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per me naturali e confuse stupide
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Italo Calvino

“I was whole and all things were
natural and confused to me, as
stupid as air; I thought I saw
everything and it was only the
peel. If you ever become half of
yourself, and I wish it upon you,
son, you will understand things
beyond the common intelligence of
whole brains. You will have lost
half of yourself and the world but
the remaining half will be
thousand times deeper and more
precious. And you too will want
everything to be halved and torn
in your image, because beauty and
wisdom and justice are only in
what is made in pieces."

The cloven viscount,
Italo Calvino
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Abstract

This thesis develops mathematical programming frameworks to operate electric au-
tonomous vehicles in the context of ride-sharing services. The introduced problem
is a novel variant of the Dial-a-Ride Problem (DARP), denoted by the electric
Autonomous Dial-a-Ride Problem (e-ADARP), and includes battery management
and autonomous aspects along with classic dial-a-ride features. The e-ADARP
operational frameworks undertaken in this thesis consider static problems, in which
demand is assumed to be known in advance, and dynamic problems, in which
demand is revealed on-line.

The static e-ADARP is formulated as a Mixed-Integer Linear Program and
solved through a Branch-and-Cut framework, enhanced by problem-specific valid
inequalities and lifted inequalities from the literature, as well as purpose-based
separation heuristics. Computational experiments are performed on adapted bench-
mark instances from the DARP literature and on instances based on real data. Re-
sults show that the problem-specific valid inequalities are among the most effective
and especially useful when battery management aspects are relevant.

The dynamic e-ADARP is developed through a simulation-based optimization
approach, which incorporates a new extension to the family of large neighborhood
search (LNS) metaheuristics. The extension considers a machine learning compo-
nent which exploits historical information to select destroy-repair operators from
a pool of competing algorithms, all along the search. Computational experiments
are performed on dynamic e-ADARP instances based on real data. Results show
that combining machine learning within LNS-based metaheuristics produces a
competitive alternative to benchmark methodologies from the literature and in
the context of on-line operations.

Finally, the e-ADARP is a hardly-constrained problem which is challenged by
the addition of autonomous and battery management aspects within the vehicle
scheduling algorithm. As such, this thesis proposes a novel scheduling procedure
for the e-ADARP, which aims at finding minimal excess-time and battery-feasible
schedules for fixed routes. Results on instances based on real data show that the
algorithm is able to efficiently return optimal scheduling solutions.

Keywords: dial-a-ride problem, electric autonomous vehicles, static problem,
dynamic problem, branch-and-cut, valid inequalities, large neighborhood search,
machine learning, scheduling
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Prefazione

La presente Tesi sviluppa modelli di programmazione matematica per il funziona-
mento di veicoli autonomi elettrici nel contesto di servizi ride-sharing. Il problema
introdotto è una nuova variante del Dial-a-Ride Problem (DARP), indicato come
l’electric Autonomous Dial-a-Ride Problem (e-ADARP), ed include aspetti di ges-
tione della guida autonoma e delle batterie al contempo delle classiche funzionalità
dial-a-ride. I quadri operativi previsti considerano problemi statici, nei quali la
domanda è conosciuta in anticipo, e problemi dinamici, nei quali la domanda è
rivelata on-line.

L’e-ADARP statico è formulato tramite un programma lineare a numeri interi
ed è risolto tramite un algoritmo Branch-and-Cut, arricchito da tagli specifici ed
estratti dalla letteratura, oltre ad efficaci procedure di separazione. Esperimenti
computazionali sono eseguiti su istanze di riferimento adattate dalla letteratura
DARP e su nuove instanze estratte da dati reali. I risultati mostrano che i tagli
introdotti sono tra i più efficaci e particolarmente utili quando gli aspetti di gestione
delle batterie sono rilevanti.

L’e-ADARP dinamico è sviluppato attraverso un approccio di ottimizzazione
basato sulla simulazione, che incorpora una nuova estensione alla famiglia della
metaeuristica Large Neighborhood Search (LNS). L’estensione considera una com-
ponente di machine learning che sfrutta informazioni storiche per selezionare op-
eratori di distruzione-riparazione da un pool di algoritmi concorrenti, lungo tutta
la ricerca. Gli esperimenti computazionali sono eseguiti su istanze dinamiche sulla
base di dati reali. I risultati mostrano che l’unione del machine learning e di
metauristici LNS produce un’alternativa competitiva alle metodologie proposte in
letteratura e nel contesto di operazioni on-line.

Infine, l’e-ADARP è un problema duramente vincolato che è messo alla prova
dall’aggiunta di aspetti di gestione dell’ autonomia e delle batterie all’interno
dell’algoritmo di schedulazione dei veicoli. Per questo motivo, la presente Tesi pro-
pone una nuova procedura di schedulazione per l’e-ADARP, che mira a minimizzare
i tempi di viaggio degli utenti e al contempo pianificare i tempi di ricarica dei veicoli
per percorsi fissi. Risultati su istanze basate su dati reali mostrano che l’algorithmo
è in grado di restituire soluzioni di schedulazione ottimale in modo efficiente.

Parole chiave: dial-a-ride problem, veicoli a guida autonoma, problema statico,
problema dinamico, branch-and-cut, tagli, large neighborhood search, machine
learning, schedulazione
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1
Problem statement

This chapter is based on the articles:

• C. Bongiovanni, M. Kaspi, and N. Geroliminis (2019). “The Electric
Autonomous Dial-a-Ride Problem”. In: Transportation Research Part
B: Methodological 122, pp. 436–456

• C. Bongiovanni, M. Kaspi, J.-F. Cordeau, and N. Geroliminis (2020).
“A Machine Learning-Based Two-Phase Metaheuristic for the Dynamic
Electric Autonomous Dial-a-Ride Problem”. Working paper

• C. Bongiovanni, M. Kaspi, and N. Geroliminis (2020). “Scheduling
Algorithm and Battery Management Heuristic for the electric Au-
tonomous Dial-a-Ride Problem”. Working paper

This chapter introduces the problem at the center of this thesis (Section 1.1),
provides a review of the relevant literature (Section 1.2), and outlines the thesis
objective, contribution, and structure (Section 1.3).

1.1 Context and Motivation
Ride-sharing has modified urban mobility by offering reliable and affordable door-
to-door services at any time. This relatively new business model is of great interest
in the area of city logistics and passenger mobility, as it creates a convenient
alternative to private cars and public transport. In the last decade, ride-sharing
has attracted a non-negligible share of the demand (Soper, 2015), making up to
50% of rides in San Francisco after one year from its introduction. Given the
constant increase in user requests, ride-sharing businesses are currently planning

1



2 1.1. Context and Motivation

to expand their portfolio to include the use of electric autonomous vehicles (e-
AVs) (Perry, 2020).

The concept of carpooling is not new. However, up until today, it has been
referred to as dial-a-ride transit (Dial, 1995) and developed at local scales, mostly
providing service to the elders, the disabled, and within airports (Cervero, 1997).
Such paratransit system offers scheduling and routing flexibility, similarly to ride-
sharing, while maintaining characteristics of public transport and taxi services (e.g.,
many-to-many distribution, low accessibility costs, higher capacities, possibility
to book in advance). The rise in ride-sharing demand currently calls for the re-
design of dial-a-ride transit, which needs to be efficiently modeled to face high
demand pressures at large scale.

The introduction of e-AVs is expected to have positive effects on urban mobility,
public transport safety, and the environment. With respect to urban mobility,
according to a recent study, ride-sharing could reduce taxi traffic by 75 percent
while still serving the same demand (Alonso-Mora et al., 2017). Furthermore,
Talebpour and Mahmassani (2016) indicate that urban congestion could be highly
decreased by the introduction of e-AVs, improving traffic flow stability. Although
road safety implications are still under debate, Fagnant and Kockelman (2015)
demonstrate that e-AVs may positively contribute to reducing crashes, with the
major cause of collision being driver-related. Finally, since fully-autonomous ve-
hicles are electric, an increased penetration of e-AVs within ride-sharing transit
may result in a significant reduction of local greenhouse gas emissions as shown in
Greenblatt and Saxena (2015). Indeed, a substantial drop in fuel-ignition transport,
from cars to delivery trucks, is key to reducing urban pollution, as confirmed by the
recent world-wide covid-19 lockdown (Barbiroglio, 2020). As such, public agencies
in multiple cities, such as Milan among others, are currently planning to devote
urban street space to more sustainable means of transport (Laker, 2020).

The use of e-AVs is expected to enhance ride-sharing operations by offering
several new opportunities. First, e-AVs provide more flexibility to efficiently modify
vehicle plans according to changing conditions. Such changes may not only corre-
spond to the arrival of new transportation requests but also to other unexpected
events, such as an increase in traffic congestion, although this last aspect is not con-
sidered in this thesis. That is, differently from human-driven vehicles, in which the
number of deviations must be controlled (Ferrucci and Bock, 2015), the dispatching
system can easily divert e-AVs as often as desired in the course of operations.
Second, e-AVs can operate non-stop, being driverless and undependent from driver
shifts. This feature may help saving vehicle deadhead miles to decentralized depots
and provide higher service levels. Third, the type of service provided by e-AVs does
not need to be pre-defined (e.g. taxi service, ride-sharing service, public transport)
and can instead be automatically adapted depending on new demand.



1. Problem statement 3

Despite the numerous benefits, the introduction of electric autonomous ride-
sharing into urban mobility poses a number of challenges related to its design at
the tactical and strategical level. For example, the practical use of e-AVs for ride-
sharing assumes that the fleet has been appropriately sized with respect to the
demand and that electric chargers are strategically and sufficiently deployed at the
urban level (e.g. Tran et al., 2018; Diana, Dessouky, and Xia, 2006). The work
undertaken in this thesis prescinds from tactical and strategic challenges, which can
be taken off-line, and instead focuses on decisions at the operational level, which
can be tackled off-line (i.e. if trips are booked in-advance) or on-line (i.e. if trips
are revealed in real-time). In both cases, the planning process needs to consider
the optimization of vehicle battery levels, decisions regarding detours to charging
stations, recharging times, and destination depots together with the classic dial-a-
ride features. The combination of all such features undoubtedly pose additional
operational challenges, most especially for real-time operations as decisions need
to be taken within a very limited computing time. As such, new optimization
frameworks are needed to treat the added complexity induced by the use of e-
AVs for urban ride-sharing. For a complete review of operational benefits and
challenges on the use of autonomous vehicles for ride-sharing, the reader is referred
to Hyland and Mahmassani (2020).

This thesis develops novel optimization frameworks for electric autonomous ride-
sharing. It starts by providing an exact optimization approach to be employed in
the context of off-line trip reservations and continues with the development of a
machine learning-based metaheuristic which is employed in the context of on-line
trip reservations. The thesis concludes by proposing a novel scheduling algorithm
that is used to efficiently tackle battery aspects of the e-ADARP while maximizing
the provided level of service.

1.2 State of the Art

1.2.1 The Dial-a-Ride Problem

The dial-a-ride problem (DARP) is a class of combinatorial optimization problems
which arises in the context of on-demand transportation systems. In its standard
version, the problem consists of defining minimum cost routes and schedules for a
fleet of conventional vehicles exiting a common depot and serving a set of customers
with given pickup and dropoff locations, as well as corresponding pickup or dropoff
times. After serving all requests, and by the end of the driver shifts, the vehicles are
required to return to a common destination depot. Typical operational limitations
include capacity, duration, time-window, and ride-time constraints (Cordeau and
Laporte, 2003).
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The DARP is a generalization of well-known optimization problems, such as the
traveling salesman problem (TSP) and the vehicle routing problem (VRP). It can
also be viewed as a special case of the pickup and delivery problem (PDP) (Toth
and Vigo, 2014). As noted in Cordeau and Laporte (2003), the DARP is more chal-
lenging than other routing problems due to the need to weight transportation cost
and user inconvenience against each other. Indeed, a single operational objective
does not provide an incentive to optimize service quality, although this last aspect
may be controlled by imposing service-level constraints. As such, several DARP
variants have considered a combination of operational and quality-related objectives
(see section 3.3.2 in Molenbruch, Braekers, and Caris, 2017). In fact, considering a
fixed feasible routing solution, the quality of service may be improved by minimizing
a quality-oriented objective at no additional operational cost (Parragh, 2011). In
the works in Parragh (2011) and Molenbruch et al. (2017), trasportation cost,
measured by the total vehicle travel time, and user inconvenience, measured by
the total user excess ride time, are both employed through a Pareto approach.
Differently from other quality measures (e.g. total waiting time of all vehicles with
passengers aboard), the consideration of user excess ride time allows to directly
quantify user-specific costs.

The DARP literature can be divided into two main streams, namely static and
dynamic DARP. In the first case, demand is fully known in advance and needs to
be served, whereas in the second case demand is revealed on-line. No information
about future requests is typically assumed, although some stochastic information
(e.g. Albareda-Sambola, Fernández, and Laporte, 2014; Ichoua, Gendreau, and
Potvin, 2006) and forecasts may be used (e.g. Peleda et al., 2019; Ferrucci and
Bock, 2016; Ferrucci, Bock, and Gendreau, 2013). Given the inherent uncertainty
about demand, transportation requests are allowed to be denied in the dynamic
DARP. Assuming that each denied request results into a homogeneous profit loss,
solution quality is primarily measured by the total number of served requests
and secondly by operational cost (e.g. Berbeglia, Cordeau, and Laporte, 2012;
Attanasio et al., 2004).

Battery-management aspects for electric vehicles have been widely studied
in several vehicle routing problems. For example, the electric and green VRP
(Erdoğan and Miller-Hooks, 2012; Schneider, Stenger, and Goeke, 2014; Felipe
et al., 2014; Goeke and Schneider, 2015; Desaulniers et al., 2016; Pelletier, Jabali,
and Laporte, 2016; Keskin and Çatay, 2016; Schiffer and Walther, 2017), the
hybrid electric TSP (Arslan, Yıldız, and Karaşan, 2015; Doppstadt, Koberstein,
and Vigo, 2016), and the mix vehicle routing problem with time windows and
recharge stations (Baldacci, Battarra, and Vigo, 2009; Hiermann et al., 2016).
Electric VRP studies frequently assume that discharge times are linearly dependent
on travel times (e.g. Schneider, Stenger, and Goeke, 2014; Desaulniers et al., 2016)
or derived from energy consumption models (e.g. Goeke and Schneider, 2015;
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Genikomasakis and Mitrentsis, 2017; Pelletier, Jabali, and Laporte, 2018). Typical
recharge policies from the literature include (1) full recharge (e.g. Schneider,
Stenger, and Goeke, 2014) (2) battery swapping (e.g. Masmoudi et al., 2018)
(3) partial recharge while neglecting time windows (Felipe et al., 2014), and (4)
partial recharge without neglecting time-windows (Desaulniers et al., 2016). Note
that all of the fore-mentioned policies do not impose any minimal battery level for
vehicles to return to their destination depots.

Finally, although several DARP problem variants have been proposed in the
literature, a unified model combining battery management and vehicle autonomy,
along with dial-a-ride features, remains unexplored. This is the scope undertaken
in this thesis, which introduces the electric autonomous dial-a-ride problem (e-
ADARP) and related solution methodologies for static and dynamic operations.

1.2.2 Exact and Approximate Solution Methodologies
The standard DARP, as well as its variants, can be modeled through Mixed Integer
Linear Programming (MILP). Being a generalization of the TSP, the problem is NP-
hard and needs the development of appropriate solution methodologies. Specifically,
there are two possible classes of solution techniques for the DARP and those
are exact and approximate solution methodologies. Exact solution methodologies
are designed to find the global optimum and attempt to decrease computational
complexity by supplementing the branch-and-bound algorithm (Balas and Toth,
1983) with problem-dependent considerations controlling the depth, the chosen
variables, and the branching of the tree. Approximate solution methodologies are
instead designed to fastly return a local optimum and are typically composed of
problem-dependent heuristics.

Solution methodologies for static and dynamic DARP problems share some
similarities in that both problems may be theoretically solved by employing exact
and approximate solution techniques. However, dynamic versions of the problem
are highly constrained by computational time and affected by uncertainty, given
that information is stochastic and revealed over time. As such, exact solution
approaches are typically only applied to static versions of the DARP, while both
problems can be solved through approximate solution techniques. Exact solution
approaches for the static DARP and related routing problems typically include:
branch-and-cut algorithms – B&C (e.g. Lu and Dessouky, 2004; Cordeau, 2006;
Ropke, Cordeau, and Laporte, 2007; Parragh, 2011; Braekers, Caris, and Janssens,
2014; Braekers and Kovacs, 2016) and branch-and-cut-and-price algorithms (Ropke
and Cordeau, 2009; Baldacci, Bartolini, and Mingozzi, 2011; Parragh and Schmid,
2013; Gschwind and Inrich, 2014). Approximate solution approaches for both the
static and dynamic DARP and related problem include: tabu search – TS (Cordeau,
Laporte, and Mercier, 2001; Cordeau and Laporte, 2003; Attanasio et al., 2004;
Berbeglia, Cordeau, and Laporte, 2012), local search – LS (Savelsbergh, 1985;
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Healy and Moll, 1995; Funke, Grünert, and Irnich, 2005; Molenbruch et al., 2017),
and large neighborhood search – LNS (Shaw, 1997; Ropke and Pisinger, 2006;
Parragh, Doerner, and Hartl, 2010; Li et al., 2016; Gschwind and Drexl, 2019;
Sacramento, Pisinger, and Ropke, 2019). For the dynamic DARP, approximate so-
lution methodologies are typically employed in a two-phase apprach (e.g. Archetti,
Fernández, and Huerta-Muñoz, 2018; Schilde, Doerner, and Hartl, 2011b; Parragh
et al., 2009). The first phase attempts to feasibly assign requests to vehicles through
a polynomial-time insertion heuristic (Jaw et al., 1986; Potvin and Rousseau, 1993;
Diana and Dessouky, 2004; Coslovich, Pesenti, and Ukovich, 2006; Parragh et al.,
2009; Marković et al., 2015). The second phase is designed to re-optimize previous
insertion decisions through one of the previously mentioned approximate solution
methodologies but most typically through local search-based metaheuristics. For
a comprehensive review on DARP problem variants and objectives and related
solution methods, the reader is referred to Molenbruch, Braekers, and Caris (2017).

The size of the problems which can be solved through exact and approximate
solution methodologies are very different. Exact methods can only solve problems
of limited size (Baugh, Kakivaya, and Stone, 1998), with the largest problems
currently involving 8 vehicles and 96 customers (Ropke, Cordeau, and Laporte,
2007). Approximate solution methods can find a local optimum to problems of
very large size, going up to hundreds of vehicles and thousands of customers
(e.g. Gschwind and Drexl, 2019; Ropke and Pisinger, 2006; Molenbruch et al.,
2017). Both approaches are computationally affected by each added feature to
the standard version of the DARP. For example, generalized versions of the static
DARP have been addressed by Braekers, Caris, and Janssens (2014) and Parragh
(2011). Braekers, Caris, and Janssens (2014) considered heterogeneous vehicles,
multiple depots, multiple user types and could solve instances of up to 8 vehicles
and 80 customers. Parragh (2011) further considered a weighted-sum objective
function consisting of the total routing cost and wait time for all vehicles with
passengers aboard. The objective function included a time-dependent criterion,
which in turn did not allow to reduce the problem size by avoiding timing decision
variables and constraints. The problem resulted in a highly-constrained model,
which could only be solved for instances of up to 4 vehicles and 40 customers.

In order to limit the computational burden from the DARP, much research
has been focused on the development of scheduling heuristics to ease the solution
process. Given fixed routing sequences, the DARP can be reduced to a scheduling
problem, which can be formulated as a linear program (LP) aiming at finding
the right service start times for the nodes composing the given sequences. Some
research has been specifically focused on testing feasibility of given routes, without
necessarily returning optimized schedules (e.g. Hunsaker and Savelsbergh, 2002;
Berbeglia, Pesant, and Rousseau, 2011; Häme and Hakula, 2015). Other works
have instead focused on providing feasible routes, which are heuristically optimized
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(e.g. Cordeau and Laporte, 2003; Parragh et al., 2009; Molenbruch et al., 2017).
Specifically in the works of Parragh et al. (2009) and Molenbruch et al. (2017),
the scheduling heuristics are excess-time oriented. However, in the case of the
e-ADARP excess-time oriented schedules need to further consider battery manage-
ment aspects. Specifically, they need to find battery feasible routes corresponding
to the maximal level of service.

The e-ADARP is a new challenging generalization of the DARP which is mod-
eled and solved through exact and approximate solution methodologies. Added
challenges include battery management, optional charging facilities, recharging
plans, and destination depots, along with classic dial-a-ride features. This thesis
develops a branch-and-cut approach for the static e-ADARP and a two-phase
metaheuristic for the dynamic e-ADARP. The two-phase metaheuristic employs
a novel e-ADARP scheduling algorithm which returns battery-feasible schedules
while minimizing user ride time. In particular, the second phase of the two-phase
approach is composed of a novel local search-based metaheuristic employing a
machine learning module to efficiently drive the search towards good areas of the
solution space. The following sections focus on the relevant literature on local
search-based metaheuristics and provide a short review of the literature combining
machine learning within optimizataion algorithms.

1.2.3 Local Search-Based Metaheuristics
Local search or local search-based metaheuristics are popular optimization ap-
proaches for vehicle routing problems (Funke, Grünert, and Irnich, 2005). These
methods iteratively transform a given solution through elementary neighborhood
moves in the direction of the objective function (e.g. Bertsimas, Jaillet, and Martin,
2019; Simonetto, Monteil, and Gambella, 2019; Alonso-Mora et al., 2017). Each
elementary move is composed of a simple heuristic shuffling a limited number of
requests between vehicles, e.g. 2-opt. Large Neigborhood Search extends the local
search paradigm by considering moves shuffling a larger share of requests between
vehicles. Each move may be performed through a more complex neighborhood
structure, which sequentially destroys and repairs a given solution. The destruction
degree, i.e. the total number of requests to be shuffled, is typically drawn from a
uniform distribution supported on a bound interval, i.e. between a minimum and a
maximum destruction level. If the bound is too restrictive, the incumbent solution
may be modified only marginally. As a result, the search may have difficulties
in moving towards promising neighborhoods and get trapped in a local minimum.
One way of dealing with this drawback is to loosen the interval bound, allowing the
algorithm to re-arrange a higher percentage of the vehicle requests. Nevertheless,
higher destruction degrees typically have a negative effect on computational time
(Pisinger and Ropke, 2010). Another methodology which is frequently employed to
try and escape local minima explores non-improving and infeasible solutions (e.g.
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Cordeau, Laporte, and Mercier, 2001; Cordeau and Laporte, 2003). Worsening
solutions may be generally explored by employing an acceptance criterion based
on simulated annealing – SA (Nikolaev and Jacobson, 2010). Simulated annealing
employs an analogy with metallurgy by using a probability function which depends
on an initial temperature and a cooling rate controlling the likelihood of accepting
deteriorating solutions over successive iterations. If worsening solutions are ac-
cepted, the solution is expected to iteratively recover towards promising areas of the
search space. Such recovery cannot be guaranteed as it highly depends on the type
of operator and destruction degree being employed. The recovery is finally bound
by a maximal number of successive non-improving steps, which may determine
an early exit from the search. Originally introduced by Shaw (1997), LNS has
been widely applied to solve static large-scale problems (e.g. Molenbruch et al.,
2017; Masmoudi et al., 2016; Parragh, Doerner, and Hartl, 2010) and dynamic
problems (e.g. Schilde, Doerner, and Hartl, 2014; Schilde, Doerner, and Hartl,
2011a; Attanasio et al., 2004). For a review of LNS, the reader is referred to
section 13.2 in Pisinger and Ropke (2010).

Recent literature has demonstrated added value in switching between multiple
destroy-repair couples during the search by adopting a metaheuristic approach
(Elshaer and Awad, 2020). Metaheuristics automate the choice of the destroy-
repair methods to be employed at any iteration in the search by proposing a selec-
tion mechanism. Metaheuristics are also frequently noted as hyper-heuristics (e.g.
Burke et al., 2013), although the second typically refers to a combination of meta-
heuristics rather than destroy-repair methods. In the vehicle routing literature,
multiple recent studies have employed a selection mechanism by considering a score
function providing a measure for the success of selected destroy-repair operators
on previous iterations (e.g. Sacramento, Pisinger, and Ropke, 2019; Gschwind
and Drexl, 2019; Li et al., 2016; Goeke and Schneider, 2015). This selection
mechanism, introduced in Ropke and Pisinger (2006), is denoted by adaptive large
neighborhood search (ALNS). For a review of ALNS, the reader is referred to section
13.2.1 in Pisinger and Ropke (2010). In particular, the score of each destroy-repair
couple is initialized according to a roulette wheel mechanism and it is updated
through a linear function which employs statistics on the solution quality from
accepted moves during previous iterations. The update magnitude is scaled by a
reaction factor r, controlling how quickly the linear function adapts to changes in
the statistics. A warm-up time of hundreds of iterations is typically needed to tune
the several destroy-repair scores before being able to make statistically-informed
choices between competing operators. Indeed, ALNS is typically employed for
large static problems, which are not as tightly bound by computational time as for
dynamic settings. Chapter 3 from this thesis proposes an alternative approach that
allows to eliminate the warm-up time required to tune the adaptive mechanism
and that is more suitable for real-time settings.
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1.2.4 Machine Learning for Operations Research

Recent advance in artificial intelligence has fostered new research directions at the
intersection between machine learning (ML) and optimization. While optimiza-
tion methods have been often employed in ML algorithms (e.g. Bertsimas and
Dunn, 2017; Gunluk et al., 2016; Bertsimas and Shioda, 2007), the use of ML in
optimization algorithms is relatively new and has been focusing on the following
tasks: (1) ML as an approximation tool to tackle time-consuming tasks in discrete
optimization algorithms (Bonami, Lodi, and Zarpellon, 2018; Kruber, Lübbecke,
and Parmentier, 2017; Lodi and Zarpellon, 2017), (2) ML to heuristically solve
discrete optimization problems (Larsen et al., 2019; Bengio, Lodi, and Prouvost,
2018;Vinyals, Fortunato, and Jaitly, 2015) (3) ML to choose among a number of
competing algorithms to solve hard optimization problems (Kerschke et al., 2019;
Malitsky et al., 2013; Gomes and Selman, 2001). Specifically, the last task is also
known as meta-learning for algorithm porfolios and has focused on automating the
selection of solution frameworks by extracting significant problem features for a
number of discrete combinatorial problems, including the TSP. Finally, increasing
interest has been shown in the use of machine learning within metaheuristic ap-
proaches (e.g. Vigo et al., 2019). However, this research area is new and has not
yet been explored. The idea, developed in Chapter 3, is to exploit past information,
i.e. from previously solved similar problems, to quickly guide the search towards
good solutions, i.e. avoiding a warm-up period. Other than driving the search,
the use of machine learning within metaheuristics allows to identify features of
the dial-a-ride problem (and more generally VRP) that mostly impact the solution
quality and to classify new problem instances accordingly.

1.3 Contribution and Organization

This thesis extends the standard static and dynamic DARP by considering the
use of electric autonomous vehicles. The extended problem is referred to as the
electric autonomous dial-a-ride problem (e-ADARP). In its static version, the e-
ADARP aims at minimizing a weighted objective function consisting of the total
travel time of all vehicles and excess ride-time of all users. In its dynamic version,
the e-ADARP additionally aims at maximizing the number of accepted requests.
Different weights may be chosen by practicioners by analyzing the trade-off between
the terms in the objective function on each specific case study. Note that another
approach may employ a (hirerchical) bi-objective approach instead of a weighted
objective function. However, in this case, practicioners would have to analyze the
impact of each component of the objective function through a Pareto approach.
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As in the work of Schneider, Stenger, and Goeke (2014) and Desaulniers et al.
(2016), in this thesis battery consumption is assumed to be constant and indepen-
dent from the load, speed, and state-of-charge (SOC) when vehicles travel between
nodes. This assumption is suitable for cases where vehicle load is negligible with
respect to the curb weight of the vehicle and velocity is constant or experiences
infrequent variations (Desaulniers et al., 2016; Pelletier et al., 2017a). This is
the case for the electric autonomous vehicles considered in this thesis, which are
characterized by limited capacity and cruise speed. Furthermore, it is assumed that
vehicles can visit multiple charging stations along a route, can partially recharge,
and need to return with minimal battery levels at the destination depots. With
respect to recharge phases, it is assumed that the SOC linearly increases with time
by means of a recharge rate. This rate can be inferred from the model presented
in Pelletier et al. (2017a) and applied in Pelletier, Jabali, and Laporte (2018).

While some of the features of the e-ADARP relate to the electric nature of the
fleet, some are derived from considerations associated with the vehicle autonomy.
In particular, autonomous vehicles can operate on a non-stop schedule and so the
provided service is not limited by the driver shifts. As a result, the e-ADARP
does not enforce vehicle maximum route-duration constraints, introducing savings
in dead-head miles and allowing for higher service levels. Additionally, providing
a non-stop service eliminates the need to pre-define common depots from which
drivers start and end their shifts. Instead, the vehicles can continuosly exit and
re-enter multiple depots within the service zone, while waiting for new instructions.
The use of multiple origin and destination depots are nowadays commonly adopted
in extensions of the standard DARP (e.g. Parragh, 2011; Braekers, Caris, and
Janssens, 2014). However, the assignment of vehicles to depots is normally pre-
determined, instead of being selected in the decision process. Consequently, in the e-
ADARP the planning and battery-management problem is further supplemented by
a vehicle-to-depot assignment problem which may additionally consider predictions
upon future demand to strategically relocate vehicles during the day. Additional
autonomy features are most evident in the context of dynamic ride-sharing opera-
tions. In particular, the operation of autonomous vehicles offers more flexibility to
efficiently modify vehicle plans according to changing or unexpected events. Such
events may not only correspond to the arrival of new transportation requests but
also to unexpected increase in traffic congestion, modified availabilities at charging
facilities, and vehicle breakdowns. That is, differently from human-driven vehicles,
in which the number of deviations must be controlled (Ferrucci and Bock, 2015),
the dispatching system can easily divert e-AVs as often as desired in the course of
operations. Consequently, the planning process needs to continuously re-optimize
decisions regarding vehicle-trip assignments, detours to charging stations, recharg-
ing times, and destination depots together with the classic dial-a-ride features.
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To summarize, compared to classical DARP, the e-ADARP is supplemented
with the following features:

1. Battery-management;
2. Intermediate stops for vehicle recharge;
3. Heterogeneous vehicles in terms of capacity and initial battery inventories;
4. Vehicles initially located at different depots;
5. Vehicles return to a set of optional depots;
6. No restrictions on maximum route-durations are applied;
7. Vehicles continuously re-routed in the course of operations;
8. Weighted objective function considering operational and level of service costs.

Note that, most of the mentioned features can be independently found in the
vehicle routing literature. However, their combination has not yet been explored
and results in a new highly-constrained problem variant to be studied.

The scope of this thesis is to model and solve the static and dynamic e-ADARP
through a novel exact and metaheuristic approach. The static e-ADARP is formu-
lated as a 3-indexed or a 2-indexed Mixed-Integer Linear Problem (MILP) which is
solved through a branch-and-cut algorithm. The solution approach is enhanced
by new problem-specific valid inequalities which are separated through ad-hoc
procedures. The numerical experiments are obtained by supplementing bench-
mark instances from the literature (Cordeau, 2006) with charging stations and
battery specifications, and by extracting new benchmark instances derived from
real data from Uber Technologies Inc. in San Francisco. The dynamic e-ADARP
is solved through a two-phase heuristic approach within an event-based simulation
framework. The second phase is composed of a machine learning-based large
neighborhood search (ML-LNS). The machine learning component is employed
to iteratively direct the search towards promising areas of the search space. The
proposed metaheuristic is compared to ALNS (Ropke and Pisinger, 2006) on real
dynamic instances from Uber Technologies Inc. in San Francisco. The scheduling
algorithm employed to plan and evaluate instances of the dynamic e-ADARP is
solved through an e-ADARP-specific scheduling procedure. Namely, the procedure
combines an exact scheduling algorithm minimizing user excess ride time and a
battery management heuristic. Scheduling solutions from the proposed procedure
are compared to those obtained from a linear program on the vehicle routes derived
for the static e-ADARP. Finally, the rest of this thesis is structured into five
chapters, whose main objectives and contributions are summarized in Table 1.1.
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2
A Branch-and-Cut Framework for the

Static Electric Autonomous Dial-a-Ride
Problem

This chapter is based on the article:

• C. Bongiovanni, M. Kaspi, and N. Geroliminis (2019). “The Electric
Autonomous Dial-a-Ride Problem”. In: Transportation Research Part
B: Methodological 122, pp. 436–456

2.1 Introduction

This chapter models and solves the static electric autonomous dial-a-ride prob-
lem, whose main differences with respect to the standard DARP are introduced
in Chapter 1.3. There are three primary contributions to this chapter. First,
we introduce the e-ADARP and formulate it as a MILP. Second, we devise a
B&C algorithm and propose new problem-specific valid inequalities. Third, we
supplement benchmark instances from literature (Cordeau, 2006) with charging
stations and battery specifications, and provide new benchmark instances derived
from real data from Uber Technologies Inc. in San Francisco. The rest of the
chapter is organized as follows: in Section 2.2 we introduce a 3-index and a 2-
index model for the e-ADARP; Section 2.3 and Section 2.4 define several valid
inequalities, including new inequalities specifically designed for the e-ADARP; a
branch-and-cut framework that utilizes these valid inequalities is then introduced

13
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in Section 2.5; computational experiments are reported in Section 2.6, followed by
a summary and future research directions in Section 2.7.

2.2 Mathematical Formulations

2.2.1 Three-Index Formulation

Consider a complete directed graph G = (V , A) where V denotes the set of ver-
tices and A the set of edges. Also consider a set K = {1, . . . , k} of electric
autonomous vehicles stationed at origin depots {o1, . . . , ok} ∈ O. The vehicles
are heterogeneous in terms of their capacities Ck (with total maximum vehicle
capacity C = maxk∈K Ck), homogeneous in terms of their battery capacities Q,
and might feature different initial battery inventories Bk

o . The vehicles are utilized
to give service to n users, specifying their pickup locations P = {1, ..., n}, dropoff
locations D = {n + 1..., 2n}, and time windows [arri, depi] around their desired
arrival times. All user requests are known at the start of the planning period and
need to be served. Furthermore, maximum user ride times ui are imposed to limit
the time users spend on-board the vehicles. Other than the origin depots and
pickup and dropoff locations, the set of vertices V also include charging stations
S and optional destination depots F . We consider that each vehicle can return
to one optional destination depot in F . Differently from the set of the origin
depots O, the cardinality of F might be higher than the number of vehicles and
includes the nodes in O.

Each location i ∈ V is characterized by the change in load li, which is positive
at pickup locations, negative at dropoff locations, and is zero at all other locations.
In addition, non-null service times di are defined at pickup and dropoff locations,
which represent the time vehicles need in order to board users. The amount of
energy recharged at the charging stations in S is proportional to the time spent at
the facilities. Each charging facility s ∈ S can only be accessed by empty vehicles
and is characterized by a recharge rate αs. This rate indicates the amount of energy
transferred per unit time (i.e. fast charging, slow charging). It is assumed that
vehicles can partially recharge at the visited charging stations. Finally, the vehicle
battery levels cannot be lower than a certain minimum state of charge (SOC) upon
arrival at one of the optional destination depots f ∈ F by the end of the planning
horizon Tp. Such battery levels are controlled by the minimum battery level ratio r.

The edges in A represent travel times ti,j between any two locations i ∈ V
and j ∈ V . The battery consumptions βi,j can be inferred from the travel times
ti,j ∈ A combined with other features by means of an energy consumption model
(Goeke and Schneider, 2015; Pelletier et al., 2017a). We assume that the triangular
inequality holds both for travel times and battery consumptions.
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Table 2.1: Problem sets, parameters, and decision variables

Sets
P = {1, ..., n} Set of pickup locations
D = {n + 1, ..., 2n} Set of dropoff locations
N = P ∪ D Set of pickup and dropoff locations
K = {1, ..., k} Set of available vehicles
O Set of origin depots for vehicles k ∈ K, the origin of vehicle k is denoted by ok

F Set of all available destination depots
S Set of all charging stations
V = N ∪ O ∪ F ∪ S Set of all possible locations

Parameters
ti,j Travel time from location i ∈ V to location j ∈ V
arri Earliest time at which service can begin at i ∈ V
depi Latest time at which service can begin at i ∈ V
di Service duration at location i ∈ V
li Change in load at location i ∈ N
ui Maximum ride time for customer with pickup at i ∈ P
Ck Capacity of vehicle k ∈ K
Q Effective battery capacity
Bk

0 Initial battery capacity of vehicle k ∈ K
r Final minimum battery level ratio
βi,j Battery consumption between nodes i, j ∈ V
αs Recharge rate at charging facility s ∈ S
Tp Planning horizon

Decision Variables
xk

i,j 1 if vehicle k sequentially stops at location i and j ∈ V , 0 otherwise.
T k

i Time at which vehicle k starts its service at location i ∈ V
Lk

i Load of vehicle k at location i ∈ V
Bk

i Battery load of vehicle k at location i ∈ V
Ek

s Charging time of vehicle k at charging station s ∈ S
Ri Excess ride time of passenger i ∈ P

A binary decision variable xk
i,j denotes whether vehicle k sequentially visits

locations i and j ∈ V . Ti
k represents the time at which vehicle k begins service at

location i ∈ V , Lk
i represents its load after service, and Bk

i represents its battery
state at the beginning of service. In addition, Ek

s denotes the recharge time of
vehicle k at station s ∈ S. Finally, Ri represents the excess time of user i ∈ P .
The objective of the e-ADARP is to find minimum cost routes in order to serve all
users while respecting time-window, capacity, and battery constraints. The cost
is defined by means of a weighted objective function consisting of the total travel
time of all vehicles and excess ride time of all users. A summary of the e-ADARP
problem sets, parameters, and decision variables is reported in Table 3.2. Note that
the parameters related to battery consumption, recharge rate, and final minimum
battery level may be defined as vehicle-specific. Similarly, vehicle-specific charging
stations and optional destination depots can be defined. Nevertheless, in the
following models we assume that such parameters and sets are homogeneous among
all vehicles. This assumption is reasonable in the employment of autonomous
electric mini-buses, as nowadays such vehicles mount the same commercial batteries
and do not significantly differ in terms of dimensions and weights.
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Table 2.2: 3-indexed formulation for the e-ADARP

(e − ADARP 3) min w1
∑
k∈K

∑
i,j∈V

ti,jxk
i,j + w2

∑
i∈P

Ri (2.1)

subject to:∑
j∈P∪S∪F

xk
ok,j

= 1 ∀k ∈ K (2.2)∑
j∈F

∑
i∈D∪S∪{ok}

xk
i,j = 1 ∀k ∈ K (2.3)∑

k∈K

∑
i∈D∪S∪{ok}

xk
i,j ≤ 1 ∀j ∈ F ∪ S (2.4)∑

j∈V
j ̸=i

xk
i,j −

∑
j∈V
j ̸=i

xk
j,i = 0 ∀k ∈ K, i ∈ N ∪ S (2.5)

∑
k∈K

∑
j∈N
j ̸=i

xk
i,j = 1 ∀i ∈ P (2.6)

∑
j∈N
j ̸=i

xk
i,j −

∑
j∈N

j ̸=n+i

xk
j,n+i = 0 ∀k ∈ K, i ∈ P (2.7)

T k
i + di + ti,n+i ≤ T k

n+i ∀k ∈ K, i ∈ P (2.8)

arri ≤ T k
i ≤ depi ∀k ∈ K, i ∈ V (2.9)

T k
n+i − T k

i − di ≤ ui ∀k ∈ K, i ∈ P (2.10)

T k
i + ti,j + di − Mi,j(1 − xk

i,j) ≤ T k
j ∀k ∈ K, i ∈ V, j ∈ V, i ̸= j|Mi,j > 0 (2.11)

Ri ≥ T k
n+i − T k

i − di − ti,n+i ∀k ∈ K, i ∈ P (2.12)

Lk
i + lj − Gk

i,j(1 − xk
i,j) ≤ Lk

j ∀k ∈ K, i ∈ V, j ∈ V, i ̸= j (2.13)

Lk
i + lj + Gk

i,j(1 − xk
i,j) ≥ Lk

j ∀k ∈ K, i ∈ V, j ∈ V, i ̸= j (2.14)

Lk
i ≥ max(0, li) ∀k ∈ K, ∀i ∈ N (2.15)

Lk
i ≤ min(Ck, Ck + li) ∀k ∈ K, ∀i ∈ N (2.16)

Lk
i = 0 ∀k ∈ K, i ∈ ok ∪ F ∪ S (2.17)

Bk
i = Bk

0 ∀k ∈ K, i ∈ ok (2.18)

Bk
j ≤ Bk

i − βi,j + Q(1 − xk
i,j) ∀k ∈ K, i ∈ V \ S, j ∈ V \ {ok}, i ̸= j (2.19)

Bk
j ≥ Bk

i − βi,j − Q(1 − xk
i,j) ∀k ∈ K, i ∈ V \ S, j ∈ V \ {ok}, i ̸= j (2.20)

Bk
j ≤ Bk

s + αsEk
s − βs,j + Q(1 − xk

s,j) ∀k ∈ K, s ∈ S, j ∈ P ∪ F ∪ S, s ̸= j (2.21)

Bk
j ≥ Bk

s + αsEk
s − βs,j − Q(1 − xk

s,j) ∀k ∈ K, s ∈ S, j ∈ P ∪ F ∪ S, s ̸= j (2.22)

Q ≥ Bk
s + αsEk

s ∀k ∈ K, s ∈ S (2.23)

Bk
i ≥ rQ ∀k ∈ K, i ∈ F (2.24)

Ek
s ≤ T k

s − ti,s − T k
i + Mk

i,s(1 − xk
i,s) ∀k ∈ K, ∀s ∈ S, i ∈ D ∪ S ∪ {ok}, i ̸= s (2.25)

Ek
s ≥ T k

s − ti,s − T k
i − Mk

i,s(1 − xk
i,s) ∀k ∈ K, ∀s ∈ S, i ∈ D ∪ S ∪ {ok}, i ̸= s (2.26)

xk
i,j ∈ {0, 1} ∀k ∈ K, i ∈ V, j ∈ V (2.27)

Bk
i ≥ 0 ∀k ∈ K, i ∈ V (2.28)

Ek
s ≥ 0 ∀k ∈ K, s ∈ S (2.29)
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A 3-index formulation for the e-ADARP, building on the DARP formulation
provided in Cordeau (2006), is defined by the MILP presented in Table 2.2. The
objective function (2.1) minimized a weighted-sum composed of the total vehicle
travel time and user excess ride time. Constraints (2.2) ensure that all vehicles exit
their origin depots and visit a pickup location P , relocate to a charging station S,
or proceed to a destination depot F . Constraints (2.3) guarantee that all vehicles
return to a selected destination depot. Note that, since F also includes the origin
depots O, a non-utilized vehicle travels between its origin depots ok ∈ O and
its geographically coincident destination depot ōk ∈ F . Therefore, cases where
xk

ok,ōk = 1 imply that vehicle k is not being used. Constraints (2.4) allow each
optional destination depot and charging station to be visited at most once. Such
locations can be replicated in order to allow multiple visits to the nodes in F and S.
Flow conservation is ensured by constraints (2.5). Constraints (2.6)-(2.7) ensure
that every pickup location is visited exactly once and that each pickup and dropoff
pair is served by the same vehicle.

Timing constraints are added to define service start times and excess ride times.
Though not explicitly denoted by decision variables, waiting can occur at any
location and can be retrieved through post-processing. Constraints (2.8) guarantee
that each pickup location i is visited before its dropoff location n + i, by means
of the direct travel time between the two locations and service time at location i.
Constraints (2.9) set time windows around the beginning of service at each location
and constraints (2.10) impose maximum ride times for the users. Constraints (2.11)
set a lower bound on the service start time at location j ∈ V , which is visited right
after location i ∈ V , where Mi,j = max{0, depi +di + ti,j −arrj}. Constraints (2.12)
calculate the excess ride time for user i, where the ideal travel time ti,n+i + di of
user i ∈ P is subtracted from the actual travel time T k

n+i − T k
i .

Load conservation and capacity constraints are added to track loads and ensure
capacities of all vehicles are not exceeded. We assume that charging stations can
only be visited when vehicles are empty. In constraints (2.13)-(2.14), the load at
location j ∈ V is computed from the load at the preceding location i ∈ V and
the change in load at location j, where Gk

i,j = min{Ck, Ck + li}. Constraints
(2.14) are redundant with respect to the model formulation. However, they help
strengthening the LP relaxations. Constraints (2.15)-(2.16) set lower and upper
bounds on the occupancy of all vehicles and constraints (2.17) ensure that vehicles
are empty at depots and charging stations.

Battery-management constraints are introduced to track battery levels when
traveling between locations and during recharge phases. Furthermore, vehicles
have initial battery levels and need to have minimum battery levels at the end
of the planning horizon. Constraints (2.18) set initial battery levels for vehicles
at origin depots ok. Constraints (2.19)-(2.20) set the battery level state from any
location i ∈ V \ S to any location j ∈ V \ o(k), while constraints (2.21)-(2.22)
set the battery level state after a visit to a charging facility s ∈ S to any location
j ∈ P ∪ F ∪ S. Constraints (2.23) set upper bounds on the battery level states
at charging stations while constraints (2.24) impose minimum battery levels for
all vehicles returning to the depots. Constraints (2.25)-(2.26) define upper and
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lower bounds on the recharge time at charging station s ∈ S. Integrality and
non-negativity constraints are set in (2.27)-(2.29).

2.2.2 Two-Index Formulation
In this section we present a 2-index mathematical formulation for the e-ADARP.
Note that, although 2-index-based branch-and-cut algorithms typically outper-
form 3-indexed frameworks (Ropke, Cordeau, and Laporte, 2007; Parragh, 2011;
Braekers, Caris, and Janssens, 2014), a 3-index formulation for the e-ADARP
becomes necessary when considering vehicle-dependent battery consumptions and
recharge rates.

The main limitation when transforming a 3-index formulation into a 2-index
formulation is that the decision variables do not feature an index k represent-
ing the vehicles and, as a result, vehicle-specific constraints can no longer be
directly modeled. Nevertheless, violations of pairing, precedence, and capacity
considerations can be prevented by introducing a set of exponential constraints
which are then separated during the search, as first presented by Ruland and
Rodin (1997) and later applied by Ropke, Cordeau, and Laporte (2007), Parragh
(2011), and Braekers, Caris, and Janssens (2014). Both multiple depots and
heterogeneity in terms of capacity and initial battery inventories can be modeled
by considering a singular common artificial origin and destination depot {0, 2n+1}
and by representing O and F as dummy origin and destination depots respectively
(Baldacci, Battarra, and Vigo, 2009; Parragh, 2011; Braekers, Caris, and Janssens,
2014). As a result, in the 2-index formulation, the vertex set V consists of sets
{0, 2n + 1}, P , D, O, F , S. As in Braekers, Caris, and Janssens (2014) several arcs
(i, j) are eliminated from the arc set V to ensure that each route starts with a
dummy origin depot and ends at a dummy destination depot. Therefore, the
following arcs (i, j) are eliminated from the complete graph G:
(i, 0), (2n + 1, i) ∀i ∈ V
(0, j) ∀j ∈ V \ O
(i, 2n + 1) ∀i ∈ V \ F

To impose precedence and pairing constraints, I denotes the set of all vertex
subsets I ⊆ V \ S such that 0 ∈ I, 2n + 1 /∈ I and there is at least one vertex i
for which i /∈ I and n + i ∈ I. Ī denotes the complementary set of I with S ̸⊂ Ī,
∀Ī ∈ I. Then, given precedence and paring considerations between i and n + i,
sets I ∈ I need to be exited at least once. Given that charging stations are not
included in I or Ī, and that at least one arc needs to directly exit I ∈ I towards
Ī ∈ Ī, precedence and pairing constraints also prevent non-empty vehicles from
entering charging stations S. Capacity constraints can be enforced by setting a
lower bound on the number of times vehicles must enter and exit I by computing
max{1, ⌈ |

∑
i∈I li|
C

⌉} (Ropke, Cordeau, and Laporte, 2007).
After visiting a dummy depot, capacities are set such that they correspond to

their actual levels, as presented in Braekers, Caris, and Janssens (2014). Therefore
li = C −Ck ∀i ∈ O and li = Ck −C ∀i ∈ F . The vehicle battery levels are instead
set to the initial battery inventories Bok

at every origin depot ok ∈ O.
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Table 2.3: 2-indexed formulation for the e-ADARP

(e − ADARP 2) min w1
∑

i,j∈V

ti,jxi,j + w2
∑
i∈P

Ri (2.30)

subject to:∑
j∈O

x0,j = |K| (2.31)∑
i∈F

xi,2n+1 = |K| (2.32)∑
i∈D∪S∪O

xi,j ≤ 1 ∀j ∈ F ∪ S (2.33)∑
j∈N

xi,j = 1 ∀i ∈ P (2.34)∑
i∈N

xi,j = 1 ∀j ∈ D (2.35)∑
j∈V

xi,j −
∑
j∈V

xj,i = 0 ∀i ∈ N ∪ S ∪ O (2.36)∑
i,j∈I

xi,j ≤ |I| − 2 ∀I ∈ I (2.37)

∑
i,j∈I

xi,j ≤ |I| − max{1, ⌈
|
∑

i∈I li|
C

⌉} ∀I ∈ I (2.38)

Ti + di + ti,n+i ≤ Tn+i ∀i ∈ P (2.39)

arri ≤ Ti ≤ depi ∀i ∈ V (2.40)

Tn+i − Ti − di ≤ ui ∀i ∈ P (2.41)

Ti + ti,j + di − Mi,j(1 − xi,j) ≤ Tj ∀i ∈ V, j ∈ V, i ̸= j|Mi,j > 0 (2.42)

Ri ≥ Tn+i − Ti − di − ti,n+i ∀i ∈ P (2.43)

Bj ≤ Bi − βi,j + Q(1 − xi,j) ∀i ∈ V \ S ∪ {0}, j ∈ V \ O ∪ {0}, i ̸= j (2.44)

Bj ≥ Bi − βi,j − Q(1 − xi,j) ∀i ∈ V \ S ∪ {0}, j ∈ V \ O ∪ {0}, i ̸= j (2.45)

Bj ≤ Bs + αsEs − βs,j + Q(1 − xs,j) ∀s ∈ S, j ∈ P ∪ F ∪ S, s ̸= j (2.46)

Bj ≥ Bs + αsEs − βs,j − Q(1 − xs,j) ∀s ∈ S, j ∈ P ∪ F ∪ S, s ̸= j (2.47)

Es ≤ Ts − ti,s − Ti + Mi,s(1 − xi,s) ∀s ∈ S, i ∈ D ∪ S ∪ O, i ̸= s (2.48)

Es ≥ Ts − ti,s − Ti − Mi,s(1 − xi,s) ∀s ∈ S, i ∈ D ∪ S ∪ O, i ̸= s (2.49)

Q ≥ Bs + αsEs ∀s ∈ S (2.50)

Bi ≥ rQ ∀i ∈ F (2.51)

xi,j ∈ {0, 1} ∀i ∈ V, j ∈ V (2.52)

Bi ≥ 0 ∀i ∈ V (2.53)

Es ≥ 0 ∀s ∈ S (2.54)

The 2-indexed e-ADARP can be formulated as the MILP presented in Ta-
ble 2.3. Note that the second criterion in the objective function (2.30) depends on
scheduling decisions. Therefore, timing decision variables and constraints cannot
be omitted from the 2-index model for the e-ADARP.

Differently from the 3-index model presented in the previous section, the arti-
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ficial origin and destination depots {0, 2n + 1} are exited/entered |K| times. As
with the charging stations S, each node in F may be visited at most once, as
shown in constraints (2.33). Nevertheless, the interaction with constraints (2.32)
and constraints (2.36) impose that at least |K| arcs enter and exit F . Precedence
and pairing constraints are imposed by inequalities (2.37), whereas rounded ca-
pacity constraints are given in (2.38). As noted in Ropke, Cordeau, and Laporte
(2007), since ∑

i,j∈I
xi,j = |I| − 1 − ∑

i∈I

∑
i∈Ī

xi,j, precedence constraints (2.37) can be

equivalently written as ∑
i∈I

∑
i∈Ī

xi,j ≥ 1 ∀I ∈ I. Finally, given that each node can be

visited by one vehicle only, the remaining constraints (2.39)-(2.54) are equivalent
to constraints (2.8)-(2.29).

2.3 Valid Inequalities
In this section, we introduce several families of valid inequalities used in order
to strengthen the e-ADARP formulations. In Section 2.3.1, we present sets of
valid inequalities that are adopted from the vehicle routing literature. Then, in
Section 2.4, we discuss several sets of valid inequalities that are specifically designed
by taking into account properties of the e-ADARP.

2.3.1 Valid Inequalities from the Vehicle Routing Litera-
ture

Several families of valid inequalities from the vehicle routing literature are also
valid for the e-ADARP and can be lifted to account for the charging stations.
In particular, the following inequalities can be directly applied to the e-ADARP:
(1) time-window strengthening (Cordeau, 2006), (2) incompatible users constraints
(Cordeau, 2006), (3) generalized order constraints (Ruland and Rodin, 1997;Cordeau,
2006), (4) subtour elimination constraints (Cordeau, 2006) (Note that subtours can
also include the charging stations), (5) strengthened capacity constraints (Ropke,
Cordeau, and Laporte, 2007), (6) infeasible path constraints based on maximum
ride time considerations (Cordeau, 2006), (7) tournament constraints (Ascheuer,
Fischetti, and Grötschel, 2000, Ropke, Cordeau, and Laporte, 2007), (8) fork
constraints (Ropke, Cordeau, and Laporte, 2007), and (9) reachability constraints
(Lysgaard, 2006; Ropke, Cordeau, and Laporte, 2007).

In the case of the e-ADARP, capacity constraints can be lifted considering the
recharge stations. This set of constraints is added to prevent situations in which
the number of vehicles visiting set S ⊆ N is not sufficient to accommodate its
demand. Considering C = max

k∈K
C, and letting S,T ⊆ N be two disjoint sets such

that ∑
i∈S li > 0, and U = π(T) \ (S∪T), where π(T) = {i ∈ P|n + i ∈ T}, capacity

constraints can be written as follows (Ropke, Cordeau, and Laporte, 2007):

x(S) + x(T) + x(S : T) ≤ |S| + |T| −
⌈

l(S) + l(U)
C

⌉
(2.55)

In the case of the e-ADARP, charging stations can only be accessed when
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Figure 2.1: Inequalities (2.56) for the case in which U = {i, j}, S = {k, g, n + k},
T = {n + i, n + j}, and S = {s1, s2, s3}

vehicles are unloaded (2.17) and each node can be exited at most once. Therefore,
capacity constraints can be lifted considering arcs from dropoff locations in S to
the set of stations S, as follows:

x(S) + x(T) + x(S : T) + x((S ∩ D) : S) ≤ |S| + |T| −
⌈

l(S) + l(U)
C

⌉
(2.56)

Figure 2.1 shows an illustrative example of inequalities (2.56) for the case in which
U = {i, j}, S = {k, g, n + k}, T = {n + i, n + j}, and S = {s1, s2, s3}.

2.4 Valid Inequalities for the e-ADARP
The following valid inequalities are based on battery-management aspects intro-
duced in the e-ADARP. In Section 2.4.1 and Section 2.4.2 we present infeasible
path constraints that consider battery capacity and load restrictions at charging
stations respectively. We note that in both cases, the resulting constraints can be
presented in the structure of tournament constraints and used in the generation of
fork constraints (Ropke, Cordeau, and Laporte, 2007).

2.4.1 Infeasible Path Inequalities – Battery Capacity
Similar to the maximum ride time constraints introduced in Cordeau (2006), it
is possible to introduce a set of infeasible path inequalities related to battery-
management. The vehicles considered in this study are electric. As such, they need
to have enough battery to perform partial paths without recharge. Consider a path
P = {s′, i, m1, m2, . . . , mq, n + i, s′′}, such that H = {m1, m2, . . . , mq} ⊆ N , i ∈ P ,
and {s′, s′′} ∈ S. In terms of battery consumption, s′ is the closest charging station
to location i and s′′ is the closest station to n + i, i.e. s′ = arg min

s∈S
βs,i and s′′ =

arg min
s∈S

βn+i,s. Assuming that the triangular inequality for battery consumption
holds, and considering the effective battery capacity Q, we deem path P to be
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infeasible if the battery consumption required to traverse it is greater than Q.
That is, if βs′,i + βi,m1 +

q−1∑
h=1

βmh,mh+1 + βmp,n+i + βn+i,s′′ > Q.
Next, vehicles need to return to destination depots having some minimum bat-

tery levels, which depend on the minimal battery level ratio r. Then, assuming that
the destination depot f ∈ F is chosen such that the battery consumption from n+i,
i.e. f = arg min

f∈F
βn+i,f , is minimized if βs′,i +βi,m1 +

q−1∑
h=1

βmh,mh+1 +βmp,n+i +βn+i,f >

(1 − r)Q, path P′ = {s′, i, m1, m2, . . . , mq, n + i, f} is infeasible.
Furthermore, vehicles start their service with some initial battery level Bok

.
Assuming the maximum initial SOC is set to Bomax = max

k∈K
Bok

, and the origin
depot ok ∈ O is chosen such that it minimizes battery consumption to i, i.e. o =
arg min

ok∈O
βok,i. Then, if βo,i + βi,m1 +

q−1∑
h=1

βmh,mh+1 + βmq ,n+i + βn+i,s′′ > Bomax , path
P′′ = {o, i, m1, m2, . . . , mq, n + i, s′′} is infeasible.

Finally, let A(H) be the edges of H. Then, if all paths P, P′, and P′′ are
infeasible, path (i, H, n+i) can be eliminated by the following inequalities (Cordeau,
2006):

xi,m1 +
q−1∑
h=1

xmh,mh+1 + xmq ,n+i ≤ q − 1 (2.57)

2.4.2 Infeasible Path Inequalities – Charging Stations “Walls"
Recall that, in the e-ADARP, vehicles are not allowed to visit charging stations with
passengers on board (constraints 2.17). Therefore, any visit to a charging station
between the pickup of a customer and its dropoff is infeasible. Consider a path P′

connecting the pickup location of user i and a charging station s by a sequence of
q intermediate locations {m1, m2, . . . , mq} with m1,...,q ∈ P ∪ D \ {n + i}. Note
that, in any feasible integer solution, visits to charging stations are only possible
when vehicles are empty and, as such, at most q arcs can be selected from path P′.
These inequalities can be further lifted by including arcs connecting the charging
stations s ∈ S to the last intermediate location mq, and from mq to s, as follows:

xi,m1 +
q−1∑
h=1

xmh,mh+1 +
∑
s∈S

(xmq ,s + xs,mq ) ≤ q (2.58)

An illustrative example for inequalities (2.58) for the case in which P = {i, m1, m2, . . . , mq, s2}
and |S| = 3 is given in Figure 2.2.

Similarly, infeasible path inequalities (2.59) are derived by considering a path
P′′ connecting a charging station s to a dropoff location n + i by a sequence of q
intermediate locations {m1, m2, . . . , mq} with m1,...,q ∈ D ∪ P \ {i}.

∑
s∈S

(xs,m1 + xm1,s) +
q−1∑
h=1

xmh,mh+1 +
∑
s∈S

xmq ,n+i ≤ q (2.59)

An illustrative example for inequalities (2.59) for the case in which P′′ = {s2, m1, m2, . . . , mq, n+
i} and |S| = 3 is given in Figure 2.3.
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Figure 2.2: Inequalities (2.58) for the case in which P = {i, m1, m2, . . . , mq, s2} and
|S| = 3
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Figure 2.3: Inequalities (2.59) for the case in which P′′ = {s2, m1, m2, . . . , m1, n + i}
and |S| = 3

2.4.3 Charging Stations and Time Windows Constraints
We derive a set of constraints that reflect the interaction between charging stations
and time windows. Suppose a vehicle leaves by the earliest time from n + i ∈ D,
recharges at s ∈ S, and travels to j ∈ P . Then, in order to justify the deviation
from n+ i to s before reaching j, the vehicle needs to recharge for a minimum time.
This time can be inferred from the battery consumptions between n + i, s, j and
the recharge rate αs, as βn+i,s+βs,j−βn+i,j

αs
. Then, if path {n+i, s, j} is infeasible with

respect to its start and end time windows, i.e. tn+i,s +dn+i +ts,j + βn+i,s+βs,j−βn+i,j

αs
>

depj − arrn+i, the following infeasible path inequalities are identified:

xn+i,s + xs,j + xn+j,s ≤ 1 ∀i ∈ P, j ∈ N

Next, suppose the same vehicle travels from n + j to station s and then reaches
i. In this case, compute a minimum recharge time βn+j,s+βs,i−βn+j,i

αs
at station s.

Then, if both paths {n + i, s, j} and {n + j, s, i} are violated, i.e. tn+i,s + dn+i +
ts,j + βn+i,s+βs,j−βn+i,j

αs
> depj − arrn+i and tn+j,s + dn+j + ts,i + βn+j,s+βs,i−βn+j,i

αs
>

depi − arrn+j, stronger inequalities can be added as follows:

xn+i,s + xs,j + xn+j,s + xs,i ≤ 1 ∀i ∈ P, j ∈ N (2.60)

An illustrative example for inequalities (2.60) is given in Figure 2.4.

2.4.4 Charging Visits Constraint
In the e-ADARP, one can set a lower bound on the minimal number of visits
to charging stations by considering the total amount of battery consumed by all
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n+ i s j

i

n+j

Figure 2.4: Inequalities (2.60): Charging stations and time windows constraints

vehicles during service. On the left hand-side of inequality (2.61), the number
of times the vehicles fully discharge with respect to the effective battery capacity
Q is computed. Note each vehicle starts and ends service with positive battery
levels. For this reason, the total maximal initial SOC Bomax for all utilized vehicles
(i.e. all vehicles k with xok,ōk = 0) is deducted from the left-hand side, while
the total final SOC for all utilized vehicles is added back to the left-hand-side of
inequality (2.61). On the right-hand side of inequalities (2.61), the sum represents
the minimum number of times all vehicles exit charging stations, i.e. the minimum
number of visits to charging stations.

∑
i,j∈V,i ̸=j

βi,jxi,j

Q
− (|K| −

∑
i∈O

∑
j∈

⋃
k∈K

{ōk}

xi,j)(Bomax

Q
− r) ≤

∑
s∈S

∑
i∈P∪S,i ̸=s

xs,i (2.61)

Note that inequality (2.61) is inspired by a similar concept in the context of the
locomotive refuelling problem (Raviv and Kaspi, 2012). The constraint is also
similar to the rounded capacity constraints introduced in Cordeau, 2006 where,
in place of passenger capacity and loads, total battery consumption and visits to
stations are considered. Finally, note that for the 3-index model, inequality (2.61)
can be vehicle-specific.

2.5 Branch-and-Cut Algorithm
The following sections present the branch-and-cut framework developed for the
e-ADARP. In Section 2.5.1, we discuss the steps taken at the initialization of
the algorithm. These include pre-processing procedures and the enumeration of
several sets of inequalities. In Section 2.5.2, we describe the separation heuristics
designed to identify violated valid inequalities as well as capacity, precedence, and
pairing constraints (2.37)-(2.38).

2.5.1 Initialization
In order to reduce the size of the problem and strengthen the LP relaxation,
several steps are taken before solving the root node. These steps include time-
window tightening, arc elimination, variable fixing, symmetry breaking, and the
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enumeration of several sets of valid inequalities. Most of these steps are based on
considerations arising from standard DARP properties. For brevity, we omit the
description of these initialization steps and refer the reader to Sections 5.1 and 5.2
in Cordeau (2006). Note that precedence, paring, and capacity constraints (2.37)-
(2.38) may be also included at the root node by means of the separation heuristics
described in Section 2.5.2. In the following paragraphs, we focus our discussion
on considerations related to charging stations.

By definition, vehicles are required to enter charging stations with no users on
board. Consequently, a visit to a charging station cannot be preceded by a pickup
node and cannot be followed by a dropoff node. Specifically, arcs (i, s) with i ∈ P
and s ∈ S and arcs (s, j) with j ∈ D are eliminated, as follows:

(i, j) ∀i ∈ O ∪ S, j ∈ D
(i, j) ∀i ∈ P , j ∈ F ∪ S
Next, charging stations may be visited at any time. That is, the time windows
imposed at charging stations include the entire planning horizon. Some minor
tightening of these time windows may be achieved by taking into account traveling
times from the origin and to the destination depots. Namely, the earliest time
to start service at charging station s can be set to arrs = min

ok∈O
(arrok

+ tok,s),
and similarly, the latest time to start service at charging station s can be set to
max
f∈F

(Tp − ts,f ). Finally, symmetry breaking constraints can be introduced when
stations are replicated to allow for more than a single charging visit. In particular,
a visit is allowed only if all preceding visits have been made. Namely, denoting by S̄
the original set of stations nodes and by m the number of station visit replications,
the following symmetry breaking constraints are introduced:∑
i∈O∪S∪D

xi,s+j|S̄| ≥
∑

i∈O∪S∪D
xi,s+(j+1)|S̄| ∀s ∈ S̄, j = {0, . . . , (m − 1)} (2.62)

Next, we describe some of the valid inequalities proposed in Section 2.3 for the
e-ADARP, which are enumerated during the pre-processing step. The infeasible
path constraints presented in Section 2.4.3 are of polynomial size and are fully
enumerated at the root node. The charging visits constraint presented in Section
2.4.4 is also inserted at the root node. In addition, we introduce special cases
of inequalities (2.58) and (2.59). Specifically, we enumerate the following sets,
considering paths {i, j, s}, where i ∈ P , j ∈ D \ {n + i}, s ∈ S:

xi,j +
∑
s=S

xj,s ≤ 1 ∀i ∈ P, j ∈ D, j ̸= n + i

And, considering paths {s, j, n + i}, where i ∈ P , j ∈ P \ {i}, s ∈ S:∑
s∈S

xs,j + xj,n+i ≤ 1 ∀i ∈ P, j ∈ P, j ̸= i

Finally, for every user i ∈ P and charging station s ∈ S, we generate infeasible
path constraints, as follows:

xn+i,s + xs,i ≤ 1 ∀i ∈ P, s ∈ S
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2.5.2 Separation Heuristics
In this Section we present the separation heuristics used in the branch-and-cut
algorithm. Precedence and pairing constraints (2.37) are separated using simi-
lar separation heuristics as those presented in Parragh (2011), where the Ford-
Fulkerson algorithm is implemented to solve the max-flow problems. Rounded
capacity constraints (2.38) are detected through an enumerative procedure: from
every origin depot in O we extend paths along the arcs with the maximum flow
xi,j until capacity is violated or one destination depot has been reached.

To search for violations of generalized order constraints and strengthened ca-
pacity constraints (2.55)-(2.56), we adopt the separation heuristics described in
Section 4 in Ropke, Cordeau, and Laporte (2007). Reachability constraints are also
separated as per Ropke, Cordeau, and Laporte (2007). Note that, in the e-ADARP
sets A+

i and A−
i also need to include arcs to/from charging stations. Moreover, since

nodes s ∈ S can only be accessed by empty vehicles, sets A+
i and A−

i do not contain
arcs from pickups to charging stations or from stations to dropoff locations.

Subtour elimination constraints, tournament constraints with respect to time
windows, maximum ride time, and battery-management constraints are separated
by the use of a greedy construction heuristic. For each pickup node i ∈ P , we initial-
ize a path with node i and iteratively append nodes to the path, such that the value
of the added arc is maximized. This iterative procedure is terminated when one of
the following conditions are met: (1) the next node to be appended is a destination
depot f ∈ F , (2) the next node to be appended already exists in the path, or
(3) the path length exceeds a pre-defined value. If the construction of a path is
terminated due to a repetition of a node, a subtour may have been identified. As
such, in this instance, we check for violations of the subtour elimination constraints
introduced in Cordeau (2006). During the construction of the path, we check both
whether time-window constraints are violated for the last node appended to the
path and whether the value of the relaxed solution violates tournament constraints
(Ropke, Cordeau, and Laporte, 2007). If a tournament constraint is not identified
(i.e. the backbone path is feasible), we search for violations of fork constraints using
the search heuristics presented in Ropke, Cordeau, and Laporte (2007). Infeasible
path inequalities with respect to maximum ride time and battery-management
constraints are examined only when the constructed path includes the dropoff
node n + i of seed node i and does not include any charging station. For such
paths, if the travel time exceeds the maximum ride time of user i, or the three
battery consumption conditions presented in Section 2.4.1 are met, we check for
violations of inequalities (2.57).

Infeasible paths due to load considerations at the charging stations (2.58)-(2.59)
are identified by using a heuristic which iteratively considers a node s ∈ S and
constructs paths forwards or backwards by appending the node with maximal
flow. Specifically, in order to identify inequalities (2.58) we construct paths from
node s forwards, whereas for inequalities (2.59) we construct paths to node s
backwards. To search for violations of inequalities (2.58) we then check whether
each path originating from s contains the dropoff of a user n + j but not its
pickup j. Similarly, to search for violations of inequalities (2.59) we check whether
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each path terminating at s contains the pickup of a user j but not its dropoff
n + j. The search is interrupted when one of the following conditions is met: (1) a
violation of inequalities (2.58)-(2.59) is identified; or (2) the forward or backward
path reaches a charging facility, a dummy origin, or destination depot without
violating inequalities (2.58) and (2.59).

2.6 Numerical Experiments
In this section, we present numerical experiments designed to examine the per-
formance of the proposed e-ADARP formulations and branch-and-cut algorithm.
All programs are implemented in Julia 0.7.0 using the JuMP modeling language
(2017) and the MILP solver Gurobi 7.0.1 on a 3.60 GHz Intel(R) Core(TM) with
16 Gb of RAM.

2.6.1 Test Instances
Two sets of instances are tested in the experiment: (1) Instances obtained by
supplementing DARP benchmark instances from Cordeau (2006) with e-ADARP-
related parameters, and (2) Instances based on ride-sharing data from Uber Tech-
nologies Inc. in 2011.

The instances proposed by Cordeau (2006) for the standard DARP are supple-
mented with charging stations, battery capacities, initial SOC requirements, final
SOC requirements, recharge rates, and discharge rates. A single origin and destina-
tion depot is used for all vehicles, as in the original instances. That is, vehicles are
limited to a specific destination depot and cannot choose from a set of potential des-
tination depots. The capacity of all vehicles is set to three passengers and the max-
imum ride time of all users is set to 30 minutes. Recharge and discharge rates are
given by the autonomous-electric shuttles manufacturer Navya and are set to repre-
sent a battery autonomy of 5 hours from a nominal capacity of 16.5 kWh. Namely,
the recharge and discharge rates are both set to 0.055 kWh per minute (see https:
//www.hevs.ch/media/document/1/fiche-technique-navettes-autonomes.pdf).
For the purpose of this experiment, all vehicles are assumed to start with full
battery capacity, which is discharged on each route segment proportionally to its
travel time. The effective battery capacity and initial battery charge are both
set to 14.85 kWh. That is, vehicles are required to keep 10% of their nominal
capacity at all times. Note that, with respect to the average travel time exhibited
in these instances, each vehicle can visit at most approximately 20 nodes with a
full effective battery capacity.

In the proposed analysis, the following convention is used for the instance names:
<a/u><number of vehicles>-<number of customers>, where “a" and “u" are used
for the instances adapted from Cordeau (2006) and from Uber respectively. The
characteristics of the first instances are summarized in Table 2.4(a). The first
column presents the instance name, followed by three columns presenting the time
horizon Tp, number of customers n, and the number of vehicles |K|. The last four
columns present the number of constraints and variables (before pre-processing) in

https://www.hevs.ch/media/document/1/fiche-technique-navettes-autonomes.pdf
https://www.hevs.ch/media/document/1/fiche-technique-navettes-autonomes.pdf
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Table 2.4: Benchmark Instances: (a) Instances adapted from Cordeau (2006); (b)
Instances from Uber ride-shares in San Francisco, CA (USA).

e-ADARP3 e-ADARP2

Name Tp [min] n |K| # Cons # Vars # Cons # Vars
a2-16 480 16 2 19746 2990 9904 1786
a2-20 600 20 2 29486 4354 14550 2526
a2-24 720 24 2 41015 5974 20047 3394
a3-18 360 18 3 34447 5451 12891 2329
a3-24 480 24 3 57174 8949 21081 3631
a3-30 600 30 3 87923 13311 31571 5221
a3-36 720 36 3 124084 18537 44087 7099
a4-16 240 16 4 35866 5964 11245 2140
a4-24 360 24 4 74887 11924 22172 3876
a4-32 480 32 4 127995 19932 36829 6124
a4-40 600 40 4 194035 29988 54874 8884
a4-48 720 48 4 271841 42092 76050 12156
a5-40 480 40 5 235439 37475 56028 9265
a5-50 600 50 5 359418 56785 84664 13515

(a)

e-ADARP3 e-ADARP2

Name Tp [min] n |K| # Cons # Vars # Cons # Vars
u2-16 127 16 2 63296 3990 11348 2233
u2-20 166 20 2 36513 5546 16216 3053
u2-24 199 24 2 50094 7358 22324 4001
u3-18 161 18 3 43668 7095 13924 2731
u3-24 188 24 3 69947 11025 22291 4129
u3-30 237 30 3 104008 15819 33235 5815
u3-36 280 36 3 142511 21477 45619 7789
u4-16 93 16 4 47788 7964 12013 2427
u4-24 439 24 4 92195 14692 23132 4259
u4-32 183 32 4 150075 23468 37699 6603
u4-40 471 40 4 222327 34292 55945 9459
u4-48 272 48 4 310059 47164 78097 12827
u5-40 211 40 5 275315 42855 57151 9655
u5-50 284 50 5 409514 63365 84991 13985

(b)

the resulting 3-index (e-ADARP3) and 2-index (e-ADARP2) MILP formulations.
All of the presented instances are also replicated for three final minimum battery
level ratios r. In particular, we analyze the case in which all vehicles need to return
to one of the optional destination depots with at least 10%, 40% and 70% battery
ratio levels (i.e. r=0.1, r=0.4, r=0.7).

The second set of instances is produced by extrapolating origin/destination
locations and times from ride-sharing GPS logs in the city of San Francisco (CA,
USA). The dataset, shared by Uber Technologies Inc. in 2011, contains a to-
tal of 1.2 million GPS logs, registered every 4 seconds from active Uber cars
during one week. The dataset is processed prior to the analysis, removing in-
valid records, and extracting the pickup and dropoff locations for the remaining
trips. The processed dataset contains about 25,000 Uber trips made during a
one-week period. The daily number of trip requests varies from 2,000 to 6,000.
The raw dataset is obtained from the GitHub repository at https://github.com/
dima42/uber-gps-analysis/tree/master/gpsdata. This study focuses on the
ride-sharing requests that have been served in the Downtown/Civic Center districts.

https://github.com/dima42/uber-gps-analysis/tree/master/gpsdata
https://github.com/dima42/uber-gps-analysis/tree/master/gpsdata
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(a) (b)

Figure 2.5: Instance a4-16: (a) Pickup and dropoff locations; (b) Pickups and dropoffs
time windows after tightening. Note that the pickup location of any user with pickup ID
i is denoted by i+16

(a) (b)

Figure 2.6: Instance u4-16: (a) Pickup and dropoff locations; (b) Pickups and dropoffs
time windows after tightening. Note that the pickup location of any user with pickup ID
i is denoted by i+16

Neighborhood information is obtained through the San Francisco Enterprise GIS
Program (SFGIS) on the SF OpenData website. The requests from the weekend
are aggregated into one single day, by neglecting the day of the request. Instances
of different size are then generated by randomly selecting users at a maximum
rate of one request every 3 minutes.

The San Francisco transportation network is extracted from OpenStreetMap
(OSM). Information on electric vehicle charging station locations is obtained through
the Alternative Fueling Station Locator from the Alternative Fuels Data Center
(AFDC) of the U.S. Department of Energy. Dijkstra’s shortest path algorithm
is used to compute travel times between the pickup/dropoff locations, charging
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stations, and origin/destination depots. The travel times are estimated without
considering traffic congestion, instead assuming that vehicles travel at a constant
speed of 35 km/h. In the envisioned application AVs can provide non-stop ride-
sharing services. As such, origin and destination depots are assumed to coincide
with the set of potential charging stations. The depots also serve as temporary
parking locations to provide ride-sharing services in a sequential time-horizon
framework. In these instances, each vehicle may visit a maximum of five charg-
ing stations (randomly selected from the AFDC) and consequently may choose
between 5 potential destination depots. Figure 2.5-2.6 show the pickup and dropoff
locations, as well as their time windows, after tightening, for instances a4-16 and
u4-16 respectively (i.e. 4 vehicles, 16 customers). Note that the instance shown in
Figure 2.6 is substantially different from the one shown in Figure 2.5. In particular,
all instances adapted from Cordeau, 2006 and from Uber, differ as follows: (1) The
pickup and dropoffs in Figure 2.5(a) can appear anywhere, whereas in Figure 2.6(a)
they can only appear on the transportation network; (2) after pre-processing, the
time windows in Figure 2.5(b) are tighter than the time windows in Figure 2.6(b);
(3) there is more overlap between the pickup and dropoff time windows of the same
user in Figure 2.6(b) than in Figure 2.5(b) (i.e. dropoff time windows are more
constraining in the Uber instances); and (4) there is more overlap between the
time windows of different users in Figure 2.6(b) than in Figure 2.5(b) (i.e. users
arrival rate is higher for the Uber instances).

In order to scale-up the study region we have focused on, travel times are
multiplied by a factor of 2, battery consumptions are increased by 30%, and
effective battery capacities are decreased to 3.5 kWh. Given this transformation,
each vehicle can visit at most approximately 15 nodes, with a full effective battery
capacity. Again, it is assumed that all vehicles depart from their origin depots with
full battery capacities. The maximum ride times of all users are set to eight minutes
and 15-minute time windows are applied at the dropoff locations. In addition, the
planning horizon is obtained by considering the dropoff location with the latest
service start time and adding the travel time to the furthest charging station. The
characteristics of the second set of instances are summarized in Table 2.4(b). The
table follows the same format as Table 2.4(a).

The objective function weight factors are set to {0.75, 0.25}, i.e. the total vehicle
travel time accounts for 75% of the objective function score and the total excess
ride time accounts for 25%. The two datasets used for the computational exper-
iments are available on the website https://people.epfl.ch/cgi-bin/people?
id=255972&op=publications&lang=en&cvlang=en.

2.6.2 Branch-and-Cut Results

Next, the performance of the proposed branch-and-cut framework is analyzed for
e-ADARP3 and e-ADARP2. In both cases, the default branching strategy of
Gurobi is used. In addition, cut generation procedures and separation heuristics
are activated at every node in the search tree. Table 2.5 and Table 2.6 present
the computational results obtained for the instances adapted from Cordeau (2006)

https://people.epfl.ch/cgi-bin/people?id=255972&op=publications&lang=en&cvlang=en
https://people.epfl.ch/cgi-bin/people?id=255972&op=publications&lang=en&cvlang=en
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Table 2.5: Instances adapted from Cordeau (2006): Comparison between e-ADARP3
and e-ADARP2

e-ADARP3 e-ADARP2

Name CPU Obj. LB Nodes Cuts CPU Obj. LB Nodes Cuts

r=0.1
a2-16 0.12 237.38* 237.38 170 121 0.02 237.38* 237.38 1 55
a2-20 6.67 279.08* 279.08 10866 752 0.07 279.08* 279.08 1 108
a2-24 2.58 346.21* 346.21 1768 1106 0.15 346.21* 346.21 132 131
a3-18 7.37 236.82* 236.82 10339 1466 0.08 236.82* 236.82 1 96
a3-24 21.23 274.81* 274.80 11022 1874 0.23 274.81* 274.81 299 182
a3-30 120.00 413.27 376.15 27196 2388 1.70 413.27* 413.27 2362 119
a3-36 120.00 481.72 458.43 20643 2940 1.78 481.17* 481.17 1561 206
a4-16 52.65 222.49* 222.49 48594 1826 0.06 222.49* 222.49 126 465
a4-24 120.00 310.84 275.47 22260 2057 0.52 310.84* 310.84 856 268
a4-32 120.00 413.02 308.14 11327 3585 10.20 393.96* 393.96 10389 164
a4-40 120.00 NA 371.71 6463 3658 8.62 453.84* 453.84 5128 386
a4-48 120.00 NA 375.72 2372 4502 120.00 554.54 526.96 36558 469
a5-40 120.00 490.49 279.56 2024 5242 19.03 414.51* 414.51 10270 666
a5-50 120.00 NA 359.50 1392 5191 120.00 559.17 531.15 28368 852

r=0.4
a2-16 0.13 237.38* 237.38 165 106 0.03 237.38* 237.38 103 135
a2-20 5.97 280.70* 280.70 10277 730 0.83 280.70* 280.70 1663 89
a2-24 4.20 348.04* 348.04 3644 893 0.42 348.04* 348.04 786 105
a3-18 4.76 236.82* 236.82 5844 1178 0.07 236.82* 236.82 82 92
a3-24 32.89 274.80* 274.80 19257 1829 0.28 274.81* 274.81 279 186
a3-30 120.00 413.80 369.89 28757 1986 1.65 413.37* 413.37 2305 96
a3-36 120.00 489.99 452.33 20961 1741 5.11 484.14* 484.14 3855 204
a4-16 53.20 222.49* 222.49 47028 1400 0.09 222.49* 222.49 309 529
a4-24 120.00 311.03 281.23 25986 2467 0.66 311.03* 311.03 1170 278
a4-32 120.00 394.32 307.27 9190 4158 11.36 394.26* 394.26 11735 156
a4-40 120.00 NA 372.53 5215 712 6.96 453.84* 453.84 3622 430
a4-48 120.00 NA 381.69 3136 4247 120.00 554.60 529.22 38467 418
a5-40 120.00 454.81 281.44 1639 5811 20.35 414.51* 414.51 12282 727
a5-50 120.00 NA 372.81 1556 6258 120.00 560.50 528.91 26189 772

r=0.7
a2-16 0.49 240.66* 240.66 1223 314 0.09 240.66* 240.66 1360 218
a2-20 120.00 NA 286.06 171592 529 120.00 NA 287.17 306306 103
a2-24 58.99 358.21* 358.21 75993 825 16.02 358.21* 358.21 37261 123
a3-18 10.71 240.58* 240.58 15927 1017 0.80 240.58* 240.58 2450 330
a3-24 49.29 277.72* 277.72 29723 1412 2.54 277.72* 277.72 4265 190
a3-30 120.00 NA 358.79 38105 2132 120.00 NA 417.06 134851 98
a3-36 120.00 NA 433.38 20902 2645 120.00 494.04 485.91 107714 193
a4-16 36.32 223.13* 223.13 33176 2246 1.12 223.13* 223.13 5996 690
a4-24 120.00 321.03 279.85 23100 2435 30.58 318.21* 318.19 73110 268
a4-32 120.00 NA 302.28 11142 3083 120.00 430.07 387.99 108524 131
a4-40 120.00 NA 372.75 5611 389 120.00 NA 443.62 62465 384
a4-48 120.00 NA 381.98 2107 5281 120.00 NA 524.92 35901 485
a5-40 120.00 NA 280.02 2264 5817 120.00 447.63 405.99 62627 582
a5-50 120.00 NA 357.51 1421 7008 120.00 NA 522.37 31725 751

and Uber respectively, with a time limit of 120 minutes. Note that in the following
results, each charging stations may be visited at most once (i.e. the proposed
charging-station nodes are not replicated). The first column in Tables 2.5-2.6
presents the instance name, the second to sixth columns present, for e-ADARP3,
the CPU time in minutes, the best solution found, the lower bound, the number
of explored nodes, and the number of generated cuts. The seventh to the last
columns present the same information for e-ADARP2. Cases where the algorithm
is unable to find a feasible solution within the given time limit are denoted by
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Table 2.6: Instances from Uber: Comparison between the e-ADARP3 model and the
e-ADARP2 model

e-ADARP3 e-ADARP2

Name CPU Obj. LB Nodes Cuts CPU Obj. LB Nodes Cuts

r=0.1
u2-16 4.47 57.61* 57.61 8058 1025 0.35 57.61* 57.61 1251 1105
u2-20 0.32 55.59* 55.59 372 640 0.16 55.59* 55.59 1 679
u2-24 120.00 91.27 87.52 85942 1190 7.20 91.27* 91.27 13482 2081
u3-18 10.50 50.74* 50.74 9286 1251 0.18 50.74* 50.74 357 947
u3-24 120.00 68.78 60.95 32696 1717 2.17 67.56* 67.56 3819 2450
u3-30 120.00 76.99 70.44 20711 2021 7.30 76.75* 76.75 7399 4455
u3-36 120.00 109.12 93.01 14386 2186 18.08 104.04* 104.04 11540 3556
u4-16 111.94 53.58* 53.58 76603 1576 0.80 53.58* 53.58 2607 2113
u4-24 57.94 89.83* 89.83 22915 1607 0.22 89.83* 89.83 251 692
u4-32 120.00 NA 83.93 11342 2200 19.31 99.29* 99.29 11686 5093
u4-40 120.00 136.93 111.33 4546 3282 3.09 133.11* 133.11 1915 1093
u4-48 120.00 NA 110.50 2096 3902 120.00 148.30 134.48 19952 7497
u5-40 120.00 NA 94.21 1831 3624 120.00 121.86 114.12 25388 8259
u5-50 120.00 NA 114.06 1456 4920 120.00 143.10 132.69 20580 9141

r=0.4
u2-16 3.83 57.65* 57.65 7477 1149 0.43 57.65* 57.65 1414 1263
u2-20 1.39 56.34* 56.34 2162 927 0.20 56.34* 56.34 219 445
u2-24 120.00 NA 85.00 85334 1252 12.62 91.63* 91.63 22501 1831
u3-18 12.88 50.74* 50.74 14101 1153 0.23 50.74* 50.74 451 1112
u3-24 120.00 67.77 61.20 34906 1673 3.68 67.56* 67.56 6589 3051
u3-30 120.00 78.15 70.13 20729 1756 5.61 76.75* 76.75 5016 4090
u3-36 120.00 NA 93.15 13127 1902 33.50 104.06* 104.06 19705 3710
u4-16 88.29 53.58* 53.58 67819 1341 0.74 53.58* 53.58 2374 2208
u4-24 85.55 89.83* 89.83 37381 2264 0.47 89.83* 89.83 383 836
u4-32 120.00 NA 84.41 10821 2399 44.46 99.29* 99.29 29909 5262
u4-40 120.00 NA 109.74 4001 2909 44.22 133.91* 133.91 31550 1098
u4-48 120.00 NA 110.43 2125 3833 120.00 NA 133.86 21713 8262
u5-40 120.00 NA 93.86 1799 4233 120.00 122.23 112.58 27739 8218
u5-50 120.00 NA 114.00 1475 4683 120.00 143.14 134.09 17899 9339

r=0.7
u2-16 25.76 59.19* 59.19 63296 1117 5.64 59.19* 59.19 19883 1274
u2-20 2.23 56.86* 56.86 2609 827 1.20 56.86* 56.86 1999 1389
u2-24 120.00 NA 85.98 90525 1283 120.00 NA 90.83 151765 1652
u3-18 8.02 50.99* 50.99 7578 1163 0.40 50.99* 50.99 994 1374
u3-24 120.00 69.30 60.36 35613 1531 6.67 68.39* 68.39 10163 2080
u3-30 120.00 80.35 69.44 21115 1783 56.69 78.14* 78.14 58457 2908
u3-36 120.00 NA 92.30 14169 1917 120.00 105.79 104.37 73041 3526
u4-16 120.00 53.87 51.85 52303 1353 1.48 53.87* 53.87 4872 3304
u4-24 100.76 89.96* 89.96 41435 1581 0.38 89.96* 89.96 451 656
u4-32 120.00 NA 83.86 9265 2568 47.12 99.50* 99.50 30099 5173
u4-40 120.00 NA 109.53 4452 2424 120.00 NA 133.01 65051 826
u4-48 120.00 NA 111.64 1853 3862 120.00 NA 132.49 20208 7919
u5-40 120.00 NA 94.63 1711 4073 120.00 NA 109.28 29812 8070
u5-50 120.00 NA 113.94 1426 3546 120.00 144.36 133.33 18964 9177

Not Available (NA).
Comparing the computational results of the proposed branch-and-cut algorithm

for e-ADARP3 and e-ADARP2 (shown in Table 2.5 and Table 2.6 respectively),
reveals the following observations: (1) e-ADARP2 leads to considerably shorter
CPU times with respect to e-ADARP3; (2) in the cases where the optimal solution
has not been reached, e-ADARP2 finds stronger lower and upper bounds than
e-ADARP3; (3) e-ADARP2 finds a feasible solution to more instances than e-
ADARP3; (4) instances with up to 5 vehicles and 40 customers can be solved
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Table 2.7: Instances from Uber: Root node lower bounds as a percentage of the upper
bound

Instance LP3 LP2 GOC SEC SCC TC FC RC MRT BM CSW Full U.Bound

r=0.1
u2-16 81.68 84.87 92.38 89.81 91.40 90.85 88.08 92.91 51.14 86.27 91.05 92.95 57.61
u2-20 94.13 96.24 97.09 73.58 95.85 96.08 96.16 96.01 97.26 96.21 69.49 100.00 55.59
u2-24 72.14 80.64 82.57 82.03 81.29 81.84 60.63 82.84 66.01 55.83 81.10 87.28 91.27
u3-18 85.13 94.12 93.49 93.91 93.59 93.74 94.19 94.07 94.01 93.87 91.12 96.15 50.74
u3-24 78.50 88.05 88.20 88.60 77.78 88.62 88.45 87.84 89.51 88.34 71.62 91.22 67.56
u3-30 80.03 88.22 89.94 90.16 67.38 67.45 88.97 90.29 90.31 89.47 88.55 91.89 76.75
u3-36 80.91 87.44 60.01 65.07 59.97 61.19 66.20 88.46 89.35 88.68 66.78 90.02 104.04
u4-16 73.30 82.07 83.32 83.01 83.10 82.33 82.31 83.18 84.56 83.10 82.13 85.43 53.58
u4-24 76.54 72.82 87.41 88.31 71.98 69.99 73.65 87.10 96.63 87.86 49.32 85.66 89.83
u4-32 76.54 57.12 58.09 81.67 53.35 80.39 76.55 54.97 85.94 58.20 75.24 88.66 99.29
u4-40 74.77 94.49 53.61 76.27 64.85 57.16 54.79 63.63 97.38 74.14 57.68 97.09 133.11
u4-48 64.93 46.80 47.39 48.85 45.08 50.68 51.02 48.40 57.76 44.93 43.87 61.74 148.30
u5-40 69.64 49.01 48.68 48.27 47.23 51.30 49.17 49.98 53.87 48.09 49.10 54.02 121.86
u5-50 69.14 53.38 53.87 54.91 50.51 54.82 57.30 55.43 58.36 53.10 53.97 65.53 143.10
Avg. 76.96 76.80 74.00 76.03 70.24 73.32 73.39 76.79 79.43 74.86 69.36 84.83

r=0.4
u2-16 81.75 88.98 90.07 90.97 89.94 90.28 88.98 93.23 92.59 86.87 91.34 93.01 57.65
u2-20 92.11 93.93 95.84 95.65 94.65 95.27 94.86 95.38 93.78 94.65 94.69 97.92 56.34
u2-24 72.05 81.32 81.61 80.35 81.31 81.33 82.19 84.16 84.68 81.26 80.02 86.24 91.63
u3-18 84.91 91.09 93.55 93.59 94.18 93.69 94.12 93.68 94.30 93.67 93.71 94.08 50.74
u3-24 78.31 88.45 88.52 72.37 88.42 89.04 88.49 89.49 89.46 69.74 88.55 90.83 67.56
u3-30 80.19 89.00 90.40 71.72 75.79 89.71 88.79 89.77 88.73 66.56 64.41 91.09 76.75
u3-36 80.95 62.62 56.30 60.87 66.29 67.05 58.95 67.44 69.99 61.59 67.07 80.14 104.06
u4-16 44.69 48.83 41.98 49.27 49.57 48.91 49.37 49.20 50.39 49.57 48.98 51.22 89.83
u4-24 77.86 47.84 88.37 86.93 47.84 86.40 74.02 87.18 96.63 47.84 86.91 94.27 89.83
u4-32 76.40 57.88 75.92 76.61 53.25 58.07 58.87 75.53 77.45 75.61 74.08 88.56 99.29
u4-40 74.12 73.91 72.61 78.02 60.92 74.83 72.20 74.96 95.76 55.45 58.78 97.33 133.91
u4-48 NA NA NA NA NA NA NA NA NA NA NA NA NA
u5-40 70.20 46.95 47.88 50.26 46.82 49.95 47.28 48.03 51.46 48.78 47.78 55.89 122.23
u5-50 69.10 52.54 52.67 54.62 49.26 55.28 55.65 55.28 61.38 53.26 53.71 65.01 143.14
Avg. 75.59 71.03 75.06 73.94 69.10 75.37 73.37 77.18 80.51 68.07 73.08 83.51

r=0.7
u2-16 78.41 88.41 49.49 89.75 88.42 88.02 88.41 88.21 90.11 87.38 87.98 90.71 59.19
u2-20 90.11 93.40 94.99 94.60 94.38 94.03 92.77 95.11 93.54 92.75 92.77 96.67 56.86
u2-24 NA NA NA NA NA NA NA NA NA NA NA NA NA
u3-18 84.61 93.01 92.76 93.44 93.09 93.40 92.90 93.45 93.93 93.13 93.30 94.24 50.99
u3-24 77.70 86.94 86.93 88.02 77.92 87.26 88.14 87.73 88.69 87.26 87.10 89.82 68.39
u3-30 77.86 87.62 68.62 88.57 62.35 65.01 88.25 61.76 71.94 64.33 88.32 89.25 78.14
u3-36 79.36 61.96 60.40 64.66 58.27 58.23 59.09 67.70 87.41 59.16 58.11 88.22 105.79
u4-16 74.54 81.98 83.01 83.43 82.16 81.98 82.04 83.02 84.13 82.16 82.60 85.58 53.87
u4-24 76.78 65.67 88.23 86.16 47.77 71.52 71.68 86.75 96.48 47.77 86.78 93.79 89.96
u4-32 76.39 75.60 62.18 83.62 71.98 79.80 84.98 84.28 53.83 53.80 76.93 86.69 99.50
u4-40 NA NA NA NA NA NA NA NA NA NA NA NA NA
u4-48 NA NA NA NA NA NA NA NA NA NA NA NA NA
u5-40 NA NA NA NA NA NA NA NA NA NA NA NA NA
u5-50 69.54 53.87 52.54 53.75 51.77 54.75 55.30 54.98 61.21 52.58 53.94 63.68 144.36
Avg. 78.53 78.85 73.92 82.60 72.81 77.40 80.36 80.30 82.13 72.03 80.78 87.86

in Table 2.5; and (5) instances with up to 4 vehicles and 40 customers can be
solved in Table 2.6.

In order to evaluate the strength of the proposed valid inequalities for the
Uber instances, e-ADARP2 is supplemented with each inequality and calculate
its performance at the root node. The results of such analysis are reported in
Table 2.7, in which the root node lower bounds are reported as a percentage of the
upper bound values. Column LP3 in Table 2.7 indicates the percentages obtained
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by solving the LP relaxation of e-ADARP3, whereas column LP2 represents the
lower bounds obtained by solving the LP relaxation of e-ADARP2. The next
eight columns present the bounds obtained when supplementing the LP relaxation
of the 2-index model with valid inequalities from one of the following families:
Generalize Order Constraints (GOC), Subtour Elimination Constraints (SEC),
Strengthened Capacity Constraints (SCC), Tournament Constraints (TC), Fork
Constraints (FC), Reachability Constraints (RC), Maximum ride time Constraints
(MRT), battery-management Constraints (BM), or Charging Stations Walls Con-
straints (CSW). Column “Full" reports the bounds obtained when searching for
all of the aforementioned families of valid inequalities. The last column presents
the upper bound values which are either the optimal values if a solution is found
within the two hour time limit or the best bounds within this time. Note that
LP2 includes the separation of capacity, precedence, and pairing constraints. It is
therefore possible that LP2 (with no inequalities) presents higher lower bounds than
LP2 supplemented with one of the proposed inequalities. Nevertheless, as shown
by column “Full", the interaction between all of the proposed inequalities always
strengthens the lower bounds at the root node. The results show that, on average
over all instances, Maximum ride time (MRT), Reachability (RC) and Subtour
Elimination (SEC) constraints have the largest impact on average. However, the
relative performance of each inequality is dependent on the minimal battery level
ratio, certain inequalities might outperform others. In particular, when the minimal
battery level requirement is most restrictive (i.e. r = 0.7), Charging Station Walls
(CSW) constraints are among the most effective inequalities.

2.6.3 Sensitivity Analysis

This Section provides managerial insights highlighting the consequences of allowing
multiple charging visits per station, employing an electric or a conventional internal-
combustion fleet, considering operational and level-of-service oriented objectives.

Multiple charging visits can be modeled by replicating the charging station
nodes and imposing symmetry breaking constraints (2.62). In Table 2.8 the effect
of such replications on the solution quality and performance is analyzed for the Uber
instances. The first column of Table 2.8 displays the instance name. The second to
the sixth column report the CPU time (in minutes), objective value, optimality gap,
number of visited stations while vehicles are en-route nSR

, and number of visited
stations before returning to the depot nSD

, when only a single visit per charging
station is allowed. The next five columns present the equivalent information for
two allowed visits per charging stations. Finally, the last five columns present the
equivalent information for three allowed visits per charging stations. The following
observations can be drawn from the results in Table 2.8: (1) allowing multiple
charging visits per station helps in finding a feasible integer solution when no
feasible solution could be found with only one visit per station (e.g. instance u4-48
r=0.4); (2) allowing multiple charging visits per station might slightly improve the
solution quality, where a maximum objective decrease by 1.72% is experienced by
instance u2-16 r=0.7; (3) on average, providing 2 visits per charging station does
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Table 2.8: Instances from Uber: Solution quality and performance when increasing the
maximum number of charging visits per station.

1 visit per station 2 visits per station 3 visits per station

Name CPU Obj. Gap[%] nSR
nSD

CPU Obj. Gap[%] nSR
nSD

CPU Objective Gap[%] nSR
nSD

r=0.1
u2-16 0.35 57.61 0.00 0 1 0.54 57.61 0.00 0 1 2.96 57.61 0.00 0 1
u2-20 0.16 55.59 0.00 0 1 0.11 55.59 0.00 0 1 0.43 55.59 0.00 0 1
u2-24 7.20 91.27 0.00 2 1 14.85 91.27 0.00 2 1 36.05 91.27 0.00 2 1
u3-18 0.18 50.74 0.00 0 0 0.40 50.74 0.00 0 0 0.85 50.74 0.00 0 0
u3-24 2.17 67.56 0.00 0 0 3.94 67.56 0.00 0 0 3.24 67.56 0.00 0 0
u3-30 7.30 76.75 0.00 0 0 5.01 76.75 0.00 0 0 5.24 76.75 0.00 0 0
u3-36 18.08 104.04 0.00 0 3 17.82 104.04 0.00 0 3 18.81 104.04 0.00 0 3
u4-16 0.80 53.58 0.00 0 0 0.92 53.58 0.00 0 0 0.93 53.58 0.00 0 0
u4-24 0.22 89.83 0.00 0 1 0.27 89.83 0.00 0 1 0.32 89.83 0.00 0 1
u4-32 19.31 99.29 0.00 0 0 52.23 99.29 0.00 0 0 52.11 99.29 0.00 0 0
u4-40 3.09 133.11 0.00 0 2 3.70 133.11 0.00 0 2 2.35 133.11 0.00 0 2
u4-48 120.00 148.30 9.32 0 4 120.00 148.37 10.12 0 4 120.00 149.14 9.71 0 4
u5-40 120.00 121.86 6.35 0 1 120.00 121.86 10.14 0 2 120.00 121.86 7.38 0 1
u5-50 120.00 143.10 7.27 0 0 120.00 142.83 5.42 0 1 120.00 142.83 6.96 0 1

r=0.4
u2-16 0.43 57.65 0.00 0 2 0.86 57.65 0.00 0 2 3.02 57.65 0.00 0 2
u2-20 0.20 56.34 0.00 0 2 0.99 56.34 0.00 0 2 4.31 56.34 0.00 0 2
u2-24 12.62 91.63 0.00 3 1 13.36 91.27 0.00 2 2 54.28 91.27 0.00 2 2
u3-18 0.23 50.74 0.00 0 1 0.38 50.74 0.00 0 1 1.13 50.74 0.00 0 1
u3-24 3.68 67.56 0.00 0 2 2.11 67.56 0.00 0 2 3.63 67.56 0.00 0 2
u3-30 5.61 76.75 0.00 0 2 5.82 76.75 0.00 0 2 3.31 76.75 0.00 0 2
u3-36 33.50 104.06 0.00 0 3 18.80 104.06 0.00 0 3 21.66 104.06 0.00 0 3
u4-16 0.74 53.58 0.00 0 0 1.29 53.58 0.00 0 0 1.91 53.58 0.00 0 0
u4-24 0.74 89.83 0.00 0 2 0.40 89.83 0.00 0 2 0.49 89.83 0.00 0 2
u4-32 44.46 99.29 0.00 0 2 33.86 99.29 0.00 0 2 30.37 99.29 0.00 0 2
u4-40 44.22 133.91 0.00 0 4 104.93 133.68 0.00 1 4 120.00 134.01 0.67 1 4
u4-48 120.00 NA NA NA NA 120.00 150.96 12.00 1 4 120.00 150.78 11.70 1 4
u5-40 120.00 122.23 7.89 0 4 120.00 122.22 8.48 0 4 120.00 121.96 6.27 0 4
u5-50 120.00 143.14 6.32 0 4 120.00 142.83 5.69 0 4 120.00 143.48 8.13 0 4

r=0.7
u2-16 5.64 59.19 0.00 2 1 2.76 58.17 0.00 1 2 21.91 58.17 0.00 1 2
u2-20 1.20 56.86 0.00 1 2 2.90 56.86 0.00 1 2 14.58 56.86 0.00 1 2
u2-24 120.00 NA NA NA NA 120.00 97.50 7.23 3 2 120.00 NA NA NA NA
u3-18 0.40 50.99 0.00 0 3 0.68 50.99 0.00 0 3 2.54 50.99 0.00 0 3
u3-24 6.67 68.39 0.00 0 3 4.33 68.06 0.00 1 3 8.44 68.06 0.00 1 3
u3-30 56.69 78.14 0.00 1 3 120.00 78.16 0.97 1 3 120.00 78.16 1.31 1 3
u3-36 120.00 105.79 1.34 1 3 120.00 107.65 4.17 1 2 120.00 106.18 2.42 1 3
u4-16 1.48 53.87 0.00 0 3 2.13 53.87 0.00 0 3 2.81 53.87 0.00 0 3
u4-24 0.38 89.96 0.00 1 2 0.49 89.83 0.00 1 2 1.32 89.83 0.00 1 2
u4-32 47.12 99.50 0.00 0 4 33.85 99.50 0.00 0 4 76.03 99.50 0.00 0 4
u4-40 120.00 NA NA NA NA 120.00 137.49 3.16 2 3 120.00 137.61 3.27 2 4
u4-48 120.00 NA NA NA NA 120.00 NA NA NA NA 120.00 NA NA NA NA
u5-40 120.00 NA NA NA NA 120.00 125.14 14.11 0 5 120.00 124.18 10.48 1 5
u5-50 120.00 144.36 7.64 0 5 120.00 164.16 18.84 2 5 120.00 144.10 7.14 1 5

not significantly increase CPU times, with an average increase by 1.21 minutes;
(4) the increase in CPU time might vary substantially between different instances,
with a maximum increase by 63.31 minutes (instance u3-30 r=0.7) and a maximum
decrease by 14.70 minutes (instance u3-36 r=0.4); (5) two visits per station is
the upper bound on the number of charging visits per station for the instances
which converged to the optimal solution; and (6) providing more than two visits
per station might increase the optimality gap when the optimal solution has not
been found by the time limit.

Table 2.9 presents solution details for the Uber instances and provide a com-
parison when employing internal combustion vehicles. Instances which converge
to the optimal solution within the time limit are selected, when two charging
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Table 2.9: Instances from Uber, Electric fleet compared to an internal combustion (IC)
fleet: Number of utilized vehicles (Vehs), Total vehicle travel time cost (TT), Users excess
ride time cost (ERT), Total number of visited charging stations en-route (nSR

), Total
charging time en-route (ESR

), Total number of visited charging stations off-route (nSD
),

Total charging time off-route (ESD
)

Electric fleet – 2 visits per station IC fleet

Name Vehs Obj. TT ERT nSR
ESR

nSD
ESD

Vehs Obj TT ERT

r=0.1
u2-16 2 57.61 76.81 0.00 0 0.00 1 11.12 2 57.61 76.81 0.00
u2-20 2 55.59 73.70 1.24 0 0.00 1 6.06 2 55.59 73.70 1.24
u2-24 2 91.27 116.98 14.14 2 34.78 1 6.32 2 89.66 114.83 14.14
u3-18 3 50.74 67.65 0.00 0 0.00 0 0.00 3 50.74 67.65 0.00
u3-24 3 67.56 86.08 12.01 0 0.00 0 0.00 3 67.56 86.08 12.01
u3-30 3 76.75 100.83 4.50 0 0.00 0 0.00 3 76.75 100.83 4.50
u3-36 3 104.04 133.79 14.80 0 0.00 3 10.10 3 103.50 131.48 19.57
u4-16 3 53.58 68.76 8.06 0 0.00 0 0.00 3 53.58 68.76 8.06
u4-24 3 89.83 118.21 4.67 0 0.00 1 9.96 3 89.83 118.21 4.67
u4-32 4 99.29 129.19 9.59 0 0.00 0 0.00 4 99.29 129.19 9.59
u4-40 4 133.11 168.40 27.25 0 0.00 2 0.92 4 133.11 168.40 27.25

r=0.4
u2-16 2 57.65 76.86 0.00 0 0.00 2 23.56 2 57.61 76.81 0.00
u2-20 2 56.34 74.70 1.24 0 0.00 2 39.08 2 55.59 73.70 1.24
u2-24 2 91.27 116.98 14.14 2 34.75 2 56.92 2 89.66 114.83 14.14
u3-18 3 50.74 67.65 0.00 0 0.00 1 11.27 3 50.74 67.65 0.00
u3-24 3 67.56 86.08 12.01 0 0.00 2 34.25 3 67.56 86.08 12.01
u3-30 3 76.75 100.83 4.50 0 0.00 2 50.11 3 76.75 100.83 4.50
u3-36 3 104.06 132.22 19.57 0 0.00 3 86.53 3 103.50 131.48 19.57
u4-16 3 53.58 68.76 8.06 0 0.00 0 0.00 3 53.58 68.76 8.06
u4-24 3 89.83 118.21 4.67 0 0.00 2 25.79 3 89.83 118.21 4.67
u4-32 4 99.29 129.19 9.59 0 0.00 2 123.08 4 99.29 129.19 9.59
u4-40 4 133.68 169.06 27.55 1 1.27 4 59.71 4 133.11 168.40 27.25

r=0.7
u2-16 2 58.18 76.45 3.36 1 31.69 2 30.12 2 57.61 76.81 0.00
u2-20 2 56.86 75.40 1.24 1 30.50 2 39.08 2 55.59 73.70 1.24
u2-24 2 97.50 125.13 14.62 3 65.28 2 59.21 2 89.66 114.83 14.14
u3-18 3 50.99 67.99 0.00 0 0.00 3 31.11 3 50.74 67.65 0.00
u3-24 3 68.06 85.43 15.96 1 7.03 3 65.86 3 67.56 86.08 12.01
u3-30 3 78.16 102.71 4.50 1 11.75 3 65.09 3 76.75 100.83 4.50
u3-36 3 107.65 136.99 19.63 1 58.93 2 62.46 3 103.50 131.48 19.57
u4-16 3 53.87 69.14 8.06 0 0.00 3 33.91 3 53.59 68.76 8.06
u4-24 3 89.83 118.21 4.67 1 63.71 2 73.32 3 89.83 118.21 4.67
u4-32 4 99.50 128.58 12.26 0 0.00 4 114.20 4 99.29 129.19 9.59

visits per station are allowed. Unlike electric vehicles, internal combustion vehicles
can operate during the whole planning horizon without the need to refuel. The
second to ninth column in Table 2.9 present results for an electric fleet in which 2
visits per charging station are allowed, as follows: the number of utilized vehicles,
the objective function value, the total vehicle travel times (in minutes), the total
user excess times (in minutes), the total number of visited charging stations while
the vehicles are en-route, the total charging time at the visited charging stations
while vehicles are en-route (in minutes), the total number of visited stations before
returning to the selected destination depots (i.e. off-route), and the total charging
time before returning to the depot (in minutes). The last three columns present
the number of utilized vehicles, the objective function value, total vehicle travel
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Table 2.10: Instances from Cordeau (2006): Comparison between the e-ADARP2 model,
the e-ADARP2 model when employing an internal combusion fleet, the e-ADARP2 model
when only considering total vehicle travel time in the objective function, the standard
DARP results.

e-ADARP2 e-ADARP2 IC fleet e-ADARP2 1obj. DARP

Name TT ERT Gap[%] TT ERT Gap[%] TT ERT Gap[%] TT ERT Gap[%]

r=0.1
a2-16 299.26 51.73 0.00 299.26 51.73 0.00 294.25 72.98 0.00 294.25 73.00 0.00
a2-20 347.89 72.63 0.00 347.89 72.63 0.00 344.83 112.55 0.00 344.83 112.55 0.00
a2-24 433.26 85.08 0.00 433.26 85.08 0.00 413.12 157.41 0.00 413.12 157.41 0.00
a3-18 304.34 34.25 0.00 304.34 34.25 0.00 300.48 119.06 0.00 300.48 119.06 0.00
a3-24 355.78 31.87 0.00 355.78 31.87 0.00 344.83 120.31 0.00 344.83 120.31 0.00
a3-30 500.69 150.99 0.00 500.69 150.99 0.00 494.85 197.18 0.00 494.85 197.18 0.00
a3-36 600.85 122.12 0.00 600.85 122.12 0.00 583.19 244.37 0.00 583.19 244.37 0.00
a4-16 286.45 30.60 0.00 286.45 30.60 0.00 282.68 44.49 0.00 282.68 44.49 0.00
a4-24 388.83 76.88 0.00 388.83 76.88 0.00 375.02 159.65 0.00 375.02 159.65 0.00
a4-32 502.34 68.80 0.00 502.34 68.80 0.00 485.50 165.20 0.00 485.50 165.20 0.00
a4-40 562.44 128.04 0.00 562.44 128.04 0.00 557.69 167.64 0.00 557.69 167.64 0.00
a5-40 524.75 83.78 0.00 524.75 83.78 0.00 498.41 296.37 0.00 498.41 296.37 0.00

r=0.4
a2-16 299.26 51.73 0.00 299.26 51.73 0.00 294.25 72.98 0.00 294.25 73.00 0.00
a2-20 350.06 72.63 0.00 347.89 72.63 0.00 347.73 112.55 0.00 344.83 112.55 0.00
a2-24 435.70 85.08 0.00 433.26 85.08 0.00 433.46 157.41 0.00 413.12 157.41 0.00
a3-18 304.34 34.25 0.00 304.34 34.25 0.00 300.48 119.06 0.00 300.48 119.06 0.00
a3-24 355.78 31.87 0.00 355.78 31.87 0.00 344.83 120.31 0.00 344.83 120.31 0.00
a3-30 500.83 150.99 0.00 500.69 150.99 0.00 494.84 197.18 0.00 494.85 197.18 0.00
a3-36 615.10 91.29 0.00 600.85 122.12 0.00 588.12 232.74 0.00 583.19 244.37 0.00
a4-16 286.45 30.60 0.00 286.45 30.60 0.00 282.68 44.49 0.00 282.68 44.49 0.00
a4-24 394.48 60.68 0.00 388.83 76.88 0.00 375.02 159.65 0.00 375.02 159.65 0.00
a4-32 502.74 68.80 0.00 502.34 68.80 0.00 485.90 165.20 0.00 485.50 165.20 0.00
a4-40 562.44 128.04 0.00 562.44 128.04 0.00 557.69 167.64 0.00 557.69 167.64 0.00
a5-40 524.75 83.78 0.00 524.75 83.78 0.00 498.41 296.37 0.00 498.41 296.37 0.00

r=0.7
a2-16 303.64 51.73 0.00 299.26 51.73 0.00 298.63 73.00 0.00 294.25 73.00 0.00
a2-20 NA NA NA 347.89 72.63 0.00 NA NA NA 344.83 112.55 0.00
a2-24 445.80 95.44 0.00 433.26 85.08 0.00 444.63 194.74 0.00 413.12 157.41 0.00
a3-18 309.36 34.25 0.00 304.34 34.25 0.00 303.71 115.54 0.00 300.48 119.06 0.00
a3-24 359.67 31.87 0.00 355.78 31.87 0.00 350.69 126.34 0.00 344.83 120.31 0.00
a3-30 NA NA NA 500.69 150.99 0.00 NA NA NA 494.85 197.18 0.00
a3-36 618.01 122.12 1.65 600.85 122.12 0.00 599.75 261.41 0.00 583.19 244.37 0.00
a4-16 282.68 44.49 0.00 286.45 30.60 0.00 282.68 44.49 0.00 282.68 44.49 0.00
a4-24 388.43 107.55 0.00 388.83 76.88 0.00 381.70 149.72 0.00 375.02 159.65 0.00
a4-32 545.17 84.80 9.79 502.34 68.80 0.00 491.23 165.20 0.79 485.50 165.20 0.00
a4-40 NA NA NA 562.44 128.04 0.00 NA NA NA 557.69 167.64 0.00
a5-40 568.97 83.61 9.30 524.75 83.78 0.00 528.21 283.80 6.97 498.41 296.37 0.00

time and user excess ride time when adopting an internal combustion fleet. The
following observations can be drawn from the results in Table 2.9: (1) in some
of the proposed instances, vehicles need to recharge en-route and at the end of
the planning horizon (e.g. instance u2-24); (2) as expected, en-route recharge can
be avoided when the final battery requirements are less restrictive (i.e. r=0.1);
(3) vehicles recharge longer when the minimal battery level requirement at the
selected destination depots is more restrictive (i.e. r=0.7); (4) 3 vehicles out of 4
are utilized to serve the customers in instances u4-16 and u4-24; and (5) utilizing
an electric fleet might incur in higher objective function values due to deviations
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towards charging stations, which may result in either (or both) an increase in the
operational cost or a decrease in the quality of service provided to the users.

The e-ADARP extends the standard DARP through several features which
have an effect on the total vehicle travel time and user excess ride time. Table 2.10
analyses the effect derived from two such features, i.e. the choice of the objective
function and the use of the electric fleet. The analysis provides results for instances
from Cordeau (2006) with up to 5 vehicles and 40 customers. The second to
the fourth column report the total vehicle travel time, user excess ride time and
optimality gaps for the original e-ADARP2 model, in which up to 1 visit per
charging station is allowed. The successive columns present the same results for
three relaxed versions of e-ADARP2, i.e. “e-ADARP2 IC fleet", “e-ADARP2 1
obj.", and “DARP". The first omits battery considerations. The second omits
excess ride time from the objective function. The third omits both. Note that
models “e-ADARP2 1 obj." and “DARP" provide optimal routing and scheduling
solutions which exclusively minimize the total vehicle travel time. Consequently,
the scheduling solutions might be sub-optimal in terms of the total user excess
ride time. In order to compare the total excess-ride time values provided by all
of the proposed models in Table 8, the optimal routing decisions in “e-ADARP2 1
obj." and “DARP" are fixed and the schedules are post-optimized to minimize the
total excess time, as a secondary objective. The post optimization is performed by
solving a linear program with the objective of minimizing the total user excess time
and the constraints remaining from the original problem after fixing the routing
decisions. The resulting total user excess time is then reported under columns
“ERT" for models “e-ADARP2 1 obj." and “DARP". Given that the “e-ADARP2
IC fleet" and “DARP" models both assume the use of non-electric vehicles, the
results are not affected by changes in the minimum battery level ratio, r.

The following observations are extracted from the results in Table 2.10: (1)
requiring vehicles to return with at least 10% of their battery inventory produces no
battery range anxiety; (2) employing an internal combustion fleet saves on average
about 2% of the total routing cost, while excess ride time experiences variations
by up to 30%; (3) finding feasible solutions to instances a2 − 20, a3 − 30, and
a4 − 40 (r = 0.7) is challenging due to battery considerations; (4) with respect
to e-ADARP2, “e-ADARP2 1 obj." produces solutions in which the total vehicle
travel time is only decreased by 2.6%, while the total user excess time is sensibly
increased by about 124.45%; and (5) similar to (4), with respect to “e-ADARP2
1 obj.", “DARP" produces solutions in which the total vehicle travel time is only
decreased by 2.48%, while the total user excess ride time is increased by about
117.89%. The results in (4) and (5) demonstrate that considering operational
and quality-related criteria in a weighted-sum objective drastically decreases user
inconvenience for a moderate increase in transportation cost.

2.7 Summary
In this study, we introduce the electric autonomous dial-a-ride problem (e-ADARP),
which generalizes the standard dial-a-ride problem for the case where electric
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autonomous vehicles are employed. We present two mixed-integer linear program
formulations, namely a 3-index model and a 2-index model. New features incor-
porated in the problem definition include charging stations, multiple destination
depots, partial recharge times, and final battery level requirements. We employ a
weighted objective function that accounts for the total travel time of all vehicles
and excess ride time of all users. We develop both new valid inequalities and lifted
inequalities from literature by taking into consideration specific properties of the
e-ADARP. In addition, we design purpose-based separation heuristics to separate
the proposed inequalities in a branch-and-cut framework.

Computational experiments are carried out on selected benchmark instances
from DARP literature adapted for the e-ADARP, and on a new set of instances
based on Uber ride-sharing requests in the city of San Francisco. Results show
that, when used in a branch-and-cut framework, the 2-index model outperforms
the 3-index model for all of the tested datasets. Based on the root-node analysis,
among all of the designed valid inequalities maximum ride time and reachability
constraints are the most effective for the instances derived from Uber ride-shares.
Nevertheless, when battery-management aspects are most important, charging
station walls constraints are among the most effective inequalities. A sensitivity
analysis shows that, for the tested instances, the number of optional visits to
charging stations might influence algorithmic performance and solution quality. In
particular, CPU times are mostly impacted when the number of optional charging
visits per station exceeds the maximum number needed to improve the solution
quality. Finally, a sensitivity analysis shows that operating an electric fleet may
result in increased operational cost or decreased quality of service (or both) with re-
spect to a traditional internal combustion fleet, due to detours to charging stations.
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3
A Machine Learning-Based Two-Phase
Metaheuristic for the Dynamic Electric

Autonomous Dial-a-Ride Problem

This chapter is based on the article:

• C. Bongiovanni, M. Kaspi, J.-F. Cordeau, and N. Geroliminis (2020).
“A Machine Learning-Based Two-Phase Metaheuristic for the Dynamic
Electric Autonomous Dial-a-Ride Problem”. Working paper

3.1 Introduction
This chapter models and solves the dynamic electric autonomous dial-a-ride prob-
lem, whose main differences with respect to the standard DARP are introduced in
Section 1.3. The problem is solved through a two-phase metaheuristic within an
event-based simulation framework. In particular, a first insertion phase is applied
to myopically assign each request arrival to a vehicle (e.g. Coslovich, Pesenti, and
Ukovich, 2006; Diana and Dessouky, 2004). The assignment can be performed
greedily, in consideration of the total cost provided by the objective function. A
second re-optimization phase is applied to iteratively revisit decisions taken in the
first phase through intra- and inter- vehicle route exchanges. Such exchanges may
be performed in light of forecasted demands (e.g. Peleda et al., 2019), however the
most common practice remains to solve sequences of static, myopic, trip-assignment
sub-problems (Powell et al., 2002). The re-optimization phase can be triggered
after the first phase or at a pre-defined frequency. For example, it may occur after
a number of myopic insertions, the denial of a new upcoming request, and after
selected statistics from the vehicle plans meet given thresholds.
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Ride-sharing demand exhibits repeated patterns during the days of the week. As
such, local search-based metaheuristics solve similar sub-problems sharing multiple
similarities in terms of demand distribution and route plans. Assuming that similar
neighborhood moves generate comparable effects for similar instances and routing
solutions, information acquired from previously solved sub-problems can become
useful in finding new ways to guide the search during on-line operations.

In this work, the information is constructed off-line by exhaustively examining
the neighborhood defined by each operator before moving to the next iteration in
the search. After the retrieval of sufficient historical data, we extract statistical
models relating selected problem features to the performance of several competing
algorithms. The statistical models are learned off-line and are efficiently re-applied
to take decisions on-line. The machine learning-based metaheuristic is denoted by
ML-LNS and, to the best of our knowledge, it is proposed for the first time in
this work. At each iteration during the search, the competing algorithms destroy
and repair vehicle routes in light of different considerations. The learned statistical
models are used to draw the destroy-repair couple according to their predicted
performance at each iteration during the search. We measure performance by
means of the expected objective function improvement. Worsening and intermedi-
ate infeasible solutions are also considered and reflected into the expected objective
function improvement.

In ML-LNS, the prediction task replaces the roulette wheel mechanism pro-
posed in the adaptive large neighborhood search (ALNS) metaheuristic (Ropke
and Pisinger, 2006) and is based on a large dataset containing examples of moves
from all of the competing LNS algorithms on several instances and routing so-
lutions. Note that, the proposed optimization framework fundamentally differs
from ALNS. Specifically, ALNS assumes that the future of the search should be
driven by the success of the competing operators on previous iterations, while ML-
LNS assumes that the future of the search should be driven by the estimated
algorithm performances at the current iteration. In this work, the prediction
task is tackled through ensemble learning, namely random forest (RF) regression
(Breiman, 2001). Random forests have a similar performance compared to other
popular machine learning methodologies, such as support vector machines, while
having numerous practical advantages. What makes RF suitable for this work is
its ability to automatically select features, provide a variable importance measure,
handle outliers and very big datasets. Note that several methodologies may be
employed and compared for the prediction task, even within the machine learning
field. However, a thorough comparison between prediction methodologies does not
lie within the scope of this study.

In the context of on-line settings, there are a number of advantages to employing
a machine learning mechanism rather than the adaptive mechanism, as in ALNS.
First, given that the learning phase is performed off-line, a machine learning
approach does not need a warm-up time to adjust the relative scores through
several iterations. Instead, the scores are directly provided for each sub-problem
during the on-line LNS search. Second, a machine learning approach exploits
impactful similarities between new encountered sub-problems and the several past
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static sub-problems used during the off-line training phase. As such, a machine
learning approach efficiently directs the search of new problems towards directions
that have been proven statistically successful. Third, the predictions derived from
a machine learning approach allow to efficiently select destroy-repair operators
concurrently rather than separately, a practice that is generally avoided in ALNS
due to computational burden (Ropke and Pisinger, 2006). Finally, this work devises
a holistic solution approach, which can be employed for both static and dynamic
problems, and identifies impactful problem-related features, which can be equally
useful for solving other vehicle routing problems, especially variants of the pickup
and delivery problem (PDP) and DARP.

To summarize, this work proposes five main contributions: (1) we introduce
a new and relevant variant of the dynamic DARP, i.e. the dynamic e-ADARP;
(2) we represent realistic dynamic operations through an event-based simulation
approach; (3) we propose a novel two-phase metaheuristic employing a machine
learning approach within a local-search based metaheuristic; (4) we identify vehicle
routing problem features that impact local search algorithms and can be utilized
to effectively guide search mechanisms; (5) we produce a massive labeled dataset
used for training purposes. Numerical experiments are performed on real ride-
sharing data from Uber Technologies Inc. The ML-LNS is benchmarked against
state-of-the-art approaches, namely LNS, ALNS, and a random selection approach.
Furthermore, an analysis of the results provide insights on the vehicle routing fea-
tures which are most determinant when taking decisions about the re-optimization.

The rest of this chapter is organized as follows: Section 3.2 formally defines
the dynamic e-ADARP, Section 3.3 describes the solution approach, Section 3.4
focuses on the ML approximation, Section 3.5 describes the labeling and feature se-
lection for the dynamic e-ADARP, Section 3.7 contains the results of the numerical
experiments. A summary and future directions are provided in Section 3.8.

3.2 Problem Definition
In the dynamic e-ADARP, a fleet of e-AVs K = {1, . . . , k}, leaving from origin
depots ok ∈ O, are to give service to a set of unknown transportation requests
within a fixed planning horizon H. Without loss of generality, assume that initial
vehicle routes are non-empty and vehicles are planned to give service to n initial
transportation requests, characterized by given pickup locations P = {1, . . . , n},
dropoff locations D = {n + 1, . . . , 2n} and time windows [arri, depi] around
the desired pickup times or dropoff times. We denote by N the set containing
both pickup and dropoff locations. Each transportation request i ∈ {1, . . . , n} is
represented by a load li (i.e. li ≥ 0 for i ∈ P and li = −li−n for i ∈ D), a non-
null service time di, and a maximum ride time ui. All requests are to be served
within the plannig horizon H, after which vehicles return to one of the optional
destination depots fk ∈ F . All nodes are connected by arcs with travel time tij,
hence each vehicle chooses the destination depot fk which is closest to the last
visited location i, i.e. fk = argminj∈F tij.

Vehicles are heterogeneous in terms of their loading capacity Ck, homogeneous
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in terms of their battery capacity Q, and characterized by initial battery levels
Bk

0 corresponding to their current state-of-charge (SOC). Vehicle batteries can be
recharged at uncapacitated charging stations S. It is assumed that empty vehicles
can visit multiple charging stations along a route, can partially recharge, and return
with minimal battery levels r at destination depots F . The amount of energy
recharged at the charging stations in S is proportional to the time Ek

s spent at
the facilities. In particular, the amount of energy transferred per unit time is
controlled by the charging rate αs (e.g. fast charging, slow charging). Similarly,
battery consumptions βi,j, with i and j ∈ V = O ∪ N ∪ S ∪ F , can be inferred
from the travel times tij combined with other features by means of an energy
consumption model (e.g. Pelletier et al., 2017b; Goeke and Schneider, 2015).

Initial vehicle plans are constructed by finding minimum cost routes and ob-
serving time window, capacity, maximum ride time, and battery constraints. Five
types of decisions variables are used to make decisions on the vehicle plans. A
binary decision variable xk

ij denotes whether vehicle k sequentially visits locations
i and j ∈ V . Ti

k represents the time at which vehicle k begins service at location
i ∈ V , Lk

i represents its load after service, and Bk
i represents its battery state at

the beginning of service. In addition, Ek
s denotes the recharge time of vehicle k

at stations s ∈ S. Ri represents the excess ride time of user i ∈ P , that is the
extra time users spend on board of the vehicles with respect to a taxi service. As
in the work presented in Chapter 2, the cost function consists of a weighted-sum
objective comprising the total vehicle travel time and user excess ride time.

At time h ≤ H, in the course of operations, the transportation system receives
a new transportation request with pickup location p̃ and dropoff location d̃. If
more than one new transportation request appear at the same time, the requests
are treated independently and in the order of arrival. No information regarding the
request location is available beforehand. However, its booking time may be issued a
few minutes in advance with respect to the desired pickup time. Depending on the
current states and future tasks assigned to the vehicles, the new request {p̃, d̃} may
be either accepted or rejected. Service is only rejected if the new request cannot be
feasibly inserted into the existing vehicle routes, in consideration of the constraints
imposed by the e-ADARP problem. Denying service to the new request incurs into
a fixed-cost penalty c3 which affects the objective function through an auxiliary
binary decision variable zp̃. The cost penalty c3 may be computed as a proportion
of the objective function value. As such, existing vehicle plans may need to be
revisited in order to find the optimal trade-off between the following components
of the objective function: (1) feasibly insert the new transportation request, (2)
decrease operational cost, (3) and increase the level of service. This is obtained
by re-optimizing a current static sub-problem at time h, which is composed of all
information related to the current vehicle locations ōk, the current vehicle plans,
and the new transportation request.
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3.2.1 Static Sub-Problems in the Dynamic e-ADARP
Static sub-problems are essentially a variant of the static e-ADARP (presented
in Chapter 2) with some adaptations considering the dynamic environment. For
example, in the dynamic e-ADARP new transportation requests may be rejected,
requests which were previously accepted need to be served, vehicles are on the
move, and pickup/dropoff services happened in the past cannot be modified. As
a result, vehicle may be non-empty, part of the excess ride time characterizing
planned requests may have been used, and vehicle charging phases may need to
be interrupted or modified. Next, we present a mathematical formulation of the
resulting static sub-problem encountered at each re-optimization phase.

At the arrival of the new request, each vehicle k ∈ K may be en-route or have
just arrived to a location j̄k consisting of a pickup in P , a dropoff in D, a charging
station in S, or a destination depot in F . As such, vehicle travel times from
the current vehicle locations ōk to j̄k, i.e. tōk,j̄k , are computed to account for the
remaining portion of the route to be traveled. Direct deviation times tōk,p̃ from the
vehicle current locations to the pickup of the new request are also simply computed
by employing the law of cosines (Weisstein, 2020). Service at the pickup or droppoff
nodes cannot be preempted, however vehicles that are waiting at pickupor dropoff
nodes can be redirected to other locations. Note that parking facilities may not
be available at locations j ∈ N . Hence vehicle waiting times are bounded from
above (e.g. by a few minutes) through a maximal waiting time wj. In contrast,
recharging phases at stations s ∈ S may be preempted if the vehicle charge level
is sufficient to allow traveling between locations.

At the arrival of the new requests {p̃, d̃}, vehicles may be non-empty. In
particular, some requests with pickups P̂k ⊆ P and dropoffs D̂k ⊆ D may have
been picked-up by vehicle k ∈ K̂ ⊆ K without being dropped-off. In this case, the
initial occupancy of all of such vehicles is to be reduced by the number of requests
currently on board. From a modeling perspective, dummy pickup nodes P̂k are
generated at the corresponding vehicle locations and need to be served. In order to
produce routing solutions starting with sequential visits all of the dummy pickups
P̂k, the following inequalities are enforced:

|P̂k|−1∑
i=1

xk
ok,i + xk

i,i+1 = |P̂k| − 1 ∀k ∈ K̂

Note that the order in which dummy pickup nodes P̂k are served is not relevant.
Furthermore, the maximum ride time and the direct travel time ti,n+i of each

request in i ∈ P̂k are both reduced by the time already traveled on board of
vehicle k, as follows:

ui = ui − (h − T k
i ) ∀k ∈ K̂, i ∈ P̂k

ti,n+i = ti,n+i − (h − T k
i ) ∀k ∈ K̂, ∀i ∈ P̂k

With such pre-processing steps, static e-ADARP sub-problems at time h can be
formulated as the MILP presented in Table 3.1.
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Table 3.1: 3-indexed formulation for static e-ADARP sub-problems at time h

min c1 ·
∑
k∈K

∑
i,j∈V

tijxk
ij + c2 ·

∑
i∈P

Ri + c3 ·
∑

i∈P∪p̃

zi (3.1)

subject to:∑
j∈P∪S∪F∪{p̃}

xk
okj

= 1 ∀k ∈ K (3.2)∑
j∈F

∑
i∈D∪S∪{d̃}

xk
ij = 1 ∀k ∈ K (3.3)∑

k∈K

∑
j∈N ∪{p̃,d̃}

j ̸=i

xk
ij = 1 ∀i ∈ P (3.4)

∑
k∈K

∑
i∈V\F

xk
i,p̃ ≤ 1 (3.5)∑

k∈K

∑
i∈V\F

xk
ij = 1 − zj ∀j ∈ P ∪ p̃ (3.6)∑

k∈K

∑
i∈{ok}∪D∪{d̃}∪S

xk
ij ≤ 1 ∀j ∈ F ∪ S (3.7)∑

j∈V∪{p̃,d̃}
j ̸=i

xk
ij −

∑
j∈V∪{p̃,d̃}

j ̸=i

xk
j,i = 0 ∀k ∈ K, i ∈ N ∪ S ∪ {p̃, d̃} (3.8)

∑
j∈N ∪{p̃,d̃}

j ̸=i

xk
ij −

∑
j∈N ∪{p̃,d̃}

j ̸=n+i

xk
j,n+i = 0 ∀k ∈ K, i ∈ P ∪ {p̃} (3.9)

T k
i + di + ti,n+i ≤ T k

n+i ∀k ∈ K, i ∈ P ∪ {p̃} (3.10)

arri ≤ T k
i ≤ depi ∀k ∈ K, i ∈ V ∪ {p̃, d̃} (3.11)

T k
n+i − T k

i − di ≤ ui ∀k ∈ K, i ∈ P ∪ {p̃, d̃} (3.12)

T k
i + tij + di − Mk

i,j(1 − xk
ij) ≤ T k

j ∀k ∈ K, i ∈ V ∪ {p̃, d̃}, j ∈ V ∪ {p̃, d̃}, i ̸= j|Mk
i,j > 0 (3.13)

xk
ij ⇒ T k

j − (T k
i + tij + di) ≤ wj ∀k ∈ K, i ∈ N ∪ {p̃, d̃}, j ∈ N ∪ {p̃, d̃}, i ̸= j (3.14)

Ri ≥ T k
n+i − T k

i − di − ti,n+i ∀k ∈ K, i ∈ P ∪ {p̃} (3.15)

Lk
i = 0 ∀k ∈ K, i ∈ ok (3.16)

Lk
i ≥ max(0, li) ∀k ∈ K, ∀i ∈ N ∪ {p̃, d̃} (3.17)

Lk
i ≤ min(Ck, Ck + li) ∀k ∈ K, ∀i ∈ N ∪ {p̃, d̃} (3.18)

Lk
i + lj − Gk

i,j(1 − xk
ij) = Lk

j ∀k ∈ K, i ∈ V ∪ {p̃, d̃}, j ∈ V ∪ {p̃, d̃}, i ̸= j|Gk
i,j > 0 (3.19)

Lk
i = 0 ∀k ∈ K, i ∈ F ∪ S (3.20)

Bk
i = Bk

0 ∀k ∈ K, i ∈ ok (3.21)

Bk
j = Bk

i − βi,j + Q(1 − xk
ij) ∀k ∈ K, i ∈ V ∪ {p̃, d̃} \ S, j ∈ V ∪ {p̃, d̃} \ {ok}, i ̸= j|Q > 0 (3.22)

Bk
j = Bk

s + αsEk
s − βs,j + Q(1 − xk

s,j) ∀k ∈ K, s ∈ S, j ∈ P ∪ {p̃} ∪ F ∪ S, s ̸= j (3.23)

Ek
s = T k

s − ti,s − T k
i + Mk

i,s(1 − xk
i,s) ∀k ∈ K, ∀s ∈ S, i ∈ D ∪ {d̃} ∪ S ∪ {ok}, i ̸= s|Mi, sk > 0 (3.24)

Q ≥ Bk
s + αsEk

s ∀k ∈ K, s ∈ S (3.25)

Bk
i ≥ rQ ∀k ∈ K, i ∈ F (3.26)

xk
ij ∈ {0, 1} ∀k ∈ K, i ∈ V ∪ {p̃, d̃}, j ∈ V ∪ {p̃, d̃} (3.27)

Bk
i ≥ 0 ∀k ∈ K, i ∈ V ∪ {p̃, d̃} (3.28)

Ek
s ≥ 0 ∀k ∈ K, s ∈ S (3.29)
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The objective function (3.1) minimizes the weighted-sum objective composed
of three components, namely the total traveled distance, the total excess ride
time, and the penalty for denying the new request. Note that the objective
function pushes towards solutions including the new request if weight factor c3 is
sensibly larger than weight factors c1 and c2. Constraints (3.2)-(3.3) ensure that all
vehicles exit the origin depots and return to one of the available destination depots.
Constraints (3.4) ensure that all of the requests in the vehicles plan are served.
Constraints (3.5) allow vehicles to serve the new request {p̃}. If the new request
is served, the auxiliary decision variable zp̃ is set to zero and the third component
of the objective no longer contributes to the total cost (3.6). Note that feasible
solutions only consider solutions with zi = 0 for i ∈ P . However, during the solution
process, relaxations of the problem may consider intermediate infeasible solutions
with zi > 0 ∀i ∈ P . Charging stations may be accessed from dropoff locations or
other charging stations (3.7). Constraints (3.8) ensure flow conservation, while
constraints (3.9) ensure that the same vehicle serves both the pickup and the
dropoff of each request. Furthermore, pickup-dropoff precedences are enforced
in constraints (3.10). Time window and maximum ride time constraints are set in
(3.11)-(3.12). Service start times between nodes are computed through constraints
(3.13) and bounded at pickup/dropoff locations by their maximal wait times (3.14).
User excess ride times are set in (3.15). Vehicle loads are initialized through
constraints (3.16). Loads are bounded by constraints (3.17)-(3.18) and are updated
between consequent nodes according to (3.19). Charging stations and destination
depots may be only accessed by empty vehicles (3.20). Constraints (3.21) set the
initial battery levels while the SOC between following nodes is tracked through
constraints (3.22). Vehicle battery inventories can be re-increased after visiting
a charging facility (3.23), where they may recharge according to (3.24) and up
to the vehicle maximum battery capacity (3.25). Vehicles have to return to the
selected destination depots with some minimal battery charge (3.26). Finally,
(3.27)-(3.29) are integrality constraints. Note that constraints (3.13), (3.19), (3.24)
are linearized through time-dependent and load-dependent big-M parameters which
can be computed as proposed in Chapter 2. Finally, the provided MILP formulation
is a hard combinatorial problem which cannot be solved in nearly real-time through
exact solution approaches, which is important for dynamic problems. Indeed, as
shown in Chapter 2, small-sized problems of up to 4 vehicles and 24 customers can
be solved through an exact solution approach in less than one minute.

3.3 Solution Approach

In order to solve the dynamic e-ADARP, we devise a two-phase metaheuristic
approach which, in this work, is tested on simulated dynamic scenarios. In Section
3.3.1, we briefly present the event-based simulation framework designed for the
e-ADARP. Then, in Section 3.3.2 we describe the two phase approach, followed by
a focused description of the second machine learning-based re-optimization phase
(3.3.3).
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Figure 3.1: Flowchart for the event-based simulation

3.3.1 Event-Based Simulation
To represent realistic operations, the dynamic e-ADARP is simulated through an
event-based approach, depicted by the flow chart in Figure 3.1. The input to
the event-based simulation considers information on the transportation network
(i.e. origin/destination depots, charging stations, travel times) and initial vehicle
routes. Without loss of generality, it is assumed there are no pre-booked requests
and that initial vehicle routes are only composed of vehicle origin depots, charging
stations, and destination depots. Vehicle origin depots are chosen at random
among the set of available origin depots in the transportation network. Vehicles
are not allowed to wait at origin depots and are instead only allowed to idle at
charging stations, before returning to one of the optional destination depots at
the end of the planning horizon H. Each vehicle chooses the charging station
and destination depot which minimizes travel-time distance. A set of n dynamic
demands appear during the planning horizon H and are characterized by given
pickup-dropoff locations, time windows, and stochastic booking times. For each
request i = {1, . . . , n}, the booking time is obtained by generating an in-advance
booking time which is subtracted from the earliest arrival time arri. In-advance
booking times are computed as independent and identically distributed random
variables from an exponential distribution with rate parameter λ, assumed to be
homogeneous among requests. Larger rate parameters λ induce instantaneous
booking times.

The generated input enters the simulation framework, which considers events
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related to vehicle and request occurrences. Specifically, vehicle events consider
departure, arrival, and charging occurrences. Request events consider booking,
pickup, and dropoff occurrences. The simulation is initialized by generating an
event list composed of vehicle departure events from the origin depots and a
first request arrival event. Vehicle departure events trigger arrival events at the
following locations from the vehicle plans. Arrival events appear before eventual
vehicle waiting phases, which are taken into account before producing recharge,
pickup, or dropoff events. Vehicle departure events are triggered after service (i.e.
pickup, dropoff, recharging). The arrival of each request is treated through a two-
phase metaheuristic. If the request is accepted and feasibly inserted, the relative
vehicle plan is updated. If the inserted request is to be served immediately, vehicle
tasks may be modified, as well as the event list. There are two types of vehicle
tasks that may be modified following an instantaneous insertion of a new request.
Vehicles that are currently waiting or recharging may instantaneously depart to
provide service to the newly inserted request. Vehicles that are currently en-route
towards a specific location may instantaneously deviate towards the newly inserted
request. In this second case, travel times are updated to account for the portion of
the route which has already been traveled. Note that vehicles are not allowed to
instantaneously depart and give service to new requests if they are providing service
elsewhere. Furthemore instantaneous departures are only allowed in conformity
with time windows, maximum ride time, and vehicle capacity considerations for
all requests. Each request arrival event triggers a following request arrival event,
which is selected in the order of the generated booking times from the input list of
dynamic demands. The simulation terminates after the arrival of each vehicle at
the chosen destination depots. With respect to the latter, note that the arrival of
new requests may modify the destination depot choice for the selected vehicle.

In this work the stochasticity of the simulation is represented by the arrival
of new requests. As such, the two-phase heuristic, and specifically the second re-
optimization phase, is only triggered after the arrival of new requests. However,
the proposed event-based simulation can be easily modified to trigger the second
re-optimization phase in light of other changing conditions or optimization policies
(e.g. traffic congestion, fixed-time-interval polishing, etc.) or to simultaneously
treat multiple arrivals at once.

3.3.2 Two-phase Metaheuristic for Static e-ADARP Sub-
Problems

This section describes the two-phase metaheuristic, which is triggered any time a
request arrival event is detected, as highlighted in Figure 3.1. Consider an instance
i ∈ {instances}, characterized by planned transportation requests and a new
transportation request j. The current routing solution s ∈ {solutions} has total
operational cost f(s), which is composed of the 3-term weighted objective function
from equation 3.1, and uses a high penalty c3 for each unassigned request j. As
explained in Section 3.2, the goal of the two-phase metaheuristic is to find the right
balance between the following components of the objective function: (1) feasibly
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insert the new transportation request, along with all other inserted requests; (2)
decrease operational cost; (3) and increase the level of service. If j is feasibly
inserted through a first greedy insertion phase, the goal of the second phase reduces
to finding a trade-off between components (2) and (3) of the objective function. If
component (1) is infeasible, then the new transportation request is rejected.

First Phase: Greedy Insertion Algorithm

The first phase is designed to select a vehicle that can feasibly accommodate each
new transportation request j, received at time h < H. New transportation requests
are represented by a generation time and a time window around the pickup or
dropoff location. Note that the time window around the dropoff/pickup can be
easily computed from its pickup/dropoff by considering the user maximum ride time
ui. Furthermore, time windows can be tightened by considering the vehicle current
locations and tasks at time h. For example, a vehicle that is currently picking up a
request i needs to first terminate its task before traveling from i to j. As a result,
each new request features vehicle-specific earliest arrival times arrj, which depend
on the vehicle current locations and tasks. Instead, the latest departure time depj

is vehicle-independent. Vehicles that cannot arrive to the pickup location of j by
its latest arrival time depj are not candidates for the insertion.

Forward and backward slack times can be used to facilitate decisions about
changes in the schedules (Savelsbergh, 1992). For the e-ADARP, the maximum
time interval by which a specific user i and all preceding/following nodes in the
vehicle schedule can be pushed backward/forward without violating time window
constraints can be computed as in Section 3.2 in Diana and Dessouky (2004). Note
that, in the case of the e-ADARP, service times include eventual recharging phases.
Forward slack times Fi and backward slack times F̄i, computed as proposed in
Parragh et al. (2009), are used to identify segments of the vehicle routes which
may feasibly contain the pickup and the dropoff of j, separately. That is, having
computed forward/backward slack times for all requests i within a vehicle plan, it
is possible to identify segments of the plan where the insertion of the pickup or
dropoff of j would not violate time window constraints. For example, the pickup
of j certainly needs to be served after the last node i that satisfies the condition
Ti − F̄i < arrj. Similarly, the pickup of j certainly needs to be served before the
first node i that satisfies the condition Ti + Fi > depj. In consideration of capacity
constraints, such segments can be further restricted. That is, knowing the vehicle
maximum capacity C and loads from the current static plan, the pickup of the new
request j cannot be inserted when the vehicle is planned to travel at capacity.

The feasibility of a specific pickup-dropoff insertion option within a candidate
vehicle can be further pre-processed with respect to time-window and battery
feasibility. Time-window feasibility is linearly checked by assuming vehicles can
start providing service at the first node in the vehicle plan at time h and by testing
that time windows are not violated at any of the following nodes. Initial battery
feasibility is assessed by assuming vehicles terminate current idling/recharging
phases as soon as they have reached the minimal state of charge allowing to
directly serve the pickup and dropoff of the new request, as well as all of their
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already planned requests. Note that we do not consider the insertion of new
intermediate charging visits along the vehicle paths. This assumption is employed
to limit the computational burden of the greedy insertion phase. However, a
new recharging/idling visit is always appended at the end of each vehicle route
by selecting the charging facility minimizing the travel time from its last visited
location. Assuming that the vehicle deviation to serve the new transportation
request requires a battery expense, it is sufficient to check that the subtraction
of such expense from the vehicle initial battery states at the visited recharging
facilities does not return negative values. If battery constraints are violated at
any of the recharging facilities, the vehicle is assumed to be battery infeasible. Its
limited battery inventory is consequently planned to be replenished at the new
recharging visit, appended at the end of its route.

After pre-processing, vehicle schedules for given pickup-dropoff insertions can
be constructed by employing the algorithm proposed in Bongiovanni, Kaspi, and
Geroliminis (2020) and presented in Chapter 4. Successively, it is possible to
check for maximum ride time constraints by identifying the users that would
experience increased excess ride time, given the insertion of the new request j.
For each candidate vehicle, multiple insertions of the new transportation request
are evaluated against the objective function in equation 3.1. Finally, the chosen
insertion is the one resulting in the lowest objective function value.

3.3.3 Second Phase: Machine Learning-Based Large Neigh-
borhood Search

The second phase is triggered to revisit previous decisions taken in the first phase as
to increase the level of service, described by the weighted objective function 3.1. To
this aim, the ML-LNS destroys and repairs the current routing solution over mul-
tiple iterations i ∈ {1, . . . , k}. At each iteration, the search uses a specific destroy-
repair couple (d(i), r(i)), which is selected among m2 competing algorithms (dl, rn),
with l, n ∈ {1, . . . , m}. Destroy-repair couples (d(i), r(i)), for i ∈ {1, . . . , k}, are
selected according to the pseudo-code presented in Algorithm 1 and explained next.

At the beginning of iteration i, the destroy level qi is drawn from a uniform
bounded interval. The destroy level, instance, and routing solution information
forms the input data vector xi = {xi1, . . . , xid} which is fed to train destroy-repair
regression models ξ(dl,rn), with l, n ∈ {1, . . . , m}. The regression models return the
expected performance of each destroy-repair couple at the current iteration i, i.e.
the expected objective improvement y(dl,rn)(i). Note that the expected objective
improvement may be negative, since worsening solutions, either feasible or infeasi-
ble, are allowed to be explored during the search. As such, an exponential function
is used to positively transform all values y(dl,rn)(i) → exp(x × y(dl,rn)(i)), while
maintaining information on their relative magnitude. The exponential transform is
smoothened by a factor x in order to avoid over-penalizing the choice of algorithms
when one of them out-performs the others. Note that the use of the exponential
function is also desirable for the proposed problem for the following features: 1)
it highlights the difference between worsening and improving operators; 2) when
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Algorithm 1: ML-LNS heuristic
Input: instance i ∈ {instances}, current solution s ∈ {solutions}, j ∈ {newrequest}, number of LNS

iterations k, m destroy models dl, m repair models rn, regression models ξ(dl,rn) for
l, n ∈ {1, . . . , m}, smoothening factor x, LNS exit rule

Output: sbest
1 Initialize: sbest = s, scurrent = s, zp̃ = 0 if j = ∅, zp̃ = 1 otherwise;
2 for i → 1:k do
3 Draw: qi ∈ N;
4 Compute: xi from i, scurrent, and qi;
5 Predict: ξ(dl,rn) : xi → y(dl,rn)(i) for l, n ∈ {1, . . . , m};
6 Transform: y(dl,rn)(i) → exp(x × ydl,rn (i)) for l, n ∈ {1, . . . , m};

7 Compute: pdl,rn (i) =
y(dl,rn)(i)

m∑
l=1

m∑
n=1

y(dl,rn)(i)

[%];

8 Draw: pdl,rn (i) → (d(i), r(i));
9 Compute: s

′
, zi, j = r(i)(d(i)(qi ∪ {i|zi = 1}));

10 if f(s′ ) < f(sbest) & {i|zi = 1} \ {j} = ∅ then
11 sbest = s

′ ;

12 if accept(f(s′ ), f(scurrent)) is true then
13 scurrent = s

′ ;

14 if exit = true then
15 break;

all algorithms perform similarly, it highlights the smallest difference between them.
Successively, the predicted transformed performances are normalized and return the
relative proportion of improvement per destroy-repair couple pdl,rn(i) at iteration
i. The destroy-repair couple to be employed at the current LNS iteration, i.e.
(d(i), r(i)), is drawn according to the predicted proportions pdl,rn(i). Operator d(i)
selects qi requests to be removed from s. A request bank zi is initialized to take
into account the insertion of the new request j, if available, and updates the set
of requests to be re-inserted to qi ∪ {i|zi = 1}. The request bank may be updated
after the re-insertion phase through r(i), as explained next. Operator r(i) repairs
the solution through an iterative process, which may take up to |qi ∪ {i|zi = 1}|
iterations. Each pending request is independently inserted into the current vehicle
plans, according to r(i). All feasible re-insertions belonging to different vehicles
are selected to update the vehicle plans and the request bank. If more than one
re-insertion belongs to the same vehicle, the minimum cost solution is selected.
The remaining requests are re-inserted through r(i) on the updated vehicle routes
and up until the set of currently pending requests is emptied. During the iterative
process, it is possible that some of the pending requests qi ∪ {i|zi = 1} cannot
be feasibly re-inserted. These requests are placed into the request bank zi, which
penalizes the objective function and is fed at the following ML-LNS iteration. Note
that during the re-insertion phase, the new request j may also be feasibly assigned
to a vehicle route. In this case, j is updated to an empty set and the new request
needs to be served as all the other planned requests in the vehicle routes. New
incumbent solutions need to contain all of the removed requests, with the exception
of the new request j if still available. That is, if {i|zi = 1}\{j} ̸= ∅, the solution is
infeasible. Finally, define s

′ as the new solution obtained by destroying the pending
requests from s through d(i) and repairing them through r(i). If s

′ is feasible and
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Figure 3.2: Considered re-optimization process

reduces total cost f(sbest), the incumbent solution sbest is updated. Note that a
simple comparison between f(s) and f(s′) is not sufficient when the employed
penalty cost is homogeneous between new and planned requests. For example,
suppose the current solution is penalized by the existence of the new request j
but it is feasible for all other requests. Successively, suppose that a neighborhood
move s

′ has modified the vehicle routes such that j is inserted but another request
j̄ is placed in the bank. In this case, the solution s

′ is infeasible, although the
objective function f(s′) may be lower than f(s) (i.e. if serving j comes at a lower
cost than serving j̄). The acceptance criterion, based on SA, allows the search
to explore worsening solutions s

′ (including infeasible solutions with respect to
a non-empty request bank) and always updates the current solution to s

′ when
f(s′) < f(s). Instead, the acceptance criterion may reject worsening neighborhood
moves at each iteration i and with iteration-dependent probabilities. The search,
initially composed of k iterations, may be prematurely terminated, for example if
the maximal number of sequential non-improving iterations or the maximum time
limit (e.g. 5 seconds) is exceeded.

Finally, note that most commercial processors nowadays mount multiple cores
(e.g. up to 8-12 cores) and that computations of the ML-LNS do not need more
than a few cores (e.g. 2 cores). As such, in practice, the second phase can be run
multiple times in parallel on each encountered sub-problem to be re-optimized, as
shown in Figure 3.2. At the end of each parallel re-optimization, the best solution
(or the k-th best) can be selected.

3.4 Prediction Problem
The prediction models employed within the ML-LNS are obtained through a statis-
tical learning approach using a large dataset containing tuples (xi, yi). In this sec-
tion, we define the prediction problem and depict the machine learning approxima-
tion.
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3.4.1 Definition
Consider a problem instance i and an incumbent solution s characterized by aggre-
gated features (i.e. input variables) {X1, . . . , Xd}. These features may correspond
to scalar, boolean, or more generally categorical values (e.g. number of requests in
the vehicle future plans, the presence of a new upcoming request, current vehicle
tasks etc.). The d-dimensional vector xi = {xi1, . . . , xid} denotes one realization
of such features and defines a datapoint. Tuples (xi, yi), with i = {1, . . . , N}, are
a collection of examples of problems for which the output yi (e.g. the expected
percentage improvement) is known, i.e. the labeled set. Sample an arbitrary large
subset of examples within the labeled set, called the training set with size Ntrain.
A supervised learning approach aims at estimating a function ξ : X → Y which
best maps the input space to the output space through the examples provided by
the training dataset. If Y = R, ξ is a regressor (e.g. it estimates the expected
percentage improvement). The goal of the regression problem is to minimize a loss
function L measuring the discrepancy between the predicted and known output
values from the training dataset, with size Ntrain. The generalization capabilities of
the resulting model is checked on a test dataset with size Ntest < Ntrain. The test
dataset consists of the examples that remain from the labeled set that are not in
the training set. There exists multiple metrics providing the expected prediction
error. In the proposed work, model performance is estimated by employing the
following metrics: (1) Mean absolute error (MAE, also known as L-1 loss), (2) Root
mean square error (RMSE, the root of the MSE or L-2 loss), (3) The coefficient of
determination (R2). The three measures are summarized here below:

MAE = 1
Ntest

Ntest∑
i=1

|yi − yi
p|

RMSE =

√√√√ 1
Ntest

Ntest∑
i=1

(yi − yi
p)2

R2 = 1 −

Ntest∑
i=1

(yi − yi
p)2

Ntest∑
i=1

(yi − ȳi)2

Here, yi denotes the observed data, yi
p the predicted data, and ȳi the mean of the

observed data. Note that the MAE and MSE can also be expressed with respect
to the mean of the observed data (i.e. rMAE and rRMSE) when the results
are difficult to interpret. For a discussion exploring the meaning and differences
between the proposed validation measures, the reader is referred to the on-line
review in Grover (2018).

3.4.2 Machine Learning Approximation
In this work, the prediction problem is tackled through ensemble learning, namely
random forest (RF) regression (Breiman, 2001). The goal of ensemble learning is to
combine simple and fast learners to obtain better performance. In the case of RF,
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the weak learners are classification and regression trees (CART) (Breiman, 2017).
CART recursively partition the input space through a series of binary splits chosen
through a mathematical model which maximizes a goodness of split function. The
depth of the tree is typically controlled by hyper-parameters which provide an
upper bound on the maximal number of splits and, consequently, sub-regions. An
indication of the values to be adopted for such hyper-parameters may be found in
the literature (Liaw, Wiener, et al., 2002). Appropriate hyper-parameter values
can be optimized for the treated problem through a search mechanism (e.g. grid
search, random search) and k-fold cross validation.

For a regression problem, the value of each sub-region is decided by computing
the average of the samples in the sub-region (the “average vote"). The predicted
value for a new input point is then obtained by passing the point through the tree
until a final node (or sub-region) is reached. In order to increase the precision of
the prediction, multiple decision trees are typically combined through a technique
called bagging, which essentially generates multiple models based on bootstrap
samples of the input space (Breiman, 1996). Random forests attempt to further
increase the performance of the predicted models and de-correlate trees by choosing
a subset of the feature space at every split in the tree. The final prediction is the
aggregation of the predictions of all models. For a regression task, the aggregation
corresponds to the average of the predicted values. For random forests, as for any
other ML methodology using bagging, the performance of the predicted models
can be also measured by the out of bag (OOB) error, that is the average prediction
error from each training datapoint using only the trees that did not contain it
in their bootstrap sample.

Finally, random forests provide an intuitive way to interpret the average feature
importance, measured by the average impurity decrease. Impurity is measured as
the average squared difference between the labels of the samples in the current
node and the current prediction at the node (i.e. the average of the samples in the
node). Impurity decrease measures the reduction of impurity between successive
nodes in the trees. Then, the feature importance within a tree is interpreted as
the total impurity decrease brought by each feature within the tree. For a forest,
the total impurity is averaged across all trees.

3.5 Dataset Labeling
The labeled dataset is extracted through the event-based simulation approach
presented in Section 3.3.1 on several instances of the dynamic e-ADARP. The
information needed to produce the labels is only retrieved during the second phase,
i.e. ML-LNS, according to the procedure explained next. Consider an initial
sub-problem i, consisting of a routing solution scurrent and cost f(scurrent). The
initial sub-problem may be modified by applying any of the available destroy-
repair operators (dl, rn) with l, n ∈ {1, . . . , m}. Since the outcome yi of each
destroy-repair couple depends on the related randomly-drawn destruction level
qi, i.e. the neighborhood size, each destroy-repair operator (dl, rn) is applied to
scurrent for M times considering different values of qi. Namely, the destruction
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level removes a minimal number of requests (e.g. four requests) and may destroy
up to 15%, 25%, 35%, and 45% of the vehicle routes during the M applications
of (dl, rn). Ideally, M should be large enough in the attempt to de-randomize
the statistics associated with the performance of each operator. The objective
function improvement between the routing solution before the move (i.e. scurrent)
and the routing solution after the move (i.e. s

′) from all of the M trials is stored.
Objective improvement distributions on the given sub-problem are determined at
the end of the M trials for each destroy-repair couple (dl, rn). An example of such
distributions is given in Figure 3.3. Several statistical measures can be retrieved to
characterize the expected objective improvement from the algorithm distributions
(e.g. mean, median, mode, percentiles). The choice of the appropriate statistics
depend on the goal of the prediction problem. The considered goal is to be able to
predict the expected algorithm performances. As such, the labeling considers the
mean of the distributions. Note that the mean of any distribution may be negative,
as worsening and infeasible solutions are considered during the search. Moreover,
note that the mean is highly sensitive to outliers, that is highly positive or negative
percentage improvement values. Negative improvements may be either accepted
or rejected by the SA approach at any iteration in the search. Specifically, highly
infeasible solutions are prevented by the SA approach, namely its temperature and
cool rate parameters. However, their evaluation in the mean of the improvement
distributions may return expected performances which are heavily skewed towards
negative values, i.e. as controlled by the infeasibility penalty cost c3. In reality, we
are interested in retrieving the expected performance a destroy-repair couple may
bring, if it successfully moves the current solution to a neighbor solution (i.e. if the
move is accepted by SA, that is it works). In other words, we are not interested in
specifically estimating the performance of the destroy-repair couple when this last
does not move the current solution to a neighbor solution (i.e. it does not work).
However, for moves that do work, we may be interested in retrieving the robustness
of the destroy-repair couple in moving the current solution towards the estimated
neighborhood solution. For example, suppose a destroy-repair couple is expected
to bring a high percentage improvement to the current solution. Then, we are also
interested in knowing the probability this high percentage improvement realizes
again if the given destroy-repair algorithm is re-applied on the current solution.
Suppose a similar high-improvement move is very hardly reproducible, then we
should penalize the choice of such destroy-repair algorithm with respect to other
algorithms which may performe worse but more robustly. As such, we scale the
expected performance of each algorithm by the ratio between the total number
of accepted neigborhood moves and the total number of attempted moves on the
current solution, i.e. M . Furthermore, expected performances which realize less
than M̄% of the times can be disregarded, as they are very unlikley to re-appear
in successive re-applications of the algorithm.

As in the ML-LNS approach, the means from the distributions are succes-
sively transformed through an exponential function, and relative performance ratios
pdl,rn(i) are retrieved. The destroy-repair operator (d(i), r(i)) is consecutively
drawn according to such ratios. Finally, the next move is computed by re-applying
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Figure 3.3: Example of the algorithm performance distributions after M trials

the drawn destroy-repair operator (d(i), r(i)) on the current solution at iteration i.
This last procedure is timed and the search is exited when the search exceeds a time
limit of 5 seconds. Note that the proposed labeling approach is computationally
heavy, as there are as many neighborhood moves as the number of iterations,
destroy-repair operators, and trials per destroy-repair couple.

3.6 Feature Selection
Sub-problems i are characterized by several aggregated features xi which are ex-
tracted from the instance and routing solution at hand. As noted in Kerschke et al.
(2019), the extracted features should be informative (i.e. relevant for distinguishing
between problem instances), interpretable (i.e. able to provide insight into instance
properties), cheaply computable (i.e. retrievable within milliseconds), generally
applicable (i.e. applicable to a broad range of problem instances), and comple-
mentary (i.e. un-correlated). Note that the performance of the machine learning
approximation specifically adopted in this study, i.e. RF, is not particularly sus-
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Table 3.2: Features description

Size and spatial distribution of requests Routing solution
1. Problem size 25. Perc. of used vehicles
2. Perc. of planning horizon elapsed 26.-27. Avg/std number of requests per vehicle
3.-4. Avg/ std radius 28. Avg vehicle travel time
5. Perc. area covered 29. Avg user excess ride time
6.-7. Perc. pickups/dropoffs in convex hull of dropoffs/pickups 30.-31. Avg/std vehicle loads
Upcoming request to be inserted 32.-33. Avg/std vehicle tour lengths
8. Is there a new request to insert? 34.-35. Avg/std number of edges
9.-10. Avg/std distance between vehicle locations and pickup of new request 36.-37. Avg/std charging time per visited charging station
11. Is the dropoff of new request in the convex hull of the planned requests? 38.-39. Avg/std travel time per traversed arc
12.-15. Avg/std distance between new pickup/dropoff and planned requests 40. Perc. of unique travel time arcs
Vehicle current location and states Current and past LNS iterations
16. Perc. of vehicles in convex hull of planned requests 41. Neighborhood size
17.-18. Avg/std distance vehicles from centroid of area 42. Perc. cost difference between current solution and initial solution
19. Avg intra-vehicle distance 43. Perc. cost difference between current solution and last incumbent
20. Perc. of empty vehicles 44. Perc. of requests in request bank
21.-22. Avg/std current vehicle loads 45. Perc. decrease in temperature from initial SA temperature
23.- 24. Avg/std vehicle SOC

ceptible to correlated input variables. However, correlated variables may affect the
interpretability of RF, notably its embedded feature importance evaluation. In
the case of vehicle routing problems, most extracted features are necessarily inter-
correlated since they are all connected through decision variables and constraints in
the problem definition. As such, for vehicle routing problems, feature importance
needs to be interpreted in consideration of all possible correlations between the
several proposed features. In the dynamic e-ADARP, such aggregated features
relate to: (1) the size and spatial distribution of the requests, (2) the upcoming
request to be inserted, (3) the vehicle current states and spatial distribution, (4)
the routing solution, (4) current and past LNS iterations. Overall, we determine
45 features, summarized in Table 3.2 and explained next.

Size and Spatial Distribution of Requests

We are interested in exploiting features which relate to the demand distribution,
and therefore do not depend on the specific routing solution encountered through
the ML-LNS. Specifically, we retrieve the total number of requests assigned to the
vehicle routes (i.e. 1. the problem size), which were received from the beginning
of the planning horizon (2.). Then, we extract the radius (3.-4.), that is the
average/standard deviation distance between the planned requests and the centroid
defined by the same (Gomes and Selman, 2001). The ratio is a useful metric
in detecting whether requests are more or less homogeneously distributed among
them. We continue by extracting the ratio between the area of the circle containing
all of the assigned requests to the total area covered by the ride-sharing service
(5.). This ratio is useful in determining whether the assigned requests are concen-
trated or scattered within the service zone. Finally, we compute the percentage of
pickups/dropoffs contained in the convex hull determined by the dropoff/pickup
locations within the vehicle routes (6.-7.). This last feature is helpful in determining
whether the instance is characterized by clustered or homogeneously distributed
pickup and dropoff locations.
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Upcoming Request to be Inserted

A given sub-problem i may be characterized by the existence of an upcoming
request which could not be feasibly inserted into the vehicle plans through the
first phase of the two-phase metaheuristic approach (Section 3.3.3). The existence
of a new un-inserted request highly penalized the objective function, by the cost
parameter c3. Therefore, we start by extracting a binary variable determining
whether the sub-problem considers a new request to be inserted (8.). If a new
request exists, we characterize the location of the upcoming request by three
distinct features. First, we determine the average distance between the vehicle
current locations and the pickup of the new request, and its standard deviation (9.-
10.). Second, we determine whether the dropoff of the new request lies within the
convex hull defined by all requests in the vehicle plans (11.). That is, whether the
new request follows the demand pattern defined by the planned requests. Third, we
determine the average distance between the pickup and dropoff of the new request
to all of the requests in the vehicle plans, and its standard deviation (12.-15.).
Specifically, features (11.-15.) help quantify the deviation that may be needed
to serve the new request.

Vehicle Current States and Spatial Distribution

We are interested in retrieving the vehicle current states and spatial distribution at
the time the sub-problem is re-optimized as this affects the feasibility of neighbor-
hood moves. With respect to the vehicle spatial distribution, we first retrieve the
percentage of vehicles contained in the convex hull defined by all of the planned
requests (16.). Indeed, a vehicle that just completed its service at a dropoff node
may be currently en-route and located far away from the locations of its planned
requests. Second, we extract the average distance between the vehicle current
locations and the centroid of the area covered by the ride-sharing service, as well as
its standard deviation (17.-18.). This feature helps understand the current spatial
distribution of the fleet in the service area. Third, we retrieve the average intra-
vehicle distance (19.). Differently from the previous feature, intra-vehicle distance
helps distinguish cases in which vehicles are homogeneously dispersed in the service
area from cases in which group of vehicles are clustered together. With respect to
the vehicle current states, we retrieve the percentage of currently empty vehicles
(20.), the average current load of the vehicles and its standard deviation (21.-22.),
the average vehicle SOC and its standard deviation (23.-24.).

Routing Solution

The iterative solution approach for the e-ADARP explores many solutions which do
not differ in terms of the demand distribution and vehicle current states but do differ
in terms of route planning. As such, we are particularly interested in extracting
valuable information to differentiate between routing solutions. To this aim, we
retrieve information on the percentage of utilized vehicles in the solution (25.), the
average number of planned requests per vehicle and its standard deviation (26.-
27.), the average vehicle travel time (28.) and excess ride time per served request
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(29.). Furthermore, we extract aggregate information derived from the sequence
in which requests are served within the vehicle plans. Specifically, we retrieve
the average vehicle loads along their planned routes and their standard deviation
(30.-31.), the average vehicle tour length and its standard deviation (32.-33.), the
average number of edges per vehicle tour and its standard deviation (34.-35.), and
the average vehicle charging time per visited station and its standard deviation
(36.-37.). We further explore features which depend on the vehicle routes and are
derived from the travel time cost matrix. Specifically, we extract the average
vehicle travel time per traversed arc and its standard deviation (38.-39.), the
fraction of unique travel times from the vehicle plans (40.). These last features
help determine whether vehicle routes are composed of edges characterized by
similar/equal distance (i.e. travel time).

Current and Past LNS Iterations

At any given iteration, it is possible to exploit information from previous iterations
of the search. That is, we would like to know the size of the neighborhood that we
are currently willing to explore (41.) but also how far we got, in terms of objective
function value, from the beginning of the search. To this end, we retrieve the
percentage cost difference between the current solution and the initial solution (42.),
the percentage cost difference between the current solution and the last incumbent
solution (43.), the percentage of requests added to the request bank (44.), and
the percentage decrease in temperature for the initial SA temperature (45.). Note
that the last two features are related to the degree of infeasibility of the current
solution and the current iteration number.

3.7 Numerical Experiments
This work employs real data from 24,000 Uber ride-shares during one-week period
in San Francisco, obtained by extracting pickup/dropoff locations and times from
published GPS logs.1. For the purpose of our tests, we extract 100-request dynamic
scenarios. Note that larger problems are not necessarily more difficult to solve, as
complexity depends on the size of the encountered sub-problems, which in turn
depends on the demand distribution and arrival rate, rather than the size of the
dynamic scenarios. We construct a 15-minutes time window around the request
pickup/dropoff times and assume instantaneous booking times. The travel time
between locations is constructed by converting degree latitutes/longitudes into
kilometers, emplying eucledian distance, and assuming constant vehicle speeds of
30 km/h. Maximum ride times is considered fixed for all requests and is set to 30
minutes. We consider a fixed fleet size of 10 vehicles, with a maximal capacity of
15 passengers and a nominal battery capacity of 14.85 kWh. The fleet size has been
chosen such that, under the fore-mentioned conditions, 65% of the total demand
can be served by a greedy insertion algorithm, on average.

1Available at https://github.com/dima42/uber-gps-analysis/tree/master/gpsdata

https://github.com/dima42/uber-gps-analysis/tree/master/gpsdata
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The simulation-based optimization procedure described in Section 3.3.2 was
implemented in the Julia v. 1.2 (Dunning, Huchette, and Lubin, 2017) and applied
to each one of the 244 100-request instances from the Uber dataset. Results were
obtained by running each of the simulated scenarios in parallel, by using an Intel
Xeon based cluster employing 2 cores per node on Skylake processors running at
2.3 GHz. The second re-optimization phase is triggered any time an incoming
request cannot be directly inserted into the vehicle routes and when there are at
least four planned requests in the vehicle routes. Solutions that do not include the
incoming request or, succesively, any other request from the vehicle routes incur
into a penalty cost controlled by parameter c3, which is set to a very high arbitrary
fixed cost. In our work, c3 is set to two times the average total objective function
value from the routes constructed through a simple insertion algorithm.

The destroy and repair operators considered in this work closely follow the ones
proposed in Ropke and Pisinger (2006). Namely, we adopt all of their destroy (i.e.
random, Shaw, and worst) and most of their repair (i.e. basic greedy, regret-2, and
regret-3) heuristics. As such, the destroy-repair couples considered in this work,
i.e. (dl, rn), are obtained by combinations of dl ∈ {1 : Random (R), 2 : Shaw (S), 3 :
Worst (W)} and rn ∈ {1 : Greedy (G), 2 : Regret2 (R2), 3 : Regret3 (R3)}. Namely,
we consider the following LNS algorithms (dl, rn): {Alg. 1 : R-G, Alg. 2 : R-R2, Alg. 3 :
R-R3, Alg. 4 : S-G, Alg. 5 : S-R2, Alg. 6 : S-R3, Alg. 7 : W-G, Alg. 8 : W-R2, Alg. 9 :
W-R3}. The search is composed of a total of 100 iterations and is notably shorter
than what is typically reported in the literature. This choice is motivated by the
limited computational time available to make modifications to the vehicle plans in
the context of on-line operations (i.e. 5 seconds). Consequently, the search does not
have time to explore the solution space for thousands of iterations. For the same
reason, the search is limited by a maximal time of 5 seconds. The SA parameters,
notably the initial temperature and the cooling rate, are set by assuming that a
move that is 5% worse than the current solution is accepted with 50% probability
and that such probability converges to zero towards the end of the search. Note
that given the high cost associated with infeasible solutions, infeasible solutions
are mainly allowed to be explored at the beginning of the search. That is, if the
incoming request can only be inserted at the cost of infeasibility for other requests.
In this case, the search begins from an infeasible solution and attempts to recover
infeasibility in successive iterations. This choice is motivated by the limited time to
modify vehicle routes, in the context of our on-line approach. Note that preliminary
results had confirmed that over-exploring infeasible solutions in the context of real-
time decision making may decrease our ability to find locally optimal solutions.

3.7.1 Labeled dataset

The labeled dataset is constructed according to the principle described in Sec-
tion 3.5. At each iteration during the search, we employed each of the 9 com-
peting LNS algorithms 100 times. That is, each LNS algorithm tries to explore
the neighbor of the current solution a large amount of times. The size of the
neighborhood is drawn from a uniform interval which considers removing and



62 3.7. Numerical Experiments

reinserting at least four requests and up to 45% of the vehicle routes. For each
LNS algorithm, the expected performance is successively computed as the mean
of the objective function improvements from the samples which were accepted by
SA, out of the 100 trials. In order to characterize the robustness of each LNS
algorithm, we scale the expected algorithm performance by the percentage of times
neighborhood moves are accepted by SA, i.e. the frequency the algorithm works
in moving the current solution in the direction of a new solution. Note that, given
that the search is allowed to explore worsening solutions, the expected performance
may be negative. As such, we use a smoothened exponential function to transform
the algorithm performances, which are consquently normalized returning ratios
from which we draw the algorithm to be employed at the current iteration. As
explained in Section 3.3.3, the choice of an exponential function is motivated by
our need to emphasize differences between improving and worsening algorithms,
whose estimates are well-above the average prediction error. The smoothening
factor x is selected as a trade-off between two considerations. First, an algorithm
showing a relatively high percentage improvement at low rate should not be over-
rewarded with respect to other algorithms showing a lower percentage improvement
at higher rate. Second, algorithms which perform similarly but still present some
differences should be distinguished. As such, after a trial-and-error phase, the
smoothening parameter factor x is set to 0.5. Furthermore, distributions with less
than 10% accepted trials are not considered and are assigned a highly negative
expected improvement.

This procedure resulted in a total of 615,546 labeled datapoints, homogeneously
distributed among the 9 competing algorithms. The expected objective function
improvement distributions are shown in Figure 3.4(a). As it can be noted, for
each algorithm, the expected improvement inhomogeneously distributes between
-10% and +90%. Moreover, the algorithms often improve the current solution only
marginally, on average. As such, the expected objective improvement for each of
the 9 competing algorithms presents many values below 10%. The percentage of
times algorithms produce accepted neighborhood moves (i.e. with respect to the
SA approach) is shown in Figure 3.4(b). As it can be noted, the percentage of
times the current solution is successfully modified into a neighboring solution is
highly dependent on the algorithm and vary from a mean of 25% to about 50%.
In addition, the robustness of the algorithm seems to be related to the choice of
the repair method (e.g. LNS algorithm 1, LNS algorithm 4, and LNS algorithm
7 present similar distributions, which are different from the distributions of LNS
algorithm 2, LNS algorithm 5, and LNS algorithm 8). To account for robustness,
the expected objective function improvements from Figure 3.4(a) are scaled by the
percentage of accepted requests from Figure 3.4(b), producing the scaled objective
function improvement distributions in Figure 3.4(c). As it can be noted scaling
the objective function improvements by their expectation smoothens the extreme
positive values. That is, examples of algorithms producing high improvements
at low frequencies.

The produced labeled dataset in Figure 3.4(c) contains examples of moves from
the re-optimization policy we aim at learning. Figure 3.5(a) shows the difference
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(a)

(c)

(b)

Figure 3.4: Label distributions: (a) Expected objective function improvement, (b) Ac-
cepted neighborhood moves by SA, (c) Scaled expected objective function improvement.

in number of accepted requests between the labeled dataset and a simple greedy
insertion strategy (i.e. the first phase in the two-phase heuristic approach). As it
can be noted, the proposed re-optimization policy has a positive effect on the total
number of accepted requests, which increase by up to 27% and by an average
of 12% with respect to the insertion policy. In only 8% of the cases, the re-
optimization phase may not lead to a higher number of accepted requests and
may instead slightly decrease the solution quality (by less than 2%). In fact,
optimizing vehicle routes at any given time may not necessarily increase chances
to accept more requests later on. As it can be expected, given its computational
burden, the extensive methodology used to produce the labeled dataset is not
suitable for real-time decision processes, as shown in Figure 3.5(b). Specifically,
each iteration of the extensive LNS-based approach used to produce the labeled
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(a) (b)

Figure 3.5: Labeled dataset and simple insertion: (a) Difference in terms of number of
accepted requests, (b) Average CPU time at each iteration of the search

dataset can take up to about 43 minutes. As such, the re-optimization policy is
learned through a statistical learning approach and efficiently re-applied to new
on-line problem instances.

3.7.2 Machine Learning Results
A total of 9 random forest regressors are trained on the generated balanced dataset
from Figure 3.5(b) by the use of the python ScikitLearn library. As customary in
the ML literature, 75% of the labeled set is selected for training, and the remaining
25% for testing. The selected split is the one minimizing the average MAE from
5 random splits on the 244 100-request scenarios. The size of each RF regressor is
set to 500 estimators. Note that less estimators may be employed for the treated
problem. However, this would impact feature interpretability. On the training
dataset, each RF is further optimized with respect to selected hyperparameters,
i.e. the maximal number of features and minimal number of samples per split,
using grid search and k-fold cross-validation. The optimal parameters are chosen
from the results obtained on 5 folds and by considering L-2 loss. Table 3.3 shows
performance measures obtained for each of the 9 trained regression models by
applying them on the train and test dataset. As shown by the MAE, all models
predict the scaled expected objective improvement that should be obtained after
the application of any of the 9 algorithms by less than a 2% error. The RMSE
shows higher imprecision but still contained within a 5% error. An interesting
feature that can be extracted from the MAE and RMSE is that there are classes
of algorithms whose average prediction errors seem to be most similar than for
others. For example, algorithm 1, 4, and 7 seems to produce similar performance
errors, which are different from the ones experienced from the other algorithms.
Specifically, algorithm 1, 4, and 7 refer to a greedy insertion heuristic, namely
combined with random, Shaw, and worst destruction heuristics. This finding
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Table 3.3: Performance measures obtained for the 9 RF regressors on the train and
test dataset: Mean absolute error (MAE), root mean square error (RMSE), coefficient of
determination (R2), out of bag error (OOB).

Model MAE RMSE R2 OOB
Train-Test Train-Test Train-Test

1 0.59 - 1.05 2.11 - 3.30 0.58 - 0.31 0.62
2 1.11 - 1.99 3.15 - 4.71 0.65 - 0.35 0.51
3 1.17 - 2.07 3.31 - 4.85 0.66 - 0.35 0.50
4 0.55 - 0.99 2.12 - 3.29 0.59 - 0.33 0.60
5 1.02 - 1.84 3.05 - 4.52 0.66 - 0.37 0.51
6 1.09 - 1.96 3.24 - 4.71 0.66 - 0.38 0.51
7 0.49 - 0.84 2.15 - 3.33 0.50 - 0.24 0.69
8 0.99 - 1.67 3.23 - 4.53 0.60 - 0.32 0.60
9 1.03 - 1.76 3.36 - 4.70 0.61 - 0.33 0.58

suggests that the prediction problem for regret-2 and regret-3 insertion heuristics
may be more challenging than for a greedy heuristic.

The discrepancy between the RMSE and the MSE, as well as the OOB error and
the coefficient of determination R2, suggests that the trained models are over-fitting
the training dataset. Over-fit may be due to the high variance that is present in
the dataset we employ for training, as shown in Figure 3.5(b). As explained in the
previous section, huge differences in percentage improvements are natural in the
treated problem, although unrealistically large data differences may be considered
as outliers by the trained models. Furthermore, the regressors are trained on the
L − 2 loss (the MSE), which squares the errors, and thus gives more weight to
outliers than, for example, L − 1 loss (the MAE). However, although the MAE is
more robust to outliers, it is also computationally much more expensive (i.e. it
scales with Nlog(N) as opposed to N for the MSE, where N is the number of
datapoints). This complexity is unpractical as it would result in an unrealistic
trainig time. Another approach to try and reduce over-fit may consider the use
of extra trees regressors, a meta-estimator employing various sub-samples of the
dataset and using averaging to control over-fit.

The metrics shown in Table 3.3 are averaged among all of the datapoints in
the training/testing dataset. Consequently, we are interested in further analyzing
the way the prediction error distributes in the training/testing dataset. Figure 3.6
shows the distribution of the absolute errors between the observed and prediced
estimates in the training and testing dataset. As it can be noted, in both cases, we
most frequently predict the target values with high confidence. However, in a few
cases, we result in high prediction errors up to about +/- 15%, which may explain
the reason for the high average prediction errors in Table 3.3.

Finally, note that the ML-LNS uses a smoothened exponential function to
transform the predicted expected algorithm performances. As such, even a small
mean average error of, for example, 2% may considerably impact our ability to
distinguish between algorithms when the predicted estimates from all of the al-
gorithms are around a zero-percent improvement and within the limited range
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Figure 3.6: Distribution of the absolute errors between observed and predicted estimates
in the training and testing dataset

given by the prediction error.

3.7.3 Feature Importance
Figure 3.7 shows the average feature importance among the 9 trained regression
models. As a reminder from Section 3.4.2, in RFs feature importance is measured by
the average decrease in impurity brought by each feature and between successive
nodes in each tree. Impurity may be also interpreted as the average variance
reduction brought by each feature. As it can be noticed from Figure 3.7, the
two first features decrease the average impurity by at least twice as much the
others. These two features relate to the current SA temperature (or current LNS
iteration) and the total user excess ride time. Indeed, our ability to improve
the current solution depends on history from previous iterations. For example,
it is likely that a solution is highly improved at the beginning of the search and
only refined at consecutive iterations. Moreover, note that the SA temperature
decreases with following iterations. This implies that, at later iterations, accepted
solutions can only strictly improve the current objective function. It is therefore
reasonable to assume that worsening solutions are most probably accepted at the
beginning of the search, as they are controlled by the SA temperature. Solution
acceptance depends on the objective function value. This last relates to the second
most-important feature, i.e. the user excess ride time. Furthermore, note that
the feasibility also affects the objective function and depends on maximum user
ride time considerations. The next three most-important features relate to vehicle
availability, namely measured by the number of assigned trips per vehicle. Indeed,
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Figure 3.7: Average feature importance

it may be simple to instantaneously deviate vehicles towards a request if the vehicle
is currently empty and only have a few planned requests to be served in the future
but difficult otherwise. Finally, note that there are features which do not seem
to play a significant role in the studied problem. These features relate to the
vehicle loads and charging times. Note that, in the studied scenarios, vehicles are
over-capacitated and so capacity does not pose an issue for feasibility. Similarly,
charging time may not be an issue as vehicles are always allowed to depart from
a charging station to serve a request, if this option is feasible. In other words,
charging times may only be binding if all vehicles are currently recharging, they
have limited battery range and/or there are no other vehicles which could serve the
request at a similar operational cost. Finally, it is also interesting to note that the
presence of a new request to be inserted does not seem to play a significant role in
the ability of the algorithms to improve the current solution. This last observation
can be interpreted in two ways. First, all algorithms may find new insertions
difficult. Second, all algorithms may find new insertions easy, as new requests can
always be inserted at the cost of infeasibility at the beginnig of the search.

3.7.4 ML-LNS Results
The trained models are re-applied to the test dataset, composed of 59 out of 244 100-
request instances, and in the context of the ML-LNS explained in Section 3.3.3. The
proposed methodology is compared to a random selection algorithm and to ALNS,
according to the score updating methodology proposed Ropke and Pisinger (2006).
However, given the limited number of iterations to gather statistics, the parameter
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of the ALNS are set such that operators weights are updated more frequently and
react faster to changes in the effectiveness of the operators. Specifically, we set the
ALNS reaction factor r to 0.4 and update the operators scores every 5 iterations.

We assume that vehicle route modifications are performed on commercial pro-
cessors with 8 cores and that computations do not need more than 2 cores. As
such, each algorithm (i.e. Random, ALNS, and ML-LNS) is run on 4 parallel
optimization processes which terminate after a time limit of 5 seconds. At the end
of each parallel re-optimization, the solution resulting in the maximal objective
improvement is selected.

In order to compare the outcomes of the Random, ALNS, and ML-LNS re-
optimization algorithms, we simulate each one of the tested 59 scenarios 10 times
and retrieve partial statistics on their performance. Note that running parallel
optimizations on each encountered sub-problem during the search increases the
robustness of the statistics, although this last aspect should be confirmed by
running more than 10 simulations per scenario.

Figure 3.8 shows distributions on the total number of accepted requests ob-
tained by employing the random, ALNS, and ML-LNS metaheuristics on the tested
instances. As it can be noted, independently from the employed algorithm, re-
optimizing vehicle routes sensibly increases the total number of accepted requests
and by up to about 30%. This also affects the objective function value, whose
average improvement per search is shown in Figure 3.9. However, it is hard to
clearly distinguish the performance of the metaheuristics, in terms of the average
number of accepted requests and average objective function values. In fact, there
are instances in which one metaheuristic performs better than the others and vice
versa. The distributions on the number of accepted requests and objective function
values are furthermore characterized by large standard deviations, although in
many cases ML-LNS produces more consistent results (e.g. problems 2, 3, 85,
124, 150, 212). It is interesting to note that in a few cases the metaheuristics
return a lower total number of accepted requests with respect to the greedy re-
insertion policy (i.e. problems 73 and 78). Indeed, being agnostic of future arrivals,
re-optimizing sub-problems at given times may not necessarily maximize the total
number of accepted requests at later times. Furthermore, note that differences
in sub-problems optimizations imply the simulated scenarios evolve differently.
Indeed, as shown in Figure 3.10, each metaheuristic solves a different number
and type of sub-problems. Specifically, the sub-problems types differ in terms of
demand patterns (as some requests may be served early when considering certain
metaheuristics rather than others), the current routing solutions, and vehicle tasks.
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Note that each metaheuristic is triggered whenever an incoming request cannot
be directly inserted into the vehicle routes. As such, we are interested in analyzing
the rate at which algorithms manage to modify the vehicle routes so that the
incoming request is feasibly served, as shown in Figure 3.11. It is interesting to
note that all algorithms are able to insert upcoming requests with a 60% probability,
on average. However, even in this case there is no clear cut between the employed
metaheuristics, as they all seem to perform similarly while referring to different
problem instances.

Finally, Figure 3.12 shows the average total number of iterations performed by
each metaheuristic during the search. These statistics clearly differ between the
employed metaheuristics. In particular, the search from the ML-LNS is on average
halved with respect to the search for the other metaheuristics. Indeed, at each
iteration during the search, the ML-LNS uses of computationally-heavy regression
models employing information that needs to be extracted from the routing plans.
As such, given the time limit of 5 seconds per search, each iteration of the ML-LNS
takes more time to compute with respect to the Random/ALNS metaheuristics.
However, as shown before, the limited size of the ML-LNS search does not impact
the quality of its results. In fact, they are comparable to the results obtained by
the Random/ALNS metaheuristics, although the latter are given twice as many
opportunities to explore neighboring solutions. As such, it can be inferred that
the ML-LNS makes informative decisions when moving between the few explored
neighborhoods. Note that the 9 employed regression models in the ML-LNS are
the RF regressors composed of a total of 500 estimators, i.e. trees, as explained
in Section 3.7.4. In order to decrease the total computational time per ML-LNS
iteration, it could be sufficient to decrease the total number of estimators employed
during the search (e.g. from 500 to 100 estimators). However note that this may
come at the cost of estimation precision and, consequently, valuable information
to the ML-LNS. As such, current work is investigating the right trade-off between
computational complexity, measured by the number of employed estimators, and
solution quality.
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3.8 Summary
This work proposes a new extension to the family of large neighborhood search
metaheuristics for the dynamic electric autonomous dial-a-ride problem (ML-LNS).
The proposed metaheuristic employs a machine learning approach to predict the
performance on the objective function of 9 destroy-repair couples for each iteration
during the search. The training dataset is composed of a large number of examples
of LNS moves and their respective expected objective improvement. We have
trained 9 different models through a random forest regression approach. Results
show that the learned models are capable of reproducing the observed data with
high confidence. The models have been re-employed on the test dataset in the
context of a simulation-based optimization approach. Results show that ML-LNS
is a competitive alternative to state of the art metaheuristics. Current work is
extending the results by analyzing whether the ML-LNS may outperform the state
of the art under specific circumstances.

There are three main drawbacks in the adoption of a machine learning-based
mechanism rather than an adaptive mechanism. First, historical data from LNS
iterations on past problems may not be readily available and needs to be specifically
produced for the given routing problem, through computationally-expensive simu-
lations. Second, instances from the given routing problem need to be characterized
by features that can only be selected through expert knowledge. Third, the adopted
ML predictor needs to be appropriately calibrated through computationally expen-
sive experiments during the off-line training phase. Future work may include: (1)
The adoption of a look-ahead policy to partially guide the optimization algorithm
by future demand arrivals, (2) An analysis on the impact of the re-optimization
frequency, (3) A comparison between service levels when adopting large and local
neighborhood moves, (4) The adoption of other classification frameworks from
machine learning literature.
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4
Scheduling Algorithm and Battery

Management Heuristic for the Electric
Autonomous Dial-a-Ride Problem

This chapter is based on the article:

• C. Bongiovanni, M. Kaspi, and N. Geroliminis (2020). “Scheduling
Algorithm and Battery Management Heuristic for the electric Au-
tonomous Dial-a-Ride Problem”. Working paper

4.1 Introduction
In a vehicle routing context, scheduling algorithms prove time feasiblity of ve-
hicle routes. Specifically, they consider feasible routes in terms of capacity and
precedence constraints and are designed to provide feasible decisions about time-
related variables (i.e. service start times and waiting times at each node). In the
standard DARP, such decisions need to respect time-window and maximum-ride-
time constraints. In the e-ADARP, scheduling decisions need to further respect
battery-management and charging constraints. As such, scheduling algorithms
for the e-ADARP need to find the right trade-off between battery feasibility and
the level of service, measured by the user excess ride time. Note that at the
scheduling point, feasible routing decisions are already taken, and therefore the
objective components that solely depend on the routing decisions do not need
to be considered.

In the DARP literature, various heuristics have been proposed to deal with the
scheduling of routes. Cordeau and Laporte (2003) propose an 8-step procedure
setting the earliest start time at each vertex in the route and using forward slack
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times to delay the start times at pickup locations in vision of maximum ride time
constraints (Savelsbergh, 1992). Parragh et al. (2009) observe that adopting a
sequential approach to avoid maximum ride time violations does not necessarily
minimize the total user excess ride time in the schedules. In fact, delaying the
service start time at a given pickup location may decrease the excess ride time
of the specific request but increase the excess ride time for other requests in the
route. As such, Parragh et al. (2009) modify the procedure in Cordeau and Laporte
(2003) by adapting the computation of forward slack times such that increases in
the user excess ride time of any request in the route is avoided. As a result, the
returned feasible schedules minimize the total user excess ride time at the expense of
incorrect infeasibility declarations. This last aspect is a drawback that is tackled
in Molenbruch et al. (2017), who propose a procedure starting by considering a
possibly travel-time infeasible schedule setting the excess ride time of each user at
its lowest bound. Infeasibility relates to travel time shortages between successive
nodes and is succesively recovered by shifting service start times such that the
total user excess ride time is minimized.

The proposed scheduling algorithms from literature are not proven to provide
excess-time optimal solutions. Other than for its theoretical reasons, providing an
excess ride-time-optimal scheduling procedure allows to avoid to explicitly express
all time-related decision variables and constraints in dial-a-ride problems in which
the objective function includes level of service aspects (e.g. in the DARP extensions
proposed by Parragh (2011) and Molenbruch et al. (2017)). Instead, all time-related
constraints, affecting the objective function, could be separated as needed, i.e.
through lazy constraints. However, note that removing the time-related decision
variable and constraints from the formulation may result in weakened initial lower
bounds. As such, time-related lazy constraints need to be separated through
efficient valid inequalities. Furthermore, a polynomial-time optimal procedure
would also be beneficial in any meta-heuristic applied for the e-ADARP, as it will
allow properly evaluating a given sequence of nodes.

In this Chapter, we propose an algorithm which is proven to provide excess-time
optimal solutions and we provide a heuristic procedure to assign charging times at
visited stations. Indeed, a schedule minimizing excess ride time may not be battery
feasible, and vice versa. The procedure builds on two main observations: (1) mini-
mizing excess-time while respecting time-window and user-ride-time constraints is
in fact equivalent to assigning the right amount of waiting time at all nodes in the
routes, (2) ensuring battery feasibility is in fact possible by recharging as much as
possible at the visited facilities, as early as possible. The algorithm is tested against
optimal scheduling solutions from a linear program on the e-ADARP instances from
Bongiovanni, Kaspi, and Geroliminis (2019) and presented in Chapter 2.

The rest of the chapter is organized as follows: Section 4.2 introduces the excess-
ride-time scheduling problem, Section 4.3 provides the route evaluation procedure
and its optimality proof, Section 4.4 explains the heuristic procedure to provide
battery-feasibility. Finally, Section 4.5 provides numerical experiments comparing
the exact solutions obtained through the employment of a linear program and
the scheduling procedure and Section 4.6 summarizes the main concepts of this
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Chapter and provides an overlook to future research.

4.2 Scheduling Problem
Consider a predetermined route sequence I of M nodes, which includes pickup
locations, dropoff locations, and potentially some charging stations. Without loss
of generality, assume that the sequence satisfies routing constraints, as well as
precedence and load constraints. Note that the given sequence may not necessarily
satisfy all timing and battery management constraints. Then, the optimization
problem consists in scheduling the service start times in the sequence as to minimize
the total user excess ride time, guarantee battery and maximum ride time feasibility.
Note that user excess ride time is defined as the delay users experience for sharing
rides, in comparison to a taxi service.

Start by considering a specific sub-sequence Ī of M̄ ≤ M nodes, which is
one of the derived sub-sequences obtained by splitting I by the visited charging
stations. Without loss of generality, assume that the visited charging station at
the beginning of Ī represents an origin depot and the charging station at the end
of Ī represents a destination depot. Furthermore, denote by i ∈ {1, . . . , n} the
set of requests contained in sequence Ī, Pi the set of pickups, and Di the set of
dropoffs. Pickup locations are characterized by loads lPi

and dropoff locations
by loads −lPi

. Furthermore, all locations feature service times di, direct travel
times ti,j, and time windows [arri, depi] limiting the time at which service may
start. Note that, in vision of user maximum ride times uPi

, it is possible to set
time windows around the pickup locations and derive the time windows around the
corresponding dropoff locations, and vice versa. The goal is to be able to optimize
Ī with respect to the total excess ride time by setting optimal service start times Ti

with i ∈ {1, . . . , M̄} in vision of maximum ride time and time window constraints.
As such, the scheduling problem for sub-sequence Ī can be stated as the following
linear program (LP1):

(LP1) min
∑

i∈{1,...,n}
(TDi

− TPi
− dPi

− tPi,Di
) (4.1)

Subject to:
Ti + ti,i+1 + di ≤ Ti+1 ∀i ∈ {1, 2, . . . , M̄ − 1} (4.2)

TDi
− TPi

− dPi
≤ uPi

∀i ∈ {1, . . . , n} (4.3)

arri ≤ Ti ≤ depi ∀i ∈ {1, 2, . . . , M̄} (4.4)

Where, the objective function (4.1) minimizes the excess ride time for each re-
quest in Ī, constraints (4.2) set the service start times between consecutive nodes,
while constraints (4.3)-(4.4) impose maximum ride time and time window con-
straints respectively.

Note that time windows [arri, depi] can be tightened in light of the travel times
and service times between consecutive nodes. As such, by sequentially inspecting
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the sequence, it is possible to calculate the earliest time ETi and latest time LTi

at which service can start at node i by using the following recursive formulas:

ETi = max{arri, ETi−1 + ti−1,i + di} ∀i ∈ {2, . . . , M̄}, ET1 = arr1 (4.5)

LTi = max{depi, LTi+1 − ti,i+1 − di} ∀i ∈ {1, . . . , M̄ − 1}, LTM̄=depM̄
(4.6)

Hence, a tighter formulation to LP1 can be obtained by substituting constraints (4.4)
with:

ETi ≤ Ti ≤ LTi ∀i ∈ {1, 2, . . . , M̄} (4.7)

Service start time Ti at node i depends on the initial departure time from the depot,
the total travel time up to i, the total service time spent serving nodes before i,
and the total vehicle waiting time up to i. That is:

Ti = T1 +
i−1∑
j=1

tj,j+1 +
i−1∑
j=1

dj +
i∑

j=1
wj (4.8)

Here, wi denotes the waiting time at node i. Note that, service may start as soon
as possible without penalizing the objective function, i.e. T1 = ET1. With such
representation of service start times, the objective function (4.1) can be re-written
as follows:

min
∑

i∈{1,...,n}
(T1+

Di−1∑
j=1

tj,j+1+
Di−1∑
j=1

dj+
Di∑

j=1
wj)−(T1+

Pi−1∑
j=1

tj,j+1+
Pi−1∑
j=1

dj+
Pi∑

j=1
wj)−dPi

−tPi,Di
=

min
∑

i∈{1,...,n}
(

Di−1∑
j=Pi

tj,j+1 +
Di−1∑
j=Pi

dj +
Di∑

j=Pi

wj − dPi
− tPi,Di

) (4.9)

Since travel times between consecutive nodes and the service times are deterministic
parameters, minimizing the objective function (4.9) is equivalent to:

min
∑

i∈{1,...,n}

Di∑
j=Pi+1

wj = min
M̄∑

i=1
Liwi (4.10)

Where Li =
i−1∑
j=1

lj represents the vehicle load up to node i.

Equivalent to the re-writing of the objective function, constraints (4.7) can be
re-defined through (4.8) as follows:

i∑
j=1

wj ≥ ETi −
i−1∑
j=1

tj,j+1 +
i−1∑
j=1

dj − ET1 ∀i ∈ {1, 2, . . . , M̄} (4.11)

i∑
j=1

wj ≤ LTi −
i−1∑
j=1

tj,j+1 +
i−1∑
j=1

dj − ET1 ∀i ∈ {1, 2, . . . , M̄} (4.12)

Note that these constraints provide lower and upper bounds to the total waiting
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time amount that needs to be distributed between i and all nodes preceding i.
As such, the linear program (LP1) can be equivalently re-defined as the following
linear program (LP2):

(LP2) min
M̄∑

i=1
Liwi (4.13)

Subject to:
i∑

j=1
wj ≥ ETi −

i−1∑
j=1

tj,j+1 −
i−1∑
j=1

dj − ET1 ∀i ∈ {1, 2, . . . , M̄} (4.14)

i∑
j=1

wj ≤ LTi −
i−1∑
j=1

tj,j+1 −
i−1∑
j=1

dj − ET1 ∀i ∈ {1, 2, . . . , M̄} (4.15)

Di∑
j=i+1

wj ≤ ui −
Di−1∑
j=i

tj,j+1 −
Di−1∑
j=i+1

dj ∀i ∈ P (4.16)

Remark that constraints (4.2) from (LP1) are guaranteed by the definition of
equation (4.8), which now composes constraints (4.14) and (4.15). The right-
hand side of (4.14) and (4.15) represent the minimal total waiting time that
must be assigned up to node i, and the maximal total waiting time that can be
assigned up to node i, without violating the time windows at sucessive nodes in
the sequence. For convenience, denote the right-hand side of constraints (4.14) and
(4.15) by ∆i and Θi respectively. Using equations (4.5) and (4.6) we have that
∆i ≤ ∆i+1 ∀i ∈ {1, 2, . . . , M − 1} and Θi ≤ Θi+1 ∀i ∈ {1, 2, . . . , M − 1}. That
is, the total minimal and maximal waiting time that needs to be distributed in
the sequence may only increase between consecutive nodes. As such, note that the
total minimal waiting time ∆M , i.e. at the destination depot, represents a waiting
time amount that cannot be avoided in any feasible solution. Finally, the objective
of the problem reduces to optimally distribute ∆M among all nodes {1, . . . , M}
in consideration of the total load Li at each node in the sequence, which impacts
the total user excess ride time.

4.3 Scheduling Procedure

In order to solve (LP2), we propose the procedure reported in the pseudo-code
from Algorithm (2) and explained next. The algorithm proceeds in the sense of the
sequence and checks that, for each encountered node i ∈ {1, . . . , M̄}, a minimal
total waiting time ∆i has been assigned up to node i. If the algorithm detects a
total waiting time shortage at node i, i.e.

i∑
k=1

wk < ∆i, the total waiting time at i

and its preceding nodes needs to be increased. Given that the objective function
depends on the total vehicle load Li, the algorithm starts by considering adding
waiting time to nodes j ≤ i featuring the lowest minimal total load up to i, i.e.
j = argmink∈{1,...,i} Lk. Note that if multiple nodes featuring an equivalent minimal
total load exist, the first node can be selected without loss of generality. For node j,
the total waiting time can be feasibly increased by a maximum amount δwj defined
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by constraints (4.15) and (4.16). That is, while deciding upon an increment in
waiting time at node j, one needs to check that excess-ride time constraints are
not violated for requests whose pickups precede j and whose dropoffs follow j.
Furthermore, in order to guarantee time-window feasibility of the whole sequence,
one needs to check that an increment in waiting time at j does not exceed the
maximal waiting time that can be assigned to up to node j, i.e. Θj −

j∑
k=1

wk.
Finally, waiting time at node j can be incremented by δwj, which is computed as
the minimum between the amount defined by excess-ride time constraints, time-
window constraints, and the total waiting time shortage defined by ∆i −

i∑
k=1

wk.
After the update of wj, if node j has reached its maximum waiting time limit by

updating ∆i, that is δwj < ∆i −
i∑

k=1
wk, node j is removed from the list Ω of

potential nodes whose waiting time may be further increased. If
i∑

k=1
wk < ∆i, i.e.

there is still a total waiting time shortage at i, the total waiting time is increased at
the next node j̄ up to i featuring the second lowest total vehicle load. This iterative
process terminates as soon as

i∑
k=1

wk ≥ ∆i, that is when sufficient waiting time has
been assigned to i and all of its preceding nodes. In this case, the algorithm moves
inspecting i+1 and up to the end of the sequence. Note that if the waiting time at
all of the nodes preceding i have been updated, i.e. Ω = ∅, but there is still a waiting
time shortage at i, i.e.

i∑
k=1

wk < ∆i, the algorithm prematurely terminates and the
sequence is proven infeasible. Instead, if at the end of the whole process, ∆M̄

has been feasibly assigned, the algorithm terminates with a basic feasible solution.
Note that the procedure results in a worst-time complexity of O(M̄2), since in the
worst case, the step reported in line 4. of Algorithm (2) may be executed M̄ times
and the procedure in line 6. contains at most M̄ components.

In order to demonstrate that the obtained solution is optimal, it is sufficient
to show that there does not exist a neighboring basic feasible solution that strictly
improves the objective function (4.13). By construction, since ∑M̄

i=1 wi = ∆M̄ , any
decrease of wi at some node i would require an increase of waiting time at some
other node j. Node j may either precede i (i.e. j < i) or succeed i (i.e. j > i).
Next, both cases are analyzed:

• j < i: If decreasing the waiting time at i and increasing it at j by the
same amount results in a decrease of the objective function value, this means
that Lj < Li. However, in this case, the algorithm would have exploited all
the waiting at j before considering i. Therefore, increasing the waiting at a
preceding node is either infeasible or would not result in a decrease in the
objective function.

• j > i: Decreasing the waiting time at i and increasing it at j is feasible if
and only if we have ∑l

k=1 wk > ∆l ∀i ≤ l < j. By construction, this may be
the case if Li ≤ Lj. This implies that such a transition does not result in an
improvement of the objective function value.
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Algorithm 2: Excess-time optimal scheduling algorithm
Input: vehicle route sequence (Ī = {1, . . . , M̄}), pickups Pi, dropoffs Di, earliest start times ETi,

latest start times LTi, maximum ride times uPi
, service durations di, travel times ti,j

Output: Waiting times wi with i ∈ Ī, feasibility check
1 initialize wi. = 0 ∀i ∈ {1, . . . , M̄};
2 initialize Ω = ∅ ;
3 while check = true do
4 for i → 1: do
5 Update: Ω = Ω ∪ {i} ;

6 while
i∑

k=1
wk < ∆i do

7 Set: j = argmink∈Ω Lk ;

8 Compute: δwj = min{mink∈{P |k≤j & n+k≥j} uk −
(n+k)−1∑

l=k

tl,l+1 −
(n+k)−1∑

l=k+1
dl −

n+k∑
l=k+1

wl; Θj −
j∑

k=1
wk; ∆i −

i∑
k=1

wk};

9 Set: wj = wj + δwj ;

10 if δwj < ∆i −
i∑

k=1
wk then

11 Update: Ω = Ω \ {j};

12 if
i∑

k=1
wk ≥ ∆i then

13 break;

14 if
i∑

k=1
wk < ∆i & Ω = ∅ then

15 check = false
16 break;

To conclude, for the obtained basic feasible solution, there is no neighboring feasible
solution which strictly improves the objective function. Therefore, the obtained
solution is optimal. The implications can be finally summarized as follows:

1. There exists an optimal solution minimizing completions time, i.e. in which
service at end depot starts at the earliest time possible TM̄ = ETM̄ .

2. There exists an optimal solution in which service at the first node begins as
late as possible, i.e. T1 = LT1. In fact, given that at the beginning of the
sequence the vehicle is empty, i.e. L1 = 0, waiting in the first node can be
maximized without affecting the objective function, i.e. w1 = Θ1.

3. Building on the previous point, there exists an optimal solution in which
service at the first node begins at any time between ET1 and LT1 without
increasing the excess ride time of any request in the route.

4. For the case in which Θ1 ≥ ∆M̄ , the entire necessary waiting can be done
at the first node. As a result, we obtain multiple solutions in the following
structure: Θ1 − ∆M̄ ≤ w1 ≤ Θ1 and wi = 0 ∀i ∈ {2, . . . , M̄}.

5. For the case Θ1 ≤ ∆M̄ there exists an optimal solution where service at the
first node begins as late as possible at the first node (w1 = Θ1) and begins
as early as possible at the last node (∑M̄

i=1 wi = ∆M̄).
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Algorithm 3: Battery management algorithm
Input: vehicle route sequence (I = {1, . . . , M̄}), charging facilities {s1, . . . , sN }, charging rates αi,

discharging rate β, travel times ti,j , earliest start times ETi, latest start times LTi, SOC Bi

Output: Charging times Ei with i ∈ {s1, . . . , sN }, Boolean battery feasibility check
1 initialize check = true;
2 initialize B1 = B0 ;
3 while check = true do
4 for i → 2: do
5 Compute: Bi = Bi−1 − β × ti,j ;
6 if Bi < 0 then
7 the sub-sequence is infeasible → check = false;

8 if i ∈ S then
9 Set: Ei = min{LTi+1 − ETi; (Q − Bi)/αi};

10 Set: Bi = Bi + Ei;

4.4 Battery Management Heuristic
Next, after computing excess-time optimal schedules for all of the sub-sequences
in I, one needs to show that the schedule is battery-feasible. Indeed, the excess-
ride-time optimal scheduling procedure disregards battery considerations which
are instead part of the e-ADARP. Battery-feasibility aspects can be implemented
by integrating battery-related decision variables and constraints into (LP1), as
presented in section 2.2.2 of Chapter 2.

Note that vehicle battery levels can be seen as an inventory which can only
decrease with traveling. Then, for feasibility purposes, it is always better to
recharge as much as possible, as early as possible. If the schedule that maximizes
battery recharging does not satisfy the imposed battery management constraints,
the given sequence and excess-time optimal schedule is declared infeasible. Follow-
ing implications 4. and 5. from the previous page, if battery-feasible schedules do
exist, at least one of them exhibits the total user excess-ride time computed through
the proposed scheduling algorithm. Note that the proposed recharging procedure
is a heuristic since it cannot be formally proven optimal (e.g. maximizing the
charging time at station i may decrease opportunities to recharge more at following
charging stations). Denote by N the number of charging stations contained in
sequence I. Let Q represent the nominal capacity of the e-AVs β the discarging
rate, and Bi the battery inventory level at locations i ∈ I, and αs the charging
rate at charging facilities s ∈ S.

The procedure in Algorithm 3 is proposed for battery management. The
algorithm sequentially computes the battery inventory between successive nodes
in consideration of the initial battery level B1, the battery discharge rate β, and
the total travel time up to i. Note that battery discharge can be equally computed
by energy consumption models (Goeke and Schneider, 2015; Pelletier et al., 2017a).
During this iterative process, when a charging facility is encountered, its maximal
recharging time is bound by:

1. The difference between the service start time at the current node and the
latest service start time at the following node,

2. The time needed to fully recharge.
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To ensure feasibility, the recharging time at the station needs to be set to the
minimum of the two. Furthermore, earliest start times Ei and latest start times
Li are computed by taking into account the eventual waiting times obtained from
the scheduling algorithm. The procedure prematurely terminates only if a node
i features a negative battery inventory, after which the route is declared battery-
infeasible.

4.5 Numerical Experiments
Numerical experiments are performed on the second set of instances presented
in Chapter 2, i.e. the instances extracted by real data from Uber Technologies
Inc. Specifically, we extract the routing solutions obtained for those instances and
solve the scheduling problem through a linear program and the route evaluation
procedure proposed in this Chapter. As explained in Section 4.4, the linear program
is obtained by supplementing (LP1) with charging and battery management con-
straints/decision variables as proposed in Chapter 2. The numerical experiments
are implemented in Julia v.1.2 on a 2.50 GHz Intel(R) Core(TM) i7 processor with
16 Gb of RAM. The LP is implemented in the JuMP modeling language (Dunning,
Huchette, and Lubin, 2017) and solved with Gurobi v. 9.0.

Table 4.1 shows a comparison between the scheduling solution obtained through
the use of the LP and the route evaluation procedure. The first column indicates the
instance name, whereas the second column indicates the total number of visited
charging stations along the vehicle routes. As a reminder from Chapter 2, the
following convention is used for the instance names: <u><number of vehicles>-
<number of customers>-<minimum battery inventory ratio at the destination
depot>,“u" is used to refer to the instances adapted from real data from Uber
Technologies Inc. Furthermore, the reader is reminded that the minimum battery
inventory ratio is used to compute the minimal battery SOC all vehicles need to
have at the destination depot, i.e. a minimal battery ratio of 0.7 means vehicles
need to have at least 70% of their nominal battery capacity at the destination
depot. The following columns in Table 4.1 show the total vehicle charging time
(in minutes), the total vehicle waiting time (in minutes), the objective function
value (i.e. total user excess ride time, ERT, in minutes) and the total computing
time (CPU, in seconds) for the scheduling solutions obtained by the use of the
LP and the route evaluation procedure.

As it can be noted by the results in Table 4.1, the route evaluation procedure
provides equivalent objective function values to the LP, showing that the proposed
procedure returns optimal solutions for the given problems. Although the differ-
ence in CPU time between the two approaches is almost negligible for the tested
problems, the route evaluation procedure is on average faster and reduces the CPU
time by about a factor of 10, on average. Savings in terms of computing time
might be even more significant when considering larger problem instances or when
several static problems need to be solved in real time, e.g. as in the dynamic
e-ADARP presented in Chapter 3.

With respect to the total vehicle waiting time, it can be noted that the route
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Table 4.1: Comparison between the scheduling solution of the LP and the route
evaluation procedure. In order of appearance: instance name, total number of visited
stations, total vehicle recharging time from the LP solution [min], total vehicle waiting
time from the LP solution [min], objective function value (total user excess ride time)
from the LP solution [min], total cpu time to retrieve the LP solution [sec]; analogous
results for the route evaluation procedure.

Linear Program Route evaluation procedure

Name Stations Charging Waiting ERT CPU Charging Waiting ERT CPU
u2-16-0.1 1 5.72 155.47 0.00 0.022 11.12 132.70 0.00 0.001
u2-16-0.4 2 27.85 133.29 0.00 0.022 28.44 132.70 0.00 0.001
u2-16-0.7 3 69.98 89.09 0.00 0.015 70.31 78.39 0.00 0.001
u2-20-0.1 1 6.06 232.24 1.24 0.015 17.19 199.23 1.24 0.001
u2-20-0.4 2 20.75 216.55 1.24 0.018 39.08 198.23 1.24 0.001
u2-20-0.7 3 68.34 168.26 1.24 0.018 69.57 167.03 1.24 0.001
u2-24-0.1 3 41.11 162.80 14.14 0.038 76.20 162.80 14.14 0.001
u2-24-0.4 4 96.08 142.44 14.14 0.018 102.58 142.43 14.14 0.001
u3-18-0.1 2 0.00 371.99 0.00 0.027 36.66 293.03 0.00 0.001
u3-18-0.4 1 11.27 363.13 0.00 0.024 23.87 293.03 0.00 0.001
u3-18-0.7 3 67.00 330.02 0.00 0.019 69.31 292.69 0.00 0.001
u3-24-0.1 1 7.95 343.10 12.01 0.023 62.32 343.10 12.01 0.001
u3-24-0.4 3 25.79 358.09 12.01 0.028 74.59 343.10 12.01 0.001
u3-24-0.7 3 55.52 383.32 13.45 0.043 75.40 377.91 13.46 0.001
u3-30-0.1 1 0.00 580.17 4.50 0.030 12.36 498.52 4.50 0.002
u3-30-0.4 2 28.86 545.54 4.50 0.027 69.30 498.52 4.50 0.002
u3-30-0.7 4 94.75 484.17 6.29 0.027 96.54 480.83 6.28 0.002
u3-36-0.1 3 22.96 627.52 14.80 0.028 88.43 581.79 14.80 0.052
u3-36-0.4 3 59.89 593.05 19.57 0.031 88.43 583.35 19.57 0.002
u3-36-0.7 4 119.90 549.57 19.57 0.029 144.10 525.37 19.57 0.002
u4-16-0.1 0 0.00 232.44 8.06 0.021 0.00 186.03 8.06 0.000
u4-16-0.4 0 0.00 100.68 8.06 0.025 0.00 93.03 8.06 0.000
u4-16-0.7 3 76.64 207.02 8.06 0.022 96.62 187.04 8.06 0.000
u4-24-0.1 2 6.72 1093.30 4.67 0.024 69.77 805.15 4.67 0.001
u4-24-0.4 4 44.73 1370.86 4.67 0.029 121.85 1179.12 4.67 0.001
u4-24-0.7 3 96.64 981.14 4.67 0.028 129.32 803.55 4.67 0.001
u4-32-0.1 2 6.36 470.99 9.59 0.036 94.65 437.90 9.59 0.001
u4-32-0.4 2 28.94 541.87 9.59 0.035 54.30 437.90 9.59 0.001
u4-32-0.7 4 104.13 426.54 12.26 0.035 124.71 426.54 12.25 0.001
u4-40-0.1 2 0.92 1489.94 27.25 0.035 35.00 1448.48 27.25 0.002
u4-40-0.4 4 69.17 1605.05 27.55 0.035 109.50 1443.78 27.54 0.003
u4-48-0.1 4 27.65 826.22 34.83 0.060 117.45 736.42 34.83 0.002
u5-40-0.1 2 0.55 853.07 27.28 0.042 89.24 682.98 27.29 0.002
u5-40-0.4 4 58.82 778.42 30.40 0.042 152.10 682.08 30.40 0.001
u5-50-0.1 1 0.00 1115.87 31.08 0.043 18.32 961.06 31.08 0.002
u5-50-0.4 4 60.60 1129.49 32.80 0.045 148.77 961.59 32.80 0.002
u5-50-0.7 5 155.42 983.74 37.27 0.065 177.23 976.53 37.27 0.002

evaluation procedure returns lower total vehicle waiting times than the LP, which
are reduced by 19%, on average. Note that the LP is not designed to minimize
the total vehicle waiting time. Considering a specific vehicle, the LP minimizes
the total waiting time at locations in which the vehicle is non-empty. Instead, the
vehicle can idle as long as imposed by the time windows constraints at locations
in which it is empty, without affecting the objective function value. Contrarily,
the route evaluation procedure tries to assign as little waiting as possible at each
encountered location in the vehicle route. As such, the route evaluation procedure
returns excess-ride-time optimal schedules which minimize completion time.

With respect to the total charging time, it can be noted that the battery
heuristic returns higher total vehicle charging times. In particular, the charging
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time per vehicle is on average doubled in the battery heuristic than in the solution
obtained from the LP. As such, the battery heuristic maximizes the battery SOC
while maintaining scheduling feasiblity. Indeed, the LP is not designed to maximize
(nor minimize) battery levels but only to provide battery-feasible solutions. As
such, a solution maximizing or minimizing the total battery inventory is regarded
as equivalent by the LP. Note that some of the studied instances consider visiting
recharging stations before returning to the destination depot, even when recharging
is not needed. In particular, this case realizes when the location of the visited
charging station coincides with the location of the destination depot and the
minimum battery inventory ratio is un-binding, as for example in instance u3-18-0.1,
u3-30-0.1, and u5-50-0.1. Even in those specific cases, the battery heuristic returns
maximal recharging times and as such vehicle battery inventories are maximized
at the destination depots.

4.6 Summary
In this study, we proposed an excess-ride-time procedure for scheduling dial-a-
ride instances. The procedure is shown optimal and can be potentially employed
to: 1) reduce mixed-integer-linear programs by time-dependent decision variables
and constraints, even when the objective function includes time-related aspects;
2) efficiently solve scheduling problems from static and dynamic metaheuristic
appraches. For the e-ADARP, we further propose a battery heuristic which can
be used when the vehicle routes include one or more visits to charging facilities.
The heuristic is needed to provide battery-feasible charging plans for excess-time-
optimal vehicle schedules. However, note that the battery heuristic is not proven
to be an exact procedure and builds on the assumption that charging as much as
possible as early as possible is the best strategy for battery-feasibility.

Computational experiments are carried on static e-ADARP instances extracted
from real ride-shares. Experiments show that the route evaluation procedure
is computationally more efficient than solving a linear program, while returning
optimal scheduling decisions. Furthermore, results show that the proposed excess-
time-optimal scheduling procedure minimizes completion time whereas the battery
heuristic maximizes the vehicle SOC. Future efforts may focus on the comparison
of the proposed route evaluation procedure against state-of-the art scheduling
heuristics and on larger benchmark instances from literature.
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5
Conclusion

In this concluding chapter, Section 5.1 revisits the objectives, contribution, and
main findings of this thesis; Section 5.2 examines practical implications and chal-
lenges related to the direct applicability of the methods discussed herein; Section 5.3
closes the present thesis by identifying and discussing interesting directions for
future research.

5.1 Main Findings
This thesis proposes mathematical optimization frameworks to model and solve
autonomous ride-sharing operations. The introduced problem is denoted by the
electric autonomous dial-a-ride problem, i.e. the e-ADARP, and incorporates
considerations related to battery and autonomous management, other than typical
dial-a-ride aspects. In particular, the autonomy of the vehicles is treated by relaxing
maximum-route-duration constraints and by considering a set of optional destina-
tion depots, as autonomous vehicles can operate non-stop and relocate to optional
parking locations within the city limits. Furthermore, the autonomous nature of
the fleet imply vehicles can continuously detour to serve upcoming requests or
according to other changing conditions (e.g. traffic congestion, among others).
Battery management is modeled through decision variables and constraints which
are designed to let vehicles recharge as much as needed at the visited charging
facilities. As such, new features incorporated in the problem definition include
charging stations, multiple destination depots, partial recharge times, and final
battery level requirements. The goal of the problem is to minimize the total
operational cost, measured by the vehicle total travel time, and user dissatisfaction,
measured by the extra time users spend on-board because of ride-sharing.

The e-ADARP is studied in light of static scenarios, in which all demand
is known in advance and needs to be served, and dynamic scenarios, in which
demand is revealed on-line and may be rejected. In Chapter 2, the static e-ADARP
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is modeled through a 3-indexed and a 2-indexed mixed integer linear program
which is solved through a branch-and-cut framework, enhanced by problem-specific
valid inequalities and separation heuristics. Extensive numerical experiments are
performed on benchmark instances from literature and new instances extracted
from real ride-sharing data. Results show that the introduced problem features
produce a new challenging DARP variant and that the proposed problem-specific
valid inequalities are among the most effective ones when battery-management
aspects are most important.

In Chapter 3, the dynamic e-ADARP is modeled through an event-based simula-
tion approach and solved through a two-phase metaheuristic approach. The meta-
heuristic employs a machine learning-based large neighborhood search heuristic
which is trained on massive historical information from previously solved problems.
The construction of the labeled dataset as well as the selection of aggregate vehicle
routing features is part of the proposed approach. Extensive results are performed
on real dynamic ride-sharing data and show that the proposed metaheuristic is an
alternative to state-of-the art approaches and that learning from past scenarios may
enhance the search under circumstances. Furthermore, results show the potential
of statistical learning methods to infer appropriate neighborhood moves from local
search-based metaheuristics and highlight the most determinant vehicle routing
features from the proposed optimization policy.

Finally, Chapter 4 proposes an exact scheduling procedure which can be em-
ployed to find excess-ride-optimal plans for the e-ADARP, as well as other dial-a-
ride problems. Specifically for the e-ADARP, we provide a battery management
heuristic which supplements the scheduling procedure by providing recharging
plans. Results show that the proposed scheduling algorithm is a competitive
alternative to a linear-program approach and that it can be used to efficiently
reduce dial-a-ride formulations or in the context of on-line operations. Furthermore,
results show that the proposed procedure minimizes the service completion time
while maximizing battery inventory levels at the end of service.

5.2 Practical Implications
Autonomous ride-sharing is a relatively new business model which has recently
been deployed in several countries, including Switzerland (CNN, 2018). According
to various estimates, ride-sharing already attracts more than 50,000 Uber pools per
week in New York City and is expected to further develop with the introduction of
autonomous rides (Mikaela, 2015). Given that the success of ride-sharing resides on
the efficiency of its services, this thesis offers methological frameworks to practically
manage and quantify the benefits of autonomous fleets, with the aim of maximizing
user satisfaction.

The proposed operational frameworks in this thesis build on real-world ride-
sharing instances and may be equally applied to other demand scenarios. Interest-
ing practical insights from this thesis include a comparison between the quality of
service offered by autonomous and conventional vehicles. Indeed, given that empty
autonomous vehicles may need to use some of their service time to recharge, the
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use of an autonomous fleet naturally pushes towards carpooling solutions. However,
this feature does not heavily impact operational cost, which in this thesis is shown
to only increase by an average of 2% between conventional and autonomous vehicles.
Similarly, the consideration of level of service along with operational cost aspects
allows to sensibly decrease user detours, at no more than 2% extra cost. This thesis
also offers a comparison between state-of-the-art optimization policies, which are
demand-agnostic, with the proposed machine learning-based optimization policy
in Chapter 3, which exploits information from past ride-shares. As shown in
this thesis, in certain instances, ride-sharing service may be greatly improved
by making optimal decisions which are learned from past demand patterns. The
quality of autonomous ride-sharing mainly depends on user satisfaction, response
time, and vehicle availability. As such, Chapter 4 proposes an efficient service-
oriented scheduling algorithm which minimizes service completion time and returns
optimal timing plans within a few milliseconds. In the studied problem, vehicles
are electric and their availability for service correlates to their state of charge.
Indeed, discharged vehicles are unavailable for service and need to idle as long as to
sufficiently recharge their battery inventories. As such, maximizing vehicle battery
levels at visited recharging facilities is a crucial aspect for electric autonomous ride-
sharing. As shown by the results from the battery management algorithm from
Chapter 4, recharging phases can be appropriately planned and maximized at the
visited stations, without penalizing the level of service.

5.3 Future Research Directions
This thesis treats a complex passenger mobility problem integrating autonomous
mobility and ride-sharing, whose solution relies on the efficient implementation
of algorithms combining concepts from optimization, simulation, and statistical
learning. The problem is relatively new and thus leads towards multiple future
directions and research opportunities.

From an operational perspective and in the specifics of the Swiss case, the
use of autonomous ride-sharing may be further studied with respect to the op-
portunities it offers to connect de-centralized villages to main city centers (Cueni,
2016). Specifically, some of these villages need to be connected to main transporta-
tion hubs through a public transport service, which is currently unavailable due
to infrastructure limitations. Given the sparse demand for transport generated
from such locations, research directions may consider investigating the use of on-
demand dial-a-ride transit to provide connection to other transportation services,
e.g. railways, main bus lines, etc. From an optimization perspective, this direction
would involve deriving optimization models which consider optional transfers and
coordination with several transportation options.

In the most general context of on-line autonomous ride sharing, an interesting
research direction may also focus on the modeling look-ahead strategies to drive
optimization frameworks by estimates of future demand. Indeed, ride-sharing
demand is a complex phenomenon to be modeled, let alone foresee. However,
using approximate models to forecast ride-sharing demand may induce interesting
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operational decisions and conclusions. For example, it may be beneficial to reject
some requests if this is expected to decrease the total number of served requests
later on. Concurrently, it may be beneficial to have information on future ride-
shares to strategically relocate vehicles in the serviced area and design appropriate
pricing schemes.

Finally, the combination of machine learning and optimization leads to very
interesting research directions. Indeed, there are several ride-sharing phenomena
which can only be approximately modeled analytically and can instead be more
precisely depicted by extrapolating data-driven models. This relates to real-world
phenomena, as for example ride-sharing demand, but also more abstract phenom-
ena specifically related to the way optimization algorithms operate. For example,
machine learning algorithms could approximate complex optimal decisions from
optimization policies. In this thesis we attempt to achieve results in this direction
by trying to learn which algorithm is most efficient in explore neighboring solutions
within a large neighborhood search metaheuristic. Our results suggest that there
is room for improvement and further investigation in this direction.
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