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Abstract

The ever-growing number of edge devices (e.g., smartphones) and the exploding volume

of sensitive data they produce, call for distributed machine learning techniques that are

privacy-preserving. Given the increasing computing capabilities of modern edge devices, these

techniques can be realized by pushing the sensitive-data-dependent tasks of machine learning

to the edge devices and thus avoid disclosing sensitive data.

In spite of the privacy benefits, existing techniques following this new computing paradigm

are limited in addressing three important challenges. First, for many applications, such as

news recommenders, data needs to be processed fast, before it becomes obsolete. Second,

given the large amount of uncontrolled edge devices, some of them may undergo arbitrary

(Byzantine) failures and deviate from the distributed learning protocol with potentially

negative consequences such as learning divergence or even biased predictions. Third, privacy-

preserving learning protocols call for formal privacy guarantees that imply additional tuning

cost for the learning protocols.

To address the fast data challenge, we introduce FLEET, the first system for online learning

at the edge. FLEET employs two core components, namely I-PROF and ADASGD. I-PROF is

a lightweight regression-based profiler that adjusts the size of the sensitive-data-dependent

tasks on highly heterogeneous mobile devices. ADASGD is a staleness-aware learning

algorithm that is robust to asynchronous updates.

To make learning secure against Byzantine failures, we present AGGREGATHOR and KARDAM.

AGGREGATHOR is a scalable framework that facilitates synchronous learning. AGGREGATHOR

tolerates Byzantine failures mainly based on a filtering component that compares the updates

sent from every device at each synchronous round. Given the tolerance to failures, we boost the

network layer of AGGREGATHOR by introducing a communication protocol based on unreliable

links. KARDAM operates in an asynchronous setup and employs two components: (a) a filtering

component that, based on statistical properties of the learning procedure, tolerates Byzantine

failures and (b) a dampening component that adjusts to stale information and enables fast

convergence.

To address the privacy guarantees challenge, we present DP-SCD, a differentially private

version of an algorithm with relatively low tuning cost, namely stochastic coordinate descent.

iii



Abstract

DP-SCD is based on the insight that under independent noise addition (necessary for the

privacy guarantees), the consistency of the auxiliary information that stochastic coordinate

descent employs, holds in expectation. We give convergence guarantees for DP-SCD and

demonstrate its superiority in terms of tuning without any significant impact on the privacy-

utility trade-off.

Keywords: machine learning, distributed algorithms, edge computing, mobile Android

devices, differential privacy, stochastic gradient descent, stochastic coordinate descent,

Byzantine failures, online learning, profiling, synchronous learning, asynchronous learning.
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Résumé

Le nombre sans cesse croissant de dispositifs mobiles (par ex., les smartphones) et le volume

explosif de données sensibles qu’ils produisent, demande des techniques d apprentissage

automatique distribué permettant de préserver la vie privée de leurs utilisateurs. Grâce aux

capacités croissantes de calcul des dispositifs mobiles, ces techniques peuvent être réalisées

en poussant les tâches de l’apprentissage automatique qui gèrent les données sensibles vers

les dispositifs mobiles et ainsi éviter de divulguer des données sensibles.

Malgré les avantages que les techniques actuelles qui suivent ce nouveau paradigme

informatique apportent en termes de confidentialité, celles-ci restent limitées pour répondre

à trois défis majeurs. Premièrement, pour de nombreuses applications, telles que les

recommandeurs de news, les données doivent être traitées rapidement, avant qu’elles ne

deviennent obsolètes. Deuxièmement, étant donné le grand nombre de dispositifs mobiles

qui ne sont pas contrôlés, certains d’entre eux peuvent subir des fautes arbitraires (Byzantines)

et s’écarter du protocole d’apprentissage distribué et avoir des conséquences potentiellement

négatives telles que des divergences d’apprentissage ou même des prédictions biaisées.

Troisièmement, les protocoles d’apprentissage préservant la confidentialité exigent des

garanties de confidentialité formelles qui impliquent un coût de réglage supplémentaire

pour les protocoles d’apprentissage.

Pour relever le défi du traitement rapide des données, nous présentons FLEET, le premier

système d’apprentissage en ligne embarqué. FLEET utilise deux composants principaux, à

savoir I-PROF et ADASGD. I-PROF est un profileur léger basé sur la régression qui ajuste la

taille des tâches nécessitant des données sensibles sur des appareils mobiles très hétérogènes.

ADASGD est un algorithme d’apprentissage sensible à la validité des mises à jour asynchrones.

Pour rendre l’apprentissage sécurisé contre les fautes Byzantines, nous présentons

AGGREGATHOR et KARDAM. AGGREGATHOR est un cadre évolutif qui facilite l’apprentissage

synchrone. AGGREGATHOR tolère les fautes Byzantines principalement sur la base d’un

composant de filtrage qui compare les mises à jour envoyées depuis chaque appareil à chaque

cycle synchrone. Compte tenu de la tolérance aux pannes, nous renforçons la couche réseau

de AGGREGATHOR en introduisant un protocole de communication basé sur des liens peu

fiables. KARDAM fonctionne dans une configuration asynchrone et utilise deux composants :

(a) un composant de filtrage qui, sur la base des propriétés statistiques de la procédure
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Résumé

d’apprentissage, tolère les fautes Byzantines et (b) un composant d’amortissement qui s’adapte

aux informations périmées et permet une convergence rapide.

Pour relever le défi des garanties de confidentialité, nous présentons DP-SCD, une version

différentiellement privée d’un algorithme avec un coût de réglage relativement faible, à savoir

la descente de coordonnées stochastiques. DP-SCD est basé sur la démonstration qu’en cas

d’ajout de bruit indépendant (nécessaire pour garantir la confidentialité), la cohérence des

informations auxiliaires que la descente en coordonnées stochastiques utilise, est conservée.

Nous donnons des garanties de convergence pour DP-SCD et démontrons sa supériorité en

termes de réglage sans faire de compromis entre confidentialité et utilité.

Mots-clés : apprentissage automatique, algorithmes distribués, informatique de bord,

appareils mobiles Android, confidentialité différentielle, descente du gradient stochastique,

descente de coordonnées stochastiques, fautes Byzantines, apprentissage en ligne, profilage,

apprentissage synchrone, apprentissage asynchrone.
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1 Introduction

1.1 Motivation

The number of edge devices and the data produced by them have grown tremendously over

the last 10 years. While in 2009, mobile devices only generated 0.7% of the worldwide data

traffic, in 2018 this number exceeded 50% [141]. On the one hand, there is an evident boost on

the data generation capabilities of modern mobile devices mainly attributed to the plethora of

sensors and to cheap storage capabilities. On the other hand, an increasing number of users

(46% increase from 2015 till 2019 [157]) spend an increasing amount of time (30% increase in

time spent on social media from 2015 till 2019 [52]) on their mobile devices.

As the volume of data produced by mobile devices explodes, users expose increasingly detailed

and sensitive information. The challenge of protecting the privacy of this sensitive information

is pervasive in machine learning (ML) applications such as recommenders, image-recognition

applications, and personal assistants. These ML-based services are often applied to highly

personal and possibly sensitive content, including conversations, geolocation, or physical

traits (faces, fingerprints), and typically require tremendous volumes of data for their training.

For example, people in the USA of age 18-24, type on average around 900 words per day (128

messages per day [121] with an average of 7 words per message [120]). The Android next-word

prediction service is trained with sequences of 4.1 words [86] which means that each user

generates around 220 training samples daily. Tens of millions or even billions of user devices

employ next-word prediction services [21].

The computing capabilities of mobile devices are also rising rapidly. Modern mobile devices

are able to perform heavy computation tasks with energy efficiency thanks to their CPUs,

GPUs and recently also dedicated AI accelerators (e.g., Huawei Kirin 980 CPU, Intel Myriad X,

Qualcomm Snapdragon 845, Apple A12 Bionic CPU). In parallel, network transfer latency for

mobile devices is decreasing; 5G networks enable bandwidth of up to 10 Gbps.

Large industrial players are now seeking to exploit the rising power of mobile devices to protect

the privacy of their users’ data, while also reduce the demand on their server infrastructures.
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Termed Federated Learning (FL), and spearheaded among others by Google [35, 96, 158],

this new computing paradigm consists in offloading the storage and computation costs

of ML applications onto mobile devices by training a global model on decentralized data

stored locally. By design, FL is compatible with frameworks such as secure aggregation and

differential privacy for end-to-end private learning [22].

The standard use of FL has so far been limited to a few lightweight and extremely privacy-

sensitive services, such as next-word prediction [178]. Its appeal is however bound to grow as

privacy-related scandals continue to unfold [133, 166], and new data protection regulations

come into force [30, 77]. This trend is clearly visible in two of the most popular machine

learning frameworks (namely TensorFlow and PyTorch) [149, 164], and also in the rise of

startups such as S20.ai [150] or SNIPS (now part of Sonos) [160], which are betting on private

decentralized learning. Recent research results show great potential for FL across various

applications such as artificial image generation [168], hospitalizations for cardiac events

prediction [26], augmented reality [34], or traffic flow prediction [113]. These are encouraging

signs, but we argue in this thesis that existing FL works are unfortunately not effective in

addressing the following challenges that arise for a large segment of ML-based applications.

The challenge of fast data. Many popular applications such as news applications or

interactive social networks (e.g., Facebook, Twitter, Linkedin) involve large amount of data

where a piece of information may become obsolete in a matter of hours or even minutes [123].

The faster this data is processed, the better the quality of the application. For example,

consider two users of a news recommender, namely Alice and Bob. Bob clicks on some news

articles (e.g., subway is shutdown due to an accident) before Alice opens the application as

he wakes up earlier than her. The news recommender should consider the fresh clicks of

Bob to deliver better (more relevant) recommendations for Alice when she also wakes up

and uses the application. In existing FL schemes, the device of Bob computes updates much

later (when idle and charging) and thus Alice is likely to miss the highly temporal information

(e.g., regarding the subway shutdown) from the clicks of Bob. Addressing this challenge is

non-trivial given the heterogeneity, connectivity, latency and energy constraints of mobile

devices.

The challenge of Byzantine failures. The large amount of mobile devices increases the

possibility of failures. Each device contributes to the global model training while susceptible

to software bugs and hardware faults [83]. The local datasets of these devices may be corrupt

or even the devices themselves may be hijacked by an adversary. Such failures can be fatal to

most modern ML schemes, even if only a single device is faulty. Ideally, secure ML applications

should tolerate Byzantine failures, encapsulating all possible malfunctions. These failures

include poisoning attacks [18], in the parlance of adversarial machine learning [18, 19, 137].

Existing works prior to this thesis lack (a) system support for scalable Byzantine learning
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and (b) algorithmic support for Byzantine learning with fast (asynchronous) updates in the

presence of heterogeneous learners with dynamic connectivity.

The challenge of privacy guarantees. Differential privacy (DP) [68] is a particularly well-

suited formal privacy guarantee for iterative ML algorithms in the presence of a strong

adversary. The composability property of DP enables a fine-grained way of measuring privacy

along with modularity for the DP mechanisms. Nevertheless, increasing the level of privacy

comes at a cost: a reduction in the predictive power of the resulting model (known as the

privacy-utility trade-off ). ML algorithms with DP guarantees typically offer hyperparameters

to tune this trade-off, such as the lot size [2]. While such a knob is desirable, the tuning cost

(in terms of time) grows exponentially with the number of additional hyperparameters (e.g.,

when tuning via grid search). In standard FL, this tuning is based on simulation data [21] to

avoid a potential privacy leakage or a performance impact (in terms of energy or latency) on

the edge device.

1.2 Contributions and Publications

This thesis addresses the aforementioned three challenges by introducing system support and

new algorithms with formal convergence guarantees, under different setups corresponding

to each of these challenges. The grayed-out contribution is presented in another thesis [140]

although is also relevant to this thesis and a result of research performed during the same

doctoral studies. The publications [45, 56] are the result of research performed during

internships in the same doctoral studies. The contributions of this thesis alongside their

corresponding publications are the following.

1.2.1 Fast Data

• We introduce FLEET, the first FL system that specifically targets fast data by performing

online model updates. FLEET employs a new regression-based profiler that determines

the ML workload that each mobile device can perform within predefined energy and

computation time thresholds. FLEET also makes use of a new staleness-aware learning

algorithm suitable for incorporating frequent updates to the global (shared) model.

Publication: [55] Georgios Damaskinos, Rachid Guerraoui, Anne-Marie Kermarrec, Vlad

Nitu, Rhicheek Patra, Francois Taiani. FLeet: Online Federated Learning via Staleness

Awareness and Performance Prediction. (under submission)

• We introduce I-SIM, a new similarity metric that targets fast data by performing online,

incremental updates. I-SIM is essentially a time-aware version of the adjusted cosine

similarity [151]. We depict the efficacy of our new metric by building (a) a scalable
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recommender on top of Apache Spark1 and Apache Cassandra2 and (b) a trust predictor.

Publication: [57] Georgios Damaskinos, Rachid Guerraoui, Rhicheek Patra. Capturing

the Moment: Lightweight Similarity Computations. IEEE International Conference on

Data Engineering (ICDE), 2017.

1.2.2 Byzantine Failures

• We introduce AGGREGATHOR, the first scalable and Byzantine-resilient framework,

based on one of the most popular existing ML frameworks, namely TensorFlow [1].

AGGREGATHOR performs synchronous learning without adding any constraints to the

application development, and ensures Byzantine resilience by filtering out updates from

potentially Byzantine workers. The filtering scheme is based on a majority of distance

measurements between each pair of updates. The overhead of AGGREGATHOR over

TensorFlow is moderate when there are no Byzantine failures. In fact, we have also

shown that AGGREGATHOR can be viewed as a performance booster for TensorFlow, as

it enables the use of an unreliable (and faster) underlying communication protocol, i.e.,

UDP-based instead of TCP-based.

Publication: [53] Georgios Damaskinos, El Mahdi El Mhamdi, Rachid Guerraoui, Arsany

Guirguis, Sebastien Rouault. AggregaThor: Byzantine Machine Learning via Robust

Gradient Aggregation. Conference on Machine Learning and Systems (SysML / MLSys),

2019.

• We present the first asynchronous and Byzantine-resilient learning algorithm, that we

call KARDAM. Asynchrony enables frequent (online updates), also suitable for addressing

the challenge of fast data. KARDAM leverages global and local statistical properties of

the learning procedure to filter out updates from potentially Byzantine workers, while

prohibiting Byzantine workers from flooding the parameter server (which in turn would

prevent honest workers from updating the model). KARDAM also uses a dampening

scheme that scales each update based on the device delay. The computation overhead

for each update is negligible as the filtering component of KARDAM is mostly scalar-

based.

Publication: [54] Georgios Damaskinos, El Mahdi El Mhamdi, Rachid Guerraoui,

Rhicheek Patra, Mahsa Taziki. Asynchronous Byzantine Machine Learning (the case

of SGD). International Conference on Machine Learning (ICML), 2018.

1http://spark.apache.org/
2http://cassandra.apache.org/
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1.2.3 Privacy Guarantees

• We introduce the first differentially private stochastic coordinate descent algorithm

(DP-SCD). Stochastic coordinate descent is particularly suitable for DP learning at

the edge due to its relatively low number of hyperparameters and its remarkable

performance for training a global model with local learners [115]. We formally derive

the privacy bounds and study the convergence of DP-SCD. We empirically show that

despite the reduced hyperparameter tuning, DP-SCD has a comparable privacy-utility

trade-off compared to the popular alternative (DP-SGD).

Publication: [58] Georgios Damaskinos, Celestine Duenner, Rachid Guerraoui, Nikolaos

Papandreou, Thomas Parnell. Differentially Private Stochastic Coordinate Descent.

(under submission)

1.3 Organization of the Thesis

The rest of this thesis is organized into six parts that include seven chapters and two

appendices.

Pa
rt

I

• Chapter 2 presents the main notation along with background on the main algorithmic

tools used in this thesis. This background includes the main function properties

used for the formal guarantees of the algorithms, description of the two workhorse

optimization algorithms, namely stochastic gradient and coordinate descent,

description of Byzantine-resilient learning and description of the differential privacy

algorithmic framework in ML.

Pa
rt

II • Chapter 3 describes FLEET, the first FL system that performs online stochastic

gradient descent updates on commercial Android devices with fast data.

Pa
rt

II
I • Chapter 4 introduces AGGREGATHOR the first scalable solution for Byzantine learning

based on synchronous stochastic gradient descent.

• In Chapter 5, motivated by the challenge of fast data, we present KARDAM, the first

asynchronous Byzantine-resilient scheme based on stochastic gradient descent.
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Pa
rt

IV • Chapter 6 presents the first differentially private version of a workhorse optimization

algorithm (namely stochastic coordinate descent) that is appealing due to its

relatively low needs for hyperparameter tuning.

Pa
rt

V

• Chapter 7 concludes the thesis with a summary of the contributions and their impact,

along with future research directions.

Pa
rt

V
I • Appendix A contains supplementary material for better understanding the

experimental setup used in the thesis.

• Appendix B contains formal proofs for certain theoretical results of this thesis.
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2 Preliminaries

In this chapter we provide the main notation, function properties and the necessary

background for the rest of this thesis. The background involves the two main optimization

algorithms, namely stochastic coordinate descent and stochastic gradient descent, the notion

of Byzantine-resilient learning, and the notion of differentially private learning.

2.1 Notation

The following includes the main symbols used in this thesis alongside their description.

Throughout the thesis, for the sake of clarity, the description may be overridden locally. We

denote vectors and matrices in bold.

t Step at the parameter server, incremented after each update

T Total number of of steps

tp Step (given by the parameter server) of the model currently used by worker p

X Training examples ∈RM×N , i.e., N training examples of dimensionality M

θt Model (parameter vector) at step t with dimensionality d

αt Dual model at step t

v t Auxiliary or shared vector at step t

F (X ,θ) Cost function for a model θ

F∗ Dual cost function

S(α) Dual suboptimality for model α

li (θ) Cost function for example i

l∗i Convex conjugate of cost function li

µ Smoothness parameter for li

ν Smoothness parameter for l∗i
ξ Mini-batch of training examples

L Mini-batch size, i.e., |ξ| := L

∇∇∇F (X ,θ) Gradient of the cost function

G(θ,ξ) Gradient estimator on a mini-batch
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g p Each gradient is a tuple [g p , l ] denoting that a worker p computed the gradient

g p w.r.t θl (g p :=G(θ,ξ))

R Number of gradients that the server waits for before updating the model

parameters (R = 1 in asynchrony)

Gt Set of gradients that the server receives in step t . Note that |Gt | = R

τt l Staleness value for a gradient [g , l ] at step t (τt l := t − l )

Λ(τ) Dampening value for staleness τ

χ Staleness dampening bound: τt l ·Λ(τt l ) ≤χ
γt Learning rate at step t s.t.

∞∑
t=1

γt =∞ and
∞∑

t=1
γ2

t <∞
K Global Lipschitz coefficient of ∇∇∇F , i.e K = sup

x ,y∈Rd

( ‖∇∇∇F (x)−∇∇∇F (y)‖
‖x−y‖ )

λ Regularization parameter

ε,δ Differential privacy parameters

C Update scaling factor

κ Suboptimality scaling factor

D Convexity horizon

n Total number of workers

f Number of Byzantine workers

‖.‖ L2 norm

2.2 Function Properties

We present the main properties of real-valued functions that are useful for the assumptions

and formal derivations of the algorithms of this thesis.

Definition 1 (Convexity). A function h :Rd →R is called convex, if

h(tu + (1− t )w ) ≤ th(u)+ (1− t )h(w ) ∀u, w ∈Rd ∀t ∈ [0,1]

Definition 2 (µ-Strong Convexity). A function h :Rd →R is called µ-strongly convex w.r.t. a

norm ‖.‖, for µ≥ 0 if

h(u) ≥ h(w )+〈∇h(w ),u −w〉+ µ

2
‖u −w‖2 ∀u, w ∈Rd

Definition 3 (ν-Smoothness). A function h :Rd →R is called µ-smooth w.r.t. a norm ‖.‖, for

ν≥ 0 if

h(u) ≤ h(w )+〈∇h(w ),u −w〉+ ν

2
‖u −w‖2 ∀u, w ∈Rd

Definition 4 (K -Lipschitz Continuity). A function h :Rd →R is called K -Lipschitz continuous

w.r.t. a norm ‖.‖, for K ≥ 0 if

|h(u)−h(w )| ≤ K ‖u −w‖ ∀u, w ∈Rd

10



2.3. Supervised Learning

2.3 Supervised Learning

This thesis targets supervised learning, i.e., the dataset contains the ground truth for the

corresponding learning task. The learning task consists in making accurate predictions for the

labels of each data instance. For the example of image classification, each data instance has a

set of features (image pixels), and a set of labels (e.g., {cat, person}).

Supervised learning includes both convex and non-convex optimization problems with the

following form.

min
θ

F (X ,θ) where F (X ,θ) := 1

N

N∑
i=1

`i (θ>x i )+ λ

2
‖θ‖2 (2.1)

where the model vector θ is learnt from the training data X ∈RM×N with N training examples

x i ∈RM as columns, λ denotes the regularization parameter, and `i the loss function for the

example x i . The norm ‖ ·‖ refers to the L2-norm.

2.3.1 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a very popular ML technique for minimizing the

objective shown in Problem 2.1. SGD computes the gradient (G(θ,ξ)) and then updates

the model parameters (θ) in a direction opposite to that of the gradient (descent). The vanilla

SGD update rule given a sequence of learning rates {γt } at any given step1 is the following:

θ(t+1) = θ(t ) −γt ·G(θ(t ),ξ)) (2.2)

The popularity (and the stochasticity) of SGD stem from its ability to employ noisy

approximations of the actual gradient. In a distributed setup, SGD employs a random subset,

namely a mini-batch (ξ), of L < N training instances for the gradient computation:

G(θ,ξ) :=∇∇∇F (X ξ,θ) :=
L∑

i=1
∇∇∇F (ξi ,θ) (2.3)

The addends of the summation shown in Equation 2.3 can be computed in parallel. The size

of the mini-batch (L) affects the amount of parallelism that modern computing clusters

(e.g., multi-GPU) largely benefit from. Scaling the mini-batch size to exploit additional

parallelism requires however a non-trivial selection of the sequence of learning rates [80]. A

very important assumption for the convergence properties of SGD is that each gradient is an

unbiased estimation of the actual gradient, i.e., gradients that are on expectation equal to the

actual gradient. This assumption is typically ensured through uniform random sampling and

synchronous training.

1A step denotes an update in the model parameters.
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2.3.2 Stochastic Coordinate Descent

Stochastic Coordinate Descent (SCD) is another popular ML technique for minimizing

the objective shown in Problem 2.1, especially for the case of Generalized Linear Models

(GLMs) [118]. GLMs are popular due to their interpretability and relatively (comparing to, for

example, neural networks) low number of model parameters that need training. These models

employ convex loss functions li that apply on data through a linear map (θ>x i ). For this thesis

and regarding SCD, we focus on GLMs.

SCD proceeds iteratively and repeatedly selects a coordinate j ∈ [M ] at random, solves a one

dimensional auxiliary problem, and updates the parameters θ as follows.

θ+ ← θ+e jδ
? where δ? = argmin

δ

F (X ,θ+e jδ) (2.4)

where e j denotes the unit vector with value 1 at position j . This problem often has a closed

form solution; otherwise F is generally replaced by its second order Taylor approximation.

A crucial approach for improving the time complexity of each SCD update is to keep an

auxiliary vector v := θ>X (also called shared vector) in memory in order to avoid recurring

computations. This auxiliary vector is updated in each iteration as v+ ← v +δ?x i .

Dual SCD. SCD can be equivalently applied to the dual formulation of Problem 2.1, often

referred to as SDCA [155]. The dual optimization problem has the following objective.

min
α

F∗(X ,α) where F∗(X ,α) := 1

N

N∑
i=1

`∗i (−αi )+ 1

2λN 2 ‖Xα‖2 (2.5)

where α ∈RN denotes the dual model vector and `∗i the convex conjugate of the loss function

`i . For the dual problem, the auxiliary vector is v := Xα.

We use the first order optimality conditions to relate the primal and the dual model vectors as

θ(α) = 1
λN Xα, which leads to the important definition of the duality gap [65]:

Gap(α) :=F∗(X ,α)+F (X ,θ(α)) = 〈Xα,θ(α)〉+ λ

2
‖θ(α)‖2 + λ

2
‖θ‖2 (2.6)

By the construction of the two problems, the optimal values for the objectives match in the

convex setting and the duality gap attains zero [155]. Therefore, the model θ can be learnt

from either of the two objectives shown in Problems 2.1 and 2.5, i.e., the primal and the dual

problems are identical from an algorithmic perspective.

However, the primal and dual problems are quite different with respect to their data access

pattern. When applied to the dual, SCD computes each update by processing one example,
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whereas the primal SCD processes one coordinate across all the examples. This fact is crucial

for the privacy guarantees as we show in Part IV.

2.4 Byzantine-resilient Learning

SGD has been both theoretically and empirically proven to not be resilient against Byzantine

worker behavior [20]. A Byzantine worker can propose a gradient that can completely ruin the

training procedure.

Weak Byzantine resilience. A very recent line of theoretical research has addressed the

problem of Byzantine-resilient SGD [20, 72, 162, 176, 179]. These SGD variants all aggregate

the gradients obtained from the workers before deriving the final gradient. Essentially, they

compute statistics (e.g. median, quantiles, principal component analysis) over the set of

aggregated gradients to derive the final gradient. Moreover, the update rule (Equation 2.2) for

n workers becomes:

θ(t+1)=θ(t )−γt GAR
(
G1(θ(t ),ξ1), . . . ,Gn(θ(t ),ξn)

)
(2.7)

where GAR denotes the gradient aggregation rule, and G i (θ(t ),ξi ) denotes the gradient estimate

of worker i , using its own randomly drawn mini-batch ξi and the global model θ at update

step t .

In the context of non-convex optimization, it is generally hopeless to try to find a global

minimum for F (X ,θ). Instead, what can be proven is that the sequence of parameter vectors

converges to a region around some θ∗ where ∇∇∇F (X ,θ∗) = 0, i.e, a flat region of the loss

function [23]. Any gradient aggregation rule that satisfies this convergence property despite

the presence of f Byzantine workers, among the total of n workers, is called weakly Byzantine-

resilient.

Strong Byzantine resilience. In high dimensional spaces (i.e., d À 1), and with a highly non-

convex loss function (which is the case in modern machine learning [87, 116]), weak Byzantine

resilience may lead to models with poor performance in terms of prediction accuracy, as

a Byzantine worker can fool a provably converging SGD rule by leveraging a dimensional

leeway [72]. More precisely, this worker can make the system converge, as guaranteed by

its designers, but to a state with poor (as compared to the maximum possible one in a non-

Byzantine environment) prediction accuracy.2

2The intuition behind this issue relates to the so-called curse of dimensionality, a fundamental problem in
learning: a square of unit 1 on each side has a diagonal of length

p
2. In dimension 3, the cube of unit 1 has a

diagonal of length
p

3. In dimension d , the diagonal is of length
p

d . Given d À 1, points that differ by a distance
of at most 1 in each direction end up being in a huge distance from each other.
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We define strong Byzantine resilience as the ability for a GAR, in addition to being weakly

Byzantine-resilient, to select gradients that are (in each coordinate) in a distance of at most
1p
d

from some correct gradient, despite the presence of f Byzantine workers among the total

n workers. A more detailed analysis of strong Byzantine resilience is available [71].

Attacking a non-Byzantine resilient GARs such as averaging is easy [20]. Attacking a GAR that

ensures weak Byzantine resilience requires a powerful adversary, i.e., at least able to carry out

the attack presented in [72].

2.5 Differentially Private Learning

Differential privacy (DP) is a guarantee for a function f applied on a database of sensitive

data [68]. In the context of ML, the objective function is the update function of the algorithm

(Equations 2.2, 2.4 and 2.7). Two input datasets are adjacent if they differ only in a single

input-label pair. Querying the model translates into making predictions for the label of some

new input.

Definition 5 (Differential privacy). A randomized mechanism M : D → R satisfies (ε, δ)-

differential privacy if for any two adjacent inputs d ,d ′ ∈ D and for any subset of outputs S ⊆R
it holds that:

Pr [M(d) ∈ S] ≤ eεPr [M(d ′) ∈ S]+δ (2.8)

The Gaussian mechanism is a popular method for making a deterministic function f : D →R

differentially private (according to Definition 5). By adding Gaussian noise to the output of

the function we can hide particularities of individual input values. The resulting mechanism

is defined as: M(d) := f (d)+N (0,S2
f σ

2) where S f denotes the sensitivity of the function f .

This definition can be readily extended to the multi-dimensional case in order to fit the ML

setting: An iterative machine learning algorithm can be viewed as a function f :RM×N →RM

that repeatedly computes model updates from the data and thus requires a multi-dimensional

noise addition at each iteration t :

Mt (d ) = f (d )+N (0,S2
f σ

2I ), I ∈RM×M (2.9)

The sensitivity is defined as:

S f := max
adjacent d ,d ′ ‖ f (d )− f (d ′)‖ (2.10)

DP-SGD. As an example of how the Gaussian mechanism can be applied to make ML

differentially private, we consider SGD (§2.3.1). SGD can be made differentially private by

using the Gaussian mechanism: For each update, DP-SGD adds noise with the variance given

by the sensitivity of the update function, i.e., S f = ‖G(θ,ξ)‖. In practice, an additional gradient

clipping step enforces a desired bound on the sensitivity S f [2].
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Privacy accounting. Measuring the privacy leakage of a randomized mechanism M boils

down to computing (ε,δ), i.e., computing a bound for the privacy loss (ε) that holds with

certain probability (δ). In the context of ML, M often consists of a sequence of mechanisms

Mi that, for example, denote the model update at each iteration i . All these mechanisms

have the same pattern in terms of sensitive (training) data access for most typical iterative ML

algorithms, including SCD. Computing (ε,δ) given the individual pairs (εi ,δi ) is a problem

known as composability. The moments accountant [2] is an important method that computes

tighter bounds for the privacy loss (i.e., tighter (ε,δ)) compared to the standard composition

theorems. This method is tailored to the Gaussian mechanism and employs the log moment

of each Mi to derive the bound of the total privacy loss. The moments accountant can be

viewed as a function that returns the privacy loss bound:

ε= MA(δ,σ, q,T ) (2.11)

where σ is the noise magnitude, q is the sampling ratio (i.e., the ratio of the data that each Mi

uses over the total data), and T is the number of individual mechanisms Mi [2].
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3 Online Stochastic Gradient Descent

3.1 Introduction

The starting point of this work is that Standard FL [21] is not suitable for ML-based applications

that leverage fast data and thus could greatly benefit from frequent online model updates,

mainly due to its constraint for high device availability: the selected mobile devices need

to be idle, charging and connected to an unmetered network. This constraint removes any

impact perceived by users, but also limits the availability of devices for learning tasks. Google

observed lower prediction accuracy during the day as few devices fulfill this policy and these

generally represent a skewed population [178]. With most devices available at night the model

is generally updated every 24 hours.

This constraint may be acceptable for some ML-based services but is problematic to what

we call online learning systems, which underlie many popular applications such as news

recommenders or interactive social networks (e.g., Facebook, Twitter, Linkedin). These

systems involve large amounts of data with high temporality, that generally become obsolete

in a matter of hours or even minutes [123]. To illustrate the limitation of Standard FL, consider

two users, Alice and Bob, who belong to a population that trains the ML model underlying

a news recommendation system (Figure 3.1). Bob wakes up earlier than Alice and clicks on

some news articles. To deliver fresh and relevant recommendations, these clicks should be

used to compute recommendations for Alice when she uses the app, slightly after Bob. In

Standard FL (upper half Figure 3.1), the device of Bob would wait until much later (when idle,

charging and connected to WiFi) to perform the learning task thus negating the value of the

task results for Alice. In an online learning setup (lower half of Figure 3.1), the activity of Bob

is rapidly incorporated into the model, thereby improving the experience of Alice.

Challenges and contributions. In this paper we address the aforementioned limitation and

enable Online FL. We introduce FLEET, the first FL system that specifically targets online

learning, acting as a middleware between the operating system of the mobile device and the
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Figure 3.1 – Online FL enables frequent updates without requiring idle-charging-WiFi
connected mobile devices.

ML-based application. FLEET addresses two major problems that arise after forfeiting the

high device availability constraint.

First, learning tasks may have an energy impact on mobile devices now powered on a battery.

Given that learning tasks are generally compute intensive, they can quickly discharge the

device battery and thereby degrade user experience. To this end, FLEET includes I-PROF

(§3.2.2), our new profiling tool which predicts and controls the computation time and the

energy consumption of each learning task on mobile devices. The goal of I-PROF is not trivial

given the high heterogeneity of the devices and the performance variability even for the same

device over time [132] (as we show in §3.3).

Second, as mentioned above, synchronous training discards all late results arriving after the

model is updated thus wasting the battery of the corresponding devices and their potentially

useful data. Frequent model updates call for small synchronization windows that given the

high performance variability, amplify this waste. We therefore replace the synchronous scheme

of Standard FL with asynchronous updates. However, asynchronous updates introduce the

challenge of staleness as multiple users are now free to perform learning tasks at arbitrary

times. A stale result occurs when the learning task was computed on an outdated model

version; meanwhile the global model has progressed to a new version. Stale results add noise

to the training procedure, slow down or even prevent its convergence [93, 185]. Therefore,

FLEET includes ADASGD (§3.2.3), our new Stochastic Gradient Descent (SGD) algorithm that

tolerates staleness by dampening the impact of outdated results. This dampening depends on

(a) the past observed staleness values and (b) the similarity with past learning tasks.
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We fully implemented the server side and the Android client of FLEET and our code is

available1. We evaluate the potential of FLEET and show that it can increase the accuracy of a

recommendation system (that employs Standard FL) by 2.3× on average, by performing the

same number of updates but in a more timely (online) manner. Even though the learning

tasks drain energy directly from the battery of the phone, they consume on average only

0.036% of the battery capacity of a modern smartphone per user per day. We also evaluate

the components of FLEET on 40 commercial Android devices, by using popular benchmarks

for image classification. Regarding I-PROF, we show that 90% of the learning tasks deviate

from a fixed Service Level Objective (SLO) of 3 seconds by at most 0.75 seconds in comparison

to 2.7 seconds for the competitor (the profiler of MAUI [48]). The energy deviation from an

SLO of 0.075% battery drop is 0.01% for I-PROF and 0.19% for the competitor. We also show

that our staleness-aware learning algorithm (ADASGD) learns 18.4% faster than its competitor

(DYNSGD [93]) on heterogeneous data.

3.2 FLEET

FLEET incorporates two components we consider necessary in any system that has the

ambition to provide both, the (a) privacy of FL and (b) the precision of online learning systems.

The first component is I-PROF, a lightweight ML-based profiling mechanism that controls

the computation time and energy of the learning task by using ML-based estimators. The

second component of FLEET is ADASGD, a new adaptive learning algorithm that tolerates

stale updates by automatically adjusting their weight.

3.2.1 Architectural Overview

Similar to the implementation of Standard FL [21], FLEET follows a client-server architecture

(Figure 3.2) where each user hosts a worker and the service provider hosts the server (typically

in the cloud). In FLEET, the worker is a library that can be used by any mobile ML-based

application (e.g., a news articles application). The model training protocol of FLEET is the

following (the numbers refer to Figure 3.2):

(1) The worker requests a learning task and sends information regarding the labels of the local

data along with information about the state of the mobile device. We introduce the purpose of

this information in Steps 2 and 3.

(2) I-PROF employs the device information to bound the workload size (i.e., set a mini-batch

size bound) that will be allocated to this worker such that the computation time and energy

consumption approximate an SLO set by the service provider or negotiated with the user

(details in §3.2.2).

(3) ADASGD computes a similarity for the requested learning task with past learning tasks in

order to adapt to updates with new data (details in §3.2.3).

1https://github.com/gdamaskinos/fleet
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Figure 3.2 – The architecture of FLEET.

(4) In order to prevent the computation of learning tasks with low or no utility for the learning

procedure, the controller checks if both the mini-batch size and the similarity value pass

certain thresholds set by the service provider. If the check fails, the request of the worker is

rejected, otherwise the controller sends the model parameters and the mini-batch size to

the worker and the learning task execution begins (details about setting these thresholds in

§3.2.4).

(5) Based on the mini-batch size returned by the server, the worker samples from its locally

collected data, performs the learning task, i.e., computes the model gradient and sends it back

to the server. On the server side, ADASGD updates the model after dynamically adapting this

gradient based on its staleness and on its similarity value (details in §3.2.3).

The above protocol maintains the key “privacy-readiness” of Standard FL: the user data never

leave the device during the learning procedure.

3.2.2 Workload Bound via Profiling

In Online FL, a mobile device should be able to compute model updates at any time, not only

during the night, when the mobile device is idle, charging and connected to WiFi. Therefore,

FLEET drops the constraint of Standard FL for high device availability. Hence, the learning

task now drains energy directly from the battery of the device. Controlling the impact of a

learning task on the user application in terms of energy consumption and computation time

becomes crucial. To this end, FLEET incorporates a profiling mechanism that determines the

workload size (i.e., the mini-batch size) appropriate for each mobile device.

Best-effort solution. To highlight the need for a specific profiling tool, we first consider a

naive solution in which users process data points until they reach the SLO either in terms

of computation time or energy. At this point, a worker sends back the resulting “best-effort”

gradient. The service provider cannot decide beforehand whether for a given device, the cost

(in terms of energy, time and bandwidth) to download the model, compute and upload the

gradient is worth the benefit to the model. Updates computed on very small mini-batch sizes
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Figure 3.3 – Motivation for lower bounding the mini-batch size. The noise introduced by weak
workers (i.e., with small mini-batch sizes) may be detrimental to learning.

(by weak devices) will perturb the convergence of the overall model, and might even negate

the benefit of other workers.

To illustrate this point, consider the experiment of Figure 3.3. The figure charts the result of

training a Convolutional Neural Network on CIFAR10 [42] under different combinations of

“strong” and “weak” workers. The strong workers compute on a mini-batch size of 128 while

the weak workers compute on a mini-batch size of 1. We observe that even 2 weak workers are

enough to cancel the benefit of distributed learning, i.e., the performance with 10 strong + 2

weak workers is the same as training with a single strong worker.

One way to avoid this issue could be to drop all the gradients computed on a mini-batch

size lower than a given bound or weigh them with a tiny factor according to the size of their

underlying mini-batch. This way would however waste the energy required to obtain these

gradients. A profiler tool that can estimate the maximum mini-batch size (workload bound)

that a worker can compute is necessary for the controller to decide whether to reject the

computation request of this worker, before the gradient computation. Unfortunately, existing

profiling approaches [28, 40, 41, 48, 85, 100, 180] are not suitable because they are either

relatively inaccurate (see §3.3.3) or they require privileged access (e.g., rooted Android devices)

to low-level system performance counters.

I-PROF. Mobile devices have a significantly lower level of parallelism in comparison with

cloud servers. For example, the graphical accelerators of mobile devices generally have 10-20

cores [10, 146] while the GPUs on a server have thousands of cores [134]. Given this low level of

parallelism, even a relatively small mini-batch size can fill the processing pipelines. Hence, any

additional workload will linearly increase the computation time and the energy consumption.

Based on this observation, we built I-PROF, a lightweight profiler specifically designed for

Online FL systems. We design I-PROF with three goals in mind: (a) operate effectively with

data from a wide range of device types, (b) do so in a lightweight manner, i.e., introduce only

a negligible latency to the learning task and (c) rely only on the data available on a stock

(non-rooted) Android device.
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Figure 3.4 – The linear relation between computation time and mini-batch size depends on
the specific device, and may even vary for the same device, depending on operation conditions
such temperature.

I-PROF employs an ML-based scheme to capture how the device features affect the

computation time and energy consumption of the learning task. I-PROF predicts the largest

mini-batch size a device can process while respecting both the time and the energy limits set

by the SLO. To this aim, I-PROF uses two predictors, one for computation time and one for

energy. Each predictor updates its state with data from the device information sent by the

workers.

Designing such predictors is however tricky, as modern mobile phones exhibit a wide range

of capabilities. For example, in a matrix multiplication benchmark, Galaxy S6 performs

7.11 Gflops whereas Galaxy S10 performs 51.4 Gflops [117]. Figure 3.4 illustrates this

heterogeneity on three different mobile devices by executing successive learning tasks of

increasing mini-batch size (“up”). After reaching the maximum value, we let the devices cool

down and execute subsequent learning tasks with decreasing mini-batch size (“down”). We

present the results for the up-down part with the same color-pattern, except for Honor 10 in

Figure 3.4(b) that we split for highlighting the difference. Figure 3.4 illustrates that the linear

relation changes for each device and for certain devices (Honor 10, Galaxy S7) also changes

with the temperature. Note that Honor 10 shows an increased variance at the end of the “up”

part (Figure 3.4(b)) that is attributed to the high temperature of the device. The variance is

significantly smaller for the “down” part.

In the following, we describe how I-PROF predicts the mini-batch size (L) given a computation

time SLO2 (tSLO). The computation time linearly increases with the workload size, i.e.,

tcomp = α · L, where α depends on the device and its state. Considering the goal (i.e.,

tcomp → tSLO), the optimal mini-batch size is predicted as:

L̂ = max

(
1,

tSLO

α̂

)
(3.1)

2The prediction method given an energy SLO is the same.
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I-PROF estimates the slope α̂ from the device characteristics and operational conditions using

a method that combines linear regression and online passive-aggressive learning [47].

The input to this method is a set of device features based on measurements available through

the Android API, namely available memory, total memory, temperature and sum of the

maximum frequency over all the CPU cores. However, these features only encode the

computing power of a device. For the prediction based on the energy SLO, I-PROF also

needs a feature that encodes the energy efficiency of each device. We choose this additional

feature as the energy consumption per non-idle CPU time3. We show in our evaluation (§3.3.3)

that these features achieve our three design goals. Given a vector of device features (x), and a

vector of model parameters (θprof), the slope α̂ is estimated as α̂= xTθprof.

I-PROF uses a cold-start linear regression model for the first request of each user device. We

pre-train the cold-start model using ordinary least squares with an offline dataset. This dataset

consists of data collected by executing requests from a set of training devices with a mini-

batch size increasing from 1 till a value such that the computation time reaches twice the SLO.

I-PROF periodically re-trains the cold-start model after appending new data (device features).

Furthermore, I-PROF creates a personalized model for every new device model (e.g., Galaxy

S7) and employs it for every following request coming from this particular model. I-PROF

bootstraps the new model with the first request (for which the cold-start model is used

to estimate the computation time). For all the following learning tasks that result in

pairs of (x (k),α(k)), I-PROF incrementally updates a Passive-Aggressive (PA) model [47]

as: θ(k+1)
prof = θ(k)

prof +
f (k)

‖x (k)‖2 v (k) where v (k) = si g n(α(k) −x (k)Tθ(k)
prof)x (k) denotes the update

direction, and f the loss function:

f (θprof, x ,α) =
0 if |xTθprof −α| ≤ ε
|xTθprof −α|−ε otherwise.

(3.2)

The parameter ε controls the sensitivity to prediction error and thereby the aggressiveness of

the regression algorithm, i.e., the smaller the value of ε the larger the update for each new data

instance (more aggressive).

I-PROF focuses solely on the time and energy spent during an SGD computation. Despite

network costs (in particular when transferring models) having also an important impact, they

fall outside the scope of this work as one can rely on prior work [8, 112, 144] to estimate the

time and energy of network transfers within FLEET.

3.2.3 Adaptive Stochastic Gradient Descent

The server-driven synchronous training of Standard FL is not suitable for Online FL, as the

latter requires frequent updates and needs to exploit contributions from all workers, including

3CPU time spent by processes executing in user or kernel mode.
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Figure 3.5 – Gradient scaling schemes of SGD algorithms. ADASGD, proposed in this paper,
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the gradient of the straggler (τ= 48) due to its low similarity (si m(x i )).

slow ones (§5.1). Therefore, we introduce ADASGD, an asynchronous learning algorithm that

is robust to stale updates. ADASGD is responsible for aggregating the gradients sent by the

workers and updating the application model (θapp)4. Each update takes place after ADASGD

receives K gradients. The aggregation parameter K can be either fixed or based on a time

window (e.g., update the model every 1 hour). The model update is:

θ(t+1)
app = θ(t )

app −γt

R∑
i=1

min

(
1,Λ(τi ) · 1

si m(x i )

)
·G(θ(ti )

app,ξi ) (3.3)

where γt is the learning rate, t ∈N denotes the global logical clock (or step) of the model at

the server (i.e., the number of past model updates) and ti ≤ t denotes the logical clock of the

model that the worker receives from the server. G(θ(ti )
app,ξi ) is the gradient computed by the

client w.r.t the model parameters θ(ti )
app on the mini-batch ξi drawn uniformly from the local

dataset x i .

The workers send gradients asynchronously that can result in stale updates. The staleness of

the gradient (τi := t − ti ) shows the number of model updates between the model pull and

gradient push of worker i . One option is to directly apply this gradient, at the risk of slowing

down or even completely preventing convergence [93, 185]. The Standard FL algorithm

(FedAvg [119]) simply drops stale gradients. However, even if computed on a stale model, the

gradient may incorporate potentially valuable information. Moreover, in FLEET, the gradient

computation may drain energy directly from the battery of the phone, thus making the result

even more valuable. Therefore, ADASGD utilizes even stale gradients without jeopardizing

the learning process, by multiplying each gradient with an additional weight to the learning

rate. This weight consists of (a) a dampening factor based on the staleness (Λ(τi )) and (b) a

boosting factor based on the user’s data novelty ( 1
si m(x i ) ), that we describe in the following.

4Not to be confused with the model of the profiler (θprof).
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Staleness-based dampening. ADASGD builds on prior work on staleness-aware learning

that has shown promising results [93, 185]. In order to accelerate learning, ADASGD relies on

a system parameter: the expected percentage of non-stragglers (denoted by s%). We highlight

that this value is not a hyperparameter that needs tuning for each ML application but a

system parameter that solely depends on the computing and networking characteristics

of the workers, while it can be adapted dynamically [136, 142]. We define the staleness-

aware dampening factor Λ(τ) = e−βτ, with β chosen s.t. 1
τthres

2 +1
= e−β

τthres
2 (i.e., the inverse

dampening function [93] intersects with our exponential dampening function in τthres
2 ), where

τthres is the s-th percentile of past staleness values. Figure 3.5 shows the dampening factor

of ADASGD compared to the inverse dampening function (employed by DYNSGD [93]). Our

hypothesis is that the perturbation to the learning process introduced by stale gradients,

increases exponentially and not linearly with the staleness. We empirically verify the superior

performance of our exponential dampening function compared to the inverse in §3.3.2.

As a quantile, τthres is estimated from the staleness distribution. In practice, for the past

staleness values to be representative of the actual distribution, an initial bootstrapping phase

can employ the dampening factor of DYNSGD. After this phase, the service provider can

set s% and deploy ADASGD. An underestimate of s% will slow down convergence, whereas

an overestimate may lead to divergence. As we empirically observe (§3.3.1), the staleness

distribution often has a long tail. In such cases, the best choice of s% is the one that sets τthres

at the beginning of the tail.

Similarity-based boosting. In the presence of stragglers with large delays (comparing to the

mean latency), staleness can grow and driveΛ(τ) close to 0, i.e., almost neglect the gradients of

these stragglers. Nevertheless, these gradients may contain valuable information. In particular,

they may be computed on data that are not similar to the data used by past gradients. Hence,

ADASGD boosts these gradients by using the following similarity value:

si m(x i ) = BC (LD(x i ),LD g l obal ) (3.4)

where BC denotes the Bhattacharyya coefficient [17], and LD the label distribution, that

captures the importance of each gradient. We choose this coefficient given our constraints

(si m(x i ) ∈ [0,1]). For instance, given an application with 4 distinct labels and a local dataset

(x i ) that has 1 example with label 0, and 2 examples with label 1: LD(x i ) = [ 1
3 , 2

3 ,0,0]. The

global label distribution (LD g l obal ) is computed on the aggregate number of previously used

samples for each label. We highlight that LD is not specific to classification ML tasks; for

regression tasks, LD would involve a histogram, with the length of the LD vector being equal

to the number of bins instead of the number of classes.

The similarity value essentially captures how valuable the information of the gradient is. For

instance, if a gradient is computed on examples of an unseen label (e.g., a very rare animal),

then its similarity value is less than 1 (i.e., has information not similar to the current knowledge

27



Chapter 3. Online Stochastic Gradient Descent

of the model). For the similarity computation, the server needs only the indices of the labels

of the local datasets without any semantic information (e.g., label 3 corresponds to “dogs”).

3.2.4 Implementation

The server of FLEET is implemented as a web application (deployed on an HTTP server) and

the worker as an Android library. The server transfers data with the workers via Java streams

by using Kryo [98] and Gzip. In total, FLEET accounts 26913 Java LoC, 3247 C/C++ LoC and

1222 Python LoC.

Worker runtime. We design the worker of our middleware (FLEET) as a library and execute

it only when the overlying ML application (Figure 3.2) is running in the foreground. Since

Android is a UI-interactive operating system, background applications have low priority so

their access to system resources is heavily restricted and they are likely to be killed by the

operating system to free resources for the foreground running app. Therefore, allowing the

worker to run in the background would make its performance very unpredictable and thus

impact the predictions of I-PROF.

We build our main library for Convolutional Neural Networks in C++ on top of FLEET. We

employ (i) the Java Native Interface (JNI) for the server, (ii) the Android NDK for the worker, (iii)

an encoding scheme for transferring C++ objects through the java streams, and (iv) a thread-

based parallelization scheme for the independent gradient computations of the worker. On

recent mobile devices that support NEON [156], FLEET accelerates the gradient computations

by using SIMD instructions. We also port a popular deep learning library (DL4J [63]) to FLEET,

to benefit from its rich ecosystem of ML algorithms. However, as DL4J is implemented in Java,

we do not have full control over the resource allocation.

FLEET relies on the developer of the overlying ML application to ensure the performance

isolation between the running application and the worker runtime. The worker can execute in

a window of low user activity (e.g., while the user is reading an article) to minimize the impact

of the overlying ML application on the predictive power of I-PROF.

Resource allocation. Allocating system resources is a very challenging task given the latency

and energy constraints of mobile devices [62, 124]. Our choice of employing only stock

Android without root access means we can only control which cores execute the workload

on the worker, with no access, for instance, to low-level advanced tuning. Given this limited

control and the inherent mobile device heterogeneity, we opt for a simple yet effective scheme

for allocating resources.

This scheme schedules the execution only on the “big” cores for ARM big.LITTLE architectures

and on all the cores otherwise. In the case of computationally intensive tasks (such as the

learning tasks of FLEET), big cores are more energy efficient than LITTLE cores because they
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finish the computation much faster [81]. Regarding ARMv7 symmetric architectures with 2

and 4 cores that equip older mobile devices, the energy consumption per workload is constant

regardless of the number of cores: a higher level of parallelism will consume more energy

but the workload will execute faster. For this reason, our allocation policy relies on all the

available cores so that we can take advantage of the embarrassingly parallel nature of the

gradient computation tasks. For such tasks, we empirically show (§3.3.4) that this scheme

outperforms more complex alternatives [124].

Controller thresholds. In practice, the service provider can adopt various approaches to

define the size and similarity thresholds of the controller (Figure 3.2). One option is A/B

testing along with the gradual increase of the thresholds. In particular, the system initializes

the thresholds to zero and divides the users into two groups. The first group tests the impact

of the mini-batch size and the second the impact of the label similarity. Both groups gradually

increase the thresholds until the impact on the service quality is considered acceptable. The

server can execute this A/B testing procedure periodically, i.e., reset the thresholds after a

time interval. We empirically evaluate the impact of these thresholds on prediction quality in

§3.3.5.

3.3 Evaluation

Our evaluation consists of two main parts. First, in §3.3.1, we evaluate the claim that Online

FL holds the potential to deliver better ML performance than Standard FL [21] for applications

that employ data with high temporality (§5.1). Second, we evaluate in more detail the internal

mechanisms of FLEET, namely ADASGD (§3.3.2), I-PROF (§3.3.3), the resource allocation

scheme (§3.3.4) and the controller (§3.3.5).

We deploy the server of FLEET on a machine with an Intel Xeon X3440 with four CPU cores,

16 GiB RAM and 1 Gb Ethernet, on Grid5000 [82]. The workers are deployed on a total

of 40 different mobile phones that we either personally own or belong to the AWS Device

Farm [11] (Oregon, USA). In §3.3.1, we deploy the worker on a Raspberry Pi 4 as our hashtag

recommender is implemented on TensorFlow that does not yet support training on Android

devices.

3.3.1 Online VS Standard Federated Learning

We compare Online with Standard FL on a Twitter hashtag recommender. Tweepy [169]

enables us to collect around 2.6 million tweets spanning across 13 successive days and located

in the west coast of the USA. We preprocess these tweets (e.g., remove automatically generated

tweets, remove special symbols) based on [60]. We then divide the data into shards, each

spanning 2 days, and divide each shard into chunks of 1 hour. We finally group the data into

mini-batches based on the user id.
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Figure 3.6 – Online FL boosts Twitter hashtag recommendations by an average of 2.3×
comparing to Standard FL.

Our training and evaluation procedure follows an Online FL setup. Our model is a basic

Recurrent Neural Network implemented on TensorFlow with 123,330 parameters [79], that

predicts the 5 hashtags with the largest values on the output layer. The model training consists

of successive gradient-descent operations, with each gradient derived from a single mini-

batch (i.e., sent by a single user). For the Online FL setup, the model is updated every 1 hour.

Training uses the data of the previous hour and testing uses the data of the next hour. For the

Standard FL setup, the model is updated every day. Training uses the data of the previous

day and testing uses the data of the next day. We highlight that under this setup, the two

approaches employ the same number of gradient computations and the difference lies only

in the time they perform the model updates. We also compare against a baseline model that

always predicts the most popular hashtags [97, 135]. We evaluate the model on the data of

each chunk and reset the model at the end of each shard.

Quality boost. For assessing the quality of the hashtag recommender, we employ the

F1-score @ top-5 [78, 97] to capture how many recommendations were used as hashtags

(precision) and how many of the used hashtags were recommended (recall). In particular, for

each tweet in the evaluation set, we compare the output of the recommender (top-5 hashtags)

with the actual hashtags of the tweet, and derive the F1-score. Figure 3.6 shows that Online

FL outperforms Standard FL in terms of F1-score, with an average boost of 2.3×. Online FL

updates the model in a more timely manner, i.e., soon after the data generation time, and can

thus better predict (higher F1-score) the new hashtags than Standard FL. The performance of

the baseline model is quite low as the nature of the data is highly temporal [101].

Energy impact. We measure the energy impact of the gradient computation on the

Raspberry Pi worker. The Raspberry Pi has no screen; nevertheless recent trends

in mobile/embedded processor design show that the processor is dominating the

energy consumption, especially for compute intensive workloads such as the gradient
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Figure 3.7 – Staleness distribution of collected tweets follows a Gaussian distribution (τ< 65)
with a long tail (τ> 65).

computation [84]. We measure the power consumption of every update of Online FL by

executing the corresponding gradient computation 10 times and by taking the median energy

consumption. We observe that the power depends on the batch size and increases from 1.9

Watts (idle) to 2.1 Watts (batch size of 1) and to 2.3 Watts (batch size of 100). The computation

latency is 5.6 seconds for batch size of 1 and 8.4 for batch size of 100. Across all the updates of

Online FL (that employ various batch sizes and result in the quality boost shown in Figure 3.6),

we measure the average, median, 99th percentile and maximum values of the daily energy

consumption as 4, 3.3, 13.4 and 44 mWh respectively. Given that most modern smartphones

have battery capacities over 11000 mWh, we argue that Online FL imposes a minor energy

consumption overhead for boosting the prediction quality.

Staleness distribution. We study the staleness distribution of the updates on our collected

tweets, in order to set our experimental setup for evaluating ADASGD (§3.3.2). We assume

that the round-trip latency per model update (gradient computation time plus network

latency) follows an exponential distribution (as commonly done in the distributed learning

literature [4, 67, 104, 126]). The network latency for downloading the model (123,330

parameters) and uploading the gradients is estimated to 1.1 second for 4G LTE and 3.8 seconds

for 3G HSPA+ [89]. We then estimate the average computation latency to be 6 seconds, based

on our latency measurements on the Raspberry Pi. Therefore, we choose the exponential

distribution with a minimum of 6+ 1.1 = 7.1 seconds and a mean of (6+1.1)+(6+3.8)
2 = 8.45

seconds. Given the exponential distribution for the round-trip latency and the timestamps of

the tweets, we observe (in Figure 3.7) that the staleness follows a Gaussian distribution with a

long tail (as assumed in [185]). The long tail is due the presence of certain peak times with

hundreds of tweets per second.

31



Chapter 3. Online Stochastic Gradient Descent

Table 3.1 – CNN parameters.

Dataset Parameters Input Conv1 Pool1 Conv2 Pool2 FC1 FC2 FC3

MNIST
Kernel size
Strides

28×28×1
5×5×8
1×1

3×3
3×3

5×5×48
1×1

2×2
2×2

10 – –

E-MNIST
Kernel size
Strides

28×28×1
5×5×10
1×1

2×2
2×2

5×5×10
1×1

2×2
2×2

15 62 –

CIFAR-100
Kernel size
Strides

32×32×3
3×3×16
1×1

3×3
2×2

3×3×64
1×1

4×4
4×4

384 192 100

3.3.2 ADASGD Performance

We now dissect the performance of ADASGD via an image classification application that

involves Convolutional Neural Networks (CNNs). We choose this benchmark due to its

popularity for the evaluation of SGD-based approaches [2, 39, 94, 119, 185, 186]. We employ

multiple scenarios involving various staleness distributions, data distributions, and a noise-

based differentially private mechanism.

Image classification setup. We implement the models shown in Table 3.1 in FLEET5 to

classify handwritten characters and colored images. We use three publicly available datasets:

MNIST [128], E-MNIST [44] and CIFAR-100 [42]. MNIST consists of 70,000 examples of

handwritten digits (10 classes) while E-MNIST consists of 814,255 examples of handwritten

characters and digits (62 classes). CIFAR-100 consists of 60,000 colour images in 100 classes,

with 600 images per class. We perform min-max scaling as a pre-processing step for the input

features.

We split each dataset into training / test sets: 60,000 / 10,000 for MNIST, 697,932 / 116,323 for

E-MNIST and 50,000 / 10,000 for CIFAR-100. Unless stated otherwise, we set the aggregation

parameter R (§3.2.3) to 1 (for maximum update frequency), the mini-batch size to 100

examples [130], the ε (the Passive-Aggressive parameter) to 0.1 and the learning rate to 15∗10−4

for CIFAR-100, 8∗10−4 for E-MNIST, and 5∗10−4 for MNIST.

Since the training data present on mobile devices are typically collected by the users based

on their local environment and usage, both the size and the distribution of the training data

will typically heavily vary among users. Given the terminology of statistics, this means that

the data are not Independent and Identically Distributed (non-IID). Following recent work on

FL [172, 173, 181, 186], we employ a non-IID version of MNIST. Based on the standard data

decentralization scheme [119], we sort the data by the label, divide them into shards of size

equal to 60000
2 * number of users , and assign 2 shards to each user. Therefore, each user will contain

examples for only a few labels.

5We implement the CNN for E-MNIST on DL4J and the rest on our default CNN library.
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Staleness awareness setup. To be able to precisely compare ADASGD with its competitors,

we control the staleness of the updates produced by the workers of FLEET. Based on [185] and

the shape of the staleness distribution shown in Figure 3.7, we employ Gaussian distributions

for the staleness with two setups: D1 :=N (µ= 6,σ= 2) and D2 :=N (µ= 12,σ= 4), to measure

the impact of increasing the staleness. We set the expected percentage of non-stragglers (s%) to

99.7%, i.e., τthres =µ+3σ. Appendix A.1 contains more information regarding the mechanism

that controls the staleness. We evaluate the SGD algorithms on FLEET by using commercial

Android devices from AWS.

We evaluate the performance of ADASGD against three learning algorithms: (i) DYNSGD [93],

a staleness-aware SGD algorithm employing an inverse dampening function (Λ(τ) = 1
τ+1 ), that

ADASGD builds upon (§3.2.3), (ii) the standard SGD algorithm with synchronous updates

(SSGD) that represents the ideal (staleness-free) convergence behaviour, and (iii) FEDAVG [119],

the standard staleness-unaware SGD algorithm that is based on gradient averaging.

Staleness-based dampening. Figure 3.8 depicts that ADASGD outperforms the alternative

learning schemes for the non-IID version of MNIST. As expected, the staleness-free scenario

(SSGD) delivers the fastest (ideal) convergence, whereas the staleness-unaware FEDAVG

diverges. The comparison between the two staleness-aware algorithms (DYNSGD and

ADASGD) shows that our solution (ADASGD) better adapts the dampening factor to the

noise introduced by stale gradients (§3.2.3). ADASGD reaches 80% accuracy 14.4% faster than

DYNSGD for D1 and 18.4% for D2. Figure 3.8 also depicts the impact of staleness on DYNSGD

and ADASGD. We observe that the larger the staleness, the slower the convergence of both

algorithms. The advantage of ADASGD over DYNSGD grows with the amount of staleness

as the larger amount of noise gives more leeway to ADASGD to benefit from its superior

dampening scheme.
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Figure 3.8 – Impact of staleness on learning.
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Similarity-based boosting. We evaluate the effectiveness of the similarity-based boosting

property of ADASGD (§3.2.3) in the case of long tail staleness (Figure 3.7). We employ the

non-IID MNIST dataset, D1 (thus τthres is 12) and set the staleness to 4 ·τthres = 48 for all the

gradients computed on data with class 0. This setup essentially captures the case where a

particular label is only present in stragglers. Figure 3.9(a) shows that ADASGD incorporates

the knowledge from class 0 much faster than DYNSGD.

Figure 3.9(b) shows the CDF for the dampening values used to weight the gradients of

Figure 3.9(a). We mark the two points of interest regarding the τthres by vertical lines (as

also shown in Figure 3.5). If ADASGD had no similarity-based boosting, all updates related to

class 0 would almost not be taken into account, as they would be nullified by the exponential

dampening function, therefore leading to a model with poor predictions for this class. Given

the low class similarity of the learning tasks involving class 0, ADASGD boosts their dampening

value. The second vertical line denotes the staleness value (τthres
2 = 6) for which ADASGD and

DYNSGD give the same dampening value (0.14). The slope of each curve at this point indicates

that the dampening values for DYNSGD are more concentrated whereas the ones for ADASGD

are more spread around this value.
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Figure 3.9 – Impact of long tail staleness on learning.

IID data. Although data are more likely to be non-IID in an FL environment, the data

collected on mobile devices might in some cases be IID. We thus benchmark ADASGD under

two additional datasets (E-MNIST and CIFAR-100) with the staleness following D2. Figure 3.10

shows that our observations from Figure 3.8 hold also with IID data. As with non-IID data,

FEDAVG diverges also in the IID setting, and ADASGD performs better than DYNSGD on both

datasets.

Differential privacy. Differential privacy [68] is a popular technique for privacy-preserving

FL with formal guarantees [22]. We thus compare ADASGD against DYNSGD in a differentially
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Figure 3.10 – Staleness awareness with IID data.
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Figure 3.11 – Staleness awareness with differential privacy.

private setup by perturbing the gradients as in [2]. We keep the previous setup (IID data with

D2) and employ the MNIST dataset. Based on [175], we fix the probability δ= 1/N 2 = 1
600002

and measure the privacy loss (ε) with the moments accountant approach [2] given the sampling

ratio ( mini-batch size
N = 100

60000 ), the noise amplitude, and the total number of iterations.

Figure 3.11 demonstrates that the advantage of ADASGD over DYNSGD also holds in the

differentially private setup. A better privacy guarantee (i.e., smaller ε) slows down the

convergence for both staleness-aware learning schemes.

3.3.3 I-PROF Performance

We compare I-PROF against the profiler of MAUI [48], a mobile device profiler aiming to

identify the most energy-consuming parts of the code and offload them to the cloud. MAUI

predicts the energy by using a linear regression model (similar to the global model of I-PROF)

on the number of CPU cycles (Ê = θ0 ·L), to essentially capture how the size of the workload

affects the energy (as in [127]). We adapt the profiler of MAUI to our setup by replacing the
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Figure 3.12 – I-PROF outperforms MAUI and drives the computation time closer to the SLO.

CPU cycles with the mini-batch size for two main reasons. First, our workload has a static

code path so the number of CPU cycles on a particular mobile device is directly proportional

to the mini-batch size. Second, measuring the number of executed CPU cycles requires root

access that is not available on AWS.

We bootstrap the global model of I-PROF and the model of MAUI by pre-training on a training

dataset. To this end, we use 15 mobile devices in AWS (that are different from the ones used

for the rest of the experiments), assign them learning tasks with increasing mini-batch size

until the computation time becomes 2 times the SLO, and collect their device information for

each task. We rely on the same methodology to evaluate energy consumption but use only 3

mobile devices in our lab, as AWS prohibits energy measurements.

For testing, we use a different set of 20 commercial mobile devices in AWS, each performing

requests for the image classification application (on MNIST), starting at different timestamps

(log-in events) as shown in Figure 3.12(a). In order to ensure a precise comparison with MAUI,

we add a round-robin dispatcher to the profiler component which alternates the requests from

a given device between I-PROF and MAUI.
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Figure 3.13 – I-PROF outperforms MAUI and drives the energy closer to the SLO.

Computation time SLO. Figure 3.12(b) shows that I-PROF largely outperforms MAUI in

terms of deviation from the computation time SLO. 90% of approximately 280 learning tasks

deviate from an SLO of 3 seconds by at most 0.75 seconds with I-PROF and 2.7 seconds

with MAUI. This is the direct outcome of our design decisions. First, I-PROF adds dynamic

features (e.g., the temperature of the device) to train its global model (§3.2.2). As a result,

the predictions are more accurate for the first request of each user. Second, I-PROF uses a

personalized model for each device that reduces the error (deviation from the SLO) with every

subsequent request (Figure 3.12(d)). Figure 3.12(c) shows that the personalized models of

I-PROF are able to output a wider range of mini-batch sizes that better match the capabilities

of individual devices. On the contrary, MAUI relies on a simple linear regression model which

has acceptable accuracy for its use-case but is inefficient when profiling heterogeneous mobile

devices.

Energy SLO. To assess the ability of I-PROF to also target the energy SLO, we use the same

setup as for the computation time, except on 5 mobile devices6. We configure I-PROF

with a significantly smaller error margin, ε = 6 ∗ 10−5 (Equation 3.2), because the linear

relation (capture by α as defined in §3.2.2) is significantly smaller for the energy than for

the computation time (as shown in Figure 3.4).

Figure 3.13 shows that I-PROF significantly outperforms MAUI in terms of deviation from the

energy SLO. 90% of 36 learning tasks deviate from an SLO of 0.075% battery drop by at most

0.01% for I-PROF and 0.19% for MAUI. The observation that I-PROF is able to closely match

the latency SLO, while MAUI suffers from huge deviations, holds for the energy too. The PA

personalized models are able to quickly adapt to the state of the device as opposed to the

linear model of MAUI that provides biased predictions.

6AWS prohibits energy measurements so we only rely on devices available in our lab, listed in their log-in order:
Honor 10, Galaxy S8, Galaxy S7, Galaxy S4 mini, Xperia E3.
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Table 3.2 – Performance of CALOREE [124] on new devices.

Running device Deadline error (%)

Galaxy S7 1.4
Galaxy S8 9
Honor 9 46

Honor 10 255

3.3.4 Resource Allocation

We evaluate our resource allocation scheme (§3.2.4) and compare it against CALOREE [124]

which is a state of the art resource manager for mobile devices. The goal of CALOREE is

to optimize resource allocation in order for the workload execution to meet its predefined

deadline while minimizing the energy consumption. To this end, CALOREE profiles the target

device by running the workload with different resource configurations (i.e., number of cores,

core frequency). Since FLEET executes on non-rooted mobile devices, we can only adapt

the number of big/little cores (but not their frequencies). By varying the number of cores

allocated to our workload (i.e., gradient computation), we obtain the energy consumption of

each possible configuration. From these configurations, CALOREE only selects those with

the optimal energy consumption (the lower convex hull) which are packed in the so called

performance hash table (PHT).

CALOREE on new devices. In their thorough evaluation, the authors of CALOREE used

the same device for training and running the workloads. Therefore, we first benchmark the

performance of CALOREE when running on new devices. We employ Galaxy S7 to collect the

PHT and set the mini-batch size that I-PROF gives for a latency SLO of 3 seconds (§3.3.3). We

then run this workload with CALOREE on different mobile devices, as shown in Table 3.2.

The performance of CALOREE degrades significantly when running on a different device than

the one used for training. The first line of Table 3.2 shows the baseline error when running

on the same device. The error increases more than 6× for a device with similar architecture

and the same vendor (Galaxy S8) and more than 32× for a device of similar architecture

but different vendor (Honor 9 and 10). This significant increase for the error is due to the

heterogeneity of the mobile devices which make PHTs not applicable across different device

models.

CALOREE vs FLEET. We evaluate the resource allocation scheme of FLEET by comparing

it to the ideal environment for CALOREE, i.e., training and running on the same device (a

setup nevertheless difficult to achieve in FL with millions of devices). Following the setup used

for the energy SLO evaluation (§3.3.3), we employ 5 devices and fix the size of the workload

(mini-batch size) based on the output of I-PROF. In particular we set the mini-batch size
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to 280, 4320, 6720, 5280, 1200 for the devices shown in Figure 3.14 respectively. We set the

deadline of CALOREE either equal or double than the computation latency of FLEET. We take

10 measurements and report on the median, 10th and 90th percentile.

Figure 3.14 shows the fact that in the ideal environment for CALOREE and even with double the

time budget (giving more flexibility to CALOREE), FLEET has comparable energy consumption.

Since gradient computation is a compute intensive task with high temporal and spacial cache

locality, the configuration changes performed by CALOREE negatively impact the execution

time and cancel any energy saved by its advanced resource allocation scheme. Additionally,

the fewer configuration knobs available on non-rooted Android devices limit the full potential

of CALOREE.
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Figure 3.14 – Resource allocation of FLEET vs. CALOREE.

3.3.5 Learning Task Assignment Control

The controller of FLEET employs a threshold to prune learning tasks and thus control the

trade-off between the cost of the gradient computations and the model prediction quality. This

threshold can be based either on the mini-batch size or on the similarity values (Figure 3.2).

To evaluate this trade-off, we employ non-IID MNIST with the mini-batch size following a

Gaussian distribution N (µ= 100,σ= 33) (based on the distribution of the output of I-PROF

shown in Figure 3.12(c)), and set the threshold to the n − th percentile of the past values.

Figure 3.15 illustrates that a threshold on the mini-batch size is more effective in pruning the

less useful gradient computations than a threshold on the similarity. Figure 3.15(a) shows that

even dropping up to 39.2% of the gradients (with the smallest mini-batch size) has a negligible

impact on the accuracy (less than 2.2%). Figure 3.15(b) shows that one can drop 17% of the

most similar gradients with an accuracy impact of 4.8%.

3.4 Related Work

Distributed ML. Adam [39] and TensorFlow [1] adopt the parameter server architecture [105]

for scaling out on high-end machines, and typically require cross-worker communication.
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Figure 3.15 – Threshold-based pruning.

FLEET also follows the parameter server architecture, by maintaining a global model on the

server. However, FLEET avoids cross-worker communication, which is impractical for mobile

workers due to the device churn.

A common approach for large-scale ML is to control the amount of staleness for boosting

convergence [49, 145]. In Online FL, staleness cannot be controlled as this would impact the

model update frequency. The workers perform learning tasks asynchronously with end-to-end

latencies that can differ significantly (due to device heterogeneity and network variability) or

even become infinite (user disconnects).

Petuum [177] and TensorFlow handle faults (worker crashes) by checkpointing and

repartitioning the model across the workers whenever failures are detected. In a setting

with mobile devices, such failures may appear very often, thus increasing the overhead for

checkpointing and repartitioning. FLEET does not require any fault-tolerance mechanism for

its workers, as from a global learning perspective, they can be viewed as stateless.
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Federated learning. In order to minimize the impact on mobile devices, Standard FL

algorithms [21, 92, 119, 158] require the learning task to be executed only when the devices

are idle, plugged in, and on a free wireless connection. However, in §3.3.1, we have shown that

these requirements may drastically impact the performance of some applications. Noteworthy,

FL techniques such as co-distillation [92] are orthogonal to the online characteristic, so they

can be adapted for ADASGD, and plugged into FLEET.

Performance prediction for mobile devices. Estimating the computation time or energy

consumption of an application running on a mobile device is a very broad area of research.

Existing approaches [28, 40, 41, 85, 100, 180] target multiple applications generally executing

on a single device. They typically benchmark the device or monitor hardware and OS-level

counters that require root access. In contrast, FLEET targets a single application executing

in the same way across a large range of devices. I-PROF poses a negligible overhead, as it

employs features only from the standard Android API to enable Online FL, and requires no

benchmarking of new devices. I-PROF is designed to make predictions for unknown devices.

Neurosurgeon [94] is a scheduler that minimizes the end-to-end computation time of

inference tasks (whereas FLEET focuses on training tasks), by choosing the optimal partition

for a neural network and offloading computations to the cloud. The profiler of Neurosurgeon

only uses workload-specific features (e.g., number of filters or neurons) to estimate

computation time and energy, and ignores device-specific features. By contrast, mobile

phones, as targeted by I-PROF7, exhibit a wide range of device-specific characteristics that

significantly impact their latency and energy consumption (Figure 3.4).

Systems such as CALOREE [124] and LEO [125] profile mobile devices under different system

configurations and train an ML model to determine the ones that minimize the energy

consumption. They rely on a control loop to switch between these configurations such

that the application does not miss the preset deadline. Due to the restrictions of the standard

Android API, the available knobs are limited in our setup. For our application (i.e., gradient

computation), we show that a simple resource allocation scheme (§3.2.4) is preferable even in

comparison with an ideal execution model.

3.5 Concluding Remarks

This paper presented FLEET, the first system that enables online ML at the edge. FLEET

employs I-PROF, a new ML-based profiler which determines the ML workload that each device

can perform within predefined energy and computation time SLOs. FLEET also makes use

of ADASGD, a new staleness-aware learning algorithm that is optimized for Online FL. We

showed the performance of I-PROF and ADASGD on commercial Android devices with popular

benchmarks. In our performance evaluation we do not focus on network and scalability

7In their in-depth experimental evaluation the authors of [94] consider a single hardware platform and not
Android mobile devices.
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aspects that are orthogonal to our work and addressed in existing literature. We also highlight

that transferring the label and device information (Figure 3.2) poses a negligible network

overhead compared to transferring the relatively large FL learning models.

Although we believe FLEET to represent a significant advance for online learning at the edge,

there is still room for improvement. First, for the energy prediction, I-PROF requires access

to the CPU usage that is considered as a security flaw on some Android builds and thus not

exposed to all applications. In this case, I-PROF requires a set of additional permissions that

belong to services from Android Runtime. Second, the transfer of the label distribution from

the worker to the server introduces a potential privacy leakage. However, we highlight that

the server has access only to the indices of the labels and not their values. In this paper, we

focus on the protection of the input features and mention the possibility to deactivate the

similarity-based boosting feature of ADASGD in the case that this leakage is detrimental. We

plan to investigate noise addition techniques for bounding this leakage [68] in our future work.

Finally, theoretically proving the convergence of ADASGD is non-trivial due to the unbounded

staleness and the non Independent and Identically Distributed (non-IID) datasets among

the workers. In this respect, a dissimilarity assumption similar to [108] may facilitate the

derivation of the proof.
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4 Synchronous Stochastic Gradient
Descent

4.1 Introduction

Traditionally, Byzantine resilience of a distributed service is achieved by using Byzantine-

resilient state machine replication techniques [29, 33, 46, 152, 153]. Whereas this approach

looks feasible for the single and deterministic server, applying it to workers (edge devices)

appears less realistic. Indeed, the workers parallelize, i.e., share the computational-heavy

and sensitive-data-dependent part of SGD: the gradient estimation. Having them compute

different gradients (inherently non-deterministic) to agree on only one of their estimations,

would imply losing a significant amount of the computations made, i.e., losing the very

purpose of the distribution of the estimation.

Some theoretical approaches have been recently proposed to address Byzantine resilience

without replicating the workers [20, 61]. In short, the idea is to use more sophisticated forms

of aggregation1 (e.g. median) than simple averaging. Despite their provable guarantees, most

of these algorithms only ensure a weak form of resilience against Byzantine failures. These

algorithms indeed ensure convergence to some state, but this final state could be heavily

influenced by the Byzantine workers [72]. For most critical distributed ML applications, a

stronger form of Byzantine resilience is desirable, where SGD would converge to a state that

could have been attained in a non-Byzantine environment. Draco [37] and BULYAN [72] are the

only proposals that guarantee strong Byzantine resilience. On the one hand, Draco requires (a)

computing several gradients per worker and step (instead of one), and (b) strong assumptions

as we discuss in §4.4. On the other hand, BULYAN internally iterates over a weak Byzantine

GAR (e.g. Krum [20]), which is experimentally shown by its authors to be sub-optimal. Apart

from Draco, none of the Byzantine-resilient approaches has been implemented and tested in

a realistic distributed ML environment to assess the scalability.

We present AGGREGATHOR, a light and fast framework that brings Byzantine resilience

to distributed machine learning. Due to its popularity and wide adoption, we build

1We refer to the various forms of gradient aggregation as Gradient Aggregation Rules (GAR).
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AGGREGATHOR around TensorFlow2. Our framework can thus be used to distribute, in a

secure way, the training of any ML model developed for TensorFlow. AGGREGATHOR simplifies

the experimentation on large and possibly heterogeneous server farms by providing automatic,

policy-based device selection and cluster-wide allocation in TensorFlow. Following the

TensorFlow design, any worker (including Byzantine ones) can alter the graph and execute

code on any other node. We provide a code patch for TensorFlow that prohibits such a behavior

to ensure Byzantine resilience.

AGGREGATHOR allows for both levels of robustness: weak and strong Byzantine resilience

(§2.4) through MULTI-KRUM and BULYAN respectively. MULTI-KRUM assigns a score (based on

a sum of distances with the closest neighbors) to each gradient a worker submits to the server,

and then returns the average of the smallest scoring gradients set. BULYAN robustly aggregates

n vectors by iterating several times over a second (underlying) Byzantine-resilient GAR. In

each loop, BULYAN extracts the gradient(s) selected by the underlying GAR, computes the

closest values to the coordinate-wise median of the extracted gradient(s) and finally returns

the coordinate-wise average of these values. We further discuss these two components in

§4.2.3.

We optimize our implementation of BULYAN given MULTI-KRUM as the underlying GAR. We

accelerate the execution by removing all the redundant computations: MULTI-KRUM performs

the distance computations only on the first iteration of BULYAN; the next iterations only update

the scores. We also parallelize the loops over the gradient coordinates (e.g. median coordinate-

wise). We reduce the memory cost by allocating space only for one iteration of MULTI-KRUM

along with the intermediate selected gradients. Both of our implementations support non-

finite (i.e., ±Infinity and NaN) coordinates, which is a crucial feature when facing actual

malicious workers.

We evaluate and compare the performance of AGGREGATHOR against vanilla TensorFlow when

no attacks occur. We first deploy both systems on top of the default, reliable communication

protocol and quantify the respective overhead of MULTI-KRUM and BULYAN, i.e., the cost of

weak and strong Byzantine resilience, to 19% and 43% respectively. We then consider an

unreliable UDP-based communication channel leading to packet losses, to which TensorFlow

is intolerant. We provide the necessary TensorFlow modifications to accommodate this

lossy scheme. We show that AGGREGATHOR can also tolerate unreliable communication

with a speedup gain of six times against vanilla TensorFlow in saturated networks. We also

compare AGGREGATHOR with Draco and show a performance gain in terms of throughput and

convergence rate.

The rest of this chapter is structured as follows. We describe the design of AGGREGATHOR in

§4.2 and empirically evaluate its effectiveness in §4.3. We review the related work in §4.4 and

conclude in §4.5.

2TensorFlow officially supports FL in a simulation environment [164].
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The code of AGGREGATHOR is available at: https://github.com/LPD-EPFL/AggregaThor.

4.2 Design of AGGREGATHOR

Our goal is two-fold: First we target faster development and testing of robust, distributed

training in TensorFlow; that essentially boils down to providing ease-of-use and modularity.

Second we want to enable the deployment of Byzantine-resilient learning algorithms outside

the academic environment.

4.2.1 Threat Model

We assume the standard synchronous parameter server model [105], with the only dissimilarity

being that f < n of the n workers are controlled by an adversary. We refer to these workers

as Byzantine. The goal of the adversary is to impair the learning, by making it converge to a

state different from the one that would have been obtained if no adversary had stymied the

learning process.

We assume the adversary, in the instance of the f cooperating Byzantine workers, has

unbounded computational power, and arbitrarily fast communication channels between

its f workers and with the parameter server. We assume an asynchronous network (see §4.2.4)

and we assume that even Byzantine workers send gradients at each step3. We assume the

adversary has access to the full training dataset B , and the gradients computed by each correct

worker.

Finally, we assume, as in [20, 72, 176, 179], that the parameter server is correct. This server

could be reliable and implemented on a trustworthy machine, unlike workers that could be

remote user machines in the wild. This server could also be implemented by using standard

Byzantine-resilient state machine replication [29, 33, 152].

4.2.2 Architecture

AGGREGATHOR is a light framework (as shown in Figure 4.1) that handles the distribution of

the training of a TensorFlow neural network graph over a cluster of machines. One of our main

contributions is that this distribution is robust to Byzantine cluster nodes, in a proportion that

depends on the GAR used.

In TensorFlow, Byzantine resilience cannot be achieved solely through the use of a Byzantine-

resilient GAR. Indeed, TensorFlow allows any node in the cluster to execute arbitrary

operations anywhere in the cluster. A single Byzantine worker could then continually overwrite

3The default behavior of TensorFlow is to wait indefinitely for non-responding remote nodes, which is
incompatible with asynchrony and Byzantine workers (not responding on purpose).
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RMSprop Momentum . . .
Application layer

Low-level APIs (tensor, variable)

Aggregation layer

Networking layer
gRPC MPI . . .

Device layer
CPU GPUlossyMPI

Mid-level APIs (layers, datasets, metrics)

Figure 4.1 – The components of AGGREGATHOR, and their layered relations with existing
components. New components have a gray background. AGGREGATHOR acts as a light
framework based on TensorFlow, that manages the deployment and execution of a model
training session over a cluster of machines.

the shared parameters4 with arbitrary values. We overcome this issue in two steps: (a) by

patching TensorFlow to make tf.train.Server instances belonging to the job named “ps” to

discard remote graph definitions and executions, and (b) by using in-graph replication, where

only the parameter server (“ps”) builds the graph (Figure 4.2).

Pursuing our goal of ease-of-use and modularity, we provide the user of our framework with

two tools; a deploy tool to deploy a cluster through SSH, and a run tool to launch a training

session on the deployed cluster. Adding a new GAR or a new experiment boils down to (1)

adding a python script to a directory, and (2) testing this new component; this consists in

changing one or two command line parameters when calling the run tool. Cluster-wide device

allocation, specifying which operations should run on which devices, is managed by our

framework.

4.2.3 Byzantine Resilience

AGGREGATHOR ensures Byzantine Resilience by employing a GAR (§2.4). We quantify the cost

of using a complex GAR in §4.3.

AGGREGATHOR relies, by default, on two GARs: MULTI-KRUM [20] and BULYAN [72]. The

former rule requires that n ≥ 2 f +3 and the second requires that n ≥ 4 f +3. Intuitively, the

goal of MULTI-KRUM is to select the gradients that deviate less from the “majority” based on

their relative distances. Given gradients G1 . . .Gn proposed by workers 1 to n respectively,

4This is actually how the distributed example of TensorFlow given on https://www.tensorflow.org/deploy/
distributed works: each worker node keeps overwriting the shared parameters.
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Figure 4.2 – High-level components and execution graph. Each gray rectangle represents
a group of tf.Operation, and each plain arrow represents a tf.Tensor. The sub-graph
between the gradients to the variables corresponds to Equation 2.7. For readability purpose,
the tensors from the variables to each “Inference” and “Gradient” groups of operations have
not been represented.

MULTI-KRUM selects the m gradients with the smallest sum of scores (i.e., L2 norm from the

other gradients) as follows:

(m)argmin
i∈{1,...,n}

∑
i→ j

‖G i −G j‖2 (4.1)

where given a function X (i ), (m)argmin(X (i )) denotes the indexes i with the m smallest X (i )

values, and i → j means that G j is among the n− f −2 closest gradients to G i . BULYAN in turn

takes the aforementioned m vectors, computes their coordinate-wise median and produces a

gradient which coordinates are the average of the m −2 f closest values to the median.

In [20], it was proven that Krum (i.e., MULTI-KRUM for m = 1) is weakly Byzantine-resilient. Yet,

choosing m = 1 hampers the speed of convergence [6, 37]. MULTI-KRUM becomes practically

interesting when we can chose the highest possible value for m to leverage all the workers (in

the limit of no Byzantine workers, this value should be n).

An extensive analysis for the Byzantine resilience of MULTI-KRUM and BULYAN is available

in [71]. In particular, for n ≥ 2 f + 3 and any integer m s.t. m ≤ n − f − 2 MULTI-KRUM

ensures weak Byzantine resilience against f failures, and for n ≥ 4 f + 3 and any integer

m s.t. m ≤ n − 2 f − 2 BULYAN ensures strong Byzantine resilience against f failures. As a

consequence, AGGREGATHOR can safely be used with any value between 1 ≤ m ≤ n − f −2.
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4.2.4 Communication Layer

A Byzantine-resilient GAR at a high-level layer enables the usage of a fast but unreliable

communication protocol at the low-level one. Using the vanilla TensorFlow averaging

does not work while employing unreliable communication, because lost or shuffled

coordinates/packets (of even one gradient) can lead to learning divergence. The most

straightforward solution to guarantee convergence in this case, is to drop the whole gradient if

at least one coordinate was lost (i.e., the packet containing the coordinate was lost). We expect

that such a solution will delay convergence especially in networks with high loss ratios. To

avoid dropping the whole gradient in such a case, one can implement a variant of averaging

which we call selective averaging. In this GAR, the lower layer replaces the lost coordinates

with a special value (e.g. NaN) while the GAR layer ignores these coordinates while averaging.

We expect this method to be faster than the first one. A third solution would be simply to use

AGGREGATHOR on top, and put random values at the lost coordinates. Not caring about what

happens at the low-level layer would not be harmful, as the Byzantine-resilient GAR on top

guarantees convergence (as long as the unreliable communication is deployed only at (up to)

f links). Comparing the last two proposed solutions, it is worth noting that using the selective

averaging model requires a special care for out-of-order packets. A sequence number should

define the correct position of each packet so that the received packets are correctly put in

their positions (in the gradient). Otherwise, learning convergence is not guaranteed. However,

using AGGREGATHOR does not require sending the sequence number because this GAR does

not have any assumptions on what is delivered at the lower-level layers.

TensorFlow does not support UDP and hence, we modify its underlying networking layer

to support a fast but unreliable communication protocol, which we call lossyMPI, alongside

those already supported, e.g., gRPC, RDMA, MPI. LossyMPI is devised by modifying the MPI

communication endpoints to employ UDP sockets. At the receiving endpoint, we implement

the aforementioned GARs to recoup the lost coordinates and guarantee convergence. To use

UDP, we also implement a reliability scheme for metadata (accompanying gradients) and

packets ordering.

4.3 Evaluation of AGGREGATHOR

We evaluate the performance of AGGREGATHOR following a rather standard methodology in

the distributed ML literature. In particular, we consider the image classification task due to its

wide adoption as a benchmark for distributed ML literature [1, 39, 182].

4.3.1 Evaluation Setup

We present the details of the configuration, benchmarks, and methods we employ for our

evaluation. For clarity and for the rest of this section, we will refer with MULTI-KRUM to
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the deployment of AGGREGATHOR with the GAR being MULTI-KRUM and with BULYAN to the

deployment of AGGREGATHOR with the GAR being BULYAN.

Platform. Our experimental platform is Grid5000 [82]. Unless stated otherwise, we employ

20 nodes from the same cluster, each having 2 CPU (Intel Xeon E5-2630) with 8 cores, 128 GiB

RAM and 10 Gbps Ethernet.

Dataset. We use the CIFAR-10 dataset [42], a widely used dataset in image classification [161,

182], which consists of 60,000 colour images in 10 classes. We perform min-max scaling as a

pre-processing step for the input features of the dataset. We employ a convolutional neural

network with a total of 1.75M parameters as shown in Table 4.1. We have implemented the

same model with PyTorch to be compatible with Draco.

Table 4.1 – CNN Model parameters.

Input Conv1 Pool1 Conv2 Pool2 FC1 FC2 FC3
Kernel size
Strides

32×32×3
5×5×64
1×1

3×3
2×2

5×5×64
1×1

3×3
2×2

384 192 10

Evaluation metrics. We evaluate the performance of AGGREGATHOR using the following

standard metrics.

Throughput. This metric measures the total number of gradients that the aggregator receives

per second. The factors that affect the throughput is the time to compute a gradient, the

communication delays (worker receives the model and sends the gradient) and the idle time

of each worker. The idle time is determined by the overhead of the aggregation at the server.

While the server performs the aggregation and the descent, the workers wait (synchronous

training).

Accuracy. This metric measures the top-1 cross-accuracy: the fraction of correct predictions

among all the predictions, using the testing dataset (see below). We measure accuracy both

with respect to time and model updates.

Evaluation scheme. To cross-validate the performance, we split the dataset into training and

test sets. The dataset includes 50,000 training examples and 10,000 test examples. Note that, if

not stated otherwise, we employ an RMSprop optimizer [167] with a fixed initial learning rate

of 10−3 and a mini-batch size of 100.

We split our 20 nodes into n = 19 workers and 1 parameter server. If not stated otherwise, we

set f = 4 given that BULYAN requires n ≥ 4 f +3.
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We employ the best (in terms of convergence rate) combination of other hyper-parameters for

the deployment of Draco. For example, we use the repetition method because it gives better

results than the cyclic one. Also, we use the reversed gradient adversary model with the same

parameters recommended by the authors and a momentum of 0.9.

4.3.2 Non-Byzantine Environment

In this section, we report on the performance of our framework in a non-Byzantine

distributed setup. Our baseline is vanilla TensorFlow (TF) deployed with the built-in

averaging GAR: tf.train.SyncReplicasOptimizer. We compare TF against AGGREGATHOR

using (a) MULTI-KRUM, (b) BULYAN, (c) an alternative Byzantine-resilient median-based

algorithm [176] (Median) implemented as a new GAR in our framework, and (d) the basic

gradient averaging GAR (Average). We also report on the performance of (e) Draco.
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Figure 4.3 – Overhead of AGGREGATHOR in a non-Byzantine environment.

Overhead in terms of convergence time. In Figure 4.3(a), TensorFlow reaches 50% of its

final accuracy in 3 minutes and 9 seconds, whereas MULTI-KRUM and BULYAN are respectively

19% and 43% slower for reaching the same accuracy. Our framework with Average leads to a

7% slowdown compared to the baseline. The Median GAR, with a mini-batch size of b = 250,
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converges as fast as the baseline (model update-wise), while with b = 20, Median prevents

convergence to a model achieving baseline accuracy.

We identify two separate causes for the overhead of AGGREGATHOR. The first is the

computational overhead of carrying out the Byzantine-resilient aggregation rules. The second

cause is the inherent variance increase that Byzantine-resilient rules introduce compared to

Average and the baseline. This is attributed to the fact that MULTI-KRUM, BULYAN and Median

only use a fraction of the computed gradients; in particular Median uses only one gradient.

Increasing the variance of the gradient estimation is a cause of convergence slowdown [23].

Since even Median converges as fast as the baseline with b = 250, the respective slowdowns of

19% and 43% for MULTI-KRUM and BULYAN correspond only to the computational overhead.

The practitioner using AGGREGATHOR does not need to increase the mini-batch size to achieve

baseline final accuracy (Figure 4.3(d)).

Although Draco reaches the same final accuracy, the time to reach the model’s maximal

accuracy is slower than with our TensorFlow-based system. We attribute this mainly to the

fact that Draco requires 2 f +1 times more gradients to be computed than our system before

performing a step.

We decompose the average latency per update step to assess the effect of the aggregation

time on the overhead of AGGREGATHOR against TensorFlow. We employ the same setup as in

Figure 4.3(a).

Figure 4.4 shows that the aggregation time accounts for 35%, 27% and 52% of run times of

Median, MULTI-KRUM, and BULYAN respectively. These ratios do not depend on the variance

of the aggregated gradients, but solely on the gradient computation time: a larger/more

complex model would naturally make these ratios decrease (i.e., the relative cost of Byzantine

resilience would decrease). See Figure 4.5.
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Figure 4.4 – Latency breakdown.
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Impact of f on scalability. We measure the scalability of AGGREGATHOR with respect to

TensorFlow for two models: the CNN that we use throughout the evaluation and a significantly

larger one, ResNet50. Figure 4.5(a) shows that the throughput of all TensorFlow-based systems

with up to 6 workers is the same. From this point on, the larger the number of workers, the

larger the deviation between the Byzantine-resilient algorithms and TensorFlow. The reason

behind this behavior is the fact that an increase in the number of workers introduces a larger

overhead to the aggregation of a Byzantine-resilient algorithm (logic to ensure Byzantine

resilience) than simple averaging. The more expensive the logic, the bigger this difference.

For example, BULYAN scales poorly for this setup. This is confirmed in Figure 4.5(b) where

the gradient computation is significantly more costly than gradient aggregation. This allows

MULTI-KRUM and BULYAN to have better scalability.
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Figure 4.5 – Throughput comparison.

Figure 4.5(a) confirms that the higher the declared f the higher the throughput. This may

appear counter-intuitive (resilience against more failures provides a performance benefit) but

is the direct outcome of the design of the algorithmic components of AGGREGATHOR. Since

m = n− f −2, the higher f the fewer iterations for BULYAN [72] and the fewer the neighbors for

MULTI-KRUM [20]. Moreover, for a larger value of f , these algorithms become more selective

for the gradients that will be averaged. It is however very important to highlight that non-

convex optimization is a notably complex problem that might take advantage of more variance

to converge faster [71]. Therefore, anticipating faster convergence for a larger value of f does

not always hold, i.e., larger throughput does not always lead to faster convergence [23]. In

conclusion, there exists a trade-off between the update throughput and the quality of each

update that is partially controlled by the choice of f .
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Draco is always at least one order of magnitude slower than the TensorFlow-based systems.

This low throughput limits its scalability. An interesting observation here is that changing the

number of Byzantine workers does not have a remarkable effect on the throughput. This is

attributed to the method Draco uses to tolerate Byzantine behavior which is linear in n [37],

thus the performance is not affected by changing f .

Impact of f on convergence. We show the effect of the choice of f in a non-Byzantine

environment. Figure 4.6(a) shows that the larger value of f triggers a slightly slower

convergence for MULTI-KRUM and slightly faster convergence for BULYAN. This is the direct

consequence of the aforementioned trade-off. The throughput of MULTI-KRUM is boosted

more than the throughput of BULYAN for the same increase on f (from 1 to 4). Therefore, in

the case of BULYAN, the faster model updates compensate for the additional noise whereas

in the case of MULTI-KRUM the throughput boost is not enough. For a smaller mini-batch

size (Figure 4.6(b)) the behaviour is similar but the impact of f is smaller. This is because the

mini-batch size is the second (the first is f ) important parameter that affects the trade-off

between update throughput and quality of each update (§2.3.1).
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Figure 4.6 – Impact of f on convergence.

Cost analysis. Our empirical results are consistent with the complexity of the algorithmic

components of AGGREGATHOR. The model update time complexity5 of both MULTI-KRUM

and BULYAN is O(n2d). This is essentially the same as a baseline GAR-based SGD algorithm,

i.e., averaging6 when d À n (valid assumption for modern ML). BULYAN induces an additional

overhead of O(nd) (coordinate-wise median) on top of n −2 f executions of MULTI-KRUM,

leading to a total model update complexity of O(nd + f · nd) = O(n2d). We note that

O(n2d) is a common bound on the complexity per round for weakly Byzantine-resilient

SGD algorithms [20, 72, 162]. AGGREGATHOR is strongly Byzantine-resilient with the same

complexity.

5We refer to the worst-case time complexity.
6Averaging is not Byzantine-resilient.
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Baseline averaging SGD requires O( 1p
nb

) steps to converge. In other words SGD goes as fast as

permitted by the square root of the total number of samples used per step. The more samples,

the lower the variance and the better the gradient estimation.

Everything else being equal (mini-batch sizes, smoothness of the cost function etc), and in the

absence of Byzantine workers, the number of steps required for AGGREGATHOR to converge

is O( 1p
m

). The higher the value of m the fewer steps required for convergence. Therefore,

the best choice for m is the largest safe one, i.e., n − f −2 for weak and n −2 f −2 for strong

Byzantine resilience (§4.2.3).

4.3.3 Byzantine Environment

We now report on our evaluation of AGGREGATHOR in a distributed setting with Byzantine

workers. We first report on two forms of weak Byzantine behavior, namely corrupted data and

dropped packets. Then we discuss the effect of a stronger form of Byzantine behavior, drawing

the line between MULTI-KRUM and BULYAN.

Corrupted data. Figure 4.7 shows that for a mini-batch size of 250, the convergence behavior

of AGGREGATHOR is similar to the ideal one (TensorFlow in a non-Byzantine environment).

We thus highlight the importance of Byzantine resilience even for this “mild” form of

Byzantine behavior (only one worker sends corrupted data) to which TensorFlow is intolerant

(TensorFlow diverges).
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Figure 4.7 – Impact of malformed input on convergence.

Dropped packets. We evaluate the impact of using unreliable communication between the

parameter server and f (Byzantine) workers. We also evaluate the performance of alternatives

we proposed in §4.2.4 to tolerate the lost, malformed, and out-of-order packets. For this

experiment we set f to the maximum possible value given our 19 workers, i.e., we set f to 8
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4.3. Evaluation of AGGREGATHOR

(assuming MULTI-KRUM). For simplicity, we employ unreliable communication only for the

gradient transfer7.

We assess the effect of unreliable communication in a lossy environment by introducing

additional (to the existing ones by the network) network packet drops via the Linux tc tool.

We evaluate the performance of AGGREGATHOR in the absence of additional packet drops (0%

loss) and in the presence of a drop rate of 10%. This order of magnitude for the drop ratio,

although high for a data-center environment, can be realistic in a WAN environment [99] for

distributed machine learning [91].

Figure 4.8(a)8 shows the performance of the three solutions proposed to tolerate unreliability

of the communication layer (§4.2.4). The three solutions achieve almost the same performance.

This highlights the advantage of using UDP as it mitigates the performance lost by Byzantine

resilience. In this environment where no packet loss exists, dropping the whole gradient (while

using vanilla TensorFlow) does not have remarkable effect on the learning convergence. We

expect to see a delayed convergence for such an algorithm in an environment with a higher

loss ratio.

Figure 4.8(b) shows the advantage of using UDP in a lossy environment. It depicts that

AGGREGATHOR over lossyMPI converges to 30% accuracy more than 6 times faster than

TensorFlow over gRPC, under an artificial 10% drop rate. The main reason behind this big

difference in the convergence speed is that the links that employ lossyMPI (between the server

and the Byzantine workers) use a rapid mechanism to address the packet drops, i.e., they

deliver corrupted messages to which AGGREGATHOR is tolerant. The convergence time for

both systems is one order of magnitude larger compared to the environment with no artificial

drops. We believe this performance drop is induced by TCP reducing (halving) its transmission

rate following packet losses. Finally, Figure 4.8(b) confirms the divergence of TensorFlow,

which is non Byzantine-resilient, over lossyMPI.
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Figure 4.8 – Impact of dropped packets on convergence.

7Our setup can be easily extended to support an unreliable communication for the model transfer without any
impact on the conclusions of our evaluation.

8TF here drops corrupted gradients as described in §4.2.4.
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Chapter 4. Synchronous Stochastic Gradient Descent

Byzantine gradients. The cost of attacking a non-Byzantine resilient GARs (such as

averaging) is the cost for the computation of an estimate of the gradient, i.e., can be done in

O(nd) operations per round by a Byzantine worker. This cost is the same as the aggregation

cost of the server per update step.

To attack weakly Byzantine-resilient GARs however, such as MULTI-KRUM, one needs to find

a legitimate but harmful vector. A harmful vector is a vector that will (i) be selected by a

weakly Byzantine-resilient GAR, and (ii) triggers a poor convergence, i.e., a convergence

to an optimum that makes the performance of the model (e.g., in terms of accuracy) low in

comparison with the one achieved when learning with no Byzantine workers. An attacker must

thus first collect the vector of every correct worker (before they reach the server), and solve

an optimization problem (with linear regression) to approximate this harmful but legitimate

(selected by weakly Byzantine-resilient GAR) vector. If the desired quality of the approximation

is ε, the Byzantine worker would need at least Ω( nd
ε ) operation to reach it with regression.

This is a tight lower bound for a regression problem in d dimensions with n vectors [87]. In

practice, if the required precision is in the order of 10−9, a total of 100 workers and a model of

dimension 109 would require a prohibitive cost for the attack (≈ 1020 operations to be done in

each step by the attacker).

To summarize, weak Byzantine resilience can be enough as a practical solution against

attackers whose resources are comparable to the ones of the server. If that is the expected

setting, we could switch-off BULYAN and use only MULTI-KRUM. However, strong Byzantine

resilience, i.e., AGGREGATHOR combining both MULTI-KRUM and BULYAN, remains the

provable solution against attackers with significant resources [72].

4.4 Related Work

Several weakly Byzantine-resilient algorithms have been proposed as an improvement of the

workhorse SGD component in the synchronous non-convex setting. Krum [20] employed a

median-like aggregation rule. [179] proposed a median-based and a mean-based aggregation

rules (Equation 2.7). [176] evaluated three other median-based aggregation rules under

different practical attack scenarios. [162] presented a combination of a median-based over a

mean-based aggregation rule. A quorum-based aggregation approach was recently proposed

in [6], achieving optimal convergence rates but suitable only for convex machine learning.

Following a different direction, Draco [37] has been the first framework to address the

scalability of SGD through redundant gradient computations combined with a specific

encoding scheme. In fact Draco is also strongly Byzantine-resilient following our definition,

and has the advantage of requiring only 2 f + 1 workers (instead of 4 f + 3 for BULYAN). It

has however a serious practical concern: it can only be used in settings where workers need

(at least) an agreement on the ordering of the dataset so that the coding scheme can be

agreed on. This violates critical privacy concerns in distributed learning and does not allow

learning on private data. For instance, their algorithmic redundancy scheme requires a
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comparison between gradients sum provided by different workers, for this comparison to be

meaningful, the server needs the incoming gradients to be computed on similar datapoints,

therefore hampering any possible use in private and local datasets. AGGREGATHOR in turn

only requires the workers to be drawing data independently and identically distributed (but

not the same datapoints). Additionally, as pointed out by the authors [37], the encoding and

decoding time of Draco can be several times larger than the computation time of ordinary

SGD. AGGREGATHOR avoids this overhead along with the redundant computations.

4.5 Concluding Remarks

We built AGGREGATHOR, a Byzantine-resilient framework, on top of TensorFlow without

adding any constraints to the application development, i.e., AGGREGATHOR exposes the

same APIs as TensorFlow. We also corrected an inherent vulnerability of TensorFlow in the

Byzantine setting. The overhead of AGGREGATHOR over TensorFlow is moderate when there

are no Byzantine failures. In fact, we have also shown that AGGREGATHOR could be viewed

as a performance booster for TensorFlow, as it enables the use of an unreliable (and faster)

underlying communication protocol, namely UDP instead of TCP, when running through a

saturated network.

While designing AGGREGATHOR, we followed the parameter server model [105] and assumed

the server is reliable while workers are not. This model has been considered for most

theoretical analysis of Byzantine-resilient SGD [6, 20, 37, 54, 72, 176]. An orthogonal problem

that should be investigated is the setting where the owner of the system does not trust their

servers. In this case, a server could be made Byzantine-resilient using some state machine

replication scheme [29, 33, 46, 152, 153]. Essentially, each worker could communicate with

the replicas of the server and use the model that has been sent by 2/3 of the replicas. Since

the computation in the server (GAR and model update) is deterministic, the correct servers

will propose identical models to the workers. Although at first glance simple, we believe that

the interplay between the specificity of gradient descent and the state machine replication

approach might end up challenging to achieve efficiently.
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5 Asynchronous Stochastic Gradient
Descent

5.1 Introduction

Existing Byzantine distributed ML solutions all assume a synchronous model [20, 73, 162], that

is highly restrictive for applications with fast data (Chapter 1). For each model update, (a) all

(honest) workers are supposed to use the exact same model to compute the gradient, and (b)

the parameter server waits for a quorum of workers before aggregating their gradients. When

networks are asynchronous, exhibiting heterogeneous (sometimes arbitrary) communication

delays, synchronous solutions inevitably lead to slow convergence.

On the other hand, Asynchronous SGD algorithms, such as ADASGD (§3.2.3), enable huge

performance benefits despite heterogeneous communication delays [88, 105, 110, 111]. In

short, such algorithms (a) allow workers to make use of a stale model and (b) update the

model as soon as a new gradient is delivered (instead of waiting for a quorum). Nevertheless,

none of these asynchronous algorithms tolerate any Byzantine behavior. In fact, all provably

convergent asynchronous SGD algorithms assume that all the workers are permanently honest

about their gradient, i.e., provide unbiased estimations of the actual gradient (Figure 5.1).

Figure 5.1 – The gradients computed by non-stale honest workers (black dashed arrows) are
distributed around (and are on average equal to) the actual gradient (solid blue arrow) of the
cost function (thin black curve). A Byzantine worker can propose an arbitrary poisoning vector
(red dotted arrow). A honest but stale worker computes the correct gradient but for a stale
version of the model (long green dotted arrow).
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Chapter 5. Asynchronous Stochastic Gradient Descent

Combining asynchrony with Byzantine resilience is challenging. In particular, aggregating

gradients that were computed on different models requires the knowledge of how the curvature

of the cost function evolves with staleness. This curvature determines the window of synchrony

within which a synchronous method can be transposed into an asynchronous context. Roughly

speaking, the more locally curved the cost function is, the narrower this window and vice

versa. Estimating the curvature requires heavy computations of the Hessian matrix (O(d 2)),

not to mention the fact that this would deprive the parameter server from the most prominent

advantage of asynchrony, namely updating the model as soon as a single gradient is delivered

(i.e., the parameter server would need to aggregate a quorum).

In this chapter, we consider for the first time the situation where a significant fraction

of workers ( f
n ) can be Byzantine (arbitrarily adversarial) and consider unbounded

communication delays. Such situation corresponds to that of many realistic distributed

platforms today. We present the first asynchronous Byzantine gradient descent algorithm, we

call KARDAM. KARDAM leverages the Lipschitzness of the cost function to filter out gradients

from potentially Byzantine workers, while prohibiting Byzantine workers from flooding the

parameter server (which in turn would prevent honest workers from updating the model).

KARDAM also uses a dampening scheme that scales each gradient based on its staleness. The

computation overhead for each update is negligible as the filtering component of KARDAM is

mostly scalar-based. The time complexity for each update computed in terms of the dimension

d of a gradient is O(d + f n). This complexity is the same as the standard complexity of an

asynchronous SGD update (O(d)) for the very high-dimensional learning models of today

(d À ( f ,n)). We prove the convergence of KARDAM and precisely determine its convergence

rate. In particular, we prove its self-stabilizing property using a refined version of the global

confinement argument [23].

We implemented and deployed KARDAM in a distributed setting and we report in this chapter

on its in-depth empirical evaluation on the CIFAR-100 and EMNIST datasets. In particular, we

evaluate the overhead of KARDAM with respect to non Byzantine-resilient solutions. KARDAM

does not tamper with the learning procedure (i.e., include additional noise), yet it does induce

a slowdown that we empirically show to be less than f
n , where f is the number of Byzantine

failures tolerated and n the total number of workers (we also prove that theoretically). Finally,

we show that the dampening component (when plugged onto an asynchronous non Byzantine-

resilient SGD solution) outperforms alternative staleness-aware asynchronous competitors in

environments with honest workers.

The code to reproduce our experiments as well as a few additional results (varying f ) will be

found at https://github.com/gdamaskinos/kardam.
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5.2. Setup

5.2 Setup

We consider the general distributed model for machine learning, namely the parameter

server [1, 50, 59, 88, 105, 106, 107]1. We assume that f of the n workers are Byzantine (behave

arbitrarily). Following the traditional assumption in distributed computing, we assume that

the identities of the Byzantine workers are unknown whereas f (in practice, an upper bound)

is known. Computation is divided into (infinitely many) asynchronous model updates (steps).

Definition 6 (Time). The global step (denoted by t) represents the global logical clock of the

parameter server (or equivalently the number of model updates). The local timestamp (denoted

by tp ) for a given worker p, represents the version (step) of the model that the worker receives

from the server and computes the gradient upon. The difference t − tp can be arbitrarily large

due to the asynchrony of the network.

During each step t , the parameter server broadcasts the model θt ∈Rd to all the workers. A

cost function F reflects the quality of the model for the learning task. Each non-Byzantine

worker p computes an estimate g p = G(θtp ,ξp ) of the actual gradient ∇∇∇F (X ,θtp ) (§2.3.1).

Each worker p sends the timestamp tp (to declare which version of the model it used) and the

gradient g p . See §2.1 for notational details.

A Byzantine worker b proposes a gradient g b which can deviate arbitrarily from G(θtb ,ξb) (see

Figure 5.1). A Byzantine worker may have full knowledge of the system, including the gradients

proposed by other workers. Byzantine workers can furthermore collude, as typically assumed

in the distributed computing literature [27, 103, 114]. Since the communication is assumed

to be asynchronous, the parameter server takes into account the first gradient received at

time t . The parameter server then either suspects the gradient and ignores it, or employs it

to update the model and move to step t +1. We make the following assumptions about any

honest worker p.

Assumption 1 (Unbiased gradient estimator).

Eξp [G(θtp ,ξp )] =∇∇∇F (θtp )

Assumption 2 (Bounded variance).

Eξp [‖G(θtp ,ξp )−∇∇∇F (θtp )‖2] ≤ dσ2

Assumptions 1 and 2 are common in the literature [23] and hold if the data used for computing

the gradients is drawn uniformly and independently.

Assumption 3 (Linear growth of r -th moment).

Eξp [‖G(θ,ξp )‖r ] ≤ Ar +Br ‖θ‖r ∀θ ∈R, r = 2,3,4
1Classical techniques of state-machine replication [114] can be used to ensure that the parameter server is

reliable.
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Chapter 5. Asynchronous Stochastic Gradient Descent

Assumption 3 translates into “the r -th moment of the gradient estimator grows linearly with

the r -th power of the norm of the model” as assumed in [23].

Assumption 4 (Lipschitz gradient).

||∇∇∇F (θ1)−∇∇∇F (θ2)|| ≤ K ||θ1 −θ2||

Assumption 5 (Convexity in the horizon). We require that beyond a certain horizon, ‖θ‖ ≥ D,

there exist ε> 0 and 0 ≤β<π/2 such that ‖∇∇∇F (θ)‖ ≥ ε> 0 and 〈θ,∇∇∇F (θ)〉
‖θ‖·‖∇∇∇F (θ)‖ ≥ cosβ.

Assumptions 4 and 5 are the same as in [20], the first is classic, the second is a slight refinement

of a similar assumption in [23]. It essentially states that, beyond a certain horizon D in the

parameter space, the opposite of the gradient points towards the origin.

Definition 7 (Byzantine resilience). Let F be any cost function satisfying the assumptions

above. Let A be any distributed SGD scheme. We say that A is Byzantine-resilient if the sequence

∇∇∇F (θt ) = 0 converges almost surely to zero, despite the presence of up to f Byzantine workers.

5.3 KARDAM

In this section, we present the two main components of our algorithm, KARDAM2, namely the

filtering and the dampening components. We also establish the theoretical guarantees of each

component. The full corresponding proofs are given in Appendix B.1.

5.3.1 Byzantine-resilient Filtering Component

The parameter server accepts a gradient g p from worker p (i.e., updates the model with g p ) if

g p is accepted by the Byzantine-resilient filtering component of KARDAM. This component

itself consists of a Lipschitz filter followed by a frequency filter that we describe in the following.

Lipschitz filter. This filter can be viewed as a kinetic validation at the parameter server based

on the empirical Lipschitzness.

Definition 8 (Empirical Lipschitz coefficient). The empirical Lipschitz coefficient at worker

p is defined as K̂p = ‖g p−g pr ev
p ‖

‖θtp −θpr ev
tp

‖ . The empirical Lipschitz coefficient at the parameter server is

defined with respect to a received gradient from worker p and an updated gradient from worker

q at the previous step (t −1) as K̂ p
t = ‖g p−g q‖

‖θt−θt−1‖ .

The empirical Lipschitz coefficient (K̂p ) reflects the local empirical observation of the gradient

evolution, normalized by the model evolution. Each worker p derives this coefficient between

the current and the previous models used to compute the current and previous gradients of p

respectively.

2KARDAM was a Bulgarian khan who preempted the invasion of the Byzantine empire.
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The Lipschitz filter accepts the candidate gradient g p if the empirical Lipschitzness for g p

(Definition 8) is not suspicious, i.e., if it is smaller than a median empirical Lipschitzness of all

the workers as follows.

K̂ p
t ≤ K̂t := quanti le n− f

n
{K̂p }p∈P

where quanti le n− f
n

represents the element that separates the n− f
n fraction of workers with

the smallest empirical Lipschitz values from the remaining f
n fraction with the highest values

(i.e., the (100 · n− f
n )th percentile). We highlight that there exist two honest workers p1 and p2

such that K̂p1 ≤ K̂t ≤ K̂p2 since our single dimensional median is guaranteed to be bounded by

values from any group of size n − f (i.e., group of honest workers).

The complexity of the Lipschitz filter is O(d +n) (computing distances on 2 d-dimensional

vectors, then getting the median of n scalars, in O(n) with quick-select).

Obviously, the Lipschitz filter will end up filtering fast workers (that reach the more curved

regions of the cost functions before the others) or slow workers (that are delayed in a curved

region while everyone else is already in a less curved region). We note that this filter, roughly

speaking, suspects f workers to be Byzantine and thus a pessimistic choice for f would

increase the overhead of KARDAM (filters more gradients due to a pessimistic choice for f ).

Theorem 1 (Optimal Slowdown). We define the slowdown SL as the ratio between the number

of updates from honest workers that pass the Lipschitz filter and the total number of updates

delivered at the parameter server. We derive the upper and lower bounds of SL in the following.

n −2 f

n − f
≤ SL ≤ n − f

n

The upper and lower bounds are tight and hold when there are f Byzantine workers and no

Byzantine workers respectively. Therefore KARDAM achieves the optimal bounds with respect to

any Byzantine-resilient SGD scheme and n ≈ 3 f workers.

Proof. Any Byzantine-resilient SGD scheme assuming f Byzantine workers will at most use
n− f

n of the total available workers (upper bound). By definition, the Lipschitz filter accepts

the gradients computed by n− f
n of the total workers with empirical Lipschitzness below K̂t .

If every worker is honest, then the filter accepts gradients from n− f
n of the workers. We thus

get the tightness of the upper bound for the slowdown of KARDAM. For the lower bound, the

Byzantine workers can know that putting a gradient proposition above K̂t will get them filtered

out and the parameter server will end up using only the honest workers available. The optimal

attack would therefore be to slow down the server by getting tiny-Lipschitz gradients accepted

while preventing the model from actually changing. This way, the Byzantine workers will make

the server filter gradients from a total of f out of the n − f honest workers, leaving only n −2 f

useful workers for the server.
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Theorem 2 (Byzantine resilience in asynchrony). Let A be any distributed SGD scheme. If the

maximum successive gradients that A accepts from a single worker and the maximum delay are

both unbounded, then A cannot be Byzantine-resilient when f ≥ 1.

Proof. Without any restrictions, the parameter server could only accept successive gradients

from the same Byzantine worker (without getting any update from any honest worker), for

example, if the Byzantine worker is faster than any other worker (which is true by the definition

of a Byzantine worker and by the fact that delays on (honest) workers are unbounded). This

way, the Byzantine worker can force the parameter server to follow arbitrarily bad directions

and never converge. Hence, without any restriction on the number of gradients from the

workers, we prove the impossibility of asynchronous Byzantine resilience. Readers familiar

with distributed computing literature might note that if asynchrony was possible for Byzantine

SGD without restricting the number of successive gradients from a single worker, this could

be used as an abstraction to solve asynchronous Byzantine consensus (that is impossible to

solve [76]). This provides another proof (by contradiction) for our theorem.

Given Theorem 2 and the objective of making KARDAM Byzantine-resilient in an asynchronous

environment (i.e., while letting workers be arbitrarily delayed), we introduce the frequency

filter.

Frequency filter. The goal of this filter is to limit the number of successive gradients 3 from

a single worker to a value of f , thus not allowing the Byzantine workers to prevent honest

workers from updating the model. Consider A as the list of workers who computed the last

2 f accepted gradients. Assume that the candidate gradient g q passes the Lipschitz filter. The

frequency filter adds worker q at the end of A (i.e., at position A[2 f +1] = q). If adding this

candidate gradient g q makes any set of workers of size f appear more than f times in A, then

q is rejected, otherwise, q is accepted. For each worker p, the number of times p appeared

in A is denoted by np . The frequency filter accepts a gradient from worker p if the following

holds:
∑

p∈S np ≤ f , where S denotes the set of f workers with the f maxima of {np }n
p=1. The

time complexity of the frequency filter is O(2 f +1) to compute {np }n
i=1 (going through the list

A of size 2 f +1), in addition to O( f n) to find the f maxima among {np }n
i=1.

Lemma 1 (Limit of successive gradients). The frequency filter ensures that any sequence of

length 2 f +1 consequently accepted gradients contains at least f +1 gradients computed by

honest workers.

Proof. Given any sequence of 2 f +1 consequently accepted gradients (A), we denote by S

the set of workers that computed these gradients. The frequency filter guarantees that any

f workers in S computed at most f gradients in A. At most f workers in S can be Byzantine,

thus at least f +1 gradients in A are from honest workers.

3One open problem left in our work is the extent to which this filter is too harsh for asynchronous schemes. For
instance, it can at least lead to a randomly shuffled round-robin schedule.
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(1+ε)
p

dσ+ε′α

∇∇∇F (θt )

EKartp

Figure 5.2 – Illustration of correct cone. If
∥∥EKartp −∇∇∇F (θt )

∥∥ ≤ (1 + ε)
p

dσ + ε′ then

〈EKartp ,∇∇∇F (θt )〉 is upper bounded by (1− sinα)‖∇∇∇F (θt )‖2 where sinα= (1+ε)
p

dσ+ε′
‖∇∇∇F (θt )‖ .

Given asynchrony (unbounded delays), we do not assume any upper bound on the norm of

the model, the norm of the gradients or the values of the cost function (regularization schemes

can make the loss grow arbitrarily and thereby the gradients norms). However, we assume (as

in [23]) that the cost function is lower bounded by a positive scalar. This assumption holds

for all the standard cost functions that are at least lower bounded by zero (e.g., square loss,

cross-entropy or any norm-based cost). We denote Kar by the sequence of gradients accepted

(i.e., not filtered) by KARDAM, and by Kart the gradient accepted by KARDAM in step t .

Theorem 3 (Correct cone and bounded statistical moments). If n > 3 f +1 then for any t ≥ tr

(we show that tr ∈O( 1
K
p

|ξ| ) where |ξ| is the batch-size of honest workers):

E[‖Kart‖r ] ≤ A′
r +B ′

r ‖θt‖r

for any r = 2,3,4, constants A′
r ,B ′

r and

〈E[Kart ],∇∇∇Ft 〉 =Ω(1−
p

dσ

‖∇∇∇F (θt )‖ )‖∇∇∇F (θt )‖2

The expectation is on the random samples used for training.

Proof. (Sketch - full proof in Appendix B.1.1) The frequency filter guarantees that there is

always an update from a honest worker in any sequence of f +1 updates (Lemma 1), i.e.,

at any time t , there is an interval t − i where i < f +1 such that the vector that passed the

Lipschitz filter is a vector sent by an honest worker (therefore an unbiased estimation of the

true gradient). With this in mind, and using triangle inequalities over a series of (at most

f ) previous updates, we prove inequalities on the r -th statistical moments of Kar. Those

inequalities are in turn plugged into the requirements for the (almost sure) global confinement

argument of [23].

With the guarantees of almost sure global confinement, and using the Liptschitz properties,

and (again) the existence of honest (unbiased) workers in the “recent past” as explained

above, we find the lower-bound of the scalar product between the two desired vectors

〈E[Kart ],∇∇∇Ft 〉 when their distance is small enough compared to their own norms (Figure 5.2).

This finally shows that KARDAM remains in a cone of an angle α that is upper bounded by

arcsin( (1+ε)
p

dσ+ε′
‖∇∇∇F (θt )‖ ) with appropriately chosen ε and ε′.
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5.3.2 Staleness-aware Dampening Component

We now present the component of KARDAM that enables staleness-aware asynchronous

updates for the ML model. For the sake of clarity, we denote the time by t ′ := t−tr (Theorem 3).

We introduce the R-soft-async protocol where the server updates the model only after receiving

R gradients. The update rule for KARDAM is the following.

θt+1 = θt −γt Kart

= θt −γt
∑

[G(θl ,ξm ),l ]∈Gt

Λ(τt l ) ·G(θl ,ξm) (5.1)

where G(θl ,ξm) denotes the gradient w.r.t the model parameters θl on the mini-batch ξm . We

assume that every gradient passes the filtering scheme (§5.3.1) at the step t . KARDAM requires

|Gt | = R gradients for each update.

The difference between the standard SGD update rule and our Equation 5.1 illustrates how

KARDAM handles asynchronous updates. KARDAM dampens each update depending on its

staleness value (τt l ). KARDAM employs a decay functionΛ(τt l ) such that 0 ≤Λ≤ 1 to derive

the dampening factor for each distinct value of staleness.

Definition 9 (Dampening function). We employ a bijective and strictly decreasing dampening

function τ 7→Λ(τ) withΛ(0) = 1.4 Note that every bijective function is also invertible, i.e.,Λ−1(ν)

exists for every ν in the range of theΛ function.

LetΛt be the set ofΛ values associated with the gradients at timestamp t .

Λt = {Λ(τt l ) | [g , l ] ∈Gt }

We partition the set Gt of gradients at timestamp t according to theirΛ-value as follows.

Gt =
⊔
λ∈Λt

Gtλ

Gtλ = {[g , l ] ∈Gt |Λ(τt l ) =λ}

Therefore, the update equation can be reformulated as follows.

θt+1 = θt −γt
∑
λ∈Λt

λ · ∑
[G(θl ,ξ),l ]∈Gtλ

G(θl ,ξ)

Definition 10 (Adaptive learning rate). Given the Lipschitz constant K , the total number of

timestamps T , and the total number of gradients in each timestamp as M, we define γt as

follows.

4IfΛ(0) = 1, then there is no decay for gradients computed on the latest version of the model, i.e., τt l = 0.
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γt =
√

F (θ1)−F (θ∗)

K T Mdσ2︸ ︷︷ ︸
γ

· M∑
λ∈Λt

λ|Gtλ|︸ ︷︷ ︸
φt

(5.2)

where γ is the baseline component of the learning rate and φt is the adaptive component that

depends on the amount of stale updates that the server receives at timestamp t . Moreover,

φt incorporates the total staleness at any timestamp t based on the staleness coefficients (λ)

associated with all the gradients received in timestamp t .

θ∗ refers to the (not necessarily global) optimum we are heading to, and on which our adaptive

learning rate depends. Assuming this value is known is made just for the sake of a proof, as is

usually done in proofs for the speed of convergence of SGD. In practice, one does not need to

know F (θ∗) and can assume it to be lower bounded [23]. This will produce overshooting (large

steps) in the early phases of KARDAM, but will get to small enough step sizes: the baseline part

of our adaptive learning rate contains a term 1/T , where T is the total number of iterations

(also unknown before we run SGD). In practice, it is replaced by 1/t (t : step at the server). This

part of our learning rate decreases with t and will compensate for the overshooting described

above (overcoming the overshooting in at most O(1/F (θ1)) steps).

Remark 1 (Correct cone). As a consequence of passing the filter and of Theorem 3, G satisfies

the following.

〈EξG(θ,ξ),∇∇∇F (θ)〉 >Ω((‖∇∇∇F (θt )‖−
p

dσ)‖∇∇∇F (θt )‖)

The theoretical guarantee for the convergence rate of KARDAM depends on Assumptions 2

and 4 and Remark 1. These assumptions are weaker than the assumptions for the convergence

guarantees in [93, 185]. In particular, due to unbounded delays and the potential presence of

Byzantine workers, we only assume the unbiased gradient estimator G(·) for honest workers

(Assumption 1). We instead employ (Remark 1) the fact that G(·) and ∇∇∇F (θ) make a lower

bounded angle together (and subsequently a lower bounded scalar product) for all the workers.

The classical unbiased assumption is more restrictive as it requires this angle to be exactly

equal to 0, and the scalar product to be equal to ‖∇∇∇F (θ)‖ · ‖G(θ)‖. Most importantly, we

highlight the fact that those assumptions are satisfied by KARDAM, since every gradient used in

this section to compute the Kar update has passed the Lipschitz filter of the previous section.

Theorem 4 (Convergence guarantee). We express the convergence guarantee in terms

of the ergodic convergence, i.e., the weighted average of the L2 norm of all gradients

(||∇F (θt )||2). Using the above-mentioned assumptions, and the maximum adaptive rate

φmax = max{φ1, . . . ,φt }, we get the following bound on the convergence rate.

1

T

T∑
t=1

E‖∇F (θt )‖2 ≤ (
2+φmax +γK Mχφmax

)
γK dσ2 +dσ2 +2DKσ

p
d +K 2D2
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under the prerequisite that

∑
λ∈Λt

λ2|Λt |
{

Kγ2
t +

∞∑
s=1

(
∑

ν∈Λt+s

γt+sK 2ν|Gt+s,ν|Λ−1(ν)I(s≤Λ−1(ν))γ
2
t )

}
≤∑
λ∈Λt

γtλ

|Gtλ|

where the Iverson indicator function is defined as follows

I(s≤∆) =
1 if s ≤∆

0 otherwise.

and χ denotes a constant such that for all τt l , the following inequality holds:

τt l ·Λ(τt l ) ≤χ (5.3)

It is important to note that the prerequisite for Theorem 4, holds for any decay function Λ

(since λ< 1 holds by definition) and for any standard learning rate schedule such that γt < 1.

Various SGD approaches [93, 109, 184, 185] provide convergence guarantees with similar

prerequisites.

Theorem 5 (Convergence time complexity). Given any mini-batch size |ξ|, the number of

gradients M the server waits for before updating the model, and the total number of steps T , the

time complexity for the convergence of KARDAM is:

O
(

φmax√
T |ξ|M

+ χφmax

T
+dσ2 +2DKσ

p
d +K 2D2

)

Theorem 5 highlights the relation between the staleness and the convergence time complexity.

This time complexity is linearly dependent on the decay bound (χ) and the maximum adaptive

rate (φmax ).

Remark 2 (Dampening comparison). Given two dampening functions Λ1(τ) = 1
1+τ and

Λ2(τ) = exp(−α β
p
τ), and the convergence time complexity from Theorem 5, Λ2(τ) converges

faster thanΛ1(τ) when β
e <α≤ ln(τ+1)

βpτ .

We also empirically highlight Remark 2 by comparing these two functions in Figure 5.4 where

DYNSGD [93] employsΛ1 and KARDAM employsΛ2.

The detailed proofs for Remark 2 and Theorems 4 and 5 are available in Appendix B.1.2.

5.4 Experiments

In this section, we report on our empirical evaluation of our distributed implementation of

KARDAM. Experiments on Byzantine attacks are mostly illustrative for (a) the importance
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Figure 5.3 – Staleness-aware learning for CIFAR-100. FedAvg is equivalent (given the setup)
to KARDAM without the dampening component and SSGD denotes the ideal (synchronous)
SGD execution. The staleness follows a Gaussian distribution (mean = 12, σ = 4) and the
dampening functions areΛ1 = 1

τ+1 ,Λ2 = e0.5τ,Λ3 = e0.2τ.

of the dampening component and (b) the overhead of the filtering component. Due to the

intractability of testing all possible attacks, the only option is to prove Byzantine resilience

mathematically and focus in the empirical part on the performance overhead of KARDAM.

We employ the image classification setup for E-MNIST and CIFAR-100 described in §3.3.2.

If not stated otherwise, we employ a setup with no actual Byzantine behavior and deploy

KARDAM with f = 3 on 10 workers.

Staleness-aware learning. We control the staleness (Appendix A.1) for approximating a

Gaussian staleness distribution [185] (as shown in Figure 5.4(a)) and evaluate KARDAM with

different dampening functionsΛ(τ) (Definition 9) shown in Figure 5.3(a). We compare with

the performance of KARDAM without the Byzantine resilience components (i.e., FEDAVG [119])

by using the constant function (Λ1 = 1). Additionally, we compare against the ideal

(synchronous) SGD execution (SSGD) and against a popular staleness-aware learning

algorithm (DYNSGD [93]) that employs an inverse dampening function (Λ2(τ) = 1
1+τ ). Finally,

we use two exponential functions (Λ= exp(−α ·τ)).

Figure 5.3 depicts the very fact that the staleness-aware component of KARDAM is crucial in

asynchronous environments. We show that SSGD has the faster convergence whereas FEDAVG

diverges (Figures 5.3(b) and 5.3(c)).

Figure 5.3 also highlights the need for an adjustable smoothness on the dampening function.

A very steep function (Λ2) almost ignores many of the updates (weighted by a very small value)

and thus suffers a slower convergence. A tuned exponential function (Λ3) accelerates the

convergence in comparison with the inverse function of DYNSGD. Moreover, KARDAM (Λ3)

assigns larger weights to the less stale updates (τ< 13) compared to DYNSGD and vice versa.
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Figure 5.4 – Impact of staleness for CIFAR-100.
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Figure 5.5 – Impact of staleness for EMNIST.

The dampening function selection is the outcome of adjusting the trade-off between the

robustness and the magnitude of each update. We observe similar results for the E-MNIST

dataset and thus highlight that the dampening function can be selected based on the expected

staleness distribution, and not necessarily adjusted for each different application.

Impact of staleness. An increase in the amount of staleness leads to a slower convergence

according to Theorem 5 (i.e., larger χ in Inequality 5.3). Figures 5.4 and 5.5 depict the impact of

the amount of staleness on KARDAM and DYNSGD for two different staleness distributions (D1

and D2). We highlight that our experimental setup includes significantly higher staleness (D2)

than the competitors [93, 185]. We observe that the smaller the mean of the distribution, the

faster the convergence. We verify that KARDAM outperforms DYNSGD for D1 given the better

tailored exponential dampening. Regarding D2, we observe that for CIFAR-100 DYNSGD

performs better than KARDAM as the values of the exponential dampening function become

too small and thus delay convergence. This depicts that the decay functionΛ(τ) needs to be

adjusted based on the staleness distribution. In §3.2.3, we provide one such algorithm that
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can also be used as the dampening component of KARDAM given the generality of our formal

guarantees.

Byzantine resilience. We observe that the overhead of the Byzantine resilience in the setup

with no actual Byzantine behavior is only in terms of filtered (i.e., wasted) gradients and

not in terms of convergence speed (in terms of update steps). Moreover, the drop ratio

under the staleness distribution D1 is 27.9% and 19.6% for KARDAM employing Λ1 and Λ3

respectively, thus aligned with our theoretical bound (Theorem 1). The slowdown would

decrease accordingly by decreasing f , i.e., being more optimistic about the number of

Byzantine workers.

We test KARDAM against a baseline Byzantine behavior (3 out of 10 workers send g by z
p =−10gp )

and observe that KARDAM successfully filters 100% of the Byzantine gradients (an empirical

confirmation of the theoretically proven Byzantine resilience of KARDAM).

5.5 Related Work and Concluding Remarks

KARDAM is, to the best of our knowledge, the first asynchronous distributed SGD algorithm

that tolerates Byzantine behavior. In the following, we discuss papers that either address

asynchrony or Byzantine behavior.

Asynchronous stochastic gradient descent. SGD is used widely in ML solutions due to

its convergence guarantees with low time complexity per update, low memory cost, and

robustness against noisy gradients. Several variants of SGD have been proposed to improve

the convergence rate and the robustness against noise. Stale-synchronous parallel [49, 88]

or bulk-synchronous [36, 188] variants typically target settings with limited staleness due

to the limited performance variability among the computing devices. Other approaches

consider variance minimization by importance sampling [5]. The theoretical guarantees

underlying these approaches assume synchronous updates as well as a specific formula to

compute a gradient norm on each sample, which is only valid for multilayer perceptrons.

The scheduler in [184] assumes all workers to be constantly available, which makes the

algorithm not applicable to our setting with Byzantine workers. [93] recently introduced a stale-

synchronous parallel (SSP) heterogeneity-aware algorithm. SSP algorithms assume bounded

staleness while KARDAM guarantees convergence without any such bound (i.e., asynchronous

parallel). Additionally, KARDAM provides the flexibility of choosing the appropriate dampening

function according to the expected staleness distribution while being Byzantine tolerant and

asynchronous. We show both theoretically (Remark 2) and empirically (Figure 5.3) that an

exponential dampening function leads to a faster convergence. [95] recently proposed an

elegant optimizer to predict the optimal SGD variant based on the expected cost per iteration

and the estimated number of iterations. This estimation does not however account for stale

updates. Our convergence analysis for KARDAM could be employed to estimate the number of

iterations for different dampening functions and hence to predict the optimal staleness-aware

SGD variant. Finally, KARDAM put before lock-free solutions such as Hogwild [147] would
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not break the convergence requirements (since the purpose of KARDAM is to preserve them

despite Byzantine workers). However, KARDAM and Hogwild do not commute.

Second order methods. These methods rely on computing the Hessian matrix instead of

the Lipschitz factor (KARDAM filtering component). They were not specifically designed for

Byzantine resilience but can in fact be employed for that purpose. However, unlike our scalar-

based Lipschitz filter (O(d) time complexity that is already within the usual cost of an SGD

update), they suffer from the curse of dimensionality. Moreover, the parameter server does no

less thanΩ(d 2) verifications on the Hessian matrix or on the gradient covariance matrix. In

the presence of a cheap (constant size K ) heuristic, the parameter server will let the Byzantine

worker with a margin of d 2−K open coordinates to use for an attack. Since d À K the heuristic

alternative clearly hampers Byzantine resilience.

The differentiability lenses of Lipschitz. A central piece of our work is to filter out suspected

vectors based on their (lack of) similar Lipschitzness with the median behavior. We prove that

this filtering idea is sound, given that a significant fraction (Ω( n− f
n )) of workers will almost

surely pass it and that Byzantine workers passing it are not harmful. In fact, leveraging the

Lipschitzness properties, in the differentiable context of gradient-based learning, is not an

uncommon idea. It was used in different contexts, for example, to understand fine-grained

robustness, i.e robustness of the model to internal errors at the level of neurons and/or

weights, this was done in [69, 70] proving a tight upper bound on the Lipschitz coefficient of

neural networks, and deriving an exponential dependency with the depth and a polynomial

dependency with the Lipschitz coefficient of the activation function used in each layer. In

the same time, Lipschitzness was leveraged to compute spectral bounds as in [12, 43] both

of which observed the same exponential dependency on the depth. In fact, manipulating

differentiable objects is what makes the world of learning fundamentally different from the

usual world of distributed computing, where the focus is on combinatorial and discrete

structures. The differentiability of learning algorithms acts as a source of relaxation to solve a

distributed computing task (estimating a gradient, distributively) in asynchrony and in the

presence of Byzantine workers. The shorter the time it takes for KARDAM to self-stabilize

(tr ) the better in terms of the speed of convergence. As we prove in Theorem 3, tr is shorter

with a larger global Lipschitz coefficient, i.e., steeper cost functions. Nevertheless, the cost

function cannot be controlled. Yet, tr can be decreased by increasing the batch size per

worker, which is no surprise in learning theory (increasing the batch size is one of the most

unavoidable taxes [20, 24, 73] for increasing robustness). In practice, our experiments show

no significant impact from tr in the absence of actual Byzantine workers. In their presence,

KARDAM remains, to the best of our knowledge, the first provably Byzantine-resilient option

to run SGD asynchronously.

An open problem now is how to tackle the Byzantine question in asynchronous machine

learning beyond gradient-based algorithms. We argue that the core idea we present –filtering

on quantiles from the recent past– could have applications to any approach where updates

arrive with suspicions on either staleness or malicious behavior.
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6 Differentially Private Stochastic
Coordinate Descent

6.1 Introduction

The availability of a huge amount of data has given rise to a plethora of machine learning (ML)

applications. The main algorithmic challenges for these applications are two-fold: (i) minimize

the learning time (including training and hyperparameter tuning) and (ii) maximize the output

quality (e.g., the prediction accuracy made by the learnt model). Stochastic coordinate descent

(SCD) [174] is a very popular optimization algorithm in both academia and industry due to

its favorable convergence behavior and the absence of hyperparameters that need to be

tuned [66, 74, 90, 115]. In particular, for training generalized linear models it is the algorithm

of choice for many applications and has been implemented as a default solver in several

popular packages such as Scikit-learn, TensorFlow and Liblinear [74].

Challenge. We study how existing applications, built on SCD, can be extended to guarantee

differentially private model training. Making SCD private is however not trivial due to the

noise addition that is vital for providing DP guarantees. An efficient implementation of SCD

stores and updates not only the model vector a but also an auxiliary vector v := X a to avoid

recurring computations. These vectors need to be consistent for standard convergence results

to hold. However, independent noise addition to both vectors, necessary for DP, prohibits this

consistency.

Contribution. We present DP-SCD, a differentially private version of the standard SCD

algorithm [155] and formally prove the DP guarantees. We theoretically analyze SCD under

noise addition and provide a bound on the maximum level of noise that can be tolerated

to achieve a given level of utility. We empirically show (based on real datasets) that for

applications for which DP-SCD performs exact minimization per update (e.g., ridge regression

and support vector machines), DP-SCD achieves a better privacy-utility trade-off compared

to the popular differentially private stochastic gradient descent algorithm (DP-SGD [2]) while,
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at the same time, being free of a learning rate parameter that needs tuning. We also compare

and discuss the primal and dual formulation of SCD in the differentially private setting.

6.2 Setup

Before we dive into the details of making SCD differentially private, we refer to Chapter 2

where we provide the notation details (§2.1), formally define the problem class and provide

the necessary background on SCD (§2.3.2) and differential privacy (§2.5).

For the rest of this chapter we will use the common assumption that the data examples x i are

normalized, i.e., ‖x i‖ = 1 (as in [32]), and that the loss functions `i are 1/µ-smooth. A wide

range of ML models fall into this setup including ridge regression and L2-regularized SVM or

logistic regression [155].

Threat model. We assume the threat model of [2]. We consider an adversary that has white-

box access to the training procedure (algorithm, hyperparameters, and intermediate output)

and can have access even to [· · ·x i−1, x i+1 · · · ], where x i is the data instance the adversary is

targeting. However, the adversary cannot have access to the intermediate results of any update

computation. We make this assumption more explicit in §6.3.1.

6.3 Differentially Private Stochastic Coordinate Descent

We focus on the dual problem formulation (Problem 2.5) and summarize our main

differentially private stochastic coordinate descent algorithm (DP-SCD) in Algorithm 1. The

crucial extension in comparison with the standard dual SCD (SDCA [155]) is that we consider

mini-batch based updates, that independently process a random sample of L coordinates (B)

in each inner iteration (Steps 6-11). This is not only beneficial from a performance perspective,

as the updates can be executed in parallel, but it also serves as a hyperparameter that steers

the privacy-utility trade-off of our algorithm (similar to the lot size in [2]). We formalize our

parallel updates based on [115]. In particular, we reuse the local subproblem formulation for

the special case where each parallel process updates only a single example j ∈B.

F∗
j (α j ,∆, v , x j ) := 1

N
`∗j (−α j −∆)+ 1

2λN 2

(
1

L
‖v‖2 +2v>x j∆+L‖x j‖2∆2

)
(6.1)

Note that the minimizer ∆ j in Step 7 can be often computed in closed form, e.g., for ridge

regression, or SVMs. Exact minimization is however not necessary for our algorithm to

converge. Approximate solutions are sufficient for convergence (e.g., [159, Assumption 1]).

Hence, for logistic regression we use a single Newton step to efficiently update the coordinates.
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Algorithm 1: DP-SCD (for Problem 2.5)

Input: N examples x i ∈RM , yi : labels, λ: regularization, T : iterations, L: mini-batch size, (ε,δ):
DP parameters, C : scaling factor

1 Init: α= 0 ; v = 0 ; shuffle examples x i

2 σ← smallest noise magnitude, s.t., MA
(
δ,σ, L

N ,T
)= ε

3 for t = 1,2, ...T do
4 ∆v = 0
5 Randomly sample L examples B ⊂ [N ]
6 for j ∈B do
7 ∆ j = argmin∆F∗

j (α j ,∆, v , x j )

8 ∆ j /=max
(
1,

|∆ j |
C

)
// scale

9 ∆v +=∆ j x j

10 ∆α +=e j∆ j

11 end
// update the model

12 α +=eB(∆α+N (0,σ22C 2I 1)) // I 1 ∈RL×L

13 v +=∆v +N (0,σ22C 2I 2) // I 2 ∈RM×M

14 end
15 return θ = 1

λN v // retrieve primal model

Finally, to guarantee differential privacy, we bound the sensitivity of each coordinate update

to be C by scaling ∆ j (Step 8). We then use the Gaussian mechanism to make α and v

differentially private. We address two main questions regarding DP-SCD:

1. How much noise do we need to add to guarantee (ε,δ)-differential privacy? (§6.3.1)

2. Can we still give convergence guarantees for this new algorithm under noise addition?

(§6.4)

We answer the first question in §6.3.1 by analyzing the sensitivity of our update function. For

the second question (that we answer in §6.4), the main challenge is that independent noise

addition destroys the consistency between α and v , i.e., v 6= Xα. We show how to address this

challenge and prove convergence for our method.

6.3.1 Privacy Analysis

We view the training procedure as a sequence of mechanisms Mt where each mechanism

corresponds to one outer iteration and computes an update on L examples. We assume

these mechanisms to be atomic from an adversary point of view, i.e., we assume no access

to the individual coordinate updates. For determining the sensitivity of this mechanism it is

important to note that all updates within mechanism Mt touch different data points and are

computed independently. The output of each mechanism Mt is the concatenation [α>, v>]

of the dual and the auxiliary vectors. The sensitivity of the output is given as:
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Lemma 2 (Sensitivity of DP-SCD). The sensitivity of each mechanism Mt in Algorithm 1 is

bounded: S f ≤
p

2C .

Proof. Each mini-batch processing accesses sensitive information and thus needs to have

DP guarantees. The input of each mini-batch processing consists of α and v and the output

consists of the updates, i.e., f = [∆1, · · · ,∆L ,
∑
B∆v ] ∈RL+M .

The sensitivity with respect to a single example is bounded by Step 8 of Algorithm 1. Given

that |∆i | ≤ C (per-example scaling) and ‖x i‖ ≤ 1 (normalized data), it holds that ‖∆v‖ ≤
‖x i‖∗ |∆i | ≤C . Hence, the sensitivity of f is as follows. Assume X \ X ′ = xk :

f (X ) = [∆1, · · · ,∆k , · · · ,∆L ,∆v 1 +·· ·+∆v k +·· ·+∆v L] ∈RL+M

f (X ′) = [∆1, · · · ,0, · · · ,∆L ,∆v 1 +·· ·+0+·· ·+∆v L] ∈RL+M

S2
f := max

X \X ′=xk

‖ f (X )− f (X ′)‖2 = ‖[0, · · · ,∆k , · · · ,0,∆v k ]‖2 =∆2
k +‖∆v k‖2 ≤C 2 +C 2 = 2C 2

Theorem 6 (Privacy bound for DP-SCD). Algorithm 1 is (ε,δ) differentially private for any

ε=O
(
q2T

)
and δ> 0 if we choose σ=Ω

(
q
p

T ln(1/δ)
ε

)
.

Proof. Each mini-batch processing (Steps 6-11) accesses sensitive information and thus needs

to have DP guarantees. We make the output of each mini-batch processing differentially

private by using the Gaussian mechanism (Equation 2.9) with M replaced by M +L in our

case. The moments of each mechanism Mi are bounded (given Lemma 2 and [2, Lemma 3]).

Hence, based on [2, Theorem 1], we can derive the lower bound for σ that guarantees (ε,δ)-DP

for the output model.

In practice, we choose the smallest σ that provides the given privacy guarantee, i.e.,

MA

(
δ,σ,

L

N
,T

)
≤ ε (6.2)

where T denotes the iterations of Algorithm 1. Given that ε decreases monotonically with

increasing σ, we perform binary search until the variance of the output of the MA gets smaller

than 1% of the given ε.

Data-dependent constraints. The update computation involves certain dataset-dependent

constraints for applications such as logistic regression or SVMs. For example, logistic

regression employs the labels to ensure that the logarithms in the delta computation are

properly defined [155]. The noise addition breaks these constraints. An approach that enforces

these constraints after the noise addition would leak privacy and break the DP guarantee.
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We thus enforce these constraints in the beginning of the delta computation. As a result,

the output model does not respect these constraints (as opposed to SCD). Nevertheless,

there are no negative implications as the purpose of these constraints is to enable valid delta

computations.

6.3.2 Cost Analysis

The performance overhead of DP-SCD with respect to SCD boils down to the cost of sampling

the Gaussian distribution. This cost is proportional to the mini-batch size, i.e., larger size

means less frequent noise additions and less frequent sampling. The noise addition also

prohibits any performance optimizations that accelerate training for sparse datasets.

The time complexity for Algorithm 1 is O(T ·M). The updates for the coordinates with a given

mini-batch can be parallelized. We discuss parallelizable variants of SCD in §6.6.

6.3.3 Primal Version

The primal formulation of DP-SCD (shown in Algorithm 2) computes the updates in a

coordinate-wise manner, thus making differentially private learning more challenging than in

the dual formulation. At each iteration of the inner loop (similar to Steps 6-11 of Algorithm 1)

the primal version updates a given coordinate j for all the examples. Therefore, the sampling

ratio (q) is 1 as each ∆-computation touches one coordinate of the entire dataset. This

invalidates the important property of the mini-batch size (L) to regulate the privacy-utility

trade-off. Additionally, the noise addition to make the primal version DP is significantly larger

than the dual version.

Algorithm 2: PRIMALDP-SCD (for Problem 2.1)
Input: S: sample size, same input as Algorithm 1

1 Init: θ = 0 ; v = 0 ; shuffle examples x i

2 σ← smallest noise magnitude, s.t., MA(δ,σ,1,T ) = ε
3 for t = 1,2, · · ·T do
4 ∆v = 0
5 Randomly a block of L coordinates B ⊂ [M ]
6 for j ∈B do
7 ∆ j = argmin∆F j (θ j ,∆, v , X [ j , :]) // update

8 ∆ j /=max
(
1,

|∆ j |
C

)
// scale

9 ∆v +=∆ j X [ j , :]
10 ∆θ +=e j∆ j

11 end
// update the model

12 θ +=eB(∆θ+N (0,σ2(4L2 −2)C 2I 1)) // I 1 ∈RL×L

13 v +=∆v +N (0,σ2(4L2 −2)C 2I 2) // I 2 ∈RN×N

14 end
15 return θ // DP model
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Each mini-batch processing accesses sensitive information and thus needs to have DP

guarantees. We device the PRIMALDP-SCD by assuming that the norm of each row of X (i.e., a

given coordinate for all the examples) instead of each column, is bounded (‖X [ j , :]‖ = 1).

Lemma 3 (Sensitivity of PRIMALDP-SCD). The sensitivity of each mechanism Mt in

Algorithm 2 is bounded: S f ≤
√

(4L2 −2)C .

Proof. The input of each mini-batch processing consists of θ and v and the output consists

of the updates, i.e., f = [∆1, · · · ,∆L ,
∑
B∆v ] ∈RL+N . The sensitivity with respect to a single

example is bounded by Step 8 of Algorithm 2 which ensures |∆ j | ≤C (per-example scaling).

Moreover, given the normalized data, it holds that ‖∆v‖ ≤ ‖X [ j ,ξ]‖ ∗∆ j ≤ C . Hence the

sensitivity of f can be computed by choosing X , X ′ such that ‖ f (X )− f (X ′)‖2 is maximized.

The sensitivity is maximized when X \ X ′ = x0:

f (X ) = [∆1,∆2, · · · ,∆L ,∆v 1 +∆v 2 +·· ·+∆v L] ∈RL+N

f (X ′) = [0,∆′
2, · · · ,∆′

L ,0+∆v ′
2 +·· ·+∆v ′

L] ∈RL+N

The difference among f (X ), f (X ′) is the result of the difference due to the missing example

for X ′ that affects all the updates as each update employs all the examples for coordinate j .

Moreover, the subsequent values-vectors can, in the worst case, be opposite. Therefore, the

sensitivity is as follows by using the triangle inequality.

S2
f := max

X \X ′=xk

‖ f (X )− f (X ′)‖2

= ‖[∆1,∆2 −∆′
2, · · · ,∆L −∆′

L ,∆v 1 +∆v 2 −∆v ′
2 +·· ·+∆v L −∆v ′

L]‖2

= |∆1|2 +|∆2 −∆′
2|2 +·· ·+ |∆L −∆′

L |2 + (‖∆v 1 +∆v 2 −∆v ′
2 +·· ·+∆v L −∆v ′

L‖)2

≤ |∆1|2 + (|∆2|+ |∆′
2|)2 +·· ·+ (|∆L |+ |∆′

L |)2 + (‖∆v 1‖+‖∆v 2‖+‖∆v ′
2‖+·· ·+‖∆v L‖+‖∆v ′

L‖)2

≤ C 2 +4C 2 +·· ·+4C 2 + (C +2C +·· ·+2C )2

= (4L−3)C 2 + (2L−1)2C 2 = (4L2 −2)C 2

We therefore conclude that the dual version (Algorithm 1) is preferable over the primal in the

DP setting.

6.3.4 Sequential version

We present a baseline algorithm namely SEQDP-SCD to depict the importance of independent

updates (inside a given mini-batch) for DP-SCD, and focus on the dual problem. As shown in

Algorithm 3, SEQDP-SCD adopts the natural (i.e., as in vanilla SCD) method of performing

sequential and thus correlated updates. In particular, the updates for both α and v at sample
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j (Steps 10 and 11 of Algorithm 3) depend on all the previous samples of the same mini-

batch (B). In contrast, in our main DP-SCD algorithm (Algorithm 1), there is no such

correlation and the updates can be also executed in parallel. On the one hand this correlation

is better for convergence in terms of iterations (not time) [90]. On the other hand, due to this

correlation, Algorithm 3 requires significantly more noise than Algorithm 1 that makes the

overall performance of our proposed algorithm (Algorithm 1) significantly better as we show

in §6.5.

Algorithm 3: SEQDP-SCD (for Problem 2.5)

// same as Steps 1-3 of Algorithm 1
3 for t = 1,2, ...T do
4 ∆v = 0
5 Randomly sample L examples B ⊂ [N ]
6 for j ∈B do
7 ∆ j = argmin∆F∗

j (α j ,∆, v , x j )

8 ∆ j /=max
(
1,

|∆ j |
C

)
// scale

9 ∆v +=∆ j x j

10 α +=e j∆ j // update the model
11 v +=∆v
12 end

// add noise
13 α +=eBN (0,σ2(4L2 −2)C 2I 1) // I 1 ∈RL×L

14 v +=N (0,σ2(4L2 −2)C 2I 2) // I 2 ∈RM×M

15 end
16 return θ = 1

λN v // retrieve primal model

Lemma 4 (Sensitivity of SEQDP-SCD). The sensitivity of each mechanism Mt in Algorithm 3

is bounded: S f ≤
√

(4L2 −2)C .

Proof. The proof is similar to Lemma 3. The difference among f (X ), f (X ′) consists of (a) the

difference due to the missing example for X ′ and (b) the difference due to all the subsequent

values (correlated updates). Moreover, the subsequent values-vectors can, in the worst case,

be opposite. Therefore, the sensitivity follows by using the triangle inequality.

6.4 Convergence Analysis

We recall the main challenge for generalizing the convergence guarantees of SCD to DP-SCD,

namely the need to handle potential inconsistencies between the auxiliary vector v and the

model vector α, i.e., v 6= Xα. Note that a variant of Algorithm 1 that only updates α and

recomputes v in every iteration would overcome this issue. However, such a variant involves

two disadvantages that make it impractical: (i) significant computational overhead and (ii)

on the final step this variant would need to employ the entire dataset to map the dual model

to the primal model (θ := 1
λN Xα), which creates a massive privacy leakage and negates the

effect of the mini-batch (i.e., q=1 for the moments accountant).
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To analyze the convergence of Algorithm 1 we split each mini-batch iteration of Algorithm 1 in

two steps: (i) the update step includes the computation of L coordinate updates (Steps 6-11)

and (ii) the perturbation step adds Gaussian noise to the two vectors α and v independently

(Steps 12 and 13).

We base our analysis on [115] and thus include the parameters γ and σ′ (not related to the

standard deviation of the noise σ) for ease of analysis. We specify our general result to

the case of Algorithm 1 by setting γ = 1 and σ′ = L. We therefore consider the following

privacy preserving model sequence {α}i with intermediate, non-public models {α̂}i . The

corresponding sequence for {v }i can be derived in a similar way.

α0 → α̂1 :=α0 +γ
L∑

j=1
∆α0, j →α1 := α̂1 +ηα,1

→ α̂2 :=α1 +γ
L∑

j=1
∆α1, j → . . .

→αn :=α0 +γ
n−1∑
i=1

∆αi +
n−1∑
i=1

ηα,i

(6.3)

Here, η∼N (0,σ2) is Gaussian noise added to preserve privacy and ∆αi := ∑L
j=1∆αi , j with

∆αi , j = argmin∆F∗(αi +e j∆).

To analyze the convergence behavior of Algorithm 1, we consider the two intermediate steps

αi → α̂i+1 (update step) and α̂i+1 →αi+1 (perturbation step) separately. The main idea is to

show that:

(i) αi → α̂i+1 decreases the objective even if the update is computed based on a noisy

version of α, v .

(ii) the damage on the objective when adding noise and going from α̂i+1 →αi+1 is bounded.

The intuition is that as long as the damage is smaller than the gain achieved with the update,

the objective decreases and thus the algorithm converges.

The key observation that allows us to derive convergence guarantees in this setting is the

following.

Remark 3 (Consistency in expectation). Algorithm 1 preserves the consistency between α and

v in expectation, i.e., E[v ] = X E[α].

Proof. This follows from the construction of the model updates and the independent noise

with zero mean that is added to both sequences {α}i , {v }i .
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6.4.1 Update Step

Each iteration of Algorithm 1 computes a mini-batch update ∆α that is applied to the model

α and indirectly to the auxiliary vector v in Steps 12 and 13 respectively. We denote by
•
∆α

the unscaled version of this update, i.e., the update computed excluding Step 8. We add this

step back later in our analysis. Lemma 5 gives a lower bound for the decrease in the objective

achieved by performing this update even if
•
∆α is computed based on noisy versions of α, v

where E[v ] = E[Xα] but v 6= Xα.

Lemma 5 (Update step - objective decrease lower bound). Assuming `i are 1/µ-smooth, then

the update step of Algorithm 1 decreases the objective, even if computed based on a noisy version

of α, v . The decrease is as follows:

E[S(α)−S(α+ •
∆α)] ≥ µλL

µλN +L
E[S(α)] (6.4)

where S denotes the dual suboptimality defined as: S(α) :=F∗(α)−minαF∗(α).

Proof. (Sketch) The starting point of our proof is [115, Lemma 3], that relates the decrease

of each parallel update (achieved on the subproblem shown in Equation 6.1) to the global

function decrease. Then, we take expectation w.r.t the randomization of the noise and proceed

along the lines of [115, Lemma 5] to involve the duality gap (Equation 2.6) in our analysis.

Finally, based on an inequality for the duality gap and Remark 3 we arrive at the bound stated

in Lemma 5. Note that we recover the classical result of SDCA[155] for the sequential case

where L = 1. The full proof is in Appendix B.2.1.

Scaling. When computing the update ∆α in Algorithm 1, each coordinate of
•
∆α is scaled to

a maximum magnitude of C (Step 8) in order to bound the sensitivity of each update step. In

strong contrast to SGD, where this scaling step destroys the unbiasedness of the gradients and

thus classical convergence guarantees no longer hold, for DP-SCD the scaling only translates

into a smaller function decrease. This is a remarkable property of SCD when analyzed in the

DP setting.

To incorporate scaling into our analysis we use the following inequality which is guaranteed to

hold for some κ ∈ [0,1) due to the convexity of the objective.

S(α+∆α) ≤ (1−κ)S(α+ •
∆α)+κS(α)

⇔E[S(α)−S(α+∆α)] ≥ (1−κ)E[S(α)−S(α+ •
∆α)] (6.5)

The scaling step (Step 8 of Algorithm 1) preserves the linear convergence of Lemma 5 and

decreases the rate by a factor of (1−κ). Note that for κ= 0 (i.e., no scaling) the solution is exact

and the smaller the scaling factor C , the larger the κ.
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6.4.2 Perturbation Step

To prove the convergence of DP-SCD (Algorithm 1), it remains to show that adding noise at

the end of each mini-batch update is not increasing the objective more than the decrease

achieved by the rescaled update∆α.

Lemma 6 (Perturbation step - objective increase upper bound). Assume `∗i are ν-smooth.

Then, the perturbation step of Algorithm 1 increases the objective by at most:

E[|S(α+∆α+η)−S(α+∆α)|] ≤ 1

2

(
ν+ 1

λN 2

)
Lσ2 (6.6)

Proof. Given that `∗i is ν-smooth and the regularization term of F∗ (Problem 2.5) is 1
λN 2 -

smooth, F∗ is ν′ = ν + 1
λN 2 smooth. We

thus have F∗(α+∆α+η) ≤F∗(α+∆α)+η>∇F∗+ ν′
2 ‖η‖2. We then subtract mina F∗(α)

on both sides and take expectations w.r.t the randomness in the perturbation noise. The claim

follows from E[η] = 0 and E[‖η‖2] = Lσ2.

Combining Inequality 6.5, Lemmas 5 and 6 yields our main result stated in the following

theorem.

Theorem 7 (Utility guarantee for Algorithm 1). Suppose that `i is 1/µ-smooth and ν-strongly
convex. If we choose L, C such that L(2(1−κ)µλ−1) >µλN for κ ∈ (0,1), and T such that

T =O
(
l og

(
N 2ε2

(ν+ 1
λN 2 )L3 ln(1/δ)

))
, then the utility of Algorithm 1 is bounded:

E[S(α(T ))] ≤O

(
ν+ 1

λN 2

)
L3 l og

 Nε(
ν+ 1

λN 2

)
L

 ln (1/δ)/(N 2ε2)

 (6.7)

Proof. We reorder terms in Inequality 6.6 and subtract S(α) on both sides. We then combine
Inequalities 6.4 and 6.5 and get that the suboptimality decreases per round by:

E[S(α)−S(α+∆α+η)] ≥ (1−κ)µλL

µλN +L
E[S(α)]− 1

2

(
ν+ 1

λN 2

)
Lσ2

At iteration t we thus have:

E[S(α(t−1))]−E[S(α(t ))] ≥ (1−κ)µλL

µλN +L
E[S(α(t−1)))]− 1

2

(
ν+ 1

λN 2

)
Lσ2

⇔ E[S(α(t ))] ≤
(
1− (1−κ)µλL

µλN +L

)
︸ ︷︷ ︸

A

E[S(α(t−1)))]+ 1

2

(
ν+ 1

λN 2

)
︸ ︷︷ ︸

ν′

Lσ2

We apply the previous inequality recursively and get:

E[S(α(T ))] ≤ AT E[S(α(0)))]+O
(
ν′Lσ2)
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Theorem 6≤ AT E[S(α(0)))]+O
(
ν′L3T ln(1/δ)

N 2ε2

)

If we choose L and C such that A < 1
2 ⇔ L(2(1 − κ)µλ− 1) > µλN and T such that T =

O
(
log

(
N 2ε2

ν′L3 ln(1/δ)

))
, we get the bound on the utility:

E[S(α(T ))] ≤O
(
ν′L3 l n(1/δ)

N 2ε2

)
+O

(
ν′L3T ln(1/δ)

N 2ε2

)

By omitting the ln term the bound on T simplifies as: T =O
(
log

( Nε
ν′L

))
. Hence the utility

bound becomes:

E[S(α(T ))] ≤O

(
ν+ 1

λN 2

)
L3 l og

 Nε(
ν+ 1

λN 2

)
L

 ln (1/δ)/(N 2ε2)



The suboptimality is proportional to the magnitude of the noise and hence, finding the exact

minimizer requires σ→ 0 (i.e., ε→∞). The smaller the σ the larger the ε and thus the less

private the learning is. We empirically confirm that DP-SCD converges smoother with a

smaller σ in §6.5.

Theorem 7 constitutes the first analysis of coordinate descent in the differentially private

setting and it can be a stepping stone for future theoretical results in this setting as we discuss

in §6.7.

6.5 Experiments

Our empirical results compare our new DP-SCD algorithm (Algorithm 1) against SCD, SGD,

DP-SGD. We include SEQDP-SCD (Algorithm 3) as a baseline, to depict the importance of

independent updates (inside a given mini-batch) for DP-SCD. We test the performance

on three popular applications that belong to GLMs (§6.2), namely ridge regression, logistic

regression and SVMs. Our implementation is in Python and available1.

1https://github.com/gdamaskinos/dpscd
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6.5.1 Setup

Datasets. We employ public real datasets. In particular, we report on YearPredictionMSD2

for ridge regression, Phishing3 for logistic regression, and Adult4 for SVMs. We preprocess

each dataset by scaling each coordinate by its maximum absolute value, followed by scaling

each example to unit norm (normalized data). For YearPredictionMSD we center the labels

at the origin. Based on [15] and regarding Adult, we convert the categorical variables to

dummy/indicator ones and replace the missing values with the most frequently occurring

value of the corresponding feature. We employ a training/test split for our data, to train and

test the performance of our algorithms. YearPredictionMSD and Adult include a separate

training and test set file. Phishing consists of a single file that we split with 75%:25% ratio

into a training and a test set. Finally, we hold-out a random 25% of the training set for

tuning the hyperparameters (validation set). The resulting training/validation/test size is

{347786/115929/51630, 24420/8141/16281, 6218/2073/2764} and the number of coordinates

are {90, 81, 68} for {YearPredictionMSD, Adult, Phishing} respectively.

Performance metrics. Accuracy measures the classification performance as the fraction of

correct predictions among all the predictions. The larger the accuracy, the better the utility.

Mean squared error (MSE) measures the prediction error as: MSE = 1
N

∑N
i=1(Ŷi −Yi )2 where Ŷi

is the predicted value and Yi is the actual value. The lower the MSE, the better the utility. We

quantify convergence by showing the decrease in the primal objective (F (X (training),θ) from

Problem 2.1) on the training set.

Hyperparameters. We fix λ to 10−4 for YearPredictionMSD and Phishing and to 10−5

for the Adult dataset based on the best performance of SCD and SGD for a range of

λ ∈ {10−8,10−7, · · · ,1,10, · · · ,108}. For a fair comparison of the DP algorithms, the iterations

need to be fixed. Based on [175], we test the DP algorithms for {5,10,50} epochs and fix the

number of iterations to T = 50N (i.e., 50 epochs) for YearPredictionMSD and T = 10N for the

other datasets. Based on [171, 183], we vary ε in {0.1,0.5,1,2} and fix δ= 0.001. We choose the

other hyperparameters by selecting the combination with the best performance (lowest MSE

for ridge regression and largest accuracy for logistic regression and SVMs) on the validation

set. The range of tested values is as follows.

• C ,η ∈ {10−8,10−7, · · · ,1, · · · ,104}

• |ξ|,L ∈ {0,5,10,50,100,200,500,1000,1250,1500,1750,2000}

Deployment. We run our experiments on commodity Linux machines. There are no special

hardware requirements for our code other than enough RAM to load the datasets. We report

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html
3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
4https://archive.ics.uci.edu/ml/datasets/Adult

88

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://archive.ics.uci.edu/ml/datasets/Adult


6.5. Experiments

0.0 0.5 1.0 1.5 2.0
100

104

108

112

116

M
SE

seqDP-SCD
DP-SCD
DP-SGD
SCD/SGD

(a) Ridge regression (YearPredictionMSD)

0.0 0.5 1.0 1.5 2.0

0.86

0.88

0.90

0.92

0.94

Ac
cu

ra
cy

seqDP-SCD
DP-SCD
DP-SGD
SCD/SGD

(b) Logistic regression (Phishing)

0.0 0.5 1.0 1.5 2.0
0.80

0.81

0.82

0.83

0.84

0.85

Ac
cu

ra
cy

seqDP-SCD
DP-SCD
DP-SGD
SCD/SGD

(c) SVMs (Adult)

Figure 6.1 – Privacy-utility trade-off. Better utility means lower MSE or larger accuracy.
DP-SCD outperforms DP-SGD for the applications that enable exact update steps (namely
ridge regression and SVMs) despite DP-SCD having less hyperparameters.

the median result across 10 different runs by changing the seeding, i.e., the randomization

due to initialization, sampling and Gaussian noise.

6.5.2 Results

Tuning cost. The hyperparameters of SEQDP-SCD, DP-SCD, SGD, DP-SGD are (L,C ),

(L,C ), (η, |ξ|), (η,L,C ) respectively; SCD requires no tuning. We tested a total of 156

configurations for DP-SCD as opposed to a total of 2028 for DP-SGD. For large-scale datasets

that require significant amount of training time and resources, the difference in the number of

hyperparameters constitutes an appealing property of DP-SCD. Noteworthy, the SGD tuning

is not useful for the DP-SGD tuning as the best choice for η depends on the choice of C [165].

Privacy-utility trade-off. Figure 6.1 quantifies the trade-off between privacy and utility for

different privacy levels (i.e., ε values). We observe that SEQDP-SCD has the worst performance

due to the significantly larger noise compared to the other algorithms. DP-SCD performs

better than DP-SGD for ridge regression and SVMs, and worse for logistic regression, that

can be attributed to the following. On the one hand, DP-SCD requires
p

2 more noise than

DP-SGD (for the same privacy guarantee) due to the need of a shared vector (§6.3). On the

other hand, each update of DP-SCD finds an exact solution to the minimization problem for
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Figure 6.2 – Impact of noise on convergence. Differential privacy does not prevent
convergence but increases the noise in reducing the objective and the distance to the optimum
(aligned with the result of Theorem 7).
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Figure 6.3 – Impact of mini-batch size on utility for DP-SCD. Utility increases with increasing
mini-batch size, till a saturation point that depends on the level of privacy.

ridge regression and SVMs and an approximate one for logistic regression, whereas DP-SGD

takes a direction opposite to the gradient. Apparently, the steps of DP-SCD in the case of

ridge regression and SVMs are more precise despite suffering more noise than DP-SGD.

Convergence. Figure 6.2 shows the impact of noise on the convergence behavior for the DP

algorithms on the YearPredictionMSD dataset. In particular, for a given ε, we select the best (in

terms of validation MSE) configuration (also used in Figure 6.1(a)), and measure the decrease

in the objective with respect to epochs (not time as that would be implementation-dependent).

We empirically verify the results of Theorem 7 by observing that the distance between the

convergence point and the optimum depends on the level of privacy. Moreover, DP-SCD

and DP-SGD converge with similar speed for ε= 0.1. Decreasing the amount of noise (ε= 1),

makes DP-SCD converge almost as fast as SGD and with more stability comparing to ε= 0.1.

This is aligned with the results of §6.4, i.e., the fact that the larger amount of noise (decrease in

ε) makes the decrease in the suboptimality more noisy.
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Mini-batch size. The mini-batch size is an important parameter for DP-SCD that affects the

privacy-utility trade-off while also controls the level of parallelism (§6.3). Figure 6.3 shows that

the utility improves (i.e., MSE drops) as the mini-batch size increases till a saturation point.

The larger the noise, the smaller the value of this saturation point (L = 1000 for ε= 0.1 and

L = 2000 for ε= 1). We observe that increasing the level of parallelism can only improve the

utility of DP-SCD thus making our algorithm suitable for large-scale parallel processing.

6.6 Related Work

Perturbation methods for DP. Existing works achieve differentially private ML by perturbing

the query output (i.e., model prediction). These works target both convex and non-

convex optimization algorithms and focus on a specific application [31, 131], a subclass of

optimization functions (properties of the loss function) [32] or a particular optimization

algorithm [2, 163]. These approaches can be divided into three main classes. The first

class involves input perturbation approaches that add noise to the input data [64]. These

approaches are easy to implement but often prohibit the ML model from providing accurate

predictions. The second class involves output perturbation approaches that add noise to

the model after the training procedure finishes, i.e., without modifying the vanilla training

algorithm. This noise addition can be model-specific [175] or model-agnostic [13, 138]. The

third class involves inner perturbation approaches that modify the learning algorithm such

that the noise is injected during learning. One method for inner perturbation is to modify the

objective of the training procedure [32]. Another approach involves adding noise to the output

of each update step of the training without modifying the objective [2]. Our new DP-SCD

algorithm belongs to the third class.

DP - Empirical Risk Optimization (ERM). Various works address the problem of ERM

(similar to our setup §6.2), through the lens of differential privacy. Table 6.1 compares the

utility bounds between DP-SCD and representative works for each perturbation method for

DP-ERM. We simplify the bounds following [171] for easier comparison. The assumptions of

these methods, described in [171, Table 1] and §6.4, are similar5. We highlight that the bound

for DP-SCD is independent of the dimensionality of the problem (m) due to the dual updates,

while also incorporates the mini-batch size (L) for quantifying the impact of the varying degree

of parallelism.

Existing DP-ERM methods based on SGD typically require the tuning of an additional

hyperparameter (learning rate or step size) similar to DP-SGD [2]. The value of this

hyperparameter for certain loss functions can be set based on properties of these

functions [175]. Furthermore regarding [175], the authors build upon permutation-based SGD

and employ output perturbation, but tolerate only a constant number of iterations.

5DP-SCD does not require the loss function to be Lipschitz.
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Table 6.1 – Comparison of utility bounds of (ε,δ)-DP algorithms for empirical risk
minimization.

Method Perturbation Method Utility Bound
[183] Output O

( m
N 2ε2

)
[31, 32] Inner (objective) O

( m
N 2ε2

)
[171] Inner (update) O

(
m·log (N )

N 2ε2

)
DP-SCD Inner (update) O

(
L3·log (N /L)

N 2ε2

)

Coordinate descent. SCD algorithms do not require parameter tuning if they update one

coordinate (or block) at a time, by exact minimization (or Taylor approximation). One such

algorithm is SDCA [155] that is similar to DP-SCD when setting ε→ ∞,L = 1 and C → ∞.

Alternative SCD algorithms take a gradient step in the coordinate direction that requires a step

size [14, 129].

Parallelizable variants of SCD (such as [25, 148]) have shown remarkable speedup when

deployed on multiple CPUs/GPUs [38, 90, 139, 154, 187], or multiple machines [66, 115].

These works employ sampling to select the data to be updated in parallel. DP-SCD also

employs sampling via the mini-batch size (L), similar to the lot size of DP-SGD [2], to (a)

enable parallel updates and (b) steer the privacy-utility trade-off. DP-SCD is also similar to

CoCoA [115] with K = L and T l ocal = 1. A first differentiation is that each ∆ j is computed on

a single example and not on a partition of the dataset (P j ) when split among K workers. A

second one is the noise addition after each CoCoA update (Steps 12 and 13 of Algorithm 1)

that is necessary for differential privacy.

6.7 Concluding Remarks

This paper introduces the first differentially private stochastic coordinate descent algorithm

(DP-SCD). We formally derive its privacy bounds and study the convergence. We show that the

dual formulation of DP-SCD is preferable over the primal due to the difference in the sensitive

data access patterns. We empirically compare DP-SCD against a popular SGD alternative

(DP-SGD) under the same privacy guarantees. DP-SCD has a better privacy-utility trade-off

than DP-SGD for ridge regression and SVMs, while DP-SCD also requires less hyperparameter

tuning than DP-SGD.

Our work is only a first step towards differentially private machine learning based on

coordinate descent. We empirically confirm our theoretical result by showing that convergence

is achieved despite the presence of noise. The convergence rate of DP-SCD is comparable to

the one of DP-SGD and we plan to also study it theoretically.
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7 Conclusions

We conclude this thesis by summarizing the presented results alongside their implications.

Finally, we discuss directions for future research.

7.1 Summary and Implications

This thesis addressed three challenges that arise when distributing the training tasks of

machine learning on edge devices, in order to preserve the data privacy without the need to

trust a central actor. A separate part of the thesis focused on each one of these challenges.

In Part II we addressed the challenge of fast data. Services that millions of people use daily,

such as news recommendations, benefit from timely updates. However, prior work minimizes

the impact on the edge device by upper-bounding the frequency of the learning tasks and thus

prohibits timely updates.

FLEET provides the necessary abstractions to the application layer in order to tune the trade-

off between the service quality boost (controlled via the frequency and size of the learning

tasks) and the impact on the edge devices in terms of latency and energy consumption. FLEET

employs an asynchronous learning algorithm suitable for timely updates and an ML-based

profiler that estimates the impact of a learning task on an edge device given a high degree

of heterogeneity for the computing capabilities. We showed that FLEET reduces the interval

between model updates from days to hours or less.

In Part III we addressed the challenge of Byzantine failures. The learning procedure is

susceptible to a single edge device failing to adhere to the “correct” execution. Such failures

can be attributed to a wide range of causes from simple software bugs or data distortions

to adversarial users compromising the edge devices. Such failures can nullify the predictive

capabilities of the learning outcome or even worse, embed a latent yet dangerous bias (e.g.,

anti-vaccine health “advice” [9]).
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AGGREGATHOR is a framework that tackles the problem of scalable Byzantine-resilient learning

in the synchronous setup and KARDAM is an algorithm that targets asynchronous updates.

Both of our solutions to the Byzantine challenge employ a filtering scheme for discarding

(at the server) updates sent by edge devices with suspected failures. AGGREGATHOR utilizes

pair-wise distances between updates whereas KARDAM utilizes statistical properties of the

learning procedure.

In Part IV we addressed the challenge of privacy guarantees. We focused on differential

privacy as the framework to provide strong formal privacy guarantees. Regulating the trade-off

between the level of privacy and the predictive capabilities of the learning outcome demands

additional hyperparameter tuning for the learning algorithm. Hyperparameter tuning is a very

costly procedure given modern ML workloads [75].

DP-SCD is a differentially private learning algorithm that reduces the tuning cost by building

on top of stochastic coordinate descent. We formally showed that despite the perturbation

necessary for the privacy guarantees, DP-SCD converges with a similar privacy-utility trade-

off compared to the popular stochastic gradient descent-based alternative.

At a high level, this thesis takes a step towards data privacy for modern machine learning

applications running on unreliable edge devices. We have demonstrated how to achieve

machine learning that is (a) fast, (b) secure (i.e., Byzantine-resilient), and (c) low-cost (in

terms of tuning) yet differentially private, without significant overheads in terms of (a)

energy consumption and latency impact on the edge device, (b) slowdown in the learning

convergence, and (c) privacy-utility trade-off.

7.2 Future Directions

We discussed potential extensions of the works presented in this thesis in the corresponding

concluding remarks sections. In the following we introduce additional related directions that

have shown promising initial results during the same doctoral studies.

Teacher-assisted inference on edge data. While this thesis focuses on training FL models

on decentralized data across edge devices, a promising direction is the one of employing

pre-trained models for inference with private data on edge devices. The idea is to employ

two sets of models for the inference: a relatively small student model on the edge device, and

a relatively more accurate (and thus typically larger) teacher model on the server. A binary

classifier running on the edge device and for a given input (e.g., an image), determines whether

the student model is likely to make a poor prediction while the teacher is likely to make a much

better one. In that case and by using a framework based on multi-party computation [51],

the input (private) data is encrypted and sent to server, followed by the server sending an

encrypted output of the teacher back to the edge device. The binary classifier essentially
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regulates the trade-off between the predictive power boost and cost (in terms of latency and

energy) of employing the server model (i.e., the teacher).

Model update compression. In this thesis the server and the edge devices exchange models

and model updates with basic (§3.2.4) or no compression. A recent line of research has shown

remarkable results (in terms of bandwidth-accuracy trade-off) for compressed training with

techniques such as stochastic quantization [7], distillation [143], mixed precision training [122]

or even binary networks [16]. Additionally, Agarwal et al. showed that compressed training can

be also differentially private [3]. A promising idea is to adapt these algorithms and combine

them with the algorithms presented in this thesis for addressing the FL challenges of fast data,

Byzantine resilience and privacy guarantees with significant bandwidth savings.

Model marketplace. While this thesis targets centralized learning on decentralized data,

existing work on fully decentralized learning [102, 170] opens promising research avenues.

One promising setup to explore is a network of interconnected user devices that train local

models on local private data, and wish to exchange knowledge (via exchanging the local

models) without releasing their private data. We envisage a marketplace with user-user

transactions exchanging ML models. Model confidence values (e.g., based on Vanhaesebrouck

et al. [170]) and multiple model versions can facilitate these transactions.
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A Supplementary Material

A.1 Staleness Controller

In order to have a precise comparison between ADASGD and the alternative SGD algorithms,

we need to control the staleness of the updates. Staleness can be only indirectly affected

through hand-tuning the heterogeneity of the devices (e.g., by adding artificial delays) given

the performance variability even for the same device over time. Following the more practical

solution, we enforce the staleness of each update by using τCONTROLLER, an on-demand

staleness method, useful for the design and evaluation of the staleness-aware ML algorithm

on any predefined staleness distribution (with arbitrary large values) without any dependence

on the actual experimental setup (e.g., number of mobile devices, device type, network).

τCONTROLLER (shown in Algorithm 4) is implemented in the global updater component

(§3.2) and consists of three phases. Algorithm 4 operates with a Gaussian distribution for the

predefined staleness [185] which results in a value between τmi n and τmax with a probability

of 0.9971. In the cold-start phase, the server performs the descent operation and saves each

model version for τmax −τmi n times before proceeding to the on-demand staleness phase.

The purpose of the on-demand staleness phase is to accumulate R gradients for each of the

possible outputs of the distribution. This phase obtains each missing staleness value τ by

sending the corresponding saved model to the client (set by using the Priority counter). In

the operation phase, the server performs the descent operation by choosing R accumulated

gradients, the staleness of which is the output of the distribution. Inevitably, the on-demand

staleness method discards updates that are too stale to be selected.

1τCONTROLLER can be easily modified for any distribution.

101



Appendix A. Supplementary Material

Algorithm 4: τCONTROLLER

Input: n: mini-batch size, γt : sequence of learning rates, τmi n ,τmax : max and min staleness, R : updates
aggregation window

1 Θag r = [] // List of models
2 Gag r = [] // Dictionary: (key=step, value=list of gradients)
3 Pr i or i t y = 0 // Model version to be sent to client

Server
4 Function Descent(GR ):
5 θ(r ecent ) =Θag r [−1] // Fetch most recent model
6 θ(new) = θ(r ecent ) −γ|Θag r |

∑
(G ,s)∈GR Λ(|Θag r |− s) ·G

7 return θ(new)

8 Function Pull():
9 lock(Θag r )

10 θ∗ =Θag r .get(Pr i or i t y)
11 unlock(Θag r )
12 return θ∗
13 Function Push(g , s): // g : gradient, s: step
14 lock(Θag r )
15 Gag r =Gag r [s].add(g )

// Cold-start
16 if |Θag r | < τmax and |Gag r .values()| > R then
17 GC S =Gag g r .g etRandom(R) // Get R gradients
18 θ(new) = Descent(GC S)
19 Θag r =Θag r ∪θ(new)

20 Pr i or i t y++

21 end
// On-demand staleness

22 for τ ∈ [τmi n ,τmax ] do
23 if τ ∉Gag r .ke y set () or |Gag r .g et (|Θag r |−τ)| < R then
24 Pr i or i t y = |Θag r |−τ
25 end
26 end

// Operation phase
27 for τ ∈ [τmi n ,τmax ] do
28 if τ ∈Gag r .ke y set () and |Gag r .g et (|Θag r |−τ)| > R then
29 GR = []
30 for m ∈ [0,R] do
31 τ̂ = Gaussian(µ= τmax−τmi n

2 ,σ= τmax−τmi n
6 )

32 G = (Gag r .g et (|Θag r |− τ̂), |Θag r |− τ̂)

33 GR =GR ∪ {G}
34 Gag r [|Θag r |− τ̂].r emove(G)

35 end

36 θ(new) = Descent(GR )
37 Θag r =Θag r ∪ {θ(new)}
38 Θag r .r emove(0) // Remove oldest model

// Drop unused gradients
39 for τ ∈Gag r .ke y set () do
40 if |Θag r |−τ) > τmax then
41 Gag r .r emove(|Θag r |−τ)
42 end
43 end
44 end
45 end
46 unlock(Θag r )
47 return
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B Detailed Proofs

B.1 Asynchronous Byzantine Resilience

B.1.1 Correct Cone

Lemma 7 (Bounded statistical moments). Let r = 2,3,4. There exist A′
r ≥ 0 and B ′

r ≥ 0 such

that:

E‖Kart (θt ,ξ)‖r ≤ A′
r +B ′

r ‖θt‖r , ∀t ≥ 0

Proof. Note that if Kart (θt ) comes from a honest worker, we have Kart (θt ,ξ) = G(θt ,ξ)

therefore, (∀t ≥ 0)E‖Kart (θt ,ξ)‖r ≤ Ar +Br ‖θt‖r since by assumption on the estimator G

used by honest workers, we have

(∀θ ∈R)E‖G(θ,ξ)‖r ≤ Ar +Br ‖θ‖r .

Let t > 2 f +1 be any step at the parameter server. Because of the Lipschitz filter (passed

by Kart ), there exists i ≤ f such that Kart−i (θt−i ) comes from an honest worker. Therefore,

‖θt−i‖ ≤ ‖θt‖+∑i
l=1γ

′
t−l Kart−l (θt−l ) ≤ ‖θt‖+∑i

l=1γt−l · min(Kar0,‖Kart−l (θt−l )‖)
‖Kart−l (θt−l )‖ ·Kart−l (θt−l ) ≤

f ·Kar0 +‖θt‖.

So, for r = 2,3,4 there exists Cr such that ‖θt−i‖r ≤ ( f ·Kar0)r +Cr ‖θt‖r .

According to the Lipschitz criteria:

‖Kart (θt )‖
≤ Kt (‖θt‖+‖θt−1‖)+‖Kart−1(θt−1)‖

≤
i∑

l=1
Kt−l+1(‖θt−l+1‖+‖θt−l‖)+‖Kart−i (θt−i )‖

≤ 2K
i∑

l=0
‖θt−l‖+‖Kart−i (θt−i )‖
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≤ 2K
i∑

l=0

i−1∑
s=l

[γ′t−s · ‖Kart−s(θt−s)‖+‖θt−i‖]+‖Kart−i (θt−i )‖

≤ 2K
i∑

l=0

i−1∑
s=l

γt−s‖Kart−s(θt−s)‖ · min(Kar0,‖Kart−s(θt−s)‖)

‖Kart−s(θt−s)‖
+2 f K ‖θt−i‖+‖Kart−i (θt−i )‖

≤ K f ( f −1)Kar0 +2 f K ‖θt−i‖+‖Kart−i (θt−i )‖
= D +E‖θt−i‖+F‖Kart−i (θt−i )‖

Where K is the global Lipschitz. (We do not need to know the value of K to implement Kar

but we use it for the proofs.) Taking both side of the above inequality to the power r , we have

the following for r = 2. . .4 for constants Dr , Er and Fr :

‖Kart (θt )‖r ≤ Dr +Er · ‖θt−i‖r +Fr ·E‖Kart−i (θt−i )‖r

As Kart−i (θt−i ) comes from an honest worker, using the Jensen inequality and the assumption

on honest workers. We can take the expected value on ξ.

E‖Kart (θt )‖r

≤ Dr +Er · ‖θt−i‖r +Fr [Ar +Br ‖θt−i‖r ]

= Dr +Fr Ar +‖θt−i‖r [Er +Fr Br ]

≤ Dr +Fr Ar + [( f ·Kar0)r +Cr ‖θt‖r ] · [Er +Fr Br ]

= Dr +Fr Ar + f r Karr
0[Er +Fr Br ]+ [Er +Fr Br ] · ‖θt‖r

We denote by A′
r = Dr +Fr Ar + ( f ·Kar0)r · [Er +Fr Br ] and B ′

r = Er +Fr Br , we obtain:

E‖Kart (θt )‖r ≤ A′
r +B ′

r ‖θt‖r

Lemma 8 (Global confinement). Let θt the sequence of parameter models visited by Kar. There

exist a constant D > 0 such that the sequence θt almost surely verifies ‖θt‖ ≤ D when t 7→∞.

Proof. Lemma 7 shows that with Kar, all the assumptions of Bottou [23] (Section 5.2) are

holding even in the presence of Byzantine workers, and thus, the global confinement of θt .

Theorem 3 (Correct cone and bounded statistical moments). If n > 3 f +1 then for any t ≥ tr

(we show that tr ∈O( 1
K
p

|ξ| ) where |ξ| is the batch-size of honest workers):

E[‖Kart‖r ] ≤ A′
r +B ′

r ‖θt‖r
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for any r = 2,3,4, constants A′
r ,B ′

r and

〈E[Kart ],∇∇∇Ft 〉 =Ω(1−
p

dσ

‖∇∇∇F (θt )‖ )‖∇∇∇F (θt )‖2

The expectation is on the random samples used for training.

Proof. First of all, it is important to note that a Byzantine worker can lie about its Lipschitz

coefficient without being able to fool the parameter server. The median Lipschitz coefficient

is always bounded between the Lipschitz coefficients of two correct worker, and it is against

that the gradient of the Byzantine worker would be tested to be filtered out if harmful and

accepted if useful.

From Lemma 8, KARDAM acts as self-stabilizing mechanism that guarantees the global

confinement of the parameter vector.

Lemma 7 have proved the first part of Theorem 3. To continue the proof of this Theorem, the

goal is to find a lower bound on the scalar product between KARDAM and the real gradient of

the cost. This is achieved via an upper bound on: ‖EKart −∇∇∇Ft (θt )‖. Let p the worker whose

gradient estimation g p was selected by KARDAM to be the update for step t at the parameter

server. According to Lemma 1, considering the latest 2 f + 1 timestamps, at least f + 1 of

updates came from honest workers. Hence, there exists i < f such that, Kart−i came from an

honest worker. Hence, EKart−i =∇∇∇Ft−i . By applying the triangle inequality twice, we have:

‖Kart −∇∇∇F (θt )‖ ≤ ‖Kart −Kart−i‖
+‖Kart−i −∇∇∇F (θt−i )‖
+‖∇∇∇F (θt−i )−∇∇∇F (θt )‖ (B.1)

We know:

‖Kart−i −Kart‖ ≤
1∑

k=i
‖Kart−k −Kart−k+1‖ ≤ K

i∑
k=1

‖θt−k+1 −θt−k‖

≤ K
i∑

k=1
γt−k‖Kart−k‖ ≤ i ·K ·γt−i · ‖Kar‖max(t ,i )

where, ‖Kar‖max(t ,i ) is the upper-bound on the norm of Kar in the list from t − i to t −1. Since

i < f , we have ‖Kart−i −Kart‖ ≤ f Kγt−i‖Kar‖max(t ,i ). Since θt is globally confined (Lemma

2), by continuous differentiability of F , so will be ‖∇∇∇F (θt ,i )‖, therefore f K ‖Kar‖max(t ,i ) is

bounded, and multiplies γt−i in the right hand side of the last inequality, and we know from the

hypothesis on the learning rate that limt→∞γt = 0 (sequence of summable squares, therefore

goes to zero). Since i < f (and obviously, f , as a global variable, is independent of t ), then we
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also have limt→∞γt−i = 0. This means that for every ε> 0, eventually, the left hand-side of

the above inequality is bounded by ε‖Kart−i −∇∇∇F (θt−i )‖, more precisely, since γt is typically

O( 1
t ), this will hold after tr such that tr =Ω( 1

εK ).

By replacing in Inequality B.1, we get:

‖Kart −∇∇∇F (θt )‖ ≤ (1+ε)‖Kart−i −∇∇∇F (θt−i )‖+‖∇∇∇F (θt−i )−∇∇∇F (θt )‖

≤ (1+ε)‖Kart−i −∇∇∇F (θt−i )‖+
i∑

s=1
Kt−sγt−s‖∇∇∇F (θt−s)‖

≤ (1+ε)‖Kart−i −∇∇∇F (θt−i )‖+ f ·K ·γt−i · ‖∇∇∇F‖max(t ,i ).

Where Kt−s is the real local Lipschitz coefficient of the loss function at step t − s. Let

j = min(
p

dσ
2 ,‖∇∇∇F (θt )‖−p

dσ), C = j

2ε
p

dσ
, ε′ = j

2.C . As limt→∞γt = 0 and ‖∇∇∇F‖max(t ,i ) is

bounded, there exist a time after which, the above quantity can be made bounded as

‖Kart −∇∇∇F (θt )‖ ≤ (1+ε)‖Kart−i −∇∇∇F (θt−i )‖+ε′.

And hence:

‖E(Kart )−∇∇∇F (θt )‖ ≤ E(‖Kart −∇∇∇F (θt )‖)

≤ (1+ε)E(‖Kart−i −∇∇∇F (θt−i )‖)+ε′.

since Kart−i comes from a correct worker, we have:

E(‖Kart−i −∇∇∇F (θt−i )‖) ≤
p

dσ

Therefore, ‖E(Kart )−∇∇∇F (θt )‖ ≤ (1+ε)
p

dσ+ε′. Consequently, KARDAM only selects vectors

that live on average in the cone of radius α around the true gradient, where α is given by:

sin(α) = (1+ε)
p

dσ+ε′
‖∇∇∇F (θt )‖ . (as long as ‖∇∇∇F (θt )‖ > (1+ε)

p
dσ+ε′, this has a sense)

Note:

• The
p

d in ‖∇∇∇F (θt )‖ >p
dσ is not a harsh requirement, we are using the conventional

notation where
p

dσ is the upper bound on the variance, σ should be seen as the

“component-wise” standard deviation, therefore, the norm of a non-trivial gradient

is naturally larger than the vector-wise standard deviation of its estimator, which is

typically
p

dσ.

• As long as the true gradient has a nontrivial meaning (it is larger than the standard

deviation of its correct estimators), α is strictly bounded between −π
2 and π

2 , which
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means that as long as there is no convergence to null gradients, KARDAM is selecting

vectors in the correct cone around the true gradient. Most importantly, this angle shrinks

to zero when the variance is too small compared to the norm of the gradient, i.e., with

large batch-sizes, KARDAM boils down to be an unbiased gradient estimator. However,

we only require the “component-wise” condition.

(1+ε)
p

dσ+ε′α

∇∇∇F (θt )

EKartp

Figure B.1 – If
∥∥EKartp −∇∇∇F (θt )

∥∥≤ (1+ε)
p

dσ+ε′ then 〈EKartp ,∇∇∇F (θt )〉 is upper bounded

by (1− sinα)‖∇∇∇F (θt )‖2 where sinα= (1+ε)
p

dσ+ε′
‖∇∇∇F (θt )‖ .

In fact, as long as ‖∇∇∇F (θt )‖ > p
d .σ, we can consider small enough ε and ε′ such that

D1 = (1 + 3
4C )

p
dσ

‖∇∇∇F (θt )‖ , D2 = 1
C + C−1

C

p
dσ

‖∇∇∇F (θt )‖ , and sin(α) = min(D1,D2) < 1. This indeed

guarantees that α < π
2 , moreover, it is enough to take C >> ∇∇∇F (θt )‖p

dσ
and α would satisfy

sin(α) ≈
p

dσ
‖∇∇∇F (θt )‖ .

Actually, in a list of L previous selected vectors, more than half of the vectors are from correct

workers. (progress is made: liveness)

Consider a sublist of L from Li to L j . At the time of adding a worker in L j , the frequency

criteria was checked for the new addition to L. The active table at that time assure that in any

new sublist of L, especially L j
i ), any f workers appear at most j−i

2 times. As the number of

Byzantine workers is maximum f . in sublist L j
i , the Byzantine workers did less than half of the

updates. In other words, at least half of the updates come from honest workers. This proves

the safety of KARDAM.

The Byzantine workers may stop sending updates or send incorrect updates. In the case where

the Byzantine workers stop sending updates, KARDAM still guarantees liveness. The reason is

that there are at least 2 f +1 honest workers who update the model.

B.1.2 Convergence Analysis

We provide the convergence guarantee in terms of ergodic convergence, i.e., the weighted

average of the L2 norm of all gradients (||∇∇∇F (θt )||2). For the sake of clarity in the proofs, if X

is a set, we also denote its cardinality by X .
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Remark 4 (Coordinate sum). Given a list of vectors u1, . . . ,uN , we implicitly use the following

inequality in our proof. ∥∥∥∥∥ N∑
i=1

ui

∥∥∥∥∥
2

≤ N ·
N∑

i=1
‖ui‖2 (B.2)

Lemma 9 (Ergodic convergence rate). Assume that, for all steps 1 ≤ t ≤ T

∑
λ∈Λt

{
Kγ2

t |Λt |+
∞∑

s=1

∑
ν∈Λt+s

γt+sK 2ν|Gt+s,ν|Λ−1(ν)I(s≤Λ−1(ν))γ
2
t |Λt |

}
λ2

≤ ∑
λ∈Λt

γtλ

|Gtλ|

Then, the ergodic convergence rate is bounded as follows.

T∑
t=1

(
γt

∑
λ∈Λt

λGtλ

)
E||∇∇∇F (θt )||2

T∑
t=1

γt
∑

λ∈Λt

λGtλ

≤ 2(F (θ1)−F (θ∗))
T∑

t=1
γt

∑
λ∈Λt

λGtλ

+

(
T∑

t=1
Kγ2

t
∑

λ∈Λt

λ2Gtλ+γt K 2 ∑
λ∈Λt

λGtλ

t−1∑
j=t−Λ−1(λ)

γ2
j

∑
λ′∈Λ j

λ′2G jλ′

)
·d ·σ2

T∑
t=1

γt
∑

λ∈Λt

λGtλ

Proof. For the sake of concision, for every m = [g , l ] ∈ Gtλ, we denote by ξ[t ] the set of ξ

values that the server sends during step t . Let ξ[t ,∗6=m] denote the set ξ[t ] minus the variable ξ

corresponding to message m. Additionally, G[tm] :=G(θt−τt l ,ξ) and ∇∇∇F [tm] :=∇∇∇F (θt−τt l ).

A second order expansion of F , followed by the application of the Lipschitz inequality to ∇∇∇F
yields the following.

F (θt+1)−F (θt ) ≤ 〈∇∇∇F (θt ),θt+1 −θt 〉+ K

2
‖θt+1 −θt‖2

≤−γt
∑
Λt

λGtλ〈∇∇∇F (θt ),
1

Gtλ

∑
Gtλ

G[tm]〉+ K

2
γ2

t

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

G[tm]

∥∥∥∥∥
2

Taking the expectation and using the correct cone property, we have:

Eξ[t ]F (θ(t+1))−F (θt ) ≤−γt
∑
Λt

λGtλ〈∇∇∇F (θt ),
1

Gtλ

∑
Gtλ

∇∇∇F [tm]〉

+ K

2
γ2

t Eξ[t ]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

G[tm]

∥∥∥∥∥
2
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Using 〈a,b〉 = ||a||2+||b||2−||a−b||2
2 , we obtain the following inequality.

Eξ[t ]F (θt+1)−F (θt ) ≤−γt

2

∑
Λt

λGtλ ‖∇∇∇F (θt )‖2

− γt

2

∑
Λt

λGtλ

∥∥∥∥∥ 1

Gtλ

∑
Gtλ

∇∇∇F [tm]

∥∥∥∥∥
2

+ Kγ2
t

2
Eξ[t ]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

G[tm]

∥∥∥∥∥
2

︸ ︷︷ ︸
S1

+ γt

2

∑
Λt

λGtλ

∥∥∥∥∥∇∇∇F (θt )− 1

Gtλ

∑
Gtλ

∇∇∇F [tm]

∥∥∥∥∥
2

︸ ︷︷ ︸
S2

We now define two terms S1 and S2 as follows.

S1 = Eξ[t ]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

(G[tm]−∇∇∇F [tm])+∑
Λt

λ
∑
Gtλ

∇∇∇F [tm]

∥∥∥∥∥
2

= Eξ[t ]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

(G[tm]−∇∇∇F [tm])

∥∥∥∥∥
2

+Eξ[m]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

∇∇∇F [tm]

∥∥∥∥∥
2

+2Eξ[t ]〈
∑
Λt

λ
∑
Gtλ

(G[tm]−∇∇∇F [tm]),
∑
Λt

λ
∑
Gtλ

∇∇∇F [tm]〉

= Eξ[t ]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

(G[tm]−∇∇∇F [tm])

∥∥∥∥∥
2

+Eξ[t ]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

∇∇∇F [tm]

∥∥∥∥∥
2

+2〈∑
Λt

λ
∑
Gtλ

(∇∇∇F [tm]−∇∇∇F [tm]),
∑
Λt

λ
∑
Gtλ

∇∇∇F [tm]〉

= Eξ[t ]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

(G[tm]−∇∇∇F [tm])

∥∥∥∥∥
2

︸ ︷︷ ︸
A1

+Eξ[t ]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

∇∇∇F [tm]

∥∥∥∥∥
2

︸ ︷︷ ︸
A2

Regarding A2, applying Equation B.2 yields the following inequality.

A2 ≤ Eξ[t ]Λt ·
∑
Λt

λ2‖∑
Gtλ

∇∇∇F [tm]‖2 ≤Λt ·
∑
Λt

λ2Eξ[t ]‖
∑
Gtλ

∇∇∇F [tm]‖2

Regarding A1, the term ‖. . .‖2 is expressed as a scalar product and expanded as follows.

A1 = Eξ[t ]

∑
λ,λ′∈Λt

( ∑
m∈Gtλ,
m′∈Gtλ′

λλ′ · 〈G[tm]−∇∇∇F [tm],G[tm′]−∇∇∇F [tm′]〉
)

= diagonal +off-diagonal
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= ∑
λ∈Λt

∑
m∈Gtλ

λ2 ·Eξ[t ]‖G[tm]−∇∇∇F [tm]‖2 +Eξ[t ,m′ 6=m]

(
Eξ〈G[tm]−∇∇∇F [tm],G[tm′]−∇∇∇F [tm′]〉)

≤∑
Λt

λ2Gtλ ·d ·σ2 +d ·σ2 +2DKσ
p

d +K 2D2

The sum over the off-diagonal terms (i.e., (λ,m) 6= (λ′,m′)) is bounded by d ·σ2 +2DKσ
p

d +
K 2D2. Moreover, if λ 6=λ′, then m 6= m′ because Gtλ and Gtλ′ are disjoint sets and thus for any

off-diagonal pair (λ,m), (λ,m′) we have m 6= m′.

Eξ[t ]〈G[tm]−∇∇∇F [tm],G[tm′]−∇∇∇F [tm′]〉
= Eξ[t ,m′ 6=m]

(
Eξ〈G[tm]−∇∇∇F [tm],G[tm′]−∇∇∇F [tm′]〉)

= Eξ[t ,m′ 6=m]
〈EξG[tm]−∇∇∇F [tm],G[tm′]−∇∇∇F [tm′]〉

= Eξ[t ,m′ 6=m]
(〈EξG[tm],G[tm′]〉−〈∇∇∇F [tm],G[tm′]〉−〈EξG[tm],∇∇∇F [tm′]〉+〈∇∇∇F [tm],∇∇∇F [tm′]〉)

≤ Eξ[t ,m′ 6=m]
(‖EξG[tm]‖ ·‖G[tm′]‖+‖∇∇∇F [tm]‖ ·‖G[tm′]‖

+‖EξG[tm]‖ ·‖∇∇∇F [tm′]‖+‖∇∇∇F [tm]‖ ·‖∇∇∇F [tm′]‖)

≤ d ·σ2 +2DKσ
p

d +K 2D2

Hence, we obtain the following inequalities for S1 and S2.

S1 ≤
∑
Λt

λ2Gtλ ·d ·σ2 +Λt ·
∑
Λt

λ2Eξ[t ]‖
∑
Gtλ

∇∇∇F [tm]‖2 +d ·σ2 +2DKσ
p

d +K 2D2

S2 ≤
∥∥∥∥∥ 1

Gtλ

∑
Gtλ

∇∇∇F (θt )−∇∇∇F [tm]

∥∥∥∥∥
2

Recall that, since m = [g , l ] ∈ Gtλ, we have ∇∇∇F [tm] =∇∇∇F (θt−τt l ). By applying the Lipschitz

inequality, we get:

S2 ≤ K 2‖θt −θt−Λ−1(λ)‖2

≤ K 2

∥∥∥∥∥ t−1∑
j=t−Λ−1(λ)

θ j+1 −θ j

∥∥∥∥∥
2

≤ K 2

∥∥∥∥∥ t−1∑
j=t−Λ−1(λ)

γ j
∑
ν∈Λ j

ν
∑
G jν

G[ j m]

∥∥∥∥∥
2

≤ K 2

∥∥∥∥∥ t−1∑
j=t−Λ−1(λ)

γ j
∑
ν∈Λ j

ν
∑
G jν

(G[ j m]−∇∇∇F [ j m])

∥∥∥∥∥
2

︸ ︷︷ ︸
S3=‖a‖2
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+K 2

∥∥∥∥∥ t−1∑
j=t−Λ−1(λ)

γ j
∑
ν∈Λ j

ν
∑
G jν

∇∇∇F [ j m]

∥∥∥∥∥
2

︸ ︷︷ ︸
S4=‖b‖2

+2K 2〈a,b〉

Hence, we obtain the following inequalities for S3 and S4.

Eξ[ j ],...S3 ≤
t−1∑

j=t−Λ−1(λ)

γ2
j

∑
Λ j

ν2G jν ·d ·σ2 (cross-products vanish)

Eξ[ j ],...S4 ≤Λ−1(λ)
t−1∑

j=k−Λ−1(λ)

γ2
jΛ j

∑
Λ j

ν2E

∥∥∥∥∥∑
G jν

∇∇∇F [ j m′]

∥∥∥∥∥
2

(by Equation B.2).

Moreover, we have E∗〈a,b〉 = 〈E∗a,b〉 = 0.

ES2 ≤ K 2
t−1∑

j=t−Λ−1(λ)

γ2
j

∑
Λ j

ν2G jν ·d ·σ2

+K 2Λ−1(λ)
t−1∑

j=t−Λ−1(λ)

γ2
jΛ j

∑
Λ j

ν2E

∥∥∥∥∥∑
G jν

∇∇∇F [ j m′]

∥∥∥∥∥
2

Eξ[t ]F (θt+1)−F (θt ) ≤−γt

2

∑
Λt

λGtλ ‖∇∇∇F (θt )‖2

+∑
Λt

(
Kγ2

tΛtλ
2

2
− γtλ

2Gtλ

)
E

∥∥∥∥∥∑
Gtλ

∇∇∇F [tm]

∥∥∥∥∥
2

+
(

Kγ2
t

2

∑
Λt

λ2Gtλ+
γt K 2

2

∑
Λt

λGtλ

t−1∑
j=t−Λ−1(λ)

γ2
j

∑
Λ j

ν2G jν

)
·d ·σ2

+ γt K 2

2

∑
Λt

λGtλΛ
−1(λ)

t−1∑
j=t−Λ−1(λ)

γ2
jΛ j

∑
Λ j

ν2E

∥∥∥∥∥∑
jν

∇∇∇F [ j m′]

∥∥∥∥∥
2

Summing for t = 1, . . . ,T , we arrive at the following inequality.

EF (θt+1)−F (θ1) ≤−∑
t

1

2

(
γt

∑
Λt

λGtλ

)
‖∇∇∇F (θt )‖2

+∑
t

(
Kγ2

t

2

∑
Λt

λ2Gtλ+
γt K 2

2

∑
Λt

λGtλ

t−1∑
j=t−Λ−1(λ)

γ2
j

∑
Λ j

ν2G jν

)
·d ·σ2

+∑
t

∑
Λt

(
Kγ2

tΛtλ
2

2
− γtλ

2Gtλ

)
E

∥∥∥∥∥∑
Gtλ

∇∇∇F [tm]

∥∥∥∥∥
2
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+∑
t

( ∞∑
s=1

∑
Λt+s

γt+sK 2νGt+s,νΛ
−1(ν)I(s ≤Λ−1(ν))

)
γtΛtλ

2

2
E

∥∥∥∥∥∑
Gtλ

∇∇∇F [tm]

∥∥∥∥∥
2

The last term comes from the following observation.

T∑
t=1

∑
Λt

∞∑
s=1

Fλ
t Zt−s I(s ≤Λ−1(λ)) =

∞∑
s=1

T∑
t=1

∑
Λt

Fλ
t Zt−s I(s ≤Λ−1(λ))

=
∞∑

s=1

T−s∑
l=1−s

∑
Λl+s

Fλ
l+s Zl I(s ≤Λ−1(λ)) =

∞∑
s=1

T∑
t=1

∑
Λt+s

Fλ
t+s Zt I(s ≤Λ−1(λ))

=
T∑

t=1

( ∞∑
s=1

∑
Λt+s

Fλ
t+s I(s ≤Λ−1(λ))

)
Zt

Since the two last terms sum to a non-positive value, we arrive at the following inequality.

∑
t

1

2

(
γt

∑
Λt

λGtλ

)
‖∇∇∇F (θt )‖2 ≤F (θ1)−F (θ∗)

+∑
t

(
Kγ2

t

2

∑
Λt

λ2Gtλ+
γt K 2

2

∑
Λt

λGtλ

t−1∑
j=t−Λ−1(λ)

γ2
j

∑
Λ j

ν2G jν

)
·d ·σ2 +O(

1

K ·√|ξ|
)

Theorem 4 (Convergence guarantee). We express the convergence guarantee in terms

of the ergodic convergence, i.e., the weighted average of the L2 norm of all gradients

(||∇F (θt )||2). Using the above-mentioned assumptions, and the maximum adaptive rate

φmax = max{φ1, . . . ,φt }, we get the following bound on the convergence rate.

1

T

T∑
t=1

E‖∇F (θt )‖2 ≤ (
2+φmax +γK Mχφmax

)
γK dσ2 +dσ2 +2DKσ

p
d +K 2D2

under the prerequisite that

∑
λ∈Λt

λ2|Λt |
{

Kγ2
t +

∞∑
s=1

(
∑

ν∈Λt+s

γt+sK 2ν|Gt+s,ν|Λ−1(ν)I(s≤Λ−1(ν))γ
2
t )

}
≤∑
λ∈Λt

γtλ

|Gtλ|

where the Iverson indicator function is defined as follows

I(s≤∆) =
1 if s ≤∆

0 otherwise.
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and χ denotes a constant such that for all τt l , the following inequality holds:

τt l ·Λ(τt l ) ≤χ (5.3)

Proof. We first recall Definition 10, which introduces the adaptive learning rate schedule,

before we prove Theorem 4 via employing Lemma 9. Due to the choice of the learning rate

(Definition 10), the inequality in Theorem 4 reduces to the following inequality.

1

T

T∑
t=1

E‖F (θt )‖2 ≤ S5 +S6 +S7

First, we obtain the following equality for S5.

S5 = 2(F (θ1)−F (θ∗))∑T
t=1γt

∑
λ∈Λt

λGtλ
= 2γ2K T R ·d ·σ2

γT R
= 2γK ·d ·σ2

Regarding S6, we obtain the following inequality.

S6 =
∑T

t=1 Kγ2
t
∑
λ∈Λt

λ2Gtλ∑T
t=1γt

∑
λ∈Λt

λGtλ
·d ·σ2 = Kγ2 ∑T

t=1φ
2
t
∑
λ∈Λt

λ2Gtλ

γT R
·d ·σ2

≤ Kγ2 ∑T
t=1φ

2
t
∑
λ∈Λt

λGtλ

γT R
·d ·σ2 (since λ2 ≤λ≤ 1)

≤ Kγ2T Rφmax

γT R
·d ·σ2 =φmaxγK ·d ·σ2

Finally, we obtain the following inequality for S7.

S7 =
∑T

t=1γt K 2 ∑
λ∈Λt

λGtλ
∑t−1

j=t−Λ−1(λ)γ
2
j

∑
λ′∈Λ j

λ′2R jλ′

γT R
·d ·σ2

≤
K 2γ3 ∑T

t=1φt
∑
λ∈Λt

λGtλ
∑t−1

j=t−Λ−1(λ)φ
2
j

∑
λ′∈Λ j

λ′2R jλ′

γT R
·d ·σ2

≤ K 2γ3 ∑T
t=1

∑
λ∈Λt

λGtλRΛ−1(λ)φmax

γT R
·d ·σ2

≤ K 2γ3 ∑T
t=1

∑
λ∈Λt

GtλRχφmax

γT R
·d ·σ2 ≤ K 2γ3T R2χφmax

γT R
·d ·σ2

≤ γ2K 2Rχφmax ·d ·σ2
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Hence, we prove the ergodic convergence rate.

1

T

T∑
t=1

E‖∇∇∇F (θt )‖2 ≤ (
2+φmax +γK Rχφmax

) ·γK ·d ·σ2 +d ·σ2 +2DKσ
p

d +K 2D2

Theorem 5 (Convergence time complexity). Given any mini-batch size |ξ|, the number of

gradients M the server waits for before updating the model, and the total number of steps T , the

time complexity for the convergence of KARDAM is:

O
(

φmax√
T |ξ|M

+ χφmax

T
+dσ2 +2DKσ

p
d +K 2D2

)

Proof. Substituting the value of γ from Definition 10 in RHS of Theorem 4, we get the following.(
2+φmax +γK Rχφmax

) ·γK ·d ·σ2 +d ·σ2 +2DKσ
p

d +K 2D2

=O
(

φmax√
T · |ξ| ·R

+ χ ·φmax

T
+d ·σ2 +2DKσ

p
d +K 2D2

)

Note that σ=O(1/
√|ξ|) (Assumption 2) and therefore the bound is also dependent on n.

Remark 2 (Dampening comparison). Given two dampening functions Λ1(τ) = 1
1+τ and

Λ2(τ) = exp(−α β
p
τ), and the convergence time complexity from Theorem 5, Λ2(τ) converges

faster thanΛ1(τ) when β
e <α≤ ln(τ+1)

βpτ .

Proof. From Inequality 5.3, we have the following forΛ1 andΛ2.

χ1 = max
τ

{
τ

τ+1

}
χ2 = max

τ

{
τ ·exp(−α β

p
τ)

}

The maximum value of {τ ·exp(−α β
p
τ)} is

(
β

eα

)β
when τ=

(
β
α

)β
. We get that χ1 ≥χ2 when the

following holds.
τ

τ+1
≥

( β
eα

)β
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Hence, from the above inequality, we get the following.

τ≥ 1(
eα
β

)β−1

Note that since τ> 0, we get
(

eα
β

)β > 1 which leads to the following lower bound on α.

α> β

e
(B.2)

Furthermore, for the φmax terms, we compare the values between the two dampening

functions.

φ1 = max
τ

{
R∑

Λt
λ · |Gtλ|

}
= max

τ

{
R∑

τ
1
τ+1 · |Gtλ|

}
φ2 = max

τ

{
R∑

Λt
λ · |Gtλ|

}
= max

τ

{
R∑

τ exp(−α β
p
τ) · |Gtλ|

}

Hence, for φ1 ≥ φ2, we need to show that 1
τ+1 ≤ exp(−α β

p
τ), i.e., τ+ 1 ≥ exp(α β

p
τ). The

relation holds for any α with the upper bound as follows.

α≤ ln(τ+1)
β
p
τ

(B.3)

From Inequalities B.2 and B.3, we get the following.

β

e
<α≤ l n(τ+1)

β
p
τ

One possible setting is β ≈ 1.85 when 1 ≤ τ ≤ 10, β ≈ 3.1 when 11 ≤ τ ≤ 33, and β ≈ 4 when

34 ≤ τ≤ 75. Given these values of β and τ,Λ2(τ) has a smaller convergence time complexity

(Theorem 5) thanΛ1(τ). Hence,Λ2(τ) converges faster thanΛ1(τ).

B.2 Differentially Private Stochastic Coordinate Descent

B.2.1 Objective Decrease Lower Bound

Lemma 5 (Update step - objective decrease lower bound). Assuming `i are 1/µ-smooth, then

the update step of Algorithm 1 decreases the objective, even if computed based on a noisy version
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of α, v . The decrease is as follows:

E[S(α)−S(α+ •
∆α)] ≥ µλL

µλN +L
E[S(α)] (6.4)

where S denotes the dual suboptimality defined as: S(α) :=F∗(α)−minαF∗(α).

Proof. Consider the optimization stepαi → α̂i+1 (Sequence 6.3) that employs a set of unscaled

updates (
•

∆α j ). Given the µ-strong convexity of `∗i (follows from 1/µ-smoothness of `i ), the

decrease in the dual objective is:

∆F := F∗(α)−min•
∆α j

F∗(α+γ
L∑

j=1
e j

•
∆α j )

≥ F∗(α)−F∗(α+γ
L∑

j=1
e j

•
∆α j ) ∀ •

∆α j ∈R

[115, Lemma 3]= F∗(α)− (1−γ)F∗(α)−γ
L∑

i=1
Gσ′

j (
•

∆α j ; v ,α j )

= γ

(
F∗(α)−

L∑
i=1

Gσ′
j (

•
∆α j ; v ,α j )

)

where Gσ′
j is the subproblem that each parallel loop is solving:

Gσ′
j := 1

N
`∗j (−α j −

•
∆α j )+ 1

L

1

2λN 2 ‖v‖2 + σ′

2λN 2 ‖x j
•

∆α j ‖2 + 1

λN 2 x>
j v

•
∆α j

Therefore:

1

γ
∆F = 1

N

L∑
j=1

`∗j (−α j )+ 1

2λN 2 ‖v‖2 − 1

N

L∑
j=1

`∗j (−(α j +
•

∆α j ))− 1

2λN 2 ‖v‖2 − σ′

2λN 2

L∑
j=1

‖x j
•

∆α j ‖2 − 1

λN 2

L∑
j=1

x>
j v

•
∆α j

Consider
•

∆α j := s(u j −α j ) for any s ∈ (0,1] and for u j =−∇ j` j

(
1
λN x>

j E[v ]
)
. In some sense, s

denotes the deviation from the “optimal”
•
∆-value (u j −a j ). Hence we have:

N

γ
∆F ≥

L∑
j=1

(
`∗j (−α j )−`∗j (−(α j + s(u j −α j )))

)
− σ′

2λN

L∑
j=1

‖x j s(u j −a j )‖2 − 1

λN

L∑
j=1

x>
j v s(u j −a j )

By the µ-strong convexity of `∗i (follows from 1/µ-smoothness of `i ) we have:

`∗j (−(α j + s(u j −α j ))) = `∗j (s(−u j )+ (1− s)(−a j )) ≤ s`∗j (−u j )+ (1− s)`∗j (−a j )− µ

2
s(1− s)(u j −a j )2
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Hence we have:

N

γ
∆F ≥

L∑
j=1

(
`∗j (−α j )− s`∗j (−u j )− (1− s)`∗j (−α j ) + µ

2
s(1− s)(u j −α j )2

)

−
L∑

j=1

(
σ′s2(u j −α j )2

2λN
‖x j ‖2 + 1

λN
x>

j v s(u j −α j )

)

=
L∑

j=1

(
−s`∗j (−u j )+ s`∗j (−α j )+ µ

2
s(1− s)(u j −α j )2 − σ′s2(u j −α j )2

2λN
‖x j ‖2 − 1

λN
x>

j v s(u j −α j )

)

By taking the expectation w.r.t. the randomization in the noise, using Jensen’s inequality for

convex functions (E[`∗j (x)] ≥ `∗j (E[x])), the fact that σ2 = E[α2
j ]−E[α j ]2 and the fact that the

noise on α and v is independent we have:

N

γ
E[∆F ] ≥

L∑
j=1

(
−sE[`∗j (−u j )]+ sE[`∗j (−α j )]+ µ

2
s(1− s)E[(u j −α j )2]

− σ′s2

2λN
E[(u j −α j )2]‖x j ‖2 − s

λN
x>

j E[v ](u j −E[α j ])

)
≥

L∑
j=1

(
−s`∗j (−u j )+ sE[`∗j (−α j )]− s

λN
x>

j E[v ](u j −E[α j ])

+
(
µ

2
s(1− s)− σ′s2

2λN
‖x j ‖2

)
(u2

j −2u jE[α j ]+E[α2
j ])

)
≥

L∑
j=1

(
−s`∗j (−u j )+ sE[`∗j (−α j )]+ s

λN
x>

j E[v ]E[α j ]

− s

λN
x>

j E[v ]u j +
(
µ

2
s(1− s)− σ′s2

2λN
‖x j ‖2

)
(u2

j −2u jE[α j ]+E[α j ]2 +σ2)

)

The following is the Fenchel-Young inequality that holds as equality given u j =
−∇ j` j

(
1
λN x>

j E[v ]
)
:

` j

(
1

λN
x>

j E[v ]

)
+`∗j (−u j ) =− 1

λN
x>

j E[v ]u j

Hence we have:

N

γ
E[∆F ] ≥

L∑
j=1

(
s` j

(
1

λN
x>

j E[v ]

)
+ sE[`∗j (−α j )]+ s

λN
x>

j E[v ]E[α j ]

+
(
µ

2
s(1− s)− σ′s2

2λN
‖x j ‖2

)
(u2

j −2u jE[α j ]+E[α j ]2 +σ2)

)
(B.4)
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Appendix B. Detailed Proofs

We then employ the definition of the duality gap (Gap(α) :=F (θ(α))− (−F∗(α))) and take
the expectation w.r.t. the randomization in the noise along with the Jensen inequality for
convex functions.

E[Gap(α)] =F (θ(E[α]))− (−E[F∗(α)]) = 1

N

N∑
j=1

(
` j (x>

j θ)+E[`∗j (−α j )]
)
+ λ

2
‖θ(E[α])‖2 + 1

2λN 2 ‖X E[α]‖2

We then apply the Fenchel-Young inequality:

g (θ(E[α]))+ g∗(X E[(α]) ≥ θ(E[α])>X E[α] ⇔ λ

2
‖θ(E[α])‖2 + 1

2λN 2 ‖X E[α]‖2 ≥ 1

λN
E[v ]>X E[α]

The above inequality holds as equality in light of Remark 3 and the primal-dual map. Therefore

by using uniform mini-batch sampling the duality gap becomes:

E[Gap(α)] = 1

N

N∑
j=1

(
` j (x>

j θ)+E[`∗j (−α j )]+ 1

λN
E[α j ]x>

j E[v ]

)

= 1

N

N

L

L∑
j=1

(
` j (x>

j θ)+E[`∗j (−α j )]+ 1

λN
E[α j ]x>

j E[v ]

)

= 1

L

L∑
j=1

(
` j (x>

j θ)+E[`∗j (−α j )]+ 1

λN
E[α j ]x>

j E[v ]

)

By extracting these terms in Inequality B.4, the bound simplifies:

N

γ
E[∆F ] ≥ sL ·E[Gap(α)]+

L∑
j=1

(µ
2

s(1− s) − σ′s2

2λN
‖x j ‖2

)
(u2

j −2u jE[α j ]+E[α j ]2 +σ2)

Then by using ‖x j‖2 = 1 and Gap(α) ≥S(α) we get:

E[∆F ] = E[S(α)]−E[S(α+γ
L∑

j=1

•
∆α j )]

≥ sLγ

N
E[S(α)]+ σ′γs2

2λN 2

(
µλ(1− s)N

sσ′ −1

) L∑
j=1

(
(u j −E[α j ])2 +σ2)

σ′=L,γ=1= sL

N
E[S(α)]+ Ls2

2λN 2

(
µλ(1− s)N

sL
−1

) L∑
j=1

(
(u j −E[α j ])2 +σ2)

s= µλN
µλN+L= µλL

µλN +L
E[S(α)]

Thus as long as E[α] is not equalα? we can expect a decrease in the objective from computing
an update

•
∆ based on the noisy α, v .
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