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Summary 
 

The thalamus, once believed to be a simple relay station between the body periphery and the 
neocortex, has started to be recognized as a key player in higher-order functions, such as 
attention. It participates in the transition between brain states, such as sleep and wakefulness, 
and thalamocortical oscillations. Many of these functions involve the reticular nucleus (Rt), an 
inhibitory brain structure that surrounds the thalamus and where thalamocortical and 
corticothalamic axons establish synaptic contacts. Recent technical advances have made 
possible the study of thalamic activity in vivo and its contributions to cortical processing and 
behavior. However, a unified understanding of how network dynamics in the thalamus and the 
thalamocortical system is shaped by its neurons and synapses is still lacking.  

To address these challenges, we developed biophysically-detailed computational models of 
thalamic and reticular neurons. We then incorporated them in a large-scale model of thalamo-
reticular microcircuitry, whose connectivity was directly constrained by three-dimensional 
reconstructions of neuronal morphologies. We included intrathalamic connections through 
chemical synapses, gap junctions and synapses from the sensory periphery and the neocortex. 
A large part of the data used to build and validate the model was extracted from the literature 
and leveraged a framework for its systematic and collaborative curation. This framework 
allowed us to keep track of parameter values used in the model, along with metadata describing 
the species, brain regions and experimental conditions. 

As a first validation of the model at the network level, we studied the generation of spindle-
like oscillations. We found that external inputs are necessary to initiate this rhythm, while its 
termination can be sustained by the synaptic interplay alone, with a key role of mutual 
inhibition between reticular neurons. We found that that waxing-and-waning oscillations have 
a clear spatial component, that reflected the connectivity through chemical synapses as well as 
gap junctions. Finally, we investigated how differential depolarization in reticular and 
thalamocortical neurons influence the properties of spindle-like oscillations and predicted 
conditions where they are less easy to evoke. 

Taken together this thesis demonstrates how a bottom-up modelling approach can be 
successfully applied to reconstruct and simulate thalamic microcircuitry, which shows 
emergent network behavior compatible with experimental findings, and paves the way for 
understanding the role of the thalamus in thalamocortical functions. 

Keywords: thalamus, reticular nucleus of the thalamus, computational model, simulation, 
neurons, synapses, gap junctions, sleep spindles 
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Sommario (Italian abstract) 
Il talamo, una volta ritenuto una semplice struttura di trasmissione d’informazione tra la 
periferia del corpo e la neocorteccia, si riconosce or ail suo ruolo in funzioni di ordine superiore, 
quali l’attenzione. Partecipa alla transizione tra stati cerebrali, come il sonno e la veglia, e nelle 
oscillazioni talamocorticali. Molte di queste funzioni coinvolgono il nucleo reticolare, un 
nucleo inibitorio che avvolge il talamo e in cui gli assoni talamocorticali and corticotalamici 
stabiliscono contatti sinaptici. Recenti progressi in ambito sperimentale hanno reso possible lo 
studio dell’attività talamica in vivo e come questa contribuisca all’elaborazione corticale e al 
comportamento. Tuttavia, non è ancora disponibile una visione d’insieme di come i neuroni e 
le sinapsi a livello talamico e talamocorticale influenzino le dinamiche di rete.  

Per rispondere a queste domande, abbiamo sviluppato modelli matematici biofisicamente 
dettagliati dei neuroni talamici e reticolari. Li abbiamo poi incorporati in un modello esteso del 
circuito talamo-reticolare, la cui connetività è stata derivata direttamente dalle morfologie dei 
neuroni riscostruite in 3D. Abbiamo incluso le connessioni intratalamiche mediate da sinapsi 
chimiche, giunzioni comunicanti e sinapsi dalle afferenze sensoriali e neocorticali. Gran parte 
dei dati usati per costruire e validare il modello sono stati estratti dalle pubblicazioni 
scientifiche e hanno sfruttato un framework per l’annotazione sistematica e collaborativa della 
letteratura. Questo framework ci ha permesso di tenere traccia dei valori assegnati ai parametri, 
insieme ai metadati che descrivono specie, area del cervello e condizioni sperimentali. 

Come prima validazione del modello a livello di rete, abbiamo studiato la generazione di 
oscillazioni simili ai fusi del sonno. È risultato che inputs esterni sono necessari per dare inizio 
a questo ritmo, mentre la sua cessazione può essere sostenuta anche solo dall’attività sinaptica, 
con un ruolo importante rivestito dall’inibizione reciproca tra i neuroni reticolari. La forma 
delle oscillazioni è risultata chiara anche a livello spaziale e riflette la direzione delle 
connessioni attraverso sinapsi chimiche e giunzioni comunicanti (gap junctions). Infine, 
abbiamo investigato come differenti livelli di depolarizzazione nei neuroni reticolari e 
talamocorticali influenzino le proprietà dell’oscillazione e predetto condizioni in cui essa è più 
difficile da evocare. 

Nell’insieme, questa tesi dimostra come un modello bottom-up possa essere applicato con 
successo nel ricostruire e simulare un microcircuito talamico e come questo modello generi 
attività emergente compatibile con i risultati sperimentali. Inoltre, apre la strada alla 
comprensione del ruolo del talamo nelle funzioni talamocorticali. 

Parole chiave: talamo, nucleo reticolare del talamo, modello matematico, simulazione, 
neuroni, sinapsi, giunzioni comunicanti, fusi del sonno. 
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1  Introduction 

1.1 Motivation 

The thalamocortical system constitutes a large portion of the mammalian brain, consisting of 
different thalamic nuclei and their reciprocal interactions with the neocortex. The thalamus, 
once believed to be a passive relay station of sensory information to the neocortex, is now 
recognized as a key player in some cognitive functions and more complex computations 
(Rikhye et al., 2018; Saalmann and Kastner, 2015).  

Several experimental studies supported this change of view. First, although the main role of 
first-order sensory nuclei is to transmit information from the body periphery to the neocortex, 
their main input does not come from sensory afferents. Indeed, the corticothalamic fibers 
projecting to the thalamus greatly outnumber thalamocortical ones (Deschênes et al., 1998; 
Sherman and Koch, 1986). Moreover, corticothalamic synapses are the most numerous on 
many, if not all, neurons of the thalamus and associated reticular nucleus (Bickford et al., 2010; 
Morgan and Lichtman, 2020; Sherman and Koch, 1986; Van Horn et al., 2000). Second, there 
is growing evidence showing that behavioral context, such as attention, modulates the 
information transmitted at the level of the thalamus, likely involving corticothalamic feedback 
to the thalamus and the reticular nucleus (McAlonan et al., 2008; Wimmer et al., 2015). Third, 
the thalamus and Rt participate in thalamocortical and corticothalamic rhythms associated with 
different states of vigilance (e.g. wakefulness and sleep), such as slow waves and sleep spindles 
(Adamantidis et al., 2019; Destexhe et al., 2007; Llinás and Steriade, 2006; Steriade, 2006; 
Steriade et al., 1993).  

Several experimental and theoretical studies have explored aspects of the structure and function 
of thalamic circuitry, yet a comprehensive view of which cellular, synaptic and circuit 
components generate diverse network dynamics is still missing. Computational modelling can 
help the understanding of complex neuronal systems, bridging spatial and temporal scales of 
experimental investigation and generate experimentally-testable predictions (Einevoll et al., 
2019). In this thesis, we aim to integrate diverse sources of experimental data from the rodent 
thalamus in a detailed computational model of thalamic microcircuitry. Differently from other 
models, we do not have a specific application in mind (top-down design), but start from the 
neuronal and synaptic components of the system and study how they interact to produce 
emergent network behavior (bottom-up approach).  
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In the following paragraphs we review known aspects of cellular and circuit properties of the 
thalamo-reticular loop, with a focus on network oscillations generated in the thalamus and 
highlight open questions that can be addressed in a detailed computational model of thalamic 
microcircuitry. Additional details on cellular and synaptic anatomy and physiology, gathered 
from the literature and from in-house experimental data, used to constrain and validate the 
neurons and microcircuit model, will be presented in Chapter 4. 

1.2  Experimental and computational background 

1.2.1 The reticular nucleus and thalamo-reticular connectivity 

An important and often neglected structure, which is part of the thalamocortical system, is the 
reticular nucleus of the thalamus (Rt). It is a shell-shaped nucleus, critically located at the 
interface between ascending fibers from the thalamus to the cortex and descending 
corticothalamic projections (Pinault, 2004), containing mainly GABAergic inhibitory cells (de 
Biasi et al., 1986; Cavdar et al., 2013; Houser et al., 1980). Thalamocortical and 
corticothalamic neurons give off axonal collaterals in the Rt and excite reticular neurons, while 
the latter innervate thalamocortical neurons (Ohara and Lieberman, 1985; Scheibel and 
Scheibel, 1966a).  

Early studies showed its role in the generation of network oscillations, in the 7-16 Hz frequency 
range (Steriade et al., 1987). Similar rhythms, called sleep spindles, are observed in the 
electroencephalogram of mammals during periods of light non-REM sleep (Fernandez and 
Luthi, 2019; Loomis et al., 1935). Recent technical advances, such as targeted manipulation of 
neuronal populations through optogenetics, have confirmed that cortical spindles can be 
evoked by stimulating the Rt (Bartho et al., 2014; Halassa et al., 2011; Thankachan et al., 2019), 
confirming its involvement in their generation. Although the Rt is involved in other functions, 
such as attentional-mediated sensory filtering (McAlonan et al., 2008; Nakajima et al., 2019; 
Wimmer et al., 2015), here we will focus on its role in the generation of spindle-like rhythms 
and how the same circuitry can serve pathological brain oscillations (Beenhakker and 
Huguenard, 2009). 

Similarly to thalamocortical projection (TC) neurons, Rt neurons fire action potentials in 
different firing modes, tonic firing and low-threshold bursting, depending on their resting 
potential in vitro (Avanzini et al., 1989; Connelly et al., 2017; Spreafico et al., 1988). The 
proportion of low-threshold bursting neurons vary between different sectors of the Rt (Lee et 
al., 2007), with those associated with somatosensory thalamic nuclei showing a higher 
tendency to burst (Clemente-Perez et al., 2017; Fernandez et al., 2018). This heterogeneity 
among sensory modalities in the Rt is reflected by the incidence of bursting in different 
thalamic nuclei in vivo (Ramcharan et al., 2000) and the correlation of activity in sensory-
projecting Rt sectors with sleep spindles (Halassa et al., 2014). Although the general 
physiological properties of Rt and TC neurons in vitro are quite similar, when considering their 
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ability to fire in distinct modes, there are differences in the ion channel subtypes they express. 
For instance, CaV3.1 low-threshold calcium channels are the major type in TC neurons, while 
Rt neurons express predominantly CaV3.2 and CaV3.3 types (Talley et al., 1999). Although we 
know that low-threshold calcium channels in Rt are necessary for spindle rhythmogenesis, as 
shown in knock-out mice (Pellegrini et al., 2016), while those expressed in TC neurons are not 
(Lee et al., 2013), no experimental study has shown that the specific types expressed in Rt 
neurons are necessary for rhythm generation.  

Some interesting open questions remain concerning intra-reticular connectivity. While 
electrical coupling through gap junctions between reticular neurons has been extensively 
demonstrated through in vitro paired recordings and dye-coupling experiments (Landisman et 
al., 2002; Lee et al., 2014; Long et al., 2004; Parker et al., 2009), some recent findings 
suggested the absence of inhibitory connections between reticular neurons in adult mice (Hou 
et al., 2016), while other physiological studies have shown mutual inhibition between Rt 
neurons, at least in rodents younger than 2 weeks (Deleuze and Huguenard, 2006; Lam et al., 
2006).  A stimulating hypothesis has been proposed regarding the opposite functional roles of 
these two types of connections: while gap junctions would promote synchronized activity in Rt 
neuron assemblies, inhibitory synapses would mediate desynchronization via inhibition of 
bursting in the Rt (Beenhakker and Huguenard, 2009; Fogerson and Huguenard, 2016; Sohal 
and Huguenard, 2003). An indirect result supporting this hypothesis is that mutations of 
voltage-gated sodium channels, which are risk factors for absence epilepsy, cause a failure in 
inhibition between Rt neurons and spike-wave discharges (Makinson et al., 2017). Direct 
suppression of this inhibitory pathways is not feasible experimentally, but can be explored in 
computational models along with the role of electrical synapses in the Rt.  

Another interesting feature of thalamo-reticular connectivity is the existence of closed-loop 
and open-loop circuits. In the closed-loop configuration, a TC neuron receives inhibition from 
the same Rt neurons that it excites (feedback inhibition); in the open-loop configuration the TC 
neuron receives inputs from other Rt neurons (lateral inhibition). The open-loop configuration 
is the most prominent (80-90%), as shown in anatomical (Pinault and Deschênes, 1998) and 
physiological studies (Pinault and Deschênes, 1998; Shosaku, 1986). Since the identification 
of closed-loops and open-loops at the single neuron level is experimentally challenging, a 
computational model with connectivity reconstructed from the 3D shape of neurons would give 
access to all the connections between TC and Rt neurons. Regarding the functions of these 
configurations, some open questions still remain. Computational models suggested that open-
loop connectivity increases cortical output by acting as a tunable filter (Willis et al., 2015) and 
that heterogeneous networks, involving both open and closed-loops, support oscillation and 
propagation better than their homogeneous counterparts (Brown et al., 2020).  
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1.2.2 Historical perspective of spindle generation in the thalamus and reticular 
nucleus 

Sleep spindles are discrete burstlike events of 10-15 Hz cycles recorded in the 
electroencephalogram (EEG) during sleep in different animals. Sleep spindles have been first 
discovered in EEG, studied through anatomical lesions studies and their research continues 
today, regarding their mechanisms and functions (Fernandez and Luthi, 2019). They were 
identified around 80 years ago in EEG recordings of naturally sleeping humans (Loomis et al., 
1935) and after 50 years the thalamus was identified as pacemaker and that thalamocortical 
loops are necessary for recording sleep spindles in the cortical surface. 

The observation of spindle rhythms in the cut ends of thalamocortical fibers in cats paved the 
way for the study of their origin (Adrian, 1941); it was found later found that they were present 
in the thalamus after removal of the cortex (Morison and Bassett, 1945). This finding triggered 
a lot of following studies and led to the “thalamic pacemaker” hypothesis (Andersen and 
Andersson, 1968; Steriade and Deschenes, 1984). According to this hypothesis, the 
characteristic patterns recorded at the EEG originates from rhythmic activity in the thalamus, 
which is then transmitted to the neocortex. A mechanism for spindle generation based on 
thalamo-reticular “loops” had already been suggested by Scheibel and Scheibel (Scheibel and 
Scheibel, 1966b, 1966a, 1967); they also predicted that the reticular nucleus is inhibitory and 
that the inhibition of TC cells from Rt cells was important for thalamic rhythmicity (Destexhe 
and Sejnowski, 2003). The role of inhibitory activity in thalamic neurons was also suggested 
by intracellular recordings of thalamic neurons in cats, revealing rhythmic inhibitory events in 
phase with cortex (Purpura, 1968).  

Another hypothesis suggested that the reticular nucleus alone was capable of generating 
spindles. Steriade and colleagues first showed in in vivo recordings in anesthetized cats that 
spindle oscillations in thalamic neurons were abolished after disconnection from the Rt 
(Steriade and Deschenes, 1984). A subsequent study found spindles in the anterior portion of 
the Rt, isolated from other thalamic nuclei, demonstrating that the Rt nucleus is the major 
thalamic spindle pacemaker (Steriade et al., 1987). Experiments in thalamic slices in ferrets 
supported the hypothesis that spindles are generated through interactions between TC and Rt 
neurons (Bal et al., 1995a, 1995b; Kim et al., 1995; von Krosigk et al., 1993).  

Computational models helped unveiling the cellular, synaptic and network mechanisms 
underlying spindle generation in networks of reticular and thalamocortical neurons (Section 
1.2.4), as well as the isolated reticular nucleus (Section 1.2.5). For example, the contribution 
of intrinsic neuron mechanisms to spindle termination (or “waning”) spindle refractory periods 
(Section 1.2.3) through Ca2+-mediated upregulation of the Ih current, and the non-linear 
activation properties of GABAB currents were first predicted by computational models and then 
confirmed experimentally (see 1.2.4). 
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1.2.3 The classical model of spindle generation (thalamus and reticular nucleus 
interactions) 

Different neurophysiological mechanisms have been proposed to participate in spindle 
initiation, synchronization and termination. Since many of these aspects can be easily dissected 
in computational models, they will be summarized and discussed here. 

Traditionally, the intrinsic oscillatory properties of Rt neurons and their anatomical 
connectivity with TC neurons would sustain the generation of network oscillations, as shown 
in pioneering in vitro studies in ferret (Bal et al., 1995a, 1995b; Kim et al., 1995; von Krosigk 
et al., 1993), which have been associated with “spindle-like rhythms” in rats and mice slice 
(Huguenard and Prince, 1994; Jacobsen et al., 2001; Kleiman-Weiner et al., 2009; Warren et 
al., 1994). In vivo, cortical inputs would act as trigger of oscillatory activity in the TC-Rt-TC 
loop which is then relayed to the cortex through thalamocortical projections (Pratt and Morris, 
2015; Steriade, 2005).  

The low-threshold burst firing mode is the predominant type of discharge during sleep spindles 
and promotes their initiation. During non-REM sleep, burst discharge in Rt neurons often 
coincides with the beginning of a spindle in the EEG (Fernandez and Luthi, 2019), then 
increases and is phase-locked with oscillatory cycles within a spindle, as shown in vivo in rats 
(Buzsáki, 1991; Gardner et al., 2013). What is the minimal number of Rt neurons required to 
generate a cortical or thalamic spindle? Although in vitro experiments in ferrets suggested that 
even a single Rt neuron can initiate spindle-like rhythms in a slice (Kim et al., 1995), it is still 
experimentally challenging quantifying the minimum population size required to generate 
spindles in the thalamus and the cortex.  

Burst firing in Rt neurons conveys strong inhibition to TC neurons due to the structural and 
functional properties of Rt synapses (Kim et al., 1995), although weaker connections from Rt 
to ventrobasal TC neurons have been shown as well (Cox et al., 1997). GABA released from 
Rt neurons terminals activate GABAA receptors onto TC neurons, which show large inhibitory 
postsynaptic potential (IPSPs). The large amplitude of IPSPs is explained at least in part by the 
low Cl- reversal potential in rat TC neurons (Ulrich and Huguenard, 1997). The contribution of 
GABAB currents could be species-dependent, for instance it has not been initially shown in 
mice (Warren et al., 1994), probably because it was masked by the larger GABAA component 
(Warren et al., 1997), or because of extrasynaptic location of GABAB receptors. Two different 
computational models predicted the necessity of a nonlinear activation of GABAB responses, 
which was then confirmed experimentally (see Section 1.2.4). 

TC neurons can fire post-inhibitory low-threshold spikes or bursts and in turn excite Rt 
neurons. The predominant open-loop network configuration allows for a propagation of the 
oscillation and recruitment of other Rt neurons as shown in slice in ferrets to generate more 
synchronous bursting in Rt neurons and more robust rebound in TC neurons (Kim and 
McCormick, 1998a; Kim et al., 1995). Gap junctions connectivity may contribute further 
synchronization between bursting Rt neurons (Fernandez and Luthi, 2019), although this aspect 
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has not been investigated at the network level so far. At the level of electrically-coupled Rt 
neuron pairs, it has been shown that low-threshold Ca2+ spikes, due to their slower dynamics, 
are transmitted through gap junctions more easily than single Na+ spikes (Long et al., 2004). 

Recent in vivo recordings in the mouse (Bartho et al., 2014; Rovó et al., 2014; Urbain et al., 
2019), showed that TC neurons do not fire on all cycles of the oscillation, confirming earlier 
findings in ferret (Kim et al., 1995). This suggests that network synchrony in intrathalamic 
circuits is relatively modest and efficient desynchronizing mechanisms, such as lateral 
inhibition between Rt neurons, are present (Fernandez and Luthi, 2019). Such desynchronizing 
and inhibitory mechanisms could also contribute to spindle termination.  

Sleep spindles are limited in time to 0.5-3s and exhibit refractory periods of 5-10 seconds as 
shown in ferret in vitro (Bal and McCormick, 1996; Lüthi et al., 1998). These in vitro studies 
showed that bursting in Rt and TC neurons can be autoregulated by intrinsic mechanisms. In 
TC neurons, repetitive burst activates HCN channels (the molecular substrate of Ih currents) 
through persistent calcium influx, which progressively depolarize them and prevent them from 
bursting (Bal and McCormick, 1996; Lüthi and McCormick, 1998). This was indeed observed 
in thalamic slices of ferrets with the application of extracellular cesium (Cs+), which primarily 
blocks Ih (Bal and McCormick, 1996) and ZD7288, a specific Ih blocker (Lüthi et al., 1998). In 
this in vitro preparation spindle waves are visible in TC single neurons and are characterized 
by barrages of IPSPs at 6-10 Hz and low-threshold Ca2+ spikes occurring every second to fourth 
IPSP (Bal and McCormick, 1996). Each spindle wave is followed by a slow 1-4 mV 
afterdepolarization (ADP), that makes it difficult to evoke Ca2+ spikes during the seconds 
immediately following a spindle wave. The application of Cs+ abolished the ADP, 
demonstrating that it is generated by persistent activation of Ih, and transformed spindle waves 
into sustained rhythmicity at the same frequency. The depolarization and the change in 
apparent input resistance induced by the upregulation of Ih would reduce the capacity of IPSPs 
from the reticular nucleus of evoking low-threshold Ca2+ spikes in TCs (Bal and McCormick, 
1996). Subsequent experimental studies in ferret slices demonstrated that the kinetics and 
voltage dependence of activation of Ih are sensitive to intracellular Ca2+ (Lüthi and McCormick, 
1998). In this study the authors proposed that Ca2+ influx through rebound Ca2+ spikes and 
IPSPs in TC cells affect the voltage-dependent properties of Ih and upregulate it. It was later 
shown that the upregulation of Ih by Ca2+ occurs through cAMP (Lüthi and McCormick, 1999). 
It was proposed that persistent activation of Ih is initiated by a rapid increase of intracellular 
Ca2+, which stimulates the production of cAMP, which interacts then with open h-channels, 
inducing a prolonged activation of Ih. The Ca2+-mediated upregulation of HCN channels in TC 
cells was first predicted by computational models (see 1.2.4).  

The gradual hyperpolarization of Rt neurons during the oscillation, could bring the cells below 
the firing threshold and contribute to the “waning” of the oscillation (von Krosigk et al., 1993).  
This gradual hyperpolarization could depend on the activation of Ca+ and Na+-dependent 
potassium currents as shown in ferret (Kim and McCormick, 1998b), but also on network 
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mechanisms. In vivo, however, there’s evidence showing that some reticular neurons also 
gradually depolarize during spindles (Bal and McCormick, 1996).  

In vivo, cortical and brainstem mechanisms could contribute to spindle termination, although 
the exact mechanisms are still debated. Cortex could contribute to spindle termination by 
providing desynchronizing input to the thalamus and Rt neurons as shown in vivo in cats and 
in computo (Bonjean et al., 2011; Timofeev et al., 2001). A recent experimental study during 
natural sleep in rats provided evidence supporting the Rt hyperpolarization hypothesis, 
showing that Rt burst firing consistently decreases from cycle to cycle during spindles and in 
particular towards their end (Bartho et al., 2014). The same authors pointed out that the causes 
of decreased activity in Rt neurons towards the end of the spindle are still unclear. 

Closely related to the termination (and “waning”) of spindle oscillations is the refractory 
period, which has been studied in vitro in ferret (Kim et al., 1995) and in vivo in cats (Destexhe 
et al., 1998a). Repetitive stimulation in vitro of the perigeniculate (reticular) nucleus or 
prethalamic afferents to the dLG (visual-related thalamic nucleus), revealed a refractory period 
of 7-14 s and stimuli during this period resulted in shorter local spindles that did not propagate 
along the slice (Kim et al., 1995). Similar values of refractory periods (8-12 s) were observed 
in vivo in cats through cortical stimulation. In the associated model the refractory period was 
the result of the Ca2+-dependent increase of Ih activity (Destexhe et al., 1998a). 

1.2.4 Computational models of thalamic and reticular circuits generating spindles 

The previous paragraphs highlighted some of the open questions regarding cellular properties, 
intrathalamic connectivity and their role in spindle and spindle-like rhythm generation. Some 
of these questions are more easily accessible through computational modelling.  

Several models of thalamic and thalamocortical networks have been developed and addressed 
different questions concerning spindle initiation (and waxing), propagation, termination 
(waning) and the transformation of spindles into epileptic-like rhythms. According to the scope 
of this thesis, here we focus on models that generate spindles in isolated thalamic networks, 
while the contribution of cortex will be discussed in Chapter 4.  

A computational model including one TC and one Rt neuron interconnected was able to 
generate 8-10 Hz spindles (Destexhe et al., 1993). It suggested an important role of intrinsic 
currents in TC cells in the waxing and waning of spindles, the role of TC neurons in spindle 
initiation and rhythm generation. Later models showed how certain combinations of Ih and low-
threshold calcium conductance can make TC cell models autorhythmic (Amarillo et al., 2015; 
Wang, 1994). Furthermore, the model by Destexhe and collaboratros (1993) predicted an 
important role of the Ca2+-mediated regulation of the Ih current in spindle termination, which 
has been confirmed experimentally (see 1.2.3) in thalamic slices (Bal and McCormick, 1996; 
Lüthi and McCormick, 1998). It was found that the regulation of Ih by Ca2+ occurs by Ca2+-
induced stabilization to the open state of the channel (Lüthi and McCormick, 1998), exactly as 
predicted by the model. 



	8	

 

The propagation of spindle oscillations was the focus of a ferret slice model (Golomb et al., 
1996), which improved upon a previous model by introducing spatially dependent connection 
architecture and a GABAB mechanism in postsynaptic TC cells that depended non-linearly on 
the duration of presynaptic Rt bursts. This mechanism was modelled simultaneously in two 
studies, using different approaches (Destexhe and Sejnowski, 1995; Wang et al., 1995). The 
model in Wang et al. (1995) was phenomenological, in the sense that the nonlinear activation 
was necessary to yield the correct network dynamics. The study in Destexhe and Sejnowski 
investigated a biophysical model based on G-protein activation of potassium channels 
associated with GABAB receptors, more closely related to the biological mechanism underlying 
GABAB receptor function. The non-linear activation of GABAB receptors was later confirmed 
experimentally in the thalamus (Kim et al., 1997), hippocampus and cortex (Thomson and 
Destexhe, 1999). The model in (Wang et al., 1995) reproduced a number of findings in ferret 
slices, but lacked a mechanism for spindle termination, thus neurons recruited from the 
oscillatory wavefront did not stop oscillating (Golomb et al., 1996).  A 1-dimensional model 
of 50 TC and 50 Rt neurons closely reproduced propagating waves in ferret slices and included 
ionic mechanisms for the termination, as in previous models (Destexhe et al., 1993, 1996).  

Different models showed how hyper-synchronous bicuculline-induced oscillations (Bal et al., 
1995b; Kim et al., 1995; von Krosigk et al., 1993) can be generated in conditions similar to 
spindle generation, when inhibition in the Rt to TC synapse is dominated by GABAB currents 
(Destexhe et al., 1996; Golomb et al., 1996). A factor that would limit GABAB activation in 
the Rt to TC synapse is the GABAA-mediated inhibition between Rt neurons: in the absence of 
lateral inhibition Rt neurons can produce prolonged bursts that evoke a significant GABAB 
current in TC neurons (Destexhe et al., 1996). Mutual inhibition between Rt neurons, in 
combination with a neuromodulatory drive that depolarizes the resting potential or Rt neurons, 
explained the generation of oscillations in the isolated Rt neurons, as shown in vivo in cats and 
computational modelling (Destexhe et al., 1994a; Steriade et al., 1987). A recent model 
explored the effect of altering the degree of inhibition between Rt neurons and found that an 
increase in Rt to Rt inhibition caused a lengthening of spindles (Bús et al., 2018), while recent 
experimental findings suggested that Rt to Rt inhibition limits pathological rhythms (Makinson 
et al., 2017). This discrepancy may be due to the artificial re-arrangements of 2-dimensional 
connectivity in the model (Bús et al., 2018).  

1.2.5 Computational models of spindles in the isolated reticular nucleus 

Modelling studies participated in the exploration of the “thalamic pacemaker” hypothesis 
Section 1.2.3) and showed how TC-Rt interactions can generate spindles (see Section 1.2.4). 
Computational models also showed how the isolated Rt nucleus is capable of generating self-
sustained oscillations (Destexhe et al., 1994a; Golomb et al., 1994), also reviewed in (Destexhe 
and Sejnowski, 2003), as shown in in vivo recordings in cats (Steriade et al., 1987). Both 
models, although were different in terms of connectivity and of the kinetics of intrinsic and 
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synaptic currents, generated oscillations at ~10 Hz (Destexhe and Sejnowski, 2003), consistent 
with recordings in vivo in the isolated rostral pole of the Rt (Steriade et al., 1987). Important 
elements for rhythm generation inside the Rt were the rebound burst properties of its neurons 
and synaptic interactions through GABAergic receptors (Destexhe and Sejnowski, 2003). The 
model in Destexhe et al. (1994) showed that waxing and waning oscillations in the Rt are more 
easily seen in the average membrane potential of multiple neurons, consistent with waxing and 
waning patterns in the field potential (Steriade et al., 1987). At the single neuron level, the 
oscillation consisted of synchronized subthreshold activity, with individual cells firing single 
spikes or bursts only occasionally. Different connectivity patterns in the model gave rise to 
spindle-like oscillations, provided that each Rt neuron was connected to a neighborhood 
sufficiently extended. On the other hand, if Rt neurons were connected to their immediate 
neighbors only, another type of oscillation emerged: neighboring neurons fired multiple bursts 
in alternation, but the average membrane potential did not show any synchrony (Destexhe et 
al., 1994a). 

Another computational model proposed that differences in neuromodulatory states between in 
vivo and in vitro conditions account for the generation of spindles in the isolated Rt in vivo, but 
not in vitro (Destexhe et al., 1994b). This model suggested that serotoninergic, noradrenergic 
and glutamatergic inputs from the basal forebrain and brainstem were still present in the 
deafferented Rt preparations (Steriade et al., 1987) and contributed to depolarized membrane 
potential (between -70 and -60 mV) of Rt neurons observed in vivo. The depolarizing effect 
of noradrenaline and serotonin observed experimentally in Rt neurons of cats and guinea pigs 
(McCormick and Wang, 1991) was modelled by blocking ~20 % of the leak potassium currents 
(Destexhe et al., 1994a). Incorporating noradrenergic and serotoninergic effects of leak 
potassium currents showed that the Rt network can switch from a silent to an oscillatory mode 
(Destexhe and Sejnowski, 2003). Other factors that can explain the lack of spindle-like rhythms 
in slice experiments is a potential less intact collection of Rt neurons, in term of neuron 
numbers, and decreased dendrodendritic inhibitory connectivity, at least in cat (Fuentealba and 
Steriade, 2005).  

1.2.6 Detailed computational modelling of neural microcircuits 

The examples above illustrate that network models were able to explain different aspects of 
network dynamics and predict the contributions of intrinsic and synaptic mechanisms. Many 
of these models, while including important details on neuronal and synaptic biophysics, neither 
used neuronal morphologies to constrain the connectivity between neurons nor distance-
dependent connectivity, which are likely to alter network dynamics (Rosenbaum et al., 2017). 
Moreover, the choice of neuron numbers did not take into account the relative proportion of Rt 
and TC neuronal populations. Another recent model (Bús et al., 2018) extended the biophysics 
from (Destexhe et al., 1996) by including recent anatomical findings on the relative proportion 
of TC and Rt neurons (Lam et al., 2006), diffuse and focal axonal arborizations of Rt neurons 
into the thalamus (Cox et al., 1996) and higher neuron divergence (number of efferent neurons) 
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from Rt neurons than TC neurons (Lam et al., 2006). Most of these models were built using 
single-compartment neuron models which, although being computationally parsimonious and 
easy to parametrize, neglect the cable properties of biological neurons, synaptic integration and 
active membrane conductances that contribute to dendritic properties (Connelly et al., 2015, 
2017; Herz et al., 2006).  

In this thesis, we propose to follow a bottom-up approach which yielded a detailed 
computational model of neocortical microcircuitry (Markram et al., 2015) to model a rodent 
thalamic microcircuit constrained and validate with experimental data. These types of models 
are not built with a specific hypothesis in mind and can reproduce a number of in vitro and in 
vivo findings without the need of parameter tuning (Markram et al., 2015; Newton et al., 2019; 
Nolte, 2019). Since they require as many parameters as possible to be constrained with 
experimental data, a framework for the systematic manual curation of the neuroscientific 
literature is necessary, where not only experimental data are annotated, but they are stored 
along with metadata, such as species, age, experimental condition (O’Reilly et al., 2017). Such 
frameworks will be very welcome for any neuroscience research project involving large-scale 
data-driven modelling, since they are the basis for leveraging automated text-mining pipelines 
for the curation of the literature (Shardlow et al., 2019). 

As a first validation, we investigate if the model is able to generate spindle-like oscillations 
consistent with in vitro, in computo and recent in vivo findings in rodents, without being 
explicitly built for this purpose. A morphologically and biophysically-detailed model can 
generate predictions regarding the detailed chemical and electrical connectivity between 
neurons and provide useful insights into their role in waxing-and-waning network oscillations 
and other network phenomena. The goal is to dissect which neuronal and circuit mechanisms 
matter, provide guidance for informed simplifications and highlight which experiments would 
deepen our understanding of thalamic structure and function. As detailed in the concluding 
chapter, the model can be extended and used to study other aspects, such as the modulation and 
interaction between thalamocortical rhythms (e.g. slow-wave oscillations and spindles), the 
role of different thalamic neurons in the emergence of receptive fields and the role of cortico-
reticular-thalamic interactions in attentional-mediated sensory filtering, to mention just a few.  

1.3 Thesis outline 

In Chapter 2 (“A Framework for literature curation”), we present a framework that allowed us 
to systematically annotate, store and share data and metadata from the neuroscientific literature. 
This literature-derived data and knowledge complement experimental data in model building 
and validations presented in the following chapters. This chapter is a postprint of a joint 
publication (O’Reilly et al., 2017) (see contributions at the beginning of the Chapter). 

In Chapter 3 (“Experimentally-constrained models of thalamic neurons”) we show how an 
automated pipeline can be used to constrain the parameters of morphologically-detailed single 
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neuron models with in vitro experimental data. This pipeline allowed us to construct a large 
database of unique morpho-electrical combinations of TC and Rt neuron models, which are the 
building-blocks of the microcircuit model presented in Chapter 4. This chapter is a postprint of 
(Iavarone et al., 2019). 

In Chapter 4 (“Reconstruction and simulation of thalamic microcircuitry”) we leverage the 
findings and models from Chapter 2 and Chapter 3 to reconstruct the detailed anatomy and 
physiology of a large-scale thalamic microcircuit, consisting of ~5000 Rt and ~9000 TC 
neurons and interneurons. Although it is based on data from the somatosensory thalamic sectors 
in rodents in vitro, we think that this model can be generalized to other thalamic microcircuits. 
This chapter will be submitted for publication as “Reconstruction and simulation of thalamic 
microcircuitry”. 

Finally, in Chapter 5, we summarize the main contributions of this thesis, the implication of 
this study for thalamus-related functions and dysfunctions, and delineate future directions. 
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2 A framework for literature curation  

	

This chapter is a postprint of joint work with Christian O’Reilly and Sean Hill; it has been 
published as “A Framework for Collaborative Curation of Neuroscientific Literature” in 
Frontiers in Neuroinformatics (O’Reilly et al., 2017), 
doi:https://doi.org/10.3389/fninf.2017.00027.  

 

Contribution: I participated with C.O. in the design of this framework and in the creation of 
the corpus of annotations for thalamic neurons and circuit modelling. I was one the first users 
of the software before its public release and provided feedback on its usability, bugs and feature 
requests. I revised and edited the manuscript with SH.  

	

Abstract 

Large models of complex neuronal circuits require specifying numerous parameters, with 
values that often need to be extracted from the literature, a tedious and error-prone process. To 
help establishing shareable curated corpora of annotations, we have developed a literature 
curation framework comprising an annotation format, a Python API (NeuroAnnotation 
Toolbox; NAT), and a user-friendly graphical interface (NeuroCurator). This framework 
allows the systematic annotation of relevant statements and model parameters. The context of 
the annotated content is made explicit in a standard way by associating it with ontological terms 
(e.g., species, cell types, brain regions). The exact position of the annotated content within a 
document is specified by the starting character of the annotated text, or the number of the figure, 
the equation, or the table, depending on the context. Alternatively, the provenance of 
parameters can also be specified by bounding boxes. Parameter types are linked to curated 
experimental values so that they can be systematically integrated into models. We demonstrate 
the use of this approach by releasing a corpus describing different modeling parameters 
associated with thalamo-cortical circuitry. The proposed framework supports a rigorous 
management of large sets of parameters, solving common difficulties in their traceability. 
Further, it allows easier classification of literature information and more efficient and 
systematic integration of such information into models and analyses. Collaborative curation of 
the literature could be a powerful force driving future modeling endeavors.   
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2.1 Introduction 

In the context of large-scale, highly detailed, and data-driven realistic modeling of the brain, 
developers are faced with the daunting task of reviewing voluminous, and ever growing, body 
of scientific papers to extract all information useful in constraining the large number of 
parameters involved in the modeling process. Without a rigorous approach to support this 
process, the extracted information is often not reusable outside of the project for which it has 
been built. Curated information from the literature that has been embedded into models are also 
often vulnerable to issues regarding the traceability of their origin. This happens for example 
when the embedding does not provide a means to trace back 1) the publication from which the 
value has been extracted, 2) the exact place in the paper from where the information has been 
taken, or 3) the precise method used to transform published numbers into the values inserted 
into models. The last point is particularly important and applied transformations can take 
different forms. The most evident is unit conversion. But more subtle alterations are often 
applied such as changing the nature of the variable (e.g., passing from area to volume by 
considering hypotheses or supplementary factors, such as using cell counts per area from 
stereology studies to model neuronal volumetric densities) or combining different measures 
(e.g., taking the median of values reported by different sources).  

In this paper, we present a collaborative framework for systematic curation of literature and 
creation of annotation corpora that aims at solving these issues. Corpora created through this 
system can be queried programmatically so that curated literature information can be integrated 
into modeling workflows in a systematic, reproducible, and traceable way. This paper is the 
first of a two-paper series and it reports more specifically on the development of an annotation 
format for scientific literature curation and on the public release of open-access tools to assist 
in the creation and management of annotation corpora. The presentation of the broader 
workflow, including the systematic integration of annotated information into modeling 
pipelines will be discussed in the sequel.  

The proposed annotation system has been designed to allow, among other things, systematic 
annotation of numerical values reported in scientific publications so that experimental outcome 
can be efficiently synthesized and integrated into models. We demonstrate the usefulness of 
this approach by presenting an example of an open-access repository of annotations that has 
been created for modeling the thalamo-cortical loop in the context of the Blue Brain Project.  

	

2.1.1 Terminology 

The process of curating or annotating documents or datasets is defined in various ways in 
different contexts. To avoid confusion, we first define these concepts, as they are used in the 
current project.  



	14	

By literature curation, we refer to the process in which the curator (i.e., the person performing 
the curation) identifies documents relevant to a specific topic and annotates (i.e., produces 
annotations) relevant information within these documents. An annotation is defined as a 
structured set of data specifying the precise localization of a subpart of a document which is of 
strategic interest. It would generally be supplemented with additional information (e.g., 
ontological terms describing in a formal way some characteristics of the annotated content). It 
may also contain a free-form comment to make explicit the relevance of the annotation, 
although such comments can be omitted if the highlighted part of the document is self-
explanatory (e.g., "region X is connected to region Y with Z% probability"). Note that this 
process is significantly different from “annotating” as the (generally automated) process of 
extracting syntactic (e.g., part-of-speech) or morphological/semantic (e.g., identifying named 
entities) information from a text.  

2.1.2  Requirements 

We established a set of requirements that a methodological framework for the curation and 
model-integration of the literature information should consider. These are presented in 
subsequent sections. 

 

Collaborative workflow: The approach should allow for collaborative curation of a body of 
literature, meaning that annotations on a particular document can be made by different curators 
in a concurrent fashion. It must therefore be possible to easily merge produced annotations and 
to trace the history of modifications. 

 

Reusable: The result of the curation process should be easily reusable by other researchers. It 
must therefore not rely on implicit knowledge of the curator. The important information 
associated with the annotations must be explicitly specified. 

 

Easily machine-readable: The output of the curation process must be easily machine-readable. 
Although any computer file is “machine-readable”, what makes it easily readable is the use of 
a consistent formatting (e.g., CSV files, text files containing a well-defined JSON data 
structure) with fields using a highly consistent terminology (i.e., controlled vocabulary). This 
terminology should ideally by linked with identifiers from externally recognized entities (e.g., 
terms from public lexica or ontologies) allowing cross-referencing, indexing, and searching 
annotations in relation with specific concepts (e.g., species, brain regions, cell types, 
experimental paradigms). In that sense, free-form text fields are not easily machine-readable 
and should constitute only a limited part of the annotations.  
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Localizable: Annotations must be precisely and reliably localizable in the document of origin. 
This requires the specification of unique identifiers for annotated documents as well as the 
unambiguous localization, within the document, of the position and the extent of the annotated 
content. 

 

User-friendly:  The process of annotating a document must be as light as possible. The curation 
process is expected to be performed mainly by domain-experts, which are performing this task 
as part of other overarching goals. Therefore, it must not be perceived as implying a 
supplementary workload when compared to a more informal review of the literature. Not 
meeting this criterion is likely to result in poor user adoption and, consequently, limited use of 
the proposed framework. 

 

Integration with the existing software ecosystem: The design of the system should rest on well-
established existing tools such that its design is simpler, requires less maintenance, and is more 
sustainable. It should also integrate with existing tools that might be used to produce 
annotations (e.g., text-mining tools) or to consume annotations (e.g., external user interfaces 
such as web-based neuroscience portals).  

 

Support for modeling parameters: In order for this curation process to be useful in modeling 
projects, the proposed tool must provide the features necessary to annotate systematically and 
unambiguously numerical values reported from experiments. 

 

Respect of legal environment: Annotations should be sharable without involving copyright 
issues. For example, they cannot be embedded in documents that are copyrighted. 

	

2.1.3  Existing solutions 

Many projects have been conducted in the past years to support the annotation process in 
various contexts. For example, the online annotation service hypothes.is, proposes to add a 
supplementary layer to the Internet so that web pages can be directly annotated and commented 
(Perkel, 2015). WebAnno (Yimam and Gurevych, 2013) and BRAT (Stenetorp et al., 2012) 
are other examples of relevant projects but are more targeted along providing web-based 
collaborative environments for typical natural language processing tasks, such as annotating 
part-of-speech and syntactic dependencies, identifying named entities, etc. Other research 
teams have worked on developing pipelines for text-mining and automatic generation of 
annotation from papers (e.g., WhiteText (French et al., 2015), Sherlok (R. Richardet et al., 
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2015)) or on manually annotating in great details corpora of scientific papers (e.g., the CRAFT 
(Bada et al., 2012) and the GENIA (Kim et al., 2003) corpora) to serve as benchmark in 
evaluating automated annotators. However, although these initiatives provide interesting tools 
to support the annotation process, none constitute a complete solution meeting our objectives: 
to provide an annotation framework which allows the collaborative construction of corpora 
containing literature-curated facts that can be integrated directly in models. Thus, these projects 
should not be seen as competitor or alternative to the framework we are proposing. They are 
more complementary tools, which we aim to interface with, rather than replace. 

	

2.2 Design 

2.2.1 Collaborative structure 

At the heart of this project is the idea to provide a simple, flexible, and collaborative framework 
for producing and reproducibly consuming literature annotations. For this reason, each 
publication is associated with one plain-text file containing the related annotations (i.e., it is a 
standoff format (Thompson and McKelvie, 1997)), as opposed, for example to a database-
centric design or an in-text annotations system. These plain-text files, which structure is 
discussed in section 2.3, are stored, versioned, and shared through GIT, a free and open-source 
distributed version control system. Aside from allowing easy sharing of annotation corpora 
through existing GIT servers (e.g., GitHub), it allows concurrent work on annotations, 
resolution of merging conflicts, and bookkeeping of modifications. Interaction with the GIT 
system has been made as transparent as possible to the user (e.g., automatic commit when 
changes to annotations are saved, dialog box asking if the modifications should be pushed to 
the server when exiting the application) although the underlying GIT repository can always be 
accessed directly in case of need. 

2.2.2 Ontologies 

2.2.2.1 Use of standard ontologies  
Annotations are tagged with terms from neuroscience ontologies to describe their context and 
allow the programmatic retrieval of subsets of annotations relevant to specific modeling or 
analysis objectives. Further, these tags constitute a direct bridge for interacting with third-party 
applications using the same ontologies. 

 However, although promising initiatives such as the Open Biomedical Ontologies 
(OBO) Foundry (Smith et al., 2007) have been put in place to promote good design practices, 
standardization, and interoperability, the world of ontologies is still a messy one. Many 
propositions are available with different, sometimes overlapping, coverage of the concepts 
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related to neuroscience. Two common problems are the overdefinition of a concept (i.e., the 
same concept being partly or completely defined by different ontological terms) and its 
underdefinition (i.e., no ontological term defining completely or specifically a given concept). 
The first problem arises most acutely when trying to model a large field such as neuroscience 
by combining different ontologies, whose coverage overlaps (Ghazvinian et al., 2011).  The 
second problem is intrinsic in modeling of an expanding knowledge involving dynamic 
creation of new concepts. 

 The proposed curation framework integrates terms from the Knowledge-Space.org 
(KS) ontologies, which is the successor to the now deprecated Neurolex service (Larson and 
Martone, 2013) and provides a large coverage of the neuroscience field through the integration 
of many domain-specific ontologies. It also provides supports for integrating ontological terms 
from the Neuroinformatics Platform (NIP) of the Human Brain Project since it contains many 
terms useful for modeling neural networks (e.g., a comprehensive classification of cortical 
neurons). Integrating the KS and NIP ontologies is complicated by the huge size of these 
ontologies. This problem has been addressed by storing locally every term previously used, 
and fetching online new terms whenever required (see supplementary documents section S1.1 
for an extended discussion of this issue). Although using both ontologies may contribute to 
overdefine some terms, this effect is limited since both ontology services reuse third-party 
ontologies (e.g., the Allen Brain Institute ontology). Interacting with both NIP and KS 
ontologies is made easy by the fact that they share a very similar REST API (see (O’Reilly) for 
an IPython Notebook example of programmatic interaction with these ontologies). 

 

2.2.2.2 Definition of new terms 
New ontological terms have been defined to complement existing ontologies only when no 
alternative was available. For example, the nomenclature of ionic currents was not fine-grained 
enough to be used to model neurons with a detailed electrophysiology like those of the Blue 
Brain Project (Markram et al., 2015). This use case required completing the existing hierarchy 
of ionic currents with new terms. In such cases, new terms have been defined in a separate CSV 
file (additionsToOntologies.csv) which is part of the NeuroAnnotation Toolbox (described 
below) source code. Providing such a mechanism for easily adding new terms is important for 
the flexibility of the system. However, these terms are not meant to constitute a separated 
ontology and will hopefully, at some point, be migrated toward more standard resources, such 
as the KS or NIP ontologies. 

A more comprehensive effort has been undertaken in developing a controlled vocabulary for 
Modeling Parameter (MPCV) since no available resource was providing an adequate coverage 
for the framework proposed herein. Parameter types used here must be defined unambiguously 
and operationally with a sufficient level of granularity so that their annotated values can be 
directly used to instantiate model variables. Related ontologies such as the Computational 
Neuroscience Ontology (Le Franc et al., 2012) could be invaluable in adding a semantic level 
to the modeling parameters listed in the MPCV. However, they cannot be used directly in place 
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of the MPCV because they do not currently provide the sufficient level of granularity. The 
descriptive level required by the proposed framework would be closer to the list of parameters 
defined in a project like NeuroElectro (Tripathy et al., 2014). However, this list is yet too 
limited1 to be directly reused for the use case described here. Further, from a practical point of 
view, the need of rapidly adding new terms to the MPCV would make the adoption of an 
external resource very cumbersome in the current phase of development. Thus, for reason of 
coverage, precision, and flexibility, MPCV terms have been specified directly in the 
NeuroAnnotation Toolbox source code as a separate CSV file (modelingDictionary.csv). 
Collectively, these terms are defined as a tree structure, which can be visualized online at 

 https://github.com/BlueBrain/nat/blob/master/notebooks/parameterTree.png  

	

2.2.3 Annotation format 

To provide an annotation format that is flexible enough to be adapted to future unforeseen 
needs of the community while remaining simple to read and write, we adopted a JSON 
serialization approach. Annotations for any given publication are written as a plain-text list of 
pretty-printed2 JSON strings (see Figure 2.5.d for an example). A schema of the structure of an 
annotation is shown in Figure 2.1 (see (O’Reilly) for a complete definition). In short, it contains 
mainly unique identifiers for the annotation and the publication, a list of tags, the identity of 
the authors of the annotation, the version of the annotation format, a free-form comment, a list 
of modeling parameters, a list of experiment properties, and a localizer. More explanation is 
given on the nature of some of these items below.  

	
1 This project currently curates 47 electrophysiological properties. Correspondences between 
NeuroElectro and MPCV terms have been made explicit in a CSV file 
(modelingDictionary_relationships.csv) part of the NAT code base, pending the restructuration 
of MPCV in a more formal ontology. 

2 Pretty-printing and fixed JSON element ordering are not necessary for syntactic validity of 
the annotation files but allows for better human-readability and, most importantly, it makes the 
use of GIT to track modifications or resolve merging conflicts much more practical.  
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Figure 2.1. High-level schema of the annotation format. 
The block at the top of the schema (ANNOTATION) lists as bullet points all the fields of an 
annotation record. A thin font is used for simple attributes (e.g., strings); a bold font is used for 
attributes which are themselves complex JSON structures. The hierarchical relationships 
between the top-level object and its complex attributes are shown by arrows. The internal 
structure of the lower-level objects (PARAMETERS, LOCALIZER, etc.) has been omitted 
because both the hierarchical structure and the definition of the objects are context-dependent 
(e.g., there are 5 different types of LOCALIZER, with different internal structures; the 
variability of the hierarchical structure is due to compositionality of experimental values, as 
exemplified in Figure 2.2). 

	

2.2.4 Unique identifiers 

Every annotated publication is associated with a unique identifier. For that purpose, we use the 
DOI whenever one has been attributed to the publication. Otherwise, we set it to "PMID_" 
followed by the PubMed (NCBI) identification number (PMID)  if the paper has been attributed 
one. Papers that are not referenced by PubMed and that have no DOI cannot be managed by 
this system. This is not a serious limitation because 1) most relevant papers have a DOI and/or 
a PubMed ID and 2) DOI numbers can be freely generated by third-party services for research 
documents that have none (e.g., see (ResearchGate)). 

Unique identification numbers are generated on the fly using the uuid1() function of Python’s 
uuid package and attributed to every annotation and parameter instances.  

 

TAGS	
(Ontological	terms)	 LOCALIZER	 EXPERIMENT	

PROPERTIES	
(references	to	
parameters)	

	DESCRIPTION	 REQUIRED	TAGS	
(Ontological	terms)	

RELATIONSHIP	
(optional)	

ANNOTATION	
• annotId	
• authors	
• version	
• pubId	
• comment	
• tags	
• experimentProperties	
• localizer	
•parameters	

	

PARAMETERS	

1	
1	 1	

1	

1	

1	 1	1	
1	 1	∞ 

∞ ∞ ∞ 
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2.2.5 Tags 

Tags are provided using ontological terms, as discussed in section 2.2.  

 

2.2.6 Parameters  

Modeling parameters are specified as a list of PARAMETER objects (see (O’Reilly) for the 
format definition) which contains the following elements (described below): a description, a 
list of required tags, a relationship, and a boolean flag stating whether this parameter is an 
experimental property (e.g., liquid gap junction potential, temperature, age of the animals) or 
not. In the description of these different attributes, we will refer to corresponding examples 
provided in Table S1, provided in supplementary documents. These references will have the 
following format (Table S1; 1/27-39) to specify the line 27 to 39 of the example of the first 
row.  

Required tags associated with particular types of parameters are defined in the MPCV. They 
are specified to ensure that a minimal set of information is gathered about annotated 
parameters, making these annotations more useful for modeling and analyses. For example, the 
modeling parameter conductance_ion_curr_max (i.e., the conductance of the transmembrane 
ionic flow when all ionic channels related to a particular ionic current are open simultaneously) 
has the following required tag specification: {"nifext_8054":"Transmembrane ionic current", 
"sao1813327414":"Cell"}. This means that when the users are annotating values for this type 
of parameter, they should specify ontological terms for the kind of ionic current and the cell 
type involved. Both selected terms should be defined in the ontology as children of the 
“Transmembrane ionic current" and "Cell" terms, respectively (Table S1; 1/27-39). This task 
is made simple using the NeuroCurator, which automatically populates combo boxes with the 
available choices. 

The relationship object is used to specify the entities to which the parameter is related. It can 
be left undefined, or be specifying a single entity (e.g., an ion current type for a maximal 
conductance parameter; Table S1; 1/19-23), two entities linked by a directed relationship (e.g., 
the strength of connectivity from one type of cell to another type of cell; Table S1; 3/26-36) or 
an undirected relationship (e.g., the correlation of the activity of two brain regions; Table S1; 
2/41-51).   

Parameter descriptions are associated with a specific type of modeling parameter (e.g., the 
conductance of the leak sodium channels), taken from the list of MPCV terms. They can be 
defining three types of data: numerical traces, functions, and point values.  

Numerical traces are used to specify a set of values for an independent variable (e.g., 
inactivation time constant) which are associated with values of a dependent variable (e.g., 
membrane potential) (Table S1; 5/2-37).  
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The function data type is needed to save parameter values when they are obtained by fitting 
some analytical function to experimental recordings. For example, two parameters (𝑉!/# and 
𝑘) are needed to model the steady-state inactivation of a class of ion channels by fitting 
experimental values to a simple Boltzmann function  

𝑓 = 1/ '1 + 𝑒𝑥𝑝 ,-𝑉 − 𝑉!/#/0 /𝑘1	

where 𝑉 is the membrane potential, 𝑉!/# is the membrane potential at 𝑓 = 0.5, and 𝑘 is a slope 
factor (Martina and Jonas, 1997). In such a case, reporting values for 𝑉!/# and 𝑘 makes sense 
only if they are associated with the expression of the modeling function 𝑓. These relationships 
are preserved by the function data type (Table S1; 4/2-28). 

Point values are used for parameters that are not part of a functional relationship or of a 
numerical trace (e.g., resting membrane potential; Table S1; 1/3-15).  

Further, any value encapsulated in these data types (i.e., numerical trace, function, and point 
value) can be either specified as a simple value or a compound value. Compound values are 
aggregates of simple values which are logically related such as X, Y, and Z in “X ± Y (N=Z)”, 
where X is typically a sample mean value, Y its standard error, and Z the size of the sample 
(e.g., “[…] input resistance (55 ± 19MΩ; n = 94), resting membrane potential (-60 ± 4 mV; n 
= 67), and spike amplitude (64 ± 7mV; n = 80) are similar to those of LGN relay neurons […]” 
in (Li et al., 2003); also see Table S1; 2/5-34 for another example of compound values). These 
X, Y, and Z values must be saved together since they form an interdependent set of statistics 
such that, for example, Y (a standard error around the mean) is meaningless if reported alone, 
without X (the mean) and Z (the sample size used to compute the standard error). Finally, 
simple values can be either “raw” values (i.e., the default category; e.g., the value 5 in “the 
peak conductance density for the non-inactivating K+ current was chosen to be 5 pS/μm2.” 
(Haeusler and Maass, 2006) is a “raw” value in the sense that it is not a statistical computed 
from a sample) or some statistics (e.g., mean, median, standard deviation, maximum, etc.; see 
also Table S1; 2/8-12 for an example of a annotation of a mean value) and they are always 
specified as lists of floating point values with one or more items depending on the availability 
of single or repeated measures. This complex hierarchical encapsulation of value types is 
illustrated in Figure 2.2. 
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Figure 2.2. Schema of the hierarchy of data type encapsulation.  
Different types of data are color coded. Only the upper branch of this recursive tree is 
completely defined. For example, the whole tree starting at “parameter values” would need to 
be reproduced at “parameter values 1”, the whole tree of “numerical variable” would need to 
be reproduced at “dependent numerical variable”, etc. 

	

Annotated values should be identical to published numbers and should not be transformed in 
any ways. Values are saved alongside with their unit (as specified in the paper) and are checked 
for consistency using Python’s quantities package.  

2.2.7 Experimental properties 

Annotated parameters can be marked as experimental properties so that they can be associated 
with other annotations to specify the experimental context. For example, an annotation defining 
a “slice_thickness” parameter can be associated as an experimental property of a second 
annotation specifying a “neuron_density” parameter in mm-2 (e.g., evaluated with the dissector 
method). Such an association allows, before integrating this density to a model, to convert its 
value from a surface density (published value) to a volume density (value needed for modeling) 
by dividing the annotated “neuron_density” per the “slice_thickness” used for the counting 
procedure.  
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Note that two different types of information define the complete experimental context: 
categorical (through tagging; e.g., “Wister rat”) and numerical (through annotated parameters 
marked as experimental properties; e.g., age = 14 days). 

	

2.2.8 Localizer 

Various ways to localize annotations are provided to account for the different use cases. A text 
type of annotation is defined by a segment of text and the exact position (specified as the 
character number) where it starts in the curated document. To provide an unambiguous 
localization, the publication PDF is first parsed to generate a corresponding plain-text file, 
which is kept as a reference (see supplementary documents section S1.3 for details). To 
preserve the reliability of annotation localization, once created, this file should never be 
changed or replaced. For that reason, this localization key is saved centrally on a server (see 
supplementary documents section S1.2 for copyright issues related with sharing this key with 
clients). 

In general, if the information to annotate is contained in a figure, a table, or an equation, these 
can be entered using the respective annotation type and specifying the respective number. 
These numbers are encoded as strings rather than integers to allow more flexibility for the 
different use cases (e.g., “1”, “1.c”, “III”, “from 4 to 10”, “1, upper-left panel”). For tables, the 
user can also specify a row and a column number, if those are not ambiguous (i.e., row and 
column numbers are not ambiguous when the shape of the table is such that it could be 
represented as a matrix). Finally, the position type is provided for situations where all other 
types are not appropriate. This can be the case, e.g., if the curator wants to annotate a very 
specific portion of a figure. These annotations are specified by the number of the page and the 
coordinate of a bounding box encompassing the content to be annotated. These are specified 
on the reference PDF file3 . These are freely accessible for open access publications. For 
copyrighted material, access is granted only to users who have demonstrated that they already 
own a copy of the paper (see supplement document sections S1.2 and S1.3 for more 
information).  

	
3 Although PDF versions of publications are fairly consistent, some sources add for example 
front pages. Alternative versions may also include supplementary documents or not. Different 
scanning of a same paper may have different alignments due, for example, to different page 
format at scanning time. For all these reasons, it is important to provide a consistent reference 
version of publication PDFs. 
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2.2.9 Zotero library 

The proposed architecture integrates a citation database synchronized with a Zotero library 
(www.zotero.org). This citation management software has been chosen because it is free, cross-
platform, and open-source. It is maintained by a University center (Roy Rosenzweig Center for 
History and New Media from George Mason University) and it offers a convenient Python 
API. Using Zotero allows integrating this framework more naturally with the existing software 
environment and avoid creating custom solutions for features already well covered by existing 
software. For the creation of our corpus described in section 3, collaborative curation work was 
promoted by synching with a group library. 

2.2.10 Global software infrastructure 

The complete system is composed of a few components: a front-end (NeuroCurator), a back-
end (NeuroAnnotation Toolbox; NAT), a RESTful service for managing localization keys, 
RESTful ontology services (KS and NIP), the Zotero server for centralizing the citation library, 
and a GIT server for versioning the annotation corpus.  This architecture is depicted in Figure 
2.3. 
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Figure 2.3 Software infrastructure proposed for literature curation. 
Constitution and consultation of annotation corpora can be made either through a user-friendly 
graphical interface (NeuroCurator) or programmatically in Python using the NAT package. 
Both the NeuroCurator and the NAT package can be used offline. They require connectivity 
only when new resources (i.e., not already stored locally) are needed or for synching the local 
GIT version of the corpus with a remote one. 

	

2.2.11 User interface 

A graphical user interface (GUI) named NeuroCurator has been created as a front-end to 
provide all the functionalities required for a flexible and efficient curation process. It is coded 
using PySide (Python bindings for QT, a cross-platform C++ toolbox for creating GUIs). It 
allows displaying the publications contained in the Zotero library (Figure S1), to create new 
annotations, visualize or modify existing ones, associate tags to annotations by selecting 
ontological terms from those stored locally or by searching the ontologies online (Figure S2), 
to annotate new modeling parameters (Figure S3), and to search for annotations in the corpus 
according to flexible user-defined queries (Figure S4). The development of the NeuroCurator 
is an ongoing project and the main objective is to provide an efficient and enjoyable user 
experience to stimulate the adoption of this framework by the community. 

The code of the NeuroCurator has been separated from the back-end, which constitute a Python 
package named NeuroAnnotation Toolbox (NAT). This separation allows interacting with 
annotation corpora programmatically (e.g., from an IPython Notebook) without having to 
install the NeuroCurator and its dependencies.  

The front-end supports creating annotations using the full expressiveness of the annotation 
format described previously. Specifically, concerning the localization of the annotations, a 
citation can be localized by pasting a snippet of text and clicking on the “Localize” button. This 
searches for corresponding text and proposes options to the user if more than one similar text 
is found in the document. For localization according to position in the PDF, the interface allows 
the user to specify the region of interest by drawing a bounding box over any page of the PDF. 
For the other types of annotations, the user has to specify it as plain text (i.e., number of the 
figure, table or equation). The graphical interface does not allow yet to visualized annotated 
information overlaid on the PDF. Implementation of such a functionality using a third-party 
PDF viewer is planned. 
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2.3 Case study: corpus of annotation for the modeling of the 
thalamo-cortical loop 

2.3.1 The corpus 

An example of annotation corpus is already available on GitHub (see Table 1). At the moment 
of writing, this corpus was containing 435 manually made annotations and 257 annotated 
parameters from 80 different publications. This corpus is centered on the biologically detailed 
modeling of the thalamo-cortical loop for the somatosensory cortex of the rat. It is an ongoing 
curation task in the context of the Blue Brain Project. A histogram showing the number of 
annotated parameters for the 30 most annotated parameter types is shown on Figure 2.4. A 
Jupyter notebook has been included to the code base the NAT project, which allows to compute 
and show an up-to-date version of these information  

(https://github.com/BlueBrain/nat/blob/master/notebooks/Status_thalamus_corpus.ipynb).  

	

Figure 2.4. Histogram showing the number of annotated parameters for the 30 most 
annotated parameter types. 

	

2.3.2 First example: ion channel conductance in neuron models 

Figure 2.5 gives an example of how NAT can be used to interact programmatically with a 
corpus. Figure 2.5.a first shows how to get a local copy of the corpus described in section 3.1 
by performing a “git clone” operation through Python. Then, it describes how to search for 
values of a specific parameter and visualize the corresponding data. In this particular example, 
we are querying for all annotated values of maximal ionic conductance and plot those that are 
defined as specific conductance only (i.e. conductance normalized by area of cell membrane). 
The Figure 2.5.b illustrates the resulting violin plot, separating annotated values per type of 
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ionic currents. The code in Figure 2.5.c shows how to get a specific annotation and print its 
JSON representation (see Figure 2.5.d for the output). Finally, the code in Figure 2.5.e 
demonstrates how to display this annotated content in its context. In this case, it is a text 
annotation so its context is defined by the surrounding text. Figure 2.5.f shows the output: the 
annotated text displayed in bold, surrounded by the 400 preceding and following characters. 
The complete Jupyter notebook reproducing this example can be consulted online (O’Reilly). 

 

 

 

 

	

# Standard imports 
import sys, os 
import matplotlib.pylab as plt 
import seaborn as sns 
import quantities as pq 
import numpy as np 
from git import Repo 
 
# NAT imports 
from nat.annotationSearch import ParameterSearch, ConditionAtom 
 
# Downloading the corpus 
git_url = "https://github.com/BlueBrain/corpus-thalamus.git" 
repo_dir = os.path.join(os.getcwd(), "neurocuratorDB") 
Repo.clone_from(git_url, repo_dir) 
 
# Searching for annotated maximal ionic current conductances 
searcher = ParameterSearch(repo_dir) 
searcher.setSearchConditions(ConditionAtom("Parameter name", "conductance_ion_curr_max")) 
searcher.expandRequiredTags = True 
searcher.onlyCentralTendancy = True 
resultDF = searcher.search() 
 
# Checking which conductances have been specified as "specific conductances" (i.e., 
conductance densities) and normalizing the units. 
isSpecific = [] 
allConductances = [] 
for v, u in zip(resultDF["Values"], resultDF["Unit"]): 
    try: 
        allConductances.append(float(pq.Quantity(v, u).rescale('S/cm**2'))) 
        isSpecific.append(True) 
    except: 
        isSpecific.append(False) 
resultDF = resultDF[isSpecific] 
resultDF["Values"] = np.log10(allConductances) 
 
# Plotting a violin plot for annotated values for specific conductances 
# of the various kind of ionic currents  
g = sns.violinplot(y="Transmembrane ionic current", x="Values", data=resultDF, bw=0.25) 
g = sns.swarmplot( y="Transmembrane ionic current", x="Values", data=resultDF) 
g.set_ylabel("") 
g.set_xlabel("Specific conductance ($S/cm^2$)") 
g.set_xticklabels([('%.0e' % 10**nb) for nb in g.get_xticks()])  
plt.plot() 
plt.savefig('example_currents.png', bbox_inches='tight', transparent=True, dpi=200) 

(a)	
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(b)	

	

import json 
record = resultDF[resultDF["Transmembrane ionic current"] ==  
                           "Fast voltage-gated potassium (Kf) current"] 
print(json.dumps(record["obj_annotation"].values[0].toJSON(),  
                 sort_keys=True, indent=4, separators=(',', ': '))) 

(c)	

	

{ 
    "annotId": "8e3edae6-ef34-11e5-ba5d-c869cd917532", 
    "authors": [ 
        "iavarone", 
        "oreilly" 
    ], 
    "comment": "Fast potassium current parameters", 
    "experimentProperties": [], 
    "localizer": { 
        "location": 26404, 
        "text": "The gKIR and the\nfast voltage-gated potassium channel ( gKf) had  
                 conductances of 20 \u0002s/\ncm2 and 50 mS/cm2, respectively. Both  
                 potassium channels had reversal\npotentials of 100 mV.", 
        "type": "text" 
    }, 
    "parameters": [ 
        { 
            "description": { 
                "depVar": { 
                    "typeId": "BBP-030003", 
                    "values": { 
                        "statistic": "raw", 
                        "type": "simple", 
                        "unit": "mS/cm^2", 
                        "values": [ 
                            50.0 
                        ] 
                    } 
                }, 
                "type": "pointValue" 
            }, 
            "id": "e47c93ba-ffdc-11e5-8b78-64006a4c56ef", 
            "isExperimentProperty": false, 
            "requiredTags": [ 
                { 
                    "id": "BBP_nlx_0020", 
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                    "name": "Fast voltage-gated potassium (Kf) current", 
                    "rootId": "nifext_8054" 
                }, 
                { 
                    "id": "NIFCELL:nifext_41", 
                    "name": "Thalamocortical cell", 
                    "rootId": "sao1813327414" 
                } 
            ] 
        }, 
        { 
            "description": { 
                "depVar": { 
                    "typeId": "BBP-011001", 
                    "values": { 
                        "statistic": "raw", 
                        "type": "simple", 
                        "unit": "mV", 
                        "values": [ 
                            -100.0 
                        ] 
                    } 
                }, 
                "type": "pointValue" 
            }, 
            "id": "e47c95c2-ffdc-11e5-8b78-64006a4c56ef", 
            "isExperimentProperty": false, 
            "requiredTags": [ 
                { 
                    "id": "BBP_nlx_0020", 
                    "name": "Fast voltage-gated potassium (Kf) current", 
                    "rootId": "nifext_8054" 
                }, 
                { 
                    "id": "NIFCELL:nifext_41", 
                    "name": "Thalamocortical cell", 
                    "rootId": "sao1813327414" 
                } 
            ] 
        } 
    ], 
    "pubId": "10.1523/JNEUROSCI.2740-15.2015", 
    "tags": [ 
        { 
            "id": "NIFINV:birnlex_2300", 
            "name": "Computational model" 
        }, 
        { 
            "id": "NIFCELL:nifext_46", 
            "name": "Thalamus interneuron small" 
        }, 
        { 
            "id": "NIFORG:birnlex_160", 
            "name": "Rat" 
        } 
    ], 
    "version": "1" 
} 

(d)	

	

nbContextChar = 400 
context = record["obj_annotation"].values[0].getContext(nbContextChar) 
from IPython.display import HTML 
HTML(context[:nbContextChar] +  '<b>' + context[nbContextChar:-nbContextChar] 
      + '</b>' + context[-nbContextChar:]) 

(e)	
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st. Thus, our final model comprised the following: gLEAK was modeled with a reversal potential 
of Ϫ79 mV and conductance of 150 �s/cm 2, and gH had a reversal potential of Ϫ45 mV and peak 
conductance of 150 �s/cm 2. T-type Ca2ϩ channels ( gT) were modeled with a reversal potential 
of 120 mV and a permeability of 0.7 �m/s. The gCAN had a conductance of 250 �S/cm 2 and 
reversal potential of Ϫ20 mV. The gKIR and the fast voltage-gated potassium channel ( gKf) had 
conductances of 20 �s/ cm 2 and 50 mS/cm 2, respectively. Both potassium channels had reversal 
potentials of Ϫ100 mV. The gNa had conductance of 50 mS/cm 2 and reversal potential of 50 mV. 
Throughout this manuscript, when referring to the ability of gT to provide current, we use the 
term “conductance” rather than “permeability.” Whereas the model is in actuality based on 
permeability rather than conductance, we use this naming convention to simplify the text. 
Simulations were solved with a fixed time step of 

(f)	

Figure 2.5. Example of ion channel conductances annotation 

(a) Python code to query the corpus and plotting maximal conductances for various ionic 
currents. (b) Resulting set of violin plots showing the distribution of maximal conductances of 
ionic currents annotated in the corpus. (c) Querying for the annotation of a specific point in the 
plot. (d) JSON representation of the corresponding annotation. (e) Query to get the annotated 
text within its context. (f) Localized text in its context (in this case, 400 characters before and 
after the annotated text).  

	

2.3.3 Second example: neuron densities from stereological studies 

In this second example, we are interested in collecting all the information about neuron 
densities annotated from stereological studies and express them in a homogeneous format so 
that they can be integrated in a modeling processes. Skipping corpus download and package 
imports (see (O’Reilly) for the complete and executable notebook related to this example), 
Figure 2.6.a shows how to query the corpus to obtain the values for the “neuron_density” 
parameter and Figure 2.6.b shows an extract of the resultDF table.  As can be seen in this 
tables, units are not homogeneous (mm-2 and um-3). Figure 2.6.c shows how these units can be 
normalized, using when necessary the annotated slice thickness to transform from area to 
volume.  In the same table, we can see that the values are also specified in a heterogeneous 
way. The first and fourth rows of the extract show two annotations that are actually numerical 
traces. In total, in the current corpus, there are three such annotations of cell densities. 
Corresponding numerical traces can be plotted as shown in Figure 2.6.d (code) and 2.6.e 
(resulting plots). Also, other parameters specify compound values (row 2 and 3 in Figure 2.6.b) 
as mean +/- standard error (N=sample size). To homogenize these different value formats, we 
interpolate numerical traces to obtain densities at 14 days old (supposing that this is the age of 
the rat brain we want to model) and take only the mean of compound values (see code in Figure 
2.6.f). The resulting table (see Figure 2.6.g for an extract) now contains parameters that are 
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homogeneous in units and values, making them appropriate for integration into a model of a 
rat4 thalamus with different cell types and brain regions. 

	

searcher = ParameterSearch(pathDB="neurocuratorDB") 
searcher.setSearchConditions(ConditionAtom("Parameter name", "neuron_density")) 
searcher.expandRequiredTags = True 
searcher.onlyCentralTendancy = True 
resultDF = searcher.search() 
resultDF["Species"] = [tag[0].name for tag in resultDF["Species"]] 
resultDF["Values"] = [param.valuesText() for param in resultDF["obj_parameter"]] 

(a)	

Cell  Regional part of brain  Values  Unit  
Thalamic reticular nucleus 
cell - GABAergic  

Thalamic reticular nucleus  [142.9, 178.5, 185.1, 
215.8] +/- [17.3, 26.4, ...  

mm^-2  

Thalamus relay cell  Lateral geniculate body  246.8 +/- 38.9 (n=5)  mm^-2  
Thalamus interneuron small  Ventral posteromedial nucleus  13.3 +/- 0.6 (n=5)  mm^-2  
Thalamus relay cell  Ventral posterior nucleus  [0.0002782, 0.0001703, 

8.88744e-05, 5.1258...  
um^-3  

… … … … 

(b)	

paramGetter = ParameterGetter(pathDB="neurocuratorDB") 
values      = [] 
units       = [] 
 
def rescale2DStereo(paramID, thicknessValue=1.0, thicknessUnit="um", desiredUnit="mm^-3"): 
    density   = paramGetter.getParam(paramID) 
    thickness = pq.Quantity(thicknessValue, thicknessUnit) 
    return (density/thickness).rescale(desiredUnit) 
 
for param, annot, (index, row) in zip(resultDF["obj_parameter"],  
                                      resultDF["obj_annotation"],  
                                      resultDF.iterrows()): 
    try: 
        param = param.rescale("mm^-3") 
    except ValueError: 
        thicknessInstanceId = [param.instanceId for param in annot.experimentProperties  
                                if getParameterTypeNameFromID(param.paramTypeId) ==  
                                                                       "slice_thickness"] 
 
        if len(thicknessInstanceId) == 1: 
            thicknessParameter = paramGetter.getParam(thicknessInstanceId[0]) 
            if len(thicknessParameter.values) == 1: 
                param = rescale2DStereo(param.id, thicknessValue=thicknessParameter.values[0],  
                                        thicknessUnit=thicknessParameter.unit,  
                                        desiredUnit="mm^-3") 
    units.append(param.unit) 
    values.append(param.valuesText()) 
    resultDF.loc[index, "obj_parameter"] = param    
     
resultDF["Values"] = values 
resultDF["Unit"]   = units 
resultDF           = resultDF[resultDF["Unit"] == "1/mm**3"] 

(c)	

	
4 Not shown here is the fact that all these annotations are associated with “rat” ontological 
terms. 
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def getFigTrace(param, title="", xlim=None, context=None, index=0): 
    if context is None: 
        fig, axes = plt.subplots() 
    else: 
        fig, axarr = context 
        if isinstance(axarr, collections.Iterable): 
            axes = axarr[index] 
        else: 
            axes = axarr 
         
    axes.plot(param.indepValues[0], param.means, "-o") 
    if not xlim is None: 
        axes.set_xlim(xlim) 
    else: 
        axes.set_xlim([min(param.indepValues[0]) -2.5, max(param.indepValues[0])+2.5]) 
         
    axes.set_ylabel(param.name + " (" + param.unit + ")") 
    axes.set_xlabel(param.indepNames[0] + " (" + param.indepUnits[0] + ")") 
    axes.set_title(title) 
    return fig     
 
paramTraces = resultDF[resultDF["Result type"] == "numericalTrace"]["obj_parameter"].values 
cellTypes   = resultDF[resultDF["Result type"] == "numericalTrace"]["Cell"].values 
 
context = plt.subplots(2, 2, figsize=(15, 10)) 
for no, (paramTrace, cellType) in enumerate(zip(paramTraces, cellTypes)): 
    fig = getFigTrace(paramTrace, title=cellType, context=context,  
                      index=(int(no/2), no%2)) 
context[1][1, 1].axis("off") 

(d)	

	
(e)	

finalValues = np.zeros((len(resultDF["Result type"]))) 
for ind, (paramTrace, resType) in enumerate(zip(resultDF["obj_parameter"],  
                                                resultDF["Result type"])): 
    if resType == "numericalTrace": 
        val = paramTrace.getInterp1dValues(14, statsToReturn=["mean"]) 
        if isinstance(val, list): 
            val = val[0] 
        finalValues[ind] = float(val)     
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for ind, (param, resType) in enumerate(zip(resultDF["obj_parameter"], resultDF["Result 
type"])): 
    if resType != "numericalTrace": 
        finalValues[ind] = np.mean(param.means) 
 
resultDF["Values"] = finalValues 

(f)	

Cell  Regional part of brain  Values  Unit  
Thalamic reticular nucleus cell - GABAergic  Thalamic reticular nucleus  157140 1/mm**3  
Thalamus relay cell  Lateral geniculate body  246800 1/mm**3  
Thalamus interneuron small  Ventral posteromedial nucleus  13300 1/mm**3  
Thalamus relay cell  Ventral posterior nucleus  51011.02 1/mm**3  

… … … … 

(g)	

Figure 2.6. Example of cell densities annotation. 
(a) Code to list annotated neuronal densities. (b) Extract of the resulting table from (a). (c) 
Code to rescale to mm⁻³ unit (applying 2D to 3D transformation using slice thickness whenever 
appropriate) and to keep only the annotations that could successfully be rescaled. (d) Code to 
display the three annotations that are specified as numerical traces. (e) Resulting plots from 
(d). (f) Code for keeping only the values interpolated at 14 days old for numerical traces and 
only the mean for compound values. (g) Resulting table from (f), which displays homogeneous 
values and units.  

2.4 Availability 

This project aims at promoting collaborative literature curation and reproducible integration of 
literature information into neuronal modeling pipelines and analyses. Accordingly, the 
resources described in this paper are all open-access. Table 2.1 list location of the different 
resources.  

 

	 Resource	 Location	
1	 NeuroAnnotation	

Toolbox	
https://github.com/BlueBrain/nat		

2	 NeuroCurator	
application	

https://github.com/BlueBrain/neurocurator		
	

3	 Thalamo-cortical	
loop	annotation	
corpus	

https://github.com/BlueBrain/corpus-thalamus		

4	 REST	end-point	for	
annotation	
localization	

http://bbpca063.epfl.ch:5000/neurocurator/api/v1.0/		

5	 Documentation	of	
the	REST	API	for	the	
NIP	ontology*	

https://collab.humanbrainproject.eu/#/collab/47/nav/7267		

6	 REST	end-point	for	
the	NIP	ontology*	

https://nip.humanbrainproject.eu/api/scigraph/		
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7	 Documentation	of	
the	REST	API	for	the	
KS	ontology*	

http://matrix.neuinfo.org:9000/scigraph/docs/		

8	 REST	end-point	for	
the	KS	ontology*	

http://matrix.neuinfo.org:9000/scigraph/		

Table 2.1. List of key open-access resources constituting the annotation framework. 
*	These	resources	are	not	under	the	responsibility	of	the	authors,	but	are	used	as	external	services	by	the	
infrastructure.	
	

2.5 Discussion 

2.5.1 A better literature curation for a more integrated knowledge in neuroscience 

The study of neuroscience is challenged by the extreme complexity of the brain functioning, 
the broad spectrum of expertise required to pull together all the evidences from different fields, 
and the wide range of scales involved in understanding the mechanisms at play. This often 
results in different research threads being performed in silo (i.e., in parallel, without synergy), 
with too little cross-scale and cross-discipline integration of the knowledge. At the same time, 
all the efforts invested in understanding how the brain works have resulted in an explosion of 
both the amount of experimental data produced and the size of the published literature. This 
can be seen as a curse if no infrastructure is put in place to manage this big data, or it can be 
turned into a blessing if a contrario tools and methodologies are adopted to integrate this 
knowledge synergistically. To contribute into this direction, we have developed a framework 
that supports collaborative curation of literature so that corpora of relevant facts and 
experimental values can be built and shared across brain modeling projects. All the tools 
developed in this project are open-access. They are and will continue to be in heavy 
development as they are part of the large-scale modeling endeavor being conducted within the 
Blue Brain Project. Contributions from the community in the form of feedback, constructive 
criticism, code patches or extensions are most welcome.  

2.5.2 Limitations  

There is a real challenge in developing a literature annotation framework that captures the 
different kind of data published in the literature (e.g., see section 2.3.3), and yet to provide 
some means to homogenize them in a format that is usable in modeling (e.g., see the example 
of section 3.2.2), without losing traceability. In the development of this annotation framework, 
the focus has been placed on capturing faithfully the variability. There is still a need for 
developing a more comprehensive set of routines for homogenizing the annotated data into a 
consumable form for the different modeling requirements.  
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The current framework also misses a systematic support for cross-referencing between 
publications, for example to capture in a formal way (as opposed to a free-form comment) the 
normalization of a parameter annotated in one paper by a factor annotated in a second paper.  

Finally, ontologies have been embedded in this annotation framework mainly as controlled 
vocabularies used for systematic tagging. Semantically richer possibilities (e.g., adding more 
complex ontological constructs involving relationships between entities of an annotated text) 
was out of our scope. On a related topic, the MPCV created for this work could arguably be 
improved and made into a stand-alone ontology development project following OBO 
Foundry’s principles.   

2.5.3 Future directions 

This paper is the first of a two-paper series. In the second paper we will discuss how created 
corpora can be integrated into modeling workflows to support a reproducible and traceable use 
of literature information. It is also in our future goals to better connect this framework with 
existing tools, either by interfacing them as producers (i.e., integrating annotations made by 
other software such text-mining applications or with different annotation interfaces such as 
hypothes.is) or as consumer (i.e., publishing curated information in third-party portals such as 
knowledge-space.org). The resources necessary to address the limitations described previously 
will be invested depending on the evolution of the needs expressed by the neuroscientific 
community. 

Supplementary material 

The Supplementary Material for this article can be found online at: 
http://journal.frontiersin.org/article/10.3389/fninf. 2017.00027/full#supplementary-material 
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3 Experimentally-constrained models of 
thalamic neurons 

This chapter is a postprint of joint work with Jane Yi, Ying Shi, Bas-Jan Zandt, Christian 
O’Reilly, Werner Van Geit, Christian Rössert, Henry Markram, Sean L Hill; it has been 
published as “Experimentally-constrained biophysical models of tonic and burst firing modes 
in thalamocortical neurons in PLOS Computational Biology (Iavarone et al., 2019), doi: 
https://doi.org/10.1371/journal.pcbi.1006753. 

Contribution: I integrated the experimental data provided by JY and YS for building and 
validating the neuron models. I built a pipeline going from the experimental data to model 
validation for thalamic neurons and sensitivity analysis, building on previous work from WVG, 
CR, BZ. I ran all the neuron parameter optimizations, analysis and generate the figures, wrote 
the first draft of the manuscript and integrated feedback from all the other authors. HM and 
SLH supervised the study. 

	
Abstract	
Somatosensory thalamocortical (TC) neurons from the ventrobasal (VB) thalamus are central 
components in the flow of sensory information between the periphery and the cerebral cortex, 
and participate in the dynamic regulation of thalamocortical states including wakefulness and 
sleep. This property is reflected at the cellular level by the ability to generate action potentials 
in two distinct firing modes, called tonic firing and low-threshold bursting. Although the 
general properties of TC neurons are known, we still lack a detailed characterization of their 
morphological and electrical properties in the VB thalamus. The aim of this study was to build 
biophysically-detailed models of VB TC neurons explicitly constrained with experimental data 
from rats. We recorded the electrical activity of VB neurons (N = 49) and reconstructed 
morphologies in 3D (N = 50) by applying standardized protocols. After identifying distinct 
electrical types, we used a multi-objective optimization to fit single neuron electrical models 
(e-models), which yielded multiple solutions consistent with the experimental data. The models 
were tested for generalization using electrical stimuli and neuron morphologies not used during 
fitting. A local sensitivity analysis revealed that the e-models are robust to small parameter 
changes and that all the parameters were constrained by one or more features. The e-models, 
when tested in combination with different morphologies, showed that the electrical behavior is 
substantially preserved when changing dendritic structure and that the e-models were not 
overfit to a specific morphology. The models and their analysis show that automatic parameter 
search can be applied to capture complex firing behavior, such as co-existence of tonic firing 
and low-threshold bursting over a wide range of parameter sets and in combination with 
different neuron morphologies. 
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3.1 Introduction 

Thalamocortical (TC) neurons are one of the main components of the thalamus and have been 
extensively studied in vitro and in computo, especially in first order thalamic nuclei in different 
species (Sherman, 2007). One of these nuclei, namely the ventral posterolateral nucleus (VPL), 
relays somatosensory, proprioceptive, and nociceptive information from the whole body to the 
somatosensory (non-barrel) cortex (Francis et al., 2008). The VPL is located close to ventral 
posteromedial nucleus (VPM), which transmits information from the face to the barrel cortex. 
The VPL and VPM nuclei constitute the ventrobasal (VB) complex of the thalamus (Jones, 
2007). 

Despite its key role in sensory functions, a systematic characterization of the cellular properties 
of the VB complex is still missing. The morphologies of VPL neurons in adult rats were 
described in early anatomical studies but were limited to two-dimensional drawings of Golgi-
impregnated cells (McAlliser and Wells, 1981). The general electrical properties of TC neurons 
maintained in vitro are known and similar in different thalamic nuclei and species with respect 
to the generation of two distinct firing modes, called tonic firing and low-threshold bursting 
(Llinás and Jahnsen, 1982; Jahnsen and Llinás, 1984; Turner et al., 1997; Connelly et al., 2017). 
However, a systematic description on the electrical types in the VB thalamus in the rodents is 
still missing. 

Collecting morphological and electrophysiological data, by following standardized 
experimental procedures, is essential for the definition of cells types and it is the first step to 
constraining computational models of single neurons (Druckmann et al., 2007; Gouwens et al., 
2018). Although models of TC neurons have already been previously published, they typically 
were aimed at studying specific firing properties and their parameters were hand tuned to 
achieve the desired result (Amarillo et al., 2014; Connelly et al., 2015; Destexhe et al., 1998b; 
Huguenard and McCormick, 1992; Rhodes and Llinás, 2005).  

The purpose of our study is to systematically define the morphological and electrical types by 
collecting in vitro experimental data and to constrain biophysically detailed models of VB TC 
neurons of the juvenile rat. To the best of our knowledge, automatic parameter search has not 
been applied, thus far, to capture complex firing behavior in thalamic neurons, in particular 
low-threshold bursting and tonic firing. We defined the electrical and morphological types of 
TC neurons through in vitro patch-clamp recordings and 3D morphological reconstructions. 
We then extended an existing method (Markram et al., 2015) to account for their distinctive 
firing properties. These electrical models (e-models) were constrained by the electrical features 
extracted from experimental data (Druckmann et al., 2007; Hay et al., 2011; Van Geit et al., 
2016). Other experimental data were used to assess the generalization of the models to different 
stimuli and morphologies. We further performed a sensitivity analysis by varying each 
parameter at a time by a small amount and recording the resulting electrical features. This 
analysis provides an assessment of the robustness of the models and a verification that the 
selected features provide sufficient constraints for the parameters. 
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3.2 Results  

3.2.1 Physiological and morphological characterization  

We characterized TC neurons in slices of the rat VB thalamus, by combining whole-cell patch-
clamp recordings, biocytin filling and 3D Neurolucida (MicroBrightField) reconstruction, 
along with anatomical localization in a reference atlas (Paxinos and Watson, 1998) (Fig 3.1).  

	

	
Figure 3.1. Simultaneous physiological and morphological characterization.  
(A) View of a patched cell under optic microscope and anatomical localization of biocytin-
filled neurons (insets) in the rat Paxinos and Watson atlas (Paxinos and Watson, 1998). Letters 
D and E identify morphologies in a slice. (B) Voltage responses of two different 
thalamocortical (TC) neurons to a standardized battery of current stimuli. Each current 
amplitude was normalized by the threshold current of each neuron (e.g. 150 % threshold, see 
Methods). Third row is a low-threshold burst response from a hyperpolarized holding potential, 
Vhold = −84 mV (burst mode), the other responses are elicited from a depolarized holding 
potential, Vhold = −64 mV (tonic mode). Two different holding currents (Ihold - tonic, Ihold - burst) 
are injected to obtain the desired Vhold. The vertical scale bar applies to all the traces, the first 
horizontal scale bar from the top refers to the first two rows, the second applies to the last four 
rows. (C) Analysis of adaptation index (AI) from recordings in tonic mode. Solid line is a non-
parametric estimation of the distribution, dashed lines are two Gaussian distributions fitted to 
the data (see Methods). The vertical line indicates the cut-off value. 

	
Visual inspection of 50 reconstructed morphologies (24 from the VPL, 26 from the VPM 
nuclei) revealed variability in the number of principal dendritic trunks and their orientation, in 
agreement with previous anatomical studies (McAlliser and Wells, 1981).  
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Figure 3.2. Morphological properties.  
(A) Renderings of 3D reconstructed TC neurons along with their persistence barcode according 
to (Kanari et al., 2018). Grey: soma and dendrites, blue: axon only small sections available). 
The persistence barcode is a topological description of the branching pattern of the neurons’ 
dendrites. (B) Sholl analysis of TC neuron dendrites. For each Sholl ring, the number of 
intersections is shown (mean ± standard deviation, N = 50). Each grey circle represents one 
morphology, colored lines correspond to the morphologies in A. See Fig S1 for further analysis. 

	
The maximum radial extent of the dendrites ranged between 120 and 200 μm and they started 
to branch between 20 and 50 μm from the soma (Fig S1). We then analyzed the morphologies 
with two methods in order to quantitavely classify different morphological types. We used 
algebraic topology to extract the persistent homology of each morphology and to visualize the 
persistence barcode (Kanari et al., 2018) (Fig 3.2A, see Methods). Each horizontal bar in the 
persistence barcode represents the start and end point of each dendritic component in terms of 
its radial distance from the soma. The barcodes of all the morphologies followed a semi-
continuous distribution of decreasing length. To quantify the differences between the barcodes, 
we computed the pairwise distances of the persistence images (see Methods and Fig S1). We 
found that they were in general small (<0.4, values expected to vary between 0 and 1). These 
findings indicate that the morphologies cannot be grouped in different classes based on the 
topology of their dendrites. Furthermore, we performed Sholl Analysis (Sholl, 1953) to 
compare the complexity of the dendritic trees (Fig 3.2B). We observed that all the 
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morphologies had dense dendritic branches, with a maximum number of 50-100 intersections 
between 50-80 μm from the soma. When comparing the Sholl profiles for each pair of neurons 
we could not find any statistically significant difference (Fig S1C). Considering the results of 
topological and Sholl analyses, we grouped all the morphologies in one morphological type 
(m-type) called thalamocortical (TC) m-type. 

We used an adaptive stimulation protocol, called e-code, consisting of a battery of current 
stimuli (e- code, see Methods for details), where the stimulation amplitude was adapted to the 
excitability of different neurons. This standardized protocol has previously been used to build 
biophysically-accurate models of cortical electrical types (e-types) (Markram et al., 2015). 
However, TC neurons from different thalamic nuclei and species fire action potentials in two 
distinct firing modes, namely tonic firing, when stimulated from a relatively depolarized 
membrane potential or low-threshold bursting, from a hyperpolarized membrane potential 
(Llinás and Jahnsen, 1982). We thus extended the e-code to include two different holding 
currents. All the neurons recorded in this study displayed tonic and burst firing, when 
stimulated with the appropriate holding current (Fig 3.1). Moreover, we were able to classify 
different e-types by considering the voltage traces recorded in tonic mode in response to step 
current injections (Fig 3.1). The majority of the cells (59.3 %) showed a non- adapting tonic 
discharge (continuous non-adapting low-threshold bursting, cNAD_ltb e-type) while others 
(40.7 %) had higher adaptation rates (continuous adapting low-threshold bursting, cAD_ltb e-
type), as reflected by the adaptation index (Fig 3.1C). We followed the Petilla convention 
(Ascoli et al., 2008) for naming the tonic firing discharge (cNAD or cAD), extending it to 
include “_ltb” for the low-threshold bursting property. In some rare examples, we noticed 
acceleration in the firing rate with decreasing inter-spike intervals (ISIs) towards the end of the 
stimulus. Similar adapting and accelerating responses have already been described in the VB 
thalamus of the cat (Turner et al., 1997). We also observed stereotypical burst firing responses 
within the same cell, with variation of the number of spikes per burst in different cells, but the 
burst firing responses alone were insufficient to classify distinct e-types. 

	

3.2.2 Constraining the models with experimental data 

Multi-compartmental models comes with the need of tuning a large number of parameters 
(Almog and Korngreen, 2016), therefore we constrained the models as much as possible from 
experimental data. We first combined the morphology and the ionic currents models in the 
different morphological compartments (soma, dendrites and axon). Given that the 
reconstruction of the axon was limited, we replaced it with a stub representing the initial 
segment (Markram et al., 2015). We used previously published ionic current models and 
selected those that best matched properties measured in rat TC neurons (see Methods). The 
kinetics parameters were not part of the free parameters of the models. The distribution of the 
different ionic currents and their conductances in the dendrites of TC neurons is largely 
unknown. The current amplitudes of the fast sodium, persistent and transient (A-type) 
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potassium currents were measured, but only up to 40-50 μm from the soma (Williams and 
Stuart, 2000). Indirect measures of burst properties (Connelly et al., 2015) or Ca2+ imaging 
studies (Errington et al., 2010) suggest that the low-threshold calcium (T-type) channels are 
uniformly distributed in the somatodendritic compartments. We thus assumed different peak 
conductance in the soma, dendrites and axon for all the ionic currents, except for ICaT, which 
had the same conductance value in the soma and dendrites. We then extracted the mean and 
standard deviation (STD) of different electrical features in order to capture the variability of 
firing responses from different cells of the same e-type (Druckmann et al., 2007) (Fig 3.3). We 
observed that some features extracted from tonic firing responses had distinct distributions 
between the cAD_ltb and cNAD_ltb e-types (Fig 3.3A). 

	

	
Figure 3.3 Histograms of electrical features.  
Each vertical line represents the mean feature value for a cell. Tonic and burst refer to the 
holding voltage as in Fig 3.1. (A) Feature values extracted from recordings in tonic mode (N = 
11 cAD_ltb cells, N = 16 cNAD_ltb cells). The features highlighted by a black box show 
different distributions for the cNAD_ltb and cAD_ltb electrical types (e-types) (p-value<0.05, 
two- sided Mann-Whitney U test with Bonferroni correction for multiple comparisons). Passive 
properties (Vrest, Rinput) and spike shape features (AHP depth, AP amp., etc.) did not show clear 
differences between the two e-types. (B) Features measuring burst firing properties (N = 22 
cells).  

	
For optimizing the models’ parameters, we chose features that quantified passive (input 
resistance, resting membrane potential), burst and tonic firing properties (number of spikes, 
inverse of inter-spike intervals, latency to first spike, adaptation index), action potentials shape 
(amplitude, half-width, depth of the fast after-hyperpolarization). We aimed at finding the 
minimal set of features that capture the most important properties in the two firing modes. This 
set was a trade-off between comprehensively describing the experimental data (i.e. extracting 
all possible features), which can lead to over-fitting and loss of generalizability, and a too small 



	42	

set that would miss some important characteristics. For the tonic firing responses, we used three 
stimulation amplitudes (150 %, 200 %, 250 % of firing threshold) which have been shown to 
reproduce the complete input-output function of the neurons (Hay et al., 2011; Markram et al., 
2015). Responses to two hyperpolarizing steps of different amplitudes (−40 % and −140 % 
threshold) constrained the input resistance (conductance of the leak current) and the 
conductance of currents activated in hyperpolarization, for example the h-current, Ih 
(sag_amplitude feature). We included baseline voltage values in the optimization objectives to 
ensure that the models were in the right firing regime and spike count to penalize models that 
were firing in response to the holding currents. To constrain the low-threshold burst we used 
features (such as number of spikes) which are influenced by specific ionic currents, for example 
the low-threshold calcium current, ICaT. 

The average value and STD of each feature were used to calculate the feature errors. Each error 
measured how much the features of the models deviated from the experimental mean, in units 
of the experimental STD (Druckmann et al., 2008). We used a multiobjective optimization 
approach (MOO), where each error was considered in parallel. To rank the resulting models 
after optimization, we considered model A better than model B if the maximum error of all the 
features of A was smaller than the maximum error of all the features of B. Twenty-five 
parameters were allowed to vary between the upper and lower bounds shown in Fig 3.5. 
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Figure 3.4. Models of different TC e-types and their fitting errors.  
(A) Single neuron modelling pipeline. (B) Experimental and model voltage responses to a 
variety of stimuli pattern used during the optimization of cNAD_ltb and cAD_ltb e-types. (C) 
Feature errors of the models shown in (B) reported as deviation from the experimental mean. 
The models are compared with the mean of features shown in Fig 3.3. Note that the models 
shown in B are fitted in order to reproduce the mean firing properties, not only a specific 
experimental recording. See Fig S2 for a complete list of fitting errors.  

	
By applying this MOO procedure, we generated multiple models with distinct parameter 
combinations (Fig. 3.4). The models reproduced well the key firing dynamics observed in the 
experimental recordings. They showed a low-threshold burst when stimulated from a 
hyperpolarized membrane potential, crowned by a variable number of sodium spikes. In the 
tonic firing regime, they reproduced adapting and non-adapting firing discharges as observed 
in the two e-types. These results indicate that the ion channels included in the models were 
sufficient to reproduce the experimental firing properties and that different e-types in TC 
neurons could be generated by different ion channel densities. 
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3.2.3 Model and experimental diversity 

We found that different sets of parameter values reproduced the target firing behavior (Fig 
3.5B). We further analyzed models that had all the feature errors below 3 STD. Models’ voltage 
responses reflected the characteristic firing properties of TC neurons (Fig S3), indicating that 
the selected set of features and ion channels were sufficient to capture the two firing modes, in 
both the adapting and non-adapting e-types. The voltage traces from different models showed 
small differences in spike amplitude, firing frequency, and depth of the after-hyperpolarization, 
as reflected by the variability of features values (Fig 3.5C), arising from differences in ion 
channel densities between models. 

	

	
Figure 3.5. Diversity of model parameters and experimental variability.  
(A) Example of model fitting errors (sum of all feature errors) during optimization. (B) Initial 
parameter ranges and diversity of solutions. Each vertical line represents the range for the 
parameters, when the horizontal lower bar is missing the bound is 0. The characters following 
”.” in the parameter name specifies the morphological compartment for the parameter (”s”: 
soma, ”d”: dendrites, ”a”: axon). Black circles: parameter values for one of the models in Fig 
3.4, grey circles: parameter values of the models with all feature errors below 3 STD. (C) 
Features variability in the models and experiments. Blue crosses: feature errors of a sample of 
10 models. Each grey circle is the z-scored feature value of one experimental cell, obtained 
from the feature values shown in Fig 3.3. The protocol names are shown in parenthesis and 
corresponds to the stimuli shown in Fig 3.1 and Fig 3.4, tonic and burst refer to the holding 
current as in Fig 3.1. 

	
Spike-shape related features (e.g. AP. amplitude) in the different models covered the space of 
the experimental variability, while for some features (e.g. input resistance, Rinput), all models 
tended to cluster on one of the tails of the experimental distribution. Rinput relates to the neuron 
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passive properties and depends both on the number of channels open at rest (inverse of the leak 
conductance in the model) and the size of the cell. Given that all the models for a given e-type 
were constrained on a single morphology, this result is not surprising. Other features, such as 
sag amplitude were less variable in the models compared to experiments. We hypothesized that 
this depended on the variable stimulation amplitudes applied to different experimental cells, 
while all the models were stimulated with the same current amplitudes.  

Some other features were systematically above or below the experimental values in both e-
types. We suggest that this depend on the exact dynamics of some specific ion channels. For 
example, the amplitudes of the first and second spikes in the burst tended to be similar or above 
and below the experimental values, respectively. This can depend on the specific 
activation/inactivation properties of some ionic currents, for example the transient sodium 
current (INaT) and delayed potassium current (IKd). During the rising phase of the low-threshold 
spike, INaT in the model is readily activated and generated a first spike with higher amplitude, 
but is repolarized enough by the activation of IKd. At higher potentials, reached towards the 
peak of the low-threshold spike, the availability of INaT and other depolarizing currents seem 
reduced and generated a spike with smaller amplitude. Sensitivity analysis (Fig. 3.7) confirmed 
that INaT and IKd had an impact on the amplitude of the first and second spike in the burst. 
Furthermore, these two currents operate together with currents that generate the burst, such as 
the low-threshold calcium current (ICaT) and the Ih in shaping the amplitude of the second spike 
in the burst (Fig. 3.7).  Interestingly, the models also tended to have lower instantaneous 
frequency of the first two spikes in the burst (Inv. 1st ISI) and this feature had similar sensitivity 
(but of opposite signs) to the amplitude of the second spike in the burst (Fig 3.7B).  

Another possible explanation is the lack of some ionic currents in the model, for example some 
specific subtype of potassium channels that promote higher firing rates (Kv3.1 and Kv3.3). 
While neurons of the thalamic reticular nucleus are known to express this channel subunit 
(Espinosa et al., 2008), the expression in TC neurons has not been confirmed yet. The dynamics 
of IKd could also explain why the after-hyperpolarization (AHP depth) tended to be smaller in 
the models compared to the experimental values. AHP depth is also influenced by other ionic 
currents, such as high-threshold calcium current (ICaL), calcium-activated potassium current 
(ISK) and the intracellular calcium dynamics (Fig. 3.7). The number of action potentials (Num. 
of APs) in different conditions (No stim, Ihold) ensured that the models did not spike in the 
absence of a stimulus or in response to the holding current. For this reason, all the experimental 
and model feature values in Fig. 3.5C are equal to 0. 

We examined the diversity of the parameter values with respect to the initial parameter range 
(Fig 3.5B). Most of the optimized parameter values spanned intervals larger than one order of 
magnitude. On the other hand, some parameter values were restricted to one order of 
magnitude, for example the permeability of the low-threshold calcium current PCaT. This result 
is in agreement with experiments showing a minimum value of ICaT is critical to generate burst 
activity and this critical value is reached only at a certain postnatal age (Velazquez and Carlen, 
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1996). The value of PCaT was constrained by features measuring burst activity (such as number 
of spikes, frequency, etc.). 

3.2.4 Assessment of model generalization 

We used different stimuli for model fitting (current steps) and for generalization assessment 
(current ramps and noise). We simulated the experimental ramp currents in-silico, by 
stimulating the models with the appropriate holding currents for the two firing modes and a 
linearly increasing current. We first compared visually the model responses with the 
experimental recordings (Fig 3.6A).  

	
Figure 3.6. Model generalization. 
(A) Responses to a ramp current injection in burst mode (left) and tonic mode (center). (B) 
Responses to a noise current generated according to an Ornstein-Uhlenbeck process and scaled 
based on the excitability of the different experimental cells and models (see Methods). (C) 
Generalization errors for all the models that passed the generalization test (all generalization 
errors <3 STD). (D) Proportion of models that passed the generalization test (see Fig S4 for 
examples of models that failed this test). 

	
In burst mode, the models reproduced the different behaviors observed experimentally: absence 
of a burst, small low-threshold spike, burst, burst followed by tonic firing (Fig S4). Moreover, 
the latency of burst generation substantially overlapped with the experimental one. However, 
a small fraction of models (1.2 %) generate repetitive burst that we have never observed in the 
experimental recordings (Fig S4). These models were quantitatively rejected by considering 
the number of spikes and the inter-spike intervals. In tonic mode, the latency to first spike, the 
voltage threshold, the shape of the subsequent action potentials and the increase in firing 
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frequency were comparable with the experimental recordings (Fig 3.6A). In addition, we 
quantified the generalization error to ramp stimuli (Fig 3.6C), by considering the latency to 
first spike, firing frequency increase over time (tonic mode) or number of spikes (burst mode). 

Although conductance-based models can be fit by using step and ramp currents, these stimuli 
are different from synaptic inputs, which can be simulated by injecting noisy currents. To test 
the response to such network-like input, we used a noisy current varying accordingly to an 
Ornstein-Uhlenbeck (OU) process (Pozzorini et al., 2015) to compare models’ responses with 
the experimental data. Each experimentally recorded cell was stimulated with the same OU 
input, scaled by a factor w. Experimentally, w was calculated during by evaluating the 
responses to previous stimuli. We developed a similar approach to generate the noise stimuli 
in silico (see Methods). The noise current was injected on top of the holding currents used 
during the optimization. We found that the models reproduced well the subthreshold potential, 
spike times and the distribution of single spikes and bursts (Fig 3.6B). Moreover, we 
quantitatively evaluated the generalization to the noise stimulus by extracting features (e.g. 
number of spikes) and comparing them with the experimental mean. 

We computed generalization errors for each model, which were calculated similarly to the 
optimization errors (Fig 3.6C). We considered a model acceptable after generalization if it had 
all generalization errors <3 STD and we found that the majority of the models (>90%) passed 
the generalization test. 

	

3.2.5 Sensitivity of electrical features to small parameter perturbations 

We assessed the robustness of the models to small changes in their parameter values. To that 
end, we varied each parameter at a time by a small amount (± 2.5 % of the optimized value) 
and computed the values of the features. A sensitivity value of 2 between parameter p and 
feature y means that a 3 % change in p caused a 6 % change in f. We ranked the parameters 
from the most to the least influential and the features from the most sensitive to the least 
sensitive.  
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Figure 3.7. Local sensitivity analysis.  

(A) Sensitivity of the feature values to small changes to the parameter values for the cAD_ltb 
model in Fig 3.4. Sensitivities (∆y/∆p) are color coded as a heat map. Features are ranked from 
the most to the least sensitive and parameters are ranked from the most to the least influential. 
The last three rows are features that ensure that the models were not firing without input or in 
the response to the holding current. Small changes to the parameter values are not expected to 
make the model firing and thus the sensitivity of these features is 0. (B) Same sensitivity values 
as in (a), with features and parameters clustered by similar sensitivity and influences. 

 

Some features resulted to be more sensitive to parameter changes, both in term of magnitude 
of the sensitivity and number of parameters (e.g. adaptation index, inverse of inter-spike 
intervals, ISIs, AHP depth). Most of these features describe the model firing pattern, which 
depend more on the interplay between the different ionic currents than on the specific 
activation/inactivation dynamics. Conversely, spike shape-related features were less sensitive 
to parameter changes (e.g. AP half-width, AP amp.) and because they depend more on specific 
ionic current dynamics (e.g. IKd, IL, INaT,). Some features were very weakly influenced by small 
parameter changes, e.g. baseline voltage, which depend more on the holding current amplitude, 
than on the model parameters. 

The conductance of the leak current gleak emerged as the most influential parameter (Fig 3.7A). 
An increase in gleak caused a decrease in firing frequency (inverse of ISIs) in both the tonic and 
burst firing modes. These results are easy to interpret when considering Ohm’s law: increasing 
gleak means decreasing the input resistance of the model, so that for the same input current the 
voltage response becomes smaller. The second most influential parameter was the conductance 
of the persistent sodium current gNaP in the dendrites, which increased the tonic firing rate as 
expected from a depolarizing current. Interestingly, gNaP had an effect on the late phase of the 
low- threshold burst (inverse last ISI - burst), suggesting that the low-threshold burst is initiated 
by the activation of IT and modulated by INaP. An increase in the permeability of the low-
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threshold calcium current PCaT, known to be one the main currents underlying low threshold 
bursting, enhanced burst firing responses (it decreased the inverse of ISIs) and had effects on 
some of the tonic features. Increasing the somatic permeability of the high threshold calcium 
current PCaL decreased the tonic firing rate, despite being a depolarizing current. Increasing PCaL 
means higher Ca2+ influx and higher amplitude of the Ca2+-activated potassium current (ISK). 
The parameter gSK had indeed a similar effect on the features and thus clustered together with 
parameters regulating the intracellular calcium dynamics gCa and tCa (Fig 3.7B). Sag amplitude, 
that is known to depend on the activity of Ih, was mainly influenced by change in gleak, PCaT and 
gh. In summary, each parameter influenced at least one feature. These results indicate that the 
model ability to generate tonic and burst firing is robust to small changes in parameter values 
and that all the parameters were constrained during the optimization by one or more features. 

We then analyzed which features depended similarly on parameter changes, as they may add 
superfluous degrees of freedom during parameters search. Fig 3.7B shows the same 
sensitivities as in Fig 3.7A, clustered by their similarities (see Methods). Features clustered 
together if they were sensitive to similar parameter combinations and parameters clustered 
based on their similar influence on the features. Not surprisingly, the same tonic features 
measured at different level of current stimulation clustered together (e.g. AP amplitude and 
half-width, AHP depth, latency of the first ISI) and tonic firing features belonged to a cluster 
that was different from burst features. Some features measured in tonic mode (such as AP half-
width and AP amp.) clustered together because they depended mainly on the dynamics of INaT 
and IKd: increasing the conductance of INaT increased the amplitude of the APs and decreased 
its duration. This was also true for the amplitude of the 1st AP in the burst. Features measured 
in burst mode had similar sensitivities because they depend on currents that are active at 
relatively hyperpolarized potential (such IH and ICaT). 

	

3.2.6 Preservation of model firing properties with different morphologies 

We optimized the parameters for the adapting and non-adapting e-models in combination with 
two different experimental morphologies selected at random and then tested them with the 
other 48 morphologies. Considering that morphologies could not be classified in different m-
types based on topological analysis of their dendrites and that TC neurons have been shown to 
be electrically compact (Connelly et al., 2015), we expected the electrical behavior to be 
conserved when changing morphology. Nonetheless, different neurons vary in their input 
resistance Rinput and rheobase current Ithr due to variation in the surface area. Variation in Rinput 
and Ithr made the current amplitude applied during the optimization inadequate to generate the 
appropriate voltage trajectories. We thus devised an algorithm to search for the holding current 
to obtain the target holding voltage (for example −64 mV or −84 mV for tonic and burst firing, 
respectively) and Ithr from the desired holding voltage. The different e-model/morphology 
combinations (me-combinations) were evaluated by computing the same feature errors 
calculated during optimization. For each morphology, we selected the e-model that generated 
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the smallest maximum error. All me-combinations reproduced burst and tonic firing (Fig 3.8C). 
We chose the value of 3 STD as a threshold to define which me-combinations were acceptable 
(Hay et al., 2013), yielding 50 acceptable me-combinations out of the 50 tested (Fig 3.8A).  

Given that the generalization of the electrical models to the other 48 morphologies worked 
well, we can conclude that the morphological properties of the modeled neurons are very 
similar, at least for properties that have an impact on the electrical models (e.g. surface area, 
diameters of the compartments). 

	

	
Figure 3.8. Model generalization to different experimental morphologies.  
(A) Feature errors from the best electrical models (e-model) showed in Fig 3.4 applied to 50 
different TC cell morphologies. Each morphology is represented with a different color. E-
models/morphology combinations with at least one feature error > 3 STD (dashed line) were 
rejected. (B) Example of voltage responses from two accepted e-model/morphology 
combinations.  

3.3 Discussion 

Our objective was to apply and extend an existing data-driven pipeline to identify the cell types 
and build models of VB thalamocortical neurons that reproduce the multiple firing modes that 
have been experimentally observed. We successfully modelled these novel firing types, by 
including additional stimulation protocols and features to constrain the low-threshold burst. 

Our morphological and electrical data were used to define the properties of VB TC neurons in 
the rat. We found two electrical types (e-types) of TC neurons, but no objectively different 
morphological types (m-types) were revealed either using Sholl analysis (Sholl, 1953) or 
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topological analysis of dendritic branching (Kanari et al., 2018). We cannot exclude that 
refinements to these methods will reveal different m-types similar to the ones described in the 
visual thalamus of the mouse (Krahe et al., 2011). We also showed that automatic parameter 
search can be applied to build biophysically and morphologically detailed models. This method 
was already applied to model canonical firing behavior in cortical (Druckmann et al., 2007; 
Gouwens et al., 2018; Hay et al., 2011; Markram et al., 2015), hippocampal (Migliore et al., 
2018) cerebellar granule neurons (Masoli et al., 2017) and corticospinal neurons (Neymotin et 
al., 2016). To the best of our knowledge, such an automatic parameter search has not previously 
been used to capture different firing modes and complex firing behavior such as low-threshold 
bursting in thalamic neurons. Standardized electrophysiological protocols allowed us to 
identify for the first time in juvenile rat adapting and non-adapting e-types of TC VB neurons 
that were previously observed in other species (Turner et al., 1997). This finding suggests that 
the intrinsic properties of TC neurons contribute to adaptation, a key phenomenon for filtering 
out irrelevant stimuli, before sensory information reaches the neocortex. Further experiments 
are needed to elucidate the relative contribution of intrinsic mechanisms and network properties 
to adaptation in somatosensory systems. We named the two main e-types continuous non-
adapting low-threshold bursting (cNAD_ltb) and continuous adapting low-threshold bursting 
(cAD_ltb) by following and extending existing conventions (Ascoli et al., 2008; Markram et 
al., 2015; Migliore et al., 2018). 

In this study, we improved upon previous morphologically and biophysically detailed models 
of tonic and burst firing in TC neurons (Connelly et al., 2015; Destexhe et al., 1998b; Rhodes 
and Llinás, 2005) by explicitly constraining the parameters with experimental data, without 
hand-tuning of parameter values. Unlike previous models, we chose a multi-objective 
optimization for a methodological and a scientific reason: it is more time-efficient, 
reproducible, and it approximates the variability in ionic channel expression of biological 
neurons (Migliore et al., 2018; O’Leary et al., 2013; Schulz et al., 2006; Taylor et al., 2009), 
as shown by the family of acceptable solutions we found. However, experiments aimed at 
quantifying ion channel conductances are essential to assess if these solutions fall between 
biological ranges. Furthermore, we tested the generalization capability of the models and found 
that more than 90% of the models were comparable with the experimental data. 

Nonetheless, we noticed some inaccuracies when comparing the voltage traces with the 
experimental data when assessing the generalization of some models. For instance, some 
models tended to generate small transient oscillations in response to ramp stimuli in burst 
mode. This result is not surprising, considering that the exact kinetics for all the ionic currents 
are not available and that there are known limitations in models of ionic channels derived from 
the literature or from other models (Podlaski et al., 2017; Ranjan et al., 2011). In particular, 
modifications of the kinetics of the low-threshold calcium current was shown to explain the 
propensity to generate oscillatory bursts in TC neurons of other nuclei and species (Wei et al., 
2011). More generally, we included ion channels that were used in previous models and that 
were validated with experimental data whenever possible. We undertook an extensive literature 
review to use channel kinetics derived from recordings in rat TC neurons from the ventrobasal 
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(VB) thalamus or other first-order thalamic nuclei, whenever the data was available (see 
Methods). Moreover, we cannot exclude that some ionic currents were missing from our 
models and that they could have improved their fitness. 

TC neurons have been shown to be electrically compact (Connelly et al., 2015) and could, in 
principle, be modeled as a single compartment. However, active mechanisms need to be located 
in the dendrites in order to ensure synaptic integration and amplification (Connelly et al., 2016). 
Information regarding specific conductances or firing properties in the dendrites of TC neurons 
is limited. For this reason, dendritic parameters in our models may be underconstrained. 
However, the sensitivity analysis (see below) revealed that dendritic parameters did not appear 
to be the least constrained because they influenced different tonic and burst-related features. 

We included in the model fitting and validation pipeline a sensitivity analysis, which is often 
neglected in computational neuroscience (Tennøe et al., 2018). Although we cannot use our 
simple univariate approach to explore multidimensional parameter correlations and principles 
of co-regulation of ion channels expression, it is useful to find better constraints for parameters 
optimization. The selection of the features is indeed a step that still requires care and experience 
by modelers. Furthermore, this type of sensitivity analysis allows to identify parameters that 
can be traded-off during the optimization and that can be removed in order to reduce the 
dimensionality of the problem. In our study, parameters related to the calcium dynamics were 
shown to influence the features in a very similar fashion. This type of analysis is of particular 
importance in future work aimed at using the full diversity of ion channels that can be inferred 
from gene expression data. Gene expression data could also provide additional constraints on 
the choice of ion channels and indicate the ones that are missing in our models. More in detail, 
we propose that sensitivity analysis should be a fundamental tool in selecting which 
conductances are successfully optimized by the available experimental constraints. The 
example we showed is a local approach, applied to a specific solution to the optimization 
problem, which showed that our models are robust to small parameter changes. This analysis 
can be extended to study how the sensitivities vary in the neighborhood of different solutions. 

In conclusion, we systematically studied the morphological and electrical properties of VB TC 
neurons and used these experimental data to constrain single neuron models, test their 
generalization capability and assess their robustness. Further work will validate these models 
in response to synaptic activity, in order to include them in a large-scale model of 
thalamocortical microcircuitry (Markram et al., 2015). 
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3.4 Methods 

3.4.1 Experimental procedures 

Experimental data were collected in conformity with the Swiss Welfare Act and the Swiss 
National Institutional Guidelines on Animal Experimentation for the ethical use of animals. 
The Swiss Cantonal Veterinary Office approved the project following an ethical review by the 
State Committee for Animal Experimentation. 

All the experiments were conducted on coronal or horizontal brain slices (300 μm thick- ness) 
from the right hemisphere of male and female juvenile (P14-18) Wistar Han rats. The region 
of interest was identified using the Paxinos and Watson rat brain atlas (Paxinos and Watson, 
1998). After decapitation, brains were quickly dissected and sliced (HR2 vibratome, Sigmann 
Elektronik, Germany) in ice-cold standard ACSF (in mM: NaCl 125.0, KCl 2.50, MgCl2 1.00, 
NaH2PO4 1.25, CaCl2 2.00, D-(+)-Glucose 50.00, NaHCO3 50.00; pH 7.40, aerated with 95% 
O2 / 5% CO2). Recordings of thalamocortical neurons in the VB complex were performed at 
34 °C in standard ACSF with an Axon Instruments Axopatch 200B Amplifier (Molecular 
Devices, USA) using 5–7 MΩ borosilicate pipettes, containing (in mM): K+-gluconate 110.00, 
KCl 10.00, ATP-Mg2+ 4.00, Na2-phosphocreatine 10.00, GTP-Na+ 0.30, HEPES 10.00, 
biocytin 13.00; pH adjusted to 7.20 with KOH, osmolarity 270-300 mOsm. Cells were 
visualized using infrared differential interference contrast video microscopy (VX55 camera, 
Till Photonics, Germany and BX51WI microscope, Olympus, Japan). 

Membrane potentials were sampled at 10 kHz using an ITC-18 digitizing board (InstruTECH, 
USA) controlled by custom-written software operating within IGOR Pro (Wavemetrics, USA). 
Voltage signals were low-pass filtered (Bessel, 10 kHz) and corrected after acquisition for the 
liquid junction potential (LJP) of −14 mV. Only cells with a series resistance <25 MΩ were 
used. 

After reaching the whole-cell configuration, a battery of current stimuli was injected into the 
cells and repeated 2-4 times (e-code). During the entire protocol, we defined offset currents in 
order to keep the cell at −50 mV (tonic firing) or −70 mV (burst firing) before LJP correction 
and applied them during the entire protocol. The step and ramp currents were injected with a 
delay of 250 ms in the experiment. In the models, the stimuli were injected with a delay of 800 
ms, to allow for the decay of transients due to initialization. Each stimulus was normalized to 
the rheobase current of each cell, calculated on-line as the current that elicited one spike 
(stimulus TestAmp, duration 1350 ms). The stimuli used for in the experiments, for fitting and 
testing the models were: 

• IDRest: current step of 1350 ms, injected at different amplitude levels in 25 % 
increments (range 50-300 % threshold). IDRest was renamed to Step in the model. 

• IDThresh: current step with duration of 270 ms, 4 % increments (range 50 - 130 %).  
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• IV: hyperpolarizing and depolarizing steps of 3000 ms injected in 20 % increments 
(range −140 - 60%).   

• SponNoHold: the first 10 seconds of this stimulus was used to calculate the resting 
membrane potential. No holding or stimulation currents were applied.   

• SponHold: the first 10 seconds of this stimulus was used to calculate the holding current 
applied to keep the cells at the target potential.   

• PosCheops: ramps of current from 0 to 300 % and from 300 to 0 % having progressively 
shorter durations (4000 ms, 2000 ms, 1250 ms). To test the models in tonic mode we 
used the first increasing ramp in the stimulus, while we used the last one in the bursting 
firing mode. We chose the last one because the biological cells were more likely to 
generate a burst.   

• NOISEOU3: the original wave was scaled and offset for each cell based on the spike 
frequency responses to IDRest responses. The scaling factor w was extracted from the 
frequency-current curve and corresponded to the current value that made the cell fire at 
7.5 Hz.   

Neurons that were completely stained and those with high contrast were reconstructed in 3D 
and corrected for shrinkage as previously described (Markram et al., 2015). Reconstruction 
used the Neurolucida system (MicroBrightField). The location of the stained cells was defined 
by overlaying the stained slice and applying manually an affine transformation to the Paxinos 
and Watson’s rat atlas (Paxinos and Watson, 1998).   

3.4.2 Electrical features extraction 

Electrical features were extracted using the Electrophys Feature Extraction Library (eFEL) 
(BlueBrain, 2018a). We calculated the adaptation index (AI) from recordings in tonic mode 
(Step 200 % threshold) and classified TC VB neurons into adapting (AI>=0.029) and non-
adapting (AI<0.029) electrical types. AI was calculated using the eFEL feature 
adaptation_index2 and corresponded to the average of the difference between two consecutive 
inter-spike intervals (ISI) normalized by their sum. The cut-off value was calculated after 
fitting a Gaussian mixture model to the bimodal data, using available routines for R (Choisy, 
2018; RStudio Team, 2016). In order to group data from different cells and generate population 
features, we normalized all the stimuli by the rheobase current Ithr of each cell. To calculate Ithr, 
we used IDRest and IDThresh and selected the minimal amplitude that evoked a single spike. 
Along with the voltage features, we extracted mean holding and threshold current values for 
all the experimental stimuli. Description of the features and the details on their calculation are 
available on-line (BlueBrain, 2018a) (BlueBrain, 2018a). Current stimuli applied during the 
optimization and generalization were directly obtained from the experimental values or 
automatically calculated by following the experimental procedures (e.g. noise stimulus). 
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3.4.3 Morphology analysis 

Reconstructed morphologies were analyzed to objectively identify different morphological 
types. The Sholl profiles of each pair of cells was statistically tested by using k-samples 
Anderson-Darling statistics. This test was preferred to the most common Kolmogorov- 
Smirnov test, because it does not assume that the samples are drawn from a continuous 
distribution. The different Sholl profiles are indeed an analysis of the intersections with discrete 
spheres.  

To compare the topological description of each morphology we transformed the persistence 
barcodes into persistence images and calculated their distances as in (Kanari et al., 2018). 
Briefly, we converted the persistence barcode, which encodes the start and end radial distances 
of a branch in the neuronal tree, into a persistence diagram. In the persistence diagram, each 
bar of the barcode is converted into a point in a 2D space, where the X and Y coordinates are 
the start and end radial distances of each bar. The persistence diagram was then converted in a 
persistence image by applying a Gaussian kernel. We used the library NeuroM (NeuroM) to 
perform Sholl and morphometrics analyses. The reconstructed morphologies will be made 
publicly available on neuromorpho.org.  

3.4.4 Ionic currents models 

We used Hodgkin-Huxley types of ionic current models, starting from kinetics equations 
already available in the neuroscientific literature. Along with kinetics of the ionic currents, we 
stored information on the experimental conditions, such as temperature and LJP, by using the 
software NeuroCurator (O’Reilly et al., 2017). Whenever the data was available, we compared 
simulated voltage-clamp experiments to experimental data from juvenile rats. Ionic currents Ii 
were defined as functions of the membrane potential v, its maximal conductance density gi and 
the constant value of the reversal potential Ei: 

𝐼$ = 𝑔$	𝑚$
&	ℎ$

'(𝑣 − 𝐸$) 

mion and hion represent activation and inactivation probability (varying between 0 and 1), with 
integer exponents x and y. Each probability varied according to: 

𝑛((𝑣) = (𝑛)(𝑣) − 𝑛)/𝜏*(𝑣) 

where n∞(v) is a function of voltage that represents the steady-state activation/inactivation 
function (normally fitted with a Boltzmann curve) and τn(v) is a voltage-dependent time 
constant. Exceptions to this formalism are ionic currents that do not inactivate (y = 0) and ionic 
currents with (in)activation processes mediated by two or more time constants. Calcium 
currents (ICaT and ICaL) were modeled according to the Goldman-Hodgkin-Katz constant field 
equation and had permeability values instead of conductance (Hille, 1978). 

Fast transient sodium current INaT and delayed potassium current IKd. INaT and IKd were 
taken from a previous models of rat TC neurons from the VB nucleus (Destexhe et al., 1998b), 
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available on SenseLab ModelDB (accession no. 279). INaT was compared with recordings of 
transient sodium currents in P7-11 rat neurons from the dorsolateral geniculate (dLGN) nucleus 
(Parri and Crunelli, 1998). 

Low-threshold activated (T-type) calcium current ICaT. ICaT model was taken from (Destexhe 
et al., 1998b) and available on-line (ModelDB, accession no. 279). This model was based on 
data recorded from VB neurons of Sprague-Dawley rats (P7-12) at room temperature and 
corrected for −9 mV LJP (Huguenard and McCormick, 1992). 

Hyperpolarization-activated cationic current Ih. The steady-state activation for Ih was 
derived from VB thalamic neurons in P10-20 Long-Evans rats and was already corrected for 
−10 mV LJP in the original publication (Budde et al., 1997), The equation used was: 

𝑚) = 1/(1 + exp[(𝑣 + 86.4)/11.2]) 

The time constant of activation was modeled as in (McCormick and Huguenard, 1992), which 
derived a mathematical description of Ih based on data from the dLGN in adult guinea pigs 
(McCormick and Pape, 1990). The equation describing the time dependence of activation was 
not corrected for simulations at different temperatures and was: 

𝜏+ = 1/[exp(−14.59 − 0.086𝑣) + 𝑒𝑥𝑝(−1.87 + 0.0701𝑣)] 

The equilibrium potential of the channel EH was -43 mV. 

Persistent sodium current INaP. We modeled INaP as in (Hay et al., 2011) which based their 
model on recordings from entorhinal neurons of Long-Evans rats (P25-P35) (Magistretti and 
Alonso, 1999). The model is available in ModelDB, accession no. 139653. The steady-state 
activation was modified according to (Parri and Crunelli, 1998) and the steady-state 
inactivation according to (Amarillo et al., 2014). The original steady-state activation data were 
recorded at room temperature (22-24°) and corrected for −6/−7 mV LJP. 

Fast transient (A-type) potassium current IKA. The mathematical formulation of IKA was 
based on data recorded from VB neurons in Sprague-Dawley rats (P7-15), recorded at room 
temperature (22-24 °C) (Huguenard and McCormick, 1992). A Q10 = 2.8 was experimentally 
determined and used for simulations at different temperatures. In the original experiments a 
small LJP (<−4 mV) was measured and not corrected. The current had a rapid and a slow 
component, represented by two activation and two inactivation variables. The model of this 
current was provided by the authors of (Amarillo et al., 2014). 

High-threshold (L-type) calcium current ICaL. ICaL model is the same as TC neurons model 
previously published (Amarillo et al., 2014). The model was based on data from isolated 
guinea-pig hippocampal neurons, recorded at room temperature (20-22 °C) with modifications 
to the Boltzmann curve parameters of activation contained in the correction to the original 
models. A small LJP (<3 mV) was not corrected (McCormick and Huguenard, 1992). A Q10 of 
3 was used for simulations at different temperatures. 
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Calcium-activated potassium currents. TC neuron express genes for BK-type (Ehling et al., 
2013) and SK-type calcium-activated potassium channels (Gymnopoulos et al., 2014). Models 
of BK-type currents, similar to the IC current, have already been used to model TC neurons 
(Amarillo et al., 2014; Ehling et al., 2013; McCormick and Huguenard, 1992). However, data 
characterizing this current in mammalian neurons are not available. We thus included only a 
model of ISK (available on ModelDB, accession no. 139653) based on rat mRNA expression 
data in Xenopus oocytes (Köhler et al., 1996). 

Intracellular calcium dynamics. A simple exponential decay mechanism was used to model 
the intracellular calcium dynamics (ModelDB, accession no. 139653). Both ICaT and ICaL 
contributed to the intracellular calcium concentration. 

In addition, we included a voltage-insensitive membrane current Ileak. The equilibrium potential 
was −79 mV and corresponded to the average resting potential from our experimental 
recordings. 

3.4.5 Simulation and parameters optimization 

NEURON 7.5 software was used for simulation (Hines and Carnevale, 1997). We used 
NEURON variable time step method for all simulations. For the sake of spatial discretization, 
each section was divided into segments of 40 μm length. The following global parameters were 
set: initial simulation voltage (−79 mV), simulation temperature (34 °C), specific membrane 
capacitance (1 μF/cm2), specific intracellular resistivity 100 Ωcm for all the sections, 
equilibrium potentials for sodium and potassium were 50 mV and −90 mV, respectively.  

BluePyOpt (Van Geit et al., 2016) with Indicator Based Evolutionary Algorithm (IBEA) were 
used to fit the models to the experimental data. Each optimization run was repeated with three 
different random seeds and evaluated 100 individuals for 100 generations. The evaluation of 
these 300 individuals for 100 generations was parallelized using the iPython ipyparallel 
package and took between 21 and 52 h on 48 CPU cores (Intel Xeon 2.60 GHz) on a computing 
cluster. Each optimization run typically resulted in tens or hundreds of unique acceptable 
solutions, defined as models having all feature errors below 3 STD from the experimental 
mean. 

3.4.6 Sensitivity analysis 

We performed a sensitivity analysis of an optimization solution by varying one parameter value 
(pm) at a time and calculating the electrical features from the voltage traces (y+ and y-). We 
defined the sensitivity as the ratio between the normalized feature change and the parameter 
change, which for smooth functions approximates a partial derivative (Olifer, 2013; Weaver 
and Wearne, 2008). The features changes were normalized by the optimized feature value. For 
small changes of parameter values, we assumed that the features depend linearly on its 
parameters. We could thus linearize the relationship between the features and the parameters 
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around an optimized parameter set and calculate the derivatives. The derivatives were 
calculated with a central difference scheme (Weaver and Wearne, 2008). 

𝜕𝑦*
𝜕𝑝+

≈
𝑦*, − 𝑦*-

2Δ𝑝+
 

We collected the derivatives (sensitivities) in the N X M Jacobian matrix, with N representing 
the number of features and M the number of parameters. 

To rank parameters and features we computed their relative importance by calculating their 
norms (the square root of the summed squared values) from the Jacobian columns and rows, 
respectively. To cluster parameters based on similar influences on the features and to cluster 
features that were similarly dependent on the parameters, we used angles between columns (or 
rows) to compute distances D between parameters (or features): 

𝐷 = 1 − |cos 𝜃| 

Features where thus considered similar if they depended in a similar manner on the parameters, 
independent of sign or magnitude. 

	

3.4.7 Data and code availability 

The models are publicly available on ModelDB (McDougal et al., 2017), accession number 
251881. The setup and configuration files (experimental features and protocols) for the 
optimization are publicly available on GitHub, under the examples of the BluePyOpt library 
(BlueBrain, 2018b). The channels densities of the acceptable models are available at the same 
page. The 50 3D morphological reconstructions are available on Neuromorpho.org (Ascoli et 
al., 2007) (DOI: 10.13021/xpbb-6y59). 
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4 Reconstruction and simulation of 
thalamic microcircuitry  

	
This chapter is the result of a joint work with: Jane Yi, Ying Shi, Maria Garcia-Amado, 
Christian O’Reilly, Oren Amsalem, Francisco Clascà, Henry Markram and Sean L. Hill, to be 
submitted for publication. 

	
Contribution: I performed the integration of the experimental data provided by J.Y., Y.S., M. 
G.-A. and F.C. C.OR. computed the microcircuit dimensions and built an initial version of the 
circuit model. Subsequently, I took responsibility for building and validating the neuron 
models, circuit and connectivity. I collaborated with O.A. for the inclusion of gap junctions 
into the circuit. I ran all the simulations, analyzed the results, and created all the figures. H.M. 
and S.L.H. supervised the study. 

	
Abstract 

The thalamus is centrally located between the periphery and the neocortex, it is involved in 
numerous functions and in the generation of thalamocortical rhythms. Despite significant 
advances in understanding its role in cognitive behavior, the bases of its structural and 
functional properties are still largely unknown. To address these challenges, we developed a 
detailed large-scale model of one of the simplest thalamic microcircuits. Although constrained 
and validated with extremely sparse experimental data, it reproduced fundamental cellular and 
network properties, without being explicitly built for generating for that purpose. As a first 
step, we used the model to study spindle-like oscillations, a thalamic-generated rhythm, and 
how neurons and connectivity through chemical and electrical synapses shape it. We dissected 
thalamic contributions to rhythm generation and predicted which aspects critically depend on 
cortical inputs. This first-draft model of thalamic microcircuit will be extended in the future 
with biologically-detailed models of neocortical circuits to broaden our understanding of 
thalamocortical computations. 

4.1 Introduction 

The thalamocortical system consists of different thalamic nuclei, including the inhibitory 
reticular nucleus of the thalamus, and their reciprocal interactions with the neocortex. The 
thalamus, along with the reticular nucleus, is involved in numerous functions, for instance 
transmission of sensory information and transition between brain states, such as sleep and 
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wakefulness (Jones, 2002; Rikhye et al., 2018; Steriade, 2003). The thalamus and reticular 
nucleus alone are able to generate and sustain rhythmic activity, such as spindle oscillations, 
as a result of their cellular and synaptic properties, which are transmitted to the neocortex and 
shaped by cortical feedback (Bal et al., 1995b; Contreras et al., 1997; Fernandez and Luthi, 
2019; von Krosigk et al., 1993; Steriade et al., 1987). Subtle alterations to thalamic neurons 
firing and their interconnectivity have been associated with pathological brain rhythms, such 
as those appearing in absence epilepsy (Beenhakker and Huguenard, 2009; Huguenard and 
McCormick, 2007; Makinson et al., 2017; Sohal and Huguenard, 2003; Steriade, 2005) 
(Beenhakker and Huguenard, 2009; Huguenard and McCormick, 2007; Makinson et al., 2017; 
Sohal and Huguenard, 2003; Steriade, 2005).  

Although the properties of thalamic and reticular neurons have been extensively studied in vitro 
(Connelly et al., 2017; Cox et al., 1996; Jahnsen and Llinás, 1984; Lee et al., 2007; Pinault and 
Deschênes, 1998b; Pinault et al., 1995; Spreafico et al., 1991) a detailed characterization of the 
anatomy and physiology of neuron pairs in the thalamus has been challenging (Cox et al., 1997; 
Gentet and Ulrich, 2003). Understanding these fundamental properties is the basis to broaden 
our knowledge of thalamic computations. Computer simulations facilitate the integration and 
standardization of different sources of experimental data, highlight key missing experiments, 
and help us understand the structural and functional complexity of neural circuits (Billeh et al., 
2020; Einevoll et al., 2019; Markram et al., 2015). Previous models of small thalamic networks 
or thalamic slices have studied various physiological and pathological aspects of thalamic 
microcircuits, but the level of detail and the choice of parameters reflected the specific 
hypothesis that were investigated (Bazhenov et al., 1998; Bús et al., 2018; Destexhe et al., 
1996; Golomb et al., 1996; Li et al., 2017; Wang et al., 1995).  

In this work, we followed and extended the pipeline presented in (Markram et al., 2015) to 
develop a digital reconstruction of a thalamic microcircuit in the mouse, including a portion of 
first-order somatosensory thalamus (ventroposterolateral nucleus, VPL) and the corresponding 
region of the reticular nucleus. We performed targeted in vitro experiments to capture 
electrophysiological, morphological and synaptic data from the mouse. We then used these 
measurements, combined with systematic curation of data from the literature and open access 
datasets, to build biophysically and morphologically-detailed neuron models. We defined the 
microcircuit geometry and populated it with experimentally-measured neuron densities. 3D 
morphological reconstructions constituted the basis to constrain the detailed connectivity 
between neurons of the thalamus and the reticular nucleus. Synaptic connections comprised 
chemical synapses with short-term depression and facilitation and electrical synapses (gap 
junctions). As extra-thalamic source of inputs, we included synapses from sensory afferents 
(medial lemniscus) and corticothalamic feedback. 

This approach yielded the first morphologically and biophysically-detailed model of a thalamic 
microcircuit, showing that the modelling strategy developed for cortical microcircuitry 
(Markram et al., 2015) can be applied to other brain regions. Although this first-draft model 
was constrained with extremely sparse experimental data, it reproduced a number of in vitro 
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and in vivo findings. While building this detailed model, we learned that the structural 
properties of thalamic connectivity are still largely uncharacterized experimentally, as well as 
synapse densities of intrinsic and extrinsic synapses. We predicted that most connections are 
constituted by single contacts and that electrical connections in the reticular nucleus can exist 
between neurons that are hundreds of micrometers apart from each other, reflecting the extent 
of reticular neurons dendrites.  

Network simulations showed that evoked spindle-like oscillations are mainly generated by 
synaptic interactions and that the balance between the activity of different connections can 
account for oscillation termination. Reciprocal inhibition between reticular neurons and gap 
junctions affected the duration of the oscillation in a reciprocal way: while removing the former 
increased the duration of spindle-like oscillations, removing the latter shortened it. This finding 
is in agreement with the desynchronizing and synchronizing roles proposed from intra-reticular 
inhibition and gap junctions (Beenhakker and Huguenard, 2009; Fernandez and Luthi, 2019; 
Kohmann et al., 2016). We found that differential depolarization in the Rt and VPL influence 
both oscillation frequency and duration, suggesting a dynamic modulation of membrane 
potentials and spindle properties as shown in naturally sleeping rodents (Bartho et al., 2014; 
Urbain et al., 2019). We also showed that evoking network oscillation with characteristics 
similar to sleep spindles is easier in a limited range of Rt and VPL depolarization levels, 
approximating Rt and VPL activities during light NREM sleep. 

4.2 Methods 

4.2.1 Constraining and validating the model with experimental data 

We built the microcircuit model by constraining and validating it at multiple levels, with the 
available experimental data. For validation we mean the direct comparison of the model 
properties with experimental measurements that were not used during the model building steps. 
Before describing the details of the reconstruction, validation and simulations, we provide a 
list of data used for constraining the model, the validation data and further validations at the 
network level. 

4.2.2 Experimental data used to constrain the model 

We provide below a list of experimental data used to constrain the model at each level of the 
reconstruction process: 

• Three-dimensional reconstructions of neuron morphologies.  

• Electrophysiological data from in vitro patch-clamp recordings (current step stimuli) 

• Ion channel kinetic parameters 
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• Neuron densities 

• Fraction of inhibitory and excitatory neurons 

• Fraction of electrical types for each morphological type 

• Axonal bouton densities (i.e. number of boutons per axonal unit length) 

• Volumetric densities of lemniscal synapses 

• Ratio of corticothalamic to lemniscal bouton densities and ratio of corticothalamic to 
thalamocortical bouton densities. 

• Postsynaptic potential amplitudes and their change in response to trains of presynaptic 
inputs from in vitro paired-recordings (short-term plasticity protocols). Initial release 
probabilities are estimated from these data as well. 

• Number of neurons connected through gap junctions. 

4.2.3 Experimental data used for model validation 

The following experimental measurements not used for constraining the model during the 
building process and were used for validation: 

• Electrophysiological data from in vitro patch-clamp recordings (current ramps and 
noise). 

• Dendritic attenuation of synaptic potentials 

• Neuron convergence onto reticular neurons 

• Number of synapses per connection between interneurons and thalamocortical neurons 
(i.e. number of synapses between each pair of neurons) 

• Coefficient of variation of first postsynaptic potential amplitudes 

• Postsynaptic potential amplitudes 

• Distance-dependent gap junction connectivity between reticular neurons 

• Gap junctions coupling coefficients 

4.2.4 Validations at the network level 

We identified the following network responses during simulated activity as a general validation 
of the reconstruction process: 

• Spontaneous in vivo-like activity. In in vivo-like states the network should display 
uncorrelated firing at the population level. Single neurons can fire or be silent. 
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• Evoked activity with simulated sensory input. The network should respond to spiking 
inputs from medial lemniscal fibers. The population response should increase, and the 
latencies should decrease with increasing stimulus amplitude (number of fibers). 

• Spontaneous in vitro-like activity. The network should generate low firing activity 
dominated by miniature potentials. 

• Modulation of thalamic activity in response to simulated activation of corticothalamic 
fibers (Crandall et al., 2015). 

• Evoked spindle-like activity. 

 

4.2.5 Reconstructing the morphological diversity of neurons 

4.2.5.1 Reconstruction of morphologies 
3D reconstructions of biocytin-stained thalamocortical (TC), reticular thalamic (Rt) neurons 
and thalamic interneurons (IN) were obtained from in vitro patch-clamp experiments from 300 
μm slices of P14-35 mice (GAD67-eGFP or C57Bl/6J strains) as previously described 
(Iavarone et al., 2019; Markram et al., 2015). During the electrophysiological recordings 
neurons were stained intracellularly with biocytin. In vitro-stained neurons were mainly located 
in primary somatosensory nuclei (VPL and VPM) and the somatosensory sector of the reticular 
nucleus  (Clemente-Perez et al., 2017; Lam and Sherman, 2011; Pinault and Deschênes, 
1998b). Reconstructions used the Neurolucida system (MicroBrightField) and were corrected 
for shrinkage along the thickness of the slice. Shrinkage along other dimensions was taken into 
account during the unravelling step (see below). Dendrites were reconstructed with a 100x 
magnification (oil immersion objective) and axons at 60x (water immersion objective). 

In vivo-stained TC and Rt morphologies were obtained from different experimental techniques. 
In some cases, neurons were labelled by injection of replication-defective Sindbis virus 
particles in the thalamus or Rt nucleus in C57Bl/6J adult mice (Furuta et al., 2001) or 
electroporation of RNA of the same virus (Porrero et al., 2016). The virus labelled the 
membrane of the neurons thanks to a palmitoylation signal linked to a green fluorescent protein 
(GFP). Brains were cut in 50 μm serial sections and immunostained against GFP  and enhanced 
with glucose oxidase-nickel staining (Shu et al., 1988). Neurons were reconstructed from 
sequentially-ordered slices under bright-field optics using the Neurolucida system 
(MicroBrightField). The complete method is described in (Rodriguez-Moreno et al., 2020). 

TC neuron morphologies from the Janelia Mouselight project were obtained from adult 
C57/BL6 mice and sparsely labelled; the method is described in detail elsewhere (Winnubst et 
al., 2019) and summarized here. Brains were then delipidated, fluorescence was enhanced by 
immunolabeling and imaged with a 40x oil-immersion objective. This procedure generated 
large datasets of high-resolution image stacks. 3D reconstructions were conducted combining 
semi-automated segmentation of neurites and human annotation and quality control. Janelia 
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Mouselight reconstructions lacked diameter variations in their neurites, which is important for 
accurate electrical modelling of neurons (Jaeger, 2000). For this reason, we only used their 
axons in order to increase the variability of our axonal reconstructions.  

Virus injections for sparse labelling of whole brain neuron morphologies were employed for in 
vivo labelling of reticular neurons in SSt-Cre;Ai139 adult mice. Brains were imaged using 
fluorescence micro-optical sectioning tomography (fMOST) (Gong et al., 2016). Neurons were 
manually reconstructed from high resolution image stacks obtained after slicing. Further details 
of the method are available in (Wang et al., 2019). 

4.2.5.2 Morphology analysis and alignment 
We analyzed the axons of TC morphologies using an open-source library (NeuroM) and 
identified axonal collaterals in the reticular nucleus as the morphological sections which had 
branch order >= 1 and path distance from the soma < 2500 μm and visually validated the 
results. For some morphologies we considered sections with branch order >= 2. For others we 
selected those having path distance <= 2000 μm, because some TC neurons have collaterals 
projecting to other subcortical regions (e.g striatum), see (Clascá et al., 2012). 

Raw morphological data did not have a common orientation along a principal axis. We thus 
computed a rotation matrix so that their principal axis was parallel to the vertical axis of the 
microcircuit. The principal axis of TC morphologies was the one connecting the center of the 
soma and the center of mass of the axon collaterals in the Rt nucleus. For Rt neurons, the 
principal axis connected the soma and the center of mass of the axonal arborization in the 
thalamus. An alternative approach would have been to align Rt neurons dendrites along the 
horizontal dimension of the microcircuit (and the Rt region). We found that in most cases the 
two methods gave comparable results. After rotating the morphologies, we visually validated 
the results. We did not perform any rotation for the INs, since information about their 
orientation with respect to thalamic landmarks and other nuclei was missing.  

Raw morphological data were algorithmically corrected for slicing artifacts and processed to 
generate a large pool of unique morphologies for building the microcircuit and connectivity 
(morphology release). Spurious sections, which were accidentally introduced during manual 
reconstruction, were identified as those having 0 μm diameter and removed. The details are 
described in Supplemental Experimental Procedure of the neocortical microcircuit model 
(Markram et al., 2015), and summarized below. 

4.2.5.3 Unraveling morphologies 
Since we found that 3D reconstructions from in vitro-stained neurons had increased tortuosity 
in their dendrites as a result of tissue shrinkage, we unravelled them using an existing 
algorithm. This process resulted in an increase of the reach of the morphologies, while 
preserving the original length of the branches. Briefly, unravelling was performed by sections 
and for each section a sliding window composed of a given number of successive points was 
created. The number of points in the sliding window (N) was the only parameter of the 
algorithm and we found that N=5 previously used performed well on thalamic morphologies. 
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The general direction of the points in the window was computed using principal component 
analysis (PCA). The segment at the middle of the window was then aligned along this direction. 
It meant that its direction was set to the one of the sliding window but it retained its original 
length. The sliding window was moved over all points of the section and the algorithm was 
applied to all sections. 

4.2.5.4 Repairing morphologies 
Not surprisingly, most of the in vitro-stained morphologies were truncated at slice edges and 
in the case of some TC morphologies, which have very dense dendritic arborization, this 
resulted in a significant decrease in dendritix mass. We applied an existing algorithm  (Anwar 
et al., 2009; Markram et al., 2015) to repair missing dendritic branches and with the inclusion 
of small improvements. First, the algorithm detects cut points on the XY plane, i.e. the plane 
parallel the slice, along the Z direction (parallel to the slice thickness). The 3D coordinate 
system was centered on the morphology soma. Although the algorithm was designed to detect 
cut points on two planes, we found that our morphologies were truncated on the top plane. We 
improved the algorithm by searching the cut points before unravelling the morphologies and 
updated their position during the unravelling step. Cut detection required a tolerance parameter 
to detect terminal points within a certain distance from maximum Z extents. We empirically 
found the 15 μm gave the most accurate results. Some terminal points were then tagged cut 
points and dendrites were repaired. 

The dendrite repair process created new dendritic sections starting at the identified cut points. 
Dendrite repair did not aim at recovering the initial morphology, but rather recreated it in a 
statistical manner, under the assumption of statistical symmetry of the morphology. This 
method analyzed the behavior of intact branches as a function of branch order and euclidean 
distance from the soma. For each branch order, probability density clouds of branch 
continuation, bifurcation or termination was calculated in a series of concentric spheres (Sholl, 
1953). At each cut point, the behavior of the branch was sampled according to the calculated 
probabilities. The factor governing the direction of the re-grown branches was empirically 
adjusted to achieve final branches tortuosity comparable with our experimental data. To 
alleviate problems created by swellings at some of the cut points, diameters of re-grown 
branches was the average of diameters of all the points in the section and not only the diameter 
at the cut point. 

4.2.5.5 Morphology diversification 
We increased the variability of our sample of reconstructed and repaired morphologies to 
ensure robust and invariant connectivity patterns (Ramaswamy et al., 2012). We followed 
procedures similar to (Markram et al., 2015) with the aim of generating a unique space-filling 
pattern for each morphology, while maintaining the general morphological and electrical 
structure for each m-type.  

We applied a mix-and-match procedure to maximize the utilization of good morphological 
reconstruction data. This procedure divided dendrites from axons and allowed us to combine 
good dendritic reconstructions of TC and Rt cells dendrites from in vitro and in vivo-stained 
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neurons. In vitro-stained neurons typically lacked reconstruction of the full axon due to the 
slicing procedure and/or poor labelling. For each morphology, we manually annotated which 
dendrites and axons were to be kept. The decision in most cases depended on the labelling 
method (in vitro vs. in vivo). 

To increase the probability that in vivo-stained morphologies and in particular the axons of TC 
and Rt morphologies were compatible with the microcircuit dimensions (see below) we 
duplicated and scaled the morphologies along their principal axis (Y-axis) by ± 2.5% and ± 
5.0%.  

We used an existing algorithm to further increase morphological variability, as detailed in 
(Markram et al., 2015). In summary, branch lengths and rotations at each bifurcation point 
were varied according to random numbers drawn from Gaussian distributions with mean 0% 
and standard deviation 20 % for branch lengths and mean 0° and standard deviation 20° for 
branch rotations. A sample of the resulting morphologies was visually validated, and we did 
not find significant alterations of their structure for any of the m-types. 

4.2.6 Reconstructing the electrical diversity of neurons 

4.2.6.1 Electrophysiological data 
The firing patterns of TC, Rt neurons and interneurons (INs) were characterized in vitro from 
brain slices of P14-35 GAD67-eGFP or C57Bl/6J mice and expert-classified into 5 electrical 
types (see Results). The detailed electrophysiological protocol has been published elsewhere 
(Iavarone et al., 2019). Neurons were sampled from the ventrobasal complex of the thalamus 
(VPL and VPM nuclei) and the somatosensory sector of the reticular nucleus (Clemente-Perez 
et al., 2017; Lam and Sherman, 2011).  

We used responses to step-like currents to build electrical models, ramp and noise currents to 
validate them (Iavarone et al., 2019), along with EPSC-like currents injected into the dendrites. 
All the recordings were corrected for liquid junction potential by subtracting 14 mV from the 
recorded voltage. 

4.2.6.2 Neuron models 
Multicompartmental conductance-based models were obtained by using reconstructed 
morphologies. Active ion currents and a simple intracellular calcium dynamics model were 
distributed in the somatic, dendritic and axonal compartments. The complete axon was not 
modelled (Markram et al., 2015), but only the axonal initial segment (AIS). The axons were 
substituted by 60 μm stub constituted by 2 sections, 5 segments each. For each segment, the 
diameter was extracted from the original axon in order to preserve its tapering. Morphologies 
were divided into compartments of 40 μm maximal length. Specific membrane capacitance 
was set to 1 μF/cm2 and specific intracellular resistivity to 100 Ωcm.  
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4.2.6.3 Ion channel models 
We included ion current models whose kinetics was obtained from previously published ion 
current models or derived from experimental data. All ion channel models were corrected for 
liquid junction potential and for simulation at different temperatures whenever possible. 
Simulation temperature was always set to 34° C. The types of ionic currents represented in the 
neuron models were: transient sodium, persistent sodium, A-type transient potassium, delayed 
potassium, low-threshold calcium, high-threshold calcium, calcium-activated potassium (SK-
type), h-current. The details of the ion channel kinetics and calcium dynamics used for low-
threshold bursting neurons (thalamocortical, TC, and reticular neurons, Rt) has been detailed 
elsewhere (Iavarone et al., 2019). Since interneurons had firing patterns similar to cortical ones, 
we used the same ion channel models of (Markram et al., 2015). The reversal potential of 
sodium, potassium and h-current were set to 50 mV, -90 mV and -43 mV, respectively. 

Ion channel models were distributed uniformly and with different peak conductance values for 
somatic, dendritic and axonal compartments. 

	
4.2.6.4 Optimization of neuron models 
Five electrical models (e-models), corresponding to each electrical-type (e-type), were fitted 
using a multiobjective optimization algorithm using the Python library BluePyOpt (Iavarone 
et al., 2019; Van Geit et al., 2016). The free parameters of the model were the peak 
conductances of the different mechanisms and parameters of the intracellular calcium 
dynamics. Each e-model was fitted with an exemplar morphology. The optimization objectives 
were the electrical features extracted from the electrophysiological recordings.  

For all the e-types, 3 levels of positive steps and 2 negative steps were used to fit passive 
properties, firing patterns and spike shape related features (see for a detailed list of features in 
Iavarone et al., 2019). The negative step with the smaller amplitude was used to constrain 
passive properties (e.g. input resistance), while higher amplitudes were used to constrain the 
conductance of currents activated in hyperpolarization (with features such as sag_amplitude ). 
For low-threshold bursting cells, one step on top a hyperpolarizing current was used to 
constrain the bursting response. For reticular neurons, a new feature (initburst_sahp) was added 
for the AHP after the burst. Additional protocols without any current injection or only holding 
currents were used to ensure that the e-models were not firing without stimulus or with the 
holding current only. 

We considered a model a good fit to the experimental data if all the feature errors (i.e. the Z-
scored) were below 3.  

4.2.6.5 Quality assurance of morpho-electrical models 
After fitting the 5 e-models they were combined with the 92970 morphologies generated as 
output of morphology diversification step. An automated pipeline tested the e-models in 
combination with the different morphologies (me-models) and filtered out those that deviated 
significantly from the experimental electrical features. To decide which me-model was to be 
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accepted, we used the repaired exemplar morphology (i.e. the morphology used during the 
optimization, after being repaired) as a benchmark: a me-model passed if it had all the feature 
errors below 5 standard deviations of the repaired exemplar, as in (Markram et al., 2015). 

In addition, we first run this pipeline on a small subset of the morphologies generated after 
morphology repair. In this way, we could visually inspect if the accepted me-models were 
generating biologically-plausible firing behavior and the reasons why other me-models had 
high feature errors. In some cases, after inspecting the me-model voltage responses, we set less 
stringent criteria on some features, to ensure that we had enough different me-models for 
building the microcircuit. At the same time, we set more stringent criteria to reject me-models 
that were active without any input, since we did not find neurons that were spontaneously active 
in our experimental recordings. 

4.2.7 Reconstructing neurons density 

4.2.7.1 Immunohistochemistry of Rt and VPL for cell counting 
We complemented the neuron densities values from the Blue Brain Cell Atlas (Erö et al., 2018) 
by counting neurons in adult brain slices of the mouse brain. We used adult mice brains 
cryosliced at 50 μm on the sagittal plane and stained with standard immunohistological 
procedures with antibodies anti-GABA (for inhibitory neurons), anti-NeuN (for neurons) and 
DAPI (for all cells), using an existing protocol (Markram et al., 2015). The slices were imaged 
with a confocal microscope (Zeiss, 710). The immunohistology and imaging of the entire was 
completed for one P21 C57B1/6J mouse. 

4.2.7.2 Semi-automated cell counting and cell densities 
 The images were aligned to the Allen Reference Atlas to create proper boundaries for the Rt 
and VPL. We used Imaris® software (Bitmap) to create the Region of Interest (ROI), for 
counting the neurons and to estimate the volume for density calculation. For a chosen ROI, the 
software detected the difference of signal intensity, created a 3D shape around the detected 
cells and extracted statistics (count, positions…) following given parameters. These parameters 
were defined by running multiple trials so that the results from semi-automated cell counting 
were as close as possible to those from manual cell counting. The semi-automated counting 
method have very little error (2,25%) and is less time consuming compared to manual counting. 
A 3D shape of the entire ROI was created in order to extract the volume for density calculation. 
Neuron densities were calculated as the ratio between neuron counts in a ROI and the volume 
as calculated in Imaris for each slice. For modelling we used the average cell densities for Rt 
and VPL neurons. 

4.2.8 Microcircuit geometry  

Since the thalamus doesn’t have a clear laminar structure, we approximated a thalamic 
microcircuit to a cylindrical volume having its base parallel a portion of the reticular nucleus 
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of the thalamus (Rt) and its vertical dimension (y-axis) running through the VPL and Rt. To 
calculate Rt and VPL thicknesses along the y-axis, we started from the thalamus parcellation 
from the Allen Brain Atlas version 3 (25 μm resolution) (Allen Institute For Brain Science, 
2017; Goldowitz, 2010). A spherical coordinate system was fitted to the bilateral 3D volume 
of the Rt, which can be approximated to a spheroidal surface. We chose a region of interest 
(ROI) located approximately in the middle of the VPL nucleus and computed the distribution 
of widths in the ROI for the VPL and corresponding region of the Rt (aligned along the radius 
of the sphere). The thickness corresponded to the middle value of the distributions, which was 
550 μm for the VPL and 250 μm for the VPL. 

The horizontal dimensions of the microcircuit were calculated from the density of the dendritic 
fibers at the center of the circuit (Markram et al., 2015). For each m-type, we began by 
considering all the morphologies (after repairing them) that had their somata located within 25 
μm from the circuit center on the horizontal (XZ) plane. We then increased the maximal 
distance in steps of 25 μm which resulted in an increase of dendritic densities at the center. The 
microcircuit horizontal dimension (radius) resulting from this process was 294 μm, 
corresponding to the distance where 95% of the asymptotical maximal density of reticular 
neuron dendrites was reached. As a comparison, considering only thalamocortical cell 
morphologies, would have resulted in a circuit with radius 125 μm, while with only 
interneurons the radius would have been 279 μm.  

We used a hexagon with the same area as the resulting circle to facilitate tiling of multiple 
microcircuits, while keeping asymmetrical edge effects minimal. The resulting side of the 
hexagon was 323 μm and the longest diagonal (vertex-to-vertex) measured 646 μm. When the 
7 hexagons were stacked, with a central one surrounded by the 6 others (e.g. Fig. 4.5), the 
widest dimensions were 1292 x 1680 μm. 

4.2.9  Soma positions and models assignment 

The horizontal and vertical extents resulted in a microcircuit having the shape of a hexagonal 
prism, that was 646 μm wide (at the widest point) and 800 μm high; 69 % of the volume was 
occupied by the VPL and 31 % by the Rt. This volume was then populated by defining somata 
positions according to the experimentally-measured neuron densities in the Rt and VPL. The 
positions were distributed according to an algorithm based on Poisson disc sampling (Bridson, 
2007; Tulleken, 2009). This algorithm avoids clustering normally obtained with sampling 
according to uniform distributions, by using a parameter for the minimum distance between 
points. To calculate the minimum distance, we used the cell densities to calculate the expected 
number of cell positions per voxel. Each soma position was assigned an m-type according to 
the excitatory/inhibitory fractions and an electrical model in agreement with the me-types 
composition (Fig. 2). Moreover, each position was associated with a random rotation around 
the y-axis to be applied to each morphology. 
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4.2.10 Morphology placement 

Our pool of experimental morphologies and the ones derived from the morphology 
diversification contained morphologies with different sizes and shapes. Moreover, it contained 
TC morphologies whose somata was not located in the VPL nucleus and Rt morphologies 
whose axons were not arborizing in the VPL nucleus. We adapted a placement scoring 
algorithm (Markram et al., 2015) to ensure that each position was assigned a suitable 
morphology considering its geometrical properties and the microcircuit vertical dimension. We 
thus defined placement rules that took into account the known properties of Rt and TC neurons 
arborizations relative to the anatomical boundaries of thalamic nuclei (Harris, 1986; Pinault et 
al., 1995).  

Each reconstruction of TC and Rt neuron morphologies was manually annotated, in order to 
identify the putative axonal arborization in Rt for TC cells and the Rt densest axonal 
arborization, which should be located in the thalamus. Each annotation was carried over during 
the unravelling, repairing and diversification steps. Moreover, we included a stricter rule to 
avoid that Rt morphologies were located outside the top of the circuit boundary, with a 30 μm 
tolerance. Scores were then computed for each rule separately and combined by using a 
harmonic mean. 

4.2.11 Connectivity based on morphological appositions 

After placing the morphologies in the 3D microcircuit volume we generate the first version of 
the connectivity by detecting zones of geometrical overlap (“touches”) using the an existing 
algorithm (Kozloski et al., 2008; Markram et al., 2015). Briefly, this algorithm sub-divided the 
circuit 3D space in sub-volumes ensuring that each sub-volume contained the same amount of 
data, i.e. the same number of morphological segments. Each sub-volume was processed in 
parallel on different cores and written in parallel to disk. All geometrical overlaps were 
considered as touches if their distance was smaller or equal to 1 μm (“touch distance”).  

Touches were then filtered according to biological rules: touches were allowed between all m-
types, except between VPL_IN (interneurons) and Rt_RC (reticular neurons), because 
interneurons are only located in the thalamus and are not expected to have neurites extending 
into the reticular nucleus. Touches between VPL_TC and VPL_TC, VPL_TC and VPL_IN 
were removed, in agreement with experimental findings (see Results section). Interneurons 
also formed synapses from presynaptic dendrites. For all other m-type combinations, touches 
formed between presynaptic axons and postsynaptic dendrites and somata. The same algorithm 
was used to detect touches between Rt_RC dendrites, i.e. the locations of putative gap 
junctions. Since gap junctions are established with close appositions of cell membranes, we 
used touch distance of 0 μm in this case. At the end of this process the resulting contacts (or 
“appositions”) are normally higher compare to experimental findings and are pruned further 
(Reimann et al., 2015). 
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4.2.12 Converting morphological appositions into functional synapses 

We employed an existing algorithm to decide which appositions were to be converted into 
functional synapses according to biological constraints (Reimann et al., 2015). The main 
constraints were the experimental bouton densities (number of boutons / axonal length) from 
3D neuron reconstructions (n=9 TC axons and n=2 Rt axons) and the coefficient of variation 
of number of synapses per connections (i.e. the number of functional synapses, between a pair 
of neurons) from presynaptic INs and post-synaptic INs and TCs (Morgan and Lichtman, 
2020). 

In the first two steps, the algorithm tried to match the predicted distribution of synapses per 
connection, using the coefficient distribution of appositions per connections and the coefficiant 
of variation of synapses per connection. Then, in step 3, it compared the current bouton density 
to the target value and removed connections until the target value was matched. The number 
of synapses per connections, Nfunc, was predicted from the number of appositions per 
connections (Napp) resulting from the previous steps, similarly to uncharacterized pathways in 
cortical microcircuitry (Reimann et al., 2015). Nfunc was predicted from Napp according to a 
simple formula (Nfunc = 1 × Napp) for each m-type to m-type connection. We used a generalized 
coefficient of variation for Nfunc of 0.9 for all connections (as extracted from Morgan and 
Lichtman, 2020, Fig. 3B). Coefficient of variations were combined with the predicted Nfunc to 
calculate its standard deviation, as detailed in (Reimann et al., 2015). At the end of this pruning 
process, we verified that the bouton densities in the model matched the experimental ones (see 
Fig. 4.3A). The shape of a geometric distribution for Nfunc was a prediction from our touch 
detection process.  

4.2.13 Connections from lemniscal and corticothalamic afferents 

We followed an approach similar to the generation of thalamic input to the cortical microcircuit 
model (Markram et al., 2015) to model afferent synapses in the thalamus from the sensory 
periphery (medial lemniscus) and from cortex. The algorithm uses volumetric bouton densities 
and the morphologies already placed in a circuit to map afferent synapses from afferent 
“virtual” fibers to postsynaptic morphologies.  

We built medial lemniscus and corticothalamic afferents separately for one microcircuit. Since 
data for lemniscal innervation in the mouse VPL was not available we calculated volumetric 
bouton density from data of mouse VPM (Takeuchi et al., 2017). Volumetric bouton densities 
for the corticothalamic pathway were derived from known proportions between 
corticothalamic synapses and other synapses onto TC and Rt neurons, as found in electron 
microscope investigations (see Results for details). Once the algorithm matched the prescribed 
volumetric bouton densities, we did not perform further pruning of the resulting synapses. 

Each synapse was assigned a virtual lemniscal or corticothalamic fiber. A rough estimation of 
the number of lemniscal fibers is presented in the Results section and took into account the 
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ratio between the putative number of neurons from the dorsal column nuclei projecting to the 
thalamus (Shishido and Toda, 2017) and the number of neurons in the VPL (see (Jones, 2007) 
for a similar calculation). The number of corticothalamic fibers was about ten times the number 
of thalamocortical fibers in a microcircuit (Crandall et al., 2015; Monconduit et al., 2006; 
Sherman and Koch, 1986). 

To take into account the correlation between synaptic inputs onto postsynaptic neurons 
innervated from the same afferent fiber, the mapping between postsynaptic synapses and fibers 
took into account their reciprocal positions, i.e. synapses that were closer together were more 
likely to be innervated by the same presynaptic fiber. As in the neocortical microcircuit model 
(Markram et al., 2015), the probability that a synapse was assigned to a fiber depended on the 
distance between the synapse and the fiber: 

P-S./0 = i/ ∝ 	 e-
23!-4"#$2
#5%  

where Spre represents the mapping of a synapse S to the presynaptic fiber i, Tpre is its spatial 
location, fi the spatial location of fiber i and s denoted the degree of spatial mapping, that was 
set to 25 µm.  

	

4.2.14 Synapse physiology and short-term plasticity 

4.2.14.1 Stochastic synaptic transmission and short-term plasticity 
We used existing models of stochastic transmission at excitatory and inhibitory synapses 
(Markram et al., 2015). They consisted of a two state Markov model, where the ensemble 
average response is equivalent to the phenomenological Tsodyks-Markram model (Fuhrmann 
et al., 2002; Tsodyks and Markram, 1997). The underlying assumptions were derived from the 
classical model of quantal synaptic release, in which each synapse is assumed to have N 
independent release sites, each have a probability p of releasing a single quantum q (del Castillo 
and Katz, 1954; Korn and Faber, 1991). The number of release sites was assumed to be 
equivalent to the number of synapses per connections as in (Markram et al., 2015). The detailed 
implementation of the synapse models can be downloaded from the neuron model packages in 
the Neocortical Microcircuit Portal (Ramaswamy et al., 2015). In this first version of the model, 
we did not implement multi-vesicular release (Barros-Zulaica et at., 2019). 

We modelled short term synapse plasticity with depressing (E2 and I2) and facilitating 
synapses (E1). In our experimental recordings, in agreement with experimental findings, all 
intrathalamic and lemniscal connections were depressing (Cox et al., 1997; Gentet and Ulrich, 
2003; Miyata and Imoto, 2006; Mo et al., 2017), while corticothalamic ones were facilitating 
(Golshani et al., 2001; Miyata, 2007; Mo et al., 2017; Reichova and Sherman, 2004). When 
sufficient experimental paired recordings data was available, the short-term synaptic 
parameters (U, D and F) were directly extracted from the EPSPs/IPSPs peaks amplitudes (or 
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EPSCs/IPSCs in the case of voltage-clamp recordings), evoked by stimulating the presynaptic 
cell with a train of 8 pulses followed by a recovery pulse (see Fig. 4.4). To find the values for 
U, D, F, the post-synaptic responses were filtered and deconvolved for easier automatic 
identification of the peaks (Barros-Zulaica et al., 2019). A multi-objective optimization 
algorithm was used to find the values for U, D and F (Van Geit et al., 2016). This process was 
possible for Rt to TC, IN to TC and IN to IN connections; for all the other pathways we 
followed these generalization rules:  

• TC to Rt synapses were shown to be strong, reliable and depressing (Gentet and Ulrich, 
2003). We used parameters from L4Exc to L4Exc connections from (Markram et al., 
2015) as they had the highest release probability (analogous to the U value in the case 
of depressing synapses (Ecker et al., 2019)). 

• All uncharacterized inhibitory to inhibitory synapses (i.e. Rt to Rt and Rt to IN) had the 
same dynamics of an inhibitory-inhibitory characterized pathway (i.e. IN to IN). 

• Corticothalamic synapses onto first order thalamic nuclei (e.g. VPL, VPM, dLG) have 
been consistently reported to be facilitating. As we did not have paired recordings to 
estimate synapse parameters for CT to TC, CT to IN and CT to Rt pathways we took 
parameters from and excitatory facilitating synapse (E1: L5TTPC-L5MC, Markram et 
al., 2015). 

• Lemniscal inputs to first order sensory thalamic nuclei (e.g. VPM) were shown to be 
depressing (e.g. see Mo et al., 2017; Reichova and Sherman) and we used parameters 
from excitatory depressing synapses from (Markram et al., 2015), i.e. E2 synapses for 
all other excitatory to excitatory connections. 

Synapse dynamic parameters in the model were different for each synapse and drawn for 
truncated gaussian distributions. 

Spontaneous miniature potentials (minis) were modelled as independent Poisson processes at 
each synapse that triggered release at low rates. The spontaneous rate was set to 0.025 Hz for 
intrathalamic connections and 0.01 for afferent ML and CT synapses. 

4.2.14.2 Synapse models 
Excitatory synaptic transmission was modelled with AMPA and NMDA receptor kinetics, and 
GABAA receptors were used for inhibitory connections. The rise and decay phases of the 
currents were described be using mono-exponential functions. We used the same values as the 
cortical synapse models, unless synaptic currents were characterized in thalamic rodent 
neurons at 34-35 degree C. The rise time and decay time constants for AMPA receptors were 
0.2 ms and 1.74 ms, respectively (Häusser and Roth, 1997). For TC to Rt connections the 
AMPA decay time constant was 1.58 ms and CT afferents to Rt was 2.74 ms (Deleuze and 
Huguenard, 2016). The rise and decay time constants of the NMDA component were 0.29 and 
43 ms (Sarid et al., 2007). The magnesium concentration was set to 1 mM (Jahr and Stevens, 
1990) and the reversal potential of the AMPA and NMDA currents was 0 mV. Experimentally 
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measured ratios of NMDA and AMPA conductances were gathered from the literature and are 
summarized in Table 4.1 (Arsenault and Zhang, 2006; Deleuze and Huguenard, 2016; Miyata 
and Imoto, 2006). For pathways were values were lacking we extrapolated them from similar 
pathways (e.g. the values for CT afferents to VPL_IN was extrapolated from CT afferents to 
Rt_RC). 

Inhibitory synaptic transmission was modelled with GABAA receptor kinetics. The rise and 
decay time constants were 0.2 ms and 8.3 ms, respectively. The reversal potential of GABAA 
current was set to -82 mV for all inhibitory pathways, except for connections onto postsynaptic 
TC neurons, where it was -94 mV, consistent with lower cloride reversal potentials in TC 
compared to Rt neurons (Huguenard and Prince, 1994; Ulrich and Huguenard, 1997). 

4.2.15 Constraining synapse conductance values 

Synaptic conductance values were optimized by performing in silico paired recordings to 
match the postsynaptic potential (PSP) amplitudes measure experimentally whenever data was  
available, similarly to other morphologically detailed models (Ecker et al., 2019; Markram et 
al., 2015). For each pathway, 50 neuron pairs were simulated, and each pair was recorded for 
30 trials. Experimentally characterized values in rodents are summarized in Table 4.2. For all 
other pathways, we extrapolated the quantal synapse conductances from similar pathways, 
according to the same generalization principles applied for short-term plasticity parameters 
(see above).  
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Pathway 
Synapse 

type 
gsyn (nS) td (ms) 

NMDA/AMPA 
ratio 

USE D F 

Rt_RC to 
Rt_RC Inh. Dep. 0.9±0.23 8.3±2.2 NA 0.41±0.14 464±339 54±71 

Rt_RC to 
VPL_TC 

Inh. Dep. 1.1±0.4 8.3±2.2 NA 0.32±0.18 352±46 2±209 

Rt_RC to 
VPL_IN 

Inh. Dep. 0.9±0.23 8.3±2.2 NA 0.41±0.14 464±339 54±71 

VPL_TC 
to Rt_RC 

Exc. Dep. 2.8±0.1 1.58±0.26 0.57 0.86±0.09 671±17 17±5 

VPL_IN 
to 

VPL_TC 
Inh. Dep. 0.4±0.4 8.3±2.2 NA 0.47±0.18 137±46 239±209 

VPL_IN 
to 

VPL_IN 
Inh. Dep. 2.7±0.4 8.3±2.2 NA 0.41±0.14 464±339 54±71 

ML to 
VPL_TC 

Exc. Dep. 3.4±0.34 1.74±0.18 0.41 0.86±0.09 671±17 17±5 

ML to 
VPL_IN 

Exc. Dep. 3.4±0.34 1.74±0.18 0.41 0.86±0.09 671±17 17±5 

CT to 
Rt_RC 

Exc. Fac. 0.16±0.016 2.74±0.25 0.99 0.09±0.12 138±211 670±830 

CT to 
VPL_TC 

Exc. Fac. 0.16±0.016 1.74±0.18 1.91 0.09±0.12 138±211 670±830 

CT to 
VPL_IN Exc. Fac. 0.16±0.016 1.74±0.18 0.99 0.09±0.12 138±211 670±830 

Table 4.1. Synapse kinetics and short-term plasticity parameters.  

Synaptic parameters for all pathways in the model. gsyn is the quantal synaptic conductance, td 
is the decay time constant of AMPA and GABAA currents for excitatory and inhibitory 
connections. USE (utilisation of synaptic efficacy, analogous to release probability), D (time 
constant of synaptic depression), F (time constant of facilitation) are the short-term plasticity 
parameters. Values are expressed as mean ± standard deviation. 

			

	 	



	76	

	

Presynaptic Postsynaptic PSP amplitude, 
experiment (mV) 

PSP amplitude, 
model (mV) 

Data source 

Rt_RC VPL_TC 1.33 ± 0.36* 0.36 ± 1.31 In house 

VPL_TC Rt_RC 7.4 ± 1.5 6.79 ± 1.30 (Gentet and Ulrich, 
2003) 

VPL_IN VPL_TC 0.55±0.15 1.16 ± 1.56 In house 

VPL_IN VPL_IN 1.66±1.44 0.82 ± 0.77 In house 

ML VPL_TC 4.58 ± 0.30 4.41 ± 1.57 (Mo et al., 2017) 

CT VPL_TC 0.085±0.008 0.071 ± 0.022 (Golshani et al., 
2001) 

Table 4.2. Postsynaptic potential (PSP) amplitudes.  
PSP amplitude values as characterized experimentally through in vitro paired recordings. 
Values are reported as mean ± standard deviation (of multiple pairs). Values marked by * are 
for 1 single paired recorded. 
 

 

 

 
Presynaptic Postsynaptic CV 1st PSP amplitude, 

experiment (mV) 
CV 1st PSP amplitude, 

model (mV) 
Data source 

Rt_RC VPL_TC 0.4600* 0.8424 ± 0.3450 In house 

VPL_TC Rt_RC 0.1232 ± 0.0686 0.3089 ± 0.2112 (Gentet and 
Ulrich, 2003) 

VPL_IN VPL_TC 0.5479 ± 0.1744 0.8663 ±  0.386 In house 

VPL_IN VPL_IN 0.5028 ± 0.2783 1.0993 ± 0.4132 In house 

ML VPL_IN 0.3874* 0.3301 ± 0.1995 In house 

Table 4.3. Coefficient of variation (CV) of first PSP amplitudes. 

C.V. of first PSP amplitudes values as characterized experimentally through in vitro paired 
recordings. Values are reported as mean ± standard deviation. Values marked by * are for 1 
single paired recorded. 
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4.2.16 Gap junctions 

We used the same algorithm described above to find appositions between Rt neuron dendrites 
and a fraction of this appositions was converted into functional gap junctions. We iteratively 
removed a constant fraction of all gap junctions from each neuron, until each neuron was 
coupled to 5-20 other neurons through gap junctions (Lee et al., 2014), see Fig. 4.5. To analyse 
the number of coupled neurons and their spatial properties (Fig. 4.5), we reproduced the 
protocol from Lee et al., by analysing a sample of 33 Rt neurons in a 90 μm vertical slice in 
the microcircuit. 

Once the structural properties of gap junctions-coupled neurons were validated, we performed 
in silico paired recordings and measured the coupling coefficients for each pair of neurons. We 
found that the mean coupling coefficients in the model compared well with the experiments for 
gap junction conductance values of 0.2 nS. 

Not surprisingly, after adding gap junctions to the circuit, the neurons input resistance changed. 
To guarantee that the passive properties of the neurons did not change, thus changing the 
responses to synaptic inputs, we devised an algorithm to compensate for the change in input 
resistance (Amsalem et al., 2016). The algorithm changed the conductance of the leak current 
(gpas) to restore the input resistance of the neuron before adding gap junctions. This 
compensation resulted in a different gpas value for each neuron.  

4.2.17 Simulation software and high-performance computing resources 

The reconstructed microcircuit was simulated using software based on the NEURON 
simulation package (Hines and Carnevale, 1997). A collection of tools and templates were 
written in order to handle simulation configuration, in silico network experiments and to save 
the results. Moreover, NEURON compute engine has been extracted and in a software called 
CoreNEURON (Kumbhar et al., 2019). A typical simulation run of a microcircuit for 3500 ms 
of simulation time took around 45 minutes on Intel Xeon 6140 CPUs (288 cores, with 
HyperThreading enabled). 

4.2.18 Simulating in vivo-like conditions 

To simulate spontaneous activity in vivo-like states we depolarized all the neurons from their 
resting potential to around -65 mV, a level at which thalamocortical and reticular neurons fire 
single spikes rather than bursts,  and activated lemniscal and corticothalamic fibers with 
Poisson spike trains at 2.5 and 1 Hz, respectively. We lowered the extracellular calcium 
concentration from 2 mM (in vitro-like conditions) to 1.2 mM, with the effect of reducing 
synapse release probabilities and postsynaptic potential amplitudes (PSPs). PSPs depended on 
calcium concentration as uncharacterized pathways in (Markram et al., 2015, Fig. S11 – 
Intermediated [Ca2+]o dependence). 
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4.2.19 Simulating in vitro-like conditions 

In these conditions all the neurons were left at their resting potentials (which ranged between 
-75 and -70 mV) and the only source of input was the spontaneous release from intrathalamic 
(at a rate of 0.025 Hz), medial lemniscus and corticothalamic synapses (at a rate of 0.01 Hz). 
The extracellular calcium concentration was set to 2 mM. 

4.2.20 Simulating depolarization levels 

As a first approximation of the action of neuromodulators in the VPL and Rt, we applied 
constant current injections to the soma of each neuron. All the neurons in the VPL or Rt regions 
were depolarized to the same target baseline membrane potential. The amplitude of the current 
was different for each neuron, to take into account the different input resistance of each 
morpho-electrical model. 

4.2.21 Simulation analysis 

For calculating oscillation duration (number of cycles) we used firing rate histograms of TC 
neurons and extract their peaks, using the scipy.signal.find_peaks function (see example in Fig. 
4.10). We used TC, rather than Rt neurons, because oscillations occurring in the former are 
more directly linked to signals that would be transmitted to the neocortex. Peaks were counted 
only if they were significantly higher than baseline firing rates.  

Oscillation frequency was calculated from the first non-zero peak of the firing rate histogram 
autocorrelation of TC neurons. 

For the cycle by cycle analysis of the percentage of neurons firing (Fig. 4.9 and 4.10), we 
calculated oscillation peaks from the firing rate histograms of TC neurons, in the same way as 
we calculated peaks for the oscillation duration. We then added a peak corresponding to the 
time of the stimulus injected into Rt neurons (cycle 0). Spikes for each m-type were then 
assigned to the different cycles if they occurred within 30 ms of the oscillation peak. 
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4.3 Results 

4.3.1 Morphological properties of thalamic and reticular neurons 

To build detailed a detailed model of thalamic microcircuitry, we started by collecting >90 
three-dimensional reconstructions of neuronal morphologies of thalamocortical neurons (TCs), 
thalamic interneurons (INs) and neurons of the reticular nucleus of the thalamus (Rt). Neurons 
were reconstructed from in vitro and in vivo labelling experiments in the mouse (see Methods). 
We classified the reconstructed morphologies into 3 broad classes, or morphological types (m-
types). 

4.3.1.1 Experimental data 
Reconstructions of thalamocortical neurons included in vitro and in vivo-labelled neurons and 
axons from the open-access MouseLight Project at Janelia (Winnubst et al., 2019). We obtained 
96 morphologies whose soma was located in the thalamus and we visually inspected their shape 
along with 3D meshes of the reticular nucleus of the thalamus. Since most thalamocortical 
neurons project to the Rt on their path to the cortex (Clascá et al., 2012; Lam and Sherman, 
2011) we selected the 41 morphologies which gave off collaterals in the reticular nucleus. We 
assumed that neurons without collaterals in the Rt were partially labelled and/or reconstructed, 
since those collaterals are often very thin (Harris, 1987). To increase the biological variability 
of the reconstructions and the robustness of the derived connectivity (Hill et al., 2012; 
Ramaswamy et al., 2012), we included axons from different thalamic nuclei and asked whether 
the geometrical properties of the Rt axonal collaterals were different. After analyzing the length 
of the arborizations in the Rt (see Methods), we found that the difference within the same 
nucleus was as high as the difference between nuclei. We concluded that using axons from 
different thalamic nuclei would have not altered the geometrical properties of the model.  

3D morphologies of reticular neurons were obtained from whole brain neuron reconstructions 
from a SSt-Cre;Ai139 mouse line and in vitro-labelled neurons, while interneurons were 
reconstructed from in vitro experiments on GAD67-eGFP mice (see Methods). 

4.3.1.2 Morphological types 
We then attempted to classify TC, Rt and IN morphologies into different classes. Although we 
could subjectively distinguish different types of TC morphologies, considering the number and 
angles of dendritic branches, as reported in the dorsal lateral geniculate nucleus (Krahe et al., 
2001; Ling et al., 2012; McAllister and Wells, 1981), we could not objectively identify these 
classes using recent quantitative methods (Kanari et al., 2018). We obtained similar results for 
reticular morphologies, when considering differences in soma shape and dimension, dendritic 
extent and branching patterns reported previously (Deleuze and Huguenard, 2016; Spreafico et 
al., 1991). We found that reticular neurons had axonal arborizations similar to what reported 
previously in the rat, with a main arborization that was more or less dense (Cox et al., 1997) 
and, occasionally, distinct axonal branches that putatively projected to different nuclei (Pinault 
and Deschênes, 1998).  
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For the purpose of this work, we classified the morphologies into three main types (Fig. 4.1A). 
To assign a name to each m-type we followed a scheme similar to (Markram et al., 2015): 
BrainRegion_MorphologicalType. We grouped all thalamocortical (TC) morphologies in one 
morphological type (m-type), called VPL_TC. Similarly, the m-type corresponding to the 
interneurons was called VPL_IN. One m-type, reticular cell of the reticular nucleus of the 
thalamus Rt_RC, grouped all morphologies in the reticular nucleus. 

We extended an existing algorithm to statistically recover dendrites from slicing artifacts 
(Anwar et al., 2009; Markram et al., 2015) of in vitro labelled neurons and validated the results 
against in vivo labelled reconstructions. We then used a validated pipeline to generate a large 
dataset of thalamic and reticular morphologies (n=92970) that respected the biological 
variability (Markram et al., 2015), in a process called morphology diversification (see 
Methods). 

 

	
Figure 4.1. Single cell data and models 
(A) Exemplar 3D reconstructions of 3 thalamic morphological types (m-types) from the mouse. 
Axon in blue, dendrites in red, soma in black. For the VPL_TC m-type, the part of axon 
projecting to the neocortex is omitted. All the reconstructions are shown on the same scale 
(scale bar corresponds to 200 μm). (B) Electrical types (e-types) and corresponding electrical 
models. From left to right: exemplar recordings (grey) and models (blue) corresponding to 
Rt_RC, VPL_TC and VPL_IN m-types. For cNAD_ltb and cAD_ltb e-types two distinct firing 
modes are shown: low threshold-bursting (first row) and tonic firing (second row). 
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4.3.2 Neurons electrical properties and models 

We characterized 5 electrical types of thalamic neurons and built morphologically-detailed 
multicompartmental neuron models for each of them. Ion channel models where derived from 
literature findings and their peak conductances were constrained by using a multi-objective 
optimization algorithm (Druckmann et al., 2007; Hay et al., 2011; Iavarone et al., 2019). This 
algorithm used electrical features (such as spike amplitude, firing frequency,…) extracted from 
in vitro patch-clamp recordings. To validate the neuron models we used features from current 
stimuli not used during the optimization phase and dendritic attenuation properties from the 
literature (Connelly et al., 2016).   

4.3.2.1 Experimental data and electrical types  
We characterized the firing behavior of more than 100 thalamocortical neurons, interneurons 
and reticular neurons through patch-clamp recordings in brain slices of the mouse. TC and IN 
neurons were located mainly in the VPL and VPM nuclei of the thalamus and Rt neurons in 
the somatosensory sector of the Rt (Lam and Sherman, 2011; Pinault and Deschênes, 1998). 
VPL_TC and Rt_RC neurons were recorded with the injection of two different holding 
currents, to characterize their two firing modes: low-threshold bursting and tonic firing at 
hyperpolarized and depolarized membrane potentials, respectively (see Methods and Fig. 1B).  

For classifying the electrical types (e-types) we took into account the voltage responses to 
current steps and we assigned name to the e-types by following the Petilla convention for the 
tonic firing responses (Ascoli et al., 2008; Markram et al., 2015). We added a suffix (_ltb) for 
the low-threshold bursting properties of TC and Rt neurons. We classified TC neurons in 
adapting (cAD_ltb) and non-adapting types (cNAD_ltb) by considering their tonic firing 
responses (Fig. 4.1B). These e-types were similar to the ones we identified for rat TC cells 
(Iavarone et al., 2019). We found similar adapting and non-adapting responses in Rt_RCs. 

Other firing patterns have been described for reticular neurons, when considering low-
threshold firing responses (Clemente-Perez et al., 2017; Lee et al., 2014, 2007). In our dataset, 
we mainly observed neurons with an intermediate burst propensity, which fired typically 1-2 
bursts, followed by tonic firing for higher stimuli amplitude,  similar to the “Typical Burst” 
type, which is more common in somatosensory sectors of the Rt (Lee et al., 2007). We found 
1 Rt neuron that had a very deep after-hyperpolarization (AHP) and tended to fire in bursts for 
the whole duration of the stimulus and 2 Rt neurons which did not fire low-threshold bursts at 
any level of membrane hyperpolarization, as described previously (Lee et al., 2014, 2007). 
Since we did not have enough recordings of these other Rt bursting types, we did not include 
them in this first version of the model. 

With our standard set of stimuli protocols (see Methods), interneurons did not generate low-
threshold bursts. Since they tended to initially fire action potentials with short interspike 
intervals, we classified all IN recordings as one e-type, called burst accommodating (bAC). It 
is possible that bursting and oscillatory behaviors can only be observed in more hyperpolarized 
conditions (Zhu and Lo, 1999).  
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4.3.2.2 Constraining and validating morpho-electrical models 
We have shown previously that a multi-objective optimization pipeline (Druckmann et al., 
2007; Hay et al., 2011) can be applied to capture different firing modes of thalamocortical 
neurons (Iavarone et al., 2019). We applied a similar strategy to build electrical models (e-
models) for the e-types shown in Fig. 4.1B (see Methods). In brief, we used electrical features 
(e.g. action potential amplitude, number of spikes per burst) extracted from the experimental 
recordings, in combination with one exemplar morphology, as constraints for the ion channel 
peak conductances. Active membrane mechanisms were present in all cellular compartments 
(i.e. soma, dendrites and axonal initial segment). To build e-models for Rt_RC cells, we started 
from the same ion current kinetics of VPL_TCs and added electrical features to quantify the 
deeper AHP after the burst of Rt_RCs. 

The resulting e-models were tested with stimuli not used during the fitting step (Iavarone et al., 
2019) and with synaptic-like inputs to assess the attenuation properties along the dendrites 
(data not shown), whenever experimental data was available (Connelly et al., 2016). In this 
way, we created five e-models, one for each e-type, and combined them with the 92970 
morphologies generated during the morphology diversification step. We assessed the quality 
of each morphology-electrical model combination (me-model) and rejected those having 
electrical features and firing behavior significantly different from the experimental data (see 
Methods).  

4.3.3 Microcircuit dimension and composition  

The reconstruction began by defining a microcircuit with its dimension, the percentage of 
inhibitory neurons, the percentage of neurons for each m-type and e-type. For constraining the 
dimensions, we used the 3D reconstructed morphologies and the thickness of VPL and Rt from 
the Allen Brain Atlas (Goldowitz, 2010). Experimentally-measured neuron densities and 
fraction of inhibitory neurons were used to predict the number of neurons for each m-type. The 
reconstruction yielded a microcircuit with the shape of a hexagonal prism, with a base of 323 
μm in length, height of 800 μm and consisting of ~14000 neurons. 

4.3.3.1 Reconstructing microcircuit dimensions 
We started by defining a thalamic microcircuit as a cylindrical volume spanning a portion of 
the ventral posterolateral nucleus of the thalamus (VPL) and the reticular nucleus of the 
thalamus (Rt). Its longest (vertical) dimension run through the two nuclei, with the Rt as the 
topmost region (Fig. 4.2). We chose the VPL nucleus because it receives information from the 
hindlimb (Francis et al., 2008) and relays it to the somatosensory cortex; the corresponding 
cortical microcircuit was reconstructed in (Markram et al., 2015). The Rt is intimately 
associated with the different thalamic nuclei and it is the main source of inhibition to the 
thalamus (de Biasi et al., 1986; Cavdar et al., 2013; Houser et al., 1980; Pinault, 2004). Since 
the VPL does not have a clear modular organization, we decided to follow the same approach 
as in (Markram et al., 2015) to define the microcircuit radius and its height (see Methods).  
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We placed reconstructed morphologies in a cylindrical volume and calculated the minimal 
radius of a cylinder where the density of the dendrites saturated at the center. We found that 
the largest radius was obtained when we placed reconstructed morphologies of Rt_RC neurons. 
This resulted in a radius of 294 μm, corresponding to 95 % of the density asymptotic value 
(Fig. 4.2B). Defining the circuit height consisted in calculating the thickness of the Rt and VPL 
nuclei along the major (vertical) axis. The thickness values were derived from the Allen Brain 
Atlas and the resulting values were 250 μm for Rt and 550 μm for VPL, yielding an overall 
microcircuit height of 800 μm (see Methods for details).  

 
Figure 4.2. Reconstructing neuron densities, composition, microcircuit dimensions and 
neuron placement 

(A) Mean neuron densities in the reticular nucleus (Rt) and the ventroposterolateral nucleus 
(VPL) nucleus of the thalamus. Confocal imaging of an exemplar slice after staining with anti-
GABA (red), anti-NeuN (green) and DAPI (blue). Brain regions outlines were drawn after the 



	84	

alignment of the slice with the Allen Reference Atlas. The grey box represents a thalamic 
microcircuit. (B) Microcircuit dimensions (lateral and vertical dimensions). Left: the lateral 
dimension was the smallest circle for obtaining saturated Rt_RC dendritic density. The cut-off 
radius at 95 % of the plateau density was 294 μm. Right: vertical dimensions of the Rt and 
VPL regions as calculated from the Allen Reference Atlas (see Methods). (C) 
Excitatory/inhibitory fractions and m-types composition. Inhibitory fractions as reported in the 
Mouse Cell Atlas (Erö et al., 2018). (D) Fraction of e-types corresponding to each m-type as 
found in our single cell recordings. (E) Predicted neuron numbers and soma positions in the 
microcircuit. (F) Morphologies placed in the microcircuit, only ~10 % of the neuron densities 
is shown and axons are omitted for clarity. 

	
4.3.3.2 Reconstructing neuron numbers and composition 
Once we established the microcircuit volume, we distributed the neurons according to densities 
and excitatory/inhibitory ratios measured experimentally (Fig. 4.2A and 4.2C). We obtained 
neuron counts through semi-automated cell counting in consecutive sagittal slices of the mouse 
brain and divided those numbers by the calculated volume (see Methods). We found an average 
cell density of 68750 ± 1976 cells/mm3 for Rt and 57467 ± 5201 cells/mm3 for the VPL (mean 
and standard deviation for multiple slices from one brain).  

We next collected information on the inhibitory and excitatory neuron ratios in the microcircuit 
regions (Fig. 4.2C). As reported in many studies (de Biasi et al., 1986; Houser et al., 1980; 
Pinault, 2004), 100% of neurons in Rt were inhibitory. In this first draft, we included 0.5% of 
inhibitory cells in the VPL, according to an open-access cell atlas for the mouse brain (Erö et 
al., 2018). The cell atlas is a resource that integrates whole brain Nissl and gene expression 
stains to predict neuron densities and positions. The proportion of inhibitory neurons in the 
VPL will be re-evaluated when more data will become available, since some studies reported 
around 3.7% of GABAergic cells in the VPL of the rat (Cavdar et al., 2014).  

As a result, the microcircuit was populated with 4909 Rt_RCs, 8952 VPL_TCs and 47 
VPL_TCs (for a total of ~14000 neurons). 

Once we had obtained the inhibitory and excitatory cells densities, by multiplying the overall 
densities by the inhibitory and excitatory ratios, the morphological and electrical types 
composition (me-composition) was directly determined (Fig. 4.2D): the reticular nucleus (Rt) 
had 100 % of inhibitory neurons of m-type Rt_RC. Each Rt_RC neuron had one of two e-types 
(57 % cAD_ltb and 43 % cNAD_ltb). In the VPL, all inhibitory neurons corresponded to the 
VPL_IN m-type and bAC e-type. The excitatory neurons in VPL, which corresponded to 
thalamocortical cells (m-type VPL_TC), had e-type cAD_ltb (64 %) or cNAD_ltb (36 %). The 
percentage of e-types for each m-type (e-type fractions) were derived from our in vitro 
electrophysiological recordings (Fig. 4.1D).  
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4.3.3.3 Soma positions and morphology placement 
After establishing dimensions and the number of neurons for each me-type, we generated 
somata positions using an algorithm to fill the space, ensuring that somata were not overlapping 
and that neurons were uniformly spaced between each other (see Methods). Once neurons 
positions were defined, we used an algorithm to select the morphology that best fulfilled the 
anatomical constraints of the microcircuit (Markram et al., 2015). The logic followed was 
based on experimental findings showing that the axons of reticular neurons points towards the 
different thalamic nuclei of the thalamus (Pinault and Deschênes, 1998) and that 
thalamocortical cells have axonal collaterals projecting to the reticular nucleus (Harris, 1986; 
Monconduit et al., 2006). To choose the best morphology for each position, we manually 
annotated these patterns on each reconstructed morphology and calculated their overlap with 
the microcircuit subregions (see Methods). 

4.3.4 Reconstructing and validating the connectivity 

We applied an existing algorithm to build detailed connectivity between each individual neuron 
morphology in the microcircuit (Markram et al., 2015; Reimann et al., 2015). Detailed 
anatomical studies found a linear relation between the available dendritic surface in the 
thalamus and bouton numbers on reticular axons (Pinault and Deschênes, 1998). This finding 
suggested that connectivity in the thalamus, at least between Rt and TC neurons, could be 
predicted by the statistical overlap between neurites (Hill et al., 2012).  

To build the connectivity, we used as experimental constraints the neuron morphologies placed 
in the microcircuit and the available data on axonal bouton densities on 3D reconstructed 
morphologies (number of boutons/axonal length). We included synapses from medial 
lemniscus (ML) and corticothalamic (CT) afferents by using volumetric bouton densities as 
constraints. 

As an initial validation of the predicted connectivity, we compared the synapse convergence 
onto reticular neurons (Liu and Jones, 1999) and the distribution of number of synapses per 
connections in the model when experimental data was available (Morgan and Lichtman, 2020). 

4.3.4.1 Reconstructing intrathalamic connectivity 
We started by finding algorithmically all the appositions between the neuron morphologies, 
i.e. potential synapses, and removed them until experimental constraints were met (see 
Methods for details, Fig. 4.3A). Along with the space available on the morphologies, we used 
as constraint the bouton densities (number of boutons / axonal length) on the axons of Rt_RCs 
and VPL_TCs (Fig. 4.3A). In our experimental dataset, we found that TCs had on average 
0.102 ± 0.021 boutons / μm (n = 9 axons) and Rt neurons 0.124 ± 0.002 boutons / μm (n = 2 
axons).  

Connections in the model were allowed to form between all m-types, except for VPL_TCs to 
VPL_TCs and from VPL_TCs to VPL_INs. Connections between VPL_TCs are likely to 
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disappear during development (Lee et al., 2010), while we could not find any experimental 
evidence of connections between TCs and INs, neither in the ventrobasal thalamus, nor in the 
visual thalamus, where INs are present in higher proportions (Arcelli et al., 1997; Evangelio et 
al., 2018; Jager et al., 2019). Connections between all m-types were formed by presynaptic 
axons and postsynaptic dendrites and somata, while those formed by INs were largely 
established by presynaptic dendrites, as shown the visual thalamus (Morgan and Lichtman, 
2020; Sherman, 2004).  

 

	
Figure 4.3. Reconstructing and validating intrathalamic and afferents connectivity 
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(A1-2) Constraining intrathalamic connectivity using neuron morphologies and bouton 
densities. (A1) As a first step, axodendritic appositions are used as location of putative 
synapses. The connectivity based on these appositions is characterized by high numbers of 
bouton densities (number of boutons / axonal length). Left: the location of putative synapses is 
shown for an exemplar Rt_RC neuron (red: dendrites, blue: axon, black: soma). Right: 
distribution of bouton density for 1000 Rt_RC morphologies in the model and mean and std in 
the experiment (n=2 Rt_RC morphologies). (A2) The experimental bouton densities are used 
as constraint to convert only a fraction of axodendritic appositions into functional synapses 
(see Methods for details). (B) Example of the resulting mono- and multi-synapse connections 
between pairs of neurons in the model. Green dots represent the location of functional synapses. 
Third row is an example of dendrodendritic inhibitory synapses between VPL_IN and 
VPL_TC. (C) Reconstructing functional connectivity from external afferents, using volumetric 
bouton densities as constraint. Synapses from medial lemniscus afferents (ML afferents) are 
included in the VPL region (onto VPL_TCs and VPL_INs). Similarly, corticothalamic 
synapses (from CT afferents) are added to all m-types in the model. (D) Validation of the 
resulting functional connectivity. (D1) Validation of synapse convergence onto Rt_RC neurons 
in the model (n=4909) was validated against electron microscope (EM) experiments in the rat 
(2 Rt neurons from Fig. 5C in Liu & Jones (1999), grey and black horizontal lines). Bars and 
vertical lines show mean and standard deviation in the model. (D2) Validation of the 
distribution of synapses per connection. 1 VPL_IN in the model was compared to findings from 
an EM reconstruction of 1 dLG interneuron in the mouse (Morgan & Lichtman, 2020).  

4.3.4.2 Prevalence of mono-synaptic connections in the reconstructed connectivity 
An important difference between the reconstruction of connectivity in the cortical and thalamic 
microcircuit models is that we did not explicitly remove connections between neurons if they 
shared only one contact (Reimann et al., 2015; Markram et al., 2015), because we did not have 
any direct anatomical data supporting that. Rather, a recent electron microscope reconstruction 
of a IN in the visual thalamus, showed that most connections from INs involve only one 
functional synapse (Morgan and Lichtman, 2020). 

The resulting distributions of number of functional synapses per connections, i.e. the number 
of functional contacts between a pair of neurons, followed geometric distributions, similar to 
the one shown in Figure 4.3D2. Most of the m-type to m-type connections had 60-70% of pairs 
with one synapse, with the exception of Rt_RCs to VPL_TCs, where most of the connections 
had 2 (30%) or more synapses (70%).  

4.3.4.3 Reconstructing connectivity from lemniscal and corticothalamic afferents 
By following similar principles, we included synapses from extrathalamic sources (see 
Methods), i.e. from the sensory periphery through the medial lemniscus (ML) and cortex 
(corticothalamic afferents, CT). We used as experimental constraints the volumetric bouton 
densities of lemniscal synapses in the mouse VPM (Takeuchi et al., 2017), since data for the 
VPL was not available (Fig. 4.3C). For CT afferents, we used the relative proportions of 
corticothalamic to lemniscal synapses onto TCs in the VB (around 12) and the ratio of CT to 
TCs synapses in the reticular nucleus (around 2.8) (Çavdar et al., 2012; Mineff and Weinberg, 
2000). Lemniscal synapses were assigned to 1814 virtual fibers (see Methods for details); this 
number was estimated by taking into account the number of TCs in the model, the number of 
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VPL neurons and number of dorsal column nuclei (DCN) projecting to the thalamus (Shishido 
and Toda, 2017). We used a cell mouse atlas (Erö et al., 2018) to determine the number of 
excitatory neurons in the VPL and DCN. The number of CT fibers was 75325, consistent with 
data reporting a ratio of ~10 between CT afferents and the corresponding TC neurons (Crandall 
et al., 2015; Monconduit et al., 2006; Sherman and Koch, 1986). 

4.3.4.4 Validating the connectivity 
Although anatomical data to constrain thalamic connectivity was extremely sparse, we were 
able to reproduce some experimental findings not used so far (Fig. 4.3D), such as the relative 
contributions of synapses from different sources onto Rt morphologies (Liu and Jones, 1999) 
and the shape of the distribution of synapses per connection between INs and TCs (Morgan 
and Lichtman, 2020). We found that the percentage of Rt synapses onto other Rt neurons was 
slightly lower (mean around 10% in the model, 17-20% in the experiment) than what reported 
for the rat, while the percentage of TC synapses were slightly higher (25% in the model 
compared to around 20% in the experiment). The reasons of these differences will be 
investigated in the future. 

Clearly, the proposed anatomical connectivity is a first draft that will be challenged and refined 
when new experimental data become available.  

4.3.4.5 Predicted synapse numbers, afferent and efferent neuron numbers 
We found that each neuron in the microcircuit projected on average to 246 ± 88 other neurons 
(mean ± std, sample of 1000 neurons); each Rt_RC neuron projected to 64 ± 28 Rt_RCs and 
136 ± 60 VPL_TCs; each VPL_TC projected to 34 ± 46 Rt_RC neurons; VPL_IN sent efferents 
on average to 220 VPL_TCs (± 78.0). In a mesocircuit, which is constituted by a central 
microcircuit, surrounded by 6 others (see Fig. 4.5A), we found a total of 38.8 million synapses. 
Each neuron received inputs on average from 203 ± 41.0 other neurons. Each Rt_RC neurons 
received inputs from 28 ± 15 other Rt_RCs and 74 ± 28 VPL_TCs, while VPL_TCs were 
contacted on average by 75 ± 32.0 Rt_RCs. 

In a preliminary investigation, we determined the relative proportions of closed and open-loop 
configurations between Rt_RCs and VPL_TCs. We found that closed-loops were present in 
our model and that they were a minority of the connections, in qualitative agreement with 
experimental findings (Gentet and Ulrich, 2003; Pinault and Deschênes, 1998a; Shosaku, 
1986). As a starting point for this analysis, we considered all connected VPL_TC to Rt_RC (or 
Rt_RC to VPL_TC) pairs and for each presynaptic neuron we counted how many among its 
postsynaptic neurons it received input from. In this way we found that percentage of closed-
loops was always lower than 10%. It is worth noticing that this analysis is not directly 
comparable with experimental findings, since it explicitly considers connected neurons. 
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4.3.5 Reconstructing and validating synapse physiology 

Once we created a first draft of the anatomical connectivity, we constrained synapse physiology 
with available experimental and literature data.  

To model synapse kinetics, we used existing models of synaptic currents (Markram et al., 2015) 
and included literature findings on decay time constants, the relative contribution of AMPA, 
NMDA, GABAA and GABAB currents (Warren et al., 1994; Zhu and Lo, 1999; Deleuze and 
Huguenard, 2016; Miyata and Imoto, 2006; Arsenault and Zhang, 2006), summarized in Table 
4.1.  

To model short-term synaptic plasticity and stochastic transmission, we used existing models 
(Tsodyks and Markram, 1997; Fuhrmann et al., 2002; Markram et al., 2015) and constrained 
their parameters with available thalamic data, by integrating literature findings and in house 
paired recordings (Cox et al., 1997; Gentet and Ulrich, 2003; Castro-Alamancos, 2002; Miyata, 
2007; Mo et al., 2017; Connelly et al., 2016; Crandall et al., 2015; Cruickshank et al., 2010; 
Jurgens et al., 2012).  

To constrain the synaptic conductance (gsyn) value we collected information on postsynaptic 
potential (PSP) amplitude and scaled gsyn to reproduce the experimentally-reported PSPs.  

We validated synapse physiology in the model by performing in silico paired recordings and 
comparing PSP properties (amplitude and coefficient of variation) with the experiments. 

As a result, we obtained an initial map of synapse types in a thalamic microcircuit with its 
external afferents, consistent with the available experimental data (Fig. 4.4).  

 

4.3.5.1 Reconstructing and validating short-term synaptic plasticity 
We identified 3 synapse types: inhibitory depressing (I2), excitatory depressing (E2) and 
excitatory facilitating (E1), (Ecker et al., 2019; Markram et al., 2015).  

Short-term plasticity parameters were directly extracted from our experimental recordings 
when data was available (Fig. 4.4A) or generalized from similar pathways (see Methods and 
Table 2). Synapse types for VPL_TC to Rt_RC and Rt_RC to VPL_TC were consistent with 
literature findings showing that they are depressing and that VPL_TC to Rt_RC connections 
are more depressing than Rt_RC to VPL_TC (Cox et al., 1997; Gentet and Ulrich, 2003). 
Connections from presynaptic interneurons have never been characterized in the 
somatosensory thalamus of the rodent and we found that they were depressing as well.  

For some connections, such as extrinsic synapses from ML and CT fibers, we found 
information in the literature regarding their short-term plasticity types, but experiments were 
limited to the analysis of two consecutive EPSPs (paired-pulse ratios). In those cases, 
parameters were predicted from similar pathways from our recordings or from the neocortical 
microcircuit model (Markram et al., 2015, see Methods for details, Fig. 4.4B). Short-term 
plasticity types in the model were consistent with data reporting that lemniscal synapses are 
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depressing (Castro-Alamancos, 2002; Miyata, 2007; Mo et al., 2017) and that corticothalamic 
synapses are facilitating (Connelly et al., 2016; Crandall et al., 2015; Cruikshank et al., 2010; 
Jurgens et al., 2012; Miyata, 2007).  

Stochasticity of synaptic transmission was modelled as in reported previously (Fuhrmann et 
al., 2002; Markram et al., 2015). As independent validation of the and short-term plasticity 
model we compared the coefficient of variation (c.v.) of first PSPs against experimental data 
(Fig. 4.4 C1 and Table 4.3). 

	
Figure 4.4. Reconstructing and validating synaptic short-term plasticity and postsynaptic 
potentials (PSPs) amplitude 
(A) Top: illustration of in vitro paired recordings, used to constrain the parameters of the 
Tsodyks-Markram model of short-term plasticity. A presynaptic VPL_TC neuron (black 
pipette) was stimulated with 40 Hz pulses followed by a recovery stimulus. The response in a 
postsynaptic Rt_RC neuron (grey pipette) was recorded and used to constrain the model 
parameters (U, D, F). (B) Map of synapse types in the model. Green: in house experimentally-
characterized pathways (as in A), green checked: pathways for which the synapse type was 
derived from literature and parameters were generalized from similar pathways (see Methods 
for details), orange: pathways for which paired recording data was not available. (C1) 
Validation of the coefficient of variation (c.v.) of first PSP amplitudes, quantifying the trial-to-
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trial variability for 5 in vitro characterized pathways (see Table 4.3). (C2) Comparison of PSP 
amplitudes in the model for 7 characterized pathways in house or in the literature (see Table 
4.2). Dots and error bars show mean and standard deviation, dashed line shows the regression 
fit. (D) Example of in silico paired recordings for different pathways. For each pathway, the 
somatic membrane potential of the postsynaptic neuron is shown (grey: trials; blue and red: 
mean traces for inhibitory or excitatory connections). All recordings are shown on the same 
scale for easy comparison of PSP amplitudes in different pathways. 

 

4.3.5.2 Reconstructing and validating postsynaptic potential amplitudes 
Once we had determined the short-term plasticity types for each of the 11 m-type to m-type 
connections, we estimated the conductance of single synapses (gsyn). Since no experimental 
estimates of gsyn was available, we performed in silico paired recordings on 50 randomly 
selected pairs for each pathway and scaled the values of gsyn, until we matched the available 
data on postsynaptic potentials (PSPs) amplitude. As an internal validation of the scaling 
process itself, we repeated the same protocol on another set of 50 randomly selected pairs and 
compared the resulting PSP amplitudes with the experimental measurements (Fig. 4.4 C2). 

We integrated data from our experimental paired recordings and literature findings (Gentet and 
Ulrich, 2003; Golshani et al., 2001; Mo et al., 2017; Zhu and Lo, 1999), which are summarized 
in Table 4.2. For uncharacterized pathways, we predicted gsyn by using values from similar 
pathways (see Methods). 

We predicted that single synapse conductances from inhibitory neurons are in general small 
(e.g. 0.9  ± 0.23 nS for VPL_IN to VPL_IN), while conductances from VPL_TCs and lemniscal 
afferents were larger (>2 nS), consistent with being “driver” synapses (Mo et al., 2017; 
Sherman and Guillery, 1998). Corticothalamic synapses had small conductances (<0.5 nS), but 
were facilitating; by applying the same conductance of CT to VPL_TC connections to CT to 
Rt_RC connections, we found that the latter was around 2 times stronger than the former, 
similar to what reported in (Golshani et al., 2001). 

 

4.3.5.3 Reconstructing NMDA/AMPA and GABAB/GABAA ratios 
Each excitatory connection was modelled as a combination of a fast AMPA and slower NMDA 
components (see Methods and Table 4.1 for synaptic currents time constants). In the case of 
inhibitory synapses, we included only GABAA currents in this first draft, based on the following 
findings. In some pathways (e.g. Rt to IN in the visual thalamus of the rat) GABAB currents 
are not present (Zhu and Lo, 1999) or not characterized in terms of their relative contribution 
(e.g. Rt_RCs to Rt_RCs or VPL_INs to VPL_INs). In the case of Rt_RC to VPL_TC we found 
contrasting literature, showing the presence of GABAB components in rat neurons (Huguenard 
and Prince, 1994) or their absence in mice neurons (Warren et al., 1994). In preliminary 
experimental investigations (in mouse slices), we did not find GABAB responses in TC neurons 
when stimulating the Rt. 
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4.3.6  Reconstructing and validating gap junction connectivity 

Neurons of the reticular nucleus of the thalamus are functionally connected through electrical 
synapses (Landisman et al., 2002; Lee et al., 2014; Long et al., 2004). Different studies in 
rodents estimated that gap junctions-coupled neurons represent between 30-50 % of the total 
neuron population in the Rt (Crabtree, 2018; Deleuze and Huguenard, 2006; Lam et al., 2006; 
Lee et al., 2014). 

We included dendrodendritic and dendrosomatic gap junctions between Rt_RC dendrites (Fig. 
4.5). To constrain the anatomical properties of gap junctions (GJs) we used the neuron 
morphologies and information on the number of coupled neurons from dye-coupling 
experiments. To validate the anatomical properties of GJs we compared the distance-dependent 
connectivity in the model with dye-coupling experiments, at the single neuron as well as the 
level of small populations.  

Functionally, gap junctions were modelled as simple conductances that coupled the membrane 
potential of the adjacent morphological compartments. We predicted the value of gap junction 
conductance for all gap junctions and validated their functional properties by comparing 
coupling coefficient values with experiments (Haas et al., 2011; Landisman et al., 2002; Lee et 
al., 2014; Long et al., 2004).  

We found that most of the anatomical properties of GJ coupling in the reticular nucleus can be 
predicted by the morphological properties of Rt_RC neurons.  

4.3.6.1 Reconstructing and validating gap junction anatomy 
We included gap junctions (GJs) in our model by following an approach similar to chemical 
synapses. We started by finding all possible appositions between Rt_RCs and Rt_RCs dendrites 
and somata. We found that dendrodendritic appositions resulted in neuron divergence (number 
of neurons connected to target neurons) that was higher compared to literature findings (Fig. 
4.5A1). Moreover, the resulting mean number of GJs per neuron (~300) was higher than values 
reported in other species or brain regions (Amsalem et al., 2016). Since we did not have any 
experimental data on the number of GJs between connected neurons or the density of GJs 
(number of GJs per unit length of dendrite or volume), in this first draft we randomly removed 
a certain fraction of GJs until we matched data on neuron divergence (Fig. 4.5A2). 
Interestingly, the target value was reached when 30 % of the appositions were kept and 
converted into functional GJs.  

We then validated the resulting connectivity by comparing the extent of anatomical coupling 
in the model with available dye-coupling data in the mouse Rt (Lee et al., 2014). We found that 
each neuron in a virtual slice in the model was directly coupled with 2-20 other neurons and 
that the majority of coupled neurons was at 50-100 μm from the primary injected neuron (Fig 
4.5B). When we analyzed single injections, most of the coupled neurons were found at 40-120 
μm as found experimentally. Furthermore, we predicted that the highest variability on the 
number of coupled neurons is in a similar distance range (80-120 μm). Rare coupled neurons 
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can be found at distances of 300-400 μm, consistent with the extent of some Rt_RC neuron 
morphologies. When we analyzed all the coupled neurons in the microcircuit, we found that 
the extent of coupling is even larger (range of number of neurons per cluster 7-50, with few 
connected neurons with somata located at more than 400 μm from each other).  

4.3.6.2 Reconstructing and validating gap junction physiology 
We used a gap junction conductance of 0.2 nS, as estimated in previous morphologically-
detailed models of GJs (Amsalem et al., 2016). To validate that the coupling strength was 
within biological reported values, we analyzed the coupling coefficients (CCs) between pairs 
of neurons with simulated paired recordings (Fig. 4.5C). In the model, we found that 
electrically coupled Rt_RC neurons had CCs values of 0.23 ± 0.008 (mean ± standard 
deviation, Fig. 4.5C) and that the mean value fell within the reported variability in mouse Rt 
neurons (Landisman et al., 2002).  
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Figure 4.5.  Reconstructing and validating gap junction connectivity between Rt_RC 
neurons 
(A1) Connectivity based on dendro-dendritic appositions between Rt_RC dendrites. Left: view 
of a mesocircuit (7 microcircuits) from the Rt side showing the location of a sample of 1000 
Rt_RC neurons (grey dots), an example “injected” Rt_RC morphology (2D projection, 
dendrites in red) and the location of Rt_RC neurons connected to the injected Rt_RC (blue 
dots). Two exemplar injections are shown. Middle: neuron divergence (number of neurons 
connected to the injected neurons) in the model and literature. Each dot represents one injected 
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neuron. Right: predicted distribution of GJs divergence (number of GJs per neuron, for a 
sample of 1000 Rt_RC neurons in the model). (A2) Connectivity after conversion of 
dendrodendritic appositions into functional GJs. Left: as in A1, after converting 30 % of 
dendrodendritic appositions into functional GJs. Middle: neuron divergence in the model 
matches experimental findings. Right: the resulting GJ divergence is reduced by an order of 
magnitude. Note different maximal values in A1 and A2 (blue rectangles). (B) Validations of 
distance dependent GJs connectivity. In silico dye-injections were performed in the model to 
reproduce dye-coupling experiments (n=33 neurons injected). (C) Validation of GJs functional 
properties. Left: example of in silico paired recordings, where a Rt_RC is stimulated with a 
hyperpolarizing current step, its somatic potential is recorded, along with the somatic potential 
of all GJ-coupled neurons (only a sample is shown). The ratio of the voltage response between 
a coupled neuron and the stimulated neuron is the coupling coefficient (CC). Right: comparison 
of CC values in the model (n = 50 pairs, each one represented by a dot) with paired recordings 
from the literature. Dots: mean, error bars: standard deviation. (D) Resulting GJ connectivity. 
Example of clusters of 4 Rt_RC neurons coupled by GJs and GJ locations. Each neuron 
morphology is represented by a different color, axons are omitted for clarity. Green dots show 
the detailed morphological location of GJs that each of the neurons receive from the 3 others 
and from other Rt_RC neurons not shown here.  

4.3.7 Simulating in vivo-like spontaneous activity and sensory responses 

In first preliminary investigations, we explored spontaneous and evoked activity in the 
microcircuit as a whole. We found uncorrelated population and single cell responses during 
spontaneous activity and clear evoked response when at least 50 medial lemniscus (ML) fibers 
were activated. 

We simulated spontaneous and evoked medial lemniscus (ML) activity in in vivo-like 
conditions (Fig. 4.6). The in vivo-like condition was approximated by tonic depolarization of 
all m-types and activation of lemniscal and corticothalamic (CT) fibers with uncorrelated spike 
trains, aimed at simulating background activity from the afferents (see Methods for details). 
We lowered the calcium concentration from 2 mM (in vitro-like conditions) to 1.2 mM, with 
the effect of reducing synapse release probabilities (Markram et al., 2015).  

The first simulation results showed uncorrelated firing activity in all m-types (Fig. 4.6A1). 
Under this depolarization condition, the activity of Rt_RCs was sufficient to hyperpolarize part 
of the VPL_TC population (see voltage raster in Fig. 4.6A1). We then compared spontaneous 
activity with sensory evoked responses with brief activation of ML fibers (Fig. 4.6B), 
simulating a whisker flick or a skin electrical stimulus to the hindlimb (Kimura, 2017). We 
found clear population responses in VPL_TC neurons, with a peak in firing rates in the 5 ms 
following the stimulus and increased firing probability in the 20-25 ms following the stimulus. 
Rt_RCs showed increased firing rates compared to the spontaneous activity as a result of the 
excitation they receive from VPL_TCs. The increase in firing rates of Rt_RCs lasted for ~25 
ms after the stimulus and gradually decreased to baseline levels.  
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Figure 4.6 Simulated spontaneous and sensory-evoked activity (in vivo-like) 

Simulating in vivo-like spontaneous activity with background firing from medial lemniscus 
(ML) and corticothalamic (CT) afferents, extracellular Ca2+ concentration [Ca2+]o of 1.2 mM 
and depolarization of Rt and VPL.  (A1) Top: population voltage raster showing the membrane 
potential of a sample of 500 neurons. Each row is a neuron and neuron are sorted according to 
microcircuit depth. Bottom: spike rasters and firing rate histograms for a sample of neurons for 
each m-type. (A2) Exemplar single cell recordings for each of the m-types. (B1) and (B2) as 
in (A1) and (A2) for simulated sensory-evoked activity with the activation of 75 ML fibers 
with 1 synchronous spike.  
 
We next explored the effect on network responses by activating an increasing number of 
afferent ML fibers and found the activation of at least 50 ML fibers was required to observe 
population responses in the microcircuit (Fig. 4.7). We observed a sigmoidal dependence 
between stimulus amplitude and peak firing rates (Fig. 4.7 B) and an exponential decrease of 
response latencies in lemniscal-recipient cells (thalamic interneurons, VPL_IN and 
thalamocortical cells, VPL_TC). A clear effect on VPL_IN latency was visible with activation 
of 75 or more fibers (Fig. 4.7D). 
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Figure 4.7 Threshold analysis of sensory-evoked responses (in vivo-like) 
Same simulation conditions as in Fig. 4.6 (A) Simulated sensory inputs with activation of 
increasing numbers of lemniscal fiber (ML) with 1 synchronous spike. Spiking responses 
(rasters and firing rate histograms) are shown for three stimulation intensities for a sample of 
VPL neurons. (B) Stimulus-response curve. The response is calculated as the peak firing rate 
in response to the stimulus. (C) Spatial map showing a sample of neurons in the VPL at 
different times before, during and after the stimulus, 75 fibers are activated. Neurons are color-
coded according to their membra potential. (D) Response latencies of neurons in the VPL at 
increasing number of stimulated ML fibers. Mean (lines) and standard deviations (shades) of 
all VPL neurons are shown. 

4.3.8 Validation of network responses to corticothalamic inputs (in vitro-like) 

A recent experimental study showed the effect of activating corticothalamic (CT) inputs onto 
thalamic activity in thalamocortical slices (Crandall et al., 2015). This experiment showed that 
at low firing rates CT input inhibits ongoing activity but at higher rates the initial inhibition is 
overcome by excitation, as a result of different patterns of short-term plasticity in CT and 
intrathalamic synapses. We obtained qualitatively similar results in the model. 

4.3.8.1 The model reproduces the modulation of TC cells firing by single and high 
frequency activation of corticothalamic fibers 

To reproduce in vitro like conditions, all the modelled neurons were left at their resting 
potential and the extracellular calcium concentration was set to 2 mM (see Methods). We 
activated a small subset of VPL_TC cells (around 10 cells), so that they fired in tonic mode at 
10-12 Hz (as in Crandall et al., 2015) and observed the change in activity induced by 
corticothalamic stimulation (Fig. 4.8A). To approximate the optogenetics stimulus, without 
knowing the extent of light-induced recruitment of corticothalamic (CT) axons in the 
experiments, we activated an increasing number of CT fibers with 1 synchronous spike, until 
we could observe a response in the activated VPL_TCs, which happened for 1500 fibers. 
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As found by Crandall and co-authors (see their Fig. 1), VPL_TCs responded to corticothalamic 
activation with a brief increase in firing rates after the stimulus, which was then dominated by 
a longer (>100 ms) Rt-mediated inhibition (Fig. 4.7A). We then activated CT fibers at 10 Hz 
and we found that the initial inhibition was progressively overcome by excitation, as in the 
corresponding experiment (Fig. 4.8B). In these conditions, we found a less pronounced 
increase of firing rates in the model compared to the experiment (Crandall et al., 2015, Fig. 2), 
mainly due to less synchronous responses in the model compared to the experiment (see also 
the two peaks just after the stimulus in Fig. 4.8A2). 

 

Figure 4.8. Reproducing in vitro findings in the model: corticothalamic (CT) modulation 
of TC cells activity (Crandall et al., 2015). 

(A1) Top: example membrane potential responses of one VPL_TC neuron (overlay of 10 
different simulation trials) in control conditions (injection of a depolarizing step, so that 
VPL_TCs fired single spikes at 10-12 Hz). Middle: same neuron and conditions with the 
addition of a CT stimulus (1 synchronous spike in 1500 CT fibers, simulating the effect of 
optogenetic activation). Bottom: raster plot of the neuron’s firing for the traces shown above. 
(A2) Population peristimulus time histograms (PSTHs) showing the difference in firing rates 
between control condition and with CT stimulation (8 cells). (B1) As in A1, except for 
repetitive stimulation of CT fibers at 10 Hz. (B2) Difference between PSTHs between control 
and CT as in A2. See Crandall et al., 2015, Fig. 1 for A and Fig. 2 for B. 
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Reproducing qualitatively these experimental findings was of particular importance, given our 
simple representation of corticothalamic fibers (see section 4.2.13). It confirmed that the 
following emergent aspects of the model were good approximations of biological findings: the 
time course of GABA mediated-inhibition between Rt_RC and VPL_TC neurons, which 
depend on the time constant of synaptic currents and the membrane time constants; the balance 
between direct CT excitation and indirect inhibition onto thalamic neurons through the Rt, the 
relative contribution of facilitating excitatory (from cortex) and depressing inhibitory inputs 
(from Rt_RC neurons) onto TC neurons. Although we could not directly measure synaptic 
parameters for all CT connections, these simulations suggest that we successfully captured 
some of their key properties. 

It would be interesting to explore how these responses would change if CT synapses onto 
Rt_RC neurons were less facilitating than CT synapses onto TC neurons. Whether CT synapses 
onto Rt_TC neurons are facilitating or not is still not clear in experimental findings (Deleuze 
and Huguenard, 2016).  

4.3.9 Evoked spindle-like oscillations in in vitro-like conditions 

As a further validation of network dynamics, we tested if the model was able to reproduce 
spindle-like network activity, as reported previously in experimental and modelling studies in 
ferrets (Destexhe et al., 1993, 1996; Kim et al., 1995; von Krosigk et al., 1993, Bal et al., 1995). 
We found that we could evoke spindle-like oscillations in the model by briefly stimulating 
Rt_RC neurons, approximating the responses to extracellular electrical stimulation of the 
reticular nucleus (Huguenard and Prince, 1994; Li et al., 2017; Lu et al., 2020). The oscillatory 
activity was self-sustaining, through the synaptic interaction between Rt_RCs and VPL_TCs, 
and network mechanisms were responsible for its termination (Fig. 4.9). 

We began by simulating the network at rest with spontaneous synaptic release as the only 
source of input (in vitro-like condition, see Methods). The extracellular calcium concentration 
in this and all the following simulations was set to in vitro levels (2 mM). Under this condition, 
all the neurons were hyperpolarized, as expected from the in vitro recordings used to build the 
neuron models, and the network was silent. We then activated all Rt_RC neurons with a 20 ms 
current pulse (Fig. 4.9A), resulting in ~50% of Rt_RC neurons firing in response to the stimulus 
(Fig. 4.9 C2). Rt_RC neurons recruited VPL_TCs through post-inhibitory rebound responses, 
which in turn excited Rt_RCs. This back-and-forth of activity lasted for ~800 ms and generated 
network oscillations at a frequency of ~6-7 Hz, visible as increased peaks of activity in the 
average membrane potentials and firing rate histograms (Fig. 4.9 A1 and C2, ~3.5 peaks in the 
first 500 ms after the stimulus). The frequency was similar to some of the barrages of IPSPs in 
TC cells recorded during spindle waves in ferrets (Bal et al., 1995b). 
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Figure 4.9. Spindle-like oscillations in in vitro-like conditions and the role of different 
connections 
Evoked activity in in vitro-like conditions with brief stimulation of Rt_RCs. (A1) Voltage 
rasters showing spindle-like activity. A sample of 25 neurons per each m-type is shown and 
color-coded according to its membrane potential (see colormap in C1).  (B) Connections that 
block the oscillation. (B2) Blocking Rt_RC to VPL_TC disrupted the oscillation and revealed 
a small depolarization of Rt_RC neurons following the stimulation, probably caused by partial 
reactivation of the low-threshold calcium current (B4). (B3) When VPL_TC to Rt_RC 
connections were blocked VPL_TCs generated only one post-inhibitory rebound response with 
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higher firing probabilities (B3). (B4) insets from B1-3. (C1) Blocking chemical synapses 
between Rt_RC neurons (while gap junctions were left unchanged) generated a prolonged 
oscillation. (C2) Left: firing rate histograms and spike raster plots for a sample of 1000 neurons 
in the circuit. Note that the firing histograms are truncated at 50 Hz. Right: cycle by cycle 
analysis showing the percentage of Rt_RC and VPL_TC neurons firing around each oscillation 
peak (see Fig. 4.10 for the calculation of oscillation peaks and Methods). (C3) Single cell 
recordings showing the same cells in the control conditions and with Rt_RC to Rt_RC chemical 
synapses removed. Vertical bars indicate stimulus time in Rt_RC neurons. 

4.3.10 The role of different synaptic pathways in the maintenance and termination of 
spindle-like oscillations 

4.3.10.1 Activity “ping-pong” between Rt and TC neurons is necessary for the generation of 
spindle-like oscillations 

To understand the cellular and connectivity substrates underlying the oscillation, we removed 
one by one connections between different m-types (Fig. 4.9). Not surprisingly, each synaptic 
pathway involving chemical synapses in Rt_RCs or VPL_TCs had a role in the generation 
and/or maintenance of the oscillation (Fig. 4.9B), while removing pathways involving 
VPL_INs did not have a remarkable effect (data not shown). When we removed the connection 
between Rt_RCs and VPL_TCs, the first cycle of the oscillation in Rt_RCs did not change, but 
no subsequent firing response was evoked either in VPL_TCs nor in Rt_RCs. This knockout 
experiment revealed a small depolarization of Rt_RC neurons following the stimulus, probably 
caused by partial reactivation of the low-threshold calcium current. This means that in these 
hyperpolarized conditions, the isolated Rt could not generate any self-sustained activity.  

Without connectivity from VPL_TCs to Rt_RCs, VPL_TCs displayed slightly stronger post-
inhibitory rebounds (Fig. 4.9B3), which were not transmitted back to Rt_RCs. This result 
showed that the thalamus alone cannot generate oscillatory activity and that post-inhibitory 
rebound bursts occurring later in some VPL_TCs can be partially suppressed by Rt_RC 
neurons firing. 

This set of results confirmed that the oscillation is generated through the interplay between 
bursting in the reticular nucleus and post-inhibitory responses in thalamocortical cells. 
Although oscillatory burst firing in Rt neurons have been shown to be important in the 
generation of spindles (Astori et al., 2011), we observed that bursting of Rt_RCs neurons alone 
was not sufficient without the interplay with VPL_TCs. 

4.3.10.2 Mutual inhibition between Rt_RC neurons plays a role in the termination of 
spindle-like oscillations 

Interestingly, when we removed the inhibitory connections between Rt_RCs, we found a 
prolongation of the oscillation (Fig. 4.9C), caused by an increase in burst firing in Rt_RCs and 
a subsequent increase in post-inhibitory rebound responses in VPL_TCs (Fig. 4.9C1). This 
means that the intra-Rt inhibition controls the level of activity in Rt, by limiting the probability 
of synchronous burst firing in reticular neurons and subsequent excitation of the Rt_RCs from 
VPL_TCs (Fig. 4.9C3). Increased in burst firing in reticular neurons is in agreement with 
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results from rat slices, with focal application of picrotoxin, a GABAA receptor blocker (Sohal 
and Huguenard, 2003). At the population level, when inhibitory connections were removed, 
between 50 and 90 % of Rt_RC neurons fired during each oscillatory cycle and almost all of 
them fired in response to the stimulus (Fig. 4.9C2).  

4.3.11 Differential depolarization of the Rt and VPL influence oscillation properties  

Spindle oscillations in naturally sleeping (i.e. non-anesthetized) rodents occur during non-REM 
(NREM) sleep and are more easily evoked when thalamic activity is mildly synchronized 
(Bartho et al., 2014). Their features evolve during NREM episodes as a result of brain state-
dependent modulations of membrane potential dynamics in the thalamus and the reticular 
nucleus (Bartho et al., 2014; Urbain et al., 2019).  

In the model, we found that the depolarization levels of Rt and TC neurons influence oscillation 
frequency and duration and predicted depolarization conditions where spindle-like oscillations 
are less easy to evoke. 

4.3.11.1 Increasing depolarization in the Rt or VPL results in increase of oscillation 
frequency  

We studied network dynamics over a wide range of depolarization levels in the Rt and VPL, 
as an approximation of neuromodulatory influences onto thalamic and reticular activity 
(McCormick, 1992). The baseline potentials explored, through current injection to all neurons, 
went from hyperpolarized, mildly depolarized (~ -65 mV) to close to firing threshold. All 
Rt_RC neurons were stimulated with a 20 ms current pulse, which resulted in varying spiking 
responses depending on the depolarization levels. For each combination of membrane 
potentials in Rt_RCs and VPL_TCs, we calculated oscillation frequency and duration (number 
of cycles) (Fig. 4.10A). We found that the frequency as well as the duration were modulated 
when depolarization levels were changed (Fig. 4.10A). Although we cannot directly compare 
our results with in vivo findings, modulation of spindles frequency and duration in the 
somatosensory cortex has been shown to vary during non-REM sleep in naturally sleeping 
mice; more specifically the frequency decreases during NREM sleep along with TC neurons 
membrane potentials (Urbain et al., 2019). We found that while the frequency tended to 
increase with increasing depolarizations in both Rt and VPL, the dependence of oscillation 
duration was more complex.  

4.3.11.2 Longer spindle-like oscillations are evoked when the VPL is more depolarized than 
the Rt 

Oscillation duration map showed that clear spindle-like oscillations (having more than 5 cycles, 
i.e. duration around 500 ms) could only be evoked in a small region, where Rt_RC membrane 
potentials are below -65 mV and VPL_TCs are more depolarized than Rt_RCs (Fig. 4.10A). 
If we assume that VPL_TCs neurons are in general more depolarized during wake-like states 
than during sleep-like states, and that Rt_RC neurons are more hyperpolarized, this result 
suggests that spindle-like oscillations are easier to evoke at the transition between wake-like 
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and sleep-like states. When both VPL_TCs and Rt_RCs were hyperpolarized, although 5-6 
oscillation cycles could be evoked, the frequency decreased below 5 Hz.  

 
Figure 4.10. Depolarization levels in Rt and VPL influence oscillation properties 
Spindle-like oscillations were evoked with a brief 20 ms current stimulus to all Rt_RC neurons 
and VPL_TCs and Rt_RCs membrane potential was depolarized to different levels. (A) Top: 
Frequency and duration maps. Oscillation frequency and duration at different depolarization 
levels are color-coded according to a heatmap. Bottom: illustration showing how oscillation 
frequency and duration were calculated (see Methods for details). (B) Population voltage 
rasters, spike raster and firing rate histograms showing the effect of increasing Rt 
depolarization, while VPL_TCs are mildly depolarized. Sample of 1000 neurons sorted by 
microcircuit depth. (C) Same as in (B) for increasing depolarization of VPL_TCs. (D) Cycle 
by cycle analysis showing the percentage of Rt_RCs and VPL_TCs firing around each 
oscillation peak. (E) Left: oscillation duration as a function of initial activity of Rt neurons. 
Right: oscillation duration as a function of initial activities in Rt_RCs (0-20 ms from stimulus 
onset) and VPL_TCs (90-150 ms from stimulus onset, corresponding to the first post-inhibitory 
rebound responses). 

4.3.11.3 Depolarization conditions where spindle-like oscillations are less easy to evoke 
We found a region of depolarization conditions where oscillations were less likely to occur, 
namely when VPL_TCs and Rt_RCs were depolarized (upper right corner of the duration map). 
We speculated that this state would correspond to awake like-states. In vivo recordings in 
awake mice showed that TC neurons in the VPM are more depolarized during active states than 
in quite wakefulness (Urbain et al., 2015). Intracellular recordings of Rt and TC neurons 
comparing their membrane potentials during wakefulness and sleep are not available yet. 
Moreover, spindle-like oscillations were difficult to evoke when VPL_TCs were 
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hyperpolarized and Rt_RCs were depolarized. Under the assumption of upregulation of leak 
potassium currents and consequent membrane hyperpolarization in TCs (Hill and Tononi, 
2005; Li et al., 2017), this network state would correspond to deep-NREM sleep. Our results 
also suggest that during deep-NREM sleep leak potassium currents in TCs are more 
upregulated than in Rt_RCs cells.  

To study in more detail how oscillation duration was affected by differential depolarization of 
the Rt or VPL, we analyzed population responses when only one of the two populations were 
depolarized. 

4.3.11.4 Rt depolarization alone decreases oscillation duration 

We depolarized only the Rt and we kept the VPL at intermediate levels (-65 mV) of membrane 
depolarization. In these conditions, increasing Rt depolarization decreased oscillation duration 
(Fig. 4.10B). This result can be explained by increased inhibition from the Rt to the VPL and 
decrease firing probability in VPL_TCs. Furthermore, the waxing-and-waning in firing 
responses (Fig. 4.10B, condition 1) tended to become a predominantly waning response when 
Rt was depolarized (Fig. 4.10B, condition 3).  

4.3.11.5 VPL depolarization increases oscillation duration 

When the membrane potential in Rt was kept constant (slightly below -65 mV) and the VPL 
was depolarized, the oscillation increased in length (Fig. 4.10C). With increased depolarization 
of the VPL, more VPL_TCs were firing before as well as after the stimulus and excited more 
Rt_RCs. This increased excitation in the VPL, resulted in more post-inhibitory rebound 
responses in VPL_TCs, which in turned excited more Rt_RCs causing a longer back-and-forth 
of activity between the two populations. With increasing VPL depolarization waning responses 
in the population firing (Fig. 4.10C, condition 4) tended to become waxing-and-waning (Fig. 
4.10C, condition 6). 

4.3.11.6 Initial firing of Rt_RCs, along with VPL_TCs, can predict oscillation duration 
In vivo recordings in naturally sleeping rats suggested that brain state influences spindle length 
by regulating the activity of reticular neurons (Bartho et al., 2014). As found by Barthó et al., 
spindle-like oscillations in our simulation tended to be longer when the initial activity of Rt 
neurons was lower (see conditions 1 and 6 in Fig. 4.10B and C). When less than 20% of Rt_RCs 
neurons fired in response to the stimulus, more Rt_RC neurons were recruited in the following 
cycles (Fig. 4.10D). On the other hand, when ~30 % were initially recruited the activity of 
Rt_RCs decreased during the following cycles (Fig. 4.10D). We asked whether the initial 
response in the Rt could predict the duration of evoked oscillation and we found that longer 
oscillations tended to occur when the initial response of Rt_RC neurons was lower (Fig. 4.10E, 
left). However, different oscillation lengths corresponded to the very similar initial responses 
in Rt_RCs. We found that the combination of the initial responses in the Rt_RCs and VPL_TCs 
was a better predictor of oscillation length (Fig. 4.10E, right). This result suggests that the 
membrane potential of Rt, as well TC neurons, upon spindle initiation can influence spindle 
duration. 
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4.3.12 The effects of VPL depolarization and initial Rt_RCs recruitment 

We found previously that the membrane potential level changes oscillation frequency and 
duration (Fig. 4.10). In the following set of simulations, we analyzed the network responses to 
spatially organized inputs in the center of the Rt of increasing sizes and depolarization levels 
where longer oscillations can be evoked (VPL depolarized more depolarized than the Rt).  In 
this condition, we found that spindle-like oscillations can be evoked by stimulating 200-250 
Rt_RCs and that the oscillation duration tended to decrease with increasing initial recruitment 
of Rt_RC neurons (Fig. 4.11). 

4.3.12.1 Waxing-and-waning oscillations at the single cell and population levels 

We found that for intermediate levels of depolarization in VPL_TCs (~ -65-60 mV) and 
moderate hyperpolarization in the Rt (~ -70 mV) the activation of 250 neighboring Rt_RCs 
was sufficient to trigger a self-sustaining oscillation lasting ~1.5 s. We also found spindle-like 
oscillations when we stimulated 200 central Rt_RCs, but not 175 Rt_RCs (data not shown). At 
the population level, we observed synchronized increase of firing rates (waxing) in both 
Rt_RCs and VPL_TCs, sustained activity and decrease (waning) starting around 300 ms before 
the end of the oscillation (Fig. 4.11A-D). At the single cells level, the initial responses were 
dominated by subthreshold PSPs, while action potentials were more frequent during the 
intermediate phase of the oscillation (Fig. 4.11B). The responses in VPL_TCs were dominated 
by oscillatory IPSPs, recurring at the same frequency of the population responses of the Rt_RC 
neurons, and occasional post-inhibitory rebound spikes (Fig. 4.10B). The waxing-and-waning 
pattern was visible also in the spatial average of somatic membrane potentials (Fig. 4.10C).  

4.3.12.2 Waxing-and-waning oscillation along the vertical and lateral dimensions of the 
microcircuit 

Analysis of the membrane potentials along the depth and lateral extent of the microcircuit 
revealed waxing-and-waning responses in the Rt and VPL in time as well in space (Fig. 4.11C). 
Along the depth, neurons located in the upper half of the Rt started to activate before the ones 
in the lower half. In the VPL, neurons located in the center were more hyperpolarized, 
especially around the first 500 ms from the start of the oscillation. Around the middle phase of 
the oscillation (500-1000 ms) the hyperpolarization was visible along the whole depth.  

Along the lateral extent, neurons in the center of the Rt and VPL were activated earlier; during 
the middle phase of the oscillation (500-1000 ms) the excitation (in the Rt) and inhibition (in 
the VPL) spread along the whole lateral extent of the microcircuit.  
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Figure 4.11. Oscillation properties with VPL depolarization and the effect of increasing 
initial Rt recruitment 
(A) Membrane potential raster plots and mean membrane potential showing oscillatory activity 
in a sample of 25 cells for each m-type. Each row in the membrane potential rasters shows one 
cell and cells are sorted by microcircuit depth. (B) Representative single cell recordings from 
the neurons shown in A. (C) Activity along the spatial dimensions of the microcircuit. Top: 
neurons membrane potential along the depth, showing the alternating activations in the Rt and 
VPL and waning of the oscillation both in time and space. Neurons are sorted by depth. Bottom: 
propagation of the activity along the lateral extent showing how central neurons activate earlier 
than more lateral ones. Neurons are sorted by position on the lateral extent of the microcircuit. 
(D) Population spiking responses as assessed by raster plots and firing rate histograms (sample 
of 1000 cells). (E) Oscillation duration and frequency for different stimulus intensities (number 
of central Rt_RCs stimulated). 

4.3.12.3 Increasing initial Rt recruitment tends to decrease oscillation duration 
We found that activating more Rt_RC neurons tended to decrease oscillation duration from 10 
to 7 cycles when 1000 central Rt_RCs were activated, corresponding to ~1/5 of the total 
number of Rt_RC neurons (Fig. 4.11E). Increasing the initial recruitment of Rt_RCs did not 
alter significantly the oscillation frequency, which remained constant around 8-9 Hz. The 
decrease in oscillation duration with increasing number of stimulated Rt_RCs neurons is in line 
with our previous results showing the role of mutual inhibition between reticular neurons in 
the termination of the oscillation (Fig. 4.9C) and decrease in oscillation duration with 
increasing Rt depolarization (Fig. 4.10B).  
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4.3.13 Gap junctions increase the duration of spindle-like oscillations 

Gap junctions (GJs) between neurons in the reticular neurons can efficiently transmit low-
threshold bursts between cells, promote spiking correlations when coupling between cell pairs 
is strong and synchronize the activity in the reticular nucleus in vitro (Landisman et al., 2002; 
Long et al., 2004). GJs have been hypothesized to contribute to the maintenance of network 
oscillations, through network synchronization (Beenhakker and Huguenard, 2009; Fernandez 
and Luthi, 2019).  

We found that removing GJs from the model decreased the recruitment in the Rt, tended to 
shorten spindle-like oscillations and made oscillation duration depend more significantly on 
stimulus intensity (Fig. 4.12). 

4.3.13.1 Gap junctions influence Rt_RC membrane potentials distribution 
We performed GJs knockout experiments in the model and compared oscillations properties 
across different stimulation intensities (Fig. 4.12). To control the extent of the stimulus, we 
activated an increasing number of Rt_RC neurons located at the center of the microcircuit (as 
in Fig. 4.11). We found that without GJs, at least 400 Rt_RC neurons needed to be stimulated 
in order to evoke any self-sustained activity (Fig. 4.12A and 4.12D), while 250 neurons were 
enough with a network with GJs (Fig. 4.12D and Fig. 4.11). Although the initial population 
firing responses were comparable to the control condition (Fig. 4.11A), we found that without 
GJs the average membrane potential and the membrane potential in individual Rt_RCs were 
slightly lower compared to the control condition (Fig. 4.11C). This finding suggests that GJs 
can influence the excitability in the Rt by bringing the membrane potential of Rt neurons closer 
to threshold and more likely to fire synchronously in response to the stimulus and in response 
to post-inhibitory rebounds from VPL_TCs.  

This result was confirmed by comparing the spatial responses in the Rt in a time window around 
the stimulus (Fig. 4.11A insets). We found that the Rt_RC neurons were on average more 
depolarized in the 30 ms following the stimulus in the control condition than without GJs. 
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Figure 4.12. The contribution of gap junctions to spindle-like oscillations 
Simulation conditions as in Fig. 4.11, with VPL more depolarized than the Rt. (A) Spindle-like 
oscillations in control conditions (left) and with gap junctions (GJs) between Rt_RCs removed 
(right). Population responses are shown with voltage rasters and firing rate histograms. Insets: 
average activity in a sample of neurons in the Rt in a time window of 30 ms after the stimulus 
(green boxes on the plots on the left). (B) Membrane potential along the lateral extent of the 
microcircuit for the simulations shown in A. Each row represents the membrane potentials in 
the Rt and VPL averaged in 25 µm bins color-coded as in A. (C) Left: average membrane 
potential of all Rt_RC neurons, right: membrane potential distribution for all Rt_RCs in the 10 
ms preceding stimulus onset. (D) Oscillations properties as a function of the number of Rt_RCs 
stimulated. To control the spatial extent of the stimulus with and without GJs, the same Rt_RCs 
located at the centre of the circuit were stimulated. 

4.3.13.2 Gap junctions increase excitation in the Rt along the lateral extent of the 
microcircuit 

When we analyzed the membrane potential along the lateral dimension of the microcircuit in 
the two conditions, we found that the excitation in the Rt was extended to more lateral neurons 
and lasted for a longer time, with corresponding increased inhibition in the VPL (Fig. 4.11B). 
More central regions in the Rt were more excited for longer times when GJs were present and 
the overall network response involved more lateral regions in the Rt and VPL. This was clearer 
in the oscillation cycles after 100 ms from stimulus onset. Taken together with the anatomical 
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connectivity through GJs between neurons that are also 250-300 µm apart (see Fig. 4.6) this 
result shows that GJs have functional effect on neurons which are distributed along the whole 
lateral extent of the Rt (and, indirectly, of the VPL). 

When we increased the stimulus intensity (number of Rt_RCs stimulated, Fig. 4.11D) we found 
that longer oscillations could be evoked without GJs when more Rt_RCs were initially 
recruited (6 cycles with 1000 out of the total 4909 Rt_RCs stimulated); the frequency of the 
network responses was very similar to the control condition. This result indicates that spindle-
like oscillations evoked with Rt stimulation are all-or-none events: i.e. when a minimum 
number of Rt_RC neurons are recruited, the activity spreads to all the network, the oscillation 
is self-sustaining and is scarcely dependent on stimulus intensity. 
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4.4 Discussion 

Here we present a first-draft large-scale model of thalamic microcircuitry, that integrates 
experimental measurements of the detailed anatomy and physiology of single neurons, the 
three-dimensional organization of the reticular and VPL nuclei, neuron densities, synaptic 
anatomy and physiology, and electrical connectivity mediated by gap junctions. It has been 
validated against a set of structural and physiological data that was not used during the building 
process. To build and validate the model, we followed and extended the workflow and 
principles of a detailed model of neocortical microcircuitry (Markram et al., 2015). Part of the 
challenge was to build a network model with extremely sparse experimental data. For instance, 
information on the detailed neuron to neuron connectivity between thalamocortical and 
reticular neurons is not available and only two studies performed paired recordings in primary 
somatosensory thalamic pathways in the rat (Cox et al., 1997; Gentet and Ulrich, 2003). To 
deal with missing data, we had to include measurements from different species (rat or mice) or 
sometimes different age (P15-P50 mice, juvenile rats) during model building. Our main goal 
was to integrate available experimental data on thalamic microcircuitry in a unified view that 
only a biologically-detailed model can provide. 

This model should be considered a first-draft reconstruction of thalamic microcircuitry, and 
although it has been constrained by available experimental data, it has a number of limitations. 
For instance, inclusion of specific ion channel mechanisms in different neuron types would 
more accurately reproduce differences in bursting behavior in reticular neurons and the 
dendritic properties of thalamic interneurons (Acuna-Goycolea et al., 2008; Astori et al., 2011; 
Huguenard and Prince, 1992; Lüthi and McCormick, 1998; Pellegrini et al., 2016). Neurites 
and synapse densities from electron microscope reconstructions could be used to validate the  
neurons and connectivity reconstructions (Kubota et al., 2018; Yin et al., 2019). Neuron counts 
and density will be more accurately estimated by acquiring more data and by using them to 
create different instantiations of the microcircuit (Keller et al., 2018; Markram et al., 2015). 
The distinction of different morphological types and a more accurate distribution within 
thalamic and reticular domains (Deleuze and Huguenard, 2006; Krahe et al., 2011; Li et al., 
2020; Martinez-Garcia et al., 2020; Spreafico et al., 1991), could constrain further our derived 
connectivity. We did not adjust model parameters to reproduce specific network phenomena, 
as they were constrained by experimental data. Nevertheless, we found that the model was 
robust to the specific parameter values, when we varied them within experimentally plausible 
ranges. 

Although the model was built with the primary goal of integrating experimental measurements 
from different levels of investigation, we found that it was able to generate emergent network 
phenomena, such as spindle-like oscillations. Observing evoked oscillations in the model was 
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surprising, considering that the model was built and validated with rodents data, while the 
generation of network oscillations in slice was mainly demonstrated in ferrets (Bal et al., 
1995b; von Krosigk et al., 1993; Steriade et al., 1987). Furthermore, although the model was 
mainly based on in vitro findings, many aspects closely resemble thalamic activities during 
spindle oscillations in vivo in rodents (Bartho et al., 2014; Rovó et al., 2014; Urbain et al., 
2019).  

The model presented here provided novel insights on the generation of sleep spindles in 
thalamic networks. It differs from previous models in several aspects, besides the different 
scales (in terms of number of neurons), the level of biological detail and scope (Bazhenov et 
al., 2000; Bonjean et al., 2011; Destexhe et al., 1994, 1996, 1998b; Golomb et al., 1996). Since 
the model was not explicitly constrained for the generation of sleep spindles, we gained some 
novel insights on the thalamic mechanisms underlying rhythm generation, maintenance and 
termination and on the aspects where external input may be necessary. While we found that 
spindles cannot initiate spontaneously in our model, the maintenance and termination of the 
oscillation can be sustained by thalamic mechanisms. 

In agreement with previous experimental and modelling studies, spindle oscillations are 
generated through a combination of intrinsic mechanisms, namely low-threshold calcium 
bursting in reticular neurons (Astori et al., 2011; Pellegrini et al., 2016) and the synaptic 
interactions between reticular and thalamocortical neurons (Destexhe et al., 1993, 1996; Li et 
al., 2017). Neither the thalamus, nor the reticular nucleus alone sustained network oscillations. 
It is possible that the reticular nucleus model alone could generate spindle-like activity with 
stronger inhibitory connections and gap junctions, as suggested by in vivo recordings in cat and 
computational models (Destexhe and Sejnowski, 2003; Destexhe et al., 1994a, 1994b; Steriade 
et al., 1987). In our model, we observed that TC cells tended to fire single spikes, rather than 
bursts, in response to Rt-mediated inhibition. This aspect needs further investigation, since 
intracellular recordings in naturally sleeping mice show bursting activity (consisting of more 
than 1 spike) in VPM neurons (Urbain et al., 2019). Yet, the responses of TCs in the model 
were sufficient to activate Rt neurons and began a new oscillation cycle. We also found that 
the percentage of neurons activated during each oscillation cycle and the population firing rates 
were in general higher for Rt than TC neurons, in line with data in naturally sleeping rats 
(Bartho et al., 2014).  

In most simulation conditions, Rt and TC neurons fire with higher probabilities around the 
middle part of the oscillation, indicating that the progressive recruitment of more Rt and TC 
neurons underlies the waxing phase of the oscillation. This “crescendo” of activity had a 
temporal as well as a spatial component (Destexhe et al., 1996). We found spatial recruitment 
from the center to the sides of the circuit in the Rt and VPL; along the vertical dimension, 
inhibition started and was more prominent in the central portion of the VPL. Spatial recruitment 
was visibly reduced when we removed gap junctions from the model, in particular along the 
horizontal dimension in the Rt, which is the main direction along which reticular dendrites are 
oriented. We also showed that gap junctions are not strictly necessary for the generation of 
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synchronized thalamic oscillations, but facilitate the fast recruitment of larger populations of 
Rt neurons and the emergence of longer oscillations with smaller pools of “initiator” cells. 

The model accounted for spindle termination through synaptic mechanisms alone, and 
therefore did not require specific ionic mechanisms, such as Ca2+-dependent upregulation of 
the Ih current in TC cells (Bonjean et al., 2011; Bús et al., 2018; Destexhe et al., 1996, 1998) 
or desynchronizing cortical input (Bonjean et al., 2011). It will be interesting to verify if the 
current model can account for the spindle refractory period, which have been shown to depend 
on the upregulation of the Ih current in TC cells (Destexhe et al., 1998a; Kim et al., 1995). 
Nevertheless, we found that the modelled cells and circuit had mechanisms that limit the 
duration of the oscillation.  Although further analysis of the intrinsic and synaptic conductances 
and other state variables would be helpful, we already have results supporting an important role 
of mutual inhibition between reticular neurons (Beenhakker and Huguenard, 2009; Fogerson 
and Huguenard, 2016; Makinson et al., 2017; Sohal and Huguenard, 2003), since removal of 
this connection resulted in prolonged oscillations. We propose that contribution of Rt cells to 
spindle oscillations could have a self-limiting factor: on the one hand they promote 
synchronized IPSPs and post-inhibitory excitatory responses from the TCs, thus recruiting 
more and more Rt neurons, with the contribution of gap junctions; on the other hand, when a 
critical recruitment in the Rt is reached, the overall excitation is overcome by reciprocal 
inhibition between Rt neurons, and the oscillatory activity would limit itself. Other possible 
mechanisms are synaptic short-term depression, which is present in all our intrathalamic 
connections, as suggested by in vitro recordings in ferret and a recent computational study 
(Kim et al., 1995; Li et al., 2017).  

In summary, we developed a first-draft large-scale model of thalamic and reticular 
microcircuitry. Although it is, to the best of our knowledge, the most detailed thalamic model 
created so far, it is just a first step. Network simulations validated its general behavior with the 
generation of spindle-like oscillations. The next steps would be to study in more detail the 
network properties in in vivo-like spontaneous and evoked conditions (e.g. with simulated 
sensory inputs), and the thalamic contributions to functionally relevant thalamocortical states. 
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5 Conclusion and outlook 

 

At the beginning of this thesis, we highlighted the importance of the thalamus in the 
transmission of information between the periphery and the neocortex. We also reviewed how 
the reticular nucleus is a key structural and functional component in the modulation of this 
information. Recent experimental advances have made the reticular nucleus selectively 
accessible and paved the way for understanding its role in behavior and in shaping 
thalamocortical rhythms in vivo (Halassa et al., 2011, 2014; Wimmer et al., 2015). On the other 
hand, such targeted manipulations of different thalamic nuclei are not possible yet.  

Although the ultimate goal of any neuroscience project is understanding the complexity of the 
brain in vivo, there are countless factors that influence its activity during behaviorally relevant 
states. To tackle this challenge, we proposed a complementary computational approach, which 
had already proven successful to reconstruct a dense model of neocortical microcircuitry from 
sparse experimental data (Markram et al., 2015). While building a model of thalamic neurons 
and microcircuitry (Chapters 3 and 4), we realized that direct measurement of its fundamental 
components, such as synaptic interactions between neuron pairs, can be very challenging. We 
thus included findings from the neuroscientific literature to constrain and validate our models. 
To extract this information from the literature and to guarantee the reproducibility of our 
results, we developed a framework for its collaborative and systematic curation (Chapter 2). 
Through a continue cycle of model building and validation, we developed a first-draft model 
of thalamic microcircuitry, which will be continuously refined as experimental data become 
available. This model allowed us to study the cellular and circuit contributions to rhythm 
generation in the thalamus, and to perform initial simulations to validate the network activity 
in response to external inputs from the periphery and from the neocortex. 

5.1 Summary of main conclusions 

In this thesis we developed the first experimentally-constrained models of thalamic and 
reticular neurons and integrated them in a unified model of thalamo-reticular microcircuitry, 
which leveraged a framework for systematic curation of the literature. Below we summarize 
the most important novel contributions and insights that are part of this thesis, grouped in three 
main topics: 

• Open-access resources for the computational neuroscience community (Chapters 2 and 
3): 
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o A software for systematic curation of the literature, implementing data 
standardization and reusability principles. 

o An initial corpus of literature annotations for modelling thalamic neurons and 
microcircuitry. 

o Three-dimensional reconstructions of thalamic neurons available on the main 
online resource for neuron morphologies (Neuromorpho.Org). 

o Biophysically-detailed neuron models of thalamic neurons and resources for 
constraining their parameters with experimental data and multiobjective 
optimizations. 

• Structural principles underlying thalamic connectivity (Chapter 4): 

o The detailed connectivity in thalamic microcircuits can be predicted by the 
morphological properties of their neurons. This extends principles already 
validated for neocortical circuit models (Hill et al., 2012; Reimann et al., 2015) 
to a subcortical brain region. 

o Gap junctions connect reticular neurons that are more than 200 µm away, and 
this was entirely predicted from their morphological properties. We predict that 
each reticular neuron in the mouse has on average 30 GJs (range 10-80). 

• Cellular and synaptic contributions to thalamic rhythm generation (Chapter 4): 

o Spindle-like rhythms can be evoked at the network level in a detailed model of 
thalamic microcircuitry, constrained with in vitro data from studies in rodents.  

o External inputs are necessary for spindle initiation, while intrathalamic network 
mechanisms sustain the activity and promote its termination. 

o Cortical inputs are not necessary for the termination of spindle-like oscillations. 
We found intrathalamic mechanisms that gradually decrease population 
activities that do not involve intrinsic neuron properties. We showed that one of 
these key mechanisms is mutual inhibition between reticular neurons. Another 
possible mechanism is synaptic short-term depression at thalamo-reticular and 
reticulo-thalamic synapses, which is present in our model. Its role in spindle 
termination will be investigated in the future, along with the contribution of 
these mechanisms to spindle refractory periods characterized in vitro (Kim et 
al., 1995) and in vivo (Destexhe et al., 1998a). 

o Burst firing in reticular neurons, post-inhibitory rebound responses in 
thalamocortical neurons and their synaptic interactions are necessary for the 
maintenance of spindle rhythms in thalamic networks in in vitro-like conditions. 
The ability of the model to generate spindle-like oscillations in the isolated 
reticular nucleus will be investigated in the future. 
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o Reticular neurons have higher population firing rates compared to 
thalamocortical neurons during spindle-like oscillations. 

o Spindle-like oscillations have waxing-and-waning patterns in time and space, 
that are organized along the directions of thalamic and reticular neurons axons 
(vertical dimension of the microcircuit) and reticular neurons dendrites (lateral 
dimension of the microcircuit). 

o Gap junctions contribute to the spatial recruitment of reticular neurons along the 
lateral dimension of the microcircuit. 

o The duration of the oscillation, as well its frequency can be varied by changing 
the depolarization levels in reticular and thalamocortical neurons. The 
dependence of spindle length on the activity of reticular neurons observed in 
vivo (Bartho et al., 2014) can be explained by their membrane potentials upon 
spindle initiation. 

5.2 Implications 

In this thesis we focused on a model of thalamic microcircuitry and studied in detail different 
aspects of rhythm generation (spindle-like oscillations). The activity of this circuit and its 
dynamical modulation across different states (e.g. wakefulness, sleep, inattentive and vigilant 
states) have important roles in behavior and correlations with neurological (e.g. childhood 
absence epilepsy) and mental diseases (e.g. schizophrenia). 

5.2.1 Thalamic activities in wakefulness, sleep and attention 

5.2.1.1 Thalamic firing modes in wakefulness and NREM sleep 
During different states, the membrane potential of thalamic and reticular neurons are modulated 
by different neuromodulatory systems (Lee and Dan, 2012; McCormick, 1992). Modulation of 
the membrane potential has important effects on network dynamics and are associated with 
different firing modes, with tonic spiking associated with awake states and bursting occurring 
more frequently during drowsiness or NREM sleep (Bezdudnaya et al., 2006; McCormick and 
Bal, 1997; Sherman, 2005). We showed these different firing modes at the single neuron level 
(Chapter 3) and in network simulations (Chapter 4). At the network level in the model, tonic 
firing was the main firing mode in in vivo-like spontaneous activities, while low-threshold 
bursting emerged during spindle-like oscillations.  

The membrane potential of thalamic neurons dynamically changes during different awake 
states, for example it decreases (neurons are more hyperpolarized) from active states to quiet 
wakefulness (Urbain et al., 2015). It also evolves from quiet wakefulness to sleep, with 
thalamic neurons becoming more hyperpolarized during the transition to NREM sleep (Urbain 
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et al., 2019). These changes are accompanied by variations in spindle features during NREM 
(Urbain et al., 2019), such as a decrease in their frequency, as we have predicted in the model 
(Fig. 4.10). All these aspects and the relationships between spindle and other sleep-related 
rhythms, such as the slow oscillations, will be explored in future studies (Section 5.3.2). 

5.2.1.2 The role of the reticular nucleus in attention 
In behavioral tasks requiring attending to conflicting stimuli, the regulation of the activity in 
different sectors is correlated to the attended sensory modality (Wimmer et al., 2015). This 
attention-mediated sensory filtering in the Rt involves a prefrontal cortex-basal ganglia-Rt 
circuit (Nakajima et al., 2019). Alterations in Rt activities, that likely reflect impaired attention 
and poor ability to select between conflicting sensory stimuli, have been linked to genes, such 
ErbB4, which are associated with mental disorders and schizophrenia (Ahrens et al., 2015). 
ErbB4 encodes for a receptor contributes to the maturation of corticoreticular projections. In 
this study, mice that had deficiency of ErbB4 in somatostatin-positive Rt neurons performed 
better in single-modality tasks, whereas their ability to discriminate between conflicting 
sensory modalities impaired. At the thalamic level, it was found that cortical drive onto Rt 
neurons was increased, suggesting a key role of the corticoreticular (and corticothalamic) 
pathways in sensory discrimination. 

Gene association studies found other genes expressed in the Rt and linked to attention- and 
autism-related deficits (Krol et al., 2018). One of this cases is the mutation of PTCHD1 gene 
(Patch domain-containing protein 1) (Wells et al., 2016). During postnatal development in 
mice, PTCHD1 is selective expressed in the reticular nucleus and its mutation attenuate Rt 
neurons bursting activity through reduction of the SK Ca2+-activated potassium channels. 
Furthermore, PTCHD1 knockout mice showed an overall reduction in the number of spindles, 
reduced sensory-related thalamic inhibition, highly fragmented sleep and decreased 
performance in sensory tasks involving visual distractors. These results show how alterations 
of single channels and neuron activities have an impact on brain activity during sleep and 
behavior. 

There are also intriguing relationships between sleep-related rhythms and attention. A recent 
study proposed that spindle waves during sleep may be the counterpart of alpha oscillations in 
awake states during attention (Chen et al., 2016). This hypothesis calls for a mechanistic 
understanding of these two rhythms that can be provided by a computational model of the full 
thalamocortical loop. It was found that subpopulations of sensory-related reticular neurons 
fired in correlation with spindles recorded at the cortical level (Halassa et al., 2014) and that 
Rt neurons that were active during sleep spindles were associated with alpha oscillations (9-15 
Hz) during attention (Chen et al., 2016). More specifically, Rt neurons fired on opposite phases 
of alpha and spindle oscillations and might indicate overlapping but non-identical mechanisms 
(Chen et al., 2016).  
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5.2.2 Thalamic neurons and microcircuits in neurological and mental disorders 

5.2.2.1 Thalamic “choke points” and epileptic-like rhythms  
Pathological perturbations of rhythm-generating circuits can result in local and generalized 
hypersynchronous and epileptiform activity. These forms of activity have similar 3-4 Hz phasic 
EEG waveforms in human and rodents, called spike-and-wave discharges (SWDs). SWDs are 
typical of absence epilepsy in children, a pathological state characterized by nonconvulsive 
loss of consciousness that lasts for a few seconds.  

Many genetic and pharmacological studies showing SWD-like activity in brain slices 
suggested that the same thalamic circuits that generate sleep spindles are implicated in 
epileptic-like activities (Beenhakker and Huguenard, 2009; Fogerson and Huguenard, 2016). 
However, it’s important to note that SWD discharges are probably non simply “perverted” 
sleep spindles and may have distinct origins (Leresche et al., 2012). Different microcircuit 
motives, involving feedback inhibition (from Rt to TC neurons) and mutual inhibition (between 
Rt neurons) have been identified as potential epileptic “choke points” (Paz and Huguenard, 
2015). As we have showed in the model, the mutual inhibition between reticular neurons has 
an important role in limiting synchronous burst firing in Rt cells and consequent strong 
inhibition/rebound responses in TC neurons (Fig. 4.9). In the model, we found that mutual 
inhibition between Rt neurons can decrease the number of spikes in the bursts of Rt neurons or 
suppress the burst completely, in agreement with slice experiments (Sohal and Huguenard, 
2003). When the mutual inhibition was removed in the model, feedback inhibition (from Rt to 
TC neurons) was enhanced. This results are in agreement with in vitro studies in mice showing 
that hypersynchronous thalamic activity can be the result of loss of GABAA receptor-mediated 
inhibition specific to the Rt (Huntsman et al., 1999).  

Increased Rt hypersynchronous bursting results in increased GABA release and activation of 
not only synaptic GABAA receptors, but also extrasynaptic GABAA or GABAB receptors (Cope 
et al., 2009; Kim et al., 1997). Increased activation of GABAB currents, with their slower 
kinetics compared to GABAA currents, could explain the lower frequency (3-4 Hz) of 
bicuculline-induced oscillation in slice experiments compared to spindle-like rhythms 
(Beenhakker and Huguenard, 2009). When we included GABAB currents in our model, we also 
observed a decrease in the oscillation frequency (data not shown). It is worth mentioning that 
bicuculline blocks GABAA receptors, as well as Ca2+-activate potassium currents (SK-type) in 
reticular neurons, as shown in rat slices, and enhances their low-threshold burst activity 
(Debarbieux et al., 1998).  An interesting case for the importance of Rt-mediated inhibition has 
been recently made in adult Scn8a-knockout mice (Makinson et al., 2017). The selective 
suppression of this gene, coding for a widely expressed subtype of voltage-gated sodium 
channels, resulted in specific failure at the Rt to Rt synapses, while it left the Rt to TC synapse 
relatively unaffected, as shown in vitro. In vivo, the loss of this single gene was sufficient to 
cause SWDs.  
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In the model we found that mutual inhibition between Rt neurons shorten spindle-like 
oscillations, while gap junctions tended to make them longer, in agreement with a 
desynchronizing role proposed for the former and synchronizing for the latter (Beenhakker and 
Huguenard, 2009; Fernandez and Luthi, 2019). Furthermore, coupling through gap junctions 
is stronger for low-threshold calcium spikes (underlying the bursts) than single sodium spikes, 
due to the low-pass filter properties of the coupled membranes (Long et al., 2004). Low-
threshold bursting is the predominant firing mode or reticular neurons during oscillatory 
activities. Since gap junctions directly join the membranes of coupled neurons and are thought 
to transmit rapidly depolarizing signals between dendrites and contribute to network 
synchronization (Kohmann et al., 2016). 

5.2.2.2 The reticular nucleus in schizophrenia 
Sleep spindle density correlates with several disorders which lead to cognitive deficits, for 
example they are reduced in schizophrenic patients (Castelnovo et al., 2018; Ferrarelli et al., 
2007, 2010; Manoach et al., 2014, 2016). Schizophrenia arises out of combinations of genetic 
predispositions and environmental factors and can result in sensory misperceptions and sleep 
disturbances, among other symptoms (Fernandez and Luthi, 2019).  

Among the many sleep alternations, the decrease of spindles in a common denominator in many 
patients (Fernandez and Luthi, 2019). Despite the diversity of functional deficits in 
schizophrenia, the reticular nucleus and thalamic neurons are frequently affected at different 
levels. At the cellular and network levels, a recent study showed that the decrease of spindle in 
animal models of psychosis-related states is associated with increased depolarization and tonic 
firing in thalamocortical and reticular neurons (Mahdavi et al., 2020). This increased transient 
depolarization would decrease spindling activity, in agreement with the difficulty of evoking 
spindle-like oscillations in our model when TC and Rt were depolarized (Fig. 4.10).  

At the molecular and cellular levels, it was found that the number of parvalbumin-expressing 
(PV) neurons in the Rt nucleus are reduced in mouse models and schizophrenic patients 
(Steullet et al., 2018). PV Rt cells are a subpopulation of reticular neurons with higher tendency 
to burst and rhythmogenic activity, due to at least in part to higher amplitudes of the low-
threshold calcium current (Clemente-Perez et al., 2017). Furthermore, many genetic risk factors 
that have been linked to schizophrenia are highly expressed in the reticular nucleus and have 
important roles in spindle generation, such as the CACNA1I gene encoding for the low-
threshold calcium channel Cav3.3 (Andrade et al., 2016; Astori et al., 2011).  

These findings are in agreement with a recent comprehensive study of Rt cellular 
heterogeneity, linking single cell gene expression at different locations of the Rt nucleus, 
cellular electrophysiology, morphology and system-level study of spindles in vivo (Li et al., 
2020). Such multi-level studies, similarly to detailed computational models, are extremely 
powerful in bridging levels of experimental investigations and in providing frameworks for 
understanding the detailed contributions of genes, neurons and their connections to system-
level functions. 
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5.3 Limitations and future directions 

Although the microcircuit model we presented in this thesis is very detailed and constrained 
with biological data, it comes with caveats and limitations, as already detailed in Chapter 4.3. 
Many aspects of neuron properties, connectivity and synaptic properties can shift emergent 
network behavior in different directions. For instance, small differences in Ca2+ concentration 
between in vitro and in vivo conditions can generate a large spectrum of network activities, 
through changes in synaptic release probabilities (Markram et al., 2015). To further validate 
the model and gain insights on dynamics that are closer to functionally relevant states, it is 
important to further explore the model in in vivo-like states.  

To address these questions, we introduce below two major simulation projects, that will be 
addressed in the near future. A further development of this thesis is the extension of the 
microcircuit model to the full thalamus and integration in a thalamo-neocortical model. 

5.3.1 Thalamic microcircuitry in sensory processing 

The goal of this simulation project is to study the responses of thalamic neurons to inputs from 
the periphery, extending the initial results shown in Chapter 4. We have already created an 
initial model of afferent medial lemniscus synapses (see Chapter 4.2.3). However, we did not 
take into account anatomical and physiological studies showing that, in adult animals, each 
thalamic neuron receive inputs from only one or few lemniscal fibers, at least in the VPM 
(Arsenault and Zhang, 2006; Takeuchi et al., 2014). We think that including this constrain will 
affect the network responses and will be likely reflected in the input/output relationship 
between activated fibers and populations responses. Another aspect that will be investigated is 
the expected responses at the network level, in terms of magnitude and delays, which depend 
on the strength and specificity of lemniscal synapses and multiple release sites (Castro-
Alamancos, 2015; Spacek and Lieberman, 1974). 

Moreover, to study sensory responses in in vivo-like conditions we will need to carefully 
consider spontaneous firing rates from cuneate and gracilis neurons projecting to the 
ventrobasal thalamus, corticothalamic neurons and the frequency of spontaneous synaptic 
release. For example, cuneate neurons whose axons are part of the medial lemniscus, have been 
reported to fire at low rates, around 5 Hz, in anesthetized rats (Alloway et al., 2003; Sánchez 
et al., 2006). Pyramidal neurons in layer 6, which provide the main cortical input to primary 
thalamic nuclei (Bourassa and Deschenes, 1995; Bourassa et al., 1995) have been reported to 
spontaneously fire at low frequencies in vivo (0.1-2 Hz) (Crandall et al., 2015; Pauzin and 
Krieger, 2018). Spontaneous firing rates of thalamic neurons can be validated against values 
reported in vivo (Gwak et al., 2010; Monconduit et al., 2006; Urbain et al., 2015). Evoked 
responses can then be studied in vivo-like conditions, along with the influences of 
corticothalamic inputs onto sensory adaptation (Mease et al., 2014), for instance. 
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Sensory responses in the visual thalamus have been shown to be enriched by direct and rapid 
synaptic inhibitions from interneuron dendrites in triadic synaptic arrangements (Heiberg et al., 
2016; Hirsch et al., 2015; Morgan and Lichtman, 2020; Sherman, 2004). Since interneurons 
are present in the somatosensory thalamus, we think that similar synaptic motives can shape 
sensory responses in different ways. After assessing the presence of triadic synapses in our 
model, their functional role will be explored. 

5.3.2 Corticothalamic influences onto thalamic and reticular activities 

We focused our initial efforts on studying the thalamic contributions to spindle-like rhythms. 
While our simulations helped clarifying which aspects and be sustained by the thalamo-
reticular network, they showed that external inputs are necessary to trigger the oscillation. This 
external input during non-REM sleep is likely to come from the neocortex (Blumenfeld and 
McCormick, 2000; Bonjean et al., 2011; Destexhe et al., 1998a). The relationship between 
cortical up-states and thalamic activity has been extensively studied in anesthetized animals, 
with spindles often occurring near the trough of cortical slow waves (up-states), when cortical 
neurons are more active (Destexhe et al., 2007; McCormick and Bal, 1997; Steriade et al., 
1993). Our next step will be to study the role of corticothalamic input in the generation of 
thalamic spindles and comparing the model predictions with findings in naturally sleeping mice 
(Urbain et al., 2019). 

5.3.3 Whole thalamus and whole thalamocortical integration 

At the beginning of this thesis we set out to shed light on the complexity of thalamic function 
in thalamocortical circuitry. We started from a tiny portion of one of the simplest thalamic 
circuits, the one that processes primary somatosensory information. A natural development 
would be to integrate our thalamic model in a model of the whole thalamus and neocortex. 
Such a model would be an ideal benchmark to study thalamic modulation of cortical activity 
(Poulet et al., 2012) or the interaction between primary and higher-order thalamic nuclei in 
shaping sensory and sensory-motor responses (Mease et al., 2016; Mo and Sherman, 2019), 
among others.  

Although we are still far from developing a detailed model of the thalamocortical system, 
which we estimated comprises ~12 million neurons, at the level of detail described here, it 
might be soon possible to tackle this challenge (Fig. 5.1). Indeed, computational approaches, 
such as morphology synthesis, could help us generate unique neuron models for millions of 
cells (Kanari et al., 2020), which can be placed according to biologically-plausible neuron 
densities thanks to a cell atlas of the mouse brain (Erö et al., 2018). Furthermore, significant 
steps have been taken to make large-scale detailed simulations more efficient (Kumbhar et al., 
2019). Finally, findings from the neuroscientific literature, tools to systematically and 
automatically extract them, along with international collaboration, will be very helpful for such 
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large-scale modelling efforts (Huang and Luo, 2015; O’Reilly et al., 2017; Shardlow et al., 
2019).  

 

 

Figure 5.1 Draft models of the thalamus and the neocortex.  
Illustration showing draft models of the thalamus (green), bilateral reticular nuclei (red) and 
neocortex with the anatomical constraint of the Allen Atlas of the Mouse Brain. Only 1% of 
the neurons are shown and each neuron is assigned a detailed morphology. Image courtesy of 
Cyrille Favreau, Blue Brain Visualization Team. 
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