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A B S T R A C T

The identification of accident hot spots is a central task of road safety management. Bayesian count data models
have emerged as the workhorse method for producing probabilistic rankings of hazardous sites in road networks.
Typically, these methods assume simple linear link function specifications, which, however, limit the predictive
power of a model. Furthermore, extensive specification searches are precluded by complex model structures
arising from the need to account for unobserved heterogeneity and spatial correlations. Modern machine
learning (ML) methods offer ways to automate the specification of the link function. However, these methods do
not capture estimation uncertainty, and it is also difficult to incorporate spatial correlations. In light of these
gaps in the literature, this paper proposes a new spatial negative binomial model which uses Bayesian additive
regression trees to endogenously select the specification of the link function. Posterior inference in the proposed
model is made feasible with the help of the Pólya-Gamma data augmentation technique. We test the performance
of this new model on a crash count data set from a metropolitan highway network. The empirical results show
that the proposed model performs at least as well as a baseline spatial count data model with random parameters
in terms of goodness of fit and site ranking ability.

1. Introduction

The identification of accident-prone locations (so-called hot spots) is
a core task of road safety management (Cheng et al., 2020; Huang et al.,
2009; Lee et al., 2020). Of the various approaches for accident hot spot
identification (see Wang et al., 2018; Zahran et al., 2019, for a com-
parison), crash frequency analysis is the most widely employed method.
Crash count data models are used to produce model-based rankings of
hazardous sites and to predict crash counts at hot spots under coun-
terfactual traffic flow and road design scenarios (Deacon et al., 1975).
Recent work also uses multivariate analysis for the joint modelling of
road fatality and injury counts (Besharati et al., 2020), single and multi-
vehicle crashes (Wang and Feng, 2019), and crash frequency by travel
modes (Huang et al., 2017).

Crash counts are typically modelled using Poisson log-normal or
negative binomial regression models (Lord and Mannering, 2010). Ac-
commodating flexible representations of unobserved heterogeneity in
model parameters and accounting for correlations between spatial units
are central themes of the recent crash count modelling literature (Cai

et al., 2019a; Cheng et al., 2020; Dong et al., 2016; Heydari et al., 2016;
Mannering et al., 2016; Ziakopoulos and Yannis, 2020). However, these
flexible representations of unobserved heterogeneity are achieved at
the cost of a restrictive linear specification of the link function. Whilst
linear-in-parameters link functions are appealing from an interpret-
ability perspective, an over-simplification of the relationship between
predictors and the explained variable may negatively affect the pre-
dictive performance of a model (Li et al., 2008; Huang et al., 2016).

Since the predictive performance of a model is of paramount im-
portance in hot spot identification and site ranking applications, the
specification of the link function should be carefully selected. However,
in practice, the space of possible link function specifications is prohi-
bitively large, which precludes exhaustive specification searches.
Modern machine learning (ML) methods offer a remedy to this chal-
lenge, as they enable automatic specification searches. A few studies
have adopted kernel-based regression (Thakali, 2016), neural networks
(Chang, 2005; Huang et al., 2016; Xie et al., 2007; Zeng et al., 2016a,b),
support vector machine (Dong et al., 2015; Li et al., 2008), and deep
learning architectures (Cai et al., 2019b; Dong et al., 2018) for crash
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count modelling.
Modern ML methods are shown to surpass the traditional count data

models in terms of predictive accuracy but succumb to four limitations.
First, with exception of the work by Dong et al. (2015), none of the
existing ML studies account for spatial correlations between observa-
tions. It is important to note that a non-linear link function specification
does not inherently account for spatial correlations, and ignoring these
correlations can deteriorate the robustness of predictions (Dong et al.,
2015). Second, unlike traditional count data models, ML methods do
not provide a quantification of estimation uncertainty and thus do not
offer straightforward ways to construct confidence or credible intervals.
Third, ML methods are fully nonparametric, with no easy ways to in-
tegrate interpretable components in link functions. In other words, if a
user is interested in inferring the relationship between selected ex-
planatory variables and crash counts, there is no straightforward way to
specify a semiparametric link function in the above-mentioned ML-
based count data models. Fourth, ML-based crash count studies
benchmark the performance of their methods against simplistic para-
metric models which do not account for unobserved and spatial het-
erogeneity, which is not a fair comparison. More specifically, none of
the previous studies address an important question – whether a count
data model with a nonparametric link function can outperform a model
with a linear link function that also accounts for unobserved hetero-
geneity.

We emphasise that the before-mentioned ML methods adopt clas-
sical inference approaches, which yield point estimates of parameters of
interest. On the contrary, the Bayesian approach facilitates accounting
for various sources of uncertainty in model formulation and inference.
For instance, posterior draws of site rankings at each iteration of the
Gibbs sampler can directly provide ranking estimates with credible
intervals (Miaou and Song, 2005). Hence, the fully Bayesian approach
has emerged as the workhorse method in the site ranking literature.

Along the same lines, this paper proposes a Bayesian negative bi-
nomial regression model, which not only addresses the first three lim-
itations of the above-discussed ML methods by retaining all advantages
of the statistical crash count models (interpretability, inference, ac-
counting for random parameters and spatial correlations) but also al-
lows for an additional nonparametric component in the link function
with an endogenous selection of the specification. This nonparametric
component is specified as sum of trees using the Bayesian Additive
Regression Trees (BART) framework (Chipman et al., 2010). The sum of
trees specification inherently partitions the support of each explanatory
variable during the estimation, resulting in a sum of step functions of
individual predictors. Furthermore, if a tree depends only on one pre-
dictor, then this specification captures the main effect of the predictors;
it represents an interaction effect, if a tree depends on more than one
predictor. This process is equivalent to creating categorical variables
from continuous variables, as it inherently accounts for interaction ef-
fects between predictors, while cut-offs and functional forms of inter-
action effects are endogenously selected during estimation based on
predictive accuracy. This is particularly relevant in the context of the
site ranking, where continuous predictors like speed limit and shoulder
width are often converted into categorical variables by manually se-
lecting cut-offs before entering into linear link functions because such
explanatory variables are unlikely to have a constant marginal effect
over the entire support.

In the Gibbs sampler for the proposed model, we adopt the Pólya-
Gamma augmentation method to deal with the non-conjugacy of the
negative binomial likelihood (Polson et al., 2013). The key idea of this
data augmentation approach is to translate the negative binomial
likelihood into a Gaussian likelihood by introducing auxiliary Pólya-
Gamma-distributed random variables into the model. Finally, we ad-
dress the last limitation of recent ML studies by providing a fair com-
parison of the proposed model with its linear-link counterpart, while
also incorporating random parameters and spatial random effects. The
proposed approach is a full Bayes (FB) method and the superiority of FB

over empirical Bayes (EB) methods is well established in the literature
(Guo et al., 2019). Nonetheless, we still benchmark our approach
against EB in site ranking analysis.

The remainder of this paper is organised as follows: In Section 2, we
introduce the formulation of the proposed model framework and in
Section 3, we outline the estimation approach. In Section 4, we present
the empirical analysis and in Section 5, we conclude and discuss ave-
nues of future research.

2. Model formulation

Let yi denote an observed crash count on road segment
= …i N{1, 2, , }. We consider the distribution of yi to be negative bino-
mial (NB) with probability parameter pi and shape parameter r . The
link function = logi

p
p1

i
i
depends on road-segment-specific attributes

Fi and Xi. While Fi enters in the link function in a linear, interpretable
form, the effect of Xi is specified using a sum of trees = X T Mg ( ; , )j

m
i i j j1

(Chipman et al., 2010). Here, Tj is a binary regression tree, and Mj
denotes the parameters associated with its terminal nodes. To account
for spatial correlations between road segments, we also include a spa-
tial random effect i into the link function. The collection of spatial
random effects = …( , )N1 follows a matrix exponential spatial
specification (MESS) of dependence that ensures exponential decay of
influence over space (LeSage and Pace, 2007). Consequently, we have

= =S Wexp( ) with INormal(0, )N
2 , where W is an ×N N

non-negative spatial weight matrix, captures the magnitude of spatial
association, and is an error scale.

The proposed model is summarised below:

= …y r p i NNB( , ), 1, ,i i (1)

=
+

= …p i N
exp( )

1 exp( )
, 1, ,i

i

i (2)

= + + = …F X T MG i N( ; , ) , 1, ,i i i i i (3)

= = …
=

X T M X T MG g i N( ; , ) ( ; , ), 1, ,i i
j

m

i i j j
1 (4)

= =S Wexp( ) (5)

INormal(0, )N
2 (6)

Equation (3) can be rewritten in vector form. We have

= + +F G X T M( ; , ) (7)

such that

=T M F G F GP ( | , , , , ) (2 ) exp [ ] ˜ [ ]
2

N2 2 2

(8)

with =˜ S S
2 .

2.1. Bayesian additive regression trees (BART)

Chipman et al. (2010) introduce BART as a nonparametric prior
over a regression function to capture non-linear relationships and in-
teraction effects between predictors. BART has been widely applied to a
wide range of regression and classification problems (see Hill et al.,
2020) but the current study presents the first application of BART in
spatial count data modelling.

BART specifies the regression function as a sum of trees. Each treeTj
consists a group of decision nodes with splitting rules and a set of
terminal leaf nodes. Fig. 1 illustrates one such tree, whose splitting rules
at the decision nodes are <x 0.71 and <x 0.42 , and whose leaf nodes
are =M µ µ µ{ , , }j j j j1 2 3 . A tree and its associated decision rules create
partitions of the predictor space such that each partition corresponds to
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a leaf node. In the illustrative example, three partitions are induced:
j1 = {x1< 0.7}, j2 = {x1> 0.7, x2< 0.4}, j3 = {x1> 0.7,

x2> 0.4}. The illustrative tree inherently accounts for the interaction
between x1 and x2. However, if a tree depends only on one predictor, the
main effect of that predictor is captured. The function for the illus-
trative tree is:

= =X T M Xg µ x x t( ; , ) if { , } {1, 2, 3}.j j jt 1 2 jt (9)

X T Mg ( ; , )j j is a step function of a subset of predictors and thus, BART is
a sum of step functions. The key idea of BART is to regularise the fit by
keeping the effect of each individual tree small such that each of tree
can explain a different portion of the regression function. In other
words, each tree is constrained to be a weak learner and BART is an
ensemble of weak learners. The sum of trees model is a flexible speci-
fication, which results in an excellent predictive accuracy (Chipman
et al., 2010). Furthermore, splitting rules and leaf nodes are estimable
parameters in BART, which in turn facilitates automated specification
searches through endogenous partitioning of the predictor space.

2.2. Spatial error dependence

In this study, we adopt the matrix exponential spatial specification
(MESS; LeSage and Pace, 2007) to model the unobserved dependence
among spatial units. MESS is an appealing specification because it offers
computational advantages by simplifying the log-likelihood computa-
tions (LeSage and Pace, 2009). MESS also has close correspondence
with spatial autoregressive (SAR) and conditional autoregressive (CAR)
specifications (Strauss et al., 2017). Whereas SAR and CAR assume
geometric decay of spatial correlation, MESS relies on exponential
decay (LeSage and Pace, 2007). Readers can refer to Debarsy et al.
(2015) for a detailed derivation of the large sample properties of MESS.

3. Estimation

3.1. Pólya-Gamma data augmentation

Irrespective of the link function specification, conditional posterior
distributions of the parameters of the negative binomial model do not
belong to a known family of distributions (Buddhavarapu et al., 2016;
Park and Lord, 2009). In such situations, data augmentation techniques,
which involve intermediate or additional latent random variables, are
used to derive tractable conditional posteriors of model parameters
(Van Dyk and Meng, 2001). BART was originally developed for Gaus-
sian models and therefore, its application in non-Gaussian models can
be operationalised by transforming the original model into a Gaussian
model via data augmentation. For example, Chipman et al. (2010)

extend BART for a binary probit model with a flexible link function and
estimated it by adopting the data augmentation technique suggested by
Albert and Chib (1993). Similarly, Kindo et al. (2016) use BART to
specify indirect utilities in a multinomial probit model and estimated it
by augmenting indirect utilities as latent Gaussian random variables.

In this study, we adopt the Pólya-Gamma data augmentation tech-
nique which transforms the negative binomial model into a hetero-
skedastic Gaussian model (Polson et al., 2013). This augmentation is
not only appropriate for any negative binomial specification, as shown
by Buddhavarapu et al. (2016), but also enables seamless integration of
the Gibbs sampler of the heteroskedastic BART (Bleich and Kapelner,
2014) into that of the proposed model.

Pólya-Gamma data augmentation introduces auxiliary Pólya-
Gamma random variates i into the model. Conditional on i, the ne-
gative binomial likelihood is translated into a heteroskedastic Gaussian
likelihood, while closed-form posteriors for the augmentation variables
are retained (see Polson et al., 2013, for a detailed proof).

+y rPG( , 0)i i (10)

P y r
y r

( | , , ) exp
2 2i i i

i
i

i

i

2

(11)

y Z ZP r( | , , ) exp 1
2

[ ] [ ]
(12)

where

= =
…

…

×

×

Z

y r

y r

2

2

0

0N

N
N

N N N

1

1

1

1

(13)

= + = + + +Z F G X T M 0( ; , ) , Normal( , )1 (14)

3.2. Prior specification

We adopt the strategy used by Chipman et al. (2010) to specify
priors on Tj and M T|j j. Other prior distributions are summarised below:

Normal( , ) (15)

Normal( , )2 (16)

b cGamma( , )2 2 2 (17)

r r hGamma( , )0 (18)

Fig. 1. Illustration of a single binary treeTj and its corresponding partition of the predictor space . Internal tree nodes are marked with their splitting rules; leaf nodes
are marked with their leaf parameters.

R. Krueger, et al. Accident Analysis and Prevention 144 (2020) 105623

3



h b cGamma( , )0 0 (19)

Here b c r b c{ , , , , , , , , } {TreeHyper parameters}2
0 0 02 2

is a set of hyper-parameters and = T M r h{ , , , , , , , , }2 is a set
of latent variables of the models. Thus, the joint distribution of ob-
served and latent variables is:

= …

…
=

y y T M

T M

P P r P P r r h P h b c P b c P

P P P r

( , ) ( | , , , , , ) ( | , ) ( | , ) ( | , ) ( | , ) ( | , )

( | , ) ( , |{TreeHyper parameters) ( | )
i

N
i

2 0 0 0 2 2 2 2

1

(20)

3.3. Posterior updates

To infer the posterior distributions of the model parameters of in-
terest, we construct Markov chains by generating samples from the
conditional distributions of individual coordinates of the parameters
space. One iteration of the Gibbs sampler is described below:

• Update by sampling from Normal
+ +Z G F(( ˜ ) ( ), ( ˜ ) )1 1 .

• Update by sampling from Normal
+ + +F F F Z G F F(( ) ( ( ) ), ( ) )1 1 1 1 1

• Update 2 by sampling from + +( )b cGamma , S SN2
2 2

2 2 .

• Update i by sampling from +y rPG( , )i i i .
• Update r by sampling from a Gamma distribution (see Zhou et al.,
2012, Section 4.1.1).
• Update h by sampling from + +h r b r cGamma( , )0 0 0 .
• Update using the Metropolis-Hastings algorithm where

( ) ( )P ( |·) exp exp( )
2

˜
2

2
2 .

• Update T and M as illustrated for the heteroskedastic BART by
Bleich and Kapelner (2014), where the dependent variable is
Z F and the error covariance matrix is 1. The updates of
BART parameters are based on an iterative Bayesian backfitting
algorithm (Hastie et al., 2000), where one tree is updated condi-
tional on all other trees.
• Compute = = …Z i N, 1, ,i

y r
2
i

i
.

In this study, we present the estimation procedure for a specification
with only non-random parameters in the interpretable part of the link
function. However, a modeller might expect unobserved heterogeneity
in some elements of . For completeness, we note that the proposed
estimation procedure can be extended for such specifications of un-
observed heterogeneity to facilitate flexibility at no compromise in in-
terpretability. Thanks to Pólya-Gamma data augmentation, the exten-
sion is as simple as deriving a Gibbs sampler for a linear mixed-effects
model.

4. Empirical analysis

4.1. Data

The proposed model framework is empirically validated using de-
tailed crash frequency data from 1158 contiguous road segments of 11
highway facilities in the Greater Houston metropolitan area in the
United States of America. The data were compiled by geographically
fusing information retrieved from accident and road databases for an
observation period covering four consecutive calendar years in the
period from 2007 to 2010. For each road segment, the considered data
include the annual crash count aggregated over all accident types and
severity levels as well as other segment-specific characteristics, namely
the type of highway facility the segment in question is associated with,
the traffic volume, the truck traffic percentage, the road condition and
roadway design attributes. The identified Table 1 enumerates summary
statistics of the annual crash counts and the segment features for the
considered road segments for each year of the observation period. More
details about the data collection and processing are presented in
Buddhavarapu (2015). In the subsequent analysis, we treat the data
from each year as a separate sample and evaluate the empirical per-
formance of the proposed model across the different years of the ob-
servation period.

4.2. Methodology

4.2.1. Model specifications
We contrast the performance of four different model specifications.

The proposed negative binomial Bayesian additive regression trees (NB-

Table 1
Sample description ( =N 1158).

Predictor space 2007 2008 2009 2010
I I (random) II Mean Std. Mean Std. Mean Std. Mean Std.

Crash count N.A. N.A. N.A. 19.15 25.76 15.17 20.60 14.17 19.21 17.44 23.68
Interstate highway (dummy) × 0.45 0.50 0.45 0.50 0.45 0.50 0.45 0.50
Exurban area (dummy) × 0.27 0.45 0.27 0.45 0.27 0.45 0.20 0.40
Asphalt pavement (dummy) × 0.17 0.38 0.17 0.37 0.14 0.35 0.12 0.33
Asphalt shoulder (dummy) × 0.60 0.49 0.58 0.49 0.58 0.49 0.57 0.50
Total road width × × 54.51 15.17 55.00 15.27 55.97 15.62 56.27 15.43
Left shoulder width [ft] × × 8.61 2.78 8.66 2.78 8.36 3.33 8.52 3.23
Right shoulder width [ft] × × 9.02 2.31 9.06 2.30 9.75 2.07 9.60 2.26
Left shoulder width< 10 ft × 0.53 0.50 0.53 0.50 0.52 0.50 0.51 0.50
Right shoulder width< 10 ft × 0.44 0.50 0.44 0.50 0.25 0.43 0.27 0.45
Road overall quality index × × 35.40 20.11 36.66 18.08 36.03 19.32 37.89 17.92
Road overall quality index 45 × × 0.50 0.50 0.50 0.50 0.51 0.50 0.56 0.50
Road comfort index × × 34.48 5.70 34.95 5.57 34.57 5.78 35.13 5.57
Road structural index × × 41.80 14.95 42.52 13.71 42.69 13.97 43.56 12.76
Road surface index × × 0.61 1.27 0.62 1.28 1.82 1.47 1.06 1.54
Speed limit [MPH] 61.17 5.05 61.25 4.92 61.35 4.85 61.37 4.79
No. of through lanes × × 3.13 0.99 3.16 1.01 3.15 1.03 3.18 1.01
Road profile score (avg.) × × 117.45 35.76 114.40 34.47 116.89 36.10 113.11 34.19
Road profile score (left) × × 117.15 35.11 107.67 34.38 114.86 34.51 112.04 32.91
Road profile score (right) × × 117.88 37.55 121.32 37.50 119.06 38.67 114.32 36.44
Annual average daily traffic (AADT) [10k veh.] per lane × × 1.52 0.84 1.54 0.85 1.56 0.86 1.50 0.85
Logarithm of AADT per lane × × 9.46 0.61 9.47 0.61 9.48 0.61 9.45 0.61
Truck traffic percentage × 10.49 6.73 10.36 6.47 10.69 6.57 10.79 6.36
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BART-I, henceforth) model is benchmarked against negative binomial
regression models with spatial error terms and linear-in-parameters link
functions. We consider one model with fixed parameters (NB-fixed,
henceforth) as well as a model whose linear-in-parameters link function
contains both fixed and random parameters (NB-random, henceforth).
The specifications NB-BART-I, NB-fixed and NB-random use a restricted
predictor space, as indicated in column “Predictor space: I” of Table 1.
In the restricted predictor space, some continuous predictors are con-
verted into dummy variables, because assuming a constant marginal
effect over the entire support of the predictors is not meaningful. For
example, left shoulder width is a continuous variable but its support is
partitioned at 10 feet. Column “Predictor space: I (random)” in the
same table indicates the predictors that are associated with fully-cor-
related random parameters in the link function. We conducted an ex-
tensive specification search, during which we closely monitored model
tractability, to determine which predictors to associate with random
parameters. We also test another specification of the proposed model
(NB-BART-II, henceforth), which considers all predictors in their ori-
ginal form, and allow BART to automatically partition the predictor
space. Column “Predictor space: II” of Table 1 indicates which pre-
dictors are included in specification NB-BART-II.

For the definition of the spatial weight matrix W , we exploit the
inherent neighbourhood structure of the road segments. First, we create
a ×N N contiguity-based proximity matrixC , which is informed by the
neighbourhood relationships of the road segments. An element Cij of C
is given by

=
…

C d j
d j k1

( )
for ( ) {1, , *}

0 otherwise
,i

i
ij

(21)

where d j( )i takes a value of k if i and j are kth-order neighbours and
zero otherwise. k x x N* { | [1, ]} is a truncation point, which is
set to 3 in the current application. The intuition underlying the defi-
nition of C is that distant road segments exhibit weaker spatial corre-
lation than proximal ones. Ultimately, we obtainW by row-normalising
C , i.e. =W C

Cij
j

ij

ij
.

4.2.2. Implementation and estimation practicalities
We implement the MCMC algorithm outlined in Section 3 by writing

our own Python code.2 Our implementation of the heteroskedastic
BART updates follows the documentation provided by Bleich and
Kapelner (2014) and Kapelner and Bleich (2016). For the generation of
the Pólya-Gamma random variates, we rely on an existing Python im-
plementation (Linderman et al., 2015, 2016a,b) of the appropriate
sampling methods (Polson et al., 2013; Windle et al., 2014).

For each of the considered model specifications, the MCMC algo-
rithm is executed with four parallel Markov chains and 10,000 draws
for each chain, whereby the initial 5000 draws of each chain are dis-
carded for burn-in. After the burn-in period, a thinning factor of 2 is
applied. The step size of the Metropolis-Hastings algorithm for the
generation of the posterior draws of the spatial association parameter
is adaptively tuned with a target acceptance rate of 44%, which is the
recommended acceptance ratio for a one-dimensional target density
(see Roberts et al., 1997). Convergence of the MCMC simulation is
monitored with help of the potential scale reduction factor (Gelman
et al., 1992).

4.2.3. Assessment of model fit
We evaluate the goodness of fit of the considered methods using the

log pointwise predictive density (LPPD; Gelman et al., 2014) and the
root mean square error (RMSE):

(22) LPPD is a strictly proper scoring rule (Gneiting and Raftery, 2007),
which corresponds to the logarithm of the pointwise likelihood
integrated over the posterior distribution of the relevant model
parameters. It is given by

=
=

( )yP y p dLPPD log ( | ) ( | ) ,
i

N

i i i i
1 (22)

where = r{ , }i i . A larger value of LPPD indicates superior
goodness of fit.

(23) RMSE is informed by the discrepancy between the predicted ac-
cident count ŷi and the observed accident count yi, whereby the
former is given by the posterior mean of the conditional ex-
pectation of the crash count at site i. It is given by

=
=

ˆN
y yRMSE 1 ( ) .

i

N

i i
1

2

(23)

4.2.4. Assessment of site ranking ability
Numerous techniques for the model-based identification of accident

hot spots are presented in the literature (see e.g. Aguero-Valverde and
Jovanis, 2009; Geedipally and Lord, 2010; Miaou and Song, 2005;
Miranda-Moreno et al., 2007; Washington et al., 2014). In this study,
we use the probabilistic ranking method proposed by Schmidt (2012) to
identify hazardous sites. To be specific, we rank sites by their posterior
mean probability to belong to the top 5% most hazardous sites in the
network. Formally, we proceed as follows: In each MCMC iteration d,
we calculate the probability that a site belongs to the top m most ha-
zardous sites, i.e. P R m( ( ) )d i , where R ( )i denotes the rank of site i
as a function of the expected accident count i. The posterior mean of
the crash statistic y XR m( | , )i is then obtained by averaging the
respective posterior draws, and in the current application, we use

=m N· with = 5%. Schmidt's (2012) probabilistic ranking method
robustifies the Bayesian ranking procedures introduced by Miaou and
Song (2005) against heterogeneity in the posterior variance of the un-
derlying decision parameter.

Different hot spot identification methods can be compared by as-
sessing the temporal consistency of the produced site rankings (Cheng
and Washington, 2008; Montella, 2010). In this study, we employ the
site consistency, method consistency and total rank differences tests of
Cheng and Washington (2008) to evaluate site ranking consistency We
use H t, to denote the set of sites that are identified as hazardous in time
period t at risk level and define the site ranking consistency tests as
follows:

(24) The site consistency test ( SC) measures the ability of a method to
consistently identify a site as high risk over two consecutive time
periods. It is based on the assumption that an unsafe site should
remain hazardous provided that no safety improvements are im-
plemented. SC for period t is obtained by averaging the predicted
accident counts +ŷh t, 1 for period +t 1 of all sites h H t, :

= +ˆH
y1

| |
.t

t h H
h tSC,

,
, 1

t, (24)

A larger value of tSC, indicates superior site ranking consistency.
(25) The method consistency test ( MC) measures the ability of a

method to consistently identify the same hazardous sites over two
consecutive time periods. MC for period t is given by the car-
dinality of the intersection of H t, and +H t, 1, i.e.

= +H H| |.t t tMC, , , 1 (25)

A larger value of tMC, indicates superior site ranking consistency.
(26) Finally, the total rank differences test ( TRD) measures the average

absolute differences in ranks of hazardous sites over two2 The Python code is publicly available at https://github.com/RicoKrueger/
nb_bart.
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consecutive time periods. TRD for period t is given by

= +H
R R1

| |
| |,t

t h H
h t h tTRD,

,
, 1 ,

t, (26)

where Rh t, denotes the rank of site h in period t . A smaller value of
tTRD, indicates superior site ranking consistency.

4.3. Results

4.3.1. Model fit
Table 2 gives the goodness of fit measures of the considered model

specifications across the four years of the observation period. It can be
seen that NB-BART-II with an unrestricted predictor space outperforms
the competing model specifications by a significant margin in all four
samples. For example, for year 2010, NB-BART-II yields LPPD and
RMSE values of 3510.43 and 10.53, respectively, whereas the next-
best model specification NB-BART-I yields LPPD and RMSE values of
3558.87 and 11.46, respectively. Furthermore, we observe that NB-

BART-I closely matches the performance of NB-random in the con-
sidered samples. As expected, NB-fixed exhibits the poorest perfor-
mance among the four considered model specifications in all four
samples due to its rigid link function specification.

In sum, Table 2 shows that the endogenous partitioning of the
predictor space induced by the BART component in NB-BART-II results
in a substantial improvement in goodness of fit. We acknowledge that a
modeller could exogenously partition the support of the continuous
predictors in manifold ways to eventually achieve a comparable or
better goodness-of-fit. However, the computation time of such an
iterative hit-and-trial specification search would be prohibitive, as the
space of possible specifications is enormously large. NB-BART-II auto-
mates this search process and achieves the optimal partitioning of the
predictor space and thus obviates the need for expensive specification
searches. Consequently, NB-BART-II with an unrestricted predictor
space should be preferred over NB-BART-I with a restricted predictor
space.

4.3.2. Site ranking performance
Next, we compare the site ranking ability of the different model

specifications. Our analysis covers all four years of the observation
period but to avoid clutter, we restrict the visual display of the site
ranking results to year 2010. Subplot (a) of Fig. 2 shows the observed
crash count for each pavement segment. Subplot (b) of the same figure
displays the results of the naïve ranking approach, which involves as-
signing a value of 1 to the top 5% sites with the highest accident count
and a value of 0 to all other sites. Subplot (c) shows the expected ac-
cident counts calculated via the empirical Bayes (EB) approach (Hauer
et al., 2002) in conjunction with a negative binomial model and max-
imum likelihood estimation. Subplots (d) to (g) correspond to the four
NB-BART specifications; each of the plots shows the posterior mean
probabilities of each road segment to belong to the top 5% most ha-
zardous sites in the network.

Fig. 2 illustrates that the probabilistic ranking approaches can better
capture the inherent uncertainty about the safety of a site, as the results
differ markedly from the observed accident counts. In contradistinction,

the results of the naïve approach and the EB method closely mimic the
observed accident counts and thus provided limited additional in-
formation. Furthermore, it can be seen that the posterior mean prob-
ability plots corresponding to the specifications NB-fixed, NB-random,
NB-BART-I, NB-BART-II are virtually indistinguishable from each other.
This insight corroborates our earlier finding that the automated selec-
tion of an optimal link function specification in BART obviates the need
for random parameters in a link function. Notwithstanding significant
differences in goodness-of-fit (see Table 2), Fig. 2 suggests that model
specifications NB-BART-I and NB-BART-II compare favourably to each
other as well as to NB-fixed and NB-random in terms of their site
ranking abilities.

Next, we contrast the site ranking ability of the EB approach as well
as of NB-fixed, NB-random, NB-BART-I and NB-BART-II using the site
consistency ( SC), method consistency ( MC) and total rank differences
( TRD) tests of Cheng and Washington (2008). Table 3 shows the results
of the site ranking consistency tests for three reference period. We
observe that NB-BART-II, followed by NB-BART-I, performs best in re-
spect to site consistency for all reference periods. In terms of method
consistency and total rank differences, none of the considered methods
display superior performance across the three reference periods and the
relative difference in the test score of the methods are not substantial.
Therefore, we conclude that NB-BART affords similar site ranking
consistency as NB-fixed and NB-BART. In addition, we note the EB
approach underperforms in terms of site consistency but remains
competitive with respect to the other methods in terms of method
consistency and total rank differences.

4.3.3. Variable importance and parameter estimates
As a byproduct of the estimation, BART provides a statistic about

the variable importance (see Bleich et al., 2014). In the context of
BART, the notion of “importance” is different from elasticity. To be
precise, variable importance of BART predictors denotes the proportion
of times a variable of the predictor space is included in a splitting rule.
Fig. 3 shows the inclusion proportions of the predictors used in the
model specifications NB-BART-I and NB-BART-II for the whole ob-
servation period. For both NB-BART specifications, we observe that the
importance of the different variables is stable across the different years
of the observation period. This insight shows that BART can con-
sistently identify the variation explained by each predictor. Further-
more, the importance of several predictors (e.g. road quality index and
left shoulder width) is higher in NB-BART-II than in NB-BART-I. This is
because these variables are included as dummy variables in NB-BART-I,
and variables with binary support only admit at most one split. In
contrast, these variables are included as continuous predictors in NB-
BART-II, and variables with continuous support inherently provide
more ways to be incorporated into decision rules. This analysis suggests
that the exogenous conversion of a continuous predictor into a dummy
variable may reduce its importance. Yet, the endogenous partitioning of
the predictor space in NB-BART-II allows to bypass the shortcomings of
a manual specification selection.

Furthermore, Fig. 3 shows the estimated posterior distribution of
the negative binomial shape parameter r (whose inverse is also referred
to as the dispersion parameter) and the spatial association parameter

Table 2
Goodness of fit.

2007 2008 2009 2010
Method LPPD RMSE LPPD RMSE LPPD RMSE LPPD RMSE

NB-fixed 3784.34 14.74 3545.04 11.66 3545.89 11.73 3627.46 12.80
NB-random 3726.01 13.77 3483.54 10.85 3478.76 10.93 3564.49 12.03
NB-BART-I 3734.88 13.82 3490.67 10.69 3510.13 10.97 3558.87 11.46
NB-BART-II 3664.14 12.15 3437.68 9.84 3407.94 9.39 3510.43 10.53

Note: LPPD= log pointwise predictive density; RMSE= root mean square error. For each observation period and goodness fit measures, the best-performing method
is highlighted in bold font.

R. Krueger, et al. Accident Analysis and Prevention 144 (2020) 105623

6



for year 2010 of the observation period for each of the considered
model specifications. For both model parameters, it can be seen that the
posterior distributions produced by the different model specifications
closely overlap. For the spatial association parameter , we observe that
the posterior distributions produced by NB-BART-I and -II are slightly
shifted to the right relative the posterior distributions produced by the
other model specifications. A possible explanation for this right shift is
that the BART component absorbs some of the spatial dependence that
is left unexplained by the other model specifications.

Finally, Table 4 displays the parameters estimates for NB-fixed and
NB-random for all four years of the observation period. Along with the

variable inclusion proportions shown in Fig. 3, Table 4 suggests that the
importance of the predictors is stable across time periods. Conse-
quently, temporal instability (Mannering, 2018) is not a serious concern
in the current application (Fig. 4).

5. Conclusions

In this paper, we propose a spatial negative binomial Bayesian ad-
ditive regression trees (NB-BART) model for the identification of acci-
dent hot spots in road networks. The contribution of our work is
threefold:

Fig. 2. Site ranking results for year 2010. The naïve ranking approach consists of identifying the top 5% most hazardous sites based on the observed accident counts.
For the probabilistic methods NB-fixed, NB-random, NB-BART-I and NB-BART-II, the plot shows the posterior mean probability that a site belongs to the top 5% most
hazardous sites. The highways are given arbitrary names for proprietary reasons.
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• First, the proposed model re-conceptualises the specification of the
link function in count data models. Since NB-BART specifies the link
function as a sum-of-step-functions, it can flexibly account for in-
teractions and non-linear relationships between predictors. This
flexibility comes at no expense in interpretability, because a mod-
eller can still specify a semiparametric link function in combination
with a BART component and random parameters in a linear com-
ponent. Furthermore, a modeller does not require to exogenously
create dummy variables from continuous covariates before entering
them into the link function, because BART endogenously partitions
the predictor space and automatically extracts the maximum pos-
sible information from the predictors.
• Second, we derive a Gibbs sampler for NB-BART by employing the
state-of-the-art Pólya-Gamma data augmentation technique. The

sampler ensures conjugacy of the conditional posteriors of all non-
BART parameters with the exception of a scalar spatial correlation
parameter, which can be updated in a Metropolis-Hastings step. The
Bayesian inference approach allows for the construction of credible
intervals and other derived quantities such as site rankings.
• Third, we benchmark the performance of NB-BART against a base-
line negative binomial regression model with a linear link function
and spatial correlations. Goodness-of-fit and site ranking measures
indicate that NB-BART performs as well as or better than the base-
line model with random parameters in the linear-in-parameters link
function. Our results suggest that if the objectives of a study are
centred around prediction, a modeller may be better off considering
a flexible link function with a BART component in lieu of a linear-in-
parameters link function with random parameters. Nonetheless, if
heterogeneity in some parameters is of interest to the modeller, it
can be incorporated in NB-BART with a semiparametric link func-
tion. At the same time, we acknowledge that it is possible that a
count data model with a sophisticated mixing distribution such as a
finite mixture-of-normals or Dirichlet process mixture-of-normals
mixing distribution (see e.g. Buddhavarapu et al., 2016; Cheng
et al., 2020; Heydari et al., 2016) could effectively control for non-
linearities in the predictors and could be more competitive with NB-
BART in certain empirical applications. However, such models are
time-consuming to estimate and necessitate post-hoc model selec-
tion for determining the dimensionality and complexity of the
mixing distribution, whereas NB-BART endogenously partitions the
predictor space.

Table 3
Site ranking consistency.

2007 2008 2009
SC MC TRD SC MC TRD SC MC TRD

EB 28.27 41 25.57 28.62 38 26.34 30.99 27 48.45
NB-fixed 54.95 39 27.03 46.94 39 30.10 60.87 31 49.17
NB-random 56.35 40 23.60 47.48 41 29.67 61.10 30 48.41
NB-BART-I 57.52 33 29.83 49.80 40 33.72 61.84 30 59.40
NB-BART-II 61.05 37 38.19 53.73 40 38.47 69.09 30 45.93

Note: SC =site consistency test; MC =method consistency test; TRD = total
rank differences test. For each test and reference period, the best-performing
hot spot identification method is highlighted in bold font.

Fig. 3. Variable inclusion proportions. The dots mark the posterior means; the vertical error bars mark the 95% credible intervals; the dashed horizontal lines
indicate the equal importance inclusion proportions.
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The hierarchical nature of NB-BART offers opportunities for exten-
sions in two directions. First, a multivariate extension of NB-BART can
facilitate the joint modelling of multiple crash frequency variables such
as crash counts by crash type, severity level, and vehicle type (Dong
et al., 2014; Yasmin et al., 2018). Second, the proposed NB-BART for-
mulation accounts for only spatial random effects but can be extended
to accommodate temporal variation in model parameters as well as
spatiotemporal random effects (Li et al., 2019; Liu and Sharma, 2017).

Recent developments in BART can also be incorporated in the
above-discussed extensions. First, in the case of sparse and large pre-
dictors spaces, the original BART framework is vulnerable to the curse
of dimensionality. Recently proposed soft trees can be adopted in order
to handle this challenge (Linero and Yang, 2018). Second, Bayesian
regression trees have recently been used for observational causal in-
ference (Hahn et al., 2020), which is a critical avenue for future re-
search in the accident analysis literature (Mannering et al., 2020).
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