesting the presence of correlated mutations necessary to sustain overall protein
stability, function or folding. Hence, the significant correlation displayed between the pair
suggests the possibility to exploit it as a proxy for contact prediction [77].

Soon after the relevance of co-evolution in MSA was discovered, the biology, bioinformatics

15



Introduction

and physics community thrived to pin down the most efficient ways of extracting the structural
and functional constraints imprinted in the MSA by evolution, as it is discussed in the following
sections.

Inferring structure from sequence

The study of co-evolution in protein families started with measuring correlations between the
amino acids of two different positions in the MSA. Positions displaying large correlation were
found to correspond to neighbouring residues in the protein structure, which helped to guide
structure prediction, but still provided a non negligible amount of false contacts. The accuracy
of contact prediction improved once it was realised that the measure of correlations cannot
disentangle between direct and indirect interactions: long-range correlations can arise from
networks of short-range couplings, thus adding noise to the prediction, see Fig. 9. Indeed,

— contact
no contact

a EEEEEEEEEEEEEEEEEENEN |C

indirect coupling 30 strongest correlations 30 strongest couplings

with |i —j| >4 with i —j| >4

Figure 9 - Figure B is adapted from [69]. (A) This simplified interaction pattern aims to show the
difference between direct and indirect interactions. If a interacts with b, e.g. through a contact, and
b interacts with ¢, then a correlation is also measured between a and c originating from the indirect
interaction of both a and ¢ with b. This indirect correlation originates a false contact when correlation
measures are used for contact prediction. (B) The largest pairwise correlations and couplings are
shown for the PF00014 protein family (trypsin inhibitor) highlighting the amount of false positive
contacts predicted when considering large pairwise correlations. The analysis excludes unsignificant
predictions with separation |i — j| < 4 along the amino-acid sequence, where the value four is chosen
since it corresponds to the distance between one turn in an a-helix.

Fig. 9B shows that direct pairwise couplings are needed to have a good prediction of contacts
and not positions that display correlations and mutate in a coordinate fashion due to higher
than primarly effects. But what are these direct couplings? How can they be extracted from
the MSA?

In statistical physics, direct pairwise interactions between degrees of freedom are the basis of
the Ising model [79], whose energy function for a discrete variable o; = {-1,1} reads

(5‘)({0'})=—Z]ij0'i0'j—2hi0'i. (8

i<j i

The rules of interaction between the binary variables {o} are set by the choice of the coupling
matrix /. The term h; acts like a field favouring the variable o; to align along the field,
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mimicking the effect of an external magnetic field in physics or of conservation in the context
of proteins. If J;; > 0 the two variables are favoured to have the same value when minimising
Eq. 8, while the opposite when J;j <0. Moreover, J;; can be set to be nonzero only when (i, j)
satisfy specific conditions, e.g. they are first-neighbours when {o} are embedded in a lattice.
Hence, the common use of the Ising model is to produce configurations {o} that minimise
Eq. 8 with the chosen microscopic interactions and then study macroscopic observables,
like magnetisation and correlation, (o;) and (o ;0 ;), where the average is performed over the
sequences {0} sampled at equilibrium by the Boltzmann distribution P({g}) = e A6 The
inverse problem can also be studied, where the microscopic parameters are inferred from the
knowledge of the configurations, giving a useful framework where direct couplings are well
defined and can be inferred from sequence data [80]. In the following, this framework — first
applied to proteins in [81] — is discussed in the context of proteins with its successes in
predicting contacts and structure.

Direct coupling analysis

One successful inference method of couplings and fields from sequence data takes the name
of Direct Coupling Analysis (DCA). Each entry of the MSA of a given protein family is seen
as a sequence g% with a = 1,..., M where each element 0'? represents one amino acid with
i =1,...,N and can take g = 21 values. Thus, it defines an extension of the Ising model
to variables with g > 2 degrees of freedom, and is known as the Potts model. Note that M
denotes the number of proteins inside the family and N the number of amino acids in the
sequences. The desired framework for performing inference is a global statistical model that
assumes sequences in the MSA of the protein family to be generated from the same unknown
energy function &({o}) and hence to obey to the same fitness energy landscape. How to define
the probability distribution P({o}) — of observing a sequence {o} — for whole amino acid
sequences in the MSA under study?

The method

First, the model to be inferred needs to be consistent with the statistics of the empirical data. A
numerous group of works [68,81,82] showed the sufficiency of pairwise interactions to capture
the effective features of the sequence ensemble, hence supporting to fix the marginals of
P({o}) to the empirical single- and double-site frequency observed in the MSA. This assumes
that pairwise couplings are sufficient to capture the amino acid variability in the MSA and that
correlations between different positions result collectively from a network of direct couplings.
The conditions on the marginals read

Pi(o))= )Y PUo}) = filo) 9)
orlk#i
Pijloi,0)= Y. PUo}) = fijloi,0)),
orlk#i,j

17



Introduction

where f;(o;) counts the number of proteins in the MSA that display amino acid o; in position i,
while f;;(o,0;) counts the number of entries for which amino acids o; and o ; are correlated.
Since there is no additional knowledge on how P({o}) should look like other than obeying the
constraints of Eq. 9, looking for the most general P({o}) would give the least biased form of
this probability. One way of finding the least-biased model is to maximise the entropy of the
probability distribution [83]*

S=- ) P{ohInP(o}), (10)

while imposing the constraints Eq. 9 as Lagrange multipliers. The maximisation gives the
functional form for P({o}) which is the same as the equilibrium distribution of the Ising or
Potts model, the Boltzmann weigth

1 1
P{o}) = Eexp = Eexp[—g({O})] (11)

Z.]ij(o'iyaj)‘*'zhi(gi)

i<j

Y Jijloi,0)+> hi(g))|, (12)

i<j i

Z= Z exp
O'i|i:1,...,N

where J;;(0;,0) and h;(0;) are the Lagrange multipliers resulting from imposing Eq. 9.

A limitation resides in computing the summations in Eq. 9 since they are performed over all
amino acids apart i and j, thus implying a computational time that goes like g"¥ and becomes
intractable when the length of the sequences N increases. The partition function itself, Z, also
becomes intractable for large N for the same reason. Moreover, the marginals in Eq. 9 can be
obtained via the partition function by derivation

0lnZ
0h;(o})

OlnZz Pii(04,07) +Pi(@)Pi(0) = -Ci;(01,07)
—— =-P;i (0,0 (0 i(0;)=-C;il0;,07),
ahi(O'i)ahj(O'j) H ! J ! ! J J 1 ! J

=Pi(o;) (13)

where the connected correlation matrix C; (0,0 ) is defined. Several ways to approximate
Z have been laid out to perform DCA with a different accuracy in inferring couplings and
fields — where accuracy can be either measured via the fractions of predicted contacts or
via comparison with the exact solution for small N. The approximations consist in message-
passing algorithms [80, 84], improved Monte Carlo sampling [85], perturbative expansions
[86-90], pseudo-likelihoods [91,92]. The simplest method to implement computationally is
mean-field DCA (mfDCA) [81] based on the mean-field approximation for which the joint
distribution of all amino acids factorises. Indeed, the mfDCA-inferred coupling simply reads

Jijloi,0))=—(C Yijlo,0)). (14)

4Note that the uniform distribution carrying no information maximises the entropy by construction.
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Success in the prediction of contact in the three-dimensional structure
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Figure 10 - The figure is adapted from [81]. Given a protein sequence of length N, the 2N highest-
ranking couplings inferred via mfDCA are superposed to the contact map of the associated protein
(in grey). The contact map is zero if residue i and j are at distance greater than a threshold, here
set to 8 A, and one if the residues are closer. Red squares identify true positive, while green squares
spatially distant pairs. The minimum separation between two amino acids along the sequence is of five
positions, |i — j| > 5. Two examples of contact map prediction are shown, on the left for the SigmaE
factor and on the right for the eukaryotic signaling protein Ras.

Albeit the simplicity of the approximation, the couplings inferred via mfDCA show to pre-
dict with a good accuracy couples of positions that are close in space, as shown in Fig. 10
with the results from [81]. Contacting amino acids are found among the couples (i, j) with
largest J;j(0;,0;). The accuracy of the predictions increase with more refined methods as
pseudolikelihood or Adaptive Cluster Expansion (ACE), where maximum likelihood is per-
formed with an initial condition for the parameters given by constructing a sparse network
of interactions sufficient to reproduce the observed correlation data, thus avoiding potential
overfitting [89, 93].

Overall, DCA is able to predict with high accuracy the contact map of a protein family, i.e.
the couples of positions that are close in space, serving as a valuable information for the
prediction of structure from sequence, as shown in Ref. [94] where it guides the discovery
of new folds. In 2019, a research group at DeepMind (Google) created a machine learning
scheme, AlphaFold [95, 96], to predict structure from sequence data where contact predictions
from DCA are used as one of the informative features to get distances between pairs of amino
acids necessary for structure prediction. Indeed, the use of contacts maps from DCA was
already shown to improve significantly the performance of structure prediction [97], but never
with an improvement as impressive as the one of AlphaFold.
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Extracting function from sequence

A pair of amino acids in contact is predicted by looking at the largest inferred couplings
Jij(oi,0;). When the method is applied on a known structure it identifies a certain number of
false positive contacts, among which some correspond to residues that are far away in space if
looked at in the corresponding crystalline structure. Are these positions encoding for some
long-range functional coupling or do they originate solely from X-ray artifacts? Is it possible to
extract functionally related positions with methods like DCA or other approaches are needed?

In 2017, a research article [98] tackled the issue of the origin of coevolution between residues
that are distant in the three-dimensional structure. A systematic study over 4000 protein
families showed that the majority of pairs are found to be in contact in at least one structure
in the family and thus little evidence is found to support the idea of large couplings between
distant allosteric and functional sites. Hence, it seems that the long-range couplings inferred
with DCA are not related to allosteric communication. In the following subsection, another
method based on co-evolutionary information is introduced [99], which provides more insight
on functional features by identifying larger groups of co-evolving residues with respect to
pairwise couplings inferred by DCA.

Statistical coupling analysis

The correlation matrix C;; defined in Eq. 13 can be directly used to study co-evolution [99]
where — instead of looking at the most correlated pairs of residues — groups of co-evolving
positions are identified via the largest entries of the modes of C;; with highest variance,
thus counting for most of the variability in the dataset. This approach takes inspiration
from the sector analysis developed for financial markets, where relevant correlations of stock
performance over a finite sized time window are extracted from the noise. Indeed, most
correlations simply arise due to the limited period of time during which the prices are sampled
and are then non significant. It emerges that the few relevant correlations are organised in
collective modes, each describing a sector of the economy whose performance fluctuates
together over time. This study inspired the search for sectors in proteins by studying the
modes of C; j, hence defining the Statistical Coupling Analysis (SCA).

In particular, the matrix used in SCA is the conservation weighted analog of C;, justified as to
possibly look at the contribution of correlations to conservation

Cij(01,0) = BEINGE]Ci 010, o)

where the weights are a function of the conservation of amino acid o; at site i, X; (01)°. The

5In the literature, they are usually taken to be gradient of conservation, i.e. ¢ = dZ/3f.
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Construction of the SCA matrix Change of basis Sector identification on
the protein structure

Figure 11 - All the figures are adapted from [100]. Statistical coupling analysis is performed on the S1A
protease family. (A) The SCA matrix is shown. Secondary structures elements are specified with arrows
and squares and the profile of amino acid conservation Z ; (o ;) is shown above. (B) The matrix rewritten
in the basis of the chosen modes as in Eq. 17 shows a structure with three independent diagonal blocks
identifying three sectors, coloured as blue, green and red. (C) The three sectors are highlighted in the
protein structure of a member of the S1A protease family, the rat trypsin (with PDB identifier 3TGI).
The colour is according to the strength of contribution in each sector.

conservation, with f(o;) the frequency of ¢; in all proteins in the family, reads

(o) = fi(ai)lnM +[1 —fl-(ai)]lnw. (16)
floi 1-f(o:)

An example of application of SCA to the S1A protease family is shown in Fig. 11 from [100].

The SCA analysis consist in a sophisticated principal component analysis of the SCA matrix,
Eq. 15. The first Nt modes " of C; j(oi,0}) are extracted, with Nt identifying the number
of modes with largest eigenvalue that are clearly separated from the spectrum of random
data, admitting that such a clear separation occurs. A position i is part of a sector when the
corresponding component i of at least one of these Nt modes has an absolute value larger
than a threshold® ¢, Iwgfl > ¢£. Once the relevant modes are chosen, the significant correlations

60ther relationships involving components of different modes have also been used to define sectors, as dis-
cussed in [100], where relationships between two modes, as could be e.g. U/l2~ > Iw‘i1 |, translate an observed
correlation between those components and define directions in modes space where sectors emerge. Moreover, a
sector could also be defined by a linear combination of different eigenvectors. Hence, these observations underline
the details in the method that do not make it robustly and systematically applicable.
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can be represented by the following matrix reduced to sector position shown in Fig. 11B

Nr
Cijoi,ap) =) Aly") . a7
y=1

A variant approach solely based on the covariance matrix C;; has been introduced in [101]
where is shown to be more robust than SCA and to perform better when the conservation bias
in Eq. 15 is dropped. The method is based on the observation that sectors are identified from
the low energy modes of the covariance matrix and considers the inverse of the off-diagonal
terms of the covariance matrix C;; as observable for predictions — it is indeed called ICOD,
which stands for Inverse Covariance Off-Diagonal.

Success in the prediction of functional dependencies

The way of defining sectors is somewhat arbitrary — it depends on the two parameters Nr
and € and also on the weights ¢ in the definition of the SCA matrix — and it is not clear how it
is applicable to proteins other than the few ones studied in the literature for which a thorough
knowledge about their functioning is already at hand to guide sector identification. Anyhow,
the available results show that meaningful sectors can be identified in some proteins.

A

Figure 12 - The figure is adapted from [102]. The residues involved in the sector are shown as blue
spheres, while a cartoon (A) or space filling (B) representation shows the structure of rat PSD95P4%3
with PDB identifier 1BE9. Yellow stick bonds represent the co-crystallized peptide ligand. The sector is
composed of a sparse network of residues around the ligand-binding pocket and that connects to a
distant active surface site [103], labelled with an asterisk, through a subset of amino acids within the
protein core.

For the S1A protease family shown in Fig. 11, the positions belonging to the three sectors
are located in areas responsible for different and independent functions according to the
sector they belong to [100]. Moreover, in distinct protein families SCA identifies one sector
[102,104-107] whose amino acids form a chain connecting the allosteric and active site, thus
supposedly identifying a pathway of residues mediating the allosteric communication solely
from the co-evolutionary information in the MSA [103, 104, 108, 109], see Fig. 12 for the case of
PDZ domain and Fig. 2A for haemoglobin. [110].

22



Introduction

However, the idea of allosteric pathways should be taken with care. Indeed, the stress induced
by binding in the conformation does not have necessary to generally follow residue by residue
the allosteric pathway, but it could propagate non-locally at the distal functional site thanks to
the presence of rigid parts — as could be -sheets in the secondary structure, Fig. 1. Moreover,
in recent molecular dynamics experiments of a photoswitchable PDZ domain’ [111] it has
been shown that different trajectories are highly heterogenous, suggesting for the existence of
several possible pathways of the allosteric transition. A successful alternative is to define the
pathway in Fourier space instead of real space as the dominant normal mode [112], usually
global, or a sum of normal modes [113].

Moreover, Refs. [33, 114, 115] used the information obtained by SCA to locate® functional
hotspots, then used it to engineer proteins with controllable functions. Other works [117,118]
use information on conserved residues to locate functional sites and engineer functionalities,
which performs similarly than SCA given the strong component that conservation plays in the
SCA matrix [119].

Overall, sectors obtained from SCA are found to be sparse, being composed of 20% of the
total number of amino acids, and to be organised into structurally adjacent networks of co-
evolving residues. These findings suggests that natural proteins are organised into groups of
amino acids each related to conserved functional activities and that can be identified from the
different evolutionary pressures they have been subjected to [100, 120-122].

A model for protein fitness

The success of co-evolutionary methods in predicting structural and functional constraints
hints that models describing the fitness of proteins may also be built starting from sequence
data of one protein family [66] — supposing that a fitness which is a global function of
sequences in the protein family is biologically relevant. This is true since the proteins in a
family are the result of evolutionary pathways, like the one sketched in Fig. 7, that are in turn
determined by the shape of the fitness landscape. Thus, if co-evolutionary methods are able
to capture some of the evolutionary constraints, they may also succed in modelling, to a given
extent, the landscape responsible to generate those constraints.

Fitness can be defined in different ways, one definition that is straigthforward measures fitness
as how well the protein performs its task. Hence, fitness can be experimentally measured
by looking at binding affinity or at the activity upon external responses as for photosensible
domains. The concept of fitness landscape was introduced in 1931 in a seminal article by
Wright [124] as to understand the effect of mutations on evolutionary processes. A sketch of a
fitness landscape is displayed in Fig. 13. There, fitness % is shown as a function of sequence
{o}=01,...,0N, representing the genotype-to-phenotype — i.e. sequence-to-fitness — map,

7PDZ2S with PDB identifiers 2M0Z — inactive — and 2M10 — active.
8See [116] for a scheme to locate functional hotspots via SCA and how to engineer new functions via their
knowledge.
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Fitness

Residue 2

Residue 1

Figure 13 - This figure is adapted from [123]. Sketch of a genotype-to-phenotype mapping, % ({0}).
The amino acid sequence specifies a location on the landscape and the height of the landscape its
fitness. For visualisation purposes, only two residues are shown, but the landscape is generally high-
dimensional.

Z ({0}); N denotes the length of the sequence. For limits of visualisation, only two amino acids
are shown in sequence space.

The definition of such mapping identifies evolution as the process of selecting sequences in
the landscape according to their fitness. Its characterisation, however, is non trivial given both
the impossibility to experimentally measure the fitness of all mutated sequence and the effect
of non additivity of mutations, called epistasis, which may lead to a rugged landscape with an
extensive number of local optima. The advance of experimental techniques determing fitness
changes upon mutations, as deep mutational scanning® [126], allows to probe local patches of
the fitness landscape centered around the native sequence.

The fitness landscape is crucial to determine the effect of amino acids mutations on function.
Which are the positions in the sequence that affect function the most upon mutation? Which
are the effects of simultaneous mutations at different sites? The group of Chakraborty with
the work of Ref. [123] studied the fitness landscape of HIV to find which regions are the most
vulnerable to be then targeted via an immune therapy. Moreover, the knowledge of the fitness
landscape allows to perform directed evolution [127]: exploring the landscape in new ways
that were not chosen in nature to discover possibly new proteins.

The experimental measure of the fitness cost of mutations is however involving and becomes
intractable at higher orders purely for combinatorial reasons — even with the new advances
in mutational scans, in the case of simultaneous mutations at several sites. Hence, the interest
of building a model for protein fitness able to predict mutation costs from co-evolutionary
information.

90n this line, a recent work [125] defines and evaluate different strategies to choose a minimal set of experimen-
tal mutational data and use it to guide predictive computational models so to reduce the number of mutations
required for predictions.

24



Introduction

The role of epistasis

Among the set of observables characterising the fitness landscape, one in particular has
received considerable attention in recent research. Several works have highlighted the role
of the non-additivity of mutations defined as epistasis [128]. The effect of epistasis to fitness
is found to be either beneficial or deleterious, as discussed in [129]. Moreover, epistasis is
responsible to influence evolutionary paths by reshaping the fitness landscape itself [130].
Indeed, epistatic interactions with deleterious effects may restrict the trajectories available
to a protein during evolution or if beneficial, on the contrary, create new paths leading to
sequences and functions that would otherwise have been inaccessible. Overall, epistasis
increases the ruggedness of the fitness landscape since the physical effect of a mutation
depends on where in the sequence it is introduced, i.e. on which directions it takes in the
landscape.

Given the fitness & and the fitness cost upon mutation at position i, A%; = %; — &, second
order epistasis reads

AAffij =Agij—Affi—Affj. (18)

Its empirical measurement, involving mutations at at least two pairs of positions, remains
elusive given the combinatorial complexity, even though deep mutational scans are able to
efficiently reduce this complexity [131-134]. The resulting epistatic interactions are found
to involve positions that can be distant in the structure of the protein [132, 134, 135], usually
related to distant functional dependencies, as allosteric interactions described in the previous
section.

A recent work [136] measured epistatic interactions up to the 13" and showed that frequencies
and correlations of a MSA of fluorescent proteins give a good prediction of the true second
order epistasis, suggesting that the co-evolutionary methods discussed above should be able
to capture it as well.

Fitness landscape as a tool to generate new sequences

Ultimately, a model accurately predicting the fitness landscape & ({o}) would be able to
generate new artificial sequences that fold in the corresponding native structure, opening new
possibilities for protein and drug design. This means that such a model would capture the
overall statistics of the landscape, or the non additivity of many mutations, not just of two.

The seminal work by Ranganathan and collaborators [105, 137] goes in this direction. They
showed that the information contained in the frequencies and correlations of the MSA of a
small protein module, the WW domain, is sufficient to design artificial sequences in vitro
whose a sizeable fraction folds correctly in the native state. The sequences were generated by
recombining natural sequences in a way that preserves the measured single- and double-site
frequencies. The fraction of correct fold vanishes when sequences are generated by using
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information only on single-site frequencies. Even though this result is valid only for a tiny
protein it demonstrates the power of a free energy function inferred from statistical properties
of the MSA, over an ad-hoc physical free energy function.
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Figure 14 — The figure is adapted from [138]. (A) A structure S, of a protein lattice is shown where
amino acids (blue circles) are identified with their number, n =1,...,27, along the protein backbone
(black line). There are 28 additional contacts between nearest-neighbour amino acids that are not along
the backbone, e.g. between 1 and 18. (B) Probability of finding a native fold against their Hamming
distances to the consensus sequence of the original MSA of the structure used to infer the four models.
The results are shown for sequences randomly generated with different inference procedures: the
independent-site model (IM, green) — fully determined by conservation, the Potts-ACE [89,90] (red),
the Potts-pseudo-likelihood method [92] (orange) and the Potts-Gaussian [81] (blue). Black circles
encode the results for the original sequences. Filled ellipses represent domains corresponding to one
standard deviation around the mean in both directions.

Given the experimental difficulty of testing the generative power of a model with protein
data, simple protein models come at hand as a benchmark of existing inference methods.
Lattice proteins have been introduced in [139-142] to provide a coarse-grained description
of protein folding. See Fig. 14 for a sketch of a lattice proteins with 27 amino acids. Protein
lattices are used in Ref. [138] to benchmark the performance of pairwise models like DCA in
generating new sequences in silico. The probability distribution inferred via DCA is found
to generate sequences that are close both in variability and fitness to the native ones, see
Fig. 14B. Amodel based only on conservation is proven to fail in generating sequences with
the proper fold and function. This suggests again that structural constraints are captured by
the inference method, where pairwise interactions are needed to achieve generative power.
However, protein lattices do not account for functional dependencies as allosteric interactions.
Hence, in-silico sequences evolved with a model enforcing allostery are needed to see whether
the remarkable generative power of DCA is kept also when functional constraints are imposed.

In the following, the contributions of the complementary co-evolutionary methods, SCA and
DCA, to predict protein fitness are overviewed in more detail.
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Contributions of Statistical Coupling Analysis

SCA makes predictions directly using the statistical properties of the MSA — conservation and
covariance — and it does not learn a probability distribution, in contrast with DCA, see Eq. 11.
How to then define a model of fitness from SCA from which is possible to predict mutation
costs and generate sequences?

Prediction of binding affinity. Suppose an MSA where additional new sequences do not
change significantly the distribution of amino acids at positional sites. The frequencies of
mutations in such an MSA obey a Boltzmann distribution as function of the binding free

energy AG;Y
Pf (AGf ) 19)
=exp ,
PIiC/[s A kT

where P is the probability of any amino acid x to be at position i and Pysa the mean frequency
of amino acid x in the MSA. Hence, the statistical binding free energy reads

AGF = kT (InP} —1InPfjg,) - (20)

The prediction of the empirical effect of mutations to the binding energy can be successfully
performed by using this formalism, as reported in [99, 102].

Generate new sequences. As mentioned above, in the work of Refs. [105,137] the information
from the SCA matrix is combined with the knowledge of the number of amino acids of each
type to construct new sequences that are found to fold and function correctly, suggesting that
SCA — and other models based on conservation and correlation as well — captures significant
features of the fitness landscape for a small protein domain.

Prediction of epistasis. Another way of using the co-evolutionary information from SCA is to
directly consider the covariance matrix reduced to the relevant modes (Eq. 17) to predict the
effects of mutations. Ref. [134] showed that in the case of the PDZ domain the SCA matrix is
able to capture the strength of the measured epistatic interaction, even between long-range
functionally related pairs.

While SCA showed success in the predictions of mutation effects and in guiding synthetic
sequence design, it does not provide a unique and consistent way of performing these tasks.
On the contrary, as how DCA is built, it learns the probability distribution of a sequence with
a given fitness, i.e. it learns the fitness landscape from co-evolution. Hence, it provides a
well-defined mathematical framework to predict mutation costs and generate new sequences.

Contributions of Direct Coupling Analysis

The other co-evolutionary approach discussed in this dissertation is DCA and infers evolu-
tionary couplings between amino acids in the sequence alignment that are found to predict
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successfully contacting residues, as discussed above. The inferred energy function of the Potts
model &({o}) can be identified with the fitness of a protein sequence via & ({o}) = -&({a3}).
This identification is valid if the fitness landscape is explored ergodically so that fitness obeys
a Boltzmann law as the one of the inferred energy Eq. 11. Are the parameters inferred by
imposing frequencies and correlations observed in the MSA sufficient to capture properties of
the protein fitness landscape through & ({0})?

Prediction of fitness landscapes. Several works [123,143-147] focused on the description
of evolutionary fitness landscapes with methods based on DCA showing that the effect of
mutations are well predicted at different orders, while not focusing on mutations involving
functional residues that are of interest for allostery and protein and drug design.

Generate new sequences. The knowledge of the functional form of the inferred energy func-
tion allows to generate new sequences distributed according to its Boltzmann distribution.
The generative power of DCA is found to be good in lattice models as shown in [138] where
new sequences are drawn from the inferred distribution Eq. 11 and are found to reproduce the
fitness of native ones. This analysis is based on lattice models for protein folding, thus describ-
ing structural constraints and not including functional allosteric interactions. Moreover, the
recent work in Ref. [148] shows that DCA is a good generative model for the enzyme choris-
mate mutase with 45% of the designed sequences found to be comparabe with natural-like
sequences, which is again in strong support for DCA as a good generative model.

Prediction of epistasis. In the work of Ref. [134] the performance of SCA on predicting epis-
tasis is compared to DCA. It is found that DCA is outperformed by SCA in the inference of
epistatic interactions, which is largely do to a failure in the prediction of long-range epistatic
terms.

Summary and open questions

Two complementary methods of extracting the information imprinted by evolution in se-
quence alignments have been discussed. Direct coupling analysis (DCA) [81] proved to be
successful in systematically inferring which amino acids are in contact in the three dimen-
sional structure, while statistical coupling analysis (SCA) [99] identifies groups of residues that
co-evolved that are sparse, contiguous in space and correlate with functional features with
evidence in some proteins. How do these two methods compare for the inference of couplings
between residues involved in allostery?

Allosteric proteins display a coupling between distant sites that are functionally related via
the use of different architectures. A systematic study of DCA on thousands of proteins [98]
shows that there is no statistical evidence for the existence of long-range direct couplings that
involve allosteric communication. This is in striking opposition with the presence of extended
sectors connecting functional sites reported in [102, 107] and the observation of long-range
epistasis [135]. An open question is then why a pairwise model like DCA should be successful

28



Introduction

at predicting protein structure, but not long-range functional dependencies. The limitations
in this direction can be summarised in the following questions

* Performance of co-evolutionary methods. An open question is the benchmark on
how current methods perform in the prediction of mutation costs and epistasis and in
generating new sequences when an allosteric task functionally coupling distant residues
is present. This would extend the benchmark of DCA on lattice proteins built to mimic
protein folding [138] where the inferred pairwise model seem sufficient to generate new
sequences with the true value of fitness and variability in the amino acid distribution.

* Function prediction. In the Introduction, an attempt of classification of allosteric
architectures is discussed. Does the co-evolutionary information of the MSA contain
also information about this classification? Is it possible to guess which architecture is in
use in a given protein family by using solely sequence data without knowledge of the
high resolution structure?

Sequences proved to be enough to predict the contact map of the protein. Being able to
systematically discover whether such protein is allosteric or not from the same data would be
a breakthrough that may answer fundamental questions on which are the requirements that
made allosteric behaviour so common and yet crucial in proteins. Moreover, co-evolutionary
information could also be used to engineer de novo allosteric proteins with novel functions
that fold as naturally occurring proteins, with obvious applications in drug design.

Scope of the thesis and outline

The introduction to protein allostery and inference delineated the general context of the
research addressed in this thesis.

Minimal models of in-silico evolution of allostery are a powerful tool to gain insight in the open
questions formulated in this introduction. Quantities like fitness that are usually very hard to
measure, can be readily accessed. In the line of the works on elastic network models previously
discussed, in Chapter 1 we introduce an evolution scheme to evolve a harmonic spring network
to display long-range communication. Indeed, an unevolved elastic material does not display
action at a distance: the response upon a local perturbation decays rapidly as a powerlaw as
function of distance [149]. The same holds for an amorphous material, as a protein can be
related to [150], that exhibits long-range response only in critical conditions [151-154]. Hence,
the elastic material needs to be evolved to perform an allosteric task. Which information
is transmitted? Which architectures are good at transmitting what? The dependence of the
allosteric architecture on the chosen task can be automatically probed by changing the fitness
function in the evolution scheme. We explored two different tasks that resulted to give two
dramatically different scenarios. The first optimises for a given strain upon perturbation at a
distal site and produced a novel architecture functioning as a lever, possibly extending the
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observed categories of hinge and shear in proteins. The second optimises for cooperative
binding energy and recovers the usual hinge and shear designs, as well as many others. With
theoretical arguments and numerical verifications we are able to pinpoint which are the
requirements that the network has to obey to display optimal cooperative binding. The
appearance of an extended low energy mode is found to be related with the design of shear
and hinge architectures and its stiffness is not random, but is shown to obey a precise scaling,
it scales inversely with the size of the system to function properly. The results discussed in
Chapter 1 are published in [155, 156].

Given the simplified assumption of harmonicity, we also characterise the behaviour of the
network in the presence of non-linear springs. Chapter 1 discuss the work we did in this
directions to study the mechanics of the induced fit and population shift models and that
has been published in [157]. The energy landscape of the in-silico model in the harmonic
framework always displays one energy minimum. Hence, it can be reconduced to a induced
fit model. Oppositely, the network with additional elastic nonlinearity displays the two-state
landscape of the population shift scenario, see Fig. 4. The cooperative fitness is found to be
more robust towards mutations that increase the stiffness in the population shift scenario.
Moreover, in the population shift model the onset of optimality happens dynamically at
the same frequency scaling of the soft mode as in the induced fit scenario. It supports the
prediction that that for proper function proteins must evolve a functional elastic mode that is
softer as their size increases.

The classification resulting from the in-silico evolution can be tested with high-resolution
structural data. First, architectures evolved to optimise the transmission of strain are found
to display a lever mechanism to function. An analysis of the allosteric response of a PDZ
domain shows that such lever design may also be used in proteins. Second, a database of
allosteric proteins is built from the available literature to study the classification of cooperative
architectures. A systematic analysis over the resulting dataset of 34 allosteric proteins confirms
that in most of the cases one extended low energy mode describes a large fraction of the
allosteric response. Moreover, the scaling of the frequency of the soft mode as function of
the number of residues is consistent with the predicted scaling, indeed suggesting that larger
proteins deveolp a softer functional elastic mode to function properly. An experimental work
on a single protein is needed to confirm the validity of these findings. This empirical analysis
are presented in Chapter 2.

The in-silico model is able to produce as many solutions as desired that can be translated in
binary sequences reflecting the occupancy or not of springs. Hence, it serves as a benchmark
to explore the performance of the existing inference methods to predict epistatic interactions —
and more generally fitness landscapes — in a well controlled framework where an allosteric
function, coupling distant regions of the protein, is considered. We find that usual inference
methods are able to identify which links are relevant for the functioning of the architecture.

Furthermore, the inferred energy can be used to predict the mutational landscape of the system
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under study. We find that Direct Coupling Analysis (DCA) well predicts single mutations costs
of the cooperative fitness governing the spring network. Still, it is not able to generate synthetic
sequences that achieve to function. DCA is also found not to capture epistatic interactions
involving pairs of distant residues, as could be two positions coupled by the allosteric function.
We argue that the reason is that DCA fails when subparts of the system work in concert as it is
the case in allostery. Methods usually more successful in extracting functional information
like SCA do not provide much improvement in these tasks. Chapter 3 discuss the work we did
in this directions which has been published in [155, 158].

The outlooks of this work are discussed in the Conclusions of the dissertation. To support
the classification of allosteric architectures discussed in Chapter 1 and tested empirically in
Chapter 2, further tests and possible experimental works are discussed. Furthermore, to seek
for an improvement of the inference of fitness landscape we argue that different methods may
be useful. We discuss a new direction that aims to develop a theory for identifying the hidden
variables of allostery in the minimal in-silico model. Indeed, we show that the mechanical
energy can be rewritten as function of few variables that are found to be crucial for a proper
functioning. This idea goes in the direction of a fitness that is a nonlinear function of few
variables that are linearly dependent [136]. Two roads open. Does the inference with an ad hoc
non linear function of the energy provide better information than the usual DCA inference?
Is the inference able to capture the linear variables instead? This connects with old ideas in
deep learning where identifying the relevant hidden variables is deemed crucial for learning,
as discussed recently in [159].
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|} Mechanics of allosteric materials and
proteins

This chapter is organized as follows. Section 1.1 serves as an introduction to the minimal
models developed by other research groups aiming to understand the underlying physical
relationship between motion, structure and function in allosteric proteins. The limitations of
these works to answer the questions raised in the Introduction are discussed, leading to the
research performed in this dissertation. The results presented in the following sections are
published; Sec. 1.3 is based on [155], Sec. 1.4 on [156] and Sec. 1.5 on [157].

1.1 Minimal models connecting structure, motion and function in
allosteric proteins

The approach used in this chapter studies the protein at a coarse-grained level, following
the works on lattice proteins [139, 141] and elastic networks models [50-52]. Forces between
amino acids depend on several features like charge, hydrophobicity, polarity and can be
modeled precisely in molecular dynamics simulations. Minimal models, however, can also
display rich features even though utterly approximating the interactions between amino acids.
The advantage is that they usually are easier to handle than atomistic simulations. Indeed,
they can be applied more systematically in situations where they are found to provide sensible
predictions, thus compensating the naivety of the model construction.

The main example of these models is Elastic Network Models (ENMs). While they assume the
force between two amino acids to simply be an harmonic interaction, they still reproduce
protein conformational changes upon ligand binding, like allosteric transitions. A number of
studies on diverse proteins that undergo ligand-induced conformational changes have shown
that the resulting domain movements are dominated by a few — and often just one — normal
modes [50,51,56,57,160-167]. Fig. 1.1 shows that one mode alone indeed reproduces very
closely the conformational change of the LAO binding protein. The same results hold for other
cases.

The success of ENM in the prediction of conformational changes provided a new perspective
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Figure 1.1 - Figure adapted from [56]. The conformational change of the LAO binding protein is shown
together with the low energy normal mode that overlaps the most with it as a function of the residue
number. The conformational change is computed among the open (PDB identifier 2LAO) and closed
(PDB identifier 1LST) crystallographic structures and is shown with a thick line. The thin line shows the
displacement of the atoms along the corresponding normal mode direction.

where to study the connection between structure and protein motion and function. Which is
the underlying organisation of proteins that allows for this normal mode to appear? Given
a high resolution conformation, is it possible to detect which are the amino acids that are
involved in the conformational change? This view is purely structural and does not consider
the contributions of conformational fluctuations of proteins. What is the role of entropy in
allosteric transitions?

The following sections address these questions with the use of minimal models each charac-
terised by a different level of coarse-graining, from networks built upon the high resolution
structure to more abstracted toy models, as sketched in Fig. 1.2.

1.1.1 Rationale for the presence of a soft mode in allosteric proteins

The main feature connecting allostery and mechanics is the presence of a soft mode of
deformation in several allosteric macromolecules that coarse-grained models like ENM are
able to capture. Soft is used as a synonym for low energy, thus it is easy to couple to a soft mode
upon a perturbation in the structure given the resulting small increase in energy. From the
description of functional conformational changes by a single or few low energy modes, it can
be argued that allosteric properties are strictly dependent on the pre-existence of global soft
modes in the unliganded protein structure that are typically over-damped. Their revelance
is also supported by the observation that these soft modes are evolutionary conserved in
the same proteins evolved in different species [171]. But why is the mode recruited for the
allosteric interaction low energy (long wavelength) and not high energy (short wavelength)?
As discussed in Refs. [113, 172], many proteins are characterised by inhomogeneities in their
structure that tend to localise normal modes within a few wavelengths, according to Anderson
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Models based on Models based on

. . . Toy models
high resolution structures 2d or 3d lattices y

domain 1 domain 2

regulated
allosteric pocket

pocket

—_— Source
level of coarse-graining

Figure 1.2 - Figures adapted from [168] (left) [169] (middle) and [170] (right). Different levels of coarse-
graining in minimal models are summarised in this figure. On the left, an elastic network is built from
two randomly folded three-dimensional chains and evolved to display long-range communication.
The figure is taken from [168]. This method can be used on high-resolution structures to monitor the
conformational dynamics. In the middle, a more coarse-grained model of evolution of long-range
communication is shown where a two-dimensional triangular lattice is used as starting point of the
design algorithm, taken from [169]. Finally, on the right, a toy model illustrate how it is possible to have
allosteric communication driven by entropy without structual change by considering two rods joint in
the middle and connected by springs of constant x that increase by 6 upon ligand binding (red circle),
taken from [170].

localisation [173, 174]. Hence, a long wavelength mode involving a large amount of the
structure is necessary to explain the non local allosteric effects, since a short wavelength mode
is generally localised within a lengthscale smaller than the distance between the allosteric and
active site, which is usually of order of the total diameter of the protein.

The idea of designing an elastic network with desired properties started with the work of
Togashi and Mikhailov [175] who looked for modelling a macromolecule able to undergo a
large-amplitude motion, like a hinge, upon ligand binding. The network is built from the
three-dimensional structure of a protein in the inactive state where each node is an atom or
residue, as in the left panel of Fig. 1.2. The evolution of the resulting elastic network is set
by the requirement of displaying a well separated mode at low energy. Hence, this mode is
by construction the dominant contribution to the long-time relaxation in the linear regime.
Designed networks are found to display a precise structural organisation. They are composed
of rigid parts linked by soft joints, as common when the mechanics is characterised by one
soft mode responsible for the collective motion, usually called mechanism. The terminology
comes from mechanical engineering where the design of a material that displays a mechanism
is an active research topic and the appearance of less coordinated, softer regions in the evolved
materials is found to be crucial for design [176]. However, in the work of Togashi and Mikhailov
the soft mode is selected to be present. Thus, its presence does not stem from an evolution
scheme imposing functional requirements, like allosteric communication.
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1.1.2 Prediction of residues involved in the allosteric response

In an article by Amor, Barahona and collaborators [177] there is no concept of designing a
network to be allosteric, the network resulting from high-resolution structures is taken as input.
A graph representation of a protein is introduced, where nodes are atoms and weighted edges
are both covalent and non covalent bonds. The goal is to reveal which pathways are strongly
coupled to the active site, without any a-priori information on the location of functional sites.

The way fluctuations of edge weights propagate into the network is modeled with a diffusion
equation on the graph where the weights are set by the interaction stiffnesses defined by
detailed atomic potentials. The method is able to predict which are the sites relevant for
allostery in a set of 103 proteins. However, it does not contribute to a physical understanding
of the structural reasons for which allosteric residues can be detected. The study of a network
with an elastic coupling between the nodes would help to advance in this direction.

1.1.3 A model of action at a distance without structural change

McLeish and collaborators studied in several works [113,170,178-180] the mechanisms behind
communication at a distance when there is no evident structural change between the inactive
and active state, following the seminal work of Cooper and Dryden where a cooperative
allosteric free energy composed of only entropic terms is proposed [27]. Hence, in this
context, allosteric communication emerges solely from the changes in entropy due to thermal
fluctuations. Indeed, allosteric communication can emerge when ligand binding changes the
amplitude of thermal fluctuations around the mean structure of the protein — described by a
global soft mode, thus changing the entropy and building a free energy like the one of Cooper
and Dryden.

Which are the mechanisms that can lead to long-range coupling and large entropic terms?
A toy-model of fluctation allostery, the allosteron, helps the investigations of fluctuations
allostery. It consists of two rods joint in one point — like in a scissor — with internal side
chains that fluctuate depending on binding events, as shown in the right panel of Fig. 1.2. It is
known that a slow global mode in the system is able to couple two distant sites, what about
the role of fast local modes like the ones of the side chains? The allosteron model although it
is one of the most coarse-grained, is able to make non-trivial predictions about fluctuations-
based allostery. It shows that local modes can couple to global ones to amplify the entropic
allosteric effect in agreement with the observation in the met repressor [179]. Furthermore, it
is possible to obtain pathways by which fluctuation allostery affects self-assembly of protein
complexes [170] and also identifies the physical origin of negative cooperativity in a particular
protein [181].
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1.1.4 Discussion

This section overviewed minimal models describing long-range communication in proteins,
however several questions are left unanswered, notably the physical origin of the soft mode.
In this dissertation, we propose a model where soft modes appear as a result of a specific
functional task. This framework allows to

* study the relationship between structural organisation and function;

* classify architectures — indeed, the structural organisation results into different archi-
tectures depending on the evolved function;

* understand whether the systems are poised to functional optimality;

* investigate the consequences of elastic nonlinearities on allosteric behaviour.

The strategy we adopt is the one of an in-silico model for the evolution of allosteric interactions
in elastic networks. A similar framework is used in mechanical engineering where topology
optimisation designs materials that exhibit a specific function upon perturbation. There, the
topological optimisation of the structure is usually performed via finite elements analysis
according to a chosen objective function [176, 182, 183].

Related research

Other works tackling these issues have been published in parallel or after the research pre-
sented in this dissertation and they address related, but complementary questions to the ones
just raised.

Reproduce the allosteric transition in proteins. The design of optimised long-range com-
munication between two distant sites in elastic network models is also studied by Flechsig
in [168]. A network composed of two domains is randomly folded and evolved by changing
the position of one bead at a time and measuring the transmission of the response between
the allosteric and active site. The dynamical equation obeyed by the beads is the Newton’s
equation in the overdamped limit, so that no assumption of linear elasticity is needed. The
result is a model able to reproduce the allosteric transition of the protein myosin V— and
possibly generalisable to other proteins as well — when the initial configuration of the network
evolution is set to the high resolution structure of the inactive state.

Mechanical complexity of long-range functionality Rocks, Nagel, Liu and collaborators ex-
plored how difficult is to have a long-range communication in a two-dimensional elastic
network [169]. The task required is to display a given strain at the active site when another
strain is imposed at the opposite allosteric site. The evolution is set by pruning one bond at a
time and measuring the strain at the active site. It is found that only 1% of the bonds need to
be removed for the network to be designed. Two- and three-dimensional networks evolved
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with this scheme have been fabricated. The framework where multiple tasks are satisfied is
discussed in another work [184].

Evolution of proteins in a percolation-like model. Tlusty and collaborators approached the
problem of a mechanical model of protein evolution from a different perspective [185, 186].
The beads in the elastic network are amino acids that can fall into two species — either
hydrophobic or polar — whose kind and interaction strength are encoded by binary codons in
the gene. This structure, gene=amino acid network= evolution=function, is useful to build
a physical model of the genotype-to-phenotype map. The evolution acts by changing the
position of the beads and monitor the response in the network upon local perturbation until
the network achieves the target response that is set to be a large-scale motion. The transition
to designed network is defined by the emergence of weakly-connected regions and of a soft
mode related to function. However, the soft mode and the flexible path are inserted ad hoc
and do not result from underlying physical principles. Indeed, the beads of the network are
not elastically coupled and the importance of weakly-connected regions in conducting strain
and enabling such mode is not discussed.

1.1.5 Outline

The following section, Sec. 1.2, serves to define the in-silico model as a network of harmonic
springs and its evolution scheme. To study the relationship between function and architecture,
the evolution is performed by optimising two different allosteric tasks. One optimises for
the transmission of strain from the allosteric to the active site and is discussed in Sec. 1.3.
The other, optimises the cooperative binding energy between the two sites and is reviewed
in Sec. 1.4. The results show that two scenarios arise and deeply different mechanism are
used to implement the two allosteric functions. The optimisation of the geometric fitness
leads to an exotic architecture where the response is amplified from the allosteric to the active
site (Subsec. 1.3.3) thanks to the presence of special modes that act as a lever (Subsec. 1.3.4).
On the other hand, cooperative architectures show a variety of designs among which shear
and hinge (Subsec. 1.4.2), already discussed in the introduction to proteins. Subsec. 1.4.6
shows that fluctuations-driven cooperativity can happen in the in-silico model as well, once
an extendend low-energy mode is responsible for function.

Despite the differences, all designs can be classified (Subsec. 1.4.4) and are found to work
thanks to the presence of a soft mode, as the one identifed in proteins by ENMs. Furthermore,
the scaling of the stiffness of this mode as function of the size of the network is tuned to display
optimal cooperative binding (Subsec.1.4.5). Indeed, it is found that for proper function, the
network must evolve a functional elastic mode that is softer as its size increases. Sec. 1.5 deals
with the effect of nonlinear elasticity on cooperative allostery, connecting with the two-state
population shift scenario of the MWC model, discussed in the Introduction. The resulting
cooperative networks can switch from two equilibrium states and show a soft mode that
connects the two states and obeys the same scaling of stifness than the linear case to properly
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function.

1.2 A model for evolution of action at a distance in proteins

In this section, we look at the evolution of allosteric communication in elastic materials, where
we consider a network of springs instead of a protein — this lattice model has been previously
used to characterise the behaviour of covalent glasses [187,188]. Allosteric behaviour in an
elastic material is already a surprising property. Indeed, the elastic response upon perturbation
decays as a powerlaw over distance in a continuous elastic medium and a long-range effects
cannot appear without a properly structured material. Which are the architectures that
allow for action at a distance? Is evolution of these architecture hard or easy? How does the
architecture depend on the chosen task? Is it possible to achieve a classification of optimal
designs?

In the following, we address these questions in detail by studying in-silico evolution of al-
losteric communication in springs networks optimising for two different tasks. One optimises
for the display of a given strain at the active site upon perturbation at the allosteric site and
the other maximises for the cooperative energy between the allosteric and active site, like the
cooperative binding of oxygen in haemoglobin discussed in the introduction. The two settings
give rise to two drastically different scenarios that are discussed in details in the following
sections. The insights provided by these results are tested in proteins as discussed in the next
chapter, Chap. 2.

1.2.1 Definition of the model

As shown in Fig. 1.3, the considered network is composed of N = L nodes organised in a
d-dimensional lattice, where d can be either two or three. Harmonic springs® of unit stiffness
k connect some of the adjacent nodes where the number N; is fixed according to the the
coordination z = 2N,/ N counting the average number of links per node. These N; springs are
initially randomly distributed in the network and then swapped according to the evolution
discussed below 2. The allosteric and active sites are located at two opposite sides and each
consists of n = 4 nodes. The geometry of the network can be chosen with both periodic and
open boundary conditions on two of the four sides, corresponding to a cylinder and to a sheet.

IEach node of the triangular lattice is distorted by adding a random displacement in order to avoid straight
lines in the network that could cause unphysical localised modes orthogonal to them. Here, harmonic springs of
stiffness k are considered, non harmonic springs will be discussed later in Subsec. 1.5.

2An extension of the model is briefly discussed in Subsec. 3.5.2, where the presence of the springs is dictated by
the interactions acting between the two adjacent nodes, which can each have N, degrees of freedom, building a
toy model describing the variability and role of amino acids in proteins.
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Figure 1.3 - (A) The triangular lattice in d = 2 is shown for a system of size L = 20 and N = L? nodes
where N springs are occupied with coordination z = 5. Periodic boundary conditions are chosen
along the horizontal axis, mimicking a cylindrical geometry. Springs crossing the periodic boundary
are shown in dashed lines, and are not present when open boundary conditions are used. (B) The
extension to d = 3 is a face-centered cubic lattice with open boundaries. Its linear size is L = 12 and
z=8.4. In both (A) and (B), occupied links that display a spring of stiffness unity are indicated by lines.
The displacement imposed at the allosteric site — composed of four nodes — is denoted by violet
arrows, while the target response that can asked to be displayed at the active site upon perturbation is
shown in blue arrows.

The occupancy configuration of the network is described by a connection vector

o4, =1 ifthelink a is occupied
loy = ) (1.1
04=0 otherwise

whose size is the number of all possible links. The notation is summarised in Tab. 1.1 and
sketched in Fig. 3 in the Introduction.

Notation Definition
10 one ligand bound at the allosteric site
01 one ligand bound at the active site
11 one ligand bound at both the allosteric and active site
Al allosteric site
Ac active site
r indicated the N —4 nodes excluding the allosteric site

Table 1.1 - Definition of notation as introduced in Fig. 3.

The effect of ligand binding is modelled as imposing a displacement, dR'?, on the allosteric
site that is defined to be a subset of four nodes, as shown in purple arrows in Fig. 1.3. Indeed,
when a ligand binds to a protein, the area around the binding site rearranges to accomodate
the ligand, therein inducing a local strain®. The allosteric site is located on a side of the network
with free boundaries, see purple arrows in Fig. 1.3. After relaxing the elastic energy of the

3This description of binding assumes the rigidity of ligands, which thus are not deformed in the process. The
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entire network, the response of all other N —4 nodes to such perturbation dR!(|o)) can be
found. It depends on the connection vector |o) and one example is denoted by black arrows
in Fig. 1.3A. The energy cost associated with the binding event is

1
EY0) = z<alR¢°|./;¢z|alR$°>, (1.2)

where ./ is the stiffness matrix of the network of dimension Nd x Nd and it depends on the
considered network via the occupancy vector |o). The same procedure is used to model the
binding of another ligand at the active site, shown in blue in Fig. 1.3, defining E%! (o). If the
ligands are bound simultaneously, the resulting joint binding energy is E!! (o). The definition
of the procedure is detailed in Appendix A.2. The specificity of binding is discussed in Subsec.
1.4.3.

In the case of harmonic springs, dR1°(|o)) can be computed via linear response, see Appendix
A.2 and via energy minimisation when non harmonic springs are involved, see Subsec. 1.5.

Initially, the N; springs are randomly distributed in the network and the response decays as a
power law at the opposite side, where the four nodes active site is located, showing no long-
range function. Indeed, the network is made functional by the optimisation of a chosen fitness,
Z (|0)), reflecting the ability of the network to perform the desired function involving a specific
outcome at a distal active site. Two different fitness functions are considered, one — called
geometric— optimising for the display of a given strain at the active site upon perturbation
at the allosteric site and the other — cooperative — maximising for the cooperative energy
between the allosteric and active site. The two settings are discussed in details in the following
sections.

The optimisation algorithm works following a Metropolis algorithm. The probability of a
link — chosen at random — to change its state is

(1.3)

/ —
P(lo) — o) = min{l,exp (97 (1o') %a»)} |

T,

where the two configurations |o) and |o’) differ only by one spring and T, the evolution
temperature, tunes the stochasticity with T, = co corresponding to undesigned, random
networks. The evolution algorithm acts on all springs apart the ones connecting the allosteric
and active site that are always present.

During evolution, the number of springs per node averaged over N — the average coordination
z defined as z = 2N/ N — is kept fixed to a desired value defining the average rigidity of the
network. This implies that each evolution step consist in a swap of the occupancy of two
links, keeping the number of occupied links fixed. The frequency of springs f can be found

zI?
as f =

, where N, is the number of all possible springs. Maxwell derived a bound to

results are expected to hold true qualitatively as long as the ligands are not significantly softer than the protein
itself.

41



Chapter 1. Mechanics of allosteric materials and proteins

be satisfied by the coordination for the system to be rigid [189]. The condition Nd — Ny >0
implies* a rigidity bound for the average coordination z, z > 2d. The value z. = 2d corresponds
to the transition between a rigid or floppy network and defines the isostatic regime, which
is responsible for non trivial features in the response that will be discussed in Subsec. 1.3.4.
Since proteins fold in a stable structure, it is reasonable to fix the average coordination of
the network in evolution to z = 5 for d = 2. Anyhow, the behaviour of the maximum fitness
reached in the case of the geometric task is studied as function of coordination in Fig. 1.5C.
The architecture found in the case of average coordination fixed to a lower value, z = 3, is
discussed in Appendix A.3.

1.3 Geometric function

The first task to be discussed is a very simple example of allosteric communication. The
network is optimised to display a given strain when a perturbation is applied at the opposite
side, as shown in Fig. 1.4 where the perturbation at the allosteric site is represented with
purple arrows whereas the target response at the active site with blue arrows. The geometric
fitness function describing the matching of the target strain with the strain induced by the
perturbation at the active site reads

F(0)) = ~E(lo)) = —minyyy, | Y (dR(0)] - dR?' - U;) (1.4)
ie{01}
=— /) (dRI—dR%)2— Y (dR-dR")(dR], —dR}}), (1.5)
ie{01} i€{01}

where the summation is done over the nodes in the active site, {01}, and |U) represents the
vector of global translations (|U;) = ¢ with ¢ constant) and rotations of the displacement at the
active site, dR(i”. The minimisation over |U) ensures that what is optimised at the active site is
not the absolute displacement, but the strain, since it is the deformation of the structure at the
active site that is physically responsible for the change in functionality, not the displacement
itself. Indeed, when a ligand binds to a protein, the area around the binding sites rearranges
to accomodate the ligand, therein inducing a strain. It is easy to see that if the displacement
at the active site is a global translation, dR] - dR(i’1 = ¢, Eq. 1.5 consistently gives back zero
energy. For the case of a global rotation, the calculation is more involved.

1.3.1 Evolution

For each chosen coordination number z and evolution temperature T,, we consider 20 Monte
Carlo sampling series with 10°> Monte Carlo steps in each, and discard the first half of the

4In a mean-field-like argument where the network consists of disconnected parts, the number of zero modes is
equal to the number of degrees of freedom, Ny, ¢ = Nd, substracted to the number of constraints Nc = Ns, where
d is the space dimension. If the fraction of zero modes — once the trivial modes of translation and rotation are
taken out — is greater than zero, the system is rigid. Thus, the bound Nd — N; > 0 for rigidity.
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Figure 1.4 - An undesigned (A) and designed (B) network are shown for a system of size L = 12 and
N = L? nodes where N; springs are occupied. The displacement imposed at the allosteric site is denoted
by violet arrows, while the linear response dR%0 (lo)) of the nodes upon such perturbation is shown as
black arrows. In the undesigned network, where the springs are randomly placed, the response decays
as expected and does not match the required shape at the active site (A). After evolution, the linear
response matches with the required response, represented with blue arrows, at the active site, showing
the emergence of functionality in the designed network (B).

series to eliminate transient effects, resulting in a sample of 10° configurations. The evolution
algorithm is able to easily find functional networks when the temperature, T, is sufficiently
lowered, as shown in Fig. 1.5A where the average fitness function over different configura-
tions, (&), is shown as function of T,. The undesigned network corresponding to a random
configuration of springs and the designed functional network are shown in Fig. 1.4A and B,
respectively.

1.3.2 Thermodynamics

The results in Fig. 1.5 involve four different system sizes (L = 4,6,8,10,12 and L = 20 for
Fig. 1.5B) to study the thermodynamics of our system. Fig. 1.5A shows that the transition in the
average fitness becomes sharper as the size of the network increases, hinting for a transition
happening at the value of T, corresponding to the appearance of the desired functionality in
the configurations. To test this hypothesis, the specific heat ¢(T,) = dE(T,)/d T, is computed
and shown in Fig. 1.5B where its peak becomes sharper as the size increases, indeed sup-
porting a transition from random to functional networks. Drawing a parallel from statistical
mechanics, the behaviour found for the specific heat suggests that the allosteric transition
in these networks is a collective process where the springs cooperatively arrange to build the
functional configuration, even if data from a much larger size are needed to test the validity in
the thermodynamic limit. Moreover, within this setting, it is also possible to monitor how the
fitness landscape is explored by looking at whether evolution gets stuck in a local maximum of
bad fitness, which would be a typical situation for systems like amorphous solids and glasses
that display a rugged energy landscape.

Fig. 1.5C shows that the fitness reached with an evolution at T, = 0 — the maximum averaged
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Figure 1.5 — (A) Fitness averaged over 10° configurations shown as function of the evolution tempera-
ture, T,. A jump in fitness is found for large systems around 7, = 0.09. (B) The specific heat as function
of T, shows a peak that increases as the size L increases, supporting the existence of a transition at
a certain temperature T.. (C) Averaged fitness computed with a pure gradient ascent result in an
exploration of local maxima in the fitness landscape and it is shown as function of coordination in a
log-linear plot. The black line indicates the fitness for random networks when there is no mechanical
response at the active site. (D). The entropy density as function temperature is shown.

fitness corresponding to a pure gradient ascent with zero stochasticity — is 200-fold higher
than the one of random networks, which is of order one, proving that indeed the algorithm
does not get stuck in a maximum with a low value of fitness. For the largest sizes, the algorithm
shows consistent performance as function of coordination, since the maximum average fitness
is probed in the range z € [3,5] and fluctuates around high fitness values. The number of
these allosteric networks can be estimated as 57 via the entropy dS = C(Tp)d T,/ T,. At the
transition, some degrees of freedom have to be tuned to have a designed network, implying
a decrease in entropy, as consistently shown in Fig. 1.5D. The number of L = 12 networks at
temperature T, = 0.05, well inside the allosteric phase, is large e57) = 10°3, but the probability

to find such a network by chance is low, e5(7=5() = 19=10,

1.3.3 Architecture: trumpet design

The previous results on thermodynamics proved that it is possible to find networks with
allosteric behaviour via evolution in the geometric fitness landscape. Now, we would like to
see whether the 108 evolved allosteric networks display some similar features in their structure.
The coordination number monitors the local rigidity of the network and its mean over the
configurations can be used as a measure to see whether a common design is shared between
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the networks.
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Figure 1.6 — (A) Mean coordination maps and (B) mean-squared magnitude of the normalised response
at different nodes for L = 12 networks evolved at T, = 0.30 (left) and T, = 0.05 (right). For functional
networks (right), a trumpet in the mean coordination connecting the allosteric and active site appears
and the associated response is non-monotonic, being amplified at the active site.

Before the transition, the networks do not display any particular structure, in consistence with
the absence of design, as shown by the the homogeneity in the mean coordination map of
networks evolved at T, = 0.30 in Fig. 1.6A-left for L = 12. For networks evolved well below
the transition, at T = 0.05, a non trivial structure appears in the mean coordination: a softer
trumpet-like region is carved into a more rigid matrix, with coordination lower than the fixed
average z = 5 and monotonically decreasing from the allosteric to the active site where an
isostatic area with mean coordination close to z. = 4 appears, see Fig. 1.6A-right.

How does the response elicited in the network upon perturbation at the allosteric site look
like in this trumpet design? The behaviour of the response can be monitored by looking at the
mean-squared magnitude of the normalised response at different nodes i, (| deT 12/ Y IdeT 12y
averaged over different initial conditions. Fig. 1.6B-right shows that the magnitude of the
response has a non-monotonic behaviour in the trumpet design: it is large at the allosteric
site, it vanishes in the middle and appears again amplified at the active site, where it needed
to be, contrarily to undesigned network where the magnitude is large only at the allosteric
site, Fig. 1.6B-left. The amplification is striking since the response is amplified by a factor
five, reminiscent of levers that amplify motion by large amounts. How is the trumpet design
providing the right architecture for such an amplification? Is it using a mechanism similar to a
lever? The answer lies in the special features emerging from isostaticity, which are discussed
in the next paragraph.
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1.3.4 Isostatic materials act as levers

The relevance of isostaticity needs to be discussed in order to understand which is the mecha-
nism underlying the non monotonic behaviour of the response in the designed network, as
shown in Fig. 1.6B-right.

Isostatic materials are known to have exotic features since they live on the verge of instability:
if a link is broken, the system looses its mechanical stability and a zero energy mode of
deformation appears. In Fig. 1.7A an isostatic network of linear size L is cut along the vertical

Edge mode acts as a lever: maximal amplification

Ao

Figure 1.7 - Figures adapted from [190]. (A) An isostatic network in two dimensions (z = 4) has periodic
boundary conditions in the horizontal direction and it is cut in the middle. The cut bonds are shown
in blue and the nodes are coloured according to the boundary they belong to, either left (red) or
right (green). (B-C) Response (cyan arrows on the right boundary and black arrows in the bulk) to
an imposed displacement on the left boundary (magenta arrows) in an isostatic network with free
boundary conditions in the horizontal axis and a periodic boundary condition in the vertical one.
Two examples of zero modes are displayed in (B) and (C). The zero mode in (C) shows a significant
amplification of a factor 20000, similar to the amplification of a lever where an applied displacement of
unitary magnitude gets amplified by Ag.

axis in the middle, thus removing order of L%~! constraints and generating a number of zero
modes of the same order. Some of these zero modes will be localised on the nodes of one
of the two boundaries, however others will propagate through the network [191-193]. The
zero modes that have an amplitude that decreases or increases exponentially with distance as
they penetrate in the bulk of the system — instead of displaying the usual power law decay —
are called edge modes. In the case of exponential increase, they act as a powerful lever that
amplifies motion exponentially towards free boundaries.

The appearance of edge modes was explained theoretically for some crystalline solids [194]
and also for disordered elastic networks [190], allowing to use them in this framework, as well.
In the linear regime, the effect of a displacement imposed at one of the boundaries® to the
opposite one is seen as a transmission problem between slabs of width [.. The spectrum of the
transmission matrix contains a characterisation of displacement propagation. Through its ma-
nipulation, it can be proved that the maximal amplification of the response upon perturbation

LL/l

at one of the free boundaries is of order ¢, where the slab width [ is empirically fixed to

5The boundary needs to be squeezed, i.e. all the boundary needs to move.
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1.3. Geometric function

I, =4[190]. Fig. 1.7B and Fig. 1.7C show two examples of zero modes where the response at the
right boundary upon an imposed displacement on the left boundary is shown as black arrows.
Fig. 1.7C displays an edge mode where the response is amplified by a factor = 20000 [190].

In the light of these findings, the trumpet design of Fig. 1.6A-right can be identified to be
responsible for the amplification of the response at the active site, where the designed network
develops a patch of coordination close to z. = 4, the isostatic value, as sketched in Fig. 1.8A.

A B
nearly

active site . .
isostatic

D — more
L rigid

ligand

allosteric site

Figure 1.8 — (A) Sketch of the allosteric behaviour found when the geometric fitness function Eq. 1.5 is
optimised. The system can be viewed as a nearly isostatic patch around the active site embedded in a
rigid matrix. When the ligand imposes a given strain at the allosteric site, the desired strain is obtained
at the active site. (B) Toy network with an isostatic patch around the active site embedded in a rigid
matrix showing that, when a dipole perturbation is applied (purple arrows), the response (black arrows)
decays in the bulk, but get indeed amplified at the active site.

The observation of a less constrained, floppy region connecting the allosteric to the active site
is not surprising since it serves to enable the propagation of the response over a longer range.
However, this is not what is observed in geometric networks where the response is amplified
from the two sites. The coordination is asymmetric, with a more coordinated region around
the allosteric site and an isostatic patch at the active site, which is crucial for amplification. To
test this proposal, Fig. 1.8B shows a toy network built to have an isostatic patch around the
active site (z = 4) embedded in a rigid matrix (z = 5). When a dipole pertubation is applied at
the allosteric site, the response in the bulk decays, but a small displacement at the boundary of
the isostatic patch is sufficient to excite an edge mode that amplifies the response at the other
boundary where the active site is located, consistent with the theoretical framework [190].

1.3.5 Thermal fluctuations

Thermally-induced motion can be characterised by B-factors [55] that measure the flexibility
of the structure as discussed in Appendix A.2.3. Fig. 1.9 shows the B-factor map for the
configurations at high and low evolution temperature. Thermal motion appears to be larger
in the trumpet region, particularly in the marginally-connected region of the active site.
There, B-factors are about 20 times larger than in the other boundary nodes of the system,
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102.5

Figure 1.9 — Spatial distribution of B-factor for T, = 0.30 (left) and T, = 0.05 (right). The colorbar is in
log scale.

corresponding to an amplitude of motion about four times larger. This high softness at the
active site upon thermally-induced motion could be avoided by changing the fitness function
and penalising thermal motion at the active site.

1.3.6 A tool to pick fruits

The novel edge mode lever architecture is studied for a network of linear size L = 12. Does
the response can still get amplified when L increases? Fig. 1.10D shows that when L = 20
the same structure in the coordination map appears, with the only difference of a more
loosely connected region nearby the allosteric site. The normalised magnitude of the allosteric

I.,V\
3

- | ==

Figure 1.10 — (A) The average response induced by binding at the allosteric site is shown as black
arrows. (B) Map of the average magnitude of response (|dR? /Yy, |dR? ) as shown in Fig. 1.6B. (C) A
fruit picker illustrates the combination of edge mode lever and shear to perform the geometric task
when the linear size increases. (D) Map of the average coordination number z. (E) Map of the average
intensity of shear deformation, see Eq. 1.8 for its definition.

response (Fig. 1.10B) also shows the same non monotonic behaviour as in Fig. 1.6B, but a larger

48



1.4. Cooperative function

magnitude characterises the region around the allosteric site. An inspection of the allosteric
response (Fig. 1.10A) and of the intensity of shear deformation of the response (Fig. 1.10E)
proves that the region where the network displays a larger magnitude of response undergoes
a shear motion. The combination between shear motion and edge mode lever assures that
the response is transmitted at a distance such that the lever mechanism can get in action.
The architecture resembles the design of a fruit-picker, where the shear exerted by pushing a
button transmits to the other end of the stick regulating the opening of the claw, as sketched
in Fig. 1.10C.

1.3.7 Conclusions

The evolution scheme easily finds networks that optimise the geometric function, where a
given strain is elicited at the active site upon perturbation at the opposite allosteric site. A
transition from undesigned to designed networks is found in the behaviour of the specific
heat, suggesting that the emergence of allosteric behaviour is a collective process.

A shared architecture, the trumpet design, results from a statistical analysis of the designed
networks. The mean coordination decreases from the allosteric to the active site where a nearly
isostatic patch is present. This isostatic region is proposed to be responsible for the observed
non-monotonic behaviour in the response — which is amplified at the active site — through
the appearance of nearly zero energy modes that, once excited at one boundary of the isostatic
matrix, grow exponentially towards the opposite boundary. Since the geometric function
optimises strain only at the active site, the trumpet architecture is asymmetric: the elastic
information cannot propagate from the active to the allosteric site, but it is greatly amplified
in the other direction.

This architecture is novel. Indeed, the optimisation of strain revealed not to recover the usual
designs found in proteins, like shear and hinge, reported in Fig. 5 in the Introduction. Fig. 5
also highlights that not all proteins conformational changes fall in the category of hinge and
shear, as the PDZ domain shown in Fig. 5C whose functioning architecture is unclear. In
Chapter 2, we argue that the PDZ domain may follow precisely this novel design showing
an amplification of the response between its functional sites. Anyhow, the absence of shear
and hinge designs motivates for looking at the in-silico evolution under the optimisation of
another allosteric task, as discussed in the next section.

1.4 Cooperative function

Biology provides another allosteric task that is abundantly observed: cooperative binding. As
discussed in the introduction, cooperative allosteric interactions consist in a coupling between
two or more binding sites, as exemplified by haemoglobin where the binding of oxygen at one
heam lowers the energy cost of binding at the others. The cooperation is encoded in the fitness
function described for the MWC model. In the context of spring newtorks, the temperature is
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zero and the binding free energy reduces to the elastic energy contribution
F =AAE=E; g+ Eyn - En, (1.6)

where E is the elastic energy associated to the displacement or force induced at the allosteric
site (10), active site (01), or both simultaneously (11), see Fig. 3, where Eyy = 0 since the
network is at equilibrium and there is no pre-stress. Maximising Eq. 3.1 favours the binding of
the substrate at the active site when the ligand has already been bound at the allosteric site.
This is apparent by re-ordering the terms in the fitness as % = Ejo — (E11 — Ep1), where in the
optimisation of &, E1o needs to be large and (E;; — Ep;) small, implying that the amount of
energy to bind at the active site when there is no ligand at the allosteric site is significantly
larger than when it is present, favouring the binding of the substrate.

The form of the fitness function involves symmetrically both the allosteric and the active site,
hence more symmetric architectures than the trumpet design discussed before are expected.
To interpret the functional constraint imposed by the cooperative fitness, it is useful to consider
the case of a weak coupling between the sites. The approximated fitness function reads®

F ~ (FO|qR10~A¢y (1.7)

where F%! is the force exerted by the substrate when it binds at the active site and dR'%~4¢ is
the displacement induced at the active site when the ligand binds at the allosteric site. Note

-©-2D open
-A-2D periodic

0 2 4 6 8 10
MCS «10°

Figure 1.11 - Fitness function & as function of the number of steps. Some initial conditions display
transient plateau in &, suggesting an underlying rugged fitness landscape. Inset: the fitness averaged
over the last 3.5 x 10* (see black vertical line) and 25 initial conditions (%) is shown as function of the
evolution temperature, Tp.

that each field in Eq. 1.7 is of dimension nd, where n = 4 is the number of nodes in the active
site and d = 2 the spatial dimension. Hence, maximising & leads to both a large and specific
response at the active site, as for the geometric task, and a large force scale, requiring the

8See Sec. C.1 in the Appendix for the details of the calculation.
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material to be rigid enough at the active site. This additional constraint is susceptible to make
the evolution harder than for the geometric fitness function, as discussed in the following.

1.4.1 Evolution

The evolution scheme is run for 25 Monte Carlo sampling series with 10° steps each and at
different values of T, while keeping z = 5. To avoid transient effects, only the configurations
from the last 3.5 x 10* steps in each series are kept for the analysis. Two different boundaries
conditions are considered: open and periodic. The size considered is L = 20 unless stated
otherwise.

The fitness function averaged over the number of steps and the 25 initial conditions, (%),
as function of T, shows a transition from zero to finite fitness as the temperature is lowered,
corresponding to the emergence of design, see the inset of Fig. 1.11 and Fig. 1.12 where the
response in two networks equilibrated at low and large temperature is shown.

Figure 1.12 - An undesigned (T, = 107!) (A) and designed (T, = 10™*) (B) network are shown for a
system of size L = 12, with N = L? nodes and periodic boundary conditions. The displacement imposed
at the allosteric site is denoted by violet arrows, while the linear response of the nodes upon such
perturbation is shown as black arrows. In the undesigned network, where the springs are randomly
placed, the response is not specific and decays in the bulk (A). After evolution, the designed network
optimises the cooperative fitness by displaying a specific architecture, in this case a shear mechanism
(B).

The fitness for different initial conditions plotted against the number of steps suggests that the
landscape is more rugged than the geometric one, with the presence of large energy barriers.
As Monte Carlo steps increase, the system spends more and more time in one state, see the
plateau in % for the last 3.5 x 10* steps. The evolution in such a landscape is consistent
to producing architectures that differ from one initial condition to another as it is shown
by the Hamming distance between configurations |o;) and |o ;) averaged over all pairwise
combinations, d = (d(i, j)). Given two configurations, the Hamming distance counts, link
by link, the number of different spring occupancies normalised by the number of possible
springs, Njs. This distance is to be compared to

51



Chapter 1. Mechanics of allosteric materials and proteins

* the average distance between random networks d = 1 — f, where f is the frequency of
zL -
springs fixed by the coordination and size of the system, f = N note that d # 0.5

ps
since the networks have a fixed frequency of springs that is larger than one half;

¢ the maximum distance between two sequences d;, 4, which — for this case where the
frequency of springs is very large — results to be dy,4x =21 — f).

Within the same initial condition, the distance between different configurations is found to be
small, d =~ 0.06 < d = 0.12, while the distance between configurations from two different initial
conditions is large, d = 0.19 given that d;; 4, = 0.2353 — using data from a network of size
L =12 with periodic boundaries, z =5 and N5 = 408. These results support the presence of a
rugged fitness landscape which makes the evolution harder than for the previous geometric
fitness function, as discussed intuitively above by looking at the quantities optimised for in
cooperative binding, Eq. 1.7.

1.4.2 Architectures: shear, hinge, twist and many others

The properties described above about the exploration of the fitness landscape during evolution
suggest that different architectures may be found according to different initial conditions
and/or different system parameters, like boundary conditions. Due to this heterogeneity,
averages should be performed solely within the same initial condition to capture which
design is used, and not across all configurations as done for the geometric fitness. Hence, in
the following, observables are averaged over the last 3.5 x 10* steps within the same initial
condition, unless stated otherwise. It is interesting to remark that even within the same initial
condition, there are different local realisation of the same architecture, reflecting the idea
discussed in the Introduction that several allosteric pathways are possible to perform a given
task.

Shear design

If periodic boundary conditions are chosen on the horizontal axis, the geometry of the network
is a cylinder as previously discussed for the geometric fitness funtion. Among the 25 initial
conditions, all of them display a shear design, as we show in the following by highlighting the
features of the architectures.

« The allosteric response, i.e. the response induced by binding at the allosteric site dR'°,
of one sample is plotted in Fig. 1.13A, showing that two parts of the network move in
opposite directions in a shear-like motion.

¢ Except from a path, linear in L, connecting the allosteric to the active site, the motion
involved is the one of a rigid body, consistent with a shear design’. This can be seen by

"The presence of such continous path connecting the two sites is indeed the discriminator to identify a shear
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. ;

Figure 1.13 - Shear design. (A) The averaged response induced by binding at the allosteric site dR'? is
shown as black arrows. (B) The averaged shear pseudo-energy map indicates that shear deformation

happe

ns along a linear path connecting the allosteric (violet) and active site (blue). (C) Pictorial sketch

of the shear mechanism via a sliding mint box. (D) Map of the average coordination number z. (E) Map
of the average strain B-factor. (F) Map of the fitness cost of performing a single mutation in the network
normalised as AF /| (|0)), where AF = F (o)) — Z (|o)) and |¢”) is the mutated network. (G) Map of
conservation of spring occupancy in the evolution scheme. (H) The overlap g,, of the response with
the vibrational modes is shown as function of the mode frequency w and color-coded according to the
participation ratio of the mode, describing how the response is distributed in the network, i.e. either
extended or localised. A single extended mode of low frequency describes the response to binding.

looking at the shear pseudo-energy map Ejj, Fig. 1.13B, quantifying the amount of shear
deformation for each node of the network. Egj; and its counterpart Ej,,; describing
volume deformations as compressions or dilations are defined as follows

1 3
Egu(i) = 5 Y yar1? (1.8)
a,b=1
1 3
Epuk(i) = 5 Y lece()1?, (1.9)
c=1

where € is the strain tensor that can be directly computed from any displacement and
v is the local shear tensor obtained by removing the trace of y; see Section 2.1 for a
detailed discussion.

Structurally, the strain path connecting the two sites correspond to a loosely connected

design.
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region, with low coordination as shown in Fig. 1.13D.

* The strain path presents also large thermal fluctuations of strain, characterised by the
strain B-factor, whose map is shown inFig. 1.13E. Strain B-factors extend the B-factors
introduced in the introduction for the Elastic Network Models leaving out the effect of
rigid motions. Given a vibrational mode R,, (i) at node i, the strain B-factor is defined as

. 2 , ;

SB() = ) — [Esno@ + Eputkw @], (1.10)
w>0 W

where the shear and bulk pseudo-energies are computed taking the mode R, (i) as

displacement. The map of strain B-factors identifies the most flexible regions in the

network that correspond to the shearing links and shows a structure that is robust upon

thermal flutuations.

A pictorial sketch of the shear design is depicted in Fig. 1.13C with the use of a mint box.

The softest and more strained region turns out to be the one where the fitness cost of perform-
ing a single mutation of the spring occupancy is the largest, as shown in Fig. 1.13E This whole
region is also the most conserved (Fig. 1.13G), where conservation is computed starting from
the mean occupancy of a link a averaged over a period of observation t

1 T
(Oa)==)_ 0qlt) (1.11)
T =1

and the deviation from this average — if there is no selection pressure on alink a, {(o4) =0 —
defines the conservation X, that reads
1—{oq)

<‘2"> +(1—(oe))In ——. (1.12)
o l1-0

Za={0g)In

Hinge design

If open boundary conditions are chosen on the horizontal axis, around 40 — 50 percent of
the initial configurations lead to hinge designs, while the remaining to shear designs. In the
following the features justifying the hinge design are reported.

* The response dR!° of one sample candidate to display a hinge design is plotted in
Fig. 1.14A and shows that the network is undergoing two rotating, hinge-like motions.

¢ The shear pseudo-energy map, Fig. 1.14B, shows that the network is behaving like two
rigid bodies connected by a hinge in the middle, since strain is located only around
the allosteric and active site. A posteriori, a hinge design can then be identified in
cooperative networks that do not display a path of large strain connecting the two sites.
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Figure 1.14 - Hinge design. (A) The averaged response induced by binding at the allosteric site dR'° is
shown as black arrows. (B) The averaged shear pseudo-energy map indicates that shear deformation
happens only in the surrounding of the allosteric (violet) and active site (blue). (C) Pictorial sketch of
the hinge mechanism via the movement of a clothespin. (D) Map of the average coordination number
z. (E) Map of the average strain B-factor. (F) Map of the fitness cost of performing a single mutation
in the network normalised as A% /% . (G) Map of conservation of spring occupancy in the evolution
scheme. (H) The overlap g, of the response with the vibrational modes is shown as function of the
mode frequency w and color-coded according to the participation ratio of the mode. A single low
energy extended mode is found to contribute to the allosteric response.

e Structurally, the network displays two disconnected regions with low coordination as
shown by the coordination map in Fig. 1.14D, consistent with a hinge design.

e The strain B-factors in Fig. 1.14D show that the most thermal fluctations of strain are
located around allosteric and active sites.

A pictorial sketch of the hinge design is depicted in Fig. 1.14C with the use of a clothespin.

As it is the case for the shear design, the regions that are less constrained and show more shear
energy are also the ones where both the fitness cost of single mutations and conservation are
the largest, see Fig. 1.14F.

Twist design

The network can be extended in d = 3 dimensions considering a cube with face-centered
symmetry of linear size L = 12, as shown in Fig. 1.3B, see Appendix A.1 for the details of
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construction.

The optimisation gives rise to a plethora of solutions, whose architecture is in general difficult
to relate to simple designs of daily objects. However, all the architectures are found to fall in

Figure 1.15 - Twist design. (A) Pictorial sketch of the twist mechanism via the movement of a Rubik’s
cube. (B) Two dimensional sections of the shear pseudo-energy are shown where the allosteric (violet)
and active site (blue) are also reported. (C) The shear pseudo-energy in the middle section is shown
where deformation is mostly located at the sides. (D) The response induced by binding at the allosteric
site dR'? is shown as black arrows in the same sections as of panel B. (E) Map of the average coordination
number z on the three sections, where the middle section is shown in panel (F). (G) Map of the strain
B-factor on the three sections where the middle one is highlighted in panel (H). (I) Map of the fitness
cost of performing a single mutation in the network normalised as A% /% is shown on the three
sections, with the middle one shown separately in panel (J). (K) The overlap g, of the response with
the vibrational modes is shown as function of the mode frequency w and color-coded according to
the participation ratio of the mode. It is shown for two different time points in the evolution run. For
most time points, several vibrational modes projects into the allosteric response (right), but it is always
possible to find a point where just one mode contributes to most of it (left) as it is the case in two
dimensions.

the same classification as the ones found in two dimensions. In the following, one solution is
described in detail and is proved to be a twist design, akin to the motions of a Rubik’s cube.

The visualisation of the three-dimensional solutions is more challenging and for that three
sections of the cube are probed, one at the middle and two at the outer parts. Combining
measures of the allosteric response, intensity of shear deformation and rigidity shown in
Fig. 1.15B-C-D-E-E it emerges that the most outer sections behave like rigid-bodies moving
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in opposite directions, while the middle section display a hinge in the middle, supporting
that the solution behaves like a Rubik’s cube, sketched in Fig. 1.15A. The intensity of strain
fluctuations is also consistent.

Single mutations affect differently the three sections of the cube. Mutations in the outer rigid-
body sections are not costly, while in the middle section the nodes close to the boundaries
that experience large shear deformation are the ones where single mutations affect the most
the fitness, see Fig. 1.151-].

1.4.3 Specificity of geometric and cooperative designs

Proteins bind specifically to the ligand at the allosteric site, are the evolved networks also
responding only to the originally imposed displacement? Both designs result to be specific
with respect to the type of perturbation that is applied at the allosteric site. In the simpler case
of an applied force f instead of a displacement, the cooperative fitness can be easily written as
function of the modes w and in particular as function of the mechanism w*

AAE = %Z é«f”m»2 — (f%w)* - (" |w)?) (1.13)
~ 2(j*z(<f“|w*>2—<f1°|w*>2—<f°1|w*>2), (1.14)

where it can be seen that if the applied force f'°

is orthogonal to the mechanism, the fitness
goes to zero. Hence, the fitness is large only if the force is along the mode. A similar argument

holds in the case of an applied displacement.
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Figure 1.16 — Networks evolved to respond to a perturbation imposed at the allosteric site (x = 0) are
perturbed at different sites located at the right (x > 0) and left (x < 0) of the original allosteric site to
study how sensitive the designs are when the location of the imposed perturbation is changed. The
sensitivity is measured by looking at the average magnitude of the allosteric response at the active site,
[|dR®Y||. The analysis is performed for the cooperative designs with both periodic and open boundaries
and for the geometric designs with periodic boundaries.

In the case of geometric design, a numerical test shows that applying a different displacement
from the original one at the allosteric site results in a considerable decrease in the value of
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fitness, supporting the specificity of the design upon a change in the imposed displacement.

Specificity on different locations of the imposed perturbation can also be tested. Fig. 1.16
shows that cooperative networks are more specific than geometric ones in responding to
the same displacement applied in different locations than the allosteric site. The geometric
designs show a less pronounced peak around x = 0 than the cooperative ones. Indeed, in
the case of geometric designs, the same displacement applied at a different location on the
bottom boundary of the network still results in a relativey large response at the active site
given the presence of the lever mechanism that amplifies any displacement received on the
marginally-connected boundary. On the contrary, an evolved cooperative network shows a
smaller response at the active site when perturbed at different sites (x <0 and x > 0) .

1.4.4 Classification

Common features of cooperative design appear from the results described in Fig. 1.13, Fig. 1.14
and Fig. 1.15, unifying the different architectures found to optimise cooperative fitness. These
common features could be looked for by averaging over all initial conditions. Fig. 1.17 shows
that the features observed through different architectures are indeed statistically significant,
supporting the definition of principles of optimal cooperative binding. The solutions in
Fig. 1.17 are from periodic boundary networks in two dimensions, similar results are obtained
for open boundary and three dimensional networks.

* Less cordinated regions are carved in a more rigid structure as it was already observed
in a class of proteins [195] and in protein models [180, 196].

¢ The strain computed from the allosteric response is small in the rigid manifold, sup-
porting rigid-body or long-wavelength motion, and large in the soft manifold. Indeed,
the nodes in the network for which the shear deformation is large are the most flexible
ones, see Fig. 1.17A. It turns out that these nodes are also the ones most affected by
single-point mutations as shown inFig. 1.17B.

Normal mode analysis in Fig. 1.13H, Fig. 1.14H and Fig. 1.15K shows that the response induced
by binding at the allosteric site is described by a single mode which is extended — as shown by
the participation ratio encoded in the color bar — and has low frequency. This is valid also for
the solutions in three dimensions where there are several different designs not easy to connect
with a known one. In that case, in most of the time points during evolution several low energy
modes contribute to the allosteric response, but there is always one point whereby just one
mode describes most of the response.

The presence of a mode easy to excite is a common property of daily life objects designed to be
functional — like scissors — and such a mode is called mechanism. It has been also observed
in allosteric proteins, where it represents the allosteric response, or in usual proteins, where it
describes the accessible collective mechanical movements, as discussed in the introduction.
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* Low frequency extended modes appear systematically in the density of vibrational
modes (Fig. 1.17C) and are the ones identified to be descriptive of the allosteric response
(Fig. 1.17D). This is further proven by the cumulative overlap between the vibrational
modes and the allosteric response, see Fig. 1.17D. The cumulative overlap is larger than
80 percent for the lowest frequency modes (rank equal to 1) and quickly saturates to 100
percent (rank equal to 3) for networks evolved to optimise cooperative binding both in
two and three dimensions, manifestation of the presence of a mechanism. The same
measure for networks evolved to perform the geometric task, optimising for Eq. 1.5,
shows a slow saturation to large values of the overlap, consistent with the fact that
function in those networks is not attained via mechanisms but edge modes.
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Figure 1.17 — Averages are performed on all 25 initial conditions to elucidate the common features
shared by the designs. The bivariate histograms of nodes in the network displaying (A) a given strain
B-factor (SB) and shear pseudo-energy (Eg;,) and (B) a given shear pseudo-energy (Esj;) and normalised
mutation cost (-A% /&) are shown. The color bar codes for the relative abundance of data points
in each bin. The positive correlation for large values found in both measures indicates that the most
flexible regions (larger strain B-factors) and the ones most susceptible to mutations (larger —A% /%) are
also the ones with the most shear deformation (larger Esj,). (C) The density of vibrational modes plotted
as function of both the frequency w and the participation ratio P,, D(w, P,) shows systematically the
presence of an extended mode with low frequency. (D) Moreover, the overlap g(w, P,) is close to unity
exactly in the same region (w, P,), proving that the extended soft mode describes most of the response
induced by binding at the allosteric site. (E) The cumulative overlap is shown as function of its rank for
the first modes both for the geometric and the cooperative fitness function, highlighting the difference
in the physical mechanism used to be fit, respectively edge modes and mechanisms.
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1.4. Cooperative function

1.4.5 Optimal cooperative binding

The common features shared by the in-silico evolved networks can be rationalised by looking
at cooperative binding in a continuum elastic medium in the absence and presence of a
mechanism.

Absence of design

In the absence of design, the cooperative fitness decreases very rapidly as function of distance
betwen the allosteric and active site, L, as discussed in the following in the case of a medium
with elastic modulus G. The effect of a strain imposed by binding at one site can be decom-
posed into multipole moments that describe the displacement field at distant regions where
the dominant contribution is dipolar, since higher multipoles decay faster. More precisely,
the imposed force f acts on the n nodes of the site at positions a® with s =1,..., n, and the
resulting displacement is computed via the Green function G; j(r —a®) (see Appendix A.4 for
more details)

n
ui(r) =) Gijr-a’)f; (1.15)
s=1
n n
=Gij® ) f{=Gijx® ) fiai +0(1a’l1P) (1.16)
s=1 s=1
n n
=—Gjj k(@) Zifjsa,sC +0(|a%||>) (no net force on the nodes: Zlfs =0). (1.17)
S= s=

The Green function in d > 2 dimensions being

ry 1

Gij(r) = gij (;) -2 (1.18)
ry 1

Gij k(1) :hijk(;)my (1.19)

where g and h contain the angular dependence. Hence, the imposed strain will induce a
dipolar response sufficiently far away from the binding site, thus allowing to approximate the
effect of a binding event as a dipole applied at the allosteric and active site, as sketched in
Fig. 1.18A. The magnitude of each dipole is set to fc where f is the norm of the applied force
and c the distance between the two poles. The two terms in the approximated form of the
fitness Eq. 1.7 can be explicited. The response |dR?! 11} is dipolar with magnitude dependent
on the distance r given by fc/Gr?~!. The force field |F) is also dipolar, hence its scalar product
with |[dR%1~11) acts as a derivative at r = L for L > ¢ giving

f2 (,‘2

—d
W ~L d>2, (1.20)

d fc
F ~ (dR"U R ~ ||| —
( R =

=(1-4a)

which is indeed a very rapid decay of the cooperative fitness with the distance L. For a precise
derivation of this result and the two-dimensional case see Appendix A.4.
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Figure 1.18 — (A) A shear mechanism is designed in a cylinder of height L by cutting a slice of width
c. The resulting object has the topology of a square with a rotation as an additional mode with zero
energy cost. If the cut is filled with a soft material, the frequency of the mode gets finite. The response
induced by imposing displacements at the allosteric or active site will be dominated by the mechanism,
as long as the material in the cut is soft enough. (B) A shear architecture is built in a triangular lattice of
size L = 16 with the introduction of a soft band of width ¢ = L/10 with springs of stiffness k;,, < k=1
such that G, /G = ky/k (k,, = 0.05). The displacement imposed at the allosteric site is shown as purple
arrows, while the resulting response as black arrows. (C) The energy of binding simultaneously at the
allosteric and active site E7; and the cooperative fitness & are shown as function of k,, for a network
of size L = 32. The dependence of & on k,, is indeed non-monotonic, with an optimum for a certain
k. (D) The overlap q,, between the response R!? and the vibrational modes is shown as function
of the frequency w at optimal k7, = 0.036 for L = 32 and ¢ = L/10. The color code is according to the
participation ratio.

Presence of design

How does the presence of a mechanism affect the cooperative fitness? The continuum elastic
medium is designed in d = 2 to have a shear design with the considered geometry depicted
in Fig. 1.18A, where a band of width c is cut in a cylinder of height L. The two dimensional
equivalent is also shown. Let G, be the elastic modulus of the band and 6 the displacement
imposed at the allosteric or active site. If the cut surface is empty (G,, = 0) the material will
display a zero energy mode, corresponding to the sliding of the two ends of the cylinder or to
the rotation of the two dimensional sheets. This is valid also for G,, sufficiently small. Since
the mode costs no energy, an applied displacement will couple only to it and lead to the same
response when applied at any of the sites, leading to E1g = Ey; = E;; and to a cooperative
fitness set by the elastic energy stored in the band

L
F =Ejgn+Ey—En=Ep= sz(sz. (1.21)
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1.4. Cooperative function

The dependence on G, in Eq. 1.21 shows that & = 0 when a mechanism is present (G,, = 0)
and & increases linearly with G,,. However, cooperative fitness will not grow indefinitely.
When the band becomes more rigid than the material, it is more favorable to deform the latter
with respect to the band, thus coupling to modes other than the mechanism and breaking
the validity of Eq. 1.21. This crossover happens when the energy of deforming a continuous
medium of modulus G, E, is lower than the energy associated to the mechanism, which
happens for a given G},

Gé6? L. G}, c

—Gyb© > —

_ < ~ S (1.22)
log(L/ic) ¢ G Llog(L/c)

E¢
For G >» G}, the imposed displacement will excite modes typical of a continuous medium,
resulting in a cooperative fitness rapidly decaying as in Eq. 1.20. Hence, the value G, = G},
corresponds to an optimum in cooperative fitess of the order

. Go?

- . (1.23)

log(L/c)

These theoretical predictions can be tested in the discrete setting of a triangular lattice, as
introduced in Fig. 1.18B, with N = L? nodes and a band of width ¢ = L/10 where the spring
stiffness is k,, < k =1 chosen such that G,,/G = k,,/ k. The measured fitness is shown to have
a non-monotonic behaviour as function of k,, in Fig. 1.18B. In Fig. 1.18C the emergence of a
mechanism appears when the stiffness of the soft springs k%, ~ L1 (k}5, = 0.036 for L = 32 and
1/32 = 0.031) as predicted in Eq. 1.22.

Optimal cooperative binding is associated to the excitation of a mechanism with a very
small value of the cooperative energy of the response to the imposed displacement 6, as
it is seen from Eq. 1.23 when L is large. The mechanism can be found by looking at the
vibrational spectrum of the stiffness matrix where, in a harmonic approximation, the inverse
of each eigenvalue is proportional to the extent of thermal fluctuations along the associated
eigenvector. The order of the eigenvalue ku’i associated to the mechanism d can be estimated
via a simple argument

F* 1 G2 1

k=~ ~ ~ ) (1.24)
Y lldwll? 8212 log(L/c)  Nlog(v/Nic)

since the shear mechanism is extended, all the particles — whose number in the case of a
discrete material is N = L2 — move of a distance § and its square norm is then ||dy| |2~ 82N.
The frequency of the mode can be directly obtained by supposing that all particles have
identical mass m

ky 1
Wl = [y _ (1.25)
mn Nlog(VN/c)
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Chapter 1. Mechanics of allosteric materials and proteins

For the range of values of N considered, the logarithmic correction is negligible and the
scaling reduces to klz ~ N~1. The result is easily extended to the three-dimensional shear
mechanism where E; = G6% and F =~ Lc™*G,, 6%, giving F* = Gcd? and kj, ~ N~ since
lldw|?> = 62L3 = 6°N.

The value of ku’ﬁ sets the scaling of the stiffness of the mechanism with respect to the number
of particles N in order to have optimal cooperative binding. Equivalently, it sets the scaling of
thermal fluctuations along the mechanism: the fluctuations increase as N for systems where
cooperative binding is optimal. The presence of a mechanism not only is responsible for an
increase of cooperative fitness with respect to the undesigned case, but it poises the system to
its optimal value.

In this derivation, it is assumed that maximising the cooperative binding energy is the best
strategy for the protein to achieve allosteric function. Another assumption to be explored is to
maximise sensitivity, the derivative of fitness with respect to the stiffness, as suggested to be
the strategy used by the transcription factor CAP in Ref. [197].

1.4.6 Fluctuations-driven cooperativity

As discussed in Subsec. 1.1.3 and in Refs. [27,180], the existence of a low energy extended mode
of frequency wl’/j (the mechanism in the case of cooperative designs) leads to the possibility of
a cooperative effect without any observed mean displacement, once thermal contributions
are considered. Indeed, a binding event can affect how particles near the site fluctuate around
their mean position, while leaving the mean itself unaltered. Fluctuations-driven cooperativity
can then arise as follows. Binding at the active site freezes motion in that region and results in
an increase of the soft mode frequency, leading to an entropic cost that can be diminished if
binding already took place at the allosteric site.

Let us define w19, wo1 and w1 the frequencies of the mechanism after binding at the allosteric
site, active site and both respectively. We can estimate these quantities as

wly=wy’+ey (1.26)
wg) =y’ +eor (1.27)
0} =y’ +er, (1.28)

where e (eg1) characterizes the additional energy required for the mode to move when a
ligand is bound at the allosteric (active) site. Assuming harmonic dynamics, the entropy of a
normal mode of frequency w reads

kBT) . (1.29)

S= kBln(%
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1.5. Effect of non-linearity: a mechanical view on induced fit and population shift

Using this expression, the cooperative free energy is estimated as

wuw{;,

AAF =—-TAAS=kgTIn (1.30)
wW10Wo1
€11

=—kgTIn|1- s 1.31

B n( (w17,2+€10)(w{;,2+€01)) (13D

which can indeed be large if wl’;,z is small compared to both e;y and ey .

1.4.7 Conclusions

The choice of the cooperative fitness function in the evolution scheme produces a new class
of architectures, like shear or hinge, consistent with known designs adopted by allosteric
proteins shown in Fig. 5. These architectures use different physical principles to function with
respect to the edge modes underlying the designs optimising the geometric fitness. Evolution
is harder in the cooperative fitness landscape: different initial conditions correspond to
different configurations, as can be seen by computing their Hamming distance. Although this
heterogeneity, all the cooperative architectures work according to the same principles. They
develop an extended mode with very low frequency describing most of the structural change
upon perturbation. This mode is called mechanism and it is easy to couple to when a strain
mimicking binding is imposed at one of the two sites, then inducing the allosteric response.

The presence of a mechanism rationalises the aforementioned empirical success of normal
mode analysis in detecting few soft modes responsible for the observed allosteric response. In-
deed, in this context, soft modes are found to appear as the result of evolution of architectures
that display cooperative binding.

Moreover, cooperative architectures not only increase cooperative fitness with respect to the
undesigned ones, but are poised to display an optimal value. Indeed, the stiffness of the mode
is not random: it cannot be too low nor too large in order to have a finite value of cooperative
fitness. An optimum is found for a given stiffness, whose scaling with the number of particles
in the system N = L% is k;,‘, ~ N~! where d is the spatial dimension and L the linear system
size. From this result, it follows the prediction that larger proteins may need softer modes to
operate cooperatively than smaller ones. In Chapter 2 this prediction is tested by computing
normal modes with ENM in a dataset of 34 allosteric proteins supporting the predicted trend.

1.5 Effect of non-linearity: a mechanical view on induced fit and
population shift

The in-silico evolution of disordered mechanical networks leads to the emergence of allosteric
behaviour and physical requirements to be satisfied by the networks in order to have optimal
cooperative binding between the allosteric and active site. The considered networks are
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Chapter 1. Mechanics of allosteric materials and proteins

composed of harmonic springs, displaying a linear behaviour. Hence, the transition from non
functional to functional networks happens in an energy landscape that is harmonic, listing
the previously discussed results in the class of induced fit models (KNF model) presented in
the introduction, see Fig. 4.

It comes natural to ask which is the effect of non-linearities in the evolution of allosteric
behaviour with a landscape as the one of the population shift scenario, see Fig. 4. In particular,
do such networks in the population shift scenario feature the same behaviour in cooperative
energy as function of stiffness as the one in the induced fit, Fig. 1.20C? Is the stiffness of the
soft mode still optimal, Eq. 1.24, in the population shift scenario?

1.5.1 Induced fit scenario

The extension of the mechanical framework to the induced fit scenario involves a geometric
interpretation of the results discussed in the previous section.

Consider a protein that displays cooperative binding thanks to the presence of an elastic soft
mode v, which, when excited, will induce the allosteric response in the protein. Cooperate
fitness is defined as in Eq. 3.1, but with the symmetric assumption between the two binding
sites leading to Ey; = Ejp and

AAE =2Ey, — Ey; . (1.32)

By introducing a variable x that denotes the motion along the mode v and varying from 0 to 1
as the protein undergoes its allosteric response, the energy profile of the unbound state can
be expressed as function of x and it reads

Eoo(x) = kalldR4|I* £ (), (1.33)

where k, is the stiffness of the mode® and f(x) a function of order unity and such that f"(x =
0) = 1. To be consistent with the induced fit scenario, f(x) displays a unique minimum at
x =0 as sketched in Fig. 1.19. For a linear elastic material, like the one discussed previously,
f(x) = x?/2. The squared norm is defined as ||[dR,||* = ¥ ¥ | ||dR4(i)]|* where dR, (i) is the
allosteric response field at position i. In the presence of a mechanism, dR, and ¥ have almost
unitary overlap. The term ||dR,||? takes into account the volume where the allosteric response
takes place: if the protein has N residues, then [|[dRg4||? = Na? where a is the interatomic
distance. The dependence of ||dR,| |2 with N in allosteric proteins is discussed in Chap. 2.

If after some motion xy along the mode ¥ the protein can accomodate the ligands without
deforming, the energy profiles of the bound states Ej¢(x) and E;; (x) satisfy E1o(xo) = E11(xo) =

8Here, the stiffness of the mode is denoted as kq instead of ky since ky ~ kg given the relationship between the
mechanism and the allosteric response, where k is the stiffness of the allosteric response. Indeed, the allosteric
response is a more direct observable than the mechanism in proteins.
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E/ka AR 2

AAE

Figure 1.19 - Induced fit scenario. The elastic energy of the unbound configuration Ey(x)/k, (in
black), the singly bound configuration Ey; (x)/ k, (in blue), and doubly bound configuration E;;(x)/k,
(in red) as a function of the imposed motion x along its soft mode are shown, rescaled for visibility
by the stiffness of the soft mode k,. The values Ey, Ej9, and Ej; correspond to the minima of the
black (Ego(x)/kg), blue (Ep; (x)/k,), and red (E;;(x)/ k) curve, respectively. We assume that the protein
accomodates the ligands without deforming when the motion along the soft mode is x = xp; thus, the
three energy profiles are identical at that point. Three scenarios (I, II and III) appear depending on the
value that the stiffness of the mode Nk, takes with respect to the stiffness of interatomic interactions
nk. Cooperative fitness AAE as function of k, is sketch, highlighting the resulting behaviour in the
three scenarios, I, IT and III.

Eyo(x0). However as x departs from xy, the shape is not matched anymore with the result of
imposing an elastic strain at the binding sites that leads to an increase of elastic energy in the
protein, triggering motion along other elastic modes than y. The difference in energy profiles
for one binding event with the assumption of rigid ligands is

E10(x) — Ego(x) = nka’g(x - xo), (1.34)

where the binding site is composed of order n atoms that move by a distance a as the protein
undergoes its allosteric response, k is the stiffness of interatomic interactions, which is signifi-
cantly larger than the one of the soft mode k > k,. The function g is a dimensionless function
that vanish quadratically in zero, but is possibly nonlinear at large arguments. Similarly,

En1(x) — Eyo(x) = nka®g(x — xo) . (1.35)

The energy values used to compute cooperative fitness, Ejg and E, are directly obtained by
minimising the energy profiles, E. = miny E. (x). Two extreme cases arise, leading to different
results in this minimisation, as illustrated in Fig. 1.19, panel I and III.

e RegionlI (Fig. 1.19-): if k, N < nk, as x departs from xy, the elastic energy induced by
binding Ep (x) — Ego(x) is significantly larger than the energy of the mode Ey((x) meaning
that Eyo(x) = nka? g(x— xp) + Ego(x) has a sharp minimum in x = xq given the functional
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form of g(x — x¢). Hence, the minimisation of E1o(x) gives E1g = ky||dRg| |2f(x0). Simi-
larly for E1; (x), E11 = kal|dRg||? f(x0). Cooperative fitness is then

AAE = 2E1g - E11 = Eyo = kalldRgl* f (x0), (1.36)

which vanishes linearly as k, — 0.

e Region III (Fig. 1.19-I1): if k, N > nk, Eyy(x) is large with respect to nka? g(x—xp) so
that Egg(x), E1o(x) and Ej;(x) are all similar and present a minimum at x = 0. When
x = 0 the system does not move along the mode w upond binding: the allosteric and
active site are not coupled via an extended mode and thus E1; = Ejg + Ep;. Hence, the
resulting cooperative fitness vanishes AAE — 0 as k,; — oco.

* Region II (Fig. 1.19-1I): a sweet spot where cooperative binding is optimal is found for

nk
ky ~—, 1.37
a~ N (1.37)
rederiving the result obtained in Sec. 1.4 (Eq. 1.24). The argument for the presence
of the optimum does not require f(x) to be a parabola, but a function which grows

monotonically in the directions around its minimum, x = 0.

1.5.2 Population shift scenario

The population shift scenario, exemplified by the MWC model as overviewed in the Intro-
duction, assumes a protein with two states, inactive (In) and active (Ac) between which
it switches even in the absence of ligands. Binding events have the effect of shifting the
equilibrium towards one or the other.

10, 11 z A
00 !
E 1
E, 7,
—1 L +1 z
1 1 )
Inactive Active

Figure 1.20 - The energy profiles for the different binding events Eyy(x) (black), E;o(x) (blue) and Ej; (x)
(red) are sketched as function of the amplitude of motion x along the path connecting the inactive
(In) and active (Ac) state. The features of the potential are also highlighted, such as the height of the
energy barrier between the two states Ej, the energy cost of binding one ligand AE and the difference
in energy between the inactive and active state when no ligands are bound Ej.
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In the absence of ligands, the energy of the inactive state can be set as reference Eég =0
keeping the energy of the active state Ey = Eé*oc as variable. In the active state, the protein
is assumed to have the right structure to bind the ligand without deforming, hence binding
events cost no energy Eﬁf = E{;‘f = E{\ = E,. This is not the case in the inactive state where
the binding energy cost is AE so that EII(’; = Eé? = AE and E!" = 2AE, since within a given
configuration if the two binding sites are distant enough — i.e. the elastic coupling between
them is very weak — the binding energies are additive. A sketch of the energy landscape can
be found in Fig. 1.20.

For each binding configuration, the favorable state is the one that has minimal energy, e.g.

Ep1 = min (E{?, E{¢). Cooperative fitness can be then directly computed and three different

cases arise according to the relationship between Ey and AE, sketched in Fig. 1.21

AAE*
¢ \V
9 S/ 0\
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4 y ' g
Q5 : ™
. : N
AAFE : =
' FEy > AFE

Ey=AFE E,

Figure 1.21 — Cooperative energy AAE as function of the energy cost of binding a ligand in the active
state, Ey is shown in the context of the population shift scenario. The maximum value of cooperative
fitness that the system can reach is denoted as AAE*.

e if Ey < AE, the binding of one ligand is sufficient to shift the equilibrium of the system
to the active state and according to what defined above it implies E ¢ = E;; = Ep and
AAE = Ey;

* if AE < Ey < 2AE, the binding of one ligand is no more sufficient. Two ligands need to
bind to shift the equilibrium towards the active state, leading to a cooperative fitness
AAE = 2AE — Ey;

e if Ey > 2AE, the system is always in the inactive state even when two ligands are bound
and AAE =0.
The resulting cooperative fitness displays a maximum for Ey = AE, as shown in Fig. 1.21.

In the presence of a soft mode responsible for the allosteric function, the inactive and active
states are connected by a favoured path. Similarly to what discussed for the induced fit
scenario, the energy in the absence of ligands can be expanded as function of the amount of
motion x along that path, considering here x as varying from +1 to —1 given the two states
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nature of the problem, which also enforces a fourth degree polynomial. The energy Eyo(x)
reads

1 1
Eoo(x) =ka||dRa||2(§x4—Zx2+xb), (1.38)

where out of the five parameters of a polynomial of fourth degree, three are fixed by redefining
the reference energy and changing the value of x both via multiplicative and additive constants.
The parameter b describes the amount of tilt of the potential towards the inactive state, k, the
stiffness of the soft mode and ||dR,]||? the squared norm of the allosteric response. A typical
profile that satisfies Eq. 1.38 is shown in Fig. 1.20 where the inactive state Ego(x = —1) has
lower energy than the active state Ego(x = +1).

In the case of no ligands bound, when b = 0, Eyo(x) is symmetric and it presents two minima
at x = +1 with the same energy and separated by an energy barrier Ej, = 3 k4lldRg||?. When

b is positive, E(‘)“OC > Eé(’)l uptob=>b.=1/(3 V/3), where the active state become unstable and
only one stable state is left. The energy difference between the inactive and active state Ej is

3
maximal at b = b, for fixed kg, finding Ey = gkaIIdRallz. When b is small, Ey = 2k,||dR,||*D.

Hence, when b < b, Eq. 1.38 is consistent with the phenomenology of the population shift
model and it constitutes the regime considered in the following.

Binding events that occur when the protein is in the active state cost no energy, as discussed
before. However, by departing from the active state, the topology of the protein does not
match the ligand and it needs to deform elastically near the binding site to accomodate the
ligand. Similarly as before

E10(x) — Ego(x) = nka®g(x — xac), (1.39)

where x 4. is the location of the active state along the path and for b small x4, = 1. This binding
energy can be found as the difference between the blue and black curves in Fig. 1.20. In the
inactive state x = xj;, the binding energy

AE = E1g(x1n) — Boo(x1n) = nka’g(x1n — xac) = 4nka?, (1.40)

is independent both of the size of the protein N and the stiffness of the mode k,, where the

factor 4 comes from the choice g(x—x4c) = (x — x 10)?? and the limit of b small where x;,, = —1
and x4, = 1. Supposing that the two binding sites are distant enough, the energy cost of the

double binding event for a given value of x is E1; (x) — Ego(x) = 2nka2g(x —XAc).

The goal is to understand how the stiffness of the mode k, constrains cooperative fitness in
the case of a population shift scenario like the one just introduced. The maximal cooperative

9The choice gx—xa0)=(x—x Ac)2 serves as an illustration. Qualitatively, the results will not change for other
choices of g(x — x 4.) apart from the multiplying factor that will change from 4.

70



1.5. Effect of non-linearity: a mechanical view on induced fit and population shift

fitness over all possible values of tilt b given k, is

AAE* = ml;dx{AAE(ka,b)}. (1.41)

ko/k:=1 ka/k; = 35

Stiffness ka

Figure 1.22 - The behaviour of the maximal cooperative energy AAE* = max,{AAE(kg4, b)} as function
of the stiffness of the mode is shown, where a linear growth (region I) and plateau (region II) appear
for, respectively, small and large k,. In the insets the energy profiles for k, <« k; (a), k, ~ k;‘ (b) and
k> k (c) are plotted. The data are from a nonlinear elastic model of allostery whose implementation
is discussed below.

Two cases appear as function of the relationship between Nk, and nk, see regions I and Il in
Fig. 1.22

* RegionI: if Nk, <« nk, the elastic cost associated to binding, AE, is much larger than Ej
and both Ej¢(x) and Ej; (x) are peaked around x4, as illustrated in Fig. 1.22-a. Hence,
Ey < AE, which implies AAE = Ej, as summarised in Fig. 1.21 and it is maximal for
b = b, giving

3
AAE* = 5ka||dRa||2 ~kyNa®. (1.42)

This proves that maximal cooperative fitness vanishes linearly for small k, as skecthed
in Fig. 1.22. The behaviour of cooperative fitness for small k, in the population shift
scenario is similar to the one of the induced fit scenario, also linearly vanishing.

* Region II: if Nk, > nk, the opposite case arises: the elastic cost AE is much smaller
than Ej and all energy profiles Ey(x), E1p(x) and Ej; are approximately identical, as
illustrated in Fig. 1.22-c. Again referring to Fig. 1.21, cooperative fitness is maximised by
choosing a value of tilt b that fixes E, to AE, implying

AAE* = AE ~ nka?, (1.43)
which is independent of the stiffness of the mode, k,. The plateau of constant coop-
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erative fitness appears at a value of the stiffness of the mode whose scaling with N
is

ky ~—. (1.44)

In opposition to the induced fit scenario, maximal cooperative fitness in the population shift
framework does not vanish as the stiffness of the mode increases, but it displays a plateau at
a value of stiffness k;, which has the same scaling with the number of residues N as in the
induced fit scenario. There, the vanishing of cooperative fitness at large k, stems from the
behaviour of Eyg(x), E19(x) and Ej; (x). These binding energies all have very similar profiles
when k, is large and all present a single minimum, whose position is also approximately
identical and reduces to be x = 0 independently of binding. Introducing two minima in the
energy landscape allows to add a degree of freedom that does not constrain x to be zero, hence
allowing the coupling to the soft mode. As a consequence, non vanishing cooperative fitness is
displayed also at large k,: the maximal cooperative fitness AAE* saturates to a constant value
for k, > kJ; in the population shift scenario. This result suggests that mutations that increase
the stiffness of the low energy mode have a milder effect in the population shift scenario, than
in the induced fit, where cooperativity reaches an optimum at k;.

Anyhow, the energy barrier between the inactive and active state increases linearly with k, in
that limit, meaning that the transition between the two states becomes less and less favourable.
Hence, given the slow transition rates for k, > k;, the value of k, reasonably lies close to k),
and the same condition as in the induced fit scenario holds.

1.5.3 Remark on the hypothesis of the theory

Note that the main assumption of the theory is the presence of a mechanism, a low-energy ex-
tended mode that describes the behaviour of the system resulting from the allosteric transition.
As far as the mechanism resists to the introduction of temperature in the system, the theory
stays valid — where instead of an energy landscape there will be a free-energy landscape.

1.5.4 Mechanical model of population shift allostery

The theoretical results discussed in the previous section can be tested in a mechanical model
with the same properties of population shift allostery. In-silico evolution of allosteric materials
lead to the design of architectures with soft extended regions where most of the strain is
concentrated, as also found in few proteins [46] and discussed in a larger dataset in Chap. 2.
If such a protein presents two states and the allosteric transition between them involves a
conformational change, then the associated deformation will happen in the soft region, where
at least two ways of properly organising the amino acids must exist. These assumptions help
defining the following mechanical model where springs can have two different rest lengths.
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Figure 1.23 - (A) Sliced view of the three-dimensional mechanical model for population shift allostery.
Rigid elastic regions made of harmonic springs (in blue) of stiffness k are connected through a weak
nonlinear region made of nonlinear springs (in red) of stiffness k,,, with k,, < k. The inactive state
(In) favors short springs, whereas the active state (Ac) favors long springs, as exemplified by a solid
orange spring in the weak band. The location of the binding sites is represented by a solid black spring
shown when the ligand is bound (00, 10,01,11). (B) AAE as function of Ej for different values of k, for
alinear length L = 20 is shown, where L3 = N. The same behaviour discussed in Fig. 1.21 is found. (C)
Maximal cooperative energy AAE* as function of k, for L = 6,10, 20, and 30 is shown. The elbow in
these curves defines the crossover stiffness k;, as in Fig. 1.22. (D) k; versus number of nodes in the
model N, supporting ks ~1/N.

Among the various architectures, the shear design can be picked as model where two three-
dimensional rigid blocks of linear size L3 = N are connected through a soft planar region,
which is easy to be deformed. The rigid regions are composed of harmonic springs of stiffness
k, shown in blue in Fig. 1.23A, while the soft layer is made of anharmonic springs of stiffness
ky < k, represented as red in the same figure. Each of the anharmonic springs a follows a
potential equivalent to Eq. 1.38 imposing that the springs have two different lengths when in
the inactive and active states

Ef, = pi + P o+ pyxg + P xg + pixg, (1.45)

where x, = [y /a, with [, the distance of two particles connected by a@ and a a parameter
capturing the typical local deformation of adjacent particles between the inactive and active
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states. The prefactors can be chosen by imposing the following five conditions for all springs «

dE® dE®
wl o %w| (1.46)
dxq Xin dxq XAc
po =0, (1.47)
1
pd = 5Icwaz, (1.48)
p?(xfn = XAc)+ pg (x%n - xic) + pg (xin - x1340) + pg (x}ln - leﬁc) = kwazbw’ (1.49)

where b, captures the energy difference between the inactive and active state. Indeed, the
nonlinear springs present two stable extensions at which they exert no force and whose relative
energy is controlled by the bias b,,. The material also presents two binding sites defined such
that, upon binding, the distance between two nodes (represented with a black solid line in
Fig. 1.23A) is the same as the one in the active state, thus favouring the material to be in the
active configuration.

The energy profiles Egy(x), E1o(x) and Ej; (x) can be computed numerically as function of x
which represents the motion along the shear mode. The energies are found by letting the
elastic energy of the material relax after a shear displacement, i.e. a value of x, is imposed.
The system relaxes along all possible directions apart the one of the shear mode and the ones
corresponding to translations and rotations of the rigid blocks, by setting the force gradient
in the minimisation procedure orthogonal to these modes. The energy profiles are shown
in Fig. 1.22 for three different values of k,/k};, denoting their differences as the stiffness of
the shear mode changes. The relevant parameters discussed above (kg , Eg, AE and AAE) can
be directly computed from the profiles. The stiffness k, can be found from fitting Eq. 1.38
to Ego(x) while measuring ||dR,||? and can be increased by varying the value of k,,. The
energy difference Ej can be also computed directly from Eyo(x) and can be changed by tuning
the value of the bias b,,. The binding cost AE and cooperative fitness AAE can be extracted
by computing the minima of Eyg(x), E19(x) and Ej;(x). The results are shown in Fig. 1.23.
Fig. 1.23B shows cooperative energy AAE as function of E for two values of k,. As expected
from Fig. 1.21, when k, is large enough AAE reaches the maximal AAE* = AE, while, when k,
is smaller, AAE™ is fixed by the largest achievable energy difference Ey. Fig. 1.23C confirms
the behaviour of the maximal cooperative fitness AAE* upon changing k, for different system
sizes N. Fig. 1.23D shows that the predicted scaling k;, ~ 1/N matches the scaling of the
measured k) from the data of Fig. 1.23C.

1.5.5 Conclusions

The insights from mechanical materials endowed with allosteric behaviour show that the
cooperative energy depends on the stiffness of the low energy mode responsible for the
allosteric transition. In an induced-fit-like scenario, cooperative fitness reaches an optimum
for a given value of stiffness k;, whose scalings with the size of the system N is derived,
k; ~ 1/N, see Fig. 1.19. The formalism is then extended to describe the two-states switch
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dynamics typical of the population shift scenario. Also in this context, cooperative fitness has
a precise dependence on the stiffness, it displays a plateau after a value k; that is found to
have the same scaling with N as in the induced fit scenario. Even if the cooperative fitness
displays a plateau at k; and not an optimum, it does not mean that there is no optimality.
Indeed, when k, > k;‘ the transition between the inactive and active state becomes very slow
given to very high energy barriers. Hence, the system is more likely to be at k, ~ k; also in
the population shift scenario. Again, these results suggest that larger proteins display softer
modes to accomplish allosteric cooperative binding, prediction tested in Chapter 2. Moreover,
the presence of plateau of cooperative energy after k), suggests that the effect of mutations
that increase the stiffness of the low energy mode affect fitness by a small amount, in contrast
to the induced fit scenario, where an optimum is displayed at the same scaling of k;. This
prediction could also be tested in experiments, as briefly elaborated in Chapter 2.

Overall, these results identify the stiffness of the low energy mode as a significant observable
to be monitored in order to study cooperative binding in proteins. Do protein actually max-
imise the cooperative energy by developing a soft mode with a stiffness whose magnitude
scales inversely with the number of residues? Do extended soft modes systematically exist in
proteins? Do they act in regions where strain deformation is the largest? In the next chapter,
Chap. 2, structural data of 34 allosteric proteins are used to explore these questions and the
necessary tools are introduced alongside.
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4 Empirical results

High resolution structures can be easily found on online databases allowing to access elas-
ticity via Elastic Network Models (ENM) and study their conformational changes. However,
structures of allosteric proteins are more difficult to identify among the plethora of entries in
the Protein Data Bank (PDB). We built a dataset of 34 allosteric proteins taken from previous
studies on allosteric motions to test the results of the evolution of allosteric binding in in-silico
models, discussed in Chapter 1.

An analysis over 34 allosteric proteins systematically shows that the allosteric response is
mostly described by one low energy mode when it involves a large amount of amino acids,
extending the results already present in the ENM literature e.g. [56], as reported in both the
Introduction and Chapter 1.

The main goal is to perform a first test of the outcomes of the in-silico evolution of allosteric
materials under both tasks. Do some proteins make use of the novel architecture for long-
range communication found when optimising for the geometric task? Do allosteric protein
work at optimality as cooperative architectures do?

In this chapter, first we provide preliminary evidence that some proteins present an amplifica-
tion of the allosteric response — in particular the PDZ domain whose allosteric response is not
well captured by a simple hinge or shear motion, as summarised in Fig. 5 in the Introduction.
It suggests that levers may be present in proteins — a novel architecture that emerged from
the evolution of the in-silico scheme presented in this thesis and discussed in Chapter 1.

Next, we build a database of 34 allosteric proteins and confirm that many indeed appear to
display a mechanism that governs most of the allosteric response. We find empirical support
that bigger protein needs a lower frequency mechanism to function, in consistence with the
idea that they have evolved to present an architecture with strong cooperative binding.

The results presented in Sec. 2.4 are published in [157], while the preliminary discussion in
Sec. 2.3 is unpublished.

77



Chapter 2. Empirical results

2.1 Describing deformation: the strain tensor

The empirical understanding of allosteric communication from a mechanical standpoint
involves the measure of the relative structural changes inside the material, whether this is
a protein or an elastic network. In continous mechanics, strain is defined to describe such
changes by removing rigid translations and rotations so that the structural deformation is
well captured. Suppose that the position is changed from x to y after a motion Q, y=Q(x). A
tensor mapping the initial position x to the gradient of the motion, the deformation gradient,
is defined as

F_aﬂ_d(x+u)_l+6u @1
“ox  ox  ox’ '
where u is the displacement field u = y—x and I the identity matrix. In this way, a rigid
translation will not contribute to F. What about rigid rotations? The deformation gradient can
be decomposed in the product of two tensors [198], an orthogonal tensor R corresponding to

arotation and a positive definite symmetric one V (or U)
F=RU=VR. 2.2)

Hence, the deformation gradient is seen as an application of a rigid rotation followed by
a stretch along a set of orthogonal axes, or viceversa. It appears now clear that given the
orthogonality of R, the deformation tensor built as F’F (FFY) does not contain rigid rotations.
This deformation tensor naturally enters the definition of the strain tensor found by looking at
the difference between the differential change between two points in the initial — dX — and
deformed — dx — conformation. Choosing the material coordinates — the initial state — as
frame of reference, this difference comes out to be

dx =FdX (2.3)
dx® = dx-dx = dX-F'F-dX (2.4)
dx® — dXx? = dX- (F'F-1)- dX, (2.5)

defining the Cauchy-Green strain tensor as

1
€= (F'F-T1) (2.6)
¢ —l(ax x ) 2.7)
@~ 2\0x, ox, '

1 (aua L ow 6u06uc) :%(Oua N aub)’ (2.8)

T2 0xp 0xg4 O_xa 0xp 0xp 0xg4
where a, b label the spatial dimension and the approximation in the last line supposes small
deformations. The strain tensor can be then directly computed from any displacement field u.

However, the mechanics of proteins is not continous, but discrete, leading to a strain tensor
that is defined for each component or particle i, €(i). The discrete version of the strain tensor
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is computed in [199] and discussed in Appendix B.1.

The strain tensor contains information about both components regarding volume expansions
or contractions — bulk strain — and arising from relative motions of two volumes — shear
strain. Proteins cannot be significantly compressed and expand only in the case of unfolding.
Hence, the relevant deformation to be measured is linked to the relative motion of adjacent
residues. First, the diagonal components of the strain tensor €,, are the ones associated to
relative volume changes [149]. Hence, the strain tensor can be decomposed into a sum of pure
shear and compression as

1 1
€ab = (eab - géubecc) + gfsabecc , 2.9)

where in the first term in brackets the volume component of € is substracted. From this last
result follows that the shear tensor — that is not sensible to compression or dilation — is
defined as

Y=€—(%Tr(e))l. (2.10)

A scalar quantity describing shear deformation can be defined for each component of the
discrete system — residues in the case of a protein — called shear pseudo-energy, E;j,. For the
component i, this linear elastic energy reads

1 3
Egn(i) = 5 Y yap 12 @2.11)
a,b=1

Similarily, also a bulk pseudo-energy can be computed, describing volume changes

1 3
Epuk(i) = 5 Y lece (D17 2.12)

c=1

2.2 The allosteric response

The allosteric response is defined as the displacement between the inactive and active con-
formation of the considered protein, where in the inactive state no ligand is bound at the
allosteric site, while in the active state the ligand is bound there. Given the two conformations,
a structural alignment needs to be performed before computing the displacement. The rota-
tions and translations that minimise the difference between the squared distances among the
structures are found via a least-squared fit. The algorithm used to perform this conformation
superposition is from the software Pymol [14] and performs also a sequence alignment whose
effect is negligible in the case of structures of the same protein as it is the case here. Once the
inactive and active structures are aligned, the allosteric response dR, is directly computed as
the resulting displacement.
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In the case were allostery is accompanied by a non trivial conformational change the al-
losteric response gives useful information about the underlying mechanisms. The following
observables can be directly computed from dR,: (i) its magnitude ||dR| |2 or its normalised
counterpart; (i) the fraction of the residues involved in the allosteric response and (iii) the
shear pseudo-energy Ej, as defined in Eq. 2.11. The participation ratio estimates how much
the allosteric response is extended or localised — point (ii) — and it reads [200]

ldR 4|2

= . (2.13)
NYN |ldRa ()4

2.3 Amplification of allosteric response in a PDZ domain

The optimisation of the geometric fitness function Eq. 1.5 lead to an unusual principle for
allosteric design where the magnitude of the allosteric response is non monotonic in the direc-
tions perpendicular to the axis connecting the allosteric and active sites. Hence, the question
of looking for such a mechanism in allosteric proteins arises naturally. A putative candidate is
the third PDZ domain of the synaptic protein PSD95 from the rat (Rattus norvegicus) brain
studied in the Ranganathan lab (UChicago). Indeed, Fig. 5 in the Introduction argues that the
PDZ domain displays allosteric behaviour, while its architecture is unclassified.

Fig. 2.1A shows the tertiary structure of PSD95P9%3 where some positions are highlighted. The
B1— B2 loop is where the carboxylate terminal (t-COOH) of the peptide ligand binds, creating
a direct contact between the peptide and the protein. The active site is located in the pocket
formed between the a2 helix and the 2 sheet, where the peptide ligand binds. Allosteric
effects are known to emerge from the 82 — 83 loop [201] and a1 — 84 loop [103] controlling
the function of the binding site, more specifically which class of ligands can bind there. Upon
mutation of the unligated wild-type at a position near the 52 — 3 loop, G330, the protein
results to be able to bind one additional class of peptide ligands. The surprising result from the
Ranganathan lab is that this mutation elicits a response at the 1 — 2 loop in the absence of
the peptide ligand, showing a precise long-range effect of the allosteric behaviour modulated
by the 2 — 33 loop.

In this case, the allosteric response can be computed as the displacement between the wild-
type structure and the mutated one, both in the absence of ligands. The normalised magnitude
of the allosteric response ||dR||?/ Y ; [|dR,(i)||> shows the presence of non-monotonic be-
haviour when looked in the plan orthogonal to the axis connecting the allosteric and active site
chosen to be parallel to the y axis — see Fig. 2.1A-B. This result shows that amplification from
the allosteric to the active site in the magnitude of the allosteric response occurs in PSD95P473
upon the introduction of a mutation in the area nearby the allosteric site. Furthermore, this
suggests that a mechanism like the one found in geometric mechanical networks, Fig. 1.6,
could be at work in this PDZ domain. Information on the coordination in the protein would

strengthen this claim.
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Figure 2.1 - (A) The tertiary structure of PSD95P9*3 — a PDZ domain from the rat brain — is shown as a
cartoon and coloured according to the magnitude of the allosteric response [|dR| 2/y i 11dR4 (1) 12 in
log scale. (B) A projection of the PDZ domain in the (z, y) plane, the same of figure A, is shown. The
points represent the residues and are distinguished only by the colour coding for ||dR,| 12/ Y i ldR4 ()] 12,
in log scale. A line connecting the allosteric and active sites is shown in black, which is parallel to the y
axis in the chosen projection. (C) The average magnitude of the displacement in the plane orthogonal
to the y axis is shown as function of the average value of y, where the average is done over values
in each of the chosen bins. This measure suggests that there is a non monotonic behaviour of the
magnitude of the response from the allosteric to the active site, as found in geometric mechanical
networks, see Fig. 1.6. (D) The magnitude of the allosteric response in the trumpet design Fig. 1.6 is
reported for comparison.

2.4 Testing optimal cooperativity in 34 allosteric proteins

The optimisation of the cooperative fitness function Eq. 3.1 lead to architectures well known
in protein mechanics, like the ones implementing hinge or shear motions. These architectures
provide the allosteric functionality via an extended normal mode with low energy whose
stiffness is not random, but has a precise scaling with the size of the system, let it be either the
number of nodes in the network or the number of residues in the protein, which is reported in
Eq. 1.24. This scaling ensures that the system is working at the point where cooperative energy
is maximal, see Fig. 1.19 and Fig. 1.22. ENMs give a simple framework where to compute
normal modes in proteins and investigate these findings.

To this scope, allosteric proteins for which the structure both in the inactive and active config-
uration is known need to be identified. A database of 34 allosteric proteins is constructed and
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reported in Tab. 2.1 with the respective PDB identifiers taken from [44, 46] complementing the
datasets in [56,58]. The set is diverse in functionality and includes enzymes (13), G-proteins
(10), kinases (3), response regulators (3), DNA-binding proteins (4), and the human serum
albumin. Moreover, 12 protein complexes are also present.

Protein type Inactive (PDB) Active (PDB) Common residues Chains | Overlap Participation ratio
1. arf6 1E0S 2J5X 160 A 0.27 0.16
2. cdc42 1ANO 1NF3 183 AB 0.33 0.09
3. rabll 101V 10IW 162 A 0.32 0.07
4. racl 1HH4 1MH1 175 A 0.27 0.07
5. ras 4Q21 6Q21 164 A 0.44 0.08
6. rheb 1XTQ 1XTS 165 A 0.35 0.1
7. rhoA 1FTN 1A2B 173 A 0.24 0.08
8. sec4 1G16 1G17 152 A 0.23 0.08
9. IGF-1R 1P40 1K3A 283 A 0.23 0.03
10. met repressor 1CMB 1CMA 204 AB 0.24 0.08
11. tet repressor 2TRT 1QPI 190 A 0.47 0.32
12. glcN-6-P deaminase 1CD5 1HOT 262 A 0.45 0.26
13. EF-Tu 1TUI 1EFT 393 A 0.61 0.30
14. Giq 1TAG 1TND 310 A 0.36 0.07
15. ERK2 1ERK 2ERK 347 A 0.19 0.06
16. IRK 1IRK 1IR3 296 A 0.31 0.05
17. lac repressor 1TLF 1EFA 536 AB 0.71 0.48
18. PurR 1DBQ 1WET 271 A 0.71 0.34
19. anthranilate synthase 1178 117Q 1402 ABCD 0.61 0.45
20. chorismate mutase 2CSM 1CSM 241 A 0.54 0.25
21. FBPase-1 1EY] 1EYI 323 A 0.46 0.04
22. phosphofructokinase 6PFK 4PFK 315 A 0.32 0.05
23. PTB1B 1T48 1PTY 287 A 0.48 0.02
24. ATCase* 6AT1 8AT1 2732 ABCDEFGHIJKL 0.64 0.55
25. hemoglobin 4HHB 1HHO 570 ACBD 0.66 0.52
26. NAD-malic enzyme 1QR6 1PJ2 2144 ABCD 0.72 0.57
27. phosphoglycerate DH 1PSD 1YBA 1580 ABCD 0.74 0.53
28. human serum albinum* 1E78 2BXB 574 A 0.36 0.09
29. fix] 1DBW 1D5W 238 AB 0.69 0.65
30. DAHP synthase 1KFL 1IN8F 1340 ABCD 0.64 0.55
31. SpollAA 1H4Y 1H4X 106 A 0.40 0.22
32. CheYy 3CHY 1FQW 124 A 0.34 0.18
33. glycogen phosphorylase 1GPB 7GPB 1626 AB 0.53 0.24
34. ATCase 1RAC 1D09 2774 ABCDEFGHIJKL 0.65 0.55

Table 2.1 — Table with the X-ray structures (PDB identifier) used in the analysis. The number of the
common residues and of the considered chains are also reported, along with the participation ratio
of the allosteric response — defined as in Eq. 2.13 — and the maximal overlap found between the
allosteric response and the normal modes — defined as in Eq. 2.14. The PDB identifiers are taken
from [44] and [46] (asterisk).

The analysis can be performed considering residues instead of atoms without loss of generality.
A sequence alignment is performed among the two structures so that only the residues in
common are kept, whose number is denoted as N and reported in Tab. 2.1. Moreover, to
avoid uninteresting fluctuations, the first and last two residues are excluded from the analysis.
The resulting structures are then aligned by conformation superposition — as discussed
before — and the allosteric response can be readily obtained for all entries in Tab. 2.1.

The allosteric response is shown in Fig. 2.2A for the elongation factor Tu (1TUI-1EFT), where
a hinge-like motion seems to occurr upon binding. Indeed, the protein is colour-coded
according to the shear pseudo-energy E;;, — in log scale — showing that the external regions
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are undergoing a rigid counter-rotating motion, while the deformation is centered in the
middle, like what would be expected in a hinge design, see Fig. 1.14 for comparison with the
result in two-dimensional mechanical networks.
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Figure 2.2 — (A) Allosteric response (black arrows) of elongation factor Tu corresponding to the dis-
placement between the inactive state (where GDP is bound at the allosteric site) and active state (where
GTP is bound at the allosteric site and the aminoacyl-tRNA can bind at the active site). The phosphate
binding loop (allosteric site) is highlighted in green, while the active site is at the interface between
the GDP binding domain and the two other domains, one residue of which is highlighted in blue [202].
The shear is encoded in both the color and the thickness of the structure in a logarithmic scale, red
corresponds to large shear. The allosteric response is similar to that of a hinge. (B) Maximal overlap
q* as function of the participation ratio P. (C) The observable logI" quantifying how modes are both
extended and present large shear energy (see main text for definition) averaged over the proteins with
overlap larger than 45%, as function of the mode rank for (i) the allosteric response, (ii) the modes with
largest overlap and (iii) the first 75 modes (having subtracted the one with largest overlap) as indicated
in legend. The green circles correspond to the rank of the mode with largest overlap. The shaded region
highlights the range where these modes fall.

To study whether normal modes capture — at least partially — the allosteric behaviour,
Hessians H are computed with the ENM formalism starting from the inactive structure at
residue level. Results do not change if the computations are instead performed either with
the active configurations or at atom level. As dicussed in the Introduction, the cutoff radius
R, used to define neighbouring residues is chosen consistently to have no more than six zero
modes in the vibrational spectrum for each entry. To study the dependence of the results
on the choice of R, the Hessians are built for 9 values of R, equidistributed in the interval
R. € [8—12] A. Mean and standard deviation of the observed quantities are then defined from
the distribution of the observables defined from the different instances of R,.

2.4.1 Principle 1: an extended low-energy mode well describes the allosteric re-
sponse

Given a protein whose allosteric motion can be summarised as rigid blocks undergoing
collective motion, the success of ENM is then proven by how much of the allosteric response is
described by few normal modes, v;, by monitoring the maximal overlap between the allosteric
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response and normal modes. The overlap reads

g RVl o1
\/(dRa|dRa><Vi|Vi>

The measure of the maximal overlap g* = max; ¢; for the 34 allosteric proteins of Tab. 2.1 is
shown in Fig. 2.2B as function of the participation ratio of the allosteric response. The results
show that allostery indeed occurs mainly along one mode v* for most of the proteins in the
dataset — in half of the entries g* > 0.45. Moreover, the allosteric response is more likely to
be described by one mode if extended, i.e. if it involves a large number of residues, which
is consistent with the assumption that ENM is more likely to work well when the allosteric
behaviour is a collective motion of rigid blocks.

2.4.2 Principle 2: the allosteric response consists in extended regions of large
shear

The evolution of cooperative mechanical networks shows that the allosteric response is char-
acterised by extended regions of large shear deformation. Moreover, in [46], Leibler and
coworkers show that shear planes naturally appear when looking at the strain associated with
the allosteric response from X-ray structural data of some allosteric proteins. When looking
at the vibrational spectrum, some modes are expected to be extended — as plane-wave-like
modes — and others to bring a considerable amount of shear — as localised modes. Do
normal modes capture the special feature of the allosteric response of being extended and
associated to a large shear at the same time?

An observable combining information on both the participation ratio and the shear pseudo-
energy can be introduced to systematically assess the unicity of the allosteric response over
the normal modes to present both aspects. The following quantity can be defined from any
displacement field

logT = [ylog,(P) +log, o (I1EspID] , (2.15)

where [|Egyll is the total magnitude of the shear energy, i.e. ||Egpll = (ZiESh(i)z)”Z. logT' is
large if the displacement is extended and if the shear energy is large. The factor y characterizes
the trade-off between these two features. Here we choose y = 3.5 reflecting the fact that for
the considered vibrational modes, we find that P varies about 3.5 times less in relative terms
than [|Egyl| as shown in Fig. 2.3. Thus for y = 3.5, the spatial extension and the amount of
shear equally affect logI'. Note that the value of y found for the vibrational modes is equally
good for compensating the values of the allosteric response. Fig. 2.2C shows logI" averaged
over the 17 proteins with g* > 45% for the allosteric response (yellow line), the mode with
maximum overlap (blue line) and the first 75 vibrational modes (having subtracted the one
with largest overlap) as function of the mode rank. We find that I’ is typically 160 times larger
for the allosteric response than for vibrational modes, a very significant difference underlying
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Figure 2.3 — The logarithm of the participation ratio P and of the norm of the shear pseudo-energy
[|Esp|| is shown as function of the rank. The measured relative variation from the two curves is y* = 3.46
and y = 3.5 is chosen in Eq.2.15.

the specific geometry of the allosteric response. Generally, the modes identified to have a
large overlap with the allosteric response result to be more localised than the response itself,
hence the difference between the mean curves of the maximal modes v* and the allosteric
response — respectively green and yellow dashed lines in Fig. 2.2C.

2.4.3 Principle 3: scaling of the stiffness of the allosteric response

The precise scaling of the stiffness of the allosteric response poises the mechanical networks
to optimally display cooperativity. Its scaling, k; ~ 1/ N, can be directly tested with the dataset
of Tab. 2.1. Indeed, given the Hessian matrix H, the stiffness k, of the allosteric response dR,
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Figure 2.4 - (A) Logarithm of the square of the norm of the allosteric response, [|dR,||?, is shown as
function of the logarithm of the number of residues, N. The solid line corresponds to IIdRzaII ~N. [B)
The logarithm of the stiffness k, as function of the logarithm of the number of residues N. The solid
line represents the theoretical prediction k, ~ 1/N. In both plots r indicates the Pearson coefficient.
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can be estimated as the curvature of the elastic energy in that direction

_ (dRq4|H|dRg)

k, = (2.16)
“ |ldR |2

In the analytical derivation of k; ~ 1/N, the scaling of the squared norm of the allosteric
response as function of the number of residues was assumed to be linear, ||dR| |2 ~ N. Indeed,
a larger protein is more likely to display an allosteric response involving more residues than a
smaller one. The relationship can be directly tested with the dataset of Tab. 2.1: the 34 resulting
values of ||dR,||? are shown as function of N in Fig. 2.4A along with the line ||dR,||> = N. There
is a strong correlation between the logarithms of ||dR,||? and N, as proven by the value of the
Pearson coefficient r = 0.76 with p-value p = 1.64 x 10", Pearson coefficients are computed on
the logarithmic values via the Matlab R2017b function corr and their value is consistent with
the Spearman coefficients, for which a linear relationship between y and x is not supposed.

2.4.4 Summarising outcomes of the empirical testing

Fig. 2.2B provides systematic evidence that the allosteric response occurs along one soft elastic
mode, while in Fig. 2.2C a novel observable I is introduced to establish that the allosteric
response generally displays extended regions of high shear strain clearly recognisable from
the normal modes. These observations support that for many proteins, elasticity is a useful
starting point to describe allostery.

Furthermore, in Chapter 1 we have revisited the two classical thermodynamic models of
allostery from this perspective, and provided a detailed study of how the energy profile along
the soft mode evolves with binding. The results of Chapter 1 show that proper function is
achieved if proteins evolve an elastic mode whose softness has to rapidly decrease with size
and this prediction is supported by the anti-correlation observed between stiffness of the
allosteric response and number of residues in Fig. 2.4B.

2.5 Conclusions

The numerical and theoretical study of allostery in mechanical networks provides principles
for the transmission of the mechanical signal from the allosteric to the active site. The avail-
ability of several resolved structures of allosteric proteins in the inactive and active state allows
a systematic study of these findings.

* Geometric fitness: a novel architecture for propagating allostery. The PDZ domain
shown in the Introduction (Fig. 5C) not to conform to the classification of hinge and
shear motions is found to display a surprising amplification of the response upon a
mutation at its allosteric site. This amplification ressembles the trumpet architecture
produced by in-silico evolution of geometric allosteric interactions optimising for strain
between the allosteric and active site, as discussed in Chapter 1 (Sec. 1.3). Hence, the
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proposed edge mode mechanism could explain mechanically how such amplification is
possible in the first place in the PDZ domain.

* Cooperative fitness: cooperative binding is optimal. One of the main result of Chapter
1 predicts a characteristic scaling of the stiffness of the allosteric response as function of
the number of residues (Eq. 1.24) and can be directly tested from the X-ray sructures by
computing the Hessian matrix with ENM. The result obtained in Fig. 2.4B is encouraging
given the fair anti-correlation found between the measured stiffness and the number of
residues, yet not definitive. Indeed, ENMs constitute a more than crude approximation
for the energetics of protein interactions.

The results of these empirical analysis are encouraging, yet not conclusive.

* Other features supporting amplification?. The edge mode mechanism granting for
amplification in the trumpet design is based on the presence of isostatic regions that are
marginally connected, as shown by the coordination map in Fig. 1.6. Is it the case also
in the PDZ domain? Moreover, are there other proteins, also in the database introduced
in this chapter, that display such an amplification?

» Testing optimal cooperativity on one protein. The systematic study on a large dataset
is crucial to test the predictions of the in-silico model, however it is based on a very
simplifying and crude framework, namely ENM. Instead of looking at several protein, a
precise study on orne allosteric protein would clarify the validity of the findings. Molecu-
lar dynamics [111,203, 204] would allow to accurately compute the vibrational modes
and the stiffness of the allosteric response, while also monitoring how the energy profile
along the allosteric response evolves with binding. Is the behaviour similar to the one of
Fig. 1.20 or Fig. 1.22?

Another way is through mutation scans [205], where cooperative fitness is measured
via binding assays [206, 207], combined with single molecule experiments [208,209] or
ultrafast laser pulses [110,210,211] able to estimate the stiffness of the allosteric response
to test the relationship between cooperative energy and stiffness. Is there an optimum?
Or is there a small plateau? Indeed, in the mechanics of the population shift scenario,
the cooperative binding energy is more robust to mutations that increase the stiffness of
the soft mode, with respect to the induced fit scenario, compare Fig. 1.22 (population
shift) with Fig. 1.18C (induced fit).
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the prediction of allosteric fitness

Fitness landscapes measure the mapping between fitness and sequence and are of utmost
relevance in biology since they allow to access which are the effects of mutations on evolu-
tionary paths. Thus, a model capable of sampling amino acid sequences in a way that they
reproduce the fitness of the true landscape is of clear interest.

Direct Coupling Analysis (DCA) [81] has been proven successful in inferring evolutionary
couplings that reflects contacts in the three-dimensional structure of proteins by using the
information encoded by co-evolution in the Multiple Sequence Alignment (MSA) of protein
families, see Fig. 10 in the Introduction. The success in contact prediction means that the
DCA-inferred co-evolutionary couplings can be used to predict three-dimensional protein
structures [94-96,212] and to assemble protein complexes [213-215]. Moreover, DCA is proven
successful also in the prediction of experimental results of deep mutational scans [66,144,146].
DCA is also found to generate sequences with the good value of fitness in the case of in-
silico models of protein folding [138] — as shown in Fig. 14 in the Introduction. Note that a
model depending only on conservation would fail in achieving the correct fold, underlying
the relevance of pairwise interactions. The recent work in Ref. [148] shows that DCA is a good
generative model for chorismate mutase enzymes reproducing the overall statistics of the MSA
and finding that 45% of the designed sequences are comparabe with natural-like sequences.

Another successful inference method is Statistical Coupling Analysis (SCA) [99]. This method
is able to identify groups of functionally related residues from the use of the covariance matrix
weighted by conservation. The combination of conservation and correlations has been used
to build in vitro synthetic sequences of a small protein domain — of around 40 amino acids —
that fold as native ones, in contrast with the information contained solely in conservation that
is not sufficient to achieve folding [105].

Hence, the success of DCA and SCA in capturing the evolutionary constraint in the MSA
supports their use as models of the fitness landscape since it is this landscape itself that
shaped the evolutionary pathways of proteins in the MSA of the family used in the DCA
inference. However, DCA seems to fail in predicting long-range epistatic couplings [98, 134]
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that are experimentally observed in allosteric proteins where distant sites are functionally
coupled [132, 134, 135]. Why does DCA seem to fail in predicting functional interactions?
Moreover, its generative power has been thoroghly benchmarked only via an in-silico model
built to mimick folding, thus with sequences displaying local constraints. Can DCA be a good
generative model also for sequences that display more global, functional constraints?

In this chapter, these questions are addressed by using the in-silico sequences evolved to
display cooperative allosteric binding introduced in Chapter 1. In particular, the shear design
architecture of Fig. 1.13 is used.

In this context, epistasis, which reflects the coupling between different mutations, can be
mechanically characterised, as achieved in Sec. 3.1. The characterisation shows that strong
long-range epistatic interactions underlie the allosteric function proper of the in-silico se-
quences. Sec. 3.2 investigates the performance of DCA in (1) capturing single mutation cost,
(2) being generative and (3) predicting the presence of long-range epistasis.

DCA well predicts single mutation costs, whose pattern of high cost mutation is located in
the links associated to the functioning of the shear mechanism. However, the sequences
generated according to the probability distribution inferred by DCA do not function as native
ones, see Fig. 3.7. Hence, DCA is a poor generative model. Moreover, the DCA prediction of
epistasis is found to be accurate for pairs of links close in the network, but fails dramatically
for distant pairs, like the one involving the links in the functional regions of the allosteric and
active site.

Sec. 3.3 proposes an explanation to this failure by introducing a toy model of allosteric func-
tion where several parts have to work in concert in order for the overall system to function,
highlighting the hierarchical structure that underlies protein function, see Fig. 1 in the Intro-
duction.

Sec. 3.4 focuses on the performance of the other co-evolutionary inference method discussed
in the Introduction, Statistical Coupling Analysis (SCA) [100,101], in predicting such long-range
epistasis. The observed absence of strong long-range correlations in the in-silico sequences,
on which SCA is based, does not result in improved predictions.

In Sec. 3.5, concluding remarks suggest the possibility of using other models as fully-connected
neural networks to improve the performance of DCA in capturing the more complex allosteric
task.

The results presented in this chapter are published in [155, 158].

3.1 Mutation costs and epistasis in the in-silico model

The in-silico evolution model provides architectures that are designed to display long-range
communication. In this chapter, the focus is on two-dimensional networks of size L = 12
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evolved to optimise the cooperative fitness , which reads
& = E10+ Eop1 — E11, (3.1

and depends on the binding energy defined from the energy cost of imposing a displacement
at the allosteric (E1g), active site (Ep;) and both simultaneously (E;;), shown in colour in
Fig. 3.1A. To better understand which functional constraints are involved in the cooperative
fitness it is useful to consider the approximated form supposing a weak coupling between the
two sites Eq. 1.7

F ~ (FOldRr10—Acy (3.2)

This expression is an estimate of the change of mechanical work required for binding the
substrate at the active site caused by binding the ligand at the allosteric site. Recall that
F°! is the force exerted by the substrate when it binds at the active site and dR!~4¢ is the
displacement induced at the active site when the ligand binds at the allosteric site.

B

2>

Allosteric

Figure 3.1 - (A) A solution of the in-silico evolution model optimising for cooperativity between the
allosteric site (purple) and the active site (blue) is shown. The response to binding at the allosteric site
is indicated via black arrows and it corresponds to a shear motion. (B) Each network can be mapped to
a sequence of 0 and 1 coding for the occupancy of the springs. The in-silico scheme allows to generate
alarge number M of solutions, each corresponding to a slightly different shear architecture.

The boundary conditions of the elastic networks are set to be periodic so that the resulting
architectures correspond to shear designs. The shear architecture is discussed in Chapter 1
(Fig. 1.13) where the emergence of a weakly-connected path between the allosteric and active
site surrounded by rigid blocks is crucial to function. Indeed, this region corresponds to large
shear deformation, which is also organised in a path connecting the two sites.

How to build a MSA comprising of sequences of different realisations of the shear design, as
discussed for proteins in the Introduction? The resulting architectures of the thousands of
evolved networks can be mapped into binary sequences encoding the presence or the absence

I The details are reported in the Appendix C.1.
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of a spring at a given link, as illustrated in Fig. 3.1B. It is important to remark that, in this
analogy, the role of an amino-acid in a protein MSA is played by a link, which can be occupied
(o; =1) ornot (o; =0).

The solutions, used in the following for the mechanical characterisation of epistasis, are
obtained by sampling every 1000 time steps after an equilibration time of 10° steps at a high
inverse temperature, § = 104, resulting in high fitness, typically of order & ~ 0.2, see Fig. 1.11.

3.1.1 Characterisation of single mutation costs

Single mutations at a given link in the elastic network consist in changing its occupancy by
adding or removing a spring. The resulting effect on fitness can be in principle either beneficial
or detrimental. However, if single mutations are performed on evolved networks, their effect
is expected to be positive given the high fitness of the configurations. The knowledge of single
mutation is then of utmost importance to identify which positions along the sequence affect
function the most.

The cost of a single mutation at link i is defined as
ANF; =F - F;, (3.3)

where & is the fitness of the original network and %; the one of the network after changing
the occupancy of link i, as discussed in the Introduction.

The result of single mutations on the shear architecture is discussed in Chapter 1 and reported
here in Fig. 3.2, along with the measure of conservation. The path where the shear deformation

X %X % 0

X‘X -1

Figure 3.2 - (A) Map representing the average shear deformation, indeed happening along a linear
path connecting the allosteric (violet) and active site (blue). (B) Map of the fitness cost of performing a
single mutation in the network normalised as A%,/ % . (C) Map of conservation of spring occupancy.

is the strongest (Fig. 3.2A) turns out to be the one where the fitness cost of performing a single
mutation of the spring occupancy is the largest, as shown in Fig. 3.2B. This region is also the
most conserved (Fig. 3.2C), where conservation is computed according to Eq. 1.12. These
results highlight that the functional region in the shear design identified from conservation
and single mutations does not solely comprise of the neighbourhood of the binding sites, but
extends to the whole path connecting them, in the view of its role in coupling the two.
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3.1.2 Mechanical characterisation of epistasis

Epistasis measures the non-additivity of mutations and higher order mutation costs are needed
to access it. In this analysis, the focus is on second order epistasis. Hence, only the fitness cost
of a double mutation is needed. The cost of a simultaneous mutation at links i and j reads

Agij=9—gij, (3.4)
and epistasis directly follows

AAgij EAgij—Agi—Agj. (3.5)

The characterisation of how mutations affect function — a very hard task for proteins as
reviewed in the Introduction — becomes accessible with the knowledge of the fitness function.
In the approximation of weak couplings, where the fitness follows Eq. 3.2, epistasis can be
explicitely written as function of mechanical observables: the force exerted by the substrate
when it binds at the active site (F*!) and the displacement induced at the active site when
the ligand binds at the allosteric site (dR!°~4¢). Indeed, mutations in the networks have
a significant effect when links responsible for the propagation of the signal dR'°~4¢ are
involved.

It is found that the effect of single mutations is dominated by the changes of displacement at
the active site, see Appendix C.4 for more details. Using this observation and starting from the
approximated form of fitness in Eq. 3.2, epistasis is approximated as

AAF;j = —(FY|(SRIY 4~ 6R}OA -SRI, 3.6)

where 6R;%74¢ = dR}%7A¢ — dR'O™4¢ with dR}°74¢ the response at the active site when a
ligand is bound at the allosteric site and link i has been mutated. dR}O_’AC and dR}?_’AC are
defined accordingly.

To monitor the effect of single mutations at different links i and j to the response at the active
site it is useful to define the angle 6 as the angle between 5R}0_’AC and 5R}.0_’AC. Indeed, if
cosf =1, then only one mutation, the first, has an effect on the change of the response, while
if cos8 = —1 the second mutation may counterbalance the negative effect on fitness of the
first one.

In situations where the cost of a double mutation is dominated by the strongest point mutation,
AZ;; =~ max(AF;, AF ), epistasis can be simply rewritten as

AAFj = —min(AF;, AF)). 3.7)

The numerical exploration of epistasis clarifies the validity of these approximations in the
sequences evolved by the in-silico model. The approximation resulting in Eq. 3.7 is found to
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Figure 3.3 — (A) Phase diagram of epistasis in allosteric materials generated via the in-silico model. All
quantities are averages over 50 configurations obtained in a single run. The shaded area is taken with
arbitrary width and a -1 slope for clarity. Informative lines are shown. AA;; = 0 (dotted style) corre-
sponds to no epistasis and divides synergistic from antagonistic/sign epistasis. AZ;; = max(AF;, AF)
(dashed style) separates sign and antagonistic epistasis and min(A%;, A%;) = 0.1 (dash-dotted style) is
the threshold set to distinguish deleterious mutations, corresponding to the saturation region. Points
in grey correspond to epistasis < 5 x 10~* and are excluded from the analysis. (B) Histograms of cos()
for synergistic, sign and saturation epistasis.

capture the trend of measured epistasis for large values, as shown in Fig. 3.3A, with the dashed
line indicating the assumption A%;; = max(A%;, AZ ;). No epistasis is found to correspond
to purely additive mutations, as shown by the dotted line AA%;; = 0 in Fig. 3.3A. Moreover,
epistasis between pairs of links can be classified in these different regimes

¢ Saturation. Mutations with A% > 0.1 and that correspond to a fitness loss of 50% are
defined as deleterious. They represent ~ 0.1% of all pairs of mutations, in agreement
with the sparsity observed in experimental measures as reported in [136]. Pairs of links
with such deleterious mutations display the strongest epistasis in absolute value, and
follow closely Eq. 3.7, as it appears from Fig. 3.3A. What do these epistatic interactions
correspond to mechanically? The strength of epistasis can be reconducted to mutations
that destroy signal propagation by themselves with dem_’AC = dR}.O_'AC =0, insucha
way that the double mutation has the effect of a single one with de@?_’AC =~ 0. Hence,
this kind of epistasis is classified as saturation. The measure of cos(8) = 1 confirms this
view as shown in Fig. 3.3B and naturally follows from 6R%0_’AC ~ ORI0=AC » _gRI0—Ac,

This saturation regime can be seen as very high diminishing-returns epistasis? for which

2The use of the term diminishing-returns is borrowed from economics where adding an additional factor of
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evidence from data and support from theoretical models are discussed in [216,217].

* Antagonistic. Going up along the diagonal of Eq. 3.7 in Fig. 3.3A, the saturation effect
becomes milder and changes to antagonistic epistasis [129,218]. After a first mutation,
making a second one results only in a weak additional change. Note that the double
mutant is fitter than what would be expected from the additive case.

* Sign. In the intermediate range of mutation costs with min(A%;,A%;) < 0.1, the fit-
ness cost of a deleterious mutation is diminished by the second mutation, i.e. AZ;; <
max(AF;, AF;) leading to more compensatory epistatic interactions. Thus some muta-
tions can increase the fitness and become beneficial in presence of another mutation,
resembling the sign epistasis empirically detected [129,219]. Mechanically, this com-
pensatory effect orginates from situations where the two mutations deform the signal
in opposite directions, so that the second one can partially re-establish fitness. Indeed,
Fig. 3.3B shows that for sign epistasis cos(f) has a distribution peaked towards negative
values.

* Synergistic. Positive-sign values of AAZ;; occur if two mutations perturb the elastic
signal in the same direction, causing more damage than expected if they were purely
additive and indicate synergistic epistasis. Indeed, Fig. 3.3B, shows that the distribution
of cos(0) tends to be positive.

3.2 Overview of the performance of Direct Coupling Analysis

The role of mutations in the spring network has been discussed in details in the previous
section, showing the presence of rich epistatic interactions. Are these mutation patterns
captured by inference methods? The in-silico evolution scheme can be used to produce a large
number of sequences needed to build the MSA necessary for any co-evolutionary analysis.

Spring configurations of the network can be mapped to binary sequences as summarised in
Fig. 3.1B, where the binary variables encode for the occupancy of the corresponding link. To
properly construct the MSA, M = 135000 configurations are evolved, each sampled from a
different initial condition. This to avoid any bias that may originate from a high similarity
in the sequences of the same run, differently than what done for the other analysis in this
thesis. Correlations due to a common evolutionary history, known as phylogenetic effects,
are thus avoided and no further ad hoc corrections in the inference procedure are needed
to counterbalance these effects [69]. The similarity between sequences in the MSA can
be measured by the average pairwise Hamming distance, which turns out to be ~ 20% of
the length N,. This similarity is consistent with what found in protein sequences, with the
difference that the amino acid are the links between the nodes of the network and can then
take two values, either zero or one according to their occupancy.

production results in smaller increases in output.
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The inference method used for a statistical analysis of the MSA is DCA, which is based on
fitting the measured single-site (o;) = 1/M Y., 07" and pairwise (00 ;) = I/MZmU;"a;ﬁ
frequencies of links by the probability distribution P () with maximal entropy, as discussed in

the Introduction. This leads to

1
P(o) = Z exp{(-&(a))} (3.8)
&l@)=-) Jijoioj—) hioi, 3.9)
i<j i

where & is the inferred energy and is an estimate of 8%, with f the inverse evolution tempera-
ture. Since a measure of the proportionality between & and % is a sufficient requirement for
the goodness of the inference procedure, the factor § is omitted when presenting the results.

As discussed in the Introduction, the fields h; and couplings J;; are inferred to match (o ;)
and (o0 ). The scheme chosen to perform the inference is a combination of ACE (Adaptive
Cluster Expansion) [89,90], an approximate technique developed from statistical physics ideas,
combined with maximum likelihood, an exact technique, as reported in [93]. The resulting
algorithm gives very accurate results and its performance is compared in the following with
the more approximate mfDCA, as also discussed more in detail in Appendix C.3. Comparisons
with other approximations are shown in a benchmark of DCA on protein lattices [138].
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Figure 3.4 — Statistics of the model inferred by combining ACE and maximum likelihood. (A) single-link
frequency and (B) pairwise-links connected correlations are very accurately reproduced, as they should
by construction of the model. The relative errors, defined as in [90], are respectively €, = 2.45 x 107!
and ec = 1.30 x 1071). The third order connected correlations (C) are not constrained in the inference
and are not well captured (Pearson correlation coefficient p = 0.37). This suggests that a pairwise
probabilistic model of sequences is an approximation which becomes poor for estimating higher order
moments.

The convergence of maximum entropy algorithms can be tested by looking at whether the
single-site frequency and pairwise connected correrlations of links are reproduced as required
by the construction of the model. Fig. 3.4A-B show the large correlation between true and
inferred quantities in the case of ACE with maximum likelihood. Fig. 3.4C shows that the even
this accurate DCA inference scheme is not able to capture third order correlations that are
not constrained in the procedure. This result will be commented in the following when the
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generative power of the inference model is investigated. The details of the techniques are
discussed in Appendix C.3.

All the tools are ready fo the benchmark of DCA in allosteric materials. The benchmark will
focus on the ability of the inference method to (1) reproduce accurately the cost of single
mutations, (2) generate new sequences with high fitness and (3) predict epistasis.

3.2.1 Prediction of mutation costs

A B
5.5 5.5
5 5
4.5 4.5
4 4

Figure 3.5 - Coordination map of original sequences (A) and generated ones (B) averaged over 50
solutions. They both exhibit a softer central path with coordination z < 5 joining active and allosteric
sites, indicated respectively by blue and purple crosses, along which the shear-like sliding takes place.
This path is embedded in a more connected, rigid region where the coordination is z > 5.

The cost of single mutations in the elastic networks displaying a shear design is reported in
Fig. 1.14F and it is shown in Fig. 3.6A by colour-coding the links. The strongest mutation cost
is located in the weakly-connected region which is indeed functionally important for the shear
design, as elaborated in Sec. 1.4. The coordination map of the network that monitors the
number of springs for each node in the network is shown in Fig. 3.5A, where the soft region is
clearly visible. Fig. 3.5B shows that sequences generated with the inferred model Eq. 3.8 also
reproduce the continous weakly-connected path between the allosteric and active site. Is the
inference model also able to reproduce single mutation costs?

The inferred energy & allows to compute a prediction for the mutation cost at alink i A&; =
&;—&. The result with the parameters inferred via DCA is shown in the map of Fig. 3.6B. A more
quantitative comparison between the true and predicted mutation cost with a scatter plot
finds a very high correlation between the two, see Fig. 3.6C. Hence, DCA is able to accurately
predict single point mutation costs, improving the prediction via conservation alone that
neglects the contribution of pairwise couplings. The poor performance of conservation is
shown in the inset of Fig. 3.6C.

3.2.2 Generative power

The work discussed in [138] investigates the generative power of DCA in inferring the fitness
of protein lattices that mimic folding. How does DCA performs in the case of the cooperative
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Figure 3.6 - Maps of true A% (A) and DCA-inferred A& (B) single mutation costs, averaged over 1.5x 103
configurations randomly chosen from the MSA. Their patterns are very similar with high costs near the
allosteric and active sites and in the shear path connecting them. (C) Scatter plot showing the strong
correlation between A% and A& for all links, averaged over 1.5 x 103 configurations. The estimation of
mutation costs based on an independent-site model —i.e. on conservation — correlates poorly with the
true cost (inset), proving the need for incorporating correlations for proper prediction of mutation costs.
The correlation between the two mutation costs is quantified via the Pearson correlation coefficient, p
measured with the Matlab function corrcoeff.

architectures evolved to have an allosteric coupling? As discussed in the Introduction, egs. 3.8
and 3.9 provide the model to generate sequences obeying the Boltzmann distribution which
has as energy the inferred fitness &. Jacquin and collaborators in [138] represented the fitness
of sequences as function of their distance to the most representative sequence of the MSA, the
consensus, where springs occupy the positions with largest mean occupancy, as overviewed
in Fig. 14 in the Introduction. This representation allows to check at the same time for the
prediction of both the distribution of fitness values and the variability of the MSA, quantified
by the distance to consensus. Indeed, not only the prediction of fitness value is important for
a good generative model, but also the ability to reproduce the variability of natural sequences.
Fig. 3.7 shows the fitness of the original data, random data and sequences generated via ACE
with maximum likelihood and mfDCA as function of the distance to consensus. The analysis
shows that

* The sequences generated with the model inferred with ACE well reproduce the variability
of the MSA, which is not the case for mfDCA whose variability is more close to the one
of random sequences.
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Figure 3.7 — The fitness as a function of distance to consensus of configurations generated by the in-
ferred model is shown, following the representation of [138]. The sampling is done from the Boltzmann-
Gibbs probability distribution P(o) of Eq. 3.8, whose parameters have been inferred via ACE with an
additional maximum likelihood (red cloud) or mfDCA (green cloud). Original high fitness configura-
tions (black cloud) and random ones (blue) are also shown as comparison. Each cloud consists of 10%
sequences and the drawn ellipse gives one standard deviation around the mean in both horizontal
and vertical directions. Distances to consensus of ACE + maximum likelihood, mfDCA and random
sequences are shifted by respectively +0.7, —0.7 and —1.3 for better visibility.

* The distribution of the fitness of the sequences generated with ACE displays more
variability than the random case, with some extreme values overlapping with the fitness
of the data. This never occurs either for random data nor even for sequences generated
with the more approximate mfDCA.

* However, the mean fitness is significantly lower than the one of the data, although larger
than the mean fitness of random data, which is zero, and the one of mfDCA sequences
that is slighly above zero.

These results suggest that the model inferred via DCA is not a good generative model when
allostery is at play, contrasting its good performance in the case of protein lattices that are
built to mimic protein folding [138]. Thus, a quadratic model accounting for conservation and
correlations in the MSA, although it can capture some features of the shear design — as single
mutation costs and the inhomogeneous distribution of coordination, as shown in Fig. 3.5 —is
not enough for reproducing the allosteric fitness. Indeed, solutions sampled from the inferred
energy landscape have the expected design but are not maximally fit. This suggests that
structural components, as the distribution of links, are captured, but additional information is
needed to reproduce a complex mechanical function as the cooperative fitness.

Moreover, higher order statistics as the third moment are not well reproduced, see Fig. 3.4, as
instead it happens for protein structure predictions where local folding constraint are crucial
as shown in [68]. This also suggests that the longer-range correlations induced by allostery
might not be well captured by a pairwise model. The argument could be verified by checking
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Chapter 3. Benchmark of inference methods for the prediction of allosteric fitness

whether in analysis like the one performed in [68] three-body correlations are captured even
for amino acids that are far away in the structure. A study on a MSA made of solely allosteric
proteins would also better study the performance of maximum entropy pairwise models in
predicting allosteric features.

3.2.3 Prediction of epistasis

Another way to check whether the failure of DCA in generating fit sequences is due to the
inability to capture allosteric interactions is through its performance in predicting epistasis.
Indeed, as discussed in [134], epistasis is presumably large for functionally related sites, which
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Figure 3.8 — (A) The running average of the absolute value of epistasis AAZ;; and of DCA prediction
AA&;;j is shown for 1.5 x 10° configurations as a function of the distance between link i and j. The
trends are well reproduced at short distances, while at long distance DCA underestimates epistasis.
Inset: Top 400 inferred couplings. The couplings are mostly short range, with only a few long-range
ones connecting the allosteric and the active site. (B) Assesment of the prediction of epistasis in single
configurations by the top 400 couplings where long-range (> 7) and short-range (< 7) pairs of links
are represented separately and ranked in terms of the epistasis magnitude |[AAZ;;|. The figure shows
which fraction of these pairs — averaged over 100 randomly chosen configurations — belongs to the
400 largest couplings, as a function of the number of pairs with maximal epistasis considered. The
random expectations for these mean predicted fractions are 0.0041 for short-range pairs and 0.0009 for
long-range ones, which are both significantly lower than the values reported here. This result is robust
also if the number of top couplings used in the prediction is increased, e.g. up to 1000.
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in this case are also distant.

Firstly, the existence of strong long-range epistatic interactions in the MSA needs to be proven.
Fig. 3.3A shows that pairs of links that both have a large single mutation cost systematically
display strong epistasis, while Fig. 3.6A shows that links with a large mutation cost can be
distant, as it happens for the neighbouring regions of allosteric and active site. These observa-
tions automatically imply that long-range and strong epistasis exists in cooperative allosteric
sequences.

Can DCA identify such long-range epistatic interaction? From the functional form of the
DCA-inferred energy, Eq. 3.9, the prediction for epistasis can be explicitely computed

AAE;j=-]ij2oi-12aj-1) (3.10)
[AAE; j| = 1Tijl, (3.11)

showing that in a model inferred via DCA epistatic interactions simply reduce to the inferred
co-evolutionary couplings.

The inset of Fig. 3.8A shows the top 400 couplings with highest magnitude as lines between
each couple of links i and j. The couplings involve mostly links that are close in the network
structure, with rare long-range couplings. This observation combined with Eq. 3.11 suggests
that the predicted epistasis is very likely to fail to capture long-range interactions. The failure
is evident when comparing the mean absolute epistasis [AA%; ;| and the mean absolutae
DCA prediction |AA&; | as function of the distance between the pairs of links. The agreement
between the predicted epistasis and the original one is accurate for short-distance links, while
it becomes poor for long-range ones, where the strength of epistasis is strongly understimated
by the predicted one, as shown in Fig. 3.8A.

This claim can be formalised by measuring the average fraction of pairs with the strongest val-
ues of epistasis that also fall in the list of the 400 pairs with largest couplings. A clear difference
appears when this average fraction is looked at separately for long-range pairs — defined to
have a range larger than 7 — and short-range ones, as shown in Fig. 3.8B. Long-range pairs
have a much smaller average fraction than short-range ones, supporting the claim that the
inferred model is not able to capture long-range epistasis. Even at short distance the predic-
tion of epistasis by | J; j| is not excellent, the average fraction being ~ 0.5. The performance is
significantly improved by considering epistasis averaged over several configurations, as done
in Refs. [134,136] and shown in Appendix C.2.

The poor performance of DCA for predicting long-range epistasis is in contrast with its success
in contact prediction, where accurate algorithms like ACE are able to predict almost all true
contacts [92,93]. How is it that DCA well captures local but not global constraints? As discussed
in the Introduction, this failure is also documented in the empirical study of [98] showing that
the majority of DCA-inferred long-range couplings are not related to functional dependencies.
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Figure 3.9 — Running average of the absolute value of connected correlations C;; = (0;0 ) —={0:){T )
and of epistasis AAZ;; for the same 1.5 x 10® configurations of Fig. 3.8A as a function of the distance
between link i and j.

However, it is crucial to note that the sequences evolved with the in-silico model do not even
display large long-range correlations — see Fig. 3.9 — that could still result from indirect
interactions between networks of short-range couplings?, see Fig. 9 in the Introduction. Thus,
it is a more surprising result than the absence of strong long-range inferred couplings. The
absence of long-range correlations suggests that other co-evolutionary approaches that use
the principal components of the covariance matrix of the MSA, like SCA, are not likely to
improve significantly the performance of DCA, as shown in Fig. 3.13. Finally, long-range
couplings, as long-range correlations, are plausibly smaller than the ones at short-range, thus
are more sensible to errors in the inference procedure. However, the discussion in the following
paragraph suggests that there is something more conceptual beneath the poor performance
of DCA in capturing long-range epistasis.

3.3 A possible answer to why DCA fails in the prediction of long-
range couplings

Allosteric systems are characterised by a long-range communication that involves two binding
sites or more and usually a specific architecture enabling such communication. As discussed in
the Introduction, the local structure of some allosteric proteins is found to exhibit soft regions
needed for the propagation of shear [46] implying the necessity of local constraints. On larger

3 Another reason could explain the observation of long-range correlations. Indeed, it is interesting to remark that
the long-range statistical couplings that are observed in the PDZ domain [99] may arise given that the covariance
matrix used in SCA is conservation weighted and functional residues in the PDZ domain are found to be strongly
conserved [119]
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length scales, these regions are properly placed in the structure to enable an extended soft
elastic mode [57, 58] that generates global constraints.

The shear design features a continous soft path in the structure connecting the allosteric and
active site, which position can fluctuate from protein to protein in the same family. This is
also the case for the sequences evolved with the in-silico model, where the position of the
shear path varies from case to case. In the following, it is argued that the failure of DCA in
predicting long-range functional dependencies originates from its inability to reproduce a
function that requires many subparts of the system to work in concert — requiring global
constraints — when each subpart can declinate in different types — implying local constraints.
The hierarchical structure of this function reminds of the hierarchical three-dimensional
organisation of proteins, shown in Fig. 1, where indeed several parts have to work in concert
to make a protein complex function.

AND AND

@
0O
Jor> Cll o
AND w AND

Subpart 1 F Subpart 2

Figure 3.10 — A system is arranged into 2 subparts which must work together to accomplish a given
function (AND gate). Each subpart is composed of 2 groups, i.e. can be of 2 types, (OR gate) and each
type must satisfy some constraints to properly function (AND gate between single units).

A Boolean model, shown in Fig. 3.10, can be introduced as a toy model for a hyerarchical
system displaying both global and local constraints to check the performance of DCA in
predicting long-range epistatic interactions. An abstract task is performed by two subparts
that must work in concert (AND gate) and that can be of two different types (OR gate), but
such that each must be functional (AND gate). The boolean variables of the model are set to
be eight each taking the value 0 or 1. The model is structured into four groups: two groups
constist of the possible types of subpart 1 (left in Fig. 3.10) and the other two the possible
types of subpart 2 (right). A configuration is functional if two variables of the same group are
simultaneously in state 1 for each subpart.

The functional configurations can be enumerated and result to be 49, whose fitness is fixed to
be &, all other configurations are given a zero fitness. The value of & is assumed to be large
so that the sequences in the MSA are only the 49 functional ones, with a uniform distribution.
It is straightforward to calculate epistasis in this model, as well as single-site and pairwise
frequencies from which couplings J;; and fields h; can be inferred. Hence, AAZ;; and AA&;
can be compared for units i and j either (1) in the same group — or in the same subpart —

103



Chapter 3. Benchmark of inference methods for the prediction of allosteric fitness

|IAAZ | Cij 1AAE] Jij

Same group 1 0.061 0.51 1.18
Same subpart 0.33 -0.08 0.14 -1.01
Different subpart 0.43 0.00 0.07 0.40

Table 3.1 - Table summarizing true and predicted epistasis magnitude, |]AAZ; ;| and [AA&; j|, connected
correlations C;; and inferred couplings J;; in the simple model for sites i and j in the same group, in
the same subpart and in different subparts. For i and j in different subparts (third row) the non trivial
magnitude of epistasis is not reflected in the values of correlations, and thus of the inferred couplings,
so that it is underestimated by the DCA model. In Appendix C.5, an analytical derivation shows that
[AAF;j| =21/49% for i and j in the same group: since the prefactor & is not predicted, the choice
21/49.% =1 is without loss of generality. The numbers in the first column follow this definition.

which are then locally constrained by the defined function of the model, e.g. i =1 and j =2, or
(2) in the two different subparts, thus globally constrained, e.g. i =1 and j =5.

By analytical manipulation discussed in detail in Appendix C.1 it can be shown that |AAZ |/ [AAF 5] = 2.3:
global and local constraints lead to short range and long-range epistasis that is relatively

similar in magnitude. Yet, long-range epistasis between subparts is significantly underes-

timated by DCA in contrast to short-range epistasis within subparts. This can be quanti-

fied by looking at the DCA prediction for the ratio of epistasis between two pairs of sites

divided by the true ratio of epistasis. The epistasis of pairs of sites belonging to the same

subpart is well predicted. As an example, the pair of sites (1,2) and the pair (1,3) display
[AAE 13|/ IAAE | x [AAF 2|1 |AAF 3] = 0.86. However, if the pair of sites belongs to different

subparts, DCA strongly underestimates epistasis with |[AA&15|/|AAE 2| x [AAF |/ |AAF 5] = 0.33,

i.e. by a factor 3.

Also in this context, long-range correlations are essentially absent being smaller than 1%,
despite long-range epistasis is present. Hence, a functional constraint on the cooperation
between subparts potentially far away in the structure, as allosteric and active site, implies
strong long-range epistasis, but does not imply strong long-range correlations, which then
implies small couplings. Numerical values for correlation, epistasis and inferred couplings
are reported in Tab. 3.1. The prediction of epistasis via DCA in the toy model has the same
features than in the MSA of the in-silico model, see Fig. 3.8 and Fig. 3.9. Since the toy model
is a minimal model for a system where global and local features work together to perform a
given task, the results suggest that DCA is not able to capture the properties of a system that
requires several, variable parts to work in concert.

3.3.1 Empirical data on a PDZ domain support the failure of DCA in capturing
epistasis

Recently epistasis was measured in an empirical setting by Salinas and Ranganathan [134] with
the aid of deep mutational scan techniques applied to the PDZ domain a2-helix composed
of only nine residues, which is part of an allosteric regulatory mechanism controlling ligand
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binding. Five homologs of PDZ domain were considered in the study. Epistasis is defined as
Xy _ y xy
MG = (awF + A gY) - A (3.12)

where ¢ is the binding free energy and x, y correspond to mutations happening at positions
i, j, respectively. DCA inference in [134] is performed on an alignment of 1656 eukaryotic PDZ
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Figure 3.11 — (A) Scatter plot of average epistasis magnitude |[AA¥| plotted versus DCA-inferred en-
ergetic couplings |AA&|, where the color code distinguishes short and long distance pairs of residues
on the PDZ a2-helix three-dimensional structure. The data are from [134]. p, the Pearson correlation
coefficient, indicates a better performance at short range. As a comparison, in (B) the scatter plot of
average epistasis magnitude |AAZ| as function DCA-inferred energetic couplings |AA&| is shown in
the in-silico evolved networks. Similarly to (A), the prediction at long distance is poorer than at short
distance.

domains, from where the DCA epistasis prediction IAAé’ij | can be directly estimated. Averages
over mutations x, y and over the five homologs are considered to improve the prediction —
denoted here for simplicity as AA&;; and AAY; ;. Fig. 3.11A shows how well [AA&; | predicts
the experimental energetic couplings [AA%; ;| for pairs of residues (i, j) at distance > 8A and
< 8A, where distances are measured on the known three-dimensional crystal structure of the
PDZ a2-helix and averaged over the five homologs. A stronger correlation between [AAY| and
|AA&| for short range pairs (Pearson correlation p = 0.69), than for long range pairs (p = 0.48),
as the long-range strong epistatic interaction between residues 1 and 8 is not captured by the
DCA-inferred energetic couplings, as reported in the original article [134]. |AA%g| in Fig. 3.11A
is the point at largest |[AA¥Y| in the set of long-range pairs. This observation is consistent with
the prediction on the limits of DCA in capturing strong long-range epistasis in the sequences
evolved to display cooperative allosteric behaviour, as shown in Fig. 3.8 and Fig. 3.11B. Surely,
this results is not enough to corroborate such hypothesis, but the advancement in deep
mutational scan techniques may provide a less expensive way to measure epistatic interactions
in several proteins, increasing the empirical data available, as discussed in the Introduction.
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3.4 Performance of Statistical Coupling Analysis

Statistical Coupling Analysis (SCA) uses the co-evolutionary information in the MSA by extract-
ing the principal components of its covariance matrix, thus defining groups of residues that
have co-evolved together, as overviewed in the Introduction, see e.g. Fig. 11. SCA was originally
based on a covariance matrix weighted by conservation [99] as in Eq. 15. Other variants use a
non-weighted covariance matrix [134] and the inverse off-diagonal covariance [101]. In the
following, these different definitions are used to test the performance on inferring functional
information.

Subsec. 3.4.1 asks whether SCA is able to predict which region of the network is relevant for
function in the case of sequences evolved in the in-silico model to optimise the geometric
function. Subsec. 3.4.2, instead, focuses on the prediction of the observed long-range epistasis
which has been seen to fail when DCA is used as inference model.

3.4.1 Geometric sequences: local structure

Key aspects of the design are more likely to stay conserved in evolution. The conservation
map of allosteric networks evolved to perform the geometric task is shown in Fig. 3.12A. The
presence of the trumpet is crucial for the amplification of the response that characterises
function in geometric networks, as discussed in Chapter 1 (Sec. 1.3).

A trumpet pattern is found to emerge in the same location where coordination decrease
monotonically from the allosteric to the active site, see Fig. 1.6. However, conservation is
considerably higher around the active site, supporting the claim that the specificity of the
response is essentially controlled by the geometry of the network near the active site, see
Subsec. 1.3.4 where the physical principles underlying the geometric fitness are discussed.

The non-weighted covariance matrix C is used as a statistical observable to extract co-evolutionary
information. The matrix C between the links a, § reads

Caﬁ(aay Uﬁ) = <Ua0ﬁ> - <0'a><(7,6>y (3.13)

where the () denotes the ensemble average over different solutions. The eigenvalues 1; >
A2 > ... > A, of the matrix C can be then computed. Fig. 3.12B compares the spectrum of
eigenvalues of a high temperature, essentially random, network with that of allosteric networks
obtained at small evolution temperature, where the fitness of solution is high. In the latter
case, few eigenvalues much larger than the continuum spectrum are found, which is itself
more spread than in the random case.

As discussed in the Introduction, the sector of links that co-evolve is extracted by applying the
following procedure [100]: (1) pick up the Nt = 10 eigenvectors |y¢") with highest eigenvalues
separated from the random spectrum; (2) include a given link « in the sector if, for at least one
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Figure 3.12 - (A) Spatial distribution of conservation, as defined in the text, for T, = 0.05 and z = 5.0.
(B) Spectrum of eigenvalues p(A) of C for the high temperature case (T, = 0.30) in black and low
temperature (T, = 0.05) in red. The arrow indicates which eigenvalues are used to identify the springs
shown in (C). (C) Springs selected using the procedure explained in the text. (D) C is built using the
same parameters as in (C). C presents a clear separation in a region where the correlations are stronger,
which corresponds to the trumpet shown in (C). All these figures are made using L =12 and z = 5.

of this ten modes, [},| > € = 0.05. The links that are selected are highlighted in Fig. 3.12C and
they belong to the region of the trumpet, supporting the idea that co-evolution has the power
to uncover key functional aspects [100, 102]. The correlation matrix reconstructed from the 10
top eigenvectors of the covariance matrix can be also built as

Nr
Cap= Y Ayl (3.14)
y=1

C is shown in Fig. 3.12D after re-ordering links in terms of the strength of their components in
the top ten modes. One sector of links where correlations are strong in amplitude, but vary in
sign, clearly appears and its links identify the springs involved in the trumpet structure.

3.4.2 Cooperative sequences: long-range epistasis

The recent results of Salinas and collaborators [134] show that SCA outperforms DCA in
predicting long-range epistasis, thus supporting to test its performance on the cooperative
sequences. However, as shown in Fig. 3.9, the cooperative sequences do not display strong
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Figure 3.13 — Measure of epistasis by SCA with conservation weight (top row A, B, C), by Inverse
Covariance Off-Diagonal (ICOD) [101] (central row D, E, F) and by SCA without conservation weight
(bottom row G, H, I). (A, D, G) Spectrum of eigenvalues A of the conservation-weighted covariance (A),
of the inverse off-diagonal covariance (D) and of the covariance itself (G), where the highest value ! —
corresponding to the first principal component yw' — is highlighted by an arrow. (B, E, H) Absolute
values of the first principal component v! visualized on the network. The first principal component of
the conservation-weighted covariance in (B), of the inverse off-diagonal covariance in (E) and of the
covariance itself in (H). (C, E I) Scatter plot of C“l.lj shown against epistasis with a different color code for

long and short distance pairs, where p is the Pearson correlation coefficient. C“} i is constructed from the

first top eigenvalue A! and its corresponding principal component y! of the conservation-weighted
covariance in (C), of the inverse off-diagonal covariance in (F) and of the covariance itself in (I).

correlations at long range, hence it is very unlikely that a method precisely based on the
covariance matrix can significantly improve the performance of DCA. The results with three
different definitions of covariance matrices are discussed in the following.

Fig. 3.13A shows the spectrum of eigenvalues A of the conservation-weigthed covariance
matrix C; j asin Eq. 15. The top eigenvalue Al is clearly separated from the bulk, thus it is
likely to contain some information on the system. As in [134], the covariance from the top
eigenmode only, C} ;= /111//%1//}, is reconstructed, where ! is the eigenvector corresponding
to A! and its structure is visualised on the network in Fig. 3.13B. In Fig. 3.13C the absolute
value of C‘l.l i against epistasis magnitude is shown. The prediction of epistasis compared to
the inferred AA&; ; or J;j — see Fig. 3.11 — is not improved, neither at short range nor at long
range.
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By including the conservation weight ¢; the result is slightly improved with respect to the
principal components of the uncorrected covariance, see Fig. 3.13G-H-1. On the other hand,
conservation only gives a particularly poor estimation regardless of the range.

The recent proposal by Wang et al. [101] of identifying groups of co-evolving amino acids by
looking at the largest eigenvector of the inverse covariance matrix is also tested*. Given the
nature of the chosen matrix, this method is called Inverse Covariance Off-Diagonal (ICOD).
The top eigenvalue of the ICOD, see Fig. 3.13D, corresponds to a non-local mode mainly
generated by links close to the active and allosteric site as shown in Fig. 3.13E and correlates
to long-range epistasis to a larger extent than previous methods, Fig. 3.13E

Summary. The application of a variant of SCA — without conservational weight in the defini-
tion of the covariance matrix — on sequences evolved to optimise the transmission of strain
shows to recover the position of links in the region responsible for function, see Fig. 3.12.
Moreover, SCA — with and without conservation weight — and ICOD are tested for the predic-
tion of epistasis as shown in Fig. 3.13. SCA performs poorly in the prediction of long-range
epistasis, while ICOD is found to provide a larger correlation with true epistasis. Hence, the
performance of ICOD needs to be investigated in more detail.

3.5 Conclusions

3.5.1 Summary of results

This chapter main focus is on the performance of Direct Coupling Analysis (DCA) in predicting
features of the fitness landscape, which relates the amino acid sequence of a protein to its
fitness, as discussed in the Introduction, see Fig. 13. The in-silico sequences evolved to display
cooperative binding in Chapter 1 (Sec. 1.4) are used to benchmark inference methods in this
task. The design chosen for the analysis is the one of shear motion, mechanically characterised
in Fig. 1.14. The results, however, do not depend on the specific design.

DCA shows good performance in the prediction of single mutations costs, which reflect
functional features of the networks, as the weakly-connected region connecting allosteric and
active site related to the shear motion, see Fig. 3.2, Fig. 3.5 and Fig. 3.6.

However, DCA performs poorly in both generating synthetic sequences with good fitness and
in capturing the observed strong long-range epistatic interactions. This failure is supported by
recent empirical data of deep mutational scan of a functional region of the PDZ domain [134],
but it is still puzzling given the success of DCA in comparing with natural-like sequences [148].

A toy model introduced in Sec. 3.3 proposes an explanation of the failure of DCA in predicting

4Note that the top eigenvector of ICOD corresponds to eigenvectors with low eigenvalue of the usually used
covariance matrix. The choice of low eigenvalues of the covariance matrix is considered crucial to avoid a
contribution of phylogenetic effects as discussed in [220]. Moreover, low energy modes usually discarded by PCA
are also found to be needed for a good prediction of contacts, further motivating their relevance [221].
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such properties by considering a simple model with a hierarchical structure that need several
parts to work in concert to function, see Fig. 3.10.

The performance of SCA in the prediction of long-range epistatic interactions is also revealed
to be poor, while a more recent method, based on the inverse of the covariance matrix (ICOD)
shows a larger correlations with the true epistasis, suggesting to explore this method further.

This chapter also studies the performance of Statistical Coupling Analysis (SCA) in predict-
ing which are the links of the evolved network relevant for the allosteric functioning. The
benchmark is done with the sequences optimised to transmit a strain from the allosteric to
the active site, introduced in Sec. 1.3. The links identified with the co-evolutionary informa-
tion contained in the SCA matrix reflect the trumpet structure which is crucial to achieve
allosteric function in geometric architectures, see Sec. 1.3.4. The same results are obtained for
cooperative architectures, but are not reported in this document.

long-range
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Figure 3.14 - This figure overviews schematically the performance of DCA and SCA in predicting the
effect of single mutations on fitness, capturing the long-range epistatic interactions and achieving
generative power. Green encode for success, red for failure and gray for unknown/not applicable. If
a square is middle green, it means that the evidence supporting success is not strong enough. The
inference is performed on MSA from three systems: in-silico models mimicking folding constraints
(138,139, 141] (left), the in-silico model for the evolution of allostery developed in this dissertation
(middle) and proteins [105, 134, 144, 148] (right).

Fig. 3.14 shows an overview of the performance of DCA and SCA for the prediction of single
mutations, long-range epistasis and for generating functional sequences in in-silico models of
folding [138], in the in-silico model of allostery here discussed and in proteins [99,105,134,144]
with the goal of clarifying future directions.

3.5.2 Further directions
The following open questions can be delineated.
¢ Incorporating folding constraints in the in-silico model. The in-silico elastic model
could be extended by considering the constraint that the protein must fold to operate, in

addition to the considered allosteric constraint. The works on lattice proteins [138-140]
suggest to consider nodes as amino acids. Hence, the stiffness of the spring between two
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Figure 3.15 - The in-silico model introduced in Sec. 1.2 can be extended to include folding constraints.
Indeed, the link occupancy can be dictated by the nature of the amino acids of the corresponding nodes
pair, here denoted with letters in the alphabet. This could be easily introduced via a matrix Q,j, with
binary values defining the interactions between amino acids, i.e. the occupancy of the corresponding
link. In the sketch network it would enforce Q4r =0, Q4¢ =1, et cetera.

adjacent amino acids as well as their contribution to the total folding energy depend
on the relationship between that pair, by e.g. defining a matrix encoding which pairs
of amino acid can be connected via a spring, see Fig. 3.15 for a sketch of the resulting
elastic model®. Although such a model is likely to lead to similar results as presented in
this chapter for long-range evolutionary couplings, it will presumably differ significantly
in the statistics of short-range ones. In particular, it may capture why three-body
correlations are well described by two-body correlations in real proteins [68] which is
not the case with the current in-silico sequences (Fig. 3.4C), and may lead to stronger
conservation overall [222].

* Neural networks as possible generative models. Can one find better generative models
than DCA for inferring long-range functional couplings? Several ways have been pro-
posed to go beyond pairwise models by including nonlinearities, which implicitly take
into account correlations at all orders, as nonlinear potentials in Restricted Boltzmann
Machines [223], maximum-entropy probability measures with a nonlinear function
of the energy [224], maximum-likelihood inference procedures based on nonlinear
functions [225] and, finally, also deeper architectures [222, 226].

As afirst test, a 3-layers feed-forward neural network with sigmoid activation functions
can be trained to learn the values of fitness in the toy model of Fig. 3.10. Mutation
costs and epistasis, even at long range, are correctly captured by this method. This
observation suggests that neural networks may lead to better generative models in
proteins, an hypothesis that could also be benchmarked in silico. Already, deep learning
showed to increase the performance of protein structure prediction with the work
of [95, 96, 222]. Further discussion on alternative inference models is layed down in the
next chapter highlighting the conclusions of the thesis.

* Classification of allosteric designs from co-evolution. The co-evolved links identified

5Simulations of such models for the cooperative task lead to similar designs, with a lower average coordination
given that with the new evolution algorithm the number of springs cannot be fixed as previously. This can be
solved by adding a cost in the fitness functional that depends on the coordination, like a chemical potential.
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Chapter 3. Benchmark of inference methods for the prediction of allosteric fitness

Input Hidden layers Output

Figure 3.16 — The size of the input layer is eight, as is the size of the system. We add two hidden layers
of four and two units and the final one-unit output is 1 if the input sequence has fitness & and 0
otherwise. The activation function from one layer to the successive one is a sigmoid and the network is
fully connected, i.e. all units in one layer are connected to all units of the successive one.

by SCA reflect functional positions: the trumpet architecture can be identified by looking
at the spatial organisation of the sector, Fig. 3.12. The same holds for the hinge and
shear design, where however the distinction between the two architectures becomes
unclear. Hence, the question of how to perform this classification without having to use
as discriminant the spatial organisation of the links in the sector is still open.

Supervised learning via simple fully-connected networks is able to distinguish func-
tional from random sequences, is it able also to distinguish allosteric designs? Anyhow,
ultimately, the goal is to have a unsupervised scheme that can be applied also for pro-
teins. Hence, other methods need to be explored, like e.g. clustering methods — that
can be used for both unsupervised and supervised dimensionality reduction [227] — or
generative deep learning techniques [228, 229].
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Conclusions

In this dissertation allostery is approached from two different perspectives concerning me-
chanics and co-evolution.

Mechanics: classification of allosteric architectures

The physical mechanisms underlying allosteric regulation in proteins are not yet fully un-
derstood. To provide insights on the physical requirements for allostery, we introduced an
in-silico model of evolution of allosteric behaviour in elastic materials. In particular, we
consider discrete elastic networks where the nodes of the two- or three-dimensional lattice
are connected by harmonic springs, supported by the success of elasticity in capturing the
conformational dynamics in some proteins [56].

e (Classification. The evolution is performed on two allosteric functions. One optimises
the transmission of strain between the allosteric and active site, while the other seeks
for optimal cooperative binding energy between the two sites. The evolution of the two
tasks is found to implement drastically different architectures to achieve function. The
first exploits a lever mechanism, rooted in the physical properties of the structure, to
amplify the allosteric response from the allosteric to the active site. This architecture
is novel and evidence supporting its use also in proteins is discussed in the case of a
PDZ domain. Indeed, preliminary data suggest that a PDZ domain, whose allosteric
response does not fit into any classification, uses an amplification mechanism similar
to the lever found in the evolution of the in-silico model.

The second, optimising for cooperative binding, recovers usual architectures found in
proteins, like hinge and shear motions, and twist designs, while many others that are not
reconducible to easily interpretable movements. This heterogeneity in structural organ-
isations is unified by the same underlying physical principles. Indeed, all architectures
exhibit a mechanism, an extended low-energy mode that describes almost perfectly
the corresponding conformational change. The stiffness of this mode is not random:
indeed, to properly function, the mode gest softer as the size of the system increases.
This result provides a prediction that is tested in the case of allosteric proteins and
proposes a physical explanation on the presence of such low-energy modes in proteins.
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¢ Effect of elastic non linearities. The elastic network with harmonic springs discussed
above belongs to the framework of the induced fit scenario of allostery, where only
one state is present in the energy landscape. Conversely, the population shift scenario
poses a two-state landscape where the system can switch from one state to the other
upon a change in physiological conditions. A mechanical version of the population shift
scenario for cooperative binding is discussed by introducing anharmonic springs to
study the effects of elastic nonlinearities. The population shift scenario is found to be
more robust to mutations that increase the stiffness of the soft mode than the induced
fit scenario. However, to properly function the system is poised at the same condition:
the larger the system, the softer the mode needs to be.

¢ Database of allosteric proteins to test the predictions. A database of 34 allosteric
proteins is built from the literature to study systematically the prediction that a larger
protein displays a softer mode. First, the results confirm that in most of the proteins the
conformational change is indeed described by a low energy mode. Then, the allosteric
response is proven to be special by the considerable amount of shear deformation that
it carries, being larger than any of the modes. Finally, the stiffness of the allosteric
response is shown as function of the number of residues and supports the predicted
scaling, yet not providing a definite conclusion.

Towards a conclusive empirical validation

The in-silico model allows to capture the physical requirements for the optimisation of a given
allosteric task. In the case of cooperative binding, a larger protein is expected to display a
softer mode to properly function. The validation of this prediction with data from 34 allosteric
proteins is encouraging, but not conclusive, given the large scatter between different proteins.

In the near future, the plan is to investigate in more detail the allosteric nature of all the
proteins in the dataset. Are all proteins displaying allostery through cooperative binding?
Which are the architectures used by the proteins where ENM fails to identify a functional
soft mode? These questions also connect with the novel lever design discovered when the
transmission of strain is optimised in the in-silico model. Do proteins in the dataset display
such amplification?

Furthermore, an experiment focusing on one protein would be able to probe the validity
of the predicted framework. On the one hand, molecular dynamics experiments allow to
accurately compute the vibrational modes and the stiffness of the allosteric response, while
also monitoring how the energy profile along the allosteric response evolves with binding.
This could allow to test the dependence of fitness on the stiffness of the low energy mode and
the idea that this mode enables the transition from the inactive to the active state. On the other
hand, mutation scans where cooperative fitness is measured via binding assays, combined
with single molecule experiments or ultrafast laser pulses able to estimate the stiffness of the
allosteric response, can be used to test experimentally the relationship between cooperative
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energy and stiffness. In particular, it would be possible to investigate whether the cooperative
binding energy is more robust to mutations that increase the stiffness of the soft mode, as
suggested by the mechanics of the population shift scenario, in contrast with the induced fit
framework.

Inference: benchmark on allosteric dependencies

Among the several methods to infer fitness, structure and function from the co-evolutionary
information encoded in alignments of sequence of a protein family the focus in this disserta-
tion is on Direct Coupling Analysis (DCA) [81] and Statistical Coupling Analysis (SCA) [99]. We
use sequences evolved with the in-silico model for the display of allosteric communication
to benchmark the performance of inference methods in dealing with a minimal sequence
alignment where structurally distant and functionally related sites are crucial to be captured
to predict fitness.

e Classification from co-evolution (SCA). The exploration of functional networks re-
vealed two classes of physical principles underpinning allosteric functioning. Is it
possible to perform such classification solely from sequence data? We show that SCA is
able to identify which links belong to functional regions, hence delineating the differ-
ent links distribution that are observed for the lever design and for other cooperative
designs, as hinge or shear motions. In the near future, other approaches as clustering
methods and neural networks will be benchmarked to investigate whether an unsuper-
vised method is able to directly distinguish the design, without having to look at the
distribution of co-evolved links as happens for SCA.

* Prediction of mutation costs (DCA). The knowledge of the mechanical fitness function
allows to precisely characterise the physical effects of mutations on the fitness. Mu-
tations at single sites in the network are well reproduced by the DCA-inferred energy
function, consistently with the fact that positions of single mutations correlate with the
local structural constraints that are well reproduced by DCA.

 Prediction of epistasis (DCA and SCA). Epistasis quantifies the non additivity of mu-
tations and is crucial in reshaping the fitness landscape, thus changing the resulting
evolutionary paths. As in some allosteric proteins, the in-silico sequences display strong
long-range epistatic interactions, in addition to short-range ones. However, a muta-
tional scan study on a PDZ domain [134] argues that DCA does not to capture such
long-range epistasis, while SCA does. We show that both DCA and SCA fail to capture the
global epistatic interactions that involve pair of distant links in the in-silico sequences.
However, ICOD based on the inverse of the covariance off-diagonal matrix needs to be
investigated further as a predictive method for epistasis.

* Importance of higher-order effects (DCA). The contribution of higher order terms to
the fitness needs to be studied to check whether they actually improve the prediction
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of long-range epistasis. The fitness of the toy model (Eq. C.25) can be expanded in
powers of the spin variables to estimate effects of order n = 3 and check which is the
contribution of such terms. Are they relevant for the fitness?

* Generative power (DCA). DCA infers the probability distribution of the energy of a
sequence in the alignment, given by the Boltzmann distribution. Thus, it allows to
sample the inferred energy landscape and generate synthetic sequences. Does the
inferred landscape reproduce the original fitness landscape? We find that DCA fails
in generating sequences that reproduce the original value of fitness, even granted
the generative power of the used algorithm on in-silico sequences that involve local
structural constraints [138] and the good reproduction of natural-like sequences for
chorismate mutase enzymes [148].

An alternative route for inferring fitness

Methods going beyond the inference of a pairwise model, like DCA — based on frequencies
and correlations of the sequence alignment — may be needed to have sensible predictions
about functional dependencies, as allosteric interactions, extending the success on predicting
structural constraints, as contacts. In this favour, in Chapter 3 (Subsec. 3.5) we have shown
that a fully-connected feed-forward neural network is able to learn epistatic interactions with
a better accuracy than Direct Coupling Analysis, in a toy model of protein where several and
variable parts work in concert to function. This observation suggests the possibility that neural
networks constitute a better place where to look for generative models, possibility that can be
benchmarked in silico.

In the deep learning community, it is argued that neural networks improve the performance
of classification during training by lowering the dimensionality of the manifolds defined by
the parameters of the network, as highlighted in a recent article [159]. In other words, the
success in classification is deemed to be related to the identification of hidden variables that
are relevant for learning the task, among the plethora of other uninformative directions in
parameters space. If this is true, learning reduces to the application of a non-linear function,
the activation function, to a linear combination of special variables. However, these hidden
variables are not accessible a priori.

The richness of the simple in-silico model for evolution of allostery in elastic materials dis-
cussed in this thesis comes at hand another time. Indeed, the insight on the mechanical
principles responsible for allostery in sequences evolved in silico can guide the definition of
such variables for allosteric communication. Cooperative architectures are found to work via
amechanism, an extended soft mode of stiffness k; which has a precise scaling with respect
to the size of the system for proper function to occur. If k, is too small or too large there is no
cooperativity. Hence, the stiffness of the mechanism can be identified as a hidden variable for
allosteric behaviour. Other variables may be related to coupling constants describing how the
mode couples to the two sites.
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Let us admit that the mechanical fitness of Eq. 3.1 can be approximately rewritten as a non-
linear function f of some hidden variables n;

F = ().

Then, inference methods can be used to check whether they actually perform better in the
prediction of the hidden variables 7;, instead of the more complex function . How do these
variables vary from sequence to sequence? Is it possible to identify combinations that are
more conserved? How well the hidden variables are described by linear regression? Can a
fully-connected neural network learn the fitness % of a sequence by knowing only the hidden
variables? Hence, would it result in a model that correctly predicts epistasis and is generative?

This idea connects with recent works that consider inference models with an energy defined
as a non-linear function of an independent or pairwise energy [224, 225]

F(fo}) = f(z h,-o,-) independent [224, 225]

F{o}) = f(z Jijoioj+). hia,-) pairwise [224].
i<j i

The presence of the non linearity automatically allows to take into account correlations at all

orders, as nonlinear potentials in Restricted Boltzmann Machines [223, 229] that are found

to capture global features argued to be relevant for allostery. Moreover, the additional non

linearity is found to provide good results on the prediction of epsitasis [225] where, however

allostery is not systematically considered.

Interestingly, the independent model & ({o}) = f(3_; hjo;), with a non linearity applied on
an additive trait, corresponds to a special kind of epistasis called global. Global epistasis has
been recently argued to appear when the response to transient perturbations of proteins is
described by few soft modes [230], suggesting that is the case also in the framework of allostery,
at least for some proteins.

In practice, non-linear inference models of [223-225] can be tested against in-silico sequences
that exhibit allosteric behaviour to study the generative power and the prediction of long-
range epistatic interactions, both failed to be predicted with pairwise models. The complete
analysis discussed in this dissertation on the mechanics of those sequences allows to go
further and see whether the cooperative fitness can be written as a non-linear function of
few variables relevant for function. Once the hidden variables are identified, fully-connected
neural networks can be used to study whether the fitness, in particular the non-linear function
f, can be learnt solely by the knwoledge of the relevant variables ;.
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i\ Mechanical networks

A.1 Construction of the embedding lattice

2D triangular lattice. As discussed in Subsec. 1.2.1 in Chapter 1, we introduce a slight
distortion of the lattice to remove straight lines that occur in a regular triangular lattice. Such
straight lines are singular since they lead to unphysical localised floppy modes orthogonal
to them. Ref. [231] suggests that the localised modes can be removed by imposing a random
displacement on the nodes. However, avoiding the introduction of frozen disorder we opt for
a different strategy. We group the nodes in the lattice by four, labeled as AB C D in Fig. A.1.
One group forms a cell of the new distorted lattice. In each cell, node A stays in place, while
nodes B, C, and D move by some distance §: B moves along the direction perpendicular to BC,
C along the direction perpendicular to CD, and D along the direction perpendicular to DB, as
illustrated. We set d to 0.2, since the straight lines are efficiently reduced with this distortion.

Figure A.1 - Illustration of the distorted triangular lattice (left) and distorted FCC lattice (right).

3D face-centered cubic (FCC) lattice. We introduce a similar distortion to the face-centered
cubic lattice. Again, we label the lattice nodes into four different types A B C D, as shown in
one layer in the z direction in Fig. A.1. The nodes are labeled in such a way that all 12 nearest
neighbors of a node are different from it. For example, the center node in the bottom panel of
Fig. A.1, labeled as C, is connecting to two As and two Bs (in solid lines) in the layer and four
Ds with two other As and Bs (in dashed lines) out of the layer. To each layer in the z direction,
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there are two other layers, and in those two layers, D and A, B are located at the same x and y.
Thus, we only see half of them (two D, one A and one B) connecting to C in a two dimensional
projection along the z direction in Fig. A.1. We move all As along negative y direction, all Bs

. o 11 1 S . =
along positive x direction, all Cs along (- NN \/g)' and Ds along (\/é, NL \/5) by 6 =0.2.
As shown in Fig. A.1, all straight lines composed of different links are thus avoided.

A.2 Linear response of elastic networks

A.2.1 Stiffness matrix

The minimum of the energy of a spring configuration can be calculated via gradient descent
methods. However, via linear algebra arguments, discussed in this section, it is possible to show
that minimisation resorts in simple equations that can be solved via matrix multiplication and
inversion [232].

Let us consider a network composed of N nodes in d dimension where neighbouring nodes
are connected by Ny links.

Consider a displacement field 6 R; = R;—R;o, where R is the position of the node i in the initial
mechanical equilibrium. The equilibrium distance r; j, can be defined as r(; ;) = l|R;o — R joll
between node i and j. The distance among neighboring nodes at first order in § R; changes by

||Ei—ﬁj|| = r<l-j>+ZS<U>,15§1+0(6§2), (A.1)
l

where (i j) indicates the link between node i and j. The matrix S; jy,. = 7(; j, ((i| = (j|) — where
7 jy is the unit vector along link (i j) from j to i — is the structure matrix, which defines the
linear relation between displacements and changes of distances via Eq. A.1. Its size is given by
the number of links N, times the number of nodes multiplied by the space dimension, Nd.

The force on a node can be written as composition of tensions via the structure matrix

Ei=Y nupfipn =Y, Sumifum- (A.2)
J (Im)

For linear springs between neighbouring nodes i and j, f;, = k(jy07; j), the force resulting
from an applied displacement reads

|F) = #|6R), (A.3)

where the stiffness matrix (also known as dynamical matrix) ., j = Y 1my KimySmy,iSamy,j = kS s
depends only on the occupancy vector |o) and the link directions. It is a symmetric matrix for
pairwise interactions such as springs.

The elastic energy can be then written as function of the displacement field |dR) of dimension

126



A.2. Linear response of elastic networks

Nd is

E= %(FISR) = %<5R|./%|6R>. (A.4)

A.2.2 Linear response to an imposed displacement

When a displacement is imposed on the subset € of n nodes, 6R¢, forces are applied locally on
the nodes mimicking the induced mismatch in the structure. However, all other N —n nodes
adapt to a new mechanical equilibrium with no net forces on them and follow a displacement
OR;. Thus for this choice of basis Eq.(A.3) becomes

F)_ SRE As5)
0| SR, | '
which leads to:
F a dR¢
= M . A.6
SR, Q 5 (A.6)
with
6,']' ifj €€
i= . A7
Qij { ~Mij fjde (A7)

When nontrivial zero modes are present in the network — like a dangling of one node, the
linear equation (A.6) may not be solvable due to the matrix Q that becomes non invertible.
Q7! should be then understood as the pseudo-inverse, ensuring that the network does not
respond along the directions of the zero modes. Indeed, the corresponding singular values
are zero in Q. Another possibility to avoid zero modes is by imposing that each node also
interacts with all its next-nearest neighbors via weak springs of stiffness k,y < 1 that lift the
eigenvalue of the nontrivial zero modes. Both methods lead to qualitatively identical results.
For numerical costs, our results were computed using the second approach with k,, = 1074,
So our stiffness matrix reads .4 = S’ Sy + kwS%, Sw.

Dealing with translations and rotations. When binding a ligand, applying the procedure
discussed above, the translational and rotational degrees of freedom (TR) of the nodes are not
determined and need to be taken care of.

Let us define W€ as d N, x drr-dimensional matrix, composed of a set of vectors with drg =6
ind =3 and drr =3 in d = 2. If we represente the TR degrees of freedom at the nodes with
this matrix W€, any imposed displacement giving the same shape change results to follow

dRE = dR + V¢ - C. (A.8)

where dR{ is purely determined by the shape change, dRf - V¢ = 0, and ¢ is a parameter vector
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of dimension drg to count the translational and rotational contribution additional to the
shape change. We can thus consider a new basis with a d N by d N, transform matrix U to the
original space on imposed nodes so that

dR€=U( 650 ) (A.9)

translations and rotations are isolated from the shape change defined by 80. In this new basis,
the forces F imposed on € obey total force and torque balance

-

Utﬁ:( g ) (A.10)

The linear response problem thus is rewritten as

—-

f ‘
- ut 0 dR¢
Q| ¢ :(® H)M 60 (A.11)
dR;
where
Q"Z 5ij~ ifj€€\TR (A.12)
1 —AM;ij otherwise
with
~ ut 0 Uu 0
ﬂz(@ I])M(@) I])' (A.13)

Note that given the separation of the two subspaces the matrix U is of dimension d N, x d N
and the identity matrix [ is d(N — N¢) x d(N — N¢), consistent with .# being dN x dN. This
formalism allow for efficient minimisation of the elastic energy in the linear approximation
even for three-dimensional networks.

A.2.3 Measure of thermally-induced motion

Thermally-induced motion in a structure can be quantified via B-factors [55]
B =8n*(u%) (A.14)

where u is the magnitude of the displacement around the mean position of nodes, and (e)
denotes thermal averaging.
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In an elastic network, the energy due to displacement field #; is,
1l . -
H=Ezui"/ﬂij'u]" (A15)
i.j

where ./ is the stiffness matrix defined in Eq.(A.3). The B-factor is directly related to the
stiffness matrix .4 . By definition, the thermal average of the correlation of the displacement
at temperature T reads

1 1 - -
(fg 1)(T) = —— f iy - dige” or B WAt T dy, (A.16)
Z(T) ;

and results to be a Gaussian integral. It can thus be carried out
(A.17)
and

B; = 8% (uf) =8m* T(M V). (A.18)

B-factors are computed at temperature T = 1.

A.3 Trumpet architecture in networks with z < 4

In Chapter 1, we have focused on the allosteric task in well-coordinated networks with z = 5.
Whereas, thermodynamics results show that the task can be accomplished for very floppy net-
works, with coordination z < 4, which are interesting analogies to allostery of some unfolded
floppy proteins [233].

In general, the displacement signal can only propagate a finite distance in rather homogeneous
floppy networks [2]. This can be seen in the left panel of Fig. A.2B. Below the transition
temperature (T, = 0.12 for z = 3.0), we find that the network resolves this issue by generating a
trumpet shape structure similar to the rigid case, connecting the allosteric site and the active
site, as appears in the average coordination map shown in Fig. A.2A.

The coordination number in this trumpet structure is larger than in the rest of the material,
allowing the signal to propagate. Similarly to the §z > 0 case, the mean coordination number
decreases monotonically from the allosteric to the active site. However, the trumpet has the
wider nearly-isostatic patch near the allosteric side. We also find that the amplitude of the
displacement decreases monotonically from the allosteric to the active side in the bottom
panel of Fig. A.2B.
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Figure A.2 - (A) Spatial distribution of coordination number. (B) Spatial distribution of the response
magnitude to the excitation at allosteric sites. Left: T, = 0.3. Right: T, = 0.10. z = 3.0.

A.4 Cooperative energy of two dipoles in a continuous elastic medium

Elastic energy of a force monopole. In the following, we address the formalism to compute
the elastic energy when a force is applied on a pathc in an elastic medium. We make the
simplifying assumption that the velocity field is divergence free, without loss of generality for
the predicted scaling behaviors. Thus, the equation determining the displacement field when
a monopole of constant force f is applied over a spherical patch of radius c follows [149]

_a

f, A.19
GQd(,‘df ( )

Ati=V-Vii=-
where G is the shear modulus, Qg is the solid angle underlying the d-dimensional sphere.
By defining f = féy, both force and displacement component are enforced to be along y
direction. We then solve for the divergence of the displacement field using Gauss theorem

f o
—==—ré,, r<c
vuy:{ Gac” """ (A.20)
~Ga, yaT er. r=c

130



A.4. Cooperative energy of two dipoles in a continuous elastic medium

The total energy of the monopole reads approximately — for large system sizes

crd+l R 1
fo — +fc 5 |dn (A21)

where R defines the system size. In two dimensions, the integral is dominated by the second

f2
GQy

Ep = Gfdd?(Vuy)z =

term,

f2
E . A.22
m= ZnG c ( )
In three dimensions and above, the integral of the second term converges in the large size

limit R — oo, and it has the same scaling as the first term

2d f? 2-d

Ep=—
" @2 -00,6°

(A.23)

Hence, the displacement 6§ can be achieved by an external force satisfying § = 0E,,,/0f,

1. R
4d
- fmc2‘d d>?2 (A.25)

Elastic energy of a force dipole. In Chapter 1, the cooperative energy between two force
dipoles in a undesigned network was argued to vanish as function of the distance between
the two dipoles. Here, based on the derivation of the energy for an elastic dipole, we compute
the cooperative energy. We consider two dipoles of size ¢ separated by L in a homogeneous
medium, as illustrated in Fig. 1.18 in Chapter 1. The distance of the two monopoles forming
one dipole is a.

The dipole energy can be defined similarly to the monopole energy computed above as

E;= fdd*Qz ) (x+,,~ —x_)?=2E,+Eg (A.26)

where x;, x_, y+, y— are the components in x and y directions relative to the + monopole and
— monopole, respectively, in the dipole. So the dipole self-energy is

2
E;=- éf f Zxﬂx, (A.27)

where the integral is over three regions, within ¢ to the + monopole, within ¢ to the — monopole,
and the remaining space.

One can show that the contributions of the first two regions inside monopoles scale as c%*?,

d+2

while the contribution of the remaining region scales as ¢***, comparable. Outside of the
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monopoles, x. ; = ridxi, SO

NCE a/2)12 VD (x-al2), (A.28)
T (et 61/2)12 +y2)diz (x+al2), (A.29)
Y - a/2)12 2y (A.30)
YT a/2)12 2y (A.31)
and
.
E‘"—%z cer_ldr#N{ :JEE% Zij : (A.32)

Cooperative energy of two force dipoles. Again, similarly to the computation the dipole self-
energy Eq.(A.27), the cooperative energy, defined as the extra energy from the interaction of
two dipoles, can be computed as

Ecoop =2Eg — Eot (A.33)
212 R
= Q{G d’7 Z (=22 oy =l . (A.34)

where x! are the contributions of the monopole at L. When c¢/L < 1, the contribution outside
of both the monopoles and the dipoles dominates the energy

f2 0o L d—2 62
E ~= d [ dzp®~ A.35
coop f p ¢ p [p2+Z2]d/2[p2+(L_z)2]d/2 ( )
f2 2
In A.36
TG ¢ (A-36)
For given displacement 6 applied at the dipoles we have
262
d=2
?Int
Ecoop ~ { CZd 262 1 L d>2 (A.37)

showing that E¢q0p decays as fast as L~% for two dipoles at a distance L from each other, with
weak logarithmic corrections in d = 2, as discussed in Chapter 1

Numerical verification. This section aims to justify that the results obtained for a continuous
elastic medium are valid also for a discrete medium, as the spring network considered in our
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in-silico model. In Fig. A.3(A) we test our prediction for the cooperativity of a homogenous

B o Data

—Fit to theory E_,l ~InL

coop

A o Data

—Fit to theory E,! ~ log(L/c)L?

coop

1072
g 2
IS T210
1073
5t
104 L L L 0 5 " N
10 20 30 40 50 10 10 10°
L L

Figure A.3 - (A) Cooperative energy computed for a distorted crystal (§ = 0.2) of varying size L with
no mechanism. (B) Inverse of the cooperative energy for a crystal with a soft shear band presenting a
mechanism, the softness of the band being chosen as the value of k,, where the cooperative energy is
optimal, see Fig. 1.18. The two different scalings predicted from continuous elastic media are fitted and

shown as solid lines.

medium without any design (a distorted crystal with § = 0.2), and confirm Eq. A.37 for d = 2.
Instead, in Fig. A.3(B) we test our prediction for an optimal shear design, and confirm the very
weak logarithmic decay of the cooperative energy in two dimensions, as described in Eq. 1.22

in Chapter 1.
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Strain analysis on empirical data

B.1 Computing the local strain tensor in a protein

In a continuous medium, a motion maps a point X in the reference configuration to a new
point X in the current configuration, the strain tensor of the motion can thus be computed as

eap(B) = L[ 22 0% 5 (B.1)
W72 \ox, ax, ) '

where a, b labels the spatial dimension.

In a discrete medium like proteins which are a collection of atoms (or residues as we consider),

computing the partial derivative A =0%/0X at residue i is not straightforward. Ideally, for any
neighboring residue j close enough in space

AZij=A;-AX), (B.2)

where A)?,-j =Rjo— f?jo and AX;; = R; - ﬁj in our setting, where R; is the position of residue
i taken from the X-ray structure. We have n;, number of such equations for Xi when ny,
neighbors are considered. So Xl- are usually over-determined when we consider all neighbors
below a certain cutoff distance R, (we choose R.; = 8.5 A for first nearest neighbors and

R.» = 10.5 A for second nearest neighbors). Instead of solving Eq. (B.2), we define a mean
squared error function [199]

MSE(i) =) (A% — Ai - AXi ) wj (D), (B.3)
J
where we have kept a weight function w; (i) of node j contribution to i in general. Specifically,
Rii—R
we set as in [46] w; (i) = 1 for all nearest neighbors to i (R;; < R¢1), wj(i) =1~ R”—RCI for
c2 — el

Rc1 < R;jj < Rz and w; = 0 otherwise. By minimizing the mean squared error with respect to
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Xi,we have
<—> -1
A= ZA%,’]AX,’] LUj(i) . (ZAXUAXU LUj(i)) , (B.4)
j j
and
- 1 (=t - <
Fi= (A,. -Ai—(S), (B.5)

where 6 is the identity tensor.

The shear pseudo-energy [46], a vector field whose components contain a measure of the
relative motion of each residue, can be defined from the strain tensor ?(i) computed above

1 3
Ean(D) =5 > im0,

I,m=1

where the local shear tensor ?(i) = ?(i) —(1/ 3)Tr[?(i)]§ depends only on the displacement

between the two conformations via the strain tensor ?(i) and 6.
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8] Co-evolutionary analysis

C.1 Mechanical interpretation of mutation costs and epistasis

Let us denote by € the set of nodes where ligand binding takes place, e.g. for ligand binding at
the allosteric site ¢ = (10) with size dim(e) = ny = 4. Such event imposes a displacement R® on
the nodes € which imparts locally a force F¢ and induces a response R°~" on all the other nodes
r. Clearly dim(e) + dim(r) = L% where L is the total number of nodes for a network of size L
in d dimensions; for the example of binding to the allosteric site r = (01, b), where b stands for
the bulk of nodes belonging neither to the allosteric nor to the active site. Considering the
deformation as a linear response to the external force, as in Eq. A.6, the relation between force
and overall response field is written in terms of the dynamical matrix .4

R€
R€—> r

FE

=M
0

(C.1)

hence ./ is endowed with a block structure as follows

EE e
= (./%e,r)T ./%r,r

For pairwise interactions such as springs, the dynamical matrix .# is symmetric. Forces,
as well as resulting responses, can be calculated solely from the imposed displacement by
introducing a matrix Q

1€ —_ue"
Q:(@ —./W)
such that
F¢ (R
pe—r | =@ Jl( 0 ) (C.2)
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Appendix C. Co-evolutionary analysis

Binding at € costs an elastic energy E€

1
Ef = 5F6~R€, (C.3)

thus defining the cooperative fitness as a combination of such elastic energies
F=E"-(E"-E", (C.4)

where E°!, E!! and E'° are given by Eq. C.3 with, respectively, € = (01), € = (11) and € = (10).

Maximal cooperativity corresponds to making the binding of a substrate at the active site
energetically favoured when a ligand is already bound to the allosteric site. Indeed, this
situation reduces the energy of binding at the active site from E%! to (E'! — E'°). The energy of
joint binding at the allosteric and active site E1! = %F 11. R can be espressed as

1 1 1
g PR = g B R R (RO R, €5

After binding at the allosteric site with an energy cost 3 F'°- R'?, the elastic energy of binding
at the active site is determined by (1) the force at the active site when a ligand is already bound
at the allosteric site (Fllfg with subindex |10); (2) the displacement imposed at the active site
R to which we subtract the response already caused by ligand binding at the allosteric site
R'0~4¢_Eq. C.5 allows us to rewrite Eq. C.4 as

1 1
g — E I;vlz?g . RlO—’AC + z 6F10—>AC 'ROI , (C.G)

where one has the identity F! — F{l§ = 6F'0~4°.

Now, we consider the weak elastic coupling limit between the allosteric and active sites.
Physically, we assume that the response induced at the active site by binding at the allosteric
site is small compared to the one induced by binding at the active site. Mathematically,
it corresponds to the assumptions that the elements of the dynamical matrix involving the
communication between the two sites .Y (A b.b yLu b10 4re small. In this limit, expressing
5F10=4¢ and R'%~4¢ in terms of the imposed displacements by using Eq. C.2, we find that
each term in Eq. C.6 follows, at first order in J%Ol'b(ﬂb'b)’lﬂb’m

where a sum over b, the ensemble of bulk nodes, is taken. Hence, by using that 5 §F'0~4¢.
R" ~ 3 F/§ - R"9~ /¢, we obtain from Eq. C.6
F ~FO. gl0—Ac (C.8)

since Fﬁ‘g can be approximated by F%! in the weak coupling limit.
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Figure C.1 - (A) The geometry of mutation costs is illustrated in the neighbourhood of the active
site where only one of the ny = 4 nodes is considered. Thick dark red lines highlight links whose
disruption would be deleterious for the allosteric fitness. (A,B) Numerical test of the approximation
AF; = A(F4¢- R'074%); are shown in (B) and of A(F4¢- R1074¢); = ~FA¢. §R}°~4¢ in (C). The latter is
valid only for medium-high mutation costs.
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Changes in displacement at the active site dominate the cost of mutation. If we denote by
Fo! and R}~ ¢ forces and displacements after a mutation at link i, the cost of one mutation
can be expressed in this approximation as AZ; =~ A(F' - R19~4¢); where A(F%' - R10—4¢), =
FOl. p10—Ac _ F(l.)1 -Rl.lo_’AC. See Fig. C.1B for a numerical validation of our approximation. The
expression can be further rewritten as

A(FOI . RlO-’AC)i ~ _(FOI '6Rl~10_>AC +6F(l)l _R10—>AC + 6F(l)1 6R110—>AC), (C.g)

having defined changes in force as §F)' = F' —F!, in analogy to changes in displacement
) R}O_’A” introduced in Chapter 3. We find numerically that the cost of single mutations, when
itis not too small, is dominated by the changes in displacement at the active site

AF; ~—F°.§R}O™4¢ (C.10)

as implied jointly by Fig. C.1B-C. As a consequence, epistasis between mutations at 7 and j
with significant magnitude can be written AAZF;; ~ —F! - (6 Rl.lj(.)_’AC —-6RI"™4 -5 R}O_’AC), as

presented in the main text.

Displacement vectors and their changes upon high-cost mutations at the active site are
schematically depicted in Fig. C.1A. The few links located in the neighbourhood of both
the allosteric and active site are crucial to the long-distance propagation of the allosteric
response. They exhibit maximal epistasis along with maximal single mutation costs. Hence,
they populate the saturation region of Fig. 3.3A shown in Chapter 3.

After a deleterious mutation consisting in removing a spring at link 7, the displacement at the
active site Rll.o_’AC is significantly reduced with respect to the original optimal displacement
R'074¢ and their difference is given by §R}°~4¢ shown as dashed arrow in C.1A. Given a
second lethal mutation at j, the angle between the two mutations can be computed. We
denote by 6 the angle between 6R}°~4¢ and 6R}°_’AC. For lethal mutations cos(6) = 1 as
shown in Fig. 3.3B in Chapter 3, meaning that all mutations tend to have a homogeneous
direction of action which is precisely the one opposite to the displacement at the active site.

C.2 Prediction of epistasis

The scaling of epistasis (Eq. 3.7 in Chapter 3) suggests that a measure simply based on the
inferred single mutation cost is valid: [AAZ; j| « min(A&;, A&;) with A& inferred by DCA. We
have verified that this approximation improves significantly the prediction of long-range epis-
tasis in our in-silico model for the evolution of allostery in comparison to direct evolutionary
couplings J;;. This holds true both for single configurations and for the average epistatic
pattern, as shown in respectively in Fig. C.2B-C.

140



C.2. Prediction of epistasis

0.8 T T
Prediction by top 1000 |J;]|
5 = Range<7
% 06 = Range>7
3 g
g
5 0.4 r
5
p
oy 0.2
C .
g M
=
0. . . . .
0 20 40 60 80 100
Number of top |AAF;;|
0.8 : e
Prediction by top 400 H
<|J;| Range<7 i
c «|J;;| Range>7 0.8
-8 0.6 min(AE;, AE;) Range<7 c
g +min(A, AE;) Range>7 2
:5 1 E 0.6
% 0.4 )\ ; Prediction by top 400
% \"-_ ‘GC), 0.4 -o-|J;;| Range<7
= =1 -a-|J;;| Range>7
g‘ 02t e -03 mi,]n(ASHAgj) Range<7
g . o 0.2 “+min(A&;, Af;) Range>7 -
=
0 : : ‘ ‘ 0 i . .
0 20 40 60 80 100 0 20 40 60 80 100
Number of top |AAF;| Number of top [(AAF;;)|

Figure C.2 - (A) Same plot as in Fig. 3.8B (Chapter 3) where we show the fraction of top rank epistasis
|AAZ; | predicted by top 1000 |J;I, averaged over 100 configurations. In comparison to Fig. 3.8B, here
we consider a higher number of the couplings with largest magnitude to predict epistasis: the mean
predicted fraction increases both for short range and long range epistasis, yet a clear difference between
their values remains. (B) Same plot as Fig. 3.8B (Chapter 3) where we added curves for the prediction
by min(A&;, Aé;j) — the minimum between average single mutation costs at i and j — corresponding
to the scaling 3.7 in Chapter 3, which describes well the trend of epistasis (see Fig. 3.3A). As in Fig. 3.8B
(Chapter 3), we rank separately long-range (> 7) and short-range (< 7) pairs of links i and j in terms of
|AAZ; | and we plot the fraction of these pairs — averaged over 100 configurations randomly chosen —
falling either into the top 400 |J; ;| (empty symbols) or into the top 400 values of min(A&;, A&;) (filled
symbols). This second measure improves only slightly the estimation of strong short-range epistasis
but it does so dramatically for long-range one. (C) Same plot as (B) where we show the fraction of the
average epistasis (AAZ; ;) (estimated from 1.5 x 10° randomly chosen configurations of the MSA) that
one would predict either via | J; j| or min(A&;, A&;). The prediction at short distance is rather accurate,
with the predicted fraction reaching 1 for the maximally epistatic pairs; at long distance, signal on
long-range epistasis captured by |J; | is almost absent while the prediction by min(A&;, A&;) stands
out for its precision.
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C.3 Direct Coupling Analysis: inference procedure

In a maximume-entropy approach, extracting information from MSAs is cast as an inverse
problem, i.e. inferring the set of parameters which enable the model, an Ising model in our
framework, to reproduce certain observed statistical properties [79,234]. The exact solution of
this problem is found by maximum likelihood algorithms, which search for the set of couplings
Jij and fields h; by maximising the likelihood of the model, specified by such parameters, to
have produced data with the given statistics of single-site and pairwise frequencies, in our case.
This exact maximization is often infeasible, therefore to tackle the inverse problem several
approximate techniques have been developed.

Inference algorithm: ACE with a maximum likelihood refinement [93]. We resort to the
Adaptive Cluster Expansion (ACE), an expansion of the entropy into contributions from
clusters of spins [89, 90, 93]. We use the package made available by Barton https://github.
com/johnbarton/ACE. The implementation consists of first a run of ACE followed by a proper
maximum likelihood refinement via a Monte Carlo sampling (QLS routine), which takes as
starting set of fields and couplings the ACE-inferred ones. Different parameters for the ACE and
QLS routines can be set by the user, e.g. y», the L,—norm regularization strength for couplings
which penalizes spurious large absolute values induced by undersampling. A natural value is
Y2 =1/M, M being the size of the MSA.

To help convergence, we have chosen for ACE a higher value y, = 1072 and 6 = 107>, this is the
threshold at which the algorithm will run then exit, see [90]. In the further refinement by QLS,
we have set mcbh, the number of Monte Carlo steps used to estimate the inference error, to
200000 and y, = 1/ M. Having full control of the numerical evolution, we have tried to avoid
undersampling issues by generating a large number of configurations M = 135000, which
leads to v = 0.7 x 107°. For the inference, we remove from sequences the 6 links at the active
and allosteric sites as they are always associated to the symbol 1 (always occupied by a spring),
so the number of parameters to infer is N/ + N.(N.—1)/2 ~ 81000 with N/ = N, —6 = 402.
Given the high frequency of 1s the sequences are given to the algorithm are flipped so to get
a sparse matrix and improve numerical efficiency. We have verified that low values of the
L,-regularization allow us to obtain the maximal generative performance compatible with the
model (in comparison to higher regularization). By default the L, regularization of fields is
0.01 x y». In Fig. 3.4A, it is shown that the result of the inference is a model perfectly able to
reproduce the first and second order statistics — as it should by construction, but that fails at
reproducing higher order statistics.

Choice of the gauge. The chosen gauge is the consensus gauge, in the following the transfor-
mation between Ising and consensus gauge is discussed, with the use of the Ising Hamiltonian
H, here rewritten by expliciting the parameters — field / and coupling J; ; — as function of
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the degrees of freedom — links occupancy o =0, 1

1
H= EZ[]ij(l.l)(fi(fj+]ij(1,0)0i(1—0j)+]ij(0,1)(1—0i)(7j+]ij(0,0)(1—0i)(1—0j)]+
ij
+2 hi(@0 -0 +hi1)o)

(C.11)

The Ising gauge imposes
Jij(1,1) = Jij(0,0) = J;; (C.12)
Jij(0,1) = J;;(1,0) = = J;j, (C.13)

and the resulting Hamiltonian H; reads
Hp= %% [Jijoioj—Jijoil-0))—Jij(l-0)oj+]ij(l-0)(1-0})] +Xi:[hi(0)(1_0i)+hi(1)0i]
= %%4]ij0i(7j +; hi(1) - h;(0) —2;1”- oi+ %IZJ_JU +;hi(o> (C.14)
=Hc = %lzj:]fj(l, oo +Xi:hf(1)ai +c. (C.15)

Hence the transformations from the Ising (Hj) to the consensus gauge (H¢) are

Ji;(L1) = 4] (C.16)
h{() = hi(1) = hi(0) =2} J; (C17)
i
1
c=EZ]l~,-+Zh,~(0). (C.18)
ij i

Performance of mfDCA. For a comparison, we have considered also mean-field DCA (mfDCA)
[81], derived from a mean-field factorized ansatz for the Boltzmann-Gibbs distribution Eq.
3.8. As discussed in the Introduction, couplings in mfDCA are given by J;; = —(C™Y; j» where
Cij = (0;0)) —(0;){0;) is the covariance of the MSA. Typically C is not invertible due to
undersampling, making it necessary to add a pseudocount A, see [69]. Ref. [235] shows that
a pseudocount also helps correct for the systematic biases introduced by the mean field
approximation. For this reason, we have used a pseudocount A and chosen its value as 1 = 0.5,
which allows the best comparison to the ACE results, see Fig. C.3A.

It is noteworthy that in this way a computationally cheap technique as mfDCA yields a pattern
of top J;j strikingly similar to the one of a very accurate inference achieved by the combination
of ACE and maximum likelihood. Therefore mfDCA, while extremely poor as a generative
model, exhibits a good performance at reconstructing the distribution of relevant couplings,
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Figure C.3 - (A) Scatter plot comparing J;; inferred via mfDCA to the direct couplings of ACE with
refinement.: the pseudocount in mfDCA has been set to A = 0.5 in such a way as to obtain the highest
correlation between the two. (B) Spatial distribution of top 400 mfDCA-inferred couplings on the
network. The reconstruction of the topology of relevant couplings is rather robust with respect to
the choice of more approximate inference methods as mfDCA. As in Fig. 3.8A (inset) of Chapter 3,
they are concentrated at short range, i.e. they connect links lying close either to the active site or the
allosteric site and in the central high-shear path. Long-range mfDCA couplings, connecting links
around respectively allosteric and active site, are weaker and appear among the top 600-1000 ones,
implying an even worse performance at predicting long range epistasis than ACE + refinement.

as shown in Fig. C.3B.

C.4 Mutation costs and generative performance in the inferred Ising
model

Swap mutations are enforced by the in-silico evolution. Costs of double mutations, i.e. joint
mutations affecting links i and j, can be computed in the original model via fitness changes
A =F — F;j, where ;; is the fitness after springs in  and j have been mutated. A double
mutation can correspond either to (i) adding two springs at links i and j (i.e.0; =0 =1) or
removing them (i.e. o; = 0; = 0) or to (ii) moving a spring from link i to link j or viceversa (i.e.
0;=0,0j=1o0ro;=1,0;=0). Let us call the former non-swap mutations and the latter swap
mutations.

Swap mutations conserve the total amount of springs which is fixed to 360 given the fixed
value of coordination during the in-silico evolution (z) = 5. Hence, these swap mutations are
the ones performed by the evolution algorithm. As optimal allosteric configurations maximize
fitness with respect to this type of mutations, we opt to consider solely this kind when we
compare mutation costs in terms of fitness and inferred energy (see Fig. 3.6C). We define
effective single mutation costs A%; and A&; by taking, for each link, the swap with a link

144



C.4. Mutation costs and generative performance in the inferred Ising model

in the external region which is more rigid, as visible in e.g. Fig. 3.5, and thus mutations are
completely neutral, whose cost is rougly zero.

Generative power. For the generative step, we implement a Monte Carlo sampling which
which follows a swap-like dynamics as for the original numerical evolution. This ensures
to select sequences from the inferred model that are structurally as close as possible to the
initial data, i.e. with the same average coordination (z) = 5, that is necessary for a consistent
comparison.

Relaxing this constraint in the sampling leads to sequences endowed with higher internal
variability, yet lying in the same range on fitness. Hence, the inferred model incorporates
rather well the information on the fixed amount of springs. The parameters of the Ising model
are inferred in such a way as to match single-site occupancy, which reflects the spatial pattern
of coordination in the allosteric networks. In Fig. 3.5 we show that generated sequences,
despite having lower fitness, reproduce successfully this property.

C.4.1 Comparison with conservation

Single-site frequency in protein alignments is informative about local conservation and is
used as a standard measure of mutation costs at a certain position [236]. It can be fit by an
independent-site Ising model where the energy (Eq. 3.9) contains only field terms and the
inference from link occupancies (o;) translates to fitting the fields #; to satisfy

hio;

Z

(oi)= ) (C.19)
where Z =} eli%i Energy changes A&; upon point mutations can directly be computed.
The energy cost of a mutation in an independent-site model is A&; = (20; — 1) h;, where the
field h; can be determined up to a constant « by inverting Eq. C.19

hi =log({o;)) + @. (C.20)

The sequences in the MSA have a fixed average coordination z = 5 resulting in an average
occupancy of & = 360/408 = 0.88 in the case L = 12 with periodic boundaries, see Chapter 1,
Sec. 1.4. Hence, the field in the independent model should be non zero when the occupancy
is away from & to consistently describe conservation of both occupied and vacant links o =0
and o = 1. In other words, the condition of zero field & = 0 should result in (¢;) = . To satisfy
this constraint the independent model of Eq. C.19 has to be modified as follows

eli%i (o)

7 (C.21)

(o) =(0i)p=

where f(o; =1) = and f(o; = 0) = 1—-4. The partition function Z; is written as Zj =
elo +(1-0a).

145



Appendix C. Co-evolutionary analysis

The consensus gauge h;(o = 0) = 0 has been chosen, so that only /; (o = 1) is non zero. Hence,

the resulting field is
(0i)(1-0)
hi=log| —————|, C.22
Og(0(1—<ai>)) (22

describing how the observed occupancy of a link 7, {(o;), is biased away from the average
occupancy ¢ = 360/408 = 0.88. Indeed, (o ;) = ¢ is recovered when h = 0.
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Figure C.4 - Conservation as function of the observed frequency (o ;). The blue diamonds are obtained
via Eq. C.23, while the red circles from the definition in Eq. 1.12 [100, 155]. The definition of Eq. C.23
better represents the structure of our data where a proper measure of conservation needs to take into
account the background frequency ¢ = 0.88.

The average energy cost of single mutations can be computed directly as

(A&;) = 2aidp—1Dh; (C.23)
B 2(0;)(1-6) ~
e —(o) + (o1 -6)

1| ;. (C.24)

On average the cost of single mutations, (A&;), gives a measure of the conservation of link i,
as itis 0 when (o ;) = ¢ and it increases the more link i tends to be either occupied or vacant.
The performance of this measure of conservation is compared in Fig. C.4 with conservation
defined as in Eq. 1.12 [100, 155].

The improvement achieved by the pairwise model over this conservation-based measure of
mutation costs is extremely significant, see inset of Fig. 3.6C.

On the one hand, conservation is a purely local measure — it takes into account how a
particular position is crucial to the propagation of the allosteric response. Including pairwise
couplings proves to be necessary to capture the context-dependence of mutation costs, and
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thus must be included for their quantitative prediction.

On the other hand, the degree itself of structural conservation is rather low due to the hetero-
geneity of the shear-design MSA: the conformation, precise location and size of the shear path,
hence the role of each link, can vary from architecture to architecture, leading to low structural
conservation, with peaks only around the active and allosteric site. Conservation is found
much higher within one set of dynamically related solutions (as for Fig. 3.3A), corresponding
to one realization of the shear design among the many included in the MSA — see in particular
Fig. Fig. 1.13.

C.5 Simple model illustrating the failure of DCA

To explain the discrepancy between short-range and long-range DCA-predictions of epistasis,
we resort to the simple model of Fig. 3.10 as discussed in Chapter 3. We assign to all the 49
functional configurations the same fitness ., all the other 28 — 49 configurations would not
belong to the sample of optimal configurations and are taken with zero fitness, thus A% = 0 if
a mutation (single or double) results in a configuration still belonging to the optimal sample
and AF = & otherwise. If we model each unit as a spin o = 0, 1, this fitness function can be
mathematically written as

F =F(0102+0304—01020304)-(0506+ 0708 —05060703) (C.25)

i.e. it introduces high order couplings both at short (within groups and subparts) and long
range (across subparts).

We can estimate average mutation costs by counting how frequently mutations would lead to
a configuration outside of the optimal sample, yielding

AANF 1y = AF1p — AF| — AFp = 21/49F —21/49F —21/49F = —21/49F (C.26)
AAF 5 = 33/49F — 21/49F —21/49F = —9/49F (C.27)
BAF2l _)1/9~23 (C.28)
[AAF 5] ' .

Next, by a simple likelihood maximization we infer the set of J;; and h; compatible with (o;)
and (o ;0 ;), single-site and pairwise frequencies of the optimal sample. We estimate /1, =1.18
and J15 = 0.40, thus the prediction by DCA

[AAE12| | J12(2(01) +2(02) —4(0102) — DI _ 1)12(-21/49)| _

= = =~ 6. (C.29)
[AAE15|  1J15(2{01) +2(05) —4(0105)—1)|  |J15(—9/49)|
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i.e. the DCA prediction is significantly biased towards short-range epistasis. Due to symmetry
of our model, epistasis and the DCA-prediction for any combination of units in the two
subparts is the same as for units 1 and 5; similarly, the result for 2 units within the same group
is given by the values for units 1 and 2. For the remaining combinations of units, i.e. the
ones belonging the same subpart but to different groups (e.g. i = 1 and j = 3) we obtain that
epistasis is weaker compared to units within the same group

IAAFp| | -21/49F|
IAAF 5| |—7/149F|

(C.30)

Since each subpart can be of different type (OR gate), units from different groups (i.e. types)
are less tightly constrained by function. The DCA-prediction does not underestimate epistasis
as for units of different subparts (i.e. at long distance) with

IAAE2|  1]12(=21/49)] ~35
|AAE 3] |J13(7/49)|

(C.31)

where /i3 = —1.01. From Eq. C.28, Eq. C.29, Eq. C.30 and Eq. C.31 it is straightforward to cal-
culate |AA(§13|/|AA$12| X |AA§12|/|AA§13| ~0.86 and |AA$15|/|AA£12| X |AAg12|/|AA915| =
0.33.

C.5.1 Feedforward neural network

To understand which machine learning tools could improve the prediction of epistasis in
the simple model, we have built a feed-forward neural network performing least-squares
regression of sequence data based on their fitness, see Fig. 3.16 in Chapter 3.

For data in the training set, we provide the network with both the input sequence and the
target answer, i.e. a label 1 (standing for fitness &) or 0. We vary the size of the training set
from 10% to 80% of the 28 = 256 total sequences and we keep the remaining sequences of the
sample for validation of the accuracy of prediction. We learn the weights, i.e. the connections
between layers, which minimize the mean squared error between the output of the network
and the target answers by stochastic gradient descent from a random orthogonal initialization.

The 10% of learning runs with the best performance on the training dataset reach an average
training error ranging between ~ 4 x 107 for a training set with 10% of the sample (25 config-
urations) to ~ 3 x 10~'? with 80%; the average validation error for the same runs is between
~3x107! and ~ 2 x 1072 respectively.

We repeated the learning with an architecture where the width of the first hidden layer is
bigger than the length of input data, for instance 16 and 32. For a width of 16 hidden units,
the top 10% of trainings maintains an average accuracy on the training set of order 1078 for
the smaller training set (10% of the sample) and of order 10~!° for the largest one (80% of the
sample); the corresponding average validation errors are ~3 x 107! and ~ 4 x 1072,

148



C.5. Simple model illustrating the failure of DCA

When increasing further the first layer to a width of 32, we also added a dropout (here equal to
0.3) to balance the increase of parameters to learn with the same amount of data and avoid
overfitting. In this way we obtained that the training error, averaged over the 10% best runs,
was higher (from ~ 8 x 107> fora training set with 10% of the sample to ~ 6 x 1078 with 80%)
but the performance on the validation set was better (respective average errors of ~ 2 x 107!
and 107%). Provided that the training set is not too small, these numerical tests confirm that a
trained neural network, when presented with an optimal sequence mutated at some position,
can predict the value of its fitness with good accuracy in such a way as to predict AZ ~ 0 when
it still belongs to the optimal sample or A% ~ 1 if it does not. This ensures that also epistasis
would be accurately predicted at any range.
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