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Abstract 
Cancer is a leading cause of death in the world, and the mechanisms that underlie 

this disease are still not completely understood. As cancer develops and progresses, 

cells undergo a diversity of mutations that sustain their rapid proliferation and the evasion 
of the immune system. Cancer cells alter their configuration and organization, exhibiting 

abnormal phenotypes and changes in functionality. The complexity of cancer lies in their 
heterogeneity and variability among patients, which challenges the current therapies and 

drug targets. In the last decades, ten hallmarks of cancer cells have been recognized, 
including alterations in metabolism and the signaling pathways.  

The sequencing of the human genome and the advances in omics data processing 
allowed to generate metabolic and signaling networks for human cells at a genome-

scale, enlightening the detailed biochemistry and signal transduction processes 
occurring in human cells, and enabling to study human metabolism and signaling 

pathways at a systems level.  However, the complexity of these networks hinders a 
consistent and concise physiological representation. In the field of systems biology, 

mathematical models and computational methods are derived to describe cellular 
processes based on experimental data and the biological networks. Furthermore, these 

models have proven to be valuable in understanding the genotype-phenotype 
relationship of cells and to formulate new hypotheses to guide experimental design.  

In this thesis, we present modeling approaches and computational methods to 
investigate the metabolic and signaling alterations in cancer cells and overcome the 

challenges arising from biological networks of such size and complexity. Firstly, we 
curated the thermodynamic properties for all the compounds and reactions in the human 

metabolic genome-scale models (GEMs) Recon 2 and Recon 3D to guarantee the 
consistency of the predictions with the bioenergetics of the cell. Moreover, we developed 

a workflow (redHUMAN) for reconstructing reduced-size models that focus on parts of 
metabolism relevant to a specific physiology, and we introduce a novel method to 
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account for the cellular interactions with the extracellular medium. Using redHUMAN, we 

reduced the human GEMs around pathways that are altered in cancer physiology. 

Secondly, we applied a set of computational methods to integrate omics data into the 
reduced version of Recon 3D to build metabolic models for breast, colon, and ovarian 

cancers. These models were used to study how different cancer cells use the metabolic 
pathways to function and survive and how the underlying genetic deregulations affect 

the metabolic tasks. Thirdly, we developed a method (CONSIGN) to contextualize 
signaling networks to a specific type of cell under particular conditions, maximizing the 

consistency with experimental data. We used this method to generate a breast cancer-
specific signaling network for the transcription factor MYC. Finally, we created an 

integrated model of signaling and metabolic models by accounting for the regulation of 
metabolic genes by transcription factors. We analyzed the interactions of the MYC 

signaling network in the breast cancer metabolic model.  

The work in this thesis demonstrates the potential of metabolic and signaling models to 

identify and infer the genetic origins and the microenvironment effects in the transformed 
phenotype of cancer cells, marking a step forward towards the study of drug targets and 

biomarkers. 

Keywords 

human cells, cancer, metabolism, signaling, mathematical models, context-specific 

models, omics data integration, enrichment analysis, pathway deregulation, integrated 
signaling-metabolic models. 
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Résumé 
Le cancer est l'une des principales causes de décès dans le monde et les 

mécanismes qui sous-tendent cette maladie ne sont pas encore complètement compris. 

À mesure que le cancer se développe et progresse, les cellules subissent une diversité 
de mutations qui soutiennent leur prolifération rapide et l'évasion du système 

immunitaire. Les cellules cancéreuses modifient leur configuration et leur organisation, 
présentant des phénotypes anormaux et des changements de fonctionnalité. La 

complexité du cancer réside dans leur hétérogénéité et leur variabilité entre les patients, 
ce qui remet en question les thérapies et les cibles médicamenteuses actuelles. Au cours 

des dernières décennies, dix caractéristiques des cellules cancéreuses ont été 
reconnues, y compris des altérations du métabolisme et des voies de signalisation. 

Le séquençage du génome humain et les progrès du traitement des données omiques 
ont permis de générer des réseaux métaboliques et de signalisation pour les cellules 

humaines à l'échelle du génome, éclairant les processus détaillés de biochimie et de 
transduction des signaux que se produisant dans les cellules humaines, et permettant 

d'étudier le métabolisme humain et la signalisation au niveau des systèmes. Cependant, 
la complexité de ces réseaux entrave une représentation physiologique cohérente et 

concise. Dans le domaine de la biologie des systèmes, des modèles mathématiques et 
des méthodes de calcul sont dérivés pour décrire les processus cellulaires basés sur 

des données expérimentales et les réseaux biologiques. De plus, ces modèles se sont 

révélés utiles pour comprendre la relation génotype-phénotype des cellules et formuler 
de nouvelles hypothèses pour guider la conception expérimentale. 

Dans cette thèse, nous présentons des approches de modélisation et des méthodes de 

calcul pour étudier les altérations métaboliques et de signalisation dans les cellules 
cancéreuses et surmonter les défis découlant de réseaux biologiques d'une telle taille et 

complexité. Premièrement, nous avons identifié les propriétés thermodynamiques de 
tous les composés et réactions dans les modèles métaboliques humains à l'échelle du 
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génome (GEM) Recon 2 et Recon 3D pour garantir la cohérence des prédictions avec 

la bioénergétique de la cellule. De plus, nous avons développé un méthode (redHUMAN) 

pour reconstruire des modèles de taille réduite qui se concentrent sur des parties du 
métabolisme pertinentes pour une physiologie spécifique, et nous introduisons une 

nouvelle méthode pour tenir compte des interactions cellulaires avec le milieu 
extracellulaire. En utilisant redHUMAN, nous avons réduit les GEM humains autour des 

voies qui sont modifiées dans la physiologie du cancer. Deuxièmement, nous avons 
appliqué un ensemble de méthodes de calcul pour intégrer les données omiques dans 

la version réduite de Recon 3D pour construire des modèles métaboliques pour les 
cancers du sein, du côlon et des ovaires. Ces modèles ont été utilisés pour étudier 

comment différentes cellules cancéreuses utilisent les voies métaboliques pour 
fonctionner et survivre et comment les dérégulations génétiques sous-jacentes affectent 

les tâches métaboliques. Troisièmement, nous avons développé une méthode 

(CONSIGN) pour contextualiser les réseaux de signalisation à un type spécifique de 
cellule dans des conditions particulières, en maximisant la cohérence avec les données 

expérimentales. Nous avons utilisé cette méthode pour générer un réseau de 
signalisation spécifique au cancer du sein pour le facteur de transcription MYC. Enfin, 

nous avons créé un modèle intégré des modèles de signalisation et métaboliques en 
tenant compte de la régulation des gènes métaboliques par les facteurs de transcription. 

Nous avons analysé les interactions du réseau de signalisation MYC dans le modèle 
métabolique du cancer du sein. 

Les travaux de cette thèse démontrent le potentiel des modèles métaboliques et de 
signalisation pour identifier et inférer les origines génétiques et les effets du 

microenvironnement dans le phénotype transformé des cellules cancéreuses, marquant 
une étape vers l'étude des cibles de médicaments et des biomarqueurs. 

Mots-clés 

cellules humaines, cancer, métabolisme, signalisation, modèles mathématiques, 
modèles spécifiques au contexte, intégration des données omiques, analyse 

d'enrichissement, dérégulation des voies, modèles métaboliques de signalisation 
intégrés
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 Introduction 
 

 

In this chapter, we introduce the background for the work performed in this thesis. 
We present the biology of cells, the genotype-phenotype relationship, and the alterations 

that emerge in damaged cells. In particular, we focus on cancer and the hallmarks 

defined for this disease in the last years. We review the current modeling approaches 
available for the study of metabolic networks and signal transduction networks. Finally, 

we present the motivation and objectives, and the structure of this thesis, including a 
brief description of each chapter. 

 

 The biology of cells 

Cells are considered the fundamental units of life. They organize to form tissues, organs, 

and complex organisms. Cells develop their structure according to their function, and 
they do it in a process called differentiation, where each type of cell expresses a specific 

set of genes that give to the cell its behavior, metabolism, and physiology [1]. Gene 
expression is coordinated by transcription factors to display tissue-specific phenotypes. 

Transcription factors enhance or repress the expression of the genes by promoting the 
process of copying the DNA sequence for specific genes into RNA molecules, which are 

then translated by the ribosomes into amino acid sequences. The resulting 
macromolecule folds into a unique three-dimensional configuration and becomes a 

functional protein. Post-translational modifications give the final form to the protein that 
specializes in a function, such as signal transduction, structural component, or enzyme. 

Enzymes are the proteins responsible for catalyzing metabolic reactions that define the 
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biochemistry inside the cell [2]. The collection of functional proteins and the physiological 

conditions surrounding the cell shape the phenotype of the cells.  

Throughout the life of a cell, what is known as cell cycle, the functions and processes 

occurring inside the cell, including replication, DNA repair, growth and metabolism, 
protein synthesis, and motility, are tightly regulated by a group of proteins. Damaged 

cells that cannot correctly perform these processes, due to errors, follow precise 
instructions to undergo cell cycle arrest or apoptosis [3]. Cellular damage can be of 

different types and may occur at various levels. For example, viruses deregulate the host 

cell cycle to promote viral replication, and sometimes they interfere with the immune cells 
propagating the infection [4, 5], in Alzheimer’s disease, neurons reactivate the cell cycle 

resulting in apoptosis and damaging the brain tissue [6, 7], and cancer cells contain 
mutations in several genes that encode cell cycle regulators, promoting uncontrolled cell 

division [8, 9]. In some cases, the diseased cells develop mechanisms to avoid 
apoptosis. As a result, they survive and allow the disease to evolve further. 

Understanding the origin of the alterations that arise in diseased cells will help to find 

better targets and to create more effective therapies. The work in this thesis centers on 

the study of the alterations that occur in cancer cells, and it identifies the underlying 
mechanisms that contribute to the phenotypic similarities and differences across different 

types of cancer. 

 

 Cancer, a heterogeneous disease 

Cancer is a major cause of death worldwide; its complexity and variability among patients 

makes personalized treatment challenging and difficult. Cancer cells undergo a diversity 

of genetic mutations, simultaneously deregulating a variety of cellular processes, 
including metabolism, and cell growth and division. As they develop, cancer cells 

promote angiogenesis to provide the tumor cells with a source of oxygen and nutrients, 
they fail to undergo apoptosis upon DNA damage, and they experience metabolic 

changes that support their increased proliferation rate. 

Furthermore, the tumor microenvironment is shaped by the tumor cells to allow growth 

and proliferation. Cancer cells manipulate the surrounding cells by depleting essential 
nutrients and accumulating immunosuppressive metabolites [10-12]. In the last decade, 
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Hanahan and Weinberg have published ten distinct hallmarks of cancer, consisting of, 

proliferative signaling, evading growth suppressors, avoiding immune destruction, 

enabling replicative immortality, promoting inflammation, activating invasion and 
metastasis, inducing angiogenesis, enabling genome instability and mutation, resisting 

cell death, and deregulating cellular energetics and metabolism (Figure 1.1). The 
combination of these alterations causes the accumulation of different phenotypes that 

populate the heterogeneity in the tumor microenvironment [12]. 

 

Figure 1.1. The biological 
hallmarks of cancer. A 
total of ten hallmarks of 
cancer have been 
recognized. In this thesis, 
we focus on the study of 
two of them, namely the 
deregulating cellular 
energetics and sustaining 
proliferative signaling. The 
first of them involves 
alterations at the 
metabolic level, and the 
second one includes 
malfunctions at the signal 
transduction pathways. 
Figure adapted from [12]. 

 

 

The heterogeneity of cancer cells caused by genetic modifications and their diverse 

access to nutrients interferes with the discovery of significant targets for treatments. 
Moreover, cancer cells have developed mechanisms to adapt to the therapies and defeat 

the drugs by modifying their genetic activity and rewiring their metabolism, producing 
drug-resistant surviving cells [13, 14]. 

Therefore, it is critical to decipher the mutations that cancer cells manifest with respect 
to their healthy counterparts, the alternative mechanisms that cancer cells have to 

defend against the treatments, and the orchestrated alterations that allow cancer cells to 
survive in a strictly-controlled system despite being damaged cells. 
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 Mathematical models of biological networks 

Advances in high-throughput technologies have allowed to analyze tumors at multiple 
levels, highlighting the overwhelming complexity of the disease and recognizing cancer 

as a Systems Biology disease [14, 15]. Systems Biology approaches analyze the large 
amounts of high-quality data collected in the last decades, to gain knowledge about the 

genotype-phenotype relationship in cancer at a systems level. To this end, mathematical 
models and computational methods are created to represent an overview of the 

complexity of cells and their responses to changes in their environment. The models 
allow for a rigorous study of the complex network of pathways involving gene regulation, 

signaling, and cell metabolism, and their alterations caused by the genetic mutations 
occurring in cancer cells [16]. Moreover, these models are used to understand the 

interactions within the biological networks and to generate and test hypotheses that could 

help to identify new drug targets and develop better therapies [17]. 

In the following, we present some of the current Systems Biology approaches applied in 
the investigation of metabolic and signaling pathways in cells, as well as to study the 

complex interplay between metabolism and signaling, which is responsible for cell 
physiology and cell behavior [18]. 

1.3.1 Modeling cellular metabolism 

Metabolism is the set of biochemical reactions within a cell to transform nutrients into 

energy and cellular building blocks. In the field of Systems Biology, genome-scale 
metabolic networks (GEMs) were reconstructed based on the annotation of the genome 

of the organism [19], and they contain the known biochemical reactions occurring inside 
the cells of the organism. Moreover, GEMs include the annotation of the gene-protein-

reaction associations (GPR rules) that relate genes and enzymes, and they are used to 
elucidate the cellular genotype-phenotype relationship [20]. 

With the annotation of the human genome sequences in 2001 and 2004 [21, 22], the 
scientific community reconstructed in 2007 the first genome-scale models for human 

metabolism, named, Recon 1 [23] and EHMN [24]. These models were curated and 
refined over the years, and improved versions of the human GEMs were generated, 

including, HMR [25], Recon 2 [26], HMR 2.0 [27], Recon 2.2 [28], iHsa [29], and the most 
recent versions Recon 3D [30] and Human1 [31].  



Introduction  

 
5 

These GEMs are used to model metabolism with two types of approaches: steady-state 

constraint-based models that involve linear equations, and kinetic models, which include 

ordinary differential equations. Constraint-based models rely on the stoichiometric 
relation between reactions and metabolites, overcoming the lack of dynamic or kinetic 

data, required to perform parameter identification in the kinetic models.  

During the years, a phylogeny of constraint-based methods has been created to simulate 
the metabolic behavior of cells, such as satisfy a specific task, optimize the production 

of compounds of interest, and to predict cellular phenotypes using GEMs [32]. Some of 

these methods incorporate constraints at steady-state for mass balance (Flux Balance 
Analysis [33]), enzyme usage (parsimonious Flux Balance Analysis), and 

thermodynamic laws (Thermodynamic-based Flux Balance Analysis [34, 35]). Such 
methods have been used to formulate biological hypotheses and to guide the 

experiments generating new sets of data that could be integrated into the metabolic 
models to further improve their predictive capabilities. GEMs and the methods developed 

are powerful platforms for the integration of omics data, including transcriptomics, 
proteomics, metabolomics, and fluxomics. 

As our knowledge of human metabolism increases so does the size and complexity of 
the metabolic models in terms of reactions, metabolites, and genes (Figure 1.2). 

 

Figure 1.2. Size of the human GEMs. The integration of new information in the GEMs has 
expanded their size and complexity over the years. The two GEMs highlighted in the graph 
(magenta) are the basis for the models used in the work presented in this thesis. 
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The ever-increasing size of the human metabolic models hinders their utilization for 

biological studies, as their increased complexity hampers the analysis of results and 

increases the computational cost. Furthermore, these networks are reconstructed based 
on the whole genome of human cells, while a specific type of cell expresses only a portion 

of those genes. To reduce the models to a more manageable size and to represent a 
particular type of cell, a plethora of methods was developed to derive reduced-size 

context-specific models from these generic human models. The context-specific models 
capture the phenotype of a specific type of cell or tissue by reducing the generic GEM to 

the reactions that are catalyzed by enzymes expressed in the specific tissue. These 
methods rely on transcriptomics or proteomics data and metabolic tasks to identify the 

set of reactions that define the context-specific model [36-40].  These cell-type and 
tissue-specific models have been successfully used to simulate metabolism in disease 

and healthy cells as well as to identify biomarkers and drug targets [40]. Furthermore, 

personalized models that integrate omics data from patient’s samples have been useful 
for precision medicine [18, 41-43]. 

1.3.2 Modeling signal transduction pathways 

Signal transduction is the collection of pathways that are used by cells to transmit the 
signals received by their receptors. It represents a signal-flow of information in the cell 

and allows cells to communicate and to respond to external stimuli. Mathematical models 
and computational simulations help to determine the integrated functions of signaling 

networks, leading to exciting biological discoveries [44]. 

Signaling networks can be studied using quantitative kinetic models or qualitative 

modeling [45]. The quantitative approach uses a continuous system of ordinary 
differential equations requiring kinetic parameters and elucidating complex mechanisms 

with high accuracy. The qualitative approach uses a discrete model that identifies which 
signal transduction pathways lead from an environmental perturbation to a cellular 

phenotype without providing details on concentrations of components [46]. When 
modeling small systems focused on specific events, such as a transcription factor binding 

to a DNA region or a small pathway activating a protein that generates a cellular 

response, we can have access to specific data that allows to model in detail the kinetics 
occurring in the system. However, as the size of the system increases, quantitative 

models become challenging, and therefore the qualitative approach is more suitable for 
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analysis of large-scale signaling networks and can be used to explore the topological 

characteristics of the signaling network [46]. 

The most common qualitative approach is Boolean modeling that represents the states 

of the proteins in a switch on/off approach representing active or inactive proteins. Logic 
rules are then used to represent the flow of information through the signaling pathways. 

Boolean models have been successfully used to model the cellular responses to stimuli 
or external perturbations and mapped to observed phenotypes [47, 48]. These models 

are good platforms to integrate omics data, they give insight of the overall state of the 

signaling pathways, they identify regulatory hubs and, they uncover possible targets for 
pharmacological intervention in diseases [49] [50]. 

1.3.3 Modeling integrated biological networks 

The alterations occurring in cancer cells have been studied independently. However, as 
a systems disease, there is an important cross-talk between the biological networks that 

affect the development and progression of the disease. The integration of different 
biological networks and data-types has been a major challenge in systems biology. 

Several methods have been derived to integrate metabolic and signaling networks by 
accounting for the transcriptional regulation of metabolic genes. The first method that 

attempted to integrate the effects of both networks within Systems Biology was 
regulatory Flux Balance Analysis [51], which uses a Boolean approach to include the 

transcriptional regulation of genes. Based on this method, other methods were recently 

developed, including Probabilistic Regulation Of Metabolism [52], Flex-Flux [54], and 
Transcriptional Regulated Flux Balance Analysis [55]. These methods integrate in the 

metabolic model constraints to account for the expression of the genes and their 
regulatory effects in metabolism, as well as to control the flux through the reactions in 

the metabolic network. These integrated models allow to analyze the molecular 
alterations that coordinate at different levels to promote tumor progression. 

1.3.4 Methods in Systems Biology 

In the following, to improve the readability of this thesis for a broader audience, we 
summarize some of the currently available Systems Biology methods developed for the 

study of the metabolic and signaling pathways within the cells (Table 1.1). The list 

includes the acronym, the long name, and a brief description of each method. We 
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constrain the list to those mentioned, cited and developed in this thesis, however other 

methods can be found in the literature. 

Table 1.1. Methods developed in Systems Biology for the study of metabolism and signalling 
pathways in the cells. Highlighted in bold are those used in this thesis, highlighted in bold and 
blue are those derived in the work of this thesis. 

Acronym Name & Reference Description 

FBA 
Flux balance analysis 
 

Orth et al. Nature Biotechnology. 2010 

Constraint-based modelling of metabolic networks 
imposing stoichiometric constraints and steady-state 
conditions.  

GCM 
Group contribution method 
 

Jankowski et al. Biophysical Journal. 
2008 

Estimation of the standards Gibb’s free energy of 
formation of compounds in biochemical systems 
based on molecular substructures. 

TFA 
Thermodynamics-flux balance analysis 
 

Henry et al. Biophysical Journal. 2007 

Integration of thermodynamic properties of 
compounds in the model and constraints in the FBA 
problem. MILP formulation. 

INIT 
Integrative Network Inference for Tissues 
 

Agren et al. PLoS Comput Biol. 2012 

Generation of tissue-specific models from GEMs by 
waiting the activation of reactions based on 
expression. Allows accumulation of metabolites. 

tINIT 
task-driven integrative network inference 
for tissues 
 

Agren et al. Mol. Syst. Biol. 2014 

Generation of tissue-specific models with INIT 
including also constraints to satisfy a set of metabolic 
tasks specific for the tissue. 

GIMME 
Gene Inactivity Moderated by Metabolism 
and Expression 
 

Becker et al. PLoS Comput Biol. 2008 

Reconstruction of context-specific models favouring 
highly expressed reactions and those related to a 
metabolic objective.  

iMAT 
Integrative metabolic analysis tool 
 

Zur et al. Bioinformatics. 2010 

Constraining the reaction rates in constraint-based 
models based on the expression of the associated 
genes. MILP formulation. 

mCADRE 
metabolic Context-specificity Assessed 
by Deterministic Reaction Evaluation 
 

Wang et al. BMC Systems Biology. 2012 

Reconstruction of context-specific model imposing 
weights based on expression data, network structure 
and metabolic functions. 

iMM 
In silico minimal medium 
 

Tymoshenko et al. PLoS Comput Biol. 
2015 

Classification of the nutrient requirements based on 
data and the metabolic model constraints. MILP 
formulation. 

MBA 
Model-Building Algorithm 
 

Jerby et al. Mol Syst Biol. 2010 

Reconstruction of tissue-specific models from core 
reactions. It imposes weights on the reactions based 
on expression data. 

redGEM 
redGEM 
 

Ataman et al. PLoS Comput Biol. 2017 

Reconstruction of core networks based on a set of 
initial subsystems. The initial subsystems are 
expanded and connected based on stoichiometry. 

redGEMX 
redGEMX 
 

Masid et al. Nat Commun. 2020 

Identification of subnetworks that connect the 
extracellular components to a core network 
generated by redGEM.  

lumpGEM 
lumpGEM 
 

Ataman et al. PLoS Comput Biol. 2017 

Identification of subnetworks required to 
biosynthesize biomass building blocks from a core 
network. 

redHUMAN 
Reduced models for human metabolism 
 

Masid et al. Nat commun. 2020 

Workflow to generate reduced models for human 
GEMs accounting for the pathways used to 
metabolize the nutrients and synthesize the BBBs. 
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uFBA 
unsteady-state Flux Balance Analysis 
 

Bordbar et al. Scientific Reports. 2017 

Constraint-based modeling method to integrate time-
course metabolomics data and predict metabolic flux 
states for dynamic systems. 

ORACLE 
Optimization and Risk Analysis of 
Complex Living Entities 
 

Miskovic et al. Trends Biotechnol. 2010 

Kinetic models for biological systems derived using 
constraint-based models as a scaffold and sampling 
kinetic parameters. Analysis of control coefficients. 

GECKO 
GEM with Enzyme Constraints using 
Kinetic and Omics data 
 

Sanchez et al. Mol Syst Biol. 2017 

Formulation that enhances the GEM using enzyme 
constraints with kinetic and omics data. 

ETFL 
Expression and Thermodynamics Flux 
models 
 

Salvy et al. Nat Commun. 2020 

Integration of expression and thermodynamic 
constraints to constraint-based models to account for 
enzymes and mRNA levels. MILP formulation. 

TEX-FBA 
Thermodynamics and expression flux 
balance analysis 
 

Pandey et al. bioRxiv. 2019 

Integration of expression and thermodynamic data in 
constraint-based models by translating gene 
deregulation into flux rate constraints. 

IOMA 
Integrative Omics-Metabolic Analysis 
 

Yizhak et al. Bioinformatics. 2010 

Quantitative integration of proteomics and 
metabolomics data in GEMs. Maximize consistency 
between measured and kinetically derived fluxes.  

FASTCORE 
Fast Reconstruction of Compact Context-
Specific Metabolic Network Models 
 

Vlassis et al. PLoS Comput Biol. 2014 

Reconstruction of context specific models from an 
initial set of expressed reactions, minimizing the 
number of additional reactions for activity of core. 

MINEA 
Minimal Network Enrichment Analysis 
 

Pandey et al. PLoS Comput Biol. 2019 

Identification of minimal set of reactions required for 
a metabolic task. Enrichment of the network based 
on gene expression data. 

rFBA 
Regulatory Flux Balance Analysis 
 

Cover et al. J. Theor. Biol. 2001 

Integration of boolean rules to account for regulatory 
events within FBA. Addition of temporary constraints 
on the metabolic network. 

SR-FBA 
State Regulatory Flux Balance Analysis 
 

Shlomi, et al. Mol. Syst. Biol. 2007 

Boolean approach to integrate regulatory and 
metabolic networks by connecting the transcription 
factors, the metabolic genes and the enzymes.  

iFBA 
Integrated Flux Balance Analysis 
 

Covert, et al. Bioinformatics, 2008 

Framework to integrate transcriptional and metabolic 
networks, by combining an FBA model, a Boolean 
transcriptional network, and a set of ODEs. 

PROM 
Probabilistic Regulation Of Metabolism 
 

Chandrasekaran et al. PNAS. 2010 

Probabilistic model for the regulatory network based 
on abundant expression data used to define reaction 
rates in the metabolic network. 

iDREAM 
Integrated Deduced and Metabolism 
 

Wang, et al. PLoS Comput Biol. 2017 

Generation of metabolic-regulatory network models 
using bootstrapping- EGRIN inferred transcriptional 
factor regulation of genes combined with PROM. 

FlexFlux 
FlexFlux 
 

Marmiesse, et al. BMC Syst. Biol. 2015 
Integration of regulatory and metabolic networks by 
bounding the fluxes based on gene expression. 

TRFBA 
Transcriptional Regulated Flux Balance 
Analysis 
 

Motamedian et al. Bioinformatics. 2017 

Integration of transcriptional effects in metabolic 
networks by adding linear constraints to FBA to 
bound the reaction rates based on gene expression. 

TIGER 
Toolbox for integrating GEMs, expression 
and regulation 
 

Jensen, et al. BMC Syst Biol. 2011 

Conversion of Boolean or multilevel rules into a set 
of mixed integer inequalities and integration of gene 
expression in GEMs and transcriptional regulation. 

CONSIGN 
Contextualization of Signaling Networks 
 

Unpublished, Chapter 3 in this thesis 

Integration of gene/protein expression data into 
signalling networks to maximize the consistency of 
the network states with the data. 
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 Motivation and objectives of this thesis 

Besides understanding the alterations that emerge at different levels in tumor cells, 
controlling and interpreting the phenotypic heterogeneity of the tumor microenvironment 

is crucial to develop successful therapies. Within the tumor environment, there exists an 
extensive diversity of cells, including the tumor cells, the immune cells, and the healthy 

cells (Figure 1.3). Systems biology approaches are created to attain an understanding 
of the cellular modifications occurring in cancer at a systems level. The generated 

mathematical models and computational methods help to gain insight from the 
experimental data regarding the tumor cells and to provide context to the data by creating 

hypotheses about the origins of the alterations and predicting the effects of drugs in the 
system.  

 

Figure 1.3. Heterogeneity in the tumor microenvironment. A variety of cells cohabit within the 
tumor microenvironment, including the cancer cells, which exhibit heterogeneous phenotypes 
among them, given by the set of mutations that they experience and by the different access to 
nutrients, immune cells, and healthy cell in the surrounding tissue. Figure adapted from [56]. 

 

In this thesis, we aim to create mathematical models and computational methods that 
allow to simulate the metabolism and the signaling pathways of human cells and analyze 

the alterations developed at both levels in tumor cells, as well as, to compare the 
differences in metabolism and signaling pathways of the different type of cells that 

populate the tumor microenvironment. Herein, we propose modeling approaches to 
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overcome some of the current challenges and limitations by further improving the existing 

algorithms and developing new methods for the study of complex diseases as cancer. 

The human GEMs are reconstructed as a collection of the biochemical reactions 

occurring in any human cell. However, a specific type of cell expresses a portion of the 
enzymes that catalyze those reactions and lives in a particular environment with access 

to a set of nutrients. One of the objectives of this thesis was to reconstruct human 
metabolic models that represented a specific type of cell under particular physiological 

conditions complying at the same time with the thermodynamic laws that govern the 

bioenergetic capabilities of the cells. Furthermore, we aimed at developing methods to 
extract from the GEM a subset of pathways that were of interest for the cellular 

physiology under study minimizing the loss of information from the other pathways in the 
network, accounting, up to some degree, for the metabolic pathways required to 

biosynthesize the cellular building blocks, and keeping consistency with the predictive 
capabilities of the complete GEM. 

The next goal of this thesis was to simulate the metabolism of cancer cells by integrating 

experimental data into the metabolic model to define the network topology and the 

network physiology. One of the main questions in biology is the genotype-phenotype 
relationship, and how we can correlate the deregulation observed in the gene expression 

profiles to the deregulations seen in the phenotype, such as deregulation in metabolic 
pathways. Our objective was to develop an approach to assign with a certain degree of 

confidence deregulation to the metabolic pathways. The cancer-specific developed 
models were powerful tools to assign deregulation to the metabolic fluxes based on the 

observed deregulation of the genes that code for the enzymes in the pathways, by testing 
the capabilities of the network to sustain the observed genotype-phenotype. 

Furthermore, an analysis of the essential pathways in the cancer-specific models and 
the identification of the metabolic pathways that are required to satisfy metabolic 

functions in the phenotype, allowed us to assign functionality to the deregulations 
observed. 

The final objective of this thesis was to develop a set of methods that permitted the 

contextualization of signaling networks to a specific physiology and the integration of 

metabolic networks and signaling networks to study the interplay between signaling and 
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metabolism. The methodology developed allowed us to interpret the consistency of the 

observed data and both biological networks. 

 

 Structure of this thesis 

In this thesis, we present mathematical and computational methods to navigate the 

complexity of the human metabolic and signaling networks that allow us to analyze and 
contextualize the alterations that are present in different cellular stages. In particular, we 

examine how differences in gene expression across cancer types translate into 

differences in their metabolism, and how we can simultaneously study signaling and 
metabolic networks. This thesis is composed of five chapters.  

In Chapter 1, we introduce the biological and modeling background required for the work 

performed in this thesis, and we present the motivation and objectives of the thesis. In 
Chapter 2, assign the thermodynamic properties of compounds and reactions in the 

human GEMs, and we present a novel method (redHUMAN) to generate reduced-sized 
metabolic models that comprise the pathways relevant for the study. We create a 

reduced model containing the metabolic pathways that are altered in cancer cells. In 

Chapter 3, we integrate omics data into the reduced model to build cancer-specific 
metabolic models. We use the cancer-specific models to investigate how different cancer 

types use different pathways to perform metabolic functions. In Chapter 4, we present a 
novel method (CONSIGN) to generate signaling networks that are consistent with the 

data. Moreover, we develop an approach to integrate signaling and metabolic networks 
by including the regulation of metabolic genes by transcription factors. In Chapter 5, we 

summarize the conclusions and future perspectives of the models and methods here 
presented. Each of the core chapters, i.e., Chapter 2, Chapter 3 and Chapter 4, 

describes a separate manuscript involving, in some occasions, collaborators. At the end 

of these chapters, we specify the contributions of the thesis author and the collaborators.  
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  Analysis of human 

metabolism and growth media using 

reduced thermodynamically curated 

genome-scale models. 
 

 

In this chapter, we present a thermodynamic curation of the human genome-scale 

metabolic models and a novel workflow (redHUMAN) to characterize the extracellular 
medium in the models and to reconstruct reduced models that focus on a set of pathways 

that are of interest for the physiology under study.  The method of this chapter has been 
developed in collaboration with Dr. M. Ataman. The content of this chapter has been 

published in Nature Communications. 

 

 Introduction 

An altered metabolism is a hallmark of several human diseases, such as cancer, 
diabetes, obesity, Alzheimer’s, and cardiovascular disorders [1, 2]. Understanding the 

metabolic mechanisms that underlie this reprogramming guides the discovery of new 
drug targets and the design of new therapies. To this effect, tremendous efforts are now 

being made to use the large amounts of now-available multi-omics experimental data to 

gain insight into the metabolic alterations occurring in different phenotypes. 
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Unfortunately, current mathematical models can be too complex for this analysis, 

rendering them too cumbersome to employ for many systems biology studies.  

In the field of systems biology, genome-scale metabolic models (GEMs) integrate 

available omics data with genome sequences to provide an improved mechanistic 
understanding of the intracellular metabolism of an organism. GEMs have been 

reconstructed for a large diversity of organisms spanning from bacteria to mammals [3-
5] and are valuable tools for studying metabolism [6, 7]. The mathematical representation 

of GEMs through the stoichiometric matrix [7] is amenable to methods such as flux 

balance analysis (FBA) [8] and thermodynamic-based flux balance analysis (TFA) [9-
13], which ensure that the modeled metabolic reactions retain feasible concentrations 

and their directionalities obey the rules of thermodynamics, to predict reaction rates and 
metabolite concentrations when optimizing for a cellular function, such as growth, energy 

maintenance, or a specific metabolic task. Additionally, GEMs can be used for gene 
essentiality [14], drug off-target analysis [15], metabolic engineering [16-18], and the 

derivation of kinetic models [19-22]. 

The first human GEM was reconstructed in 2007 [23, 24]. Since then, the scientific 

community has been working to develop high-quality human GEMs, including HMR 2.0 
[25], Recon 2 [26], Recon 2.2 [27], and Recon 3D [28]. The human GEMs used for the 

analysis in this chapter are Recon 2 and Recon 3D. Recon 2 is composed of 7440 
reactions with 4821 of them associated to 2140 genes, and 2499 unique metabolites 

across seven compartments: cytosol, mitochondria, peroxisome, Golgi apparatus, 
endoplasmic reticulum, nucleus, and lysosome. Recon 3D is the latest consensus human 

GEM. It is an improved more comprehensive version of the previous GEMs consisting of 
10600 reactions, with 5938 of them associated with 2248 genes, and 2797 unique 

metabolites compartmentalized as Recon 2 with an additional compartment for the 
mitochondria intermembrane space. 

Human GEMs reconstruct the metabolic reactions occurring in several human cell types. 
However, a given cell type only leverages a portion of these reactions. This motivates 

the development of methods to generate context-specific metabolic models that can be 
used to study the differences in metabolism for different cell types [29], for healthy and 

diseased cells [30, 31], and for cells growing under diverse extracellular conditions. 
Some examples of such methods are: (1) GIMME [32], mCADRE [33] and tINIT [34] to 
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reconstruct tissue-specific models based on omics data and a set of tasks or a specific 

objective function; (2) redGEM-lumpGEM [35, 36] to reconstruct models around a 

specific set of subsystems of interest for the study; and (3) iMM [37, 38] to characterize 
the extracellular medium and the metabolites that are essential for growth under each 

condition. Context-specific metabolic models have been extensively used to understand 
the differences in metabolism between cancer cells and their healthy counterparts [39-

45]. 

In this chapter, we present redHUMAN, a workflow to reconstruct novel thermodynamic-

curated reductions of the human GEMs Recon 2 and Recon 3D. We integrate the 
thermodynamic properties of the metabolites and reactions into the GEMs and use 

redGEM-lumpGEM to reconstruct reduced models around specific subsystems. 
Furthermore, we introduce redGEMX, a method to identify the pathways required to 

connect the extracellular compounds to a core network. redGEMX guarantees that the 
reduced models have all the feasible pathways that consume and produce the 

components of the extracellular environment of the cell. Finally, we use metabolic data 
for leukemia as an example of how to integrate experimental data to derive disease- and 

tissue-specific metabolic models. 

 

 Results 

2.2.1 Overall workflow 

In order to generate reduced models from human GEMs, we developed redHUMAN, a 
six-step workflow that can be applied to any GEM or desired model system. The overall 

workflow is briefly described here and shown in Figure 2.1, and the details of each step 
in its application to the human GEMs Recon 2 and Recon 3D to generate 

thermodynamic-curated reductions are provided in the subsequent sections. For the 

workflow, the thermodynamic information for compounds and reactions, which is 
assembled from earlier studies or estimated using established group contribution 

methods, is first integrated into the GEM. Second, the subsystems, or families of 
pathways with a specific functional role for a biological process, are selected based on 

the objectives of the specific study. These pathways are explicitly represented and 
constitute the core of the reduced model. For example, when studying cancer 
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metabolism, this can include reported subsystems that are deregulated in cancer cells in 

addition to the standard central carbon pathways. Third, these subsystems are expanded 

using reactions from the GEM to create a connected core network. In this step, we 
include every reaction that connects core metabolites and that is not a member of the 

formal definition of the selected subsystems in the core model. In steps four and five, we 
include the shortest pathways to connect the extracellular metabolites from the defined 

medium as well as the shortest pathways to generate the biomass components from the 
core network. These steps guarantee that the model has all pathways that are essential 

for survival and growth of the cells based on the availability of nutrients. In the sixth step, 
experimental data for a specific physiological state is integrated in the model, and the 

final model is verified through checks that ensure the consistency of the reduced model 
with the original GEM. 

 

Figure 2.1. redHUMAN: workflow to systematically reconstruct thermodynamic-curated 
reduced models. (1) Thermodynamic curation: the Gibbs free energy of compounds and 
reactions are estimated and used to define the reaction directionality. (2) Subsystem selection: 
the subsystems relevant for the study are selected. (3) Network expansion: the initial subsystems 
are connected using reactions from the GEM to generate a core network. (4) Extracellular medium 
connection: the pathways that connect the extracellular medium components to the core network 
are identified. (5) Biosynthetic reaction generation: the pathways required to produce the biomass 
building blocks are classified. (6) Data integration and consistency checks: experimental values 
are integrated and the model is verified through consistency checks. 
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2.2.2 Thermodynamic curation of the human GEMs (Step 1) 

We first determine the directionality of the chemical reactions of the network, which is 
directly associated with their corresponding Gibbs free energy. The Gibbs free energy of 

a reaction can be estimated from the thermodynamic properties of its reactants and 
products. Therefore, we curated the GEMs Recon 2 and Recon 3D (Materials and 

Methods) and integrated the thermodynamic properties for 52.4% of the 2499 unique 
metabolites from Recon 2 and 67.5% of the 2797 unique metabolites from Recon 3D 

(Figure 2.2 A). Three main reasons prevented the estimation of the thermodynamic 
properties of the metabolites: (1) an unknown molecular structure (SMILE), (2) an 

incomplete elemental description (for example, an R in the structure), and (3) groups in 
the structure for which an estimated free energy does not exist (for example, >N- group). 

We observed that as the number of metabolites increases from Recon 2 to Recon 3D, 

the percentage of thermodynamic coverage increases as well. This is due to the 
improved annotation of the metabolite structures in Recon 3D. Using the thermodynamic 

properties of the compounds as constraints (Materials and Methods), we estimated the 
Gibbs free energy for 51.3% of the 7440 reactions present in Recon 2 and 61.6% of the 

10600 reactions in Recon 3D. These constraints ensured that the reactions in the 
computed flux distributions operated in thermodynamically feasible directions. 

2.2.3 Subsystem selection to build the core (Step 2) 

A proper metabolic model contains the pathways that are essential for the survival of the 
cell as well as the pathways that are informative of a specific metabolic behavior. In this 

work, we were interested in the metabolism of cancer cells. Thus, we selected as core 

subsystems: (a) the central carbon pathways that provide energy, the redox potential, 
and biomass precursors, and (b) the subsystems that have been reported to be altered 

in cancer cells [46-49]. Consequently, the core subsystems for our models were 
glycolysis, the pentose phosphate pathway, the citric acid cycle, oxidative 

phosphorylation, glutamate metabolism, serine metabolism, the urea cycle, and reactive 
oxygen species (ROS) detoxification. We have estimated the thermodynamic properties 

for the metabolites and the reactions in these initial subsystems. In the case of Recon 2 
we provide an estimate for the Gibbs free energy of formation for 236 metabolites (94.4% 

of the total in the initial subsystems) and the Gibbs free energy of reaction for 143 
reactions (83.1% of the reactions in the initial subsystems). In the case of Recon 3D, we 
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provide estimated values of the thermodynamic properties for 288 metabolites (97.6%) 

and for 183 reactions (91.0%). 

2.2.4 Network expansion (Step 3) 

Subsequently, to reconstruct the core network we pairwise connected the chosen 
subsystems using redGEM (Materials and Methods). The algorithm first performed an 

intra-expansion of the initial subsystems. In this process, each initial subsystem was 
expanded to include additional reactions from the GEM whose reactants and products 

belong to that subsystem. These reactions can be assigned to different subsystems in 
the GEM which are not any of the initial subsystems and the core network would miss 

these additional reactions if we had considered the formal definition of the initial 
subsystems. The initial core subsystems of Recon 2 contained a total of 180 reactions. 

After the intra-expansion, 135 reactions from 21 subsystems were added. Examples of 

these added reactions included three from pyruvate metabolism that interconvert acetyl-
coa, acetate, malate, and pyruvate, which are all metabolites that participate in the citric 

acid cycle subsystem. For Recon 3D, 171 reactions from 24 subsystems were added to 
the 211 reactions from the initial core subsystems. 

Next, the algorithm performed a directed graph search to find the reactions from the GEM 

that connected the subsystems for different degrees D (Figure 2.2 B and Table S2.1), 
wherein D represents the distance (in number of reactions) between pairs of metabolites 

from the subsystems. Our final models included the connections for degree D = 1, that 

is, all the reactions that in one step connect two metabolites (excluding cofactors) 
belonging to any of the initial subsystems. A degree D = 1 was enough to pairwise 

connect all the initial subsystems (Figure 2.2 C). This resulted in a Recon 2 core network 
of 356 metabolites and 617 reactions and a Recon 3D core network of 440 metabolites 

and 796 reactions.  
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Figure 2.2. Thermodynamic curation of human GEMs. (A) Thermodynamics for the unique 
compounds in Recon 2 (orange) and Recon 3D (blue). The percentage is relative to the total 
number of unique compounds. (B) Size of the core network when the expansion is performed for 
different degrees. (C) Number of reactions that pairwise connect the subsystems for Recon 2 
(values below the diagonal) and Recon 3D (values above the diagonal) for degree D = 1. 

 

2.2.5 Extracellular medium connection (Step 4) 

Cells adapt their metabolism to the available nutrients in their extracellular environment. 
Consequently, a correct definition of the medium in the metabolic model is fundamental 

for an adequate representation of the intracellular metabolism. Given the complexity of 
the extracellular medium, it is particularly important to identify and classify the essentiality 

of the medium components and the pathways used for their metabolism. To this end, we 
curated the representation of the interactions of the cell with its environment into the 

human GEMs. First, we did not allow the exchange of intracellular metabolites lacking 

associated transport reactions or transport molecules containing P, CoA, or ACP. 
Secondly, we allowed the synthesis of generic fatty acids from palmitate, with reactions 

from Recon 2 and Recon 3D (Note S2.1). We next characterized the in silico minimal 
medium composition required for growth in the human GEMs by applying iMM (Materials 
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and Methods), which identifies the minimal set of metabolites that need to be uptaken to 

simulate growth. The results showed that Recon 2 required a medium with glucose, the 

nine essential amino acids, and some inorganics (PO4, NH4, SO4, O2), and Recon 3D 
simulated growth in a medium with glucose, the nine essential amino acids, the same 

inorganics as Recon 2, and one of the two essential fatty acids (alpha-linolenic acid and 
linoleic acid). The presence of the two essential fatty acids in the iMM of Recon 3D is a 

consequence of the improvement of the lipid metabolism [28], where the essential fatty 
acids participate in the synthesis of phospholipids. This demonstrates how the algorithms 

and workflow can be used to compare and validate updated model reconstructions for 
the same organisms or between different organisms. 

Seeking to identify the pathways that human cells use to uptake and secrete extracellular 
metabolites, we next developed the method redGEMX (Materials and Methods). This 

algorithm finds the pathways from the GEM that are needed to connect the extracellular 
metabolites to the core network defined by redGEM. In this work, we considered a 

complex medium composition of 34 metabolites (Figure 2.3 A), and redGEMX found the 
corresponding reactions from the GEM that connected 26 of these extracellular 

metabolites (we excluded the inorganics and the fatty acids) to the core network.  

 

Figure 2.3. Extracellular medium utilization (A) Extracellular medium composition defined in 
the models. (B) Graph of the subnetwork from Recon 2 for the uptake of L-histidine and the 
medium components required for its metabolism. Green represents the metabolites from the 
subnetwork, and orange represents the metabolites of the core network where the subnetwork is 
connected. In blue, the medium metabolite under study (L-histidine) and in pink, the extracellular 
metabolites co-utilized to metabolize L-histidine. The pathway starts with the transport of L-
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histidine from the extracellular space to the cytosol, where it is sequentially transformed into 
urocanate (urcan_c), 4-imidazolone-5-propanoate (4izp_c), N-formimidoyl-L-glutamate 
(forglu_c), L-glutamate (glu_L), 5-formiminotetrahydrofolate (5forthf_c), 5-10-
methenyltetrahydrofolate (methf_c), and 10-formyltetrahydrofolate (10thf_c). 4-Aminobutanoate 
(4abut_c) is converted to L-glutamate through a reaction from the subsystem glutamate 
metabolism, and finally, L-glutamate is connected to the TCA cycle. 

 

An example of one of these connected metabolites is the essential amino acid L-histidine 
which affects many aspects of human physiology, including cognition functions and 

allergic reactions. The classical pathway to metabolize L-histidine consists of four steps 
that sequentially convert it into urocanate, 4-imidazole-5-propanoate, N-formimidoyl-L-

glutamate, and ultimately, L-glutamate [50]. Interestingly, the resulting redGEMX 
subnetwork for L-histidine uses this classical pathway to connect it to the Recon 2 core 

metabolites L-glutamate and 4-aminobutanoate, both from the subsystem glutamate 
metabolism. The subnetwork is composed of 22 reactions, and it contains not only the 

classical pathway but also all the additional reactions required to balance the cofactors 
and by-products (Figure 2.3 B). These additional reactions are essential for an active 

main pathway, as they include the utilization of NH4, the sources of water and 

tetrahydrofolate, and the conversion of the by-product 5-formiminotetrahydrofolate to 10-
formyltetrahydrofolate, which regenerates tetrahydrofolate. Cellular metabolism has 

evolved to give flexibility to the cells to survive and function under different conditions. 
This flexibility is captured in the metabolic networks with the existence of alternative 

pathways. For this reason, using redGEMX we found three alternative pathways of 
minimum size (22 reactions) to connect L-histidine to the core network of Recon 2. The 

alternatives emerge from the existence of different transport reactions for the 
extracellular metabolites. In the case of Recon 3D, L-histidine is connected to the core 

network using 20 reactions, and there exist two pathways of minimum size. The 
subnetworks connect L-histidine to the Recon 3D core metabolites glutamate, 5-10-

methylenetetrahydrofolate, 2-oxoglutarate and pyruvate using the classical pathway to 

metabolize L-histidine. The different topology of Recon 2 and Recon 3D networks 
manifests in differences in the pathways used to metabolize and synthesize the 

compounds, thus, it is important to characterize which are the pathways used in the 
models. Following this approach, we added the reactions that compose all the alternative 

subnetworks of minimum size to the core networks to connect the 26 extracellular 
metabolites (Table S2.2).  
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The subnetworks generated with redGEMX provide a new perspective on the current 

understanding of metabolic pathways, as they not only provide the main pathway but 

they also include other reactions necessary to provide and consume all the by-products 
and cofactors. Moreover, the alternatives can be used to hypothesize which pathways 

cells use when growing under different conditions, such as when different nutrients are 
present in the environment or under different intracellular regulations when different 

enzymes are operational. If metabolomics data are available, the subnetworks generated 
with redGEMX can be classified based on pathway favorability as it has been recently 

done in [9, 51, 52]. 

2.2.6 Biosynthetic reactions generation (Step 5) 

Cellular metabolic functions, such as growth, structure maintenance, and reproduction, 

require the synthesis of several metabolites. In metabolic models, this is represented 

using the biomass reaction [53], whose reactants, named biomass building blocks or 
BBBs, are the metabolites that the cell needs to survive and perform its functions. 

Therefore, the last step necessary for reconstructing the reduced models is the 
integration of the pathways necessary to synthesize the 37 BBBs that compose the 

defined biomass in Recon 2 and Recon 3D. Among them, 19 are uptaken directly from 
the extracellular medium or produced within the core network. To find the minimum 

number of reactions in the GEM that we need to add to the core network for the synthesis 
of the remaining 18 BBBs, we used lumpGEM (Materials and Methods). Similarly to 

redGEMX, lumpGEM generates subnetworks that account for the synthesis, 
degradation, and balancing of all the by-products and cofactors required by the main 

pathway. The alternative subnetworks generated with lumpGEM can assess the 

flexibility of the cells to use alternative pathways to produce the BBBs, which can lead to 
survival in different conditions and drug resistance. Using lumpGEM, we calculated all 

the alternative subnetworks (set of reactions) of minimum size to capture the flexibility of 
the network for the biosynthesis of the BBBs (Figure 2.4 A, Table S2.3). The reactions 

that compose each of these subnetworks were summed up together to form an overall 
reaction that represented the subnetwork. These lumped reactions were then added to 

the core network. 
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Figure 2.4. Biosynthesis of biomass building blocks. (A) Size of lumped reactions for Recon 
2 and Recon 3D, and the corresponding number of alternatives to synthesize the BBBs that 
cannot be produced by the core nor uptaken from the extracellular medium. (B-C) Subnetwork 
for the synthesis of phosphatidylserine. Orange represents the metabolites from the core network. 
Blue represents the metabolites from the subnetwork for phosphatidylserine synthesis. Pink 
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represents the extracellular metabolites. Phosphatidylserine synthesis starts from the core 
metabolites glycerol 3-phosphate, from glycolysis, and acetyl CoA, from TCA. In a first reaction, 
acetyl CoA is transformed into malonyl CoA. The next reaction (KAS8) represents the synthesis 
of palmitate in the elongation cycle [54]. A CoA molecule is attached to palmitate to form palmitoyl 
CoA, from which the two generic fatty acids are derived. These two generic fatty acids are 
attached to glycerol 3-phosphate to form lysophosphatidic acid and phosphatidic acid. Finally, 
serine is attached to phosphatidic acid to form phosphatidylserine (B) Subnetwork from Recon 2 
and corresponding lumped reaction. (C) The four alternative subnetworks of minimum size from 
Recon 3D. Phosphatidic acid can be produced with two generic fatty acids or with one generic 
fatty acid and the essential fatty acid linoleic acid (light blue reactions). Phosphatidylserine can 
be directly produced from phosphatidic acid by attaching serine (green reaction) or through the 
formation of phosphatidylcholine (red reaction) and then changing choline for serine (orange 
reaction).  

 

The subnetworks generated with lumpGEM have the same size and number of 
alternatives in both Recon models for most of the BBBs, indicating that both models have 

the same level of flexibility for synthesizing the BBBs, with the exception of L-cysteine, 
dTTP and the purine nucleotides (ATP, GTP and their deoxy equivalents), cholesterol, 

and the phospholipids and sphingolipids. The core network of Recon 2 contains a 
reaction that produces L-cysteine, however, the core network of Recon 3D requires two 

reactions to produce it. The subnetworks that produce dTTP have the same size in both 

models, but a different number of alternatives. The subnetworks to produce the purine 
nucleotides have one more reaction and more alternatives in Recon 3D. Cholesterol is 

another BBB whose subnetworks agree in size for both models, but Recon 3D has more 
alternatives than Recon 2. The explosion of alternatives in Recon 3D is due to the parallel 

description of the synthesis of cholesterol in three compartments, namely cytosol, 
peroxisome, and endoplasmic reticulum. The differences in the lumped reactions for the 

phospholipids and sphingolipids between both models are due to the introduction of the 
essential fatty acid in their synthesis in Recon 3D. 

As an example of the subnetworks that produce the BBBs, we show the synthesis of the 
phospholipid phosphatidylserine (Figure 2.4 B and C). The standard KEGG pathway [55] 

for the synthesis of phosphatidylserine comprises four steps, wherein glycerol 3-
phosphate is converted to lysophosphatidic acid, phosphatidic acid, CDP-diacylglycerol, 

and phosphatidylserine. In Recon 2, the subnetwork generated with lumpGEM for the 
synthesis of phosphatidylserine was composed of eight reactions. It included the KEGG 

pathway with the exception of the CDP-diacylglycerol intermediate, which was not 
connected to phosphatidylserine in the GEMs. Instead, phosphatidylserine was 
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produced directly from phosphatidic acid by attaching serine. Additionally, the 

subnetwork contained the reactions required to generate from acetyl-CoA the fatty acids 

that would attach to glycerol 3-phosphate and to lysophosphatidic acid, which are 
important to consider for the final synthesis of phosphatidylserine. All the reactions 

involved in the synthesis of phosphatidylserine were lumped together in one reaction. 

For Recon 3D, the phosphatidylserine synthesis subnetwork was generated with the 
same eight reactions, but in this case, four alternative subnetworks existed (Figure 2.4 

C and Table S2.4), indicating that Recon 3D has a higher flexibility in producing this BBB. 

The alternatives emerged from the presence of two reactions in Recon 3D that could be 
substituted by two other reactions in the subnetwork. One of these reactions arose from 

the participation of the essential fatty acid linoleate in phospholipid generation, resulting 
in an alternative form of synthesizing one of the tails of phosphatidic acid. Specifically, 

the reaction ARTPLM2, which converts palmitoyl CoA into a generic fatty acid, is not 
required, and instead, the essential fatty acid linoleate is transported from the 

extracellular medium, transformed into linoleyl-coA and attached to the lysophosphatidic 
acid to form phosphatidic acid. Because the core network of Recon 3D included a 

reaction that transforms phosphatidylcholine in phosphatidylserine, the other substitution 
occurred in the last step, where serine was replaced by choline and phosphatidylcholine 

was synthesized. The lumped reactions can be classified based on the thermodynamic 

favorability of their subnetworks, if metabolomics data are available, as in [9, 51, 52]. 

The analysis performed with lumpGEM allows to characterize and classify the metabolic 
pathways and their alternatives, leading to an in-depth understanding of the flexibility of 

metabolism. In the context of GEMs, such detailed analysis of the subnetworks is often 
a difficult task due to their large size and interconnectivity. 

By applying the redHUMAN workflow, we reconstructed four reduced metabolic models 
for human metabolism (Table 2.1). Two of them have Recon 2 as the parent GEM, and 

the other two are generated from the Recon 3D GEM. For both GEMs, we generated 
one model with the minimum set of pathways required to simulate growth, that is, one 

lumped reaction per BBB with subnetworks of minimum size, and another model with 
higher flexibility containing all the alternative pathways of minimum size required to 

simulate growth. The reduced models have a thermodynamic coverage of more than 
92% of the compounds and more than 61% of the reactions. 



Analyzing human metabolism with reduced genome-scale models 

 
32 

Table 2.1. Statistics on the generated reduced metabolic models. The models were 
generated from the human GEMs Recon 2 and Recon 3D. For each GEM, two reductions were 
performed considering either one lumped reaction per BBB (OPBBB) or all the alternatives 
lumped reaction with subnetworks of minimum size (Smin). 

 Recon 2 Recon 3D 

Model GEM 
Reduced 
Recon 2 
OPBBB 

Reduced 
Recon 2 

Smin 
GEM 

Reduced 
Recon 3D 
OPBBB 

Reduced 
Recon 3D 

Smin 

Number of metabolites 5063 469 469 5835 591 599 

Num. of 
reactions 

Enzymatic 4220 342 342 4609 402 405 

Boundary 701 71 71 1863 130 130 

Transports 2519 946 946 4187 1085 1092 

Lumped - 15 37 - 15 105 

TOTAL 7440 1374 1396 10602 1632 1732 

Number of genes 2140 699 699 2248 747 748 

% of metabolites with 
est. Gibbs energies 

61.1 92.8 92.8 71.1 93.7 93.8 

% of reactions with est. 
Gibbs energies 

51.3 62.3 61.7 61.6 63.5 62.0 

 

2.2.7 Data integration and metabolic tasks (Step 6) 

Once the reduced models were generated, we investigated the metabolic tasks captured 

by the reduced models and we identified how the models should be curated to recover 
the tasks that they could not perform. First, we sequentially tested in the generated 

reduced models the thermodynamically feasibility of 57 metabolic tasks defined by Agren 
et al [34]. The four models captured 45 of the 57 tasks, including rephosphorylation of 

nucleoside triphosphates, uptake of essential amino acids, de novo synthesis of 
nucleotides, key intermediates and cholesterol, oxidative phosphorylation, oxidative 

decarboxylation, and growth (Figure 2.5 A).  

The tasks not captured by the models encompassed the synthesis of protein from amino 

acids, beta oxidation of fatty acids, inositol uptake, and vitamin and co-factor metabolism. 
We classified the causes behind their limitation into two categories: (1) the model 
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reconstruction, specifically the definition of the biomass, or (2) the reduction properties, 

that is, the subsystems included in the reduction and the representation of parts of the 

network as lumped reactions. To recover these tasks such that they are captured by the 
model, the following actions should be performed: the synthesis of proteins from amino 

acids and vitamin and co-factor metabolism can be recovered by modifying the biomass 
to account for their synthesis and utilization; the inclusion of lipid metabolism subsystems 

can recover the beta oxidation of fatty acids; and finally, the utilization of inositol can be 
recovered by adding the explicit reactions that compose the subnetworks, as it was found 

to be hidden in the lumped reactions of phosphatidyl-inositol. This demonstrates that 
redHUMAN allows to build reduced models consistent not only with the GEM but also 

with the metabolic tasks, and these models are suitable for targeted modifications and 
expansions. 

We next demonstrated how generic reduced models were used to integrate data to study 
disease physiology. We first integrated experimental data from the NCI60 cell lines in 

the reduced models to define the physiology of leukemia cells. In particular, we 
considered the exometabolomics of the cell lines HL-60, K-562, MOLT-4, CCRF-CEM, 

RPMI-8226, and SR, which correspond to leukemia [40, 56]. Additionally, we limited the 
maximal growth to the doubling time reported for leukemia cells, which is 0.035 h-1, and 

we constrained according to literature values the maximum uptake rate of oxygen to 2 

mmol/gDW/h [40] and the ATP maintenance to 1.07 mmol/gDW/h [57] (Table S2.5 and 
Table S2.6). We tested that all the models achieved the maximum growth when 

maximizing for the biomass reaction using TFA.  

Next, to analyze the impact that the deletion of each gene had on the network, we 
performed in silico gene knockout by artificially removing a gene and measuring how the 

network was affected. The genes whose knockout prevented the synthesis of biomass 
could then be investigated as potential targets for limiting cell proliferation. The 

consistency of the workflow used to generate the reduced models ensures that they 

capture the essentiality from the GEM, that is, the genes that are part of the reduced 
models and are essential in the GEM they are also essential in the reduced model (Figure 

2.5 B, Table S2.7 and Table S2.8). Furthermore, the reduced models allow the 
assignment of functionality to the essential genes using the lumped reactions. For 

example, the gene GART is associated with the enzymes phosphoribosylglycinamide 
formyltransferase, phosphoribosylglycinamide synthetase, and 
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phosphoribosylaminoimidazole synthetase, which are all part of the subnetworks for the 

synthesis of the nucleotides ATP, GTP, dATP and dGTP. Silencing this gene prevents 

the synthesis of these BBBs, and consequently, the models cannot synthesize biomass. 
When information about synthetic lethality is available, we can test and validate the 

predicted essentiality against the experimental data. 

Finally, because the model reduction affects the flexibility of the network with respect to 
the GEM, we performed thermodynamic flux variability analysis (TVA) on the common 

reactions between the GEM and the reduced model. The top 20 reactions whose rate 

ranges changed the most in absolute value included reactions from glycolysis, the 
pentose phosphate pathway, folate metabolism, and nucleotide interconversion among 

others (Figure 2.5 C). For reactions such as phosphoglycerate kinase (PGK), 
transaldolase (TALA) and methenyltetrahydrofolate cyclohydrolase (MTHFC), the 

ranges of reaction rates in the reduced model decreased with respect to the 
corresponding reaction rates in the GEM. Some reactions such as, nucleoside-

diphosphate kinase (NDPK9), were bidirectional in the GEM and became unidirectional 
in the reduced models. On the other hand, there were also reactions such as fumarase 

(FUM), lactate dehydrogenase (LDHL), or ribose-5-phosphate isomerase (RPI) whose 
flux ranges fully agreed between the reduced model and the GEM. Interestingly, if we 

look at the percentage of rate flexibility change, the reactions from the initial subsystems 

did not experience a large relative change in their rates, with the exception of the 
reactions whose participants are precursors for the lumped reactions of the BBBs as 

their reaction rates are now constrained closer to the physiological state. 
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Figure 2.5. Model validation through metabolic tasks and consistency checks. (A) The 57 
metabolic tasks tested in the generated reduced models. R2, R3: Recon 2, Recon 3D reduced 
model with one lumped reaction per BBB. R2s, R3s: Recon 2, Recon 3D reduced model with 
Smin. Classification of metabolic tasks in those captured by the models (green) and those not 
captured by the models (red). MT1: rephosphorylation of nucleoside triphosphates, MT2: de novo 
synthesis of nucleotides, MT3: uptake of essential amino acids, MT4: de novo synthesis of key 
intermediates, MT5: de novo synthesis of other compounds, MT6: protein turnover, MT7: electron 
transport chain and TCA, MT8: beta oxidation of fatty acids, MT9: de novo synthesis of 
phospholipids, MT10: vitamins and co-factors, MT11: growth. (B) Gene essentiality of the reduced 
models and their corresponding GEM. R2s has 829 genes associated to reactions, 37 of which 
are essential both in the reduced model and in Recon 2 and 12 are essential only in the reduced 
model. R3s has 828 genes associated to reactions, from which 23 are essential in both the 
reduced model and Recon 3D. The reduced model presents an additional 44 essential genes. (C) 
Thermo-flux variability analysis (TVA) for reactions in the reduced models. Orange represents 
fluxes in the reduced Recon 2 model and blue represents fluxes in the reduced Recon 3D models. 
The black lines correspond to the fluxes in the GEM.  

 

A final calibration of the models is done using the transcriptomics data from the NCI data 

repository (https://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS4296) for the 
corresponding leukemia cell lines. We have identified that, in the four models presented 

in this study, over 99% of the enzymes with gene associations (more than 75% of the 
total enzymes) are expressed in the NCI60 leukemia cell lines (Table S2.9). This 
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suggests that the pathways selected for initializing and expanding the metabolic core 

network are highly relevant for the specific physiology, which are also consistent with the 

important pathways identified in the experimental and medical studies [46, 48, 58]. 

2.2.8 Physiology analysis 

redHUMAN helps to navigate large human genome-scale metabolic models to explore 

and classify the metabolic pathways that cells use to function and survive under specific 
conditions. The thermodynamic curation performed in the genome-scale models 

guarantees that the reactions obey the laws of thermodynamics, discarding possible 
pathways that would not be compatible with the bioenergetics of the cell. As an example 

of how thermodynamics reduces the space of solutions to the thermodynamically 
feasible pathways, we analyzed the flux variability with and without thermodynamic 

constraints in the Recon 3D reduced model that has all the alternative lumped reactions 

of minimum size (Smin). The reactions L-Glutamate 5-Semialdehyde Dehydratase 
(G5SADs, from arginine metabolism) and L-Glutamate 5-Semialdehyde:NAD+ 

Oxidoreductase (r0074, from urea cycle) are bidirectional when flux variability is 
performed without thermodynamics and become unidirectional when their 

thermodynamic information is taken into account. Therefore, integrating thermodynamic 
information reduces the space of reaction directionality and the physiological solution 

space and eliminates thermodynamic infeasible reactions excluding some pathways. 

The leukemia-specific models generated in this study are powerful tools to analyze how 

the metabolic pathways are altered with respect to other cancer cells or normal cells. In 
particular, we can analyze how leukemia cells utilize the nutrients available in the 

microenvironment to biosynthesize the precursors required for growth and cellular 
functionality. As an example, we identified the minimal number of reactions that are 

required for the synthesis of phosphatidyl-serine in the reduced Recon 3D model with all 
the alternative lumped reactions of minimum size. We found that at least 76 reactions 

should be active for the production of phosphatidyl-serine including the interactions with 
the extracellular medium, i.e., for some alternatives the uptake of glucose, histidine, 

linoleic acid, oxygen, and phosphate, and the secretion of succinate, ammonia, carbon 

dioxide and water. The main pathways active within the subnetwork of 76 reactions are 
glycolysis, the citric acid cycle, serine metabolism, and the electron transport chain. This 

type of analysis will enlighten our knowledge on how cells adapt their metabolism to the 
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microenvironment allowing researchers to hypothesize how and why the cancer cells 

change their expression profile to adapt and survive. 

 

 Discussion 

For a better understanding of the altered metabolisms that accompany many human 
diseases, we have herein presented a workflow to generate reduced models for common 

human GEMs that can reduce the complexity of these systems to the relevant processes 
to be studied, making detailed in silico analyses of metabolic changes possible.  

During the last years, there has been an increased generation of metabolomics data that 
better study what is happening in the physiology of cell metabolism compared to other 

omics data. This has created a need to expand the classical constraint-based modeling 
methods to include metabolomics information. Our thermodynamic formulation and 

application of TFA [12, 51, 59, 60] in redHUMAN allows to integrate endo- and exo- 
metabolomics in the models, constraining the concentration of the metabolites according 

to physiological data. The size of the model is directly related to the percentage of 

metabolites that need to be measured. Therefore, the continuous expansion in size of 
genome-scale models increases the demand of larger sets of metabolomics, and such 

data are not always available. In addition, there is a community effort to expand 
constraint-based models to include information on enzyme abundancy relating the 

metabolic fluxes with enzymatic data and allowing to integrate transcriptomics and 
proteomics data into the models. These data are currently limited but they can be 

continuously updated and integrated as they become available [61, 62].  

Moreover, most of the existing methods to build context-specific models are data-driven, 

that is, the reduced models are extracted from a GEM by considering only the enzymes 
associated to highly expressed data, or literature-based pathways. Then, they include 

the additional reactions that are required to simulate growth and cellular functions [33, 
34, 63]. The main difficulty with these methods is the large amount of data required to 

fully characterize the initial set of reactions, or core reactions. The lack of data could lead 
to unconnected parts and the impossibility to include reactions that could be important 

for the specific physiology, affecting the final model and the predictions.  
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redHUMAN reconstructs reduced models considering only the pathways of interest and 

their stoichiometric connectivity. The reduced models are built unbiased from the data, 

guaranteeing thermodynamic feasibility and consistency with the GEM and the metabolic 
tasks. The reduced models can then be used to construct context-specific models by 

integrating omics data, accommodating to also integrate partial data without sacrificing 
reactions from the network. Overall, the reduced size of the new models and their 

conceptual organization overcomes some of the main challenges in building genome-
scale context-specific models as for example the barrier of data network coverage. The 

reduced models generated with redHUMAN are powerful representations of the specific 
parts of the network and have promising applications as they are suitable to use with 

existing methods including MBA [63], tINIT [34], mCADRE [33], uFBA [64], GECKO [65], 
ETFL [66], TEX-FBA [67] and IOMA [68]. 

Based on our results, we propose the following approach to using these models as tools 
to explain and compare phenotypes. First, generate a reduced model around a desired 

set of subsystems and for a defined extracellular medium, and check that the model 
captures the metabolic tasks. Subsequently, build physiology-specific models by 

integrating experimental data into the reduced models. Then, test the consistency of the 
reduced network with respect to its parent GEM. Finally, integrate different sets of omics 

data, including expression, to compare different physiologies, such as diseased vs 

healthy or within several types of cancers. This approach will help to better investigate 
the alterations in metabolism that occur as diseases develop and progress. Moreover, 

the same procedure can be used to analyze systematically and consistently metabolic 
models for the same organism and to compare metabolic models of different organisms, 

enhancing our understanding of their similarities and differences.  

Throughout this chapter, we have considered a specific set of subsystems, a specific 
medium, and the biomass definition from the GEMs. In the future, the reduced models 

could be further expanded to include other pathways, a more complex medium, or more 

biomass components. To introduce new subsystems or pathways into the core network, 
redGEM should be run to find the pairwise connections between the added pathways 

and the rest of the core. For an expansion of the medium, redGEMX would find the 
connections necessary for using the new extracellular metabolites. In a similar manner, 

a further curation of the biomass reaction could increase the number of BBBs, requiring 
lumpGEM to be run to find the biosynthesis pathways for those compounds. If a higher 
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consistency was required between the GEM and the corresponding reduction, we could 

find the reactions missing in the reduced model to satisfy that condition.  

Furthermore, in this study we have used metabolomics, proteomics and growth data from 

the NCI60 cell lines to define a generic physiology for leukemia cells. The core networks 
of the reduced models are structurally the same across growth conditions and depend 

only on the structure of the corresponding GEMs. Therefore, these generic models are 
robust to variations in growth or data for the same physiology and thus data for individual 

leukemia cell lines can be used without changing the workflow. However, if there are 

important differences in the data, for example across different physiological conditions, 
the authors suggest running the lumpGEM workflow with data integration and generate 

alternative subnetworks and lumped reactions, which in turn will capture the different flux 
profiles for each physiological state. 

Overall, our analysis demonstrates how redHUMAN facilitates the characterization of 

differences in metabolic pathways across models and phenotypes.  
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 Materials and Methods 

2.4.1 Experimental data for leukemia cell lines 

The experimental data used in this work are exo-metabolomics, exo-fluxomics and 
transcriptomics corresponding to the NCI60 leukemia-specific cell lines, HL-60, K-562, 

MOLT-4, CCRF-CEM, RPMI-8226, and SR.  

We integrated in the models exo-metabolomics and exo-fluxomics for these cell lines 
measured and estimated by Jain et al. in previous work [56]. In particular, concentrations 

for 42 extracellular metabolite (Table S2.6) and reaction rates for 24 metabolites (Table 

S2.5) were used from the work by Jain et al. [56] as bounds for the corresponding 
variables in the models. Additionally, we constrained the uptake rate of oxygen to 2 

mmol/gDW/h [40] and the ATP maintenance rate to 1.07 mmol/gDW/h [57].  
Furthermore, the doubling time for leukemia cells was used to define the growth rate in 

the model (0.035 h-1).  

Transcriptomics data for metabolic genes from the NCI60 GDS4296 NCI data set were 
used to calibrate the models. The transcriptomics data corresponding to the leukemia 

cell lines was used to evaluate the expression of the genes present in the reduced model. 

The details regarding the cell lines, the raw data, and the processed data can be found 
in the NCI site https://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS4296. 

2.4.2 Thermodynamic curation of the genome-scale models (GEMs) 

The thermodynamic curation of the human GEMs Recon 2 and Recon 3D aims to include 
thermodynamic information, i.e., the Gibbs free energy of formation for the compounds 

and the corresponding error for the estimation, into the model. The workflow to obtain 
this information is as follows. 

We first used MetaNetX (http://www.metanetx.org) [69] to annotate the compounds of 
the GEMs with identifiers from SEED [70], KEGG [55], CHEBI [71], and HMDB [72]. We 

then used Marvin (version 18.1, 2018, ChemAxon http://www.chemaxon.com) to 
transform the compound structures (canonical SMILES) into their major protonation 

states at pH 7 and to generate MDL Molfiles. We used the MDL Molfiles and the Group 
Contribution Method (GCM) to estimate the standard Gibbs free energy of the formation 

of the compounds as well as the error of the estimation [60]. 
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Since the model for Recon 3D already incorporates the structure for 82% of the 

metabolites in the form of SMILES, we used those SMILES and followed the previous 

workflow from the point of obtaining the major forms at pH 7 using Marvin. 

Furthermore, we have integrated in the models the thermodynamic properties for the 
compartments of human cells, including, pH, ionic strength, membrane potentials and 

generic compartment concentration ranges from 10pM to 0.1M (Table S2.10). 

2.4.3 TFA: thermodynamics-based flux analysis 

TFA estimates the feasible flux and concentration space according to the laws of 

thermodynamics [11-13]. TFA is formulated as a mixed-integer linear programming 

(MILP) problem that incorporates the thermodynamic constraints to the original flux 
balance analysis (FBA) problem. The Gibbs free energy of the elemental and charge 

balanced reactions is calculated as a function of the standard transformed Gibbs free 
energy of formation (depending on pH and ionic strength) and the concentrations of the 

products and reactants. 

Considering a network with 𝑚 metabolites and 𝑛 reactions, the Gibbs free energy,	∆%G'(, 

for reaction 𝑖 is: 

∆%G'( =,𝑛',-∆.G-(/
0

-12

+ 𝑅𝑇 ln89𝑥-
;<,=

0

-12

>, 

where 𝑖 = 1,… , 𝑛, 𝑗 = 1,… ,𝑚. 𝑛',- is the stoichiometric coefficient of compound 𝑗 in 

reaction 𝑖; ∆.G-(/ is the standard Gibbs free energy of formation of compound	𝑗; 𝑥- is the 

concentration of the compound	𝑗; 𝑅 is the ideal gas constant, 𝑅 = 	8.31 ∙ 10HI 	 JK
J	0/L

 , 

and 𝑇 Is the temperature. In this case, 𝑇 = 298	𝐾. 

The value of the Gibbs free energy determines the directionality of the corresponding 
reaction and the thermodynamically feasible pathways. With this formulation, we 

included the concentrations of the metabolites as variables in the mathematical 
formulation. TFA allows the integration of metabolomics data into the model. 
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2.4.4 iMM: characterizing the extracellular in silico minimal media 

iMM is formulated as a MILP problem that introduces new variables and constraints to 
the TFA problem to find the minimum set of extracellular metabolites necessary to 

simulate growth or a specific metabolic task with the GEM [37, 38]. iMM identifies the 
minimum number of boundary reactions (uptakes and secretions) that need to be active. 

The method defines new binary variables in the TFA problem that represent the state of 
each boundary reaction, active or inactive. New constraints link the new binary variables 

to the corresponding reaction rates such that if the reaction is inactive, then it should not 
carry flux. The objective of the problem is to maximize the number of inactive reactions.  

Assuming a network with 𝑚 metabolites and 𝑛 reactions, the mathematical formulation 
of the iMM problem is the following: 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 max,𝒛\

;]

\12

subject	to
𝐹𝐵𝐴	𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑺 ∙ 𝒗 = 𝟎,

𝒗o ≤ 𝒗 ≤ 	𝒗q,

𝑇𝐹𝐴	𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ∆%G'( =,𝑛',-∆.G-(/
0

-12

+ 𝑅𝑇 ln89𝑥-
;<,=

0

-12

> , 𝑖 = 1,… , 𝑛,

∆%G'( − 𝑀 +𝑀 ∙ 𝑏't 	≤ 0
−∆%G'( − 𝑀 +𝑀 ∙ 𝑏'u 	≤ 0
𝑣'
t,u − 𝑀 ∙ 𝑏'

t,u ≤ 0
𝑏't + 𝑏'u ≤ 1

𝐼𝑀𝑀	𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝒃t 	+	𝒃u 	+ 	𝐶 ∙ 𝒛 ≤ 𝐶,

 

where 𝑛y is the total number of boundary reactions in the model, 𝒛%z; are new binary 

variables for all the boundary reactions, 𝑺 is the stoichiometric matrix, 𝒗 are the net fluxes 

for all the reactions and 𝑣't , 𝑣'u are the corresponding net-forward and net-reverse fluxes, 

so that, 𝑣' = 𝑣't − 𝑣'u	, 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖 = 1,… , 𝑛.  𝒗o and 𝒗q are the lower and upper bound, 

respectively, for all the reactions in the network. ∆%𝐆(  is the Gibb’s free energy of the 

reactions defined in TFA. 𝒃t  and 𝒃u  are the binary variables for the forward or reverse 

fluxes of all the reactions (coupled to TFA). 𝑀 is a big constant (bigger than all upper 
bounds) and 𝐶 is an arbitrary large number. In this case, if 𝑧%z;,' = 0, then reaction 𝑖 is 

active. 
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2.4.5 redGEM, redGEMX, and lumpGEM: reducing human GEMs 

The redGEM, redGEMX, and lumpGEM algorithms seek to generate systematic 

reductions of the GEMs starting from chosen subsystems (or lists of reactions and 
metabolites, such as the synthesis pathway of a target metabolite), based on the studied 

physiology and the specific parts of the metabolism that are of interest. 

redGEM 

redGEM is a published algorithm [35] that extracts the reactions that pairwise-connect 

the initial subsystems from the GEM, generating a connected network named the core 
network. 

The inputs for redGEM are (i) the GEM, (ii) the starting subsystems or an initial set of 

reactions, (iii) the extracellular medium metabolites, (iv) a list with the GEM cofactor 

pairs, and (v) the desired degree of connectivity. The algorithm then performs an 
expansion (by graph search) of the starting subsystems by finding the reactions that 

pairwise-connect the subsystems up to the selected degree (see [35] for further details). 
For example, for a degree equal to 2, it will connect the metabolites from the starting 

subsystem that are one and two reactions away in the GEM. 

redGEMX 

redGEMX is a newly formulated algorithm that finds the pathways in the GEM that 

connect the extracellular medium to the core network generated with redGEM (Figure 
2.6). These pathways are added to the core network. 

The redGEMX method involves five steps: 

1. Classify the extracellular metabolites of the GEM into 3 classes:  

(a) those that are part of the medium that we want to connect,  

(b) those that are already present in the inter-connected subsystems network,  

(c) those that do not belong to (a) nor (b). 

2. Classify the reactions from the GEM into 2 classes:  

(a) those that belong to the inter-connected subsystems network (core-

reactions), 
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(b) those that do not belong to the inter-connected subsystems network (non-

core reactions). 

3. Block the flux through the reactions in the GEM that involve only extracellular 
metabolites. 

4. Block the flux through the boundary reactions of other metabolites in the GEM (1c). 

Steps 3 and 4 guarantee that the subnetwork reaches the core network. 

5. Force the uptake of a medium metabolite (1a, one-by-one) and minimize the number 

of non-core reactions (2b) required to connect this extracellular metabolite to any core 
metabolite participating in a core reaction (2a). Note that the subnetwork will contain any 

reaction required to balance the by-products secreted by the subnetwork and/or the core 
network. 

The redGEMX is a MILP problem that is formulated as follows: 

i. Consider the TFA problem of the model that we want to reduce. 
ii. Create binary variables 𝑧' for each non-core reaction (2b). Non-core reactions 

are denoted as 𝑅;~ . 
iii. Generate a constraint that controls the flux for each non-core reaction: 

𝒃t 	+	𝒃u 	+ 	𝒛	 ≤ 𝟏, 

where 𝒃t and 𝒃u are the binary variables for the forward and reverse fluxes of all 
the reactions (coupled to the TFA constraints; when 𝑧' = 1, the corresponding 
reaction is inactive. 

iv. Build the following MILP problem for each extracellular medium metabolite (1a) 

max,𝑧%z;,'

u��

'12

 

 subject to: 

𝒃t 	+	𝒃u 	+ 	𝒛 ≤ 1, 

𝑣��,- ≥ 𝑐, 
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where 𝑣��,- is the flux of the 𝑗th extracellular medium metabolite (1a), and 𝑐 is a

small number. 

Figure 2.6. redGEMX method. (A) Classification of the reactions from the GEM into core (green) 
and non-core reactions (orange), and classification of the extracellular metabolites from the GEM 
into those that are part of the medium that we want to connect (blue), those that are present in 
the core (pink), and the others (grey). The algorithm will block the non-core reactions that involve 
only extracellular metabolites as well as the boundary and transport reactions of the metabolites 
that are not part of the medium (grey). (B) The algorithm finds the minimal set of reactions that 
are required to connect each of the medium metabolites (blue) to the core network, uses the core 
network to balance the reactions, and secretes metabolites from the medium (blue or pink). 

lumpGEM 

lumpGEM is a published algorithm [36] that generates elementally balanced lumped 

reactions for the synthesis of the biomass building blocks (BBBs). Using a MILP 
formulation, lumpGEM identifies the smallest subnetwork (minimum number of reactions 

from the GEM) required to produce each BBB from metabolites that belong to the core 
network using reactions from the GEM that are not part of the core. With this formulation, 

we can identify all the alternative subnetworks (of minimal size or larger) for the synthesis 
of each BBB (one by one). lumpGEM generates, for each BBB, an overall lumped 

reaction by adding all the reactions that constitute each subnetwork (see [36] for further 

details). Note here, different subnetworks can give rise to the same overall lumped 
reaction. This implies that although we produce all the alternative subnetworks with their 

associated lumped reactions, only the unique lumped reactions will be added to the final 
reduction. 

2.4.6 Software 

The simulations of this article have been done with Matlab 2017b and CPLEX 12.7.1. 
Escher [73] has been used to draw the subnetworks in the figures.  
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2.4.7 Data and code availability 

The data, models and the scripts to generate the results and perform the postprocessing 
for this paper are available at https://github.com/EPFL-LCSB/redhuman. 

The code for TFA is available at https://github.com/EPFL-LCSB/mattfa. The code to 

reduce the human GEMs (redGEM), to connect the extracellular medium to the core 
(redGEMX) and to generate the biosynthetic lumped reactions (lumpGEM) are available 

at https://github.com/EPFL-LCSB /redgem. 
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Appendix A 

Curation of the generic lipids in human GEMs 

Note S2.1: We curated the synthesis of the generic fatty acids in both models. Some 

compounds from the lipid metabolism of the human GEMs contain R-groups as generic 
compounds representing fatty acids with different chain lengths. The biosynthesis of fatty 

acids starts with the conversion of acetyl-coA into malonyl-coA. Next, the primary fatty 
acid synthesized is palmitate (C16:0) that can later enter the elongation cycle to produce 

fatty acids with longer chains. We connected palmitate to the R-groups using reactions 

already defined in the original Recon 2 and Recon 3D models. These reactions substitute 
the elongation process and define directly the generic fatty acids (R-groups). 

 

redGEM: network expansion  

Table S2.1: redGEM statistics. Expansion of the starting subsystems by pairwise connections for 
different degrees. D=0 does not include interconnections across subsystems, only the intra-
expansion of the initial subsystems 

 Recon 2 Recon 3D 

Degree of  
connection 

D = 0 D = 1 D = 2 D = 3 D = 0 D = 1 D = 2 D = 3 

Number of  
metabolites 

254 356 434 487 300 440 530 592 

Number of  
reactions 

346 617 1286 1412 416 796 1451 1620 
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redGEMX: extracellular metabolites connections to core 

Table S2.2: redGEMX connections. Size of subnetworks [and number of alternatives] to connect 
the medium metabolites to the core subsystems. As an example, the two last columns show the 
core metabolites and the subsystems to which the extracellular connects for one alternative. 

  
Extracellular 

metabolites 

Recon 2 

Num. of reactions 

[num of alternatives] 

Recon 3D 

Num. of reactions 

[num of alternatives] 

Am
in

o 
ac

id
s  

G
lu

ta
m

at
e 

Fa
m

ily
 

L-glutamate 10 [8] 9 [1] 

L-glutamine 11 [3] 11 [4] 

L-proline 13 [1] 12 [1] 

L-arginine 11 [3] 8 [1] 

Se
rin

e 

Fa
m

ily
 L-serine 6 [1]  6 [5] 

glycine 18 [1] 8 [21] 

Py
ru

va
te

 

Fa
m

ily
 

L-alanine 12 [27] 9 [6] 

L-valine 24 [57] 23 [3] 

L-isoleucine 27 [3] 23 [2] 

L-leucine 32 [1]  23 [1] 

As
pa

rta
te

 

Fa
m

ily
 

L-aspartate   13 [1] 7 [4] 

L-asparagine 14 [2] 9 [1] 

L-lysine 33 [13] 40 [33] 

L-methionine 42 [1] 22 [4] 

L-threonine 21 [1] 6 [1] 

Ar
om

at
ic 

Fa
m

ily
 

L-tryptophan 39 [8] 38 [1] 

L-tyrosine 27 [3] 25 [1] 

L-phenylalanine 27 [2] 27 [1] 

 L-histidine 22 [3] 20 [2] 

Ce
nt

ra
l c

ar
bo

n 

co
m

po
un

ds
 

D-glucose 5 [1] 5 [1] 

L-lactate 5 [1] 5 [1] 

L-Malate 13 [2] 9 [5] 

Citrate 10 [2]  5 [9] 

Vitamin Choline 14 [10] 11 [7] 

Urea cycle 

products 

Ornithine  7 [3] 7 [3] 

Urea 7 [3] 7 [3] 
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lumpGEM: subnetworks of lumped reactions  

Table S2.3: Lumped reactions for Recon 2 and Recon 3D. Size of lumped reactions for Recon 
2 and Recon 3D and corresponding number of alternatives. The rest of the BBBs either are 
directly uptaken (available in the medium) or they can be produced in the core network. 

 

Biomass building blocks 

Recon 2 Recon 3D 

 Network 

size 

Number 
alternatives 

Network 

size 
Number 

alternatives 

Amino 
acid L-Cysteine 

Produced 

by the core 

Produced by 

the core 
2 1 

Nu
cle

ot
id

es
 

ATP 10 1 11 1 

GTP 9 2 10 4 

CTP 5 1 5 1 

UTP 5 1 5 1 

dGTP 11 4 12 8 

dCTP 7 1 7 1 

dATP 12 1 13 2 

dTTP 11 4 11 6 

Lipid Cholesterol 21 64 21 144 

Ph
os

ph
ol

ip
id

s 
& 

Sp
hi

ng
ol

ip
id

s 

1-Phosphatidyl-1D-Myo-Inositol 10 1 10 4 

Phosphatidylserine 8 1 8 4 

Phosphatidylcholine 9 1 8 4 

Phosphatidylethanolamine 9 1 8 4 

Phosphatidylglycerol 11 7 11 14 

Cardiolipin 12 7 12 14 

Sphingomyelin 12 2 11 6 

 Growth Associated Maintenance 10 1 11 2 
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Table S2.4: Lumped reactions for phosphatidyl serine in Recon 3D. Stoichiometry of the 
alternative lumped reactions for phosphatidylserine in Recon 3D 

 Lumped reactions for phosphatidylserine in Recon 3D 

 Lumped 

Reaction 1 

Lumped 

Reaction 2 

Lumped 

Reaction 3 

Lumped 

Reaction 4 

ATP -16 -16 -8 -8 
H+ -53 -53 -25 -25 

NADPH -28 -28 -14 -14 
HCO3 -14 -14 -7 -7 

ACCOA -16 -16 -8 -8 
SER_L -1 0 -1 0 
CHOL 0 -1 0 -1 

LNLCCOA 0 0 -1 -1 
GLYC3P -1 -1 -1 -1 

H2O 13 13 7 7 
ADP 14 14 7 7 

Pi 14 14 7 7 
NADP 28 28 14 14 
CO2 14 14 7 7 
COA 16 16 9 9 
AMP 2 2 1 1 
PPi 2 2 1 1 
PS 1 0 1 0 

PCHOL 0 1 0 1 
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Leukemia physiology: extracellular data integrated in the models 

Table S2.5: Leukemia physiology. Data used to constrain the intake and secretion of 
extracellular metabolites. 

 
Reaction in 

model 

Lower 

bound 

Upper 

bound 

Citrate EX_cit_e -0.0007 0.0015 

Malate EX_mal_L_e 0.0002 0.0012 

Choline EX_chol_e -0.0078 -0.0004 

Ornithine EX_orn_e 0.0077 0.0498 

Alanine EX_ala_L_e -0.0137 0.1695 

Arginine EX_arg_L_e -0.0752 -0.0090 

Asparagine EX_asn_L_e -0.0151 -0.0035 

Aspartate EX_asp_L_e -0.0098 0.0051 

Glucose EX_glc_e -3.3230 -0.4623 

Glutamate EX_glu_L_e 0.0089 0.0883 

Glutamine EX_gln_L_e -0.6398 -0.1672 

Glycine EX_gly_e -0.0031 0.0139 

Isoleucine EX_ile_L_e -0.0420 -0.0083 

Lactate EX_lac_L_e 0.5531 3.7791 

Leucine EX_leu_L_e -0.0508 -0.0099 

Lysine EX_lys_L_e -0.0697 -0.0170 

Phenylalanine EX_phe_L_e -0.0206 -0.0045 

Proline EX_pro_L_e -0.0015 0.0145 

Serine EX_ser_L_e -0.1140 -0.0262 

Threonine EX_thr_L_e -0.0451 -0.0092 

Tryptophan EX_trp_L_e -0.0054 -0.0008 

Tyrosine EX_tyr_L_e -0.0276 -0.0054 

Valine EX_val_L_e -0.0483 -0.0098 

Methionine EX_met_L_e -0.0186 -0.0041 

Oxygen EX_o2_e -2 0 

Growth biomass 0 0.0354 

ATP maintenance ATPM 1.07 100 
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Table S2.6: Leukemia physiology. Data used to constrain the extracellular concentrations of the 
metabolites. 

 Variable in 
model 

Lower 
bound 

Upper 
bound 

3-Hydroxyanthranilate LC_3hanthrn_e -17.6225 -17.5215 
4-Aminobutanoate LC_4abut_e -15.6566 -12.998 

Acetoacetate LC_acac_e -14.0479 -13.567 
Adenosine LC_adn_e -100 -16.5006 

S-Adenosyl-L-Homocysteine LC_ahcys_e -17.1933 -16.2063 
2-Oxoglutarate LC_akg_e -15.6860 -15.1312 

L-Alanine LC_ala_L_e -10.9925 -7.6359 
L-Arginine LC_arg_L_e -6.9545 -6.8303 

L-Asparagine LC_asn_L_e -8.0950 -7.9203 
L-Aspartate LC_asp_L_e -8.8353 -8.6895 

Choline LC_chol_e -10.8158 -10.5017 
Citrate LC_cit_e -12.2716 -11.4708 

Creatine LC_creat_e -10.8187 -10.6980 
L-Carnitine LC_crn_e -14.1057 -13.8208 
Fumarate LC_fum_e -13.4448 -13.1200 

L-Glutamine LC_gln_L_e -7.6293 -6.5510 
L-Glutamate LC_glu_L_e -8.6402 -8.1777 

Glycine LC_gly_e -8.8527 -8.6086 
Guanidinoacetic Acid LC_gudac_e -9.6591 -9.1620 

L-Homocysteine LC_hcys_L_e -15.9947 -15.0187 
3-Hydroxy-L-Kynurenine LC_hLkynr_e -19.5847 -18.4311 

Isocitric Acid LC_icit_e -15.1765 -14.8061 
L-Isoleucine LC_ile_L_e -8.1052 -7.9730 

L-2-Aminoadipate LC_L2aadp_e -15.9991 -15.4878 
(S)-Lactate LC_lac_L_e -5.0995 -4.6995 

L-Kynurenine LC_Lkynr_e -15.3602 -14.7654 
L-Lysine LC_lys_L_e -9.1042 -8.4909 

L-Homoserine LC_hom_L_e -10.6130 -10.2175 
(S)-Malate LC_mal_L_e -12.2526 -11.9394 

L-Methionine LC_met_L_e -9.9144 -9.3876 
Ornithine LC_orn_e -8.9184 -8.5935 

L-Phenylalanine LC_phe_L_e -10.0679 -9.5613 
L-Serine LC_ser_L_e -10.6420 -8.7444 

Spermidine LC_spmd_e -15.2091 -14.8503 
Succinate LC_succ_e -11.2943 -11.1637 
Taurine LC_taur_e -13.1674 -12.0361 

L-Threonine LC_thr_L_e -9.45495 -8.9928 
L-Tryptophan LC_trp_L_e -11.2214 -10.7397 

L-Tyrosine LC_tyr_L_e -9.2399 -8.9257 
L-Valine LC_val_L_e -9.4606 -9.0726 
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Gene essentiality 

Table S2.7:  Gene essentiality analysis. List of genes that are essential in the reduced Recon 
2 models, and the corresponding reactions associated to these genes. The third column indicates 
if the gene is essential in the GEM. 

GENE REACTIONS Essential  
in GEM 

1738.1 GCC2am | GCC2bim | GCC2cm | GCCam | GCCbim | GCCcm | PDHm | r1154 - 
2531.1 3DSPHR Yes 
2194.1 KAS8 Yes 
471.1 AICART | IMPC Yes 

10606.1 AIRCr | PRASCS Yes 
790.1 CBPS | ASPCTr | DHORTS Yes 
7108.1 C14STRr | r0780 Yes 

50814.1 C3STDH1Pr | C4STMO2Pr | C3STDH1r Yes 
3295.1 C3STKR2r Yes 
6307.1 C4STMO1r Yes 

54675.1 CLS_hs Yes 
875.1 CYSTS Yes 

51727.1 UMPK | UMPK2 | UMPK3 | UMPK4 | UMPK5 | UMPK7 | CYTK8 | CYTK6 | CYTK7 | 
CYTK1 | CYTK10 Yes 

2987.1 GK1 - 
1718.1 r0783 | DSREDUCr | r1380 - 
1717.1 DHCR72r | DHCR71r Yes 
1719.1 DHFR | r0224 Yes 
1723.1 DHORD9 Yes 
9453.1 DMATT | GRTT - 
4597.1 DPMVDc Yes 
1841.1 DTMPK | NDP8 - 

10682.1 EBP1r | EBP2r | r1381 Yes 
2819.1 G3PD1 | r0202 - 
2618.1 r0666 Yes 
5471.1 GLUPRT Yes 
3156.1 r0488 | HMGCOARc Yes 
4047.1 LNSTLSr Yes 
4598.1 MEVK1c Yes 

51477.1 MI1PS Yes 
7372.1 OMPDC | ORPT Yes 
5338.1 RE3273C | RE3301C - 

114971.1 PGPP_hs Yes 
9489.1 PGPPT Yes 

10654.1 PMEVKc Yes 
5198.1 PRFGS Yes 

23761.1 PSDm_hs - 
9791.1 PSSA1_hs - 
6240.1 r0472 | r0474 | r0475 - 
6241.1 r0472 | r0474 | r0475 - 

50484.1 r0472 | r0474 | r0475 - 
22934.1 RPI | r0249 Yes 
10558.1 SERPT Yes 
9517.1 SERPT Yes 

55304.1 SERPT Yes 
259230.1 SMS Yes 
6713.1 SQLEr Yes 
2222.1 SQLSr Yes 
7298.1 TMDS Yes 
1595.1 r0781 Yes 
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Table S2.8:  Gene essentiality analysis. List of genes that are essential in the in the reduced 
Recon 3D models, and the corresponding reactions associated to these genes. The third column 
indicates if the gene is essential in the GEM. 

GENE REACTIONS Essential 
in GEM 

1738.1 GCC2am | GCC2bim | GCC2cm | GCCam | GCCbim | GCCcm | PDHm | r1154 - 
8050.1 2OXOADOXm | AKGDm | PDHm - 
1743.1 2OXOADOXm | AKGDm - 
2531.1 3DSPHR Yes 

10606.1 AIRCr | PRASCS - 
790.1 CBPS | ASPCTr | DHORTS Yes 
7108.1 C14STRr - 

50814.1 C3STDH1Pr | C4STMO2Pr | C3STDH1r Yes 
54675.1 CLS_hs Yes 

51727.1 UMPK2 | UMPK3 | UMPK4 | UMPK5 | UMPK7 | UMPK | CYTK1 | CYTK10 | CYTK6 
| CYTK8 | CYTK7 - 

1717.1 DHCR72r | DHCR71r - 
1723.1 DHORD9 Yes 
4597.1 DPMVDc | DPMVDx Yes 

10682.1 EBP1r | EBP2r Yes 
2194.1 KAS8 - 
1719.1 DHFR | r0224 Yes 
2618.1 r0666 - 
3158.1 HMGCOASim - 
4047.1 LNSTLSr Yes 
4598.1 MEVK1c | MEVK1x Yes 

51477.1 MI1PS | HMR_6572 Yes 
1841.1 DTMPK | NDP8 - 
7372.1 ORPT | OMPDC Yes 

114971.1 PGPP_hs - 
9489.1 PGPPT Yes 

10654.1 PMEVKc | PMEVKx Yes 
10558.1 SERPT Yes 
9517.1 SERPT Yes 

55304.1 SERPT Yes 
259230.1 SMS - 
6713.1 SQLEr Yes 
2222.1 SQLSr Yes 
2819.1 r0202 | G3PD1 | HMR_0478 Yes 
875.1 CYSTS Yes 

22934.1 r0249 | RPI - 
50484.1 r0472 | r0474 | r0475 - 
6240.1 r0472 | r0474 | r0475 - 
6241.1 r0472 | r0474 | r0475 - 
3156.1 r0488 | HMR_4630 Yes 
1595.1 r0781 - 
2987.1 GK1 - 
471.1 AICART | IMPC - 
5471.1 GLUPRT - 
5198.1 PRFGS - 
7298.1 TMDS Yes 
7384.1 CYOR_u10mi | CYOOm2i - 
7388.1 CYOR_u10mi | CYOOm2i - 
4519.1 CYOR_u10mi | CYOOm2i - 

10975.1 CYOR_u10mi | CYOOm2i - 
7385.1 CYOR_u10mi | CYOOm2i - 
7386.1 CYOR_u10mi | CYOOm2i - 
1537.1 CYOR_u10mi | CYOOm2i - 
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27089.1 CYOR_u10mi | CYOOm2i - 
7381.1 CYOR_u10mi | CYOOm2i - 
1351.1 CYOOm3i | CYOOm2i - 
1347.1 CYOOm3i | CYOOm2i - 
1329.1 CYOOm3i | CYOOm2i - 
1327.1 CYOOm3i | CYOOm2i - 

341947.1 CYOOm3i | CYOOm2i - 
1350.1 CYOOm3i | CYOOm2i - 
1349.1 CYOOm3i | CYOOm2i - 
1339.1 CYOOm3i | CYOOm2i - 
1345.1 CYOOm3i | CYOOm2i - 
9377.1 CYOOm3i | CYOOm2i - 

170712.1 CYOOm3i | CYOOm2i - 
1340.1 CYOOm3i | CYOOm2i - 
1337.1 CYOOm3i | CYOOm2i - 

 

Reaction-Gene expression 

Table S2.9:  Reactions with gene expression. Number of reactions associated to expressed 
genes in the corresponding NCI60 leukemia cell lines. 

MODEL 
Reduced 

Recon2 

Reduced 

Recon2 Smin 

Reduced 

Recon3 

Reduced 

Recon3 Smin 

Total number 
of reactions 

1429 1451 1691 1738 

Number of reactions 

with GPRs 
1194 1215 1282 1317 

Number of leukemia 

NCI60 expressed 

reactions 

1190 1211 1281 1316 

% of expressed 

reactions w.r.t. total 

number of reactions 

83.28% 83,46% 75.75% 75.72% 

% of expressed 

reactions w.r.t. 
number of reactions 

with GPRs 

99.66% 99.67% 99.92% 99.92% 
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Thermodynamic parameters used in the curation of the human GEMs 

Table S2.10: Thermodynamic parameters. Thermodynamic properties used for the 
compartments in the models. 

Compartment pH 
Δ Ψ 

[mV] 

Ionic 

Strength 
[M] 

Concentrations 

range [M] 

cytosol 7.2 0 

0.15 
[10-11 – 0.08] 

mitochondria 8 -155 

Inner-mitochondria membrane 

space (*) 
7.2 

0 

vacuole 7 0 

peroxisome 7 12 

Golgi apparatus 6.35 0 

endoplasmic reticulum 7.2 0 

nucleus 7.2 0 

lysosome 4.7 19 

extracellular 7.4 30 [10-11 – 0.1] 
(*) only the Recon 3D models have this compartment 

 

References for pH values:  

- Casey et al. Sensors and regulators of intracellular pH. Nature Reviews, 2010 

- Alberts et al. Molecular Biology of the cell. 4th ed New York: Garland Science, 2002 
Reference for membrane potential and ionic strength:  

- Haraldsdóttir et al. Quantitative Assignment of Reaction Directionality in a 
Multicompartmental Human Metabolic Reconstruction. Biophysical Journal, 2012 

 

 

 



Analyzing human metabolism with reduced genome-scale models 

 
64 

  



 

65 

 Model-based data 

integration and minimal network 

enrichment to identify metabolic 

differences across cancer types 
 

 

In this chapter, we apply a suite of methods to integrate data in metabolic models 

to build cancer-specific models and we identify the underlying metabolic functions for the 
genetic alterations experienced by different tumor cells. A manuscript with the content of 

this chapter is in preparation to be published. 

 

 Introduction 

Cancer research to decipher and understand the cellular alterations occurring as cancer 

develops and progresses experienced an enormous advance in the last century [1]. 
However, the molecular mechanisms underlying this disease remain still unknown. 

During the last decades, the advances in experimental data extraction and processing 
have allowed to study cancer at different scales: from the molecular to the systems level; 

from the genetic mutations and signaling alterations to the metabolic reprogramming in 
cancer cells and the evasion of the immune system [2, 3]. These modifications support 

the survival and fast proliferation of cancer cells and their adaptation to different 
environmental conditions, causing resistance to existing cancer therapies [4, 5]. In 

particular, the metabolic alterations affect nutrient assimilation, biosynthesis of growth 
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precursors, bioenergetics, and redox balance, which enhance the metabolic pathways 

used for survival and proliferation of cancer cells in the tumor microenvironment [6, 7]. 

The association between metabolism and cancer has created a resurgence of interest in 

the fields of systems biology and metabolic modeling to analyze and understand the 
metabolic changes occurring in cancer cells, both with respect to their healthy 

counterparts and across different types of cancer. Modeling the different phenotypes of 
healthy and cancer cells will help to guide more effective therapies to prevent, diagnose, 

and treat cancer [8, 9]. The different metabolic phenotypes emerge from differences in 

the pathways that the cells use to synthesize the metabolites required to perform cellular 
functions. Genome-scale models (GEMs) are representations of the cellular metabolism 

of a specific organism. They are reconstructed based on the genome of the organism, 
and they contain gene-protein-enzyme associations and the stoichiometric relationship 

of the reactions and metabolites [10]. GEMs have been extensively used to understand 
the metabolic alterations in cancer cells [11-17]. 

With the ever-expanding collection of data from different sources, tissues, cells, and 

patients, there is an increasing development of methods to analyze and understand the 

data using GEMs as scaffolds. Such methods integrate data to generate context-specific 
metabolic models that are used to classify the differences and similarities of the 

metabolism at the genome-scale across samples, and they provide a remarkable derived 
delineation of the genotype-phenotype relationships. Some of the methods derived in 

the last years include iMAT [18], tINIT [19], mCADRE [20], FASTCORE [21] and MBA 
[22]. Although the derived context-specific models are not consistent among methods 

[23] and they depend on thresholds and parameters defined within each method, they 
have been proven to be useful in the study of metabolism in several organisms [24, 25].  

These models can be further improved to include a more detailed description of the 
bioenergetics of the cell and to integrate quantitative metabolomics in the models. 

Moreover, in many cases, the large size and complexity of GEMs, together with poor 
data coverage, hamper the study of metabolism. In order to overcome these challenges, 

methods to account for the thermodynamic properties of the metabolites and reactions 
[26-29] and to generate reduced versions of the GEMs focusing on specific parts of 

metabolism [30, 31] were created.  
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In this work, we introduce a suite of methods and a workflow that (i) integrate exo-

metabolomics and exo-fluxomics data to define the interactions of the cells with their 

environment, (ii) use transcriptomics data and metabolic flux balance analysis to identify 
the active transport reactions specific for each cell type and (iii) maximize the consistency 

of the metabolic reaction rates with the transcriptomics data assigning deregulation to 
the reaction rates based on the deregulation of their associated genes to translate how 

the deregulation of gene expression is reflected in the deregulation of metabolic 
pathways and their flux activities. 

We applied this workflow to generate three cancer-type-specific models for breast 
cancer, colon cancer, and ovarian cancer by integrating metabolomics, fluxomics, and 

transcriptomics data from the NCI60 cancer cell lines [32] into a reduced version of the 
human GEM Recon 3D [33]. We used the developed cancer-specific metabolic models 

to identify metabolic differences among them, including the essentiality of metabolic 
genes and enzymes, and the flexibility of reaction rates, subject to the specific tumor 

microenvironment as it is defined by the nutrient composition and requirements of each 
cancer. We identified a large number of deregulations in the metabolic fluxes and 

pathways that could not be captured by conventional gene expression and phenotypic 
analysis. Furthermore, we characterized cancer metabolic phenotypes by defining 

metabolic tasks for each phenotype and extracting the associated subnetworks for every 

metabolic task in each cancer type. We next performed subnetwork enrichment analysis 
to explore the deregulation of the minimal networks and assign deregulation to the 

metabolic tasks. We identified the cancer requirements for eleven metabolic tasks that 
are associated to seven phenotypes in cancer cells. 

 

 Results 

3.2.1 Workflow overview 

The workflow that we developed integrates data from different scales to identify cancer-

type specific deregulations in metabolic pathways (Figure 3.1). The Data Integration 
component is composed of three steps: first, we select a metabolic network model which 

is not specific to a tissue or cancer type, next we integrate omics data to define the 
“network topology”, and to determine the “network physiology”. In the first step, we use 
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a model based on the latest human genome-scale metabolic model, either the full 

version, Recon 3D, or a reduced version. In the second step, we integrate metabolomics 

and fluxomics to directly constrain the bounds of the corresponding metabolites and 
transport reactions of the model. In addition, we use the transcriptomics data qualitatively 

to define the network topology by selecting the transport reactions that should be present 
in each cell type and which are not identified by the exo-metabolomics and exo-fluxomics 

data directly. In the third step, the network physiology is defined using the method TEX-
FBA [32], which integrates into the model transcriptomics and proteomics data by 

constraining the maximum number of reaction rates according to the expression profile. 
These three steps generate physiology-specific metabolic models that have an adequate 

representation of the metabolism of a particular type of cell under specific physiological 
conditions. 

Next, we processed the context-specific models through the Pathway Deregulation 
component. In this second part of the workflow, we defined a set of metabolic tasks that 

represent the underlying phenotypes of the physiology, and we used the cancer-specific 
models to generate the minimal subnetworks required to satisfy each metabolic task. 

Then, we used the method minimal network enrichment analysis (MiNEA) [33] to perform 
pathway enrichment analysis and to identify the significantly deregulated minimal 

subnetworks and their associated tasks in each cancer type. A comparison of the 

findings from MiNEA allows to identify significant differences and similarities in the 
molecular level deregulation across different cancer physiologies.  
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Figure 3.1. Overview of the workflow for data integration and pathway enrichment analysis. 
The workflow is divided in two parts. In the first part, Data integration, physiology-specific models 
are generated. The network topology and the network physiology are defined by integrating 
transcriptomics, proteomics, metabolomics, and fluxomics data into the generic metabolic model. 
In the second part, Pathway deregulation, the physiology specific models are used to generate 
minimal networks that represent a set of metabolic tasks for the study of specific cancer 
phenotypes. Then, the method MiNEA is used to perform minimal network enrichment analysis 
for the metabolic tasks. 

 

3.2.2 Building cancer-specific models 

The ever-increasing size of the human GEMs, including thousands of reactions and 

metabolites, hinders the analysis of the metabolic subnetworks of interest based on the 

changes observed in the expression data. Using a reduced model rather than the 
corresponding GEM facilitates the study of specific parts of metabolism and the 

comparison of metabolic alterations in specific pathways across physiologies. In 
addition, the computational complexity dramatically decreases when using a reduced 

model, enabling access to new results. 

We used the redHUMAN workflow established in Chapter 2, to generate a 

thermodynamically curated reduced-version of the human GEM Recon 3D [33] around 
11 metabolic subsystems that have been reported to be altered in cancer cells, namely,  
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glycolysis, pentose phosphate pathway, citric acid cycle, serine, glycine, alanine and 

threonine metabolism, glutamate metabolism, urea cycle, oxidative phosphorylation, 

ROS metabolism, arginine and proline metabolism, purine metabolism, and pyrimidine 
metabolism (Materials and Methods). The systematic framework used to reconstruct the 

redHuman reduced model ensures its consistency with Recon 3D, the corresponding 
complete GEM. The redHuman reduced model is used as a generic metabolic model to 

build context-specific models for three cancer types, namely, breast cancer, colon 
cancer, and ovarian cancer, by integrating omics data from the NCI60 cancer cell lines 

following the previously defined workflow. 

The human GEM Recon 3D was built as a model not specific for any cell-type nor tissue; 

thus, it includes a generic collection of biochemical reactions encoded in the human 
genome. This non-specificity is inherited by the redHuman reduced model. However, 

each tissue-specific cell type only expresses a portion of those genes, which encode 
only the enzymes that characterize the metabolism of the cell type. Therefore, leaving in 

the model all the alternative enzymes that are expressed in the human genome gives 
too much flexibility to the network miss-representing the specific physiology under study. 

Furthermore, on each tissue, cells have access to specific nutrients, and they secrete 
certain compounds to the extracellular medium. We captured these characteristics in the 

context-specific metabolic models by (i) defining the network topology according to the 

omics data and the genes that are expressed in the specific tissue, and (ii) defining the 
network physiology by constraining the metabolic reaction rates according to the 

expression data. 

Within this approach, we identified deregulation in three levels: (i) gene deregulation, as 
it is defined by the transcriptomics data, (ii) enzyme deregulation, as the hypothetic 

reactions that are deregulated based on the transcriptomics data and the gene-protein-
reaction (GPR) rules from the metabolic model, and (iii) reaction deregulation, as the 

deregulated reactions inferred from the workflow. In the following discussion, we will use 

these three deregulation terms distinctively as gene deregulation, enzyme deregulation, 
and reaction deregulation. 

i. Defining the network topology for the specific cancer type 

An essential aspect that defines the metabolism inside the cells is the ability of cells to 
transport metabolites from the extracellular and across intracellular compartments. 
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Given the genetic profile of each tissue, a specific set of transporters are expressed. A 

well-studied case is the transport of glucose [34], for which there exist two main families 

of transporters: the sodium-glucose linked transporters (SGLTs) and the facilitative 
glucose transporters (GLUTs). Among them, GLUT1 and GLUT2 are mainly expressed 

in hepatocytes, GLUT4 is expressed in heart, skeletal muscle, adipose tissue, and brain, 
and SGLT1 is expressed in intestinal cells. Similarly to glucose, other metabolites, 

including lactate, amino acids, and inorganics, can be transported by several enzymes. 
The tissue-specificity of these transporters is not yet well characterized at a genome-

scale, and thus we derived a computational approach to describe the transport of 
metabolites across compartments in the context-specific models.  

First, we integrated omics data from the breast, colon, and ovarian NCI60 cancer cell 
lines into each corresponding cancer-specific model. The data included concentrations 

of 115 medium metabolites, the uptake and secretion rates for those extracellular 
metabolites, transcriptomics data for 21212 genes, and doubling times for each cancer 

cell line (Materials and Methods). We integrated exo-metabolomics for 91 metabolites 
and exo-fluxomics values for 83 reactions into the models using the TFA formulation 

(Materials and Methods). We additionally constrained the growth rate based on the 
doubling time of each cancer type, the ATP maintenance reaction rate to 

1.07mmol/(gDW·h) [35], and the oxygen uptake to 2 mmol/(gDW·h) [12]. The omics data 

allowed to constrain the space of reaction rates and metabolite concentrations in 
agreement with the corresponding physiology. By integrating the physiological conditions 

described by the metabolomics and fluxomics data into the generic reduced model, we 
generated three cancer models for breast, colon, and ovarian cancers. 

Then, we defined in the cancer-specific models the transport reactions specific for each 

cancer type based on the expression profile and the metabolic requirements of the 
models. We first ensured that the electron transport chain reactions (classified as 

transporters as they pump protons between the mitochondria and the inner-

mitochondrial membrane), as well as the transport reactions for small metabolites, 
remained in the models (Materials and Methods). 

Next, we accounted for the cancer-type-specificity of the transport reactions by 

identifying the enzymes associated with expressed genes (Materials and Methods), 
assuming that if the gene is expressed, then the enzyme may be available, and the 
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corresponding reaction may take place. The generic redHuman reduced model has a 

total of 1377 transport reactions. Based on the expression of the genes in the 

transcriptomics data of the NCI60 cell lines and the gene-protein-reaction rules in the 
metabolic model, the enzymes catalyzing 1026 transport reactions are expressed in the 

three cancers but with a different deregulation profile on each cancer type (Figure 3.2 A 
and B). Colon cancer has the highest number of reactions associated with upregulated 

enzymes (256 reactions), followed by ovarian cancer (222) and breast cancer (211). On 
the contrary, breast cancer contains almost twice the number of transport reactions 

associated with downregulated enzymes than the other two cancers (183 vs. 87 in colon 
cancer and 102 in ovarian cancer). The number of transport reactions associated with 

not-deregulated enzymes is relatively similar across cancer types (between 683 and 702 
reactions). 

Finally, we used the redHuman reduced model to identify the additional transport 
reactions for which we could not assign expression data, and that should be active in 

order to allow the metabolic model to meet the observed growth phenotype. To this end, 
we formulated a mixed-integer linear programming (MILP) optimization problem that 

identified, from the 351 transport reactions that lacked gene-protein-reaction 
associations in the models, the minimum number of transport reactions required by each 

cancer model for the synthesis of biomass and we enumerated all the alternative sets of 

minimum size (Materials and Methods).  

We identified 21 transport reactions that should be included in all the cancer models. 
These reactions transport mainly intermediates for nucleotide synthesis and cholesterol 

synthesis between cytosol and endoplasmic reticulum, deoxynucleotides from the 
cytosol to the nucleus, and intermediates of amino acid metabolism and citric acid cycle 

between extracellular and cytosol (Table S3.1). Moreover, the breast cancer model 
requires the transport of four additional compounds, namely, isocitrate, glucuronate, and 

creatinine between extracellular and cytosol, and L-isoleucine between mitochondria and 

cytosol. The colon cancer model needs transport reactions for glucuronate, creatinine, 
glyceraldehyde, adenosyl-homocysteine, and xanthine between extracellular and 

cytosol. Finally, the transport of L-isoleucine between mitochondria and cytosol, and 
adenosyl-homocysteine, xanthine, and dimethylglycine between extracellular and 

cytosol were required in the ovarian cancer model (Table S3.1).  
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Figure 3.2. Analysis of cancer-specific transport reactions. (A) Expression profile for the 
enzymes of 1026 transport reactions across the three cancer types, breast cancer, colon cancer, 
and ovarian cancer. Green represents upregulated enzymes, red downregulated enzymes, and 
white those that are not deregulated. (B) Transport reactions kept in the cancer models based on 
gene expression and the model requirements for growth. Overlap of transport reactions per 
cancer type based on their deregulation and the model requirements (U: upregulated, N: not 
deregulated, D: downregulated, M: required by the model).  

 

Following this pipeline, we constrained the topology of the cancer-specific models 

regarding transport reactions to 1091, 1092, and 1091 transport reactions for breast 
cancer, colon cancer, and ovarian cancer, respectively.  

Overall, this analysis highlights the differences in transport reactions across cell types, 
and more importantly, it constrains the network topology of the corresponding model to 

the specific cell type, removing alternative pathways that are not active in the specific 
physiological conditions.  

ii. Defining the cancer-specific physiology in the model 

The physiology of each cell type is defined by a specific gene expression profile, which 
can be identified with transcriptomics data. The set of genes that are expressed on each 
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Furthermore, quantitative transcriptomics data give information on the level of 

expression of the genes. We mapped this data to investigate the deregulation of the 

metabolic enzymes, assuming that a higher expression in the genes would lead to a 
higher quantity of metabolic enzymes and, therefore, to a higher flux through the 

metabolic pathways that these enzymes catalyze. Note here that if proteomics data are 
available, the same procedure can be followed using proteomics instead of 

transcriptomics data. 

We used a recently developed method named TEX-FBA [36] to constrain the metabolic 

pathways in the models according to the transcriptomics profile. Given the 
transcriptomics data from the NCI60 cell lines for each cancer type, we derived the 

corresponding gene expression profiles per cancer-type (Materials and Methods). Then, 
using the gene-protein-reaction (GPRs) rules from the model, we assigned the 

consequent deregulation to the enzymes, and we maximized the number of reaction 
rates that could be constrained simultaneously to concur with the enzyme deregulation 

profile (Materials and Methods). The flexibility of the metabolic models allows us to 
enumerated alternative solutions that maximize the consistency between the 

deregulation of measured genes and simulated-reaction deregulation. We then identified 
the reactions that consistently appear in every alternative solution. We assigned with 

higher confidence that a reaction will be deregulated if it appears in all, or in a large 

number, of alternative sets. 

Based on the transcriptomics data for breast cancer, 377 reactions were catalyzed by 
over-expressed enzymes and 186 reactions by lowly-expressed enzymes, resulting in a 

total of 563 reactions associated with deregulated enzymes. The stoichiometry, together 
with the metabolic demands of the pathways, introduce additional constraints to the 

reaction rates, often impeding to accommodate all the enzyme deregulations at the same 
time in the network. In the breast-cancer-specific model, a maximum of 559 out of the 

563 reactions associated with deregulated enzymes could be constrained 

simultaneously to agree with the corresponding deregulation, and there exist 16 
alternative sets of 559 reactions associated to deregulated enzymes. Finally, the rates 

of the 555 reactions that were part of all the alternatives are constrained in the breast-
cancer-specific model to map the deregulation of their enzymes; specifically, 374 

upregulated and 181 downregulated. We then clustered these 555 reactions based on 
their associated subsystems (Figure 3.3). Among the most upregulated subsystems, we 
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found the amino sugar metabolism, the nucleotide related pathways, the citric acid cycle, 

the oxidative phosphorylation pathway, and glycolysis. On the contrary, histidine 

metabolism was the most downregulated pathway which correlates with recent studies 
that report that a diet rich in histidine, and an increased histidine catabolism, increase 

the efficacy of the anticancer drug methotrexate [37, 38]. Moreover, we observed 
subsystems that contain both upregulated and downregulated reactions, as it is the case 

for tyrosine metabolism, tryptophan metabolism, urea cycle, transports, and pyruvate 
metabolism, among others.  

Looking at the transcriptomics data, it would be hard to assign deregulation to the 
oxidative phosphorylation subsystem, as 33% of the reactions are associated with 

upregulated enzymes and 22% to downregulated enzymes (Figure 3.3 A). However, the 
integrative analysis provides strong evidence that the oxidative phosphorylation 

subsystem should be upregulated and interestingly 25% of enzymes for which we could 
not assign deregulation based on the transcriptomics, the flux balance solution suggests 

that they should be upregulated. Similarly, the transcriptomics data only suggest the 
deregulation of 44.7% of the enzymes in the glycolysis pathway. However, our analysis 

proves that 63.6% of the reactions in glycolysis are upregulated, correctly predicting the 
upregulation of the metabolic glycolytic fluxes characteristic of the Warburg effect. 

The same procedure was used to define the reaction rates for the context-specific 
models for colon and ovarian cancer. In the case of colon cancer, the rates of 560 out of 

568 reactions associated with de-regulated enzymes (464 up- and 104 down-regulated) 
could be simultaneously constrained according to their deregulation. From those 560, 

559 reactions were consistent across 48 alternatives. The transcriptomics data for 
ovarian cancer associated 338 reactions from the ovarian cancer model to upregulated 

enzymes and 95 reactions to downregulated enzymes. In this case, a maximum of 431 
reactions could be constrained to agree with the deregulation of their enzymes. After 

analyzing the consistency across the 4 existing alternatives, 429 reaction rates were 

constrained in the model to operate according to the deregulation of their enzymes.  

Analyzing how the models can accommodate the fluxes to agree with the expression 
data, we observed that the three cancer types mostly upregulated the central carbon 

pathways, glycolysis, citric acid cycle, and pentose phosphate pathway, as well as, the 
nucleotide metabolism and alanine, aspartate and arginine and proline metabolism 
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(Figure 3.3) which are well-known pathways that are upregulated in cancer cells [39-42]. 

Interestingly, colon cancer presents a higher upregulation of folate metabolism than 

breast and ovarian cancer. It has been previously reported that folate metabolism plays 
an important role in colon cancer [43], and has been studied as a possible target for 

colon cancer [44, 45]. Regarding the downregulated pathways, all three cancers mostly 
downregulate genes associated with histidine metabolism and lysine metabolism [46]. 

Colon cancer shows a higher downregulation of the metabolism of aromatic amino acids 
(phenylalanine, tyrosine, and tryptophan), which is in agreement with previous studies 

[47] and an upregulation of the starch and sucrose metabolism which is not deregulated 
in the other two cancers. Dietary sugars, such as sucrose, were associated with an 

increased risk of colon cancer [48]. 
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Figure 3.3. Deregulation of subsystems in the context-specific models. (A) Comparison of 
deregulated subsystems considering all the transcriptomics data and considering only the 
deregulated reactions that can have a metabolic rate consistent with the transcriptomics data and 
are common in all alternatives.  (B) Percentage of deregulated subsystems based on the common 

Breast Cancer Colon Cancer Ovarian Cancer

Breast

Colon

Ovarian

Al
an

in
e 

an
d 

as
pa

rta
te

 m
et

ab
ol

is
m

Am
in

os
ug

ar
 m

et
ab

ol
is

m
Ar

gi
ni

ne
 a

nd
 p

ro
lin

e 
m

et
ab

ol
is

m
Be

ta
-A

la
ni

ne
 m

et
ab

ol
is

m
Bi

le
 a

ci
d 

sy
nt

he
si

s
C

ho
le

st
er

ol
 m

et
ab

ol
is

m
C

itr
ic

 a
ci

d 
cy

cl
e

O
xi

da
tiv

e 
Ph

os
ph

or
yl

at
io

n

Fa
tty

 a
ci

d 
ox

id
at

io
n

Fa
tty

 a
ci

d 
sy

nt
he

si
s

Fo
la

te
 m

et
ab

ol
is

m
G

al
ac

to
se

 m
et

ab
ol

is
m

G
lu

ta
m

at
e 

m
et

ab
ol

is
m

G
lu

ta
th

io
ne

 m
et

ab
ol

is
m

G
ly

ce
ro

ph
os

ph
ol

ip
id

 m
et

ab
ol

is
m

G
ly

ci
ne

, s
er

in
e,

 a
la

ni
ne

, a
nd

 th
re

on
in

e 
m

et
ab

ol
is

m

G
ly

co
ly

si
s/

gl
uc

on
eo

ge
ne

si
s

G
ly

ox
yl

at
e 

an
d 

di
ca

rb
ox

yl
at

e 
m

et
ab

ol
is

m
H

is
tid

in
e 

m
et

ab
ol

is
m

Ly
si

ne
 m

et
ab

ol
is

m
M

et
hi

on
in

e 
an

d 
cy

st
ei

ne
 m

et
ab

ol
is

m
M

is
ce

lla
ne

ou
s

N
AD

 m
et

ab
ol

is
m

N
uc

le
ot

id
e 

in
te

rc
on

ve
rs

io
n

N
uc

le
ot

id
e 

m
et

ab
ol

is
m

N
uc

le
ot

id
e 

sa
lv

ag
e 

pa
th

w
ay

Pe
nt

os
e 

ph
os

ph
at

e 
pa

th
w

ay
Ph

en
yl

al
an

in
e 

m
et

ab
ol

is
m

Pu
rin

e 
ca

ta
bo

lis
m

Pu
rin

e 
sy

nt
he

si
s

Py
rim

id
in

e 
ca

ta
bo

lis
m

Py
rim

id
in

e 
sy

nt
he

si
s

Py
ru

va
te

 m
et

ab
ol

is
m

R
O

S 
de

to
xi

fic
at

io
n

St
ar

ch
 a

nd
 s

uc
ro

se
 m

et
ab

ol
is

m

Te
tra

hy
dr

ob
io

pt
er

in
 m

et
ab

ol
is

m

Tr
an

sp
or

t, 
ex

tra
ce

llu
la

r

Tr
an

sp
or

t, 
m

ito
ch

on
dr

ia
l

Tr
an

sp
or

t, 
pe

ro
xi

so
m

al
Tr

ia
cy

lg
ly

ce
ro

l s
yn

th
es

is

Tr
yp

to
ph

an
 m

et
ab

ol
is

m

Ty
ro

si
ne

 m
et

ab
ol

is
m

U
re

a 
cy

cl
e

Va
lin

e,
 le

uc
in

e,
 a

nd
 is

ol
eu

ci
ne

 m
et

ab
ol

is
m

Vi
ta

m
in

 B
2 

m
et

ab
ol

is
m1

0

-1

Breast

Colon

Ovarian

A

B

a

b

Subsystems deregulation based on:
 a. transcriptomics data
 b. data consistent with metabolic network

Deregulation of subsystems consistent with the network per cancer type

0 20 40 60 80 100
Glycerophospholipid metab.
Glycolysis/gluconeogenesis

Tryptophan metabolism
Urea cycle

Pyrimidine catabolism
Transport, mitochondrial

Pyruvate metabolism
Tyrosine metabolism

Lysine metabolism
Transport, extracellular

Histidine metabolism
Transport, peroxisomal
Cholesterol metabolism

Glycerophospholipid metab.
Tyrosine metabolism

Purine synthesis
Tryptophan metabolism

Bile acid synthesis
Fatty acid synthesis

Methionine & cysteine metab.
Beta-Alanine metabolism

Urea cycle
Gly, ser, ala, & thr metab.

ROS detoxification
Fatty acid oxidation

Pyrimidine synthesis
Transport, mitochondrial

Transport, extracellular
Glutamate metabolism

NAD metabolism
Val, leu, & isoleu metab.

Pyrimidine catabolism
Arginine & proline metab.

Purine catabolism
Oxidative Phosphorylation

Folate metabolism
Glyoxyl. & dicarboxyl. metab.

Glutathione metabolism
Galactose metabolism

Pentose phosphate pathway
Miscellaneous

Vitamin B2 metabolism
Alanine & aspartate metab.
Glycolysis/gluconeogenesis

Oxidative Phosphorylation
Nucleotide interconversion

Citric acid cycle
Nucleotide salvage pathway

Nucleotide metabolism
Aminosugar metabolism

0 20 40 60 80 100
Glycerophospholipid metab.

Nucleotide interconversion
Tryptophan metabolism

Urea cycle
Transport, extracellular

Gly, ser, ala, & thr metab.
Pyrimidine catabolism

Transport, mitochondrial
Pyruvate metabolism

Lysine metabolism
Tyrosine metabolism

Phenylalanine metabolism
Histidine metabolism

Transport, peroxisomal
Tyrosine metabolism

Val, leu, & isoleu metab.
Glycerophospholipid metab.

Tryptophan metabolism
Gly, serine, ala, & thr metab.

Bile acid synthesis
Cholesterol metabolism

Pyrimidine synthesis
Methionine & cysteine metab.

ROS detoxification
Transport, mitochondrial

Urea cycle
Transport, extracellular
Pyrimidine catabolism

Beta-Alanine metabolism
Arginine & proline metab.

Glyoxyl. & dicarboxyl. metab.
Fatty acid oxidation

NAD metabolism
Purine catabolism

Triacylglycerol synthesis
Galactose metabolism

Miscellaneous
Glutamate metabolism

Pyruvate metabolism
Pentose phosphate pathway

Vitamin B2 metabolism
Alanine & aspartate metab.
Oxidative Phosphorylation

Glutathione metabolism
Glycolysis/gluconeogenesis
Nucleotide interconversion

Purine synthesis
Fatty acid synthesis
Folate metabolism

Citric acid cycle
Starch & sucrose metabolism
Nucleotide salvage pathway

Nucleotide metabolism
Aminosugar metabolism

0 20 40 60 80 100

Urea cycle
Glycolysis/gluconeogenesis
Nucleotide interconversion

Tryptophan metabolism
Transport, extracellular

Pyruvate metabolism
Tyrosine metabolism

Pyrimidine catabolism
Transport, mitochondrial

Lysine metabolism
Histidine metabolism

Cholesterol metabolism
Glycerophospholipid metab.

Transport, mitochondrial
Tyrosine metabolism

Purine synthesis
Val, leu, & isoleu metab.
Tryptophan metabolism

Fatty acid synthesis
Urea cycle

Pyrimidine synthesis
Gly, ser, ala, & thr metab.

ROS detoxification
Purine catabolism

Glutamate metabolism
Transport, extracellular

NAD metabolism
Arginine & proline metab.

Pyruvate metabolism
Miscellaneous

Folate metabolism
Pentose phosphate pathway
Glyoxyl. & dicarboxyl. metab.

Glutathione metabolism
Oxidative Phosphorylation
Nucleotide interconversion

Glycolysis/gluconeogenesis
Alanine & aspartate metab.

Citric acid cycle
Nucleotide metabolism

Aminosugar metabolism



Studying cancer metabolism and deregulation of metabolic tasks 

 
78 

reactions across alternatives whose reaction rates can be consistent with the transcriptomics data 
for each cancer type. 

 

This workflow allowed us to integrate expression data in the metabolic models not only 

qualitatively, that is, knowing which are the enzymes present, but also in a quantitative 

form by constraining the fluxes of the network according to the deregulation of the genes 
that code for the enzymes that catalyze them. Furthermore, we have developed a 

systematic procedure to analyze the consistency of the data with the metabolic flow and 
explain with the network the metabolic reasons for the deregulation of the genes in the 

corresponding cancers.  

Moreover, based on the transcriptomics data, we usually focus on genes that are up- or 
down-regulated, and we assume with a certain confidence that the corresponding 

enzymes and metabolic pathways will be deregulated accordingly. When some genes 

associated with a pathway are upregulated, and some other genes are downregulated, 
we cannot immediately assign a specific deregulation to the pathway. The integration of 

the data in the GEMs and the workflow here proposed allows to identify fluxes that must 
be deregulated in order to preserve the metabolite mass balances when only a subset 

of them is considered to be deregulated based on metabolomics, proteomics and 
transcriptomics data. 

3.2.3 Cancer phenotype analysis with metabolic models 

As a result of applying the developed workflow, we generated three models representing 
the metabolism of breast, colon, and ovarian cancers, respectively (Figure 3.4 A). We 

used these cancer models to study the metabolic similarities and differences across the 

corresponding cancer physiologies.  

We first performed thermodynamic-flux variability analysis while accounting for the 
expression constraints, on each cancer-specific model to characterize the space of 

reaction fluxes (Figure 3.4 B and Figure S3.1). Interestingly, the three cancer models 
present clear differences in their reaction rate variability. In general, colon cancer has a 

higher reaction rate flexibility, which corresponds to a higher growth rate. Reactions such 
as PFK or DPGM do not exhibit a big difference in flux across the three cancer types. 

However, some reactions, including PGK, FUMm, PCm, GTHOm, and ORNTArm 
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present evident differences across their fluxes. There are cases as GAPD where the 

fluxes across the three cancers do not overlap. 

Moreover, there are reactions whose directionality differs among the three cancer types, 

for example, the reaction r0381, which converts hypotaurine to taurine and reduces 
NAD+ to NADH is unidirectional in breast and colon cancer converting taurine to 

hypotaurine, and it is bidirectional in ovarian where hypotaurine can also be converted 
to taurine. Taurine has shown tumor attenuating effects in breast cancer and has been 

reported as a crucial metabolic pathway for breast cancer [49, 50]. Furthermore, it has 

been proven that it conducts apoptosis in colon cancer cells. 

 

Figure 3.4. Cancer phenotype analysis. (A) Cancer-specific models. Number of metabolites, 
reactions, genes, and subsystems in each cancer-specific model. (B) Reaction rate variability 
analysis for the three cancer types. 
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We next analyzed the essential components of the models by performing gene and 

enzyme essentiality analysis on the three cancer models (Materials and Methods). We 

identified 32 genes that are commonly essential across cancer types (Figure 3.5 A). 
These genes code for enzymes mainly from the subsystems nucleotide interconversion 

and cholesterol metabolism. In addition, we identified GMPS as an essential gene in the 
breast cancer and colon cancer models but not in the ovarian cancer model. This gene 

is involved in the de novo synthesis of guanine nucleotides, which have been reported 
to be essential for DNA and RNA synthesis, and they also provide GTP, which is involved 

in a number of cellular processes important for cell division [51]. Furthermore, 
ALDH18A1 was found to be essential only in the colon cancer model. ALDH18A1 is a 

bifunctional enzyme that converts glutamate to glutamate 5-semialdehyde, an 
intermediate in the biosynthesis of proline, ornithine, and arginine [51]. ALDH18A1 has 

been reported as a specific gene for colon and intestinal tissue [52]. 

Single gene essentiality identifies the genes that are necessary to simulate growth in the 

model. However, some enzymes are coded by several genes, and the presence of one 
of them is enough to transcribe the enzyme. In that case, the genes will not be essential, 

but the enzyme may be necessary for a specific physiology when a pathway must be 
functional. We characterized these indispensable parts of the network by performing 

enzyme essentiality, that is, analyzing the enzymes that should be active in the 

corresponding cancer physiology to sustain growth. 

A total of 218 enzymes showed to be essential in the network to display the specific 
phenotypes (Figure 3.5 B). Specifically, 162 enzymes were essential in the breast cancer 

physiology, 201 enzymes were required in colon cancer, and 130 enzymes in the case 
of ovarian cancer. Additionally, we identified eight enzymes that are essential in breast 

cancer but not in the other two cancer physiologies. These enzymes catalyze reactions 
from the pentose phosphate pathway, from serine metabolism, from methionine 

metabolism, and two extracellular transport reactions, suggesting that these pathways 

are more important for breast cancer than in the case of the other two cancers. In the 
case of colon cancer, 49 out of the total 201 (24%) of the essential enzymes were specific 

to this cancer. These specific essential enzymes include mainly extracellular transports, 
and reactions from nucleotide interconversion, tyrosine metabolism, tryptophan 

metabolism, and lipid-related subsystems, among others. Finally, we identified two 
enzymes that were specifically essential for ovarian cancer. One of these two enzymes 
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catalyzes a reaction from the serine pathway, and another one catalyzes an extracellular 

transport reaction. 

 

 

Figure 3.5. Essentiality analysis. (A) Gene essentiality for the three cancer types performed, 
taking into account omics data, thermodynamics, and expression constraints. (B) Enzyme 
essentiality analysis for the three cancer types with the data imposed in the network for 
thermodynamics, metabolite concentrations, reaction rates, and consistency with transcriptomics 
data. 
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3.2.4 From pathways to minimal networks 

The genetic and regulatory changes that accompany disease development and 
progression reflect in modifications in the activity of the enzymes and consequently, in 

altered metabolic profiles that impact the pathways and the overall functioning of the cell. 
The metabolic functions of cells can be represented with metabolic tasks such as the 

synthesis of a metabolite or the activity of specific reactions. An example of a metabolic 
task is the synthesis of phosphatidylserine, which is required for the formation of cellular 

membranes. The classical pathway for the synthesis of phosphatidylserine includes four 
steps starting from glycerol 3-phosphate and acetyl-CoA (Figure 3.6 A). The deregulation 

of any of these four steps compromises the synthesis of the phospholipid. However, the 
deregulation of the pathways providing the precursors can also impact its synthesis. 

We considered all the upstream deregulation effects by identifying the minimal set of 
reactions required to be active for the synthesis of phosphatidylserine. This minimal 

network comprehends not only the classical four steps but also the reactions required 
for the synthesis of the fatty acids that form the tails of the phospholipid and the synthesis 

of the main precursors, glycerol 3-phosphate and acetyl-coA from glycolysis and the citric 
acid cycle, respectively (Figure 3.6 A). Indeed, the deregulation of these additional 

reactions and the pathways that provide the precursors affects the overall synthesis of 
the phospholipid, and we would not have assigned this deregulation to the metabolic 

task if we had looked only at the classical pathway. 

Aiming to study the deregulation of metabolic tasks for the different types of cancer, we 

used MiNEA [53], a method to generate minimal networks (MiNs) required for metabolic 
tasks and to enrich the MiNs based on the deregulation of the genes associated to the 

reactions that compose them. Following the MiNEA workflow, we defined a set of 
metabolic tasks that describe seven phenotypes in cancer cells (Materials and Methods), 

including the Warburg effect (production of lactate), glutamine addiction (production of 

glutamate), reprogramming of energy metabolism (production of ATP through the 
electron transport chain), stress response (production of the reactive oxygen species 

superoxide anion and hydrogen peroxide), reprogramming of pentose phosphate 
pathway (production of ribose 5-phosphate), altered serine pathway (catabolism of 

serine and production of glycine) and phospholipid synthesis (production of 
phosphatidyl-serine, phosphatidyl-choline, and phosphatidyl-myo-inositol). 
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Then, we used the cancer-specific models to generate thermodynamically feasible 

minimal networks (MiNs) associated with each metabolic task, and we enumerated all 

the corresponding alternative reaction sets of minimal size that capture the ability of cells 
to use alternative routes to synthesize the target metabolites (Materials and Methods). 

For each metabolic task, we identified the common reactions across alternatives, known 
as high-frequency reactions (HFRs), which represent the constitutive set of reactions 

that must be active to perform the task within a minimal network (Table 3.1). 

For all the cancer types, glutamine, serine and phosphatidyl-choline presented the 

longest MiN and ribose-5-phosphate the shortest MiN. The metabolic tasks with the 
highest number of alternatives were ribose-5-phosphate in breast cancer, glycine in 

colon cancer and ATP in the case of ovarian cancer, implying that the cells present more 
flexibility to perform these tasks. Analyzing the number of HFRs per metabolic task, we 

observed that more than 40% of the reactions are conserved across alternatives for all 
the metabolic tasks. Colon cancer has the highest percentage of common reactions 

across MiNs, but also the least number of alternatives. Based on these results, we could 
hypothesize that colon cancer cells have less flexibility to perform these metabolic tasks. 

On the other hand, ribose-5-phosphate in breast cancer, lactate in colon cancer and 
superoxide anion in ovarian cancer have the lowest percentage of common reactions 

across alternatives, suggesting a higher diversity for these tasks in comparison with the 

other metabolic tasks here analyzed. 

As an example of a minimal network, we show the subnetworks that represent the 
Warburg effect phenotype (lactate production) for the three cancer types (Figure 3.6 B). 

As expected, the MiN that represents the Warburg effect contains active reactions mainly 
from glycolysis. Interestingly, the results reveal that to have an active glycolysis pathway, 

additional reactions are required, including reactions from the pentose phosphate 
pathway and from the citric acid cycle. It is important to note here that the deregulation 

of these additional reactions will affect the production of lactate. 
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Table 3.1. MiNs per cancer-type for different phenotypes. MiN: Minimal network, HFRs: High-
frequency reactions. Phenotypes and metabolic tasks associated: Warburg effect (lactate), 
glutamine addiction (glutamate), stress response (superoxide anion and hydrogen peroxide), 
energy metabolism (ATP through the electron transport chain), serine pathway (serine and 
glycine), reprogramming of the pentose phosphate pathway (ribose-5P) and phospholipid 
synthesis (phosphatidyl-serine, phosphatidyl-choline, and phosphatidyl-inositol).  

Cancer 
type 

Phenotype 
Metabolic 

Task 

MiN HFRs 

Size 
Number of  
alternatives 

Number Percentage 

Breast 

Warburg effect L-lac 71 69 53 74.65 

Glutamine addiction L-glu 87 20 64 73.56 

Stress response 
O�H 55 96 40 72.72 

H�O� 38 89 21 55.26 

Energy Metabolism ATP & ATPS 63 221 46 73.0 

Serine pathway 
L-ser 87 206 59 67.8 

L-gly 46 81 37 80.4 

PPP rib-5p 31 288 14 45.2 

Lipid Metabolism 

PS 64 250 45 70.3 

PC 87 16 65 74.7 

PI 47 160 34 72.3 

Colon 

Warburg effect L-lac 56 8 31 55.4 

Glutamine addiction L-glu 93 1 93 100.0 

Stress response 
O�H 60 8 50 83.3 

H�O� 43 32 38 88.4 

Energy Metabolism ATP & ATPS 77 1 77 100.0 

Serine pathway 
L-ser 94 7 64 68.1 

L-gly 33 154 23 69.7 

PPP rib-5p 30 3 27 90.0 

Lipid Metabolism 

PS 68 3 52 76.5 

PC 122 1 122 100.0 

PI 56 1 56 100.0 

Ovarian 

Warburg effect L-lac 45 226 36 80.0 

Glutamine addiction L-glu 91 110 69 75.8 

Stress response 
O�H 50 202 26 52.0 

H�O� 58 240 49 84.5 

Energy Metabolism ATP & ATPS 57 295 47 82.5 

Serine pathway 
L-ser 101 1 101 100.0 

L-gly 52 21 37 71.2 

PPP rib-5p 27 16 21 77.8 

Lipid Metabolism 

PS 71 116 40 56.3 

PC 86 100 51 59.3 

PI 47 34 34 72.3 
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Figure 3.6. Minimal Networks. Minimal networks vs classical pathway. (A) representation of the 
classical pathway in KEGG for the synthesis of phosphatidyl-serine and the corresponding 
minimal network, which also includes the upstream pathways, in this case, glycolysis and TCA. 
(B) Minimal networks representing the phenotypes of the Warburg effect for breast, colon, and 
ovarian cancers. For the sake of simplicity in the visualization the networks do not include all the 
reactions from the MiN, but the central pathways that show the main differences among them. 

 

3.2.5 Minimal network deregulation and enrichment analysis 

A common approach to assign functionality to a set of genes from a pathway is to perform 
gene or pathway enrichment analysis, where statistical tests are used to determine the 

importance of the genes in the specific functional set. In this work, we performed instead 
minimal network enrichment analysis, using MiNEA to enrich the set of genes that belong 

to each minimal network (Materials and Methods) for each task. We assigned 
deregulation to the minimal networks by using the transcriptomics data and the GPR 

rules from the model. Then, the significance of the enrichment was tested using a 
hypergeometric test (Materials and Methods). 
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The results show that all the tasks, and the phenotypes, here analyzed are significantly 

upregulated for the three cancers, correlating with the reported evidence. Moreover, the 

production of ATP was the most upregulated task in breast and ovarian cancers while 
the production of L-lactate and phosphatidylserine were the most upregulated tasks in 

colon cancer (Figure 3.7). The analysis shows that the deregulation of the genes highly 
affects the reactions that are required for these metabolic tasks, allowing to assign with 

higher confidence deregulation to the metabolic tasks based on the deregulation of the 
corresponding genes. 

 

Figure 3.7. Deregulation of metabolic tasks. Most significantly deregulated (p<0.001) metabolic 
tasks for each cancer type. 
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 Discussion 

A context-specific model represents with high accuracy the intracellular metabolism of a 
specific type of cell under defined physiological conditions. Context-specific models are 

valuable tools for the study of the metabolic adaptation of cells to different extracellular 
conditions and to compare the intracellular metabolism of different types of cells, for 

example, cells from different tissues, or healthy vs. diseased cells. Different types of cells 
have different gene expression patterns, and consequently, different metabolic enzymes 

available, and thus they manifest differences in the metabolic pathways used to 
synthesize the metabolites required to perform cellular functions. To study these 

differences, we have developed a workflow to build context-specific metabolic models 
by integrating omics data and computational methods to identify the differences in the 

metabolic phenotype expressed by the different types of cells under study. 

In this work, we generated cancer-specific models using as a scaffold a reduced version 

of a thermodynamically curated human genome-scale model, and we used the derived 
cancer-specific models to study the metabolism of cancer cells and the different 

metabolic pathways that the different cancer cells use to survive. The workflow to 
generate cancer-specific models includes a curation of the transport reactions based on 

the corresponding cancer expression data. We considered that all the reactions 

associated with expressed genes were part of the physiology. However, we further 
constrained the enzymes associated with lowly expressed genes to have lower activity 

and those associated with higher expressed genes to sustain higher activity. With this, 
we minimize the bias of removing reactions from the network, and we consistently 

constrain the metabolic flow to the corresponding expression data for the specific 
physiology. 

The transcriptomics data is further used to translate the deregulation of the genes into 

deregulations in the metabolic reactions. The context-specific models here developed 

have proven to be powerful tools to infer deregulation in the metabolic pathways that 
could not be immediately seen in the transcriptomics data. Showing that by constraining 

a subset of reactions to match the measured transcriptomics data, the metabolic network 
imposes a deregulated flux in other pathways that allow the model to achieve the 

simulated phenotype. 
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The essentiality analysis performed with the context-specific models combined with 

experimental analysis can help to further develop the models. Furthermore, it can be 

used as a basis to generate hypotheses that can lead to the discovery of new targets for 
each cancer type and to understand why targeting a protein or gene for one cancer may 

not be valid for another cancer. 

The generated cancer-specific models are used to analyze the deregulation of metabolic 
pathways in the different cancer types and to identify the functionality of the 

deregulations, in terms of metabolic tasks. Our approach allows to characterize the 

alternative pathways that cells may use to respond to changes in the environment. These 
alternatives are also used to overcome the lack of data, describing the possible scenarios 

that better describe the partial data. 

The developed workflow has promising applications in the study of the different cellular 
phenotypes within the tumor microenvironment such as modeling cells from the surface 

of the tumor mass and the cells that are in the hypoxic areas to identify the differences 
in their metabolism triggered by the diverse accessibility to nutrients which compels cells 

to adapt their expression profiles to survive and function [54-57]. 

In this work, we have used cancer data from the NCI60 cancer cell lines based on the 

cancer type; however, an analogous analysis can be performed for different subtypes of 
a specific cancer type, for example, in the case of breast cancer, by generating models 

for the specific type of breast cancer. This will allow to analyze the metabolic signatures 
for the different breast cancer subtypes. Furthermore, the same workflow can be applied 

using other sets of cancer data containing metabolomics, fluxomics, proteomics, and 

transcriptomics, as well as using patient-specific data. In the absence of extracellular 
metabolomics and doubling time, as in the case of primary tissue data, an additional 

analysis would be performed to infer the nutrient requirements based on, for example, 
the expression of the genes and enzymes and the constraints in the metabolic model. 

Finally, the same pipeline can be used for any other tissue, condition, and disease.  

Overall, the models here presented and the analysis performed can be used in 
combination with experimental studies to hypothesize the reasons for which cells change 

their expression profiles. Bringing the opportunity to explore common pathways across 

cell types, metabolic signatures, competition in the tumor microenvironment, and 
metabolic effects of the signal transduction. Moreover, it provides a step forward in the 
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search of clarifying the underlying reasons for cells to become carcinogenic and in the 

discovery of biomarkers and personalized cancer medicine. 

 

 Materials and Methods 

3.4.1 Exometabolomics, transcriptomics data and gene expression per cell line 

In this work, we use cancer omics data from the NCI60 cancer cell lines. We collected 

extracellular metabolomics and metabolite consumption and released values measured 
and reported by Jain et al. [32]. Concentrations and reaction rates were transformed into 

TFA units, that is, mol/L and mmol/(gDW·h), respectively. A conversion of 0.2 ngDW/cell 
was used [12]. In-vitro doubling times and normalized transcriptomics data were obtained 

from the NCI data repository (https://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS4296). 

Growth rates per cell line were calculated, dividing ln(2) over the corresponding doubling 
time. 

Gene expression data were derived from the normalized transcriptomics data. For each 

gene, we analyze its population of transcriptomics across cell lines, and we classify the 
gene as under-expressed in the corresponding cell line, if its sample value is lower than 

the first quartile of the population, or over-expressed, if its sample value is higher than 

the third quartile of the population.  

3.4.2 Cancer-type specific data 

We define the cancer-type specific data considering the NCI60 cell lines corresponding 

to breast cancer (MCF7, MDA-MB-231/ATCC, MDA-MB-468, HS 578T, BT-549, T-47D), 
colon cancer (COLO 205, HCC-2998, HCT-116, HCT-15, HT29, KM12, SW-620), and 

ovarian cancer (IGR-OV1, OVCAR-3, OVCAR-4, OVCAR-5, OVCAR-8, NCI/ADR-RES, 
SK-OV-3). See Table S3.4 for all the cancer cell lines. 

For each cancer type, we define the reaction rates and concentrations values as ranging 
from the lowest value to the highest value of the cell lines that correspond to the cancer 

type.  

We defined the gene expression data per cancer type by analyzing the gene expression 
data across the corresponding cell lines. For each gene, if it is consistently deregulated 
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(up or down) in at least 80% of the samples, we assign the resulting deregulation to the 

gene in the specific cancer type. 

3.4.3 Human generic metabolic model 

The metabolic model is a reduction of the thermodynamically curated human genome-
scale model Recon 3D [33], generated following a recently developed pipeline named 

redHUMAN. The reduction model was generated around 11 subsystems that have been 
reported to be altered in cancer, namely, glycolysis, pentose phosphate pathway, citric 

acid cycle, serine, glycine, alanine and threonine metabolism, glutamate metabolism, 
urea cycle, oxidative phosphorylation, ROS metabolism, arginine and proline 

metabolism, purine metabolism, and pyrimidine metabolism. The model consists of 947 
metabolites, 2316 reactions, and 1063 genes associated with the reactions. It contains 

a total of 63 subsystems, and 106 extracellular metabolites were connected to the initial 

subsystems considering all the alternative pathways of minimal size (parameter Smin in 
redGEMX in the redHUMAN workflow). Moreover, the model contains all the reactions 

that are required to produce the biomass building blocks, including minimal size 
subnetworks to minimal size plus three (parameter Sminp3 in lumpGEM [30, 31]).  

Seeking to have a complete description of the metabolism in the model, we removed the 

lumped reactions and added the reactions of their corresponding subnetworks in the 
model. 

3.4.4 Integrating context-specific metabolomics and fluxomics data 

Metabolomics and fluxomics data for the specific cancer type are integrated as 

constraints in the model. In exact, we use the cancer type omics data to define the lower 
and upper bounds of the corresponding metabolite concentrations and reaction rates in 

the TFA formulation of the model. 

3.4.5 Defining context-specific transport reactions 

Having integrated the metabolomics and fluxomics data that characterize the tissue. The 

selection of the transports is performed as in the following steps: 

1.  Identify the transport reactions associated with expressed genes. These 

reactions will remain on the model. Assuming that the enzymes associated with 
expressed genes may be active. 
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2. Find the reactions associated with the electron transport chain and the transport 

of small molecules such as oxygen, protons, sulfate, phosphate, water, and 

carbon dioxide and the following inorganic molecules: ammonium, potassium, 
sodium, chloride, diphosphate, hydrogen peroxide, superoxide, nitric oxide 

(Table S3.2). 
3. Assuming a network with 𝑚 metabolites and 𝑛 reactions. We formulate the 

following mixed-integer linear programming (MILP) problem to find the minimum 
number of the remaining transports that need to be part of the model to simulate 

growth. 

max, 𝑧\

u�

\12

 

subject to: 

𝑺 ∙ 𝒗 = 𝟎	        (1) 

𝑣'o� ≤ 𝑣' ≤ 	𝑣'q�, ∀𝑖 ∈ 𝑅�       (2) 

∆%G'( = ∑ 𝑛',-∆.G-(/0
-12 + 𝑅𝑇 ln �∏ 𝑥-

;<,=0
-12 � , ∀𝑖 ∈ 𝑅�,   (3) 

∆%G'( − 𝑀 +𝑀 ∙ 𝑏't 	≤ 0      (4) 

−∆%G'( − 𝑀 +𝑀 ∙ 𝑏'u 	≤ 0      (5) 

𝑣'
t,u − 𝑀 ∙ 𝑏'

t,u ≤ 0       (6) 

𝑏't + 𝑏'u ≤ 1        (7) 

𝑏\t 	+ 	𝑏\u 	+	𝑧\ ≤ 1, ∀𝑘 ∈ 𝑅�      (8) 

𝑣y'/0���o� = 𝑐 ⋅ 𝑣y'/0��,0�z      (9) 

where 𝑖 = 1,… , 𝑛, 𝑗 = 1,… ,𝑚, 𝑺 is the stoichiometric matrix, 𝒗 are the net fluxes 

for all the reactions and 𝑣't , 𝑣'u are the corresponding net-forward and net-

reverse fluxes, so that, 𝑣' = 𝑣't − 𝑣'u	, ∀	𝑖 = 1,… , 𝑛.  𝑣'o� and 𝑣'q� are the lower 

and upper bounds, respectively, for the 𝑖th reaction. ∆%𝐆(  is the Gibb’s free 

energy of the reactions defined in TFA [26, 27]. 𝑛',- is the stoichiometric 

coefficient of compound 𝑗 in reaction 𝑖; ∆.G-(/ is the standard Gibbs free energy 
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of formation of compound	𝑗; 𝑥- is the concentration of the compound	𝑗; 𝑅 is the 

ideal gas constant, 𝑅 = 	8.31 ∙ 10HI 	 JK
J	0/L

 , and 𝑇 is the temperature. In this 

case, 𝑇 = 298	𝐾. 𝑏't and 𝑏'u are the binary variables for the forward and reverse 

fluxes of all the reactions (coupled to TFA). 𝑀 is a big constant (bigger than all 

upper bounds). 𝑅�  denotes the set of reactions in the model and 𝑅� denotes the 
set of transport reactions that are not expressed neither from the ETC nor 

transports for small molecules. 𝑧\, 𝑏\t and 𝑏\u  are binary variables to control the 

activity and the flux through the 𝑘th transport reaction of 𝑅�. 𝑐 is a constant to 
select the percentage of 𝑣y'/0��,0�z. In this work, 𝑐 = 1 as we want the model to 

have the capability to produce 100% of biomass.  If 𝑧\ = 1, then the 

corresponding transport reaction cannot carry flux. 

Equations (1) and (2) represent the constraints of the FBA problem, equations 
(3) to (7) represent the additional constraints required to form the TFA problem 

as defined in [26, 27], and equations (8) and (9) are the constraints to formulate 
the MILP that finds the minimum number of transport reactions required for 

growth. 

4. Generate and characterize the alternative sets of minimum number of transports 

for the previous MILP. Identify from the alternative sets the transports that will 
remain in the context-specific model. 

5. Build a model with the selected set of transports and the boundary and 
intracellular reactions from the generic model that can carry flux. 

3.4.6 Thermodynamic-flux variability analysis 

In this work, thermodynamic-flux variability analysis is performed in combination with the 
common assumption of minimization of resources, applied as minimization of the sum of 

fluxes which constrain the space of solutions to a more biologically relevant space [58, 

59]. 

Assuming a network with 𝑛 reactions, thermodynamic flux variability analysis is 
performed, for each reaction 𝑟\	(	𝑘 = 1, . . 𝑛) as it follows: 
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min/max 			𝑣\ 

subject to: 

TFA formulation: Eq. (1 – 7) 

,𝑣'

;

'12

= 𝑉0'; 

𝑣y'/0���o� = 𝑐 ⋅ 𝑣y'/0��,0�z 

where 𝑣y'/0��,0�z is the maximum growth for the model, 𝑐 = 0.9, and 𝑉0'; is the solution 

of the following MILP: 

min,𝑣'

;

'12

 

subject to: 

TFA formulation: Eq. (1 – 7) 

𝑣y'/0���o� = 𝑐 ⋅ 𝑣y'/0��,0�z 

where 𝑣y'/0��,0�z is the maximum growth for the model and 𝑐 = 0.9. 

3.4.7 Integration of context-specific expression data 

We use TEX-FBA [36] and the transcriptomics data to constrain the reaction rates in the 
model. TEX-FBA works under the assumption that enzymes associated to over express 

genes are more active and the corresponding reactions carry more flux, and those 

enzymes associated to down regulated genes are less active and the reactions carry 
less flux. This method leaves certain flexibility in the fluxes of the reactions to account 

for the no one-to-one relationship between gene expression and enzyme activity due to 
post-transcriptional and post-translational modifications. 

We found the maximum set of reactions whose fluxes can simultaneously be constrained 

to agree with the expression data as it follows: 

1. Define reaction deregulation based on the gene expression data 

(transcriptomics) as defined in [36]. 
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2. Perform thermodynamic-flux variability analysis in the context-specific models 

which have metabolomics and fluxomics data and the context-specific transports. 

 
3. Optimize the following MILP problem: 

max , 𝑧\
\∈(u�∪u�)

 

subject to: 

TFA formulation: Eq. (1 - 7) 

𝑣�o� = 𝛼 ⋅ (𝑣�,0�z − 𝑣�,0';) ⋅ 𝑧� + 𝑣�,0'; ⋅ (1 − 𝑧�)	,								∀ℎ ∈ 𝑅           (10) 

𝑣�q� = 𝑣�,0�z																																																																																	∀ℎ ∈ 𝑅          (11) 

𝑣Lo� = 𝑣L,0';																																																																																			∀𝑙 ∈ 𝑅o           (12) 

𝑣Lq� = 𝛽 ⋅ (𝑣L,0�z − 𝑣L,0';) ⋅ 𝑧L + 𝑣L,0�z ⋅ (1 − 𝑧L),												∀𝑙 ∈ 𝑅o           (13) 

where, 𝑅  and 𝑅o	denote the set of upregulated and downregulated reactions 

respectively. For each reaction, (𝑣\,0';, 𝑣\,0�z) is the range obtained by 

performing thermodynamic-flux variability analysis. 𝛼 and 𝛽 are parameters to 
define how much percentage of flux is demanded. In this work, we used 𝛼 = 0.7 

and 𝛽 = 0.3. 𝑧\ are binary variables that control the activity of the reactions. If 
𝑧\ = 1 then the 𝑘th reaction rate is forced accordingly to the deregulation. On the 

contrary, if 𝑧\ = 0 then the reaction is not forced to be consistent with the 

corresponding deregulation.  

As a result, TEX-FBA maximizes the number of reactions whose fluxes can be 
constraint to (𝛼𝑣\,0�z − 𝛼𝑣\,£¤¥	, 𝑣\,0�z) if the reaction is upregulated and to 

(𝑣\,0';, 𝛽𝑣\,0�z − 𝛽𝑣\,0';) if it is downregulated. 

4. We then generate alternative sets of maximum consistency with the expression 
data. 

5. Only those reactions that are present in all the alternatives are finally constraint 
to be consistent with the data. 
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3.4.8 Gene and enzyme essentiality analysis 

For this analysis, we performed thermodynamic flux variability analysis (TVA) in the 
models with the expression constraints added with TEX. Then we used the values of the 

TVA to constrain the lower and upper bounds of the fluxes in the corresponding cancer 
models without the expression constraints. These models were used to perform 

essentiality analysis.  

Gene essentiality analysis was performed as it follows. We first relaxed the bounds to 
not impose forced reaction rates in the models. That is, we relaxed the lower bounds to 

zero for reactions operating in the forward direction, and the upper bounds to zero for 

reactions operating in the reverse direction. This is done to avoid essentiality imposed 
by reaction rates instead of genes. Then, we performed an individual knock-out of each 

gene and identified the reactions affected by evaluating the gene-protein-reaction (GPR) 
rules. The flux through those reactions is blocked, and the model is tested for growth. If 

the model cannot simulate growth, then the corresponding gene is considered essential. 

Enzyme essentiality analysis was based on the GPR rules. First, we identified the 

enzymes whose reactions have the same GPR rules. That is, we considered that two 
enzymes would be the same if they have the same gene rules. We then blocked the flux 

through the reactions catalyzed by each enzyme, and we analyzed if the model can 
simulate growth. In the case it cannot, we considered the enzyme essential. 

3.4.9 Formulating metabolic tasks for cancer physiology 

In order to sustain a rapid proliferation rate and survive in the tumor microenvironment, 
cancer cells undergo a series of transformations, including reprogramming of 

metabolism. These modifications manifest in a variety of metabolic phenotypes that have 
been exploited as targets for cancer therapies in the last years [2, 9, 60]. One of the most 

studied cancer phenotypes is the Warburg effect, first described by Otto Warburg in the 
1920s when he observed that cancer cells increase their uptake of glucose and perform 

aerobic glycolysis [14, 61, 62]. Besides the high glucose intake, cancer presents 

addiction to the non-essential amino acid glutamine, which contributes as a nitrogen 
source for nucleotide synthesis and, as energy and anaplerotic source to replenish the 

citric acid cycle [63-65]. Additionally, cancer cells experience a reprogramming of energy 
metabolism to support mitochondrial activity [66-68]. The alterations in mitochondrial 



Studying cancer metabolism and deregulation of metabolic tasks 

 
96 

functions increase oxidative stress and ROS levels, which promote tumor growth and 

progression [69]. Together with glycolysis, cancer cells upregulate the pentose 

phosphate pathway, which is a source of ribonucleotides and NADPH [70], and serine 
metabolism, which contributes to the one-carbon metabolism [71-74]. Moreover, tumor 

cells show a reprogramming in lipid metabolism increasing lipogenesis and affecting the 
composition of the cellular membranes [75-77]. 

We defined the metabolic tasks by assigning a set of metabolites that represent each 

cancer phenotype. Consequently, we defined the metabolic tasks of the Warburg effect 

as the production of lactate. Production of glutamate represents the metabolic task for 
the phenotype glutamine addiction. To study the reprogramming of energy metabolism, 

we defined the metabolic task as the production of ATP through the electron transport 
chain. Oxidative stress was studied through the production of superoxide anion and 

hydrogen peroxide. The reprogramming of the pentose phosphate pathway is analyzed 
through the production of ribose 5-phosphate. Altered serine metabolism is represented 

with the production of serine and glycine. Finally, the reprogramming on lipid metabolism 
was studied through the production of the phospholipids phosphatidyl-serine, 

phosphatidyl-choline, and phosphatidyl-myo-inositol. 

3.4.10 Generating Minimal Networks for the metabolic tasks 

For each metabolic task, we generate minimal networks, that is, the minimum set of 

reactions from the model that needs to be active to satisfy the specific metabolic task 

(synthesis of a metabolite or activity of a reaction). Note here that the models have been 
thermodynamically curated, and we use the TFA formulation guaranteeing that all the 

pathways are thermodynamically feasible.  

In this work, the minimal networks are found using the following MILP problem: 

i. Constrain the reaction rate bounds to the values obtained with the flux variability 
analysis from the model with TEX-FBA constraints. 

ii. Relax the lower bounds to zero, to avoid having reactions forced. This step 
guarantees that only reactions required for the task appear as a solution of the 

MiN. If a reaction was forced to carry flux, it would be part of every MiN. 

iii. Add a sink reaction that represents the production of the metabolite required for 
the metabolic task.  
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iv. Optimize the following MILP: 

max,𝑧\

u¦

'12

 

subject to: 

TFA formulation: Eq. (1-7) 

𝑏\t 	+ 	𝑏\u 	+	𝑧\ ≤ 1,			∀𝑘 ∈ 𝑅�                              (14) 

	𝑣�§ ≥ 𝑐 ⋅ 𝑣�§,0�z                      (15) 

where 𝑅�  is the set of all the reactions in the model. 𝑧\, 𝑏\t and 𝑏\u  are binary 

variables to control the activity and the flux through the 𝑖th reaction of 𝑅� . 𝑣�§ is 
the flux through the sink reaction for the metabolic task and 𝑣�§,0�z is the 

maximum flux through the metabolic task as a result of applying thermodynamic 
flux variability analysis. 𝑐 is a parameter that controls the flux requirement for the 

metabolic task. For this study we have chosen 𝑐 = 0.9, to demand at least 90% 
of the maximum production of the metabolite for the associated metabolic task. 

As a result, if 𝑧\ = 1, then the corresponding reaction cannot carry flux.  

v. Generate alternative sets using the MILP formulation (step iv). The algorithm 
allows to generate alternatives of minimum size (𝑠𝑚𝑖𝑛) or larger, as 𝑠𝑚𝑖𝑛 + 	𝑛, 

𝑛 = 1,2,3, …	 

With this formulation, the MiN contains intracellular reactions, transport reactions and 
boundary reactions for extracellular metabolites that are required for each metabolic 

task. 

3.4.11 Minimal Network Enrichment Analysis (MiNEA) 

The reactions that compose the MiN inherit the gene-protein-reaction rules (GPR rules) 

from the model. MiNEA [53] uses the GPR rules and the transcriptomics data to identify 
the genes that are deregulated, and it assigns a deregulation score to the overall minimal 

network based on the deregulation of the reactions that compose it. The algorithm then 

identifies the most deregulated minimal network for each task by ranking the alternative 
minimal networks based on their overall deregulation (see [53] for further details). 
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The significance of the deregulation of each MiN is tested using the multivariate Fisher’s 

hypergeometric distribution for which the  𝑝-value for upregulated reactions is computed 

as it follows: 

𝑝𝑣𝑎𝑙𝑢𝑒 = , ,
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𝑗 ® «𝑅
;/¯°±°²

𝑇 − 𝑖 − 𝑗®

�𝑅
𝑇
�

u¯³´�

-1µ

£¤¥(u¶·,§)

'1	§¶·
	 (16) 

where 𝑅 and 𝑇 represent the total number of reactions in the model and the MiN, 

respectively. 𝑅©ª, 	𝑅¬/­;, 𝑅;/_¬�%�º denote the number of upregulated, downregulated 

and unregulated reactions in the model respectively, and 𝑇©ª, 𝑇¬/­;, 𝑇;/_¬�%�º  the 
number of reactions with the corresponding deregulation in the MiN. 

The 𝑝-value for downregulated reactions is computed, replacing in equation (16) 𝑅©ª 

with 𝑅¬/­; and 𝑅¬/­; with 𝑅©ª (see [53] for further details). 

Finally, MiNEA computes the percentage of significantly deregulated MiNs for each 

metabolic task.  
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Appendix B 

Network topology: selecting context-specific transport reactions 

Table S3.1: Transport reactions obtained with the MILP formulation. Shadowed boxes 
indicate that the transport reaction is required in the corresponding cancer model. 
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DATPtn: datp_c <=> datp_n        
DCTPtn: dctp_c <=> dctp_n        
DGTPtn: dgtp_c <=> dgtp_n        
DTTPtn:dttp_c <=> dttp_n        
FADH2tru: fadh2_c <=> fadh2_r        
FADtru: fad_r <=> fad_c        
CHSTEROLtrc: chsterol_r <=> chsterol_c        
FRDPtcr: frdp_c <=> frdp_r        
NADHtru: nadh_c <=> nadh_r        
NADPHtru: nadph_c <=> nadph_r        
NADPtru: nadp_r <=> nadp_c        
NADtru: nad_r <=> nad_c        
HMR_3953: 6pgc_c <=> 6pgc_r        
r0840: r5p_c <=> r5p_r        
r0841: ru5p_D_c <=> ru5p_D_r        
GLU5SAtmc: glu5sa_m <=> glu5sa_c        
FORtr: for_c <=> for_r        
ILEt5m: ile_L_c <=> ile_L_m     

Ex
tra

ce
llu

la
r t

ra
ns

po
rts

 

FUMtr: fum_e <=> fum_c        
MAL_Lte: mal_L_e <=> mal_L_c        
GUDACtr: 2 na1_e + cl_e + gudac_e <=> 2 na1_c + cl_c + gudac_c        
HCYSte: hcys_L_e <=> hcys_L_c        
ICITtr: icit_e <=> icit_c        
GLCURtr: glcur_e <=> glcur_c        
CRTNtr: crtn_e <=> crtn_c        
GLYALDtr: na1_e + glyald_e <=> na1_c + glyald_c        
AHCYSte: ahcys_e <=> ahcys_c        
XANtr: xan_e <=> xan_c        
DMGLYtr: dmgly_e <=> dmgly_c        
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Table S3.2. Transport reactions for small molecules 

Transport 
Reaction 

Name 
Formula 

Transport 
Reaction 

Name 
Formula 

CLOHtex2 h2o_c + 2 cl_e <=> h2o_e + 2 cl_c  PIter pi_r <=> pi_c  
CO2ter co2_c <=> co2_r  PItg pi_g <=> pi_c  
CO2tm co2_c <=> co2_m  PItx pi_c <=> pi_x  
CO2tp co2_c <=> co2_x  PPItr ppi_c <=> ppi_r  
H2O2t h2o2_e <=> h2o2_c  PPItx ppi_c <=> ppi_x  
H2O2tm h2o2_c <=> h2o2_m  SO4CLtex2 cl_c + 2 so4_e <=> cl_e + 2 so4_c  

H2O2tn h2o2_c <=> h2o2_n  SO4t4_2 2 na1_e + so4_e <=> 2 na1_c + 
so4_c  

H2O2tp h2o2_c <=> h2o2_x  r0838 nh4_c <=> nh4_m  
H2Oter h2o_c <=> h2o_r  r1423 pi_c <=> pi_e  
H2Otg h2o_c <=> h2o_g  r2136 na1_e + pi_e <=> pi_c + na1_c  
H2Otm h2o_c <=> h2o_m  r2521 ppi_c + pi_r <=> pi_c + ppi_r  

H2Otp h2o_c <=> h2o_x  PIt8 1.5 na1_e + pi_e <=> pi_c + 1.5 
na1_c  

Htg h_g <=> h_c  PIt9 2 na1_e + pi_e <=> pi_c + 2 na1_c  
Htr h_c <=> h_r  KHte h_c + k_e <=> h_e + k_c  
Htx h_c <=> h_x  PPItm ppi_c <=> ppi_m  
KCC2t nh4_e + cl_e <=> nh4_c + cl_c  CLCFTRte cl_c <=> cl_e  
KCCt k_e + cl_e <=> k_c + cl_c  r1492 k_c <=> k_e  
NAt na1_e <=> na1_c  The h_e <=> h_c  
NAt5 na1_c + nh4_e <=> nh4_c + na1_e  CO2t co2_e <=> co2_c  
NCCt na1_e + cl_e <=> na1_c + cl_c  H2Ot h2o_e <=> h2o_c  
NH4t3r nh4_c + h_e <=> h_c + nh4_e  NAt3_1 h_e + na1_c <=> h_c + na1_e  
NH4tp nh4_c <=> nh4_x  O2t o2_e <=> o2_c  

NKCC2t na1_e + nh4_e + 2 cl_e <=> nh4_c 
+ na1_c + 2 cl_c  PIt6b h_e + pi_e <=> h_c + pi_c  

NKCCt na1_e + k_e + 2 cl_e <=> na1_c + 
k_c + 2 cl_c  NH4tb nh4_e <=> nh4_c  

NOt no_e <=> no_c  PIt7 3 na1_e + pi_e <=> pi_c + 3 na1_c  
O2St o2s_c <=> o2s_e  NH4tr nh4_c <=> nh4_r  
O2Stm o2s_c <=> o2s_m  HMR_1095 h_c <=> h_n  

O2Stn o2s_c <=> o2s_n  HMR_7700 3 na1_e + so4_e <=> 3 na1_c + 
so4_c  

O2Stx o2s_c <=> o2s_x  HMR_9590 2 h_e + so4_e <=> 2 h_c + so4_c  
O2ter o2_c <=> o2_r  H2O2itr h2o2_r <=> h2o2_c  
O2tm o2_c <=> o2_m  Htmi h_i <=> h_m  
O2tn o2_c <=> o2_n    
O2tp o2_c <=> o2_x    
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Subsystems deregulation 

Table S3.3. Percentage of the deregulated reactions for each subsystem. Upregulated 
subsystems are represented in red and positive numbers, and downregulated subsystems in 
green and negative numbers 

 
Transcriptomics 

Data  
Consistent with the 

Network 

 O
va

ria
n 

Co
lo

n 

Br
ea

st
 

 O
va

ria
n 

Co
lo

n 

Br
ea

st
 

Alanine and aspartate metabolism 50 50 50  50 50 50 
Aminosugar metabolism 100 100 100  100 100 100 
Arginine and proline metabolism 22.2 25 22.2  22.2 25 22.2 
Beta-Alanine metabolism 0 22.2 11.1  0 22.2 11.1 
Bile acid synthesis 0 9.09 9.09  0 9.09 9.09 
Cholesterol metabolism 2.44 9.76 4.88  2.44 9.76 4.88 
Citric acid cycle 60 75 65  60 75 65 

Oxidative Phosphorylation 33.3 55.6 55.6  33.3 55.6 55.6 
0 0 0  -22.2 -22.2 -22.2 

Fatty acid oxidation 0 28.6 14.3  0 28.6 14.3 
Fatty acid synthesis 10 70 10  10 70 10 
Folate metabolism 27.3 72.7 27.3  27.3 72.7 27.3 
Galactose metabolism 0 33.3 33.3  0 33.3 33.3 
Glutamate metabolism 18.8 37.5 18.8  18.8 37.5 18.8 
Glutathione metabolism 28.6 57.1 28.6  28.6 57.1 28.6 

Glycerophospholipid metabolism 2.56 7.69 5.13  2.56 7.69 5.13 
0 -2.56 -2.56  0 -2.56 -2.56 

Glycine, serine, alanine, and threonine metabolism 13.3 8.89 13.3  13.3 8.89 13.3 
0 -6.67 0  0 -13.3 0 

Glycolysis/gluconeogenesis 44.7 57.9 52.6  44.7 57.9 52.6 
-2.63 0 -2.63  -2.63 0 -2.63 

Glyoxylate and dicarboxylate metabolism 28.6 28.6 28.6  28.6 28.6 28.6 
Histidine metabolism -42.9 -42.9 -42.9  -42.9 -42.9 -42.9 
Lysine metabolism -12.5 -12.5 -12.5  -12.5 -12.5 -12.5 
Methionine and cysteine metabolism 0 11.1 11.1  0 11.1 11.1 
Miscellaneous 25 37.5 37.5  25 37.5 37.5 
NAD metabolism 20 30 20  20 30 20 

Nucleotide interconversion 42 63.8 56.5  42 63.8 56.5 
-2.9 -2.9 0  -2.9 -2.9 0 

Nucleotide metabolism 100 100 100  100 100 100 
Nucleotide salvage pathway 0 100 100  0 100 100 
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Pentose phosphate pathway 28.6 45.7 34.3  28.6 45.7 34.3 
Phenylalanine metabolism 0 -25 0  0 -25 0 
Purine catabolism 15.4 30.8 23.1  15.4 30.8 23.1 
Purine synthesis 6.67 66.7 6.67  6.67 66.7 6.67 

Pyrimidine catabolism -7.14 21.4 21.4  -7.14 21.4 21.4 
0 -7.14 -7.14  0 -7.14 -7.14 

Pyrimidine synthesis 10.5 10.5 15.8  10.5 10.5 15.8 
Pyruvate metabolism 23.5 41.2 23.5  23.5 41.2 23.5 

ROS detoxification -5.88 -11.8 -11.8  -5.88 -11.8 -11.8 
14.3 14.3 14.3  14.3 14.3 14.3 

Starch and sucrose metabolism 0 100 0  0 100 0 

Tetrahydrobiopterin metabolism 0 0 0  50 0 0 
0 0 0  -50 0 0 

Transport, extracellular 19.3 19.8 16.3  19.3 19.9 16.5 
-5.56 -5.27 -13.9  -5.56 -5.36 -14.1 

Transport, mitochondrial 3.02 17.6 16.1  3.02 18.1 16.1 
-11.1 -11.1 -11.1  -11.1 -11.1 -11.1 

Transport, peroxisomal 0 2.13 2.13  0 2.13 2.13 
Triacylglycerol synthesis 0 33.3 0  0 33.3 0 

Tryptophan metabolism 8 8 8  8 8 8 
-4 -4 -4  -4 -4 -4 

Tyrosine metabolism 6.25 6.25 6.25  6.25 12.5 12.5 
-6.25 -25 -12.5  -6.25 -25 -18.8 

Urea cycle 10.3 17.9 12.8  10.3 17.9 12.8 
-2.56 -5.13 -5.13  -2.56 -5.13 -5.13 

Valine, leucine, and isoleucine metabolism 6.9 6.9 20.7  6.9 6.9 20.7 
Vitamin B2 metabolism 0 50 50  0 50 50 
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Cancer type specific data 

Table S3.4. Cell lines associated to each type of cancer. Cell lines clustered based on the 
cancer types 

Cancer Cell lines 
Leukemia CCRF-CEM, HL-60(TB), K-562, MOLT-4, RPMI-8226, SR 

Lung A549/ATCC, EKVX, HOP-62, HOP-92, NCI-H226, NCI-H23, NCI-H322M, NCI-
H460, NCI-H522 

Colon COLO 205, HCC-2998, HCT-116, HCT-15, HT29, KM12, SW-620 
CNS SF-268, SF-295, SF-539, SNB-19, SNB-75, U251 

Melanoma LOX IMVI, MALME-3M, M14, MDA-MB-435, SK-MEL-2, SK-MEL-28, SK-MEL-5, 
UACC-257, UACC-62 

Ovarian IGR-OV1, OVCAR-3, OVCAR-4, OVCAR-5, OVCAR-8, NCI/ADR-RES, SK-OV-3 
Renal 786-0, A498, ACHN, CAKI-1, RXF 393, SN12C, TK-10, UO-31 

Prostate PC-3, DU-145 
Breast MCF7, MDA-MB-231/ATCC, MDA-MB-468, HS 578T, BT-549, T-47D 
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Thermodynamic and expression flux variability analysis 

 

Figure S3.1. Thermodynamic-and-expression flux variability analysis. 
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 Integrating signaling and 

metabolic pathways to analyze the 

function of the transcription factor MYC 

in breast cancer 
 

 

In this chapter, we develop a novel method (CONSIGN) to contextualize signaling 

networks to be consistent with omics data for a specific cell type and physiology. 
Moreover, we present an approach to integrate signaling and metabolic models to study 

interactions between both biological networks. The method here presented has been 
developed in collaboration with Dr. V. Pandey. A manuscript with the content of this 

chapter is in preparation to be published. 

 

 Introduction 

Cells communicate with chemical signals such as proteins or other molecules, known as 

ligands. In that process, a cell secretes signals into the extracellular space, and the target 
cell, which has the right receptor for those specific signals, receives the message. The 

binding of ligand and receptor induces an intracellular signal sequence that causes a 
change in the cell and a physiological response [1, 2]. During the last decades, 

thousands of signaling pathways have been characterized by several processes 
occurring in a variety of cells under different conditions. This large amount of information 

is available in databases such as Reactome [3], KEGG [4], Pathway Interaction 
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Database [5], NetPath [6], and ACSN [7], among others. Since then, systems analysis 

approaches have been developed to study protein interactions and to identify alterations 

at the signaling level associated with several diseases, including cancer, Alzheimer's, 
diabetes, cardiovascular diseases, and infectious diseases [8-13]. 

Mathematical and computational methods have been developed for the study of 

signaling networks ranging from continuous models using ordinary differential equation 
systems to Boolean models using logic rules  [14-18]. These last ones consider a 

discrete system with two states for the proteins in the network, active when the protein 

is present and triggers down the signal or inactive when the protein is absent. Boolean 
models rely on the structure of the network and overcome the lack of kinetic information 

required by the continuous models. Boolean models efficiently simulate the propagation 
of the signals in large scale networks in a qualitative form [19-24]. Such models have 

been used to integrate proteomics and transcriptomics data [25-28], to predict the effects 
of targeted therapies [29, 30], to develop signaling models for personalized treatments 

[31, 32], to model signaling alterations in diseases [33, 34], and to understand how 
activation of upstream pathways affect the downstream processes [27, 35]. 

One of the processes occurring downstream the signaling pathways is metabolism. The 
expression of metabolic genes is regulated by transcription factors, and their activation 

depends on the activity of specific signaling pathways. For example, MYC regulates a 
diversity of intracellular and extracellular processes required for cell proliferation, growth, 

differentiation, and death [36]. Despite its wide variety of physiological functions, MYC is 
mostly known for the role it plays in the development of cancer [37], and it represents an 

exciting candidate for targeted cancer therapy [38-40].  

Although previous analyses have focused on the study of signaling and metabolic 

pathways independently, currently, there is a rising interest to develop methods that 
integrate both systems allowing to investigate the regulatory effects that they perform on 

each other. Metabolism is normally modeled using constraint-based metabolic models 
that impose quasi-steady-state, stoichiometric, and thermodynamic constraints to 

identify the flexibility of the network and the activity of the metabolic pathways. In the 
case of human metabolism, the most comprehensive genome-scale models are Recon 

3D [41] and Human1 [42]. Several studies have recently developed methods to 
incorporate regulatory constraints within constraint-based metabolic models, including 
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rFBA [43], SR-FBA [44], iFBA [45], PROM [46], iDREAM [47], FlexFlux [48], and TRFBA 

[49]. Although these methods account for the regulatory constraints, they do not 

simultaneously simulate the signaling and metabolic networks.  

In this study, we present a novel approach to study signaling interactions through the 
contextualization of signaling networks extracted from a knowledge database. We 

developed a method named contextualization of signaling networks (CONSIGN) that 
translates a given signaling network into a set of Boolean rules and further into a set of 

linear equations that are formulated into a mixed-integer linear programming optimization 

problem. CONSIGN allows to integrate transcriptomics and proteomics data to generate 
a context-specific signaling network. Then it identifies the signaling species that are 

maximally consistent with the experimental data, that is, the maximum number of 
signaling species that can be simultaneously constrained in agreement with the 

experimental data. The method is illustrated using a small pathway from the MYC 
signaling network and then applied to the overall upstream signaling pathways related to 

MYC. Furthermore, we present a novel workflow to integrate signaling and metabolic 
networks, which allows us to investigate regulatory interactions. In this work, we start 

with a generic signaling network map from Reactome, and by using our approach 
combined with transcriptomics data, we are able to identify signaling components that 

are relevant to the particular type of cancer. Specifically, we identify active signaling 

events and components in breast cancer cells, integrating transcriptomics data from the 
breast cancer NCI60 cell lines [50] into a signal transduction model for the transcription 

factor. Using this workflow, we created an integrated model for the MYC signaling model 
and the metabolic model for breast cancer. The metabolic model was generated by 

integrating metabolomics and transcriptomics data from the breast cancer NCI60 cell 
lines into a reduced version of the human metabolic genome-scale model Recon 3D 

following the workflow defined in Chapter 3. The MYC-breast cancer model is used to 
integrate transcriptomics and analyze the consistency of the data with both biological 

networks.  
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 Results 

4.2.1 Method overview 

The workflow here developed integrates context-specific signaling and metabolic 
networks (Figure 4.1). For a set of signaling species, the upstream or downstream 

signaling networks are extracted from the signaling database Reactome [3]. The 
workflow includes a novel method named contextualization of signaling networks 

(CONSIGN) to generate context-specific signaling models. CONSIGN translates the 
signaling network into a set of Boolean rules, which are then converted to linear 

equations forming a mixed-integer linear programming (MILP) problem. Then CONSIGN 
identifies the maximum number of signaling components whose activity in the network is 

consistent with transcriptomics or proteomics data for a given context. Furthermore, the 

gene-protein-reaction (GPR) rules in the metabolic network are formulated as Boolean 
rules and integrated as constraints into the thermodynamic-flux balanced metabolic 

problem [51]. Then, we identify the transcription factors that promote metabolic genes 
from the metabolic network. The MILP problem formulation of both the signaling network 

and the metabolic network are then integrated using Boolean rules to connect the 
transcription factors to the genes in the metabolic network based on the regulation 

(activation or repression). The activation or repression of the genes is related to the 
activation or inactivation of the enzymes and, thus, to the fluxes of the metabolic 

reactions in the network. The combined model, including the signaling and metabolic 
networks, is then used to integrate expression data and analyze the possible states of 

the networks.  
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Figure 4.1. Method overview. Signaling events are modeled using Boolean rules that represent 
protein activation, complex formation, reaction activation, and reaction inhibition. Upon binding of 
the ligand and receptor (L:R), the signaling proteins activate (Pi) transmitting the signal. When a 
protein or a complex (P5:P6) activates a transcription factor (TF1), we assume that the 
corresponding regulated gene (G1) is active. We use Boolean rules to model the regulation of the 
expression of a gene by a transcription factor. Then, the active gene transcribes to the 
corresponding enzyme (Ei), which is produced to an adequate degree to generate flux through 
the corresponding reaction (vi). The gene-enzyme-reaction relationship is modeled by Boolean 
rules following the GPR rules described in the metabolic model. Finally, the reactions follow the 
stoichiometric and thermodynamic constraints defined in the constraint-based formulation of the 
metabolic model. 

 

4.2.2 The transcription factor MYC and its relation to cancer 

The transcription factor MYC regulates a diversity of intracellular and extracellular 
transcriptional programs required for the correct proliferation of cells. These programs 

include the regulation of cell growth, cell cycle, metabolism, protein biosynthesis, 
microRNAs expression, invasion, and angiogenesis, as well as protective mechanisms 

including growth arrest and apoptosis [38, 52-54]. The deregulation of the MYC gene 
has been associated with cancer development. MYC overexpression induces changes 

in the expression of several genes to increase cellular proliferation, driving at the same 
time metabolic changes to support the increased demand for proteins, lipids, and nucleic 
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acids. This interplay between the alterations in the upstream and downstream signaling 

pathways for MYC and the effects induced at the metabolic level highlights the 

importance of the oncogene MYC in shaping the cancer phenotype [55]. 

4.2.3 A small signaling pathway for MYC 

As a first case study, we extracted from Reactome a pathway of ten reactions and 20 

species that represents a negative feedback loop to control the expression of MYC 
(Figure 4.2 A). The pathway starts with the transcription of the gene MAPKAPK5 upon 

binding of MYC to the MAPKAPK5 promoter in the nucleoplasm of the cell. Then p-S189 
MAPK6 and p-S186 MAPK4 (represented in the network as p-S MAPK6,4) bind to 

MAPKAPK5 to form the complex p-S MAPK6,4:MAKPAK5. The activated MAPK6 and 
MAPK4 promote the phosphorylation of MAPKAPK5, represented in the network as p-S 

MAPK6,4:P-T182 MAPKAPK5. The proteins of the activated complex are then 

redistributed to the cytosol. In the next step, the activated MAPKAPK5 phosphorylates 
FOXO3, promoting its activation and translocation to the nucleus. In the nucleus, the 

phosphorylated FOXO3 binds to the miR-34B and C genes, promoting the expression of 
the microRNAs. Finally, miR-34 microRNAs bind and cause the degradation of MYC 

mRNA, negatively regulating the translation of MYC mRNA and thus decreasing the level 
of MYC protein. 

We developed a method named contextualization of signaling networks (CONSIGN, 

Materials and Methods) to build a Boolean model from a reconstructed signaling pathway 

and to identify the signaling species whose activity is consistent with experimental 
measurements. The method starts by converting the signaling events into logic rules. In 

these rules, the substrates and the activators activate the reaction, and then, the 
activation of the reaction results in the formation of the products. For example, in the 

reconstructed negative feedback pathway for MYC, the first reaction of the pathway, 
named R-HSA-5687115 in Reactome, requires the MAPKAPK5 gene and the complex 

MAPKAPK5 gene:MYC as substrate and activator respectively, and it produces the 
protein MAPKAPK5. The logic rules associated with this reaction are the following: 

𝑀𝐴𝑃𝐾𝐴𝑃𝐾5	𝑔𝑒𝑛𝑒	AND	𝑀𝐴𝑃𝐾𝐴𝑃𝐾5𝑔𝑒𝑛𝑒:𝑀𝑌𝐶 → 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛uH ÄÅHÆÇÈÉ22Æ
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛uH ÄÅHÆÇÈÉ22Æ → 𝑀𝐴𝑃𝐾𝐴𝑃𝐾5  
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The states of the species, including proteins, complexes, and reactions, are represented 

with binary variables and the following algebraic linear equations (Materials and 

Methods) are used to describe the AND rule: 

2𝑥 + 2𝑦 − 4𝑧 ≥ −1,
2𝑥 + 2𝑦 − 4𝑧 ≤ 3,  

where 𝑥, 𝑦,	and 𝑧 represent MAPKAPK5 gene, MAPKAPK5 gene:MYC, and the reaction 

R-HSA-5687115, respectively. 

Then the following equation represents the formation of the product,  

𝑧 − 𝑝 = 0, 

where 𝑧 and 𝑝 are binary variables that represent the states of the reaction R-HSA-

5687115 and the product MAPKAPK5, respectively. 

As another example, the last reaction of the pathway, R-HSA-5687115, describes the 
inhibition of the translation of MYC mRNA into MYC by miR-34B,C RISC. The logic rules 

associated with this reaction are the following: 

𝑀𝑌𝐶	𝑚𝑅𝑁𝐴	AND	not	𝑚𝑖𝑅 − 34𝐵, 𝐶	𝑅𝐼𝑆𝐶 → 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛uH ÄÅHÆÇÈÉ22I
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛uH ÄÅHÆÇÈÉ22I → 𝑀𝑌𝐶  

In this case, binary variables are created for the species, and an additional binary 

variable is necessary to represent not(miR-34B,C RISC). The corresponding set of 

algebraic equations in the model are the following:  

𝑦 + 𝑦;/� = 1,
2𝑥 + 2𝑦;/� − 4𝑧 ≥ −1,
2𝑥 + 2𝑦;/� − 4𝑧 ≤ 3,

𝑧 − 𝑝 = 0,

 

where 𝑥	represents MYC mRNA, 𝑦 represents miR-34B,C RISC, 𝑦;/�  represents 

not(miR-34B,C RISC), 𝑧 represents the reaction R-HSA-5687113, and 𝑝 represents the 

product MYC. 

Similarly, we generated rules for the ten reactions in the pathway, and we formulated a 
mixed-integer linear programming (MILP) optimization problem that allows creating a 

context-specific signaling network by integrating transcriptomics and proteomics data. 
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The context-specific network allows hypothesizing possible states of the network that 

can explain the experimental data. 

In this study, we used transcriptomics data from the NCI60 cell lines for breast cancer. 

We discretized the transcriptomics data into three levels: high, medium, and low, by 
analyzing the expression values across samples (Materials and Methods). We 

considered single proteins and genes as observable species, and we defined their state 
as active if they were highly expressed and as inactive if they were lowly expressed in 

the discretized transcriptomics data. In addition, we considered that chemical 

compounds would also be present in the cell. In this case, we defined as active only the 
chemical compounds always acting as substrates in the reactions. And their usage is 

determined depending on the activity of the reaction by solving the MILP problem to 
maximize consistency with the data. 

For the reconstructed MYC network, we identified ten observable states, corresponding 

to two chemical compounds (ATP and ADP) and eight proteins, including MAPKAPK5, 
FOXO3, and MYC (Figure 4.2 A). From the breast cancer NCI60 cell lines, two of the 

observable states were active, namely, FOXO3 and MYC. Notice that in the absence of 

phosphoproteomics data, we do not assign any state to the phosphorylated proteins, as 
it is the case in this network for phosphorylated FOXO3. We defined only the state for 

the unphosphorylated protein, and the network will assign a specific state to the 
phosphorylated protein based on the constraints imposed to the other proteins from the 

observed transcriptomics data. 

As a result of the optimization problem generated with CONSIGN the network can 

simulate the flux of information to represent the states of the proteins FOXO3 and MYC, 
and the metabolite ATP consistently with the data, that is, the network can express these 

three proteins as active. Here, we show two possible alternative states of the network 
(Figure 4.2 B) which are two instances of the network with different patterns of activation 

that can equally explain the observed data. In the first case, the cascade initiated with 
the transcription of MAPKAPK5 is active, promoting the phosphorylation of FOXO3. 

However, the phosphorylated FOXO3 cannot bind to the promotor preventing the 
transcription of the microRNAs. Consequently, MYC mRNA can be translated to MYC. 

In a second case, MYC did not bind to the MAPKAPK5 promotor preventing the 
transcription of MAPKAPK5. As a result, the cascade is inactive, and the phosphorylation 
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of FOXO3 does not occur. In this second case, MYC mRNA can be translated to MYC 

protein. 

 

Figure 4.2. MYC signaling pathway. (A) A branch of the MYC signaling network upstream ten 
reactions from MYC. Proteins and Genes are considered in the workflow as observable states. 
We integrate data for the observable states if they are part of the dataset. (B) Two alternative 
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states of the network consistent with the data obtained as solutions of the MILP to maximize 
consistency after data integration. 

 

In total, there are seven activation patterns of the network that allow maximum 

consistency with the experimental data, that is, alternative states of the signaling network 

that can explain the active states of the two proteins, FOXO3 and MYC (Table 4.1). 

We observed that the state of six species, including ATP, MYC, MYC mRNA, miR-34B, 
C RISC, and p-S215 FOXO3:MIR34B,C genes, is always consistent across alternatives. 

Therefore, using the network and CONSIGN, we can infer the behavior of species that 
are not part of the initial data, but whose state is defined based on the consistency of the 

integrated data. 

Table 4.1. Alternative states of the negative feedback loop network for MYC. Seven 
alternative states of the network that are consistent with the three species active in the 
transcriptomics data (blue). The state of another three species can be inferred from the integration 
of the transcriptomics data (orange).  

 ALTERNATIVES     
ATP           Active 
ADP           Inactive 
MYC            

MAPKAPK5            

MAPKAPK5 gene            

p-T182 MAPKAPK5            
p-S215 FOXO3            
p-S215 FOXO3            

FOXO3            

MYC mRNA            

MIR34B,C genes            

miR-34B,C RISC            
p-S MAPK6,4            
p-S MAPK6,4            

p-S215 FOXO3:MIR34B,C genes            

p-S MAPK6,4:p-T182 MAKPAPK5            

p-S MAPK6,4:MAKPAPK5            

MAPKAPK5 gene:MYC            
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The systematic analysis of the alternative network states that can explain the data 

indicate the flexibility of the pathway to propagate the signal from the inputs of the 

pathway, such as the activation of a receptor, to the target protein. Moreover, we have 
the opportunity to understand the possible flows of information that are consistent with 

the data as the signal propagates through the network. Further curation using literature 
knowledge and discussion with the experts can help to characterize the results and to 

further investigate which are the most biologically relevant states of the network among 
the alternatives proposed by our method. 

4.2.4 Interactions of the signaling pathway and metabolism 

Transcription factors bind to specific regions of DNA to initiate and regulate the 
transcription of target genes to mRNA, promoting, or repressing the expression of the 

proteins. Therefore, transcription factors are responsible for the gene expression pattern 

in the different cell types and cell states. A set of transcription factors target metabolic 
genes, regulating the metabolic phenotype of cells, as promoting or repressing a 

metabolic gene will impact the availability of the enzyme, and consequently, the activity 
of the metabolic pathway.  

Considering the state of the transcription factors upon activation or repression as the 

output of the signaling network and as the input for the regulation of the metabolic genes, 
we can connect both the signaling and the metabolic networks, generating an integrated 

network to analyze not only the signal transduction but also the metabolic response to 

that signal. 

In this work, we defined the following novel workflow to connect signaling and metabolic 
networks: (i) translate the gene-protein-reaction (GPR) rules into constraints using the 

TIGER toolbox [56] and integrate these constraints in the TFA formulation of the 
metabolic model (Materials and Methods); (ii) identify the transcription factors that target 

metabolic genes using the TRRUST database [57]; (iii) generate rules that describe the 

interactions of the transcription factors with the metabolic genes (Materials and Methods) 
and translate these rules into algebraic equations that can be integrated as constraints 

in the models; (iv) build an optimization problem including the signaling model, the 
metabolic model resulting from step (i) and the constraints generated in step (iii) that 

describe the regulation of the metabolic genes by transcription factors.  
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We connected the ten reactions MYC pathway to the metabolic model for breast cancer 

generated in Chapter 3.  Based on the genes that are part of the human genome-scale 

model Recon 3D [41], MYC regulates the expression of 12 metabolic genes, including 
activation of ASS1, CD38, FUT3, LDHA, ODC1, PRDX3, ST3GAL1, ST3GAL3, and 

ST3GAL4, and repression of BCAT1, CHKA, and PRODH (Figure 4.3). The breast 
cancer metabolic model contains five of these genes, namely, LDHA, ODC1, PRDX3, 

CHKA, and PRODH. These genes encode for the enzymes lactate dehydrogenase 
(LDH_L) which converts pyruvate into lactate, glyoxylate oxidase (GLXO1) that 

interconverts glyoxylate and oxaloacetate, ornithine decarboxylase (ORNDC and 
HMR_4422) which transforms ornithine into putrescine, one enzyme in cytosol and the 

another one in the extracellular space, glutathione peroxidase mitochondria (GTHPm), 
which oxidizes glutathione in mitochondria, choline kinase (CHOLK) which transforms 

choline to choline-phosphate, and proline dehydrogenase (PROD2m) that converts the 

amino acid L-proline into pyrroline-5-carboxylate. 

 

Figure 4.3. MYC subnetwork connected to the metabolic network. MYC is a transcription 
factor that regulates 12 metabolic genes present in Recon 3D. Specifically, it promotes the 
expression of argininosuccinate synthase (ASS1), ADP-ribosyl cyclase (CD38), Galactoside 3(4)-
L-fucosyltransferase (FUT3), L-lactate dehydrogenase A chain (LDHA), Ornithine decarboxylase 
(ODC1), Thioredoxin-dependent peroxide reductase (PRDX3), CMP-N-acetylneuraminate-beta-
galactosamide-alpha-2,3-sialyltransferase 1 (ST3GAL1), CMP-N-acetylneuraminate-beta-1,4-
galactoside alpha-2,3-sialyltransferase (ST3GAL3), CMP-N-acetylneuraminate-beta-
galactosamide-alpha-2,3-sialyltransferase 4 (ST3GAL4), and it inhibits the expression of 
Branched-chain-amino-acid aminotransferase (BCAT1), Choline kinase alpha (CHKA), and 
Proline dehydrogenase 1 (PRODH). Five of those genes encode enzymes that catalyze reactions 
that are part of the breast cancer-specific metabolic model used in this study, namely, L-lactate 
dehydrogenase (LDH_L), Glyoxylate oxidase (GLXO1), Ornithine Decarboxylase (ORNDC and 
HMR_4422), Choline kinase (CHOLK) and Proline dehydrogenase (PROD2m). 
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We used equation (1) to model that MYC promotes the transcription of the metabolic 

genes LDHA, ODC1 and PRDX3, and equation (1) with the not operator to model the 

inhibition of CHKA and PRODH by MYC. Then, the genes are directly connected to the 
enzymes by the constraints derived from the GPR rules defined in the metabolic model. 

Finally, the enzymes constrain the fluxes through the corresponding reactions. 
Simulating growth with the integrated model, we observe that if MYC is activated, the 

expression of the genes that are promoted by MYC is also activated, and the reactions 

catalyzed by the enzymes coded by these genes are operative. On the other hand, when 
MYC is active, the transcription of CHKA and PRODH is inhibited, and this repression is 

reflected in the metabolic network. When the enzyme PROD2m is repressed, the 
reaction cannot carry flux. In the case of the enzyme CHOLK, we still observe flux 

through the reaction because CHOLK is encoded in the GPR of the metabolic model not 
only by CHKA but also by CHKB. MYC only represses one of these two genes; thus, the 

enzyme is still transcribed by the other gene, and the reaction can carry flux. 

Having integrated both models in the same optimization problem, we now have the 

opportunity to incorporate the transcriptomics data at both signaling and metabolic levels. 
We first mapped the discretized transcriptomics data from the breast cancer NCI60 cell 

lines to the proteins and genes in the integrated model, and we identified a total of 244 
active proteins and genes and 134 inactive genes. Specifically, two signaling active 

proteins MYC, and FOXO3, 242 active genes, and 134 inactive genes. Additionally, we 
considered ATP as active in the signaling network, and we required the maximum 

production of biomass in the metabolic network. In this case, we applied CONSIGN to 
integrate the expression data and maximize the consistency of the network states with 

the data considering not only the signaling species but also the expression of the 
metabolic genes. The results reveal that 378 of the 380 states of the proteins and genes 

reported in the transcriptomics data are consistent with the network, that is, their values 

in the integrated model can be defined according to their regulated states in the data. 
The two inconsistent genes encode for two subunits of the enzyme cytochrome c 

oxidase, namely, COX7B2 and COX8C. These two genes are reported as 
downregulated in the transcriptomics data; however, the network requires the activity of 

the corresponding enzyme. The enzyme cytochrome c oxidase is the last enzyme in the 
mitochondrial electron transport chain, and its activity is essential to simulate growth.  
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4.2.5 Upstream signaling pathway for MYC and metabolism of breast cancer 

Aiming to identify all the interactions between the signaling pathways related to MYC 
expression in human breast cancer metabolism, we generated a signaling network 

containing all the upstream pathways for the transcription factor MYC. The upstream 
MYC signaling network was reconstructed from Reactome, and it is composed of 3838 

reactions and 6642 species, including 1963 activators, 166 inhibitors, and 30 receptors. 
In this network, MYC protein formation is promoted by NOTCH1 coactivator complex and 

by NOTCH1 PEST domain mutants coactivator complex, and it is repressed by the 
microRNAs 38B and C, and by a complex formed by RBL1, E2F4/5, DP1/2, p-RSMADS 

and, TIE (a TGF-beta inhibitory element).  

Although the network was generated as the upstream signaling network for the 

transcription factor MYC, it contains 29 additional transcription factors that regulate a 
total of 71 metabolic genes present in the breast cancer model (Table 4.2). In this case, 

we connected the generated MYC signaling network to the metabolic breast cancer 
model by considering the regulation of the 71 metabolic genes by the corresponding 

transcription factors. To this end, we generated rules that describe the interactions of 
genes and transcription factors (Materials and Methods). As an example, the 

transcription of the gene LDHA that codes for the enzyme lactose dehydrogenase is 
promoted by five transcription factors, namely, HIF1A, HSF1, JUN, MYC, and SP1. The 

rule created for this gene is the following: 

𝐻𝐼𝐹1𝐴	OR	𝐻𝑆𝐹1	OR	𝐽𝑈𝑁	OR	𝑀𝑌𝐶	OR	𝑆𝑃1 ↔ 𝐿𝐷𝐻𝐴 

We modeled the gene transcription repression using the not operator, as in the case of 

the transcription of the gene SLC2A1 that codes for a glucose transporter. SLC2A1 is 

promoted by HIF1A and repressed by ATM and TP53. For this gene, the following rule 
represents its regulation:  

𝐻𝐼𝐹1𝐴	AND	not	𝐴𝑇𝑀	AND	not	𝑇𝑃53 ↔ 𝑆𝐿𝐶𝐴1 

The rules are translated into linear equations and integrated as constraints in the 
optimization problem of the signaling and metabolic models combined (Materials and 

Methods). 
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Table 4.2. Transcription factors and metabolic genes. Transcription factors (TFs) that regulate 
metabolic genes present in the breast cancer specific model. The corresponding regulation is 
specified as activation [A] or repression [I]. The two genes used as examples in the text are 
highlighted in blue and orange in the table. 

TFs Genes [Regulation] 
APC ODC1 [I] 

APEX1 SLC5A5 [A] 

ATF2 PCK1 [A] 

ATM SLC2A1 [I] 

CEBPB GOT1 [A], PCK2 [A], SLC19A1 [A], SLC5A8 [A] 

CEBPD SOD1 [A] 

CTNNB1 PLD1 [A] 

EGR1 SLC4A2 [A], SLC9A3 [A], SOD1 [A] 

HDAC1 GAD1 [I] 

HDAC2 PRDX2 [I] 

HIF1A ACE2 [I], ALDOA [A], CA9 [A], LDHA [A], NT5E [A], PGK1 [A], SDHB [I], SLC29A1 [I], SLC2A1 [A] 

HMGA1 SLC2A3 [A] 

HSF1 LDHA [A] 

JUN LDHA [A], MAT2A [A] 

KLF4 HDC [I], ODC1 [I] 

KLF5 FASN [A] 

MITF ACP5 [A], TYR [A] 

MYC CHKA [I], LDHA [A], ODC1 [A], PRDX3 [A], PRODH [I] 

NR1H4 ABCB4 [A], ABCC4 [I], CYP7A1 [I], FABP6 [A] 

NRIP1 SLC7A1 [A] 

PAX6 FABP7 [A], PDHX [I] 

PPARA ACSL1 [I], UCP1 [I] 

PPARG ABCG2 [A], ACAT1 [A], CD36 [A], FABP4 [A], GK [A], SLC2A4 [I], SLC5A5 [A], SLC9A1 [I] 

PPARGC1A ALDOB [A], CYP7A1 [A], PCK2 [A] 

SP1 
ABCA1 [A], ABCC3 [A], BSG [A], COX4I1 [I], DHCR24 [A], GCLC [A], LDHA [A], MAT2A [A], MAT2B 
[A], NDUFV1 [A], NDUFV2 [A], P4HA1 [A], PCK1 [A], PHGDH [A], SLC19A1 [A], SLC29A1 [I], 
SLC5A1 [I], SLC5A8 [A], SLC9A3 [A], SOD1 [A], SOD1 [I], SOD2 [I], TK1 [A], UGDH [A] 

SP3 ABCA1 [I], BSG [A], SLC9A3 [A] 

STAT1 CFTR [A], CFTR [I], UPP1 [A] 

STAT3 NME1 [A], UCP2 [I] 

TP53 CKM [A], SLC2A1 [I], SLC6A6 [I], TYMS [I] 

ZNF143 PCYT1A [A] 

 

Based on the discretized transcriptomics data from the breast cancer NCI60 cell lines, 
we associated a state (active or inactive) to the signaling species and to the metabolic 

genes that were part of the integrated model. In particular, the transcriptomics data had 
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information for 600 species in the upstream MYC signaling network, among them 468 

were active species and 132 inactive species, and for the states of 376 metabolic genes 

that were part of the metabolic breast cancer model, specifically 242 active and 134 
inactive (Table 4.3). 

Next, we performed CONSIGN considering first only the signaling network, and then the 

integrated model containing both the signaling and the metabolic networks. We analyzed 
the differences in the results when we maximize the consistency between the network 

and the data imposing only the state defined by the transcriptomics data in the signaling 

species or including also the states of the metabolic genes. 

When we applied CONSIGN only in the signaling network, we were able to consistently 
integrate the transcriptomics data to map the discretized expression of 531 proteins, and 

there existed four alternative solutions that simultaneously constrained the states for the 
maximum number of species consistently with the data. Analyzing the alternative 

solutions, we identified that the state of 529 proteins out of the 531 could always be 
consistent with the data (Table 4.3), in particular, 402 active and 127 inactive. The over-

expressed or active proteins belong mainly to the following pathways: immune system, 

signal transduction, DNA repair, gene expression, cell cycle, and metabolism of proteins 
(Figure 4.4 A), which are commonly known to have higher activity in cancer cells. Small 

proportions of the 127 lowly-expressed or inactive species belong to several pathways, 
including metabolism, immune system, and hemostasis (Figure 4.4B). 

We constrained these 529 proteins in the model to the corresponding state, and we used 

the model to analyze the states of other species in the network. To this end, we 

performed variability analysis in the states of all the signaling species. We identified 1625 
additional species that require a tightly defined state to allow the model to meet the 

maximum consistency with the transcriptomics data. The constrained signaling model 
reveals that 644 of them should be active, and 981 of them inactive. Among the active 

species, the model correctly identified two phosphorylated species that were reported as 
active in the transcriptomics; 113 species that were not significantly deregulated in the 

data but the model shows evidence that they need to be active in order to represent the 
observed states of the other species; and 526 species that were not measured in the 

transcriptomics data. These results highlight the potential of the model to infer the state 
of additional species that were not part of the initial dataset but whose states are 
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indirectly defined by the other species. Finally, we identified three genes whose state in 

the discretized transcriptomics data was defined as inactive, but the model requires them 

as active, namely, MSH4, SGIP1, DMC1, which belong to the cell cycle and reproduction 
pathways. 

Regarding the 981 inferred inactive species, the model correctly identified that 

phosphorylated PLA2G4A as inactive, 73 species that were not significantly down-
regulated in the data, but they were characterized as inactive by the model, and 838 

species that were not part of the transcriptomics data set. Moreover, we identified 69 

species that are active in the transcriptomics data, but the model requires these species 
to be inactive.  

We hypothesized three reasons that could explain the inconsistencies between the 

network states and the observed transcriptomics data: the threshold defined for the 
discretization of the states of the species based on the transcriptomics values, the 

incompleteness of the signaling network, or post-transcriptional and post-translational 
modifications. However, further analysis should be performed to validate and test these 

hypotheses. 

Overall with our analysis, we could assign deregulation to the signaling subsystems 

related to the MYC upstream network. In particular, we observed activity related to the 
following pathways: immune system, signal transduction, metabolism, metabolism of 

RNA, some pathways in DNA repair, cell cycle, and cellular responses to external stimuli. 
Furthermore, we could assign a lower activity to a part of the signal transduction 

pathways, pathways related to DNA repair, and hemostasis. 
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Figure 4.4. Distribution of the network species that are constrained to be active or inactive 
based on the transcriptomics data and the signaling network constraints. Genome-wide 
classification of the Reactome pathways related to active (A) and inactive (B) species whose 
states where integrated and inferred from the consistency between the transcriptomics data and 
the signaling network. The graph was obtained with Reactome Data Analysis Tool. The color code 
denotes the over-representation of the pathway based on the p-value. Light grey indicates 
pathways that are not significantly over-represented. 

 

Next, we applied CONSIGN to the combined model containing the signaling model for 
the upstream MYC network and the metabolic breast cancer model. In this case, we 

could simultaneously integrate a maximum of 883 from the 976 states defined by the 

A Pathways with active species

B Pathways with inactive species
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transcriptomics data. We generated the existing 16 alternative solutions that maximize 

the consistency with the data, and we identified 879 proteins and genes whose state is 

consistent across the 16 alternatives. Specifically, we identified 394 active proteins, 126 
inactive proteins, 231 active genes, and 128 inactive genes (Table 4.3). 

Notice that the number of signaling proteins that could be consistently integrated 

decreased when we considered the integrated model containing the signaling and 
metabolic models. The proteins whose states could not be constrained simultaneously 

to satisfy the maximum number of transcriptomics data in the integrated model were 

SP1, CYP51A1, DHCR7, FASN, HDAC2, SUMO2,3-K386-TP53, ATF2, TP53, and 
PPARGC1A which are related to the immune system and the signal transduction 

pathways. The transcriptomics data identified PPARGC1A as inactive and the rest of 
them as active. However, our analysis suggests that the state of these proteins cannot 

be simultaneously constrained to satisfy the expression data for the other species. 

 

Table 4.3. Integration of data and consistency analysis. Comparison of the maximum 
consistency and the number of alternatives  

  MODELS 

  signaling 
signaling 

and 
metabolism 

metabolism 

TR
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proteins active 468 468 - 

proteins inactive 132 132 - 

genes active - 242 242 

genes inactive - 134 134 

TOTAL 600 976 376 

CO
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TH
E 
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O
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maximum consistency 531 883 361 

number of alternatives 4 16 2 

consistency across alternatives 529 879 360 

proteins active across alternatives 402 394 - 

proteins inactive across alternatives 127 126 - 

genes active across alternatives - 231 231 

genes inactive across alternatives - 128 129 



Integrating signaling and metabolic networks for cancer cells 

 
132 

Furthermore, performing the analysis considering only the metabolic network, the 

number of genes whose state was consistent with the experimental data was slightly 

higher than when we considered the integrated model (Table 4.3). This result, together 
with the lower consistency of the protein states in the integrated model, shows evidence 

that the two systems affect each other and that for a more realistic analysis, they should 
be studied as a whole instead of independently. 

We next constrained the states of the 879 consistent species in the integrated model, 

and we performed variability analysis of the states of the other proteins. We identified 

708 proteins and genes that must be active, and 1071 that must be inactive to allow the 
model to be consistent with the 879 species whose states where defined from the 

transcriptomics data. Among these 1779 species, the state of three proteins were 
correctly predicted, two active and one inactive; 232 were discretized as medium (neither 

active nor inactive) in the transcriptomics data, but the model requires 168 of them to be 
active and 64 of them to be inactive; additionally, 529 proteins were found to be active 

and 911 inactive, and these proteins were not measured in the transcriptomics data; 
finally, 9 species were discretized as inactive but the model assigned to them an active 

state and 75 species were active in the discretized transcriptomics but inactive in the 
model. 

Overall, with our analysis, we could assign with higher confidence deregulation to the 
signaling and metabolic pathways. In particular, the integrated model revealed an 

upregulation of the immune system, metabolism, metabolism of RNA, gene expression, 
metabolism of proteins, disease associated pathways, cell cycle, DNA Replication and 

some pathways in DNA Repair among others. Furthermore, it showed a downregulation 
of signal transduction pathways, DNA repair, metabolism of proteins and some pathways 

from the cell cycle, among others.  

Further analysis will be performed to investigate the differences between the deregulated 

pathways and assign functionality to these deregulations based on the interplay between 
the signaling and the metabolic network. 
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Figure 4.5. Distribution of the network species that are constrained to be active or inactive 
based on the transcriptomics data and the integrated network constraints. Genome-wide 
classification of the Reactome pathways related to active (A) and inactive (B) species whose 
states where integrated and inferred from the consistency between the transcriptomics data and 
the integrated network. The graph was obtained with Reactome Data Analysis Tool. The color 
code denotes the over-representation of the pathway based on the p-value. Light grey indicates 
pathways that are not significantly over-represented. 

 

 

A Pathways with active species

B Pathways with inactive species
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 Discussion 

A major challenge in systems biology is the integration of different biological networks 
and data-types. That is the case of signal transduction networks, gene expression, and 

metabolic networks, which have been mainly studied independently despite being 
closely related as they tightly regulate each other. We propose a new method named 

CONSIGN to contextualize signaling networks to a specific physiology. The method 
maximizes the consistency of the state of the species in the network and the 

experimental data. Furthermore, we present a workflow to generate integrated models 
of signaling and metabolic networks. The work here presented gives the opportunity to 

simultaneously simulate the state of the signaling and the metabolic networks and to 
integrate omics data, including transcriptomics, proteomics, metabolomics, and 

fluxomics, ensuring the consistency with both biological networks and with the 

experimental measurements. The integrated model is a powerful tool to analyze how the 
regulatory effects propagate to metabolism and to study critical points in the signal 

transduction pathway that can be investigated as targets for therapies. In particular, we 
can identify possible drug targets and the impact that the specific drugs would have in 

the network, accounting for alternative pathways that cells have to overcome the effect 
of the drugs generating resistance to the treatment. 

In this work, we modeled the signaling network as a Boolean network, considering only 
two possible states for the signaling species, active or inactive. Although this is a strong 

assumption that is far from reality, the generated integrated model can be used for 
exploratory analysis to define the structure of the model. Moreover, it serves as a basis 

to develop an improved model, including the formulation of continuous or multilevel 
constraints to account for intermediate states of the signaling species and genes, and 

the refinement of the interactions between the metabolic and the signaling pathways [23, 
58, 59]. Furthermore, in this analysis we have only considered the effect of the signaling 

pathways in the metabolic network. However, in the future, the integrated network could 
also take into account the regulatory effects of metabolism in the signaling pathways.  

Herein, we focused on the transcription factor MYC and its effects on metabolism. By 
building the upstream signaling network related to MYC, we closely represented its 

regulatory network, including the impact of other signal transduction pathways. In further 
studies, we could include other signaling species that are regulated by MYC and capture 



Integrating signaling and metabolic networks for cancer cells 

 
135 

the propagation of the signal in the downstream signaling pathways from MYC, possibly 

including other metabolic regulators that could be connected to the metabolic network. 

For example, the repression by MYC of the microRNAs miR-23a/b that increase the 
expression of the glutaminase protein [60] affecting glutamine metabolism, which is 

indeed another of the alterations reported for cancer cells [61, 62]. 

As a case study and for consistency with the metabolic model generated in chapter 2, 
we used in this analysis the transcriptomics data from the NCI60 cell lines. Nevertheless, 

the same workflow can be applied integrating omics data from other datasets such as 

the Cancer Cell Line Encyclopedia (CCLE) [63], or The Cancer Genome Atlas Program 
(TCGA) [64] as well as patient-specific omics data. Phosphoproteomics and proteomics 

data can also be directly integrated into the generated model to account for the activity 
of the signaling proteins and enzymes with higher certitude. Moreover, to illustrate the 

applicability of the method and workflow, we have created a breast cancer integrated 
model. However, the same workflow can be applied to generate specific models per cell 

line or for different types or stages of breast cancer. Finally, the workflow applies to any 
other disease as well as to healthy cells having the opportunity to compare the signaling 

and metabolic differences and similarities between the diseased cells and their healthy 
counterparts. 

In the case of using the workflow with patient-specific data, we have the opportunity to 
perform biomarker analysis by identifying the consistent states among the samples from 

the patients, the integrated network, and the alternative states of the network. 

Overall, our study shows promising applications in the of systems biology and medicine 

bridging the studies of signaling and metabolism and allowing to refine the hypotheses 
suggested by previous studies and to test and design new experimental hypotheses. 
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 Materials and Methods 

4.4.1 Gene and protein expression data 

Transcriptomics data were collected from the NCI60 cell lines for breast cancer. The 
transcriptomics data levels were discretized in three levels: high medium and low, based 

on the population of the expression levels for each species across cell lines. For each 
cell line, each species was classified as highly or lowly expressed if their expression 

levels were higher than the third quartile of the population or smaller than the first quartile 
of the population, respectively. For the specific cancer type, we assigned the 

corresponding expression to the genes if their deregulation was consistent in at least 
80% of the samples for the cell lines of breast cancer. 

The discretized transcriptomics data were used to determine the expression level of the 
signaling proteins and genes and the metabolic genes. In this work, we considered that 

highly expressed proteins and genes were active proteins, and lowly expressed proteins 
and genes were inactive proteins. 

4.4.2 Human breast cancer metabolic model 

The metabolic model is a breast-cancer specific reduced model of the thermodynamically 
curated human genome-scale model Recon 3D [41], reconstructed following the 

redHUMAN pipeline described in chapter 2. The reduced model was generated around 

11 subsystems that have been reported to be altered in cancer, namely, glycolysis, 
pentose phosphate pathway, citric acid cycle, serine, glycine, alanine and threonine 

metabolism, glutamate metabolism, urea cycle, oxidative phosphorylation, ROS 
metabolism, arginine and proline metabolism, purine metabolism, and pyrimidine 

metabolism. The reduced model accounts for the pathways required to uptake and 
secrete the extracellular metabolites based on the omics data and for the necessary 

pathways to synthesize the biomass building blocks, such as amino acids, nucleic acids, 
lipids, and proteins. Furthermore, we defined the physiology for breast cancer by 

integrated metabolomics and transcriptomics data from the NCI60 breast cancer cell 
lines [50] into the metabolic reduced model following the workflow described in chapter 

3. The breast-cancer specific metabolic model consists of 613 metabolites, 1717 

reactions, and 971 genes associated with the reactions. 
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4.4.3 Mapping transcription factors to metabolism 

We obtained information about transcription factors (TFs) and their target genes from 
the TRRUST database [57] (https://www.grnpedia.org/trrust/). In particular, we identified 

a total of 5071 pairs composed of 795 transcription factors and 2492 genes and their 
corresponding regulation, that is, activation or repression. Next, we identified the genes 

from the metabolic network Recon 3D [41], whose expression was regulated by a 
transcription factor. As a result, we identified 460 pairs of 115 transcription factors and 

237 metabolic genes from Recon 3D and the corresponding regulatory effect. From 
those 460 pairs, 180 pairs formed of 77 transcription factors that regulate a total of 117 

genes are associated with the breast cancer-specific reduced model used in this work 
(Table S1). 

4.4.4 Reconstruction of signaling pathways from REACTOME 

We extracted from Reactome [3] (https://reactome.org/) the information of the signaling 

pathways, including the reactions, the species, and the regulatory effects such as 
activation and repression of the signaling reactions.  

We built a directed graph by identifying the species and reactions as nodes and the 

interactions as directed edges. As a result, substrates/modifiers and regulators are 
connected through an edge to their corresponding reactions, and reactions are 

connected through an edge to their corresponding products. The directed graph is then 

navigated to obtain signaling pathways for specific nodes. For a signaling species, we 
perform a directed graph search to find all the predecessors in the directed graph and 

build their upstream network or to find all the successors resulting in the downstream 
network. For the graph search, we did not take into account cofactors, to maintain only 

the main signaling pathway.  

In this work, we built the MYC signaling pathway by identifying all its predecessors and 
all the predecessors of each predecessor in the directed graph. The final graph has 117 

layers of predecessors. 

4.4.5 Discrete formulation of rules for GPRs 

The gene-protein-reaction (GPRs) rules in the models describe the relationship among 
genes, enzymes, and the activity of the reactions they catalyze using Boolean logic rules 
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with the standard operators AND and OR. We used the TIGER toolbox [56] to convert 

the GPR Boolean rules into algebraic equations that can be integrated into the 

optimization problem (MILP). In this context, the following transformations for simple 
rules are applied: 

𝑥	 ⟺ 	𝑧			 ⟶ 			𝑥 − 𝑧 = 0	 (1) 

𝑥	AND	𝑦	 ⟺ 	𝑧			 ⟶			 ×	2𝑥 + 2𝑦 − 4𝑧 ≥ −1
2𝑥 + 2𝑦 − 4𝑧 ≤ 3	 	 (2) 

𝑥	OR	𝑦	 ⟺ 	𝑧			 ⟶			 ×	−𝑥 − 𝑦 + 3𝑧 ≥ 0
−𝑥 − 𝑦 + 3𝑧 ≤ 2		 (3) 

where 𝑥 and 𝑦 are binary variables representing the state of genes, and 𝑧 is a binary 

variable that represents the activity of the reaction. Thus, if the GPR is true, then 𝑧 = 1 
and the reaction can carry flux.  

In the case of more complex rules, auxiliary variables I are introduced to formulate the 

inequalities (see [56] for further details), for example: 

(𝑥	AND	𝑦	)	OR	𝑠 ⟺ 	𝑧			 ⟶			Ø	

2𝑥 + 2𝑦 − 4𝐼 ≤ 3
2𝑥 + 2𝑦 − 4𝐼 ≥ −1

	−𝐼 − 𝑠 + 3𝑧 ≥ 0
−𝐼 − 𝑠 + 3𝑧 ≤ 2	

	 (4) 

where 𝑥, 𝑦, 𝑧, 𝐼, and 𝑠 are binary variables. 

We add the linear inequalities as constraints to the MILP formulation of the TFA problem 

for the metabolic model. In addition, we add the following constraints to link the state of 
the reaction to the corresponding net flux. 

𝑧 − 𝑏Ùt = 0	 (5) 

𝑣Ùt − 𝐶 ∙ 𝑏Ùt ≤ 0	 (6) 

𝑣Ùt + 𝐶 ∙ 𝑏Ùt ≥ 0 (7) 

where 𝑧 is the binary variable representing the activity of the reaction and 𝑏Ùt is a new 
binary variable that controls the net flux through the reaction in the TFA problem. 

Moreover, 𝑣Ùt  is the TFA net flux variable for the reaction, related to the forward and 
backward fluxes through the TFA formulation [51, 65] and C an arbitrary big number 

(larger than the highest flux in the network). In this work, 𝐶 = 10Ç. With these constraints, 
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if 𝑧 = 1 then 𝑏Ùt = 1 and 𝑣Ùt ∈ (−𝐶, 𝐶). On the opposite, if based on the GPR the 

reaction is inactive then 𝑏Ùt = 0 and  𝑣Ùt = 0 blocking the flux through the 
corresponding reaction. 

4.4.6 Discrete formulation of rules for signaling interactions 

We formulated Boolean rules to describe the signaling interactions including activation, 

repression, complex formation and product formation. We consider as product the 

modified species by the reaction for example the (de)phosphorylated or (de)ubiquitinated 
protein. To this end, we formulated rules that activate the reaction in the presence of 

substrate and activators and in the absence of repressors and rules that activate the 
products if the reaction is active. Specifically, we used the AND operator and the not 

operator to describe repression. A general set of rules were formulated as it follows: 

𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒	AND	𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟	AND	not	𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑜𝑟 → 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 → 𝑝𝑟𝑜𝑑𝑢𝑐𝑡  

Then, we converted the Boolean rules into algebraic equations that can be integrated as 

constraints in the optimization problem. In this context, for the previous general rule, the 
following transformations were applied: 

𝑟 + 𝑟;/� = 1
2𝑠 + 2𝑎 − 4𝐼 ≤ 3
2𝑠 + 2𝑎 − 4𝐼 ≥ −1
2𝐼 + 2𝑟;/� − 4𝑅 ≥ 3
2𝐼 + 2𝑟;/� − 4𝑅 ≤ −1

𝑅 − 𝑝 = 0

(8) 

Where 𝑟, 𝑠, 𝑎, 𝑅, and 𝑝 are binary variables that represent the state (on or off) of the 

repressor, the substrate, the activator, the reaction, and the product, respectively.  𝑟;/� , 
and 𝐼 are auxiliary binary variables to formulate the not operator and the rule. 

We formulate a mixed-integer linear programming optimization problem with binary 

variables representing the states of the species and reactions, and the rules as 

constraints. 
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4.4.7 Discrete formulation of rules for the regulation of genes by transcription 

factors 

To captured how transcription factors regulate the expression of genes, we formulated 
Boolean rules that can be summarized in the following cases: 

1. The expression of a gene is promoted by one transcription factor: 𝑇𝐹 ⟺ 	𝑔𝑒𝑛𝑒. 

2. The expression of a gene is repressed by one transcription factor: not	𝑇𝐹 ⟺
	𝑔𝑒𝑛𝑒. 

3. The expression of a gene can be promoted by several transcription factors: 

𝑇𝐹2	OR	𝑇𝐹� 	⟺ 	𝑔𝑒𝑛𝑒. 
4. The expression of a gene is promoted by a transcription factor and inhibited by 

another transcription factor: 𝑇𝐹2	AND	not	𝑇𝐹� ⟺ 	𝑔𝑒𝑛𝑒. 

We then converted the Boolean rules into algebraic equations as it follows: the first case 

was modeled using equation (1); the second case was modeled using equation (1) and 
the auxiliary rule for the not operator,	𝑥 + 𝑥;/� = 1. The third case was modeled using 

equation (3) and the fourth case was modeled using equation (2) and the auxiliary rule 
for the not operator.  

The algebraic equations are added to the MILP together with the signaling and the 
metabolic models. These rules bridge the regulatory effects between the signaling 

networks and the metabolic networks. 

4.4.8 Contextualization of signaling networks (CONSIGN) method 

CONSIGN is a Boolean method that generates context-specific signaling networks and 

identifies signaling components (i.e. proteins and genes) whose activity in the network is 
consistent with experimental data. The method can as well identify active or inactive 

signaling reactions based on the activity of its participants. CONSIGN translates a given 

signaling network into a set of Boolean rules and further into a mixed integer 
programming problem (MILP) using the discrete formulation of rules from the TIGER 

toolbox.  

Moreover, the algorithm allows us to integrate transcriptomics or proteomics data of a 
given context and identify the signaling components and events that are maximally 

consistent with the context-specific data. To this end, we formulated the following 
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optimization problem (MILP), where the objective is to maximize consistency between 

the measured target states and the network: 

𝑚𝑎𝑥 , 𝑏\
\∈(ÄÛ	∪	ÄÜ)

 

   s.t. 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠	𝑓𝑜𝑟	𝑆𝑖𝑔𝑛𝑎𝑙𝑖𝑛𝑔	𝑅𝑢𝑙𝑒𝑠 

𝑥' − 𝑏' > 0,							∀𝑖 ∈ 𝑆Å 

𝑦- + 100 ∙ 𝑏- < 100,						∀𝑗 ∈ 𝑆u 

 

where 𝑆Å and 𝑆u represent the set of active and repressed species based on the data, 𝑥 

and 𝑦 are the binary variables introduced with the equations that represent the signaling 

rules, 𝑏 are new binary variables representing the state of the species. For the species 
that are active based on the data, if 𝑏' = 1 then the corresponding species should be 

active in the model, while for the species that are inactive according to the experimental 
data, if 𝑏- = 1 then the constraint forces the corresponding species in the model to be 

inactive. When considering the combined signaling and metabolic models, we include a 

constraint to set the biomass to its maximum value, 𝑣y'/0���o� = 𝑣y'/0���,0�z. 

The optimization problem maximizes the number of 𝑏\ = 1, maximizing the consistency 

between the simulated states of the network and the experimental data. The MILP 
formulation allows generating alternatives, enabling to explore how the network is able 

to accommodate the state of the species according to the data. 

Finally, we define in the network the states of the species that are always consistent 
across alternatives, and we study the states of the network that can explain the data. To 

this end, we formulate the following MILP to maximize the active states of the network.  

𝑚𝑎𝑥,𝑏�
�∈Ä

 

  s.t. 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠	𝑓𝑜𝑟	𝑆𝑖𝑔𝑛𝑎𝑙𝑖𝑛𝑔	𝑅𝑢𝑙𝑒𝑠 

𝑥' = 1,							∀𝑖 ∈ 𝑆á,Å 

𝑦- = 0,						∀𝑗 ∈ 𝑆á,u 
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where S is the set of species in the network, 𝑆á,Å and 𝑆á,u are the set of active and 

inactive species, respectively, according to the data and whose state is consistent with 

the signaling network. We included additional constraints in the MILP formulation to 
enumerate all the possible alternative states of the network that are consistent with the 

integrated data. 
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Appendix C 

Table S1: Regulation of metabolic genes by transcription factors. List of transcription factors 
and the genes that they regulate and that are part of the breast cancer specific reduced metabolic 
model. 

TFs Genes [Regulation] 
AHR CA9 [I] 
APBB1 GMPS [I] 
APC ODC1 [I] 
APEX1 SLC5A5 [A] 
AR ARG1 [A], ARG2 [A], PC [A] 
ARNT CA9 [A] 
ATF1 CFTR [A], SLC20A1 [A] 
ATF2 PCK1 [A] 
ATF3 ASNS [A] 
ATM SLC2A1 [I] 
CDCA7L MAOB [I] 
CDX2 ACAT2 [A], CFTR [A], SLC15A1 [A] 
CEBPB GOT1 [A], PCK2 [A], SLC19A1 [A], SLC5A8 [A] 
CEBPD SOD1 [A] 
CREB1 ACACA [A], SLC20A1 [A] 
CREB3L1 SLC1A4 [I] 
CREB5 DGKG [A], DGKG [I] 
CREM G6PD [I], SLC5A5 [A], SLC5A5 [I] 
CTNNB1 PLD1 [A] 
DBP ALDOB [A], CYP7A1 [A] 
DDB2 SOD2 [I] 
E2F1 DHFR [A], ISYNA1 [A], RRM1 [A], RRM2 [A], TYMS [A] 
EGR1 SLC4A2 [A], SLC9A3 [A], SOD1 [A] 
EGR3 CAT [A] 
EZH2 ALDH1A1 [I] 
FOS SLC10A2 [I] 
GATA1 CDA [A] 
GATA2 ADH1A [A] 
GATA4 FABP2 [A] 
HDAC1 GAD1 [I] 
HDAC2 PRDX2 [I] 
HDAC7 HDC [I] 

HIF1A ACE2 [I], ALDOA [A], CA9 [A], LDHA [A], NT5E [A], PGK1 [A], SDHB [I], SLC29A1 [I], 
SLC2A1 [A] 

HMGA1 SLC2A3 [A] 
HNF1A ACAT2 [A] 
HNF4A ABCG5 [I], ABCG8 [I], CYP7A1 [I], FABP2 [A] 
HOXA10 PHGDH [I] 
IRF3 ABCC2 [A] 
JUN LDHA [A], MAT2A [A] 
KLF2 FABP5 [I] 
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KLF3 CKM [A] 
KLF5 FASN [A] 
MEF2A SLC2A4 [A] 
MITF ACP5 [A], TYR [A] 
MTF1 GCLC [A], SOD1 [A] 
MYB CDO1 [A], MAT2A [A], TK1 [A] 
MYC CHKA [I], LDHA [A], ODC1 [A], PRDX3 [A], PRODH [I] 
MYCN ABCC1 [A] 
NFATC1 CYP2E1 [A] 
NFE2L2 CAT [A], CFTR [I], GCLC [I], MTHFR [A], SOD1 [A], SOD2 [A] 
NFIC SLC34A2 [A] 
NFKB1 ABCA1 [I], ABCG2 [A], CFTR [A], MAT2A [A], SLC25A27 [A], SOD2 [A], UPP1 [A] 
NFYA CBS [A] 
NR0B2 PCK2 [I] 
NR1H4 ABCB4 [A], ABCC4 [I], CYP7A1 [I], FABP6 [A] 
NR3C1 ATP1B1 [I] 
NRF1 PRDX3 [A], SLC46A1 [A] 
NRIP1 SLC7A1 [A] 
PAX6 FABP7 [A], PDHX [I] 
PITX3 MIP [A] 
POU2F1 TK1 [A] 
PPARA ACSL1 [I], UCP1 [I] 
PPARG ABCG2 [A], ACAT1 [A], CD36 [A], FABP4 [A], GK [A], SLC2A4 [I], SLC5A5 [A], SLC9A1 [I] 
PTMA IDO1 [A], IDO2 [A] 
RARA ABCC3 [I], SCD [A] 

SP1 

ABCA1 [A], ABCC3 [A], BSG [A], COX4I1 [I], DHCR24 [A], GCLC [A], LDHA [A], MAT2A [A], 
MAT2B [A], NDUFV1 [A], NDUFV2 [A], P4HA1 [A], PCK1 [A], PHGDH [A], SLC19A1 [A], 
SLC29A1 [I], SLC5A1 [I], SLC5A8 [A], SLC9A3 [A], SOD1 [A], SOD1 [I], SOD2 [I], TK1 [A], 
UGDH [A] 

SP3 ABCA1 [I], BSG [A], SLC9A3 [A] 
SREBF1 ACLY [A], PCK1 [I] 
SREBF2 ABCA1 [I], ABCG5 [I], ABCG8 [I], HMGCR [A] 
STAT3 NME1 [A], UCP2 [I] 
TFAP2A NME3 [A], SLC19A1 [A] 
TFAP2C GPX1 [A] 
TP53 CKM [A], SLC2A1 [I], SLC6A6 [I], TYMS [I] 
TWIST1 CTPS1 [A] 
USF1 ABCA1 [A], GCK [A], SLC19A1 [A], SLC22A2 [A] 
YY1 CFTR [A], COX7C [A] 
ZNF143 PCYT1A [A] 
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Figure S4.1. Overall distribution of the state of the species that maximize consistency 
between the signaling network and the data.  

 

 

 

 

 

A Pathways with consistently active species for the upstream MYC signaling network

B Pathways with consistently inactive species for the upstream MYC signaling network
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Figure S4.2. Overall distribution of the state of the species that maximize consistency 
between the integrated network and the data. 

 

 

 

 

 

A Pathways with consistently active species for the integrated model

B Pathways with consistently inactive species for the integrated model
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  Conclusions 
 

 

 In this chapter, we summarize the work and the main findings presented in the 
thesis, and we discuss their relevance and their contributions to the field of Systems 

Biology as well as future perspectives of applications of the models and methods here 

developed. 

 

 Conclusions 

The study of cancer as a systems disease, where we do not focus on individual parts but 

in the overall behavior within and across cellular processes, is crucial to have a deeper 
understanding of the underlying alterations that define the observed phenotype. Systems 

biology approaches and techniques are needed to develop improved models and 

methods that allow us to investigate this disease and to propose new targets for 
therapies. The work in this thesis contributes to overcoming some of the current 

challenges in systems biology that hinder the analysis of biological networks in complex 
systems as human cells.  

In Chapter 2, we overcame the challenge of employing large, complex metabolic models 

to study the metabolic physiology of human cells. We performed a thermodynamic 

curation of the genome-scale models for human metabolism, Recon 2 [1] and Recon 3D 
[2] including the thermodynamic properties for the compounds and reactions ensuring 

that the directionality of the reactions and the concentrations of the metabolites are 
consistent with the bioenergetics of the cell and with the laws of thermodynamics [3, 4]. 

We analyzed and classified the extracellular medium required to simulate growth, 
allowing to characterize the compounds assigned to the extracellular space in the model. 
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This analysis allows to define a biologically relevant medium in the model and refine the 

predictions as we constrain the set of metabolites that the simulated cell can uptake. 

Next, we developed a workflow (redHUMAN) that based on the methods redGEM [5] and 
lumpGEM [6] allows to reduce the size, and thus the complexity, of the human GEMs, 

and generate reduced models that focus on specific parts of the metabolism that are 
relevant for the physiology under study. The models created with redHUMAN include, in 

addition to the initial set of pathways, the metabolic pathways that the cells use to interact 
with a defined extracellular medium, and the metabolic pathways that the cells need to 

biosynthesize the cellular building blocks. The addition of these two sets of pathways 
allows to simulate with the reduced model a complete physiological scenario. Finally, the 

models undergo a list of consistency checks that include the capability of performing a 
set of metabolic tasks defined for human cells, ensuring that the predictive capabilities 

of the GEM, in terms of growth, reaction directionality, and gene essentiality are 

conserved in the generated reduced model. The reduced models are powerful platforms 
for studying metabolic differences between phenotypes, such as diseased and healthy 

cells.  

In Chapter 3, we demonstrate the relevance of the generated reduced models to 
investigate the metabolism of cancer cells and to translate the observed deregulation at 

the genetic level into deregulation of the metabolic pathways related to the genes. We 

integrated exo-metabolomics, exo-fluxomics, transcriptomics data from the NCI60 
cancer cell lines [7] into the generated reduced model from Recon 3D to build metabolic 

models describing the metabolism of breast, colon, and ovarian cancers. The omics data 
is used to define the topology and the physiology in the network. In particular, we used 

the metabolomics and the fluxomics to limit the corresponding metabolite concentrations 
and reaction rates in the model, and we used the transcriptomics data to define the set 

of transport reactions associated with each cancer type. Establishing the transport 
reactions in the model is of high importance, as these reactions will determine the 

exchanges with the medium setting at the same time the intracellular metabolism. We 
identified the transport reactions that are relevant for each cancer type based on the 

transcriptomics data and the network requirements. Furthermore, we used the cancer-

specific models in combination with the transcriptomics data to infer the deregulation of 
the metabolic pathways by maximizing the consistency between the expression data and 

the allowable metabolic flux in the network. This method allows to identify the relation 
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between the deregulation of the genes and the deregulation of the metabolic pathways 

and to systematically compare the differences and similarities at the metabolic level 

across different types of cancers. The models have proven to be a valuable tool to assign 
deregulation to the reactions with a higher certitude than by just analyzing the expression 

data. Finally, we used the cancer-specific models to investigate the metabolic 
requirements for eleven well-known cancer phenotypes, including the Warburg effect, 

glutamine addiction, and cellular stress. For each phenotype, we assigned a set of 
metabolic tasks, and we identified all the alternative metabolic pathways that would need 

to be active in order to sustain each of the metabolic tasks. We performed enrichment 
analysis using the transcriptomics data, and we analyzed the pathways that were 

significantly deregulated in each phenotype of each cancer type. Our study highlights 
the differences in the metabolic deregulation for each cancer type and the models allow 

to give functionality to these deregulations based on the metabolic tasks that required 

the reactions that are catalyzed by the deregulated genes. The integration tools and the 
enrichment analyses we performed provide a deeper understanding of how cells adapt 

their metabolism and gene expression in the different cancer types. We thus provide one 
more degree of discrimination between cancers, which can ultimately lead to a better 

understanding of this disease and help in the design of personalized treatments.   

In Chapter 4, we expand the metabolic models to integrate also the effects of the 

signaling processes controlling the expression of the metabolic genes. We extracted the 
human signal transduction pathways from Reactome, and we reconstructed the 

upstream signaling network for the transcription factor MYC. The signaling network 
contains the upstream pathways for MYC and the species that will determine the 

expression of the oncogene MYC [8]. We derived a novel method (CONSIGN) to 
contextualize the signaling network by maximizing the consistency of the states of its 

species with the observed data. We used the transcriptomics data form the breast cancer 
NCI60 cell lines to generate a signaling network for MYC in breast cancer cells. By 

analyzing the consistency of the states of the species with the data, we identified the 
proteins whose activity is required for the expression of MYC, and we analyzed the 

activity of the signaling pathways related to MYC in breast cancer, based on the 

consistent states of the species in the model. The models allow to infer the states of 
species that were not measured in the data based on consistency with the rest of the 

species in the network. Furthermore, we present a novel approach to integrate signaling 



Conclusions 

 
156 

and metabolic networks by accounting for the regulation of the metabolic genes. We 

were able, for the first time, to simultaneously simulate the signaling and metabolic 

networks and the cross-talk between them. We integrated the breast-cancer specific 
MYC model and the metabolic breast cancer model derived in Chapter 2. The integrated 

model includes the regulatory effects of 30 transcription factors, that were part of the 
MYC signaling network, in the metabolic genes from the breast cancer model. We 

investigated the consistency of the integrated model with the data observing the effects 
that both biological networks have on each other. Now, that both metabolic and signaling 

processes have been intensively studied, the integrated models show promising 
applications to improve the predictions of the current models by including the information 

from both networks. 

Throughout the work of this thesis, we enumerate the alternative routes that the 

metabolic and the signaling networks contain to represent the observed phenotype 
equally. These alternative pathways represent the flexibility of the cells to adapt to 

different environments by changing their expression profiles. Therefore, the enumeration 
and analysis of these alternatives are highly relevant for the study of drug targets as they 

can explain the resistance of cancer cells to therapies [9-12]. 

This thesis provides the models, methods, and approaches that will allow the scientific 

community to zoom-in in the biological processes of cells and analyze their alterations 
as cancer develops and progresses, as well as to characterize the metabolism and 

signaling pathways of the different species that populate the tumor microenvironment 
(Figure 5.1). The experimental data combined with the metabolic and signaling models 

and computational methods allow us to simulate metabolism and signaling pathways in 
a variety of cases, including the metabolism of tumor vs. normal cells, the metabolism of 

different cell types in the tumor microenvironment [13-15], such as normoxic cells vs. 
hypoxic cells [16] and the metabolism in immune cells vs. tumor cells to analyze how to 

engineer the immune cells to survive in the tumor microenvironment [17]. 
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Figure 5.1. Simulating the heterogeneity in the tumor microenvironment. We have now the 
models and methods to simulate the behavior of the different type of cells that populate the tumor 
microenvironment allowing to investigate the similarities and differences among them. Figure 
adapted from [9]. 

 

 Future perspectives 

Systems Biology has evolved to simulate at the genome-scale the cellular processes 

occurring in the cells. However, the lack of data and complete knowledge of these 
processes required certain assumptions in order to build manageable models that could 

expand our understanding of the studied process. The models and methods derived 
allow us to interrogate the system and to generate a collection of hypothetical answers 

to biological questions. 

Despite the assumptions made in this work, the models and methods generated can 

serve as a basis to build more detailed continuous models, as kinetic information and 
experimental data become available. The simpler models are used to explore the 
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structure of the system and enumerate a set of possible answers that can be later 

validated with improved versions of these models.  

The models and approaches here developed can be immediately used to investigate the 

cellular phenotypes within the tumor. For this purpose, we would integrate omics data 
into the generic model, create metabolic and signaling models for the different types of 

cells, analyze their corresponding metabolic and signaling pathways within the tumor 
microenvironment and identify targets that strengthen the healthy cells and debilitate the 

tumor cells. Further validation of the generated models using experimental data would 

greatly improve their predictive capabilities, decreasing the uncertainty in the network 
and emphasizing the differences across cellular phenotypes. The current methods 

provide an upper bound with respect to the enzyme activity based on the expression 
profile. Further post-transcriptional and post-translational modifications such as 

phosphorylation, would further constrain the bounds of the activity of the enzymes, and 
therefore, future research directions should investigate how these post-transcriptional 

and post-translational modifications would change the bounds of these enzymes. 

Genome-scale metabolic models and Boolean signaling models, in general, and those 

presented in this thesis, have shown remarkable applicability to infer the genotype-
phenotype and to identify targets for drugs. These models enable us to simulate a 

specific state of the cell under particular conditions. However, they are very limited to 
simulate the evolution of the cell in time.  The constraint-based models can serve as a 

scaffold to generate kinetic models [18-21] that are able to represent the kinetic 
mechanism of the system and simulate its dynamic behavior. We are currently 

developing a kinetic model for human metabolism using the cancer models derived in 
Chapter 3 and the framework ORACLE [21]. The Boolean models for signaling networks 

can be further improved by considering continuous constraints that allow to assign more 
states to the proteins than just active or inactive. We will integrate these constraints in 

the signaling model and in the integrated models derived in Chapter 3 to improve the 

consistency of the models with the integrated data and their predictive capabilities. 

Furthermore, constraint-based models account only for the metabolic resources required 
to build the biomass building blocks that will allow the cell to grow and proliferate. 

However, cells need to use resources also to build the proteins and enzymes that will 
allow them to perform their functions. As an improvement of the thermodynamic flux 
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balance metabolic models, models that account also expression constraints, known as 

metabolic and expression models or ME-models [22-24], were created to simulate the 

allocation of resources for other cellular biological processes required for metabolism. 
Specifically, they integrate to the thermodynamically constraint-based model additional 

constraints to include enzyme and mRNA concentration levels. These models allow to 
improve the predictions of the metabolic model. We are currently adapting the ETFL 

workflow [22] to generate models for human metabolism that are able to simulate the 
transcription and translation of the metabolic genes in order to have enough enzymes to 

have activity in the metabolic pathways. 

The integrated model is a powerful platform to investigate drug targets, drug effects and 

biomarkers. Simulating the interplay between signaling and metabolism can elucidate 
signaling and metabolic key components that could potentially decrease or stop the 

proliferative rate of cancer cells. The modularity of the model and the methods allows to 
integrate additional pathways that could represent the drug effect and the drug 

degradation pathways to study not only the impact of the drug but also the toxicity derived 
from its metabolism [25, 26]. In the future, we would like to test and validate the integrated 

breast cancer model generated in Chapter 3 (or expanded to contain other signaling 
pathways) against known drugs used for breast cancer [27, 28]. 

Finally, all the models and methods here generated have been used with cancer data 
from cultured cells. Nevertheless, other diseases showing altered phenotypes at the 

signaling and the metabolic levels could be studied following the same methodology. 
Moreover, using patient-specific data from the tumor and the healthy tissue around it 

could be used to create patient-specific models and help in the design of personalized 
medicine [29]. 
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