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Foreword

The material of the thesis is schematically organized as follows.
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G. Cuomo, A. Esposito, E. Gendy, A. Khmelnitsky, A. Monin and R. Rattazzi,
“Gapped Goldstones at the cutoff scale: a nonrelativistic EFT”,
e-Print: arXiv:2005.12924 [hep-th] .

• Chapter 3 reviews the large charge expansion in conformal field theories with U(1)

symmetry, including some unpublished results.

• Chapter 4 discusses the large charge expansion in conformal field theories invariant
under general symmetry groups and mostly presents original unbpublished material.

• Chapter 5 is based on [2]:
G. Cuomo, A. de la Fuente, A. Monin, D. Pirtskhalava, and R. Rattazzi, “Rotating
superfluids and spinning charged operators in conformal field theory”, Phys. Rev.D
97 (2018) no. 4, 045012, e-Print: arXiv:1711.02108 [hep-th] .

• Chapter 6 is based on [3]:
G. Cuomo, “Superfluids, vortices and spinning charged operators in 4d CFT”, JHEP
2002 (2020) 119, e-Print: arXiv:1906.07283 [hep-th] .

• Chapter 7 is based on [4]:
G. Badel, G. Cuomo, A. Monin, and R. Rattazzi, “The epsilon expansion meets
semiclassics”, JHEP 1911 (2019) 110, e-Print: arXiv:1909.01269 [hep-th] .

• Chapter 8 is based on [5]:
G. Badel, G. Cuomo, A. Monin, and R. Rattazzi, “Feynman diagrams and the large
charge expansion in 3− ε dimensions”, Phys. Lett. B802 (2020) 135202, e-Print:
arXiv:1911.08505 [hep-th] .

Our presentation includes some additional material with respect to the published papers;
notably, section 5.2 and most of section 5.6 did not appear in [2]. Appendices contain
additional details not included in the main text.
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Abstract

This thesis explores the application of semiclassical methods in the study of states with
large quantum numbers for theories invariant under internal symmetries.
In the first part of the thesis, we study zero-temperature superfluids. These provide a
general description of many systems at finite charge density. In particular, we derive a
universal effective field theory description for non-Abelian superfluids. Such construction
illustrates the role of gapped Goldstones, Goldstone modes whose gap is fixed by the
symmetry, and may be as large as the strong coupling scale of the system.
The second and third part of the thesis are devoted to the study of operators with large
internal charge in strongly coupled conformal field theories. Using effective field theory
techniques, we derive universal results for the spectrum of scaling dimensions and the
OPE coefficients in a large charge expansion, both for theories invariant under Abelian
and non-Abelian symmetry groups. We also extend these results to operators with large
spin as well as large internal charge.
The last part of this thesis studies operators with large internal charge within the ε-
expansion. We show how, using a semiclassical approach, one can overcome the breakdown
of diagrammatic perturbation theory for the multi-legged amplitudes associated with
these operators. These results provide a concrete illustration of the systematic large
charge expansion discussed in the previous parts.
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Riassunto

In questa tesi si studia l’applicazione di metodi semiclassici nello studio di stati caratte-
rizzati da grandi numeri quantici per teorie invarianti sotto una simmetria interna.
Nella prima parte della tesi, si studiano superfluidi a temperatura zero. Questi costitui-
scono una descrizione generale di molti sistemi a densità di carica finita. In particolare,
viene derivata una teoria di campo effettiva per superfluidi non-Abeliani. Tale descrizio-
ne illustra il ruolo dei Goldstone gappati, modi di Goldstone il cui gap è fissato dalla
simmetria e può essere dello stesso ordine della scala a cui il sistema diventa fortemente
interagente.
La seconda e la terza parte della tesi sono dedicate allo studio di operatori con grande
carica per simmetria interna in teorie di campo conformi fortemente interagenti. Tramite
teorie di campo effettive, si derivano risultati universali per lo spettro delle dimensioni
conformi e i coefficienti di fusione in un’espansione di grande carica, sia per teorie invarianti
per simmetrie Abeliane che per teorie invarianti per simmetrie non-Abeliane. Tali risultati
vengono anche estesi al caso di operatori con grande momento angolare oltre che carica
interna.
La quarta parte della tesi studia operatori con grande carica interna nell’espansione in
ε. Si dimostra come, tramite un approccio semiclassico, è possibile superare le difficoltà
legate al fallimento dell’espansione perturbativa in diagrammi per le ampiezze a molte
gambe legate a questi operatori. Tali risultati illustrano altresì l’espansione a grande
carica, discussa in precedenza nel caso generale, tramite un esempio concreto.

vii





Contents

Acknowledgements i

Foreword iii

Abstract v

Riassunto vii

Introduction 1

I Aspects of spontaneous symmetry breaking at finite density 9

1 Goldstone bosons at finite density 11
1.1 Goldstone theorem at finite density . . . . . . . . . . . . . . . . . . . . . 11
1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Non-Abelian superfluids: gapped Goldstones at the cutoff scale 26
2.1 Interactions of slow gapped Goldstones in the linear triplet . . . . . . . . 28
2.2 The Nonrelativistic EFT: the universal description of slowly moving gapped

Goldstones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 Integrating out the gapped Goldstone: a less effective field theory . . . . 46

Conclusions to Part I 50

II Superfluids and the large charge sector of strongly coupled CFTs 55
Invitation: the hydrogen atom at large angular momentum . . . . . . . . . . 56

3 The large charge expansion in U(1)-invariant CFTs 60
3.1 Path-integral at fixed charge . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 The spectrum of U(1)-invariant CFTs at large global charge . . . . . . . 63
3.3 Correlation functions from EFT in U(1)-invariant CFTs . . . . . . . . . 69

ix



Contents

4 The large charge expansion in CFTs: general symmetry groups 77
4.1 Operators with lowest dimensions at large charge . . . . . . . . . . . . . 78
4.2 Charged operators in the critical O(N) models . . . . . . . . . . . . . . 83
4.3 CFT data from a gapped Goldstone resonance . . . . . . . . . . . . . . . 89

Conclusions to Part II 100

III Rotating superfluids and spinning charged operators in CFTs 105

5 Spinning charged operators and vortices in 3d CFTs 107
5.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Spinning superfluid: vortices and singularities . . . . . . . . . . . . . . . 108
5.3 Formulation of the EFT . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4 From vortices to spinning charged operators . . . . . . . . . . . . . . . . 114
5.5 Correlators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.6 Discussion and generalizations . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Spinning charged operators and vortices in four dimensions 127
6.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2 Formulation of the EFT in four dimensions . . . . . . . . . . . . . . . . 130
6.3 Scaling dimensions from vortices in four dimensions . . . . . . . . . . . . 133
6.4 Correlators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.5 Vortices in arbitrary dimensions . . . . . . . . . . . . . . . . . . . . . . . 144

Conclusions to Part III 146

IV The ε-expansion meets semiclassics 149
Invitation: perturbation theory for an ordinary integral . . . . . . . . . . . . 150

7 Large charge operators and multi-legged amplitudes at the Wilson-
Fisher fixed point 152
7.1 Perturbation theory around the vacuum . . . . . . . . . . . . . . . . . . 154
7.2 Semiclassical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.3 Finite λn on the cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8 Feynman diagrams and the large charge expansion in 3− ε dimensions174
8.1 Lagrangian and Feynman diagrams . . . . . . . . . . . . . . . . . . . . . 175
8.2 Semiclassical computation . . . . . . . . . . . . . . . . . . . . . . . . . . 176
8.3 Analysis of the result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Conclusions to Part IV 182

x



Contents

V Appendix 185

A Appendices to Part I 186
A.1 Dimensionless coefficients in the model of two complex doublets . . . . . 186
A.2 Details on amplitudes in the triplet model . . . . . . . . . . . . . . . . . 187
A.3 Spacetime coset construction for the SU(2) superfluid . . . . . . . . . . 190
A.4 NREFT details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

B Appendices to Part II 204
B.1 Basics of Conformal Field Theories . . . . . . . . . . . . . . . . . . . . . 204
B.2 Conformal superfluid from the coset construction . . . . . . . . . . . . . 211
B.3 Casimir energy of the U(1)-conformal superfluid . . . . . . . . . . . . . . 214
B.4 Details on correlation functions in the large charge EFT . . . . . . . . . 218
B.5 Continuum approximation and thermalization in the CFT spectrum . . 226

C Appendices to Part III 231
C.1 Nambu-Goto action for superfluid vortices from the coset construction . 231
C.2 Photon propagator on the sphere . . . . . . . . . . . . . . . . . . . . . . 234
C.3 Vortex energy in 4d via dimensional regularization . . . . . . . . . . . . 235

D Appendices to Part IV 240
D.1 Diagrammatic two loop computation in λ|φ|4 . . . . . . . . . . . . . . . 240
D.2 One loop computation on the cylinder in λ|φ|4 . . . . . . . . . . . . . . 243

Bibliography 247

Curriculum Vitae 265

xi





Introduction

Feynman’s “sum over paths” epitomizes the striking difference between classical and
quantum mechanics. The physical evolution of a classical system is determined by the
condition that the trajectory qclassical(t) be a stationary point of the action functional
S[q]. Instead, quantum-mechanical amplitudes are determined by an “average over all
possible paths” q(t) weighted by a factor eiS[q]. This defines the path integral :

〈qf |e−iH(tf−ti)|qi〉 =

∫ qf

qi

Dq eiS[q] ,

where the initial and final state of the system specify the boundary conditions for the
functional integration.

The different regimes of quantum systems are readily classified through the properties of
the corresponding path integral. The latter of course depends not only on the dynamics but
also on the boundary conditions and, somewhat equivalently, on the operator insertions.
Path integrals can be broadly divided into two classes, Weakly Coupled (WC) and Strongly
Coupled (SC). A path integral is weakly coupled when it can be approximated by a loop
expansion around some leading classical trajectory γ. A SC path integral instead occurs
when no saddle point approximation is possible.

When considering systems with a large number of degrees of freedom, such as those
naturally described by quantum field theory (QFT), our predictive ability largely relies
on the existence of a WC path integral. Most notably, a WC path integral describes
collisions between Standard Model particles at center of mass energy E � 1 GeV. An
example of a SC case is instead given by QCD processes around the GeV. Even in the
presence of SC path integrals, one can often find a subset of the variables, normally
associated to long distance physics, whose quantum fluctuations are small around some
trajectory. In that case, one can first integrate out the variables with large quantum
fluctuations and derive an effective WC description for the remaining variables. In the
case of QCD, the latter correspond to the low energy excitations of the pions.

In the WC case the contribution to physical observables O consists of the sum of two terms
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Introduction

O = Oγ +Oq, a classical one Oγ , determined by the value of physical variables along the
leading trajectory, and a quantum one, Oq, determined by quantum fluctuations around
γ. One can then distinguish classical and quantum observables depending respectively on
whether Oγ � Oq or not. For instance, the path integral for the harmonic oscillator is
always weakly coupled, by definition, while the corresponding ground state energy is a
quantum observable, and one can consider states (for instance coherent states) where to
find classical observables. For a SC path integral all observables are quantum mechanical.

Observables describing small fluctuations of the vacuum state are always quantum in
nature. Generically, they are amenable to a WC description only if the system is
well approximated by a free theory, such as the harmonic oscillator, up to corrections
proportional to a small coupling λ� 1. Instead, semiclassical observables are normally
associated with states made of many quanta, therefore very different from the vacuum.

Observables with large quantum numbers under the conserved charges of the theory are
naturally semiclassical. Irrespectively of the existence of a small coupling, we generically
expect the existence of a WC semiclassical path integral in that case, even if only as an
effective description for a subset of the variables. This entails substantial simplifications
in the description of the sectors of the theory with large quantum numbers. The present
thesis will deal with some instances of this general phenomenon.

Large quantum numbers and semiclassics

As a simple illustration of the emergence of classical physics in the limit of large quantum
numbers, consider the Hydrogen atom system in quantum mechanics. In the limit of
infinite proton mass, the electron Hamiltonian is given by

H =
p2

2M
− α

r
,

where M denotes the mass of the electron, p its momentum and α the fine structure
constant. As well known, the bound states of the system are found solving the Schrödinger
equation. They have energy En = −Mα

2n2 and are labeled by three integer quantum numbers
n, `, and m, with n ≥ ` + 1. In particular ` and m specify, respectively, the angular
momentum J2 = `(`+1) and its projection J3 = m on the third axis. The minimal energy
state at fixed angular momentum m on the third axis has energy E0(m) = − Mα

2(m+1)2 ,
corresponding to m = ` = n− 1.

For m� 1, the value of E0(m) is well approximated by the classical result. To see this,
we observe that the (classical) effective potential at fixed angular momentum ` = m is
given by:

Veff (r) =
m2

2Mr2
− α

r
.

Upon minimizing this expression, we find that the minimal energy solution at fixed

2



Introduction

angular momentum corresponds to a circular orbit at radius rclass. = m2

Mα . Computing
the Hamiltonian on this configuration, we find

Eclass.0 (m) = −Mα

2m2
=⇒ E0(m)− Eclass.0 (m)

E0(m)
' 2

m
, m� 1 .

As anticipated, we see that the classical approximation becomes exact in the infinite
angular momentum limit.

Why does classical physics emerge at large angular momentum? Let us of focus on the
radial wave-function for concreteness. According to the standard WKB procedure [6], the
quasi-classical treatment holds for dλr/dr � 1, where the radial wave-length is given by
λr = 2π~/|p| ∼ r/m, thus reproducing the condition m� 1. Physically, the centrifugal
force keeps r localized on the classical trajectory for m� 1; indeed, it can be checked that
the spread of the exact expression of the wave-function scales as ∆r2/r2

class. ∝ 1/m. This
implies that the exact result can be computed expanding the corresponding path-integral
around the classical trajectory. We shall discuss in detail the systematic calculation of
1/m corrections to the classical result in the introduction to part II.

Let us now discuss the case of a quantum field theory at large quantum numbers. In
this case, while the basic picture is similar, the presence of an infinite number of degrees
of freedom makes things more involved. In general, the WC semiclassical description
takes the form of an effective field theory for certain light degrees of freedom. That such
light modes generically exist follows from the fact that a state with large charge density
unavoidably breaks certain (spacetime and often also internal) symmetries. The long
distance dynamics of the system is thus described by the associated Nambu-Goldstone
modes [7,8]. The prototypical example of this scenario is given by the relativistic effective
string theory (EST) describing meson resonances with large spin, which we illustrate
below.

A meson can be thought as a bound state made of a quark-antiquark pair, held together
by a tube of chromoelectric flux. This leads to a potential linearly increasing with
the distance between the two quarks, in agreement with lattice calculations [9]. The
development of this model led to the formulation of the first string theory [10] as an
attempt to describe the strong interactions. Nowadays we understand that the correct
theory to describe hadron physics is given by QCD, while, much more ambitiously, we
consider string theory as the most promising framework where to find a consistent theory
for quantum gravity and all other interactions. Nonetheless, EST can still be used to
describe the dynamics of a sufficiently long flux tube.

Let us consider first a simple a toy model describing a meson: a rotating string with
constant angular velocity around its center, such that its endpoints move at the speed of
light. A simple classical analysis reveals that the angular momentum J and the energy E
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of the string are related to its length R and tension T by [11]

J =
π

8
TR2 , E =

π

2
TR .

Identifying E with the mass M of the meson, we find the celebrated Regge relation
between the mass and the spin of the lightest mesons:

M2 =
J

α′
, α′ =

1

2πT
.

Perhaps surprisingly, such a simple linear relation between the spin and the mass of the
resonances is indeed approximately observed in nature [12], with the string tension given
by T ' 0.2GeV2 [13].

We would like to promote the previous toy model to a systematic effective description
of the flux tube dynamics. To this aim, we should identify the variables describing the
system. In general, the string degrees of freedom include its coordinates in the transverse
direction, called branons, as well as other degrees of freedom determining the microscopic
structure of the tube. The latter will in general be strongly coupled and we do not
expect to be able to describe them via a WC path integral. However, on dimensional
grounds, such microscopic variables will generically describe fluctuations on short scales,
of order

√
α′. 1 Instead, the branon modes can be thought as the Goldstone bosons for

the translations broken by the string; thus they are always light, corresponding to long
wavelength fluctuations, and weakly interacting at low energies. Therefore, to describe
the dynamics of a sufficiently long string R�

√
α′, we can integrate out the microscopic

modes and consider a long distance effective theory for the branons only. According to
the previous discussion R ∼

√
α′J and such description applies for J � 1. As anticipated,

we see that the large angular momentum limit entails the existence of a WC description.

The most general Lagrangian for EST was constructed in [16, 17] (see also [18, 19] for
a covariant formulation). Calling Xm with m = 2, 3 the transverse coordinates of the
string, the action to leading order is just given by the Nambu-Goto action [20]:

Sstring = −T
∫
d2σ
√
−det (ηαβ + ∂αXm∂βXm) + . . . ,

where α, β = 0, 1 and {σ0, σ1} parametrize the string worldsheet. The structure of the
action follows simply from the nonlinearly realized Poincaré symmetry, all the information
on the microscopic details of the theory being encoded in the value of the string tension
T . The dots stand for higher derivative terms, possibly including boundary terms for
open strings, suppressed by powers of 1/(TR2) ∼ 1/J with respect to the leading order.

1Interestingly, lattice data suggest that this expectation is not entirely correct due to the existence of
a light string axion on the worldsheet [14]. We shall neglect this complication in our analysis, referring
the reader to [15] for an effective field theory including the latter.
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As an illustration, let us discuss the basic predictions for an open string with free endpoints
(Neumann boundary conditions). Quantizing the action around a rotating solution we
find the existence of states with α′M2 = J +N , N = 0, 1, 2 . . ., in agreement with the
classical analysis discussed before for N = 0. Furthermore, we may compute corrections
to this formula in a 1/J expansion. For the ground state of the string, this was done
in [13]. The result reads:

M2 =
J

α′
+ cqJ

1/4 − 1

12
+O

(
J−1

)
,

where cq is the Wilson-coefficient of a certain boundary operator, physically parametrizing
the contribution of the quark masses.2 Interestingly, the value of the Regge intercept, the
term proportional to J0, corresponds to the Casimir energy of the branons and it is hence
independent of the coefficients of the effective theory. In other words, such contribution
takes the same value for all meson families and it is hence universal. This illustrates the
predictive power of EST at large angular momentum.

Plan of the thesis

Most interesting theories are not only invariant under the spacetime Poincaré symmetry,
but also under additional internal symmetries, the conserved charges often associated
with the number of particles of a certain species. In this thesis we will study certain
aspects of the limit of large internal charge.

Physically, a system at finite charge density can be associated with a certain condensed
matter phase of the theory. From the field theoretical point of view, a condensed matter
phase is a state in which the Poincaré and the internal symmetries are spontaneously
broken, preserving at large distances some form of spatial translations, time-translations,
and possibly spatial rotations [22]. The simplest option is that the ground state of the
system at fixed charge density induces the symmetry breaking pattern which defines a
superfluid phase [23]. Motivated by this observation, in part I of this thesis we study
the basic features of zero-temperature superfluids from the field theoretical viewpoint,
focusing in particular on systems at large non-Abelian charge density.

In the rest of the thesis, we will focus on conformal field theories (CFTs), QFTs invariant
under scale transformations. CFTs are of general interest since, given an arbitrary theory,
whenever there is a large separation between two relevant scales Λ1 � Λ2, the system can
be described as an approximate scale-invariant theory at intermediate scales Λ1 � E � Λ2.
They also describe critical points in statistical mechanics and provide a non-perturbative
definition of quantum gravity through the AdS/CFT correspondence [24].

The vast majority of CFTs does not possess a small coupling. Therefore, the physics of the

2In the Polchinski-Strominger formalism, boundary operators were classified in [21]).
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vacuum and of the lowest energy excitations is described by a SC path integral. We hence
have to rely on numerical techniques to study them, such as Monte-Carlo simulations or
the conformal bootstrap [25], and most of our knowledge is limited to specific examples.
However, things simplify for states with large internal charge, in which case we expect
that the system is found in a superfluid phase. In parts II and III of this thesis we will
study the consequences of this idea for the spectrum of three- and four-dimensional CFTs,
partly relying on the effective field theory techniques discussed in part I.

Finally, we will study the limit of large internal charge for fixed points in the ε-expansion
in part IV of this thesis. Such theories are always described by a WC path integral and
therefore we will not need to resort to an effective field theory description. Nonetheless,
in agreement with our general discussion, we will find that certain observables can only
be computed expanding the path integral around a non-trivial semiclassical trajectory,
while standard perturbation theory around the vacuum state fails. We will also comment
on the intriguing analogy between the simple problem that we address and the unsolved
issue concerning the production rate of a large number of particles in massive theories.

At the end of each part of this thesis, we provide conclusions and a detailed outlook of
future prospects. Appendices contain additional details and technical derivations.

Summary of conventions: Lorentz indices µ, ν, . . . go from 0 to d − 1 and we use
mostly minus metric signature sgn(gµν) = {1,−1, . . . ,−1}. Spatial indices are labelled
via i, j, . . . = 1, 2, . . . , d− 1 and are raised and lowered with a positive metric |gij |. We
use the notation ḟ = ∂0f for time derivatives. Bold characters denote spatial vectors in
flat space v = (v1, . . . , vd−1).
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Part IAspects of spontaneous symmetry
breaking at finite density

Spontaneously broken symmetries have far reaching consequences in the study of physical
systems. That is mainly because of the existence of Nambu-Goldstone bosons [7,8], whose
low-energy dynamics is largely dictated by symmetry, independently of other details of
the microscopic physics [26–28]. As a result, the experimental study of the dynamics of
Goldstone bosons at low energies and long distances allows to robustly infer the nature
of fundamental symmetries and the pattern of their spontaneous breaking.

In a standard Lorentz invariant setup there are as many Goldstones as broken generators,
they are all massless and move at the speed of light. However, Nature is pervaded with
systems that spontaneously break spacetime symmetries as well, in which case Goldstone
theorem allows for a much richer set of possibilities [29–32]. In this part of the thesis
we discuss those systems that are at finite density for a certain spontaneously broken
charge. This scenario is ubiquitous in physics [33] and, in particular, it is relevant for
the description of operators with large internal quantum numbers in conformal field
theories [34,35], which will be discussed in parts II, III and IV of this thesis.

More precisely, we consider relativistic systems that are at finite density for a given charge
Q and whose time evolution is governed by a Hamiltonian H. In this case, the ground
state of the system can be found as the state with lowest eigenvalue with respect to the
modified Hamiltonian (see for instance [33])

H̄ = H + µQ , (I.1)

where µ is the chemical potential. We focus on systems of this sort that break boost
invariance (like all condensed matter states [22]), time translations generated by H, the
internal charge Q, as well as another set of internal charges Qi. The modified Hamiltonian
H̄ is not broken by construction. This is the symmetry breaking pattern defining a
zero-temperature (possibly non-Abelian) superfluid phase [23].

In chapter 1 we will review the general properties of the spectrum which follow from the
spontaneous breaking of symmetries in finite density states, focusing on the differences
with systems in the vacuum. Most strikingly, we will see that the non-relativistic Goldstone
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theorem in this setup implies not only the existence of gapless modes, but also of gapped
ones, whose gap is fixed nonperturbatively by the algebra and is proportional to the
chemical potential of the system, the so-called gapped Goldstones [36–40]. Intuitively,
these arise whenever some of the broken generators Qi’s do not commute with the charge
Q which enters the definition of the unbroken Hamiltonian (I.1).

One expects the low-energy dynamics of Goldstones to be effectively describable in terms
of symmetries, and through a systematic derivative expansion [26, 27]. In this respect,
the mass gap ω(k = 0) ∝ µ of the gapped Goldstones poses a conceptual and technical
difficulty. Indeed, on the one hand, these modes are needed in order to construct an
effective field theory (EFT) invariant under the full symmetry group. On the other hand,
in many cases of interest, such as QCD at large Isospin density [41–44] and the large
charge sector of conformal field theories invariant under non-Abelian symmetries [34,35],
the chemical potential itself represents the cut-off of the EFT, paradoxically suggesting
that gapped Goldstones cannot be part of the latter.

The resolution of this paradox will be the topic of chapter 2. Focussing on the illustrative
example of a fully broken SU(2) group, we will demonstrate that such an EFT can be
constructed by zooming on the Goldstones, gapless and gapped, at small 3-momentum.
The rules governing the EFT, where the gapless Goldstones are soft while the gapped
ones are slow, are the same as in standard non-relativistic EFTs, like for instance the
one describing positronium. In particular, the EFT lagrangian formally preserves gapped
Goldstone number, and processes where such number is not conserved are described
inclusively by allowing for imaginary parts in the Wilson coefficients. Thus, while
symmetry is manifestly realized in the EFT, unitarity is not.

Some of the concepts discussed in this part of the thesis will appear repeatedly in the
following chapters, devoted to the large charge expansion in conformal field theories. In
particular, the construction of chapter 2 will be applied in the discussion of conformal
field theories invariant under non-Abelian symmetry groups in chapter 4. However, as
already remarked, the superfluid scenario which we discuss here can be relevant in different
contexts as well, including the description of the low energy physics of some condensed
matter systems [32] or QCD at finite density [45]. We will henceforth keep the discussion
general. For the sake of definiteness, we will work in four-dimensional theories, but all
the results can be straightforwardly generalized to arbitrary spacetime dimensions.
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1 Goldstone bosons at finite density

In this chapter we review some relevant results on the spectrum of Goldstone bosons at
finite density. Most importantly, we present the non-perturbative Goldstone theorem
for gapless and gapped Goldstones in sec. 1.1. Our main argument will be a simple
modification of that of [38], which we follow closely in the rest of the presentation. We
will then exemplify these general results in sec. 1.2, where we review the standard Abelian
superfluid low energy theory and we discuss two simple renormalizable models. One of
these features an additional light pseudo-Goldstone mode, which, as we will review, is a
typical feature of systems in which the symmetry breaking scale is parametrically larger
than the chemical potential [39].

1.1 Goldstone theorem at finite density

1.1.1 Setup and summary of results

We consider a relativistic system with an internal symmetry G, whose continuous compo-
nent is a compact Lie group generated by the charges Q1, Q2 , . . . QN . We call |µ〉 the
state of minimal energy for given average charge density of an internal generator, which,
with no loss of generality, we take to be Q ≡ Q1. Such a state clearly breaks spontaneously
boost invariance, while we assume the system to be homogeneous and isotropic so that
rotations and translations are unbroken. This state minimizes the modified Hamiltonian
H̄ = H + µQ, where µ is the chemical potential 1

H̄ |µ〉 = (H + µQ) |µ〉 = 0 . (1.1)

Eq. (1.1) can then be satisfied in two qualitatively different ways.
1In general, the ground state will satisfy H̄|µ〉 = λ|µ〉, with minimum λ. In the absence of dynamical

gravity, one can always add a cosmological constant term to the Hamiltonian to set λ = 0, with no
physical consequences.
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Chapter 1. Goldstone bosons at finite density

The first possibility, apparently the simplest one, is that the state |µ〉 is an eigenstate of
H and Q simultaneously, in which case none of them would be broken. This situation is
realized in nature in Fermi liquids [46,47], where the internal symmetry group is G = U(1),
corresponding to the particle number in the non-relativistic limit. We will not discuss
this scenario in this thesis and we refer the reader to [48–50] for recent works on the
Goldstone phenomenon associated with the breaking of boost invariance in this setup.

The second possibility is that the state |µ〉 breaks spontaneously both H and Q, while
being an eigenstate of H̄. This situation provides a field-theoretical definition of a
zero-temperature superfluid phase [22]. Perhaps surprisingly, this is the most common
scenario in nature [33] and it is the one we will focus on in this chapter (and effectively
in all of this thesis). Furthermore, when the internal symmetry group G is non-Abelian
other internal generators may be broken as well, which we take to be Q2, Q3, . . . , Qn
with n < N ; in particular, it is easy to see that the generators which do not commute
with the finite density charge Q must be broken. 2 This means that there exists some
order parameter AI(x), transforming in a non-trivial representation of the group G with
components labelled by I, such that 3

iκaI ≡ 〈µ|[Qa, AI(0)]|µ〉 6= 0 , a = 1, . . . , n . (1.2)

A similar eq. holds for the fundamental Hamiltonian H. In this case, it is not possible to
classify the states of the system as eigenstates of H. We instead consider the spectrum of
the unbroken combination H̄ = H + µQ. 4 According to eq. (1.1) the state |µ〉 is the
ground state, while excitations of the system–including the Goldstone bosons–correspond
to higher eigenstates.

In this setup, the breaking of symmetry generators commuting with Q, and hence the
modified Hamiltonian H̄, implies the existence of massless excitations [29]. Differently
from the relativistic case, these are as many as the number of commuting generators
only provided Goldstones with quadratic dispersion relation in the low momentum limit,
ω(k) ∝ k2, are counted twice [30]. 5 For a compact Lie group, the generators that do not
commute with Q may always be split into pairs {Q+

a , Q
−
a }, such that [Q,Q±a ] = ±qaQ±a ,

where the constant qa > 0 depends on the algebra. For each of such pairs, Goldstone

2For instance, for a theory invariant under an internal SU(2) group at finite density for the charge
Q = Q3, this follows from the relation 〈µ|[Q1, Q2]|µ〉 = i 〈µ|Q3|µ〉 6= 0, in obvious notation.

3More precisely, the existence of an order parameter, which we assume to be local, with a non-vanishing
expectation value defines symmetry breaking [32]. Indeed the charge associated with a spontaneously
broken symmetry is not a well-defined operator in a local QFT [51] (see also appendix B of [52]) and
cannot be diagonalized anyway; however, we can compute its commutators with well defined (local and
non-local) operators. Eq. (1.2) then implies that |µ〉 is not an eigenstate of the Qa’s.

4Equivalently, we can diagonalize a linear combination of H̄ and any unbroken generator [39].
5More precisely, the number of Goldstones equals the number of broken generators, provided those

which have a dispersion ω(k) ∝ kn with n even in the low momentum limit are counted twice. The
nonperturbative proof of this result relies on the assumption of the absence of long-range forces [32].
Counting rules for the number of non-relativistic Goldstones have been recently refined in the literature,
mostly using effective field theory methods [31,39,44,53–56].
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1.1. Goldstone theorem at finite density

theorem predicts the existence of a gapped quasi-particle, whose gap is nonperturbatively
fixed to be ω(0) = |µ|qa. The existence of these modes was not discussed in the classical
papers [29, 30], where the difference between the modified non-relativistic Hamiltonian H̄
and the fundamental one was not appreciated. Consequently, all symmetry generators
were assumed to commute with H̄. We refer the reader to [38] for further discussions of
this point.

Finally, we should remark that, as a consequence of the broken boost invariance, strictly
speaking nonrelativistic Goldstone theorem requires only the existence of zero-momentum
excitations, but does not say anything about their properties at finite momentum. For
instance, phonons in superfluids have a finite width, which vanishes in the limit where
their momentum goes to zero (see, e.g., [57]).

1.1.2 Proof of the theorem

By definition, the existence of an internal symmetry Lie group corresponds to the existence
of N Noether conserved charges Qa satisfying the group algebra [58]. In all known local
relativistic quantum field theories, such charges may be written as the integral of the
time component of some conserved currents. In Heisenberg picture, these evolve in
time with the original Hamiltonian H and in space with the space momentum P i:
Jνa (x) = eiHt−iP ·xJνa (0)e−iHt+iP ·x. The existence of these conserved currents, together
with the symmetry breaking pattern and the properties of the state |µ〉, specified before,
are the only assumptions required by the theorem.

Using Qa =
∫
d3xJ0

a(x) and H̄ |µ〉 = P i |µ〉 = 0, we may write eq. (1.2) in terms of
Wightman functions as

iκaI =

∫
d3x

[
〈µ|J0

a (x)AI(0)|µ〉 − 〈µ|AI(0)J0
a (x)|µ〉

]
. (1.3)

With no loss of generality, we take AI to be Hermitian, but the currents do not need to
be written in a real basis. To make the proof of the theorem as similar as possible to the
relativistic case [28], it is convenient to derive a spectral decomposition for the Wightman
functions. To this aim, let us insert the identity in terms of a complete set of momentum
eigenstates {|n,p〉}, where n label additional quantum numbers characterizing them. We
further choose these states to be eigenstates of the modified Hamiltonian H̄. Doing so for
the first element in the parenthesis of eq. (1.3), for instance, we get

〈µ|J0
a (x)AI(0)|µ〉 = 〈µ|e−iµtQJ0

a (0)e−iHt+iP ·x

(∫
d3p

(2π)3

∑
n

|n,p〉 〈n,p|
)
AI(0)|µ〉

=

∫
d3p

(2π)3

∑
n

e−iEn(p)teip·x 〈µ|e−iµtQJ0
a (0)eiµtQ |n,p〉 〈n,p|AI(0)|µ〉 .

(1.4)
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Chapter 1. Goldstone bosons at finite density

To proceed, we use that the algebra fixes the commutator of the charge and the current
in the form: 6

[Qa, J
0
b (x)] = if cabJ

0
c (x) (1.5)

where f cab are the structure constants of the group. From this and from the identification
Q = Q1, it follows that e−iµtQJ0

a(0)eiµtQ =
[
eµtf1

] b
a
J0
b (0), where the matrix f b1a is the

adjoint representation of the generator Q1. We then recast eq. (1.4) as

〈µ|J0
a (x)AI(0)|µ〉 =

∫
d3p dω

(2π)4

e−iωt+ix·p

2ω

∑
b

[
eµtf1

] b
a
ρJ0

b ,AI
(ω,p) , (1.6)

where we defined the spectral density for two operators OA and OB as [50] 7

ρOA,OB (ω,p) = 2ω
∑
n

〈µ|OA(0)|n,p〉 〈n,p|OB(0)|µ〉 × (2π)δ (ω − En(p)) . (1.7)

Applying similar steps to the second term in eq. (1.3) and performing the integral over
space, we arrive at 8

iκaI =

∫
dω

2π
e−iωt

∑
b

[
eµtf1

] b
a

lim
k→0

{
1

2ω

[
ρJ0

b ,AI
(ω,k)− ρAI ,J0

b
(−ω,−k)

]}
= const. ,

(1.9)
where in the last equality we stressed that κaI is constant (and non-zero) due to the
conservation of Qa in eq. (1.2). Let us consider the consequences of this fact, separately,
on broken generators commuting and non-commuting with Q = Q1.

Consider first a broken generator Qa which commutes with Q. With no loss of generality,
we may take Qa, and hence Jµa (x), Hermitian. In this case

[
eµtf1

] b
a

= δba and thus, for eq.
(1.9) to be satisfied, we must have

lim
p→0

1

2ω

[
ρJ0

a ,AI
(ω,p)− ρ∗J0

a ,AI
(−ω,−p)

]
= (2π)δ(ω)iκaI . (1.10)

This is the classical result of [29]. It implies the existence of a Goldstone state |π,p〉,

6In the presence of ’t Hooft anomalies, contact terms may modify this relation, but these are irrelevant
in the limit p→ 0 which we will use in our argument.

7With this normalization, the spectral density of a free real and canonically normalized relativistic
scalar field reads ρφ,φ(ω,p) = 2πδ (ω − E(p)) with E(p) =

√
m2 + p2; this definition is related to the

standard relativistic spectral density ρrelOA,OB (pν) of [59] as ρOA,OB (ω,p) = 2ω(2π)ρrelOA,OB (pν).
8To understand the origin of the limit for k→ 0 in this formula, we observe that the charge associated

with a spontaneously broken symmetry is not a well-defined operator in a local QFT (see footnote 3).
Concretely, this means that the integral of a single Wightman function in eq. (1.3) is not convergent [32]
and we cannot commute sum and integration. To remedy this, we rewrite eq. (1.3) as

iκaI = lim
k→0

∫
d3x e−ik·x

[
〈µ|J0

a(x)AI(0)|µ〉 − 〈µ|AI(0)J0
a(x)|µ〉

]
. (1.8)

We can now compute the space integral of the two contributions separately before taking the limit and
we arrive at eq. (1.9).
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1.1. Goldstone theorem at finite density

different than |µ〉, such that in the zero-momentum limit it is an exact eigenstate of H̄
with vanishing energy: Eπ (0) = 0. From eq. (1.7), we see that both the current and the
order parameter must have a non zero matrix element with such state.

The presence of both the spectral density and its conjugate, evaluated at opposite
momentum, on the left hand side of eq. (1.10) does not allow to conclude that there
exists a Goldstone state for each broken generator as in the relativistic case. Indeed, we
will comment below eq. (1.12) that, in some cases, Goldstone theorem may be satisfied
with a single Goldstone state for each pair of broken generators. This is the origin of the
mismatch in the counting of Goldstone states and broken generators mentioned before.
We refer the reader to the original work [30] and the recent reviews [31,32] for details.

Since we take G to be a compact group, we can always organize the generators which
do not commute with Q in (non-Hermitian) pairs such that [Q,Q±a ] = qaQ

±
a [60]; this

is equivalent to diagonalizing the adjoint matrix fa1b. Let us call, with obvious notation,
Jνa± the associated currents. In this basis

[
eµtf1

] b±
a±

= e∓iµqatδba and
[
eµtf1

] b∓
a±

= 0. Then,
taking for instance a = a−, eq. (1.9) reads

iκa−I =

∫
dω

2π
e−i(ω−µqa)t lim

k→0

{
1

2ω

[
ρJ0

a− ,AI
(ω,k)− ρ∗J0

a+
,AI

(−ω,−k)
]}

= const. ,

(1.11)
where we used (Jνa±)† = Jνa∓ . Assuming for definiteness µqa > 0 and using that the posi-
tivity of the spectrum implies that the spectral function vanishes for negative frequencies,
hence ρJ0

a+
,AI (ω,k) = 0 for ω < 0, eq. (1.11) can be satisfied only if

lim
p→0

1

2ω
ρJ0

a− ,AI
(ω,p) = (2π)δ(ω − µqa)iκa−I and lim

p→0

1

2ω
ρJ0

a+
,AI (ω,p) = 0 .

(1.12)
The first condition implies that for each pair {Q+

a , Q
−
a } there must be a gapped Goldstone

state |πµ,p〉, such that at zero-momentum it is an eigenstate of the modified Hamiltonian
H̄ with energy

Eπµ(0) = µqa. (1.13)

Furthermore, eq. (1.10) implies that both 〈µ|J0
a−(0)|πµ,p〉 and 〈µ|AI(0)|πµ,p〉 are non-

zero, while the matrix element of the plus component of the current with this state
vanishes in the zero momentum limit: limp→0 〈µ|J0

a+
(0)|πµ,p〉 = 0. This completes the

proof of the theorem.

Notice that eq. (1.11) holds also for qa = 0, corresponding to a complex pair of generators
{Q+

a , Q
−
a } that commutes with the charge at finite density Q. In that case eq. (1.12),

which requires the existence of a single Goldstone state, provides a possible (but not the
only) solution to the latter. As anticipated above, we see that a single Goldstone state
may account for the breaking of two generators, even when these commute with Q.
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Chapter 1. Goldstone bosons at finite density

1.1.3 Unbroken, explicitly broken and spontaneously broken Lorentz
invariance

As we already pointed out, without further assumptions, Goldstone theorem provides a
constraint on spectral functions only in the zero-momentum limit. The stronger relativistic
Goldstone theorem may be recovered from eq. (1.10) for µ = 0, in which case H̄ = H,
using the additional constraints imposed by the unbroken Lorentz invariance. To see this,
notice that eq. (1.10) implies the following constraint for the relativistic spectral density
ρrelJ0

a ,AI
(pν) = ρJ0

a ,AI
(ω,p)/(4πω) (see footnote 7):

lim
p→0

{
ρrelJ0

a ,AI
(pν)−

[
ρrelJ0

a ,AI
(−pν)

]∗}
= δ(p0)iκaI , (1.14)

where pν = (ω,p). To proceed, consider the following identity:

δ(p0) = lim
m2→0+

p0δ(p
2
0 −m2) [θ(p0)− θ(−p0)] , (1.15)

where we stressed the limit m2 → 0+ since the change of variables from p0 to p2
0 is

singular at p0 = 0. When boosts are unbroken, Lorentz invariance implies ρrelJ0
a ,AI

(pν) =

ip0ρ
rel
Ja,AI

(p2)θ(p0), with ρrelJa,AI (p
2) ∈ R [28]. Therefore plugging the identity (1.15) in eq.

(1.14), factoring out the overall p0 and taking the limits, we conclude:

ρrelJa,AI (p
2) = δ(p2)κaI . (1.16)

This implies the existence of a massless particle for each broken generator in the spectrum
[59], which is the statement of the relativistic Goldstone theorem [8].

Conversely, the underlying Lorentz invariance of the theory, if conceptually useful in
understanding the origin of the modified Hamiltonian, strictly speaking, does not play
any role in the proof of eq.s (1.10) and (1.12). Indeed these assume only (unbroken)
translational and rotational symmetry [40]. Consequently, these results apply also in those
systems in which the breaking of boost invariance happens, via a different mechanism, at
much higher scales than the breaking of the internal symmetries under considerations.
Relevant examples of this kind include ferromagnets and anti-ferromagnets [30,61], and
certain kinds of superconductors [62].

One may then wonder whether the spontaneous breaking of Lorentz symmetry provides
additional constraints on the spectrum. This is not the case, as we will see explicitly in
the examples of the next section. Technically, this is because the Goldstone theorem for
broken boosts, which may be derived analogously to eq. (1.10), does not require additional
states to be satisfied [50]. A more intuitive justification is based on the semiclassical
picture of Goldstone fields as describing fluctuations of the order parameter. When
spacetime symmetries are broken, it may happen that the same physical fluctuation
can be described as the action of different generators [63]. In particular, if the order
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parameter is a scalar, as in the examples of the next section, a small fluctuation generated
by a boost can be obtained via the action of the internal generator Q appearing in the
modified Hamiltonian (1.1) as well [39]. Therefore, the field fluctuations associated to
the action of boosts are not independent from the ones parametrized by the other fields
and, consequently, no independent boost Goldstone states exist. 9

1.2 Examples

1.2.1 Abelian superfluids

Let us first consider the simplest scenario, a relativistic superfluid with an Abelian U(1)

symmetry generated by Q [23]. The minimal field content to realize the breaking pattern
we are interested in is provided by a compact Lorentz scalar χ(x) ∼ χ(x) + 2π invariant
under a shift symmetry χ(x)→ χ(x)− const.. This is expanded around a background
configuration of the form 〈χ(x)〉 = µt+ const. . More precisely, since only functions of χ
which are invariant under periodic shifts of 2π are well defined operators, we have

〈µ|eiχ(x)|µ〉 = ei(µt+const.) . (1.17)

The most general low energy effective action can be written in a derivative expansion as

S =

∫
d4x {F1(X) + ∂µχ∂νχ∂µ∂νχF2(X) + . . .} , (1.18)

where X ≡ (∂χ) =
√
∂µχ∂µχ and F1, F2 are arbitrary functions. 10 To leading order in

derivatives, the energy momentum tensor and the U(1) current are given by:

Tµν = F ′1(X)X uµuν − ηµνF1(X) , Jµ = F ′1(X)uµ , (1.19)

where uµ = ∂µχ/(∂χ) is the superfluid four-velocity. The background (1.17) provides a
non-zero charge density J0 = F ′1(µ) ≡ n and we can obtain the energy density ρ and the
pressure P as a function of µ inverting Tµν = (ρ+ P )uµuν + Pηµν [65]; doing so on the
background we recover the zero temperature thermodynamic identity ρ+ P = nµ [66].

9Strictly speaking, this argument only explains why, for certain order parameters, independent
Goldstone fields are absent. In finite density systems, it may happen that the number of Goldstone
fields is larger than that of Goldstone states, defined as those modes whose existence is nonperturbatively
predicted by the theorem. For instance, this is what happens in relativistic type-II superfluids [22]
where, in the simplest scenario, the order parameter is an SO(3) triplet of complex Lorentz vectors [22].
In that case the Goldstone fields for boosts are independent of the ones associated with the broken
internal generators, but they interpolate modes whose properties and existence do not follow from
Goldstone theorem, with a gap naturally of order µ which cannot be determined solely by symmetry
considerations [64].

10The properties of the derivative expansion depend on the precise form of these functions; the simplest
scenario, in which the chemical potential itself sets the cutoff of the low energy description, corresponds to
the following scaling for the derivatives of F1 and F2: F (n)

1 (µ) ∼ µ−nF1(µ) and F (n)
2 (µ) ∼ µ−4−nF1(µ).
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Chapter 1. Goldstone bosons at finite density

The action (1.18) is clearly Poincaré invariant, while the background breaks spontaneously
boosts, time translations generated by H and the U(1) shift symmetry generated by Q,
leaving unbroken the combination (1.1). Defining π(x) = χ(x)− µt, the action to leading
order in derivatives and to quadratic order in fluctuation reads

S ' n

µc2
s

∫
d4x

1

2

[
π̇2 − c2

s (∇π)2
]
, c2

s =
F ′1(µ)

µF ′′1 (µ)
. (1.20)

In agreement with the general theorem, the field π(x) describes a massless excitation
with a linear dispersion relation ω(k) = cs|k|+O

(
|k|3

)
, the superfluid phonon [57]. Due

to the shift symmetry, the field is derivatively coupled and phonons are free when they
are soft, as it happens with relativistic Goldstones [28].

Notice that, despite the absence of additional Goldstone fields for boosts, Lorentz invari-
ance constrains the general form of the action (1.18). For instance, without it the leading
order action would be an arbitrary function of π̇ and (∇π)2, while in eq. (1.18) they only
appear through the combination X =

√
(µ+ π̇)2 − (∇π)2.

Finally let us mention the obvious generalization to an Abelian fully broken U(1)N

symmetry. Calling Qa the associated generators, the most general form for the modified
Hamiltonian (1.1) reads

H̄ = H +
∑
a

µaQa . (1.21)

The general low energy theory is formulated in terms of N shift invariant scalars expanded
around a background solution analogous to eq. (1.17):

χa(x) = µat+ πa(x) . (1.22)

The most general effective action to leading order in derivatives reads

S =

∫
d4xF (Xab) , Xab ≡

√
∂µχa∂µχb . (1.23)

Expanding to quadratic order in fluctuations, we find that the spectrum consists of N
massless phonons with linear dispersion relation: ω(k) ∝ |k|.

1.2.2 The linear triplet

As a next example, consider the following renormalizable Lagrangian for an O(3) triplet
Φ in four spacetime dimensions:

L =
1

2
(∂Φ)2 − m2

2
Φ2 − λ

4
Φ4 , (1.24)
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1.2. Examples

where λ > 0, and we do not make any assumptions on the sign of m2. The classical field
configuration that realizes the desired symmetry breaking pattern is

Φ0 = e−iµtQ3

φ0

0

0

 , φ2
0 =

µ2 −m2

λ
> 0 , (1.25)

where (Qi)jk = −iεijk are the generators in the defining representation of SO(3). If
m2 > 0 then spontaneous symmetry breaking happens only for µ2 > m2. The state
described by this configuration is indeed at finite density for the charge Q3, as one can
check by computing the corresponding Noether’s current. Moreover, since it depends
explicitly on time, this vacuum expectation value (vev) breaks both boosts and time
translations. On top of that, it also breaks the internal O(3) symmetry to Z2 of Φ3 → −Φ3

but preserves the combination H̄ = H − µQ3. This is then precisely the setup when the
charge at finite density does not commute with other broken charges. We thus expect the
existence of a gapped Goldstone mode.

Before studying the full spectrum, let us give an intuitive semiclassical argument in
favor of the existence of a gapped Goldstone. Starting from the configuration (1.25) and
performing, say, a rotation generated by Q1, one obtains a nontrivial configuration for
the third component of the triplet, δΦ3(x) = −φ0 sinµt, which oscillates with precisely
frequency µ. The existence of a mode that has energy µ when it is at rest is, therefore,
necessary for consistency with the non-Abelian symmetry. This is parallel to what
happens with a rotation generated by Q3, which instead ensures the existence of a gapless
mode. At the same time, this suggests that, similarly to soft massless Goldstones, gapped
Goldstones are free when they are at rest [67]: their zero-mode corresponds to nothing
but a global transformation. 11

The fluctuations around equilibrium can be conveniently parametrized in terms of three
real fields, ψ(x), θ(x) and h(x):

Φ(x) = e−i(µt+ψ(x)/φ0)Q3

φ0 + h(x)

0

θ(x)

 . (1.26)

The unbroken Z2 acts as θ 7→ −θ. The Lagrangian then reads

L =
1

2
(∂θ)2 − µ2

2
θ2 +

1

2
(∂ψ)2 +

1

2
(∂h)2 + 2µhψ̇ − λφ2

0h
2 (1.27)

− λφ0h
(
h2 + θ2

)
− λ

4

(
h4 + θ4 + 2h2θ2

)
+

µ

φ0
h2ψ̇ +

1

φ0
h(∂ψ)2 +

1

2φ2
0

h2(∂ψ)2 .

11Note that, as remarked in footnote 8, at infinite volume the global charges are not well defined, and
consequently neither is the zero-mode. More precisely, one should work at finite volume, and add an
infinitesimal perturbation explicitly breaking the symmetry before taking the infinite volume limit [28,32].

19



Chapter 1. Goldstone bosons at finite density

Extracting the propagator from (1.27), one finds that, as expected, the spectrum of the
theory consists of

• A gapless Goldstone, π3, with dispersion relation

ω2(k) = k2 + 3µ2 −m2 −
√

(3µ2 −m2)2 + 4k2µ2

=
µ2 −m2

3µ2 −m2
k2 +O

(
k4

µ2

)
. (1.28)

• A gapped Goldstone, θ, with gap µ:

ω2(k) = k2 + µ2 . (1.29)

• A radial mode, ρ, with gap m2
ρ = 6µ2 − 2m2 and dispersion relation:

ω2(k) = k2 + 3µ2 −m2 +
√

(3µ2 −m2)2 + 4k2µ2

= 6µ2 − 2m2 +
5µ2 −m2

3µ2 −m2
k2 +O

(
k4

µ2

)
. (1.30)

Due to the mixing term in (1.27), the radial mode and the gapless one are interpolated
both by ψ and h—which decouple only for µ = 0. In this limit, for m2 < 0, the U(1)

symmetry generated by Q1 is restored, and the two Goldstones are just the standard
relativistic massless particles associated to the breaking of Q2 and Q3.

Finally note that if chemical potential is large enough, µ2 & |m2|, the gap of the radial
mode and that of the gapped Goldstone can be of the same order, mρ ∼ µ. At low energies,
mρ sets the cutoff of the standard quasi-relativistic effective theory for the Goldstone
bosons [39]. In the setup we are considering, the gapped Goldstones might hence lie
outside the regime of validity of such EFT. We will study in detail this scenario in the
next chapter, starting from the analysis of scattering amplitudes of massive Goldstones
in this model.

1.2.3 Complex doublets at small density and pseudo-Goldstone modes

As a final example, we consider the theory of two complex (Lorentz scalar) doublets
Ψ1, Ψ2 ∈ C2 with Lagrangian given by

L = |∂Ψ1|2 + |∂Ψ2|2−
λ1

4

(
v2

1 − |Ψ1|2
)2− λ2

4

(
v2

2 − |Ψ2|2
)2− λ12

2
|Ψ2|2|Ψ1|2−

κ

2
|Ψ†2Ψ1|2 .

(1.31)
This is the most general renormalizable Lagrangian invariant under the group G =

U(1)2 × SU(2), where the two U(1)’s act independently on the two fields. We call Q1/2/3

and Jµ1/2/3 the generators and the currents of the SU(2) component of G, while we use
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1.2. Examples

a tilde for those of the U(1)2, Q̃1/2 and J̃µ1/2. We take λ1, λ2, κ > 0 and λ12 > −
√
λ1λ2,

ensuring that the potential is bounded from below. When not specified otherwise, we
assume all couplings to be of the same order and similarly v2

1 ∼ v2
2 [68].

We assume v2
1, v

2
2 > 0, implying that the theory spontaneously breaks the internal

symmetry also in the vacuum. The term proportional to κ forces the two fields to acquire
a nonvanishing vev in orthogonal directions. We will study the spectrum around the
following classical field configuration:

〈Ψ1〉 =

(
eiµ1tc1

0

)
, 〈Ψ2〉 =

(
0

eiµ2tc2

)
, (1.32)

where c1 and c2 are real positive constants given by

c2
1 =

λ2(λ1v
2
1 + 2µ2

1)− λ12(λ2v
2
2 + 2µ2

2)

λ1λ2 − λ2
12

, (1.33)

c2
2 =

λ1(λ2v
2
2 + 2µ2

2)− λ12(λ1v
2
1 + 2µ2

1)

λ1λ2 − λ2
12

. (1.34)

This solution is a local minimum of the effective potential provided the following two
conditions are met 12

λ12 < min

{√
λ1λ2, λ1

λ2v
2
2 + 2µ2

2

λ1v2
1 + 2µ2

1

, λ2
λ1v

2
1 + 2µ2

1

λ2v2
2 + 2µ2

2

}
,

0 ≤ µ2
1 − µ2

2 ≤
κ

2
(c2

1 − c2
2) or 0 ≤ µ2

2 − µ2
1 ≤

κ

2
(c2

2 − c2
1) .

(1.36)

The charge densities have a nonvanishing expectation value given by

〈J0
1 〉 = 〈J0

2 〉 = 0 , 〈J0
3 〉 = µ1c

2
1 − µ2c

2
2 , 〈J̃0

1 〉 = µ1c
2
1 , 〈J̃0

2 〉 = µ2c
2
2 . (1.37)

Even for µ1 = µ2 = 0, the configuration (1.32) breaks G spontaneously to the U(1) group
generated by Q̃1− Q̃2−Q3. For µ1, µ2 6= 0 it further breaks boosts and time translations,
preserving the linear combination

H̄ = H + µ1

(
Q̃1 + Q̃2

2
+Q3

)
+ µ2

(
Q̃1 + Q̃2

2
−Q3

)

= H + (µ1 + µ2)
Q̃1 + Q̃2

2
+ (µ1 − µ2)Q3 . (1.38)

12 Though we were not able to reduce the second inequality to a more transparent form, we checked
that these conditions are compatible. For instance, taking µ2

2 > µ2
1, for λ12 = 0 they reduce to

v2
2 − v2

1 > 2

(
1

κ
− 1

λ2

)
µ2

2 − 2

(
1

κ
− 1

λ1

)
µ2

1 , (1.35)

which is satisfied for large enough v2
2 .
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Chapter 1. Goldstone bosons at finite density

Two of the four spontaneously broken internal generators do not commute with H̄,
implying the existence of a gapped Goldstone with gap |µ1 − µ2|.

To study the spectrum, we parametrize the fluctuations around equilibrium using four
real fields, π1(x), π2(x), r1(x), r2(x), and two complex fields, ψ1(x) and ψ∗2(x):

Ψ1(x) =

(
eiχ1(x)

(
c1 + r1(x)√

2

)
eiχ2(x)ψ1(x)

)
, Ψ2 =

(
eiχ1(x)ψ∗2(x)

eiχ2(x)
(
c2 + r2(x)√

2

) ) , (1.39)

where we defined for shortness χ1/2(x) = µ1/2t+ π1/2(x)/(
√

2c1/2). In this parametriza-
tion, all fields transform as scalars under the time translations (1.38) and, thanks to
the conjugate on ψ2 in eq. (1.39), the unbroken U(1) group acts as ψ1/2 → eiαψ1/2.
The expansion to quadratic order of the Lagrangian eq. (1.31) reads, neglecting total
derivatives,

L '
2∑

a=1

[
1

2
(∂ra)

2 +
1

2
(∂πa)

2 + 2µaraπ̇a

]
− 1

2

2∑
a,b=1

(m2
r)abrarb

+
2∑

a=1

|∂ψa|2 − iµ2

(
ψ∗1ψ̇1 − c.c.

)
+ iµ1

(
ψ∗2ψ̇2 − c.c.

)
−

2∑
a,b=1

(m2
ψ)abψ

∗
aψb , (1.40)

where we defined the following matrices

m2
r =

(
λ1c

2
1 λ12c1c2

λ12c1c2 λ2c
2
2

)
, m2

ψ =

(
κ
2 c

2
2 + µ2

1 − µ2
2

κ
2 c1c2

κ
2 c1c2

κ
2 c

2
1 + µ2

2 − µ2
1

)
. (1.41)

From eq. (1.40), we can extract the spectrum. For simplicity, we shall study it in the
limit in which the chemical potentials µ1 and µ2 are much smaller than the mass scale
∼
√
λ v1/2, where λ is of the order of any of the quartic couplings. For ease of presentation,

we shall introduce a set of dimensionless coefficients γ(φ)’s, naturally of order one, whose
precise value in terms of the Lagrangian couplings and chemical potentials is given in
appendix A.1. Extracting the propagator for the fields π1/2 and r1/2 from the first line of
the Lagrangian (1.40), we find

• Two gapless Goldstones π1 and π2, with linear dispersion relations given by

ω2
1/2(k) =

[
1− µ1µ2√

λ1λ2 v1v2
γ

(π)
1/2 +O

(
µ4

1/2

λ2v4
1/2

)]
k2 , (1.42)

where γ(π)
1/2 are dimensionless coefficents which depend on the couplings and the

ratio µ2
1/µ

2
2. Consistently with subluminality, we find µ1µ2γ

(π)
1/2 > 0.
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1.2. Examples

• Two radial modes r1 and r2, whose masses are given by

ω2
1/2(0) = λ1/2v

2
1/2γ

(r)
1/2 +O

(
µ2

1/2

λv2
1/2

)
; (1.43)

as before, γ(r)
1/2 are dimensionless coefficents, which reduce to one for λ12 = 0 and in

general depend on the couplings, but not on the ratio µ2
1/µ

2
2.

As before, the Goldstone and the radial modes are interpolated by both π1/2 and r1/2,
which decouple only for µ1 = µ2 = 0. Nonetheless, with an abuse of notation, we called
π1/2 and r1/2 the corresponding modes. Assuming µ2 > µ1 with no loss of generality,
from the propagator for ψ1 and ψ2 we instead infer the existence of the following four
excitations in the spectrum:

• A gapped Goldstone πµ, positively charged under the unbroken U(1), with gap
(µ2 − µ1). Its dispersion relation at very small momentum, but arbitrary chemical
potentials, is given by

ω(k) = (µ2 − µ1) + γ(πµ) k2

(µ2 + µ1)
+O

(
k4

µ3
1/2

)
, (1.44)

in terms of a dimensionless coefficient γ(πµ). In the limiting case µ1 = µ2, this mode
becomes a gapless Goldstone with quadratic dispersion relation, which contributes
twice to the counting of Goldstones according to the discussion in sec. 1.1 [30].

• A light mode π̃µ, negatively charged under the unbroken U(1), whose gap is
proportional to µ1 + µ2:

ω(0) = (µ1 + µ2)γ(π̃µ) +O
(
µ3

1/2

λv2
1/2

)
, (1.45)

where the coefficient γ(π̃µ) depends on the couplings but not on the ratio µ2
1/µ

2
2. The

existence of this quasi-particle is not predicted by the Goldstone theorem at finite
density. However, in the limit µ1/2 → 0, this mode becomes a massless Goldstone,
as required by the relativistic version of the theorem [8].

• Two radial modes ψ±, oppositely charges under the unbroken U(1), with masses
given by

ω±(0) =
√
κv1v2γ

(ψ)
0 ± (µ1 + µ2)γ

(ψ)
1 +O

(
µ2

1/2√
λ v1/2

)
, (1.46)

where γ(ψ)
0 and γ(ψ)

1 depend on the couplings and the ratio µ1/µ2.
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Chapter 1. Goldstone bosons at finite density

In the limit of vanishing densities the charge conjugation symmetry, broken by the
chemical potentials, is restored and the four charged modes become degenerate in pairs.

This system provides a further illustration of the general theorem. Its spectrum includes
three Goldstone bosons, whose dispersion relation is given in eq.s (1.42) and (1.44). One
of them is generically gapped and accounts for two broken generators. At the special
point µ2 = µ1 it becomes a gapless mode, with quadratic dispersion relation, which,
as explained in sec. 1.1, still accounts for two broken generators. In the limit of small
charge densities, the spectrum also contains an additional light quasi-particle, whose gap
is proportional to the chemical potential but it is not fixed by the symmetry breaking
pattern. Its existence is easily understood since for µ1 = µ2 = 0 the relativistic Goldstone
theorem requires four massless particles. For small but non-zero chemical potentials, we
can thus think of this mode as a pseudo-Goldstone, analogously to the pions in QCD. We
can compare this situation with the triplet model studied in sec. 1.2.2. There, for m2

large and negative only two generators are broken in the vacuum; therefore there is no
additional light mode besides the two Goldstones for small chemical potential. Notice also
that for µ2

1/2 ∼ λv2 the mode in eq. (1.45) behaves like the other radial modes, whose
gap is not fixed by symmetry considerations.

The existence of additional light pseudo-Goldstone modes when the symmetry breaking
scale is much larger than the chemical potential is a generic feature of relativistic
systems [39]. As the discussion of this and the previous section suggest, their existence
is tied to the details of the symmetry breaking pattern at vanishing charge densities.
Consider indeed a system which in the vacuum breaks an internal symmetry group G
down to H, with, respectively, nG and nH Lie generators. At energies E � λv2, where v
is the symmetry breaking scale and λ is a coupling, possibly of order (4π)2 for strongly
coupled theories [69, 70], one can study the theory through the low energy action for
the Goldstone fields parametrizing the coset G/H [26, 27]. These are as many as the
broken generators nG − nH . The same action allows studying the system at small charge
density, which is equivalent to turning on a small chemical potential µ�

√
λv for one

of the broken charges Q; this may further break the group down to Hµ ⊆ H, as in the
example of the triplet. By continuity with the description in the vacuum, the spectrum
still consists of nG − nH quasi-particles; however, the non-relativistic Goldstone theorem
generically guarantees the existence of a fewer number of modes. In particular, for each
pair of generators non-commuting with Q a single Goldstone exists; thus, if the system in
the vacuum breaks both the generators forming the pair, the spectrum will unavoidably
contain an additional pseudo-Goldstone mode with gap of order µ, similar to the one of
eq. (1.45). For a detailed and more general analysis of pseudo-Goldstone modes of this
kind in relativistic systems at small charge density we refer the reader to [39].

We remark however that, when the symmetry breaking scale coincides with the chemical
potential, there seems to be nothing special about these additional modes. On the one
hand, as we have seen in the example of this section, even in a weakly coupled theory
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1.2. Examples

when µ2 & λv2 they behave like the other radial modes. On the other hand, when the
chemical potential itself sets the strong coupling scale of the system, it is not even clear
if these modes should exist at all. Indeed, we argued that their presence is guaranteed
only when there exists a quasi-relativistic weakly coupled description valid up to scales
E � µ, which may not be there in general situations. As in this thesis we will mostly
focus on the setup in which µ and the strong coupling scale coincide, it is important
for us to distinguish between the true Goldstone states, whose existence is guaranteed
non-perturbatively by the Goldstone theorem, and the pseudo-Goldstone modes, whose
presence in the spectrum follows from symmetry considerations only when the system is
weakly coupled at scales much larger than the chemical potential.
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2 Non-Abelian superfluids: gapped
Goldstones at the cutoff scale

Independently of the presence of a gap, all Goldstone modes share a defining property: their
scattering amplitudes vanish with their 3-momentum—the so-called Adler’s zeros [67].1

In other words, all Goldstone bosons are free when their 3-momentum vanishes. An
effective field theory (EFT) description of their dynamics should then focus on the regime
of small 3-momentum. For gapless modes this coincides with the regime of low energy,
while for the gapped ones it instead coincides with the regime of low kinetic energy or,
equivalently, low velocity.

The presence of both gapless and gapped modes, however, makes the piecing together of
an EFT approach not straightforward. This is immediately appreciated by considering
the process of annihilation of two gapped modes into two gapless ones; a process that is
generically allowed. Even if the spatial momentum of the incoming states approaches zero,
their total energy is of order µ, and so are the momenta of the final state quanta. Now,
when the underlying microscopic dynamics is strong, the gap scale µ should coincide,
by simple dimensional analysis, with the momentum scale where the gapless modes
become strongly coupled.2 In that case, while the amplitude is still suppressed at small
initial momenta, the emission and exchange of additional gapless modes will contribute
O(1) relative corrections to the total rate, thus making it practically incalculable. In
other words, the interaction among slow gapped modes can lead to the production of
very energetic gapless ones, beyond the reach of the ordinary EFT description of their
dynamics.

The question is then how to properly describe this state of affairs. On the one hand,
the gapped Goldstones are free at zero momentum/velocity, as dictated by symmetry,

1Note that the presence of Adler’s zeros for gapless Goldstones is not always guaranteed due to possible
kinematic singularities, cf. [28]. On the other hand, the gap of the gapped Goldstones precludes these
singularities, and Adler’s zeros for them are always present [67].

2That is, for instance, the case in QCD, where the ρ mass parametrically coincides with the scale
where π interactions become strong
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while on the other, at arbitrarily small velocity, the processes involving them do not
seem calculable. Integrating out the gapped modes in favor of an ordinary EFT for the
gapless ones, while certainly doable, does not seem satisfactory, as it would preclude
describing those aspects of the dynamics that are dictated by symmetry (like the relation
between the gap and the chemical potential or the freedom of gapped modes at zero
velocity). Relatedly that would make the underlying symmetry breaking pattern not
visible in the EFT.3 In this chapter we address the problem by constructing a proper
EFT that allows for a more limited but systematic description of the gapped Goldstone
dynamics. The construction is fully analogous to the nonrelativistic EFT (NREFT) used,
for instance, to describe positronium [71]. Like in the positronium case, the price to pay
is the existence of absorbitive (imaginary) terms in the effective action [72,73]. Within
this NREFT approach, we shall illustrate how to describe the dynamics in a systematic
small momentum expansion.

Besides the above mentioned conceptual issues, understanding the consequences of a
spontaneously broken non-Abelian symmetry at finite density is also a question of phe-
nomenological relevance. Indeed gapped Goldstones appear in many different contexts [40],
ranging from condensed matter systems [61,74,75], to QCD at finite isospin density in
the chiral limit [41–44]. Furthermore, they are also relevant in conformal field theories,
where one can use the state/operator correspondence to map operators with large internal
quantum numbers to finite density states [34, 35]. As such gapped Goldstones appear in
the description of the spectrum of deformations of critical points in statistical physics.

In this chapter we illustrate our ideas by focusing on a simple system with an SU(2)

symmetry fully broken by the finite density of one of its charges. The resulting spectrum
features a gapless and a gapped Goldstone, whose gap is precisely µ. In section 2.1 we
study a simple model that exhibits this symmetry breaking pattern, namely the linear
triplet introduced in sec. 1.2.2, and verify the presence of Adler’s zero in the amplitudes
for the gapped Goldstones. This will be our benchmark for the rest of the chapter. In
section 2.2 we construct a nonrelativistic effective field theory for gapless and gapped
Goldstones at small 3-momentum, showing how their interactions are constrained by the
full symmetry group. Remarkably, such a construction is applicable for any value of the
chemical potential, even when it is of the same order as the UV cutoff of the theory. In
order to account for the gapped Goldstone’s decay or annihilation, we argue that the
NREFT must contain imaginary coefficients, which makes it non-unitary. The lack of
unitarity is simply due to the limited class of degrees of freedom that make up our EFT,
and is of course not a fundamental property. Power counting and interactions in such a
theory are analyzed in detail. Finally, in section 2.3 we discuss the reasons why there is
no remnant of the non-Abelian part of the broken symmetry at energies much smaller
than the chemical potential.

3For instance in the case of a fully broken non-Abelian group G the gapless modes are purely described
by the spontaneous breaking of the Cartan subgroup of G [35], with seemingly no visible low-energy
remnant of the non-Abelian nature of the original group.

27



Chapter 2. Non-Abelian superfluids: gapped Goldstones at the cutoff scale

2.1 Interactions of slow gapped Goldstones in the linear
triplet

In this section we examine the amplitudes for the scattering and annihilation in the regime
when the gapped Goldstones’ velocities are small for the linear triplet model discussed in
sec. 1.2.2. The model is weakly coupled and renormalizable, and hence all observables
can be computed perturbatively. Because of that, we will use it as the main example to
match the effective theory developed in the rest of the chapter.

First we recall that, expanding the triplet around the finite density solution (1.25) we
obtained the Lagrangian (1.27). The latter consists consists of three fields: h, ψ and θ.
The first two interpolate, both, a gapless Goldstone state π3 and a radial mode ρ, whose
dispersion relations are given in eq.s (1.28) and (1.30). The field θ corresponds instead to
the gapped Goldstone, with mass µ (1.29).

Given the action (1.27) we can now compute the amplitudes for the two processes
involving the gapped Goldstone on the external legs: the θθ → θθ scattering and the
θθ → π3π3 annihilation. We examine the amplitudes in the limit when the gapped
Goldstones are slow. The reason for doing that is twofold. First, we verify the existence
of Adler’s zero in the amplitudes when one of the gapped Goldstones is at rest. Note
that the interaction strength is not manifestly controlled by the gapped Goldstone’s
3-momentum. Consequently, when the latter vanishes, the amplitude does not vanish
diagram by diagram, but only once all of them are taken into account. Second, we will use
these results as our reference point to match the NREFT we will build in the next sections.
In particular, the second process does not preserve the number of gapped Goldstones and,
as anticipated in the Introduction, will be included in the NREFT through an imaginary
part for some of the effective coefficients.

Note that, because of the kinetic mixing between h and ψ, the calculation of the scattering
amplitude is rather tedious (but straightforward). We spare the reader the details.

Consider first the elastic scattering, θ(pa) + θ(pb)→ θ(pc) + θ(pd), in the limit where the
gapped Goldstones are slow. In the presence of a slow massive particle, it is customary
to power-count interactions in terms of its velocity, v � 1 [76], which is related to its
momentum and kinetic energy by p = µv and ε = ω − µ ∼ µv2. We then expand the
tree-level matrix element for the scattering in powers of velocity:

M =M(1) +M(2) + . . . , with M(n) ∼ O(p2n/µ2n) . (2.1)

The leading order contribution is O(v2) and is given by

M(1) =
λ

µ2 −m2

[
(p 2
a − p 2

c )2

(pa − pc)2
+

(p 2
a − p 2

d )2

(pa − pd)2
− (pa + pb)

2

]
. (2.2)
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2.1. Interactions of slow gapped Goldstones in the linear triplet

Setting one of the momenta to zero, say pa = 0, this amplitude vanishes by conservation
of energy, which implies p2

b = p2
c + p2

d at the lowest order in velocity. Notice also that the
amplitude is bounded albeit discontinuous in the collinear limits, pa → pc or pa → pd.

For the purpose of matching with the NREFT it is also instructive to compute the next
order amplitude, which reads

M(2) =
λ

µ2(µ2 −m2)

 µ2

µ2 −m2

(
p 2
ap

2
b + p 2

c p
2
d

)
− µ2 +m2

4(µ2 −m2)
(p2
a + p2

b)
2

+
7µ2 +m2

µ2 −m2
(pa · pb)2 +

2µ2

µ2 −m2
[(pa · pc)(pb · pd) + (pa · pd)(pb · pc)]

− 2µ2

µ2 −m2
(p 2
a + p 2

b )(pa · pb) (2.3)

+
(p 2
a − p 2

c )2

(pa − pc)2

[
3µ2 −m2

4(µ2 −m2)

(p 2
a − p 2

c )2

(pa − pc)2
− 1

2
(p2
a + p2

b) +
1

2

p 2
ap

2
b − p 2

c p
2
d

(p 2
a − p 2

c )

]

+
(p 2
a − p 2

d )2

(pa − pd)2

[
3µ2 −m2

4(µ2 −m2)

(p 2
a − p 2

d )2

(pa − pd)2
− 1

2
(p2
a + p2

b) +
1

2

p 2
ap

2
b − p 2

c p
2
d

(p 2
a − p 2

d )

] .

Again one can check the existence of the Adler’s zero when one of the three-momenta
vanishes. Note also that s-channel exchange of the radial mode ρ gives terms whose
expansion in velocity is controlled by p2

m2
ρ−4µ2 ∝ p2

µ2−m2 . The expansion therefore breaks

down at the ρ production threshold, which also coincides with the limit µ2 → m2 where
the expectation value φ2

0 ∝ (µ2 −m2)→ 0 and the symmetry is restored.

Again one can check the existence of Adler’s zero when one of the 3-momenta vanishes.
Note also that s-channel exchange of the radial mode ρ gives terms whose expansion in
momenta is controlled by p2

m2
ρ−4µ2 ∝ p2

µ2−m2 . The expansion therefore breaks down at the

ρ production threshold p ∼ (µ2 −m2)/µ or, alternatively, in the limit µ2 → m2 where
the expectation value φ2

0 ∝ (µ2 −m2) vanishes and the symmetry is restored.

Since the internal symmetry group is fully broken, there is no symmetry left to protect
the number of gapped Goldstones. Indeed, two of them may annihilate into two gapless
Goldstones via the process θ(pa)+θ(pb)→ π3(ka)+π3(kb). Since the gapped Goldstones
have energies ≥ µ, the final products of this annihilation have momenta and energies ≥ µ.
Consequently, in the regime µ ∼ mρ, this process is beyond the regime of applicability of
an ordinary low-energy EFT.

At the leading order in the gapped Goldstones’ velocities the annihilation amplitude reads

M =
λ

µ2 −m2

[
α (pa · pb) + β

(pa · k)(pb · k)

µ2

]
+O

(
p2(p · k)

µ4

)
, (2.4)
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where at the lowest order ka = −kb ≡ k, with |k| = µ, and the dimensionless coefficients
α and β can be found in appendix A.2.1. Once again the amplitude vanishes when either
initial three-momenta is set to zero. The leading order total annihilation cross section
reads

σann '
1

2µ|pa − pb|

[
(γ + δ)

(pa · pb)2

µ4
+ δ

p2
a p

2
b

µ4

]
, (2.5)

where γ and δ are dimensionless coefficients again given in appendix A.2.1.

Notice that θ is odd under the unbroken Z2 symmetry. Processes with an odd number of
θ legs are thus forbidden, and θ is stable. The Z2 symmetry is an accident of the simple
model under consideration and not a structural property of gapped Goldstones. That
is appreciated, for instance, by showing that the addition of a new field allows to write
Z2-breaking terms and induce θ-decay—see appendix A.2.2 for an explicit construction
using a complex U(2) doublet. One finds that the decay amplitude vanishes when the
3-momentum of θ approaches zero. The total decay rate for a gapped Goldstone with
momentum p to leading order in velocity reads

Γ = c
p2

µ
, (2.6)

where c is a dimensionless coefficient which depends on the couplings.

In summary, just like for standard Goldstones, the interaction strength of gapped Gold-
stones is set by their spatial momentum. This is due to the fact that the zero mode of θ
is not dynamical, but corresponds to a symmetry transformation of the vacuum. More
precisely, one can prove the existence of Adler’s zeros [28] for the matrix elements of
gapped Goldstones at rest [67]. Lastly, since no symmetry protects the number of gapped
Goldstones, they may decay and/or annihilate into final states with energies of order µ.
When µ ∼ mρ such final states cannot be described within any low-energy EFT, which is
valid at energies much smaller than mρ itself. However, in this very situation, the decay
and annihilation processes happen within a short distance scale. As we shall see, that
allows to consistently describe these effects via local operators in the NREFT. These
operators are however non-Hermitian, which makes the NREFT non-unitary.

2.2 The Nonrelativistic EFT: the universal description of
slowly moving gapped Goldstones

In the presence of spontaneous symmetry breaking one expects the low-energy dynamics
to be effectively describable in terms of symmetries, and through a systematic derivative
expansion. Such a construction (also known in jargon as coset or CCWZ construction) is
expected to apply universally, i.e. purely on the basis of the symmetry breaking pattern
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and independently of the details of the underlying microscopic physics. In the known
examples, it applies equally well to cases that purely involve the breaking of internal
symmetries [26, 27], and to cases that involve the breaking of the spacetime ones (see,
e.g., [39, 64,77]).

In the presence of gapped Goldstone bosons the situation can however be more involved.
That depends on the existence of two in principle distinguished scales: the chemical
potential µ, which controls the gap of some of the Goldstones, and the scale Λ which
controls the gap of non-Goldstone degrees of freedom, as well as the derivative expansion.4

The existence of a hierarchy, µ � Λ, should generically correspond to the existence
and smoothness of the limit µ → 0, where the charge density goes to zero, Lorentz
invariance is recovered and the Goldstone bosons are the only light modes. An example
of this situation is given by the linear σ-model of the previous section for the choice
m2 < 0, where the symmetry is broken already at µ = 0, where the density vanishes.
Generically, µ � Λ thus corresponds to the situation where the internal symmetry is
partially broken already at zero density, and where the state with finite charge density
(and the corresponding Lorentz breaking) is fully described as a particular solution of
the original relativistic Goldstone EFT. Previous studies of the finite density systems
based on the EFT methods [39, 40, 67] have all focused on this case. In this setup the
construction of the effective Lagrangian for the Goldstones proceeds in a way similar
to the Lorentz invariant case, where there is a well defined derivative expansion, whose
strength is controlled by Λ itself. For µ� Λ, besides the counting of Goldstone degrees of
freedom, there are no major structural novelties with respect to the standard relativistic
CCWZ construction.

The novelties appear when there is basically a single mass scale, µ ∼ Λ, which is indeed a
minimal option for a system at finite density. Again, intuitively this regime corresponds
to the situation where all symmetry breaking is fully dominated by the presence of finite
density. The limit µ → 0 cannot therefore be smooth. An example of this situation is
given by the linear σ-model in the regime µ2 � m2 > 0, where µ controls both the gap
of the Goldstones and the gap of the radial non-Goldstone mode ρ. In fact, this situation
is unavoidably realized whenever the system is (approximately) scale invariant with µ
representing the dominant spontaneous source of breaking of scale invariance. This class
of systems includes the physically relevant cases of conformal field theories (CFTs) in the
large charge regime [34, 35, 78, 79], and finite density QCD with large isospin chemical
potential µI & ΛQCD [41–44].

The goal of this section is to present general, systematic and self-consistent rules for
constructing the effective Lagrangian. The relevant degrees of freedom will be the small
3-momentum modes: soft gapless and slow gapped. The first step will be to show
explicitly how to organize the derivative expansion, which involves of course both time

4We are working under the simplifying assumption that the typical speed of the excitations around
the cut of scale Λ are O(1) so that there is no need to distinguish energy and momentum cutoffs.
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and space derivatives, as an expansion in the 3-momentum. Secondly, we will have to
properly interpret the result according to the rules of nonrelativistic EFTs. In particular,
the conservation of the number of gapped Goldstones will emerge as a formal symmetry
of the effective action. Processes where the gapped Goldstone number is not conserved
will then be described consistently, but in an inclusive manner only, by allowing for
absorbitive imaginary coefficients in the effective Lagrangian.

We shall focus on the general class of models where a global SU(2) is nonlinearly realized
at finite chemical potential µ. The triplet model discussed in the previous section is a
particular weakly coupled renormalizable example. It will serve as template and test
case for our results. Our discussion wants to be general, and applies in particular to
the case µ ∼ Λ. In fact, our EFT construction will even apply to the case where non-
Goldstone degrees of freedom with gap Λ � µ have been integrated out. However for
economy of thought we shall mostly stick to the case µ ∼ Λ when picturing our scenario.
Under our assumptions, any process where the number of gapped Goldstones is not
conserved necessarily leads to the production of states with momentum ∼ µ (either
gapless Goldstones or non-Goldstone states with gap less than µ) that lie outside the
domain of validity of the EFT. Our effective Lagrangian must thus necessarily be endowed
with an effectively conserved gapped Goldstone number. We will concretely see how this
happens.

As specified in the Introduction, we are interested in systems which spontaneously break
an SU(2) internal symmetry, as well as time translations and boosts, leaving unbroken the
combination H̄ = H+µQ3. In general we could parametrize the degrees of freedom of our
EFT using the coset construction generalized to include spacetime symmetries [39,64,77].
This construction is illustrated in appendix A.3. We however find it more convenient to
employ an equivalent approach: we define our fields in terms of the Lorentz-preserving
SU(2) coset which involves three Goldstone fields, and then consider a generic time-
dependent solution which further breaks spacetime symmetries down to spatial rotations,
spatial translations and the modified time translation H̄ = H + µQ3.

Our dynamical variable just corresponds to a general SU(2) matrix, Ω(x), on which the
group acts on the left:

Ω(x) → gΩ(x) , g ∈ SU(2) . (2.7)

We can now choose local Lie parameters, the Goldstone fields, to parametrize Ω. We will
work with two different parametrizations, each showing advantages and disadvantages.
The first parametrization, which we will name “Left”, is

Ω(χ, α) = eiχQ3eiα
Q+
2

+iα∗
Q−
2 ≡ eiχQ3 ΩL(α) , (2.8)

where χ and α ≡ α1 + iα2, represent the three real Goldstone scalars, and Q± ≡ Q1± iQ2.
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Notice that ΩL parametrizes the coset SU(2)/U3(1), with obvious notation. The other
parametrization, which we dub as “Right”, is instead

Ω(χ, π) = eiπ
Q+
2

+iπ∗
Q−
2 eiχQ3 ≡ ΩR(π) eiχQ3 , (2.9)

with similar comments. The mapping between Left and Right parametrization is simply
given by π = eiχα.

2.2.1 Building the EFT with the Left parametrization

The CCWZ prescription [26,27] allows to construct an SU(2) invariant Lagrangian for the
Goldstone fields χ and α. Explicitly, the Maurer-Cartan one-form defines the covariant
derivatives of the Goldstones [64] as

Ω−1∂µΩ = i∂µχΩ−1
L Q3ΩL + Ω−1

L ∂µΩL

≡ iDµχQ3 + iDµα
Q+

2
+ iDµα

∗Q−
2
, (2.10)

where

Dµχ = ∂µχ cos (|α|) +
iα∗∂µα− iα∂µα∗

|α|2 sin2 (|α|/2) , (2.11)

Dµα = i∂µχα
sin (|α|)
|α| +

1

2
∂µα

(
1 +

sin |α|
|α|

)
+

α

2α∗
∂µα

∗
(

1− sin |α|
|α|

)
. (2.12)

Then the most general SU(2) invariant Lagrangian for χ and α is an arbitrary function
of the covariant derivatives in (2.10) and ∂µ:

L = F [Dµχ,Dµα,Dµα
∗, ∂µ] , (2.13)

with spacetime indices contracted in a Lorentz invariant way.

We are interested in a setup where spacetime symmetries are spontaneously broken as
well. To this aim, we notice that the equations of motion deriving from (2.13) generically
admit a solution of the form

χ = µt , α = v , (2.14)

where v is a constant whose value depends on µ. This is particularly easy to show using
the Left parametrization (2.8). Indeed, the Euler-Lagrange equation for the field χ takes
the form

−∂µ
∂L

∂(∂µχ)
+ ∂µ∂ν

∂L
∂(∂µ∂νχ)

+ . . . = 0 , (2.15)
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which is automatically satisfied since the Lagrangian and its derivatives do not depend
on x on the ansatz (2.14). Similarly, the only nontrivial contribution from the equation
for α is

∂L
∂α

= µ

{
−v
∗ sin(|v|)

2|v|
∂F

∂D0χ
+

1

2

[
cos(|v|) +

sin(|v|)
|v|

]
∂F

∂D0α

+
v∗

2v

[
cos(|v|)− sin(|v|)

|v|

]
∂F

∂D0α∗

}
= 0 , (2.16)

where the derivatives of the Lagrangian are evaluated on the ansatz. This is an algebraic
equation determining the complex value of v ≡ v(µ).

It is convenient to work in a field parametrization for which α vanishes on the background.
For this parametrization to be independent of the specific value of the chemical potential,
we formally define:

ṽ ≡ v
(√

(Dχ)2 + |Dα|2
)
, (2.17)

where the function v(µ) is determined solving (2.16) for arbitrary values of µ. Notice
that on the solution (2.14)

√
(Dχ)2 + |Dα|2 = µ. We then perform the following field

redefinition

Ω(χ, α) = Ω(χ′, α′) exp

[
iṽ
Q+

2
+ iṽ∗

Q−
2

]
, (2.18)

which brings the solution (2.14) to the form

χ′ = µt , α′ = 0 . (2.19)

With the field redefinition (2.18) and defining R ≡ exp
[
iṽQ+

2 + iṽ∗Q−2

]
, the covariant

derivatives in (2.10) now read

iDµχQ3 + iDµα
Q+

2
+ iDµα

∗Q−
2

=

R−1

[
iDµχ

′Q3 + iDµα
′Q+

2
+ iDµα

′ ∗Q−
2

]
R+R−1∂µR . (2.20)

By construction, all the components of the matrix R are SU(2) invariant (as they are
functions of invariants). Then, since the left hand side of (2.20) is also SU(2) invariant,
Dµχ

′, Dµα
′ and Dµα

′ ∗, the covariant derivatives of χ′ and α′, must be invariant as well.
Hence, by redefining its coefficients, the Lagrangian (2.13) takes an analogous form in
terms of the fields χ′ and α′, and we can work equivalently with the primed fields. In the
following we drop the prime supscript.

The solution (2.19) spontaneously breaks time translations and boosts while being invariant
under the action of H̄. Therefore, to explicitly realize a symmetry breaking pattern of
the desired form it is enough to expand the generic Lagrangian in (2.13) around the
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background (2.19).

Notice that in this way of proceeding we did not need to introduce Goldstone fields
for the broken boost generators. It is indeed known that, in order to realize spacetime
symmetries nonlinearly, one normally needs less Goldstones than the number of broken
generators [63]. In the procedure detailed in appendix A.3, where one introduces a coset
parametrizing the full spacetime symmetry group [39, 64, 77], the boost Goldstone bosons
are eliminated via an inverse Higgs constraint [80]. The final result is equivalent to the
simple construction presented above.

The field parametrization in eq. (2.8), expanded around the background (2.19), makes
clear the origin of the gap for the massive Goldstone. Indeed, as a consequence of the
SU(2) symmetry, the Goldstone fields admit a solution where χ(x) = µt and the π
field oscillate in time with frequency µ. To see this, it is enough to show that such
a configuration is generated by a symmetry transformation of the background (2.19).
Acting with a rotation generated by, say, Q1 on the coset element one gets

eiξQ1Ω(χ, α) = eiχQ3

(
e−iχQ3eiξQ1eiχQ3

)
ΩL(α)

= eiχQ3e
iξ
(
e−iχ

Q+
2

+eiχ
Q−
2

)
ΩL(α) ≡ eiχ̃Q3ΩL(α̃) .

(2.21)

When one acts on the background χ = µt and α = 0, the transformed field, α̃ = e−iµtξ,
is oscillating with frequency µ.

When spacetime symmetries are unbroken, the Goldstone fields transform with a constant
shift under an infinitesimal group transformation of the background. Standard relativistic
EFTs describe the dynamics of slowly varying fields, corresponding to those configurations
which are indistinguishable from a symmetry transformation at short distances. The
situation is quite different when considering a background of the form (2.19). Indeed, we
saw in eq. (2.21) that an SU(2) rotation can generate a configuration oscillating in time
with a frequency of the order of the cutoff of the theory. This is the main disadvantage of
the Left parametrization. Then, to proceed formulating the EFT, it is more convenient to
use the alternative field parametrization (2.9), for which the group action takes a different
form.

2.2.2 Building the EFT with the Right parametrization

In the field parametrization (2.9), the background solution reads as in (2.19):

χ = µt+ π3 , π3 = π = 0 . (2.22)

However, the group action takes now a different form. As a result, a generic infinitesimal
SU(2) transformation acting on the background provides a solution of the form π3 =
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constant and π = constant, precisely like in a Poincarè invariant coset. In analogy
with that case the EFT will thus be limited to the slowly varying field configurations,
∂π � µπ , ∂π3 � µπ3, in the Right parametrization (2.9).

Notice that, despite π = constant being a solution, the field π describes a gapped mode
with frequency µ. To see this, recall that the gap is measured by the action of the unbroken
generator of time translations: H̄ = H + µQ3. It is then possible to verify that under the
action of H̄, the field acquires a phase proportional to µ: π(t,x)→ e−iµδtπ(t+δt,x). Thus,
in this parametrization, low frequency modes for the field π are associated with slowly
moving gapped Goldstones. The EFT thus consists of modes with small 3-momentum,
and with eigenvalues of H̄ = H + µQ3 around respectively 0 for π3 and µ for π. Modes
that do not satisfy these requirements should be thought as having been integrated out.

Because of the unusual transformation property of the field π under the unbroken
time translations, the Lagrangian (2.13), written in the the Right parametrization, is
correspondingly unusual: it is explicitly time dependent when expanded in fluctuations
around (2.19). To see this explicitly, let us compute the Maurer-Cartan one-form. Using
(2.9), we write it as follows

Ω−1∂µΩ = e−iχQ3Ω−1
R ∂µΩRe

iχQ3 + i∂µχQ3

= e−iχQ3

(
idµπ

Q+

2
+ idµπ

∗Q−
2

+ iAµQ3

)
eiχQ3 + i∂µχQ3

= i

(
e−iχdµπ

Q+

2
+ eiχdµπ

∗Q−
2

+DµχQ3

)
. (2.23)

Here dµπ and Aµ are the covariant derivative and the connection for the SU(2)/U3(1)

coset, given by

dµπ = π
π∗∂µπ − π∂µπ∗

2|π|3
sin
(
|π|
)

+ π
π∗∂µπ + π∂µπ

∗

2|π|2
, (2.24)

Aµ = i
π∗∂µπ − π∂µπ∗

|π|2
sin2

(
|π|/2

)
. (2.25)

The full SU(2) covariant derivatives (2.10) are written in terms of these as

Dµα = e−iχdµπ , Dµχ = ∂µχ+Aµ . (2.26)

By Eqs. (2.23)-(2.26) a generic invariant Lagrangian, through the factor eiχ, contains
terms that explicitly depend on time on the background. This seems a rather unpleasant
property. However one must keep in mind that our EFT only contains low frequency/low
momentum modes (∂π � µπ , ∂π3 � µπ3). Then, by simple Fourier analysis, Lagrangian
terms involving a non-trivial power of eiχ integrate to zero in the action, as its fast
oscillation cannot be compensated by any finite combination of EFT modes. Only terms
featuring no power of eiχ survive. These are invariant under an emergent U(1) symmetry,
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Uπ(1), acting as dµπ → eiξdµπ,5 which is nothing but the particle number conservation of
nonrelativistic theories (see e.g. [81]). As typical of a nonrelativistic limit, this property
emerges naturally after factoring out the mass contribution from the time evolution of
the gapped fields, as we did switching from the Left to the Right parametrization.

The emergence of this U(1) symmetry does not allow to describe processes where the
number of gapped Goldstones is changed, such as decay or annihilation. Physically this is
because they necessarily feature modes with momentum ∼ µ in the final state, outside the
regime of validity of the effective theory. As a consequence the resulting nonrelativistic
EFT cannot be unitary. Indeed, through the optical theorem, these processes give rise to
imaginary parts in the gapped Goldstone propagators and matrix elements, which can
only be matched in the nonrelativistic EFT by allowing for imaginary parts in the Wilson
coefficients [73]. We will discuss this matching in some detail for the linear triplet model
in the following sections.

We would now like to expand the Lagrangian (2.13) in a series of higher derivative terms.
In order to power count, it is useful to indicate by ∂s � µ the small derivatives of our
EFT modes. More precisely, the spacial part ∂ obviously represents the small momentum
for both π3 and π, while ∂t, represents respectively energy and kinetic energy for π3 and
π. Remember indeed that in the Right parametrization we have in practice subtracted µ
from the oscillation frequency of π excitations.

The parametrization (2.9) shows that the naïve derivative expansion must be reorganized
when working around the typical background we are interested in. Consider, in fact, the
derivative of the Maurer-Cartan form:

∂µ
[
Ω−1∂νΩ

]
= −i∂µχ

[
Q3,Ω

−1∂νΩ
]

+ e−iχQ3∂µ
(
Ω−1
R ∂νΩR

)
eiχQ3

+ i∂µ∂νχQ3 .
(2.27)

The last two terms are genuinely suppressed by two EFT derivatives, O(∂2
s ). However,

around the background χ = µt, the first term counts as a one-derivative term, O(µ∂s),
unsuppressed with respect to µΩ−1∂νΩ. This shows that some reorganization of terms is
needed in order to write the Lagrangian in a manifest expansion in powers of ∂s. Notice
for that purpose that the first term in (2.27) is not a new independent object; instead,
it is proportional to the commutator of Q3 with the Maurer Cartan form (2.10). This
indicates how to proceed: one can simply subtract the first term on the right hand side
of eq. (2.27), so that the remaining terms are O(∂2

s ). Although this term is not SU(2)

invariant, there is a simple SU(2) invariant Lorentz vector that is proportional to ∂µχ
at linear order, i.e. Dµχ. We therefore can define a nonrelativistic derivative in the
following way:

∂̂µ ≡ ∂µ + iDµχ
[
Q3, ·

]
, (2.28)

5This coincides with the U(1) generated by the action of Q3 on the right of the coset.
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where by
[
Q3, ·

]
we mean the action of the commutator and the derivative is meant to

act on the Maurer-Cartan form.6 By its definition, the action of any power of ∂̂ on the
Maurer-Cartan form is suppressed by the corresponding power of ∂s:

∂̂µ1 · · · ∂̂µn
[
Ω−1∂νΩ

]
� µ ∂̂µ1 · · · ∂̂µn−1

[
Ω−1∂νΩ

]
. (2.29)

The action on the covariant derivatives of (2.26) reads:

∂̂µDνχ = ∂µDνχ , ∂̂µDνα = (∂µ + iDµχ)Dνα = e−iχ (∂µ + iAµ) dνπ. (2.30)

Since the second term in eq. (2.28) is not a new object, formulating the EFT in terms of
∂̂ just amounts to rearranging the terms in the action so as to make the expansion in
powers of ∂s manifest. The new derivative allows us to define a consistent power counting
in the small spatial momentum for both the gapless and gapped Goldstones.

We remark that eq. (2.28) is not the only possible choice for the definition of the
nonrelativistic derivative. For instance, it is possible to multiply Dµχ by an arbitrary
function of

√
DµχDµχ/µ without affecting the property (2.29).

In summary, to construct an effective action for the Goldstones that is invariant under the
full symmetry group SU(2)× Poincarè, and that has a consistent expansion in the limit
of slow gapped Goldstones one needs to (i) use the coset construction to build terms that
are manifestly invariant under the unbroken group, (ii) consider only operators that are
invariant under an additional Uπ(1) particle conservation symmetry, and (iii) construct
higher derivative terms using the nonrelativistic covariant derivative (2.28). This recipe
can be generalized to different symmetry breaking patterns.

At the lowest derivative order, one finds three invariants under Lorentz and Uπ(1):

DµχD
µχ,

∣∣∣DµχD
µα
∣∣∣2 and DµαD

µα∗. It is convenient to organize them in terms of
operators whose expectation value vanishes on the background (2.19). To match to
the spacetime coset construction reported in appendix A.3, we reorganize them in the
following way:

∇0π3 ≡
√
DµχDµχ− µ ,

∣∣∣∇0α
∣∣∣2 ≡

∣∣∣DµχD
µα
∣∣∣2

DνχDνχ
=

∣∣∣Dµχd
µπ
∣∣∣2

DνχDνχ
,

∣∣∣∇iα∣∣∣2 ≡
∣∣∣DµχD

µα
∣∣∣2

DνχDνχ
−DµαD

µα∗ =

∣∣∣Dµχd
µπ
∣∣∣2

DνχDνχ
− dµπ dµπ∗ .

(2.31)

At the leading order in derivatives, the effective nonrelativistic Lagrangian then takes the

6Formally, eq. (2.28) corresponds to the covariant derivative for an SU(2) gauge group acting on the
right of the coset (2.9), with a gauge connection given by AIµ = δI3Dµχ.
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form:

Leff = c(1)µ3∇0π3,+c
(2)
1 µ2(∇0π3)2 + c

(2)
2 µ2|∇0α|2 − c(2)

3 µ2|∇iα|2 +O
(
µ∂̂3

)
. (2.32)

The action up to the fourth order in derivatives is given in appendix A.4.1. In the next
sections we discuss the degrees of freedom in this EFT and illustrate the power counting
by calculating several sample processes.

2.2.3 The NREFT to quadratic order

Let us expand the Lagrangian (2.32) to quadratic order in the fields:

Leff ⊃c(2)
1 µ2(∂0π3)2 − 1

2
c(1)µ2(∇π3)2 +

1

4
c(1)µ3 [iπ∗∂0π + c.c.]

− c(2)
3 µ2|∇π|2 + c

(2)
2 µ2 |∂0π|2 .

(2.33)

We focus on configurations with small derivatives. From eq. (2.33) one finds that π3

interpolates a gapless mode with dispersion relation

ω2
k = c2

sk
2 +O

(
k 4/µ2

)
, c2

s ≡
c(1)

2c
(2)
1

. (2.34)

The quantization of π3 then proceeds as usual, i.e.

π3(x) =
cs

µ
√
c(1)

∫
d3k

(2π)3
√

2ωk
ake
−iωkt+ik·x + h.c. , [ak, a

†
p] = (2π)3δ3(k − p) . (2.35)

To quantize the π field, we notice that the last term in (2.33) contains two time derivatives
and can be treated as a higher derivative perturbation of the third one, which contains
only one. Indeed, π has the kinetic term of a nonrelativistic field and is quantized as

π(x) =

√
2

c(1)µ3

∫
d3p

(2π)3
bpe
−iεpt+ip·x , [bp, b

†
k] = (2π)3δ3(p− k) , (2.36)

with dispersion relation given by:

εp = cm
p2

2µ
+O

(
p 4/µ3

)
, cm ≡

4c
(2)
3

c(1)
. (2.37)

As commented before, due to its transformation properties under H̄, π really is a
gapped field. The ladder operator b†p then creates a gapped Goldstone state with energy
Ep = µ+ εp.7

7For the sake of the discussion, we are momentarily considering a theory in which the gapped Goldstone
cannot decay.
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Chapter 2. Non-Abelian superfluids: gapped Goldstones at the cutoff scale

The nonrelativistic complex field π only contains annihilation operators (and π∗ contains
only creation ones) and thus propagates one degree of freedom.8 As anticipated, the
present effective theory describes a gapless mode and a nonrelativistic gapped mode. As
a consistency check, one can see that including higher derivative corrections, such as
the last term in (2.33) or terms constructed with (2.28), generates both new poles as
well as correction to the dispersion relation (2.37). The new poles generically appear
for frequency or momenta of order µ and are outside the regime of validity of our EFT;
they should therefore be discarded. The corrections to the dispersion relation are instead
higher order in the low-momentum expansion, showing that these additional terms can
consistently be considered as perturbations in the EFT.

2.2.4 Gapped Goldstone number conservation and non unitarity

The NREFT enjoys a Uπ(1) invariance, π → eiξπ, corresponding to particle number
conservation for the gapped Goldstones. As already remarked, this does not correspond
to a symmetry of the microscopic theory, but it is rather a consequence of the small
momentum and energy window which characterizes the degrees of freedom of our EFT. In
particular the EFT does not contain degrees of freedom with energy and momentum such
that the π can decay or annihilate into them [81]. Hence the conservation of π-number.
On the other hand, in the full theory these processes will in general exist, with final states
involving π3 modes with momentum ∼ µ, and also, possibly, other non-Goldstone degrees
of freedom with gap ∼ µ.

The EFT cannot describe the π decay or annihilation processes exclusively, since the final
states have short wavelengths. It can however describe them inclusively. Indeed, by the
optical theorem, these processes give rise to imaginary parts in the π propagator and
matrix elements, which can be matched in the NREFT by assigning proper imaginary
parts to the Wilson coefficients. For instance, an imaginary part for the “kinetic energy
coefficient" cm corresponds to a decay width of the gapped Goldstone:

Γp = −2 Im [Ep] = −Im [cm]
p2

µ
. (2.38)

Notice that the above momentum dependence matches the explicit result we found in
eq. (2.6). The resulting theory is therefore non-unitary and is sometimes called a complex
NREFT [73].

8Alternatively one could use the equations of motion to eliminate one of the two real components of
the field α = α1 + iα2 of the Right parametrization (2.8) in terms of the other. Doing so would change the
description of the gapped Goldstone mode from a complex field with one time derivative kinetic term to
a two derivatives real scalar field. To leading order in derivatives, this procedure formally coincides with
imposing an extra inverse Higgs constraint of the form Re[∇0α] = 0. The same inverse Higgs constraint,
but with a different physical interpretation, was discussed in [39] for the case in which the EFT cutoff is
much larger than the chemical potential, Λ � µ. We provide a more detailed discussion in appendix
A.3.1.
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Physically, annihilation and decay can be matched by means of local terms since these
processes are determined by short distance dynamics. More precisely, to match the
imaginary parts of the propagator or scattering amplitudes for a slow π of the full theory
via local terms in the NREFT, requires the latter to be analytical in the spatial momentum.
This is expected to be true as long as the relevant kinematic region is separated by a
finite gap from any excitation which was not included in the NREFT.

Notice also that since the zero gapped Goldstone sector, π = 0, of the theory reduces to
an EFT of a single gapless superfluid Goldstone, which should be unitary, the effective
coefficients that multiply operators which do not contain Dµπ should always be real.
Consistently, we will see that this is the case when we will match our EFT to the linear
triplet in the next section.

2.2.5 Interactions and power counting

In this section we describe some interaction processes arising in the NREFT we built.
In particular, we focus on two peculiar aspects: power counting and non-unitarity. The
techniques described here are heavily inspired by nonrelativistic QED (NRQED) [71] and
nonrelativistic QCD (NRQCD) [82], which describe the interactions of heavy fermions in
the presence of light gauge fields. Like in those theories, we will find convenient to power
count amplitudes in powers of the velocity v ∼ p/µ of the heavy field.

Consider first the expansion of the covariant derivatives (2.26),

Dµπ3 = ∂µπ3 +
iπ∗∂µπ − iπ∂µπ∗

4
− |π|2 iπ

∗∂µπ − iπ∂µπ∗
48

+O(π6) ,

Dµπ = e−iχ
[
∂µπ + iπ

iπ∗∂µπ − iπ∂µπ∗
12

+O(π5)

]
.

(2.39)

We see that all terms in the action display derivatives acting on all the fields, making
manifest the vanishing of the interaction strength with the 3-momentum, or equivalently
with the gapped Goldstone velocity, in agreement with the results in section 2.1.

In deriving the dispersion relation (2.37), we realized that time and space derivatives of the
on-shell gapped Goldstone field scale differently—namely ∇π ∼ µv and ∂0π ∼ µv2—and
some care is thus required in power counting.9 Indeed, even after subtracting the mass
contribution, a simple power counting in derivatives ∂/µ does not distinguish between
v and v2, retaining more terms than needed at a fixed order in v. As in NRQED and
NRQCD, the power counting in velocity is complicated by the presence of states with
two different forms of dispersion relation [83,84].

We will now match the results of our NREFT to those of the model presented in section 2.1.

9For processes involving only the gapless mode the power counting is similar to the relativistic case.
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In particular, this means the gapped Goldstone is stable and its dispersion relation real,
which allows us to put its external legs on-shell.

To facilitate power counting it is convenient to split each field in components with support
on different regions of phase space [76, 83, 84]. In particular, we write π3 = πs3 + πp3 + πus3

and π = πs + πp + πus, where the labels stand respectively for soft, potential and
ultrasoft. These components have energy and momentum (i.e. time and space derivatives)
scaling as10

soft: (ω,k) ∼ (µv, µv) ,

potential: (ω,k) ∼ (µv2, µv) ,

ultrasoft: (ω,k) ∼ (µv2, µv2) .

(2.40)

Note that on-shell gapless Goldstones are contained in both πs3 and πus3 , while on-shell
gapped Goldstones are contained in πp. The rules are now the following: for each process
under consideration one has to determine which field is participating in the different parts
of the diagrams, perform the expansion of π and π3 mentioned above, and determine
what are the relevant interaction terms at the given order in velocity.

For leading order applications, it might still be useful in practice to first extract Feynman
rules in a ∂/µ expansion and perform v counting only afterwards. In appendix A.4.2 we
provide a list of Feynman rules to leading order in ∂/µ.

Let us start discussing the π(pa) + π(pb)→ π(pc) + π(pd) scattering at tree-level. In the
NREFT only contact interactions and π3 exchange diagrams contribute to this process,
as in figure 2.1. By momentum conservation, the exchanged π3 is an off-shell potential
field. Given that, the leading O(v2) amplitude is fully determined by the vertices of the
leading Lagrangian (2.32) in the derivative expansion:

Leff ⊃ −
ics

2µ2
√
c(1)

(
πp ∗∇πp − πp∇πp ∗

)
·∇πp3

+
(2cm − 3)

24c(1)µ4

(
πp ∗∇πp − πp∇πp ∗

)2
− |πp|2

12c(1)µ3

(
πp ∗π̇p − πpπ̇p ∗

)
,

(2.41)

where we canonically normalized fields as π3 → cs
µ
√
c(1)

π3 and π →
√

2
c(1)µ3π. To order

10Note that for off-shell Goldstones there is a fourth possibility, namely (ω,k) ∼ (µv, µv2); this never
appears in scattering processes [84], but might be relevant in other contexts. For example, when an
external probe coupled to the system releases finite energy but almost vanishing spatial momentum [85].
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O(v2) the corresponding matrix element reads

M(1)
NR =

1

4c(1)µ4

[
(p 2
a − p 2

c )2

(pa − pc)2
+

(p 2
a − p 2

d )2

(pa − pd)2
+ (2cm − 3) (pa + pb)

2

+ 2(1− cm)
(
p 2
a + p 2

b

) ]
.

(2.42)

Once the coefficient cm is fixed by the dispersion relation (2.37), this only depends on
the overall coefficient c(1). Below we will match its value to the linear triplet model.
Eq. (2.42) correctly vanishes in the limit where any of the gapped Goldstones is at rest,
again in agreement with [67]. One can similarly compute the O(v4) correction. To this
end one has to consider the action up to the fourth order in covariant derivatives, which
is presented in appendix A.4.1. The resulting correction to the amplitude reads:

M(2)
NR =

1

µ6[c(1)]2


(
b1 −

c(1)c2
m

16c2
s

)
(p2
a + p2

b)
2 +

c(1)

8

(
c2
m

c2
s

− c(2)
m

)(
p 2
ap

2
b + p 2

c p
2
d

)
+ b2(p 2

a + p 2
b )pa · pb + b3(pa · pb)2 + b4 [(pa · pc)(pb · pd) + (pa · pd)(pb · pc)]

+
(p 2
a − p 2

c )2

(pa − pc)2

[
c(1)c2

m

16c2
s

(p 2
a − p 2

c )2

(pa − pc)2
− b1(p2

a + p2
b) +

c(1)c
(2)
m

8cm

p 2
ap

2
b − p 2

c p
2
d

(p 2
a − p 2

c )

]

+
(p 2
a − p 2

d )2

(pa − pd)2

[
c(1)c2

m

16c2
s

(p 2
a − p 2

d )2

(pa − pd)2
− b1(p2

a + p2
b) +

c(1)c
(2)
m

8cm

p 2
ap

2
b − p 2

c p
2
d

(p 2
a − p 2

d )

] .

(2.43)

Here c2
s is defined in (2.34) and c(2)

m is defined by the gapped Goldstone dispersion relation
at subleading order (2.37)

εp = cm
p2

2µ
− c(2)

m

p4

8µ3
+O

(
p6/µ5

)
. (2.44)

We also introduced four independent coefficients, b1, b2, b3 and b4, given in terms of the
Lagrangian parameters in appendix A.4.3. One can show that loop corrections do not
contribute to the matrix element at this order—see appendix A.4.4.

A non-trivial check of our NREFT construction is obtained by comparing the above
results to those obtained in section 2.1 for the benchmark model. Eqs. (1.29), (2.2) and
(2.3) should match respectively Eqs. (2.44), (2.42) and (2.43). The matching beautifully
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Figure 2.1 – Diagrams contributing to ππ → ππ at tree-level.

works, fixing11

1

c(1)
=

λµ2

µ2 −m2
, cm = c(2)

m = 1 , c2
s =

µ2 −m2

3µ2 −m2
, (2.45)

b1

c(1)
=

1

4
,

b2

c(1)
=

m2 + µ2

4(m2 − µ2)
,

Re[b3]

c(1)
=

7µ2 +m2

4(µ2 −m2)
,

Re[b4]

c(1)
=

µ2

2(µ2 −m2)
.

Notice in particular that the dispersion relation fixes cm = 1 at lowest order, which
immediately gives eq. (2.42) the same momentum dependence as (2.2).

This is however not the end of the story. As already discussed, our benchmark model
allows for the process in which two gapped Goldstones annihilate into two gapless ones.
Although this process is outside the regime of applicability of the NREFT, it will give
rise to an imaginary part in the scattering amplitude via the Cutkosky rules.12 That can
be matched by assigning an imaginary part to the Wilson coefficients, as we now show in
detail. Notice first that unitarity of the theory at π = 0 implies that the coefficient c(1)

and the sound speed c2
s of the gapless Goldstone are real—see eq. (2.33). Furthermore,

the accidental Z2 symmetry, which forbids gapped Goldstone decay in the linear triplet
model, implies that the coefficients of the dispersion relation (2.44) and, more in general,
of all the operators contributing to amplitudes with only one (slow) gapped Goldstone
and an arbitrary number of (soft) gapless modes in the initial and final states must be
real.13 From inspection of Eqs. (A.42), (A.53) and (A.54), this implies that cm, c

(2)
m , b1

and b2 are real as well. Overall, we find that the scattering amplitude must be real at
leading order in velocity, while at the subleading order we can use only the imaginary
parts of the coefficients b3 and b4 to match the annihilation contribution. To check that

11 In the matching one must consider that in the triplet model we used the relativistic normalization
of states, while in the NREFT (see (2.36)) we used the nonrelativistic one which differs by a velocity
dependent factor: |p, µ〉triplet =

√
2Ep |p, µ〉NREFT.

12The imaginary part induced by elastic scattering itself can be computed within the NREFT and it is
of higher order in the velocity.

13This is because, in the linear triplet, the only possible intermediate states contributing to all possible
cuts of such amplitudes are those included in the NREFT.
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Figure 2.2 – Diagrams contributing to π3π → π3π at tree-level.

is enough, notice that from the annihilation cross section (2.5) of the UV theory one finds

Im [Melastic] ' γ
(pa · pb)2

µ4
+ δ

(pa · pc)(pb · pd) + (pa · pd)(pb · pc)
µ4

. (2.46)

Non-trivially, this contribution is local and it precisely has the structure to be matched
in the NREFT via an imaginary part for b3 and b4:

Im[b3]

[c(1)]2
=
γ

4
,

Im[b4]

[c(1)]2
=
δ

4
. (2.47)

As one last example, to further clarify the procedure of power counting in velocity, consider
the scattering π(pa) + π3(k1) → π(pb) + π3(k2). The relevant diagrams are presented
in figure 2.2. As before, we take all external 3-momenta of order O(µv). One can see
that momentum conservation requires the intermediate π3 of the second diagram to be
a potential mode, and the intermediate π of the last two to be soft. One then needs
to isolate the relevant interaction terms in the effective Lagrangian, after which it is
straightforward to extract the Feynman rules and compute the matrix elements.

One finds that the leading order result is O(v3) and receives contribution from all diagrams
in figure 2.2 but the second, which starts contributing at O(v4). The matrix element
reads14

M =
1

2µ4c(1)

1

cs|k1|

{
(c2
s − 1)c2

sk
2
1(k1 + k2) · (pa + pb)

+ 2c2
s [(pa · k2)(pb · k1)− (pa · k1)(pb · k2)]

}
+O

(
v4
)
.

(2.48)

This expression vanishes when any of the momenta approaches zero.

A final comment concerns the calculation and power counting of loop diagrams. As well-
known from NRQCD, the formulation of the NREFT at the quantum level is more subtle
than in the standard relativistic case, even when using a mass independent regulator,
like dimensional regularization. A consistent treatment, first given in [86, 87] and refined

14Notice that to leading order in v energy conservation implies |k1| = |k2|.
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in [88], relies crucially on the splitting into soft, potential and ultrasoft modes performed
in (2.40). The prescription explained there applies straightforwardly to our case. We
review some details and provide few examples in appendix A.4.4.

2.3 Integrating out the gapped Goldstone: a less effective
field theory

As we already discussed in the Introduction, in quantum field theory with unbroken
Poincaré symmetry, the presence of Goldstone modes in the IR has very nontrivial
consequences. In particular, Goldstones associated to a coset G/H signals the existence
of a symmetry group G×G′ in the UV. G is spontaneously broken, and G′ is any other
distinct group which either is trivial or such that all the states charged under it are heavy
and absent in the G/H effective theory. This is for instance the case in QCD, where
G = SU(Nf )L × SU(Nf )R, with Nf the number of light quarks, is broken down to the
isospin group H = SU(Nf )V , and the corresponding Goldstones are the light mesons. In
this case G′ is the baryon number, U(1)B, which is unbroken and whose lightest charged
state is the proton.

One might then wonder what happens to our finite density system when the involved
energies, as measured by the unbroken Hamiltonian H̄ = H + µQ3, are much smaller
than the chemical potential µ. One could be tempted to treat the gapped Goldstones
just like protons in QCD. However, while, on the one hand, they can be integrated out
in the EFT at energies E � µ, on the other they are needed to non-linearly realize the
full non-Abelian symmetry. Is there any hint left of the original symmetry once we have
integrated them out? In other words, is the information about the non-Abelian nature of
the group lost at low energies, similarly like for U(1)B in QCD?

It is easy to show that in the zero-π sector (π = 0 in the action), the invariants built out
of the coset construction reduce to those of a simple Abelian U(1) group, i.e. Dµπ = 0

and Dµχ = ∂µχ. It cannot be otherwise, since the internal SU(2) algebra cannot be
nontrivially realized on a single field. Physically, when we integrate out the gapped
Goldstone we specify boundary conditions for it to vanish at infinity. In our case that
clearly breaks the non-Abelian symmetry since, as argued in section 1.2.2, symmetry
transformations produce a fast oscillating mode that does not decay at infinity.

That is also evident in the linear triplet model (1.27). At low energies one can, in fact,
integrate out explicitly the heavy fields h(x) and θ(x). At tree level the resulting effective
Lagrangian is

Leff =
1

2

(
1 +

2µ2

λφ2
0

)
ψ̇2 − 1

2
(∇ψ)2 +

µ

λφ3
0

ψ̇(∂ψ)2 +O
(
∂4/µ4

)
, (2.49)

which is a Lagrangian for the Goldstone boson of an ordinary (Abelian) relativistic
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superfluid, but no other symmetry is manifest.15

To clarify this situation, it is helpful to think in terms of the Hilbert space of the low-
energy EFT for the gapless Goldstone only. The latter is obtained by restricting the
Hilbert space H of the full theory to the subspace HEFT specified by the condition:

|ψ〉 ∈ HEFT ⇐⇒ 〈ψ|H̄|ψ〉 = 〈ψ|H + µQ3|ψ〉 � µ . (2.50)

Despite the theory being SU(2) invariant, the presence of Q3 in the modified Hamiltonian
that we use to specify the configurations that are part of the EFT explicitly breaks
the symmetry. As a concrete illustration, consider a free quantum mechanical particle
living on a sphere, with Lagrangian L = I

2

(
θ̇2 + sin2 θ φ̇2

)
, where I is the moment of

inertia. The states of the theory are organized in SO(3) multiplets, |`,m〉, with energy
E` = `(` + 1)/2I. The quantum number ` specifies the representation and m is the
value of the angular momentum along the z-axis: −` ≤ m ≤ `. If we take m to be
fixed, negative and large, the state with minimum energy is |`,m = −`〉 and the chemical
potential is µ = ∂E`=−m/∂m ≈ m/I [35]; any other state in the same SO(3) multiplet
has a gap of at least |µ| ≈ |m|/I as measured by H̄. Thus, for every fixed value of the
third component of the angular momentum, the low-energy EFT is made of the single
state |`,m = −`〉, which is not invariant under the full rotation group. At the Lagrangian
level, the restriction to such states corresponds to “integrating out" the polar angle, θ,
considering an effective theory for the azimuthal angle, φ, spinning around the z-axis.
Indeed, a single excitation of θ describes a state with total angular momentum increased
by a unity, `+1, but with the same projection along the z-axis, m = −`. This corresponds
to a state with gap |µ| at large angular momentum [35]. This is analogous to the gapped
Goldstone, providing a simple illustration of its key role in the nonlinear realization of
the full symmetry group.16

The condition in eq. (2.50) implies that the theory without the gapped Goldstone can
only be used to compute correlators whose long-distance behaviour is determined by
intermediate states with small energy under H̄. However, since time evolution is still
controlled by the Hamiltonian H, not all correlation functions having a non-trivial
long-distance limit satisfy this property. In other words, the operators corresponding
to such correlation function cannot be matched in the low-energy EFT for the gapless
Goldstone only, and they would simply be lost. In contrast, if one employs the NREFT we
described so far, the previous correlators can be consistently reproduced within its regime
of applicability. As an illustration, consider the time component of the Noether currents
for the Q+ and Q− generators of SU(2). It is clear that, in an EFT that only contains

15In fact, due to the Z2 symmetry, integrating out θ at tree level accounts to setting it to zero in the
Lagrangian (1.27), which turns it into an O(2) doublet theory.

16 In field theory (at infinite volume) the action of the spontaneously broken charges on the Hilbert
space of the theory is not well-defined and we cannot classify state according to representation of the
broken group; this however does not invalidate our main point, that the restriction (2.50) explicitly breaks
the symmetry.
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the gapless Goldstones, such operators cannot be matched. Indeed, in such a theory,
only the Abelian subgroup of SU(2) is realized nontrivially, and the Noether currents
associated to Q± cannot be computed. On the other hand, working in the NREFT, in
which the full non-Abelian symmetry group is realized, it is straightforward to compute
them from Noether theorem and, at leading order in fields and derivatives, we find

J0
+(t,x) ' −ic(1)µ3π(t,x) , J0

−(t,x) ' ic(1)µ3π∗(t,x) . (2.51)

As it could have been expected from the conservation of the global charges, these are
written purely in terms of the slow field π of the Right parametrization (2.9). We can
now compute their correlators at large time separation and spatial distance. For instance,
the spatial Fourier transform of the two-point function of these currents can be computed
from the gapped Goldstone propagator and reads∫

d3x e−ip·x 〈µ|T
{
J0

+(t,x)J0
−(0,0)

}
|µ〉 = 2c(1)µ3θ(t)e−iεpt , (2.52)

where T is the time-ordered product and εp is the (possibly complex) kinetic energy of
the gapped Goldstone, given by eq. (2.37) at leading order in 3-momentum. For long
wavelengths, |p| � µ, the correlator (2.52) oscillates slowly in time—i.e. it has nontrivial
long time tails. Nonetheless, it cannot be computed from the low-energy EFT without
the gapped Goldstone, as already anticipated.17 This is clear when the gapped Goldstone
is stable and εp is real, in which case the result in eq. (2.52) is interpreted as the free
evolution in time of a single π mode. Such a simple interpretation does not exist in more
general cases, but this does not affect the main picture presented above. 18

In summary, in the low-energy EFT specified by eq. (2.50) no signature of the non-Abelian
nature of the symmetry is present. To obtain a fully SU(2) covariant description one
should work within the NREFT presented in this work, which reduces to the Abelian
superfluid in the zero gapped Goldstone sector. In particular, our construction shows that
the non-Abelian structure of the group constrains the dynamics at small spatial momenta,
similarly to the relativistic case, but around non-zero frequencies which are multiples
of the chemical potential. The NREFT further provides access to certain non-trivial
correlation functions at large spacetime separations, which cannot be matched without
the gapped Goldstone due to the difference between the fundamental Hamiltonian H
and H̄. We illustrated that point by discussing the two-point function of the SU(2)

Noether current; we leave a systematic analysis of operator matching in the NREFT for
future work. These considerations, we believe, clarify previous works [35,78,89,90], which,

17That this result cannot be obtained by somehow matching the currents in the low-energy theory is
also manifest from the fact that the correlator oscillates with frequency εp ∼ p2/µ, while no state with
such dispersion relation is present in the EFT for the gapless Goldstone only.

18Equivalently, one could look at the operator J̄0
±(t,x) ≡ eiH̄tJ0

±(0,x)e−iH̄t, which instead evolves
with H̄. It is simple to show that the two-point correlator for this (non-conserved) current oscillates
with frequency µ. Consequently, it can never be obtained from the EFT for the gapless Goldstones only,
which has support only on frequencies � µ, as measured by H̄.
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at large chemical potential, restricted their attention to the Abelian component of the
spontaneously broken internal symmetry. We conclude this section marking the differences
between the present case and the relativistic case, i.e. a broken internal symmetry with
unbroken Poincarè invariance.

In the relativistic case symmetry constrains all the Goldstone bosons to have 4-momentum
on the lightcone. Then, given a coset G/H, the gapless Goldstone bosons carry all
the information about the symmetry breaking and, as made evident by the CCWZ
construction, all degrees of freedom falling into gapped H-multiplets can be integrated out
preserving the full G symmetry. As concerns instead the role of an additional unbroken
G′ factor in the fundamental symmetry, if all the states charged over G′ are gapped, then
the corresponding Noether currents do not have low frequency components. In view of
that in no way the low energy modes can match them, and the information about G′

is lost in the EFT. Similarly, gapped Goldstones cannot be integrated out while still
preserving the full G symmetry. However, in this case, the currents that interpolate them
do have low frequency components—see eq. (2.52)—and there must therefore exist a way
to recover that information via an EFT construction, ours indeed.
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The breaking of internal symmetries has qualitatively different implications on low-energy
physics, depending on whether or not it is accompanied by the breaking of spacetime
symmetries. One crucial difference arises for the spectrum of excitations. With unbroken
Poincarè invariance, Goldstone theorem dictates the presence of one stable particle
with light-like dispersion relation, E(k) = |k|, for each spontaneously broken symmetry
generator. With the spontaneous breaking of the Poincarè group, Goldstone theorem
leaves instead space for a greater variety of options, as concerns the counting of modes,
their dispersion relations and their stability. A particularly interesting case is offered
by non-Abelian superfluids, which are characterized by chemical potentials µI for the
Cartan charges QI . In chapter 1 we reviewed the corresponding Goldstone theorem, which
implies the presence of a set of modes, labeled by a = 1, . . . , N , whose energy satisfies
Ea(k = 0) = caIµI , with caI real coefficients that are fully dictated by group theory [38].
Generically one then has both gapless modes, Ea(0) = 0 and gapped ones Ea(0) 6= 0.
Moreover one has variety in the functional dependence of Ea(k) on k, including the
possibility for imaginary parts, associated, when allowed, with the decay of the modes
at k 6= 0.

Symmetry controls not only the spectrum, but also the interaction of the Goldstone
bosons. In the Poincaré invariant case, this results in a low-energy EFT whose main
features are universal and rather independent of the details of the microphysics. In finite
density systems constraints on the structure of the interactions are expected, and, to
some extent, have been studied. However, with gapped Goldstones, the EFT construction
also raises issues of technical and conceptual nature. One concerns universality, and stems
from the generic possibility of other, non-Goldstone degrees of freedom in the range of
energies and momenta O(µ). Those are, for instance, expected in systems like CFTs,
where µ is the main dimensionful parameter. In that situation creation and destruction
of gapped Goldstones, even slow moving ones, entails momenta ∼ µ evading a universal
EFT description. Another issue concerns the possibility of reconstructing the pattern of
symmetry breaking by pure consideration of the dynamics at the lowest possible energies.
That is possible in the relativistic case, but seems impossible at finite density, as the

50



Conclusions to Part I

gapped Goldstones are integrated out at E � µ.19

In chapter 2 we have clarified the above questions. We have shown that the EFT that
universally implements the information on the symmetry breaking pattern has degrees
of freedom given by the Goldstone modes, all of them, at low 3-momentum, k. In
particular the gapped Goldstones are limited to small velocity, which also manifestly
controls the strength of their interactions, in agreement with [67]. Such EFT cannot
produce amplitudes that violate gapped Goldstone number (GGN), as these necessarily
involve external legs with large 3-momentum ∼ µ. Consequently GGN is an “emergent"
symmetry of the EFT where time evolution proceeds without transitions between Hilbert
spaces with different GGN. This bars the calculability of physical processes where the
GGN is not conserved. The latter are nonetheless consistently described in an inclusive
form through the optical theorem, by allowing for imaginary parts in the local coefficients
of operators in the EFT. The price to pay is that the unitarity of the original theory
is not manifest in the EFT. The fact that GGN non-conservation involves short modes
however allows to describe it via local operators in the EFT. The resulting picture is fully
analogous to that of non-relativistic EFTs (NREFTs), like for instance non-relativistic
QCD [82,88] or the EFT for nucleon-nucleon scattering [91,92], which have indeed almost
completely guided our construction. We have illustrated our ideas by focussing on an
SU(2) superfluid, where we also checked that the results of the EFT construction match
those of an explicit renormalizable model. We expect our results to be easily generalizable
to arbitrary symmetry breaking patterns, as well as to allow the inclusion of other possible
relevant matter fields in the action via standard techniques [28].

With the above picture in place it is evident that the complete information about symmetry
breaking in the microscopic theory is encoded in the full set of NREFTs Hilbert spaces with
all possible GGN. The subspace with zero GGN, which purely involves the soft gapless
modes, is only part of the picture and does not encode the complete information about
symmetry breaking. In particular it does not contain information about the spectrum
of gapped modes. This subspace also happens to correspond to the EFT describing the
lowest lying modes of the unbroken time translation generator H̄ = H + µIQI of the
superfluid. This Hamiltonian is only invariant under a subgroup of the original internal
symmetry, which makes it clear why such lowest energy EFT cannot describe the full
pattern of symmetry breaking. A more detailed discussion of this is given in section 2.3.

The analysis of this part of the thesis was mainly motivated by its applications in the
study of operators with large quantum numbers in strongly coupled conformal field
theories [34,35]. The relation of that problem with superfluids will be the main topic of
part II of this thesis. In particular, the NREFT discussed in chapter 2, when specialized
to the cylinder, will be used to make predictions for the large charge sector of CFTs
invariant under non-Abelian symmetry groups in chapter 4. However, our ideas might

19An interesting question regards whether gapped Goldstones can be excited by some light external
probe charged under the internal symmetry. We leave this investigation for future work.
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Conclusions to Part I

prove useful in different contexts as well. Before closing, therefore, we would like to
mention other possible applications of the gapped Goldstone NREFT.

As remarked in the introduction, gapped Goldstones appear in different physical sys-
tems [40]. An interesting example is given by QCD at finite density, as it is for instance
found in the interior of neutron stars [41–44]. Depending on the parameters, in particular
baryon density, it is conceivable that the system relaxes to a superfluid phase for the
non-Abelian isospin symmetry. One concrete possibility is represented by Kaon condensa-
tion [41]. The resulting scenario, given the approximate nature of the isospin symmetry,
broken by the small quark masses, would be approximated by the physical situation
described in this part of the thesis: there would be pseudo-Goldstone bosons, whose gap
and interactions are controlled by symmetry breaking, spontaneous and explicit, very
much like in the QCD chiral Lagrangian around the vacuum. In particular in the regime
where the chemical potential is of the order of the strong interaction scale, our NREFT
would capture, amid a hardly calculable strong dynamics, the universal features of the
gapped pseudo-Goldstones dynamics.

The underlying Lorentz invariance of the theory, if conceptually useful in understanding
the origin of the modified Hamiltonian H̄, is not necessary for the existence of both gapless
and gapped Goldstone bosons [40]. Indeed, our construction may be straightforwardly
applied to systems where either only the Galilean limit of Lorentz transformations is
considered, or boost invariance is not present from the beginning.20 Possibly relevant
examples of this kind include ferromagnets, anti-ferromagnets [61], electron gases [74] and
vortex lattices [93, 94] where spin or angular momentum play the role of the non-Abelian
charges, while the role of the chemical potential is played by either a uniform magnetic
field [40] or by an externally induced angular velocity. In these examples the role of the
gapped Goldstones is played respectively by the magnons for spin systems and by the
Kohn mode for electron gases and vortex lattices. It would be interesting to investigate
the possibility to apply our NREFT methodology to such systems, searching in particular
for situations where the Goldstone gap is comparable to or larger than the energy of
other potentially strongly coupled modes. Our methodology would allow to zoom on the
universal properties of otherwise hardly tractable strongly coupled systems.

20Physically, this means that boost invariance is broken by some more microscopic dynamics, typically
due to the presence of a lattice or some other fluid, whose associated hydrodynamics modes can be
neglected in first approximation.
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Part IISuperfluids and the large charge
sector of strongly coupled CFTs

Many interesting physical theories do not possess a small coupling, allowing for a systematic
perturbative expansion of observables. However, even in such cases, a weakly coupled
description may effectively emerge in some sectors of the theory. This is for instance the
case in QCD, which, at energies E much smaller than the hadron scale ΛQCD = 4πfπ ≈
1GeV, can be studied via the chiral Lagrangian in terms of Goldstone degrees of freedom.
The existence of a perturbative description is related to a large separation between the
relevant mass scales, whose ratio E/ΛQCD provides the small expansion parameter.

A particularly relevant class of strongly coupled theories is given by those invariant under
an extended spacetime symmetry: conformal transformations. These are called conformal
field theories (CFTs) and play a key role in particle and condensed matter physics. First,
as fixed points of the renormalization group flow, they act as landmarks in the space of
quantum field theories (QFTs). Furthermore, through the AdS/CFT correspondence,
they promise to shed light on quantum gravity [95,96]. Finally, they also describe critical
points for second order phase transitions. Recently, the bootstrap program [25,97], aiming
at constraining (and possibly solving) strongly coupled CFTs by imposing self-consistency
relations, achieved much progress in their study, mostly through numerical techniques [98].

Despite the absence of an intrinsic mass scale, a simplification similar to the one at hand
in low energy QCD occurs in CFTs when studying operators with large quantum numbers
under an internal symmetry group G. This was first pointed out in [34] and it is based
on the following picture. As a consequence of the state/operator correspondence, a scalar
operator with charge Q under a certain generator of the group G corresponds to a state
with charge density ρ ∼ Q/Rd−1 for the theory compactified on the cylinder R× Sd−1

with radius R. For Q� 1 the mass scale associated to the charge density ρ
1
d−1 ∼ Q 1

d−1 /R

is parametrically larger than the compactification scale 1/R. In between these scales, the
CFT state and its excitations are expectedly associated with a certain condensed matter
finite density phase, the simplest option being that of a generalized superfluid of the kind
analyzed in part I of this thesis. Assuming the theory to be in a superfluid phase, we
may associate the charged states with excitations of the corresponding hydrodynamic
Goldstone modes, whose property are largely constrained by the symmetry independently
of other details of the theory. Similarly to the chiral Lagrangian in QCD, accurate
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predictions are obtained by mean of an effective field theory (EFT) description, in which
the derivative and the loop expansion are controlled by the ratio between the IR and the
UV scale, R−1/ρ

1
d−1 ∼ 1/Q

1
d−1 . The non-universal features associated with any specific

CFT are instead encoded in a finite number of Wilson coefficients at each order in the
1/Q expansion. This framework is sometimes referred to as the large charge expansion in
CFTs.

In this part of the thesis, we will study the large charge expansion for CFTs in d > 2

dimensions. In what follows, we shall first elucidate our approach presenting in more
detail the simple example discussed in the introduction to this thesis: the hydrogen atom
at large angular momentum. We will then study the case of a U(1)-invariant CFT in
chapter 3. We will finally discuss CFTs invariant under more general internal symmetry
groups in chapter 4, relying on the construction presented in chapter 2 of this thesis.
We review some basic properties of CFTs in appendix B.1, where we also specify our
conventions for the normalization of operators.

Invitation: the hydrogen atom at large angular momentum

The following example was already presented in [99,100] and it is inspired by the analogous
discussion of the rigid rotor in [35]. We consider a non-relativistic point particle of mass
M in a Coulomb potential, whose Lagrangian in spherical coordinates reads

L =
M

2

(
ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2

)
+
α

r
. (II.1)

As well known, this system is invariant under an SO(4) symmetry. The SO(3) component
corresponding to physical rotations is generated by the angular momentum J = r ×
p, where p = M ṙ is the classical momentum. The remaining three generators are
proportional to the Laplace-Runge-Lenz vector A = 1

2 (p× J − J × p) − α r/r. The
bound states of the system have energy En = −Mα

2n2 and are labeled by three integer
quantum numbers n, `, and m. 1 We have n ≥ `+ 1, and ` and m specify, respectively,
the angular momentum J2 = `(`+1) and its projection J3 = m on the third axis. We will
now discuss how we can obtain this result semiclassically for large angular momentum,
by expanding the path integral around a configuration with fixed angular momentum J3.
Notice that for fixed J3 = m, the minimum energy state is obtained for n− 1 = ` = m,
corresponding to the following value for the energy:

E0(m) = − Mα

2(m+ 1)2
= −Mα

2m2

(
1− 2

m
+

3

m2
+ . . .

)
. (II.2)

The basic idea of the calculation is to consider the matrix element of the Euclidean

1For every fixed n, labeling states with ` and m corresponds to the decomposition of the (n−1
2
, n−1

2
)

representation of SO(4) ' SU(2)× SU(2) in irrep.s of the diagonal SU(2).
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evolution operator e−TH in between two states with angular momentum J3 = m and
fixed arbitrary values for r and θ; taking then the T → ∞ limit we project onto the
lowest energy state |Ψ0,m〉 with fixed angular momentum:

〈rf , θf ,m|e−TH |ri, θi,m〉 T→∞−→ 〈rf , θf ,m|Ψ0,m〉 〈Ψ0,m|ri, θi,m〉 e−E0(m)T , (II.3)

where subleading corrections are exponentially suppressed in T . Using that φ and J3 are
conjugated variables, we write the matrix element in (II.3) as the following path-integral:

〈rf , θf ,m|e−TH |ri, θi,m〉 =

∫∫
dφidφf

2π
e−im(φf−φi)

∫ (rf ,θf ,φf )

(ri,θi,φi)
DrDθDφ e−

∫ T/2
−T/2 dτLE ,

(II.4)
where LE is the Euclidean version of the Lagrangian:

LE =
M

2

(
ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2

)
− α

r
. (II.5)

The wave-functions eimφi and e−imφf ensure that the initial and final state have the
right value for the angular momentum J3. The crucial observation is that for m � 1

the path-integral (II.4) can be computed systematically in a saddle-point approximation.
Including the variation of the boundary terms, the stationarity conditions deriving from
eq. (II.4) read

r̈ = rθ̇2 + r sin2 θφ̇2 +
α

Mr2
, θ̈ = sin θ cos θφ̇2 , Mr2 sin2 θφ̇ = −im . (II.6)

Choosing for simplicity ri = rf = m2

Mα and θi = θf = π/2, we find the following solution

r =
m2

Mα
≡ r0 , θ =

π

2
, φ = −i m

Mr2
0

τ + φ0 , (II.7)

where φ0 is an integration constant. Recalling the identification τ = it between Euclidean
and Lorentzian time, we recognize eq. (II.7) a superfluid solution of the kind discussed
in part I of this thesis. At a classical level, such solution breaks spontaneously time
translations and the SO(4) symmetry to the subgroup generated by H̄ = H − µJ3 and
the third component of the Laplace-Runge-Lenz vector A3, 2 where the chemical potential
is given by µ(m) = m/Mr2

0; we shall see below that the spectrum of fluctuations matches
the expectation for this symmetry breaking pattern. Computing the classical action on
the solution (II.7), we recover the leading order value for the energy at large m:∫ T/2

−T/2
dτLE + im(φf − φi) =

Mα

2m2
T = E

(0)
0 T . (II.8)

It is also possible to check that the contribution of the classical solution to the stationary

2To see this, recall that the Laplace-Runge-Lenz vector Aj generates the transformation δri =
M (2ṙirj − riṙj − δij r · ṙ), under which the Lagrangian shifts by a total derivative.
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action which grows with T is independent of the choice of the initial and final values of θ
and r, in agreement with eq. (II.3).

Subleading corrections in 1/m correspond to higher orders in the loop expansion. Let us
see this explicitly. We introduce (dimensionless) fluctuations over the classical solution:

δρ =
r − r0

r
, δθ = θ − π

2
, δφ = φ+ i

m

Mr2
0

τ − φ0 . (II.9)

We then rewrite the path-integral (II.4) as

〈rf , θf ,m|e−TH |ri, θi,m〉 = e−
Mα
2m2 T

∫
DδρDδθDδφ e−

∫ T/2
−T/2 dτ L

′
E , (II.10)

where

L′E =
Mr2

0

2

[
δρ̇2 +

m2

M2r4
0

δρ2 + δθ̇2 +
m2

M2r4
0

δθ2 +

(
δφ̇− 2im

Mr2
0

δρ

)2
]

+ . . . . (II.11)

Such Lagrangian describes a gapless excitation and two gapped excitations with proper
frequency ω = µ, classically corresponding to a massless and two massive Goldstones.
Upon rescaling time as τ = τ̃

Mr2
0

m , we can recast∫
dτL′E = m

∫
dτ̃ L̃′E , (II.12)

where L̃′E is equal to L′E with m/Mr2
0 = 1 and thus it is written, to all nonlinear orders

in the fields, purely in terms of order one numerical coefficients. Then, we manifestly see
that 1/m plays the role of loop counting parameter in the path integral, showing that
the expansion in eq. (II.2) coincides indeed with a loop expansion. To make this remark
concrete, let us consider the lowest order correction to the energy E0(m). This arises
from the one-loop fluctuation determinant and reads

E
(1)
0 =

1

2

∫
dω

[
2 log

(
ω2 +

m2

M2r4
0

)
+ logω2

]
= ΛUV +

Mα

m3
, (II.13)

where ΛUV is a divergent constant contribution, generically allowed by the symmetries
of the problem and whose precise value depends upon the regularization scheme. This
result matches the expansion of the exact expression in eq. (II.2).

The semiclassical description is not limited to the ground state at fixed charge. At the
lowest order, this can be seen considering excited states of the frequency µ(m) harmonic
oscillators described by the Lagrangian (II.11). These correspond to states with J3 = m

and energy given by

Ek(m) = E0(m) + k
Mα

m3
+O

(
1

m4

)
= − Mα

2(m+ k + 1)2

[
1 +O

(
1

m2

)]
. (II.14)
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Each energy level is k + 1-times degenerate and corresponds to states with n − 1 =

m+ k ≥ ` ≥ m.

A final comment concerns the zero-mode integration constant φ0 in eq. (II.7). The latter
does not contribute to the calculation of the energy E0, as the action depends only on φ̇.
However, the integration over φ0 is relevant in the calculation of correlation functions
involving φ. In particular, considering the operators ψq(τ) = eiqφ(τ) with J3 = q, we have

〈rf , θf ,m;T/2|ψqn(τn) . . . ψq1(τ1)|ri, θi,m;−T/2〉 ∝
∫ 2π

0

dφ0

2π
ei
∑
i qiφ0 = δ

(∑
i

qi

)
,

(II.15)
where obviously here δ(. . .) stands for a Kronecker delta. Eq. (II.15) is consistent with
angular momentum conservation; in particular, no charged operator acquires a vacuum
expectation value. Therefore, while the stationary profile (II.7) may be characterized as a
classical superfluid configuration, integration over the zero-mode implies that no symmetry
breaking truly occurs in the theory, as it is generically3 expected in one-dimensional
quantum-mechanical systems.

3See e.g. the appendix of [101] for an example of spontaneous symmetry breaking in a quantum-
mechanical system.
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3 The large charge expansion in U(1)-
invariant CFTs

This chapter begins the exploration of the large charge expansion in CFTs. Following [35],
in sec. 3.1 we will present the general strategy for studying CFTs at large internal charge
using the path-integral formulation. We will then specialize to the case of a U(1)-invariant
CFT. The results for the spectrum of the theory will be presented in sec. 3.2. We will
address the study of n-point functions and OPE coefficients in sec. 3.3. In this chapter
we will work in generic d > 2 spacetime dimensions, so that our discussion will apply to
both the physically interesting case d = 3 and d = 4. Some results hold also in d = 2, but
we will not discuss that case explicitly.

3.1 Path-integral at fixed charge

Here we generalize the strategy discussed in the invitation to the case of a d-dimensional
CFT invariant under an internal symmetry group G. Let us call O ~Q(x) the operator of
minimal scaling dimension for fixed values of the charges ~Q = (Q1, . . . , QN ) associated
to the Cartan generators Q̂I of the group. Working in Euclidean space Rd, we consider
correlation functions of the form

〈O†~Q(xout)Om(xm) . . .O1(x1)O ~Q(xin)〉 , (3.1)

where O†~Q(x) is the conjugate operator of O ~Q(x), carrying charge − ~Q, and Oi are
additional operators carrying finite quantum numbers, such as the energy momentum
tensor or the Noether currents.

By the state-operator correspondence, in the limit xin → 0 and xout →∞ the action of
O ~Q and O†~Q on the vacuum creates a primary state | ~Q〉 for the theory on R× Sd−1, with
sphere radius R. Then, exploiting the Weyl invariance of the theory, the vacuum-correlator
in eq. (3.1) is equal, up to a trivial rescaling (see eq. (B.21)), to the following matrix
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3.1. Path-integral at fixed charge

element for the theory quantized on the cylinder:

〈 ~Q, τout|Om(τm, n̂m) . . .O1(τ1, n̂1)| ~Q, τin〉 , (3.2)

where τ = R log (|x|/R) denotes Euclidean time on the cylinder, n̂µ = xµ/|x| specify the
coordinates on the sphere and the states are defined in Schrödinger picture:

| ~Q, τin〉 ≡ eHτin | ~Q〉 = eE~Qτin | ~Q〉 , 〈 ~Q, τout| ≡ 〈 ~Q| e−Hτout = 〈 ~Q| e−E~Qτout . (3.3)

We recall that the energy of the state on the cylinder is related to the scaling dimension
∆ ~Q of the corresponding operator as E ~Q = ∆ ~Q/R.

Eq. (3.2) is analogous to the setup that we studied for the hydrogen atom. We therefore
expect that, for sufficiently large QI ’s, the path integral corresponding to the matrix
element in eq. (3.2) will be dominated by a semiclassical trajectory specifying a definite
symmetry breaking pattern. Operator insertions and states with higher energy will be
characterized as excitations over the classical configuration associated with the ground
state | ~Q〉. The symmetries of the leading trajectory may be inferred considering the
insertion of the operator O ~Q at, respectively, xin = 0 and xout = ∞, which set the
boundary conditions for the path-integral. These break, respectively, translations Pµ and
special conformal transformation Kµ. The fate of the rotation group SO(d) depends on
whether the operator O ~Q carries spin. Here we assume the simplest and most plausible
option in which O ~Q is a scalar, implying that | ~Q〉 describes a state with homogeneous
charge density. 1 It remains to specify what happens to the dilatation generator D,
corresponding to the Hamiltonian on the cylinder, and the internal group G. Since the
origin and the point at infinity are stable under dilatations, the generator D may or may
not be broken. As we argued in chapter 1, the most natural option is provided by a
superfluid phase, in which case both the dilatation generator and G are broken, leaving
unbroken a linear combination of D and the Cartan generators:

D̄ = D + µIQ̂I . (3.4)

This was indeed the case for the hydrogen atom (see the discussion below (II.7)). Overall,
we expect that the symmetry breaking pattern characterizing the leading semiclassical
trajectory generically reads, in obvious notation,

SO(d+ 1, 1)×G −→ SO(d)× D̄ ×G′ , (3.5)

where G′ ⊂ G denotes the internal unbroken subgroup, which, as we will discuss in
more detail in chapter 4, is expected to be trivial for generic choices of the charges QI .
Therefore, the properties of the ground state and its fluctuations will be characterized by

1Interestingly, also in the case of charged operators carrying macroscopic spin, analyzed in part III of
this thesis, the leading trajectory in the path-integral may be characterized by similar arguments, see
appendix C.1.
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Chapter 3. The large charge expansion in U(1)-invariant CFTs

the Goldstone excitations corresponding to the pattern in eq. (3.5). When not implied
differently by additional symmetries, such as supersymmetry [102], additional degrees of
freedom are expected to be separated by a finite gap from the Goldstones and may be
integrated out. We can therefore effectively compute the path-integral (3.2) using a low
energy action for the Goldstones, whose most general form is largely constrained by the
nonlinear realization of the symmetry.

Let us consider for illustration the path-integral corresponding to the free-evolution in
Euclidean time of the ground state at fixed charges QI , corresponding to eq. (3.2) with
no insertions. Calling S[χ, π] the most general action for the Goldstones compatible with
the symmetry breaking pattern (3.5), and denoting χI the Goldstone fields associated to
the Cartan charges, the matrix element takes the form

〈 ~Q|e−HT | ~Q〉 =∫
dNχid

Nχf

∫ χf ,πf

χi,πi

DχDπ exp

{
−S[χ, π]− i

Ωd−1

∫ T/2

−T/2
dτ

∫
dΩd−1χ̇

IQI

}
, (3.6)

where Ωd−1 = 2πd/2

Γ(d/2) is the volume of the d− 1-dimensional sphere. As in the case of the
hydrogen atom, the last term in the action is a boundary term which fixes the charge
of the initial and final state, while the precise value of the boundary conditions for the
additional Goldstones πi is irrelevant in the T → ∞ limit, similarly to r and θ in the
hydrogen atom. For large QI , this integral can be computed by the saddle-point method.

Notice that the characterization of the leading trajectory in the path-integral in terms
of the symmetry breaking pattern in eq. (3.5), does not imply that the state | ~Q〉 truly
breaks the symmetry; indeed, it does not, as it is an eigenstate of both the Q̂I ’s and the
dilatation D. Nonetheless, the existence of such a semiclassical trajectory dominating the
path-integral justifies the description of the system in terms of a low energy action for
the Goldstone fields associated to the corresponding breaking pattern. As in the case
of the hydrogen atom, integration over the corresponding zero modes ensures charge
conservation in correlation functions. This situation is to be contrasted with symmetry
breaking in infinite volume systems, in which case the zero-modes are not normalizable
and the boundary conditions of the path-integral fix their value. We will provide further
insights on this point in the next section, when discussing the canonical quantization of
the U(1) conformal superfluid.

A final comment concerns the possibility that the leading trajectory in the path-integral
does not break the dilatation operator. As we mentioned at the beginning of chapter 1,
this situation is expectedly associated to a Fermi liquid phase, which involves fermionic
excitations and whose characterization in terms of Goldstone degrees of freedom is less
clear than for a superfluid phase. While certainly a viable and interesting option, we will
not consider this possibility in what follows.
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3.2. The spectrum of U(1)-invariant CFTs at large global charge

3.2 The spectrum of U(1)-invariant CFTs at large global
charge

We now specialize our analysis to the case of an internal symmetry group G = U(1).
Besides providing the simplest case in which our analysis applies, CFTs with U(1)

symmetry are of theoretical and phenomenological relevance. For instance, our analysis
will expectedly apply to the critical O(2) model in d = 3, which describes phase transitions
in many physical systems, such as the Curie point in easy-plane ferromagnets and
antiferromagnets, and the superfluid transition in liquid Helium [98, 103]. Another
example of theories for which we expect our claims to hold is provided by bosonic gauge
theories with Monopole operators [104], the U(1) symmetry being generated by the
associated topological charge.

3.2.1 The action and the semiclassical analysis

Under the assumption of a superfluid phase, the symmetry breaking pattern for the
leading trajectory in the path integral reads

SO(d+ 1, 1)× U(1) −→ SO(d)× D̄ , D̄ = D + µQ̂ , (3.7)

where Q̂ denotes the U(1) generator. The most general action nonlinearly realizing the
symmetry according to eq. (3.7) can be systematically constructed using the CCWZ
approach [26,27] for broken spacetime symmetries [64]. The latter in particular provides a
systematic way to obtain all the terms up to given order in the derivative expansion. We
detail this procedure in appendix B.2. Here we provide a more direct, but less systematic,
construction.

First, we remark that we work under the assumption that the theory is invariant under
Weyl rescaling of the metric gµν → Ω2(x)gµν . Therefore, we will construct the Goldstone
action demanding this property. In fact, this is necessary to map the theory to the
cylinder and all unitary CFTs are believed to be Weyl invariant (up to the anomaly) [105].
Notice that this is not trivial since, while Weyl invariance implies conformal symmetry,
the converse is not necessarily true without additional assumptions [106].

As for the case of broken boosts discussed in chapters 1 and 2, the pattern (3.7) may be
realized without introducing Goldstones for the broken translations and special conformal
transformation. It is enough to consider a single shift-invariant superfluid Goldstone
χ(x) = −iµτ +π(x), associated to the breaking of the U(1) symmetry, where the chemical
potential µ will be determined eventually by the charge Q. The leading order action may
be easily obtained specializing the Abelian superfluid action in eq. (1.18) to R× Sd−1
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and demanding Weyl invariance

S[χ] = −c1

∫
ddx
√
g(−∂µχ∂µχ)d + . . . , (3.8)

where gµν is the cylinder metric, c1 is a Wilson coefficient and we work in Euclidean
signature. We can also easily construct operators with more than one derivative acting on
χ. To this aim, it is useful to notice that the following modified metric ĝµν = gµν(∂χ)2,
where (∂χ) = (−∂µχ gµν∂νχ)1/2, is invariant under Weyl transformations. We can then
build invariant operators considering diffeomorphism invariant contractions of ∂µχ, ĝµν
and the covariant derivative ∇̂µ compatible with the modified metric. For instance, the
leading order Lagrangian reads just √gL = −c1

√
ĝ in this notation. Including terms

with up to two modified covariant derivatives ∇̂µ and calling R̂ρµσν the Riemann tensor
obtained from ĝµν , we find 2

S[χ] =−
∫
ddx
√
ĝ
{
c1 − c2R̂+ c3R̂µν∂µχ∂νχ+O

(
∇̂4
)}

=− c1

∫
ddx
√
g(∂χ)d

+ c2

∫
ddx
√
g(∂χ)d

{
R

(∂χ)2
+ (d− 1)(d− 2)

[∇µ(∂χ)]2

(∂χ)4

}
(3.9)

− c3

∫
ddx
√
g(∂χ)d

{
Rµν

∂µχ∂νχ

(∂χ)4
+ (d− 1)(d− 2)

[∂µχ∇µ(∂χ)]2

(∂χ)6

+(d− 2)∇µ
[
∂µχ∂νχ

(∂χ)2

] ∇ν(∂χ)

(∂χ)3

}
+O

(
(∂χ)d

∇4

(∂χ)4

)
,

where we expanded the action in terms of the standard covariant derivative ∇µ and
Riemann tensor Rρµσν deriving from cylinder metric gµν , discarding total derivatives.
To obtain the first line of eq. (3.9) we neglected terms which vanish on the equation of
motion of the leading order action3 (3.8) [28]. The ci’s are Wilson coefficients, whose
value is determined by the specific underlying CFT. The derivative expansion in the
action is controlled by these and the chemical potential µ = 〈(∂χ)〉. In the simplest
scenario, corresponding to an underlying strongly couple theory, the ci’s are given by
inverse powers of 4π’s according to generalized dimensional analysis [69, 70] and the
system becomes strongly coupled at energies E ∼ µ. Weakly coupled theories correspond
instead to non-generic sizes for the Wilson coefficients. For instance, the Wilson-Fisher
fixed points in the ε-expansion have ci ∼ 1/λ � 1, where λ ∼ ε is the perturbatively
small coupling of the theory. We will discuss these theories in more detail in part IV of
this thesis

Using this action, we can extract the scaling dimension of the lightest operator with fixed

2The term proportional to c3 here corrects the typos in eq.s (5.14) and (5.15) of [35].
3This is conveniently written as ∇̂µ∂µχ = 0.
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Q� 1 from the path-integral expression (3.6), which in this case reads:

〈Q|e−HT |Q〉 =

∫
Dχ exp

{
−
∫ T/2

−T/2
dτ

∫
dd−1x

√
g

[
L+ i

Q

Rd−1Ωd−1
χ̇

]}
, (3.10)

We can compute this path-integral semiclassically around the saddle-point solution

χ = −iµτ + π0 . (3.11)

Notice that on the solution the term proportional to c3 in the action (3.9) vanishes, since
R00 = 0 on R× Sd−1. Recalling that rotations on R× Sd−1 play a role analogous to that
of translations in flat space, one can check that the solution (3.11) realizes precisely the
symmetry breaking pattern in eq. (3.7) in terms of a single field,4 as anticipated. As in
eq. (II.7), π0 is an integration constant and the field is analytically continued away from
the real axis. The variation of the field at the boundary fixes the chemical potential µ in
terms of the charge Q as

Q

Rd−1Ωd−1
= J0 = i

∂L
∂χ̇

= c1dµ
d−1 − c2(d− 2)µd−3R+O

(
µd−5

)
, (3.12)

where we called Jµ the U(1) Noether current. Using R = (d− 1)(d− 2)/R2, this equation
can be solved perturbatively for large Q:

Rµ =

(
Q

c1dΩd−1

) 1
d−1

[
1 +

c2(d− 2)2

c1d

(
Q

c1dΩd−1

)− 2
d−1

+O
((

Q

c1dΩd−1

)− 4
d−1

)]
.

(3.13)
For Q� 1 we thus have µ ∝ Q 1

d−1 , with subleading corrections suppressed by powers of
Q−2/(d−1). 5 Computing the action on this solution, we find the energy of the state as

∆Q = α1Q
d
d−1 + α2Q

d−2
d−1 +O

(
Q

d−4
d−1

)
, (3.14)

where the αi’s are combination of the Wilson coefficients:

α1 =
c1(d− 1)Ωd−1

(c1dΩd−1)
d
d−1

, α2 =
c2(d− 1)(d− 2)Ωd−1

(c1dΩd−1)
d−2
d−1

. (3.15)

The scaling with Q of the leading term in eq. (3.14) could have been inferred on
dimensional grounds [34]. Indeed, for a scale invariant theory in the semiclassical regime
the charge density J0 and the energy density ε are expected to obey a local relation of

the form ε ∝ J
d
d−1

0 . Subleading terms are suppressed by the ratio of the cutoff and the
compactification scale (R−1/µ)2 ∼ Q− 2

d−1 ; this structure follows from the existence of an

4This is most easily realized noticing that eq. (3.11) reads χ = −iµ log |x|+ const. in flat space.
5Notice however that for c1 � 1, as it is expected in weakly coupled theories, the chemical potential

may be parametrically smaller than Q
1
d−1 .
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Chapter 3. The large charge expansion in U(1)-invariant CFTs

EFT description, in which curvature invariants appear analytically in the Lagrangian.

As in the case of the Hydrogen atom, we may further consider quantum corrections to eq.
(3.14). To this aim, we define χ(x) = −iµτ + π(x) and we expand the leading low energy
action (3.8) to quadratic order in the fluctuations:

S(2) ' d(d− 1)

2
c1µ

d−2

∫
ddx
√
g

[
π̇2 +

1

d− 1
(∂iπ)2 +O

(
∇4/µ2

)]
(3.16)

This action describes a phonon with speed of sound c2
s = dρ

dP = 1
d−1 , as it is mandated by

tracelesness of the energy momentum tensor (see the comments below eq. (1.19)). We
will study in detail the spectrum of fluctuations in the next section. For the purposes of
computing the energy of the lowest energy state, we just notice that the the one-loop
contribution to the energy is given by the fluctuation determinant arising from the
Gaussian integration of eq. (3.16):

T

R
δ∆

(1)
Q =

1

2
log det

[
−∂2

τ −
1

d− 1
∆(S(d−1)) +O

(
∇4/µ2

)]
(3.17)

=
T

R

[
β0 + β1Q

− 2
d−1 +O

(
Q−

4
d−1

)]
, (3.18)

where |gij |∇i∇j = ∆(S(d−1)) is the Laplacian on the d− 1-dimensional sphere. We wrote
the result in a large Q expansion in terms of dimensionless coefficients βi’s, whose specific
value depends on the number of dimensions d. Notice that β0 cannot depend on the ci’s,
because the sound-speed in eq. (3.16) is fixed by conformal invariance at leading order in
Q. Summing the quantum corrections to the classical result (3.14) we find

∆Q = Q
d
d−1

[
α1 + α2Q

− 2
d−1 + α3Q

− 4
d−1 + . . .

]
+Q0

[
β0 + β1Q

− 2
d−1 + . . .

]
. (3.19)

The contribution from the classical solution, associated to the coefficients αi, does not
contain any term scaling as Q0 for non-even d. This implies that, in odd spacetime
dimensions, the one-loop correction (3.17) cannot be renormalized by any local counterterm
and it is hence finite and calculable. In particular, the Q0 contribution takes the same
universal value for all three-dimensional U(1)-invariant CFTs whose large charge sector
is described by a superfluid phase. The explicit result in d = 3 reads

β0 = −0.0937255 , β1 = (c2 + c3)× 1.21666 , for d = 3. (3.20)

Details on the calculation are reported in appendix B.3.

Conversely, in d = 4 the β0 term in eq. (3.19) can be renormalized by the classical
contribution proportional to α3, and it is hence divergent. In this case, while the Q0 term
is not universally predicted by the EFT, upon renormalization one finds a logQ term
whose coefficient depends only on the divergent part of β0 and is hence calculable. This is
analogous to the logarithm of the sliding scale in standard perturbative calculations [107].
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3.2. The spectrum of U(1)-invariant CFTs at large global charge

In appendix B.3, we show that the final result reads:

∆Q|d=4 = α1Q
4
3 + α2Q

2
3 − 1

48
√

3
logQ+ α3

+
7π4/3(2c2 + c3)

144
√

3c
1/3
1

Q−
2
3 logQ+ α4Q

− 2
3 +O

(
Q−

4
3

)
.

(3.21)

We neglected logarithms in the estimate of the corrections.

3.2.2 Canonical quanization and the spectrum of phonons

In the previous sections we have seen how to project onto the desired state using the
Euclidean path-integral. As discussed in sec. 3.1, this viewpoint justifies the expectation
of a semiclassical description in terms of Goldstone degrees of freedom. Nonetheless, in
the following chapters we shall often find convenient an alternative, if almost equivalent,
approach, in which we simply assume the EFT description and then quantize its Hamil-
tonian, while always remaining in Lorentzian spacetime. It is thus instructive to work
out the quantization of the phonon field in this perspective. In the process, we will also
comment on the structure of the low energy spectrum.

Consider for simplicity the leading order Lagrangian in eq. (3.8) in Lorentzian signature

L/√g = c1(∂χ)d , (3.22)

where in real time t = −iτ we have (∂χ) = (∂µχ∂
µχ)1/2. The canonical momentum

coincides with the time component of the U(1) current Pχ = J0. Upon expanding
χ(x) = µt + π(x) =⇒ Pχ ' c1dµ

d−1 + c1d(d − 1)µd−2π̇, to leading order in the field
expansion we obtain the following decomposition for the field:

π(t, n̂) =
1√

c1d(d− 1)µ
d−2

2

∞∑
`=1

∑
m

[
e−iω`tY `

m(n̂)
a`m√

2ω`Rd−1
+ h.c.

]

+ x0 +
p0t

Ωd−1Rd−1c1d(d− 1)µd−2
,

(3.23)

where Y `
m(n̂) are the hyperspherical harmonics [108], with m collectively denoting their

labels. The mode operators satisfy the following algebra:

[a`m, a
†
`′m′ ] = δ` `′δmm′ , [x0, p0] = i . (3.24)
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The frequencies are given by

ω` =
1√
d− 1

J`

− (d− 2) [c2(d− 2) + c3]

c1d
√
d− 1

J`
µ2R2

+
(d− 2) [c2(d− 2) + c3]

c1d(d− 1)3/2

J3
`

µ2

+O
(
J5
`

µ4

)
,

(3.25)

where J2
` = `(`+d−2)/R2 are the eigenvalues of the Laplacian on the sphere. As already

remarked, to leading order the sound speed is fully fixed by conformal invariance, so
that ω` is independent of the Wilson coefficients. Eq. (3.25) holds for angular momenta
parametrically smaller than the EFT cutoff: ` . Rµ ∼ Q 1

d−1 .

As usual in QFT the vacuum state satisfies a`m |Q〉 = 0. The action of the zero-mode
on the vacuum is specified by the requirement that the state |Q〉 be an eigenstate of the
U(1) charge generator Q̂:

Q̂ |Q〉 = Rd−1

∫
dΩd−1Pχ |Q〉 = Q |Q〉 =⇒ p0 |Q〉 = 0 , (3.26)

where we used that Q̂ ' Q+ p0 from eq.s (3.13) and (3.23).

We may now use eq. (3.23) in the Hamiltonian. Restoring subleading terms in the
derivative expansion, we find the following result to leading order in fluctuations

RH = Rd
∫
dΩd−1 (Pχχ̇− L)

= ∆Q +
∂∆Q

∂Q
p0 +

∑
`,m

Rω` a
†
`ma`m + . . . , (3.27)

where ∆Q is given by eq. (3.19). Eq. (3.27) makes clear the structure of the spectrum.
The action of the zero-mode relates different charge sectors as eiqx0 |Q〉 = |Q+ q〉; 6

the presence of p0 in eq. (3.27) ensures that these states have the expected energy
∆Q+q = ∆Q + q∂∆Q/∂Q + . . . . The Fock space of the ` ≥ 1 modes instead describes
excited states with the same value of the U(1) charge, corresponding to operators with
scaling dimension given by

∆ = ∆Q +
∑
`

n`Rω` . (3.28)

The ` = 1 mode has ω1 = 1/R exactly and creates descendant states, as it can be checked
from an explicit computation of the Noether current associated with the generator of
translations. The ` ≥ 2 states correspond to additional charge Q primary states of the
theory; we shall refer to them as phonon primaries, in light of the superfluid picture.

6Notice that x0 is a periodic variable, hence only the action of operators eiqx0 with q ∈ Z is defined.
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It is instructive to compare the quantization of the theory on the cylinder with the usual
one at infinite volume. In that case, differently from eq. (3.23), the mode decomposition
of the field does not contain the zero-modes x0 and p0, which are not normalizable.
Similarly the broken charge Q̂ is not defined, since the integral of the current over volume
is now divergent, and eq. (3.26) cannot be satisfied. We remark again that at finite
volume, instead, the ground state is truly an eigenstate of the charge operator and no
symmetry breaking occurs, even if the symmetry group is realized non-linearly in the
effective Lagrangian (3.22). Correspondingly, no truly gapless state exists in theory.
Nonetheless, the symmetry guarantees that the gap of the phonon states does not grow
with the chemical potential; they are hence parametrically lighter than all the other
states which have been integrated out from the EFT. For this reason, we shall still refer,
somewhat improperly, to the mode interpolated by π as a Goldstone mode.

3.3 Correlation functions from EFT in U(1)-invariant CFTs

The CFT data defining a theory are not limited to the spectrum of scaling dimensions,
which fully fixes only the two-point functions of local operators, but they also include
the three-point couplings. It is then natural to ask what can be said about them using
the EFT description. In this section we address this question, showing how the previous
analysis may be applied in the evaluation of n-point functions on the cylinder. We
shall focus on insertions of light operators in between two large charge operators OQ,
corresponding to matrix elements of the form in eq. (3.2) on the cylinder [35].

3.3.1 Operator matching and three-point functions

Three-point function with an insertion of the Noether current

The simplest observable one can compute is given by the three-point function with an
insertion of the Noether current Jµ. Though this is fully fixed by the Ward identities
(see the discussion above eq. (B.13) in appendix B.1), it is instructive to see how we can
evaluate it using the EFT. As already noticed, from the Lagrangian (3.9) we can express
the current operator in terms of the Goldstone field as

Jµ = i
∂L
∂∂µχ

= i c1d ∂µχ(∂χ)d−2 + i c2(d− 2)R∂µχ(∂χ)d−4 + . . .

=
Q

Rd−1Ωd−1
δ0
µ + i c1d(d− 1)µd−2π̇ δ0

µ + i c1dµ
d−2∂iπ δ

i
µ + . . . ,

(3.29)

where, working in Euclidean signature, we expanded the expression to linear order in
fluctuations. Following [35], the correlator of interest corresponds to the expectation
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value of the current for the theory quantized on the cylinder:

〈Q, τout|Jµ(τ, n̂)|Q, τin〉 = e−∆Q(τout−τin)/R Q

Rd−1Ωd−1
δ0
µ . (3.30)

This result is exact, since the charge Q is not renormalized. We can also map it to
the plane using eq. (B.21). Recalling |Q〉 = OQ(0) |0〉 and that the current has scaling
dimensions ∆J = d− 1, we obtain

〈O−Q(xout)Jµ(x)OQ(xin)〉 xin→0
=

xout→∞

Q

Ωd−1

xµ

xdx
2∆Q

out

, (3.31)

where we denoted with O−Q(xout) the Hermitian conjugate of OQ in the Minkowskian
continuation, which differs by they usual CFT definition, reviewed in appendix B.1, by
the absence of the Jacobian factors associated with the inversion. Eq. (3.31) agrees with
eq. (B.13) of the appendix in the same limit.

Three-point function with a scalar insertion

A more interesting application concerns correlators with the insertion of light scalars with
small U(1) charge q. More precisely, suppose that in the CFT under consideration there
exists a scalar primary operator with scaling dimension δ � ∆Q and charge q � Q. We
can reconstruct this operator in the EFT by matching its quantum numbers in terms
of the Goldstone field. Demanding U(1) charge q and Weyl weight δ we immediately
find O(δ)

q (x) ∝ eiqχ(∂χ)δ at leading order. Higher orders in the derivative expansion are
obtained multiplying this expression by Weyl invariant operators constructed with the
procedure explained above eq. (3.9). Overall, we find

O(δ)
q = C

(1)
δ,q (∂χ)δeiqχ − C(2)

δ,q (∂χ)δ−2 [R+ . . .] eiqχ + . . . , (3.32)

where the dots stand for both the terms which are needed to complete R/(∂χ)2 in a Weyl
invariant tensor and for other terms which are second order in derivatives, but whose
contribution vanishes on the background solution (3.11). As in the Lagrangian (3.9), C(1)

δ,q

and C(2)
δ,q are Q-independent Wilson coefficients whose value is not predicted by the EFT.

We can use the expression (3.32) to compute the three-point function with a scalar
insertion, 〈O−Q−q(xout)O(δ)

q (xc)OQ(xin)〉, which on the cylinder corresponds to

〈Q+ q, τout|O(δ)
q (τc, n̂c)|Q, τin〉 =

λ
(δ)
(Q+q),q,Q

Rδ
e−∆Q+q(τout−τc)/R−∆Q(τc−τin)/R . (3.33)

On the right hand side we wrote the general structure for the matrix element, which
depends on a single dimensionless OPE coefficient λ(δ)

(Q+q),q,Q.

We now proceed to show how to recover the structure (3.33) and determine the corre-
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sponding OPE coefficient in the EFT. To this aim, consider the Euclidean path-integral
corresponding to eq. (3.33):

〈Q+ q, τout|O(δ)
q (τc, n̂c)|Q, τin〉 =

∫
Dχ

[
C

(1)
δ,q (∂χ)δ + . . .

]
exp {−Smod[χ]} , (3.34)

where we included the eiqχ contribution from the operator insertion in the definition of
the following modified action

Smod[χ] = S[χ] + i
Q+ q

Ωd−1

∫
dΩd−1χf − iqχ(τc, n̂c)− i

Q

Ωd−1

∫
dΩd−1χi . (3.35)

To compute the path-integral in a saddle-point approximation, we look for a solution of
the equations of motion deriving from Smod:

∇µJµ(x) = q
δ(τ − τc)δd−1(n̂− n̂c)√

g
, (3.36)

where the current is given in eq. (3.29) and in the limit τin/out → ∓∞ the boundary
conditions read

Jµ(x)
τ→−∞−−−−→ δµ0

Q

Rd−1Ωd−1
, Jµ(x)

τ→+∞−−−−→ δµ0
Q+ q

Rd−1Ωd−1
. (3.37)

Physically, we can think of equation (3.36) as a non-linear version of the electrostatic
Gauss-law (where the current is not an exact form), the scalar operator acting as a
point-like source with charge q, slightly deforming the path-integral [99]. For sufficiently
small q, we may solve this equation expanding the field around the solution in eq. (3.11).
To leading order the solution is unmodified, χ = −iµτ , and we find

〈Q+ q, τout|O(δ)
q (τc, n̂c)|Q, τin〉 = C

(1)
δ,q µ

δe−∆Q(τout−τin)−qµ(τout−τc) . (3.38)

Eq. (3.38) can be seen to agree with the structure (3.33) using

Rµ =
∂∆Q

∂Q
≈ ∆Q+1 −∆Q . (3.39)

Furthermore, using (3.13) we find that the EFT structure predicts the following scaling
law for the OPE coefficient:

λ
(δ)
(Q+q),q,Q ∝ Q

δ
d−1 . (3.40)

We can also easily extend the analysis to the next order by expanding the solution in
fluctuations π(x) = χ(x) + iµτ − π0. We provide the details in appendix B.4.1. One finds
that the first correction in the small field expansion is proportional to q/Q

d−2
d−1 . Similarly

to the discussion below eq. (3.19), this scale coincides with some integer power of the one
controlling the derivative expansion, given by Q−

2
d−1 , only in even dimensions. Therefore,
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as in sec. 3.2.1, it is convenient to discuss the cases d = 3 and d = 4 separately.

Consider first d = 3. In this case, the first subleading correction to eq. (3.40) cannot be
renormalized by the operator-dependent coefficients of the matching (3.32). It is hence
finite and calculable. Absorbing all the anyway unknown constants in a new Wilson
parameter η(1)

(δ,q), the OPE coefficient reads

λ
(δ)
(Q+q),q,Q

∣∣∣
d=3

= Qδ/2
[
η

(1)
(δ,q)

(
1 + 0.10102× q2

√
c1Q

)
+O

(
Q−1

)]
. (3.41)

The second term in round brackets provides the first correction to the leading order result,
and it is entirely fixed in terms the same parameter c1 controlling the scaling dimension
∆Q at leading order (see eq.s (3.14) and (3.15)). 7 This arises from the first non-trivial
correction to the saddle-point solution. Notice that eq. (3.41) holds also for q = 0, in
which case the 1/

√
Q correction vanishes.

This situation is to be contrasted with d = 4, in which case the corrections arising from
the modification of the profile (3.11) are renormalized from the first subleading term in
the operator matching in (3.32), proportional to C(2)

(δ,q). Accordingly, in appendix B.4.1
we show that this correction is divergent. As in eq. (3.21), upon renormalization this
implies that there exists a calculable logarithmic correction which is independent of C(2)

(δ,q).
The final result reads

λ
(δ)
(Q+q),q,Q

∣∣∣
d=4

= Qδ/3

[
η

(1)
(δ,q)

(
1− q2Q−2/3

24
√

3π2/3c
1/3
1

logQ

)
+ η

(2)
(δ,q)Q

−2/3 +O
(
Q−4/3

)]
,

(3.42)
where η(2)

(δ,q) is an independent Wilson coefficient. As before, the logarithmic term in round
brackets is independent of the specific operator under consideration.

Three-point function with a spinning operator insertion

Correlation functions involving an insertion of an operator in a spin ` traceless-symmetric
representation can be evaluated similarly. Here we provide some details. A spin ` primary,
with scaling dimension δ and charge q, can be matched in the low energy EFT as

O(δ)
q µ1...µ`

= C
(1)
δ,`,qΠ

ν1...ν`
µ1...µ`

∂ν1χ∂ν2χ . . . ∂ν`χ(∂χ)δ−`eiχq + . . . , (3.43)

where Πν1...ν`
µ1...µ`

is the projector onto traceless symmetric tensors and again C
(1)
δ,`,q is a

coefficient which depends on the underlying theory and operator. Analogously to eq.
(3.38), we then find the three-point function to leading order as:

〈Q+ q, τout|O(δ)
q µ1...µ`

(τc, n̂c)|Q, τin〉 ∝ µδδ0
µ1
. . . δ0

µ`
e−∆Q(τout−τin)−qµ(τout−τc) . (3.44)

7This contribution was not considered in previous analysis of the same three-point function [35, 109].
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When mapped to flat space this results is in agreement with the general structure for
a conformal correlator (B.7). Including subleading correction as before, the EFT then
predicts the following scaling law for the OPE coefficient:

λ
(δ,`)
(Q+q),q,Q ∝


Qδ/2

[
1 + 0.10102× q2

√
c1Q

+O
(
Q−1

)]
d = 3 ,

Qδ/3
[
1− q2

24
√

3π2/3c1/3
Q−2/3 logQ+ η

(2)
(δ,q)Q

−2/3 +O
(
Q−4/3

)]
d = 4 .

(3.45)

3.3.2 Four-point functions

Here we finally discuss four-point functions, focusing on their operator product expansion
(OPE) decomposition. 8 This will allow for the calculation of the OPE coefficients of
light operators in between the ground state at fixed charge and its phonon excitations,
whose spectrum we discussed in sec. 3.2.2.

Four-point function with two insertions of the Noether current

Let us consider the four-point function with two insertions of the time component of the
Noether current, aka the charge density. Using the expression (3.29), on the cylinder this
corresponds to the following matrix element:

GJ0,J0 = 〈Q, τout|J0(τ2, n̂2)J0(τ1, n̂1)|Q, τin〉

= e−∆Q(τout−τin)/R

(
Q

Rd−1Ωd−1

)2 [
1− (d− 1)2

µ2
〈π̇2π̇1〉+ . . .

]
,

(3.46)

where πi ≡ π(τi, n̂i). The propagator for the Goldstone field may be computed from the
action (3.16) and it can be written as a sum over the phonon modes: 9

〈π(τ, n̂2)π(0, n̂1)〉 =
(Rd−1Ωd−1)−1

c1d(d− 1)µd−2

[
−1

2
|τ |+

∞∑
`=1

2`+ d− 2

d− 2

e−ω`|τ |

2ω`
C

( d2−1)
` (n̂2 · n̂1)

]
.

(3.47)

In this expression C( d2−1)
` (x) stand for the Gegenbauer polynomials, which reduce to the

usual Legendre polynomials in d = 3. For future reference, we report their expression for
` = 0 and ` = 1:

C
( d2−1)
0 (x) = 1 , C

( d2−1)
1 (x) = (d− 2)x . (3.48)

8We review the OPE in appendix B.1 and we derive the conformal block decomposition for a four-point
function in appendix B.4.2.

9More precisely, the propagator is defined up to the addition of an arbitrary constant, since the
action of the zero mode on the vacuum is not defined (see the footnote 6); in practice, this constant
always cancels in calculations and we neglected it for simplicity in eq. (3.47). One may indeed check
that a careful treatment of the zero mode, e.g. using the decomposition (3.23) in canonical formalism,
reproduces all the results that we will discuss in the following.
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We can now use the propagator in eq. (3.46) to get:

GJ0,J0 = e−∆Q(τout−τin)/R

(
Q

Rd−1Ωd−1

)2 [
1 +

(d− 1)2

2∆Q(d− 2)
e−|τ2−τ1|/RC

( d2−1)
1 (n̂2 · n̂1)

+
∞∑
`=2

Rω`(d− 1)(2`+ d− 2)

2c1d(d− 2)(Rµ)dΩd−1
e−ω`|τ2−τ1|C

( d2−1)
` (n̂2 · n̂1) +O

(
1

(Rµ)d+2

)]
,

(3.49)

where we used eq. (3.13) and we separated the ` = 1 term from the rest of the sum for
reasons which shall become clear in a moment.

The EFT reliably predicts the correlator (3.46) when the two insertions are separated by a
distance larger than the inverse EFT cutoff µ−1. In this regime, we may match our result
with the decomposition of the four-point function obtained using the s-channel OPE
J0 ×OQ ∼

∑
∆,`O

(∆,`)
Q . We provide details on the derivation of this decomposition in

appendix B.4.2. This is written as a sum of the three-point function coefficients squared
multiplied by the conformal blocks gOQ,J0

∆,` (τ, n̂2 · n̂1). The form of the conformal blocks
is fixed by conformal invariance in terms of the quantum numbers under the conformal
group of the primary operators O(∆,`)

Q , O(δ)
q and OQ. Crucially, in appendix B.4.2 we also

show that the conformal blocks admit a simple expansion when the scaling dimension
∆ of the exchanged operator is much larger than the difference ∆−∆Q. This property,
first noticed in [109], allows to easily match the four-point function (3.46) with such a
decomposition. We find

GJ0J0 = e−∆Q(τout−τin)/RR−2(d−1)

(
Q

Ωd−1

)2

g
OQ,J0

∆Q,0
(τ2 − τ1, n̂2 · n̂1)

+ e−∆Q(τout−τin)/RR−2(d−1)
∞∑
`=2

[
λ

[`]
Q,J0,Q

]2
g
OQ,J0

∆Q,`,`
(τ2 − τ1, n̂2 · n̂1) + . . . .

(3.50)

In the first line we singled out the contribution associated to the exchange of the operator
OQ itself, whose OPE coefficient was computed in eq. (3.30). The associated conformal
block reads

g
OQ,J0

∆Q,0
(τ, x) = 1 + e−τ/R

(d− 1)2

2∆Q
x+O

(
∆−2
Q

)
, (3.51)

where the first (trivial) term is the contribution from the primary state, the second
term is suppressed by 1/∆Q ∼ Q−

d
d−1 and corresponds to the contribution from the first

descendant and similarly higher level descendants are suppressed by additional powers

of ∆−1
Q . Using C( d2−1)

1 (n̂2 · n̂1) = (d− 2)n̂2 · n̂1, we indeed recognize the contribution of
the conformal block (3.51) in the first two terms of the parenthesis of the EFT result
(3.49). The second line of eq. (3.50) corresponds instead to the exchange of the charge Q
phonon primary states discussed in sec. 3.2.2, as it may be seen from the expression of
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the conformal block:

g
OQ,J0

∆Q,`,`
(τ, x) = e−(∆Q,`−∆Q)τ/RC

( d2−1)
` (x) +O

(
∆Q,` −∆Q

∆Q

)
, ∆Q,` = ∆Q +Rω` .

(3.52)
By matching this expression with the EFT result (3.49) we may also compute the OPE
coefficient for the current J0 in between a single phonon primary with ` ≥ 2 and OQ as:

[
λ

[`]
Q,J0,Q

]2
=

(
Q

Ωd−1

) d−2
d−1 Rω`(d− 1)(2`+ d− 2)

2(d− 2)Ωd−1(c1d)−
1
d−1

[
1 +O

(
`2

Q
2
d−1

)]
. (3.53)

Remarkably, since Rω` = J`/
√
d− 1 to leading order, this expression is fully determined

in terms of the same coefficient c1 controlling the scaling dimension ∆Q. Notice that the
modes with angular momentum ` & Rµ ∼ Q 1

d−1 describe correlations at lengths shorter
than the cutoff and therefore their OPE coefficients cannot be computed within the EFT.

Four-point function with two scalar insertions

We conclude this chapter with a last example, the four-point function with two insertions
of a scalar operator:

F δ,δq,−q = 〈Q, τout|O(δ)
−q(τ2, n̂2)O(δ)

q (τ1, n̂1)|Q, τin〉 , τ2 > τ1 , (3.54)

where
[
O(δ)
−q(τ, n̂)

]†
= O(δ)

q (−τ, n̂). Using the expression (3.32) for the scalar operator,
we may write this as:

F δ,δq,−q = e−∆Q(τout−τin)/Re−µq(τ2−τ1)R−2δ
∣∣∣λ(δ)

(Q+q),q,Q

∣∣∣2 [1 + q2〈π2π1〉+ . . .
]
, (3.55)

where the OPE coefficient for the correlator 〈O−Q−qO(δ)
q OQ〉 was computed before in

eq. (3.38). 10 We may use the propagator (3.47) to write the second term in square
parenthesis as

q2〈π2π1〉 =− q2

2

∂2∆Q

∂Q2

|τ2 − τ1|
R

+
q2

2∆Q

(
∂∆Q

∂Q

)2

e−|τ2−τ1|/R n̂2 · n̂1

+ q2
∞∑
`=2

(2`+ d− 2)[d(d− 1)Rω`]
−1

2c1(d− 2)(Rµ)d−2Ωd−1
e−ω`|τ2−τ1|C

( d2−1)
` (n̂2 · n̂1) .

(3.56)

Proceeding as in the previous section, eq. (3.55) can be matched to the s-channel
conformal block decomposition, obtained considering the OPE O(δ)

q ×OQ ∼
∑

∆,`O
(∆,`)
Q+q ,

10We included the corrections from subleading terms and contractions of fields at the same point, which
provide the subleading contributions to the OPE coefficient discussed before.
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in terms of the exchange of the operator OQ+q and the charge Q+ q phonon primaries:

F δ,δq,−q = e−∆Q(τout−τin)/RR−2δ
∣∣∣λ(δ)

(Q+q),q,Q

∣∣∣2 gOQ,O(δ)
q

∆Q+q ,`
(τ, n̂2 · n̂1)

+ e−∆Q(τout−τin)/RR−2δ
∞∑
`=2

∣∣∣λ[`],(δ)
(Q+q),q,Q

∣∣∣2 gOQ,O(δ)
q

∆Q+q,`,`
(τ, n̂2 · n̂1) + . . . .

(3.57)

The exchange of the operator OQ+q provides the leading contribution to (3.55), as it can
be seen comparing (3.55) with the expression of the corresponding conformal block

g
OQ,O

(δ)
q

∆Q,`
(τ, n̂2 · n̂1) = e−(∆Q+q−∆Q)τ/R

[
1 +

(∆Q+q −∆Q + δ)2

2∆Q+q
e−τ/Rn̂2 · n̂1 + . . .

]
' e−(∆Q+q−∆Q)τ/R

[
1 +

q2

2∆Q

(
∂∆Q

∂Q

)2

e−τ/Rn̂2 · n̂1 +O
(
Q−1

)]
,

(3.58)

and using eq. (3.39) together with ∆Q+q − ∆Q ≈ q
∂∆Q

∂Q . The contributions from the
` = 0 and ` = 1 modes in eq. (3.56) precisely match the first subleading contribution in
eq. (3.58), arising from the expansion of the exponential in a Taylor series around q = 0

and from the second term in parenthesis. Indeed, one can check that the sum of all the
higher order corrections corresponding to additional exchanges of the zero-mode sum to
give the exponential exp

[
−q ∂∆Q

∂Q τ/R
]
. Finally, as in eq. (3.49), the second line of (3.56)

is matched to the exchange of charge Q+ q phonon primary states, whose corresponding
conformal block is just given by

g
OQ,O

(δ)
q

∆Q+q,`,`
(τ, x) = e−(∆Q+q,`−∆Q)τ/RC

( d2−1)
` (x)+O

(
Q−

d−2
d−1

)
, ∆Q+q,` = ∆Q+q+Rω` .

(3.59)
The EFT then predicts the OPE coefficient λ[`],(δ)

(Q+q),q,Q for the matrix element of O(δ)
q in

between the ground state and a charge Q+ q spin ` excited phonon primary as∣∣∣∣∣∣
λ

[`],(δ)
(Q+q),q,Q

λ
(δ)
(Q+q),q,Q

∣∣∣∣∣∣
2

= Q−
d−2
d−1 × q2/(Rω`)(2`+ d− 2)

2(d− 2)(d− 1)(c1dΩd−1)
1
d−1

[
1 +O

(
Q−

1
d−1

)]
. (3.60)

We provide a detailed analysis of the four-point function (3.54) to subleading orders
in the appendix B.4.3, where we compute the first correction to (3.60), as well as the
OPE coefficient for a scalar insertion in between the ground state and the operator
corresponding to the creation of two phonons. It is clearly straightforward to generalize
this analysis to other correlators. For instance, one finds the following scaling law for the
OPE coefficient of O(δ)

q in between the ground state and a state with k phonons:∣∣∣λ[k−phonons](δ)
(Q+q),q,Q

∣∣∣2 ∝ ∣∣∣λ(δ)
(Q+q),q,Q

∣∣∣2 × q2kQ−k
d−2
d−1 ∝ q2kQ

2δ−k(d−2)
d−1 . (3.61)
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4 The large charge expansion in CFTs:
general symmetry groups

In the previous chapter we have studied the large charge expansion for CFTs invariant
under a U(1) internal symmetry. However, many theories of interest possess larger
internal symmetry groups. Relevant examples in three dimensions include the critical
O(N) models [103], the multifield SO(N) × SO(M) Landau-Ginzburg models [110]
and the projective CPN−1 models [111] (which enjoy SU(N) symmetry [98]); another
interesting example is provided by the Banks-Zaks fixed points for four-dimensional gauge
theories [112]. We expect the large charge sector of these theories to admit an effective
semiclassical description. The analysis of the large charge expansion for CFTs invariant
under general symmetry groups is the topic of this chapter.

With respect to the case of a U(1) symmetry, some structural novelties are expected to
emerge for non-Abelian symmetry groups. In this case, as explained in part I of this
thesis, the spontaneous breakdown of symmetries generically implies the existence of
both gapless and gapped modes in the spectrum of the superfluid phase. The natural
framework to describe this state of affairs is the non-relativistic EFT (NREFT) presented
in chapter 2, which allows for a systematic description of all the Goldstone modes at
long spatial wavelengths. Interestingly, the specialization of the NREFT to the cylinder
poses some questions on its interpretation. On the one hand, states made purely of
gapless modes may be analyzed as in the previous chapter; on the other hand, for gapped
Goldstones things are generically made more involved by the mixing with states made of
lighter modes, but outside the validity of the NREFT. As argued in [35], this generically
implies that the spectrum of the lowest dimension operators at fixed charge for a rank N
group coincides with the one for a U(1)N symmetry. We review these considerations in
sec. 4.1.

A notable exception to the above discussion occurs when the quantum numbers of the
gapped Goldstones ensure the absence of such mixings for certain states. 1 This is expected

1Here we are implicitly neglecting the possibility that light modes with the same quantum numbers of
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to happen in the specific but physically interesting case of the three-dimensional O(N)

models, which we discuss in sec. 4.2. There, certain states made of gapped Goldstone
quanta may be associated with the lowest dimension operators in mixed symmetric
representations of the internal group. Correspondingly, they cannot mix with states made
of modes outside the validity of the NREFT and we can compute their scaling dimensions.
These predictions might be verified in the near future by Monte-Carlo simulations.

Irrespectively of the presence of mixings for the gapped Goldstone states, we expect
the NREFT to provide non-trivial information on CFTs invariant under non-Abelian
symmetry groups. Indeed, these mixings correspond to the decay and annihilation of the
gapped Goldstone states in the infinite volume limit. Therefore the NREFT approach
should allow the description of the resulting inclusive features, encoded in the spectral
distribution of certain correlators. Relatedly, the NREFT allows to match operators
transforming in non-trivial representations of the internal symmetry group in terms of
Goldstone fields, in a certain kinematic regime. We will begin the exploration of these
ideas in sec. 4.3, focusing on correlators of the non-Abelian current in a generic theory
with SU(2) symmetry.

For the sake of simplicity, in this chapter we shall only consider CFTs in three dimensions,
the generalization of our results to arbitrary spacetime dimensions being straightforward.
Furthermore, in order to apply the NREFT construction of chapter 2, it will be convenient
to work in Lorentzian signature for the cylinder time coordinate.

4.1 Operators with lowest dimensions at large charge

4.1.1 The case of a fully broken group

Let us discuss how to generalize the results of the previous chapter for the lightest
operators at fixed charge. Consider first the example of a CFT with an internal non-
Abelian SU(2) symmetry group. In this case, the leading semiclassical trajectory for the
path-integral in between two charged states is expected to induce the following symmetry
breaking pattern:

SO(4, 1)× SU(2) −→ SO(3)× D̄ , D̄ = D + µQ̂3 . (4.1)

The corresponding Goldstone excitations are given by a gapless and a gapped mode, with
mass µ. These can be described by the NREFT presented in chapter 2, whose Lagrangian
can be found specializing that construction to the cylinder and imposing Weyl invariance.
We shall construct the action explicitly in sec. 4.2. For the moment, we content ourselves
with noticing that the gapped mode does not play any role in the determination of the
spectrum of light operators. Formally, this follows from the considerations in sec. 2.3,

the gapped Goldstones exist, in which case the corresponding states would generically mix with them.
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where we also showed that the NREFT reduces to a standard Abelian superfluid in the
zero gapped Goldstone sector. As a consequence, the results in sec. 3.2 immediately apply
to SU(2)-invariant CFTs as well. In particular, the superfluid ground state corresponds
to the component of maximal eigenvalue for the Q̂3 generator of a 2Q3 + 1-dimensional
SU(2) representation. The EFT then predicts the scaling dimension of the corresponding
operator in a large charge expansion as

∆Q3 = α1Q
3/2
3 + α2Q

1/2
3 − 0.0937256 + α3Q

−1/2
3 +O

(
Q−1

)
. (4.2)

Similarly, the lightest excitations on the ground state are given by the phonon states,
whose spectrum we described in sec. 3.2.2.

As already remarked, the EFT for the gapless mode only describe the lowest energy
highest weight states in a given SU(2) representation. What about the other states in the
same SU(2) multiplet? We shall see in the next section that, upon quantization, the zero
mode of the gapped Goldstone is proportional to the charges Q̂±. Therefore it cannot
mix with states outside the NREFT and it allows to reconstruct all the (2Q3 + 1) states
of the multiplet. The creation and annihilation operators of the ` ≥ 1 modes instead
commute with all the SU(2) generators, and therefore describe gapped states in the same
representation of the superfluid ground state. These are generically expected to mix with
other states outside the NREFT.

These considerations admit an immediate generalization to higher rank groups. Con-
sider for instance a CFT invariant under an SU(3) internal symmetry, with generators
Q̂1, . . . , Q̂8. 2 The lowest energy state at fixed values Q3 and Q8 of the Cartan generators
will generically be given by the highest weight state of a certain SU(3) multiplet. Ac-
cording to the discussion in sec. 3.1, we expect this state to be in a superfluid phase for
which the cylinder Hamiltonian Hcyl = D/R and the Cartan generators Q̂3 and Q̂8 are
classically broken; the unbroken time translations are generated by a linear combination
of the form

D̄ = D + µ3Q̂3 + µ8Q̂8 . (4.3)

For generic values of the charges, and hence of the chemical potentials µ3/8, the modified
Hamiltonian (4.3) does not commute with any of the other generators of the internal
group, which, therefore, must be fully broken. For the same reason, the Goldstone modes
associated with these generators are gapped for generic values of the charges and do not
contribute to the spectrum of low energy states. Thus, in the zero-gapped Goldstone
sector the EFT reduces to the one of a U(1)2 superfluid and it is formulated in terms of
two shift-invariant Goldstone fields χ3/8 = µ3/8t+ π3/8. At leading order, the action is
given by

S =

∫
d3x
√
g(∂χ3)3/2(∂χ8)3/2P (X,Y ) , (4.4)

2In the fundamental representations these are given by the Gell-Mann matrices: Q̂a = λa/2 [60].
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where P is an arbitrary function and, following [35], we defined

X =
∂µχ3∂

µχ8

(∂χ3)(∂χ8)
, Y =

(∂χ8)

(∂χ3)
. (4.5)

The function P and all its derivatives are smooth for generic values of the charges; singular
points are expectedly associated with phases in which the symmetry is, at least partially,
restored and the EFT description breaks down. Higher order terms can be constructed
similarly to eq. (3.9) noticing that any combination of the form gµν(∂χ3/8)2F (X,Y ) is
Weyl invariant, where F is an arbitrary function.

We may study the consequences of the EFT (4.4) for the CFT spectrum as in section 3.2.
First notice that the charges on the classical solution are given by

Q3

4πR2
=

3

2
µ2Y

1
2P

(
1− 2

3
Y
PY
P

)
,

Q8

4πR2
=

3

2
µ2Y −

1
2P

(
1 +

2

3
Y
PY
P

)
, (4.6)

where µ2 = µ3µ8, and the subscripts on P denote differentiation with respect to the
corresponding argument. All quantities are evaluated on the background solution with
X = 1, Y = µ8/µ3. At a generic point in the space of the charges we have µ3 ∼ µ8 ∼√
Q3 ∼

√
Q8. The EFT then generically describes highest weight states corresponding

to a vertex of a hexagonal shaped representation in the (Q3, Q8) plane [60]. However,
depending on the form of the function P , the semiclassical description (4.4) might apply
as well when one of the two charges vanishes [35]. In particular, a state with Q3 = 0

corresponds to a vertex of a triangle shaped representation, obtained from the generic
hexagonal one contracting two edges to a point. 3 Due to the nonlinear relation (4.6)
between the charges and the chemical potential, we generically expect µ3 ∼ µ8 � 1/R

in this case as well. Finally, as in the SU(2) case, quantizing the full NREFT the zero
mode of the gapped Goldstones allows to match the non-Abelian charges as well, and
therefore to explicitly reconstruct the full structure of the representation from the single
highest weight state we are considering here.

Calling Q =
√
Q3Q8, from the energy momentum tensor we find that the classical energy

of the ground state takes the following form:

∆Q3,Q8 = α1 (r)Q3/2 + α2 (r)Q1/2 + . . . , r ≡ Q8/Q3 , (4.7)

With respect to eq. (3.19), now the αi’s are function of the ratio of the charges Q8/Q3.
Furthermore, by expanding the Lagrangian (4.4) we find

S(2) '
∫
d3x
√
g

{
N+

2

[
(π̇+)2 − 1

2
(∂iπ+)2

]
+
N−
2

[
(π̇+)2 − c2

−(∂iπ+)2
]}

, (4.8)

3This is because Q̂1 and Q̂2 commute with Q̂8, hence a pair of ladder operators acts trivially on all
states of a triangle shaped representation.

80



4.1. Operators with lowest dimensions at large charge

where fluctuations are parametrized as

π+ =
1

2

(
π3

µ3
+
π8

µ8

)
− 1

3
Y
PY
P

(
π3

µ3
− π8

µ8

)
, π− =

1

2

(
π3

µ3
− π8

µ8

)
, (4.9)

and we defined

N+ = 6µ3P , N− = −3µ3P + 4Y µ3PY + 4Y 2µ3PY Y −
8

3
Y 2µ3P

2
Y

P
,

c2
− =

µ3

N−

(
3P − 4PX −

4

3
Y 2P

2
Y

P

)
. (4.10)

From eq. (4.4) we see that the speed of sound of π+ is fully determined by Weyl invariance,
c+ = 1/

√
2; the main novelty with respect to the case of a rank one group is the presence

of an additional mode, whose sound speed is not fixed by conformal invariance only.
Stability and subluminality of small fluctuations require N± > 0 and 0 < c2

− ≤ 1, imposing
constraints on the function P .

The Casimir energy of the fluctuations provide a Q0 correction to eq. (4.7), fully analogous
to eq. (3.17), whose value depends on the speed of sound c− of the second mode as
well. By straightforwardly generalizing the calculation in appendix B.3, the result for the
ground state energy reads

∆Q3,Q8 = α1 (r)Q3/2 +α2 (r)Q1/2−
(

1 +
√

2c−

)
×0.0937256+α3 (r)Q−1/2 +O

(
Q−1

)
.

(4.11)
Notice that subluminality implies that the coefficient β0 of the Q0 term lies in the
range −0.0937256×

(
1 +
√

2
)
≤ β0 ≤ −0.0937256.

Finally, the spectrum of phonon excitations is given by the Fock space of the two modes:

∆ = ∆Q3,Q8 +
∑
`

n+
` Rω

+
` +

∑
`

n−` Rω
−
` ,

ω+
` =

1√
2
J` +O

(
J3
` /µ

2
)
, ω−` = c−J` +O

(
J3
` /µ

2
)
. (4.12)

As before, the operators of eq. (4.12) have the same charge of the ground state and the
` = 1 mode of π+ corresponds to the creation of a descendant state.

For a CFT invariant under a non-Abelian group G of rank N the situation will be
similar. In the simplest case, a large charge state will be associated with a superfluid
phase in which G is fully broken. Correspondingly, the only gapless mode will be the
Goldstones associated with the Cartan generators. In this case certain quantities, such
as the dimensions of the lightest operators at fixed charge, will be independent of the
specific choice of the group and will coincide with the ones for the U(1)N case.

Finally we remark that, while gapped Goldstones generically do not provide informations
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Chapter 4. The large charge expansion in CFTs: general symmetry groups

concerning the spectrum of lightest operators at fixed charge, 4 they play an important
role in the matching of operators in the IR onto expressions in terms of the Goldstone
fields. We shall illustrate this point in sec. 4.3, focusing on the non-Abelian current for a
theory with SU(2) symmetry.

4.1.2 The case of a partially unbroken group

Though the situation described in the previous section is the simplest one, it might
happen that, given a specific CFT, the lowest energy state for certain values of the Cartan
charges is not in a superfluid state. For instance, such state might be inhomogeneous
and carry non-zero angular momentum. In general, this does not imply that the CFT
does not admit a superfluid phase, but rather that such phase describes the theory for a
smaller (measure zero) subset of all the possible values of the charges. In the case of an
internal SU(3) symmetry, a non-generic scenario of this kind might be realized in two
qualitatively different ways, which we illustrate below.

Consider first the case in which the conformal superfluid describes only states with Q8 = 0.
For this situation to be different from the one we discussed before the generator Q̂8 must
be unbroken, with the modified time translations generated by D̄ = D + µQ̂3. Since Q̂3

does not commute with any of the other generators of SU(3), there is a single gapless
mode and the analysis proceeds as in the case of a U(1)-invariant CFT. In particular
the phonon spectrum describes only the lightest operators with Q8 = 0, corresponding
to a hexagonal shaped representation in the (Q3, Q8) plane. The lowest energy states
charged under Q8 (and which are not in the same representations of the phonon states)
are expected to have a gap of order µ with respect to the ground state, but the precise
value of their energy or spin cannot be determined within the EFT. 5 A similar scenario
is expected to be realized in the CP 2 projective model [89] (see also [90] for a similar
analysis of the CPN models with N ≥ 3).

A qualitatively different case might occur when the homogeneous superfluid describes
only states with Q3 = 0, corresponding to the vertex of a triangle shaped representation
in the plane of the Cartan charges. For this situation to be distinguished from the ones
discussed before, Q̂3 must be unbroken and the modified Hamiltonian reads D̄ = D+µQ̂8.
However, this information is not enough to fully specify the symmetry breaking pattern.
Indeed, the generators Q̂1 and Q̂2 commute with Q̂8 and their fate depends on the specific
theory under consideration. If they are unbroken, this situation is analogous to the
one described above for Q8 = 0. More interestingly, if Q̂1 and Q̂2 are broken, the EFT

4Because of this, some works [78,89,90] (mistakenly) referred to the breaking of the generators not
commuting with the modified Hamiltonian as explicit, rather than spontaneous.

5Naively, one might conclude that these coincide with the non-zero modes of the gapped Goldstones,
which are charged under the unbroken Q̂8; however, as already remarked, without further assumptions
these generically mix with other charged states not included in the NREFT and we cannot determine the
precise properties of the true eigenstates of the Hamiltonian in the effective theory.
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spectrum contains two additional light Goldstone modes. In this case, the zero-gapped
Goldstone sector of the EFT is described by the three Goldstone fields parametrizing the
coset U8(1) × SU(2)/U3(1), in obvious notation. As before one finds that the ground
state energy is given in a large Q8 expansion, ∆Q8 ∝ Q

3/2
8 , but now the spectrum of

light excitations includes two additional gapless modes with frequency ω` ∝ J`. The
corresponding states are charged under Q3 and describe (highest weight)6 states with
charges Q8 � Q3 > 0, corresponding to the vertices of hexagonal shaped representations
in which two edges are much shorter than the other four.

4.2 Charged operators in the critical O(N) models

The three-dimensional O(N) models, arguably, provide the simplest example of strongly
interacting fixed points in quantum field theory [103]. They have been thoroughly
studied in the literature and detailed informations on the spectrum of low dimension
operators are known from many sources, including the ε-expansion [113], Monte-Carlo
simulations [114, 115] and the conformal bootstrap [116, 117]. Recently, some refinements
of the Monte-Carlo algorithms for lattice simulations paved the way for the study of
charged operators [118,119], which are usually harder to access by other means. In the
near future these developments might allow for extensive comparisons with the predictions
of the large charge expansion. This motivates a detailed investigation of these models.

The simplest observable which can be accessed by numerical simulations is the scaling
dimensions of the lightest operator at fixed values for the charges. While in the O(2)

and O(3) models this is expected to obey a scaling law of the form (3.19), the additional
charges for N ≥ 4 allow for a richer variety of behaviors, depending on whether the
internal group is fully broken or not in the superfluid phase.

In [78] it was observed that all the homogeneous finite density classical configurations
in the linear weakly coupled O(N)-models preserve a subgroup O(N − 2). We indeed
analyzed the O(3) model in sec. 1.2.2 and we found that the superfluid state leaves
unbroken the subgroup O(1) ' Z2. Since the linear sigma models describe the Wilson-
Fisher fixed points in the ε-expansion, it is natural to expect the large charge sector of the
related 3d CFT to undergo the same symmetry breaking pattern. In this scenario, gapped
Goldstones are charged under the unbroken group; therefore, the lowest energy states
carrying non-trivial charge under the unbroken group correspond to their excitations and
cannot mix with states made of degrees of freedom not included in the NREFT. For
instance, the unbroken Z2 in the linear triplet analyzed in sec. 2.1 ensured the stability
of the single gapped Goldstone state. As in that case, the energy of these states must,
therefore, be calculable in a large charge expansion within the NREFT.

6As we will see in the next section for gapped Goldstones, only the ` ≥ 1 modes interpolate independent
highest wight states, while the ` = 0 ones correspond to the action of the broken charges Q̂1/2.
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In this section, we construct the NREFT which describes these models and show how to
obtain predictions for the spectrum of the theory. As a byproduct of our analysis, we will
also elucidate some general properties of the gapped Goldstone states at finite volume.

4.2.1 Constructing the action

Consider a linear sigma model for a scalar field φA, A = 1, . . . , N , with potential V (φAφA),
such as the one described in sec. 1.2.2 for N = 3. As well known from celestial mechanics,
every homogeneous classical solution of the equations of motion is constrained to move in
the plane of the RN field space specified by the two vectors giving the initial conditions:
φA(t = 0) and φ̇A(t = 0). As a consequence, all homogeneous finite density solutions of
the equations of motion are obtained considering rotations of the following configuration:

~φ =


v cosµt

v sinµt

0
...
0

 , (4.13)

where v depends on µ through the potential. For N = 3 this solution reduces to eq.
(1.25). Calling T̂AB the generator exchanging the A and B components of the field, such
solution is at finite density for the charge associated with T̂12, all other Noether charges
being zero. The subgroup O(N − 2) rotating the last components of the field is clearly
preserved by eq. (4.13). More general configurations of the charges necessarily require an
inhomogeneous field solution.

Qualitatively, we expect the strongly interacting O(N) models to have properties similar
to the ones of the linear sigma models. Therefore, from the solution (4.13), we assume
that the large charge sector of the O(N) 3d CFTs undergoes the following symmetry
breaking pattern:

SO(4, 1)×O(N) −→ SO(3)× D̄ ×O(N − 2) , D̄ = D + µ T̂12 . (4.14)

In particular, introducing internal indices I, J = 3, . . . , N , the broken internal generators
are given by the set {T̂12, T̂1I , T̂2I}, while the unbroken ones are given by the {T̂IJ}. It is
also convenient to relabel the broken generators as

Q̂3 ≡ T̂12 , Q̂I1 = T̂2I , Q̂I2 = −T̂1I . (4.15)

It is easily verified that, for each I, {Q̂I1, Q̂I2, Q̂3} form an SU(2) subalgebra. 7 This
implies that the spectrum of the theory contains a gapless Goldstone associated to the

7In our conventions, the algebra reads
[
T̂AB , T̂CD

]
= i
(
T̂ACδBD − T̂ADδBC − T̂BCδAD + T̂BDδAC

)
.
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breaking of Q̂3 and N − 2 gapped ones, with gap µ, one for each pair {Q̂I1, Q̂I2}.

To build the NREFT, we proceed as in section 2.2. Namely we introduce a coset
representative for O(N)/O(N − 2) in terms of a real field and N − 2 complex ones:

Ω = eiχQ̂3eiαI
Q̂I+
2

+iα∗I
Q̂I−
2 = eiπI

Q̂I+
2

+iπ∗I
Q̂I−
2 eiχQ̂3 , χ = µt+ π , (4.16)

where Q̂I± ≡ Q̂I1 ± iQ̂I2 and, analogously to eq.s (2.8) and (2.9), we have introduced two
different parametrizations for the Goldstone fields, related as αI = e−iχπI . The NREFT
describes soft fields in the second parametrization: ∂π � µπ, ∂πI � µπI . Notice that,
in both parametrizations, the gapped Goldstone fields transform in the fundamental
representation of the unbroken O(N − 2) group, while χ is neutral under the latter.
However, the action of T̂12 differs in the two parametrizations: in the first it simply
provides a shift of χ, χ→ χ+ α, while in the second it further acts as πI → eiαπI . To
build invariants under O(N) we consider the Maurer-Cartan one form

Ω−1∂µΩ = i

(
DµχQ̂3 +DµαI

Q̂I+
2

+Dµα
∗
I

Q̂I−
2

+AIJµ
T̂IJ
2

)
, (4.17)

where Dµχ and DµαI are given by eq.s (2.26) for N = 3 and in general they can be easily
computed in a small field expansion:

Dµχ = ∂µχ+
i

4
(π∗I∂µπI − c.c.) +O

(
|πI |4

)
, (4.18)

DµαI = ∂µαI + i(∂µχ)αI + . . . = e−iχ
[
∂µπI +O

(
|πI |2πI

)]
. (4.19)

The expression for the connection AIJµ will not be needed for what follows. To build
invariants under the full group we need to construct O(N − 2)-invariant contractions
of the covariant derivatives Dµχ and DµαI . These transform, respectively, as a singlet
and as a vector under the unbroken group. Furthermore, from eq. (4.19) we see that,
on a configuration such that ∂πI � µπI , DµαI is fastly oscillating with frequency ∼ µ.
According to the discussion below (2.26), this implies the existence of an emergent U(1)π
symmetry in the NREFT, acting as

πI → eiαπI , (4.20)

which corresponds to the the particle number conservation for the gapped Goldstones.

It is finally straightforward to build the NREFT. Let us define the following quantities

nµ =
Dµχ

Dχ
, Pµν = nµnν − gµν , (4.21)

which project, respectively, onto the direction of the superfluid velocity and orthogonally
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to it. Then, to leading order in derivatives, the action reads

S =

∫
d3x
√
g(Dχ)

{
c1(Dχ)2 + c1,2n

µnνDµα
∗
IDναI + c1,3Dµα

∗
IP

µνDναI + . . .
}
.

(4.22)
The action is manifestly Weyl invariant. Higher order terms may be constructed similarly
to eq. (3.9). As already remarked in the introduction to this chapter, we work in
Lorentzian signature. Indeed, the NREFT describes the gapped Goldstone fields αI only
for frequencies |ω − µ| � µ, a condition which clearly cannot be satisfied for Euclidean
values, iω ∈ R. 8 We shall discuss in the next section the precise meaning of this gap for
the theory quantized on the cylinder.

4.2.2 The spectrum

The ground state of the theory (4.22) describes a highest weight state with non-zero
charge T12 = Q for the T̂12 generator and its energy ∆Q reads as in eq. (3.14). The
quantization of the field π proceeds as in sec. 3.2.2 and its mode expansions in terms of
phonons reads as in eq. (3.23). To quantize the gapped Goldstone field, we consider the
expansion of the action (4.22) to quadratic order in πI and leading order in derivatives:

S ' 3

2
c1µ

2

∫
d3x
√
g

[
iπ∗I π̇I −

c1,3

6c1µ
|∂iπI |2

]
, (4.23)

from which we immediately infer the mode expansion

πI(t, n̂) =

√
2

3c1

1

µ

∞∑
`=0

∑̀
m=−`

Y `
m(n̂)e−iε`tbI;`m , [bI;`m, b

†
J ;`′m′ ] = δIJδ``′δmm′ ; (4.24)

here the frequency is given by

ε` =
cm
2µ
J2
` +O

(
J4
`

µ3

)
, cm ≡

c1,3

3c1
. (4.25)

The modes b†I,`m, besides transforming as vectors under O(N − 2), are negatively charged
under the action of T̂12. To linear order in the field expansion, the Noether charges
associated to the generators Q̂I± coincide with the zero mode of the Gapped Goldstones:

Q̂I+ = i
√

2QbI,0 , Q̂I− = −i
√

2Qb†I,0 . (4.26)

Therefore, these zero modes correspond to the other states in the O(N)-multiplet of the
ground state. As a consequence, their energy coincides, non-perturbatively, with that of

8In direct space, this implies that we consider configurations πI ∼ e−iµt and π∗I ∼ eiµt; in Euclidean
time t = −iτ this means that we can describe only field configurations analytically continued away from
the original contour πIπ∗I ∈ R of the Euclidean path-integral.
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the ground state ∆Q. Notice that the form of the generators (4.26) receives correction
at non-linear orders and it is exact only in the strict Q → ∞ limit. These corrections
become important when considering the matrix elements of states in the multiplet with
charge T12 � Q. For instance, the exact quantization of the action (4.22) should make
manifest that, upon acting Q-times with Q̂I−, we eventually get a lowest weight state,
and that by acting again with Q̂I− we annihilate it.

When considering the subspace of the Hilbert space with fixed value of the charge
associated with T̂12, the zero-mode of the gapped Goldstone, being negatively charged
under T̂12, can be thought of as having a gap ∆Q −∆Q−1 ≈ Rµ+O

(
µ−1

)
with respect

to the lowest energy state with T12 = Q − 1. The locality of the NREFT implies the
existence of the ` ≥ 1 modes as well in the decomposition of the gapped Goldstone (4.24),
these also having a gap ∆Q −∆Q−1 ≈ Rµ with respect to the lowest energy state with
T12 = Q− 1. These states are not part of the same multiplet of the ground state. In a
generic theory we would expect them to mix with other states not included in the NREFT,
in which case the detailed structure of the spectrum is not calculable. Nonetheless, since
these mixings correspond to decay and annihilation processes in the infinite volume limit,
the NREFT should be able to encode certain inclusive features of the latter via complex
Wilson coefficients. In the next section we will make this remark concrete studying an
observable which is calculable within the NREFT. However, for the present case of the
O(N) models, we can (partially) overcome these complications by identifying a subclass
of states for which these mixings are absent, in which case we can directly compute
their energy.

To see this, let us first recall that the O(N) representations are labeled by the maximal
allowed values for the Cartan generators T̂12, T̂34, . . .. The superfluid ground state has
charge T12 = Q � 1 and vanishing value for all the other generators, corresponding
to the highest weight state in a traceless symmetric representation. We may easily
construct highest weight states corresponding to different representations acting with the
operators b†I,`m, ` ≥ 1, on the vacuum |Q〉. For instance, acting on it with the combination
(b†3,`m + ib†4,`m) we obtain a highest weight state with non-vanishing charges given by
T12 = Q− 1 and T34 = 1, spin ` and energy

∆ = ∆Q +Rε` , (4.27)

where ∆Q = α1Q
3/2 +α2Q

1/2− 0.0937256 + . . .. In the weakly coupled description of the
O(N) models, such as at large N or in the ε-expansion, there is a single non-Goldstone
degree of freedom in the superfluid phase, a neutral and heavy radial mode, which clearly
cannot mix with states charged under the unbroken O(N − 2) subgroup. Assuming
that a similar property holds for arbitrary values of N in the three dimensional O(N)

model, namely that the the only modes charged under the unbroken group are the gapped
Goldstones, we conclude that the non-trivial quantum numbers of the single gapped
Goldstone state ensure the absence of mixings with states not included in the NREFT.
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This observation is crucial for our analysis and it is equivalent to the absence of decay
channels for the gapped Goldstone in the infinite volume limit. Correspondingly ε` is real
to all orders and eq. (4.27) is a reliable prediction for the CFT spectrum. In particular,
eq. (4.27) implies that the lowest energy state in the corresponding mixed symmetric
representation has spin ` = 1. This result is reminiscent of the known fact that, in the
ε-expansion, the lowest dimension operator in a mixed symmetric representation of O(N)

has unit spin.

To generalize the discussion, let us define n = maxT34 + maxT56 + . . . for every irre-
ducible representation of O(N). The lowest energy states transforming in an irreducible
representation labeled by n correspond to states made of n gapped Goldstones, whose
properties may be reliably computed within the NREFT by the same considerations
above. In particular, the minimal energy state is given by n modes with ` = 1. The
energy and the other quantum numbers of the associated CFT primary operator are

maxT12 = Q− n , maxT34 + maxT56 + . . . = n ,

∆ = ∆Q + n
2cm

3α1
√
Q

+O
(

n√
Q
× n

Q

)
, ` ⊂ 1⊗ 1 . . .⊗ 1︸ ︷︷ ︸

n−times

, (4.28)

where we schematically stressed that the spin should be contained in the decomposition
of the product of n spin one states, properly symmetrized when it contains identical
modes. Corrections are estimated considering the effect of the first non linear term in the
expansion of eq. (4.22) and imply that eq. (4.28) is applicable only for n� Q. Notice
that, to this order, such state is generically degenerate. Eq. (4.28) is the main result of
this section.

We remark that there exist also states made of k ≥ 2 gapped Goldstones which, for
instance, transform in the same O(N) representation of the ground state. Differently
from the case in which the number of modes k coincides with n = maxT34 +maxT56 + . . .,
these may mix with states outside the NREFT and we cannot make a prediction similar
to eq. (4.28) for them.

This observation is particularly relevant for the O(3) model, where only one Cartan
generator is present. In this case the unbroken group is discrete, given by Z2, and
only states made of a single gapped Goldstone particle do not mix with other modes
outside the NREFT. These states correspond to the lowest dimension operators in a
2Q+ 1-dimensional representation which is odd under the internal Z2. Their energy is
given by eq. (4.27). States made out of two or more gapped modes transform either in
the same representation of the ground state or that of the single gapped Goldstone, and
therefore may mix with modes outside of the control of the NREFT. For example, we saw
in chapter 2 that a state made of two gapped Goldstones may annihilate, in the infinite
volume limit, into a pair of gapless phonons.
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Eq. (4.28) may be straightforwardly applied to the O(4) model, in which case representa-
tions are labeled by the two Cartan generators, maxT12 = Q− n and maxT34 = n, as(
Q
2 − n,

Q
2

)
. Previous analysis of these operators in the O(4) models appeared in [79,120]

and in [119]. However, these works failed in identifying the most general EFT describing
the system; furthermore, the relation between the gapped Goldstone modes and the oper-
ators of interest was not appreciated in these previous studies. Therefore, we believe that
our treatment clarifies and supersedes these previous analyses. We conclude mentioning
that numerical simulations might soon verify (or perhaps disprove) the prediction (4.28)
for n = 1 in the O(4) model [121].

4.3 CFT data from a gapped Goldstone resonance

In this section we finally address the effects of the mixing between the gapped Goldstones
and states outside the NREFT for the large charge expansion in CFTs invariant under
non-Abelian symmetry groups. We shall illustrate our ideas focusing on a generic CFT
with SU(2) symmetry, leaving a more general investigation for future work.

Let us first present the issue we are confronted with. Consider for concreteness the
action (4.22) for N = 3, in which case a single gapped Goldstone field π1 exists. We
have seen in chapter 2 that the decay and annihilation of the gapped Goldstone force
its action to be complex; for instance, in general, when there is no unbroken Z2, the
coefficient cm in eq. (4.25) has an imaginary part, which we interpreted as a decay
rate–see eq. (2.38). However, such a simple interpretation is not possible for the theory
quantized on the cylinder. To appreciate this, we recall that a decay process may be
understood as the mixing between a discrete eigenstate of an approximate free Hamiltonian
and the states in the continuum part of the energy spectrum of the theory [122]; this
leads to an exponentially decreasing amplitude for the free propagation of the state:
〈π1|e−iHt|π1〉 ∼ e−iEte−

Γ
2
t. Instead, the spectrum of the theory quantized at finite

volume is discrete and, by the quantum-mechanical superposition principle, the mixing
cannot lead to the aforementioned exponential behaviour. In other words, the absorbitive
effects which we expect in the NREFT do not seem to be compatible with the discreteness
of the spectrum of the CFT.

In this respect, the following observation plays a crucial role. The spectrum of the CFT,
while certainly discrete, becomes increasingly dense when considering states whose energy
is much larger than that of the ground state at fixed charge. Therefore, observables that
do not resolve the typical spacing between energy levels should behave similarly to infinite
volume quantities and we expect them to be calculable within the NREFT.

In the following we present the basic ideas that allow making this remark concrete
reviewing the treatment of [123], where the authors considered the mixing between
the Higgs and the discrete Kaluza-Klein graviton modes in theories with large extra
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dimensions. Inspired by that, we will then study a specific observable in CFT: the
four-point function with two insertions of the non-Abelian current on the ground state.

4.3.1 Invitation: discrete versus continuum in theories with large extra
dimensions

Suppose the full spacetime is given by Rd−1,1 × Tδ, where Tδ is a δ-dimensional torus of
radius R and volume Vδ = (2πR)δ. Let us parametrize coordinates as (xµ, ya), where xµ

are the Minkowski coordinates and ~y parametrizes the position on Tδ. The basic idea
of [123] can be illustrated considering a toy model consisting of a massive scalar h, living
on a brane at ya = 0, interacting with a d+ δ-dimensional field H. We shall refer to h as
the “Higgs”. The quadratic action is given by

S =

∫
ddxdδy

1

2
(∂H)2 +

∫
ddx

[
1

2
(∂h)2 − m2

h

2
h2 −m2−δ/2

mix hH(x, y = 0)

]
, (4.29)

where mh is the mass of h and mmix parametrizes the mixing between the Higgs and H on
the brane. We assume large extra dimensions, R� m−1

h , and small mixing m2
mix � m2

h.

We would like to study the physical effects of the mixing between the field h and the
d + δ-dimensional field H. To this aim, let us decompose the field into Kaluza-Klein
modes:

H(x, y) =
∑
~n

ei~n·~y/R√
Vδ

H(~n)(x) , (4.30)

where the sum runs over all ~n ∈ Zδ. Then the action (4.29) becomes

S =

∫
ddx

[
−1

2

∑
~n

H(−~n)
(
∂µ∂

µ +m2
n

)
H(~n)

+
1

2
(∂h)2 − m2

h

2
h2 − m

2−δ/2
mix√
Vδ

h
∑
~n

H(~n)(x)

]
,

(4.31)

where m2
n = ~n 2/R2. Eq. (4.31) coincides with the action describing the mixing between

the Higgs field and the graviscalar Kaluza-Klein modes discussed in [124].

In light of the mixing term, a Higgs state, defined as the state created by the action
of the field h(x) on the vacuum, is a linear combination of the true mass eigenstates
of the theory. Working for notational simplicity in the rest frame p = (mh, 0) with a
nonrelativistic normalization, we can write

|h〉 =
∑
a

Ua |a〉 (4.32)

where Ua and ma are the mixing angles and the eigenmasses. Their value determines
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the physical evolution of the Higgs state. For instance, the spatial integral of the Higgs
propagator measures the transition amplitude from |h〉 to |h〉 in time t:

A(t) = 〈h, t|h, 0〉 = 2mh

∫
dd−1x〈h(~x, t)h(~0, 0)〉 =

∑
a

|Ua|2e−ima|t|. (4.33)

It is convenient to consider the Fourier transform of the amplitude for ω ' mh:

Â(ω) =

∫ ∞
−∞

dt eiωtA(t) '
∑
a

i|Ua|2
ω −ma + iε

. (4.34)

In practice, due to the large number of Kaluza-Klein levels, to compute the precise values
of the Ua’s and the ma’s is a hard task. Furthermore, some of the eigenmasses ma will
be very close to mh and perturbation theory does not apply for them. These technical
difficulties are concretely appreciated formally extracting the Higgs propagator from the
action (4.31) and using it to compute (4.34):

Â(ω) ' i

ω −mh + 1
2mh

Σ(ω2) + iε
, (4.35)

where we used that the sum is dominated by states with ma ' mh in the limit of small
mixing, Σ(p2) is obtained from the resummation of infinite insertions of the mixing terms
and it has poles at each value of ~n 2/R2:

Σ(p2) = −m
4−δ
mix

Vδ

∑
~n

1

p2 − ~n 2/R2 + iε
. (4.36)

Clearly this is a badly behaved function on the real axis. Fortunately, as we argue below,
its detailed structure is not needed to determine the amplitude A(t) for sufficiently short
times, such that we do not resolve the individual oscillations in eq. (4.33).

The crucial technical remark is the following. While the sum in eq. (4.36) has a highly
singular behaviour on the real axis, it may be approximated by a regular function in the
complex plane as long as Im[p2]� 1/np, where np = dn/dp2 ∼ pδ−2Vδ is the density of
Kaluza-Klein states with mass m2 = p2. Indeed, in this case we expect the effects of the
individual poles to average out and produce a smooth behaviour. Concretely, this means
that replacing the infinitesimal ε with a finite ε̄� 1/np in eq. (4.36) we can approximate
the sum with an integral as follows:

∑
~n

1

p2 − ~n 2/R2 + iε̄
=

∫
dδn

1

p2 − ~n 2/R2 + iε̄
+O

(
1

ε̄

)
= Rδ

∫
dδq⊥

1

p2 − q2
⊥ + iε̄

[
1 +O

(
1

npε̄

)]
.

(4.37)
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In the limit Vδ →∞, we can always choose ε̄ much bigger than 1/np ∼ 1/Vδ and much
smaller than any other laboratory energy or inverse time. With this choice, we can
compute the imaginary part of Σ treating ε̄ as infinitesimal

Im
[
Σ(p2 + iε̄)

]
' π

2

Ωδ−1

(2π)δ
m4−δ
mixp

δ−2 . (4.38)

Rescaling ε̄→ ε̄ mh and defining n′ω = dn/dω|p=0 ∼ ωδ−1Vδ, we find that Â(ω+ iε̄) takes
the following form

Â(ω + iε̄) ' i

ω + iε̄−mh − iΓh
2

[
1 +O

(
1

ε̄n′ω

)]
, (4.39)

where we defined the width for the Higgs as

Γh =
1

mh
Im
[
Σ(m2

h + iε̄)
]
' π

2

Ωδ−1

(2π)δ
m4−δ
mix

m3−δ
h

. (4.40)

Notice that the width is well defined in the infinite volume limit. We assume mmix � mh

so that the width can be treated as a perturbative correction to the mass for δ ≤ 3,
Γh � mh. 9 To appreciate the physical significance of this formula, notice that we can
compute the inverse transform of eq. (4.34) integrating on a contour with Im [ω] = ε̄.
This gives

A(t) =

∫ ∞
−∞

dω Â (ω + iε̄) e−i(ω+iε̄)t ' e−imht−
Γh
2
t

[
1 +O

(
eε̄t

ε̄n′mh

)]
, (4.41)

where we used (4.39) to compute the right hand side. As we anticipated, for sufficiently
short times, t � 1/ε̄ � n′mh , the various oscillations in eq. (4.33) sum up to give an
exponential decay ∼ e−Γht/2. Intuitively, this means that the Higgs excite the single-
particle modes of the higher-dimensional fields, which escape in the large extra-dimension
and come back only after a large time ∆t ∼ n′mh ∼ mδ−1

h Vδ. Notice that to actually
observe this decaying behaviour we need n′−1

mh
� Γh, so that we can choose ε̄ small enough.

We also remark that we can think of the limit of large extra dimensions as that of an
heavy Higgs, mh = 1/rh � R−1, where rh is the Compton wavelength of h.

It is useful to present a complementary viewpoint. Physically, in the limit of large
extra dimensions the spectrum of the theory becomes increasingly dense and it can
be approximated by a continuum; therefore, for an experimental apparatus which is
not able to resolve the single modes, the mixing between the physical Higgs and the
quasi-continuum of Kaluza-Klein modes effectively results in a width for the Higgs. We
can make this remark concrete modeling the detector with a Lorentzian function with

9Notice that this is a natural condition since mmix is the only parameter breaking the shift symmetry
of H (or, more precisely, of its zero mode H(~n=0)).
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center ω0 and width L:

f (L)
ω0

(ω) =
L/π

(ω − ω0)2 + L2
= f (L)

ω (ω0) . (4.42)

The width L provides the resolution of the experiment. A physical measurement corre-
sponds to the convolution of eq. (4.42) with the amplitude in Fourier space:

Âmes(ω0) =

∫ ∞
−∞

dω f (L)
ω0

(ω)Â(ω) . (4.43)

Expressing Â(ω) as a sum via eq. (4.34) and using the identity∫ ∞
−∞

dω f (L)
ω0

(ω)
i

ω −m+ iε
=

i

ω0 −m+ iL
, (4.44)

we conclude that the outcome of the measurement (4.43) coincides with the Fourier
amplitude evaluated at Im[ω] = L > 0:

Âmes(ω0) = Â(ω0 + iL) . (4.45)

In particular, if the resolution of the physical apparatus is much larger than the level
separation L� 1/n′mh , we can use the continuum approximation discussed before and
the result of the measurement coincides with eq. (4.39).

4.3.2 Correlators of the non-Abelian current in SU(2)-invariant CFTs

Consider a CFT invariant under an internal SU(2) group. The most general NREFT
describing its large charge sector is given by eq. (4.22) for N = 3. The gapped Goldstone
allows to match in the NREFT operators transforming in non-trivial representations of
the internal group. Notably, from the action (4.22) we may compute the Noether currents
for the internal generators. The Noether current for Q̂3 = T̂12 reads exactly as in the U(1)

case (3.29) to linear order in fluctuations. Its long distance correlators are determined by
exchanges of the gapless Goldstone only and the same results of sec. 3.3 hold in this case
as well. More interestingly, we can compute the currents for the non-Abelian generators
Q̂± = T̂23 ± iT̂31. Focusing on the time components as in sec. 2.3, to leading order in
fields and derivatives these are proportional to the gapped Goldstone field:

J0
+(t, n̂) ' −3ic1µ

2π1(t, n̂) , J0
−(t, n̂) ' 3ic1µ

2π∗1(t, n̂) . (4.46)

In this section we will analyze the four-point function with two insertions of these currents.
In the NREFT this corresponds to the two-point function in the superfluid background:

GJ+J−(t, n̂2 · n̂1) ≡ 〈Q|T
{
J0

+(t, n̂2)J0
−(0, n̂1)

}
|Q〉 . (4.47)

93
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As we explained in sec. 2.3, the correlator (4.47) has a non-trivial long-distance limit,
corresponding to the exchange of a single gapped Goldstone mode. Since this is in general
a resonant mode, we expect the NREFT to provide predictions only for sufficiently short
times, analogously to eq. (4.41).

Before presenting the NREFT result, it is useful to analyze the OPE decomposition of
the correlator (4.47). This will allow us quantitatively identifying the regime for which
the NREFT predictions will apply.

The s-channel conformal block expansion for the correlator (4.47) in Lorentzian time
reads:

GJ+J−(t, n̂2 · n̂1) = θ(t)

 Q

8π2R4
+

∞∑
`=1

∑
φ

(`)
A

∣∣∣λ(`)
A,J−,Q

∣∣∣2 e−i(∆A−∆Q)tP`(n̂2 · n̂1)


+ θ(−t)

∞∑
`=1

∑
φ̄

(`)
A

∣∣∣λ(`)

Ā,J+,Q

∣∣∣2 ei(∆̄A−∆Q)tP`(n̂2 · n̂1) + . . . ,

(4.48)

where P`(x) = C
(1/2)
` (x) are the Legendre polynomials. Here we used the leading order

expression (3.52) for the conformal blocks and separated the sum over exchanged operators
according to their spin. The contribution which is constant in space is fixed by the internal
symmetry; indeed, using Q̂+ |Q〉 = 0, the SU(2) algebra implies

〈Q|Q̂+ Q̂−|Q〉 = 〈Q|[Q̂+, Q̂−]|Q〉 = 2Q , Q̂± = R2

∫
dΩ J0

± . (4.49)

From the point of view of the OPE J0
− × OQ, this corresponds to the exchange of the

component with Q3 = Q− 1 of the operator OQ. The sum in the first line of eq. (4.48)
runs over the operators φ’s contained in the OPE OQ×J0

−, which have charge Q3 = Q−1;
in the second line we sum over the operators φ̄’s included in the OPE OQ × J+, which
instead have Q3 = Q+ 1. This implies that the scaling dimensions of the operators φ̄’s
satisfy ∆̄A ≥ ∆Q+1 ≈ ∆Q +Rµ.

For times t� 1/(Rµ), at which we expect to have an EFT description, we can neglect
fastly oscillating terms. Since ∆̄A − ∆Q & Rµ for all the operators contained in the
OPE OQ × J+, we can neglect the second line in eq. (4.48). The only non-trivial
contribution then comes from the exchange of primaries φ(`)

A ⊂ J0
− × OQ with energy

∆A ≈ ∆Q ≈ ∆Q−1 +Rµ, corresponding to (highest weight) gapped states from the point
of view of the subspace of the Hilbert space at fixed Q3 = Q− 1. This can also be seen
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considering the Fourier components of eq. (4.48) (neglecting the second line):

G̃
(`)
J+J−

(ω) =

∫ ∞
−∞

dt eiωt
∫ 1

0
dxP`(x)GJ+J−(t, x)

=
i

2`+ 1

∑
φ

(`)
A

∣∣∣λ(`)
A,J−,Q

∣∣∣2
ω − (∆A −∆Q)/R+ iε

(4.50)

For ω2 � µ2, eq. (4.50) has poles on the real axis determined by states with energy ∆A

such that |∆A −∆Q| � Rµ.

Eq. (4.50) is analogous to the Higgs propagator (4.39) in the previous example. As in
that case, we expect the effects of the individual poles to average out for sufficiently large
Im[ω]. In other words, we expect that replacing ε with a finite ε̄ in eq. (4.50) we can
approximate the sum with an integral over a continuous spectrum:

G̃
(`)
J+J−

(ω + iε̄) =
i

2`+ 1

∫ ∞
∆Q−1

d∆
ρ
reg (`)
J−,Q

(∆)

ω − (∆−∆Q)/R+ iε̄

1 +O

 1

ε̄ n
(`)
∆Q

 , (4.51)

where n(`)
∆ is the density of states with energy ∆ and spin ` exchanged by the J− ×OQ

OPE, whose precise value we shall discuss later, and ρreg (`)
J−,Q

(∆) is a suitable continuous
approximation of the spectral density

ρ
reg (`)
J−,Q

(∆) ≈ ρ(`)
J−,Q

(∆) =
∑
φ

(`)
A

∣∣∣λ(`)
A,J−,Q

∣∣∣2 δ (∆−∆A) . (4.52)

The approximate equality ≈ here means that the two expressions behave similarly as
distributions, i.e. when integrated against a sufficiently smooth function f(∆) they
produce the same result up to corrections of order 1/n

(`)
∆Q

. Eq. (4.51) behaves as if it
had a branch cut on the real axis, corresponding to an approximate continuum of states.
Henceforth, for ε̄� 1/n

(`)
∆Q

, the correlator (4.50) can be treated as a standard two-point
function for a theory at infinite volume, and we expect the NREFT construction of
chapter 2 to capture its behaviour. In particular, the mixing of the gapped Goldstone
with states in the approximate continuum outside the NREFT implies the existence of a
width for it.

The accuracy of the continuum approximation ρ(`)
J−,Q

(∆) → ρ
reg (`)
J−,Q

(∆) depends on the
spacing between the energy levels of the exchanged states in the correlator and the
regularity of the OPE coefficient as a function of the scaling dimension ∆A. In this
respect, we expect the existence of two extreme situations, corresponding to the case of a
weakly coupled CFT and of a strongly coupled one.

In a weakly coupled theory, to leading order in the coupling generically the gapped
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Goldstone mixes only with two-particle states, as it happens in the deformation of the
linear sigma model discussed in appendix A.2.2. Let us suppose that the gapped Goldstone
mixes only with states made by two identical particles with gap much smaller than the
cutoff, m � Rµ; for instance this would be the case in a theory in which the gapped
Goldstone can decay into a pair of massless Goldstones, but the discussion applies also in
the presence of a finite gap m = cRµ with c < 1. Recalling the rule for the tensor product
of two identical SU(2) representations `1⊗ `2 = |`1 − `2|⊕ (|`1 − `2|+ 2)⊕ . . .⊕ (`1 + `2),
one easily estimates that the density of two-particle states with spin ` and gap E & µ

above the ground state grows linearly with the spin for 1� `� Rµ:

n
(`)
∆Q
∼ ` . (4.53)

In this case one also expects the matrix element for the gapped Goldstone field with the
two-particle state to be a regular function of the angular momentum of the particles,
and hence of the energy inverting the dispersion relations. 10 This situation is analogous
to the discussion of the Higgs propagator in the previous section, and thus we expect
that the continuum approximation in eq. (4.51) applies for ε̄� 1/`. That the validity
region of eq. (4.51) increases with ` could have been intuitively expected from the fact
that the NREFT holds exactly in the infinite volume limit, and therefore should apply at
sufficiently short distances.

Let us also speculate on the case of a strongly coupled theory. In this case the general
expectation is that all states, and not only those made of two particles, contribute at the
same order in the sum in eq. (4.50). In appendix B.5 we argue that the density of (all)
states with fixed charge Q3 = Q− 1 obeys the following exponential behaviour:

n∆ ∝ exp
[
b (∆−∆Q−1)2/3

]
, (4.54)

where b is a positive number, of order one for a strongly coupled theory. In particular,
when ∆ − ∆Q−1 is of the order of the mass of the gapped Goldstone, ≈ Rµ, the
typical spacing between energy levels is exponentially small in the EFT expansion
parameter 1/Rµ. Assuming a similar behaviour for the density of states at fixed spin `,
we expect that NREFT describes the correlator up to very small values of ε̄, as long as
ε̄� 1/n

(`)
∆Q
∼ e−b(Rµ)2/3

. 11

10For instance, by rotational invariance the matrix element between the ` mode of π1 and a state made
of two particles with spin `1 and `2 is proportional to a three-j symbol, which admits a regular analytic
expression for |`1 − `2| ≤ ` ≤ `1 + `2.

11For a strongly coupled theory, however, we do not expect the OPE coefficients to be a smooth
function of the energy of the exchanged operator; therefore the estimate of the error in eq. (4.51) might
not be accurate. As an illustration, in appendix B.5 we show that, assuming the OPE coefficients to be
described by an ansatz analogous to the eigenstate thermalization hypothesis [125], the corrections to

the continuum approximation scale like 1/
√
ε̄ n

(`)
∆Q

. Though a different ansatz might produce a different

result, in practice 1/n
(`)
∆Q
∼ e−b(Rµ)2/3 is non-perturbatively small in the EFT expansion parameter 1/Rµ

and corrections are irrelevant as long as they scale with some negative power of ε̄ n(`)
∆Q

.
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4.3. CFT data from a gapped Goldstone resonance

After having identified the validity regime of the continuum approximation, and hence of
the NREFT, it is straightforward to obtain the corresponding predictions. Extracting
the propagator of the gapped Goldstone from the action (4.22), we find that the Fourier
components of the correlator (4.47) are given by

G̃
(`)EFT
J+J−

(ω + iε̄) =
Q

8π2R4

i

ω + iε̄− (εR` − iΓ`/2)

[
1 +O

(
ω2

µ2
,
J2
`

µ2

)]
, (4.55)

where we estimated the corrections and separated explicitly the real and the imaginary
part of ε` as

ε` = εR` − iΓ`/2 , εR` =
Re[cm]

2µ
J2
` ≥ 0 , Γ` = − Im[cm]

µ
J2
` ≥ 0 . (4.56)

Then, according to eq. (4.51) we have

G̃
(`)
J+J−

(ω + iε̄) = G̃
(`)EFT
J+J−

(ω + iε̄)

1 +O

 1

ε̄ n
(`)
∆Q

 . (4.57)

As already anticipated, the main prediction of the NREFT is that existence of a resonant
pole in the correlator. In practice, to see the effect of the latter we need to take ε̄� J2

` /µ.
In the strongly coupled case we can always do that compatibly with the requirement
ε̄� 1/n

(`)
∆Q
∼ e−b(Rµ)2/3

. Instead, in the weakly coupled case n(`)
∆Q
∼ ` and thus we need

`� (Rµ)1/3 ∼ Q1/6 for the resonant pole in eq. (4.55) to be a reliable prediction.

As in the previous section, upon transforming back to real time, this result implies the
following decaying behaviour for the correlator in real time

G
(`)
J+J−

(t) =

∫
dω e−iωtG̃

(`)
J+J−

(ω) ' 6c1µ
2

4πR2
e−iε

R
` t−

Γ`
2
t , t� 1/n

(`)
∆Q

. (4.58)

In other words, the EFT predicts that, for each `, the various oscillations in eq. (4.48)
conspire together to provide a decaying behaviour e−Γ`t/2 for sufficiently short time.
Notice that, using (3.13), the EFT result for ` = 0 can be written as Q

8πR4 ; this precisely
agrees with the first term of eq. (4.48), whose value is fixed by the consistency of the
SU(2) algebra as explained above.

Finally, let us show how to use the NREFT to more directly access the CFT data of
the theory. These are encoded in the spectral density (4.52) for the observable at hand.
Unfortunately, the knowledge of the correlator for ε̄� 1/n

(`)
∆Q

is not enough to determine

ρ
(`)
J−,Q

(∆) precisely. However, we can extract information on an appropriately smeared
version of the spectral density. It is particularly convenient to consider the following
definition

ρ̂
(`)
J−,Q

(∆) =

∫
d∆̃ f

(L)
∆ (∆̃)ρ

(`)
J−,Q

(∆̃) , (4.59)
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where f (L)
∆ (∆̃) is a Lorentzian function (4.42), with center ∆ and width L � 1/n

(`)
∆Q

.
Analogously to eq. (4.43), from the identity (4.44) we find that replacing the true spectral
density with its smeared version (4.59) in eq. (4.50) is equivalent to considering the
correlator at Im[ω] = L/R:

i

2`+ 1

∫
d∆

ρ̂
(`)
J−,Q

(∆)

ω − (∆−∆Q)/R+ iε
= G̃

(`)
J+J−

(ω + iL/R) , (4.60)

where on the left-hand side the +iε just stands for the usual infinitesimal prescription.
This equation holds for Im[ω] ≥ 0. In particular it holds also for ω ∈ R and it can be
inverted similarly to the Källén-Lehman decomposition in standard relativistic quantum
field theory [126]. More precisely, using

1

x+ iε
= P

1

x
− iπδ (x) , (4.61)

where P denotes the principal part, we conclude

ρ̂
(`)
J−,Q

(∆) =
1

π
Im
[
i G̃

(`)
J+J−

(∆/R−∆Q/R+ iL/R)
]
, ∆ ∈ R . (4.62)

We may now use the NREFT to systematically compute the right hand side of eq. (4.62)
and determine the smeared spectral density. Let us consider for simplicity the strongly
coupled case, for which we can always take L negligibly small. Then, using (4.55) we
straightforwardly conclude that the smeared spectral density is a Lorentzian with width
Γ`/2, as it could have been intuitively expected:

ρ̂
(`)
J−,Q

(∆) =
Q(2`+ 1)

8π2R4

RΓ`/(2π)

(∆−∆Q −RεR` )2 +R2Γ2
`/4

[
1 +O

(
J2
`

µ2
,
(∆−∆Q)2

R2µ2

)]
.

(4.63)
In the weakly coupled case a similar prediction holds only for `� Q1/6.

Notice that from eq. (4.59) we can also compute other moments of the spectral function.
For instance consider the following “squared” Lorentzian with width 2L:

h
(2L)
∆ (∆̃) =

16L3/π[
4L2 + (∆− ∆̃)2

]2 , (4.64)

Using the identities∫
d∆′f

(L)

∆̃
(∆′)f

(L)
∆ (∆′) = f

(2L)
∆ (∆̃) , (4.65)∫

d∆′h
(L)

∆̃
(∆′)f

(L)
∆ (∆′) =

1

2
f

(2L)
∆ (∆̃) +

1

2
h

(2L)
∆ (∆̃) , (4.66)
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we can compute the corresponding moment from ρ̂
(`)
J−,Q

(∆) as∫
d∆̃h

(2L)
∆ (∆̃)ρ

(`)
J−,Q

(∆̃) =

∫
d∆̃
[
2h

(L)
∆ (∆̃)− f (L)

∆ (∆̃)
]
ρ̂

(`)
J−,Q

(∆̃) . (4.67)

Similar identities allow to compute different moments. This discussion should make
clear that eq. (4.63) is independent of the precise function used to perform the smearing
in eq. (4.59) as long as we can take the width L negligibly small compatibly with the
requirement L� 1/n

(`)
∆Q

.

In summary, we have argued that the NREFT is expected to accurately describe the four-
point function with two insertions of the non-Abelian current for sufficiently short times
and distances. This statement is equivalent to the integral equation (4.60), which implies
that the smeared spectral density (4.59) takes the Lorentzian shape typically associated
with resonances. The precise region of validity of the NREFT and its predictions depend
on the number of states contributing to the correlator, and may be very different for a
weakly coupled and a strongly coupled theory.

Our analysis might be extended in several directions. For instance one could study corre-
lation functions of different operators, e.g. primary scalars in non-trivial representations
of SU(2). Perhaps, ideas similar to those used in the Tauberian analyses of [127–130]
might clarify the validity conditions of the continuous approximation in eq. (4.51). 12

Most importantly, one should also be able to probe our ideas in specific weakly interacting
theories. For instance one could look for a model which can be studied in the ε-expansion,
in which the gapped Goldstone decays in the infinite volume limit. Perhaps, one might
also be able to study explicitly the strongly coupled case considering holographic theories,
possibly along the lines of [132]. We leave these issues for future work.

12Notice however that, in those works, Tauberian theorems were used to analyze the moments of the
distribution (4.52) for ∆→∞ [131], while in the EFT we focus on |∆−∆Q| � Rµ.
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Perhaps a way to phrase the main difference between high energy physics and condensed
matter physics is that high energy physics mostly occurs in the vacuum while condensed
matter physics occurs at finite density. In a conformal field theory, this particular
difference disappears: the state-operator correspondence maps finite density states to
local operators and therefore maps finite density correlators to vacuum correlators.

This observation entails substantial simplifications in the study of operators with large
global charge Q. Indeed, these are mapped to finite density states, for which the theory
is generically found in a condensed matter phase. A particularly appealing scenario is
provided by the possibility that the CFT is found in a superfluid phase. In that case,
the parametric separation between the mass scale associated with the charge density and
the compactification scale for the theory on the cylinder can be used to study the theory
perturbatively, in a 1/Q expansion, by means of an EFT description. The structure of
such an EFT follows from the requirement that the symmetries of the theory are realized
nonlinearly, while the information on the specific CFT at hand is instead encapsulated in a
finite number of Wilson coefficients at each order in the 1/Q expansion. In particular, its
spectrum generically consists solely of the hydrodynamic Goldstone modes whose existence
follows from the spontaneous breaking of the internal symmetries. As a consequence,
a significant amount of universality is found in the structure of the CFT data of large
charge operators.

The simplest case in which such a universal structure emerges is provided by theories with
a U(1) global symmetry, which we studied in chapter 3. In that case, the spectrum of
lowest dimension operators at fixed charge is given by the Fock space of a single phonon
mode, associated with the breaking of the U(1) symmetry. Its propagator and interactions
also control the structure of n-point functions in the long distance limit. Notably, the
simple form of the EFT correlators nicely matches substantial simplifications for the
conformal block expansion in the kinematic regime for which the EFT holds.

The same picture underlies the study of CFTs invariant under more general symmetry
groups. Nonetheless, some novel interesting structural features are found for non-Abelian
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symmetry groups. This is mostly due to the existence of gapped Goldstones in non-
Abelian superfluids, whose description is naturally phrased within the NREFT framework
that we presented in chapter 2. We analyzed the consequences of that construction for
CFTs in chapter 4. We have argued that the spectrum of lowest dimension operators at
fixed charge is generically determined only by the Goldstone modes associated with the
breaking of the Cartan generators of the group. As a notable exception, we studied the
spectrum of the three dimensional critical O(N) models, in which case gapped Goldstones
are naturally associated with operators transforming in mixed-symmetric representations
of the group. Finally, we addressed the complications related to the existence of mixings
between the gapped Goldstones and other states outside the NREFT. In particular,
focusing on an SU(2) internal group, in sec. 4.3 we showed that the NREFT provides
access to certain inclusive features of the spectral distribution of the four-point function
with two insertions of the non-Abelian current in between the superfluid ground-state.
We expect our results to be easily generalizable to different operators, such as scalars
in non-trivial representations of SU(2), as well as to allow for the study of different
symmetry groups via similar techniques. On a different note, the NREFT construction
should also allow to rigorously analyze the gapped Goldstino mode which arises in the
superfluid phase of superconformal field theories at large R-charge [34].

Our results apply to any CFT whose large charge sector is described by the EFT we
presented. To be clear, we have not proved that there actually exists any such CFT.
However, what are the possibilities? Given a state with finite charge density, the internal
symmetry may or may not be (classically) spontaneously broken. If it is broken, then the
state is a superfluid and our results generically apply. If it is not broken, then the state
is not a superfluid and our results do not apply. Because superfluids are such a natural
possibility, we believe that there exists a large class of CFTs to which our results apply.
This question has been framed within the conformal bootstrap in [109].

Clearly, it should be possible to explicitly identify such CFTs. A natural possibility is to
explore theories that are amenable to a perturbative treatment. We shall pursue this idea
in part IV of this thesis, where, also motivated by the analogy with the problem of multi-
particle production in massive QFTs [133], we will study large charge operators in the ε-
expansion (see also [134,135] for related works). Other works [136–141] focused on the large
N expansion, e.g. for monopole operators in gauge theories [104,111,142–147]. Related
to large N , large charge states have also been studied via the AdS/CFT correspondence
under the name of “holographic superconductors” [132, 148–151]. 13 We also mention
that similar ideas have been applied in the context of non-relativistic CFTs [155–157], in
which case they might be experimentally testable for the “unitary Fermi gas” system in a
harmonic trap.

13Another candidate for a large charge state at zero temperature in AdS is an extremal Reissner-
Nordström black hole [152–154], which however does not break the internal symmetry [132]; it would be
interesting to identify the CFT dual of such AdS state.
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As already mentioned at the beginning of sec. 4.2, a very promising direction is provided
by the possibility of using Monte-Carlo simulations to explore the spectrum of charged
operators in the three dimensional O(N) models. The first steps in this direction were
taken in [118], where the scaling dimension of the lowest dimension operators with charge
Q = 1, . . . , 15 were calculated for the O(2) model. Surprisingly, despite the relatively
modest values of Q accessed so far, the results are in remarkable agreement with the
prediction for ∆Q in eq. (3.19), whose first two coefficients α1 and α2 were determined by
numerical fit. A similar analysis was performed in the O(4) model in [119], for traceless
symmetric operators with charge T12 = 1, . . . , 10. Future explorations might extend
these analyses to larger values of the charges and access other observables, such as OPE
coefficients or the scaling dimensions of operators in mixed symmetric representations in
the O(4) model [121]. Hopefully, these analyses will provide non-perturbative checks of
the universal predictions of the large charge expansion.

In the future, it would also be interesting to further explore the application of bootstrap
techniques to the study of operators with large internal quantum numbers, along the lines
of [109]. Perhaps, this might allow relating explicitly the Wilson coefficients of the large
charge EFT with the CFT data of light operators, whose value is known, in certain cases,
through the numerical bootstrap.

In supersymmetric theories, the presence of moduli spaces might imply the existence
of additional light degrees of freedom in the superfluid phase. 14 A situation of this
kind was studied in detail for N = 2 superconformal gauge theories at large R-charge.
In [102,158–160] a non-relativistic axion-dilaton effective Lagrangian was used to obtain
detailed predictions for the correlations functions of operators saturating or nearly
satisfying the BPS bound. Those results were further confirmed in [161] via localization
techniques in a perturbative gauge theory. These studies are reminiscent of previous works
on the BMN limit of N = 4 supersymmetric Yang-Mills (SYM) theory [162] (see [163–165]
for reviews and [166,167] for a recent revival of similar ideas), in which case it was proven
that the plane-wave limit for the geometry of the dual string theory corresponds to a
large R-charge sector for the field theory.

As already remarked, superfluids are not the only possible phase which can describe the
large charge sector of a CFT. For instance, a very natural possibility for a fermionic
theory is given by a Fermi liquid [46,47]. Perhaps, future work in this direction might
also provide a different perspective on the ideas recently explored in [48–50], concerning
the Goldstone phenomenon for the breaking of spacetime symmetries in this phase.

The most universal quantum numbers characterizing the CFT data are the spin and the
scaling dimensions themselves. Recently, the analytic bootstrap has been used to study
systematically double-trace operators in a large spin expansion [168–172]. Remarkably,
these results have been proved to be associated with precise analyticity properties of the

14This also happens for free massless scalar theories [109].
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CFT data as a function of the spin [173–175]. In particular, similarly to the phonon
spectrum as a function of the charge, the twist spectrum of the CFT is organized in
Regge trajectories as a function of the spin. It should be possible to find a semiclassical
description of these results. Motivated by this question, we initiate the study of operators
with large charge and large spin in the next part of this thesis.

Relatedly, building on previous studies [127, 128] on the convergence properties of the
OPE based on Tauberian theorems [131], a recent work [129] initiated the bootstrap
study of neutral operators with large scaling dimensions for CFTs in more than two
dimensions (see [130] and references therein for more works in 2d CFTs). Somewhat
similarly to our analysis in sec. 4.3, focusing on a four-point function of identical scalars,
the authors were able to unveil certain universal properties for the integrated moments
of the spectral density. Relatedly, a semiclassical description for the OPE coefficients of
a light operator in between two generic heavy states has been proposed in [176], based
on the eigenstate thermalization hypothesis [125] and the field theoretical formulation of
hydrodynamics [177]. Future works, both from the bootstrap and the semiclassical point
of view, might provide new interesting results on the universal features of the CFT data
of heavy operators.
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Part IIIRotating superfluids and spinning
charged operators in CFTs

In part II we showed that effective field theory techniques allow studying the CFT
data of charged operators in an expansion in inverse powers of the internal charge. In
an independent line of research, the conformal bootstrap was used to study the CFT
operator spectrum at large spin J [169,170]. Remarkably, from the solution of the crossing
equations in the lightcone limit precise analytic results on the spectrum of operators at
large spin were obtained, with 1/J playing the role of the expansion parameter. This
motivates the following question: can large spin operators also be studied using EFT
techniques?

In this part of the thesis, we will take some step forward towards answering this question
via the following, perhaps obvious, approach: we start with the large charge operators
studied in chapter 3 and then proceed by adding increasing amounts of spin to them. This
translates to adding angular momentum to the corresponding superfluid. Experimentally,
when enough angular momentum is added to a superfluid in the laboratory, vortices
develop [178]. We thus expect large spin charged operators to correspond to vortices
moving in the superfluid.

Focusing on the illustrative case of a CFT invariant under a U(1) symmetry, in this part
of the thesis we will study operators that have large spin as well as large charge. Making
use of the recently developed EFT for describing vortices in superfluids [179], we will
find that the lowest energy state corresponds to an increasing number of vortices as the
spin is varied from the scale set by the charge density to the value of the energy density:
j0 ∼ Q

1
d−1 � J � ∆0 ∼ Q

d
d−1 . This range of spins is disjoint from the range in which

the lightcone bootstrap results are valid, which apply to operators parametrically close to
the unitarity bound. Therefore our results are complementary to the bootstrap ones.

The physics of vortices depends on the number of spacetime dimensions d and, conse-
quently, so does the detailed form of our results. This nicely matches the fact that the
irreducible representations of the rotation group, which label CFT operators, depend
on d. We will conveniently discuss first the simple case of a 3d CFT in chapter 5. We
will then extend our results to four dimensions in chapter 6, where we will also briefly
comment on d > 4.
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In this part of the thesis we shall follow the approach reviewed in sec. 3.2.2. We begin
by considering a d dimensional CFT on a cylinder R × Sd−1. Next, we assume that
a given EFT on this cylinder is a valid description of our CFT. Finally, we apply the
state-operator correspondence directly to the states of this EFT. This strategy differs
from that of sec. 3.1, which takes the “top-down” approach of projecting onto a desired
state using the Euclidean path integral. Instead, we are taking the “bottom-up” approach
of simply assuming an EFT and then quantizing its Hamiltonian while always remaining
in Lorentzian spacetime.
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5 Spinning charged operators and
vortices in 3d CFTs

As explained in the introduction to this part of the thesis, we expect large charge operators
with large spin to correspond to vortices in the superfluid. However, the conformal
superfluid EFT [34,35] discussed in chapter 3 does not incorporate vortices; all angular
momentum is carried by phonons alone. This suggests that the EFT would incorrectly
describe high angular momentum states. Conveniently, vortices can be included in the
EFT as heavy topological defects following the construction of [179] (see also [180–182] for
previous works in this direction). In this chapter we will use this EFT to study operators
that have large spin as well as large charge in a three dimensional CFT invariant under
an internal U(1) symmetry.

5.1 Summary of Results

We calculated the dimension ∆ of the lowest dimension operator with charge Q� 1 and
spin J . 1 As J varies from 0 to ∆, the corresponding superfluid state passes through
three qualitatively distinct regimes. We will simply state the results now and derive them
later. In the following, we use ∆Q for the energy of the homogeneous ground state

∆Q = α1Q
3/2 + α2Q

1/2 − 0.0937 + . . . . (5.1)

• For 0 ≤ J .
√
Q, the lowest energy state has no vortices and consists of a single

phonon of angular momentum J . The corresponding operator dimension ∆ is given
by eq. (3.25) as

∆ = ∆Q +

√
J(J + 1)

2
+O

(
J3

Q

)
. (5.2)

1In order to avoid confusion with the spin J , in this part of the thesis we denote the U(1) current
with lower case as jµ.
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Chapter 5. Spinning charged operators and vortices in 3d CFTs

• For
√
Q . J ≤ Q, the lowest energy state consists of a vortex-antivortex pair whose

separation increases with J . The corresponding operator dimension ∆ is

∆ = ∆Q +

√
Q

3α1
log

J√
Q

+ 2γ̃
√
Q+O

(√
Q× Q

J2

)
, (5.3)

where γ̃ is a new Wilson coefficient of the vortex EFT.

• For Q < J . Q3/2, the lowest energy state consists of multiple vortex-antivortex
pairs distributed so that the superfluid has the same velocity profile as that of a
rotating rigid body [183]. The corresponding operator dimension ∆ is

∆ = ∆Q +
1

2α1

J2

Q3/2
+O

(
J2

Q3/2
× Q

J
,
J2

Q3/2
× J2

Q3

)
. (5.4)

As J → Q3/2 ∼ ∆, the EFT breaks down and, as mentioned, we are unable to reach the
spin of the operators studied by the analytic bootstrap [169–172,184–190]. Remarkably,
the leading correction to ∆Q due to the presence of the vortices depends on the same
parameter α1 controlling the leading contribution in eq. (5.1).

The rest of the chapter is organized as follows. In sec. 5.2 we provide a simple discussion
of a vortex configuration based on the EFT of chapter 3. In sec. 5.3 we formulate the
effective theory for vortices, which we use in sec. 5.4 to derive the results. In sec. 5.5 we
provide predictions for correlators involving a current insertion between two vortex states.
We present some generalizations of our results in sec. 5.6, discussing weakly coupled or
large N theories, and extending our predictions to the case in which the vortices carry
spin and to a U(1)2-invariant CFT.

5.2 Spinning superfluid: vortices and singularities

Consider the conformal superfluid Lagrangian in d = 3. In Lorentzian signature, this is
given by:

L/√g = c1(∂χ)3 + c2(∂χ)

{
R+ 2

[∂µ(∂χ)]2

(∂χ)2

}
+ . . . . (5.5)

We are interested in the scaling dimension of the lowest dimension operator as a function
of the charge Q and spin J . As a first attempt, we look for such state in the phonon Fock
space discussed in sec. 3.2.2. We have two obvious ways to construct states with angular
momentum J : one phonon with spin J and n phonons with spin J/n. The energy of the
single phonon state is given by eq. (5.2). For J &

√
Q higher derivative terms become

unsuppressed and the expression (5.2) cannot be trusted anymore. For the second class
of states we have instead

∆n phonons = ∆Q+
J√
2

√
1 +

n

J
+O

(
J × J2/n2

Q
, J × J/n√

Q
× n

Q

)
, J � Q3/2 . (5.6)
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5.2. Spinning superfluid: vortices and singularities

These states can be reliably described within the EFT as long as the phonon density is
much smaller than the charge density, n� Q, and the angular momentum of the single
phonons is much smaller than the chemical potential, 2 J/n � √Q; this provides the
upper bound for J in eq. (5.6).

Comparing eq.s (5.2) and (5.6), we conclude that for J � √Q the minimal energy state
is given by a single phonon. As we increase J the latter exits the validity of the EFT and
we might naively expect that for

√
Q� J � Q3/2 the ground state is provided by the

multi-phonon states in eq. (5.6). However, experimental evidence shows that superfluids
admit a third kind of spinning excitation: vortices.

From the point of view of the EFT for the superfluid Goldstone, the latter are stationary
solutions of the equations of motion with non-zero winding number. This means that
there exist a set of points {xp} for which

∮
C(xp) dx

i∂iχ = 2πnp with np ∈ Z \ {0}, where
C(xp) is an arbitrary curve encircling a single point xp of the set {xp}. Notice that the
value of np, also called the vorticity, is conserved in time, since the winding number is
the charge associated to the one-form symmetry generated by the topological current
jµν =

√
gεµνρ∂

ρχ [58]. Such solutions are unavoidably singular at the points {xp}, the
positions of the vortex cores, at which the EFT description (5.5) breaks down.

To build an EFT description of vortices, we can treat them as point-defects moving
in the superfluid, including their action to the effective theory. This requires the use
of a dual formulation of the superfluid EFT. We shall detail the procedure in sec. 5.3.
However, the basic features of vortex physics may be understood with an intuitive naive
approach, simply considering the Lagrangian (5.5) equipped with a short-distance cutoff
to regularize the singularities close to the vortex cores. Here we illustrate this procedure.
The results presented below will be derived again more carefully in sec. 5.4.4.

For the sake of concreteness, let us consider the following solution for χ:

χ = µt+ φ , (5.7)

where φ is the azimuthal angle on the sphere. The solution (5.7) is singular at the poles,
θ = 0 and θ = π, around which χ has a non zero winding number. On the solution (5.7)
the charge and the spin density coincide and are given by

j0 = RT0φ = 3c1µ
2

√
1− 1

R2µ2 sin2 θ
− 2c2

R2

1√
1− 1

R2µ2 sin2 θ

+ . . . . (5.8)

The charge density is approximately given by the one for the superfluid solution χ = µt

everywhere, but for θ close to 0 and π, for which the expression (5.8) is singular. Physically,
the effective superfluid description breaks at the south and the north poles. To compute

2This is due to the second kind of corrections in eq. (5.6), arising from interaction terms ∼ (∂π)4/µ.
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Chapter 5. Spinning charged operators and vortices in 3d CFTs

the charge and the energy, we regulate spatial integrals introducing a cutoff at distances
Rδθ & Λ−1

v from the poles. Physically Λ−1
v parametrizes the size of the vortices, which

depends on the UV details of the underlying theory. By dimensional analysis and scale
invariance, we expect it to be of order 1/µ, hence we can parametrize our ignorance on
the latter via the dimensional ratio x ≡ Λv/µ ∼ O(1). We then find the charge, the
angular momentum and the energy of the state as:

Q = J = 12πc1R
2µ2 − 2c2

R2
− 6c1π log(Rµ) + fQ

(
Λv
µ

)
+O

(
1

R2µ2

)
, (5.9)

E = 8πc1R
2µ3 + µ fE

(
Λv
µ

)
+O

(
1

Rµ

)
, (5.10)

where fQ(x) and fE(x) are dimensionless functions; their detailed form will not be relevant
in what follows. 3 The first and second term in eq. (5.9), as well as the first one in (5.10),
are the contribution of the homogeneous superfluid density and are present also in the
absence of vortices. The new pieces represent instead the contribution of the vortices.
Their precise value depend on Λv, and cannot be fully fixed within the EFT. However,
vortices also provide a logarithmically enhanced contribution log Λv ∼ logµ in eq. (5.9),
coming from the integration region where θ is close to 0 or π in the charge. As typical
in QFT, logarithms of the cutoff scale are well definite predictions of the theory. To
see this, let us solve eq. (5.9) for µ and plug the result in the expression for the energy.
Using the state-operator correspondence, we then find that the vortex profile in eq. (5.7)
correspond to an operator with the following quantum numbers

∆ = ∆Q +

√
Q

6α1
logQ+ 2γ̃

√
Q+O

(√
Q× Q

J2

)
, J = Q . (5.11)

Here γ̃ is a numerical coefficient of order one, whose precise value depends on the ratio
Λv/µ. The second term in (5.11), proportional

√
Q logQ, provides the leading correction

to the ground state energy and, remarkably, does not depend on the precise value of the
short distance cutoff Λv. Comparing eq.s (5.11) and (5.6), we also see that the vortex
state has lower energy than a multi-phonon state with the same angular momentum.

In the next section, we shall discuss how the structure of result (5.11) arises in a more
systematic setup. We shall see in particular that the action for the vortices, to leading
order, depends on a single dimensionless Wilson coefficient, analogous to the ratio Λv/µ

in this discussion. The logarithmic term in eq. (5.11) will then be interpreted as a

3We give them here for completeness; cutting off the integration over the angle θ at a distance
arcsin [1/(RΛv)] from the poles, with Λv < µ, we find

fQ(x) = −3πc1

[
2
√

1− x2

x2
+ 2 log

(
x√

1− x2 + 1

)
+ 1 + log(16)

]
,

fE(x) = −6πc1 − 4πc1

(
1− x2

)3/2
x2

.
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renormalization of the latter, due to the self-energy of the vortex core induced by the
interaction with the superfluid, which depends only on the vorticity. Throughout this
chapter, unless otherwise stated, we shall work at leading order in the derivative and field
expansion within EFT.

5.3 Formulation of the EFT

5.3.1 Dual gauge field

We now specialize the construction of [179] to the cylinder S2 × R. The latter uses a
dynamical gauge field Aµ instead of the more familiar Goldstone field χ. To relate the
two descriptions, we dualize χ by formally treating vµ ≡ ∂µχ as an independent variable
and using a Lagrange multiplier Aµ to set the curl of vµ to zero:

L = c1v
3 − 1

2π
Aµ

εµνρ√
g
∂νvρ, (5.12)

where we use the combination εµνλ/√g to denote the antisymmetric Levi-Civita tensor.
Integrating out vµ gives

L = −κF 3/2, (5.13)

where F ≡
√
FµνFµν and Fµν ≡ ∂µAν − ∂νAµ. We dropped a boundary term that came

from integrating (5.12) by parts because it is metric independent and thus does not affect
the energy momentum tensor. The coefficient κ in (5.13) is related to the coefficient c1

in (5.5) as κ = 1
25/4(3π)3/2

1√
c1
.

The relation between χ and Aµ is given by the expression for the U(1) current jµ:

jµ = 3c1(∂χ)∂µχ =
1

4π

εµνλ√
g
Fνλ. (5.14)

In the vacuum, the charge density is 〈j0〉 = Q
4πR2 , where Q is the net charge of the

superfluid state and R is the radius of the sphere. This translates to a homogeneous
magnetic field

〈Fθφ〉 = B sin θ ≡ Q

2R2
sin θ (5.15)

and results in a net magnetic flux of 2πQ through the sphere; eq. (5.15) can be thought
as the field generated by a magnetic monopole at the center of the sphere. Parametrically,
the cutoff Λ of the EFT is

Λ ∼
√
B ∼

√
Q

R
. (5.16)

The action (5.13) describes a propagating degree of freedom, given by the fluctuations
of the magnetic field Fθφ and which corresponds to the phonon in the original picture,
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Chapter 5. Spinning charged operators and vortices in 3d CFTs

together with a non-propagating Coulomb field A0, which does not have any local analog
in the scalar formulation. As we will see, it is precisely this extra component which
provides the leading coupling to the vortices.

5.3.2 Particle-vortex duality

Vortices in the superfluid description correspond to heavy charged particles in the gauge
theory description. They are treated in a first-quantized form as 0+1 dimensional
worldlines embedded in the 2+1 dimensional spacetime. We will use the terms “vortex”
and “charged particle” interchangeably.

To write the effective action for a conformal superfluid with vortices [179], we parametrize
the spacetime trajectory of the pth vortex by Xµ

p (τ), where τ is an auxilliary time
parameter. We further impose Weyl and τ -reparametrization invariance, with the former
reducing to conformal invariance in the relevant case of a static metric. The action can
be organized as a derivative expansion with the lowest order terms given by 4

S = −κ
∫
d3x
√
gF 3/2 −

∑
p

qp

∫
AµdX

µ
p −

∑
p

∫
dτ
√
F
√
gµνẊ

µ
p Ẋν

p Fp

(
jµẊ

µ

jẊ

)
+ . . . ,

(5.17)
The first term is the kinetic term (5.13) for the gauge field. The second term is the
minimal coupling between a particle of charge qp and the gauge field [191]: this cannot
be written in a local form in the scalar picture, showing the convenience of the gauge
formulation. The charge qp corresponds to the Goldstone winding number around xp and
is hence quantized: qp ∈ Z. The third term is the action for a relativistic point particle
in a superfluid5; it is multiplied by an arbitrary function of jµẊµ

jẊ
, since the superfluid

velocity breaks spotaneously Lorentz symmetry and allows constructing an alternative
condensed matter metric [179]. The dots in (5.17) represent terms with at least two
derivatives on either Aµ or Xµ

p . As we will now explain, the leading order description of
our system is fully determined by the first two terms of (5.17).

To this aim, let us work in physical gauge for the particle worldlines: X0
p = τ . Since

the gauge field is expanded around the non-trivial background (5.15), the leading kinetic
term for the vortex lines is first order in time derivatives and arises from the second
term in eq. (5.17). As we will self-consistently see, this implies that vortices move with
non-relativistic velocities | ~̇X| ∼ 1/

√
B. The terms with two or more time derivatives

arising from the expansion of the square root
√
gµνẊ

µ
p Ẋν

p =

√
1− ~̇X2

p in (5.17) are
then genuine higher derivative corrections. On the one hand, as we explain below, they
bring in new states with energy ∼

√
B. On the other, at sufficiently low energy, they

can be treated as small perturbations of the leading single derivative term. This is fully

4We discuss a derivation of the vortex action from the coset construction in the appendix C.1.
5See appendix C.1 for a derivation from the coset construction.

112



5.3. Formulation of the EFT

analogous to supplementing the 1D Lagrangian q̇2 with the 4-derivative term q̈2/Λ2:
states arise with energy ∼ Λ, but at low-energy, the 4-derivative term can be treated as a
perturbation using standard EFT methods.

Physically we can understand this point as follows. Each Xµ
p describes the motion of

a 2D particle in a magnetic field and consists of two pairs of canonically conjugate
variables. These can be further decomposed into one pair that describes the motion of the
guiding center and another pair that describes cyclotron motion. Without interparticle
interactions, excitations of the first pair are gapless while excitations of the second
pair have a gap ω = B/m, where m is the particle mass. The gapped excitations are
the Landau levels [6], and the gaplessness of the guiding center variables is the usual
degeneracy of Landau levels.

In our system (5.17), ω ∼
√
B, which coincides with the EFT cutoff (5.16). Thus, within

the domain of validity of our EFT, the dynamics of Xµ reduces to that of just the guiding
center—the Landau levels are effectively integrated out [192–194]. One well-known
fact [195,196] is that the guiding center can be described by dropping the mass term (the
third contribution) from the Lagrangian (5.17). Physically, this is because in the massless
limit, the Landau level gap ω →∞. Formally, this is because, as commented above, the
leading kindetic term in (5.17) is linear in the particle velocity. This constrains the two
physical coordinates to be canonically conjugate to each other, halving the dimension of
phase space. This procedure is sometimes called lowest Landau level approximation in
the literature [192–196].

Working at leading order, we thus neglect terms with two time derivatives in the vortex
coordinate. Furthermore, we shall be interested in configurations for which the electric
field represents a small perturbation with respect to the magnetic field background,
| ~E|/B ∼ 1/

√
B. Combining these two conditions, from the last term in (5.17) we retain

only a constant contribution proportional to
√
B which is interpreted as the vortex mass.

In the following we will hence work with the action

S ' −κ
∫
d3x
√
g F 3/2 −

∑
p

qp

∫
AµdX

µ
p −

∑
p

γp
√
B

∫
dτ , (5.18)

where γp = 21/4Fp(1). We leave a systematic study of higher order corrections for future
work, though we will briefly mention some effects in sec. 5.4.4.

As a final remark, let us notice that we are assuming the simplest possible structure for
the vortex cores in writing the action (5.17), which do not carry additional degrees of
freedom. While we believe this corresponds to the most generic situation, it is possible to
imagine more complicated setups, in which the vortices carry non-zero spin for instance.
We will discuss this possibility explicitly in sec. 5.6.2.
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5.4 From vortices to spinning charged operators

5.4.1 Classical analysis

We will now compute the classical energy and angular momentum of a state with a
given configuration of vortices. By the state-operator correspondence, this gives us the
dimension ∆ and spin J of the corresponding operator. We will work to leading order in
large Q and in large vortex separations. At this order, the equations of motion from (5.18)
are

1

e2
∇µFµν = J ν , (5.19)

Ei = (Ẋp)jF
ji , (5.20)

where Ei ≡ F i0 is the electric field and J ν is the current due to the point charges. The
coupling e2 is defined as

1

e2
≡ 3κ

21/4

1√
B
. (5.21)

Eqs. (5.19) are Maxwell’s equations and (5.20) imposes that the particles move on
trajectories with vanishing Lorentz force. In other words, as expected, the particles
exhibit pure drift velocity motion. This is consistent with cyclotron degrees of freedom
being integrated out. As anticipated, the particle velocities are | ~̇Xp| ∼ | ~E|/B ∼ 1/

√
Q

and can be neglected. Our problem has reduced to the 2D electrostatics of point charges
on a sphere in a constant magnetic field.

The stress energy tensor Tµν = 2√
g
δS
δgµν is

Tµν '
κ√
f

(
−3FµρFν

ρ + gµνF
2
)

+
∑
p

γp
√
B

∫
dτ

(Ẋp)µ(Ẋp)ν√
gρσẊ

ρ
p Ẋσ

p

(5.22)

Using this, we calculate the dimension ∆ to be

∆ =
Q3/2

√
27πc

+
R3

2e2

∫
dθdφ sin θ ~E2 +

∑
p

γp
√
BR2 . (5.23)

Physically, the first term is the energy stored in the background magnetic field while the
second term is the energy stored in the electric field sourced by the particles. The last
term is the contribution of the vortex masses.

In Coulomb gauge, Ei = ∂iA0 where a0 is the electric potential due to a collection of
point charges on a 2-sphere:

A0(~r) = − e
2

4π

∑
p

qp log(~r − ~Rp)
2. (5.24)
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5.4. From vortices to spinning charged operators

We used embedding coordinates of the sphere in R3, where ~r = (sin θ cosφ, sin θ sinφ, cos θ)

is a unit 3-vector and analogously for ~Rp. The total electric field energy is a sum of
pairwise contributions for each charge:

R3

2e2

∫
dθdφ sin θ ~E2 =

Re2

8π

[
−
∑
p 6=r

qpqr log(~Rp − ~Rr)
2 −

∑
p

q2
p log 02

]
. (5.25)

The last term is the familiar divergent self-energy of a point charge. It will be cut off at
angular lengths ∼ 1/

√
Q (5.16), analogously to the discussion above (5.9).

Finally, we can also easily restore the subleading terms in the Lagrangian (5.5). Neglecting
the fluctuations induced by vortices everywhere but in the leading term, the dimension ∆

(5.23) for a state with n vortices is 6

∆ = ∆Q −
√
Q

12α1

∑
p 6=r

qpqr logQ(~Rp − ~Rr)
2 + nγ̃

√
Q, (5.26)

where ∆Q = α1Q
3/2 + . . . as in eq. (5.1) and α1 ≡ 1/

√
27πc1. We also used

∑
p qp = 0,

which is required by the consistency of Gauss law on the sphere, to combine the logarithms
in (5.25) and we assumed all vortices to have the same mass, parametrized by a Wilson
coefficient γ̃.

The angular momentum ~J can also be calculated from the stress tensor (5.22) and is

~J =
RB

e2

∫
dθdφ sin θ ~n iεij sin θEj = −

∑
p

qp
Q

2
~Rp . (5.27)

Here εij sin θ is the two-dimensional Levi-Civita tensor on S2 and ~n i =
(
ni1, n

i
2, n

i
3

)
,

where nia is the Killing vector corresponding to the rotation around the ra axis of the R3

embedding of the sphere. We used Gauss law to obtain the right-hand side.

5.4.2 Derivation of results

The results stated at the beginning of this chapter can now be derived. First, note that
the self-energy of a particle of charge q is proportional to q2—this is the second term in
(5.25). Because of this, particles with |q| > 1 are energetically unfavored.

• As discussed in sec. 5.2, eq. (5.2) is derived using the phonon dispersion relation
and using that the energy is lowest at fixed J with a single phonon.

• The lowest energy state for
√
Q � J ≤ Q consists of a vortex-antivortex pair

rotating on the sphere, at a distance proportional to the spin |∆~R |/2 = J/Q (see

6Here we correct a typo in eq. (19) of [2].
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Figure 5.1 – A vortex-antivortex pair moving on the sphere at fixed distance; in the
stereographic projection the motion corresponds to two circular orbits.

fig. 5.1). The scaling dimension of the corresponding operator reads

∆ = ∆Q +

√
Q

3α1
log

J√
Q

+ 2γ̃
√
Q+O

(√
Q× Q

J2

)
. (5.28)

The leading correction to the ground state energy arises from the second term as a
consequence of the logarithmic divergence of the vortex self-energy. This depends
on the same coefficient α1 appearing in (5.1). The vortex mass contribution, given
by the last term in (5.28), depends on a new coefficient and scales as the first
subleading term in the ground state energy (5.1). The last term in eq. (5.28) is
the contribution of the vortex masses, which scales as the first subleading term in
the ground state energy (5.1). Corrections to this formula arise from the particle
velocities and the phonon field and will be discussed in sec. 5.4.4. As J → √Q, the
vortices become relativistic and the derivative expansion breaks down. Notice that
eq. (5.28) for J = Q agrees with eq. (5.11) derived in sec. 5.2.

• For Q � J � Q3/2 the lowest energy state corresponds to a vortex crystal
phase [197, 198]. Its energy is found approximating the vortex distribution as a
continuous charge distribution ρ(x) and then minimizing ∆ (5.26) for fixed J (5.27)
using variational techniques. The leading contribution to the energy arises from the
electric field | ~E| ∼ e2|ρ| and reads

∆ = ∆Q +
1

2α1

J2

Q3/2
+O

(
J2

Q3/2
× Q

J
,
J2

Q3/2
× J2

Q3

)
, (5.29)

corresponding to a vortex distribution ρ of

ρ =
3

2πR2

J

Q
cos θ (5.30)

and results in the superfluid having the same velocity profile as that of a rigid
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body [183]. The second term in (5.29) is the electrostatic energy of the crystal. The
leading corrections arise from the vortex masses and the magnetic field fluctuations.
The description holds as long as the electric field is subleading to the homogeneous
monopole field B and as long as the particle velocities are negligible. This sets the
condition J � Q3/2. 7

As J → Q3/2, the electric field | ~E| approaches the magnetic field B and the drift velocities
become relativistic. This causes the EFT to break down because the higher order terms
neglected in (5.18) become unsupressed. The guiding centers become as energetic as the
cyclotron degrees of freedom and anything else at the EFT cutoff (5.16).

5.4.3 Quantization

Since the vortex positions are continuous, some questions may occur: How many distinct
states are there? How does the quantization of angular momentum arise? These questions
are answered when we quantize our system of charged particles in a magnetic field.
Solving for A0 using (5.24) and ignoring fluctuations of Ai, our effective Lagrangian (5.18)
becomes

L =
∑
p

qp ~A · ~̇Rp +
e2

8π

∑
p,r

qpqr log(~Rp − ~Rr)
2, (5.31)

where ~A is the potential for a magnetic monopole [199,200]. We use the gauge in which
Aφ = 1

2Q(1− cos θ) and Aθ = 0. This system is known as the “fuzzy sphere” [201,202].

Due to the somewhat complicated form of ~A, it is useful to switch to spinor coordinates,
defined as [203,204]:

ψ ≡
(

cos θ2
sin θ

2e
iφ

)
, (5.32)

where we suppressed the vortex index. In these coordinates, ~R = ψ†~σψ and ~A · ~̇R =

−iQψ† ddtψ. This identifies the canonical momentum corresponding to ψp as −iQqpψ†p. The
canonical commutation relations are easily understood defining the operator corresponding
to the orbital contribution to the angular momentum from a vortex p as

~̂Lp = −Q
2
qp ~̂Rp , ~̂J =

∑
p

~̂Lp . (5.33)

We use the hat to denote operators. The canonincal commutation relations then read
[L̂ap, L̂

b
p] = iεabcL̂cp, which imply that the angular momentum (5.27) commutes with the

Hamiltonian and satisfies [Ĵa, Ĵb] = iεabcĴc [201,202].

7This is in agreement with the experimental fact that vortex crystals exist when the filling fraction
ν = j0/nv is much bigger then one, where nv ∼ |ρ| is the vortex density [93,94].
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For illustration, consider the case of two vortices of unit charge. The Hamiltonian
corresponding to (5.31) is then

H = const +
e2

4π
log ~̂J 2, (5.34)

where “const” involves terms that are independent of the vortex coordinates, and we
used (5.27) to express H in terms of ~̂J . The spectrum is thus entirely determined by the
spectrum of ~̂J 2. As is well-known, ~̂J 2 = J(J + 1), where J is an integer and for each
value of J , there are 2J + 1 degenerate states.

Restoring the constants in (5.34), the dimension of the corresponding operator is

∆ = ∆Q +

√
Q

6α1
log

J(J + 1)

Q
+ 2γ̃

√
Q+O

(√
Q× Q

J2

)
. (5.35)

As in eq. (5.28), we can trust this equation for
√
Q . J ≤ Q. By expanding the logarithm

in eq. (5.35), the quantum corrected expression provides an additional contribution of
order ∼ √Q/J to the classical result (5.28).

5.4.4 Higher order corrections

Corrections arise from higher derivative terms we neglected in (5.18) and are suppressed
by powers of the cutoff length scale l ≡ Λ−1. Here we comment on their form, leaving a
systematic study for future work.

The first class of corrections is controlled by the volume of the sphere and scales as
l2/R2 ∼ 1/Q. As discussed in part II of this thesis, these correction arises from higher
derivative corrections in the superfluid action. They are also present in the absence of
vortices and we accounted for them through the inclusion of the subleading terms in (5.1).

Consider now the vortex-antivortex state discussed around eq. (5.28). In this case,
a second class of correction exists, controlled by the separation d among vortices and
scales as l2/d2, where the double power of d is dictated by rotational invariance. Using
the relation J ∼ Bd (5.27), we have l2/d2 ∼ Q/J2. This arises from the last term in
(5.17). There we find relative corrections to the vortex action proportional to ~E2/B2 and
~̇X ∧ ~E/B. These both scale as l2/d2 ∼ Q/J2 on our solutions, becoming large at the
lower edge J ∼ √Q of the two vortex states.

Notice that the second class of corrections is larger than the O(1/J) quantum correction
distinguishing (5.35) from the classical result (5.3). Nonetheless, the quantum correction
is functionally distinguished and thus calculable. We also note that the universal O(Q0J0)

contribution from the phonon Casimir energy [34,35] persists in the presence of vortices
because the phonon spectrum is unmodified at leading order.
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Consider finally the vortex crystal phase discussed around eq. (5.29). The leading
correction in this case arise both from the contribution to the energy from the phonon field,
which is proportional to the particle velocities and gives δB2/| ~E2| ∼ ~̇X2 ∼

(
J/Q3/2

)2,
and from the masses of the particles, which give Q/J corrections using (5.30).

5.5 Correlators

As we have seen in part II of this thesis, the EFT can also be used to compute correlation
functions [35]. Let us consider correlators involving the U(1) current jµ. 8 From (5.14)
and Gauss’s law, we see that the line integral

∮
jµdx

µ about a closed curve C at fixed
time is simply 1

2π times the total charge qenc enclosed by C:

〈vortex|
∮
C
jµdx

µ |vortex〉 =
e2qenc

2π
, (5.36)

where |vortex〉 is a generic vortex state. By the state-operator correspondence, this
amounts to a prediction about three-point functions. We will now consider two simple
examples.

As a first example, we consider a vortex-antivortex pair located at the north and south
poles. Then (5.36) becomes

〈vortex|jφ(θ, φ)|vortex〉 =
e2

2πR
, (5.37)

where now |vortex〉 is a state with J = Jz = Q and jφ is the azimuthal component of jµ.
In general, the expectation value of a spin-1 operator jφ in a state |J, Jz〉 with J = Jz = Q

is [205]

〈Q,Q|jφ(θ, φ)|Q,Q〉 = R2
Q∑

m=0

am cos2m θ, (5.38)

where am are arbitrary (theory-dependent) constants subject to the constraint
∑

m am = 0.
By equating (5.37) to (5.38), we obtain the following predictions for am at leading order:

am =

{√
Q

3α1
, if m = 0;

0, if 1 ≤ m� √Q.
(5.39)

Because of the EFT cutoff (5.16), we can only make predictions for m � √Q. 9 The
constraint

∑
m am = 0 is thus irrelevant for our discussion.

8To leading order, scalar insertions read as in the homogeneous phase discussed before.
9To appreciate this, it is useful to write cos2m θ ≈ exp

(
−mθ2

)
for m � 1 and θ � 1, which is

exponentially suppressed by the cutoff away from the vortex core for m &
√
Q.
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As a second example, we consider the states described by (5.4). Using (5.30), we find

〈vortex|jφ(θ, φ)|vortex〉 =
3e2

8π2R

J

Q
sin2 θ. (5.40)

Rewriting (5.38) in the Fourier basis:

〈Q,Q|jφ(θ, φ)|Q,Q〉 = R2
J∑

m=0

bm cos 2mθ, (5.41)

we obtain the following predictions for bm at leading order:

bm =


(−1)m

8πα1

J√
Q
, if m = 0, 1;

0, if 2 ≤ m�
√
J/Q.

(5.42)

Because we used a continuous approximation for the density ρ (5.30), we can only make
predictions for m� √ρ ∼

√
J/Q.

5.6 Discussion and generalizations

5.6.1 Weak coupling and large N

So far, we assumed that the numerical coefficients in our effective Lagrangian are O(1),
corresponding to an underlying strongly coupled CFT. The case of a weakly coupled or
large N theory is quickly illustrated. However, the conclusions depend on whether the
weak coupling appears in the χ description (5.5) or in the Aµ description (5.13). We will
refer to the χ description as “electric” and to the Aµ one as “magnetic”, with couplings
g2
e ≡ 1/Ne and g2

m ≡ 1/Nm, respectively.

Consider first a weakly coupled magnetic theory (for example, the largeNm setup discussed
in [104, 111, 142–147]). Since 1/α1 ∼ g2

m is small, the “bare” vortex mass (∼ γ̃
√
Q) is

no longer subdominant to the electric field energy in (5.23). Therefore, the contribution
nγ̃
√
Q is the dominant one in eq. (5.3) and should be added to eq. (5.4), where n = 2 for

J ≤ Q, and n = 3J/Q for J � Q. For simplicity, we assumed the same bare mass for all
vortices. This gives the dominant spin dependent contribution to ∆ for J . Q/g2

m.

Consider now a weakly coupled electric theory. The essential difference in this case
is that the cutoff is naturally identified with µ ∼ ge

√
Q [4] instead of with (5.16).

Therefore, a single phonon is restricted to J . ge
√
Q and a vortex-antivortex pair to

J & Qµ−1 ∼ √Q/ge. States with J in the gap between the two consist of multiple
phonons, approaching a 1/g2

e number of them as J → √Q/ge. At this point, the lowest
energy state shifts from multiple phonons to the vortex-antivortex pair. This consistently
reflects the fact that vortices are now heavy solitons and consist of also roughly a 1/g2

e
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number of elementary quanta. Since α1 ∼ ge, the logarithmic term in (5.3) is indeed the
expected result, µ/g2

e logµd, for a semiclassical solution with a vortex-antivortex pair
split by a distance d = J/Q. We will discuss weakly coupled “electric” systems in part IV
of this thesis.

5.6.2 Spin and additional degrees of freedom in the vortex cores

In our analysis we assumed the simplest possible structure for the vortex cores, which do
not carry any additional degrees of freedom on top. However, it is possible to imagine
that the heavy particles have non zero spin. For instance, in the perturbative models
studied in [145, 206] we expect that the heavy particles can be identified with certain
localized excitations of the fermionic fields coupling to the U(1) gauge field [207], in which
case the vortex core would carry half-integer spin. One might then wonder to what extent
such an additional structure on the worldline can modify the results discussed so far. In
this section we illustrate this point, considering states with a single vortex-antivortex pair
with half-integer spin .

To model the effect of spin, we can modify the action of a single vortex in (5.17) following
the approach of [208–210]. Recall first that, assuming parity invariance, an half-integer
spin particle at rest in 2 + 1 dimensions can be in two different states. Such a discrete
multiplicity of states is naturally described via a Grassmannian variable living on the
worldline, transforming covariantly under the unbroken rotations; 10 concretely, this is
achieved by taking a Grassmannian 3-vector ξµp (τ) orthogonal to the particle velocity:
ξµp gµνẊ

ν
p = 0. As usual, p labels the different vortices. Neglecting interactions for the

moment, the free reparametrization invariant action for one such variable reads:

S
(p)
ξ

∣∣∣
free

= − i
2

∫
dτ

[
ξνpgµν

(
D

Dτ
ξµp

)
+ λp

(
Ẋµ
p gµνξ

ν
p

)]
, (5.43)

where D
Dτ is the covariant derivative on R × S2 and λp is a Grassmannian Lagrange

multiplier.

The Lagrangian in eq. (5.43) was first studied in [208], 11 where it was proven to correctly
describe a parity-invariant Dirac particle. We shall not repeat the full analysis here, but
it is instructive to look at the non-relativistic limit of (5.43) in flat space. Working in the
physical gauge X0

p = t, the constraint ξµp ηµνẊν
p = 0 implies ξ0

p ' 0 and we obtain

S
(p)
ξ

∣∣∣
free
' i

2

∫
dt ξipδij ξ̇

j
p =

i

2

∫
dt ξ∗p ξ̇p , ξp = ξ1

p + iξ2
p , (5.44)

where in the last equality we have discarded a total derivative. Quantizing the system,

10Recall that the worldline action breaks spontaneously boosts, see appendix C.1.
11The authors of [208] consider an additional redundant variable ξ5; eq. (5.43) coincides with their eq.

(3.3) in the gauge ξ5 = 0.
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the equal time canonical (anti-)commutation relations read:

{ξ∗p , ξp} = 2 ⇐⇒ {ξip, ξjp} = δij . (5.45)

From these we identify ξip = σi/
√

2 (i = 1, 2) and the spin is the conserved operator
s12
p = i

2ξ
∗
pξp = − i

2 [ξ1
p , ξ

2
p ] = σ3/2. The two eigenstates of s12

p describe the possible spin
orientations for a particle at rest.

Let us now consider the possible interactions with the superfluid background which can
be introduced in the action (5.43). Considering that the action shoud be quadratic in ξµp ,
that classically ξp · ξp = 0 and that we work at leading order in the particle velocities, the
leading interaction term is given by

S
(p)
ξ

∣∣∣
int.

=
i

2

gp√
2

∫
dτ
√
Ẋµ
p gµνẊν

p

Fµνξ
µ
p ξνp√

F/
√

2
. (5.46)

This term indeed can be interpreted as the relativistic version of the Pauli interaction
~B · ~s/m between the spin and the magnetic monopole field for a particle of mass m ∼√
F ∼

√
B [211]. The powers of F are dictated by Weyl invariance and the dimensionless

coupling gp can be interpreted as the magnetic moment of the particle. We then conclude
that, in order to describe fermionic vortices with half-integer spin, we need to add to the
action (5.17) the following term

∑
p

S
(p)
ξ = − i

2

∑
p

∫
dτ

ξνpgµν ( D

Dτ
ξµp

)
+ λp

(
Ẋµ
p gµνξ

ν
p

)
− gp√

2

√
Ẋµ
p gµνẊν

p

Fµνξ
µ
p ξνp√

F/
√

2

 .
(5.47)

To study the model given by (5.17)+(5.47), it is useful to proceed as in sec. 5.4.3. Namely
we integrate out the Coulomb field A0(x) and notice that to leading order in the velocities
ξ0
p ' 0. It is further convenient to introduce a Grassmannian vector in the R3 embedding
space as

~ξp =
d~Rp
dxip

ξip, ~Rp · ~ξp = 0 , (5.48)

where ~Rp is the particle position in embedding coordinates. The Lagrangian for n vortices
then reads

L =
∑
p

~A · ~̇Rp +
e2

8π

∑
p,r

qpqr log
(
~Rp − ~Rr

)2
+
i

2

∑
p

[
~ξp · ~̇ξp −

gp√
2

√
BεabcR

a
pξ
b
pξ
c
p

]
,

(5.49)

which differs from eq. (5.31) by the last term. Here a, b, c = 1, 2, 3 are used to label
embedding space indices. Due to the new contribution, each particle provides both an
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orbital and a spin contribution to the angular momentum. Thus eq. (5.33) is generalized
to

~J =
∑
p

(
~Lp + ~sp

)
, ~Lp = −Q

2
qp ~Rp, sap = − i

2
εabcξ

b
pξ
c
p . (5.50)

Notice that only ~J is conserved, while the orbital and the spin part alone are not, due to
the interaction of the spin with the magnetic monopole field.

We can now quantize the system as in sec. 5.4.3. We find [L̂ap, L̂
b
p] = iεabcL̂

c
p and

[ŝap, ŝ
b
p] = iεabcŝ

c
p, with ~̂sp ·~̂sp = 3/4, implying the SU(2) algebra for the angular momentum

~̂J . Calling ~L =
∑

p
~Lp and dropping the hat from operators, the Hamiltonian is

H = const. +
e2

4π
log ~L2 +

∑
p

gp
qp

~Lp · ~sp
R
√
Q
. (5.51)

Consider finally a semiclassical state made of a unit charge vortex-antivortex pair of
the kind considered around eq. (5.28). We assume that both vortices have the same
magnetic moment g > 0. For such a state the spin contribution to the angular momentum
is negligble: ~J ' ~L = Q∆~R. To compute the energy of this state we can approximate
〈~Lp ·~sp〉 ' ~Lclass.p · 〈~sp〉, where ~Lclass.p is obtained solving the classical equations of motion
at fixed angular momentum. Then we can choose the orientation of the particles’ spins
to minimize the energy and we obtain

∆ = ∆Q +

√
Q

3α1
log

J√
Q

+ 2γ̃
√
Q− g

2

J√
Q

+O
(√

Q× Q

J2

) √
Q� J ≤ Q , (5.52)

which differs by the prediction for two spinless vortices in eq. (5.28) only by the last term.

Let us generalize the conclusions of the previous analysis. The leading contribution to
the angular momentum, eq. (5.27), is generically unaffected by the presence of additional
degrees of freedom characterizing the vortex cores. Similarly, the dominant contribution
to the energy from the vortices always arises from the electrostatic interaction (5.24), due
to the logarithmic enhancement. Additional degrees of freedom might store energy in
the vortex cores, similarly to the vortex masses, and thus may provide new subleading
contributions to the energy; this is the case for the last term in eq. (5.52).

5.6.3 Vortices and spinning operators for a rank two symmetry group

The results derived in this chapter for the scaling dimension of spinning charged operators
in a CFT invariant under a U(1) symmetry equally apply to a theory with SU(2) symmetry.
This is because the non-Abelian structure of the group does not play any role in the
determination of the spectrum of operators with lowest dimensions, as we argued in sec.
4.1. Instead, though qualitatively similar, the detailed form of our predictions may change
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for higher rank groups. Here we discuss in detail the case of a rank two group.

In the simplest scenario, as discussed in sec. 4.1, the EFT determining the low energy
spectrum coincides with the one of a U(1)2 Abelian conformal superfluid. 12 The effective
Lagrangian is written in terms of two scalar fields χ1/2 = µ1/2t+ π1/2 as in eq. (4.4):

L/√g = (∂χ1)3/2(∂χ2)3/2P (X,Y ) + . . . , (5.53)

X =
∂µχ1∂

µχ2

(∂χ1)(∂χ2)
, Y =

(∂χ2)

(∂χ1)
. (5.54)

The spectrum of fluctuations is given by two gapless modes. The speed of sound of one of
them is fixed to be 1/

√
2 by conformal invariance, while the sound speed c− of the other

mode depends on the specific theory under consideration. The precise value of the cutoff
depends on the function P . For economy of thought, we shall focus on the regime where
the charges are comparable, Q1 ∼ Q2 � 1, in which case the cutoff is parametrically
given by Λ ∼√Q1/2/R. The scaling dimension of the lowest dimension operator at fixed
values of the charges reads

∆Q1,Q2 = α1 (r)Q3/2 + α2 (r)Q1/2 −
(

1 +
√

2c−

)
× 0.0937 +O

(
Q−1/2

)
, (5.55)

where Q =
√
Q1Q2 and the αi’s are functions of r = Q2/Q1. The gapless modes describe

the Fock space in eq. (4.12). In particular, the lowest energy state for fixed angular
momentum J � √Q corresponds to a single phonon state with energy

∆ = ∆Q1,Q2 + min

(
1√
2
, c−

)
×
√
J(J + 1) +O

(
J4

Q

)
. (5.56)

To study states with spin J &
√
Q, we need to include vortices in the EFT. As in sec. 5.3,

we first consider a dual formulation of the theory in terms of two gauge fields Amµ , m = 1, 2,
related to the scalar fields in eq. (5.53) via the Noether currents jmµ :

Fµνm =
1

4π

εµνρ√
g
jmρ , m = 1, 2 . (5.57)

As in eq. (5.15), the homogeneous charge densities translate into large monopole magnetic
fields Bm = Qm/2R

2. The dual Lagrangian reads

L/√g = −F 3/4
1 F

3/4
2 K(X̃, Ỹ ) , X̃ =

F1 · F2

F1 F2
, Ỹ =

F2

F1
, (5.58)

where F1 · F2 = Fµν1 gµρgνσF
ρσ
2 and the function K is given by the Legendre transform of

12As explained in sec. 4.1, this may not be the case for all theories. For instance we argued in sec.
4.2 that in the O(4) and O(5) models the ground state itself, for mixed symmetric representations, is
inhomogeneous and may carry non-zero angular momentum. Therefore, the following results do not
apply in that case.
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eq. (5.53):

F
3/4
1 F

3/4
2 K(X̃, Ỹ ) =

2∑
r=1

jrµ∂
µχr − (∂χ1)3/2(∂χ2)3/2P (X,Y ) . (5.59)

The formulation of the EFT then proceeds as before. Vortices correspond to heavy
charged particles, whose spacetime trajectory is parametrized by Xµ

p (τ). The full action
for the theory reads

S =−
∫
d3x
√
gF

3/4
1 F

3/4
2 K(X̃, Ỹ )−

∑
p

2∑
m=1

qp,m

∫
Amµ dX

µ
p

−
∑
p

∫
dτ F

3/4
1 F

3/4
2 Kp(X̃, Ỹ )

√
gµνẊ

µ
p Ẋν

p Fp

(
jrµẊ

µ

jrẊ

)
+ . . . , (5.60)

where the second term in the first line is the minimal coupling between the gauge fields
and the vortices, which are generically charged under both the gauge interactions, while
the term in the last line generalize the point-particle action of eq. (5.17). The same
considerations done before apply in this case. In particular, the EFT describes slowly
moving vortices, in which case the last line in eq. (5.60) reduces to a constant mass
contribution to leading order.

The analysis of the EFT (5.60) then mirrors the one in sec. 5.4.1. From the equations
of motion one finds that the vortices source electric fields Eim ≡ F 0i

m of order ∼ √Q
and that they move with drift velocity ~̇X ∼ | ~Em|/Bm ∼ 1/

√
Q. Assuming a state of n

vortices with the same mass, from the energy momentum tensor we find the energy of
the system as

∆ = ∆Q1,Q2 +
2∑

m,n=1

R3

2

[
e−2
]
mn

∫
dθdφ sin θ ~Em · ~En + nγ(r)

√
Q , (5.61)

where we defined the following matrix

[
e−2
]

= (2B1B2)3/4

 3K−4KX−4KY Ỹ
4B2

1

KX
B1B2

KX
B1B2

3K−4KX+4KY Ỹ
4B2

2

 . (5.62)

The subscripts on K denote differentiation with respect to the corresponding argument
and all quantities are evaluated on the background solution X̃ = 1 and Ỹ = B2/B1. Eq.
(5.61) is physically analogous to (5.23). However, now the gauge coupling e2 is a 2× 2

matrix and the masses of the vortices depend on r = Q2/Q1 through the independent
function γ(r). Stability of the ground state against the formation of vortices requires the
matrix (5.62) to be positive definite: [e−2] � 0. 13 The components of the matrix [e−2]

13Interestingly, this constraint is independent of the ones mentioned below eq. (4.10); we do not know
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Chapter 5. Spinning charged operators and vortices in 3d CFTs

cannot be expressed in terms of the ground state energy (5.55) or its derivatives, nor as a
function of the unfixed sound speed c2

− in eq. (4.10). As we will see below, this implies
that the predictions of the EFT will depend on more parameters than in the U(1) case.

Working in Coulomb gauge we may further express the total electric field energy a sum
of pairwise contributions for each charge. Cutting off the self-energy of the point charges
analogously to eq. (5.25), we find:

2∑
m,n=1

R3

2

[
e−2
]
mn

∫
dθdφ sin θ ~Em · ~En = − R

8π

∑
p 6=r

2∑
m,n=1

[e2]m,nqp,mqr,n logQ(~Rp − ~Rr)
2 ,

(5.63)
where [e2] is the inverse of [e−2]. The angular momentum ~J can also be calculated from
the stress tensor and its expression is analogous to eq. (5.27):

~J = R
2∑

m,n=1

Bm
[
e−2
]
mn

∫
dθdφ sin θ ~n iεij sin θEjn = −

∑
p

2∑
m=1

qp,m
Qm
2
~Rp . (5.64)

We may finally derive the results for the lowest energy state at fixed angular momentum.
For
√
Q� J . Q the ground state is given by a vortex anti-vortex pair, as in fig. 5.1.

Assuming [e2]1,1 ≤ [e2]2,2 with no loss of generality, from the self-energy contribution
to the energy we infer that particles with qp,2 6= 0 are energetically unfavored; thus the
particles in fig. 5.1 have qp,1 = ±1 and qp,2 = 0. We then find that for

√
Q � J ≤ Q1

the scaling dimension of the minimal energy state takes the following functional form

∆ = ∆Q1,Q2 + δ(r)
√
Q log ~J 2/Q+

√
Q γ̃(r) +O

(√
Q× Q

J2

)
, (5.65)

where the functions δ(r) and γ̃(r) cannot be determined by the EFT only.

As we increase the spin the analysis gets less intuitive. However, according to the previous
findings, we expect the CFT to be in a vortex crystal phase in the regime J � Q1, Q2. We
can compute the corresponding energy approximating the vortex charge distributions as
continuous and minimizing the energy at fixed angular momentum. In this case, the final
result does not depend on new parameters with respect to eq. (5.55) and it is analogous
to eq. (5.4) for a U(1) symmetry:

∆ = ∆Q1,Q2 +
1

2α1(r)

J2

Q3/2
+O

(
J2

Q3/2
× Q

J
,
J2

Q3/2
× J2

Q3

)
, Q� J � Q3/2 , (5.66)

where α1(r) is the coefficient of the leading term in the ground state energy (5.55). As
before, for J → Q3/2 the electric fields become comparable to the magnetic ones, the
vortex velocities approach the speed of light and the EFT breaks down.

any way to derive it directly in the scalar formulation.
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6 Spinning charged operators and
vortices in four dimensions

In the previous chapter, we have discussed the predictions of the vortex EFT for operators
which have large spin as well as large charge. Here we extend those predictions to
four-dimensional CFTs invariant under a U(1) internal symmetry. As explained in the
introduction to this part of the thesis, this is not an entirely trivial task. Indeed vortices
in four dimensions are described as heavy strings moving in the superfluid, whose physics
is richer than that of point-particles. We will find that this nicely matches the richer
structure of the rotation group in four dimensions.

6.1 Summary of results

Let us first set our conventions for the four dimensional rotation group SO(4). Spinning
operators in four dimensions are classified in representations labelled by two positive
half-integer quantum numbers (J, J̄). These are related to the maximal values allowed
for the Cartan generators J34 and J12 as

(J, J̄) =

( |J34 − J12|
2

,
|J12 + J34|

2

)
. (6.1)

With no loss of generality, we assume J34 ≥ J12 ≥ 0.

We consider a CFT invariant under an internal U(1) symmetry. In this case, the prediction
(3.21) of the conformal superfluid EFT for the scaling dimension of the lightest scalar
operator of charge Q� 1 in the spectrum is given by [35]

∆Q = α1Q
4/3 + α2Q

2/3 + . . . . (6.2)

In this chapter, we compute the scaling dimension of the lightest operator as the spin is
increased. As in chapter 5, the EFT describes the regime where the spin is below the
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Chapter 6. Spinning charged operators and vortices in four dimensions

unitarity bound, J, J̄ � Q4/3, and cannot reach the regime analyzed by the analytic
bootstrap [169–172, 184–190]. To leading order in the charge and the spin, the results
depend on the first coefficient in (6.2) and on an extra Wilson coefficient γ̃ parametrizing
the vortex tension.

For traceless symmetric operators J = J̄ = J34/2, the corresponding state passes through
three distinct regimes, qualitatively similar to the CFT3 case:

• For 2 ≤ J34 � Q1/3 the lightest operator corresponds to a phonon wave of angular
momentum J in the superfluid. The scaling dimension is given by (3.25), which in
d = 4 reads:

∆ = ∆Q +

√
J34(J34 + 2)

3
+O

(
J4

34

Q2/3

)
. (6.3)

• For Q1/3 � J34 ≤ Q, the minimal energy state is given by a single vortex ring,
whose radius increases with J . Its energy is

∆ = ∆Q + ∆V (Q, J34), (6.4)

where

∆V (Q, J) ≡ 3

8α1
Q1/6J1/2 log

(
J/Q1/3

)
− 3

4α1
Q1/6J1/2 log

(
1 +

√
J/Q

)
− 3

2α1
Q2/3 log

(
1 +

√
J/Q

)
+ γ̃Q1/6J1/2 +O

(
Q1/6J1/2 × Q1/3

J

)
. (6.5)

The leading contribution in (6.5) comes from the first term, because of the logarith-
mic enhancement. The other terms can be interpreted as finite-size corrections due
to the vortex extension and are functionally distinguished from the relative Q1/3/J

corrections.

• For Q� J34 � Q4/3 the superfluid forms a vortex crystal. The scaling dimension
of the corresponding operator is given by

∆ = ∆Q +
3

4α1

J2
34

Q4/3
+O

(
J2

34

Q4/3
× Q

J34
,
J2

34

Q4/3
×
(
J34

Q4/3

)2
)
. (6.6)

Mixed symmetric representations are conveniently parametrized in terms of J34, J12 in
(6.1). We write Jab to generically denote any of them. We find the following results:

• For 2 ≤ J12 ≤ J34 � Q1/3 the minimal energy state is given by two phonons
propagating on the superfluid, with energy:

∆ = ∆Q +

√
J34(J34 + 2)

3
+

√
J12(J12 + 2)

3
+O

(
J4
ab

Q2/3

)
. (6.7)
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6.1. Summary of results

• For 1 ≤ Q− J34 � Q and 2 ≤ J12 � Q1/3, the lowest energy state corresponds to
a Kelvin wave of spin J12 propagating on a large vortex ring. The corresponding
operator scaling dimension is given by:

∆ = ∆Q + ∆V (Q, J34)

+
3

8α1

π(J2
12 − 1)

Q1/3

[
logQ2/3 − 2ψ

(
J12 + 1

2

)
− 2γE − 1− log 64

]
+ γ̃

π(J2
12 − 1)

Q1/3
+O

(
J4

12

Q

)
. (6.8)

• For Q1/3 � J12 ≤ J34 ≤ Q and (J12 + J34 −Q)2 � J12J34/Q
2/3, the minimal

energy state is given by two vortex rings. When 1 ≤ Q− J34 � Q1/3 the energy is
given by the sum of the two free contributions

∆ = ∆Q + ∆V (Q, J34) + ∆V (Q, J12), 1 ≤ Q− J34 � Q1/3. (6.9)

Interactions correct the result in the general case, which takes the same form only
to logarithmic accuracy

∆ = ∆Q +
3

8α1
Q1/6

[
J

1/2
34 log

(
J34/Q

1/3
)

+ J
1/2
12 log

(
J12/Q

1/3
)]

+O
(
Q1/6J

1/2
ab

)
. (6.10)

• For Q� J12 ≤ J34 � Q4/3 the superfluid arranges in a vortex lattice as in (6.6);
the scaling dimension of the corresponding operator is

∆ = ∆Q +
3

4α1

J2
34 + J2

12

Q4/3
+O

(
J2
ab

Q4/3
× Q

Jab
,
J2
ab

Q4/3
×
(
Jab
Q4/3

)2
)
. (6.11)

The rest of this chapter is organized as follows. In sec. 6.2 we formulate the effective field
theory (EFT) for vortices in 3 + 1 dimensions. The results are derived in sec. 6.3. In sec.
6.4 we show how to make predictions for correlators involving a current insertion between
two vortex states and in sec. 6.5 we briefly comment on how the results (6.4) and (6.6)
change in generic spacetime dimensions. Some details are given in appendix C.

Conventions and coordinates on S3: We use indices a, b, . . . for the R4 embedding of S3,
which go from 1 to 4. Embedding coordinates are denoted Xa = Xa. Calling Xa(x) the
R4 coordinate corresponding to an S3 point x, the chordal distance between two points x
and x′ is given by:

∆X2(x, x′) =
∑
a

[
Xa(x)−Xa(x

′)
]2
. (6.12)

A convenient parametrization of S3 is provided by Hopf coordinates, defined via the
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Chapter 6. Spinning charged operators and vortices in four dimensions

embedding:

X1 = R cos ξ sin η, X2 = R sin ξ sin η, X3 = R cosφ cos η, X4 = R sinφ cos η.

(6.13)
This gives the following metric tensor

ds2

R2
= dη2 + sin2 ηdξ2 + cos2 ηdφ2, η ∈ [0, π/2], ξ ∈ [0, 2π], φ ∈ [0, 2π]. (6.14)

For fixed η different from 0 and π/2, ξ and φ describe an S1 × S1 submanifold.

6.2 Formulation of the EFT in four dimensions

6.2.1 Dual gauge field

Let us recall that the leading order conformal superfluid Lagrangian in d = 4 reads

L = c1(∂χ)4 + c2(∂χ)2

{
R+ 6

[∂µ(∂χ)]2

(∂χ)2

}
+ . . . , (6.15)

whose cutoff is set by Λ ∼ j0 ∼ Q1/3/R. We assume c1 and all other Wilson coefficients
to be of order one, corresponding to the generic expectation for a strongly coupled system.
From this Lagrangian we derive the phonon spectrum ωJ =

√
J(J + 2)/3, as discussed in

chapter 3. The results (6.3) and (6.7) then follow as explained in the three-dimensional
case in sec. 5.2. Throughout this chapter, unless otherwise stated, we shall work at
leading order in the derivative and field expansion within EFT.

As in 2 + 1 dimensions, to write a local coupling between vortices and the superfluid we
consider a dual description in terms of a gauge field. Following the same steps of sec.
5.3, we rewrite the leading order Lagrangian (6.15) using a two form Lagrange multiplier
Aµν = −Aνµ:

L = cv4 − 1

4π
Aµν

εµνρσ√
g
∂ρvσ, (6.16)

Integrating out vµ then gives

L = −κH4/3, Hµνρ = ∂µAνρ + ∂νAρµ + ∂ρAµν , (6.17)

where H =
√
−HµνρHµνρ and κ = 1

16π4/3

(
3

4c1

)1/3
. The U(1) current provides the

relation between χ and Aµν :

jµ = 4c(∂χ)2∂µχ =
1

12π

εµνρσ√
g
Hνρσ. (6.18)

Consequently, the homogeneous charge density 〈j0〉 = Q
2π2R3 in the vacuum translates
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6.2. Formulation of the EFT in four dimensions

into a constant background field:

〈Hηξφ〉 = −B sin η cos η, B ≡ Q

πR3
. (6.19)

The cutoff of the theory is thus set by B1/3 in the dual description:

Λ ∼ B1/3 ∼ Q1/3

R
. (6.20)

The action (6.17) is often called of Kalb-Ramond type and is invariant under the gauge
transformations Aµν → Aµν + ∂µξν − ∂νξµ, for an arbitrary vector ξµ. The gauge
redundancy allows imposing three gauge fixing conditions, since a gauge transformation
generated by a total derivative ξµ = ∂µα acts trivially.

In the following, we shall be interested in fluctuations of the background (6.19). It is thus
convenient to expand the gauge field in a background value Āµν plus fluctuations:

Aµν = Āµν + δAµν , (6.21)

where a possible choice is

Āηξ = Āηφ = 0, Āξφ = −B
2

(
1− cos2 η

)
. (6.22)

Fluctuations are conveniently parametrized in terms of two three vectors bi and ai defined
as:

δAij =
√
g εijkb

k, δA0i = ai. (6.23)

We partially fix the gauge requiring ∇iAik = 0, which sets the curl of bi to zero. Then
the Lagrangian to quadratic order in the fluctuation reads:

L ' 1

4e2
f2 +

1

2e2

[
ḃiḃi −

1

3

(
∇ibi

)2]
, (6.24)

where e2 = (
√

6B)2/3

8κ and f2 = fijf
ij with

fij = ∂iaj − ∂jai. (6.25)

Following the gauge fixing, the field bi is purely longitudinal and corresponds to the
phonon. Instead ai is a non-propagating degree of freedom, called the hydrophoton since
the residual U(1) gauge invariance acts as ai → ai − ∂iξ0. Analogously to the Coulomb
field in eq. (5.13), the hydrophoton does not correspond to a local field in the original
description and provides the leading coupling to the vortices.
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Chapter 6. Spinning charged operators and vortices in four dimensions

6.2.2 String-vortex duality

Vortices in the dual description correspond to topological line defects, which are described
as 1 + 1 dimensional strings embedded in the 3 + 1 dimensional spacetime [179–181]. The
line element of a vortex p is parametrized by Xµ

p (τ, σ), where τ and σ are the world-sheet
coordinates. We use the words “vortex” and “string” interchangeably. We also assume
that no light degrees of freedom, besides the string coordinates, live on the worldsheet.

The Lagrangian is required to be Weyl invariant and reparametrization invariant for both
τ and σ and is analogous to (5.17). The lowest order terms are given by

S = −κ
∫
d4x
√
gH4/3 −

∑
p

λp

∫
dτdσAµν∂τX

µ
p ∂σX

ν
p

−
∑
p

∫
dτdσH2/3

√
|det(Gαβ)|Fp

[
hαβG

αβ
]

+ . . . . (6.26)

The first term was discussed in the previous section. The second term is the leading
coupling between a string of vorticity λp ∈ Z and the gauge field. The last term is the
generalized Nambu-Goto (NG) action for the vortex; in appendix C.1 we derive its form
via the coset construction. Here, the world-sheet metric is provided by:

Gαβ = gµν∂αX
µ
p ∂βX

ν
p , α, β = τ, σ. (6.27)

Since the superfluid velocity breaks Lorentz invariance, one can construct another inde-
pendent symmetric world-sheet tensor, which can be chosen as

hαβ = ∂αX
µ∂βX

ν jµjν
j2

. (6.28)

In general the NG action contains an arbitrary function of Gαβhαβ, where Gαβ is the
inverse of Gαβ . Weyl invariance further fixes the power of H which multiplies it. Finally
dots in (6.26) stands for higher derivative terms.

Consider now the physical gauge X0
p = τ for vortices. Using (6.22), the second term in

(6.26) is linear in time derivatives of the vortex line. As we will self-consistently see in
the next section, this implies that vortices move with drift velocity | ~̇X| ∼ f/B ∼ B−1/3.
Then, similarly to what we argued below (5.17), terms of the kind ~̇X · ~̇X in the NG action
can be treated as higher derivatives and we neglect them. The coupling of the phonon
field to the strings is also negligible to leading order. In this regime, the action reduces to

S ' 1

e2

∫
d4x

{
1

4
f2 +

1

2

[
ḃiḃi −

1

3

(
∇ibi

)2]}
−
∑
p

∫
dτdσ

[
λp
(
Āij∂τX

i∂σX
j + ai∂σX

i
p

)
+ γpB

2/3(∂σX)
]
, (6.29)
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6.3. Scaling dimensions from vortices in four dimensions

where γp = 61/3Fp (1) and we define

(∂σX) =
√
|gij |∂σXi

p∂σX
j
p . (6.30)

From the first line of eq. (6.29), we see that the phonon spectrum to leading order is not
affected by the presence of vortices.

6.3 Scaling dimensions from vortices in four dimensions

6.3.1 Classical analysis

From the leading order action (6.29) the following equations of motion for the hydrophoton
and the strings are derived

− 1

e2
∇if ij =

∑
p

J jp ≡
∑
p

λp

∫
dσ ∂σX

j
p

δ3(xi −Xi
p)√

g
, (6.31)

λp

(
fik −B

√
gεijkẊ

j
p

)
∂σX

k
p = γpB

2/3|gij |
D

Dσ

[
∂σX

j

(∂σX)

]
. (6.32)

Eq. (6.31) is analogous to Ampère’s circuital law in magnetostatic, a vortex acting as
an electric current J ip sourcing the field f ij . Eq. (6.32) is the string equation of motion.
Notice that it is first order in time derivatives and implies that vortices move with drift
velocity | ~̇X| ∼ f/B ∼ B−1/3. The right-hand side arises from the NG action and it is
proportional to the covariant derivative of the line element D

Dσ

[
∂σXj

(∂σX)

]
; the left-hand side

comes from the minimal coupling to the gauge field.

As in sec. 5.4.1 the electrostatic problem required the net charge on the sphere to be zero,
the 3 + 1 dimensional magnetostatic problem defined by (6.31) and (6.32) requires zero
vorticity flux on every closed surface. To this aim, we only consider closed strings. This
point is perhaps more easily understood considering a vortex in the scalar description
(6.15), simlarly to what we did in sec. 5.2. In that language, a vortex configuration is
a field profile where the value of the field changes from π(x) = 0 to π(x) = 2πλ from
below to above of a certain two-dimensional spacelike surface, where λ ∈ Z (λ 6= 0) is
the vorticity [207]. The vortex is just the boundary of this surface. As S3 is a compact
manifold, the string must form a closed curve. In this picture it is also clear that a closed
vortex configuration cannot break into an open string. 1

The energy and the angular momentum associated to solutions of the EOMs are computed

1More formally, the surface described above is the object charged under the 2-form symmetry associated
with the current Jµνρ =

√
gεµνρσ∂

σχ ∝ Hµνρ/H2/3 [58]; conservation of this current, associated with the
winding number of the Goldstone, forbids the breaking of a closed string.
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from the stress energy tensor Tµν = 2√
g
δS
δgµν :

Tµν =
κ

H2/3

(
4HµσρH

σρ
ν + gµνH

2
)

+
∑
p

γpB
2/3

∫
dτdσ

δ4(xµ −Xµ
p )√

g

√
|det(Gαβ)|Gαβ ∂αXσ

p ∂βX
ρ
p gσµgρν . (6.33)

The classical energy of the state is found from

E =
∆

R
=

3Q4/3

8π2/3c
1/3
1 R

+
1

4e2

∫
d3x
√
gf2 +

∑
p

γpB
2/3

∫
dσ(∂σX). (6.34)

The first term is the energy of the homogenous ground state. The second term is the
energy stored in the magnetostatic field fij created by the vortices. Finally, the last term
is the contribution from the tension and is proportional to the length of the string Lp.

Eq. (6.31) gives the field ai in terms of the string current:

ai(x) = e2
∑
p

∫
d3x′Gij(x, x

′)J jp (x′), (6.35)

where Gij(x, x′) is the photon propagator on S3. In appendix C.2 it is shown that the
photon Green function on Sd−1 takes the form

Gij′(x, x
′) = −

(
∂i∂j′u(x, x′)

)
F (u(x, x′)), u =

1

2
∆X2(x, x′) (6.36)

where ∆X2 is the chordal distance between two points in embedding space, and

F (u) =
Γ(d− 3)

(4π)
d−1

2 Γ
(
d−1

2

)
Rd−3

2F1

(
1, d− 3;

d− 1

2
; 1− u

2R2

)
. (6.37)

Finally, we can also restore the subleading terms in the Lagrangian (6.15). Neglecting the
fluctuations induced by vortices everywhere but in the leading term, the scaling dimension
of the corresponding operator is written as

∆ = ∆Q +
Re2

2

∑
p,p′

∫
d3x
√
g

∫
d3x′

√
g′J jp (x)Gjk′(x, x

′)J k′p′ (x′) +
∑
p

γpRB
2/3Lp,

(6.38)
where ∆Q = α1Q

4/3 + . . . as in eq. (6.2) and α1 = 3
8π2/3c1/3

. Notice the analogy with the
structure of eq. (5.26).

The angular momentum (in units of 1/R) of the corresponding state can be computed
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similarly:

Jab =
RB

2e2

∫
d3x
√
g niabεijk

√
gf jk, (6.39)

where nab is the Killing vector corresponding to a rotation in the (Xa, Xb) plane. Using
Ampère’s law (6.31) and Stoke’s theorem, we can conveniently rewrite it as

1

2
Jabεabcd = −RB

2

∑
p

λp

∫
dσp

[
Xp
c (∂σX

p
d)−Xp

d(∂σX
p
c )
]

= −RB
∑
p

λp

∫
dXp

c ∧ dXp
d ,

(6.40)
where Xp

a are the vortex coordinates in the R4 embedding of S3. The last equation on
the right-hand side is a formal notation for the area enclosed by the vortex projection in
the (Xc, Xd) plane of the R4 embedding of S3.

In the following we will study simple specific configurations.

6.3.2 Vortex rings

In nature, vortices often have a ring shape and move with a constant speed inversely
proportional to the radius [178]. It is hence natural to look for vortex ring solutions of the
EOMs (6.31) and (6.32). As we will see, a vortex ring generalizes the vortex-antivortex
configuration in fig. 5.1.

The simplest configuration one can study is a slowly moving vortex ring with unit negative
charge λ = −1. We pick the gauge ξ = σ and consider a radius rR ≤ R ring in the
(X1, X2) plane in embedding space. The EOMs implies that the ring rotates with constant
drift velocity v in the (X3, X4) plane:

X2
1 (t, σ) +X2

2 (t, σ) = R2 sin2 η(t, σ) = R2r2 = const. φ(t, σ) = vt+ const. . (6.41)

The precise value of v is fixed by eq. (6.31). From eq. (6.40) it follows that the only
nonvanishing component of the angular momentum is given by:

J34 = Qr2. (6.42)

In figure 6.1 the motion is depicted in stereographic coordinates, defined by the relation
(x, y, z) = 1

1+X1
(X3, X4, X2). Eq. (6.41) corresponds to a ring orbiting around the z axis;

as the angular momentum is increased, the ring size increases and its velocity decreases.
For r → 1 the surface embedded by the ring in the stereographic projection extends to
cover the whole plane and the vortex lies statically on the geodesic corresponding to the z
axis. Fig. 6.1 qualitatively generalizes the 2 + 1 dimensional motion depicted in fig. 5.1.
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Chapter 6. Spinning charged operators and vortices in four dimensions

Figure 6.1 – The vortex ring orbit in stereographic coordinates.

Using (6.38) we can calculate the energy of this configuration as:

E = ∆Q/R+
e2R

2

∫∫
dξdξ′J i(ξ)Gij

(
x(ξ), x(ξ′)

)
J j(ξ′) + γB2/32πrR, (6.43)

The only nontrivial contribution arises from the second term, corresponding to the
magnetostatic self-energy of the string. It diverges due to the short distance behaviour
of the hydrophoton propagator. We regulate the calculation working in d spacetime
dimensions, as explained in appendix C.3; the result is

E = ∆Q/R+ e2πR

{
r

2π(4− d)
+
r
[
log
(
4πr2B2/3R2

)
+ 9

2 + 1
3 log 6− γE − 2ψ

(
3
2

)]
4π

− r

2π
log(r + 1)− 1

π
log(r + 1)

}
+ γB2/32πrR. (6.44)

Details of the computation are given in appendix C.3.1. There is a divergent piece for
d → 4 proportional to the vortex length, which renormalizes the string tension. The
contribution logarithmically enhanced by the cutoff ∼ e2r log

(
r2B2/3

)
can be seen as a

consequence of the renormalization group running of γ induced by the hydrophoton [179].
Collecting everything, the scaling dimension (6.38) for a vortex ring state reads

∆ = ∆Q + ∆V (Q, J34), (6.45)

where we isolated the vortex contribution to the energy:

∆V (Q, J) =
3

8α1
Q1/6J1/2 log

(
J/Q1/3

)
− 3

4α1
Q1/6J1/2 log

(
1 +

√
J/Q

)
− 3

2α1
Q2/3 log

(
1 +

√
J/Q

)
+ γ̃Q1/6J1/2. (6.46)

136
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Here γ̃ is a finite new coupling which absorbs all contributions proportional to r in (6.44).
As in (5.28), the leading contribution arises because of the classical running of the tension
induced by the magnetostatic self-energy and is given by the first term in (6.46). For
J � Q, the other contributions can be expanded in powers of the vortex length and to
leading order effectively scale as Q1/6J1/2. Physically, this is understood noticing that
the vortex energy density is set by e2 ∼ Q2/3, hence for short vortices the energy can be
estimated as the length times the energy density (neglecting the logarithmic running of
the tension): 2πrR× e2/3 ∼ Q1/6J1/2. However, as J → Q the functional dependence of
the second and third term in eq. (6.46) deviates from this expectation, as a consequence
of the vortex finite size.

As the ring radius is decreased to inverse cutoff length r → 1/(ΛR), corresponding to
J34 → Q1/3, the magnetostatic field f ∼ e2/(Rr) becomes of the same order of the
background field B and the vortex velocity approaches the relativistic regime. Hence
subleading contributions to (6.29) become unsuppressed and the EFT breaks down.

Eq. (6.45) can be identified as the minimal energy state at fixed angular momentum in
its regime of validity.

We now study states with two vortices, one laying on the (X1, X2) plane and the other
on the (X3, X4) plane in embedding space. Because of (6.40), these configurations are
associated to operators in mixed symmetric representations of the SO(4) group.

Consider first a radius R ring in the (X1, X2) plane interacting with a ring of arbitrary
size in the (X3, X4) plane. In this geometry, the interaction does not affect the equations
of motion and the solution takes a simple form

vortex 1 : X2
1 (t, σ1) +X2

2 (t, σ1) = R2, σ1 = ξ1;

vortex 2 : cos2 η2(t, σ2) = r2
2, ξ2(t, σ2) = v2t, σ2 = φ2.

(6.47)

Focussing on negative unit charge vortices λ1 = λ2 = −1, this configuration corresponds
to an operator in a mixed symmetric representation with spin given by

J34 = Q, J12 = Qr2
2. (6.48)

Since the electric currents J i sourced by the strings are orthogonal, the corresponding
scaling dimension is found analogously to (6.45):

∆ = ∆Q + ∆V (Q, J34) + ∆V (Q, J12). (6.49)

To leading order, a similar solution exists for 0 ≤ (1 − r2
1) � (RΛ)−2, hence for 0 ≤

Q− J34 � Q1/3. As before, the consistency of the EFT requires J12 � Q1/3.

In general, the mutual interaction affects non trivially the motion of the two vortex
rings. One can, however, identify the logarithmically enhanced contributions analogous
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to the first term in (6.46) just from the free action. These indeed arise from the running
of the tension induced by the hydrophoton contribution to the vortex self-energy. For
Q1/3 � J12, J34 ≤ Q, the leading contribution to the energy reads:

∆ = ∆Q +
3

8α1
Q1/6

[
J

1/2
34 log

(
J34/Q

1/3
)

+ J
1/2
12 log

(
J12/Q

1/3
)]
. (6.50)

This result holds as long as the minimal distance ∆Xmin between the two vortices is
larger than the inverse of the cutoff:

∆X2
min

R2
∼ (J12 + J34 −Q)2

J12J34
� 1

Q2/3
. (6.51)

6.3.3 Vortex crystals

Since the magnetostatic self-energy of a single vortex is proportional to λ2, strings with
|λ| ≥ 1 are energetically unfavored. Hence the minimal energy state for values of the
angular momentum J34 � Q is made by n� 1 vortices. We then approximate the vortex
distribution with a continuous current density J i(x). The corresponding state is found
minimizing the energy (6.34) at fixed angular momentum (6.39), giving the following
density profile:

J ξ =
2

πR2

J34

Q
, J φ = J η = 0. (6.52)

The leading contribution to the energy comes from the magnetostatic field and reads

∆ = ∆Q +
3

4α1

J2
34

Q4/3
. (6.53)

Physically, this state corresponds to a vortex crystal [197,198]. When J34 → Q4/3, the
magnetic field f approaches B, vortices become relativistic and the EFT breaks down.

Similarly, the ground state for Q � J34, J12 � Q4/3 is provided by a vortex crystal,
whose current density and energy are given by

J ξ =
2

πR2

J34

Q
, J φ =

2

πR2

J12

Q
, J η = 0, (6.54)

∆ = ∆Q +
3

4α1

J2
34 + J2

12

Q4/3
. (6.55)

6.3.4 Quantization and Kelvin waves

Vortices in four dimensions are extended objects and can thus propagate Kelvin waves
on them [179]. The corresponding states are associated to primary operators in the
CFT. To study them, we consider a single string of vorticity λ = −1. It is convenient to
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parametrize its coordinates via the following variables:

z(t, σ) = X1(t, σ) + iX2(t, σ) = R sin η(t, σ)eiξ(t,σ), (6.56)

w(t, σ) = X3(t, σ) + iX4(t, σ) = R cos η(t, σ)eiφ(t,σ). (6.57)

These are related through the constraint |z|2 + |w|2 = 1. We pick the gauge ξ = σ and
t = τ . Integrating out explicitly the hydrophoton from eq. (6.29), we find the single
vortex action as

S1−vortex =

∫
dtdσ

[
i
B

2
w∗ẇ − γB2/3

√
|∂σz|2 + |∂σw|2

]
+
e2

4

∫
dtdσdσ′

(
∂σ∂σ′∆X

2(σ, σ′)
)
F

(
∆X2(σ, σ′)

2R2

)
, (6.58)

where F is given in (6.36). Eq. (6.58) can be seen as the (nonlocal) action of a complex
field w(t, σ) living on R× S1. It is manifestly invariant under the action of the unbroken
rotation generators J34, corresponding to rotations around the vortex w → eiαw, and J12,
corresponding to translations along the string σ → σ + α.

We expand for small fluctuations around the background w = 0, which describes a radius
R ring in the (X1, X2) plane with J34 = Q. The action to quadratic order reads:

S1−vortex '
∫
dtdσ

[
i
B

2
w∗ẇ − γB2/3 − γB2/3

2
|∂σw|2 +

γB2/3

2
|w|2

]
+ S

(2)
non−local,

(6.59)
where S(2)

non−local is found expanding the second line in (6.58). It follows that the vortex
is quantized as a standard non-relativistic field:

w(t, σ) =

√
2

B

∞∑
n=−∞

an
2π
e−iωnt+inσ, [an, a

†
m] = 2πδnm. (6.60)

As usual the an annihilate the vacuum an |0〉 = 0, and thus so does w(t, σ). The proper
frequencies ωn are computed in appendix C.3.2 and read

Rωn ≡ ∆k(n) =
π(n2 − 1)

Q1/3

{
3

8α

[
logQ2/3 − 2ψ

(
n+ 1

2

)
− 2γE − 1− log 64

]
+ γ̃

}
.

(6.61)
Notice that the n = 0 mode decreases the energy, while the n = ±1 modes have ω±1 = 0.
This can be understood from the expression of the angular momentum in terms of ladder
operators at order O(Q0). The rotations generated by J12 and J34 are linearly realized
and their generators are quadratic in terms of ladder operators:

J34 = Q−
∑
n

a†nan
2π

, J12 =
∑
n

n
a†nan
2π

. (6.62)
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Figure 6.2 – A Kelvin wave in stereographic coordinates (x, y, z) = 1
1+X1

(X3, X4, X2).

The string realizes nonlinearly the full rotation group. As a consequence, the broken
components of the angular momentum are linear in the n = ±1 annihilation and creation
operators:

J23 + J14 = −
√
Q

2π

(
a−1 + a†−1

)
, J23 − J14 =

√
Q

2π

(
a1 + a†1

)
,

J31 + J24 = i

√
Q

2π

(
a−1 − a†−1

)
, J31 − J24 = i

√
Q

2π

(
a1 − a†1

)
.

(6.63)

From (6.62) we see that the n = 0 mode decreases J34 (and the radius of the vortex) by
one unit, hence it corresponds to the quantization of the classical ring solution discussed
in 6.3.2. Eq. (6.63) implies that the n = ±1 modes do not correspond to new states, but
describe rotations of the string orientation and therefore have vanishing frequency. In this
sense, their role is analogous to that of the J = 1 phonons for the conformal superfluid,
which describe descendants of the ground state as explained in sec. 3.2.2.

The modes with |n| ≥ 2 correspond to new solutions and are interpreted as Kelvin waves
propagating on the vortex; in the CFT they correspond to operators with the following
quantum numbers 2

J34 = Q− 1, J12 = n, ∆ = ∆Q + ∆V (Q,Q) + ∆k(n). (6.64)

As shown in fig. 6.2, a Kelvin wave in stereographic coordinates takes the form of a
solenoid, trapping the magnetic field inside. The string undergoes a helical motion
analogous to the one of a wine opener.

2In ∆ we neglect a ∼ Q−1/3 contribution from the vortex Casimir energy; this term does not depend
on J12 and can be thought as a subleading correction to ∆V .
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Notice that Kelvin waves carry less energy than phonons with the same angular momentum.
It follows that a state obtained acting on the vacuum as

(a†0)ma†n |0〉 ≡ |J34 = Q−m− 1, J12 = n〉 (6.65)

is the minimal energy state for the specified value of the angular momentum.

This description applies in the linear regime m+1 = Q−J34 � Q. When n = J12 → Q1/3

higher derivative terms become unsuppressed and the EFT breaks.

6.3.5 Higher order corrections

Corrections arise from higher derivative terms we neglected in (6.29) and are suppressed
by powers of the cutoff scale (6.20). Here we comment on their form.

The first class of corrections was discussed in chapter 3 and arises considering the effect
of curvature terms in the superfluid and vortex action; these corrections are controlled
by the sphere radius and hence scale as 1/(ΛR)2 ∼ 1/Q2/3. They are also present in the
absence of vortices and provide the subleading terms in eq. (6.2).

Focus now on the single vortex state described in sec. 6.3.2. We find corrections controlled
by the vortex length L ∼

√
J34/Q, which hence scale as 1/(ΛL)2 ∼ Q1/3/J34 (we assume

parity invariance, hence they depend only on L2). They arise from the terms we neglected
in the NG action to write (6.26) and are proportional to (∇ibi)/B, f2/B2 and ~̇X2. Higher
derivatives of the string line element as well as the phonon contribution to the energy (6.17)
belong to the same class. Similarly, there are corrections of the form Q1/3/J34, Q

1/3/J12

to eq. (6.49) for a two vortex state. Notice that the subleading Q2/3 term in the ground
state energy is bigger than the vortex contribution (6.46) for Q1/3 � J34 � Q. The latter
gives instead the leading contribution for J34 ∼ Q. The vortex contribution is anyway
functionally distinguished from the ground state energy correction and is thus calculable.

Let us now turn our attention to the Kelvin waves discussed in 6.3.4. The same corrections
discussed for a vortex ring exists in this case. Furthermore, for n� 1 higher derivative
corrections to the single vortex action (6.59) become important. As typical for a non-
relativistic field, these arise due to terms with two time derivatives, or, equivalently, with
four space derivatives (suppressed by an extra H−2/3 factor by Weyl invariance) and scale
as n2/Q2/3 = J2

12/Q
2/3. Notice that the relative corrections to the ground state energy

of the vortex are bigger than the Kelvin wave energy (6.61) for J2
12/Q

1/3 . Q1/2/J
1/2
34 ;

however, these corrections are independent of J12, which enters only through (6.61).

Finally, the leading corrections to the energy of the vortex crystals states discussed
in 6.3.3 arise both from the phonon contribution to the energy, which is proportional
to (∇ibi)2/f2 ∼

(
Jab/Q

4/3
)2, and from the free tension contribution, which gives Q/J
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corrections using (6.52) or (6.54). Here Jab stands for both J34 and/or J12 depending on
the state.

6.4 Correlators

We now turn our attention to the study of correlators. As in sec. 5.5, the most natural
correlation function3 which can be studied corresponds to a current insertion within two
equal vortex states. In the EFT, this is determined through the following relations:

〈j0〉 =
Q

2π2R3
, 〈jφ〉 =

√
g

2π
fηξ , 〈jξ〉 = −

√
g

2π
fηφ . (6.66)

The hydrophoton field is obtained from (6.31), which, in analogy with Ampère’s law, can
be conveniently rewritten in integral form as

1

2

∮
C
dxiεijk

√
gf jk = −e2λenc , (6.67)

where λenc is the vorticity flux through the surface enclosed by the curve C. Using this
relation, eq.s (6.66) can be used to make nontrivial predictions about the OPE coefficients
of the theory.

Consider first the traceless symmetric state corresponding to a radius R vortex in the
(X1, X2) plane, which has J34 = Q and J12 = 0. For this state, eq. (6.66) reads:

〈j0〉 =
Q

2π2R3
, 〈jφ〉 =

e2

4π2R
, 〈jξ〉 = 0 . (6.68)

The expectation value of a spin-1 parity even conserved operator in a traceless symmetric
state |(J, J), J34 = 2J, J12 = 0〉 is [205]:

〈(J, J), 2J, 0|j0(η, ξ, φ)|(J, J), 2J, 0〉 = R−3
2J∑
m=0

am sin2m η ,

〈(J, J), 2J, 0|jφ(η, ξ, φ)|(J, J), 2J, 0〉 = R−3
2J∑
m=0

bm sin2m η ,

〈(J, J), 2J, 0|jξ(η, ξ, φ)|(J, J), 2J, 0〉 = 0 ,

(6.69)

where am and bm are arbitrary theory dependent real coefficients, subject to the constraint∑
m bm = 0. Then the EFT gives

am =

{
Q

2π2 , if m = 0 ,

0, if 1 ≤ m� Q1/3 ;
bm =

{
3Q2/3

8π2α1
, if m = 0 ,

0, if 1 ≤ m� Q1/3 .
(6.70)

3To leading order, scalar insertions read as in the homogeneous phase [35].
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Predictions are made only for m� Q1/3 since the EFT breaks for distances of order of
the inverse cutoff (6.20) from the vortex, which lies at η = π/2. 4

A similar analysis can be done for the vortex crystal states in (6.53) and (6.55). Consider
first the traceless symmetric case Q� J34 � Q4/3 and J12 = 0. Using (6.52), eq. (6.66)
reads

〈j0〉 =
Q

2π2R3
, 〈jφ〉 =

e2

2π2R

J

Q
cos2 η , 〈jξ〉 = 0 . (6.71)

This expression holds on scales larger than the vortex separation ∼ 1/
√
J ∼

√
Q/J , on

which the continuous approximation (6.52) can be used. It is then convenient to rewrite
eq. (6.69) in Fourier basis

〈(J, J), 2J, 0|j0(η, ξ, φ)|(J, J), 2J, 0〉 = R−3
2J∑
m=0

ãm cos (2mη) ,

〈(J, J), 2J, 0|jφ(η, ξ, φ)|(J, J), 2J, 0〉 = R−3
2J∑
m=0

b̃m cos (2mη) .

(6.72)

Cutting off the sums at m�
√
J , we obtain the following predictions

ãm =

{
Q

2π2 , if m = 0 ,

0, if 1 ≤ m�
√
J/Q ;

b̃m =

 3
8π2α1

J34

Q1/3 , if m = 0, 1 ,

0, if 2 ≤ m�
√
J/Q .

(6.73)
Analogously, for the state (6.55) with Q� J12, J34 � Q4/3, the EFT gives

〈j0〉 =
Q

2π2R3
, 〈jφ〉 =

e2

2π2R

J34

Q
cos2 η , 〈jξ〉 =

e2

2π2R

J12

Q
sin2 η . (6.74)

Without loss of generality, we assume J12 ≤ J34. The three-point function of a spin-1
conserved operator in a mixed symmetric state |(J, J̄), J34, J12〉, where J34 and J12 are
related to (J, J̄) as in (6.1), can be conveniently written as [212,213]:

〈(J, J̄), J34, J12|j0(η, ξ, φ)|(J, J̄), J34, J12〉 = R−3

2|J−J̄ |∑
m=0

am cos(2mη) ,

〈(J, J̄), J34, J12|jφ(η, ξ, φ)|(J, J̄), J34, J12〉 = R−3

2|J−J̄ |+1∑
m=0

bm cos(2mη) ,

〈(J, J̄), J34, J12|jξ(η, ξ, φ)|(J, J̄), J34, J12〉 = R−3

2|J−J̄ |+1∑
m=0

cm cos(2mη) .

(6.75)

Here am, bm and cm are real coefficients, which satisfy the constraints
∑

m(−1)mbm =

4To appreciate this, it is useful to write sin2m η ≈ exp
(
−mδη2

)
for m � 1 and δη = π/2 − η � 1,

which is exponentially suppressed away from the vortex core for m & Q1/3.
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∑
m cm = 0 and b2|J−J̄ |+1 = −c2|J−J̄ |+1. We then obtain the following results for the

OPE coefficients:

am =

{
Q

2π2 , if m = 0 ,

0, if 1 ≤ m�
√
J12/Q ;

bm =

 3
8π2α1

J34

Q1/3 , if m = 0, 1 ,

0, if 2 ≤ m�
√
J12/Q ;

(6.76)

cm =


(−1)m3
8π2α1

J12

Q1/3 , if m = 0, 1 ,

0, if 2 ≤ m�
√
J12/Q .

6.5 Vortices in arbitrary dimensions

Based on the considerations of this and the previous chapter, it is not hard to understand
the qualitative feature of the vortex EFT in higher spacetime dimensions. We give
some brief comments here for completeness. We focus on the derivation of the scaling
dimensions for traceless symmetric operators.

We first need to construct the dual of the d dimensional Lagrangian (3.8) in terms of a
d− 2 form gauge field A. Proceeding as in sec. 6.2.1, this reads

L = −κ |H ·H|
d

2(d−1) , H = dA. (6.77)

As in (6.18), the gauge and the scalar description are related by ∗H ∝ j, where ∗ stands
for the Hodge dual. The action (6.77) can be expanded to quadratic order in terms of a
non-propagating hydrophoton d− 2 gauge form and a longitudinal vector corresponding
to the phonon. The cutoff of the action is given by Λ ∼ Q

1
d−1 . The energy of the

homogeneous ground state reads

∆Q = α1Q
d
d−1 + α2Q

d−2
d−1 + . . . . (6.78)

Vortices are d− 2 membranes which couple to the gauge field A through a Kalb Ramond
like interaction. Calling Xµ

p (σ̄) their line elements, where σ̄ = (τ, σ1, . . .) parametrizes
the membrane coordinates, this coupling reads

SKR = −
∑
p

λp

∫
dXµ1

p ∧ dXµ2
p ∧ . . . ∧ dX

µd−2
p Aµ1µ2...µd−2

. (6.79)

One can similarly write the Nambu-Goto like action for the membrane [64]; we do not
report here the expression since its detailed form will not be needed in the following.

One can now proceed as in sec. 6.3. From the energy momentum tensor, one finds that
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the leading contribution to the vortex energy comes from the hydrophoton gauge field.
Generalizing eq.s (5.27) and (6.40), the angular momentum is proportional to the volume
enclosed by the vortex in embedding coordinates.

For J � Q
1
d−1 the lowest dimension operator corresponds to a phonon propagating in

the superfluid, with scaling dimension given by

∆ = ∆Q +

√
J(J + d− 2)

d− 1
, J � Q

1
d−1 , (6.80)

where ∆Q is given by (6.78).

For Q
1
d−1 � J ≤ Q, the minimal energy state corresponds to a single spherical vortex in

embedding space. The leading contribution to the vortex energy arises from the running
of the tension, induced by the hydrophoton contribution to the self-energy as in (6.44).
This can be computed using a flat space approximation for the gauge field Green function
and a UV hard cutoff Λ ∼ Q 1

d−1 /R to regulate the result:

∆ = ∆Q +
d− 1

2dα1
J
d−3
d−2Q

1
(d−1)(d−2) log

(
J/Q

1
d−1

)
, Q

1
d−1 � J ≤ Q, (6.81)

where ∆Q is given by (6.78). We expect d-dependent corrections to eq. (6.81), of
order J

d−3
d−2Q

1
(d−1)(d−2) , similarly to eq. (6.45); these contributions however will not be

logarithmically enhanced by the cutoff.

As in section 6.3.3, for Q � J � Q
d
d−1 we can identify the minimal energy state as a

vortex crystal. Following the same steps which lead to (6.53), we find the energy of this
state:

∆ = ∆Q +
d− 1

4α1

J2

Q
d
d−1

, Q� J � Q
d
d−1 . (6.82)

Eq.s (6.81) and (6.82) match the results obtained for d = 3, 4.
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Conclusions to Part III

To summarize, in this part of the thesis we studied the properties of operators with large
global charge and large spin in U(1) invariant CFTs by combining the state-operator
correspondence with the EFT of vortices in superfluids. We also calculated correlation
functions with two such operators and the Noether current. Other correlators as well as
higher order corrections can be systematically computed.

Our results apply to any CFT that satisfies three conditions: first, its large charge sector
can be described as a superfluid; second, this superfluid admits vortices; third, the only
low energy degrees of freedom are the Goldstone modes of the superfluid. These are
the simplest and most natural conditions we can imagine. Because of this, we believe–
but cannot prove–that our results apply to a wide range of CFTs with a U(1) global
symmetry. For example, we expect that they apply to the critical O(2) model [103] in
three dimensions and can be tested in principle. In light of the discussion in sec. 4.1, we
expect our results to apply to theories with SU(2) global symmetry as well.

The most direct extension of this work would be a detailed analysis of higher order
corrections, both in three and four dimensions. In particular, a refinement of the continuum
approximation used for J � Q might allow for the study of collective excitations in the
vortex crystal phase, corresponding to an unexplored class of universal CFT operators,
possibly similar to the Tkachenko modes [214, 215], recently studied via effective field
theory techniques in [93,94].

It should be possible to study explicitly the operators discussed in chapters 5 and
6 in perturbative theories. The three-dimensional U(1) gauge theories discussed in
[104, 111, 136, 137, 142–147] at large N provide examples of weakly coupled magnetic
theories, in the language of sec. 5.6.1, in which we expect our results to apply. Relatedly,
vortices were also studied in the “holographic superconductors” states [148–150] using
the AdS/CFT correspondence [216]. The Wilson-Fisher fixed points within the epsilon
expansion [103] are examples of weakly coupled electric models in which our description
should apply. We will discuss them in some detail in part IV of the thesis, but we will
not address the question concerning operators with large charge and large spin. We
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Conclusions to Part III

also mention that, recently, large charge spinning operators were studied by very similar
techniques in non-relativistic conformal field theories [217].

Perhaps AdS/CFT can also teach us how to study operators with J ∼ ∆ using EFT
techniques, as this was the original motivation for the large spin bootstrap work [169–172,
184–190]. The idea was that these operators should be described as widely separated—and
therefore weakly interacting—objects in AdS space [170,184]. 5 This weak interaction
suggests an EFT description, and such an EFT would then apply to all CFTs.

5A similar picture was proposed in [168], with no reference to the gravity dual.
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Part IVThe ε-expansion meets semiclassics

So far we have investigated the properties of conformal field theories at large internal
charge, mostly focusing on strongly coupled theories. However, it is natural to ask how
the results we have discussed arise in a perturbative setting. Indeed, while the effective
superfluid description should equally well apply to strongly and weakly coupled theories,
in the latter case it is also possible to work directly in the full theory, bypassing the EFT
construction, or, in fact, deriving it. The goal of this last part of the thesis is to illustrate
this point. We shall do so computing the scaling dimensions of the lightest operator of
charge n in two different models which can be studied within the ε-expansion: the O(2)

Wilson-Fisher (WF) fixed point in 4 − ε dimensions [103], that we study in chapter 7,
and the tricritical U(1) CFT in 3− ε dimensions [218], that we discuss in chapter 8.

Besides providing a concrete “UV” realization of the conformal superfluid EFT discussed in
the previous chapters, studying correlators of large charge operators in these perturbative
theories presents an additional element of interest. Indeed, let us consider the scaling
dimension ∆φn of the lightest charge n operator, φn, at the WF fixed point. As we will
show in detail in chapter 7, within diagrammatic perturbation theory the latter is given
by a polynomial in ε and n:

∆φn = n
∑
k

εk
(
ckn

k + . . .+ c1

)
= n+O

(
εn2
)
. (IV.1)

At fixed order in perturbation theory, eq. (IV.1) is clearly incompatible with the expected
behaviour at large charge, ∆n ∝ n

d
d−1 . The key observation is that the perturbative

parameter controlling the diagrammatic expansion for ∆n is not ε, but εn. As the charge
increases, εn → 1, and the perturbative result cannot be trusted anymore. This is a
specific instance of a general issue: the breakdown of the perturbative expansion in the
study of multi-legged amplitudes. 1 How shall we proceed in this case?

In chapter 7 we will show that, in the Wilson-Fisher fixed point, we can overcome this
issue by working in a double-scaling limit, given by ε→ 0 with εn = fixed. In this limit,

1As we review in the introduction of chapter 7, these were previously studied in relation to the
production of a large number of massive particles [133].
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the scaling dimension of the operator φn can be computed through a systematic expansion
around a non-trivial trajectory in the path-integral, yielding the result in the form

∆φn =
1

ε
∆−1(εn) + ∆0(εn) + ε∆1(εn) + . . . , (IV.2)

with ∆`−1 representing the `-th loop contribution. This expansion matches the result of
Feynman diagram calculations for εn� 1, in which case each function ∆k(εn) nontrivially
resums the result of an infinite number of loop diagrams, while matching the predictions
of the large charge expansion when εn� 1.

Before discussing the details of the derivation of eq. (IV.2), it is useful to discuss a simple
example, in the form of an ordinary integral, which illustrates the origin of this result. 2

Invitation: perturbation theory for an ordinary integral

Consider the following ordinary integral defining the function g(λ, n): 3

Γ

(
n+

1

2

)
g(λ, n) =

∫ ∞
−∞

dxx2n exp [−S(x)] , S(x) = x2 +
λ

4
x4 . (IV.3)

We shall treat λ as a small parameter, analogous to a perturbative coupling in quantum
field theory. The standard perturbative analysis amounts at expanding the quartic term
in the exponential as e−λx4

= 1− λx4 + λ2

2 x
8 + . . .. This is equivalent to performing a

saddle point analysis for λ→ 0 with n fixed. The result is conveniently written in terms
of the logarithm of g as

log g(λ, n) = − λ

16

(
4n2 + 8n+ 3

)
+
λ2

32

(
4n3 + 16n2 + 19n+ 6

)
+O(λ3n4). (IV.4)

Clearly, the perturbative expansion breaks down for λn/4 & 1, analogously to the
Feynman diagram expansion for ∆φn in (IV.1), where the role of λ is played by ε.

To understand the origin of this issue, let us write x2n = en log x2 so that eq. (IV.3) can
be rewritten as

Γ

(
n+

1

2

)
g(λ, n) =

∫ ∞
−∞

dx exp [−Smod(x)] , (IV.5)

where we defined a modified action as

Smod(x) = x2 +
λx4

4
− n log x2 . (IV.6)

To get to equation (IV.4) we expanded the integrand around the point x = 0, corresponding
to a saddle-point approximation in which x2n is treated as a perturbation. However,

2The same example is also discussed in [219,220].
3This integral defines the confluent hypergeometric function g(λ, n) = λ−n/2−1/4U

(
n
2

+ 1
4
, 1

2
, 1
λ

)
.
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as n increases, the minimum of the modified action (IV.6), given by x2
0 =

√
1+2λn−1

λ =

n+O
(
λn2

)
, moves away from the origin and this approximation breaks down.

It is then clear how to overcome the issue with perturbation theory at large λn: we
should expand around a saddle-point of the full exponential (IV.6). As it can be seen by
rescaling x→ x/

√
λ, this will provide an asymptotic expansion for λ→ 0 with λn fixed.

Using the Stirling formula for the Gamma function, the result is then recast in the form

g(λ, n) ' exp

[
1

λ
F−1(λn) + F0(λn) + . . .

]
, (IV.7)

where

F−1(λn) =
1 + λn−

√
1 + 2λn

2
+ λn log

(√
1 + 2λn− 1

λn

)
,

F0(λn) = −1

4
log (1 + 2λn) . (IV.8)

In particular, expanding the result for small λn, we see that it matches the previous
calculation (IV.4):

log g(λ, n) = −λ
(
n2

4
+
n

2

)
+

1

8
λ2
(
n3 + 4n2

)
+O

(
λ2n

)
+O

(
λ3n4

)
. (IV.9)

Notice that the agreement is up to a term of order λ2n = λ × λn which arises at the
next order in the expansion of eq. (IV.7). At large λn we obtain a qualitatively different
behaviour:

log g(λ, n) = − 1

λ

{
λn

2
[log (λn)− 1− log 2] +

√
2
√
λn+O

(
(λn)0

)}
+O

(
λ0 log λn

)
.

(IV.10)

The calculation of a generic amplitude in a perturbative quantum field theory presents
several analogies with this simple example. The standard perturbative approach corre-
sponds to performing a small field expansion in the path-integral, analogously to the one
with which we obtained eq. (IV.4). However, in certain situations, such as the calculation
of correlators of φn with n & 1/ε in the ε-expansion, the operator insertions in the path
integral cannot be treated as small fluctuations on the vacuum; in this case, one should
look for a new saddle in the path-integral, which accounts for their effect, as we did in
eq. (IV.6) including the contribution of x2n in the action. We shall discuss how this
procedure concretely allows computing the scaling dimension ∆φn . Analogously to eq.
(IV.7), the result will be organized as a perturbative expansion in the double scaling limit,
ε→ 0 with εn fixed.
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7 Large charge operators and multi-
legged amplitudes at the Wilson-
Fisher fixed point

The most common practice in particle physics concerns processes involving a few weakly
interacting particles, for instance 1 → 2, 2 → 2, 2 → 3, etc. That corresponds to
computing quantum fluctuations around the vacuum trajectory in a weakly coupled
path integral. On the other hand it is well known that, even in weakly coupled QFT,
when considering processes whose number of legs n grows, perturbation theory eventually
fails [133]. This issue was investigated in some details in the 80’s and 90’s, where, focussing
on massive λφ4, some remarkable results were obtained. In particular, it was shown that
the computation could be organized as a semiclassical expansion around a non-trivial
trajectory [221–223]. Mostly technical difficulties, but also some conceptual ones, however
slowed progress down. A recent revival [224] did not greatly progress, in our opinion,
towards the tackling of the difficulties (see for instance [219,225] for a critical assessment).
This remains an important problem, not only technically and conceptually, but also
phenomenologically, when considering the fate of scattering amplitudes involving many
W,Z and Higgs bosons in the Standard Model (SM) at energies that may be approachable
at the next generation of colliders.

While keeping the fate of the SM in our mind, in the present chapter we shall focus on a
simpler problem, plausibly the simplest one in the context of multilegged amplitudes. We
shall study the correlator of the operator of charge n, φn, in U(1) invariant scalar QFT
with quartic interaction (φ̄φ)2. In particular we shall study its scaling dimension, mostly
focussing on the Wilson-Fisher fixed point in d = 4− ε, at small ε where the coupling is
weak. The main conceptual result of this chapter is that the operator’s scaling dimension
∆φn can be computed through a systematic expansion around a non-trivial trajectory,
yielding

∆φn =
1

λ∗
∆−1(λ∗n) + ∆0(λ∗n) + λ∗∆1(λ∗n) + . . . (7.1)

with λ∗/16π2 = ε/5 + . . . the fixed point coupling, and with ∆`−1 representing the `-th
loop contribution. This result will be made concrete through the explicit computation

152



of the leading and subleading terms, ∆−1 and ∆0. Eq. (7.1) shows the existence of a
double scaling limit, where λ∗ → 0 and n→∞ with λ∗n fixed, where λ∗ remains the loop
expansion parameter, while the effects of large n are controlled by the classical parameter
λ∗n. Our system, when weakly coupled around the vacuum, thus remains weakly coupled
also at large n. However our result applies equally well to large and to small λ∗n, where
one can also compute using Feynman diagrams. On the one hand this illustrates that the
poor behaviour of standard perturbation theory as λ∗n is increased is simply tied to a
poor choice of the path integral trajectory around which to expand. On the other hand it
allows to compare our semiclassical computation to the results obtained using Feynman
diagrams. In that doing we shall not only find perfect agreement, but also be able to
combine our result with finite order calculations and predict expansion coefficients that
are beyond the order reached by each method when taken individually.

The simplicity of the problem we consider, we believe, illuminates previous literature in
related but different contexts. As concerns multilegged scattering amplitude, the structure
of our computation is precisely the same, and precisely identical is the emergence of a
double scaling limit, λ → 0 with λn fixed. This indicates a sort of universality in the
structure of multilegged observables, with λn acting like a sort of ’t Hooft coupling, and
motivates further investigations into the more difficult problem of particle production. At
the same time, on the CFT side, this result directly connects to the general properties of
large charge operators [34, 35], discussed at length in this thesis. In this context, it shows
more concretely how the superfluid configuration of the leading trajectory emerges and
it offers a concrete “UV" complete realization of the effective field theory describing the
superfluid. In particular the parameter λ∗n controls the occurrence of the pure superfluid
regime: at small λ∗n the leading trajectory corresponds to a superfluid interacting with a
light radial excitation, while at large λ∗n the latter decouples. In our amusingly simple
scenario, the parameter λ∗n thus seems to play a role similar to the ’t Hooft coupling in
AdS/CFT, where it controls the gap between stringy and supergravity modes. Finally,
our systematic expansion in ε invites a comparison with the results of Monte Carlo
simulations in d = 3 [118]. While we are aware that taking ε = 1 is a significant stunt,
we nonetheless find the comparison encouraging already with the first two orders we
computed. This warrants computation of the next order, ∆1.

This chapter is organized as follows. In section 7.1 we setup our conventions and we review
the standard perturbative calculation of the anomalous dimension of φn. In section 7.2
we derive the existence of the expansion (7.1) and we show how to compute the leading
term ∆−1 for small λ∗n within the proposed approach. Section 7.3 deals with the explicit
calculation of the first two leading terms in (7.1) for arbitrary values of λ∗n; the result is
analyzed at length in section 7.4.
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Chapter 7. Large charge operators and multi-legged amplitudes at the
Wilson-Fisher fixed point

7.1 Perturbation theory around the vacuum

7.1.1 Conventions

We will consider massless U(1) symmetric λ(φ̄φ)2 theory in d = 4 − ε dimensional
euclidean space-time with lagrangian

L = ∂φ̄∂φ+
λ0

4

(
φ̄φ
)2
. (7.2)

We will first consider general coupling, but we shall later derive more specific results by
focussing on the Wilson-Fisher fixed point. Renormalized field and coupling are defined
according to

φ = Zφ[φ], λ0 = M ελZλ, (7.3)

where M is the sliding scale. We will adopt the minimal subtraction scheme, where Zφ
and Zλ are expressed as an ascending series of pure poles. In particular we have

logZλ =
∑
k

zk(λ)

εk
=
c11λ+ c12λ

2 + . . .

ε
+
c22λ

2 + . . .

ε2
+ . . . , (7.4)

where

z1(λ) = 5
λ

(4π)2
− 15

2

λ2

(4π)4
+O

(
λ3

(4π)6

)
. (7.5)

Notice moreover that Zφ = 1 up to two loop corrections. Using (7.3) one can easily show
that the β-function equals

∂λ

∂ logM
≡ β(λ) = −ελ+ β4(λ), (7.6)

with

β4(λ) = λ2∂z1

∂λ
= 5

λ2

(4π)2
− 15

λ3

(4π)4
+O

(
λ4

(4π)6

)
. (7.7)

At the Wilson-Fisher fixed point, defined by λ = λ∗ such that β(λ∗) = 0, the theory is
invariant under conformal transformations. The fixed point coupling λ∗ is non-trivially
determined by the space-time dimensionality

λ∗
(4π)2

=
ε

5
+

3

25
ε2 +O(ε3). (7.8)

For ε � 1 the theory is weakly coupled [103]. As we will show in the next subsection,
this does not prevent perturbation theory around the vacuum to break down for specific
observables.
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7.1. Perturbation theory around the vacuum

(a) ∼ λn2

(b) ∼ λ2n4

(c) ∼ λ3n6

(d) ∼ λ2n3

(e) ∼ λ3n5

(f) ∼ λ3n4

...

...

...

· · ·

Figure 7.1 – Some characteristic Feynman diagrams that appear with the φn operator.

7.1.2 Anomalous dimension of large charge operators

We will study the scaling dimension of the simplest operator with U(1) charge1 n (-n),
denoted by [φn] ([φ̄n]) and related to the bare field by

φn = Zφn [φn] . (7.9)

where Zφn is a multiplicative renormalization factor. The anomalous dimension is then
given by

γφn =
∂ logZφn

∂λ
[−ελ+ β4(λ)] . (7.10)

For arbitrary λ, γφn is scheme dependent and thus unphysical beyond leading order.
That can easily be seen by changing the scheme according to [φn] → f(λ)[φn] and
Zφn → Zφn/f(λ), with f(λ) a power series with finite coefficients. In the new scheme the
anomalous dimension is modified according to γφn → γφn −β(∂λ ln f). On the other hand
β(λ∗) = 0, so that γφn is scheme independent and physical at the fixed point. Indeed, a
straightforward solution of the Callan-Symanzik equation for 〈[φ̄n][φn]〉 shows that the
operator’s physical dimension at the fixed point is

∆φn = n(d/2− 1) + γφn(λ∗) . (7.11)

We want to focus on n� 1, the regime of large charge or many legs. A first diagrammatic
analysis shows multiplicity factors that grow with n, see figure 7.1. Considering any
loop order ` � n, one finds contributions to Zφn that range from λ`n2`, for the daisy

1In our conventions, φ, φ̄ have charge, respectively, 1 and −1.
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diagrams in the leftmost column of figure 7.1, down to λ`n, for corrections on single legs.
In particular the “connected diagrams", for which the number of legs picked from the φn

equals `+ 1, like those in the top line of figure 7.1, scale like λ`n`+1. However, a more
detailed analysis shows that the terms with the highest powers of n at any given loop
order simply exponentiate terms from lower loops2. As a consequence, in the expansion
of lnZφn , and thus of γφn , the leading contribution at order k scales like the connected
diagram, λ`n`+1. That is

γφn = n
∑
`=1

λ`P`(n) , (7.12)

with P` a polynomial of degree `. In truth we have explicitly checked that only up
to four loops, but in the next section we shall give a general argument bypassing the
diagrammatic analysis. The above result shows that, no matter how weakly coupled
the theory is, for sufficiently large λn, perturbation theory breaks down. The series in
eq. (7.12) can also be organized in terms of leading and subleading n-powers, in close
analogy with leading and subleading logs in the RG resummation

γφn = n
∑
κ=0

λκFκ(λn) . (7.13)

Very much like for the RG, this alternative rewriting of the series suggests an alternative
loop expansion, performed after resumming (or straight out computing) all powers of λn.
Again, the physics underlying this alternative interpretation will be made manifest in the
next subsections. Notice in passing, and consistently with the results in the next section,
that the leading-n contribution F0(λn) is unaffected by changes in the subtraction scheme,
like for instance λ → λ + aλ2 or Zφn → Zφn(1 + bn2λ), the latter corresponding to a
simple reshuffling of the finite terms in the daisy diagram (a).

Before moving forward we would like to present the results of the explicit computation
at 2-loops, whose details are given in the appendix D.1. We shall need these in order to
compare to the results of the more powerful method we shall develop in the next sections.
Working in the minimal subtraction scheme, we find

Zφn = 1− λn(n− 1)

(16π2)2ε
+

λ2

(16π2)2

(
n4 − 2n3 − 9n2 + 10n

8ε2
+

2n3 − 2n2 − n
8ε

)
, (7.14)

which implies

γφn = n

[
λ

16π2

(n− 1)

2
−
(

λ

16π2

)2 2n2 − 2n− 1

4

]
. (7.15)

Considering the theory at the fixed point this implies

∆φn = n

[(
d

2
− 1

)
+

ε

10
(n− 1)− ε2

100
(2n2 − 8n+ 5)

]
. (7.16)

2As an illustration, it is simple to check that the sum over daisy diagrams exponentiate the λn2

contribution from the single petal diagram (a).
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7.2. Semiclassical approach

7.2 Semiclassical approach

The scaling dimension of [φn] can also be directly computed by considering the two-point
function

〈φ̄n(xf )φn(xi)〉 ≡
∫
DφDφ̄ φ̄n(xf )φn(xi) exp

[
−
∫
L
]∫

DφDφ̄ exp
[
−
∫
L
] ≡ Z2

φn〈[φ̄n](xf )[φn](xi)〉 . (7.17)

The above integral can be cast in a form which exhibits its semiclassical nature in the
small λ regime independently of the size of n. First it is convenient to rescale the field
φ→ φ/

√
λ0 to exhibit λ0 as the loop counting parameter∫

L → 1

λ0

∫ [
∂φ̄∂φ+

1

4

(
φ̄φ
)2] ≡ S

λ0
. (7.18)

Secondly φ̄n(xf )φn(xi) can be brought up in the exponent, obtaining

Z2
φnλ

n
0 〈[φ̄n](xf )[φn](xi)〉 =

∫
DφDφ̄ e−

1
λ0

[∫
∂φ̄∂φ+ 1

4(φ̄φ)
2−λ0n(ln φ̄(xf )+lnφ(xi))

]
∫
DφDφ̄ e−

1
λ0

[∫
∂φ̄∂φ+ 1

4(φ̄φ)
2
] . (7.19)

The dependence on λ0 and n, shows that we can perform the path integral using a
saddle point expansion in the limit of small λ0, while keeping λ0n fixed. This limit thus
encompasses the case where λ0n is (arbitrarily) large3. Independently of the detailed
form of the field configuration furnishing the steepest descent, the right hand side of
eq. (7.19) will then take the form

λ
−1/2
0 e

1
λ0

Γ−1(λ0n,xfi)+Γ0(λ0n,xfi)+λ0Γ1(λ0n,xfi)+... , xfi = xf − xi. (7.20)

The factor λ−1/2
0 is understood as follows. The path integral in the denominator is

computed through a saddle-point expansion around the trivial point φ = φ̄ = 0, while
the action of the path integral in the numerator is stationary on a continuous family of
nontrivial configurations with φ, φ̄ 6= 0 and parametrized by the zero mode associated to
the corresponding spontaneous breaking of the U(1) symmetry. As the integral over the
zero mode is clearly independent of the value of the action, this results in a mismatch of
the powers of λ1/2

0 in between the numerator and the denominator, leading to (7.20) 4.

3Of course we are making here a formal statement by using the bare coupling, which is a power series
in the renormalized coupling. In terms of renormalized quantities the limit is thus λ(M) small with
λ(M)n fixed.

4The situation is fully analogous to the following example involving two dimensional integrals:

I(λ, n) =

∫
C
dzdz̄(zz̄)n exp

{
− 1
λ

[
zz̄ + 1

4
(zz̄)2

]}∫
C
dzdz̄ exp

{
− 1
λ

[
zz̄ + 1

4
(zz̄)2

]} =

∫
C
dzdz̄ exp

{
− 1
λ

[
zz̄ + 1

4
(zz̄)2 − λn log(zz̄)

]}∫
C
dzdz̄ exp

{
− 1
λ

[
zz̄ + 1

4
(zz̄)2

]} .

The integral in the denominator is performed in an expansion around z = z̄ = 0 and is thus proportional
to λ due to the gaussian integration on the two directions of the plane. The exponent in the numerator
is instead stationary on the whole circle defined by zz̄ =

√
1 + 2λn− 1; in this case, while the integral

over the radial direction produces a factor of
√
λ, angular integration gives an overall factor of 2π. The
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Now, notice that by using Stirling’s formula the expression λn+1/2
0 n! can be written in

the same form as the exponential factor in eq. (7.20). It is then convenient to redefine
the Γk’s so as to factor out a λn+1/2

0 n! in the exponential factor in eq. (7.20) and rewrite
that equation as

Z2
φnλ

n
0 〈[φ̄n](xf )[φn](xi)〉 = λn0n! e

1
λ0

Γ−1(λ0n,xfi)+Γ0(λ0n,xfi)+λ0Γ1(λ0n,xfi)+... (7.21)

Comparing to eq. (7.17), we deduce that the exponential factor in eq. (7.21) coincides at
weak coupling and finite n with the loop expansion we discussed in the previous section.
In particular, given

D(x) =
1

Ωd−1(d− 2)(x2)d/2−1
= 〈φ̄(x)φ(0)〉free , Ωd−1 =

2πd/2

Γ(d/2)
(7.22)

one has
lim
λ0→0

e
1
λ0

Γ−1(λ0n,xfi)+Γ0(λ0n,xfi)+λ0Γ1(λ0n,xfi)+... = D(xfi)
n . (7.23)

Moreover, in order to match the diagrammatic expansion, the Γκ’s must possess a power
series expansion in λ0 with fixed n, starting at order λκ0 . Renormalization is simply
performed by separating out the UV divergent part in each term in the exponent

λκ0Γκ(λ0n, xfi) = λκΓdivκ (λn, λ) + λκΓrenκ (λn, λ, xfi,M) (7.24)

where of course λ ≡ λ(M) and where the resulting λκΓ̄κ behave like power series at λ = 0.
From eqs. (7.19,7.21) we can then write

Z2
φn = e

∑
κ=−1 λ

κΓdivκ (λn,λ) ≡ e
∑
κ=−1 λ

κΓ̄divκ (λn) (7.25)

and

〈[φ̄n](xf )[φn](xi)〉 = n! e
∑
κ=−1 λ

κΓrenκ (λn,λ,xfi,M) ≡ n! e
∑
κ=−1 λ

κΓ̄renκ (λn,xfi,M) . (7.26)

where, in the rightmost expressions, we rearranged the expansion in λ using the (asymp-
totic) power series expansion of the λκΓκ. Eq. (7.25) provides a formal proof of
eqs. (7.12,7.13). In the above expression the Γ̄κ represents the (κ + 1)-loop correc-
tion to the saddle point approximation. In particular Γ̄div−1 (λn) and Γ̄ren−1 , represent the
leading semiclassical contribution, the exponent at the saddle point5. However, they
fully determine the leading-n contribution F0(λn) in eq. (7.13), thus resumming at once
the largest powers of n up to arbitrarily high-loop orders in the standard diagrammatic
approach! The remarkable result highlighted by our formal derivation and by eq. (7.13),

full result, for arbitrary λn, is thus proportional to λ−1/2:

I(λ, n) =

√
2π

λ

e−
λn+

√
1+2λn−1
2λ

(√
1 + 2λn− 1

)n+ 1
2

(1 + 2λn)1/4
[1 +O (λ)] .

5As we shall illustrate in a moment and, as it must be according to our derivation, the divergent part
appears from purely classical properties of the saddle point solution.
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is that the result is organized as a ’t Hooft expansion in which λn is the fixed ’t Hooft
coupling while λ� 1 and n� 1.

The rest of the chapter is devoted to explicitly deriving these expressions, at leading (LO)
and next-to-leading (NLO) order in the λ expansion with λn fixed. In the next subsection
we will perform a warm up computation by working at small but fixed λn. In the later
sections we shall develop the case of arbitrary λn by focussing on the Wilson-Fisher fixed
point, where conformal invariance permits to tackle some technical difficulties in the
computation.

7.2.1 Semiclassics at small fixed λn

At small λn ordinary perturbation theory works. In this case the path integral eq. (7.17)
can be computed by expanding around the trivial background φ = φ̄ = 0. In that case the
insertions of φn and φ̄n, are not included in the exponent (as the exponent of eq. (7.19) is
singular at φ = φ̄ = 0) and are purely determined by the quantum fluctuation δφ around
the trivial solution, i.e. φ ≡ 0 + δφ. The loop expansion is purely generated by the small
quartic term λφ4. For instance, working at order λ one finds

〈φ̄n(xf )φn(xi)〉 =
n!
[
1− λn(n−1)

2(4π)2

(
2
ε + log x2

fi + 1 + γ + log π
)

+O
(

λ2

(4π)4

)]
[Ωd−1(d− 2)]n (x2

fi)
n( d2−1)

. (7.27)

compatibly with the one-loop contribution to γφn derived in section 7.1.

As λn grows, the fluctuations of φ̄n(xf )φn(xi) become significant, and for sufficiently
large λn they cannot be captured by perturbation theory. However eq. (7.19) invites us
to perform the computation around the stationary points of

Seff ≡
∫
ddx

[
∂φ̄∂φ+

1

4

(
φ̄φ
)2]− nλ0

(
log φ̄(xf ) + log φ(xi)

)
. (7.28)

The equations of motion defining the stationary configuration include the operator
insertions as a source

∂2φ(x)− 1

2
φ2(x)φ̄(x) = − λ0n

φ̄(xf )
δ(d)(x− xf ),

∂2φ̄(x)− 1

2
φ(x)φ̄2(x) = − λ0n

φ(xi)
δ(d)(x− xi). (7.29)

Before discussing the details of the general computation, it is instructive to discuss the
solution of (7.29) for small λn. Namely, we compute the function Γ−1(λn) in (7.21) to
order O

(
λ2n2/(4π)4

)
and we check that the result agrees with (7.27). As we work at

first order in the coupling, in what follows we will take λ0 = λ. Now, for small λn the
equations (7.29) can be solved perturbatively; to this aim, it is convenient to expand the
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fields as

φ = (λn)1/2
[
φ(0) + φ(1) + . . .

]
, φ̄ = (λn)1/2

[
φ̄(0) + φ̄(1) + . . .

]
, (7.30)

where φ(k), φ̄(k) = O
(
λknk

)
. At the zeroth order, the equations of motion read

∂2φ(0)(x) = − 1

φ̄(0)(xf )
δ(d)(x− xf ),

∂2φ̄(0)(x) = − 1

φ(0)(xi)
δ(d)(x− xi), (7.31)

whose solution is uniquely defined up to one free parameter and has the form

φ(0)(x) =
c0

Ωd−1(d− 2)

1

|x− xf |d−2
,

φ̄(0)(x) =
c̄0

Ωd−1(d− 2)

1

|x− xi|d−2
; (7.32)

with the parameters c0 and c̄0 related by

c0c̄0 = Ωd−1(d− 2)|xf − xi|d−2. (7.33)

Notice that on the saddle-point, i.e. on the solution of (7.31), the fields φ and φ̄ are
analytically continued away from the original integration contour, since they are not
related by complex conjugation. As a consequence, the fields appearing in the source
terms in the right hand side of (7.31) have a finite value and no regularization procedure
is needed to find the solution (7.32). Finally, the arbitrariness in the solution is related to
the symmetry (φ, φ̄)→ (αφ, α−1φ̄) of the action (7.28) analytically continued to arbitrary
values of the fields. The one free parameter in the solution precisely corresponds to the
presence of the one zero mode we mentioned before.

The next to leading contribution is determined by

∂2φ(1)(x) =
λn

2

[
φ(0)(x)

]2
φ̄(0)(x) +

φ̄(1)(xf )[
φ̄(0)(xf )

]2 δ(d)(x− xf ),

∂2φ̄(1)(x) =
λn

2

[
φ̄(0)(x)

]2
φ(0)(x) +

φ(1)(xi)[
φ(0)(xi)

]2 δ(d)(x− xi). (7.34)

The solution reads

φ(1)(x) = −λn
2

∫
ddyD(x− y)

[
φ(0)(y)

]2
φ̄(0)(y)−D(x− xf )

φ̄(1)(xf )[
φ̄(0)(xf )

]2 ,
φ̄(1)(x) = −λn

2

∫
ddyD(x− y)

[
φ̄(0)(y)

]2
φ(0)(y)−D(x− xi)

φ(1)(xi)[
φ(0)(xi)

]2 , (7.35)
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where φ(1)(xi) and φ̄(1)(xf ) satisfy

φ(1)(xi)

c0
+
φ̄(1)(xf )

c̄0
= −λn

2

∫
ddyD2(xi − y)D2(xf − y). (7.36)

There is a one parameter arbitrariness in the solution due to the aforementioned symmetry.
The integrals are formally divergent in d = 4 and thus are performed via standard
dimensional regularization techniques. Plugging the solution in the action (7.28), we find

Seff = λn− λn log

[
λn

Ωd−1(d− 2)

1

(x2
fi)

d/2−1

]

+ λ2n2

(
1

16π2ε
+

1 + γ + log π

32π2

)
+
λ2n2

32π2
log x2

fi . (7.37)

e−Seff/λ must represent the leading term

λnn!e
Γ−1
λ (7.38)

in eq. (7.21) with Γ−1 expanded up to O(λ2n2). It is easy to see it does. In particular,
log n! ≈ n log n− n ensures that Γ−1 has a well defined power series in λn as expected.
The correlator, according to eqs. (7.17,7.19), then reads

〈φ̄n(xf )φn(xi)〉 =
nne−n exp

[
−λn2

(
1

16π2ε
+ 1+γ+log π

32π2

)]
[Ωd−1(d− 2)]n (x2

fi)
n( d2−1)+ λn2

32π2

. (7.39)

This expression6 reproduces the result of the standard perturbative computation (7.27)
up to subleading terms at large n. Remarkably, the O(λn2) correction to the scaling
dimension results in (7.27) from a genuine one-loop computation, while it results in
(7.39) from the classical solution of the saddle point equations (7.29). According to our
discussion, the subleading O(λn) contribution to γφn in eq. (7.27), would instead arise
from the first quantum correction around the saddle, i.e. from Γ0 in eq. (7.21). Our
alternative semiclassical computation shows that the O(λn2) contribution to γφn is a
genuinely classical contribution, while the O(λn) is intrinsically quantum. The emergence
of classical physics in the presence of large quantum numbers, n in this case, is a crucial
fact of physics. Our case here is closely analogous to the relation between the classical
approximation to the squared angular momentum, `2, and the exact quantum result,
`(`+ 1) (see ref. [35] for an illustration).

6This expression was recently derived also in [226], where the authors considered the correlator in
the λ→ 0 limit with λn2 fixed, clearly corresponding to small λn. This is just a particular limit of the
general formula (7.26), as our approach makes clear.
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7.3 Finite λn on the cylinder

Finding the general solution of (7.29) is in general a technically challenging task, but
symmetries can help tackle the difficulties. In the case at hand the relevant ones are U(1)

symmetry, rotational invariance and dilations. Starting with U(1), the conservation of
the associated Noether current

jµ = φ̄∂µφ− φ∂µφ̄. (7.40)

provides powerful insight. The field insertions in (7.28) act as a source for the current
(7.40). Indeed, from the equations of motion (7.29) we get

∂µj
µ = nδ(d)(x− xi)− nδ(d)(x− xf ). (7.41)

We can then use Gauss law to determine the flux of the current through a sphere centered
at xi with radius r: ∮

xi

dΩd−1 r
d−1jµ(x)nµ(x) = n θ (|xf − xi| − r) , (7.42)

where nµ(x) is the unit vector orthogonal to the sphere at point x. Sufficiently close to the
point xi, i.e. for |x−xi| � |xf −xi|, we expect the solution of (7.29) to be approximately
spherically symmetric. In this regime, we then conclude from eq. (7.42) that the current
is given by

jµ(x) =
n

Ωd−1

(x− xi)µ
|x− xi|d

[
1 +O

( |x− xi|
|xf − xi|

)]
. (7.43)

This equation provides a simple constraint involving both φ and φ̄. Unfortunately it is not
enough to fix their coordinate dependence. In fact, even in the regime |x−xi| � |xf −xi|,
where spherical symmetry is expected, the radial dependence of the solution is non-trivial,
as one can convince oneself by making eq. (7.35) explicit. The origin of such a complicated
dependence is the lack of dilation invariance of generic λφ4 in d-dimension. Notice,
instead, that in the free case, where dilations are a symmetry, the solution displays a
simple scaling behaviour. Working in strictly d = 4, where φ4 is scale invariant is also
not an option, because of the need for regulation7. We thus conclude that the only way
forward in order to more easily derive the solution is to work directly at the Wilson-Fisher
fixed point, where we can profit from the bonus of scale invariance. That also matches
well, and not unrelatedly, the fact that only at the fixed point is the anomalous dimension
a fully physical quantity.

The advantage of working at the fixed point is that we can exploit the power of conformal
invariance. As reviewed in appendix B.1, that allows to map our theory from the plane
to the cylinder

Rd → R× Sd−1 , (7.44)

7If we contented ourselves with the leading semiclassical approximation we could work in d = 4 and
regulate φn by point splitting.
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in such a way that the dilations on the plane are mapped to time translations on
the cylinder. Correspondingly, the spectrum of operator dimensions on the plane, the
eigenvalues of the dilation charge D, are mapped to the energy spectrum on the cylinder,
the eigenvalues of Hcyl. Our goal of computing the dimension of [φn] is thus mapped into
the computation of the energy of the corresponding state on the cylinder. The advantage
offered by this viewpoint is that time translations on the cylinder, unlike dilations on the
plane, are a symmetry also away from the fixed point. When mapping our semiclassical
computation to the cylinder, we will thus have an additional symmetry controlling the
classical solution, even away from criticality. In other words, while, in the approach of
the previous section, a simple scaling ansatz for the radial dependence of the solution is
inconsistent, given the lack of scale invariance in the regulated theory, on the cylinder it
is possible to consistently look for a solution that is stationary in time. That enormously
simplifies our task. Of course, we must stress that this very non trivial simplification only
works at the fixed point.

Let us briefly recall our conventions. Parametrizing Rd by polar coordinates (r,Ωd−1),
where Ωd−1 collectively denotes the coordinates on Sd−1, and R× Sd−1 by (τ,Ωd−1), the
mapping to the cylinder is simply given by r = Reτ/R with R the sphere radius. The
cylinder metric is then related to the flat one by a Weyl rescaling (B.20). The action of
the theory on the cylinder reads8

Scyl =

∫
ddx
√
g

[
gµν∂µφ̄∂νφ+m2φ̄φ+

λ0

4

(
φ̄φ
)2]

, (7.45)

where the mass term m2 =
(
d−2
2R

)2 arises from the R(g)φ̄φ coupling to the Ricci scalar
which is enforced by conformal invariance9 [227].

Weyl invariance at the fixed point ensures that the flat space theory (7.2) is equivalent
to the one on the cylinder described by (7.45). In particular, eq. (B.23) implies that
the two-point function 〈φ̄n(xf )φn(xi)〉, with τf,i = ±T/2, for T →∞ directly yields the
scaling dimension ∆φn

〈φ̄n(xf )φn(xi)〉 T→∞= N e−EφnT , Eφn = ∆φn/R, (7.46)

where the (divergent) coefficient N is independent of T .

To compute the two point function we can then proceed with the methodology discussed
at the beginning of sec. 7.2. The result will have the structure of eq. (7.21). Upon
separating out the divergent and finite part of the λκ0Γκ’s, we will have a T independent
divergent piece determining the normalization factor N , while the T dependent part
will be finite when written in terms of λ(M) and linear in T for T � R. The linearity
in T will follow provided the solution is stationary in time, which it will be, thanks to
time translation invariance of the action regardless of the theory being at the fixed point.

8From this point forward we will be working with canonically normalized fields.
9Hence, at the fixed point, m2 is not renormalized by loop effects.
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Similarly to eq. (7.26) we shall thus have

REφn =
1

λ0
e−1(λ0n, d) + e0(λ0n, d) + λ0e1(λ0n, d) + . . .

=
1

λ
ē−1(λn,RM, d) + ē0(λn,RM, d) + λē1(λn,RM, d) + . . . , (7.47)

where λ ≡ λ(M) and ēk is defined from the ek’s analogously to Γ̄k in eq. (7.25). By
choosing λ = λ∗ the dependence on RM will have to drop by scale invariance giving a
result of the form

∆φn =
1

λ∗
∆−1(λ∗n) + ∆0(λ∗n) + λ∗∆1(λ∗n) + . . . . (7.48)

In the remaining sections of the chapter we shall explicitly compute the leading semiclas-
sical contribution ∆−1 and the first quantum correction ∆0.

7.3.1 Leading order: ∆−1

In this section we compute the dimension ∆φn at the leading order in λ using the operator
state correspondence described above. More precisely, at this order, we shall compute
the dimension of the lowest dimension operator with charge n as a function of λn. For
sufficiently small λn, such operator of lowest dimension obviously coincides with φn as
shown by a perturbative analysis. Indeed, any other operator with charge n, such as
φn−2(x)(∂φ(x))2, clearly possesses a larger scaling dimension in the free limit, and for
small enough λn the ordering is not affected. For generic λn, we define the operator φn

to be the lowest dimension charge n operator. While this seems natural to us, the precise
relation between such lowest dimension operator and its explicit functional expression
in terms of field variables in the path integral, is not obvious in the regime λn� (4π)2.
It should however become clear from our discussion that the precise form of the lowest
dimension operator is a separate issue. It does not affect our computation of its scaling
dimension but it matters for the computation of the normalization of the correlator, and
thus for the computation of higher point functions. We plan to explore this in future
work. 10

Having said that, we further proceed as we did in chapter 3, the only difference being
that here we can work in the full theory, without introducing an effective description.
Namely, we compute the expectation of the evolution operator e−HT in an arbitrary state
|ψn〉 with fixed charge n. As long as there is an overlap between the state |ψn〉 and the
lowest energy state (with charge n), in the limit T →∞ the expectation gets saturated
by the latter

〈ψn|e−HT |ψn〉 =
T→∞

Ñ e−EφnT . (7.49)

10In [4] the analyticity of ∆φn in λn as it directly emerges from the computation was taken as indication
that there is no level crossing as λn is varied. However, unlike argued in [4], we now realize that it does
not imply that the field expression for the lowest dimension charge n operator remains φn for all values
of λn.
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Now the choice of the state |ψn〉 is completely in our hands. In analogy with the discussion
of the hydrogen atom at the beginning of part II, we take it to be

|ψn〉 =

∫
Dα(~n) exp

[
i
n

Ωd−1

∫
dΩd−1 α(~n)

]
|f, α(~n)〉, (7.50)

where ~n denotes collectively the coordinates on the d−1 dimensional sphere and the state
|f, α(~n)〉 is the one with fixed values of the fields11 ρ(~n) = f and χ(~n) = α(~n) defined as

φ =
ρ√
2
eiχ, φ̄ =

ρ√
2
e−iχ. (7.51)

The result for Eφn is independent of the constant value f , however, a specific choice, that
will be derived later, makes computations much simpler. Plugging (7.51) into (7.49) and
using the path integral representation for the evolution operator we obtain

〈ψn|e−HT |ψn〉 = Z−1

∫
DχiDχfe

−i n
Ωd−1

[
∫
dΩd−1(χf−χi)]

∫ ρ=f, χ=χf

ρ=f, χ=χi

DρDχe−S , (7.52)

where we defined
Z =

∫
DφDφ̄ e−S , (7.53)

ensuring that the vacuum to vacuum amplitude is normalized to unity, 〈0|e−HT |0〉 = 1.
Using that the boundary conditions imply∫

dΩd−1(χf − χi) =

∫ T/2

−T/2
dτ

∫
dΩd−1χ̇ (7.54)

where χ̇ ≡ ∂τχ, eq. (7.52) can be rewritten as a finite time path integral with boundary
conditions only for ρ :

〈ψn|e−HT |ψn〉 = Z−1

∫ ρ=f

ρ=f
DρDχe−Seff , (7.55)

where the action on the right hand side is given by

Seff =

∫ T/2

−T/2
dτ

∫
dΩd−1R

d−1

[
1

2
(∂ρ)2 +

1

2
ρ2(∂χ)2 +

m2

2
ρ2 +

λ0

16
ρ4 + i

n

Rd−1Ωd−1
χ̇

]
.

(7.56)

We can now perform the path integral in (7.55) via a saddle point approximation. The
variation of the action (7.56) provides the equations of motion for the fields

− ∂2ρ+
[
(∂χ)2 +m2

]
ρ+

λ0

4
ρ3 = 0, i∂µ

(
ρ2gµν∂νχ

)
= 0, (7.57)

11The fields are independent of τ as the state is defined in Schrödinger picture.
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supplemented by the following condition which fixes the value of the charge

iρ2χ̇ =
n

Rd−1Ωd−1
. (7.58)

By a proper choice of the initial and final value ρi = ρf = f in the wave-function, the
stationary configuration for the action (7.56) takes the familiar form of a superfluid
solution [23], discussed at length in this thesis:

ρ = f , χ = −iµτ + const. , (7.59)

with homogeneous charge density j0 = µf2 and chemical potential given by µ. The
constants f and µ are fixed by the first equation in (7.57) and by (7.58)

(µ2 −m2) =
λ0

4
f2, µf2Rd−1Ωd−1 = n. (7.60)

Given the constraint f2 ≥ 0, imposed by the boundary condition ρi = ρf = f ∈ R, these
equations admit a unique solution for f2 and µ. On this profile χ is analytically continued
to the complex plane (see the comments below (7.32)). Notice that the condition f2 ≥ 0

implies that the solution for µ is discontinuous at λ0n = 0. This can be seen easily
substituting f2 ∝ n/µ in the first equation in (7.60):

µ(µ2 −m2) =
λ0n

4Rd−1Ωd−1
with n/µ ≥ 0, (7.61)

where the last inequality follows from the reality condition on f . It is then obvious
that the, otherwise analytical, solution of (7.61) satisfies µ(λ0n) = −µ(−λ0n), implying
the existence of a discontinuity for λ0n → 0, where µ ' sgn(n) [m+O (λ0n)]. As a
consequence of the latter, also the scaling dimension ∆φn will be non-analytic at λn = 0.
This reflects the physical fact that the scaling dimension of φn and the operator with
opposite charge, φ̄n, are the same; as the expansion (7.12) contains odd powers of n, the
physical scaling dimension cannot be continuous at n = 0. In the following, we implicitly
consider only n > 0.

The action (7.56) evaluated on such configuration provides the leading order value for
the energy (7.47):

1

λ0

e−1(λ0n, d)

R
= Seff/T =

n

2

(
3

2
µ+

1

2

m2

µ

)
. (7.62)

Had we chosen ρi, ρf 6= f , ρ(τ) would have approached exponentially fast the value ρ = f

away from the boundaries. As a result, in the T →∞ limit the contribution of the action
growing linearly in time is independent of the precise value of the boundary conditions
for ρ.

To obtain the leading order ∆−1 in (7.48), we consider the classical value for the chemical
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potential obtained from (7.60) setting λ0 = λ∗ and d = 4 everywhere else:

Rµ∗ =

31/3 +

[
9 λ∗n

(4π)2 −
√

81 (λ∗n)2

(4π)4 − 3

]2/3

32/3

[
9 λ∗n

(4π)2 −
√

81 (λ∗n)2

(4π)4 − 3

]1/3
. (7.63)

Taking the complex conjugate of this expression, one can check that Rµ∗ is real for λ∗n ≥ 0.
Plugging in (7.62) and taking m = 1/R we conclude that the classical contribution to
the scaling dimension is

1

λ∗
∆−1 = nF0 (λ∗n) , (7.64)

where the function F0 reads:

F0(16π2x) =
3
[
9x−

√
81x2 − 3

]1/3
+ 32/3

[
9x−

√
81x2 − 3

]
[(

9x−
√

81x2 − 3
)2/3

+ 31/3

]2

+
9× 31/3x

[
9x−

√
81x2 − 3

]2/3

2

[(
9x−

√
81x2 − 3

)2/3
+ 31/3

]2 . (7.65)

Though not obvious, for x > 0 this is a real and positive function, which grows monotoni-
cally with x. Remarkably, eq. (7.64) explicitly resums the contribution of infinitely many
Feynman diagrams.

The form of the result becomes particularly simple (and interesting) in the two extreme
regimes, λ∗n� (4π)2 and λ∗n� (4π)2, where eq. (7.64) reads

∆−1

λ∗
=


n

[
1 +

1

2

(
λ∗n

16π2

)
− 1

2

(
λ∗n

16π2

)2

+O
(

(λ∗n)3

(4π)6

)]
, for λ∗n� (4π)2,

8π2

λ∗

[
3

4

(
λ∗n

8π2

)4/3

+
1

2

(
λ∗n

8π2

)2/3

+O (1)

]
, for λ∗n� (4π)2.

(7.66)
The first line of (7.66) reproduces the result (7.15) up to higher orders and thus provides a
non trivial check of our approach. Notice that the agreement is independent of the precise
value of λ∗, since at tree-level the Lagrangian (7.2) is Weyl invariant for every value of
the coupling and the theory can be safely mapped to the cylinder through a change of
coordinates and a field redefinition. In the opposite regime, the result is organized as an
expansion in powers of (λ∗n)2/3, in agreement with the predictions of the large charge
expansion in CFT [34,35] (see eq. (3.14)).

The parameter which marks the difference between the two regimes is the chemical
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potential µ∗, since, as expected on general grounds and as we will see explicitly in the
next section, the latter controls the gap of the radial mode. For small λ∗n the chemical
potential, is of order of R−1, while in the opposite regime its value is proportional to
(λj0)1/3 � R−1. In this regime, the leading contribution in the second line of (7.66)
follows simply by dimensional analysis [34]. More precisely, momentarily restoring units
of ~ to count powers of λ [68], the quantity (λj0)1/3 has mass units. The energy density
of the homogeneous ground state, E/(Ω3R

3), is then expected to be proportional to
(λj0)4/3/λ, as in eq. (7.66).

7.3.2 One-loop correction: ∆0

Let us now compute the first subleading correction ∆0. To this aim we expand the fields
around the saddle point configuration:

ρ(x) = f + r(x), χ(x) = −iµτ +
1

f
√

2
π(x). (7.67)

The action (7.56) at quadratic order in the fluctuations reads

S(2) =

∫ T/2

−T/2
dτ

∫
dΩd−1R

d−1

[
1

2
(∂r)2 +

1

2
(∂π)2 − 2iµ r∂τπ + (µ2 −m2)r2

]
. (7.68)

This action describes a gapped and a gapless mode, with dispersion relations given by

ω2
±(`) = J2

` + 3µ2 −m2 ±
√

4J2
` µ

2 + (3µ2 −m2)2, (7.69)

where J2
` = `(`+ d− 2)/R2 is the eigenvalue of the Laplacian on the sphere. The gapless

mode is the Goldstone boson for the spontaneously broken U(1) symmetry. The gap of
the first mode is:

ω2
+(0) = 6µ2 − 2m2. (7.70)

Notice also that the ` = 1 excitation of the gapless mode has unit energy, ω−(1) = 1/R

and corresponds to a descendant state.

As anticipated, in the large λn limit the gap of the radial mode grows as (λn)1/3/R.
Henceforth, in this regime we can integrate out this mode and the lightest states at
charge n are described by an effective theory for the Goldstone mode only. We reviewed
the form of the effective theory and studied the spectrum at large charge in a generic
U(1) invariant CFT in chapter 3, where we derived the form of the expansion in the
second line of (7.66). We now see how those results emerge for a UV complete theory
in a perturbative setting. As expected, in this regime, the squared sound speed of the
Goldstone mode, given by (

dω2
−

dJ2
`

)
`=0

=
µ2 −m2

3µ2 −m2
, (7.71)

approaches the value 1/3 dictated by scale invariance in a fluid.
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To extract the first correction to the energy (7.47) we consider the one-loop expression
for the path-integral (7.55):

〈ψn|e−HT |ψn〉 = e
− e−1(λ0n,d)T

λ0R

∫
DrDπ exp

[
−S(2)

]∫
DφDφ̄ exp

[
−
∫ T/2
−T/2

(
∂φ∂φ̄+m2φφ̄

)]
= Ñ exp

{
−
[

1

λ0
e−1(λ0n, d) + e0(λ0n, d)

]
T

R

}
, (7.72)

where the normalization factor Ñ is T -independent. The latter contains a factor λ−1/2
0

coming form the integration over the zero mode (see the comments below (7.20)). The
denominator in the first line of (7.72) arises from the normalization factor (7.53). In
the second line, the correction to the energy arises from the fluctuation determinant
of the Gaussian integrals in the numerator and the denominator. It can be written
explicitly in terms of the expressions (7.69) and the formula for the free dispersion relation
ω2

0(`) = J2
` +m2 =

(
`+ d−2

2

)2
/R2:

T
e0

R
= log

√
detS(2)

det (−∂2
τ −∆Sd−1 +m2)

=
T

2

∞∑
`=0

n`,d

∫
dω

2π
log

[
ω2 + ω2

−(`)
] [
ω2 + ω2

−(`)
][

ω2 + ω2
0(`)

]2
=
T

2

∞∑
`=0

n`,d [ω+(`) + ω−(`)− 2ω0(`)] , (7.73)

where n`,d is the multiplicity of the Laplacian on the (d− 1)-dimensional sphere:

n`,d =
(2`+ d− 2)Γ(`+ d− 2)

Γ(`+ 1)Γ(d− 1)
. (7.74)

In d = 4 the multiplicity is n`,d = (1 + `)2. In dimensional regularization, we can use the
following identities which hold for sufficiently negative d

∞∑
`=0

n`,d =

∞∑
`=0

n`,d ` = 0 =⇒
∞∑
`=0

n`,d ω0(`) = 0. (7.75)

Finally we formally find the second term in the expansion (7.47) as a sum of zero point
energies, as it could have been intuitively expected:

e0(λ0n, d) =
R

2

∞∑
`=0

n`,d [ω+(`) + ω−(`)] . (7.76)

We can now compute the leading correction to the scaling dimension (7.48). The details
of the calculation are given in the appendix D.2.1. The result is formally written in terms
of the classical value of the chemical potential (7.63) and a convergent infinite sum:

∆0 = −15µ4
∗R

4 + 6µ2
∗R

2 − 5

16
+

1

2

∞∑
`=1

σ(`) +

√
3µ2
∗R

2 − 1√
2

, (7.77)
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where σ(`) is obtained by subtracting the divergent piece from the summand in (7.76)

σ(`) = (1 + `)2R
[
ω∗+(`) + ω∗−(`)

]
− 2`3 − 6`2 −

(
2µ2
∗R

2 + 4
)
`− 2R2µ2

∗ +
5
(
µ2
∗R

2 − 1
)2

4`
.

(7.78)
As in equation (7.63), the star stresses that all quantities are evaluated setting λ0 = λ∗
and d = 4 everywhere else.

In the small λ∗n limit, we can compute the sum in (7.77) analytically and we find

∆0 = − 3λ∗n

(4π)2
+

λ2
∗n

2

2(4π)4
+O

(
λ3
∗n

3

(4π)6

)
. (7.79)

Summing this to the leading order result (7.66) and recalling the relation between the
coupling and the number of space dimensions (7.8), we determine ∆φn as:

∆φn = n

(
d

2
− 1

)
+

ε

10
n(n− 1)− ε2

50
n(n2 − 4n) +O

(
ε2n, ε3n4

)
. (7.80)

This is in perfect agreement with the diagrammatic calculation in eq. (7.16).

In the large λ∗n limit the result (7.77) develops a contribution proportional to log(λ∗n),
which arises from the divergent tail of the sum in (7.76). As in (7.66), the result can be
expanded in powers of (λ∗n)2/3 and reads:

∆0 =

[
a1 +

5

24
log

(
λ∗n

8π2

)](
λ∗n

8π2

)4/3

+

[
a2 −

5

36
log

(
λ∗n

8π2

)](
λ∗n

8π2

)2/3

+O(1),

(7.81)
where the coefficients a1 and a2 are

a1 = −0.5753315(3), a2 = −0.93715(9). (7.82)

The logarithmic terms are computed analytically, while the coefficients a1 and a2 follow
from a numerical fit. Details of the calculation are given in the appendix D.2.2. The
structure of the result (7.81) is in agreement with the expected form of the large charge
expansion in d dimensions. This is evident summing (7.81) to the leading order in (7.66)
and writing the result in the form

∆φn =
1

ε

(
2

5
εn

) 4−ε
3−ε
[

15

8
+ ε

(
a1 +

3

8

)
+O

(
ε2
)]

+
1

ε

(
2

5
εn

) 2−ε
3−ε
[

5

4
+ ε

(
a2 −

1

4

)
+O

(
ε2
)]

+O
(
(εn)0

)
. (7.83)

The change in the exponents of the (εn) terms with respect to the leading order (7.66)
account for the logarithms in (7.81). Recalling that d = 4 − ε, eq. (7.83) is clearly in
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agreement with the structure of the large charge expansion (3.19) predicted in [34,35]:

∆n = n
d
d−1

[
α1(d) + α2(d)n−

2
d−1 + α3(d)n−

4
d−1 + . . .

]
+ n0

[
β0(d) + β1(d)n−

2
d−1 + . . .

]
. (7.84)

From the point of view of the large charge EFT, the first term is a purely classical
contribution, while the second term is the one-loop Casimir energy of the Goldstone
mode. We have checked that the coefficients of the logarithms multiplied by subleading
powers of (λ∗n) ensure the agreement between our result and the predicted structure
(7.84) also in the subleading orders in n. The large λ∗n expansion of the classical result
determines the coefficients αi(d) at leading order, while eq. (7.83) determines α1(d) and
α2(d) to order O (ε). Even though we computed also the coefficient of the (λ∗n)0 term in
(7.81) (see eq. (D.28)), in the expansion of (7.84) for d = 4− ε to first order, we cannot
disentangle the first correction in ε to α3(d) and the leading order value of β0(d) (which
is zero at tree-level).

7.4 Discussion

7.4.1 Large order behavior

Expanding all functions ∆` in a power series in λ∗n

∆` =
∑
k

f`,k(λ∗n)k, (7.85)

it naively seems that the anomalous dimension (7.48) has, at fixed order in the semiclassical
expansion, contributions from arbitrarily large powers of n. This, however, does not
match the diagrammatic computation which is valid for small λ∗n but virtually large
n. Indeed, beyond order bn/2c in the ordinary loop expansion the operator φn does not
have enough free legs to provide terms with higher and higher powers of n.

To understand what happens from the semiclassical perspective, we can compare contri-
butions to the anomalous dimension that are of the same order in λ∗ but which come
from different orders in the semiclassical expansion. For instance we can consider ∆`

and ∆`+1. The contributions of the same order in λ∗ are controlled by λ`+k∗ f`,kn
k and

λ`+k∗ f`+1,k−1n
k−1 respectively. Therefore, if

f`+1,k−1

f`,k
∼ k, (7.86)

there can be a potential cancellation at order k ∼ n, thus resulting in the correct behavior
of the anomalous dimensions for k beyond roughly bn/2c. We checked that this is precisely
what happens for f−1,k and f0,k−1.
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7.4.2 Boosting diagrammatic loop calculations

At the Wilson-Fisher fixed point, the expansion in (7.12) for the anomalous dimension of
φn, valid for small εn, is written as

γφn = n
∑
`=1

ε`P`(n), (7.87)

Hence, at any fixed order ` in (7.87) there are ` independent coefficients to be determined.
We can thus take advantage of existing results in the literature, as well as of the small
λ∗n expansion of our results (7.64) and (7.77), to fix some or all of them. The anomalous
dimensions of φ, φ2 and φ4 are known to order ε5 with analytical coefficients [113,228],
while the anomalous dimension of φ3 is known to the same order with numerical coefficients
[229]. These results then provide four constraints on each of the first five orders in
(7.87) and are enough to fix all the coefficients in P1(n), P2(n) and P3(n). Furthermore,
expanding the results (7.64) and (7.77) derived in this chapter to order O(ε5n5), we fix
the first two coefficients of all the polynomials P`(n). Combining our result and the
perturbative calculations, we have six constraints on each of the first five orders in (7.87).
This fully fixes the form of the five polynomials P1(n), P2(n), . . . , P5(n). The form of the
first two was given in (7.15), while the others read

P3(n) =
n3

125
+
n2 [16ζ(3)− 29]

500
+
n [599− 672ζ(3)]

5000
+

[1024ζ(3)− 603]

10000
, (7.88)

P4(n) =− 21n4

5000
+
n3 [214− 77ζ(3)− 80ζ(5)]

5000
+
n2
[
66336ζ(3) + 160π4 − 89491

]
600000

+
n
[
41073− 45864ζ(3) + 46720ζ(5)− 224π4

]
200000

(7.89)

+
75888ζ(3)− 130560ζ(5) + 512π4 − 53717

600000
,

P5(n) =
n58

3125
+
n4 [476ζ(3) + 480ζ(5) + 448ζ(7)− 1683]

50000

+ 0.00093n3 − 0.01067n2 − 0.2460n+ 0.2680. (7.90)

We checked that P3(n) agrees both with the previous literature and our results, providing
another non trivial check of our approach. The polynomial P4(n) was determined using our
results and those in the literature for φ, φ2 and φ4; we checked that it agrees numerically
within 10% level with the coefficient reported in [229] for φ3. We do not know if this
discrepancy is due to the numerical uncertainty of this result, as the latter is not reported
in [229]. For the same reason, we cannot quote the uncertainty on the last four coefficients
of P5(n).

7.4.3 Comparison with Monte-Carlo results at large charge

We can compare our result in the large (λ∗n) limit, given by (7.83) in the first two leading
orders, with the recent results of Monte-Carlo lattice simulations of the three-dimensional
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α1 α2

Monte-Carlo [118] 0.337(3) 0.27(4)

ε-expansion: LO 0.47 0.79

ε-expansion: NLO 0.42 0.04

Table 7.1 – Comparison of the Monte-Carlo results in [118] with the ε-expansion for the
coefficients in eq. (7.91); we display both the leading order (LO) result as well as the
next to leading order (NLO).

O(2) model [118]. There, the authors computed the scaling dimensions of the lightest
charge n operator for various values of n and compared their result with the predicted
form in d = 3, which we recall here for convenience:

∆n ' α1n
3/2 + α2n

1/2 − 0.0937 + α3n
−1/2 +O

(
n−1

)
. (7.91)

The authors there determined the coefficients α1 and α2 fitting the result of the lattice
computation.

We compared the coefficients they obtained with those which follow from (7.83) putting
ε = 1. The results are displayed in the table 7.1. Using the next to leading order
contribution as an estimate of the error, the result for α1 is roughly within two standard
deviations from the Monte-Carlo result, while for α2 the error is as big as the leading
order, making a quantitative analysis impossible. It is however interesting to notice that
for both coefficients the next to leading order values are closer than the leading order
ones to the results obtained by the Monte-Carlo. It would be interesting to compute the
two-loop order result to explore the convergence properties of the expansion.
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8 Feynman diagrams and the large
charge expansion in 3− ε dimensions

The methodology discussed in the previous chapter can be straightforwardly applied
to different theories, as well as to the calculations of different observables. Here we
shall illustrate this concretely by computing the scaling dimension of φn in (φ̄φ)3 at its
conformally invariant point in 3 − ε dimensions. The result follows the same pattern
observed in (φ̄φ)2 in 4− ε dimensions. Besides confirming the generality of the method,
the main interest of (φ̄φ)3 in d = 3− ε lies in the possibility of non-trivially comparing to
the universal predictions of the large charge EFT of 3d CFT [34]. Indeed the β function
of (φ̄φ)3 arises only at 2-loops. At the 1-loop level the theory is therefore conformally
invariant at d = 3 for any value of λ. At this order, as λn is varied from small to large, our
formulae non trivially interpolate between the prediction of standard Feynman diagram
computations and those of the universal superfluid description of large charge states in
3d CFT. In particular for t ≡ λn/

√
3π � 1 our result for the scaling dimension takes the

form:
∆φn = t3/2

[
α̃1 + α̃2t

−1 + . . .
]

+ t0
[
β̃0 + β̃1t

−1 + . . .
]
, (8.1)

with α̃’s and β̃’s having specific calculable values. We use the tilde to distinguish them,
due to the definition of t, from the α’s and β’s used in part II and III of this thesis, defined
in eq. (3.19). This result nicely matches the universal predictions of the large charge
EFT, illustrated in chapter 3, where the α̃k’s are model-dependent Wilson coefficients,
but the β̃’s are universally calculable effects associated to the 1-loop Casimir energy. Our
result for the β̃’s should thus match the general theory, and they do. In particular, we
find

β̃0 = −0.0937255(3) (8.2)

in agreement with eq. (3.20) [35]. The prediction of β̃1 is similarly matched to eq. (3.20).
Previously, eq.s (8.1) and (8.2) were verified at large N for monopole operators [136]; the
results of Monte-Carlo simulations for the O(2) model at criticality are consistent with
the expansion (8.1) [118], though their present precision is not sufficient to check the
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universal prediction for β̃0. Here we provide an alternative verification where the large
charge regime is continuously connected, as λn is varied, to diagrammatic perturbation
theory. The prediction for β̃1 was not verified before.

8.1 Lagrangian and Feynman diagrams

We consider the following U(1) symmetric theory in d = 3 − ε dimensional euclidean
space-time

L = ∂φ̄∂φ+
λ2

0

36

(
φ̄φ
)3
. (8.3)

Within this convention for the Lagrangian, one can easily realize that λ0 is the loop
counting parameter by rescaling φ→ φ/

√
λ0 . The renormalized coupling and field are

defined as
φ = Zφ[φ], λ0 = M ελZλ , (8.4)

where M denotes the sliding scale. The β-function is given by [218]

∂λ

∂ logM
≡ β(λ) = λ

[
−ε+

7λ2

48π2
+O

(
λ4

(4π)4

)]
. (8.5)

For ε� 1, this implies the existence of an IR-stable fixed point at

λ2
∗

(4π)2
=

3

7
ε+O

(
ε2
)
. (8.6)

Notice that the β-function (8.5) starts at two-loop order at ε = 0. Hence the model is
conformally invariant up to O(λ) in exactly d = 3. This observation will be important for
what follows. The field wave-function renormalization starts at four loops and we shall
always neglect it in the following.

We focus on the calculation of the scaling dimension of the U(1) charge n operator φn,
defined as the lowest dimension charge n operator (see the discussion at the beginning
of 7.3.1) focusing on the regime n � 1. In complete analogy with the (φφ̄)2 case
discussed before, the diagrammatic calculation for the anomalous dimension takes the
form (7.12), where the loop order ` contribution grows as λ`n`+1 for ` ≤ n, implying that
the diagrammatic expansion breaks down for sufficiently large λn. Re-organizing the
series as in (7.13), the scaling dimension can also be expanded as

∆φn = n

(
d

2
− 1

)
+ γφn =

∑
κ=−1

λκ∆κ(λn). (8.7)

The main result of chapter 7 is that it is possible to compute the functions ∆κ(λn) for
arbitrary λn via a perturbative semiclassical calculation around a non-trivial saddle; the
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Figure 8.1 – Two-loop diagram contributing to the φn anomalous dimension. The crossed
circle denotes the φn insertion.

result can be organized as an expansion in λ� 4π while treating λn as a fixed parameter,
closely analogous to the ’t Hooft coupling of large N theories. The goal of this chapter is
to compute the leading term and the first subleading correction in (8.7).

The scaling dimension (8.7) is a physical (scheme-independent) quantity only at the
fixed-point (8.6). However, in light of the observation at the end of the previous section,
working at order O(λ) we can take ε→ 0 without affecting the conformal invariance of
the theory1. The leading order term ∆−1(λn) and the one-loop correction ∆0(λn) are
hence scheme-independent for generic λ.

Working at fixed n, at leading order in λ, the anomalous dimension of φn(x) is determined
by the diagram in Fig. 8.1 and it is given by

γφn =
λ2n(n− 1)(n− 2)

36(4π)2
+O

(
λ4n5

(4π)4

)
. (8.8)

Comparing with (8.7), one can readily extract the lowest order terms in the expansion
of ∆−1 and ∆0 at small λn. We will use this expression as a check of the more general
result that we will derive in the next section.

8.2 Semiclassical computation

To compute the scaling dimension ∆φn for arbitrary λn we proceed as in chapter 7.
We first use a Weyl transformation to map the theory to the cylinder R × Sd−1. The
Lagrangian of the theory on the cylinder reads:

Lcyl = ∂φ̄∂φ+m2φ̄φ+
λ2

36

(
φ̄φ
)3
, (8.9)

where, as in eq. (7.45), m2 =
(
d−2
2R

)2 d=3
= 1

4R2 arises from the R(g)φ̄φ coupling to the
Ricci scalar which is enforced by conformal invariance. Working at O(λ), we neglect the
difference between bare and renormalized coupling, as that arises at O(λ2). Then, as
we discussed in sec. 7.3.1, ∆φn is directly determined by studying the expectation value
of the evolution operator e−HT in an arbitrary state |ψn〉 with fixed charge n using eq.
(7.49) with Eφn = ∆φn/R. Working in polar coordinates for the field φ = ρ√

2
eiχ, we then

1Dimensional regularization is still used in the intermediate steps.
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consider the following path integral:

〈ψn|e−HT |ψn〉 = Z−1

∫
DχiDχfψn(χi)ψ

∗
n(χf )×

∫ ρ=f, χ=χf

ρ=f, χ=χi

DρDχe−S , (8.10)

where the insertions of the wave-functional

ψn(χ) = exp

(
i n

Ωd−1

∫
dΩd−1χ

)
. (8.11)

ensure that the initial and final states have charge n, while the boundary value f for ρ is
arbitrary and will be fixed later by convenience. The factor Z ensures that the vacuum to
vacuum amplitude is normalized to unity as in eq. (7.53). The structure of the expansion
(8.7) follows from performing the path-integral in a saddle-point approximation. This is
easily seen rewriting eq. (8.10) as

〈ψn|e−HT |ψn〉 = Z−1

∫ ρ=f

ρ=f
DρDχe−Seff , (8.12)

where the action on the right hand side is given by

Seff =

∫ T/2

−T/2
dτ

∫
dd−1x

√
g

[
1

2
(∂ρ)2 +

1

2
ρ2(∂χ)2 +

m2

2
ρ2 +

λ2

2(12)2
ρ6 + i

n

Rd−1Ωd−1
χ̇

]
.

(8.13)
Rescaling then the field as ρ → ρ/λ1/2 and collecting up front the overall λ−1, one
immediately recognizes eq. (8.7) as the result of performing the path-integral (8.12) as a
systematic loop expansion around a saddle-point .

Unsurprisingly, properly tuning the initial and final value ρi = ρf = f in eq. (8.12), the
stationary configuration for the action (8.13) is given again by a superfluid configuration
as in (7.59), where now µ and f satisfy

µ2 −m2 =
λ2

48
f4, µf2Rd−1Ωd−1 = n . (8.14)

Given the constraint f2 ≥ 0, the eq.s (8.14) admit a unique solution. In particular, in
d = 3 and for n > 0, µ reads:

Rµ =

√
1 +

√
1 + λ2n2

12π2

2
√

2
. (8.15)

For λn < 0 the chemical potential is given by minus the expression in (8.15) and is hence
discontinuous at λn = 0 and the same comments below eq. (7.61) apply here. In the
following we always assume λn > 0.

Plugging the solution into the classical action we extract the leading order contribution
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to the scaling dimension:

Seff/T =
n

3

(
2µ+

m2

µ

)
d=3
=

1

R

∆−1(λn)

λ
. (8.16)

Explicitly, the result reads

∆−1(λn) = λnF−1

(
λ2n2

12π2

)
, (8.17)

where

F−1(x) =
1 +
√

1 + x+ x/3√
2 (1 +

√
1 + x)3/2

. (8.18)

To compute the one-loop correction we expand the fields around the saddle point configu-
ration as in sec. 7.3.2. Putting ρ(x) = f + r(x) , and χ(x) = −iµτ + 1

f
√

2
π(x), the action

(8.13) at quadratic order in the fluctuations reads

S(2) =

∫ T/2

−T/2
dτ

∫
dΩd−1R

d−1

[
1

2
(∂r)2 +

1

2
(∂π)2 − 2iµ r∂τπ + 2(µ2 −m2)r2

]
. (8.19)

This action describes two modes, with dispersion relations given by

ω2
±(`) = J2

` + 2(2µ2 −m2)± 2
√
J2
` µ

2 + (2µ2 −m2)2 , (8.20)

where J2
` = `(`+ d− 2)/R2 is the eigenvalue of the Laplacian on the sphere. The first

mode has a gap ω+(0) = 2
√

2µ2 −m2 ∝
√
λn for λn� 1. The dispersion relation ω−(`)

describes instead a gapless mode, the Goldstone boson for the spontaneously broken
U(1) symmetry. These modes, except for the zero mode of the Goldstone which relates
different charge sectors, provide a basis for the Fock space describing charge n operators
with higher scaling dimension. In particular, the descendants, obtained by acting q times
with the Pi generators of the conformal algebra, correspond to states involving a number
q of massless spin one quanta, each increasing the energy by ω−(1) = 1/R. Other modes
describe different primaries; non-trivially, the expressions (8.20) include the leading λn
corrections to the free theory values, effectively resumming the effect of infinitely many
loop diagrams in standard diagrammatic calculations.

In the large λn regime, where we can integrate out the gapped mode and describe the
lightest states at charge n through the superfluid effective theory for the gapless mode
described in chapter 3, the dispersion relation of the Goldstone boson can be expanded
in inverse powers of λn and reads

Rω−(`) =

[
1√
2
−
√

3π√
2λn

+O
(

1

(λn)2

)]
J` +

[√
3π

2
√

2
+O

(
1

λn

)]
J3
`

λn
+O

(
J5
`

(λn)2

)
.

(8.21)
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From this expression we see that the Goldstone sound speed approaches the value
cs = 1/

√
2 as λn→∞, as dictated by conformal invariance in the superfluid phase.

The one-loop correction ∆0 is determined by the fluctuation determinant around the
leading trajectory. Explicitly, we find2

∆0(λn) =
1

2

∞∑
`=0

n`,d [ω+(`) + ω−(`)− 2ω0(`)] , (8.22)

where ω2
0(`) = J2

` +m2 =
(
`+ d−2

2

)2
/R2 is the free theory dispersion relation and n`,d

is the multiplicity of the Laplacian on the (d − 1)-dimensional sphere given by (7.74).
The analytic continuation to negative d of the sum (8.22) is convergent; the final result
is finite in the limit d → 3, consistently with the coupling not being renormalized at
one-loop. Proceeding as in the previous chapter, ∆0 can be written in terms of an infinite
convergent sum:

∆0(λn) =
1

4
− 3(Rµ)2 +

√
8R2µ2 − 1

2
+

1

2

∞∑
`=1

σ(`) , (8.23)

where σ(`) is obtained from the summand in (7.73) by subtracting the divergent piece:

σ(`) = (1 + 2`)R [ω+(`) + ω−(`)]− 4` (`+ 1)−
(

6R2µ2 − 1

2

)
. (8.24)

In (8.23) all quantities are evaluated in d = 3, hence µ is given by eq. (7.63) and m = 1
2R .

8.3 Analysis of the result

Eq.s (8.17) and (8.23) provide the first two terms of the expansion (8.7) for the scaling
dimension of the operator φn, ∆φn . The result holds for arbitrary values of λn. Here
we explicitly show that ∆φn matches the diagrammatic result (8.8) and the large charge
prediction (8.1) in the two extreme regimes of, respectively, small and large λn.

Let us consider first the small λn regime. From eq. (7.63) it follows that the chemical
potential, and consequently all the functions ∆κ, can be expanded in powers of λ2n2.
Explicitly neglecting terms of order O

(
λ6n7

(4π)6

)
, we get:

∆φn =
n

2
+

λ2

(4π)2

[
n3 − 3n2

36
+O (n)

]
− λ4

(4π)4

[
n5

144
− n4(64− 9π2)

1152
+O

(
n3
)]

+ . . . .

(8.25)
In this regime we can compare eq. (8.25) with the diagrammatic result (8.8), finding

2In (7.73) we neglect the integration over the zero mode associated to the U(1) symmetry, whose
result is independent of T and hence does not contribute to Eφn in eq. (7.49).
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perfect agreement.

Let us now discuss the large λn regime. The classical result (8.17) is easily seen to admit
an expansion in inverse powers of λn with the expected form. The one-loop contribution
(8.23) can be evaluated numerically for large µ ∼ (λn)1/2 and then fitted3 to the functional
form (8.1), as we did for the Wilson-Fisher fixed point in the appendix D.2.2. In doing
this we also verified that the coefficients of terms which might modify the form of the
expansion, such as a term linear in λn, are compatible with zero within the numerical
uncertainty. The final result reads

∆φn = t3/2
[
α̃1 + α̃2t

−1 + α̃3t
−2 + . . .

]
+
[
β̃0 + β̃1t

−1 + . . .
]
, (8.26)

where we defined t = λn√
3π

and the coefficients read

α̃1 =

√
3π

6λ
− 0.0653 +O

(
λ√
3π

)
,

α̃2 =

√
3π

2λ
+ 0.2088 +O

(
λ√
3π

)
,

α̃3 = −
√

3π

4λ
− 0.2627 +O

(
λ√
3π

)
, (8.27)

β̃0 = −0.0937255(3) ,

β̃1 = 0.096(1) +O
(

λ√
3π

)
.

The parentheses show the numerical error on the last digit, when the latter is not negligible
at the reported precision.

To discuss this result, let us rewrite the large charge EFT for the superfluid Goldstone
field in d = 3 setting ci = c̃i/λ in (3.9): 4

L/√g = − 1

λ

{
c̃1|∂χ|3 − c̃2|∂χ|

[
R+ 2

(∂µ|∂χ|)2

|∂χ|2

]
+ c̃3

[
Rµν

∂µχ∂νχ

|∂χ|

+2
(∂µχ∂µ|∂χ|)2

(∂χ)3
+∇µ

(
∂µχ∂νχ

|∂χ|2
)
∂ν |∂χ|

]
+ . . .

}
. (8.28)

The factor 1/λ in front ensures that the Wilson coefficients c̃i scale as λ0, as we will see
explicitly below in the matching. We recall that in the EFT the derivative expansion

3We computed ∆0 numerically for Rµ = 10, 11, . . . 210 to perform the fit; the final results are obtained
using six fitting parameters in the expansion (8.1).

4In [5] the last term of the Lagrangian, proportional to c̃3|here = α2|there, was missing the last two
contributions in eq.s (8.28). This led to two typos in eq.s (36) and (38) there, which we correct here in
eq.s (8.30) and (8.31), but did not affect the main result of that work, as the matching of the full theory
gives c̃3|here = α2|there = 0 (see below).
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coincides with an expansion in inverse powers of µ2 ∼ λn. From eq. (8.28) we can also
infer that the loop counting parameter is λ/(λn)3/2 instead. It follows that the scaling
dimension of the lightest charged operator takes the form (8.26), where the first line
corresponds to short distance (classical plus quantum) contribution from both the radial
and Goldstone mode, while the second line corresponds the one-loop Casimir energy of
the Goldstone mode. This second contribution is thus a genuinely long distance one.
Matching the explicit calculation in the full theory with the result of the effective theory
we can determine the Wilson coefficients c̃1 and c̃3 to next to leading order in λ through
the relations:

λα̃1 =
π

33/4
√
c̃1
, λα̃2 =

4πc̃2

31/4
√
c̃1
. (8.29)

From these we extract c̃1 = 4/
√

3 + 0.3326λ+O(λ2) and c̃2 =
√

3/4 + 0.0644λ+O(λ2).
Recall also that the coefficient c̃3 does not contribute to the scaling dimension at order
(λn)1/2 since R00 = 0.

To discuss the value of the coefficients β̃’s in eq. (8.27), recall that within the EFT
one derives the dispersion relation of the Goldstone boson, in eq. (3.25). Using the
normalization in eq. (8.28) for the Lagrangian, the latter reads

Rω−(`) =

[
1√
2
− 4π (c̃2 + c̃3)√

2λn
+O

(
1

(λn)2

)]
J`+

[√
2π (c̃2 + c̃3) +O

(
1

λn

)]
J3
`

λn
+. . . .

(8.30)
Comparing this equation to eqs. (8.21), (8.27) and (8.29), at leading order we find c̃3 = 0,
and we can also check the consistency of the result for c̃2: c̃2 =

√
3/4. 5 Moreover

we have seen that eq. (8.30) determines the one-loop Casimir energy of the Goldstone
mode. Using (3.20), we can write the second line of (8.26) in terms of the EFT Wilson
coefficients:

β̃0 = −0.0937255 , (8.31)

β̃1 = (c̃2 + c̃3)× 0.2236 . (8.32)

The result of the explicit computation in the full model (8.27) agrees with the theory-
independent prediction (8.31) almost to seven digits accuracy. Using the previously
extracted values for the c̃i, the EFT prediction in eq. (8.32) gives β̃1 = 0.0968, again in
agreement with the explicit result in eq. (8.27) within its numerical accuracy.

5That c̃3 = 0 at the tree level in the effective lagrangian simply follows from the fact that, in the
microscopic lagrangian, χ only appears through (∂χ)2.
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In chapter 7 we illustrated a situation where amplitudes involving a large number n
of legs can be reliably computed through a systematic semiclassical expansion. That
the large number of legs be related to a large conserved charge was essential to achieve
our goal, but also the specialization to a conformally invariant fixed point made the
task technically easier. The main conceptual result, obtained in the context of the U(1)

Wilson-Fisher fixed point, is given by the existence of the expansion in eq. (7.1) for the
scaling dimension ∆φn . This result was concretely exemplified with the calculation of the
tree-level and one-loop contribution in the double scaling limit, given, respectively, by
(7.64) and (7.77). For small charge, the result matches, and in fact improve, the available
diagrammatic expansions. In the large charge limit instead, the scaling dimension takes
the form predicted by the large charge expansion, providing a concrete “UV" realization
of the conformal superfluid phase discussed in part I of this thesis.

In chapter 8, we computed the scaling dimension of the operator φn in the tricritical U(1)

CFT in 3− ε dimensions at the next-to-leading order in the coupling λ, but for arbitrary
values of λn. Our results nicely interpolate between the small λn regime, when it is
given by (8.25), in agreement with diagrammatic calculations, and the large λn regime,
where it reads as in (8.26) and it agrees with the expectation for the universal conformal
superfluid phase of CFTs at large charge. The remarkable agreement between the form of
the quantum corrections in eq.s (8.31) and (8.32) and the explicit result (8.26) provides
a nontrivial check of the validity of our methodology.

The techniques discussed in this part of the thesis cleary allow for several applications
and extensions. First, one can study other models [134, 138, 139,141], such as the Wilson-
Fisher fixed points in models with non-Abelian symmetry, like the O(N) models, recently
addressed in [135] within the epsilon expansion and in [140] at large N . These studies
might illustrate the more general, but abstract, construction presented in chapter 4 of
this thesis, as well as in several other works [78, 79, 120], in particular concerning the role
of gapped Goldstones discussed in chapter 4. Similar ideas were also shown to be relevant
in the study of extremal correlators in N = 2 superconformal theories [230,231], with the
double expansion remarkably associated to a dual matrix model description [161].
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Perhaps, the most famous example of a double scaling limit at large quantum numbers
supersymmetric theories is given by the BMN limit of N = 4 Yang-Mills (SYM) theory
[162–165], corresponding to N →∞, J →∞ with J2/N fixed, where J is the R-charge
of the theory. While most of the original works focused on the integrability of the
spectrum and its interpretation in the dual string theory, these ideas were recently revived
in [166,167] for the study of correlators of half-BPS operators. Perhaps, a semiclassical
approach along the lines of our discussion might prove useful also in that setup.

Another straightforward application concerns the study of the n-point functions of
light operators in between two arbitrary charge n states, 6 which would provide a
concrete illustration of the transition from diagrammatic perturbation theory to the
superfluid semiclassical description of correlators [35] discussed in section 3.3. A more
technically involved problem concerns the computation of 3-point functions of the form
〈φ̄n1+n2φn1φn2〉 with n1,2 large, which would extend control to the full set of CFT data.
The result requires a numerical analysis of the saddle-point solution. The same technology
might allow for the calculation of correlators involving three large charge operators in the
superfluid EFT discussed in chapter 3. We are currently investigating this issue.

It might be interesting to study the scaling dimension of charged operators with large spin.
In particular, one could explore the transition in the description for the lowest energy
state at fixed angular momentum. As discussed in section 5.6.1, the latter is expected
to be described, as the spin is increased: first by a single phonon excitation, then by a
multi-phonon state, and finally by a semiclassical configuration with non-zero vorticity.
A quantitative description might be possible using ideas analogous to the one discussed
in this part of the thesis for the scaling dimension of charged scalar operators.

Scattering processes involving a critical number ofW, Z and Higgs bosons in the Standard
Model (SM), which defy perturbation theory, may occur in the next generation of
colliders [234]. Therefore, it might be of phenomenological relevance to revisit the issue
of multi-particle production in massive quantum field theories. Perhaps, the development
of some of the ideas which we discussed might prove useful in this direction as well.

6Some correlators of these kind have been computed in [232,233], where however the authors focused
only on the limt λ→ 0 with λn2 = fixed, corresponding to the small λn limit discussed in sec. 7.2.1.
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A Appendices to Part I

A.1 Dimensionless coefficients in the model of two complex
doublets

Here we provide the precise value of the dimensionless coefficients in eq.s (1.42), (1.43),
(1.44), (1.45) and (1.46). We give them to leading order in the small chemical potential
expansion, but for γ(πµ) which we give exactly. We write them in terms of the following
dimensionless ratios

x =
v1

v2
, y =

µ1

µ2
, w =

λ12

λ2
, z =

λ1

λ2
. (A.1)

The list follows:

γ
(π)
1/2 =

8xy
√
z
(
z − w2

)
z (x2z + y2)− w (x2y2z + z)∓

√
g1(x, y, w, z)

, (A.2)

γ
(r)
1 =

z
(
1− wx2 − w + x2z

)
−
√
g2(x,w, z)

2x2z (z − w2)
, (A.3)

γ
(r)
2 =

z
(
1− wx2 − w + x2z

)
+
√
g2(x,w, z)

2 (z − w2)
, (A.4)

γ(πµ) = (1 + y)

{
λ2v

2
2

[(
x2 + 1

)
z − w

(
x2z + 1

)]
+ 2µ2

2

[
y2 + z − w

(
y2 + 1

)]}
2
{
λ2v2

2 [z + yw − x2z(w + y)] + 2µ2
2 [z − y (yw − w + y2)]

} , (A.5)

γ(π̃µ) =
z
[
1− (1 + w)x2

]
+ w

z [1 + (1− w)x2]− w , (A.6)

γ
(ψ)
0 =

√
z [1 + (1− w)x2]− w

2x (z − w2)
, (A.7)

γ
(ψ)
1 =

z
[
1− x2(w + y)

]
+ wy

(1 + y) {z [1 + x2(1− w)]− w} . (A.8)
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Here we defined the following functions:

g1(x, y, w, z) = 4w3y2z
(
wx2 − 1

)
+ 2x2z3

[
w
(
x2y2 − 1

)
− y2

]
+ x4z4

+ z2
[
y4 − 4w3x4y2 +

(
wx2y2 + w

)2
+ w

(
2y2 − 2x2y4

)]
, (A.9)

g2(x,w, z) = 4w3z
(
wx2 − 1

)
+ z2

[
1− 4w3x4 + w2

(
1 + x2

)2
+ 2w

(
1− x2

)]
+ 2x2z3

[
w
(
x2 − 1

)
− 1
]

+ x4z4 . (A.10)

A.2 Details on amplitudes in the triplet model

A.2.1 Coefficients of the gapped Goldstone annihilation

The coefficients in (2.4) are given by

α =

2

(
5µ2 − 3m2 −

√
4µ4 + (µ2 −m2)2

)
2µ2 +

√
4µ4 + (µ2 −m2)2

,

β =
−8µ2

(
µ2 −m2

)2
29µ6 −m2µ4 + 3m4µ2 −m6 + (13µ4 + 2m2µ2 +m4)

√
4µ4 + (µ2 −m2)2

.

Those in (2.5) are

γ =

λ2µ3

[√
5µ4+m4−2m2µ2+m2

5µ4+m4−2m2µ2

]1/2

15π (µ2 −m2)6 ×

×
[
2085µ10 − 49m10 + 441m8µ2 − 1762m6µ4 + 3842m4µ6 − 4429m2µ8+

−
(
935µ8 + 55m8 − 432m6µ2 + 1314m4µ4 − 1808µ6m2

)√
5µ4 +m4 − 2m2µ2

]
,

δ =

−2λ2µ2
(
µ2 −m2

)2(
2µ+ 4µ3√

5µ4+m4−2m2µ2

)(√
5µ4 +m4 − 2m2µ2 +m2

)5/2

15π
[
29µ6 +m6 + 3µ2m4 −m2µ4 + (13µ4 +m4 + 2m2µ2)

√
5µ4 +m4 − 2µ2m2

]2 .

A.2.2 Gapped Goldstone decay

In the linear triplet model discussed in the main text, the accidental discrete Z2 symmetry
forbids the decay of the gapped Goldstone. However, in more general theories the gapped
Goldstone can decay into arbitrary lighter states. Here we provide a simple example of
such a modification of the Lagrangian (1.24). The resulting decay rate vanishes with the
velocity of the gapped Goldstone, in agreement with the general discussion of section 2.1.
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To induce a decay channel for θ, we need to break explicitly the Z2 symmetry of the
Lagrangian (1.24). In order to do that, we couple the O(3) triplet Φ to a complex U(2)

doublet Ψ. We hence add the following term to the linear triplet model Lagrangian:

δL = |∂Ψ|2 −m2
Ψ |Ψ|2 −

λΨ

4
|Ψ|4 − g

(
Ψ†
σ

2
Ψ
)
·Φ− γ

4
|Ψ|2 Φ2 . (A.11)

Here σ = (σ1, σ2, σ3) are the Pauli matrices. Adding this term to (1.24), the resulting
Lagrangian is the most general renormalizable theory of a doublet and a triplet preserving
a global SU(2) × U(1) symmetry. Crucially, the coupling g breaks the discrete Z2

symmetry which prevented θ from decaying. All parameters are positive. When not
specified otherwise, all parameters with the same coupling and mass dimensions are
assumed to be of the same order [68].

We expand around the vev (1.25) for the triplet with Ψ = 0, which is a minimum for

γ ≥ 2
g

φ0
+
µ2 − 4m2

Ψ

φ2
0

. (A.12)

This leaves the U(1) acting as Ψ 7→ eiαΨ unbroken. In this case the fluctuations for Φ

are parametrized as before (see eq. (1.26)) while Ψ can be written as

Ψ = e−i(µt+ψ(x)/φ0)
σ3
2

(
Ψ1(x)

Ψ2(x)

)
, Ψ1, Ψ2 ∈ C. (A.13)

Notice that we explicitly factored out a time dependent rotation, which makes explicit
that unbroken time translations correspond to H + µQ3. To find the spectrum, consider
the quadratic contribution from δL:

δL(2) = |∂Ψ1|2 + |∂Ψ2|2 +
1

2
iµ
(

Ψ∗1Ψ̇1 −Ψ∗2Ψ̇2 − c.c.
)
− g

2
φ0 (Ψ∗1Ψ2 + c.c.)

−
[
m2

Ψ +
γ

4λ
m2 + (γ/λ− 1)µ2/4

] (
|Ψ1|2 + |Ψ2|2

)
.

(A.14)

The fields Ψ1 and Ψ2 interpolate four quasi-particles: {|Ψ+(k)〉 , |Ψ−(k)〉 , |Ψ̄+(k)〉,
|Ψ̄−(k)〉}. Under the unbroken U(1), |Ψ±(k)〉 have positive charge while |Ψ̄±(k)〉 have
negative charge. As a consequence of the symmetry Ψ1 ↔ Ψ∗2 of the quadratic Lagrangian,
oppositely charged modes have dispersion relations equal in pair, given by:

ω2
±(k) = ω̄2

±(k) =
µ2

4
+m2

Ψ +
γ

4
φ2

0 + k2 ±
√
γµ2

4
φ2

0 +
g2

4
φ2

0 + µ2m2
Ψ + k2µ2 . (A.15)

Here ω+(k) = ω̄+(k) is the dispersion relation of |Ψ+(k)〉 and |Ψ̄+(k)〉, while ω−(k) =

ω̄−(k) is the dispersion relation of |Ψ−(k)〉 and |Ψ̄−(k)〉. Notice furhter that, because
of the aforementioned symmetry of the quadratic Lagrangian, the wavefunctions of the
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fields on the states {|Ψ−(k)〉 , |Ψ̄−(k)〉} satisfy

〈0|Ψ1/2(0)|Ψ−(k)〉 = eiα 〈0|Ψ∗2/1(0)|Ψ̄−(k)〉 , α ∈ R (A.16)

where eiα is an unphysical phase factor which depends upon the precise definition of the
states |Ψ−(k)〉 and |Ψ̄−(k)〉. We will use this relation in the following.

The gapped Goldstone couples linearly to the complex U(2) doublet through the Z2

breaking coupling g:

−g
(

Ψ†
σ

2
Ψ
)
·Φ ⊃ g

2
θ
(
|Ψ2|2 − |Ψ1|2

)
, (A.17)

To induce a decay for θ, we need the gap of the modes {|Ψ−(k)〉 , |Ψ̄−(k)〉} to be less
than half of the gapped Goldstone mass: ω−(0) = ω̄−(0) ≤ µ/2. This happens for1

m2
Ψ +

γ

4
φ2

0 −
√
γµ2

4
φ2

0 +
g2

4
φ2

0 + µ2m2
Ψ ≤ 0 . (A.18)

Under this condition, the following decay channel exists for θ

θ(p)→ Ψ−(k1) + Ψ̄−(k2) . (A.19)

It is easy to compute the associated matrix element induced by the vertex (A.17); we
do not report the details of the calculation. Notice however that the relation (A.16)
implies that the decay amplitude vanishes when the final states have the same momenta.
Consequently, a gapped Goldstone at rest cannot decay, as expected. Noticing that |k1|
is generically of order O(µ), to linear order in the velocity the matrix element reads

iM = iC
p · k1

|k1|
+O

(
p2/µ, (p · k1)2/µ3

)
, (A.20)

where C is

C =
g2µφ0/2

2µ2
(√

g2φ2
0 + µ4 + µ2

)
+ g2φ2

0

×

√√√√√√
(

2
√
g2φ2

0 + µ4 + 2µ2 − γφ2
0 − 4m2

Ψ

)
3µ2 + 2

√
g2φ2

0 + µ4 − 2

√
2µ2

(√
g2φ2

0 + µ4 + µ2
)

+ g2φ2
0

. (A.21)

In the limit where µ is much bigger than all other mass parameters this expression

1The conditions (A.12) and (A.18) are compatible, as it can be seen in the limit where µ is much
bigger than all other mass parameters where they reduce to λ ≤ γ ≤ 4λ.
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simplifies to

C =
g2
√

4λ− γ
8λµ2

+O
(
µ−4

)
. (A.22)

The total decay rate finally takes the following simple form

Γ = c
p2

µ
=

[
g4(4λ− γ)3/2

1536πλ5/2µ4
+O

(
µ−6

)] p2

µ
, (A.23)

where c is a dimensionless constant which we wrote in the µ→∞ limit for illustration in
the right hand side.

A.3 Spacetime coset construction for the SU(2) superfluid

In this section we review the standard coset construction in presence of broken spacetime
symmetries. Our goal is to show how to recover the Lagrangian in eq. (2.13) from this
approach. Furthermore, this construction provides a useful bookkeeping tool to build
higher derivative terms in our action, which we do in appendix A.4.1.

Consider a relativistic system with an internal SU(2) symmetry, whose charge Q3 is at
finite density. The ground state |µ〉 of such a system minimizes the modified Hamiltonian
H̄ = H + µQ3 [33], and it can be chosen to satisfy2

H̄ |µ〉 = (H + µQ3) |µ〉 = 0 . (A.24)

If Q3 is spontaneously broken so is H, the generator of time translations. The generators
of boosts, J0i, and the other internal generators, Q1 and Q2, are broken too. The
symmetry breaking pattern is then

unbroken =


H̄ = H + µQ3 time translations ,

P̄i = Pi space translations ,

Jij rotations ,

broken =

{
J0i boosts ,

Q3, Q1, Q2 internal symmetries .

(A.25)

Therefore we have a theory with a symmetry group, G, given by the product of Poincaré
and the internal SU(2), which is spontaneously broken down to the semidirect product
of the modified translations, generated by P̄µ = {H̄, P̄ }, and rotations. We denote the
unbroken group with G′. Following the standard CCWZ procedure, the coset G/G′ can

2In general, the ground state will satisfy H̄|µ〉 = λ|µ〉, with minimum λ. In the absence of gravity,
one can always add a cosmological constant term to the Hamiltonian to set λ = 0, with no physical
consequences [33].
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be parametrized as

Ω = eiP̄µx
µ
eiη

iJ0ieiπ3Q3eiα
Q+
2

+iα∗
Q−
2 . (A.26)

The way to construct an action which is invariant under the full symmetry group is
to consider the Maurer-Cartan form, Ω−1dΩ, and expand it in the basis of broken and
unbroken generators. Its general expression reads

Ω−1∂µΩ = ie a
µ

(
P̄a +∇aηiJ0i +∇aπ3Q3 +∇aα

Q+

2
+∇aα∗

Q−
2

+
1

2
ωija Jij

)
. (A.27)

Here e a
µ transforms as a spacetime vielbein [64, 235], and we introduced latin indices

a, b = 0, 1, 2, 3 and i, j = 1, 2, 3 to distinguish within the vielbein indices, as in the familiar
geometrical case. The coefficients of the broken generators, ∇aηi, ∇aπ3 and ∇aα, are the
covariant derivatives of the Goldstones. They have the property that, under the action of
any element of the full group, they transform as a linear representation of the unbroken
subgroup. Finally, ωija transforms as a spin connection [77], which can be used to build
higher covariant derivatives of the Goldstone fields:

∇Ha = e µ
a ∂µ +

i

2
ωija Jij . (A.28)

The previous derivative can also act on additional matter fields that transform in some
linear representation of the unbroken group G′. The most general Lagrangian for the
Goldstones, which is invariant under nonlinearly realized symmetry G is then given by

Leff = F (∇aΨ,∇Ha ∇bΨ, . . . ) , (A.29)

where we have collectively represented the Goldstone fields as Ψ. Here F is any function
that depends on combinations of its arguments that are manifestly invariant under the
unbroken group.3

For the case at hand, let us define (e−iη
iJ0i)aµ = (Λ−1)aµ = Λ a

µ and χ = µt + π3 [35].
The quantities defined in (A.27) then read

e a
µ = Λ a

µ , ∇aηi = −Λµa(Λ
−1∂µΛ)0i , ωija = −Λµa(Λ

−1∂µΛ)ij ,

∇aπ3 = ΛµaDµχ− µδ0
a , ∇aα = ΛµaDµα ,

(A.30)

whereDµα andDµχ are the covariant derivatives for a Lorentz invariant EFT of completely
broken SU(2) symmetry in (2.10).

It often happens that, in presence of broken spacetime symmetries, some of the Goldstones
can be algebraically eliminated in favor of the others. This is done imposing the so-called

3In this case, this just means that space indices i, j, . . . should be contracted in a rotationally invariant
way.

191



Appendix A. Appendices to Part I

inverse Higgs constraints [80]. In this case, we can eliminate the Goldstones associated to
the boost generators by imposing4

∇iπ3 = 0 =⇒ ηi

η
tanh η = −Diχ

D0χ
= −∂iπ3

µ
+ . . . . (A.31)

Crucially, thanks to the transformation properties of the covariant derivative, this con-
straint is compatible with all the symmetries. Consequently it is always possible to impose
it. The physical reason is that, when the system breaks spacetime symmetries, the same
physical fluctuation can be described as the action of different generators. In this case,
a small fluctuation generated by a boost could be obtained from the action of Q3 as
well [39,63], making the field ηi redundant.

Once the condition (A.31) has been imposed, all the remaining invariants are expressed
in terms of Dµχ and Dµα only—i.e. the covariant derivatives of the simpler completely
broken SU(2) theory. Without making further calculations, we know that the most
general SU(2) and Lorentz invariant Lagrangian written in terms of these objects is given
by eq. (2.13).

We can also see this explicitly by writing the invariants obtained combining (A.30) and
(A.28). To this aim, it is convenient to notice that eq. (A.31) implies

Λ 0
µ =

Dµχ√
DµχDµχ

≡ nµ , Λ i
µΛ i

ν = −ηµν + nµnν ≡ Pµν . (A.32)

Here we have conveniently defined a unit four-vector nµ ' δ0
µ + . . . in the direction of

the superfluid velocity and a projector Pµν orthogonal to it. Using these quantities, the
leading order invariants take the form:

∇0π3 = nµDµχ− µ ,
∇iα∇iα∗ = DµαP

µνDνα
∗ ,

∇0α = nµDµα ,

∇iα∇iα = DµαP
µνDνα .

(A.33)

The first three expressions here agree with eq. (2.31) when written in terms of the fields

4We use that, in our convention, the boost matrix can be written as [64]

Λ0
0 = γ Λ0

i = γβi Λi 0 = γβi Λi j = δi j + (γ − 1)
βiβj
β2

,

with the velocity related to the Goldstone by βi = ηi
η

tanh η and γ2 = 1
1−β2 .
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in (2.9) using (2.26). Higher order invariants are similarly obtained, for instance:

∇iηi = ∂µn
µ ,

∇H0 ∇0π3 = nµ∂µ(nρDρχ) ,

∇iα∗∇H0 ∇iα = −Dµα
∗Pµσnρ∂ρ(PσνD

να) ,

∇jηi∇jηi = −Pµν∂µnρ∂νnρ ,
∇0η

i∇0η
i = −(nµ∂µn

ρ)ηρσ(nν∂νn
σ) ,

(∇j∇iα∗)(∇j∇iα) = −P ρσ∂σ (PµνDνα
∗) ∂ρ

(
PµλD

λα
)
. (A.34)

We checked up to fourth order in derivatives that all invariants obtained combining (A.30)
and (A.28) can be written contracting in a Lorentz invariant way ∂µ, Dµχ and Dµα, as
in eq. (2.13).

A.3.1 The inverse Higgs constraint in the NREFT

Within the spacetime coset construction presented in the previous section, there exists
also the possibility of imposing an extra Inverse-Higgs constraint of the form5 ∇0α1 =

Re[∇0α] ' α̇1 +µα2 = 0, which eliminates one of the two real components of α = α1 +iα2.
Here we discuss the interpretation of this constraint within the NREFT.

In section 2.2.3 we showed that the NREFT describes two modes, corresponding to the
gapless and the gapped Goldstones. In particular, the complex field π = eiχα interpolates
a single degree of freedom, as typical of a nonrelativistic field. However, there exists an
analogous description in terms of a real field. To see this, let us rewrite the quadratic
action (2.33) to leading order in derivatives in terms of the real fields α1 and α2, with all
time derivatives acting on the first and discarding total derivatives. One gets

L ⊃ −c(1)µ3

[
α2α̇1 + µ

α2
1 + α2

2

2

]
− c(2)

3 µ2
[
(∇α1)2 + (∇α2)2

]
. (A.35)

Since there is no time derivative acting on it, α2 is an auxiliary field, which can be
integrated out on its equation of motion. This gives

0 = α̇1 + µα2 +O
(
∇2/µ

)
' ∇0α1 +O

(
∇2/µ

)
. (A.36)

We hence recovered the inverse Higgs constraint6 ∇0α1 = 0. Since we integrated out
an auxiliary field, the number of degrees of freedom and all the other properties of the

5Of course, one could alternatively consider ∇0α2 = Im[∇0α] ' α̇2 − µα1 = 0.
6With the current parametrization the inverse Higgs constraint corresponds to the equations of motion

of α2 only to linear order in the fields. However, the equality is true at all nonlinear orders in the Euler
parametrization of the Goldstones: Ω = eiχQ3eiα1Q1eiα2Q2 . In other words, there is a field redefinition
for which to impose the inverse Higgs constraint corresponds to integrate out α2 to leading orders in
derivatives but to all orders in the field expansion.
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action are unaffected. Indeed, plugging back the solution of (A.36) in the Lagrangian we
find that α1 becomes a real field with gap µ. In practice, in a nonrelativistic setting it is
easier to work with a complex field, which makes particle number conservation manifest.
We did not explore the possibility of building the action using only two real fields from
start, e.g. working with an SU(2)/U(1) coset Ω = eiχQ3eiα1Q1 around the background
χ = µt, α1 = 0.

This inverse Higgs constraint was also discussed in [39]. However, the authors there
focused on a different setup, where the derivative expansion is controlled by a scale Λ� µ.
In that case, imposing or not the inverse Higgs constraint leads to physically distinct
theories, providing a different interpretation for it. Let us briefly review these previous
findings, in order to compare them with our construction.

When the inverse Higgs constraint is imposed, the construction of [39] leads to an EFT
describing the gapless and the gapped Goldstone, with cutoff Λ� µ. In this setup, the
symmetry is partially restored in the limit µ→ 0, if this limit exists.7 As discussed in
the introduction of section 2.2, this EFT applies for instance in the linear sigma model
for m2 < 0 when the radial mode is much heavier than the gapped Goldstone, i.e. when
|m2| � µ2.

The situation is different when the inverse Higgs constraint is not imposed. Indeed, when
Λ� µ, the leading order quadratic Lagrangian for the complex field α is second order
in time derivatives, implying that α interpolates two modes rather than one as in our
nonrelativistic construction. One mode is the gapped Goldstone, while the mass of the
other depends on the coefficients of the Lagrangian and it is formally proportional to µ.
This mode is usually referred to as a gapped Goldstone with unfixed gap [39]. In this case,
if the limit µ→ 0 is smooth, the theory breaks the internal SU(2) symmetry completely
also at zero chemical potential; the extra mode then provides the third Goldstone required
by the relativistic Goldstone theorem.

In general, the presence of the unfixed gap mode and its properties are not fixed by the
symmetry breaking pattern only and depend on the structure of the theory at scales
Λ� µ. Thus, for the purposes of our construction in which the chemical potential itself
provides the cutoff, this mode, if present in the UV theory, behaves rather like any other
matter field and is thus integrated out in our setup. The nonrelativistic EFT, similarly to
the standard relativistic CCWZ construction, provides the minimal structure required to
realize nonlinearly all the symmetries; in practice, this means that the NREFT describes
only the gapless and the gapped Goldstones. Of course, while we expect this simple setup
to correspond to the most generic situation, specific theories may contain additional light
degrees of freedom, e.g. gauge fields, which can be added to the EFT in the standard way.

7This is not obvious even for Λ� µ, since the cutoff itself might depend on the chemical potential,
e.g. as Λ2 ∼ fµ with f � µ; see [39] for details.
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A.4 NREFT details

A.4.1 NREFT action to O(∂4)

In this section, we write the Lagrangian for the non-relativistic effective theory to fourth
order in derivatives. To this aim, we find a convenient bookkeeping tool to use the
invariants written using the spacetime coset construction presented in appendix A.3. We
assume parity invariance for simplicity.

The effective nonrelativistic Lagrangian is written using the prescription presented in
section 2.2.1, namely imposing the U(1) invariance π → eiξπ and using the nonrelativistic
derivative (2.28). In the notation of the previous section, the latter amounts at building
higher derivative terms using, rather than the one given in eq. (A.28), the following
covariant derivative:

e µ
a ∂̂µ +

i

2
ωija Jij = ∇Ha + i (µ+∇0π3) δ0

a[Q3, ·] . (A.37)

In practice, we performed calculations using the following

∇̂Ha ≡ ∇Ha + i µδ0
a[Q3, ·] . (A.38)

This definition corresponds to a slightly different form of the nonrelativistic derivative,
obtained multiplying Dµχ in eq. (2.28) by µ/

√
DµχDµχ. As commented below that

equation, this redefinition does not affect the key property (2.29), which is needed in
order to have a well-structured derivative expansion.

We can now proceed to formally write the Lagrangian in a ∇/µ expansion as

L = L(1)
∇ + L(2)

∇ + L(3)
∇ + L(4)

∇ + . . . , (A.39)

where L(i)
∇ contains all terms which are of order i in terms of ∇’s covariant derivatives.

We have:

L(1)
∇ /µ3 = c(1)∇0π3 , (A.40)

L(2)
∇ /µ2 = c

(2)
1 (∇0π3)2 + c

(2)
2 |∇0α|2 − c(2)

3 |∇iα|2 , (A.41)

L(3)
∇ /µ = c

(3)
1 (∇0π3)3 + c

(3)
2 ∇0π3|∇0α|2 + c

(3)
3 ∇0π3|∇iα|2

+ c
(3)
4

[
i∇0α

∗∇̂H0 (∇0α) + c.c.
]

+ c
(3)
5

[
i∇iα∗∇̂H0 (∇iα) + c.c.

]
+ c

(3)
6

[
∇iα∗∇̂Hi (∇0α) + c.c.

]
+ c

(3)
7

[
i∇iα∗∇̂Hi (∇0α) + c.c.

]
+ c

(3)
8 ∇0π3(µ∇iηi) . (A.42)

We can expand these in terms of the SU(2) covariant derivatives in eq. (2.10) and their
derivatives. Doing so and defining Dµπ3 ≡ Dµχ− µδ0

µ, we can rewrite the Lagrangian in
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a standard derivative expansion:

L(1)/µ3 = c(1)D0π3 , (A.43)

L(2)/µ2 = c
(2)
1 (D0π3)2 − c(1)

2
(Diπ3)2 + c

(2)
2 |D0α|2 − c(2)

3 |Diα|2 , (A.44)

L(3)/µ =

[
c(1)

2
− c(2)

1

]
D0π3(Diπ3)2 +

[
c

(2)
2 − c

(2)
3 − c

(3)
7

]
(D0α

∗DiαDiπ3 + c.c.)

+ c
(3)
6 (iDiα

∗Diπ3D0α+ c.c.) + c
(3)
1 (D0π3)3 + c

(3)
2 D0π3|D0α|2 + c

(3)
3 D0π3|Diα|2

+ c
(3)
4 [iD0α

∗(∂0 + iµ) (D0α) + c.c.] + c
(3)
5 [iDiα

∗(∂0 + iµ) (Diα) + c.c.] (A.45)

+ c
(3)
6 [Diα

∗∂i (D0α) + c.c.] + c
(3)
7 [iDiα

∗∂i (D0α) + c.c.]− c(3)
8 D0π3(∂iDiπ3) .

Notice that terms with Diπ3 always appear from the expansion of the ∇ covariant
derivatives in connection with lower derivative ones.
The fourth order in derivatives can be constructed similarly. Here we just report the
fourth order term in (A.39)

L(4)
∇ = c

(4)
1 (∇0π3)4 + c

(4)
2 (∇0π3)2|∇0α|2 + c

(4)
3 (∇0π3)2|∇iα|2

+ c
(4)
4 |∇0α|4 + c

(4)
5 |∇0α|2|∇iα|2 + c

(4)
6

[
(∇iα)2(∇0α

∗)2 + c.c.
]

+ c
(4)
7

[
i(∇iα)2(∇0α

∗)2 + c.c.
]

+ c
(4)
8 |∇iα|2|∇jα|2

+ c
(4)
9 (∇iα)2(∇jα∗)2 + c

(4)
10 (∇̂H0 ∇0π3)|∇0α|2 + c

(4)
11 (∇0π3)

[
i∇0α

∗∇̂H0 ∇0α+ c.c.
]

+ c
(4)
12 (∇̂H0 ∇0π3)|∇iα|2 + c

(4)
13 (∇0π3)

[
i∇iα∗∇̂H0 ∇iα+ c.c.

]
+ c

(4)
14 (∇̂Hi ∇0π3) [∇iα∗∇0α+ c.c.] + c

(4)
15 (∇̂Hi ∇0π3) [i∇iα∗∇0α+ c.c.]

+ c
(4)
16 ∇0π3

[
∇̂Hi (∇0α)∇iα∗ + c.c.

]
+ c

(4)
17 ∇0π3

[
i∇̂Hi (∇0α)∇iα∗ + c.c.

]
+ c

(4)
18 (∇̂H0 ∇0π3)2 + c

(4)
19 (∇̂Hi ∇0π3)2 + c

(4)
20 |∇̂H0 ∇0α|2

+ c
(4)
21 |∇̂Hi ∇0α|2 + c

(4)
22

[
∇̂Hi ∇iα∗∇̂H0 ∇0α+ c.c.

]
+ c

(4)
23

[
i∇̂Hi ∇iα∗∇̂H0 ∇0α+ c.c.

]
+ c

(4)
24 |∇̂H0 ∇iα|2 + c

(4)
25 |∇̂Hi ∇iα|2 + c

(4)
26 |∇̂Hj ∇iα|2 + c

(4)
27 µ

2∇0η
i∇0η

i + c
(4)
28 µ

2(∇iηi)2

+ c
(4)
29 µ

2∇iηj∇iηj + c
(4)
30 µ∇iηi∇̂H0 ∇0π3 + c

(4)
31 µ(∇0π3)2∇iηi + c

(4)
32 µ|∇0α|2∇iηi

+ c
(4)
33 µ|∇iα|2∇jηj + c

(4)
34 µ∇iηj [∇iα∇jα∗ + c.c.] + c

(4)
35 µ∇iηj [i∇iα∇jα∗ + c.c.]

+ c
(4)
36 µ∇0η

i [∇iα∇0α
∗ + c.c.] + c

(4)
37 µ∇0η

i [i∇iα∇0α
∗ + c.c.] . (A.46)

We did not write terms which effectively contribute at fifth order in derivatives after
expanding the ∇’s as before.
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A.4.2 Feynman rules to leading order in ∂/µ

Before introducing a process dependent velocity power counting, it might be useful to
consider a power counting in ∂/µ. Here we list the Feynman rules to leading order within
this counting. We use the field parametrization (2.9). Black solid lines correspond to
gapped Goldstones with four-momentum p = (µ+ ε,p), while dashes stand for gapless
Goldstones, whose four-momentum is denoted as k = (ω,k).

• |π|2π3 vertex:

(A.47)

• π3
3 vertex:

(A.48)

• |π|4 vertex:

(A.49)
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• |π|2π2
3 vertex:

(A.50)

• π4
3 vertex:

(A.51)

A.4.3 Coefficients of ππ scattering to order O(v4)

The coefficients of the π dispersion relation (2.44) to subleading order is given by

c(2)
m = 16

c(1)
[
c(1)

(
c

(4)
25 + c

(4)
26

)
+ 4c

(2)
3

(
c

(3)
5 + c

(3)
7

)]
+ 4c

(2)
2

(
c

(2)
3

)2

(c(1))3
. (A.52)

The bi’s in (2.43) are

b1 = −
c(1)c2

m(cs − 1)− 4cs

[
cm(c

(2)
2 + c

(3)
3 ) + 2c

(3)
5 (cm − 1)− 2c

(3)
7

]
8cs

, (A.53)

b2 =
1

4

(
cm

[
4c

(3)
3 − 3c(1)cm + 4c

(2)
2 (2cm + 3)

]
− 2c(1)c(2)

m

)
+ 6c

(3)
5 (cm − 1) + c

(3)
7 (4cm − 6) , (A.54)

b3 = −4
(

2c
(3)
5 − 4c

(4)
9 + 2c

(4)
26 + c

(4)
29 + 2c

(4)
35

)
, (A.55)

b4 = 2
(

2c
(3)
5 + 4c

(4)
8 + 2c

(4)
26 + c

(4)
29 + 2c

(4)
35

)
. (A.56)
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A.4.4 Loops in dimensional regularization

We can regulate the NREFT at quantum level with a hard space cutoff Λ . µ. However
powers of the cutoff spoil power counting [92] and complicate computations. It is hence
preferable to use a mass independent regulator, such as dimensional regularization. In a
nonrelativistic EFT, if this is done naïvely retaining the standard form of propagators,
loops involving both massive and massless particle become dominated by hard momenta
|k| ∼ µ, which should not enter in the NREFT computations (c.f [83] within the context
of NRQCD). This is due to the fact that the gapped dispersion relation k0 ∼ k2/µ

and the gapless one k0 ∼ |k| can be simultaneously satisfied only for |k| ∼ µ. A
consistent formulation of NREFTs with both heavy and light fields was devised by
Griesshammer [86, 87], as a development of the method of regions [236], and then further
refined with the formulation of vNRQCD [88,237]. In this appendix we review the key
points and their application to our EFT, focusing on the power counting of diagrams.
We refer to the original works for details.

The first step is to identify a consistent set of modes, according to their scaling with
velocity v. According to standard NRQCD results [83,84], these are given by soft, potential
and ultrasoft modes listed in (2.40). Fields are split accordingly as explained in section
2.2.5. To enforce power counting, one should retain in the denominators of propagators
only momenta with the same scaling in v, expanding the subleading ones in an infinite
series. In particular, they will be given by 8

Gs
π3

(ω,k) = Gus
π3

(ω,k) =
i

ω2 − c2
sk

2
, Gp

π3
(ω,k) =

−i
c2
sk

2

∞∑
n=0

(
ω2

c2
sk

2

)n
,

Gs
π(ε,p) = Gus

π (ε,p) =
i

ε

∞∑
n=0

(
cmp

2

2µε

)n
, Gp

π(ε,p) =
i

ε− cmp2

2µ

,

(A.57)

where we omitted the +i0 prescription. For instance, the soft Gsπ(ε,p) propagator and the
potential Gpπ(ε,p) propagators are not equivalent beyond tree-level, since infinite sums
and integration do not commute in dimensional regularization [236]. After the splitting
into different modes is performed, and hence all propagators are properly expanded, all
loops in dimensional regularization are made only of light scales. This also makes it
straightforward to power count diagrams in v.

8Naively performing these expansions inside loops sometimes leads to unphysical pinch singularities,
e.g. in box integrals. However, a careful analysis shows that these arise from an over-counting of the
contribution of a certain region and that loops are indeed regular after the proper zero-bin subtractions
have been performed [237]. These subtleties do not affect the simple power counting rules that we discuss
here, hence we will neglect them in what follows.
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As a simple illustration, consider the one-loop correction to the Gpπ(ε,p) propagator 9

(A.58)

where in a hard cutoff approach we would write the loop integral as

Iππ = −i
∫

d4k

(2π)4

[
(2ε− k0)k0 − c2

s(2p− k) · k
]2[

(ε− k0)− cm (p−k)2

2µ + i0
] (
k2

0 − c2
sk

2 + i0
) . (A.59)

To perform this computation in d = 4− ε dimensions, we need to take into account four
different integrals, depending on the specific modes running in the loop:

1. πs3 : (k0,k) ∼ (µv, µv) and πs : (ε− k0,p− k) ∼ (µv, µv);

2. πp3 : (k0,k) ∼ (µv2, µv) and πp : (ε− k0,p− k) ∼ (µv2, µv);

3. πp3 : (k0,k) ∼ (µv2, µv) and πus : (ε− k0,p− k) ∼ (µv2, µv2);

4. πus3 : (k0,k) ∼ (µv2, µv2) and πp : (ε− k0,p− k) ∼ (µv2, µv).

Consider for illustration the πs − πs3 loop. We have k0 � ε, (p− k)2/µ, hence we should
enforce this expanding the gapped NGB propagator in an infinite series

i

(ε− k0)− cm (p−k)2

2µ + i0
−→ i

−k0 + i0

1 +
ε− cm (p−k)2

2µ

k0 − i0
+ . . .

 (A.60)

The integral here is:

I(1)
ππ = −iM ε

∫
ddk

(2π)d
[. . .]2

(−k0 + i0)
(
k2

0 − c2
sk

2 + i0
)
1 +

ε− cm (p−k)2

2µ

k0 − i0
+ . . .

 = 0,

(A.61)
where M is the sliding scale. The loop vanishes since, after performing the k0 integration
with the residue’s theorem, the integral can be divided in a sum of contributions propor-
tional to

∫
dd−1k/|k|n = 0. Similarly one can check that the πp3 − πp and πp3 − πs loops

vanish10 to all orders in v.
The only nontrivial contribution comes from the ultrasoft πus3 −πp loop. We have k2 � p2,

9We neglected a scaleless tadpole vanishing in dimensional regularization.
10Within this approach this is a common fact, for instance one can prove that πus never contributes

inside loops [86].
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implying that the πp propagator should be expanded as

i

(ε− k0)− cm (p−k)2

2µ + i0
−→ i

(ε− k0)− cm p2

2µ + i0

(
1−

cm
p·k
µ

ε− k0 − cm p2

2µ

+ . . .

)
.

(A.62)
We can power count the measure according to the momentum of the softest propagator,
which sets the size of the integration box. In this case thus d4k ∼ µ4v8. The leading
contribution is

I(4)
ππ = M ε

∫
ddk

(2π)d
−ic4

s(p · k)2[
(ε− k0)− cm p2

2µ + i0
] (
k2

0 − c2
sk

2 + i0
) ∼ O (v8

)
. (A.63)

The integral is simple to perform, giving an O(v8) contribution:

I(4)
ππ =

p2
(
ε− cm p2

2µ

)3

3π2cs

1

ε
− log

ε− cm p2

2µ + i0

−csM

− γ

2
+

4

3
+

log π

2

 . (A.64)

The divergence renormalizes the Lagrangian term 1
µ5∇iπ∗

(
i∇̂H0 − cm

2µ ∇̂Hi ∇̂Hi
)3
∇iπ =

1
µ5D

λπ∗Pλµ

{[
inρ∂̂ρ − cm

2µ ∂̂ρ

(
P ρσ∂̂σ

)]3
PµνDνπ

}
, in the notation of app. A.3. In prac-

tice many tree-level higher derivative terms have to be taken into account at the lower
orders.

In (A.64) we found a ∼ log
(
µv2/M

)
contribution. Indeed in general ultrasoft loops give

rise to logarithms of the ultrasoft scale µv2. Instead soft and potential loops lead to
logarithms of the soft scale µv [88]. For instance, the leading loop contribution to πp3π

p
3

potential propagator comes from a soft loop and takes the form

(A.65)
Finally, one can now consistently power count loop contributions to the ππ elastic
scattering, computed to O(v4) at tree-level in sec. 2.2.5. Using the Feynman rules in
A.4.2, one easily concludes that the first corrections arise only at O(v5). Specifically,
three kinds of loop corrections exist. First, corrections to the Gpπ3 propagator in exchange
diagrams of fig. 2.2, which however start at O(v8) as eq. (A.65) shows. Then corrections
to the πp3 |πp|2 vertex appearing in the same kind of diagrams. For instance, the leading
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Figure A.1 – Leading loop topologies which correct the contact interaction in ππ scattering.
The scaling of vertices and the modes in the loop are displayed.

correction in this class is given by a loop of πp and πp3 :

(A.66)

Here we showed explicitly the scaling of the vertices with v and we power counted the
result as measure×propagators×vertices. Finally we have those that we can interpret as
corrections to the contact vertex in fig. 2.1. The leading corrections in this class are also
O(v5) and are displayed in figure A.1.

We remark that this formulation of the NREFT differs in some points from the modern
vNRQCD [88]. First, we did not separate explicitly the fields momenta in soft, potential
and ultra-soft components in the Lagrangian, as it is customarily done in NRQCD [84].
Of course, this is possible and it might be useful in performing more refined computations,
especially to account for the proper zero-bin subtractions [237]. Furthermore, here off-
shell modes are not integrated out explicitly and the pull-up mechanism is not explicitly
implemented [88], i.e. we do not renormalize soft and ultrasoft fields separately. These
differences stem from the fact that we want to preserve the nonlinearly realized SU(2)

invariance in the Lagrangian, which relates the different modes of π3 and π. In particular,
this implies that all modes of a given operator have the same anomalous dimensions [87],
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differently than in vNRQCD. There, renormalizing them separately allows to efficiently
resum logarithms of both the soft and ultrasoft scale, via the velocity Renormalization
Group.11 This is not possible within our approach, but it is only a minor drawback.
Indeed, as typical for Goldstone bosons, all interactions are irrelevant, so that logarithms
are always multiplied by powers of the velocity.

11For instance, in vNRQCD ultrasoft and soft fields are allowed to interact via gauge couplings evaluated
at different sliding scales.
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B Appendices to Part II

B.1 Basics of Conformal Field Theories

Conformal field theories (CFTs) are local1 quantum field theories (QFTs), invariant
under conformal transformations. Here we review their basic properties and introduce
our conventions, referring the reader to [238–240] for further details. We will focus our
discussion on d > 2 Euclidean space dimensions (see [241] for d = 2).

B.1.1 The conformal algebra and primary operators

In Euclidean signature, the conformal group in d dimensions is isomorphic to SO(d+ 1, 1).
Its generators, Pµ, Jµν , Kµ and D, satisfy the following algebra

[Jµν , Jρσ] = −i (δµσJνρ + δνρJµσ − δµρJνσ − δνσJµρ) ,
[Pρ, Jµν ] = iδρνPµ − iδρµPν , [Kρ, Jµν ] = iδρνKµ − iδρµKν , (B.1)

[D,Pµ] = −iPµ , [D,Kµ] = +iKµ , [Pµ,Kν ] = −2i(Dδµν + Jµν) .

Pµ and Jµν correspond to the generators of the Poincaré group. D generates rigid scale
transformations xµ → λxµ with λ > 0. Finally Kµ corresponds to special conformal
transformations, whose finite action is given by

xµ −→ xµ − bµx2

1− 2b · x+ b2x2
. (B.2)

Pµ and Kµ are conjugated under the the action of the inversion IPµI = Kµ, where I
acts as xµ → xµ/x2. As a consequence, special conformal transformations map the origin
to itself, as translations do with the point at infinity.

1By this we mean that the spectrum of operators of the theory includes a conserved spin-2 operator,
the energy-momentum tensor.
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Operators are classified in irreducible representations of the conformal group. We call
primaries the operators which are annihilated by the action of special conformal transfor-
mations at the origin [Kµ,O(∆)

µ1...µ`(0)] = 0. These are labelled by their scaling dimension
∆, determining their properties under rigid rescaling O(∆)

µ1...(x)→ λ∆O(∆)
µ1...(λx), and by

the representation of the rotation group under which they transform. The action of the
conformal generators on a primary operator at an arbitrary point reads:

[Jµν ,O(∆)
µ1...µ`

(x)] = i(xµ∂ν − xν∂µ)O(∆)
µ1...µ`

(x)− ρ(`) [Jµν ]ν1...ν`
µ1...µ`

O(∆)
ν1...ν`

(x) ,

[Pµ, φ(x)] = −i∂µφ(x) ,

[D,O(∆)
µ1...µ`

(x)] = −i(xµ∂µ + ∆)O(∆)
µ1...µ`

(x) , (B.3)

[Kµ,O(∆)
µ1...µ`

(x)] = i(2xµx
ν∂ν − x2∂µ + 2∆xµ)O(∆)

µ1...µ`
(x)

+ 2xνρ(`) [Jνµ]ν1...ν`
µ1...µ`

O(∆)
ν1...ν`

(x) ,

where ρ(`) [Jνµ] stands for the appropriate representation of the SO(d) generators. Opera-
tors which are not annihilated by Kµ at the origin are called descendants and are obtained
taking an arbitrary number k of derivatives of primary operators, e.g. ∂ν1 . . . ∂νkO

(∆)
µ1...µ` ,

and transform with scaling dimension ∆ + k under rigid rescaling. Therefore, correlation
functions of descendant operators are fully determined from the ones of the primaries. In
the following we will restrict our attention to primary operators. For the sake of simplicity,
we will only consider traceless symmetric operators.

B.1.2 Correlation functions and CFT data

Basic observables in CFTs are correlation functions of local operators. These in turn are
highly constrained from conformal symmetry. Let us briefly review the basic results.

The two-point function of two primary operators vanishes unless they have the same spin
and scaling dimension; its general form is determined by the conformal symmetry up to a
constant cab:

〈O(∆a)
µ1...µ`a

(x)O(∆b)
ν1...ν`b

(0)〉 = δ∆a ∆b
δ`a `b

cab
cd,`a

Π
ρ1...ρ`a
µ1...µ`a Iρ1ν1(x) . . . Iρ`aν`a (x)

x2∆a
, (B.4)

where
Iµν(x) = δµν −

2xµxν
x2

, (B.5)

Πρ1...ρ`
µ1...µ` is the projector onto the space of traceless symmetric tensors2 and we convention-

ally introduced the following normalization factor

cd,` =
`!

2`
(
d−2

2

)
`

, (B.6)

2For instance, taking ` = 2 it reads Πν1ν2
µ1µ2

= 1
2

(
δν1µ1

δν2µ2
+ δν2µ1

δν1µ2

)
− 1

d
δµ1µ2δ

ν1ν2 [205].
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where (x)y = Γ(x+ y)/Γ(x) is the Pochhammer symbol. This factor will be convenient
when mapping the theory to the cylinder. We can always work in a basis of operators
such that cab = δab, with the exception of conserved operators; these cannot be rescaled
without changing the conventions of the group algebra which they generate. Therefore,
the normalization coefficients of two-point functions of conserved operators are physical
constants, usually referred as central charges [242], whose value depends on the specific
theory under consideration.

The structure of three-point functions is similarly constrained by conformal symmetry,
that fixes their form up to a finite number of constants, called OPE coefficients for reasons
which will become clear later. For instance, the three-point function of two scalars and a
spin ` primary reads

〈O(∆c)
µ1...µ`

(x3)O(∆b)(x2)O(∆a)(x1)〉 =
λabc
cd,`

Πν1...ν`
µ1...µ`

Zν1(x1, x2;x3) . . . Zν`(x1, x2;x3)

x∆a+∆b−∆c
12 x∆b+∆c−∆a

23 x∆c+∆a−∆b
31

,

(B.7)
where λabc is a theory-dependent OPE coefficient, xij = xi − xj and

Zµ(x1, x2;x3) =

√
x2

13x
2
23

x2
12

(
xµ23

x2
23

− xµ13

x2
13

)
. (B.8)

More general three-point functions may depend upon a larger number of theory-dependent
coefficients. This is for instance the case for the correlator of a scalar, a vector Jµ and a
spin ` ≥ 1 operator, which depends upon two OPE coefficients [205]:

〈O(∆`)
µ1...µ`

(x3)Jµ(x2)O(∆s)(x1)〉 = c−1
d,`

λ
(1)
sJ`Tµµ1...µ` + λ

(2)
sJ`

[
Tµµ1...µ` + T̃µµ1...µ`

]
x∆s+∆J−∆`

12 x∆J+∆`−∆s
23 x∆s+∆`−∆J

31

, (B.9)

where we defined the following tensor structures

Tµµ1...µ` = Zµ(x3, x1;x2) Πν1...ν`
µ1...µ`

Zν1(x1, x2;x3) . . . Zν`(x1, x2;x3) , (B.10)

T̃µµ1...µ` = Iµν1(x23)Πν1...ν`
µ1...µ`

Zν2(x1, x2;x3) . . . Zν`(x1, x2;x3) . (B.11)

We conventionally associated specific tensor structures to the three-point function coeffi-
cients in eq. (B.9) for future convenience. When the vector Jµ is conserved, corresponding
to ∆J = d − 1, the constraint ∂µJµ = 0 implies a linear relation between the OPE
coefficients, which allows to express one in terms of the other:

λ
(2)
sJ` =

(∆s −∆`)

`+ d− 2
λ

(1)
sJ` . (B.12)

Similarly, the three-point function of a conserved current and two scalars vanishes unless
these two have the same scaling dimension and opposite charge under the corresponding
generator. Calling Q such charge and assuming the scalar operator to be normalized as
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explained above, the Ward identity fix it to be

〈O−Q(x3)Jµ(x2)OQ(x1)〉 =
Q

Ωd−1

Zµ(x1, x3;x2)

xd−1
12 xd−1

23 x2∆O−d+1
31

, (B.13)

where Ωd−1 = 2πd/2

Γ(d/2) is the volume of the d− 1-dimensional sphere.

The structure of higher-point functions is less constrained. This is because there exist
scalar combinations of four or more points, called cross ratios, that are conformal invariant
and can be used to construct invariant functions. For instance, the correlator of four
identical scalars O depends on a function of two variables:

〈O(x4)O(x3)O(x2)O(x1)〉 =
f(u, v)

x2∆O
12 x2∆O

34

, (B.14)

where the cross-ratios read

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

. (B.15)

Nonetheless, it turns out that correlators of n ≥ 4 operators do not contain additional
information with respect to two- and three-point functions. This is thanks to the,
arguably, most important property of conformal theories: the Operator Product Expansion
(OPE). This is a standard tool in QFT, which allows to replace the product of two
operators Oa(x1)Ob(x2) for |x1−x2| sufficiently small by an infinite sum of local operators∑

cC
c
ab(x1 − x2)Oc(x2). However, while in generic QFTs this series is believed to be

asymptotic [28], in CFTs the OPE has a finite radius of convergence [127], as it could
have been expected by scale invariance [243]. Therefore, it can be used to systematically
reduce n-point functions to a sum of two-point functions, whose general form is fixed
by symmetry. Furthermore, the structure of the OPE is fully determined by conformal
invariance and by the coefficients appearing in the three-point functions. For instance,
the OPE of two identical scalar primaries takes the form

O(x)O(0) =
∑

primaries

λOOφC
µ1...µ`
∆O,∆

(xµ, ∂µ)φ(∆)
µ1...µ`

(0) , (B.16)

where λOOφ is the coefficient appearing in eq. (B.7) and the functional Cµ1...µ`
∆O,∆

(xµ, ∂µ)

depends only on the scaling dimension and spin of the operator φ(∆)
µ1...µ`(0). Using this

formula in eq. (B.7) and expanding for x1 → x2, its form can be found as a series in |x|;
the leading term is given by:

Cµ1...µ`
∆O,∆

(xµ, ∂µ) =
xµ1 . . . xµ`

x2∆O−∆+`
+ . . . . (B.17)

207



Appendix B. Appendices to Part II

Therefore, the full dynamical information specifying the CFT is encoded in the spectrum
of primaries and in the OPE coefficients specifying their three-point correlators. This set
of number goes under the name of CFT data and determines all local correlation functions
of the theory. 3 For instance, using the OPE in eq. (B.14) between the operators at x1

and x2 and those at x3 and x4, we can express the function f(u, v) as

f(u, v) =
∑

primaries

λ2
OOφg∆,`(u, v) , (B.18)

where g∆,`(u, v) is called a conformal block and it is fully specified by conformal invariance
in terms of the scaling dimension ∆ and spin ` of the exchanged primary operator φ.
Explcit expressions for g∆,`(u, v) in even dimensions, as well as a series representation
holding for every d, were derived in [244,245]. Similar conformal block decompositions
exist for arbitrary conformal four-point functions. We shall discuss in detail a case of
interest for this thesis in sec. B.4.2.

It should be stressed that most possible set of scaling dimensions, spins and OPE
coefficients do not specify a consistent theory, as the CFT data should satisfy a number
of non-trivial constraints. The most stringent ones arise from imposing the associativity
of the OPE in four-point functions. The study of these constraints is called the conformal
bootstrap [25, 97]. Recently, unitarity and OPE associativity were used to obtain detailed
predictions on the spectrum of specific theories [98,116,117], as well as to unveil some
universal properties of general CFTs [169,170,173,246].

B.1.3 The map to the cylinder and the state-operator correspondence

In all local unitary CFTs, the energy momentum tensor is traceless [105,241]:

Tµµ = 0 . (B.19)

This further implies that the theory is invariant under Weyl rescaling of the metric. In
particular, this allows to map our theory from the plane to the cylinder Rd → R× Sd−1.
To see this, let us parametrize Rd by polar coordinates (r,Ωd−1), where Ωd−1 collectively
denotes the coordinates on Sd−1, and R× Sd−1 by (τ,Ωd−1); the mapping is then simply
given by r = Reτ/R with R the sphere radius. The cylinder metric is then related to the
flat one by a Weyl rescaling

ds2
cyl = dτ2 +R2dΩ2

d−1 =
R2

r2
ds2
flat . (B.20)

3Besides the correlation functions of local operators one can consider extended operators, such as
conformal defects, as well as the correlation functions on various non-trivial manifolds. In order to be
able to compute these quantities, in general, one has to extend the notion of CFT data.
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Weyl invariance4 ensures that the flat space theory is equivalent to the one on the cylinder.
In particular, a correlation function of n primary operators with scaling dimensions
∆1, . . . ,∆n and spin `1, . . . `n, with all spacetime indices lowered, is related to the flat
space one by [239]

〈On(xn) . . .O1(x1)〉cyl = |xn|∆n−`n . . . |x1|∆1−`1〈On(xn) . . .O1(x1)〉flat . (B.21)

When considering the mapping in eq. (B.21), dilations on the plane are mapped to time
translations on the cylinder. Correspondingly, the spectrum of operator dimensions on
the plane, the eigenvalues of the dilation charge D, is mapped to the energy spectrum
on the cylinder, the eigenvalues of Hcyl. To illustrate this point, consider a two-point
function of a (real) scalar primary O:

〈O(xf )O(xi)〉cyl =
|xf |∆|xi|∆

x2∆
if

. (B.22)

Now, the limit xi → 0 on the plane translates to τi → −∞ on the cylinder and the above
equation becomes

〈O(xf )O(xi)〉cyl τi→−∞= e−EO(τf−τi), EO = ∆O/R . (B.23)

More precisely one can check that the rate of approach to the above limiting result
is controlled by eτi/R, so that the above equation holds with exponential precision for
|τi/R| � 1. By eq. (B.23) the action of O(xi) at τi → −∞ simply creates a state with
energy ∆O/R and carrying all the global quantum numbers of O. This is the operator
state correspondence, which greatly illuminates many aspects of conformal field theory
when viewed on the cylinder. Calling this state |O〉 = O(0) |0〉, we can also recover states
associated to descendants acting with the translation generators: Pµ1 . . . Pµ` |O〉. The
set composed of |O〉 and all its descendants is called conformal multiplet.

Given a real operator Oµ1...µ`(τ,Ω) on the cylinder, the natural definition of conjugation
in Euclidean signature is [239]

O†µ1...µ`
(τ,Ω) = Îν1

µ1
. . . Îν`µ`Oν1...ν`(−τ,Ω) , (B.24)

where Îνµ = δνµ − 2δ0
µδ
ν
0 is the reflection in the cylinder time direction. When mapping

back to the plane, this definition is equivalent to the action of the inversion operator I:

O†µ1...µ`
(xµ) = IOµ1...µ`(x

µ)I = x−∆OIµ1ν1 . . . Iµ`ν`Oν1...ν`(xµ/x2) , (B.25)

where Iµν is given in eq. (B.5). As a consequence P †µ = IPµI = Kµ and D† = IDI = −D.

Combining unitarity and the state-operator correspondence we may derive constraints on
4The Weyl anomaly does not affect correlation functions of local operators [239].

209



Appendix B. Appendices to Part II

the spectrum of operators of the theory. For instance, imposing positivity of the norm of
the first descendant state Pµ |O〉 of the conformal multiplet of a scalar operator we get

||Pµ |O〉 ||2 = 〈O|KµPµ|O〉 = 2∆ 〈O|O〉 ≥ 0 =⇒ ∆ ≥ 0 . (B.26)

Here we used the algebra (B.1) and Kµ |O〉 = 0. Imposing positivity of the norm of
descendant states for general conformal multiplets, one finds that the scaling dimension
of a spin ` traceless symmetric primary operator satisfies the following unitarity bound :

∆ ≥
{
d−2

2 ` = 0

d− 2 + ` ` ≥ 1 .
(B.27)

The bound for scalars is saturated only by the free field, while that for ` ≥ 1 is saturated
by conserved operators ∂µ1Oµ1...µ`(x) = 0. Conversely, any conserved operator saturates
the unitarity bound. In particular, conserved operators with ` = 1 are Noether currents for
internal symmetries, while the only conserved operator with ` = 2 is the energy-momentum
tensor. Higher spin conserved operators exist only in free theories [247,248].

Finally, we comment on the normalization of states. First, notice that from eq. (B.4),
different conformal multiplets are orthogonal. Furthermore, from the definition (B.24) we
obtain the normalization of spin ` primary states as [240]:

〈Oν1...ν` |Oµ1...µ`〉 = lim
xi→0
xf→∞

〈O †ν1...ν`
(xf )Oµ1...µ` (xi)〉 = c−1

d,`Π
µ1...µ`
ν1...ν`

, (B.28)

where we work in a basis such that cab = δab in eq. (B.5). Despite the odd looking factor
c−1
d,` , the normalization (B.28) is a convenient one when considering the theory quantized
on the cylinder. Indeed, it is often useful to decompose a spin ` operator as

Oµ1...µ`(x) =
∑
m

T (`,m)
µ1...µ`

O(`,m)(x) , (B.29)

where m collectively labels the eigenvalues of the Cartan generators of SO(d) and the
tensors T (`,m)

µ1...µ` provide the basis of traceless symmetric tensors defining the normalized
hyperspherical harmonics as

n̂µ1 . . . n̂µ`T (`,m)
µ1...µ`

=

√
(d− 2)Ωd−1

(2`+ d− 2)
Y `
m(n̂µ) , n̂µ = xµ/|x| , (B.30)

The conventional prefactor on the right-hand will be useful when considering the conformal
block decomposition of four-point functions. The square root of the volume of Sd−1,
Ωd−1, ensures that for ` = 0 we have T (0,0) = 1, making the decomposition (B.29) trivial
for scalars. In this basis, the normalization in eq. (B.28) simply reads:

〈O(`,m′)|O(`,m)〉 = δm′m . (B.31)
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B.2 Conformal superfluid from the coset construction

Here we provide a derivation of the conformal Abelain superfluid Lagrangian (3.9) on the
cylinder, using the CCWZ technique. In order to apply the coset construction in a curved
manifold, it is convenient (but not necessary) to gauge spacetime symmetries, specifying
the preferred value for the metric only at the end of calculations [64]. 5 To proceed
in this way, we consider the generators acting in a locally flat chart of the manifold,
denoted {D̂, P̂µ, K̂µ, Ĵµν}. These are naturally associated with those acting on the plane
considering the formal R→∞ limit on R× Sd−1:

D = −RP̂0, Jij = Ĵij , J0i = −RP̂i, P0 = P̂0 +
D̂

R
+

K̂0

2R2
,

K0 =
1

2
K̂0 −RD̂ +R2P̂0, Pi = P̂0 +

Ĵ0i

R
− K̂i

2R2
, Ki =

1

2
K̂i +RĴ0i −R2P̂i.

(B.32)
These expressions are derived considering the differential representations for the conformal
generators in the coordinate system (τ, yi) on the cylinder, specified by Reτ/R =

√
x2

0 + x2
i

and yi = xi in terms of the flat space coordinates (x0, xi) in Euclidean signature, and then
taking the limit R→∞ [35]. Notice that in this limit, quite intuitively, the translations
P̂i are proportional to the rotations around x0, while the Hamiltonian P̂0 is proportional
to the dilatation generator.

The symmetry breaking pattern (3.7) discussed in sec. 3.1 can now be rewritten in terms
of the hatted generators in eq. (B.32). Doing so and specializing to an internal symmetry
group G = U(1), we get: {̂̄P 0 = P̂0 + µQ, P̂i, Ĵij unbroken,

Ĵ0i, K̂µ, Q̂ broken.
(B.33)

Following [35], we gauge all spacetime symmetries, including dilatation. This amounts at
constructing the Maurer-Cartan one-form using the following covariant derivative:

Dµ = ∂µ + iẽaµPa +
i

2
ωabµ Jab + iAµD (B.34)

where ẽaµ, ωabµ and Aµ are gauge connections. Indices a, b = 0, 1, . . . label the gauged
Poincaré generators and should not be confused with spacetime indices µ, ν, . . . [235, 249].
Notice that, in this approach, special conformal transformations are obtained as local
scale transformations. Thus we did not include them in the covariant derivative (B.34),
which already cointains a gauge field associated to dilatations. Similarly, we do not need
to introduce separate Goldstone fields for them in the coset representative. Thus, working

5This approach, when the metric is treated as a dynamical field rather than a background one,
produces dynamical gravitational theories [235,249].
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from now on in Lorentzian time and dropping the hat from generators, we parametrize
the coset representative as

Ω = eiy
aP̄aeiσDeiη

iJ0ieiπQ = eiy
aPaeiσDeiη

iJ0ieiχQ, χ = µt+ π. (B.35)

The first step of the construction is to consider the Maurer-Cartan (MC) one form:

Ω−1DµΩ = iEaµ

(
P̄a +∇aσD +∇aπQ+∇aηiJ0i +

1

2
Ωij
a Jij

)
; (B.36)

where

Eaµ = e−σebµΛ a
b , ∇aπ = eσeµbΛba∂µχ− µδ0

a , ∇aσ = eσeµbΛba (∂µσ +Aµ) ,

∇aηi = eσeµbΛba

[
−(Λ−1∂µΛ)0i + ωcdµ Λ 0

c Λ i
d

]
, (B.37)

Ωij
a = eσeµbΛba

[
−(Λ−1∂µΛ)ij + ωcdµ Λ i

cΛ
j
d

]
.

Here we introduced the Lorentz matrix (e−iη
iJ0i)ab = Λ a

b . The field eaµ = ẽaµ + ∂µy
a −

ωaµ by
b +Aµya has the right transformation properties to be interpreted as a spacetime

vielbein and similarly ωabµ is a spin connection. The associated field strengths follow from

Ω−1[Dµ, Dν ]Ω = iEaµE
b
µ

(
T cabPc +

1

2
RcdabJcd +AabD

)
, (B.38)

where, calling Eµa the inverse of Eaµ in eq. (B.37),

T cab = EµaE
ν
b

(
∂µe

d
ν − ∂νedµ − ωdµ eeeν + ωdν ee

e
µ +Aµe

d
ν −Aνedµ

)
Λ c
de
−σ,

Rcdab = EµaE
ν
b

(
∂µω

gh
ν − ∂νωghµ − ωgµ eωehν + ωgν eω

eh
µ

)
Λ c
gΛ d

h , (B.39)

Aab = EµaE
ν
b (∂µAν − ∂νAµ).

The Eaµ in eq. (B.37) are used to construct an invariant measure as detE = e−dσ. The
Lagrangian is then built considering SO(d− 1) invariant contractions of the covariant
derivatives of the Goldstones, ∇aπ, ∇aσ and ∇aηi in eq. (B.37), and the curvature
invariants in eq. (B.39). Higher derivatives of these invariants are obtained using

∇Ha = Eµa∂µ +
1

2
Ωij
a Jij . (B.40)

As we have seen concerning broken boosts in part I of this thesis, for spontaneously broken
space-time the number of Goldstone modes is usually smaller than the number of broken
generators [63,77,80,250]. This might be interpreted either as if the missing Goldstones
do not parametrize flucutations which are independent of the physical ones [39], either
as if some of the Goldstone fields become massive, with a theory-dependent gap, and
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B.2. Conformal superfluid from the coset construction

therefore are not visible from the low energy perspective [64]. This feaure is implemented
in the coset construction via imposing covariant inverse Higgs constraints, that allow to
express the would-be massive Goldstone fields in terms of the rest. We have already seen
an example of this kind in appendix A.3, where the boost Goldstones of the superfluids
were eliminated in this way.

Here we focus on the simplest possible description of the system, in which the only light
modes are those whose existence is required by the symmetry. To this aim, we impose
the maximal number of inverse Higgs constraints, given by

∇aσ = 0 , T abc = 0 , ∇0π = 0 , ∇iπ = 0 . (B.41)

The first two constraints are geometric in nature, and are used to eliminate the gauge
field associated to dilatations and select the spin connection compatible with the modified
metric ĝµν = e−2σgµν :

Aµ =− ∂µσ , (B.42)

ωabµ =− 1

2

[
eνa(∂µe

b
ν − ∂νebµ)− eνb(∂µeaν − ∂νeaµ)− eµceνaeλb(∂νecλ − ∂λecν)

]
(B.43)

+ (eaµe
b
ν − eaνebµ)∂νσ .

Notice that eq. (B.42) implies Aab = 0. The others are used to express σ and ηi in terms
of the other fields:

µe−σ = (eµaeνa∂µχ∂νχ)1/2 ,
ηi

η
tanh η = −e

µ
i ∂µχ

eµ0∂µχ
, (B.44)

where η ≡
√
ηiηi and (∂χ) = (eaµeνa∂µχ∂νχ)1/2. Eventually, we are left with a single

independent Goldstone field χ(x) = µt+ π(x).

We are finally in position to build invariants. To this aim we take the metric gµν = eaµe
b
νηab

to be the cylinder one. After having set to zero the covariant derivatives of the Goldstone
π, to leading order in derivatives we only have the invariant measure at hand. This reads:

µd detE =
√
g(∂χ)d =

√
ĝ , (B.45)

where we introduced the Weyl invariant modified metric ĝµν = (∂χ)2gµν as in sec. 3.2.1.
This clearly agrees with eq. (3.8). We may also build higher derivative terms. In the
same notation of sec. 3.2.1, the ones in eq. (3.9) are obtained as

µ−2Rabab = R̂ , µ−2R0a
0a = R̂µνgµν . (B.46)
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Finally, at the same order in the derivative expansion we also have the following terms6

µ−1∇iηi = ∇̂µ∂µχ ,
µ−2∇aηi∇aηi = −µ−2∇iηj∇jηi =

(
∇̂µ∂νχ

)
ĝµρĝνσ

(
∇̂ρ∂σχ

)
, (B.47)

Discarding total derivatives and using the equations of motion deriving from the leading
order Lagrangian (3.8), which reads ∇̂µ∂µχ = 0, these reduce to zero or to the ones
above.

Finally, let us comment that we can use the coset construction to build operators trans-
forming in linear representations of the full group [35]. Specifically, consider any operator
φ built out of the Goldstone fields or, possibly, additional matter fields transforming in a
linear representation ρ of the unbroken rotation group SO(d). We may build an operator
transforming in a rep. κ ⊃ ρ of the full group as

Φ = κ
(
eiσDeiη

iJ0ieiχQ
)
φ̃ , (B.48)

where φ̃ = (φ, 0) is the simplest embedding of the operator φ in the representation κ of
the full symmetry group. For instance, eq. (3.32) for a primary scalary field in the main
text is obtained with this procedure taking

φ̃ = C
(1)
δ,q − C

(2)
δ,q µ

−2Rabab + . . . . (B.49)

Similarly, the spinning operator in eq. (3.43) is obtained taking

φ̃a1...a` = C
(1)
δ,`,qδ

0
a1
. . . δ0

a`
+ . . . . (B.50)

B.3 Casimir energy of the U(1)-conformal superfluid

Here we compute thq quantum correction to the superfluid energy (3.17) in d = 3

and d = 4 spacetime dimensions. To regulate the calculation compatibly with all the
symmetries, at intermediate steps we shall work in generic d spacetime dimensions. The
value of β0 in d = 3 was previously derived using zeta function regularization in [251].

Let us start evaluating the leading order contribution, given by

δ∆
(1)
Q

T

R
=

1

2
log det

[
−∂2

τ −
1

d− 1
∆(S(d−1))

]
=
T

2

∫
dω

2π

∞∑
`=0

n`,d log

(
ω2 +

1

d− 1
J2
`

)
,

(B.51)
where J2

` = `(`+ d− 2)/R2 are the eigenvalues of the Laplacian on the Sd−1 and n`,d is

6Notice also that ∇0η
i∇0η

i =
[
∂µχ∇̂µ (∂νχ)

] [
∂σχ∇̂σ (ĝνρ∂ρχ)

]
=
[
∇̂ρ (ĝµν∂νχ∂µχ)

]2
= 0.
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B.3. Casimir energy of the U(1)-conformal superfluid

their multiplicity, given by

n`,d =
(2`+ d− 2)Γ(`+ d− 2)

Γ(`+ 1)Γ(d− 1)
. (B.52)

For sufficiently negative d the sum in eq. (B.51) is convergent. Nonetheless, exchanging
the sum and the integral leads to an apparently divergent result. To remedy this we use
the following identity which holds in dimensional regularization:

∞∑
`=0

n`,d = 0 . (B.53)

It is then convenient to subtract from eq. (B.51) a vanishing contribution of the form∫
dω
2π

∑∞
`=0 n`,d log(ω2 + m2), where m is an arbitrary mass scale which will eventually

drop from the final result. Doing so we get

1

2
log det

[
−∂2

τ −
1

d− 1
∆(S(d−1))

]
=
T

2

∫
dω

2π

∞∑
`=0

n`,d log

(
ω2 + 1

d−1J
2
`

ω2 +m2

)
. (B.54)

We may now exchange the sum and the integral, finding

δ∆
(1)
Q =

1

2

∞∑
`=0

n`,d

(
RJ`√
d− 1

+Rm

)
+O

(
1

R2µ2

)

=
1

2
√
d− 1

∞∑
`=1

n`,dRJ` +O
(

1

R2µ2

)
, (B.55)

where we used again the property (B.53); as expected, m does not contribute to the final
result. Eq. (B.55) is correct in any dimensions and it is interpreted as the Casimir energy
of the superfluid on the cylinder.

Let us evaluate (B.55) in d = 3 first. It is convenient to isolate the divergent contribution
by expanding the summand for `→∞:

n`,dRJ` =
4∑

k=1

γk`
d−k + σ(`) , (B.56)

where

σ(`) =
√
`(`+ 1)(1 + 2`)− 2`2 − 2`− 1

4
+O (d− 3)

`→∞−−−→ − 1

64`2
(B.57)
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so that its infinite sum converges directly in d = 3, and the coefficients γk’s are:

γ1 = 2 +O (d− 3) , γ2 = 2 +O (d− 3) ,

γ3 =
1

4
+O (d− 3) , γ4 =

3− d
24

+O
(
(d− 3)2

)
. (B.58)

Using then
∑∞

`=1 `
k = ζ(−k) and recalling that the zeta function is analytic on the real

axis except for a simple pole at k = 1, we realize that the only divergent contribution
for d→ 3 arises from the sum

∑∞
`=1 `

d−4 = ζ(4− d) ∼ 1
3−d ; however, this contribution

is multiplied by the coefficient γ4 in eq. (B.58), which has a simple zero for d = 3. The
result is then finite in the limit d→ 3, as expected. Eventually, expanding appropriately
the zeta functions and evaluating numerically the infinite convergent sum, we find

∞∑
`=1

n`,dRJ` =

[
4∑

k=1

ckζ(k − d) +

∞∑
`=1

σ(`)

]
= −0.265096 +O (3− d) . (B.59)

Using this result in eq. (B.55), we recover β0 in eq. (3.20).

The same procedure can be used to evaluate the sum in d = 4. One finds

δ∆
(1)
Q =

1

2
√
d− 1

∞∑
`=1

n`,dRJ` = − 1

16
√

3(4− d)
− 0.113876 +O (4− d) . (B.60)

In this case, the result displays a simple pole for d→ 4. Thus this contribution renormalizes
one of the Wilson coefficients of the effective Lagrangian. It is instructive to identify
which one. To this aim, we should construct the effective Lagrangian to fourth order in
derivatives. In practice, since we need to renormalize the Casimir energy, we can focus
only on the terms which are non-vanishing on the background solution. These are built
contracting the modified Riemann tensor R̂µνρσ with itself and the modified metric, in
the notation of section 3.2.1. We therefore consider the following three invariants:√

ĝR̂2 ,
√
ĝŴµνρσŴ

µνρσ ,
√
ĝÊ , (B.61)

where Ŵµνρσ and Ê are, respectively, the Weyl tensor and the Gauss-Bonnet term [252]:

Ŵµνρσ = R̂µνρσ +
1

d− 2

(
ĝµσR̂νρ − ĝµρR̂νσ + ĝνρR̂µσ − ĝνσR̂µρ

)
+

1

(d− 1)(d− 2)
R̂ (ĝµρĝνσ − ĝµσ ĝνρ) (B.62)

Ê = R̂2 − 4R̂µνR̂µν + R̂µνρσR̂µνρσ . (B.63)

The contribution from the last two terms vanishes exactly for every value of χ. Indeed
the first is Weyl invariant and the metric ĝµν is conformally equivalent to flat space, while
the second one in four dimensions coincides with the Euler density, whose integral is a
topological invariant and vanishes on the cylinder. Finally, due to the Weyl anomaly in four
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B.3. Casimir energy of the U(1)-conformal superfluid

dimensions, the effective action must include the following Wess-Zumino term [34,253]:

SWZ =

∫
d4x
√
g log(∂χ) [−aE + cWµνρσW

µνρσ] +O
(
R [∇(∂χ)]2

)
, (B.64)

where a and c are the trace anomalies. This term however vanishes on the superfluid
background by considerations similar to the ones above. Therefore, in the action (3.9),
the divergence in eq. (B.60) is renormalized by the contribution of the following term

δS = cdiv

∫
ddx
√
g(∂χ)d−4R̂2 ∝ cdivT (Rµ)d−4 . (B.65)

Choosing cdiv so to cancel the pole in (B.60) and expanding the result for d→ 4 we then
find the following result

δ∆
(1)
Q |renormalized = − 1

16
√

3
logRµ+ α3 , (B.66)

where we absorbed in α3 both the classical and the quantum contributions of order µ0.
Using the relation (3.13) we obtain eq. (3.21).

We may easily extend this calculation to include the first subleading contribution to the
one-loop Casimir energy. With steps similar to those with which we obtained eq. (B.55),
we find

δ∆
(1)
Q =

1

2

[
1√
d− 1

− (Rµ)−2 (d− 2) [c2(d− 2) + c3]

c1d
√
d− 1

] ∞∑
`=1

n`,dRJ`

+ (Rµ)−2 (d− 2) [c2(d− 2) + c3]

2c1d(d− 1)3/2

∞∑
`=1

n`,dR
3J3
` +O

(
1

R4µ4

)
,

(B.67)

as it could have been guessed form the dispersion relation of the superfluid phonon (3.25).
To evaluate this contribution in d = 3, we use eq. (B.59) and the analogously derived
result

∞∑
`=1

n`,dR
3J3
` = 0.017496 +O (d− 3) . (B.68)

Using the expression of the chemical potential (3.13) we find the value for β1 in eq. (3.20).
In d = 4 instead we use

∞∑
`=1

n`,dR
3J3
` =

1

16(4− d)
+ finite . (B.69)

Analogously to eq. (B.65), this subleading contribution is renormalized by the classical
contributions to ∆Q, such as (∂χ)d−6R̂3. Irrespectively of the precise structure of the
involved terms, choosing the divergent part of the µd−6 classical contribution to the energy
so to have a finite result for d→ 4, as we did in eq. (B.66), we find the result (3.21).
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B.4 Details on correlation functions in the large charge EFT

B.4.1 Three-point function with a U(1)-charged scalar insertion to the
first subleading order

Here we evaluate the first correction to the OPE coefficient (3.40) by solving the equation
(3.36) to linear order in the fluctuation π(x) = χ+ iµτ − π0. This reads:

ic1d(d− 1)µd−2
(
∂2
τ + ∆Sd−1

)
π(τ, n̂) = qδ(τ − τc)δd−1(n̂− n̂c)/

√
g . (B.70)

This equation can be straightforwardly solved expanding the field into Gegenbauer
polynomials7

π(x) = i
q/(Rd−1Ωd−1)

c1d(d− 1)µd−2

[
(τ − τc)θ(τ − τc)−

∞∑
`=1

2`+ d− 2

d− 2

e−ω`|τ−τc|

2ω`
C

( d2−1)
` (n̂ · n̂c)

]

+O
(

q2/c2
1

(Rµ)2d−3
,
q/ci

(Rµ)d

)
, (B.71)

where ω` = J`/
√
d− 1 is the phonon energy (3.25) and we estimated the size of corrections

induced both from the nonlinear terms and the higher derivative contributions which we
neglected in eq. (B.70). In particular, we see that the linear approximation holds as long
as q/(Rµ)(d−1) ∼ q/Q� 1. Since the variation of the action vanishes on the solution of
the equations of motion, we can use eq. (B.71) to evaluate the modified action to second
order in the field expansion:

Smod[χ] = ∆Q(τf − τin)/R+ µq(τf − τc) + i
q

2
[πf − π(τc, n̂c)]

= ∆Q(τf − τin)/R+

[
q
∂∆Q

∂Q
+
q2

2

∂2∆Q

∂Q2

]
(τf − τc)/R−

q2

c1(Rµ)d−2
N(d) ,

(B.72)

where N(d) is a formally divergent contribution, given by the following sum

N(d) = iq−2c1(Rµ)d−2π(τc, n̂c) =
∞∑
`=1

2`+ d− 2

d(d− 1)(d− 2)Ωd−1

C
( d2−1)
` (1)

2Rω`
(B.73)

The contribution which grows linear in time in the action agrees with eq. (3.33) to the
order we are working. Expanding the exponential, the last term in eq. (B.72) instead
provides a correction to the OPE coefficient:

λ
(δ)
(Q+q),q,Q = C

(1)
(δ,q)(Rµ)δ

[
1− q2

c1(Rµ)d−2
N(d) + . . .

]
+ C

(2)
(δ,q)(Rµ)δ−2 + . . . (B.74)

7These are the generalization to arbitrary dimensions of the Legendre polynomials, to which they
reduce in d = 3.
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Similarly to the discussion below eq. (3.19) on the quantum corrections to the ground
state energy, the situation is slightly different between even and odd spacetime dimensions.
Let us consider for concreteness the physically interesting cases d = 3 and d = 4. In d = 3,
the term proportional to N(d) in eq. (B.74) is suppressed only by one power of µ ∼ √Q
with respect to the leading term and provides the dominant correction. Therefore, its
value cannot be renormalized by C(2)

(δ,q) or any other Wilson coefficient contributing to the
matching in eq. (3.32). Correspondingly, it must be finite and calculable. Proceeding
as we did in appendix B.3 for the Casimir energy, we can evaluate the sum (B.73) in
dimensional regularization and take the limit d→ 3 to find

N(3) = −0.0164523 . (B.75)

Absorbing all the anyway unknown constants in a new Wilson parameter η(1)
(δ,q), we finally

recast eq. (B.74) as 8

λ
(δ)
(Q+q),q,Q

∣∣∣
d=3

= Qδ/2

[
η

(1)
(δ,q)

(
1− q2

√
12π√
c1Q

N(3)

)
+O

(
max

{
q4Q−1, δ2Q−3/2

})]
.

(B.76)
Corrections arise from the subleading term in the expansion of the exponential and from
the expansion of (∂χ)δ to second order in quantum fluctuations, which provides a term
of the form δ2〈[∂π(τc, n̂c)]

2〉µδ−2 ∼ δ2µδ−3, 9 implying that the result (B.76) holds only
for δ2 � Q3/2.

In d = 4 instead the contribution proportional to N(4) in eq. (B.74) is divergent:

N(4) =
1

32
√

3π2(4− d)
+ finite , (B.77)

where we work in dimensional regularization. This divergence is renormalized writing the
Wilson coefficient C(2)

(δ,q) as:

C
(2)
(δ,q) = −

q2C
(1)
(δ,q)

c132
√

3π2(d− 4)
+ finite . (B.78)

Using these equations and eq. (3.13) in (B.74), the final result reads

λ
(δ)
(Q+q),q,Q

∣∣∣
d=4

= Qδ/3

[
η

(1)
(δ,q)

(
1− q2/Q2/3

24
√

3π2/3c
1/3
1

logQ

)
+ η

(2)
(δ,q)Q

−2/3

+O
(

max(q4, δ2)×Q−4/3
)]

. (B.79)

8Notice that the term arising from the expansion of (∂χ)δ ' µδ + iµδ−1π̇ just renormalizes C(2)

(δ,q)

using eq. (B.71).
9Here we used that the canonically normalized field scales as π ∼ µ−1/2 from eq. (3.23).
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As in eq. (3.21), there is a universal logarithmic calculable subleading contribution to
the result. Corrections are estimated as before.

B.4.2 Conformal block decomposition at large charge

Let us consider the following four-point function for the theory on the Euclidean cylinder

F δ,δ−q,q = 〈Q, τout|O(δ)
−q(τ2, n̂2)O(δ)

q (τ1, n̂1)|Q, τin〉 , τ2 > τ1 , (B.80)

where O(δ)
q is a scalar primary operator, whose scaling dimension δ and charge q we assume

of order one for simplicity. As we commented in section B.1, we may systematically
use the OPE to compute the correlator (B.80), reducing it to a sum of conformal blocks
multiplied by the corresponding OPE coefficients as in eq. (B.18). Here we show this
concretely considering the operators exchanged in the s-channel OPE O(δ)

q ×OQ in eq.
(B.80). We shall comment at the end on the case where we replace one or both of these
operators with the time component of the current.

To this aim, we insert the decomposition of the identity in terms of conformal families in
between the two operators:

F δ,δ−q,q =
∑
∆,`

〈Q, τout|O(δ)
−q(τ2, n̂2) |O(∆,`)

Q+q | O(δ)
q (τ1, n̂1)|Q, τin〉 (B.81)

where the contribution of a single family is given by:

|O(∆,`)
Q+q | =

∑
α,β=O,PµO,...

|α〉N−1
αβ 〈β| , Nαβ ≡ 〈α|β〉 . (B.82)

Considering separatly the contribution of each single family to eq. (B.81), we define the
conformal block decomposition as

R2δF δ,δ−q,q = e−∆Q(τout−τin)/R
∑
∆,`

∣∣∣∣λ〈O(∆,`)
−Q−qO

(δ)
q OQ〉

∣∣∣∣2 gOQ,O(δ)
q

∆,` (τ2 − τ1, n̂2 · n̂1) . (B.83)

Here λ〈O(∆,`)
−Q−qO

(δ)
q OQ〉

is the OPE coefficient in the normalization introduced in eq. (B.7), 10

and the conformal block gOQ,O
(δ)
q

∆,` (τ, x) is fully fixed by conformal invariance in terms of
the quantum numbers of the exchanged operator and of those of the operators whose
OPE we are considering, O(δ)

q and OQ.

Generically, the expression for the conformal blocks is quite involved, as all the states in the
multiplet (B.82) contribute. However, within the kinematic regime of validity of the EFT,
we consider exchanges of operators with scaling dimension ∆ ∼ ∆Q+q ' ∆Q +O

(
Q

d−2
d−1

)
10Our normalization agrees with that of [109].

220



B.4. Details on correlation functions in the large charge EFT

and spin `� Q
1
d−1 � ∆. In this case the contribution of the k-th level descendants in

eq. (B.82) is suppressed with respect to the k − 1-th level by at least a power of [109]

(∆−∆Q)2

∆
. 1

∆Q

(
∂∆Q

∂Q

)2

∼ Q−
d−2
d−1 . (B.84)

This implies that we can consider the contributions from descendants perturbatively
when matching the EFT predictions with a conformal block decomposition. We prove
this property below. Along the way, we will also illustrate a simple way to compute the
conformal blocks in this limit.

Let us consider first the contribution from the primary and the first descendant states.
Working in the notation explained below eq. (B.28) and using ∆� `, we can compute
the norm matrix from

〈O(∆,`)
Q+q,m|O

(∆,`)
Q+q,m′〉 = δmm′ , (B.85)

〈O(∆,`)
Q+q,m|KνPµ|O(∆,`)

Q+q,m′〉 = δmm′2∆δµν + 2i 〈O(∆,`)
Q+q,m|Jµν |O

(∆,`)
Q+q,m′〉 ≈ 2∆δmm′ ,

where we used the commutator in eq. (B.1) and that the primary state |O(∆,`)
Q+q,m′〉 is

annihilated by Kν . Here m labels collectively the eigenvalues of the Cartan generators of
the rotation group. We then write the contribution of a conformal family as

|O(∆,`)
Q+q | =

∑
m

|O(∆,`)
Q+q,m〉 〈O

(∆,`)
Q+q,m|+

∑
m

Pµ |O(∆,`)
Q+q,m〉

δµν

2∆
〈O(∆,`)

Q+q,m|Kν + . . . . (B.86)

To proceed, we notice that time translational and rotational symmetry imply the following
structure for the matrix element of O(δ)

q in between |Q〉 and |O(∆,`)
Q+q,m〉:

〈O(∆,`)
Q+q,m|O(δ)

q (τ, n̂)|Q〉 =

√
(d− 2)Ωd−1

(2`+ d− 2)
× λ〈O(∆,`)

−Q−qO
(δ)
q OQ〉

[
Y `
m(n̂)

]∗
e(∆−∆Q)τ/R/Rδ ,

(B.87)
where the OPE coefficient precisely coincides with λabc in eq. (B.7) (and with λ(1)

sJ` in
eq. (B.9) for O(δ)

−q = J0), when mapping this equation to the plane. Using eq. (B.87)
and the action of the conformal generators (B.3), we may further estimate the matrix
element with the first descendant state. Indeed, recalling the map (B.21) between Rd and
R× Sd−1, we find

〈Q|O(δ)
−q(τ, n̂)Pµ|O(∆,`)

Q+q,m〉 = 〈Q|[O(δ)
−q(τ, n̂), Pµ]|O(∆,`)

Q+q,m〉

= i

(
∂

∂xµ
− δxµ

x2

)
〈Q|O(δ)

−q(τ, n̂)|O(∆,`)
Q+q,m〉

∼ (∆−∆Q) 〈Q|O(δ)
−q(τ, n̂)|O(∆,`)

Q+q,m〉 ,

(B.88)

where xµ is the coordinate on Rd, and, to estimate the size of the matrix element, we
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noticed that the most important contribution is given by the derivative of the exponential
in eq. (B.87). Similarly, setting x̃µ = xµ/x2, we find

〈O(∆,`)
Q+q,m|KνO(δ)

q (τ, n̂)|Q〉 = −i
(

∂

∂x̃µ
− δ x̃µ

x̃2

)
〈O(∆,`)

Q+q,m|O(δ)
q (τ, n̂)|Q〉

∼ (∆−∆Q) 〈O(∆,`)
Q+q,m|O(δ)

q (τ, n̂)|Q〉 .
(B.89)

Combining these results and eq. (B.86), we find that the contribution of the first
descendant is suppressed by a power of (∆−∆Q)2/∆ with respect to that of the primary
state. We may further use eq.s (B.87), (B.88) and (B.89) to compute explicitly the
conformal blocks. Indeed, from the following relation between hyperspherical harmonics
and Gegenbauer polynomials [108]

∑
m

Y `
m(n̂1)

[
Y `
m(n̂1)

]∗
=

2`+ d− 2

(d− 2)Ωd−1
C

( d2−1)
` (n̂2 · n̂1) , (B.90)

we find (notice that the prefactor of eq. (B.90) precisely cancels that of eq. (B.87))

g
OQ,O

(δ)
q

∆,` (τ, n̂2 · n̂1) = e−(∆−∆Q)τ/RC
( d2−1)
` (n̂2 · n̂1)

+
e−(∆−∆Q+1)τ/R

2∆

[
ã1,`+1C

( d2−1)
`+1 (n̂2 · n̂1) + ã1,`−1C

( d2−1)
`−1 (n̂2 · n̂1)

]
+O

(
(∆−∆Q)4

∆2

)
, (B.91)

ã1,`+1 =
(`+ 1)(∆−∆Q + δ + `)2

2`+ d− 2
, ã1,`−1 =

(`+ d− 3)(∆−∆Q + δ − `− d+ 2)2

2`+ d− 2
.

(B.92)

We can straightforwardly generalize the previous argument to show that the contribution
to the conformal block of a generic k-th level descendant is suppressed by (∆−∆Q)2k/∆k

with respect to the primary state. Indeed, eq. (B.86) schematically takes the form

|O| =
∑
n

Pn |O〉N−1
n 〈O|Kn . (B.93)

From the conformal algebra, we may estimate the norm as

Nk ∼ 〈O|KkP k|O〉 ∼ ∆k , (B.94)

while, by repeatedly commuting the conformal generators with the operator, eq.s (B.88)
and (B.89) generalize to

〈Q|O(δ)
−qP

k|O〉 ∼ 〈O|KkO(δ)
q |Q〉 ∼ (∆−∆Q)k 〈Q|O(δ)

−q |O〉 , (B.95)
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which implies that the contribution from the k-th level descendants scales as

〈Q|O(δ)
−qP

k|O〉N−1
k 〈O|KkO(δ)

q |Q〉 ∼
(∆−∆Q)2k

∆k
〈Q|O(δ)

−q |O〉 〈O|O(δ)
q |Q〉

. Q−k
d−2
d−1 × 〈Q|O(δ)

−q |O〉 〈O|O(δ)
q |Q〉 .

(B.96)

By precisely evaluating the matrix elements with descendant states we may further
compute the conformal block explicitly as a series expansion. In practice, the expression
for the conformal block as a sum over descendants was found in [244,245] and reads

g
OQ,O

(δ)
q

∆,` (τ, n̂2 · n̂1) = e−(∆−∆Q)τ
∞∑
n=0

n∑
k=0

an,`−n+2k e
−nτ/RC

( d2−1)
`−n+2k (n̂2 · n̂1) , (B.97)

with the convention that Gegenbauer polynomials with negative subscript vanish. The
first few coefficients are [109]

a0,` = 1 , (B.98)

a1,`+1 =
(`+ 1)(∆−∆Q + δ + `)2

2(2`+ d− 2)(∆ + `)
, (B.99)

a1,`−1 =
(`+ d− 3)(∆−∆Q + δ − `− d+ 2)2

2(2`+ d− 2)(∆− `− d+ 2)
, (B.100)

in agreement with eq. (B.91) derived before for ∆ � `. We shall also need the n = 2

coefficients for ` = 0, which read

a2,2 =
(∆−∆Q + δ)2(∆−∆Q + δ + 2)2

4d(d− 2)∆(∆ + 1)
, (B.101)

a2,0 =
(∆−∆Q + δ)2(∆−∆Q + δ − d+ 2)2

4d∆(2∆− d+ 2)
. (B.102)

A final comment concerns the case in which we replace the O(δ)
Q insertions with the time

component of the Noether current, J0. On the one hand, for what concerns the power
counting of the descendant contributions, nothing changes. On the other hand, due to the
term proportional to the SO(d) generator ρ(`) [Jνµ] in the action of Kµ (B.3), the detailed
form of the conformal block will not coincide with eq. (B.97) in general. Nonetheless eq.
(B.91) still correctly reproduces the conformal block for J0 to leading order, where no
descendants are considered, since J0 behaves as a scalar under rotations. Furthermore,
by carefully repeating the steps above for the current, and using that the matrix element
of a spatial component (on the cylinder) of the current in between two scalar states
vanishes by rotationally invariance 〈O|Ji(τ, n̂)|Q〉 = 0, one finds that eq. (B.91) correctly
reproduces the first descendant contribution in the case of an exchanged scalar operator.
These considerations justify eq.s (3.51) and (3.52) in the main text.
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B.4.3 Two scalar insertions: subleading orders

Here we consider the correlator in eq. (3.54) to subleading orders; for an analogous
discussion limited to d = 3 of the same correlator see [109]. Expanding the expression
(3.32), we find

F δ,δq,−q = e−∆Q(τout−τin)/Re−µq(τ2−τ1)R2δ
∣∣∣λ(δ)

(Q+q),q,Q

∣∣∣2 f δ,δq,−q , (B.103)

where

f δ,δq,−q = 1 + q
δ

Rµ

∂2∆Q

∂Q2

+

[(
q − δ

µ
∂τ2

)(
q +

δ

µ
∂τ1

)
+O

(
1

(Rµ)2

)]
〈π2π1〉

+

[
q4

2
+O

(
1

Rµ

)]
〈π2π1〉2 + . . . ,

(B.104)

where the second terms arises from factoring out the OPE coefficient
∣∣∣λ(δ)

(Q+q),q,Q

∣∣∣2 to

subleading order. Power counting the field as π ∼ µ−
d−2

2 from eq. (3.16), we can see
that eq. (B.104) includes all contributions up to order µ−(d−1) ∼ 1/Q. In d = 4 the
corrections to the propagator which we neglected in the first square parenthesis are of
the same order of the last parenthesis in eq. (B.104); however, when matching to the
s-channel OPE decomposition, the last parenthesis contributes to different terms than
those corrections, namely the conformal blocks associated to the exchange of primary
states with two phonons, which therefore may be reliably computed.

To proceed, we use eq. (3.56) and exponentiate in an obvious way the terms linear in
τ2 − τ1, to write eq. (B.103) as

F δ,δq,−q = e−∆Q(τout−τin)/Re−(∆Q+q−∆Q)(τ2−τ1)R2δ
∣∣∣λ(δ)

(Q+q),q,Q

∣∣∣2 f̃ δ,δq,−q (B.105)
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where, calling r = e−|τ2−τ1|/R and x = n̂2 · n̂1, f̃
δ,δ
q,−q is given by

1 +
1

2∆Q

(
q
∂∆Q

∂Q
+ δ

)2

r x+
q4

8∆2
Q

(
∂∆Q

∂Q

)4

r2 x2

}
∆Q+q

+
∞∑
`=2

(2`+ d− 2)
(
q + δ ω`µ

)2
/(Rω`)

2c1d(d− 1)(d− 2)(Rµ)d−2Ωd−1
rRω`C

( d2−1)
` (x)

+
q4

2∆Q

(
∂∆Q

∂Q

)2 ∞∑
`=2

(2`+ d− 2)q2/(Rω`)

2c1d(d− 1)(d− 2)(Rµ)d−2Ωd−1
rRω`+1xC

( d2−1)
` (x)


∆Q+q,`

+
q4

2

∞∑
`,j=2

(2`+ d− 2)(2j + d− 2) rR(ω`+ωj)C
( d2−1)
` (x)C

( d2−1)
j (x)

[2c1d(d− 1)(d− 2)(Rµ)d−2Ωd−1]
2
R2ωjω`

.

∆Q+q,`,j

(B.106)

We have grouped together the contributions referring to the same exchanged operator,
specifying its conformal dimension on the right, ∆Q+q for the ground state, ∆Q+q,` =

∆Q+q + Rω` for a single phonon, and ∆Q+q,`,j = ∆Q+q + Rω` + Rωj for two phonons.
Indeed, using the following property of Gegenabuer polynomials:

xC
( d2−1)
` (x) =

`+ 1

2`+ d− 2
C

( d2−1)
`+1 (x) +

`+ d− 3

2`+ d− 2
C

( d2−1)
`−1 (x) , (B.107)

we may check that the contributions associated to the ground state and the single phonon
excitation match the corresponding expansion of the conformal blocks (B.97). We may
also rewrite the last line in eq. (B.106) using the linearization formula for the Gegenbauer
polynomials [254]

C
( d2−1)
` (x)C

( d2−1)
j (x) =

`+j∑
k=|`−j|

k−|`−j| even

(2k + d− 2) Γ(k + 1)

(d− 2)(d− 2)k
R

(d)
`,j,k C

( d2−1)
k (x) , (B.108)

where R(d)
`,j,k is fully symmetric in `, j and k

R
(d)
`,j,k =

(
d−2

2

)
1
2

(`+j−k)

(
d−2

2

)
1
2

(j+k−`)
(
d−2

2

)
1
2

(k+`−j) (d− 2) 1
2

(`+j+k)

Γ
(
`+j−k

2 + 1
)

Γ
(
j+k−`

2 + 1
)

Γ
(
k+`−j

2 + 1
) (

d
2

)
1
2

(`+j+k)

. (B.109)
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Eventually, the correlator (B.103) matches the following conformal block expansion

F δ,δq,−q =
∣∣∣λ(δ)

(Q+q),q,Q

∣∣∣2 gOQ,O(δ)
q

∆Q+q ,0
(τ, n̂2 · n̂1) +

∞∑
`=2

∣∣∣λ[`],(δ)
(Q+q),q,Q

∣∣∣2 gOQ,O(δ)
q

∆Q+q,`,`
(τ, n̂2 · n̂1)

+
∞∑
`=2

∞∑
j=2

`+j∑
k=|`−j|

k−|`−j| even

∣∣∣λ[`,j;k],(δ)
(Q+q),q,Q

∣∣∣2 gOQ,O(δ)
q

∆Q+q,`,j ,k
(τ, n̂2 · n̂1) + . . . ,

(B.110)

where the OPE coefficients for O(δ)
Q in between the ground state and, respectively, one-

and two-phonon primaries are given by:

∣∣∣λ[`],(δ)
(Q+q),q,Q

∣∣∣2 =
∣∣∣λ(δ)

(Q+q),q,Q

∣∣∣2 ×Q− d−2
d−1 ×

[
q√
Rω`

+ δ
√
Rω`

(
c1dΩd−1

Q

) 1
d−1

+O
(
Q−

2
d−1

)]2

2(2`+ d− 2)−1(d− 1)(d− 2)(c1dΩd−1)
1
d−1

∣∣∣λ[`,j;k](δ)
(Q+q),q,Q

∣∣∣2 =
∣∣∣λ(δ)

(Q+q),q,Q

∣∣∣2 ×Q−2 d−2
d−1 × q4

(
1− δ` j

2

)
R

(d)
`,j,k (B.111)

× (2j + d− 2)(2`+ d− 2)(2k + d− 2)Γ(k + 1)

4(d− 2)3(d− 1)2(d− 2)k (c1dΩ)
2
d−1

[
1 +O

(
Q−

1
d−1

)]
.

Notice that a two-phonon primary state is labeled by three indices: `, j specify the energy
∆Q,`,j = ∆Q +Rω` +Rωj , and k is the angular momentum, whose value is contained in
the decomposition `⊗ j ⊃ |`− j| ⊕ |`− j|+ 2⊕ . . .⊕ (`+ j).

B.5 Continuum approximation and thermalization in the
CFT spectrum

In every CFT, the density of states with energy ∆� ∆Q is expected to grow exponentially.
This fact underlies the analysis of the strongly coupled case in sec. 4.3, where we study
correlation functions of the non-Abelian components of the Noether current in a SU(2)-
invariant CFT. In sec. B.5.1 we justify this statement. Motivated by the exponential
density of states, in sec. B.5.2 we propose that the OPE coefficients λ(`)

A,J−,Q
in eq.

(4.48) are described by an ansatz analogous to the eigenstate thermalization hypothesis
(ETH) [125, 255, 256] for a strongly coupled theory. We then study the consequences
of this ansatz for the correlator (4.50). As in sec. 4.3, we consider for concreteness a
three-dimensional SU(2)-invariant CFT throughout this appendix.

B.5.1 The density of states

Here we estimate the density of states with energy ∼ ∆Q + δ/
√

2 with 1� δ . Rµ via a
simple counting argument. To this aim, we suppose for simplicity that the CFT spectrum
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in this range consists only of the phonons discussed in sec. 3.2.2. Under this assumption,
most possible states with fixed energy δ in the range of interest consist of n phonons
with 1 � n � δ, each phonon having spin ` in the range 1 � ` � δ. In this regime,
we can reliably approximate the dispersion relation (3.25) with the simple expression
Rω` ' `/

√
2. With these approximations at hand, we can easily proceed with a rough

estimate of the density of states.

Consider first the n-phonon states whose gap above the ground state lies in the range

Λδ =

(
δ√
2
− 1

2
√

2
,
δ√
2

+
1

2
√

2

)
. (B.112)

Since Rω` ' `/
√

2, these are obtained considering all combinations of n integers `i,
representing the angular momentum of each individual phonon, such that

`1 + `2 + . . .+ `n = [δ], (B.113)

where [x] denotes the integer part of x. To count the number of such states, we can solve
eq. (B.113) for `n and sum over the remaining variables `i, i = 1, . . . , n− 1. Recalling
that the multiplicity of an SU(2) irrep. ` is given by 2`+ 1 and multiplying by 1/n! to
avoid double counting, we find that the number of n-particle states with energy in the
range (B.112) is given by

#
(n)
δ ≈ 1

n!

δ−n∑
`1=1

δ−(n−1)∑
`2=1

. . .
δ−1∑

`n−1=1

[
n−1∏
i=1

(2`i + 1)

]
×
[

2

(
δ −

n−1∑
i=1

`i

)
+ 1

]

≈ 2n

n!(2n− 1)!
δ2n−1 . (B.114)

The overall number of states with energy included in the set (B.112) is obtained summing
over n:

n∆ ≈
∼δ∑
n=1

2n

n!(2n− 1)!
δ2n−1 ≈ exp

[
3 δ2/3

21/3

]
= exp

[
3 (∆−∆Q)2/3

22/3

]
, (B.115)

where we dropped any sub-exponential dependence on δ � 1.

Eq. (B.115) provides the exponential dependence of δ of the density of all states with
energy δ. However, recalling that descendants are obtained considering the ` = 1 mode of
the phonon, it is easy to see that the density of primary states obeys a similar exponential
behaviour. We expect a similar formula to hold for the density of states with energy δ in
a given irreducible representation `� δ of the rotation group, but we did not prove it.

While the numerical coefficient in eq. (B.115) depends on our assumptions and, perhaps,
our approximations, the behaviour S ≡ log n∆ ∝ (∆ − ∆Q)2/3 for the entropy of the
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system is general. Indeed, by the equivalence of the canonical and microcanonical
ensembles in statistical mechanics, we expect the average properties of the CFT states
with large energy to be given by thermodynamic averages at fixed temperature β−1 and
chemical potential µ. Using that the entropy density scales as β−2 and that in a CFT
the temperature is related to energy density above the ground state ε = (∆−∆Q)/R3

as β−1 ∼ ε1/3, we recover a behaviour similar to eq. (B.115) for the density of states
n∆ = eS . We refer to [176] for a detailed analysis of the thermodynamics of the superfluid
phase of CFTs at large charge.

B.5.2 Continuum limit and thermalization of OPE coefficients

In a generic QFT, the matrix element of a light operator in between two states with
large energy is expected to be effectively described by thermodynamics. Normally, this
is quantitatively phrased in terms of the eigenstate thermalization hypothesis (ETH)
[255,256]. In a CFT, this schematically states that the OPE coefficient for a light operator
in between two states with large energy takes the following form [125]: 11

〈∆A|O|∆B〉 = δAB 〈O〉β +ROAB

√
fO(EA − EB)

n∆̄

. (B.116)

The first term of this formula states that the diagonal matrix elements of the light
operator O in between two identical states with energy EA/B � 1 is given by its thermal
expectation value on average. Indeed, this property simply follows from the equivalence
between the microcanonical and canonical ensemble in statistical mechanics. The second
term in eq. (B.116) is less trivial. It is suppressed by the square root of the density of
states n∆ evaluated at ∆̄ ≡ ∆A+∆B

2 . The ROAB are uncorrelated random variables with
zero mean, unit variance and all other momenta of order unity. Finally, fO(Eα −Eβ) is a
smooth function, which may be related to the hydrodynamic two-point function of the
operator O under certain hypotheses [176,257].

Eq. (B.116) allows studying the OPE coefficients when the CFT spectrum is very dense
at the energy of the two states |∆A〉 and |∆B〉 [125]. This idea has been recently explored
in [176], where both neutral and charged heavy states were considered. There it was argued
that the OPE coefficient of light operators in between states with energy ∆A/B−∆Q & Rµ

are governed by hydrodynamic fluctuations.

Here we consider instead the matrix-element for the current J0
− in between the superfluid

ground state |Q〉 and a generic primary state |∆A, (`,m)〉 with spin ` and energy ∆A =

∆Q + δ, with |δ| � Rµ:

〈∆A, (`,m)|J0
−|Q〉 =

√
4π

2`+ 1
× λ(`)

A,J−,Q

[
Y `
m(n̂)

]∗
e(∆A−∆Q)τ/R/R2 . (B.117)

11In (B.116) we neglect for simplicity the dependence on the angular momentum of O and the states.
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These are the OPE coefficients which appear in eq. (4.48) and we expect the non-Abelian
superfluid NREFT to provide informations on their average properties. To quantify this
intuition, motivated by eq. (B.116) we assume that in a strongly coupled theory the OPE
coefficients obey the following ansatz: 12

λ
(`)
A,J−,Q

= R
(`)
A

√√√√fJ−,Q(∆A −∆Q)

n
(`)
∆A

, (B.118)

where n(`)
∆ is the density of states with spin `, energy ∆ and charge Q3 = Q − 1,

fJ−,Q(∆A−∆Q) is a smooth function not growing exponentially and R(`)
A are uncorrelated

random variables with zero mean, unit variance and all other momenta of order unity.
The main difference with eq. (B.116) is that only one of the two states involved, namely
|∆A, (`,m)〉, belongs to the exponentially dense region of the spectrum. Correspondingly,
the random variable depends on a single index.

At this stage, we are unable to justify eq. (B.118) if not by analogy with ETH. It
would be interesting to investigate its validity in general theories. We leave this task
for future work. Here we shall study instead the implications of eq. (B.118) for the
continuum approximation discussed in sec. 4.3. Indeed eq. (B.118) provides a non-trivial
setup in which to check the consistency of our ideas and estimate the accuracy of the
approximations. We remark however that the analysis in the main text might hold even
if eq. (B.118) will turn out to be wrong in the future.

Let us insert the ansatz (B.118) in eq. (4.50) replacing the infinitesimal ε with a finite
ε̄ > 0. We find

G̃
R (`)
J+J−

(ω + iε̄) =
i

2`+ 1

∑
φ

(`)
A

∣∣∣R(`)
A

∣∣∣2
n

(`)
∆A

fJ−,Q(∆A −∆Q)

ω − (∆A −∆Q)/R+ iε̄
≡ i

∣∣∣R(`)
A

∣∣∣2
n

(`)
∆A

FA (ω + iε̄) ,

(B.119)

where the sum runs over operators with charge Q− 1 and scaling dimensions in the range
[∆Q − δ,∆Q + δ] with δ � Rµ and we defined

FA (ω) ≡ fJ−,Q(∆A −∆Q)

(2`+ 1) [ω − (∆A −∆Q)/R]
. (B.120)

Due to the presence of the random variable, we should now formally treat (B.119) as
a stochastic function; we distinguish it from the true CFT correlator via the supscript
R. The physical observable is obtained upon taking its expectation value. Doing so and

12A similar ansatz was recently proposed in [258] for 2d CFTs.
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using
〈∣∣∣R(`)

A

∣∣∣2〉 = 1, we easily see that we can turn the sum into an integral:

G̃
(`)
J+J−

(ω + iε̄) =
〈
G̃
R (`)
J+J−

(ω + iε̄)
〉

=
∑
A

FA (ω + iε̄)

n
(`)
∆A

=
i

2`+ 1

∫ ∆Q+δ

∆Q−δ
d∆

fJ−,Q(∆A −∆Q)

ω − (∆−∆Q)/R+ iε̄
+O

 1

ε̄n
(`)
∆Q

 .

(B.121)

From eq. (B.121) we identify ρreg (`)
J−,Q

(∆) = fJ−,Q(∆A −∆Q) in eq. (4.51). The estimate
of the remainder in eq. (B.121) is obtained using standard calculus. However eq.
(B.121) does not account for the corrections arising from the stochastic nature of the
OPE coefficient (B.118). To estimate these contributions, we consider the variance of
eq. (B.119):

σ2 =

〈∣∣∣G̃R (`))
J+J−

(ω + iε̄)−
〈
G̃
R (`))
J+J−

(ω + iε̄)
〉∣∣∣2〉

=
∑
A,B

[
FA (ω + iε̄)FB (ω + iε̄)

n
(`)
∆A
n

(`)
∆B

〈∣∣∣R(`)
A

∣∣∣2 ∣∣∣R(`)
B

∣∣∣2〉]− [∑
A

FA (ω + iε̄)

n
(`)
∆A

]2

.

(B.122)

From the assumption that the random variables R(`)
A are uncorrelated, we find〈∣∣∣R(`)

A

∣∣∣2 ∣∣∣R(`)
B

∣∣∣2〉 = 1 + δAB × cA , (B.123)

where cA ≥ 0 is an order one quantity. Then, we obtain

σ2 =
∑
A

cA

[
FA (ω + iε̄)

n
(`)
∆A

]2

≤ max
∆A∈[∆Q−δ,∆Q+δ]

[
cA
FA (ω + iε̄)

n
(`)
∆A

]
× G̃(`)

J+J−
(ω) ∼ 1

ε̄ n
(`)
∆Q

,

(B.124)

where the last estimate is obtained using that fJ−,Q(∆A − ∆Q) and G̃
(`)
J+J−

(ω) in eq.
(B.121) do not depend exponentially on ∆Q and recalling that δ � Rµ. We conclude that,
assuming eq. (B.118), the continuum approximation in eq. (4.51) holds up to corrections

of order σ ∼ 1/
√
ε̄ n

(`)
∆Q

.
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C Appendices to Part III

C.1 Nambu-Goto action for superfluid vortices from the
coset construction

In chapter 3, following [35], we argued that two charged scalar operators insertions in
d dimensions at x = 0 and x = ∞ induce a specific symmetry breaking pattern for
the leading trajectory in the path integral. A similar logic can be applied when the
operators have also large spin J . As in the scalar case, translations Pµ, special conformal
transformations Kµ and dilatation D are broken, with the combination D + µQ left
unbroken. Assuming the operator insertion to be polarized in the (x1, x2) plane, the
Lorentz generators J1p, J2p with p, q = 0, 3, . . . must necessarily be broken. A vortex
corresponds to the regime where it is energetically favorable for the system to still be
in an almost homogeneous state, rotations being broken by a localized region of size
1/j0 ∼ R/Q

1
d−1 in which the superfluid description breaks. This region naturally extends

from 0 to ∞ along the directions orthogonal to the spin polarization, corresponding hence
to a d − 2 dimensional membrane. In this regime, J12 parametrizes rotation around
the vortex and it is thus unbroken. We then identify the symmetry breaking pattern
corresponding to a vortex as:{

D̄ = D + µQ, J12, Jpq unbroken,

D, Pµ,Kµ, Jmp broken.
(C.1)

where we introduced the set of indices m,n = 1, 2 and p, q = 0, 3, . . . .

As in appendix B.2, it is useful to rewrite the symmetry breaking pattern (C.1) in terms
of the hatted generators (B.32), associated to a local chart of the cylinder. Focussing on
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2 + 1 and 3 + 1 dimensions, we get

2 + 1 :

{̂̄P 0 = P̂0 + µQ, Ĵ12 unbroken,

P̂i, Ĵ0i, K̂µ, Q̂ broken;
3 + 1 :

{̂̄P p = P̂p + µδ0
p Q, Ĵ12 unbroken,

P̂m, Ĵ0i, Ĵn3, K̂µ, Q̂ broken.
(C.2)

From (C.2) we can construct the Nambu-Goto action for the vortex via the coset con-
struction [26,27], applied to the case of a membrane [64,259].

C.1.1 2+1 dimensions

As in appendix B.2, we gauge all spacetime symmetries and specify the manifold only at
the end of computations. We henceforth do not consider special conformal transformations
anymore and work with the covariant derivative (B.34). From (C.1), the coset of a vortex
line in 2 + 1 dimensions is formally identical to the conformal superfluid one

Ω = eiy
aP̄aeiσDeiη

iJ0ieiπQ = eiy
aPaeiσDeiη

iJ0ieiχQ, χ = µt+ π, (C.3)

where the notation is as in appendix B.2. The Maurer-Cartan (MC) one form reads thus
as in eq. (B.36). One further need to consider the projection of the MC one form onto
the vortex world-line xµ(λ) [64]:

ẋµΩ−1DµΩ = iE

(
P0 +∇yiPi +∇σD +∇χQ+∇ηiJ0i +

1

2
ΩijJij

)
, (C.4)

where
E = ẋµe−σebµΛ 0

b , ∇yi = E−1ẋµe−σebµΛ i
b ,

∇χ = E−1ẋµ∂µχ, ∇σ = E−1ẋµ (∂µσ +Aµ) .
(C.5)

We can reduce the number of independent Goldstones setting to zero one or more of the
invariants in (B.36), (B.38) or (C.4). When an algebraic solution exists, these conditions
are called Inverse Higgs Constraints (IHCs) [63,80]. In this case, the same IHCs (B.41)
which lead to the superfluid action are imposed.

We now consider the leading order invariants in the world-line. Noticing that ∇χ = µ and
∇σ = 0, these are constructed out of the einbein E and the covariant derivative ∇yi as:

µE = ẋµ∂µχ, ∇yi∇yi = 1− (∂χ)2ẋµẋµ
(ẋµ∂µχ)2

. (C.6)

The most general NG action is then written in terms of an arbitrary function:

S = µ

∫
dλE f

(
∇yi∇yi

)
=

∫
dt
√
ẋµẋµ(∂χ)F

[
(ẋµ∂µχ)2

(∂χ)2ẋµẋµ

]
. (C.7)

This is precisely the action in the last term of eq. (5.17).
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C.1.2 3+1 dimensions

From (C.2), the coset is written as

Ω = eiy
aPaeiσDeiη

iJ0ieiξ
nJn3eiχQ. (C.8)

We use indices m,n = 1, 2 and p, q = 0, 3. One can compute the MC one form as before

Ω−1DµΩ = iEaµ
(
Pa +∇aσD +∇aχQ+∇aηiJ0i +∇aξnJn3 + Ω12

a J12

)
; (C.9)

with

Eaµ = e−σecµΛ b
cR

a
b , ∇aχ = eσeµcΛcbR

b
a∂µχ, ∇aσ = eσeµcΛcbR

b
a (∂µσ +Aµ) .

(C.10)
Here we introduced another Lorentz matrix (e−iξ

nJn3)ab = R a
b . Curvature invariants are

written as before. The MC form projected on the vortex world-sheet Xµ(τ, σ) reads:

∂αX
µΩ−1DµΩ = iEpα

(
Pp +∇pynPn +∇pσD +∇pχQ+∇pηiJ0i +∇pξnJn3 + Ω12

p J12

)
,

(C.11)
where α = τ, σ and

Epα = ∂αX
µe−σecµΛ b

cR
p
b , ∇pyn = Eαp ∂αX

µe−σecµΛ b
cR

n
b ,

∇pχ = Eαp ∂αX
µ∂µχ, ∇pσ = Eαp ∂αX

µ (∂µσ +Aµ) .
(C.12)

Here Eαp is the inverse of the world-sheet vielbein: EpαEαq = δpq , EpαEβp = δαβ . As before,
the IHCs (B.41) are imposed. Since [P3, Jn3] ∼ Pn, we can also eliminate ξn imposing
the following IHC

∇3y
n = 0 =⇒ ξn

ξ
tan ξ =

vn

v3
, (C.13)

where the vector vi is given by

vi =
(∂3X

µ∂µχ)
(
∂0X

µecµΛ i
c

)
− (∂0X

µ∂µχ)
(
∂3X

µecµΛ i
c

)
(∂χ)

√
−det(Gαβ)hαβGαβ

. (C.14)

Here Gαβ and hαβ are:

Gαβ = gµν∂αX
µ∂βX

ν , hαβ =
∂µχ∂νχ

(∂χ)2
∂αX

µ∂βX
ν . (C.15)

These expression agree with the previous definitions (6.27) and (6.28). Since ∇pχ = µδ0
p

and ∇pσ = 0, leading order invariants are built out of the following objects

µ2det(Epα) = (∂χ)2
√
|det(Gαβ)|

√
Gαβhαβ, ∇0y

n∇0y
n = 1− 1

hαβGαβ
. (C.16)
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One finally writes the leading order action as

S = µ2

∫
dτdσ detEpα f (∇0y

n∇0y
n) =

∫
dτdσ(∂χ)2

√
|det(Gαβ)|F [Gαβhαβ]. (C.17)

Using (6.18), this agrees with the last line in (6.26).

C.2 Photon propagator on the sphere

Here we obtain the photon propagator on a D dimensional sphere following the simple
method of [260,261]. 1 In this section we set R = 1.

Consider the action of a massless vector field coupled to a conserved current Jµ (in
Euclidean signature):

S =

∫
dDx
√
g

(
1

4
fµνf

µν − aµJµ
)
, fµν = ∂µaν − ∂νaµ. (C.18)

The gauge field on the equations of motion is given by

aµ(x) =

∫
dDx′

√
g′Gµν′(x, x

′)Jν
′
(x′), (C.19)

where Gµν′(x, x′) satisfies the equation

∇µ
(
∂µGνν′(x, x

′)− ∂νGµν′(x, x′)
)

= −gνν′(x)
δ(x− x′)√

g′
+ ∂ν′Λν(x, x′). (C.20)

Here Λν is a pure gauge term which drops from physical observables; primed and
unmprimed indices refer, respectively, to the points x and x′.

Let us define the following biscalar

u =
1

2
(X −X ′)2, (C.21)

where (X −X ′)2 is the chordal distance in embedding coordinates. Given the isometries
of the sphere, it is possible to parametrize the propagator as

Gνν′(x, x
′) = − (∂ν∂ν′u)F (u) + ∂ν∂ν′S(u). (C.22)

The last term is gauge dependent and drops from eq. (C.19).

The following properties hold:

1. ∇µ∂µu = d(1− u) ,
1A similar derivation in 4d de Sitter can be found in [262].
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2. gµν∂µu∂νu = u(2− u),

3. ∇µ∂νu = gµν(1− u),

4. (∇µu)(∇µ∂ν′u) = (1− u)∂ν′u,

5. (∇µu)(∇µ∂ν∂ν′u) = −∂νu∂ν′u.

These can be explicitly verified in stereographic coordinates, for instance. It follows

∇µ
(
∂µGνν′(x, x

′)− ∂νGµν′(x, x′)
)

=− (∂ν∂ν′u)
[
u(2− u)F ′′ + (d− 1)(1− u)F ′

]
+ (∂νu∂ν′u)

[
(1− u)F ′′ + (1− d)F ′

]
. (C.23)

By symmetry, we can write Λν(x, x
′) = (∂νu)Λ(u). Then for x 6= x′ (C.20) gives two

equations:

u(2− u)F ′′ + (d− 1)(1− u)F ′ = −Λ, (C.24)

(1− u)F ′′ − (d− 1)F ′ = Λ′. (C.25)

We can integrate the second and plug the result in the first to obtain

(2− u)uF ′′(u) + d(1− u)F ′(u)− (d− 2)F (u) = 0. (C.26)

This is just Klein Gordon equation for a scalar field of mass m2 = D − 2 on SD. The
solution is fixed requiring a power low singularity for u→ 0 and regularity at the antipodal
point u→ 2 [263]:

F (u) =
Γ(D − 2)

(4π)
D
2 Γ
(
D
2

) 2F1

(
1, D − 2;

D

2
; 1− u

2

)
, D > 2. (C.27)

The normalization is determined matching the short distance limit with the flat space
propagator. Plugging in (C.22) and setting D = d− 1, we get eq. (6.36) in the main text.

C.3 Vortex energy in 4d via dimensional regularization

To regulate the computation of the magnetostatic energy, it is convenient to work in
d spacetime dimensions. It is natural to modify the Lagrangian (6.17) in a way which
preserves Weyl invariance:

L = −κHd/3. (C.28)

The definition of H in terms of the two-form field Aµν here is unchanged. Notice that
working in arbitrary d with a 2-form field we loose the duality with a shift invariant
scalar; instead, within this regularization the U(1) symmetry is promoted to a d− 3–form
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symmetry at intermediate steps in the calculation. 2 An alternative approach might be
to promote Aµν to a d − 2 form field, preserving the Weyl invariance of the action. A
more detailed investigation of this issue might be helpful in expanding our results to
subleading orders.

Expanding the action (C.28) to quadratic order gives

Lfluct =
1

4e2(d)
fijf

ij +
1

2e2(d)

[
ḃiḃi −

(d− 3)

3
(∇ibi)2

]
, (C.29)

where we defined the electric coupling in d spacetime dimensions as

e2(d) =

(√
6B
)2− d

3

2dκ
= e2

[
1− (d− 4)

(
logB

1
3 +

1

4
+

1

6
log 6

)
+O

(
(d− 4)2

)]
. (C.30)

The NG action discussed in section 6.2.2 is unchanged in d dimensions.

C.3.1 Vortex ring self-energy

Consider a single vortex moving on a trajectory given by (6.41). We want to compute
the self-energy contribution due to the hydrophoton, i.e. the second term in eq. (6.43).
In Hopf coordinates (6.13) and in dimensional regularization, it reads:

Emag =
e2(d)

2
R2

∫∫
dξdξ′Gξξ

(
(η, ξ, φ); (η, ξ′, φ)

)
= πRe2(d)R4−dI(r, d), (C.31)

where we isolated the integral

I(r, d) = r2 Γ(d− 3)

(4π)
d−1

2 Γ
(
d−1

2

) ∫ 2π

0
dξ cos(ξ) 2F1

(
1, d− 3;

d− 1

2
; 1− 1

2
r2(1− cos ξ)

)
.

(C.32)
In d = 4, the integral is logarithmically divergent for ξ → 0, corresponding to the
interaction of an infinitesimal line element with itself.

Setting 1
2(1− cos ξ) = y in (C.32), we get

I(r, d) = 2r2 Γ(d− 3)

(4π)
d−1

2 Γ
(
d−1

2

) ∫ 1

0
dy

(1− 2y)√
(1− y)y

2F1

(
1, d− 3;

d− 1

2
; 1− r2y

)
. (C.33)

The divergent part comes from the first term in the expansion of the hypergeometric
function when the argument goes to one:

2F1 (a, b; c; 1− z) z→0−−−→ 1

za+b−c
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
, a+ b > c. (C.34)

2Conversely, a cutoff approach as in chapter 5 breaks Weyl invariance.
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We separate explicitly this contribution and recast the integral as:

I(r, d) = Idiv(r, d) + Ireg(r, d), (C.35)

where the divergent piece is

Idiv(r, d) = 2r2 Γ
(
d−3

2

)
(4π)

d−1
2

∫ 1

0
dy

(1− 2y)√
(1− y)y

(
1

r2y

) d−3
2

=
r

2π(4− d)
+
r
[
log
(
4πr2

)
− γE − 2ψ (3/2)

]
4π

+O (4− d) ,

(C.36)

and the regular part can be evaluated directly in d = 4, where it reads

Ireg(r) ≡ Ireg(r, 4) =
r

2π2

∫ 1

0
dy

(1− 2y)

y
√

1− y

arcsin
(√

1− r2y
)

√
1− r2y

− π

2

 . (C.37)

To compute the latter, it is convenient to use the following expansion

arcsin
(√

1− x2
)

√
1− x2

=
∞∑
m=0

−(−2)m+1Γ
(
m+3

2

)2
(m+ 1)2

xm

m!
, 0 ≤ x < 1. (C.38)

Interchanging sum and integral, the regular part gives

Ireg(r) =
r2

4π2

∞∑
m=1

(−1)m+12π(m− 1)rm−1

m(m+ 1)
=
r

π
− r

2π
log(r+ 1)− 1

π
log(r+ 1). (C.39)

Collecting everything and adding the tension contribution, we arrive at (6.44).

C.3.2 Kelvin waves frequency

The EOMs which derive from (6.59) give the oscillation frequency of Kelvin waves as

1

2
Bωn = γ

πB2/3

R2

(
n2 − 1

)
+

2πe2(d)R4−d

R2
δωIn, (C.40)

where the second term comes from the nonlocal piece of the action and is written in terms
of the following integral:

δωIn =
1

2

∫
dσ

{[
n2 cos(nσ)− cosσ

]
F (1− cosσ)

+
[
cos2 σ − cos(nσ) cosσ

]
F ′(1− cosσ)

}
. (C.41)
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Let us sketch the evaluation of (C.41). Changing variables as before, we write δωIn as the
sum of the following two contributions:

I1(n) =
Γ(d− 3)

(4π)
d−1

2 Γ
(
d−1

2

)
×
∫ 1

0

dy√
y(1− y)

[
n2Tn(1− 2y)− (1− 2y)

]
2F1(1, d− 3;

d− 1

2
; 1− y) , (C.42)

I2(n) =
Γ(d− 2)/2

(4π)
d−1

2 Γ
(
d+1

2

)
×
∫ 1

0

dy(1− 2y)√
y(1− y)

[Tn(1− 2y)− (1− 2y)] 2F1(2, d− 2;
d+ 1

2
; 1− y) . (C.43)

Here Tn(x) = cos (n arccos(x)) is a Chebyshev polynomial. The divergent contributions
are identified from the leading term of the Hypergeometric expansion (C.34) and can be
evaluated using ∫ 1

0
dy
Tn(1− 2y)√
y(1− y)

ym−
1
2 =

√
πΓ(m)

(
1
2 −m

)
n

Γ
(
m+ n+ 1

2

) . (C.44)

To evaluate the regular parts, we use the following results:

λn ≡
∫ 1

0
dy
Tn(1− 2y)√
y(1− y)

[
arcsin

(√
1− y

)
√
y
√

1− y − π

2
√
y

]

=
π

2

[
ψ
(n

2
+ 1
)

+ 2ψ

(
n+

1

2

)
− ψ

(
n+ 1

2

)
− 2ψ (n+ 1)

]
,

(C.45)

ρn ≡
∫ 1

0
dy

1− 2y√
y(1− y)

Tn(1− 2y)

[
2F1

(
2, 2;

5

2
; 1− y

)
− 3π

8y3/2
+

3π

16y1/2

]
=

3

2
π

{(
n2 + 1

) [
ψ

(
n− 1

2

)
− ψ

(
n− 1

2

)
+ log 2

]
+

4n4 + 6n2 + 3n− 1

4n3 − 4n2 − n+ 1
+

3

8

}
.

(C.46)

Using Mathematica we computed these integrals explicitly for fixed integer values of n
and identified their functional form; the result was then verified numerically and using
the n→∞ asymptotic expansion of the results (C.45) and (C.46). This indeed can be
obtained explicitly truncating the series expansion of the Hypergeometric functions in
the integrals and using (C.44). The regular contributions finally read

Ireg1 (n) =
1

4π2

(
n2λn − λ1

)
, (C.47)
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Ireg2 (n) =
1

12π2
(ρn − ρ1)− 1

64π

∫ 1

0
dy

(1− 2y) [Tn(1− 2y)− (1− 2y)]

y
√

(1− y)

=
1

12π2
(ρn − ρ1) +

3ψ
(
n+ 1

2

)
+ 3γE − 4 + log(64)− 6

4n2−1

96π
.

(C.48)

The second contribution in (C.48) arises since we subtracted the O
(
1/
√
y
)
term in the

expansion of the Hypergeometric function from the first piece, in order to apply (C.46).
Collecting everything and expanding for d→ 4, we find the following remarkably simple
result:

δωIn =
n2 − 1

8π(4− d)
+

(
n2 − 1

) [
log π − 2ψ

(
n+1

2

)
− γE − 1

]
16π

+O (4− d) . (C.49)

Eq. (6.61) then follows.
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D.1 Diagrammatic two loop computation in λ|φ|4

In this section we compute the anomalous dimension of the [φn] operator to two loop via
diagrammatic techniques. For simplicity, we work in momentum space and we consider an
insertion of the operator φn within n equal incoming momenta p. We want to compute,
according to the definitions (7.3),(7.9):

〈φnφ̄(p)φ̄(p) . . . φ̄(p)〉 = ZφnZ
n
φ 〈[φn] [φ̄](p) [φ̄](p) . . . [φ̄](p)〉 (D.1)

and find the right renormalization constant Zφn such that 〈[φn] [φ̄](p) [φ̄](p) . . . [φ̄](p)〉 is
finite in the minimal subtraction (MS) scheme. At two loop Zφ is [113]

Zφ = 1− λ2

(16π2)28ε
+O(λ3). (D.2)

We work within renormalized perturbation theory, the Feynman rules are:

(D.3)

where δλ = 5λ2

16π2ε
is the coupling counterterm at one loop in MS [113]. The φn operator

will be represented by a crossed vertex and normalized to

(D.4)

All diagrams to two loop are displayed in figure D.1. We don’t represent the incoming
lines if they are directly connected to the φn operator, only those connected to other
vertices are shown.
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Figure D.1 – Feynman diagrams that contribute at two-loops.

The one loop diagram is:

(a) =
n(n− 1)

2

1

2
(−λ)

∫
ddk

(2π)d
1

k2

1

(k + 2p)2

= − λ

16π2

n(n− 1)

4

(
2

ε
+ 2− γ + log

(
πM2

p2

))
+O(ε)

(D.5)

where in the first line, the first factor n(n−1)
2 indicates the number of ways the external

momenta can be connected to form this diagram: one has to chose 2 momenta among n.
The next factor 1

2 is the usual symmetry factor, then comes the vertex, and finally the
loop integral. In the result, M is the scale introduced in (7.3).
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Six diagrams have to be computed at two loop level. We need only the divergent piece of
these diagrams. The procedure to compute the first two diagrams is described in [107].
The last diagram includes the one loop counterterm δλ.

(b) =
n(n− 1)(n− 2)

2

1

2
(−λ)2

∫
ddk

(2π)d

∫
ddl

(2π)d
1

k2

1

(k − 2p)2

1

l2
1

(k + l + p)2

=
λ2

(16π2)2

n(n− 1)(n− 2)

4

 2

ε2
+

5− 2γ + 2 log
(
πM2

p2

)
ε

+O(ε0) (D.6)

(c) =
n(n− 1)

2
(−λ)2

∫
ddk

(2π)d

∫
ddl

(2π)d
1

k2

1

(k + 2p)2

1

l2
1

(k + l + p)2

=
λ2

(16π2)2

n(n− 1)

2

 2

ε2
+

5− 2γ + 2 log
(
πM2

p2

)
ε

+O(ε0) (D.7)

(d) =
n(n− 1)(n− 2)(n− 3)

8

1

4
(−λ)2

(∫
ddk

(2π)d
1

k2

1

(k + 2p)2

)2

=
λ2

(16π2)2

n(n− 1)(n− 2)(n− 3)

8

 1

ε2
+

2− γ + log
(
πM2

p2

)
ε

+O(ε0) (D.8)

(e) =
n(n− 1)

2

1

4
(−λ)2

(∫
ddk

(2π)d
1

k2

1

(k + 2p)2

)2

=
λ2

(16π2)2

n(n− 1)

2

 1

ε2
+

2− γ + log
(
πM2

p2

)
ε

+O(ε0) (D.9)

(f) = n
1

2
(−λ)2 1

p2

∫
ddk

(2π)d

∫
ddl

(2π)d
1

k2

1

l2
1

(k + l + p)2

= − λ2

(16π2)2

n

4ε
+O(ε0) (D.10)

(g) =
n(n− 1)

2

1

2
(−δλ)

∫
ddk

(2π)d
1

k2

1

(k + 2p)2

= − λ2

(16π2)2

5n(n− 1)

4

 2

ε2
+

2− γ + log
(
πM2

p2

)
ε

+O(ε0) (D.11)
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Summing all contributions we get:

(D.4)+(D.5) + (D.6) + (D.7) + (D.8) + (D.9) + (D.10) + (D.11)

=

(
1− λn(n− 1)

(16π2)2ε
+

λ2

(16π2)2

(
n4 − 2n3 − 9n2 + 10n

8ε2
+
n3 − n2 − n

4ε

))

×

1−
λn(n− 1)

(
2− γ + log

(
πM2

p2

))
4(16π2)

+O(ε, λ2ε0)

(D.12)

where the result, following (D.1), has been factored as ZφnZnφ , which contains only poles
according to MS prescription, times the finite value of 〈[φn] [φ̄](p) [φ̄](p) . . . [φ̄](p)〉. This
lets us compute the renormalization factor Zφn using (D.2):

Zφn = 1− λn(n− 1)

(16π2)2ε
+

λ2

(16π2)2

(
n4 − 2n3 − 9n2 + 10n

8ε2
+

2n3 − 2n2 − n
8ε

)
.

The anomalous dimension γφn is computed using (7.10) and yields (7.15).

D.2 One loop computation on the cylinder in λ|φ|4

D.2.1 Next to leading order corrections for generic λn

Here we discuss the derivation of (7.77) from (7.62). To this aim, we first compute ē0

expanding the first line in (7.47) from the expression of the bare coupling (7.5):

ē0(λn,RM, d) = e0(λn, d) +

{
5

8
(µ2R2 − 1)2

[
1

ε
− log(MR̃)

]
+

1

16
(µ2R2 + 3)(µ2R2 − 1) +O(ε)

}
λ0=λ

, (D.13)

where we defined R̃ ≡ √πeγ/2R and we used the equations of motion (7.60) to expand
the leading order in the coupling:

∂

∂λ0

[
e−1(λ0n, d)

λ0R

]
=
Rd−1Ωd−1f

4

16
. (D.14)

To compute ∆0 in (7.48), we need to evaluate (D.13) in d = 4 and add the expansion of
the leading order ē−1/λ to first order in ε (at fixed coupling)

∆0 =

{
ē0(λn,RM, 4) +

∂

∂ε

[
1

λ
ē−1(λn,RM, 4− ε)

]
ε=0

}
λ=λ∗

=

{
lim
ε→0

[
R

2

∞∑
`=0

n`,d [ω+(`) + ω−(`)] +
5

8ε
(µ2R2 − 1)2

]}
λ0=λ∗

(D.15)
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where the limit ε→ 0 is taken at λ0 fixed, we used eq. (7.8) and

1

λ
ē−1(λn,RM, 4− ε) =

1

λM ε
e−1(λnM ε, 4− ε). (D.16)

As anticipated, at the fixed point the dependence on the sliding scale drops.

To proceed, we need to isolate the divergent contribution in the sum in eq. (D.15). We
use the `→∞ expansion of the summand

n`,d [ω+(`) + ω−(`)] ∼
∞∑
n=1

cn`
d−n. (D.17)

The first five terms provide a divergent contribution in d = 4. The expansion in 4− ε
dimensions of the coefficients is

c1 =
2

R
+O (ε) , c2 =

6

R
+O (ε) , c3 = 2µ2R+

4

R
+O (ε) , c4 = 2µ2R+O (ε) ,

c5 = −5
(
µ2R2 − 1

)2
4R

+ ε

[
113 + 50µ2R2 − 225µ4R4 + 150γ

(
µ2R2 − 1

)2
+
]

120R
+O

(
ε2
)
.

(D.18)
We can now rewrite the sum isolating explicitly the divergent contribution as

1

2

∞∑
`=0

n`,d [ω+(`) + ω−(`)] =
1

2

5∑
n=1

cn

∞∑
`=1

`d−n +
1

2

∞∑
`=1

σ̄(`) +
1

2
ω+(0), (D.19)

where σ̄(`) is defined subtracting the first five terms in (D.17) from the original summand,

σ̄(`) = n`,d [ω+(`) + ω−(`)]−
5∑

n=1

cn`
d−n, (D.20)

and we used that ω−(0) = 0. From (D.17) we see that the sum over σ̄(`) is convergent
and can be evaluated directly in d = 4. The first terms provide a divergent contribution
which can be computed using

∑∞
`=1 `

x = ζ(−x) and recalling ζ(1− ε) ∼ −1/ε:

1

2

5∑
n=1

cn

∞∑
`=1

`d−n = −5
(
µ2R2 − 1

)2
8Rε

− 15µ4R4 − 6µ2R2 + 7

16R
. (D.21)

Using eq.s (D.19) and (D.21) in (D.15), we obtain the result in the main text (7.77).

D.2.2 Next to leading order corrections for large λn

Here we discuss the derivation of the result (7.81). To this aim, it is convenient to start
from eq. (D.15), derived in the previous appendix. We denote the summand in (7.76)
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with the bare coupling replaced by the renormalized one as

s(`, d) ≡ n`,dR [ω+(`) + ω−(`)]λ0=λ . (D.22)

We then separate the sum over s(`, d) into two terms introducing a cutoff ARµ, where
A & 1 is an arbitrary number such that ARµ∗ is an integer:

1

2

∞∑
`=0

s(`, d) =
1

2

ARµ∑
`=0

s(`, d) +
1

2

∞∑
ARµ+1

s(`, d). (D.23)

We can approximate the second sum using the Euler-Maclaurin formula:

∞∑
ARµ+1

s(`, d) '
∫ ∞
ARµ

d`s(`, d)− s(ARµ, 4)

2
−

N1∑
k=1

B2k

(2k)!
s(2k+1)(ARµ, 4) +O(ε), (D.24)

where B2k are the Bernoulli numbers and N1 is an integer. As s(k)(ARµ) ∼ (ARµ)1−k

and B2k
(2k)! approaches zero exponentially fast as k grows, the error we make in (D.24)

can be made arbitrarily small increasing N1. The integral in (D.24) is approximately
evaluated using the expansion (D.17) truncated after N2 terms, giving

1

2

∫ ∞
ARµ

d`s(`, d) ' 1

2
(ARµ)d

N2∑
n=1

cn
(ARµ)n−1(n− 1− d)

≡ −5
(
µ2R2 − 1

)2
8 ε

+
5

8

(
R2µ2 − 1

)2
log(Rµ) + fN2,A(Rµ) +O(ε),

(D.25)

where f is a regular function of Rµ. As before, increasing N2 we can improve at will the
precision of our calculation for A & 1. Using (D.15) we then conclude

∆0 =
5

8

(
R2µ2

∗ − 1
)2

log(Rµ∗) + F (Rµ∗), (D.26)

where the function F (Rµ∗) can be computed from

F (Rµ∗) ' fN2,A(Rµ∗)−
s(ARµ∗)

2
+

[
1

2

ARµ∗∑
`=0

s(`, 4)−
N1∑
k=1

B2k

(2k)!
s(2k+1)(ARµ∗)

]
µ=µ∗

.

(D.27)

The function F (Rµ∗) can now be evaluated numerically and then fitted to the expected
functional form, estimating the error from the first subleading terms neglected in the
sums in (D.24) and (D.25). Using N1 = 4, N2 = 10 and A = 10, we evaluated (D.27) for
Rµ∗ = 11, 12, . . . 210. The result was fitted with an expansion in (Rµ∗)

−2, starting from
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(Rµ∗)
4, with four parameters1. The first three terms read:

F (Rµ∗) = −2.01444683(3)(Rµ∗)
4 + 2.49986(9)(Rµ∗)

2−0.55(4) +O
(
(Rµ∗)

−2
)
. (D.28)

We have also verified that the coefficients of (Rµ∗), (Rµ∗)
3, (Rµ∗)

4 log(Rµ∗) and
(Rµ∗)

2 log(Rµ∗) are compatible with zero if included, individually or in combination, in
the fit of the function in (D.27). Notice that the functional form (D.28) agrees with (7.84)
for d = 4 after expanding Rµ∗ in terms of (λ∗n)2/3.

The expansion of the first term in (D.26) produces logarithms of λ∗n:

5

8

(
R2µ2

∗ − 1
)2

log(Rµ∗) =5

(
(λ∗n)4/3

384π8/3
− (λ∗n)2/3

144π4/3
+

1

72

)
log

(
λ∗n

8π2

)

+
5

288

(
3(λ∗n)2/3

π4/3
− 10

)
+O

((
λ∗n

16π2

)−2/3
)
.

(D.29)

As explained in the main text, the coefficients of the logarithms ensure that the one-loop
result takes the form predicted by the large charge CFT predictions. Assuming that
F (Rµ∗) contains only powers of Rµ∗ (as we checked in (D.28)), one can verify that this
is true for all the subleading orders in (λ∗n) as well. Summing (D.28) and (D.29) and
expanding (Rµ∗)

2 in powers of (λ∗n)2/3, we obtain the result stated in the main text.

1A fit with three parameter produces the same results with smaller standard errors.
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