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“Pourtant nous sommes tous pareils... Nous avons quelque chose en commun 
qui est plus fort que nos différences : c'est le besoin de connaître. Les littéra-
teurs appellent ça l'amour de la science. Moi, j'appelle ça la curiosité. Quand 

elle est servie par l'intelligence, c'est la plus grande qualité de l'homme.” 

La Nuit des Temps, René Barjavel 

 

 

 

 

 

“With equal passion I have sought knowledge. I have wished to understand 
the hearts of men. I have wished to know why the stars shine. And I have 

tried to apprehend the Pythagorean power by which number holds sway 
about the flux.” 

Autobiography, Bertrand Russel 
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Abstract 
Biological oscillators are pervasive in biology, covering all aspects of life from enzyme 

kinetics reactions to population dynamics. Although their behaviour has been intensively 
studied in the last decades, the recent advances of high-throughput experimental technologies 
in the fields of omics and microscopy has called for the development of new analysis methods. 
Among the many types of models and quantitative analyses, parametric approaches are 
promising as they enable for a mechanistic or physical explanation of the phenomena under 
study. In particular, dynamical systems theory seems particularly adapted as the vast ma-
jority of oscillators can be modelled through differential equations. Dynamical systems pa-
rameters can also be easily optimized via maximum likelihood approaches. The validity of 
the inferred model can then be assessed from the quality of its predictions. We here present 
three different scientific questions regarding noisy biological oscillators, which are answered 
using maximum-likelihood inference approaches applied to parametric models.  

We first take interest in the characterisation of the influence of the cell-cycle over the circa-
dian clock in individual mammalian cells. To this end, we develop a method combining a 
Hidden Markov Model with an Expectation-Maximization algorithm to infer their coupling 
from single-cell microscopy traces. We show that this coupling predicts multiple phase-locked 
states exhibiting different degrees of robustness against molecular fluctuations inherent to 
cellular scale biological oscillators.  

We then try to understand how the mammalian transcriptome behaves in the liver. Thence, 
we use single-cell RNA sequencing (scRNA-seq) along with mixed-models to investigate the 
interplay between gene regulation in space and time. Categorising mRNA expression profiles 
using mixed-effect models and smFISH validations, we find that many genes in the liver are 
both zonated and rhythmic, most of them showing multiplicative space-time effects. 

Finally, we look more closely at the cell-cycle, as it is one of the main drivers of gene expres-
sion cell-to-cell heterogeneity in otherwise homogeneous cell populations. Here, we would like 
to understand if and how cell-cycle velocity changes depending on the phase of the cycling 
cells. To that end, we formulate the problem in terms of an autonomous dynamical system 
and use this to infer consistent dynamics for the cell-cycle from scRNA-seq data. 

Phase inference being paramount in all of these three studies, a short technical review on the 
topic is also provided at the end of this thesis, along with Julia scripts for the main inference 
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methods presented. Various computational tools assisting the understanding of the scientific 
questions at stake are also presented, including a Python Dash web-app, a D3 widget and 
many Matplotlib animations and widgets.  

Keywords 
biological oscillators, inference, optimization, maximum likelihood, dynamical systems, non-
linear physics, modelling, quantitative biology, single-cell biology, hidden Markov model, 
HMM, expectation-maximization, EM, coupled oscillators, stochastic dynamics, phase-lock-
ing, synchronization, circadian clock, cell-cycle, liver, single-cell RNA sequencing, scRNA-
seq, gene regulation, gene expression, mixed-effect model, model selection, Akaike Infor-
mation Criterium, AIC, single-cell transcriptomics, RNA velocity, dimensionality reduction, 
cell-cycle dynamics, phase inference, Python, Python Dash, Julia, Matplotlib 
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Résumé 
Les oscillateurs biologiques sont omniprésents en biologie, couvrant tous les aspects 

de la vie, des réactions cinétiques enzymatiques à la dynamique des populations. Bien que 
leur comportement ait été intensivement étudié au cours des dernières décennies, les récentes 
avancées des technologies expérimentales à haut débit dans les domaines de l'omique et de 
la microscopie a récemment appelé au développement de nouvelles méthodes d'analyse. 
Parmi les nombreux types de modèles et d’analyses quantitatives, les approches paramé-
triques sont prometteuses car elles permettent une explication mécanistique ou physique des 
phénomènes étudiés. En particulier, la théorie des systèmes dynamiques semble particulière-
ment adaptée car la grande majorité des oscillateurs peut être modélisée au travers d’équa-
tions différentielles. De plus, les paramètres de tels systèmes peuvent être facilement optimi-
sés par des approches de type maximum de vraisemblance. La validité du modèle inferré peut 
alors être évaluée à partir de la qualité de ses prédictions. On présente ci-après trois questions 
scientifiques concernant des oscillateurs biologiques bruités, que l’on traite par des approches 
d’inférence de type maximum de vraisemblance appliquée à des modèles paramétriques.  

On s’intéresse d’abord à la caractérisation de l'influence du cycle cellulaire sur l'horloge 
circadienne dans des cellules uniques de mammifères. Ainsi, on développe une méthode com-
binant un modèle de Markov caché et un algorithme de type espérance-maximisation pour 
inférer leur couplage à partir de traces cellulaires provenant de microscopie. On montre que 
ce couplage prédit plusieurs états de verrouillage de phase, présentant différents degrés de 
robustesse vis-à-vis des fluctuations moléculaires inhérentes aux oscillateurs biologiques à 
l’échelle cellulaire.  

On essaye ensuite de comprendre comment le transcriptome des mammifères se comporte 
dans le foie. Pour cela, on utilise le séquençage d'ARN de cellules uniques (scRNA-seq) en 
combinaison avec des modèles à effets mixtes pour étudier l'interaction entre la régulation 
des gènes dans l'espace et le temps. En catégorisant les profils d'expression d'ARNm à l'aide 
de modèles à effets mixtes et de validations smFISH, on constate que de nombreux gènes du 
foie sont à la fois zonés et rythmiques, la plupart d'entre eux exhibant des effets multiplicatifs 
spatiotemporels. 

Enfin, on s’intèresse de plus près au cycle cellulaire, puisque c’est l'un des principaux facteurs 
d'hétérogénéité entre cellules de l'expression des gènes dans des populations cellulaires par 
ailleurs homogènes. Dans ce cadre, on voudrait comprendre si et comment la vitesse du cycle 
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cellulaire change en fonction de la phase des cellules qui cyclent. Pour cela, on formule le 
problème en termes de système dynamique autonome et l'utilise pour déduire une dynamique 
cohérente à partir de données de scRNA-seq. 

L'inférence de phase étant primordiale dans ces trois études, une brève revue technique sur 
le sujet est également fournie à la fin de cette thèse. Divers outils informatiques permettant 
de comprendre les questions scientifiques en jeu sont également présentés, notamment une 
application web de type Python Dash, un widget D3 et de nombreuses animations et widgets 
faits avec Matplotlib.  

Mots-clés 
oscillateurs biologiques, inference, optimisation, maximum de vraisemblance, systems dyna-
miques, physique des systems non-linéaires, modélisation, biologie quantitative, biologie des 
cellules uniques, modèle de Markov caché, HMM, espérance-maximisation, EM, oscillateurs 
couplés, dynamique stochastique, verrouillage de phase, synchronisation, horloge circadienne, 
cycle cellulaire, foie, séquençage de l'ARN des cellules uniques, scRNA-seq, régulation géné-
tique, expression génétique, modèle à effets mixtes, sélection de modèles, Critère d’Informa-
tion d’Akaike, AIC, transcriptomique des cellules uniques, vélocité de l’ARN, réduction de 
la dimensionnalité, dynamique du cycle cellulaire, inférence de phase, Python, Python Dash, 
Julia, Matplotlib 

 



Table of Contents 

 13 

Table of Contents 
 

Introduction ..................................................................................................... 15 

1. What is a biological oscillator? .......................................................................... 17 

2. Coupling and synchronization ........................................................................... 21 

3. Oscillators as mathematical objects ................................................................... 30 

4. Fitting models to biological data ....................................................................... 52 

5. Concrete application .......................................................................................... 59 

Chapter 1: Low-dimensional Dynamics of Two Coupled Biological Oscillators 63 

1. Project introduction ........................................................................................... 64 

2. Published article ................................................................................................ 76 

Chapter 2: Space-time logic of liver gene expression at sublobular scale ........ 115 

1. Project introduction ......................................................................................... 116 

2. Published article .............................................................................................. 124 

3. Web application ............................................................................................... 153 

Chapter 3: RNA velocity-based inference of cell cycle properties using single-
cells ......................................................................................................... 157 

1. Project Introduction ........................................................................................ 158 

2. Study in preparation for publication ............................................................... 164 

Discussion and perspectives ............................................................................ 187 

1. Discussion ........................................................................................................ 188 

2. Perspectives ..................................................................................................... 192 

Annexe A: Technical review of phase inference methods................................ 195 

1. Introduction: motivation and aims .................................................................. 196 

2. Study ............................................................................................................... 196 

3. Perspectives ..................................................................................................... 208 



Table of Contents 

 
14 

Annexe B: Widgets and animations ................................................................ 211 

1. Introduction ..................................................................................................... 212 

2. Phase-space animation ..................................................................................... 212 

3. Oscillator time trajectories .............................................................................. 216 

4. Enrichment around the clock ........................................................................... 217 

5. D3 widget to compute Fourier transform of a signal ....................................... 218 

References ....................................................................................................... 219 

Curriculum Vitae ............................................................................................ 248 



Introduction 

 15 

Introduction 
This introduction is an original work, summarizing some of the knowledge accumu-

lated during my PhD in the Naef Lab. Nevertheless, its writing was also inspired by several 
textbooks, which, out of respect for the authors, I wish to mention. This includes Synchro-
nization: A Universal Concept in Nonlinear Sciences by Arcady Pikovsky[1], Nonlinear Dy-
namics And Chaos by Steven Strogatz[2], Biological Clocks, Rhythms, and Oscillations by 
Daniel Forger[3], An Introduction to Systems Biology: Design Principles of Biological Cir-
cuits by Uri Alon[4], and finally Biological Timekeeping: Clocks, Rhythms and Behaviour by 
Vinod Kumar[5].  

 

Artwork Figure 1: Artistic representation of the phase-lockings observed in a system of coupled oscillator 
showing stable oscillations. The kind of phase-locking representation is known as 𝑝𝑝:𝑞𝑞 torus knots, that is, 
torus trajectories viewed from above and projected on a plane. From left to right, bottom to top, repre-
sented trajectories are: 1:1, 1:2, 2:1, 3:1, 3:2, 2:3, 3:2, 1:4, 3:4, 4:3, 4:1, 1:5, 2:5, 3:5, 4:5, 5:4, 5:3, 5:2, 5:1.  
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In Section 1, I briefly introduce biological oscillators from a contextual point of view, 

along with some of the very basic mathematical concepts used to describe oscillation prop-
erties (phase, amplitude, period).  

In Section 2, I introduce, with intuitive terms, the concepts of coupling, synchroni-
zation and phase-response curve for simple phase oscillators, along with some example taken 
from biological systems.  

In Section 3, I introduce the more advanced mathematical framework used to de-
scribe oscillator and synchronization from a dynamical systems perspective: conditions 
needed for oscillations, linear stability analysis, Hopf bifurcation, Poincaré map, Arnold 
tongues.  

In Section 4, I explain how theoretical biological models can be fitted to experi-
mental data, what knowledge can be gained from this fitting, and what are the corresponding 
issues: likelihood, overfitting, model transparency and model tractability.  

In Section 5, I introduce the four corresponding applications presented in the rest 
of this thesis: the modelling and inference of the influence of the cell-cycle on the circadian 
clock, the classification of the liver transcriptome behaviour into different spatio-temporal 
categories, the inference of cell-cycle velocity from static datasets and a technical review on 
phase inference methods.
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1. What is a biological oscillator? 

1.1. General introduction 

The topic of biological oscillators is vast, covering aspects of life ranging from simple 
enzyme kinetics reactions to population dynamics. This includes complexes processes as var-
ied as calcium signalling, cell division, heart rate and breathing, or even periodic outbreaks 
of diseases[6]–[10]. Overall, generated rhythms are essential to most organisms, from cyano-
bacteria to mammals and from biochemistry to mood regulation[11]–[13]. 

The scope of this thesis will be limited to the study of rhythms occurring within biological 
organisms. Still, it should be noted that oscillators properties do not depend much on the 
context. Therefore, the methods we will present here could also apply to the study of nonbi-
ological rhythms. Overall, it is only the system that changes, but not the emerging oscillating 
behaviour. The mechanisms of rhythm generation in nonbiological applications are exten-
sively described in the literature[14], [15]. Nonetheless, it remains true that biological 
rhythms themselves often depend on nonbiological factors (for instance, solar photic cues). 
Sometimes, things can be trickier as in the case of the approximately 24-hour periodic emer-
gence of fruit flies from their pupae, which might appear to be governed by the external daily 
rhythm, but actually stems from an endogenous clock[16]. 

Still, endogenous rhythms also cover a broad range of biological systems, with periods ranging 
from milliseconds (e.g. neuronal spikes[17], vocal folds oscillations[18]) to years (hibernation 
cycles[19]).  Such rhythms can be generated at very different levels: physiological (heart 
pacemaker, respiration, hormones)[20], in intracellular biochemical networks (calcium oscil-
lations, glycolytic oscillations)[21], or via transcriptional feedback loops (somitic clock, NF-
kB oscillations, circadian clock)[22], [23]. Introduction Figure 1 gives a good overview of the 
variety of rhythms observed at the microscopic scale. 

Oscillators having a 24h periodicity are especially important. These clocks, which are called 
circadian (circa, around, dian, a day), are fundamental to life and are present in almost all 
complex organisms1. They are introduced in details in Chapter 1, Section 1.2.1.1. 

 
1 Viruses and bacteria (except for cyanobacteria) do not have a clock. 
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Introduction Figure 1: Summary of core architectures, periods, types and functions observed in oscilla-
tors originating from various biological systems. Taken from Li and Yang, 2018 [24]. 

1.2. History 

The first historical trace of biological oscillator science probably goes back to the 
Swedish naturalist Carolus Linnaeus, who decided to use the observed plant circadian 
rhythms to create a garden whose flowers would open and close at different times of the day. 
To this end, Linnaeus recorded, over many years, the daily rhythms of more than thirty 
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plant flowers. In 1751, he finally designed his Horologium Florae (Introduction Figure 2), 
which, unfortunately, was never planted while he was alive. 

 

Introduction Figure 2: Representation of the living flower clock imagined by the Swedish naturalist 
Carolus Linnaeus, adapted from his book Philosophia Botanica (1751).  

In parallel, in France, Jean-Jacques Dortous de Mairan started to experiment on haricot 
beans and mimosas. In 1729, he noticed that the leaves of the plant moved up and down 
depending on the time on the day, and deduced from that that an internal clock had to be 
at work inside of the plants. But the analytical study of oscillations really dates from the 
mathematician Alfred James Lotka, who put forward a theoretical reaction which exhibits 
damped oscillations (1910). About a decade later, he proposed the reaction mechanism which 
now carries the Lotka–Volterra label. In parallel, oscillations were observed by Bray (1921) 
in the hydrogen peroxide–iodate ion reaction. Since that time, much more complex experi-
ments have been performed in different laboratories[1]. In the 1950s, the first clear examples 
of biochemical oscillations were recognized in glycolysis, in cyclic AMP production, and in 
the horseradish peroxidase reaction[25]. Another significant discovery of an oscillating reac-
tion was made by Belousov in the late fifties, the study of which was continued by 
Zhabotinskii in 1969 and is now known as the Belousov–Zhabotinskii reaction[26]. In the 
1980s and 1990s, with the great progress made in molecular biology, many proteins and genes 
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interaction networks generating oscillations were discovered, such as the PERIOD and CRY 
proteins in the mammalian circadian clock[27], and the Cyclin proteins in the eukaryotic cell-
cycle control[28]. 

1.3. Basics: oscillators, oscillations, clocks and rhythms 

Before providing an in-depth explanation of the mathematical concepts used to de-
scribe oscillators (cf. Section 3), I here introduce the basics using more intuitive definitions.   

The meaning of oscillators, oscillations, clocks and rhythms can vary depending on the con-
text. One example among many is that a clock is usually understood as insensitive to tem-
perature in biology2 (because it keeps track of time, and therefore should be robust to phys-
iological or environmental fluctuations), while in physics or engineering this requirement does 
not usually exist. In the rest of this work, we’ll use the word clock only to refer to the 
circadian clock (which is temperature compensated[29]), and oscillators to refer to the more 
general class of all rhythmic systems (which, of course, include the circadian clock). Rhythms 
and oscillations refer to the outputs of oscillators. 

The Period refers to the inherent time scale of an oscillator, measuring the time needed for 
the oscillator to complete one full oscillation. If the system period is stable over time oscilla-
tions can be used to measure time. In practice, only very few systems are robust enough to 
provide a reasonable time estimate. For instance, the human circadian clock tends to have a 
period that not only vary among individuals, but which also vary in time for a given indi-
vidual[30]. Introduction Figure 1 provides an overview of the very vast range of periods 
observed in biological systems. Introduction Figure 3 illustrates the notion of period with a 
simple cartoon. 

 
Introduction Figure 3: Critical terms to describe oscillations: period, phase and amplitude. Taken from 
reference [31]. 

It is essential to distinguish the natural or intrinsic period of an oscillator from its period 
when coupled with an external system. Indeed, the behaviour of an oscillator can significantly 

 
2 This it not true for the segmentation clock, but it’s not a clock stricto sensu. 



Introduction 

 
21 

vary depending on how it interacts with its environment (cf. Section 2), and its natural 
period (the one it has when ticking in isolation) can be very different from its period after 
coupling.  

When studying an oscillating system, one is often interested in quantifying the fraction of a 
cycle that has elapsed between two events (e.g. peaks in a time series). It’s precisely the 
purpose of the phase, which, within a cycle, measures how much progress the oscillator has 
made. Therefore, the phase can always be simplified modulo the oscillator period. Phase 
units can vary depending on the problem, but the concept is always the same whether it is 
provided in radian (progression along the polar circle, with length 2𝜋𝜋), in time units (pro-
gression along the period 𝑇𝑇), or even in percent. Introduction Figure 3 illustrates the notion 
of phase with a simple cartoon. As a rule, a given phase always relates to a given state of 
the corresponding oscillatory system. Therefore, the phase can also be considered as a 1-
dimensional coordinate used to parametrize the state of an oscillating system. However, in 
dynamical systems, the mapping between the high-dimensional system to the one-dimen-
sional phase can be quite complex, such that the interpretation of the concept of phase is 
usually not obvious. This is developed in more details Sections 2.3 and 3.1. 

One last characteristic of oscillations is amplitude. If the oscillating system is conservative3, 
its amplitude will be uniquely determined by its internal energy (cf Section 3.2). Introduction 
Figure 3 illustrates the notion of amplitude with a simple cartoon4.  

2. Coupling and synchronization 

2.1. General introduction 

Biological systems always interact with each other and with the external environ-
ment (providing an energy source). In the case of cycling systems, one speaks of synchroni-
zation when their interaction leads to concomitant oscillations, although the exact definition 
is more complicated.  

Overall, synchronization is a broad topic and have been the object of numerous papers[32]. 
Biological oscillators are particularly interesting in this regard: heartbeat is partly synchro-
nized with respiration and movement[33], circadian rhythms are synchronized with light 

 
3 This almost never happens in biology, as living organisms are always in interaction with their environment 
and depend on external sources of energy. 

4 Note that there’s a subtility between height and amplitude, as the latter is defined as twice the vertical 
peak to trough distance. 
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cycles and movement (among other things)[34], neurons fire in order as signals travel 
throughout the brain[35]. Synchronization can also be observed between different organisms: 
women living together appear to start their menstruations at the same time[36], and same 
goes for the harmonious blinking of fireflies[37]. 

Conversely, synchronization disruption is very often associated with diseases. Arrhythmia 
can lead to severe cardiovascular problems[38], nocturnal work (desynchronizing the circa-
dian clock) is related to an increase in breast cancer[39], epilepsy can lead to sudden 
death[40], etc. 

I here introduced the concepts of coupling and synchronization using mostly intuitive defi-
nitions. For a more mathematical approach of the subject, refer to Section 3.4. 

2.2. History 

The etymology of the word synchronization can be traced back from the Greek 
𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎ί𝜁𝜁𝜁𝜁, which literally means “the same time”. The scientific history of synchronization 
goes back to as far as the 17th century, when the Dutch mathematician and physicist Chris-
tian Huygeens started experimenting on the behaviour of two coupled pendulum clocks. He 
acknowledged that two pendula set next to each other, on the same unstable support, tended 
to become synchronized, swinging in opposite directions. Consequently, he assumed that the 
support was naturally transmitting information between the pendula, therefore acting as a 
coupling and enabling synchronization. A few centuries later, in the middle of the 19th cen-
tury, John William Strutt Rayleigh described the synchronization, but also the quenching 
(i.e. the death of oscillations), of organ pipes in his Theory of Sound. When electrical and 
radio engineering started emerging, the investigation of synchronization suddenly acceler-
ated. In 1920, W. H. Eccles and J. H. Vincent applied for a patent confirming their discovery 
of the synchronization property of a triode generator. During the 1920s, the first theoretical 
study of the synchronization was made by Appleton and Van der Pol. After this, the litera-
ture on synchronization started becoming denser, and it gradually became clear that diverse 
phenomena, which didn't seem to have anything in common (e.g. the sound of organ pipes 
and the songs of snowy tree crickets) obeyed the same universal laws[1].   

2.3. What is coupling? 

Synchronization is not possible if oscillators are non-interacting. This interaction, 
between two or many oscillators, is called coupling and can come in many shapes. One way 
of describing a coupling depends on the relationship between the oscillators of the system 
under study: if the system is made of two oscillators, either the coupling is unidirectional, 
either bidirectional; if more oscillators interact, more complex interaction schemes are usually 
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considered. Another essential feature of coupling is when it is active. If it is continually 
sending a signal to other oscillator(s), it will be termed continuous (e.g. two parts of the 
same biochemical network). Conversely, when it occurs only at a specific phase (or combi-
nation of phases), it is termed pulsed (for instance, the light from the sun only impacts the 
circadian clock during the day). 

2.3.1. Unidirectional coupling 

In the case of a unidirectional coupling, represented Introduction Figure 4 below, 
one oscillator with phase 𝜙𝜙 is coupled to a periodic external action with phase 𝜙𝜙𝑒𝑒. In a simple 
setting, the coupling can be represented by a force that tends to drive the speed 𝜔𝜔 of the 
oscillator towards the entraining speed 𝜔𝜔0. Three cases are then possible: either the coupling 
is not strong enough and no synchronization is observed, meaning that 𝜔𝜔0 is superior (a) or 
inferior (c) to 𝜔𝜔, leading to a decreasing or increasing (respectively) phase difference between 
the two; either the coupling can synchronize the oscillator to the external action (b), leading 
to an identical average frequency (𝜔𝜔0 = 𝜔𝜔) and a phase difference that doesn’t tend to grow 
in time5. In case (a), the coupling is said to be positive or excitatory, meaning that it tends 
to accelerate the receiving oscillator. In case (c), the coupling is said to be negative or inhib-
itory.  

 

Introduction Figure 4: Representation of the three different possible cases observed in case of a single 
oscillator under the influence of an external coupling. Either the external coupling with frequency 𝜔𝜔0 tend 
to accelerate (a) or decelerate (c) the natural speed 𝜔𝜔 of the oscillator, and the phase difference 𝜙𝜙 − 𝜙𝜙𝑒𝑒 
decreases or increases in time (respectively), either the coupling leads to synchronization (b), which means 
that the frequencies get identical, and the phase difference is constant in time. Visual taken from the book 
by Pikovsky[1]. 

Other settings are possible, since a coupling can be both excitatory and inhibitory depending 
on the phase of the two systems (cf. Figure 1.2, from Chapter 1), and can lead to complex 
ratios (or quasiperiodicity) between the periods of the giving and receiving system (see 

 
5 In practice, it can vary along one cycle, but it should be constant, cycle after cycle, when observed at a 
given time of the cycle. 
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Section 3.4). Besides, the relationship between phase advance/delay and coupling type is not 
trivial, as excitatory couplings can lead to phase delay at steady-state, and conversely. This 
is due to the circular nature of the phase space and will depend on both the strength of the 
coupling and of when it is applied. In all of these cases, since the coupling is unidirectional, 
one uses the term entrainment rather than synchronization. 

2.3.2. Bidirectional coupling 

Bidirectional coupling is richer as oscillators influence each other mutually and this 
can lead to a faster and more robust synchronization, along with more complex phase be-
haviours. In the most straightforward setting, the coupling will make the average frequencies 
of the two oscillators, 𝜔𝜔1 and 𝜔𝜔2 closer to each other, until synchronization happens6, in 
which case 𝜔𝜔1 = 𝜔𝜔2 = Ω (Introduction Figure 5). Note, however, that Ω is not necessarily 
the average of the two intrinsic frequencies, as its value will depend on the strength and 
time-dependence of the couplings. In more complex settings, complex ratios or quasiperiodity 
can be observed between 𝜔𝜔1 and 𝜔𝜔2. This is developed in the next section. 

 

Introduction Figure 5: Representation of the mutual coupling of two oscillators. When interacting, 
oscillators 1 and 2 will tend to synchronize their average frequency 𝜔𝜔1 and 𝜔𝜔2. Synchronization is reached 
when 𝜔𝜔1 = 𝜔𝜔2 = Ω over any time window. Visual taken from the book by Pikovsky[1]. 

2.3.3. Complex interaction  

When more than two oscillators are considered, complex interaction schemes can 
exist. Among them, noteworthy ones are mean-field (each oscillator affects all other oscilla-
tors), nearest-neighbour (each oscillator only affects its neighbours), random coupling (oscil-
lators affect each other with a given probability), small-world network coupling (oscillators 
affect each other in small groups (cliques), but these groups also affect each other but with 

 
6 It’s important here to distinguish the instantaneous frequencies (which vary in time, and are not equal 
most of the time) from the average frequencies, which are equal in the situation described above. The 
average frequencies are obtained by averaging the instantaneous frequencies over many cycles (in theory, 
an infinity). 
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less coupling strength/probability)[41], and finally scale-free networks coupling (the proba-
bility of being connected to other oscillators follows a power-law).  

2.3.4. Identifying the relevant degrees of freedom 

In some systems, each oscillator can easily be identified, and the coupling can be 
singled out as well. This is the case in most brain simulations, where each neuron is physically 
distinct from its neighbours, and all the communication between them occurs through syn-
apses[42]. However, in many other systems, things are much harder to disentangle. For in-
stance, in biochemical networks, two feedback loops can share a common element (cf Intro-
duction Figure 6 below). In this case, it would be true to say that the whole network is one 
unique oscillator. Still, in many cases, it would also be relevant to consider the subsystems 
as separate, coupled oscillators, each with its own phase, amplitude and period.  

 
Introduction Figure 6: Molecular representation of the core circadian clock, in which several feedback 
loops (PER-CRY, REV-ERB, ROR) share commons elements (BMAL, CLOCK, RRE). Taken from Brown 
et al., 2014 [43].  

2.4. What is synchronization? 

Synchronization is a fairly complex concept, and Arkady Pikovsky dedicated two 
whole books to try the explain the idea [1], [32]. In the simplest case, we would call synchro-
nized oscillators that have agreed on a common fixed period and a fixed phase relationship. 
Note that the intrinsic periods of the two oscillators can be different, and so go for the phases. 



Coupling and synchronization 

 
26 

However, once synchronized, the two oscillators will have the same period, such that if one 
looks at their phase difference at the beginning of one cycle or the next (this is called a 
Poincaré map, it is developed in Section 3.3.3), it should not have changed. This doesn’t 
mean that the phase difference is constant, but instead that it also follows a periodic pattern, 
of the same period as those of the synchronized oscillators. 

However, we could also imagine a situation where one oscillator would go exactly twice as 
fast as the other to which it is coupled. This is also synchronization as the phase relationship 
between the two oscillators also follows a periodic pattern. However, in this case, the period 
of the phase relationship is equal to that of the slowest oscillator.  

Of course, many other patterns are possible: one oscillator could go ten times as fast as the 
other, or, in a more complicated scenario, one oscillator could accomplish three cycles while 
the other do four. In practice, as long as the ratio of the two periods is a rational number, 
we could speak of synchronization. This phenomenon is termed 𝑝𝑝: 𝑞𝑞 phase-locking, where 𝑝𝑝 
and 𝑞𝑞 denote the (integer) numbers of cycles cycle needed by the two oscillators to reach 
back their initial phase relationship. 

Obviously, if this 𝑝𝑝: 𝑞𝑞 ratio were to be a non-trivial fraction (e.g. 22
21

), the relationship between 

the two oscillator phases would not be evident at all (by eye), and very long time series 
would be needed to recognize that there is indeed synchronization. Introduction Figure 7 
illustrates different phase-lockings observed in a simulated system of two coupled oscillators. 
In practice, 1: 1 synchronization is far from being the rule, and complex 𝑝𝑝: 𝑞𝑞 phase-lockings 
are seen very frequently in nature. Simple examples taken from biology include the interact-
ing cell-cycle and the circadian clock[44]–[46], or the mammalian brain[47]. 
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Introduction Figure 7: Phase-space representation of the different types of synchronization between 
two oscillators having phase θ and φ, computed from simulations. Top-left: 2: 1 phase-locking. Top-
right: 1: 1 phase-locking. Bottom-left: 1: 2 phase-locking. Bottom-right: quasiperiodicity. 

In the case of noisy systems, the 𝑝𝑝: 𝑞𝑞 relationship still holds, given that the noise is bounded 
and the coupling is large enough. However, synchronization is slightly harder to define as 
the two oscillators do not have precisely the same phase (each) after a full cycle, but rather 
the same phase plus or minus epsilon, epsilon being itself bounded[1]. If the noise is un-
bounded (e.g. Gaussian), true synchronization is not observed anymore as oscillators can be 
kicked out of equilibrium. Still, because of the coupling, some regions of the space-space are 
favoured over others, and therefore phase-lockings also appears on density plots; although 
the phases are not literally locked, as there’s a continuum between synchronization and quasi-
periodicity (Introduction Figure 8).  
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Introduction Figure 8: Phase-space representation of a system of two interacting noisy oscillators, with 
phase θ and φ computed from simulations. Noise is Gaussian. The figure shows how the system can appear 
to exhibit phase-locking (left, middle) or quasiperiodicity (right) by looking at the corresponding phase 
density. However, the concept of synchronization does not literally hold here as the noise is unbounded.  

Another interesting feature of noisy systems lies in their capacity to jump between different 
types of phase-lockings. Indeed, several stable phase-locking modes can co-exist in the sys-
tem, and the noise can kick the phase from one to the other (cf. Section 3.4.1.2). Similarly, 
the noise can kick the phase strongly enough that it overpasses the coupling attracting region 
and directly skip one cycle; this phenomenon is called phase-slipping[1]. 

2.5. Phase-response Curve 

Oscillators can respond to transient perturbations in a variety of different ways. 
A Phase Response Curve (PRC) describes the phase response of the oscillator occurring 
in a cycle period depending on its current phase. It’s important to mention that, in their 
stricter definition, PRCs are useful to describe systems response to pulse-like couplings 
only. They have, however, been extended to handle continuous coupling, under the name 
of Infinitesimal response curves (IRCs)[48]. PRCs and IRCs are interesting objects as 
both single and continuous pulses caninduce entrainment when applied periodically. 

The principle is as follow: a single perturbation will lead to phase and amplitude change in 
the receiving oscillator. If the oscillator is stable, the amplitude will progressively return to 
its previous value, but depending on the nature of the stimulus, the phase shift may persist. 
One can thus track how the phase changes depending on the time and nature of the pulse. 
For many oscillators, the observed phase shift will greatly depend on the state of the 
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oscillator within the cycle (e.g. the time of the day for the circadian clock. PRCs precisely 
represent the phase response of the oscillator to a stimulus depending on its phase7).  

Interesting patterns, which often have an evolutionary reason, can be observed. For instance, 
the human circadian clock is such that it tends to adapt its phase to the external light 
(Introduction Figure 9). When it’s the early morning, a bit before dawn, a light pulse received 
by the eye will tend to advance the phase. Conversely, when it’s late, light tends to slow 
down the phase. Without this phase-response, one could not travel far without having its 
external clock completely desynchronized with the actual solar hour. This is, however, not 
perfect, and the time delay needed for the clock to adjust is commonly known as jet-lag.  

In mathematical terms, A PRC can be understood as a mapping between an old and new 
phase. This is not very useful in the case of single-pulsed perturbations, but continuous 
couplings can often be approximated by a series of single pulses. In this case, the PRC 
mapping may be applied several times in a row to study the phase evolution in time: this is 
called an iterated map. As explained in Section 3.3.3, synchronization can be related to the 
stable fixed point of the iterated map. 

 

 
Introduction Figure 9: Representation of different human phase response curves, depending on the 
intensity of the photic cue received by the eye. CT stands for Circadian Time, where 0 is the initiation of 
activity in a diurnal organism (early morning for humans). Taken from Principles and Practice of Sleep 
Medicine, 2017[49]. 

 
7 The mathematical concept of isochrons is needed to understand why the system reacts in such a way, 
from a dynamical systems perspective. This is described in Section 3.3.4. 
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3. Oscillators as mathematical objects 

3.1. Introduction: cycling systems 

Even if the term “oscillator” is now used in everyday language, it primarily refers 
to a physical phenomenon or an abstract mathematical object. The following section provides 
the mathematical framework used to model and understand the wide variety of temporal 
oscillators that (conceptually) exist in nature. Spatio-temporal oscillations are also wide-
spread, but their behaviour can be complex and is outside of the scope of this thesis. Unless 
it is in bold, any mathematical variable will refer to a scalar. Vector will be lowercase bold, 
and matrices will be uppercase bold. As a rule, 𝑡𝑡 will be used to refer to time. 

The simplest but still general model for an oscillating system 𝒙𝒙 ∈ ℝ𝑛𝑛 is a differential equation 
of the following form: 

𝑑𝑑𝒙𝒙
𝑑𝑑𝑑𝑑

= 𝒇𝒇(𝒙𝒙,𝝀𝝀, 𝑡𝑡)        (𝑖𝑖) 

𝒇𝒇 is a vectorial function that describes how the 𝑛𝑛 components of the system state 𝒙𝒙 change 
with time. This change depends on a set of parameters 𝝀𝝀, and, in this case, also explicitly 
depends on time 𝑡𝑡 (e.g. the time dependence could represent a pulsed coupling, occurring 
only at given times).  In the following section, we assume that 𝑓𝑓 is of class 𝐶𝐶1, that is, it’s 
continuous and has continuous derivatives. 

Often, and as it will be the cases in the studies presented in this thesis, systems can be 
studied in isolation. In this case, their behaviour becomes autonomous; that is, they lose 
their explicit dependence on time: 

𝑑𝑑𝒙𝒙
𝑑𝑑𝑑𝑑

= 𝒇𝒇(𝒙𝒙,𝝀𝝀)        (𝑖𝑖𝑖𝑖) 

We’re here interested in oscillators, that is, in systems that show sustained, stable, oscilla-
tions. Such behaviour can be described as trajectories with the following properties: 

� 𝒙𝒙
(𝑡𝑡) = 𝒙𝒙(𝑡𝑡 + 𝜏𝜏)                             

 𝒙𝒙(𝑡𝑡′) ≠ 𝒙𝒙(𝑡𝑡)  for  𝑡𝑡 < 𝑡𝑡′ < 𝑡𝑡 + 𝜏𝜏         (𝑖𝑖𝑖𝑖𝑖𝑖) 

Eq. (𝑖𝑖𝑖𝑖𝑖𝑖) describes how the system returns to its original state every 𝜏𝜏 units of time8 and 
holds for all 𝒙𝒙 components. This means that the system draws a closed trajectory 𝚪𝚪(𝑡𝑡) in the 

 
8 Since the system is deterministic and autonomous, ensuring this condition for one oscillation necessary 
yields sustained oscillations for any time period. 
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n-dimensional space, every 𝜏𝜏 units of time. This trajectory can be obtained by integrating 
Eq. (𝑖𝑖𝑖𝑖)8F

9, and is called a limit-cycle. A stable limit cycle corresponds to a stable, strictly 
periodic attractor, in the sense of dynamical systems’ theory[1]. This means that local per-
turbations will relax exponenetially fast to the periodic orbit 

Depending on the nature of the system, oscillations can depend on the system’s initial state 
or the value of the parameters. Section 3.3.2 describes how systems such as those described 
by Eq. (𝑖𝑖𝑖𝑖) can adopt limit-cycles by undergoing Hopf instabilities, which can themselves be 
stable (supercritical Hopf) or unstable (subcritical). 

The progression of the system state along the limit-cycle is quantified by a scalar coordinate 
variable called the system’s phase. In theory, the phase definition is arbitrary, but, for stably 
oscillating systems, it is usually taken as proportional to the time progression with respect 
to a full period. That is, denoting the phase by 𝜃𝜃:  

𝜃𝜃(𝑡𝑡) = 2𝜋𝜋
𝑡𝑡
𝜏𝜏         (𝑖𝑖𝑖𝑖) 

This means that, by construction, we set the phase to grow uniformly in time (in the direction 
of the motion), with frequency 𝜔𝜔 = 2𝜋𝜋

𝜏𝜏
, considering the full cycle to be 2𝜋𝜋 long. In practice, 

that corresponds to a transformation from a cartesian coordinate system to a polar coordinate 
system which is well defined in a neighborhood of the limit-cyle: 

𝑑𝑑𝒙𝒙
𝑑𝑑𝑑𝑑

= 𝒇𝒇(𝒙𝒙,𝝀𝝀) ⇒ �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝜔𝜔(𝝀𝝀)       

𝑑𝑑𝒓𝒓
𝑑𝑑𝑑𝑑

= 𝒈𝒈(𝒓𝒓,𝜃𝜃,𝝀𝝀)
        (𝑣𝑣) 

Where 𝒓𝒓(𝑡𝑡) ∈ ℝ𝑛𝑛−1 is a coordinate perpendicular to the limit-cycle, whose behaviour is gov-
erned by the function 𝒈𝒈(𝑡𝑡). Since the angular speed doesn’t depend on time or phase, the 
phase is said to be a neutrally stable variable. In perturbed systems, the phase can thereby 
be defined outside the strict limit-cycle using the concept of isochrons (cf. Section 3.3.4), 
making PRCs and alike easily geometrically interpretable. 

Phase equations are relevant to the study of biological oscillators, as they can hold even 
when the system is under small perturbations (if the oscillators are suffisciently stable and 
the transverse dynamics is negligible). For instance, a noisy oscillator having phase 𝜃𝜃 en-
trained by a periodic forcing with phase 𝜑𝜑 can be described with an equation of the form (cf. 
the project presented in Chapter 1): 

 
9 This is often hard to do analytically, but numerical integration will be tractable for most systems.  
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = ℎ(𝜃𝜃,𝜑𝜑) + 𝜀𝜀       (𝑣𝑣𝑣𝑣) 

Similarly, a noisy oscillator whose noise is phase dependent will follow a stochastic ODE of 
the form: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜔𝜔 + 𝜀𝜀(𝜃𝜃)       (𝑣𝑣𝑣𝑣𝑣𝑣) 

3.2. Conditions needed for oscillations 

3.2.1. Introduction 

Although the previous section explains how oscillations can be described by dynam-
ical systems, it doesn’t explain what physical or chemical mechanisms lead to their emergence 
in the first place. Said differently, what kind of system structural design leads to oscillations? 
In the literature[25], [50], the following requirements are usually considered as the necessary 
(but not sufficient) basis for generating oscillations:  

• first, an inhibitory feedback loop, which includes one or more oscillating variables, is 
needed to carry the system back to the starting point of its oscillation.  

• Then, there must be a source of delay in this feedback loop, which allows an oscillat-
ing variable to overshoot a steady-state value before the feedback inhibition is fully 
active.  

• Finally, the governing equations for the components at play must be sufficiently non-
linear to destabilize the steady-state, but chosen such that the producing/degrading 
equations occur on appropriate time scales that permit the system to generate oscil-
lations.  

Without negative feedback loop(s) and delay, there can’t be oscillations, as the system com-
ponents would either diverge in time, or stabilize if there is some kind of active/passive 
degradation in the system. However, negative feedback alone is not sufficient to generate 
oscillations, as, without further perturbation, the system would instead monotonically return 
to steady state[4]. It is therefore needed to add some delay in the system, such that the 
oscillating variables overshoot the steady-state before the feedback truly comes into play. 
Delay can be explicitly added to the system using delay differential equations[51], but an 
alternative way to model it consists in adding components in the negative feedback loop in 
order for it to take more time to be effective. In practice, in biochemical systems, delay often 
stems from spatial aspects of the system: molecules must diffuse in cytoplasm and through 
membranes[52]. In population dynamics, space is also involved, but delay can also come from 
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the fact that individuals can take time to die of starvation when no prey/nutrients are 
available, or conversely to reproduce when there’s more food than needed[53]. Finally, non-
linearity is usually considered essential to generate sustained oscillations. In practice, oscil-
lations can be obtained from linear systems (harmonic oscillators, which behave as neutrally 
stable centres, cf. Section 3.2.2.2), but limit-cycles as introduced in Section 3.1 are inherently 
nonlinear phenomena, with oscillations determined by the structure of the system itself. Non-
linearity enables to change the behaviour of the system in a way that depends on its own 
state. A linear system can generate exponentially growing or decaying oscillations (spirals), 
but adding a non-linear repression term can stabilize these oscillations to a stable value. 

3.2.2. A few introductory examples 

3.2.2.1. A damped linear oscillator 

The simplest way to model oscillations with an ODE system is to consider one specie 
𝑥𝑥 who is produced at constant rate 𝛼𝛼 and gets degraded through another specie 𝑦𝑦, which is 
itself produced at a rate 𝑥𝑥, and degraded proportionally to its own value (that is, we have a 
negative feedback loop made of two arrows, as 𝑥𝑥 is used to produce 𝑦𝑦, which represses 𝑥𝑥 
production):  

�𝑥̇𝑥 =  𝛼𝛼 − 𝛽𝛽𝛽𝛽
𝑦̇𝑦 = 𝑥𝑥 − 𝑦𝑦         (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

 Simulating the system with an appropriate timescale for the different parameters yields 
damped oscillations (Introduction Figure 10). 

 

Introduction Figure 10: Simulation of a damped oscillator. Right: temporal trajectories of the two 
oscillators components x and y. Left: phase-space representation of the temporal trajectories on the left. 
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Now, 2D noiseless linear system can’t generate asymptotically stable sustained oscilla-
tions10[2], but biological systems are often very noisy. In practice, noise kicks the system 
away from its spiralling stable fixed point and prevents the oscillations from damping out. 
This kind of noisy oscillations was observed in the interacting system of p53 (a protein that 
prevents DNA damage) with mdm2 (which plays the role of negative feedback for p53)[54], 
as illustrated Introduction Figure 11 below:  

 

Introduction Figure 11: Temporal oscillations of the proteins p53 and mdm2. This system can be shown 
to be a kicked damped oscillator, as visible by the variable amplitude between cycles. Figure taken from 
the book An introduction to Systems Biology by Uri Alon[4]. 

Noise-induced oscillations are readily identifiable as the amplitude 𝐴𝐴 of the pulses follow a 

law of the type: 𝑃𝑃(𝐴𝐴)~𝐴𝐴𝑒𝑒
−𝐴𝐴2

𝐴𝐴0
2  [55], [56]. However, in many biological systems, Evolution has 

not favoured this type of oscillations as amplitude and frequency must be tightly controlled, 
and noise is often very dependent on the external conditions (e.g. temperature, pressure, 
etc.). 

3.2.2.2. A harmonic oscillator 

The simplest example of a system generating sustained oscillations is the harmonic 
oscillator. Although it originates from a real physical system (a mass hanging from a spring), 
it can be written generically as the following linear ordinary differential equation (ODE) 
model: 

�
𝑥̇𝑥 = 𝑦𝑦

𝑦̇𝑦 = −𝜔𝜔2𝑥𝑥         (𝑖𝑖𝑖𝑖) 

 
10 This is because stable limit-cycles require non-linearities. 
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Simulating this system yields regular oscillations, as illustrated in Introduction Figure 12 
below: 

 

Introduction Figure 12: Simulation of a harmonic oscillator. Left: Temporal oscillations observed for 
the two components of the oscillator. Right: Representation of the oscillator trajectory in the phase-space 
of the system. 

The solution of Eq. (𝑖𝑖𝑖𝑖) can easily be found to be 𝑥𝑥(𝑡𝑡) = 𝐴𝐴 cos(𝜔𝜔𝜔𝜔 + 𝜑𝜑), where 𝐴𝐴,𝜑𝜑 will 
depend on the initial condition. In practice, this type of oscillator is rarely encountered in 
biological systems. First, because biochemical reactions are themselves non-linear, and then 
because Eq. (𝑖𝑖𝑖𝑖) corresponds to a conservative system, in which both amplitude and phase 
depend on the noise and the initial condition (Introduction Figure 13, random kicks have 
been added to the simulation).  

 

Introduction Figure 13: Simulation of the same system as in Figure 11, using the same representations, 
with the exception that the system is now perturbed at time 𝑡𝑡 = 5 and time 𝑡𝑡 = 10, yielding persistent 
changes in phase and amplitude due to the energy conservative nature of the system.  

Finally, such an oscillator wouldn’t be temperature compensated. Therefore, it could not act 
as a clock. 
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3.2.2.3. Negative feedback oscillators 

System with feedback loops can harbour sustained, undamped oscillations (stable 
limit cycles in the above sense, cf. Section 3.1) which are also robust to noise. That is, the 
more components there are in the cycle, the more delay is added, and the easier it is to find 
a range for parameters yielding oscillations. Such a system is called a delay oscillator.  

In practice, negative feedback oscillators can also be modelled by lower dimensional systems 
of equations, in which the negative feedback act through an explicitely introduced delay, and 
the system takes then the form of a Delay Differential Equation (DDE). I will not further 
diuscuss DDE’s in this thesis. 

One of the most famous negative feedback oscillators probably originates from the work of 
Brian Goodwin[59], in which he theorized a cycle of three repressors, that is now known as 
the Goodwin-Griffith three-variable model. Alternative version of this model have notably 
been used to model the circadian clock[60]. In its simplest form, the corresponding system of 
equations is as follow: 

�
𝑥̇𝑥 = −𝛼𝛼1 +

𝐾𝐾𝑛𝑛

𝐾𝐾𝑛𝑛 + 𝑧𝑧𝑛𝑛 − 𝛾𝛾1𝑥𝑥

𝑦̇𝑦 = 𝛼𝛼2𝑥𝑥 − 𝛾𝛾2𝑦𝑦                      
𝑧̇𝑧 = 𝛼𝛼3𝑦𝑦 − 𝛾𝛾3𝑧𝑧                      

        (𝑥𝑥) 

This model can be understood as follow: a given gene codes for a mRNA 𝑥𝑥, which is translated 
into a protein 𝑦𝑦. This protein activates an inhibitor of 𝑥𝑥, called 𝑧𝑧. This repression is described 
by a nonlinear, hyperbolic function, which decreases with increasing inhibitor concentration 
and determines the transcription rate. The first-order degradation rates 𝛾𝛾𝑖𝑖 ensure that the 
variables remain positive, and the delay involved through the use of 𝑧𝑧 to repress 𝑥𝑥 favours 
the occurrence of self-sustained oscillations. 

Simulating the system with the proper set of parameters yields regular temporal oscillations, 
corresponding to a closed trajectory in the phase-space: a limit-cycle (Introduction Figure 
14). 
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Introduction Figure 14: Temporal (left) and phase-space (right) representation of the components 𝑥𝑥 
and 𝑦𝑦 taken from a simulation of the Goodwin-Griffith three-variable model. A limit-cycle is observed, as 
demonstrated by the presence of sustained oscillations in the temporal trajectories, and closed orbit in the 
phase-space. 

Now, the interesting property of this system is that, contrary to the harmonic oscillator 
presented above, the oscillations are relatively11 resilient to noise and initial condition, as 
shown Introduction Figure 15 below: 

 

Introduction Figure 15: Phase-space representation of the Goodwin-Griffith three-variable model sim-
ulated as in Figure 13. Two different initial conditions have been taken (blue and green), both leading to 
the same limit-cycle (black) after a few oscillations. 

Another interesting observation is that, depending on the value of the parameters, the limit-
cycle can disappear and collapse into a stable spiral (Introduction Figure 16). 

 
11 In most cases, the stable limit-cycle will be surrounded by a given attracting pool. Outside of this pool, 
trajectories will diverge or tend towards other fixed points. Therefore, the noise must not push trajectories 
outside of the attracting pool. 
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Introduction Figure 16: Temporal (left) and phase-space (right) representation of the components 𝑥𝑥 
and 𝑦𝑦 simulated as in Figure 13, but with a different set of parameters. No stable limit-cycle exists in the 
system anymore, as shown by the presence of damped oscillations in the temporal trajectories, and a stable 
spiral in the phase-space. 

This phenomenon is well known from dynamical systems as a Hopf bifurcation. It explains 
how, depending on the eigenvalues, the system can exhibit sustained or damped oscillations. 
This is developed in Section 3.3.2.   

3.2.3. Conclusion 

In practice, many structural designs can lead to sustained oscillations. For instance, 
adding positive feedback in addition to the negative one can also add delay to the system, 
increasing the robustness of the oscillatory behaviour (this is what is observed in relaxation 
oscillators[4]). Autoregulation can also be used in various ways to tune the frequency of the 
oscillations. Finally, nonlinearity itself can come in many forms: a Hill function in the Good-
win Model, but also in the famous repressilator developped by Elowitz and Leibler[61], quad-
ratic functions in the Brusselator (used in biochemistry to model autocatalytic reactions)[62], 
cubic function in the Van del Pol oscillator[63], etc.   

Unfortunately, biological systems comprising more than three or four interacting species are 
often intractable analytically because of the multitudes of factors that come into play to 
generate the observed behaviour. From a bottom-up approach, numerical simulations can be 
used to see which type of behaviour emerges from which structure. From a top-down ap-
proach, if these systems exhibit sustained oscillations, their dynamics can be approximated 
by a phase oscillator representing the progression along the corresponding limit-cycle. 
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3.3. Oscillators in dynamical systems theory 

I hereafter introduce cycling systems (cf. Section 3.1) from a dynamical system’s 
point of view. Dynamical system’s theory is a relatively recent branch12 of mathematics and 
physics that has its origins in Newtonian mechanics, but happens to describe very well the 
behaviour of oscillating systems. Eq. (𝑥𝑥𝑥𝑥) is the prototypical forms of a dynamical system, 
where the time-evolution of the set of points 𝒙𝒙 is governed by an ODE (here autonomous). 
In general, we’ll be interested in systems of the form: 

𝑑𝑑𝒙𝒙
𝑑𝑑𝑑𝑑

= 𝒇𝒇(𝒙𝒙),𝒙𝒙 ∈ ℝ𝑛𝑛        (𝑥𝑥𝑥𝑥) 

Note that, for simplicity, we don’t represent the set of parameters 𝝀𝝀 in this equation. They 
are implicitely contained in 𝒇𝒇. In addition, we only consider autonomous dynamical systems.  

3.3.1. Linear stability analysis 

Without simulations, the behaviour of a non-linear system is usually hard to predict. 
However, it can be well approximated around the fixed points of the system, that is, the 

points 𝒙𝒙∗ such that 𝑑𝑑𝒙𝒙
∗

𝑑𝑑𝑑𝑑
= 0. This approximation is obtained by linearizing the system in the 

neighbourhood of the fixed point, and then applying a method called stability analysis. Lin-
earizing the function from Eq. (𝑥𝑥𝑥𝑥) yields: 

𝒇𝒇(𝒙𝒙) ≈
𝒙𝒙=𝒙𝒙∗

𝒇𝒇(𝒙𝒙∗) + ∇𝒇𝒇|𝒙𝒙∗ ∙ (𝒙𝒙 − 𝒙𝒙∗)        (𝑥𝑥𝑥𝑥𝑥𝑥) 

In this equation, ∇𝒇𝒇|𝒙𝒙∗ is the Jacobian of 𝒇𝒇 evaluated at the fixed point 𝒙𝒙∗. Calling 𝑓𝑓𝑖𝑖 and 
𝑥𝑥𝑖𝑖 , 𝑖𝑖 ≤ 𝑛𝑛, the components of 𝒇𝒇 and 𝒙𝒙, we get:  

∇𝒇𝒇|𝒙𝒙∗ =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

⋯
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥𝑛𝑛

⋮ ⋱ ⋮
𝜕𝜕𝑓𝑓𝑛𝑛
𝜕𝜕𝑥𝑥1

⋯
𝜕𝜕𝑓𝑓𝑛𝑛
𝜕𝜕𝑥𝑥𝑛𝑛⎦

⎥
⎥
⎥
⎤

        (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) 

Now, in most cases13, this matrix can be diagonalized: 

∇𝒇𝒇|𝒙𝒙∗ = 𝑷𝑷−1𝑨𝑨𝑨𝑨        (𝑥𝑥𝑥𝑥𝑥𝑥) 

 
12 The birth of dynamical systems theory is usually attributed to Henry Poincaré, who laid its founda-
tions at the end of the XIXth century. 

13 This can happen if the algebraic and geometric multiplicities of at least one eigenvalue do not coincide 
(e.g. a 2-dimensional system with a 1-dimensional eigenspace). These cases can still be solved[2]. 
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Where 𝑷𝑷 is the transfer matrix, having the eigenvectors of ∇𝒇𝒇|𝒙𝒙∗ as columns: 

𝑷𝑷 = (𝒗𝒗1 ⋯ 𝒗𝒗𝑛𝑛)        (𝑥𝑥𝑥𝑥) 

And 𝑨𝑨 is the diagonal matrix containing the eigenvalues of ∇𝒇𝒇|𝒙𝒙∗: 

𝐀𝐀 = �
𝜆𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝜆𝑛𝑛

�         (𝑥𝑥𝑥𝑥𝑥𝑥) 

Now, by construction, for each eigenvalue, we have: 

𝐀𝐀𝒗𝒗𝑖𝑖 = 𝜆𝜆𝑖𝑖𝒗𝒗𝑖𝑖         (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) 

Since the eigenvectors are linearly independent, it can be shown that the general solution for 
𝒙𝒙 is simply14: 

𝒙𝒙(𝑡𝑡) =  �𝑐𝑐𝑖𝑖𝑒𝑒𝜆𝜆𝑖𝑖𝑡𝑡𝒗𝒗𝑖𝑖

𝑛𝑛

𝑖𝑖=1

        (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) 

It should be quite clear from this equation than if at least one eigenvalue is positive, the 
system is going to (locally) diverge. Conversely, if all eigenvalues are negative, the system is 
going to tend towards the fixed point 𝒙𝒙∗. In practice, we’re interested in oscillations, and 
oscillations can be shown to exist when eigenvalues are complex15. Indeed, let 𝜆𝜆 = 𝑎𝑎 + 𝑖𝑖𝑖𝑖. 
According to Euler’s formula: 

𝑒𝑒𝜆𝜆𝜆𝜆 = 𝑒𝑒(𝑎𝑎+𝑖𝑖𝑖𝑖)𝑡𝑡 = 𝑒𝑒𝑎𝑎𝑎𝑎[cos(𝜔𝜔𝜔𝜔) + 𝑖𝑖 sin(𝜔𝜔𝜔𝜔)]        (𝑥𝑥𝑥𝑥𝑥𝑥) 

Thus, the general solution will be a combination of harmonic functions and will be periodic 
itself. Now, in a linear system, oscillations can either grow in time (ℛ𝑒𝑒(𝜆𝜆) > 0, this is called 
unstable spiral), either decay in time (ℛ𝑒𝑒(𝜆𝜆) < 0, stable spiral), either stay constant 
(ℛ𝑒𝑒(𝜆𝜆) = 0, centres). However, none of these cases yields stable oscillations in noisy systems. 
In 2-dimensional systems, the whole variety of behaviours observed, including oscillating 
ones, can be summarized according to the trace and determinant of the system16, as shown 
in Introduction Figure 17. 

 
14 This can be verified easily by plugging the solution in Eq. (𝑥𝑥𝑥𝑥) 

15 Note that complex eigenvalues are always conjugate, so are eigenvectors. 

16 The relative value of trace and determinant is used instead of the eigenvalues themselves as it is faster 
to compute (no diagonalization is required) and, in two dimensions, it can exhaustively summarize the 
possible topologies. 
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Introduction Figure 17: Stability diagram classifying two-dimensional dynamical systems as stable or 
unstable according to their trace and determinant. Taken from Wikimedia Commons. 

3.3.2. Hopf bifurcation and Limit-cycle 

Self-sustained, stable oscillations can always be shown to originate from an attract-
ing limit-cycle. The general parametric conditions needed for a limit-cycle to emerge are well 
defined: this the theory of Hopf bifurcation17. There are several types of Hopf bifurcations 
(subcritical, supercritical, degenerate), but all of them explain the same phenomenon, that 
is, how a limit-cycle (stable or unstable) appears as the eigenvalues of a system increases and 
cross the imaginary axis, depending on the value of a control parameter.  

Let’s consider an elementary example, analyzing the following system in polar coordinates: 

�𝑟̇𝑟 = 𝑟𝑟(𝛼𝛼 − 𝑟𝑟2)
𝜃̇𝜃 = 𝜔𝜔               

        (𝑥𝑥𝑥𝑥) 

Clearly, if 𝛼𝛼 < 0, then 𝑟̇𝑟 < 0 and so this system is going to tend to a stable fixed point 
(spiralling, since 𝜃̇𝜃 ≠ 0). Now, if we progressively increase the value of 𝛼𝛼, it will become 

 
17 Limit-cycle can actually appear from another type of bifurcation called global bifurcation. This type of 
bifurcation is harder to detect as it involves large regions of the phase-space, but the overall concept is the 
same: a limit-cycle appear as a control parameter is varied[2]. Limit-cycle can also appear if an artificial 
resetting is forced onto the system, as in the case of SNIC oscillators[64]. 
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positive at some point, and it can easily be shown that the system is going to stabilize at 
𝑟𝑟 = √𝛼𝛼: a limit-cycle just appeared. 

Now, this system is a trivial case as it is parametrized in polar coordinates, and the oscillating 
behaviour is uncoupled from the radius. However, the general principle applies to any system: 
a limit-cycle will always appear as a control parameter passes a given threshold.  

In practice, it can be shown that any system going through a Hopf bifurcation can be ap-
proximated by the following equation around equilibrium: 

𝑧̇𝑧 = 𝑧𝑧�(𝜆𝜆 + 𝑖𝑖) + (𝛼𝛼 + 𝑖𝑖𝑖𝑖)|𝑧𝑧2|�        (𝑥𝑥𝑥𝑥𝑥𝑥) 

This is the canonical form of a Hopf bifurcation[65], in which 𝑧𝑧 is complex numbers, while 
𝜆𝜆,𝛼𝛼,𝛽𝛽 are real. This equation summarizes the two interesting behaviours of Hopf bifurcations, 
illustrated Introduction Figure 18 below. If 𝛼𝛼 < 0, then it can be shown that there exists a 
stable limit-cycle when 𝜆𝜆 > 0: this is a supercritical bifurcation. Conversely, if 𝛼𝛼 > 0, there 
is an unstable limit-cycle when 𝜆𝜆 < 0: this is a subcritical bifurcation. 

 
Introduction Figure 18: Dynamics of the Hopf bifurcation near 𝜆𝜆 = 0. Possible system trajectories in 
red, stable structures in dark blue and unstable structures in dashed light blue. (top) Supercritical Hopf 
bifurcation, in which the phase space dynamics goes from a stable spiral (a) to unstable spiral surrounded 
by a stable limit-cycle (b), depending on the value of 𝜆𝜆 (c). (bottom) Subcritical Hopf bifurcation, in 
which the phase space dynamics goes from a stable spiral surrounded by an unstable limit-cycle (a) to an 
unstable spiral (b), depending on the value of 𝜆𝜆 (c). Figure and caption adapted from Wikipedia[66]. 
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3.3.3. Poincaré map  

The Poincaré map is a handy tool to study oscillators properties and phase synchro-
nization. The principle is to study the evolution of a system in a given location in space, as 
if only a tiny fraction of it was visible. 

Consider a system with coordinates 𝑥𝑥 showing a limit-cycle in dimension 𝑛𝑛. Now let Σ be a 
transverse section of this system, in the form a hyperplane in 𝑛𝑛 − 1 dimensions. A Poincaré 
map is defined as a function 𝑃𝑃(𝑥𝑥) that maps Σ to itself, obtained by following 𝑥𝑥(𝑡𝑡) from one 
intersection with Σ to the next. That is, if 𝑥𝑥𝑖𝑖 denotes the ith intersection, the mapping is 
defined as 𝑥𝑥𝑖𝑖+1 = 𝑃𝑃(𝑥𝑥𝑖𝑖) (Introduction Figure 19). 

Now, in the presence of a stable limit-cycle, trajectories should be perfectly closed, so 
𝑃𝑃(𝑥𝑥𝑖𝑖+1) = 𝑃𝑃(𝑥𝑥𝑖𝑖),∀𝑖𝑖. This means that there must exist fixed point 𝑥𝑥∗ on Σ such that 𝑃𝑃(𝑥𝑥∗) =
𝑥𝑥∗, belonging to every trajectory. This proves the existence of a closed orbit for the dynamical 
system under study. 

 

Introduction Figure 19: Cartoon representation of the Poincaré mapping principle, in which a hyper-
section Σ (grey plane) is crossed by a cycling trajectory (black line). The Poincaré mapping is such that 
𝑥𝑥 = 𝑃𝑃(𝑥𝑥0). Taken from Brachtendorf et al., 2014[67]. 

Now, the exciting part is that, by studying the behaviour of 𝑃𝑃(𝑥𝑥) near the fixed point, one 
can find out the stability of the closed orbit. That is, depending on the sequence of elements 
generated by 𝑃𝑃 (convergent or not), one can decipher if there’s indeed a stable limit-cycle in 
the system. The difficulty of such an approach is that it is usually tricky, or even impossible, 
to find an analytical form of 𝑃𝑃. However, the poincaré mapping can still be studied numeri-
cally, e.g. to reveal how fast a system is diverging from an unstable fixed point in time. 

There exists a particular version of the Poincaré map called the Stroboscopic map, in which 
the behaviour of the system is recorded every 𝑇𝑇 units of time. That is, instead of looking at 
the system at given points in space, one takes an interest in given points in time. As before, 
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this is very useful to establish the presence of a stable limit-cycle: if the oscillator phase does 
not change after every mapping, that means that there exist sustained oscillations, with 
period 𝑇𝑇.  

3.3.4. Isochrons 

Determining the instantenous phase of a biological oscillator is a problem that fre-
quently arises in practice. Indeed, such systems are usually not evolving strictly on their 
limit-cycle, but rather around it, being regularly pushed away from the attractor by the noise 
(cf. Section 3.1). Isochrons (Introduction Figure 20) define the phase for all the points that 
eventually approach the limit-cycle. The principle is the following: in a noiseless system, 
consider two trajectories 𝑥𝑥1(𝑡𝑡) and 𝑥𝑥2(𝑡𝑡) having initial conditions 𝑎𝑎1 and 𝑎𝑎2 in the vicinity 
of the limit-cycle. Then 𝑎𝑎1 and 𝑎𝑎2 are considered to have the same phase if the two trajec-
tories 𝑥𝑥1(𝑡𝑡) and 𝑥𝑥2(𝑡𝑡) asymptotically approach each other, that is: 

∀𝜀𝜀,∃𝑡𝑡, 𝑡𝑡′ such that ∀𝑡𝑡 > 𝑡𝑡′, |𝑥𝑥1(𝑡𝑡) − 𝑥𝑥2(𝑡𝑡)| < 𝜀𝜀        (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) 

Defining phase this way allows accounting for transients, including noise-induced transients. 

 

Introduction Figure 20: Illustration of the isochrons (coloured lines) from the Fitzhugh-Nagumo 
model[68] in a wide (a) and closed-up view (b) around the fixed-point of the system. While some systems 
show remarkably simple isochrons, this is an example of a simple system that has remarkably complex 
isochrons. Figure and captions adapted from the book by Daniel Forger[3]. 

Isochrons are also very useful to better characterize PRCs, which, essentially, describe how 
the phase of a given oscillator reacts to a given perturbation (cf. Section 2.5). For instance, 
PRCs can be classified into type 0 and type 1 depending on whether the corresponding 
perturbations are strong or weak, respectively[69] (Introduction Figure 21). There’s a 
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topological difference between the two as strong perturbations tend to push the phase beyond 
the intersection of the isochrons, while weak perturbations leave the system in the close 
vicinity of the limit-cycle. Now, the phase is considered ill-defined at the intersection of the 
isochrons (usually, near the centre of the limit-cycle), such that a singularity is observed 
under the form a phase discontinuity in Type 0, but not in Type 1, PRCs. 

 

Introduction Figure 21: Representation of the two types of PRC, depending on the strength of the 
perturbation relative to the isochrons intersection, using a limit-cycle model of the circadian pacemaker. 
(A-B) A limit-cycle oscillator is represented as a black (dashed blue) circle before (after) perturbation 
(light pulse, blue arrows). Time moves clockwise around the circle, and four phase points are indicated by 
the radial lines that represent the isochrons. Singularity, an unstable equilibrium point, arises at the in-
tersection of the isochrons. In (A), the strength of the light pulse is weak, and cannot push the system 
across the singularity to the opposite phases of the cycle. Thus, the new phase is similar to the old phase 
and the resetting is Type 1. In (B), the strength of the light input is stronger and the system is pushed 
across the singularity, which results in very large phase shifts or Type 0 resetting. (C-D) Phase-shifting 
responses to 6-h light pulses in the circadian activity rhythms of C57BL/6J wild-type and Clock/+ mice, 
corresponding to Type 1 (C) and Type 0 (D) PRC. The x axis indicates the CT at the beginning of the 
light pulse. The y axis indicates the phase shift produced by the light pulse. Figure and caption adapted 
from Vitaterna et. Al, 2006[70]. 
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3.4. Coupling and synchronization 

3.4.1. Synchronization of two oscillators 

3.4.1.1. Deterministic case 

Consider two oscillators having phases 𝜙𝜙1 and 𝜙𝜙2, and natural frequencies 𝜔𝜔1 and 
𝜔𝜔2. We assume that these oscillators are mutually influencing each other and model their 
interactions through two coupling terms 𝐹𝐹1 and 𝐹𝐹2, each depending on the value of the phase 
of both oscillators. We also add a term 𝜖𝜖 representing the coupling strength. The final system 
of equation is: 

�

𝑑𝑑𝜙𝜙1
𝑑𝑑𝑑𝑑 = 𝜔𝜔1 + 𝜖𝜖𝐹𝐹1(𝜙𝜙1,𝜙𝜙2)

𝑑𝑑𝜙𝜙2
𝑑𝑑𝑑𝑑 = 𝜔𝜔2 + 𝜖𝜖𝐹𝐹2(𝜙𝜙1,𝜙𝜙2)

        (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) 

Note that 𝐹𝐹1 and 𝐹𝐹2 are 2𝜋𝜋 periodic in both their arguments. We can define the phase 
difference as: 

𝛥𝛥𝛥𝛥 = 𝜙𝜙1 − 𝜙𝜙2        (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) 

A condition for synchronization is 𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0. Less stringent conditions are also possible, leading 

to a periodic solution for 𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, but for now, we only introduce the simplest case. 

In the case of 1: 1 synchronization, it is clear that the two natural frequencies 𝜔𝜔1 and 𝜔𝜔2 
should be close to resonance, i.e. 𝜔𝜔1 ≃ 𝜔𝜔2. Expanding the functions 𝐹𝐹1 and 𝐹𝐹2 into Fourier 
Series, averaging all the fast oscillating terms (which have no impact on the synchronization) 
yield the one-dimensional resonant form of the coupling functions: 𝑞𝑞1 and 𝑞𝑞2. After some 
algebra, the temporal derivative of 𝛥𝛥𝛥𝛥 can be written: 

𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = (𝜔𝜔1 − 𝜔𝜔2) + 𝜖𝜖�𝑞𝑞1(𝛥𝛥𝛥𝛥) − 𝑞𝑞2(𝛥𝛥𝛥𝛥)�        (𝑥𝑥𝑥𝑥𝑥𝑥) 

Defining 𝑞𝑞(𝛥𝛥𝛥𝛥) as 𝑞𝑞1(𝛥𝛥𝛥𝛥) − 𝑞𝑞2(𝛥𝛥𝛥𝛥), it can be shown that the condition for synchronization 
between the two oscillators is: 

𝜖𝜖𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 < 𝜔𝜔1 − 𝜔𝜔2 < 𝜖𝜖𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚        (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) 

In this equation, 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 are resp. the minimum and maximum values of 𝑞𝑞. It follows 
that synchronization can occur as long as the natural frequencies of the two oscillators are 
not too different, and that the coupling is strong enough. 
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3.4.1.2. Noisy case 

In the case of noisy systems, a noise term ε (e.g. Gaussian noise, here independent 
of the phase) is added to Eq. (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥): 

�

𝑑𝑑𝜙𝜙1
𝑑𝑑𝑑𝑑 = 𝜔𝜔1 + 𝜖𝜖𝐹𝐹1(𝜙𝜙1,𝜙𝜙2) + 𝜀𝜀

𝑑𝑑𝜙𝜙2
𝑑𝑑𝑑𝑑 = 𝜔𝜔2 + 𝜖𝜖𝐹𝐹2(𝜙𝜙1,𝜙𝜙2) + 𝜀𝜀

        (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) 

 

Introduction Figure 22: (a) Fluctuation of the phase difference in a noisy oscillator. Without forcing, 
the behaviour of the ψ is diffusive: It performs a motion that reminds a random walk (blue curve); the 
distribution of the ψ mod 2π is shown in (b), it is practically uniform. External forcing with nonzero 
detuning suppresses the diffusion, the phase of the oscillator is nearly locked (red curve), but sometimes 
phase slips occur; the respective distribution (c) becomes rather narrow and unimodal. Stronger noise 
(black curve) causes more phase slips, so that there are only rather short epochs where ψ oscillates around 
a constant level; the distribution of the ψ mod 2π remains nevertheless unimodal (d). Figure and caption 
taken from Phase Synchronization in Regular and Chaotic Systems, Pikovsky et al., 2000[71]. 

Taking the same steps as before lead to a Langevin equation for the phase difference: 

𝑑𝑑𝛥𝛥𝜙𝜙
𝑑𝑑𝑑𝑑 = (𝜔𝜔1 − 𝜔𝜔2) + 𝜖𝜖𝜖𝜖(𝛥𝛥𝛥𝛥) + 𝜉𝜉        (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) 

Where ξ is again a noise term, and Q is a periodic function built as a combination of the 
Fourier series of the coupling functions 𝐹𝐹1 and 𝐹𝐹2. Now, a one-dimensional Langevin dynam-
ics can be described as a random-walk of a particle in a potential, whose equation is: 

𝑉𝑉(𝛥𝛥𝛥𝛥) = (𝜔𝜔1 −𝜔𝜔2)𝛥𝛥𝛥𝛥− 𝜖𝜖� 𝑄𝑄(𝑥𝑥)𝑑𝑑𝑑𝑑
𝛥𝛥𝜙𝜙

        (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) 
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Here, this means that if the coupling 𝑄𝑄 is strong enough to compensate the frequency differ-
ence (𝜔𝜔1 − 𝜔𝜔2), the potential 𝑉𝑉 will have substantial barriers, and the phase-difference will 
tend to remain constant. If not, the noise will kick the particle out of the potential, and 
phase-slips will be observed. In any case, the standard deviation of the density curve around 
the attractor is proportional to the noise. This phenomenon has been beautifully explained 
in reference [71], from which [70] below is taken.  

3.4.1.3. Other types of synchronization 

As explained in Section 2.4, different types of synchronization exist. For instance, 
one could perfectly imagine a system in which the time needed for one oscillator to go from 
0 to 2𝜋𝜋 is half the time required for the other to cross the same length (e.g. 𝜔𝜔2 = 0.5 𝜔𝜔1). 
To deal with this case, we can redefine Eq. (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) such that all possible modes of resonance, 
i.e. frequencies such that 𝜔𝜔1

𝜔𝜔2
≃ 𝑚𝑚

𝑛𝑛
, are considered: 

𝛥𝛥𝛥𝛥 = 𝑛𝑛𝜙𝜙1 −𝑚𝑚𝜙𝜙2        (𝑥𝑥𝑥𝑥𝑥𝑥) 

Redoing the computations above, this yields the condition: 

𝜖𝜖𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑛𝑛𝜔𝜔1 − 𝑚𝑚𝜔𝜔2 < 𝜖𝜖𝑞𝑞max         (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) 

In the case of noisy systems, the Langevin dynamics presented Eq. (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) still holds, with 
the exception that the potential has now several minima, corresponding to the different 
phase-lockings. Depending on the strength of the coupling, the noise can make the system 
jump from one phase-locking to another: this is called mode-hopping, and has notably been 
observed in the activity of the transcription factor nuclear factorκB(NFκB)[71].  

This range of behaviours for deterministic and noisy systems is summarized in Introduction 
Figure 23, in which the synchronization states for different values of 𝑛𝑛𝜔𝜔1 − 𝑚𝑚𝜔𝜔2 and 𝜖𝜖 are 
plotted. This representation is called the Arnold tongues.  
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Introduction Figure 23: Representation of the Arnold tongues for an arbitrary oscillating system of two 
coupled oscillators. The 1:1 and 1:2 tongues indicate entrained states, where the numbers refer to the 
frequency of the external oscillator and the internal oscillator. In this way, 1:2 means that every time the 
external oscillator makes one rotation, the internal oscillator makes two rotations. Likewise, 1:1 means 
that the oscillators are synchronized in frequency. For higher coupling strength, if the system is noisy, 
mode-hopping can occur, in which the system jumps between multistable cycles. Above this, chaos emerges 
as the system can’t adopt any stable phase-locking. Figure and caption taken from Heltberg and Jensen, 
2019 [72]. 

On this figure, synchronization occurs in the coloured zones. When there’s no coupling (𝜖𝜖 =
0), synchronization can occur only when the ratio of the natural period is a purely rational 
number. However, as the coupling strength increases, the zones of synchronization expand, 
enabling two oscillators with quite different periods to synchronize nevertheless. The different 
tongues correspond to different modes of synchronization (i.e. phase-lockings). Depending on 
the coupling function(s) of the system, all the integer numbers fractions do not lead to 
synchronization, and for those who do, the synchronization area may be minimal. If the 
system is noisy and the coupling is strong enough, mode-hopping can occur, as the oscillators 
will jump from one phase-locked mode to another. If the noise keeps increasing, chaos emerges 
as the behaviour becomes completely unpredictable. 
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3.4.2. Synchronization of three or more oscillators 

3.4.2.1. What synchronization means for large systems 

In the general case, synchronization is harder to characterize for systems of more 
than two oscillators. It can be shown that a lattice of oscillators with nearest-neighbour 
coupling will exhibit either clusters of synchronization, wave-like behaviours, or no-synchro-
nization, depending on the oscillators and coupling function(s) parametrization[73]. However, 
when oscillators are randomly interacting, things can quickly become intractable. Studies 
have been done on systems of three and four oscillators, yielding rather little guidance on 
the actual underlying theory[47].  

Things are, however, more accessible when the interactions are homogeneous among oscilla-
tors. For instance, consider the following all-to-all coupled interacting system of oscillators, 
which is the simplest possible version of the famous Kuramoto model[74]: 

𝜃̇𝜃𝑘𝑘 = 𝜔𝜔𝑘𝑘 +
𝐾𝐾
𝑁𝑁� sin(𝜃𝜃𝑗𝑗 −

𝑁𝑁

𝑗𝑗=1

𝜃𝜃𝑘𝑘), for 𝑘𝑘 = 1, … ,𝑁𝑁        (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) 

Here, 𝜃𝜃𝑗𝑗 represents the phase of oscillator 𝑗𝑗, and 𝐾𝐾 is the coupling strength. This system can 
easily be simulated, yielding various phase distribution at equilibrium depending on 𝐾𝐾, as 
shown in Introduction Figure 24 below. 

 

Introduction Figure 24: Representation on a polar plot of the evolution of the phase distribution of the 
Kuramoto model under all-to-all coupling with increasing coupling strength K (from left to right). 

There exist several methods to quantify the degree of synchrony of such a system, but as the 
coupling is phase-attracting18, the best is probably the synchronization index: 

 
18 It should be quite clear from the model that the coupling tends to make the oscillators’ phase converge 
towards the same value, as sin(𝑥𝑥) is an odd function. 
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𝑅𝑅 =  
1
𝑁𝑁
�� 𝑒𝑒𝑖𝑖𝜃𝜃𝑗𝑗

𝑗𝑗
�         (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) 

We here express the magnitude 𝑅𝑅 of the complex mean as an absolute value. If 𝑅𝑅 is equal to 
1, all oscillators have precisely the same phase. If 𝑅𝑅 is 0, then the phases of the oscillators are 
evenly spread on the cycle (Introduction Figure 24, left). Plotting the evolution of 𝑅𝑅 with 
the time, depending on the coupling strength, reveals an interesting pattern: when 𝐾𝐾 exceeds 
a given threshold (about 0.1), all the oscillators tend to synchronize almost perfectly (Intro-
duction Figure 25).  

 

Introduction Figure 25: Evolution of the synchronization index with time, for different coupling 
strengths. The system exhibits two drastically different behaviours, as either the synchronization is quasi-
perfect (top curves, in red), either non-existent (bottom curves, in blue). 

This result can be proven, using tools from statistical physics, as the oscillating system shows 
a high similarity to spin systems under a mean-field model[32]. 

As a final remark, note that if synchronization exists but is not phase-attracting (i.e. oscil-
lators tend to stick together, but with different phases), or if phases are not progressing 
linearly, phases should all be redefined using Eq. (𝑣𝑣) to have the same value and same 
progression along a cycle. In any case, the synchronization index should always be computed 
after many periods, once the system has reached equilibrium. If 𝑝𝑝: 𝑞𝑞 modes of synchronization 
are observed, synchronization becomes intrinsically harder to quantify, but adapted versions 
of the synchronization index have also been developed[75]. Similarly, if a system is made of 
oscillators tending to synchronize by cluster (but with cluster having different phases, i.e. 
clique-like systems), a synchronization index has also been developed for that matter[76]. 
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4. Fitting models to biological data 

4.1. Introduction to modelling and inference 

All models are wrong, but some are useful is a common saying in science, reflecting 
the idea that no model can truly capture the complexity of reality, but that sometimes, with 
some of them, one can still make relatively accurate predictions. There are many ways to 
construct a model, each being more adapted to a given type of problem. In practice, all these 
different methods are often intermingled, as a model is often judged more on its efficiency 
(the results it yields) than on the paradigm on which its structure was conceived. 

The most intuitive method, and probably also the most accurate, tries to model the behav-
iour of the smallest components of a system to understand how it can generate complex 
behaviours. Such an approach is called bottom-up. Although they have demonstrated their 
usefulness in physics, these approaches have not been successful in biology. The reason is 
that biological systems are made from so many diverse parts (large number of degrees of 
freedom), which interact in such sophisticated manners, that it is usually impossible to re-
trace every single interaction[77]. And even if one could characterize all the parts and their 
interactions, the corresponding model would probably be intractable computationally. Things 
are progressively changing as, on the one side, experiments enable the collection of more data 
(high-throughput experimental techniques are becoming the norm in the omics era), and on 
the other side, computers are getting more and more powerful (to this day, Moore’s law still 
applies). Nevertheless, overall, bottom-up methods are not well fitted for most biological 
problems. 

The converse approach is called top-down, as it tries to understand a system by looking at 
the global picture rather than at the individual components. The objective, in the end, it to 
gain insight into the elementary sub-systems in a reverse engineering fashion. This approach 
usually works very well in biology, as many phenomena can be grasped without consideration 
of what happens at the smallest scale. For instance, physiology can easily be considered 
independently from genetics, although the former emerges from the latter. 

In conjunction with both bottom-up and top-down approaches, one can also try to identify 
signatures of universal mathematical principles such as bifurcations or synchronization. For 
instance, noisy oscillators tend to have very similar behaviours in physical, chemical and 
biological systems; although the underlying structure of their interacting components is very 
different. But, since it has been proven that there exist only a few ways by which oscillations 
can emerge, canonical models have been created (e.g. limit-cycle phase oscillators) that cover 
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a wide range of biological (or non-biological) systems, with no considerations for the quali-
tative nature of the small components of these systems.  

Now, the previous approach works well given that one can accurately reproduce the behav-
iour of the system that is modelled. This is where the concept of inference arises. The prin-
ciple of inference is to fit statistical models to data coming from experiments. This ensures 
that the model is not disconnected from reality, and can, if properly done, provide interpret-
able insights on the mechanisms at play or make interesting new predictions. 

4.2. The problem of parsimony 

A model with an infinite number of parameters can fit perfectly any dataset, but 
one will not learn anything from this model as it is no different from the data it is fitted to. 
Worse than that, such a model could actually bias the acquired knowledge due to the noise 
in the data. Conversely, if we were to choose a very simple model, for example, one described 
by just one parameter, the model would be straightforward to understand, but essential 
aspects of the dynamics might be left out. Therefore, a compromise must be made between 
simplicity, interpretability and fitting quality: this is the problem of parsimony. This com-
promise is illustrated in Introduction Figure 26, where some noisy samples are fitted with a 
polynomial of varying degree 𝜃𝜃�. For a low degree, the model is biased, but is easy to interpret. 
For an intermediate degree, the model is still relatively easy to understand, and shows a 
good fit with the data. For a high degree, the fit is perfect, but the model shows a very high 
variance, making it much harder to interpret, and highly decreasing its capacity to generalize. 
In practice, on real biological data, it is often hard to decide which parametrization yields 
the best compromise between bias and variance. 

 

Introduction Figure 26: Illustration of the bias-variance trade-off, in which a set of datapoints is itera-
tively fitted by polynomials of increasing degree 𝜃𝜃�. The simpler fit (left) corresponds to a highly interpret-
able but highly biased model: this is called underfitting, as this kind of model is considered not precise 
enough. The intermediate fit (middle) corresponds to a less interpretable model showing more variance, 
but which is also less biased. A more complex fit (right) corresponds to a hardly interpretable model, 
showing a very high variance, but explaining almost entirely the given data: this is called overfitting, as 
this kind of model is unable to generalize to new samples. Figure created by adapting the code from the 
scikit-learn website[78]. 
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Probably the most popular method used to choose the appropriate level of complexity for a 
given model was formulated by Akaike[79]. Combining Bayesian inference with information 
theory, Akaike managed to quantify how much information a model captures from a given 
dataset. In addition, he explicitly computed how much additional information would be 
gained when adding more parameters to the model. Combining these two quantities, one can 
determine a parsimonious model, where the model captures a high degree of information[80].  

It is very often considered that a model with a large number of parameters is unfavourable. 
Von Neumann himself would even have formulated the problem this way: “With four pa-
rameters I can fit an elephant, and with five I can make him wiggle his trunk”. However, 
this is not always true, for several reasons. First, the actual data that is modelled can be 
intrinsically complex, therefore requiring a large number of parameters. Then, not every 
model ought to be understood. In particular, machine-learning models, especially neural net-
works, tend to use a vast number of parameters, but this doesn’t prevent them from making 
accurate predictions19. Finally, some parameters may explain transient dynamics that are 
ignored, or parts of the system that are simply not measured.  

4.3. White and black box approaches 

Along with the problem of bottom-up vs top-down and parsimony comes the issue 
of the type of parametric modelling approach one wants to take. Indeed, given some data, 
the modelling of the system under study can be done using either first principles or blind 
approaches. In the first case, known as white-box modelling, one must have an excellent 
knowledge of the physical (or other) mechanisms of the problem. If not, finding the proper 
model structure and complexity along with the appropriate parameters can be close to im-
possible. This type of modelling has, however, the advantage of being easily interpretable, 
and can be modified to consider the system’s perturbations. Moreover, their behaviour can 
often be studied analytically[81]. 

Often, however, one is not interested in the model itself, but rather in the prediction that 
can be made from it. Or, it can be that the system under study is so complex that white-
box approaches are simply inapplicable. In such cases, using black-box modelling can be 
extremely useful. In practice, this means that one gives up on building a realistic structure 
for the model, as the corresponding parameters do not have any physical meaning. This also 
means that the parameters must be identified from scratch, with greedy optimization tech-
niques. Analytical techniques are poorly applicable here. Machine learning techniques are 

 
19 However, it is true that neural networks suffer problems of overfitting, and it also true that they’re often 
used as “black boxes”. Cf. Section 4.3 below. 



Introduction 

 
55 

usually considered to be black-boxes, and, among them, neural networks are probably the 
most archetypical black-box models in existence. This is because this range of methods usu-
ally has several thousand parameters, whose values can significantly vary from one optimi-
zation to another, even on the same dataset. However, they tend to yield excellent results 
when properly trained, often much better than white-box approaches[82]. 

Finally, there exists one last range of modelling approaches known as grey-box or semi-
physical modelling [83]. In these models, the parts of the system that are well known and 
understood have a realistic physical structure, while those that are not are modelled with 
ad-hoc approaches having a lot of free parameters. One example is the Monod saturation 
model for microbial growth[84]. This model is very similar to the Michaelis-Menten equations, 
but is considered more empirical. It links substrate concentration and growth rate with a 
simple scalar function of one parameter. This is physically wrong, but is efficient in practice 
and can be considered legitimate as one doesn’t need to go into the details of chemical 
binding to model bacterial growth. 

This model classification into black, white and grey boxes is summarized Introduction Figure 
27 below. 

 

Introduction Figure 27: A self-contained summary of the different modelling approaches. Taken from 
Chambers, 2017[85]. 

4.4. Inference as a mathematical problem 

4.4.1. Likelihood 

The problem of inference is always framed as a problem of likelihood maximization. 
The likelihood of a model describes how well it can explain the observed data. More precisely, 
the likelihood refers to the probability, given a model and a corresponding set of parameters, 
of obtaining a particular set of data. As a probability, likelihood should always be normalized, 
and, as a concept, it should always go along with a specific model that could have generated 
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the observed data. Calling the likelihood 𝐿𝐿, the model (with the corresponding set of param-
eters) 𝑀𝑀 and the data 𝐷𝐷, this can be written mathematically as: 

𝐿𝐿(𝑀𝑀|𝐷𝐷) = 𝑝𝑝(𝐷𝐷|𝑀𝑀)       (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) 

In practice, the objective will be to find the set of parameters that yields the highest proba-
bility of the data, that is, the highest likelihood. The corresponding estimates for the param-
eters are then called maximum likelihood (ML) estimates. One problem of ML estimates is 
that they can be biased, especially when the sample size is small. Most of the time, this can 
be corrected a posteriori with regularization techniques (provided that the bias is known). 

4.4.2. Parsimony 

Another problem of ML estimates is that they don’t explicitly account for the num-
ber of parameters in the model. Yet, the parsimony of a model is a complex problem, as 
explained in Section 4.2. Furthermore, one often wants to compare several competing models 
to decipher which one is the best. To this end, the Akaike Information Criterion (AIC) can 
be useful. Given a model with 𝑘𝑘 parameters and likelihood 𝐿𝐿, the AIC can be computed as 
follow: 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑘𝑘, 𝐿𝐿)  =  2𝑘𝑘 − 2 ln(𝐿𝐿)      (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) 

Eq. (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) can be intuitively understood as a trade-off between the likelihood of the model 
and the number of parameters used to fit the data. In sum, AIC can help to identify the 
model that describes patterns in the data the best, with the fewest number of parameters. 
In practice, as such, AIC is only valid for relatively large sample sizes compared to the 
number of parameters (𝑛𝑛/𝑘𝑘 > 40, 𝑛𝑛 being the sample size). If needed, a small sample size 
correction can be employed[80]. 

Similarly, an alternative criterium can sometimes be used: the Bayesian Information Crite-
rium (BIC)[86]. The philosophy behind the BIC is very different as, when comparing several 
candidate models, it assumes that one of them is actually the true model, while the AIC 
simply tries to select the best model, knowing that it remains intrinsically wrong and de-
scribes an unknown, high dimensional reality[87]. 

4.4.3. Bayes formula 

Likelihood computation can be approached using either frequentist or Bayesian in-
ference. There’s a vast literature regarding which one performs better in which setting, and 
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why one should be used over the other[88]. As the three studies presented in this thesis 
mainly use Bayesianism20, I will only introduce the latter. 

In a Bayesian framework, there are four quantities of interest: 

• The prior probability of the parameters, 𝑝𝑝(𝑀𝑀), which is the probability one thinks 
that the parameters have, before fitting the data. This corresponds to prior knowledge 
about the probability that any given hypothesis is true, and this always remains a 
belief. 

• The posterior probability of the parameters, 𝑝𝑝(𝑀𝑀|𝐷𝐷), that is, the probability of the 
parameters given the data. 

• The probability of the data given the parameters, i.e. the likelihood 𝑝𝑝(𝐷𝐷|𝑀𝑀). 

• The probability of the data, 𝑝𝑝(𝐷𝐷), that is, the expected probability of the data inte-
grated over the prior distributions of the parameters. 

All these quantities are linked through Bayes' theorem: 

𝑝𝑝(𝑀𝑀|𝐷𝐷) =
𝑝𝑝(𝐷𝐷|𝑀𝑀)𝑝𝑝(𝑀𝑀)

𝑝𝑝(𝐷𝐷)         (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) 

In practice, the probability of the data 𝑝𝑝(𝐷𝐷) is considered as a normalization factor, and the 
objective is simply to find the set of parameters 𝑀𝑀 such that 𝑝𝑝(𝑀𝑀|𝐷𝐷) is maximum: 

𝑝𝑝(𝑀𝑀|𝐷𝐷) ∝  𝑝𝑝(𝐷𝐷|𝑀𝑀)𝑝𝑝(𝑀𝑀)       (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) 

The general procedure is illustrated in Introduction Figure 28: one chooses a prior distribu-
tion 𝑝𝑝(𝑀𝑀) for the model parameters, with an uncertainty inversely proportional to the con-
fidence attributed to it. This distribution is updated according to the corresponding proba-
bility of the data 𝑝𝑝(𝐷𝐷|𝑀𝑀)  (for the given model), yielding the final parameter distribution 
(after normalization): 𝑝𝑝(𝑀𝑀|𝐷𝐷). 

Note that the prior probability of the parameters must still be explicitly quantified. Often, 
one uses a non-informative prior (e.g. a uniform distribution) in order not to bias the poste-
rior with uncertain belief. 

 

 
20 Although some standard statistical testing, which belong to the frequentist approaches, are also per-
formed in these studies. 
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Introduction Figure 28: Cartoon illustration of Bayesian inference. The prior parameters distribution 
(in orange) is updated according to the data likelihood (in blue), to yield the posterior probability for the 
parameters (green). Figure taken from [89]. 

4.4.4. Optimization 

In many cases, 𝑝𝑝(𝑀𝑀|𝐷𝐷) can’t be computed analytically. And even when it can be, it 
is often at the cost of approximations, and use of simplified distributions (e.g. Gaussians) 
without much supporting evidence. For simple problems, it is, however, easy to compute 
𝑝𝑝(𝑀𝑀|𝐷𝐷) numerically: continuous distributions can be approximated by random samples, and 
all the possible sets of parameters are successively tested, until one can rebuild a reasonable 
estimate of the posterior.  

However, it is often the case that the computation of 𝑝𝑝(𝐷𝐷|𝑀𝑀) involves hardly tractable sums 
or integrals, and that explicitly computing the posterior is simply not feasible. In this case, 
many alternative methods exist to sample the posterior in an unbiased and efficient way, the 
most famous one probably being Markov Chain Monte-Carlo (MCMC). 

The principle of MCMC techniques is to use a chain of calculations to sample the posterior 
distribution (Introduction Figure 29). In practice, one builds a Markov chain that has the 
property of having the same equilibrium distribution as the posterior distribution of the 
model whose parameters are being optimized. Next, using a random simulation on this chain, 
one can directly sample from the posterior distribution of the model. When enough samples 
are collected, one can get a faithful reconstruction of the posterior, with far fewer computa-
tions needed than if an extensive search was done on the whole set of parameters[90]. 

However, often, one is not interested in the whole posterior distribution, but is simply looking 
for a realistic value for the parameters of the model. Such parameter estimates could be  
argmax

𝑀𝑀
𝑝𝑝(𝐷𝐷|𝑀𝑀), or possibly 𝔼𝔼[𝑝𝑝(𝑀𝑀|𝐷𝐷)]𝑀𝑀. In this case, an extremely vast selection of optimi-

zation methods has been developed, each of them more or less specific to a given type of 
problem.  
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Introduction Figure 29: Illustration of MCMC principle, in which a random walk on a Markov chain 
progressively approximates a given posterior distribution (from left to right, number of iterations increas-
ing). Taken from Delsuc & Douzery, 2004[91]. 

The difficulty is then to find which method is the most appropriate. Expectation-Maximiza-
tion is one of these methods, used in the project Low-dimensional dynamics of two coupled 
biological oscillators and introduced Chapter 1, Section 1.2.3.2. L-BFGS is another, used in 
the project RNA velocity-based inference of cell-cycle properties using single-cells and intro-
duced in Chapter 2, Section 1.2.2. Often, the model must be simplified as optimization is 
simply not tractable with conventional methods. 

5. Concrete application 
In this thesis, four concrete studies of noisy biological oscillators are presented, each 

of them building on the theory introduced above. We introduce them hereafter. 

5.1. Low-dimensional dynamics of two coupled oscilla-
tors 

This interdisciplinary physics project constitutes Chapter 1 of this thesis. It builds 
upon previous work from the Naef Lab aimed at understanding how two seemingly unrelated 
biological oscillators, the cell-cycle and the circadian clock, turn out to robustly synchronize 
under various environmental conditions. The cell-cycle and circadian clock system is very 
attractive for physicists and quantitative biologists since it’s both sufficiently simple, i.e. 
“lives” on a low dimensional manifold, yet complex enough to exhibit universal dynamics.  

In this project, the main objective is to understand the extent to which the cell-cycle influ-
ences the circadian clock, quantitatively. From there, one can answer many other questions 
about the system dynamics: what kind of synchronization is observed in the system? How 
robust is the synchronization? What are the biological implications of such dynamics? 

To answer the questions above, we decided to use data-driven model reconstruction and non-
linear dynamics analysis to investigate the low-dimensional behaviour of the coupled 
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oscillators, in both mouse and human cells. We further studied the dynamics in physiological 
conditions and analyzed the influence of the cell-cycle on the circadian oscillator in tissues 
in vivo. 

5.2. Space-time logic of liver gene expression at sublob-
ular scale 

This collaborative study with the Itzkovitz lab (Weizmann Institute, Israel) is pre-
sented in Chapter 2 of this thesis. It combines single-cell analysis of liver gene expression 
with temporal sampling and circadian rhythms to provide the first exhaustive analysis of 
mouse liver gene expression with both spatial and temporal resolution. Recently, the Itz-
kovitz lab combined single-cell RNA-sequencing of dissociated hepatocytes and single-mole-
cule RNA fluorescence in situ hybridization to reconstruct spatial mRNA expression profiles 
along the liver central-portal axis. This revealed an unexpected breadth of spatial heteroge-
neity in mRNA expression that coincides with an intricate organization of spatially non-
uniform liver functions. In parallel, the Naef lab showed how both the circadian clock and 
the feeding fasting cycles pervasively drive rhythms of gene expression in bulk, impacting 
key sectors of liver physiology.  

We here decided to fill a critical knowledge gap by analyzing both spatial and temporal 
dimensions simultaneously. The main objective is here to understand how liver gene expres-
sion changes depending on both circadian time and lobule position along the central-portal 
axis. From there, one can also try to understand how liver functions are impacted by this 
spatiotemporal regulation, and if that makes sense from a physiological perspective. 

To this end, we leveraged state-of-the-art single-cell, computational techniques and statistical 
analysis to report how spatial and temporal regulatory programs interact on the levels of 
individual genes and liver functions.  

5.3. RNA velocity-based inference of cell-cycle proper-
ties using single-cells 

In this collaborative study with La Manno’s lab (EPFL, Lausanne), presented Chap-
ter 3 of this thesis, we try to accurately predict the time evolution of single cells in the 
context of proliferative progress. More specifically, we take an interest in the cell-cycle, as it 
is one of the main drivers of cell-to-cell heterogeneity in gene expression in an otherwise 
homogeneous cell population. 
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The main objective is here to infer the cell-cycle progression state from a snapshot of the cell 
transcriptional state. From there, one can better understand how and why cell-cycle regula-
tion differs among different cell-types, and potentially apply the same method to other dif-
ferentiation processes. 

This problem is not completely new, but although various methods have been developed to 
characterize cell-cycle progression, they usually rely on a few known markers, and suffer 
technical batch effects. Single-cell RNA sequencing approaches are also limited as they only 
provide a static snapshot of the cell expression states.  

Here, we decided to take advantage of the high identifiability of the cell-cycle as a periodic 
1D manifold in expression space to develop a new, cell-consistent version, of RNA velocity, 
to directly estimate the cell-cycle speed in any given cell. We validate our methods on several 
datasets, including various cell-types.  

5.4. Phase inference 

This technical review, presented Annexe A of this thesis, was aborted, mainly due 
to the concomitant publishing of similar reviews, but still contains reasonably exhaustive 
material. In there, I try to make a thorough summary of the available methods used for 
phase inference in the context of temporal signal processing. Phase inference is a fundamental 
problem as it is present in widespread areas of science (e.g. geology, neurosciences, biochem-
istry), but is often approached with inappropriate methods.  

Four different classes of methods are presented, each having advantages and drawback, de-
pending on the data under study. This comprehends linear and piecewise linear interpolation, 
Hilbert transform, smoothing approaches (e.g. Kalman filter) and Hidden Markov Models. 

This whole project is available as an open-source GitHub repository. 
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Chapter 1: Low-dimensional Dynamics 
of Two Coupled Biological Oscillators 

This work was published in August 2019 in Nature Physics (vol. 15, no 10, p. 1086-
1094), by C. Droin, E. Paquet and F. Naef (first authors in bold). 

Contributions  
In all the tasks listed below, my work is always under the supervision of F. Naef. 

All the authors designed the study concept. I developed and implemented the whole computational frame-
work (EM-HMM), and used it on the data coming from [45], which was cleaned beforehand by E. Paquet. 
I studied the system dynamics and model predictions (Figure 2-3-4). E. Paquet performed the supplemen-
tary experiments of the papers and analyzed the results (Figure 5-6). All the authors participated in the 
result interpretation and to the writing of the article, although I was mainly responsible for the parts 
linked to Figure 1-4 and E. Paquet for the parts linked to Figure 5-6. The GitHub code provided is mine. 

 

Artwork figure 2: Artistic representation of the different phase-lockings (peripheral toruses) observed in 
the coupled system linking the cell-cycle and circadian clock dynamics. The coupling function is represented 
on the central torus. The background is a brightfield microscopy capture of mice fibroblasts. 
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1. Project introduction 

1.1. Motivation and aims 

In order to generate complex adaptive behaviour, many biological oscillators are 
coupled to external driving forces (e.g. light cues or food intake can reset the circadian 
clock[92]), or to other oscillators (e.g. circadian gating of the mitosis in plants, zebrafish, and 
cyanobacteria[93]). Although the mechanisms behind these couplings have been under inves-
tigation since the 1950s[25], the knowledge of the molecular interactions involved in the 
process remains still limited. Similarly, the quantitative aspects of the coupling are still not 
well understood for a large proportion of the biological systems.  

This lack of research could partly be explained by the absence of efficient analytical tools. 
Things have changed as, recently, the emergence of reporter systems, as well as with the 
progress of microscopy techniques and image analysis, enabled the measurement of temporal 
traces as proxies for tracking oscillating systems. For instance, this includes circadian oscil-
lation[94], or metabolic oscillations[95].  

However, unravelling how the systems are coupled from noisy temporal traces is still a hard 
problem. Indeed, this implies modelling the traces as oscillatory signals and finding how the 
underlying physical phases influence each other. Classical signal analysis methods, such as 
Fourier or Hilbert transforms are not well adapted since the microscopy traces are usually 
noisy, with variation in amplitude, signal background and phase delays. Cross-correlation 
techniques would only inform if the system is synchronized, but not how. Moreover, these 
methods are essentially top-down approaches, which don't tell us much about the fundamen-
tal parameter changes in the model underlying the system. Finding a simple way to analyze 
the behaviour of a system of one or several coupled oscillators is, therefore, a problem of 
great interest, with a broad scope of biological applications. 

In this project, we wanted to develop a computational method to study the behaviour of a 
system of two noisy biological oscillators. Finding the instantaneous phase of the oscillators, 
as well as unravelling how they interact were among the questions of prime importance which 
we wished to answer. In parallel, we wanted to get a better understanding of the correspond-
ing dynamical system. For instance: what are the corresponding Arnold tongues? Can we 
predict new phase-lockings with our model?  

In practice, we decided to work in the continuity of the project developed by J. Bieler[45]. 
As such, we used a statistical framework of inference based on a Hidden Markov Model 
(HMM), to study the problem of dynamical coupling between the circadian clock and the 
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cell cycle in mammalian cells. This system was very relevant as the phase combination for 
which the cell-cycle speeds up or slows down the circadian clock was still unknown, although 
the question had been approached a few times in the past[44], [45]. 

1.2.  Background 

1.2.1. Two interacting biochemical oscillators 

1.2.1.1. The mammalian circadian clock 

During Evolution, organisms learnt to adapt to the predictable daily variations of 
environmental conditions going with the Earth's rotation. Cyanobacteria were among the 
first to acquire a biological clock, later followed by plants, fungi and animals. The circadian 
clock gives an estimation of time and allows for coordination of physiology and metabolism 
in anticipation of recurring changes. It is involved in the functioning of several fundamental 
processes: digestion, sleep/wake behaviour, body temperature, cell-cycle control, metabolism 
etc.[8] 

The molecular study of the mammalian circadian clock started at the beginning of the 1970s 
with the discovery of the central pacemaker: the suprachiasmatic nuclei of the hypothalamus 
(SCN)[97], [98]. The SCN is made of several interlocked feedback loops relying on a few clock 
genes (Background Figure 1.1, left). The main loop involves the genes CLOCK and BMAL1, 
which form a dimer to activate the transcription of the period genes (Per1, Per2, Per3) and 
cryptochrome genes (Cry1, Cry2). In turn, PER:CRY proteins will repress their own tran-
scription via direct interaction with CLOCK:BMAL1. This first loop is then tuned by two 
secondary loops, in which the REV-ERB𝛼𝛼,𝛽𝛽 and ROR𝛼𝛼,𝛽𝛽, 𝛾𝛾 proteins operate respectively a 
negative and a positive feedback on the transcription of Bmal1. Post-translational processes 
are also involved in the regulation of this genetic network. An interesting property of the 
molecular clockwork is that it can act completely autonomously, and even in the absence of 
resetting cues, it still oscillates with an endogenous period close to a day. In the presence of 
environmental parameters (e.g. light, food), the synchronization to a 24h period becomes 
sharper. The SCN can then synchronize the entire organism via humoral cues[99]. This syn-
chronization affects the local oscillators that operate in the cells of most organs and tissues. 
Each individual cell can thus be regarded as possessing its own circadian oscillator[100], [101]. 

1.2.1.2. The eukaryotic cell-cycle 

For an organism to grow and maintain homeostasis, its cells must be capable of 
dividing. This is done through a process called the cell division cycle. The length of the cell-
cycle is extremely variable from cell type to cell type, and even from cell to cell. For many 
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actively dividing mammalian cells, it is of the order of 24h (e.g. fibroblasts), but for fast-
cycling cells, like the ones that line the intestine, this can be down to half this time[102]. For 
embryonic cells, some growth phases can be skipped, leading to cell-cycle with periods of the 
order of a few hours[103]. 

During the cell-cycle, two critical events happen: the synthesis phase (a.k.a. S phase), which 
is particularly important since the cell must take the time to replicate the several million 
bases constituting its DNA, and the division of the cell (a.k.a. M phase, for mitosis). Each 
of these phases is preceded by a growth phase: G1 before synthesis, and G2 before mitosis.  

During the G1 phase, the cell grows in size and synthesizes mRNA and proteins that are 
required for DNA synthesis. This phase is crucial in the cell cycle because this is when a cell 
decides to commit to division or to leave the cycle and go to a quiescent state. This decision 
is made according to the success of passing the G1/S checkpoint. During this checkpoint, 
the cell checks that it has grown enough, that its DNA is not damaged and that the envi-
ronment is rich enough in nutrients[103]. 

During the G2 phase, the cell will continue to grow. The G2 checkpoint control mechanism 
ensures that everything is ready to enter the mitosis: no UV radiation, oxidative stress, or 
DNA intercalating agents are present, and the DNA replication went as planned. If every-
thing is alright, the cell enters in M phase and divides. 

After division, the two daughter cells can either continue in the cycle (i.e. go to G1 again) 
or stay in a quiescent state: the G0 phase. In the second case, they may later resume cell 
division, depending on environmental parameters such as growth factors[104]. 

 

Background Figure 1.1: The cell-cycle and the mammalian circadian clock. Left: Simplified 
representation of the mammalian circadian clock, including the two main transcription-translation negative 
feedback loops, adapted from the Chaix & al. review[106]. Right: simplified representation of the eukary-
otic cell-cycle, with the associated cyclin-cdk regulating complexes, adapted from the article by Levi[107]. 
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At the molecular level, the progression of the cell cycle relies on the transient and sequential 
activation of cyclin-dependent kinases (abbreviated as CDKs), which form complexes with 
proteins called cyclins. Successively, the cell-cycle depends on cyclin D and CDK4–6 (G1 
phase), cyclin E and CDK2 (G1/S transition), Cyclin A  and CDK2 (S phase), Cyclin A  
and CDK1 (S/G2 transition), and cyclin B and CDK1 (M phase)[105] (see Background Fig-
ure 1.1, right, for a cartoon of the different phases of the cell-cycles, as well as with the 
cyclin-CDK complexes necessary to pass the different phases). 

The activity of these cyclin-CDK complexes precisely modulates each phase of the cell-cycle, 
especially around critical checkpoints. CDK inhibitors (CKI–P16, P27, P21) or phosphory-
lation by the kinase WEE1 can inhibit the activity of targeted cyclin-CDK complexes across 
the cycle. Conversely, phosphatases such as CDC25A,B,C can activate the enzymatic com-
plexes. Some of these activators/inhibitors are targeted by proteins involved in the repair of 
the DNA, thus blocking the cycle if the DNA is damaged or currently under repair. For 
instance, a double-strand DNA break activates the ataxia telangiectasia mutated (ATM) 
and checkpoint kinase 2 (CHK2) proteins, while a single-strand break or a replication error 
activate ataxia-telangiectasia related (ATR) and checkpoint kinase 1 (CHK1) proteins. These 
complexes cause a cell cycle arrest by indirect induction of CKI[96]. 

1.2.1.3. Coupling between the cell-cycle and the circadian clock 

One interesting property of both the cell cycle and the circadian clocks is that they 
display periodic phases of activation and repression[108]. Since they can both be considered 
as autonomous biological oscillators, and since they coexist in the same dividing cells, one 
may wonder if they interact and whether this can have dynamical consequences on the two 
systems. This problem, termed as coupling between the cell-cycle and the circadian clock, is 
still an open question. Interestingly, pioneer studies have proposed that interactions occur in 
both directions. Hereafter are presented some of the results concerning the mechanisms in 
play at both the mechanistic molecular level, as well as the quantitative level. 

1.2.1.3.1. Molecular mechanisms 

1.2.1.3.1.1. Influence of the circadian clock on the cell-cycle 

The influence of the circadian clock on the cell cycle is supposed to occur either by 
transcriptional control or direct protein-protein interaction. In the G1 cell-cycle phase, the 
cyclin-dependent kinase inhibitor (CKI) P21 is transcriptionally regulated by REV-ERB-𝛼𝛼,𝛽𝛽 
and ROR-𝛼𝛼,𝛽𝛽, 𝛾𝛾 [109]. At the G1/S transition, NONO regulates the p16-Ink4A checkpoint 
gene in a PER-dependent fashion[110]. The G2/M transition is controlled by the transcrip-
tion of the WEE1 kinase, whose transcription itself is controlled by the CLOCK:BMAL1 



Project introduction 

 
68 

dimer[111]. Looking at the post-translational level, CRY modulates the G1/S transition 
checkpoint through CHK1/ATR by interacting with TIM in a time-dependent manner. PER 
and TIM also regulate the G2/M transition via interactions with CHK2-ATM[112], [113]. 
Oncogenes, Cyclins and the tumour suppressor p53 are also known as clock-controlled cell-
cycle regulators. 

1.2.1.3.1.2. Influence of the cell-cycle on the circadian clock 

The influence of the cell-cycle on the circadian clock also seems to occur at several 
layers. The most obvious would be the transcriptional shutdown occurring around mito-
sis[114], which is supposed to alter the circadian feedback loops. It has also been shown that 
DNA damage can advance the circadian phase in a dose and time-dependent manner, possi-
bly through the involvement of PER and TIM proteins[115]. The tumour suppressors P53, 
as well with the promyelocytic leukaemia proteins could also influence the circadian function: 
Per2 transcription is repressed by P53, which in turn prevents the binding of the circadian 
complex CLOCK:BMAL1. After translation, PML physically interacts with PER2, and pro-
motes its nuclear localization. These molecular connections are supposed to alter global cir-
cadian behaviour [116].  

1.2.1.3.2. Quantitative characterization of the coupling 

In many unicellular eukaryotes and cyanobacteria, the circadian system controls the 
timing of cell division. This originates from the experiments made on the cyanobacterium 
Synechococcus Elongatus as well as on the flagellate alga Euglena Gracilis, in which the 
molecular clock imposes a “gating” on the cell division at specific circadian phases[117], [118].  

It could be tempting to extrapolate this gating phenomenon to pluricellular organisms, but 
the research made has only led to controversial evidence. While studies from the team of 
Nagoshi[100] (in vitro, with NIHT3T fibroblasts) and Matsuo[111](in vivo, in the mouse 
liver) reported a gating of the circadian clock on the time of mitosis, more recent studies did 
not report such a gating[44], [119]. Other studies suggest control of the cell-cycle by the 
clock, but with no direct evidence, on human mucosa and skin[120], mouse bone marrow[121], 
and many other cell lines (see review[93]).  

The past work of our team[45] (NIH3T3 specific), indicated that, conversely, the circadian 
clock was under the influence of the cell-cycle. This is in agreement with what the findings 
of the Rand lab[44], apart from the fact that they concluded that the influence was bidirec-
tional (although weak from the clock to the cell-cycle), while our team found a seemingly 
very low, likely non-existent, influence of the clock on the cell-cycle.  
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Therefore, there is still no clear answer to this question of mutual coupling. If it seems likely 
that the influence of the clock on the cell-cycle seems weak (at least in studies in vitro), the 
converse interaction remains unclear. Both our team and Feillet team investigated this prob-
lem, but both used imprecise or unreliable methods: in [44], Feillet & al. assumed that the 
circadian phase increased linearly between two peaks, therefore making impossible to infer a 
punctual coupling. In [45], our team, although not assuming a linear phase between the 
circadian peaks, only used the peaks times to infer the coupling functions (in the framework 
of a parametric model), leading to an incomplete inference.  

1.2.2. Data collection 

Many biological oscillators can be observed at the single-cell level. To know how 
they behave and interact, molecular tools have been developed to track their activity in real-
time, at both the population and the single-cell level. For instance, in the case of the circadian 
clock, fluorescent and/or luminescent reporters enable to follow the evolution of the core-
clock protein or mRNA concentrations[122]. Similarly, for the cell-cycle, morphological cri-
teria (e.g. mitosis, nucleus size) can bring information on the oscillator phase, but a two-
colour FUCCI cell-cycle sensor and its derivatives remain the most precise methods of phase 
tracking up-to-date[123]. Other analogous reporters exist for various types of oscillators: 
sleep-wake activity patterns (circadian clock), dissolved oxygen concentration (metabolic 
cycle in yeast), EEG (neural waves), etc. 

 

Background Figure 1.2: Example of pipeline used to track the cell-cycle oscillator with the two-colours 
FUCCI sensor. In addition to the schematic description of the FUCCI markers used for visualizing the 
cell-cycle progression, time-lapse images of the dividing cells are given, showing overlays of phase-contrast 
green and red fluorescence images. From these images, plots of the FUCCI fluorescence traces can be 
extracted, and the period of the green and red reporters can be computed. Adapted from the work of 
Sandler & al.[124].  

In most cases, fluorescent/luminescent reporters are used, since they enable to track the 
expression of any desired genes. Movies are then obtained from time-lapse microscopy. These 
movies are then segmented using image processing techniques, and the essential features (e.g. 



Project introduction 

 
70 

fluorescence concentration of a given nucleus) are extracted; in our case, this leads to the 
production of raw temporal traces. Note that the segmentation can be challenging since the 
images can be overexposed for some cells (saturating the detector) or underexposed (making 
the cells hard to distinguish from the background). Besides, there is also significant cell-to-
cell variability in the fluorescence activity.  

A representation of the procedure used to track the cell-cycle phase using the two-colour 
FUCCI sensor is given Background Figure 1.2. 

1.2.3. Inference 

1.2.3.1. Challenges 

Ideally, one would like to infer the oscillators behaviour directly from temporal 
traces. This is possible using an approach based on maximum likelihood, in which one starts 
from a simple and generic model, which is then parametrized in a way that explains best the 
data. To that end, three critical challenges must be faced: 

• Modelling the oscillatory experimental signals (e.g. Background Figure 1.2, right) 

• Estimating the parameters of our model. In the case of a system of coupled oscillators, 
this includes the coupling function(s). 

• Estimating the instantaneous phases from noisy experimental signals. 

The starting data consists of experimental signals (circadian reporters and cell-cycle report-
ers). To deal with the first challenge, one needs to build a model taking as input the system’s 
phases, and giving as output the desired periodic signal. This may be difficult as the experi-
mental signals are noisy, may have a variable background, variable peaks amplitude, and 
finally, the peak-to-peak intervals may be very inconstant from one trace to another, or even 
in the same trace. 

Given a theoretical model for the likelihood of the measured data, one wishes to find a way 
to estimate a set of parameters 𝜦𝜦 that maximizes the probability of the data D. The second 
challenge can thus be formulated as finding 𝜦𝜦∗ such that: 

𝜦𝜦∗ = argmax𝜦𝜦𝑝𝑝(D|𝜦𝜦) = argmax𝜦𝜦ℒ(𝜦𝜦|D)        (𝑖𝑖) 

In this equation, ℒ is the data likelihood. Depending on the number of parameters to opti-
mize, as well as the size of the data D, the optimization process may be hardly tractable 
with naive methods. 
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Finally, having the model and the parameters, one must estimate the underlying phase of 
the system from the signal. The data being very noisy, a Bayesian approach seems more 
adapted; the third challenge would, therefore, be to compute the probability distribution of 
the phase 𝜱𝜱 given the data D and the parameters 𝜦𝜦: 𝑝𝑝(𝜱𝜱|D,𝜦𝜦). 

To solve the challenge 1, we decided to choose a parsimonious solution: the phase progression 
is converted into periodic oscillations using a waveform function. Variations in amplitude, 
vertical shifts and noise are tuned using simple multiplicative or additive terms. 

To solve challenge 2, one needs to find the most appropriate optimization process for the 
system. Given that we have more than a thousand parameters due to the coupling para-
metrization, naive methods such as grid-search or gradient descents are hardly tractable. We 
decided to choose an Expectation-Maximization (EM) approach as this algorithm handles a 
large number of parameters and is guaranteed to converge. In addition, it can easily be 
extended to include constraints to regularize the obtained solution. The principle of the EM 
algorithm is developed in Section 1.2.3.2. 

To solve challenge 3, one needs to find a statistical method of inference outputting the 
probability distribution of the underlying phases given the experimental signals. We opted 
for a well-known algorithm in the field of dynamic Bayesian networks: the Hidden Markov 
Model (HMM). The principle of the HMM is developed in Section 1.2.3.3. 

1.2.3.2. The Expectation-Maximization algorithm 

The EM algorithm is a general method for finding the maximum-likelihood estimate 
of the parameters of a hidden or underlying distribution from a given data set. It was first 
presented in 1977 in the paper of Dempster & al.[125]. However, the explanations that follow 
are adapted from the work of Jeff Bilmes[126]. 

As explained in Section 1.2.3.1, the objective in this project is to find the set of parameters 
𝜦𝜦 which maximizes the probability of the data 𝐷𝐷 = {d1, d2, . . . , d𝑁𝑁}. Here, the d𝑖𝑖 must be 
interpreted as data points drawn from a distribution 𝑝𝑝(d|𝜦𝜦). The resulting likelihood for all 
samples is: 

ℒ(𝜦𝜦|D) = �𝑝𝑝
𝑁𝑁

𝑖𝑖=1

(d𝑖𝑖|𝜦𝜦)        (𝑖𝑖𝑖𝑖) 

The problem is that we can’t directly compute ℒ(𝜦𝜦|D) since the distribution 𝑝𝑝(d𝑖𝑖|𝜦𝜦) is 
unknown. Indeed, with the inference framework that we use, the probability of observing the 
𝑖𝑖𝑡𝑡ℎ experimental datapoint, given a set of parameters 𝜦𝜦, actually depends on the distribution 
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of hidden phases, which itself depends on the set of parameters we choose. The problem 
must, therefore, be stated differently. 

The solution to this problem is to introduce a latent variable 𝜱𝜱 (in our case, representing 
the hidden phases), such that the maximum likelihood estimate of the unknown parameters 
is determined by the marginal likelihood of the observed data: 

ℒ(𝜦𝜦|D) = � 𝑝𝑝(𝐷𝐷,𝜱𝜱|𝜦𝜦)𝑑𝑑𝜱𝜱
𝜱𝜱∈𝚼𝚼

        (𝑖𝑖𝑖𝑖𝑖𝑖) 

In this equation, 𝜰𝜰 is the domain of the phase values. The quantity ℒ(𝜦𝜦|D) is often intrac-
table (in our case, since 𝜱𝜱 is a sequence, the number of values it can take grows exponentially 
with the sequence length, making the exact calculation of the sum impossible). The EM 
enables to find the maximum likelihood estimate of the marginal likelihood by iteratively 
applying two steps. 

The first step is to compute the expectation of this likelihood with respect to the hidden 
phases 𝜱𝜱, computed with the current set of parameters. The obtained expression, called 𝑄𝑄, 
depends on a new set of parameters: 

𝑄𝑄(𝜦𝜦,𝜦𝜦′) = 𝐸𝐸𝜰𝜰�log�𝑝𝑝(D,𝜱𝜱|𝜦𝜦)��D,𝜦𝜦′�        (𝑖𝑖𝑖𝑖) 

Since D,𝚲𝚲′ are here given, this expression can be developed: 

𝑄𝑄(𝚲𝚲,𝚲𝚲′) = � log
𝜱𝜱∈𝚼𝚼

�𝑝𝑝(D,𝜱𝜱|𝜦𝜦)�𝑝𝑝(𝜱𝜱|D,𝜦𝜦′)𝑑𝑑𝚽𝚽        (𝑣𝑣) 

Note that in this equation, 𝑝𝑝(𝜱𝜱|D,𝜦𝜦′) will be computed using a HMM (it’s the posterior 
decoding). Evaluating the function 𝑄𝑄 is the first step of the EM algorithm, a.k.a. the expec-
tation step. The second step is to maximize this expectation according to a new set of pa-
rameters: 

𝜦𝜦″ = argmax𝜦𝜦𝑄𝑄(𝜦𝜦,𝜦𝜦′)        (𝑣𝑣𝑣𝑣) 

It has been shown that iteratively alternating between the expectation and maximization 
steps is guaranteed to increase the log-likelihood of the data, with a monotonous conver-
gence[127]. Note that the algorithm can get stuck in local maxima and that it must, therefore, 
be run several times with different seeds. 

We can sum up the inference in the following way: 

1. Assume a set of parameters 𝜦𝜦′ (for instance, the period of the oscillator, noise, etc.). 
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2. Run the HMM on the experimental points D, obtained from time-lapse imaging, to 
yield a given distribution of hidden phases 𝑝𝑝(𝜱𝜱|D,𝜦𝜦). 

3. According to this distribution of hidden phases, compute a better value of the pa-
rameters 𝜦𝜦. 

4. Repeat until convergence of the likelihood of the data. 

As a final point on the EM algorithm, it is interesting to mention the fact that it can easily 
be extended to consider penalties. For instance, if we know that some parameters cannot 
take very high values, or if we need to keep some part of the parameter space smooth, we 
can penalize the likelihood with a function 𝐽𝐽(𝜦𝜦), according to new parameter 𝜆𝜆: 

ℒ(𝜦𝜦|D) − 𝜆𝜆𝜆𝜆(𝜦𝜦)        (𝑣𝑣𝑣𝑣𝑣𝑣) 

In this case, it can readily be shown that one can run the same procedure and maximize the 
following expression: 

𝑄𝑄(𝜦𝜦,𝜦𝜦′) − 𝜆𝜆𝜆𝜆(𝜦𝜦)        (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

However, taking the derivative of 𝐽𝐽 with respect to 𝜦𝜦 can often lead to complex updates. But 
it has been proved that a one-step late update (that is, replace 𝐽𝐽(𝜦𝜦) by 𝐽𝐽(𝜦𝜦′)) also con-
verges[128]. 

1.2.3.3. Hidden Markov Model 

The model representing the phase dynamics that we chose to study consists of a 
system of stochastic differential equations with variables evolving in a closed domain. This 
implies that the data likelihood computation can be expressed in the formalism of a Hidden 
Markov Model. 

As an intuitive approach, a HMM is just like a classic Markov chain, except that each state 
of the chain can emit one or several observations whenever occupied. The observer only has 
access to the sequence of observations21, and usually wishes to uncover which state produced 
which observation, and when. In our case, the hidden states correspond to the different 
possible values of the oscillator phase, and the observations are the temporal traces (e.g. 
fluorescence traces of a circadian reporter). 

A formal definition of a HMM is given in the book of Cappé & al.[129]: “A HMM is a 
bivariate discrete-time process {𝑋𝑋𝑡𝑡 ,𝑂𝑂𝑡𝑡}𝑡𝑡≥1, where {𝑋𝑋𝑡𝑡}𝑡𝑡≥1 is a Markov chain and, {𝑂𝑂𝑡𝑡}𝑡𝑡≥1 is a 

 
21 That’s why the states of the Markov chain are called “hidden states” 
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sequence of independent random variables conditional on {𝑋𝑋𝑡𝑡}𝑡𝑡≥1 and such that the condi-
tional distribution of 𝑂𝑂𝑡𝑡 only depends on 𝑋𝑋𝑡𝑡.” 

As a reminder, a first-order Markov chain is a stochastic process for which the Markov 
property to the first order is verified, namely: 

𝑝𝑝(𝑋𝑋𝑡𝑡|𝑋𝑋0, . . . ,𝑋𝑋𝑡𝑡−2,𝑋𝑋𝑡𝑡−1) = 𝑝𝑝(𝑋𝑋𝑡𝑡|𝑋𝑋𝑡𝑡−1),∀𝑡𝑡 ≥ 1       (𝑖𝑖𝑖𝑖) 

Therefore, the characterization of a HMM involves the specification of a transition and an 
emission probability distribution: 𝑝𝑝𝑡𝑡𝑡𝑡(𝑋𝑋𝑡𝑡|𝑋𝑋𝑡𝑡−1) and 𝑝𝑝𝑒𝑒(𝑂𝑂𝑡𝑡|𝑋𝑋𝑡𝑡). A schematic representation of 
how these probabilities rule the state transitions is given in Background Figure 1.3. 

 

Background Figure 1.3: Schematic representation of the HMM for the transition between the states Xt-

1, Xt, Xt+1 and the corresponding emissions. 

Moreover, since the Markov chain is a time-dependent process, we need an initial probability 
distribution 𝝅𝝅 = 𝑝𝑝(𝑋𝑋1). Finally, since we’re dealing with discrete states, we need to specify 
the state spaces for the hidden states and for the observations: 𝒳𝒳 = {𝑥𝑥1, . . . , 𝑥𝑥𝑁𝑁} and 𝒪𝒪 =
{𝑜𝑜1, . . . , 𝑜𝑜𝑀𝑀} respectively (note that, to keep things simple, we here assume that the observa-
tions are one-dimensional). Using these discrete spaces, we can store the state transition and 
emission probabilities in resp. the matrices A and E, such that A𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑡𝑡𝑡𝑡(𝑋𝑋𝑡𝑡+1 = 𝑥𝑥𝑗𝑗|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑖𝑖) 
and E𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑒𝑒(𝑂𝑂𝑡𝑡 = 𝑜𝑜𝑗𝑗|𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑖𝑖). A HMM can, therefore, be summarized as a stochastic quin-
tuplet model 𝛀𝛀 = {𝝅𝝅,𝐀𝐀,𝐄𝐄,𝒳𝒳,𝒪𝒪}. 

HMMs are mainly used to solve three problems[130]: 

1. Given a model 𝛀𝛀 and a sequence of observations O = {𝑂𝑂1, . . .𝑂𝑂𝑇𝑇}, find 𝑝𝑝(O|𝛀𝛀). In 
other words, determine the likelihood of the observations given the model. This can 
be done using the forward algorithm. 

2. Given a model 𝛀𝛀 and a sequence of observations O, find an optimal states sequence 
for the underlying Markov process. This can be done with the Viterbi algorithm. 

3. Given an observation sequence O and the spaces 𝒳𝒳 and 𝒪𝒪, find A,E,𝝅𝝅 such that the 
likelihood of O is maximum. This can be viewed as training a model to best fit the 
observed data. This problem can be solved with the Baum-Welch algorithm. 
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Our research project involves the resolution of variants of these three problems: the first one 
is the parameter optimization, which is close to problem 3 above. However, in our case, A 
and E are generated using parameterized equations, meaning that the training must be done 
using a more abstract class of algorithms than the Baum-Welch algorithm: the EM algo-
rithms (cf. Section 1.2.3.2). In addition, this training involves the computation of a likelihood 
function (cf. problem 1); this can be done using the forward algorithm. The last problem is 
a variant of the problem 2 above: we want to find the entire distribution of probabilities of 
the hidden states (not just the most likely sequence), in order to compute a coupling function 
using a completely Bayesian framework. Therefore, we don’t use the Viterbi algorithm, but 
a more powerful (and greedier) algorithm: the forward-backward algorithm.  
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2. Published article 
The article hereafter has been as little modified as possible. According to EPFL 

recommendations, the reference numbers are in the continuity of the thesis. Equation and 
Figure numbers are the same as in the published format (although the Chapter number is 
now indicated in the Figure captions).   

2.1. Abstract 

The circadian clock and the cell cycle are two biological oscillatory processes that 
coexist within individual cells. These two oscillators were found to interact, which can lead 
to their synchronization. Here, we develop a method to infer their coupling and non-linear 
dynamics from thousands of mouse and human single-cell microscopy traces. This coupling 
predicts multiple phase-locked states showing different degrees of robustness against molec-
ular fluctuations inherent to cellular scale biological oscillators. Moreover, the phase-locked 
states were temperature-independent and evolutionarily conserved from mouse to human, 
hinting at a common underlying dynamical mechanism. Finally, we detected a signature of 
the coupled dynamics in a physiological context, where tissues with different proliferation 
states exhibited shifted circadian clock phases. 

2.2. Introduction 

The circadian clock and the cell cycle are two periodic processes that cohabit in 
many types of living cells.  In single mammalian cells, circadian clocks consist of autonomous 
feedback loop oscillators ticking with an average period of about 24h[100], and controlling 
many downstream cellular processes[131]. In conditions of high proliferation such as those 
found in cultured cells or certain tissues, the cell-cycle progresses essentially continuously 
and can thus be abstracted as an oscillator with an average period matching the cell doubling 
time. Both processes fluctuate due to intra-cell molecular noise, as well as external fluctua-
tions. While the precision of the circadian period is typically about 15% in fibroblast 
cells[100], the cell cycle can be more variable depending on the conditions and cell lines[132], 
[133]. Interestingly, previous work showed that the two cycles can mutually interact[100], 
which may then lead, as theory predicts, to synchronized dynamics[44], [45] and important 
physiological consequences such as cell-cycle synchrony during liver regeneration[111]. In 
tissue-culture cells, which are amenable to systematic microscopy analysis, it was found that 
the phase dynamics of two oscillators shows phase-locking[44], [45], defined by a rational 
rotation number 𝑝𝑝: 𝑞𝑞 such that 𝑝𝑝 cycles of one oscillator are completed while the other com-
pletes 𝑞𝑞. 
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Concerning the nature of those interactions, the influence of the circadian clock on cell-cycle 
progression and division timing has been shown in several systems[110], [111], [134]–[137]. In 
contrast, we showed in mouse fibroblasts that the cell cycle strongly influences the circadian 
oscillator[45], which was also investigated theoretically and linked with DNA replication in 
bacteria[138]. In addition, human cells can switch between a state of high cell proliferation 
with a damped circadian oscillator, to a state of low proliferation but robust circadian 
rhythms, depending on molecular interactions and activities of cell cycle and clock regula-
tors[139]. 

Here, we exploit the fact that the two coupled cycles evolve on a low dimensional and com-
pact manifold (the flat torus) to fully characterize their dynamics. In particular, starting 
from a generic stochastic model for the interacting phases combined with fluorescence mi-
croscopy recordings from thousands of individual cells, we obtained a data-driven reconstruc-
tion of the coupling function describing how the cell cycle influences the circadian oscillator. 
This coupling phase-locks the two oscillators in a temperature-independent manner, and only 
few of the deterministically predicted phase-locked states were stable against inherent fluc-
tuations. Moreover, we established that the coupling between the two oscillators is conserved 
from mouse to human, and can override systemic synchronization signals such as temperature 
cycles. Finally, we showed in a physiological context how this coupling explains why mam-
malian tissues with different cell proliferation rates have shifted circadian phases. 

2.3. Results 

2.3.1. Modeling the dynamics of two coupled biological 
oscillators  

To study the phase dynamics of the circadian and cell cycle oscillators, we recon-
structed a stochastic dynamic model of the two coupled oscillators from single-cell time-lapse 
microscopy traces of a fluorescent Rev-erbα-YFP circadian reporter[45], [100]. Our approach 
consists in explicitly modeling the measured fluorescent signals, using a set of stochastic 
ordinary differential equations (SODEs) whose parameters are estimated by maximizing the 
probability of observing the data over the entire set of cell traces (Methods). We here present 
the key components of the model (detailed in Supplementary Information). 

2.3.1.1. Phase model  

First, we represent the phase dynamics of the circadian oscillator (𝜃𝜃 = 0 corresponds 
to peaks of fluorescence) and cell cycle (𝜙𝜙 = 0 is the cytokinesis) on a [0,2𝜋𝜋) × [0,2𝜋𝜋) torus. 
Since we showed previously that the influence of the clock on the cell cycle was negligible in 
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NIH3T3 cells[45], we here model only how the cell-cycle progression influences the instanta-
neous circadian phase velocity 𝜔𝜔𝜃𝜃 using a general coupling function 𝐹𝐹(𝜃𝜃,𝜙𝜙) (Figure 1.1a). 
To account for circadian phase fluctuations and variability in circadian period length known 
to be present in single cells[100], [140], we added a phase diffusion term 𝜎𝜎𝜃𝜃𝑑𝑑𝑊𝑊𝑡𝑡. For the cell-
cycle phase, we assumed a piecewise linear and deterministic phase progression in between 
two successive divisions. The SODEs for the phases read: 

⎩
⎪
⎨

⎪
⎧𝑑𝑑𝑑𝑑 =

2𝜋𝜋
𝑇𝑇𝜃𝜃
𝑑𝑑𝑑𝑑 + 𝐹𝐹(𝜃𝜃,𝜙𝜙)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝜃𝜃𝑑𝑑𝑊𝑊𝑡𝑡

𝑑𝑑𝑑𝑑 =
2𝜋𝜋
𝑇𝑇𝜙𝜙𝑖𝑖

𝑑𝑑𝑑𝑑                                          
(1) 

Here, 𝑇𝑇𝜃𝜃 represents the intrinsic circadian period, while the term 𝑇𝑇𝜙𝜙𝑖𝑖  represents the ith cell-

cycle interval between two successive divisions. 

2.3.1.2. Model of the signal  

We linked the circadian phase with the measured time traces through a 2𝜋𝜋-periodic 
function 𝑤𝑤(𝜃𝜃). In addition, as suggested by typical data traces (Supplementary Figure 1.1a), 
we considered amplitude (𝐴𝐴𝑡𝑡) and baseline (𝐵𝐵𝑡𝑡) fluctuations, which for simplicity we modeled 
as independent from 𝜃𝜃𝑡𝑡, an assumption that was supported a posteriori (Supplementary 
Information). The full model for the observed signal 𝑆𝑆𝑡𝑡 thus reads: 

𝑆𝑆𝑡𝑡 = 𝑒𝑒𝐴𝐴𝑡𝑡𝑤𝑤(𝜃𝜃𝑡𝑡) + 𝐵𝐵𝑡𝑡 + 𝜉𝜉 (2) 

where 𝜉𝜉 is a normally distributed random variable (measurement noise) and 𝐴𝐴𝑡𝑡, 𝐵𝐵𝑡𝑡 are 
Ornstein-Uhlenbeck processes varying more slowly than the phase distortion caused by 
𝐹𝐹(𝜃𝜃,𝜙𝜙), i.e., on timescales on the order of the circadian period (Supplementary Information). 

2.3.1.3. Inference of phases & coupling function  

From this stochastic model (Equations 1&2, Figure 1.1b), we built a Hidden Markov 
Model (HMM) to calculate posterior probabilities of the oscillator phases at each measured 
time point, using the forward-backward algorithm[141]. To estimate 𝐹𝐹(𝜃𝜃,𝜙𝜙), we used a max-
imum-likelihood approach that combines goodness of fit with sparseness and smoothness 
constraints, which we implemented with an Expectation-Maximization (EM) algorithm 
(Methods, Supplementary Information). 
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Figure 1.1: Reconstructing the phase dynamics and coupling of two biological oscillators. (a) 
In mouse fibroblasts, the cell cycle (left) can influence the circadian oscillator (right) according to a cou-
pling function 𝐹𝐹(𝜃𝜃,𝜙𝜙), where 𝜙𝜙 denotes the cell cycle and 𝜃𝜃 the circadian oscillator phases. (b) Stochastic 
model for the signal 𝑆𝑆𝑡𝑡 using diffusion-drift SODEs for the circadian phase 𝜃𝜃𝑡𝑡, amplitude 𝐴𝐴𝑡𝑡 and background 
𝐵𝐵𝑡𝑡 fluctuations, as well as a function 𝑤𝑤(𝜃𝜃) linking the phase 𝜃𝜃𝑡𝑡 to the measured observations, and 𝐹𝐹(𝜃𝜃,𝜙𝜙) 
(c) Fluorescence microscopy traces (Rev-erbα-YFP circadian reporter) are recorded for non-dividing and 
dividing cells (top left and top right boxes). Coupling-independent parameters (*) are estimated from non-
dividing cells while dividing cells are necessary to infer 𝐹𝐹(𝜃𝜃,𝜙𝜙)(**). The optimization problem is solved by 
converting the model to a HMM in which 𝜃𝜃𝑡𝑡, 𝐴𝐴𝑡𝑡 and 𝐵𝐵𝑡𝑡 are latent variables. The HMM is used on traces 
to compute posterior probabilities of circadian phases (bottom right box), while the cell-cycle phase is 
retrieved using linear interpolation between successive divisions (top right box, vertical orange lines). An 
iterative EM algorithm then yields the converged 𝐹𝐹(𝜃𝜃,𝜙𝜙) (bottom left box). 

The successive steps of our approach are illustrated in Figure 1.1c. Dividing cells indicated 
that, typically, the circadian phase progression shows variations in phase velocity (Supple-
mentary Figure 1.1a). To validate that these variations can identify 𝐹𝐹(𝜃𝜃,𝜙𝜙), we generated 
noisy traces in silico with pre-defined 𝐹𝐹(𝜃𝜃,𝜙𝜙) and reconstructed the coupling function, show-
ing excellent qualitative agreement (Supplementary Figure 1.1b-c).  
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2.3.2. Influence of the cell cycle on the circadian phase 

In mouse embryonic fibroblasts (NIH3T3), we showed that due to the coupling, 
circadian periods decrease with temperature in dividing cells, but not in quiescent cells[45]. 
To further understand how temperature influences the interaction between the two oscilla-
tors, we re-analyzed NIH3T3 traces (24-72h long) obtained at 34°C, 37°C, and 40°C[45]. 
From those, we found that both the inferred coupling functions and phase densities at the 
three temperatures were very similar, with almost identical 1:1 phase-locked orbits (Supple-
mentary Figure 1.2a-c). We therefore modeled the coupling as temperature-independent and 
re-constructed a definitive 𝐹𝐹(𝜃𝜃,𝜙𝜙) from traces at all temperatures (Figure 1.2a, Supplemen-
tary Figure 1.2d). This function shows a diffuse structure mainly composed of two juxtaposed 
diagonal stripes: one for phase acceleration (red), and one, less structured, for deceleration 
(blue). The slopes of these stripes are about one, which indicates that an approximate mini-
mal model of the coupling would be a function 𝐹𝐹(𝜃𝜃,𝜙𝜙) = 𝑓𝑓(𝜃𝜃 − 𝜙𝜙). However, the phase 
velocity varies along the stripes and attractor (see below), which justifies using a 2D param-
eterization of the coupling function. The phase density for cells with fixed cell-cycle period 
of 22h (corresponding to the mean cell-cycle period in the full dataset) (Figure 1.2b, and 
Movie 1.1) clearly suggests 1:1 phase-locking. In fact, analyzing the predicted deterministic 
dynamics (Equation 1, with the reconstructed 𝐹𝐹(𝜃𝜃,𝜙𝜙), and without the noise) shows a 1:1 
attractor (Figure 1.2c). Thus, in this 1:1 state, the endogenous circadian period of 24h is 
shortened by two hours, which results from acceleration occurring after cytokinesis (𝜙𝜙 = 0) 
when the circadian phase is near 𝜃𝜃 ≈ 0.8 × 2𝜋𝜋, and lasting for the entire G1 phase, until 
about 𝜃𝜃 ≈ 0.4 × 2𝜋𝜋 when cells typically enter S phase (𝜙𝜙 ≈ 0.4 × 2𝜋𝜋 at the G1/S transition, 
Supplementary information, Figure 1.2d). 
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Figure 1.2: Influence of the cell cycle on the circadian phase enables 1:1 phase-locking. (a) 
Coupling 𝐹𝐹(𝜃𝜃,𝜙𝜙) optimized on dividing single-cell traces. Due to similar results (Supplementary Figure 
1.2) traces from the three temperatures (n=154, 271, 302 traces at 34°C, 37°C, 40°C, resp.) are pooled. (b) 
Density of inferred phase traces from all the dividing traces with 22±1h cell-cycle intervals indicates a 1:1 
phase-locked state. (c) Numerical integration of phase velocity field (arrows, deterministic model) yields 
1:1 attractor (green line) and repeller (red line). Here, the cell-cycle period was set to 22 h. (d) Circadian 
phase velocity is not constant along the attractor, here for cells with 22±1h cell-cycle intervals. Data (blue 
line, standard deviation in light-blue shading) and deterministic simulation (orange line). Inset: integrated 
time along the attractor. The gray line shows constant bare phase velocity 𝜔𝜔𝜃𝜃 = 2𝜋𝜋

24ℎ
. 

2.3.3. Phase dynamics in perturbation experiments 

The reconstructed model allows us to simulate the circadian phase dynamics in 
function of the cell-cycle period, which is relevant as the cells display a significant range of 
cell-cycle lengths (Supplementary Figure 1.3a). In the deterministic system, we find 1:1 
phase-locking over a range of cell-cycle times varying from 19h to 27h, showing that the cell 
cycle can both globally accelerate and slow down circadian phase progression (Figure 1.3a). 
The attractor shifts progressively to the right in the phase-space, yielding a circadian phase 
at division ranging from 𝜃𝜃 ≈ 0.7 × 2𝜋𝜋 at division when 𝑇𝑇𝜙𝜙 = 19ℎ to 𝜃𝜃 ≈ 0.9 × 2𝜋𝜋 when 𝑇𝑇𝜙𝜙 =
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27ℎ. Since the attractor for different cell-cycle periods shifts, the circadian phase velocity 
profile also changes (Supplementary Figure 1.3b). To validate the predicted shifts, we exper-
imentally subjected cells to perturbations inducing a large variety of cell-cycle periods and 
compared the observed circadian phase to the model prediction at three different cell-cycle 
phases, revealing an excellent agreement, with no additional free parameters (Figure 1.3b). 

The simulations also clearly revealed multiple phase-locked states (1:2, 1:1, 2:1, 3:1, etc, p:q 
indicating the number of cell cycles p and the number of clock cycles q), represented as 
Arnold tongues (Figure 1.3c, and Movie 1.2 for an animated phase-space representation). 
We identified cell data trajectories following almost perfectly the deterministic attractors, 
both in the 1:1 and 1:2 phase-locking states (Figure 1.3e and f, respectively); however, cells 
showing other p:q states were rarely observed. 
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Figure 1.3: The coupling between the cell cycle and the circadian oscillator predicts phase 
shifts and phase-locking attractors in perturbation experiments. (a) Simulated (deterministic) 
attractors for cell-cycle periods ranging from 19h to 27h show that the dephasing of the cell cycle and the 
circadian oscillator changes within the 1:1 state. Periods just outside of this range yield quasiperiodic 
orbits.  The horizontal dashed lines indicate three different cell-cycle phases 𝜙𝜙 = 0,𝜙𝜙 = 1

3
× 2𝜋𝜋,𝜙𝜙 = 2

3
× 2𝜋𝜋 

used in panel (b). (b) Predictions from a) (dashed grey lines) against independent experimental data 
collected from 12 perturbation experiments (colored symbols, see legend, notation explained in Methods). 
(c) Multiple phased-locked states are predicted, recognizable by rational relationships between the fre-
quencies of the entraining cell cycle and the entrained circadian oscillator, interspersed by quasiperiodic 
intervals. (d) Arnold tongues showing multiple phase-locked states in function of cell-cycle periods and 
coupling strength (K=1 corresponds to the experimentally found coupling). Stable zones (white tongues) 
reveal attractors interspersed by quasi-periodicity. Although there are only two wider phased-locked state 
(1:1 and 1:2), several other p:q states are found. (e-f) Representative single-cell traces (data in yellow) 
evolving near predicted attractors (green lines). A cell with 𝑇𝑇𝜙𝜙 = 24ℎ (e) and one with 𝑇𝑇𝜙𝜙 = 48ℎ (f) near 
the 1:1 and 1:2 orbits, respectively. 
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2.3.4. Fluctuations extend 1:1 phase-locking asymmetri-
cally 

To understand the differences between the simulated deterministic system and ob-
served cell traces, we simulated the stochastic dynamics (Equation 1). We then compared 
measured data trajectories stratified by cell-cycle periods (Figure 1.4a) with deterministic 
(Figure 1.4b) and stochastic simulations (Figure 1.4c). This revealed that data agree 
better with stochastic than deterministic simulations, indicating that the phase fluctuations 
qualitatively change the phase portrait. One striking observation is the increased range of 
1:1 phase-locking in the noisy system, however asymmetrically, since this occurs for shorter, 
but not for longer cell-cycle periods. Indeed, while 1:2 phase-locking is observed in the data 
and the noisy simulations, the deterministically predicted 2:1 state is replaced in the data 
and stochastic system by 1:1-like orbits. Consistently, spectral analysis revealed significant 
differences between deterministic and stochastic simulations (Supplementary Figure 1.4a-
b, Movie 1.3); in addition, the coupling, specifically in the 1:1 state, was able to efficiently 
filter the noise (Supplementary Figure 1.4b, right). 

 

Figure 1.4: Single-cell data and stochastic simulations reveal robust 1:1 and 1:2 phase-locked 
states. (a) Phase-space densities from the experimental traces stratified by cell-cycle periods (±1h for 
each reference period); n=16, 223, 303, 54, 4 cell traces in the T=12, 16, 24, 36, 48 h panels, resp. (b) 
Vector fields and simulated (deterministic) trajectories for the different cell-cycle periods. Attractors are 
shown in green (forward time integration) and repellers (backward integration) in red (see also Movie 1.2). 
(c) Phase-space densities obtained from stochastic simulations of the model match better with the data 
compared to b. 
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2.3.5. Evolutionarily conserved phase-locking 

Most studies investigating the interaction between the cell cycle and the circadian 
oscillators in mammals are from rodent models[44], [45], [100], [110], [111], [119]. To test if 
the above phase-locked dynamics are conserved in human U2OS cells, an established circa-
dian oscillator model[142], [143], we engineered a U2OS cell line termed U2OS-Dual express-
ing a dual circadian fluorescent (Rev-erbα-YFP) and luminescent (Bmal1-luc) reporter sys-
tem. U2OS-Dual cells possess a functional circadian clock behaving similarly to NIH3T3 cells 
also expressing a Bmal1-Luc luminescent reporter[144] (Figure 1.5a). We scrutinize the 
relation between the two cell lines by comparing their behavior in different conditions: at 
34°C and 37°C for cells with synchronized and non-synchronized circadian cycles[45] (Figure 
1.5b-g). 

Similarly to NIH3T3 cells, the division events of non-synchronized U2OS-Dual cells grown 
at 37°C occurred 4.96 ± 2.6 h before a peak in the circadian fluorescent signal (Figure 1.5c), 
indicating that the cell cycle and the circadian clock interact. To investigate the directional-
ity of this interaction, we tested, like in NIH3T3 cells[45], whether the circadian clock phase 
could influence cell-cycle progression by resetting the circadian oscillator using dexame-
thasone (dex), a circadian resetting cue[145] that does not perturb the cell cycle[100]. We 
found the expected resetting effect of dex on the circadian phase by the density of peaks in 
reporter levels during the first 10h of recording, but with unnoticeable effects on the timing 
of the first division (Figure 1.5d). However, the circadian peak following the first division 
occurred systematically around 5h after the division in both conditions, suggesting that cell 
division in U2OS can reset circadian phases and overwrite dex synchronization. Synchroni-
zation of the circadian clocks for dex- vs non- treated cells was expectedly higher for dex and 
gradually decreased to reach the level of the untreated cells (Figure 1.5e), contrasting with 
the generally lower synchronization of cell divisions in both conditions. To then test if the 
cell cycle could influence the circadian clock, we lengthened the cell-cycle period by growing 
cells at 34°C and compared with 37°C. Interestingly, cells at 34°C showed a longer circadian 
period compared to 37°C (Figure 1.5f), unlike the temperature compensated circadian pe-
riods (~25h) in non-dividing cells (Figure 1.5a, g-h). 
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Figure 1.5: Conserved influence of the cell cycle on the circadian clock in human U2OS 
osteosarcoma cell. (a) Mean luminescence intensities (±SD, n=3) from non-dividing NIH3T3 and U2OS 
cells grown at 37°C expressing a Bmal1-Luc reporter. Values in the legend correspond to the mean periods 
±SD. (b) Semi-automated segmentation and tracking of U2OS cell lines expressing the Rev-erbα-YFP 
circadian fluorescent reporter. Red vertical lines represent cell divisions (cytokinesis) and blue vertical lines 
show Rev-erbα-YFP signal peaks. (c) Top: stack of divisions (red) and Rev-erbα-YFP peaks (blue) for 
single U2OS traces centered on divisions. Bottom: distribution of the time of division relative to the next 
Rev-erbα-YFP peaks (in read mean±SD, n=1298). (d) Divisions and Rev-erbα-YFP peaks from single 
non-synchronized (top), and dexamethasone (dex)-synchronized (bottom) U2OS traces ordered on the first 
division. (e) Synchronization index (SI) from non-synchronized (black) and dex-synchronized (red) traces 
for the circadian phase (top) and cell-cycle phase (bottom) estimated as in Bieler et al.[45]. The circadian 
SI from non-synchronized cells is relatively high due to plating. Dashed gray lines show 95th percentiles of 
the SI for randomly shuffled traces. (f) Cell-cycle and circadian periods for U2OS cells grown at 34°C and 
37°C (n > 90 for all distributions). (g) Mean luminescence intensities (±SD, n=3) for non-dividing U2OS 
cells grown at 34°C expressing a Bmal1-Luc reporter. Values in the legend correspond to the mean periods 
±SD. (h) Mean and standard deviation of the circadian period for non-dividing U2OS cells grown at 34°C 
and 37°C (n=8 at 34 and n=9 at 37, two-sided Wilcoxon’s test). (i) Coupling function 𝐹𝐹(𝜃𝜃,𝜙𝜙) optimized 
on n=551 dividing U2OS traces grown at 37°C, superimposed with the attractor (𝑇𝑇𝜙𝜙=22h) obtained from 
deterministic simulations (green line). 

Thus, similarly to mouse NIH3T3 cells, the coupling directionality is predominantly from the 
cell cycle to the circadian clock. In fact, the reconstructed coupling function for U2OS-Dual 
cells grown at 37°C (Figure 1.5i) is structurally similar to that obtained in mouse fibroblasts 
(Figure 1.2a), with the ensuing dynamics also showing a 1:1 attractor. 
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2.3.6. Dividing cells lose circadian temperature entrain-
ment 

In mammals, circadian clocks in tissues are synchronized by multiple systemic sig-
nals[99]. In fact, temperature oscillations mimicking those physiologically observed can 
phase-lock circadian oscillators in non-dividing (contact-inhibited) NIH3T3 cells in vitro[146]. 
To study how the found interactions influence temperature entrainment, we applied temper-
ature cycles (24h period ranging from 35.5°C to 38.5°C) to U2OS cells growing at different 
rates (plated at different densities) and monitored population-wide Bmal1-luc signals (Fig-
ure 1.6a). We found that, independently of initial densities, as the populations reach con-
fluency, the phases and amplitudes become stationary, showing 1:1 entrainment (Figure 
1.6b, c and Supplementary Figure 1.5a). During the initial transients, emerging circadian 
oscillations in non-confluent cells showed phases that were already stationary, at least once 
cell numbers were sufficiently high to obtain reliable signals. 

As cell confluence increases, the proportions of cells which stop cycling (exit to G0) in-
creases[147]. We therefore hypothesized that the observed phase and amplitude profiles in 
Bmal1-luc signals (Figure 1.6b, c) originate from a mixture of two populations: an increas-
ing population of non-dividing cells (G0) showing ‘normal’ entrainment properties, and di-
viding cells. We considered three scenarios for the dividing cells: i) the circadian oscillators 
in dividing cells adopt the same circadian profile as non-dividing entrained cells; ii) are not 
entrained; or iii) are entrained, but with a different phase compared to non-dividing cells 
(Supplementary Figure 1.5b). These scenarios can be distinguished by the predicted phase 
and amplitude profiles (Supplementary Figure 1.5c). Clearly, the measured profiles for U2OS-
Dual cells favored the second scenario, suggesting that circadian oscillators in dividing cells 
do not entrain to the applied temperature cycles. 
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Figure 1.6: Temperature cycles do not entrain circadian oscillators in dividing cells and pro-
liferation genes are associated with tissue-specific circadian phases. (a) Corrected and averaged 
Bmal1-Luc intensities and 95% confidence intervals (n=6) from U2OS-Dual cells plated at different initial 
densities and subjected to a temperature entrainment (top). (b) Acrophases (times of the local peaks in 
luminescence) of the Bmal1-Luc signal in function of the reporter intensity for the cells in a). Loess fit 
(black) and 95% confidence intervals (gray). (c) Amplitude (log of peak to mean ratio) of the Bmal1-Luc 
oscillations in function of the reporter intensity for the cells in a). Loess fit (black) and 95% confidence 
intervals (gray). (d-e) Circadian phases (d) and amplitudes (e) of different mouse tissues obtained in 
reference [148], relative to liver. (f) Expression levels of genes positively associated with phases from d) 
and linked to cell proliferation. (g-h) Correlations between Mki67(g) and Myc (h) mRNA expression and 
circadian phases across mouse tissues (Pearson’s correlation, two-sided P-values from t-distribution with 
n-2 degrees of freedom). (i) Expression levels of genes negatively associated with amplitudes and linked to 
nervous system development. 

2.3.7. Proliferation is associated with tissue-specific cir-
cadian phases 

The above findings suggest that phases or amplitudes of circadian clocks in organs 
in vivo might be influenced by the proliferation state of cells in the tissue. To test this, we 
investigated circadian clock parameters in different mouse tissues using a study of mRNA 
levels in twelve adult (6 weeks old males) mouse tissues, which revealed that clock phases 
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span 1.5 hours between the earliest and latest tissues (Figure 1.6d)[148], [149], an effect 
which is considered large in chronobiology as even period phenotypes of core clock genes are 
often smaller[131], [150], [151]. We noticed that the mean mRNA levels across tissues of 
many genes correlated with the phase offsets (Supplementary Table 1.1). However, gene 
functions related to cell proliferation stood out as the most strongly enriched (Figure 1.6f, 
Supplementary Table 1.1). Among those genes, the levels of known markers of cell prolifer-
ation such as Mki67 or Myc were strongly correlated with the phase offsets (Figure 1.6g-h, 
Supplementary Table 1.1). Amplitudes, on the other hand, were not correlated with prolif-
eration genes, but rather with neuronal specific genes, as expected owing to the damped 
rhythms present in those tissues (Figure 1.6i, Supplementary Table 1.1)[149]. Thus, this 
analysis suggests that the differences in basal proliferation levels observed in normal tissues 
might underlie the dephasing of the circadian clock, suggesting a physiological role for the 
interaction of the cell cycle and circadian clocks. 

2.4. Discussion 

A goal in quantitative single-cell biology is to obtain data-driven and dynamical 
models of biological phenomena in low dimensions. In practice, the heterogeneity and com-
plex physics underlying the emergence of biological function in non-equilibrium living sys-
tems, as well as the sparseness of available measurements pose challenges. Here, we studied 
a system of two coupled biological oscillators, sufficiently simple to allow data-driven model 
identification, yet complex enough to exhibit qualitatively distinct dynamics, i.e. p:q states 
and quasi-periodicity.  

In the coupled cell cycle and circadian oscillator system, phase-locked states different from 
1:1 have been observed[112]. While multiple attractors, notably 1:1 and 3:2, were found in 
mouse NIH3T3 cells under transient dexamethasone stimulation[44], we here report 1:2 states 
for long cell-cycle times under steady, unstimulated, conditions. Unlike other deterministi-
cally predicted states, 1:2 was sufficiently robust and observed in some cells. In fact, we 
found that noise extended the range of the 1:1 tongue, but asymmetrically, i.e. towards 
decreased cell-cycle periods. This may be reminiscent of generalized Poincaré oscillators 
showing that the entrainment range is broader for limit-cycles with low relaxation rates[152]. 
Indeed, noise could decrease relaxation rates and thereby broaden Arnold tongues. In addi-
tion, for certain cell cycle periods, we observed the superposition of multiple states, both in 
the data and in the stochastic simulations, which were not present in the deterministic anal-
ysis (Figure 1.4, see notably T=12h and T=36h). This is reminiscent of mode hopping as 
described in the context of an oscillatory gene circuit underlying inflammatory responses[71], 
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however, here the corresponding Arnold tongues do not overlap in the range of the biologi-
cally relevant coupling strength (K=1, Figure 1.3d). 

While we focused on the emergent dynamics in the coupled oscillator system, considerations 
on possible biological mechanisms are relevant for follow-up biochemical analyses. How chro-
mosome condensation or nuclear envelope breakdown may influence the circadian clock phase 
progression via either transcriptional shutdown, or displacement of chromatin bound circa-
dian repressors, respectively, was discussed previously[45]. For example, Rev-erbα transcrip-
tion being so tightly locked to cell divisions (the peak accumulation of the reporter occurs 
5h after mitosis) could reflect the sudden derepression of its promoter, due to displaced 
CRYPTOCHROME1 (CRY1) containing repressor complex following nuclear envelope 
breakdown[153]. In turn, REV-ERB-A accumulation influences clock phase by binding to 
promoters of multiple core clock components, including Cry1[154], [155]. More specific tran-
scriptional activities could also play a key role in coupling the cell and circadian cycles. In 
fact, the circadian oscillator is exquisitely sensitive to numerous signaling pathways, imping-
ing upon the clock by transcriptional induction of Period genes, which thus provides an 
efficient synchronization method[145]. Similarly, entrainment via temperature cycles also 
converges onto Period gene transcription[100]. However, we are not aware of cell-cycle de-
pendent transcriptional regulators, such as E2F factors, targeting clock components like the 
Period genes. Finally, since the regulation of protein stability is important for clock func-
tion[156], it is possible that phosphorylation-controlled proteolytic activities driving the cell 
cycle could target circadian phase regulators[157], thereby mediating the observed coupling. 

In mammals, the circadian oscillator in the suprachiasmatic nucleus (SCN) is the pacemaker 
for the entire organism[158], driving 24h rhythms in activity, feeding, body temperature and 
hormone levels. In particular, the SCN can synchronize peripheral cell-autonomous circadian 
clocks located within organs across the body[159]. Consistent with theory[70], in a physio-
logical context of entrainment, the coupling of the cell cycle with the circadian clock can 
induce proliferation dependent phase-shifts, which we observed. Such phase shifts could re-
flect a homogenous behavior of all cells, or it could reflect heterogeneity of cell proliferation 
states, possibly leading to wave propagation. The phase shifts we observed in tissues were 
associated with low proliferation, i.e. non-pathological states of tissue homeostasis and cell 
renewal. For example, the liver or the adrenal gland showed a phase advance compared to 
fully quiescent tissues like the brain. 

When cell proliferation is abnormally high such as in cancer, circadian clocks are often se-
verely damped[160]. While this absence of a robust circadian rhythm in malignant tissue 
states may reflect non functional circadian oscillators due to mutations in clock genes[161], 
the damped rhythms may also reflect circadian desynchrony of otherwise functional circadian 
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oscillators. Such desynchrony would readily follow from the coupling between the cell-cycle 
and circadian oscillators we highlight here, in the presence of non-coherent cell-cycle progres-
sion. 

Methodologically, the new approach to reconstruct a dynamical model for the coupled oscil-
lator system has significant advantages over previous methods, notably strong assumptions 
such as the sparse and localized coupling are dispensable[45]. Compared with generic model 
identification techniques[162], our approach models the raw data and its noise structure 
explicitly. In the future, such data-driven identification of dynamical models might reveal 
dynamical instabilities underlying ordered states in spatially extended systems, as occurring, 
for instance, during somitogenesis[163]. 

2.5. Methods 

2.5.1. Cell lines 

All cell lines (U2OS-Dual, NIH3T3-Bmal1-Luc, and U2OS-PGK-Luc) were main-
tained in a humidified incubator at 37°C with 5% CO2 using DMEM cell culture media 
supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin-glutamine 
(PSG). One day before luminescence or fluorescence acquisitions, we replaced DMEM with 
FluoroBrite DMEM media supplemented with 10% FBS and 1% PSG. NIH3T3 perturbation 
experiments were generated in Bieler et al[45]. Briefly, they correspond to temperature 
changes (34, 37, and 40˚C), treatment with CDK1 (RO-3306, Sigma-Aldrich) and CDK1/2 
(NU-6102, Calbiochem) inhibitors at 1, 5, 7 and 10µM (CDK1in-[1,5,7,10] and CDK2in-
[1,5,7,10]), and shRNA-mediated knockdown of Cry2 (shCry). 

2.5.2. Fluorescent time-lapse microscopy 

Time-lapse fluorescent microscopy for U2OS-Dual cells was performed at the bio-
molecular screening facility (BSF, EPFL) using an InCell Analyzer 2200 (GE healthcare).  
Experiments were performed at different temperature (34°C, 37°C, or 40°C) with a humidity 
and CO2 (5%) control system. We used 100 ms excitation at 513/17 nm and emission at 
548/22 nm to record the YFP channel. Cells were recorded by acquiring one field of view 
per well in a 96-well black plate (GE healthcare). We used our previously developed semi-
automated pipeline for segmentation and tracking of individual cells[45]. In total, traces from 
n=551 U2OS cells were obtained (typically 50 cells are obtained per movie). NIH3T3 single 
cells trace are reanalyzed from previous work[45]; here, we used n=2504 of those time traces. 
In all cases (NIH3T3 and U2OS), we followed several quality control metrics from [45]. 
Briefly, we discarded all traces that left the field-of-view at some point during the acquisition. 
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We also visually inspected all traces, using a custom-made Matlab tool, to remove traces 
with problematic segmentation and tracking. In addition, we only kept traces with significant 
circadian amplitude (peak height >0.25, rescaled signals, Supplementary Information). To 
minimize boundary artifacts, typically, only traces with at least 2 full cell cycles were kept. 
The number of cells used for specific analyses, including sub-selections of traces based on the 
cell-cycle intervals, are indicate in the figure captions. 

2.5.3. Inferring the phase dynamics of two biological os-
cillators 

Denote by 𝑫𝑫 the entire set of single cells traces comprising temporal intensity meas-
urements (∆𝑡𝑡=30 min) from all fluorescent traces and 𝚲𝚲 the set of model parameters, com-
prising the gridded coupling function 𝐹𝐹𝑖𝑖𝑖𝑖. Note that all parameters are shared by all cells in 
𝑫𝑫. To reconstruct the phase dynamics of our model, we seek to maximize the likelihood of 
the data ℒ(𝚲𝚲|𝐃𝐃), that is, we solve: 

𝚲𝚲∗ = argmax ℒ(𝚲𝚲|𝐃𝐃)       (𝑖𝑖) 

In practice, we used an EM algorithm, by iteratively optimizing the function 𝑄𝑄(𝚲𝚲,𝚲𝚲′) over 
its first argument, where 𝑄𝑄 can be written as follow: 

𝑄𝑄�𝚲𝚲,𝚲𝚲′� = 𝐸𝐸�log 𝑝𝑝(𝐃𝐃,𝐗𝐗|𝚲𝚲)�𝐗𝐗,𝚲𝚲′�         (𝑖𝑖𝑖𝑖) 

That is, 𝑄𝑄(𝚲𝚲,𝚲𝚲′) corresponds to the expected value of the log-likelihood of the data with 
respect to the posterior probabilities of the hidden phases 𝐗𝐗 (latent variables), computed 
using the current parameter 𝚲𝚲′. This process guarantees a monotonous convergence of the 
log-likelihood, although a global maximum is not necessarily reached44. 

To control for the many parameters 𝐹𝐹𝑖𝑖𝑖𝑖, we added regularization constraints for both the 
smoothness and sparsity: 

𝑄𝑄𝑝𝑝(𝚲𝚲,𝚲𝚲′) =  𝑄𝑄(𝚲𝚲,𝚲𝚲′) −  𝜆𝜆1� ||𝐹𝐹𝑖𝑖𝑖𝑖||2
𝑖𝑖𝑖𝑖

−  𝜆𝜆2�𝐹𝐹𝑖𝑖𝑖𝑖2
𝑖𝑖𝑖𝑖

        (𝑖𝑖𝑖𝑖𝑖𝑖) 

This expression is also guaranteed to converge[128].  

Details about the optimization method, choice of the regularization parameters, and compu-
tation of the phase posteriors using a HMM are provided in Supplementary Information. 
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2.5.4. Long-term temperature entrainment and lumines-
cence recording 

We performed long-term temperature entrainment experiments using a Tecan plate 
reader Infinite F200 pro with a CO2 and temperature modules. One day before starting the 
experiment, serial dilution ranging from 40,000 to 2,500 cells were seeded in 96-well white 
flat bottom plates (Costar 3917). To prevent media evaporation, all wells were filled with 
300µl of media composed of FluoroBrite, 10% FBS, 1% PSG, and 100 nM D-luciferin 
(NanoLight technology) and covered with a sealing tape (Costar 6524). We set up tempera-
ture entrainment using stepwise increase (or decrease) of 0.5°C every 2 hours to produce 
temperature oscillating profiles going from 35.5°C to 38.5°C and back to 35.5°C again over 
a period of 24 hours. Intensities from all wells were recorded every 10 minutes with an 
integration time of 5000 milliseconds. Since temperature impacts the enzymatic activity of 
the luciferase[164], we corrected the signal for this systematic effect (Supplementary Infor-
mation). 

2.5.5. Association between gene expression and phase in 
tissues 

We used the average gene expression obtained from a selected set of twelve adult (6 
weeks old males) mouse tissues from the Zhang et al. dataset (GEO accession 
GSE54650)[149]. For this analysis, we estimated the Pearson’s correlation between the aver-
aged gene expression and the circadian tissue phases or amplitudes reported in reference 
[148]. We selected the top 200 genes positively or negatively associated with either the phases 
or the amplitudes for gene ontology analysis[165] (Supplementary Table 1.1).  

2.6. Data availability 

The data supporting figures and other findings of this study are available from the 
corresponding author on request. 

2.7. Code availability 

The code is available online at the following URL: 

https://github.com/ColasDroin/CouplingHMM 
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2.11. Supplementary Figures 

 

Supplementary Figure 1.1: Validation of the inference methods. (a) Examples of temporal data 
traces and model fits. The colors show data (red), posterior mean for 𝑆𝑆𝑡𝑡 (blue), posteriors circular mean 
for 𝜃𝜃𝑡𝑡 (dashed purple), posterior means 𝐴𝐴𝑡𝑡 (dashed grey) and baseline 𝐵𝐵𝑡𝑡 (dashed yellow). The cell-cycle 
phase 𝜙𝜙𝑡𝑡 (which is not a hidden variable) is obtained from linear interpolation between two successive 
divisions (dashed green line). Deviations of the purple curve from a straight line corresponds to transient 
variations of circadian phase velocity, owing to noise and coupling. (b-c) Using oscillator parameters 
mimicking real cells, we can recover coupling functions from simulated traces. (b) First, we simulated 
traces with a coupling 𝐹𝐹(𝜃𝜃,𝜙𝜙) comprising two Gaussian interaction regions, as shown in the left panel. 
The reconstructed function is shown in the right panel. (c) Same numerical experiment made with the 
coupling inferred from the real data as input (left). Both simulations reveal that the inferred functions are 
qualitatively accurate, but quantitatively damped. 
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Supplementary Figure 1.2: 𝑭𝑭(𝜽𝜽,𝝓𝝓) depends weakly on temperature. (a) Coupling functions ob-
tained from traces acquired at 34°C, 37°C and 40°C. Here, to avoid possible bias, the traces were sampled 
such that the distribution of cell-cycle periods is identical for each temperature (n = 513 in each case, 
Supplementary Figure 1.3a for the cell-cycle period distributions at the three different temperatures). (b) 
Superimposition of the merged (from all traces at 34°C, 37°C, and 40°C) coupling function (that of Figure 
1.2a), the phase-space trace density (Figure 1.2b, here shown as contour lines), and the attractor (Figure 
1.2c, green line). (c) Attractors for the vector fields in a) show that the 1:1 phase-locked orbit is temper-
ature independent. (d) Phase space densities obtained in the same condition and from the same traces as 
in (a). 
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Supplementary Figure 1.3: The phase velocity profiles along the 1:1 attractors in function of cell-cycle 
period. (a) Cell-cycle period (division-to-division time intervals) distributions in NIH3T3 cells at three 
temperatures. The average period progressively decreases from around 24h at 34°C to 18h at 40°C. (b) 
Circadian phase velocity on the 1:1 attracting orbit in function of cell-cycle period (increasing from left to 
right and top to bottom). The phase velocity shown is either inferred from the data traces (blue line, 
standard deviation in light blue), or simulated using the deterministic model (no phase noise) (orange 
line). The first and last panels (𝑇𝑇𝜙𝜙 = 18h and 28h) have quasi-periodic orbits (hence a standard deviation 
is associated with the mean phase velocity). The natural (non-dividing cells) circadian phase velocity 
(about 0.26 rad.h-1, corresponding to a 24h period) is indicated by a dashed grey line. 
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Supplementary Figure 1.4: Spectral analysis of simulated traces shows that 1:1 phase-locking 
is robust against noise. (a) Spectral analysis of long simulated circadian traces (tf=10.000h) using either 
the deterministic (left, phase diffusion set to zero) or stochastic (right) model, for different cell-cycle peri-
ods. Periods of the natural circadian period (24h, green dashed line), and that of the entraining cell cycle 
(black dashed lines) are indicated. (b) Power spectra presented in (a) shown as heatmaps for 350 different 
cell-cycle periods (see also Movie 1.3). Phase-locked intervals are observed in the deterministic model (left) 
as lines for the fundamental and few harmonics. Only 1:1 and the 1:2 are visible in the presence of noise 
(right). 
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Supplementary Figure 1.5: The circadian clock of dividing cells does not entrain to temperature cycles. 
(a) Averaged (n=6) Bmal1-Luc intensities and 95% confidence intervals from U2OS-Dual Bmal1 luciferase 
signal centered and corrected for temperature artifact (Supplementary Information). Results were obtained 
by plating different number of cells (40k, 20k, 10k, 5k, or 2.5k) at the beginning of the experiment. (b) 
Pictograms depicting three different models: i) the circadian oscillators in dividing cells adopt the same 
circadian profile as non-dividing entrained cells; ii) are not entrained; or iii) are entrained, but with a 
different phase compared to non-dividing cells. (c) Acrophase (hour of the peak of the signal) (left) and 
amplitude (log of peak to mean ratio) (right) in function of intensity obtained from simulations of the 
three models in b). Results here should be compared with Figure 1.6b in the main text. 

2.12. Supplementary Table and Movies 

Supplementary Table 1.1 and Movies 1.1-3 are not adapted to the format of this 
thesis but are available online along with both the published and preprint version of this 
study.  

2.13. Supplementary information 

2.13.1. Reconstruction of the dynamical model 

The main objective is to perform a data-driven reconstruction of a stochastic models 
for the coupled systems of circadian and cell cycles, and to then analyze the consequences on 
the coupled oscillator dynamics. A key step is to estimate the coupling function 𝐹𝐹(𝜃𝜃,𝜙𝜙) 
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(expressed in terms of the phases of the two oscillators) representing the influence of the cell-
cycle on the circadian clock. 

Our approach consists in explicitly modeling the measured fluorescent signals, using a set of 
stochastic ordinary differential equations (SODEs) whose parameters are estimated by max-
imizing the probability of observing the data over the entire set of cell traces. Parameters of 
the SODEs, which include the oscillator coupling, are assumed to be shared by all cells of a 
given experimental condition. The method uses several steps, which are detailed in the fol-
lowing sections. 

2.13.1.1. Stochastic models for the oscillator phases and measured 
signals 

2.13.1.1.1. Phase model for dividing cells 

The circadian phase, representing the state of the circadian oscillator of an individ-
ual cell, is modeled as a diffusion-drift process, while the cell-cycle has simpler, piece-wise 
linear dynamics between two divisions. This is motivated by previous work where we have 
shown that the influence of the clock on the cell-cycle was very weak, and probably nonex-
istent[45]. Therefore we focus here on a precise characterization of the coupling function 
representing the cell-cycle influence on the clock, and then study the dynamical implications. 

We first introduce some notation. 𝜃𝜃,𝜙𝜙 ∈ [0; 2𝜋𝜋[× [0; 2𝜋𝜋[ represent the phases of the circa-
dian clock and the cell-cycle, respectively. The intrinsic period of the circadian clock, 𝑇𝑇𝜃𝜃, is 
kept fixed to 24ℎ, while the cell-cycle intervals 𝑇𝑇𝜙𝜙𝑖𝑖  are indexed on the division-to-division 

interval 𝑖𝑖. The coupling function 𝐹𝐹(𝜃𝜃,𝜙𝜙) represents the influence of the cell-cycle phase on 
the circadian clock phase. 𝜎𝜎𝜃𝜃 is the noise strength of the circadian phase, the noise itself 
being modelled through a Wiener process 𝑊𝑊𝜃𝜃,𝑡𝑡. The stochastic phase model is a two-dimen-
sional diffusion drift written as follows: 

⎩
⎪
⎨

⎪
⎧d𝜃𝜃𝑡𝑡 =

2𝜋𝜋
𝑇𝑇𝜃𝜃

d𝑡𝑡 + 𝐹𝐹(𝜃𝜃𝑡𝑡,𝜙𝜙𝑡𝑡)d𝑡𝑡 + 𝜎𝜎𝜃𝜃 d𝑊𝑊𝜃𝜃,𝑡𝑡

d𝜙𝜙𝑡𝑡 =
2𝜋𝜋
𝑇𝑇𝜙𝜙𝑖𝑖

d𝑡𝑡
        (1) 

2.13.1.1.2. Phase model for non-dividing cells 

Due to inherent fluctuations in biological processes, there are always cells in a dish 
which transiently exit the cell cycle. On the other hand, the circadian cycle proceeds unper-
turbed also in quiescent cells. For such cell traces without division, we assume that the model 
for the circadian phase reduces to just one stochastic ordinary differential equation: 
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d𝜃𝜃𝑡𝑡 =
2𝜋𝜋
𝑇𝑇𝜃𝜃

d𝑡𝑡 + 𝜎𝜎𝜃𝜃d𝑊𝑊𝜃𝜃,𝑡𝑡         (2) 

containing the parameters of the bare oscillator. In fact, we will use such traces to estimate 
those parameters. 

2.13.1.1.3. Model for the fluorescence signals 

The experimental signals obtained from microscopy show noisy oscillations with 
variations in the amplitude of the maxima as well as in the fluorescence background. For 
convenience, we centered and rescaled all single cell traces such that the 5th percentile is 0 
and 95th percentile is 1. 

The phase 𝜃𝜃𝑡𝑡 is linked to the signal 𝑆𝑆𝑡𝑡 via a function 𝑤𝑤(𝜃𝜃𝑡𝑡), which thus defines the phase in 
our model. In order to use a common definition of the phase, in particular one that does not 
depend on temperature or cell type (i.e. NIH3T3 and U2OS cells), we estimated a single 
function 𝑤𝑤(𝜃𝜃𝑡𝑡), as the the average of all peak-to-peak signals of non-dividing cells. This 
showed that indeed NIH3T3 and U2OS cells yield very similar functions, and we therefore 
used the average as a fixed function for all analyses (Supplementary Information Figure 1.1). 

 

Supplementary Information Figure 1.1: Estimated 𝑤𝑤(𝜃𝜃) from NIH3T3 (green) and U2OS (blue) 
traces reveal little difference between them. To keep a consistent definition for the phase, the final function 
was taken as the average (yellow). 

To take into account the variations of amplitude and background, two Ornstein-Uhlenbeck 
(O-U) processes are used: 𝐴𝐴𝑡𝑡 and 𝐵𝐵𝑡𝑡, modelled as stochastic ordinary differential equations: 

�
d𝐴𝐴𝑡𝑡 = −𝛾𝛾𝐴𝐴(𝐴𝐴𝑡𝑡 − 𝜇𝜇𝐴𝐴)d𝑡𝑡 + 𝜎𝜎𝐴𝐴 d𝑊𝑊𝐴𝐴,𝑡𝑡
d𝐵𝐵𝑡𝑡 = −𝛾𝛾𝐵𝐵(𝐵𝐵𝑡𝑡 − 𝜇𝜇𝐵𝐵)d𝑡𝑡 + 𝜎𝜎𝐵𝐵 d𝑊𝑊𝐵𝐵,𝑡𝑡
𝑆𝑆𝑡𝑡 = exp(𝐴𝐴𝑡𝑡)𝑤𝑤(𝜃𝜃𝑡𝑡) + 𝐵𝐵𝑡𝑡 + 𝜉𝜉

        (3) 
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In this parametrization, the stationary mean and variance are Ε[𝑋𝑋𝑡𝑡] = 𝜇𝜇𝑋𝑋 and Var[𝑋𝑋𝑡𝑡] = 𝜎𝜎𝑋𝑋
2

2𝛾𝛾𝑋𝑋
, 

for 𝑋𝑋 = 𝐴𝐴,𝐵𝐵, respectively. 𝜉𝜉 represents additional experimental (measurement) white noise 
with zero mean and variance 𝜎𝜎𝑒𝑒2. 

This model assumes that the amplitude and the background fluctuations are independent 
from the phase (see 2.13.1.1.4 in this document). 

2.13.1.1.4. Model conversion into a Hidden Markov Model (HMM) 

A HMM is defined as a stochastic triplet 𝛀𝛀 = {𝛑𝛑,𝐀𝐀,𝐄𝐄}, where 𝛑𝛑 is the vector con-
taining the initial probability distribution of the modeled Markov process, and the matrices 
A and E contain the transition and emission probabilities of the process[141]. 

To define the transition and emission matrices, we first discretize the model. The discrete 
phase, amplitude and background domains are defined as: 

⎩
⎪
⎨

⎪
⎧
𝚿𝚿 = {𝑘𝑘𝛥𝛥𝛹𝛹|𝑘𝑘 ∈ {0,1, . . . ,𝑁𝑁 − 1},𝛥𝛥𝛹𝛹 = 2𝜋𝜋/𝑁𝑁} = {𝜓𝜓0, . . . ,𝜓𝜓𝑁𝑁−1}

𝒜𝒜 = {𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑘𝑘𝛥𝛥𝐴𝐴|𝑘𝑘 ∈ {0,1, . . . ,𝑀𝑀 − 1},𝛥𝛥𝐴𝐴 =
𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚

𝑀𝑀 } = {𝑎𝑎0, . . . , 𝑎𝑎𝑀𝑀−1}

ℬ = {𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑘𝑘𝛥𝛥𝐵𝐵|𝑘𝑘 ∈ {0,1, . . . ,𝑀𝑀 − 1},𝛥𝛥𝐵𝐵 =
𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚

𝑀𝑀 } = {𝑏𝑏0, . . . , 𝑏𝑏𝑀𝑀−1}

         (4) 

with 𝑁𝑁 and 𝑀𝑀 the numbers of hidden states for the phase and the O-U processes, respectively. 

The maxima (𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚, 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚) and minima (𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚, 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚) are chosen at least three standard 
deviations away from the mean of the corresponding O-U processes. The full hidden state 
space is then 𝒳𝒳 = 𝚿𝚿 × 𝒜𝒜 × ℬ. The transition probabilities are then obtained from the fol-
lowing: 

𝑝𝑝�𝜃𝜃𝑡𝑡+𝑑𝑑𝑑𝑑�𝜃𝜃𝑡𝑡 = 𝜓𝜓𝑖𝑖 ,𝜙𝜙𝑡𝑡 = 𝜓𝜓𝑗𝑗� = 𝑁𝑁 �𝜓𝜓𝑖𝑖 +
2𝜋𝜋
𝑇𝑇𝜃𝜃
𝑑𝑑𝑑𝑑 + 𝐹𝐹�𝜓𝜓𝑖𝑖 ,𝜓𝜓𝑗𝑗�𝑑𝑑𝑑𝑑,𝜎𝜎𝜃𝜃2𝑑𝑑𝑑𝑑�        (5) 

where we have made the approximation that 𝑑𝑑𝑑𝑑 is small. 

For the O-U processes, the results are well-known[166]: 

𝑝𝑝(𝐴𝐴𝑡𝑡+𝑑𝑑𝑑𝑑|𝐴𝐴𝑡𝑡 = 𝑎𝑎𝑖𝑖) = 𝑁𝑁�𝜇𝜇𝐴𝐴 + (𝑎𝑎𝑖𝑖 − 𝜇𝜇𝐴𝐴)𝑒𝑒−𝛾𝛾𝐴𝐴𝑑𝑑𝑑𝑑 , (1 − 𝑒𝑒−2𝛾𝛾𝐴𝐴𝑑𝑑𝑑𝑑)
𝜎𝜎𝐴𝐴2

2𝛾𝛾𝐴𝐴
�         (6) 

𝑝𝑝(𝐵𝐵𝑡𝑡+𝑑𝑑𝑑𝑑|𝐵𝐵𝑡𝑡 = 𝑏𝑏𝑖𝑖) = 𝑁𝑁�𝜇𝜇𝐵𝐵 + (𝑏𝑏𝑖𝑖 − 𝜇𝜇𝐵𝐵)𝑒𝑒−𝛾𝛾𝐵𝐵𝑑𝑑𝑑𝑑 , (1 − 𝑒𝑒−2𝛾𝛾𝐵𝐵𝑑𝑑𝑑𝑑)
𝜎𝜎𝐵𝐵2

2𝛾𝛾𝐵𝐵
�         (7) 

All the transitions between the three processes are assumed to be independent: 

A𝑖𝑖𝑖𝑖𝑖𝑖,𝑙𝑙𝑙𝑙,𝑛𝑛𝑛𝑛 = 𝑝𝑝𝑡𝑡𝑡𝑡�𝜓𝜓𝑘𝑘�𝜓𝜓𝑖𝑖 ,𝜓𝜓𝑗𝑗�𝑃𝑃𝑡𝑡𝑡𝑡(𝑎𝑎𝑚𝑚|𝑎𝑎𝑙𝑙)𝑃𝑃𝑡𝑡𝑡𝑡(𝑏𝑏𝑜𝑜|𝑏𝑏𝑛𝑛)       (8) 
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Finally, the probability of an observation 𝑂𝑂𝑡𝑡 obeys to: 

𝑝𝑝�𝑂𝑂𝑡𝑡�𝐴𝐴𝑡𝑡 = 𝑎𝑎𝑖𝑖 ,𝐵𝐵𝑡𝑡 = 𝑏𝑏𝑗𝑗 ,𝜃𝜃𝑡𝑡 = 𝜓𝜓𝑘𝑘� =
1

𝜎𝜎𝑒𝑒√2𝜋𝜋
𝑒𝑒
−12�

exp(𝑎𝑎𝑖𝑖)𝑤𝑤(𝜓𝜓𝑘𝑘)+𝑏𝑏𝑗𝑗−𝑂𝑂𝑡𝑡
𝜎𝜎𝑒𝑒

�
2

       (9) 

Note that 𝑤𝑤 appears in this equation, enabling to compare the prediction of the model with 
the actual observations. Also note that in this SI we use 𝑂𝑂𝑡𝑡 to refer to a specific observation 
in our dataset, instead of 𝑆𝑆𝑡𝑡 in the generic case. However, both notations are interchangeable. 

The emission matrix 𝐄𝐄𝐭𝐭 for each time point can then be computed as: 

𝐄𝐄𝑡𝑡,𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑒𝑒�𝑂𝑂𝑡𝑡�𝑎𝑎𝑖𝑖 ,𝑏𝑏𝑗𝑗 ,𝜓𝜓𝑘𝑘�       (10) 

The fixed cell-cycle phases, given at each time point through a linear interpolation are noted 
as 𝚽𝚽, such that 𝚽𝚽 = {𝜙𝜙0, … ,𝜙𝜙𝑡𝑡 , … ,𝜙𝜙𝑇𝑇} with 𝜙𝜙𝑡𝑡 ∈ 𝚿𝚿∀𝑡𝑡. 

Once the matrices 𝛑𝛑,𝐀𝐀 and 𝐄𝐄 are built, one can compute the probability of a state 𝐱𝐱 ∈ 𝒳𝒳 
given all the observations O = {𝑂𝑂1, . . . ,𝑂𝑂𝑡𝑡, . . . ,𝑂𝑂𝑇𝑇}, that is the posterior state distribution 
𝑝𝑝(𝐱𝐱|O), using the forward-backward algorithm[141]. A graphical representation of the HMM 
is is provided Supplementary Information Figure 1.2. 

 

Supplementary Information Figure 1.2: Representation of the Hidden Markov Model used for phase 
inference, at time t − 1, t and t + 1. Bold arrows correspond to state transitions, while light arrow corre-
spond to state emissions. 

2.13.1.2. Parameters of the model 

In all analyses, the number of states for the phase, 𝑁𝑁, and for the O-U processes, 
𝑀𝑀, were taken as 𝑁𝑁 = 48 and 𝑀𝑀 = 30, yielding a total number of discrete states of 43200. 

2.13.1.2.1. Parameters common to dividing and non-dividing cells 

We first discuss the parameters describing the circadian oscillations in individual 
cells, which we assume as independent from the coupling with the cell cycle. These parame-
ters concern the oscillator period, phase noise, amplitude and background processes, as well 
as the experimental noise. The parameters were estimated as described below, and are given 
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in Supplementary Information Table 1.1 for both NIH3T3 and U2OS cells. Since the esti-
mates were found to be very similar at the three experimental temperatures, we considered 
fixed (temperature-independent) values. 

 𝑇𝑇𝜃𝜃(ℎ) 𝜎𝜎𝜃𝜃(𝑟𝑟𝑟𝑟𝑟𝑟.ℎ−1/2) 𝜇𝜇𝐴𝐴 𝜎𝜎𝐴𝐴 𝜇𝜇𝐵𝐵 𝜎𝜎𝐵𝐵 𝛾𝛾𝐴𝐴(ℎ−1) 𝛾𝛾𝐵𝐵(ℎ−1) 𝜎𝜎𝑒𝑒 

NIH3T3 24 0.16 -0.28 0.11 0.08 0.05 0.075 0.075 0.15 

U2OS 24 0.18 -0.45 0.15 0.06 0.05 0.075 0.075 0.15 

Supplementary Information Table 1.1: Set of parameters for the single cell circadian oscillators in 
NIH3T3 and U2OS cells. The values of 𝜎𝜎𝐴𝐴, 𝜎𝜎𝐵𝐵 and 𝜎𝜎𝑒𝑒 are in units of the centered and rescaled signals. 

The circadian oscillator period 𝑇𝑇𝜃𝜃 was estimated by averaging the peak to peak times in Rev-
Erb𝛼𝛼-YFP signals on the whole set of non-dividing traces. The resulting value was 24.28h 
(NIH3T3, whole dataset), rounded for convenience. 

To estimate the phase noise 𝜎𝜎𝜃𝜃, we used the property that the peak-to-peak time distribution 
of the circadian phase (modeled as a diffusion-drift process) 𝜃𝜃 obeys: 

𝑇𝑇2𝜋𝜋 ∼ 𝐼𝐼𝐼𝐼 �𝜇𝜇 =
2𝜋𝜋
𝜔𝜔𝜃𝜃

= 𝑇𝑇𝜃𝜃 , 𝜆𝜆 =
(2𝜋𝜋)2

𝜎𝜎𝜃𝜃2
�         (11) 

where 𝐼𝐼𝐼𝐼(𝜆𝜆, 𝜇𝜇) stands for the inverse Gaussian distribution with mean 𝜇𝜇 and shape parameter 
𝜆𝜆. This distribution has variance 𝜇𝜇3/𝜆𝜆. Therefore: 

𝜎𝜎𝜃𝜃2 =
Var[𝑇𝑇2𝜋𝜋]4𝜋𝜋2

𝑇𝑇𝜃𝜃3
        (12)  

This expression was used in the NIH3T3 cells. Because we observed only very few non-
dividing U2OS cells, we needed to estimate 𝜎𝜎𝜃𝜃 from the dividing traces. Since we observed 
from traces generated in silico that the cell-cycle coupling added about 35% of variability in 
the peak-to-peak distribution, we corrected the value of 𝜎𝜎𝜃𝜃 obtained from dividing U2OS 
cells for this effect. 

The means and noise of the O-U processes were estimated from the set of all minima and 
maxima of the non-dividing traces. More precisely, the mean background was calculated as 
the average minimum value of the signal, and the mean log amplitude as the average log 
difference between the maxima and surrounding minima. Similarly, the noise strengths were 
obtained from the variances of those quantities, using the relationship for the stationary 
variances: 𝜎𝜎𝑋𝑋2 = 2𝛾𝛾𝑋𝑋2Var[𝑋𝑋], for 𝑋𝑋 = 𝐴𝐴,𝐵𝐵. 

We assumed that the time constants of the 𝐴𝐴 and 𝐵𝐵 processes were slower than the phase 
fluctuations occurring within one oscillatory cycle, and therefore chose 𝛾𝛾𝐴𝐴 = 𝛾𝛾𝐵𝐵 = 1/14ℎ−1. 
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We verified that values of 𝛾𝛾𝐴𝐴 and 𝛾𝛾𝐵𝐵 in the range of 1/5ℎ−1 to 1/30ℎ−1 did not lead to major 
differences in the resulting coupling function. 

The noise parameter 𝜎𝜎𝑒𝑒 was set to 0.15. Since the signals were quantile normalized (see 
Section 2.13.1.1.3), this corresponds to a relative error of about 15%. 

2.13.1.2.2. Parameters of the coupling function 

2.13.1.2.2.1. The EM algorithm 

Here we introduce the expectation-maximization (E-M) algorithm, which will be 
used to estimate the coupling function. 

Denote the sequence of observations by O, the state space by 𝒳𝒳, a given sequence of states 
by X and the current and updated set of parameters by 𝚲𝚲′ and 𝚲𝚲, respectively. The 𝑄𝑄 
function of the EM[126] is written: 

𝑄𝑄(𝚲𝚲,𝚲𝚲′) = � log
X∈𝒳𝒳

�𝑝𝑝(O,𝐗𝐗|𝚲𝚲)�𝑝𝑝(𝐗𝐗|O,𝚲𝚲′)      (13) 

Here, the sequence X is composed of states x such that X = {x1, . . . , x𝑡𝑡 , . . . , x𝑇𝑇}, and these 
states are themselves composed of three substates for the phase, the amplitude and the 
background: x = (𝜓𝜓,𝑎𝑎, 𝑏𝑏). In our problem, if we define 𝑖𝑖0 as the index associated with the 
first state of the sequence 𝐗𝐗, the probability of the observations and the states can be written 
as a product: 

𝑝𝑝(O,𝐗𝐗|𝚲𝚲) = 𝛑𝛑𝑖𝑖0�𝑝𝑝
𝑇𝑇

𝑡𝑡=1

(𝐗𝐗𝑡𝑡+1|𝐗𝐗𝑡𝑡,𝚲𝚲)𝑝𝑝(𝑂𝑂𝑡𝑡+1|𝐗𝐗𝑡𝑡+1,𝚲𝚲)      (14) 

This equation enables to rewrite the function 𝑄𝑄 as three separated sums: 

𝑄𝑄(𝚲𝚲,𝚲𝚲′) = � log
X∈𝒳𝒳

(𝛑𝛑𝑖𝑖0)𝑝𝑝(𝐗𝐗|O,𝚲𝚲′) + � �� log
𝑇𝑇

𝑡𝑡=1

(𝑝𝑝(𝐗𝐗𝑡𝑡+1|𝐗𝐗𝑡𝑡,𝚲𝚲))�
X∈𝒳𝒳

𝑝𝑝(𝐗𝐗|O,𝚲𝚲′)

+ � �� log
𝑇𝑇

𝑡𝑡=1

(𝑝𝑝(𝑂𝑂𝑡𝑡+1|𝐗𝐗𝑡𝑡+1,𝚲𝚲)�
X∈𝒳𝒳

𝑝𝑝(𝐗𝐗|O,𝚲𝚲′)        (15)

 

This expression readily extends to several traces by adding another sum over the trace indi-
ces. Each term can now be optimized individually, enabling to find the optimal set of pa-
rameters for the initial condition, the state transitions (which contain the coupling function), 
and the emissions. 
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2.13.1.2.2.2. Estimation of the initial condition 

Taking the derivative of the first term in Eq (15) with respect to the components of 
𝛑𝛑 leads to the optimal initial condition: 

𝛑𝛑𝑖𝑖 = 𝑝𝑝(𝐗𝐗0 = x𝑖𝑖|O,𝚲𝚲′)       (16) 

2.13.1.2.2.3. Estimation of the coupling function 

The coupling function is parameterized on a grid of 𝑁𝑁2 parameters, such that 𝐹𝐹𝑖𝑖𝑖𝑖 
corresponds to the coupling for the pair of phases (𝜃𝜃𝑖𝑖 ,𝜙𝜙𝑗𝑗) ∈ 𝚿𝚿2. Due to this high number of 
parameters, regularization constraints were added. Specifically, the squared norm of the gra-

dient, ||𝛻𝛻𝐹𝐹𝑖𝑖𝑖𝑖||2 = (𝐹𝐹𝑖𝑖+1,𝑗𝑗−𝐹𝐹𝑖𝑖,𝑗𝑗
𝛥𝛥𝛥𝛥

)2 + (𝐹𝐹𝑖𝑖,𝑗𝑗+1−𝐹𝐹𝑖𝑖,𝑗𝑗
𝛥𝛥𝛥𝛥

)2 is used to control for smoothness. In addition, we 

controlled the sparseness of the coupling function using the squared norm. The penalized 
version of 𝑄𝑄 is therefore: 

𝑄𝑄𝑝𝑝(𝚲𝚲,𝚲𝚲′) = 𝑄𝑄(𝚲𝚲,𝚲𝚲′) − 𝜆𝜆1� |
𝑖𝑖,𝑗𝑗

|𝛻𝛻𝛻𝛻𝑖𝑖𝑖𝑖||2 − 𝜆𝜆2�𝐹𝐹𝑖𝑖𝑖𝑖2        (17)
𝑖𝑖,𝑗𝑗

 

Starting again from Eq. (17) augmented with these new penalization terms yields: 

𝜕𝜕𝑄𝑄𝑝𝑝(𝚲𝚲,𝚲𝚲′)
𝜕𝜕𝐹𝐹𝑘𝑘𝑘𝑘

=
𝜕𝜕
𝜕𝜕𝐹𝐹𝑘𝑘𝑘𝑘

�� �� log
𝑡𝑡

(𝑝𝑝(𝐗𝐗𝑡𝑡+1|𝐗𝐗𝑡𝑡,𝚲𝚲))�
X∈𝒳𝒳

𝑝𝑝(𝐗𝐗|O,𝚲𝚲′)�
�������������������������������

𝐸𝐸1

−
𝜕𝜕
𝜕𝜕𝐹𝐹𝑘𝑘𝑘𝑘

�𝜆𝜆1� |
𝑖𝑖,𝑗𝑗

�𝛻𝛻𝐹𝐹𝑖𝑖𝑖𝑖�|2 + 𝜆𝜆2�𝐹𝐹𝑖𝑖𝑖𝑖2
𝑖𝑖,𝑗𝑗

�
�����������������������

𝐸𝐸2

 (18) 

The first part of this equation, 𝐸𝐸1, corresponds to the state transitions, while the second 
part, 𝐸𝐸2, corresponds to the penalization. Equating this to zero to find the maxima condi-
tions, and explicitly taking the sequence of cell-cycle states into account, we obtain: 

𝜕𝜕
𝜕𝜕𝐹𝐹𝑘𝑘𝑘𝑘

[� � �
𝑘𝑘1,𝑘𝑘2𝑗𝑗1,𝑗𝑗2𝑖𝑖1,𝑖𝑖2

� log
𝑡𝑡

(𝑝𝑝(𝜃𝜃𝑖𝑖2 ,𝑎𝑎𝑗𝑗2 , 𝑏𝑏𝑘𝑘2|𝜃𝜃𝑖𝑖1 ,𝜙𝜙𝑡𝑡 ,𝑎𝑎𝑗𝑗1 , 𝑏𝑏𝑘𝑘1 ,𝚲𝚲))

𝑝𝑝(x𝑡𝑡 = (𝜃𝜃𝑖𝑖1 ,𝑎𝑎𝑗𝑗1 , 𝑏𝑏𝑘𝑘1), x𝑡𝑡+1 = (𝜃𝜃𝑖𝑖2 ,𝑎𝑎𝑗𝑗2 , 𝑏𝑏𝑘𝑘2)|O,𝚲𝚲′)] = 𝐸𝐸2

       (19) 

Note here that 𝜃𝜃𝑖𝑖1 ,𝜃𝜃𝑖𝑖2 ,𝑎𝑎𝑗𝑗1 ,𝑎𝑎𝑗𝑗2 , 𝑏𝑏𝑘𝑘1 , 𝑏𝑏𝑘𝑘2 are hidden states, for which we infer a distribution of 
probability with the HMM, while 𝜙𝜙𝑡𝑡 is given as an external parameter. Now, the Markov 
propagators for the phase, amplitude and background being independent (cf. Eq. 8), we have: 

log�𝑝𝑝(𝜃𝜃𝑖𝑖2 ,𝑎𝑎𝑗𝑗2 , 𝑏𝑏𝑘𝑘2|𝜃𝜃𝑖𝑖1 ,𝜙𝜙𝑡𝑡 ,𝑎𝑎𝑗𝑗1 , 𝑏𝑏𝑘𝑘1 ,𝚲𝚲))� = log�𝑝𝑝(𝜃𝜃𝑖𝑖2|𝜃𝜃𝑖𝑖1 ,𝜙𝜙𝑡𝑡 ,𝚲𝚲)�
+log�𝑝𝑝(𝑎𝑎𝑗𝑗2|𝑎𝑎𝑗𝑗1 ,𝚲𝚲)� + log�𝑝𝑝(𝑏𝑏𝑘𝑘2|𝑏𝑏𝑘𝑘1 ,𝚲𝚲)�

       (20) 

Since the transitions probabilities for the amplitude and the background do not depend on 
the coupling function, they cancel out with the derivative. The remaining sum leads to the 
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marginal joint distribution of phases at time 𝑡𝑡 and 𝑡𝑡 + 1. To keep continuity with the previ-
ous notation, we denote the marginal 𝑝𝑝(𝜃𝜃𝑡𝑡 = 𝜃𝜃𝑖𝑖) = ∑ 𝑝𝑝𝜃𝜃𝑖𝑖,𝑎𝑎𝑗𝑗,𝑏𝑏𝑘𝑘 (x𝑡𝑡 = (𝜃𝜃𝑖𝑖 ,𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑘𝑘)) by 𝑝𝑝(x𝑡𝑡 =

(𝜃𝜃𝑖𝑖 , . , . )). 
We therefore have: 

𝜕𝜕
𝜕𝜕𝐹𝐹𝑘𝑘𝑘𝑘

�� � log
𝑡𝑡𝑖𝑖1,𝑖𝑖2

�𝑝𝑝�𝜃𝜃𝑖𝑖2�𝜃𝜃𝑖𝑖1 ,𝜙𝜙𝑡𝑡 ,𝚲𝚲��𝑝𝑝�x𝑡𝑡 = �𝜃𝜃𝑖𝑖1 , . , . �, x𝑡𝑡+1 = �𝜃𝜃𝑖𝑖2 , . , . ��O,𝚲𝚲′�� = 𝐸𝐸2      (21) 

Now, 𝑝𝑝(x𝑡𝑡 = (𝜃𝜃𝑖𝑖1 , . , . ), x𝑡𝑡+1 = (𝜃𝜃𝑖𝑖2 , . , . )|O,𝚲𝚲′) doesn’t depend on the new coupling function 
parameters 𝐹𝐹𝑘𝑘𝑘𝑘, so it can be treated as a multiplicative constant. Defining 𝜔𝜔𝜃𝜃 = 2𝜋𝜋/𝑇𝑇𝜃𝜃, this 
yields: 

𝜕𝜕
𝜕𝜕𝐹𝐹𝑘𝑘𝑘𝑘

[� �
𝑡𝑡𝑖𝑖1,𝑖𝑖2

log�
1

𝜎𝜎𝜃𝜃√2𝜋𝜋𝜋𝜋𝜋𝜋
𝑒𝑒
−12�

𝜃𝜃𝑖𝑖2−(𝜃𝜃𝑖𝑖1+𝜔𝜔𝜃𝜃𝑑𝑑𝑑𝑑+𝐹𝐹(𝜃𝜃𝑖𝑖1 ,𝜙𝜙𝑡𝑡)𝑑𝑑𝑡𝑡)
𝜎𝜎𝜃𝜃
2𝑑𝑑𝑑𝑑

�
2

�

𝑝𝑝(x𝑡𝑡 = (𝜃𝜃𝑖𝑖1 , . , . ), x𝑡𝑡+1 = (𝜃𝜃𝑖𝑖2 , . , . )|O,𝚲𝚲′)] = 𝐸𝐸2         (22)

 

All the terms that do not depend on 𝐹𝐹𝑘𝑘𝑘𝑘 = 𝐹𝐹(𝜃𝜃𝑘𝑘,𝜙𝜙𝑙𝑙) are removed by the derivative, which 
simplifies to: 

� �
𝜃𝜃𝑖𝑖2 − (𝜃𝜃𝑘𝑘 + 𝜔𝜔𝜃𝜃𝑑𝑑𝑑𝑑 + 𝐹𝐹𝑘𝑘𝑘𝑘𝑑𝑑𝑑𝑑)

𝜎𝜎𝜃𝜃2
�𝑡𝑡�𝜙𝜙𝑡𝑡 = 𝜙𝜙𝑙𝑙�𝑖𝑖2

𝑝𝑝�x𝑡𝑡 = (𝜃𝜃𝑘𝑘, . , . ), x𝑡𝑡+1 = �𝜃𝜃𝑖𝑖2 , . , . ��O,𝚲𝚲′�

= 𝐸𝐸2       (23) 

𝐹𝐹𝑘𝑘𝑘𝑘 can now be isolated, and we can sum over 𝜃𝜃𝑖𝑖2 in the denominator: 

𝐹𝐹𝑘𝑘𝑘𝑘

=
−𝜎𝜎𝜃𝜃2𝐸𝐸2 + ∑ ∑ �𝜃𝜃𝑖𝑖2 − (𝜃𝜃𝑘𝑘 + 𝜔𝜔𝜃𝜃𝑑𝑑𝑑𝑑)�{𝑡𝑡|𝜙𝜙𝑡𝑡=𝜙𝜙𝑙𝑙}𝑖𝑖2 𝑝𝑝(x𝑡𝑡 = (𝜃𝜃𝑘𝑘, . , . ), x𝑡𝑡+1 = (𝜃𝜃𝑖𝑖2 , . , . )|O,𝚲𝚲′)

𝑑𝑑𝑑𝑑 ∑ 𝑝𝑝{𝑡𝑡|𝜙𝜙𝑡𝑡=𝜙𝜙𝑙𝑙} (x𝑡𝑡 = (𝜃𝜃𝑘𝑘, . , . )|O,𝚲𝚲′)       (24) 

Note that the function 𝑤𝑤(𝜃𝜃) is involved non-explicitly in this equation, through the compu-
tation of the posterior phase distributions. From Eq. 18, we find: 

𝐸𝐸2 =
𝜕𝜕
𝜕𝜕𝐹𝐹𝑘𝑘𝑘𝑘

�𝜆𝜆1� (
𝑖𝑖,𝑗𝑗

𝐹𝐹𝑖𝑖+1,𝑗𝑗 − 𝐹𝐹𝑖𝑖,𝑗𝑗
𝛥𝛥𝛥𝛥 )2 + (

𝐹𝐹𝑖𝑖,𝑗𝑗+1 − 𝐹𝐹𝑖𝑖,𝑗𝑗
𝛥𝛥𝛥𝛥 )2 + 𝜆𝜆2�𝐹𝐹𝑖𝑖𝑖𝑖2

𝑖𝑖,𝑗𝑗

�         (25) 

Taking the derivative, and re-injecting into Eq. (24) yields: 
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𝐹𝐹𝑘𝑘𝑘𝑘 �𝑑𝑑𝑑𝑑 � 𝑝𝑝
{𝑡𝑡|𝜙𝜙𝑡𝑡=𝜙𝜙𝑙𝑙}

(x𝑡𝑡 = (𝜃𝜃𝑘𝑘, . , . )|O,𝚲𝚲′) +
8𝜆𝜆1𝜎𝜎𝜃𝜃2

𝛥𝛥𝜓𝜓2 + 2𝜆𝜆2𝜎𝜎𝜃𝜃2�

−
2𝜆𝜆1𝜎𝜎𝜃𝜃2

𝛥𝛥𝜓𝜓2 𝐹𝐹𝑘𝑘−1,𝑙𝑙 −
2𝜆𝜆1𝜎𝜎𝜃𝜃2

𝛥𝛥𝜓𝜓2 𝐹𝐹𝑘𝑘+1,𝑙𝑙 −
2𝜆𝜆1𝜎𝜎𝜃𝜃2

𝛥𝛥𝜓𝜓2 𝐹𝐹𝑘𝑘,𝑙𝑙+1 −
2𝜆𝜆1𝜎𝜎𝜃𝜃2

𝛥𝛥𝜓𝜓2 𝐹𝐹𝑘𝑘,𝑙𝑙−1

= � � �𝜃𝜃𝑖𝑖2 − (𝜃𝜃𝑘𝑘 + 𝜔𝜔𝜃𝜃𝑑𝑑𝑑𝑑)�
{𝑡𝑡|𝜙𝜙𝑡𝑡=𝜙𝜙𝑙𝑙}𝑖𝑖2

𝑝𝑝(x𝑡𝑡 = (𝜃𝜃𝑘𝑘, . , . ), x𝑡𝑡+1 = (𝜃𝜃𝑖𝑖2 , . , . )|O,𝚲𝚲′)

       (26) 

For readability, we define the new following quantities: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝑄𝑄1 = 𝑑𝑑𝑑𝑑 � 𝑝𝑝

{𝑡𝑡|𝜙𝜙𝑡𝑡=𝜙𝜙𝑙𝑙}

(x𝑡𝑡 = (𝜃𝜃𝑘𝑘, . , . )|O,𝚲𝚲′) +
8𝜆𝜆1𝜎𝜎𝜃𝜃2

𝛥𝛥𝜓𝜓2 + 2𝜆𝜆2𝜎𝜎𝜃𝜃2

𝑄𝑄2 = −
2𝜆𝜆1𝜎𝜎𝜃𝜃2

𝛥𝛥𝜓𝜓2

𝑄𝑄𝑘𝑘,𝑙𝑙 = � � �𝜃𝜃𝑖𝑖2 − (𝜃𝜃𝑘𝑘 + 𝜔𝜔𝜃𝜃𝑑𝑑𝑑𝑑)�
{𝑡𝑡|𝜙𝜙𝑡𝑡=𝜙𝜙𝑙𝑙}𝑖𝑖2

𝑝𝑝(x𝑡𝑡 = (𝜃𝜃𝑘𝑘 , . , . ), x𝑡𝑡+1 = (𝜃𝜃𝑖𝑖2 , . , . )|O,𝚲𝚲′)

        (27) 

This gives: 

𝐹𝐹𝑘𝑘𝑘𝑘𝑄𝑄1 + �𝐹𝐹𝑘𝑘−1,𝑙𝑙 + 𝐹𝐹𝑘𝑘+1,𝑙𝑙 + 𝐹𝐹𝑘𝑘,𝑙𝑙−1 + 𝐹𝐹𝑘𝑘,𝑙𝑙+1�𝑄𝑄2 = 𝑄𝑄𝑘𝑘,𝑙𝑙            (28) 

This is a linear equation for 𝐹𝐹𝑘𝑘𝑘𝑘. Since Eq. (28) holds ∀𝑘𝑘, 𝑙𝑙 ∈ ℕ2, this can be rewritten as: 

Ax = b        (29) 

Where A is a matrix containing the 𝑄𝑄1 and 𝑄𝑄2 terms, x is the vector containing the 𝐹𝐹𝑘𝑘𝑘𝑘 
terms and b the vector containing the 𝑄𝑄𝑘𝑘,𝑙𝑙 terms. Due to the regularization, 𝑄𝑄1 is always 
invertible. 

2.13.1.2.2.4. Regularization 

𝜆𝜆1 is found using four-fold cross-validation, i.e. by splitting the NIH3T3 dataset into 
four chunks and scanning which 𝜆𝜆1 value gives the best generalization, i.e. maximizes the 
likelihood of the left-out test traces. The resulting value is 10−6. 

The value of 𝜆𝜆2 is set according to the following principle. The update expression for the 
coupling function (when 𝜆𝜆1 = 0) reads: 

𝐹𝐹𝑘𝑘𝑘𝑘 =
∑ ∑ �𝜃𝜃𝑖𝑖2 − (𝜃𝜃𝑘𝑘 + 𝜔𝜔𝜃𝜃𝑑𝑑𝑑𝑑)�{𝑡𝑡|𝜙𝜙𝑡𝑡=𝜙𝜙𝑙𝑙}𝑖𝑖2 𝑝𝑝(x𝑡𝑡 = (𝜃𝜃𝑘𝑘, . , . ), x𝑡𝑡+1 = (𝜃𝜃𝑖𝑖2 , . , . )|O,𝚲𝚲′)

2𝜎𝜎𝜃𝜃2𝜆𝜆2 + 𝑑𝑑𝑑𝑑 ∑ 𝑝𝑝{𝑡𝑡|𝜙𝜙𝑡𝑡=𝜙𝜙𝑙𝑙} (x𝑡𝑡 = (𝜃𝜃𝑘𝑘, . , . )|O,𝚲𝚲′)
        (30) 

Thus, 𝜆𝜆2 buffers the sum 𝑑𝑑𝑑𝑑 ∑ 𝑝𝑝{𝑡𝑡|𝜙𝜙𝑡𝑡=𝜙𝜙𝑙𝑙} (x𝑡𝑡 = (𝜃𝜃𝑘𝑘 , . , . )|O,𝚲𝚲′), especially when the latter is 
small, i.e. for the phase-space points which are rarely visited by the cells. Defining 𝑇𝑇 as the 
total number of time measurements (from all cells), we set: 
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𝜆𝜆2 =
𝑇𝑇𝜆𝜆2′
2𝜎𝜎𝜃𝜃2

𝑑𝑑𝑑𝑑.       (31) 

The interpretation is as follow: given a phase-space state that is visited once in T time points, 
if 𝜆𝜆2′ = 1

𝑇𝑇
 then the corresponding coupling parameter is halved. More visited states lead to 

more robust coupling parameters, and conversely for less visited states. 

In practice, we want to be able to interpret 𝜆𝜆2′ independently of the total number of time 
points, and we therefore compute it in units of cell-cycle periods, such that the coupling 
parameter of a state visited once every 200 cell-cycles is halved, that is: 

𝜆𝜆2′ =
1

200𝑇𝑇𝜙𝜙
        (32) 

2.13.1.3. Assessment of model assumptions 

In our model for the signal 𝑆𝑆𝑡𝑡 = exp(𝐴𝐴𝑡𝑡)𝑤𝑤(𝜃𝜃𝑡𝑡) + 𝐵𝐵𝑡𝑡 + 𝜉𝜉, we assumed that the dy-
namics of the amplitude, background and phase variables 𝐴𝐴𝑡𝑡, 𝐵𝐵𝑡𝑡 and 𝜃𝜃𝑡𝑡 were uncoupled. 
Within our probabilistic framework, we can a posteriori verify this hypothesis, by analyzing 
the joint posterior distribution 𝑃𝑃(𝜃𝜃𝑡𝑡 ,𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡|𝐎𝐎). Indeed, we can compute the expected values 
of the three latent variables corresponding to each measured observation 𝑂𝑂𝑡𝑡 as follows: 

⎩
⎪⎪
⎨

⎪
⎪
⎧𝔼𝔼[𝜃𝜃𝑡𝑡] = arg(�𝑝𝑝

𝑖𝑖,𝑗𝑗,𝑘𝑘

(𝜃𝜃𝑡𝑡 = 𝜃𝜃𝑖𝑖 ,𝐴𝐴𝑡𝑡 = 𝑎𝑎𝑗𝑗 ,𝐵𝐵𝑡𝑡 = 𝑏𝑏𝑘𝑘|O)𝑒𝑒𝑖𝑖𝜃𝜃𝑖𝑖)

𝔼𝔼[𝐴𝐴𝑡𝑡] = �𝑝𝑝
𝑖𝑖,𝑗𝑗,𝑘𝑘

(𝜃𝜃𝑡𝑡 = 𝜃𝜃𝑖𝑖 ,𝐴𝐴𝑡𝑡 = 𝑎𝑎𝑗𝑗 ,𝐵𝐵𝑡𝑡 = 𝑏𝑏𝑘𝑘|O)𝑎𝑎𝑗𝑗

𝔼𝔼[𝐵𝐵𝑡𝑡] = �𝑝𝑝
𝑖𝑖,𝑗𝑗,𝑘𝑘

(𝜃𝜃𝑡𝑡 = 𝜃𝜃𝑖𝑖 ,𝐴𝐴𝑡𝑡 = 𝑎𝑎𝑗𝑗 ,𝐵𝐵𝑡𝑡 = 𝑏𝑏𝑘𝑘|O)𝑏𝑏𝑘𝑘

        (33) 

As shown in Supplementary Information Figure 1.3, both the expected amplitudes and back-
grounds are on average only weakly dependent on the expected phases. Indeed, the means 
for A and B vary by, respectively, less than ±10% and ±20% compared to the global means. 
In fact, the variation in the means of these expected values in function of the phases is much 
lower than the spread observed in the phase bins (corresponding to the many measurements 
with the same expected phases). 
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Supplementary Information Figure 1.3: Expected value of the amplitude 𝐴𝐴𝑡𝑡 (left) and background 
𝐵𝐵𝑡𝑡 (right) in function of the expected circadian phase 𝜃𝜃𝑡𝑡 (binned). The data show the means (dots) and 
standard deviations computed over all the NIH3T3 cell traces, all temperature included. 

Similarly, we then analyzed the (a posteriori) estimated phase noise 𝜎𝜎𝜃𝜃 in function of the 
circadian phase 𝜃𝜃𝑡𝑡. To do this, we compute a phase-dependent estimate of 𝜎𝜎𝜃𝜃: 

𝜎𝜎𝜃𝜃2(𝜃𝜃𝑖𝑖) =
∑ �𝜃𝜃𝑘𝑘 − (𝜃𝜃𝑖𝑖 + (𝜔𝜔𝜃𝜃 + 𝐹𝐹(𝜃𝜃𝑖𝑖 ,𝜙𝜙𝑗𝑗)𝑑𝑑𝑑𝑑)�2𝑗𝑗,𝑘𝑘,𝑡𝑡 𝑝𝑝�𝜃𝜃𝑡𝑡 = 𝜃𝜃𝑖𝑖 ,𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑘𝑘�𝜙𝜙𝑡𝑡 = 𝜙𝜙𝑗𝑗 ,O�

𝑑𝑑𝑑𝑑 ∑ 𝑝𝑝𝑗𝑗,𝑘𝑘,𝑡𝑡 �𝜃𝜃𝑡𝑡 = 𝜃𝜃𝑖𝑖 ,𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑘𝑘�𝜙𝜙𝑡𝑡 = 𝜙𝜙𝑗𝑗 ,O�
        (34) 

Results (Supplementary Information Figure 1.4, left) reveal only very weak dependence of 
𝜎𝜎𝜃𝜃2 over the circadian phase 𝜃𝜃. Indeed, the means in 𝜎𝜎𝜃𝜃 vary from 0.016 to 0.017, i.e. a 
deviation of about ±6%. 

Finally, we analyzed the measurement noise 𝜉𝜉. We thus computed the prediction of the 
model 𝑦𝑦𝑡𝑡 as 𝑦𝑦𝑡𝑡 = exp(𝔼𝔼[𝐴𝐴𝑡𝑡])𝑤𝑤(𝔼𝔼[𝜃𝜃𝑡𝑡]) + 𝔼𝔼[𝐵𝐵𝑡𝑡], and analyzed the distributions of residuals 
𝑦𝑦𝑡𝑡 − 𝑂𝑂𝑡𝑡 binned by expected circadian phase (Supplementary Information Figure 1.4, right). 
Here, we find that the residuals are centered on 0 within a good approximation (±0.035), 
showing that there is no systematic bias in the noise model. 

 

Supplementary Information Figure 1.4: Left: Evolution of the distribution of phase diffusion coeffi-
cient estimates 𝜎𝜎𝜃𝜃2 with the expected circadian phase 𝜃𝜃𝑡𝑡 (binned). Right: Evolution of the distribution of 
residuals 𝑦𝑦𝑡𝑡 − 𝑂𝑂𝑡𝑡 with the expected circadian phase 𝜃𝜃𝑡𝑡  (binned). Dark horizontal dashes indicate the 
means. The computations are made from the distributions computed on all the traces coming from NIH3T3 
cells, all temperature included. 



Chapter 1: Low-dimensional Dynamics of Two Coupled Biological Oscillators 

 
111 

2.13.1.4. Assessment of the parameter estimation 

To assess the parameter estimation, we simulated traces in silico and re-estimated 
the parameters using the same methods as for the experimental traces. The generated traces 
were of the same scale and length as the experimental traces. The regression parameters 𝛾𝛾𝐴𝐴, 
𝛾𝛾𝐵𝐵 and the noise parameters 𝜎𝜎𝑒𝑒 were taken from Supplementary Information Table 1.1. 

Supplementary Information Table 1.2 summarizes the results for all estimated param-
eters. Although we expect some imprecisions due to the stochasticity of the system, the 
relative error remains low for every parameter. 

 𝑇𝑇𝜃𝜃(ℎ) 𝜎𝜎𝜃𝜃(𝑟𝑟𝑟𝑟𝑟𝑟.ℎ−1/2) 𝜇𝜇𝐴𝐴 𝜎𝜎𝐴𝐴 𝜇𝜇𝐵𝐵 𝜎𝜎𝐵𝐵 

Simulated 24.0 0.16 -0.28 0.11 0.08 0.05 

Estimated 24.0 0.16 -0.24 0.11 0.04 0.05 

Supplementary Information Table 1.2: Simulated and estimated model parameters. 

For the reliability of the estimated coupling function, we refer to the main text (Supplemen-
tary Figure 1.1, panels b and c). 

2.13.2. Simulations of the dynamical system 

2.13.2.1. Model 

A deterministic model for the phase dynamics is obtained by removing the phase 
noise term from the full model. In addition, to study the bifurcations (phase locked states) 
in function of the coupling strength, we added a multiplicative factor for the coupling func-
tion called 𝐾𝐾: (𝐾𝐾 = 1 for the biological coupling value). 

⎩
⎪
⎨

⎪
⎧𝜃̇𝜃 =

2𝜋𝜋
𝑇𝑇𝜃𝜃

+ 𝐾𝐾𝐾𝐾(𝜃𝜃,𝜙𝜙)

𝜙̇𝜙 =
2𝜋𝜋
𝑇𝑇𝜙𝜙

                       
        (35) 

2.13.2.2. Phase-locked states 

Weakly coupled oscillators can phase-lock when the ratio of their natural period is 
close to a ratio of integer numbers, i.e. 𝑇𝑇𝜃𝜃

𝑇𝑇𝜙𝜙
≃ 𝑝𝑝

𝑞𝑞
 with 𝑝𝑝, 𝑞𝑞 ∈ ℕ [1]. To characterize mode-locked 

states, we estimate 𝜔𝜔‾𝜃𝜃, defined as the average circadian phase velocity: 

𝜔𝜔‾𝜃𝜃 = lim
𝑡𝑡→∞

𝜃𝜃(𝑡𝑡)
𝑡𝑡         (36) 



Published article 

 
112 

Phase-locking occurs when 𝜔𝜔‾𝜃𝜃 remain constant within an interval of cell-cycle frequencies 
𝜔𝜔𝜙𝜙, as represented by Arnold tongue diagrams. Outside of such stable intervals, the dynam-
ics is quasiperiodic. 

2.13.3. Correspondence between cell-cycle phase and bio-
logical cell-cycle events 

In our model, we assumed a linear progression of the cell-cycle phase between two 
successive divisions. To get a better handle on the relation between this measure and cell-
cycle events, we generated a set of 104 experimental traces from NIH3T3 cells expressing the 
FUCCI cell-cycle sensor[123]. To obtain estimates of the boundaries for the different cell-
cycle events, we normalized and rescaled all fluorescent signals before mapping them to a 0 
to 2𝜋𝜋 interval (from division to division, Supplementary Information Figure 1.5). Despite 
biological variability, the growth phase 1 (G1) generally spans from 0 to 0.4 × 2𝜋𝜋 rad, while 
DNA replication and growth phase 2 (S-G2) usually occur between 0.4 × 2𝜋𝜋 rad and 
0.95 × 2𝜋𝜋 rad. Mitosis usually happens from 0.95 × 2𝜋𝜋 rad to 2𝜋𝜋 rad. 

 

Supplementary Information Figure 1.5: Normalized experimental traces from NIH3T3 cells express-
ing the FUCCI cell-cycle reporter system enable the association between the physical cell-cycle phase and 
the biological phase. The red and green fluorescence signals correspond respectively to mKO2-Cdt1 and 
mAG-Geminin FUCCI reporters. The vertical grey lines denote the (approximate) separation between the 
different biological cell-cycle phases. 
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2.13.4. Analysis of a population of bioluminescence traces 
under temperature entrainment 

 

Supplementary Information Figure 1.6: (a) Observed 𝑂𝑂(𝑡𝑡), smoothed 𝑅𝑅(𝑡𝑡) and corrected 𝑅𝑅(𝑡𝑡) signals 
obtained from U2OS cells expressing a PGK-luciferase reporter grown at low cell confluence. (b) Recorded 
35.5°C-38.5°C temperature entrainment (black) and smoothed signal (red, T(t)) from (a). (c) Normalized 
PGK-Luc signal obtained from U2OS cells grown at different confluences (black) and the optimal fit using 
td = 80 min and k = −0.26 (red). 

The enzymatic activity of luciferase is known to be higher at lower temperature[164]. 
Since we applied temperature cycles from 35.5°C to 38.5°C for entrainment, even a luciferase 
reporter driven by a constitutive gene, e.g. Pgk, would show an oscillatory signal (Supple-
mentary Information Figure 1.6, panels a and b)[167], [168]. To correct the signal for this 
systematic effect, we found that the observed signal 𝑂𝑂(𝑡𝑡) could be well fitted by the following 
expression: 



Published article 

 
114 

𝑂𝑂(𝑡𝑡) = 𝑅𝑅(𝑡𝑡)(1 + 𝑘𝑘(𝑇𝑇(𝑡𝑡 − 𝑡𝑡𝑑𝑑) − 𝑇𝑇0)       (37) 

where 𝑅𝑅(𝑡𝑡) is the real signal exempts of any temperature artifact, 𝑇𝑇(𝑡𝑡) is the temperature 
profile, 𝑇𝑇0 = 37°C), 𝑘𝑘 = is a magnitude coefficient, and 𝑡𝑡𝑑𝑑 minutes a time delay. To deter-
mine the free parameters 𝑡𝑡𝑑𝑑 and 𝑘𝑘, we used the luciferase signal obtained from U2OS cells 
expressing a PGK luciferase reporter (U2OS-PGK-Luc) which is expected to yield a non-
oscillating signal after correction (Supplementary Information Figure 1.6a). Specifically, we 
optimized 𝑑𝑑 and 𝑘𝑘 to best fit 𝑂𝑂(𝑡𝑡), after smoothing 𝑂𝑂(𝑡𝑡) to obtain a proxy for 𝑅𝑅(𝑡𝑡). The 
optimal fit yielded 𝑡𝑡𝑑𝑑 = 80 minutes and 𝑘𝑘 = −0.26 (Supplementary Information Figure 1.6c). 
These values of 𝑡𝑡𝑑𝑑 and 𝑘𝑘 were then used to detrend the circadian luminescence signals using 
Eq. (37). Importantly, we performed all our luciferase experiments using the Luc2p luciferase 
(Promega), a destabilized version of the WT Photinus pyralis luciferase optimized for ex-
pression in mammals. Consequently, we could use the optimized 𝑡𝑡𝑑𝑑 and 𝑘𝑘 to retrieve the 
corrected signal 𝑅𝑅(𝑡𝑡) for all our constructs. 
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Chapter 2: Space-time logic of liver 
gene expression at sublobular scale 

This work is currently under review at Nature Metabolism. It is available as a pre-
print on BioRxiv (https://doi.org/10.1101/2020.03.05.976571). Authors list is as follow (first 
authors in bold): C. Droin, J. El Kholtei, K. B. Halpern, C. Hurni, M. Rozenberg, S. 
Muvkadi, S. Itzkovitz, F. Naef. 

Contributions 
In all the tasks listed below, my work is always under the supervision of F. Naef. 

F. Naef and S. Itzkovitz conceived the study. K.B. Halpern, J. El Kholtei and C. Hurni prepared the 
samples and performed the experiments. K.B. Halpern and C. Hurni did the FISH experiments and parsed 
the corresponding images (Figure 4, left). J. El Kholtei did the reconstruction and scripts to generate the 
t-SNE (Figure 1, top). I designed the modelling. I analysed the reconstructed data along with the corre-
sponding fits (Figure 1-4 with corresponding supplementary Figures). Along with J. El Kholtei, I performed 
the functional analysis (Fig 5-6). With input from S. Itzkovitz and J. El Kholtei, F. Naef and I wrote the 
full manuscript and I generated/cleaned all Figures and all Tables, including supplementary figures. F. 
Naef, S. Itzkovitz, J. El Kholtei., K.B. Halpern and I reviewed the manuscript before submission. 

 

Artwork figure 3: Visual abstract of the phenomena in play in circadian zonation: in mouse hepatic 
lobules, gene expression can vary depending on the positions of the hepatocytes along the portal-central 
axis (zonation), and on the time of the day (circadian rhythm).  

https://doi.org/10.1101/2020.03.05.976571
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1. Project introduction 

1.1. Motivation and aims 

Liver gene expression is a fundamental topic in biology and medicine as the liver is 
crucial for body metabolism. So far, gene expression has been studied either temporally, at 
the bulk level, either spacially, in specific lobule areas. Temporal studies were made with 
transcriptomics[149] and proteomics[169]. In contrast, spatial ones were done using either 
fluorescent in situ hybridisation (FISH)[170], either immunohistochemistry[171], or by 
FACS-sorting periportal and pericentral hepatocyte populations followed by RNA-seq[172]. 

Recently, the work of Bahar Halpern and Shenhav et al. used single-cell RNA-sequencing to 
investigate liver zonation on a genome-wide scale with high spatial resolution[173].  This 
revealed a wide breadth of spatial heterogeneity in mRNA expression that happens to coin-
cide with an intricate organisation of spatially non-uniform liver functions. In parallel, the 
Naef lab showed how both the circadian clock and the feeding fasting cycles pervasively drive 
rhythms of gene expression in bulk, impacting key sectors of liver physiology[174]. 

By extending the work of Bahar Halpern and Shenhav et al. to four timepoints distributed 
along the day, this project aims to provide the first exhaustive analysis of mouse liver gene 
expression with both spatial and temporal resolution. This should answer how, and to which 
extent, liver zonation is modulated by circadian rhythms and ultimately how the intricate spa-
tial and temporal activity patterns of the mammalian liver are achieved. 

1.2.  Background 

1.2.1. The mammalian liver22 

The liver is the biggest solid organ of the human body and is crucial for its metab-
olism. One of its primary functions is regulating the concentration of blood glucose and fatty 
acids in the blood. It stores glucose and fatty acids in the form of glycogen and triacylglycer-
ides, respectively, and can degrade and release them into the blood on demand. The liver 
also plays a vital role in processes such as detoxification and bile acid production. 

Structurally, the liver is built up of many small (about 1 mm in diameter[175]) hexagonal 
lobules (Background Figure 2.1). They are the functional unit of the liver and contain portal 
nodes at the edges and a vein in the centre. The nodes consist of a vein coming from the 

 
22 Parts of the introduction that follows regarding the mammalian liver is adapted, with permission, from 
the notes of one colleague and co-author of our study, Jakob El Kholtei.  
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intestine, an artery coming from the heart and a bile duct. Blood flows from the peripheral 
artery and vein through tiny blood vessels called sinusoids towards the central vein. This 
directional blood flow leads to gradients of nutrients and signalling molecules along the si-
nusoid. The cells of the liver are therefore exposed to different microenvironments defined 
by their position in the lobule. Research in the last decades has uncovered that the liver’s 
parenchymal cells, the hepatocytes, are influenced by their microenvironment and take up 
functions specific to the region of the lobule in which they reside. It was shown early that 
metabolic enzymes such as glutamine synthetase and glucose-6-phosphatase are differentially 
distributed within a lobule, suggesting that key metabolic processes such as gluconeogenesis 
and glutamine synthesis are taking place in distinct zones of the liver lobule[176], [177]. This 
phenomenon is called zonation and, by now, a great number of cellular processes are known 
to be specifically located in sub-areas of the liver lobule[178], [179]. A recent study from the 
Itzkovitz lab showed around 50% of expressed liver genes to be spatially zonated[173]. 

 
Background Figure 2.1: The liver is composed of hexagonal lobules. Portal triads consisting of a 
hepatic artery (red), a portal vein (blue) and bile duct (green) are located at the lobule corners, also termed 
portal nodes. Blood flows through radial sinusoids and drains into the central vein. Concentric layers of 
hepatocytes are positioned on the axis between the central vein and the portal node. Liver non-parenchy-
mal cells that support hepatocyte function, such as Kupffer cells (light green), liver endothelial cells (LECs; 
blue and red) and hepatic stellate cells (purple) reside along the lobule axis. Bile secreted from hepatocytes 
flows from the central to the portal zone through bile canaliculi that drain into the bile duct. Blood flow 
and secreted morphogens give rise to a spatially graded microenvironment, resulting in different functions 
assigned to different layers. Figure and caption taken from the review by Ben-Moshe and Itzkovitz, 
2019[180]. 
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1.2.2. Regulation of liver zonation 

Different theories exist as to how liver zonation is achieved and regulated. The ob-
served differences might arise during organismal development or be determined as cells dif-
ferentiate throughout life[176], [181], [182]. Most evidence, however, supports a model by 
which the spatial diversity is continuously controlled by concentration gradients of blood-
borne nutrients as well as morphogens like wnt and hedgehog[183]. Gradients of bloodborne 
factors arise due to the blood’s entrance to the lobule at the portal nodes and its flow 
towards the centre, during which the composition of the blood changes as a result of cells 
taking up and secreting nutrients and other compounds. 

The concentration gradient of oxygen is one crucial determinant. Its concentration is highest 
close to the portal node (periportal), therefore allowing more oxidative phosphorylation to 
take place in this area[184]. Correspondingly, periportal cells contain more mitochondria 
than cells close to the central vein (pericentral) and endergonic processes like gluconeogenesis 
preferentially take place in this area[177], [185], [186]. Direct evidence for the role of oxygen 
comes from studies showing higher levels of all three hypoxia-inducible factors (HIF-1α, HIF-
2α, HIF-3α) as well as erythropoietin (EPO) in the pericentral zone[187], [188]. Following these 
findings, several hypoxia-activated genes were found to be more expressed close to the central 
vein, whereas hypoxia-inhibited genes showed the highest expression close to the portal 
node[173]. 

Zonation is also strongly influenced by morphogens. Most importantly, wnt/β-catenin sig-
nalling was identified as a significant player regulating liver zonation. Benhamouche et al. 
have found APC, which is required for β-catenin degradation, to be present in the portal but 
not in the central area. In contrast, unphosphorylated (= active) β-catenin was located 
around the central vein[189]. A liver-specific conditional APC knock-out caused glutamine 
synthetase, a key marker of the central area, to be expressed in all locations of the 
lobule. This strongly suggests the role of wnt/β-catenin signalling in liver zonation. Yet the 
source of activating compounds and mode of action of this pathway is not fully understood. 
Most of the wnt- and frizzled- (wnt-receptor on the cell surface) genes are expressed in at 
least one of the liver cell types (hepatocytes, biliary epithelial cells, endothelial cells, stellate 
or kupffer cells), and several studies have found evidence for intercellular communication 
influencing wnt/β-catenin signalling[190]. WNT9A secreted from endothelial and stellate cells 
of the endothelial wall influences hepatocyte proliferation and glycogen accumulation in devel-
oping chicks, while Rspondin3, an important wnt-activator, is specifically expressed in endo-
thelial cells lining the central vein and its expression is required to maintain liver zona-
tion[191], [192]. An influence of extra-hepatic sources is also conceivable, e.g. via lipopro-
teins[193]. 
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Other factors such as hedgehog-signalling, hormones and growth factors potentially also 
contribute to achieving liver zonation[194]. 

1.2.3. The liver as a circadian organ 

While humans are a diurnal (day-active) species, mice are nocturnal, and their 
intrinsic clock is therefore optimised to prepare their metabolism for physical activity 
and food intake at night. In mice, nearly 50% of known protein-coding genes are thought 
to show circadian changes in transcription[149].  

Circadian oscillations are entrained by several external factors, termed zeitgebers, 
such as the daily light-dark cycle[195], [196]. However, even when these are removed (e.g. 
experimentally), the oscillations continue for some time, which shows that the oscillations 
are regulated and maintained by an intrinsic clock of the body, rather than being caused 
directly by external factors[197]. 

A master clock, located in the supra-chiasmatic nucleus (SCN) of the brain, integrates the 
external factors and regulates the oscillations of peripheral tissues[198]. Peripheral oscillations 
can, however, also be influenced by other zeitgebers such as feeding and blood oxygen lev-
els[199]–[201]. To refer to specific timepoints relative to the circadian clock, it is common to 
use either “zeitgeber time (ZT)” or “circadian time (CT)”. ZT is defined relative to the 
start of the light phase (where ZT0 = light on and ZT12 = light off), while CT refers to 
the onset of activity of the organism (where CT0 = beginning activity in diurnal animals 
and CT12 = beginning of activity in nocturnal animals). In a light/dark cycle of 12/12 hours, 
the two timescales are congruent[202]. 

The liver, in particular, is known to be strongly influenced by circadian rhythms. A study com-
paring transcript oscillations in 12 mouse organs found that, out of all inspected organs, the 
liver had the most circadian transcripts[149]. The oscillating transcripts include not only 
components of the circadian clock but also critical metabolic pathways. Carbohydrate and 
lipid metabolism, as well as cholesterol and xenobiotic metabolism, are affected[203]. 

It should be mentioned that, although the circadian rhythm has a strong influence on liver 
gene expression, it is not the only factor determining temporal changes of gene expression. 
Feeding patterns and the metabolic state have especially a substantial effect on the liver as 
the main metabolic organ of the body[177], [204]. The intrinsic oscillations of peripheral tis-
sues can be uncoupled from the master clock in the brain by restricted feeding patterns, and 
the phase of at least some processes can be completely reversed in mice by allowing food 
intake only during the light phase (when mice usually are inactive and have lower food 
intake)[199]–[201], [205]. Therefore, these factors are an additional cause for temporal 
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expression changes in the liver that are partially independent of the circadian clock. The liver 
dependence on circadian rhythms is visually explained in Background Figure 2.2 below. 

 
Background Figure 2.2: Circadian rhythms in liver metabolism. The central clock in the SCN 
synchronises with the peripheral clock to regulate liver metabolisms. Eating behaviour, sleep/wake cycle, 
and obesity affect central clock and liver clock functions and their synchronisation. Hormones such as 
insulin, glucagon, and glucocorticoids, and nutrients including glucose, fatty acids, and bile acids affect 
circadian rhythms and liver metabolism. Bmal1 and Clock are primary clock products that bind to the E-
box sequences in the Per and Cry gene promoters. Per and Cry complexes inhibit the Bmal/Clock complex 
in a negative loop to inhibit Per and Cry transcription. Bmal1 and Clock (also Npas2) are regulated by a 
negative regulator Rev-erb-𝛼𝛼 , and positive regulator ROR-𝛼𝛼 , which bind to the same ROR response 
element (RORE) in the promoters. Rev-erb a recruits HDAC3 and NcoR to inhibit gene transcription and 
ultimately the circadian rhythms of many CCGs, such as PEPCK and G6Pase in gluconeogenesis, CYP7A1 
and CYP8B1 in bile acid synthesis, and SREBP-1c and MTTP in lipogenesis in the liver. Alteration in 
synchronisation of the central clock and liver clock contributes to the pathogenesis of fatty liver diseases, 
diabetes, and obesity, as well as fibrosis and hepatocellular carcinoma. HCC, hepatocellular carcinoma; 
MTTP, microsomal triglyceride transfer protein; NCOR, nuclear receptor corepressor; SCN, suprachias-
matic nucleus. Figure and caption are taken from Li and Chiang, 2014[206]. 

As many processes affected by circadian rhythms are also zonated, the question 
arises how spatial and temporal regulatory processes work together and influence each 
other. So far, there has not been a lot of work on circadian changes in liver zonation. 
However, there have been seemingly contradictory findings on the zonation of several 
metabolic processes, and it has been proposed in the past that some of these might be 
explainable by circadian influences on gene expression or protein regulation[207]–[210]. There 
are a couple of different scenarios of how spatial gene expression patterns could be 
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modulated by circadian rhythms. For instance, the expression of zonated genes could be reg-
ulated in an additive of multiplicative way, leading to different spatiotemporal patterns of 
expression. One could image that zonation changes in time, so that a gene might turn from 
periportal to pericentral, and reverse. In a more elaborate setting, one could also envision 
that circadian rhythms only influence the expression of a gene in a particular area of the 
liver lobule, causing sublobular oscillations of expression. The possibilities are almost infinite. 
In the study presented Section 2, part of the objective will be to describe which spatiotem-
poral scenarios of zonation are actually observed in the data. 

1.3. Inference and model selection 

1.3.1. Linear Mixed Models 

1.3.1.1. Introduction 

When dealing with longitudinal data, that is, data for which several measures are 
made on a given statistical unit, Linear Mixed Models (LMMs) can be used to correct for 
non-independence of the individual data points. LMMs are also called hierarchical models, 
as they allow to control for nested structure the data[211]. For instance, in the study pre-
sented Section 2, the data points representing mRNA expression in the different lobule layers 
are not always independent as they can originate from the same mouse.  

In practice, one could deal with the linear dependence by merely aggregating the data, that 
is, taking the mean of all the data points for a given statistical unit (in our study, this would 
mean averaging mRNA expression over the different layers). However, often one is interested 
in the effect that stems in the longitudinal dimension (space in our study). 

Another method to get rid of the linear dependence would be to run one regression per 
statistical unit. But this would mean dealing with unit-specific model and parameters, which 
is often something one wants to avoid. Also, since the individual regressions are made on 
fewer data points, the corresponding regressions are usually noisier. 

LMMs can be thought as a compromise between the two options, as LMMs has more param-
eters than a classic linear regression, but still incorporate the full structure of the data, 
enabling to reduce the noise of the individual estimates. LMMs have the other advantage of 
allowing easy comparison between the inter and intra differences among the statistical units. 
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1.3.1.2. Fixed and random effects 

LMM have two types of parameters: those that explain how the data changes ac-
cording to known sources of variability, also called fixed-effect parameters, and those that 
explain how the data changes from one statistical unit to another due to poorly understood 
(or uninteresting) factors, also called random-effects. As explicitly stated by their name, 
fixed-effects parameters stay the same from one statistical unit to another, while random-
effect parameters do not.  

In our study, rhythmicity and zonation parameters are all fixed-effects, as we suppose that 
they change with the genes, which happen to be identical across statistical units (the mice). 
Conversely, there’s a lot of variability in gene expression among the animals. That could be 
due to the way the RNA-seq was done, or differences in how the animals sleep or eat, etc. 
There are many possibilities, but none of these is really of interest to us here, as we simply 
want to control for the inter-animal variability. Therefore, we added an intercept which was 
animal-specific in the model; this intercept is, by definition, a random-effect.   

Background Figure 2.3 below shows three possibilities of modelling for a given dataset, in 
which several measures are made on different animals. Depending on the presence or absence 
of random-effects, the predictions made by the fixed-effects of the model can significantly 
vary, as well as the statistical confidence has in the corresponding parameters. Choosing the 
number of random effects can be a hard problem as it can only be driven by the preliminary 
knowledge of dependencies in the data. 

 

Background Figure 2.3: Example of mixed-model regression on simulated hierarchical data. 
A total of 100 measures (mRNA-expression) is made on 5 animals, with 20 measures per animal. If the 
data is wrongly measured with a linear regression (left), therefore neglecting the dependency between the 
data points belonging to a given animal, one gets a non-significant slope (𝑝𝑝𝑝𝑝 = 0.7) and a very significant 
intercept. If the intercept is assumed animal-specific (middle), the corresponding fixed-effect loses signifi-
cance, but the slope becomes significant (𝑝𝑝𝑝𝑝 = 10−9). If one assumes that both the intercept and slopes 
are animal-specific (right), the slope is only barely significant (𝑝𝑝𝑝𝑝 = 0.02). Simulations based on the code 
by Michael Freeman[212]. 
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1.3.1.3. Theory 

A mixed-model can be represented using a single equation using matrix notation: 

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 + 𝜺𝜺       (𝑖𝑖) 

In this equation, the terms are as follow: 

• 𝒚𝒚 is the N-dimensional observation vector, whose mean is predicted by linear regres-
sion: 𝒚𝒚� = 𝑿𝑿𝑿𝑿. N corresponds to the total number of observations, e.g. 20 if dealing 
with 5 data points per animal and 4 animals in totals.  

• 𝜷𝜷 is the p-dimensional vector of fixed-effects. p is usually reasonably low, e.g. 2 if 
considering 1 intercept, and 1 linear slope.  

• 𝑿𝑿 is the 𝑁𝑁 × 𝑝𝑝 dimensional design matrix of fixed effects, linking the observations 𝒚𝒚 
to the regression parameters of 𝜷𝜷. 

• 𝒖𝒖 is the (𝑞𝑞 × 𝐽𝐽)-dimensional vector of random-effects with mean 0 (and optimised 
variance-covariance matrix), where 𝑞𝑞 is the number of parameters for the random 
effects and 𝐽𝐽 the number of statistical units. 𝑞𝑞 is usually low, as it’s exceptional to 
consider more than 2 random parameters (e.g. random intercept and random slope). 
𝐽𝐽 is such that ∑ 𝑛𝑛𝑗𝑗

𝐽𝐽
𝑗𝑗 = 𝑁𝑁, where 𝑛𝑛𝑗𝑗 correspond to the number of measures made on 

statistical unit j. 

• 𝒁𝒁 is the 𝑁𝑁 × (𝑞𝑞 × 𝐽𝐽) design matrix of random effects, linking the observations 𝒚𝒚 to 
the regression parameters of 𝒖𝒖. 

• 𝜺𝜺 is the N-dimensional error vector with mean 0 (and optimised variance) 

In this equation, 𝜷𝜷,𝒖𝒖 and 𝜺𝜺 must be optimised on the data. In practice, 𝒖𝒖 is not directly 
estimated, but assumed to be sampled from a multivariate Gaussian distribution with mean 
zero and unknown variance-covariance matrix 𝑮𝑮: 

𝒖𝒖~𝒩𝒩(0,𝑮𝑮)        (𝑖𝑖𝑖𝑖) 

Therefore, it is actually 𝑮𝑮 which must be optimised. As there is redundancy in the variance 
explained by 𝒖𝒖 and 𝜷𝜷, the optimisation requires non-linear methods, and since the matrix 𝒁𝒁 
can be extremely large, the optimisation can be time-consuming. 

As a side-note, model selection for mixed-model can be a hard problem as usual criteria such 
as BIC (see Section 4.4.2, in Chapter 1) are not well-defined for random-parameters. Thank-
fully, in recent years, several alternative methods have been developed, such as marginal 
AIC [213].  
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2. Published article 
The article hereafter has been as little modified as possible. According to EPFL 

recommendations, the reference numbers are in the continuity of the thesis. Equation and 
Figure numbers are the same as in the published format (although the Chapter number is 
now indicated in the Figure captions).  

2.1. Abstract 

The mammalian liver performs key physiological functions for maintaining energy 
and metabolic homeostasis. Liver tissue is both spatially structured and temporally orches-
trated. Hepatocytes operate in repeating anatomical units termed lobules and different lobule 
zones perform distinct functions. The liver is also subject to extensive temporal regulation, 
orchestrated by the interplay of the circadian clock, systemic signals and feeding rhythms. 
Liver zonation was previously analysed as a static phenomenon and liver chronobiology at 
the tissue level. Here, we use single-cell RNA-seq to investigate the interplay between gene 
regulation in space and time. Categorising mRNA expression profiles using mixed-effect mod-
els and smFISH validations, we find that many genes in the liver are both zonated and 
rhythmic, most of them showing multiplicative space-time effects. Such dually regulated 
genes cover key hepatic functions such as lipid, carbohydrate and amino acid metabolism. In 
particular, our data suggest that rhythmic and localised expression of Wnt targets may be 
explained by rhythmic Wnt signaling from endothelial cells near the central vein. Core cir-
cadian clock genes are expressed in a non-zonated manner, indicating that the liver clock is 
robust to zonation. Together, our comprehensive data reveal how liver function is compart-
mentalised spatio-temporally at the sub-lobular scale. 

2.2. Introduction 

The liver is a vital organ maintaining body physiology and energy homeostasis. The 
liver carries out a broad range of functions related to carbohydrate and lipid metabolism, 
detoxification, bile acid biosynthesis and transport, cholesterol processing, xenobiotics bio-
transformation, and carrier proteins secretion. Notably, the liver performs catabolic and an-
abolic processing of lipids and amino acids and produces the majority of plasma proteins[214]. 
Liver tissue is highly structured on the cellular scale, being heterogeneous in both cell-type 
composition and microenvironment[215].  In fact, liver tissue is made up of millions of re-
peating anatomical and functional subunits, called lobules, which in mice contain hepatocytes 
arranged in 12-15 concentric layers with a diameter of about 0.5mm[180]. On the portal side 
of the lobule, blood from the portal vein and the hepatic arteriole enters small capillaries 
called sinusoids and flows to the central vein. This is accompanied with gradients in oxygen 
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concentration, nutrients and signaling along the porto-central axis, with the latter notably 
involving the Wnt pathway[216], [217]. Due to this polarisation, hepatocytes in different 
layers perform separate functions, a phenomenon termed liver zonation[179], [214]. 

Recently, we combined single-cell RNA-sequencing (scRNA-seq) of dissociated hepatocytes 
and single-molecule RNA fluorescence in situ hybridisation (smFISH) to reconstruct spatial 
mRNA expression profiles along the porto-central axis[173]. This analysis revealed an unex-
pected breadth of spatial heterogeneity, with ~50% of genes showing spatially non-uniform 
patterns. Among them, functions related to ammonia clearance, carbohydrate catabolic and 
anabolic processes, xenobiotics detoxification, bile acid and cholesterol synthesis, fatty acid 
metabolism, targets of the Wnt and Ras pathways, and hypoxia-induced genes were strongly 
zonated. 

In addition to its spatial heterogeneity, the liver is also highly dynamic temporally. Chrono-
biology studies showed that temporally gated physiological and metabolic programs in the 
liver result from the complex interplay between the endogenous circadian liver oscillator, 
rhythmic systemic signals, and feeding/fasting cycles[218], [219],[220]. An intact circadian 
clock has repeatedly been demonstrated as key for healthy metabolism, also in humans[221]. 
Temporal compartmentalisation can prevent two opposite and incompatible processes from 
simultaneously occurring, for example, glucose is stored as glycogen following a meal and is 
later released into the blood circulation during fasting period to maintain homeostasis in 
plasma glucose levels. Functional genomics studies of the circadian liver were typically per-
formed on bulk liver tissue[131]. In particular, we and others showed how both the circadian 
clock and the feeding fasting cycles pervasively drive rhythms of gene expression in bulk, im-
pacting key sectors of liver physiology such as lipid and steroid metabolism[149], [222], [223]. 

Here, we asked how these spatial and temporal regulatory programs interact on the level of 
individual genes and liver functions more generally. In particular, can zonated gene expres-
sion patterns be temporally modulated on a 24 h time scale? And conversely, can rhythmic 
gene expression patterns observed in bulk samples exhibit sub-lobular structure? More com-
plex situations may also be envisaged, such as time-dependent zonation patterns of mRNA 
expression (or, equivalently, zone-dependent rhythmic patterns), or sublobular oscillations 
that would escape detection on the bulk level due to cancelations. On the physiological level, 
it is of interest to establish how hepatic functions might be compartmentalised both in space 
and time. To study both the spatial and temporal axes, we performed scRNA-seq of hepato-
cytes at four different times along the 24 h day, extending  our previous approach[173], [224] 
to reconstruct spatial profiles at each time point. The resulting space-time patterns were 
statistically classified using a mixed-effect model describing both spatial and temporal vari-
ations in mRNA levels. In total, ~5000 liver genes were classified based on their spatio-
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temporal expression profiles, and a few representative profiles were further analysed with 
smFISH. Overall, this approach helped to elucidate the richness of space-time gene expression 
dynamics of the liver and provides a comprehensive view on how spatio-temporal compart-
mentalisation is utilised in the mammalian liver. 

2.3. Results 

2.3.1. Single-cell RNA-seq captures spatiotemporal gene 
expression patterns in mouse liver 

To investigate spatio-temporal gene expression patterns in mouse liver, we se-
quenced mRNA from liver cells obtained from 10 mice at 4 different times of the day (ZT = 
0h, 6h, 12h and 18h, two to three replicates per time point). We here focused on hepatocytes 
by enrichment of cells according to size and in silico filtering, yielding a total of 19663 cells 
(several filtering steps are involved, Methods). To validate that the expected axes of variation 
are present in the scRNA-seq data, we generated a low-dimensional representation of all cells 
(t-SNE projections) and colored cells either by their position along the centro-portal axis 
(layers) (Figure 2.1A) or time (Figure 2.1B). This revealed that known portally and centrally 
expressed transcripts, such as Cyp2f2 (Figure 2.1C) or Cyp2e1 (Figure 2.1D), respectively, 
mark cells in opposite regions of the projections. Likewise, time-of-day expression varied 
along an orthogonal direction, as shown for the Elovl3 gene peaking at ZT0 (Figure 2.1E). 

To reduce the complexity of the spatial variation in mRNA levels, we here introduced eight 
different lobule layers to describe gene expression along the centro-portal axis. For this, we 
adapted our previous method[224], with the modification that only transcripts that did not 
vary across time points were used as landmark zonated genes (Methods). The resulting re-
constructed mRNA expression profiles yielded 80 (8 layers over 10 mice) data points for each 
transcript. These reconstructions faithfully captured reference zonated genes, with both cen-
tral, and portal, expression (Figure 2.1F), such as Glul, and Ass1, respectively. The recon-
structions also included reference core clock and rhythmic output genes, such as Bmal1 (also 
named Arntl) and Dbp, with large differences in expression across the time points, and peak-
ing at the expected times (Figure 2.1G). Finally, genes showing both zonated and rhythmic 
mRNA accumulation were found (Figure 2.1H), with both central (Elovl3) or portal (Pck1) 
expression patterns, and with specific peak times. Since most of the zonated profiles showed 
exponential shapes, and gene expression changes typically occur on a log scale[225], we log-
transformed the data for further analysis (Methods, Figure 2.1F, Supplementary Figure 
2.1A). 
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Figure 2.1: A scRNA-seq approach to space-time gene expression patterns in mouse liver. 
(A-E) t-SNE visualisations of the scRNA-seq data (19663 hepatocytes from n = 10 mice). Individual cells 
are colored by the lobule layer (A), Zeitgeber time (B), expression levels of the zonated genes Cyp2f2 and 
Cyp2e1 (C-D), or the circadianly regulated gene Elovl3 (E). (F-H) Reconstructed spatial profiles (lobule 
layers 1-8) of selected zonated but temporally static genes (F, top: Glul pericentrally (PC) expressed, 
bottom: Ass1 periportally (PP) expressed); rhythmic but non-zonated genes (G, top: Bmal1 peaking at 
ZT0, bottom: Dbp, peaking at ZT6-12); zonated and rhythmic genes (H, Top: Elovl3, bottom: Pck1). 
Expression levels correspond to fraction of total UMI per cell in linear scale. Log-transformed profiles are 
in Figure 2.1. Dots in F-H represent data points from the individual mice. Shaded areas represent SD 
across mice. 
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2.3.2. Space-time mRNA expression profiles can be cat-
egorised according to zonation and rhythmicity 

Next, we investigated if zonated gene expression patterns can be dynamic along the 
day, or conversely whether temporal expression patterns might be zone-dependent. To select 
a reliable set of reconstructed mRNA expression profiles for subsequent analyses, we first 
discarded lowly expressed genes, as well as genes with significant biological variability across 
replicate liver samples. This yielded 5058 spatio-temporal gene expression profiles (Supple-
mentary Figure 2.2A). An exploratory analysis of variance clearly identified zonated 
genes, rhythmic genes, and fewer genes showing variability along both axes, with known 
zonated and rhythmic genes distributed as expected (Figure 2.2A).  

To identify possible dependencies between spatial and temporal variations, we built a mixed-
effect linear model[226] for the space-time mRNA profiles, which extends harmonic regression 
to include a spatial covariate (Figure 2.2B). In this model, rhythms are parameterised with 
cosine and sine functions, while spatial profiles are represented with (up to second order) 
polynomials. In its most complex form, the model uses nine parameters describing spatially 
modulated oscillations, and one intercept per mouse (Methods). When some of the parame-
ters are zero, the model reduces to simpler mRNA profiles, for example purely spatial or 
purely temporal expression profiles (Figure 2.2C). We then used model selection[79] to iden-
tify the optimal parameterisation and category for each gene (Methods). In fine, we classified 
each mRNA profile into one of five types of patterns (Figure 2.2C). If only the intercept is 
used, the profile will be classified as flat (F). If only time-independent zonation parameters 
are retained, the predicted profile will be purely zonated (Z). If only layer-independent rhyth-
mic parameters are retained, the predicted profile will be purely rhythmic (R). If only layer-
independent rhythmic parameters and time-independent zonation parameters are retained, 
the profile is classified as independent rhythmic-zonated (Z+R). If at least one layer-depend-
ent rhythmic parameter is selected, the profile will be termed interacting (ZxR). This classi-
fication revealed that, overall, about 30% of the mRNA profiles were zonated (Z, Z+R and 
ZxR) and about 20% were rhythmic (R, Z+R and ZxR) (Figure 2.2D). The peak times of 
these rhythmic transcripts were highly consistent with bulk chronobiology data[227] (Sup-
plementary Figure 2.2B). This analysis is available as a web-app resource along with the 
corresponding data (https://czviz.epfl.ch). 

  

https://czviz.epfl.ch/


Chapter 2: Space-time logic of liver gene expression at sublobular scale 

 
129 

 

Figure 2.2: Space-time mRNA expression profiles categorised with mixed-effect models. (A) 
Spatial and temporal variation for each mRNA transcript profile, calculated as standard deviations (SD) 
of log2 expression along spatial or temporal dimensions (Methods). Colored dots correspond to reference 
zonated genes (orange) and reference rhythmic genes (blue) (Methods). (B) Generalised harmonic regres-
sion model for spatio-temporal expression profiles describing a static but zonated layer-dependent mean 
𝜇𝜇(𝑥𝑥), as well as layer-dependent rhythmic amplitudes (𝑎𝑎(𝑥𝑥) and 𝑏𝑏(𝑥𝑥)). All layer-dependent coefficients 
are modeled as second order polynomials; 𝑖𝑖 denotes the biological replicates. 𝜇𝜇𝑖𝑖 are random effects needed 
due to the asymmetric experimental design of the study (Methods). (C) Schema illustrating the different 
categories of profiles. Depending on which coefficients are non-zero (Methods), genes are assigned to: F 
(flat), Z (purely zonated), R (purely rhythmic), Z+R (additive zonation and rhythmicity), ZxR (interacting 
zonation and rhythmicity). Graphs emphasise either zonation (top), with the x-axis representing layers, or 
rhythmicity (bottom), with the x axis representing time (ZT). Right side of the panel: an example of fit 
(Elovl3). (D) Number of transcripts in each category. (E) Boxplot of the mean expression per category 
shows that the zonated genes (Z, Z+R and ZxR) are more expressed than flat (F) and rhythmic genes (R). 
Complex modulated genes (ZxR) are the most expressed according to median expression (orange line). 
Box limits are lower and upper quartile, whiskers extend up to the first datum greater/lower than the 
upper/lower quartile plus 1.5 times the interquartile range. Remaining points are outliers. 
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Interestingly, we found that 7% of the analysed genes in the liver were both zonated and 
rhythmic. Such dually regulated transcripts represent 25% of all zonated transcripts, and 
36% of all rhythmic transcripts, respectively. The previously shown Elovl3 transcript, in-
volved in fatty acid elongation, and Pck1, a rate limiting enzyme in gluconeogenesis, are 
prototypical Z+R genes (Figure 2.1H). Gluconeogenesis requires acetyl-CoA produced via β-
oxidation. As mice are in a metabolically fasted state towards the end of the light phase (~ 
ZT10) and oxygen needed for β -oxidation is most abundant portally[183] this process indeed 
needs to be both spatially and temporally regulated. Similarly, fatty acids production occurs 
during periods of excess energy and glycolysis (~ ZT18) and is located around the central 
vein[228]. The dual regulation of these genes may therefore ensure optimal liver function 
under switching metabolic conditions. 

Dually regulated genes were mostly Z+R, with only a minority of ZxR patterns. The average 
expression across categories showed that rhythmic genes are more lowly expressed on average 
than genes in the other categories, likely reflecting shorter half-lives (Figure 2.2E and Sup-
plementary Figure 2.2C). Together, we found that mRNA expression of many zonated genes 
in hepatocytes is not static, and is in fact compartmentalised both in space and time. 

2.3.3. Properties of dually zonated and rhythmic mRNA 
profiles 

The majority of dually regulated genes are Z+R, which denotes additive (in log) 
space-time effects, or dynamic patterns where slopes or shapes of spatial patterns do not 
change with time (Figure 2.2C). On the other hand, fully dynamic patterns (ZxR) are rare. 
Comparing the proportions of central, mid-lobular (peaking in the middle of the porto-central 
axis) and portal genes among the purely zonated genes (Z), and independently zonated and 
rhythmic genes (Z+R), did not reveal significant differences (Figure 2.3A), suggesting that 
rhythmicity is uncoupled with the direction of zonation. Similarly, comparing the phase 
distribution among the purely rhythmic genes (R) and the Z+R genes did not show a signif-
icant difference (Figure 2.3B), indicating that zonation does not bias peak expression time. 

Moreover, oscillatory amplitudes were uncorrelated with the zonation slopes in Z+R genes 
(Figure 2.3C). However, we observed that large slopes (>1 or < -1, corresponding to fold 
changes of at least two between central and portal layers) are only associated with medium 
and large temporal amplitudes (>0.2, corresponding to >0.4 log2 fold change in time), as 
illustrated by Elovl3, Rnase4 or Pck1 (Supplementary Figure 2.3A). Conversely, many genes 
show small slopes and large amplitudes, as illustrated by Hsp90aa1, Thrsp, Lpin1 (Supple-
mentary Figure 2.3A). 
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Finally, for ZxR genes with potentially more complex space-time patterns, we investigated 
whether the spreads in amplitudes and peak times across the layers were linked (Figure 
2.3D). This revealed that all ZxR profiles showed small spreads in peak times (<1h) but 
larger amplitude spreads (>0.1, log2). This phenomenon, illustrated by Sds, Mt1 and Cyp7a1 
(Supplementary Figure 2.3B), indicates that amplitude modulation is the main factor for 
classification as ZxR. 

 

Figure 2.3: Properties of dually zonated and rhythmic mRNA profiles. (A) Proportions of 
pericentral (green) and periportal (blue) transcripts are similar in Z and Z+R. Mid-lobular genes (orange) 
are rare (<2%). (B) Peak time distribution of rhythmic transcripts are similar in R and Z+R categories. 
(C) Effect sizes of zonation (slope) vs. rhythmicity (amplitude) in Z+R genes. (D) Magnitude of time 
shifts (delta time, in hours) vs. amplitude gradient (delta amplitude, in log2) along the central-portal axis 
in ZxR genes. 

2.3.4. smFISH analysis of space-time mRNA counts 

To substantiate the RNA-seq profiles, we performed single RNA molecule fluores-
cence in situ hybridisation (smFISH) experiments on a set of selected candidate genes with 
diverse spatio-temporal patterns. smFISH provides a sensitive, albeit low-throughput meas-
urement of mRNA expression. We selected the core-clock genes Bmal1 and Per1, classified 
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as R in the RNA-seq analysis, Elovl3 for Z+R, and Acly for the ZxR categories. Purely 
zonated genes (Z) were already well studied with smFISH[173].  

 

Figure 2.4: smFISH analysis of rhythmic and zonated transcripts. (A): smFISH (RNAscope, 
Methods) of the core clock genes Bmal1 and Per1 (both in R category) in liver slices sampled every 3 
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hours. Left: representative images at ZT0, ZT06, ZT12 and ZT18 for Bmal1. Pericentral veins (CV) and 
a periportal node (PN) are marked. Scale bas is 50µm. Endothelial cells lining the PC and cholangiocytes 
surrounding the PP were excluded from the quantification. mRNA transcripts and nuclei were detected in 
PN and PC zones (Methods). Right: temporal profiles of Bmal1I and Per1 from smFISH (top, quantifi-
cation of the number of mRNA transcripts at 8 time points ZT0 to ZT21, every 3 hours, shaded area 
indicate SD across images), in PN and PC regions, and scRNA-seq (bottom, shaded areas is SD across 
mice). (B-C) smFISH (Stellaris, Methods) for Elovl3 (Z+R) and Acly (ZxR). smFISH quantifications were 
made for ZT0 and ZT12 (Methods). Left: representative images at ZT0, ZT12 for Elovl3 (B) or Acly (C). 
Pericentral veins (CV) and a periportal node (PN) are marked. Scale bar - 20µm. Right: quantified profiles 
for each gene in the two time points from smFISH (top, shaded area indicate SD across images), prediction 
of profiles at four time points base on the scRNA-seq (bottom, shaded areas is SD across mice). 

The reconstructed scRNA-seq and smFISH profiles were consistent, though with minor dis-
crepancies. Bmal1 (~ZT0) and Per1 (~ZT12) phases were nearly identical in both experi-
ments, and the rhythms did not depend on the lobular position (Figure 2.4A). Elovl3 is both 
centrally biased and rhythmic in RNA-seq and smFISH, even though the amplitude of the 
oscillations appeared lost on the portal side in the FISH experiment, presumably due to low 
expression and thus low signal-to-noise (Figure 2.4B). Finally, Acly showed a pattern in 
smFISH data which validates its classification as ZxR, especially since the amplitude is lower 
on the portal side where the transcript is more highly expressed (Figure 2.4C). 

2.3.5. Space-time logic of hepatic functions and activity 
of signaling pathways 

We next used our classification to understand the spatio-temporal dynamics of he-
patic functions and signaling pathways in the liver. Given the prevalence of zonated gene 
expression profiles, we first analysed if the circadian clock is sensitive to zonation. We found 
that profiles of reference core-clock genes (Supplementary Figure 2.4) were assigned to the 
rhythmic only category (R), except for Cry1 and Clock that were assigned to Z+R, but with 
high probabilities also for R (Supplementary Tables 2.1 and 2.4). This suggests that the 
circadian clock is largely non-zonated and therefore robust to the heterogenous hepatic mi-
croenvironment. 

We then systematically explored enrichment of biological functions in the R, Z, and Z+R 
categories using DAVID[229] (Supplementary Table 2.2). Gene clusters related to the circa-
dian clock were clearly enriched in the R category, however, no other functions stood out as 
purely rhythmic. Functions of zonated genes have been described previously [173], [230], 
here, our analysis of Z only genes highlighted that processes related to protein secretion were 
highly enriched in portal genes, constituents of ribosomes were strongly biased centrally, as 
were many P450 enzymes involved in oxidation of steroids, fatty acids and xenobiotics. 
Among the dually regulated Z+R genes, lipid metabolism stood out as the most enriched 
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function, with about two thirds of central and one third of portal gene expression, showing 
peak times that were mostly between ZT9 and ZT21 (Figure 2.5A). Moreover, peroxisome 
related genes peaked in a similar interval with a marked preference for central patterns 
(Figure 2.5B). Lastly, genes linked with protein glycosylation peaked throughout the day 
and showed more portal patterns, presumably linked to portally biased protein secretion 
(Figure 2.5C). A similar analysis of enrichment in KEGG pathways, using a more exhaustive 
collection of backgrounds sets (Supplementary Table 2.3) confirmed that rhythmic gene ex-
pression is spatially flat for core clock function, but zonated (Z+R) for other hepatic func-
tions. 

Next, we investigated genes targeted by reference signaling pathways previously implicated 
in zonation[173]. Specifically, we considered genes targeted by the Wnt, Ras and hypoxia 
pathways. As expected, the three pathways where strongly enriched in zonated genes (Sup-
plementary Figure 2.5, column B5). In agreement with ref[173], both the positive targets of 
Wnt and the negative targets of Ras are strongly enriched in central genes, while the negative 
and positive targets, respectively, are strongly enriched in portal genes (Supplementary Fig-
ure 2.5, column B4). However, no such bias was found for hypoxia. Regarding day vs. night 
expression, the Wnt and hypoxia targets displayed strong bias, while Ras did not (Supple-
mentary Figure 2.5, column B1). Moreover, Wnt targets (both positive and negative) as well 
as positive targets of hypoxia showed rhythms preferentially peaking during the day (Sup-
plementary Figure 2.5, column B2). Among the Z+R genes, the enrichment patterns of cen-
tral (noted ZC+R) and portal (ZP+R) genes were similar during night and day (Supplemen-
tary Figure 2.5, column B3). On a finer temporal scale (Figure 2.6A), the rhythmic targets 
(R and Z+R) of Wnt and hypoxia showed a common pattern of temporal compartmentali-
sation: the negative targets tended to be enriched around ZT0 (dark-light transition) and 
underrepresented around ZT14, while the positive targets were enriched around ZT10 and 
underrepresented around ZT20 (until about ZT3 for Hypoxia). Ras targets, positive or neg-
ative, did not exhibit significant temporal bias. 
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Figure 2.5: Space-time logic of compartmentalised hepatic functions for Z+R genes. (A-C) 
Polar representations of central (left) and portal (right) genes from three prominently enriched pathways 
in the Z+R category (Supplementary Table 2.2). Peak expression times are arranged clockwise (ZT0 on 
vertical position) and amplitudes (log2, values indicated on the radial axes) increase radially. q indicates 
significance of enrichment (Bonferroni adjusted). 
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Finally, we asked whether the temporal oscillations in the expression of Wnt-activated genes 
might correlate with temporal oscillations in the Wnt morphogens produced by pericentral 
liver endothelial cells (LECs). To this end, we performed smFISH experiments and quantified 
the expression of the Wnt ligand Wnt2, as well as the Wnt antagonist Dkk3 (Figure 2.6B). 
Consistent with the enrichment of peak times in positive Wnt targets (Figure 2.6A), we 
found that Wnt2 expression in LECs exhibited non-uniform expression around the clock, 
with a significant trough at ZT18 (p=0.0007, Kruskal-Wallis). Although differences in Dkk3 
expression were not significant (p=0.3), the observed median expression was lowest at ZT12, 
when the expression of pericentral Wnt-targets is the highest. 

 

Figure 2.6: Wnt-targets correlates with Wnt2 expression. A) Enrichment/depletion of genes tar-
geted by the Wnt, Ras and Hypoxia pathways with respect to the rhythmic genes (R and Z+R) peaking 
at different time of the day (window size: 3h). Colormap show p-values (two-tailed hypergeometric test): 
red (blue) areas indicate times of the day for which there are more (less) pathways genes peaking than 
expected. (B) Left: Representative smFISH images of Wnt2 and Dkk3 expression in endothelial cells at 
ZT0 (top) and ZT18 (bottom), nuclei are stained in blue (DAPI) and cell membrane in grey (phalloidin). 
Scale bars, 20 µm; inset scale bars 5 µm; CV = central vein. Right: Quantitative analysis of smFISH 
images (516 cells of 120 central veins of at least two mice per time point). mRNA expression is in smFISH 
dots per µm3. Dashed lines correspond to quartiles. 
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2.4. Discussion 

Recent genome-wide analyses of zonated gene expression in mouse and human 
liver[173], [231] uncovered a rich organisation of liver functions in space at the sublobular 
scale, while chronobiology studies of bulk liver tissue revealed a complex landscape of rhyth-
mic regulatory layers orchestrated by a circadian clock interacting with feeding-fasting cycles 
and systemic signals[223], [232]–[234]. Here, we established how these two regulatory pro-
grams intertwine to shape the daily space-time dynamics of gene expression patterns and 
physiology in adult liver by extending our previous scRNA-seq approach[173]. We found that 
liver function uses gene expression programs where many genes exhibit compartmentalisation 
in both space and time. 

We chose to focus on the parenchymal cells in the liver, the hepatocytes, for which smFISH 
data on landmark zonated genes was readily available, which enabled reconstructing spatio-
temporal mRNA profiles from scRNA-seq[173]. Our approach may be extended to other cell 
types in the liver; in fact, static zonation mRNA expression profiles have been obtained for 
LEC, using a paired-cell approach[224]. In addition, ab initio reconstruction methods such 
as diffusion pseudo time[231] or novoSpaRc[235] could be used for spatially sparse cell types 
with no available zonated marker genes, e.g. stellate or resident immune Kupffer cells. 

To study whether the observed space-time expression profiles may be regulated by either 
liver zonation, 24h rhythms in liver physiology, or both, we developed a mixed-effect model, 
combined with model selection. This enabled classifying gene profiles into five categories 
representing different modes of spatio-temporal regulation, from flat to wave-like. To validate 
these, we performed smFISH in intact liver tissue, which showed largely compatible profiles 
although some quantitative differences were observed. These differences most likely reflect 
the limited sensitivity of RNA-seq, uncertainties in the spatial analysis of smFISH in tissues, 
as well as known inter-animal variability in the physiologic states of individual livers, notably 
related to the animal-specific feeding patterns[227]. 

Together, this temporal analysis confirms that a large proportion of gene expression in 
hepatocytes is zonated[173] or rhythmic[204], and in addition reveals marked spatio-temporal 
regulation of mRNA levels in mouse liver (Z+R and ZxR genes, comprising 7% of all detected 
genes according to our criteria). This means that zonated gene expression patterns can be 
temporally modulated on a circadian scale, or equivalently, that rhythmic gene expression 
patterns can exhibit sub-lobular structure. The dominant mode for dually regulated gene 
was Z+R, which corresponds to additive effects of space and time in log, or multiplicate 
effects in the natural coordinates, and describes genes expression patterns that are compart-
mentalised in both space and time. In other words, such patterns are characterised by shapes 
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(in space) that remain invariant with time, but whose amplitudes are rhythmically rescaled 
in time. Or equivalently, the oscillatory amplitude (fold change) and phases are constant 
along the lobular coordinate, but the mean expression is patterned along the lobule. Such 
multiplicative effects could reflect the combined actions of transcriptional regulators for the 
zone and rhythm on promoters and enhancers of Z+R genes. Indeed, gene expression changes 
induced by several regulators combine multiplicatively[225]. The non-zonated expression of 
the core clock genes we identified is compatible with such a uniform non-zonated multiplica-
tive effect. Note that though the (relative) shape of Z+R patterns is invariant in time, 
threshold-dependent responses that would lie downstream of such genes would then acquire 
domain boundaries which can shift in time. Finally, space-time waves of gene expression 
(ZxR) were also observed, but to a much lesser extent, and usually with larger amplitude 
than phase modulation along the lobular layers. 

In addition to previously discussed zonated functions[173], pathway analysis revealed that 
expression of ribosome protein genes is higher centrally, which, together with the previously 
noted zonation of proteasome components[173] could indicate that protein turnover is higher 
in the pericentral lobule layers. This higher turnover could preserve protein function in the 
stressed low-oxygen and xenobiotics-rich pericentral microenvironment. Fatty acid metabo-
lism appears complex: Z+R genes involved in fatty acid oxidation/degradation (Acl1, Acox1, 
Ehhadh, Hacd3, Hadh, Hadhb) are expressed centrally and peak around ZT12-ZT18, while 
fatty acid elongation genes either central (Elovl3) or portal (Fasn, Elovl5), peaking at differ-
ent times of day. Interestingly, we found that expression of circadian clock transcripts is 
robust to metabolic zonation and is the only function showing an over-representation of 
rhythmic but non-zonated genes. 

It was previously shown that Wnt signaling can explain the zonation of up to a third of the 
zonated mRNAs7. Wnt ligands are secreted by pericentral LECs [216], [217, p. 43] and form 
a graded spatial morphogenetic field. As a result, and as observed in our enrichment analysis 
(Supplementary Figure 2.5), Wnt-activated genes were pericentrally-zonated, whereas Wnt-
repressed genes periportally-zonated. Our smFISH analysis suggested that temporal fluctua-
tions in the expression of key ligands by pericentral LECs might account for oscillatory and 
zonated hepatocyte gene expression. 

In summary, we demonstrate how liver gene expression can be quantitatively investigated 
with spatial and temporal resolution and how liver function is compartmentalised along these 
two axes. In particular our data suggest two scenarios: multiplicative effects of spatial and 
temporal regulators, and temporal regulation of spatial regulators such as WNTs. 
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2.5. Material and methods 

2.5.1. Animals and ethics statement 

All animal care and handling were approved by the Institutional Animal Care and 
Use Committee of WIS and by the Canton de Vaud laws for animal protection (authorisation 
VD3197.b). Male C57bl6 mice aged of 6 weeks, housed under reverse-phase cycle and under 
ad libitum feeding were used to generate sc-RNA-seq data of hepatocytes and single-molecule 
RNA-FISH (smFISH). Male mice between 8 to 10 weeks old, housed under 12:12 light-dark 
cycle, and having access to food only during the night (restricted-feeding) were used for 
smFISH of circadian clock genes. 

2.5.2. Hepatocytes isolation and single-cell RNA-seq 

Liver cells were isolated using a modified version of the two-step collagenase perfu-
sion method of Seglen[236].  The tissue was digested with Liberase Blendzyme 3 recombinant 
collagenase (Roche Diagnostics) according to the manufacturer instructions. To enrich for 
hepatocytes, we applied a centrifuge step at 30g for 3 min to pull down all hepatocytes while 
discarding most of the non-parenchymal cells that remained in the sup. We next enriched 
for live hepatocytes by percoll gradient, hepatocytes pellet was resuspended in 25 ml of PBS, 
percoll was added for a final concentration of 45% and mixed with the hepatocytes. Dead 
cells were discarded after a centrifuge step (70g for 10min) cells were resuspended in 10x cells 
buffer (1x PBS, 0.04% BSA) and proceeded directly to the 10x pipeline. The cDNA library 
was prepared with the 10X genomics Chromium system according to manufactures instruc-
tions and sequencing was done with Illumina Nextseq 500. 

2.5.3. Filtering of raw scRNA-seq data 

The initial data analysis was done in R v3.4.2 using Seurat v2.1.0[237]. Each ex-
pression matrix was filtered separately to remove dead, dying and low quality cells. We 
firstly only kept genes that were expressed in at least 5 cells in any of the ten samples.  We 
then defined a set of valid cells with more than 500 expressed genes and between 1000 and 
10000 unique molecular identifiers (UMIs) and secondly an additional expression matrix with 
cells having between 100 and 300 UMIs which was used for background estimation. Other 
UMI-filters have been tried, but yielded equal or less reliable profiles. The mean expression 
of each gene was then calculated for the background dataset and subtracted from the set of 
valid cells. This was subsequently filtered to only include hepatocytes by removing cells with 
expression of non-parenchymal liver cell genes. Next, the cells were filtered based on the 
fraction of mitochondrial gene expression. First, expression levels in each cell were normalised 
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by the sum of non-mitochondrial and non-major urinary protein (Mup) genes. Indeed, as 
mitochondria are more abundant in periportal hepatocytes, the expression of mitochondrial 
genes is higher in this area[238]; and since these genes are very highly expressed, including 
them would reduce the relative expression of all other genes based on the cell’s lobular loca-
tion. Mup genes are also highly abundant and mapping their reads to a reference sequence is 
unreliable due to their high sequence homology[239]. Then, to assess the quality of the se-
lected sets of cells, we computed the anti-correlation between the expression levels of Cyp2e1 
and Cyp2f2, two strongly and oppositely zonated genes, across all cells. Cells with 9-35% 
mitochondrial gene expression yielded the best quality, and we used these as input for the 
spatial reconstruction algorithm. 

2.5.4. Spatial reconstruction of zonation profiles from 
scRNA-seq data  

2.5.4.1. Choice of landmark genes.  

The reconstruction algorithm relies on a priori knowledge about the zonation of a 
small set of landmark genes to infer the location of the cells. Reference [173] used smFISH 
to determine the zonation pattern in situ of 6 such landmark genes and used them to recon-
struct the spatial profiles of all other genes at a single time point. Since we here aimed at 
reconstructing zonation profiles at different time points, we could not rely on those landmark 
genes, which might be subject to temporal regulation. Therefore, we used an alternative 
strategy where we selected landmark zonated genes from Reference [173] (q < 0.2), with the 
additional constraints that those should be highly expressed (mean expression in fraction 
UMI of more than 0.01% and less than 0.1%), and importantly vary little across mice and 
time. Specifically, we calculated the variability in the mean expression (across all layers) 
between all mice for every gene and removed genes with >= 10% variability. This yielded 
27 central (Akr1c6, Alad, Blvrb, C6, Car3, Ccdc107, Cml2, Cyp2c68, Cyp2d9, Cyp3a11, 
Entpd5, Fmo1, Gsta3, Gstm1, Gstm6, Gstt1, Hpd, Hsd17b10, Inmt, Iqgap2, Mgst1, Nrn1, 
Pex11a, Pon1, Psmd4, Slc22a1, Tex264); and 28 portal (Afm, Aldh1l1, Asl, Ass1, Atp5a1, 
Atp5g1, C8a, C8b, Ces3b, Cyp2f2, Elovl2, Fads1, Fbp1, Ftcd, Gm2a, Hpx, Hsd17b13, Ifitm3, 
Igf1, Igfals, Khk, Mug2, Pygl, Sepp1, Serpina1c, Serpina1e, Serpind1, Vtn) landmark genes.  

2.5.4.2. Reconstruction algorithm.  

The reconstruction algorithm is based on the algorithm in reference [173] and was 
used in the modified version from reference [224]. The procedure was applied independently 
on each mouse, yielding ten spatial gene expression profiles for each gene, given as fraction 
of UMI per cell. 
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2.5.5. Spatiotemporal analysis of liver gene expression 
profiles 

2.5.5.1. Data 

Each profile for the 14678 genes includes 8 layers from the pericentral to the peri-
portal zone and 4 time points: ZT0 (n=3 biological replicates from individual mice), ZT6 
(n=2), ZT12 (n=3) and ZT18 (n=2). The expression levels (noted as 𝑥𝑥) are then log-trans-
formed as follows: 

𝑦𝑦 = 𝑙𝑙𝑙𝑙𝑙𝑙2(𝑥𝑥 + ∆) − 𝐵𝐵 (𝑖𝑖) 

The offset ∆ = 10−4 buffers variability in lowly expressed genes, while the shift 𝐵𝐵 =
−𝑙𝑙𝑙𝑙𝑙𝑙2(11 × 10−5) changes the scale so that 𝑦𝑦 = 0 corresponds to about 10 mRNA copies 
per cell (we expect on the order of 1M mRNA transcripts per liver cell). 

2.5.5.2. Reference genes 

For ease of interpretation (Figure 2.2 and Supplementary Figure 2.2), we used 
a set of reference circadian genes and a set of reference zonated genes, highlighted in several 
figures.  

The reference core circadian clock and clock output genes are the following: Bmal1, Clock, 
Npas2, Nr1d1, Nr1d2, Per1, Per2, Cry1, Cry2, Dbp, Tef, Hlf, Elovl3, Rora, Rorc. 

The reference zonated genes are the following: Glul, Ass1, Asl, Cyp2f2, Cyp1a2, Pck1, 
Cyp2e1, Cdh2, Cdh1, Cyp7a1, Acly, Alb, Oat, Aldob, Cps1. 

2.5.5.3. Gene expression variance in space and time  

To analyse variability in space and time (Figure 2.2A) we computed, for each gene, 
the spatial variance 𝑉𝑉𝑥𝑥 and the temporal variance 𝑉𝑉𝑇𝑇. Let 𝑦𝑦𝑥𝑥,𝑡𝑡,𝑗𝑗 represent the expression 
profile, with 𝑗𝑗 the replicate index, 𝑡𝑡 ∈ {1,2, … ,𝑁𝑁𝑡𝑡} the time index, and 𝑥𝑥 ∈ {1,2, … ,𝑁𝑁𝑥𝑥} the 
layer index. Then, 𝑉𝑉𝑥𝑥 and 𝑉𝑉𝑇𝑇 are computed as follows: 

𝑉𝑉𝑋𝑋 =
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Thus, the spatial variance 𝑉𝑉𝑥𝑥 is computed along the space (and averaged over the replicates) 
for each time condition, and then averaged over time. The procedure is similar, symmetri-
cally, for 𝑉𝑉𝑡𝑡. 

2.5.5.4. Genes filtering  

For the analyses in Figure 2.2, we selected transcripts that were reproducible be-
tween replicates, as well as sufficiently highly expressed (see scatterplot in Supplementary 
Figure 2.2A). To assess reproducibility across replicates, we computed the average relative 
variance of the spatiotemporal profiles over the replicates: 

𝑉𝑉𝐽𝐽 =
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We considered genes with values below 50% (Supplementary Figure 2.2). To filter lowly 
expressed genes, we required the maximum expression level across layers and time points 
(fraction of UMIs) to exceed 10-5 which corresponds to y = 0 or about 10 copies of mRNA 
per cell. While this kept most of the reference zonated and circadian genes, the filtering 
selected a total of 5085 genes, used for all analyses presented in Figures 2-5. In addition, we 
systematically discarded Cyp2a4 and Cyp2a5 from analyses, as these genes are not discerna-
ble from scRNA-seq due to their highly similar sequences.  

2.5.5.5. Mixed-effect model for spatiotemporal mRNA profiles 

Since the data is longitudinal is space (8 layers measured in each animal), modelling 
the space-time profiles require the use of mixed-effect models. To systematically analyse the 
spatiotemporal mRNA profiles, we used a parameterised function. Specifically, the model 
uses sine and cosine functions for the time, and polynomials (up to degree 2) for space. 
Possible interaction between space and time are described as space-dependent oscillatory 
functions, or equivalently, time-dependent polynomial parameters. Our model for the trans-
formed mRNA expression y reads: 

𝑦𝑦𝑥𝑥,𝑡𝑡,𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝜇𝜇(𝑥𝑥) + 𝑎𝑎(𝑥𝑥) cos(𝜔𝜔𝜔𝜔) + 𝑏𝑏(𝑥𝑥) sin(𝜔𝜔𝜔𝜔) + 𝜀𝜀𝑥𝑥,𝑡𝑡,i      (𝑣𝑣) 

Here 𝑡𝑡 is the time, 𝑥𝑥 the spatial position along the liver layers, and 𝑖𝑖 ∈ {1,2, … ,10} the animal 
index. This function naturally generalises harmonic regression, often used for analysis of 
circadian gene expression[227], by introducing space-dependent coefficients: 

�
𝜇𝜇(𝑥𝑥) = 𝜇𝜇0 + 𝜇𝜇1𝑃𝑃1(𝑥𝑥) + 𝜇𝜇2𝑃𝑃2(𝑥𝑥)
𝑎𝑎(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1𝑃𝑃1(𝑥𝑥) + 𝑎𝑎2𝑃𝑃2(𝑥𝑥)
𝑏𝑏(𝑥𝑥) = 𝑏𝑏0 + 𝑏𝑏1𝑃𝑃1(𝑥𝑥) + 𝑏𝑏2𝑃𝑃2(𝑥𝑥)
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Here, 𝑃𝑃1 and 𝑃𝑃2 are the Legendre polynomials of degrees 1 and 2, respectively;  𝜇𝜇0, 𝜇𝜇1 and 
𝜇𝜇2 represent the static zonation profile, 𝑎𝑎0 and 𝑏𝑏0 represent the global (space-independent) 
rhythmicity of the gene, while 𝑎𝑎1, 𝑎𝑎2, 𝑏𝑏1, 𝑏𝑏2 represent layer-dependent rhythmicity. 𝜀𝜀𝑥𝑥,𝑡𝑡,𝑗𝑗 is a 
Gaussian noise term with standard deviation 𝜎𝜎. In addition to the fixed-effect parameters 
described so far, we also introduced a mouse-specific random-effect 𝜇𝜇𝑖𝑖 (with zero mean). This 
parameter groups the dependent layer measurements (obtained in the same animal) and 
thereby properly adjusts the biological sample size for the rhythmicity analysis. 

Phases 𝜑𝜑 (related peak times 𝑡𝑡 through 𝑡𝑡 = 𝜑𝜑 ∗ 24/2𝜋𝜋) and amplitudes 𝐴𝐴, for each profile 
can then be computed for any layer from the coefficients 𝑎𝑎(𝑥𝑥) and 𝑏𝑏(𝑥𝑥): 

𝜑𝜑(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2�𝑏𝑏(𝑥𝑥),𝑎𝑎(𝑥𝑥)�          𝐴𝐴(𝑥𝑥) = �𝑎𝑎(𝑥𝑥)2 + 𝑏𝑏(𝑥𝑥)2        (𝑣𝑣𝑣𝑣) 

We also note that an equivalent writing of the model formulates the problem in terms of 
time-dependent zonation parameters instead of space-dependent rhythmicity: 

𝑦𝑦𝑥𝑥,𝑡𝑡,𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝜇𝜇0(𝑡𝑡) + 𝜇𝜇1(𝑡𝑡)𝑃𝑃1(𝑥𝑥) + 𝜇𝜇2(𝑡𝑡)𝑃𝑃2(𝑥𝑥) + 𝜀𝜀𝑥𝑥,𝑡𝑡,𝑖𝑖       (𝑣𝑣𝑣𝑣𝑣𝑣) 

where: 

�
𝜇𝜇0(𝑡𝑡) = 𝜇𝜇0 + 𝑎𝑎0 cos(𝜔𝜔𝜔𝜔) + 𝑏𝑏0sin (𝜔𝜔𝜔𝜔)
𝜇𝜇1(𝑡𝑡) = 𝜇𝜇1 + 𝑎𝑎1 cos(𝜔𝜔𝜔𝜔) + 𝑏𝑏1sin (𝜔𝜔𝜔𝜔)
𝜇𝜇2(𝑡𝑡) = 𝜇𝜇2 + 𝑎𝑎2 cos(𝜔𝜔𝜔𝜔) + 𝑏𝑏2sin (𝜔𝜔𝜔𝜔)

 

In this study, we fixed 𝜔𝜔 = 2𝜋𝜋
24 ℎ

 since the animals were entrained in a 24 h light-dark cycle 

and the low time resolution would prevent us from studying ultradian rhythms. 

The model parameters, including the variance of the random effects and Gaussian noise 
strength 𝜎𝜎, are estimated for each gene using the fit function from the Python library Stats-
Models (version 0.9.0). Nelder-Mead was chosen as the optimisation method, and the use of 
a standard likelihood was favored over the REML likelihood to allow for model compari-
son[240]. To prevent overfitting of the gene profiles, we added a noise offset 𝜎𝜎0= 0.15 [log2] 
to the estimated noise 𝜎𝜎, in the expression of the likelihood function used in the mixed-effect 
model optimisation. 

Depending on the gene, the model presented in (𝑣𝑣) and (𝑣𝑣𝑣𝑣𝑣𝑣) may be simplified by setting 
all or some of the (fixed) parameters to 0. For example, a non-oscillatory gene profile would 
normally have non-significant 𝑎𝑎𝑗𝑗 and 𝑏𝑏𝑗𝑗 parameters. In practice, considering the fixed effects, 
29 sub-models of various complexity can be generated. However, we added a few reasonable 
requirements to reduce the number of models. First, the intercept 𝜇𝜇0 must be present in 
every model. Similarly, the parameters 𝑎𝑎0 and 𝑏𝑏0, providing a global rhythm, must be present 
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in every rhythmic model. Finally, the parameters 𝑎𝑎𝑗𝑗 and 𝑏𝑏𝑗𝑗 for j=0,1,2 must be paired to 
ensure a proper phase definition (vi).  

The models can then be classified in different categories, depending on the retained (non-
zero) parameters (Figure 2.2): 

• The model comprising only the intercepts 𝜇𝜇0 and 𝜇𝜇𝑖𝑖, termed flat (F). 

• The models comprising only the intercepts and zonation parameters: 𝜇𝜇1and/or 𝜇𝜇2, 
termed purely zonated (Z). 

• The models comprising only the intercepts and rhythmic parameters: 𝑎𝑎0 and 𝑏𝑏0, 
termed purely rhythmic (R). 

• The models comprising only the intercepts, zonated parameters and rhythmic param-
eters: 𝜇𝜇1 and/or 𝜇𝜇2, and 𝑎𝑎0, 𝑏𝑏0, termed independent (Z+R). 

• The models comprising interaction parameters: 𝑎𝑎𝑗𝑗and 𝑏𝑏𝑗𝑗 for j=1,2, termed interacting 
(ZxR). 

Note that, since the random-effect parameter 𝜇𝜇𝑖𝑖 is interpreted as a correction for the data 
rather than a predictive parameter, it is systematically used for the fits, but not plotted in 
the final retained profiles (e.g. Figure 2.1, Supplementary Figure 2.1). 

The Bayesian Information Criterion (BIC) is then used for model selection, enabling to 
choose the best model for a given gene profile. It appears that, for some profiles, several 
competing models can result in very close BIC values (see e.g. the discussion on Clock and 
Cry1 in the Results). Therefore, if some models have a relative difference of less than 1% in 
their BIC (sorted by increasing order), we systematically keep the one with the highest 
number of parameters. We assign probabilities to the different categories (F, Z, R, Z+R and 
ZxR), computed as Schwartz BIC weights[241] (Supplementary Table 2.4). All best fits with 
their parameter values are listed in Supplementary Table 2.1. 

2.5.5.6. Comparison of peak times with the Atger et al. dataset 

We compared our rhythmically classified genes with those obtained from the data 
in[227]. These data consist of bulk liver RNA-seq data sampled every 2 hours for 24 hours, 
with 4 replicates per time condition. Thus, there are two main differences between our cur-
rent and that dataset. First, we can only compare the genes for which rhythmicity is not 
changing across layers, viz. the R and Z+R categories. Secondly, our dataset has a lower 
temporal resolution, with fewer replicates per time point, meaning that the statistical power 
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for the detection of rhythmic genes is higher in reference [227]. We therefore did not compare 
genes found as flat in our dataset. 

To assess gene rhythmicity from reference [227], we used harmonic regression on the log-
transformed profiles as previously. Using the same notation as above, we define the two 
following models: 

�
𝑦𝑦𝑡𝑡,𝑖𝑖 = 𝜇𝜇 + 𝜀𝜀                                                 (𝑖𝑖𝑖𝑖)
𝑦𝑦𝑡𝑡,𝑖𝑖 = 𝜇𝜇 + 𝑎𝑎 cos(𝜔𝜔𝜔𝜔) + 𝑏𝑏 sin(𝜔𝜔𝜔𝜔) + 𝜀𝜀 (𝑥𝑥)  

We then fit Eq. (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) and Eq. (𝑖𝑖𝑖𝑖) to every transcript, and, for each of them, keep the model 
with the lowest BIC. Transcripts for which Eq. (𝑖𝑖𝑖𝑖) is favored are assigned to the flat cate-
gory (F), while transcripts for which Eq. (𝑥𝑥) is favored are assigned to the rhythmic category 
(R). We then compare the phases and amplitudes of the transcripts classified as rhythmic in 
both datasets, and compute the circular correlation coefficient[242]. 

2.5.6. KEGG and DAVID pathway Enrichment analysis 

Functional annotation clustering from DAVID[229] for the three categories Z, R, 
Z+R was ran with standard  parameters, using the above set of 5002 selected genes as 
background set.  

We also studied the enrichment of KEGG pathways using hypergeometric tests. In practice, 
if a background set contains 𝑁𝑁 genes, among which 𝐾𝐾 belong to the category Y, and if a 
given pathway contains 𝑛𝑛 genes, then the p-value corresponding to an enrichment of 𝑘𝑘 genes 
is the probability of observing at least 𝑘𝑘 genes from the pathway which belong to the category 
Y, that is (for a right-sided test): 

𝑝𝑝(𝑥𝑥 ≥ 𝑘𝑘) = �
�𝐾𝐾𝑥𝑥��

𝑁𝑁−𝐾𝐾
𝑛𝑛−𝑥𝑥�

�𝑁𝑁𝑛𝑛�

𝑛𝑛

𝑥𝑥=𝑘𝑘

 (𝑥𝑥𝑥𝑥) 

FDR is then adjusted running the Benjamini-Hochberg procedure on the resulting set of p-
values, for each category (zonated, rhythmic, etc.) separately. For clarity, a value z is also 
computed alongside as: 

𝑧𝑧 =  
𝑘𝑘 − 𝐾𝐾

𝑁𝑁𝑛𝑛
𝐾𝐾
𝑁𝑁𝑛𝑛

 (𝑥𝑥𝑥𝑥𝑥𝑥) 

This value must be interpreted as the relative difference between the observed number of 
genes 𝑘𝑘 in the pathway belonging to Y, and the expected value if the distribution was similar 
as the one from the background. 
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332 KEGG pathways were tested against KEGG genome T01002. To exclude too specific 
and too general pathways, pathways having less than 3 or more than 500 genes in common 
with our dataset were discarded from the analysis. 

2.5.7. smFISH 

2.5.7.1. Analysis of Z+R and ZxR genes (Stellaris smFIH probes) 

Preparation of probe libraries, hybridisation procedure and imaging conditions were 
previously described[224]. smFISH probe libraries were coupled to TMR, Alexa594 or Cy5. 
Cell membranes were stained with alexa fluor 488 conjugated phalloidin (Rhenium A12379) 
that was added to GLOX buffer[243]. Portal node was identified morphologically on DAPI 
images based on bile ductile, central vein was identified using smFISH for Glul in TMR, 
included in all hybridisations. For zonation profiles, images were taken as scans spanning the 
portal node to the central vein. Images were analysed using ImageM[243]. Quantification of 
zonation profiles in different circadian time point were generated by counting dots and di-
viding the number of dots in radial layers spanning the porto-central axis by the layer vol-
ume. Central vein niche NPCs were identified by co-staining of Aqp1, Igfbp7 and Ptprb. The 
central vein area was imaged and the images were analysed using ImageM. We counted dots 
of Wnt2 and Dkk3 expression in NPCs lining the central vein and removed background dots 
larger than 25 pixels. We then divided the dot count by the segmented cell volume. In total 
489 NPCs from 120 central veins of 2 mice (ZT0,6,12,18) were imaged and a Kruskal-Wallis 
test based on the mean mRNA dot concentration in each cell was performed to compare the 
timepoints. 

2.5.7.2. Temporal analysis of circadian genes (RNA scope smFISH 
probes) 

smFISH of R genes were done on fresh-frozen liver cryosections (8μm) embedded in 
OCT Compound (Tissue-Tek; Sakura-Finetek USA), sampled every three hours (ZT0 to 
ZT21). RNAscope® probes for Bma1l mRNA (Mm-Arntl, catalog #: 438748-C3) and Per1 
mRNA (Mm-Per1, catalog #: 438751) were used, according to the manufacturer’s instruc-
tions for the RNAscope Fluorescent Multiplex V1 Assay (Advanced Cell Diagnostics). To 
detect the central vein, an immunofluorescence of Glutamine Synthetase (ab49873, Abcam, 
diluted 1:2000 in PBS/BSA 0.5%/Triton-X0.01%) was done together with smFISH. Nuclei 
were counterstained with DAPI and sections were mounted with ProLong™ Gold Antifade 
Mountant. Liver sections were imaged with a Leica DM5500 widefield microscope and an oil-
immersion x63 objective. Z-stacks were acquired (0.2μm between each Z position) and mRNA 
transcripts were quantified using ImageJ, as described previously in reference [232]. 



Chapter 2: Space-time logic of liver gene expression at sublobular scale 

 
147 

Pericentral (PC) and Periportal (PP) veins were manually detected based on Glutamine 
Synthetase IF or on bile ducts (DAPI staining). The Euclidean distance between two veins 
and the distance from the vein of each mRNA transcript were calculated. mRNA transcripts 
were assigned to a PP or PC zone if the distance from the corresponding vein was smaller 
than one-third of the distance between the PP and PC veins (ranging from 50 to 130μm). 

2.5.7.3. Wnt2 and Dkk3 expression in LEC 

Preparation of probe libraries, hybridisation protocol and imaging conditions were 
previously described[224]. The Aqp1, Igfbp7 and Ptprb probe libraries were coupled to TMR, 
the Wnt2 library was coupled to Cy3 and the Dkk3 library was coupled to Cy5. Cell mem-
branes were stained with alexa fluor 488 coupled to phalloidin (Rhenium A12379) that was 
added to GLOX buffer[243]. The central vein was identified based on morphological features 
inspected in the DAPI and Phalloidin channels and presence of Wnt2-mRNA (detected by 
smFISH). Endothelial cells were identified by co-staining of Aqp1, Igfbp7 and Ptprb. The 
central vein area was imaged and the images were analysed using ImageM[243]. We counted 
dots of Wnt2 and Dkk3 expression (corresponding to single mRNA molecules) in endothelial 
cells lining the central vein and removed background dots larger than 25 pixel3. We then 
divided the dot count by the segmented cell volume. In total 516 endothelial cells from 120 
central veins of at least 2 mice per time point. 

2.5.8. Data availability 

2.5.8.1. scRNA-seq data 

All scRNA-seq data is deposited in GEO with accession code GSE145197 (reviewer 
token ezobmqmqftcrpeh). 

2.5.8.2. Reconstructed gene profiles 

Reconstructed spatio-temporal gene profiles are available as Matlab files at 
https://c4science.ch/diffusion/10261/ 

2.5.9. Web-application 

The whole dataset of gene profiles along with the analysis is available online as a 
web-application at the URL: https://czviz.epfl.ch/. The application was built in Python 
using the library Dash by Plotly (version 1.0). 

https://c4science.ch/diffusion/10261/
https://czviz.epfl.ch/
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2.5.10. Code availability 

The code for fitting the mixed-effects models and generating the main figures is 
available at https://c4science.ch/diffusion/10261/ 

2.6. References 

For consistency, references from the article have been placed at the end of the thesis 

2.7. Supplementary Figures 

 

Supplementary Figure 2.1: Log-transformed expression profiles. (A-C) Expression levels of the 
reconstructed profiles for the example genes from Figure 2.1, panels F-H after log-transformation (Meth-
ods). Shaded areas represent SD across mice. 

https://c4science.ch/diffusion/10261/
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Supplementary Figure 2.2: Pre-filtering of the genes and comparison with external datasets. 
(A) Biological variability of gene profiles across independent replicate liver samples, quantified in terms of 
the average relative replicate variance. 0 shows perfectly reproducible profiles while 1 the most variable 
genes (Methods). Gene inside the bottom-right box (x-cutoff at 10−5; y-cutoff at 0.5) are selected and 
contain all but one of the reference genes. Colored dots show reference zonated genes (blue) and reference 
rhythmic genes (orange). (B) Comparison of the peak time for rhythmic genes in R and Z+R, with the 
dataset from Atger et al, 2015[227]. Circular correlation coefficient is 0.746 (Methods). (C) Boxplot of the 
mRNA half-lives (data from Wang, J. et al, 2017[223]) shows that R genes as a group (median, orange 
line) are the shortest-lived. Box limits are lower and upper quartile, whiskers extend up to the first datum 
greater/lower than the upper/lower quartile plus 1.5 times the interquartile range. Remaining points are 
outliers. 
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Supplementary Figure 2.3 (modified version, verticalized): Spatial and temporal profiles of 
the outliers from Figure 2.3C-D. (A) Spatial (top) and temporal (bottom) representation of eight 
Z+R genes showing large slope and/or amplitude in Figure 2.3C. (B) Same representations with eight 
ZxR outliers selected from Figure 2.3D having volatile phase and/or amplitude. 
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Supplementary Figure 2.4: Core-clock circadian genes escape zonation. (A) Spatial and temporal 
profiles and fits for circadian core-clock genes. Peak times are indicated on the temporal representation. 
For the genes Cry1 and Clock, additional dashed lines represent fits for the R model, as the Schwartz BIC 
weights from the R and Z+R models were close (Supplementary Table 2.4). (B) Amplitudes and peak 
times of the core-clock circadian genes in a polar coordinate representation (clock-wise ZT times are indi-
cated, distance from the center corresponds to the amplitude) show the expected organization of core clock 
transcript in the liver.  
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Supplementary Figure 2.5: Space-time logic of signaling pathways. Enrichment/depletion of 
genes targeted by the Wnt, Ras and Hypoxia pathways with respect to the main background sets: all genes 
(column B1 and B5), R and Z+R (B2), Z+R (B3), and Z and Z+R (B4). Tested sets are rhythmic genes 
(R and Z+R, B1), diurnally and nocturnally rhythmic genes (Rnight/day and Z+Rnight/day, B2), diurnally/noc-
turnally central/portal genes (Zc/p+Rnight/day, B3), central and portal genes (Zc/p and Zc/p+R, B4), and 
zonated genes (Z and Z+R, B5). Example of interpretation: the positive targets of Ras are not enriched 
nor depleted in rhythmic genes, but they are highly enriched in zonated genes. Among the targets that are 
zonated, we observe an over-representation of portal genes with respect to what is observed in the back-
ground of all the (filtered) zonated genes; accordingly, we observe a under-representation of positive central 
targets. Moreover, the positive targets of Ras which are rhythmic and portal appear to peak preferentially 
at night (compared to the distribution of peak times of all the zonated-rhythmic genes). 

2.8. Supplementary Tables 

Supplementary Tables are not adapted to the format of this thesis but are available 
online along with the preprint version of this study.  
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3. Web application  

3.1. Introduction 

In the project presented Section 2, we’re dealing with a dataset of about fifteen 
thousand genes, each of which being represented by a three-dimensional profile of eighty 
datapoints. The corresponding analysis involves ten times as much data, as the resolution 
for the fits is much higher than the original profiles. As it would be cumbersome to share the 
whole dataset and analysis as Excel files, we decided to store everything in a database like-
format, accessible directly online. To simplify even more the user interface, we coded a Py-
thon web-application using the library Dash by Plotly, enabling to explore the different gene 
profiles and fits from the browser. 

The application, called CZViz, is fully working and available at https://czviz.epfl.ch/. 

3.2. What is a web-app? 

Data can be cumbersome to explore, especially when heavy. Similarly, analysis re-
sults can be hard to interpret from a CSV file or an Excel Sheet. Web applications (Web-
app), as a client-server computer program, enable the consultation and download of datasets 
and analysis using an intuitive Graphical User Interface (GUI) directly in a browser. Com-
mon web-apps include webmail or online banking and, as such, are already used by a majority 
of the adult population[244]. 

Early web-apps were excessively slow as the application computations were shared between 
the server the client, posing compatibility problem and adding to the support cost, as an 
upgrade from the server also needed an upgrade from the client. Besides, each web page was 
shown as a static document, and interactivity was only simulated as a sequence of pages, 
such that any update made to one page would require the server the reload the whole se-
quence. 

With the development of HTML5 and Javascript, modern web-apps run only on the server-
side (except if not needed), and are supported by a wide variety of internet browsers. Web 
applications can be considered as a specific variant of client-server software where the client 
software is downloaded to the client machine when visiting the relevant web page, using 
standard procedures such as HTTP. Client web software updates may happen each time the 
web page is visited. During the session, the web browser interprets and displays the pages, 
and acts as the universal client for any web application[244]. 

https://czviz.epfl.ch/
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Nowadays, web-apps can be coded directly from “classic” programming languages such as 
Python and R, using libraries developed for the purpose[245], [246]. These libraries usually 
work as a wrapper for javascript/HTML5 code, but in practice, they deliver an experience 
almost as fast as a natively implemented application. 

3.3. CZViz 

 

Figure 2.7: GUI of CZViz (main page, gene selection). The gene of interest can be selected using 
the left dropdown menu, which is then represented under various perspectives on the right.  

CZViz is a Dash web-application, itself embedded in a website coded using HTML 
5 and Bootstrap 4. The structure of the application is as follow: 

• Tabulation 1: Gene selection (Figure 2.7) 

o Left: Introduction to the application, followed by a control card to select the 
gene of interest (a search engine is integrated) 

o Right: Four panels, each corresponding to a different way of presenting the 
data: either in space, time, both, or the raw data in a table.   

• Tabulation 2: Statistical analysis (Figure 2.8) 

o Left: type of analysis. Choices are “Spatial analysis”, “Temporal analysis”, 
“Spatiotemporal analysis” or “Validation”. 
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o Right: results from the current analysis, representing visually and in tables 
the different types of regressions.  

 

Figure 2.8: GUI of CZViz (secondary page, statistical analysis). The type of analysis can be 
selected using the left dropdown menu. The corresponding analysis is returned on the right, with the 
appropriate representation. 

For more details, please refer to the app documentation. Due to memory limitation, all 
analyses are done on the fly on the lab server, using Python scripts running with Gunicorn. 
Most analyses take less than a second to run. 

3.4. Code availability 

The corresponding Python code is open-source, available on GitHub: 
https://github.com/ColasDroin/CZViz 

https://github.com/ColasDroin/CZViz
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Chapter 3: RNA velocity-based infer-
ence of cell cycle properties using sin-
gle-cells 

This work is currently being written, for submission as a method paper. Authors list 
is as follow (definitive order not decided): L. Talamanca, C. Droin, A. Lederer, Giolele La 
Manno, F. Naef. 

Contributions 
In all the tasks listed below, my work is always under the supervision of F. Naef. 

F. Naef, G. La Manno and L. Talamanca initially designed the study, with some changes following my 
involvement a few weeks later. G. La Manno and A. Lederer collected and partly wrangled the datasets. 
Along with the help of F. Naef, G. La Manno and I, L. Talamanca designed the inference method. I 
designed the simulation method and implemented the inference method. With the help of G. La Manno, I 
designed and implemented the corresponding parameter optimization method. I ran the inference method 
on simulated and real data. All authors are currently involved in the writing of the manuscript. 

 

Artwork Figure 4: Artistic representation of the De Jong strange attractor. On each of its three dimen-
sions, this attractor generates oscillations, whose amplitude and period are never exactly the same from 
cycle to cycle. Simulated with Processing, based on the work of Robert D'Arcy. 
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1. Project Introduction 

1.1. Motivation and aims 

Breakthrough methods in single-cell transcriptomics have recently opened new op-
portunities for the study of dynamic biological processes such as cell development and dif-
ferentiation[247], [248]. Among them, unsupervised trajectory inference algorithms aim to 
reconstruct in an unbiased manner the underlying dynamical processes that occur in a cell 
population[249].   

However, to get a genuinely predictive trajectory model, temporal information is required, 
at least to constrain the space of possible dynamics[250]. This is precisely what RNA velocity 
has brought, by involving the fact that nascent mRNAs and spliced mRNAs, which are 
causally linked (the first “predicts” the second at a latter time point), are actually distin-
guishable in many scRNA-seq protocols, due to the presence of introns in the formers[251]. 
Therefore, by building a per-gene reaction model (production-degradation rate model) de-
scribing how unspliced mRNA is progressively transformed into spliced mRNA before being 
degraded, changes in mature mRNA abundance can be predicted. By combining these pre-
dictions across all genes, one can estimate towards which state a single cell is evolving. 

In its most accurate form, RNA velocity needs to incorporate the mRNA splicing and deg-
radation rates for each transcript. Yet, in a standard single RNA-seq snapshot dataset, only 
the ratio of the two is easily accessible, assumiong moreover that the genes under study reach 
steady-state. Therefore, a significant hypothesis has been made: the splicing rate is taken as 
common to all genes[251]. 

In this project, we wanted to revisit RNA velocity inference such that the obtained vector 
fields would bear dynamical significance. To this end, we decided to exploit that in the high-
dimensional gene space, cell velocities are forced to remain tangent to these manifolds. Add-
ing such a hypothesis helps to handle the noise (both intrinsic and extrinsic), as all cells 
must be projected onto the manifold but, due to the simpler structure of the model. 

We decided to start with the cell-cycle, as it necessarily follows a limit-cycle in expression 
space, and is already well described in the literature. Corresponding biological questions that 
we aim to answer are: how does the speed of the cell-cycle depend on the phase of the cell? 
Does that change with the cell-type or growth conditions? Does that change with external 
factors, such as temperature? 

The difficulty to answer these questions is that the model is hard to optimize, as it involves 
many parameters and quite noisy data. 
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1.2.  Background 

1.2.1. Single-cell temporal-omics23 

1.2.1.1. Introduction 

Single-cell transcriptomics is a relatively recent field of science[253] which takes an 
interest in analyzing gene expression in various biological systems at the resolution of indi-
vidual cells. To this end, it highly relies on Single-cell RNA sequencing (scRNA-seq), a tech-
nology that has been used in very different contexts: building tissue atlases[254], [255], en-
hance genome-wide association studies perspectives[256], unravel the complexity of develop-
mental processes and gene regulatory networks, or build cell fate commitment land-
scapes[257]. 

When applied to a population cells (e.g. dissociated from a tissue samples, or cells grown in 
culture), scRNA-seq can provide a static snapshot of the cell states, containing information 
about the biological processes they undergo. For instance, if cells are differentiating, gene 
expression space will be spannning mature and transient cell types. However, contrary to 
live cell approaches, snapshot scRNA-seq data does not infer temporal cellular trajectorie, 
but rather reveals variation in expression among cell types within the cells at the population 
level. 

Now, modern scRNA-seq techniques are very high-throughput[258], [259], but the interpre-
tation of the information they provide into biological knowledge is not an easy task, usually 
requiring dedicated statistical methods and modelling approaches[253], [260]. Among them, 
many have been developed to assess dynamical or regulatory aspects of the data: RNA ve-
locity[251] is probably the most famous (and the most relevant to this work), but this also 
includes nascent RNA quantification[261], lineage tracing[262] or molecular recording[263]. 
A short explanation of single-cell temporal omics approaches is provided in Background Fig-
ure 3.1. 

 
23 This introduction to single-cell temporal-omics is partly adapted from a review[252] by two co-authors 
of the study presented Section 2: Alex Lederer and Gioele La Manno. 



Project Introduction 

 
160 

 

Background Figure 3.1: Illustrative representation of single-cell temporal-omics approaches. 
Given the snapshot obtained from single-cell RNA sequencing, data analyses enable characterization and 
classification of the gene expression landscape in a heterogeneous population of cells. Recent methods 
further enable the extrapolation of future gene expression states (right) and reconstruction of past cellular 
events (left). Together, these approaches permit greater inference of the temporal changes within a single 
cell while still relying on measurement from a single time point. Figure and caption taken from Lederer et 
La Manno, 2020[252]. 

1.2.1.2. Pseudotime trajectories 

Developmental biologists are often interested in following the time trajectories of 
single-cells in gene expression space, as this explains how a cell can transition from one state 
to another. Unfortunately, repeated extraction and sequencing of cellular contents from living 
cells is not an efficient option yet[264]. As of now, most single-cell sequencing techniques will 
kill the cells being sequenced, and, therefore, can only provide a static snapshot of the cell-
state at the time of sampling[250]. However, assuming that the sequenced cells follow the 
same trajectories24, it is possible to order them in a way that captures internal time. Methods 

 
24 And that a sample contains sufficient heterogeneity in causally related cellular states. 
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such as Monocle[265], Wanderlust[266] or Cyclum[267] have been developed for this exact 
purpose, introducing the concept of “pseudotime” as a proxy for internal time. As of 2020, 
more than 70 pseudotime inference methods have been published in the literature[267].  

Trajectory inference methods have several drawbacks, and the main one is probably that 
they poorly handle variations in cell density in the expression space. For instance, if cells 
tend to accumulate towards a stable sate, the corresponding transient states may be dis-
torted. Therefore, pseudotime analysis is not and should not be expected to reveal the real 
trajectories of the cells. Still, this doesn’t prevent it from bringing valuable biological in-
sights[268]. 

In 2017, a method called “RNA velocity” was developed by La Manno et al.[251] to precisely 
address this drawback, by involving dynamical information in the model and estimation 
process.  

1.2.1.3. RNA velocity 

RNA velocity takes advantage of the fact that the production of mRNA is progres-
sive: the nascent mRNA is transcribed from the DNA, before getting spliced and ready to 
get translated into proteins. Therefore, the amount of unspliced mRNA will necessarily de-
termine the amount of spliced mRNA, such that a rate equation can be found which describe 
how these mRNA quantities change in time. In practice, RNA velocity uses intronic reads 
as a proxy for unspliced mRNA levels in scRNA-seq protocols, while exonic reads for spliced 
mRNA levels. The corresponding system of equations describes the mRNA dynamics[251]: 

�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛼𝛼 − 𝑢𝑢(𝑡𝑡)       

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑢𝑢(𝑡𝑡) − 𝛾𝛾𝛾𝛾(𝑡𝑡)
        (𝑖𝑖) 

Here, 𝑢𝑢 and 𝑠𝑠 stand for the number of unspliced and spliced mRNA, respectively. 𝛼𝛼 is the 
transcription rate, assumed constant, and 𝛾𝛾 is the degradation rate. A central hypothesis of 
this model is that the splicing rate is constant, equal to 1. This is not so much of a problem 
in itself for one gene as it just means that the resulting mRNA counts are given in units of 
splicing. However, applying this model to several genes at the same time, as it is done, is 
equivalent to assuming that all genes have the same splicing rate, which is most likely 
wrong[269], [270]. 

Eq (𝑖𝑖) is a first order a differential equation describing how mRNA expression is evolving in 
time. Knowing 𝑢𝑢 and 𝑠𝑠 at a given time point allows for the prediction of mRNA expression 
at future times for all genes of a given cell. One can thus have an idea of the direction it is 
going to take in the expression space, that is, what is going to be its real temporal trajectory 
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(Background Figure 3.2). RNA velocity has already been applied with success in develop-
mental studies[271], [272] and diseases[273], [274]. Now, mainly because of the strong as-
sumptions regarding the constant transcription and splicing rates, this method also has draw-
backs and remains imprecise. 

 

Background Figure 3.2: Measuring dynamic changes in gene expression across complex tis-
sues. (a) As messenger RNA matures, sections of the immature transcript are removed — a process called 
splicing. When the expression of a gene increases, a transient increase in the proportion of immature, 
unspliced transcripts compared with that of mature, spliced transcripts is observed in the cell. By contrast, 
a higher proportion of spliced transcripts is seen for a short time when expression of the gene decreases 
(not shown). La Manno et al.[251] measured the ratio of unspliced to spliced transcripts for each gene in a 
single cell to calculate a quantity called the RNA velocity, which reveals how gene expression is changing. 
(b) By measuring RNA velocity in thousands of cells in a tissue (here, in neurons in the developing mouse 
brain), the authors could generate maps that show not only how closely related cells are to one another 
(with closeness indicated by similar colours), but also which cells they will become similar to in the future 
(indicated by arrows), according to the gene-expression changes they are undergoing. RNA velocity suc-
cessfully tracks early progenitors (orange and yellow) that eventually give rise to a range of differentiated 
cell types (blue dashed circles). Figure and caption taken from the News and Views article by Allon 
Klein[275]. 
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1.2.2. Optimization: L-BFGS-B 

In this project, parameter optimization is performed using L-BFGS-B, also known 
as limited memory BFGS. In practice, L-BFGS-B is an approximation of the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method, which enables to solve non-linear unconstrained 
optimization problems. BFGS is itself a quasi-newtonian method, that is, a method that 
looks for the zeros of a function whose Jacobian or Hessian analytical expression is not 
known[276].  

The main idea of BFGS is to avoid to explicitly building the Hessian matrix, and instead 
make an approximation of the second derivative inverse of the function to optimize, by 
analyzing successive gradients. This approximation relies on the assumption that the function 
to optimize can be locally approximated by a quadratic Taylor expansion around the opti-
mum: 

𝑓𝑓(𝒙𝒙 + 𝜺𝜺) ≈ 𝑞𝑞(𝜺𝜺) = 𝑓𝑓(𝒙𝒙) + 𝜺𝜺𝑇𝑇𝑔𝑔(𝒙𝒙) +
1
2 𝜺𝜺

𝑇𝑇𝐻𝐻(𝒙𝒙)𝜺𝜺       (𝑖𝑖𝑖𝑖) 

Here, 𝑓𝑓 is the function to optimize, 𝑔𝑔(𝒙𝒙) is the gradient vector and 𝐻𝐻(𝒙𝒙) is the Hessian 
matrix. By taking the derivative of this expression, it can be shown that the necessary 
condition for a local minimum of 𝑞𝑞(𝜺𝜺) results in the following linear system: 

𝑔𝑔(𝒙𝒙) + 𝐻𝐻(𝒙𝒙)𝜺𝜺 = 0        (𝑖𝑖𝑖𝑖𝑖𝑖) 

In turn, this expression leads to the Newton direction 𝜺𝜺 for line search: 

𝜺𝜺 = −𝐻𝐻(𝒙𝒙)−1𝑔𝑔(𝒙𝒙)        (𝑖𝑖𝑖𝑖) 

In practice, the Newton direction is only reliable if, on the one hand, the Hessian matrix 
exists and is positive definite, and on the other hand, the quadratic approximation is reason-
ably good. 

The approximation of the Hessian matrix 𝐵𝐵(𝒙𝒙) ≈ 𝐻𝐻(𝒙𝒙) is done with an update formula called 
the BFGS updating formula: 

𝑩𝑩𝑘𝑘+1 = 𝑩𝑩𝑘𝑘 −
𝑩𝑩𝑘𝑘𝒔𝒔𝑘𝑘𝒔𝒔𝑘𝑘𝑡𝑡 𝑩𝑩𝑘𝑘

𝒔𝒔𝑘𝑘𝑡𝑡 𝑩𝑩𝑘𝑘𝒔𝒔𝑘𝑘
+
𝒚𝒚𝑘𝑘𝒚𝒚𝑘𝑘𝑇𝑇

𝒚𝒚𝑘𝑘𝑇𝑇𝒔𝒔𝑘𝑘
        (𝑣𝑣) 

In this equation, 𝒔𝒔𝑘𝑘=𝒙𝒙𝑘𝑘+1 − 𝒙𝒙𝑘𝑘 and 𝒚𝒚𝑘𝑘 = 𝒈𝒈𝑘𝑘+1 − 𝒈𝒈𝑘𝑘, while the vectors 𝑩𝑩𝑘𝑘 and 𝒈𝒈𝑘𝑘 are ap-
proximations of the functions 𝐵𝐵 and 𝑔𝑔 at iteration 𝑘𝑘. The initial condition 𝑩𝑩0 can be taken 
as any symmetric positive definite matrix (e.g. the identity matrix). 

The BFGS updating formula can be shown to converge to 𝐻𝐻(𝒙𝒙∗), where 𝒙𝒙∗ is 𝑓𝑓 (local) 
optimum, with superlinear convergence[277]. 
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2. Study in preparation for publication 

2.1. Abstract 

The cell-cycle is one of the main drivers of gene expression cell-to-cell heterogeneity 
in otherwise homogeneous cell populations. Although various methods have been developed 
to characterize its progression, they usually rely on a few known markers. scRNA-seq pro-
vides a static snapshot of gene expression levels across a cell population. While the gene 
expression between cell types varies across multiple axes of variation, cellular processes such 
as the cell-cycle tend to unwind on lower-dimensional manifolds. RNA velocity analysis in-
troduced the inference of vector fields in gene expression space, opening the way towards 
temporal interpretations of biological processes from scRNA-seq. Here we develop this idea 
further by formulating the problem in terms of an autonomous dynamical system and use 
this to infer a consistent model for cell-cycle dynamics on the circle. The corresponding cell 
phases on the circular manifold are identified using an Expectation-Maximization-based 
phase inference method. We validate our approach on several scRNA-seq datasets, revealing 
distinct proliferation modes in different cell-types.  

2.2. Introduction 

Until recently, transcriptome studies were done using bulk tissues, considering dif-
ferent cells as homogeneous objects and thereby ignoring intrinsic variability of gene expres-
sion. By examining gene expression level of individual cells, single-cell transcriptomics has 
allowed for the simultaneous measurement of mRNAs from thousands of gene [278]. This 
means that biological processes such as cellular differentiation and lineage choice can now be 
studied in a high-throughput and unbiased manner. This relatively new field of developmen-
tal biology is called trajectory inference[279]. 

Given a heterogeneous cell population, trajectory inference aims to find out which transcrip-
tional changes led to which cell state, and how. To that end, many different computational 
and mathematical methods have been developed, almost all considering cell dynamics on a 
tree of branching trajectories, in a low-dimensional space[249]. These methods can be pow-
erful but are limited by the structure of the single-cell RNA-seq data, which only contains a 
static snapshot of cellular states.  

Ideally, one would like to follow the evolution of individual cells in time, but this is currently 
hard to do with contemporary techniques[280]. To get a truly predictive trajectory model, 
temporal information seems required to constrain the space of possible dynamics[250]. RNA 
velocity analysis has made significant steps in this direction, by exploiting the fact that the 
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production of mRNA is progressive: for any given gene, the nascent mRNA is transcribed 
from the DNA, before getting spliced and prepared for translation into proteins. Therefore, 
the amount of unspliced mRNA will determine the amount of spliced mRNA, such that a 
per-gene rate equation can be found which describes how these quantities change in time. 
By integrating these rate equations across all genes, one can estimate towards which state a 
single cell is evolving. RNA velocity does not require the development of new assays, as 
nascent mRNAs and spliced mRNAs are both captured by most scRNA-seq protocols[251].  

The differential equation presented in the original RNA velocity paper require the estimation 
of the splicing and degradation rates to make efficient predictions. Yet, in the data, only the 
ratio of the two is easily accessible, and even so it needs to be estimated in a heuristics ways 
by quantile regression. As a first approximation, the foundational paper by La Manno et al. 
makes the a strong hypothesis that the splicing rate is the same for all genes[251]. 

We here present a method that deals with this issue by constraining the corresponding dy-
namical model. Indeed, although the dimensionality of cellular state variables is usually large, 
most cellular processes actually unwind on low-dimensional manifolds. By assuming that the 
cells velocities are always tangent to such manifolds, we greatly simplify the structure of the 
underlying dynamics. Adding such a hypothesis not only helps to handle both intrinsic and 
technical noise but also enables here to infer the effective splicing and degradation rate, 
although the global scale remains free.  

In this introductory paper, we decided to study a circular manifold, the cell-cycle, although 
our method could be adapted to any well-parametrized manifold. The cell-cycle is particu-
larly interesting as it is well described in the literature[103], and is known to be an important 
driver of gene expression cell-to-cell heterogeneity in otherwise homogeneous cell popula-
tions[281]. The corresponding manifold is topologically a circle, as the cell-cycle can be seen 
as a closed, periodic, trajectory in expression space[282]. To this day, several methods have 
been developed to characterize cell-cycle progression from transcriptomics data, but they 
usually rely on a few known markers and often suffer batch effects[267].   

To this end, we adapted a soon-to-be published circadian time inference method by Tala-
manca et al. to handle cell-cycle phases. We then describe how the molecular speed of the 
cell-cycle depends on the cell phase. We validate our method on several mice and human 
scRNA-seq datasets, revealing distinct proliferation modes in different cell-types. 
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2.3. Method 

2.3.1. A maximum-likelihood approach to infer cell cycle 
properties using single-cells 

Hereafter, we write the dynamical system governing spliced and unspliced mRNA 
counts. Our model assumes that the system evolves on a low dimensional manifold embedded 
in the high dimensional gene space from which we draw the measurements. Accordingly, we 
develop a probabilistic model for the spliced and unspliced mRNA counts based on the dy-
namical system. We then integrate out some of the parameters so that we can find an opti-
mizable likelihood function. 

2.3.1.1. Geometry of the problem and fundamental assumptions 

Our data consist of two measurements per gene per cell: the unspliced and spliced 
counts. We only use the spliced counts to represent the cell position in expression space. 
Therefore, each cell is a point in ℝ𝐺𝐺 where 𝐺𝐺 is the number of genes. The unspliced infor-
mation is used later to build a vector space that faithfully represents the RNA dynamics 
ocurring in single cells. 

The central model assumption is that, in a noiseless version of the system, all cells lie on a 
low dimensional manifold embedded in ℝ𝐺𝐺, and evolve along trajectories which are also on 
the manifold (Figure 3.1). Let ℳ be the manifold and 𝑥𝑥 the corresponding cell coordinates. 
The predicted gene expression vector for gene 𝑔𝑔 from the position of the cell 𝑐𝑐 in the low 
dimensional manifold is 𝑦𝑦𝑔𝑔(𝑥𝑥𝑐𝑐) = (𝑢𝑢𝑔𝑔(𝑥𝑥𝑐𝑐), 𝑠𝑠𝑔𝑔(𝑥𝑥𝑐𝑐)) = (𝑢𝑢𝑔𝑔𝑐𝑐 , 𝑠𝑠𝑔𝑔𝑐𝑐), while the measured one is 𝑌𝑌𝑔𝑔𝑐𝑐 =

(𝑈𝑈𝑔𝑔𝑐𝑐 , 𝑆𝑆𝑔𝑔𝑐𝑐). Calling 𝛽𝛽𝑔𝑔 the splicing efficiency and 𝛾𝛾𝑔𝑔 the degradation rate for gene 𝑔𝑔, expressed 
in ℎ−1, the time evolution of the spliced counts is governed by: 

𝑑𝑑𝑠𝑠𝑔𝑔
𝑑𝑑𝑡𝑡 = 𝐹𝐹�𝑦𝑦𝑔𝑔� = 𝛽𝛽𝑔𝑔𝑢𝑢𝑔𝑔 − 𝛾𝛾𝑔𝑔𝑠𝑠𝑔𝑔       (1) 
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Figure 3.1: Schematic representation of a simple manifold (light blue surface) in a three-
dimensional space. Single cells are represented as individual blue points, evolving on the manifold ac-
cording to the vectorfield represented with grey arrows. The tangent space to the manifold, chosen here 
for a cell at the center of the saddle-point, is represented as a dark blue square, partially going through 
the manifold on both of its ascending directions. 

Note that both 𝛽𝛽𝑔𝑔 and 𝛾𝛾𝑔𝑔 are considered time-independent, while the time evolution on ℳ 
is deterministic. Using the chain rule for differentiation reveals the following relationship for 
the spliced counts: 

𝑑𝑑𝑠𝑠𝑔𝑔(𝑥𝑥)
𝑑𝑑𝑑𝑑 = 𝛻𝛻𝑥𝑥𝑠𝑠𝑔𝑔(𝑥𝑥) ⋅

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

        (2) 

The right-hand side of this equation is comprised of two conceptually distinct contributions. 
One is the mapping between the low dimensional manifold coordinates and the cartesian 
coordinates of the high dimensional gene space; in particular, it is the first-order approxima-
tion of the mapping around the point of interest. The second contribution is the time evolu-
tion of the system on the manifold. In particular, in our model, this is governed by an 
autonomous equation: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑣𝑣(𝑥𝑥)       (3) 

We are interested in reconstructing 𝑣𝑣(𝑥𝑥), which can be interpreted as a velocity vector field 
on ℳ. Summing up, we get a consistency equation for our model: 

𝛻𝛻𝑥𝑥𝑠𝑠𝑔𝑔(𝑥𝑥) ⋅
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

=
𝑑𝑑𝑠𝑠𝑔𝑔(𝑥𝑥)
𝑑𝑑𝑑𝑑 = 𝛽𝛽𝑔𝑔𝑢𝑢𝑔𝑔(𝑥𝑥) − 𝛾𝛾𝑔𝑔𝑠𝑠𝑔𝑔(𝑥𝑥)      (4) 

We would like 𝑣𝑣(𝑥𝑥) to be directly interpretable, meaning that the trajectories on ℳ dictated 
by 𝑣𝑣(𝑥𝑥) should be, when mapped back to gene space, the trajectories that cells follow during 
a differentiation process. 
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2.3.1.2. Manifold properties 

As a geometric object, ℳ is determined by the system itself. However, the coordi-
nate system of ℳ can be freely chosen. Thus, the time between two successive points on a 
trajectory of the manifold is not affected if we change the low dimensional coordinate system 
ℳ′ ≅ ℳ. This is because for any mapping: 

𝛥𝛥𝑡𝑡𝑥𝑥0,𝑥𝑥1 = �
1

𝑣𝑣(𝑥𝑥)𝛤𝛤𝑥𝑥0
𝑥𝑥1

𝑑𝑑𝑑𝑑        (5) 

In Eq. (5), 𝛤𝛤𝑥𝑥0
𝑥𝑥1 is the trajectory 𝑥𝑥(𝑡𝑡) that connects the two points, and for simplicity we 

denote 𝑥𝑥𝑖𝑖 = 𝑥𝑥(𝑆𝑆𝑖𝑖). Also, we remind: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 → 𝑣𝑣(𝑥𝑥) =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕        (6) 

Therefore, as long as the cells are on the manifold in the high dimensional space: 

𝛥𝛥𝑡𝑡𝑥𝑥0,𝑥𝑥1 = �
1

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝛤𝛤𝑆𝑆0
𝑆𝑆1

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑑𝑑𝑑𝑑 = �

1
𝑆̇𝑆𝛤𝛤𝑆𝑆0

𝑆𝑆1
𝑑𝑑𝑑𝑑 = 𝛥𝛥𝑡𝑡𝑆𝑆0,𝑆𝑆1          (7) 

2.3.2. The cell-cycle 

In this section, we apply the theory presented above to the cell cycle. We then build 
a probabilistic formulation to infer the parameters of interest, in particular the cell cycle 
state dependent phase velocity. To ease the optimization problem, we integrate out the 
splicing rate parameters. 

2.3.2.1. Noise model and dynamics 

Assuming multiplicative noise, the noise model for our data can be written as: 

ln�𝑆𝑆𝑔𝑔𝑔𝑔� = ln�𝑠𝑠𝑔𝑔(𝜑𝜑𝑐𝑐)� + 𝜀𝜀𝑔𝑔𝑔𝑔
ln�𝑈𝑈𝑔𝑔𝑔𝑔� = ln�𝑢𝑢𝑔𝑔(𝜑𝜑𝑐𝑐)� + 𝜀𝜀𝑔𝑔𝑔𝑔

        (8) 

where 𝜀𝜀𝑔𝑔𝑔𝑔 comes from a Gaussian probability distribution of mean 0 and standard deviation 
𝜎𝜎. The corresponding dynamics of the system obeys: 

𝑠̇𝑠 = 𝛽𝛽𝛽𝛽 − 𝛾𝛾𝛾𝛾 = 𝜕𝜕𝜑𝜑𝑠𝑠(𝜑𝜑)𝜔𝜔(𝜑𝜑)       (9) 

as our coordinate (phase) follows the equation: 

𝜑̇𝜑 = 𝜔𝜔(𝜑𝜑)       (10) 
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This equation corresponds to Eq. (3) above, with 𝜔𝜔(𝜑𝜑) the cell cycle velocity. Given the 
periodic structure of the data, we write the quantities of interest in Fourier space. To this 
end, we define: 

𝜁𝜁𝑓𝑓(𝜑𝜑) = 𝛿𝛿𝑓𝑓,0 + 𝛿𝛿
𝑓𝑓−�𝑓𝑓2�,1

cos ��
𝑓𝑓
2
� 𝜃𝜃� + 𝛿𝛿

𝑓𝑓−�𝑓𝑓2�,0
sin ��

𝑓𝑓
2
� 𝜃𝜃�        (11) 

to be the Fourier base, in which 𝑓𝑓 are the discrete frequencies. We write for the spliced: 

𝑠𝑠𝑔𝑔(𝜑𝜑) = 𝑒𝑒∑ 𝜈𝜈𝑔𝑔𝑔𝑔𝐹𝐹
𝑓𝑓=0 𝜁𝜁𝑓𝑓(𝜑𝜑) = �𝜈𝜈

𝐹𝐹

𝑓𝑓=0

′𝑔𝑔𝑔𝑔𝜁𝜁𝑓𝑓(𝜑𝜑)      (12) 

and for the unspliced: 

𝑢𝑢𝑔𝑔(𝜑𝜑) = 𝑒𝑒∑ 𝜂𝜂𝑔𝑔𝑔𝑔𝐹𝐹
𝑓𝑓=0 𝜁𝜁𝑓𝑓(𝜑𝜑) = �𝜂𝜂

𝐹𝐹

𝑓𝑓=0

′𝑔𝑔𝑔𝑔𝜁𝜁𝑓𝑓(𝜑𝜑)      (13) 

In Eq. (12) and (13), 𝜈𝜈, 𝜈𝜈′, 𝜂𝜂, 𝜂𝜂′ are the Fourier coefficients parametrized in exponential and 
linear space. Omitting the number of harmonics 𝐹𝐹 from now on, we can rewrite Eq. (8) as: 

ln�𝑆𝑆𝑔𝑔𝑔𝑔� = �𝜂𝜂𝑔𝑔𝑔𝑔
𝑓𝑓

𝜁𝜁𝑓𝑓(𝜑𝜑) + 𝜀𝜀𝑔𝑔𝑔𝑔 = ln��𝜈𝜈
𝑓𝑓

′𝑔𝑔𝑔𝑔𝜁𝜁𝑓𝑓(𝜑𝜑)� + 𝜀𝜀𝑔𝑔𝑐𝑐

ln�𝑈𝑈𝑔𝑔𝑔𝑔� = ln�
1
𝛽𝛽𝑔𝑔
��𝜈𝜈𝑔𝑔𝑔𝑔
𝑓𝑓𝑓𝑓′

𝐷𝐷𝑓𝑓𝑓𝑓′𝜁𝜁𝑓𝑓′𝑐𝑐𝜔𝜔(𝜑𝜑𝑐𝑐) + 𝛾𝛾𝑔𝑔� 𝑠𝑠𝑔𝑔(𝜑𝜑𝑐𝑐)� + 𝜀𝜀𝑔𝑔𝑔𝑔

        (14) 

with 𝐷𝐷𝑓𝑓𝑓𝑓′ the Fourier differential operator defined in Eq. (11). 

2.3.2.2. A possible problem of scale 

The equations written above would be correct if we were able to measure the spliced 
and unspliced mRNAs in a cell in absolute scale. Not only is this not true because of the low 
sampling efficiency of modern scRNA-seq techniques, but this sampling efficiency is itself not 
the same for spliced and unspliced counts. Therefore, we suppose that we measure only a 
fraction 𝐹𝐹𝑠𝑠 of the spliced counts 𝑠̃𝑠𝑔𝑔, and 𝐹𝐹𝑢𝑢 of the unspliced counts 𝑢𝑢�𝑔𝑔: 

𝑆𝑆𝑔𝑔𝑔𝑔 = 𝐹𝐹𝑠𝑠𝑠̃𝑠𝑔𝑔(𝜑𝜑𝑐𝑐) + 𝜀𝜀𝑔𝑔𝑔𝑔 = 𝑠𝑠𝑔𝑔(𝜑𝜑𝑐𝑐) + 𝜀𝜀𝑔𝑔𝑔𝑔
𝑈𝑈𝑔𝑔𝑔𝑔 = 𝐹𝐹𝑢𝑢𝑢𝑢�𝑔𝑔(𝜑𝜑𝑐𝑐) + 𝜀𝜀𝑔𝑔𝑔𝑔 = 𝑢𝑢𝑔𝑔(𝜑𝜑𝑐𝑐) + 𝜀𝜀𝑔𝑔𝑔𝑔

        (15) 

To keep consistency with Eq. (8) written above, we set: 

𝑠̇̃𝑠 = 𝛽𝛽𝑢𝑢� − 𝛾𝛾𝑠̃𝑠 → 𝑠̇𝑠
1
𝐹𝐹𝑠𝑠

= 𝛽𝛽𝛽𝛽
1
𝐹𝐹𝑢𝑢
− 𝛾𝛾𝛾𝛾

1
𝐹𝐹𝑠𝑠
→ 𝑠̇𝑠 = 𝛽𝛽𝛽𝛽

𝐹𝐹𝑠𝑠
𝐹𝐹𝑢𝑢
− 𝛾𝛾𝛾𝛾       (16) 
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True quantities can be recovered using the corrected value for 𝛽𝛽, i.e. 𝛽𝛽 𝐹𝐹𝑠𝑠
𝐹𝐹𝑢𝑢

. In practice, 𝛽𝛽 can 

be understood as an inverse time scale which will relate quantitatively the velocity we infer 
with the real velocity. As the global scale is free, this substitution has no impact. 

2.3.2.3. Probability distributions and objective function 

The joint probability for the spliced and unspliced count measures is 
𝒫𝒫(𝑈𝑈, 𝑆𝑆|{𝜑𝜑}, {𝜈𝜈},𝜔𝜔(𝜑𝜑), {𝛽𝛽}, {𝛾𝛾}). However, 𝑆𝑆 depends only on ({𝜑𝜑}, {𝜈𝜈}), while 𝑈𝑈 depends on 
({𝜑𝜑}, {𝜈𝜈},𝜔𝜔(𝜑𝜑), {𝛽𝛽}, {𝛾𝛾}). The joint probability can thus be rewritten as: 

𝒫𝒫(𝑈𝑈, 𝑆𝑆|{𝜑𝜑}, {𝜈𝜈},𝜔𝜔(𝜑𝜑), {𝛽𝛽}, {𝛾𝛾}) =
𝒫𝒫(𝑈𝑈|{𝜑𝜑}, {𝜈𝜈},𝜔𝜔(𝜑𝜑), {𝛽𝛽}, {𝛾𝛾})𝒫𝒫(𝑆𝑆|{𝜑𝜑}, {𝜈𝜈})        (17) 

Since these probabilities factorize, 𝒫𝒫(𝑆𝑆|{𝜑𝜑}, {𝜈𝜈}) can be used to infer first the {𝜑𝜑} and conse-
quently {𝜈𝜈}. The remaining 𝒫𝒫(𝑈𝑈|{𝜑𝜑}, {𝜈𝜈},𝜔𝜔(𝜑𝜑), {𝛽𝛽}, {𝛾𝛾}) can be integrated over 𝛽𝛽 to reduce 
the number of parameters to optimize. To this end, we use a log-normal prior of mean 𝛽𝛽‾ and 
standard deviation 𝜏𝜏. Combining these last steps yields (Supplementary Information): 

𝒫𝒫�𝑈𝑈�{𝜑𝜑}, {𝜈𝜈},𝜔𝜔(𝜑𝜑), {𝛾𝛾},𝛽𝛽‾, 𝜏𝜏� ∼�𝑒𝑒
− 1
2𝜎𝜎2 ∑ �ln�

𝑢𝑢‾𝑔𝑔𝑔𝑔
𝑈𝑈𝑔𝑔𝑐𝑐

�−�ln�𝛽𝛽�𝑔𝑔���
2

𝑐𝑐

𝑔𝑔

       (18) 

with 

�ln�𝛽𝛽�𝑔𝑔�� =

1
𝜎𝜎2 ∑ ln𝑐𝑐 �

𝑢𝑢‾𝑔𝑔𝑔𝑔
𝑈𝑈𝑔𝑔𝑔𝑔

� + 1
𝜏𝜏2 ln�𝛽𝛽‾�

�|𝐶𝐶|
𝜎𝜎2 + 1

𝜏𝜏2�
=

∑ ln𝑐𝑐 �
𝑢𝑢‾𝑔𝑔𝑔𝑔
𝑈𝑈𝑔𝑔𝑔𝑔

�

𝜎𝜎2 �|𝐶𝐶|
𝜎𝜎2 + 1

𝜏𝜏2�
        (19) 

𝒫𝒫(𝑈𝑈|{𝜑𝜑}, {𝜈𝜈},𝜔𝜔(𝜑𝜑), {𝛾𝛾},𝛽𝛽‾, 𝜏𝜏) is a conditional likelihood function of the two variables of inter-
est, the angular speed 𝜔𝜔(𝜑𝜑) and the set of degradation rates {𝛾𝛾}.  

2.4. Results 

2.4.1. Simulation 

We simulate traces according to the consistency equation (4). We first generate 
unspliced signals from random Fourier series with 𝑁𝑁 harmonics (Figure 3.2A): 

𝑢𝑢𝑔𝑔(𝜙𝜙) = 𝜇𝜇𝑔𝑔 + �𝑎𝑎𝑔𝑔,𝑛𝑛

𝑁𝑁

𝑛𝑛=1

cos𝜙𝜙 + 𝑏𝑏𝑔𝑔,𝑛𝑛 sin𝜙𝜙         (20) 
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Using realistic values for the parameters (Supplementary Table 3.1, Supplementary Table 
3.2), we integrate the consistency equation to obtain the spliced signal from the unspliced 
one (Figure 3.2B): 

𝑠𝑠𝑔𝑔(𝜙𝜙) = �
𝛽𝛽𝑔𝑔𝑢𝑢𝑔𝑔(𝜃𝜃) − 𝛾𝛾𝑔𝑔𝑠𝑠𝑔𝑔(𝜃𝜃)

𝜔𝜔(𝜃𝜃) d𝜃𝜃       (21)
𝜙𝜙

0
 

The integrated signal quickly reaches a stable dynamic (transients decay quickly), in which 
regular oscillations are observed. By cropping out one full cycle, adding Gaussian noise and 
random drop-out, one obtains a signal which is close to what would have been obtained from 
a real scRNA-seq experiment (Figure 3.2C). As expected, running a t-SNE dimensionality 
reduction on the obtained data yields an obvious circular manifold (Figure 3.2D). 

 

Figure 3.2: Data simulation. (A) Unspliced signals are generated from Fourier series with N=4 har-
monics. (B) Unspliced signals are integrated according to Eq. (21), yielding raw spliced signals exhibiting 
regular oscillations. (C) By cropping out one full cycle, adding noise and drop-out, a realistic spliced signal, 
as found in scRNA-seq datasets, is obtained. (D) The cell-cycle is identifiable from a two-dimensional t-
SNE projection of the simulated data.  

Inferring the cell-cycle phase using our ad-hoc EM inference method yields excellent results 
(Figure 3.3). This is somewhat unexpected, as the method was designed to perform optimally 
with signals having one clearly dominant harmonic, while the simulated dataset uses up to 
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five harmonics. However, the amplitude of this harmonic is generated randomly, the first one 
usually being the strongest. 

Given the cell phases, the optimizer tries to find the best set of parameters �𝜔𝜔𝑖𝑖 , 𝛾𝛾𝑔𝑔� using the 
L-BFGS-B method, the corresponding �𝛽𝛽𝑔𝑔� being estimated. To this end, a compromise is 
made between the best possible fits for the unspliced signal (Supplementary Figure 3.1, Sup-
plementary Figure 3.2), and the prior distribution for 𝛽𝛽 (Methods). An excellent correlation 
is found between the simulated and estimated values of both {𝛾𝛾𝑔𝑔} and {𝛽𝛽𝑔𝑔} (Figure 3.3B-C), 
although the scale is different. This is expected since the formulated model (Eq. (14)) is 
scale-free. The mean 𝛽̅𝛽 of the prior for {𝛽𝛽𝑔𝑔} should normally fix the scale, but the optimizer 
is not powerful enough to find the corresponding minimum. Enforcing the prior confidence 
can force the absolute scale, but at the expense of the estimated {𝛽𝛽𝑔𝑔} distribution, which 
becomes too tight to accurately represent the data. In practice, there’s no simple way to 
estimate the (absolute value of the) {𝛽𝛽𝑔𝑔} or {𝛾𝛾𝑔𝑔} from an experimental dataset, even tough 
transcript half-live have been measured either for specific genes or in certain cell types, 
genome-wide. Consequently, we provide the inferred cell-cycle speed in units of the geometric 
average estimated degradation rate (Figure 3.3D).  

Note that, to ensure consistency, the simulation is done by integrating the unspliced profile 
over the phase, while in the model the unspliced counts are computed as a combination of 
the derivative of the spliced and of the spliced signal itself. 
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Figure 3.3: Inference results. (A) Scatter plot of the simulated vs inferred phases (in radians) shows a 
quasi-perfect correlation (R2>0.98 in 10 different trials). (B) Scatter plot of the estimated vs simulated 
splicing rates (theoretically in ℎ−1, but the scale is free) shows an overall good correlation (R2>0.7 in 10 
separate trials). (C) Scatter plot of the estimated vs simulated degradation rates (theoretically in ℎ−1, but 
the scale is free) shows an overall good correlation (R2>0.6 in 10 different trials). (D) Inferred cell-cycle 
velocity function (blue curve) superimposed with simulated cell-cycle velocity function (green dots) reveals 
a good but not perfect agreement between the two. 

2.4.2. Experimental datasets 

In order to characterize the RNA velocity of single cells during the cell cycle, four 
scRNA-seq datasets were curated for analysis. These datasets differ in their species, tissue 
source, and sample context. Two datasets are of developing tissues in mice, one of retinal 
neuron progenitors[271] and one of pancreatic ductal progenitors[283]. On the other hand, 
two collected datasets are from human adult fibroblasts in untreated and lipid-reducing 
treatment conditions (unpublished, collected by Irina Khven in the La Manno and D’Angelo 
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labs). All samples were sequenced using 10X Genomics technology and have been previously 
assessed in their respective. 

For initial preprocessing, unnormalized count matrices were downloaded and using the pub-
lished UMAP and cell type annotations, any non-cycling cells were removed. Spliced and 
unspliced counts were obtained either from prior publications or using velocyto[251]. Cells 
were filtered based on the requirement that the number of unspliced UMIs was greater than 
the 80th percentile in the data, as to remove cells with too low unspliced reads. Approximate 
cell cycle phases were assigned to the cells using the signature score method in scanpy[284] 
using a platform of well-characterized cell cycle marker genes and a previously described 
algorithm[237], [285]. The final datasets comprised of the following: 968 cells of retina neuron 
progenitors (S: 406, G2M: 338, G1: 224), 781 cells of pancreatic ductal progenitors (S: 264, 
G2M: 213, G1: 304), 1,212 untreated fibroblast cells (S: 400, G2M: 449, G1: 363), and 1,397 
treated fibroblast cells (S: 464, G2M: 404, G1: 529).  

Dimensionality reduction and RNA velocity analysis was then conducted for the datasets 
using velocyto, resulting in UMAP representations on which movement of cells in gene ex-
pression space along a circular trajectory was clearly apparent (Figure 3.4A). Marker genes 
corresponding to the cell cycle phase boundaries further confirm the presence of a marked 
cell cycle (Figure 3.4B). Furthermore, trends in cell density, the number of raw reads per 
cell, and the number of expressed genes were observed in a cell cycle phase-specific manner. 
There is an increase in the number of UMIs and expressed genes during the cell cycle, with 
G2M cells having the most reads, followed by a drop in UMI count in freshly-divided G1 
cells (Figure 3.4C). This is consistent with the fact that a cell’s RNA molecules are split in 
half upon formation of two daughter cells. Furthermore, there are few cells observed in G2M 
(Figure 3.4A), and since the scRNA-seq datasets most likely consist of random samples of 
cells from an unsynchronized population, this suggests that the duration spent in mitosis is 
much shorter than that in G1 or the growth phase. 
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Figure 3.4: Exploratory analysis of the four datasets used with our inference method, includ-
ing retinal neuron progenitors, pancreatic ductal progenitors, untreated and treated fibro-
blasts. (A) Representations of RNA velocity analysis on UMAP projections reveal clear circular trajecto-
ries of the cells in gene expression space (B) UMAP representation (same projection as in (A)) of the 
expression of pre-selected cell-cycle marker genes further confirm the presence of a strong cycling behavior. 
(C) Total number of raw reads quantified on a per cell-cycle phase basis (same colour code as in (A)) 
reveals a clear dependence of the total gene expression on the cell-cycle phase, with few disparities among 
the selected datasets.   

We then computed the individual gene phases for each dataset. To this end, we extracted a 
list of 252 cell-cycles genes from the article by Mizuno et al.[286]. This comprises 31 genes 
maximally expressed in growth phase 1 (G1), 20 in-between G1 and synthesis (S) phases, 72 
in S phase, 7 in between S and growth phase 2 (G2), 52 in G2 phase, 65 at mitosis (M), and 
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22 in-between M and G1 phases. The corresponding gene profiles were obtained by running 
the phase inference method developped by Talamanca et al. (Naef-lab, unpublished). We 
filtered out the profiles that did not oscillate (less than two folds between 5th and 95th per-
centile), or that showed more than 15% of zeros. In addition, we looked at the cross-correla-
tion between the spliced and unspliced signals, and only kept genes for which the angle 
corresponding to maximumal cross-correlation was superior to 0.1 radians, as genes without 
sufficient shifts are not informative for cell cycle dynamics occuring on the time scale of hours 
[234]. After this selection, between 60 and 120 genes were left per dataset, whose expression 
was ensured to cover the whole cycle (at least 5 genes per cell-cycle phase, among G1, S, G2, 
M).  

Running our inference methods on the obtained dataset yields quite unexpected results (Fig-
ure 3.5), as the estimates for the degradation rate seemed to systematically follow a bimodal 
distribution, in logarithmic scale. This could be due to biological considerations, e.g. active 
or passive degradation, but, perhaps more likely, this reflects an inference artefact. Reassur-
ingly, the relative value of the degradation and splicing rate seem more or less conserved 
across datasets, with mRNAs being degraded about a hundred times more slowly than they 
are spliced (recall that only the relative quantities are informative since the model is scale 
free). Finally, the inferred cell-cycle velocities, rescaled according the geometric mean of the 
corresponding inferred degradation rates, are all of the same order of magnitude, and overall, 
the speed does not seem to significantly change depending on the phase of the cycle. The 
individual profiles look qualitatively different, but the differences could be probably at-
tributed to noise, as they didn’t seem to follow a clear pattern, and were ony of the order of 
a few percents relative to the mean. Assuming that the average degradation rate is of the 
order of 1h-1[287], and the average cell-cycle period is of the order of 20h, this would yield 
𝜔𝜔
𝛾𝛾
≃ 0.3. Yet, depending on the dataset, we find a speed which is about 30% less important. 

This could mean that the cell under study are slowly cycling, or, alternatively, that an 
average degradation rate of the order of more than 1h-1 is more realistic. If not, this dis-
crepency may point out an inadequation between the model and the dataset, or possibly an 
optimization problem.  
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Figure 3.5: Inference results on exprimental datasets from scRNA-seq experiments. (Top) 
Inferred degradation rate (𝛾𝛾) distribution, in logarithmic scale. (Middle) Splicing rate (𝛽𝛽) estimates dis-
tributions, in logarithmic scale. (Bottom) Inferred cell-cycle velocity rescaled according to the geometric 
mean of the inferred degradation rate distribution.  

2.5. Discussion 

One goal in single-cell transcriptomics is to obtain realistic, low-dimensional, vector 
field representations of the underlying dynamical process governing single-cells trajectories 
in expression space. In practice, this dynamic representation is hard to obtain since the data 
is almost always static, and predictions are made assuming system ergodicity. RNA velocity 
has revolutionized this approach, but at the cost of strong hypotheses and extensive data 
wrangling.  

Here, we decided to drastically change the approach by using a highly constrained bottom-
up method, in which we preliminarily assume the existence of a parametrized manifold, and, 
a posteriori, infer how cells behave on this manifold.   

We applied our method to one of the best characterized cell processes, paramount to evolu-
tion, and living on a basic circle-like manifold: the cell-cycle. Although our method works 
very well in simulations, enabling to infer an accurate phase-dependent cell-cycle speed, its 
efficacy remains somewhat restricted with real datasets, in which the final inferred velocity 
is lower than expected. We attribute this result to several factors.  
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First, the inference can optimally work only if the cell phases are adequately inferred. We 
believe that, although the ad-hoc EM phase inference we’ve been using performs much better 
than any other competing method, including trials with personalized UMAP distance func-
tion, its inherent imprecision, due to the use of only one harmonic to model the cyclic genes, 
is still a limiting factor for the quality of our inference.   

Then, the optimization process for the degradation rates and cell-cycle speed Fourier coeffi-
cients could also be improved using an EM framework. Indeed, the L-BFGS-B optimizer is 
probably not optimal in a model with so many parameters and constraints. In simulations, 
it quickly shows limitations when the parameters do not behave closely to what is expected 
or if too many harmonics are present in the system. Since the model does not involve any 
unsupervised, black-box steps, an EM framework could probably be implemented and would 
guarantee a monotonous convergence.  

Finally, our method assumes constant splicing and degradation rates, which is a strong hy-
pothesis, somehow questioned during the cell-cycle by recent literature[270]. Unfortunately, 
embedding the model with time-varying rates seems extremely ambitious, as the total num-
ber of parameters to optimize would explode, the rates being presumably gene-specific.   

On the other hand, our method can already yield interesting results, as illustrated by the 
molecular speeds obtained in Figure 3.5. From this plot, our model predicts that the fi-
brablasts in untreated conditions should cycle faster than those in treated condition, a pre-
diction that could easily be checked experimentally.  

In addition, our method offers exciting perspectives, as it could be applied to any manifold, 
either in replacement or in addition to the cell-cycle. Notably, this includes tree structures, 
which are most likely the best possible parametrization for development and differentiation 
processes. Inferring the low-dimensional cell-state could be done with auto-encoders, as al-
ready attempted in recent work[288]–[290]. In parallel, embedding the primary manifold, one 
could study other variables such as circadian or metabolic states.  

To our knowledge, this is the first time the cell-cycle velocity is explicitly quantified from 
static datasets. We expect our work to have a profound impact on the characterization of 
cell-cycle effects at single-cell resolution, and more generally to greatly aid the analysis of 
cellular dynamics. 

2.6. References 

For consistency, references from the article have been placed at the end of the thesis 
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2.7. Supplementary information 

2.7.1. Supplementary methods 

2.7.1.1. Gaussian integration 

In this section, we briefly present how we integrate the Gaussian distributions used 
in Eq. (17) of the main text. 
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        (5) 

with 

𝜇̂𝜇 =
1

�|𝐼𝐼|
𝜎𝜎2 + 1

𝜏𝜏2�
�
∑ 𝑦𝑦𝑗𝑗𝑗𝑗

𝜎𝜎2 +
𝜇𝜇‾
𝜏𝜏2� =

|𝐼𝐼|
𝜎𝜎2 ⟨𝑦𝑦⟩ + 1

𝜏𝜏2 𝜇𝜇‾
|𝐼𝐼|
𝜎𝜎2 + 1

𝜏𝜏2
        (6) 

To normalize a Gaussian probability, the following relationship must hold: 𝑐𝑐 = −𝑏𝑏2/2𝑎𝑎. 
Consequently, the only relevant terms are quadratic and linear. Summing up: 

𝒫𝒫(𝑥𝑥) ∼ 𝑒𝑒−
1
2𝑎𝑎𝑥𝑥

2+𝑏𝑏𝑏𝑏+𝑐𝑐 → 𝒫𝒫(𝑥𝑥) = �
𝑎𝑎

2𝜋𝜋 𝑒𝑒
−12𝑎𝑎�𝑥𝑥−

𝑏𝑏
𝑎𝑎�

2

        (7) 

Ideally, the exponent of Eq. (5) should also be rewritten more intuitively: 
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�∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝜎𝜎2 + 𝜇𝜇‾

𝜏𝜏2�
2

2 �|𝐼𝐼|
𝜎𝜎2 + 1

𝜏𝜏2�
− �

∑ 𝑦𝑦𝑖𝑖2𝑖𝑖

2𝜎𝜎2 +
𝜇𝜇‾2

2𝜏𝜏2� =
𝑎𝑎
2
� (𝑦𝑦𝑖𝑖 − 𝑦𝑦‾)2
𝑖𝑖

        (8) 

for some 𝑎𝑎 and 𝑦𝑦‾. In particular, we would like to have 𝑦𝑦‾ = 𝜇̂𝜇 where 𝜇̂𝜇 = 𝑓𝑓(∑ 𝑦𝑦𝑖𝑖𝑖𝑖 ). This yield: 

�∑ 𝑦𝑦𝑖𝑖𝑖𝑖
𝜎𝜎2 + 𝜇𝜇‾

𝜏𝜏2�
2

2 �|𝐼𝐼|
𝜎𝜎2 + 1

𝜏𝜏2�
− �

∑ 𝑦𝑦𝑖𝑖2𝑖𝑖

2𝜎𝜎2 +
𝜇𝜇‾2

2𝜏𝜏2� =

1

2 �|𝐼𝐼|
𝜎𝜎2 + 1

𝜏𝜏2�
�
∑ 𝑦𝑦𝑖𝑖𝑖𝑖

𝜎𝜎2 +
𝜇𝜇‾
𝜏𝜏2
� �

∑ 𝑦𝑦𝑖𝑖𝑖𝑖

𝜎𝜎2 +
𝜇𝜇‾
𝜏𝜏2
� − �

∑ 𝑦𝑦𝑖𝑖2𝑖𝑖

2𝜎𝜎2 +
𝜇𝜇‾2

2𝜏𝜏2� =

−�

⎝

⎜
⎛ 1

2𝜎𝜎2 𝑦𝑦𝑖𝑖
2 +

1
𝜎𝜎2

𝑦𝑦𝑖𝑖
1

�|𝐼𝐼|
𝜎𝜎2 + 1

𝜏𝜏2�
�
∑ 𝑦𝑦𝑗𝑗𝑗𝑗

𝜎𝜎2 +
𝜇𝜇‾
𝜏𝜏2
�

⎠

⎟
⎞

𝑖𝑖

+ 𝑐𝑐 →

−
1

2𝜎𝜎2
�

⎝

⎜
⎛
𝑦𝑦𝑖𝑖 −

1

�|𝐼𝐼|
𝜎𝜎2 + 1

𝜏𝜏2�
�
∑ 𝑦𝑦𝑗𝑗𝑗𝑗

𝜎𝜎2 +
𝜇𝜇‾
𝜏𝜏2�

⎠

⎟
⎞

2

𝑖𝑖

=

−
1

2𝜎𝜎2�
(𝑦𝑦𝑖𝑖 − 𝜇̂𝜇)2

𝑖𝑖

        (9) 

Where: 

𝜇̂𝜇 =
1

�|𝐼𝐼|
𝜎𝜎2 + 1

𝜏𝜏2�
�
∑ 𝑦𝑦𝑗𝑗𝑗𝑗

𝜎𝜎2 +
𝜇𝜇‾
𝜏𝜏2� =

|𝐼𝐼|
𝜎𝜎2 ⟨𝑦𝑦⟩ + 1

𝜏𝜏2 𝜇𝜇‾
|𝐼𝐼|
𝜎𝜎2 + 1

𝜏𝜏2
        (10) 

which is nothing more than a weighted mean of the data and prior contributions, in which 
the weights are the variances scaled by the observations. Concisely: 

� 𝑒𝑒−
∑ (𝑖𝑖 𝑦𝑦𝑖𝑖−𝜇𝜇)2

2𝜎𝜎2
∞

−∞
𝑒𝑒−

(𝜇𝜇−𝜇𝜇‾ )2
2𝜏𝜏2 𝑑𝑑𝑑𝑑 = �

2𝜋𝜋
∥ 𝐼𝐼|
𝜎𝜎2 + 1

𝜏𝜏2
𝑒𝑒−

1
2𝜎𝜎2 ∑ (𝑖𝑖 𝑦𝑦−𝜇𝜇�)2         (11) 

2.7.1.2. Application to the model 

Given the periodic structure of our system, we can write differentiation as a linear 
operator in Fourier space. This leads to: 

𝜕𝜕𝜑𝜑𝑠𝑠𝑔𝑔(𝜑𝜑)|𝜑𝜑=𝜑𝜑𝑐𝑐 = �𝜈𝜈𝑔𝑔𝑔𝑔
𝑓𝑓𝑓𝑓′

𝐷𝐷𝑓𝑓𝑓𝑓′𝜁𝜁𝑓𝑓′𝑐𝑐𝜔𝜔(𝜑𝜑𝑐𝑐)𝑠𝑠𝑔𝑔(𝜑𝜑𝑐𝑐)        (12) 
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With 𝐷𝐷𝑓𝑓𝑓𝑓′ defined as: 

𝐷𝐷𝑓𝑓𝑓𝑓′ = �𝛿𝛿
�𝑓𝑓2�,�

𝑓𝑓′
2 �
− 𝛿𝛿𝑓𝑓,𝑓𝑓′� �

𝑓𝑓
2
� (−1)𝑓𝑓        (13) 

Inserting in Eq. (4) of the main text, we have: 

ln�𝑈𝑈𝑔𝑔𝑔𝑔� = ln�
1
𝛽𝛽𝑔𝑔
��𝜈𝜈𝑔𝑔𝑔𝑔
𝑓𝑓𝑓𝑓′

𝐷𝐷𝑓𝑓𝑓𝑓′𝜁𝜁𝑓𝑓′𝑐𝑐𝜔𝜔(𝜑𝜑𝑐𝑐) + 𝛾𝛾𝑔𝑔� 𝑠𝑠𝑔𝑔(𝜑𝜑𝑐𝑐)� + 𝜀𝜀𝑔𝑔𝑔𝑔         (14) 

Consequently: 

𝒫𝒫(𝑈𝑈|{𝜑𝜑}, {𝜈𝜈},𝜔𝜔(𝜑𝜑𝑐𝑐), {𝛽𝛽}, {𝛾𝛾}) ∼

exp

⎝

⎛−
1

2𝜎𝜎2
� �ln�𝑈𝑈𝑔𝑔𝑔𝑔� − ln�

1
𝛽𝛽𝑔𝑔
��𝜈𝜈𝑔𝑔𝑔𝑔
𝑓𝑓𝑓𝑓′

𝐷𝐷𝑓𝑓𝑓𝑓′𝜁𝜁𝑓𝑓′𝑐𝑐𝜔𝜔(𝜑𝜑𝑐𝑐) + 𝛾𝛾𝑔𝑔� 𝑠𝑠𝑔𝑔(𝜑𝜑𝑐𝑐)��

2

𝑔𝑔𝑔𝑔
⎠

⎞ ∼

exp

⎝

⎜
⎛
−

1
2𝜎𝜎2�

⎝

⎜
⎛

ln�𝑈𝑈𝑔𝑔𝑔𝑔� + ln�𝛽𝛽�𝑔𝑔� − ln���𝜈𝜈𝑔𝑔𝑔𝑔
𝑓𝑓𝑓𝑓′

𝐷𝐷𝑓𝑓𝑓𝑓′𝜁𝜁𝑓𝑓′𝑐𝑐𝜔𝜔�(𝜑𝜑𝑐𝑐) + 𝛾𝛾�𝑔𝑔� 𝑠𝑠𝑔𝑔(𝜑𝜑𝑐𝑐)�

⎠

⎟
⎞

2

𝑔𝑔𝑔𝑔

⎠

⎟
⎞

        (15) 

In Eq. (16) of the main text, we have introduced the unitless notation: 𝛽𝛽�𝑔𝑔 = 𝛽𝛽𝑔𝑔/𝛽𝛽‾, 𝛾𝛾�𝑔𝑔 =

𝛾𝛾𝑔𝑔/𝛽𝛽‾, 𝜔𝜔�(𝜑𝜑) = 𝜔𝜔(𝜑𝜑)/𝛽𝛽‾. 𝛽𝛽‾ is the mean of the prior probability distribution. Ideally, we would 
like to rewrite the probability of the unspliced as: 

𝒫𝒫(𝑈𝑈|{𝜑𝜑}, {𝜈𝜈},𝜔𝜔(𝜑𝜑), {𝛽𝛽}, {𝛾𝛾}) ∼ exp�� �−
1
2𝑎𝑎𝑔𝑔ln�𝛽𝛽

�𝑔𝑔�
2 + 𝑏𝑏𝑔𝑔ln�𝛽𝛽�𝑔𝑔� + 𝑐𝑐𝑔𝑔�

𝑔𝑔

�        (16) 

We need to calculate the gene-specific coefficients that appear in the integral: (𝑎𝑎, 𝑏𝑏, 𝑐𝑐). 

�

⎝

⎜
⎛

ln�𝑈𝑈𝑔𝑔𝑔𝑔� + ln�𝛽𝛽�𝑔𝑔� − ln���𝜈𝜈𝑔𝑔𝑔𝑔
𝑓𝑓𝑓𝑓′

𝐷𝐷𝑓𝑓𝑓𝑓′𝜁𝜁𝑓𝑓′𝑐𝑐𝜔𝜔�(𝜑𝜑𝑐𝑐) + 𝛾𝛾�𝑔𝑔� 𝑠𝑠𝑔𝑔(𝜑𝜑𝑐𝑐)�

⎠

⎟
⎞

2

𝑔𝑔𝑔𝑔

=

� �ln�𝛽𝛽�𝑔𝑔� − ln�
�∑ 𝜈𝜈𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓′ 𝐷𝐷𝑓𝑓𝑓𝑓′𝜁𝜁𝑓𝑓′𝑐𝑐𝜔𝜔�(𝜑𝜑𝑐𝑐) + 𝛾𝛾�𝑔𝑔�𝑠𝑠𝑔𝑔(𝜑𝜑𝑐𝑐)

𝑈𝑈𝑔𝑔𝑔𝑔
��

2

𝑔𝑔𝑔𝑔

=

|𝐶𝐶|ln�𝛽𝛽�𝑔𝑔�
2 −�2

𝑔𝑔𝑔𝑔

ln�𝛽𝛽�𝑔𝑔�ln�
�∑ 𝜈𝜈𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓′ 𝐷𝐷𝑓𝑓𝑓𝑓′𝜁𝜁𝑓𝑓′𝑐𝑐𝜔𝜔�(𝜑𝜑𝑐𝑐) + 𝛾𝛾�𝑔𝑔�𝑠𝑠𝑔𝑔(𝜑𝜑𝑐𝑐)

𝑈𝑈𝑔𝑔𝑔𝑔
� +

� ln
𝑔𝑔𝑔𝑔

�
�∑ 𝜈𝜈𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓′ 𝐷𝐷𝑓𝑓𝑓𝑓′𝜁𝜁𝑓𝑓′𝑐𝑐𝜔𝜔�(𝜑𝜑𝑐𝑐) + 𝛾𝛾�𝑔𝑔�𝑠𝑠𝑔𝑔(𝜑𝜑𝑐𝑐)

𝑈𝑈𝑔𝑔𝑔𝑔
�
2

        (17) 
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This directly means: 

𝑎𝑎𝑔𝑔 =
|𝐶𝐶|
𝜎𝜎2

𝑏𝑏𝑔𝑔 =
1
𝜎𝜎2

� ln
𝑐𝑐

�
�∑ 𝜈𝜈𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓′ 𝐷𝐷𝑓𝑓𝑓𝑓′𝜁𝜁𝑓𝑓′𝑐𝑐𝜔𝜔�(𝜑𝜑𝑐𝑐) + 𝛾𝛾�𝑔𝑔�𝑠𝑠𝑔𝑔(𝜑𝜑𝑐𝑐)

𝑈𝑈𝑔𝑔𝑔𝑔
�

𝑐𝑐𝑔𝑔 =
−1
2𝜎𝜎2

� ln
𝑐𝑐

�
�∑ 𝜈𝜈𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓′ 𝐷𝐷𝑓𝑓𝑓𝑓′𝜁𝜁𝑓𝑓′𝑐𝑐𝜔𝜔�(𝜑𝜑𝑐𝑐) + 𝛾𝛾�𝑔𝑔�𝑠𝑠𝑔𝑔(𝜑𝜑𝑐𝑐)

𝑈𝑈𝑔𝑔𝑔𝑔
�
2

        (18) 

For now, we can neglect 𝑐𝑐𝑔𝑔, as it is only a normalization constant. To compute 

∫ 𝒫𝒫(𝑈𝑈|{𝜑𝜑}, {𝜈𝜈},𝜔𝜔(𝜑𝜑), {𝛽𝛽}, {𝛾𝛾})𝒫𝒫({𝛽𝛽}|{𝜑𝜑}, {𝜈𝜈},𝜔𝜔(𝜑𝜑), {𝛾𝛾})𝑑𝑑𝑑𝑑        (19) 

we need a (conditioned) prior on 𝛽𝛽. For ease of analytics, we use a log-normal distribution 
(instead of, ideally, a gamma or beta one). The mean of this prior should not be very in-
formative as it sets a time scale, and the system is time-invariant. For simplicity, we set it 
to zero. However, the corresponding spread 𝜏𝜏 is important. The distribution is: 

𝒫𝒫({𝛽𝛽}|{𝜑𝜑}, {𝜈𝜈},𝜔𝜔(𝜑𝜑), {𝛾𝛾}) ∼�
1
𝛽𝛽�𝑔𝑔𝑔𝑔

𝑒𝑒−
1
2𝜏𝜏2ln�𝛽𝛽

�𝑔𝑔�
2

∼�
1
𝛽𝛽𝑔𝑔𝑔𝑔

𝑒𝑒−
1
2𝜏𝜏2ln�𝛽𝛽𝑔𝑔/𝛽𝛽‾ �2         (20) 

We can now explicitly write the integral: 

∫ 𝒫𝒫(𝑈𝑈|{𝜑𝜑}, {𝜈𝜈},𝜔𝜔(𝜑𝜑), {𝛽𝛽}, {𝛾𝛾})𝒫𝒫({𝛽𝛽}|{𝜑𝜑}, {𝜈𝜈},𝜔𝜔(𝜑𝜑), {𝛾𝛾})𝑑𝑑𝑑𝑑 ∼

�∫
𝑔𝑔

𝑒𝑒�−𝑎𝑎𝑔𝑔ln�𝛽𝛽�𝑔𝑔�
2
+𝑏𝑏𝑔𝑔ln�𝛽𝛽�𝑔𝑔�+𝑐𝑐𝑔𝑔�𝑒𝑒−

1
2𝜏𝜏2ln�𝛽𝛽

�𝑔𝑔�
2 1
𝛽𝛽�𝑔𝑔
𝑑𝑑𝛽𝛽�𝑔𝑔 ∼

�∫
𝑔𝑔

𝑒𝑒�−𝑎𝑎𝑔𝑔ln�𝛽𝛽�𝑔𝑔�
2
+𝑏𝑏𝑔𝑔ln�𝛽𝛽�𝑔𝑔��𝑒𝑒−

1
2𝜏𝜏2ln�𝛽𝛽

�𝑔𝑔�
2

𝑑𝑑ln�𝛽𝛽�𝑔𝑔� =

�∫
𝑔𝑔

𝑒𝑒
�−12(𝑎𝑎𝑔𝑔+

1
𝜏𝜏2)ln�𝛽𝛽�𝑔𝑔�

2
+𝑏𝑏𝑔𝑔ln�𝛽𝛽�𝑔𝑔��𝑑𝑑ln�𝛽𝛽�𝑔𝑔� ∼�𝑒𝑒

(𝑏𝑏𝑔𝑔)2
1
2�𝑎𝑎𝑔𝑔+

1
𝜏𝜏2�

𝑔𝑔

        (21) 

Integrate out 𝛾𝛾� requires some approximations. Especially, 𝑒𝑒∑ 𝑐𝑐𝑔𝑔𝑔𝑔  must be considered. We 
have: 

𝒫𝒫(𝑈𝑈|{𝜑𝜑}, {𝜈𝜈},𝜔𝜔(𝜑𝜑), {𝛾𝛾}𝛽𝛽‾, 𝜏𝜏) ∼�𝑒𝑒

(𝑏𝑏𝑔𝑔)2
1
2�𝑎𝑎𝑔𝑔+

1
𝜏𝜏2�

+𝑐𝑐𝑔𝑔

𝑔𝑔

        (22) 

To simplify further calculations, let’s introduce some new variables: 

𝑢𝑢‾𝑔𝑔 = 𝑢𝑢𝑔𝑔(𝛽𝛽𝑔𝑔 = 𝛽𝛽‾) =
𝛽𝛽𝑔𝑔
𝛽𝛽‾
𝑢𝑢𝑔𝑔 = ��𝜈𝜈𝑔𝑔𝑔𝑔

𝑓𝑓𝑓𝑓′

𝐷𝐷𝑓𝑓𝑓𝑓′𝜁𝜁𝑓𝑓′𝑐𝑐𝜔𝜔�(𝜑𝜑𝑐𝑐) + 𝛾𝛾�𝑔𝑔� 𝑠𝑠𝑔𝑔(𝜑𝜑𝑐𝑐)        (23) 
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Using the equalities proved in Eq. (9), we obtain: 

𝒫𝒫(𝑈𝑈|{𝜑𝜑}, {𝜈𝜈},𝜔𝜔(𝜑𝜑), {𝛾𝛾},𝛽𝛽‾, 𝜏𝜏) ∼�𝑒𝑒
− 1
2𝜎𝜎2 ∑ �ln�

𝑢𝑢‾𝑔𝑔𝑔𝑔
𝑈𝑈𝑔𝑔𝑔𝑔

�−⟨ln�𝛽𝛽�𝑔𝑔�⟩�
2

𝑐𝑐

𝑔𝑔

        (24) 

with 

�ln�𝛽𝛽�𝑔𝑔�� =

1
𝜎𝜎2 ∑ ln𝑐𝑐 �

𝑢𝑢‾𝑔𝑔𝑔𝑔
𝑈𝑈𝑔𝑔𝑔𝑔

� + 1
𝜏𝜏2 ln�𝛽𝛽‾�

�|𝐶𝐶|
𝜎𝜎2 + 1

𝜏𝜏2�
=

∑ ln𝑐𝑐 �
𝑢𝑢‾𝑔𝑔𝑔𝑔
𝑈𝑈𝑔𝑔𝑔𝑔

�

𝜎𝜎2 �|𝐶𝐶|
𝜎𝜎2 + 1

𝜏𝜏2�
        (25) 

as 𝛽𝛽‾ = 1.  

2.7.1.3. The constraints on γ 

In simulations, if no care is taken when sampling 𝜈𝜈 and 𝛾𝛾, the following can occur: 

𝑢𝑢𝑔𝑔𝑔𝑔 = ��𝜈𝜈𝑔𝑔𝑔𝑔
𝑓𝑓𝑓𝑓′

𝐷𝐷𝑓𝑓𝑓𝑓′𝜁𝜁𝑓𝑓′𝑐𝑐𝜔𝜔�(𝜑𝜑𝑐𝑐) + 𝛾𝛾�𝑔𝑔� 𝑠𝑠𝑔𝑔(𝜑𝜑𝑐𝑐) < 0        (26) 

Now 𝑢𝑢𝑔𝑔𝑔𝑔 is necessarily positive. This led us to notice an important relation: 

min(𝜕𝜕𝑡𝑡𝑠𝑠) ≥ −𝛾𝛾𝛾𝛾        (27) 

Therefore, in the model, it must be included that: 

min
𝑐𝑐
��𝜈𝜈𝑔𝑔𝑔𝑔
𝑓𝑓𝑓𝑓′

𝐷𝐷𝑓𝑓𝑓𝑓′𝜁𝜁𝑓𝑓′𝑐𝑐𝜔𝜔�(𝜑𝜑𝑐𝑐)𝑠𝑠𝑔𝑔� ≥ −𝛾𝛾𝑔𝑔𝑠𝑠𝑔𝑔

→ min
𝑐𝑐
��𝜈𝜈𝑔𝑔𝑔𝑔
𝑓𝑓𝑓𝑓′

𝐷𝐷𝑓𝑓𝑓𝑓′𝜁𝜁𝑓𝑓′𝑐𝑐𝜔𝜔�(𝜑𝜑𝑐𝑐)� ≥ −𝛾𝛾𝑔𝑔

        (28) 

Which means: 

min
𝑐𝑐
��𝜈𝜈𝑔𝑔𝑔𝑔
𝑓𝑓𝑓𝑓′

𝐷𝐷𝑓𝑓𝑓𝑓′𝜁𝜁𝑓𝑓′𝑐𝑐𝜔𝜔�(𝜑𝜑𝑐𝑐) + 𝛾𝛾𝑔𝑔� ≥ 0  → 𝑢𝑢 ≥ 0 as 𝑠𝑠 ≥ 0        (29) 

As it seems easier to freely choose 𝜈𝜈 and then constrain gamma. Accordingly, we calculate: 
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min
𝑐𝑐
��𝜈𝜈𝑔𝑔𝑔𝑔
𝑓𝑓𝑓𝑓′

𝐷𝐷𝑓𝑓𝑓𝑓′𝜁𝜁𝑓𝑓′𝑐𝑐𝜔𝜔�(𝜑𝜑𝑐𝑐)� ≥

min
𝜑𝜑

��𝜈𝜈𝑔𝑔𝑔𝑔
𝑓𝑓𝑓𝑓′

𝐷𝐷𝑓𝑓𝑓𝑓′𝜁𝜁𝑓𝑓′𝜔𝜔�(𝜑𝜑)� ≥

−max
𝜑𝜑

(𝜔𝜔(𝜑𝜑)) � �
𝑓𝑓 + 1

2 �𝜈𝜈𝑔𝑔,𝑓𝑓
2 + 𝜈𝜈𝑔𝑔,𝑓𝑓+1

2 �
𝑓𝑓 odd

        (30) 

Thus: 

𝛾𝛾𝑔𝑔 ≥ max
𝜑𝜑

(𝜔𝜔(𝜑𝜑)) � �
𝑓𝑓 + 1

2 �𝜈𝜈𝑔𝑔,𝑓𝑓
2 + 𝜈𝜈𝑔𝑔,𝑓𝑓+1

2 �
𝑓𝑓 odd

        (31) 

2.7.2. Supplementary figures 

 

Supplementary Figure 3.1: Temporal representation of the fits obtained from the inference. 
The optimizer first fits the spliced data (green dots) with a Fourier series (green curve). The unspliced 
data (blue dots) is then fitted (blue curve) by optimizing the degradation rate and the cell-cycle speed 
such that the corresponding likelihood is maximum. 
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Supplementary Figure 3.2: Phase-space representation of the fits obtained from the inference. 
Same as Supplementary Figure 3.1, except that the data (dots) and fits (curves) are represented in the 
spliced-unspliced space, in which the simulated/inferred phase is represented by a colour (bottom right). 

2.7.3. Supplementary Tables 

Parameter 
Biological range of val-
ues (used for simula-

tions) 

Value used for 
rescaling 

Rescaled 
value 

Rescaled value 
(γ units) 

Splicing rate 𝛽𝛽 (h-1) 𝛽𝛽−1 ≃ 5mn − 45mn 𝛽𝛽0 =  4h−1 𝛽𝛽0 = 1 𝛽𝛽0 = 8𝛾𝛾0 

Degradation rate 𝛾𝛾 (h-1) 𝛾𝛾−1 ≃ 30mn − 5h 𝛾𝛾0 = 0.5h−1 𝛾𝛾0 = 1/8 𝛾𝛾0 = 1𝛾𝛾0 

Cell-cycle speed 𝜔𝜔 (h-1) 𝜔𝜔−1/2π ≃ 10h − 30h 𝜔𝜔0 = 0.30h−1 𝜔𝜔0 = 0.08 𝜔𝜔0 = 2/3𝛾𝛾0 

Supplementary Table 3.1: Parameters used for simulation and scaling.  

Parameter 
Biological range of values (used for 

simulations) 
Value used for infe-

rence 

Number of harmonics for the 
spliced signal 

≃4 2 

Number of harmonics for 𝜔𝜔 ≃4 (?) 2 

External noise ≃ 0.3 − 0.8 0.5 

Supplementary Table 3.2: Parameters used for simulation and inference.
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Discussion and perspectives 
This thesis has been essentially concerned with the inference from, along with mod-

elling and analysis of, noisy biological oscillatory data. The Introduction was presented a 
summarized background of the problems and methods studied in the rest of this document. 
Chapter 1 to 3 presented three concrete applications of the methods previously introduced, 
with the study of the interacting cell-cycle and circadian clocks, circadian zonation of gene 
expression, and cell-cycle speed inference using RNA velocity. The present chapter reflects 
on the obtained results and points out some potential directions for future research. 

 

 

Artwork Figure 5: Artistic representation of an attracting noisy circular vectorfield, with initial condi-
tions uniformly distributed on a grid. Made with Processing, inspired by the work found on gener-
ateme.wordpress.com. 
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1. Discussion 

1.1. Knowledge acquired 

More than two millennia ago, in Theaetetus, Plato defined knowledge as a subset of 
what is both true and believed to be true (Discussion Figure 1). Although this was a small 
revolution in the nascent field of epistemology, it took a long time to develop a systematic 
methodology to decipher the true value of a belief. Between the XVth and XXth century, 
several important concepts, often contradictory, were theorized to this end: scepticism, ra-
tionalism, inductivism, and finally hypothetico-deductivism[291]. Although all of these are 
still part of the scientific arsenal, the main innovation was probably the creation of Bayesian 
epistemology, in the XVIIIth century. What was initially considered a field of philosophy 
has become, in the XXth century, a major scientific tool, with the use of probability laws as 
coherent constraints on rational degrees of confidence, as well with the introduction of prob-
abilistic inference[292]. 

 

Discussion Figure 1: Euler’s diagram of the relationship between truths, beliefs and knowledge, in 
platonic epistemology. 

The work presented in this thesis illustrates a concrete application of these epistemological 
principles (Discussion Figure 2). We started from experimental biological data: fluorescence 
traces in Chapter 1, followed by scRNA-seq in Chapter 2 and 3. We then developed different 
models, whose structures themselves constitute a prior belief about certain statistical prop-
erties of the data: models of coupled phase oscillators in Chapter 1; mixed-effects models 
using time-dependent polynomes to represent rhythmic gene expression in Chapter 2; and 
autonomous dynamical systems making use of a tangent space to the RNA velocity manifold 
in Chapter 3. Finally, we inferred the model parameters with appropriate methods: HMM 
along with the forward-backward algorithm in Chapter 1, non-linear regression with Nelder-
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Mead in Chapter 2 and L-BFGS-B in Chapter 3. We were then able to explore model pa-
rameters to make some predictions on the systems under study: phase-lockings in Chapter 
1, expected zonation profiles in Chapter 2 and expected cell-cycle velocity in Chapter 3. 

 

Discussion Figure 2: Diagram of the methodological approach followed to answer the scientific questions 
asked in this thesis.  

None of the approaches presented above is a black-box, as the models used have the property 
of being interpretable in terms of explicit dynamical or physical models. That is, one can 
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understand, from a mathematical point of view, what happens in these systems. Still, to 
which extent are the results we obtained informative? It is often thought in epistemology 
that no model will ever truly capture reality, as the (ontological) nature of the world can 
only be captured partially, through measurement devices[293]. Yet, mathematical models 
can yield results of astonishing precision, predicting phenomena millions of years in advance 
(e.g. in astronomy), especially in noiseless systems. Similarly, in biology, the application of 
simple principles (e.g. Evolution theory) has led to significant discoveries, particularly in 
medicine (e.g. cancer initiation, progression, treatment, and resistance). Therefore, a contra-
diction seemingly arises here as, on the one hand, the true nature of the world is unfathom-
able, and on the other, the scientific method seems able to capture some of its properties. 

One possibility to overcome this aporia would be to consider science as only one interpreta-
tion of the world, among many others. This interpretation is partial, as it is limited by the 
set of tools used by scientists but can nevertheless yield astonishing results when it comes to 
practical application. For instance, physicists normally interpret their data under some well 
defined assumptions and approximations (e.g. coarse graining, isolated system, etc), and 
what they learn will be highly conditioned by those. To relate to the content of this thesis, 
saying that the cell-cycle and the circadian clock interact through a given coupling function 
does not do justice to what is occurring in the real system, in which billions of atoms interact 
according to laws whose behaviour is still poorly understood25. But it remains a (partial) 
truth, under the interpretation of dynamical systems, and this truth is undeniably an advance 
in terms of biological knowledge.  

1.2. The contribution of modelling 

Most of the research in biology is done in from a purely experimental perspective. 
A question is asked (e.g. what’s the division rate of a given cell-type), an experiment is led 
(e.g. brightfield microscopy), and the question is almost immediately answered, although 
some postprocessing of the data may be involved (e.g. image analysis). This type of approach 
is efficient and straightforward, but has severe limitations; namely, it only works if the ques-
tion asked concerns simple systems. One could argue that living organisms are in no way 
simple systems, but, from a reductionist point of view, they can often be reduced to simpler 
sub-systems. 

Now, it happens that some biological questions raise intrinsically complex matters. For in-
stance, if one were to ask how, mechanistically, the cell-cycle is coupled to the circadian 

 
25 And the extent to which these laws can be put in equations is still an open question. 
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clock, one wouldn’t even know where to look, due to the high number of possibilities. Indeed, 
many experiments could be made, answering just as many questions. For instance: is NONO 
involved in the coupling? Is p53 involved in the coupling? Is Cry1 involved in the coupling? 
But there are thousands of molecules to test, and each experiment should also involve addi-
tional parameters such as temperature or pressure. In short, this is not concretely feasible. 

Modelling can here help in two different ways. The first one is through the involvement of 
universality, a mathematical observation that some properties are common, independent of 
the details of the system under study[294]. This is particularly relevant to abstract physical 
modeling, such as dynamical systems theory, which can explain, with the same type of dif-
ferential equations, the rotation of the Earth around the sun, and the behaviour of a harmonic 
oscillator. Similar situations arise in biology, where many different systems can be studied 
within the same framework, e.g. oscillations in the brain somehow follow the same laws as 
cyclins in individual cells. Aside from the fact that it is puzzling from a philosophical point 
of view, universality is also useful to answer questions from partial observations. For instance, 
in Chapter 1, although we only followed Rev-erbα to track the circadian clock in NIH3T3, 
we were still able to make general predictions about its interaction with the cell-cycle 
(namely, how does the dephasing evolves with the cell-cycle period), which we verified there-
after. We didn’t know anything about the mechanistic details of the coupling, but we could 
make predictions nevertheless, without the need for thousands of experiments. 

Another way mathematical modelling can help is through the analysis of complex or large 
datasets. For instance, even if one were to run a thousand experiments to understand all the 
molecular details of the coupling, one would still have to rebuild the system's dynamics from 
partial observations. Given how complex genetic networks can be, involving many feedbacks 
loops themselves under the control of other feedback loops[295], this is hardly feasible in a 
human lifetime. Modelling could help here by simplifying the system to its most essential 
version. For instance, dimensionality reduction techniques such as UMAP or SVD could 
enable identifying which molecules are relevant to the coupling, and get rid of all the oth-
ers[296].  

Nowadays, doing a thousand experiments is not always required anymore. With the emer-
gence of high-throughput methods such as RNA sequencing, or, more recently, single-cell 
RNA sequencing, complex datasets containing most of the relevant interactions (as well as 
the non-relevant) are available to everyone: one just needs to find or develop the proper 
method to extract the relevant information. This can, however, be a hard problem, as illus-
trated by Chapter 3, in which the theoretical method we developed indeed answers the 
question, but somehow at the expense of model tractability. 
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2. Perspectives 
Although the studies presented in Chapter 1-3 of this thesis are relatively self-con-

tained, they inherently suggest interesting extensions.  

Chapter 1 mainly presented the inference of the coupling function between the cell-cycle and 
the circadian clock. While the corresponding theoretical model of interacting phase oscillators 
is deeply explored, this is not the case for the mechanistic factors responsible for the coupling. 
Since we have posited that the coupling, which mainly occurs at mitosis, is at least partly 
due to the drop of PER/CRY concentration with the nuclear envelope breakdown, it would 
be interesting to model how these proteins behave using e.g. reaction-diffusion equations. In 
parallel, regarding the statistical procedure itself, it could be interesting to turn the powerful 
phase inference HMM-based method that we had developed into a generic package, so that 
it becomes available to anyone interested. This is partly what was attempted in the project 
presented Annexe A, with the implementation of methods handling multi-reporters’ systems 
like FUCCI. This idea was however dropped because of scooping, but a generic library for 
phase (or coupling) inference is still not available today. Finally, extending the project to 
spatially coupled oscillator systems (e.g. somite clock, pace-making in neuron networks, or-
gan development) could also be interesting, as they show dynamical properties such as wave 
propagation and, in most cases, can also be tracked using fluorescent reporters[297]. 

Chapter 2 presented the reconstruction and spatiotemporal study of gene profiles in the 
mammalian liver. From an experimental perspective, it could help to use methods examining 
epigenetic properties of cells such as ATAC-seq and ChIP-seq to determine how the oscilla-
tions of Wnt2 (and potentially other genes) are regulated and whether circadian genes bind 
to wnt-related genes in LECs. In addition, conditional Bmal1 knock-out models targeted at 
endothelial cells would help to move from descriptive to more mechanistic studies and eluci-
date causal relationships. From a modelling perspective, moving to a fully Bayesian frame-
work such as Bayesian hierarchical modelling could help to handle the noise[298]. Also, find-
ing a way to remove the spatial correlations inherent to the gene profiles reconstruction 
(explained in reference [224]) would probably yield more accurate results.  

Chapter 3 presented the inference of cell-cycle speed using a new, fully parametric version of 
RNA velocity. Although the method works relatively well, it still has many drawbacks (the 
reason for which the study is not a preprint, yet). The main issue is probably with optimi-
zation, as the space of parameters is constrained to positive real numbers by the use of 
logarithm transformation in the model, a constraint which is poorly handled by the optimizer. 
Since the model is explicitly parametrized, one solution could be to use the Expectation-
Optimization algorithm as an alternative optimizer. Unfortunately, this requires quite 
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complex computations, and would probably take a few months of work, for a gain which 
could be minimal. Another likely issue with the model lies in the use of constant transcrip-
tion, splicing, and degradation rates. This is a strong hypothesis, questioned by a recent 
study[270], and which could significantly impact the value and shape of the inferred cell-
cycle speed function. Unfortunately, assuming gene-dependent varying rates, whether for 
transcription, splicing or degradation (or all) implies involving many new parameters in the 
model. At the same time, the data is limited, and the optimizer already struggling. This 
could, however, be at least partly attempted using pulse-chase analysis. 

From a more general perspective, the use of modern machine learning methods such as deep 
neural network will probably revolutionize the field of biological inference, and should be the 
focus of upcoming studies[299]. This is particularly relevant to image analysis (e.g. fluores-
cence microscopy[300]), and big data exploration (e.g. omics data[301]). The drawback of 
these approaches is that they are usually black boxes, preventing interpretation of the un-
derlying model. However, this is progressively changing with the development of powerful 
regularization techniques enabling to keep only the most essential parameters, and the de-
velopment of neural network exploration techniques, allowing to understand better the role 
of the different layers and layer components[302]. 
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Annexe A: Technical review of phase 
inference methods 

The chapter that follows is an unfinished comparative study of phase inference 
methods. This paper was written in my free time and was unfortunately partly scooped in 
the process[303], [304], the reason for which it will remain unfinished.  

Contributions 
I designed the study, implemented the code, and made all the figures. 

 

Artwork Figure 6: Artistic representation of progressively dephasing harmonic function, with increasing 
amplitude. A perfect circle is formed by the final superposition. 
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1. Introduction: motivation and aims 
Oscillators are pervasive in biology, and the study of oscillations is particularly rel-

evant to neuroscience, geology, population dynamics and biochemistry. Yet, these fields are 
often oblivious of the importance of phase dynamics to understand the behaviour of systems 
under external coupling or perturbation. For instance, most studies in geology are still using 
Hilbert transform (or its extensions) for phase inference[305], [306]. The same goes for neu-
roscience, including recent studies[307]. Now, it is precisely from phase behaviour in response 
to a given perturbation or coupling that one can learn details about the off steady-state 
system dynamics. 

Although several powerful methods for phase inference have been developed in the last cen-
tury, there is absolutely no summarizing work or guidelines in the literature about these 
methods. Worse, most of these methods, like smoothing methods[308] or empirical mode 
decomposition[309]) are not initially designed for phase inference, and people would not know 
about them even when extensively looking for a solution. 

In this project, we want to introduce and compare the main existing methods used for phase 
inference in noisy oscillating systems, possibly under perturbations. This includes systems 
for which several channels of observation are given, and complex coupling link the different 
oscillators.  

We want to keep this review light enough not to confuse the readers with non-technical 
backgrounds, but complex enough to introduce the crucial concepts needed to understand 
which method is appropriate depending on the context. We also would like to compare the 
performances of the different methods under different conditions, summarize their results, 
and provide the associated code for easy implementation. 

2. Study 

2.1. Abstract 

Oscillating systems are widespread in the biological world, occurring at all spatial 
and temporal scales. Understanding how these systems react to perturbation requires cap-
turing their instantaneous behaviour, which is provided by their phase. There is, however, 
no generic phase inference method that works for any signal. Existing methods are often not 
initially designed for phase inference and, as such, are sometimes hard to implement. We 
here provide a technical summary of the existing phase inference methods, and briefly com-
pare their performance on simulated data. 
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2.2. Introduction 

2.2.1. Context 

Biological oscillators are of prime importance in many different contexts: develop-
ment, signalling, metabolism, etc. A large portion of the cell physiological processes are thus 
under the control of biochemical oscillations. This includes circadian rhythms, cell-cycle, but 
also somitogenesis or neuronal circuits[25], [51]. The steady-state behaviour of biological os-
cillators is well captured by signal analysis methods such as Fourier transform or wavelet 
analysis, which decompose the oscillations into various harmonics with different frequencies 
and amplitude[310]. However, when studying a system under perturbation or transiently 
evolving, such methods show little interest as they are designed to work on the scale of 
several stable cycles. Yet, understanding how oscillatory systems react to perturbation re-
quires capturing their instantaneous behaviour, which is provided by their phase and ampli-
tude. Unfortunately, inferring the phase of a partly-randomly evolving oscillatory system is 
not an easy problem, as a strong perturbation can be understood equally as a shift backwards 
of forward on the polar cycle. As a consequence, no phase inference method can yield an 
accurate result for any type of signal. 

In this technical review, we provide an exhaustive summary of the phase inference methods 
described in the literature, with a particular emphasis on smoothing methods. We explain 
how the methods work and to which context they’re the most adapted. Finally, we compare 
the methods’ performances on simulated data, including signals made of several channels. 
The whole study is implemented in Julia and provided as a collection of Jupyter notebook.  

2.2.2. The problem in equations 

Assuming that the noise is independent of the phase, as it’s the case in most limit-
cycle oscillators[1], the most generic dynamical system describing the evolution of a phase 
oscillator is: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜔𝜔𝜃𝜃 + 𝜉𝜉       (𝑖𝑖) 

In this differential equation, 𝜃𝜃 is the oscillator’s phase, 𝜔𝜔𝜃𝜃 is the intrinsic frequency of the 
oscillator and 𝜉𝜉 is the intrinsic phase noise. The corresponding signal is described by the 
following transformation:  

𝑦𝑦𝑡𝑡 = 𝑠𝑠(𝜃𝜃𝑡𝑡) + 𝜖𝜖𝑡𝑡       (𝑖𝑖𝑖𝑖) 
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Here, 𝑦𝑦𝑡𝑡 corresponds to the data point observed at time t, 𝑠𝑠 is a periodic function of the 
phase which we’ll call waveform from now on, and 𝜖𝜖𝑡𝑡 is the technical (observation) noise. 
Phase inference can be understood as the process of estimating the probability of the phase 
given the data, 𝑃𝑃(𝜃𝜃𝑡𝑡|𝑦𝑦1,𝑦𝑦2, . . . , 𝑦𝑦𝑇𝑇). Alternatively, in a simpler setting, it can correspond to 
getting a correct pointwise estimate of 𝜃𝜃𝑡𝑡, given the data. 

Yet, systems like the one from Eq. (𝑖𝑖𝑖𝑖) exhibit regular, uniform, oscillations, and their phase 
can be perfectly estimated from e.g. a Fourier transform. In practice, one is often interested 
in systems showing more complex behaviour, that is, systems under perturbation, or systems 
of coupled oscillators. Besides, it is often the case that a given oscillator is tracked with 
different reporters (e.g. the cell-cycle and the 2-colours FUCCI system[311]). A more general 
model would, therefore, be composed of a state vector 𝛉𝛉 = [𝜃𝜃1, . . .𝜃𝜃𝑁𝑁]𝑇𝑇 along with an obser-
vations vector 𝐃𝐃 = [𝐲𝐲1, . . . 𝐲𝐲𝑁𝑁]𝑇𝑇 such that: 

�
𝑑𝑑𝜃𝜃1 = 𝜔𝜔𝜃𝜃1𝑑𝑑𝑑𝑑 + 𝐹𝐹1(𝛉𝛉, t)𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑
⋮
𝑑𝑑𝜃𝜃𝑁𝑁 = 𝜔𝜔𝜃𝜃𝑁𝑁𝑑𝑑𝑑𝑑 + 𝐹𝐹𝑁𝑁(𝛉𝛉, t)𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑

 with �
𝐲𝐲1,𝑡𝑡 = [𝑠𝑠1,1(𝜃𝜃1) + 𝜖𝜖1,1,𝑡𝑡 , . . . , 𝑠𝑠1,𝑀𝑀(𝜃𝜃1) + 𝜖𝜖1,𝑀𝑀,𝑡𝑡]
⋮
𝐲𝐲𝑁𝑁,𝑡𝑡 = [𝑠𝑠𝑁𝑁,1(𝜃𝜃𝑁𝑁) + 𝜖𝜖𝑁𝑁,1,𝑡𝑡 , . . . , 𝑠𝑠𝑁𝑁,𝑀𝑀(𝜃𝜃𝑁𝑁) + 𝜖𝜖𝑁𝑁,𝑀𝑀,𝑡𝑡]

       (𝑖𝑖𝑖𝑖𝑖𝑖) 

Here, the functions 𝐹𝐹𝑖𝑖(𝛉𝛉, t) are considered time-dependent, meaning that the whole dynamical 
system is not autonomous. In many cases, however, time is not involved, and 𝐹𝐹𝑖𝑖 can be 
represented on N-dimensional flat toruses, and be parameterized, for instance, using Fourier 
series. 𝐹𝐹𝑖𝑖 represent the couplings between all the variables in play, along with possible exter-
nal perturbations. In practice, such couplings rarely link more than two or three variables at 
a time. As in the uniform 1-dimensional system, the objective here is to obtain the probability 
of the phases given the data 𝑃𝑃(𝛉𝛉|𝐃𝐃), or at least a reasonable estimate of 𝛉𝛉 given the data. 

This is not a simple problem as some, and sometimes all, of the model parameters can be 
unknown. For instance, intrinsic frequencies can vary with time and be hard to estimate. 
Similarly, technical noise can be hard to distinguish from phase noise. Finally, in complex 
molecular systems, the coupling function is usually hard to infer from a mechanistic model-
ling approach. 

Two types of solution have been used in the past. Most of the time, the dynamical phase 
model is ignored, and phase is inferred directly from the signal with non-parametric ap-
proaches. Alternatively, one can take advantage of (part of) the underlying phase model and 
use a parametric inference approach. In most cases, the latter option has the advantage of 
yielding a phase probability distribution instead of a single estimate. Besides, one can incor-
porate prior knowledge about the phase model in the inference process. 
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2.2.3. Concrete difficulties with phase inference 

Phase inference is not a trivial problem for several reasons. First, depending on the 
shape of the waveform, a given observation 𝑦𝑦𝑡𝑡 can correspond from 2 to 𝑛𝑛 possible phases 
𝜃𝜃𝑡𝑡, even in the absence of noise. This means that the temporal evolution of the signal must 
be incorporated in the inference process. At least one full cycle is needed, but this latter 
condition can also be hard to implement, since identifying a cycle can be difficult in noisy 
data. Moreover, since phase evolves in a circular space, a large phase deviation can corre-
spond either to a backward or a forward advance, with no way of distinguishing the two 
using only local information. On longer timescales, signals often contain trends, with ampli-
tude variations, making it difficult to know if a change in signal value is due to to a general 
trend, or a phase advance. In any case, a way to correct for, or to incorporate, the trend 
must be implemented in the inference process. 

Another recurrent problem with phase inference is waveform identification. The waveform 
can easily be identified in an isolated system at steady-state, as it should correspond to a 
noiseless version of a full cycle. However, in the case of a coupled oscillator at steady-state, 
it is virtually impossible to distinguish the coupling contribution from the natural behaviour 
of the oscillator. By involving external knowledge about the coupling, one may be able to 
disentangle what actually belongs to the system natural’s dynamics, but this requires a so-
phisticated parametric approach. In most case, opting for a different experimental design in 
which the system is first isolated can help to identify an unbiased waveform. The same 
problem also occurs with the coupling: many interacting oscillators at steady state can be 
considered as a single oscillatory system, as the respective phases actually follow a limit-
cycle in the phase-space. If the system is very noisy, analyzing the phase deviation from the 
attracting limit-cycle can provide information about the coupling, but this remains a difficult 
method to implement. Again, in an optimal setting, one would capture the behaviour of 
isolated oscillators, and only understand a posteriori how they interact, precisely by analyz-
ing how the different phases deviate from their natural dynamics when coupled.  

2.3. The methods available 

2.3.1. Introduction 

Despite the development of powerful inference methods in the last fifty years, most 
studies still use simple linear interpolations between the signal peaks to infer the correspond-
ing phase[312], [313], providing only a zero-order approximation of the phase[303]. Unfortu-
nately, this is imprecise and only provides information on the periods’ variation rather than 
the phase. 
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Whenever several observation channels are available (e.g. fluorescence microscopy), the in-
ference is sometimes turned into piecewise linear[44]. Although this does bring a non-negli-
gible benefit, the interpolation can be done in several ways depending on the reference points 
chosen on the signal, and each of these ways provides different results.  

Alternatively, if the signal is not too noisy and does not present particular trends, the Hilbert 
transform is sometimes used. This is, for instance, the case for seismic data[314]. Although 
it performs very well for sinusoidal data, it is not appropriate for any other waveform. More-
over, it can’t handle several channels of observations, limiting its use. 

In the general case, that is, a noisy signal with a trend and an arbitrary waveform, with 
several channels of observations, Bayesian smoothings methods provide the best alternative. 
The Extended Kalman filter and its extension, the ERTS smoothing, can work very well for 
simple phase inference, although the non-linearity of the waveform can lead to small biases 
in the inference[308]. More recently, URTS and particle filtering were developed, allowing to 
better handle non-linearity of both the phase and observation processes, but at the cost of 
the optimization of several new parameters used for distribution sampling[308].  

Bayesian smoothing methods assume that 𝑃𝑃(𝜃𝜃𝑡𝑡|𝐷𝐷) is always Gaussian, enabling fast compu-
tations since only the means and covariance matrices of the distributions are used to predict 
and update the distribution at the next timepoint. However, there is one drawback: phase 
periodicity can’t be handled explicitly, since it is assumed that both the state and the obser-
vations evolve in 𝑅𝑅𝑁𝑁. If the signal to noise ratio is high enough, local linearization of the 
model equation works very well, although the discontinuity between 0 and 2𝜋𝜋 must still be 
explicitly considered in the equations. However, the initial estimate is rarely known with 
certainty, and this can prevent the smoothing of the whole signal. To better handle the 
domain periodicity, several extensions of these smoothing methods have been devel-
opped[315]–[317], using projected Gaussian distributions, but always under the assumption 
that the observation follows a linear transformation. This is not the case for a waveform, 
meaning that, to this day, there’s no unbiased filter properly handling phase inference from 
a noisy signal. 

Finally, an alternative, simple and exact method for phase inference of any type of signal is 
the Hidden Markov Model (HMM). Although it also belongs to the family of Bayesian 
smoothing method, the corresponding phase distribution doesn’t suffer from any assumption, 
meaning that no approximation is made concerning the underlying state process. HMM are 
easy to implement, and can readily be adapted to work with wrapped normal laws to handle 
the periodicity of the phase domain[46]. However, contrarily to filtering methods, their trac-
tability can quickly become limiting since the phase inference require the use of several 
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convolutions on a discretized version of the state space. Moreover, the state space size grows 
exponentially with the number of hidden variables (phase, and signal trends). This problem 
can be mitigated by the use of small state space resolution, at the expense of inference 
precision. 

2.3.2. Linear and piecewise linear interpolation 

Linear and piecewise linear interpolation are used whenever one is only interested 
in the average phase deviation over the totality or part of the complete cycle. 

Assume the peaks of the signal have been detected at times [𝑡𝑡1, . . . , 𝑡𝑡𝑖𝑖 , . . .𝑇𝑇𝑛𝑛]. Using linear 
interpolation, the phase at time 𝑡𝑡 ∈ [𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1) is defined as 𝜃𝜃𝑡𝑡 = 2𝜋𝜋 𝑡𝑡−𝑡𝑡𝑖𝑖

𝑡𝑡𝑖𝑖+1−𝑡𝑡𝑖𝑖
. Of course, any easily 

identifiable signal point can be used instead of the peaks to obtain the 𝑡𝑡𝑖𝑖, but using 
peaks/troughs ensure a proper phase definition since the waveform is unambiguously invert-
ible for these points. 

The process with piecewise linear interpolation is slightly more complicated since it requires 
to define several turning points in the observation data. This can be a crossing of the signals 
coming from the different channels, or possibly their respective peaks, or any other easily 
identifiable point in each of the signals, taken together or apart. For simplicity, we assume 
that the signal peaks correspond to one of these turnings points, such that the distribution 
of time of these turning points is as follows : [𝑡𝑡1, 𝑡𝑡𝑎𝑎1 , 𝑡𝑡𝑏𝑏1 . . . , 𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑎𝑎𝑖𝑖 , 𝑡𝑡𝑏𝑏𝑖𝑖 . . .𝑇𝑇𝑛𝑛], where 𝑡𝑡𝑎𝑎𝑖𝑖 , 𝑡𝑡𝑏𝑏𝑖𝑖 etc 
represent the times of the different turning points 𝑎𝑎𝑖𝑖 ,𝑏𝑏𝑖𝑖 etc, with the assumption that 𝑎𝑎 ≡
𝑎𝑎𝑖𝑖(mod 2𝜋𝜋),𝑏𝑏 ≡ 𝑏𝑏𝑖𝑖(mod 2𝜋𝜋), . . .∀𝑖𝑖 and 𝑎𝑎, 𝑏𝑏, ..., represent the (fixed) phases associated with 
the turning points. The phase at time 𝑡𝑡 ∈ [𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1) is then defined as 

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝜃𝜃𝑡𝑡 = 𝑎𝑎

𝑡𝑡 − 𝑡𝑡𝑖𝑖
𝑎𝑎 − 𝑡𝑡𝑖𝑖

 if 𝑡𝑡 < 𝑡𝑡𝑎𝑎𝑖𝑖

𝜃𝜃𝑡𝑡 = 𝑎𝑎
𝑡𝑡 − 𝑡𝑡𝑖𝑖
𝑎𝑎 − 𝑡𝑡𝑖𝑖

+ 𝑏𝑏
𝑡𝑡 − 𝑏𝑏
𝑏𝑏 − 𝑎𝑎  if 𝑡𝑡𝑎𝑎𝑖𝑖 ≤ 𝑡𝑡 < 𝑡𝑡𝑏𝑏𝑖𝑖

⋮
𝜃𝜃𝑡𝑡 = � 𝑥𝑥

𝑥𝑥∈𝑎𝑎,𝑏𝑏,...

𝑡𝑡 − 𝑡𝑡𝑖𝑖
𝑥𝑥 − 𝑡𝑡𝑖𝑖

 else 

       (𝑖𝑖𝑖𝑖) 

This means that a punctual perturbation of the signal will only be inferred as a variation of 
the period length, or as a variation of a given time interval between two turning points. In 
the case of piecewise linear interpolation, the method can be sensitive to the choice of turning 
points, and, in the absence of control data, there’s no way to know if the inference is unbi-
ased. Interpolation methods are therefore imprecise and should be favoured only when punc-
tual phase perturbations are of no interest. Given that the peaks are easily detectable, they 
are, however, unaffected by signal trends, noise, and fast frequency variation. 
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2.3.3. Hilbert transform 

The Hilbert transform is a quick and efficient method to obtain the phase of a 
sinusoidal signal. Mathematically, it is defined for a real-valued signal 𝑢𝑢(𝑡𝑡) as: 

𝐻𝐻(𝑢𝑢)(𝑡𝑡) =
1
𝜋𝜋
�

𝑢𝑢(𝜏𝜏)
𝑡𝑡 − 𝜏𝜏

∞

−∞
 𝑑𝑑𝑑𝑑       (𝑣𝑣) 

Although this definition can be interpreted as the convolution of the signal with the function 
1
𝜋𝜋𝜋𝜋

, this won’t give most readers any insight into what this convolution actually does. In 

practice, it is much easier to understand the Hilbert transform as the imaginary part of the 
positive frequencies coming from the Fourier transform of the signal. As a reminder, the 
Fourier Transform of 𝑢𝑢(𝑡𝑡) is defined for frequency 𝑓𝑓 as: 

ℱ(𝑢𝑢)(𝑓𝑓) = � 𝑢𝑢
∞

−∞
(𝑡𝑡)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝑑𝑑𝑑𝑑       (𝑣𝑣𝑣𝑣) 

If 𝑢𝑢 is a real-valued signal, then 𝐹𝐹(𝑢𝑢) is necessarily complex-symmetric, meaning that for 
each positive frequency returned by the transform, there also exists an identical frequency in 
the negative domain. By removing the redundant negative frequency content, one can create 
a complex-valued signal whose spectrum is now one-sided, and which preserves the spectral 
content of the original real-valued signal (by doubling the amplitude of the remaining fre-
quencies). This is the analytic signal, 𝑧𝑧(𝑡𝑡), whose spectral content Z(f) is defined as: 

𝑍𝑍(𝑓𝑓) = �
 ℱ(0) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓 = 0
2ℱ(𝑓𝑓) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓 > 0
   0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓 < 0

       (𝑣𝑣𝑣𝑣𝑣𝑣) 

Since the spectrum of the analytic signal is asymmetric, the analytic signal is complex-valued 
in the time domain, and, surprisingly, it is the Hilbert transform that provides the imaginary 
part of this signal: 

𝑧𝑧(𝑡𝑡) = ℱ−1(𝑍𝑍)(𝑡𝑡) = 𝑢𝑢(𝑡𝑡) + 𝑖𝑖𝑖𝑖(𝑢𝑢)(𝑡𝑡) = 𝐴𝐴(𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖(𝑡𝑡)       (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

This means that the instantaneous phase of the signal 𝑢𝑢(𝑡𝑡) can be obtained easily from 
𝜃𝜃(𝑡𝑡) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝐻𝐻(𝑢𝑢)(𝑡𝑡),𝑢𝑢(𝑡𝑡)), while the amplitude is simply 𝐴𝐴(𝑡𝑡) = |𝑧𝑧(𝑡𝑡)|. 

It is often said the use of the Hilbert transform should be restricted to a narrowband signal, 
meaning that the signal should be relatively smooth and untrended. In practice, the Hilbert 
transform of any real-valued signal is perfectly valid and well-defined at all points, but the 
returned phase may not correspond to what would intuitively be expected. Indeed, a trended 
signal can be such that the complex value associated with the trend frequency can completely 
dominate the spectrum when doing the reversed Fourier transform. The desired phase 
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oscillates faster than the computed one, and the result is simply not interpretable. The in-
verse problem is also true: a noise associated with very fast frequencies will also impact the 
final phase estimate, although in a less important manner. Therefore, one should try to filter 
all the undesired frequencies from the signal before attempting to make any phase inference 
with the Hilbert transform. However, in the case of a perturbed signal, the trends may also 
correspond to real phase deviation and shouldn’t be filtered out. 

Finally, there exists an extension to the Hilbert transform called the Hilbert-Huang trans-
form[309]. This method first decomposes the signal into different harmonics before applying 
the Hilbert transform on each of them. It is therefore adapted for data that is non-stationary 
and non-linear, as the one usually produced by noisy biological oscillators. 

2.3.4. Smoothing methods and HMM 

Consider a system with N phases to infer from M observations. We denote by 𝐱𝐱𝑡𝑡 
the vector of phase distributions at time 𝑡𝑡, 𝐪𝐪𝑡𝑡 ∼ 𝒩𝒩(0,𝐐𝐐) the corresponding process noise, 𝐲𝐲𝑡𝑡 
the vector of observation and 𝐫𝐫𝑡𝑡 the measurement noise. The corresponding state-space model 
is: 

�𝐱𝐱𝑘𝑘 = 𝐟𝐟(𝐱𝐱𝑘𝑘−1,𝝀𝝀) + 𝐪𝐪𝑘𝑘−1
𝐲𝐲𝑘𝑘 = 𝐡𝐡(𝐱𝐱𝑘𝑘,𝝀𝝀) + 𝐫𝐫𝑘𝑘

       (𝑖𝑖𝑖𝑖) 

In this equation, 𝐟𝐟 is the dynamic model function (e.g. 𝑓𝑓 = 𝜔𝜔𝜃𝜃 in the case of a single oscillator 
with linear phase) and 𝐡𝐡 is the measurement model function, which we previously denoted 
by waveform. 𝝀𝝀 is the model vector of parameters, tuning features like coupling structure or 
intensity. 

Eq. (𝑖𝑖𝑖𝑖) is a dynamical system of the form of Eq. (𝑖𝑖𝑖𝑖𝑖𝑖). This is precisely the advantage of 
smoothing methods: they explicitly incorporate a parametric version of the model for which 
the phase is inferred, and as such, they are much more flexible. They come in various forms, 
depending on the linearity of the model and measurement functions. Still, in the end, they 
all return the probability of the phase at any iteration 𝑘𝑘 given the whole data series 
𝑃𝑃(𝐱𝐱𝑘𝑘, 𝐲𝐲1:𝑇𝑇). 

The most famous one is also the most basic, known as the Rauch Tung Striebel (RTS) 
smoother[318]. It is an extension of the Kalman filter, and, as such, only handles linear model 
and measurement functions. However, by Taylor-expanding the two equations in Eq. (𝑖𝑖𝑖𝑖), 
one can approximate reasonably non-linear systems with excellent precision: this is the Ex-
tended RTS (ERTS). Another method of linearization, called unscented, relies on the use of 
sigma-points, that is, wisely sampled points to approximate the phase-distribution between 
two iterations. This gave birth to the Unscented RTS (URTS), which is the most powerful, 
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but also one the greediest method that we present in this technical review. Finally, Hidden 
Markov Models (HMM) do not belong to the class of smoothing methods stricto sensu, but 
still constitute the underlying model of all of them. The only difference is that the state space 
(and also, possibly, the observation space) is discrete. Therefore, while conventional smooth-
ing methods assume continuous, Gaussian distributions, HMM can approximate any system 
dynamics, whatever the underlying distributions. This is, however, at the expense of tracta-
bility: for HMM, computing the state transition between two observations implies convolu-
tions between multidimensional arrays. In contrast, for most smoothing methods, the product 
of multivariate Gaussians only involves few scalar operations.  

The principle of all the smoothing methods and HMM is always the same. First, one assumes 
an initial probability distribution for the phase, and compute the expected probability of the 
corresponding observation. By comparing the expected observation with the actual observa-
tion in the data, one can correct the phase distribution appropriately. Then, since the process 
described by Eq. (𝑖𝑖𝑖𝑖) is Markovian, the phase distribution at the next step can be computed 
directly from the model function, and same for the corresponding observation. The phase 
distribution can be corrected, and so on. In practice, one computes iteratively 
𝑃𝑃(𝐱𝐱1,𝐲𝐲1),𝑃𝑃(𝐱𝐱2, 𝐲𝐲1:2), … ,𝑃𝑃(𝐱𝐱𝑇𝑇 ,𝐲𝐲1:𝑇𝑇). This is known as the filtering step, or forward pass for 
HMM. From reference [319], the algorithm principle is as follow: 

Initialization 

1. Initialize the state of the filter 

2. Initialize our belief in the state 

Prediction 

1. Use system behaviour to predict state at the next time step 

2. Adjust belief to account for the uncertainty in prediction 

Update 

1. Get a measurement and associated belief about its accuracy 

2. Compute residual between estimated state and measurement 

3. Compute scaling factor based on whether the measurement or prediction is more 
accurate 

4. set state between the prediction and measurement based on scaling factor 
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5. update belief of the state based on how certain we are in the measurement 

The smoothing step, or backward pass for HMM, that comes afterwards is more of a correc-
tion. Indeed, the filtering step only provides 𝑃𝑃(𝐱𝐱𝑘𝑘, 𝐲𝐲1:𝑘𝑘), that is, not all data is incorporated 
in the estimate. By processing the data in reverse order, the smoothing step yields 
𝑃𝑃(𝐱𝐱𝑘𝑘, 𝐲𝐲𝑘𝑘+1:𝑇𝑇), from which one can compute 𝑃𝑃(𝐱𝐱𝑘𝑘, 𝐲𝐲1:𝑇𝑇). 

The advantage of smoothing methods is that they work with any type of waveform, they can 
explicitly account for coupling of as many oscillators as needed, and also account for any 
trend in the data. The disadvantages are that the structure of the phase and observation 
models must be at least partly known to be optimized, and that the whole process is much 
greedier than non-parametric methods such as the Hilbert transform. Still, the worst tracta-
bility belongs to HMM, for which the size of the state space grows exponentially with the 
resolution chosen, as well with the number of variables. 

2.4. Method Performances 

To compare the performance of the methods presented above, we simulate traces 
using Eq. (𝑖𝑖𝑖𝑖𝑖𝑖), considering only two phases, 𝜃𝜃 and 𝜙𝜙, along with various choices of waveforms 
(Figure A.1A) and coupling functions (Figure A.1B-C). From here, one can generate the 
successive phase states, along with the corresponding signal observations (Figure A.1D-E). 
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Figure A.1: Data simulation. (A) The two waveforms used to generate the observations presented in 
D-E. (B-C) The corresponding coupling function, used in the dynamic model function, to modulate the 
transition between the phase states. (D-E) Temporal evolution of the phase (dashed line) along with the 
corresponding observations (full line). Observation noise is Gaussian with mean 0.15, phase noise is Gauss-
ian with mean 0.1.  

One can then run the inference and, by computing the two-dimensional inferred phase dis-
crete derivatives, get an approximation of the coupling functions (Figure A.2). None of the 
methods perform well enough to reconstitute an accurate description of the real coupling, 
but all of the methods presented yield a qualitatively correct approximation. Using a regu-
larization process could here help with the noisy area of the phase-space. Except if vast 
amounts of data are available, coupling inference is not really applicable to linear interpola-
tion methods as they necessarily predict a flat coupling for a given cycle. Piecewise linear 
interpolations can perform slightly better (cf. the work done by Feillet et al. [44]) but are 
still much below other methods in terms of accuracy.  
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Figure A.2: Comparison of the inferred coupling depending on the phase inference method for both the 
𝜽𝜽 (left) and 𝝋𝝋 (right) coupling functions. The coupling is computed as the average discrete derivatives of 
𝜽𝜽 (left) and 𝝋𝝋 (right), with respect to time, for each possible couple of phases. In order, from top to 
bottom, the represented couplings are as follow: True coupling, coupling inferred from Hilbert transform, 
coupling inferred from URTS, coupling inferred from HMM. 
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It’s also interesting to take a look at how the different methods perform at the individual 
signal level (Figure A.3). Even on a noiseless signal, substantial discrepancies can occur 
between the different methods. 

 

Figure A.3: Comparison of the inferred phases with the different methods presented above. The simulated 
data (“trace”) is based on a sinusoidal signal under external forcing.  

2.5. Code availability 

This whole material used to generate this review, including the implementation of 
each method, is available online as a collection of Julia Jupyter notebooks at 
https://github.com/ColasDroin/PhaseInferenceReview. 

3. Perspectives 
This study is only a draft, and much remains to be done. Although the implemen-

tation of the different methods was undoubtedly the hardest part (8 classes implemented, 
several thousands line of code), finding a good measure to compare the different methods in 
all possible conditions is not an easy task. This is because many variables are present in the 
problem: the type of waveform, of coupling, of intrinsic and extrinsic noise, the number of 
oscillators, the dynamical changes of frequency, etc. Therefore, it is a complex problem to 
summarize all these conditions into a single table.  

Obviously, one should also test the different methods on real datasets. FUCCI signals would 
make excellent candidates as they use several channels (discarding the Hilbert-transform) 
and are widespread in cell-cycle studies. Ideally, one would also study data coming from 
neuroscience studies, as they involve complex couplings between different areas of the brain.  

https://github.com/ColasDroin/PhaseInferenceReview
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Finally, it would be interesting would like to explore one of the most powerful black-box 
methods out there: the Hilbert-Huang transform, which, a priori, could yield results just as 
good as smoothing methods, for a fraction of the computational power. 
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Annexe B: Widgets and animations 
The chapter that follows presents the design and implementation of several widgets 

and animations used to explain phenomena related to phase inference and phase dynamics.  

Contributions 
Under the supervision of F. Naef, I designed all the widgets and animations, and implemented the corre-
sponding code. 

 

Artwork Figure 7: Artistic representation of noisy decaying oscillations, slightly dephased on the y-axis 
(depth). This plot is based on a modified simulation of fluorescence microscopy experiments in which the 
circadian clocks of single cells become progressively desynchronized. 
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1. Introduction 
All the widgets and animations that are presented in the following subsections have 

been developed in the context of my PhD, to explain or clarify concepts for which sole 
equations can be hard to grasp. Except for the Fourier decomposition widget, which uses 
D3.js, they are all implemented in Python using the Matplotlib library. The code is open-
source, freely available on Github at https://github.com/ColasDroin/Python-animations 
and https://github.com/ColasDroin/D3-Fourier. 

2. Phase-space animation 
This set of animation was designed to provide an intuitive explanation of the be-

haviour of coupled oscillators systems. The very first animation that I created (Figure B.1) 
was thought to support our coupling paper[46]: it represents the time evolution of stochastic 
trajectories in the phase space of the cell-cycle and the circadian clock, with the correspond-
ing inferred coupling function in the background. Trajectories are inferred from real NIH3T3 
fluorescent traces, with randomly distributed colours. Due to the dominance of the 1:1 mode-
locking in the system, trajectories tend to have a slope of about one, gathering between the 
accelerating (red) and decelerating (blue) regions of the phase-space, although the noise can 
sometimes kick them out (cf. Introduction, Section 3.4.1.2 of this thesis). 

 

Figure B.1: Snapshot of an animation used to represent the time-evolution of 20 NIH3T3 inferred trajec-
tories in the phase-space of the cell-cycle and the circadian clock. The background represents the coupling 
function, with red (blue) areas accelerating (decelerating) the circadian clock. The instantaneous value of 
the cells is indicated by a coloured disc, while the previous values are queuing behind (10 timepoints, 
corresponding to 5h, are kept). Coloured are assigned randomly. 

https://github.com/ColasDroin/Python-animations
https://github.com/ColasDroin/D3-Fourier


Annexe B: Widgets and animations 

 
213 

The second animation (Figure B.2) has been developed about two years later, while the 
coupling study was being published. It was thought to explain the behaviour of noisy phase-
locked systems. As previously, the temporal trajectory of two oscillators with phase 𝜙𝜙1 and 
𝜙𝜙2 is represented in the phase-space, with the coupling function in the background (red and 
blue Gaussians, representing accelerating and decelerating areas for 𝜙𝜙2, respectively). How-
ever, contrarily to Figure B.1, there’s only one trajectory, which is simulated and imprints a 
track on the phase-space, enabling to highlight the existence of a mode-locking (2:1 here, but 
other modes are possible in different versions of the animation). To make the idea of bound-
ary periodicity more intuitive, the coupling function is also represented on a three-dimen-
sional rotating torus (Figure B.3). 

 

Figure B.2: Snapshot of an animation used to represent the time-evolution of 1 simulated trajectory in 
the phase-space of two oscillators with phases 𝜙𝜙1 and 𝜙𝜙2. The background represents the coupling function, 
with red (blue) areas accelerating (decelerating) 𝜙𝜙2. The instantaneous value of the cells is indicated by a 
coloured disc, while the queue indicates the previous timepoints. This animation enables to highlight the 
presence of a 2:1 mode-locking the system: 𝜙𝜙2 makes two full cycles when 𝜙𝜙1 does one, even though the 
system is stochastic. Simulations are computed using a Monte-Carlo approach.   
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Figure B.3: Snapshot of an animation representing the coupling function from Figure B.2, imprinted on 
a rotating torus. Red (blue) areas accelerate (decelerate) the phase of oscillator 1. 

The widget presented Figure B.4 is more interactive and pedagogic than the previous ones. 
It represents the progression of the phase of two oscillators on their respective waveform 
(left, just a sine function here). The progression in the phase-space is represented on the 
bottom-right panel, with the coupling as background (same colour-code as before). Finally, 
the dephasing (top right) for the last 20 timepoints is also indicated, revealing how the two 
oscillators tend to stabilize around a given phase difference for a given coupling. Although 
the system quickly reaches a steady-state in which not much happens, the user can change 
the strength of the coupling in real time (bottom bar, K), and observe the system’s transient 
behaviour as time evolves (bottom bar, t).  
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Figure B.4: Snapshot of an interactive Python widget, in which two oscillators interact. The phase 
progression along the waveform of the two oscillators is represented on the left (top and bottom). Their 
dephasing is represented on the top-right corner. Their trajectory in the phase-space is represented on the 
bottom-right corner, with the coupling function as background (red (blue) areas accelerating (decelerating) 
oscillator 2. The two interactive bars in the bottom represent the coupling strength (K) and the time (t).  

Finally, to provide an intuitive idea of what the model used in the coupling study represents, 
I’ve developed an animated version of the sampled signal observations (Figure B.5). The 
model is as follow: 

⎩
⎪
⎨

⎪
⎧d𝜃𝜃𝑡𝑡 =

2𝜋𝜋
𝑇𝑇𝜃𝜃

d𝑡𝑡 + 𝜎𝜎𝜃𝜃 d𝑊𝑊𝜃𝜃,𝑡𝑡                     

d𝐴𝐴𝑡𝑡 = −𝛾𝛾𝐴𝐴(𝐴𝐴𝑡𝑡 − 𝜇𝜇𝐴𝐴)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝐴𝐴 𝑑𝑑𝑊𝑊𝐴𝐴,𝑡𝑡
d𝐵𝐵𝑡𝑡 = −𝛾𝛾𝐵𝐵(𝐵𝐵𝑡𝑡 − 𝜇𝜇𝐵𝐵)d𝑡𝑡 + 𝜎𝜎𝐵𝐵 d𝑊𝑊𝐵𝐵,𝑡𝑡

𝑆𝑆𝑡𝑡 = exp(𝐴𝐴𝑡𝑡)𝑤𝑤(𝜃𝜃𝑡𝑡) + 𝐵𝐵𝑡𝑡 + 𝜉𝜉.          

         (𝑖𝑖) 
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The corresponding animation starts from the simplest possible version of Eq. (𝑖𝑖), that is, no 
amplitude fluctuations, no background, no noise, and, after several full-cycles, progressively 
incorporates the zeroed-out terms until the final model is reached again. 

 

Figure B.5: Snapshot of an animation representing a simulation of Eq. (𝑖𝑖). The emission of the system 
at time 𝑡𝑡 is represented by the leading blue point, while the trail behind represents the previous observa-
tions, during the 50 last timepoints). The animation is made such that the system starts from a simplified 
version of Eq. (𝑖𝑖), with no noise, no amplitude, and no background, and gets progressively complexified 
until the final version of the model is reached. 

3. Oscillator time trajectories 
This animation (Figure B.6) has been developed to clarify the concept of limit-cycle, 

taking the example of the circadian clock. In practice, bulk mRNA expression data from the 
core-clock genes is extracted from the Atger et al. [227] study and fitted with simple harmonic 
functions. The fact that the curves only represent the last 12h enables to highlight the 24h 
periodicity of the clock. 

 

Figure B.6: Snapshot of an animation representing the temporal evolution of mRNA core-clock genes 
expression. Raw data is scattered (static), while the corresponding fits, coming from simple harmonic 
regressions, are plotted as time-evolving curves, with a trail of about 12h. 
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4. Enrichment around the clock 
This animation (Figure B.7) has been developed to illustrate the functional analysis 

of the mouse liver transcriptome around the clock. Functions which are highly enriched (e.g. 
protein folding here) are selected, and the enrichment is computed around the clock with 
several hypergeometric tests (cf. Supplementary Information from study [320]). If the enrich-
ment is time-specific, an elliptic shape usually appears (e.g. in purple here). In this animation, 
a total of 8 functions are iteratively represented, each being highly specific to a given zeit-
geber. 

 

Figure B.7: Snapshot of an animation representing the enrichment around the clock of the mouse tran-
scriptome in genes belonging to preliminarily selected biological functions (here, in purple, protein folding). 
For visual purposes, transitions between the different functions are interpolated, ellipses are smoothed, 
and functions are selected to cover the day uniformly. The p-value corresponding to the enrichment is 
indicated on the radial axis. 
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5. D3 widget to compute Fourier transform of a signal 
This widget (Figure B.8) was initially developed to turn the study presented in 

Annexe A in what is called an observable study26. The principle is the following: the user can 
draw any curve-like shape on the top window, with the restriction that the result must be a 
function (there’s only one 𝑦𝑦 corresponding to a given 𝑥𝑥). The drawn curve is then decomposed 
into a set of harmonics, represented below. In parallel, it is represented as a smooth oscilla-
tory signal in the window below, taking only the first harmonics27. The whole widget was 
implemented in Javascript, with the help of the D3.js library. 

 

Figure B.8: Snapshot of an interactive widget used to clarify the concept of Fourier transform. In the 
top window, the user can draw any function with his mouse, which is then decomposed into a sum of 
Fourier harmonics, represented below. The drawn function is then smoothed (zeroing-out the fastly-cycling 
harmonics), and represented as a periodic signal in the window below. 

 
26 See https://observablehq.com/ and https://distill.pub/. 

27 This was implemented with the objective of showing phase inference for the corresponding signal in 
parallel, but it was left as it as, as the study was dropped. 

https://observablehq.com/
https://distill.pub/
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