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Abstract
An a posteriori error estimate is derived for the approximation of the transport equation with a time dependent transport 
velocity. Continuous, piecewise linear, anisotropic finite elements are used for space discretization, the Crank-Nicolson 
scheme scheme is proposed for time discretization. This paper is a generalization of Dubuis S, Picasso M (J Sci Comput 
75(1):350–375, 2018) where the transport velocity was not depending on time. The a posteriori error estimate (upper 
bound) is shown to be sharp for anisotropic meshes, the involved constant being independent of the mesh aspect ratio. 
A quadratic reconstruction of the numerical solution is introduced in order to obtain an estimate that is order two in time. 
Error indicators corresponding to space and time are proposed, their accuracy is checked with non-adapted meshes and 
constant time steps. Then, an adaptive algorithm is introduced, allowing to adapt the meshes and time steps. Numerical 
experiments are presented when the exact solution has strong variations in space and time, illustrating the efficiency 
of the method. They indicate that the effectivity index is close to one and does not depend on the solution, mesh size, 
aspect ratio, and time step.

Keywords  A posteriori error estimates · Space-time adaptive algorithm · Anisotropic finite elements · Second order 
time discretization · Transport equation

Mathematics Subject Classification  65M12 · 65M50

1  Introduction

Space-time adaptive algorithms are efficient tools to 
approximate solutions of partial differential equations 
with accuracy and low computational cost. Whenever 
possible, the adaptive criteria is based on theoretical error 
estimates, this is mostly the case for elliptic and parabolic 
problems, fewer results are available for hyperbolic prob-
lems[11, 14, 18, 31, 37], nonlinear systems [3, 13, 30, 39, 41] 
or PDEs with variable coefficients [9, 24].

The classical theory of a posteriori error analysis for 
finite element methods was first developed on isotropic 
meshes [6, 16, 40], the involved constants were depending 

on the mesh aspect ratio. However, anisotropic finite ele-
ments, that is to say elements with possibly large aspect 
ratio, have been widely used to approximate phenomena 
involving boundary or internal layers. The isotropic theory 
for a posteriori error estimates was therefore updated, see 
for instance [4, 19, 22, 23, 25], and the involved constants 
were proved to be aspect ratio independent whenever the 
mesh was aligned with the solution.

The Crank-Nicolson method is a popular second order 
scheme for time dependent problems. However, most of 
the a posteriori error estimates are proved for first order 
methods only, for instance the Backward Euler scheme 
[8, 10, 32, 38]. Moreover, standard a posteriori proofs 

 *  Marco Picasso, marco.picasso@epfl.ch; Samuel Dubuis, samuel.dubuis@epfl.ch | 1Institute of Mathematics, Station 8, EPFL, 
1015 Lausanne, Switzerland.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-020-03283-z&domain=pdf
http://orcid.org/0000-0002-0069-5856


Vol:.(1234567890)

Research Article	 SN Applied Sciences          (2020) 2:1581  | https://doi.org/10.1007/s42452-020-03283-z

lead to suboptimal estimates for second order methods, 
as reported in [2]. To circumvent this problem, piecewise 
quadratic reconstructions have been introduced for para-
bolic problems [1, 2, 7, 28], in [21] for the transport equa-
tions and in [27] for the wave equation.

In this paper, the a posteriori error analysis of [21] for 
the transport equation is extended to the case where the 
velocity varies in space and time. As in [21], the a poste-
riori error analysis is valid for anisotropic meshes and a 
second order time discretization. In [21], the a posteriori 
error estimate was restricted to the case of a steady veloc-
ity while the new estimate is valid for velocity fields that 
may exhibit strong variations in time. The techniques used 
should be useful when coupling the transport equation 
to Navier-Stokes equations, which is the case for instance 
when considering free surface flows [20].

The outline of this paper is the following. In Sect. 2, 
the transport equation and the numerical method are 
presented. An a posteriori error estimate is proposed in 
Sect. 3, numerical experiments confirm the sharpness of 
the estimate in Sect. 4. Finally, an adaptive algorithm is 
presented in Sect. 5 and numerical results are discussed.

2 � Statement of the problem and numerical 
scheme

Given a polygon Ω , a divergence free velocity field 
� ∈ C1

(
Ω × [0, T ]

)
 , and an initial data �0 ∈ C0

(
Ω
)

 , we are 

looking for � ∶ Ω × (0, T ] → ℝ the solution of the trans-
port problem

where the inflow boundary is defined by

with � standing for the unit outer normal of �Ω . It is 
assumed that the velocity field is such that the inflow 
boundary does not depend on time and that the data 
�,Ω,�0 are smooth enough to justify the forthcoming 
computations.

To approximate in space (1) a finite element stabiliza-
tion scheme is needed. This scheme corresponds to the 
stabilized scheme studied in [12], in which the stabiliza-
tion term is updated to the anisotropic setting, following 
[11, 21, 29].

(1)

⎧⎪⎪⎨⎪⎪⎩

��

�t
+ � ⋅ ∇� = 0, inΩ × (0, T ],

� = 0, on Γ− × (0, T ],

�(⋅, 0) = �0,

Γ− = {� ∈ 𝜕Ω ∶ �(�, t) ⋅ �(�) < 0},

The fully discrete method reads as follows. For every 
h > 0 , let Th be a conformal triangulation of Ω into trian-
gles K of diameter hK ≤ h . Let Vh be the set of continu-
ous, piecewise linear functions on each triangle K ∈ Th , 
zero valued on Γ− . Let N be a non-negative integer and 
a partition 0 = t0 < t1 < t2 < ⋯ < tN = T  . We denote 
�n+1 = tn+1 − tn the time step, tn+1∕2 = (tn+1 + tn)∕2 , 
n = 0, 1, 2,… ,N − 1 . Starting from �0

h
= rh(�0) , where 

rh stands for the Lagrange interpolant defined on Th , for 
n = 0, 1, 2,… ,N − 1 , we are looking for �n+1

h
∈ Vh such that

Here 𝛿h > 0 stands for an O(h) stabilization parameter that 
will be specified in the sequel.

A priori error estimates for (2) have been proposed 
in [12] for isotropic meshes, constant time steps and a 
transport velocity independent of time. In [21], the analy-
sis is extended to anisotropic meshes and variable time 
steps, and both a priori and a posteriori error estimates 
are derived. An a posteriori error analysis involving a time 
dependent transport velocity is proposed here, so as an 
adaptive algorithm. The corresponding a priori error esti-
mates can be found in [20], so as additional numerical 
experiments.

In this paper, anisotropic finite elements will be used, 
that is to say meshes with possibly large aspect ratio. We 
will use the notations and results of [22, 23, 29], see also 
[25] for similar results. Let K ∈ Th and TK ∶ K̂ ⟶ K  be the 
affine transformation mapping the reference triangle ,   
into K defined by

with MK ∈ ℝ
2×2, �K ∈ ℝ

2. Observe that since MK is inverti-
ble it admits a singular value decomposition Mk = RT

K
ΛKPK , 

where RK and PK are orthogonal matrices and

We note

where r1,K , r2,K are the unit vectors corresponding to direc-
tions of maximum and minimum stretching respectively, 
so that �1,K , �2,K correspond to the value of maximum and 
minimum stretching.

(2)

∫Ω

(
�n+1
h

− �n

h

�n+1
+ �(tn+

1∕2) ⋅ ∇

(
�n+1
h

+ �n

h

2

))

(vh + �h(t
n+1∕2)�(tn+

1∕2) ⋅ ∇vh)dx = 0, ∀vh ∈ Vh.

� = TK (�̂) = MK �̂ + �K ∀�̂ ∈ K̂ ,

ΛK =

(
𝜆1,K 0

0 𝜆2,K

)
, 𝜆1,K ≥ 𝜆2,K > 0.

RK =

(
rT
1,K

rT
2,K

)
,



Vol.:(0123456789)

SN Applied Sciences          (2020) 2:1581  | https://doi.org/10.1007/s42452-020-03283-z	 Research Article

A posteriori error analysis can be obtained using Clé-
ment’s interpolant [17]. Since anisotropic meshes are con-
sidered, the usual regularity assumption is omitted but 
two additional assumptions are needed. First, we assume 
that each vertex has a number of neighbours bounded 
from above, uniformly with respect to h. Second, we 
assume that for each K, the diameter of T−1

K
(ΔK ) (here ΔK  

is the union of triangles sharing a vertex with K) is uni-
formly bounded with respect to h. For more details, we 
refer again to [22, 23, 29]. In this framework, the following 
estimation holds

where Rh is the Clément’s interpolant, Ĉ > 0 is a constant 
depending only on the reference triangle K̂ , and

with GK standing for the gradient matrix given by

3 � A posteriori error estimates

To recover an error estimate of order two in time, we follow 
the idea introduced in [28] for the Crank-Nicolson approxi-
mation of the heat equation, and define a piecewise quad-
ratic reconstruction of the numerical solution �n

h
 of (2). We 

introduce the following notations. For any quantity wn and 
for n = 0,… ,N − 1 we note

and for n = 1,… ,N − 1

(3)
∥ v − Rh(v) ∥

2
L2(K )

+𝜆2
2,K

∥ ∇(v − Rh(v)) ∥
2
L2(K )

≤ Ĉ𝜔2
K
(v) ∀v ∈ H

1(Ω),

(4)�2
K
(v) = �2

1,K
(rT
1,K
GK (v)r1,K ) + �2

2,K
(rT
2,K
GK (v)r2,K ),

GK (v) =

⎛
⎜⎜⎜⎜⎜⎝

∫ΔK

�
�v

�x1

�2

d� ∫ΔK

�v

�x1

�v

�x2
d�

∫ΔK

�v

�x1

�v

�x2
d� ∫ΔK

�
�v

�x2

�2

d�

⎞
⎟⎟⎟⎟⎟⎠

.

w
n+1∕2 =

wn+1 + wn

2
, �wn+1 =

wn+1 − wn

�n+1
,

𝜕̄wn+1 =
wn+1 − wn−1

𝜏n+1 + 𝜏n
, 𝜕wn+1∕2 =

wn+1∕2 − wn−1∕2

𝜏n+1 + 𝜏n

2

,

𝜕2wn+1 =

wn+1 − wn

𝜏n+1
−

wn − wn−1

𝜏n

𝜏n+1 + 𝜏n

2

.

Setting � = max(�1,… , �N) , we define the piecewise 
numerical reconstruction �h� by

for (�, t) ∈ Ω ×
[
tn, tn+1

]
, n ≥ 1, and by

for (�, t) ∈ Ω ×
[
t0, t1

]
.

Note that (5) is the unique quadratic polynomial inter-
polating exactly �n+1

h
,�n

h
,�n−1

h
 at time t = tn+1, tn, tn−1 . 

This quadratic reconstruction was first introduced in [28] 
to recover an a posteriori error estimate for the Crank-
Nicolson method applied to the heat equation which was 
of order two in time. It is modification of another quad-
ratic reconstruction proposed in [2], where it was indeed 
observed that linear reconstructions would yield to sub-
optimal error estimates. Here, for the transport equation 
(1), the motivation is the following. A priori error estimates 
for a simplified differential problem indicate that the error 
is order two, the constant depending on �ttt� [20], which is 
formally equal to −�tt(� ⋅ ∇�) . Therefore, some information 
about the second derivative in time of � must be avail-
able in the error indicator, which is precisely the role of the 
quadratic term in (5).

Our error indicator for the time discretization is 
obtained by inserting the numerical reconstruction (5) (6) 
into the transport equation.

Proposition 1  Let (�n

h
)N
n=0

 be the solution of (2). Let �h� be the 
numerical reconstruction (5) (6). For all 0 ≤ n ≤ N − 1 , for all 
vh ∈ Vh and for all t ∈ (tn, tn+1) , we have

where �n is given for n ≥ 1 by

and for n = 0 by

and �n is given for n ≥ 1 by

(5)
�h�(�, t) = �

n+1∕2

h
(�) + (t − t

n+1∕2)��n+1
h

(�)

+
1

2
(t − t

n)(t − t
n+1)�2�n+1

h
(�),

(6)�h� (�, t) = �
1∕2

h
(�) + (t − t

1∕2)��1
h
(�),

∫Ω

(
��h�

�t
+ �(t) ⋅ ∇�h�

)
(vh + �h(t)�(t) ⋅ ∇vh)d�

= ∫Ω

�n(vh + �h(t)�(t) ⋅ ∇vh)d� + ∫Ω

�n ⋅ ∇vhd�,

(7)

𝜃n =
(
𝜏n

2
(t − t

n+1∕2) +
1

2
(t − t

n)(t − t
n+1)

)
�(t) ⋅ ∇𝜕2𝜑n+1

h

+ (t − t
n+1∕2)(�(t) − �(tn−

1∕2)) ⋅ ∇𝜕̄𝜑n+1
h

+
(
�(t) − �(tn+

1∕2) − (t − t
n+1∕2)𝜕)�(tn+

1∕2)
)
⋅ ∇𝜑

n+1∕2

h
,

(8)�0 = (t − t
1∕2)�(t) ⋅ ∇��1

h
+ (�(t) − �(t

1∕2)) ⋅ ∇�
1∕2

h
,
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and for n = 0 by

Remark 1  (Optimality of the local time error indicator) 

	 (i)	 Assuming that � = (u1, u2) is twice continuously 
differentiable in time, a Taylor expansion yields, for 
i = 1, 2 : 

 for some t̄ in (0, T) and 

 for some t̃ in (0, T). Therefore, �n (for n ≥ 1 ) is an 
approximation of 

 and is thus of optimal order O(�2) . We can also 
approximate �n (for n ≥ 1) by 

 thus, since �h = O(h) , �n is of higher order O(h�2).
	 (ii)	 Note that if � and �h are independent of time, then 

�n = 0 , n = 0, 1,… ,N − 1, and �n reduces to the 
time error indicator given in [21], Lemma 1.

Proof  Let n ≥ 1 and t ∈ (tn, tn+1) , we have:

where

(9)

�n =
(
��n+1

h
+ �(tn+

1∕2) ⋅ ∇�
n+1∕2

h

)
(
�h(t)�(t) − �h(t

n+1∕2)�(tn+
1∕2) − (t − t

n+1∕2)�[�h(t
n+1∕2)�(tn+

1∕2)]
)

+ (t − t
n+1∕2)

(
�2�n+1

h
+ �[�(tn+

1∕2) ⋅ ∇�
n+1∕2

h
]
)

(�h(t)�(t) − �h(t
n−1∕2)�(tn−

1∕2)),

(10)

�0 =
(
��1

h
+ �(t

1∕2) ⋅ ∇�
1∕2

h

)
(�h(t)�(t) − �h(t

1∕2)�(t
1∕2)).

ui(t) − ui(t
n−1∕2) = (t − t

n−1∕2)
𝜕ui(t̄)

𝜕t

�(t) − �(tn+
1∕2) − (t − t

n+1∕2)
�(tn+

1∕2) − �(tn−
1∕2)

𝜏n+1 + 𝜏n

2

= (t − t
n+1∕2)2

𝜕2�(t̃)

𝜕t2

�2� ⋅ ∇�tt�h� + �2�t� ⋅ ∇�t�h� + �2�tt� ⋅ ∇�h� = �2�tt (� ⋅ ∇�h� ),

�2(�t�h� + � ⋅ ∇�h� )�tt (�h�) + �2�t (�t�h� + � ⋅ ∇�h� )�t (�h�),

∫Ω

(
��h�

�t
+ �(t) ⋅ ∇�h�

)
(vh + �h(t)�(t) ⋅ ∇vh)d� = I1 + I2 + I3,

I1 =∫Ω

(��n+1
h

+ �(t) ⋅ ∇�
n+1∕2

h
)(vh + �h(t)�(t) ⋅ ∇vh)d�,

I2 =(t − t
n+1∕2)∫Ω

(�2�n+1
h

+ �(t) ⋅ ∇��n+1
h

)(vh + �h(t)�(t) ⋅ ∇vh)d�,

I3 =
1

2
(t − t

n)(t − t
n+1)∫Ω

�(t) ⋅ ∇�2�n+1
h

(vh + �h(t)�(t) ⋅ ∇vh)d�.

Observe that I3 is already part of (7) and order two in time, 
so it remains to transform I1 and I2 into quantity of second 
order.

A straightforward computation for I1 yields that

Using the numerical scheme (2), the first term is in fact 
zero, remaining the following expression for I1:

To simplify I2 , we note that it looks like the discrete deriva-
tive of (2). Thus we first compute the difference between 
(2) taken at two successive steps, that is to say

and we divide by (�n+1 + �n)∕2 . We obtain that

I
1
= ∫Ω

(��n+1
h

+ �(tn+
1∕2) ⋅ ∇�

n+1∕2

h
)(vh + �h(t

n+1∕2)�(tn+
1∕2) ⋅ ∇vh)d�

+ ∫Ω

(�(t) − �(tn+
1∕2)) ⋅ ∇�

n+1∕2

h
(vh + �h(t)�(t) ⋅ ∇vh)d�

+ ∫Ω

(��n+1
h

+ �(tn+
1∕2) ⋅ ∇�

n+1∕2

h
)(�h(t)�(t) − �h(t

n+1∕2)�(tn+
1∕2)) ⋅ ∇vhd�.

I
1
= ∫Ω

(�(t) − �(tn+
1∕2)) ⋅ ∇�

n+1∕2

h
(vh + �h(t)�(t) ⋅ ∇vh)d�

+ ∫Ω

(��n+1
h

+ �(tn+
1∕2) ⋅ ∇�

n+1∕2

h
)(�h(t)�(t)

− �h(t
n+1∕2)�(tn+

1∕2)) ⋅ ∇vhd�.

∫Ω

(
��n+1

h
+ �(tn+

1∕2) ⋅ ∇�
n+1∕2

h

)

(vh + �h(t
n+1∕2)�(tn+

1∕2) ⋅ ∇vh)d�

− ∫Ω

(
��n

h
+ �(tn−

1∕2) ⋅ ∇�
n−1∕2

h

)

(vh + �h(t
n−1∕2)�(tn−

1∕2) ⋅ ∇vh)d� = 0.

(11)

∫Ω

(
𝜕2𝜑n+1

h
+ �(t) ⋅ ∇𝜕̄𝜑n+1

h

)
(vh + 𝛿h(t)�(t) ⋅ ∇vh)d�

=
1

𝜏n+1 + 𝜏n

2

∫Ω

(
(�(t) − �(tn+

1∕2)) ⋅ ∇𝜑
n+1∕2

h
− (�(t) − �(tn−

1∕2)) ⋅ ∇𝜑
n−1∕2

h

)

(vh + 𝛿h(t)�(t) ⋅ ∇vh)d�

+
1

𝜏n+1 + 𝜏n

2

∫Ω

(
𝜕𝜑n+1

h
+ �(tn+

1∕2) ⋅ ∇𝜑
n+1∕2

h

)

(𝛿h(t)�(t) − 𝛿h(t
n+1∕2)�(tn+

1∕2)) ⋅ ∇vhd�

+
1

𝜏n+1 + 𝜏n

2

∫Ω

(
𝜕𝜑n

h
+ �(tn−

1∕2) ⋅ ∇𝜑
n−1∕2

h

)

(𝛿h(t)�(t) − 𝛿h(t
n−1∕2)�(tn−

1∕2)) ⋅ ∇vhd�,
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We now use the fact that we can transform the centered 
finite difference operator 𝜕̄ into the backward finite opera-
tor � through the relation

Plugging this last relation into (11), we get

By multiplying the last equality by (t − tn+
1∕2) it yields for I2 

the following expression

Finally, in order to have finite differences of the velocity, 
we add and substract the terms

and

We therefore obtain as final expression for I2

𝜕̄𝜑n+1
h

= 𝜕𝜑n+1
h

−
𝜏n

2
𝜕2𝜑n+1

h
,

∫Ω

(
�2�n+1

h
+ �(t) ⋅ ∇��n+1

h

)
(vh + �h(t)�(t) ⋅ ∇vh)d�

=
�n

2 ∫Ω

�(t)∇�2�n+1
h

(vh + �h(t)�(t) ⋅ ∇vh)d�

1

�n+1 + �n

2

∫Ω

(
(�(t) − �(tn+

1∕2)) ⋅ ∇�
n+1∕2

h
− (�(t) − �(tn−

1∕2)) ⋅ ∇�
n−1∕2

h

)

(vh + �h(t)�(t) ⋅ ∇vh)d�

+
1

�n+1 + �n

2

∫Ω

(
��n+1

h
+ �(tn+

1∕2) ⋅ ∇�
n+1∕2

h

)

(�h(t)�(t) − �h(t
n+1∕2)�(tn+

1∕2)) ⋅ ∇vhd�

+
1

�n+1 + �n

2

∫Ω

(
��n

h
+ �(tn−

1∕2) ⋅ ∇�
n−1∕2

h

)

(�h(t)�(t) − �h(t
n−1∕2)�(tn−

1∕2)) ⋅ ∇vhd�.

I
2
=

�n

2
(t − t

n+1∕2)∫Ω

�(t)∇�2�n+1
h

(vh + �h(t)�(t) ⋅ ∇vh)d�

2
t − tn+

1∕2

�n+1 + �n ∫Ω

(
(�(t) − �(tn+

1∕2)) ⋅ ∇�
n+1∕2

h
− (�(t) − �(tn−

1∕2)) ⋅ ∇�
n−1∕2

h

)

(vh + �h(t)�(t) ⋅ ∇vh)d�

+ 2
t − tn+

1∕2

�n+1 + �n ∫Ω

(
��n+1

h
+ �(tn+

1∕2) ⋅ ∇�
n+1∕2

h

)

(�h(t)�(t) − �h(t
n+1∕2)�(tn+

1∕2)) ⋅ ∇vhd�

+ 2
t − tn+

1∕2

�n+1 + �n ∫Ω

(
��n

h
+ �(tn−

1∕2) ⋅ ∇�
n−1∕2

h

)

(�h(t)�(t) − �h(t
n−1∕2)�(tn−

1∕2)) ⋅ ∇vhd�.

2
t − tn+

1∕2

�n+1 + �n ∫Ω

(�(t) − �(tn−
1∕2)) ⋅ ∇�

n+1∕2

h
)(vh + �h(t)�(t) ⋅ ∇vh)d�

2
t − tn+

1∕2

�n+1 + �n ∫Ω

(
��n+1

h
+ �(tn+

1∕2) ⋅ ∇�
n+1∕2

h

)

(�h(t)�(t) − �h(t
n−1∕2)�(tn−

1∕2)) ⋅ ∇vhd�.

Now, by adding the first term of I2 with I3 and the third and 
the last terms with I1 yields the result for n ≥ 1.

Finally, for n = 0 , reproducing the steps using to com-
pute I1 here above yields that

	�  ◻

In order to prove an a posteriori error estimate for the 
numerical method (2) we now need to define the stabiliza-
tion parameter �h in (2). Following [11, 29], �h is defined for 
all t ∈ [0, T ] and for K ∈ Th by

if �(t) is not identically zero on K and by �h(t)|K = 0 
otherwise.

Theorem 1  Assume that � ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ;L2(Ω)) 
where � is the solution of (1). Let (�n

h
)N
n=0

 be the solution of (2) 
with �h defined by (12) and consider �h� the numerical recon-
struction given by (5) (6). Setting e = � − �h� , there exists 
Ĉ > 0 depending only on the reference triangle, in particular 
independent of T ,Ω,�,� , the mesh size, aspect ratio and time 
step such that

where �K  is defined in (4) , �n, �n are defined in Proposition 1 
and c0 = �1 , cn = T − �1 , for n ≥ 1.

I2 =
𝜏n

2
(t − t

n+1∕2)∫Ω

�(t)∇𝜕2𝜑n+1
h

(vh + 𝛿h(t)�(t) ⋅ ∇vh)d�

+ (t − t
n+1∕2)∫Ω

(�(t) − �(tn−1∕2)) ⋅ ∇𝜕̄𝜑n+1
h

(vh + 𝛿h(t)�(t) ⋅ ∇vh)d�

− (t − t
n+1∕2)∫Ω

𝜕�(tn+1∕2) ⋅ ∇𝜑
n+1∕2

h
(vh + 𝛿h(t)�(t) ⋅ ∇vh)d�

+ (t − t
n+1∕2)∫Ω

𝜕2𝜑n+1
h

(𝛿h(t)�(t) − 𝛿h(t
n−1∕2)�(tn−1∕2)) ⋅ ∇vhd�

+ (t − t
n+1∕2)∫Ω

𝜕[�(tn+1∕2) ⋅ ∇𝜑
n+1∕2

h
](𝛿h(t)�(t) − 𝛿h(t

n−1∕2)�(tn−1∕2)) ⋅ ∇vhd�

− (t − t
n+1∕2)∫Ω

(
𝜕𝜑n+1

h
+ �(tn+1∕2) ⋅ ∇𝜑

n+1∕2

h

)
𝜕[𝛿h(t

n+1∕2)�(tn+1∕2)] ⋅ ∇vhd�.

∫Ω

(
��h�

�t
+ �(t) ⋅ ∇�h�

)
(vh + �h(t)�(t) ⋅ ∇vh)d�

= (t − t
1∕2)∫Ω

�(t) ⋅ ∇��1

h
(vh + �h(t)�(t) ⋅ ∇vh)d�

+ ∫Ω

(�(t) − �(t
1∕2)) ⋅ ∇�

1∕2

h
(vh + �h(t)�(t) ⋅ ∇vh)d�

+ ∫Ω

(
��1

h
+ �(t

1∕2) ⋅ ∇�
1∕2

h

)
(�h(t)�(t) − �h(t

1∕2)�(t
1∕2)) ⋅ ∇vhd�.

(12)�h(t)�K =
�2,K

2‖�(t)‖L∞(K )

,

(13)

‖e(T )‖2
L2(Ω)

≤ Ĉ

�
‖e(0)‖2

L2(Ω)

+

N−1�
n=0

�
K∈Th

�
tn+1

tn

�����
𝜕𝜑h𝜏

𝜕t
+ �(t) ⋅ ∇𝜑h𝜏

����L2(K )𝜔K (e) + cn
��𝜃n��2L2(K )dt

�

+

N−1�
n=0

�
K∈Th

�
tn+1

tn

�
��𝜃n��L2(K ) +

���n��L2(K )
𝜆2,K

�
𝜔K (e)dt

�
,
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Remark 2 

	 (i)	 The a posteriori error estimate (13) is not standard 
since the exact solution � is contained in �K (e) . To 
obtain a computable upper bound, post-process-
ing techniques were advocated in [11], for instance 
Zienkiewicz−Zhu (ZZ) post-processing [42–44]. 
More precisely, to compute GK (� − �h�) , we replace 
the first order partial derivatives with respect to xi

 where, for any vh ∈ Vh and for any vertex P of the 
mesh 

 in other words, ΠZZ

h
�vh∕�xi is an approximate L2(Ω) 

projection of �vh∕�xi onto Vh . It corresponds to the 
weighted mean value of the gradient ∇vh over the 
support of the hat functions centered at vertex P. 
Superconvergence of the ZZ recovery has been 
proved for elliptic problems and structured meshes 
[44] and more recently for unstructured anisotropic 
meshes [15]. Numerical experiments have shown 
that the efficiency of ZZ post-processing is better 
than theoretical predictions, see for instance [11, 
28, 33–36].

	 (ii)	 Observe that if � is independent of time, then due 
to definitions of �n and �n , the a posteriori error esti-
mate (13) reduces to the one proven in [21], Theo-
rem 2.

	 (iii)	 Based on the a priori error estimates in [12, 20], it is 
expected that ‖e(T )‖2

L2(Ω)
= O(h3 + �4) (written in 

the isotropic setting for simplicity). Numerical 
experiments will confirm that 

 and 

�(� − �h�)

�xi
by ΠZZ

h

��h�

�xi
−

��h�

�xi
, i = 1, 2,

ΠZZ

h

�vh

�xi
(P) =

∑

K ∈ Th

P ∈ K

|K | �vh
�xi |K

∑

K ∈ Th

P ∈ K

|K |
,

N−1∑
n=0

∑
K∈Th

∫
tn+1

tn

(‖‖‖‖
��h�

�t
+ �(t) ⋅ ∇�h�

‖‖‖‖L2(K )
�K (e)dt = O(h3)

 The term 

 is a mixed quantity involving both space and time 
discretizations. It can be shown (see point (iv) 
below) to be of higher order when �2 = Θ(h

3∕2) , that 
is exactly the goal of the adaptive algorithm pro-
posed fur ther.  S ince  the  in i t ia l  er ror 
‖�(0) − �h�(0)‖2L2(Ω) = ‖�0 − rh(�0)‖2L2(Ω) is O(h4) , 
the leading terms of the estimate (13) reduces to 

 that can be used as an a posteriori estimator for the 
error ‖e(T )‖2

L2(Ω)
.

	 (iv)	 Assuming that the solution is smooth enough [20], 
it is expected that 

 Since �n = O(�2) and �
n
= O(h�2) (see Remark 1), 

we finally have 

 Since the goal of our adaptive algorithm is to equi-
distribute the error due to space and time, then 
�2 ≃ h

3∕2 and the above term is O(h3.5 + �5+1∕3) , that 
is to say of higher order compared the error at final 
time ‖e(T )‖2

L2(Ω)
= O(h3 + �4).

Proof  In the following, we denote by Ĉ any positive con-
stant, which may depend only on the reference triangle 
and may change from line to line. In particular, Ĉ is inde-
pendent of T, Ω,� , � , the mesh size, aspect ratio and the 
time step. Let t ∈

(
tn, tn+1

)
 , n ≥ 1 . First observe that for all 

v ∈ H1(Ω) that is zero on Γ− , we have

Therefore, applying (14) with v = e and using the fact that 
� is the solution to (1) we have

N−1∑
n=0

∑
K∈Th

∫
tn+1

tn

cn
‖‖�n‖‖2L2(K )dt = O(�4).

N−1∑
n=0

∑
K∈Th

∫
tn+1

tn

(
‖‖�n‖‖L2(K ) +

‖‖�n‖‖L2(K )
�2,K

)
�K (e)dt

N−1∑
n=0

∑
K∈Th

∫
tn+1

tn

(‖‖‖‖
��h�

�t
+ �(t) ⋅ ∇�h�

‖‖‖‖L2(K )�K (e) + cn
‖‖�n‖‖2L2(K )

)
dt

𝜔K (e) ≲ h‖∇e‖L2(Ω) = hO(h + 𝜏2) = O(h2 + h𝜏2).

N−1∑
n=0

∑
K∈Th

∫
tn+1

tn

(
‖‖�n‖‖L2(K ) +

‖‖�n‖‖L2(K )
�
2,K

)
�K (e)dt

= O(h2�2 + h�4).

(14)
�Ω

(� ⋅ ∇v)vd� =
1

2 �Ω

÷
(
�v

2
)
d� =

1

2 �
�Ω⧵Γ−

(� ⋅ �)v2d� ≥ 0.
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Subtracting any vh + �h(t)�(t) ⋅ ∇vh and using Proposition 
1, we obtain

Splitting the last inequality into a sum over the triangles, 
and using the triangle and Cauchy-Schwarz inequalities 
yields

We now choose vh = Rhe where we recall that Rh stands for 
the Clément’s interpolant. Using the anisotropic interpola-
tion error estimate (3), we can prove that

Indeed, using that ∇e = (∇e ⋅ �1,K )�1,K + (∇e ⋅ �2,K )�2,K ) and

implies that

Thus, since

1

2

d

dt �Ω

e
2
dx ≤ �Ω

(
�e

�t
e + (�(t) ⋅ ∇e)e

)
d�

= −�Ω

(
��h�

�t
+ �(t) ⋅ ∇�h�

)
ed�.

1

2

d

dt �Ω

e
2
dx ≤ −�Ω

(
��h�

�t
+ �(t) ⋅ ∇�h�

)
(e − vh − �h(t)�(t) ⋅ ∇vh)d�

− �Ω

�n(vh + �h(t)�(t) ⋅ ∇vh)d� − �Ω

�n ⋅ ∇vhd�

= −�Ω

(
��h�

�t
+ �(t) ⋅ ∇�h� + �n

)
(e − vh − �h(t)�(t) ⋅ ∇vh)d�

− �Ω

�ned� − �Ω

�n ⋅ ∇vhd�.

1

2

d

dt �Ω

e
2
dx ≤ �

K∈Th

�����
��h�

�t
+ �(t) ⋅ ∇�h�

����L2(K ) + ‖�n‖L2(K )
�

�‖e − vh‖L2(K ) + ‖�h�K (t)�(t) ⋅ ∇vh‖L2(K )
�

+
�
K∈Th

‖�n‖L2(K )‖e‖L2(K ) +
�
K∈Th

‖�n‖L2(K )‖∇vh‖L2(K ).

(15)‖∇Rhe‖L2(K ) ≤ Ĉ
𝜔K (e)

𝜆2,K

‖∇e ⋅ �i,K‖2L2(ΔK ) = �
T

i,K
GK (e)�i,K , i = 1, 2,

�2,K‖∇e‖L2(ΔK ) ≤ �K (e).

‖∇Rhe‖L2(K ) ≤ ‖∇e‖L2(K ) + ‖∇(e − Rhe)‖L2(K )
≤ ‖∇e‖L2(ΔK ) + ‖∇(e − Rhe)‖L2(K ),

we obtain (15) by applying the interpolation error estimate 
(3). Moreover using (15) and the definition of �h|K (t) , we 
can finally prove that

So we obtain that

where we have set

�K = ‖�n‖L2(K ) and �K =
‖�n‖L2(K )

�2,K
 . The discrete Cauchy-

Schwarz implies then that

Finally, the Young’s inequality yields

We conclude by using a Gronwall’s type inequality. Multi-
plying by exp(−t∕(T − t1)) on both sides and integrating 
between t1 and T yields

Note that the choice to use exp(−t∕(T − t1)) is made in 
order to eliminate the exponential growth with respect to 
T in the estimate. Proceeding in the same manner we can 
obtain an estimate for ‖e(t1)‖2

L2(Ω)

‖e − Rhe‖L2(K ) + ‖𝛿h�K (t)�(t) ⋅ ∇Rhe‖L2(K ) ≤ Ĉ𝜔K (e).

1

2

d

dt �Ω

e
2
dx ≤ Ĉ

�
K∈Th

(𝛼K + 𝜃K + 𝜁K )𝜔K (e) +
�
K∈Th

𝜃K‖e‖L2(K ),

�K =
‖‖‖‖
��h�

�t
+ �(t) ⋅ ∇�h�

‖‖‖‖L2(K ),

1

2

d

dt �Ω

e
2
dx ≤ Ĉ

�
K∈Th

(𝛼K + 𝜃K + 𝜁K )𝜔K (e) +

��
K∈Th

𝜃2
K

�1∕2

‖e‖L2(Ω).

1

2

d

dt �Ω

e
2
dx ≤ Ĉ

�
K∈Th

(𝛼K + 𝜃K + 𝜁K )𝜔K (e)

+
T − t1

2

�
K∈Th

𝜃2
K
+

1

2(T − t1)
‖e‖2

L2(Ω)
,

‖e(T )‖2
L2(Ω)

≤ Ĉ

�
‖e(t1)‖2

L2(Ω)

+

N−1�
n=1

�
K∈Th

�
tn+1

tn

�
𝛼K + 𝜃K + 𝜁K )𝜔K (e) + (T − t

1)𝜃2
K

�
dt

�
.

Combining both estimates yields finally

‖e(t1)‖2
L2(Ω)

≤ Ĉ

�
‖e(0)‖2

L2(Ω)
+

�
K∈Th

�
t1

0

�
𝛼K + 𝜃K + 𝜁K )𝜔K (e) + 𝜏1𝜃2

K

�
dt

�
.
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	�  ◻

4 � Numerical experiments with non‑adapted 
meshes and constant time steps

We denote e(T )L2 the L2 numerical error at final time

Based on the a posteriori error estimate of Theorem 1, we 
define the error indicator � by

where the anisotropic space error indicator �A is defined by

with the local space error indicator given by

and the time error indicator �T is defined by

with the local time error indicator given by

where we recall that c0 = �1 , cn = T − �1 , n ≥ 1 , and �n is 
defined as in Proposition 1. As already anticipated in the 
Remark 2, the space error indicator (17) is made comput-
able by replacing all the derivatives of � by their ZZ post-
processing. The sharpness of the error indicator � will be 
investigated by computing the effectivity index ei given by

‖e(T )‖2
L2(Ω)

≤ Ĉ

�
‖e(0)‖2

L2(Ω)

+

N−1�
n=0

�
K∈Th

�
tn+1

tn

�����
𝜕𝜑h𝜏

𝜕t
+ � ⋅ ∇𝜑h𝜏

����L2(K )𝜔K (e) + cn
��𝜃n��2L2(K )dt

�

+

N−1�
n=0

�
K∈Th

�
tn+1

tn

�
��𝜃n��L2(K ) +

‖�n‖L2(K )
𝜆
2,K

�
𝜔K (e)dt

�
.

e(T )L2 = ‖�(T ) − �h� (T )‖L2(Ω).

(16)� =
(
(�A)2 + (�T )2

)1∕2
,

(17)�A =

(
N−1∑
n=0

∑
K∈Th

(�A
K ,n

)2

)1∕2

,

(18)

(�A
K ,n

)2 = ∫
tn+1

tn

‖‖‖‖
��h�

�t
+ �(t) ⋅ ∇�h�

‖‖‖‖L2(K )�K (� − �h�)dt,

(19)�T =

(
N−1∑
n=0

∑
K∈Th

(�T
K ,n

)2

)1∕2

,

(20)(�T
K ,n

)2 = cn ∫
tn+1

tn

‖�n‖2L2(K )dt,

ei =
�

e(T )L2
.

Since we use the ZZ post-processing to make the space 
error indicator computable, we also check the efficiency 
of this procedure by computing the true H1 error

and the approximated H1 error

and the ZZ effectivity index is denoted by

To test the convergence of the numerical method pre-
sented above and check the sharpness of our error indi-
cators, we start with numerical experiments for non-
adapted meshes and constant time steps. The numerical 
experiments should possibly demonstrate the following 
properties: 

	 (i)	 To validate the equivalence between the error 
indicator and the true error, the effectivity index ei 
should remain close to a constant, in particular, the 
effectivity index ei should not depend on the solu-
tion, the time step and the mesh size and aspect 
ratio.

	 (ii)	 To ensure that the ZZ post-processing is asymptoti-
cally exact and justify its use, the effectivity index 
eiZZ should be close to one.

We consider a ”1D” problem where the initial condition is 
given by

with C > 0 and we solve the transport equation

with

Finally, we impose Dirichlet boundary conditions on the 
left side of Ω that is chosen as (0, 1)2 and we set T = 0.05 . 
The exact solution is then given by

Observe that the solution is smooth, with small variations, 
except in a thin layer of width controlled by C.

eL2(H1) =

�
∫

T

0

‖∇(� − �h�)‖2L2(Ω)dt
�1∕2

,

�ZZ =

�
∫

T

0

‖(ΠZZ

h
∇� − ∇�h�‖2L2(Ω)dt

�1∕2

,

ei
ZZ =

�ZZ

eL2(H1)

.

�0(x1, x2) = tanh(−C((x1 − 0.25)2 − 0.01)),

��

�t
+ �(t) ⋅ ∇� = 0

�(x1, x2, t) = (10 + 10t2, 0).

�(x1, x2, t) = �0(x1 − 10t − 10∕3t3, x2).



Vol.:(0123456789)

SN Applied Sciences          (2020) 2:1581  | https://doi.org/10.1007/s42452-020-03283-z	 Research Article

The numerical results are reported in Table 1 where 
we choose � = O(h2) . When the error is mainly due to the 
space discretization, it is observed that ei stays close to a 
value of 20, as it was already concluded for non-depending 
on time velocity [21]. eiZZ is close to one, thus the ZZ post-
processing is asymptotically exact, as predicted by the the-
ory. The numerical errors are respectively ≃ O(h1.8) for the 
L2 error at final time and ≃ O(h) for the L2(0, T ;H1(Ω)) error. 
When we choose h = O(�2) , the numerical error is mainly 
due to the time discretizazion and the effectivity index is 
close to 2. This value is already observed in [21] and we 
note that both numerical errors are O(�2) , see Table 2. In 
all cases, ei is independent of the solution (the same effec-
tivity indices are obtained with C = 60 and C = 240 ), the 
mesh size and aspect ratio, and the time step as expected.

In order to have effectivity indices that are close to one, 
we finally perform numerical experiments with the nor-
malized error indicator defined by

Numerical experiments will show that indeed, the effectiv-
ity indices corresponding to the normalized error indicator 
will be close to one and independent of the solution, the 
mesh size and aspect ratio, and the time step. This nor-
malized indicator will be then used as a criterion towards 
mesh and time step adaptivity. In Table 3, the effectivity 
indices are reported when using (21) as error indicator and 
when setting h3∕2 = O(�2).  

(21)� =

√(
�A

20

)2

+

(
�T

2

)2

.

5 � An adaptive algorithm

We now present an adaptive algorithm. The a priori error 
analysis contained in [12, 20] show that the final error 
increases as the square root of the final time T. Therefore, 
our goal is to ensure that the relative error over the time 
e(T )

L2

T
1∕2

= TOL , where TOL is a preset tolerance chosen by the 
user. Since the normalized error indicator (21) is shown to 
be close to the true error, the goal of the adaptive algo-
rithm is to build a sequence of meshes and time steps such 
that �

T
1∕2

 stays close to TOL. Therefore, we would like that at 
the end of the simulation, � verifies

A sufficient condition so that (22) holds is to equidistrib-
ute the error between the space and time approximations. 
Therefore, we build a sequence of meshes such that

and a sequence of time steps such that

Finally, sufficient conditions at every steps n = 0, 1, ..,N − 1 
to satisfy the above criteria are

and

(22)0.75TOL ≤ �

T
1∕2

≤ 1.25TOL.

(23)0.752TOL2

2
≤ (�A)2

T
≤ 1.252TOL2

2
,

(24)0.752TOL2

2
≤ (�T )2

T
≤ 1.252TOL2

2
.

(25)
0.752TOL2

2
�n+1 ≤ ∑

K∈Th

(�A
K ,n

)2 ≤ 1.252TOL2

2
�n+1,

Table 1   Convergence results 
when � = O(h2) with C = 60 
(rows 1–6) and C = 240 (rows 
7–12)

The aspect ratio is 50 (rows 1–4 and 7–9) and 500 (rows 5–6 and 10–12). The space error is dominated 
and ei is computed to be close to 20

h
1
− h

2 � eL2(H1) eiZZ e(T )L2 �A �T ei

0.01 − 0.5 0.0002 0.039 1.00 0.0013 0.019 0.0.00079 14.57
0.005 − 0.25 0.00005 0.021 1.00 0.00047 0.0074 0.000049 15.77
0.0025 − 0.125 0.0000125 0.011 1.00 0.00015 0.0026 0.0000033 17.22
0.00125 − 0.0625 0.000003125 0.0052 1.00 0.000043 0.00085 0.00000021 19.65
0.001 − 0.5 0.0000125 0.0039 1.00 0.000011 0.00063 0.00000402 58.37
0.0005 − 0.25 0.000003125 0.0019 1.00 0.000012 0.00024 0.00000026 20.79
0.01 − 0.5 0.0002 0.39 0.54 0.023 0.098 0.0094 4.39
0.005 − 0.25 0.00005 0.16 0.77 0.0062 0.041 0.000 78 6.72
0.0025 − 0.125 0.0000125 0.067 0.96 0.0012 0.015 0.000054 11.89
0.00125 − 0.0625 0.000003125 0.032 1.00 0.00027 0.0053 0.0000036 19.077
0.001 − 0.5 0.0000125 0.023 1.00 0.000064 0.0036 0.000059 42.75
0.0005 − 0.25 0.000003125 0.012 1.00 0.000065 0.0014 0.0000037 21.62



Vol:.(1234567890)

Research Article	 SN Applied Sciences          (2020) 2:1581  | https://doi.org/10.1007/s42452-020-03283-z

If the conditions (26) are not satisfied, we refine or coarsen 
the time step. If (25) are not satisfied, the mesh is changed 
and a new anisotropic mesh is generated with the BL2D 
software [26]. In practice, the new mesh is built by equi-
distributed �A

K ,n
 between the direction �1,K  and �2,K  , and 

by aligning each triangle K with the eigenvectors of the 
gradient matrix GK (� − �h�) (that is post-processed with 

(26)
0.752TOL2

2
�n+1 ≤ ∑

K∈Th

(�T
K ,n

)2 ≤ 1.252TOL2

2
�n+1.

ZZ post-processing). For more details on this procedure, 
we refer to [20].

Everytime a new mesh has to be built, the old values 
of the solutions have to be interpolated on the meshes. A 
detailed discussion and several interpolation operator are 
presented in [11] and [21]. In both studies, the conserva-
tive interpolation [5] demonstrates the best result. There-
fore we decide to use it also for the numerical experiments 
presented below. The main steps of the adaptive algorithm 
are summarized in Table 4.

Table 2   Convergence results 
when h = O(�2) with C = 60 
(rows 1–7) and C = 240 (rows 
8–15)

Thhe aspect ratio is 50 (rows 1–4 and 8–11) and 500 (rows 5–7 and 12–15). The temporal error is domi-
nated and ei is computed to be close to 2

h
1
− h

2 � eL2(H1) eiZZ e(T )L2 �A �T ei

0.01 − 0.5 0.0025 0.22 0.18 0.046 0.032 0.095 2.19
0.0025 − 0.125 0.00125 0.069 0.15 0.013 0.0063 0.027 2.08
0.000625 − 0.03125 0.000625 0.018 0.14 0.0035 0.00103 0.0073 2.07
0.00015625 − 0.0078125 0.0003125 0.0048 0.32 0.0009 0.00045 0.0018 2.13
0.001 − 0.5 0.0025 0.22 0.017 0.046 0.0032 0.096 2.07
0.00025 − 0.125 0.00125 0.069 0.015 0.013 0.00063 0.027 2.03
0.0000625 − 0.03125 0.000625 0.018 0.025 0.0035 0.00018 0.0073 2.05
0.01 − 0.5 0.0025 1.95 0.11 0.23 0.15 0.84 3.63
0.0025 − 0.125 0.00125 1.35 0.047 0.12 0.033 0.39 3.16
0.000625 − 0.03125 0.000625 0.68 0.023 0.051 0.0059 0.15 2.43
0.00015625 − 0.0078125 0.0003125 0.23 0.039 0.016 0.0026 0.034 2.11
0.0000390625 − 0.001953125 0.00015625 0.066 0.13 0.0042 0.0018 0.0087 2.11
0.001 − 0.5 0.0025 2.017 0.012 0.24 0.063 0.94 3.89
0.00025 − 0.125 0.00125 1.36 0.0045 0.12 0.0034 0.39 3.17
0.0000625 − 0.03125 0.000625 0.68 0.0039 0.051 0.0011 0.12 2.42
0.000015612-0.0078125 0.0003125 0.24 0.011 0.016 0.00076 0.034 2.10

Table 3   Convergence results 
with the normalized error 
indicator when h3∕2 = O(�2) 
with C = 60 (rows 1–7) and 
C = 240 (rows 8–14)

The aspect ratio is 50 (rows 1–4 and 8–11) and 500 (rows 5–7 and 12–14). Here ei =
√(

�A

20

)2

+
(

�T

2

)2

∕e(T )
L2

 
and is computed to be around 1

h
1
− h

2 � eL2(H1) eiZZ e(T )L2 �A∕20 �T∕2 ei

0.01 − 0.05 0.0005 0.041 0.96 0.0025 0.0011 0.0033 1.38
0.004 − 0.2 0.00025 0.015 0.98 0.0007 0.00025 0.00085 1.26
0.0016 − 0.08 0.000125 0.0069 1.00 0.00016 0.000077 0.00021 1.38
0.00064 − 0.032 0.0000625 0.0026 1.00 0.000038 0.00002 0.000054 1.49
0.001 − 0.5 0.00005 0.0038 1.00 0.000025 0.000034 0.000037 1.99
0.0004 − 0.2 0.000025 0.0015 1.00 0.000011 0.0000087 0.0000096 1.22
0.00016 − 0.08 0.0000125 0.00067 1.00 0.0000034 0.0000026 0.0000024 1.03
0.01 − 0.05 0.0005 0.45 0.47 0.031 0.0053 0.041 1.30
0.004 − 0.2 0.00025 0.17 0.52 0.010 0.0014 0.015 1.42
0.0016 − 0.08 0.000125 0.058 0.703 0.0028 0.00045 0.0039 1.44
0.00064 − 0.032 0.0000625 0.018 0.83 0.00069 0.00012 0.001 1.46
0.001 − 0.5 0.00005 0.024 0.96 0.00044 0.00019 0.00065 1.52
0.0004 − 0.2 0.000025 0.0091 0.98 0.00012 0.000051 0.00016 1.4
0.00016 − 0.08 0.0000125 0.004 1.00 0.000032 0.000015 0.000041 1.35
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Example 1  (An anisotropic example) We apply the adap-
tive algorithm to the following example. The domain is 
still chosen as (0, 1)2 and we set the final time to T = 0.3 . 
Dirichlet boundary conditions are still imposed on the left 
side of Ω and we choose the initial condition as before as

with C = 60 or C = 240.
We now choose �(x1, x2, t) = (ut̄(t), 0) with ut̄ given by

�0(x1, x2) = tanh(−C((x1 − 0.25)2 − 0.01)),

Table 4   Main steps of the time 
space adaptive algorithm Initialization : et T0

h,0
,�0

h
, n = 0, �1, i = 0.

While t < T

   Increment next time step t = t + �n+1

   Compute �n+1
h

 on Tn
h,i

 by solving (2)
   For K ∈ T

n

h,i
 , compute the space and time error indicators

   (�A
K ,n

)2, (�T
K ,n

)2

   If (25) and (26) are satisfied then accept the current mesh and time step

      Tn+1
h,0

= T
n

h,i
, �n+2 = �n+1

      i = 0, n = n + 1

   else
      t = t − �n+1

      If (25) is not satisfied, then adapt the mesh
         For K ∈ T

n

h,i
 , compute GK and align the mesh with the eigenvectors of GK

         For i = 1, 2

         Compute the mesh size �i,K
            If the mesh size is too small in direction xi
            increase �i,K
            If the mesh size is too big in direction xi
            decrease �i,K
         Build a new mesh Tn

h,i+1
 using the BL2D software

            If n > 0

            Interpolate the old solutions on the new mesh
         i = i + 1

      If (26) is not satisfied Adapt the time step

            If 

∑
K∈Th

(�T
K ,n

)2

 is too small, increase the current time step

            If 

∑
K∈Th

(�T
K ,n

)2

 is too big, decrease the current time step

            If 𝜏n+1 > T − t set �n+1 = T − t

Table 5   Additional notations for the analysis of the adaptive algo-
rithm

Nv : Number of vertices of the mesh at final time
N� : Number of time steps
Nm : Number of remeshings
Nc : Number of time step changes
ar : Maximum aspect ratio at final time, the 

aspect ratio on an element K being 
�
1,K∕�2,K

ar : Average aspect ratio at final time

Table 6   Example 1. 
Convergence results for the 
adaptive algorithm. C = 60 
(lines 1–3) and C = 240 (lines 
4–6).

TOL e(T )L2 ei eiZZ �A �T ar ar Nv N� Nm Nc

0.005 0.0024 1.086 0.95 0.0018 0.0019 164 53 106 459 42 245
0.0025 0.00094 1.39 0.97 0.00093 0.00091 272 78 244 667 42 328
0.00125 0.000051 1.29 0.98 0.00047 0.00046 429 118 390 942 44 414
0.005 0.0029 0.91 0.84 0.0019 0.0016 641 185 142 1645 163 1144
0.0025 0.00101 1.29 0.89 0.00093 0.00091 1236 296 225 2370 145 1357
0.00125 0.000401 1.61 0.94 0.00047 0.00044 1187 380 474 3430 131 1798
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ut̄ is a smooth function that is mainly 1 or 10, except in a 
small boundary layer of width 0.03 around t = t̄ . Since the 
velocity quickly accelerates after t = t̄ , it is expected that 
smaller time steps are chosen by the algorithm. For this 
particular example,we choose t̄ = 0.25.

We run the adaptive algorithm for various values of the 
prescribed tolerance TOL. We investigate the number of 
vertices, aspect ratio, number of time steps and remesh-
ings. We summarize the notations we used for the analysis 
in Table 5. We make the following observations:

–	 The number of vertices is multiplied by 1.6 as the tol-
erance is divided by two, expressing the fact that the 
method is O(h3∕2).

–	 The number of time steps is multiplied by 
√
2 as the tol-

erance is divided by two, expressing the second order 
accuracy in time of the method.

–	 The L2 error at final time is O(TOL).
–	 ei stays around 1 and the ZZ post-processing is asymp-

totically exact.
–	 The number of remeshings is independent of the toler-

ance and depends on the solutions.

(27)

ut̄ (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, t ≤ t̄ − 0.03,

1 + 9
x − t̄ − 0.03

0.06
+

9

2𝜋
sin

�
𝜋(x − t̄)

0.03

�
, t̄ − 0.03 ≤ t ≤ t̄ + 0.03,

10, t ≥ t̄ + 0.03.

In Tables 6, we present the converge results for several 
values of TOL. In Fig. 1, we check the evolution of the time 
step. We observe that the time step follows the evolution 
of � , up to some oscillations occurring when the adap-
tive algorithm refuses the current time step. In particular, 
when � is 10 times larger, the adaptive algorithm selects a 
time step that is approximatively 10 times smaller. In Fig. 2, 
we represent the generated meshes and the solutions for 
C = 240 and TOL = 0.00125.

This example demonstrates the efficiency of anisotropic 
adaptive finite elements to approximate the behaviour 
of solutions with boundary layers. When TOL = 0.00125 , 
the mesh size in the x1 direction is 0.0013 for C = 60 and 
0.0003 for C = 240 . An isotropic adaptive algorithm would 
need the same mesh size in both x1 and x2 directions, thus 
resulting in million vertices! Morover, numerical experi-
ments show that the effectivity index corresponding to 
the normalized error indicator (21) remains close to one 
(say between 0.9 and 1.6).

Example 2  (An isotropic example) We present an isotropic 
example in order to show that the effectivity index indeed 
does not depend on the solution. The initial condition is 
given by

and the velocity field by

�0(x1, x2) = exp−100((x1−0.3)
2+(x2−0.3)

2)

Fig. 1   Example 1. Evolution of the current time step for several values of TOL. C = 60 (left) and C = 240 (right)
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Fig. 2   Example 1. Meshes 
and solutions for C = 240 , 
TOL = 0.00125 and 
t = 0, 0.25, 0.28, 0.3 (from top 
to bottom)
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where ut̄(t) is as in (27) and we choose t̄ = 0.125 . The final 
time is set to 0.15. Numerical results are reported in Table 7 
when runing the adaptive algorithm. In Fig. 3, we repre-
sent the generated meshes and the solutions at time t = 0, 
0.125, 0.15. The same observations can be made, namely 
that the effectivity index is close to one (it ranges between 
1 and 1.7) and the ZZ post-processing is asymptotically 
exact.

u(x1, x2, t) = (ut̄(t), ut̄(t))
Example 3  (Stretching of a circle in a vortex flow) The last 
test case is the stretching of a circle in a vortex flow. We set 
Ω =]0, 1[2, T = 4 . The initial condition is given by

where C = 60 or C = 240 . No boundary conditions along 
�Ω are prescribed. The velocity field is defined by

�0(x1, x2) = tanh

(
−C(

√
(x1 − 0.5)2 + (x2 − 0.75)2 − 0.15)

)
,

�(x1, x2, t) =

(
−2 sin(�x2) cos(�x2) sin

2(�x1) cos(0.25�t)

2 sin(�x1) cos(�x1) sin
2(�x2) cos(0.25�t)

)
.

Table 7   Example 2. 
Convergence results for the 
adaptive algorithm.

TOL e(T )L2 ei eiZZ �I �T ar ar Nv N� Nm Nc

0.001 0.00035 1.04 0.99 0.00027 0.00026 12 3 8215 343 19 222
0.0005 0.00014 1.40 0.99 0.00013 0.00013 23 3 20826 520 21 316
0.00025 0.000056 1.66 0.99 0.000068 0.000064 21 3 50790 750 24 453

Fig. 3   Example 2. Meshes 
and solutions at time 
t = 0, 0.125, 0.15
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Since the flow is reversed at t = 2 , we must have 
�(x1, x2, 4) = �0(x1, x2).

We start the adaptive algorithm with an initial grid of 
mesh size h = 0.1 and an initial time step �1 = 0.001 . Sev-
eral meshes and numerical solutions are presented in 
Figs. 4 and 5 when TOL = 0.00125 . In Figs. 6 and 7, conver-
gence of the computed solution at final time is checked 
for several values of TOL.

6 � Conclusion

We prove an a posteriori error estimate for the space-time 
approximation of the transport equation in the case where 
the transport velocity depends on space and time. Aniso-
tropic finite elements are considered and the Crank-Nicol-
son method is used to advance in time. The correspond-
ing a posteriori error estimate is shown to be of optimal 
order. Error indicators for space and time are proposed, 
numerical experiments confirm their sharpness. An adap-
tive algorithm is then introduced in order to capture with 
accuracy and low computational cost solutions that have 
strong variations in space and time. The efficiency of the 
method is shown for three 2D examples. A few 3D compu-
tations are reported in [20].

Fig. 4   Example 3. Mesh and solution at time t = 0, 1, 2, 3, 4, with 
C = 240 and TOL = 0.00125
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Fig. 5   Example 3. Zoom on the mesh at time t = 2 with C = 240 and TOL = 0.00125

Fig. 6   Example 3. Exact and numerical solutions at time T = 4 with C = 60 along x
1
 at x

2
= 0.75 . Right: zoom

Fig. 7   Example 3. Exact and numerical solutions at time T = 4 with C = 240 along x
1
 at x

2
= 0.75 . Right: zoom
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