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Abstract—In this paper we tackle the problem of finding
the source of particulate matter with a mobile robot equipped
with a low-cost multi-channel optical particle counting sensor.
The proposed method is based on the Infotaxis odor source
localization algorithm and makes multiple modifications to adapt
it to particle plumes. In particular, we propose three simple but
efficient ways to fuse multiple probability maps associated with
various particle sizes and use the resulted integrated map to guide
the robot’s movements. A refined measurement data collection is
conducted in a wind tunnel to fit the particle plume model. The
method with three proposed integration strategies is evaluated
in simulation and in the wind tunnel emulating realistic environ-
mental conditions in a repeatable fashion. In particular, we have
investigated the impact of two environmental parameters - the
wind speed and source release rate on the algorithm performance.
The proposed algorithm with the weighted multi-modality map
integration strategy outperforms the original Infotaxis and the
other two variants. In high wind speed, the proposed algorithm
is able on average to estimate the source location with less than
1 meter error in the 80 m? wind tunnel arena.

Index Terms—particle source localization, low-cost optical par-
ticle counter, mobile robotics, Bayesian algorithm, wind tunnel
experiments

I. INTRODUCTION

DOR source localization is the problem of finding the

source of a chemical plume. For most of the living
organisms in the world, locating an odor source is an inborn
ability. It helps animals locate their food or prey and avoid
predators. For example, dogs have a much more sensitive
nose than human beings, which makes them way superior to
humans when searching for poisonous chemicals and explosives.
Therefore, dogs and other animals have been deployed to find
chemical sources, but they require a substantial amount of
training, could get hurt in dangerous scenarios, and get tired
after a few hours of search operation.
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Therefore, since the early 1990s, many researchers have
dedicated attention to the design of a robotic system capable of
finding a source of chemical release [1]. Localizing the source
of an airborne particle plume presents similarities with the
widely-discussed chemical odor source localization problem but
the different nature of the particle plume suggests a significant
adaptation of the methods used in the chemical odor source
localization problem. Moreover, dogs cannot locate particle
sources because most of the particle plumes are odorless.
Finally, the problem of particle source localization is still
in its early stage, with almost no related works.

Because of the limited literature on particle source localiza-
tion, we will review in the following some of the most relevant
methods used in odor source localization. The whole process
of robotic odor source localization can be divided into three
sub-tasks:

o Plume finding, which means searching the environment

in order to sense the presence of an odor;

o Plume tracking, which means following the plume to find

the odor source;

e Source declaration, which means estimating the actual

location of the source.

Source declaration is either carried out leveraging other
sensing modalities such as vision, or established according
to certain rules (such as measuring a concentration threshold)
set by a human supervisor. Most odor source localization
algorithms tackle only the first two phases.

Different from some other source tracking problems (e.g.,
radiation source and sound source localization), in which the
intensity of the signal is highly related to the distance from the
sensor to the source [2], [3], odor/particle source localization
presents a higher level of complexity. The challenges come
from the variety of environmental parameters related to the
dispersion of plumes (e.g., wind field, source release rate,
gravity settling effect). The resulting odor/particle concentration
field can hardly be processed analytically. Although researchers
are actively overcoming the difficulties, robotic odor, and even
more particle, source localization solutions are still far from
industrial applications.

We can divide the existing odor source localization algo-
rithms for single robots into three categories [4], [5]: gradient-
based algorithms, bio-inspired algorithms and probabilistic
algorithms.

Starting from the early 1990s, contributions on gradient-
based algorithms [1], [6]-[9] were preliminary attempts in
the research area. Researchers designed algorithms to guide



robots to the odor source exploiting the concentration gradient
and wind direction. In these early works, robotic odor source
localization did not perform as well as its biological counter-
parts. One important factor is that an odor plume is propagated
through wind in a typically turbulent regime. This makes the
odor concentration distribution far from showing a smooth
gradient along the wind direction; it is indeed intermittent, and
characterized by great concentration fluctuations. Thus, it is
hard to collect accurate odor gradients in general and it is even
more difficult to do so in short time windows.

Bio-inspired algorithms are motivated by the amazing ability
of living creatures (such as moth [10]-[13], lobster [14]-
[16], and dung beetle [17]) to find odor sources. These
algorithms are relatively computationally cheap. On the other
hand, Bennetts et al. [18] argued that biomimetic approaches to
locate odor sources are of limited use, state-of-the-art sensing
and locomotion abilities of robots have large differences in
comparison to those of animals.

Probabilistic algorithms including Bayesian inference [19]-
[26], hidden Markov [27] and kernel methods [28], [29]
model the odor source location as a probability distribution.
Through continuous observations, the probability distribution
will converge towards a Dirac function at the source. Proba-
bilistic and map-based algorithms do not rely heavily on the
concentration gradient, and they are flexible in their forms.
Moreover, as hardware technologies have radically increased
their performances in the last decades, their computational cost
is no longer a major burden.

Most of the previous works focus on chemical odor source
localization and use Volatile Organic Compound (VOC) sensors
to measure the concentration of these substances (e.g., ethanol
or acetone). However, in many situations, such as burning
some materials, or even more severe - in fire disasters, the
source does not release a chemical substance that can be
detected by VOC sensors, but rather airborne particles. These
particles are often odorless and common chemical sensors
are not able to sense them. Therefore, solving the particle
source localization problem requires substantially changes
in the sensing technology and in turn adapting the related
localization algorithms.

The most common techniques for monitoring airborne
particle use static and fairly expensive sensor nodes [30]-[32],
which are reliable, but also characterized by limited portability,
a feature that together with the cost limit their deployment in
large quantities. Recently, some low-cost small-sized Particle
Matter (PM) sensors have become commercially available.
Because of their cost and dimensions, these sensors can be
deployed in large quantities and on small-scale mobile robotic
assets. Although there are a few papers testing the reliability
of these low-cost PM sensors on monitoring air pollution
[33], [34], there are not reported applications in the field of
robotic particle source localization. Therefore, to the best of
our knowledge, our effort can be considered among the frontier
attempts in addressing the challenge of finding and tracking
a PM source using a mobile robot. Some previous works on
robotic fire detection [35], [36] used carbon dioxide sensors,
but they may not work well if the combustion is not complete.
PM source localization can be an alternative solution for this

case.

While the odor source localization is an actively investigated
topic in the robotics and partially in the sensor communities
(though still a niche one), to the best of our knowledge, there
was no previous work on robotic particle source localization
at the time of our submission. Therefore, our contribution
can be considered a proof-of-concept study and a solution to
the above issues, at the system level, supported by repeatable
quantitative results gathered by leveraging recently available
low-cost particle sensing technology. Within this context, we
have decided to create a baseline paper by adapting the existing
Infotaxis algorithm [23] to airborne particle source localization.
In addition to a different nature of the source, the adaptation
intended to leverage also the sensing richness characterizing
particle sensors able to produce quantitative data for different
particle sizes. Therefore, the overall adaptation involves a
different plume modeling parametrization, map integration
strategies, and a thorough experimental evaluation in simulation
and reality under different environmental conditions. To this
purpose, we studied the sensing characteristics of a typical
low-cost multi-modality particle sensor, fitted a particle plume
model and accordingly proposed some variants of the Infotaxis
algorithm, with different probability map integration strategies
for airborne particle source localization. An information-greedy
robot navigation approach is adopted in this paper instead of
sophisticated exploration strategies such as stochastic optimal
control with path integrals [37] and Partially Observable
Markov Decision Process [38] balancing exploration and
exploitation, because the aim of the proposed algorithm was
to estimate the location of the particle source with a minimum
number of iterations. Further study on the balance between
spatial exploration and exploitation strategies will be conducted
in future work.

The main contributions of this paper are threefold. A first
and significant contribution of this paper is an experimental
investigation of particle plume modeling which reveals differ-
ences between chemical plume and particle plume tracking. A
second contribution is concerned with the adaptation of the
Infotaxis algorithm to three different probability map integration
strategies, exploiting all the modalities produced by a multi-
size particle sensor. A third contribution is to evaluate the
proposed algorithm under different environmental conditions
and compare its performance with those of the original Infotaxis
algorithm directly applied to particle source localization. Since
the wind plays a significant role in the dispersion of particles,
in this paper we do not consider windless conditions.

In Section II, we show how particle plumes differ from
chemical plumes and introduce the low-cost particle sensor
we used in this work. In Section III, we present the original
Infotaxis algorithm and the adaptations we made to accom-
modate multiple sensing modalities. In Section IV, the plume
models of different sizes of airborne particles are fitted into
the pseudo-Gaussian model and the evaluation results of the
proposed algorithm with the fitted plume model in simulation
and physical reality are presented.



II. PARTICLE PLUME DISPERSION AND SENSING

One of the main differences between particulate and chemical
plumes comes from their correspondingly different physical
properties of the source, the involved physical transportation
of the airborne components, and the corresponding available
sensing technology. Usually odor fields reported in the robotic
literature are generated by a single source emitting a single
chemical compound. Therefore, the concentration measurement
involves a single sensing modality. On the other hand, particle
sources tend to emit a cocktail of particles of different sizes and
therefore the available sensing technology, including low-cost
sensors, provides natively a number of related metrics (e.g,
number, mass or surface area) related to these different sizes.
Therefore the problem of particle source localization becomes a
multi-modal search, while odor source localization is typically
a single modality search. Additionally, the dispersion of the
particles in the air is also different since it is dependent on the
size and the mass of the particles. Large particles fall down
faster so they travel more locally. Small particles are more
likely to travel further, and we can detect them far from the
particle source [39], [40]. This is a very important feature that
has guided us in the design of our algorithm for particle source
localization.

A. The low-cost particle sensor

One of the key elements in any search scenario is to choose
a proper sensor. After studying multiple low-cost sensors
available on the market, we chose the Plantower PMS 7003
[41]. The Plantower sensor is cheap, small in size and is
supposed to measure particles with diameter from 300 nm
to 10 pwm. It uses laser scattering to count particles, that is,
casting the laser on the suspended particles in the air, receiving
and measuring the scattered light at a certain angle to compute
the size of particles and the number of particles in a certain
volume of air according to Mie scattering theory [42]. It has
shown reliable enough results in real world tests [33], [34],
and was reported to be suitable for monitoring short-lived
airborne particle concentrations especially when coupled with
wind data.

The Plantower sensor measures 12 different modalities at the
same time, as summarized in Table I. Among the 12 sensing
channels, the ones labeled with C'F'1 (Calibration Factor 1)
were not relevant to our environment since normalized for a
specific industrial environment. The concentration of particles
(channel 4 to 6) were also reflected by the number of particles
(channel 9, 10 and 12). Therefore, we only chose the last six
channels (in bold) as “observations” in the rest of the paper.

B. Particle plume model

There are various plume models, such as Gaussian Processes
[43], the filament-based atmospheric dispersion model (also
known as the Advection-Diffusion model) [44] and the pseudo-
Gaussian model [45], [46]. We have chosen the pseudo-
Gaussian model to model the smoke particle plume because it
is widely used and relatively easy to be fitted. For a continuous
point source in steady air flow, the following pseudo-Gaussian

TABLE I
MEASUREMENT MODALITIES OF PLANTOWER PMS 7003

No. Measurement value Abbreviation
1 PM 1 concentration (CF' = 1) c1_CF1
2 PM 2.5 concentration (CF = 1) ca5_CF1
3 PM 10 concentration (CF = 1) c10_CF1
4 PM 1 concentration (in atmospheric environment) c1_A
5 PM 2.5 concentration (in atmospheric environment) co5_A
6 PM 10 concentration (in atmospheric environment) cig_A
7 The number of particles (d > 0.3um) in 0.1 liter of air  ng.3
8 The number of particles (d > 0.5um) in 0.1 liter of air no.s
9 The number of particles (d > 1um) in 0.1 liter of air n;

10 The number of particles (d > 2.5um) in 0.1 liter of air n2 5
11 The number of particles (d > 5um) in 0.1 liter of air ns
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where z, y and z represent the relative position along the wind
direction (X-axis), crosswind horizontal direction (Y-axis) and
crosswind vertical direction (Z-axis), respectively. ) is the
plume source release rate, « is the wind speed, o, and o, are
the standard deviations along crosswind horizontal direction
and crosswind vertical direction respectively, which can be
fitted into functions of z. This model applies to both chemical
and particulate plumes, but with different parameter values.
Detailed plume model fitting and quantitative analysis are
presented in Section IV-B.

ITI. ADAPTING THE INFOTAXIS ALGORITHM TO PARTICLES
SOURCE LOCALIZATION

Our source localization solution is based on the Infotaxis
algorithm, which is a well-established probabilistic algorithm
for odor source localization proposed by Vergassola et al. [23].
This algorithm can be very efficient and flexible since it can
be implemented without a very accurate plume model, and it
holds a belief of the source location, which can help locate the
source before the robot reaches its proximity. In this section,
we will explain how the original Infotaxis algorithm works,
and also how we have adapted it to the multi-modal sensing
technology leveraged in this paper for particle plumes.

Infotaxis is based on a typical Bayesian inference method.
The robot keeps a probability distribution S for the location
of the source. In a 2D environment with one point source,
the probability of the position (x,y) to be the source can
be expressed as P(z,y). In this environment, S is a map of
P(z,y). The entropy of the probability distribution map is:

Entropy(S) = =Y P(x,y)log(P(z,y))  (2)

The higher the entropy is, the more uncertain the source location
is.

The robot, while moving in the environment, senses a
series of concentration {Cy, C1,...}. Using a plume model



(discussed in Section IV-B) , the probability of getting a certain
concentration level Cy, at the position (x,y) is expressed as:

P(Ck) = ZP(C’C‘Source = (xs’ys))P(x&ys) 3)

At the beginning of the search, the probability of every point
to be the odor source is the same, so the probability map is
uniformly distributed and thus the entropy is at its maximum.
The Infotaxis algorithm can be divided into four processes
that keep iterating: observation, updating the probability map,
evaluating future potential observation points (targets), and
robot movement. Below, we explain the algorithm in detail.

A. Observation and probability map updating

At every step i, the robot will take a concentration measure-
ment (observation) O; = (z,y, Ck).

Assuming P(Cy|source = (x5,ys)) satisfies Poisson distri-
bution (the same as [25], [48]), it can be calculated by

where C, and C¢,), represent the measured and the expected
concentration level respectively. Ce,, can be calculated by
Eq. (1).

Let P;(xs,ys) represent the posterior probability at step 4
that the source is located at (z,ys). According to Bayesian
inference,

Pi(zs,ys) =P (5

Combining Eq. (4) and Eq. (5), the probability map can be
updated by:

“4)

P(Cylsource = (zs,ys)) =

(Ck‘source = ('rsays)) : Pi—l(xsays)

P, =P,y x C% x ¢ Cear

exp

(6)

With the particle sensor discussed in Section IV-A, we
are able to sense the number of particles with different
sizes. By considering the number of particles as equivalent
to concentration, we fitted particle plumes into the pseudo-
Gaussian concentration model. Furthermore, since more than
one measurement value per location can be read through the
sensor, multiple probability maps can be generated.

B. Target evaluation and robot movement

There are several potential target positions for the robot’s
next step. In this paper, we set 10 targets (5 in the front and 5
in the back) for the robot’s movement (shown in Fig. 1). The
robot can reach TS5 and T6 through a straight line, T3, T4, T7,
T8 along a curve with curvature 0.05, and T1, T2, T9, T10
along a curve with curvature 0.1. The distance to every target
is the same and set to 0.3 m in this paper.

If the robot goes to the nth target located at (x,,,yy ), the
probability to get a concentration C, can be expressed using
Eq. (3). If O;41 = (Zn, Yn, Ck), the estimated S;;1 becomes
Sit1 = f(Si, (Zn,Yn,Ck)). The entropy of the estimated
probability map S;;; can be calculated with Eq. (2). The
expected entropy yielded by this movement is:

Z Entropy(Si4+1)P(Ck)
3

Entropyezp = (7N

Fig. 1. Targets for robot’s movement. The red arrow is the robot’s heading
direction. T1 ~ T10 are targets.

The robot will assess all the potential targets and all the
potential observations; move towards the target yielding the
smallest entropy, which means it will gain most information
about the source location and therefore decrease the related
uncertainty.

With repeated observations and movements, the entropy will
keep decreasing until the robot finds a position with a high
probability to be the source.

C. Adaptation to particle plumes

As mentioned before, for particle plumes we have multiple
(in our case six) measurement channels and so we can generate
multiple probability maps, one per channel. However, the
Infotaxis algorithm uses only one single probability map. The
immediate question is therefore how to adapt the Infotaxis
algorithm to a multi-modal sensing landscape. Here below we
illustrate four possible strategies to address this question.

1) Single modality map: A naive method is to use only
the most representative sensing modality in the algorithm
and ignore the other ones. In this case, we use the smallest
particle size measurements (in our case ng.3) since they are
the most dispersed ones allowing the robot to construct the
most extended map, including regions far from the source (see
details in Section IV-A).

2) Unweighted multi-modality map (Integration Strategy
I): A smarter but reasonably simple way to fuse all the
measurements is to sum with equal weight all the values related
to different particle sizes into a single map.

This form aggregates all the individual maps but does not
bias the result of the fusion towards any one of them.

3) Weighted multi-modality map (Integration Strategy II):
Another equally interesting aggregation form is the weighted
sum of all the six original maps, with the reciprocal of the
entropy of each map representing the weight of that map in
the integrated one. The probability distribution of the new map
is therefore expressed as:

6
P(z,y) Z Entropy i)

i=1

()

where ¢ = 1,2, - - , 6 represents the index of the six probability
maps we generated from the observation series directly. .S;
represents the ith probability map.

Using the inverse entropy as the coefficient of the weighted
sum assigns more importance to the probability maps with
lower entropy but does not entirely ignore probability maps with
high uncertainty, which prevents the probability distribution to



converge too quickly. The integrated probability map is used
as the probability map in the target evaluation stage.

4) Multi-modality voting map (Integration Strategy III):
Multi-modality voting also takes all six sensing modalities into
account. In this case, six single probability maps are updated
and recorded simultaneously at every time step. For each of
them, the target evaluation is conducted separately and the best
movement target for each map will get a vote. The robot will
eventually move towards the target with most votes.

More sophisticated methods to fuse the considered six
sensing channels would be possible, for instance by developing
dedicated measurement models for each modality. However,
this would require the availability of additional ground truth
measurement equipment and a thorough calibration campaign
that is out of scope of this paper.

D. Plume finding stage and particle concentration levels

To map the particle number values measured by the sensor
to concentration levels (C in Eq. (3)) used in the algorithm,
we first measure the baseline particle concentration in the clean
air and then define multiple levels of concentrations for higher
values. Similar to [25], [48], we set the robot to do a crosswind
scan as its plume finding stage and record concentration values
at the beginning of the experiments. The robot will come to
the highest concentration point during this crosswind scan and
start the algorithm. The concentration baseline is set to a value
slightly larger than the lowest measured value in the crosswind
row. We set the same fixed baseline B for all six modalities
based on the measurement we get from the dominant particle
size (which is the smallest size particle). Based on B, we
define 10 concentration levels similar to the previous works
[25], [48].

E. End of the algorithm

Our goal is to locate the position of the source by calculating
the probability distribution, so it is not necessary to let the
robot reach the source. We define the following conditions for
ending the algorithm:

« the entropy of the integrated probability map becomes

lower than a threshold;

« the highest probability point in the map does not move

for a number of consecutive measurements;

« the robot arrives at the source;

« the robot goes to the boundaries of the arena.

Only one of these conditions needs to be met to terminate
the algorithm. The ending strategy is similar to our previous
work [25], but we adjusted the related threshold according to
the peculiarities of particle plumes.

FE. Computational complexity

Assuming the searching area is modeled as a grid, we
denote the total number of cells with A. Assume also that
N is the number of potential targets, K the number of

concentration levels and I is the number of sensing modalities.

The computational complexity of the algorithm entails two
components: the computational cost of updating the probability

Fig. 2. Wind tunnel environment

map which is a function of the number of cells, i.e. O (A4),
and that of evaluating the best target and move to it, which is
a function of the number of potential targets, the number of
concentrations levels, the number of sensing modalities, and
the number of cells involved in the probability map estimation
at the next step. Therefore, with a single modality the overall
computational cost is O (A + A- N - K). The computational
complexity of the algorithm adapted with Integration Strategies
ITandMis O(I-A+ A- N - K). The computational complex-
ity of the algorithm adapted with Integration Strategy III is
O(I-A+1-A-N-K). The difference between Integration
Strategies I, II and III comes from their different sequential
order of map integration and target evaluation.

We believe it is worth to maintain 6 maps because it does not
increase the computational complexity greatly, especially for
Integration Strategies I and II. We set N =10, K =10, =6
in this paper. The above equations of computation complexity
are O (101 - A), O (106 - A) and O (606 - A), respectively. By
maintaining 6 maps, the simplicity of computation is sacrificed
a bit in order to greatly promote the source localization
accuracy.

IV. PLUME MODEL FITTING AND ALGORITHM EVALUATION

We conducted a refined data collection in a wind tunnel
and fitted the particle plume model into the pseudo Gaussian
model. We have evaluated the algorithm in simulation and
also in the wind tunnel. In simulation, we have compared the
performance of the proposed algorithm based on the three
multi-modal map integration approaches mentioned above with
the original Infotaxis algorithm using a single modality map.

A. Experimental setup

Our controlled environment is represented by a multi-channel
wind tunnel. The channel we selected for this work has a
dimension of 20 m x 4 m X 2 m and can generate air flow
in this particular channel with any arbitrary speed between
0.1 m/s and 5 m/s. Thus, we are able to conduct extensive
repeated experiments with different environmental settings. The
wind channel is equipped with a traversing system moving
in three dimensions (shown in Fig. 2). A smoke machine is
placed inside the wind channel as an airborne particle source,
burning a special oil to generate particles. The tip of the smoke
machine is placed 6 cm above the floor.



TABLE II
FITTING PARAMETERS

Q oyzaxb oz=ax+%+c
2ra
a b a b c
n0.3 2597.8 0.0909  0.3073 0.9127 6.4255 -3.9602
no.5 898.2 0.0928  0.2966 1.0014 6.9873 -4.3382
ni 3837.6 0.0925 0.3123 7.8199 47.7052 -32.7684
na.s 6403.1 0.0912  0.3379 29.216 166.7206  -121.8657
ns 5754.2 0.09 0.3379 56.247  263.1706  -217.9539
nio 1462.4 0.0881 0.3513 40.1203 150.197  -145.8391
TABLE III
RMSE OF oy AND o,
RMSE Ty 9=
Power function Linear function Nike function Linear function
no.3 0.0196 0.0210 0.4852 0.9548
no.5 0.0205 0.0216 0.4871 0.8858
ni 0.0217 0.0226 2.9222 6.6466
na.s 0.0237 0.0241 9.6936 21.3806
ns 0.0252 0.0252 20.7342 44.0463
n1io 0.0259 0.0266 18.2744 30.8333

B. Plume model fitting

To fit the particle plume into the pseudo Gaussian model,
measurements of a real particle distribution is needed. To this
purpose a refined scan in 3D space was carried out in the wind
tunnel. The Plantower sensor was mounted on the tip of the
traversing system. The wind speed was set to 1.4 m/s. The scan
covered a volume of 9.20m x 3.25m x 0.2m and measurements
were taken at 50 x 20 x 5 location points uniformly distributed
within this volume. The volume that was in close proximity
of the smoke machine, our particle plume source, was not
scanned for sensor safety reasons.

Multiple slices of the obtained particle map perpendicular
to the X-axis were used to calculate o, and 0. In a previous
work fitting the chemical plume [25], both ¢, and o, were
fitted into linear functions of x. In this paper, o, was fitted
into the empirical power law function [49] of x and o is fitted
into the Nike function of x for decreasing error.

The fitting result on the z = 0 plane is shown in Fig. 3.
The fitting parameters are shown in Table II. The RMSE of
oy and o, are presented in Table III and compared with that
of linear fitting. It can be seen that when o, and o are fitted
into the power law function and the Nike function respectively,
the RMSE is significantly lower.

We see that the pseudo-Gaussian model that is typically
used for odor plume dispersion modeling can also be adapted
to the particle plumes, with different forms of o, and 0.
However, the major difference is that for particle plumes, since
the sensing is multi-modal, we have multiple pseudo-Gaussian
models describing various particle sizes.

Our own measurement campaign confirms the finding
reported in the literature mentioned above [39], [40]: the
smaller are the particles, the larger is their transportation
range.
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Fig. 3. Figure (a) is the measured plume distribution in the wind tunnel.
The figures show the floor plane. Each measurement value is the mean of
12 samples. Figure (b) shows the fitted pseudo-Gaussian plume. ng.3 ~ nig
correspond to the last six channels reported in Table I. The particle plume
source is placed at (0,0).

C. Simulation

Before evaluating the proposed method in the physical reality,
we have developed and tested the algorithm in simulation using
Webots [50], a high-fidelity, open-source robotic simulator.

1) Setup: The setup (shown in Fig. 4) is entirely similar to
the wind tunnel mentioned in Section IV-A. In the coordinate
system of Fig. 4, the particle source is located at (10.6,0.2)(in
meters, the same below). A simulated Khepera IV robot
equipped with a simulated particle sensor was used in the
simulations. We use the mean g and the standard deviation o
of the concentration value in the wind tunnel scan to generate
random values with Gaussian probability distribution N (u, o)
to simulate the particle sensor’s output. In our paper we assume
that the robot knows its pose all the time: in reality, we
achieved that by tracking the robot with an external camera
system and forwarding the absolute positioning information
to the robot through a narrowband communication channel; in
simulation such configuration is emulated through the use of a
supervisory functionality available in the simulator. However,
this is not at all representing a limitation of the algorithm:
such localization functionality could be easily replaced by a
SLAM method for instance by constructing a graph-structured
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Fig. 4. Webots setup. The blue oxygens represent particle plumes.

map along with an exploration process [S51] or by leveraging
vision-based navigation using signed distance fields [52]. As
mentioned in Section I, the proposed algorithm focuses on the
process of plume tracking while the plume finding strategy
is implemented in a simple way: the robot will perform a
crosswind scan, identify the highest concentration point, and
start the particle source localization algorithm from inside
the plume. Although the plume finding strategy might appear
simple, some systematic tests in simulation characterized by a
random start of the robot outside the plume have demonstrated
both the robustness of our plume finding strategy as well the
consistency in the performance of the overall particle source
localization. To study the algorithm performance when the
robot starts from a different location (close to or far from the
source), we compared two cases in which the robot’s initial
position was (19, —0.2) and (14, —0.1), respectively (marked
by stars in Fig. 4). The robot’s velocity is set to 0.34 m/s
in the movement stage. For each set of experiments, 50 runs
were carried out.

2) Metrics: The performance of the algorithm has been
evaluated using two metrics: distance error (i.e. the distance
between the maximum probability position in the map and the
actual position of the source when the algorithm ends) and the
number of iterations, where each iteration is defined as the
whole process of the robot sampling in a position, updating the
probability map, taking decision to go to a target point, and
moving to the next position. The former of these two metrics
can show the algorithm’s accuracy while the latter can illustrate
its efficiency over time.

3) Evaluation of the proposed method: One of the modi-
fications we did to the Infotaxis algorithm was to integrate
the probability maps. In the simulation stage, we studied the
difference among the four strategies explained in Section III-C.
The results are shown in Fig. 5.

When the robot starts from (19, —0.2), in terms of distance
error, the algorithm based on a single modality map performs
reasonably well for the four cases of ng3 to ng5. This is
because small particles travel further and the robot can sense
high concentrations even at the beginning of the runs, when
the robot is far away from the source. But for single-modality
strategies based on ns and n1o maps, since the large particles
do not travel very far from the source, the robot could sense
only low values far from the source and this was reflected in
the results. On the other hand, for both Integration Strategy I
and II, the distance error was less than 1 /m in most of the runs,
which represents a much superior performance in comparison
to strategies based on any single modality. Integration Strategy
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Fig. 5. Performance evaluation in Webots for single probability maps, and
the three different integration strategies reported in Section III-C. ng.3 ~ n1g
are six single probability maps respectively. I: unweighted multi-modal map.
II: weighted multi-modal map. III: multi-modal voting map. (In the boxplot,
the middle bar indicates the median.)

II shows slightly higher performance than Integration Strategy
I. Integration Strategy III does not yield as good results as I and
II. The reason why Integration Strategy II shows better results
is that it takes into account the uncertainty of the individual
probability maps - more weight is assigned to maps with less
uncertainty, thus the robot has higher chance to make the right
choice for its next movement. Integration Strategy I assigns
equal weights to all maps, in which case probability maps with
small uncertainty cannot give the robot more guidance than
those with large uncertainty. For Integration Strategy III, since
some maps may be not as reliable as others when their entropies
are high, voting results can even contradict the action yielding
minimum expected entropy. This explains why the performance
of Integration Strategy III is worse than the other two. In terms
of number of iterations, we only consider runs in which the
distance error is smaller than 2 m (which can be considered
as an acceptable result). The methods with Integration Strategy
I and II show an average value comparable to the runs based
on single-modality maps. In a few cases of single maps, the
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Fig. 6. Trajectory of the robot running the source localization algorithm
in a simulation run. X and Y are coordinates in the simulated wind tunnel.
The color code on the trajectory is related to the entropy of the integrated
probability map.

number of iterations was lower than others because the robot
got limited information and ran into walls, thus the algorithm
was terminated sooner, but the estimated source location was
close to the actual one by coincidence. Integration Strategy II
also shows slightly better results than I and III on this metric.

When the robot starts from (14, —0.1), a location relatively
close to the airborne particle source, the source localization
is much more accurate. The distance errors in all settings
except for Integration Strategy III are similar - less than 1.5 m.
Among them, Integration Strategy II still yields the best result.
In terms of number of iterations, Integration Strategy II also
outperforms the other integration strategies and some of those
leveraging single-modality maps.

Fig. 6 shows the robot’s trajectory when working with
Integration Strategy II in a simulation run. We can see that the
robot almost goes along a straight line and the algorithm stops
before the robots reach the particle source when the robot has
already acquired sufficient information to calculate the particle
source location. The trajectory demonstrates the efficiency of
the proposed algorithm.

From Fig. 5, it can be seen that the performance of the
algorithm with the three integrated strategies is less dependent
on the initial position, while the performance of the single-map
algorithm can be affected a lot. In fact, because the dispersion of
larger particles is limited (discussed in Section IV. B), when the
robot starts from (19, —0.2), i.e. relatively far from the particle
source, it can only observe a very low concentration level
of them at the beginning. When guided by a single modality
map, the robot fails to estimate the source location properly,
loses its direction, and might even collide with environmental
boundaries. This leads to high distance error for single modality
maps as shown Fig. 5(a), especially for large particles such as
ns and n1g. When the robot starts from (14, —0.1), i.e. closer
to the particle source, all particles sizes can be observed from
the beginning. Thus, the localization accuracy is enhanced,
even for single maps. This difference is especially striking for
ns and nqo maps.

4) Probability map evolution: Here we look into how the
probability maps change at every iteration when running the
Infotaxis algorithm with Integration Strategy II. In Fig. 7, the
observation and the entropy of the probability distribution
are shown for a simulation run. In Fig. 8, we represent the
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Fig. 7. Observation and entropy at every iteration

probability maps evolution process in this run. At the beginning,
only ng 3 and ng 5 could be continuously detected. With the
observation input, the probability maps of ng 3 and ng 5 kept
being updated and their associated entropy decreased quickly.
However, low entropy does not result necessarily in an accurate
source localization. From Fig. 8(b) and (c), it can be seen that
even if ng 3 and ng s maps have a low entropy, the grid point
with highest probability of source location is still far away
from the source. If the algorithm only takes ng 3 or ng s maps
into consideration, it will terminate more quickly (based on
the termination conditions in Section III. E) and estimate the
source location with a larger error. For ny and ns 5, the robot
can sense some patchy and weak concentration values. For
ns and n1g, the concentration was always below the baseline
at the early stage. These six probability maps are of great
diversity. Using the weighted aggregation of probability maps,
the algorithm never ends before reaching the region occupied
also by large particles because the entropy of the integrated
map will not decrease to the preset threshold until all the single
maps present a low entropy. To decrease the entropy of all
maps (especially ns and n1g, whose entropy is usually large at
the beginning because the robot cannot observe large particles
far from the source), the robot has to move closer to the source
and observe some high concentration of large particles. This
prevents the algorithm from terminating too quickly when the
robot is still far from the source, thus reducing the source
localization error. When the robot is able to detect all six
different particle sizes, the entropy of every probability map
decreases quickly, and the robot can locate the source position
accurately. In a few cases, due to the patchiness of the plume,
the robot detects concentrations which vary a lot from its
expectations calculated by the plume model, which leads to a
sharp increase in the entropy.

D. Wind tunnel experiments

To evaluate the method in the physical world under vari-
ous environmental conditions, we have conducted extensive
experiments in our wind tunnel.

1) Robotic platform: A Khepera IV robot (see Fig. 9) was
used in the wind tunnel experiments. The Plantower PMS 7003
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point is, the higher probability this point is the plume source. X and Y are coordinates in the simulated wind tunnel.

sensor was mechanically connected to the robot. It was driven
by an Arduino Uno board, which communicated with the robot
through UART. The measurement data was sent to the robot
once per second. The wind direction sensor board was the same
as in [48]. When running the proposed algorithm, the robot
measures the wind direction and the particle concentrations,
estimates the source location, evaluates its movements, chooses
the best one, and actuates the wheels at every step. The red
and green LED markers on the top of the robot were captured
by cameras on the top of the wind tunnel to track the robot’s
trajectory.
We conducted 10 runs for every environmental condition.

2) Performance evaluation: From the simulations, we
concluded that among the single-modality map variants, the
measurements related to the smallest particles (ng.3) led to the
best results. Moreover, we could also conclude that among the
multi-modality integration strategies the best one was that
based on a weighted aggregation (Integration Strategy II).
Therefore, in the wind tunnel experiments we only considered
the probability map of ng. s for the single-modality strategy
and the weighted multi-modal integration strategy.

The results are shown in Fig. 10. The number of iterations
for the variant leveraging an integrated map is much higher,
because when working with the single-modality strategy, the

Fig. 9. Khepera IV robot with the Plantower sensor mechanically anchored
to it.

robot always measures high concentration of ng 3 and does
not get enough guidance from its observations, thus runs to
the boundaries quickly and ends the algorithm. The distance
error shows that the Integration Strategy II delivers much more
accurate source localization than that achieved through single-
modality map. This result confirms those obtained in simulation
reported in Section I'V-C.

We present the robot’s trajectory in an experiment run in
Fig. 11. We can see that the robot’s trajectory is similar to the
one in simulation, although the algorithm ends when the robot
gets closer to the smoke machine.
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Fig. 11. Trajectory of the robot running the proposed algorithm in an

experiment run. X and Y are the coordinates in the wind tunnel. The color
code on the trajectory is related to the entropy of the integrated probability
map.

TABLE IV
ENVIRONMENTAL CONDITIONS FOR THE RUNS IN THE WIND TUNNEL

Setting Source release rate Wind speed
A low (nominal value) fast (1 m/s)
B high (150% of nominal value) fast (1 m/s)
C low (nominal value) slow (0.2 m/s)
D high (150% of nominal value)  slow (0.2 m/s)

3) Influence of environmental conditions: We conducted
experiments in the wind tunnel to test the robustness of the
algorithm under different environmental parameter settings
shown in Table IV. When decreasing the release rate or
increasing the wind speed, the plume would become narrower

and straighter downstream. Otherwise, the plume was wider.

According to Beaufort scale [53], the wind speed under 0.5 m /s
can be considered “’calm”, thus Settings C and D are used
to evaluate the performance of the algorithm in less windy
conditions. For Settings A - D, we used exclusively Integration
Strategy 1I to guide the robot.

The results are shown in Fig. 12. The number of iterations
shows that when both the wind speed and the particle source
release rate are high (Setting B) the algorithm is much faster
than in the other conditions. The other settings have more
or less the same number of iterations. In most of runs, the
distance error for Settings A and B is below 1 m. A sporadically
higher localization error than in simulation might be due to a
noisier wind sensor in reality. For setting C and D, the average
(median) distance error (around 0.7 m and 2.5 m respectively)
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Fig. 12. Performance evaluation in the wind tunnel in different environmental
settings.

is acceptable compared to the dimension of the experimental
area, but the performance variation across runs is too large,
which implies that there are several cases in which the robot
misestimated the source location. This is because under weak
wind, the robot was not able to gather enough observations
when being far away from the source.

It should be mentioned that, for all experiments, the same
plume distribution model described in Section IV-B was used
(i.e. high release rate for the source and fast wind speed), which
does not fit exactly the dispersion of the particles in all the
environmental conditions mentioned in Table IV. Moreover,
it is worth noticing that in our wind tunnel, due to a mild
manufacturing asymmetry, the wind has a noticeable angle
towards one side of the channel. The compensation of the
biased wind direction when fitting the plume model might be
imperfect. On the other hand, the obtained results indirectly
point out that there is no need to have perfect plume models and
the proposed algorithm is robust to such modeling inaccuracies.

The drawbacks of the proposed multi-modality Infotaxis
algorithm are similar to those of the original Infotaxis algorithm.
The algorithm depends on the accurate global localization of the
robot. The performance of the algorithm gracefully degrades
with an increased robot localization error and inaccuracies in
the plume model, subject to existing localization techniques.
When the localization of the robot or the plume model is not
accurate, the source location probability maps will be updated
through the plume model with higher uncertainty at each step.
The reliability of the maps decreases, so the accuracy of the
estimated source location will be affected. The performance
of the algorithm in dynamic/ lower speed (closer to diffusion)
wind field still needs to be evaluated. Compared to the original
Infotaxis algorithm, the computation load is heavier when
updating probability maps for all six modalities at each iteration,
but our algorithm can still run fully on-board on a small-scale,
resource-constrained robot such as the Khepera IV.

V. CONCLUSION AND OUTLOOK

We successfully adapted the Infotaxis algorithm to search for
particle sources with a low-cost optical sensor. The algorithm
was evaluated in simulation and in a wind tunnel in different
environmental settings (in terms of source release rate and
wind speed).

Overall, the results obtained show that the proposed algo-
rithm is efficient, can achieve good source localization accuracy
and is robust to different environmental settings. In particular,
at high wind speed, the algorithm is able on average to locate



the source with less than 1 meter error in an 80 m? arena.

With the wind speed decreasing, the average (median) error
distance would increase to 2.5 m, but it is still acceptable in
a large area. The variant based on the Integration Strategy II
is clearly superior to a naive use of the Infotaxis algorithm
leveraging a map based on one of the six available sensing
modalities.

In the future, we are planning to study how the proposed
algorithm will behave in a multiple source scenario. The
impact of the plume dispersion process on the efficiency of
the algorithm will be evaluated in future work. Further study
on the robustness of the proposed algorithm in dynamic/lower
speed (diffusion regime) wind field will be conducted. We
will also evaluate the algorithm in scenarios with obstacles. A
quantitative analysis on the impact of robot localization on the
performance of the algorithm will be also presented in future
work. And we are going to study a self-adaptive way to set the
concentration baseline and adjust the parameters of the plume
model. Keeping balance between greedily exploit information
and further exploring the environment will also be a promising
research direction.
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