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ABSTRACT

The objective of this thesis is to provide a mathematical and computational framework for
the proactive maintenance of complex systems with a particular application to structural
health monitoring (SHM). SHM techniques rely primarily on sensor responses to assess the
risk associated with a structure of interest and seek to provide a support for automated
decision-making strategies. An efficient integration of experimental measurements and
numerical models is needed to exhaustively describe the environmental and operational
scenarios that a structure undergoes during its life time.

We propose a simulation-based approach that combines the solution of a parametric
time-dependent partial differential equation (PDE) for multiple input parameters with
data-driven techniques to discriminate between healthy and damaged configurations.
This process exploits an offline-online decomposition of tasks. The dataset of synthetic
sensor measurements is generated offline by repeatedly solving a parametric PDE for
a predefined configuration under several healthy variations. A reduced order model is
employed to overcome the computational bottleneck associated with the many-query
context by building a projection-based reduced basis method in combination with a
Laplace-domain solver. Weeks method is adopted to numerically invert the Laplace
transform and transform the signals to the time domain. The datasets are used to train
various one-class machine learning algorithms in a semi-supervised setting, sensor by
sensor. Finally, the outputs of the classifiers are used to assess the state of damage of
the structure online. Using a decision-level fusion strategy, we provide insight on the
existence, location, and severity of possible damages.

The performance of SHM depends critically on the quality of the sensor measurements
although their availability is often limited due to budget constraints and installation
difficulties. We therefore propose a strategy to systematically place a fixed number of
sensors on a structure of interest to minimize uncertainty at unsensed locations. The
so-called inducing points, an outcome of sparse Gaussian processes, originally introduced
to overcome the computational burden associated with performing a regression task with
standard Gaussian processes, are here used to guide the sensor placement. A clustering
approach is employed to select the sensor locations among a set of inducing points,
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computed for different input parameters.

We apply this methodology to 2D and 3D problems to mimic the vibrational behavior
of complex structures under the effect of an active source and show the effectiveness of
the approach for (i) detecting damaged geometries and (i7) identifying the locations for
a network of sensors. This framework considers the realistic case where damage types
and locations are a priori unknown, thus overcoming the main limitation of existing

simulation-based damage detection and sensor placement strategies for SHM.

Key words: simulation-based anomaly detection, reduced order models, one-class
classification, sensor placement, structural health monitoring, digital twin.



RESUME

L’objectif de cette thése est de fournir un cadre mathématique et computationnel pour
une maintenance proactive de systémes complexes avec une application particuliére
a la surveillance de la santé structurelle. Les techniques de surveillance de la santé
structurelle s’appuient principalement sur les réponses de capteurs pour évaluer le risque
associé a une structure et cherchent a informer le développement d’une stratégie de prise
de décision automatique. Une intégration efficace des mesures expérimentales et des
modéles numériques est nécessaire afin de décrire de maniére exhaustive les scénarios
environnementaux et opérationnels qu’'une structure subit au cours de sa vie.

Nous proposons ici une approche basée sur des simulations qui combine d’une part la
résolution d’'une équation aux dérivées partielles (EDP) paramétrique et dépendante
du temps pour une multitude de paramétres et d’autre part des techniques guidées
par les données (data-driven) ayant pour but de différencier entre des configurations
saines et endommagées. Ce processus exploite une décomposition des taches entre une
phase en amont (offline) et une phase en temps réel (online). Des mesures synthétiques
de capteurs sont générées en amont en résolvant 'EDP paramétrique pour plusieurs
instances saines d’une configuration prédéfinie. Pour surpasser le colit computationnel lié
a la résolution répétée de ’'EDP, nous utilisons un modéle d’ordre réduit en construisant
une base réduite associée au probléme de départ dans le domaine de Laplace. Nous
choisissons la méthode de Weeks pour inverser numériquement la transformée de Laplace
et transformer le signal dans le domain temporel. Les mesures synthétiques sont ensuite
utilisées pour entrainer plusieurs algorithms d’apprentissage automatique a classe unique
dans un contexte d’apprentissage semi-supervisé capteur par capteur. Finalement, les
résultats de ces classificateurs sont utilisés pour évaluer I'état d’endommagement de la
structure en temps réel. Nous parvenons ainsi & fournir un apercu de 'existence, de la
position, et de la sévérité de possibles endommagements en utilisant une stratégie de
décision regroupant les informations apres la classification locale.

La performance de la surveillance de la santé structurelle est extrémement influencée par
la qualité des mesures des capteurs, or leur nombre est souvent limité pour des questions
de budget ou de difficulté d’installation. Nous proposons alors une stratégie afin de placer
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systématiquement un nombre prédéfini de capteurs sur une structure en minimisant
I'incertitude aux points ne disposant pas de capteurs. Les points nommés inducteurs,
résultats de processus Gaussiens sparses introduits originellement afin de surpasser le cofit
computationnel associé au calcul de régression dans les processus Gaussiens standards, sont
ici utilisés comme guides pour le placement des capteurs. Une approche de regroupement
(clustering) est utilisée pour sélectionner la position des capteurs parmi une série de points
inducteurs calculés pour différentes valeurs des paramétres d’entrée.

Nous appliquons cette méthodologie & des problémes en 2D et en 3D en simulant le
comportement vibratoire de structures complexes sous 'influence d’une source active et
nous montrons l'efficacité de cette approche pour (i) détecter des géométries endommagées
et (i¢) identifier ou installer un réseau de capteurs de taille prédéfinie. Nous considérons
un cas réaliste pour la surveillance de la santé structurelle ot les types d’endommagements
et leurs positions sont a priori inconnus, surmontant ainsi la limitation principale des
stratégies dans la literature qui, au contraire, simulent les configurations saines ainsi que
celles endommagées, perdant ainsi en généralité.

Mots cléfs : détection d’anomalies basée sur des simulations, models d’ordre réduit,
classement automatique a classe unique, positionnement des capteurs, surveillance de la
santé structurelle, jumeau numérique.



SOMMARIO

L’obiettivo di questa tesi é quello di fornire un quadro matematico e computazionale
per la manutenzione preventiva di sistemi complessi con una particolare attenzione ad
applicazioni nel campo del monitoraggio dell’integrita strutturale. Le tecniche per il
monitoraggio dell’integrita strutturale valutano il rischio associato ad una struttura
basandosi su segnali provenienti da sensori posizionati sulla stessa ed ambiscono a
sviluppare una strategia basata su un processo decisionale automatico. Un’efficace unione
di misure sperimentali e di modelli numerici & necessaria al fine di descrivere in maniera
esauriente i diversi scenari ambientali e operativi che una struttura subisce nel corso della
sua vita.

Proponiamo un approccio fondato su simulazioni che combina la risoluzione di un’equa-
zione alle derivate parziali (EDP) parametrizzata e tempo-dipendente per un elevato
numero di parametri di input con delle tecniche data-driven per poter distinguere le
configurazioni sane da quelle danneggiate. Questo processo si serve di una decomposizione
offline-online. I dati sensoriali sintetici sono generati offline risolvendo 'EDP parame-
trizzata considerando molteplici istanze sane per la stessa configurazione predefinita.
Per abbattere i costi computazionali legati alla bisogno di valutare la soluzione di un
grande numero di problemi, utilizziamo un modello di ordine ridotto costruendo una
base ridotta associata al problema originale nel dominio di Laplace. Successivamente,
facciamo affidamento al metodo di Weeks per invertire numericamente la trasformata di
Laplace e trasformare il segnale nel dominio del tempo. I dati sintetici sono poi usati per
allenare diversi algoritmi di apprendimento automatico a classe unica in un contesto di
apprendimento semi-supervisionato, sensore per sensore. Infine, i risultati dei classificatori,
utilizzando una strategia di raggruppamento delle informazioni dopo la classificazione
locale, forniscono una panoramica sull’esistenza, posizione, e gravita dei possibili danni.
La qualita dei dati sensoriali costituisce un fattore cruciale per la performance del
monitoraggio dell’integrita strutturale, tuttavia il numero di sensori disponibili é spesso
limitato da questioni legate al costo o alla difficolta di installazione. Proponiamo quindi
una strategia per collocare sistematicamente un numero predefinito di sensori su una
struttura di interesse in modo da minimizzare I'incertezza ove i sensori non sono presenti.
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I cosiddetti punti induttori (inducing points in inglese), un risultato dei processi Gaussiani
sparsi, originariamente introdotti per abbattere i costi computazionali associati all’analisi
della regressione nei processi Gaussiani standard, sono qui utilizzati come guida per il
posizionamento dei sensori. Successivamente, adottiamo un approccio di analisi dei gruppi
(clustering in inglese) per selezionare le posizioni finali fra una serie di punti induttori
calcolati per diversi valori dei parametri di input.

Applichiamo questa metodologia a dei problemi in 2D e 3D simulando il comportamento
vibratorio di strutture complesse sotto 'effetto di una sorgente attiva e ne dimostriamo
Pefficacia nel (7) rilevare le geometrie danneggiate e (ii) identificare le posizioni in
cui collocare la rete di sensori. Il nostro approccio per il monitoraggio dell’integrita
strutturale considera il caso realistico in cui le tipologie di danni e le loro posizioni
sono a priori sconosciute, superando cosi il limite principale delle strategie in letteratura
che, contrariamente, simulano sia configurazioni sane che danneggiate, perdendo cosi di
generalita.

Parole chiave: rilevamento di anomalie basato su simulazioni, modelli di ordine ridot-
to, apprendimento automatico a classe unica, posizionamento di sensori, monitoraggio
dell’integrita strutturale, gemello digitale.
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CHAPTER 1

INTRODUCTION

Unexpected bridge collapses, offshore oil platforms disasters, or aerospace structural
failures can have tremendous consequences in terms of fatalities, economic loss, and
environmental pollution. Many existing private and public assets, such as civil engineering
infrastructures, buildings, or aircrafts, require reliable damage detection techniques to be
safely used, especially during their inevitable ageing. When monitoring a structure over
time, its deterioration and damages represent a great concern and the early detection of
critical decay might prevent failures that can cause sudden shutdowns or even catastrophes
with severe life-safety and economic repercussions.

The collapse of the Morandi bridge in Genoa, in Italy, which killed 43 people in August
2018 (see Figure 1.1), or the oil spill into the Ambarnaya river in Siberia, caused by a
damaged storage tank at the Nornickel power plant in May 2020 (see Figure 1.2), are
two recent examples for which the implementation of a monitoring system could have
played a crucial role in forecasting and preventing these accidents. A study of the collapse
of the Morandi bridge, presented in [Mor19], identifies two principal aspects that may
have affected the structural response: (i) the ageing and deterioration of the structural
materials, and (i7) the increased traffic load due to the evolution of transport in general
and to the development of the port of Genoa, both of which were probably underestimated
at the time of the structural design in the 1960s. For the environmental disaster near
the city of Norilsk, in the north of Russia, it is believed that the thawing of permafrost,
as a result of climate change, caused the power plant reservoir to collapse and spill
approximately 20’000 tonnes of diesel fuel, which stained vast portions of the Ambarnaya

1

river red, threatening the Artic ecosystem'. The ability to monitor the development

and the evolution of cracks and other deterioration indices motivates the introduction

"https:/ /www.bbc.com/news/world-europe-52915807. BBC News: Arctic Circle oil spill prompts
Putin to declare state of emergency.
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Figure 1.2 — The Ambarnaya river turned bright red after the oil leakage from a fuel tank
at a power plant in the Siberian city of Norilsk, in Russia, in May 20202

of structural health monitoring (SHM) systems. SHM refers to automated monitoring
procedures that seek to provide reliable information on the performance and integrity of
a structure in real time. It has become the subject of recent studies with applications
not only in civil engineering and the aerospace industry, but also in the conservation of
cultural heritage structures, see, e.g., [UCC*17; CDAMU17|.

In the last decades, economic and life-safety advantages promised by SHM techniques
have motivated the transition from traditional run-to-failure and time-based maintenance
to condition-based maintenance strategies to detect unexpected failures [FW12|. In the
run-to-failure approach, sometimes called breakdown-based maintenance, the system is
operated until some critical component fails and is replaced. Time-based maintenance,

2(©Marine Rescue Service/ AFP.
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while being a more proactive approach than run-to-failure, replaces components at fixed
time intervals regardless of their damage state. Often economic savings could be made
by exploiting the component longer. Indeed, a structure may continue to perform its
function even if small damages are present, and a trade-off between economic and safety
impact should be taken into account when defining a maintenance strategy of a system.
In the context of SHM, the combination of sensor measurements, numerical models
simulating the underlying behavior of a structure of interest under different environmental
and operational conditions, and machine learning techniques has led to the design of
structural digital twins [WWBG20]. These accurate virtual representations of complex
assets, which are equipped with cutting-edge sensor technology, replace costly and complex
visual inspections. Indeed, the direct evaluation of structural damages often entails the
shutdown of the installation; moreover, the location of damages may be difficult, if not
impossible, to observe directly. The evolution to digital inspections allow for a significant
improvement in the predictive capability of the structural state of damage. Ultimately
digital twins seek to provide a unified framework to support an automated decision-making
strategy in real-time.

Because the design of SHM technologies benefits from the interplay of numerous fields of
science and engineering, a synergistic, multidisciplinary approach is needed to efficiently
deal with this topic. We refer to [FW12], where SHM systems are presented by highlighting
the combination of models of structural dynamics, signal processing, detection theory,
machine learning, probability and statistics, and sensor networks. In this thesis, we
present an SHM approach blending numerical modeling and data-driven techniques.

1.1 Background

Given a structure of interest, the principal objective of SHM is to provide an answer to the
question is damage present? Additionally, the damage state of a system can be assessed
using a hierarchical identification process, aiming at answering questions regarding the
location, the type, the extent, and the prognosis of damage. Damage is here considered
as a change to the material and/or geometrical property of a system with respect to a
prior healthy state. Machine learning techniques provide a way for automated recognition
of patterns and regularities in data with the possibility of assigning a label to a state
observation. For this reason, pattern recognition and machine learning algorithms become
an essential building block for efficient condition-based monitoring techniques.

In SHM, there are two principal approaches, namely the inverse-problem or model-based
approach and the data-based approach. Both processes fully exploit an offline-online
decomposition of tasks. In a model-based methodology, the goal is to estimate the
parameters that minimize the difference between the model response, built and calibrated
during the offline phase, and new sensor measurements, acquired online from the structure.
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For every new measured data, the model is updated and the new model solution is used
to assess the state of damage of the system. Such an inverse-problem approach is often
ill-posed and requires many online PDE solves, which is not suitable for real-time damage
assessment [FW12]. In a data-based approach, the offline phase consists in building a
database of signals which represent the behavior of the structure of interest under different
conditions. During the online phase, real experimental time-signals, collected from sensors
placed on a structure, are compared with those simulated offline using machine learning
techniques, i.e., a classifier is used to discriminate between damaged and undamaged
states.

It is important to observe that the training data used in the data-based approach are not
necessarily only experimental measurements collected from sensors placed on the structure
of interest or similar structures. Instead, the information carried in physics-based models
can be leveraged to obtain a richer and more reliable estimate of the structural behavior by
building a parametric mathematical model of the monitored structure. Thanks to efficient
numerical models, many more baseline scenarios, representing the natural variations
of the structure, can be included in the dataset. The framework that combines data-
based procedures with synthetic data is often referred to as a simulation-based approach
and this is what we employ in this thesis. This line of research, often associated with
surrogate modeling approaches, has gained popularity in the last ten years, see, e.g.,
[LAW15; TPYP18; QLACT19; ABC19; KKW20; RMMC20; BWW20| and references
therein.

Data-driven SHM is a very broad topic and has been studied from many different points
of view, especially in the civil engineering and aerospace communities. SHM monitoring
approaches are often classified in two categories: wave propagation approaches and
vibration-based approaches. This separation is connected with the type of excitation
system employed. Active sources refer to a system where a known input is used to excite
the structure to enhance the damage detection process, while passive systems are based
on ambient excitation. The former methods aim to detect damages by examining the
distortions in propagating elastic waves as a result of reflections and amplitude attenuations
when intersecting the damage boundary. The goal of vibration-based SHM approaches
instead is to identify changes in the natural frequencies by analyzing the principal modes.
Traditionally, wave-based monitoring approaches, based on piezoelectric materials, are
popular in the aerospace industry or in piping systems to detect damages in complex
structural components, while vibration-based SHM studies are often used in the context
of large structures, where ambient excitation is often the only practical way to excite
the global dynamic response of the structure, e.g., wind or wave motion for an offshore
platform, and vehicular or pedestrian traffic for a bridge structure. Nevertheless, relying
on a known and controlled source results in a more reliable method for failure detection
compared to passive sensing systems, for which a robust data normalization procedure is
needed to distinguish the dynamic response between damage and changes in the operational
and environmental conditions. In this thesis we rely on the parametric acoustic-elastic
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wave equation to design a monitoring approach based on guided-waves and relying on
a local excitation. The guided-wave approach belongs to the so-called non-destructive
evaluation technologies in the SHM context and they are typically regarded as a more
offline approach, i.e., pertaining to targeted periodic inspections. Nonetheless, the generic
damage detection framework developed in this thesis could be also extended to other types
of monitoring technologies, including the prominent vibration-based approach, provided
that the governing equation and source of excitation are suitably changed. We highlight
the works related to diagnostics Lamb waves and wavelet transforms, which are often
integrated with piezoelectric sensors/actuators, see, e.g., [IC04; LY01; GPC17; SM09].
This line of work focuses primarily on diagnostic signal generation and signal processing
and it aims at measuring the changes in the received signals after sending diagnostic stress
or ultrasonic waves along the structures. Alternatively, works considering the changes in
natural frequencies and mode shape as a consequence of flaws in structures under ambient
excitations, as for example [DFPS96; KRCS03; OCDS17|, are worth mentioning,.

Despite the numerous works related to structural damage identification, only few combine
machine learning techniques with numerical simulations. In [ZA96|, the authors propose
to use a neural network classifier to measure the size of cracks by using synthetic data
generated with 2D finite element models of cracked rivet holes under the propagation
of longitudinal wave modes. An efficient strategy to The performance is validated on
experimental data of specimens containing similarly sized cracks. Similarly, in [LHSLO2]
simulations are used to generate waveforms, which are then used to train a neural network
to either classify crack types or identify their locations. Both the training and test sets
are obtained by extracting a few relevant features from the synthetic response to better
distinguish salient characteristics of different flaw classes. The estimation of fatigue
degradation of composite wind turbine blades and the condition monitoring of wind-farms,
where the joint effect of multiple turbines potentially contributes in a detrimental manner
to fatigue life, is addressed in [MAC17; MAC20|. Here, the authors combine surrogate
modeling with variational autoencoders to quantify levels of statistical deviation on
condition monitoring data. Following a common strategy in SHM, in [MAC20|, the
deviation in terms of probabilistic distance from the data-driven model describing the
dynamics of the healthy system serves as outlier detection. Aerospace applications are
presented in [LAW15], where real time sensor information is compared to simulation data
from precomputed damaged scenarios to update the estimates of vehicle capabilities using
a Bayesian classification process. In [TPYP18]|, the authors propose a simulation-based
procedure to map measured data to the relevant diagnostic class by comparing the
performances of different supervised learning techniques. The dataset is generated by
exploiting parametric model order reduction techniques to make the computational effort
of constructing the synthetic database affordable, while an experimental apparatus is
used for testing. An a priori error analysis is provided to link the nominal performance
on synthetic data to experimental performance.
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1.2 Objectives

The objective of this thesis is to develop a mathematical and computational framework
to monitor a structure of interest in the absence of known damaged configurations. In
particular, the prediction of the damage state is here obtained by applying pattern
recognition methods to a synthetic dataset obtained by simulating the propagation of
acoustic-elastic waves in the structure of interest under the effect of a known excitation.
The techniques developed in this thesis aim to design an all-round framework to address
the following three research questions:

e How to efficiently generate a synthetic database of sensor signals that
mimic the measurements acquired from a real structure while taking
into account the baseline variations.

The combination of parametrized mathematical models with experimental data is
crucial to guarantee reliable monitoring of the lifecycle phases of a structure. We
focus here on applications where the physical system can be modeled by parametric
partial differential equations (pPDEs), e.g., offshore wind turbines and concrete
oil-rigs, or smaller components such as wind turbine blades, composite plates, or
pipes. To simulate natural variations of a structure, i.e., baseline environmental
conditions and standard operation, a reduced order model is required to overcome
the computational burden associated with a many query problem.

e How to detect, localize, and quantify the severity of damages in the
absence of anomalous data.

While novelty detection is popular in the structural damage identification community;,
see, e.g., [LB14; DSCO7; AKM™17], it has, to the authors’ knowledge, never been
studied when combined with synthetic datasets. The goal is to compare the
classification results of different anomaly detection strategies trained on a dataset
composed solely of healthy samples. Depending on the machine learning algorithm,
different feature extraction and feature selection strategies can be investigated.

e How to systematically place a network of sensors in the absence of
anomalous data.

Even though there exists a variety of SHM techniques, mainly differing in the
quantity of interest to estimate or in the type of sensors employed, they all rely on
a network of sensors, which are constrained by various requirements and limitations
(cost, accessibility, etc.). The correct positioning of the sensors can have a drastic
impact on the monitoring efficiency [OSM19]. Existing sensor placement strategies
are designed under the assumption that a certain degree of information is available
on the damage type and location. As such, existing strategies are damage-dependent
and do not generalize well to a new type or new location of damages. We aim at
providing a method based on healthy configurations only.
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These objectives offer the need to combine different techniques coming from scientific
computing, numerical analysis, and machine learning to provide new approaches for
the solution of simulation-based anomaly detection in the context of structural health

monitoring.

1.3 Contributions and outline of the thesis

The main contributions of this thesis are:

e By making the realistic assumption that real sensors measure time signals of a
predefined quantity, e.g., displacement or accelerations, we solve the PDEs in the
whole domain and create a dataset of time signals, extracted at the sensors locations.
Instead of considering a time discretization, we solve the PDE in the Laplace domain
and reconstruct the time-signals by using Weeks method, a numerical inverse Laplace
transform. The latter allows us to recover information of the transient phase, which

is a key feature for the classification step.

e Since machine learning algorithms are well-known to behave better when using a
large dataset [Bis06], collecting a synthetic database requires a model order reduction
(MOR) approach to overcome the computational burden involved in the repeated
solution of pPDEs. As employed in other works of simulation-based SHM, see, e.g.,
[LAW15; TPYP18; QLACT19; KKW20|, we use the Reduced Basis (RB) method, a
projection-based method, based on reconstructing the solution for a new parameter
as a linear combination of suitable basis functions generated from the high-fidelity
problem. In particular, for stability reasons, we introduce a proper symplectic
decomposition with a symplectic Galerkin projection.

e We propose an anomaly detection procedure where the database is constructed from
synthetic sensor data obtained from undamaged configurations only. Features are
then extracted from this baseline system. Any subsequent data, which may originate
from either a healthy or a damaged configuration, can be tested to evaluate an
anomaly score function to see if the new measurement conforms with the generated
dataset. This allows a binary classification: it either is an inlier, i.e., it belongs to the
cluster of previously considered healthy signals, or it is an outlier. This corresponds
to a semi-supervised learning approach, also called one-class classification method,
where labeled data, belonging to the “normal” class, are used in the training phase
and unlabeled data from both classes are used in the test phase to identify abnormal
data which deviate from the normal model [PCCT14; GU16|]. With one-class
algorithms it is possible to locate the damage by training a different classifier for
each sensor, using the measurements collected at each sensor, see, e.g., [LB14].
Additionally, by relying on a real valued anomaly score function, we can estimate
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the severity of the damage. We test the performance of several one-class classifiers
on 2D and 3D synthetic datasets.

This procedure is sometimes called novelty or outlier detection and is an alternative
to supervised or unsupervised anomaly detection techniques. In the former case,
the training set is composed of fully labeled data, obtained from both healthy and
damaged structures by predefining a number of exhaustive configuration classes
for the described system. The classifier then maps each new sensor data to one of
the anticipated classes. The advantage of our approach over supervised learning
methods is substantial as there is no need to model all possible types of damage
in a structure. This represents a significant gain in terms of development cost
and computational time, e.g., we can consider physical parametrizations only,
without having to include complex geometrical parametrizations in the RB model.
Furthermore, it is unrealistic to anticipate all types of damage and the number
of different classification labels may grow rapidly. Unsupervised learning, instead,
does not require any label and it does not differentiate between training and test
phases. The anomaly detection algorithm is based solely on intrinsic properties of
the dataset, typically using a distance- or density-based approach |[GU16|. Since
in a simulation-based approach labels of generated data are always available, the
unsupervised learning technique is not suitable.

o We integrate the synthetic dataset of healthy configurations with a modified varia-
tional sparse Gaussian process (GP) method to systematically place a fixed number
of sensors on a structure of interest. The variational sparse Gaussian process method
offers a tool to identify a predefined number of spacial positions which minimizes
the reconstruction error of an output of interest at all unsensed locations. The
feature-based dataset, used for anomaly detection, is chosen here as output of inter-
est, thus providing an appropriate indicator of the damage detection performance
of a given network.

e We present 2D and 3D digital twins examples, where experimental data from
damaged and undamaged structures are replaced with noisy synthetic data. However,
the presented methodology is general and permits the incorporation of experimental
data, after providing a suitable model calibration.

This thesis is organized as follows:

Chapter 2 provides an overview of the general data-driven approach used in this thesis
and highlights the decomposition of tasks into two phases: expensive offline simulations
to fully characterize the response of healthy structures, followed by the training of a
classifier to be used for rapid online testing of new experimental sensor responses. Our
systematic sensor placement strategy is also introduced. By setting the notation, we
provide the basis and the connections to develop the details in the following chapters.

Chapter 3 develops the mathematical details to construct the synthetic database by
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emphasizing the important role of MOR to avoid the computational burden associated
with the repeated solution of large systems of equations. In particular, we apply a
projection-based RB method to the acoustic-elastic wave equation in Laplace domain and
we provide its reconstruction in the time domain using Weeks method.

In Chapter 4, after motivating our choice of using a decision-level fusion approach to train
multiple classifiers, we illustrate various semi-supervised one-class classification strategies.
We present dimensionality reduction methods to avoid the curse of dimensionality by
means of ad-hoc feature extraction and data compression. We conclude by comparing the
classification results obtained with four one-class classification methods (one-class Support
Vector Machines, Isolation Forests, Local Outlier Factor, and Variational Autoencoders)
and highlight their strengths in detecting and localizing outliers on noisy synthetic test
samples. We note that the numerical results obtained with one-class Support Vector
Machines for 2D and 3D geometries are published in [BH20|, while the results obtained
with Isolation Forests and Local Outlier Factor for the 2D geometry are an extension
to those presented in Emeric Sibieude’s semester project [SBH19|, and the preliminary
results obtained with Variational Autoencoders for the 2D geometry are a joint work with
Dr. Zhenying Zhang.

Chapter 5 presents a systematic sensor placement strategy which only requires healthy
samples. After introducing the general setting of GP and sparse GP, we highlight how
variational sparse GP can be used as tool for sensor placement. We propose different
indicators to quantify the quality of the placement and provide numerical examples,
including 2D and 3D examples, based on a wave-based monitoring approach, and an
example of a real engineering application using a static monitoring approach.

Finally, conclusions and future developments are offered in Chapter 6.

This thesis contains results which have already been published, see, [BH20; BZH20].

1.4 Implementation details

The numerical simulations carried out in this thesis were performed using the open
source library computing platform for solving PDEs FEniCS [LMW12; ABH"15] with
the Python interface. For the implementation of reduced order models for parametrized
PDE we relied on the open source library RBniCS [BSR16; HRS15], which we extended by
implementing the cotangent lift method [PM16], explained in Section 3.4.2. The offshore
jacket example in Section 5.4.3 is obtained using the SCRBE solver from Akselos [sof20].
The numerical inverse Laplace reconstruction by means of Weeks method is implemented
with ad hoc functions in Python.

Both Matlab [MAT19] and Python were used for the machine learning algorithms and
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data management. In particular we used Matlab built-in functions for the one-class
classification using SVMs, while specific open source libraries in Python were used for
the other semi-supervised strategies, i.e., Isolation Forests, Local Outlier Factor, and
LSTM Variational Autoencoders. For the former two, we relied on the scikit-learn
library [PVG™11] and for the latter we used the Keras API [CT15], which runs on the
platform TensorFlow. The Gaussian process open-source framework GPy |GPy12| was
used to implement the sensor placement strategy in Python. Related to this, we used
the DEAP (Distributed Evolutionary Algorithms in Python) [FRGT12] to implement
the genetic algorithm for the optimization of the hyper-parameters and, to cluster the
inducing points, we used the built-in Matlab function kmedoids.



CHAPTER 2

SETTING OF THE STUDY

The content presented in this chapter is partially based on Section 2 of [BH20.

In this introductory chapter we present the general data-driven approach for simulation-
based structural anomaly detection in the absence of faulty data. The different stages of
the framework presented here will be described in greater details in the following chapters.
Here, we highlight the decomposition of tasks into two phases: in Section 2.1 we discuss
the expensive offline phase where we simulate the response of healthy structures under
different environmental and operational conditions, followed by the training of as many
classifiers as the number of available sensors. The classifiers are then used for the rapid
online testing of new (experimental) sensor responses, as described in Section 2.2. The
training dataset corresponds to synthetic sensor measurements under the assumption that
the sensors are already placed on the structure of interest and their location is therefore
known. When the sensor network configuration is unknown, i.e., the sensors still have
to be placed on the structure, we face the problem of how to choose their best location.
For this, as part of the offline phase, we introduce a general sensor placement strategy to
systematically find the sensor locations which best cover the monitoring area.

Pattern recognition approaches in SHM make use of machine learning algorithms to detect
damages by comparing a new configuration with a database of previously observed healthy
configurations [FW12|. Such a database can be assembled either by using experimental
data from the structure or similar structures, or by performing synthetic experiments
based on a parametrized model which approximates the structural dynamics under the
effect of a source. In this work, we rely solely on synthetic measurements to demonstrate
the overall workflow. Furthermore, accurate datasets based on physical experiments are
rarely available and often lack a comprehensive description of the natural variations of
the structure of interest. Here, we generate synthetic sensors measurements from healthy
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structures only, without the ambition of representing all possible system configurations
including failure modes. Indeed, our goal is to capture the baseline, uncertain operational
and environmental conditions to create a robust database of signals reflecting the healthy
behaviors that the structure may undergo during its life time. The parameters that
express such variations are physical and are typically related to the material properties, the
boundary or initial conditions, or the external excitements. Geometric parameterizations
are not included in this thesis as we only consider one healthy structure at a time
with the assumption that its geometrical properties are not uncertain. However, this
is not an essential assumption. In this thesis, we consider the relevant parameters to
be characterized by a probability distribution. For the sake of simplicity, but without
loss of generality, we assume that the probability distributions of these parameters are
known a priori, e.g., provided by engineering experience, and, in particular, only uniform
distributions are considered. However, a Bayesian inference approach may be used to
update the prior knowledge on the probability distribution of the input parameters using
available sensor data. Moreover, the employment of sensitivity analysis tools may help
to compress the parameter space and thus retain only the parameters that influence the
output of interest the most. While these topics go beyond the scope of this thesis, a brief
introduction to the Bayesian inference approach and sensitivity analysis in the context of
wave equations is given in Appendix A together with preliminary results.

2.1 Offline phase

Let Q C RY, with d = 2,3, be an open bounded domain associated with the structure of
interest, [0, 7] the time domain related to the temporal measurements and P C R% the
parameter space with d,, € N being the number of parameters used to characterize the
model. Let x; € Q for i = 1,...,n, represent an approximation to the position of each of
the ng sensors attached to the structure. Given a generic parametric model with suitable
boundary and initial conditions, for a given d,-dimensional vector u € P, we seek the
vector-valued solution w = w(x,t; p) : Q x [0,T] x P — R? such that

Pu
ot?

| g [%";;u] L [ ] = (e 1) (s o) (2.1)

and evaluate a relevant output of interest
gi(t; ) == Ll(u(z;, t;p); ), fori=1,...,ns and t € [0,T], (2.2)

where the possibly parameter-dependent output functional ¢ : R? x P — R% maps the
time-signals, evaluated at sensor locations x; € Q and time ¢ € [0, 7], into dy-dimensional
vectors that emulate the real sensor measurements, e.g., local displacements, accelerations,
or strains. In (2.1), £3™P[. u] and L[, p] are linear operators, representing damping
and elasticity, respectively, while h : R x P — R% and s : Q x P — R? represent
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the source dependencies with respect to time and space, respectively. In particular,
h(t; p) is often called a control function and, in this study, it mimics the effect of an
active source on the structure, possibly excited by piezoelectric actuators or shakers,
see, e.g., [TPYP18; ZBA13|. In this framework, the time-dependent experimental sensor
SP(4) : R — R% are given by

measurements g;

exp

g, (t) = gi(t;p) +&, fori=1,...,n, andte[0,T],

where &; ~ N(0,72) and ; € Ry is a priori unknown.

The first goal of the offline phase is to generate ng (one per sensor) synthetic time-signals
by evaluating (2.2) for multiple values of the input parameters p € P, i.e. we consider
set of Ny parameters

BN = {0 (2.3)

m=1

which we assume to be a good representation of all the natural variations of healthy
configurations under normal behavior.

The numerical solutions, obtained by solving the discrete counterpart of (2.1) Ny, times,
once for each parameter in EVtr | are evaluated at the sensor locations to obtain the outputs
of interest (2.2). Assuming the interval [0, 7] is partitioned into N; equal subintervals,
the discrete time-signals are obtained by evaluating the output of interest (2.2) at time
th = ant forn=20,..., N, i.e.,

g™ = [gi (1% ), 9i (15 o), - 5 i (EV5 )], (2.4)

fori =1,...,ng and m = 1,..., Ny,. We observe that g/" € R%*(Nt+1) and, in the
following, we use the interchangeable notation g/ = g;(p,,). The synthetic datasets of
dimension Ny, are defined as the collection of these time signals, i.e.,

D= {gMMNr  fori=1,...,n,. (2.5)

m=1>

We observe that large datasets are typically necessary to build robust classifiers in a
machine learning context, see, e.g., [Murl2]. Usually, (2.1) is discretized in space by
means of the Finite Element method, and in this framework the many-query problem
implies the repeated solution of large linear systems. To overcome the computational
burden, we introduce reduced order modeling (ROM) techniques to exploit the parametric
dependency and solve for each new parameter a system of reduced dimension. The details
of the numerical scheme and the ROM strategies used in this thesis are presented in
Chapter 3.

The second part of the offline phase consists in training n, separate one-class classifiers!,

! As mentioned in Section 1.3 and as it will be further explained in Chapter 4, the separate training of
multiple classifiers allows to gain information on the local state of damage.
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i.e., one per database, of synthetic healthy signals (2.5). Since fitting high dimensional
training data is well known to be computationally expensive and is also prone to overfitting
due to high complexity, we propose to extract () engineering-based features from the
discrete time signals (2.4). More specifically, we apply @ ad-hoc feature functions
Fj: RAex(Netl) _ Rde for j = 1,...,Q, which are assumed to be damage-sensitive
indicators, to each output of interests (2.4). The Ny,-dimensional feature-based databases
of synthetic signals at location x; are defined as

D/ = {[Fi(e"), ..., FolgNr,, fori=1,...,n, (2.6)

7 m=1>

Since the features may be correlated and this can lead to overfitting issues, we propose
to further compress the dimension, i.e., we consider a feature-based database of reduced
dimension

D = {ym Ve fori=1,...,ns,

m=1"

where yi* € R% with d, < d;Q, may be obtained by feature selection, principal
component analysis, or other strategies that capture the variability of the original data.
Then, we rely on a semi-supervised learning algorithm for anomaly detection, which
takes as input a dataset Di]: and returns an anomaly score function s; : R% — R and a
threshold value 0; € R, i.e.,

[si,0;] :== oc-ML (Dl}—) , fori=1,...,ng, (2.7)

where oc-ML represents the generic steps of a one-class machine learning technique. As
the training set is a collection of healthy samples, we expect s;(y}") < 0; for most of the
training samples y;" for ¢ = 1,...,ns. Various anomaly detection strategies including
feature extraction and data compression are described in Chapter 4.

So far we have discussed the situation in which the sensor locations are known a priori.
However, a central problem related to SHM is the identification of the optimal sensor
locations. Sensor placement strategies are dictated by dual antagonist objectives, i.e.,
detect the damage and avoid false diagnosis on one hand and keep the sensor budget low on
the other hand. Optimal sensor placement represents a challenging task, especially when
we make no assumptions on the type or location of damages. In this thesis, we assume
that a collection of nger > ns feature-based output of interest Y () = [y7", . .. ,y:{fiof],
computed at input locations X = [x1,...,X,,,], can be approximated by a Gaussian
process. Here we choose x; € () to be the vertices of a sufficiently coarse mesh defined over
Qfori=1,...,n40- We then rely on an adaptation of the variational sparse Gaussian
process method [Tit09] to define a systematic placement method for a fixed budget of ng
sensors. The procedure, indicated here by vsGP(-, -;ng), is summarized as

77 = vsGP (X, Y (m);ns) , (2.8)

m
op

where Zopt () is the set of ng optimal locations the so-called inducing points, associated
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with Y (pr,). We note that the points z;(pm) of Zopt () for j =1,...,n, are obtained
by constrained optimization over an admissible domain of interest 25, usually assumed
to be a portion of the initial domain €2, i.e., Q5 C €.

To take into account the parametric variations, we compute the inducing points for
n,, different input parameters and thus obtain n, collections of ns points Zgy, for
m = 1,...,n,. Finally, unsupervised clustering techniques are used to identify the
desired ng sensor locations with the centroids of the ng clusters. This method is described

in detail in Chapter 5.

2.2  Online phase

During the online phase, the classifiers are used to detect possible anomalies in new sensor
data, which are referred to as test data. The classifier will be able to distinguish data
generated from an undamaged structure from the data generated from a damaged one.
Given a new datum

g = [g;"(to), .-, 9" (tn,)],

let y; € R% be its corresponding feature-based vector, i.e., the transformed datum
after feature extraction and data compression. Then gF will be classified as an outlier if
si(yy) > 0; and as an inlier otherwise. More precisely, by looking at which sensor signal
g’ among the n, measurements is classified as an outlier, we can retrieve information
about the position of the damage and its severity. For major damages, many sensors will
be classified as outliers, while for minor, localized damages, only the signals obtained
by evaluating the solution at sensors close to the damage will be classified as outliers.
Moreover, the absolute value of s;(y}) provides information about the uncertainty of
belonging to one of the two classes: higher values correspond to a higher confidence on
the output.

In this thesis, experimental sensor measurements are replaced with noisy simulated data.
An healthy test sample is generated similarly to the samples of the training phase, i.e.,
it corresponds to the solution obtained using a new, unseen parameter belonging to the
initial parameter space pu* € P. To avoid the so-called inverse crime, associated to using
the very same model for both the training and the test simulated data, we propose to
generate the training data with a low-fidelity solver, while the test data are generated
using a high-fidelity solver, as it will be further explained in Chapters 3 and 4. We enforce
an additional Gaussian noise to the high-fidelity noisy signals to further differentiate
healthy training data from healthy test data, aiming to make the test data even more
resemblant to experimental data. The response of damaged structures is simulated by
replacing the domain used to generate the healthy database with a variety of faulty
domains, i.e., we modify the domain  to include cracks of different sizes and located at
different positions. Ultimately, a damaged test sample is generated by solving the PDE on
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the modified domain for a new parameter u* € P and by further evaluating the output of
interest. Under the assumption that P identifies all baseline healthy conditions, damaged
scenarios may be also obtained by simulating the sensor response using an input parameter
outside P, without the need of modifying the initial domain. For example, a reduction
in the Young’s modulus is often associated with a damaged condition, as described in
[DFPS96] and references therein. Therefore two different parameter ranges could be used
to simulate healthy and damaged scenarios, without modifying the geometrical domain.
However, in this thesis, only geometrical flaws are considered.

Let y* be the vector representing features of reduced dimension, extracted from the noisy
signal g;(pu*) + &;, with p* € P. If g;(*) is obtained by simulating the sensor response
over the initial baseline domain 2, we expect s;(y}) < 0; for all i =1,...,ng, provided
that the variance ’y? of the additional noise is sufficiently small. If instead g;(p*) is
obtained by simulating the sensor response over a damaged domain, we expect s;(y7) to
be greater than or equal to 6;, provided that the damaged domain presents a crack close
to the i-th sensor. Otherwise, we expect s;(y}) to be smaller than 6;.

The flowchart in Figure 2.1 gives an overview of the data-driven one-class classification
problem with synthetic data for a fixed sensor network and highlights the separation of
the offline and online phases. To include the systematic sensor placement strategy, we
should split point 2 of the database collection in two phases: a preliminary step in which
we solve (2.1) and evaluate (2.2) for nqor > ns input locations and use (2.8) to find the
ns sensor locations and a second step which computes the desired discrete time signals
(2.4) only fori =1,...,ns.
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E Fon' a stn_lctur? .Of Database collection ,
! interest identify Train phase !
H o 1. Collect a set (2.3) of input parame- :
H e natural variations for ters by sampling over P 1. Identify @ damage-sensitive features '
i healthy configurations, : Fj and construct the feature-based E
: e, ueP I+ 2. Solve (2.1) and evaluate (2.2) for | database as in (2.6) !
' X each parameter p,, € =N to gener- '
E e parametric model (2.1) ate sensor signals g as in (2.4) 2. Train n, one-class classifiers as in (2.7) !
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! i 3. Construct ns databases D; using foralli=1.....n. '
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i . Use s;(+) to identify and locate damages
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Figure 2.1 — Flowchart for the offline and online phases of simulation-based SHM procedure
for a known sensor network.






CHAPTER 3

LMATHEMATICAL MODEL FOR SENSOR MEASUREMENTS

The content presented in this chapter is partially based on Sections 3 and 5 of [BH20).

In this chapter, we present the mathematical model used to approximate the physical
phenomena describing the structural vibrations measured at a specific sensor location
under the effect of an active source. In particular, the details of the numerical approxi-
mation of the parametric acoustic-elastic PDE with a known input excitation in time
domain are given in Section 3.1. Considering the many-query scenario associated with the
need to construct a database of synthetic sensor measurements, which are representative
of the structure of interest under various environmental and operation conditions, we
propose a reduced order modelling strategy in Section 3.2. To reduce the computational
burden, the problem is first transformed from the time domain to the Laplace domain, as
explained in Section 3.3. Then, in Section 3.4, a projection-based reduced order modeling
technique is introduced, leveraging the similarities among healthy configurations, which
are described by the parametric PDE.

3.1 Acoustic-elastic wave equation in the time domain

Throughout this thesis, the generic model (2.1) is described by the parametric acoustic-
elastic wave equation. In this section, we present the parametric PDE in its strong form,
followed by its variational formulation, its finite element approximation, and algebraic
structure in time domain. We employ Newmark method for discretization in time.

Given © C R? a d-dimensional domain approximating a healthy structure of interest
with d = 2,3, and 912 its piecewise smooth boundary, the acoustic-elastic wave equation
in strong form, equipped with suitable boundary and initial conditions for both the
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displacement field and its derivative, is expressed as

0? ou .
Pg T P15 — Vi o(up) =hitp)s(x;p)  in Q< (0,T]
u=gp(x,t;n) on I'p x (0,7
o 1) - m = g (@, ts ) onTyx (0.7,  (31)
uli—o = uo(x; p) in O
%: o™ vo(T; ) in £

where u represents the displacement field, p € N is the density coefficient, n € N is
a non-dimensional damping coefficient, h := h(t; u) and s = s(x; u) are the source
functions, describing the time and space dependency, respectively. o := o (u; ) is the
stress tensor
o =2ue(u) + \Tr (e(u)) I4,
where I is the d-dimensional identity matrix, Tr(-) is the trace operator applied to the
1
strain tensor e(u) = 3 (Vu + (Vu)T) and the Lamé constants p and A are expressed by

E, the Young’s modulus, and v, the non-dimensional Poisson’s ratio, as

E Ev
u:m and )\:(14—1/)(1—21/)‘ (3.2)

In (3.1), n is the outward normal vector to 9. I'p and I'y are such that 9Q =TpUT'y
with Tp N Ty = 0 and represent the portions of the surface of {2 where displacement
boundary conditions gp = gp(x,t; ) and stress boundary conditions through the
traction vector gy = gn(x, t; u) are applied, respectively. We note that, alternatively,
one could prescribe free slip boundary conditions:

u-n=0
on 012, (3.3)
(0-m)-T7=gn

where 7 is the tangential vector to 0. Finally, uo(z; 1) and vo(a; ) describe the initial
displacement and velocity in space, respectively.

We consider u € P C R% to be a generic parameter which can be related to the material
properties, the boundary conditions, the initial conditions, or the source functions h and
s. The generic parameter space P C R% will be defined by d,, intervals

d d
P = [ug, ] x [, 3] X o x [, gt (3.4)

In this thesis, we arbitrarily choose the input parameters and the corresponding intervals
they belong to, as it will be described in Section 4.4. However, in a real engineering setup,
this choice may be inferred using sensitivity analysis combined with a Bayesian approach
to better include prior engineering knowledge and available experimental measurements.
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While this goes beyond the scope of this thesis, we provide a brief introduction to these
topics together with preliminary results in Appendix A.

For the sake of simplicity and consistent with the numerical tests, let us consider homoge-
neous Dirichlet and Neumann boundary conditions, i.e., gp = 0 and gy = 0, although
the non-homogeneous case can be treated similarly. To provide the discrete form of (3.1)
we first introduce the parametrized variational problem: for a fixed parameter g € P and
a fixed t € (0,7, find u == u(t; u) € V := {w € HY(Q;RY) : w|r, = 0} ! such that

0? 0
pm(aét,lb) + pnm(a’lz,'l,b; u> +a(u,p;p) =h(t;p)f(P;pn) VP eV

w(0; 1) = uo(p) . (35)

2% 0:1) = wo(w)

with ug(p) € HY(Q;R?) and vo(p) € L%(;R?) as the assigned initial conditions.

In the weak formulation (3.5), the bilinear forms m(-,-) and a(-, -; p), and the functional
f(; p) have the following expressions

m(u, ) ::/Qu-'d)dfl,
aw i) = [ (e s ) + MV -w)(V - 16)) d (3.6)
fwim) = [ s(u)-wan.

Solving problem (3.5) requires suitable numerical approximation techniques, here referred
to as high fidelity (or full order) approximations, to recover a discrete representation
of the exact solution. Several classes of numerical methods have been introduced for
the discretization of hyperbolic PDEs, among them the finite difference (FD) [Qua09],
finite volume (FV) [LeV92|, finite element (FE) and discontinuous Galerkin [SF73; EG13;
BMS04|, and spectral methods [GHO1]|. In this work, to approximate the solution of (3.5)
in space we apply the Galerkin FE method by introducing a finite-dimensional subspace
Vi, C V, with dim(Vh) = Ny,

For the sake of simplicity, we consider a domain 2 with polygonal shape and introduce
a triangulation 7, i.e., K non-overlapping triangles (d = 2) or tetrahedra (d = 3)
whose union perfectly coincides with €, where h € N represents the mesh size?

hxg = diam(K) < h, VK € T,. Having denoted by P, the space of polynomials

, Le.,

) € V for all t € (0,7], while it
0,T],V). Moreover, we note that
(3.3), V has to be replaced with

!Throughout we slightly abuse the notation by considering w(t
would be more precise to consider u € C*! ([O,T}; L?(Q; Rd)) Nneo(
when one seeks to solve (3.1) with free slip boundary conditions
Vrs = {w € H'(Q;R?) : w-n = 0}.

2The mesh size h should not be confused with the time-dependent source function h := h(t; ).
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with degree lower or equal to r, the FE space corresponds to X; = {w), € c(Q) -
wplg € P, VK € T,}. Consider V,, := V N X} as a conforming finite-dimensional
subspace of V and {¢; € Rd} 7 as a basis for V},, we define

MERANE ZWM (3.7)

where Nj, is the number of degrees of freedom (DOFs) which depends on the num-
ber of physical variables, the underlying mesh, and the polynomial order r of the
FE discretization. Then, the Galerkin high-fidelity approximation of (3.5) reads: find
up = up(x,t; u) € Vi, such that

82uh 8
m| g Wh | +pnm 8t swhi |+ a(up, wps p) = h(t; p) f(wn; p)

up(0; ) = upo(we) , (38)

A 0: ) = wno 1)

for all wy, € Vj,, where upg and vy are obtaiend as L2-projection of ug(p) and vo(u)
over Vj,, respectively. Moreover, if we denote by uy(t; ) € R the vector having as
components the unknown coefficients w;(t; u) for j = 1,..., Ny, then, at the algebraic
level, we obtain the following discrete dynamical system

211 u
M (5 i) 5 6 ) ) + Al ) = W) in 2 0.7

ot?
uy (05 ) = up(p) in , (3.9)
881?( 0; ) = vo(m) in O

where M € RV *Nr is the mass matrix, A := A(u) € RV»*Nr is the stiffness matrix,
and f := f(u) € RV is the right hand side vector with elements

M;; = m(pj,pi) Ay =alej, i) fi=fleisp) Vij=1,...,Np  (3.10)

Moreover, up(p) € RV and vo(u) € RV are the FE vector representations of wpo ()
and wvpo(p), respectively.

To obtain a fully discretized system, we introduce a time-discretization scheme to obtain
a sequence (in time) of linear systems to be solved for each parameter p. In particular,
we use the classic Newmark method, defined in [Newb9|, for the time discretization of
the second order initial value problem (3.9).

Let us first Consider a partition of the time interval [0,7] in N; € N4 subintervals of

equal size At = such that t" = nAt, Vn = 0,..., N;. Moreover, we denote the dis-

Nt’
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placement, the velocity, and the acceleration vectors at time t" as uj(p) = up(t; p) .

—n
vil(p) = 8“’167(;’”) o and af(p) = 82u5t(2t;“) . respectively. Newmark method is
defined as -

upt =up 4 Aty + (At)? <ﬁag+1 +— & a;;> , 3.11)

vithi=vi 4 At (Cap ™ + (1 - Q)ap) ,

where 8 and ( are two constant parameters. This method is implicit unless 5 = =0
and it is unconditionally stable if 28 > ( > % In this work we fix ( = 26 = %, which
corresponds to a popular second order method [QS06; ZT05].

If we replace uy,(t; p) and 88%(75; p) in (3.9) with the first and second expressions of (3.11),

respectively, and solve for aZ“(u) € R™r | we obtain the fully discrete linear system:

K(p)ay ™ (p) = g™ (), (3.12)

where K := K(u) € RV»*No and g™+ == q"*!(u) € RV have the following expression

K = p (1 +nCAt) M + B(At)*A(p),
q" = () () — (qu(p)uf(p) + av(p)Vi(p) + da(p)al () ,
where h"(u) == h(t"; u) and
Qu(p) =A(p),
av(p) =pnM + AtA(p),

da(p) =pn(1 — ()AtM +

2 A,

Hence, the semi-discrete variational problem (3.9) is equivalent to the following statement:
for n =0,...,N; — 1, solve (3.12) for a}™(p) and update u}**(p) and v} (u) using
Newmark method (3.11). We observe that both m(-,-) and a(-,-; ) are symmetric and
coercive bilinear forms, where, for the coerciveness of a, we have used Korn’s inequality
[Hor95]. This guarantees that K is invertible. We finally note that a))(u) must be
recovered by solving (3.12) with q®(u) = h%(u)f(p).

Remark 1 Ezplicit and implicit time discretization methods. Alternative explicit
methods can also be employed to approximate the derivatives in time, e.g., popular
methods are the forward/centered Euler, the Lax-Friedrichs, the Lax-Wendroff, or the
forward /decentered Euler, also called the upwind method. A necessary condition for the
stability of an explicit advancing numerical scheme is the CFL condition (from Courant,
Friedrichs, and Levy [CFL28|), which relates the size of the spacial mesh, the time step,
and the wave velocity by requiring that the domain of dependence of the numerical
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scheme contains the domain of dependence of the physical problem. From a practical
perspective, the CFL condition implies that, to improve the accuracy of the solution,
the underlying mesh has to be sufficiently refined, which may result in a high number of
iterations, especially if one is interested in simulating long-term displacements. Instead,
implicit unconditionally stable methods, such as the Newmark method, provide some
flexibility on the choice of the time step. However, we note that the time step influences
the accuracy of the solution especially after many iterations, i.e., when At is too big,
spurious oscillatory behavior, e.g., amplitude attenuations and phase discrepancies, may
be observed at large t" values. For this reason, it is advisable to follow the rule of thumb
of fixing at least 10 points per wavelength. For more details on the finite difference
methods for hyperbolic equations we refer the reader to Chapter 13 of [Qua09| and for
more details on the numerical approximation of conservation laws to [Hes17].

3.2 The need for a reduced order model

From a computational cost point of view, solving the time-dependent problem (3.12) with
the method described above requires the solution of V; linear systems of size Np. In the
SHM setting, dealing with complex large structures implies we face several challenges.
On one hand, N}, can be of order O(107) with ¢ = 5,6, 7, and, on the other hand, sensor
measurements may be signals recorded over several seconds. Considering in addition
the issues highlighted in Remark 1, the number of time steps may also be large, e.g., of
order O(107) with ¢ = 4,5. Keeping in mind the original goal of constructing a robust
database of synthetic sensor measurements comprising many possible combinations of
environmental and operational conditions, as discussed in Chapter 2, the problem of
solving (3.12) for a high number of parameters becomes a critical bottleneck.

The repeated solution of parametric PDEs with a varying input parameter is a frequent
issue when dealing with many-query contexts such as sensitivity analysis, parameter
estimation, design, or PDE-constrained optimization to name a few. In particular, when
either the number of DOFs or the number of time steps is large, solving the full-order
time-dependent model is not affordable. A reduced order model (ROM) provides an
approximation of a parametric full-order model (FOM), which is fast to evaluate without
compromising the overall accuracy. The construction of the ROM leverages the assumption
that the manifold spanned by all possible solutions of the parametrized problem has a
considerably smaller dimension than the space spanned by the basis functions of the
full-order model. By exploiting an offline—online decoupling, the ROM solution is obtained
as a linear combination of problem-specific basis functions, computed during an expensive
offline phase. During the offline phase, a reduced basis is extracted from a collection of
high-fidelity solutions, which are obtained by solving the high fidelity model for specific
parameter values (snapshots). Projection-based methods, e.g., the proper orthogonal
decomposition (POD), are popular approaches to construct the reduced basis and generate
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the lower dimensional subspace in which the ROM solution is sought. The so-constructed
reduced-space, spanned by this set of basis functions, represents the essential features of
the map p — wp(p), where up,(p) is the high-fidelity solution computed for the parameter
. Then, in the online phase, for each new value of the parameters, the ROM solutions are
inexpensively obtained by solving a smaller linear system, i.e., the reduced problem, and
the solution is finally projected back to the original space. When the Galerkin projection
is employed to generate reduced-order vectors this approach is typically referred to as the

POD-Galerkin method.

For unsteady problems, due to the travelling-wave behavior of the solution, projection-
based ROM strategies pose several challenges, e.g., the manifold of all possible solutions
can often not be compressed to a small reduced basis. Furthermore, the sampling strategy
is more complicated since it has to combine the solution at different time instants and
for different values of the parameter. In the literature, different strategies have been
proposed to construct a suitable reduced space, e.g., the POD-greedy sampling strategy,
see, e.g., [HOO08|, combines POD for the time-trajectories with the greedy procedure in the
parameter space, or the double POD approach, see, e.g., [NMA15; DS18|, which relies on
two nested POD, where the POD of V; basis-in-time, each one built by combining different
parameter values, is performed. Sampling issues are emhasized when the time-dependent
problem has many time steps and hence the set of snapshots become large, resulting in
an expensive POD strategy. To overcome this difficulty, randomized SVD algorithms
[HMT11] are employed to efficiently generate a reduced basis of the problem, see, e.g.,
[WRH20|. Alternative local reduced basis spaces, based on different snapshot clustering
techniques, have been proposed to approximate problems in cardiac electrophysiology
in, e.g., [PMQ18|. Finally, we also observe that, recent efforts have been made in the
direction of space-time approaches, where projection in space and time is performed
simultaneously, see, e.g., [CC19]. While an in depth study of the problem is needed to
fully evaluate the performance of this approach applied to the acoustic-elastic problem,
we speculate that the memory storage requirement, corresponding several matrices of size
Njp, X Ny, associated with space-time methods, is not compatible with high dimensional
problems.

For time dependent linear problems, an effective strategy is to replace the time domain
formulation with a frequency domain formulation and to apply a ROM method to replace
the so-obtained full-order FE problem in frequency domain with a low-dimensional model.
On one hand, by replacing the time domain with the frequency domain, the number of
times one expects to solve a linear system equivalent to (3.12) is reduced to N, with
N, < N;. On the other hand, recurring to a ROM strategy reduces the number of
degrees of freedom of each linear system, i.e., from N, to N with N < Nj. Here N,
is the number of principal frequencies, characterising the full-order model, and N is
the number of reduced basis. In particular, motivated by the interest in studying the
transient response of damaged structures using active sources, we replace the time domain
formulation with the Laplace domain formulation, where the Laplace transform of the
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displacement becomes the unknown field, as described in detail in Section 3.3. To compare
the time-dependent experimental sensor measurements in the online phase, we transform
the synthetic signals, computed in frequency domain, back to time domain. We briefly
review numerical inverse Laplace transform strategies in 3.3.1 and provide the details of
Weeks method [Wee66; LG86], in Section 3.3.2, which is chosen to reconstruct the time
history of the displacements in this thesis. The specific framework of Weeks method to
reconstruct the time signals requires computing the solutions only for few fixed complex
frequencies, which makes the use of the ROM method very efficient. The details on ROM
are provided in Section 3.4, where we describe how to combine the frequencies of Weeks
method with the parameters to construct a reduced model. Finally, in Section 3.4.2, we
present the cotangent lift method, a symplectic Galerkin projection method based on a
proper symplectic decomposition, to address stability issues which arise when solving the
frequency-based problem decoupled in its real and imaginary parts.

In the simulation-based structural damage detection field, the Laplace transform is used
for example in [ZBA13; KM17]. In the former, the authors model the behavior of smart
structures combined with piezoelectric actuators and sensors using the boundary element
method applied to the elastodynamics equation. In the latter, the response of a cantilever
beam to arbitrary time-dependent thermal actuations is studied in the Laplace domain
and a quadrature method, known as Gaver—Stehfest method, is used to numerically invert
the Laplace transform. The Fourier transform may be a suitable alternative, see, e.g.,
[TPYP18], if one wishes to study the periodic behavior of the vibrations of a structure
under the effect of continuous sources, e.g., wind, waves, or tides, or if the classification
step relies on features extracted directly from the solution in frequency domain. The
choice of the Laplace transform will be further motivated in Section 4.3.1, where we
discuss the damage sensitive features extracted from raw time signals and in particular
the importance of the arrival time in wave-based monitoring approaches.

3.3 Acoustic-elastic wave equation in the frequency domain

In this section we present the acoustic-elastic wave equation in Laplace domain and
provide its finite element approximation and algebraic structure. To reconstruct the
solution in time, numerical inverse Laplace transform methods are described in Section
3.3.1 and Section 3.3.2 focuses on Weeks method. From a notation point of view, we
observe that throughout this thesis we employ the tilde superscript to identify complex
quantities and 1 is the imaginary unit?.

3The greek letter 2 should not be confused with the subscript i, used to indicate the location of the n
sensor locations, i.e., x; € Q fori=1,...,ns.
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The Laplace transform f(%), Z € C, of a real function f(t)

(o9}
) = / e F(1)dt (3.13)
0

is often used in the solution of PDEs to eliminate the temporal derivatives. Indeed, it
is a powerful approach to capture the initial value responses in time dependent systems
and it has been extensively used in the literature, e.g., to study the transient in electrical
circuits [Gol66| or to address the problem of mass transport in groundwater [Sud89]. The
resulting systems become easier to solve and the solution can be inverted to the time
domain, usually by relying on approximate inversion techniques.

Given a fixed frequency zZ € C and a fixed input parameter g € P, by multiplying the
acoustic-elastic wave equation (3.1) by e™*' and integrating in time over the infinite
interval [0, c0), the time-dependent problem reduces to the computation of the Laplace
transform of w(x,t; u) evaluated at Z, i.e., find @ = @(x, Z; u) : Q@ x C x P — C? such
that -

p(Z +n2)a -V - o(@; p) = h(z p)s(z;p)  in Q

u=0 onITp, (3.14)

o(a;pu) - n=0 on I'y

where, for the sake of simplicity, but without loss of generality, we have assumed homoge-
neous boundary conditions and zero initial conditions. In (3.14), h := h(Z; u) : CxP — C4
is the Laplace transform of the time-dependent part of the source function h(t; w).

Since both uw and @ have the same dependency on the space variable x € €, the space
discretization derived in Section 3.1 applies here. Given V = {w € H'(Q;C%) : w|pr, =
0}, the corresponding Hilbert space in frequency domain and Vi, =Vn X} its finite-
dimensional counterpart, the approximate Galerkin problem becomes: for all Z € C and
all p € P find 1, (%; p) € Vj, such that

p (22 +n2) m(@n(Z; ), 3) + al@n(Z; p), 0; ) = h(Z; p) f (Bn; 1), Von € Vi, (3.15)

where the bilinear forms m(-,-), a(+,-; u) and the functional f(-; u) are defined in (3.6),
and o} refers to the complex conjugate of the test function oj,. Let {¢; j-vzhl be a
Lagrangian basis with ¢; : R? — R? for all j = 1,..., Ny, then @, € Vj, is the Galerkin
approximation of @ € V, i.e.,

Np,
(@, 2 p) =Y (5 p)p;(a). (3.16)
j=1

If we denote by 0y, (Z; p) the vector having as components the complex unknown coefficients
@;(Z; p), solving problem (3.15) is equivalent to: find G, (Z; u) € CM such that

[p (22 +0Z) M+ A(p)] @n(3; ) = h(Z p)f(p), (3.17)
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where the mass matrix M € RV»*Nr | the stiffness matrix A := A(u) € RV»*Ne and the
right hand side vector f := f(u) € RV» are defined in (3.10).

This system can be decomposed into a set of 2NV}, real equations such that, for a given
Z = a+wy, with a € R and y € R, the solution of (3.17) can be rewritten as

Uy (2 p) = uj (Z; p) +0uj (2 p),

where u$(Z; p) € R and u(2; ) € RM* are the real and imaginary components of
a,(zZ; p) € CNn | respectively. This splitting is especially important for implementation
purposes as explained in Remark 2 and, by simple manipulations, we obtain

K*(Zp) —KY(GGp)| (ui(Zp)| _ 4 (Zme)
KV(Zip) K*Zp) | |u) (G| [qy(g;ﬂ) ’ (3.18)
where
K*(z; p) =0%(Z; u)M + A(p),
KY(Z; ) =0"(Z )M, (3.19)

a”(z; p) =h"(z; w)f(p), for p € {a,y}.

)
Here, ©* := 0%(z;u) = p(a? —y? +na) and ©Y = ©Y(z;u) = py (2 + 1) so that
O +10Y = p(z2 + nZz). Moreover, h® := h®(Z; u) and hY = hY(Z; u) are the real and
imaginary parts of h(Z; u), respectively.

We note that the coefficients of (3.16) can be written as w;(Z; p) = uf (2; u) + zu?j(é; ),
where uf(Z; p) and uf(Z; p) are the ™ and (N, + 7)™ entries of the solution vector
obtained by solving (3.18) for a fixed frequency Z and parameter p, respectively.

Remark 2 The implementation of complex systems in FEniCS. In this thesis, the imple-
mentation of the acoustic-elastic PDE in both time and frequency domain is developed
within the open source finite element library FEniCS [LMW12; ABH"15]. Currently,
FEniCS does not support complex numbers, however, it does support mixed spaces and
coupled PDEs. Thus, the weak form is computed using two real trial functions u®* € V
and u¥ € V and two real test functions v® € V and v¥ € V:

O (m(u, o) + m(u’,v¥)) + O (m(u®, o) — m(u?, v*))
+a(u®, v ) + a(u?, oV ) = b F (6% ) + WY F (0 o),
O (m?, %) = m(u" %) + 6 (m(u", %) + m(u¥, 1)
— a(u®, vV ) + a(u?, v% p) = BV F (0% ) — h° (Y o),

In the implementation, the two variational forms are summed and the solution u is
sought in the mixed space Vo = V x V. In practice, V and V5 are defined using the
built-in functions VectorElement and MixedElement, respectively. To access the real
and imaginary components of the solution the function split is used.



Chapter 3. Mathematical model for sensor measurements 29

3.3.1 Numerical inverse Laplace transforms

The Laplace transform introduced in the previous section offers a powerful method for
solving linear systems. To recover the inverse f of a Laplace transform f in (3.13), one
has to compute the inverse Laplace transform, which corresponds to an integration in the
complex plane:

f(t) = ! /Mm e f(2)dz, t>0, a> ao, (3.20)

2m a—100

where a € R is a free parameter, whose value must be greater than the real part of any
singularity in f (%), the so-called “Laplace convergence abscissa” ag?. This integral, known
as the Bromwich integral, is difficult to evaluate analytically and one needs to resort to
numerical approximations.

As introduced in Chapter 2 and as will be further explained in Section 4.3, our goal is to
construct a database of displacement time signals, collected at few specific points, i.e., the
sensor locations ; € Q for i = 1,...,n,. We highlight that the location of the i'" sensor,
i.e., x; € Q, may not belong to the triangularization 7} introduced in Section 3.1, i.e.,
x; is not necessarily a DOF. The goal of this section is to reconstruct the displacements
signals wp (@, t; p), defined in (3.7), from their Laplace transforms wy, (x;, Z; p) at different
locations @; € Q for i = 1,...,ns. This implies that the generic Laplace transform f (2) in
(3.20) is here represented by the complex displacement @y, (x;, Z; ), and f(t) is replaced
by wp(x;, t; u). We remind that @y (x;, Z; p), defined in (3.16), is obtained by solving
(3.15) for a fixed parameter p € P and a fixed frequency z € C, and then evaluated at
x; € Qfori=1,...,ns. Analogously, up(x;,t; ), defined in (3.7), is the solution of
(3.8) for a fixed pp € P and a fixed ¢t € [0,T], and evaluated at x; € 2. By means of a
parametrization of the Bromwich integral (3.20) as Z = a + 1y, we can recover up(x;, t; p)
as an integral over the infinite imaginary axis, i.e.,

eat [e’¢)
up (i, t; 1) = 2/ ey (T, a + w; p)dy, (3.21)

T o
fori=1,...,ns and t € [0,T]. More specifically, since we seek to reconstruct the discrete
time signal, the continuous variable ¢ is here replaced by t™ for n =0, ..., N;. Ultimately,

the outputs of interest g;(t"; ), introduced in (2.2), will be approximated by
Gilt" 1) = £ (@n(wir %)) forn=1,..., Ny, (3.22)

where 4y, (x;,t"; p) is an approximation to wp(x;,t; u), obtained by using a numerical
inverse Laplace method, and £ : R — R% is the output of interest function.

The literature on the computation of (3.20) is extensive and we refer the interested reader
to [Coh07| and the survey in [Duf93|. The review presents three methods: the trapezoidal

4Note that this parameter is usually denoted by o in the literature, but here we choose ag to avoid
confusion with the stress tensor.
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rule, Talbot method and the expansion in Laguerre polynomials, also known as Weeks
method. The results presented in this thesis rely on the third method, whose details are
described in Section 3.3.2. Before that, we briefly present an overview of the other two
methods, highlighting the reasons of our choice.

The first scheme is a direct application of the trapezoidal rule to the truncated Bromwich
integral, i.e, |y| < 6 in (3.21). This method may be inefficient due to the highly oscillatory
nature of the integrand, which contributes to discretization and truncation errors, as
pointed out in [Cru76]. Nevertheless, the inclusion of correction terms or sequence
accelerator strategies to extrapolate a slowly convergent sequence can provide effective
results, as demonstrated in [HH84]. The second method is also based on the trapezoidal
rule, but along a special contour line devised by Talbot in [Tal79], which suppresses the
oscillations. This scheme contains a number of free parameters which can be estimated
theoretically if the locations of the singularities are known or using a commercial software
presented in [MR90] if only some ansatz is available. A unified framework for these types
of methods is proposed in [AWO06], where the following inversion formula summarizes the
quadrature-based schemes as

£ = falt) = 7] (:) L 0<t<oo
k=0

Here the weights @y and nodes a; are complex numbers, which depend on n, but do not
depend on the transform f or the time argument ¢. Nevertheless, we observe that these
schemes are impractical in our context because f depends on the independent variable
t. This means that, to reconstruct an approximation of the entire discrete time series
[9:(t"; ), . .., gi(t™Vt; )], we would need to solve the linear system (3.18) as many times
as the number of time steps IV;. As a result, the computational cost would be greater
than solving the direct problem with Newmark method.

Instead, Weeks method, which was first proposed in [Wee66| and then improved in
|[LG86; GGLMSS], is based on an expansion in terms of orthonormal Laguerre functions.
This method has one particular advantage over the other two since it returns an explicit
form of the approximate solution @(x;,t; ). The expensive phase of the method
corresponds to the calculation of the expansion coefficients. Once these are determined,
the inverse Laplace transform is obtained at any new value ¢ by means of a series
summation, which requires minimal additional cost. In the trapezoidal and Talbot
methods, one has to restart for any new value of t. For this reason, Weeks method
is chosen in this thesis as the most suitable method to numerically invert the Laplace
transform (3.21). For completeness, we mention that there exist variants of the trapezoidal
rule, relying on added correction terms, see, e.g., [Cru76; Dur74|, where the Laplace
transform does not depend on time. These variants have been used to reconstruct time
histories with a time interval of 7" of the order of O(1079) seconds with ¢ =4 or ¢ =5
in |[ZBA13|. However, they often become oscillatory and deviate from the right solution
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when 7T is large.

3.3.2 Weeks method

In this section we describe Weeks method to compute an approximation of the inverse
Laplace transform (3.20) and refer to [LG86; GGLMS88; Wei99| and references therein for
more details. The discussion is put into the perspective of recovering sensor signals, i.e.,
finding an approximation of the output of interest for the acoustic-elastic wave equation
as in (3.21). We also provide some computational guidance in the choice of the free
parameters and conclude with a qualitative comparison of the solution of the acoustic-
elastic wave equation in time domain with Newmark method and the reconstructed
solution obtained by applying Weeks method to the solution of the acoustic-elastic wave
equation in frequency domain.

The numerical inversion of (3.20) using Weeks method has the following representation:

F(t) = @S 0y Ly (200),

k=0

where oo € R with o > ag and b € Ry are two free parameters and Ly(-) denotes the
Laguerre polynomial of degree k which can be computed recursively using, e.g., Clenshaw’s
algorithm [Cle55|. The expansion coefficients ay, which depend on the Laplace transform

fla+1y), are defined by a Maclaurin series

2b - 1+ w > 4
. o — p— -2
G(w; a,b) 1_wf<a+bl_w> > anw, (3.23)
k=0
where w = ig;g Using Cauchy’s formula one can show that
1 G(w « b) 1 4 0 — k6
= — 7 P dw = — G(e";a,b)e™ " db 3.24
ap = 5 /|w|:1 hr W= o - (e a,b)e , (3.24)

where the change of variable w = € has been used. To approximate this integral, we
follow [Wei99|, where it is suggested to use the midpoint rule instead of the trapezoidal
rule because both § = 0 and # = 27 would map to w = 1 in (3.24), which would require
one to evaluate f (Z) at infinity. Using the midpoint discretization based on 2N, intervals,
the coefficients aj, are therefore approximated as

N,—1
G(eit1/2; a,b)e *it12 for k=0,...,N, —1, (3.25)
Jj=—N.

1

akzdk:

where §; = jn/N,. By evaluating G(-; o, b), defined in (3.23), at e¥i+1/2 and inserting it
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into (3.25), we obtain

N.—1 k0.
R b e WVt1/2 B
ap = N Z mf(zj)a (3.26)
Jj=—N_
where Z; has the following expression
N 1+ eWiv1/2 04172 .
Zj—Oé‘i‘bm—Oé—FleOtT fOI’j——NZ,...,NZ—l. (327)

Finally, the approximated inverse Laplace transform, based on a IN,—term truncation of
the Laguerre series, becomes

N.—1

F(t) = el N "y Ly(20t).

k=0

As mentioned in the previous section, we need a numerical inverse Laplace transform
strategy such as Weeks method to approximate the discrete time signals at sensors
locations. Hence, we apply Weeks method to (3.21) and obtain

N,—1
(i, 1 ) = 7O N Gy L (2087, (3.28)
k=0
fori =1,...,ns and n = 1,..., Ny, where the expansion coefficients @y are derived

in (3.26) by replacing f(Z;) with 4y, (2;, Z;; p), i.e., the solution of (3.15) for a fixed
parameter p and a fixed frequency Z;, and evaluated at x;:

N:—=1 k6,
R b e WU 11/2 _ _
j=—N.
Here, the frequencies Z; are defined in (3.27) for j = —N,,... N, — 1 and the additional
subscript h indicates that the Laplace transform is the solution of a PDE using a FE

discretization. Then, the full discrete time history g;" € R4*(Nit+1) i defined as
&7 = [0:(t% ), -, 5tV )], fori=1,...,n,, (3.30)

and it corresponds to the Weeks approximation of the discrete time signals g, defined
n (2.4), for all sensors locations. The single time steps g;(t"; ) in (3.30) are defined in
(3.22) for n =1,..., Ny, i.e. they are obtained by applying the output of interest function
0:R? — R% to the Weeks approximations (3.28).

Remark 3 Halving the number of computations. We note that only the imaginary part
of the frequencies (3.27) varies with the discretization index, while the real part a remains
fixed. By exploiting trigonometric identities, one can show that the frequencies of (3.27)
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satisfy the following property
Zj = 2?_]-_1), for j=0,...,N, —1

where Z* is the complex conjugate of Z. Moreover, it is easy to prove that if (uj —Hu%) ev
is the solution of (3.15) for Z = Z;, then its conjugate (uff —u}) € V is the solution of
(3.15) for Z = 7. This halves the number of times we need to solve the corresponding
linear system (3.17), or equivalently its split version (3.18). From a practical perspective,

we only need to compute wup(x;, Zj; ) for 5 =0,..., N, — 1 to compute the coefficients
(3.29) and the remaining functions, i.e., those corresponding to Z_x,, ..., 21, are obtained
as

ﬁh(wi, 2(_3'_1); [1,) = ﬂZ(wz, Zj; u) for ] = 0, ey Nz — 1. (3.31)

Algorithm 1 summarizes Weeks method and how it is connected to the solution of the
acoustic-elastic wave equation in Laplace domain. As mentioned in Section 3.2, we
highlight that generating one synthetic sample for the database of time signals by using
frequency domain solutions comes at a lower computational cost than generating the
same sample in time. In time domain we need to solve (3.12) N; times, while in frequency
domain we need to solve (3.18) N, times. Since the two linear systems are of the same
size up to a multiplicative factor 2, it is clear that the frequency approach is advantageous
if the number of frequencies, needed to generate an adequate numerical inverse Laplace
transform, are significantly less than the number of time steps needed to generate the
discrete time signal, i.e., if N, < N;. Although the number of frequencies N, needed to
reconstruct the time signals with a prescribed accuracy, is problem dependent, in most
cases, V¢ is expected to be much larger than N, mainly because we are interested in
observing a long time window of the sensor signal to fully capture its damage-sensitive
features. Moreover, depending on the chosen time integration method, Ny may be large
to guarantee a small time step, needed either to satisfy stability requirements (explicit
methods) or to avoid loss of accuracy (implicit methods), as explained in Remark 1.
The additional computational cost to construct the expansions coefficients in Leguerre
polynomials for the reconstructions of the time signal (lines 7-9 of Algorithm 1) is negligible
with respect to the time needed to solve (3.18). We also note that the solution of (3.18)
for each frequency is independent of all other frequencies, leading to a fully parallelizable
method, different from Newmark’s method.

Free parameters in Weeks method

Weeks method contains two free parameters®, o € R and b € R, and the accuracy of
this algorithm depends critically on their values. There exist several rules of thumb in
the literature, see, e.g., [Wee66; PM71; GGLMS88|, where an estimate for a and b often

®In this thesis, we also use the term hyper-parameters to describe these variables.
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Algorithm 1 Construction of an approximate time signal by Weeks method for high-
fidelity solutions in Laplace domain
1: Inputs: =x; € Q um € P,ace RbeER, N, € N;, N, € Ny
2: for j=0to N, —1do
3 Compute y; = Im(Z;), defined in (3.27)
4 Solve linear system (3.18) for Z; = av 4+ 1y; and py,
5 Evaluate function @y, (x;, Zj; ) at sensor location x; using (3.16)
6: Obtain (2, 22N, —j+1); Bm) by complex conjugation as in (3.31)
7
8
9

: Compute expansion coefficients @y, 5, defined in (3.29), for £ =0,...,N, —1
: forn=1to N; do
Compute @y (x;, t"; py,) by expansion in the Laguerre polynomials with (3.28)
10: Retrieve full time series g, defined in (3.30)
11: return g

requires the user to know at least the real part ag of the leftmost singularity of the
Laplace transform. In these studies, larger values of b correspond to faster convergence of
the series, but at the same time a smaller value is preferable for large time intervals T
A more systematic study is presented in [GLR89|, where the authors define the optimal
b for a given « and a particular class of transforms. However, to apply this we would
need to determine the location of the singularities (and in particular ag) of the solution
of (3.18), evaluated at the sensors locations, i.e., @p(x;i, Zj; ftm) defined in (3.16). This is
challenging because this quantity is expensive to compute and thus it would be available
only at few frequency locations Z;. Moreover, it would be complex to verify that this
Laplace transform fulfils the properties required to belong to the class defined in [GLR89].

Two additional strategies to find the optimal values are proposed in [Wei99]. Whereas the
second one requires no information of the location of the singularities, both algorithms
assume ¢ to be fixed and require as input the analytical expression of the Laplace transform.
One may overcome the first issue by observing that the optimal parameters a and b
are, to a large degree, independent of ¢ for large N,. However, no alternative is known
for the case in which the Laplace transform is not known analytically. Indeed, in in
[Wei99|, @ and b are obtained by performing a minimization on a truncation error which
is based on the evaluation of the Laplace transform at multiple frequency locations. When
the Laplace transform is the unknown solution of a PDE, Weeks method is ideal to
retrieve the entire time signal at the cost of solving N, times the linear system (3.18).
Unfortunately, the solutions proposed in [Wei99] to identify optimal values of o and b are
not suitable as they would require many additional solutions of (3.18). In this thesis we
choose these hyper-parameters using a different approach, based on the comparison of
the signals obtained with Newmark method and the reconstructed signals with Weeks
method for various values of o and b.
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Let p* € P be the mid point value of the intervals defined in (3.4), i.e.,

e = [t gt

.32
9 ) 92 ) ) 9 (33)

Then, for a fixed resolution N, and a fixed number of time steps Ny, we repeatedly apply
Algorithm 1 for few input values in the ansatz intervals « € [a,,, aps] and b € [by,, bys] to
recover the time signals g7 for ¢ = 1,...,ns. Then, we choose as optimal the values for
which the L2-error between the recovered time signals and the corresponding Newmark
solutions at all sensors locations is minimized, i.e.,

2
Ns
a®Pt port = 12’1n Zl (g — &)l , (3.33)
i= 2

where gf and g} are the discrete time histories defined in (2.4) and (3.30), respectively.
We note that the entries g;(t"; ) of g} are obtained by applying the output of interest
function ¢ to the solution wuy(x;, t"; p*), defined in (3.7). Clearly, only & depends on
the parameters v and b. For the sake of simplicity, and because we consider a relatively
small parameter space in the simulations, in this thesis the optimal values aP!, b°P! will
be used for all other simulations with input parameters laying within the parameter space
P. The proposed strategy is problem-specific and alternative methods to identify the
optimal hyper-parameters « and b for each new parameter g could be further explored,
possibly by identifying non-linear maps using an artificial neural network.

In the remainder of this section, we provide numerical results to guide our choice in
selecting the values of the hyper-parameters a and b. These results are based on the
2D numerical example with ns = 15 fixed sensor locations, which will be introduced
in Section 4.4. We note that the number of frequencies V., used to reconstruct the
time signals, can also be considered as an additional hyper-parameter and will also be
discussed.

In particular, we fix p* = [1,0.33,2] € P by applying the definition in (3.32) to the
parameter space chosen as

P = [0.999,1.001] x [0.329, 0.331] x [1.9, 2.1].

We additionally choose N, = 200, At = le—3, and N; = 30'000. Then, following
the aforementioned strategy on the ansatz intervals [0.1,0.9] and [1,16] for o and b,
respectively, we obtain ot = 0.2 and b°’* = 7.25 as shown in the left plot of Figure 3.1.
By performing a further refinement on the intervals [0.1,0.4] and [4.5,9.25] for a and
b, respectively, we finally obtain a®”® = 0.26 and b°?* = 6.5, as shown in right plot of
Figure 3.1. Motivated by the fact that the parameter space P is rather small and by
further observing in Figure 3.1 that, qualitatively, the error depends smoothly on o and

b, these two values will be used for all the numerical simulations in this thesis.
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Figure 3.1 — Contour plot of the error between the time signals obtained with Newmark’s
method and Weeks method to guide the choice of the values of the hyper-parameters
a and b. The L%-errors, defined in (3.33), are obtained using 9 equally spaced points
for a € [0.1,0.9] and 13 equally spaced points for b € [1,16], leading to a?* = 0.2
and b°P' = 7.25 indicated by the white dot (left). The additional refinement in the
region a € [0.1,0.4] and b € [4.5,9.25] if performed for 16 and 20 equally spaced points,
respectively, leading to the ultimate optimal values o’ = 0.26 and b°P! = 6.5 (right).

Figure 3.2 shows that, for these optimal values, the error of the reconstructed solution in
2D decreases with second order as the number of coefficients N, in the Laugerre expansion
increases. This graph qualitatively justifies our choice of using N, = 200 frequencies
for the 2D examples. In general, Weeks method yields exponential convergence in the
number of frequencies, see, e.g., [Wei99|, and the second order convergence shown in
Figure 3.2 reflects the error with respect to the approximated solution obtained by using
the Newmark method, which is second order accurate.

Additionally, Figure 3.3 shows the behavior of the time-dependent solutions recovered at
the 6 sensor of coordinates g = (0.275,0.925), using either Newmark method or Weeks
method. These plots, further confirm a qualitatively good reconstrcution using N, = 200
for the 2D simulations. In Figure 3.3, as time increases, we observe a degradation between
the solutions in time domain and the reconstructed solution in frequency domain, which
is expected considering the expansion in the Laguerre polynomials.

To guarantee better alignment with the Newmark solution, considered here as a reference
solution, and avoid spurious oscillations before the signal arrival, for more complex
problems, e.g., for the 3D simulations, the number of frequencies N, is increased to 500.
Additionally, for these problems, we will consider a reduced time frame of N; = 22'500
time steps to discard incorrect oscillations at long term caused by Weeks method.
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Figure 3.2 — Loglog plot of the error between the reconstructed time signals with Weeks
method and the Newmark signals, i.e., ||> 0%, (&F — g;k)”g for increasing values of N,.
The reconstructed high-fidelity signals g7 are obtained by applying Algorithm 1 with
a?t = (0.26 and b°P' = 6.5 for different number of frequencies N,. Both gf and g} are
obtained using N; = 30’000 time steps of size At = le—3 and for input parameter
p* =[1,0.33,2].

3.4 Model Order Reduction

In this section we present a reduced order modeling (ROM) approach that significantly
reduces the computational burden of repeatedly solving the parametrized problem (3.15)
by exploiting the p-dependence of the solution. Indeed, solving the high-fidelity complex
linear system (3.17), or its real counterpart (3.18), for many input parameters is essential
to construct a synthetic database to train a robust classifier to detect anomalies in unseen
data. Even though the translation to frequency domain, described in Section 3.3, reduces
the computational effort to generate the datasets of discrete time signals, a substantial
speedup can be achieved by applying ROM techniques. As discussed in Section 3.2,
projection-based ROM techniques, and in particular the well-known Reduced Basis (RB)
method, have been applied extensively to efficiently replace large algebraic parametric
systems with much smaller ones in many-query contexts for design, real-time control,
optimization, uncertainty quantification, and others. We refer the interested reader to
[QMN15; HRS15; RHPO7] and the references therein for an in-depth overview of RB
methods.
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Figure 3.3 — Comparison of the 2D high-fidelity signals retrieved at the 6% sensor
when using Newmark method (black circled line) or the Laplace method with Weeks
reconstruction (blue starred line) using a®’* = 0.26, b' = 6.5, N, = 200. Both &} and
g; are obtained using Ny = 30’000 time steps of size At = le—3 and for input parameter
p* = [1,0.33,2]. The first (left) and second (right) components of the displacement
signals are shown, i.e., the displacements in the z- and y- directions. For clarity the
graphs only show a subset of the IV, steps.

3.4.1 Reduced basis method

The main idea of RB methods is to generate an approximate solution to (3.15) for any
choice of the parameter within the given parameter set at a cost that is independent
of the cost of the original high-fidelity problem. In particular, the reduced solution @
belongs to a low-dimensional subspace VN - Vh of dimension N < Nj,. The smaller NV,
the cheaper it will be to solve the reduced system. To restrict the trial and test space Vi,
introduced in Section 3.3, to a low-dimensional subspace Vu, we construct the reduced
basis associated to Vi, obtained by orthonormalization of a set of high-fidelity solutions,
called snapshots, and computed for a small set of parameter values. Then, a Galerkin
projection onto this subspace is performed to construct the RB problem. The generic
RB method relies on an offline-online decomposition of tasks: offline we compute the
snapshots for different values of the parameter and use them to generate the N basis
functions, while online, for a new parameter, we solve an algebraic system of dimension
N, whose solution is then projected onto the original high-fidelity space by a linear
combination of the precomputed basis.

In this thesis, motivated by the implementation constraints discussed in Remark 2, we
present the details of the RB method only with respect to the real-valued linear system
(3.18), but an analogous discussion can be carried out for its complex counterpart. We use
the proper orthogonal decomposition (POD) to generate the low-dimensional subspace



Chapter 3. Mathematical model for sensor measurements 39

where the RB solution is sought. The greedy algorithm [GP05; VPRP03; RHP07], an
alternative method to construct the basis functions, iteratively chooses the next basis by
evaluating an error estimate of the error between the high-fidelity and the reduced model.
However, for the acoustic-elastic equation in Laplace domain we do not have an effective
error bound and we therefore choose the POD approach.

First, we construct the snapshot matrix whose columns are the high-fidelity solutions
of (3.18), decomposed in their real and imaginary parts, obtained for Ny < N}, different
values of the input frequency Z € C and the physical parameter p € P:

, (3.34)

where SP € RVe*Ns ig defined as

SP == [uf (Z0; o) | - - - U} (15 ns—1)], for p € {, y}. (3.35)

For a prescribed dimension N < Ng, the POD relies on the singular value decomposition
(SVD) of S to identify the N-dimensional subspace which best approximates the snapshots
among all possible N-dimensional subspaces. Let

s =uxz’,

where

U:=[C]|...[¢2n,] and Z:=[¥4|...|Ty,]

are two orthogonal matrices of dimension 2N, x 2N; and Ny x Ny, respectively, and
Y = diag(oy,...,on,) € R2VeXNs with gy > g9 > -+ > op,. The POD basis of
dimension N is defined as the set of the first IV left singular vectors of U, i.e.,

V= [¢1] ... [¢Cn] € RPN, (3.36)

This basis minimizes the 2-norm of the projection error of the snapshot vectors (see e.g.,
Proposition 6.1 of [QMN15]). To guarantee that the projection is controlled by a suitable
tolerance €pop, the number of basis NV is chosen as the smallest integer such that

- > 1—¢epop, (3.37)

i.e., the energy retained by the last Ny — N modes is equal to or smaller than a prescribed
tolerance epop [QMN15|.

Since the real and imaginary functions u} (Z; u) € V3, C V for p € {a,y}, it is natural
to consider the SVD with respect to a scalar product induced by the Xyp-norm, where
Xop, € R2NeX2Nn ig the symmetric positive definite matrix associated with a scalar product
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on the real V}, of dimension 2/Ny. Specifically, Xop, is a block diagonal matrix with two
equal blocks X}, where X;, € RNo*No  We choose

(X1)ij = m(ej, wi) + alej, wi; 1),

where m(-,-) and a(-, -; ) are defined in (3.6) for an arbitrary choice of p. We choose the
parameters that guarantee unitary Lamé constants (3.2), i.e., A = u = 1. By considering
the SVD of X%QS we obtain a basis that is Xop-orthonormal.

When Nj, is large, the POD basis can conveniently be obtained by computing the first NV
eigenvectors of the correlation matriz C € RMs*Ns which is constructed as

T
S« X, O
SY 0 X

C=8"X,,S = [ Sy

Sa
= [S*TX,8* + 8¥TX,,8Y] .
Hence, the POD basis (3.36) can be rewritten as

V= [V ] ., with VP = [¢P]...[¢}] e RY N for p e {a,y},

VY
where
¢l 1 |
= —Sv;, forj=1,...,N,
8] -55
and 4 for j =1,..., N are the first N eigenvectors, solution of the following eigenvalue
problem

We remark that computing the POD basis by solving the above eigenvalue problem
may yield inaccurate results for the eigenvectors associated with small singular values.
Since, roundoff errors may be introduced in the construction of C, in this situations, it is
preferable to compute the SVD by means of stable algorithms, see [CDOG.

Then, the high-fidelity problem (3.18) is replaced by the following reduced algebraic
problem for any instance of frequency Z and the parameter pu:

Ky (Zp) un(Z; 1) = an(Z; ), (3.38)

where the low-dimensional unknown uy (%; u) € RY is the RB solution, Ky (Z; u) € RV*N
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is the RB matrix, and qy(%; ) € RY is the right hand side vector, defined as

Vv KY () KY(Zp) | |V
=V (K (Z p) V= KY (5 0)VY) + VI (KY (2 ) Ve + K (5 1) VY),

T 5. —KV(3: a
Ky (2 1) =V K (5 1)V = [V] [K Sl I M

q*(z; )

Zop) =VTiqu(zp) =
qN( 7#’) \4 qh( 7/'1') qy(g;u)

)

(3.39)
where Kj,(Z; ) and qp(Z; ) are the high-fidelity matrix and right hand side in (3.18).

The high-fidelity solution uy(Z; p) is approximated by Vuy(Z; u), i.e., the RB approxi-
mation is recovered as the linear combination of the columns of V, which is parameter
independent. We finally note that the RB problem (3.38) is obtained by enforcing the
residual of the high fidelity problem computed on the RB solution to be orthogonal to
the subspace Vv generated by the columns of V| i.e.,

VT (an(Z; 1) — Kn(Z; ) Vuy (3 1)) = 0.

This classic geometric orthogonality criterion is the reason why RB methods are considered
as projection-based methods.

3.4.2 Cotangent lift method

We notice that the reduced matrix Ky in (3.39) fails to preserve the structure of the
high-fidelity matrix K, which causes the reduced solutions to be unstable for some values
of Z and p. This unfortunate condition is associated with the fact that the acoustic-
elastic problem in the Laplace domain and split in its real and imaginary parts is a non
coercive problem. For this type of problems, standard Galerkin projection is known to
be potentially unstable and a common strategy to stabilize the problem is to recur to
Petrov-Galerkin projection. The peculiarity of this method, often employed to solve
the so-called inf-sup problems, is to carefully choose a space for the test functions that
is different from the space where the solution is sought. Although this strategy is not
developed here, we refer the reader to [Qua09; QMN15; HRS15] for a general introduction
on Petrov-Galerkin projection in the reduced basis context and to [DPW14; CC19; TY20]
for specific examples where Petrov-Galerkin projection is used to stabilize the reduced
solution of wave equations. In this thesis instead, stability at the reduced level is
guaranteed by resorting to a proper symplectic decomposition (PSD) with a symplectic
Galerkin projection, which allow us to preserve the physical properties of the high-fidelity
approximation at the reduced level too. In particular, we first apply the cotangent-lift
method introduced in [PM16|, where the snapshot matrix (3.34) is considered in extended
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form
Su = [S%,8Y] € RNw*2Ns (3.40)

where S® and SY are defined in (3.35). The corresponding POD basis ® € RV»*N of
dimension N is defined as the set of Nj,-dimensional vectors

1
c ._ cl -
, Dl Ci y - g0 ey [} .
¢ Sawi’ fori=1 N (3.41)
a;

obtained from the first N eigenvectors 1 of the correlation matrix Cy € R2Ns*2Ns
which is defined as

SeTX,sv STX,Sv
c._ QT _ Qo QuT a Qyl h h
Then, the symplectic basis is constructed as
® 0
Va=1y &€ REXA. (3.43)

Although V is 2N-dimensional, the real and imaginary component are represented by
the same set of N basis. Moreover, by construction, ®7X;,® = Iy. Therefore, V
is Xgp-orthonormal, i.e., VZ;XQthl = Iyny. With this particular choice of basis, the
structure of the system is preserved and the reduced solutions are stable. In particular,
for a new frequency Z and a new parameter pu we need to solve the following reduced
system of dimension 2/V:

K (2 1) [u ()] _ e (5 ), (3.44)

c RQNXQN

where the reduced matrix K¢ (Z; p) is obtained as

T

~ ) & 0| [Kezp -Kvzpl[e o
K3 (% p) =VLKu(Zp)Va = ’ ’
VER KGRV = g g Kz KeGw | |0 @
(3.45)
_|®TKY(Zp)® —@TKY(Z )P
| TKY(Z @ @TK (%)@
Similarly, the reduced right hand side q$;(Z; ) € R?V is obtained as
~ N ®7q"(z; )
cl T ’
i) =V T = 3.46
ai (Z; u) =Vaan(Z ) BTV (3 ) (3.46)

Again, K, (Z; u) and qp,(Z; p) are the high-fidelity matrix and right hand side in (3.18).
In this setting and for the specific choice of the parameter space, presented in Chapter 4,
the blocks defining Kj,(Z; ) and qp(Z; ) depend affinely on the parameters, i.e., they
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can be written as

Qp,k Qp,q
s - g~
P(Zp) =Y O EWKY of(Fp) =) 005 wd], forpe{ay}  (3.47)
: =

Here @f’k, @?’q fori=1,...,Qpr and j = 1,...,Qq are two sets of scalar functions
@?’k, @?’q :CxP =R, K fori=1,...,Q, is aset of (Z; p)-independent matrices, and
q? for j =1,...,Qqk is a sets of et of (Z; p)-independent vectors for p € {a,y}. We note
that the specific values are problem-dependent; they can be derived from Equation (3.18)
and they depend on the specific choice of the parameter set. Because of this property,
known as affine parametric dependence of KP(Z; u) and gP(Z; u), and by inserting (3.47)
into (3.45) and (3.46), we obtain

ZQa k C_)OLJ(J( 7 @TK()L@ ZQy k @y, ( 7/1')¢TKy¢

Kcl (2 ) z; )
MR 52Que gz, )@TK% ZQM@“’C(Z 1) ®TKOD
Qaq a,qg (~
cl (=, Z @ (Zv )q)

In this way, in the online phase, the assembling of the reduced system (3.44) will benefit

from a considerable speed up since the arrays
dTKI'®, <I’Tq§ fori=1,....,Qpk, 7=1,...,Qpq p€{,y}
can be precomputed and stored once during the offline stage.

Algorithm 2 summarizes the cotangent lift method to construct a symplectic RB basis.

Algorithm 2 Construction of a symplectic basis using the cotangent lift method

Inputs: S¢,SY, X}, Ny, epoD

Assemble the snapshot matrix S.; using (3.40)

Assemble the corresponding correlation matrix C.; using (3.42)

Solve the eigenvalue problem Ccnpfl = afzbfl fori=1...,N;

Define N as the minimum integer that satisfies (3.37)

Compute ¢, for i = 1,..., N using (3.41) and assemble ® = [¢{'|...|¢§
return V, defined in (3.43)

Remark 4 Sampling strateqy for Z and p. 'To recover the time-dependent signals using
Weeks method, defined in Section 3.3.2, for a new parameter pu € P, we need to solve the
N-dimensional reduced system (3.44) NN, times, once per each frequency Z; defined in
(3.27). However, since the frequencies Z; only depend on the fixed hyper-parameters o, b,
and the number of frequencies V., they are essentially fixed. Therefore, the frequency 2

does not have to be considered as an additional parameter per se. Instead, by choosing
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the number of snapshots N to be a multiple of the number of frequencies IV,, we can
fix the snapshots to be computed for those exact frequencies that will be needed online.
Given k., € Ny, we sample Ny := k, N, parameters g € P and pair them with the IV,
frequencies so that the snapshot matrix (3.35) becomes

SP — [uﬁ (207 y,o) ‘ Ce |UZ (2szl; “Nz*l) ‘ ce

’ R (3.48)
b Gos e~y ) - b (-1 s, N.—1)], for p e {ayyl,

where Z; are defined in (3.27) for j = 0,..., N, — 1. Provided N, is sufficiently large
to ensure that the high-fidelity time signals, retrieved with Weeks method, are a good
approximation of the high-fidelity time signals that could have been obtained with
Newmark method, N, parameters g € P may still not be enough to provide a good
representative basis of dimension N for complex problems. When the solution in g is non
smooth and/or P is too large, large values of k, must be used. An alternative approach,
which is often used in the control theory community, consists of the construction of
several local basis by sampling the parameter space. For a new parameter one proceeds by
interpolating the local basis, the local reduced model matrices, or the local reduced model
transfer functions. A similar strategy, specific to Weeks framework where the solution is
sought only for few frequencies, would be to construct exactly NN, local basis, one per
frequency. For a new parameter one would then have to evaluate IV, local reduced models
without interpolation. This option is more laborious, but, at the same time, it may result
in more stable approximations. We refer the interested reader to [BGW15| and references
therein for a detailed comparison of projection-based reduction methods for dynamical
systems.

Provided that the symplectic basis (3.43) is constructed, the recovery of the discrete
time signals, described in Algorithm 1, can benefit from a computational speed up. For
this, we need to replace the high-fidelity solutions in Algorithm 1 with the reduced
solutions. Specifically, one needs to replace the full-order system (3.18) with the reduced-
order system (3.44) obtained with the cotangent lift method and replace @y, € Vap, with
uy € VQN, defined as

N
an(x;i, Z; p) = Z (ujo‘(é7 p) + o (Z; u)) (). (3.49)

j=1
Here, C;l(m) are the reduced basis functions and u§(2; p) and u]y-(é; p) are the j-th and
the (j + N)-th entires of the solution of the linear system (3.44), respectively. The

high-fidelity Weeks approximation 4y, is replaced with the reduced counterpart, i.e.,

N.—1
ﬁN(mi,t"; ;,L) = e(a—b)t” Z &ijLk(thn),
k=0

fori =1,...,ns and n = 1,..., N;, where the coefficients a; n are defined in (3.29)
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by replacing wp with @y. Similarly, the approximation of the discrete time history
g e R&*(Ni+1) " gbtained by applying Weeks method to the high-fidelity solutions and
defined in (3.30), is obtained by replacing @, with Gy in (3.22). We finally remark
that both the offline and the online phases of the RB method belong to the database
construction phase, which corresponds to the offline phase of the anomaly-detection
process (see Figure 2.1).

3.5 Conclusions

In this chapter the mathematical model to efficiently generate synthetic sensor signals
is presented. The parametric acoustic-elastic wave equation with an active source is
introduced to model the sensor measurements under different environmental and operation
conditions. We present the problem both in the time and the Laplace domain. The
discretization of the high-fidelity problem in time domain is carried out by means of the
finite element method in space and Newmark method in time.

The need to construct a robust synthetic dataset of sensor measurements translates to a
many-query problem. To overcome the computational burden associated with the repeated
solution of a high-dimensional linear system, we propose a reduced order modeling (ROM)
strategy, which combines the translation of the problem to the Laplace domain and the
reduced basis (RB) method. Solving the acoustic-elastic wave equation in the Laplace
domain allows to reduce the number of times we need to solve the linear space for each
parameter p, while recurring to the RB method allows to reduce the dimension of the
linear systems. Weeks method is used to compute the inverse Laplace transform of the
problem in frequency domain and thus recover the discrete time signals. The Weeks
free parameters are discussed and a problem-dependent strategy to fix them is outlined.
We present a POD-Galerkin approach to approximate the FE solution in the frequency
domain by exploiting the idea that the parameter dependent solution of the high-fidelity
problem can be well approximated by a linear combination of few high-fidelity snapshots.
Finally, we rely on the cotangent-lift method, based on a PSD-Galerkin approximation,
to construct a stable RB system when one wishes to solve the real counterpart of the
complex high-fidelity system, i.e., when the system is split in its real and imaginary
components.






CHAPTER 4

ANOMALY DETECTION

The content presented in this chapter is partially based on Sections 4 and 5 of [BH20).

In this chapter, we present data-driven techniques to detect and localize anomalies in a
structure by observing healthy configurations only. In particular, Section 4.1 introduces the
machine learning techniques commonly used in structural health monitoring, highlighting
the distinction between supervised, semi-supervised, and unsupervised learning. Examples
from the literature on machine learning algorithms for data-based approaches for SHM
are also reported. Motivated by the idea that during its life-time cycle an engineering
structure may be affected by many different types and severities of damages, we choose
to model only the healthy variations of a structure, i.e., its baseline environmental and
operational conditions. For this type of setting, one-class learning methods are used to
train the synthetic dataset of healthy configurations. Section 4.2 presents an overview
of one-class classification algorithms, focusing on Support Vector Machines, Isolation
Forests, Local Outlier Factor, and autoencoders. In Section 4.3 we present our problem
formulation, i.e., a semi-supervised learning strategy, based on the synthetic time-signals
described in Chapter 3, to both detect, localize, and estimate the severity of damages in a
structure of interest. There, we explain how damage localization and damage extent can
be assessed by training as many one-class classifiers as the number of sensors. The process
of extracting damage-sensitive features from the raw measurements and the consequent
dimensionality reduction strategies are also discussed. The classification results obtained
with the different one-class learning algorithms for 2D and 3D structures are given in
Section 4.4. A comparison of the results is also provided and conclusions are given in
Section 4.5.
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4.1 An overview of machine learning techniques for SHM

Statistical pattern recognition techniques and machine learning tools have been widely
used to generate knowledge from past experiences, focusing on the predictions of new
data [Bis06]. The successful real-life examples of machine learning are countless, ranging
from image recognition, traffic prediction, speech recognition, or medical diagnosis to
name a few. Machine learning algorithms provide a mathematical approach to associate
data with class labels by detecting patterns and structures within the data. In the SHM
framework, given a dataset of sensor data, the aim of machine learning algorithms is
to transform the data into useful information to assess structural damages and make
informed decisions. This is achieved by associating sensor data from the structure of
interest with some damage state or class. When monitoring a structure over time, the
most important distinction is between healthy and damaged states, but one may also be
interested in introducing more classes, e.g., different types or severities of damage. The
idea behind these methods is to learn the unknown relationship between some features,
extracted from data acquired from the structure measurements, and the state of damage
of the structure to map a new observation to the corresponding configuration label. Based
on the availability of labels in the sensor data, i.e., the training data, we can distinguish
three learning setups: (i) supervised, (iz) semi-supervised, and (7i7) unsupervised learning.
Supervised learning refers to the standard classification task where the training data
are available from both the healthy and damaged structures. Multi-class supervised
learning algorithms can be used to distinguish between multiple types of damages. In
semi-supervised learning, the training data are solely composed of samples belonging to
the undamaged structures. These algorithms, often called anomaly or novelty detection,
aim at constructing a model for a single class, i.e., the positive class, to test if a new
observation is consistent with that class. The process of learning the intrinsic relationship
among data when no labeling information is available is called unsupervised learning.
Clustering techniques usually belong to this last category, for which there is no sharp
distinction between the training and the test phase. We note that the common assumption
behind both semi-supervised and unsupervised algorithms is that only a small fraction of
the data is abnormal, which makes the separation between these two learning algorithms

a thin line.

A variety of data-driven approaches, based on machine learning techniques, have been
proposed in structural health monitoring. We refer to [FW12| for a review on machine
learning prospectives of SHM. Among the data-driven approaches based on supervised
learning algorithms we mention [TPYP18; LAW15; KKW20|. In [TPYP18] the objective
of detecting added mass at two predefined locations in a microtruss system is addressed
as a two-stage classification process based on synthetic training data. There, the authors
compare the accuracy in the performance of classifying both synthetic and experimental
test data using several supervised learning algorithms, i.e., one-vs-all Support Vector
Machines, decision trees, artificial neural networks, k-nearest neighbors, and nearest-
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mean classifier. Aerial vehicle sensor data are used in [LAW15; KKW20| to train a
data-driven classifier with the goal of estimating the vehicle capabilities in response
to possible structural damages or degradations. In [LAW15|, several damage scenarios
and their associated impacts on the vehicle flight envelope are used to train a vehicle
behavioral library in the Bayesian sense, where the goal is to minimize the probability of
misclassification. Similarly, in [KKW20], a supervised learning strategy is used to infer
which model within a dictionary of models is the best candidate to explain the sensor
measurements. By relying on a component-based reduced model approach, the authors
include in the training set several regions of damage of varying degrees of severity across
the aircraft wings and use them to train an optimal tree classifier.

The anomaly detection approach in which training data belong to undamaged scenarios
only is for example presented in [DSC07; LB14; QLACT19]. A preliminary application
of one-class SVMs based on time-frequency information is offered in [DSCO7|, where the
goal is to identify the changes in the signature of the propagating wave to assess damages
in composite panels. A semi-supervised approach to detect damages in an steel frame
laboratory structure is proposed in [LB14], where experimental sensor measurements are
used to train a one-class SVM. In recent work |[QLACT19], proper orthogonal decom-
position (POD) modes associated with an undamaged structure are used to calibrate
a clustering technique to differentiate between damaged and undamaged scenarios by
comparing the projected field of interest.

In this thesis we focus on semi-supervised techniques under the assumption that it would
be unreasonable to describe all types of damages and that representing only some damaged
configurations would lead to a bias towards certain types and therefore to possible mis-
detections with high probability. In the simulation-based framework used in this thesis,
this choice also accommodates a reduced computational effort. On one hand we can rely
on a smaller synthetic dataset which needs to incorporate the different environmental
and operational baseline conditions without including the damage scenarios, i.e., fewer
online model evaluations are needed to construct a robust dataset. On the other hand,
we consider a less complex parametric model, including only the parameters that define
the healthy configurations. Thus, the reduced model is also simplified, i.e., fewer basis
are needed to describe the reduced model. In the following section we provide a brief
description of one-class classification methods in general and focus on the mathematical
details of oc-SVM, Isolation Forests, Local Outlier Factor algorithm, and autoencoders.

4.2 One-class classification methods

Anomaly (or novelty) detection indicates the task of identifying substantial differences,
the outliers, in the test dataset when compared to the data available during training
[PCCT14]. An intuitive definition of outliers is given in [Haw80|, where an outlier is
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considered as “an observation that deviates so much from other observations as to arouse
suspicion that it was generated by a different mechanism”. Anomaly detection methods
are usually applied in contexts where there is an abundance of “normal” (or positive)
examples and abnormal examples (or negative) are scarce or non-existent. Intrusions in
electronic security systems, video surveillance, medical diagnostic problems, industrial or
structural faults and failure detection are examples of some of the applications involving
unbalanced training datasets. The scarcity of anomalous data can be explained by three
principal reasons: (i) occurrence of abnormal events is not expected or difficult to model,
(77) even if such examples are available for training, it is difficult to cover every possible
abnormal event, and (7ii) acquisition of abnormal events is costly [DLBM14|. In the
context of simulation-based anomaly detection, the combination of these three arguments
together with the reasoning provided in Section 4.1 motivate us to opt for a one-class
classification approach.

The anomaly detection problem can be treated as a one-class classification task by con-
sidering the semi-supervised counterpart of several classical supervised machine learning
algorithms. Indeed, classic supervised learning algorithms, where every different damage
type is associated with a different categorical class, are here replaced with semi-supervised
learning techniques, where only healthy states are used to train one-class classifiers.
These methods learn a description of the healthy training data offline and detect if a
previously unseen object reflects this description by means of an online anomaly (or
novelty) score. Samples whose characteristics deviate too much from those of the positive
class will be classified as damaged (outliers) with the idea that they were generated by a
different mechanism than the healthy samples, which will instead present characteristics
similar to the training data and will therefore be classified as undamaged (inliers). In
general, an ad-hoc threshold 6 is used to distinguish between the two categories, i.e.,

{score(as) > 6 outlier, (4.1)

score(x) < 6 inlier,

where « is a measurement belonging either to a healthy or a damaged structure' and
score(x) is the anomaly score associated with that sample, i.e., the output of the one-class
classifier.

Among many options, see e.g., the reported summaries in [DLBM14; PCCT14; GU16;
AGA13|, we highlight a few well-known strategies: the one-class Support Vector Machine
(0c-SVM) [SWST00; CS02], the Isolation Forest [LTZ08|, based on the principles of the
random forest method, and the Local Outlier Factor (LOF) [BKNS00], a nearest-neighbor
based approach. We also mention autoencoders, a particular type of neural networks,
trained to attempt to copy their inputs to their outputs, which have gained particular

'In this chapter, we use @ to represent a generic input for the classifier, but this should not be confused
with the sensor spatial location @; € €2 for i = 1,...,ns. In the numerical experiments, x will be replaced
with the simulated feature vector y;, defined in (4.17).
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notoriety in the framework of anomaly detection, see, e.g., [JMG95; MVE'15; NJL*18].

In particular, we present the details of oc-SVMs, Isolation Forest, Local Outlier Factor,
and autoencoders in Sections 4.2.1, 4.2.2, 4.2.3, and 4.2.4 respectively.

4.2.1 One-class Support Vector Machines

The one-class Support Vector Machines (oc-SVMs) method is derived as a simple mod-
ification of the well-known supervised SVM method [CS02|, already used in several
SHM applications, see, e.g., [HA03; TPYP18|]. Binary classification SVMs are successful
learning techniques that, given two-class input data, map them into a high dimensional,
non-linear feature space where it is possible to construct a linear separation boundary,
i.e., a hyperplane [Vap98|. Given X, the set of the input training data, and F, the feature
space of dimension greater than X, the idea behind this method is known as the kernel
trick, i.e., the transformation function ® : X — F is not computed explicitly. Instead it
is defined by a kernel to project the data into a higher dimensional space. The simple
evaluation of this kernel gives the dot product in the feature map

k(.y) = B(x) - D(y). (4.2)

A common choice is the Gaussian kernel
T — ull2
k(x,y) = exp {—H 623/” } ; (4.3)

where 6 € R, is a free parameter and ||z — y||? is the dissimilarity measure.

One-class SVMs, introduced in [SWST00; SPST101], apply the same binary technique
to find the optimal hyperplane that separates all the healthy training data from the
origin with maximum margin. The origin (in feature space) is used as a proxy for the
unrepresented anomalous data®. Let p : R% — R be the separating hyperplane defined as

p(x) =w- ®(x) — b, (4.4)

where w € F is a vector perpendicular to the hyperplane and b; € R is a bias term,
obtained by training N, d,-dimensional feature-valued samples. Then, the oc-SVM
algorithm returns a function f : R% — {—1,1} that evaluates every new data point to
determine on which side of the hyperplane it falls in features space, i.e. it takes values +1
in the region capturing most of the data and -1 elsewhere. Hence, in the semi-supervised

2This formulation is adopted in softwares like Matlab [MAT19] or the Python package scikit-learn
[PVGT11] and its mathematical formulation is described below. However, an alternative approach is
proposed in [TD04], where the goal is to find the minimum hypersphere that best encloses the training
data.
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setting, the decision function
f(@) = sgn (p(x)) (4.5)

takes values +1 for most of the training samples and values -1 for outliers. The parameters
describing the hyperplane (4.4) are obtained by solving the following minimization problem
during the training phase

Ntr

w1 ;
min + = &n—b
w, b, &m 2 VN mzzzl "

subject to: w - ®(xp) > b—Em, En >0, form=1,..., Ny,

where ||w|| is a SV type regularization term® and &,, € R are non-zero slack variables
that allow soft margins for m = 1,..., Ny.. Large values of &, allow the m-th data point
to lie on the wrong side of the decision boundary and thus those points are considered
as outliers. The tradeoff between the number of misclassified training examples and the
smoothness of the margin, identified by w, is controlled by the regularization parameter
v €]0,1].

The problem can be transformed to a dual form using Lagrangian multipliers and the
kernel trick (4.2) as

Nt'r
mozn Z U Ok (T, )
m,n=1
1 Ntr
subject to: 0 < a,, < Wtr,Vm =1,...,Ny4 and E:Iam =1,
m=

where the non-zero «,, are the SVs. The latter are required to evaluate any new datum
using the SV expansion of the hyperplane (4.4), which becomes

Nir
p(x) = Z ok (X, @) — b.
m=1

With this expression, it can be proven that  is an upper bound on the fraction of outliers,
i.e., misclassified training samples, and a lower bound on the fraction of SVs [SWST00].
A smaller value of ¥ implies fewer SVs and therefore a smooth, crude decision boundary,
while a larger value of ¥ leads to more SVs and therefore to a curvy decision boundary.
Varying o controls the trade-off between £ and b: the optimal value of © should be large
enough to capture the data distribution and small enough to avoid overfitting. In our
experiments we choose U := 0.65.

As mentioned in [AGA13; KZW™14], a continuous outlier score reveals more information

3Support vectors (SVs) are data points that are closer to the hyperplane and influence its position
and orientation. For more details we refer to [CS02].
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than a simple binary label as the output (4.5). Indeed, the absolute value of p(x) gives
information on the distance of the point @ from the hyperplane: larger values are farther
away from the hyperplane. Larger negative values are not only associated with more
severe damages, but also with a greater confidence on the binary output (4.5). The choice
of using (4.5), or another anomaly score based on the hyperplane p(x) as a decision
strategy depends on the importance given to misclassification errors, i.e., false negative
and false positive predictions. False negative predictions, also called false alarms, arise
when a healthy structure is classified as damaged and, vice-versa, false positive predictions
when damaged structures are classified as healthy. Ideally, one would like to keep both
rates low, but from a practical perspective, depending on the engineering application, to
keep one of the two errors low, the other one will increase. This trade-off translates into
the choice of the relative position of the hyperplane: moving the hyperplane towards the
origin (in feature space) will increase the false positive rate and, vice-versa, moving the
hyperplane towards the training set will increase the number of false negative test data?.

A relative approach is applied here to compute the anomaly score, i.e., we follow the
strategy presented in [AGA13|, where, given p, the maximum distance between the
training data and the decision boundary, i.e., p :== max,, p(x;,), the anomaly score reads

p(z)
P

score(x) =1 — (4.6)

Therefore, the points classified as outliers are identified with scores greater than 1.

Finally, a large amount of experiments have demonstrated that the choice of the free
parameter & in (4.3) may severely impact the generalization performance of oc-SVMs.
Indeed, an inappropriate choice of 6 may lead to overfitting (small values) or underfitting
(large values). In semi-supervised or unsupervised frameworks, this hyper-parameter
can not be estimated using classical strategies for model parameters selection, such as
cross validation. Indeed, since only positive examples exist in the training set, it is
impossible to estimate the misclassification error of the oc-SVM model. In the past
decades, several strategies have been proposed to overcome this issue: for example a
training error based approach in [Unn03|, a geometry based approach in [KHSM11],
a tightness detection strategy, based on the spatial locations of the interior and edge
samples [XWX15; AKM™17|, and an approach based on the Fisher linear discrimination
[WXLZ03]. The first three strategies are observed to be equivalently successful to detect
various damage scenarios on a laboratory structure in [LB14]. The authors also report that
the least computationally expensive method, which does not require repeated training,
is the geometric approach where 6 is chosen based on the maximum distance between
the two least similar training points [KHSM11|. This strategy is used also in this thesis,

4For example, in Matlab, this threshold can be adjusted by prescribing a value to the DutlierFraction
option to the function fitcsvm, which implements a post-processing modification to guarantee a specified
fraction of outliers in the training set, regardless of the smoothness of the class distribution.



54 Chapter 4. Anomaly detection

where the kernel factor becomes

~

52 d here & !
0% = ——, where = ——————,
vV—Ind Ny (1—0)4+1
and d is the Euclidean distance between the two least similar training points in the
training set.

Classification results in the SHM context and based on the oc-SVMs are presented in
Section 4.4.3.

4.2.2 Isolation Forest

Isolation Forest (IF) is a one-class classification algorithm based on an ensemble of decision
trees, which stratify the feature space recursively into sub-regions. First presented in
|[LTZ08|, they rely on a fundamentally different model-based method with respect to
most of the existing approaches to anomaly detection: instead of constructing a profile of
normal instances and then identifying instances that do not conform to the normal profile,
they explicitly isolate anomalies. In the remaining of this section we briefly introduce the
mathematical background of IFs and define the corresponding anomaly score. We refer
the reader to [LTZ08; HKB19| for a more in-depth description.

Different to supervised Random Forest, where partitions in the feature space are chosen
to minimize a cost function, to create a branch in the IF setup, the features are randomly
selected. Partitions are here generated by selecting a random attribute and then randomly
selecting a split value according to a uniform distribution between the minimum and
maximum value of the selected attribute. An observation is then divided accordingly
to this criterion: if it has lower value of this feature than the random split value, it
follows the left branch, otherwise the right one. This process is continued until the given
observation is isolated from the rest of the observations or a specified maximum depth
is reached. By representing the feature space partitioning with a tree data structure,
the number of partitions required to isolate a point correspond to the path length from
the root to the leaf of the tree. Under the assumption that anomalous observations are
few and significantly different from the regular observations, the key principle of IF is
that outliers should be identified closer to the root of the tree as compared to normal
points. Indeed, an outlier will be characterized by fewer random splits than an inlier, i.e.,
the number of partitions needed to isolate a sample are fewer for an outlier. A forest of
isolation trees, i.e., an isolation forest, is generated by a set of isolation trees with different
sets of partitions. The path length, averaged over the isolation forest, is a measure of
normality used to define the anomaly score of an instance x, i.e.,
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where n is the number of training data, h(x) is the path length of an isolation tree and
c(n) is the average path length of unsuccessful searches in a Binary Search Tree (BST).
As ¢(n) is a normalization constant approximating the average of h(x). When an instance
has an anomaly score close to 1, they are likely to be outliers. On the contrary, instances
with anomaly scores smaller than 0.5 are regarded as inliers. Similar to the oc-SVM, we
propose a relative anomaly score value

score(x) = S”@, (4.7
S
where § = max,, s,(Zy,) and &, m = 1,..., Ny, are the training samples. Hence, an

anomaly score value larger than 1 indicates an outlier, while a value below 1 reflects an
inlier.

We observe that there are only two hyper-parameters in this method: the number of trees
to build the forest and the sub-sampling size. In [LTZ08] it is shown that the detection
performance converges quickly with a small number of trees and that sub-sampling
provides a favourable environment for Isolation Forest. Indeed, since the training data
mostly belong to the positive instances, a partial model suffices to achieve high detection
performances without isolating all normal points. In the numerical experiments presented
in this thesis we choose with a sampling size of 250 and a forest composed of 100 trees.
We observe that the method in [LTZ08| is designed for an unsupervised setting where
few anomalies are expected in the training set. Nevertheless, the authors also address
the scenario when only normal instances are used in the training phase, thus providing a
direct method for our semi-supervised setup. Finally, we note that an extension to IF is
proposed in [HKB19] to overcome artefacts generated with the criterion for branching
operation, typical of the decision trees. By allowing hyperplanes with random slopes
to separate the features, the Extended Isolation Forest (EIF) method provides a more
robust algorithm and remedy to these artefact.

Classification results in the SHM context and based on the IF are presented in Section 4.4.3.

4.2.3 Local Outlier Factor

The Local Outlier Factor (LOF) algorithm, introduced in [BKNS00], is used to detect
outliers in a dataset by measuring the local deviation of a given sample with respect to
its neighbors. The algorithm is based on a concept of local density of an object with
respect to its neighbors. This allows to distinguish regions of similar densities from regions
with substantial lower densities. The points in the former correspond to inliers and the
points in the latter to outliers, which appear isolated with respect to the surrounding
neighborhood. This strategy overcomes the limitations of using a global density measure
to detect outliers, which may fail in detecting a certain type of outliers when the data
structure is complex, see e.g., [KN98|.
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Following [BKNS00], we introduce the formal definitions to characterize the LOF method.
Throughout this section we use o, p, q to denote objects in a set D and k is a positive
integer.

Definition 4.1 k-distance of an object p. The k-distance of object p, denoted as d(p),
is defined as the distance d(o,p) between p and an object o € D such that:

(i) for at least k objects o € D\{p} it holds that d(p,0’) < d(p,0), and
(i1) for at most k — 1 objects o' € D\{p} it holds that d(p,0’) < d(p, o).

Definition 4.2 k-distance neighborhood of an object p. Given the k-distance of p, the
k-distance neighborhood of p is defined as the set of objects whose distance from p is not
greater than the k-distance, i.e.,

Ni(p) == {q € D\{p}|d(p,q) < dr(p)}-

The objects ¢ in Ni(p) are called the k-nearest neighbors of p.

Definition 4.3 Reachability distance of an object p with respect to object o.  The
reachability distance of object p with respect to object o is defined as

Ry,(p, 0) = max {dy(0),d(p, 0)} .

Intuitively, if an object o is far away from p, then the reachability distance will simply be
the actual distances between the two points. When instead the two points are close, the
actual distance is replaced by the k—distance of 0. In this way the statistical fluctuations
of d(p, o) for all o’ close to p are reduced. Moreover, the higher the value of k, the more
similar the reachability distances for objects within the same neighborhood. The local
reachability density of p is then defined as the inverse of the average reachability distance
among the k-nearesr neighbors of p. Formally it is defined as follows.

Definition 4.4 Local reachability density of an object p. The local reachability density
of object p is defined as

-1
ZOENk (p) Ry (p, 0))

Hitt) = ( M)

Ultimately, the LOF of p is defined as the average of the ratio of the local reachability
density of p and those of the k-nearest neighbors of p. Formally, using the previous
definitions, the LOF is defined as
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Definition 4.5 Local outlier factor of an object p. The local outlier factor of object p

is defined as
1 LRy(o)

|Ni(p)| LRy(p)

LOFk (p) =
0€ Nk, (p)

This coefficient provides an information on the degree of outlierness of an object p,
different from other distance-based and density-based methods, see, e.g., [KN98|, where
the notion of outlier is considered as a binary property. Intuitively, the lower the local
reachability distance of p and the higher the local reachability densities of its k-nearest
neighbors, the higher is the LOF}, value of p.

The following lemma shows that for most objects p in a cluster D, the LOF of p is
approximately equal to 1.

Lemma 4.1 Property of local outliers [BKNS00]. Let Ry and Ry,q, denote the mini-
mum and maximum reachability distance of objects in D, i.e.,

Ryin = pl,glle% Ry, (p, Q) and  Rpae = p{%%% Ry, (p) Q)a
respectively. Then for all objects p € D, such that all the k-nearest neighbors g of p are
in D, and all the k-nearest neighbors o of ¢ are also in D, it holds that
1

—— < LOF, <1
1+€— k<p)— +€7

where ¢ := % —1.

main

For tight clusters, we expect the k—nearest neighbors ¢ of p to be in D as well as the
k—nearest neighbors o of ¢q. Hence, ¢ will be quite small and most objects in D will have
LOF}, close to 1. Values significantly larger than 1 indicate less dense regions and thus
outliers.

This approach can be extended to a semi-supervised setting by using the relative LOF
value for a new measurement x, i.e., the anomaly score function in (4.1) becomes

LOF;
score(x) = &, (4.8)
Ly,
where Ly = max,, LOF}, (zr,) and @, are the training samples for m = 1,..., Ny,. A less

conservative approach is to replace Ly, with the LOF value corresponding to the highest
5% or 10% of LOF values of the training samples. In this way, the false negative rate
will decrease, at the expenses of a possible increase in the false positive rate. In both
cases the threshold to distinguish inliers from outliers is set to 6 = 1.

Finally, we observe that the authors in [BKNSO00] provide a practical guideline on how to



58 Chapter 4. Anomaly detection

select a range [Kkmin, kmaz| for the parameter k. By computing the LOF values within
this range, they propose an heuristic for ranking objects by their maximum LOF value,
ie.,
k:= argmax LOF;(p).
J€lkmin kmaz]
Alternative aggregates, such as the minimum or the mean could be also used. In this
thesis, after training the model with different values of the hyper-parameter k, we choose

k=1.

Classification results in the SHM context and based on the Local Outlier Factor method
are presented in Section 4.4.3.

4.2.4 Autoencoders

Autoencoders are a type of artificial neural networks (ANN) that aim to learn the
identity map: their output is an accurate approximation of the input [GBCB16]. If an
autoencoder succeeds in simply learning to copy the input data to themselves, then it is
not particularly useful. Instead, autoencoders are trained to learn an imperfect identity
map. By doing this in an unsupervised manner, autoencoders learn few underlying salient
features that characterize the training data by a dimensionality-reduction procedure
that comprises two tasks: data compression and data recovery. These two objectives
are achieved by employing a pair of two connected neural networks: an encoder f that
maps the original space X' into a latent space of lower dimension F, and a decoder g to
map back to X, such that their composition g o f is close to the identity on the input.
Autoencoders have been applied to various non-intrusive model reduction methods based
on data-driven techniques. For example, long short-term memory (LSTM) autoencoders
are a type of recurrent neural networks (RNNs), successfully used in the context of
speech recognition or text translation, see e.g., [GIJM13|. A modular model consisting of
a deep convolutional autoencoder and a modified LSTM network is proposed in [GB18§]
to predict the dynamics of fluid systems with large parameter-variations. A hierarchical
dimensionality reduction based on autoencoders and principal component analysis (PCA)
to learn the dynamics and consequently recovering computational fluid dynamics data is
proposed in [CJKT19]. Reference [LC20] proposes a framework for projecting dynamical
systems onto arbitrary non-linear manifolds where convolutional autoencoders are used
to compute a representative low-dimensional non-linear manifold.

In the context of anomaly detection, autoencoders exploit the idea that the training
data (positive examples) are approximately distributed on a low-dimensional non-linear
manifold, parametrized my means of the so-called latent variables, learned by redundancy
compression. Therefore, for a given data point x, the autoencoder is trained to output a
value g(f(x)), which is expected to belong to the manifold of healthy configurations in
virtue of the common nature of normal data. Under the assumption that positive instances



Chapter 4. Anomaly detection 59

are expected to be reconstructed accurately, while negative instances, i.e., abnormal data,
are not, the anomaly score is based on the reconstruction error, e.g., the mean squared
error of the difference between a new datum and its reconstruction, i.e.,

s(z) = [lz — g(f(=))[>

Similar to the other one-class classification methods presented in this thesis, one can
choose a relative anomaly score value which is scaled with the highest reconstruction
error obtained for the training samples, i.e.,

score(x) = A (4.9)
where § = max,, s(x,,) and x,,, m = 1,..., Ny, are the training samples. A new sample
with score larger than 1 will be classified as an outlier, and otherwise as an inlier. The
main advantage of using a reconstruction-based anomaly detection approach like the
autoencoders is that specific engineering-based damage indicator features do not need to
be specified by the user, different from others one-class methods mentioned above. Instead,
by learning the features which suffice to describe and reconstruct the input, autoencoders
provide a purely data-driven feature extraction method. Hence, raw measurements such
as sensor time-signals can be used directly.

Autoencoders have recently been used for structural health monitoring applications in a
supervised learning framework to detect and localize damages. We refer to [NLLT19],
where a deep autoencoder is trained to remove redundancy in the input data in a
supervised learning setting. The damages in a laboratory steel frame structure are then
identified by a regression layer that maps the low-dimensional inputs to the structural
stiffness parameters, used as a proxy for damage detection. The training set is composed
of synthetic natural frequencies and mode shapes generated from both undamaged and
damaged scenarios. In a recent work presented in [MLNM20|, a variational autoencoder
(VAE) is used to compress the input data and detect the damage of a beam-like bridge
subjected to a moving load. The authors consider a multiple damage scenario with two
cracks, and a moving-window method is proposed to locate the cracks in the bridge. Only
the response data from the damaged structure is used to train the VAE model, without
any information from the healthy structure. To our knowledge, no attempt has been
made to use autoencoders in a semi-supervised learning setting for SHM.

In the remaining of this section we briefly present the mathematical setting that de-
fines autoencoders and variational autoencoders, and we refer the interested readers to
Chapter 14 of [GBCB16] and references therein for a detailed overview.

An autoencoder is a feedforward neural network that aims to learn the identity map,
ie, h: X — X with h(x) ~ ®. As mentioned above, this type of networks consists
of two parts: an encoder function f : X — F with dim(F) < dim(X) that maps a
high-dimensional vector  to a low-dimensional code &; and a decoder g : ¥ — X that
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produces a reconstruction g(&) = & of the original high-dimensional vector. The resulting
autoencoder is obtained by composition, i.e., h = g o f. The encoder and decoder are
classic neural networks with one input layer, L hidden layers, and one output layer. An
encoder with Ly hidden layers takes the form

Fla: 0p) = sEr) (.;ggff)> o sLr=1) (.;Q}Lﬂ)) o o5 (m;g}l)) :

where s() (-; B;Z) > RNYY S RNY denotes the function applied at layer [ of the neural
network and N represents the dimension of the output layer [ for { =1,...,L ¢- The
input has dimension dim(X) and the output dim(F). Here, 67 = {0](01), . ,H;Lf )}

represents all the parameters of the encoder network, with O}l) being the subset of
parameters employed at level [ for [ =1,..., Ly. In general, s) can be any parametrized
function, but in this work we consider sV to model the action of a single-layer perceptron
described by the set of weights and biases Bgf). Similarly, a decoder with L, layers is

constructed as follows

g(#;6,) = s <'; 9§L9)) o stho=h) <';0§L"71)) o osth (:ﬁ;%”) ;

with 68, = [0((11), .. ,BflLd)] For fully-connected layers, i.e., for the classic multilayer
perceptron (MLP), one has

NO
N D (- l
50 <w(l 1);9(l)> = | Y w1 |, (4.10)
=1

1,571

where ¢ is a non-linear activation function, N is the number of neurons in the layer I,
w® and b® are the weights and bias at layer [, respectively. The values of the vector at
layer [ are obtained from the values at the previous level simply using the feedforward

update:

.ZL';Z) — Sg-l) (m(l_l); e(l)) for i=1,..., N(l)

For the encoder, N = dim(X) and N(£s) = dim(F). Conversely, for the decoder,
N© = dim(F) and NLs) = dim(X). Alternatively, convolutional layers can replace
fully connected layers as in MLP autoencoders, thus allowing to reduce the number of
parameters to be estimated by means of parameter sharing. When the amount of training

data is limited, convolutional autoencoders are known to better generalize to unseen data,
see e.g. [LC20].

Similar to classic feedforward networks, an estimate of the autoencoder parameters 6y
and 6, is determined in the training phase by minimizing a loss function £ (z, g (f (x)))
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that penalizes g (f (x)) for being dissimilar from x, i.e.,

N
. 1 )
0.0, = axgin 3 — g (1 (20:01):0,) P (4.11)

g n=1

where N = dim(X). Traditionally, the stochastic gradient descent, where gradients
are computed by back-propagation on minibatches of the training data, is employed to
minimize the loss function. Designing an autoencoder whose code dimension is less than
the input dimension, forces the autoencoder to capture the most relevant properties of the
training data. However, autoencoders may fail to extract useful information if they are
allowed too much capacity. To avoid overfitting, regularized autoencoders add a penalty
term to the loss function in addition to the reconstruction error term to encourage the
model to have other properties, such as sparsity or robustness to noise, on top of the
ability to copy the input to itself.

In addition to regularized autoencoders, generative models can be seen as a particular
type of autoencoders. Without going into too much detail, we mention variational
autoencoders (VAE) [KW13; ABY"16] and Generative Adversarial Networks (GAN)
[GPAM™14|. Variational autoencoders are autoencoders with a continuous latent space,
allowing generation of new data similar to that observed during the training phase by
sampling from the latent space. This is achieved by designing an encoder stochastic
model that returns a distribution over the latent space instead of a single vector, e.g., for
a Gaussian distribution, the code may be defined by a mean and a standard deviation
vectors. Then, the input of the decoder model is sampled from such distribution. In other
words, VAEs infer the characteristics of the code & by observing the input @, i.e., the
goal is to compute the posterior distribution p(&|x) and variational inference is applied
to estimate this intractable distribution.

In the numerical experiments we use a variational autoencoder with an LSTM encoder
and an LSTM decoder. The input (and the output) of the autoencoder are dy-dimensional
vectors with N; = 200 time steps, chosen as a sub-sample of the original N; = 30’000
steps, as explained in Section 4.4.1. In particular, we consider an encoder network with
one hidden layer with 100 neurons and an output layer with 20 neurons. In a symmetric
way, the decoder network has an input layer of 20 neurons, one hidden layer with 100
neurons and an output layer of size to dy x N, to match the input of the encoder. We
employ the hyperbolic tangent as the activation function ¢ in (4.10) and, to compute
the parameters (4.11), we use an Adam optimizer with a learning rate equal to 0.001
for 1000 epochs. We refer to [GBCB16] for an in-depth description of these technical
details. Classification results based on the LSTM VAE are presented in Section 4.4.3. We
acknowledge that other architectures and other activation functions, e.g., the sigmoid
or the ReLLU functions, could lead to different or improved results compared to the ones
presented here.
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4.3 Local semi-supervised method for damage detection and
localization

In this section we explain how the various anomaly detection methods described in
the previous sections can be used to detect structural anomalies in a semi-supervised
setting and in particular we connect these models to the synthetic time signals defined in
Chapter 3. We also present a dimensionality reduction strategy based on ad-hoc feature
extraction used as a pre-training phase for the synthetic sensor measurements.

The (one-class) classification of multidimensional time signals captured by different sensor
units is often a challenging machine learning task with a wide variety of applications,
including audio and speech recognition, seismology, and seizure classification from elec-
troencephalography among others. In structural health monitoring, sensor measurements
often correspond to displacements, accelerations, or strains. In particular, when relying
on a guided-wave monitoring approach as in this thesis, sensor measurements correspond
to multi-dimensional time signals. In machine learning, dealing with high-dimensional
training datasets often leads to good performances on the training data, but poor general-
ization to new observations, a phenomenon called overfitting. When considering a limited
number of samples, to avoid the curse of dimensionality in one-class as in standard binary
classification, it is fundamental to express multi-dimensional data with few variables
extracted from the signals. The process of extracting features which are on one hand
sensitive to damages and on the other hand robust to noise and healthy variations is
discussed in Section 4.3.1. Further dimensionality compression by means of principal
component analysis (PCA) is presented in Section 4.3.2.

For sensor data, there exist two main approaches for combining the information collected
at different sensor locations: feature-level fusion and decision-level fusion [GB01; PZO*18].
The former combines data after feature extraction and considers one global classifier
(sensor independent), thus exploiting the correlations across sensors. On the other hand,
in decision-level fusion, the signals are classified for each sensor location by a local classifier
(sensor dependent) and the results are then combined into a decision output. We note that,
for the second strategy, the anomaly score functions and the corresponding thresholds
may be sensor dependent. In the context of anomaly detection, the two strategies are
summarized in Figure 4.1. While the superiority of one method over the other one
depends strongly on the problem at hand, it is important to observe that the feature-
based fusion approach further increases the problem dimensionality, thus accentuating
the aforementioned overfitting problem. The decision-level fusion scheme instead keeps
the dimensionality low. Moreover, the decision-level fusion setup facilitates the use of a
hierarchical classification approach, where increasing levels of damage identification can
be defined. Indeed, by constructing a separate classifier for each sensor location, we gain
information on the local state of damage of each sensor, which can then be combined to
define a final decision strategy.
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Figure 4.1 — Flowchart to compare the feature-level (top) and the decision-level (bottom) fu-
sion approaches for the semi-supervised damage detection strategy with multi-dimensional
training data captured by ng sensors.

For the reasons above, in this thesis, we use the decision-level fusion scheme to analyze
multi-dimensional sensor data. This approach is also employed in [LB14], where the
authors use white noise stimulations to locate damages without including any data
belonging to damaged configurations in the offline phase. In practice, for the decision-level
fusion approach, we train ns one-class algorithms, one for each sensor location. Training
ng separate classifiers implies that the global classification model (4.1) is replaced with
ng local detection models

si(x;) > 6; damage in the proximity of the i*"sensor,
{Z( i) 20 & P Y fori=1,...,ns (4.12)

si(x;) < 6; health in the proximity of the ithsensor,

where s; : R% — R, with dy is the size of the input vector x;, are the local anomaly score
functions, i.e., (4.6) for the oc-SVMs, (4.7) for the IFs, (4.8) for the LOF algorithm, and
(4.9) for the autoencoders. In principle, different algorithms could be chosen for different
sensor locations, but in this thesis we limit ourselves to one algorithm for all sensor
locations. For all methods we consider a relative anomaly score and a fixed threshold
0; == 1 for all sensors, i.e., for all = 1,...,ns;. We finally observe that the training
phase of the n; classifiers belongs to the offline phase depicted in Figure 2.1 and it is
low cost since the process is fully parallelizable given that each classifier can be trained
independently.

As mentioned above, using local models provides insight into the local properties and
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ultimately allows to achieve a multi-level hierarchical identification process. In [FW12], the
authors describe a five-step process to asses the damage state of a system. This process
attempts to answer five questions to estimate the existence, the location, the type, the
extent, and the prognosis of damage. In this thesis, we consider three hierarchical levels of
damage identification: the detection, the extent of damage, and its localization. We note
that, different from supervised strategies, it is less clear how to identify multiple types of
damage with one-class classification methods without including their labels. For the first
level, the outputs of the ng sensors can be used to guide a binary decision, e.g., one can
choose to consider a structure as damaged if at least one of the ng sensor measurements
is classified as an outlier. For example, when the one-class algorithm is the oc-SVMs, this
would mean that one among the ny anomaly scores (4.6) is greater than § = 1. For the
second level, as the anomaly score is a continuous value, one can additionally deduce
information about the severity of the damage, distinguishing between strong outliers,
i.e., when the anomaly score is much greater than the threshold, and mild outliers, i.e.,
values slightly above the threshold. For this option, one has to introduce an additional
threshold value 6, which may be difficult to choose by only looking at the anomaly scores
of healthy samples. For example, for the oc-SVMs, this could correspond to 82 = 2, and
strong outliers would be those with anomaly score above 6> while mild outliers those
with anomaly score between 6 and 6. For the third level, damage localization can be
achieved by conjecturing that damage is expected to be closer to those sensors which are
classified as anomalous. Nevertheless, we note that when the damage is severe, many
measurements may be classified as outliers, thus preventing localization.

In this work, the raw signals of Figure 4.1 correspond to the synthetic output of interests
recovered at each sensor location using the methodology presented in Chapter 3. Precisely,
the signals g" € R x (Ne+1) are acquired using Algorithm 1 and by including the
appropriate modifications to leverage the RB framework described in Section 3.4 for
i1=1,...,ngand m =1,..., Ny, where Ny, € N is the size of the training set. Then,
the n synthetic databases D; are defined as the set of Ny, signals, i.e.,

D= {gM N fori=1,...,n,. (4.13)
The cost associated to the construction of synthetic databases (4.13) includes the solution
of N, Ny, reduced systems (3.44) and the computation of nsN, Ny, expansion coefficients
(3.29), where N, is the number of frequencies used to approximate the inverse Laplace
transform with Weeks method as described in Section 3.3.2. We highlight that the
number of linear systems to solve is independent of the number ng of sensors. Indeed, the
expansion coefficients in (3.49) are obtained by solving a linear system of size N which
depends only on the frequency Z; and the parameter p,,, and @y (2;, Zj; tbr,) is obtained
by evaluating the reduced basis functions at x; for i = 1,...,n,.

Depending on the chosen one-class algorithm, it may be necessary to pre-process the
measurements before training the classifiers to overcome the issues related to the curse of
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dimensionality. In the remainder of this section, we describe data compression by means
of ad-hoc engineering-based feature extraction and unsupervised dimensionality reduction
in Sections 4.3.1 and 4.3.2, respectively. For each parameter w,,, we summarize these
transformations as

N N F ~n. ~m~yy PCA m
[gi(to;um)v'-'7gi(tNt;um)] — [‘Fl(gz )7'--,]:Q(gz’ )] —Y;

/

~~

d[X(Nt-f—l) ngQ dy

where the feature functions F; : Ré*(Netl) _ Rde for j =1,...,Q are defined in (4.15),
and y = [F1 ("), ..., Fo(&™)]Ppca with Ppoa € R“Q* the matrix whose columns
represent the first d, < dy() principal component coefficients. In Remark 5 we explain
which data compression applies to which one-class algorithm. For some methods the
feature extraction boxes in Figure 4.1 comprise both the ad-hoc feature extraction and
the unsupervised dimensionality reduction. For others, raw data are used directly or only
damage-sensitive features are extracted.

4.3.1 Feature extraction

The ideal features for a robust structural damage detection and localization system should
be sensitive to the presence of damage, but insensitive to the operational and environmental
variability in a normal range [FW12|. Common choices for the damage-sensitive features
can be found for example in [LB14; LHSLO02|. In [LB14], the authors use nine values
to train multiple one-class classifiers: the crest factor and two different integrals of the
transmissibility function, along the three spacial axis. In [LHSLO02|, thirteen characteristic
values are extracted from each of the transient surface response, i.e., the first three relative
maximum and minimum values of the response, the corresponding arrival times, and
the distance between source and receiver. These features are used to train a supervised
learning algorithm based on four outputs, i.e., the existence of crack, the location of the
crack with respect to the receiver, the length and the depth of the crack. These choices
are motivated by observing that, in the presence of a crack (and in particular for larger
depths of the crack-tips), which acts as an obstacle dissipating some of the energy carried
by the transmitted waves, the signal becomes more attenuated and the time of arrival
becomes longer because of the extra distance between the source and the sensor due to
the discontinuity of the material, see, e.g., [ZBA13; LHSL02|. Moreover, in [ZBA13|, the
authors observe phase delay in addition to attenuation in amplitude as the piezoelectric
transducers (i.e., the sensors) become more separated.

In this thesis, each of the d, components of the raw displacement signals g™ are processed
into a @)-dimensional feature vectors with Q =6 fort =1,...,ngand m =1,..., Ng,..
We consider the following characteristic values: the crest factor, which indicates how
extreme the peaks are in a waveform, the maximum and minimum values of the time
response, the corresponding arrival times, i.e., the onset, and the number of peaks and
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valleys in the signals. For each sample g7, the crest factor c* € R% is defined as

m |gzm|peak |g;n’p6ak = Inaxp ‘gi(tn3“m)’
= where . ‘ N N 3
(&) pms = /w7 Sonto (Gt )

. (414)

(g;n)rms

where §;(t"; pty,) is the n-th entry of g". The arrival time a"* € R%, the number of
peaks p;"* € R% and valleys v € R% are defined using the peakfinder Matlab function
[MAT19].

Precisely, aj* € R% is defined as the time step corresponding to the first peak or valley.
The two hyper-parameters of the peakfinder function, i.e., sel and thresh, are defined
as a percentage of the maximum amplitude of 30 randomly chosen healthy training
signals for the first Ny = 20’000 steps, sensor by sensor and component by component.
In particular we choose sel, which gives information on the peak value, relative to
surrounding data, to be identified as the 3% or 7% of the maximum amplitude of the
healthy signals, for the 2D and 3D problems, respectively. The threshold thresh, i.e.,
the value peaks must exceed to be a maxima or a minima, is fixed to 5.5% or 9% of the
maximum amplitude, for the 2D and 3D problems, respectively. These values are chosen
experimentally by visually inspecting the position of the onset values over a set of signals.
We note that, for the 3D problem, using higher percentages of the maximum amplitude of
the healthy signals leads to a choice of these hyper-parameters which can better distinguish
between the effective signal arrival and spurious oscillations. Moreover, we observe that
the classification results obtained using peakfinder are more robust and less prone to be
affected by artefacts generated by the numerical inverse Laplace transform reconstruction
with respect to finding the onset based only on a sensor-dependent threshold e; of the
signal values, i.e., a]* = argmin, {|G;(t"; ptm)| > €;}, where §;(t"; ) is the n-th entry
of gi".

To summarize, the feature functions F; : Réx(Netl) _ Rde for j =1,...,Q are defined

as
Fi(g") =", Fo(§") = max gi(t"; pm),  Fa(&") = min, §i(1"; pim),

Fu@") =" F(&") =pi" Fe(@") =i,

(4.15)

where §;(t"; ) is the n-th entry of g for m = 1,..., Ny,. The feature-based database
becomes

~ F, R R Ny,

D; ¢ ={[F1(&")- -, F&")]}, (4.16)

m=1"

where each entry has dimension dy(), i.e., we consider a total of Ny := dyQ) € N features.

We observe that features extracted directly from the raw signals in frequency domain,
i.e., before applying Weeks method for reconstruction, are not considered in this thesis.
Nevertheless, such features, e.g., the transmissibility defined for example in [L.B14], could
be also included either by direct extraction for simulated samples or by pre-applying a
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Laplace transform for experimental sensor signals, which are typically available only in
time domain.

4.3.2 Dimensionality reduction

Among the Ny selected features, dimensionality reduction is often needed to generate
robust classifiers. For example, we observe that the oc-SVM strategy does not capture
anomalies well if applied directly to the feature-based datasets (4.16). It has been shown,
see, e.g., [TMO03], that using too many features may introduce excessive noise in the dataset
and lead to overfitting. To overcome this problem, one should apply some dimensionality
reduction method, e.g., principal component analysis (PCA), or alternatively some feature
selection strategies, e.g., rank revealing QR (RRQR) algorithm. PCA is a powerful tool,
traditionally used in data mining, to reduce the dimensionality of multivariate data by
expressing the original features in terms of fewer components, called principal components,
which are an uncorrelated linear combination of the original variables. The principal
components describe the variability of the data observations in terms of a new set of
orthogonal directions, which account for a given amount of the variation in the sample.
On the other hand, the RRQR decomposition algorithm, first proposed in [GR70], can
be applied to a matrix of feature vectors to compute a QR factorization and a pivoting
column which provide a strategy to select the most important features. In this method,
the original data remain unmodified, but possibly more dimensions need to be retained
to guarantee the same variability as PCA.

We note that, in general, this traditional method may not guarantee the best classification
performances when applied to highly unbalanced training datasets, i.e., retaining only
the high-variance directions may not provide informative results on the features that are
most sensitive to damage. There exist several studies, see, e.g., [MMP02; KKAG14], in
which the information carried by low-variance directions is emphasized. For example, in
[KZW™ 14| the authors apply three popular dimensionality reduction techniques, i.e., PCA,
random projections (RP) and piecewise aggregate approximations (PAA), to supervised
and unsupervised SVM for damage detection approaches in SHM. These techniques are
applied directly to the original time signals, without extracting damage-sensitive features.
In their setup, where the number of features roughly corresponds to the number of time
steps, RP results in the best reduction technique in terms of achieving a good balance
between reducing the computational time and maintaining the detection accuracy. While
for very large datasets RP are known to achieve best performances, see, e.g., [Ach03], in
many cases, removing redundant features by projecting the data on the high-variance
directions remains beneficial. Hence, given our choice of relatively few features, i.e.,
Ny =12 as described in Section 4.4, PCA transformation is more appropriate. We note
that we use the Matlab function pca [MAT19] to perform this task.

To apply PCA to the feature-based databases (4.16), we first normalize the training data
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oc-SVM IF LOF VAE

pF B

D D

Table 4.1 — Summary of the datasets used to train different one-class algorithms.

so that each feature has zero mean and unit standard deviation. Then, we apply the
PCA and store the first d, principal coefficients in Ppca € RN *dy - The value d, should
be chosen by observing the decay of the PCA eigenvalues: a rapid decay suggests that
few components suffice to describe all the features. For the numerical solutions presented
in this chapter, for all sensors, we observe a rapid decay of the PCA eigenvalues, which
motivates our choice of retaining only one principal component, i.e., d, = 1.

Ultimately, the datasets used to train each one of the ns one-class classifiers are defined
as
Df = {ym™Ne o fori=1,... n, (4.17)

m=1>

where yI" == F"Ppca € R%. We finally remark that all the data transformations,
including data normalization, which are applied to the training set, must be also applied
to the test datasets before class prediction.

Remark 5 Interpretability of one-class algorithms. Depending on the chosen one-class
algorithm, different data compression strategies are needed to build a robust classifier.
In particular, we observe that (i) for oc-SVMs, both the feature extraction and further
dimensionality reduction are implemented, (ii) for the IFs, we perform only the feature
extraction step, (#i7) for the LOF algorithm, both the feature extraction and further
dimensionality reduction are implemented, and (iv) for VAEs, raw signals are used
directly without pre-selecting the features. The different datasets, used for each algorithm
are summarized in Table 4.1. Intuitively, since damage-sensitive features are directly
used to train the Isolation Forest algorithm, this kind of algorithms can be seen as an
interpretive machine learning method in the sense that one can observe which features are
mostly contributing to a decision. Autoencoders instead are trained to identify the best
low-dimensional features automatically, thus making interpretability difficult. One-class
SVMs and the LOF algorithm, if trained on very few features, could also be considered
as interpretable learning methods. However, in many situations, it is not evident how to
select the features that explain the salient properties of the training data and, to avoid
overfitting, further dimensionality reduction is employed. In this sense, QR pivoting
and other feature selection strategies could be an appropriate solution. However, feature
interpretability goes beyond the objectives of this thesis and good results are obtained by
employing data compression with PCA.
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Figure 4.2 — Meshes for the healthy 2D (left) and 3D (right) problems. The former
represents the section of a simplified beam and the latter is obtained by extruding a
similar 2D domain, but with larger holes, along the third direction. The 2D problem has
normalized dimensions 1 x 1, while the 3D one has dimensions 1 x 1 x 0.1.

4.4 Numerical results

In this section we first present the 2D and 3D geometrical domains used in this thesis as
a generic structure of interest equipped with a fixed number of sensors. Then, we define
the parametric source of excitations and the other input parameters used to describe
the natural variations of the structure. In Sections 4.4.1 and 4.4.2, we provide the
details for the construction of the training and test sets by using the method proposed in
Chapter 3, including the feature extraction and data compression procedures presented
in Sections 4.3.1 and 4.3.2, respectively. In Section 4.4.2 we highlight the qualitative and
quantitate differences between healthy and damaged sensor signals. The classification
results obtained with the different strategies presented in this chapter, i.e., oc-SVM, IF,
LOF, and VAE, are reported and compared in Section 4.4.3.

The meshes for the healthy domain € R? are reproduced in Figure 4.2 for d = 2,3. The
domain is discretized using tetrahedral cells; a FE approximation by P; elements is used
for the high-fidelity solver, resulting in 30’912 and 217’344 DOFs for d = 2, 3, respectively.
We remark that, since we solve (3.18), for the high-fidelity problem, half of the DOFs
represent the real part and the other half the imaginary part of the d—dimensional
solution. For all numerical experiments we use the homogeneous free-slip boundary
conditions (3.3), i.e., gy = 0, and we fix the density and damping coefficients as p := 1
and 7 = 0.1, respectively. All the other parameters are defined below.

We consider a total of ny = 15 sensors for the 2D problem and ngs = 46 for the 3D problem.
For the 2D model, the sensor locations @ = (x;,¥;), sketched in Figure 4.3, are obtained
by all combinations 4, j, where z; € [0.1,0.275,0.5,0.725,0.9], y; € [0.11,0.5,0.925]. In
3D, for practical engineering purposes, sensors embedded in the structure are excluded and
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Figure 4.3 — Sketch of sensors numbering system and source placement for the 2D problem.
The chosen 15 sensor locations (numberecj black circles) and the location of the center of
the active source, which corresponds to S = [0.54,0.125], (black triangle) are shown.

the sensors location are restricted to the model surface, i.e., = (z;,y;, 2 ), represented
in Figure 4.4, is given by all combinations i, j, k, where z; € [0,0.1,0.275,0.5,0.725,0.9, 1],
y; €10,0.075,0.5,0.925,1] and z; € [0,0.5,1]. We observe that, in 3D, because of the
homogeneous free-slip boundary conditions, for each sensor on the surface, one of three
displacement components (i.e., the one normal to the surface) is identically zero®. Since
for the sake of simplicity we use as the output of interests the displacement time-signals,
i.e., the output map ¢ : R* — R% is the identity map and dy = d, one of the d components
of each of the @ features (4.16), extracted from each sensor signal, is identically zero.
Hence, for the 3D problem, we consider features of dimension (d — 1) x @, i.e., Ny =12
features for both the 2D and 3D case.

Aiming at representing the different environmental and operational conditions, necessary
to make reliable damage predictions, we choose three parameters of variation, i.e.,
p = [E,v,k] € P C R% with d, = 3. The first two define the Lamé constants
(3.2), i.e., E is the Young’s Modulus and v the Poisson’s ratio, and k is a parameter of
the source function h(t; u), whose expression is given in (4.20). In the generation of the
dataset, the parameter space (3.4) is chosen as

P =[0.999,1.001] x [0.329,0.331] x [1.9,2.1], (4.18)
and the parameter set is based on uniform random samples from P, i.e.,

E™ = {Em, Um, km iy € P, (4.19)

5This phenomenon is an artefact of the choice of the boundary conditions and it does not affect the
2D problem simply because no sensor is chosen on the edges, where the boundary conditions v -n =0
are applied.
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Figure 4.4 — Sketch of sensors numbering system and source placement for the 3D problem.
The chosen 46 sensor locations (numbered black semi-spheres) and the location of the
center of the active source, which corresponds to S = [0.51,0.06,0], (green large semi-
sphere) are shown. The face with coordinate z = 0 is shown on the left, while the face
with coordinate z = 0.1 is shown on the right.

where n, is either equal to Ny or Nies. A more realistic parameter space could be
provided by relying on model calibration, based on the combination of experimental data
with prior knowledge. While this goes beyond the scope of this thesis, some background
insights and preliminary work are provided in Appendix A.

The excitation of the structure is necessary to generate waveforms which propagate
in the medium and are measured at the sensors for signal diagnostic. In this thesis,
as previously discussed in Chapter 3, we consider active sources, as an alternative to
passive continuous sources such as wind or tides. In several wave-based non-destructive
evaluation tests, electromechanical shakers are used to inject pure white Gaussian noise,
e.g., [LB14; OCDS17|. Alternatively, sources based on sinusoidal waves are also used,
e.g., [TPYP18; ZBA13]). In this thesis, we focus on the second type of sources because
of the impossibility of translating white noise in frequency domain. Moreover, in the
SHM framework, short pulse impulses are often used for non-destructive evaluation and
testing, e.g., the more sophisticated Hanning-windowed sinusoidal tone-bursts used in
[ZBA13], in combination with the damage-sensitive features described in Section 4.3.1.
In particular, it is observed that damaged structures produce greater attenuation for
signals with higher frequency, i.e., signals with higher frequency are more sensitive to the
presence of damage sites as explained in [DFPS96; LY01].



72 Chapter 4. Anomaly detection

In this work, the source functions s(x; p) and h(t; @), introduced in (3.14), are chosen as

SEICC

s(x; p) = . h(t;p) = kgsin(krt) tFe, (4.20)

24

where & = 0.01 represents the width of a Gaussian centered at S := [0.54,0.125] and

S = [0.51,0.06,0] in 2D and 3D, respectively. Since these values are fixed for all

numerical examples, the space source function is independent of the parameter p. For the

time-dependent source function, we choose the scaling factor ks := 100, such that h only

depends on one parameter, k € R, which controls the number of cycles before attenuation.
Oh(t;p)

Moreover, our choice guarantees —4;=| = 0, which provides a solution that is coherent

with the homogeneous initial conditions, i.e., ug = vg = 0. The corresponding Laplace

transform of h is
- 21k(z + 1)

h(z; k) =k )
(k) = ks e - G+ 17
Given z = a + 1y, (4.21) can be split in its real and imaginary parts, i.e., h%(« + wy; k)

(4.21)

and hY(a + wy; k), required in (3.19). Their explicit formulation can be computed using a
symbolic software and is given as

h* (o +w; k) = C (2kn(1+ a)Cy) and hY(a+wy; k) = C (2knyCy) ,

where C € Ry, C, € Ry, and C, € Ry are given as

9

—(k
= (' + (1+ ()2 + 20+ 0?) 4+ 2 (1 = (k)? + 20 + 0?) ) s

— 3yt + 22(—1 + (k7)? = 2a — a®) + (1 + (k7)? + 2a + o?),

=—3—2(kn)? 4+ (kn)* + y* — 4(3 + (kn)})or — 2(9 + (km)?)a?
—120° — 3" — 2y (1 + (k7)* + 2a + o?) .

C
Ca
C?J

In this thesis we fix k1 = 1.

Figure 4.5 shows the source function in time and frequency domain when the real part of
the frequency Z is fixed, i.e., « = 0.26, obtained using (3.33), and for different values of
ke [1.9,2.1].

4.4.1 A training set of healthy configurations

We present here the details to construct the training set for the 2D and 3D problems. For
both problems, we first generate a dataset using the RB strategy presented in Section 3.4.
For this, we set k, = 3 which leads to a total of Ny = 600 and Ny = 1500 snapshots
in 2D and 3D, respectively, given the choices N, = 200 and N, = 500, presented at
the end of Section 3.3.2. Our sampling strategy is summarized in Remark 4, where the
snapshot matrix (3.48) is obtained by combining the Ny solutions of the high-fidelity
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Figure 4.5 — Source function for various values of the parameter k. The source function
h(t; k) is plotted as a function of time (left) and its corresponding Laplace transform, split
in its real (full lines) and imaginary (dashed lines) components, is plotted as a function
of y, i.e., the imaginary part of frequency z for a fixed « value (right).

Ny, k., N. Ns €POD N Ay Ny

2D 30912 3 200 600 1le—11 139 1le—3 30’000
3D 217344 3 500 1500 1le—11 235 1le—3 22’500

Table 4.2 — Summary of the parameters used to generate the synthetic 2D and 3D sensor
measurements.

problems (3.18), obtained for different values of the frequencies Z, defined in (3.27), and
the parameter p,,, obtained by uniform sampling as in (4.19) for m = 1,..., Ns. By
applying Algorithm 2 for a fixed tolerance eppp = le—11, we obtain N = 159 and
N = 251 basis for the 2D and 3D case, respectively. A summary of the parameters used
for the construction of the synthetic signals in 2D and 3D is given in Table 4.2.

The training datasets D; for i = 1,...,ns, defined in (4.13), are obtained by applying
Algorithm 1 for Ny, := 1000 different input parameters. We remark that this requires
solving the reduced problem (3.44) N, Ny, times. Depending on the choice of the one-class
algorithm, described in Remark 5, we extract the damage-indicator features as explained
in Section 4.3.1 and apply the PCA reduction to the normalized dataset, as detailed in
Section 4.3.2. We refer to Table 4.1 for a summary of which transformation to apply to
each algorithm.

A clarification should be made for the VAE setup, for which we pre-process the discrete
time-signals g by shortening the time windows from 7" = 30 to T" = 5 and by sub-
sampling the signals at every 25 steps with At = 0.025. This choice allows to significantly
reduce the dimensionality of each input signal, which is now a dy-dimensional vector
with N; = 200 steps, without compromising the global information carried by the
measurements. Indeed, as shown in Figures 4.7 and 4.8, the main differences between
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healthy and damaged configurations can be observed in the first 5 seconds. Dealing with
low-dimensional inputs facilitates the task of the autoencoder, i.e., instead of using a
deep network with the inconvenience of a long learning time, a more shallow network can
provide good classification results. We finally remark that the same transformation is
applied to the test samples described in the following section.

4.4.2 A test set of healthy and damaged configurations

The test set is composed of both healthy and damaged synthetic sensor measurements,
but we expect this strategy to hold also for experimental measurements. The discrete
time signals are obtained by solving the high fidelity problem (3.18) for N, new input
parameters, sampled from the same parameter distribution used offline. As mentioned
in Section 2, we add zero-mean random Gaussian noise to all time steps of all test
signals. In particular, for each component of the reconstructed test signals g7, we add
noise &; € N'(0,~?), where ~; corresponds to 0.01% of the maximum amplitude of 30
randomly chosen training healthy signals over the first N; = 20’000 steps, component by
component. Different from the training set, some of the signals are obtained by solving
the PDE on faulty geometries. In particular, in 2D, we consider N.o,; = 10 scenarios,
9 of which are damaged. These configurations are sketched in Figure 4.6, and among
them 4 are considered as major damages (a — d), 4 as minor damages (e — h) and 1 (i)
is obtained by combining two major damages. For the healthy configuration and each
damaged configuration we consider n, = 10 samples for a total of Nycst = Neon Ny = 100
test samples. In 3D, the test set is composed of Ny, = 4 scenarios: 1 healthy and 3
damaged configurations (2 major damages and 1 minor damage) for a total of Nyes = 40
test samples, i.e., again n, = 10 samples for each configuration are considered. The
geometries are shown in Figure 4.12.

We observe that in this chapter the effect of cracks is obtained by modifying the geometry
of the structure to include discontinuities. This approach is also used in [AVCT20|, where
artificial damages on the blade of a wind turbine are implemented via a trailing edge
opening. Alternatively, especially in the vibration-based monitoring approach context,
damages manifest themselves as changes to the mass, stiffness, and energy dissipation
properties of the structure, see, e.g., [RMMC20], where stiffness degradation is used to
simulate different damage scenarios. Indeed, reduction in stiffness is generally associated
with a decrease in the natural frequencies and modification of the modes of vibration of
the structure [SLZ00].

We compare the high-fidelity solutions obtained in Laplace domain for healthy and
damaged structures in 2D, before and after applying Weeks method. In particular, the
signals retrieved at the 9 sensor, i.e., &g = (0.5,9.25), are provided in Figure 4.7. The
graphs compare two healthy solutions obtained with two input parameters p*, u** € P
and a solution obtained when the beam located between the 8! and 9" sensor is broken



Chapter 4. Anomaly detection

75

0.72

0.7

0.6 A

0.4 4

0.45

0.4

e

0.4 0.6

(a)

A
0.78 ) 0.8
(d)
|
A
0.33 0.35
(2)

0.3

0.28

0.72

0.7

0.6

0.55

0.6 1
1] 0.4 1
A
0j4 0?6
(b)
‘L. 0.72 |
07 |
A
0.4 045
(e)
0.72
0.7 1
1 0.6 4
0.4 1
A
0.33 ' 0.35
(h)

-

0.55 0.6

(f)

L
jam

0.33 0.350.4 0.6

(1)

Figure 4.6 — 2D geometries of nine damage configurations for the 2D problem. Figures
(a — d) correspond to major damages, while (e — h) correspond to minor damages. Figure
(7) is the union of two major damages, i.e., damages (a) and (¢). The location of the
center of the active source is the same for nine damaged geometries and the undamaged
configuration, which corresponds to S = [0.54,0.125] (black triangle).
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Sensor number ¢ aj Co ag  Parameter Structure Type
3.04 1352 3.41 1005 u* Healthy
6 3.16 1354 3.26 1003 w Healthy
3.74 1868 3.08 1442 u* Damaged
3.16 649 235 637 uw Healthy
8 3.04 647 229 631 u*r Healthy
330 651 3.31 638 u* Damaged
3.04 2024 2.78 913 u* Healthy
9 3.15 2017 285 909 ur Healthy
3.04 2016 3.43 1960 u Damaged
3.14 1389 3.29 1016 u* Healthy
12 3.16 1381 3.11 1013 ur Healthy
3.15 2554 3.67 1750 u* Damaged

Table 4.3 — Comparison of crest factor ¢ and arrival time a for high-fidelity reconstructed
2D signals at four different sensor locations for the healthy structure (see Figure 4.3) and
a structure with a major damage (see geometry (a) in Figure 4.6). The subscript indicates
the signal component. The retrieved signals are obtained using two input parameters, i.e.
p* =11,0.33,2] and p** = [0.9993,0.3307,2.07].

(see damage a in Figure 4.6) using p* as input parameter. Especially for the second
component of the solution in Laplace domain and the consequent reconstructed signals,
we can observe significant differences between the two healthy signals and the damaged
ones. This visual inspection confirms our assumption: signals generated from damaged
structure differ from those generated from healthy structures. For this type of damage,

9t sensor happens to be the most affected ones. This can be

signals retrieved at the
explained by considering the relative positions of the source, the sensor and the damage,
i.e., the damage lies between the source and the receiver, which implies that the signals
has to negotiate around the damage to reach the sensor, giving rise to a modified and
delayed signal. The same reconstructed solutions, retrieved at sensors 6, 8 and 12, are
shown in Figure 4.8. Qualitatively, we observe some differences between the two healthy
signals and the damaged one: damaged signals at sensors 6 and 12 appear to be delayed
with respect to the healthy signals, while the signals at sensor 8 are very close for few
time-steps and then diverge. These observations can once again be explained by looking
at the relative positions of the source, sensors, and damage. Indeed, signals retrieved at
sensor 8 begin to diverge when the signals are reflected at the crack. Moreover, after
computing the crest factor (4.14) and arrival time of these signals, we observe that these
values are significantly different when looking at the damaged signals or the healthy ones,
as summarized in Table 4.3. This observation supports our choice of using, among others,
the crest factor and arrival time as damage-indicator features.
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Figure 4.7 — Comparison of 2D signals both time and frequency domain, retrieved at
the 9t sensor, obtained either from the healthy structure or from a structure with a
major damage in the proximity of the 9™ sensor (i.e., geometry (a) in Figure 4.6). From
left to right, the first row shows the reconstructed signals obtained using Weeks method
on the first and second component of the solution, respectively. The second row shows
the absolute value of the raw solutions in Laplace domain. For the four plots, we show
two healthy signals, obtained with two different parameters, i.e., u* = [1,0.33,2] (blue
dashed line with filled dots), and p** = [0.9993,0.3307,2.07] (orange dotted line with
empty diamonds), and a damaged signal, obtained with p* (black line with empty dots).
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Figure 4.8 — Comparison of the second component of 2D reconstructed signals retrieved
at the 6", 8" and 12", sensors, obtained from the healthy structure or from a structure
with a major damage in the proximity of the 9*" sensor. For the three plots, we show
two healthy signals, obtained with two different parameters, i.e., p* = [1,0.33,2] (blue
dashed line with filled dots), and p** = [0.9993,0.3307,2.07] (orange dotted line with
empty diamonds), and a damaged signal, obtained with p* (black line with empty dots).

4.4.3 Classification results

In this section we present the one-class classification results on the test sets, sensor by
sensor. We recall that, in 2D, the test set is composed of Nycsy = 100 samples, i.e., n, = 10
samples for each one of the Ncoy, s := 10 configurations (1 healthy and 9 damaged). In
3D, the test set is composed of Nies; = 40 samples, i.e., n, := 10 samples for each one of
the Neon s = 4 configurations (1 healthy and 3 damaged). In both cases, each of the n,
samples is obtained by solving the high fidelity problem with different input parameters
Mm form =1,...,n,. A summary of the parameters used to generate the training and
test set for each one-class algorithm is given in Table 4.4.

We first comment on the results obtained for the 2D and 3D problems with one of the
four methods, the oc-SVMs. Then, we provide a comparison of the results obtained with

Ns Ntr Ntest Nconf ny Q Nf dy

oc-SVM 15 1000 100 10 10 6 12 1

oD IF 15 1000 100 10 10 6 12 -
LOF 15 1000 100 10 10 6 12 1

VAE 15 1000 100 10 10 - - -
3D o0c-SVM 46 1000 40 4 10 6 12 1

Table 4.4 — Summary of the parameters used to generate the synthetic train and test
datasets in 2D and 3D, sensor by sensor, for four different one-class algorithms.
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the other three algorithms for the 2D problem.

Classification results with oc-SVMs in 2D and 3D

To visualize the output of the classifier, we first present the oc-SVM relative anomaly scores
(4.6), for the training and test sets, sensor by sensor. Figure 4.9 shows the histograms of
the outputs of the classifiers obtained for the Ny training samples. By construction, all
the relative anomaly scores are below the threshold 6 = 1, represented by a dashed red
line. A similar plot comparing the anomaly scores of the test samples is given in Figure
4.10. The two superposed histograms show the outputs of the classifiers obtained for
the n, samples associated with either the healthy domain or the first damaged domain,
i.e., the geometry shown in Figure 4.6 (a). As expected, the anomaly scores associated
with the healthy geometry are almost all below the threshold for all the sensors and the
few exceptions correspond to false alarm errors, e.g., one sample captured at sensor 12.
Instead, the anomaly scores associated with the damaged geometry are partially above
the threshold. In particular, the anomaly scores relative to the sensors closer to the crack,
i.e., sensors 3, 6, 9, 12, and 15, are almost all above the threshold. This suggests that the
classifiers allows to both detect and localize damages, as demonstrated by the results in
the following tables and figures.

Tables 4.5 and 4.6 show, for each type of damage, the fractions of test samples classified
as outliers, i.e., with an anomaly score greater than # := 1, while the mean values for each
damaged configurations are shown in Figures 4.11 and 4.12, for the 2D and 3D problems,
respectively. Sensors whose average anomaly score (4.6) is greater than 6 are represented
with red markers (outliers), while blue markers identify the sensors with average anomaly
score smaller than 6 (inliers). To capture the severity of the damage we introduce an
arbitrary value 0, := 2, i.e., sensors with mean anomaly score greater or equal than 65
are defined as strong outliers, while mild outliers have mean anomaly score greater than
or equal to 8, but smaller 6. Strong outliers are represented with red squares, while
mild outliers with red asterisks in 2D and red semi-spheres in 3D. Alternatively, for
visualization purposes, a continuous colour scale could be used to represent the mean
classification results.

Both in 2D and 3D, we observe that damages are generally detected, i.e., at least one
sensor is classified as outlier if the structure is damaged, and that, in most of the cases,
damages are close to the sensors are classified as strong outliers. Even if not reported
in Figure 4.11, all sensors of the 2D healthy configuration are, on average, classified as
inliers, while the average result for the 3D healthy configuration (see geometry (a) in
Figure 4.12) presents 1 misclassified sensor. In general, the 3D results present a slightly
higher false alarm rate than the 2D problem, even though it is still possible to identify a
macro-region where the damage is located.
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Figure 4.9 — Relative anomaly scores of the Ny = 1000 training samples obtained using
the oc-SVM classifiers, sensor by sensor. The threshold # = 1 is shown by means of a red
dashed line.
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Sensor  Healthy Major Major Major Major Minor Minor Minor Minor Combined
7 damage (a) damage (b) damage (¢) damage (d) damage (¢) damage (f) damage (g) damage (h) damage (i)
1 0 0.4 0.4 0 0.1 0.1 0 0 0.1 0.1
2 0 0.5 1 1 0 0.2 0 0 0.5 1
3 0 0.7 0.1 0.7 0 0 0 0 0.1 0.3
4 0 0 0.9 0.4 0 0.1 0.5 0.1 0.1 0.1
5 0 0 1 1 1 0.2 0 1 0 1
6 0 1 1 0 0 1 0 0 0 1
7 0 0.1 1 0 0 0 0 0 0 0.1
8 0 0.3 1 1 0 0.1 0.5 0.1 0.1 1
9 0 1 0 0 0.1 0.1 0 0 1
10 0 0 0 0.3 0.1 0.1 0 0.2 0.1 0.1
11 0 0.1 1 0.1 1 0 0 0.2 0 0
12 0.1 1 1 0 0.1 0.5 1 0 0 1
13 0 0.1 0 0.1 0 0 0 0 0.3 0.1
14 0 0.1 1 0.1 1 0.2 0 0.1 0.1 0.8
15 0 1 1 0.1 0.1 1 0 0 0.1 1

Table 4.5 — Fractions of test samples classified as outliers using oc-SVMs for the 2D
problem with one healthy configuration (see Fig. 4.3) and nine damaged configurations
(see Fig. 4.6). A set of uniformly sampled input parameters {u},},"_, € P is used to
average the results over n, = 10 test samples per configuration.

The relative position of the source, the sensors, and the damage is important to successfully
locate the damage based on guided-waves. Indeed, in 2D, for the major damages (a),
(¢), (d), and (i) only the sensors behind the damage are classified as outliers, allowing
for localization. Instead, with the major damage (b) positioned too close to the source,
11 out of 15 sensors are, on average, classified as outliers, thus preventing localization.
The position of the source plays an important role in classification and therefore, to
localize damage (b), the source should be placed differently. A similar behavior is
observed in the 3D results. The combination of solutions obtained with different active
sources at different locations is likely to address this issue. For example, we refer to
[SEFBT06], where piezoelectric transducers are used as both sensors and actuators for
Lamb wave propagation. In this work, once the damaged path-ways between each couple
of sensor/actuator have been determined, the location of damages is identified with the
regions with higher number of intersecting damaged pathways. Alternative solutions are
reported in Chapter 7 of [FW12].

Comparison of the four one-class classification methods in 2D

Tables 4.7, 4.8, and 4.9 show, for each type of damage, the fractions of test samples
classified as outliers, i.e., with an anomaly score (4.12) greater than 6 := 1, using the IF,
LOF algorithm, and VAE, respectively. The mean value for each damaged configuration
for the corresponding algorithms are shown in Figures 4.13, 4.14, and 4.15. To qualitatively
distinguish between mild outliers and strong outliers, we arbitrarily choose the threshold
05 = 1.1 for the IF method and 65 := 5 for the LOF and VAE methods. We note that, in
the multi-sensor semi-supervised setting of the examples presented here, it is not entirely
clear how to quantify the accuracy of the classification by means of a unique index,
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Figure 4.11 — Sketch to summarize the one-class SVMs classification average results on
test data for nine 2D damage configurations. For each configuration, major damages
correspond to sensors classified as strong outliers, i.e., with an average anomaly score
si(x;) > 2 (red filled squares), minor damages to sensors classified as mild outliers, i.e., with
an average anomaly score s;(x;) € [1,2[ (red asterisks), and undamaged configurations to
sensors classified as inliers, i.e., with an average anomaly score s;(x;) < 1 (blue empty
circles). For all types of damages we can identify at least one sensor classified as an
outlier. With the exception of damage (b), a clear proximity between the location of
the damages and the sensors classified as outliers can be observed. For major damages
(a,c,d), 3 to 4 sensors are classified as strong outliers and at most 1 as as mild outlier
with a maximum total of 5 sensors classified as outliers. For minor damages (e, f, g, h)
from 1 to 3 sensors are classified as outliers. For the combined damage (i) 7 sensors are
classified as strong outliers and 1 as mild outlier. The location of the center of the active
source is the same for the nine damaged geometries and the undamaged configuration,
which corresponds to S = [0.54,0.125] (black triangle).
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Figure 4.12 — Sketch to summarize the geometries of the four configurations used in the
test set for the 3D damage problem, together with the one-class SVMs classification
average results. For each configuration, major damages correspond to sensors classified
as strong outliers, i.e., with an average anomaly score s;(x;) > 2 (red filled squares),
minor damages to sensors classified as mild outliers, i.e., with an average anomaly score
si(x;) € [1,2] (red filled semi-spheres), and undamaged configurations to sensors classified
as inliers, i.e., with an average anomaly score s;(x;) < 1 (blue filled semi-spheres). The
left and right plots show the front (z = 0) and rear (z = 0.1) of the 3D configurations.
For the damaged configurations, a correlation between sensors classified as outliers and
location of damage can be identified. A low false positive error is observed for both the
healthy and damaged configurations: 1 sensor is misclassified in the healthy configuration
(a) and few sensors, far from the damages, are mistakenly classified as mild outliers,
especially for the damaged configuration (d). The location of the center of the active
source is the same for the three damaged geometries and the undamaged configuration,
which corresponds to S = [0.51,0.06, 0] (large green semi-sphere).
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Table 4.6 — Fractions of test samples classified as outliers using oc-SVMs for the 3D
problem with one healthy configuration and three damaged configurations (see Fig. 4.12).
A set of uniformly sampled input parameters {/ﬁn}},?:l € P is used to average the results
over n, = 10 test samples per configuration.
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which makes the comparison of the four algorithms less trivial. Indeed, if we were to use
standard indices in machine learning, e.g., the area under the curve (AUC), we should
decide a priori which sensors we expect to be classified as outliers for each damaged
configuration. This choice has an impact on the expected trade-off between false positives
and false negatives and should be driven by the specific maintenance objectives. Without
going into such detail, in the remainder we provide a high-level comparison of the four
methods.

First, we note that all methods perform well in detecting damaged configurations, i.e., all
the four methods classify as inliers almost all the sensors belonging to the healthy config-
uration and at least one sensor is classified as outlier for all the damaged configurations.
Second, the location and extent of damages are qualitatively better captured by oc-SVMs
and IFs, while for the LOF and VAEs, almost all sensors of each damaged configurations
are classified as outliers, preventing localization. Nevertheless, it is interesting to observe
that for VAEs the distinction between mild and strong outliers provides a qualitative way
to identify the position of damages, i.e., the damage is closer to sensors classified as strong
outliers. Third, from a computational cost perspective, the first three methods are very
fast and all the ng models are trained in a few minutes. The variational autoencoders
require instead a few hours for training. Last, the fine tuning of hyper-parameters is a
very important aspect of all the methods to avoid overfitting. In addition, while we are
required to fix the values of only a small number of hyper-parameters for the first three
models, the complex architecture of VAE presents a much larger set of choices.
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Sensor  Healthy Major Major Major Major Minor Minor Minor Minor Combined
Y damage (a) damage (b) damage (¢) damage (d) damage (¢) damage (f) damage (¢g) damage (h) damage (7)
1 0 0 0.3 0.1 0 0 0 0 0 0
2 0 0 0.4 0.5 0 0.3 0 0 0.3 0.7
3 0 1 0.1 0.2 0 1 1 0 0.1 1
4 0 0 0.1 0 0 0 0 0 0 0
5 0 1 1 1 1 0.9 0.7 1 1 1
6 0 1 1 0 0.1 0.5 1 0 0 1
7 0 0.1 0.5 0.1 0 0 0 0 0.1
8 0 0 0.2 0 0 0 0.1 0 0 0.3
9 0 0.1 0.1 0 0 0.1 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0
11 0 0.3 1 0.3 1 0.4 0 0.5 0 0.3
12 0 0.8 0.7 0 0.4 0.9 0.1 0.1 0.2 0
13 0 0 0.5 0 0 0 0 0 0.1 0
14 0 0 0 0 0 0 0 0 0 0
15 0 1 1 0.2 0.8 1 1 0.1 0.1 1

Table 4.7 — Fractions of test samples classified as outliers using IFs for the 2D problem
with one healthy configuration and nine damaged configurations. All the results are
averaged over n, = 10 test samples per configuration.

Sensor  Healthy Major Major Major Major Minor Minor Minor Minor Combined
Y amage (a) damage (b) damage (¢) damage (d) damage (e¢) damage (f) damage (g) damage (h) damage (i)
1 0 0.4 0.4 0 0.1 0.1 0 0 0.1 0.1
2 0.5 1 1 0 0.2 0 0 0.5 1
3 0 0.8 1 0.1 1 0.1 0.3 0.2 0 0
4 0.1 1 1 0.1 0 0.6 1 0 0 1
5 0 0.2 0.1 0.1 0 0.1 0.2 0 0.1 0.1
6 0 0.3 1 0.1 1 0.2 0 0.1 0.3 0.8
7 0 1 1 0.1 0.1 1 0 0 0 1
8 0 0.7 0.4 0.7 0.3 0.2 0.2 0 0.1 0.5
9 0 0 0.9 0.4 0 0.1 0.5 0.1 0.1 0.1
10 0.1 0.1 1 1 1 0.2 0.5 1 0 1
11 0 1 1 0 0 1 0 0 0 1
12 0 0 1 0 0 0 0 0 0 0
13 0 0.2 1 1 0.2 0 0.2 0.1 0.5 1
14 0 1 1 0 0 0.1 0.2 0 0 1
15 0 0 0 0.3 0.1 0.1 0 0.2 0.1 0.1

Table 4.8 — Fractions of test samples classified as outliers using the LOF algorithm for
the 2D problem with one healthy configuration and nine damaged configurations. All the
results are averaged over n, = 10 test samples per configuration.

Major Major Major Major Minor Minor Minor Minor Combined

Sensor - Healthy damage (a) damage (b) damage (¢) damage (d) damage (e) damage (f) damage (g9) damage (h) damage (i)

0.5 0 1 1 1 1 1 1 1 1 0.5
1 0 1 1 1 1 1 1 1 1 1
1 0 1 1 0.9 1 1 1 1 0.4 1
1 0 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1

0.9 0 1 1 0.7 0.9 1 1 1 0.9 0.9
0 0 1 1 1 1 1 1 1 1 0
0 0 1 1 0 1 1 1 1 0.1 0

0.5 0 1 1 0.5 0 1 1 1 0 0.5
1 0 1 1 1 1 1 0.2 1 1 1

0.7 0 1 1 1 0.9 1 1 1 1 0.7

0.1 0 1 1 0.4 1 1 1 1 0 0.1

0.8 0 1 1 1 1 1 1 1 1 0.8
0 0 1 1 0 0.5 1 1 1 0.1 0

Table 4.9 — Fractions of test samples classified as outliers using VAE for the 2D problem
with one healthy configuration and nine damaged configurations. All the results are
averaged over n, = 10 test samples per configuration.
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Figure 4.13 — Sketch to summarize the IF classification average results on test data for
nine 2D damaged configurations. For each configuration, major damages correspond to
sensors classified as strong outliers, i.e., with an average anomaly score s;(x;) > 1.1 (red
filled squares), minor damages to sensors classified as mild outliers, i.e., with an average
anomaly score s;(x;) € [1,1.1] (red asterisks), and undamaged configurations to sensors
classified as inliers, i.e., with an average anomaly score s;(x;) < 1 (blue empty circles).
For all types of damages we can identify at least one sensor classified as an outlier. For
most of the damaged configurations, we observe a connection between the location of the
damages and the sensors classified as outliers. The location of the center of the active
source is the same for the nine damaged geometries and the undamaged configuration,
which corresponds to S = [0.54,0.125] (black triangle).
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Figure 4.14 — Sketch to summarize the LOF classification average results on test data for
nine 2D damaged configurations. For each configuration, major damages correspond to
sensors classified as strong outliers, i.e., with an average anomaly score s;(x;) > 5 (red
filled squares), minor damages to sensors classified as mild outliers, i.e., with an average
anomaly score s;(x;) € [1,5] (red asterisks), and undamaged configurations to sensors
classified as inliers, i.e., with an average anomaly score s;(x;) < 1 (blue empty circles).
For all types of damages we can identify at least one sensor classified as an outlier. For
most of the damaged configurations, the results are not conclusive to locate the position
and estimate the extent of the different damages. The location of the center of the active
source is the same for the nine damaged geometries and the undamaged configuration,
which corresponds to S = [0.54,0.125] (black triangle).
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Figure 4.15 — Sketch to summarize the VAE classification average results on test data for
nine 2D damaged configurations. For each configuration, major damages correspond to
sensors classified as strong outliers, i.e., with an average anomaly score s;(x;) > 5 (red
filled squares), minor damages to sensors classified as mild outliers, i.e., with an average
anomaly score s;(x;) € [1,5] (red asterisks), and undamaged configurations to sensors
classified as inliers, i.e., with an average anomaly score s;(x;) < 1 (blue empty circles).
For all types of damages we can identify at least one sensor classified as an outlier. For
most of the damaged configurations, the results are not conclusive to locate the position
and estimate the extent of the different damages. The location of the center of the active
source is the same for the nine damaged geometries and the undamaged configuration,
which corresponds to S = [0.54,0.125] (black triangle).
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4.5 Conclusions

In this chapter, we propose a data-driven approach for SHM which leverages the physics-
based representation of the structure of interest. From a mathematical standpoint, the goal
of data-driven approaches is classification, as opposed to model-based approaches where
the goal is to solve an inverse problem and estimate the (unknown) input parameters.

Damage detection and localization is carried out on a sensor-by-sensor basis by construct-
ing synthetic training data that emulate the sensor response of the structure to active
sources, i.e., we analyze the structural response to the propagation of guided-waves. As
described in Chapter 3, these training databases are constructed offline by repeatedly
solving PDEs in the frequency domain for different input parameters and by exploiting
ROM techniques for speedup. The reconstruction of time signals is compared using
Weeks method, as a numerical inverse Laplace transform. The set of input parameters
used to generate the dataset represents the natural variations of the structure, i.e., the
environmental and operational conditions, and provides the baseline variability. After
extracting damage-sensitive engineering-based features from the raw discrete signals,
we employ four different one-class classifiers to compare the healthy training dataset
with new unseen test data. The latter are obtained by extracting the same features
from high-fidelity signals obtained by solving the PDEs for unseen input parameters and
by possibly modifying the geometry to include cracks of different sizes and at different
locations. Noise is added to the test signals to emulate the unknown experimental sensor
response.

This approach is successful in both detecting and localizing damages for 2D and 3D
digital twins test problems. In particular, among the methods we tested, oc-SVMs and
IFs seem to provide the best results in terms of localization. We conjecture that a finer
tuning of the hyper-parameters could improve the results obtained with LOF and VAEs.
We observe that, using active sources, localization is possible only for damages which are
sufficiently far from the source. To address this limitation, the possibility of introducing
a network of sources placed at different locations should be further investigated. The
source location could be used as additional input parameter to construct the RB model
and the combination of different classification results could help gain insight on damages
on the entire domain. The method is highly generalizable to other examples and more
realistic experiments should be carried out within a laboratory environment to further
validate our approach. In particular, the availability of experimental measurements may
be used to better tune the threshold value of 8. Moreover, the offline-online decoupling of
tasks and the ROM techniques allow us to compute the sensor response under different
operational and environmental conditions in a fast and inexpensive manner. By exploiting
this advantage, in the next chapter we present a framework for the optimal placement
of sensors, needed to both retrieve maximum information about the potential structure
damages and guarantee a robust network of sensors, which seeks to maintain the stability
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of the network even when some sensors malfunction. Finally, alternative passive periodic
sources, mimicking the effect of tides or wind, could be integrated in the model by
replacing the Laplace transform with the Fourier transform. In this case, autoencoders
could still provide an automatic tool to identify the underlying characteristics of healthy
signals. Otherwise, the features used as damage-indicators would need to be adapted.



CHAPTER O

SENSOR PLACEMENT

The content presented in this chapter is mainly based on [BZH20].

In this chapter we present a sensor placement strategy for structural health monitoring
applications. In particular, Section 5.1 presents a literature overview of sensor placement
strategies in the structural health monitoring context. It also describes the connections
of our main contribution to other applications of sensor placements. Sparse Gaussian
process (GP) approximations are introduced in Section 5.2 with a particular emphasis
on variational sparse GP regression, which is used in this chapter. We explain how
variational approximations are used for sensor placement in the absence of damage states
in Section 5.3 and provide numerical evidence of the quality of this method in Section 5.4.
Conclusions are given in Section 5.5.

5.1 A survey of sensor placement for SHM

An early detection of faults, e.g., cracks or corrosion, has the potential to greatly reduce
the maintenance cost over the life time of a structure and may help prevent catastrophic
events, as discussed in Chapter 1. Despite the existence of different approaches and various
types of sensors, all SHM techniques depend on the information acquired by a network of
sensors. Hence, performance depends critically on the quality of the information collected
by these sensors. Clearly, both improving sensor sensitivity and deciding where to place
sensors play a key role in the digital twin industry.

Motivated by the opportunities of cost reduction for SHM systems and the improvement
in the quality of the monitoring outcome, optimization of sensor placement (OSP) has
received increasing interest during the last decades. The exhaustive review [OSM19|
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provides a collection of examples of OSP applied to SHM, classified based on the different
techniques employed for the sensor placement optimization itself, among which the
vibration-based and the wave-based monitoring are the most commonly used. While
the former depend on the dynamics of the structure using passive sources, e.g., only the
ambient loads on the structures are considered, the latter are usually used in the active
sensing domain. Where as vibration monitoring techniques seek to identify changes in
the natural frequencies and mode shapes with respect to a baseline, in the wave-based
monitoring field, vibrations are generated by a controlled source, e.g., a sinusoidal wave
or a short impulse, and signal-processing techniques are used to differentiate baseline
time-dependent responses from the reflections and refraction of the wave caused by the
presence of damages. Since the non-destructive impulses used to excite a structure have
a high damping effect, i.e., it is difficult to observe the effect of the guided-wave far
from the source, wave-based monitoring techniques are usually employed to monitor
pipes or plate-like components with complex geometries, e.g., in aeronautical applications
[MMO7; TKA16|. On the contrary, large-scale assets, e.g., dams, bridges, etc., are usually
monitored by vibration-based techniques, see e.g., [CCMA17|, or by static approaches,
see e.g., [HKP13|.

Despite their fundamental differences, the general deployment of an OSP strategy is
similar for both approaches. The OSP process can be split into a sequence of a few stages
going from the choice of sensor types, over the definition of operational parameters, e.g.,
the candidate sensor locations, and, finally, to the characterization of a suitable cost
function and optimization algorithm, e.g., gradient-based techniques are chosen when the
cost function is continuous and differentiable, while meta-heuristic optimizations might be
necessary otherwise. We discuss here the state of the art of OSP for both the vibration-
and the wave-based monitoring techniques. Among the most popular placement strategies
for the former, we note the effective independence method (EFT), the kinetic energy
method (KE), and the more recent information theory approach, which seeks an optimal
placement of sensors by minimizing the information gain within a Bayesian experimental
design framework, see e.g., [Pap04; CCMA17; ACZP18|. For active sensing based on
guided waves, we focus on [FT10] and [LS07|. In the former, the authors propose an
optimization procedure where the sensor locations are chosen to minimize the risk of
false alarms and mis-detections. The latter proposes a strategy to increase the sensitivity
to damage by using simulation-based techniques, in which, by comparing the numerical
solution of the guided-wave propagation in undamaged versus damaged scenarios, sensors
are placed where the largest increase in the signal amplitude is observed. When the wave
propagation patterns are very complicated, it has been proposed to maximize the area of
coverage (MAC) within a sensor network, see e.g., [TKA16|, where physical properties of
Lamb wave propagation and complex geometrical properties are taken into account, or
[SMKO18|, where the ellipse equations with the sensor actuator pair as the foci are used
to compute the coverage area.

We note that, with the exception of the strategies which maximize the coverage area,
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all these OSP techniques require knowledge about the characteristics of the damage,
e.g., its type, its location, its severity, or its size. Consequently, these approaches do
not generalize well when other types of damages occur and, even though engineering
knowledge can certainly direct the attention to damages that are more likely to occur, it
seems unreasonable to characterize them all. In particular, when relying on numerical
simulations to describe the effect of a particular damage on a structure, including many
damage types and all possible combinations becomes computationally intractable. An
alternative is to resort to anomaly detection techniques, where damages are identified
only by looking at the output of multiple undamaged scenarios, collected under different
standard conditions, which may represent environmental or operational healthy variations.
We refer to Chapter 4 for a description of how to address the damage detection problem
with anomaly detection learning strategies for a fixed network of sensors. However, many
questions arise if one wishes to find the optimal sensor locations in the absence of any
damage information. In particular, the definition of new operational parameters and their
corresponding cost function must be considered.

In this chapter we propose a novel strategy for sensor placement in the context of
anomaly detection applied to SHM when a fixed budget is given, i.e., the number and
type of sensors is fixed. The sensor locations are systematically identified as the spacial
positions for which the reconstruction error of an output of interest at all unsensed
locations is minimized. The quantity of interest that defines the cost function for the
sensor placement optimization algorithm is the same quantity used to train the anomaly
detection classifier which distinguishes healthy configurations from damaged ones. As
such, the proposed placement strategy is based on an appropriate indicator of the damage
detection performance of a given network. More precisely, we employ the variational
inference of sparse Gaussian process regression (GPR) for a damage-sensitive quantity of
interest representing a healthy scenario, and we use the inducing inputs as the sensor
locations. With the variational formulation, sensor locations are selected by minimizing
the Kullback-Leibler (KL) divergence between the exact posterior distribution and the
variational distribution. Therefore, placing sensors at the corresponding location of the
inducing inputs addresses both the information compression of the whole domain and
the total variance reduction at the sensor locations. We also rely on an Expectation-
Maximization (EM)-like algorithm for the training phase, which, on one hand, prevents
a combinatorial search in the case of a discrete admissible set of points and, on the
other hand, allows the inclusion of domain restrictions in the optimization to avoid
placing sensors in areas difficult to reach or unsuitable for monitoring. Furthermore, we
extend the proposed algorithm to take into account the natural variations of the model
parameters, e.g., loads, boundary conditions, material properties, etc., by means of an
unsupervised clustering algorithm. To conclude, we present some numerical examples to
test the validity of the proposed method. In particular, we resort to a wave-propagation
based strategy to place sensors on both 2D and 3D structures and to a static monitoring
approach with passive sources to place sensors on a 3D representation of an offshore
jacket.
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We finally observe that the problem of sensor placement has been addressed in the
literature also from perspectives different from SHM. We mention here three strategies,
each relying on a different method and designed for a different application. Among them,
only the first one proposes to use of GPs, even if in a different way and context with
respect to the method proposed in this chapter.

First, the use of GPs for sensor placement has been proposed in [Cre91; KSGOS8|, where
either the maximum entropy principle or a mutual information criterion are applied to
identify near-optimal locations. In contrast, our work replaces the classic GPR model with
a sparse variational approximation, which at the same time identifies the optimal sensors as
the inducing points automatically and adresses challenges with large data set. Additionally,
the strategy presented in [KSGO08]| is used to monitor diffusion-like spatial phenomena,
e.g., temperature in an indoor environment, while the SHM applications involve more
complex phenomena, for which the training of a GPR may not be straightforward.

Second, in the recent work [ABDC™18], the authors investigate a greedy method to
place sensors in a systematic manner to assist field experts in placing sensors in nuclear
reactors. In particular, they propose to use the magic points of the generalized empirical
interpolation method (GEIM) as sensor locations and show the effectiveness of this
strategy on multidimensional examples based on synthetic measurements. Different from
the approach proposed in this thesis, these interpolation points often tend to cluster on
the border of the domain, thus leading to waste in sensed information.

Third, sparse approaches for sensor placement have been proposed in [BBPK16|, where the
authors exploit the low-dimensional structure exhibited by many high-dimensional systems
to compress a signal to very few measurements if the sole objective is classification. Despite
the use of sparsity-promoting techniques, this work is entirely based on classification,
which is different from the scope of the work discussed this chapter.

5.2 (Gaussian process regression

The sparse GP regression has received increasing attention in the last decades thanks to
its ability to overcome the computational limitation of a standard GP. Indeed, given the
number of training samples n, the computational complexity of generating a GP model is
O(n3) and the associated storage requirement O(n?), which becomes intractable for large
data sets. The corresponding sparse methods instead rely on a small set of m < n points
to facilitate the information gain of the whole data set, thus allowing for a complexity
reduction, i.e., O(nm?). After a short introduction of GP regression in Section 5.2.1, we
detail the properties and advantages of its sparse variation in Section 5.2.2. We discuss
the formulation of variational inference of a sparse approximation in Section 5.2.3, which
is of relevance to the method proposed in this chapter.
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5.2.1 A short review of GP regression models

A GPR model is a supervised machine learning approach, whose goal is to construct a
regression model to predict continuous quantities of interest given a set of observations. A
GP is a set of random variables, any finite subset of which follows a Gaussian distribution.
We observe that a GP is fully defined by its first and second moments. Without loss of
generality, we take the mean function m(x) to be zero. The covariance function k(x, x'; ),
also called the kernel function, is parametrized by a small set of hyper-parameters 0, e.g.,
the variance of the kernel and the lengthscales of the input dimensions, thus incorporating
prior knowledge of the smoothness of the stochastic process and the similarity between
data points.

Let D = {(x;,yi)}_, denote a training data set of d-dimensional inputs X = [x, ... X )T
and the corresponding real-valued realization y = [y1,...,yn|? of a latent function f(x)
corrupted by some Gaussian white noise ¢, i.e.,

y; = f(x;) +¢&;, where g; ~ N(0, O‘Z),

2
Yy

function, i.e., f(x) ~ GP (0, k(x,2’;0)). Given the noisy dataset, this can be expressed

where o7 is the variance of the noise. We assume a zero-mean GP prior over the latent

by the marginal likelihood
p(y|X,0) = N(y[0,Kppn + 0,1,),

where K, is the n x n covariance matrix with [K,,|;; = k(x;,%;;0), and I, is the

n—dimensional identity matrix. For the sake of convenience, we consider the variance of

2
Y

of a GPR model, i.e., its ability to make accurate predictions, strongly depends on the

the noise o;, as an additional hyper-parameter belonging to the set 8. The performance

hyper-parameters. The optimal hyper-parameters are estimated from the training data D
by minimizing the negative log likelihood over the space of hyper-parameters:

Oopt = arg;nin —log [p(y|X, 0)],

where
log [p(y|X, 8)] =log [N (¥|0, Ky, + 1))
1 7 ge 11 n (5.1)
==Y (Knn +o,1n) "y — 3 log |Knn| — 5 log 27r.
To predict the function values at p new test inputs X, = [X,1,...,X,p], One assumes a

joint GP prior of the latent function values for the training data f, = [f(x1), ..., f(xn)]T
and the unobserved function values f, = [f(x41),..., f(x4p)], i€,

Knn Kn*
oty - (o 1)) o
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Here, K,,, = KZ* is the covariance matrix between the new inputs X, and the training
samples X, i.e., [Kiplij = k(X4i,Xj;00pt). Thus, the noise-free posterior distribution
is obtained by conditioning the targets f, on the observations y. It has the predictive

posterior mean and variance estimates

my(m*) = K*n(Knn + UgIn)_lya

e 1 (5.3)
ky (2, i) = k(@4, T+ Oopt) — K (K, + ayIn) K,

We finally remark that the performance of the predictive distribution peaks with a correct
choice of the kernel function followed by an accurate estimation of the hyper-parameters.
Among the commonly used covariance functions, we consider the automatic relevance
determination squared exponential (ARD-SE) kernel and the ARD exponential (ARD-E)
kernel, defined as

1
karp-se(x, x';0) = 0]% exp <2r> and karp.g(z,z’;0) = o]% exp (—vr) ,

where r = 372],
o*
j=1 J
respectively. Above, 0 = [O'J%, o ... ,O’?l], where O'J% is the output variance, which deter-

mines the average distance of the function away from its mean and JJZ are the characteristic
lengthscales for j = 1,...,d. We observe that the term ARD refers to the possibility of
using a separate lengthscale for each predictor. For more details on GPR models and
kernel functions we refer the reader to [WR06; WR96; Mur12].

5.2.2 Sparse GPR models

The non-parametric nature of GPR models makes them popular for the prediction of
continuous functions. However, the training of a GPR model leads to a cubic scaling of
the computational cost with the number of training samples. This complexity prevents
GPRs to be used for big data sizes. To overcome this disadvantage, sparse approximations
of GPR methods have been developed, providing an efficient training process that scales
linearly with the number of training data. These methods rely on m < n auxiliary
latent variables, evaluated at some inputs Z C R™, referred to as the inducing inputs or
equivalently as inducing points or pseudo-inputs, to reduce the computational requirements
to O(nm?). This makes the sparse GPR competitive among machine learning methods
for large data sets.

Following [QCRO05], we present an overview of well-known sparse GPR methods. These
approaches seek to modify the prior from (5.2) in a way to reduce the computational
requirements of computing the posterior distribution (5.3). The latent variables f,,,
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evaluated at the corresponding inducing points Z = [z1,--- ,2Z.,]7, are values of the
Gaussian process (as also f,, and f,). Hence, we can recover the exact prior p(f,, f)
simply by marginalizing out f,,, from the joint GP prior p(f,, s, f,,)

p(fnaf*) = /p(fnaf*afm)dfm = /p(fnaf*|fm)p(fm)dfm7

where the inducing prior p(f,,) = N (0, K., ). A crucial assumption common to all the
sparse models models is that the training latent variables f,, and the test variables f, are
conditionally independent given the inducing variables f,,, i.e., they can be expressed
in two separate conditional distributions. This allows to approximate the joint prior as
follows

p(En. £) = f(Es. £.) = / P8}l (Er) A (5.5)

The various traditional sparse GP approaches differ by the choice of the conditional
distribution approximations p(fi|f;,) and p(f,|f,). We mention here three algorithms, by
chronological appearance, which build upon one another to achieve better approximations
of the true prior.

The sparse greedy approximation to GPR proposed in [SB01| formulates the approximate

K,, K
~ f,r“ f* — , > nn N n* )

Here Kab = KamK;l}nKmb is the Nystrom approximation of the true prior covariance

joint prior (5.5) as

K, which leverages the information provided by the m inducing inputs. Intuitively, Ko
and K, quantify how much information f,,, provides about f,, and f,, respectively. The
main drawback of this approach is that K has only m degrees of freedom, i.e., the joint
prior is degenerate, which results in overconfident predictions over a very limited family
of functions.

An alternative approximation is proposed in [CO02; SWL03|, where the exact prior
variance matrix K, is employed instead of its approximaton by the inducing variables:

~ _ Knn Kn*
iy (oS ) oo

In this way f, retains its own prior variance, leading to more reasonable predictive
uncertainties than those given by the previous model, even if the predictive means are
identical.

Further improvements on the joint kernel approximation have been made in [SG06] with
the Sparse Pseudo-input Gaussian processes (SPGPs) approximation, where a more
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sophisticated joint prior is employed:

K., K.. .

Note that, as opposed to the previous two methods, the diagonal of K, is corrected
to be the exact one, thus imposing an additional independence assumption about the
training conditional distribution f,, given f,,.

A particular note should be made about the inducing variables, which, depending on the
approach, can either be a subset of the training set X or arbitrary locations in the input
space. The former selection strategy leads to a prohibitive combinatorial optimization, for
which sub-optimal greedy-like solutions have been proposed to alleviate the computational
complexity, see e.g., [SS00; SBO1; SWLO03; Tit09]. Nevertheless, relaxing the constraint
on the inducing variables to be a subset of the training data can potentially lead to a
better local optimum, as the optimization is continuous and the target space is now larger.
However, we observe that, in both cases, reaching the global minimum is intractable and
one can only expect to converge to a good local minimum. This limitation is common
to the optimization of marginal likelihood functions, which are often non-convex with
respect to the hyper-parameters. A common approach to overcome this issue is to use
multiple starting points for both the hyper-parameters and the inducing inputs [CW18§].
Ultimately, by considering the inducing inputs Z as extra kernel hyper-parameters that
parametrize the covariance, their optimal values can be obtained simultaneously by
minimizing the negative log likelihood, i.e.,

(ZOPt7 OOPt) =arg min — log [ﬁ(y‘X7 Z7 9)]

)

= arg min — log N(y\O,Knn—i—A—i—UiIn) ,

)

(5.8)

where, A is specific specific to the chosen sparse approach, e.g., A = diag[K,,, — K| for
the SPGP method with prior covariance ps, defined in (5.7).

We finally remark that the quantities in (5.8) are trained at cost O(nm?), while the
computational complexities for the predictive mean and variance are O(m) and O(m?),
respectively. We refer the reader to [QCR05]| and references therein for more details on
the similarities and differences of various sparse methods for GPR.

5.2.3 Variational inference of sparse GPR

An alternative to the exact inference is variational inference. Instead of minimizing the
negative log likelihood (5.8), variational inference seeks an approximation of the true GP
posterior p(f,]y) among a given family of distributions. Observing the differences between
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the marginal log likelihoods (5.1) and (5.8), one can interpret the sparse algorithms as an
exact inference with an approximated prior with respect to the full GP prior, as suggested
in [QCRO5]. Therefore, a continuous optimization of (5.8) with respect to Z will not
converge to the true GP model. Variational inference instead seeks to overcome this by
considering the inducing inputs as variational parameters, whose optimal values are to be
estimated jointly with the hyper-parameters.

Following [Tit09], a variational Gaussian distribution ¢(f,) is chosen to approximate the
exact posterior p(f,|y) on the training function values f,,, such that, with the assumption
of conditional independence of f,, and f, given the inducing variables f,,,, p(f,|y) can be
approximated by the variational posterior

q(fn) = /p(fn|fm)Q(fm)dfm

The optimized inducing variables and hyper-parameters are thus obtained by minimizing
the Kullback-Leibler (KL) divergence between the true posterior and the variational
posterior. In [Tit09], it is proposed to minimize the KL divergence of the augmented true
posterior p(f,, f,|y) and the augmented variational posterior ¢(f,, f,,) = p(£f,|f5)q(fn).
This is equivalent to maximize the variational lower bound

1 N

£(Z,0) = log [N'(¥10, Ky + 021, | -
Yy

where the second term is the negative trace of K,,,, — Km scaled with (205)*1 and K,m is
defined as in Section 5.2.2. The resulting (Zopt, @opt) can be used to build the predictive
distribution, which is given by

q(fly) =N (K*H(Km +01,) "y, K — Ko (K + ajln)—lkn*) . (5.10)

We note that this is exactly what it used in [CO02; SWLO03|, i.e., the approximation with
a joint prior (5.6). In terms of the predictive distribution the two methods are the same.
However, the variational method, with the extra regularization term, relies on a very
different selection of the inducing inputs and the hyper-parameters. As opposed to the
exact inference defined in (5.8), this additional trace term acts as a regularizer of the log
likelihood, i.e., it summarizes the total variance of the conditional prior p(f,|f,,) and, as
such, it can be viewed as an accuracy indicator of predicting f,, given f,,,. Minimizing this
term prompts a good overall estimate of the statistics of the training data. We further
note that, in the variational inference setting, the inducing variables Z determine the
flexibility of both p(f,|f,,) and ¢(f,,), and, hence, the posterior ¢(f,|y).
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5.3 Variational approximation for systematic sensor place-
ment

We now discuss a systematic sensor placement strategy in the context of anomaly
detection for SHM. We therefore assume that only synthetic data generated by undamaged
configurations under different environmental and operational conditions are available,
i.e., we have no information about the type and severity of the anomalies. As discussed
in the previous chapters, this is a realistic assumption because it is likely that many
different types of damages will occur in the life time of a structure. If, on one hand,
simulating all possible damages and locations would not be computationally feasible,
it would on the other hand not be reasonable to make the hypothesis that including
in the training set only a few representative damage types will generalize well to other
types and locations; instead, it is more likely that mis-detections would occur. On
the contrary, as described in Sections 4.1 and 4.2, anomaly detection strategies detect
damages by characterizing the similarities among healthy samples and identify as damaged
new samples with significantly different properties from the undamaged ones, see e.g.,
[PCCT14]. Mathematically, this corresponds to unsupervised or semi-supervised learning
techniques as opposed to supervised algorithms, where a different class is assigned to every
different type (or location) of damage. This poses a significant challenge in the context
of sensor placement where one has to define a suitable cost function to be optimized
with respect to the operational parameters, e.g., the candidate locations for the sensor
placement, the available number of sensors and so on. Indeed, existing cost functions are
usually formulated in terms of damage detectability, see e.g., [OSM19]|, which is a well
defined concept only when a finite number of damages is assumed.

To overcome this obstacle, we propose to train a sparse GPR model of the monitoring
phenomena, represented here by a chosen quantity of interest, e.g., displacement, stress or
a function of those, by means of variational inference. By fixing the number m of inducing
variables as the number of sensors that the user wishes to place on the structure, we
identify the sensor locations with the local optima Zgp, obtained from the optimization
of the variational lower bound (5.9). Then, the learned sparse GP model can be used to
predict the effect of having placed sensors at particular locations Zgp,:. We recall that the
optimal inducing variables Zgp are such that the KL divergence between ¢(f;,) and the
true posterior p(f,|y) is minimized. On one hand, if ¢(f,) is a good approximation of
the exact posterior distribution p(f,|y), this implies that the inducing variables provide
enough statistics for the observed data, i.e., the information in the training data f,, can
be compressed well in f,,,. As a consequence, the sensor locations Z do not cluster on
the boundaries of the input domain, thus preventing “waste” in the sensed information.
On the other hand, minimizing the regularizing trace term in (5.9), which represents
the total variance of the conditional prior distribution p(f,|f,,), ensures that the mean
square error of reconstructing the training latent values f,, from the inducing variables
f,, is small. Indeed, the variational approximation guarantees that the sparse predictive
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distribution is as close as possible to the exact predictive distribution. This minimizes
the reconstruction error not only at the sensor locations, but in the rest of the domain
too. Hence, leveraging the variational sparse GPR for optimal sensor placements provides
a tool to maximize the statistical information gain on the whole computational domain
when using a fixed number of sensors, while reducing the computational requirements
when compared to a traditional GP kernel based method.

In this section we elaborate on how the numerical data obtained from healthy structures,
as described in Chapters 3 and 4, and the variational sparse GPR presented in Section 5.2.3
are combined in an optimal sensor placement strategy. After introducing the notation,
in Section 5.3.1 we present details on placing sensors through variational inference of
sparse GP for one particular structure configuration, while in Section 5.3.2 we describe
how we handle the parametric dependency characteristic of each configuration in the
context of optimal sensor placement. In Section 5.3.1, emphasis is given to an ad-hoc
optimization setup which allows, on one hand, to constrain sensors to lie on a specific
portion of the domain and, on the other hand, to deal with extremely large input data.
Both requirements are indeed common in the context of SHM, where structures may
be represented by billions of degrees of freedom and only certain locations might be
admissible for sensor placement. We conclude with a description on how this procedure
can be used to provide information about the sensitivity of a fixed network of sensors in
Section 5.3.3.

Let us consider the d-dimensional spacial domain Q C R¢, introduced in Chapter 3.
Consider a suitable triangulation 7, where h represents the mesh size, leading to a total
of ngor mesh points’ which we indicate as X = [X1,...,Xng,). Moreover, let P C R be
a d,-dimensional domain representing the space of natural variations of the parameters
of a healthy structure, e.g., different operational loads, external excitements and material
properties. Then, for a given parameter combination g € P, the generic output of interest
is defined as

Y(p) = [yi(p)s s Ynao ()] (5.11)

where y;(p) for i = 1,...,ngor are the dy-dimensional outputs of interest measured at
location x;, e.g., displacements of an elastic structure or features extracted from time-
dependent signals. We further assume that the inputs and outputs are mapped through a
function f and that this process is corrupted by some Gaussian white noise € ~ N(0, 02),
ie.,

vilp) = f(xi;pn) +&, fori=1,... nge (5.12)

In this thesis, y;(p) are defined as the raw signal after feature extraction and these values
are defined in (4.17).

!The triangulation 73 should not be confused with 77, used for the numerical experiments in Chapter
4. T, provides here a set of points to be used to train the variational sparse GP and they corresponds to
the vertices of a coarser mesh than 7. In general, Np > ndot-
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We point out that, in contrast to most of the cases where GPRs are employed, in this work,
the training outputs Y (u) are not experimental, but simulated. As a direct consequence,
for a given parameter p, the map from inputs to outputs is known exactly. Therefore,
we do not focus on constructing a GPR model to predict the mean and variance of the
outputs at new spatial locations. The novelty of our approach lies in the fact that the
sparse GPR is adopted to place sensors systematically; placing a Gaussian prior on the
input-output map, i.e., f(x) ~ GP(0,k(x,x’;0)), allows us to employ the variational
inference algorithm presented in Section 5.2.3 and thus to identify the location of sensors

as the inducing inputs.

5.3.1 Constrained variational approximation

The variational learning of the hyper-parameters and the inducing inputs are obtained
by maximizing the variational lower bound (5.9), which is in general an unconstrained
non-convex optimization problem. Indeed, even if we may have positivity constraints
on some hyper-parameters, e.g., the variance and lengthscales of the kernel function,
the fact that we approximate the log value of those hyper-parameters transforms the
problem to an unconstrained optimization. While this may not be an issue for the
aforementioned hyper-parameters, which appear squared in the kernel functions (5.4),
we do need to impose some locality constraints on the inducing points to prevent them
from being outside the input domain, especially when this is non-convex. Moreover, in
some particular scenarios in the framework of SHM, one has to consider that it may be
only possible to place sensors on a portion of the asset, e.g., sensors should not be placed
inside a solid 3D structure, or they could only be placed on the above-surface structure of
an offshore wind turbine, or only on the core of a nuclear reactor, avoiding the reflector
subdomain [ABDC™18|.

We consider sensor placement for a specific configuration, i.e., the input parameter p is
fixed in (5.12). For succinctness, we neglect the parameter dependence in this part, i.e.,
yvi = yi(p). Let ng be the number of sensors to be placed and Qs C € the admissible
domain for sensor locations. To overcome the issues related to unconstrained optimization
mentioned above, the minimization of the negative variational lower bound (5.9) is
modified as

(Zopt, Oopt) = argmin —L(Z, 0), (5.13)
ZeQys,0
where Z = [z1,--- ,2n,]7 C R is the collection of the n, sensor locations and each

one of them is constrained to belong to ;. Depending on the complexity of €2, the
optimization problem (5.13) can be solved using different optimization algorithms. In
general, when () is a continuous domain, classic gradient-based constrained optimization
algorithms, see e.g., [VGO120], can be employed. However, in real-life engineering
applications, due to the complexity of {14, it may be cumbersome to specify its boundaries
analytically and, in such cases, it is worth to replace {5 with a discrete counterpart
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comprising a finite number of admissible points |{2s| > ns. This clearly poses a challenge
for gradient-based techniques, which are not very efficient in discrete settings. To deal
with real-world problems, classic iterative methods should be replaced with discrete
optimization methods. Heuristic algorithms, e.g., the genetic algorithm (GA), have
received increasing attention during the recent decade in the field of discrete optimization,
see, e.g., |GZZZ04; OSM19|, where GA has been used to address several optimal sensor
placement problems. We refer to [Dav91; SD08| for a detailed description on the GA, a
type of evolutionary optimization algorithm that takes inspiration in the natural selection
and undergoes three main stages: selection, crossover, and mutation.

In this work, when the admissible domain is discrete, we propose to combine the gradient-
based optimization with the GA to form an Expectation-Maximization (EM-)like algo-
rithm. At first, we fix the inducing points Z and employ a gradient-based algorithm to
optimize the hyper-parameters 8. We then fix the hyper-parameters and use the GA to
find the optimal inducing points. We iterate over these two steps until convergence is
reached. This approach is summarized in Algorithm 3. We observe that, in the discrete
case, it is possible to add an additional constraint to include prior knowledge on the
importance of each sensor location. When the available sensor locations are assigned with
a specific cost value, a cost-constrained sensor placement approach could be included
in the framework, see, e.g., [CABK18|. In this work however, we consider the case
in which the training points either belong to the admissible domain or not, without
assigning a specific relevance to each location. For the sake of completeness, we observe
that, in case of continuous admissible domains {2, one can either choose to combine
the two optimization steps or to keep them separate by replacing the GA with another
gradient-based constrained optimization to estimate the inducing points. The second
approach is advantageous for continuous problems with a faster convergence and it is
employed in this work when Qj is continuous. We finally remark that DEAP (Distributed
Evolutionary Algorithms in Python) [FRG'12] is the framework used for the numerical
implementation of the GA examples presented in this work.

Algorithm 3 Variational approximation for systematic sensor placement

1: Input: training dataset {X, Y}, admissible set 25, and max iteration number kpax
2: Set k = 0 and randomly initialize Zj, s.t. z; € Qs fori=1,...,n,

3: while not converged and k < kpa.x do

4 Compute the optimal hyper-parameters 6,1 = arg ming —L£(Zy, 0).

5: Compute the optimal constrained locations Zy 1 = argmin,cq vyez —L(Z, Op41)
6: Set k=k-+1

7: Set Zopt =7y, Oopt =0,

8: return (Zgpt, Oopt), the optimal constrained inducing points and hyper-parameters
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5.3.2 Including parameter dependence in sensor placement

Let us reintroduce the parameter dependency and consider a set of n, parameters
B = {um}?il, where pj € P for j =1,--- ,n,. Applying Algorithm 3 for all these pa-
rameters, we obtain a set of mn, parameter-dependent inducing points
[Zopt (1) - - -, Zopt (1n,)], Where Zopt(p5) corresponds to the ng optimal locations for the
specific parametric underlying system defined by pu; € P. Having a continuous mapping
from the inputs to the outputs and under the assumption that the parameters in P only
vary some accessory properties without altering the topology of the structure, it is reason-
able to assume that each one of the n, inducing points Zgp () lie in the neighborhood of
the corresponding inducing point obtained for a different input parameter, i.e., Zopt ()
for j # k and j,k = 1,...,n,. Therefore, to include the parametric dependency and
summarize the information from this set of nsn, into a set of ng locations, we propose to
employ the K-medoids algorithm to find ng clusters and its corresponding centers.

Similar to the K-mean algorithm, K-medoids is a clustering algorithm that breaks the
data set into a user-defined number of groups and minimizes the distance of the center of
each cluster and the points in it. The difference between these two clustering algorithms
is that the K-means algorithm averages points within a cluster as the center, whereas
K-medoids selects only data points as cluster centers. In comparison, K-medoids is more
robust as the algorithm seeks to minimize the sum of dissimilarities of all points inside
a cluster instead of the sum of squared Fuclidean distances, as used in the K-means
algorithm. For this reason the K-means algorithm is considered to be more sensitive to
noise and outliers [AV16]. We point out that, in the numerical examples, the clustering
step is carried out in Matlab [MAT19] by employing the built-in function kmedoids. For
more details on K-medoids algorithm, we refer the readers to [PJ09; AV16].

We summarize the algorithm for sensor placement that incorporates parameter variation
of a solid structure in Algorithm 4. We notice that given different initial conditions, the
K-medoids algorithm can lead to different clusters. The final decision can be made by
either fixing the initial condition or by engineering experience across the resulting clusters.
Finally, we observe that, in case of high variability in the training set with respect to
the input parameters, the solution of the non convex optimization problem (5.13) may
provide very different results in terms of the location of the inducing points for each
input parameter, thus leading to a challenging clustering task. While for the problems
considered in this thesis the smoothness of the mechanic systems and the relatively small
parameter space contribute to having inducing points close to each other for various input
parameters, in a different context, it may be worth to investigate alternative methods to
find the optimal sensor locations for all n, parameters at once. We mention for example
the possibility of replacing the parametric output of interest with the expectation of the
output of interest with respect to the parameter.
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Algorithm 4 Parametrized variational approximation for systematic sensor placement

1: Input: parametric training dataset {X,Y(pj)}?’:‘ 1 and admissible set €

2: for j=1,---,n, do

3: Apply Alg. 3 to {X,Y(p;)} to get ny Qs-constrained inducing inputs Zgp (1)
4: Apply K-medoids algorithm to the ngn,, inducing inputs [Zopt (1), - - -, Zopt (Hn,, )] t0
get ng clusters

Set Zypt = cluster centers

6: return Z,,, optimal constrained sensor locations

o

5.3.3 A tool for sensor sensitivity

The technology proposed here can also be applied to answer a few related questions:
(¢) how many sensors are needed to achieve a prescribed precision? (i7) what is the
expected sensitivity of a fixed sensor network? (iii) when a fixed network of ng sensors

extra

% additional sensors, where should these be placed

already exists, given a budget of n
to achieve optimal coverage? Properly addressing these queries is of great importance in

the maintenance of real-life engineering problems.

The first point refers to the need of defining a suitable measure to quantify the quality
of the locations, whether they are obtained with the proposed variational approach or
already placed on the monitored structure. A straightforward choice is to compute the
reconstruction of the quantity of interest, i.e., m%((”j)(xi) at all training points x; € X,
fori=1,...,nqor. Here m%{(uj)(xi) is the mean of the posterior distribution (5.10) of the
sparse model based on the variational parameters, i.e., outcome of Algorithm 4. Hence,
the relative reconstruction error of the quantity of interest at unsensed locations can be
used as an indicator of the sensor sensitivity. On one hand this quantity increases as we
move away from the sensors and, on the other hand, increasing the number ng of sensors
is expected to improve the global coverage. Moreover, we define the average relative

reconstruction error over the n, samples as

3 Y () =y, (X0
B0 D e 27

=1

(5.14)

where Y () is the simulated quantity of interest (5.11). A low R value is an indicator
of a good global placement which takes the parametric dependency of the structure
into account. An additional indicator to quantify the quality of sensor placement is the
point-wise relative variance reduction, defined as

o szKT_n%lez

Vi ;
K

fori=1,...,n4of, (5.15)

where K is the kernel matrix with optimized hyper-parameters defined in Section 5.2.
This quantity expresses the level of variance reduction that can be achieved by including
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the chosen sensor locations. A relative variance reduction close to one indicates that the
inducing variables alone can reproduce the full GP prediction well.

Finally, we note that in the variational inference framework of the proposed approach,
it is possible to jointly optimize some inducing inputs and keep the already existing
sensor locations fixed. Thus, the strategy presented in this chapter can be efficiently
implemented to systematically place additional sensors while accounting for the already
existing structural coverage.

5.4 Numerical results

In Sections 5.4.1, 5.4.2, and 5.4.3, we provide examples of sensor placement in two and
three dimensions for which we use the methodology presented in Section 5.3. A wave-based
monitoring strategy is employed for the 2D and 3D examples given in Sections 5.4.1 and
5.4.2, respectively. Here, we resort to the mean reconstruction error and the relative
variance reduction to test the quality of the sensor locations. Section 5.4.3, instead,
presents a real-life engineering example, for which a static monitoring approach is used.
Taking into account the complexity of the geometry and the large number of degrees of
freedom, tests to assess the good quality of the placement are performed by looking at
the achieved accuracy in detecting damages. The synthetic databases used in the training
phase are constructed following the procedure given in Chapters 3 and 4 and we refer to
Section 4.4 for the implementation details.

5.4.1 Two-dimensional examples for the guided-wave problem

The examples in this section follow the wave-based monitoring approach, for which we
train a variational sparse GP model with compressed signals. We consider the same
governing problem (3.1) for three different geometries, shown in Figure 5.1, and we refer
to these problems as Problems 1la, 1b, 1¢, whose domains will be identified by g, €,
and ()., respectively. We note that Problem 1a is the 2D geometry used in Section 4.4.

As for the numerical example in Section 4.4, for each problem, we consider zero initial
conditions for both the displacement and the velocity and prescribe homogeneous free slip
boundary conditions (3.3). The high fidelity numerical solutions of (3.1) are computed
using the FE approximation by IP; elements over a domain discretized in tetrahedral cells
with a total of Nj, = 30’912 degrees of freedom, while for the RB solver we rely on 267
basis for Problem la 2. Similar order of magnitudes of these parameters are used for
the other two problems: N;, = 31’200 and 284 basis for Problem 1b and N} = 26'072

2With respect to Section 4.4, here we increase the number of frequencies used for Weeks method to
500, thus leading to a slighly larger number of reduced basis.
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Figure 5.1 — 2D examples with different geometries: Problem 1la relies on 360 training
inputs (small black dots), corresponding to the vertices of a coarse mesh over the domain,
while Problems 10 and 1c¢ have 286 and 375 training points, respectively. The location
of the center of the active source is the same for three geometries and corresponds to

S =1[0.54,0.125] (black triangle).

and 306 basis for Problem 1lc. For the discretization in time, we consider N; = 20’000
and T = 20 for the three problems. The natural variations are described by the three
parameters, i.e., u = [E,v, k| € P, where P is defined in (4.18). For each problem we
consider n, = 100 samples and, to obtain a well balanced dataset, we sample using a
Sobol’s sequence [JKO08|, i.e., a base-2 digit sequence which provides a successively finer
uniform partition of the intervals P.

The training points X C R™ef C Q; with ¢ = a,b, c are obtained by fixing the same
size of a coarse mesh for the three problems, thus recovering ngot = 360, ngor = 286,
and nqof = 375 mesh points, for Problems 1a, 1b, and 1c¢ respectively. We observe that
the mesh points on the boundary are not included in the training set. This results to a
practical choice due to the free-slip boundary conditions, for which at least one of the two
displacement directions will be identically zero on each boundary edge. For each geometry,
we consider dy-dimensional feature vectors with d, := 3, i.e., we consider the first three
principal components of the Ny = 12 features, extracted from the py, ...y, discrete
time-dependent displacement signals (3.30), are used to train the variational sparse GP
(see Sections 4.3.1 and 4.3.2). We note that for Problems 1la, 1b, and 1c, the first three
principal components account for more than 80% of the variability. By way of example,
Figure 5.2 shows the normalized features over the n, samples and the corresponding
principal components for Problem la with g = [1,0.33,2]. Normalization is performed by
features, i.e., the means mq,...,my

f
one of the Ny features over all training points (e.g., nqof = 360 for Problem 1a) and all

and variances 01, ...,0y, are computed for each

simulations obtained for n, input parameters. We note that this is different to what
described in Section 4.3.2, where normalization is performed for each datasets (4.13),

sensor by sensor.

In terms of setup for the GPR, we note that for all the three examples, we use the ARD-
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(a) Normalized features. (b) Principal components.

Figure 5.2 — Example of normalized features, extracted from the solution obtained by
solving the acoustic-elastic problem on the geometry la with g = [1,0.33,2] in (a).
The first and second coloumn show the Q = 6 features related to the displacement
along the x and y directions, respectively for a total of Ny = 12 features. The N;
corresponding principal components are shown in (b) ordered from left to right and from
top to bottom. The first three principal components account for 60.5%, 13.3%, and 11.5%
of the variability, respectively for a total of more than 85%. Similar values are obtained
for all the other samples and, for the other two geometries, i.e., Problems 1b and 1¢, the
importance of the three components is more balanced. The mean and standard deviation
used for the normalization are based on the features extracted from n, = 100 samples,
obtained using the first 100 parameters of a Sobol sequence based on P.
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Exponential kernel (5.4), which provides the best performance on the training set with
respect to other popular choices, e.g., the Squared Exponential, Matérn-32 ad Matérn-52,
either with automatic relevance detection (ARD), i.e., with a separate lengthscale for
each predictor, or with the same lengthscale for each predictor.

Ny
=1
we obtain the systematic placement of sensors shown in Figure 5.3. For each geometry, the

By applying the sensor placement methodology, described in Section 5.3 for {X, Y (p;) }

plots overlay the locations of the ny = 4,9, 16, 25 inducing points obtained by applying
Algorithm 3 n, times over the admissible domains €24, {2, and €, i.e., a total of ngn,
inducing inputs, sometimes overlapping, is shown. The sets of inducing points are
compared with the corresponding centroids, obtained by applying Algorithm 4. As an
example, the inducing points obtained by applying Algorithm 3 for the first Sobol’s
parameter pq = [1,0.33,2] are also shown. While for larger numbers of inducing points,
clusters appear to be more visible, for smaller n,, the location of the nsn, inducing inputs
shows more variability. This can be explained by the fact that the optimal inducing
inputs are optimized to reconstruct different quantities of interests, which depend on the
input parameter p. However, one also has to consider that, when trying to reconstruct
a non-trivial quantity of interest over a complex structure with only few n, points, the
sparse model might get stuck in a local minimum without reaching convergence. For
example, the inducing points obtained for pq for Problem la and ng = 9 are not very well
distributed over the entire domain. Nevertheless, the centroids seem to be a good summary
of the entire underlying phenomena suggesting that our clustering approach provides a
way not only to take into account different healthy variations, but also to mitigate the
unfortunate outcome of being stuck in potential local minima in the optimisation process.
Indeed, as shown in Figure 5.4, the optimal centroids obtained by clustering the results
over the first n, = 10 or the entire parameter domain, i.e., over n, = 100 sample, are
almost indistinguishable. We note that purple stars in Figure 5.4 correspond to the same
centroids shown in Figure 5.3, i.e., obtained by averaging the results of n, = 100 samples.

As mentioned in Section 5.3.3, two ways to quantify the quality of the sensor placement
outcome are by means of the reconstruction error and the variance reduction. Figure 5.5
shows the point-wise mean reconstruction of the first sample for Problems 1la, i.e.,
mqy(m)(xi) with x; € X. We observe that as ng increases, the different characteristics
of the three principal components become visible in the reconstruction. We also note
that the reconstruction accuracy achieved for the first principal component Y is higher
than the one for the other two. Indeed, the highest variability of the first principal
component corresponds to a less noisy field, which is simpler to reconstruct by means
of GPR. We remark that similar results are obtained for Problems 1b and 1¢, as shown
in Figures 5.6 and 5.7, respectively. Figure 5.8 shows, for the three problems, the mean
reconstruction error over the n, samples, defined in (5.14), for the three quantities of
interests as a function of the number ng of inducing points. These errors are compared to
those obtained by reconstructing the principal components using the centroids as fixed
variational hyper-parameters in a new sparse GPR model. We observe that the difference
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Figure 5.3 — Comparison of the location of inducing points obtained by applying Algorithm
3 for n, = 100 samples (cyan squares) and the corresponding ng centroids obtained with
Algorithm 4 (red stars). The inducing points obtained for one particular sample, i.e.,
p = 1[1,0.33, 2], are also shown (yellow circles). Each column shows a different geometry
while each row shows a fixed number ny of inducing points, which increases from top to
bottom, i.e., ng = 4,9, 16, 25.
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Figure 5.4 — Comparison of the centroids obtained with Algorithm 4 for different number
of samples n,,, namely n, = 10,40, 70 and 100. Each column shows a different geometry
while each row shows a fixed number n, of inducing points, which increases from top to
bottom, i.e., ng = 4,9,16, 25.
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between these two is minimal, which suggest that the centroids are good approximations of
the inducing points for sensor placement. Figure 5.9 shows the relative variance reduction
(5.15), averaged over the n, samples. A variance reduction above 0.7 almost everywhere
even for ny = 4 is an indication of good sensor placement. Finally, Figure 5.10 shows the
size of the clusters, i.e., the number of samples among the n, available data which belong
to the ng clusters. In an optimal scenario we expect each one of the ng clusters to be
composed of exactly n, samples. The fact that the clusters in Figure 5.10 all have similar
sizes represents an additional validation for (i) the good quality of the K-medoid clusters
and (ii) the fact that the clusters are a good summary of the underlying inducing points.

To conclude, Figure 5.11 compares the position of the centroids obtained with Algorithm 4
with the centroids obtained by applying the K-medoids algorithm to the training points
X directly. This strategy is chosen as a proxy to place points equidistantly over a complex
domain. Although this naive strategy may seem to give almost as good results as the
laborious methodology followed to obtain the variational centroids, as shown in Figure
5.12, placing sensors without including physical information does not yield a good result.
Indeed, the mean reconstruction accuracy obtained by training a new variational sparse
GP model with fixed inducing inputs as the centroids obtained by K-medoids on the
training points is not as good as the one obtained with variational centroids.

5.4.2 A three-dimensional example for the guided-wave problem

The sensor placement strategy following the guided-wave monitoring approach can be
extended to 3D problems. Let us consider the geometry of a T-beam as shown in
Figure 5.13. We consider the acoustic-elastic model (3.1) with zero initial conditions and
homogeneous Dirichlet boundary conditions imposed on the surface z = 0 together with
zero traction on the remaining surfaces. We compute the high fidelity solutions using the
FE approximation by IP; elements over a fine mesh with N}, = 262’863 degrees of freedom
and for the low fidelity model we obtain N = 505 basis. For the time discretization,
we consider a shorter time window, i.e., Ny = 10’000 and T" = 10. We consider the
same parameter space (4.18) as for the 2D problem, where k is the free parameter of the
active source function (4.20), centered at S = [0.7,1,2]. The training dataset corresponds
to ngor = 4688 input points of a coarse mesh, restricted to the Neumann surfaces and
output of interests of dimension d, = 4, i.e., the first four principal components of the
normalized N; = 18 features, extracted from the discrete time signals, as described in
Section 4.3.1. We note that the union of the first four principal component accounts
for more than 90% of the total variability for all samples. By way of example, the first
two components obtained for p; = [1,0.33, 2] are shown in the first row of Figure 5.15.
After executing Algorithm 4 for n, = 10 Sobol’s parameters, we obtain the inducing
points and the centroids of the K-medoid clusters shown in Figure 5.14. Figure 5.15 also
p1)(X)? for j =1,2,
over the training set X for a fixed parameter p; and increasing number of sensors, i.e.,

shows the mean reconstruction of the first two output of interest m%(‘(
J
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The color scale is the same for the reference and the

[1,0.33,2].

corresponding reconstructions.

As the number of inducing points increases, the output of interests can

).

Figure 5.5 — Comparison of the first three principal components obtained for Problem 1la
be better reconstructed. The reference principal components correspond to the results

either by extracting the features from the time signals and then performing PCA (first

row) or by sparse GP reconstruction using ns = 4,9, 16 or 25 inducing points (second

to fifth rows
obtained for p;
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Figure 5.6 — Comparison of the first three principal components obtained for Problem 15
either by extracting the features from the time signals and then performing PCA (first
row) or by sparse GP reconstruction using ns = 4,9, 16 or 25 inducing points (second
to fifth rows). As the number of inducing points increases, the output of interests can
be better reconstructed. The reference principal components correspond to the results
obtained for p; = [1,0.33,2]. The color scale is the same for the reference and the
corresponding reconstructions.
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Figure 5.7 — Comparison of the first three principal components obtained for Problem 1¢
either by extracting the features from the time signals and then performing PCA (first
row) or by sparse GP reconstruction using ns = 4,9, 16 or 25 inducing points (second
to fifth rows). As the number of inducing points increases, the output of interests can
be better reconstructed. The reference principal components correspond to the results
obtained for p; = [1,0.33,2]. The color scale is the same for the reference and the
corresponding reconstructions.
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Figure 5.8 — Mean reconstruction errors with error-bars with respect to the number
ns of inducing points for the first, second, and third principal components (solid lines)
used to train the variational sparse GP model. The corresponding mean reconstruction
error, obtained by training a new variational sparse GP model with fixed inducing inputs
corresponding to the centroids, is also shown (dashed lines). Each plot shows the result
for one of the three geometries.

ns = 4,16, 36. As expected, the different characteristics of the output of interest become
more visible in the predictions as the number of sensors increases. Finally, the relative
variance reduction (5.15), with respect to the centroids and averaged over n, samples, is
shown in Figure 5.16 for all training points. An overall relative reduction above 92% is
achieved already for ns = 4 sensors.

5.4.3 Application to a realistic geometry of an offshore jacket

We finally consider a real-life engineering example of an offshore jacket, as shown in
Figure 5.17. The Static-Condensation Reduced-Basis-Element (SCRBE) solver from
Akselos [sof20] is used to establish a component-based synthesis (CMS) and model order
reduction framework. The problem consists of 192 components and the discrete full order
model has more than four million degrees of freedom. To accelerate the solution process,
the degrees of freedom can be drastically reduced by taking a random subset of points
within each component as representatives of that component. In this way, the total number
of degrees of freedom decreases to N;, = 4632. We refer to [HKP13] and to [Hur65; HL10]
for more details on the SCRBE method and introduction to CMS, respectively. An
example on how to use the SCRBE method to address local non-linearities in complex
structures can be found in [ZGH19].

The bottom of the jacket is fixed on the ground and other boundaries are assumed to be
free. We introduce two parameters, p, i, € P = [0.1, 1] kPa, representing the surface
wind loads on the 64 components in the dark box in Figure 5.17 in the « and y directions,
respectively and assume the jacket to be linear elastic with Young’s modulus £ = 200 GPa
and Poisson’s ratio v = 0.3. The displacements under different load combinations are



Chapter 5. Sensor placement 119

1 1
095 0.95

09 -

0.85 0.85

0.8 08

! 1

095 0.95

09 09

0.85 685

08 -

1 ] ' )
095 0.95 05
o a9 09
o 085 A . 0.85
08 0.8 d BTN o
1 %o o €0e%ue0 tee saes 1 1
095 0.95 0.95
09 :. 09 09
0.85 R - s
08 e el o8 ,

Figure 5.9 — Relative variance reduction (5.15) obtained using ns centroids and averaged
over n, samples. Each column shows a different geometry while each row shows a fixed
number n; of inducing points, which increases from top to bottom, i.e., ns = 4,9, 16, 25.
The color scale is the same for all the plots.
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Figure 5.10 — Visualization of the number of sensors belonging to each of the ng clusters
by means of different bubble sizes. Each column shows a different geometry while each

row shows a fixed number ng of inducing points, which increases from top to bottom, i.e.,
ns = 4,9,16, 25.
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Figure 5.11 — Comparison of centroids obtained using Algorithm 4 (red stars) and the
naive clustering, referred to as equidistant points (cyan down-facing triangles). Each
column shows a different geometry while each row shows a fixed number ng of inducing
points, which increases from top to bottom, i.e., ngy = 4,9, 16, 25.
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Figure 5.12 — Mean reconstruction errors with error-bars with respect to the number ng
of inducing points for the three quantities of interest jointly (solid line) used to train the
variational sparse GP model. The corresponding mean reconstruction error, obtained
by training a variational sparse GP model with fixed inducing inputs corresponding to
the centroids is also shown (dashed line) together with the one where the fixed inducing
inputs are the naive centroids (dotted line). Each plot shows the result for one of the
three geometries.

Figure 5.13 — 3D geometry of a T-beam with 4688 training points (small black dots),
corresponding to the vertices of a coarse mesh over the domain. The location of the
center of the active source corresponds to S = [0.7,1,2] (black triangle). The Dirichlet
boundary corresponds to the surface at z = 0 (cyan filled surface).
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Figure 5.14 — Comparison of the location of inducing points obtained by applying
Algorithm 3 for n, = 10 samples (cyan squares) and the corresponding n, centroids
obtained with Algorithm 4 (red stars) for the 3D problem. Each plot shows a different
fixed number ng of inducing points, i.e., ng = 4,9, 16, 25, 36.

chosen as quantity of interest. Here, we choose to first identify the optimal n; components
and then place one sensor per chosen component instead of computing the exact locations
of the sensors directly. We note that this is a practical procedure in real-life engineering
where the exact location of a sensor on a chosen component can be decided later, both
empirically through engineering experience and practicality. We assume a budget of
ns = 10 displacement sensors and, for each one of the 192 components, we fix a sensor
location, e.g., the point near the geometric center of that component. Thus, the admissible
set Qg is such that |Q| = 192. We randomly generate n, = 40 samples in P and apply
Algorithm 4 to get the n, cluster centers as the components for sensor placement, as
shown in Figure 5.18.

We note that although the geometry of the jacket structure is complicated, the chosen
components are distributed approximately evenly over the whole domain, providing
evidence that employing variational inference of sparse GPRs prevents waste of sensed
information. To validate this sensor configuration, considering the complexity of the
geometry and the large number of degrees of freedom, we return to the anomaly detection
strategy introduced in Section 4.3. First, we place ns = 10 displacement sensors on the
surface of the optimal components and then train a one-class Support Vector Machine
(0c-SVM) classifier for each sensor location, following the procedure presented in Chapter
4, for Ny = 100 samples, randomly generated from P. We observe that for real-life
engineering problems, to assess the most probable damages, one may include know-how
and experience of engineers. For the proposed configuration, we consider an increased
wind load, i.e., sztra = [1, 1.5] kPa, to represent a source of potential structural damages.
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Y, Yo

Reference

Figure 5.15 — Comparison of the first two principal components obtained either by
extracting the features from the time signals and then performing PCA (first row) or
by sparse GP reconstruction using ns = 4,16, or 36 inducing points (second to fourth
rows) for the 3D problem. As the number of inducing points increases, the output of
interests can be better reconstructed. The reference principal components correspond to
the results obtained for p; = [1,0.33,2]. The color scale is the same for the reference and
the corresponding reconstructions.



Chapter 5. Sensor placement 125

ng = 36

Figure 5.16 — Relative variance reduction (5.15) obtained using ns centroids and averaged
over n, samples for the 3D problem. Each plot shows a different fixed number ng of
inducing points, which increases from left to right, i.e. ngs = 4,16,36. The color scale is
the same for the three plots.

We design four test scenarios, depending on the chosen input parameter space, i.e., either
the baseline P or the modified P, and for each case we sample Ny = 100 parameters.
In particular, case 1 corresponds to the healthy scenario, i.e., iz, p, € P; case 2 and 3
represent scenarios of potential minor damages, i.e., we choose y, € P and p,, € P for
case 2 and, the opposite, i.e., i, € P and p,, € P for case 3; lastly, for case 4, the loads
in both directions are sampled from the extended parameter space, i.e., fz, py, € P2,
The classification results for the four test cases, sensor by sensor, are shown in Table 5.1,
where the accuracy percentages in correctly classifying n,, = 100 samples per scenario are
provided. Healthy samples are classified as inliers with 98% of success for all the sensor
locations. The major damaged case (case 4) is always detected, i.e., for all samples and
all sensor locations, the classifier correctly identifies the outliers. However, among all
scenarios, we observe that for case 2 we do not obtain as accurate results as compared
to other cases. We point out that the test cases are randomly generated and we notice
that the false positives in cases 2 and 3 correspond to the situation in which one of the

Pextra g close to the lower bound,

two parameters, i.e., either u, or u,, sampled from
i.e., close to the healthy domain P, fooling the classifier. In this case, the accuracy of the
classifier can be improved by enlarging the training data set. Finally, we remark that,
given the general situation where various types of anomalies in different locations can
appear during the life time of a structure, relying on the assumption that we only have
access to the simulation data of the healthy structure allows us to present a systematic
way to place a designed amount of sensors to encourage the representation of the statistics

of the whole domain while preventing sensed information waste.

5.5 Conclusions

A systematic approach to the sensor placement problem in a SHM context, where no
prior knowledge on the damages is assumed, is proposed. The examples presented in this
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Figure 5.17 — Jacket model: wind loads applied on components in the square.
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Figure 5.18 — Jacket model: components chosen for sensor placement.

Sensor number Case 1

Case 2 Case3 Case4d

99
100
99
100
98
100
100
99
100
100

© 00 N O U = W N

—_
e}

81
83
7
7
91
81
79
74
83
76

93
94
94
94
92
93
90
94
93
93

100
100
100
100
100
100
100
100
100
100

Table 5.1 — Sensor-wise percentages of accuracy for undamaged (case 1), minor damaged
(cases 2 and 3) and major damaged (case 4) scenarios.
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chapter provide numerical evidence that the variational inference of sparse GPR can be
modified to place the sensors on structures characterized by complex geometries. The
proposed approach is validated against both 2D and 3D numerical examples to confirm
the quality of the sensor placement. We note that one of the novelties of the proposed
method is that it does not assume any prior information of the anomalies, hence, it is
robust to different type and severity of damages. In this work, the generation of synthetic
healthy databases leverages reduced order modeling techniques to efficiently include
physical and geometrical parametric dependencies. As a direct consequence, the method
is easily extendable to other structures and avoids the high computational costs related
to simulating high fidelity models and considering all possible damage combinations.
Nevertheless, we highlight that the core of the approach is independent of the method
used to generate the output of interests and that any damage-sensitive quantity can be
used to guide the placement of sensors in the absence of damaged scenarios.

We finally remark that in real-life engineering, the parameter space describing the natural
variations of a large-scale structure is expected to be high dimensional. The procedure
explained in this chapter can be extended to many parameters, but it requires a higher
computational effort for both the construction of a healthy database and the training of
multiple sparse variational GPR models. When the number of parameters is too large,
one may rely on methodologies that compress the parameter space by retaining only those
few parameters that influence the quantity of interest the most. The variance-based global
sensitivity indices (Sobol’s indices) [Sob01| and the derivative based global sensitivity
measures (DGSM) [SK09] are popular choices. A brief introduction to these techniques
and preliminary results towards this direction are provided in Appendix A.



CHAPTER 0

CONCLUSIONS

6.1 Summary and conclusions

This thesis focuses on the integration of mathematical models and observations to enable
accurate predictions in the context of structural health monitoring. With the objective of
estimating the state of damage of a structure of interest, we integrate methodologies, based
on model order reduction (MOR) for systems modeled by parametric PDEs, with data-
driven techniques. We propose a novel simulation-based approach for anomaly detection,
which combines efficient construction of synthetic datasets with semi-supervised learning
techniques.

In this semi-supervised context, we build a training set of sensor measurements solely
composed of healthy labeled data and we test the obtained classifiers with new sensor
measurements to evaluate if they comply with the salient features of the training set
or not. This approach provides two main advantages. First, it gives the possibility to
consider damage per se, without the need of pre-defining its type, location, or extent.
Instead of specifying the expected damages by simulating a few examples, we prefer to
construct a robust dataset that describes the baseline healthy variations of the structure in
terms of its material properties, geometry, and boundary conditions. Second, the analysis
of the classification responses provides a multi-level hierarchical damage identification
process, giving insight not only on the presence of damage, but also on its location and
severity. To achieve the same level of information with alternative supervised learning
methods, many different categories should be defined a priori, which would lead to a
bottleneck in terms of the number of combinations of damaged states to simulate. In
addition, we exploit pattern recognition and machine learning strategies, well developed
in the context of anomaly detection, e.g., to recognize novel objects in images and video
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streams. We explore four different strategies: the one-class Support Vector Machines,
the Isolation Forests, the Local Outlier Factor and the Variational Autoencoders. We
also highlight the possibility of using autoencoders to automatically extract the most
important features that healthy measurements have in common, thus overcoming the
need of designing engineering-based damage-sensitive features.

The absence of a priori assumptions on the anomalous data is also exploited to system-
atically place a network of sensors on a structure. To guide the optimal placement of
sensors, we leverage in an original way sparse Gaussian processes, which are typically
used to reduce the computational burden when performing regression tasks on big data.
The possibility of systematically placing a fixed number of sensors on a structure of
interest is of great importance in order to provide a good quality of system surveillance
and to control the costs of sensor deployment. The present strategy also integrates the
parametric dependency of the physical model to account for its natural variations.

The physical model is designed to illustrate a guided-wave based monitoring approach,
where an active source excites the structure with a known impulse for a limited period
in time. From a mathematical standpoint, the Laplace transform provides a powerful
tool to connect the time and frequency domains and analyse the transient response of the
system. The reduced model is built in frequency domain and, in particular, we design a
stable reduced model by means of the cotangent-lift method [PM16| to solve the system
associated with the Finite Element model when considering the decoupling in the real
and imaginary parts. Weeks method, a numerical inverse Laplace transform strategy,
provides a way to recover the time signals at a cost which is independent of the time
variable, thus allowing for the generation of discrete time signals.

Finally, we validate the framework of simulation-based anomaly detection and sensor
placement with 2D and 3D examples of increasingly complexity.

6.2 Outlook

In this thesis we illustrate the potential of SHM as a decision-making support tool for
the implementation of efficient digital twins, which can be crucial to reduce fatalities and
economical losses. However, many challenges curb the extensive use of SHM technologies.
Primarily, although SHM is a very multidisciplinary topic, there are in general limited
interactions between the different communities in structural engineering, sensor networks,
and scientific computing. We believe that a strategy to favour a synergetic exchange of
expertise towards efficient SHM technologies should be implemented by academic and
industry partners at a national and international level. Furthermore, the lack of reliable
real case studies often hinders the validation of new methodologies. It is worth considering
the definition of a few complex test cases to be used as baseline comparison.
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One of the challenges to simulation-based approaches consists in the efficient integration
of real experimental data with synthetic data. An effective calibration of the input
parameters should be performed to reduce the bias in the model and generate robust
classifiers that accurately distinguish healthy configurations from damaged ones even when
training data are synthetic and test data are experimental. For this, a Bayesian approach
should be used to equip the model with a confident estimation of the sampling distribution
for each parameter. These techniques should be combined with the insight gained by
performing sensitivity analysis to select the input variables which most influence the
output of interest and thus reduce the computational burden associated with large input
parameters typical of real-life engineering examples. The availability of real experimental
data for model calibration could be further exploited in the construction of the training
database and in the tuning of the threshold to distinguish healthy scenarios from damaged
ones. We conjecture that constructing a dataset by including a multi-fidelity approach,
where real data are combined with weighted synthetic data, would result in a more robust
classifier.

Moreover, in this work, a real-valued anomaly score is computed for each new measurement
by means of one-class machine learning algorithms. It would be interesting to consider a
probabilistic approach to quantify how the uncertainties on the input parameters and
the model propagate through the various steps of the SHM system. This is essential to
estimate the level of confidence associated with the predictions on the state of damage
and therefore better guide the final decisions. Recent attempts on the integration
of uncertainty quantification with engineering design and monitoring can be found in

[LML*17; BASG12; JLS15; AP05; ZZCA13].

We also highlight that the problems in this thesis are limited to the linear case. The
extension to more complex models, including nonlinearities should be developed to
provide more realistic simulated data. Efforts in this direction can be found for example
in [SDC20|, where the authors develop a reduced order modeling method based on data
from nonlinear structural systems to make predictions of time series under arbitrary
dynamic forcing. Other examples on non-linear structural analysis combined with reduced
modeling can be found in [GH18; ZGH19|.

Finally, we note that the proposed method allows to estimate the state of damage at a
fixed point in time. However, a full monitoring system should also be able to provide a
way to follow the growth of a degradation process, e.g., the expansion of cracks or the
advancement of corrosion. In this sense, implementing a data assimilation framework with
the repeated integration of model updates, would help to provide a dynamic assessment.






APPENDIX A

LSENSITIVITY ANALYSIS AND PARAMETER ESTIMATION

In this thesis we consider the case in which the range and probability distribution of
the input parameter is known. In particular, we focus on the approximation of sensor
measurements given a parameter vector pu € P, characterizing the natural variations of
the structure of interest. In particular, we focus on the input-output mapping

= up(x,t;p) = gi(p),

where up(x, t; p) is the high-fidelity numerical approximation of the displacement, i.e.,
the solution of (3.8) and g;(p) are the output of interests evaluated at the sensor locations
x; € Qfori=1,...,ns. However, a suitable model calibration is necessary to reduce the
model errors which may prevent correct classification results especially when the training
set is composed of synthetic data and experimental measurements are evaluated during
the test phase. While parameter estimation goes beyond the objectives of this thesis,
developing an efficient and accurate mathematical framework for the estimation of the
model parameters is crucial to develop a correct structural health monitoring (SHM)
system. Recently, several attempts have been made to include uncertainty quantification
in the SHM technologies, see, e.g., [ZXSO16], where a fast Bayesian method is developed
to perform modal identification of a tall building, or [LML™ 17|, where a dynamic Bayesian
network is used to track the evolution of variables required to monitor the wing of an
aircraft.

Parameter estimation

Parameter estimation and model calibration techniques based on Bayesian inference have
been developed in the last decades. We refer to [StulO; KS06] for detailed descriptions of
inverse problems and to [RC15; LSZ15] for a probabilistic overview on data assimilation.
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In this appendix we limit ourselves to the introduction of the principal concepts needed
to formulate the Bayesian inverse problem and we present a preliminary result on the
estimation of a few parameters describing the speed function of the damped wave equation,
which can be found in [RBH1S|.

The goal of inverse problems is to estimate the unknown parameters p from noisy
observations, which in our context correspond to time-dependent sensor measurements:

g?Xp = gz(ﬂ) + €noises  Enoise ™~ Tnoise ‘= N(Ov 2)7 (Al)

where the operator G; maps the input parameter p to the output of interest g;(u). We
consider here an additive Gaussian model, which mimics the possible effect of many sources
of error. However, other possibilities could be considered, e.g., different distributions
for the additive noise or multiplicative noise. We additionally assume that some prior
information on the model parameters is available and we consider the particular case
in which the prior distribution is Gaussian, i.e., g~ Tprior(ft) = N (Kprior, Cprior)-
With a probabilistic approach, the solution of the inverse problem (A.1) is the posterior
distribution, i.e., the probability distribution of g given g;*", which can be estimated
thanks to Bayes’ theorem

exp
7Tpost(ll"g;‘9 p> = ( ? | ; prlor( )’

where (g7 P |1t) = Toise(8; © — Gi(p)) is the likelihood and Z is a normalization constant.

In general, the posterior distribution cannot be written in closed form. Instead, it is
necessary to sample the probability density function by means of random sampling
methods such as the Markov chain Monte Carlo (MCMC) |Gil05] to enable an exploration
of the probability distribution. The results presented in [RBH18| focus on the well-
known Metropolis-Hasting algorithm [Has70| and consider additional methods such as
the Robust Adaptive Metropolis (RAM) [Vih12| and the preconditioned Crank-Nicolson
(pCN) algorithm [CRSW13|. The former is introduced to overcome the slow convergence
of the Metropolis-Hasting algorithm and guide the choice of the value of the step size
used in the random walk, and the latter presents an efficient sampling method for
high-dimensional parameter spaces.

Let us conclude by presenting an example where the goal is to estimate the parameters
carachterizing the speed ¢(x) of the dumped wave equation in 2D. We provide the principal
details and refer to [RBH18] for a contextualization of the problem. Let Q := [0, 1]? and
T € R4, the damped wave equation, equipped with homogeneous boundary and initial
conditions, is given as
0*u ou

+

52 T ~ V- (A(x;n)Vu) = h(t)f(x), in Q x (0,7]. (A.2)
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Figure A.1 — Joint posterior density approximations of the parameters characterizing the
wave speed. A; vs Ag (left) and ki vs ko (right).

Here, n :== 0.1 is the damping coeflicient and h and s are the source functions. The
space-dependent source function s is defined in (4.20) with S := [0.85,0.5], while h is
periodic in time, defined as h(t) = sin(wt). We assume that c(x; p) has the following
expression and it is defined by d,, := 4 parameters, i.e., p := [Ay, Ag, k1, ka]:

clx;p) = \/0.1 + (Aj cos(2mks||x||) + Ag sin(2mks]x]]))?.

Moreover, let mpoise = N(0,02;.) With opeise = 0.025 and Tprior = N (ppr, O'ngQ), with
tpr = [0.7,1.5,5, 3], and opy := 0.1. The observations of the wave speed ¢ correspond to
Nobs = 4 observations retrieved at ng = 9 sensors located at « = [z;, y;] for all the combi-
nations ¢, j, where z;,y; = [0.25,0.5,0.75]. The observations are obtained numerically
by solving (A.2) with a Fourier solver. Finally, the joint posterior distributions for the
parameters A; and As, and the parameters k1 and ko, obtained with the aforementioned

Bayesian approach and RAM algorithm, are shown in Figure A.1.

Sensitivity analysis

In this appendix, we also present the preliminary results obtained via sensitivity analysis.
Sensitivity analysis is a key tool to identify a subset of parameters which most influence
a fixed output of interest by associating sensitivity indices to rank the importance of the
parameters. These methodologies are particularly important when dealing with real-life
engineering systems, which are typically defined by a large number of parameters. Dealing
with too many parameters becomes impractical when applying sampling strategies such
as the MCMC for parameter estimation. Sensitivity analysis, combined with efficient
sampling method such as the pCN and reduced order models strategies, provides a
way to overcome the computational bottleneck associated with the exploration of high-
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dimensional parameter distributions. Different sensitivity indices have been used in
the field of uncertainty quantification to rank the input parameters and ultimately
the parameter space. The variance based global sensitivity indices (Sobol” indices)
[Sob01; STCR04; SRAT08] and the derivative based global sensitivity measures (DGSM)
[SK09] are two widely used measures. The former is computationally demanding since a
large number of model evaluations are needed to acquire an acceptable convergence. In
this work we rely on the DGSM to compress the high dimensional parameter space while
retaining a few parameters that entail significant uncertainty with respect to an output of
interest. As observed in [SK09], the computational time required for numerical evaluation
of DGSM can be much lower than that for estimation of the Sobol’ indices although it is
problem dependent. In the remainder we briefly introduce the DGSM setting and present
a preliminary result.

Let f be a differentiable function and p = [p1, ..., g, ] the dy-dimensional input. The
d,, local sensitivity measures are are based on partial derivatives, i.e.,

)

The derivatives are estimated by computing the so-called elementary effect, i.e., the

incremental ratio of the j-th input factor

S(prs - g1, g+ Apg, g, o pa,]) — f(p)
Ap; ’

EEj =

Although these quantities are usually estimated using expensive sampling methods such
as Monte Carlo (MC) or quasi-Monte Carlo (QMC), they require fewer model evaluations
than the variance-based methods. A connection between DGSM indices v; and Sobol’
indices is given in [SK09]|, where it is also shown that small DGSMs yield small total
sensitivity indices. Hence, parameters with small DGSM are expected to be less important
in explaining the output of interest. From a practical perspective, if v; is almost zero,
p; can be fixed to any value in its range without influencing the value of the output of
interest.

We consider here a preliminary 2D example with the same healthy geometry and 15
fixed sensor locations as shown in Figure 4.3. Different from the numerical examples in
Chapters 4 and 5, in this appendix we take a larger number of input parameters. For

this we introduce a conforming domain partition of €, i.e.,

where §2; are mutually non-overlapping open subdomains such that
2NQ; =01 <i<j<dg Figures A2 and A.3 show two partition examples
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Figure A.2 — 2D geometry with dg = 2 subdomains. ©; and 9 are the left (green) and
right (pink) subdomain, respectively. The location of the center of the active source
corresponds to S = [0.54,0.125] (black triangle).

with dg = 2 and dg = 21, respectively. We assume that each one of the dg subdomains
is characterized by a local value of the parameters representing the material properties,
i.e., the Young modulus F and the Poisson ratio v, which are uniformly sampled from
the same parameter range!. In particular

E; ~U([0.95,1.05]), v; ~U([0.31,0.35]), forj=1,...,dq. (A.3)

The parameter characterizing the number of cycles before attenuation of the source
impulse is independent of the domain partition, i.e., k ~ U ([1.75,2.25]). Hence, for the
examples Figures A.2 and A.3, we consider a total of d, = 5 and d, = 43 parameters,
respectively.

This choice provides a simple way to artificially increase the number of parameters.
We conjecture that each sensor signal will be mostly influenced by the subset of the
parameters which define the material properties in a neighborhood of the sensor location.
This implies that some sensor signals will be influenced by a subset of the parameters
and other sensor signals by another subset. However, without a global output of interest
and with local parameters, it will be difficult to select a common subset of parameters.
Unless for some applications only very few sensors are relevant, more realistic scenarios
where the parameters have a global effect should be designed.

In this context, we follow [ZGH19] and consider a modified version for the DGSMs

for j=1,...,d,, (A.4)

In this appendix we consider a larger interval for each parameter as compared to the parameter space
(4.18), which is used for all the other simulations in this thesis.
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Figure A.3 — 2D geometry with do = 21 subdomains equipped with 15 sensor locations
(left). The numbering of the 21 subdomains is also shown (right). The location of the
center of the active source corresponds to S = [0.54,0.125] (black triangle).

where

2

b 1 i (éi([ui”w--,%”_pu?”‘ +Apj g ) = & g ])
N~ Apj

(A.5)

Here, the output of interests g;(u™) are the sensor signals defined in (3.30) and generated
following the details provided in Chapters 3 and 4. The methodology is the same except
for the affine expansion (3.47), for which additional affine parameters, specific to each sub-
domain, have to be introduced. In (A.5), we choose Ap; to be equal to % of the length of
the corresponding parameter interval, defined in (A.3). For the case with d,, = 2, we have
pm =[BT v B vyt k™) for m = 1,...,n,. We observe that a total of n,(d, + 1)

model estimations are required to compute (A.4).

For the problem with dg = 2, the sensitivity indices (A.4), computed using the procedure
defined above for the first component of g;(u) for i = 1,...,6,10,...,15 are shown in
Figure A.4. For a practical reason, for the example with 2 subdomains, we choose to
discard the signals retrieved at sensors 7, 8 and 9, which would otherwise lie at the
interface between 21 and €y. Each plot shows the sensitivity indices associated with the
d,, = 5 parameters and obtained by averaging over n, = 30 random samples. We note
that the order of the plots follow the position of the sensors used in Figure A.2. We first
observe that for all the sensor locations, the parameter characterizing the active source
is the least important. Moreover, the midline sensors, i.e., sensors 2, 5, 11, 13, seem
to be more influenced by their neighboring material properties. Indeed, for the signal
retrieved at sensors 2 and 5, the parameters £1 and v have the highest index value, and,
similarly, for the signal retrieved at sensors 11 and 13, E» and v have the highest DGSM
value. Figure A.5 shows the effect of the different input parameters on the output of
interest at sensors 5 and 11. We observe that the sensor signals at location 5 variate more
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Figure A.4 — DGSM indices with respect to d,, = 5 parameters for the first component of
the sensor signals g;(u) for i =1,...,6,10,...,15.

with respect to Fy and v;. Similarly, the sensor signals at location 11 variate more with
respect to Ey and v». Both signals variate quite consistently with the source parameter.

Figure A.6 shows similar results for the case with dg = 21 subdomains, where the
sensitivity indices (A.4), computed for the first component of g;(u) for the sensor signals
at x4, x5, g, T10, 11, T12, highlight that the output of interest is mostly influenced by
its neighboring parameters. Each plot shows the sensitivity indices associated with the
d,, = 43 parameters and obtained by averaging over n, = 20. The signal retrieved at
sensor 5 is mostly influenced by v3 and vy5, sensor 6 by vs, sensor 11 by v15 and E17, and
sensor 12 by v5 and v17. Sensors 4 and 10 are mostly influenced by the material properties
characterizing 1, Qg, and ¢, and Q14, and 217, which correspond to the subdomains
at the bottom of the structure. Finally, the role of k, the parameter characterizing the
active source, seems to have a little influence on the sensors on the midline, while it is
one of the parameters with higher DGSM value for sensors 4, 6, 10, and 12.

The preliminary results presented in this appendix, despite not being completely conclusive,
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Sensor 5 Sensor 11
: — 10 ‘ ‘ ‘

Figure A.5 — Parametric dependency of the signals at sensors 5 and 11 with respect
to different values the d, = 5 the input parameters. Sensors 5 and 11 belong to the
subdomains €2y and 2o, respectively. The first two rows show the time-dependent signals
for different values of the material properties characterizing €y, i.e., By and v;. The
third and fourth rows show the time-dependent signals for different values of the material
properties characterizing s, i.e., Fs and 5. The last row shows the time-dependent
signals for different values of the parameter characterizing the active source, i.e., k.
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Figure A.6 — DGSM indices with respect to d, = 43 parameters for the first component
of the sensor signals g;(u) for i =4,5,6,10,11,12.

provide a starting point to overcome the challenges associated with the task of combining
uncertainty quantification and structural health monitoring techniques.
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