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All	human	actions	involve	motor	control.	Even	the	simplest	movement	requires	the	coordinated	
recruitment	of	many	muscles,	orchestrated	by	neuronal	circuits	in	the	brain	and	the	spinal	cord.	As	
a	consequence,	lesions	affecting	the	central	nervous	system,	such	as	stroke,	can	lead	to	a	wide	range	
of	motor	impairments.	While	a	certain	degree	of	recovery	can	often	be	achieved	by	harnessing	the	
plasticity	of	the	motor	hierarchy,	patients	typically	struggle	to	regain	full	motor	control.	In	this	con-
text,	technology-assisted	interventions	offer	the	prospect	of	intense,	controllable	and	quantifiable	
motor	training.	Yet,	clinical	outcomes	remain	comparable	to	conventional	approaches,	suggesting	
the	need	 for	a	paradigm	shift	 towards	customized	knowledge-driven	 treatments	 to	 fully	exploit	
their	potential.	In	this	thesis,	we	argue	that	a	detailed	understanding	of	healthy	and	impaired	motor	
pathways	can	foster	the	development	of	therapies	optimally	engaging	plasticity.	To	this	end,	we	
develop	and	apply	multimodal	methodologies	to	investigate	the	central	and	peripheral	mechanisms	
underlying	motor	control	and	recovery.		

In	the	first	part	of	this	work,	we	concentrate	on	the	transition	from	one-suits-all	approaches	to	pa-
tient-tailored	 protocols,	 in	 the	 context	 of	 robot-assisted	 rehabilitation.	We	 start	 addressing	 this	
question	from	a	technical	viewpoint	and	propose	methods	to	assess	individual	dynamics	of	recov-
ery	in	stroke	patients.	First,	we	demonstrate	the	applicability	of	a	model-based	approach	to	contin-
uously	personalize	training	based	on	kinematic	motor	improvement.	Then,	we	show	how	comple-
mentary	knowledge	can	be	gleaned	from	kinematics,	muscular	and	neural	signals,	and	we	introduce	
a	versatile	framework	to	distill	this	multimodal	information	into	a	set	of	clinically	relevant	varia-
bles.	These	results	highlight	the	pivotal	importance	of	multimodality,	stressing	the	need	for	a	com-
prehensive	view	of	the	human	motor	hierarchy.	

To	this	end,	the	second	part	of	this	work	focuses	on	the	spinal	cord,	whose	functional	properties	
remain	largely	unexplored	in	humans.	As	this	gap	of	knowledge	primarily	pertains	to	the	dearth	of	
non-invasive	methods	to	assess	its	function	in	vivo,	we	first	propose	a	pipeline	for	spinal	cord	func-
tional	magnetic	resonance	imaging	(fMRI)	and	demonstrate	its	ability	to	capture	cervical	activation	
patterns	during	upper	limb	movements.	We	then	present	a	dynamic	functional	connectivity	frame-
work	to	dissect	spinal	spontaneous	fluctuations	into	fine-grained	components	mirroring	neuroan-
atomical	and	physiological	principles.	Next,	we	extend	the	use	of	this	approach	to	fMRI	data	ac-
quired	in	the	entire	neural	axis	during	motor	sequence	learning,	hence	shedding	light	on	specific	
cortical,	subcortical	and	spinal	correlates	of	skill	acquisition	and	consolidation.	Finally,	we	glimpse	
into	the	implementation	of	these	methodologies	in	the	scope	of	translational	applications,	provid-
ing	evidence	of	their	potential	to	explore	spinal	plasticity	following	stroke.	

These	findings	are	a	valuable	contribution	towards	an	extensive	characterization	of	human	motor	
control.	This	system-level	view	deepens	our	understanding	of	motor	pathways,	fully	acknowledg-
ing	the	active	and	plastic	nature	of	the	spinal	cord	and	emphasizing	its	key	role	in	sensorimotor	
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functions.	We	envision	that	the	synergy	between	technology	and	knowledge	will	open	promising	
avenues	for	strategies	leveraging	each	patient’s	residual	function	to	optimize	clinical	outcome.	
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Le	contrôle	moteur	est	au	centre	de	chacune	de	nos	actions.	Même	le	plus	simple	mouvement	né-
cessite	l’activation	coordonnée	de	multiples	muscles,	orchestrée	par	les	circuits	neuronaux	du	cer-
veau	et	de	la	moelle	épinière.	Par	conséquent,	les	lésions	affectant	le	système	nerveux	central,	telles	
que	les	accidents	vasculaires	cérébraux,	amènent	un	éventail	de	déficits	moteurs.	Bien	que	la	plas-
ticité	du	système	moteur	permette	un	certain	degré	de	récupération,	la	plupart	des	patients	ne	par-
viennent	pas	à	récupérer	leur	motricité	initiale.	Dans	ce	contexte,	des	technologies	innovantes,	ap-
pliquées	à	la	rééducation,	laissent	entrevoir	le	potentiel	de	traitements	intenses,	contrôlés	et	quan-
tifiables.	Malgré	ces	avantages,	les	résultats	restent	actuellement	similaires	à	ceux	obtenus	avec	un	
entraînement	conventionnel.	Afin	de	pouvoir	pleinement	exploiter	le	potentiel	de	ces	technologies,	
il	apparaît	dès	lors	primordial	d’évoluer	vers	une	approche	personnalisée,	prenant	en	compte	les	
spécificités	de	chaque	patient.	Dans	cette	thèse,	nous	soutenons	qu’une	compréhension	détaillée	
du	système	moteur	humain	peut	favoriser	le	développement	de	nouvelles	thérapies	mettant	effica-
cement	à	profit	la	neuroplasticité.	Dans	ce	but,	nous	développons	et	évaluons	des	méthodologies	
multimodales	afin	d’étudier	les	mécanismes	centraux	et	périphériques	du	contrôle	moteur,	ainsi	
que	leurs	possibles	dysfonctionnements.	

En	premier	 lieu,	nous	proposons	des	méthodes	permettant	de	 capturer	des	dynamiques	 indivi-
duelles	de	récupération	motrice,	afin	d’appuyer	la	transition	vers	des	protocoles	adaptés	à	chaque	
patient,	dans	le	contexte	de	rééducations	robotisées.	Dans	une	première	étude,	nous	démontrons	
l’efficacité	d’une	approche	modélisant	 l’amélioration	motrice	grâce	à	des	données	cinématiques,	
ainsi	que	sa	capacité	à	personnaliser	l’entraînement	en	conséquence.	Ensuite,	nous	soulignons	la	
complémentarité	des	informations	obtenues	grâce	à	d’autres	modalités,	telles	que	des	signaux	mus-
culaires	ou	neuronaux.	Nous	présentons	un	cadre	d’analyse	permettant	de	combiner	ces	informa-
tions	multimodales	afin	de	caractériser	de	manière	synthétique	l’état	neuro-moteur	et	mécanique	
de	chaque	patient.		

Afin	de	parvenir	à	une	évaluation	exhaustive	de	cet	état,	il	est	néanmoins	primordial	d’y	intégrer	la	
moelle	épinière,	jusqu’alors	peu	explorée	chez	l’humain.	Cette	méconnaissance	s’explique	notam-
ment	par	le	manque	de	méthodes	visant	à	évaluer	sa	fonction	in	vivo.	Ainsi,	nous	établissons	d’abord	
un	protocole	d’imagerie	fonctionnelle	par	résonance	magnétique	ciblant	la	moelle	épinière,	dont	
nous	validons	la	capacité	à	détecter	l’activité	cervicale	liée	à	des	mouvements	du	membre	supé-
rieur.	Par	 la	suite,	nous	nous	 intéressons	à	 la	 fonction	spinale	au	repos,	mettant	en	 lumière	son	
caractère	dynamique.	Nous	proposons	une	méthodologie	d’analyse	détaillée	de	ses	fluctuations	et	
de	leurs	propriétés	neuroanatomiques.	Notamment,	l’extension	de	cette	approche	à	l’ensemble	du	
système	nerveux	central	nous	permet	d’identifier	des	changements	 fonctionnels	spécifiquement	
associés	à	l’apprentissage	moteur.	Pour	finir,	nous	donnons	un	aperçu	des	applications	cliniques	de	
ces	méthodologies,	suggérant	leur	potentiel	pour	explorer	la	neuroplasticité	découlant	d’un	acci-
dent	vasculaire	cérébral.	
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Ces	études	permettent	d’évoluer	vers	une	vision	globale	des	mécanismes	du	contrôle	moteur.	Grâce	
à	 cette	approche	multimodale,	 reconnaissant	 l’importance	de	 la	moelle	 épinière,	nous	espérons	
pouvoir	atteindre	une	meilleure	compréhension	des	circuits	impliqués	dans	la	récupération	mo-
trice,	en	vue	du	développement	de	nouvelles	thérapies	ciblées.		

	

Mots-clés:	contrôle	moteur	humain,	moelle	épinière,	imagerie	fonctionnelle	par	résonance	magné-
tique,	connectivité	dynamique	fonctionnelle,	neurotechnologies,	neurorééducation,	accident	vascu-
laire	cérébral	
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The	human	motor	 system	 relies	 on	 the	dynamic	 interplay	between	multiple	 organs	distributed	
throughout	the	body	(Baker	et	al.,	2015).	Briefly,	motor	commands	from	different	brain	regions	
travel	down	to	spinal	circuits,	where	active	integration	of	sensorimotor	information	continuously	
ensures	 accurate	 movement	 execution	 through	 the	 coordinated	 activation	 of	 multiple	 muscles	
(Arber	and	Costa,	2018).	This	sophisticated	arrangement	of	subsystems	is	capable	of	generating	an	
impressive	variety	of	motor	behaviors.	Nonetheless,	 its	dispersed	organization	leaves	it	particu-
larly	 fragile	against	 imbalance,	as	damages	can	potentially	occur	at	many	 levels	of	 the	circuitry.	
Among	the	disorders	that	can	perturb	this	exquisite	machinery,	neurological	conditions	impairing	
the	central	nervous	system	(CNS)	occupy	a	prominent	place,	as	they	affect	the	life	of	millions	of	
people	worldwide	every	year	(Feigin	et	al.,	2017).	The	associated	physical	consequences	are	nu-
merous,	ranging	from	sensory	to	motor	impairments	affecting	several	parts	of	the	body.	Patients	
may	experience	difficulties	in	performing	voluntary	movements,	or	even	complete	paralysis,	hence	
significantly	affecting	their	life	and	reducing	their	independence.		

Yet,	the	dispersed	nature	of	the	motor	system	also	confers	it	a	considerable	capacity	of	resilience.	
Regaining	a	certain	degree	of	motor	 function	can	be	achieved	through	spontaneous	recovery	or	
facilitated	by	 a	 rehabilitation	process.	The	 conventional	 view	 suggests	 that	 an	 efficient	 training	
should	start	as	early	as	possible	and	actively	engage	patients	in	an	intensive	and	goal-directed	man-
ner	(Feys	et	al.,	2004;	Kwakkel	et	al.,	2004;	Kwakkel,	2006;	Buma	et	al.,	2013).	The	final	aim	of	such	
approaches	is	to	stimulate	neuroplasticity,	the	innate	ability	of	the	nervous	system	to	reorganize	
its	connections	and	to	use	secondary	pathways	to	bypass	damaged	circuits	(Rossini	et	al.,	2003;	
Winstein	and	Kay,	2015).	

In	the	last	decades,	innovative	neurorehabilitative	treatments	such	as	technology-assisted	thera-
pies	have	emerged	(Micera	et	al.,	2020).	By	allowing	therapy	to	be	given	over	longer	periods	of	time	
and	in	a	more	reproducible	manner,	they	aim	to	optimally	engage	the	remaining	neural	pathways	
in	order	to	promote	better	and	faster	recovery.	Regardless	of	those	developments,	recovering	from	
a	neurological	condition	is	still	very	challenging	and	most	patients	struggle	to	translate	their	im-
provements	to	activities	of	daily	living	(Winstein	and	Kay,	2015).	For	instance,	following	a	stroke,	
80%	of	patients	experience	acute	paresis	of	the	upper	extremity	and	only	approximately	one-third	
achieve	full	functional	recovery	(Lawrence	et	al.,	2015).	One	of	the	limitations	of	the	current	reha-
bilitative	approaches	could	stem	from	the	lack	of	personalization.	Indeed,	treatments	are	often	pro-
vided	in	a	standardized	manner	and	the	adjustment	of	the	task	is	based	solely	on	the	therapist’s	
evaluation,	relying	mainly	on	kinematics	and	task	performance.		

In	this	regard,	a	better	understanding	of	the	mechanisms	underlying	motor	recovery	is	pivotal	to	
further	improve	existing	therapies	and	to	foster	the	development	of	novel	rehabilitative	treatments	
(Buma	et	al.,	2013).	This	requires	to	focus	on	the	neural	and	muscular	processes	involved	in	healthy	
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and	impaired	motor	function	and	to	integrate	this	multimodal	information	in	order	to	design	new	
tailored	treatments	based	on	the	specific	neuro-biomechanical	state	of	each	patient.	Therapeutic	
approaches	could,	thus,	leverage	new	knowledge	on	residual	function,	in	order	to	optimally	pro-
mote	reorganization	of	the	spared	connections	and	networks.	

Importantly,	it	is	necessary	to	characterize	not	only	the	underlying	cortico-muscular	processes,	but	
the	whole	path	of	events	that	occur	from	the	generation	of	motor	commands	in	the	brain,	to	the	
activation	of	motoneurons	in	the	spinal	cord,	and	to	the	actual	execution	of	the	movement.	In	this	
context,	it	is	necessary	to	go	beyond	an	encephalo-centered	view	of	motor	control	and	to	recognize	
the	spinal	cord	as	an	active	and	plastic	part	of	the	central	nervous	system,	considering	its	unequiv-
ocal	importance	as	the	final	common	pathway	of	the	musculoskeletal	system	(Giszter	et	al.,	2012).	
Accordingly,	new	exploration	should	focus	on	its	central	role	in	human	sensorimotor	function,	as	
well	as	on	its	integration	with	cerebral	circuits.	To	this	end,	neuroimaging	approaches,	such	as	func-
tional	magnetic	resonance	imaging	(fMRI),	can	provide	valuable	insights	into	the	dynamics	of	motor	
recovery	and	the	reorganization	of	spared	neural	circuits	to	subserve	improvements	in	function	
(Grefkes	and	Fink,	2014).		

In	 the	 following,	 I	will	 first	give	an	overview	of	 the	principles	underlying	healthy	human	motor	
control.	Then,	 I	will	 elaborate	on	 the	nature	of	neurological	disorders	 impairing	motor	 circuits,	
along	with	considerations	on	recovery	and	rehabilitation,	placing	the	emphasis	on	stroke.	In	this	
context,	the	factors	limiting	the	clinical	efficiency	of	rehabilitative	treatments	will	be	highlighted.	
Finally,	I	will	introduce	techniques	that	could	foster	our	understanding	of	the	central	and	peripheral	
mechanisms	involved	in	healthy	and	impaired	motor	control.	Here,	a	strong	focus	will	be	put	on	
approaches	aiming	to	probe	spinal	cord	function.	

1.1 	Human	motor	control	

Motor	actions	are	associated	with	almost	all	human	behaviors,	from	simple	everyday	tasks	such	as	
picking	up	a	glass,	to	fine	skilled	movements	involved,	for	instance,	in	piano	performance.	Even	the	
most	seemingly	trivial	task	actually	requires	the	precise	and	coordinated	regulation	of	muscle	ac-
tivities	(Levine	et	al.,	2012).	In	this	context,	all	levels	of	the	central	nervous	system,	from	cortical	to	
spinal	 networks,	 are	 dynamically	 interacting	 to	 ensure	 the	 vast	 repertoire	 of	 human	 behaviors	
(Nielsen,	2016)	(Figure	1.1).		

Brain	mechanisms:	In	the	brain,	it	is	now	widely	accepted	that	several	areas	contribute	to	distinct	
aspects	of	movement	generation	(Lemon,	2008;	Feher,	2012;	Miall,	2013).	The	primary	motor	cor-
tex	(M1)	is	directly	involved	in	eliciting	motor	commands	associated	with	voluntary	movements,	
but	other	cortical	areas	also	play	important	roles.	The	premotor	cortex	(PMC)	and	supplementary	
motor	 area	 (SMA)	 are	 participating	 in	 movement	 planning,	while	 the	posterior	 parietal	 cortex	
(PPC)	provides	spatial	information	about	the	body	and	the	surrounding	environment	(Miall	et	al.,	
2004).	Upper	motoneurons	originating	in	these	motor	regions	give	rise	to	the	pyramidal	tract,	a	
descending	pathway	carrying	motor-related	signals	from	the	cortex	to	the	brainstem	and	the	spinal	
cord.	Its	main	component	is	the	corticospinal	tract	(CST),	which	first	descends	through	the	brain-
stem,	where	its	fibers	divide	into	two	subpathways:	80%	decussate	to	the	opposite	side	of	the	body	
(lateral	corticospinal	tract),	while	the	remaining	fibers	continue	to	travel	down	along	the	same	side	
(anterior	 corticospinal	 tract)	 and	 only	 decussate	 in	 the	 spinal	 cord	 (Welniarz	 et	 al.,	 2017).	 Im-
portantly,	decussation	implies	that	muscles	are	controlled	by	the	contralateral	side	of	the	brain.	
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Figure	1.1	–	Schematic	view	of	the	systems	and	pathways	underlying	human	motor	control.	Adapted	with	
permission	from	Arber	and	Costa,	2018.		

Of	note,	other	brainstem-mediated	descending	pathways	exist	(e.g.,	reticulospinal	tract)	and	they	
are	mainly	involved	in	involuntary	movements,	such	as	postural	control	or	balance.	Although	sub-
cortical	structures,	such	as	 the	basal	ganglia,	do	not	directly	participate	 in	generating	voluntary	
motor	commands,	they	play	a	dominant	role	in	controlling	if,	and	how	intensely,	these	commands	
should	be	activated	under	specific	circumstances	(Arber	and	Costa,	2018).	Similarly,	the	cerebellum	
is	engaged	in	timing	motor	commands,	notably	by	adjusting	movement	based	on	sensory	feedback	
so	as	to	ensure	proper	limb	coordination	(Manto	et	al.,	2012).	

Spinal	mechanisms:	The	signals	originating	from	cortical	areas	travel	down	the	corticospinal	tract	
and	project	to	different	levels	of	the	spinal	cord.	Corticospinal	neurons	can	make	direct	monosynap-
tic	connections	to	lower	motoneurons	located	in	the	ventral	horns	of	the	spinal	cord	grey	matter	
or,	 alternatively,	 indirect	 connections	 through	 interneurons	 (Lemon,	 2008;	 Nielsen,	 2016)	 (see	
1.5.1).	The	axons	of	spinal	motoneurons	innervate	muscle	fibers,	hence	sending	electrical	impulses	
that	activate	skeletal	muscles	(Barbara	and	Clarac,	2011).	Sensory	neurons,	instead,	are	found	in	
the	dorsal	horns	and	convey	information	from	the	periphery	to	supraspinal	structures.	Although	
motor	and	sensory	spinal	circuits	may	seem	to	act	as	a	mere	relay,	the	striking	complexity	of	their	
intrinsic	organization	 is	slowly	being	unravelled	(Poppele	and	Bosco,	2003;	Giszter	et	al.,	2012;	
Arber	and	Costa,	2018).	This	sophisticated	circuitry	enables	the	integration	of	the	stream	of	motor	
commands	from	supraspinal	structures	with	continuous	information	from	the	periphery,	so	as	to	
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produce	 goal-directed	 behaviors	 adapted	 to	 the	 specificities	 of	 the	 immediate	 environment	
(Wolpert	and	Ghahramani,	2000;	Christiansen	et	al.,	2017).	In	particular,	spinal	interneuron	cir-
cuits	are	actively	involved	in	processing	sensory	and	supraspinal	inputs	into	motoneuron	outputs	
(Levine	et	al.,	2012;	Baker	et	al.,	2015).	For	instance,	their	complex	connection	patterns	appear	to	
perform	substantial	intrinsic	processing	to	support	hand	dexterity	(Takei	and	Seki,	2010;	Takei	et	
al.,	2017;	Tohyama	et	al.,	2017).	

Peripheral	mechanisms:	Voluntary	movements	are	mediated	by	motor	units,	which	are	the	func-
tional	elements	involved	in	muscle	contraction.	A	motor	unit	corresponds	to	a	lower	motoneuron	
together	with	the	muscle	fibers	it	innervates	(Feher,	2012).	Of	note,	skeletal	muscles	contain	two	
types	of	fibers:	extrafusal	fibers,	which	are	responsible	for	the	majority	of	muscle	power,	and	intra-
fusal	fibers,	which	have	a	limited	contractile	power	but	provide	afferent	sensory	feedback	related	
to	stretch.	The	arrangement	of	motoneurons	along	the	spinal	cord	exhibit	specific	organizational	
principles	with	respect	to	the	targeted	muscles,	with	an	orderly	spatial	arrangement,	termed	mus-
culotopic	map	(Romanes,	1964;	Levine	et	al.,	2012).	In	particular,	different	muscles	are	innervated	
by	different	spinal	levels,	located	at	distinct	rostrocaudal	positions	along	the	spinal	cord.	For	in-
stance,	motor	pools	involved	in	biceps	contraction	are	located	more	rostrally	than	the	ones	linked	
to	wrist	muscles	(Kendall	et	al.,	2005).	

In	summary,	the	coordinated	action	of	distinct	structures,	from	the	brain	to	the	periphery,	supports	
the	wide	range	of	movements	we	readily	learn	and	perform	in	our	everyday	lives.	Yet,	this	smooth	
and	complex	machinery,	by	its	distributed	nature,	appears	vulnerable	to	damages,	notably	those	
occurring	at	different	levels	of	the	CNS	(Baker	et	al.,	2015).	From	focal	brain	injury	to	spinal	cord	
trauma,	a	wide	range	of	conditions	can	indeed	affect	neural	structures	and,	consequently,	perturb	
motor	control	(Dobkin,	2009)	(Figure	1.2).		

1.2 	Neuromotor	disorders	and	rehabilitation	

Lesions	associated	with	cerebrovascular	accidents,	such	as	strokes,	can	result	in	tissue	loss	in	cer-
ebral	regions.	About	70%	of	stroke	survivors	are	affected	by	chronic	motor	impairments	(Lawrence	
et	al.,	 2015)	 that	 can	substantially	 limit	 their	ability	 to	perform	activities	of	daily	 living.	Conse-
quences	range	from	loss	of	muscle	strength	or	sensation,	limited	selectivity	in	muscle	recruitment,	
velocity-dependent	spasticity,	to	paralysis	(Buma	et	al.,	2013).	Due	to	the	aging	of	the	population,	
coupled	with	an	increased	incidence	of	stroke	in	young	people	in	low-	and	middle-income	coun-
tries,	 this	 impact	 is	 likely	 to	 increase	 considerably	 in	 the	 coming	 years	 (Katan	 and	 Luft,	 2018;	
Gorelick,	2019).	While	stroke	 is	a	 leading	cause	of	adult	 long-term	disabilities	worldwide,	other	
neurological	disorders	can	perturb	or	interrupt	the	pathways	through	which	motor	commands	gen-
erate	movements.	For	 instance,	 traumatic	events	such	as	spinal	cord	 injuries	(SCI)	(Ahuja	et	al.,	
2017),	as	well	as	neurodegenerative	diseases,	such	as	Parkinson’s	disease	(PD)	(Poewe	et	al.,	2017)	
or	multiple	sclerosis	(MS)	(Filippi	et	al.,	2018),	can	also	lead	to	sensorimotor	deficits	having	devas-
tating	impacts	on	patients’	ability	to	voluntarily	control	movement.	As	such,	neurological	disorders	
constitute	an	enormous	social	and	economic	burden	and	recovery	represents	a	major	challenge	for	
our	society.		

In	this	context,	the	distributed	character	of	motor	systems	can	be	harnessed,	as	alternative	routes	
can	emerge	to	overcome	motor-related	disruptions	and	restore	movement	(Baker	et	al.,	2015).	In	
general,	the	term	recovery	encompasses	mechanisms	leading	to	“true”	recovery	(i.e.,	a	restitution	
of	function)	and	mechanisms	involved	in	compensation	(i.e.,	relying	on	adaptation,	for	instance	us-
ing	alternate	muscle	groups)	(Zeiler	and	Krakauer,	2013).	Although	spontaneous	recovery	can	rely	
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on	these	mechanisms,	it	is	often	insufficient	to	regain	full	function.	Besides,	neurological	changes	
might	also	lead	to	unwanted	behavior	(e.g.,	spasticity)	(Baker	et	al.,	2015).	

	

Figure	1.2	–	Conceptual	overview	of	the	interplay	between	neurological	disorders,	neuroplasticity,	clinical	
interventions	and	assessments	of	function.	Inspired	from	(Cramer	et	al.,	2011).	

Rehabilitation,	therefore,	should	help	enhance	recovery	in	order	to	maximize	the	regaining	of	mo-
tor	control	while	minimizing	maladaptive	compensatory	strategies	(Dobkin,	2009).	To	this	end,	re-
habilitative	treatments	capitalize	on	plasticity,	a	fundamental	ability	of	neuronal	circuits	to	adapt	
in	response	to	experience	or	training	(Figure	1.2)	(Cramer	et	al.,	2011).	Although	pathophysiologi-
cal	 processes	 underlying	 neurological	 disorders	 can	 differ,	 neuroplasticity	 is	 a	 crucial	 factor	 to	
tackle	loss	of	CNS	tissue	and	the	associated	sensorimotor	deficits	(Dobkin,	2009).	It	comprises	syn-
aptic	changes,	axonal	sprouting	and	changes	of	intracellular	properties	and	can	take	place	at	differ-
ent	levels	of	the	CNS	(i.e.,	cortex,	brainstem	and	spinal	cord)	(Fouad	and	Tse,	2008;	Murphy	and	
Corbett,	2009;	Demarin	et	al.,	2014).	In	particular,	recent	reports	have	suggested	that	spinal	plas-
ticity	can	contribute	to	post-stroke	recovery	(Sist	et	al.,	2014;	Tennant,	2014).	For	instance,	sprout-
ing	of	axons	from	the	contralesional	motor	cortex	into	the	spinal	cord	was	shown	in	rodent	models	
(Reitmeir	et	al.,	2011;	Ueno	et	al.,	2012).	While	the	importance	of	the	corticospinal	tract	integrity	
has	been	widely	acknowledged	in	humans	(Ward	et	al.,	2006;	Zhu	et	al.,	2011;	Puig	et	al.,	2013;	
Maraka	et	al.,	2014;	Karbasforoushan	et	al.,	2019),	the	spatial	and	temporal	properties	of	spinal	
rewiring	remain	largely	unexplored	(Tennant,	2014).	Nevertheless,	engaging	spinal	cord	plasticity	
could	play	a	major	role	in	function	restoration	following	neurological	disorders	(Wolpaw,	2012).	

In	recent	years,	numerous	approaches	relying	on	technology	have	been	proposed	to	facilitate	neu-
roplasticity	(Micera	et	al.,	2020).	Neurotechnologies	can	potentially	be	leveraged	to	specifically	tar-
get	central	and	peripheral	motor	systems,	in	a	way	that	will	optimally	engage	functional	reorgani-
zation	and	lead	to	adaptive	changes	supporting	recovery	(Figure	1.2).	In	the	framework	of	stroke	
rehabilitation,	different	interventions	have	been	suggested	to	deliver	treatment	or	training	in	a	con-
trolled	way	(Coscia	et	al.,	2019).	Among	those	approaches,	non-invasive	brain	stimulation	can	be	
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deployed	 to	 modulate	 brain	 function,	 most	 commonly	 using	 transcranial	 magnetic	 stimulation	
(TMS)	or	transcranial	direct-current	stimulation	(tDCS)	(Hummel	and	Cohen,	2006).	Various	pa-
rameters	(e.g.,	location,	stimulus	intensities,	duration,	etc.)	can	be	tuned	to	induce	changes	in	neu-
ronal	 excitability	 at	 the	 sites	 of	 stimulation	 with	 the	 aim	 to	 efficiently	 steer	 neuroplasticity	
(Morishita	and	Hummel,	2017).	While	these	methods	directly	target	the	central	nervous	system,	
other	neurotechnologies,	instead,	act	at	the	peripheral	level	to	promote	use-dependent	plasticity	
(Coscia	et	al.,	2019).	Evidence	from	animal	and	human	studies	suggests	that	plasticity	is	most	effi-
ciently	harnessed	when	goal-directed	training	is	performed	early	and	intensively	(Cramer	et	al.,	
2011).	For	instance,	technology-assisted	rehabilitation	can	exploit	robotic	devices	to	allow	therapy	
to	be	given	over	longer	periods	of	time,	in	a	more	reproducible	manner,	while	quantitatively	mon-
itor	patient’s	improvement	(Reinkensmeyer	and	Boninger,	2012).	Several	categories	of	robotic	de-
vices	can	be	used,	from	end-effector	devices	to	exoskeletons	enabling	control	at	the	level	of	each	
individual	joint	(Colombo	et	al.,	2017).	Besides,	different	control	strategies	are	available	to	adapt	
training	and	severely	affected	patients	can	benefit	from	an	active	support	provided	by	the	robot,	
while	challenge	can	be	increased	with	resistance	or	error-augmentation	when	necessary	(Marchal-
Crespo	and	Reinkensmeyer,	2009).		

Although	these	technology-based	approaches	have	emerged	as	promising	tools	to	improve	rehabil-
itation,	their	clinical	impact	has	so	far	been	relatively	limited,	suggesting	that	a	paradigm	shift	is	
essential	to	fully	exploit	their	potential	(Micera	et	al.,	2020).	The	main	limitation	hindering	clinical	
improvement	likely	pertains	to	the	one	suits	all	strategy	that	is	commonly	employed,	with	rehabil-
itation	being	provided	in	a	standardized	manner.	In	this	regard,	neurotechnologies	should	be	better	
optimized	and	personalized	 to	meet	 each	patient’s	 individual	needs	and	abilities	 (Borton	et	 al.,	
2013;	Raffin	and	Hummel,	2018;	Micera	et	al.,	2020).	Alternatively,	clinical	outcome	could	be	en-
hanced	thanks	to	the	coordinated	combination	of	multiple	therapies	(Coscia	et	al.,	2019;	Micera	et	
al.,	2020).	However,	further	progress	towards	patient-tailored	strategies	requires	a	comprehensive	
understanding	of	the	mechanisms	underlying	functional	and	clinical	recovery	(Cramer	et	al.,	2011).	
Not	only	such	knowledge	could	help	stratify	patients	towards	specific	treatments	(or	combinations	
of	treatments),	it	could	also	be	harnessed	to	inform	parameter	selection,	hence	fine-tuning	rehabil-
itation	to	substantially	improve	long-term	outcome	(Figure	1.2).		

Therefore,	overcoming	the	challenges	hampering	recovery	implies	efforts	to	better	understand	and	
manipulate	motor	circuits,	so	that	they	can	be	optimally	engaged	to	compensate	for	injury-induced	
loss	of	function	(Murphy	and	Corbett,	2009).	It	is	thus	of	primary	importance	to	investigate	how	
peripheral	and	central	mechanisms	contribute	to	motor	control	and	recovery.		

1.3 	Exploring	brain	mechanisms	

In	order	to	probe	brain	function,	non-invasive	recordings	can	be	deployed	and	can	offer	valuable	
insights	into	cerebral	mechanisms	in	healthy	and	impaired	individuals.		

1.3.1 Brain	fMRI		

Since	its	development	in	the	90s,	functional	magnetic	resonance	imaging	(fMRI)	has	been	widely	
used	 to	 non-invasively	 monitor	 brain	 activity	 (Poldrack	 et	 al.,	 2011).	 This	 technique	 relies	 on	
changes	 in	 blood	 oxygenation	 following	 neural	 activity,	 yielding	 a	measurable	 signal	 called	 the	
blood	oxygenation	level	dependent	(BOLD)	signal.	Upon	local	neural	activation,	blood	flow	carrying	
oxygenated	hemoglobin	increases	to	meet	the	metabolic	demand	in	this	particular	region	(Figure	
1.3).	Only	a	partial	amount	of	this	oxygen	is	actually	consumed,	leading	to	a	temporary	increase	of	
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oxygenated	hemoglobin	compared	its	deoxygenated	form.	This	relation	between	the	neural	activity	
and	the	cerebral	blood	flow	is	termed	neurovascular	coupling	(Attwell	et	al.,	2010).	Importantly,	
hemoglobin	has	different	magnetic	properties	depending	on	its	state	(i.e.,	diamagnetic,	as	most	of	
the	brain	 tissues,	when	 it	 is	oxygenated	and	paramagnetic	when	 it	 is	deoxygenated)	 (Linus	and	
Coryell,	1936).	As	a	result,	deoxygenated	hemoglobin	is	more	attracted	to	magnetic	fields,	resulting	
in	B0	inhomogeneities	when	placed	in	an	MRI	scanner.	This	affects	T2*	relaxation,	since	the	mag-
netization	of	paramagnetic	molecules	will	decay	faster,	resulting	in	less	signal	where	the	concen-
tration	of	deoxygenated	hemoglobin	is	higher	(Arthurs	and	Boniface,	2002).	These	processes	imply	
that	the	BOLD	signal	is	much	slower	than	the	actual	neural	activity.	Specifically,	it	can	be	described	
using	the	hemodynamic	response	function	(HRF)	(Poldrack	et	al.,	2011),	whose	main	peak	occurs	
approximately	after	5	seconds	post-stimulus,	before	slowly	returning	back	to	baseline.	Typically,	
fMRI	scans	cover	the	entire	brain	with	a	spatial	resolution	at	the	scale	of	millimeter	and	a	temporal	
repetition	of	1-3	seconds.	

	

Figure	1.3	–	Neuronal	activity	leads	to	an	increased	energy	demand.	Blood	flow	increases	to	carry	oxygenated	
hemoglobin	(Hb),	which	results	in	a	temporary	increase	of	Hb	compared	to	the	deoxygenated	form	(dHb).	As	
these	two	molecules	have	different	magnetic	properties,	it	generates	a	detectable	signal	change,	used	to	meas-
ure	the	BOLD	signal.	

Although	most	fMRI	studies	have	initially	focused	on	the	observation	of	brain	activity	following	a	
stimulation	(i.e.,	task-based	fMRI),	it	was	demonstrated	in	1995	that	the	brain	maintains	meaning-
ful	functional	activity	even	when	no	task	is	actively	performed	(Biswal,	2012).	Indeed,	the	brain	
consists	of	spatially	distributed,	but	functionally	linked	regions,	undergoing	long-range	interactions	
(Van	Den	Heuvel	and	Hulshoff	Pol,	2010).	Resting-state	functional	connectivity	(RSFC)	can	be	de-
scribed	as	the	coherent	activation	of	those	anatomically	distinct	brain	regions.	Resting-state	(RS)	
recordings	are	particularly	attractive	in	the	scope	of	translational	applications,	where	patients’	im-
paired	mobility	can	prevent	the	execution	of	motor	tasks	(Krakauer,	2007).	The	simplest	approach	
to	study	RSFC	is	to	measure	the	correlation	between	RS	fMRI	time-series	(Poldrack	et	al.,	2011).	
Practically,	this	can	be	done	by	extracting	the	time-series	of	a	region-of-interest	(ROI)	defined	based	
on	a	priori	knowledge	of	function	and	structure	and	to	compute	its	correlation	with	other	voxels	or	
regions.	Other	methods	do	not	rely	on	a	priori	hypotheses,	such	as	principal	component	analysis	
(PCA)	 (Friston	 et	 al.,	 1993)	 or	 independent	 component	 analysis	 (ICA)	 (Calhoun	 et	 al.,	 2001;	
Beckmann	et	al.,	2005),	which	have	been	widely	used	to	 identify	RS	networks	(RSNs).	Although	
these	approaches	only	give	a	measure	of	stationary	connectivity	(i.e.,	averaged	over	the	whole	scan-
ning	session),	recent	evidence	has	highlighted	the	dynamic	nature	of	functional	connectivity,	sug-
gesting	that	 its	 temporal	 features	can	 inform	on	cognition	and	behavior	(Hutchison	et	al.,	2013;	
Liégeois	et	al.,	2019;	Bolton	et	al.,	2020).	Consequently,	new	methods	aiming	at	capturing	time-
varying	properties	of	neural	networks,	using	dynamic	functional	connectivity	(dFC),	have	also	been	
developed	(Preti	et	al.,	2016).	
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As	functional	connectivity	offers	a	system-level	view	of	cerebral	activity,	it	is	particularly	suited	to	
investigate	 the	widespread	reorganizations	occurring	 following	brain	 lesions	(Grefkes	and	Fink,	
2014).	Indeed,	RSFC	demonstrated	that	strokes	cause	network	disturbances	not	only	close	to	the	
lesion,	but	also	between	distinct	cortical	areas	in	both	hemispheres	(Rehme	and	Grefkes,	2013).	
The	main	findings	highlighted	a	disruption	of	interhemispheric	FC	between	homologous	motor	ar-
eas,	which	is	linearly	correlated	with	the	severity	of	the	neurological	deficits	(Carter	et	al.,	2010;	
Wang	et	al.,	2010;	Park	et	al.,	2011).	Overall,	the	global	motor	network	efficiency	was	reported	to	
be	reduced,	even	in	patients	with	good	clinical	recovery	(Rehme	and	Grefkes,	2013).	

1.3.2 	Electroencephalography	

In	this	thesis,	fMRI	is	the	modality	of	choice	to	assess	brain	function,	but	it	should	be	mentioned	
that	other	approaches	can	be	deployed	for	similar	purposes.	Among	them,	electroencephalography	
(EEG)	has	the	notable	advantage	of	enabling	data	acquisition	with	a	milliseconds	temporal	resolu-
tion.	On	the	other	hand,	 its	spatial	resolution	is	relatively	poor	(a	few	centimeters)	(Burle	et	al.,	
2015).	Briefly,	EEG	measures	changes	in	electrical	activity	along	the	scalp,	related	to	neuronal	ac-
tivity	and	can	also	highlight	pathological	interactions	(Dubovik	et	al.,	2012).	EEG	connectivity	can	
be	described	using	the	coherence	in	different	frequency	bands.	For	instance,	alpha	oscillation	syn-
chrony	at	rest	has	been	shown	to	be	a	marker	of	network	function,	linearly	associated	with	behav-
ioral	performance	(Westlake	et	al.,	2013)	and	beta	oscillation	synchrony	was	demonstrated	to	be	a	
marker	of	stroke	recovery,	correlated	with	better	subsequent	motor	improvement	(Nicolo	et	al.,	
2015).	EEG	signals	can	also	be	studied	by	probing	topographical	changes	(Brunet	et	al.,	2011).	As	
opposed	to	frequency	analyses,	these	techniques	are	reference	independent	and	can	give	insights	
into	large-scale	patterns	of	activity.	Remarkably,	such	analyses	have	revealed	that	spontaneous	ac-
tivity	 is	organized	in	short	time	periods	of	stable	patterns	of	coherent	neural	activation,	termed	
EEG	microstates	(Michel	and	Koenig,	2018).	Deviant	patterns	have	notably	been	linked	to	unilateral	
spatial	neglect	in	stroke	patients	(Pirondini	et	al.,	2020).	

1.4 	Exploring	peripheral	mechanisms	

1.4.1 	Muscle	synergies	

Skilled	limb	manipulation,	such	as	grasping,	requires	the	spatial	and	temporal	coordination	of	doz-
ens	of	muscles.	How	the	nervous	system	deals	with	the	complex	problem	of	movement	generation	
is	still	debated.	One	theory	is	that	muscle	synergies,	defined	as	common	patterns	of	muscle	activa-
tions,	could	be	used	as	a	strategy	to	alleviate	this	complexity.	According	to	this	hypothesis,	move-
ments	would	be	constructed	through	a	combination	of	motor	modules,	allowing	for	the	simultane-
ous	activation	of	sets	of	muscles	(Mussa-Ivaldi	et	al.,	1994).	This	idea	is	supported	by	findings	ob-
tained	 from	 the	 decomposition	 of	 simultaneously	 acquired	 electromyographic	 (EMG)	 signals,	
where	a	large	fraction	of	the	variance	of	the	activity	of	many	muscles	can	be	accounted	for	by	com-
bining	few	muscle	synergies	(D’Avella	et	al.,	2003,	2006;	Tresch	et	al.,	2006).	Decomposing	muscu-
lar	activity	offers	a	valuable	tool	to	probe	muscle	coordination	and	these	approaches	can	be	used	
to	infer	how	motor	control	is	affected	by	an	impairment	(Ting	et	al.,	2015).	Notably,	muscle	syner-
gies	were	shown	to	be	altered	after	a	stroke	(Roh	et	al.,	2013),	with	a	merging	of	motor	modules	in	
the	paretic	limbs,	corresponding	to	the	severity	of	the	motor	deficits	(Cheung	et	al.,	2009,	2012).	
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1.4.2 Spinal	maps	

Other	approaches,	such	as	spinal	maps,	can	also	be	used	to	provide	a	synthetic	view	of	muscular	
organization.	These	EMG-based	maps	have	been	proposed	as	a	way	to	estimate	the	spatiotemporal	
activation	of	ensembles	of	motoneurons	in	the	spinal	cord	(Yakovenko	et	al.,	2002).	This	is	typically	
done	by	combining	EMG	recordings	with	knowledge	about	the	rostro-caudal	location	of	motoneu-
rons	 pools	 innervating	 different	 muscles,	 found	 in	 published	 charts	 of	 segmental	 localization	
(Kendall	et	al.,	2005).	Therefore,	this	approach	provides	an	indirect	estimation	of	spinal	cord	activ-
ity,	without	the	need	of	an	imaging	technique.	As	a	matter	of	fact,	spinal	maps	have	been	extensively	
studied	in	healthy	subjects	(Ivanenko	et	al.,	2006,	2008,	2013;	Cappellini	et	al.,	2010;	La	Scaleia	et	
al.,	2014;	Pirondini	et	al.,	2016)	and	neurological	patients,	such	as	after	a	spinal	cord	injury	or	a	
stroke	(Grasso	et	al.,	2004;	Coscia,	2011;	Coscia	et	al.,	2015).	

1.5 	The	missing	link:	the	spinal	cord	

The	aforementioned	approaches	give	 insights	 into	central	and	peripheral	mechanisms,	but	 they	
overlook	an	essential	part	of	the	CNS:	the	spinal	cord.	While	its	primary	function	is	to	provide	the	
necessary	link	to	support	motor	and	sensory	information	flow	between	the	brain	and	the	periphery,	
it	is	also	known	to	incorporate	local	processing	essential	for	motor	control,	proprioception	or	pain	
(Levine	et	al.,	2012).	Fundamental	and	clinical	neurosciences	would	largely	benefit	from	new	in-
sights	into	the	mechanisms	and	organizational	principles	of	spinal	cord	function,	still	largely	un-
known	today	(Wheeler-Kingshott	et	al.,	2014).	Current	knowledge	on	this	topic	is	mostly	based	on	
invasive	neurophysiology	experiments	on	animal	models	or	on	indirect	measurements	in	humans	
(see	1.4.2).	In	this	regard,	spinal	cord	fMRI	appears	as	a	potential	tool	to	non-invasively	study	spinal	
mechanisms.	Here,	 I	will	discuss	 the	challenges	 that	have	hindered	 the	development	of	 this	ap-
proach,	as	well	as	the	current	state	of	research.	

	

Figure	1.4	–	Principles	of	spinal	cord	neuroanatomy.	
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1.5.1 Neuroanatomy	

The	human	spinal	cord	is	a	long	and	curved	structure,	enclosed	in	the	vertebral	column,	of	about	
45	cm	(Cramer	and	Darby,	2014).	As	illustrated	in	Figure	1.4,	the	spinal	cord	is	encircled	by	verte-
brae	and	is	surrounded	by	a	cavity	called	the	subarachnoid	space,	containing	cerebrospinal	fluid	
(CSF).	As	opposed	to	the	brain,	the	white	matter	composed	of	myelinated	axons	is	found	around	the	
grey	matter,	which	presents	a	typical	butterfly	shape.	The	grey	matter	structure	can	be	divided	in	
horns	with	different	types	of	neurons.	The	dorsal	horns	contain	neurons	processing	sensory	infor-
mation,	whereas	ventral	horns	contain	motoneurons	linked	to	skeletal	muscles.	Interneurons,	mak-
ing	connections	within	or	between	spinal	 levels,	are	also	present.	The	cord	contains	31	pairs	of	
spinal	nerves,	exiting	superior	or	inferior	to	the	corresponding	vertebra	and	organized	in	the	ros-
trocaudal	direction	in	four	different	parts:	cervical,	thoracic,	lumbar	and	sacral.	As	mentioned	in	
1.1,	different	nerves	are	linked	to	different	parts	of	the	body;	e.g.,	cervical	to	upper	limbs,	lumbar	
to	lower	limbs.	Importantly,	these	anatomical	differences	between	the	brain	and	the	spinal	cord	
have	a	substantial	impact	in	terms	of	functional	imaging	in	this	region.	

1.5.2 Challenges	

Spinal	cord	fMRI	relies	on	the	same	principles	as	brain	fMRI,	as	spinal	neurons	also	depend	on	the	
delivery	of	oxygen	via	blood	flow	to	support	their	metabolic	demands	(Summers	et	al.,	2014).	Alt-
hough	successful	reports	of	spinal	cord	activation	have	emerged	already	since	the	90s	(Yoshizawa	
et	al.,	1996),	their	reproducibility	has	long	remained	an	open	question.	Besides,	spinal	cord	fMRI	
suffers	from	a	number	of	additional	challenges	that	have	limited	the	interest	and	progress	in	the	
field	(Giove	et	al.,	2004;	Stroman	et	al.,	2014;	Summers	et	al.,	2014).	

Dimensions:	The	cross-sectional	dimensions	of	the	spinal	cord	are	in	the	order	of	a	centimetre	and,	
as	such,	substantially	smaller	than	the	15	centimeters	of	the	brain.	As	a	consequence,	achieving	high	
spatial	resolution	is	essential	to	obtain	meaningful	images	and	to	avoid	partial	volume	effect.	Con-
versely,	this	negatively	affects	the	signal,	as	signal-to-noise	ratio	is	proportional	to	the	voxel	size	
(Murphy	et	al.,	2007;	Summers	et	al.,	2014).	This	small	size,	in	addition,	implies	a	limited	tolerance	
to	motion.	

Inhomogeneous	magnetic	field:	MRI-based	techniques	rely	on	the	application	of	an	homogene-
ous	magnetic	 field	B0	to	ensure	good	data	quality.	However,	 inhomogeneities	can	be	arise	 from	
differences	in	magnetic	susceptibility	between	adjacent	tissue	types	(Finsterbusch,	2014).	In	this	
regard,	the	spinal	cord	is	a	very	challenging	environment,	where	bones,	muscles,	fluids	as	well	as	
air	are	present.	If	not	dealt	with	appropriately,	this	may	lead	to	various	image	artifacts	(distortion	
or	signal	dropout)	with	standard	T2*-weighted	fMRI,	in	particular	at	the	level	of	the	intervertebral	
disks	(Cooke	et	al.,	2004;	Finsterbusch	et	al.,	2012).		

Physiological	noise:	The	close	proximity	of	the	lungs,	the	heart	and	other	visceral	organs	is	an	
important	source	of	motion	(Brooks	et	al.,	2008;	Piché	et	al.,	2009;	Fratini	et	al.,	2014;	Eippert	et	al.,	
2017a).	Furthermore,	the	cardiac	activity	is	generating	a	pulsatile	flow	in	the	cerebrospinal	fluid	
(CSF)	around	the	spinal	cord.	

Several	solutions	have	been	proposed	in	order	to	overcome	those	limitations,	both	in	terms	of	data	
acquisition	and	processing	(Stroman	et	al.,	2014;	Summers	et	al.,	2014;	Eippert	et	al.,	2017a).	Dif-
ferent	 imaging	 sequences	 have	 been	 compared,	 such	 as	 gradient-echo	 (GE)	 and	 spin-echo	 se-
quences	(SE)	(Jochimsen	et	al.,	2005;	Parkes	et	al.,	2005;	Stroman,	2005;	Bouwman	et	al.,	2008).	
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Although	SE	sequences	offer	a	better	image	quality,	thanks	to	the	refocusing	pulse	that	makes	them	
less	sensitive	to	the	venous	signal,	GE	sequences	offer	a	higher	signal	sensitivity	and	reproducibil-
ity.	As	regards	slice	orientation,	it	may	seem	interesting	to	use	sagittal	or	coronal	slices,	in	order	to	
have	a	large	rostro-caudal	coverage	with	a	limited	number	of	slices.	Nevertheless,	isotropic	voxels,	
e.g.,	2x2x2	mm3,	should	be	preferentially	used	with	this	orientation	to	limit	bias	for	the	spatial	map-
ping	of	activations	(Summers	et	al.,	2014).	As	this	will	impose	constraints	on	the	in-plane	resolu-
tion,	most	recent	studies	used	axial	slices,	where	they	could	take	advantage	of	the	spatial	organiza-
tion	of	the	cord	by	having	anisotropic	voxels	(typically	1x1x5	mm3)	(Sprenger	et	al.,	2012;	Kong	et	
al.,	2014;	Van	de	Sand	et	al.,	2015;	Weber	et	al.,	2016b).	Therefore,	high	in-plane	resolution	can	be	
obtained,	with	less	variation	in	field	intensity,	while	keeping	a	sufficient	signal-to-noise	ratio	(SNR),	
proportional	to	the	voxel	size	and,	thus,	to	the	slice	thickness	(Murphy	et	al.,	2007).	Regardless	of	
the	acquisition	scheme,	a	particular	care	should	be	devoted	to	the	“shimming”,	which	refers	to	the	
procedures	aiming	to	adjust	the	magnetic	field	so	as	to	limit	the	detrimental	effects	of	field	inho-
mogeneities	(Finsterbusch,	2014).	Finally,	different	methods	have	been	proposed	to	limit	the	im-
pact	of	physiological	noise,	mostly	using	nuisance	regressors	based	on	physiological	recordings	or	
directly	derived	from	the	data	(Eippert	et	al.,	2017a). 

Simultaneous	brain	and	spinal	cord	 imaging	 is	also	achievable,	although	even	more	challenging.	
Indeed,	the	ideal	MRI	setup	differs	considerably	for	the	brain	and	the	spinal	cord,	notably	as	regards	
resolution,	 field-of-view,	coils	and	shimming.	As	a	 result,	 several	 solutions	have	been	proposed,	
such	as	custom-made	coils	(Cohen-Adad	et	al.,	2011)	or	sequences	(Finsterbusch	et	al.,	2013;	Islam	
et	al.,	2018).	As	these	options	are	not	readily	available,	some	researchers	rather	resorted	to	proto-
cols	employing	regular	equipment	and	sequences	provided	by	the	manufacturer,	which	can	sim-
plify	their	deployment	and	generalization	(Vahdat	et	al.,	2015).	

Although	spinal	cord	fMRI	has	mainly	been	conducted	using	field	strengths	of	1.5	or	3T,	a	few	stud-
ies	have	extended	this	approach	to	a	higher	field	of	7T	(see	Barry	et	al.,	2018b	for	a	review).	The	
sub-millimetric	in-plane	resolution	that	can	be	achieved,	along	with	the	higher	BOLD	sensitivity,	
are	indeed	particularly	appealing	and	promising	results	were	previously	reported	using	resting-
state	scans	(Barry	et	al.,	2014).	Nevertheless,	higher	fields	are	also	more	sensitive	to	field	inhomo-
geneities,	hence	further	complicating	the	shimming	procedure.	In	addition,	the	higher	contribution	
of	physiological	noise	at	7T	may	also	have	a	detrimental	effects	on	the	BOLD	signals	(Triantafyllou	
et	al.,	2005).	

1.5.3 Imaging	motor	control	with	spinal	cord	fMRI	

Since	the	seminal	work	of	Yoshizawa	in	1996	(Yoshizawa	et	al.,	1996),	several	studies	have	con-
firmed	the	potential	of	spinal	cord	fMRI	to	monitor	task-related	activity,	mainly	with	tasks	involving	
the	upper	extremity	(Madi	et	al.,	2001;	Govers	et	al.,	2007;	Maieron	et	al.,	2007;	Bouwman	et	al.,	
2008;	Ng	et	al.,	2008;	Vahdat	et	al.,	2015;	Weber	et	al.,	2016b).	Not	only	did	the	different	studies	
highlighted	the	feasibility	of	spinal	cord	fMRI,	 they	also	shed	light	on	different	properties	of	the	
task-related	activity.	First,	a	linear	relationship	was	observed	between	the	applied	force	and	the	
signal	amplitude	during	an	isometric	task	(Madi	et	al.,	2001).	The	effect	of	the	side	and	rate	of	finger	
tapping	was	then	investigated,	and	a	larger	ipsilateral	effect	was	observed,	as	expected,	as	well	as	
a	rate-dependent	increase	in	spinal	cord	fMRI	signal	(Maieron	et	al.,	2007).	More	recently,	the	reli-
ability	 of	 signal	 lateralization	 was	 demonstrated	 across	 runs	 at	 the	 group	 level	 (Weber	 et	 al.,	
2016b).	Although	these	studies	underlined	the	 link	between	motor	output	and	spinal	activity,	 it	
should	be	noted	that	this	is	not	the	only	factor	determining	spinal	signal.	For	instance,	Ng	et	al.,	
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(2008)	pointed	out	an	effect	of	task	complexity,	even	for	similar	muscular	demands.	Another	evi-
dence	that	spinal	activity	is	not	a	mere	reflection	of	motor	output	lies	in	the	work	of	Vahdat	et	al.,	
2015,	 in	which	 simultaneous	 brain-cervical	 cord	 fMRI	was	 employed	 during	 a	motor	 sequence	
learning	 task.	 Learning-related	 modulation	 of	 activity	 was	 observed	 in	 the	 spinal	 cord,	 inde-
pendently	from	the	modulation	of	supraspinal	structures,	hence	suggesting	that	the	spinal	cord	is	
capable	of	local	plasticity	and	contributes	distinctively	from	the	brain	to	motor	learning.	Although	
the	upper	limb,	most	particularly	the	hand,	has	been	preferred	in	order	to	minimize	motion,	spinal	
cord	fMRI	was	also	employed	during	active	and	passive	ankle	movements	and	generated	anatomi-
cally	consistent	activations	in	the	lumbar	region	(Kornelsen	and	Stroman,	2004).	

1.5.4 Imaging	spontaneous	spinal	cord	activity	

In	the	spinal	cord,	spontaneous	signal	fluctuations	during	resting	state	have	only	been	explored	in	
the	last	decade.	In	2010,	Wei	et	al.	first	attempted	to	retrieve	spinal	RSNs	using	single-subject	ICA	
(Wei	et	al.,	2010).	The	resulting	findings	were	equivocal,	as	networks	exhibited	dominant	frequen-
cies	in	the	range	of	the	respiratory	rhythm,	potentially	hinting	at	their	artifactual	nature.	This	rela-
tive	success	may	pertain	to	technological	constraints,	such	as	low	field	strength	(1.5	T),	absence	of	
group	template	or	lack	of	correlation	of	physiological	noise.	A	few	years	later,	Barry	et	al.	leveraged	
improved	acquisition	protocols	and	processing	techniques,	along	with	ultra-high	field	fMRI	(7	T),	
and	delineated	for	the	first	time	spinal	sensory	and	motor	networks	using	a	seed-based	approach	
(Barry	et	al.,	2014).	An	investigation	at	3	T,	using	ICA-derided	networks,	further	corroborated	the	
existence	of	organized	spinal	RS	fluctuations	(Kong	et	al.,	2014).	Following	these	results,	the	repro-
ducibility	and	robustness	of	the	connectivity	patterns	against	variations	of	the	processing	pipelines	
were	confirmed	(Barry	et	al.,	2016;	Eippert	et	al.,	2017b).	Building	on	these	promising	observations,	
new	analyses	aiming	to	characterize	spinal	RSNs	were	performed.	For	instance,	network	features	
were	probed	using	graph	theory-based	metrics	(Liu	et	al.,	2016b),	shedding	light	on	their	small-
world	properties	(i.e.,	efficient	local	and	global	connectivity),	previously	reported	for	cortical	net-
works	(Bullmore	and	Bassett,	2011).	Expanding	on	this	work,	the	effect	of	experimental	manipula-
tion	on	spinal	cord	resting-state	patterns	was	also	explored	(Weber	et	al.,	2018).	One	major	find-
ing	was	the	state-dependency	of	dorsal	networks,	which	were	disrupted	upon	thermal	stimulation.	
Interestingly,	neither	the	small-worldness	properties	nor	the	global	clustering	coefficient	were	af-
fected	by	the	change	of	state,	while	modularity	was	decreased	and	global	efficiency	increased.	In	
recent	work,	structural	equation	modelling	with	a	predefined	underlying	backbone	was	applied	to	
characterize	interactions	between	time-courses	of	regions-of-interest	in	the	brainstem	and	the	spi-
nal	cord	revealed	a	complex	connectivity	network	between	those	regions	(Harita	et	al.,	2019).	The	
aforementioned	observations,	along	with	recent	research	demonstrating	that	BOLD	timecourses	
reflect	electrophysiological	measures	such	as	local-field	potentials	and	multiunit	spiking	(Wu	et	al.,	
2019),	support	the	genuine	character	of	spinal	RSNs.	In	order	to	fully	harness	the	potential	of	spinal	
cord	fMRI	to	unravel	these	fluctuations,	efforts	are	now	deployed	to	optimize	protocols	and	provide	
robust	guidelines	(Barry	et	al.,	2018a).	

1.5.5 Spinal	cord	fMRI	and	clinical	applications	

So	 far,	 applications	 of	 spinal	 cord	 fMRI	 to	 clinics	 have	 been	 relatively	 limited	 (Kornelsen	 and	
Mackey,	2010;	Wheeler-Kingshott	et	al.,	2014).	During	thermal	stimulation,	lumbar	spinal	activity	
was	shown	to	present	similar	stimulus-response	patterns	between	spinal-cord	injured	(SCI)	pa-
tients	and	healthy	subjects	(Stroman	et	al.,	2002,	2004).	However,	there	were	differences	in	the	
patterns	of	activity,	as	subjects	with	complete	SCI	exhibited	an	altered	dorsal	grey	matter	activity,	
alongside	an	enhanced	ventral	activity.	Interestingly,	activity	was	detected	even	when	the	patients	
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could	not	feel	the	stimulation.	Spinal	activity	in	SCI	patients	during	passive	and	active	lower	limb	
movements	was	also	investigated	(Kornelsen	and	Stroman,	2007)	and	activity	was	observed	re-
gardless	of	the	extent	of	injury,	in	all	participants.	In	particular,	activity	was	detected	caudal	to	the	
injury	site,	more	intensely	during	active	movements.	As	for	RS	recordings,	their	clinical	potential	
was	first	demonstrated	in	non-human	primates,	where	injuries	to	the	cord	disrupted	interhorn	con-
nectivity,	thus	hinting	at	the	functional	relevance	of	those	connections	and	suggesting	their	poten-
tial	as	a	biomarker	of	functional	integrity	(Chen	et	al.,	2015).	In	humans,	the	amplitude	of	low	fre-
quency	fluctuations	(ALFF)	was	found	to	be	affected	in	patients	suffering	from	cervical	spondylotic	
myelopathy	(Liu	et	al.,	2016a)	and	fibromyalgia	(Martucci	et	al.,	2019).	Similarly,	spinal	lesions	re-
sulting	from	multiple	sclerosis	were	shown	to	be	associated	with	focal	abnormalities	in	intrinsic	
connectivity	(Conrad	et	al.,	2018).	Of	note,	spinal	cord	fMRI	has	so	far	not	been	employed	in	stroke	
patients.		

1.6 	Outline	of	the	thesis	

This	thesis	is	organized	in	two	parts,	whose	contents	are	summarized	in	Figure	1.5.	PART	I	presents	
methods	aiming	to	foster	the	development	of	personalized	approaches	for	motor	neuro-rehabilita-
tion.	Specifically,	Chapter	2	introduces	a	model-based	approach	to	adapt	robot-assisted	therapy	in	
real-time	based	on	 the	 subject's	motor	performances.	Then,	Chapter	3	proposes	a	multivariate	
methodology	to	combine	quantitative	neurophysiological	metrics	into	a	multimodal	index	that	can	
be	 used	 to	 track	 the	 patients’	 neuro-biomechanical	 state.	PART	 II	 aims	 to	 address	 the	 gap	 in	
knowledge	regarding	spinal	cord’s	function,	so	as	to	achieve	a	comprehensive	view	of	the	central	
and	peripheral	mechanisms	involved	in	motor	control	and	recovery.	In	order	to	establish	a	pipeline	
enabling	the	non-invasive	study	of	spinal	cord	activity	in	humans,	Chapter	4	is	devoted	to	an	initial	
exploration	 of	 potential	 fMRI	 acquisition	 schemes.	 Chapter	 5	 elaborates	 on	 this	 analysis	 and	
demonstrates	the	robustness	of	the	selected	pipeline	to	detect	motor-related	activity	during	upper	
limb	movements.	Capitalizing	on	the	potential	of	this	fMRI	pipeline	to	image	spinal	mechanisms	
and	in	an	effort	to	unravel	their	functional	architecture,	Chapter	6	then	proposes	a	framework	for	
the	study	of	spinal	resting-state	fluctuations	using	dynamic	functional	connectivity.	Following	this	
thorough	characterization	of	spinal	signals,	the	focus	is	extended	to	the	entire	central	nervous	sys-
tem	and	Chapter	7	 investigates	 cerebro-spinal	 processes	 involved	 in	motor	 sequence	 learning,	
thanks	to	simultaneous	brain	and	spinal	cord	fMRI.	Finally,	Chapter	8	shows	how	spinal	neuroim-
aging	can	be	translated	to	clinical	applications,	in	the	context	of	stroke	and	spinal	cord	injury.		



	

	
14	

	
	

	

Figure	1.5	–	Overall	summary	of	thesis	content 
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Although	conventional	motor	rehabilitation	following	a	stroke	encompasses	a	wide	array	of	treat-
ment	solutions,	therapies	typically	include	completion	of	movements,	possibly	assisted	by	a	clini-
cian	(Winstein	and	Kay,	2015).	In	particular,	repetitive	and	goal-directed	motor	practice	has	been	
suggested	to	improve	function	in	stroke	patients,	granted	that	the	neuromuscular	system	is	suffi-
ciently	and	adequately	challenged	(Woldag	and	Hummelsheim,	2002;	Langhorne	et	al.,	2011).	In	
the	last	decades,	robotic	devices	have	become	increasingly	deployed	in	neurorehabilitation,	as	they	
have	 an	 indubitable	 potential	 to	 provide	 intense,	 controllable	 and	 quantifiable	 motor	 training	
(Weber	and	Stein,	2018).	Despite	these	auspicious	abilities,	clinical	outcomes	after	intensive	robot-
aided	rehabilitation	have	so	far	been	reported	to	be	similar	to	intensive	traditional	therapies,	or	
only	marginally	better	(Lo	et	al.,	2010;	Klamroth-Marganska	et	al.,	2014).	Besides,	it	remains	un-
clear	whether	improvements	due	to	robotic	rehabilitation	can	readily	be	transferred	to	activities	of	
daily	 living	 (Veerbeek	 et	 al.,	 2017;	Weber	 and	 Stein,	 2018).	 This	 relative	 efficacy	 suggests	 that	
providing	a	high	dose	of	therapy	through	highly	repetitive	movements	may	not	be	sufficient	to	sig-
nificantly	promote	motor	recovery	(Winstein	et	al.,	2016).	Consequently,	the	use	of	robotic	devices	
should	be	further	optimized	to	deliver	compelling	evidence	of	their	clinical	relevance. 
In	that	regard,	personalization	of	the	intervention	has	been	advocated	as	a	pivotal	factor	to	fully	
exploit	robot-based	rehabilitation	(Winstein	and	Kay,	2015;	Raffin	and	Hummel,	2018;	Micera	et	
al.,	2020).	Instead	of	delivering	training	following	a	one-suits-all	approach,	motor	recovery	and	re-
learning	 are	 presaged	 to	 be	 optimized	 when	 the	 task	 difficulty	 matches	 the	 level	 of	 ability	
(Guadagnoli	and	Lee,	2004),	and	when	the	therapy	is	impairment-oriented	(Duret	et	al.,	2019).	The	
embedded	sensors	integrated	in	robotic	devices	can	be	leveraged	in	that	respect,	in	order	to	moni-
tor	task	performance	and	to	adjust	training	accordingly.	Exoskeletons,	in	particular,	enable	contin-
uous	quantification	of	limb	kinematics	at	the	level	of	individual	joints	(Frisoli,	2018).	Nevertheless,	
how	to	design	personalized	tasks	tailored	to	the	needs	of	individual	patients	is	still	an	open	issue,	
as	many	parameters	can	be	foreseen,	both	as	regards	performance	assessments	and	task	adapta-
tion.	Besides,	patient-tailored	strategies	should	also	consider	the	multifaceted	neuro-biomechani-
cal	 state	 of	 each	 patient	 so	 as	 to	 develop	 pathophysiologically-driven	 treatments	 (Raffin	 and	
Hummel,	2018;	Guggisberg	et	al.,	2019).	

From	that	perspective,	the	aim	of	the	research	presented	in	this	section	is	twofold:	first,	we	want	to	
explore	the	feasibility	of	treatment	personalization	in	real-time	within	a	rehabilitative	session,	us-
ing	simple	kinematic	measures.	Secondly,	we	zoom	out	and	focus	on	the	dynamics	of	recovery	over	
multiple	sessions,	with	the	aim	of	proposing	a	multimodal	framework	enabling	the	combination	of	
kinematic,	muscle	and	brain	measurements	into	a	single	variable	reflecting	patient’s	neuro-biome-
chanical	state	and	residual	motor	function.		

PART	I		
Towards	personalized	rehabilitation		
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Geneva,	Geneva,	Switzerland;	8Laboratory	of	Cognitive	Neurorehabilitation,	Department	of	Clinical	
Neurosciences,	Medical	School,	University	of	Geneva,	Geneva,	Switzerland	

*	Equally	contributing	authors		

Abstract	–	Background:	In	the	past	years,	robotic	systems	have	become	increasingly	popular	
in	upper	limb	rehabilitation.	Nevertheless,	clinical	studies	have	so	far	not	been	able	to	con-
firm	superior	efficacy	of	robotic	therapy	over	conventional	methods.	The	personalization	of	
robot-aided	therapy	according	to	the	patients’	individual	motor	deficits	has	been	suggested	
as	a	pivotal	step	to	improve	the	clinical	outcome	of	such	approaches.	Methods:	Here,	we	pre-
sent	 a	 model-based	 approach	 to	 personalize	 robot-aided	 rehabilitation	 therapy	 within	
training	 sessions.	 The	 proposed	method	 combines	 the	 information	 from	different	motor	
performance	measures	recorded	from	the	robot	to	continuously	estimate	patients’	motor	
improvement	for	a	series	of	point-to-point	reaching	movements	in	different	directions.	Ad-
ditionally,	it	comprises	a	personalization	routine	to	automatically	adapt	the	rehabilitation	
training.	We	engineered	our	approach	using	an	upper	limb	exoskeleton.	The	implementa-
tion	was	tested	with	seventeen	healthy	subjects,	who	underwent	a	motor-adaptation	para-
digm,	and	two	subacute	stroke	patients,	exhibiting	different	degrees	of	motor	impairment,	
who	participated	in	a	pilot	test	undergoing	rehabilitative	motor	training.	Results:	The	re-
sults	of	 the	exploratory	study	with	healthy	subjects	showed	that	 the	participants	divided	
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into	 fast	and	slow	adapters.	The	model	was	able	 to	correctly	estimate	distinct	motor	 im-
provement	progressions	between	the	two	groups	of	participants	while	proposing	individual	
training	protocols.	For	the	two	pilot	patients,	an	analysis	of	the	selected	motor	performance	
measures	showed	that	both	patients	were	able	to	retain	the	improvements	gained	during	
training	when	reaching	movements	were	reintroduced	at	a	later	stage.	These	results	suggest	
that	the	automated	training	adaptation	was	appropriately	timed	and	specifically	tailored	to	
the	abilities	of	each	 individual.	Conclusions:	The	results	of	our	exploratory	study	demon-
strated	the	feasibility	of	the	proposed	model-based	approach	for	the	personalization	of	ro-
bot-aided	rehabilitation	therapy.	The	pilot	test	with	two	subacute	stroke	patients	further	
supported	our	approach,	while	providing	encouraging	results	for	the	applicability	in	clinical	
settings.		

2.1 Introduction	

With	the	increase	of	life	expectancy,	it	is	estimated	that	stroke	related	impairments	will	be	ranked	
fourth	most	important	cause	of	disability	in	western	countries	by	2030	(Donnan	et	al.,	2008).	De-
spite	early	rehabilitative	interventions,	55%	to	75%	of	the	patients	still	suffer	from	upper	limb	im-
pairments	in	the	chronic	state	of	the	injury	(Carod-Artal	et	al.,	2000;	Lawrence	et	al.,	2001;	Clarke	
et	al.,	2002).	The	recovery	of	reaching	and	grasping	movements	is	therefore	a	crucial	therapeutic	
goal	in	stroke	rehabilitation	(Veerbeek	et	al.,	2017).		

Post-stroke	rehabilitation	usually	relies	on	task-oriented	repetitive	movements	that	help	improv-
ing	motor	function	and	training	new	control	strategies.	In	this	regard,	the	amount	of	goal-directed	
and	challenging	practice,	rather	than	daily	intensity	alone,	seems	to	be	the	most	effective	factor	in	
neurorehabilitation	(Dobkin,	2004).	In	the	last	two	decades,	robot-aided	motor	training	has	shown	
potential	for	the	recovery	of	lost	motor	abilities	in	upper	limbs	after	stroke	(Marchal-Crespo	and	
Reinkensmeyer,	2009;	Wagner	et	al.,	2011;	Di	Pino	et	al.,	2014).	While	providing	intense	and	highly	
repeatable	motor	training,	robotic	devices	also	offer	means	to	control	and	quantify	movement	per-
formance.	Despite	this	strong	potential,	controlled	clinical	trials	have	so	far	not	been	able	to	confirm	
whether	robotic	therapy	is	more	effective	than	conventional	methods	in	restoring	motor	abilities	
(Lo	et	al.,	2010;	Klamroth-Marganska	et	al.,	2014;	Rodgers	et	al.,	2019).	It	has	been	argued	that	this	
might	be	related	to	saturation	effects	in	the	patients’	motor	performances	and	a	lack	of	automatic	
methods	to	promptly	detect	them	(Grimm	et	al.,	2016).	Indeed,	a	recent	review	analyzing	38	studies	
on	this	topic	(Ferreira	et	al.,	2018),	concluded	that	robotic	therapy	had	rather	small	effects	on	pa-
tients’	motor	control	compared	to	other	interventions.			

The	automatic	and	personalized	adaptation	of	the	rehabilitation	training	has	been	suggested	as	a	
pivotal	step	to	improve	the	outcome	of	robot-aided	rehabilitation	and	the	clinical	relevance	of	such	
solutions	(Krakauer,	2006).	As	a	matter	of	fact,	motor	learning	is	known	to	be	maximized	when	the	
difficulty	level	of	the	training	task	matches	the	patient’s	level	of	ability	(Guadagnoli	and	Lee,	2004).	
Recent	advances	in	the	field	of	personalized	robotic	rehabilitation	have	therefore	focused	on	the	
design	of	 customized	 training	protocols,	 including	 individualized	 selection	of	upper	 limb	move-
ments	(Rosenthal	et	al.,	2019).	One	of	the	pivotal	aspects	underlying	the	development	of	a	person-
alized	rehabilitation	training	is	the	definition	of	performance	measures	that	can	correctly	capture	
the	different	aspects	of	motor	recovery,	as	well	as	their	specific	dynamics. Different	measures	have	
been	used	 to	assess	 the	patient’s	 “status”	during	 training	(i.e.,	motor	performance,	engagement,	
etc.)	in	order	to	adjust	the	proposed	tasks	accordingly.	Kinematic	performance	measures,	such	as	
movement	accuracy,	smoothness,	velocity,	inter-joint	coordination,	range	of	motion	and	stiffness	
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(Krebs	et	al.,	2003;	Wolbrecht	et	al.,	2008;	Kan	et	al.,	2011;	Papaleo	et	al.,	2013;	Metzger	et	al.,	2014;	
Wittmann	et	al.,	2015;	Wu	et	al.,	2017a),	game-related	statistics	(Octavia	and	Coninx,	2014;	Grimm	
et	al.,	2016),	measures	of	muscle	activity	(Krebs	et	al.,	2003),	or	the	combination	of	kinematic	and	
psychophysiological	measurements	(Rodriguez	Guerrero	et	al.,	2010;	Novak	et	al.,	2011;	Badesa	et	
al.,	2016)	have	been	among	the	measures	used	for	the	design	of	patient-tailored	training	protocols.	
However,	those	approaches	either	focused	on	a	single	performance	measure	describing	a	specific	
aspect	of	rehabilitation	or	used	multiple	measures	but	lacked	the	ability	to	meaningfully	synthesize	
the	information	from	these	variables.	Integrating	this	information	into	a	single	measure,	yet	repre-
sentative	of	the	patient's	multidimensional	rehabilitation	response,	would	facilitate	the	monitoring	
of	the	multifaceted	progress	of	the	patient	and	provide	a	way	to	trigger	task	adaptation	while	enor-
mously	simplifying	the	design	of	personalized	rehabilitation	training.		

A	first	approach	addressing	this	issue	was	presented	in	our	previous	work	(Panarese	et	al.,	2012a).	
Previously,	we	have	used	a	state-space	model	to	merge	the	information	from	different	kinematic	
measures	and,	in	this	way,	estimated	motor	improvement	(MI)	of	chronic	stroke	patients	exercising	
with	a	planar	robotic	device	for	upper	limb	rehabilitation.	In	this	previous	work,	we	used	four	per-
formance	measures	to	estimate	the	MI:	(1)	the	movement	velocity	(MV);	(2)	the	movement	accu-
racy	(nMD);	(3)	the	movement	smoothness	(nPK);	(4)	the	percentage	of	successful	tasks	executed	
during	each	session	(%SUCC).	Following	post-hoc	analyses	on	the	recorded	performance	measures,	
we	showed	that	such	model	would	be	capable	of	mimicking	decision	rules	applied	by	physical	ther-
apists	regarding	the	adaptation	of	the	task	difficulty.	In	most	cases,	the	model	even	appeared	to	be	
faster	than	the	therapists	in	detecting	when	the	patients’	motor	performance	had	reached	a	plateau	
and	when	more	challenging	tasks	should	have	been	proposed.	Yet	an	automatic	task	adaptation	
based	on	such	a	model	was	lacking	from	our	previous	implementation.	

In	the	current	study,	we	therefore	build	on	these	results	to	implement	a	method	able	to	continu-
ously	detect	patient’s	motor	improvement	and	adapt	the	training	task	for	three-dimensional	move-
ments	using	an	upper	limb	exoskeleton.	Indeed,	most	of	the	adaptive	approaches	mentioned	before,	
were	restricted	to	planar	workspaces,	hindering	their	applications	to	functional	movements	explor-
ing	three-dimensional	workspaces,	that	better	resemble	those	performed	during	daily	life	activi-
ties.	Evaluating	and	estimating	motor	improvement	is	particularly	complex	in	three-dimensional	
training	workspaces,	where	the	visual	evaluation	of	motor	performance	becomes	more	challenging.	
Under	these	circumstances,	a	method	able	to	autonomously	estimate	patient	training	progress,	in	
particular	for	movements	in	different	directions,	could	provide	fundamental	support	to	therapists.	
In	contrast	 to	our	previous	work,	here	we	employed	a	continuous	 implementation	of	 the	motor	
improvement	estimation	and	the	training	adaptation	routine.	Indeed,	the	immediate	task	adapta-
tion	within	the	same	training	sessions	could	not	only	increase	patients’	engagement,	but	also	foster	
their	attention	control,	possibly	leading	to	improved	reaching	performances	(Rinne	et	al.,	2017).		

However,	in	order	to	enable	the	use	of	such	methods	for	clinical	applications,	it	is	first	necessary	to	
validate	their	feasibility	and	safety	under	controlled	experimental	conditions.	The	main	objective	
of	this	exploratory	study	was	hence	to	demonstrate	feasibility	and	safety	for	the	proposed	method	
and	to	comprehend	whether	such	approach	could	possibly	be	applied	in	clinical	settings.	We,	there-
fore,	devised	an	experiment	to	test	our	model	in	a	group	of	healthy	subjects.	In	order	to	mimic	the	
recovery	of	motor	performance	observed	in	stroke	patients,	we	inverted	the	visual	feedback	for	the	
point-to-point	reaching	movements	that	the	healthy	subjects	had	to	perform	in	a	three-dimensional	
training	 environment	 using	 a	 robotic	 upper-limb	 exoskeleton.	 Previous	 studies	 on	 visually	
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manipulated	motor	 tasks	showed	 that	most	people	could	cope	with	similar	manipulations	after	
training	(Harris,	1965;	Miall	et	al.,	2004;	Krakauer,	2009;	Shabbott	and	Sainburg,	2010;	Werner	and	
Bock,	2010).	Accordingly,	we	hypothesized	that	performances	would	drop	after	the	introduction	of	
the	inverted	visual	feedback	(i.e.,	movements	would	become	slower	and	jerkier),	but	would	then	
gradually	improve	and	eventually	reach	a	plateau	-	with	temporal	dynamics	resembling	the	ones	
occurring	in	robot-aided	rehabilitation	of	stroke	patients	(Colombo	et	al.,	2008,	2010;	Panarese	et	
al.,	2012a).	Moreover,	previous	work	has	demonstrated	that	for	reaching	movements	in	planar	set-
ups,	participants	showed	better	performance	for	targets	lying	on	the	axis	perpendicular	to	the	in-
version	(Cunningham	and	Pavel,	1991;	Werner	and	Bock,	2010).	Though	in	this	study	we	used	a	
three-dimensional	setup,	we	also	hypothesized	that	participants	would	have	less	difficulties	with	
the	targets	lying	on	one	of	three	coordinate	axes	(on-axis	targets),	as	they	involved	inversions	in	
only	one	dimension	(in	contrast	to	inversions	in	two	dimensions	for	off-axis	targets,	i.e.,	targets	not	
lying	on	the	axes).	Using	this	setup,	we	tested	whether	our	model	was	capable	of	tracking	individual	
motor	improvement	induced	by	motor	adaptation,	and	whether	it	was	able	to	personalize	the	train-
ing	by	identifying	“recovered”	(i.e.,	adapted)	movements	in	real-time.		

To	provide	further	evidence	about	the	clinical	usability	of	the	presented	approach,	we	finally	per-
formed	a	pilot	test	with	two	subacute	stroke	patients.	The	objective	of	this	pilot	test	was	to	evaluate	
the	model	in	an	authentic	clinical	context	and	with	two	patients	exhibiting	different	degrees	of	mo-
tor	 impairment.	The	patients	underwent	 four	weeks	of	 robot-aided	 rehabilitation	 training,	per-
forming	the	same	point-to-point	reaching	movements	as	the	healthy	subjects.	In	this	case	however,	
visual	feedback	was	provided	normally,	without	inversion.	We	hypothesized	that	the	model	would	
suggest	two	distinct	training	adaptation	schemes	for	the	patients,	optimizing	their	motor	recovery	
by	proposing	reaching	movements	that	match	the	individual	abilities	of	each	patient.			

2.2 Methods	

In	the	current	study,	we	developed	a	model	to	continuously	estimate	motor	improvement	(MI)	in	
three-dimensional	workspaces	using	kinematic	performance	measures,	based	on	the	results	of	our	
previous	work	(Panarese	et	al.,	2012a).	Moreover,	we	designed	a	personalization	routine,	that	au-
tomatically	adapts	the	difficulty	of	the	rehabilitative	motor	task	(i.e.,	a	point-to-point	reaching	task)	
based	on	the	MI	estimates.	Both	the	MI	model	and	the	personalization	routine	were	integrated	in	
the	control	algorithm	of	an	upper-limb	exoskeleton	and	tested	with	a	group	of	17	healthy	partici-
pants.	The	presented	approach	was	then	tested	with	two	subacute	stroke	patients.		

2.2.1 Participants	

Healthy	participants	

Seventeen	right-handed	subjects	(eight	males,	nine	females,	25.4	±	3.3	years	old)	participated	in	
the	 experimental	 validation	 of	 our	 approach.	 The	 participants	 did	 not	 present	 any	 evidence	 or	
known	history	of	skeletal	and	neurological	diseases	and	they	exhibited	normal	ranges	of	motion	
and	muscle	strength.	All	participants	gave	their	informed	consent	to	participate	in	the	study,	which	
had	been	previously	approved	by	 the	Commission	Cantonale	d'Éthique	de	 la	Recherche	Genève	
(CCER,	Geneva,	Switzerland,	2017-00504).	
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Subacute	stroke	patients	

Two	subacute	 stroke	patients	 from	 the	 inpatient	unit	 of	 the	Hôpitaux	Universitaires	de	Genève	
(HUG,	Geneva,	Switzerland)	were	included	in	the	study.	A	summary	of	the	patient	information	is	
reported	in	Table	2.1.	Both	patients	suffered	from	a	right	hemiplegia	with	at	least	10°	of	residual	
motion	in	shoulder	and	elbow	joints.	The	patients	were	enrolled	in	the	study	within	two	to	eight	
weeks	after	the	stroke.	Both	patients	received	standard	therapy	at	the	stroke	unit	during	the	acute	
phase,	and	an	individually	tailored	multidisciplinary	rehabilitation	program	in	the	subacute	and	
chronic	phases.	The	patients	received	two	times	30	minutes	of	physical	therapy	per	day	on	five	days	
per	week	and	five	times	30	minutes	of	occupational	therapy	per	week	on	an	inpatient	basis	for	8	to	
16	weeks,	followed	by	outpatient	treatment	of	1	to	4	hours	of	physical	and	occupational	therapy	
per	week.	Therapy	was	adapted	by	the	therapists	to	the	current	capacities	of	the	patients	by	choos-
ing	from	a	list	of	appropriate	exercises	comprising	upper-extremity	relaxation	techniques,	unilat-
eral	task-specific	mobilizations,	bilateral	upper	limb	exercises	with	a	wand,	ball	exercises,	active	
ante/retropulsion	exercises,	active	pronation/supination	exercises	and	grasping	exercises.	Thera-
pists	were	assigned	to	the	patients	based	on	their	availability;	hence	different	therapists	took	care	
of	the	patients	throughout	the	therapy	sessions.	In	addition	to	the	standard	therapy,	the	patients	
received	robot-aided	treatment	following	the	adaptive	robotic	rehabilitation	protocol	described	in	
Section	2.2.2.	All	patients	gave	their	informed	consent	to	participate	in	the	study.	This	study	is	reg-
istered	 in	 ClinicalTrials.gov	 (NCT02770300)	 and	 the	 experimental	 protocols	were	 approved	 by	
Swissmedic	and	Swissethics.	

Table	2.1	–	Demographics	and	information	of	the	stroke	patients	included	in	the	study	

Patient	 Gender	 Age	 Weight	
(kg)	

Height		
(cm)	

Hand	
dominancy	 Stroke	diagnosis	 Enrolment		

after	lesion	

P01	 Male	 86	 66	 165	 Right	
Ischemic,	middle	
cerebral	artery	left,	
cerebellum	right	

3	weeks	

P02	 Male	 65	 81	 180	 Right	 Ischemic,	
corona	radiata	left	 2	weeks	

	

2.2.2 Robotic	exoskeleton	and	motor	task	

We	implemented	the	motor	improvement	model	and	the	personalization	routine	in	the	robotic	up-
per-limb	exoskeleton	ALEx	(Wearable	Robotics	srl.,	Bergamasco	et	al.,	2013;	Pirondini	et	al.,	2016).	
During	the	experiments,	the	patients	and	the	healthy	participants	were	instructed	to	perform	point-
to-point	reaching	movements	at	their	comfortable	velocity	(Figure	2.1a).	All	reaching	movements	
started	 from	the	center	of	 the	workspace	and	the	goal	was	 to	reach	one	of	 the	eighteen	 targets	
equally	distributed	over	the	three	planes	of	a	sphere	of	19	cm	of	radius	(Figure	2.1b).	The	selected	
radius	of	the	sphere	allows	for	a	maximum	exploration	of	the	workspace,	while	maintaining	the	
reaching	movements	executable	for	people	of	most	body	sizes.	Each	movement	towards	a	target	
represented	a	subtask.	This	design	allowed	exploiting	an	extensive	three-dimensional	workspace	
and	provided	means	to	easily	identify	all	subtasks	of	the	exercise.	The	sphere	was	positioned	so	
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that	its	center	was	aligned	with	the	acromion	of	the	right	arm	mid-way	between	the	center	of	the	
target	panel	and	the	subject’s	acromion.	The	targets	were	displayed	on	a	screen	mounted	in	front	
of	the	subjects	and	visual	feedback	was	provided	by	means	of	a	cursor	mapping	the	position	of	the	
exoskeleton’s	handle	to	the	screen.	In	order	to	preserve	the	depth	perception,	the	dimensions	of	
the	target	spheres	were	modified	in	accordance	with	their	position	in	the	3D	space.	If	a	subject	was	
unable	to	reach	a	target	(i.e.,	the	subject	did	not	move	for	more	than	3	seconds),	ALEx	activated	its	
assistance	mode	to	guide	the	subject	towards	the	target	according	to	a	minimum	jerk	speed	profile	
(Sadaka-Stephan	et	al.,	2015).	

2.2.3 Experimental	protocols	

Healthy	participants	

The	healthy	participants	attended	a	single	experimental	session,	which	comprised	seven	blocks	of	
reaching	movements	(Figure	2.1c).	Breaks	of	one	minute	were	scheduled	after	each	block	to	pre-
vent	fatigue.	The	session	started	with	an	initial	assessment	block	consisting	of	three	runs	(AI,1-3).	
During	each	run	all	18	targets	were	presented	once	and	in	a	randomized	order.	The	purpose	of	the	
assessment	block	was	i)	to	allow	familiarization	with	the	robotic	system	and	the	motor	task	and	ii)	
to	record	a	baseline	for	the	performance	measures.	This	block	was	followed	by	five	blocks	B1-5	dur-
ing	which	the	visual	feedback	was	inverted	(i.e.,	an	upward	movement	was	displayed	as	downward	
and	vice	versa,	 likewise	for	left/right	and	forward/backward	movements).	This	vision	inversion	
was	introduced	to	induce	motor	performances	with	temporal	dynamics	resembling	the	ones	ob-
served	in	robot-aided	rehabilitation	of	stroke	patients	(Colombo	et	al.,	2008,	2010;	Panarese	et	al.,	
2012a).	At	the	onset	of	the	five	inversion	blocks,	participants	were	not	informed	about	the	inversion	
of	the	visual	feedback,	but	they	were	told	that	the	task	difficulty	was	changed.	Each	of	the	five	in-
version	blocks	B1-5	consisted	of	five	runs,	each	one	composed	of	eight	point-to-point	reaching	move-
ments	for	a	total	of	40	reaching	movements	per	block.		

The	initial	set	of	training	targets	for	each	participant	was	generated	following	a	semi-randomized	
procedure:	based	on	 the	hypothesis	presented	 in	 the	 Introduction,	we	expected	movements	 to-
wards	on-axis	targets	(i.e.,	targets	1,	3,	5,	7,	10	and	13,	see	Figure	2.1b)	to	be	easier.	Therefore,	the	
initial	set	of	training	targets	always	contained	all	six	on-axis	and	two	randomly	selected	off-axis	
targets	(i.e.,	targets	2,	4,	6,	8,	11,	14,	15,	16,	17	and	18).	The	presentation	order	of	the	eight	initial	
training	targets	was	randomized.	The	remaining	ten	off-axis	targets	were	placed	randomly	in	the	
training	queue.	

During	the	five	inversion	blocks	B1-5,	MI	was	continuously	estimated	for	each	training	target	and	a	
target	was	removed	from	the	current	set	of	training	targets	if	the	MI	estimates	for	this	subtask	sat-
isfied	the	replacement	conditions	(see	section	2.2.6).	In	this	case,	the	target	was	replaced	by	the	
next	one	in	the	training	queue.	The	inversion	blocks	B1-5	were	followed	by	a	final	assessment	block	
which	was	composed	of	three	runs	(AF,1-3)	and	followed	the	same	procedure	as	the	initial	assess-
ment	block	(i.e.,	neither	vision	inversion	nor	training	adaptation	were	applied).	The	data	acquired	
during	the	assessment	blocks	(i.e.,	AI,1-3	and	AF,1-3)	were	not	considered	for	the	motor	improvement	
estimation.	

Subacute	stroke	patients	

The	experimental	protocol	for	the	patients	consisted	of	four	weeks	of	robot-aided	rehabilitation	
therapy	 (Figure	2.1d),	with	 three	 sessions	of	30	minutes	per	week.	The	 training	 comprised	 the	
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regular	point-to-point	reaching	task	(see	section	2.2.2).	In	order	to	evaluate	the	outcome	of	their	
rehabilitation	 training,	 the	patients	 completed	 two	assessment	 sessions	before	 (AI,1-2)	 and	after	
(AF,1-2)	the	therapy.	The	initial	assessment	sessions	AI,1-2	were	completed	two	weeks	and	one	week	
before	the	beginning	of	the	therapy.	The	final	assessment	sessions	AF,1-2	were	completed	one	week	
and	one	month	after	the	end	of	the	therapy.	During	the	 initial	and	final	assessment	sessions,	all	
eighteen	targets	of	the	point-to-point	reaching	task	were	presented	to	the	patients	in	a	randomized	
order.	The	total	amount	of	reaching	movements	for	each	session	was	determined	by	the	physical	
therapist	while	encouraging	the	patient	to	perform	as	many	movements	as	possible	(numbers	re-
ported	in	Section	2.2).	Breaks	of	varying	durations	were	scheduled	based	on	the	patient’s	condition.	
In	addition,	the	patients	were	evaluated	using	the	upper	extremity	section	of	the	Fugl-Meyer	as-
sessment	(FMA-UE,	Fugl-Meyer	et	al.,	1975).	The	data	acquired	during	the	assessment	blocks	(i.e.,	
AI,1-2	and	AF,1-2)	were	not	considered	for	the	motor	improvement	estimation.	

For	the	treatment	sessions,	we	first	identified	the	patient-specific	difficulty	for	each	of	the	18	tar-
gets	following	the	initial	assessment	sessions	AI,1-2.	Specifically,	we	analyzed	the	mean	values	of	the	
performance	measures	MV,	SAL	and	%SUCC	(see	Section	2.2.5)	for	each	of	the	eighteen	training	
targets.	The	targets	were	first	ordered	by	descending	values	of	%SUCC	(i.e.,	starting	from	easier	
targets).	If	several	targets	had	equal	values	for	%SUCC,	the	order	amongst	them	was	determined	by	
their	mean	values	for	MV	and	SAL,	while	giving	both	measures	equal	weight.	The	first	eight	targets	
of	the	resulting	list	were	selected	as	the	initial	training	targets.	The	remaining	targets	were	placed	
in	a	training	queue	while	conserving	the	determined	order	of	difficulty.	During	the	therapy	(W1-W4,	
Figure	2.1d),	MI	was	continuously	estimated	for	each	training	target	separately.	The	replacement	
of	a	training	target	based	on	the	MI	estimates	followed	the	procedure	presented	in	Section	2.2.6.	
The	current	set	of	training	targets	was	saved	after	the	completion	of	each	training	session,	ensuring	
continuity	between	sessions.	The	total	amount	of	reaching	movements	for	each	session	was	deter-
mined	by	the	physical	therapist	while	encouraging	the	patient	to	perform	as	many	movements	as	
possible.	However,	no	decisions	were	taken	by	the	therapist	regarding	the	choice	of	the	specific	
training	targets.	Breaks	of	varying	durations	were	scheduled	based	on	the	patient’s	condition.	

2.2.4 Motor	improvement	model	

In	order	to	continuously	track	patients’	MI	at	subtask	level	(i.e.,	for	a	series	of	point-to-point	reach-
ing	movements	in	different	directions),	we	used	a	state-space	model.	MI	was	modelled	as	a	random	
walk:	

!"# = !"#%& + (#	 (1)	

where	k	are	the	different	repetitions	for	a	movement	direction	and	ϵ* are	independent	Gaussian	
random	variables	with	zero	mean	and	variance	σ,-.	A	set	of	observation	equations	zj,k	was	defined	
in	order	to	estimate	MI.	These	equations	related	MI	to	continuous	performance	measures	rj,	which	
were	computed	from	kinematic	recordings	provided	by	the	robotic	device	(see	section	2.2.5	 for	
details	on	the	performance	measures).	The	continuous	variables	rj	(with	.	 = 	1, . . , 3	representing	
the	different	performance	measures)	were	defined	by	the	log-linear	probability	model	
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45,# = 678(:5,#) = 	<5 + =5!"# + >5,# (2)	

where	δ5,#	are	independent	Gaussian	random	variables	with	zero	mean	and	variance	σ@,A- .	The	use	
of	log-linear	models	allowed	capturing	rapid	increases	(or	decreases)	of	the	performance	measures	
during	the	training,	as	well	as	the	expected	convergence	towards	subject-specific	upper	(or	lower)	
bounds	at	the	end	of	the	training.	The	suitability	of	such	probability	models	for	motor	performance	
measures	in	stroke	patients	was	previously	demonstrated	(Panarese	et	al.,	2012a,	2016).	Similarly,	
an	observation	equation	for	a	discrete	performance	measure	nk	was	defined.	The	binary	discrete	
variable	nk	∈	{0,	1}	was	used	to	track	the	completion	of	the	exercised	subtask,	with	1	meaning	that	
the	subtask	was	performed	successfully	and	0	meaning	failure.	The	observation	model	for	nk	was	
assumed	to	be	a	Bernoulli	probability	model:	

C:(D#|F#) 	= F#
GH(1 − F#)&%GH (3)	

where	pk,	the	probability	of	performing	the	subtask	successfully	at	repetition	k,	was	related	to	MIk	
by	a	logistic	function:	

F# =
JKF(!"#)

1 + JKF(!"#)
 (4)	

ensuring	that	pk	was	constrained	in	[0,	1].	Furthermore,	this	formulation	guaranteed	that	pk	would	
approach	1	with	increasing	MI.		

The	model	parameters	{αj,	βj,	σδ,j,	σϵ,	pk}	were	estimated	for	each	individual	subject	using	the	re-
cordings	of	rj,k	and	nk	(i.e.,	kinematic	recordings	from	the	robotic	device,	see	Section	2.2.5)	and	by	
applying	Bayesian	Monte	Carlo	Markov	Chain	methods.	The	estimation	of	the	parameters	resulted	
in	an	estimate	for	MI.	In	order	to	ensure	accuracy	of	the	model,	it	was	necessary	that	the	number	of	
recordings	of	rj,k	and	nk	exceeded	the	number	of	parameters.	Based	on	simulations	performed	with	
varying	number	of	data	points	(detailed	description	can	be	found	in	the	Supplementary	material),	
the	minimum	number	of	data	points	for	MI	estimation	was	set	to	8.	In	order	to	validate	the	capabil-
ity	 of	 the	 proposed	 approach	 to	 appropriately	 capture	 variable	 dynamics	 of	 the	 performance	
measures,	we	simulated	different	rehabilitation	scenarios	under	varying	conditions	(see	Supple-
mentary	material).	As	we	aimed	at	estimating	MI	at	subtask	level,	separate	MI	models	were	used	
for	each	movement	direction	of	the	training	exercise.	

2.2.5 Performance	measures	

Previous	studies	have	shown	that	mechanisms	of	post-stroke	recovery	can	be	described	by	factors	
related	to	movement	velocity,	smoothness,	and	efficiency	(Bosecker	et	al.,	2010;	Panarese	et	al.,	
2012a,	2016).	Unlike	physiological	signals,	 these	kinematic	performance	measures	can	be	easily	
recorded	and	processed	in	real-time,	promoting	their	use	in	clinical	settings.	In	this	study,	we	se-
lected	two	continuous	performance	variables	rj	for	the	use	with	the	MI	model:	i)	the	mean	velocity	
of	a	movement	(MV)	and	ii)	the	spectral	arc	length	(SAL),	a	robust	and	consistent	measure	of	move-
ment	 smoothness	 (Balasubramanian	 et	 al.,	 2012).	 MV	 was	 calculated	 using	 the	 x,	 y,	 and	 z	
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coordinates	of	the	robotic	handle	recorded	by	the	exoskeleton	for	each	movement.	SAL	is	a	dimen-
sionless	measure	quantifying	movement	 smoothness	by	negative	values,	where	higher	absolute	
values	are	related	to	jerkier	movements.	It	was	calculated	using	the	position	of	the	robotic	handle	
recorded	 by	 the	 exoskeleton	 for	 each	movement	 and	 the	mathematical	 equations	 presented	 in	
(Balasubramanian	et	al.,	2012).	Regarding	rehabilitation	training,	values	of	SAL	close	to	zero	are	
desirable,	as	well	as	high	values	of	MV.	The	discrete	variable	nk,	instead,	was	denoted	as	success	
(SUCC)	and	defined	separately	for	the	experiments	with	the	healthy	participants	and	the	patients.	
For	the	patients,	the	value	of	SUCC	was	determined	by	the	robotic	assistance	(i.e.,	SUCC	=	1	if	the	
patient	performed	the	movement	without	robotic	assistance,	SUCC	=	0	otherwise).	On	the	other	
hand,	the	healthy	participants	were	expected	not	to	rely	on	the	robotic	assistance,	although	it	was	
also	 provided	 if	 necessary.	 This	 assumption	 was	 supported	 by	 preliminary	 experiments	 with	
healthy	subjects	(see	Supplementary	material).	Therefore,	in	order	to	have	an	equivalent	discrete	
variable	for	the	experiment	with	healthy	subjects,	we	defined	the	value	of	SUCC	based	on	the	exe-
cution	time	(i.e.,	SUCC	=	1	if	a	healthy	participant	completed	the	movement	within	the	time	thresh-
old	tth,	SUCC	=	0	otherwise).	The	time	threshold	tth	was	set	to	4	seconds	based	on	preliminary	ex-
periments	with	healthy	subjects	(see	Supplementary	material).	

2.2.6 Training	adaptation	routine	

Using	the	model	described	in	the	previous	section,	MI	was	continuously	tracked	for	each	subtask	
(i.e.,	a	movement	towards	a	specific	target)	and	used	to	implement	a	personalized	training	routine	
(Figure	2.1e).	At	the	beginning	of	the	training,	we	identified	the	subject-specific	difficulty	level	for	
each	subtask	of	the	training	exercise	based	on	an	initial	assessment	of	the	performance	measures.	
The	subtasks	were	then	ordered	by	increasing	difficulty	and	the	easiest	ones	were	selected	as	the	
initial	training	set.	During	the	training,	a	subtask	was	removed	from	the	set	of	current	training	sub-
tasks	when	the	MI	estimates	for	this	movement	exceeded	a	given	threshold	and	approached	a	plat-
eau.	Specifically,	the	probability	of	performing	the	subtask	successfully	pk,	had	to	be	greater	than	
0.5,	and	the	difference	between	two	consecutive	MI	values	(i.e.,	between	two	repetitions	of	the	same	
subtask)	had	to	be	smaller	than	5%	for	at	least	four	repetitions.	Given	the	observation	equation	for	
pk,	the	former	condition	(pk	>	0.5)	can	be	equally	expressed	in	terms	of	the	motor	improvement:	
MIk	>	0.	Once	these	conditions	were	satisfied,	the	subtask	was	replaced	by	a	more	difficult	one	from	
the	training	queue.	The	removed	subtask	was	placed	back	into	the	training	queue,	so	that	it	could	
be	reintroduced	at	a	later	stage.	

2.2.7 Statistical	analysis	

Healthy	participants	were	grouped	into	fast	(n	=	9)	and	slow	(n	=	8)	adapters	by	a	post-hoc	median	
split	based	on	the	total	number	of	replaced	targets	during	the	inversion	blocks.		

For	the	healthy	subjects,	statistical	tests	were	performed	to	support	the	following	hypotheses:	

i) The	introduction	of	the	vision	inversion	degrades	the	performance	of	fast	and	slow	
adapters	for	the	reaching	movements	

ii) Performances	 for	 reaching	movements	with	 vision	 inversion	 improve	with	 training	 for	
both	groups.	

iii) Even	after	training,	performances	for	reaching	movements	with	vision	inversion	of	both	
groups	do	not	reach	the	levels	of	the	initial	assessment	(without	inversion).	
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iv) There	is	a	performance	difference	between	fast	and	slow	adapters,	which	is	observable	in	
the	moment	the	vision	inversion	is	introduced	and	also	at	the	end	of	the	vision	inversion.	

For	the	blocks	AI,1-3,	B1	and	B5,	movements	towards	all	presented	training	targets	were	combined	
to	calculate	mean	values	 for	MV,	SAL	and	%SUCC	 for	each	healthy	subject.	Each	 individual	per-
formed	54	movements	in	AI,1-3	and	40	movements	in	B1	and	B5.	Using	the	Shapiro-Wilk	normality	
test,	mean	values	for	MV,	SAL,	%SUCC	for	fast	and	slow	adapters	were	tested	for	normal	distribu-
tion	separately.	The	data	were	not	normally	distributed.	In	order	to	support	the	first	three	claims,	
a	Friedman	test	was	performed	for	the	mean	values	of	MV,	SAL	and	%SUCC	for	the	three	time	blocks	
(i.e.,	 for	AI,1-3,	B1	and	B5).	Following	the	Friedman	tests,	post-hoc	tests	were	performed	between	
pairs	of	blocks	using	Wilcoxon	signed-rank	tests	with	Holm-Bonferroni	correction	(for	three	com-
parisons)	to	illustrate	the	differences	between	the	blocks.	Specifically,	point	i)	was	verified	by	com-
parison	between	AI,1-3	and	B1;	point	ii)	was	verified	by	comparison	between	B1	and	B5;	and	point	iii)	
was	verified	by	comparison	between	AI,1-3	and	B5.	To	verify	point	iv),	we	used	Wilcoxon	rank-sum	
tests	with	Holm-Bonferroni	correction	(for	three	comparisons)	to	compare	the	mean	values	of	MV,	
SAL	and	%SUCC	between	fast	and	slow	adapters	in	the	blocks	AI,1-3,	B1	and	B5.					

For	the	patients,	statistical	tests	were	performed	to	support	the	following	hypotheses:	

i) Motor	performance	in	the	reaching	task	improved	for	both	patients	following	the	comple-
tion	of	the	robot-aided	rehabilitation	training.	

ii) The	motor	improvement	is	retained	four	weeks	after	the	end	of	the	training	for	both	pa-
tients.	

iii) Motor	performance	right	before	the	replacement	of	a	 target	and	after	reinsertion	of	 the	
same	target	is	comparable.			

For	the	assessment	blocks,	all	movements	performed	by	the	patients	in	the	session	were	combined,	
resulting	in	36	observations	for	P01	in	each	block	and	54	observations	for	P02,	respectively.	To	
verify	the	two	first	claims,	Friedman	tests	were	performed	for	MV,	SAL	and	%SUCC	between	the	
initial	assessment	session	right	before	the	treatment	sessions	(AI,2),	the	final	assessment	session	
right	after	the	training	(AF,1),	and	the	follow-up	session	(AF,2).	Following	the	Friedman	test,	pairwise	
comparisons	were	performed,	between	these	blocks	using	Wilcoxon	signed-rank	tests	with	Holm-
Bonferroni	correction	(two	comparisons).	Specifically,	we	compared	AI,2	and	AF,1	to	verify	claim	i)	
and	AF,1	and	AF,2	to	verify	claim	ii).	Friedman	tests	and	pairwise	comparisons	were	performed	for	
each	patient	separately.	To	verify	claim	iii),	we	analyzed	the	values	of	MV,	SAL	and	%SUCC	before	
the	replacement	of	the	targets	and	after	their	reinsertion.	For	each	target,	mean	values	of	improve-
ment	were	calculated	with	respect	to	the	first	four	repetitions	in	AI,2	for	the	last	four	repetitions	
before	 replacement	 and	 for	 the	 first	 four	 repetitions	 after	 reinsertion.	We	 then	 used	Wilcoxon	
signed-rank	tests	to	analyze	differences	in	MV,	SAL	and	%SUCC	for	all	targets	before	replacement	
and	after	reinsertion.	The	analyses	were	performed	for	each	patient	separately.	The	power	of	the	
statistical	tests	was	computed	using	z-tests	and	approximations	of	normal	distributions	of	the	data.	
All	analyses	were	performed	using	MATLAB	(The	MathWorks,	Natick,	Massachusetts).	The	signifi-
cance	levels	were	set	to	alpha	<	0.05	(type	I	error)	and	beta	<	0.2	(type	II	error).		
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2.3 Results	

2.3.1 Experimental	validation	with	healthy	participants		

	
Figure	2.1	–	Experimental	setup	and	protocols.	(a)	Schematic	overview	of	experimental	setup.	(b)	Design	
of	the	three-dimensional	point-to-point	reaching	task.	Eighteen	targets	(representing	the	different	subtasks)	
are	positioned	over	a	sphere	of	19	cm	of	radius	(equally	distributed	on	the	three	planes).	The	empty	circle	
represents	the	center	of	the	workspace	(starting	position).	(c)	Experimental	protocol	for	healthy	participants.	
Experiments	were	completed	in	a	single	session	and	were	divided	into	blocks	(one	initial	assessment	block	
AI,1-3,	five	inversion	blocks	B1-5,	one	final	assessment	block	AF,1-3).	The	assessment	blocks	consisted	of	three	
runs,	each	composed	of	18	reaching	movements	(one	towards	each	target).	The	inversion	blocks	consisted	of	
five	runs,	each	composed	of	eight	reaching	movements.	The	training	targets	for	the	inversion	blocks	were	
automatically	selected	by	the	implemented	personalization	routine.	Breaks	were	allowed	between	the	blocks	
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to	prevent	fatigue.	(d)	Experimental	protocol	for	the	patient.	During	the	initial	(AI,1-2)	and	final	(AF,1-2)	assess-
ment	sessions,	all	eighteen	targets	were	presented	to	the	patient.	For	each	treatment	session	eight	training	
targets	were	selected	by	the	implemented	personalization	routine.	The	total	number	of	repetitions	performed	
in	each	session	was	determined	by	the	physical	therapist.	(e)	Schematic	overview	of	the	different	steps	per-
formed	for	the	adaptive	scheduling	of	the	reaching	task	with	vision	inversion	for	healthy	participants	and	the	
reaching	task	without	vision	inversion	for	patients.	

The	model	was	first	tested	with	17	healthy	subjects,	who	performed	a	point-to-point	reaching	task	
using	an	upper-limb	exoskeleton	(ALEx,	Figure	1a-b).	As	an	additional	constraint,	the	healthy	sub-
jects	had	to	complete	the	task	with	a	vision	inversion	implemented	in	the	blocks	B1-5	(Figure	1c).	
During	these	five	blocks,	we	tested	whether	our	model	was	capable	to	continuously	adapt	the	reach-
ing	task	according	to	the	performances	of	each	individual.	For	each	participant,	the	performance	
measures	recorded	by	the	exoskeleton	were	deployed	in	a	state-space	model	to	continuously	esti-
mate	the	motor	improvement	(MI)	for	each	direction	of	movement	independently.	When	the	MI	
values	for	a	movement	direction	passed	a	certain	threshold	and	remained	stable	for	a	given	time	
window	(see	Section	2.2.6),	the	movement	was	replaced	with	a	new	target	from	the	training	queue	
(Figure	1e).	The	latter	contained	eighteen	directions	of	movement	(i.e.,	targets)	and	it	was	gener-
ated	for	each	individual	at	the	beginning	of	the	training	based	on	a	semi-randomized	procedure	
(see	Section	2.2.3).		

Task	adaptation	at	subject	level	

Despite	a	general	improvement	for	all	participants,	the	healthy	subjects	differed	considerably	in	
their	adaptation	speed,	as	quantified	by	the	number	of	new	targets	introduced	during	the	inversion	
blocks	B1-5.	Since	this	study	was	exploratory	in	nature,	we	did	not	expect	a	priori	such	a	variety	of	
adaption	speeds.	However,	a	post-hoc	analysis	of	the	number	of	new	introduced	targets	allowed	to	
identify	two	groups	of	participants	using	a	median	split.	Specifically,	participants	were	classified	
into	fast	adapters	(n	=	9,	7.7	±	1.1	new	targets)	and	slow	adapters	(n	=	8,	2.6	±	2.0	new	targets).	This	
result	emerged	as	an	unforeseen	opportunity	 to	highlight	 the	model’s	capability	 to	differentiate	
varying	motor	adaptation	rates. As	hypothesized,	the	performance	measures	(i.e.,	movement	veloc-
ity	 (MV),	 movement	 smoothness	 (SAL)	 and	 task	 completion	 rate	 (%SUCC))	 degraded	 for	 both	
groups	after	the	introduction	of	the	vision	inversion	in	B1	(Figure	2.2a-c).	

	



	
Kinematic-based	personalization	

	 	

																														
29	

	

Figure	2.2	–	Analysis	of	performance	measures	for	the	experiment	with	healthy	participants.	Average	
values	of	mean	velocity	(MV,	panel	a),	spectral	arc	length	(SAL,	panel	b)	and	rate	of	success	(%SUCC,	panel	c)	
for	each	run	(eight	reaching	movements)	of	fast	(red)	and	slow	(grey)	adapters.	Measures	were	averaged	for	
all	targets	presented	during	a	run	and	for	all	subjects	of	a	group.	Shaded	areas	depict	standard	error	of	the	
mean	(sem).	Vertical	bars	(panel	d)	depict	the	percentage	of	subjects	in	each	group	for	which	a	target	was	
replaced	in	B3-5	or	was	not	replaced	at	all.	No	targets	were	replaced	in	and	B1-2	due	to	lack	of	data	needed	for	
proper	estimation	of	motor	improvement.		

Participants	in	both	groups	gradually	improved	from	B1	to	B5,	although	they	did	not	reach	their	
initial	motor	performances	(i.e.,	performances	during	AI,1-3).	Friedman	tests	confirmed	the	differ-
ences	between	the	blocks	AI,1-3,	B1	and	B5,	for	both	groups	and	for	all	performance	measures	(Table	
2.2).	Post-hoc	analyses	were	performed	using	Wilcoxon	signed-rank	tests	with	Holm-Bonferroni	
corrections	for	three	comparisons.	The	analyses	confirmed	pairwise	differences	between	different	
pairs	of	blocks	(AI,1-3	and	B1,	B1	and	B5,	AI,1-3	and	B5,)	within	both	groups	and	for	all	performance	
measures,	except	for	MV	between	AI,1-3	and	B5.	When	introduced	to	the	vision	inversion	in	B1,	fast	
adapters	outperformed	slow	adapters	as	measured	by	all	performance	measures.	A	statistical	com-
parison	of	the	performance	measures	in	AI,1-3	between	the	two	groups	(Table	2.3)	showed	that	there	
were	no	statistically	significant	differences	for	SAL	and	%SUCC	(statistical	power	of	0.99	and	0.85	
respectively),	while	no	conclusions	could	be	drawn	 for	MV	(statistical	power	0.42).	The	perfor-
mance	difference	was	still	observable	in	B5,	the	last	block	with	vision	inversion.		
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Table	2.2	–	Within-group	comparisons	of	healthy	subjects	at	three	different	time	points	

	 Performance	measures	(mean	±	stand-
ard	error	of	the	mean,	sem)	 Friedman’s	test	

Wilcoxon	signed-rank	
test	(Holm-Bonferroni	
correction	for	n	=	3)	

	 AI,1-3	 B1	
(inversion)	

B5	
(inversion)	

Chi-
Square	 p	 pcorr	

AI,1-3-B1	
pcorr	
B1-B5	

pcorr	
AI,1-3-B5	

Fast	Adapters	(n	=	9)	 	 	 	 	 	 	 	

MV	
(m/s)	 0.16	±	0.01		 0.13	±	0.01	 0.15	±	0.01	 10.89	 0.0043	 0.0156	 0.0117	 0.3594	

SAL		 -2.81	±	0.07	 -3.77	±	0.12	 -3.09	±	0.19	 16.22	 0.0003	 0.0117	 0.0078	 0.0117	

%SUCC	 97.1	±	1.1	 55.8	±	3.4	 85.4	±	2.8	 18.0	 0.0001	 0.0117	 0.0117	 0.0117	

Slow	Adapters	(n	=	8)	 	 	 	 	 	 	 	

MV	
(m/s)	 0.17	±	0.01		 0.10	±	0.01	 0.12	±	0.01	 13.0	 0.0015	 0.0156	 0.0156	 0.1094	

SAL		 -3.13	±	0.10	 -6.39	±	0.34	 -3.82	±	0.11	 16.0	 0.0003	 0.0234	 0.0234	 0.0234	

%SUCC	 94.7	±	1.5	 16.3	±	3.9	 57.0	±	5.6	 16.0	 0.0003	 0.0234	 0.0234	 0.0234	

 

Task	adaptation	at	subtask	level	

We	then	analyzed	which	initial	training	targets	were	replaced	by	the	algorithm	during	the	inversion	
blocks	and	when	this	replacement	occurred	(Figure	2.2d).	The	insertion	of	new	targets	did	not	start	
before	B3,	as	in	B1-2	the	amount	of	data	for	each	training	target	was	not	sufficient	to	obtain	proper	
MI	estimations	(see	section	2.2.4).	Overall,	movements	towards	the	off-axis	targets	(Figure	2.1b)	
seemed	to	be	more	difficult:	the	algorithm	replaced	these	targets	for	13%	of	the	slow	adapters	and	
for	77%	of	the	fast	adapters.	The	on-axis	targets	instead,	were	replaced	for	38%	of	the	slow	adapt-
ers	and	87%	of	the	fast	adapters.	However,	we	also	observed	differences	within	the	on-axis	targets:	
targets	3,	5	and	13	were	replaced	for	13%	of	the	slow	adapters	and	for	74%	of	the	fast	adapters,	
while	the	replacement	for	targets	1,	7	and	10	was	achieved	by	63%	of	the	slow	adapters	and	by	
100%	of	the	fast	adapters.	Following	this	analysis,	we	classified	the	targets	into	easy	(1,	7	and	10)	
and	difficult	(3,	5,	13	and	off-axis)	subsets.	The	results	suggested	that	despite	the	differences	in	the	
overall	performance,	the	subsets	of	easy	and	difficult	targets	appeared	to	be	similar	for	both	groups.	
Nevertheless,	we	observed	an	earlier	replacement	of	the	easy	targets	for	the	fast	adapters:	56%	of	
the	easy	targets	were	replaced	in	B3	(4%	for	slow	adapters),	33%	were	replaced	in	B4	(38%	for	
slow	adapters),	and	11%	were	replaced	in	B5	(21%	for	slow	adapters).	In	contrast,	for	the	difficult	
targets,	the	fast	adapters	also	needed	more	time	to	achieve	a	replacement	(if	they	were	replaced	
eventually):	26%	of	the	difficult	targets	were	replaced	in	B3	(3%	for	slow	adapters),	35%	were	re-
placed	in	B4	(5%	for	slow	adapters)	and	14%	were	replaced	in	B5	(5%	for	slow	adapters).		

	

	



	
Kinematic-based	personalization	

	 	

																														
31	

Table	2.3	–	Between-group	comparisons	of	healthy	subjects	at	three	different	time	points	

	 Fast	Adapters		
(n	=	9)	

Slow	Adapters		
(n	=	8)	

Wilcoxon	rank-sum	test	
(Holm-Bonferroni	
correction	for	n	=	3)	

Performance	measures	in	AI,1-3	(mean	±	sem)	 pcorr	

MV	(m/s)	 0.16	±	0.002		 0.18	±	0.003		 0.2359	

SAL		 -2.69	±	0.03	 -3.03	±	0.04	 0.0619	

%SUCC	 99.3	±	0.5	 97.3	±	1.0	 0.2973	

Performance	measures	in	B1	(mean	±	sem)	 pcorr	

MV	(m/s)	 0.11	±	0.002	 0.10	±	0.002	 0.0360	

SAL		 -3.77	±	0.06	 -6.34	±	0.18	 0.0002	

%SUCC	 55.6	±	2.9	 16.0	±	2.3	 0.0002	

Performance	measures	in	B5	(mean	±	sem)	 pcorr	

MV	(m/s)	 0.15	±	0.002	 0.12	±	0.002	 0.0360	

SAL		 -3.09	±	0.04	 -3.82	±	0.07	 0.0002	

%SUCC	 85.4	±	2.1	 57.3	±	3.1	 0.0002	
 

To	illustrate	the	behavior	of	 individual	participants	at	subtask	 level,	we	present	the	data	of	one	
exemplary	subject	from	each	group	for	the	movements	towards	the	same	two	targets	(Figure	2.3).	
We	selected	one	target	from	the	subset	of	the	easy	(target	10)	and	one	target	from	the	subset	of	the	
difficult	 (target	13)	 targets.	The	examples	 illustrate	 the	different	 adaptation	 rates	observed	be-
tween	 subjects	 and	 targets.	 For	 the	easy	 target,	 the	performance	measures	 for	 the	 fast	 adapter	
quickly	improved	and	approached	a	plateau.	The	slow	adapter,	 instead,	showed	difficulties	until	
the	fourth	repetition,	reflected	particularly	by	SAL	and	SUCC.	Nonetheless,	starting	from	the	fifth	
repetition,	they	also	managed	to	adapt	the	movements	to	the	visual	inversion	and	finally	reached	
the	conditions	for	the	target	replacement	at	the	twelfth	repetition.	The	difficult	target	instead,	ap-
peared	to	be	more	challenging	for	both	subjects.	For	this	target,	the	fast	adapter	showed	an	im-
provement	in	all	performance	measures	only	after	the	tenth	repetition	and	finally	reached	the	con-
ditions	for	the	target	replacement	after	eighteen	repetitions.	In	contrast,	the	slow	adapter	did	not	
manage	to	satisfy	the	conditions	for	a	replacement.	Despite	a	trend	of	improvement,	the	motor	per-
formance	was	not	yet	sufficient	to	trigger	a	replacement	of	the	target.	
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Figure	2.3	–	Examples	of	MI	estimates	and	performance	measures	at	subtask	level.	Data	is	presented	for	a	
fast	adapter	and	a	slow	adapter	for	the	same	two	targets.	Repetitions	for	each	target	are	concatenated	for	all	
inversion	blocks	and	presented	in	chronological	order.	Data	for	mean	velocity	(MV),	spectral	arc	length	(SAL)	
and	MI	were	 low	pass	 filtered	for	visualization	purposes	(raw	data	shown	in	 light	red/grey).	Dotted	 lines	
depict	one	of	the	necessary	conditions	(MI	>	0)	for	triggering	a	target	replacement.	Green	areas	indicate	the	
time	span	where	the	model	detected	a	performance	plateau	and	triggered	a	target	replacement.	Estimated	
model	parameters	(αj,	βj)	for	each	target	and	subject	are	presented	next	to	the	corresponding	MI	curves	(a	
summary	and	analysis	on	the	model	parameters	can	be	found	in	the	Supplementary	material).	

2.3.2 Pilot	test	with	subacute	stroke	patients	

To	provide	further	evidence	about	the	feasibility	of	the	presented	approach	in	clinical	settings,	we	
finally	performed	a	pilot	test	with	two	subacute	stroke	patients,	who	completed	four	weeks	of	per-
sonalized	robot-aided	 training	complementing	standard	rehabilitation	 therapy	 (Figure	2.1d,	 see	
Section	2.2.1	for	details).	During	the	robot-aided	training,	the	patients	performed	the	reaching	tasks	
without	vision	inversion	and	the	set	of	targets	was	automatically	adapted	based	on	a	continuous	
evaluation	of	the	MI	estimates	for	each	training	target.		

Based	on	the	initial	assessment	of	their	scores	on	the	Fugl-Meyer	assessment	for	upper	extremities	
(FMA-UE),	we	observed	a	remarkable	difference	in	the	degree	of	motor	impairment	of	patient	P01	
(22	points	 at	AI,2,	 Figure	2.4a)	 compared	 to	patient	P02	 (59	points	 at	AI,2).	 This	 difference	was	
equally	reflected	by	 the	number	of	movements	(nMov)	performed	 in	 the	 initial	assessment	ses-
sions,	which	was	notably	lower	for	P01	(31	movements	compared	to	69	movements	for	P02	at	AI,2).	
The	different	degrees	of	initial	impairment	allowed	us	to	evaluate	the	feasibility	of	our	approach	
for	two	patients	exhibiting	disparate	initial	motor	abilities.		
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Following	the	training,	both	patients	showed	improvements	for	MV,	SAL,	and	%SUCC	(Figure	2.4a).	
Comparing	the	performances	between	the	second	initial	assessment	session	AI,2	and	the	first	final	
assessment	session	AF,1	we	 found	 that	both	patients	 improved	on	all	measures	(Table	2.4).	One	
month	after	the	training,	both	patients	performed	a	follow-up	assessment	AF,2.	During	this	session	
we	observed	that	both	patients	managed	to	retain	the	improvements	observed	in	AF,1.	These	differ-
ences	were	confirmed	by	Friedman	tests	between	the	three	sessions	(AI,2,	AF,1,	and	AF,2)	for	both	
patients,	except	for	the	%SUCC	measure	for	P02.	This	can	be	related	to	the	fact	that	the	values	for	
%SUCC	for	patient	P02	already	started	at	a	very	high	level	(98.6%	at	AI,2)	and	thus	left	smaller	room	
for	 improvement.	Post-hoc	Wilcoxon	 tests	with	Bonferroni	 correction	 for	multiple	 comparisons	
(i.e.,	 two	pairwise	 comparisons),	 confirmed	 the	differences	 between	AI,2	and	AF,1	 for	 the	perfor-
mance	measures	for	both	patients.	For	comparisons	between	AF,1	and	AF,2	(i.e.,	differences	between	
end	of	treatment	and	follow-up	one	month	later),	the	only	statistically	significant	difference	was	
found	for	MV	values	of	P01.	Though	no	clear	differences	could	be	observed	between	AF,1	and	AF,2	for	
the	other	measures,	no	further	conclusions	can	be	drawn	due	to	the	low	statistical	power	of	the	
tests	(smaller	than	0.8).	

Table	2.4	–	Performance	measures	of	the	two	stroke	patients	(P01	and	P02)	before	and	after	the	treatment	sessions		

	 Performance	measures	by	session		
(mean	±	sem)	 Friedman’s	test	

Wilcoxon	rank-sum	test	
(Holm-Bonferroni	
correction	for	n	=	2)	

	 AI,2	 AF,1	 AF,2	 Chi-
Square	 p-value	 pcorr	

AI,2-AF,1	
pcorr	
AI,2-AF,2	

pcorr	
AF,1-AF,2	

P01	 	 	 	 	 	 	 	 	

MV	
(m/s)	 0.08	±	0.004		 0.11	±	0.005	 0.13	±	0.005	 32.44	 9.01e-08	 5.89e-04	 5.89e-04	 0.015	

SAL		 -6.92	±	0.65	 -5.31	±	0.26	 -5.15	±	0.23	 6.33	 0.041	 0.035	 0.031	 0.892	

%SUCC	 77.8	±	7.3	 100	±	0.0	 94.4	±	5.6	 10.18	 0.006	 0.031	 0.033	 >	0.99	

P02	 	 	 	 	 	 	 	 	

MV	
(m/s)	 0.09	±	0.003		 0.12	±	0.002	 0.11	±	0.004	 18.78	 8.36e-05	 0.001	 0.002	 0.586	

SAL		 -5.49	±	0.29	 -4.04	±	0.21	 -3.99	±	0.19	 16.33	 0.0003	 0.004	 0.003	 0.844	

%SUCC	 98.6	±	1.4	 100	±	0.0	 100	±	0.0	 4.0	 0.1353	 >	0.99	 >	0.99	 >	0.99	

Along	with	 the	 improvements	 of	 the	 performance	measures,	we	 also	 observed	 higher	 FMA-UE	
scores	for	both	patients	following	the	training.	In	that	respect,	we	observed	a	lower	increase	for	
patient	P02	(+3	points	between	AI,2	and	AF,1)	compared	to	patient	P01	(+8	points).	Both	patients	
further	improved	their	FMA-UE	scores	when	assessed	in	the	follow-up	session	AF,2.	Finally,	we	also	
observed	an	increase	in	the	number	of	performed	movements	per	session	(nMov)	for	both	patients.	
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As	for	this	measurement,	patient	P02	(+40	movements	at	AF,1	and	+76	movements	at	AF,2	compared	
to	AI,2)	improved	more	than	patient	P01	(+23	movements	at	both	AF,1	and	AF,2	compared	to	AI,2).		

	

Figure	2.4	–	Summary	of	the	results	from	the	pilot	test	with	two	subacute	stroke	patients.	(a)	The	first	three	
rows	show	the	mean	values	for	mean	velocity	(MV),	spectral	arc	length	(SAL)	and	rate	of	success	(%SUCC)	for	
each	assessment	and	treatment	session	of	both	patients.	Measures	were	averaged	for	all	targets	presented	
during	a	session,	shaded	areas	depict	standard	error	of	the	mean	(sem).	The	fourth	row	shows	number	of	
movements	performed	by	the	patients	in	each	session.	The	fifth	row	shows	the	scores	on	the	Fugl-Meyer	scale	
for	upper	extremities	(FMA-UE)	for	initial	(AI,1-2)	and	final	(AF,1-2)	assessment	sessions.	The	dotted	line	indi-
cates	the	maximum	achievable	score	for	FMA-UE	(66	points).	(b)	Summary	of	the	training	targets	presented	
to	the	patients	in	each	treatment	session.	Targets	are	listed	by	the	order	as	presented	to	the	patients	(first	
eight	targets	from	the	top	are	the	initial	training	set).	(c)	Analysis	of	performance	measures	for	two	different	
time	points	(before	replacement	and	after	reinsertion).	Values	are	compared	between	the	 last	 four	move-
ments	towards	a	training	target	before	its	replacement	and	the	first	four	movements	towards	the	target	after	
it	has	been	reinserted	for	training.	The	data	shows	the	mean	improvement	for	MV,	SAL	and	%SUCC	averaged	
for	all	targets	at	both	time	points.	Improvements	were	calculated	with	respect	to	the	mean	values	obtained	
from	the	first	four	movements	towards	each	target	in	AI,2.	Error	bars	depict	standard	error	of	the	mean	(sem).	
P-values	of	Wilcoxon	signed-rank	tests	are	reported	above	the	bars.	

Both	patients	progressed	during	the	rehabilitation	training	and	eventually	achieved	a	replacement	
of	all	eighteen	training	targets.	However,	the	temporal	dynamics	of	these	replacements	appeared	
to	be	strongly	different	(Figure	2.4b).	In	line	with	the	lower	degree	of	motor	impairments	observed	
from	the	performance	measures	and	the	FMA-UE	scores,	patient	P02	achieved	a	replacement	of	all	
training	targets	after	only	two	training	sessions.	Patient	P01,	instead,	needed	considerably	more	
time	to	achieve	the	replacement	of	all	eighteen	targets.	While	some	of	the	initial	training	targets	
(i.e.	targets	9	and	12)	were	already	replaced	after	two	treatment	sessions,	other	targets	(i.e.	targets	
1,	7	and	15)	needed	more	than	4	training	sessions	to	trigger	a	replacement.	It	was	only	after	eleven	
treatment	sessions	that	all	eighteen	training	targets	were	presented	to	patient	P01.	These	observa-
tions	emphasized	the	ability	of	our	model	to	differentiate	between	both	subject-	and	subtask-spe-
cific	time	courses	of	motor	improvement,	also	in	a	real	clinical	setting.	The	examples	illustrate	how	
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the	model	adapted	the	training	schedules	according	to	the	patients’	 individual	abilities,	granting	
patient	P01	enough	time	to	practice	certain	movements,	and	at	the	same	time,	responding	to	the	
fast	recovery	of	patient	P02	by	continuously	introducing	new	training	targets.					

Upon	completion	of	the	full	set	of	training	targets	(i.e.,	when	all	targets	had	been	replaced	at	least	
once),	the	therapy	was	carried	on	by	reintroducing	all	targets	and	presenting	them	alternatingly	in	
the	order	in	which	they	were	replaced.	This	allowed	us	to	assess	whether	the	patients’	performance	
was	retained	once	a	training	target	was	reintroduced,	so	as	to	validate	that	the	replacements	or-
chestrated	by	the	algorithm	had	occurred	when	the	movements	towards	the	targets	had	actually	
recovered.	In	order	to	do	so,	we	compared	the	mean	values	for	MV,	SAL,	and	%SUCC	from	the	last	
four	repetitions	of	a	movement	before	a	target	was	replaced	by	the	algorithm	with	the	mean	values	
of	the	four	repetitions	of	the	same	movement	after	the	first	reinsertion	as	a	training	target	(Figure	
2.4c).	Both	values	are	calculated	with	respect	to	the	mean	values	obtained	from	the	first	initial	four	
repetitions	of	the	movements	towards	a	training	target.	The	overall	analysis	for	all	eighteen	targets	
showed	that	compared	to	the	initial	movements	towards	the	targets,	all	values	for	the	three	perfor-
mance	measures	were	higher	right	before	the	targets	were	replaced	by	the	algorithm.	Moreover,	
both	patients	retained	the	improvements	gained	during	the	training	or	even	further	improved	their	
performance	for	a	movement	when	the	corresponding	training	target	was	reintroduced	at	a	later	
stage.	Using	a	Wilcoxon	signed-rank	test,	we	did	not	find	statistically	significant	differences	(p	>	
0.24)	for	any	value	of	the	three	performance	measures	of	both	patients	between	the	two	time	points	
(i.e.,	before	replacement	and	after	reinsertion).	However,	no	further	conclusions	can	be	drawn	due	
to	the	low	statistical	power	of	the	tests	(smaller	than	0.8).	Nevertheless,	the	results	indicate	that	
the	algorithm	only	replaced	training	targets	when	motor	performance	had	stably	 improved	and	
that	patients’	performances	did	not	degrade	when	 training	 targets	were	reintroduced	at	a	 later	
stage.		

2.4 Discussion	

In	this	study,	we	demonstrated	the	feasibility	of	a	model-based	approach	for	the	personalization	of	
robotic	 rehabilitation	 training	 based	 on	 motor	 performance	 during	 three-dimensional	 training	
tasks.	Differently	from	previous	work	in	this	field,	the	model	was	designed	to	allow	estimation	of	
motor	improvement	(MI)	in	subacute	stroke	patients,	allowing	to	capitalize	on	the	enhanced	po-
tential	for	plasticity	in	the	early	stage	after	the	injury	(Biernaskie,	2004;	Cramer,	2008).	A	first	ex-
perimental	 validation	 in	 healthy	 subjects	 demonstrated	 the	 ability	 of	 our	model	 to	 capture	MI	
linked	to	visual	motor	adaptation.	The	results	were	further	validated	by	a	clinical	pilot	test	with	
two	subacute	stroke	patients,	in	which	motor	recovery	was	tracked	and	harnessed	by	our	adaptive	
personalization	routine.	

2.4.1 Direction	 dependent	 training	 adaptation	 for	 three-dimensional	 reaching		
movements	

We	first	sought	to	validate	the	model’s	ability	to	continuously	track	MI	and	dynamically	adapt	the	
training	task	under	controlled	conditions.	To	this	end,	we	tested	our	approach	in	a	group	of	seven-
teen	healthy	subjects.	In	order	to	mimic	the	motor	deficits	observed	in	stroke	patients,	we	intro-
duced	a	manipulation	of	the	visual	 feedback,	by	 inverting	the	directions	of	the	3D	environment.	
While	the	physiological	mechanisms	underlying	motor	adaptation	and	motor	recovery	are	most	
likely	 not	 equivalent,	 the	 main	 objective	 of	 this	 experimental	 design	 was	 merely	 to	 obtain	 an	
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adaptation	curve	that	resembles	post-stroke	motor	recovery,	on	which	we	could	validate	the	effi-
cacy	of	our	model.	Our	results	suggest	that	motor	adaptation	to	vision	inversions	in	healthy	subjects	
may	exhibit	similar	temporal	dynamics	for	the	selected	performance	measures	as	previously	ob-
served	for	stroke	patients	undergoing	robot-aided	rehabilitation	(Panarese	et	al.,	2012a,	2016).	In-
deed,	when	introduced	to	the	vision	inversion	(during	the	blocks	B1	to	B5),	the	performance	of	the	
participants	dropped	drastically	and	gradually	improved	throughout	the	training	(Figure	2.2). 

During	the	experiments,	the	MI	model	tracked	when	a	movement	towards	a	target	was	performed	
efficiently	despite the	vision	inversion,	and	dynamically	adjusted	the	training	by	replacing	this	tar-
get	with	a	more	difficult	one	from	the	training	queue.	Based	on	the	number	of	new	inserted	training	
targets,	we	divided	the	healthy	population	into	two	separate	clusters:	fast	and	slow	adapters.	The	
analysis	on	the	performance	measures	showed	that	the	fast	adapters	learned	to	cope	with	the	ma-
nipulated	environment	very	quickly,	while	the	slow	adapters	needed	considerably	more	time	to	
reach	similar	performances	(Figure	2.3).	The	MI	model	was	able	to	capture	these	individual	perfor-
mance	differences	for	different	movement	directions	and	introduced	new	training	targets	in	a	well-
timed	manner,	i.e.,	targets	were	replaced	when	subjects	reached	a	performance	plateau.	The	ad-
vantages	of	monitoring	motor	improvement	at	subtask	level	were	supported	by	additional	post-
hoc	analyses	(see	Supplementary	material).	The	analyses	illustrated	that	if	motor	improvements	
were	estimated	for	the	reaching	task	overall	(i.e.,	chronologically	combining	the	recorded	data	for	
movements	in	all	directions),	improvements	for	individual	subtasks	would	have	been	obscured	by	
inferior	performances	of	other,	more	difficult,	subtasks.	Moreover,	the	detection	of	performance	
plateaus	would	not	correspond	to	the	actual	performances	for	each	subtask.	As	a	result,	some	sub-
tasks	would	be	kept	too	long,	while	others	would	be	replaced	too	soon,	potentially	leading	to	a	less	
efficient	 training	schedule.	Likewise,	 individual	 training	progressions	 for	specific	 subtasks	were	
also	observed	for	the	two	stroke	patients	participating	in	this	study	(Figure	2.4b).	We	therefore,	
believe	that	the	current	study	further	supports	the	approach	to	specifically	consider	MI	estimation	
at	subtask	level,	as	it	has	been	proposed	in	our	previous	work	(Panarese	et	al.,	2012a).	The	results	
of	the	current	study	suggest	that	this	subtask	dependency	does	not	only	apply	to	planar	movements,	
but	also	extends	to	three-dimensional	movements.	In	order	to	optimize	robotic	treatment	proto-
cols,	future	studies	should	therefore	specifically	aim	at	evaluating	motor	performance	at	subtask	
level. 

When	comparing	the	performances	 for	each	subtask,	we	observed	that	off-axis	 targets	were	re-
placed	less	often	than	on-axis	targets	and	they,	thus,	seemed	to	be	more	difficult	(Figure	2.2d).	This	
finding	appears	to	be	in	line	with	results	from	similar	studies	involving	vision	inversion	in	planar	
setups	(Cunningham	and	Pavel,	1991;	Werner	and	Bock,	2010).	These	studies	demonstrated	that	
participants	showed	better	performance	for	reaching	movements	lying	on	the	axis	perpendicular	
to	 the	 inversion.	The	present	study	extends	 these	 insights	 to	 three-dimensional	reaching	move-
ments.	 However,	 the	 results	 showed	 that	 there	were	 also	 remarkable	 performance	 differences	
among	the	on-axis	targets.	An	analysis	on	the	replaced	training	targets	demonstrated	that	the	sub-
sets	of	easy	(1,	7	and	10)	and	difficult	(3,	5,	13	and	off-axis)	targets	appeared	to	be	similar	for	both	
types	of	adapters.	Easy	targets	were	mostly	replaced	earlier	and	more	frequently	than	the	difficult	
ones	(Figure	2.2d).	It	could	be	that	the	medial	and	proximal	movements	towards	targets	7	and	10	
tended	to	be	easier	for	the	participants.	However,	since	these	tendencies	were	not	observed	in	the	
patients	or	the	healthy	subjects	involved	in	the	preliminary	study	(see	Supplementary	material),	
we	presume	that	the	performance	differences	for	the	on-axis	targets	could	be	linked	to	the	visually	
inverted	environment.	Previous	studies	have	investigated	vision	inversion	in	reaching	movements	
and	suggested	that	the	adaptation	to	such	manipulations	involves	a	complex	mixture	of	implicit	and	
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cognitive	processes	(Werner	and	Bock,	2010;	Lillicrap	et	al.,	2013).	For	instance,	it	has	been	argued	
that	for	reaching	tasks	involving	left-right	reversal,	new	control	policies	need	to	be	acquired	by	the	
motor	system,	as	opposed	to	visual	rotations	(i.e.,	rotating	the	visual	feedback	around	the	move-
ment	origin	 in	one	direction	by	 less	 than	90°),	which	only	require	a	recalibration	of	an	existing	
control	policy	(Telgen	et	al.,	2014).	The	implicit	adaptation	to	such	inversions	has	previously	been	
assessed	by	aftereffects	(Wilterson	and	Taylor,	2019).	In	the	current	study,	we	have	observed	that	
especially	fast	adapters	had	more	initial	difficulties	in	readapting	their	movements	when	the	vision	
inversion	was	removed	(between	B5	and	AF,1).	Although	this	was	mainly	observed	for	a	few	initial	
movements	after	removing	the	inversion,	it	could	suggest	that	fast	adapters	were	more	likely	to	
learn	the	new	control	policy	through	implicit	adaptation	and	therefore,	were	more	successful	 in	
completing	the	inverted	reaching	task.	However,	to	this	day,	these	phenomena	have	only	been	in-
vestigated	for	planar	reaching	movements,	mostly	involving	a	one-dimensional	inversion	(mirror-
reversal).	Further	research	would	be	necessary	to	examine	these	phenomena	in	three-dimensional	
reaching	movements	involving	multi-dimensional	inversions.	In	this	context,	it	would	also	be	inter-
esting	to	determine	why	the	reaching	movements	 towards	some	on-axis	 targets	appeared	to	be	
more	challenging	in	the	inverted	environment,	independent	from	the	individual	adaptation	speed	
of	the	subjects.		

Finally,	we	would	also	like	to	raise	the	question	of	motivational	implications	resulting	from	the	au-
tomated	 training	 adaption.	 From	 informal	 observations	made	 during	 the	 experiments	with	 the	
healthy	subjects,	we	noticed	that	many	participants	showed	increased	motivation	and	verbalized	
satisfaction	when	new	training	targets	were	introduced.	Motivation	is	known	to	be	a	crucial	factor	
in	rehabilitation	and	finding	ways	to	maintain	and	improve	it	has	always	been	a	matter	of	interest	
(Maclean	et	al.,	2000,	2002;	Colombo	et	al.,	2007).	With	regard	to	this	issue,	it	seems	like	the	auto-
mated	character	of	our	approach,	enabling	dynamic	and	well-timed	task	adaptation,	may	have	pos-
itive	impacts	on	training	engagement.		

2.4.2 Personalization	of	rehabilitation	therapy	

The	potential	of	our	implementation	was	finally	evaluated	in	a	clinical	pilot	test	with	two	subacute	
stroke	patients,	who	 completed	 four	weeks	 of	 robot-aided	 rehabilitation	 training	 following	 our	
adaptive	approach.	Based	on	the	devised	method,	the	training	of	these	two	patients	was	continu-
ously	monitored and	the	point-to-point	reaching	task	was	adapted	in	real-time	to	match	their	level	
of	ability. 

The	results	obtained	from	these	two	patients	suggested	that	in	general,	the	selected	performance	
measures	(MV,	SAL	and	SUCC)	appeared	to	be	suitable	for	the	estimation	of	motor	improvement	in	
subacute	stroke	patients.	Moreover,	the	temporal	dynamics	of	the	performance	measures	(Figure	
2.4a)	appeared	to	be	similar	to	the	ones	previously	reported	for	chronic	stroke	patients	(Panarese	
et	al.,	2012a,	2016).	In	past	studies,	the	selected	measures	have	been	shown	to	correlate	with	clin-
ical	scores	(Bosecker	et	al.,	2010)	and	they	have	been	linked	to	distinct	post-stroke	deficits	and	
mechanisms	of	recovery	(Nordin	et	al.,	2014;	Panarese	et	al.,	2016).	Specifically,	the	percentage	of	
accomplished	tasks	was	mostly	associated	to	paresis	(i.e.,	the	decreased	ability	to	volitionally	mod-
ulate	motor	units	activation	(Lang	et	al.,	2013)),	whereas	movement	velocity	and	smoothness	were	
related	to	an	abnormal	muscle	tone	(Nordin	et	al.,	2014).	Although	continuous	adaptation	of	the	
difficulty	 for	reaching	tasks	has	been	explored	before	(Metzger	et	al.,	2014;	Octavia	and	Coninx,	
2014;	Grimm	et	 al.,	 2016),	 the	decisions	 to	 change	 task	difficulty	were	mainly	based	on	one	or	
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multiple	task	completion	variables,	measuring	whether	the	patient	was	able	to	complete	tasks	or	
not.	The	present	study	extends	the	decision	rules	by	additionally	integrating	two	variables	related	
to	movement	kinematics,	namely	movement	velocity	and	smoothness,	which	also	characterized	the	
neuro-biomechanical	status	of	the	patients	(Murphy	et	al.,	2011).	Nevertheless,	some	tuning	of	the	
parameters	could	be	considered	to	further	enhance	the	efficacy	of	the	motor	improvement	model.	
For	instance,	we	observed	that	the	patient	with	a	lower	degree	of	initial	impairments	(P02)	barely	
made	use	of	the	robotic	assistance	provided	by	the	exoskeleton,	leading	to	almost	no	variance	in	
the	variable	SUCC.	In	this	regard,	future	studies	may	explore	other	performance	measures	and	mod-
els,	 to	achieve	a	more	exhaustive	evaluation	of	 the	patients’	 status.	 In	 this	 context,	 the	use	of	 a	
model-based	approach,	such	as	the	one	proposed	in	the	current	work,	can	facilitate	the	integration	
of	other	measures	which	have	been	explored	before,	such	as	for	example	muscle	activity	(Krebs	et	
al.,	2003)	or	psychophysiological	signals	(Badesa	et	al.,	2016).		

The	results	for	the	two	patients	showed	as	well	that	targets	were	replaced	by	the	model	at	appro-
priate	moments,	i.e.,	when	the	patients’	performance	had	improved	and	started	to	saturate.	Indeed,	
it	could	be	argued	that	a	replacement	of	a	subtask	occurring	too	soon	would	have	led	to	degraded	
motor	performances	in	further	evaluations.	However,	motor	performances	of	both	patients	were	
retained	when	targets	were	reintroduced	(Figure	2.4c),	indicating	that	the	estimated	recovery	was	
preserved.	Nevertheless,	other	methods	for	task	scheduling	could	be	introduced	to	further	optimize	
the	training	progression.	Indeed,	previous	work	has	suggested	that	effective	scheduling	of	multi-
task	motor	learning	should	be	based	on	prediction	of	long-term	gains	rather	than	on	current	per-
formance	changes	(Lee	et	al.,	2016).	Along	these	lines,	we	have	implemented	the	time	window	of	
the	last	four	repetitions,	which	are	always	taken	into	account	for	the	evaluation	of	motor	perfor-
mance.	However,	it	should	be	acknowledged	that	other,	more	sophisticated,	methods	to	adapt	the	
schedules	may	 lead	 to	higher	 gains	 in	 rehabilitation	 and	are	 therefore	worth	 exploring.	 For	 in-
stance,	task	difficulty	could	be	increased	by	introducing	new	subtasks	depending	on	more	complex	
movements	within	the	same	workspace,	in	order	to	exploit	generalization	effects	(Dipietro	et	al.,	
2007,	2009).	Another	possible	approach	could	be	a	semi-automatic	implementation	of	the	training	
adaptation,	where	the	physical	therapists	remains	in	charge	of	the	task	adaptation,	in	order	to	ben-
efit	from	their	expertise,	while	in	parallel	harnessing	the	real-time	MI	estimates	provided	by	the	
model	as	a	decision	support.	Such	solutions	could	further	improve	engagement	and	enhance	the	
rehabilitative	treatment	by	providing	training	tasks	specifically	adapted	to	the	ability	level	of	the	
patient.		 

The	retention	of	improvements	at	target	reinsertion	together	with	the	increase	in	FMA-UE	scores	
for	both	patients	are	promising	indications	for	the	usability	and	efficacy	of	the	presented	approach	
in	clinical	settings.	Nevertheless,	it	has	to	be	acknowledged,	that	it	is	also	known	that	subacute	pa-
tients	often	report	motor	improvements	even	with	limited	training	(Kwakkel	et	al.,	2006).	There-
fore,	at	the	current	state	of	this	research,	it	cannot	be	presumed	that	improvements	were	merely	
elicited	by	the	adaptive	robot-aided	therapy.	However,	several	pieces	of	evidence	suggested	that	
the	period	immediately	after	the	lesion,	normally	characterized	by	spontaneous	neurological	re-
covery,	represents	the	critical	time	window	in	which	the	delivery	of	high	dose	and	intense	neu-
rorehabilitation	can	elicit	 crucial	 improvements	 in	 functional	 tasks	 (Murphy	and	Corbett,	2009;	
Zeiler	and	Krakauer,	2013).	Therefore,	more	and	more	robot-aided	rehabilitation	trainings	should	
be	targeting	subacute	stroke	populations.	In	this	context,	our	results	illustrate	the	feasibility	of	us-
ing	a	personalization	method	to	continuously	monitor	the	status	of	both	mild	and	severely	impaired	
subacute	stroke	patients	and	to	automatically	adapt	their	motor	retraining	within	practice	sessions	
by	continuously	challenging	their	neuromuscular	system.		
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2.4.3 Limitations	of	the	study	

Although	the	results	of	this	study	suggest	that	the	proposed	approach	might	be	interesting	for	clin-
ical	applications,	the	limited	sample	size	as	well	as	the	lack	of	an	experimental	control	group	re-
ceiving	standardized	robotic	therapy,	constrain	the	generalizability	of	the	reported	results.	Yet	clin-
ical	efficacy	was	not	probed	in	this	work.	Moreover,	the	very	different	severities	of	initial	impair-
ment	observed	 in	 the	 two	patients	of	 the	pilot	 study	do	not	 allow	 for	 a	 controlled	 comparison.	
Therefore,	 further	 studies	 including	 larger	 cohorts	 of	 participants	would	 be	 necessary	 to	 draw	
meaningful	conclusions	about	the	clinical	relevance	of	the	presented	approach.	Yet	the	results	ob-
tained	from	the	present	study	may	provide	a	useful	basis	for	the	design	and	implementation	of	such	
clinical	studies.	In	this	context,	it	would	be	particularly	interesting	to	compare	the	clinical	outcomes	
of	the	personalized	approach	presented	in	this	study	with	non-adaptive	robotic	or	conventional	
rehabilitation	trainings.	This	is	important,	since	previous	work	has	suggested	that	pseudo-random	
scheduling	of	multiple	tasks	may	be	almost	as	effective	as	adaptive	scheduling	approaches	(Lee	et	
al.,	2016).		

2.5 Conclusion	

In	this	work,	we	presented	a	model-based	approach	to	personalize	robot-aided	rehabilitation	ther-
apy	within	rehabilitation	sessions.	The	 feasibility	of	 this	approach	was	demonstrated	 in	experi-
ments	with	seventeen	healthy	subjects	and	a	pilot	test	with	two	subacute	stroke	patients	providing	
promising	 results.	However,	 due	 to	 the	 limited	 sample	 size,	 larger	 studies	would	 be	 needed	 to	
demonstrate	clinical	relevance	of	 the	presented	approach.	While	we	 implemented	the	proposed	
method	for	the	use	in	upper	limb	rehabilitation	of	stroke	patients,	the	usage	is	certainly	not	limited	
to	such	applications.	The	presented	model	can	be	adapted	for	the	use	with	other	robotic	rehabilita-
tion	devices	and	training	tasks,	exploiting	different	performance	measures	and/or	different	obser-
vation	equations.	The	real-time	functionality	and	the	identification	of	subject-specific	abilities	at	
subtask	level	could	enhance	robot-aided	rehabilitation	training,	making	it	more	purposive	and	ef-
ficient	for	the	patients.		
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Abstract	–	Objective.	Several	training	programs	have	been	developed	in	the	past	to	restore	
motor	functions	after	stroke.	Their	efficacy	strongly	relies	on	the	possibility	to	assess	indi-
vidual	levels	of	impairment	and	recovery	rate.	However,	commonly	used	clinical	scales	rely	
mainly	on	subjective	functional	assessments	and	are	not	able	to	provide	a	complete	descrip-
tion	of	patients’	neuro-biomechanical	status.	Therefore,	current	clinical	tests	should	be	in-
tegrated	with	specific	physiological	measurements,	i.e.	kinematic,	muscular,	and	brain	ac-
tivities,	to	obtain	a	deep	understanding	of	patients’	condition	and	of	its	evolution	through	
time	and	rehabilitative	 intervention.	Approach.	We	proposed	a	multivariate	approach	for	
motor	control	assessment	that	simultaneously	measures	kinematic,	muscle	and	brain	activ-
ity	and	combines	the	main	physiological	variables	extracted	from	these	signals	using	prin-
cipal	component	analysis	(PCA).	We	tested	it	in	a	group	of	six	sub-acute	stroke	subjects	eval-
uated	extensively	before	and	after	a	four-week	training,	using	an	upper-limb	exoskeleton	
while	performing	a	reaching	task,	along	with	brain	and	muscle	measurements.	Main	results.	
After	training,	all	subjects	exhibited	clinical	improvements	correlating	with	changes	in	kin-
ematics,	muscle	synergies,	and	spinal	maps.	Movements	were	smoother	and	faster,	while	
muscle	synergies	 increased	 in	numbers	and	became	more	similar	 to	 those	of	 the	healthy	
controls.	These	findings	were	coupled	with	changes	in	cortical	oscillations	depicted	by	EEG-
topographies.	When	 combining	 these	physiological	 variables	using	PCA,	we	 found	 that	 i)	
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patients’	kinematic	and	spinal	maps	parameters	improved	continuously	during	the	four	as-
sessments;	ii)	muscle	coordination	augmented	mainly	during	treatment,	and	iii)	brain	oscil-
lations	recovered	mostly	pre-treatment	as	a	consequence	of	short-term	subacute	changes.	
Significance.	Although	these	are	preliminary	results,	the	proposed	approach	has	the	poten-
tial	of	identifying	significant	biomarkers	for	patient	stratification	as	well	as	for	the	design	of	
more	effective	rehabilitation	protocols.	

3.1 Introduction	

Stroke	is	the	leading	cause	of	adult	long-term	disability	in	Western	societies.	More	than	1.5	million	
people	are	affected	every	year	in	Europe	(WHO,	2008).	Even	though	acute	stroke	care	and	intensive	
rehabilitation	are	improving,	two-thirds	of	chronic	stroke	survivors	have	to	cope	with	persisting	
neurologic	deficits,	and	only	20%	of	them	are	able	to	go	back	to	their	normal	professional	and	pri-
vate	life	(Di	Carlo,	2009).		

The	most	common	impairments	in	the	acute	and	chronic	stages	are	cognitive	conditions	and	motor	
deficits	contralateral	to	the	affected	brain	hemisphere	(Lee	et	al.,	2015).	A	profound	neuromuscular	
reorganization	occurs	after	stroke	(Levin,	1996;	Cirstea	et	al.,	2003).	The	affected	limb	is	typically	
characterized	 by	 spasticity	 (Bourbonnais	 et	 al.,	 1989),	 stereotyped	movement	 patterns,	mainly	
caused	 by	 abnormal	 muscle	 co-activation	 and	 an	 enlarged	 activity	 of	 the	 antagonist	 muscles	
(Brunnström,	1970),	which	result	in	a	reduced	range	of	motion	against	gravity	(Levin,	1996),	and,	
thus,	to	a	limited	workspace	in	three-dimensional	reaching	movements	(Ellis	et	al.,	2007;	Sukal	et	
al.,	2007).	

A	key	factor	in	stroke	recovery	is	the	intensity	of	training,	especially	in	the	acute	phase,	to	enhance	
functional	restoration	and	prevent	inactivity-related	complications	(Kwakkel	et	al.,	2004).	Yet	be-
cause	of	the	patient-specific	clinical	picture,	treatment	programs	might	vary	in	duration,	intensity,	
and	frequency	(Lo	et	al.,	2010).	Therefore,	the	success	of	the	rehabilitation	processes	depends	on	
the	ability	of	the	clinician	to	discern	the	individual	levels	of	impairment	and	responses	to	treatment	
with	simple,	robust,	and	effective	methods.		

Currently,	patients	are	evaluated	mainly	using	clinical	scales,	with	Fugl-Meyer	being	one	of	the	most	
adopted	measures	of	motor	impairment	after	stroke.	Yet,	the	precision	of	these	clinical	tests	are	
limited	by	inter-rater	and	intra-rater	reliability	(Bosecker	et	al.,	2010;	Harrison	et	al.,	2013;	Krebs	
et	al.,	2014),	as	well	as	by	floor	and	ceiling	effects	(Lamers	et	al.,	2014;	Murphy	et	al.,	2015).	More-
over,	some	of	them	require	a	consider	amount	of	time	to	be	administered.	Clinical	scales	should,	
therefore,	 be	 integrated	with	 targeted	 neuro-biomechanical	 assessments,	 in	 order	 to	 provide	 a	
more	detailed	description	of	the	patients’	clinical	status.		

Many	instrumental	approaches	that	investigate	different	domains	of	the	hierarchical	organization	
of	the	neuromusculoskeletal	system	can	be	employed	for	this	purpose,	including	measures	of	kine-
matics,	muscular,	and	brain	activities.		

In	a	recent	work,	Thrane	and	colleagues	coupled	standard	clinical	tests	with	upper	extremity	kine-
matics	 to	 reduce	 the	 ceiling	 effects	 of	 the	 Fugl-Meyer	 Assessment	 (Thrane	 et	 al.,	 2019).	 They	
showed	 that	 post-stroke	 participants	 with	 near	 or	 fully	 recovered	 sensorimotor	 function	 still	
showed	deficits	in	movement	kinematics	that	were	not	captured	by	the	clinical	assessment.	These	
kinematic	measures	provide	a	detailed	and	quantitative	description	of	motor	behaviors.		
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However,	the	neural	deficits	may	be	masked	at	the	kinematic	level	by	compensatory	strategies	and	
similar	movements	may	be	 produced	 through	different	 neuromuscular	mechanisms.	 Therefore,	
muscular	control	strategies	should	be	also	considered	in	the	patients’	clinical	picture.	Indeed,	sev-
eral	behavioral	 studies	on	animals	and	humans	 (Mussa-Ivaldi	et	al.,	 1994;	D’Avella	et	al.,	 2003;	
Ivanenko	et	al.,	2004;	Bizzi	and	Cheung,	2013)	have	showed	that	muscle	synergies	extracted	from	
the	 factorization	analysis	of	electromyographic	 signals	 (EMG)	can	reveal	underlying	patterns	 in	
muscle	activity	that	may	reflect	different	levels	of	neural	functions	and	their	integrity	has	been	pro-
posed	as	a	physiological	marker	of	cortical	damage.	For	 instance,	Cheung	et	al.	observed	that	 in	
severe	 stroke	 patients	 there	 is	 a	 lack	 of	 preservation	 of	 muscle	 synergies	 in	 the	 affected	 side	
(Cheung	et	al.,	2012),	and	their	level	of	preservation	correlates	with	the	level	of	motor	impairment	
(Tropea	et	al.,	2013).	Finally,	recordings	of	neural	activity	can	also	inform	about	the	central	nervous	
system	reorganization	after	brain	damage.	Indeed,	previous	electrophysiological	studies	in	post-
stroke	patients	showed	that	compromised	cortical	areas	are	characterized	by	augmented	slow	po-
tentials,	which	are	predictive	of	long-term	post-stroke	outcome	(Finnigan	and	van	Putten,	2013;	
Woo	et	al.,	2017).	

Despite	these	interesting	and	promising	results,	each	of	the	proposed	approach	investigates	a	spe-
cific	domain	of	the	neuro-musculoskeletal	system.	Therefore,	each	methodology	provides	a	detailed	
but	 sectorial	 assessment.	 Conversely,	 merging	 all	 the	 domains	 may	 provide	 a	 comprehensive	
framework	for	a	more	complete	and	quantitative	patient	profiling	(Bulea	et	al.,	2013;	Belfatto	et	al.,	
2018).	

To	this	end,	the	main	goal	of	this	study	was	to	develop	a	multivariate	analysis	method	to	couple	
clinical	evaluations	with	multimodal	instrumental	evaluations	in	order	to	provide	a	deeper	charac-
terization	of	the	neuro-biomechanical	status	of	stroke	patients	undergoing	different	rehabilitation	
protocols.	We	first	introduced	an	exhaustive	and	diverse	set	of	measures	extracted	from	different	
sources,	including	motor	performance	as	well	as	muscle	activity	during	a	motor	task	and	brain	ac-
tivity	at	rest.	Then,	we	presented	a	methodological	approach	combining	and	integrating	these	pa-
rameters,	which	allowed	to	identify	neuro-biomechanical	features	modifications	at	different	time	
points	during	intervention	and	recovery.	We	tested	this	methodology	on	a	small	cohort	of	stroke	
subjects	that	went	through	a	period	of	intense	motor	training	using	a	3D	reaching	task.	We	believe	
that	the	features	extracted	with	our	comprehensive	multivariate	analysis	can	increase	the	under-
standing	of	the	mechanisms	underlying	motor	impairments	and	recovery,	and,	additionally,	they	
can	potentially	help	design	more	effective	rehabilitative	interventions	and	monitor	the	progress	of	
the	disease	as	well	as	the	effects	of	rehabilitative	treatments	(Allali	et	al.,	2018;	Coscia	et	al.,	2019).	

3.2 Methods	

3.2.1 Subjects	

Six	stroke	subjects	(4	females,	age	68	±	18	yo)	between	2	and	6	weeks	from	the	occurrence	of	the	
stroke	lesion,	all	with	right	hemiplegia	and	at	least	10°	of	residual	motion	in	shoulder	and	elbow	
joints	(details	in	Table	3.1),	and	six	healthy	subjects	(4	females,	age	58	±	16	yo)	were	enrolled	in	
the	study.	All	subjects	were	right-handed.	The	healthy	subjects	did	not	present	any	evidence	or	
known	history	of	skeletal	or	neurological	diseases,	and	they	exhibited	intact	joint	range	of	motion	
and	muscle	strength.		
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Table	3.1	–	Demographics	of	the	stroke	population	recruited	in	the	study	

Subject	 Age	 Gender	 Time	after	
stroke	

Lesion	type	
and	location	 FMA	

S1	 79	 female	 3	weeks	 Ischemic,	left	middle	
cerebral	artery	 24	

S2	 82	 female	 4	weeks	 Ischemic,	left	corona	radiata,	
internal	capsule	and	putamen	 16	

S3	 34	 female	 2	weeks	 Ischemic,	left	middle	
cerebral	artery	 17	

S4	 78	 male	 4	weeks	 Ischemic,	left	paramedian	pontine	 5	

S5	 65	 male	 2	weeks	 Ischemic,	left	corona	radiata	 50	

S6	 73	 female	 6	weeks	 Ischemic,	left	parasagittal	pontine	 54	

The	 study	was	 carried	out	 in	 the	Neurorehabilitation	Unit	 of	 the	University	Hospital	 of	Geneva	
(HUG),	Switzerland	and	of	the	University	Hospital	of	Pisa	(Cisanello	hospital),	Italy.	It	was	approved	
by	the	Commission	Cantonale	d’Ethique	de	la	Recherche	(CCER)	de	Genève,	Switzerland,	and	by	the	
Comitato	Etico	Area	Vasta	Nord	Ovet	(CEAVNO)	in	Pisa.	The	recordings	were	carried	out	in	agree-
ment	with	the	Declaration	of	Helsinki	and	Good	Clinical	Practice	norms.	The	study	is	registered	with	
the	number	NCT02770300	in	ClinicalTrials.gov.	The	participants	were	informed	of	the	procedure	
and	they	signed	an	informed	consent,	which	included	the	consent	for	the	use	of	all	data	collected	
during	the	experiment	in	scientific	publications.			

3.2.2 Experimental	set-up	and	procedure	

The	experimental	protocol	for	the	stroke	patients	consisted	of	four	sessions	of	clinical	and	robotic	
assessment	interleaved	by	four	weeks	of	experimental	training	-	three	sessions	of	30	minutes	per	
week	-	proposed	in	addition	to	the	habitual	physical	rehabilitative	treatment	of	the	patient.	The	
stroke	population	completed	two	assessment	sessions	before	(A1	and	A2)	and	two	after	(A3	and	
A4)	 the	 experimental	 training.	The	 initial	 assessment	 sessions	were	 completed	 two	weeks	 (A1,	
baseline)	and	one	week	(A2)	before	the	beginning	of	the	training.	A2	was	done	in	order	to	estimate	
the	rate	of	the	changes	due	to	spontaneous	recovery	and	inpatient	therapy,	since	the	patients	were	
in	the	subacute	phase	of	the	stroke.	The	final	two	assessment	sessions	were	completed	one	week	
after	the	end	of	the	training	(A3),	in	order	to	evaluate	the	effects	of	the	rehabilitation	protocol,	and	
one	month	after	the	end	of	the	training	(A4)	to	evaluate	the	retention	of	the	changes	induced	by	the	
experimental	training	(Figure	3.1a).		

The	enrolled	stroke	participants	were	receiving	different	 therapies	during	 the	period	of	experi-
mental	training,	including	extra	sessions	of	conventional	therapy	without	the	use	of	robotic	devices;	
or	standard	robot-assisted	rehabilitation	 therapy	with	an	upper-limb	exoskeleton;	or	automatic	
personalized	robot-assisted	rehabilitation	 therapy	with	an	upper-limb	exoskeleton	(Giang	et	al.,	
2020)	(see	Supplementary	material	for	details	on	patients’	division	during	the	experimental	train-
ing).	
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Figure	3.1	–	a)	experimental	protocol:	the	protocol	was	organized	in	four	assessments	(A1	to	A4)	and	four	
weeks	of	training.	During	the	assessments,	clinical	scales	were	measured	along	with	kinematic,	muscular	ac-
tivity	and	brain	activity	before	and	while	training	with	the	exoskeleton.	b)	experimental	set	up:	the	subject	
was	sitting	in	front	of	a	computer	screen	while	wearing	the	exoskeleton	and	was	given	a	visual	feedback	of	
the	end	effector	of	the	robot	in	the	shape	of	a	yellow	sphere.	A	red	sphere	indicated	the	position	of	a	target	
that	the	subject	had	to	reach	for.	c)	reaching	task:	the	reaching	task	consisted	in	center-out	reaching	move-
ments	towards	18	targets	equally	distributed	along	a	sphere.	The	blue	targets	were	the	ones	considered	in	
the	multimodal	performance	analysis,	while	the	set	of	blue	and	red	targets	together	constituted	the	full	train-
ing	target	set.	

During	the	robotic	assessment	sessions	and	the	treatment	sessions	involving	a	robot,	the	subjects	
were	assisted	by	an	exoskeleton	for	the	upper	limb	(Arm	Light	Exoskeleton	Rehab	Station,	ALEx	
RS)	developed	by	Wearable	Robotics	srl	(Lenzo	et	al.,	2015;	Pirondini	et	al.,	2016).	The	task	pro-
posed	while	working	with	ALEx	RS	was	a	3D	point-to-point	reaching	task.	Specifically,	the	partici-
pants	were	instructed	to	start	from	the	center	of	the	workspace,	reach	one	of	the	eighteen	outer	
targets,	and	then	move	back	to	the	starting	position	at	a	comfortable	speed.	Visual	feedback	was	
displayed	on	a	monitor	placed	in	front	of	the	subjects	(Figure	3.1b).	A	yellow	sphere	corresponded	
to	 the	 position	 of	 the	 exoskeleton’s	 end-effector,	while	 a	 red	 sphere	 indicated	 the	 target	 to	 be	
reached.	The	outer	targets	were	in	total	eighteen,	equally	distributed	along	a	spherical	workspace	
of	19	cm	radius	(Figure	3.1c).	The	selected	radius	of	the	sphere	allows	for	a	maximum	exploration	
of	the	workspace,	while	maintaining	the	reaching	movement	executable	for	people	of	most	body	
sizes.	This	design	of	the	motor	task	allowed	exploiting	an	extensive	three-dimensional	workspace.	
The	spherical	workspace	was	positioned	so	that	its	center	was	aligned	with	the	acromion	of	the	
right	arm	(i.e.,	arm	trained	with	the	exoskeleton)	mid-way	between	the	center	of	the	target	panel	
and	the	subject’s	acromion.	In	order	to	preserve	the	depth	perception,	the	dimensions	of	the	target	
spheres	were	modified	in	accordance	with	their	position	in	the	3D	space.	If	a	subject	was	unable	to	
reach	a	target	(i.e.,	the	subject	did	not	move	for	more	than	3	seconds),	ALEx	RS	activated	its	assis-
tance	mode	 to	 guide	 the	 subject	 towards	 the	 target	 according	 to	 a	minimum	 jerk	 speed	profile	
(Sadaka-stephan	et	al.,	2015;	Pirondini	et	al.,	2016).	During	the	assessment	sessions,	the	subjects	
were	asked	to	reach	all	the	eighteen	targets	as	many	times	as	possible	within	30	minutes,	while	
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during	 the	 robotic	 training	 the	 subjects	 practiced	 only	 a	 subsection	 (8	 targets)	 of	 the	 available	
workspace.	During	each	training	session,	the	choice	of	which	target	to	reach	among	the	available	
eighteen	was	done	either	by	the	physical	therapist	(standard	robot-assisted	rehabilitation	therapy)	
or	by	an	automatic-personalized	algorithm.	The	algorithm	was	embedded	in	the	control	scheme	of	
ALEx	RS	and	selected	the	targets	at	 the	beginning	of	each	session	and	changed	them	within	the	
same	session	accordingly	to	the	subject’s	performance	(automatic	personalized	robot-assisted	re-
habilitation	therapy)	(Giang	et	al.,	2020).	Patients	that	performed	standard	rehabilitation	without	
ALEx	RS	were	trained	with	a	similar	amount	of	upper	limb	movements.  

In	addition	to	the	experimental	training	sessions	described	above,	all	the	patients	received	habitual	
physical	therapy	at	the	stroke	unit	during	the	acute	and	sub-acute	phase,	while	hospitalized.	Spe-
cifically,	all	patients	received	two	times	30	minutes	of	physical	therapy	per	day	on	five	days	per	
week	and	five	times	30	minutes	of	occupational	therapy	per	week	on	an	inpatient	basis	for	8	to	16	
weeks.	Following	the	end	of	the	hospitalization,	patients	continued	receiving	outpatient	treatments	
consisting	of	1-4	hours	of	physical	and	occupational	therapy	per	week.	Therapy	was	adapted	by	the	
therapists	to	the	current	capacities	of	each	patient	by	choosing	from	a	list	of	appropriate	exercises	
comprising	upper-extremity	relaxation	techniques,	unilateral	task-specific	mobilizations,	bilateral	
upper	limb	exercises	with	a	wand,	ball	exercises,	active	ante/retropulsion	exercises,	active	prona-
tion/supination	exercises	and	grasping	exercises.	

All	subjects	were	hospitalized	until	the	assessment	performed	at	the	end	of	the	experimental	treat-
ment	(A3).	At	the	time	of	A4	all	subjects	were	no	longer	hospitalized	and	participated	at	the	assess-
ment	as	outpatients.	Therefore,	we	can	considerer	the	dosage	of	inpatient	and	outpatient	therapies	
globally	equivalent	across	subjects.		

The	healthy	subjects	went	through	a	single	robotic	assessment	session	where	they	were	asked	to	
reach	the	eighteen	targets	5	times.	

During	each	robotic	assessment	session,	both	for	stroke	patients	and	healthy	controls,	muscular	
(EMG)	and	brain	(EEG)	activity	were	recorded.	Resting	state	eye-closed	EEG	was	recorded	for	5	
minutes	before	the	beginning	of	each	robotic	assessment	session.	Kinematic	data	acquisition	was	
synchronized	with	EMG	signals	acquisition	by	using	trigger	signals	sent	from	ALEx	RS	at	the	follow-
ing	events:	movement	start,	movement	end,	and	at	the	occurrence	of	robotic-assistance.		

For	the	goal	of	this	study	we	considered	all	6	stroke	subjects	together	independently	from	the	ther-
apy	received	during	the	experimental	training	period.	Therefore,	we	are	going	to	compare	motor	
performance	of	two	groups:	healthy	and	stroke	subjects.	

3.2.3 Clinical	evaluation		

Along	with	the	robotic	assessments,	and	at	the	same	time	points	(A1,	A2,	A3	and	A4),	the	stroke	
subjects	were	evaluated	with	clinical	tests	by	a	therapist	not	directly	involved	in	the	study	and	blind	
to	the	group	allocation.	The	sensorimotor	status	of	the	patient	was	evaluated	using	the	upper	limb	
section	of	 the	Fugl-Meyer	Assessment	 (FMA)	scale	 (Fugl-Meyer	et	al.,	 1975);	and	 the	grip	 force	
measured	using	a	Jamar	dynamometer	(Bertrand	et	al.,	2015).			
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3.2.4 Data	analysis	

For	the	data	analysis	of	all	subjects,	stroke	and	healthy,	we	considered	only	the	6	targets	(Figure	
3.1c,	blue	spheres)	that	all	the	stroke	patients	were	able	to	actively	reach,	which	were,	in	addition,	
representative	of	the	3	main	movement	directions:	up	and	down	(target	1	and	target	5),	right	and	
left	(target	3	and	target	7),	near	to	and	far	from	the	body	(target	10	and	target	13).	We	only	consid-
ered	the	movements	going	from	the	center	of	the	workspace	to	the	outer	targets.	The	selected	set	
of	movements	differed	in	terms	of	elbow	and	shoulder	joints	combination	in	order	to	fully	capture	
subjects’	impairment.	In	particular,	target	13	elicited	elbow	extension,	which	is	generally	more	dif-
ficult	than	elbow	flexion	(i.e.,	target	10).	Target	7	required	extension	of	both	elbow	and	flexion	of	
the	shoulder	as	opposite	to	target	3,	which	involved	a	coordination	of	elbow	extension	and	shoulder	
flexion.	Finally,	movements	toward	target	5,	the	one	placed	at	the	bottom	of	the	spherical	work-
space,	were	facilitated	by	gravity.	All	reaching	movements	performed	by	the	subjects	were	requir-
ing	active	gravity	compensation	of	the	subject’s	arm,	while	the	exoskeleton	was	compensating	only	
for	the	weight	of	its	components.	In	all	further	analyses,	we	did	not	consider	each	selected	target	
separately	but	we	pulled	all	movements	together.		

For	 the	healthy	subjects	 the	total	number	of	movements	was	30	(i.e.	5	repetitions	of	6	 targets),	
while	for	the	stroke	subjects	it	depended	on	the	level	of	residual	mobility	at	each	assessment.	The	
session	lasted	30	minutes,	during	which	the	stroke	subjects	could	perform	a	minimum	number	of	
one	repetition	of	each	target	and	a	maximum	of	5	repetition	of	6	targets.		

3.2.5 Kinematic	analysis	and	measures	

Kinematic	parameters	were	computed	from	the	handle	(i.e.,	exoskeleton’s	end-effector)	positions	
recorded	by	ALEx	RS	during	each	reaching	movement.	The	start	and	end	of	the	reaching	movement	
were	defined	as	the	time	points	when	the	speed	profile	of	the	EE	of	the	exoskeleton	respectively	
exceeded	or	dropped	below	2	%	of	the	local	maximum	value	(Pirondini	et	al.,	2016).	We	adopted	
the	following	parameters	(Panarese	et	al.,	2012a;	Giang	et	al.,	2020):	MV,	the	mean	tangential	ve-
locity	of	the	handle;	nMD,	the	mean	absolute	value	of	the	distance	between	the	actual	trajectory	and	
the	straight	line	connecting	the	starting	position	with	the	target	(theoretical	path)	normalized	by	
the	length	of	the	theoretical	path,	which	is	a	measure	of	movement	accuracy;	nPK,	the	number	of	
peaks	in	the	speed	profile,	a	well-known	parameter	quantifying	movement	smoothness;	the	spec-
tral	arc-length	metric	(SAL),	(expressed	as	a	negative	value),	that	uses	a	movement	speed	profile's	
Fourier	magnitude	spectrum	to	quantify	movement	smoothness	(Balasubramanian	et	al.,	2012);	
the	distance	from	target	when	the	exoskeleton	started	to	assist	the	movement	normalized	by	the	
distance	between	the	target	and	the	center	of	the	workspace	(Dtrgt);	the	robot	assistance	frequency,	
i.e.,	the	number	of	assisted	movements	(RAF,	in	percentage);	the	percentage	of	workspace	explored	
without	the	help	of	the	robotic-assistance	normalized	by	the	ideal	workspace	corresponding	to	the	
volume	of	a	sphere	of	radius	19cm	(WS);	and	the	time	to	complete	the	task	(ttask,	i.e.,	reaching	of	the	
outer	target).	MV,	nMD,	nPK	have	been	computed	only	over	the	path’s	trajectory	in	which	the	pa-
tient	moved	actively.		
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3.2.6 EMG	analysis		

Data	acquisition	and	pre-processing	

We	recorded	the	activity	of	15	upper	 limb	muscles:	upper	trapezius,	TRAPS,	trapezius	medialis,	
TRAPM,	anterior	deltoid,	DANT,	medial	deltoid,	DMED,	posterior	deltoid,	DPOS,	pectoralis	major,	
PECM,	latissimus	dorsi,	LAT,	infraspinatus,	INFRA,	rhomboid	major,	RHO,	biceps	brachii	long	head,	
BICL,	biceps	brachii	short	head,	BICS,	brachioradialis,	BRAD,	triceps	brachii	lateral,	TRILA,	triceps	
brachii	long	head,	TRILO,	and	pronator,	PRO.	The	EMG	were	recorded	with	a	Noraxon	Desktop	DTS	
wireless	 system	 at	 a	 sampling	 rate	 of	 1.5	 kHz	 by	 using	 superficial	 Ag-AgCl	 electrodes	 (Kendall	
H124SG,	ECG	electrodes	30x24	mm)	after	appropriate	skin	preparation.	Electrodes	were	placed	
according	to	guidelines	of	the	Surface	Electromyography	for	the	Non-Invasive	Assessment	of	Mus-
cles	 European	 Community	 project	 (SENIAM)	 (Hermens	 et	 al.,	 2000)	 and	 Anatomical	 guideline	
(Delagi	and	Perotto,	1980).		

EMG	data	were	preprocessed	offline	using	MATLAB	(MathWorks,	Natick	MA).	The	raw	EMG	signals	
were	detrended,	band-pass	 filtered	50-500	Hz	(Butterworth	filter,	7th	order),	rectified,	 low-pass	
filtered	with	a	cut-off	 frequency	of	10	Hz	(Butterworth	 filter,	7th	order)	 to	obtain	the	envelopes	
(Cheung	et	al.,	2009;	Kieliba	et	al.,	2018).	To	correct	the	EMG-amplitude	differences	due	to	electrode	
placement	and	to	ensure	that	the	extraction	of	the	synergies	would	not	be	biased	against	the	low-
amplitude	muscles,	the	envelope	of	each	muscle	signal	was	normalized	by	the	median	computed	
for	each	individual	across	each	session.	The	normalization	based	on	the	median	value	instead	of	the	
maximum	is	more	robust	to	outliers	(Cheung	et	al.,	2009).	Then,	for	each	subject	and	session,	EMG	
data	were	epoched	considering	the	6	different	directions	and	were	concatenated	for	muscle	syner-
gies	analysis.		

Muscle	synergies	extraction	and	measures	

For	each	subject,	muscle	synergies	were	extracted	by	using	the	non-negative	matrix	factorization	
algorithm	(NNMF)	(Lee	and	Seung,	2001).	The	NNMF	algorithm	decomposes	the	EMG	envelope	in	
a	defined	number	of	positive	components	or	muscle	synergies.	The	organization	of	a	synergy	 is	
determined	by	the	contribution	(weight	coefficient)	of	each	muscle,	as	specified	by	the	weight	ma-
trix	W.	Its	activation	profile	is	defined	by	the	activation	coefficients,	specified	by	the	matrix	H	(Lee	
and	Seung,	2001).	Since,	the	iterative	algorithm	can	find	a	solution	as	a	local	and	not	global	mini-
mum,	each	extraction	was	repeated	50	times,	and	the	repetition	with	the	solution	explaining	the	
highest	overall	amount	of	EMG	variance	was	selected.	For	each	subject,	to	objectively	determine	
the	minimum	number	of	muscle	synergies	required	to	reconstruct	the	data	set,	we	used	the	vari-
ance	accounted	for	by	the	synergies	model	and	chose	as	threshold	the	number	of	synergies	at	which	
the	VAF	was	higher	than	95%	(Cheung	et	al.,	2009).	The	same	number	of	muscle	synergies	was	
retained	for	all	healthy	subjects	to	allow	an	easy	intra-task	comparison	(i.e.,	mean	number	of	mus-
cle	synergies	across	healthy	subjects).	For	the	patients,	instead,	the	individual	number	of	muscle	
synergies	was	considered.	 Indeed,	 the	number	of	retained	synergies	has	been	proposed	as	a	bi-
omarker	of	cortical	damage	and	recovery	(Cheung	et	al.,	2012).	

Muscle	synergies	were	matched	among	subjects	and	sessions	according	to	their	similarity	(deter-
mined	by	using	normalized	scalar	products)	with	a	set	of	reference	synergies.	The	set	of	reference	
synergies	was	obtained	by	grouping	the	muscle	synergies	of	the	healthy	subjects	with	a	hierarchical	
clustering	procedure	based	on	minimization	of	the	Minkowski	distance	between	weighting	coeffi-
cient	vectors	(Cheung	et	al.,	2009).			
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Muscle	synergies	structure	was	compared	within	the	healthy	population	and	between	the	stroke	
patients	and	 the	healthy	 subjects	by	using	 the	 scalar	products	 (dotHEALTHY	and	dotSTROKE	 respec-
tively).	When	a	stroke	subject	presented	a	lower	number	of	synergies,	the	value	of	the	dot	product	
between	the	healthy	synergy	and	the	correspondent	missing	synergy	of	the	stroke	was	set	to	zero.	

Spinal	maps	extraction	and	measures	

The	same	preprocessed	EMG	data	were	resampled	on	the	minimum	number	of	time	points	(2	sec-
onds)	across	directions,	sessions	and	subjects	and	were	used	to	estimate	the	spinal	maps	along	the	
rostro-caudal	direction	related	to	C2-T1.	The	spinal	maps	describe	the	spatiotemporal	organization	
of	the	peripheral	EMG	signals	at	the	level	of	the	spinal	cord,	by	estimating	the	motoneuronal	(MN)	
activity	for	each	spinal	segment	as	previously	described	in	literature	to	investigate	the	muscle	ac-
tivity	in	the	lower	and	upper	extremities	(Ivanenko	et	al.,	2008;	Cappellini	et	al.,	2010;	Coscia	et	al.,	
2015).	The	weight	coefficients	approximating	the	rostro-caudal	distribution	of	the	MN	pools	inner-
vating	the	upper	limb	muscles	included	in	the	study	were	located	in	the	segments	from	C2	to	T1,	as	
reported	by	Kendall	(Kendall	et	al.,	2005)	(see	Table	B1	in	Supplementary	material).	

In	order	to	assess	the	similarity	between	two	different	spinal	maps,	we	used	the	2D	correlation	
coefficient	between	two	maps	(Coscia	et	al.,	2015)	(RMAP,H	and	RMAP,S	when	comparing	respectively	
the	spinal	maps	within	the	healthy	population	and	between	the	healthy	population	and	the	stroke	
patients)	and	the	root	mean	square	error	(RMSEMAP,H	and	RMSEMAP,S),	calculated	as	

L!MNOPQ = R
1

S ∗ ! ∗ U U(!VC&(D,W) −!VC-(D,W))-
X

GY&

O

ZY&

	

where	!VC&	and	!VC-	are	the	two	spinal	maps	under	comparison.	N	(i.e.,	number	of	spinal	seg-
ments)	is	equal	8	and	M	(i.e.,	time	samples)	is	equal	3000	samples.	

We	first	computed	these	measures	comparing	the	maps	within	the	healthy	population.	Then,	we	
compared	the	maps	of	each	stroke	subject	and	for	each	session	with	those	of	the	healthy	subjects.	

3.2.7 EEG	analysis	

Data	acquisition	and	pre-processing	

EEG	data	were	continuously	acquired	at	500Hz	using	an	Active	II	EEG	system	(Biosemi,	Amster-
dam)	with	64	pre-amplified	(active)	EEG	channels	with	standard	10-20	configuration.	EEG	data	
were	preprocessed	offline	using	MATLAB	(MathWorks,	Natick	MA)	and	EEGLAB	toolbox	(Delorme	
and	Makeig,	2004).	The	raw	EEG	data	were	filtered	(1	Hz	to	40	Hz,	Butterworth	zero-phase	8th	order	
IIR	filter	(Britz	et	al.,	2010;	Van	De	Ville	et	al.,	2010;	Dipietro	et	al.,	2014))	and	down-sampled	to	
128	Hz.	EEG	electrodes	with	prolonged	prominent	artifacts	(assessed	by	visual	inspection)	were	
removed	and	 interpolated	using	spherical	 interpolation	 (Pirondini	et	al.,	 2017,	2020).	The	data	
were,	then,	re-referenced	to	a	common	average.	Finally,	the	data	were	visually	inspected	to	remove	
periods	contaminated	by	artifacts	(i.e.,	amplitude	>	80μV)	and	the	remaining	data	were	concate-
nated.		
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Resting-state	EEG	measures	

Resting-state	EEG	measures	were	obtained	by	singular	value	decomposition	(SVD)	of	the	EEG	sig-
nals	(Balasubramanian	et	al.,	2012;	Pirondini	et	al.,	2019).	We	followed	the	same	approach	of	our	
previous	work	(Pirondini	et	al.,	2019,	2020).	The	SVD	of	a	real	matrix	is	a	factorization	of	the	form	
N = !MS[.	In	this	case,	N ∈ 	ℝ] × ℝ_ 	was	the	matrix	of	the	pre-processed	EEG	signals	concatenated	
across	sessions	and	participants	with	`	equals	to	64	EEG	channels	and	a	equal	to	the	total	time	of	
recordings	summed	over	sessions	and	participants.	The	left-singular	vectors	of	! ∈	ℝ] × ℝ] 	are	a	
set	of	orthonormal	eigenvectors	that	in	our	case	represented	the	group-level	EEG-SVD	topograph-
ical	maps.	The	right-singular	values	vectors	of	S ∈	ℝ_ × ℝ]	represented	the	group-level	temporal	
courses.	They	are	ranked	according	to	their	non-zero	singular	values	(i.e.,	diagonal	values	of	M).	In	
order	to	obtain	the	subject-specific	temporal	courses	of	each	EEG-SVD	topography	for	each	partic-
ipant	and	session,	the	EEG	activity	of	each	individual	for	each	session	was	projected	on	the	group-
level	EEG-SVD	topographical	maps	corresponding	to	75%	of	the	explained	variance	(Pirondini	et	

al.,	2019,	2020),	which	was	calculated	 from	the	singular	values	as:	bVL5 = ∑
de
f

∑de
f ∗ 100]

5 .	For	 in-

stance,	the	time	courses	for	the	first	{1,⋯ , F}	SVD	components	for	one	subject	was	obtained	as	Nk& =
!&,…,m
_ N&.	

We	assessed	reproducibility	of	the	group-level	topographies	by	a	split-half	reproducibility	analysis.	
We	randomly	split	the	original	set	of	subjects	and	sessions	(i.e.,	the	six	healthy	controls	and	the	four	
assessments	of	the	patients)	into	2	groups,	each	with	14	sessions.	We	generated	ten	different	ran-
dom	splits.	Subsequently,	for	each	split,	EEG-SVD	topographies	were	computed	for	each	group	con-
catenating	the	data	of	all	subjects	and	sessions	within	the	group.	EEG-SVD	topographies	obtained	
from	the	two	groups	were	then	matched	using	Hungarian	algorithm,	and	their	similarity	was	as-
sessed	by	Pearson	correlation	(Munkres,	1957).	

For	each	topographical	map	and	each	subject/session,	a	time-frequency	representation	of	the	cor-
responding	subject-specific	temporal	course	was	calculated	from	1	to	64	Hz	by	convolving	the	sig-
nals	with	a	complex-valued	Morlet	wavelet	with	3	cycles.	Time-frequency	power	was	calculated	as	
the	squared	magnitude	of	the	complex	wavelet-transformed	data.	We	then	computed	coefficient	of	
variation	(CVs	-	i.e.,	ratio	between	variance	and	mean	spectral	power	over	time)	for	four	typical	
frequency	bands	(i.e.,	δ:	1-4Hz;	θ:	4-8Hz;	α:	8-12Hz;	β:	15-30Hz).		

In	order	to	identify	whether	these	resting-state	EEG	measures	represented	reliable	biomarkers	of	
motor	recovery,	we	deployed	a	multivariate	analysis	of	correlation,	i.e.,	canonical	correlation	(CCA),	
between	the	FMA	score	and	the	CVs	of	each	EEG-SVD	topography	and	frequency	band.	If	we	con-
sider	 the	 CVs	 of	 the	 EEG-SVD	 and	 the	 Fugl-Meyer	 scores	 as	 vectors	 of	 random	 variables	 (n =
(K&, … , KG)	with	D = 1	and	o = (p&, … , pZ)	with	W = 12	–	 i.e.,	4	 frequency	bands	per	3	EEG-SVD	
components),	and	 there	are	correlations	among	 these	variables,	 then	 the	CCA	would	 find	 linear	
combinations	(i.e.,	canonical	components)	of	the	CVs	that	have	maximum	correlation	with	the	Fugl-
Meyer.	Specifically,	the	CCA	seeks	vectors	r	 ∈ 	ℝG	and	s	 ∈ 	ℝZ	such	that	the	random	variables	r_n	
and	s_o	maximize	the	correlation	F = corr(r_n,	s_o).	We	used	a	permutation	test	to	verify	the	
significance	of	the	found	canonical	components.	 In	details,	 the	CVs	of	each	EEG-SVD	topography	
and	frequency	band	were	permuted	over	subjects	and	we	then	used	CCA	to	find	correlation	be-
tween	these	permuted	data	and	the	Fugl-Meyer.	We	repeated	this	procedure	1000	times	and	con-
sidered	the	99th	percentile	of	the	resultant	distribution	of	correlation	as	a	significance	threshold.	
Once	identified	the	significant	canonical	components,	the	brain	canonical	scores	(b)	were	obtained	
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by	projections	over	the	canonical	correlation	vectors	(b = s_o).	We	then	evaluated	the	changes	of	
the	brain	canonical	scores	over	assessment	sessions	for	each	individual	patient.	

3.2.8 Multimodal	analysis	

In	order	to	quantitatively	assess	the	presence	of	a	relationship	between	the	various	parameters	
extracted	from	the	different	sources	(kinematic,	muscle	and	brain	activity)	we	ran	a	correlation	
analysis	among	all	of	them.	In	this	way,	links	between	specific	pairs	of	parameters	extracted	not	
only	from	the	same	type	of	signal	but	also	from	different	ones	(i.e.	kinematic	and	brain,	or	muscle	
and	brain)	can	be	highlighted.	In	particular,	we	extracted	Pearson	correlation	coefficients	from	a	
matrix	Q	[28x18],	where	each	column	was	a	parameter	and	each	row	an	observation.	Data	of	stroke	
and	healthy	subjects	were	pulled	together.	We	obtained	a	matrix	of	correlation	coefficients	result-
ing	from	pairwise	comparisons	between	the	columns	of	Q	and	we	retained	only	the	correlation	co-
efficients	that	resulted	significant	(p-value	<	0.05).	

To	identify	the	neuro-biomechanical	parameters	that	were	most	important	for	post-stroke	motor	
recovery,	we	applied	a	multistep	statistical	procedure	based	on	principal	component	analysis	(PCA)	
(Musienko	et	al.,	2011).	Specifically,	PCA	was	applied	to	all	the	parameters	extracted	from	the	kin-
ematic,	EMG	and	EEG	analysis	for	all	healthy	and	stroke	subjects	together.	To	avoid	introducing	
bias	due	to	the	different	scales	of	the	various	parameters,	we	normalized	measures	before	running	
PCA,	so	as	to	have	zero	mean	and	a	standard	deviation	equal	to	1	(z-score).	We	retained	the	first	
three	principal	components	(PCs),	which	explained	more	than	50%	of	the	total	variance,	and	we	
projected	the	original	dataset	in	the	3D	space	defined	by	the	constructed	PC1-3.	For	each	distribu-
tion,	the	coordinates	of	the	centroid	were	computed	by	averaging	all	the	coordinates	of	the	points	
included	in	that	distribution.	We	then	computed	the	distance	between	the	centroid	of	the	distribu-
tion	of	the	healthy	controls	and	the	projection	of	the	data	of	each	stroke	subject	in	the	identified	
PCs	space,	for	each	session.	The	distance	was	computed	in	the	3PCs	space	(distALL)	but	also	along	
each	individual	PC	(distPC1,	distPC2,	distPC3).	Finally,	to	determine	the	relation	between	the	clinical	
outcome	and	the	identified	neuro-biomechanical	measures,	we	correlated	the	PC	scores	with	the	
clinical	scores	computing	Pearson	correlations	coefficients.	

3.2.9 Statistical	procedures	

In	order	to	summarize	the	information,	the	results	reported	were	averaged	across	subjects.	All	data	
are	 reported	 as	mean	 values	 +/−	 standard	 error	 (SE)	 of	 the	mean.	 Results	 of	 the	Kolmogorov-
Smirnov	normality	test	for	all	the	extracted	indicators	confirmed	that	the	later	were	not	normally	
distributed.	For	this	reason,	in	order	to	verify	if	there	were	significant	changes	over	the	four	assess-
ments	we	performed	a	Friedman	test.	Post-hoc	analysis,	two-sided	Wilcoxon	signed	rank	test	with	
no	correction	for	multiple	comparisons	due	to	the	small	sample	size,	was	used	to	verify	statistically	
significant	differences	obtained	with	Friedman	test.	We	used	instead	the	Wilcoxon	rank-sum	test	
when	comparing	stroke	data	with	those	of	the	healthy	controls.	The	significance	level	was	set	to	
p<0.05.	
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Table	3.2	–	Clinical	scales	results.	Upper	limb	Fugl-Meyer	assessment	scale	(FMA)	and	grip	strength	test	per-
formed	in	the	four	assessment	sessions	(A1	to	A4).	Subject	1	(S1)	did	not	have	the	follow-up	session.	EEG	data	
of	subject	(S2)	were	not	considered	because	of	contaminated	by	artifacts.	

	 FMA	 Grip	strength	

Subjects	 A1	 A2	 A3	 A4	 A1	 A2	 A3	 A4	

S	1	 24	 27	 29	 n/a	 0	 0	 0	 n/a	

S	2	 16	 16	 30	 34	 0	 0	 0	 0.5	

S	3	 17	 34	 46	 52	 0	 4.00	 6.3	 8.1	

S	4	 5	 7	 19	 19	 0	 0	 0	 0	

S	5	 50	 59	 62	 65	 0	 1	 3.33	 6.3	

S	6	 54	 59	 63	 62	 9.72	 11.41	 13.27	 13.71	

	

3.3 Results	

3.3.1 Clinical	outcome	improvement	

Patients	showed	a	reduction	of	impairment	along	with	an	increase	of	grip	forces	during	the	evalu-
ation	time.	Significant	improvements	in	the	FMA	(c2=16.68,	p<0.001)	and	in	the	grip	strength	(c2=9,	
p=0.020)	occurred	throughout	the	four	assessments	for	all	6	patients.	Changes	in	the	clinical	scores	
ensued	between	the	first	(A1)	and	the	second	assessment	(A2)	(on	average	6±2.5	points,	p=0.031,	
in	 the	 FMA	 and	 1.12±0.64	 Kg,	 p=0.250,	 in	 the	 grip	 strength)	 and	 likely	 reflect	 the	 short-term	
changes	typical	of	 the	subacute	phase	(see	Table	3.2).	Yet,	stronger	 improvements	occurred	be-
tween	A2	and	the	assessment	after	the	training	(A3).	On	average	all	subjects	increased	of	7.8	points	
(±2.1	SE,	p=0.031)	in	the	FMA	and	1.08	Kg	(±0.49	SE,	p=0.250)	in	the	grip	strength.	Finally,	these	
measures	did	not	change	significantly	at	the	assessment	performed	one	month	following	the	end	of	
the	training	(A4;	on	average	2.4	±1.2	points,	p=0.250	in	the	FMA	and	1.14±0.49	Kg,	p=0.250,	in	the	
grip	strength).				

Table	3.3	–	Results	of	the	Friedman	test	on	the	kinematic	metrics	

metric	 MV	 SAL	 RAF	 WS	 nMD	 nPK	 Dtrgt	 ttask	

c2	 14.04	 11.88	 10.95	 6.12	 9.24	 11.88	 16.77	 13.77	

p-value	 0.003	 0.008	 0.012	 0.106	 0.026	 0.008	 <0.001	 0.003	

	

3.3.2 Motor	performances	improvement	is	captured	by	the	kinematic	measures	

Motor	performances	significantly	improved	in	all	patients,	with	the	exception	of	the	dimension	of	
the	workspace	(Figure	3.2,	Table	3.3).	Between	A1	and	A2	patients’	movement	increased	in	speed	
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(on	average	from	0.074±0.012	m/s	in	A1	to	0.094±0.012	m/s	in	A2)	with	a	concurrent	reduction,	
yet	not	significant,	of	the	jerkiness	and	of	the	robotic-assistance	(respectively	from	-5.44±0.60	to	-
5.11±0.36	and	from	57.95±18.84%	to	47.15±20.40%).	

	

Figure	3.2.	–	Kinematic	parameters.	Mean	velocity	(MV),	spectral	arc	length	(SAL),	percentage	of	movement	
assisted	by	the	robot,	percentage	of	the	workspace	explored	without	robotic	assistance	(WS),	linearity	index	
(nMD),	number	of	peaks	in	the	velocity	profile	(nPK),	distance	from	the	target	when	the	assistance	started	
normalized	by	the	distance	of	the	external	target	from	the	central	one	(Dtrgt)	and	reaching	time	(ttask)	ex-
tracted	from	the	trajectories	of	the	end-effector	of	the	exoskeleton	during	the	four	robotic	assessments	(A1	
and	A2	in	the	shades	of	blue	and	A3	and	A4	in	the	shades	of	green).	The	behavior	of	the	healthy,	mean±stand-
ard	error	of	the	mean,	is	shown	in	grey.	

After	the	month	of	training	these	improvements	were	stronger	and	statistically	significant.	Mean	
velocity	and	SAL	reached	level	comparable	with	those	of	the	controls	(respectively	0.151±0.013	
m/s	and	-3.67±0.21	for	stroke	and	0.153±0.011	m/s	and	-4.18±0.37	for	healthy	subjects,	differ-
ences	between	the	two	groups	were	not	significant:	for	the	velocity	p=0.589	and	SAL	p=0.240)	and	
subjects	S3,	S5,	and	S6	did	not	require	anymore	the	robotic	assistance.	Noticeably,	subjects	S2	and	
S4,	even	if	they	still	needed	robotic-assistance	in	all	the	assessments,	they	were	able	to	complete	a	
larger	portion	of	the	workspace	without	the	robot,	as	highlighted	by	a	decrease	in	Dtrgt,	(overall	
along	the	four	assessment	from	1.39±0.15	to	0.42±0.07	for	S2	and	from	1.61±0.75	to	0.25±0.11	for	
S4).	Finally,	along	the	four	assessments,	patients	performed	straighter	movements	(i.e.	reduction	
of	nMD:	from	0.191±0.029	at	A1	to	0.094±0.011	at	A4,	c2=9.24	p=0.026)	in	a	shorter	amount	of	
time	(from	0.191±0.029	at	A1	to	0.094±0.011	at	A4,	c2=13.77	p=0.003).		

3.3.3 Muscle	coordination	improves	with	training	as	highlighted	by	muscle	synergies		

Six	 (5.8±0.5)	 muscle	 synergies	 were	 found	 for	 each	 healthy	 participant,	 when	 considering	 the	
movements	from	the	center	of	the	workspace	to	the	six	main	outer	targets	(Figure	3.3a).	The	muscle	
synergies	structure	was	similar	to	that	already	reported	in	literature	for	analogous	tasks	(Pirondini	
et	al.,	2016).	



	

	
54	

	

Figure	3.3.	–	Muscle	synergies.	a)	Muscle	synergies	structure	of	 the	healthy	subjects	presented	as	mean	
(black)	and	standard	deviation	(in	grey)	computed	across	the	healthy	population.	Each	row	is	a	muscle	syn-
ergy,	ordered	from	the	one	that	was	more	similar	across	the	healthy	to	the	less	similar	one.	b)	Number	of	
synergies	that	explained	more	than	the	95%	of	the	VAF.	c)	Mean	similarity	index	(dotSTROKE)	between	all	the	
synergies	of	the	stroke	subjects	and	the	ones	of	the	healthy	population.	Data	of	the	two	assessments	before	
the	training	(A1	and	A2)	are	presented	in	the	shades	of	blue	and	in	the	shades	of	green	are	the	data	of	the	
assessments	after	the	training	(A3	and	A4).	The	grey	areas	in	section	c)	is	the	mean	±	std	of	dotHEALTHY	resulting	
from	averaging	across	all	the	6	identified	synergies	of	the	healthy	population.	

Specifically,	synergy	1	involved	mainly	the	pectoralis,	which	was	responsible	for	the	arm	flexion.	
Synergies	2	and	4	were	dedicated	to	the	extension	of	the	arm	and	included	respectively	the	anterior	
and	medial	part	of	the	deltoid	(Syn	2),	and	the	two	triceps	and	the	posterior	part	of	the	deltoid	(Syn	
4).	Synergy	5	was	mostly	composed	of	the	activation	of	the	forearm	muscles	(i.e.,	BRAD	and	PRO).	
Finally,	synergies	3	and	6	accounted	for	the	activity	of	the	postural	muscles	(i.e.,	both	trapezii,	IN-
FRA	and	RHO	for	Syn	3,	and	LAT,	INFRA	and	RHO	for	Syn	6)	involved	in	the	elevation	of	the	arm	
against	gravity.	The	stroke	subjects	presented	a	significant	 increase	 in	 the	number	of	 synergies	
from	A1	to	A4,	c2=8.54	and	p=0.036.	Specifically,	the	number	of	synergies	augmented	between	A2	
(4.1±0.4)	and	A3	(5.0±0.3)	and	it	was	maintained	at	A4	(5.4±0.4	synergies	modules)	(Figure	3.3b).	
This	change	highlights	an	increased	level	of	complexity	of	muscle	activity	as	expected	during	motor	
recovery	(Tropea	et	al.,	2013).	Additionally,	through	time	and	training	the	structure	of	the	synergies	
of	the	stroke	subjects	became	more	similar	to	the	structure	of	the	controls.	Indeed,	the	dotSTROKE	
augmented	significantly	 for	each	stroke	subject,	c2=9.49	and	p=0.023.	Specifically,	 it	was	 stable	
during	the	first	two	assessments	(dotSTROKE=0.48±0.07	and	dotSTROKE=0.47±0.04	at	A1	and	A2,	re-
spectively).	At	A3,	instead,	there	was	a	significant	improvement	of	this	indicator	with	respect	to	A2	
(dotSTROKE=0.58±0.03,	 p=0.031),	 and	 it	 continued	 to	 significantly	 evolve	 also	 at	 follow-up	 (dot-
STROKE=0.67±0.03,	p=0.031).			

3.3.4 Motoneuronal	activity	in	the	spinal	circuits	increases	with	training	

We	further	investigated	the	global	muscular	strategies	adopted	by	the	participants	by	computing	
spinal	maps,	which	estimate	spatiotemporal	motoneuronal	activation.	For	the	controls,	spinal	maps	
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were	characterized	by	a	main	period	of	activation	towards	the	end	of	the	reaching	task,	localized	
around	C7-T1	(Figure	3.4a).	For	the	stroke	subjects,	instead,	at	A1	and	A2	the	motoneuronal	activity	
was	either	almost	absent	because	they	were	not	able	to	accomplish	the	task	without	the	help	of	the	
exoskeleton	or	it	was	diffused	across	all	the	spinal	segments	and	not	localized,	in	contrast	to	the	
controls	(Figure	3.4b).	

	

Figure	3.4.	–	Spinal	maps.	a)	Temporal	activation	of	the	spinal	map	extracted	from	the	EMG	activities	of	the	
healthy	population.	b)	Temporal	activation	of	the	spinal	map	extracted	from	the	EMG	activities	of	S	3	in	the	
four	assessments.	c)	Mean	and	standard	deviation	of	the	2D	correlation	(RMAP)	between	the	spinal	map	of	each	
stroke	subject	and	the	healthy	subjects	at	the	different	assessments.	Mean	and	STD	of	the	correlation	across	
the	 healthy	 population	 is	 showed	 with	 the	 grey	 area.	 d)	 Mean	 and	 standard	 deviation	 of	 the	 distance	
(RMSEMAP)	between	the	spinal	map	of	each	stroke	subject	and	the	healthy	subjects	at	the	different	assess-
ments.	Mean	and	STD	of	the	correlation	across	the	healthy	population	is	showed	with	the	grey	area.	In	the	
shades	of	blue	are	presented	the	results	of	assessment	1	and	2	(A1	and	A2)	while	in	the	shades	of	green	the	
data	concerning	assessments	3	and	4	(A3	and	A4).	

Along	the	four	assessments,	the	spinal	maps	of	the	stroke	subjects	became	significantly	more	simi-
lar	to	those	of	the	controls,	both	in	term	of	correlation	RMAP,S,	c2=9.56	and	p=0.022,	and	of	root	mean	
square	error	RMSEMAP,S,	c2=10.62	and	p=0.014.	Yet,	the	greatest	and	the	only	significant	changes	
for	both	metrics	occurred	between	A2	and	A3	(i.e.,	with	training),	where	RMAP,S	augmented	from	
0.18±0.06	 to	 0.42±0.08	 (p=0.031)	 and	 RMSEMAP,S	 diminished	 from	 60.50±5.17	 to	 46.33±3.23	
(p=0.031).	Importantly,	the	improvement	remained	stable	at	follow-up	as	indicated	by	a	non-sig-
nificant	difference	of	the	values	of	RMAP,S	and	RMSEMAP,S	between	A3	and	A4.		
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3.3.5 Cortical	activity	gets	closer	to	healthy	level	with	training	as	highlighted	by	EEG	
topographies	

We	utilized	SVD	decomposition	of	 the	EEG	signals	concatenated	 in	 time	across	participants	and	
sessions	to	identify	reliable	and	reproducible	topographical	maps	(Pirondini	et	al.,	2019,	2020).	We	
selected	 the	 first	 three	EEG-SVD	components,	which	accounted	 for	75%	of	 the	variance	 (Figure	
3.4a).	We	tested	the	consistency	of	the	maps	by	split-half	reproducibility	analysis.	All	the	three	com-
ponents	were	highly	reproducible	(average	correlation	±	STD	across	splits	and	components:	0.98	±	
0.01).	

	

Figure	3.5.	–	EEG	topographies.	a)	Canonical	correlation	coefficients	for	the	coefficients	of	variation	of	the	
first	three	EEG-SVD	topographies	and	the	four	frequency	bands	(delta,	theta,	alpha,	and	beta).	b)	2D	correla-
tion	plot	of	canonical	correlation	scores	for	FMA	(y-axis)	and	resting-state	EEG	measures	(y-axis).	Black	dots	
represent	healthy	subjects.	Blue,	cyano,	and	light	and	dark	green	dots	represent	stroke	patients	at	A1,	A2,	A3,	
and	A4,	respectively.	c)	Brain	canonical	scores	for	each	subject	for	A1	(blue	bars),	A2	(cyano	bars),	A3	(light	
green	bars),	and	A4	(dark	green	bars)	and	for	controls	(grey	bars).	

We	computed	canonical	correlation	between	the	FMA	scores	and	the	coefficients	of	variation	of	
each	 EEG-SVD	 topography	 and	 frequency	 band.	We	 found	 one	 significant	 canonical	 correlation	
component	(p	<	0.01	permutation	test;	correlation:	0.96,	Figure	3.5b)	with	highest	coefficients	for	
CV	of	delta	and	alpha	bands	for	the	1st	EEG-SVD	component,	theta	and	alpha	bands	for	the	2nd	
component,	and	delta	and	beta	bands	for	the	3rd	component	(Figure	3.5a).	Through	time	and	train-
ing	the	CVs	got	closer	to	those	of	the	healthy	controls,	in	particular	for	S3,	S5,	and	S6.	Yet,	no	signif-
icant	difference	was	found	between	the	three	assessments	when	considering	all	subjects	together.	

3.3.6 Multimodal	analysis	reveals	different	temporal	dynamics	of	recovery	

Before	running	the	multimodal	analysis,	we	looked	for	correlations	between	specific	pairs	of	pa-
rameters	obtained	both	from	the	same	domain	and	from	different	domains.	Results	are	summa-
rized	in	Figure	3.6a.	We	found	that	there	were	some	significant	correlations	between	couples	of	
parameters	extracted	from	the	same	domain,	like	between	the	nPK	and	time	to	reach	the	target	or	
the	linearity	index	(nMD)	and	the	robotic	assistance	(RAF)	obtained	from	the	kinematic	domain.	
Similarly,	we	found	significant	correlations	between	dotsyn1	and	dotsyn3	or	between	the	number	of	
synergies	and	dotsyn6.	Interestingly,	we	noticed	significant	correlations	also	between	parameters	of	
different	domains,	for	example	the	percentage	of	workspace	explored	without	robotic	assistance	
and	the	number	of	muscle	synergies	or	the	time	to	reach	the	target	and	the	RMSEMAP	extracted	from	
the	spinal	maps.	Nevertheless,	despite	these	significant	correlations,	the	value	of	the	correlation	
coefficient	was,	on	average,	relatively	modest:	r	=	mean	0.53	±	STD	0.12.	
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Figure	3.6.	–	Multimodal	analysis.	a)	Matrix	of	Pearson	correlation	coefficients	resulting	from	pairwise	com-
parisons	between	each	parameter	extracted	from	healthy	and	stroke	population	for	each	assessment.	The	
grey	intensity	of	the	figure	corresponds	to	the	value	of	the	p-values	of	the	correlations,	only	the	correlations	
that	resulted	significant	are	reported.	The	bold	lines	are	delimitating	the	area	of	features	extracted	from	the	
same	source.	b)	Projection	of	the	dataset	in	the	3D	space	identified	by	the	first	three	principal	components	
(PCs).	The	data	relative	to	the	healthy	subjects	are	in	black,	the	data	of	the	stroke	subjects	at	A1	in	blue,	A2	
light	blue,	A3	light	green	and	A4	dark	green.	The	centroid	of	each	group	of	data	is	highlighted	by	a	marker	of	
bigger	size	and	higher	intensity	with	respect	of	the	majority.	c)	Coefficients	of	the	three	PCs.	In	the	shades	of	
red	data	relative	to	the	kinematic,	in	the	shades	of	brown	data	relative	to	muscle	synergies,	shades	of	purple	
data	relative	to	the	spinal	maps	and	in	orange	data	relative	to	EEG.	d)	Top:	Distance	between	the	healthy	and	
the	stroke	group	in	the	space	of	PCs1-2-3	(distALL)	and	along	each	PC	separately	(distPC1,	distPC2,	distPC3).	Bot-
tom:	Distance	between	the	healthy	group	and	each	stroke	subject	in	the	space	of	PCs1-2-3	(distALL)	and	along	
each	PC	 separately	 (distPC1,	 distPC2,	 distPC3).	Highlighted	 in	 grey	 the	 regions	where	 there	was	 a	 significant	
change.	e)	Summary	image	illustrating	the	different	temporal	dynamics	of	recovery	identified	by	the	proposed	
methodology.		
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We	then	combined	together	all	 the	measures	extracted	from	the	robotic	assessment	(kinematic,	
EMG	and	EEG	metrics)	in	a	multimodal	analysis	using	PCA.	The	explained	variance	for	the	first	three	
PCs	was	59.75%.	The	metrics	extracted	 from	the	kinematic	and	spinal	maps	were	 those	mostly	
contributing	to	PC1.	The	second	PC,	instead,	was	mainly	associated	with	the	workspace	coverage,	
the	number	of	synergies,	and	the	similarity	of	synergy	2	and	6.	Finally,	the	factor	loadings	associ-
ated	with	the	third	PC	were	the	number	of	peaks	in	the	speed	profile,	movement	duration,	the	work-
space	coverage,	the	structure	of	synergy	1,	and	the	EEG	scores	(Figure	3.6c).	When	projecting	the	
individual	data	points	into	the	3D	space	defined	by	the	newly	constructed	variables	PC1–3,	clear	
differences	 emerged	 between	 the	 healthy	 subjects	 and	 the	 stroke	 patients	 (Figure	 3.6b).	 Im-
portantly,	these	differences	were,	also,	affected	by	time	and	training	(Figure	3.6b	and	d).	Indeed,	
the	distance	between	the	patients’	and	controls’	data	points	in	the	3D	space	significantly	decreased	
along	the	four	assessments,	c2=10.22	and	p=0.016.	 In	particular,	 the	distance	decreased	signifi-
cantly	(p=0.031)	from	A2	(distALL=4.07±0.32)	to	A3	(distALL=2.52±0.37),	and	it	remained	stable	at	
A4	 (distALL=2.17±0.36).	 Interestingly,	we	 found	different	 temporal	dynamics	of	 recovery	 for	 the	
three	principal	components,	summarized	in	Figure	3.6e.	Indeed,	the	distance	along	PC1	changed	
along	the	four	assessments,	c2=9.61	and	p=0.022,	with	a	significant	decrease	in	particular	between	
A1	and	A2	(distPC1=4.73±0.98	and	distPC1=2.43±0.56	at	A1	and	A2,	respectively	-	p=0.031)	and	be-
tween	A2	and	A3	 (distPC1=0.80±0.17	 -	p=0.031).	PC2	 significantly	decrease	between	A2	and	A3	
(distPC2=2.76±0.29	and	distPC2=1.51±0.23	at	A2	and	A3,	respectively	-	p=0.031).	 Instead,	the	dis-
tance	along	PC3	decreased	throughout	the	four	assessments,	c2=8.39	and	p=0.03,	yet	mainly	be-
tween	A1	and	A2	(distPC3=1.91±0.53	distPC3=0.95±0.14	at	A1	and	A2,	respectively	-	p=0.031).	When	
correlating	the	3	PCs	with	the	clinical	scores	we	found	a	significant	correlation	between	PC1	and	
the	FMA,	r=0.74	p<0.001,	and	between	PC1	and	grip	force,	r=0.54	p=0.003.	

3.4 Discussion	

The	 current	 study	 aimed	 to	 introduce	 a	 comprehensive	 set	 of	 movements,	 muscle,	 and	 brain	
measures	as	well	as	to	present	a	multivariate	methodological	approach	combining	them	in	a	unique	
framework.	This	approach	can	be	applied	to	any	dataset	containing	multidomain	measures.	Here	
we	applied	this	method	to	a	multidomain	dataset,	including	a	small	group	of	subacute	stroke	sub-
jects	that	went	through	a	month	of	intense	motor	rehabilitation.		

3.4.1 Multimodal	assessment	

Motor	rehabilitation	aims	at	maximizing	the	recovery	and	independence	in	daily	living	by	discour-
aging	dysfunctional	compensatory	behaviors	and	promoting	the	re-learning	of	appropriate	motor	
control	strategies	(Micera	et	al.,	2020).	For	this,	rehabilitation	protocols	have	to	adapt	to	the	indi-
vidual	dynamics	of	recovery	(Winstein	and	Kay,	2015).	However,	because	of	the	multifaceted	na-
ture	of	stroke,	recovery	assessments	should	explore	different	aspects	of	the	nervous	system.	For	
this	reason,	in	this	study,	we	simultaneously	recorded	kinematic,	EMG,	and	EEG	signals	to	gather	a	
general	understanding	of	the	neuro-biomechanical	state	of	the	subjects	and	of	its	evolution	over	
time	after	a	rehabilitative	treatment,	independently	from	the	nature	of	the	latter	(e.g.,	robotic	or	
conventional	therapy).	Importantly,	all	domains	of	the	neuromuscular	system	-	kinematic,	muscle,	
and	neural	activity	-	were	affected	by	the	motor	training.	Besides,	significant	correlations	could	also	
be	observed	across	them,	although	they	could	not	fully	capture	the	complex	variations	pertaining	
to	the	different	domains.	As	such,	these	observations	support	the	feasibility	and	the	need	for	a	mul-
timodal	approach	that	could	efficiently	summarize	these	factors	in	a	single	metric.	For	this	purpose,	
we	deployed	principal	component	analysis.	We	projected	 the	 individual	data	points	 into	 the	3D	
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space	defined	by	the	first	three	principal	components	explaining	a	high	percentage	of	variance,	and	
we	computed	the	distance	between	the	healthy	controls	and	the	stroke	subjects	at	each	assessment.	
During	the	training,	the	distance	between	the	patients’	and	controls’	data	points	in	the	3D	space	
significantly	decreased,	yet	with	different	dynamics.	Previous	studies	already	reported	different	
evolutions	of	 the	 recovery	 factors	 for	movement	 speed,	 efficiency,	 and	accuracy	 (Murphy	et	al.,	
2011;	Nordin	et	al.,	2014;	Panarese	et	al.,	2016).	We	here	extended	these	findings	to	new	physio-
logical	measures,	hence	providing	a	more	complete	characterization	of	the	neuro-biomechanical	
status	of	the	patients	and	of	its	evolution.	We	found	that	patients’	kinematic	and	spinal	maps	pa-
rameters	were	mainly	clustered	over	the	first	principal	component	(PC1)	and	improved	continu-
ously	during	the	four	assessments.	These	quantitative	measures	were	also	those	exhibiting	a	higher	
correlation	with	 the	post-stroke	 impairments	 captured	by	 the	FMA	assessment	and	by	 the	grip	
force.	A	strong	correlation	between	kinematics	and	the	patient	status	as	described	by	clinical	scales	
is	in	general	well	accepted	and	expected	since	they	measure	similar	parameters	(Anne	et	al.,	2019;	
Shirota	et	al.,	2019).	A	more	striking	observation	is,	instead,	the	strong	correlation	with	the	spinal	
maps,	as	 they	have	been	so	 far	rarely	used	 to	describe	upper	 limb	movements	(Pirondini	et	al.,	
2016;	Barra	et	al.,	2018)	and	levels	of	impairment	after	stroke	(Coscia	et	al.,	2015).			

Together	with	spinal	maps,	we	also	estimated	muscle	synergies	as	metrics	of	motor	coordination	
extracted	from	electromyographic	signals.	Interestingly,	muscle	synergies	features	clustered	in	a	
separated	principal	component	(PC2),	as	compared	to	spinal	maps,	and	they	normalized	already	in	
the	shorter	period	of	the	training,	highlighting	that	motoneuronal	activity	and	muscle	coordination	
evolve	differently	over	time.		

Finally,	the	third	component	mainly	included	metrics	related	to	some	kinematics	measures	(speed	
profile,	movement	duration,	and	workspace	coverage),	the	structure	of	synergy	1,	and	the	brain	
features	that	normalized	in	the	shorter	period	post-lesion	(i.e.,	between	A1	and	A2).		

Overall	these	results	highlighted	that	post-stroke	recovery	develops	at	different	stages	for	different	
aspects	of	the	nervous	systems.	A	short-term	recovery	(between	A1-A2)	likely	due	to	a	combination	
of	spontaneous	recovery	and	inpatient	therapy;	a	medium-term	recovery	(between	A2-A3)	proba-
bly	as	result	of	our	intervention	and	the	inpatient	rehabilitative	therapy	and	finally,	a	long-term	
recovery	(between	A3-A4)	that	showed	a	maintenance	of	the	functional	improvements	achieved	at	
A3	probably	supported	as	well	by	 the	outpatient	 therapy.	While	 further	studies	should	confirm	
these	preliminary	results	in	larger	datasets,	these	different	dynamics	were	previously	not	captured	
when	considering	standard	clinical	approaches	or	mono-parameter	analysis	and	should	be	taken	
in	consideration	when	designing	new	rehabilitation	protocols.	

3.4.2 Specific	unimodal	analysis	

Stroke	subjects	performed	the	3D	point-to-point	reaching	task	worst	as	compared	to	healthy	con-
trols.	In	accordance	with	previous	studies	(Levin,	1996;	Cirstea	et	al.,	2003;	Belfatto	et	al.,	2018;	
Pila	et	al.,	2018)	patients’	movements	were	less	smooth	and	slower,	and	often	required	assistance	
from	the	exoskeleton,	especially	during	the	A1	assessment,	a	few	weeks	after	the	injury.	Already	at	
the	second	assessment,	which	was	performed	before	the	extra	dose	of	rehabilitative	intervention	
(either	robotics	or	standard	therapy),	performances	improved.	This	progress	immediately	after	the	
injury	is	typical	of	the	recovery	that	usually	arises	in	the	acute	phase	(Cramer,	2008).	Moreover,	in	
this	period	patients	were	already	receiving	inpatient	physical	and	occupational	therapy.	Yet,	the	
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strongest	improvement	occurred	between	A2	and	A3	(i.e.,	after	the	treatment).	At	A3,	kinematic	
performances	became	comparable	to	those	of	the	controls	and	maintained	an	analogous	pattern	at	
follow-up	(i.e.,	assessment	A4).		

The	multimodal	set-up	deployed	in	this	study	linked	this	trend	of	kinematic	improvements	to	the	
motoneuronal	changes	estimated	using	spinal	maps.	The	use	of	spinal	maps	to	characterize	upper	
limb	movements	had	so	far	been	limited	(Pirondini	et	al.,	2016;	Barra	et	al.,	2018;	Kibleur	et	al.,	
2019)	and	they	were	never	exploited	in	stroke	patients	to	explore	upper	limb	impairments.	More-
over,	we	recently	demonstrated	a	strong	correlation	between	spinal	maps	activation	and	blood-
oxygen-level-dependent	signal	of	the	spinal	cord	captured	by	functional	magnetic	resonance	imag-
ing,	 which	 further	 supports	 the	 use	 of	 this	 analysis	 technique	 to	 infer	 motoneuronal	 activity	
(Kinany	et	al.,	2019).	In	our	stroke	population,	the	motoneuronal	activity	described	by	the	spinal	
maps	was	reduced	after	the	stroke	lesion	with	respect	to	the	one	of	healthy	participants,	both	in	
terms	of	temporal	activation	(RSTROKE)	and	magnitude	of	activation	(RMSESTROKE),	but	it	increased	
during	the	training,	getting	closer	to	the	one	of	the	healthy	participants	at	A3	and	A4.	

The	number	and	structure	of	the	patients’	muscle	synergies	also	became	more	similar	to	those	of	
the	healthy	controls,	in	particular	after	the	month	of	intense	training.	Similarly	to	observations	re-
ported	in	previous	studies,	the	number	of	synergies	for	the	stroke	subjects	increased	through	time	
with	the	recovery	of	motor	functions	(Cheung	et	al.,	2009,	2012;	Tropea	et	al.,	2013;	Coscia	et	al.,	
2015)	and	this	increase	was	also	accompanied	by	changes	in	their	structure.	The	synergies	struc-
ture	improved	also	for	the	subjects	that	did	not	recover	all	the	six	synergies	characteristic	of	the	
healthy	population	(see	also	Figure	B1	in	Supplementary	material	for	more	details).	These	results	
are	in	accordance	with	studies	showing	that	the	conjunction	between	the	spontaneous	recovery	
and	the	intensive	treatment	improved	motor	performance,	both	in	terms	of	kinematics	and	muscle	
activation	patterns	(Fasoli	et	al.,	2003;	Riener	et	al.,	2005;	Tropea	et	al.,	2013).	Interestingly,	muscle	
synergies	related	to	the	control	of	the	shoulder	(i.e.,	Syn	2	and	4)	were	those	with	the	strongest	
changes	particularly	after	training	with	the	exoskeleton	(see	Figure	B1	in	Supplementary	material)	
paralleling	our	previous	findings	(Tropea	et	al.,	2013).	

The	kinematic	and	muscle	factors	explored	in	this	study	provide	a	detailed	description	of	the	bio-
mechanical	status	of	the	patients.	Yet,	they	do	not	tap	into	the	complex	neural	reorganization	pro-
cesses	that	occur	after	brain	insult.	To	capture	these	changes,	we	deployed	topography-based	anal-
ysis	of	the	EEG	signals	acquired	at	rest.	We	opted	for	a	topography-based	approach,	in	contrast	to	
traditional	 EEG	waveform	 analysis,	 as	we	 believe	 this	 approach	 can	 better	 capture	 post-stroke	
large-scale	neural	processes	without	any	a	priori	hypothesis	on	the	spatial	 location	of	abnormal	
brain	activity	(Pirondini	et	al.,	2017;	Zappasodi	et	al.,	2017).	 Indeed,	stroke	has	been	nowadays	
reconsidered	as	a	distributed	network	disease	with	structural	and	 functional	changes	occurring	
between	brain	areas	distant	to	the	lesion	(Carrera	and	Tononi,	2014;	Siegel	et	al.,	2016;	Allali	et	al.,	
2018).	We	deployed	singular-value	decomposition	to	extract	EEG	topographies	that	resemble	pre-
viously	identified	microstates,	whose	preserved	occurrence	and	duration	has	been	shown	to	corre-
late	with	a	better	effective	motor	recovery	(Zappasodi	et	al.,	2017).	Specifically,	in	our	approach	we	
concatenated	in	time	the	data	recorded	for	healthy	subjects	and	patients	and	subsequently	derived	
group-level	spatial	maps	that	come	with	subject-specific	time	courses.	Indeed,	we	were	interested	
in	preserving	the	subject-specificity	only	in	the	time	courses,	while	considering	the	same	spatial	
subspace	across	subjects.	We	further	supported	this	assumption	by	performing	SVD	decomposition	
of	 the	 EEG	 signal	 of	 each	 participant	 and	 every	 session	 (see	 Supplementary	 Figure	 B2),	which	
showed	a	high	correlation	across	all	subjects	for	all	top-three	components.	We	recently	deployed	
similar	analysis	to	discriminate	patients	with	spatial	neglect	of	different	severity	levels	(Pirondini	
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et	al.,	2020).	Here,	we	paralleled	these	previous	results	showing	that	spectral	power	of	the	SVD	
topographies,	which	has	a	typical	1/f	fall-off	typical	of	the	EEG	spectral	power	for	all	components,	
and	particularly	delta	and	alpha	rhythms,	correlated	with	level	of	motor	impairments.	Interestingly,	
through	time	and	training	the	aberrant	brain	oscillation	patterns	were	restored,	in	particular	for	
the	subjects	that	showed	a	stronger	motor	improvement.	Indeed,	the	three	patients	(S1,	S2,	and	S4)	
for	which	brain	rhythms	remained	abnormal	not	only	had	lower	FMA	scores,	but	also	aberrant	mo-
toneuronal	activation.	Furthermore,	they	still	needed	robotic	assistance	after	the	intensive	training	
and	at	follow-up.		

Overall	kinematic,	muscle,	and	cortical	activity	showed	an	improvement	particularly	evident	during	
the	training	and	correlated	with	the	clinical	status	of	the	patients.	Yet,	when	summarizing	these	
affinities	across	the	different	physiological	measures	using	a	multivariate	approach,	the	latter	high-
lighted	that	post-stroke	recovery	develops	at	different	stages	for	different	aspects	of	the	nervous	
systems,	suggesting	that	kinematic,	muscle,	and	brain	features	should	be	taken	into	consideration	
when	designing	new	rehabilitation	protocols.	For	this,	our	approach	could	be	an	effective	method	
to	summarize	the	different	psychological	measures	in	few	metrics	that	could	be	monitored	over	
time	to	personalize	the	treatment	(Panarese	et	al.,	2012a;	Giang	et	al.,	2020)	

3.4.3 Limitations	of	the	study	

Although	the	findings	presented	in	this	study	suggest	that	the	proposed	multimodal	approach	has	
the	capacity	to	provide	additional	information	regarding	the	evolution	of	the	recovery	after	stroke,	
the	limited	sample	size	limits	the	generalizability	of	the	results.	Nevertheless,	the	main	goal	of	this	
study	was	to	propose	a	potential	comprehensive	method	that	included	various	types	of	information	
rather	than	probing	its	clinical	efficacy.	Moreover,	the	heterogeneity	of	the	stroke	subjects	included	
in	the	study	does	not	allow	for	an	ideal	homogeneous	stratification	of	the	population.	However,	this	
could	not	be	precisely	controlled,	as	we	were	working	with	sub-acute	stroke	and	the	recruitment	
was	done	on	a	continuous	basis	one	patient	at	the	time.	Therefore,	further	studies	including	larger	
cohorts	of	participants	would	be	necessary	to	draw	meaningful	conclusions	about	the	clinical	effi-
cacy	of	 the	presented	 approach.	One	 further	 limitation	 regards	 the	number	of	movements	per-
formed	by	the	patients	recruited	in	the	three	different	groups.	To	ensure	comparability	among	the	
groups,	we	proposed	the	same	duration	of	the	session	and	we	asked	the	therapist	to	provide	a	train-
ing	with	a	similar	intensity	as	the	one	provided	by	the	robot.	Yet,	the	number	of	movements	per-
formed	highly	depended	on	the	ability	level	of	each	stroke	subject.	

3.5 Conclusion	

The	use	of	an	instrumental	assessment	followed	by	a	multimodal	approach	identified	quantitative	
neurophysiological	metrics	correlating	with	clinical	measures	such	as	the	FMA	and	grip	force,	as	
well	as	clustered	metrics	that	evolve	distinctly	during	recovery,	underlining	their	functional	and	
clinical	relevance.	A	combined	analysis	of	kinematic,	muscular,	and	brain	activity	seems	to	be	able	
to	provide	a	good	and	accurate	patient	 characterization	 in	 line	with	 the	outcome	of	 the	clinical	
scales.	In	the	future,	similar	methods	should	be	implemented	in	order	to	track	the	evolution	of	the	
neuro-biomechanical	state	of	the	patients	after	brain	damage,	to	define	suitable	personalized	reha-
bilitative	 intervention	strategies	and	to	provide	a	deeper	 insight	 into	the	recovery	process	after	
stroke.		
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In	this	section,	we	explored	approaches	to	quantify	motor	recovery,	in	the	broader	context	of	the	
personalization	of	rehabilitative	interventions.	In	the	first	study	(Chapter	2),	we	validated	a	model-
based	methodology	to	estimate	motor	improvement	and	continuously	adapt	training	based	on	this	
quantitative	variable.	In	practical	terms,	we	tested	this	approach	in	a	group	of	healthy	subjects	per-
forming	a	visual	adaptation	task	in	a	three-dimensional	environment,	using	an	upper-limb	exoskel-
eton.	We	demonstrated	that	motor	improvement	could	successfully	be	captured	for	each	individual	
subject,	at	the	subtask	level,	and	that	the	subsequent	task	adaptation	was	timely	and	accurate.	Fur-
thermore,	we	showed	that	this	approach	could	be	deployed	to	enable	personalized	rehabilitation	
in	two	sub-acute	stroke	patients	with	significantly	disparate	motor	symptoms,	thus	providing	pre-
liminary	evidence	of	its	applicability	in	clinical	settings.	While	kinematic-based	personalization	has	
an	undeniable	potential	as	regards	the	customization	of	the	training	procedure	itself,	a	thorough	
investigation	of	recovery	mechanisms	is	necessary	to	fully	understand	and	harness	patients’	resid-
ual	 function.	 In	 the	second	study	(Chapter	3),	we	thus	probed	the	temporal	evolution	of	motor	
function	using	a	novel	multimodal	framework.	Specifically,	we	used	a	PCA-based	approach	to	com-
bine	measures	reflecting	movement	execution,	motor	output,	muscle	coordination	and	neural	ac-
tivity	into	a	clinically	meaningful	metric.	We	applied	this	analysis	to	longitudinal	data	of	sub-acute	
stroke	patients	undergoing	rehabilitation	and	illustrated	the	ability	of	the	proposed	framework	to	
provide	a	synthetic	view	of	the	physiological	processes	underlying	post-stroke	motor	recovery.	In	
particular,	our	findings	emphasized	their	multifaceted	nature,	as	heterogeneous	temporal	dynam-
ics	were	observed	for	multimodal	variables	reflecting	central	and	peripheral	mechanisms.	This	sug-
gested	that	functional	changes	at	different	levels	occurred	at	multiple	time	scales	to	support	the	
regaining	of	motor	function.	Consequently,	our	findings	pointed	out	the	importance	of	integrating	
measures	from	different	sources	in	order	to	accurately	identify	the	correlates	of	stroke	recovery.	

All	in	all,	technology-assisted	rehabilitative	strategies	offer	avenues	for	precise	and	efficient	thera-
pies,	provided	that	they	are	employed	so	as	to	optimally	manipulate	the	physiological	circuitry	in-
volved	in	motor	recovery.	How	this	should	be	implemented	in	practice	is	still	a	matter	of	debate,	
but	developments	should	rely	on	comprehensive	evaluations	of	the	cerebral,	spinal,	muscular	and	
mechanical	status	of	the	patients	in	order	to	establish	science-driven	paradigms.	Advances	in	this	
regard	can	have	numerous	benefits,	both	in	terms	of	prognosis	and	treatments.	Notably,	this	could	
highlight	biomarkers	to	inform	patient	stratification,	hence	ensuring	that	the	most	adapted	combi-
nation	of	treatments	is	provided,	with	the	most	appropriate	timing.	

	

Summary	and	outlook	
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In	Part	 I,	we	acknowledged	the	 importance	of	considering	central	and	peripheral	motor-related	
mechanisms	 to	 better	 characterize	 post-stroke	 recovery.	 Despite	 the	multimodal	 nature	 of	 this	
work,	the	involvement	of	the	CNS	was	merely	limited	to	cortical	processes,	apart	from	indirect	es-
timation	of	spinal	motoneuronal	activity	using	muscular	recordings.	This	encephalo-centered	view	
of	the	CNS	is,	actually,	a	common	limitation	in	studies	investigating	motor	function.	Nevertheless,	
evidence	is	accumulating	to	emphasize	the	key	role	of	the	spinal	cord	in	motor	control,	as	well	as	
the	sophisticated	character	of	its	circuitry	(Poppele	and	Bosco,	2003;	Giszter	et	al.,	2012;	Arber	and	
Costa,	2018).	Contrary	to	the	long-standing	view	of	a	passive	and	hard-wired	organ,	the	spinal	cord	
is	 actually	a	major	 site	of	 activity-dependent	plasticity	 throughout	 life	 (Wolpaw	and	Tennissen,	
2001;	Grau,	2014;	Zholudeva	et	al.,	 2018).	As	 such,	 engaging	and	guiding	spinal	neuroplasticity	
could	have	substantial	implications	in	the	development	of	new	therapies	(Wolpaw,	2012).	At	the	
core	of	the	interplay	between	afferent	and	efferent	pathways,	it	undoubtedly	occupies	an	ideal	po-
sition	to	contribute	to	functional	recovery	(Tennant,	2014).	

Considering	this	central	position	of	the	spinal	cord,	at	the	interface	between	the	brain	and	the	pe-
riphery,	it	may	appear	surprising	that	it	has	so	rarely	been	investigated.	The	answer	to	this	question	
partly	lies	in	the	limited	availability	of	methods	to	efficiently	probe	spinal	cord	function	in	humans	
(Wheeler-Kingshott	et	al.,	2014).	Indeed,	most	knowledge	on	that	topic	has	so	far	been	gained	from	
animal	models.	Given	that	spinal	circuits	are	not	entirely	preserved	across	species	(Lemon,	2008;	
Nielsen,	2016),	there	is	however	a	considerable	need	for	approaches	enabling	non-invasive	assess-
ments	of	human	spinal	pathways.	In	this	context,	imaging	methods,	such	as	fMRI,	could	potentially	
be	leveraged	(Stroman	et	al.,	2014;	Powers	et	al.,	2018).	

The	work	presented	in	this	section	is	articulated	around	two	main	axes:	methodology	development	
and	applications.	Accordingly,	the	purpose	of	Chapters	4,	5	and	6	is	essentially	to	establish	a	robust	
framework	to	study	spinal	cord	activity	using	fMRI,	during	task	and	at	rest.	We	then	capitalize	on	
these	advances	to	investigate	fundamental	and	clinical	neuroscientific	questions.	In	Chapter	7,	we	
show	how	distinct	cerebro-spinal	correlates	support	short-	and	long-term	motor	sequence	learning	
(Chapter	7).	Finally,	Chapter	8	focuses	on	the	potential	for	clinical	translation	of	spinal	functional	
imaging	and	we	present	preliminary	results	in	two	patient	populations.	First,	we	explore	the	reor-
ganization	of	spinal	pathways	in	stroke	patients.	Then,	we	illustrate	how	fMRI	can	be	used	to	inform	
patient-tailored	rehabilitation	in	the	context	of	a	case	study	with	a	spinal	cord	injured	patient.	

	

PART	II		
Bridging	the	gap	between	the	brain	and	the	periphery		
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Chapter	4	corresponds	to	unpublished	results.	

Contributions:	responsible	of	the	project,	design	and	organization	of	the	experiments,	establish-
ment	of	the	MRI	protocols	(supported	by	the	MR	technical	staff	from	the	Fondation	Campus	Bio-
tech	Geneva),	data	collection,	development	of	 the	analysis	plan,	data	processing	and	analysis,	
presentation	of	the	results.	

	

Chapter	5	corresponds	to	a	postprint	version	of	the	article	published	under:	

“Functional	 imaging	of	 rostrocaudal	 spinal	activity	during	upper	 limb	motor	 tasks”,	Kinany	N.,	
Pirondini	E.,	Martuzzi	R,	Mattera	L.,	Micera	S.*	and	Van	de	Ville	D.*,	NeuroImage,	2019,	vol.	200,	
doi:10.1016/j.neuroimage.2019.05.036	
*	Equally	contributing	authors	

Contributions	as	first	author:	responsible	of	the	project,	design	and	organization	of	the	experi-
ments,	data	collection,	development	of	the	analysis	plan,	data	processing	and	analysis,	prepara-
tion	of	the	figures	and	writing	of	the	manuscript	

	

Chapter	6	corresponds	to	a	postprint	version	of	an	article	accepted	in	Neuron:		

“Dynamic	functional	connectivity	of	resting-state	spinal	cord	fMRI	reveals	fine-grained	intrinsic	ar-
chitecture”,	 Kinany	 N.,	 Pirondini	 E.,	 Micera	 S.*	 and	 Van	 de	 Ville	 D.*,	 Neuron,	 2020	
*	Equally	contributing	authors	

Contributions	as	first	author:	responsible	of	the	project,	design	and	organization	of	the	experi-
ments,	data	collection,	development	of	the	analysis	plan,	data	processing	and	analysis,	prepara-
tion	of	the	figures	and	writing	of	the	manuscript	

	

Chapter	7	is	adapted	from	a	manuscript	in	preparation:		

“Dynamics	of	cerebral	and	spinal	networks	during	acquisition	and	consolidation	of	motor	skills”,	
Kinany	N.,	Khatibi	A,	Lungu	O.,	Micera	S.,	Van	de	Ville	D.,	Marchand-Pauvert	V.	and	Doyon	J.	

Contributions	as	 first	author:	development	of	 the	analysis	plan,	data	processing	and	analysis,	
preparation	of	the	figures	and	writing	of	the	manuscript	

	

Chapter	8	corresponds	to	unpublished	results.	

Contributions:	design	and	organization	of	the	experiments	(in	collaboration	with	the	clinical	cen-
ters),	data	processing	and	analysis,	presentation	of	the	results.	
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4.1 	Introduction	

In	the	brain,	fMRI	studies	have	been	widely	deployed	to	map	neural	activity.	While	the	first	report	
of	spinal	cord	fMRI	in	humans	dates	from	1996	(Yoshizawa	et	al.,	1996),	spinal	cord	fMRI	has	not,	
however,	 followed	 the	 same	 development	 (Stroman	 et	 al.,	 2014).	 This	 limited	 rate	 of	 progress	
mainly	stems	from	additional	challenges	associated	with	imaging	this	region	(Giove	et	al.,	2004),	
hence	implying	that	spinal	cord	fMRI	cannot	be	considered	as	a	straightforward	extension	of	 its	
brain	counterpart.	Among	the	challenges	impeding	spinal	cord	fMRI,	most	arise	from	its	anatomy.	
In	particular,	the	spinal	cord	has	a	small	cross-sectional	diameter,	in	the	order	of	a	centimeter,	along	
with	a	 long	rostro-caudal	extent,	approximately	45	centimeters	 in	adults.	This	 implies	 that	high	
spatial	resolution	and	large	coverage	would	ideally	be	required,	although	this	is	not	easily	achieva-
ble	 in	practice	(Summers	et	al.,	2014).	Moreover,	 these	dimensions	entail	a	 limited	 tolerance	 to	
motion	artifacts.	In	this	regard,	an	important	source	of	motion	is	linked	to	physiological	noise,	with	
cardiac-related	noise	being	a	major	issue,	as	the	dilation	of	the	arteries	and	the	CSF	pulsatile	flow	
can	both	induce	signal	variations	(Piché	et	al.,	2009).	The	close	proximity	of	the	lungs	can	also	lead	
to	 time-varying	 changes	 in	 the	 magnetic	 field	 homogeneity,	 in	 turn	 impacting	 signal	 changes	
(Vannesjo	et	al.,	2018).	Finally,	 the	spine	is	surrounded	by	different	tissue	types,	whose	distinct	
boundaries	cause	field	inhomogeneities,	potentially	resulting	in	distortion	or	signal	losses	(e.g.,	sus-
ceptibility	artifacts	at	the	level	of	intervertebral	disks,	Cooke	et	al.,	2004;	Finsterbusch	et	al.,	2012).			

Despite	these	impediments,	a	number	of	studies	have	investigated	different	methodologies	to	cir-
cumvent	the	aforementioned	limitations	(see	Eippert	et	al.,	2017a;	Powers	et	al.,	2018;	Stroman	et	
al.,	2014;	Summers	et	al.,	2014,	2010;	Wheeler-Kingshott	et	al.,	2014	for	reviews).	While	they	un-
derlined	the	technical	feasibility	of	spinal	cord	fMRI,	the	heterogeneity	of	the	employed	strategies	
has	hampered	the	emergence	of	standard	guidelines.	This	variety	of	approaches	has	also	raised	
concerns	about	their	reliability.	In	this	regard,	it	should	be	mentioned	that	most	of	the	early	studies	
were	conducted	using	non-standard	techniques	(Cohen-Adad,	2008).	In	particular,	several	studies	
favored	the	use	of	a	contrast	mechanism	termed	signal	enhancement	by	extravascular	water	pro-
tons	(SEEP),	in	place	of	the	well-established	BOLD	contrast.	This	contrast	was	first	introduced	in	
2001	by	Stroman	et	al.	(Stroman	et	al.,	2001a,	2001b),	who	suggested	that	T2-weighted	imaging	
could	provide	a	better	quality	than	standard	T2*-weighted	acquisitions,	by	imaging	signals	result-
ing	from	proton-density	changes	associated	with	cellular	swelling	instead	of	perfusion.	Neverthe-
less,	the	findings	related	to	this	contrast	mechanism	are	controversial	and	several	groups	unsuc-
cessfully	tried	to	reproduce	these	results	(Jochimsen	et	al.,	2005;	Moffitt	et	al.,	2005;	Bouwman	et	
al.,	2008).	For	instance,	Jochimsen	et	al.	(Jochimsen	et	al.,	2005)	reported	a	potential	statistical	ex-
planation,	suggesting	that	the	SEEP	contrast	might	be	linked	to	the	inclusion	of	false-positive	voxels	
in	the	analysis.	In	line	with	these	observations,	another	aspect	that	may	have	affected	early	studies	
pertains	to	the	detection	of	task-related	activity	using	cross-correlation	analysis	(i.e.,	correlation	
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between	the	stimulus	and	the	time	course	of	every	voxel)	(e.g.,	Stroman	et	al.,	2001a,	2001b,	2005,	
Kornelsen	and	Stroman,	2004,	2007;	Stroman,	2005),	which	was	often	not	accompanied	by	proper	
statistical	evaluations	of	the	results	significance.	Fortunately,	methodologies	have	evolved	during	
the	last	decade	and	general	linear	model	(GLM)	approaches	(Friston	et	al.,	1995)	have	generalized	
in	more	recent	studies,	allowing	to	map	task-related	activity	using	regression	and	statistical	testing	
(Valsasina	et	al.,	2008),	while	possibly	accounting	for	motion	or	physiological	artifacts	(Brooks	et	
al.,	2008;	Eippert	et	al.,	2017a).	Nevertheless,	correction	for	multiple	comparisons	was	mostly	by-
passed	in	spinal	cord	fMRI	studies,	despite	its	primary	importance	(Martin	et	al.,	2016).	As	a	matter	
of	fact,	the	transition	towards	more	systematic	and	quantitative	evaluations,	with	standards	more	
at	par	with	brain	fMRI	procedures,	only	started	in	the	last	years	(Weber	et	al.,	2016a,	2016b,	2020;	
Tinnermann	et	al.,	2017).	

Altogether,	these	observations	emphasize	the	limitations	that	precluded	the	emergence	of	a	stand-
ardized	pipeline	for	spinal	cord	fMRI.	Considering	that	there	is	yet	no	consensus,	we	present	a	pilot	
study	 evaluating	 various	 acquisition	 approaches	 adapted	 from	 literature	 (Eippert	 et	 al.,	 2009;	
Sprenger	et	al.,	2012;	Weber	et	al.,	2016b),	using	simple	motor	paradigms	previously	demonstrated	
to	elicit	detectable	activity	(finger	tapping	and	ankle	extension).	Furthermore,	we	capitalized	on	
the	advent	of	novel	processing	tools	tailored	to	the	spinal	cord	(e.g.,	common	template,	slice-wise	
motion	correction,	etc.)	(De	Leener	et	al.,	2017)	and	we	provide,	in	the	methods,	support	for	the	
choices	that	were	made	with	respect	to	these	processing	steps.	In	sum,	this	chapter	introduces	the	
methodological	pipeline	(cervical	or	lumbosacral	fMRI)	deployed	in	the	following	chapters.	

4.2 	Methods	

4.2.1 Participants	

Four	young	healthy	volunteers	were	enrolled	in	this	study	(details	are	presented	in	Table	4.1).	All	
subjects	were	right-handed	and	all	participants	had	normal	or	corrected-to-normal	vision	and	no	
history	of	neurological	disorders.	All	participants	gave	their	written	informed	consent	to	partici-
pate,	and	the	study	had	been	approved	by	the	Commission	Cantonale	d’Ethique	de	la	Recherche	
Genève	(CCER,	Geneva,	Switzerland,	2016-01566).		

4.2.2 Experimental	protocols	

Different	experimental	tests	were	performed,	during	four	imaging	sessions.		

Experiment	A:	Exploration	of	spinal	cord	fMRI	sequences	

For	this	first	experiment,	six	acquisition	schemes	for	spinal	cord	fMRI	were	tested	on	one	subject	
(S01).	Sequence	parameters	are	presented	in	Table	4.2	(Sequences	1	to	6)	and	adapted	from	acqui-
sition	protocols	most	commonly	deployed	in	recent	years	(see	4.2.3	for	details).	One	functional	run	
was	performed	for	each	sequence,	during	which	the	subject	executed	a	bilateral	finger-tapping	task,	
known	to	elicit	observable	spinal	activity	(Govers	et	al.,	2007;	Maieron	et	al.,	2007;	Ng	et	al.,	2008;	
Vahdat	et	al.,	2015),	at	an	individually	fixed	rhythm.	The	movements	were	performed	in	blocks	of	
15	seconds	(8	blocks	of	rest	alternated	with	8	blocks	of	movement	and	a	final	block	of	rest)	and	an	
entire	run	lasted	4	min	and	15	s.	Instructions	were	displayed	on	a	screen	(fixation	cross	‘+’	during	
the	rest	blocks	and	text	indicating	‘movement	repetitions’	during	the	task	blocks).	Auditory	cues	
were	used	to	inform	the	subject	of	the	different	phases.	The	paradigm	was	performed	once	for	each	
sequence.		
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Experiment	B:	Re-test	of	ZOOMit	sequence	

The	same	subject	(S01)	was	scanned	three	months	later,	using	the	most	promising	sequence	of	Ex-
periment	A	(Sequence	4),	as	well	as	the	same	experimental	paradigm.	

Experiment	C:	ZOOMit	VS	Z-shimmed	

Three	subjects	were	enrolled	in	this	experiment	(S01,	S02	and	S03).	Two	functional	sequences	(5	
and	7,	see	Table	4.2)	were	used.	Each	subject	performed	three	runs	for	each	sequence,	in	a	random	
order,	with	the	same	experimental	paradigm	as	Experiments	A	and	B.	

Experiment	D:	Lumbosacral	fMRI	

One	participant	(S04)	was	enrolled	in	this	experiment,	which	involved	a	unilateral	isometric	ankle	
extension	(right	limb),	a	movement	previously	shown	to	evoke	detectable	spinal	signals	(Kornelsen	
and	Stroman,	2004,	2007).	The	task	paradigm	was	similar	to	Experiments	A	to	C,	although	the	du-
ration	of	the	experiment	was	increased	(6	min	and	15	s),	as	we	expected	activity	to	be	weaker	using	
a	unilateral	task.	Each	extension	was	performed	in	blocks	of	15	seconds	(12	blocks	of	rest	alter-
nated	with	12	blocks	of	movement	and	a	final	block	of	rest).		

Table	4.1	–	Participants	demographics	and	experiments	details	

Experiment	 Subject	 Age	 Gender	 Task	

A	 S01	 29	 F	 Bilateral	finger	tapping	

B	 S01	 29	 F	 Bilateral	finger	tapping	

C	

S01	 29	 F	 Bilateral	finger	tapping	

S02	 23	 M	 Bilateral	finger	tapping	

S03	 30	 F	 Bilateral	finger	tapping	

D		 S04	 31	 F	 Unilateral	ankle	extension	

	

4.2.3 Data	acquisition	

Several	 experiments	 aiming	 to	 compare	various	 acquisition	 schemes	were	performed.	 In	 all	 in-
stances,	a	Siemens	Prisma	scanner	(3	Tesla)	was	used	(Erlangen,	Germany),	with	the	subjects	posi-
tioned	in	supine	position.	In	order	to	permit	functional	to	structural	registration,	a	high-resolution	
T2-weighted	anatomical	image	was	also	acquired	for	all	subjects	using	a	SPACE	sequence	(single	
slab	3D	turbo	spin	echo	sequence	with	a	slab	selective,	variable	excitation	pulse,	TR	=	1500	ms,	TE	
=	135	ms,	echo	train	length	=	74,	flip	angle	=	140,	resolution	=	0.4	x	0.4	x	0.8	mm,	sagittal	orienta-
tion).	The	imaged	region	extended	from	the	upper	cervical	to	the	upper	thoracic	spine	for	the	cer-
vical	acquisitions	(Experiments	A,	B	and	C)	and	from	T11	to	L5	for	the	lumbosacral	acquisition	(Ex-
periment	D).		
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As	for	the	functional	scans,	details	of	the	acquisition	parameters	are	summarized	in	Table	4.2.	All	
pulse	sequences	used	echo	planar	imaging	(EPI),	which	allows	rapid	imaging	and	high	SNR	(Samson	
et	al.,	2016).	However,	it	should	be	mentioned	that	EPI	is	prone	to	distortions	and	signal	losses	in	
case	of	magnetic	field	shifts	(Powers	et	al.,	2018).	The	shimming	of	the	magnetic	field	is	therefore	
crucial	to	limit	such	artifacts.	The	approach	adopted	in	the	following	experiments	was	to	manually	
set	the	shim	volume	to	be	focused	on	the	spinal	cord	(Ellingson	and	Cohen-Adad,	2014;	Eippert	et	
al.,	2017a).	

As	previously	mentioned,	there	is	no	established	method	for	spinal	cord	fMRI	acquisition.	As	a	re-
sult,	our	first	focus	was	to	compare	potential	sets	of	acquisition	parameters	(Experiments	A	and	B).	
To	this	end,	we	performed	a	literature	review	and	proposed	six	acquisition	schemes	(Sequences	1	
to	6),	based	on	sequences	most	frequently	used	in	recent	years	(Eippert	et	al.,	2009;	Sprenger	et	al.,	
2012;	Geuter	and	Büchel,	2013;	Kong	et	al.,	2014;	Van	de	Sand	et	al.,	2015;	Weber	et	al.,	2016a,	
2016b),	which	we	adjusted	to	our	setup.	Note	that	these	pulse	sequences	all	relied	on	built-in	Sie-
mens	protocols.	Thus,	a	second	focus	was	to	compare	one	such	built-in	approach,	proven	to	be	ef-
ficient	in	Experiment	A,	with	a	custom	approach	attempting	to	dynamically	optimize	shimming	on	
a	slice-by-slice	basis	(Finsterbusch	et	al.,	2012)	(Experiment	C).	In	a	last	experiment	(D),	a	sequence	
targeting	the	lumbosacral	region	of	the	spinal	cord	was	tested.	Sequence	4	was	adapted	for	this	
purpose,	as	a	wider	field-of-view	was	required	to	account	for	the	additional	tissue	volume	present	
in	this	region	(i.e.,	at	the	levels	of	the	hips).	In-plane	resolution	was	thus	changed	from	1	to	1.1	mm	
to	avoid	aliasing	artifacts.	

Table	4.2	–	Sequence	parameters	

#	 TR/TE	 FA	 FOV	 Resolution	 Slices	 Region	 Notes	 Experiment	

1	 1170/39	 62°	 140x140	 1x1x5	mm	 11	 Cervical	
	

A	

2	 1890/39	 72°	 140x140	 1x1x5	mm	 18	 Cervical	
	

A	

3	 1500/39	 72°	 140x140	 1x1x5	mm	 14	 Cervical	
	

A	

4	 2500/34	 80°	 44x144	 1x1x3	mm	 32	 Cervical	 ZOOMit	 A,B	

5	 1500/30	 90°	 44x144	 1x1x5	mm	 21	 Cervical	 ZOOMit	 A,C	

6	 1170/37	 62°	 128x128	 1x1x5	mm	 10	 Cervical	 PACE		 A	

7	 1500/31	 50°	 144x144	 1x1x5	mm	 17	 Cervical	 Dynamic	Z	Shim	 C	

8	 2500/34	 80°	 44x144	 1.1x1.1x3mm	 27	 Lumbosacral	 ZOOMit	 D	

	

4.2.4 Data	processing	

As	 the	 processing	 pipeline	 cannot	 rely	 on	 conventional	 brain-based	methods,	 different	 options	
were	investigated	in	order	to	establish	a	processing	procedure	tailored	to	the	spinal	cord.	The	de-
tails	of	the	selected	approach	are	presented	below,	along	with	supporting	information.	



	
Towards	a	pipeline	for	spinal	cord	fMRI	

																														
71	

Motion	correction	

In	conventional	brain	imaging,	motion	correction	is	commonly	performed	using	a	6	degrees	of	free-
dom	(translations	and	rotations	of	the	volume)	rigid-body	transformation	(Poldrack	et	al.,	2011)	
or	using	Friston’s	24-motion	model	(Friston	et	al.,	1996).	However,	such	transformations	do	not	
yield	satisfying	results	when	applied	to	the	spinal	cord,	as	its	anatomy	affects	the	nature	of	motion	
artifacts	(Stroman	et	al.,	2014;	Summers	et	al.,	2014).	In	particular,	the	articulated	structure	of	the	
spinal	cord	implies	minimal	motion	in	the	rostro-caudal	direction	(z	direction),	while	distortions	
might	not	be	identical	in	each	spinal	segment.	For	this	reason,	rigid	transformations	alone	cannot	
fully	account	for	movements	and	slice-wise	motion	correction	should	be	preferred	(De	Leener	et	
al.,	2017).	Moreover,	regions	outside	the	vertebral	column,	that	may	move	independently	from	the	
cord,	should	be	excluded	from	the	correction	procedure.	Here,	 this	was	done	using	a	cylindrical	
mask	drawn	along	the	spinal	cord	and	slice	independent	motion	correction	was	performed	with	
the	mean	functional	image	as	the	target	image,	using	the	Spinal	Cord	Toolbox	(SCT)	(De	Leener	et	
al.,	2017).	While	this	procedure	is	helpful	to	reduce	the	noise	in	BOLD	time	courses,	severe	artifacts	
linked	to	large	volume-to-volume	movements	are	not	fully	removed	by	this	approach	(Caballero-
Gaudes	and	Reynolds,	2017;	Parkes	et	al.,	2018).	A	censoring	approach,	termed	motion	scrubbing	
(Power	et	al.,	2014),	was	 therefore	employed	to	 identify	such	outliers	and	to	 include	 the	corre-
sponding	frames	as	noise	regressors	during	the	GLM	analysis	(see	4.2.5).	Specifically,	variations	in	
image	intensity	between	volumes	were	computed	using	the	FSL	outlier	detection	tool	(DVARS	met-
rics:	root	mean	square	intensity	difference	of	volume	N	to	volume	N+1).	This	was	done	within	the	
spinal	cord,	and	using	a	box-plot	cutoff	(75th	percentile	+	1.5	x	the	interquartile	range).	The	global	
level	of	motion	was	evaluated	for	all	experimental	runs,	indicating	a	mean	framewise	displacement	
inferior	to	0.5mm	in	all	instances.	As	a	result,	all	runs	were	included	in	the	analysis.	

Spatial	smoothing		

Spatial	smoothing	of	fMRI	volumes	is	routinely	performed	in	order	to	improve	the	signal-to-noise	
ratio,	to	minimize	the	structural	differences	between	subjects	as	well	as	to	increase	the	validity	of	
statistical	testing.	The	common	practice	in	brain	imaging	is	to	use	an	isotropic	Gaussian	smoothing	
kernel,	but	applying	this	approach	in	the	spinal	cord	is	not	recommended.	An	isotropic	smoothing	
may,	indeed,	lead	to	problematic	partial	volume	effects	between	the	CSF	and	the	cord,	as	well	as	
between	the	white	and	grey	matter.	Although	the	use	of	an	anisotropic	kernel	could	partly	limit	this	
issue	by	diminishing	the	in-plane	smoothing,	this	solution	remains	suboptimal,	as	it	does	not	take	
into	account	the	curved	structure	of	the	spine	and	may	induce	mixing	of	signals	from	different	re-
gions.	 In	order	to	preserve	anatomical	consistency,	we	therefore	opted	to	apply	smoothing	on	a	
straightened	spinal	cord	(i.e.,	along	the	centerline	of	the	cord,	using	a	3D	Gaussian	kernel	with	a	full	
width	half	maximum	(FWHM)	of	2	x	2	x	6	mm3)	before	un-straightening	it	back	(De	Leener	et	al.,	
2017).			

Physiological	noise	modelling	

In	the	spinal	cord,	the	impact	of	physiological	noise	is	particularly	pronounced,	due	to	the	surround-
ing	 respiratory	 and	 cardiac	 organs	 (Piché	 et	 al.,	 2009;	 Vannesjo	 et	 al.,	 2018).	 Data-driven	 ap-
proaches	that	directly	derive	noise	from	fMRI	recordings	can	be	used	to	remove	these	signals	with-
out	involving	additional	external	measurements	(e.g.,	using	approaches	such	as	CORSICA,	Perlbarg	
et	al.,	2007,	or	CompCor,	Behzadi	et	al.,	2007).	Nevertheless,	noise	identification	is	not	trivial	and	
should	be	performed	with	caution	to	avoid	removing	task-related	signals	(Eippert	et	al.,	2017a).	
For	this	reason,	a	model-based	approach	relying	on	the	independent	acquisition	of	physiological	
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signals	was	preferred	in	our	experiments.	Physiological	recordings	were	performed	using	a	photo-
plethysmograph	and	a	respiratory	belt	(Biopac	MP150	system,	California,	USA),	synchronized	with	
the	scanner	triggers.	These	signals	were	then	used	to	model	physiological	noise,	with	an	approach	
based	on	the	RETROspective	Image	CORrection	(RETROICOR)	procedure	(Glover	et	al.,	2000a).	This	
method	assumes	that	the	physiological	processes	are	quasi-periodic,	which	means	that	cardiac	and	
respiratory	phases	can	be	uniquely	assigned	for	each	image	in	the	time	series.	The	signals	are	then	
modeled	using	a	low-order	Fourier	expansion	based	on	the	phases	at	the	time	of	image	acquisitions.	
This	 technique	has	been	 specifically	 tailored	 to	 spinal	 cord	 imaging	and	 improved	by	 including	
higher	order	Fourier	terms,	as	well	as	by	taking	into	account	the	interactions	between	cardiac	and	
respiratory	cycles	(Brooks	et	al.,	2008;	Kong	et	al.,	2012).	This	adapted	version	is	referred	to	as	
physiological	noise	modeling	(PNM)	and	is	available	as	an	FSL	toolbox	(Jenkinson	et	al.,	2012).	The	
physiological	model	can	then	be	used	as	noise	regressors	in	the	GLM	analysis	(see	4.2.5).	In	these	
experiments,	we	modelled	18	voxelwise	noise	regressors,	but	it	is	worth	mentioning	that	32	regres-
sors	have	been	most	commonly	used	in	most	spinal	cord	fMRI	studies	(Kong	et	al.,	2012).	The	choice	
of	a	lower	number	was	driven	by	the	short	length	of	the	runs	(102	volumes),	and	corresponds	to	
the	model	proposed	by	Harvey	et	al.	(Harvey	et	al.,	2008),	which	was	successfully	employed	in	the	
brainstem	and	the	spinal	cord	(Tinnermann	et	al.,	2017).	As	cardiac	activity	implies	pulsatile	move-
ment	in	the	CSF,	including	a	CSF	noise	regressor	is	also	advised	(Kong	et	al.,	2012).	This	can	be	done	
using	the	slicewise	averaged	time	courses	from	the	10	%	of	CSF	voxels	showing	the	highest	vari-
ance.	

Spatial	normalization	

Using	a	common	reference	space	is	crucial	to	reliably	compare	activation	maps	obtained	in	multiple	
runs.	While	this	has	been	available	 in	the	brain	for	decades,	 for	 instance	in	the	form	of	the	MNI	
template	(Mandal	et	al.,	2012),	spinal	cord	analyses	have	long	lacked	such	a	common	framework.	
Fortunately,	recent	developments	in	this	regard	have	been	made	and	the	PAM50	template,	which	
spans	the	entire	length	of	the	human	spinal	cord	with	a	resolution	of	0.5	x	0.5	x	0.5	mm,	is	now	
available	(De	Leener	et	al.,	2018).	Here,	we	normalized	functional	images	with	a	two-step	proce-
dure	using	the	SCT	(De	Leener	et	al.,	2017):	(i)	Anatomical-to-template:	First,	the	spinal	cord	was	
automatically	segmented	on	the	T2-weighted	anatomical	image.	Vertebrae	were	then	automatically	
labelled	to	generate	the	landmarks	used	to	perform	non-rigid	registration	to	the	PAM50	template.	
(ii)	Functional-to-anatomical:	Non-rigid	transformations	were	used	to	register	the	mean	motion-
corrected	functional	images	to	the	corresponding	anatomical	scan.	Finally,	the	warping	fields	ob-
tained	in	both	steps	were	concatenated	to	obtain	the	functional-to-template	transformation.	Note	
that	the	lumbosacral	scan	was	not	normalized	to	the	template,	as	only	one	scan	was	performed.	

4.2.5 	Data	analysis	

For	each	run,	the	temporal	signal-to-noise	ratio	(tSNR)	was	computed	to	inform	on	signal	quality	
(mean	signal	intensity	across	time	divided	by	its	standard	deviation)	at	three	steps	of	the	analysis:	
(i)	raw	images,	(ii)	after	motion	correction	and	(iii)	after	spatial	and	temporal	filtering.	Values	were	
then	averaged	within	the	spinal	cord.	In	order	to	identify	task-related	activity,	a	general	linear	mod-
elling	(GLM)	approach	was	used	for	each	individual	run.	The	preprocessed	images	(after	motion	
correction	and	smoothing)	were	highpass	filtered	(sigma	=	45.0	s)	and	analyzed	using	the	FST’s	
FEAT	tool	(FMRI	Expert	Analysis	Tool)	(Jenkinson	et	al.,	2012).	The	explanatory	variables	were	
defined	as	 the	 task	blocks	convolved	with	a	set	of	 three	basis	 functions	defined	by	FSL’s	Linear	
Optimal	Basis	Set	(FLOBS)	tool	(Woolrich	et	al.,	2004b).	This	allows	to	account	for	potential	varia-
tions	in	the	hemodynamic	response	function.	The	second	and	third	FLOBS	waveforms,	respectively	
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modelling	 temporal	and	dispersion	derivatives,	were	orthogonalized	 to	 the	 first	waveform.	The	
noise	regressors	(i.e.,	physiological	noise	and	motion	outliers)	were	also	included	as	confounds	in	
the	GLM.	Time-series	statistical	analysis	was	carried	out	using	FMRIB’s	 Improved	Linear	Model	
(FILM)	with	local	autocorrelation	correction	(Woolrich	et	al.,	2001).	Indeed,	all	fMRI	time-series	
suffer	 from	autocorrelation,	which	can	be	addressed	using	pre-whitening	 (i.e.	making	 the	noise	
’white’,	in	order	to	turn	it	into	uncorrelated	noise).	Kong	et	al.	(Kong	et	al.,	2012)	observed	that	this	
procedure,	applied	to	spinal	fMRI	data,	efficiently	removed	non-white	noise	and	also	helped	in	con-
trolling	false-positive	rates.	The	contrast	opposed	task	against	rest	(first	FLOBS	regressors).	Z	sta-
tistic	images	were	thresholded	using	clusters	determined	by	Z	>	2	and	a	cluster-defining	threshold	
of	p	<	0.01	to	account	for	multiple	comparisons.	These	thresholded	maps	were	then	normalized	to	
the	PAM50	template	to	allow	between-runs	comparison.	For	Experiment	A,	an	ICA	was	carried	out	
using	FSL’s	MELODIC	tool	(Multivariate	Exploratory	Linear	Decomposition	into	Independent	Com-
ponents),	in	order	to	confirm	the	results	found	with	the	GLM	analysis.	The	dimensionality	was	de-
fined	using	Probabilistic	Principal	Component	Analysis	where	the	number	of	dimensions	was	esti-
mated	using	the	Laplace	approximation	to	the	Bayesian	evidence	of	the	model	order	(Minka,	2001;	
Beckmann	and	Smith,	2004).	

4.3 	Results	

4.3.1 Task-related	activity	can	be	efficiently	 imaged	using	spinal	cord	 fMRI	(Experi-
ments	A	and	B)	

	

Figure	4.1	–	Comparison	of	different	sequences	(Experiments	A	and	B,	S01).	A.	One	example	axial	slice,	
extracted	from	the	raw	time	series,	is	presented	for	the	six	sequences	used	in	Experiment	A	(right	panel).	A	
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schematic	view	of	the	spinal	cord	is	shown	(left	panel)	to	indicate	the	different	regions.	B.	The	coverage	of	
each	sequence	is	indicated	using	color	bars.	A	sagittal	view	of	the	PAM50	template	is	used	as	a	reference	(De	
Leener	et	al.,	2018).	The	vertebral	bodies	are	labelled,	as	well	as	the	corresponding	probabilistic	spinal	levels	
(Cadotte	et	al.,	2015).	C.	Temporal	signal-to-noise	ratio	(tSNR)	was	computed	for	(i)	the	raw	signals	(Raw),	
(ii)	following	motion	correction	(Moco),	and	(iii)	following	spatial	and	temporal	filtering	(Filtered).	D.	Task-
related	activity	was	evaluated	using	a	GLM	approach	(see	panel	D.	for	the	associated	spatial	maps).	The	aver-
age	z-score,	as	well	as	the	number	of	active	voxels,	are	presented.	E.	Activation	maps	for	the	contrast	task	VS	
baseline.	F.	Detection	of	task-activity	using	Sequence	4	was	re-tested	after	three	months	on	the	same	subject	
(Experiment	B).	All	statistical	maps	are	thresholded	at	a	Z-score	>	2	(cluster-defining	threshold	of	p	 < 	0.01	
to	account	 for	multiple	comparisons)	and	normalized	to	the	PAM50	template.	Representative	coronal	and	
sagittal	views	are	presented	for	each	sequence.	S	=	superior,	I	=	inferior,	L 	=	 left,	R	=	right,	A	=	anterior,	P	=	
posterior.	

An	initial	visual	inspection	of	image	quality	was	performed	for	the	six	sequences	(see	Figure	4.1A	
for	example	slices).	As	expected,	differences	could	be	observed	depending	on	the	acquisition	pa-
rameters,	notably	as	regards	the	delineation	between	the	spinal	cord	and	the	surrounding	CSF.	The	
rostrocaudal	extent	of	the	imaged	regions	were	also	different	between	sequences,	with	Sequences	
2,	4	and	5	extending	from	C5	to	C8,	while	Sequences	1,	3	and	6	did	not	include	C5	(Figure	4.1B).	
Signal	quality	was	also	probed	by	computing	the	tSNR	at	different	steps	of	the	processing	(Figure	
4.1C).	Values	increased	between	the	raw	(range	5.84	-	10.35),	motion	corrected	(range	7.46	-	13.55)	
and	filtered	signals	(range	20.27	-	34.46),	hence	emphasizing	the	efficiency	of	the	processing	pro-
cedure.	Although	image	quality	(i.e.,	sufficient	contrast,	limited	distortion,	etc.)	and	tSNR	are	im-
portant	factors	to	evaluate	signal	integrity,	they	do	not	fully	inform	on	BOLD	sensitivity.		

To	this	end,	we	sought	to	investigate	task-related	activity	using	a	GLM	approach.	Significant	task	
activity	could	be	detected	 for	 four	of	 the	acquisition	schemes	 (Sequences	2,	4,	5	and	6)	 (Figure	
4.1D),	with	distinct	spatial	patterns	(Figure	4.1E).	In	particular,	Sequences	2	and	6	demonstrated	a	
spread	of	the	activity	on	several	spinal	levels,	from	C6	to	C8,	as	opposed	to	the	highly	localized	C6-
C7	cluster	observed	using	Sequence	4	(58%	of	voxels	in	C6,	23%	in	C7)	and	Sequence	5	(44%	of	
voxels	in	C6,	56%	in	C7)	(i.e.,	using	the	ZOOMit	sequences),	in	line	with	knowledge	regarding	inner-
vation	of	finger	muscles,	as	well	as	with	previous	fMRI	studies	(Govers	et	al.,	2007;	Vahdat	et	al.,	
2015).	In	all	instances,	voxels	were	present	in	both	the	left	and	right	hemicords,	as	expected	for	
bilateral	movements.	Activity	was	also	found	in	both	the	anterior	and	posterior	hemicords,	consist-
ently	with	the	fact	that	finger	tapping	involves	both	muscle	activation	and	sensory	feedback	(e.g.,	
tactile	and	proprioception).		

The	GLM	approach	relies	on	the	availability	of	the	experimental	paradigm	and	is,	as	such,	model-
based.	In	order	to	further	confirm	our	findings,	we	employed	an	ICA	approach	to	probe	whether	
task-related	activity	could	be	retrieved	using	a	data-driven	strategy.	Timecourses	of	all	independ-
ent	components	were	visually	inspected	for	each	acquisition	scheme.	For	Sequences	1,	2	and	3,	no	
task-related	patterns	were	detected.	In	contrast,	temporal	timecourses	following	the	task	paradigm	
could	be	recovered	for	Sequences	4,	5	and	6	(Figure	4.2).	Moreover,	the	associated	spatial	maps	
showed	clusters	focused	on	the	spinal	cord	and	located	in	the	C6-C7	spinal	levels,	hence	in	agree-
ment	with	anatomic	knowledge.	This	highly	localized	activity	also	supported	the	neural	origin	of	
the	detected	signal,	while	ruling	out	the	hypothesis	of	task-related	noise.	Interestingly,	independent	
components	obtained	with	the	ZOOMit	sequences	(4	and	5)	were	the	most	informative,	with	task-
related	components	accounting	for,	respectively,	10.07%	and	6.14%	of	the	explained	variance,	as	
opposed	to	Sequence	6,	 for	which	this	component	represented	4.46%	of	the	explained	variance.	
Altogether,	this	model-free	approach	strongly	supported	the	findings	of	the	GLM	analysis,	as	well	
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as	the	ability	of	spinal	cord	fMRI	to	reflect	neural	activity,	provided	that	adequate	parameters	are	
employed.		

	

Figure	4.2	–	Data-driven	recovery	of	task	dynamics	(Experiment	A,	S01).	Using	FSL’s	MELODIC	tool,	an	
ICA	was	performed	on	the	datasets	acquired	using	the	six	different	sequences.	The	temporal	and	spatial	prop-
erties	of	the	recovered	components	were	inspected	to	probe	their	potential	task-related	nature.	Sequences	4,	
5	and	6	all	had	one	component	reflecting	task	activity.	Spatial	maps	(normalized	to	the	PAM50	template	(De	
Leener	et	al.,	2018))	are	presented	along	with	their	associated	temporal	modes	(task	timing	indicated	as	a	
reference).	Representative	coronal	and	sagittal	views	are	presented	for	each	sequence.	S	=	superior,	I	=	infe-
rior,	L 	=	 left,	R	=	right,	A	=	anterior,	P	=	posterior.	

Based	upon	these	results,	we	opted	for	ZOOMit	sequences	(4	and	5)	in	further	analyses,	as	they	
allowed	detection	of	strong	and	localized	activity	along	with	an	extensive	coverage	(i.e.,	from	C5	to	
C8,	see	Figure	4.1B).	Sequence	4	offered	the	best	spatial	resolution	(1	x	1	x	3	mm),	a	feature	that	is	
particularly	appealing	in	the	context	of	spinal	cord	fMRI,	as	it	enables	to	appreciate	small	regions	
in	more	detail.	 In	a	re-test	scan	using	this	sequence	(Experiment	B,	S01),	activity	patterns	were	
found	to	be	in	agreement	with	those	acquired	in	Experiment	A	(i.e.,	88%	of	the	active	voxels	in	C6,	
12%	in	C7)	(Figure	4.1F).	

4.3.2 Z-shimmed	sequence	shows	improved	signal	quality	but	limited	BOLD	sensitivity	
(Experiment	C)	

While	the	six	sequences	employed	in	Experiment	A	were	built	upon	standard	acquisition	schemes	
provided	by	the	scanner	manufacturer,	dedicated	approaches	have	also	been	proposed	to	address	
specific	limitations	inherent	to	spinal	cord	imaging.	In	particular,	improvements	to	the	shimming	
procedure	can	help	reduce	the	impact	of	field	inhomogeneities.	Here,	we	evaluated	a	custom	ap-
proach	based	on	the	work	of	Finsterbusch	et	al.	(Finsterbusch	et	al.,	2012),	which	enables	slice-
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specific	shimming.	Results	were	compared	with	a	standard	ZOOMit	sequence	of	the	same	resolution	
(i.e.,	1	x	1	x	5	mm).	

	

Figure	4.3	–	Comparison	of	ZOOMit	and	Z-shimmed	sequences	(Experiment	C).	A.	Mean	motion	cor-
rected	image	for	the	two	sequences.	A	central	sagittal	slice	is	presented,	as	well	as	one	example	axial	slice	
(position	indicated	by	a	grey	arrow).	B.	Temporal	signal-to-noise	ratio	(tSNR)	was	computed	for	(i)	the	raw	
signals	(Raw),	(ii)	following	motion	correction	(Moco),	and	(iii)	following	spatial	and	temporal	filtering	(Fil-
tered).	Values	associated	with	ZOOMit	and	Z-shimmed	sequences	are	presented	in	green	and	in	red,	respec-
tively.	For	each	subject,	the	mean	tSNR	over	runs	are	shown.	C.	Activation	maps	for	the	contrast	task	VS	base-
line	are	presented	for	both	sequences,	independently	for	each	subject	(S01,	S02	and	S03)	and	run	(1,	2,	3).	
Maps	are	thresholded	at	a	Z-score	>	2	(cluster-defining	threshold	of	p	 < 	0.01	to	account	for	multiple	compar-
isons)	and	normalized	to	the	PAM50	template	(De	Leener	et	al.,	2018).	Representative	coronal	views	are	pre-
sented.	Probabilistic	spinal	levels	are	provided	as	a	reference	(Cadotte	et	al.,	2015).	S	=	superior,	I	=	inferior,	
L 	=	 left,	R	=	right,	A	=	anterior,	P	=	posterior.	

In	line	with	the	findings	from	Finsterbusch	et	al.	(Finsterbusch	et	al.,	2012),	signal	losses	were	more	
pronounced	for	the	acquisitions	with	no	dynamic	shimming.	Indeed,	signals	from	lower	slices	dis-
played	very	low	intensities,	as	opposed	to	the	satisfying	performance	of	the	Z-shimmed	approach	
in	this	region	(Figure	4.3A).	 It	should	be	noted	that	 lower	slices	of	the	ZOOMit	acquisitions	that	
contained	insufficient	signals	were	removed	for	later	stages	of	the	analysis,	to	prevent	issues	when	
realigning	volumes.	The	tSNR	was	also	consistently	higher	for	Z-shimmed	acquisitions	(range	32.19	
-	43.58,	mean	over	runs	 for	each	subject,	using	 filtered	signals)	 than	 for	 the	standard	sequence	
(range	21.07	-	26.91)	(Figure	4.3B).	Interestingly,	these	differences	in	terms	of	signal	quality	were	
not	reflected	in	the	fMRI	correlates	of	task	performance	(Figure	4.3C).	Seven	of	the	nine	runs	per-
formed	with	the	ZOOMit	sequence	showed	significant	activations,	in	contrast	to	the	Z-shimmed	se-
quence,	for	which	detection	of	task-related	activity	was	limited	to	three	runs.	More	importantly,	the	
location	of	the	activity	was	more	stable	in	the	ZOOMit	results.	For	these	runs,	on	average	92%	of	
the	voxels	were	found	rostrally,	in	the	C6	and	C7	spinal	levels	(mean	over	runs,	range	65	-	100	%).	
The	patterns	detected	using	the	Z-shimmed	approach	were,	 instead,	more	variable.	For	S01	and	
S03,	the	activity	was	similarly	located	in	rostral	spinal	levels	(respectively,	49%	and	84	%	of	the	
voxels	in	C6	-	C7),	although	S01	also	displayed	activity	in	C5	(45%	of	the	active	voxels).	On	the	other	
hand,	the	activation	of	S02	appeared	to	be	more	caudal	(84%	of	the	voxels	in	C8).	In	summary,	these	
findings	emphasized	the	efficiency	of	ZOOMit	sequences	to	image	task-related	activity,	while	sug-
gesting	a	limited	BOLD	sensitivity	of	the	Z-shimmed	approach	despite	improvements	in	signal	qual-
ity.	
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4.3.3 ZOOMit	sequence	can	image	motor-related	activity	in	the	lumbosacral	spine	(Ex-
periment	D)	

Experiments	A	 to	C	emphasized	 the	potential	of	a	ZOOMit	acquisition	scheme	 to	 image	cervical	
functional	activity.	Yet,	extending	this	 technique	to	the	 lumbosacral	segments	of	 the	spinal	cord	
could	 pave	 the	way	 for	 studies	 investigating	motor	 or	 sensory	 stimulation	 involving	 the	 lower	
limbs.	Here,	we	evaluated	whether	a	ZOOMit	sequence	could	be	employed	for	this	purpose.	Using	a	
GLM	approach,	activity	associated	with	ankle	extension	was	detected	in	the	S1	spinal	level	(Figure	
4.4),	which	innervates	the	gastrocnemius	(Schirmer	et	al.,	2011),	the	main	muscle	involved	in	this	
movement.	Furthermore,	the	activation	map	was	clearly	circumscribed	to	the	right	anterior	quad-
rant,	as	expected	from	the	nature	of	the	task,	which	involved	a	unilateral	and	isometric	movement	
(i.e.,	limited	sensory	and	tactile	feedback).	This	suggests	that	fMRI	correlates	of	lower	limb	move-
ments	can	be	observed	using	a	ZOOMit	sequence.	

	

Figure	4.4	–	Detection	of	lumbosacral	activity	using	a	ZOOMit	sequence	(Experiment	D,	S04).	The	acti-
vation	map	for	 the	contrast	 task	VS	baseline	(S04,	Experiment	C)	 is	 thresholded	at	a	Z-score	>	2	(cluster-
defining	threshold	of	p	 < 	0.01	to	account	for	multiple	comparisons)	and	registered	to	the	subject’s	T2	ana-
tomical	image.	Representative	sagittal	and	axial	views	are	shown,	and	vertebral	bodies	are	indicated.	S	=	su-
perior,	I	=	inferior,	L 	=	 left,	R	=	right,	A	=	anterior,	P	=	posterior.	

4.4 	Discussion		

Spinal	cord	fMRI	is	a	promising	approach	to	shed	light	on	spinal	mechanisms	in	vivo,	but	the	pro-
gression	of	the	field	has	been	relatively	limited,	with	many	technical	difficulties	hindering	its	de-
ployment.	Nevertheless,	as	MRI-based	technology	advances	(e.g.,	higher	field	strength,	innovative	
pulse	sequences	or	improved	processing	methodologies),	new	tools	that	can	potentially	promote	
the	development	of	spinal	cord	imaging	are	now	made	available.	Here,	we	conducted	a	pilot	study	
to	evaluate	different	acquisition	protocols	based	upon	recent	literature.	Our	findings	highlighted	
the	potential	of	the	ZOOMit	acquisition	scheme	to	image	spinal	functional	activity	in	the	cervical	
and	lumbosacral	segments.		

4.4.1 	Reduced	field-of-view	imaging	for	spinal	cord	fMRI	

To	characterize	the	ability	of	different	acquisition	protocols	to	detect	spinal	cord	activity,	functional	
images	were	 acquired	 during	 simple	motor	 tasks	 (finger	 tapping	 and	 ankle	 extension).	 Perfor-
mances	were	compared	in	terms	of	signal	quality	and	coverage,	and	task-related	activity	was	used	
as	a	measure	of	BOLD	sensitivity.	The	results	from	the	different	experiments	suggested	that	neural	
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activity	could	be	detected	using	spinal	cord	fMRI,	with	disparate	efficiencies	depending	on	the	ac-
quisition	parameters.	In	particular,	ZOOMit	sequences	allowed	to	efficiently	detect	BOLD	activity	in	
the	cervical	(Experiments	A,	B	and	C)	and	lumbosacral	regions	(Experiment	D),	as	emphasized	us-
ing	a	combination	of	model-based	(GLM)	and	data-driven	(ICA)	approaches	to	recover	task-related	
activations.	The	locations	of	the	activations	were	robust	across	different	runs	and	consistent	with	
anatomical	expectations	(i.e.,	activity	localized	in	C6-C7	for	finger	tapping,	and	in	S1	for	ankle	ex-
tension).	Interestingly,	tSNR	appeared	to	be	higher	for	other	sequences	(e.g.,	Z-Shimmed	sequences,	
Experiment	C),	but	this	disparity	did	not	seem	to	be	associated	with	an	enhanced	BOLD	detection.	
This	parallels	previous	results	in	resting-state	spinal	cord	fMRI,	where	the	tSNR	was	shown	to	be	a	
poor	predictor	of	network	fidelity	(Barry	et	al.,	2018a).	While	two	implementations	of	the	ZOOMit	
sequences	were	successfully	tested,	we	finally	opted	for	the	version	offering	the	highest	spatial	res-
olution	(1	x	1	x	3	mm),	in	order	to	potentially	capture	smaller	structures	and	to	limit	partial	volume	
effects.		

Interestingly,	the	main	feature	of	the	ZOOMit	approach	lies	in	its	ability	to	perform	reduced	field-
of-view	(FOV)	imaging,	which	is	achieved	thanks	to	dynamic	pulses	specifically	exciting	a	region-
of-interest	in	the	phase-encoding	direction	(Siemens,	2012).	As	a	result,	signals	from	external	tis-
sues	(e.g.,	muscles,	vessels,	etc.)	are	not	acquired,	thus	limiting	noise	and	aliasing	artifacts.	Since	
encoding	is	limited	to	the	targeted	region,	selective	FOV	imaging	can	offer	reduced	acquisition	time	
without	affecting	the	spatial	resolution.	This	is	particularly	suited	to	the	geometry	of	the	spinal	cord	
(i.e.,	small	cross-sectional	dimensions	and	long	rostro-caudal	extent),	as	many	axial	slices	matching	
the	region-of-interest	can	be	acquired	in	a	short	time.	In	fact,	the	applicability	of	reduced	FOV	ap-
proaches	 has	 been	 widely	 demonstrated	 for	 diffusion	 weighted	 imaging	 of	 the	 spinal	 cord	
(Wheeler-Kingshott	et	al.,	2002;	Saritas	et	al.,	2008;	Zaharchuk	et	al.,	2011;	Finsterbusch,	2012;	
Samson	et	al.,	2016;	Alizadeh	et	al.,	2017).	The	observations	reported	in	this	chapter	suggest	that	
functional	MRI	can	also	benefit	 from	such	 imaging	protocols.	Although	we	used	 the	ZOOMit	 se-
quence	(Siemens),	it	should	be	noted	that	similar	implementations	are	also	provided	by	other	man-
ufacturers	(e.g.,	FOCUS	for	GE	and	iZOOM	for	Philips),	thus	facilitating	the	deployment	of	this	ap-
proach	in	different	research	and	clinical	centers.	

4.4.2 Methodological	considerations	and	limitations	

Another	contribution	of	this	pilot	work	was	to	establish	a	processing	pipeline	tailored	to	spinal	cord	
fMRI.	 To	 this	 end,	we	 reviewed	 literature	 regarding	 physiological	 noise	 removal	 (Brooks	 et	 al.,	
2008;	Kong	et	al.,	2012;	Brooks,	2014;	Fratini	et	al.,	2014;	Eippert	et	al.,	2017a),	motion	correction	
(Cohen-Adad	et	al.,	2007,	2009;	Summers	et	al.,	2014;	Eippert	et	al.,	2017a),	normalization	 to	a	
common	template	(Fonov	et	al.,	2014;	De	Leener	et	al.,	2018)	and	spatial	smoothing	(Weber	et	al.,	
2017).	In	addition,	we	benefitted	from	recent	efforts	aiming	to	develop	automatic	and	standardized	
methods	to	analyze	spinal	cord	images.	Specifically,	the	proposed	pipeline	is	largely	built	upon	the	
Spinal	Cord	Toolbox	(SCT)	(De	Leener	et	al.,	2017),	an	open-source	comprehensive	software	pack-
age	offering	tools	dedicated	to	the	processing	of	MRI	data	of	the	spinal	cord.		

The	main	limitation	of	this	study	comes	from	the	low	number	of	subjects.	Nevertheless,	the	fact	that	
consistent	activations	could	be	detected	at	the	subject-level	(with	correction	for	multiple	compari-
son)	using	the	ZOOMit	sequences	points	to	the	potential	of	this	approach	and	supports	our	conclu-
sions.	Notwithstanding	this	limitation,	the	aim	of	this	pilot	study	was	mainly	to	provide	a	reliable	
ground	for	future	studies.	As	such,	the	selected	approach	was	extensively	validated	in	Chapter	5.	In	
addition,	this	potential	was	also	confirmed	in	several	studies	including	larger	sample	sizes	(Weber	
et	al.,	2016a,	2016b,	2018,	2020).	
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4.5 	Conclusion	

In	this	pilot	study,	we	showed	that	ZOOMit	sequences	were	promising	candidates	to	perform	spinal	
cord	fMRI.	In	particular,	we	used	simple	motor	tasks	(finger	tapping	and	ankle	extension)	to	demon-
strate	its	ability	to	capture	spinal	cord	activity.	These	auspicious	results	indicated	an	accurate	cor-
respondence	with	anatomical	expectations,	both	 in	 the	cervical	and	 lumbosacral	segments.	This	
exploration	brings	valuable	knowledge	to	build	a	robust	pipeline	for	spinal	cord	fMRI.		
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Abstract	–	The	spinal	cord	is	the	main	interface	between	the	brain	and	the	periphery.	It	no-
tably	plays	a	central	role	in	motor	control,	as	spinal	motoneurons	activate	skeletal	muscles	
involved	in	voluntary	movements.	Yet,	the	spinal	mechanisms	underlying	human	movement	
generation	have	not	been	completely	elucidated.	In	this	regard,	functional	magnetic	reso-
nance	 imaging	(fMRI)	represents	a	potential	 tool	 to	probe	spinal	cord	 function	non-inva-
sively	and	with	high	spatial	resolution.	Nonetheless,	a	thorough	characterization	of	this	ap-
proach	is	still	lacking,	currently	limiting	its	impact.	Here,	we	aimed	at	systematically	quan-
tifying	to	which	extent	fMRI	can	reveal	spinal	cord	activity	along	the	rostrocaudal	direction.	
We	investigated	changes	in	the	blood	oxygenation	level	dependent	signal	of	the	human	cer-
vical	spinal	cord	during	bimanual	upper	limb	movements	(wrist	extension,	wrist	adduction	
and	finger	abduction)	 in	nineteen	healthy	volunteers.	Prior	to	scanning,	we	recorded	the	
muscle	activity	associated	with	these	movements	in	order	to	reconstruct	the	theoretical	mo-
tor-pool	output	pattern	using	an	anatomy-based	mapping	of	the	electromyographic	(EMG)	
waveforms.	EMG-derived	spinal	maps	were	characterized	by	distinct	rostrocaudal	patterns	
of	activation,	thus	confirming	the	task-specific	features	of	the	different	movements.	Analo-
gous	activation	patterns	were	captured	using	spinal	cord	fMRI.	Finally,	an	additional	fMRI	
dataset	was	acquired	from	a	subset	of	the	participants	(n	=	6)	to	deploy	a	multivoxel	pattern	
analysis,	which	allowed	successful	decoding	of	movements.	These	combined	results	suggest	
that	spinal	cord	fMRI	can	be	used	to	image	rostrocaudal	activation	patterns	reflecting	the	
underlying	activity	of	 the	motoneuron	pools	 innervating	 the	 task-related	muscles.	Spinal	
cord	fMRI	offers	the	prospect	of	a	novel	tool	to	study	motor	processes	and	potentially	their	
modification	following	neurological	motor	disorders.	

Chapter	5 	
Motor	output	and	spinal	activity	
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5.1 Introduction	

More	than	a	simple	relay,	the	spinal	cord	plays	a	crucial	role	in	movement	generation	and	control	
(Alstermark	and	Isa,	2012;	Giszter	et	al.,	2012;	Vahdat	et	al.,	2015)	and	can	be	functionally	affected	
in	neurological	motor	disorders,	such	as	spinal	cord	injury	or	multiple	sclerosis.	Yet,	tools	to	di-
rectly	and	non-invasively	investigate	the	nature	and	function	of	the	underlying	spinal	mechanisms	
in	humans	are	still	lacking.	

To	date,	studies	assessing	spinal	cord	function	in	humans	have	mainly	relied	on	indirect	peripheral	
measurements	(muscle	activity	or	force,	reflexes,	sensory	tests,	etc.).	Notably,	muscle	recordings	
have	been	used	to	indirectly	infer	spinal	activity	during	movements	by	reconstructing	theoretical	
spatiotemporal	motoneural	 activation	maps	 (i.e.,	 ‘spinal	maps’),	 using	 a	 combination	 of	 the	 ac-
quired	 electromyographic	 (EMG)	 signals	 with	 anatomical	 knowledge	 of	 muscle	 innervation	
(Yakovenko	et	al.,	2002).	These	spinal	maps	have	been	extensively	used	to	explore	spinal	motor	
output	in	healthy	humans	(Ivanenko	et	al.,	2006,	2013;	Cappellini	et	al.,	2010;	Pirondini	et	al.,	2016),	
or	also	to	illustrate	disrupted	motor	pathways	(e.g.,	Grasso	et	al.,	2004,	in	spinal	cord	injured	pa-
tients,	Coscia	et	al.,	2015,	in	stroke	patients).	Nevertheless,	this	technique	relies	solely	on	anatomy-
based	mapping	of	muscle	outputs.	For	that	reason,	it	is	merely	an	indirect	estimation	of	the	spinal	
cord	activity	and	it	does	not	fully	elucidate	the	underlying	mechanisms.		

In	this	context,	functional	magnetic	resonance	imaging	(fMRI)	of	the	spinal	cord	stands	as	a	prom-
ising	tool	to	directly	and	non-invasively	investigate	spinal	processes	involved	in	voluntary	move-
ments	(Wheeler-Kingshott	et	al.,	2014).	In	the	brain,	this	technique	is	already	widely	deployed,	to	
understand	motor	control	as	well	as	to	capture	neural	signatures	of	clinical	conditions.	Relying	on	
the	same	principle	(i.e.,	the	blood	oxygenation	level	dependent	–	BOLD	–	signal),	spinal	cord	fMRI	
measures	signal	changes	reflecting	spinal	neural	activity,	in	spite	of	additional	technical	difficulties	
inherent	to	the	region	of	interest	(e.g.,	small	structure,	field	inhomogeneities,	physiological	noise)	
(Giove	et	al.,	2004).	Since	the	seminal	work	of	Yoshizawa	in	1996	(Yoshizawa	et	al.,	1996),	several	
studies	have	indeed	confirmed	the	potential	of	spinal	cord	fMRI	to	monitor	task-related	activity,	
mainly	with	tasks	involving	the	upper	extremities	(Backes	et	al.,	2001;	Madi	et	al.,	2001;	Stroman	
and	Ryner,	2001;	Govers	et	al.,	2007;	Maieron	et	al.,	2007;	Bouwman	et	al.,	2008;	Ng	et	al.,	2008),	
but	also	during	active	and	passive	ankle	movements	(Kornelsen	and	Stroman,	2004,	2007).	

However,	technological	limitations	in	the	formerly	available	acquisition	and	processing	methods	
(e.g.,	low	field	strength,	no	correction	of	physiological	noise,	no	registration	to	a	common	template)	
have	initially	hindered	the	development	of	this	approach.	As	a	matter	of	fact,	most	early	studies	
were	mainly	qualitative	reports,	hence	limiting	their	potential	applications,	notably	to	clinical	in-
vestigations	 (Kornelsen	 and	Mackey,	 2010).	 In	 comparison,	 a	 few	 recent	works	have	 leveraged	
novel	advanced	acquisition	and	processing	paradigms	to	systematically	assess	spinal	cord	activity	
recorded	with	fMRI.	For	instance,	these	advances	allowed	confirmation	of	the	robust	lateralization	
of	the	cervical	signal	during	unimanual	isometric	contractions	(Weber	et	al.,	2016b).		

Here,	 we	 aim	 at	 further	 investigating	 the	 organization	 of	 spinal	 cord	 activity	 during	 voluntary	
movements,	so	as	to	better	apprehend	the	potentials	and	limitations	of	the	current	spinal	cord	fMRI	
techniques.	We	believe	that	 these	evaluations	represent	a	pivotal	step	to	 further	develop	spinal	
cord	fMRI	and	potentially	extend	it	to	clinical	investigations.	Specifically,	we	want	to	systematically	
analyze	cervical	activations	during	different	movements	as	regards	to	their	distribution	in	the	ros-
trocaudal	direction.	Indeed,	during	movement	generation,	spinal	motoneurons	(i.e.,	 lower	moto-
neurons),	which	 are	 distributed	 over	 different	 spinal	 levels,	 act	 as	 an	 interface	 between	 upper	
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motoneurons	located	in	the	motor	cortex	and	skeletal	muscles	(Marieb	and	Hoehn,	2014).	Thus,	
movements	requiring	activations	of	different	muscles	should	be	characterized	by	distinct	spinal	
activation	patterns.	

So	 far,	 only	 one	 early	 study	 has	 investigated	 the	 potential	 of	 fMRI	 to	 reveal	 these	 distinct	 ros-
trocaudal	 activation	 patterns	 associated	with	 different	movements	 (Madi	 et	 al.,	 2001).	 In	 their	
study,	Madi	et	al.	probed	BOLD	signal	changes,	 in	three	to	six	subjects,	during	three	upper	 limb	
movements	 (elbow	 flexion,	wrist	 extension	 and	 finger	 abduction,	 thus	 involving	 different	myo-
tomes)	and	observed	activity	at	the	site	of	muscle	innervation,	despite	unexpected	signal	in	other	
spinal	segments.	Notwithstanding	the	qualitative	nature	of	the	obtained	results,	this	study	provided	
a	valuable	insight	into	the	potential	of	fMRI	to	capture	the	complexity	of	spinal	cord	functional	ac-
tivity	in	humans.	

In	 our	 study,	we	 extended	 this	 preliminary	 investigation	 to	 a	more	 systematic	 analysis	 of	 ros-
trocaudal	 functional	activity,	 in	a	 larger	cohort	of	subjects,	during	distal	upper	 limb	movements	
(wrist	extension,	wrist	adduction	and	finger	abduction).	Those	movements	were	selected	to	include	
different	myotomes,	whose	rostro-caudal	locations	vary	from	C5	to	T1.	To	systematically	explore	
these	activation	patterns,	we	capitalized	on	advances	in	fMRI	acquisition	(e.g.,	higher	field	strength	
and	selective	field-of-view	imaging	(Finsterbusch,	2013))	and	processing	(e.g.,	slice-wise	motion	
correction	(Cohen-Adad	et	al.,	2009;	De	Leener	et	al.,	2017),	physiological	noise	correction	(Eippert	
et	al.,	2017a)	and	normalization	to	a	common	template	(De	Leener	et	al.,	2018)).	Prior	to	fMRI	ac-
quisitions,	muscular	activity	was	also	recorded	to	characterize	the	motoneuron	output	by	means	of	
EMG-derived	spinal	maps,	so	as	to	obtain	theoretical	estimations	of	the	rostrocaudal	activations,	
further	compared	to	the	acquired	fMRI-derived	spinal	maps.	Finally,	we	complemented	our	analysis	
pipeline	with	a	multivariate	statistical	approach	(i.e.,	multivoxel	pattern	analysis	–	MVPA),	so	as	to	
fully	exploit	the	information	content	of	distributed	patterns	of	spinal	activity	as	well	as	to	probe	
their	precision	and	stability	(Pereira	et	al.,	2009).	

Our	results	show	that	BOLD	activity	presented	a	distinct	rostrocaudal	cervical	organization	associ-
ated	to	the	different	upper	limb	movements,	similar	to	the	one	inferred	by	anatomy-based	mapping.	
Moreover,	the	subject-specific	maps	allowed	decoding	of	performed	motor	tasks	with	high	accu-
racy,	confirming	the	task-specificity	of	BOLD	spinal	signals.	These	combined	results	allow	highlight-
ing	the	potential	of	spinal	cord	fMRI,	and	pave	the	way	towards	localized	observation	of	human	
spinal	cord	function	during	disparate	motor	actions.	We	foresee	that	such	straight	measures	of	spi-
nal	neural	activity	could	shed	light	on	mechanisms	disrupting	motor	pathways	in	neurological	con-
ditions.	This	could	eventually	lead	to	the	development	of	new	spinal	biomarkers,	hence	comple-
menting	current	peripheral	and	anatomical	approaches.	

5.2 Methods	

5.2.1 Participants	

Nineteen	 right-handed	healthy	 subjects	 (11	 females,	 26.9	±	3.4	 years	 old)	were	 enrolled	 in	 the	
study.	Two	participants	had	to	be	excluded	from	further	analyses	(see	5.3.1).	All	participants	gave	
their	written	informed	consent	to	participate,	and	the	study	had	been	approved	by	the	Commission	
Cantonale	d’Ethique	de	la	Recherche	Genève	(CCER,	Geneva,	Switzerland,	2016-01566).	All	volun-
teers	had	normal	or	corrected-to-normal	vision	and	no	history	of	neurological	disorders.	
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5.2.2 Experimental	protocols	

EMG	and	fMRI	data	were	acquired	during	the	same	experimental	session,	which	was	divided	into	
two	phases	(Figure	5.1A):	(1)	Phase	1,	in	the	mock	scanner,	serving	both	as	training	and	to	record	
EMG	activity;	(2)	Phase	2,	in	the	MRI	scanner,	to	record	spinal	functional	activity	using	fMRI.		

Six	of	the	subjects	(3	females,	28	±	1.7	years	old)	participated	in	an	additional	experimental	session	
(i.e.,	Phase	3),	during	which	only	fMRI	was	performed,	with	a	protocol	adapted	for	Multivoxel	Pat-
tern	Analysis	(MVPA)	(Coutanche	and	Thompson-Schill,	2012).	

	

Figure	5.1	–	A.	Overview	of	the	experimental	recordings.	B.	Schematic	presentation	of	the	structure	of	the	runs.	

Phase	1:	EMG	experiment	

At	 the	beginning	of	 the	 first	 experimental	 session,	 the	different	 bilateral	movements	were	pre-
sented	to	the	participants:	wrist	extension	(i.e.,	wrist	towards	the	top),	wrist	adduction	(i.e.,	wrist	
towards	 the	outside,	with	 an	ulnar	deviation)	 and	 finger	 abduction	 (i.e.,	 fingers	 spreading	with	
thumb	adducted).	These	movements	were	selected	to	include	different	myotomes,	in	order	to	po-
tentially	elicit	activations	in	different	spinal	segments	(Kendall	et	al.,	2005).	Subjects	were	asked	to	
keep	their	fingers	as	relaxed	as	possible	during	the	wrist	movements,	and	to	focus	on	their	muscle	
activations	throughout	the	experiment.		

After	appropriate	training	(i.e.,	when	all	movements	were	performed	consistently	by	the	subjects),	
subjects	were	installed	in	a	mock	scanner	(a	realistic	magnet-free	model	of	the	actual	MRI	scanner)	
in	supine	position,	with	their	hands	relaxed	on	their	thighs	and	the	palm	facing	downwards.	Phase	
1	was	subdivided	into	two	parts	during	which	the	subjects	were	asked	to	perform	the	movements	
bilaterally	following	two	paradigms	(Figure	5.1A	–	Phase	1).	The	first	paradigm	was	designed	as	a	
block	experiment	with	8	blocks	of	movement	alternated	with	9	blocks	of	rest	(Figure	5.1B).	Each	
block	lasted	15	seconds,	with	an	entire	run	lasting	4	minutes	and	15	seconds.	Instructions	were	
displayed	on	a	screen	(fixation	cross	‘+’	during	the	rest	blocks	and	text	indicating	‘movement	repe-
titions’	during	the	task	blocks).	Auditory	cues	were	provided	to	inform	the	subjects	of	the	different	
blocks.	During	the	task	blocks,	subjects	executed	dynamic	repetitions	of	the	movements,	prompted	
by	the	auditory	cues	(i.e.,	tones	at	a	rate	of	~0.5	Hz,	so	that	8	movements	were	performed	per	task	
block).	Subjects	were	instructed	to	remain	as	still	as	possible	during	the	rest	blocks.	One	run	was	
done	for	each	movement	type	(i.e.,	three	runs	in	total,	with	only	one	movement	type	performed	
during	each	run)	and	the	order	of	the	runs	was	randomized	across	participants.	The	second	para-
digm,	instead,	was	a	single	movement	experiment	where	movements	were	executed	with	only	one	
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repetition	at	a	time	(e.g.,	one	bilateral	wrist	extension	and	back	to	the	resting	position)	lasting	ap-
proximately	two	seconds.	For	each	repetition	(i.e.,	each	single	movement),	an	auditory	instruction	
was	given	by	the	experimenter	to	indicate	the	movement	type	to	be	performed.	In	total,	each	move-
ment	was	repeated	ten	times,	in	a	pseudo-randomized	manner.	This	second	paradigm	was	specific	
to	the	EMG	experiment	and	not	used	in	the	MRI	scanner	(see	5.2.2).	

Phase	2:	fMRI	characterization	experiment	

During	functional	acquisitions,	the	participants	were	installed	in	the	MRI	scanner	in	supine	posi-
tion.	The	experimental	setup	was	identical	to	the	one	used	in	the	mock	scanner	(visual	and	auditory	
cues)	and	the	paradigm	was	the	same	as	the	block	experiment	in	Phase	1.	Each	subject	executed	
two	runs	of	each	movement,	in	a	randomized	manner	(i.e.,	six	runs	in	total,	with	only	one	movement	
type	performed	during	each	run,	in	blocks,	see	Figure	5.1A	–	Phase	2).	A	task-free	run	(i.e.,	without	
any	overt	task)	of	the	same	duration	as	a	task	run	was	acquired	at	the	beginning	of	the	experiment	
(Figure	5.1B).	All	runs	(task	and	task-free)	lasted	4	minutes	and	15	seconds.	Throughout	the	re-
cordings,	 subjects	were	 instructed	 to	 relax,	breathe	normally	and	minimize	motion	of	 the	neck,	
head	and	shoulders.	Movement	execution	was	monitored	using	a	camera.	The	goal	of	this	monitor-
ing	was	 to	ensure	 that	subjects	were	performing	 the	requested	movement	 type	 for	each	run	or	
block.	In	the	event	of	an	error,	the	fMRI	acquisition	was	stopped	and	started	again	with	the	right	
movement	type.	

Phase	3:	fMRI	multivoxel	pattern	analysis	experiment	

In	order	to	confirm	the	reliability	of	the	fMRI	activations	elicited	during	Phase	2	and	to	further	em-
phasize	 the	task-specific	characteristics	of	 the	spinal	activation	maps,	an	additional	dataset	was	
obtained	(Figure	5.1A	–	Phase	3).	The	experimental	design	was	optimized	for	MVPA	(i.e.,	many	short	
runs	including	all	three	movements	(Coutanche	and	Thompson-Schill,	2012)).	Six	of	the	initial	sub-
jects	participated	in	this	additional	phase	in	the	MRI	scanner,	where	the	same	three	movements	
had	to	be	performed.	The	experiment	was	divided	into	ten	runs,	each	including	nine	blocks	alter-
nated	with	rest,	with	each	movement	repeated	three	times	in	a	randomized	manner	(Figure	5.1B).	
Similarly	to	the	previous	session,	movements	were	performed	in	blocks	of	15	seconds	and	with	8	
movement	repetitions	within	each	block	(i.e.,	~0.5	Hz).	Each	run	lasted	4	minutes	and	45	seconds.	

5.2.3 EMG	acquisition	and	preprocessing	

During	Phase	1,	EMG	recordings	were	performed	on	15	arm	and	hand	muscles	(biceps	brachii	long	
head,	BICL,	triceps	brachii	long	head,	TRIC,	brachialis,	BRA,	brachioradialis,	BRAD,	pronator	teres,	
PRO,	extensor	carpi	 radialis,	EXCR,	extensor	carpi	ulnaris,	EXCU,	extensor	digitorum	communis,	
EXDC,	 flexor	carpi	radialis,	FLCR,	 flexor	carpi	ulnaris,	FLCU,	 flexor	digitorum	superficialis,	FLDS,	
abductor	digiti	minimi,	ABDM,	extensor	pollicis	brevis,	EXPB,	adductor	pollicis	transversus,	ADPT,	
abductor	pollicis	brevis,	ABPB).	EMG	signals	were	acquired	using	a	Noraxon	Desktop	DTS	wireless	
system	and	superficial	Ag-AgCl	electrodes	(Kendall	H124SG,	ECG	electrodes	30	x	24	mm)	placed	on	
the	above-mentioned	muscles	of	the	right	upper	limb,	after	appropriate	skin	preparation.	EMG	sig-
nals	were	sampled	at	1500	Hz.	The	quality	of	the	EMG	signals	was	visually	assessed	throughout	the	
recordings	(e.g.,	noise,	cross-talk	between	muscles,	etc.).	Before	the	beginning	of	the	experiment,	a	
Maximum	Voluntary	Contraction	(MVC)	test	was	performed	for	each	muscle.	This	test	consists	in	
isometric	contractions	against	resistance,	repeated	three	times	for	each	muscle	and	alternated	with	
breaks	to	prevent	muscle	fatigue.		 	
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All	raw	EMG	signals	were	first	detrended	and	high-pass	filtered	at	a	frequency	of	50	Hz	(Butter-
worth	filter,	7th	order).	Signals	were	then	rectified	and	low-pass	filtered	at	a	frequency	of	10	Hz	
(Butterworth	filter,	7th	order).	Finally,	they	were	normalized	to	the	MVC	value	of	each	muscle	(ob-
tained	after	preprocessing	of	the	related	EMG	signals),	to	allow	comparison	between	subjects	and	
movements.	All	processing	steps	were	performed	using	Matlab	(versions	2016a	and	2017b,	Math-
Works,	Natick	MA).	

5.2.4 EMG	analysis	

EMG-based	estimation	of	spinal	activity	

EMG-derived	spinal	maps	provide	an	anatomy-based	estimation	of	the	spatiotemporal	activation	
of	lower	motoneurons	in	the	spinal	cord	(Yakovenko	et	al.,	2002).	They	are	based	on	a	combination	
of	EMG	recordings	with	knowledge	of	the	rostrocaudal	location	of	motoneurons	pools	innervating	
different	muscles,	hence	providing	the	theoretical	spinal	cord	output,	without	relying	on	direct	im-
aging.	For	each	spinal	segment,	we	used	a	weighted	summation	of	the	preprocessed	EMG	envelopes	
(Figure	5.2A),	based	on	the	weight	coefficients	summarized	by	Kendall	et	al.,	(2005),	derived	from	
empirical	human	studies,	for	the	spinal	levels	C5	to	T1	(Table	C1).	For	the	block	experiment,	EMG	
data	were	first	segmented	into	individual	repetitions	(i.e.,	8	repetitions	for	each	block,	thus	64	rep-
etitions	per	movement	type).	For	each	movement,	EMG-derived	spinal	maps	were	then	computed	
for	each	repetition	and	averaged.	Group	spinal	maps	were	obtained	for	each	movement	type	by	
averaging	over	participants.	In	addition,	the	stability	of	the	EMG-derived	spinal	maps	across	move-
ments	was	estimated	for	each	participant	by	computing	the	average	Pearson’s	correlation	coeffi-
cients	 between	 the	 64	 repetitions.	 In	 order	 to	 relate	 EMG-derived	 and	 fMRI-derived	 activation	
maps,	the	group-level	EMG-derived	spinal	maps	obtained	from	the	block	experiment	were	averaged	
over	time	and	interpolated	(spline	interpolation)	to	generate	one-dimensional	projections	along	
the	z	dimension	(i.e.,	spinal	levels).	These	projections	were	then	compared	to	the	fMRI-derived	pro-
jections	using	Pearson’s	correlation	coefficients.		

Subject-wise	classification	of	estimated	spinal	maps	

In	order	to	confirm	the	task-specific	characteristics	of	the	rostrocaudal	activations	patterns	derived	
using	EMG,	a	classifier	(Linear	Discriminant	Analysis,	LDA)	was	designed	for	each	subject	to	dis-
criminate	across	the	three	movements	using	the	EMG-derived	spinal	maps	from	the	single	move-
ment	 experiment	 (i.e.,	 ten	 repetitions).	 For	 the	 single	movement	 experiment,	 EMG-derived	 spinal	
maps	were	computed	as	above,	independently	for	each	repetition.	We	used	as	features	the	activity	
of	the	EMG-derived	spinal	maps	from	C5	to	T1	averaged	over	time.	The	average	discards	the	tem-
poral	component	of	the	EMG-derived	spinal	maps,	but	allows	comparison	with	the	fMRI-MVPA	re-
sults,	where	beta	images	are	used	as	inputs.	A	three-class	LDA	classifier	was	employed	(same	co-
variance	matrix	for	each	class),	with	leave-one-movement-out	cross	validation,	within	each	subject	
(for	the	sake	of	comparison,	only	the	six	subjects	who	performed	the	MVPA	experiment	were	con-
sidered).	Confusion	matrices	were	computed	considering	all	cross	validation	folds,	to	summarize	
the	accuracy	of	the	classification.	In	order	to	assess	the	statistical	significance	of	those	results,	we	
performed	non-parametric	permutation	tests.	Specifically,	we	built	1000	classifiers	for	each	sub-
ject,	with	randomly	assigned	labels	at	each	permutation	fold	(i.e.,	same	labels	for	all	subjects	within	
the	same	permutation),	and	computed	confusion	matrices	for	each	permutation	and	subject.	For	
each	permutation,	the	mean	overall	accuracy	over	subjects	was	calculated	and	the	99th	percentile	
of	this	null	distribution	was	defined	to	obtain	the	threshold	for	significance	(p	=	0.01).	
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5.2.5 fMRI	acquisition	and	preprocessing	

Imaging	protocol	

Imaging	 data	 were	 acquired	 with	 a	 3.0	 Tesla	 Siemens	 Prisma	 scanner	 (Erlangen,	 Germany),	
equipped	with	a	64-channel	head	(only	inferior	element,	HC7,	was	used)	and	neck	coil	(both	ante-
rior	and	posterior	elements,	NC1	and	NC2,	were	used	–	i.e.,	24	channels).	For	the	MVPA	recordings,	
a	soft	cervical	collar	was	employed	to	stabilize	the	neck.	All	functional	acquisitions	were	performed	
with	a	gradient-echo	echo-planar	sequence,	with	ZOOMit	selective	field-of-view	imaging	(Repeti-
tion	Time	(TR)	=	2.5	s,	Echo	Time	(TE)	=	34	ms,	FOV	=	48	x	144	mm,	 flip	angle	=	80º,	 in-plane	
resolution	=	1	x	1	mm,	slice	thickness	=	3	mm).	A	similar	sequence	was	used	by	Weber	and	col-
leagues	(Weber	et	al.,	2016b)	and	allowed	to	efficiently	observe	spinal	activation	during	isometric	
wrist	movements.	32	axial	slices	were	acquired	for	each	volume,	covering	the	cervical	enlargement.	
Before	acquisition,	shimming	adjustments	focused	on	the	spinal	cord	were	carried	out	to	optimize	
the	magnetic	 field	 homogeneity.	 In	 Session	 1,	 102	 volumes	were	 acquired	 (scan	 duration	 of	 4	
minutes	 and	 15	 seconds),	while	 114	 volumes	were	 acquired	 for	 Session	 2	 (scan	 duration	 of	 4	
minutes	and	45	seconds).	A	high-resolution	T2-weighted	anatomical	image,	covering	C1	to	T6	ver-
tebra,	was	also	acquired	with	a	SPACE	sequence	(single	slab	3D	turbo	spin	echo	sequence	with	a	
slab	selective,	variable	excitation	pulse,	TR	=	1500	ms,	TE	=	135	ms,	echo	train	length	=	74,	 flip	
angle	=	140º,	resolution	=	0.4	x	0.4	x	0.8	mm,	sagittal	orientation).		

All	preprocessing	steps	were	performed	using	the	Oxford	Center	for	fMRI	of	the	Brain’s	(FMRIB)	
Software	Library	(FSL,	version	5.0)	(Jenkinson	et	al.,	2012)	and	the	Spinal	Cord	Toolbox	(SCT,	ver-
sion	3.2.1)	(De	Leener	et	al.,	2017).	

Motion	correction	

As	the	spinal	cord	is	a	very	small	structure,	motion	correction	is	a	crucial	step	to	increase	the	tem-
poral	signal-to-noise	ratio	(tSNR).	Motion	correction	was	performed	in	two	steps:	i)	slice-wise	rea-
lignment,	to	account	for	the	articulated	structure	of	the	spine	(Cohen-Adad	et	al.,	2009;	De	Leener	
et	al.,	2017);	and	ii)	motion	scrubbing	(Power	et	al.,	2014).	For	the	slice	realignment,	all	 images	
were	visually	inspected	to	rule	out	the	presence	of	artifacts	and	cropped	to	remove	bottom	slices	
with	insufficient	signal	(the	number	of	removed	slices	ranges	from	3	to	8	across	subjects	and	runs).	
Then,	the	volumes	of	each	functional	run	were	averaged	and	the	centerline	of	the	spinal	cord	was	
automatically	extracted	 from	the	resulting	 image.	A	cylindrical	mask	with	a	diameter	of	30	mm	
along	this	centerline	was	drawn	and	further	used	to	exclude	regions	outside	the	spinal	cord	from	
the	motion	correction	procedure,	as	those	regions	may	move	independently	from	the	cord.	Slice-
wise	realignment	was	performed	using	the	mean	functional	image	as	the	target	image.	The	amount	
of	motion	was	assessed	by	computing	the	average	absolute	value	of	the	framewise	displacement	
(FD),	as	well	as	the	Pearson’s	correlation	coefficients	between	the	movement	parameters	and	the	
task	paradigm.	Finally,	all	runs	were	aligned	to	the	task-free	run	with	FLIRT	(FMRIB's	Linear	Image	
Registration	Tool),	using	six	degrees-of-freedom	rigid-body	transformations	with	spline	interpola-
tion	and	a	normalized	correlation	cost	function	(Jenkinson	et	al.,	2002).	Motion	scrubbing	was	sub-
sequently	performed	by	including	outlier	volumes	as	noise	regressors	during	the	GLM	analysis	(see	
5.2.6).	Outliers	were	detected	with	FSL’s	dedicated	tool	and	using	DVARS	(i.e.,	the	root	mean	square	
intensity	difference	of	volume	N	to	volume	N+1)	with	a	box-plot	cutoff	(75th	percentile	+	1.5	x	the	
interquartile	range)	(Power	et	al.,	2014).	This	metric	was	computed	within	the	spinal	cord	mask.	
On	average,	two	volumes	per	run	were	considered	as	outliers.	
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Physiological	noise	correction	

The	close	proximity	of	the	lungs,	the	heart	and	other	visceral	organs	is	an	important	source	of	mo-
tion	when	performing	spinal	cord	fMRI	(Brooks	et	al.,	2008;	Piché	et	al.,	2009;	Eippert	et	al.,	2017a).	
Moreover,	cardiac	activity	generates	a	pulsatile	flow	in	the	cerebrospinal	fluid	(CSF)	around	the	
spinal	cord,	hence	urging	the	need	for	physiological	noise	correction.	Therefore,	we	recorded	phys-
iological	signals	during	the	functional	acquisitions	using	a	photoplethysmograph	and	a	respiratory	
belt	(Biopac	MP150	system,	California,	USA).	In	order	to	ensure	proper	synchronization,	the	scan-
ner	triggers	were	simultaneously	recorded.	The	physiological	recordings	were	used	to	build	slice-
wise	nuisance	regressors,	with	a	model-based	approach	derived	from	the	RETROspective	Image	
CORrection	(RETROICOR)	procedure	(Glover	et	al.,	2000a).	This	method	assumes	the	physiological	
processes	to	be	quasi-periodic,	which	means	that	cardiac	and	respiratory	phases	can	be	uniquely	
assigned	for	each	image.	The	signals	are	then	modeled	using	a	low-order	Fourier	expansion	sub-
sampled	at	the	time	of	image	acquisition.	This	technique	has	been	shown	to	be	efficient	for	brain-
stem	(Harvey	et	al.,	2008)	and	spinal	cord	imaging	(Brooks	et	al.,	2008;	Kong	et	al.,	2012),	where	
the	inclusion	of	higher	order	terms	was	found	to	be	beneficial.	Note	that	32	regressors	are	most	
commonly	used	to	correct	for	physiological	noise	in	the	spinal	cord	(Kong	et	al.,	2012).	Considering	
the	relatively	low	number	of	volumes	of	each	run	(102	volumes),	a	solution	requiring	less	regres-
sors	was	favored,	so	as	to	limit	the	number	of	degrees-of-freedom,	while	still	accounting	for	respir-
atory	and	cardiac	terms	as	well	as	for	the	interaction	between	those	processes,	which	was	demon-
strated	 to	be	a	significant	source	of	noise	(Brooks	et	al.,	2008).	As	such,	we	used	the	optimized	
model	presented	by	Harvey	et	al.	(Harvey	et	al.,	2008)	and	previously	employed	in	the	spinal	cord	
by	 Tinnermann	 et	 al.	 (Tinnermann	 et	 al.,	 2017).	 Specifically,	 the	 physiological	 noise	 modeling	
(PNM)	tool	from	FSL	was	used	to	yield	18	voxelwise	noise	regressors.	Finally,	the	signal	from	the	
CSF	(mean	signal	in	the	10%	of	CSF	voxels	whose	signal	varies	the	most)	was	also	included	as	an	
additional	physiological	noise	regressor,	as	recommended	by	Kong	et	al.	(2012).		

Normalization	

To	allow	comparison	between	the	different	movements	and	subjects,	a	two-step	registration	pro-
cedure	was	used	to	register	the	images	to	a	template	space	(i.e.,	PAM50	template,	De	Leener	et	al.,	
2018),	using	the	Spinal	Cord	Toolbox	(De	Leener	et	al.,	2017);	i)	Anatomical-to-template:	a	binary	
mask	of	 the	spinal	cord	was	automatically	created	based	on	the	T2-weighted	anatomical	 image.	
Subsequently,	vertebrae	were	automatically	labelled	after	manual	initialization	of	the	C2-C3	verte-
bral	disk.	The	spinal	cord	was	straightened	along	its	centerline	using	the	anatomical	labels	and	non-
rigid	registration	to	the	PAM50	template	was	performed.	This	step	generates	an	anatomical	image	
warped	into	the	template	space,	a	template	image	warped	into	the	anatomical	space,	as	well	as	the	
corresponding	warping	fields;	ii)	Functional-to-anatomical:	the	functional	images	were	registered	
to	the	template	in	anatomical	space	with	non-rigid	transformations,	generating	the	corresponding	
warping	fields.	The	warping	fields	from	steps	i)	and	ii)	were	finally	concatenated	to	obtain	the	func-
tional-to-template	 transformation.	Mean	 normalized	 anatomical	 and	 functional	 images	 are	 pre-
sented	in	Figure	5.2B.	

Segmentation	

Segmentation	of	the	T2-weighted	anatomical	image	was	automatically	performed	using	the	Spinal	
Cord	Toolbox	(De	Leener	et	al.,	2017),	generating	binary	masks	of	the	spinal	cord	and	CSF.	As	for	
functional	images,	binary	masks	of	the	spinal	cord	and	CSF	were	manually	drawn.		
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5.2.6 fMRI	analysis	

fMRI-based	estimation	of	spinal	activity	

FMRI	data	analysis	was	carried	out	using	FSL’s	fMRI	Expert	Analysis	Tool	(FEAT).	At	the	subject-
level,	the	preprocessed	images	of	each	run	(in	the	native	space,	after	motion	correction)	were	spa-
tially	smoothed	and	highpass	temporal	filtering	(sigma	=	45.0	s)	was	applied.	In	order	to	preserve	
anatomical	consistency,	spatial	smoothing	was	performed	along	the	centerline	of	the	spinal	cord,	
using	a	3D	Gaussian	kernel	with	a	full	width	half	maximum	(FWHM)	of	2	x	2	x	6	mm3.	Using	these	
preprocessed	time-series,	a	first-level	statistical	analysis	(intra-subject	–	within	run)	was	carried	
out	using	FMRIB's	Improved	Linear	Model	(FILM)	with	local	autocorrelation	correction	(Woolrich	
et	al.,	2001).	The	design	matrix	included	the	explanatory	variables,	the	physiological	noise	regres-
sors	as	well	as	 the	outlier	volumes	 for	motion	scrubbing.	Specifically,	 the	explanatory	variables	
were	defined	based	on	the	temporal	dynamics	of	the	task	(block	design),	which	was	convolved	with	
three	optimal	 basis	 functions	using	FMRIB’s	 Linear	Optimal	Basis	 Set	 (FLOBS)	 (Woolrich	et	 al.,	
2004),	in	order	to	account	for	differences	of	hemodynamic	response	function	(HRF)	between	re-
gions	and	subjects.	The	second	and	third	waveforms	(i.e.,	the	temporal	and	dispersion	derivatives,	
respectively)	were	orthogonalized	to	the	first	waveform.	For	each	subject	and	movement,	the	pa-
rameter	estimates	corresponding	to	the	first	FLOBS	waveform	(i.e.,	task	against	rest),	obtained	in-
dependently	for	the	two	runs,	were	combined	by	passing	them	up	to	a	second	level	analysis	(intra-
subject	–	across	runs),	in	which	task-specific	subject	level	activation	maps	were	obtained	using	a	
fixed-effects	model.		

Parameter	estimates	obtained	during	the	second	level	analyses	(i.e.,	subject-level)	were	then	nor-
malized	 to	 the	PAM50	 template	 (i.e.,	 functional-to-template	 transformation)	and	passed	up	 to	a	
third	level	analysis	(inter-subjects)	to	obtain	average	group	activation	maps	using	FMRIB’s	Local	
Analysis	 of	Mixed	Effects	 (FLAME)	 stages	 1	 and	2	with	 outlier	 detection	 (Woolrich	 et	 al.	 2004,	
2008).	Z	statistic	images	were	thresholded	using	clusters	determined	by	Z	>	2	and	a	cluster-defining	
threshold	of	p	<	0.01	to	account	for	multiple	comparisons.	Recent	discussions	have	highlighted	con-
cerns	regarding	the	use	of	parametric	testing	with	a	cluster-defining	threshold	larger	than	p	=	0.001	
for	whole	brain	fMRI	(Eklund	et	al.,	2016).	However,	our	approach	is	in	agreement	with	recent	spi-
nal	cord	literature	(e.g.,	Tinnermann	et	al.,	2017;	Weber	et	al.,	2016a),	where	the	smaller	number	
of	voxels	curtails	the	 impact	of	the	multiple	comparison	problem.	Furthermore,	 the	use	of	FSL’s	
FILM	to	correct	for	autocorrelation	minimizes	inflation	in	the	false	positive	rate	(Faull	et	al.,	2015).	
Besides,	we	also	assessed	the	presence	of	false	positives	using	a	control	analysis.	Dice	coefficients	
(Dice,	1945)	between	 the	 individual	movement-related	activation	patterns	were	also	 computed	
(values	ranging	from	0	–	no	similarity	–	to	1	–	equal),	so	as	to	assess	to	what	extent	the	thresholded	
maps	were	spatially	similar	for	the	different	movement	types.	

In	order	to	relate	EMG-	and	fMRI-derived	activation	maps,	the	group-level	parameter	estimates	(i.e.,	
beta	maps	from	the	third-level	analysis)	were	masked	in	order	to	isolate	the	motor	and	sensory	
components	of	the	signal	(i.e.,	the	anterior	or	posterior	hemicords)	and	summed	over	the	x	and	y	
dimensions	to	generate	one-dimensional	projections	along	the	z	dimension.	These	projections	were	
smoothed	(moving	average	filter,	window	length	of	about	one	spinal	level)	to	summarize	the	trends	
of	the	distributions	and	compared	to	the	EMG-derived	projections	using	Pearson’s	correlation	co-
efficients.		
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Control	analysis	

In	order	to	evaluate	the	presence	of	false	positives,	an	additional	control	analysis	was	performed,	
similarly	to	Weber	et	al	(Weber	et	al.,	2016a,	2016b).	The	preprocessed	timeseries	of	the	task-free	
run	recorded	at	the	beginning	of	the	experiment	were	analyzed	following	the	same	procedure	as	
the	task	runs	(i.e.,	GLM	where	the	explanatory	variable	was	computed	using	the	temporal	dynamics	
–	onsets	and	durations	–	of	an	actual	task	run).	Equivalently	to	the	task	runs,	we	computed	a	group	
average	 activation	map	 (thresholded	using	 clusters	determined	by	Z	>	2	 and	 a	 cluster-defining	
threshold	of	p	<	0.01).	For	each	subject	independently,	we	also	calculated	the	percentage	of	spatial	
extent	(number	of	active	voxels	divided	by	the	number	of	voxels	in	the	region	of	interest;	i.e.,	the	
C5	to	C8	spinal	levels)	and	the	average	Z-score	of	the	active	voxels.	This	was	done	in	the	template	
space	to	allow	comparison	between	subjects.	Z	statistic	images	were	thresholded	at	Z	>	2	(p	=	0.01,	
uncorrected).	In	order	to	compare	task-free	runs	with	task	runs,	we	also	computed	those	metrics	
for	all	runs	of	the	experiment	and	averaged	results	over	movement	type,	independently	for	each	
subject.	Task-free	and	task	results	across	subjects	were	then	compared	using	two-tailed	paired	t-
tests.	

Multivoxel	pattern	analysis	

For	 each	 subject,	 MVPA	was	 performed	 to	 confirm	 the	 task-specific	 characteristics	 of	 the	 ros-
trocaudal	activations	patterns	derived	using	fMRI	activity.	Images	were	processed	as	presented	in	
5.2.5.	Due	to	the	small	number	of	subjects,	group	activation	maps	were	obtained	using	a	fixed-ef-
fects	model.	Z	statistic	images	were	thresholded	using	clusters	determined	by	Z	>	2	and	a	cluster-
defining	threshold	of	p	<	0.001	to	account	for	multiple	comparisons.	In	order	to	preserve	the	infor-
mation	content	before	deploying	MVPA,	the	dataset	was	also	smoothed	using	a	3D	Gaussian	kernel	
with	a	full	width	half	maximum	(FWHM)	of	1	x	1	x	3	mm3.	Parameter	estimates	were	obtained	for	
each	run	using	the	same	GLM	as	presented	above	but	where	the	explanatory	variables	were	the	
task	dynamics	of	the	three	movements.	We	defined	three	contrasts,	one	for	each	movement	type	
against	rest.	The	resulting	parameter	estimates	(in	the	native	space)	were	masked	to	include	the	
C5	to	T1	spinal	levels.	All	voxels	were	used	as	inputs	(no	feature	selection)	and	a	three-class	LDA	
classifier	similar	to	the	EMG-classifier	was	employed,	with	leave-one-run-out	cross	validation.	In	
order	to	compare	the	information	content	of	different	regions-of-interest,	classification	was	also	
performed	within	specific	masks	(superior	and	 inferior	 levels,	as	well	as	anterior	and	posterior	
hemicords).	Confusion	matrices	were	computed	considering	all	cross	validation	folds,	to	summa-
rize	the	accuracy	of	the	classification.	Statistical	significance	was	computed	following	the	same	pro-
cedure	as	the	EMG-based	classification	(see	5.2.4).	Finally,	we	also	assessed	the	stability	of	the	LDA	
weight	maps,	by	computing	the	Pearson’s	correlation	coefficients	between	the	LDA	weights	of	each	
fold.	

5.3 Results	 	 	

5.3.1 Data	quality	assessment	

All	subjects	completed	Phase	1	(EMG	experiment)	and	Phase	2	(fMRI	experiment),	and	6	of	them	
completed	Phase	3	(MVPA	experiment).	Subjects’	performance	was	monitored	during	each	phase	
and	the	quality	of	the	preprocessing	steps	was	visually	assessed.	As	for	EMG,	data	were	inspected	
to	rule	out	the	presence	of	movement	artifacts.	The	assessment	of	the	fMRI	data	prompted	the	ex-
clusion	of	two	subjects	from	further	analyses	(fMRI	and	related	EMG),	as	their	functional	scans	did	
not	 include	 the	 C8	 spinal	 level.	 A	 region	 spanning	C5	 to	 C8	 spinal	 levels	was	 imaged	 in	 all	 the	
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remaining	subjects	(Figure	5.3A).	In	order	to	assess	the	impact	of	the	different	processing	steps,	we	
computed	the	tSNR	on	the	task-free	time-series,	by	dividing	the	average	signal	over	time	by	the	
standard	deviation.	The	efficiency	of	the	motion	correction	procedure	was	confirmed	by	a	signifi-
cant	increase	(p	<	0.001,	two-tailed	paired	t-test)	of	the	average	tSNR	(±	SE)	from	5.15	±	0.16	before	
motion	correction	to	7.92	±	0.15	after	motion	correction	(Figure	C2A).	The	tSNR	further	increased	
to	28.22	±	0.67	(p	<	0.001)	thanks	to	temporal	filtering	and	spatial	smoothing.	Overall,	the	motion	
of	the	spinal	cord	was	limited,	as	highlighted	by	the	average	absolute	value	of	the	framewise	dis-
placement	(±	SE)	(FDx	=	0.106	±	0.002	mm	and	FDy	=	0.143	±	0.002	mm),	and	only	weakly	correlated	
with	the	task	(ρx	=	0.063	±	0.005	and	ρy	=	0.124	±	0.004).	

5.3.2 Rostrocaudal	activation	patterns	captured	using	EMG	and	fMRI	

EMG-derived	spinal	maps	

In	order	to	estimate	task-related	spinal	activity,	we	first	computed	EMG-derived	spinal	maps.	These	
maps	are	based	on	anatomical	mapping	(Figure	5.2A)	and	they,	therefore,	represent	the	theoretical	
spinal	activation	patterns.	As	hypothesized,	the	spinal	activation	patterns	elicited	by	the	three	mo-
tor	tasks	(wrist	extension	or	WE,	wrist	adduction	or	WA	and	finger	abduction	or	FA)	exhibited	dis-
tinct	 rostrocaudal	organizations	 (Figure	5.2B).	Notably,	 the	activity	 shifted	 from	higher	cervical	
segments	during	wrist	extension	to	lower	spinal	regions	during	wrist	adduction	and	finger	abduc-
tion.	Specifically,	the	activity	elicited	by	wrist	extension	was	relatively	spread	out	and	mainly	dis-
tributed	over	the	C5-C7	spinal	levels.	This	pattern	is	associated	with	EMG	activity	in	the	wrist	ex-
tensor	muscles	as	well	as	in	more	proximal	muscles,	such	as	the	brachioradialis	(Figure	C3,	Table	
C1).	For	the	wrist	adduction,	instead,	the	activity	was	mainly	focused	in	C7	and	C8,	coinciding	with	
EMG	activity	in	the	flexor	and	extensor	carpi	ulnaris.	Finally,	finger	abduction	presented	an	activa-
tion	pattern	similar	to	the	one	of	wrist	adduction,	but	with	an	activity	peak	more	focalized	over	C8,	
explained	by	EMG	activity	in	the	finger	extensor	muscles,	as	well	as	in	distal	muscles	such	as	the	
abductor	digiti	minimi	(Figure	C3).	We	evaluated	the	stability	of	 the	rostrocaudal	patterns	over	
repetitions	(Figure	5.2C),	which	highlighted	more	variability	for	the	maps	related	to	wrist	extension	
(r	=	0.78	±	0.07,	mean	over	subjects	±	SE)	compared	to	the	patterns	of	wrist	adduction	(r	=	0.92	±	
0.04)	and	finger	abduction	(r	=	0.97	±	0.01).		

This	characterization	of	the	estimated	spinal	activity	confirmed	that	the	selected	movements	re-
quired	distinct	rostrocaudal	cervical	activations,	and	they	were,	thus,	apt	to	explore	the	potential	
of	fMRI	in	capturing	the	complexity	of	human	spinal	cord	functional	activity.	

	

Figure	5.2	–	Characterization	of	rostrocaudal	spinal	activation	patterns	(EMG).	A.	EMG-derived	spinal	
maps	are	used	to	estimate	the	spatiotemporal	activation	of	lower	motoneurons	in	the	spinal	cord	(Yakovenko	
et	al.,	2002).	The	motor-pool	output	patterns	are	computed	using	a	weighted	summation	of	the	EMG	signals	
from	the	15	recorded	muscles,	based	on	knowledge	about	the	rostrocaudal	locations	of	the	motoneuron	pools	
innervating	those	muscles	(see	Table	C1).	B.	Group	EMG-derived	spinal	maps	for	the	different	movements	
(WE	=	wrist	extension,	WA	=	wrist	adduction,	FA	=	finger	abduction).	Spinal	maps	were	averaged	over	sub-
jects	and	repetitions	(64	repetitions	of	each	movement	for	each	subject).	The	color	bars,	displayed	at	the	right	
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of	each	map,	represent	the	a	priori	expected	peaks	of	activation.	Spinal	levels	are	displayed	on	the	y-axis,	and	
x-axis	corresponds	to	the	duration	of	the	movement	(~2	seconds).	C.	Correlation	between	the	time-averaged	
EMG-derived	spinal	maps	of	the	different	movement	repetitions.	Data	are	presented	as	mean	over	subjects	±	
SE.	

fMRI-derived	spinal	maps	

In	order	to	elucidate	whether	spinal	cord	BOLD	activity	also	displayed	a	similar	task-specific	ros-
trocaudal	organization,	we	computed	fMRI-derived	spinal	maps.	After	preprocessing,	we	assessed	
group	level	spinal	activity	using	a	GLM	with	mixed-effects	modelling.	For	all	movements,	a	larger	
portion	of	the	active	voxels	was	observed	in	the	anterior	(i.e.,	motor)	part	of	the	spinal	cord	(56.44	
±	2%,	mean	over	movements	±	SD,	see	sagittal	slices	in	Figure	C4),	while	the	activity	was	roughly	
distributed	evenly	between	left	and	right	hemicords	(47.65	±	17.8%	in	the	right	hemicord),	as	ex-
pected	for	bimanual	motor	tasks.	Activity	was	also	spread	out	between	the	grey	and	white	matter	
(33.84	±	8.5%	in	the	grey	matter),	in	accordance	with	reports	from	Weber	and	colleagues	(Weber	
et	al.,	2017).	Similarly	to	the	EMG-derived	spinal	maps,	wrist	extension	resulted	in	more	rostral	
activity	than	wrist	adduction	and	finger	abduction	(Figure	5.3B-C,	Table	C2).	Specifically,	the	activ-
ity	related	to	wrist	extension	was	mainly	located	in	the	C6	spinal	level	(81.8%	of	the	active	voxels),	
while	it	was	also	the	only	movement	eliciting	activity	in	the	C5	spinal	 level	(12.9%	of	the	active	
voxels).	The	main	activity	peak	during	wrist	adduction	and	finger	abduction,	instead,	was	focused	
in	C8	(respectively	68.7	%	and	55.4	%	of	the	active	voxels),	while	the	remaining	activations	were	
only	found	in	the	C7	spinal	level.	The	difference	between	these	activation	patterns	was	also	illus-
trated	by	the	low	Dice	coefficients	between	them	(D	=	0	between	WE	and	WA,	D	=	0.04	between	WE	
and	FA	and	D	=	0.36	between	WA	and	FA).	

These	results	highlight	that	the	BOLD	activity	reveals	a	distinct	rostrocaudal	cervical	organization	
associated	with	different	upper	limb	movements,	consistent	with	the	one	inferred	using	anatomy-
based	mapping.	

	

Figure	5.3	–	Characterization	of	rostrocaudal	spinal	activation	patterns	(fMRI).	A.	Imaged	regions	map,	
normalized	to	the	PAM50	template	(De	Leener	et	al.,	2018).	The	color	bar	indicates	the	number	of	subjects	
with	the	corresponding	region	included	in	the	functional	maps.	A	sagittal	view	of	the	PAM50	template	is	pre-
sented	for	reference.	The	vertebral	bodies	are	labeled,	as	well	as	the	corresponding	probabilistic	spinal	levels	
(Cadotte	et	al.,	2015).	B.	Group	activation	maps	(mixed-effects	modelling)	for	the	contrast	task	VS	baseline	
(WE	=	wrist	extension,	WA	=	wrist	adduction,	FA	=	finger	abduction).	Maps	are	thresholded	at	a	Z-score	>	2	
(cluster-defining	threshold	of	p	<	0.01)	and	normalized	to	the	PAM50	template.	Only	a	region	from	C5	to	C8	
is	considered	(imaged	in	all	subjects).	Central	coronal	views	are	presented,	with	the	same	slice	(y	=	70)	shown	
for	all	movements.	C.	Three	axial	slices	(z	=	765,	z	=	795	and	z	=	825,	see	left	panel)	are	presented	(right	panel),	
overlaid	on	the	PAM50	template.	For	sagittal	slices,	see	Figure	C4.	S	=	superior,	I	=	inferior,	L	=	left,	R	=	right,	
A	=	anterior,	P	=	posterior.		
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The	activation	patterns	are	specific	to	task	runs		

In	order	to	control	for	false	positives,	we	employed	a	control	analysis	in	which	the	same	procedure	
as	the	one	used	to	detect	task-related	activity	was	applied	to	task-free	runs.	At	the	group	level,	no	
voxel	exceeded	the	significance	threshold	when	combining	the	task-free	activation	maps	from	all	
subjects	(Figure	5.4A),	emphasizing	that	task-free	activity	was	not	localized	in	a	particular	spinal	
level.	

We	then	further	assessed	the	significance	of	fMRI	activation	during	task	runs	by	comparing	both	
the	extent	and	amplitude	of	the	activity	linked	to	task	and	task-free	runs	at	the	subject-level,	simi-
larly	to	Weber	et	al.	(Weber	et	al.,	2016b,	2016a).	The	spatial	extent	of	the	activity	(i.e.,	percentage	
of	activated	spinal	cord)	identified	during	the	task	runs	(Figure	5.4B,	8.44	±	1.16%,	mean	over	sub-
jects	±	SE)	was	significantly	larger	(p	<	0.001)	than	during	the	task-free	runs	(2.97	±	0.47%).	Simi-
larly,	the	intensity	of	the	activity,	as	illustrated	by	the	average	Z-score	over	the	active	voxels,	was	
significantly	higher	(p	<	0.01)	during	the	task	runs	(Figure	5.4B,	2.56	±	0.04)	than	during	the	task-
free	runs	(2.38	±	0.03).	

These	combined	results	indicate	that	the	cervical	rostrocaudal	activation	patterns	imaged	during	
task	runs	are	likely	not	artefactual	and	reflect	motoneuron	activity.		

	

Figure	5.4	–	Control	analyses.	A.	Group	activation	maps	(mixed-effects	modelling)	for	the	control	analysis	
(task-free	runs).	Maps	are	thresholded	at	a	Z-score	>	2	(cluster-defining	threshold	of	p	<	0.01)	and	normalized	
to	the	PAM50	template	(coronal	view).	n.s.	indicates	that	no	significant	activity	was	detected.	B.	Comparison	
of	the	percentage	spatial	extent	of	the	activity,	relative	to	the	C5	to	C8	region	of	the	spinal	cord	(left	panel),	
and	average	Z-score	(right	panel)	during	the	task-free	and	task	runs.	Each	colored	line	corresponds	to	one	
subject.	The	black	line	corresponds	to	the	mean	±	SE.	*	corresponds	to	p	<	0.01	and	**	to	p	<	0.001	(two-tailed	
paired	t-test).		

EMG-	and	fMRI-derived	spinal	maps	present	similar	rostrocaudal	distributions	

To	 further	examine	 the	similarities	between	the	rostrocaudal	distributions	of	spinal	activity	ex-
tracted	using	EMG	and	fMRI	and,	thus,	to	confirm	the	specificity	of	spinal	BOLD	signal,	we	compared	
the	obtained	activation	patterns	using	their	respective	projections	along	the	z	direction.	When	fo-
cusing	on	the	anterior	(i.e.,	motor)	profiles	(Figure	5.5),	similar	distributions	were	observed	for	
both	modalities,	with	task-related	profiles	shifted	towards	rostral	or	caudal	spinal	levels,	depend-
ing	on	the	motor	task.	During	wrist	extension,	the	spread	of	activity	was	stronger	at	the	rostral	part	
of	the	cord,	while	the	activity	during	wrist	adduction	and	finger	abduction	was	more	localized	in	
the	caudal	region.	The	projections	of	activity	derived	from	the	two	modalities	were	significantly	
correlated	(p	<	0.001),	as	stressed	by	the	correlation	coefficients	ρ	between	the	EMG-	and	fMRI-
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derived	trends:	0.32	for	wrist	extension,	0.90	for	wrist	adduction,	and	0.70	for	finger	abduction.	
These	moderate	to	high	correlations	indicate	similar	rostrocaudal	distributions,	inferred	either	pe-
ripherally	from	the	EMG	activity	or	directly	from	functional	imaging	of	the	spinal	activity,	and	it	
supports	the	use	of	fMRI	to	directly	image	spinal	cord	involvement	during	upper	limb	movements.	
In	addition,	the	profiles	of	WA	and	FA,	both	shifted	towards	the	caudal	side	of	the	cord,	also	exhib-
ited	a	high	correlation	between	their	related	EMG-	and	fMRI-	derived	profiles	(e.g.,	ρ	=	0.96	between	
the	fMRI-derived	profile	of	WA	and	the	EMG-derived	profile	of	FA,	see	full	correlation	matrix	 in	
Figure	C5A).	This	is,	however,	in	accordance	with	the	high	correlation	of	0.98	between	the	EMG-
derived	profiles	of	 those	 two	movement	 types	 (see	Figure	C5C).	 Interestingly,	 the	 fMRI-derived	
projections,	when	considering	only	the	posterior	(i.e.,	sensory)	component	of	the	spinal	activity,	
were	also	highly	correlated	(p	<	0.001)	with	the	EMG-derived	projections	(ρWE	=	0.73,	ρWA	=	0.87	
and	ρFA	=	0.43)	(Figure	C5B).	

	

Figure	5.5	–	Rostrocaudal	distributions	of	activations.	For	each	movement	type	(WE	=	wrist	extension,	
WA=	wrist	adduction,	FA=	finger	abduction),	distributions	of	the	EMG-	(dark	line)	and	fMRI-	(light	line)	de-
rived	spinal	maps	along	the	z	direction	are	presented.	Time-averaged-map	values	are	used	for	the	projections	
of	EMG-derived	spinal	map	while	group	parameter	estimates	(anterior,	or	motor,	hemicord),	summed	over	
the	x	and	y	dimensions,	are	used	for	the	projection	of	fMRI-derived	spinal	maps.	Spinal	levels	are	displayed	
on	the	x-axis,	and	y-axis	corresponds	to	the	projected	map-values	(EMG)	or	betas	(fMRI).	Pearson’s	correlation	
coefficients	between	 the	 two	modalities	are	 respectively	0.32	 (p	<	0.001),	0.90	 (p	<	0.001)	and	0.70	 (p	<	
0.001).	

5.3.3 Imaged	rostrocaudal	organization	is	task-specific		

Both	EMG-	and	 fMRI-derived	spinal	maps	suggest	 task-specific	rostrocaudal	distributions	of	 the	
cervical	spinal	cord	activity.	In	order	to	verify	this	hypothesis,	we	used	a	machine	learning	approach	
that	exploits	the	information	content	of	each	motor	task	in	the	spinal	maps	derived	from	both	mo-
dalities.		

When	using	EMG-derived	projections	(i.e.,	time-averaged)	of	the	estimated	spinal	activity	as	fea-
tures	(i.e.,	one	feature	for	each	spinal	level),	the	classifier	was	able	to	differentiate	the	three	classes	
with	a	high	accuracy,	as	emphasized	by	the	diagonal	confusion	matrix	(Figure	5.6A).	The	overall	
accuracy	(95%)	was	significantly	higher	than	chance	(p	<	0.01,	permutation	testing,	chance	level	at	
~33%),	highlighting	the	specificity	of	the	estimated	spinal	activation	patterns.	

Furthermore,	we	deployed	MVPA	to	decode	the	executed	task	based	on	the	voxelwise	spinal	BOLD	
activity.	When	using	information	from	the	whole	spinal	cord,	rostrocaudal	activation	patterns	al-
lowed	to	decode	movements	for	all	three	classes	with	an	overall	accuracy	of	54.5%	(Figure	5.6B),	
significantly	better	than	chance	(p	<	0.01).	The	stability	of	the	LDA	weight	maps	over	cross-valida-
tion	 folds	was	also	assessed	by	computing	 their	average	Pearson’s	 correlation	coefficients.	This	
analysis	showed	a	high	correlation	between	folds	(0.87	±	0.01,	mean	over	subjects	±	SE).		
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In	order	to	investigate	the	relative	contribution	of	different	sub-regions	of	the	cord,	we	performed	
the	classification	independently:	i)	for	inferior	and	superior	spinal	levels	and	ii)	for	each	hemicord	
(i.e.,	anterior	and	posterior)	(Figure	C6).	Although	wrist	adduction	and	finger	abduction	could	still	
be	decoded	using	both	rostral	and	caudal	segments,	wrist	extension	failed	to	be	detected	using	the	
inferior	region	of	the	cord	(38.4%),	emphasizing	the	rostral	character	of	the	related	activation.	In-
terestingly,	movements	could	be	classified	efficiently	using	both	anterior	and	posterior	hemicords	
(average	classifications	of	48,4%	and	51.1%,	respectively),	highlighting	the	shared	influence	of	mo-
tor	and	sensory	processes.	

	

Figure	5.6	–	Average	decoding	accuracy.	A.	Each	subject	performed	10	repetitions	of	each	movement.	EMG-
derived	spinal	maps	were	computed	for	each	repetition	and	averaged	over	time	to	keep	only	the	spatial	in-
formation	(i.e.,	five	features	per	sample,	corresponding	to	the	mean	activity	over	time	in	the	spinal	levels	from	
C5	 to	T1).	Classification	was	performed	 in	 each	 subject	using	an	LDA	classifier	 (leave-one-movement-out	
cross	validation).	Confusion	matrices	were	then	averaged	over	subjects	(here,	only	the	six	subjects	who	par-
ticipated	in	the	MVPA	experiment	were	considered).	The	average	accuracy	over	subjects	and	conditions	was	
95%	and	significantly	above	the	chance	level	(p	<	0.01,	permutation	testing,	chance	level	at	~33%).	All	values	
are	reported	in	percentage.	B.	Multivoxel	pattern	analysis	(MVPA)	was	performed	in	each	subject,	using	data	
from	the	C5	to	T1	spinal	levels	and	a	LDA	classifier	(leave-one-run-out	cross	validation).	Confusion	matrices	
were	averaged	over	subjects.	The	average	accuracy	over	subjects	and	conditions	was	54.5%	and	significantly	
above	the	chance	level	(p	<	0.01,	permutation	testing).	C.	Group	activation	maps	(of	the	six	subjects	who	par-
ticipated	in	the	MVPA	experiment)	for	the	contrast	task	VS	baseline.	Maps	represent	the	mean	activity	over	
the	group	(fixed-effects	analysis)	and	are	thresholded	at	a	Z-score	>	2	(cluster-defining	threshold	of	p	<	0.001).	
All	maps	are	normalized	to	the	PAM50	template	(De	Leener	et	al.,	2018).	Coronal	views	are	presented,	with	
the	same	slice	shown	for	all	movements.	A	sagittal	view	of	the	PAM50	template	is	shown	as	a	reference,	with	
the	corresponding	probabilistic	spinal	level.	WE	=	wrist	extension,	WA	=	wrist	adduction,	FA	=	finger	abduc-
tion.	S	=	superior,	I	=	inferior,	L	=	left,	R	=	right.	

Finally,	 to	validate	 the	rostrocaudal	 cervical	patterns	presented	 in	5.3.2,	we	assessed	 the	group	
level	activity	elicited	by	the	three	movements	during	the	MVPA	experiment	(Figure	5.6C,	Table	C3).	
This	analysis	uncovered	activation	maps	consistent	with	those	imaged	during	the	first	experimental	
session	(Figure	5.3B).	Similarly,	the	three	different	task-related	patterns	presented	distinct	spatial	
distributions	(D	=	0.33	between	WE	and	WA,	D	=	0.15	between	WE	and	FA	and	D	=	0.19	between	
WA	and	FA).	More	specifically,	activation	patterns	related	to	wrist	extension	were	located	in	higher	
spinal	levels	(8.3%	of	the	active	voxels	in	C6,	and	65.4%	in	C7)	than	the	ones	elicited	by	wrist	ad-
duction	(45.1%	in	C7,	29.4%	in	C8	and	23.4%	in	T1)	or	finger	abduction	(50%	in	C8	and	50%	in	
T1).	These	results	further	demonstrate	the	robustness	of	the	task-specific	rostrocaudal	organiza-
tion.	

These	combined	results	corroborate	the	hypothesis	that	the	measured	BOLD	signal	actually	reflects	
the	spinal	processes	underlying	movement.	They,	therefore,	support	the	potential	of	fMRI	to	image	
task-specific	rostrocaudal	organization,	offering	as	such	the	prospect	of	a	novel	tool	to	study	spinal	
function	and	its	disruption	in	neurological	conditions.	
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5.4 Discussion	

Here,	we	hypothesized	that	spinal	cord	fMRI	could	be	used	to	reliably	image	task-specific	activity	
in	different	cervical	segments	during	distinct	upper	limb	movements.	To	address	this	question,	we	
combined	spinal	functional	imaging	with	EMG	recordings,	as	advised	in	previous	studies	(Madi	et	
al.,	2001;	Weber	et	al.,	2016b).	Specifically,	we	exploited	anatomical	knowledge	of	muscle	innerva-
tion	to	infer	the	contribution	of	each	muscle	to	the	spinal	activity	in	the	different	segments.	Not-
withstanding	the	limitations	inherent	to	the	imaging	of	spinal	cord	function,	we	acquired	distinct	
task-specific	rostrocaudal	activation	patterns	using	fMRI,	consistent	with	the	theoretical	maps	de-
rived	from	the	muscular	recordings.	These	task-specific	spinal	maps	allowed	for	a	successful	de-
coding	of	motor	tasks.	Here	we	discuss	our	results	with	an	emphasis	on	acquisition	and	processing	
precautions	for	reliable	spinal	fMRI	BOLD	signal.	

5.4.1 Imaged	cervical	activation	patterns	have	a	task-specific	rostrocaudal	organiza-
tion	

To	characterize	the	specificity	of	the	activation	in	the	rostrocaudal	direction,	we	selected	move-
ments	that	allowed	capitalizing	on	the	different	locations	of	the	motoneuron	pools	innervating	the	
employed	muscles.	Wrist	extension,	if	performed	with	no	radial	or	ulnar	deviation,	should	mainly	
be	linked	to	motoneuron	activity	in	the	C6-C7	spinal	levels,	while	wrist	adduction	and	finger	abduc-
tion	were	expected	to	elicit	lower	activity,	in	the	C7-C8	and	C8-T1	segments,	respectively	(Table	
C1).	These	task-specific	rostrocaudal	activations	were	first	confirmed	using	EMG	recordings	(Fig-
ure	5.2).	Muscular	activity	was	mapped	back	onto	the	spinal	cord	using	anatomical	knowledge	of	
muscle	innervation.	As	expected,	the	activity	shifted	from	rostral	levels	for	wrist	extension	to	cau-
dal	regions	for	wrist	adduction	and	finger	abduction.	However,	these	maps,	derived	from	indirect	
peripheral	recordings,	are	solely	based	on	anatomical	considerations	and,	thus,	do	not	fully	inform	
on	the	actual	spinal	cord	function.	Conversely,	fMRI	enables	localized	observation	of	spinal	cord	
activity.	Using	this	technique,	we	showed	that	spinal	BOLD	signal	also	reflected	these	task-specific	
activations	patterns	(Figure	5.3).	In	line	with	the	findings	of	Madi	et	al.	(2001),	we	observed	higher	
activations	 for	wrist	extension	 than	 for	 finger	abduction.	Nonetheless,	 the	detected	activity	was	
more	focal	in	our	study,	possibly	due	to	the	increased	field	strength,	the	choice	of	sequence	(selec-
tive	 field-of-view	imaging),	and	to	 the	ad	hoc	noise	correction	steps	applied	to	 the	signal.	Wrist	
adduction,	which	was	not	performed	in	the	study	of	Madi	et	al.,	also	elicited	the	expected	activity,	
with	an	activation	profile	shifted	towards	caudal	segments.	For	the	three	movements,	the	activity	
was	equally	distributed	between	the	left	and	right	hemicords	and	mainly	located	in	the	anterior	
(i.e.,	ventral)	hemicord.	This	is	in	agreement	with	anatomical	knowledge,	as	movements	were	per-
formed	bilaterally	and	motoneurons	are	found	in	the	ventral	horns.	Despite	the	larger	anterior	ac-
tivity,	significant	activity	was	also	found	in	the	posterior	(i.e.,	dorsal)	hemicord.	As	the	task	con-
sisted	in	performing	dynamic	repetitions	of	the	movements,	this	is	likely	resulting	from	sensory	
processes	and	proprioception.	In	parallel,	a	control	analysis	where	we	applied	our	analysis	pipeline	
to	task-free	runs	emphasized	that	the	imaged	cervical	patterns	were	likely	not	of	artefactual	origin	
(Figure	5.4).	

In	a	subsequent	step,	we	quantified	the	relationship	between	the	EMG-	and	fMRI-derived	spinal	
maps	by	using	their	respective	projections	on	the	z	dimension	(i.e.,	spinal	levels)	and	demonstrated	
analogous	rostrocaudal	distributions	of	activity	between	the	two	modalities	(Figure	5.5).	This	sug-
gests	that	both	activation	maps	stem	from	the	same	motor-related	spinal	processes,	hence	support-
ing	the	use	of	fMRI	to	reliably	and	directly	image	task-related	rostrocaudal	cervical	activity.	
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In	order	to	further	confirm	the	identified	task-specific	activation	patterns,	we	employed	a	machine	
learning	paradigm	on	a	subset	of	participants,	so	as	to	decode	motor	tasks	based	on	spinal	activa-
tion	maps.	FMRI-derived	patterns	presented	significant	decoding	performances	(54.5%),	highlight-
ing	the	task-specific	information	contained	in	the	acquired	BOLD	signal.	Wrist	extension,	however,	
presented	a	lower	classification	accuracy	(46.7%),	potentially	related	to	higher	movement	varia-
bility	when	executing	this	task.	This	hypothesis	is	supported	by	the	theoretical	EMG-derived	spinal	
maps,	where	a	lower	correlation	was	observed	between	the	activation	patterns	of	the	different	rep-
etitions	 of	 this	 movement	 (Figure	 5.2),	 possibly	 indicating	 that	 the	 wrist	 was	 not	 consistently	
moved	 in	 the	expected	neutral	ulnoradial	deviation.	Nevertheless,	 it	 should	be	emphasized	 that	
wrist	extension	and	adduction,	although	 involving	the	same	 joint,	could	be	distinguished	with	a	
significant	accuracy.	 Interestingly,	when	using	only	the	 inferior	portion	of	 the	spinal	cord,	wrist	
extension	tended	to	be	mistaken	for	wrist	adduction	(Figure	C6A),	further	supporting	the	rostral	
character	of	the	underlying	activation.	

Another	compelling	finding	concerned	the	high	decoding	performances	obtained	when	using	the	
anterior	or	posterior	hemicord	only	(48.4%	and	51.1%,	respectively,	see	Figure	C6C-D).	This	sug-
gests	that	both	motor	and	sensory	processes	were	reliably	captured	by	spinal	cord	fMRI	and	were	
both	 task-specific.	 The	 task-specificity	 of	 sensory	 information	 parallels	 recent	 findings	 from	
Yeganegi	et	al.	(2018).	In	that	study,	the	authors	showed	for	the	first	time	that	electrophysiological	
recordings	of	dorsal	gray	matter	activity	 in	anesthetized	cats	allowed	for	successful	decoding	of	
hind	limb	movements.	Indeed,	movements	not	only	elicit	efferent	signals	travelling	from	the	ventral	
horns	of	the	spinal	cord	to	the	muscles,	they	also	involve	afferent	feedback	provided	by	sensory	
receptors	(e.g.,	muscles	spindles,	tendons	or	mechanoreceptors)	and	going	to	the	central	nervous	
system,	through	the	dorsal	horns	of	the	spinal	cord	(Enoka,	2008).	Consequently,	observing	task-
specific	sensory	activity	is	not	unexpected,	as	also	reflected	by	the	significant	correlations	obtained	
between	the	EMG-	and	fMRI-derived	profiles,	when	considering	the	sensory	component	only.	

Importantly,	the	group	activation	maps	resulting	from	this	additional	imaging	session	presented	
similar	rostrocaudal	patterns	as	the	ones	derived	from	the	initial	experiment,	confirming	the	ro-
bustness	of	the	captured	rostrocaudal	activation	patterns.	Altogether,	these	results	underscore	the	
broad	potential	of	spinal	cord	fMRI,	not	only	to	image	spinal	motoneuron	activity,	but	also	to	ex-
plore	sensory	and	proprioceptive	mechanisms,	one	aspect	that	cannot	be	probed	with	peripheral	
recordings,	such	as	EMG	acquisitions.	To	our	knowledge,	our	study	is	the	first	report	of	MVPA	in	
the	spinal	cord	during	different	types	of	movements	(note,	however,	 that	Weber	and	colleagues	
previously	used	MVPA	to	decode	left	and	right	wrist	flexions	(Weber	et	al.,	2016b)).	 

5.4.2 Methodological	challenges	of	spinal	cord	fMRI	and	possible	solutions	

Although	spinal	cord	fMRI	relies	on	the	same	principles	as	brain	fMRI,	it	presents	additional	chal-
lenges	(Giove	et	al.,	2004)	and	has	therefore	not	yet	received	as	much	interest.	First,	the	small	cross-
sectional	dimensions	of	the	spinal	cord	prompt	the	need	for	high	resolution	imaging	to	avoid	partial	
volume	effects	and	to	unravel	the	details	of	the	structure	of	interest.	Second,	the	spinal	cord	is	sur-
rounded	by	different	tissue	types,	whose	disparate	magnetic	susceptibilities	affect	the	static	mag-
netic	field.	This	can	lead	to	image	artifacts,	such	as	distortions	or	signal	dropouts,	when	standard	
T2*-weighted	fMRI	protocols	are	employed.	Advancements	in	terms	of	hardware	(Cohen-Adad	et	
al.,	2011)	and	sequences	(Finsterbusch	et	al.,	2012)	are	currently	being	proposed	in	order	to	obvi-
ate	these	constraints.	Finally,	another	prominent	issue	is	related	to	the	close	proximity	of	the	lungs,	
the	heart	and	other	visceral	organs,	which	are	 important	sources	of	motion	(Piché	et	al.,	2009).	
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Notably,	cardiac	activity	generates	a	pulsatile	flow	in	the	cerebrospinal	fluid	(CSF)	around	the	spi-
nal	cord.		

In	our	study,	we	employed	different	approaches,	from	data	acquisition	to	(pre-)processing,	to	over-
come	these	limitations	and	get	a	reliable	signal.	Specifically,	prior	to	acquisition,	shimming	adjust-
ments	focused	on	the	cervical	spinal	cord	were	carried	out	to	optimize	the	field	homogeneity	in	the	
region	of	interest.	The	acquisition	was	performed	using	selective	field-of-view	imaging,	hence	in-
creasing	imaging	speed	while	allowing	for	high	spatial	resolution	(1	x	1	x	3	mm).	In	order	to	curtail	
the	detrimental	effect	of	motion,	we	applied	several	processing	steps.	Realignment	was	first	con-
ducted	using	 a	 slice-wise	procedure,	 accounting	 for	 the	 articulated	 structure	 of	 the	 spinal	 cord	
(Cohen-Adad	et	al.,	2009;	De	Leener	et	al.,	2017).	Outlier	volumes	were	then	identified	and	included	
as	 confounds	 during	 the	 GLM	 analysis.	 Finally,	 we	 used	 the	 physiological	 recordings	 acquired	
throughout	the	experiment	to	model	additional	nuisance	regressors,	based	on	the	RETROICOR	pro-
cedure	(Glover	et	al.,	2000a),	and	a	CSF	regressor	was	also	included.	Both	approaches	have	been	
demonstrated	to	improve	activation	statistics	(Brooks	et	al.,	2008),	and	their	impact	was	reflected	
by	the	increase	in	tSNR	observed	consecutive	to	these	processing	steps	(see	5.3.1	and	Figure	C2).	
In	addition,	the	GLM	analysis	was	also	adapted	to	account	for	potential	variations	of	the	HRF,	com-
pared	to	the	canonical	HRF	commonly	employed.	Indeed,	the	temporal	properties	of	the	spinal	HRF	
are	still	unclear	(Giulietti	et	al.,	2008)	and	no	solution	to	tackle	this	limitation	has	so	far	been	pro-
posed	in	the	context	of	spinal	cord	fMRI.	Therefore,	we	opted	for	an	approach	previously	used	in	
brainstem	fMRI	(e.g.,	Faull	et	al.,	2015),	a	field	facing	similar	challenges	in	this	regard	(Devonshire	
et	al.,	2012)	and	employed	a	FLOBS-generated	basis	set	instead	of	the	canonical	HRF	(Woolrich	et	
al.,	2004),	so	as	to	be	less	sensitive	to	hemodynamic	variability	(e.g.,	dispersion,	delay	or	shape).		

Following	this	advanced	pipeline,	we	were	able	to	image	robust	rostrocaudal	patterns.	Neverthe-
less,	some	limitations	need	to	be	acknowledged.	Regardless	of	the	consistent	sequence	of	motoneu-
ron	pools	across	subjects	(e.g.,	distal	arm	muscles	innervated	by	lower	spinal	levels	than	proximal	
muscles),	individual	differences	in	the	location	of	spinal	levels	with	respect	to	the	corresponding	
vertebral	bodies	have	previously	been	reported	(Cadotte	et	al.,	2015).	When	registering	subject	
data	to	a	common	template,	these	differences	are	not	taken	into	account	with	current	normalization	
algorithms,	an	issue	which	was	already	raised	by	Weber	et	al.	(2016a,	2016b).	This	could	hinder	
our	 ability	 to	 detect	 activation	 patterns	 along	 the	 rostrocaudal	 direction,	 due	 to	 potential	mis-
matches	between	subjects.	Although	less	prevalent,	similar	issues	exist	in	brain	fMRI	(Dubois	and	
Adolphs,	2016)	and	progresses	in	both	fields	(e.g.,	advanced	algorithms	or	functionally-informed	
alignment)	could	gradually	overcome	these	difficulties.	

5.4.3 Experimental	limitations	and	considerations	

Our	paper	aimed	to	relate	EMG	and	fMRI	activity	in	order	to	highlight	the	neural	origin	of	the	signal	
recorded	with	spinal	cord	fMRI.	This	represents	a	first	step	in	showing	that	this	technique	can	shed	
light	on	spinal	motor	responses.	We	believe	that	future	studies	could	deploy	similar	motor-based	
paradigms,	 to	 infer	general	principles	 regarding	human	spinal	 cord	 functional	organization.	We	
propose	hereafter	a	number	of	experimental	and	technical	recommendations.	While	the	structure	
of	our	experiment	(i.e.,	two	complementary	sessions	to	record	EMG	and	fMRI)	imposed	certain	tim-
ing	constraints	to	prevent	subjects’	fatigue,	future	studies	focusing	solely	on	fMRI	recordings	could	
potentially	limit	the	number	of	conditions,	so	as	to	increase	the	scan	duration,	or	the	number	of	
runs,	to	further	explore	the	properties	of	the	underlying	spinal	signals.	An	additional	aspect	that	
may	be	of	interest	is	the	variability	of	movement	execution.	Indeed,	as	muscle	activations	were	not	
performed	at	a	specific	percentage	of	the	Maximum	Voluntary	Contraction,	the	exact	output	of	the	
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muscles	during	the	fMRI	scans	was	not	controlled.	Performing	isometric	tasks	could	help	in	this	
regard,	although	it	may	require	the	use	of	custom	splints,	which	need	to	be	adapted	to	the	move-
ments	of	interest.	Finally,	we	recommend	the	use	of	a	soft	cervical	collar	for	the	functional	record-
ings,	as	this	helps	stabilize	and	straighten	the	neck,	hence	participating	to	improve	image	quality.	

5.5 Conclusion	

Despite	technological	challenges,	we	captured	variations	in	spinal	activity	and	revealed	task-spe-
cific	rostrocaudal	patterns	in	agreement	with	the	anatomical	arrangement	of	motoneuron	pools.	
These	results	contribute	to	advance	our	understanding	of	the	potential	of	spinal	cord	fMRI.	They	
demonstrate	its	prospects	as	a	reliable	tool	to	investigate	spinal	cord	function	and	to	further	un-
derstand	mechanisms	involved	in	motor	control	and	neurological	motor	disorders,	such	as	spinal	
cord	injury	or	multiple	sclerosis.	For	instance,	spinal	cord	fMRI	could	allow	exploiting	information	
on	 spinal	 sensorimotor	 function,	 rather	 than	 theoretical	 estimations	 such	 as	 EMG-based	maps.	
Eventually,	we	foresee	that	such	advances	in	our	knowledge	of	the	spinal	cord	could	support	clinical	
decision-process	and	help	inform	intervention	procedures.	
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Abstract	–	The	neuroimaging	community	has	shown	tremendous	interest	in	exploring	the	
brain’s	spontaneous	activity	using	fMRI.	On	the	contrary,	the	spinal	cord	has	been	largely	
overlooked	despite	 its	pivotal	 role	 in	processing	 sensorimotor	 signals.	Only	a	handful	of	
studies	have	probed	the	organization	of	spinal	resting-state	fluctuations,	always	using	static	
measures	of	connectivity.	Many	innovative	approaches	have	emerged	to	analyze	dynamics	
of	brain	fMRI	but	they	have	not	yet	been	applied	to	the	spinal	cord,	although	they	could	help	
disentangle	its	functional	architecture.	Here,	we	leveraged	a	dynamic	connectivity	method	
based	on	the	clustering	of	hemodynamic-informed	transients	to	unravel	the	rich	dynamic	
organization	of	spinal	resting-state	signals.	We	tested	this	approach	in	19	healthy	subjects,	
uncovering	 fine-grained	 spinal	 components	 and	 highlighting	 their	 neuroanatomical	 and	
physiological	nature.	We	provide	a	versatile	tool,	SpiCiCAP,	to	characterize	spinal	circuits	
during	rest	and	task,	as	well	as	their	disruption	in	neurological	disorders.		

6.1 Introduction	

Since	its	early	days	in	the	90s,	functional	Magnetic	Resonance	Imaging	(fMRI)	has	had	a	tremendous	
impact	on	the	field	of	neuroscience,	substantially	advancing	our	understanding	of	the	central	nerv-
ous	system	(CNS).	Relying	on	non-invasive	detection	of	blood-oxygen-level	dependent	(BOLD)	sig-
nal	changes,	this	imaging	technique	offers	meaningful	insights	into	the	underlying	neuronal	activity	
(Logothetis	et	al.,	2001).	As	such,	it	has	been	widely	deployed	to	investigate	systems-level	brain	
function,	not	only	during	tasks,	but	also	at	rest,	with	fMRI	studies	focusing	on	the	spontaneous	fluc-
tuations	of	the	BOLD	signals	(Van	Den	Heuvel	and	Hulshoff	Pol,	2010).	In	this	context,	resting-state	
networks	(RSNs)	are	conventionally	extracted	using	functional	connectivity	(FC)	measures	based	
on	 the	 coherent	 activation	 (e.g.,	 Pearson’s	 correlation)	 of	 distinct	 brain	 regions.	These	 intrinsic	
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networks	have	emerged	as	the	building	blocks	of	human	brain	function	(Damoiseaux	et	al.,	2006)	
and	their	activity	has	been	shown	to	encode	a	wide	array	of	behavioral	traits,	from	emotion	to	in-
tellectual	performances	(Greicius	et	al.,	2003;	Liégeois	et	al.,	2019).	Besides,	their	widespread	al-
teration	 in	 neurological	 diseases	 also	 support	 their	 clinical	 relevance	 and	 their	 potential	 as	 bi-
omarkers	of	functional	integrity	(Castellanos	et	al.,	2013;	Allali	et	al.,	2018).	Unfortunately,	this	ex-
ploration	of	the	functional	architecture	of	the	human	CNS	in	vivo	has	been	essentially	focused	on	
the	brain.	In	contrast,	the	spinal	cord,	another	component	of	the	CNS,	has	been	mostly	overlooked,	
even	though	this	structure	plays	a	crucial	role	in	sensorimotor	processing,	for	instance	in	proprio-
ception,	pain	processing,	or	during	movement	generation	and	control	(Darby	and	Frysztak,	2013).	
As	such,	insights	into	the	intrinsic	functional	organization	of	human	spinal	circuits	appear	as	pivotal	
contributions	to	fundamental	and	clinical	neurosciences.	

This	limited	amount	of	research	may	partly	stem	from	the	inaccessibility	of	the	spinal	cord,	a	small	
structure	deeply	encapsulated	in	the	vertebral	column	(Marieb,	E.	N,	Hoehn,	2014;	Powers	et	al.,	
2018).	 Imaging	 this	 region	 is	 indeed	particularly	 challenging,	 as	 the	adjacent	bones	and	organs	
make	it	prone	to	field	inhomogeneities	and	physiological	noise	(Giove	et	al.,	2004;	Stroman	et	al.,	
2014).	This	may	explain	why	functional	activity	of	 the	spinal	cord	was,	at	 first,	mainly	explored	
using	 indirect	 peripheral	 measurements	 (e.g.,	 muscle	 activity,	 force,	 reflexes	 or	 sensory	 tests)	
(Yakovenko	et	al.,	2002;	Greenberg,	2003;	Knikou,	2008).	Yet,	developments	in	spinal	cord	fMRI	
acquisition	(Finsterbusch,	2013)	and	processing	protocols	(De	Leener	et	al.,	2017;	Eippert	et	al.,	
2017a)	have	worked	toward	circumventing	these	constraints	and	a	growing	body	of	research	high-
lighted	the	feasibility	of	this	approach	(Wheeler-Kingshott	et	al.,	2014).	Moreover,	the	validity	of	
BOLD	signals	as	a	hemodynamic	proxy	of	spinal	neural	activity	was	recently	confirmed	in	non-hu-
man	primates,	as	signal	variations	were	shown	to	be	in	agreement	with	electrophysiological	activ-
ity	(i.e.,	local	field	potentials)	(Wu	et	al.,	2019).		

Spinal	cord	fMRI	studies	have	primarily	focused	on	task-evoked	activity,	offering	an	unparalleled	
opportunity	to	examine	the	human	spinal	cord	in	action	(Wheeler-Kingshott	et	al.,	2014).	Sponta-
neous	signal	fluctuations,	on	the	other	hand,	were	only	explored	in	recent	years.	Sensory	and	motor	
RSNs	were	first	reported	using	different	approaches,	such	as	seed-based	FC	(at	3T,	Eippert	et	al.,	
2017b,	and	at	7T,	Barry	et	al.,	2014,	2016)	or	independent	component	analysis	(ICA)	(at	3T,	Kong	
et	al.,	2014).	Similar	components	were	also	identified	at	ultra-high	field	(9.4T)	in	rats	(Wu	et	al.,	
2018)	and	non-human	primates	(Chen	et	al.,	2015).	Although	these	studies	demonstrated	the	ex-
istence	of	functional	circuits	in	the	spinal	cord	at	rest,	their	neurophysiological	underpinnings	re-
mained	unclear	(Eippert	and	Tracey,	2014).	

A	critical	factor	that	hindered	thorough	characterization	of	the	nature	of	spinal	networks	was	the	
use	of	static	measures	of	FC,	as	all	earlier	studies	assumed	temporal	stationarity	over	the	scanning	
session.	As	a	result,	they	did	not	account	for	the	dynamic	evolution	of	interactions	over	time	and	
they	could	not	 fully	capture	 the	properties	of	 functional	networks	 (Calhoun	et	al.,	2001).	 In	 the	
brain,	however,	it	has	been	highlighted	that	FC	fluctuates	at	the	time	scale	of	seconds,	and	numerous	
dynamic	 functional	connectivity	(dFC)	approaches	have	been	proposed	to	delve	into	these	time-
varying	properties	(Preti	et	al.,	2016).	This	has	provided	new	insights	into	the	properties	of	resting-
state	(RS)	signals,	as	well	as	informed	on	the	disrupted	dynamic	interplay	of	distinct	brain	regions	
in	various	neurological	disorders.			

Here,	we	posit	that	dynamic	methods	could	enable	disentangling	the	ongoing	sustained	spinal	ac-
tivity,	possibly	revealing	new	attributes	of	spinal	RSNs.	To	this	end,	we	leveraged	a	promising	ap-
proach	 to	 extract	 dynamic	 RS	 components,	 termed	 innovation-driven	 co-activation	 patterns,	 or	



	
Spinal	cord’s	functional	architecture	

																														
103	

iCAPs.	In	this	context,	the	term	innovation	refers	to	transient	activity,	recovered	using	robust	he-
modynamic-informed	deconvolution	(Karahanoǧlu	et	al.,	2013).	Patterns	obtained	using	transients	
constitute	the	building	blocks	of	time-resolved	activity	and	offer	a	unique	way	to	dissect	temporally	
overlapping	signals.	Of	note,	this	has	previously	enabled	the	separation	of	known	brain	RSNs	(e.g.,	
the	default	mode	network)	into	multiple	subsystems	(Karahanoǧlu	and	Van	De	Ville,	2015).	Capi-
talizing	on	this	potential	 to	unfold	ongoing	 functional	activity,	we	combined	this	method	with	a	
dedicated	spinal	cord	fMRI	pipeline	into	the	spinal	iCAP	framework	–	SpiCiCAP.	Using	this	frame-
work,	we	assessed	spatial	and	temporal	properties	of	cervical	RS	activity	in	healthy	participants	
and	 uncovered	 precise	 features	 of	 the	 spinal	 cord	 functional	 architecture.	 To	 the	 best	 of	 our	
knowledge,	this	is	the	first	time	that	fine-grained	RS	components	are	revealed	in	the	spinal	cord.	
This	unparalleled	level	of	detail	allowed	us	to	shed	new	light	on	their	neuroanatomical	nature	as	
well	as	to	further	characterize	their	physiological	roles,	hence	emphasizing	their	involvement	in	
distributed	neural	pathways	supporting	ascending	sensory	feedback	(e.g.,	for	proprioception),	and	
descending	 communication	 from	 supraspinal	 structures	 (e.g.,	 for	motor	 control).	 The	 SpiCiCAP	
framework	could	foster	relevant	advances	in	our	understanding	of	spinal	cord	function,	not	only	at	
rest,	but	also	when	dynamically	modulated	in	sensory	and	motor	tasks.	Finally,	this	opens	an	ave-
nue	to	map	spinal	circuits	in	neurological	conditions	and	to	investigate	the	mechanisms	associated	
with	dysfunction	and	recovery.		

6.2 Methods	

6.2.1 Data	and	Code	Availability	

Codes	generated	in	this	study,	as	well	as	raw	and	analyzed	MRI	data,	are	available	on	Mendeley	
Data	(http://dx.doi.org/10.17632/n2k7zz2xyt.1).	

6.2.2 Experimental	model	and	subject	details	

Twenty-two	right-handed	healthy	subjects	(11	females,	28.5	±	3.5	years	old)	were	enrolled	in	the	
study.	All	participants	gave	their	written	informed	consent	to	participate,	and	the	study	had	been	
approved	 by	 the	 Commission	 Cantonale	 d'Éthique	 de	 la	 Recherche	Genève	 (CCER,	 study	 2019-
00203).	All	volunteers	had	normal	or	corrected-to-normal	vision	and	no	history	of	neurological	
disorders		

6.2.3 Method	details	

Data	acquisition	

The	imaging	protocol	was	the	same	as	the	one	used	in	our	previous	study	in	which	we	imaged	the	
rostrocaudal	patterns	of	activity	elicited	by	upper	limb	movements	(Kinany	et	al.,	2019).	Imaging	
data	were	acquired	with	a	3.0	Tesla	Siemens	Prisma	scanner	(Erlangen,	Germany),	equipped	with	
a	64-channel	head	(only	inferior	element,	HC7,	was	used)	and	neck	coil	(both	anterior	and	posterior	
elements,	NC1	and	NC2,	were	used	–	i.e.,	24	channels).	For	14	subjects,	the	upper	element	of	the	
spine	coil	 (SP1)	was	also	used	(optimal	coil	combination	defined	by	the	scanner).	All	 functional	
acquisitions	were	performed	with	a	gradient-echo	echo-planar	sequence,	with	ZOOMit	selective	
field-of-view	imaging	(Repetition	Time	(TR)	=	2.5	s,	Echo	Time	(TE)	=	34	ms,	FOV	=	48	x	144	mm,	
flip	angle	=	80º,	in-plane	resolution	=	1	x	1	mm,	slice	thickness	=	3	mm).	The	cervical	enlargement	
was	covered	using	32	axial	slices.	Particular	care	was	taken	in	placing	slices	perpendicularly	to	the	
spinal	 cord,	 in	 order	 to	 maximize	 the	 alignment	 with	 the	 intervertebral	 discs	 and	 limit	 signal	
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dropouts	due	to	field	inhomogeneities	(Finsterbusch	et	al.,	2012).	Before	acquisition,	the	magnetic	
field	homogeneity	was	optimized	using	shimming	adjustments	focused	on	the	spinal	cord.	For	each	
participant,	360	volumes	(i.e.,	15	minutes)	were	acquired,	during	rest	(i.e.,	no	explicit	task),	with	
eyes	open	(an	empty	screen	was	shown).	A	high-resolution	T2-weighted	anatomical	image,	cover-
ing	a	region	from	C1	to	the	upper	part	of	the	thoracic	spine,	was	also	acquired	with	a	SPACE	se-
quence	(single	slab	3D	turbo	spin	echo	sequence	with	a	slab	selective,	variable	excitation	pulse,	TR	
=	1500	ms,	TE	=	135	ms,	echo	train	length	=	74,	flip	angle	=	140º,	resolution	=	0.4	x	0.4	x	0.8	mm,	
sagittal	orientation).	Throughout	 the	recordings,	 subjects	were	 instructed	 to	relax,	breathe	nor-
mally	and	minimize	motion.	A	soft	cervical	collar	was	used	in	order	to	stabilize	the	neck.	

6.2.4 Quantification	and	statistical	analysis	

Data	processing	

All	preprocessing	steps	were	performed	using	the	Oxford	Center	for	fMRI	of	the	Brain’s	(FMRIB)	
Software	Library	(FSL,	version	5.0)	(Jenkinson	et	al.,	2012)	and	the	Spinal	Cord	Toolbox	(SCT,	ver-
sion	3.2.7)	(De	Leener	et	al.,	2017).	The	pipeline	is	based	on	the	one	used	in	our	previous	study	
(Kinany	et	al.,	2019).	

1) Motion	correction	

	All	functional	and	anatomical	images	were	inspected	for	potential	artifacts.	For	each	participant,	
the	bottom	slices	whose	signal	was	insufficient	to	accurately	detect	the	spinal	cord	were	removed.	
The	mean	functional	image	was	then	used	to	automatically	detect	the	centerline	of	the	spinal	cord.	
A	cylindrical	mask	(diameter	of	30	mm)	along	the	centerline	was	generated	to	prevent	the	inclusion	
of	regions	moving	independently	from	the	spinal	cord	and	slice-wise	realignment	was	performed	
with	the	mean	functional	image	as	reference.	This	procedure	allows	to	account	for	the	articulated	
structure	of	the	spinal	cord	(De	Leener	et	al.,	2017).	Motion	parameters	were	extracted	and	used	to	
compute	the	mean	(i.e.,	average	over	slices	and	volumes)	framewise	displacement	along	the	x	and	
y	directions	(FDx	and	FDy).	A	stringent	threshold	on	the	framewise	displacement	(i.e.,	mean	FDx	or	
FDy	>	0.2	mm)	was	applied	to	detect	subjects	with	excessive	motion.	This	led	to	the	exclusion	of	
three	subjects.	All	the	other	subjects	(n	=	19)	were	included	in	further	analyses.	The	overall	level	of	
motion	of	these	remaining	subjects	was	minimal	(mean	±	SE	along	x	and	y:	FDx	=	0.10	±	0.04	mm,	
and	FDy	=	0.10	±	0.03	mm).		

Following	slice-wise	realignment,	outliers	volumes	were	detected	for	motion	scrubbing	(i.e.,	to	be	
included	as	noise	regressors	during	the	time	courses	denoising,	see	2)	Denoising	time	courses).	Var-
iations	in	image	intensity	were	assessed	to	identify	potential	outliers	with	FSL,	using	DVARS	(i.e.,	
the	root	mean	square	intensity	difference	of	volume	N	to	volume	N+1)	within	the	spinal	cord,	and	
a	box-plot	cutoff	(75th	percentile	+	1.5	x	the	interquartile	range)	(Power	et	al.,	2014).	On	average,	
five	volumes	per	run	were	considered	as	outliers.	

2) Denoising	time	courses		

Due	to	the	proximity	of	respiratory	tracts	and	visceral	organs,	the	spinal	cord	is	particularly	prone	
to	physiological	motion	(Brooks	et	al.,	2008;	Piché	et	al.,	2009;	Eippert	et	al.,	2017a).	It	is,	therefore,	
essential	to	limit	the	detrimental	impact	of	those	fluctuations	on	BOLD	time	courses.	For	this	pur-
pose,	 physiological	 signals	 (i.e.,	 heart	 rate	 and	 respiration)	 and	 scanner	 triggers	were	 acquired	
throughout	 the	 functional	 scans,	 using	 a	 photoplethysmograph	 and	 a	 respiratory	 belt	 (Biopac	
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MP150	system,	California,	USA).	These	recordings	were	used	to	generate	noise	regressors,	with	a	
procedure	based	on	RETROspective	Image	CORrection	(RETROICOR)	(Glover	et	al.,	2000b).	Briefly,	
this	approach	assigns	cardiac	and	respiratory	phases	to	each	functional	volume,	considering	their	
acquisition	timings	with	respect	to	the	physiological	traces.	Then,	a	low-order	Fourier	expansion	is	
typically	used	to	model	physiological	noise.	In	the	spinal	cord,	however,	recommendations	suggest	
to	include	higher	order	Fourier	terms	as	well	as	the	noise	related	to	the	cerebrospinal	fluid	(CSF)	
(Brooks	et	al.,	2008;	Kong	et	al.,	2012).	Accordingly,	we	generated	32	voxelwise	noise	regressors	
using	the	physiological	noise	modeling	(PNM)	tool	 from	FSL,	along	with	an	additional	regressor	
corresponding	 to	 the	CSF	signal	 (mean	signal	 in	 the	10%	of	CSF	voxels	whose	signal	varies	 the	
most).		

These	33	physiological	noise	regressors	(PNM	and	CSF)	were	combined	with	motion	correction	
parameters	(i.e.,	two	slice-wise	regressors,	for	the	motion	in	x	and	y)	and	motion	outliers	(see	1)	
Motion	correction),	and	regressed	from	the	fMRI	time-series	using	FSL’s	fMRI	Expert	Analysis	Tool	
(FEAT).	The	resulting	residuals	were	then	spatially	smoothed	using	a	3D	Gaussian	kernel	with	a	full	
width	half	maximum	(FWHM)	of	2	x	2	x	6	mm3.	Smoothing	was	performed	along	the	centerline	of	
the	spinal	cord,	so	as	to	preserve	anatomical	consistency.		

3) Estimating	warping	fields	for	normalization	

The	PAM50	template	(spatial	resolution	of	0.5	x	0.5	x	0.5mm3)	was	employed	as	a	common	space	
(De	Leener	et	al.,	2018).	Using	the	Spinal	Cord	Toolbox	(De	Leener	et	al.,	2017),	a	two-step	regis-
tration	procedure	was	performed	for	each	subject:	i)	Anatomical-to-template:	automatic	spinal	cord	
segmentation	and	vertebrae	labelling	was	performed,	based	on	the	T2-weighted	image.	The	spinal	
cord	was	then	straightened	along	its	centerline	and	registered	to	the	PAM50	template,	using	the	
labels	 (specifically	 for	 the	vertebral	 bodies	C4	and	C7)	 and	non-rigid	 transformations;	 ii)	Func-
tional-to-anatomical:	functional	images	were	registered	to	the	T2-weighted	image,	using	non-rigid	
transformations.	The	warping	fields	from	steps	i)	and	ii)	were	finally	concatenated	to	obtain	the	
functional-to-template	transformation.	Accurate	spatial	registration	to	a	common	space	is	a	crucial	
step	to	allow	meaningful	inter-subject	comparison.	Nevertheless,	the	normalization	procedure	in	
the	spinal	cord	is	notoriously	challenging,	partly	because	of	its	small	size,	combined	with	non-uni-
form	signal	quality	(Giove	et	al.,	2004).	To	validate	the	precision	of	our	registration	to	the	PAM50	
template,	we	show	the	results	of	this	procedure	in	Figure	D1,	which	illustrates	the	accurate	corre-
spondence	 between	 the	 normalized	 anatomical	 and	 functional	 images	 and	 the	 template.	 Im-
portantly,	the	delineation	between	grey	and	white	matter	can	be	clearly	observed	in	the	normalized	
fMRI	runs.			

Data	analysis	

1) Extracting	innovation-driven	coactivation	patterns	(iCAPs)	

The	 innovation-driven	 co-activation	 patterns	 (iCAPs)	 pipeline	 was	 performed	 using	 the	 iCAP	
toolbox	(Matlab	code	openly	available	on	https://c4science.ch/source/iCAPs/,	Karahanoǧlu	and	
Van	De	Ville,	2015).	The	different	steps	of	the	pipeline	are	illustrated	in	Figure	6.1.	In	detail,	the	
measured	fMRI	time	course	is	assumed	to	reflect	the	underlying	activity-inducing	signal,	tempo-
rally	smoothed	by	the	effect	of	the	hemodynamic	response	function	(HRF).	As	a	result,	we	first	used	
the	denoised	images	(native	space)	and	deployed	a	regularized	deconvolution,	using	the	Total	Ac-
tivation	framework	(TA,	Karahanoǧlu	et	al.,	2013),	to	reliably	retrieve	these	activity-inducing	sig-
nals.	Transients	(i.e.,	the	so-called	innovation	signals)	were	computed	as	the	temporal	derivative	of	
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these	activity-inducing	time	courses.	It	is	worth	highlighting	that	innovation	frames	present	spatial	
patterns	that	are	much	cleaner	than	the	related	fMRI	frames	because	they	have	been	undone	from	
hemodynamic	blur,	but	also	noise	that	is	not	compatible	with	the	hemodynamic	properties.	In	order	
to	select	 significant	 innovations	 (i.e.,	 frames	with	significant	 transitioning	activities),	a	 two-step	
thresholding	procedure	was	used:	i)	temporal	thresholding:	for	each	voxel,	a	surrogate	distribution	
was	obtained	by	applying	TA	on	phase	randomized	data	and	a	5%	confidence	interval	was	used	to	
select	significant	voxels,	ii)	spatial	thresholding:	only	the	innovation	frames	with	at	least	5%	of	ac-
tive	voxels	were	considered	to	be	significant.	Significant	innovation	frames	were	normalized	to	the	
PAM50	and	used	to	identify	resting-state	components,	the	iCAPs,	using	temporal	K-means	cluster-
ing.	Two	levels	of	granularity	were	chosen:	i)	K	=	4	(low	granularity)	and	ii)	K	=	40	(high	granular-
ity).	The	iCAPs	spatial	maps	were	then	thresholded	(Z	>	1.6	for	K	=	4	and	Z	>	5	for	K	=	40)	and	
binarized,	and	their	spatial	similarity	evaluated	by	means	of	Dice	coefficients	(i.e.,	twice	the	over-
lapping	area,	divided	by	the	total	number	of	voxels	in	both	maps).		

It	should	be	pointed	out	that	a	priori	estimating	data	dimensionality	is	a	long	standing	issue	in	net-
work	analyses	(Xu	and	Wunsch,	2005).	In	order	to	ensure	that	selecting	4	low-granularity	and	40	
high-granularity	components	provided	reliable	partitions	of	the	data,	we	systematically	evaluated	
the	reproducibility	of	the	clustering	for	different	values	of	K	(see	supplementary	materials,	Figure	
D3).	Specifically,	we	used	a	subsampling	scheme	where	clustering	was	repeated	using	random	sub-
sets	of	the	data	(100	subsets	of	10	subjects).	For	each	repetition,	K-means	clustering	was	performed	
using	different	values	of	K	and	each	clustering	solution	was	compared	to	the	global	clustering	ob-
tained	with	the	19	subjects,	using	the	adjusted	mutual	information	(AMI)	(Vinh	et	al.,	2010)	which	
estimates	the	similarity	of	two	discrete	assignments	(i.e.,	by	comparing	the	assignments	of	the	sig-
nificant	innovation	frames	to	the	different	clusters).	Of	note,	this	metric	is	corrected	for	the	effect	
of	chance	in	order	to	avoid	biasing	results	in	favor	of	a	large	number	of	clusters.	Values	range	from	
0	(chance	level)	to	1	(equal	partitions).	In	order	to	explore	low-granularity	values,	K	values	corre-
sponding	 to	multiples	of	 four	 (i.e.,	number	of	 spinal	 levels	 in	 the	 imaged	regions)	were	probed.	
Moreover,	we	investigated	higher	values	of	K,	ranging	from	20	to	90	in	steps	of	10,	hence	covering	
a	wide	range	of	potential	fine-grained	subdivisions.	Details	of	this	analysis	are	presented	in	Figure	
D3.	

2) Linking	iCAPs	with	spinal	levels	and	atlas	regions	

To	validate	the	relevance	of	the	iCAP	spatial	patterns,	we	assessed	whether	they	were	related	to	
the	underlying	neuroanatomy	of	the	spinal	cord.	In	order	to	do	so,	we	relied	on	probabilistic	atlas	
maps	provided	by	the	Spinal	Cord	Toolbox	(De	Leener	et	al.,	2017),	 including	both	spinal	 levels	
(Cadotte	et	al.,	2015)	and	atlas	regions	(Lévy	et	al.,	2015)	(see	Figure	D2).	To	investigate	the	spatial	
distribution	of	the	low-	and	high-granularity	iCAPs,	we	used	binarized	versions	of	the	probabilistic	
atlas	maps	and	computed,	for	each	iCAP,	the	proportion	of	voxels	found	in	the	different	levels	and	
regions.	As	the	aim	was	to	precisely	localize	spatial	maps	with	respect	to	the	atlas	regions,	atlas	
maps	were	thresholded	at	a	probability	of	0.5	before	binarization,	to	ensure	that	only	the	highest	
probabilities	were	taken	into	account	for	the	assignment.	Based	on	these	distributions,	low-	and	
high-granularity	iCAPs	were	then	uniquely	matched	to	individual	spinal	levels	or	atlas	regions,	re-
spectively,	using	a	hard	assignment	based	on	the	maximum	number	of	voxels.	Dice	coefficients	were	
used	to	confirm	the	accuracy	of	the	matching.	To	this	end,	the	full	extent	of	the	corresponding	atlas	
maps	was	considered	(i.e.,	non-zero	probability),	so	as	to	assess	the	correspondence	between	bor-
ders.	 Finally,	 fine-grained	 iCAPs	 were	 grouped	 based	 on	 their	 neuroanatomical	 identity.	 For	
presentation	purposes,	iCAPs	were	ordered	rostro-caudally	based	on	the	location	of	their	center-
of-gravity,	unless	indicated	otherwise.	
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3) Assessing	iCAP	stability	

We	assessed	iCAPs	stability	within	and	between	subjects.	In	order	to	investigate	the	temporal	sta-
bility	over	all	subjects	(i.e.,	stability	within	subjects),	we	assessed	the	intra-subject	similarity.	For	
each	subject,	the	functional	run	was	split	into	two	equal	parts	of	7.5	minutes	(i.e.,	180	volumes).	
The	procedure	to	obtain	iCAP	maps	was	performed	independently	for	these	two	parts	and	using	
both	levels	of	granularity	(K	=	4	or	40).	Dice	coefficients	were	computed	to	assess	the	similarity	
between	the	spatial	maps	of	the	two	parts.	To	ensure	that	the	spatial	organization	of	 iCAPs	was	
stable	across	subjects	on	the	entire	dataset	(i.e.,	stability	between	subjects),	we	computed	the	inter-
subject	similarity,	as	the	mean	Dice	coefficients	over	each	pair	of	subjects,	for	a	particular	iCAP	pair.	
For	each	subject,	subject-wise	iCAP	maps	were	computed	as	the	mean	over	the	frames	of	this	sub-
ject	assigned	to	each	iCAP	and	binarized	(Z	>	3).	

4) Extracting	temporal	dynamics	

Finally,	subject-specific	time	courses	were	obtained	by	regional	averaging	of	the	activity-inducing	
signals	within	the	binarized	iCAP	maps.	In	order	to	extract	their	temporal	properties,	the	subject-
level	iCAPs	time	courses	were	Z-scored	and	thresholded	(|Z|	>	1)	to	highlight	active	and	de-active	
time	points.	The	total	and	average	durations	of	each	iCAP	were	computed,	as	well	as	couplings	and	
anti-couplings	between	pairs	of	iCAPs,	based	on	the	number	of	time	points	with	same	signs	or	dif-
ferent	signs	simultaneous	coactivations,	expressed	as	Jaccard	indices	(i.e.,	percent	joint	activation	
time).	To	evaluate	the	statistical	significance	of	these	(anti-)couplings,	we	performed	non-paramet-
ric	permutation	tests.	At	each	permutation	(n	=	5000),	we	randomly	assigned	iCAP	labels,	for	each	
subject	and	computed	(anti)-couplings	using	Jaccard	indices.	The	mean	overall	couplings	(or	anti-
couplings)	matrix	over	subjects	was	then	calculated.	The	upper	triangular	matrices	resulting	from	
each	permutation	were	finally	used	to	build	a	null	distribution	on	which	thresholds	for	significance	
were	obtained.	Bonferroni	correction	(n	=	2)	was	applied	to	account	for	the	presence	of	both	cou-
plings	and	anti-couplings.	Mean	durations	and	couplings	were	compared	using	paired	t-tests	(Bon-
ferroni	corrected).		

5) Investigating	neural	interplays		

In	order	to	investigate	whether	interplays	were	functionally	relevant,	we	studied	interactions	in-
side	 (between	 iCAPs	of	one	pathway)	and	across	 (between	 iCAPs	of	different	pathways)	neural	
pathways	(as	defined	based	on	the	neuroanatomical	 identity	of	 iCAPs,	see	2)	Linking	 iCAPs	with	
spinal	levels	and	atlas	regions).	Interactions	were	described	using	four	features	(couplings	and	anti-
couplings,	both	within	and	between	levels).	Values	were	Z-scored	for	each	subject	and	feature	and	
scatter	plots	were	used	to	capture	potential	interaction	signatures.	To	further	assess	whether	these	
signatures	were	pathway-specific,	three-class	QDA	classifiers	were	employed,	with	leave-one-sub-
ject-out	cross	validation.	Confusion	matrices	were	computed	considering	all	cross	validation	folds	
to	summarize	the	accuracy	of	the	classification.	Statistical	significance	of	accuracy	was	verified	by	
performing	non-parametric	permutation	testing.	Specifically,	classification	was	performed	using	
the	same	procedure,	but	with	randomly	assigned	labels.	For	each	permutation	(n	=	5000),	the	three	
diagonal	elements	of	the	resulting	confusion	matrix	were	retrieved	and	used	to	build	a	null	distri-
bution	on	which	thresholds	for	significance	were	obtained.	As	both	interactions	inside	and	across	
pathways	were	considered,	Bonferroni	correction	was	applied	to	account	for	the	two	comparisons.		
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6.3 Results	

	

Figure	6.1	–	SpiCiCAP	framework.	Cervical	functional	images	are	processed	to	circumvent	the	effect	of	var-
ious	sources	of	noise.	Hemodynamic	blur	is	removed	using	hemodynamic-informed	deconvolution,	to	reveal	
activity-inducing	signals.	Innovation	signals	(i.e.,	transients)	are	then	obtained	by	temporal	derivation.	A	two-
step	thresholding	is	applied	to	select	significant	innovation	frames,	which	undergo	K-means	temporal	clus-
tering	to	obtain	stable	iCAPs	(K	=	number	of	iCAPs).	Recovered	iCAPs	can	be	used	as	regions	of	interest	to	
extract	subject-specific	time	courses	from	activity-inducing	signals.	Finally,	interaction	measures	(e.g.,	Jaccard	
index	for	couplings	and	anti-couplings)	can	be	computed.	Inspired	by	Karahanoǧlu	et	al.,	2013.	

6.3.1 The	SpiCiCAP	framework	

Our	goal	was	to	achieve	a	deeper	understanding	of	spinal	cord’s	functional	architecture.	To	this	end,	
we	 reasoned	 that	 exploring	 the	 time-varying	 content	 of	 spinal	 spontaneous	 fluctuations	would	
bring	new	light	on	their	neurophysiological	nature.	The	SpiCiCAP	framework,	whose	approach	is	
outlined	in	Figure	6.1,	integrates	tailored	spinal	cord	fMRI	protocols	with	a	state-of-the-art	method	
to	extract	dynamic	RSNs	using	clustering	of	hemodynamic-informed	transients.	It	enables	to	de-
compose	spinal	circuits	and	to	investigate	their	spatio-temporal	properties.	

6.3.2 Spatial	maps	of	spinal	iCAPs	specifically	match	spinal	cord	neuroanatomy	

Using	the	SpiCiCAP	framework,	we	extracted	spinal	iCAPs	for	two	levels	of	granularity	(i.e.,	tem-
poral	clustering	done	independently	for	two	different	parameters	K,	to	recover	4	or	40	iCAPs,	see	
Figure	6.1).	The	choice	of	these	two	levels	of	granularity	was	supported	by	a	systematic	evaluation	
of	clustering	reproducibility	for	different	Ks	(details	presented	in	Figure	D3).	Visual	inspection	of	
the	recovered	iCAPs	confirmed	the	absence	of	noisy	spatial	patterns	(Figure	6.2).	Components	dis-
played	high	spatial	segregation,	as	underlined	by	the	limited	overlap	between	iCAP	maps	(Figure	
D5).	In	line	with	previous	studies	(Kong	et	al.,	2014;	Weber	et	al.,	2018),	spinal	iCAPs	spanned	a	
limited	rostro-caudal	extent,	likely	reflecting	the	segmental	structure	of	the	spinal	cord.	Specifically,	
low-level	granularity	iCAPs	corresponded	to	spinal	levels	C5	to	C8	(Figure	6.2B),	with	on	average	
91%	of	their	voxels	 in	a	single	spinal	 level	(Figure	D5).	The	specificity	of	the	matching	between	
iCAPs	and	segmental	borders	was	confirmed	using	Dice	coefficients	(mean	±	SD	=	0.71	±	0.03).	For	
this	 low-level	 granularity,	 all	 iCAPs	were	bilateral	 and	 included	dorsal	 and	ventral	 components	
(Figure	D4).	
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Figure	6.2	–	iCAPs	spatial	patterns.	A.	Schematic	representation	of	the	structure	of	the	spinal	cord.	CSF	=	cere-
brospinal	fluid.	B.	Each	low-granularity	iCAP	spans	a	limited	rostro-caudal	extent,	in	line	with	the	segmental	struc-
ture	of	the	spinal	cord	(one	iCAP	corresponds	to	one	spinal	level,	mean	Dice	coefficient	±	SD	=	0.71	±	0.03).	Axial	
views	are	presented	in	Figure	D4.	C.	When	extracting	40	spinal	iCAPs	(presented	from	rostral	to	caudal	compo-
nents),	spatial	maps	get	divided	within	the	axial	plane	and	lined	up	with	known	subdivisions	of	the	spinal	cord,	
reflecting	meaningful	neuroanatomical	structures	(Figure	D2),	such	as	white	matter	tracts	or	grey	matter	horns	
(mean	Dice	coefficient	±	SD	=	0.61	±	0.11).	Coronal	and	sagittal	views	are	presented	in	Figure	D4.	Thresholded	iCAP	
maps,	in	red,	are	overlaid	on	the	corresponding	spinal	level	or	atlas	region	probabilistic	maps,	in	blue	(De	Leener	et	
al.,	2017).	The	PAM50	template	is	used	as	a	background	(De	Leener	et	al.,	2018).	ICAPs	numbers	are	indicated	in	
the	bottom	right	corners.	L	=	left,	R	=	right,	D	=	dorsal,	V	=	ventral.		

When	increasing	the	granularity	to	40	iCAPs,	we	observed	that	components	got	further	subdivided	
within	the	axial	plane	(Figure	6.2C),	with	high-granularity	iCAPs	that	were	predominantly	unilat-
eral	and	strictly	confined	to	either	the	dorsal	or	ventral	side.	In	order	to	achieve	a	comprehensive	
description	of	this	axial	organization,	we	harnessed	a	detailed	atlas	of	the	spinal	cord	(Figure	D2)	
to	precisely	quantify	the	axial	voxel	distribution.	For	each	of	these	fine-grained	iCAPs,	voxels	were	
distributed	over	a	restricted	number	of	atlas	regions	(on	average,	two	regions	per	iCAP	included	
68%	of	its	voxels,	Figure	D5),	emphasizing	that	the	activity	patterns	were	highly	localized	and	struc-
tured.	Each	spinal	component	was,	thus,	matched	to	a	specific	atlas	region	(mean	Dice	coefficient	±	
SD	=	0.61	±	0.11).	Overall,	these	results	illustrated	the	high	correspondence	between	the	compo-
nents	extracted	using	the	SpiCiCAP	framework	and	the	underlying	neuroanatomy	of	the	spinal	cord.	
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Figure	6.3	–	Neural	pathways.	A.	Each	fine-grained	iCAPs	was	matched	to	one	of	the	36	atlas	regions	(hard	
assignment	based	on	the	maximum	number	of	voxels,	see	Figure	D2	for	the	details	of	the	atlas	regions	and	
Figure	D5	for	the	voxel	distributions).	The	number	of	iCAPs	per	atlas	region	is	presented,	omitting	regions	
with	no	assigned	iCAP.	Atlas	regions	from	1	to	30	correspond	to	the	white	matter	and	regions	from	31	to	36	
are	 found	 in	 the	grey	matter.	 ICAPs	cluster	 into	spinal	neural	pathways	 involved	 in	 transmitting	and	pro-
cessing	information	from	and	to	the	brain	(DCML:	Dorsal	Column	Medial	Lemniscus	pathway	and	CST:	Cor-
tico-Spinal	Tract	pathway).	Intermediate	regions	(INTER)	are	also	present.	B.	Schematic	representation	of	the	
spinal	neural	pathways.	C.	ICAP	distribution	in	the	different	spinal	levels.	Colors	refer	to	neural	pathways.	

6.3.3 Spinal	iCAPs	assemble	into	neural	pathways	

To	further	inspect	the	neuroanatomical	identity	of	the	40	spinal	iCAPs,	we	used	the	hard	assign-
ment	proposed	above	(i.e.,	each	iCAP	uniquely	matched	with	an	atlas	region)	and	computed	the	
number	of	iCAPs	found	in	each	of	the	atlas	regions,	so	as	to	seek	whether	an	organized	topograph-
ical	distribution	could	be	highlighted	(Figure	2.2).	We	observed	that	iCAPs	fell	into	a	limited	num-
ber	of	regions,	i.e.,	12	of	the	36	atlas	regions	(see	Figure	D2	for	the	exhaustive	list),	which	corre-
sponded	to	six	distinct	neuroanatomical	zones	comprising	both	grey	(i.e.,	ventral	horns	and	inter-
mediate	regions)	and	white	matter	(i.e.,	the	dorsal	column,	formed	by	the	fasciculus	gracilis	and	
fasciculus	 cuneatus,	 the	cortico-spinal	 tract	and	 the	medial	 lemniscus).	For	each	of	 them,	 iCAPs	
were	present	in	both	left	and	right	lateralization.	We	then	investigated	whether	this	apparent	spar-
sity,	driven	by	fMRI	activity,	had	a	functional	meaning.	An	examination	of	the	different	roles	of	these	
regions	(Figure	D2,	Darby	and	Frysztak,	2013)	revealed	that	iCAPs	were	essentially	organized	fol-
lowing	two	neural	pathways	of	the	spinal	cord:	18	iCAPs	relied	on	the	cortico-spinal	tract	pathway	
(CST),	while	16	iCAPs	corresponded	to	the	dorsal	column-medial	lemniscus	pathway	(DCML)	(Fig-
ure	6.3A).	 These	pathways	 fulfill	 distinct	 functional	 contributions	 (Figure	6.3B),	 as	 they	 are	 in-
volved	in	conveying	and	processing	signals	from	(e.g.,	for	motor	control)	and	to	(e.g.,	for	proprio-
ception)	the	brain,	respectively	(Darby	and	Frysztak,	2013).	The	former	is	a	descending	pathway	
that	goes	from	the	motor	cortex	to	the	ventral	horns	(regions	31-32),	through	the	cortico-spinal	
tract	(regions	5-6).	The	latter	is	an	ascending	pathway,	sending	proprioceptive	and	sensory	infor-
mation	from	the	periphery	to	the	somatosensory	cortex,	by	travelling	through	the	dorsal	column	
(regions	1-4)	and	the	medial	lemniscus	(regions	13-14).	Finally,	6	iCAPs	were	found	in	the	interme-
diate	zone	(regions	33-34),	at	the	interface	between	these	ascending	and	descending	pathways.	The	
rostro-caudal	distribution	of	the	iCAPs	underlined	a	uniform	presence	of	ascending	and	descending	
pathways	from	C5	to	C8,	while	no	intermediate	regions	were	found	in	C8	(Figure	6.3C).	To	evaluate	
the	distance	between	iCAPs	along	the	two	pathways,	we	computed	the	mean	rostro-caudal	position	
of	the	associated	iCAPs,	in	each	spinal	level.	The	average	spatial	gaps	along	the	CST	and	DCML	path-
way	were,	respectively,	17.88	±	1.70	mm	and	18.43	±	0.6	mm	(mean	±	SD	over	spinal	levels),	in	line	
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with	the	anatomical	distance	between	spinal	levels	(Cadotte	et	al.,	2015).	In	sum,	these	results	sug-
gested	that	the	recovered	spinal	iCAPs	were	functionally	relevant.	This	hints	at	the	potential	of	the	
proposed	 framework	 to	non-invasively	monitor	 the	neural	mechanisms	underlying	 information	
flow	and	processing,	both	locally	in	the	spinal	cord	and	in	relation	to	inputs	from	the	brain	and	the	
periphery.	

	

Figure	6.4	–	Stability	of	spatial	patterns.	A.	In	order	to	evaluate	the	intra-subject	stability	of	the	iCAPs	spa-
tial	maps,	the	dataset	was	split	into	two	equal	parts	(180	volumes	each,	i.e.,	7.5	minutes),	and	iCAPs	were	then	
computed	independently	for	each	part.	The	matrices	show	the	Dice	coefficients	between	both	sets	of	iCAPs,	
for	the	two	granularity	levels	(K	=	4,	low	granularity,	and	K	=	40,	high	granularity).	B.	The	inter-subject	sta-
bility	was	computed	as	the	mean	Dice	coefficients	over	each	pair	of	subjects,	for	a	particular	iCAP	pair.	In	all	
matrices,	iCAPs	are	ordered	rostro-caudally.	

6.3.4 Spinal	functional	organization	is	stable	within	and	between	subjects		

We	evaluated	the	consistency	of	the	observed	iCAPs	both	within	and	between	subjects.	First,	we	
assessed	the	intra-subject	stability	by	splitting	each	subject's	dataset	into	two	equal	parts	(180	vol-
umes	each,	i.e.,	7.5	minutes)	in	which	we	recomputed	iCAPs	independently	(Figure	6.4A).	The	intra-
subject	stability	was	particularly	high	for	the	low-granularity	iCAPs	(mean	Dice	coefficient	±	SD	of	
0.83	±	0.08),	indicating	that	the	coarse	functional	organization	was	stable	over	time	within	the	same	
subjects.	Conversely,	 the	stability	of	 fine-grained	spatial	patterns	was	more	variable	(mean	Dice	
coefficient	±	SD	of	0.38	±	0.20),	with	12	iCAPs	displaying	Dice	coefficients	superior	to	0.5	(maximum	
value	of	0.84),	while	7	iCAPs	exhibited	coefficients	lower	than	0.2	(minimum	value	of	0.06).	ICAPs	
with	low	and	high	Dice	coefficients	were	distributed	over	the	different	pathways,	with	no	specific	
pattern.	Despite	this	variability,	both	sets	of	iCAPs	were	in	line	with	the	underlying	neuroanatomy	
(mean	Dice	coefficient	with	atlas	regions	±	SD	of	0.63	±	0.10	for	part	1	and	0.61	±	0.10	for	part	2).	
Moreover,	they	carried	similar	functional	relevance,	as	atlas	regions	of	the	two	parts	could	still	be	
clustered	into	the	same	pathways	(ascending	DCML,	descending	CST	and	intermediate	INTER)	(Fig-
ure	D6).	We	then	probed	inter-subject	stability	by	comparing	the	iCAPs	maps	of	all	subjects	for	each	
iCAP	pair	of	the	full	dataset.	The	spatial	patterns	were	similar	across	subjects	(Figure	6.4B),	as	high-
lighted	by	the	diagonal	matrices	obtained	for	low-	and	high-granularity	iCAPs	(mean	Dice	coeffi-
cient	±	SD	of	0.49	±	0.05	and	0.51	±	0.06	for	the	different	levels	of	granularity,	respectively).	Alto-
gether,	 these	 findings	underlined	the	stability	of	 the	spinal	cord’s	 functional	organization,	along	
with	the	potential	of	iCAPs	to	represent	its	underlying	building	blocks.	
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Figure	6.5	–	Investigating	temporal	overlap	between	iCAPs.	A.	Percent	duration	of	different	degrees	of	co-
activation	(i.e.,	number	of	overlapping	iCAPs),	with	respect	to	the	total	run	duration.	The	dotted	line	indicates	
the	mean	over	subjects.	B.	After	extraction	of	the	subject-specific	time	courses,	interactions	between	iCAPs	
were	assessed	using	Jaccard	index	(both	for	couplings,	see	panel	C.,	and	anti-couplings,	see	panel	D.)	Strong	
couplings	were	 found	between	 the	 different	 regions,	mainly	 at	 the	 same	 spinal	 levels.	 Anti-couplings	 are	
weaker	and	mostly	observed	between	spinal	levels.	Means	over	subjects	±	SE	are	presented.	W	=	within,	B	=	
between	.	***	p	<	0.001,	paired	t-test,	Bonferroni	corrected.	C-D.	For	each	matrix,	iCAPs	are	grouped	into	as-
cending,	descending	and	intermediate	regions,	and	ordered	rostro-caudally	for	each	category	(dashed	lines	
indicate	the	different	spinal	 levels).	The	mean	over	subjects	 is	presented.	Lower	triangular	matrices	show	
Jaccard	index	for	each	pair	of	iCAPs,	while	upper	triangular	matrices	highlight	significant	interactions	(non-
parametric	permutation	testing,	corrected	for	multiple	comparisons).		

6.3.5 Dynamic	temporal	interactions	are	observed	between	iCAPs	

Capitalizing	on	 this	stable	spatial	organization,	we	probed	 the	 temporal	 features	of	 the	40	 fine-
grained	 spinal	 iCAPs.	Each	 iCAP	occurrence	 lasted	on	average	2.71	±	0.15	volumes	 (mean	over	
iCAPs	±	SD,	no	significant	difference	between	iCAPs),	for	a	total	duration	of	activation	(positive	and	
negative	occurrences)	of	27.42	±	1.82	%	(mean	over	iCAPs	±	SD,	percentage	of	run	length,	no	sig-
nificant	difference	between	 iCAPs).	A	substantial	amount	of	 temporal	overlap	was	observed	be-
tween	iCAPs,	with	an	average	of	10.97	±	0.17	co-active	iCAPs	at	each	timepoint	(mean	over	subjects	
±	SE,	Figure	6.5A).	To	better	understand	the	features	of	this	large	temporal	overlap,	we	explored	
the	(anti-)couplings	between	the	40	iCAPs	(Figure	6.5B-D).	Overall,	couplings	(mean	Jaccard	index	
over	subjects	±	SE	=	0.15	±	0.007)	were	significantly	stronger	than	anti-couplings	(0.04	±	0.003,	p	
<	0.001)	and	they	exhibited	distinct	behaviors.	Specifically,	larger	couplings	were	observed	within	
level	(0.17	±	0.005)	than	between	levels	(0.13	±	0.004,	p	<	0.001).	Conversely,	anti-couplings	were	
more	prominent	between	 levels	(0.05	±	0.002)	than	within	 level	(0.03	±	0.002,	p	<	0.001).	This	
notable	interplay	between	spinal	iCAPs	was	stable	across	subjects,	both	for	couplings	(mean	cosine	
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similarity	over	subjects	±	SE	of	0.88	±	0.01)	and	anti-couplings	(0.76	±	0.01).	These	results	corrob-
orated	the	hypothesis	that	spinal	cord	spontaneous	fluctuations	are	highly	entwined,	prompting	
the	need	for	dynamic	approaches	to	dissect	this	activity.	

 

Figure	6.6	–	Interaction	signatures	of	neural	pathways.	In	order	to	highlight	whether	couplings	had	a	spe-
cific	organization	pertaining	to	neural	pathways,	we	studied	interactions	inside	(A.)	or	across	them	(B.).	Pat-
terns	were	highlighted	based	on	four	features:	couplings	and	anti-couplings,	both	within	level	and	between	
levels.	Left	panels	present	interactions	in	this	feature	space.	Scatter	plots	show	the	relationship	of	within	level	
and	between	levels	couplings	and	anti-couplings.	Values	are	presented	separately	for	the	different	interaction	
types,	represented	by	distinct	colors.	The	light	dots	correspond	to	the	values	of	individual	subjects,	while	the	
bold	dots	indicate	the	means	over	subjects.	The	distinct	distributions	of	these	values	for	each	interaction	type	
suggested	that	specific	interaction	signatures	exist	for	the	different	neural	pathways.	In	order	to	confirm	these	
signatures,	a	QDA	classifier	(leave-one-subject-out	cross	validation)	was	used	to	distinguish	them.	The	aver-
age	confusion	matrices	are	displayed	on	the	right	panels.	*	p	<	0.05,	**	p	<	0.01	(non-parametric	permutation	
testing,	corrected	for	multiple	comparisons).	Asc/A	=	Ascending,	Desc/D	=	Descending,	Inter/I	=	Intermediate.	

6.3.6 iCAPs	of	different	neural	pathways	exhibit	distinct	interplays		

Finally,	we	examined	the	interactions	between	iCAPs	grouped	according	to	their	neural	relevance	
(ascending,	descending	or	intermediate),	to	potentially	uncover	distinctions	regarding	their	cou-
pling	properties.	This	highlighted	interaction	profiles	specific	to	each	pathway	(i.e.,	between	the	
iCAPs	belonging	to	the	same	pathway,	Figure	6.6A),	in	particular	in	terms	of	within	level	interac-
tions.	Couplings	appeared	larger	inside	the	intermediate	zone,	while	they	were	smaller	in	the	as-
cending	and	descending	pathways,	especially	for	the	former.	Anti-couplings	followed	an	opposite	
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trend.	The	strong	coupling	inside	the	intermediate	zone	might	be	attributed	to	commissural	inter-
neurons,	whose	axons	cross	the	midline	to	link	the	two	hemicords.	When	assessing	the	interactions	
shared	across	pathways	(i.e.,	between	the	iCAPs	belonging	to	different	pathways,	Figure	6.6B),	we	
found	 that	 the	 intermediate	 zone	was	 differently	 coupled	with	 the	 two	 others	 pathways,	 with	
stronger	couplings	occurring	with	the	ascending	regions.	Anti-couplings,	however,	did	not	display	
any	clear	tendency.	To	further	investigate	whether	these	distinctions	were	inherent	properties	of	
connectivity	inside	and	across	neural	pathways,	we	attempted	to	classify	them	using	the	aforemen-
tioned	features	(couplings	and	anti-couplings,	within	and	between	levels).	This	allowed	to	distin-
guish	interactions	occurring	inside	the	ascending	and	intermediate	pathways,	as	they	could	be	dis-
criminated	with	high	accuracy	(respectively	73.7%,	p	<	0.01	and	63.2%,	p	<	0.05,	non-parametric	
permutation	testing	against	chance	level,	i.e.,	~	33.3%),	confirming	their	distinct	behaviors.	Inter-
nal	couplings	within	the	descending	pathways	exhibited	a	more	hybrid	profile,	resulting	in	a	lower	
classification	 accuracy	 (52.6%,	 not	 significant).	When	 looking	 at	 the	 interactions	 across	 neural	
pathways,	the	highest	accuracy	was	found	for	the	relationship	between	the	ascending	and	descend-
ing	pathways	(63.3%,	p	<	0.01),	although	the	interactions	across	the	intermediate	zones	and	the	
two	other	pathways	could	also	be	classified	(57.9%,	p	<	0.05).	This	suggests	that	peculiar	interac-
tions	exist	between	pathways,	as	they	are	engaged	to	support	disparate	sensorimotor	functions.	

6.4 Discussion	

In	previous	work,	RSNs	were	shown	to	be	a	feature	of	the	entire	CNS,	with	the	spinal	cord	demon-
strating	an	intrinsic	functional	organization	akin	to	the	recognized	brain’s	functional	architecture	
(Van	Den	Heuvel	and	Hulshoff	Pol,	2010).	Although	this	organization	has	been	presumed	to	support	
sensory,	motor,	or	autonomic	functions,	its	neurophysiological	purpose	has	so	far	remained	elusive.	
Former	studies	had	solely	focused	on	static	FC,	which	merely	reflects	the	average	organization	over	
the	course	of	a	functional	run.	In	this	regard,	exploiting	the	dynamic	features	of	spinal	spontaneous	
activity	could	promote	new	insights	into	its	physiological	nature.	In	this	study,	we	leveraged	state-
of-the-art	spinal	cord	fMRI	protocols,	combined	with	a	dFC	method	(Karahanoǧlu	and	Van	De	Ville,	
2015),	and	deployed	the	SpiCiCAP	framework	to	unweave	spinal	RS	fluctuations.	We	showed	that	
these	fluctuations	were	highly	structured	and	could	be	precisely	delineated	into	neuroanatomically	
relevant	components.	To	the	best	of	our	knowledge,	this	is	the	first	time	that	such	fine-grained	sub-
divisions	of	the	spinal	cord	are	extracted	using	fMRI	measures	and,	in	particular,	RS	activity.	Thanks	
to	this	unprecedented	level	of	detail,	our	results	shed	new	light	on	the	functional	relevance	of	spinal	
fluctuations,	underscoring	their	association	with	the	main	spinal	neural	pathways.	Hereafter,	we	
discuss	these	findings	with	an	emphasis	on	their	clinical	potential.		

6.4.1 Methodological	aspects	

In	this	work,	we	deployed	a	dFC	approach	to	exploit	the	richness	of	spontaneous	spinal	activity.	
Specifically,	 the	SpiCiCAP	framework	first	employs	a	tailored	processing	pipeline	on	spinal	cord	
fMRI	data.	Regularized	deconvolution	of	denoised	time	courses	is	then	applied	to	retrieve	the	un-
derlying	activity-inducing	signals,	subsequently	used	to	reveal	robust	transient	activity	(see	Figure	
6.1	for	a	summary	of	the	different	steps)	(Karahanoǧlu	et	al.,	2013;	Karahanoǧlu	and	Van	De	Ville,	
2015).	Transients	encode	changes	in	the	BOLD	time	courses	(i.e.,	activations	and	de-activations)	
and	can	be	used	to	determine	components	reflecting	consistent	patterns	of	co-activation,	the	so-
called	iCAPs.	A	unique	feature	of	this	method	is	its	ability	to	disentangle	spatially	and	temporally	
overlapping	signals.	In	this	study,	fine-grained	components	could	be	revealed,	suggesting	that	spi-
nal	activity	manifests	complex	and	non-stationary	temporal	properties	that	are	better	unraveled	
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using	a	dynamic	approach	over	conventional	static	methods.	In	order	to	thoroughly	characterize	
iCAPs,	we	relied	on	maps	of	spinal	levels	and	atlas	regions	(Cadotte	et	al.,	2015;	Lévy	et	al.,	2015;	
De	Leener	et	al.,	2017),	which	enabled	systematic	assessment	of	each	component’s	physiological	
relevance	(Figure	D2).	Of	note,	inter-subject	variability	is	not	represented	in	the	atlas,	but	differ-
ences	were	assumed	not	to	be	critical	at	this	spatial	resolution.	While	the	SpiCiCAP	framework	of-
fers	unique	advantages,	certain	drawbacks	should	be	highlighted.	First,	this	clustering-based	ap-
proach	implies	that	the	number	of	clusters	K	should	be	a	priori	defined.	Here,	we	selected	K	based	
on	anatomical	knowledge	and	reproducibility	analyses,	although	this	selection	is	not	exclusive.	An-
other	aspect	that	should	be	considered	pertains	to	the	estimation	of	the	HRF.	Indeed,	the	deconvo-
lution	step,	which	is	deployed	to	recover	activity-inducing	signals	(Figure	6.1),	uses	a	single	canon-
ical	HRF.	Yet,	the	HRF	is	known	to	vary	across	subjects	and	regions	(Handwerker	et	al.,	2004).	Alt-
hough	these	differences	have	not	been	closely	investigated	in	the	spinal	cord,	one	study	highlighted	
that	the	HRF	may	be	slower	than	in	the	brain	(Giulietti	et	al.,	2008).	Besides,	variations	of	the	he-
modynamic	response	between	grey	and	white	matter	could	also	be	probed,	as	differences	in	this	
regard	have	been	demonstrated	in	the	brain	(Li	et	al.,	2019).	This	warrants	further	investigations,	
and	potential	improvements	to	the	SpiCiCAP	framework	could	include	a	variable	HRF	model	or	in-
tegrate	HRF	identification	within	the	deconvolution	step.	Finally,	future	research	could	examine	the	
impact	of	changes	in	the	processing	pipeline	(e.g.,	physiological	noise	removal,	smoothing,	etc.)	on	
the	reproducibility	of	spinal	iCAPs,	similar	to	how	Eippert	et	al.	(2017b)	investigated	static	connec-
tivity.	

To	foster	the	emergence	of	new	research	characterizing	spinal	functional	pathways,	we	are	provid-
ing	our	dataset	and	analysis	pipeline	as	resources	for	the	neuroscientific	community.	Spinal	cord	
fMRI	 is	still	an	emerging	field	and,	currently,	no	such	open	dataset	 is	publicly	available.	Despite	
significant	improvements	in	the	last	years,	spinal	cord	fMRI	remains	challenging	and	some	limita-
tions	should	be	acknowledged,	notably	in	terms	of	image	quality.	For	instance,	field	inhomogenei-
ties	can	lead	to	distortion	and	signal	dropouts,	although	the	extent	of	these	signal	variations	was	
limited	(Figure	D1).	It	should	also	be	noted	that	the	low	temporal	resolution	(TR	=	2.5s)	might	im-
pede	the	detection	of	fast	transients.		

6.4.2 Spinal	resting-state	components	are	highly	structured	and	robust	

The	SpiCiCAP	framework	was	used	to	explore	spinal	RS	fluctuations	using	two	separate	levels	of	
granularity	(i.e.,	either	4	low-granularity	or	40	high-granularity	iCAPs	were	extracted).	All	iCAPs	
presented	spatially	segregated	patterns	(Figure	D5)	and	a	limited	rostro-caudal	extent	(Figure	6.2	
and	Figure	D4),	corroborating	previous	results	reporting	that	ICA-derived	components	did	not	span	
more	than	one	vertebra	(Kong	et	al.,	2014).	Here,	we	could	further	confirm	that	each	low-granular-
ity	iCAP	coincided	with	a	single	spinal	level,	from	C5	to	C8	(Figure	6.2B).	A	most	striking	observa-
tion	was	that	increasing	the	granularity	to	40	iCAPs	allowed	to	uncover	fine-grained	spinal	compo-
nents	extending	beyond	the	commonly	reported	dorso-ventral	division	(Figure	6.2C).	These	com-
ponents	were	in	close	agreement	with	the	underlying	neuroanatomy	and	could	be	matched	with	a	
specific	grey	or	white	matter	region.	In	line	with	previous	studies,	we	observed	components	corre-
sponding	to	the	ventral	(i.e.,	motor)	horns	(Barry	et	al.,	2014;	Kong	et	al.,	2014;	Liu	et	al.,	2016b;	
Weber	et	al.,	2018).	No	iCAPs	were,	instead,	assigned	to	the	dorsal	(i.e.,	sensory)	horns,	although	
few	voxels	were	indeed	present	in	these	regions	(Figure	D5,	regions	35	and	36).	FC	in	the	dorsal	
horns	was	previously	reported	as	weaker	and	harder	to	reliably	detect	(Barry	et	al.,	2016,	2018a;	
Eippert	et	al.,	2017b),	possibly	because	of	their	narrow	geometry	(see	Figure	D2).	An	unexpected	
observation	was	the	presence	of	clearly	defined	iCAPs	in	the	white	matter,	as	FC	is	conventionally	
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studied	for	the	grey	matter	only.	Despite	the	surprising	character	of	these	findings,	there	is	com-
pelling	evidence	that	white	matter	has	the	vascular	capacity	to	support	hemodynamic	changes	and	
that	the	initial	lack	of	interest	in	these	signals	was	probably	due	to	a	limited	sensitivity	(lower	field	
strength),	 rather	 than	 linked	 to	 a	 fundamental	 property	 that	 would	 impede	 their	 detection	
(Gawryluk	et	al.,	2014;	Gore	et	al.,	2019).	Indeed,	recent	studies	reliably	captured	functionally	rel-
evant	information	in	cerebral	white	matter	(e.g.,	Ding	et	al.,	2018;	Huang	et	al.,	2018;	Peer	et	al.,	
2017;	Wu	et	al.,	2017).	 In	the	spinal	cord,	specifically,	weaker	BOLD	signals	 in	the	white	matter	
might	be	compensated	by	its	large	volume	(i.e.,	more	than	three	times	the	grey	matter	volume,	see	
Figure	D2).	Coherent	activity	has	previously	been	reported	in	spinal	white	matter	at	rest,	as	Barry	
et	al.	observed	correlations	between	white	matter	regions	using	a	seed-based	analysis	(Barry	et	al.,	
2014).	Besides,	the	ICA	components	presented	by	Kong	et	al.	did	not	allow	an	accurate	delineation	
between	grey	and	white	matter	and	seemingly	contained	both	structures	(Kong	et	al.,	2014).	Alto-
gether,	our	findings	illustrate	the	potential	of	a	dFC	framework	to	resolve	functional	activity	with	
high	precision,	down	to	the	level	of	individual	grey	and	white	matter	regions.	Importantly,	this	may	
offer	valuable	insight	into	neurological	conditions	principally	affecting	the	white	matter,	such	as	
multiple	sclerosis.	To	evaluate	the	reliability	of	our	approach,	we	probed	the	robustness	of	spinal	
iCAPs	intra-subject,	by	extracting	components	on	split-half	datasets	(Figure	6.4A).	The	low-granu-
larity	architecture	was	particularly	stable	and	high-granularity	iCAPs	of	both	sets	coincided	with	
atlas	regions.	The	 latter	 indicated	that	short	acquisitions	already	allowed	to	recover	meaningful	
fine-grained	components	and	could	be	foreseen	in	the	context	of	clinical	applications,	where	time	
is	often	a	limiting	factor.	By	evaluating	inter-subject	similarity	(Figure	6.4B),	we	then	showed	that	
low-	and	high-granularity	iCAPs	were	stable	across	subjects,	hence	supporting	the	idea	that	they	
represent	consistent	features	of	spinal	cord	functional	organization.	It	is	noteworthy	that	low-gran-
ularity	iCAPs	were	more	stable	within	than	between	subjects.	This	could	pertain	to	individual	dif-
ferences	regarding	the	location	of	spinal	levels,	as	anatomical	variability	was,	indeed,	previously	
acknowledged	(Cadotte	et	al.,	2015).	In	contrast,	high-granularity	iCAPs	were	more	similar	between	
than	within	subjects.	We	hypothesized	that	fine-grained	maps,	as	they	capture	regions	involved	in	
specific	functions	(e.g.	proprioception	or	muscle	tone	control),	were	more	likely	to	vary	over	time	
depending	on	external	variations	(e.g.,	fatigue,	stress	or	muscle	relaxation).	Spinal	FC	was	previ-
ously	 reported	 to	 be	 state-dependent,	 for	 instance	 following	 thermal	 stimulation	 (Weber	 et	 al.,	
2018).	Further	studies	with	physiology-based	measures	of	cognitive	states	(e.g.,	electroencephalog-
raphy,	blood	pressure,	skin	conductance,	pupillometry)	(Lohani	et	al.,	2019)	could	help	validate	
this	conjecture.		

6.4.3 The	“restless”	spinal	cord	is	organized	according	to	neural	pathways		

To	date,	the	mechanisms	at	the	core	of	spinal	RS	fluctuations	are	still	speculative.	Three	main	pro-
cesses	have	been	hypothesized	(Eippert	and	Tracey,	2014;	Kong	et	al.,	2014;	Eippert	et	al.,	2017b):	
i)	RS	signals	could	be	driven	by	the	continuous	processing	of	inputs	from	the	periphery	(e.g.,	pro-
prioception,	touch	or	vibration);	ii)	Alternatively,	they	potentially	stem	from	the	ongoing	commu-
nication	between	the	brain	and	the	spinal	cord,	through	ascending	(sensory)	and	descending	(mo-
tor)	signals;	iii)	Finally,	they	could	be	generated	locally	from	intrinsic	features	of	spinal	activity,	for	
instance	 linked	 to	 coordinated	 movements	 (e.g.,	 bilateral	 coordination	 (Jankowska,	 2008;	
Soteropoulos	et	al.,	2013),	breathing	(Sandhu	et	al.,	2015),	or	central	pattern	generators	(Guertin	
and	Steuer,	2009)).	To	further	shed	light	on	these	three	hypotheses,	we	inspected	the	functional	
roles	of	the	fine-grained	iCAPs.	First	of	all,	we	found	that,	similarly	to	the	brain	(Fox	and	Raichle,	
2007;	Smith	et	al.,	2009),	RS	spinal	components	were	distributed	 in	networks	corresponding	to	
distinct	neural	pathways,	usually	active	and	modulated	during	task.	This	suggests	that,	at	the	level	
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of	the	spinal	cord,	the	same	neural	substrates	likely	support	active	and	passive	behaviors.	Specifi-
cally,	networks	were	mainly	involved	in	descending	and	ascending	processes	associated	with	two	
spinal	neural	pathways:	the	cortico-spinal	pathway	(CST)	and	the	dorsal	column-medial	lemniscus	
pathway	(DCML)	(Figure	6.3).	By	conveying	and	processing	signals	from	(e.g.,	for	motor	control)	
and	to	(e.g.,	for	proprioception)	the	brain,	respectively,	these	pathways	subserve	distinct	functions	
(Darby	and	Frysztak,	2013).	The	CST	is	the	major	pathway	supporting	voluntary	motor	function	
and	it	connects	motor	cortical	regions	to	the	ventral	horns	of	the	spinal	cord.	Conversely,	the	DCML	
is	related	to	proprioception,	fine	touch	and	vibration	sensation.	Peripheral	signals	originating	from	
receptors	involved	in	tactile	sensation	and	conscious	proprioception	travel	through	the	dorsal	col-
umn	and	the	medial	lemniscus,	before	reaching	the	primary	somatosensory	cortex.	Although	other	
spinal	pathways	exist,	they	were	not	detected	here,	possibly	due	to	their	secondary	role	at	rest.	One	
such	example	is	the	reticulospinal	tract,	mainly	involved	in	postural	control	(Figure	D2).	The	ab-
sence	of	these	pathways	could	also	pertain	to	their	small	size,	as	the	spatial	resolution	(1	x	1	x	3	
mm)	could	have	hindered	their	identification.	A	few	components	were	observed	in	the	intermediate	
region	of	the	spinal	cord	and	can	be	engaged	in	different	mechanisms,	such	as	commissural	inter-
neuronal	 connections	 between	 contralateral	 horns,	 for	 instance	 to	 coordinate	 movement	
(Jankowska,	2008;	Soteropoulos	et	al.,	2013).	At	the	interface	between	ascending	and	descending	
pathways,	they	may	also	support	interaction	between	sensory	and	motor	components,	notably	for	
reflexes	(Pierrot-Desseilligny	and	Burke,	2005;	Koch,	2019).	From	these	findings,	we	could	infer	
that	the	aforementioned	mechanisms	likely	coexist	and	generate	restless	spinal	cord	activity.		

To	help	further	clarify	the	organizational	principles	of	this	dynamic	architecture,	we	then	consid-
ered	 the	 temporal	 characteristics	 of	 spinal	 iCAPs,	which	displayed	 a	 significant	 overlap	 (Figure	
6.5A).	While	strong	couplings	occurred	mostly	within	the	same	spinal	level,	in	line	with	earlier	stud-
ies	(Barry	et	al.,	2014;	Kong	et	al.,	2014;	Liu	et	al.,	2016b;	Eippert	et	al.,	2017b;	Weber	et	al.,	2018),	
anti-couplings	were	weaker	and	identified	between	spinal	levels	(Figure	6.5B-D).	Weak	negative	
correlations	between	spinal	segments	were	previously	reported	by	Kong	et	al.	(Kong	et	al.,	2014)	
and	may	be	reminiscent	of	mechanisms	involved	in	intersegmental	inhibition	(Friesen	and	Cang,	
2001;	McBain	et	al.,	2016).	Patterns	of	interactions	specific	to	each	neural	pathway	also	emerged	
from	this	analysis	(Figure	6.6).	Successful	classification	of	these	pathway-dependent	signatures	fur-
ther	confirmed	their	specificity,	highlighting	that	distinct	pathways	might	rely	on	different	dynamic	
interactions	to	achieve	their	functional	contributions.	The	strongest	level	of	couplings	was	found	
for	iCAPs	located	in	the	intermediate	zone,	not	only	among	them,	but	also	with	regions	of	the	as-
cending	 pathway.	 This	 suggests	 that	 ongoing	 communication	 between	 hemicords	 may	 occur	
through	interneuronal	connections,	while	pointing	to	a	potential	role	of	the	intermediate	pathway	
in	 bridging	 sensory	 networks.	 Conversely,	 ascending	 and	 descending	 pathways	 appeared	 to	 be	
more	loosely	connected,	maybe	due	to	the	absence	of	active	task.	This	initial	disentanglement	of	
spinal	neural	pathways	 in	vivo	could	help	understand	the	impact	of	task-related	modulations	on	
their	interactions,	for	instance	during	the	complex	integration	of	sensory	feedback	and	motor	com-
mands	involved	in	voluntary	movements.	In	this	context,	collecting	behavioral	data	will	be	pivotal	
to	further	assess	the	relevance	of	these	networks.		

6.4.4 Clinical	potential	

In	addition	to	these	findings,	the	versatility	of	our	framework	could	enable	to	explore	the	disruption	
of	spinal	functional	architecture	in	impaired	individuals.	Studies	assessing	spinal	functional	integ-
rity	may	be	especially	valuable	when	structural	damages	are	minimal	and	do	not	allow	to	fully	char-
acterize	the	patient’s	status.	Multiple	sclerosis	could	particularly	benefit	from	this	approach,	as	its	
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pathological	hallmark	is	the	formation	of	demyelinating	lesions	in	the	brain	and	spinal	cord	(Filippi	
et	al.,	2018).	Recent	work	from	Conrad	et	al.	has	already	initiated	this	effort,	with	promising	results	
(Conrad	et	al.,	2018).	Using	a	region	of	interest	correlation	analysis	in	a	cohort	of	multiple	sclerosis	
patients,	they	showed	that	the	presence	of	lesions	was	concomitant	to	local	alterations	of	FC.	They	
speculated	that	different	mechanisms	could	explain	these	changes,	such	as	a	compensatory	effect	
of	white	matter	damage	or	a	disruption	of	inhibitory	spinal	interneurons.	Our	data-driven	approach	
could	help	distinguish	between	these	hypotheses,	by	granting	access	to	fine-grained	features	of	spi-
nal	cord	FC	in	the	white	and	grey	matter.	In	addition,	studying	functional	integrity	could	also	bring	
valuable	knowledge	in	the	context	of	spinal	cord	injuries.	To	this	end,	RS	scans	are	particularly	at-
tractive,	as	even	severely	affected	patients	can	undergo	such	recordings	(Krakauer,	2007).	No	such	
study	has	so	far	been	performed	in	humans,	but	the	clinical	relevance	of	RS	fluctuations	was	inves-
tigated	in	non-human	primates	at	ultra-high	field	(Chen	et	al.,	2015),	by	longitudinally	monitoring	
the	effect	of	a	unilateral	spinal	cord	injury.	This	emphasized	that	disruptions	in	FC	within	and	be-
tween	spinal	levels	were	related	to	the	recovery	process,	thus	underscoring	the	potential	of	intrin-
sic	RSNs	as	imaging	biomarkers	of	spinal	cord	functional	integrity.	The	framework	proposed	in	our	
study	offers	the	prospect	of	identifying	such	functional	biomarkers	in	the	human	spinal	cord	with	
a	remarkable	level	of	detail.	This	can	have	major	translational	implications,	as	they	could	poten-
tially	be	used	for	diagnosis	and	prognosis,	to	quantify	disease	progression	or	to	investigate	the	ef-
fect	of	different	interventions.	Ultimately,	a	thorough	understanding	of	spinal	functional	circuitry	
could	help	steer	the	development	of	innovative	therapies,	notably	in	the	context	of	neurotechno-
logical	 solutions	 that	 are	 able	 to	deliver	precise	 and	knowledge-based	 treatment	 (Micera	et	 al.,	
2020).	For	instance,	electrical	epidural	stimulation	has	been	used	to	restore	locomotion	following	
a	spinal	cord	injury,	with	very	promising	results	(Wagner	et	al.,	2018).	Patient-specific	maps	of	spi-
nal	pathways	could	be	used	to	fine-tune	these	protocols,	so	as	to	optimally	engage	the	spared	con-
nections	and	networks	to	further	improve	patients’	clinical	outcome.		

6.5 Conclusion	

So	far,	studies	have	only	inspected	spinal	RS	fluctuations	using	static	FC,	showing	that	signals	were	
organized	into	networks,	but	without	demonstrating	their	physiological	origin.	Here,	we	deployed	
the	SpiCiCAP	framework	to	exploit	the	rich	dynamic	features	of	spontaneous	spinal	activity	and	
recovered	fine-grained	components.	Capitalizing	on	this	unprecedented	level	of	detail,	we	showed	
that	these	components	were	related	to	the	underlying	neuroanatomical	organization	and	that	they	
were	functionally	relevant.	We	provide	a	powerful	tool	to	delineate	stable	spinal	circuits	in	vivo,	
thus	enabling	access	to	the	building	blocks	of	spinal	functional	activity.	This	approach	provides	a	
ground	for	future	work	to	elucidate	how	spinal	networks	can	be	flexibly	combined	to	support	par-
ticular	functions,	both	at	rest	or	when	specifically	modulated	by	a	task.	We	believe	that	the	versa-
tility	of	this	methodological	framework	opens	new	avenues	to	tackle	fundamental	and	clinical	neu-
roscientific	questions	related	to	the	function	of	the	spinal	cord.		
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7.1 	Introduction	

The	vast	majority	of	human	behaviors	is	associated	with	motor	function,	making	the	acquisition	
and	retention	of	new	motor	skills	essential	to	our	daily	lives.	In	this	context,	motor	skill	learning	
refers	 to	 all	 processes	 leading	 to	 effortless	 movements	 through	 repeated	 practice	 (Doyon	 and	
Benali,	2005).	Considering	their	multifaceted	nature,	unveiling	these	mechanisms	is	a	complex	en-
deavor.	Neuroimaging	studies	have	thus	been	instrumental	to	explore	their	neural	underpinnings,	
notably	to	demonstrate	how	functional	plasticity	in	distinct	brain	regions	underlies	learning	pro-
cesses	(Dayan	and	Cohen,	2011;	Doyon	et	al.,	2018).	Traditionally,	 learning	has	been	 largely	at-
tributed	to	such	cerebral	functional	changes,	while	the	spinal	cord,	on	the	other	hand,	has	merely	
been	viewed	as	a	hardwired	relay	for	cortical	commands	transiting	towards	muscles.	Nonetheless,	
evidence	challenging	the	concept	of	the	spinal	cord	as	a	passive	relay	has	accumulated	over	the	
years	(Wolpaw	and	Tennissen,	2001;	Grau,	2014).	Already	in	early	physiological	experiments,	its	
ability	 to	generate	and	 learn	 semi-autonomous	behaviors	without	 supraspinal	 inputs	was	high-
lighted	(Reggie	Edgerton	et	al.,	1997).	Later,	animal	and	human	studies	provided	support	for	learn-
ing-dependent	plasticity	in	the	spinal	cord,	notably	with	respect	to	changes	observed	in	reflexes	
(e.g.,	Hoffmann	reflex)	(Nielsen	et	al.,	1993;	Meunier	et	al.,	2007;	Wolpaw,	2007;	Nielsen,	2016;	
Christiansen	 et	 al.,	 2017),	which	were	 then	 shown	 to	 be	 engaged	 in	 controlling	 hand	 postures	
(Weiler	et	al.,	2019).	While	these	observations	hinted	at	a	more	sophisticated	role	of	the	spinal	cord	
than	initially	assumed,	its	precise	involvement	in	motor	control	and	learning	remains	elusive.		

Chapter	7 	
Cerebro-spinal	dynamics	of	motor	learning		
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In	this	context,	non-invasive	imaging	of	spinal	cord	functions	can	shed	new	light	on	spinal	processes	
linked	to	skilled	movements.	In	particular,	simultaneous	brain	and	spinal	cord	fMRI	could	offer	a	
more	comprehensive	characterization	of	these	mechanisms	through	the	entire	central	nervous	sys-
tem	(CNS).	Yet	to	date,	only	one	study	capitalized	on	this	potential	to	unravel	the	cerebro-spinal	
mechanisms	 involved	 in	motor	control	and	 learning.	 In	 their	pioneering	work,	Vahdat	et	al.	de-
ployed	 simultaneous	 brain-cervical	 cord	 fMRI	 during	 a	 finger-tapping	motor	 sequence	 learning	
(MSL)	task	(Vahdat	et	al.,	2015)	and	observed	learning-related	modulation	of	activity	in	the	spinal	
cord,	independently	from	the	modulation	of	supraspinal	structures.	Using	static	functional	connec-
tivity	analyses,	they	also	demonstrated	an	effect	of	task	practice	on	cerebro-spinal	interactions.	As	
such,	 these	 results	 offered	unprecedented	 insights	 into	 the	 role	 of	 the	 spinal	 cord	 in	 the	 initial	
stages	of	motor	learning.	However,	electrophysiological	experiments	have	also	provided	indirect	
evidence	of	an	involvement	of	the	spinal	in	the	subsequent	phases	of	learning	(Nielsen	et	al.,	1993),	
when	skills	get	consolidated	(Dayan	and	Cohen,	2011;	Diedrichsen	and	Kornysheva,	2015;	Doyon	
et	al.,	2018).	Non-invasive	imaging	could,	therefore,	offer	a	unique	opportunity	to	probe	the	nature	
of	these	long-term	spinal	changes,	as	well	as	their	ties	with	cerebral	plasticity.		

In	the	current	study,	we	took	advantage	of	a	novel	fMRI	dataset	acquired	by	Doyon	and	colleagues,	
in	which	they	built	upon	their	pioneering	work	(Vahdat	et	al.,	2015)	and	acquired	simultaneous	
brain	and	spinal	cord	 fMRI,	 this	 time	using	a	MSL	paradigm	involving	wrist-controlled	reaching	
movements.	In	addition,	they	evaluated	MSL	not	only	during	a	single	session	(early	learning),	but	
also	following	a	week-long	motor	training	regimen	(late	learning).	To	leverage	this	dataset	and	un-
ravel	the	cerebro-spinal	correlates	of	skilled	movements,	we	combined	the	dynamic	connectivity	
framework	 introduced	 in	Chapter	6	(Kinany	et	al.,	2020)	with	a	multivariate	classification	tech-
nique.	Using	these	data-driven	methodological	approaches,	we	highlighted	specific	learning-related	
neural	networks	associated	with	the	acquisition	and	the	consolidation	of	a	new	motor	skill,	and	
motor	sequence	learning	in	particular.	Furthermore,	we	probed	the	dynamic	interplay	occurring	
between	spinal	and	supraspinal	brain	regions.	Taken	together,	our	results	suggest	that	the	short-	
and	 long-term	 stages	 of	 MSL	 are	 characterized	 by	 distinct	 functional	 fingerprints	 distributed	
throughout	the	CNS,	hence	underscoring	again	the	 importance	of	the	spinal	cord	in	this	 form	of	
memory.	

7.2 Methods	

7.2.1 Participants	

Thirty	young	healthy	participants	were	enrolled	in	the	study.	All	participants	were	right-handed	
and	had	no	history	of	neurological	or	psychiatric	disease,	no	motor-system	complications,	nor	were	
they	using	neurological	medications.	Individuals	who	previously	participated	in	motor-learning	ex-
periments,	as	well	as	those	with	previous	training	in	playing	an	instrument	for	more	than	three	
consecutive	years	in	the	last	five	years,	could	not	be	included	in	the	study.	Of	these	thirty	partici-
pants,	five	subjects	were	subsequently	excluded	(two	drop-outs,	one	for	excessive	motion,	and	two	
for	 incomplete	functional	scans).	Finally,	25	subjects	were	 included	in	the	analyses	(13	females,	
24.8	±	3	years	old).	All	participants	gave	their	written	informed	consent	to	participate,	and	the	study	
was	approved	by	the	Ethics	Committee	at	the	Centre	de	Recherche	de	l'Institut	Universitaire	de	
Gériatrie	de	Montréal	(CRIUGM).	
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Figure	7.1	–	Experimental	protocols.	A.	Overview	of	the	different	experimental	sessions.	B.	Display	of	the	
motor	sequence	learning	task	as	well	as	the	specific	sequence	subjects	had	to	practice	during	the	SEQ	runs,	
while	using	an	MRI	compatible	joystick	controlled	with	the	right	(dominant)	hand.	C.	A	novel	fMRI	acquisition	
scheme	(Finsterbusch	et	al.,	2013)	was	employed	to	perform	simultaneous	cerebro-spinal	fMRI	with	region-
specific	shimming	and	scan	parameters.	The	two	subvolumes	are	highlighted	by	the	yellow	boxes,	while	slices	
are	shown	in	green	(30-33	slices	for	the	brain	and	8-10	slices	for	the	spinal	cord).	

7.2.2 Experimental	protocols	

General	procedure	

Each	participant	participated	in	six	experimental	sessions,	distributed	over	six	consecutive	days	
(Figure	7.1A).	These	sessions	comprised	two	MRI	scans:	at	the	beginning	(Day	1)	and	at	the	end	
(Day	6)	of	the	study.	At	the	beginning	of	the	first	experimental	session,	subjects	were	familiarized	
with	the	set-up	by	practicing	a	motor	sequence	learning	(MSL)	task	in	a	mock	scanner,	using	a	dif-
ferent	sequence	than	the	one	used	during	the	actual	experiment.	Participants	were	then	installed	
in	the	MRI	scanner,	where	functional	acquisitions	were	obtained	during	the	performance	of	two	
different	motor	tasks	(Sequence	or	Random,	see	below	for	details).	During	Day	2	to	Day	5,	partici-
pants	performed	a	daily	training	of	the	sequential	task	while	lying	supine	in	the	mock	scanner.	

Motor	sequence	learning	paradigm	

The	motor	task	was	performed	using	a	joystick	manipulated	with	the	dominant	(right)	hand.	At	the	
beginning	of	the	task,	the	cursor	representing	the	joystick	position	was	positioned	in	the	center	of	
the	screen	(i.e.,	neutral	position)	and	indicated	by	a	black	circle.	Four	static	targets,	represented	as	
circles,	were	positioned	at	equal	distance	from	the	center	(3,	6,	9	and	12	0-clock,	Figure	7.1B).	Par-
ticipants	were	instructed	to	move	the	cursor	towards	a	target	as	soon	as	the	corresponding	circle	
was	filled.	Once	the	target	was	reached,	it	disappeared	and	the	circle	corresponding	to	the	following	
target	was	highlighted.	The	sequence	was	not	known	 in	advance	by	 the	participants,	who	were	
simply	asked	to	reach	targets	as	quickly	as	possible.	The	sequence	was	repeated	ten	times	in	each	
block,	with	15	blocks	in	total,	interleaved	with	rest	periods	of	20	seconds.	Two	different	conditions	
were	used:	(i)	an	8-item	Sequence	Learning	condition	(SEQ)	in	which	the	order	of	the	targets	was	
sequential	and	repeated	every	8	reaching	movements	(Figure	7.1B),	and	(ii)	a	Random	condition	
(RND)	where	targets	appeared	in	a	pseudo-random	non-sequential	order.	During	each	scanning	
session	(Day	1	and	Day	6),	 functional	MRI	acquisitions	were	acquired	during	both	experimental	
conditions	on	two	separate	runs	(SEQ	and	RND)	and	the	order	of	the	two	runs	was	counterbalanced	
between	subjects.		
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Data	acquisition	

Imaging	 data	 were	 acquired	 with	 a	 3.0	 Tesla	 Siemens	 Prisma	 scanner	 (Erlangen,	 Germany),	
equipped	with	a	12-channel	head	coil	paired	with	a	4-channel	neck	coil	(both	receive	only).	Extra	
foam	pads	were	installed	around	the	subjects’	head	and	neck	in	order	to	minimize	motion.	The	iso-
center	of	the	magnet	was	aligned	to	the	lower	edge	of	the	head	coil	(i.e.,	approximately	at	the	ver-
tebral	level	C2/C3).	

In	order	to	investigate	the	cerebro-spinal	correlates	of	motor	learning,	functional	images	were	ac-
quired	 using	 a	 custom	 fMRI	 protocol	 enabling	 combined	 brain	 and	 spinal	 cord	 imaging	
(Finsterbusch	et	al.,	2013).	Briefly,	this	approach	allows	to	perform	simultaneous	functional	meas-
urements	in	two	subvolumes	(brain,	spinal	cord)	with	different	geometric	properties	(Figure	7.1C).	
As	such,	each	subvolume	was	tailored	to	the	region-of-interest	(i.e.,	brain	or	cervical	spinal	cord).	
Optimal	acquisition	parameters	(shim	properties	and	resonance	frequencies)	were	selected	for	the	
two	subvolumes	at	the	beginning	of	each	scanning	session,	using	five	sample	volumes	acquired	be-
fore	the	actual	experiment.	Then,	parameters	were	dynamically	updated	during	the	functional	ac-
quisitions.	Details	regarding	shimming	procedure	are	discussed	in	Tinnermann	et	al.,	2017.	Based	
on	the	prescan	acquisitions,	a	specific	z-shim	slice-specific	approach	was	also	used	to	maximize	the	
signal	intensity	within	the	spinal	cord	(Finsterbusch	et	al.,	2012).	Forty	to	43	slices	(depending	on	
the	participant	size)	were	acquired	 for	both	subvolumes.	Specifically,	 the	brain	subvolume	con-
tained	30	to	33	axial	slices	(FOV	=	220	x	220	mm2,	in-plane	resolution	=	2	x	2	mm2,	slice	thickness	
=	5	mm,	10%	gap	between	slices,	flip	angle	=	90º,	GRAPPA	factor	2,	TE	=	30	ms).	This	was	sufficient	
to	cover	the	whole-brain	of	most	participants,	except	for	a	few	subjects	for	whom	the	box	was	tilted	
upward	of	approximately	10	degrees	(around	the	x	axis),	which	cut	a	small	part	of	the	upper	motor	
cortex.	As	for	the	spinal	subvolume,	8	to	10	slices	were	acquired	(FOV	=	132	x	132	mm2,	in-plane	
resolution	=	1.2	x	1.2	mm2,	slice	thickness	=	5	mm,	15%	gap	between	slices,	flip	angle	=	90º,	GRAPPA	
factor	2,	TE	=	33	ms).	The	imaged	region	extended	from	C4	to	C8	vertebrae.	The	Repetition	Time	
(TR)	was	3140	ms	for	S01,	3200	ms	for	S02	to	S04	and	3050	ms	for	the	other	subjects,	as	the	TR	
was	slightly	optimized	in	the	first	acquisitions.	Importantly,	the	same	TR	was	always	used	within	
the	same	subject.	To	limit	noise,	only	signal	from	the	head	coil	was	used	for	the	brain	images,	while	
only	signal	from	the	neck	coil	was	used	for	the	spinal	cord	images.	A	3D-MPRAGE	T1-weighted	an-
atomical	image	was	also	acquired	(175	sagittal	slices,	head	to	upper	thoracic	spine,	TR	=	2300	ms,	
TE	=	3.45	ms,	flip	angle	=	9º,	TI	=	1.1s,	FOV	=	192	x	240	x	320	mm3,	resolution	1	x	1	x	1	mm3).	

Data	processing	

All	preprocessing	steps	were	performed	independently	for	the	brain	and	the	spinal	cord	using	the	
Oxford	Center	for	fMRI	of	the	Brain’s	(FMRIB)	Software	Library	(FSL)	(Jenkinson	et	al.,	2012)	and	
the	Spinal	Cord	Toolbox	(SCT)	(De	Leener	et	al.,	2017).		

1) Motion	correction	

Brain:	Following	removal	of	the	first	two	volumes	to	allow	for	T1	equilibration	effects,	non-brain	
regions	were	removed	using	BET	(Smith,	2002)	and	motion	correction	was	applied	using	MCFLIRT	
(Jenkinson	et	al.,	2002).	

Spinal	cord:	Similarly	to	the	brain,	the	first	two	fMRI	volumes	were	discarded	and	slice-wise	mo-
tion	correction	was	performed	with	the	mean	image	as	reference,	using	the	SCT	(De	Leener	et	al.,	
2017).	The	corrected	time	series	were	visually	inspected	and	parameters	were	adapted	if	needed.		
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2) Image	denoising		

Brain:	FSL’s	FEAT	tool	was	used	to	regress	out	signals	of	no	interest	from	fMRI	time	series.	The	
following	noise	regressors	were	included:	six	motion	correction	parameters	(translations	and	ro-
tations),	CSF	and	white	matter	signals.	Residuals	were	spatially	smoothed	using	an	isotropic	Gauss-
ian	kernel	with	a	FWHM	of	4	mm	

Spinal	cord:	Noise	regression	was	also	performed	in	the	spinal	cord	using	the	following	confounds:	
PNM	regressors	(Brooks	et	al.,	2008),	slice-wise	motion	correlation	parameters	(x	and	y),	CSF	signal	
and	 mean	 global	 signal	 outside	 the	 spinal	 cord.	 The	 resulting	 residuals	 were	 then	 spatially	
smoothed	using	a	3D	Gaussian	kernel	with	a	full	width	half	maximum	(FWHM)	of	2	x	2	x	4	mm3,	
along	the	spinal	cord.	

3) Estimating	warping	fields	for	normalization		

Brain:	Functional-to-anatomical	and	anatomical-to-template	transformations	were	carried	out	us-
ing	FLIRT	(Jenkinson	et	al.,	2002).	Registration	from	high	resolution	structural	to	standard	space	
(3mm	resolution)	was	then	further	refined	using	FNIRT	nonlinear	registration	(Andersson	et	al.,	
2007).	

Spinal	cord:	Spinal	cord	segmentation	was	performed	automatically	on	the	T1	anatomical	images	
using	a	two-step	process:	the	spinal	centerline	was	extracted	using	a	first	segmentation	and	subse-
quently	used	to	yield	a	smoothed	image	on	which	a	second	segmentation	was	obtained.	Segmenta-
tions	were	 visually	 inspected	 and	manual	 adjustments	were	 performed	when	 necessary.	 Land-
marks	were	placed	at	the	C4	and	C7	vertebrae	and	used	to	normalize	the	structural	scans	to	the	
MNI-Poly-AMU	template	(Fonov	et	al.,	2014).	The	spinal	cord	was	semi-automatically	segmented	
(i.e.,	with	manual	corrections)	on	the	mean	motion-corrected	fMRI	volume.	All	segmentations	were	
performed	by	one	rater	and	inspected	by	a	second	examiner,	 in	order	to	optimize	segmentation	
quality.	This	segmentation	was	used	to	support	the	registration	of	the	mean	motion-corrected	to	
the	T1	anatomical	scan.	Functional-to-template	warping	fields	were	obtained	by	concatenating	the	
functional-to-anatomical	and	anatomical-to-template	transformations.	

Data	analysis	

1) Task	performance	

Subject’s	performance	during	each	block	of	practice	of	the	two	experimental	conditions	(Sequence	
and	Random)	was	evaluated	by	measuring	the	movement’s	 jerkiness.	Briefly,	 the	 jerk	was	com-
puted	as	the	third-time	derivative	of	the	pointer	displacement,	 for	each	time	point.	Values	were	
then	integrated	to	obtain	an	Integrated	Absolute	Jerk	(IAJ)	index	(Goldvasser	et	al.,	2001)	for	each	
task	block.	A	repeated	measures	ANOVA	with	Blocks	(1:7	vs	9:15)	x	Day	(1	vs	6)	x	Condition	(SEQ	
vs	RND)	as	within-subject	factors	was	conducted	to	assess	improvement	in	performance.	Perfor-
mances	across	days	and	conditions	were	then	evaluated	using	paired	t-tests	(Bonferroni	corrected	
for	multiple	comparisons).	As	for	within-session	learning,	a	similar	analysis	was	conducted	to	com-
pare	the	jerk	in	the	first	seven	blocks	against	the	last	seven	blocks,	for	both	days	and	conditions.	

2) Extracting	innovation-driven	coactivation	patterns	(iCAPs)	

We	deployed	the	(SpiC)iCAP	frameworks	to	extract	spinal	and	brain	iCAPs	(Karahanoǧlu	and	Van	
De	Ville,	2015;	Kinany	et	al.,	2020),	whose	different	steps	have	been	described	in	detail	in	Chapter	
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6.	Briefly,	the	raw	BOLD	signals	were	denoised,	and	a	regularized	HRF	deconvolution	was	employed	
to	recover	the	activity-inducing	signals	thanks	to	the	Total	Activation	framework	(Karahanoǧlu	et	
al.,	2013).	Transient	activity	(i.e.,	the	so-called	innovation	signal)	was	obtained	as	the	temporal	de-
rivative	of	the	activity-inducing	timecourses.	A	two-step	thresholding	process	was	then	used	to	se-
lect	significant	innovation	frames:	(i)	temporal	thresholding:	a	surrogate	distribution	was	gener-
ated	by	applying	TA	to	phase	randomized	data	and	a	5%	confidence	interval	was	used	to	pick	sig-
nificant	voxels;	(ii)	spatial	thresholding:	only	the	frames	containing	more	that	5%	of	active	voxels	
were	kept.	This	procedure	was	applied	to	each	run	independently,	for	both	the	spinal	cord	and	the	
brain.	Significant	innovation	frames	were	normalized	to	the	MNI-Poly-AMU	and	MNI	template,	re-
spectively.	Of	note,	a	mask,	shown	in	Figure	E1,	was	used	to	constrain	brain	analyses	to	regions	
relevant	to	the	study	of	motor	control	and	learning,	as	defined	based	on	previous	literature	(Doyon	
and	Benali,	2005;	Dayan	and	Cohen,	2011;	Hardwick	et	al.,	2013;	Vahdat	et	al.,	2015).	As	for	the	
spinal	cord,	a	region	extending	from	C5	to	T1	spinal	levels	was	used.	The	spatially	normalized	maps	
were	masked	and	concatenated	(i.e.,	both	days	and	conditions,	for	all	subjects,	independently	for	
the	brain	and	the	spinal	cord)	and	temporal	K-means	clustering	was	conducted	to	obtain	group	
level	iCAP	maps.	Similarly	to	Zöller	et	al.	(2018,	2019),	the	optimal	number	of	clusters	was	deter-
mined	by	means	of	consensus	clustering	(Monti	et	al.,	2003),	which	uses	a	subsampling	scheme	to	
estimate	clustering	stability.	Specifically,	K-means	clustering	was	applied	to	multiple	subsets	of	the	
data	to	generate	a	consensus	matrix	indicating	the	fraction	of	subsets	for	which	two	frames	were	
clustered	together.	Ideally,	two	frames	should	either	(i)	always	be	clustered	together	(i.e.,	fraction	
value	of	1)	or	(ii)	never	be	clustered	together	(i.e.,	fraction	value	of	0).	This	procedure	was	repeated	
for	different	values	of	K,	yielding	a	consensus	matrix	for	each	K	of	the	selected	range.	The	average	
consensus	(i.e.,	mean	consensus	per	cluster)	and	the	cumulative	distribution	function	of	values	in	
the	consensus	matrices	were	then	probed	to	select	 the	best	clustering	solution.	 In	 the	brain,	17	
iCAPs	were	recently	reported	to	describe	resting-state	activity	(Zöller	et	al.,	2019).	In	order	to	ob-
tain	a	similar	level	of	details,	we	applied	consensus	clustering	for	KBR	∈	[14,	20]	(i.e.,	range	of	±	3	
compared	to	this	previous	study).	Results	are	presented	in	Figure	E2	and	prompted	the	selection	
of	KBR	=	15	for	further	analyses.	As	for	the	spinal	cord,	we	relied	on	a	priori	knowledge	on	anatomy	
and	explored	a	range	corresponding	to	the	potential	number	of	dorsal	and	ventral	components,	
expected	to	be	around	10,	as	5	spinal	levels	were	imaged.	Specifically,	consensus	clustering	was	
evaluated	for	KSC	∈	[7,	13]	(i.e.,	range	of	±	3	compared	to	anatomical	expectations)	and	we	opted	for	
KSC	=	11	based	on	the	consensus	clustering	quality	measures.	In	order	to	ensure	that	the	spatial	
organization	of	iCAPs	was	stable	across	conditions	(i.e.,	for	both	days	and	both	tasks),	we	computed	
condition-specific	iCAPs	maps	(i.e.,	mean	of	the	frames	of	one	condition,	assigned	to	a	particular	
iCAP).	Stability	was	evaluated	using	cosine	similarity	and	Dice	coefficients	(maps	binarized	with	a	
threshold	Z	>	2).	Finally,	subject-specific	timecourses	were	obtained	for	all	iCAPs	(brain	and	spinal	
cord)	using	spatio-temporal	transient-informed	regression	(Zöller	et	al.,	2018).	As	both	the	RND	
and	SEQ	tasks	were	self-paced,	timecourses	were	averaged	per	task	/	rest	block	to	allow	compari-
sons	between	subjects.	

3) Classification	of	cerebro-spinal	correlates	of	MSL	

A	multivariate	data-driven	approach	was	employed	to	highlight	brain	and	spinal	correlates	of	MSL.	
Specifically,	we	used	Linear	Discriminant	Analysis	(LDA)	to	investigate	whether	distinct	neural	ac-
tivity	patterns	were	associated	with	the	execution	of	RND	or	SEQ	tasks,	in	Day	1	and	Day	6.	Features	
were	defined	as	the	mean	difference	of	activity	during	task	and	rest	blocks	for	each	iCAP	(i.e.,	11	
spinal	cord	features	and	15	brain	features).	Values	were	Z-scored	and	fed	to	a	two-class	LDA	clas-
sifier,	with	 leave-one-subject-out	 cross	 validation.	 Confusion	matrices	were	 computed	 using	 all	



	
Cerebro-spinal	dynamics	of	motor	learning	

																														
125	

cross-validation	folds	and	statistical	significance	was	assessed	using	non-parametric	permutation	
tests.	Specifically,	1000	classifications	were	performed	with	randomly	assigned	labels	and	used	to	
build	a	null	distribution	on	which	significance	threshold	were	calculated.	The	significance	of	the	
LDA	weights	was	evaluated	with	the	same	procedure.	A	similar	procedure	was	employed	to	com-
pare	MSL	(i.e.,	SEQ	>	RND)	between	sessions.	

4) Investigating	iCAP-informed	correlations	

In	order	to	explore	whether	distinct	cerebro-spinal	interactions	were	associated	with	MSL,	we	per-
formed	a	series	of	correlation	analyses	between	the	brain	and	the	spinal	cord.	 In	particular,	we	
examined	task-dependent	functional	connectivity	by	leveraging	the	ability	of	the	iCAP	framework	
to	retrieve	activity-inducing	signals	unblurred	from	the	hemodynamic	lag.	Specifically,	functional	
connectivity	estimates	were	performed	using	iCAPs	as	seeds	and	timecourses	from	each	spinal	iCAP	
were	correlated	with	whole-brain	activity-inducing	signals	from	the	brain.	In	order	to	rule	out	that	
connectivity	merely	reflected	shared	task	 input	(i.e.,	 correlation	with	 task	timings),	 timecourses	
were	constrained	to	eroded	task	blocks	(i.e.,	one	TR	removed	at	both	ends	of	each	block)	(Cole	et	
al.,	2019).	Pearson’s	correlation	coefficients	were	computed	between	these	task-only	timecourses,	
for	all	subjects,	days	and	conditions.	Values	were	then	Fisher	Z-transformed	and	MSL-related	cor-
relation	maps	were	obtained	by	contrasting	the	SEQ	and	RND	conditions	within	each	subject.	Fi-
nally,	we	assessed	whether	there	were	significant	differences	in	learning-induced	connectivity	be-
tween	the	two	sessions.	Voxel-wise	differences	were	evaluated	using	non-parametric	paired	t-tests	
with	5000	permutations,	as	implemented	in	FSL’s	randomize	tool	(Anderson	and	Robinson,	2001).	
Threshold-free	cluster	enhancement	(TFCE)	was	conducted	to	correct	for	multiple	comparison,	and	
p	values	<	0.05	were	considered	significant.	

7.3 Results	

7.3.1 	Motor	sequence	learning	leads	to	smoother	task	execution		

First,	we	probed	participant’s	performance,	as	evaluated	using	movement	jerkiness	(IAJ),	over	time	
and	conditions	(Figure	7.2A).	Distinct	learning	curves	were	observed,	as	emphasized	by	a	signifi-
cant	three-way	interaction	between	block,	day	and	condition	(repeated	measures	ANOVA,	F(1,24)	
=	812.99,	p	<	0.001).	In	particular,	learning	effects	were	present	across	days	(significant	interaction	
between	day	and	condition,	F(1,24)	=	823.26,	p	<	0.001)	as	well	as	within	the	same	day	(significant	
interaction	between	block	and	condition	(F(1,24)	=	976.73,	p	<	0.001).	Paired	t-tests	were	used	to	
further	analyse	 these	 learning	dynamics	and	confirmed	an	 improvement	between	sessions	 (p	<	
0.05,	Figure	7.2B)	and	within	session	(p	<	0.001,	Figure	7.2C),	for	the	sequential	(SEQ)	task,	but	not	
for	the	random	(RND)	condition.	These	observations	suggested	that	repeated	practice	of	the	SEQ	
task,	as	opposed	to	non-specific	effect	of	random	motor	practice,	led	to	smoother	movements.	In	
order	to	disentangle	learning	effects	from	motor	practice,	MSL	was	thus	defined	as	SEQ	>	RND	in	
further	analyses.	
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Figure	7.2	–	Behavioral	performance.	Performance	was	assessed	using	the	Integrated	Absolute	Jerk	(IAJ),	
which	characterizes	 the	smoothness	of	movement	 trajectories	(i.e.,	a	decrease	 in	AIJ	values	reflects	an	 in-
crease	in	smoothness).	A.	AIJ	averaged	across	all	subjects	for	each	block,	illustrating	learning	curves	for	both	
days	and	conditions.	B.	Comparison	of	subjects’	performance	(i.e.,	mean	AIJ	values)	between	days	for	both	
conditions.	C.	Comparison	of	 the	performance	between	the	early	(first	seven	blocks:	B1-B7)	and	 late	(last	
seven	blocks:	B9-B15)	phases	of	learning,	for	both	days	and	both	conditions.	Values	are	presented	as	mean	±	
SE.	*	corresponds	to	p	<	0.05	and	***	to	p	<	0.001	(paired	t-tests	corrected	for	multiple	comparisons).	

7.3.2 	Brain	and	spinal	activity	can	be	decomposed	into	meaningful	networks	

We	applied	the	iCAP	framework	in	the	brain	and	the	spinal	cord	independently,	so	as	to	retrieve	
regional	iCAPs	across	all	subjects	and	conditions.	15	brain	iCAPs	were	extracted	and	corresponded	
to	well	delineated	cortical	and	subcortical	regions	known	to	be	involved	in	various	aspects	of	motor	
learning	and	practice	(Figure	7.3A,	see	Table	E1	for	details	of	the	regions).	Notably,	a	task-specific	
network	was	recovered	(iCAP	6)	and	included	contralateral	sensorimotor	cortices,	the	secondary	
motor	areas	bilaterally	and	the	ipsilateral	cerebellum.	Of	note,	there	were	several	additional	iCAPs	
displaying	subparts	of	the	cerebellum	(iCAPsBR	3,	7,	8,	13	and	14).	Moreover,	multiple	areas	known	
to	be	involved	in	various	aspects	of	motor	control	and	learning	were	found,	such	as	striatal	regions	
of	the	basal	ganglia	(iCAPsBR	1	and	11),	premotor	cortex	(iCAPsBR	9	and	10)	or	areas	supporting	
visuospatial	perception	(iCAPsBR	5	and	10).	The	anterior	cingulate	cortex	(ACC)	was	also	well	rep-
resented	(iCAPsBR	2,	11	and	12).	Other	regions	comprised	the	somatosensory	areas	(iCAPsBR	2,	9	
and	15),	fronto-parietal	networks	(iCAPBR	4)	and	hippocampus	(iCAPsBR	1	and	13).	At	the	level	of	
the	spinal	cord,	11	iCAPs	were	identified	(Figure	7.3B),	covering	a	region	extending	between	C5	to	
T1	spinal	levels.	As	previously	reported	(Kong	et	al.,	2014;	Kinany	et	al.,	2020),	all	maps	spanned	a	
limited	rostro-caudal	extent.	 ICAPs	appeared	 to	be	divided	 into	dorsal	and	ventral	components,	
likely	reflecting	sensory	and	motor	mechanisms,	and	all	patterns	were	bilateral.		

To	ensure	that	these	networks	could	reliably	be	used	to	characterize	cerebro-spinal	activity	under	
different	 conditions,	we	assessed	 their	 spatial	 similarity	 across	days	and	 tasks.	 Spatial	patterns	
were	highly	stable,	both	in	the	brain	(cosine	similarity	=	0.97	±	0.01,	Dice	coefficient	=	0.72	±	0.20,	
mean	over	iCAPs	±	SE)	and	the	spinal	cord	(cosine	similarity	=	0.99	±	0.002,	Dice	coefficient	=	0.86	
±	0.03).	Given	the	spatial	robustness	of	the	functional	organization	as	described	using	iCAPs,	we	
then	probed	the	temporal	expression	of	these	building	blocks	in	each	subject.	Task-related	changes	
in	activity	were	observed	in	the	brain	and	the	spinal	cord	Figure	7.4,	hence	suggesting	the	ability	of	
the	iCAP	framework	to	capture	learning	dynamics.	
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Figure	7.3	–	iCAPs	spatial	maps.	The	iCAP	framework	was	employed	to	identify	cerebral	and	spinal	net-
works	for	all	subjects	(both	days	and	both	conditions	included).	A.	Spatial	patterns	for	the	15	iCAPs	that	were	
extracted	at	the	level	of	the	brain.	Networks	correspond	to	regions	with	distinct	functional	&	anatomical	rel-
evance.	Maps	are	overlaid	on	the	MNI	template.	ACC	=	Anterior	Cingulate	Cortex.	B.	Spatial	patterns	for	the	
11	spinal	iCAPs.	Networks	are	clearly	segregated	in	the	rostrocaudal	direction,	reflecting	the	segmental	anat-
omy	of	the	spinal	cord.	Dorsal	(i.e.,	sensory)	and	ventral	(i.e.,	motor)	iCAPs	are	present.	Maps	are	overlaid	on	
the	MNI-Poly-AMU	template	(Fonov	et	al.,	2014)	and	spinal	levels	are	provided	as	reference	(Cadotte	et	al.,	
2015).	L	=	left,	R	=	right,	D	=	dorsal,	V	=	ventral	
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Figure	7.4	–	iCAP	temporal	dynamics.	Examples	of	timecourses	for	one	brain	iCAP	(A.)	and	one	spinal	cord	
iCAP	(B.),	corresponding	to	practice	of	the	SEQ	task,	on	Day	1.	Timecourses	are	normalized	by	the	mean	value	
during	rest	for	this	particular	iCAP.	Each	bar	corresponds	to	the	mean	activity	in	one	block	(task	in	orange	
and	rest	in	grey).	Values	are	presented	as	mean	over	subjects	±	SE.		

7.3.3 	Cerebro-spinal	dynamics	are	predictive	of	short-	and	long-term	motor	learning	

In	order	to	further	explore	the	relevance	of	these	dynamics,	we	conducted	a	multivariate	classifica-
tion	analysis	to	determine	whether	specific	activity	profiles	were	associated	with	different	learning	
stages.	Using	mean	iCAP	task	activities	as	features,	we	first	aimed	to	quantify	changes	in	cerebro-
spinal	activity	pertaining	to	within-session	MSL,	as	reflected	by	the	difference	between	SEQ	and	
RND	task	practice.	On	both	days,	the	task	could	be	decoded	with	a	high	accuracy,	as	emphasized	by	
diagonal	confusion	matrices	(Figure	7.5).	On	Day	1,	the	average	accuracy	was	68%	(p	<	0.05	against	
chance	level,	non-parametric	permutation	testing)	(Figure	7.5A),	while	it	reached	86%	on	Day	6	(p	
<	0.001)	(Figure	7.5B).	LDA	weights	were	stable	across	cross-validation	folds	(cosine	similarity	=	
0.98	±	0.01	on	Day	1	and	0.99	±	0.02	on	Day	6,	mean	±	SD	over	folds)	and	they	revealed	distinct	
activity	patterns	linked	to	short-	(Day	1,	Figure	7.5A)	and	long-	(Day	6,	Figure	7.5B)	term	MSL.	On	
Day	1,	iCAPSC	10	and	iCAPBR	2	were	consistently	engaged	in	classifying	MSL	(i.e.,	SEQ	>	RND),	as	
highlighted	by	a	high	discriminative	power.	These	iCAPs	correspond,	respectively,	to	the	ventral	
side	of	C8	and	to	ACC	and	somatosensory	regions	(Figure	7.5a).	On	Day	6,	numerous	features	car-
ried	discriminant	power,	with	significant	weights	found	for	six	iCAPs	(Figure	7.5B).	In	particular,	
two	spinal	iCAPs	(iCAPsSC	4	and	6,	corresponding	to	ventral	networks	at	the	C6	and	C7	spinal	levels)	
and	two	brain	iCAPs	(iCAPsBR1	and	15,	corresponding	to	striatal	regions	of	the	basal	ganglia	and	to	
sensorimotor	regions)	were	positively	associated	with	MSL.	On	the	other	hand,	iCAPsBR	6	and	10,	
which	mainly	include	motor	and	visuospatial	regions,	appeared	to	be	less	prominent	during	MSL.		
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Figure	7.5	–	Within-session	classification.	Independently	on	Day	1	(A.)	and	Day	6	(B.),	two-class	LDA	clas-
sifiers	(leave-one-subject-out	cross	validation)	were	employed	to	discriminate	between	SEQ	and	RND	task	
practice	using	iCAP	activities	as	features.	Confusion	matrices	are	displayed	in	the	left	panels.	On	Day	1,	the	
average	accuracy	was	68%,	while	it	reached	86%	on	Day	6.	The	middle	panels	show	the	LDA	weights	(mean	
over	cross-validation	folds	±	SD).	Significant	values	are	indicated	and	the	corresponding	iCAPs	are	presented	
in	the	right	panels.	*	corresponds	to	p	<	0.05,	**	to	p	<	0.01	and	***	to	p	<	0.001	(non-parametric	permutation	
testing)	

To	better	characterize	the	temporal	evolution	of	learning-specific	neural	correlates,	we	then	aimed	
to	classify	MSL	activity	patterns	between	sessions	(Figure	7.6).	For	that	purpose,	the	differences	in	
iCAP	activity	during	the	SEQ	and	RND	task	practice,	on	both	days,	were	taken	as	features.	Again,	the	
high	classification	accuracy	(on	average	72%,	p	<	0.01	against	chance	level,	non-parametric	permu-
tation	testing)	underlined	that	cerebro-spinal	iCAPs	were	differentially	activated	during	short-	and	
long-term	MSL.	LDA	weights	were	stable	across	cross-validation	folds	(cosine	similarity	=	0.98	±	
0.004)	and	indicated	that	iCAPsSC	5	and	6	(spinal	level	C7)	along	with	iCAPsBR	1	and	15	(basal	gan-
glia	and	sensorimotor)	were	involved	in	long-term	motor	learning	(MSL	D6	>	MSL	D1),	in	line	with	
within-session	observations.	In	contrast,	short-term	motor	learning	(MSL	D1	>	MSL	D6)	displayed	
a	functional	pattern	including	iCAPSC	10	(ventral	side	of	C8)	as	well	as	iCAPsBR	6	and	10	(motor	and	
visuospatial).	

In	summary,	these	findings	highlighted	the	fact	that	there	are	robust	changes	in	neural	dynamics	
during	learning,	entailing	a	high	discriminability	between	short-	and	long-term	MSL.	In	particular,	
spinal	cord	involvement	shifted	from	caudal	(i.e.,	C8	spinal	level)	to	rostral	cervical	levels	(i.e.,	C6-
C7	spinal	levels),	while	distinct	cortical	and	subcortical	areas	participated	in	the	different	learning	
phases.		
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Figure	7.6	–	Between-session	classification.	A	two-class	LDA	classifier	(leave-one-subject-out	cross	valida-
tion)	was	used	to	discriminate	between	activity	patterns	associated	with	MSL	(defined	as	the	contrast	SEQ	>	
RND)	between	the	two	sessions	(i.e.,	Day	1	and	Day	6).	The	resulting	confusion	matrix	 is	displayed	in	the	
upper	 left	 panel	 and	 shows	 an	 average	 accuracy	 of	 72%.	 LDA	 weights	 are	 reported	 in	 the	 upper	 right	
panel(mean	over	cross-validation	 folds	±	SD)	and	 the	 iCAPs	corresponding	 to	significant	weights	are	pre-
sented	in	the	lower	panel.	*	corresponds	to	p	<	0.05,	**	to	p	<	0.01	and	***	to	p	<	0.001	(non-parametric	per-
mutation	testing)	

7.3.4 	Long-term	motor	learning	changes	brain-spinal	cord	interactions	

To	better	understand	the	mechanisms	through	which	the	brain	and	the	spinal	cord	support	MSL,	
we	then	investigated	whether	their	relationship	exhibited	learning-dependent	characteristics.	To	
this	end,	we	used	the	spinal	 iCAP	networks	as	seeds	and	examined	their	functional	connectivity	
with	supraspinal	regions	for	the	different	days	and	conditions.	Specifically,	we	compared	the	con-
nectivity	patterns	related	to	short-	(MSL	on	Day	1)	and	long-	(MSL	on	Day	6)	term	motor	learning	
(Figure	7.7).	This	analysis	revealed	significant	learning-dependent	connectivity	changes	between	
sessions,	as	two	spinal	iCAPs	showed	an	increase	in	correlation	with	brain	regions	during	MSL	in	
Day	6	compared	to	Day	1	(Figure	7.7A).	 In	particular,	we	observed	an	 increased	 interaction	be-
tween	iCAPSC	3	(i.e.,	dorsal	side	of	C6)	and	brain	regions	encompassing	areas	in	the	left	dorsal	ACC	
and	left	cerebellum,	along	with	a	stronger	correlation	between	ICAPSC	8	(i.e.,	ventral	side	of	C8)	and	
a	cluster	located	in	the	sensorimotor	cortex.	In	order	to	gain	additional	insights	into	learning-in-
duced	changes	of	connectivity,	we	finally	assessed	the	mean	correlation	between	the	three	cerebral	
clusters	and	the	associated	spinal	iCAPs,	for	the	different	days	and	conditions	(Figure	7.7B).	As	for	
the	SEQ	task	practice,	a	negative	synchronization	with	brain	regions	was	found	on	Day	1.	Spinal	
iCAPs	then	became	less	correlated	with	the	ACC	and	the	sensorimotor	cortex	following	the	week	of	
training,	while	the	a	positive	synchronization	with	the	cerebellum	emerged.	During	the	RND	prac-
tice,	 instead,	 an	 opposite	 pattern	was	 highlighted.	 In	 particular,	 the	 coupling	 between	 ICAPSC	 8	
(C8)	and	the	sensorimotor	cortex	shifted	towards	a	negative	correlation	on	Day	6.	

Altogether,	these	results	emphasized	that	specific	brain-spinal	cord	functional	interactions	arose	
during	the	acquisition	and	consolidation	of	motor	skills.	
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Figure	7.7–	Cerebro-spinal	interactions	during	motor	learning.	A.	An	iCAP-informed	correlation	analysis	
(i.e.,	 correlating	 spinal	 iCAPs	 timecourses	with	 brain	 activity	 inducing	 signals)	was	 used.	 Specifically,	we	
aimed	to	inspect	differences	in	learning-induced	cerebro-spinal	connectivity	between	the	two	sessions	(i.e.	
MSL	on	Day	1	against	MSL	on	Day	6).	Two	spinal	iCAPs	changed	their	connectivity	with	supraspinal	structures,	
which	are	presented	in	the	adjacent	brain	maps	(non-parametric	permutation	testing,	TFCE	corrected).	For	
both	iCAPs,	correlation	levels	increased	following	the	week	of	training,	with	clusters	in	the	left	ACC	and	cere-
bellum	for	ICAPSC	3,	and	with	a	cluster	 in	the	sensorimotor	cortex	for	ICAPSC	8.	B.	For	each	cerebro-spinal	
coupling	highlighting	in	A.,	we	present	bar	plots	showing	the	mean	Fisher	Z-transformed	correlations	values	
independently	for	the	different	days	and	conditions.	Values	are	presented	as	mean	±	SE.	*	corresponds	to	p	<	
0.05	and	***	to	p	<	0.001	(paired	t-tests	corrected	for	multiple	comparisons).	

7.4 Discussion	

In	this	work,	we	leveraged	a	novel	simultaneous	brain	and	spinal	cord	fMRI	dataset,	in	which	func-
tional	activity	was	monitored	in	the	early	and	late	phases	of	motor	sequence	learning	(MSL).	To	
examine	the	neural	correlates	of	MSL,	we	extracted	brain	and	spinal	cord	networks,	the	so-called	
iCAPs	(Karahanoǧlu	and	Van	De	Ville,	2015;	Kinany	et	al.,	2020),	and	showed	that	they	exhibited	
functionally	relevant	spatio-temporal	properties.	A	multivariate	classification	approach	confirmed	
that	specific	patterns	of	functional	activities	were	associated	with	short-	and	long-term	MSL.	Im-
portantly,	these	patterns	were	stable	across	subjects	and	distributed	throughout	the	motor	neural	
hierarchy,	from	the	brain	to	the	spinal	cord.	In	particular,	spinal	activity	displayed	a	shift	from	cau-
dal	to	rostral	levels	following	extended	training.	In	addition,	functional	connectivity	analyses	un-
covered	learning-induced	changes	in	neural	synchronization	between	the	cervical	cord	and	brain	
regions,	notably	with	the	anterior	cingulate	cortex,	the	cerebellum	and	the	sensorimotor	cortex.		

7.4.1 Brain	and	spinal	networks	correspond	to	functionally	relevant	CNS	structures		

To	disentangle	the	building	blocks	of	cerebral	and	spinal	activities,	we	deployed	a	dynamic	connec-
tivity	 approach	 based	 on	 hemodynamic-informed	 deconvolution	 of	 BOLD	 time	 courses	
(Karahanoǧlu	and	Van	De	Ville,	2015;	Kinany	et	al.,	2020)	(see	Chapter	6	for	details).	Even	though	
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this	framework	has	previously	been	used	in	resting-state	studies	(Kinany	et	al.	2020	in	the	spinal	
cord;	Zöller	et	al.	2019	in	the	brain),	this	is	the	first	time	that	this	methodology	is	extended	to	probe	
task-related	signals.	Unsurprisingly,	the	15	brain	networks	did	not	correspond	to	commonly	ob-
served	resting-state	patterns,	but	rather	exhibited	motor-	and	learning-relevant	features	(Figure	
7.3).	Notably,	 iCAPBR	6	 included	contralateral	 sensorimotor	cortices,	bilateral	premotor	cortices	
and	superior	parietal	lobules,	as	well	as	ipsilateral	cerebellum.	These	regions	correspond	to	well-
known	structures	 involved	in	movement	generation	(Miall,	2013),	and	their	 lateralization	advo-
cates	for	the	task-specific	nature	of	this	network.	Importantly,	the	neural	substrates	mediating	mo-
tor	 skill	 learning	 are	 known	 to	 rely	 on	 distributed	 cortical	 and	 subcortical	 regions	 (Dayan	 and	
Cohen,	2011;	Doyon	et	al.,	2018).	 In	particular,	 the	role	of	cortico-striatal	and	cortico-cerebellar	
circuits	have	been	suggested	to	play	a	critical	role	in	this	form	of	procedural	memory.	In	this	con-
text,	the	delineation	of	two	iCAPs	comprising	striatal	regions	of	the	basal	ganglia,	such	as	the	puta-
men,	 caudate	 and	 accumbens,	may	provide	 insights	 into	 their	 learning-dependent	mechanisms.	
Furthermore,	the	cerebellum	was	also	dissected	into	anatomically	and	functionally	meaningful	sub-
regions.	Several	networks	included	parietal	regions	involved	in	representation	of	the	hands	and	in	
visuospatial	guidance	(Hardwick	et	al.,	2013),	an	expected	result	owing	to	the	nature	of	the	motor	
task	(visual	presentation	of	targets	to	be	reached	using	a	joystick).	These	regions	were	combined	
with	the	premotor	cortex,	also	implicated	in	spatial	planning	of	movement	(Tanji,	2001).	Finally,	
the	anterior	cingulate	cortex	(ACC),	known	to	participate	to	movement	coordination	(Wenderoth	
et	al.,	2005)	and	error	processing	(Seidler	et	al.,	2013),	was	also	recovered	in	several	networks.	Of	
note,	the	fact	that	a	single	region,	such	as	the	ACC,	could	be	present	in	multiple	networks	was	ren-
dered	possible	by	the	unique	ability	of	the	iCAP	method	to	identify	spatially	overlapping	compo-
nents	(Karahanoǧlu	and	Van	De	Ville,	2015).	Regarding	the	11	spinal	iCAPs,	we	could	also	isolate	
networks	corresponding	to	spinal	levels	and	displaying	dorsal	(i.e.,	sensory)	and	ventral	(i.e.,	mo-
tor)	components,	in	line	with	resting-state	studies	(Barry	et	al.,	2014;	Kong	et	al.,	2014;	Kinany	et	
al.,	2020).	Interestingly,	all	networks	were	bilateral,	despite	the	unilaterality	of	the	task.	Although	
finer	components	have	been	previously	reported	(Kinany	et	al.,	2020),	as	well	as	unilateral	net-
works	(Kong	et	al.,	2014),	the	coarse	organization	detected	in	this	study	may	pertain	to	the	low	
spatial	resolution	(1.2	x	1.2	x	5	mm3),	which	prevented	a	detailed	observation	of	spinal	structures.	
Nevertheless,	our	findings	suggest	that	we	could	access	simple	building	blocks	of	spinal	cord’s	func-
tional	architecture.	Capitalizing	on	the	time-varying	feature	of	the	iCAP	method,	we	then	explored	
the	temporal	dynamics	of	these	functionally-relevant	cerebro-spinal	modules	and	confirmed	that	
they	manifested	task-related	activity	fluctuations	underlying	MSL.	

7.4.2 	Distinct	neural	structures	support	short-	and	long-term	motor	learning		

Behavioral	studies	have	underlined	that	sequence	 learning	occurs	 in	distinct	stages	(Doyon	and	
Benali,	2005;	Diedrichsen	and	Kornysheva,	2015;	Doyon	et	al.,	2018).	Short-term	motor	learning	is	
characterized	by	rapid	 improvements	 in	performance	 in	 the	early	 stage	of	 skill	 acquisition	 (i.e.,	
within	a	single	training	session),	while	skills	are	then	slowly	consolidated	and	optimized	as	long-
term	practice	continues	over	several	sessions.	A	large	body	of	evidence	has	demonstrated	that	mul-
tiple	cortical	and	subcortical	regions	positively	and	negatively	modulate	their	activity	at	different	
timescales,	to	support	the	acquisition	and	retention	of	novel	skills	(Tanji,	2001;	Doyon	and	Benali,	
2005;	Floyer-Lea	and	Matthews,	2005;	Dayan	and	Cohen,	2011;	Wymbs	and	Grafton,	2015;	Doyon	
et	al.,	2018).	In	addition	to	these	experiments	examining	cerebral	correlates	of	MSL,	several	studies	
suggested	changes	at	the	level	of	the	spinal	cord	(Nielsen	et	al.,	1993;	Meunier	et	al.,	2007;	Wolpaw,	
2007;	Lungu	et	al.,	2010;	Vahdat	et	al.,	2015).	Mostly,	knowledge	on	this	topic	was	gathered	thanks	
to	electrophysiological	recordings,	for	instance	using	the	H-reflex	as	a	proxy	for	spinal	excitability.	
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While	this	pointed	to	an	active	role	of	the	spinal	cord	in	skill	acquisition,	the	precise	underpinnings	
of	this	involvement,	as	well	as	its	temporal	properties,	are	yet	to	be	characterized.	

Capitalizing	on	the	two	acquisition	sessions	provided	in	the	dataset,	we	addressed	this	question	by	
probing	 time-dependent	 learning	 effects.	 FMRI	 time	 series	were	 acquired	during	RND	and	 SEQ	
tasks,	in	the	early	(day	1)	and	late	(day	6)	stages	of	learning,	to	distinguish	skill	learning	from	mere	
motoric	output.	As	anticipated,	behavioral	results	(Figure	7.2)	confirmed	within-	and	between-ses-
sion	improvements	that	were	specific	to	the	SEQ	task,	while	performances	remained	stable	during	
RND	practice.	Given	these	observations,	we	hypothesized	that	cerebro-spinal	functional	activity,	as	
described	using	iCAPs,	would	exhibit	differential	patterns	reflecting	MSL	at	different	timescales.	A	
multivariate	classification	approach	was	employed	and	showed	that	activity	patterns	associated	
with	the	SEQ	and	RND	tasks	in	each	session	could	be	classified	with	high	accuracies	(Figure	7.5).	
Specifically,	performance	increased	from	Day	1	(68%)	to	Day	6	(86%),	suggesting	a	stabilization	of	
the	 underlying	 neural	 structures	 as	 the	 skills	 got	 consolidated	 and	 more	 and	 more	 automatic	
(Diedrichsen	and	Kornysheva,	2015).	To	further	appreciate	the	specificities	of	short-	and	long-term	
skill	acquisition,	classification	was	also	performed	between	sessions	and	enabled	to	discriminate	
between	the	neural	activity	patterns	associated	with	early	and	late	MSL	(mean	accuracy	of	72%)	
(Figure	7.6).	

Interestingly,	distinct	cerebro-spinal	structures	were	involved	in	discriminating	between	tasks.	On	
Day	1,	one	cortical	iCAP	(regions	in	ACC	and	S1)	was	found	to	be	associated	with	SEQ	practice	and	
may	have	contributed	to	the	initial	learning	of	the	sequence	through	processes	supporting	sensory	
feedback	and	error	correction	(Hardwick	et	al.,	2013).	When	comparing	MSL-related	patterns	on	
both	days,	we	found	that	four	brain	iCAPs	showed	significant	discriminative	power,	with	concomi-
tant	increase	and	decrease	of	activity,	as	reported	in	earlier	studies	(Steele	and	Penhune,	2010).	
Networks	encompassing	premotor	areas	were	tied	to	early	learning,	in	line	with	evidence	suggest-
ing	a	dominant	contribution	of	these	regions	during	the	formation	of	sequence-specific	knowledge	
(Penhune	and	Steele,	2012;	Lohse	et	al.,	2014;	Wymbs	and	Grafton,	2015).	Following	training,	a	
global	decrease	was	observed	in	task-specific	sensorimotor	areas,	along	with	visuospatial	regions,	
potentially	indicating	that	sequential	movements	were	done	effortlessly	after	several	days	of	prac-
tice,	 with	minimal	 reliance	 on	 visual	 information.	 These	 diminutions	 occurring	with	 long-term	
learning	were	accompanied	by	an	increase	of	activity	in	other	cortical	and	subcortical	domains,	in	
particular	in	a	network	comprising	striatal	and	hippocampal	regions,	and	in	an	iCAP	including	bi-
lateral	sensorimotor	regions.	Importantly,	cortico-striatal	systems	are	presumed	to	mediate	MSL	
consolidation	(Doyon	et	al.,	2003,	2018;	Doyon	and	Benali,	2005;	Lohse	et	al.,	2014),	notably	by	
means	of	interactions	with	the	hippocampus	(Albouy	et	al.,	2013).	Furthermore,	our	findings	are	in	
agreement	with	a	reported	shift	from	a	task-specific	cortical	network	in	short-term	learning,	to	a	
bihemispheric	cortical	and	subcortical	network	in	long-term	learning	(Floyer-Lea	and	Matthews,	
2005).	

At	the	spinal	level,	within-session	classification	emphasized	that	several	networks	were	positively	
associated	with	MSL,	with	a	shift	from	caudal	(C8)	to	rostral	(C6-C7)	spinal	levels	from	Day	1	to	Day	
6.	It	should	be	noted	that	these	levels	coincide,	respectively,	with	innervation	sites	of	fingers	and	
wrist	muscles	(Kendall	et	al.,	2005;	Kinany	et	al.,	2019)	(see	Chapter	5).	In	addition,	these	networks	
were	located	on	the	ventral	side,	thus	pointing	to	their	motor	essence.	This	may	indicate	a	temporal	
evolution	of	the	motor	strategies	employed	by	the	participants	to	achieve	smooth	sequential	mo-
tion.	We	hypothesized	that	accurate	movements	may	initially	rely	on	distal	muscles,	as	finger	grip	
enabled	precise	control	of	 the	 joystick	and	allowed	prompt	trajectory	correction	 in	the	event	of	
errors.	 In	 contrast,	 a	more	 optimal	muscle	 control	 scheme	may	 have	 arisen	 following	 practice,	
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entailing	a	decrease	of	finger	activations,	coupled	with	the	emergence	of	synergistic	strategies	in-
volving	more	proximal	muscles,	such	as	wrist	actuators.	It	is	noteworthy	that	the	learning-related	
regions	reported	on	Day	1	are	in	agreement	with	results	from	Vahdat	et	al.,	2015,	despite	differ-
ences	in	the	nature	of	the	task.	Finally,	classification	between	sessions	confirmed	that	early	and	late	
learning	intervals	were	dominated	by	disparate	spinal	regions,	with	a	rostro-caudal	shift,	from	C8	
to	C7,	following	extended	practice	of	the	sequential	task.		

In	conclusion,	we	showed	that	distributed	networks	of	cortical,	subcortical	and	spinal	structures	
contribute	 selectively	 to	 short-	 and	 long-term	motor	 learning.	 These	 observations	 suggest	 that	
functional	 reorganization	occurs	 in	 the	whole	CNS	 to	 subserve	 the	 acquisition	 and	 retention	of	
novel	skills.	

7.4.3 	Integrated	brain-spinal	cord	networks	may	support	synergistic	control	

A	further	aim	of	this	study	was	to	investigate	how	dynamic	interactions	between	brain	and	spinal	
cord	regions	may	foster	the	establishment	of	new	motor	skills.	To	this	end,	we	conducted	an	iCAP-
informed	correlation	analysis	and	showed	that	several	cerebro-spinal	networks	emerged	following	
long-term	practice	(Figure	7.7).	Significant	connectivity	changes	were	found	between	the	dorsal	
side	of	the	C6	spinal	level	and	clusters	in	the	left	ACC	and	cerebellum.	Moreover,	a	network	com-
prising	the	ventral	side	of	the	C8	spinal	level	and	a	cluster	in	the	left	sensorimotor	cortex	was	also	
found.	Interestingly,	cerebro-spinal	networks	have	been	formerly	highlighted,	during	task	(Vahdat	
et	al.,	2015)	and	at	rest	(Vahdat	et	al.,	2020).	

In	particular,	Vahdat	et	al.	(Vahdat	et	al.,	2015)	demonstrated	learning-induced	modulations	of	con-
nectivity	between	the	spinal	cord	and	the	brain	during	short-term	learning.	In	particular,	the	rela-
tionship	with	the	sensorimotor	decreased	with	practice,	while	it	got	stronger	with	the	cerebellum.	
Our	results	indicated	a	similar	decoupling	between	the	spinal	cord	and	the	sensorimotor	cortex	as	
learning	 proceeds.	 Of	 note,	 the	 sensorimotor	 cluster	 overlapped	with	 the	 posterior	 area	 of	M1	
(BA4p),	which	contains	corticomotoneuronal	(CM)	cells	that	make	direct	monosynaptic	with	spinal	
motoneurons	(Rathelot	and	Strick,	2006,	2009).	CM	projections	are	presumed	to	be	 involved	 in	
precision	grip,	notably	to	subserve	voluntary	control	of	 independent	finger	movements	(Lemon,	
2008).	Therefore,	desynchronization	between	the	spinal	cord	and	the	sensorimotor	cortex	during	
practice	of	a	learnt	sequence	may	indicate	that	subjects	part	ways	from	an	error-focused	strategy	
relying	on	fine	finger	movements.	

We	posit	that	this	decrease	in	finger	use	may	appear	concomitantly	to	the	emergence	of	a	more	
synergistic	control,	 likely	 implying	a	transition	towards	the	use	of	wrist	muscles.	 In	non-human	
primates,	evidence	underscored	the	interaction	of	fractionated	and	synergistic	control	to	support	
the	versatility	of	hand	movements	(Takei	and	Seki,	2010;	Takei	et	al.,	2017).	In	general,	synergies	
have	been	proposed	as	a	way	to	simplify	complex	motor	control,	by	simultaneously	recruiting	mus-
cles	(i.e.,	muscle	synergies,	Mussa-Ivaldi	et	al.,	1994;	D’Avella	et	al.,	2003)	or	joints	(i.e.,	postural	
synergies,	Santello	et	al.,	1998)	in	a	coordinated	fashion.	The	neural	underpinnings	of	these	syner-
gies	remain	unclear,	but	an	 interplay	between	spinal	and	supraspinal	regions	have	been	argued	
(Bizzi	and	Cheung,	2013;	Santello	et	al.,	2013;	Giszter,	2015).	On	one	hand,	an	involvement	of	motor	
cortical	areas	have	been	demonstrated	(Overduin	et	al.,	2012,	2015;	Rana	et	al.,	2015;	Leo	et	al.,	
2016).	On	the	other	hand,	findings	derived	from	intraspinal	stimulation	in	animals	have	highlighted	
the	ability	of	the	spinal	cord	to	generate	functional	modular	movements	(Saltiel	et	al.,	2001;	Moritz	
et	al.,	2007;	Zimmermann	et	al.,	2011).	Accordingly,	synergies	may	be	embedded	in	the	spinal	cir-
cuitry,	for	instance	through	interneurons,	and	orchestrated	by	supraspinal	regions.	In	this	context,	
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these	mechanisms	have	been	proposed	to	rely	on	spino-cerebellar	interactions	(Jörntell,	2016).	Ac-
cording	to	this	hypothesis,	the	spinal	cord	adapts	to	the	most	optimal	muscle	coordination	patterns,	
based	on	the	kinematic	and	biomechanical	constraints	of	the	task,	and	the	cerebellum	can	then	time	
the	use	of	these	synergistic	components.	Besides,	cerebellar	damage	was	recently	shown	to	impact	
the	spatiotemporal	structure	of	muscle	synergies	(Berger	et	al.,	2020),	thus	providing	support	for	
its	role	 in	timing	coordinated	movements.	Here,	we	hypothesized	that	the	strengthening	of	syn-
chronization	between	the	cerebellum	(Crus	I)	and	the	C6	spinal	level	may	pertain	to	the	emergence	
of	muscular	synergies	relying	on	wrist	muscles.	In	line	with	this	hypothesis,	primate	and	human	
studies	have	highlighted	 that	 cells	 in	Crus	 I	 are	 linked	 to	 forelimb	movements	 (Lu	et	 al.,	 2007;	
Mottolese	et	al.,	2012).	Besides,	 it	 is	 likely	that	synergistic	control	relies	on	peripheral	 feedback	
from	muscles,	joints	and	skin	(Santello	et	al.,	2013;	Ting	et	al.,	2015),	which	would	explain	the	dor-
sal	lateralization	of	C6	in	this	spino-cerebellar	network.	Importantly,	it	should	be	emphasized	that	
this	coupling	was	only	detected	following	long-term	practice,	while	a	weak	negative	connectivity	
was	observed	in	the	early	phase,	in	agreement	with	Vahdat	et	al.,	2015.	The	shift	to	a	synchronized	
spino-cerebellar	network	suggests	that	distinct	mechanisms	are	in	place	when	skills	get	consoli-
dated.	While	these	conclusions	remain	conjectural,	future	studies	could	explicitly	compare	syner-
gistic	and	non-synergistic	hand	movements,	similarly	to	previous	work	in	the	brain	(Ehrsson	et	al.,	
2002).	

Finally,	a	negative	functional	connectivity	between	C6	and	the	dorsal	ACC	was	found	in	short-term	
learning.	Considering	the	role	of	the	ACC	in	error	detection	and	online	monitoring	of	performance	
(Seidler	et	al.,	2013),	such	an	observation	is	not	unexpected	during	the	acquisition	of	sequence-
specific	skills	through	visual	feedback.	In	these	circumstances,	the	negative	corticospinal	correla-
tion	may	imply	an	inverse	relationship	between	erroneous	behavior	and	synergistic	control.	Alter-
natively,	increased	activity	in	the	dorsal	ACC	may	indicate	performance	anxiety	and	result	in	a	de-
terioration	of	sequential	motor	performance	(Ganesh	et	al.,	2019),	possibly	occurring	through	a	
decrease	 in	the	recruitment	of	rostral	spinal	 levels.	The	self-initiated	nature	of	 the	task	used	by	
Vahdat	et	al.,	2015,	which	implied	less	reliance	on	external	error	monitoring,	may	explain	why	such	
a	network	was	not	revealed	in	their	study.	

7.4.4 	Outlook	and	clinical	potential	

In	this	work,	we	combined	neural	networks	extracted	using	dynamic	functional	connectivity	with	
a	multivariate	classification	approach,	to	achieve	a	synthetic	view	of	the	cerebrospinal	correlates	
of	MSL	at	multiple	timescales.	While	this	study	focused	on	task-related	data,	it	should	be	noted	that	
the	data-driven	character	of	this	methodology	makes	it	readily	adaptable	to	resting-state	record-
ings,	in	contrast	to	activation-based	studies	requiring	a	task	paradigm	(e.g.,	general	linear	model).	
As	such,	it	offers	an	inroad	into	investigating	intrinsic	changes	in	the	brain-spinal	cord	functional	
architecture	following	MSL.	Indeed,	resting-state	studies	can	provide	insights	into	motor	learning	
whilst	limiting	confounds	from	task	practice	(Krakauer,	2007;	Doyon	et	al.,	2018),	and	learning-
induced	 modulations	 in	 resting-state	 connectivity	 have	 been	 demonstrated	 at	 the	 brain	 level	
(Vahdat	et	al.,	2011;	Sami	et	al.,	2014).	

Analogous	approaches	could	be	deployed	to	 investigate	 the	 impact	of	neurological	disorders	on	
motor	learning.	As	a	matter	of	fact,	the	acquisition	and	consolidation	of	motor	skills,	both	in	healthy	
and	impaired	individuals,	rely	on	plastic	changes	at	multiple	sites	throughout	the	CNS	(Wolpaw	and	
Tennissen,	2001;	Cramer	et	al.,	2011;	Dayan	and	Cohen,	2011).	It	has	not	only	been	argued	that	
principles	 derived	 from	motor	 learning	 could	 help	 guide	 future	 interventions	 (Krakauer,	 2006;	
Zeiler	and	Krakauer,	2013;	Maier	et	al.,	2019),	but	also	that	efficient	rehabilitation	strategies	should	
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capitalize	on	plasticity	in	spinal	reflex	pathways	(Wolpaw,	2012).	Therefore,	an	integrative	view	of	
MSL	could	provide	a	tool	to	gain	valuable	knowledge	on	the	dynamics	of	spinal	and	supraspinal	
mechanisms	mediating	learning.	

7.5 	Conclusion	

Our	study	uncovered	neural	correlates	of	motor	sequence	learning,	distributed	throughout	the	en-
tire	neural	axis.	In	particular,	we	showed	that	short-	and	long-term	learning	were	characterized	by	
specific	patterns	of	cortical,	subcortical	and	spinal	activity.	A	compelling	observation	was	a	shift	
from	caudal	to	rostral	spinal	levels	following	extended	sequential	practice.	We	hypothesized	that	
this	may	reflect	the	neural	substrates	supporting	a	transition	towards	a	synergistic	motor	control	
strategy.	This	claim	was	also	supported	by	the	dynamic	interactions	observed	between	the	brain	
and	the	spinal,	suggesting	a	decrease	in	coupling	with	sensorimotor	regions,	concomitant	with	an	
increased	synchronization	with	cerebellar	regions	likely	involved	in	timing	coordinated	motor	rou-
tines.	To	conclude,	this	work	provides	a	potential	starting	point	to	investigate	the	widespread	neu-
ral	networks	underlying	motor	memory	and	learning	in	the	healthy	and	impaired	nervous	system.	
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8.1 	Introduction	

Owing	to	its	key	position	in	the	motor	hierarchy,	the	spinal	cord	could	offer	promising	avenues	to	
enhance	 functional	 recovery	 (Wolpaw,	2012;	Baker	et	 al.,	 2015).	As	 such,	 investigating	how	 its	
structure	and	function	underpin	sensorimotor	behavior	is	crucial,	not	only	in	health,	but	also	in	
disease.	In	this	perspective,	imaging	methods	aiming	at	probing	spinal	cord	structure	have	been	
widely	deployed,	 for	 instance	to	evaluate	spinal	cord	 integrity	 following	a	cerebral	(Ward	et	al.,	
2006;	Zhu	et	al.,	2011;	Puig	et	al.,	2013;	Maraka	et	al.,	2014;	Karbasforoushan	et	al.,	2019)	or	spinal	
cord	injury	(Martin	et	al.,	2016;	Cadotte	et	al.,	2018).	Although	these	approaches	can	provide	mean-
ingful	information	regarding	the	progression	of	an	injury	and	its	potential	recovery,	they	only	offer	
a	partial	comprehension	of	the	complex	events	taking	place	in	the	spinal	cord.	In	particular,	they	do	
not	inform	about	residual	neural	function.	Therefore,	extending	these	assessments	to	spinal	cord	
function	could	give	new	insights	into	the	processes	mediating	spinal	neural	plasticity.	This	could	
help	gear	therapies	toward	knowledge-based	strategies	harnessing	neurological	function	to	pro-
mote	recovery.		

Throughout	 the	 last	 chapters,	we	have	emphasized	 the	potential	of	 spinal	 cord	 fMRI	 to	explore	
these	 functional	mechanisms.	While	we	 focused	 on	 the	 normal	 functioning	 of	 spinal	 circuits,	 it	
stands	to	reason	that	it	may	also	be	a	powerful	tool	to	probe	their	alterations.	In	this	chapter,	we	
present	two	prospective	applications	of	spinal	cord	fMRI	in	a	clinical	context.	In	particular,	we	in-
troduce	preliminary	results	in	a	stroke	population	(study	1),	as	well	as	a	case	study	in	a	spinal	cord	
injured	(SCI)	patient	(study	2).	

Adaptive	and	maladaptive	plasticity	in	stroke:	Spinal	circuits	are	not	immutable.	Instead,	they	
evolve	 throughout	our	 lifetime,	as	 they	experience	dynamic	changes	shaped	by	supraspinal	and	
peripheral	inputs	(Christiansen	et	al.,	2017).	While	this	can	occur	during	learning	or	normal	aging,	
plastic	 reorganization	 can	 also	 result	 from	 damages	 to	 sensorimotor	 pathways	 (Wolpaw	 and	
Tennissen,	2001).	In	this	context,	plasticity	can	help	compensate	for	a	loss	of	function,	as	axonal	or	
synaptic	rearrangements	can	foster	the	emergence	of	alternative	pathways	to	recovery	(Fouad	and	
Tse,	2008;	Wolpaw,	2012).	Nevertheless,	plastic	adaptation	is	not	always	beneficial.	One	such	ex-
ample	is	the	case	of	spasticity,	an	increased	velocity-dependent	resistance	to	muscle	stretch,	a	com-
mon	symptom	following	CNS	lesions	(Nielsen	et	al.,	2007).	This	increased	excitability	of	the	stretch	
reflex	 is	 thought	to	rely	on	changes	 in	spinal	neurons.	Although	the	exact	mechanisms	of	action	
remain	unclear	(Li	and	Francisco,	2015;	Li,	2017),	imbalances	between	spinal	excitatory	and	inhib-
itory	inputs	may	putatively	arise	from	perturbations	in	supraspinal	signals.	In	more	general	terms,	
several	studies	in	humans	have	emphasized	that	multiple	descending	motor	pathways	likely	con-
tribute	 to	 adaptive	 and	 maladaptive	 plasticity	 at	 the	 spinal	 level	 (McPherson	 et	 al.,	 2018;	
Karbasforoushan	et	al.,	2019;	Sangari	et	al.,	2019).	Capitalizing	on	the	potential	of	 the	SpiCiCAP	
framework	to	disentangle	spinal	pathways	in	vivo	(see	details	in	Chapter	6)	(Kinany	et	al.,	2020),	

Chapter	8 	
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we	posit	that	spinal	cord	fMRI	could	shed	new	light	on	these	mechanisms.	To	this	end,	we	deployed	
this	approach	in	a	small	cohort	of	stroke	patients	(n	=	9)	and	attempted	to	relate	changes	in	cervical	
functional	organization	to	clinical	assessments	of	spasticity.		

Personalized	mapping	of	the	lumbosacral	spinal	cord	following	SCI:	In	addition	to	its	potential	
for	understanding	plasticity	mechanisms,	spinal	cord	fMRI	can	also	be	employed	to	assess	subject-
specific	spinal	properties,	for	instance	to	support	personalized	rehabilitation	strategies.	Here,	we	
discuss	one	such	assessment	in	the	context	of	SCI.	As	they	disrupt	the	flow	of	descending	and	as-
cending	information	between	the	brain	and	the	periphery,	SCI	are	among	the	most	incapacitating	
neurological	conditions,	often	leaving	survivors	with	severe	paralysis	(Ahuja	et	al.,	2017).	In	this	
context,	electrical	epidural	stimulation	(EES)	in	the	lumbosacral	spine	has	emerged	as	a	potential	
treatment	to	restore	 locomotion,	with	promising	results	 in	humans	(Wagner	et	al.,	2018).	Given	
that	EES	operates	by	activating	proprioceptive	circuits	though	the	dorsal	horns	(Capogrosso	et	al.,	
2013),	precise	spatiotemporal	neuromodulation	is	required	to	maximize	clinical	outcome	(Wenger	
et	al.,	2016).	While	afferents	from	a	single	muscle	innervate	only	a	few	spinal	levels,	a	substantial	
intersubject	variability	in	the	innervation	pattern	has	been	reported	(Sharrard,	1964;	Schirmer	et	
al.,	2011).	Consequently,	mapping	innervation	patterns	in	a	personalized	manner	could	help	opti-
mize	EES	protocols.	For	that	purpose,	we	conducted	a	spinal	cord	fMRI	experiment	in	one	spinal	
cord	 injured	patient	to	achieve	a	personalized	mapping	of	 innervation	patterns.	Specifically,	 the	
patient	underwent	passive	mobilization	of	his	leg	joints	(hip,	knee	and	ankle)	so	as	to	produce	sen-
sory	activation	in	the	dorsal	horns,	expected	to	be	in	distinct	rostrocaudal	locations	depending	on	
the	muscles	in	movement	(Schirmer	et	al.,	2011).	

8.2 	Methods	

8.2.1 	Participants		

Study	1	

Nine	stroke	patients	(2	 females,	69.5	±	13.2	years	old)	were	recruited	 in	collaboration	with	 the	
Clinique	Romande	de	Réadaptation	(Sion,	Switzerland),	as	part	of	a	longitudinal	multimodal	study	
(TiMeS	project	–	Towards	individualized	Medicine	in	Stroke).	Spinal	MRI	acquisitions	were	per-
formed	3	months	after	the	stroke.	Detailed	subject	demographics	are	provided	in	Table	F1.	Spastic-
ity	was	evaluated	using	the	Modified	Ashworth	Scale	(upper	limb	muscles,	on	a	scale	of	48).	In	order	
to	probe	its	evolution,	we	considered	this	assessment	at	two	timepoints	(3	weeks	and	3	months	
post-stroke).	The	nineteen	healthy	subjects	analyzed	in	Chapter	6	(Kinany	et	al.,	2020)	were	used	
as	a	control	group	(10	females,	28.5	±	3.1	years	old).		

Study	2	

One	SCI	patient	(male,	33	years	old)	was	recruited	in	collaboration	with	the	Centre	Hospitalier	Uni-
versitaire	Vaudois	(Lausanne,	Switzerland),	before	implantation	of	an	epidural	stimulator,	as	part	
of	a	collaboration	with	the	G-lab	(EPFL).	The	participant	was	classified	as	AIS-A	using	the	American	
Spinal	Cord	Injury	Association	Impairment	Scale	(AIS).		

8.2.2 Image	acquisition	

All	 imaging	was	performed	using	a	3.0	Tesla	Siemens	Prisma	scanner.	Cervical	 images	were	ac-
quired	using	the	parameters	we	previously	employed	to	characterize	spinal	activity	during	upper	
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limb	movements	(Kinany	et	al.,	2019)	and	rest	(Kinany	et	al.,	2020)	(i.e.,	ZOOMit	sequence,	resolu-
tion	of	1	x	1	x	3	mm3,	TR	=	2.5	s,	TE	=	34	ms).	Lumbosacral	acquisitions	followed	the	protocols	
introduced	in	Chapter	4	(i.e.,	ZOOMit	sequence,	resolution	of	1.1	x	1.1	x	3	mm3,	TR	=	2.5	s,	TE	=	34	
ms).	 High-resolution	 T2-weighted	 anatomical	 images	 from	 the	 region-of-interest	were	 also	 ob-
tained	(SPACE	sequence,	resolution	of	0.4	x	0.4	x	0.8	mm3,	TR	=	1.5	s,	TE	=	135	ms).	

Study	1	

For	 each	 participant,	 240	 volumes	 (i.e.,	 10	minutes)	 were	 acquired	 during	 rest.	 Subjects	 were	
simply	asked	to	relax,	breathe	normally	and	minimize	motion.	Physiological	monitoring	was	per-
formed	using	 a	photoplethysmograph	 and	 a	 respiratory	belt	 (Biopac	MP150	 system,	California,	
USA).		

Study	2	

The	patient	was	installed	in	supine	position	while	his	right	leg	was	passively	mobilized	by	a	trained	
therapist,	so	as	to	stretch	different	muscles	of	interest	using	(i)	ankle	extension	(expected	muscle	
activation:	tibialis	anterior),	(ii)	ankle	flexion	(soleus	and	gastrocnemius),	(iii)	knee	flexion	(vastus	
lateralis	and	rectus	femoris),	and	(iv)	hip	flexion	(iliopsoas).	Two	runs	were	acquired	for	each	con-
dition	(order	not	randomized,	as	each	condition	required	the	limb	to	be	specifically	positioned	and	
stabilized	using	foam	paddings).	Movements	were	performed	in	blocks	of	15	seconds	(13	blocks	of	
rest	alternated	with	12	blocks	of	movements)	and	an	entire	run	lasted	6	min	and	15	s.	Auditory	
cues	were	provided	using	headphones	 to	 inform	the	 therapist	of	 the	different	phases.	Although	
physiological	signals	could	not	be	acquired	with	the	available	setup,	it	should	be	noted	that	physi-
ological	motion	is	most	prominent	in	the	spinal	cord	and	decreases	significantly	toward	the	lum-
bosacral	regions	(Figley	et	al.,	2008;	Cadotte	et	al.,	2018).	

8.2.3 Data	processing	and	analysis	

Study	1	

Processing	was	 the	 same	 for	 all	 participants	 and	 followed	 the	 pipeline	 described	 in	 Chapter	 6	
(Kinany	et	al.,	2020).	Briefly,	 it	 included	motion	correction,	 timecourse	denoising	(regression	of	
motion,	physiological	noise	and	CSF	signal)	and	smoothing	along	the	cord	(Gaussian	kernel	with	a	
FWHM	of	2	x	2	x	6	mm3).	Volumes	of	the	patients	who	had	a	lesion	in	the	left	hemisphere	where	
flipped	so	that	all	lesions	were	on	the	right	hemisphere	for	group	analysis.	The	SpiCiCAP	framework	
introduced	in	Chapter	6	(Kinany	et	al.,	2020)	was	then	applied	to	recover	40	fine-grained	spinal	
iCAPs,	whose	temporal	properties	were	extracted.	As	two	subjects	had	functional	scans	that	did	not	
include	the	C8	spinal	level,	iCAP	extraction	was	constrained	to	a	region	extending	from	C5	to	C7.	
The	SpiCiCAP	framework	was	also	run	in	the	control	group.	In	order	to	enable	comparison	with	the	
patients,	 functional	 scans	of	healthy	subjects	 (Kinany	et	al.,	2020)	were	cropped	 temporally	 (to	
keep	the	first	240	volumes,	out	of	360)	and	spatially	(to	only	include	regions	from	C5	to	C7).	For	
both	groups,	the	neuroanatomical	relevance	of	each	fine-grained	components	was	evaluated	using	
an	atlas	of	grey	and	white	matter	regions	(Lévy	et	al.,	2015).		

Study	2	

Processing	and	analysis	were	based	on	our	previous	study	assessing	the	cervical	correlates	of	upper	
limb	movements	(Kinany	et	al.,	2019).	First,	timecourses	were	motion	corrected,	smoothed	along	
the	cord	(Gaussian	kernel	with	a	FWHM	of	2	x	2	x	6	mm3)	and	highpass	filtered	(sigma	=	45s).	A	
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first-level	statistical	analysis	(within	run)	was	carried	out	using	FSL's	fMRI	Expert	Analysis	Tool	
(FEAT).	Explanatory	variables	were	defined	using	the	timings	of	task	blocks,	convolved	with	three	
optimal	basis	functions	using	FLOBS	(FMRIB's	Linear	Optimal	Basis	Set)	(Woolrich	et	al.,	2004b)	to	
model	potential	temporal	and	dispersion	shifts.	Slice-wise	CSF	signal	and	motion	parameters	were	
included	as	noise	regressors,	along	with	motion	outliers.	For	each	movement,	the	parameter	esti-
mates	(i.e.,	task	against	rest)	obtained	for	the	two	runs	were	combined	using	a	second-level	statis-
tical	 analysis	 (across	 runs)	 using	 a	 fixed-effects	 model	 to	 obtain	 movement-specific	 activation	
maps.	Finally,	these	maps	were	used	to	map	the	rostro-caudal	locations	of	activations.	To	ensure	
that	activity	was	related	to	the	passive	movements,	this	analysis	was	constrained	to	the	right	dorsal	
quadrant.		

8.3 	Results	

8.3.1 	Patient-derived	spinal	iCAPs	line	up	with	neuroanatomy	(Study	1)	

Data	quality	was	evaluated	prior	to	iCAP	extraction.	In	the	x	direction,	patients	displayed	slightly	
higher	motion	 (framewise	 displacement,	 FDx	 =	 0.07	 ±	 0.03mm,	mean	 over	 subjects	 ±	 SD)	 than	
healthy	subjects	(0.04	±	0.01	mm,	p	<	0.001),	while	no	significant	difference	was	observed	in	the	y	
direction	(FDy	=	0.11	±	0.06	mm	for	patients	and	0.10	±	0.04	mm	for	healthy	subjects,	p	=	0.24).	
Regardless	of	these	differences,	participants	from	both	groups	had	average	FD	inferior	to	0.3	mm	
in	the	x	and	y	directions	and	all	subjects	were	included	in	the	analysis.	

40	fine-grained	components	were	uncovered	in	patients	using	the	SpiCiCAP	framework.	Spontane-
ous	spinal	activity	was	highly	structured	and	could	be	delineated	into	precise	axial	subdivisions	
(Figure	8.1A).	Following	the	approach	introduced	in	Chapter	6	(Kinany	et	al.,	2020),	each	compo-
nent	was	matched	to	an	atlas	region	(Lévy	et	al.,	2015)	based	on	its	voxel	distribution.	Dice	coeffi-
cients	(0.56	±	0.09,	mean	over	iCAPs	±	SD)	confirmed	the	accuracy	of	the	assignment.	To	probe	the	
functional	relevance	of	the	revealed	components,	we	then	evaluated	the	nature	of	the	correspond-
ing	atlas	regions	(Figure	8.1B).	As	a	comparison,	we	performed	the	same	analysis	in	the	control	
group	(Figure	8.1C).	For	both	groups,	iCAPs	were	organized	according	to	spinal	neural	pathways	
(i.e.,	the	corticospinal	tract	pathway,	CST,	and	the	dorsal	column	medial	lemniscus	pathway,	DCML).	
Despite	this	general	agreement,	two	atlas	regions	(referred	to	as	patient-specific	hereafter)	were	
only	observed	in	stroke	patients.	Specifically,	they	corresponded	to	a	region	in	the	ventral	cortico-
spinal	tract	(iCAP	33)	and	to	a	dorsal	horn	(iCAP	12).	While	iCAP	33	was	matched	with	the	ventral	
corticospinal	tract	using	an	hard	assignment	procedure	(i.e.,	maximum	number	of	voxels),	we	ob-
served	that	it	extended	beyond	the	boundaries	of	this	atlas	region.	In	particular,	it	covered	regions	
in	 the	 tectospinal	 and	medial	 reticulospinal	 tracts	 (Figure	 8.2A).	 it	 should	 be	 noted	 that	 these	
smaller	tracts	are	known	to	be	less	neatly	defined	than	their	larger	counterparts,	such	as	the	CST	
(Nathan	et	al.,	1996),	and	that	they	tend	to	be	intermingled	with	other	pathways.	
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Figure	8.1–	iCAPs	spatial	characteristics	(Study	1).	A.	40	spinal	iCAPs	were	extracted	in	stroke	patients.	In	
line	with	our	previous	findings	(see	Chapter	6)	(Kinany	et	al.,	2020),	the	fine-grained	components	correspond	
to	meaningful	neuroanatomical	structures.	Each	iCAP	was	matched	to	an	atlas	region	(Lévy	et	al.,	2015)	(mean	
Dice	coefficient	±	SD	=	0.56	±	0.09).	ICAPs	are	presented	in	rostro-caudal	order.	Thresholded	iCAP	maps,	in	
red,	are	overlaid	on	the	corresponding	atlas	region	probabilistic	maps,	in	blue.	The	PAM50	template	is	used	
as	a	background	(De	Leener	et	al.,	2018).	ICAPs	numbers	are	indicated	in	the	bottom	right	corners.	N	=	non-
paretic,	P	=	paretic,	D	=	dorsal,	V	=	ventral.	B.	The	nature	of	the	atlas	regions	associated	with	the	40	patient-
specific	iCAPs	was	probed.	The	number	of	iCAPs	per	atlas	region	is	presented,	omitting	regions	with	no	as-
signed	iCAP.	ICAPs	cluster	into	spinal	neural	pathways	(DCML:	Dorsal	Column	Medial	Lemniscus	pathway	and	
CST:	Cortico-Spinal	Tract	pathway)	and	intermediate	regions	(INTER).	ICAP	33,	corresponding	to	a	patient-
specific	descending	region,	is	indicated.	C.	Distribution	of	iCAPs	in	the	control	group	is	provided	as	a	refer-
ence.			

8.3.2 	Overall	dynamics	are	preserved	in	stroke	patients	(Study	1)	

We	then	evaluated	temporal	features	of	iCAP	expression,	in	order	to	probe	potential	alterations	in	
global	dynamics	following	stroke.	The	overall	 level	of	activity	(i.e.,	total	iCAP	activation	time,	in-
cluding	positive	and	negative	occurrences)	was	similar	(p	=	0.54)	between	patient	(27.87	±	0.41	%,	
mean	over	subjects	±	SE,	expressed	as	a	percentage	of	run	duration)	and	control	(27.30	±	0.60	%)	
groups.	Likewise,	no	significant	difference	was	observed	between	the	average	iCAP	durations	(p	=	
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0.28,	2.70	±	0.05	volumes	in	patients,	against	2.77	±	0.02	in	healthy	participants).	Finally,	the	levels	
of	coactivation	were	comparable	(p	=	0.54),	with	on	average	11	iCAPs	present	at	each	time	point.	
In	sum,	these	observations	suggest	a	correspondence	between	the	overall	dynamics	of	spinal	rest-
ing-state	fluctuations	in	healthy	and	stroke	subjects.		

8.3.3 	Patient-specific	descending	iCAP	is	correlated	with	spasticity	(Study	1)	

To	address	the	specific	hypothesis	of	this	exploratory	study,	namely	the	influence	of	descending	
tracts	on	spasticity	following	stroke,	we	focused	on	the	patient-specific	component	corresponding	
to	such	regions,	 iCAP	33	(Figure	8.2).	To	better	understand	its	 functional	relevance,	we	first	as-
sessed	 its	rostrocaudal	properties,	which	 indicated	 its	 localization	 in	 the	C7	spinal	 level	 (Figure	
8.2B),	mostly	innervating	elbow	and	forearm	muscles	(Kendall	et	al.,	2005).	To	investigate	the	be-
havioral	relevance	of	this	iCAP,	we	then	tested	for	an	association	between	its	total	duration	and	
spasticity,	 as	measured	 using	 the	MAS.	While	 no	 correlation	was	 observed	with	 spasticity	 at	 3	
months	following	stroke	(Figure	F1),	we	found	that	the	total	duration	of	 iCAP	33	was	positively	
correlated	with	the	development	of	spasticity	from	3	weeks	to	3	months	post-lesion	(rho	=	0.76,	p	
=	0.0178)	(Figure	8.2C).	In	other	words,	regions	associated	with	multiple	descending	pathways	ap-
peared	to	be	more	expressed	in	patients	for	which	spastic	symptoms	increased	over	time.	

	

Figure	8.2	–	Properties	of	iCAP	33	(Study	1).	Given	its	patient-specific	nature,	as	well	as	its	location	in	de-
scending	pathways,	we	evaluated	the	spatial	properties	of	iCAP	33	and	investigated	its	behavioral	relevance.	
A.	In	spite	of	its	hard	assignment	to	a	ventral	(V)	corticospinal	region,	the	spatial	extent	of	iCAP	33	also	cov-
ered	smaller	pathways,	such	as	the	tectospinal	or	medial	(M)	reticulospinal	tracts	(Lévy	et	al.,	2015).	An	axial	
view	of	iCAP	33	is	presented	(in	red)	in	the	left	panel,	and	the	three	mentioned	atlas	regions	are	displayed	(in	
blue)	 in	 the	right	panels.	All	maps	are	overlaid	on	the	PAM50	template	(De	Leener	et	al.,	2018).	N	=	non-
paretic,	P	=	paretic,	D	=	dorsal,	V	=	ventral.	B.	Sagittal	and	coronal	views	of	iCAP	33	are	shown	to	evaluate	its	
rostrocaudal	position.	A	map	of	the	corresponding	spinal	 level	 is	provided	as	a	reference.	C.	To	probe	the	
potential	behavioral	relevance	of	iCAP	33,	we	correlated	its	total	duration	in	the	nine	subjects	with	the	change	
of	spasticity	from	3	weeks	to	3	months	following	the	stroke,	as	measured	using	the	Modified	Ashworth	Scale	
(∆MAS	=	MAS3months	-	MAS3weeks).	
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8.3.4 	Passive	joint	mobilization	enabled	mapping	of	lower	limb	muscles	(Study	2)	

The	aforementioned	results	suggest	the	potential	of	fMRI	to	explore	spinal	changes	following	a	CNS	
lesion.	Nevertheless,	other	applications	can	be	foreseen	and	spinal	cord	imaging	can,	alternatively,	
be	used	as	an	assessment	tool.	To	explore	this	direction,	we	conducted	a	case	study	in	an	SCI	patient	
with	the	purpose	of	obtaining	a	personalized	mapping	of	 the	afferent	 innervation	of	 lower	 limb	
muscles	involved	in	locomotion.	Motion	was	assessed	for	each	individual	run,	highlighting	accepta-
ble	average	FDx	(range	0.06	-	0.27	mm)	and	FDy	(range	0.05	-	0.30	mm).	Of	note,	motion	was	higher	
when	passively	mobilizing	the	knee	and	hip	joints.	Lumbosacral	activity	was	then	mapped	using	a	
GLM	approach,	which	pointed	to	specific	innervation	sites	for	the	different	muscles	(Figure	8.3B).	
The	iliopsoas	(involved	in	hip	flexion),	 the	vastus	 lateralis	and	the	rectus	femoris	(knee	flexion)	
were	related	to	rostral	spinal	levels	(L1	to	L3),	while	stretching	the	tibialis	anterior	(ankle	exten-
sion),	the	gastrocnemius	and	the	soleus	(ankle	flexion)	elicited	activation	patterns	located	in	caudal	
levels	(respectively	L5,	S1	and	S2).	These	rostrocaudal	distributions	were	in	line	with	population	
innervation	patterns	reported	in	previous	literature	(Schirmer	et	al.,	2011)	and,	in	addition,	they	
allowed	to	identify	individualized	features.	

	

Figure	8.3	–	Personalized	mapping	of	lumbosacral	activity	(Study	2).	A.	Mean	activation	map	during	pas-
sive	knee	flexion	(uncorrected),	registered	to	the	subject	T2	anatomical	image.	Representative	sagittal	and	
axial	views	are	shown,	and	vertebral	bodies	are	labeled.	B.	Summary	of	the	right	dorsal	activation	patterns	
for	the	different	muscles	stretched	during	passive	lower	limb	mobilization.	Activations	obtained	in	the	patient	
are	 displayed	 in	 orange	 and	 overlaid	 from	 average	 innervation	 maps	 derived	 from	 previous	 literature	
(Schirmer	et	al.,	2011).	

8.4 	Discussion	

In	this	work,	we	extended	the	methodologies	introduced	in	the	previous	chapters	in	order	to	probe	
spinal	cord	functional	activity	in	impaired	individuals.	Notwithstanding	the	preliminary	nature	of	
these	two	studies,	they	provide	auspicious	indications	of	the	potentialities	of	spinal	cord	fMRI	in	
clinical	settings.	In	particular,	this	exploration	highlighted	a	spinal	network	seemingly	associated	
with	spasticity	in	stroke	patients.	In	addition,	personalized	innervation	maps	could	be	obtained	in	
a	SCI	patient.	Hereafter,	we	discuss	these	results	independently,	with	an	emphasis	on	the	efforts	
that	could	further	foster	translational	development.	

8.4.1 	Changes	in	descending	pathways	may	contribute	to	development	of	spasticity		

Even	though	spatial	and	temporal	properties	of	spinal	cord’s	functional	architecture	appeared	to	
be	 mostly	 preserved	 following	 stroke,	 patient-specific	 components	 emerged.	 In	 particular,	 we	
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uncovered	an	iCAP	associated	with	alternative	descending	pathways	(Figure	8.2),	such	as	the	ven-
tral	corticospinal	(vCST).	In	contrast	to	its	lateral	counterpart,	the	vCST	is	linked	to	the	control	of	
proximal	musculature	(Darby	and	Frysztak,	2013).	As	such,	its	presence	in	patients,	but	not	in	con-
trols,	could	potentially	be	explained	by	the	development	of	compensatory	strategies	involving	the	
trunk	and	shoulders	(Cirstea	and	Levin,	2000).	It	is	noteworthy	that	the	precise	neuroanatomical	
identity	of	this	patient-specific	iCAP	warrants	further	investigation,	as	it	overlapped	not	only	with	
the	vCST,	but	also	the	tectospinal	(TST)	and	medial	reticulospinal	(mRST)	tracts.	Accurate	identifi-
cation	is,	moreover,	hindered	by	the	fact	that	fibers	of	the	RST	can	be	relatively	scattered	through	
the	ventral	side	of	the	spinal	cord	(Nathan	et	al.,	1996).	Regardless	of	these	considerations,	altera-
tions	in	white	matter	integrity	were	recently	reported	in	these	regions	in	chronic	stroke	patients	
(Karbasforoushan	et	al.,	2019).	With	respect	 to	 functional	changes,	 it	 is	 commonly	 thought	 that	
brainstem	descending	pathways,	such	as	the	TST	and	the	mRST,	are	hyperactivated	post-stroke	to	
compensate	 for	 disrupted	 cortical	 input	 (Trompetto	 et	 al.,	 2014).	 Given	 the	 excitatory	 effect	 of	
mRST	on	spinal	stretch	reflex,	imbalances	in	its	activity	are	presumed	to	play	an	important	role	in	
spasticity	 (Li	 and	Francisco,	2015).	Using	 indirect	measurements	 (motor	evoked	potentials	 and	
electromyographic	measurements),	increased	RST	output	was	previously	shown	following	stroke	
(McPherson	et	al.,	2018;	Choudhury	et	al.,	2019)	and	SCI	(Sangari	and	Perez,	2019)	and	associated	
with	poorer	motor	function.	Our	imaging	results	in	a	small	stroke	subpopulation	hint,	indeed,	at	a	
positive	relationship	between	hyperactive	descending	pathways	and	the	development	of	spasticity	
(i.e.,	from	3	weeks	to	3	months)	(Figure	8.2).	On	the	other	hand,	we	did	not	detect	an	association	
with	the	spasticity	at	3	months.	Considering	that	spasticity	likely	results	from	a	combination	of	(i)	
weak	extension	(due	to	decreased	cortical	input)	and	(ii)	strengthened	flexion	(due	to	hyperexcit-
able	RST)	(Li	and	Francisco,	2015),	 it	may	indicate	that	these	two	processes	evolve	on	different	
timescales.	In	particular,	the	initial	level	of	spasticity	may	pertain	to	(i),	while	maladaptive	plasticity	
progressively	leads	to	(ii).	This	association	remains	speculative	and	should	be	validated	in	a	larger	
patient	population,	compared	to	an	age-matched	control	group.	Finally,	it	is	noteworthy	that	the	
granularity	(i.e.,	40	iCAPs)	was	selected	based	on	our	previous	study	(see	Chapter	6)	(Kinany	et	al.,	
2020).	Exploring	distinct	levels	of	detail	could	ensure	that	robust	iCAP	components	are	extracted,	
possibly	disentangling	the	influence	of	coalescent	descending	pathways	(Nathan	et	al.,	1996).	In	
summary,	we	posit	that	spinal	cord	fMRI	could	help	investigate	the	role	of	distinct	neural	circuits	
in	motor	function	following	stroke.	Future	work	could	include	longitudinal	evaluation	of	spinal	cord	
function,	for	instance	before	and	after	a	botulinum	toxin	therapy,	a	common	treatment	for	upper	
limb	spasticity	(Bensmail	et	al.,	2009).	This	knowledge	could	be	employed	to	develop	personalized	
rehabilitation	strategies	harnessing	the	abilities	of	spared	connections	while	avoiding	maladaptive	
plasticity.		

8.4.2 	Towards	individualized	EES	therapy		

In	order	to	maximize	efficiency	of	EES	therapy,	neurostimulation	should	reproduce	the	natural	dy-
namics	of	motoneurons	involved	in	locomotion	(Wenger	et	al.,	2016).	To	this	end,	structural	imag-
ing	can	be	combined	with	modeling	protocols	to	identify	posterior	roots	projecting	to	distinct	mo-
toneuron	pools	(Wagner	et	al.,	2018).	Nevertheless,	this	does	not	account	for	inter-subject	differ-
ences	in	the	innervation	patterns,	even	though	substantial	variability	has	been	reported	(Schirmer	
et	al.,	2011).	To	address	this,	we	performed	spinal	cord	fMRI	during	passive	limb	mobilization	and	
obtained	 personalized	myotomal	maps.	 The	 spatial	 distribution	 of	 lumbosacral	 activity	 was	 in	
agreement	with	anatomical	knowledge,	while	outlining	individual	characteristics	(see	Figure	8.3).	
Considering	the	absence	of	statistical	correction	for	multiple	comparison,	these	preliminary	results	
should,	however,	be	taken	with	caution	and	merely	represent	a	proof	of	principle.	Yet,	it	should	be	
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noted	that	direct	root	stimulation,	using	EES,	corroborated	these	findings.	In	that	regard,	our	find-
ings	allude	to	the	potential	of	fMRI-derived	knowledge	to	inform	stimulation	protocols.	Neverthe-
less,	experimental	limitations	should	be	acknowledged.	Indeed,	performing	passive	movements	in	
a	reproducible	manner	is	challenging,	for	a	number	of	reasons	(motion,	spasticity,	etc.).	Besides,	
certain	muscles,	for	instance	the	ones	involved	in	hip	extension,	cannot	readily	be	stretched.	Future	
work	should	consider	alternative	approaches,	such	as	tendon	vibration	(Kavounoudias	et	al.,	2008),	
to	possibly	circumvent	these	drawbacks.	

8.5 	Conclusion	

In	this	chapter,	we	provide	novel	evidence,	though	preliminary,	for	the	clinical	relevance	and	ap-
plicability	of	spinal	cord	 fMRI.	Further	 investigations	 in	a	 larger	population	should	complement	
these	initial	observations,	so	as	to	thoroughly	characterize	possibilities	and	limitations.		
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In	this	section,	we	parted	ways	from	established	assessment	methods	in	order	to	bridge	the	gap	
between	the	brain	and	the	periphery.	In	particular,	we	went	beyond	the	encephalo-centered	view	
of	the	CNS	and	resorted	to	spinal	cord	fMRI	to	capture	spinal	functional	activity	in	vivo	in	humans.	
Considering	the	relative	novelty	of	this	approach,	Chapter	4	was	dedicated	to	an	initial	comparison	
of	acquisition	protocols.	This	evaluation	pointed	to	the	superiority	of	reduced	field-of-view	imag-
ing,	such	as	ZOOMit	sequences,	over	conventional	protocols.	Using	a	tailored	acquisition	and	pro-
cessing	pipeline,	we	notably	detected	task-related	activations	in	the	cervical	and	lumbosacral	spinal	
cord.	Building	on	these	results,	we	carried	out	a	multimodal	study	including	spinal	cord	fMRI	and	
muscular	activity	to	identify	rostrocaudal	correlates	of	upper	limb	movements	(Chapter	5).	With	a	
combination	of	univariate	and	multivariate	methods,	we	revealed	activation	patterns	associated	
with	distinct	muscles,	in	line	with	anatomical	knowledge.	On	top	of	outlining	the	association	be-
tween	motor	output	and	fMRI-derived	activity,	this	systematic	evaluation	provided	compelling	ev-
idence	of	the	potential	of	the	selected	pipeline.	From	task-evoked	activity,	we	then	extended	our	
analyses	to	spontaneous	fluctuations	of	spinal	activity	and	conducted	a	resting-state	fMRI	study	to	
explore	the	spinal	cord’s	functional	architecture	(Chapter	6).	Instead	of	relying	on	static	functional	
connectivity,	in	which	time-varying	signal	properties	are	not	considered,	we	turned	to	dynamic	ap-
proaches	to	further	unravel	the	restless	nature	of	spinal	functional	organization.	In	particular,	we	
introduced	the	SpiCiCAP	framework,	which	uses	transient	activity	to	retrieve	subtle	patterns	of	co-
activation.	Owing	to	the	ability	of	this	framework	to	disentangle	temporally	overlapping	signals,	we	
revealed	robust	fine-grained	spinal	components	structured	according	to	neuroanatomy.	Besides,	
we	underscored	their	physiological	relevance,	as	they	organized	into	networks	based	on	ascending	
and	descending	spinal	neural	pathways.	Capitalizing	on	its	potential	to	delineate	spinal	circuits,	we	
translated	this	framework	to	probe	the	dynamics	of	CNS	networks	during	motor	sequence	learning,	
thanks	to	a	simultaneous	brain-spinal	cord	fMRI	dataset	(Chapter	7).	Specifically,	we	combined	
this	system-level	network	view	with	a	multivariate	classification	approach,	thus	demonstrating	that	
specific	cerebral	and	spinal	neural	structures	contributed	to	short-	and	long-term	motor	learning.	
At	the	spinal	level,	this	entailed	a	shift	from	rostral	to	caudal	levels	following	extended	practice,	
possibly	linked	to	a	transition	towards	synergistic	movements.	Remarkably,	we	could	also	highlight	
specific	patterns	of	cerebro-spinal	interactions,	which	dynamically	evolved	with	the	emergence	of	
motor	routines.	In	light	of	these	promising	results,	an	exciting	prospect	for	spinal	cord	fMRI	is	its	
extension	to	clinical	applications.	Therefore,	we	considered	the	clinical	relevance	of	this	approach	
in	two	preliminary	experiments	(Chapter	8).	We	deployed	the	SpiCiCAP	framework	in	stroke	pa-
tients,	thus	enabling	the	investigation	of	spinal	dynamics	following	a	CNS	lesion.	While	the	overall	
dynamics	 was	 preserved	 in	 patients	 compared	 to	 healthy	 participants,	 we	 detected	 localized	
changes	 in	 activity	 pertaining	 to	 descending	motor	 pathways.	 Importantly,	 these	 changes	were	
seemingly	tied	to	motor	deficits,	as	higher	expression	in	these	descending	structures	was	positively	
associated	with	the	development	of	spasticity.	Aside	from	this	exploration	of	spinal	plasticity	post-
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stroke,	we	utilized	a	task-based	fMRI	paradigm	to	achieve	a	personalized	mapping	of	lumbosacral	
innervation	patterns	in	an	SCI	patient.	Further	analyses,	notably	in	larger	populations,	should	con-
firm	these	initial	explorations,	but	they	provide	auspicious	insights	into	the	clinical	applicability	of	
spinal	cord	fMRI.	

In	conclusion,	we	argue	that	spinal	cord	fMRI	is	a	promising	tool	to	investigate	spinal	functional	
circuits.	Our	findings	show	how	it	can	be	deployed	to	scrutinize	normal	and	aberrant	spinal	dynam-
ics.	Besides,	they	also	advocate	for	its	amenability	to	clinical	settings.
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In	this	thesis,	we	aimed	to	achieve	a	comprehensive	and	multimodal	view	of	central	and	peripheral	
mechanisms	underpinning	human	motor	function,	with	a	particular	focus	on	the	pivotal	position	
occupied	by	the	spinal	cord.	We	argued	that	a	thorough	understanding	of	these	processes	is	crucial	
to	improve	neurorehabilitative	treatments.	Our	contributions	encompass	methodological	develop-
ments	and	application	studies	in	healthy	and	impaired	individuals.	In	what	follows,	we	discuss	our	
main	achievements,	inserting	them	in	a	broader	context	and	suggesting	potential	directions	for	fu-
ture	research.				

9.1 Summary	and	discussion	

Nervous	system	disorders	can	considerably	impact	motor	function,	with	long-term	health	conse-
quences	affecting	the	quality	of	life	of	millions	of	individuals.	Current	strategies	to	restore	motor	
function	are	increasingly	integrating	technology	to	enhance	recovery	and	help	patients	regain	au-
tonomy	(Micera	et	al.,	2020).	Despite	the	promises	of	these	approaches,	full	recovery	remains,	in	
practice,	rarely	achieved.	In	this	context,	adapting	treatments	on	a	patient-specific	basis	has	been	
suggested	as	 the	 cornerstone	of	 future	 improvements	 (Borton	et	al.,	 2013;	Raffin	 and	Hummel,	
2018;	Coscia	et	al.,	2019).	The	motivation	that	initiated	this	thesis	was,	thus,	to	investigate	the	po-
tential	 of	paradigms	 for	personalized	 technology-assisted	neurorehabilitation.	Arising	 from	 this	
was	the	need	to	understand	the	machinery	subtending	recovery,	a	condition	sine	qua	non	to	opti-
mally	steer	treatments.		

Capturing	dynamics	of	recovery	In	Part	I	of	this	thesis,	we	started	tackling	this	problem	from	a	
technical	viewpoint	and	evaluated	methodologies	to	quantify	individual	dynamics	of	recovery	in	
post-stroke	patients.	 In	 that	 regard,	 the	 concept	of	 recovery	 is	manifold	 and	 ranges	 from	 rapid	
adaptive	 responses	 (Panarese	et	al.,	 2012b)	 to	durable	plastic	 changes	 (Langhorne	et	al.,	 2009;	
Buma	et	 al.,	 2013).	 These	different	 facets	 have	numerous	 implications	 for	 rehabilitation,	which	
should	not	only	be	adapted	to	the	immediate	abilities	of	the	patient,	but	also	maximize	the	prospect	
of	long-term	effects	based	on	his/her	residual	function.	To	obtain	insights	into	the	former,	the	most	
straightforward	way	to	monitor	motor	improvements	is	to	rely	on	kinematic	measurements,	such	
as	movement	speed	or	smoothness	(Panarese	et	al.,	2016).	In	our	first	study	(Chapter	2),	this	was	
achieved	using	an	exoskeleton	that	enabled	continuous	three-dimensional	tracking	of	limb	position	
(Pirondini	et	al.,	2016;	Giang	et	al.,	2020).	We	introduced	a	model-based	personalization	routine	
that	uses	this	information	to	adjust	training	in	real-time	and	validated	its	applicability	in	healthy	
subjects	during	a	visual	adaptation	task,	as	well	as	in	subacute	stroke	patients	undergoing	a	reha-
bilitative	training.	On	top	of	providing	a	task	tailored	to	the	patient’s	skills,	this	paradigm	has	the	
potential	 to	sustain	motivation	and	engagement,	a	pivotal	 factor	 influencing	the	effectiveness	of	
therapy	(Nielsen	et	al.,	2015;	Rapolienė	et	al.,	2018).	Owing	to	 its	simplicity	and	versatility,	 this	
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approach	is	well	suited	for	a	systematic	use	in	clinical	practice	(Lambercy	et	al.,	2016).	Neverthe-
less,	kinematics	is	just	one	part	of	the	picture	and	complementary	knowledge	can	be	gained	from	
other	levels	of	the	neuromusculoskeletal	hierarchy	(Belfatto	et	al.,	2018).	To	this	end,	Chapter	3	
was	dedicated	to	the	establishment	of	a	multimodal	approach	integrating	kinematics	along	with	
muscular	and	neural	variables	(Pierella	et	al.,	2020).	These	variables	were	combined	into	a	set	of	
neuro-biomechanical	features,	whose	relationship	with	recovery	was	outlined	in	longitudinal	data	
from	stroke	patients.	In	particular,	the	multimodal	analysis	could	capture	the	multifaceted	nature	
of	post-stroke	recovery,	with	disparate	dynamics	through	the	neuromusculoskeletal	system,	some-
thing	that	cannot	be	rendered	using	standard	clinical	evaluations.	From	a	practical	standpoint,	this	
approach	also	addresses	a	common	criticism	from	therapists,	against	abstract	technology-based	
outcome	measures	that	lack	functional	applicability	(Maggioni	et	al.,	2016),	by	distilling	multimodal	
assessments	into	a	few	clinically	relevant	parameters.	To	ensure	its	clinical	validation,	however,	
further	work	should	deploy	this	approach	in	a	larger	sample	size	to	assess	its	reliability.	Together,	
these	results	emphasize	the	potential	of	neurotechnology	to	pinpoint	markers	of	recovery	and	track	
their	evolution.		

Exploring	spinal	cord	function	In	Part	I,	we	highlighted	the	pressing	need	to	integrate	multimodal	
knowledge	so	as	to	fully	characterize	the	complexity	of	each	individual	patient’s	neuro-biomechan-
ical	state.	This	characterization	of	central	and	peripheral	motor	mechanisms	should,	subsequently,	
pave	the	way	to	knowledge-based	neurorehabilitative	treatments.	Given	the	rising	evidence	of	the	
involvement	of	the	spinal	cord	in	the	recovery	process	(Fouad	and	Tse,	2008;	Wolpaw,	2012;	Baker	
et	al.,	2015;	Christiansen	et	al.,	2017;	Li,	2017),	we	argued	that	acknowledging	its	role	is	necessary	
to	develop	a	comprehensive	description	of	healthy	and	impaired	motor	function.	Contrarily	to	the	
long-held	belief	that	the	spinal	cord	merely	serves	the	brain’s	interest,	it	should	be	recognized	as	
an	active	and	plastic	part	of	the	CNS.	Nevertheless,	in	comparison	to	the	wealth	of	research	into	
cerebral	plasticity,	much	less	interest	has	been	devoted	to	the	spinal	cord	(Tennant,	2014).	Certain	
insights	have	been	gained	through	animal	studies,	notably	using	rodents	to	elucidate	principles	of	
spinal	plasticity	 following	CNS	damage	(Lilja	et	al.,	2006;	LaPash	Daniels	et	al.,	2009;	Sist	et	al.,	
2014).	Yet,	significant	distinctions	exist	between	motor	systems	of	different	species	and	these	find-
ings	cannot	simply	be	transferred	to	humans	(Baker	et	al.,	2015).	There	is	thus	a	strong	incentive	
to	develop	protocols	enabling	non-invasive	assessment	of	spinal	cord	function	in	vivo	in	humans.	
In	 this	 perspective,	 fMRI	 holds	 great	 potential	 to	 image	 endogenous	 spinal	 activity	 (Harel	 and	
Strittmatter,	2008;	Wheeler-Kingshott	et	al.,	2014),	though	technological	hurdles,	primarily	linked	
to	 the	 spinal	 cord’s	 location	 and	 anatomy,	 have	 impeded	 the	 development	 of	 this	 field.	 Conse-
quently,	Part	II	of	this	thesis	was	first	focused	on	introducing	and	evaluating	methodological	ap-
proaches	to	circumvent	these	limitations.	In	Chapter	4,	we	performed	a	pilot	study	primarily	tar-
geting	 issues	and	possibilities	related	 to	acquisition.	Our	conclusions	pointed	out	robust	activa-
tions,	both	in	the	cervical	and	lumbosacral	regions,	when	using	reduced	field-of-view	sequences.	
Interestingly,	several	studies	in	recent	years	corroborated	these	observations	(Weber	et	al.,	2016a,	
2016b,	2020;	Dehghani	et	al.,	2020).	In	line	with	these	findings,	we	were	able	to	successfully	deploy	
this	pipeline	to	image	the	rostrocaudal	correlates	of	upper	limb	movements,	as	presented	in	Chap-
ter	5	(Kinany	et	al.,	2019).	Notwithstanding	these	achievements,	it	should	be	noted	that	spinal	cord	
fMRI	still	suffers	from	a	number	of	drawbacks	that	can	impact	data	quality,	as	well	as	subsequent	
results.	In	that	regard,	further	improvements	regarding	the	acquisition	procedure	could	be	fore-
seen,	 for	 instance	 to	 ensure	 homogeneous	 signal	 quality	 with	 tailored	 shimming	 protocols	
(Finsterbusch,	2014;	Vannesjo	et	al.,	2018)	or	to	increase	temporal	resolution	using	multiband	im-
aging	(Moeller	et	al.,	2010;	Barth	et	al.,	2016).	As	for	the	processing	of	functional	images,	efforts	are	
also	required	to	benchmark	the	potential	of	different	approaches.	Recent	studies	have	undertaken	
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this	endeavor	and	evaluated	aspects	such	as	motion	correction	(Dehghani	et	al.,	2020),	smoothing	
(Weber	et	al.,	2017),	or	denoising	(Kong	et	al.,	2012;	Eippert	et	al.,	2017a).	Needless	to	say	that	the	
availability	of	the	Spinal	Cord	Toolbox	(De	Leener	et	al.,	2017)	represents	an	important	stepping	
stone	towards	establishing	generalized	guidelines.	Finally,	inter-subject	variability	in	spinal	activa-
tion	patterns	remains	to	be	investigated,	to	better	understand	to	which	extent	it	arises	from	genu-
ine	anatomical	differences	(Schirmer	et	al.,	2011;	Cadotte	et	al.,	2015),	or	rather	reflects	technical	
constraints.	

Dynamics	 of	 the	 restless	 spinal	 cord	While	 the	 aforementioned	 studies	 deployed	 paradigms	
probing	spinal	cord’s	response	to	a	particular	task,	there	is	also	much	to	grasp	in	baseline	activity.	
Reflexes,	 proprioception	 or	 cerebro-spinal	 communication	 are	 among	 the	 processes	 that	 could	
drive	spontaneous	fluctuations	(Eippert	and	Tracey,	2014).	The	study	of	resting-state	spinal	activ-
ity	is	of	utmost	interest,	for	a	number	of	reasons.	First,	it	can	shed	light	on	the	spinal	mechanisms	
supporting	our	body’s	physiological	needs,	 from	basic	autonomic	activity	 to	more	sophisticated	
proprioceptive	processes.	Second,	understanding	the	intrinsic	architecture	of	the	spinal	cord	can	
reveal	its	functional	backbone,	which,	possibly,	represents	the	substrate	for	task-evoked	activity.	
Indeed,	the	correspondence	between	rest	and	task	functional	organizations	has	been	underscored	
in	the	brain,	suggesting	that	they	are	two	sides	of	the	same	coin	(Smith	et	al.,	2009;	Cole	et	al.,	2014).	
Finally,	the	simplicity	of	resting-state	recordings	places	them	as	ideal	candidates	for	clinical	appli-
cations	(Fox	and	Greicius,	2010;	Lee	et	al.,	2013).	In	sum,	these	considerations	led	to	research	re-
porting	coordinated	spontaneous	fluctuations	in	the	spinal	cord,	that	manifested	in	the	form	of	sen-
sory	and	motor	networks,	using	static	functional	connectivity	(see	Barry	et	al.,	2014;	Kong	et	al.,	
2014	for	seminal	works).	In	this	thesis,	we	aimed	to	go	beyond	conventional	static	methods,	in	or-
der	to	further	exploit	the	time-varying	content	of	spinal	cord	resting-state	signals.	To	this	end,	the	
SpiCiCAP	framework	was	introduced	in	Chapter	6	and	demonstrated	for	the	first	time	the	potential	
of	a	dynamic	functional	connectivity	approach	to	disentangle	spinal	activity	(Kinany	et	al.,	2020).	
We	revealed	its	fine-grained	functional	architecture,	dissecting	spinal	circuits	in	components	lining	
up	with	neuroanatomical	and	physiological	principles.	In	particular,	we	provided	compelling	evi-
dence	that	resting-state	networks	organized	according	to	neural	pathways	involved	in	propriocep-
tion	and	motor	control.	Altogether,	our	findings	shed	new	light	on	the	restless	nature	of	the	spinal	
cord,	emphasizing	a	substantial	synchrony.	From	a	more	broader	viewpoint,	dynamic	features	have	
provided	precious	insights	into	the	cerebral	underpinnings	of	behavior	(Liégeois	et	al.,	2019;	Bolton	
et	al.,	2020).	One	can	envision	a	spectrum	of	possibilities	in	the	spinal	cord	as	well,	for	instance	to	
investigate	the	temporal	dynamics	subtending	reflexes	or	bilateral	coordination.	Interestingly,	the	
fact	 that	 spinal	 dynamics	 seem	better	disentangled	when	using	 a	dynamic	 approach	 leveraging	
transient	activity	suggests	that	synchrony	occurring	at	multiple	time	scales	may	generate	dynamic	
fluctuations	in	spinal	resting-state	activity	(Hutchison	et	al.,	2013).	Animal	experiments	using	elec-
trophysiological	recordings	(e.g.,	local	field	potentials,	similarly	to	Wu	et	al.,	2019)	could	provide	a	
more	direct	view	on	neural	activity,	to	better	understand	the	underlying	processes.		

Cerebro-spinal	correlates	of	motor	learning	In	light	of	these	prospects,	we	went	on	to	probe	the	
dynamics	of	spinal	and	cerebral	processes	underlying	short-	and	long-term	motor	sequence	learn-
ing.	It	is	widely	held	that	neuroplasticity	contributes	distinctly	to	skill	acquisition	and	consolidation	
but,	to	date,	most	studies	had	only	focused	on	the	brain	(Doyon	et	al.,	2018).	In	Chapter	7,	we	ex-
plored	whether	these	plastic	changes	were	a	general	trait	of	the	CNS,	by	deploying	our	dynamic	
functional	connectivity	framework	in	a	simultaneous	brain	and	spinal	cord	fMRI	dataset	acquired	
during	motor	sequence	learning.	Owing	to	the	longitudinal	nature	of	this	data,	we	provided	evi-
dence	that	distinct	patterns	of	cortical,	subcortical	and	spinal	networks	were	associated	with	the	
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different	stages	of	learning.	Besides,	we	highlighted	a	dynamic	interplay	between	these	structures,	
as	the	spinal	cord	synchronized	over	time	with	the	cerebellum	while	parting	ways	from	sensorimo-
tor	 regions,	 thus	extending	on	similar	 results	obtained	 in	a	 single	 session	 (Vahdat	et	al.,	 2015).	
While	this	remains	conjectural,	we	hypothesized	that	these	neural	changes	may	form	a	substrate	
for	motor	synergies	(D’Avella	et	al.,	2003;	Ting	et	al.,	2015).	All	in	all,	our	findings	endorse	the	dif-
ferential	role	of	the	spinal	cord	throughout	early	and	late	motor	learning.	They	also	lend	credence	
to	the	use	of	fMRI,	combined	with	advanced	analyses	methods,	to	unravel	these	mechanisms,	as	
well	 as	 their	 interactions	 with	 supraspinal	 structures.	 Considering	 its	 relationship	 with	motor	
training	(Zeiler	and	Krakauer,	2013),	understanding	motor	learning	and	skill	retention	could	open	
new	avenues	 of	 investigation	 for	 neurorehabilitation,	 targeting	 experience-dependent	 plasticity	
(Dancause	and	Nudo,	2011)	and	optimizing	the	processes	of	motor	(re-)learning	(Winstein	et	al.,	
2014).		

Translational	potential	of	spinal	cord	fMRI	Spurred	by	these	considerations,	and	in	line	with	the	
advent	of	brain	fMRI	 in	patients	(Matthews	et	al.,	2006;	Fox	and	Greicius,	2010),	our	final	 focus	
(Chapter	8)	was	to	glimpse	into	the	clinical	potential	of	the	approaches	discussed	in	the	second	
part	of	this	thesis.	Using	the	SpiCiCAP	framework,	we	first	explored	changes	in	spinal	activation	
patterns	following	stroke.	Our	preliminary	results	alluded	to	a	link	between	the	development	of	
spasticity	and	hyperactive	descending	pathways,	notably	 including	reticulospinal	 (RST)	regions.	
Further	work	on	a	larger	population	is	required	to	thoroughly	characterize	the	nature	of	this	inter-
action.	Of	note,	 the	relationship	between	RST	and	spasticity	had	been	suggested	 in	previous	re-
search	(Trompetto	et	al.,	2014;	Li,	2017),	and	formerly	inferred	using	indirect	measurements,	such	
as	reflexes	(McPherson	et	al.,	2018;	Choudhury	et	al.,	2019).	Spinal	cord	fMRI	could	thus	provide	a	
way	to	directly	scrutinize	these	mechanisms.	On	top	of	this	exploratory	analysis,	we	resorted	to	a	
basic	task-based	paradigm	to	successfully	map	innervation	patterns	of	lower	limb	afferents	in	an	
SCI	patient.	Such	a	personalized	mapping	can	help	inform	therapies	relying	on	spinal	neuromodu-
lation,	where	accurate	spatio-temporal	stimulation	is	critical	to	maximize	clinical	outcome	(Wenger	
et	al.,	2016;	Wagner	et	al.,	2018).	 Interestingly,	 this	endeavor	resembles	 fMRI	assessments	con-
ducted	in	the	context	of	presurgical	mapping,	routinely	used	in	clinical	praxis	(Specht,	2020).	

9.2 Perspectives	

The	strategies	introduced	in	this	thesis	constitute	a	valuable	contribution	towards	understanding	
central	and	peripheral	principles	of	the	motor	hierarchy.	Most	notably,	they	provide	insights	into	
human	spinal	processes,	which	have	long	remained	impenetrable.	As	evidence	indicates	the	press-
ing	need	for	science-based	neurorehabilitation	(Nielsen	et	al.,	2015;	Micera	et	al.,	2020),	we	argue	
that	an	extensive	view	of	motor	function	can	help	apprehend	and	manipulate	the	underlying	mech-
anisms.		

Investigating	the	neural	underpinnings	of	motor	synergies	In	Chapter	3,	we	used	muscle	syn-
ergies	in	order	to	inform	on	muscle	coordination	patterns	following	a	stroke.	This	alluded	to	the	
importance	of	motor	synergies,	notably	as	potential	biomarkers	of	cortical	 injury	(Cheung	et	al.,	
2012).	Despite	the	interest	around	synergies,	both	from	a	clinical	viewpoint	and	to	answer	funda-
mental	questions	regarding	the	control	of	skilled	movements,	their	neural	substrates	are	poorly	
understood	(Bizzi	and	Cheung,	2013;	Ting	et	al.,	2015).	In	Chapter	7,	we	suggested	that	changes	in	
cerebro-spinal	interactions	reflected	the	emergence	of	a	synergistic	motor	strategy.	However,	these	
conclusions	remain	largely	conjectural	and	future	studies	could	build	on	these	initial	observations	
using	dedicated	experiments.	For	instance,	simultaneous	fMRI	of	the	brain	and	the	spinal	cord	could	
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be	performed	to	compare	the	neural	correlates	of	synergistic	and	non-synergistic	movements,	as	
previously	done	at	the	cerebral	level	(Ehrsson	et	al.,	2002).	Alternatively,	a	comparison	of	upper	
limb	movements	relying	on	distinct	muscle	and	joint	configurations	(e.g.,	different	grasps)	could	
also	be	foreseen	(Leo	et	al.,	2016).	In	all	instances,	fMRI	acquisitions	should	be	complemented	by	
kinematic	and	EMG	recordings,	so	as	to	compute	muscle	and	postural	synergies	and	assess	their	
cerebral	and/or	spinal	encoding,	as	well	as	the	role	of	cerebro-spinal	interactions	in	their	orches-
tration.	

Understanding	and	harnessing	plasticity	The	tools	introduced	in	this	thesis	can	be	particularly	
relevant	in	the	context	of	plasticity.	As	a	matter	of	fact,	neuromotor	conditions	affecting	the	CNS	
lead	to	plastic	changes	occurring	at	many	levels	of	the	motor	architecture,	from	the	muscles	to	the	
brain	(Wolpaw	and	Carp,	2006).	While	the	neuroplasticity	of	the	spinal	cord	has	been	recognized	
(Wolpaw	and	Tennissen,	2001;	Wolpaw,	2007),	its	mechanisms,	as	well	as	its	interaction	with	pe-
ripheral	and	cerebral	changes,	remain	elusive.	Furthermore,	plasticity	can	be	seen	as	a	two-edged	
sword	(Allred	and	Jones,	2008;	Ferguson	et	al.,	2012):	on	one	hand,	adaptive	processes	can	help	
regain	function,	but	on	the	other	hand,	maladaptive	processes	can	compromise	recovery.	In	future	
work,	spinal	cord	fMRI	could	bring	new	light	on	the	development	of	beneficial	and	detrimental	plas-
ticity.	Eventually,	these	explorations	should	be	performed	along	with	simultaneous	recordings	of	
cerebral	or	muscular	activity,	so	as	to	achieve	a	system-level	view	of	plasticity.	This	new	knowledge	
can	set	the	ground	for	targeted	rehabilitative	therapies	aiming	to	guide	plastic	processes	(Cramer	
et	al.,	2011;	Dancause	and	Nudo,	2011;	Wolpaw,	2012;	Nielsen	et	al.,	2015).	In	practical	terms,	one	
can	envision	treatments	focused	on	shaping	activity-dependent	plasticity,	for	instance	through	tai-
lored	constraint-induced	robotic	training	(Coscia	et	al.,	2019)	or	using	neuromodulatory	interven-
tions	(Hummel	and	Cohen,	2006;	Bradnam	et	al.,	2013;	Raffin	and	Hummel,	2018).	

Comprehensive	multimodal	assessments	In	Chapter	3,	we	proposed	a	multimodal	framework	to	
characterize	patient’s	neuro-biomechanical	state	(Pierella	et	al.,	2020).	A	major	advantage	of	this	
approach	lies	in	its	versatility,	as	variables	stemming	from	multiple	domains	can	readily	be	com-
bined.	Future	studies	could	capitalize	on	this	ability,	by	integrating	measurements	obtained	using	
additional	approaches,	such	as	brain	or	spinal	cord	fMRI.	This	comprehensive	view	would	enable	
the	exploration	of	the	complex	and	interleaved	functional	changes	linked,	for	instance,	with	stroke,	
and	to	correlate	them	with	behavioral	and	clinical	indicators.	Furthermore,	this	can	help	pinpoint	
particular	interactions	between	central	and	peripheral	mechanisms,	that	could	be	relevant	in	a	clin-
ical	context.	On	top	of	expanding	our	understanding	of	the	mechanisms	involved	in	impaired	motor	
control,	the	information	gleaned	from	this	analysis	could	help	highlight	biomarkers	informing	on	
recovery.	Eventually,	this	effort	could	be	facilitated	by	computational	models	(Reinkensmeyer	et	
al.,	2016),	to	make	accurate	predictions	at	the	individual	level,	regarding	optimal	intervention,	tim-
ing	or	intensity.			

Extension	to	other	neurological	disorders	In	Chapter	8,	we	touched	upon	the	clinical	potential	
of	spinal	cord	fMRI,	in	the	context	of	stroke	and	SCI.	Nonetheless,	the	proposed	methodologies	un-
doubtedly	 hold	 great	 potential	 to	 study	 motor	 dysfunction	 resulting	 from	 other	 conditions	
(Kornelsen	and	Mackey,	2010).	Of	note,	a	few	studies	started	initiated	this	effort,	by	investigating	
changes	in	spinal	processes	associated	with	multiple	sclerosis	(Conrad	et	al.,	2018),	cervical	spon-
dylotic	myelopathy	(Liu	et	al.,	2016a)	or	fibromyalgia	(Martucci	et	al.,	2019).	Considering	the	pri-
mary	role	of	 the	spinal	cord	 in	sensory	processing,	studies	targeting	the	pathogenesis	of	neuro-
pathic	pain	can	also	be	foreseen	(Dou	and	Yang,	2019).	Future	research	should	leverage	the	dy-
namic	content	of	spinal	signals,	for	instance	using	the	SpiCiCAP	framework	introduced	in	Chapter	
6	 (Kinany	 et	 al.,	 2020),	 to	 further	 characterize	 their	 nature.	 Understanding	 the	 mechanisms	
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underlying	pathological	alterations,	as	well	as	probing	residual	function,	could	have	implications	as	
regards	diagnosis	and	prognosis.	Relevant	developments	may	also	include	imaging	along	the	entire	
central	neural	axis.	Finally,	particular	attention	should	be	devoted	to	ensure	robustness	and	repro-
ducibility	of	fMRI-derived	clinical	measures	(O’Connor	and	Zeffiro,	2019).	Advances	could	entail	
the	creation	of	multi-center	databases,	generalized	acquisition	and	analysis	 routines,	 test-retest	
studies	in	individual	subjects,	in	line	with	initiatives	emerging	in	brain	fMRI	(Zuo	and	Xing,	2014;	
Choe	et	al.,	2017).	Progresses	in	that	regard	will	be	instrumental	to	push	spinal	cord	fMRI	towards	
a	clinically	useful	tool,	notably	in	the	context	of	personalized	neurorehabilitative	applications.		
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Additional	analysis	of	performance	measures	

In	 order	 to	 demonstrate	 the	 capability	 of	 the	 proposed	model	 to	 capture	 varying	 performance	
measures	dynamics,	we	simulated	different	rehabilitation	scenarios	under	varying	conditions	(Fig-
ure	A1a).	Specifically,	data	were	generated	for	the	three	variables	MV,	SAL,	and	F#	using	an	expo-
nential	equation:	

:5,# 	= 	 :5,tGu − :5,vwxyw	JKF	(−
z
{5
)	 (1)	

where	.	 = 	1,2,3	are	the	different	performance	measures	and	z	 = 	1, . . . ,25	are	the	different	repe-
titions	of	a	movement.	:5,tGu 	and	:5,vwxyw	are	parameters	used	to	set	the	desired	initial	and	final	val-
ues	of	each	performance	measure.	{5 	is	the	individual	time	constant	for	each	performance	measure.	
The	equation	was	used	to	simulate	the	data	of	MV,	SAL,	and	F#	for	25	repetitions	of	the	movement	
towards	the	same	target.	The	values	for	SUCC	were	deduced	by	using	the	values	of	F#	and	a	Ber-
noulli	distribution	model.	We	ran	the	simulations	under	four	conditions:	in	the	first	three	condi-
tions,	the	time	constant	of	one	performance	measure	was	reduced	to	{ = 	5,	while	the	other	two	
were	kept	at	{ = 	15.	In	the	fourth	condition,	the	time	constants	for	all	three	measures	were	reduced	
to	{ = 	5.	For	all	conditions,	we	obtained	approximations	of	the	simulated	data	by	inserting	the	es-
timates	of	the	unknown	model	parameters	into	the	observation	equations.	Moreover,	we	calculated	
the	95%	confidence	intervals	of	the	approximations	and	the	corresponding	motor	improvement	
estimates.	The	results	of	the	simulations	illustrate	the	capability	of	the	proposed	model	to	capture	
varying	dynamics	of	the	performance	measures	properly.	The	simulated	data	lie	within	the	95%	
confidence	intervals	of	the	approximations	for	the	most	part.	Moreover,	the	only	condition	where	
the	requirement	for	a	replacement	is	met	is	the	one	where	all	performance	measures	are	simulated	
with	low	time	constants	and	quickly	reach	a	plateau,	highlighting	the	fact	that	a	replacement	is	only	
suggested	by	the	algorithm	when	no	further	improvement	is	expected.		

Moreover,	we	simulated	MI	estimation	for	lower	number	of	data	points	(Figure	A1b).	The	simula-
tions	presented	in	Figure	A1b	were	run	with	varying	amount	of	data	(4,	8	and	12	data	points)	from	
the	same	data	set.	We	observed	that	the	simulated	data	were	mostly	in	the	95%	confidence	interval	
of	the	model	estimates	for	MV,	SAL	and	pk	when	8	or	12	data	points	were	used	for	the	estimation.	
However,	this	was	not	the	case	when	only	4	data	points	were	considered	for	calculating	the	esti-
mates.	Based	on	this	analysis,	we	have	set	the	minimum	number	of	data	points	necessary	for	MI	
estimation	to	8.	
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Figure	A1	–	Simulated	data	for	motor	improvement	estimation	under	varying	conditions.	(a)	Data	shows	the	
simulated	performance	measures	and	the	corresponding	motor	improvement	estimates	under	four	different	
conditions	for	25	repetitions	of	the	same	movement.	In	the	first	column,	the	time	constant	for	the	mean	ve-
locity	(MV)	was	reduced	to	{ = 5	repetitions	({ = 15	repetitions	for	the	remaining	two	measures),	in	the	sec-
ond	column	the	time	constant	of	the	spectral	arch	length	(SAL)	was	reduced	to	{ = 5	repetitions	and	in	the	
third	column	the	time	constant	reduced	to	{ = 5	repetitions	was	the	one	of	the	probability	of	success	(pk).	In	
the	last	column,	the	time	constant	for	all	performance	measures	was	set	to	{ = 5	repetitions.	The	first	two	
rows	show	simulated	data	(black	dots)	for	MV	and	SAL.	The	third	row	depicts	the	simulated	data	for	pk	(black	
dots)	and	the	corresponding	discrete	performance	measures	SUCC	(grey	squares)	deduced	from	pk	using	a	
Bernoulli	distribution	model.	Grey	lines	show	approximations	of	the	performance	measures	using	the	esti-
mated	parameters	resulting	from	the	algorithm.	Shaded	area	depicts	95%	confidence	interval	of	the	approxi-
mations.	The	last	row	shows	the	resulting	offline	motor	improvement	estimates	(MIoffline)	using	an	offline	
implementation	of	the	model.	Dotted	lines	depict	necessary	condition	(MIoffline	>	0)	for	target	replacement.	
Green	area	indicates	the	time	span	where	the	algorithm	detects	a	performance	plateau	and	suggests	a	target	
replacement.	(b)	Simulated	motor	improvement	estimates	provided	by	the	model	based	on	4,	8	and	12	data	
points	of	the	same	data	set.	The	first	two	rows	show	simulated	data	(black	dots)	for	MV	and	SAL.	The	third	
row	depicts	the	simulated	data	for	pk	(black	dots)	and	the	corresponding	discrete	performance	measures	
SUCC	(grey	squares)	deduced	from	pk	using	a	Bernoulli	distribution	model.	Grey	lines	show	approximations	
of	the	performance	measures	using	the	estimated	parameters	resulting	from	the	algorithm.	Shaded	area	de-
picts	95%	confidence	interval	of	the	approximations.	The	last	row	shows	the	resulting	offline	motor	improve-
ment	estimates	(MIoffline)	using	an	offline	implementation	of	the	model.	Dotted	lines	depict	necessary	con-
dition	(MIoffline	>	0)	for	target	replacement.	
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Preliminary	experiments	with	healthy	participants	

	

Figure	A2	–	Execution	time	of	eight	healthy	participants	(seven	females,	a	male,	54.8	±	13.8	years	old)	per-
forming	the	regular	point-to-point	reaching	task.	Data	for	each	participant	is	pooled	for	all	movement	direc-
tions	(i.e.,	for	all	targets)	and	presented	in	chronological	order	(grey	circles).	Solid	grey	line	shows	evolution	
of	execution	time	averaged	over	all	eight	participants.	Red	dashed	line	depicts	the	time	threshold	(tth	=	4s)	
used	to	determine	the	discrete	performance	measure	SUCC	in	the	visually	manipulated	reaching	task.	tth	was	
selected	as	the	upper	bound	for	the	average	execution	time	after	the	50th	repetition.	
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Figure	A3	–	Performance	measures	of	eight	healthy	participants	(seven	females,	a	male,	54.8	±	13.8	years	old)	
performing	the	regular	point-to-point	reaching	task	(same	data	reported	in	Figure	A2).	First	row	shows	the	
mean	values	and	standard	error	of	the	mean	of	MV	and	SAL	for	five	repetitions	of	no-depth	targets	(blue,	
targets	1-8)	and	depth	targets	(grey,	targets	9-18).	Data	for	each	repetition	is	averaged	for	all	targets	of	a	class.	
Second	and	third	row	show	the	data	of	SUCC	for	no-depth	(blue)	and	depth	targets	(grey).	The	data	for	each	
class	of	targets	is	presented	chronologically	for	each	repetition	of	the	movements.	SUCC	was	defined	by	the	
usage	of	the	robot	assistance	(i.e.,	SUCC	=	1	if	the	participant	performed	the	movement	without	robotic	assis-
tance,	SUCC	=	0	otherwise).	Overall,	performances	were	not	different	for	depth	and	no-depth	targets,	confirm-
ing	that	the	participants	could	properly	perceive	the	depth. 
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Additional	analysis	of	model	parameters	

We	have	performed	additional	analyses	to	illustrate	the	temporal	dynamics	of	the	model	parame-
ters	for	both	fast	and	slow	adapters	(Figure	A).	With	increasing	number	of	repetitions,	all	model	
parameters	converged	towards	final	values,	 indicating	that	the	recorded	data	fit	well	the	model.	
Interestingly,	the	model	parameters	for	the	fast	adapters	seemed	to	converge	faster,	probably	be-
cause	in	this	group	participants	showed	faster	improvements	in	the	performance	measures,	which	
would	fit	the	chosen	observation	models.	When	looking	at	the	final	mean	values	of	the	model	pa-
rameters	for	both	groups	we	did	not	observe	notable	differences,	indicating	that	on	average,	motor	
improvement	models	were	similar	for	both	groups	and	that	improvement	could	be	observed	only	
in	changes	of	the	MI	estimates.	The	only	remarkable	difference	was	found	for	σϵ	which	appeared	to	
be	higher	 for	the	fast	adapters,	reflecting	the	 improvements	 in	MI	values	 for	this	group.	Finally,	
values	for	σδ,j	remained	bounded	in	a	range	of	reasonable	values,	indicating	a	limited	influence	of	
the	gaussian	noise	terms	δj	on	the	motor	improvement	estimates.	

	

	

Figure	A4	–	Model	parameters	estimated	for	participants	doing	the	visually	inverted	reaching	task	(n	=	17).	
For	each	new	set	of	data	points,	parameters	were	estimated	using	Bayesian	Monte	Carlo	Markov	Chain	meth-
ods	with	three	independent	estimation	chains	and	different	initial	guesses.	Each	chain	was	iterated	for	5000	
steps	to	determine	the	model	parameters.	The	median	of	the	three	chains	were	taken	as	the	final	estimation	
values	for	the	parameters.	Data	 is	presented	for	movements	towards	all	 targets	 for	all	subjects	of	 the	fast	
adapter	(red	circles)	and	slow	adapter	(grey	circles)	groups.	Red	and	grey	lines	indicate	average	parameter	
values	for	both	groups.	Parameters	were	calculated	for	each	number	of	repetitions	towards	a	target	(mini-
mum	8	repetitions,	maximum	20	repetitions).	

Moreover,	we	calculated	overall	MI	estimates	for	the	two	subjects	presented	as	examples	in	Figure	
2.3.	Therefore,	we	merged	the	data	from	movements	towards	all	training	targets	and	calculated	the	
MI	estimates	based	on	these	combined	data	sets.	Although	an	increase	in	MI	can	be	observed	in	
both	subjects,	we	observed	that	the	overall	MI	estimates	for	both	subjects	appeared	to	be	noisier	
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and	less	descriptive,	since	now	data	of	movements	towards	easy	and	difficult	targets	are	pooled	
together.	Indeed,	basing	the	analysis	on	the	overall	MI	estimates,	the	recoveries	of	the	movements	
presented	in	Figure	2.3,	are	obscured	by	the	inferior	performances	recorded	for	the	difficult	targets.	
Moreover,	the	detection	of	performance	plateaus	would	not	correspond	to	the	actual	performances	
for	each	subtask.	As	a	result,	some	subtasks	would	be	kept	too	long,	while	others	would	be	replaced	
too	early,	potentially	leading	to	a	less	efficient	training	schedule.	For	instance,	the	overall	MI	esti-
mate	for	the	slow	adapter	suggest	a	performance	plateau	already	after	39	repetitions	(corresponds	
to	 approximately	 5	 repetitions	 for	 each	 subtask).	 However,	 when	 looking	 at	 the	 performance	
measures	of	this	subject	for	target	13	separately,	it	is	clear	that	a	replacement	of	this	target	after	5	
repetitions	would	have	been	too	soon.	We	therefore	believe	that	this	analysis	further	supports	our	
approach	to	specifically	consider	MI	estimation	at	subtask	level.	

	

Figure	A5	–	Overall	MI	estimates	for	fast	(red)	and	slow	adapter	(grey)	presented	as	examples	in	Figure	2.3.	
Overall	MI	estimated	were	based	on	data	chronologically	merged	from	all	training	targets	and	were	calculated	
for	the	first	20,	40,	60,	80,	100,	120,	140	and	160	data	points.	Data	for	MI	estimates	were	low-pass	filtered	for	
visualization	purposes	(raw	data	shown	in	light	red/grey).	Green	area	indicates	the	time	span	where	the	al-
gorithm	detects	a	performance	plateau	and	suggests	a	target	replacement.	
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Patients	division	in	training	groups	

The	stroke	participants	were	enrolled	one	at	a	time	on	a	continuous	basis.	The	subjects	were	ran-
domly	divided	in	the	three	different	groups	of	experimental	training.	Specifically,	subjects	S1	and	
S2	were	assigned	to	treatment	group	1	(additional	dose	of	conventional	therapy),	subjects	S3	and	
S4	to	treatment	group	2	(additional	standard	robotic	therapy),	and	subjects	S5	and	S6	to	treatment	
group	3	(additional	automatic	personalized	robotic	therapy	(Giang	et	al.,	2020)).	

	

Muscle	innervation	from	the	spinal	segments	
	

Table	B1	–	Muscle	innervated	by	each	spinal	cord	segment.	X	correspond	to	a	weight	coefficient	equal	1	

	 C2	 C3	 C4	 C5	 C6	 C7	 C8	 T1	

TRAPS	 X	 X	 X	 	 	 	 	 	

TRAPM	 X	 X	 X	 	 	 	 	 	

DANT	 	 	 	 X	 X	 	 	 	

DMED	 	 	 	 X	 X	 	 	 	

DPOS	 	 	 	 X	 X	 	 	 	

PECM	 	 	 	 X	 X	 X	 	 	

LAT	 	 	 	 	 X	 X	 X	 	

INFRA	 	 	 X	 X	 X	 	 	 	

RHO	 	 	 X	 X	 	 	 	 	

BICL	 	 	 	 X	 X	 	 	 	

BICS	 	 	 	 X	 X	 	 	 	

BRAD	 	 	 	 X	 X	 	 	 	

TRILA	 	 	 	 	 X	 X	 X	 X	

TRILO	 	 	 	 	 X	 X	 X	 X	

PRO	 	 	 	 	 X	 X	 	 	
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Details	on	muscle	synergies	similarities	

	

Figure	B1	–	Muscle	synergies	similarity.	Results	of	the	comparison	between	each	muscle	synergy	of	the	
stroke	subjects	with	the	ones	of	the	healthy	population	at	different	time	points,	before	(shades	of	blue)	
and	after	(shades	of	green)	the	rehabilitative	intervention.	The	shaded	area	reports	the	mean	and	stand-
ard	error	for	the	healthy	population	and	the	bar	plot	the	mean	value	of	the	stroke	one.	

Subject-	and	session-specific	SVD	maps	

In	order	to	demonstrate	that	all	subjects	had	similar	spatial	map	per	component,	we	performed	
SVD	decomposition	of	the	EEG	signal	of	each	subject	and	session.	We	then	matched	the	spatial	map	
obtained	for	each	participant	and	session	(i.e.,	individual	EEG-SVD	maps)	to	the	spatial	maps	ob-
tained	concatenating	all	subjects	and	sessions	(i.e.,	group-level	EEG-SVD	maps)	using	Hungarian	
algorithm	(Munkres,	1957).	We	computed	correlation	values	between	the	individual	spatial	maps	
and	the	group-level	EEG-SVD	maps.	The	correlation	was	high	for	all	top-five	components	(mean	
and	standard	deviation	across	components:	0.88	±	0.02	–	see	Supplementary	Figure	B2)	highlight-
ing	that	all	the	subjects	had	similar	spatial	maps.		

	

Figure	B2	–	Individual	maps.	Correlation	between	individual	maps	and	group-level	EEG-SVD	maps	for	the	
first	five	components.	Error	bars	represent	mean	±	standard	error	of	the	mean	across	participants	 	
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Anatomy	of	muscle	innervation	
Table	C1	–	Mapping	of	the	muscle	activity	on	the	spinal	cord	segments	(from	Kendall	et	al.,	2005)	|	BICL	=	
biceps	brachii	long	head,	TRIC	=	triceps	brachii	long	head,	BRA	=	brachialis,	BRAD	=	brachioradialis,	PRO	=	
pronator	 teres,	EXCR	=	extensor	carpi	radialis,	EXCU	=	extensor	carpi	ulnaris,	EXDC	=	extensor	digitorum	
communis,	FLCR	=	 flexor	carpi	 radialis,	FLCU	=	 flexor	carpi	ulnaris,	FLDS	=	 flexor	digitorum	superficialis,	
ABDM	=	abductor	digiti	minimi,	EXPB	=	extensor	pollicis	brevis,	ADPT	=	adductor	pollicis	transversus,	ABPB	
=	abductor	pollicis	brevis.	

	 BICL	 TRI	 BRA	 BRAD	 PRO	 EXCR	 EXCU	 EXDC	 FLCR	 FLCU	 FLDS	 ABDM	 EXPB	 ADPT	 ABPB	

C5	 1	 0	 1	 1	 0	 0.5	 0	 0	 0	 0	 0	 0	 0	 0	 0	

C6	 1	 0.5	 1	 1	 1	 1	 0.5	 1	 1	 0	 0	 0	 0.5	 0	 0.5	

C7	 0	 1	 0	 0	 1	 1	 1	 1	 1	 0.5	 1	 0.25	 1	 0	 0.5	

C8	 0	 1	 0	 0	 0	 0.5	 1	 1	 0.5	 1	 1	 1	 1	 1	 0.5	

T1	 0	 0.5	 0	 0	 0	 0	 0	 0	 0	 0.5	 1	 1	 0	 1	 0.5	

	

Results	

	

Figure	C1	–	Functional	images.	A.	Mean	functional	image	(after	motion	correction)	for	an	example	subject.	
Sagittal,	coronal	and	axial	views	are	presented.	B.	Group-average	mean	functional	image	(sagittal	view)	nor-
malized	to	the	PAM50	template	(De	Leener	et	al.,	2017).	A	=	anterior,	P	=	posterior,	S	=	superior,	I	=	inferior,	
L	=	left,	R	=	right.		
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Figure	C2	–	Temporal	signal-to-noise	ratio	and	normalization.	A.	Temporal	signal-to-noise	ratio	(tSNR)	
before	and	after	motion	correction,	and	after	the	filtering	steps.	Group	maps,	normalized	to	the	PAM50	tem-
plate	(De	Leener	et	al.,	2018),	are	presented,	with	one	coronal	slice	and	one	axial	slice	per	condition.	B.	As-
sessment	of	 the	normalization	quality.	The	 left	panel	(coronal	views)	presents	representative	slices	of	 the	
PAM50	template,	the	mean	normalized	anatomical	image	and	the	mean	normalized	functional	image.	Example	
axial	slices	are	shown	on	the	right	panel.	A	=	anterior,	P	=	posterior,	S	=	superior,	I	=	inferior,	L	=	left,	R	=	right.	

	

Figure	C3	–	EMG	waveforms.	Examples	of	muscular	activations	during	one	repetition	of	the	three	move-
ments	(WE	=	wrist	extension,	WA	=	wrist	adduction,	FA	=	finger	abduction).	Each	waveform	represents	the	
activity	of	one	muscle	(EMG	activity	is	displayed	on	the	y-axis	in	percentage	of	the	Maximum	Voluntary	Con-
traction,	and	x-axis	corresponds	to	the	duration	of	the	movement,	i.e.,	two	seconds).	BICL	=	biceps	brachii	long	
head,	TRIC	=	triceps	brachii	long	head,	BRA	=	brachialis,	BRAD	=	brachioradialis,	PRO	=	pronator	teres,	EXCR	
=	extensor	carpi	radialis,	EXCU	=	extensor	carpi	ulnaris,	EXDC	=	extensor	digitorum	communis,	FLCR	=	flexor	
carpi	radialis,	FLCU	=	flexor	carpi	ulnaris,	FLDS	=	flexor	digitorum	superficialis,	ABDM	=	abductor	digiti	min-
imi,	EXPB	=	extensor	pollicis	brevis,	ADPT	=	adductor	pollicis	transversus,	ABPB	=	abductor	pollicis	brevis.	
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Table	C2	–	Summary	of	group	activity	(Phase	2).	Reported	coordinates	are	in	the	PAM50	template	space	
	

	 #	voxels	 p	 COG	(x)	 COG	(y)	 COG	(z)	

WE	 2719	 0.00235	 67.7	 70.7	 828	

WA	 5133	 3.81e-05	 69.5	 70.6	 773	

FA	 3827	 0.000339	 73.1	 70.8	 785	

	

	

Table	C3	–	Summary	of	group	activity	(Phase	3	-	MVPA).	Reported	coordinates	are	in	the	PAM50	template	space	

	 #	voxels	 p	 COG	(x)	 COG	(y)	 COG	(z)	

WE	 5270	 6.56e-07	 70.8	 69.8	 797	

WA	 5767	 5.96e-08	 71.5	 70.2	 773	

FA	 4777	 1.01e-06	 70.2	 70.5	 740	

	

	

	

	

	

Figure	C4	–	Group	activation	maps.	A.	PAM50	template	(De	Leener	et	al.,	2018),	where	selected	anterior	
and	posterior	slices	are	indicated.	B.	Group	maps	(anterior	hemicord)	for	the	contrast	task	VS	baseline	(WE	=	
wrist	extension,	WA	=	wrist	adduction,	FA	=	finger	abduction).	Maps	are	thresholded	at	a	Z-score	>	2	(cluster-
defining	threshold	of	p	<	0.01)	and	normalized	to	the	PAM50	template	(De	Leener	et	al.,	2018).	Only	a	region	
from	C5	to	C8	is	considered	(imaged	in	all	subjects).	Sagittal	views	are	presented,	with	the	same	slice	shown	
for	all	movements.	C.	Group	maps	(posterior	hemicord).	S	=	superior,	I	=	inferior,	L	=	left,	R	=	right,	A	=	ante-
rior,	P	=	posterior.		
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Figure	C5	–	Similarity	of	rostrocaudal	profiles.	Pearson’s	correlation	coefficients	between	the	rostrocaudal	
profiles	related	to	the	three	different	movements	(WE	=	wrist	extension,	WA	=	wrist	adduction,	FA	=	finger	
abduction),	for	the	following	conditions:	A.	Between	the	EMG-derived	profiles	and	the	fMRI-derived	profiles	
(anterior,	or	motor,	side	of	the	spinal	cord	only),	B.	Between	the	EMG-derived	profiles	and	the	fMRI-derived	
profiles	(posterior,	or	sensory,	side	of	the	spinal	cord	only),	C.	Between	the	EMG-derived	profiles.		

	

	

	

	

	

Figure	C6	–	Average	decoding	accuracy.	Each	subject	performed	10	repetitions	of	each	movement.	EMG-
derived	spinal	maps	were	computed	for	each	repetition	and	averaged	over	time	to	keep	only	the	spatial	in-
formation	(i.e.,	five	features	per	sample,	corresponding	to	the	mean	activity	over	time	in	the	spinal	levels	from	
C5	 to	T1).	Classification	was	performed	 in	 each	 subject	using	an	LDA	classifier	 (leave-one-movement-out	
cross	validation),	using	only	the	voxels	included	in	specific	masks:	A.	Inferior	region	of	the	spinal	cord	B.	Su-
perior	region	of	the	spinal	cord.	C.	Anterior	(motor)	hemicord	D.	Posterior	(sensory)	hemicord.	All	values	are	
reported	in	percentage.	WE	=	wrist	extension,	WA	=	wrist	adduction,	FA	=	finger	abduction.	
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Figure	D1	–	Assessment	of	the	normalization	quality.	Coronal	views	of	the	PAM50	template	(De	Leener	et	
al.,	2018),	the	mean	normalized	anatomical	image,	the	mean	normalized	functional	image	and	the	mean	nor-
malized	temporal	signal-to-noise	ratio	(tSNR,	 following	motion	correction)	map	are	presented,	along	with	
example	axial	slices.	The	probabilistic	maps	of	the	grey	matter	(GM)	and	the	white	matter	(WM)	are	also	pro-
vided	as	references.		
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Figure	D2	–	Atlas	regions.	A.	Schematic	representation	of	the	spinal	cord	(axial	view)	with	the	different	re-
gions	of	interest	indicated	(adapted	with	permission	from	Lévy	et	al.,	2015).	The	numbers	correspond	to	the	
ones	used	in	Figure	D5	(note	that	odd	numbers	refer	to	regions	on	the	left	side,	while	even	numbers	are	found	
on	the	right	side).	B.	Main	functional	roles	of	each	atlas	region	(Darby	and	Frysztak,	2013).	
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Figure	D3	–	Selection	of	the	number	of	iCAPs.	A.	In	order	to	assess	the	reproducibility	of	the	clustering	for	
different	values	of	K	(i.e.,	different	numbers	of	iCAPs),	we	employed	a	subsampling	scheme,	where	the	clus-
tering	was	repeated	100	times	using	random	subsets	of	the	data	(10	subjects	in	each	repetition).	For	each	
repetition,	clustering	of	the	significant	innovation	frames	was	performed	for	(i)	low	granularity	K	values,	from	
4	to	20,	using	multiple	of	the	number	of	spinal	levels	(i.e.,	four);	and	(ii)	high	granularity	K	values,	ranging	
from	20	to	90,	in	steps	of	10,	in	order	to	cover	a	wide	range	of	potential	fine-grained	subdivisions.	The	stability	
of	the	clustering	solutions	was	then	evaluated	using	the	adjusted	mutual	information	(AMI)	(Vinh	et	al.,	2010)	
between	the	assignments	 in	each	subset	and	the	assignments	obtained	 for	 the	 full	dataset	(i.e.,	 for	 the	19	
subjects).	Using	repeated	measures	ANOVA,	we	confirmed	that	reproducibility	was	significantly	different	be-
tween	 K	 values,	 both	 within	 the	 low	 granularity	 (F(4,396)	 =	 25.57,	 p	 <	 0.001)	 and	 the	 high	 granularity	
(F(7,693)	=	47.50,	p	<	0.001)	ranges.	Post-hoc	Tukey	tests	highlighted	a	maximum	for	low	K	values,	at	K	=	4	
(AMI	of	0.57,	significantly	different	from	subsequent	Ks,	p	<	0.01).	Furthermore,	reproducibility	 increased	
again	from	K	=	30	and	reached	a	high-granularity	maximum	at	K	=	40	(AMI	of	0.50,	no	significant	difference	
with	K	=	50	or	60),	to	subsequently	decrease	from	K	=	70	(p	<	0.001).	K	=	40	was	selected	for	fine-grained	
analyses,	as	this	value	was	the	most	parsimonious	and	stable	in	the	explored	range.	Mean	±	SD	over	the	100	
repetitions	of	the	clustering	are	presented.	B.	The	correspondence	with	the	atlas	was	evaluated	by	means	of	
Dice	coefficients,	for	the	high-granularity	clustering	solutions	obtained	using	the	full	dataset.	An	ANOVA	indi-
cated	that	there	was	no	significant	difference	between	K	values	(F(7,432)	=	0.5,	p	=	0.84).	These	findings	cor-
roborated	the	stability	of	the	observed	organization,	highlighting	that	the	correspondence	with	the	atlas	was	
preserved	for	different	iCAP	choices	and	not	coincidental	to	the	selected	K	value.	This	provided	additional	
support	in	favor	of	the	robustness	of	our	approach,	underlining	its	potential	to	reliably	uncover	meaningful	
neuroanatomical	structures.	Mean	±	SD	over	iCAPs	are	presented.	n.s.	=	not	significant,	*	p	<	0.05,	**	p	<	0.01,	
***	p	<	0.001	
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Figure	D4	–	iCAPs	spatial	patterns.	A.	Axial	views	of	the	four	low-granularity	iCAPs.	Coronal	and	sagittal	
views	are	presented	in	Figure	6.2.	B.	Coronal	and	sagittal	views	of	the	40	high-granularity	iCAPs.	Spinal	levels	
are	provided	as	a	reference	(blue	maps	in	the	left	panel)	(De	Leener	et	al.,	2017).	Thresholded	iCAP	maps	are	
overlaid	onto	the	PAM50	template	(De	Leener	et	al.,	2018).	ICAPs	numbers	are	indicated	in	the	bottom	right	
corners.	L	=	left,	R	=	right,	D	=	dorsal,	V	=	ventral.		
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Figure	D5	–	iCAPs	spatial	properties.	A.	Spatial	overlap	between	iCAPs.	We	computed	the	Dice	coeffi-
cients	between	iCAP	maps,	thus	highlighting	a	very	limited	spatial	overlap	between	the	different	components.	
B.	iCAPs	voxel	distribution.	We	computed	the	distributions	of	the	voxel	content	of	each	iCAP	into	each	spinal	
level	(low	granularity)	or	atlas	region	(high	granularity)	(i.e.,	percentage	of	voxels	in	each	region,	as	defined	
by	the	Spinal	Cord	Toolbox	(De	Leener	et	al.,	2017)).	The	numbers	of	the	atlas	regions	correspond	to	the	ones	
presented	in	Figure	D2.	WM	=	white	matter,	GM	=	grey	matter.	These	analyses	are	done	for	both	levels	of	
granularity	(K	=	4,	low	granularity,	and	K	=	40,	high	granularity).	
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Figure	D6	–	Consistency	of	neural	pathways.	In	order	to	evaluate	the	stability	of	the	iCAPs	spatial	maps,	
the	dataset	was	split	into	two	equal	parts,	in	which	iCAPs	were	computed	independently.	The	neuroanatomic	
identities	of	the	iCAPS	from	both	sets	were	then	investigated	(see	Figure	D2).	The	same	atlas	regions	are	found	
in	Part	1	(A.)	and	Part	2	(B.),	indicating	that	the	same	neural	pathways	(DCML,	CST	and	INTER)	are	present	
throughout	the	experiment.		
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Figure	E1	-	Regions	included	in	the	brain	mask.	In	order	to	limit	the	analysis	to	regions	known	to	be	in-
volved	in	motor	control	and	motor	learning,	the	following	regions	were	selected	for	the	analysis	at	the	level	
of	the	brain:	accumbens,	anterior	cingulate	cortex,	caudate,	cerebellum,	hippocampus,	primary	motor	cortex,	
premotor	cortex,	putamen,	primary	somatosensory	cortex,	superior	frontal	gyrus	and	superior	parietal	lob-
ule.	They	are	highlighted	in	red	on	the	MNI	template.		

	
 

	

Figure	E2	–	Consensus	clustering.	The	selection	of	the	number	of	iCAPs	was	based	on	consensus	clustering	
measures,	as	introduced	in	(Monti	et	al.,	2003),	and	performed	independently	for	the	brain	and	the	spinal	
cord.	The	upper	panels	show	the	mean	consensus	values	per	cluster,	which	should	be	equal	to	1	in	case	of	
perfect	consensus.	The	lower	panels	correspond	to	the	cumulative	distribution	function	(CDF)	of	values	in	the	
consensus	matrices	obtained	 for	different	number	of	 iCAPs	(i.e.,	different	K	values).	 In	an	 ideal	clustering	
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scenario,	the	CSF	should	display	an	horizontal	line,	with	values	only	distributed	between	0	(two	frames	never	
clustered	together)	or	1	(two	frames	always	clustered	together).	A.	Previously,	17	iCAPs	were	used	to	decom-
pose	brain	activity	using	iCAPs	(Zöller	et	al.,	2019).	In	order	to	obtain	a	similar	level	of	details,	we	assessed	
the	clustering	consensus	around	this	value	(±	3,	from	14	to	20).	This	supported	the	choice	of	KBR	=	15	for	our	
analyses.	B.	Considering	that	the	region	imaged	in	spinal	cord	covered	five	spinal	levels,	we	explored	a	range	
going	from	7	to	13	(10	±	3),	in	order	to	possibly	look	at	dorsal	and	ventral	components.	Both	KSC	=	10	and	KSC	
=	11	appeared	as	reasonable	options	(no	significant	difference).	The	latter	was	selected	after	visual	inspection	
of	the	components	(better	subdivision	of	spinal	levels	into	dorsal	and	ventral	components).		

	
 

Table	E1	–	Regions	present	in	brain	iCAPs.	Based	on	FSL	atlases.	Structures	are	observed	bilaterally,	unless	
otherwise	specified.	

iCAP	 Regions	

1	 Basal	ganglia	(putamen,	caudate,	accumbens),	ACC,	hippocampus	

2	 ACC,	S1,	Middle	frontal	gyrus	

3	 Cerebellum	Crus	I,	II,	Vermis	VIIIa		

4	 Inferior	/	Superior	parietal	lobule,	Middle	/	Superior	frontal	gyrus	

5	 Anterior	intraparietal	sulcus,	Superior	parietal	lobule	

6	 M1	(L),	S1	(L),	PMC,	Superior	parietal	lobule,	Cerebellum	(R)	V,	VI,	Vermis	VIIIa	

7	 Cerebellum	V,	VI,	Vermis	VIIb	

8	 Cerebellum	VI,	Crus	I,	Vermis	Crus	II,	Vermis	VI	

9	 PMC,	M1,	S1	

10	 Superior	parietal	lobule,	PMC	

11	 ACC,	Paracingulate	gyrus,	Caudate,	Accumbens	

12	 ACC,	Paracingulate	gyrus		

13	 Hippocampus,	Cerebellum	I-V	

14	 Cerebellum	VII-IX,	Crus	II,	Vermis	VIII,	IX	

15	 M1,	S1	
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Table	F1	–	Demographics	of	stroke	patients	(study	1),	MAS	=	Modified	Ashworth	Scale	(upper	limb	muscles)	

Subject Age	 Gender	 Affected	hemisphere	 MAS	/48	
(3	weeks)	

MAS	/48	
(3	months)	

P01	 74	 Male	 Right	 5	 1.5	

P02	 68	 Male	 Left	 5	 8	

P03	 82	 Male	 Left	 8	 2.5	

P04	 69	 Male	 Right	 0	 0	

P05	 72	 Male	 Left	 2	 0	

P06	 87	 Female	 Right	 2	 2	

P07	 40	 Male	 Left	 0	 0	

P08	 70	 Female	 Right	 5	 2	

P09	 64	 Male	 Right	 5	 6	

	

	

	

Figure	F1	–	We	attempted	to	correlate	the	total	duration	of	iCAP	33	with	spasticity	at	3	months	following	
stroke	(Study	1).	No	significant	correlation	was	reported	(rho	=	0.13,	p	=	0.74).		
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