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Abstract
In quantum mechanics, the Heisenberg’s uncertainty principle places a fundamental limit

in the measurement precision for certain pairs of physical quantities, such as position and

momentum, time and energy or amplitude and phase. Due to the Heisenberg uncertainty

principle, any attempt to extract certain information from a quantum object would inevitably

perturb it in an unpredictable way. This raises one question, "What is the precision limit in

such quantum measurements?" The answer, standard quantum limit (SQL), has been obtained

by Braginsky to figure out the fundamental quantum limits of displacement measurement

in the context of gravitational wave detection. To circumvent the unavoidable quantum

back-action from the priori measurement, quantum non-demolition measurement (QND)

methods were introduced by Braginsky and Thorne. To surpass the SQL of the displacement

measurement in an interferometer, one can measure only one quadrature of the mechanical

motion while giving up the information about the other canonically conjugated quadrature.

Such measurements can be performed by periodic driving the mechanical oscillator, i.e. the

back-action evading (BAE) measurement.

Cavity optomechanics provides an ideal table-top platform for the testing of the quantum

measurement theory. The mechanical oscillator is coupled to electromagnetic field via ra-

diation pressure, which is enhanced by an optical micro-cavity. Over the last decade, laser

cooling has enabled the preparation of mechanical oscillator in the ground state in both

optical and microwave systems. BAE measurements of mechanical motion have been allowed

in the microwave electromechanical systems, which led to the observations of mechanical

squeezing and entanglement. However, despite the theoretical proposal almost 40 years ago,

the sub-SQL measurements still remain elusive. This thesis reports our efforts on the quantum

measurements with a highly sideband-resolved silicon optomechanical crystal (OMC) close

to the SQL, in a 3He buffer gas environment at ∼2K. The OMC couples an optical mode at

telecommunication wavelength and a colocalized mechanical mode at GHz frequency. The
3He buffer gas environment allows sufficient thermalization of the OMC, despite the drasti-

cally decreased silicon thermal conductivity at cryogenic temperatures. We observe Floquet

dynamics in motional sideband asymmetry measurement when employing multiple probing
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Abstract

tones. The Floquet dynamics arises due to presence of Kerr-type nonlinearities and gives rise

to an artificially modified motional sideband asymmetry, resulting from a synthetic gauge field

among the Fourier modes. We demonstrate the first optical continuous two-tone backaction-

evading measurement of a localized GHz frequency mechanical mode of silicon OMC close

to the ground state by showing the transition from conventional sideband asymmetry to

backaction-evading measurement. We discover a fundamental two-tone optomechanical

instability and demonstrate its implications on the back-action evading measurement. Such

instability imposes a fundamental limitation on other two-tone schemes, such as dissipative

quantum mechanical squeezing. We demonstrate state-of-art laser sideband cooling of the

mechanical motion to a mean thermal occupancy of 0.09 quantum, which is −7.4dB of the

oscillator’s zero-point energy and corresponds to 92% ground state probability. This also

enables us to observe the dissipative mechanical squeezing below the zero-point motion for

the first time with laser light.

Keywords: quantum measurement, cavity optomechanics, standard quantum limit, quantum

non-demolition measurement, back-action evading measurement, sideband asymmetry,

quantum mechanical squeezing.
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Résumé
En mécanique quantique, le principe d’incertitude de Heisenberg pose une limite fonda-

mentale à la précision de mesure pour certaines paires de quantités physiques, telles que la

position et la quantité de mouvement, le temps et l’énergie ou l’amplitude et la phase. En rai-

son du principe d’incertitude de Heisenberg, toute tentative d’extraire certaines informations

d’un objet quantique le perturberait inévitablement de manière imprévisible. Cela soulève

une question : "Quelle est la limite de précision pour de telles mesures quantiques ?" Braginsky

a découvert la réponse à cette question, la limite quantique standard(SQL), en étudiant les

méthodes de détections d’ondes gravitationelles. Pour contourner la rétro-action quantique

inévitable a priori lors d’une mesure, Braginsky et Thorne ont introduit des méthodes de

mesure quantique non-destructive (QND). Pour dépasser la SQL la mesure de déplacement

dans un interféromètre, il est possible de mesurer une seule quadrature du mouvement méca-

nique tout en renonçant aux informations sur l’autre quadrature canoniquement conjuguée.

Ces mesures peuvent être effectuées en entraînant périodiquement l’oscillateur mécanique

afin de réaliser une mesure dite d’évasion de rétro-action (BAE). L’optomécanique de cavité

fournit une plate-forme idéale pour tester la théorie de la mesure quantique. L’oscillateur

mécanique est couplé à la lumière via la pression de rayonnement, qui est renforcée par une

micro-cavité optique. Au cours de la dernière décennie, le refroidissement laser a permis la

préparation d’oscillateurs mécaniques à l’état fondamental dans les systèmes optiques et

micro-ondes. Des mesures BAE du mouvement mécanique ont été permises dans les systèmes

électromécaniques micro-ondes, ce qui a conduit à des observations de squeezing mécanique

et d’intrication. Bien que la proposition théorique ait été soumise il y a près de quarante ans,

aucune mesure sub-SQL n’a encore été réalisée à ce jour.

Cette thèse rapporte nos efforts pour tenter de réaliser des mesures sub-SQL avec un cristal

optomécanique de silicium (OMC) à résolution latérale élevée dans un environnement de gaz

tampon 3He à ∼ 2K. L’OMC couple un mode optique aux longueurs d’onde de télécommunica-

tion et un mode mécanique colocalisé aux fréquences GHz. L’environnement de gaz tampon
3He permet une thermalisation suffisante de l’OMC malgré la conductivité thermique du

silicium considérablement réduite. Nous observons la dynamique de Floquet dans la mesure
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Résumé

asymétrique de la bande latérale motrice lors de l’utilisation de plusieurs sondes lasers. La

dynamique de Floquet résulte de la présence de non-linéarités de type Kerr et donne lieu

à une asymétrie de bande latérale de mouvement artificiellement modifiée, trouvant son

origine dans le champ de jauge synthétique parmi les modes de Fourier. Nous démontrons la

première mesure optique continue à deux tons évitant la rétroaction d’un mode mécanique

de fréquence GHz localisé de silicium OMC proche de l’état fondamental en montrant la tran-

sition de l’asymétrie de bande latérale conventionnelle à la mesure de contournement. Nous

découvrons une instabilité optomécanique bicolore fondamentale et démontrons ses impli-

cations sur la mesure de rétro-action. Une telle instabilité impose une limite fondamentale

propre aux schémas à deux tons, tels que la squeezing mécanique quantique dissipatif. Nous

démontrons le refroidissement par bande latérale laser du mouvement mécanique jusqu’à

une occupation thermique moyenne de 0.09 quanta, ce qui représente −7.4dB de l’énergie du

point zéro de l’oscillateur et correspond à une probabilité de 92 % de l’état fondamental . Cela

nous permet d’observer un squeezing dissipatif mécanique en dessous du mouvement du

point zéro.

Keywords : mesure quantique, optomécanique des cavités, limite quantique standard, mesure

quantique de non-démolition, d’évasion de rétro-action, d’asymétrie des bandes latérales,

squeezing mécanique quantique.

x



List of Publications
1. Liu Qiu†, Itay Shomroni†, Jiahe Pan, Paul Seidler, Tobias Kippenberg, “Quantum

squeezing of mechanical motion with light”, In preparation.

2. Liu Qiu, Itay Shomroni, Paul Seidler, Tobias Kippenberg,“Optical micro-cavity spec-

troscopy with dissipation”, In preparation.

3. Liu Qiu†, Itay Shomroni†, Paul Seidler, Tobias Kippenberg,“Laser cooling of a nanome-

chanical oscillator to its zero-point energy”, Phys. Rev. Lett. 124, 173601 (2020).

4. Itay Shomroni†, Amir Youssefi†, Nick Sauerwein†, Liu Qiu†, Daniel Malz, Andreas Nun-

nenkamp, Paul Seidler, Tobias J. Kippenberg,“Two-Tone Optomechanical Instability

and Its Fundamental Implications for Backaction-Evading Measurements”, Phys. Rev.

X 9, 041022 (2019)

5. Itay Shomroni†, Liu Qiu†, Daniel Malz, Andreas Nunnenkamp, Tobias J. Kippenberg,

“Optical Backaction-Evading Measurement of a Mechanical Oscillator”, Nature Com-

munications 10, 2086 (2019).

6. Liu Qiu†, Itay Shomroni†, Marie Adrienne Ioannou, Daniel Malz, Andreas Nunnenkamp,

Tobias Kippenberg,“Floquet dynamics in the quantum measurement of mechanical

motion”, Phys. Rev. A 100, 053852 (2019).

7. Itay Shomroni, Liu Qiu, Tobias Kippenberg,“Optomechanical generation of a mechan-

ical catlike state by phonon subtraction”, Phys. Rev. A 101, 033812 (2020)

8. Amir Youssefi, Itay Shomroni, Nathan Bernier, Yash J. Joshi, Anton Lukashchuk, Liu

Qiu, Tobias Kippenberg,“Cryogenic electro-optical interconnect for superconducting

circuits”, arXiv:2004.04705 (2020)

xi





Contents

Acknowledgements v

List of Publications xi

List of figures xv

1 Introduction 1

1.1 Quantum Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Heisenberg Uncertainty Principle . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Standard Quantum Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Quantum Non-Demolition Measurement . . . . . . . . . . . . . . . . . . 6

1.2 Cavity Optomechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Theory 13

2.1 Input-output theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 The Quantum Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Optical Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Quantum Optomechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Bichromatic Optomechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Experimental System 39

3.1 Optomechanical Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Taper Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Experimental System Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Room Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.2 Cryogenic Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xiii



Contents

4 Floquet Dynamics in Quantum Measurements of Mechanical Motion 67

4.1 Floquet dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Frequency Response Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Excess Laser Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Optical Back-action Evading Measurement of a Mechanical Oscillator 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Two-tone Optomechanical Instability 93

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Observation of instability in two-tone pumping . . . . . . . . . . . . . . . . . . . 94

6.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 Microwave Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Laser cooling of a nanomechanical oscillator to the zero-point energy 107

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 Experimental System Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3.1 Coherent optomechanical spectroscopy . . . . . . . . . . . . . . . . . . . 114

7.3.2 Calibration using sideband asymmetry . . . . . . . . . . . . . . . . . . . . 114

7.3.3 Mechanical Noise Thermometry . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3.4 Results of Sideband Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3.5 Excess laser noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8 Quantum squeezing of mechanical motion with light 127

8.1 Reservoir engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.3 Parametric effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

xiv



Contents

9 Summary and Outlook 135

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A List of Symbols 137

B Nano Fabrication 139

B.1 Fabrication Runcard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B.2 Etching Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B.2.1 Fluorine Based Etching - Pseudo-Bosch Etching . . . . . . . . . . . . . . . 143

B.2.2 Hydrogen Bromide Based Etching . . . . . . . . . . . . . . . . . . . . . . . 143

B.2.3 Etching Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B.3 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

C Optical Measurement 151

C.0.1 Coherent Response Measurement . . . . . . . . . . . . . . . . . . . . . . . 151

C.0.2 Balanced Heterodyne Detection . . . . . . . . . . . . . . . . . . . . . . . . 153

D Laser Noise 157

E Dissipation in optical micro-cavity spectroscopy 165

Curriculum Vitae 189

xv





List of Figures

1.1 Scheme of the Heisenberg microscope . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Scheme of a continuous linear measurement . . . . . . . . . . . . . . . . . . . . 4

1.3 LIGO near Hanford, Washington, U.S . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Displacement measurement sensitivity vs. the probing strength . . . . . . . . . 10

2.1 Schematic of a generic optomechanical system . . . . . . . . . . . . . . . . . . . 19

3.1 Design of the OMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Optical Coupling between the waveguide and optical tapered fiber . . . . . . . 44

3.3 Effective index of the waveguide TE mode . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Optimal coupling length versus the gap between the taper and the waveguide . 45

3.5 Device design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Fabrication Process Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Scanning Electron Microscope Image of the fabricated sample . . . . . . . . . . 48

3.8 Image processing of the SEM picture of the silicon OMC . . . . . . . . . . . . . . 49

3.9 Room temperature characterization setup . . . . . . . . . . . . . . . . . . . . . . 50

3.10 Optical characterization of the OMC . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.11 OMCs of different external coupling rates . . . . . . . . . . . . . . . . . . . . . . . 51

3.12 Coherent Response Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.13 Optomechanical Induced Transparency of different pumping powers . . . . . . 52

3.14 Incoherent noise spectrum from heterodyne detection . . . . . . . . . . . . . . . 53

3.15 Noise spectrum of balanced heterodyne detection in room temperature side-

band cooling at different pumping powers . . . . . . . . . . . . . . . . . . . . . . 54

3.16 Effective mechanical damping rate at different intracavity photon number for

sideband cooling at room temperature . . . . . . . . . . . . . . . . . . . . . . . . 55

3.17 Final phonon occupancy at different intracavity photon numbers for sideband

cooling at room temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.18 Design of Heliox TL Cryostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xvii



List of Figures

3.19 Preparation of the Cryohead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.20 Optical resonant wavelength of OMC versus the cryostat temperature . . . . . . 60

3.21 Laser power induced heating of the mechanical mode . . . . . . . . . . . . . . . 61

3.22 Sideband cooling of the nanomechanical oscillator . . . . . . . . . . . . . . . . . 62

3.23 Signal-to-noise ratio (SNR) vs. the cooperativity C . . . . . . . . . . . . . . . . . . 62

3.24 Effect of the buffer 3He gas on sideband cooling performance . . . . . . . . . . . 63

3.25 Optical resonant wavelength and mechanical frequency below 4K . . . . . . . . 64

3.26 Mechanical damping rate below 4K . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Optomechanical crystal and experimental setup . . . . . . . . . . . . . . . . . . 69

4.2 Artificial and quantum sideband asymmetry in optomechanical sideband cooling 71

4.3 Observation of asymmetric noise spectra due to Kerr-type nonlinearity . . . . . 74

4.4 An illustration of the infinite array of coupled Fourier modes . . . . . . . . . . . 78

4.5 Cavity frequency response measurement . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Cavity frequency response at different pressures . . . . . . . . . . . . . . . . . . . 82

5.1 Scheme for Backaction-evading measurement . . . . . . . . . . . . . . . . . . . . 87

5.2 Experimental observation of backaction-evasion . . . . . . . . . . . . . . . . . . 90

5.3 Effect of probe power on quantum backaction and optical absorption heating . 91

6.1 Pumping scheme leading to two-tone instability . . . . . . . . . . . . . . . . . . 95

6.2 Experimental observation of two-tone instability . . . . . . . . . . . . . . . . . . 96

6.3 Two-tone instability in the optical domain . . . . . . . . . . . . . . . . . . . . . . 97

6.4 Domains of two-tone instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.5 Instability domains from eigenvalue analysis . . . . . . . . . . . . . . . . . . . . . 101

6.6 Experimental observation of two-tone instability in microwave domain . . . . . 103

6.7 Investigation of the two-tone instability in a circuit-electromechanical system . 104

6.8 Vanishing of the effective mechanical frequency . . . . . . . . . . . . . . . . . . . 105

7.1 Optomechanical crystal and experimental scheme . . . . . . . . . . . . . . . . . 109

7.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3 Coherent optomechanical spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 112

7.4 Incoherent noise spectrum from heterodyne detection . . . . . . . . . . . . . . . 113

7.5 Fitting of the incoherent noise spectrum . . . . . . . . . . . . . . . . . . . . . . . 114

7.6 Ancillary Quantum Thermometry for power-sweep and detuning-sweep mea-

surements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xviii



List of Figures

7.7 Detuning dependence of quantum back-action in the two-tone ancillary quan-

tum thermometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.8 Power dependence of sideband cooling . . . . . . . . . . . . . . . . . . . . . . . . 117

7.9 Mechanical Linewidth in the single-tone power-sweep measurements . . . . . 118

7.10 Final occupancy versus the cooling tone intracavity photon number . . . . . . . 119

7.11 Detuning dependence of the sideband cooling . . . . . . . . . . . . . . . . . . . . 120

7.12 Final occupancy versus the cooling tone detuning in single-tone measurements 121

7.13 Noise floor vs. reflected power in single-tone power-sweep measurements . . . 123

7.14 Recent advancement in laser cooling of mechanical resonators in various platforms124

8.1 Experimental observation of mechanical squeezing . . . . . . . . . . . . . . . . . 131

B.1 Pattern for the etching test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B.2 Etching Test Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.3 Graphical user interface for the image processing . . . . . . . . . . . . . . . . . . 149

C.1 Simplified setup for optical coherent response measurements . . . . . . . . . . 152

C.2 Coherent response determination of detuning and linewidth . . . . . . . . . . . 153

C.3 Simplified setup for Balanced Heterodyne Detection . . . . . . . . . . . . . . . . 155

D.1 Measurement Setup for the phase noise measurement with a filter cavity . . . . 159

D.2 Noise spectrum of the transduced phase noise around 5.3GHz . . . . . . . . . . 160

D.3 Calibrated frequency noise spectral density of ECDL. . . . . . . . . . . . . . . . . 161

D.4 Sideband cooling of OMC with two different lasers with and without a filter cavity162

D.5 Simplified setup for noise analysis with balanced heterodyne detection . . . . . 163

D.6 Observed excess noise in the balanced heterodyne detection with different local

oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

E.1 Optical cavity linewidth vs. the intracavity photon number from the coherent

response measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

E.2 Final phonon occupancy vs. the intracavity photon number . . . . . . . . . . . 168

xix





1 Introduction

"No elementary quantum phenomenon is a phenomenon

until it is a recorded phenomenon."

John Archibald Wheeler

1.1 Quantum Measurement

1.1.1 Heisenberg Uncertainty Principle

The field of quantum physics starts from Max Planck’s solution to the black-body radiation

problem in 1900 and Einstein’s explanation on the photoelectric effect in 1905 [1]. Over the

last century, quantum mechanics has witnessed great success in explanation of the behaviors

and interactions of particles at atomic and sub-atomic scales, establishing the foundation

of atomic physics, condensed matter physics, nuclear physics and particle physics, and has

also revolutionized the modern science and technology, such as the laser, semiconductors,

quantum information and etc. Despite the empirical success of quantum physics, the question

how the measurement is affecting the quantum system remains extensive discussions [2–7],

including debates on philosophical level and the interpretations of quantum mechanics.

In the early days of quantum physics, lots of gedankin experiments were proposed to under-

stand the measurements on single quantum object, such as Heisenberg’s microscope and

von Neumann’s Doppler speed meter. To give an example, we show the original thought

experiment proposed by Heisenberg drafted in his lecture, "The physical principles of the
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Chapter 1. Introduction

Figure 1.1 – Scheme of the Heisenberg microscope.

quantum theory", in 1929 at Chicago. The example shows the destruction of the knowledge

of a particle’s momentum by an apparatus determining its position using a microscope. As

shown in Fig. 1.1, a particle, such as an electron, moves at a distance x from the microscope.

The cone of rays of wavelength λ scatter from it through the objective with angular opening ε.

According to the optical diffraction limit, the resolution for the position is given by,

∆x = λ

sinε
. (1.1)

During the measurement, photons are scattered from the electron and pass through the

microscope. The electron receives a Compton recoil from the photon of a magnitude h/λ.

The recoil cannot be exactly known, as the direction of the scattered photon is undetermined

within the bundle of rays entering the microscope. The uncertainty of the recoil in the x-

direction is given by,

∆px ∼ λ

h
sinε. (1.2)

Thus the particle motion after the measurement is ∆x ·∆px ∼ h.

This simple gedankin experiment shows the fundamental property of the process of mea-

surement, even in a completely classical system. The position uncertainty is due to the

measurement error when extracting information from the measurement quantity. An in-

evitable perturbation of the momentum arises due to the measurement process. This is

however different from the mathematical formulation of the Heisenberg inequality relating

2



1.1. Quantum Measurement

the standard deviation of position ∆x and the standard deviation of momentum ∆p,

∆x ·∆p ≥ ~
2

, (1.3)

which demonstrates the fundamental property of the quantum system, with position and

momentum as two interchangeable observable [2, 8]. This demonstrates the intrinsic inability

of measuring position and momentum simultaneously with ultra-precision of a quantum

object, independent of how the quantum state of the object is prepared.

1.1.2 Standard Quantum Limit

Due to the Heisenberg uncertainty principle, any attempt to extract information from a

quantum object would inevitably perturb it in an unpredictable way, such as the position

measurement in the Heisenberg’s microscope. The prompt consequence of this unavoidable

stochastic perturbation is that the outcomes of the subsequent measurement can be affected

by the measurement process. However, in the early days, experiments were focused on

interactions of ensembles of photons with ensembles of atoms, and electrons. Little attention

was paid from the theory side to the features of quantum mechanics beyond the ensembles of

experiments, especially the phenomena associated with measurements of single objects.

"Fundamentally, the reason for this irrelevance of the quantum theory of measurement was

technological. The technology of 1940-1980 was not capable of making repetitive measurements

on a single quantum mechanical system and thereby discovering in a second measurement how

a first measurement had affected the system.", Kip Thorne [9].

In the 1960s, spatial and temporal coherent electromagnetic waves through amplification by

stimulated emission in microwave frequency (Maser) [10] and optical frequency (Laser) [11]

were demonstrated. Meanwhile, the quantum theory can be applied to the electromagnetic

field, where light is described in terms of field operators for photon creation and annihilation.

Light also shows different statistical properties, such as coherent light and squeezed light

[12–18]. The quantum description of light-matter interaction has been developed since

then, which results in the explosion of the field of quantum optics. Most importantly, this

allows continuous repeated measurements of a single quantum system and stimulates the

development of quantum measurement theory [19–23].

According to Heisenberg uncertainty, measurement of a single quantum object depends on

one’s a priori information about the state of the measured object and leads to unavoidable

3
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Quantum
   Object

Measurement
       Device

Input

Output

Back-action

A in
Aout=Ain +δA�uct

δF�uct

Figure 1.2 – Scheme of a continuous linear measurement.

back-action of the measuring device, as shown in Fig. 1.2. The measurement of the quantum

object results in an input A in to the measurement device, which imprints back-action "force"

δF fluct on the quantum object. For such a continuous linear measurement, the measurement

output is given by A out = A in +δA fluct, where δA fluct is due to the measurement back-action.

This raises one question, what are the accuracy of measurements and the quantum limits in

such measurements? Discussions around this range from generalized quantum operators

measurements [24], time-energy uncertainty [19], to quantum linear amplifiers [20]. The

main impetus for the quantum analysis of single object measurement actually comes from

gravitational waves detection [25]. The first people to consider interferometers for gravitational

waves detection were M. Gerstenshtein, V. I. Pustovoit [26] and Joseph Weber. The working

principle was later analyzed by Weiss [27]. Figure 1.3 shows one gravitational wave detector in

Hanford, Washington, from the Laser Interferometer Gravitational-Wave Observatory (LIGO).

It has two long (∼ 4km) perpendicular arms where kilogram-scale mirrors are suspended

at each end [28]. Laser light is used to measure the distance of both arms with a target

displacement sensitivity δx ∼ 10−19 centimeter for the gravitational wave detection with time

intervals between measurements ( τ< 10−3 s).

To observe the gravitational wave, ultra-sensitive displacement of the test mirrors are required.

Here we give a simple example on the position measurement of a free test mass. Assuming at

time t = 0, we measure the particle’s position with an error ∆x0 over a duration τ, such as in

the Heisenberg microscope. The corresponding perturbation of the momentum is given by,

∆P0 = ~
2∆x0

. (1.4)

At the time τ, the momentum perturbation will lead to an additional uncertainty in the position

of the particle,

∆x add = ∆P0τ

m
= ~τ

2m∆x0
, (1.5)

where m is the mass. This increases the position measurement error at the second measure-
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ment. The inferred momentum from the two measurements is given by

P = m
xτ−x0

τ
, (1.6)

which leads to the momentum error

∆P = m

τ

√[
(∆xo)2 + (∆xτ)2 + (∆xadd )2

]
, (1.7)

where ∆xτ is the position measurement error at time τ. To achieve lowest uncertainty for

the inferred momentum, ∆x0 can not be made arbitrarily small, as the added noise ∆xadd

will increase accordingly. The optimal position uncertainty is given by ∆x0 =
√

~τ
2m , where

∆x0 =∆xadd. The resulting optimal accuracy for the inferred momentum is obtained at,

∆P0 =∆PSQL =
√

~m

2τ
. (1.8)

Similarly, the minimum possible uncertainty for a position measurement is obtained at,

∆x0 =∆xSQL =
√

~τ
2m

. (1.9)

For a harmonic oscillator, such as the test mirror in LIGO, the minimum uncertainty for

position and momentum for the measurement occurs at,

∆x0 =∆xSQL =
√

~
2mΩm

∆P0 =∆PSQL =
√

~mΩm

2
,

(1.10)

where Ωm is the mechanical frequency. ∆xSQL and ∆P SQL are the standard quantum limits

(SQL) of a harmonic oscillator.

Quantum effects are known to take place at atomic scales, while they don’t seem to appear

in the world of large experimental apparatuses like LIGO. One of Braginsky’s most impor-

tant contributions to the gravitational wave detection is to consider the interferometer as a

quantum system [25, 29]. Such standard quantum limit has been obtained to figure out the

fundamental quantum limits in the context of gravitational wave detection, which arises from

the photon-counting statistics against the disturbance of the end mirrors’ positions produced

by radiation pressure fluctuation. By increasing the laser power, or the mean photon number
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4 km

LIGO, Hanford

Figure 1.3 – The Laser Interferometer Gravitational-Wave Observatory (LIGO) near Han-
ford, Washington, U.S. Credit: Caltech/MIT/LIGO Lab

(N ), the resulting uncertainty for the phase is ∼ N−1/2. However, the fluctuations in the laser

power also produce stochastic radiation-pressure forces on the mirror. If the fluctuations in

the two arms are uncorrelated, the total uncertainty in the displacement measurement given

by the SQL occurs at an optimal power [30],

Popt ∼ 1

2

(
mc2/τ

)
(1/ωτ)

(
1/b2) , (1.11)

where m is the mirror mass, ω is the optical angular frequency and b is the number of reflec-

tions at each end mirror.

However, the argument here assumes that the laser-power fluctuations in the two arms are

uncorrelated. This however implies that the beam splitter in the interferometer splits the

incident fluctuations unequally. In 1980, Carlton Caves solved this controversy, where he found

that, "There is a fluctuating radiation pressure force which drives p. However, it has nothing to do

with fluctuations in laser power; rather, it is an intrinsic property of a standard interferometer."

[30]. It is due to the inevitable vacuum fluctuations that enters the interferometric setup,

which is superposed on the light from the laser.

1.1.3 Quantum Non-Demolition Measurement

Along with the efforts to construct better detectors for gravitational waves, new methods for

ultra-precise interferometric displacement measurements have been explored to approach

and even surpass the SQL, such as the quantum non-demolition (QND) methods [31–33].

The earliest proposal of the QND measurement is from Braginsky in 1974 with pioneering idea

of performing a nondestructive recording of the energy state of an oscillator [25], later analyzed

by Unhur [34]. Despite the theoretical possibility, such schemes are rather challenging as they
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require direct measurements of the oscillator energy (number of quanta N̂ ), via quadratic

coupling to the displacement of the harmonic oscillator.

Thorne et al. at the same time, proposed an alternative approach to surpass the SQL in the

displacement measurement [35], by measuring the quadratures X̂1 and X̂2, which are the

canonically conjugate observables of a quantum harmonic oscillator, i.e.
[

X̂1, X̂2
] = i . In a

standard displacement measurement, the two quadratures are typically measured simultane-

ously with an equal precision. The Heisenberg uncertainty limits the quadrature precision to

the zero-point fluctuation. To achieve the quantum non-demolition measurement, one can

simply measure X̂1, while giving up all the information about the other quadrature X̂2 and the

energy quanta N̂ . We can construct a linearly coupled system with interaction Hamiltonian,

ĤI = K X̂1M̂ = K /
p

2x zpf

(
x̂M̂ cosΩm t − p̂

mΩm
M̂ sinΩm t

)
, (1.12)

where M̂ is the measurement apparatus and K is a coupling constant between the measure-

ment apparatus and quadrature X̂1. In the Heisenberg picture, the dynamical time evolution

of X̂1 and X̂2 is given by,

d X̂1/d t = 0

d X̂2/d t =−K M̂ .
(1.13)

We see that the measurement only perturbs X̂2 with X̂1 unaffected.

Following this idea, different methods are proposed. For example, a "pulsed" measurement

of X̂1 can be implemented by coupling to x̂ at times Ωm t = nπ. The measurement of the

displacement x̂ atΩm t = 0 produces a random kick to p̂. Despite the unknown perturbation

of p̂, x̂ returns to the position of the initial value at the time when Ωm t = nπ. In this way,

the subsequent measurement of x̂ can be followed to obtain the arbitrarily high measure-

ment precision. Such measurement strategy is later called stroboscopic back-action evading

measurement.

Alternatively, one can measure X̂1 continuously by coupling the displacement x̂ to the mea-

surement apparatus with a periodic coupling strength, which results in the Hamiltonian,

ĤI = K cosΩm t
x̂

2
p

x zpf
M̂

= K

2
M̂

(
X̂1 + X̂1 cos2Ωm t + X̂2 sin2Ωm t

) (1.14)

7
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In a time-averaged sense, we see that the measurement apparatus M̂ is only coupled to the X̂1

quadrature. In principle, there is still a back-action due to the coupling to X̂2. To achieve QND

measurement of X̂1, the system has to be free from frequency components near ±2Ωm . This

results in a near-nondemolition measurement. In this method, the periodic coupling strength

can be simply realized by driving the mechanical oscillator with two different frequencies

separated by twice the mechanical frequency. Such continuous QND measurement is also

referred as two-tone back-action evading measurement. A full quantum treatment of the

scheme is analyzed in detail by Clerk [36] in the context of quantum optomechanics.

QND measurements can be constructed in a way that the interaction results in a system

Hamiltonian that commutes with the observable. Such observable is typically called the QND

observable, which makes QND measurements one of the most fundamental type of quantum

measurements free from measurement back-action. Successful QND measurements have

been achieved in a wide range of systems [37, 38], ranging from the photon counting in Kerr

media, dispersive readout in cavity and circuit QED systems and etc [39, 40].

Despite the pioneering theoretical quantum analysis of QND displacement measurements, the

experimental realization in the optical interferometer still remains elusive. This is primarily

due to the emerging technical challenges such as the extraneous noises and instabilities at

required high circulating optical powers [41]. That being said, table-top experiments with

displacement measurements at the standard quantum limit can be extremely valuable.

1.2 Cavity Optomechanics

Mechanical motion can be measured by coupling to various degrees of freedoms. The radiation

pressure from the momentum exchange between the electromagnetic field and the mechanical

object can be utilized for such a purpose, such as in LIGO. Originally conceived in the context

of gravitational wave detection, such radiation pressure coupling was firstly investigated by

Braginsky in 1970 [42]. This leads to an emerging field - cavity quantum optomechanics [43].

Tremendous efforts have made on theory side focusing on the quantum measurement of

mechanical motion from different aspects [44], such as ponderomotive squeezing [45], QND

measurement [46] and more interestingly non-classical state generation [47]. Quantum mea-

surement of the mechanical motion was precluded in the early days mainly due to the rather

weak optomechanical coupling and the large thermal decoherence. Feedback cooling with

large-scale mirrors using radiation pressure was firstly demonstrated by Heidman in 1999 [48],

which was later pushed to much lower temperatures. The advancement in the nanofabrication

8
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has enabled the quest for systems at micro- and nano scale, where the optomechanical interac-

tions are enhanced significantly. This ranges from optomechanical crystals [49], membranes

[50], microdisks [51], to superconducting microwave electromechanical circuits [52], with the

mass of the mechanical oscillators ranging from pg to kg [43].

The parametric amplification of the mechanical motion using radiation pressure was discov-

ered in optical micro-toroid in 2005, where the optical modes are coupled to the co-located

mechanical modes [53]. On the other hand, laser cooling of the mechanical motion to the

quantum ground state was developed theoretically and experimentally [54–57]. Reduction

of the thermal noise typically requires precooling the mechanical oscillator under cryogenic

environment. The first demonstrated dynamic back-action cooling was in the Doppler regime

by Aspelmeyer, Kippenberg and Heidman [54, 58, 59]. The ground state preparation of the

mechanical motion with electromagnetic field was demonstrated by Painter and Teufel at

2011 [60, 61].

To approach the quantum limit for displacement measurements, the primary requirement

is the strong probing of the mechanical motion, to decrease the measurement imprecision.

Measurements with imprecision at and below the SQL were demonstrated in the microwave

and optical domain [52, 62].

When the thermal noise and the imprecision noise are eliminated to certain level, the observa-

tion of radiation pressure shot noise became possible [63–66]. Motional sideband thermom-

etry, a signature of quantum-mechanical nature of optomechanical coupling, has become

feasible. The zero-point motion of mechanical motion was observed from the motional side-

band asymmetry in the Painter group [67]. Quantum correlation between the imprecision

and the quantum back-action was adopted in a wide range of experiments, from the motional

sideband asymmetry to the ponderomotive squeezing of optical light [67–73]. Sensitivities

approaching the SQL have been demonstrated [66, 74–76].

In Fig. 1.4, the displacement measurement sensitivity compared to the zero-point fluctuation

at the mechanical frequency S̄ xx(Ωm)/S̄ zpf
xx (Ωm) is shown versus the probing strength 4C ,

where C is the optomechanical cooperativity. The dashed blue curve corresponds to the

imprecision noise, which is inversely proportional to the pumping power. The dashed green

curve corresponds to the quantum back-action, which scales linearly with the pumping power.

The black dashed curve corresponds to the standard quantum limit. On top of this is the

thermal noise, which is shown in dashed purple curve. This leads to the total noise, as shown

in the black curve.

9



Chapter 1. Introduction

10 -2 10 -1
10 0

10 1 10 2

4C

10 -2

10 -1

10 0

10 1

10 2

S xx
(

m
)/

ZP
F

xx
(

m
)

Imprecision
Quantum Back-action
Standard Quantum Limit
Thermal
Quantum Limit
Total

S

Figure 1.4 – Displacement measurement sensitivity vs. the probing strength. The displace-
ment measurement sensitivity is compared to the zero-point fluctuation at the mechanical

frequency S̄ xx(Ωm)/S̄ zpf
xx (Ωm). The probing strength is shown as the 4C , where C is the op-

tomechanical cooperativity.

Back-action evading measurement of the mechanical motion was attempted by driving the

electromechanical microwave circuits with injected excess classical noise in the pumping

tones in the Schwab group [77]. In this case, the cancelled back-action comes from the classical

noise. The first quantum back-action evading measurement was demonstrated later in the

same group in 2015 [78], despite various technical challenges, such as thermal effects and two-

level-system defects [79, 80]. Since then, BAE has been established as standard measurement

technique in the microwave domain, which immediately enabled the observation of the

squeezing of mechanical motion below the zero-point energy using reservoir engineering

techniques in the group of Schwab, Teufel and Sillanpää [81–85]. However, due to the use of

non-quantum-limited amplifier for the microwave signal, sub-SQL measurements with QND

techniques still remain elusive because of the large imprecision noise and excess microwave

noise. For this reason, quantum-limited amplifiers, such as Josephson parametric amplifier

(JPA) or Travelling wave parametric amplifier (TWPA), need to be used.

On the other hand, continuous displacement measurements approaching the SQL on the

optical side remain rather silent, primarily due to the large optical absorption in a wide range

of optomechanical platforms. Recent advancements with SiN membranes enable laser cooling

to the quantum back-action limit and high fidelity feedback cooling in the Doppler regime,

where the residual thermal energy is comparable to the zero-point energy [76, 86]. Varia-
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tional measurements techniques [87, 88], have been implemented to perform displacement

measurements close to the SQL, utilizing the quantum correlations between the measure-

ment imprecision and quantum back-action [89, 90]. Until now, sub-SQL measurements with

two-tone BAE measurements also remain elusive.

Despite the extremely large thermal decoherence at room temperature, several optomechan-

ical experiments have been able to explore the quantum correlation between the measure-

ment imprecision and quantum back-action [91, 92]. The correlations may be used to erase

back-action from an interferometric measurement of the mirror’s position, using variational

measurement techniques [87, 88]. This can also be utilized for a self-calibrated quantum

thermometer even at room temperature [91]. More recently, quantum back-action noise

comparable to the thermal noise has been observed at audio band of a high-reflectivity single-

crystal microresonator [93]. Such platform provides a testbed for studying techniques for

quantum back-action mitigation, to improve the sensitivity for future LIGO upgrade. Suc-

cessful gravitational wave detections in the last years have urged for improved measurement

sensitivity for both LIGO and Virgo [41]. For example, the squeezed vacuum are planned in

the advanced LIGO upgrade to improve the sensitivity [94].

Cavity optomechanics over the last decade has witnessed significant advances in the quantum

measurements of mechanical motion and has made it possible to explore the quantum limits

of displacement measurement in table top experiments [43]. On a fundamental level, such

studies enable testing quantum mechanics on a macroscopic scale, due to the ability to place

the engineered mechanical oscillators into the quantum regime [95]. Non-classical states

of mechanical motion have been generated, such as the single phonon Fock state [96] and

mechanical entangled states[97]. Beyond offering manipulation and control over mechanical

degrees of freedom, quantum optomechanics has also brought new technological advances

[98–100]. Mechanical systems are realized as ideal transducers for electrical field, magnetic

field, optical signal, and microwave to the optical frequency conversion, in both classical and

quantum regime [101–104].

1.3 Overview of the Thesis

This thesis studies the quantum measurements of mechanical motion close to the standard

quantum limit. Chapter 2 reviews the theoretical basis concerning the quantum measure-

ments of mechanical motion. Chapter 3 goes through the details of the experimental system,

including the design and the fabrication of the Optomechanical Crystal, the cryogenic setup
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and the measurement scheme. The experimental results of this thesis are discussed in Chapter

4-8. Chapter 4 discusses about the Floquet dynamics in the motional sideband asymmetry

measurements. Chapter 5 discusses about the back-action evading measurement of the me-

chanical motion in the optical domain. Chapter 6 discusses about the two-tone instability

and its fundamental implications for back-action evading measurements. Chapter 7 discusses

about the laser sideband cooling of a nanomechanical oscillator to its zero-point energy.

Chapter 8 discusses about the quantum mechanical squeezing of mechanical motion with

laser light. Finally, Chapter 9 summarizes the results of this thesis and gives an outlook for the

potential experiments.

12



2 Theory

Cavity optomechanics studies the interaction between the mechanical motion and electro-

magnetic field due to radiation pressure in a micro-cavity. A full quantum treatment of the

harmonic oscillator and the optical cavity field and the interaction between them are pre-

sented in this chapter. We will present an overall introduction of quantum optomechanical

measurement theory, where the dynamics, quantum control and measurement of mechanical

motion are discussed.

2.1 Input-output theory

Before we look into the interaction between the mechanical motion and the electromagnetic

field, we firstly start with the quantum treatment of the field dissipation where both the

mechanical motion and the light field experience energy decay to the environment. Such

quantum treatment was developed by Gardiner and Collett, which results in bath-induced

dissipation and noise fluctuations [105].

We consider a bosonic harmonic oscillator with frequency ωA and annihilation operator Â,

such as a mechanical oscillator or an optical cavity. One can start from writing down the total

Hamiltonian,

Ĥtot = Ĥsys + Ĥbath + Ĥint. (2.1)

The system Hamiltonian Ĥsys is given by,

Ĥsys = ~ωA Â† Â, (2.2)

13
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and Hamiltonian of the bosonic continuum bath is given by,

Ĥbath =∑
j
~ω j B̂ †

j B̂ j , (2.3)

where B̂ j and B̂ †
j are the annihilation and the creation operators of the j -th bosonic mode of

the bath, which satisfies
[

B̂ j , B̂ †
j ′

]
= δ j , j ′ .

The linear coupling between the system and the bath takes the form,

Ĥint =−i~
∑

j

[
g j Â†B̂ j − g∗

j ÂB̂ †
j

]
, (2.4)

where g j corresponds to the linear coupling rate between the j-th bosonic mode and the

bosonic harmonic oscillator.

In the Heisenberg picture, the equations of motion for the system and bath operators can be

calculated accordingly,

dÂ(t )

dt
=−iωA Â(t )−∑

j
g j B̂ j

dB̂ j (t )

dt
=−iω j B̂ j (t )+ g j Â(t ).

(2.5)

To eliminate the bath modes, we take the Markovian approximation and assume the coupling

is frequency independent for the different bath modes,

∑
j

∣∣g j
∣∣2 e−i(ω j−ωA)(t−t ′) = γδ(

t − t ′
)

, (2.6)

where γ= 2π|g |2ρ depends on the density of state of the bath modes ρ.

We thus obtain the quantum Langevin equations for the field of the harmonic oscillator,

˙̂A = i

~
[
Ĥsys, Â

]− γ

2
Â+p

γÂin(t ), (2.7)

where we introduce the input and output field operators,

Âin(t ) =− 1p
γ

∑
j

B̂ j (t0)e−iω j (t−t0)

Âout(t ) =− 1p
γ

∑
j

B̂ j (t1)e−iω j (t−t1).
(2.8)
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which depends on the initial condition B̂ j (t0) and final condition B̂ j (t1). The input and output

fields satisfy the commutation relations,[
Âin(t ), Â†

in

(
t ′

)]= δ(
t − t ′

)
[

Âout(t ), Â†
out

(
t ′

)]= δ(
t − t ′

)
.

(2.9)

This results in the input-output relation,

Âout(t ) = Âin(t )−p
γÂ(t ). (2.10)

When the bath is in thermal equilibrium, there is

〈
Âin(t )Â†

in

(
t ′

)〉= n̄ A
th (ωA)δ

(
t − t ′

)
, (2.11)

where

n̄ A
th(ωA) = 1

exp
(
~ωA
kBT

)
−1

, (2.12)

whereωA is the angular frequency of the specific field, kB is the Boltzman constant and T is the

reservoir temperature. Such dissipation theorem applies to both the mechanical motion and

the electromagnetic field. For optical light, the frequency is typically ∼ 1014 Hz, which means

that the light is "cold" in its ground state even at room temperature. For microwave light,

the frequency is typically ∼ GHz, which has residual thermal occupation even at cryogenic

temperatures. For the mechanical oscillator, the thermal occupation is much higher due to

the typically lower frequency.

2.2 The Quantum Harmonic Oscillator

We now consider a quantum harmonic oscillator with mass m, spring constant k and angular

frequencyΩm . The Hamiltonian of the harmonic oscillator is given by,

Ĥ = p̂2

2m
+ 1

2
kx̂2 = p̂2

2m
+ 1

2
mΩ2

m x̂2. (2.13)

The x̂ and p̂ here are the quantum mechanical operators for the displacement and the mo-

mentum, which satisfy the following canonical commutation relation,

[x̂, p̂] = i~. (2.14)
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Chapter 2. Theory

We can define the annihilation and creation operators of the harmonic oscillator,

b̂ =
√

mΩm

2~

(
x̂ + i

p̂

mΩm

)
b̂† =

√
mΩm

2~

(
x̂ − i

p̂

mΩm

)
,

(2.15)

where
[
b̂, b̂†

]= 1. Alternatively, the displacement and momentum operators can be expressed

in terms of the annihilation and creation operators,

x̂ = x zpf(b̂† + b̂)

p̂ =−i mΩm xzpf

(
b̂ − b̂†

)
,

(2.16)

where xzpf =
√
~/2mΩm is the zero-point fluctuation. The Hamiltonian can be rewritten as,

H = ~Ωm(b̂†b̂ + 1

2
), (2.17)

which results in quantized energy levels. We see that even in the ground state, the quantum

harmonic oscillator still has non-zero energy E0 = ~Ωm
2 .

The equation of motion of the oscillator is given by,

m
d2x̂

dt 2 +mΓm
dx̂

dt
+mΩ2

m x̂ = δF̂th. (2.18)

The mechanical damping rate Γm characterizes the coupling rate between the mechanical

oscillator and the thermal reservoir. We introduce the stochastic thermal force δF̂th, whose

spectral density is given by S̄ th
F F [ω] ∼ 2mΓmkB T at high temperature limit, i.e. kB T À ~Ωm.

We note that, for a mechanical oscillator in equilibrium with the thermal reservoir, the mean

phonon occupancy is given by,

n̄th = 1

exp
(
~Ωm
kBT

)
−1

. (2.19)

And pn , i.e. the probability of the harmonic oscillator in its n-th state, takes the form,

pn =
(
1−exp

[
− ~ω

kB T

])
exp

[
− n̄th~ω

kB T

]
, (2.20)

where the ground state probability is given by p0 = 1/(n̄th +1).
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2.2. The Quantum Harmonic Oscillator

Alternatively, we can obtain the equation of motion for the annihilation operators b̂,

db̂

dt
=−

(
iΩm + Γm

2

)
b̂ +

√
Γmδb̂in(t ), (2.21)

where the noise operators associated with the input fluctuations are given by,〈
δb̂†

in(t )δb̂in(0)
〉
= n̄thδ(t )〈

δb̂in(t )δb̂†
in(0)

〉
= (n̄th +1)δ(t ).

(2.22)

The Fourier transform of Eq. 2.21 gives,

b̂(ω) =χm(ω)
√
Γmδb̂in(ω), (2.23)

where we introduce the mechanical susceptibility,

χm(ω) = 1

Γm/2− i (ω−Ωm)
. (2.24)

We can obtain the double-sided displacement noise spectral density,

Sxx (ω) =
∫

d te iωt 〈x̂(t )x̂(0)〉

= x2
zpf

(
Sb̂+b̂+(ω)+Sb̂b̂(ω)

)
= x2

zpf

∣∣χm(−ω)
∣∣2
Γmn̄th +x2

zpf

∣∣χm(ω)
∣∣2
Γm (n̄th +1) .

(2.25)

The double-sided noise spectrum results in different strength in the positive and negative

frequency components, which is due to the vacuum fluctuation of the mechanical oscillator.

Such difference indicates the different strength of releasing and absorbing mechanical energy,

as the quantum harmonic oscillator cannot sustain a process where its vacuum state is an-

nihilated. This sideband asymmetry provides a self-calibrated quantum thermometry of the

mechanical oscillator, especially for low phonon occupation. The phonon occupancy and

temperature of the mechanical oscillator can be obtained,

n̄ th =
(

Sxx (+Ωm)

Sxx (−Ωm)
−1

)−1

T = ~Ωm

kB

[
ln

(
Sxx (+Ωm)

Sxx (−Ωm)

)]−1

.

(2.26)
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2.3 Optical Cavity

Here we consider the dynamics between an optical cavity coupled to a bosonic continuum

bath, similar to the mechanical modes. The optical cavity are coupled to two independent

bath, the internal loss at rate κ0 and the waveguide modes at rate κex. We can thus obtain the

equation of motion for the intracavity field â.

dâ

dt
=−

(
iωc + κ

2

)
â +p

κ0δâ0 +p
κexâin(t ), (2.27)

with the cavity resonant frequency ωc and the total optical decay rate κ = κ0 +κex. δâ0

corresponds to the vacuum fluctuation. The optical cavity is excited with an input field of

frequency ωL ,

âin(t ) = (|āin|+δâin(t ))e−iωL t , (2.28)

where āin is the mean coherent input field amplitude and δâin(t ) is the field fluctuation.

We can write the above equation in the rotating frame of the pumping laser,

dâ

dt
=

(
i∆− κ

2

)
â +p

κ0δâ0 +p
κexâin(t ), (2.29)

where ∆=ωL −ωc .

This results in the averaged intracavity field,

ā =
p
κex

κ/2− i∆
|āin| , (2.30)

and the mean intracavity photon number,

n̄ cav = |ā|2 = κex |āin|2
∆2 + (κ/2)2 = 4

κ

(
κex/κ

1+ (
4∆2/κ2

))
Pin

~ωL
, (2.31)

where P in is the input power to the optical cavity.

For a single-sided cavity, such as the Optomechanical Crystal (OMC) in this thesis, the normal-

ized reflection from the cavity takes the form,

Rc (∆) = 1− 4ηc
(
1−ηc

)
1+ (

4∆2/κ2
) , (2.32)

where the coupling efficiency of the cavity is defined by ηc = κex/κ. When the pumping
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2.4. Quantum Optomechanics

ωc

Ωm

x
Figure 2.1 – Schematic of a generic optomechanical system with a laser-driven optical
Fabry-Pérot cavity and a vibrating end mirror. The optical cavity has resonant frequency of
ωc , while the vibrating mirror has a vibrating frequency ofΩm . Optical light is sent into the
cavity and reflected back from one end mirror.

frequency is far off the cavity resonance, i.e. |∆|À κ, the normalized reflection approaches

unity. When on resonance, the reflection is given by Rc (0) = 1−4ηc (1−ηc ), which equals

to zero when ηc = 0.5. In this case, the reflection from the cavity is completely suppressed.

The Lorentzian dip in the cavity reflection can be adopted to calibrate the optical decay rate

κ. The ηc however, requires additional knowledge of the coupling, where the cavity is either

overcoupled or undercoupled. This can be verified by comparing different external coupling

rates or via the phase response in a coherent cavity response measurement.

2.4 Quantum Optomechanics

Cavity optomechanics studies the coupling between light and mechanical motion due to

radiation pressure. Such system could be intuitively described as a simple Fabry-Pérot (FP)

cavity with one end mirror fixed and the other free end mirror mounted on a harmonic spring,

as shown in Fig. 2.1. The cavity length is modulated by the mechanical motion x of the

vibrating end mirror at its vibrational frequency Ωm . This in turn leads to a modulation of

the cavity resonance frequency ωc and results in the dispersive coupling between the mirror

vibration and the cavity field. It is useful to consider the Hamiltonian of the optomechanical

system,

Ĥ = ~ωc(x̂)â†â +~Ωmb̂†b̂, (2.33)
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Chapter 2. Theory

where the optical cavity frequency ωc (x̂) is a function of the displacement of the vibrating

mirror. For small cavity frequency perturbation, we can expand the cavity frequency to the

first order of the displacement,

ωc(x̂) ≈ωc + x̂
∂ωc

∂x
. (2.34)

We can define the vacuum optomechanical coupling,

g0 = dωc

dx
x zpf. (2.35)

This corresponds to the cavity frequency shift per zero-point fluctuation, where xzpf =
√

~
2meffΩm

is the zero-point motion with meff as the effective mass. The radiation pressure force on the

mirror is given by,

F̂rad =−~ g0

x zpf
â†â, (2.36)

which is enhanced by the intracavity photon number.

Before we proceed further, we note that other types of optomechanical couplings exist as well,

such as the quadratic coupling in membrane-in-the-middle experiments [50], where the cavity

frequency is shifted quadratically to the mirror displacement. The cavity linewidth can be also

modulated by the mirror displacement, which is referred as dissipative coupling [106, 107].

The coupling can also arise due to the photothermal heating of the mechanical motion, i.e.

the bolometric effects [108]. However, we consider only the linear dispersive coupling of the

intracavity field to the mirror displacement.

We can write the Hamiltonian of the system including the driving and dissipation as,

Ĥ = ~ωc â†â +~ωm b̂†b̂ +~g0â†â
(
b̂ + b̂†

)
+ Ĥdiss + Ĥdrive, (2.37)

where Ĥdiss and Ĥdrive correspond to Hamiltonian of the dissipation and the external driving.

The quantum Langevin equations can be obtained,

˙̂a =−
(
iωc + κ

2

)
â − i g0

(
b̂ + b̂†

)
â +p

κexâin(t )+p
κ0δâvac(t )

˙̂b =−
(
iΩm + Γm

2

)
b̂ − i g0â†â +

√
Γmb̂ in(t ).

(2.38)

Here we introduce the vacuum fluctuation field δâvac(t) due to the internal cavity loss. We
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2.4. Quantum Optomechanics

excite the optical cavity with laser field â ine−iωL t , where ωL is the laser frequency and â in is

the input field amplitude. The input field, the intracavity field and the mirror motion can be

decomposed into two components, the static and the fluctuation terms respectively,

â in(t ) = ā in +δâ in(t )

â(t ) = ā +δâ(t )

b̂(t ) = b̄ +δb̂(t ).

(2.39)

The steady amplitude for optics and vibration can be obtained,

ā ∼
p
κexāin

−i ∆̄+κ/2

b̄ = −i g0n̄cav

iΩm +Γm/2
,

(2.40)

where n̄ cav = |ā|2 is the intracavity photon number. The resulting radiation pressure force

displaces the equilibrium position of the mirror, and thus leads to a new cavity frequency

ωc+g0
(
b̄ + b̄∗)

, resulting in the new detuning ∆̄=∆−g0
(
b̄ + b̄∗)

. We note that, for small driving

field, such displacement is small compared to the cavity linewidth and can be absorbed in the

laser detuning. For simplicity, we replace ∆̄with ∆ in the rest of this thesis.

Accordingly, we can obtain the quantum Langevin equations for the fluctuation terms for the

optical and mechanical field in the rotating frame of the driving frequency,

δ̇â =
(
i∆− κ

2

)
δâ − i g

(
δb̂ +δb̂†

)
+p

κexδâin +p
κ0δâ vac

δ̇b̂ =−
(
iΩm + Γm

2

)
δb̂ − i g

(
δâ† +δâ

)
+

√
Γmδb̂ in,

(2.41)

where we introduce the effective optomechanical coupling rate g = g0
p

n̄ cav.

The optical and mechanical noise operators satisfy the following noise correlations,〈
δâin (t )δâ†

in

(
t ′

)〉=αδ(
t − t ′

)
〈
δâ†

in (t )δâin
(
t ′

)〉= 0〈
δâvac (t )δâ†

vac

(
t ′

)〉=αδ(
t − t ′

)
〈
δâ†

vac (t )δâvac
(
t ′

)〉= 0〈
δb̂in (t )δb̂†

in

(
t ′

)〉= n̄th δ
(
t − t ′

)
〈
δb̂†

in (t )δb̂in
(
t ′

)〉= (
n̄th +β)

δ
(
t − t ′

)

(2.42)
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Hereα describes the fluctuation in the optical field whileβ describes the zero-point fluctuation

in the mechanical motion. In general, α (for a quantum limited laser) and β equal to one. A

treatment of a non-quantum-limited laser is performed later in this thesis.

This set of equations can be easily solved in the Fourier domain, where we define,

Â[ω] =
∫

d t Â(t )e iωt

Â†[ω] =
∫

d t Â†(t )e iωt = (Â[−ω])†.
(2.43)

The quantum Langevin equations in the Fourier domain are given by,

δâ(ω) =χc (ω)
(
−i g

(
δb̂ +δb̂†

)
+p

κexδâin +p
κ0δâ vac

)
δâ†(ω) =χ∗c (−ω)

(
i g

(
δb̂ +δb̂†

)
+p

κexδâ†
in +

p
κ0δâ†

vac

)
δb̂(ω) =χm(ω)

(
−i g

(
δâ† +δâ

)
+

√
Γmδb̂ in

)
δb̂†(ω) =χ∗m(−ω)

(
i g

(
δâ† +δâ

)
+

√
Γmδb̂†

in

)
,

(2.44)

where the optical and mechanical susceptibility take the form,

χc (ω) = 1

κ/2− i (ω+∆)
(2.45)

χm(ω) = 1

Γm/2− i (ω−Ωm)
. (2.46)

From Eq. 2.44, we can easily obtain the relation between field operators D = (δâ,δâ†,δb̂,δb̂†)T

and the input noise operators D in = (δâ in,δâ†
in,δâ vac,δâ†

vac,δb̂ in,δb̂†
in)T , where D = M ·L ·D in.

We introduce M and L,

M =


χ−1

c (ω) 0 −i g −i g

0
[
χ∗c (−ω)

]−1 i g i g

−i g −i g χ−1
m (ω) 0

i g i g 0
[
χ∗m(−ω)

]−1


−1

(2.47)

and

L =


p
κex

p
κ0 0 0 0 0

0 0
p
κex

p
κ0 0 0

0 0 0 0
p
Γm 0

0 0 0 0 0
p
Γm

 . (2.48)
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Coherent response of the cavity to the input field can be obtained by the relation between of

δâ and δâ in from the matrix components (M ·L). The mirror vibration due to the radiation

pressure, can result in a modified cavity response compared to the original optical suscep-

tibility, such as in the optomechanically induced transparency [109, 110]. Such radiation

pressure can also change the dynamical response of the mirror motion to the thermal noise,

by modifying the damping rate and also the vibrating frequency. This can lead to the damping

or heating of the vibration, where the former is called sideband cooling.

The output field δâ out = δâ in−p
κexδâ, can be decomposed into the sum of all the input noise

operators. By far, we have shown the detailed procedure to obtain the output field with the

input noises. In some cases, there can be additional noise sources, such as cavity frequency

noise or laser noise, which can be incorporated accordingly. The output field can be measured

accordingly through direct detection or linear detection.

Now we choose a simple example to explore the theoretical quantum limits in the displacement

measurement with resonant probing, i.e. ∆= 0,

δâout(ω) = δâin(ω)−
p
ηcκ

κ/2− iω

(
−i

g0

x zpf
āδx(ω)+p

κexδâin(ω)+p
κ0δâvac(ω)

)
δF rad(ω) =−~ g0

x zpf
ā

(
δâ(ω)+δâ†(ω)

)
.

(2.49)

Linear measurement of the output field phase quadrature, δqout(ω) = i
(
−δaout(ω)+δa†

out(ω)
)
,

such as in a balanced homodyne measurement, results in the symmetrized noise spectral

density [111],

S̄out
qq (ω) = 1

2

(
Sout

qq (+ω)+Sout
qq (−ω)

)
= 1+ 4ā2g 2

0ηcκ

ω2 + (κ/2)2

S̄xx (ω)

x2
zpf

, (2.50)

which includes a constant background due to the shot noise. This constitutes the fundamental

displacement measurement imprecision,

S̄im
xx (ω) = ω2 + (κ/2)2

4ā2g 2
0ηcκ

x2
zpf, (2.51)

which is inversely proportional to the intracavity photon number and also the cavity coupling

efficiency ηc . Note that we assume a lossless detection of the output field.
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The force spectral density of the quantum back-action can be calculated from Eq. 2.49,

S̄ba
F F (ω) = ā2κ~2

ω2 + (κ/2)2

g 2
0

x2
zpf

, (2.52)

which scales linearly with the intracavity photon number.

The product of the S̄im
xx and S̄ba

F F satisfies the relation,

S̄im
xx (ω) · S̄ba

F F (ω) = ~2

4ηc
≥ ~2

4
. (2.53)

The total mechanical noise spectral density takes the form,

S̄tot
xx (ω) = S̄im

xx (ω)+ S̄ba
xx (ω)+ S̄th

xx (ω), (2.54)

which includes three contributions, i.e. the measurement imprecision, quantum back-action,

and thermal Brownian motion. The quantum back-action increased displacement measure-

ment noise is given by,

S̄ba
xx (ω) = S̄ba

F F (ω)∣∣∣m (
Ω2

m −ω2 − iωΓm
)2

∣∣∣2 . (2.55)

For simplicity, we look at the displacement spectral density at frequency ofΩm . By choosing

the proper intracavity photon number, we can minimize the total added noise, S̄add
xx (Ωm) =

S̄im
xx (Ωm)+ S̄ba

xx (Ωm). The minimum added noise equals to the displacement noise of the

zero-point motion,

S̄add
xx (Ωm) ≥ S̄zpf

xx (Ωm) = ~/meffΩmΓm , (2.56)

which is the standard quantum limit for a displacement measurement. In addition to this,

S̄th
xx (Ωm) = 2n̄thS̄zpf

xx (Ωm) at the high temperature limit.

Displacement measurement noise spectral density versus the probing strength is given in Fig.

1.4, which shows the standard quantum limit. To decrease the measurement imprecision,

strong probing of the mechanical motion is required. Over the last years, measurements with

imprecision at and below the SQL were demonstrated in the microwave and optical domain

[52, 62]. The quantum-back action was firstly observed in cryogenic environment [64–66] and

more recently even observed at room temperature [91–93]. This opens the door to the QND
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displacement measurement to surpass the SQL.

2.5 Bichromatic Optomechanics

In a simple quantum optomechanical system, the mechanical motion leads to frequency

modulation of the cavity field. Such frequency modulation will naturally generate motional

sidebands on both sides of the probing frequency. The scattering of the thermomechanical

sidebands may have different strength due to optical cavity transduction. In the resolved

sideband regime (Ωm À κ), the lower and upper motional sideband transitions allow a myriad

of protocols, from sideband cooling [61, 112], state swap [101], to squeezing [81–85], and

entanglement [113], by selectively driving upper and lower motional sidebands of cavity.

In this section, we will introduce the theoretical treatment for the back-action evading mea-

surement together with schemes to perform self-calibrated quantum sideband thermometry

and dissipative mechanical squeezing, which all require bichromatic pumping, close to the

red and blue motional sidebands of the cavity.

The input field takes the form âin = ac e−iωc t +abe−iωb t +δâin, where ac(b) and ωc(b) are the

amplitude and frequency of the cooling tone (blue probe), and δâin corresponds to the input

noise. The two tones are separated by 2(Ωm +δ), and the mean of their frequencies is detuned

from the cavity resonance by ∆. The mechanical mode is coupled to the optical field through

radiation pressure.

For simplification, we transform into a rotating frame with respect to H0 = ~(ωc +∆)â†â +
~ (Ωm +δ) b̂†b̂. We can linearize the intracavity optical field â → ā +δâ and the mechanical

displacement b̂ → b̄+δb̂, where ā =p
n̄c e−iωc t +p

n̄be−iωb t and n̄b(c) is the intracavity photon

number due to the blue probe (cooling tone). Applying the rotating-wave approximation in

the sideband-resolved regime, we can obtain the effective Hamiltonian,

ĤRWA =−~δâ†δâ∆−~δb̂†δb̂δ−~
[(

gbδb̂† + gcδb̂
)
δâ† +

(
gcδb̂ + gbδb̂†

)
δâ

]
, (2.57)

where gb = g0
p

n̄b and gc = g0
p

n̄c are the enhanced coupling rates for the blue and cooling

tone.
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We obtain the quantum Langevin equations for the field fluctuations,

δ̇â =
(
i∆− κ

2

)
δâ + i (gcδb̂ + gbδb̂†)+p

κexδâin +p
κ0δâvac

δ̇â† =
(
−i∆− κ

2

)
δâ† − i (gcδb̂† + gbδb̂)+p

κexδâ†
in +

p
κ0δâ†

vac

δ̇b̂ =
(
iδ− Γm

2

)
δb̂ + i (gcδâ + gbδâ†)+

√
Γmδb̂in

δ̇b̂† =
(
−iδ− Γm

2

)
δb̂† − i (gcδâ† + gbδâ)+

√
Γmδb̂†

in.

(2.58)

Here we redefine the optical and mechanical susceptibility as,

χc (ω) = 1

κ/2− i (ω+∆)

χm(ω) = 1

Γm/2− i (ω+δ)
.

(2.59)

Solving Eq. (2.58) in the Fourier domain, we obtain,

δâ =χc (ω)[
p
κexδâin(ω)+p

κ0δâvac(ω)+ i gcδb̂ + i gbδb̂†]

δâ† =χ∗c (−ω)[
p
κexδâ†

in(ω)+p
κ0δâ†

vac(ω)− i gcδb̂† − i gbδb̂] δb̂(ω)

δb̂†(ω)

= i
M(ω)

N (ω)

pκex

δâin

δâ†
in

+p
κ0

δâvac

δâ†
vac


+

p
Γm

N (ω)

χ∗m−1(−ω)− iΣ∗(−ω) −iΠ(ω)

iΠ(ω) χ−1
m (ω)+ iΣ(ω)

δb̂in

δb̂†
in

 ,

(2.60)

where

M(ω) =
χc (ω)gc (χ∗m

−1(−ω)+G2χ∗c (−ω)) χ∗c (−ω)gb(χ∗m
−1(−ω)+G2χc (ω))

χc (ω)gb(χ−1
m (ω)+G2χ∗c (−ω)) χ∗c (−ω)gc (χ−1

m (ω)+G2χc (ω))


N (ω) =χ−1

m (ω)χ∗m
−1(−ω)+ iχ∗m

−1(−ω)Σ(ω)− iχ−1
m (ω)Σ∗(−ω)+G4χc (ω)χ∗c (−ω)

(2.61)

and

Π(ω) =−i gc gb[χc (ω)−χ∗c (−ω)] (2.62)

Σ(ω) =−i [g 2
cχc (ω)− g 2

bχ
∗
c (−ω)] (2.63)

G2 = g 2
c − g 2

b . (2.64)
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We’ve now introduced the general theoretical treatment to the bichromatic pumping of the

optomechanical system. In the following subsections, we will look into some specific mea-

surement schemes.

Sideband Cooling

One of the main challenges for sub-SQL measurement is the large thermal noise. The mechan-

ical oscillators are typically precooled under cryogenic environment. Further laser cooling

techniques are developed to cool the mechanical oscillator close to the ground state [55, 56].

Here we briefly review the most simplest case, i.e. single tone sideband cooling, where gb = 0,

δ= 0 and ∆= 0. We obtain the quantum Langevin equations in the Fourier domain,

χ−1
c (ω)δâ(ω) = i gcδb̂(ω)+p

κδâin(ω)

χ−1
m (ω)δb̂(ω) = i gcδâ(ω)+p

Γmδb̂in(ω),
(2.65)

where we assume that the cavity is extremely overcoupled (ηc = 1).

The phonon annihilation operator can be expressed in terms of the input noise operators,

b̂(ω) = χ̄m(ω)
(√
Γmδb̂in(ω)+ i gc

p
κχc (ω)χ̄m(ω)δâin(ω)

)
. (2.66)

Here we introduce the dressed mechanical susceptibility due to the dynamical back-action,

χ̄m(ω) = χm(ω)

1+ gc
2χc (ω)χm(ω)

, (2.67)

In the weak coupling regime, gc ¿ κ, it can be simplified,

χ̄m(ω) = 1(
Γm +Γopt

)
/2− iω

, (2.68)

with the optomechanical damping rate Γopt = 4gc
2/κ. The dynamical back-action due to the

radiation pressure force leads to an increased mechanical damping rate Γtot = Γm +Γopt.

From the mechanical noise spectrum,

Sb̂b̂(ω) =
∫ ∞

−∞
dω′

2π

〈
b̂† (

ω′) b̂(ω)
〉

, (2.69)
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the final occupancy can be obtained,

n̄ f =
∫ ∞

−∞
dω

2π
Sb̂b̂(ω) = Γmn̄th

Γm +Γopt
. (2.70)

Dynamical back-action results in net cooling of the mechanical motion by coupling to the

cold optical reservoir. We note that, the above calculation is performed with the rotating-wave

approximation, where the quantum back-action limit from the cooling tone, i.e. κ2/16Ω2
m , is

neglected due to the large sideband resolutionΩm/κ. Besides, the input laser is assumed to

be quantum-limited, where the non-quantum-limited case is discussed in the Appendix. The

excess noise in the laser leads to additional back-action heating [114].

The thermomechanical sideband can be measured by a quantum-limited linear detection,

such as homodyne or heterodyne detection. In our case, due to the high mechanical frequency,

we perform a balanced heterodyne detection of the output field, which is mixed with a strong

local oscillator. More details on the balanced heterodyne detection is in the Appendix. The

measured single-sided heterodyne noise spectrum corresponds to the symmetrized autocor-

relator of the photocurrent, S I (Ω) = 1
2

∫ ∞
−∞〈{Îout(t + t ′), Îout(t ′)}〉e iΩt d t . When normalized to

the shot noise, it is given by

S I (Ω+∆LO) = 1+ηΓtot
n̄ f Γopt

Γ2
tot/4+Ω2

, (2.71)

where ∆LO is the frequency difference between the LO oscillator and the cavity frequency and

η is the total detection efficiency and Γtot = Γm +Γopt.

For simplicity, ∆LO is assumed to be positive in our case. The noise spectrum consists of

two parts, the shot noise floor and the thermomechanical sideband. The area of the ther-

momechanical sideband, As = ∫
(S I (Ω)− 1)dω, can be adopted for the mechanical noise

thermometry,

n̄ f =
As/n̄c

A0
s /n̄0

c

kB T

~Ωm
, (2.72)

by anchoring the mode area at the lowest power with intracavity photon number n̄0
c , and

sideband area A0
s . This requires that, the mechanical mode is well thermalized to the ther-

mal reservoir at the lowest power, where the temperature can be accurately read out by a

thermometer. This however can be a big issue for measurements at cryogenic temperatures,

where the device thermalization is typically limited by the material properties [115] and also

the cooling power of the cryostat.
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Sideband Asymmetry

The mode temperature of a mechanical oscillator can be measured with self-calibrated quan-

tum thermometry utilizing the quantum property of the harmonic oscillator. As mentioned

earlier, for a quantum harmonic oscillator, the double-sided displacement noise spectral

density is different for the negative and positive frequency components. For example, in

Raman scattering, the Stokes and the anti-Stokes sidebands are imbalanced. Motional side-

band asymmetry has been also observed in optomechanical systems [67–70]. The origin

and the interpretation of such asymmetry however critically depend on how to perform the

optomechanical measurement [70, 116, 117]. In a photon counting experiment, the side-

band asymmetry relies on the quantum properties of the mechanical motion; while in a

linear measurement such as heterodyne detection, it comes from the correlation between the

measurement imprecision and the quantum back-action[70].

Here we introduce the theoretical treatment of the quantum optomechanical measurement of

such sideband asymmetry in a balanced heterodyne detection. We assume a simple case of

weak bichromatic balanced pumping of an optomechanical system. The two driving tones

are placed symmetrically close to the red and blue sidebands with the same powers, where

gc = gb = g , ∆= 0. The effective Hamiltonian takes the form,

ĤRWA =−δ~δb̂†δb̂ −~g
(
δb̂† +δb̂

)(
δâ† +δâ

)
. (2.73)

We obtain the quantum Langevin equations in the Fourier domain,

χ−1
c (ω)δâ(ω) = i gδb̂(ω)+ i gδb̂†(ω)+p

κδâin(ω)

χ−1
m (ω)δb̂(ω) = i gδâ(ω)+ i gδâ†(ω)+

√
Γmδb̂in(ω).

(2.74)

We obtain the phonon annihilation operator in terms of the input noises,

δb̂(ω) =χm(ω)
(√
Γmδb̂in(ω)+ i g

p
κχc (ω)δâin(ω)+ i g

p
κχc (ω)δâ†

in(ω)
)

. (2.75)

The mechanical susceptibility remains the same, due to the vanished dynamical back-action.

We note that, additional quantum back-action heating is present in such bichromatic pumping

scheme due to amplitude fluctuations in the pumping field. The mechanical displacement
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noise spectrum can be obtained,

Sxx (ω) =
∫

d te iωt 〈x̂(t )x̂(0)〉

= x2
zpf

∣∣χm(−ω)
∣∣2
Γm (n̄th + n̄ba)+x2

zpf

∣∣χm(ω)
∣∣2
Γm

(
n̄th + n̄ba +β

)
,

(2.76)

where the n̄ba = 4g 2/κΓmα. In such balanced two-tone measurement (δ 6= 0), the phonon

occupation is increased due to the quantum back-action, i.e. n̄ f = n̄th + n̄ba.

A linear balanced heterodyne detection of the cavity output field, results in a single-sided

output noise spectrum,

S I (Ω+∆LO) = 1+ηΓm
∣∣χm(−Ω)

∣∣2 4g 2

κ

(
n̄ f +

β

2
− α

2

)
+ηΓm

∣∣χm(Ω)
∣∣2 4g 2

κ

(
n̄ f +

β

2
+ α

2

)
. (2.77)

Here α and β correspond to the zero-fluctuation for the laser light and the mechanical motion

respectively, which both equal to 1. However, this reveals the origin of the sideband asymmetry

in the balanced heterodyne detection. Instead of from the quantum property of a mechanical

oscillator, it is due to the quantum correlation between the measurement imprecision and

quantum back-action. In the actual measurement, the two thermomechanical sidebands are

separated by 2|δ|À Γm , such that there is no spectral overlap between the sidebands. Such

sideband asymmetry can be adopted for self-calibration of the mechanical oscillator close

to the ground state, which doesn’t require the knowledge of the temperature of the thermal

reservoir and the mechanical damping rate.

Sideband Cooling with Self-calibration

We have shown the theoretical treatment of single tone sideband cooling and motional side-

band asymmetry. One might think of combing these two experiments, to perform a self-

calibrated sideband cooling. Here we consider a two-tone pumping scheme where a strong

cooling tone near the lower motional sideband is applied for sideband cooling, while an

additional weaker blue probe is applied near the upper motional sideband for self-calibration.

By measuring the resonantly-enhanced anti-Stokes and Stokes scattered sidebands, propor-

tional to n̄ f and n̄ f +1, respectively, the mean phonon occupancy of the oscillator n̄ f can be

determined. The mechanical susceptibility, which is modified by the radiation pressure from
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the two tones, is defined as,

χeff(ω) = χ∗m
−1(−ω)− iΣ∗(−ω)

N (ω)

≈ 1

(Γm +Γopt)/2− i (ω+δ−δΩm)
.

(2.78)

In the weak-coupling regime (Γopt ¿ κ), the effective damping rate of the mechanical oscillator

becomes Γeff = Γm +Γopt, where the optomechanical damping rate (in the resolved-sideband

limit) is Γopt =−Γb +Γc , and Γb and Γc take the form

Γb(c) = n̄b(c)g 2
0

(
κ

κ2/4+ (∆±δ)2

)
. (2.79)

The optical spring effect is given by

δΩm = n̄b g 2
0

(
∆+δ

κ2/4+ (∆+δ)2

)
+ n̄c g 2

0

(
∆−δ

κ2/4+ (∆−δ)2

)
. (2.80)

From the Wiener-Khinchin theorem, the two-sided mechanical displacement noise spectrum

is calculated in the lab frame as

Sxx (ω)

x2
zpf

= Sb̂b̂(ω)+Sb̂†b̂† (ω)

= Γm (n̄th +1)+Γc

(ω−Ωeff)2 +Γ2
eff/4

+ Γmn̄th +Γb

(ω+Ωeff)2 +Γ2
eff/4

.

(2.81)

The final mechanical occupation, in the sideband resolved limit, is given by

n̄ f =
Γmn̄th +Γb

Γeff
. (2.82)

In the two-tone pumping scheme, the quantum back-action (QBA) from the blue probe can

become dominant even when there is no heating due to optical absorption, as is evident from

the second term in the numerator of Eq. (2.82).

When coupled to both the optical and thermal reservoirs, the zero point fluctuation of the

dressed mechanical mode becomes,

β̃= α (Γc −Γb)+Γmβ

Γeff
. (2.83)

For α= 1 (i.e. a quantum limited laser field) and β= 1, we see that also β̃= 1.

We note that Eq. (2.82) is formulated using the rotating-wave approximation, where the QBA
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from the cooling tone is neglected [118–120], if the system is deep in the resolved-sideband

regime. In the following, we explain this conclusion using a Raman-scattering picture that

addresses QBA from both the cooling tone and the blue probe [119]. Without the mechanical

damping, the mean phonon occupancy of the optomechanical crystal cavity n̄min is given by

the detailed balance expression

n̄min +1

n̄min
=
ΓAS

b +ΓAS
c

ΓS
b +ΓS

c
, (2.84)

where ΓAS
b(c) and ΓS

b(c) correspond to the anti-Stokes and Stokes scattering rate, respectively, of

the blue probe (cooling tone). Now, ΓAS
c ≡ Γc and ΓS

b ≡ Γb , whereas ΓAS
b and ΓS

c take the form

ΓAS
b = n̄b g 2

0

(
κ

κ2/4+ (∆+δ+2Ωm)2

)
ΓS

c = n̄c g 2
0

(
κ

κ2/4+ (∆−δ−2Ωm)2

)
. (2.85)

The imbalanced Stokes and anti-Stokes scattering from both the cooling tone and the blue

probe leads to a net optomechanical damping of the mechanical oscillator Γopt = ΓAS
b +ΓAS

c −
ΓS

b −ΓS
c ≈ Γc −Γb . The minimum phonon occupancy n̄min is therefore given by

n̄min = Γ
S
c +Γb

Γopt
. (2.86)

The stochastic QBA force from both tones produces a residual phonon occupancy of the

optomechanical crystal cavity. In the deep resolved-sideband regime (κ¿Ωm), such that

ΓS
c ¿ Γopt, the QBA from the cooling tone is negligible. After including the mechanical damp-

ing Γm , n̄ f takes the form in Eq. (2.82), where the QBA from only the blue probe is considered.

Similar in the sideband asymmetry measurement, a balanced heterodyne detection can be

adopted for the output optical field, The frequency difference between the local oscillator and

the mean frequency of the two pumping tones is ∆LO, assuming 0 <−δ<∆LO. The measured

single-sided heterodyne noise spectrum, when normalized to the shot noise, is given by

S I (Ω+∆LO) = 1+ηΓeff

[ (n̄ f +1)Γb

Γ2
eff/4+ (Ω+δ)2

+ n̄ f Γc

Γ2
eff/4+ (Ω−δ)2

]
, (2.87)

Equation (2.87) can be used to determine the phonon occupancy n̄ f from the asymmetry of

the motional sidebands, considering the detuning dependent scattering rate.
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Back-action Evasion

Due to the Heisenberg uncertainty principle, continuous linear displacement measurement

is limited by the standard quantum limit. To surpass this limit, quantum non-demolition

measurement can be performed. Following the original idea of Thorne, a two-tone back-action

evading measurement scheme can be implemented by driving the optomechanical system

periodically [35, 36]. Instead of performing the displacement measurement, one can measure

a single quadrature of the displacement while completely giving up the information on the

other quadrature. Now we go through the theoretical treatment of such two-tone back-action

evading measurement, where two pumping tones of the same power are placed exactly at the

red and blue sideband of the cavity, i.e. δ= 0 and ∆= 0. The effective Hamiltonian takes the

form,

ĤRWA =−~g
(
δb̂† +δb̂

)(
δâ† +δâ

)
, (2.88)

We can define the amplitude and phase quadratures for the optical field in the interaction

picture,

Q̂ = δâ† +δâp
2

P̂ = i
δâ† −δâp

2
, (2.89)

where

[
Q̂, P̂

]= i . (2.90)

And the two unitless mechanical quadratures 1 can be defined accordingly in the interaction

picture,

X̂1 = δb̂† +δb̂p
2

X̂2 = i
δb̂† −δb̂p

2
, (2.91)

1The displacement operator can be decomposed to the two rotating quadratures,

x̂ = p
2xzpf

(
X̂1 cos(Ωm )t + X̂2 sin(Ωm )t

)
, where X̂1 = 1/

p
2
(
b̂e+iΩm t + b̂†e−iΩm t

)
and X̂2 =

−i /
p

2
(
b̂e+iΩm t − b̂†e−iΩm t

)
.
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where

[
X̂1, X̂2

]= i . (2.92)

The input quadrature operators satisfy the following noise correlation,

〈
X̂1,in(t )X̂1,in

(
t ′

)〉= (n̄th +1/2)δ
(
t − t ′

)〈
X̂2,in(t )X̂2,in

(
t ′

)〉= (n̄th +1/2)δ
(
t − t ′

)〈
X̂1,in(t )X̂2,in

(
t ′

)〉= i /2δ
(
t − t ′

)〈
X̂2,in(t )X̂1,in

(
t ′

)〉=−i /2δ
(
t − t ′

)〈
Q̂in(t )Q̂in

(
t ′

)〉= 1/2δ
(
t − t ′

)〈
P̂in(t )P̂in

(
t ′

)〉= 1/2δ
(
t − t ′

)〈
Q̂in(t )P̂in

(
t ′

)〉= i /2δ
(
t − t ′

)〈
P̂in(t )Q̂in

(
t ′

)〉=−i /2δ
(
t − t ′

)
.

(2.93)

We can obtain the effective Hamiltonian,

ĤRWA =−~2gQ̂ X̂1, (2.94)

which consists only the coupling term between the optical quadrature Q̂ and mechanical

quadrature X̂1. The quantum Langevin equations of the field quadratures can be obtained in

the Fourier domain,

χ−1
c (ω)Q̂(ω) =p

κQ̂in(ω)

χ−1
m (ω)X̂2(ω) =p

Γm X̂2,in(ω)+2gQ̂(ω)

χ−1
c (ω)P̂ (ω) =p

κP̂in(ω)+2g X̂1(ω)

χ−1
m (ω)X̂1(ω) =p

Γm X̂1,in(ω).

(2.95)

We see that the X̂1 quadrature is not affected by the measurement, while X̂2 is additionally

coupled to the optical fluctuation Q̂. The noise spectral density for the two mechanical

quadratures can be calculated accordingly,

S̄X1 X1 (ω) = 1

2

∫
dω′

2π

〈{
X̂1

(
ω′) , X̂1(ω)

}〉= Γm

(Γm/2)2 +ω2

(
n̄th

m +1/2
)

S̄X2 X2 (ω) = 1

2

∫
dω′

2π

〈{
X̂2

(
ω′) , X̂2(ω)

}〉= Γm

(Γm/2)2 +ω2

(
n̄th

m +2n̄ba +1/2
)

,

(2.96)

where n̄ba = 4g 2

κΓm
. We see that the quadrature X̂1 remains unaffected, while an increased
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measurement back-action 2n̄ba is imprinted on the other mechanical quadrature X̂2. The

output field can be measured by a balanced heterodyne detection. The noise spectrum density,

normalized to the vacuum noise level, is given by,

S I (Ω+∆LO) = 1+ηΓm
∣∣χm(Ω)

∣∣2 4g 2

κ

(
2n̄th +β

)
. (2.97)

When increasing the probing strength g , the imprecision keeps decreasing and no back-action

is seen by the measurement record. Such BAE measurement can be in principle adopted to

perform sub-SQL measurement of the mechanical motion. In practise, excess back-action

appears at high probing power, such as the microwave source noise and the optical absorption,

which precludes the perfect BAE measurements [79, 80, 121]. Besides, one needs to distinguish

different noise sources or processes during the measurement, such as in the evaded back-

action or sideband asymmetry measurement [122].

In the optical domain, a sweep of two-tone frequency separation δ can be performed, while

maintaining other parameters, such as g and ∆. For |δ| À Γm , the sideband asymmetry is

restored, where the phonon occupancy n̄ f = n̄th + n̄ba can be calibrated via the asymmetric

thermomechanical sidebands. A transition between the sideband asymmetry and back-action

evasion can thus be observed. To observe the evasion of the measurement back-action more

easily, the mechanical oscillators are typically prepared at low phonon occupancy, using

cryogenic precooling or laser cooling. However, this requires additional pumping tones, which

results in complex dynamics in the optomechanical system, such as the Floquet dynamics

due to Kerr-type nonlinearities [122].

Dissipative Mechanical Squeezing

In the back-action evading measurement, the quadrature fluctuation X̂1 is completely decou-

pled from the measurement quantum back-action. Conditional squeezing of the mechanical

motion can be in principle obtained from BAE measurements, during a given run of experi-

ment [36]. However, after averaging on many measurement runs, the minimum measured

mechanical quadrature from the output noise spectrum is the zero-point motion. Uncon-

ditional squeezing of the mechanical motion can be achieved using reservoir engineering

[123], where the optical cavity can be seen as a bath whose force noise is squeezed [124].

The scheme is similar to the BAE measurement, while the cooling tone is stronger than the

blue probe, i.e. δ = 0, ∆ = 0 and gc > gb . We can obtain the effective Hamiltonian with
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rotating-wave-approximation,

ĤRWA =−~
[(

gbδb̂† + gcδb̂
)
δâ† +

(
gcδb̂ + gbδb̂†

)
δâ

]
. (2.98)

For gc 6= gb , we introduce a Bogoliubov-mode annihilation operator,

β̂= δb̂ coshr +δb̂† sinhr, (2.99)

where the squeezing parameter r satisfies sinhr = gb/gc . The Hamiltonian can be rewritten,

Ĥ =−~G
(
δa†β̂+δaβ̂†

)
, (2.100)

where G =
√

g 2
c − g 2

b . Using an unbalanced two-tone pumping scheme, we can sideband cool

the Bogoliubov mode β̂. The vacuum state of β̂ is the squeezed vacuum, where the squeezing

operator is given by,

Ŝ(r ) = exp
[

r
(
b̂b̂ + b̂†b̂†

)
/2

]
. (2.101)

The quantum Langevin equations for the Bogoliubov mode and the optical field are given by,

χ−1
c (ω)δâ =p

κδâin + iGβ̂

χ−1
m (ω)β̂=p

Γmβ̂in + iGδâ.
(2.102)

The mode occupation of the Bogoliubov mode can be obtained easily,

n̄β =
∫ ∞

−∞
dω

2π
Sββ(ω) = Γm

Γtot
n̄th
β , (2.103)

where Γtot = Γm +4G2/κ and the thermal occupation of the Bogoliubov mode takes the form,

n̄th
β =

( gc

G

)2
n̄th +

( gb

G

)2
(n̄th +1) . (2.104)

The dynamical back-action from the two-tone driving cools the Bogoliubov mode, where the

output noise spectrum can be obtained,

S I (Ω+∆LO) = 1+ηΓtot
n̄βΓopt

Γ2
tot/4+Ω2

, (2.105)

where the optomechanical damping rate is given by Γopt = 4(g 2
c − g 2

b)/κ.
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Ground state cooling of β̂ directly results in the unconditional mechanical squeezing,

2〈X̂ 2
1 〉 = e−2r

[
1+2

〈
β̂†β̂

〉
+〈β̂β̂〉+

〈
β̂†β̂†

〉]
. (2.106)

From the noise spectrum, we could not however obtain the quadrature variance directly.

Asserting the Cauchy-Schwarz inequality, the squeezing occupation obeys rigorous bounds

from the phonon occupancy of the Bogoliubov mode [124],

〈
X̂ 2

1

〉≤ e−2r
[

1+2
〈
β̂†β̂

〉]
〈

X̂ 2
1

〉≥ e−2r
[

0.5+2
〈
β̂†β̂

〉]
.

(2.107)

The variance of mechanical quadrature X̂1 takes the form,

〈
X̂ 2

1

〉= Γm

Γtot

(
n̄th +

1

2

)
+ 2

(
gc − gb

)2

κΓtot
, (2.108)

While for the other quadrature X̂2, the variance takes the form,

〈
X̂ 2

2

〉= Γm

Γtot

(
n̄th +

1

2

)
+ 2

(
gc + gb

)2

κΓtot
. (2.109)

The reservoir engineering results in a reduced variance in quadrature X̂1 and increased vari-

ance in quadrature X̂2. We can infer the quadrature variance indirectly from Eq. 2.108 [125],

which requires perfect knowledge of the system dynamics, such as additional parametric

effects. Alternatively, one can perform an independent back-action evasion measurement of

the two quadratures directly. However, this requires additional pumping tones, which results

in complex dynamics in the optomechanical system, such as the Floquet dynamics [122].

Besides, the BAE measurement can be limited by the excess heating and also fundamental

two-tone instability [126].
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Over the last decade, a wide range of optomechanical systems are studied, where the mass of

the mechanical oscillator ranges from zg (e.g. cold atoms [127]), to fg (e.g. microdisk [128])

and to g (suspended macroscopic mirrors) [58]. However, measurements in the quantum

regime with such mechanical oscillators are rather limited and challenging. One of the greatest

challenges is the thermal noise. The average phonon excitation of a mechanical oscillation is

n̄ th = kB T
~Ωm

, which is proportional to the bath temperature and inversely proportional to the

mechanical frequency. To observe quantum effects, a high frequency mechanical oscillator

in cryogenic environment is preferred. Another challenge is that most of these experimental

platforms are limited in the weak coupling regime, where the single photon coupling strength

g0 is much lower than the optical decay (g0 ¿ κ). One figure of merit is the so-called vacuum

cooperativity C0 = 4g 2
0

κΓm
. In the last years, a lot of effort has been made to achieve high C0,

which enables even the observation of the quantum back-action at room temperature despite

the large decoherence rate n̄ thΓm [92].

In this chapter, we will discuss in detail the optomechanical device and the cryogenic setup

for the quantum optomechanical measurements outlined in this thesis.

3.1 Optomechanical Crystal

To achieve stronger optomechanical coupling, one intuitive idea is to reduce the mode volume

of the optical and mechanical resonator, to enhance the interaction between photonic and

phononic field with large field overlap. The smaller effective mass results in higher mechanical

frequency, thus lower mean phonon occupation. However, the loss rates for the optical and

mechanical field are accordingly increased due to the small mode volume.
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Over the last several decades, the field of photonic crystal has witnessed great advancements

in the ultra-high-Q optical cavities with untra-small mode volume [129, 130]. The periodic pat-

terning of the photonic structures forms photonic bandgap similar to the electronic bandgap

in condensed matter physics. Such devices have enabled optical cavities with extremely high

quality factors and small mode volumes [131, 132]. Similar ideas can be also implemented for

the mechanical motion, where the periodic structures can form a phononic bandgap [49, 133].

The phononic defect mode can be confined very well in the center of structures.

The vacuum optomechanical coupling, which represents the cavity frequency shift per zero-

point displacement, is given by,

g0 = dωo

dα
xzpf =

dωo

dα

√
~

2meffΩm
, (3.1)

with α a generalized coordinate, xzpf the zero-point displacement and meff the effective

mass. To obtain the cavity frequency shift with respect to the change of α, a first-order

electromagnetic field perturbation theory could be employed, which results in

dωo

dα
=−ωo

2

∫
d x dε(x)

dα |E(x)|2∫
d xε(x)|E(x)|2 , (3.2)

where the E(x) is the electric field vector while the ε is the permittivity. Two main contribu-

tions for the optomechanical coupling are considered, i.e. the moving boundary [134] and

the photoelastic effect [135]. The former one can be interpreted as a vibration induced cavity

length change which is purely from volume deformation of the cavity, while the later one can

be considered as the refractive index change due to the dynamic stresses which is purely from

changes in dielectric constants within the cavity. Overall, this results in the total optomechan-

ical coupling rate, g0 = gmb + gpe [136], where gmb = dωo
dα

∣∣∣
mb

xzpf and gpe = dωo
dα

∣∣∣
pe

xzpf. The

moving boundary contribution gmb can be obtained by [134],

dωo

dα

∣∣∣∣
mb

=−ωo

2

∮
(Q · n̂)

(
∆εE 2

‖ −∆ε−1D2
⊥
)

dS∫
E ·DdV

, (3.3)

where the Q is the normalized displacement and n̂ is the outward facing surface normal, D

is the displacement field, and the subscripts ⊥ and ‖ correspond to the field components

perpendicular and parallel to the surface. Besides,

∆ε= ε1 −ε2 and ∆ε−1 = ε−1
1 −ε−1

2 , (3.4)
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3.1. Optomechanical Crystal

where ε1,2 corresponds to the two material permittivities of the boundary interface. In our

case, we define the effective mass of the mechanical oscillator,

meff =
∫

d xρ(x)|Q(α, x)|2
α2 =

∫
d xρ(x)|q(x)|2. (3.5)

The photoelastic contribution can be calculated from the photoelastic shift for an general

refractive index tensor,

dε

dα
=−ε

(
pS

ε0

)
ε, (3.6)

while
∂εi j

∂α = −ε0n4pi j kl Skl . Here p is the rank-four photo-elastic tensor and S is the strain

tensor. We obtain the first-order correction due to the photoelastic effect,

dωo

dα

∣∣∣∣
pe

=ωoε0n4

2

∫
Si

dV
[

2Re
{
E∗

x Ey
}

p44Sx y +2Re
{
E∗

x Ez
}

p44Sxz +2Re
{

E∗
y Ez

}
p44Sy z

+|Ex |2
(
p11Sxx +p12

(
Sy y +Szz

))+ ∣∣Ey
∣∣2 (

p11Sy y +p12 (Sxx +Szz )
)

+|Ez |2
(
p11Szz +p12

(
Sxx +Sy y

))]
/
∫

E ·DdV ,

(3.7)

where (p11, p12, p44) = (−0.094,0.017,−0.051) [135, 136]. The optomechanical coupling rate

can be numerically simulated with Finite Element Method (FEM).

Silicon optomechanical crystals (OMCs) [49, 136] that couple an optical mode at telecommu-

nication wavelength and a co-localized mechanical mode at GHz frequency exhibit several

exceptional features, including some of the largest vacuum optomechanical coupling rates

(g0/2π∼ 1MHz) [136] as well as ultralong phonon lifetime [137]. They have been employed

in a wide range of experiments, such as continuous quantum measurements [60, 121, 122],

and probabilistic preparation of quantum states [96, 97, 138]. The compatibility of these sys-

tems with planar nanofabrication technology and their scalability have motivated studies of

optomechanical topological phenomena [139, 140], frequency conversion [102] and coupling

to superconducting qubits [103, 104].

Our optomechanical system is an optomechanical crystal (OMC) [49] adopting the design

that reported previously [136]. Figure 3.1(a) shows the unit cell of the OMC structure, which

is a rectangular silicon beam with a removed ellipse in the center. Figure 3.1(b) shows the

photonic band structures, where a full bandgap is formed at telecom frequencies. Figure 3.1(c)

shows the phononic band structures, where a phononic partial bandgap is present. A defect

in the pattern is designed to co-localize photons and phonons. The defect is introduced by
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Figure 3.1 – Design of the OMC. (a) Nominal unit cell structure of the OMC with
(a,t,w,hx ,hy )=(436,220,529,165,366) nm [136]. (b) The optical band diagram shows the disper-
sion of different modes in a one-dimensional lattice of unit cells. The light brown area in the
middle represents a full optical bandgap at optical telecom frequencies. (c) The phononic
band diagram shows the dispersion of different modes. The blue area in the middle shows a
partial phononic bandgap at frequency from 3-6 GHz. (d) Simulated mechanical (top) and
optical (bottom) field distribution of the OMC. (e) Simulated optical and mechanical external
Q vs. number of holes of the front mirror, adjacent the defect section of OMC. When the
number of holes is increased, both optical (red dot) and mechanical (blue dot) external Q
increases. The dashed lines correspond to the measured intrinsic Q of the optical (red) and
mechanical (blue) mode in [136].
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varying the ellipticity and the pitch between the holes in a smooth and progressive way in

order to minimize the scattering loss and maximize the optomechanical coupling [136], as

shown in Fig. 3.1(d) from FEM simulation with Comsol. The pitch and hole sizes follow a

smooth Gaussian function from the unit cell to the central defect. The optimal design results

in a simulated g0/2π= 870kHz, of which g mb/2π= 930kHz and g pe/2π=−60kHz [136]. We

note that, the moving boundary and the photoelastic contributions have different signs, which

is extremely sensitive to the cavity design and material property [141–144]. By controlling

the number of holes on each side of the defect, a single-sided geometry is realized to couple

the light into the OMC, where the front input coupling mirror has less holes than the high-

reflectivity mirror, as shown in Fig. 3.1(d). In such a single-sided cavity, the optical field can be

efficiently coupled in and out while the mechanical mode maintains localized. Figure 3.1(e)

shows the simulated external Q of the optical and mechanical modes vs. the hole number

of the front mirror. Increasing the number of holes in the front mirror leads to an increased

external Q of both optical and mechanical mode. However in practice, the mechanical Q is

much lower, limited by material and fabrication imperfections, and hence not affected by hole

number. By comparing to the measured intrinsic optical Q, a proper hole number for the front

mirror is chosen in the actual design, while the hole number of the high-reflectivity mirror is

kept fixed.

3.2 Taper Coupling

We tailor the design of the OMC for operations in the cryostat, which enables us to couple the

light into the OMC by tapered fiber. To avoid the perturbation of the mechanical mode due to

the taper coupling, we optimize our design by adding a waveguide in parallel to the nanobeam

as shown in Fig. 3.2. The nanobeam is extended to introduce a coupling waveguide, into which

light can be evanescently coupled by positioning a tapered optical fiber of diameter ∼ 1µm.

The height, width and coupling length of the coupling waveguide are optimized accordingly

to achieve maximum coupling. For a tapered fiber of diameter ∼ 1µm, it has an effective

index of around 1.17 as shown in the dashed line in Fig. 3.3. The effective index of the silicon

waveguide versus the width is shown in the blue curve, assuming a device layer thickness of

220nm for wavelength of 1550 nm. To ensure perfect mode matching between the waveguide

TE mode and the optical mode of the tapered fiber, the width of the waveguide is chosen to be

∼ 280nm.

When the taper approaches the coupling waveguide, the modes start to hybridize, similar to

the energy level splitting in a diatomic molecule. This results in two hybridized modes with
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Figure 3.2 – Optical Coupling between the waveguide and optical tapered fiber. The tapered
fiber of diameter ∼ 1µm is shown in red. The coupling waveguide is shown in blue with
parameters such as width, height and coupling length indicated.
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Figure 3.3 – Effective index of the waveguide TE mode. The blue curve shows the effective
index versus the waveguide width. The dashed line corresponds to the tapered fiber of a
diameter of ∼ 1µm.

different effective index neff and different propagation constants β. To achieve a perfect field

transfer between the waveguide and the taper, the coupling length between them is set by,

Lc = π

∆β
= λ

2∆n eff
, (3.8)

where δβ and ∆n eff are the difference in the propagation constant and the effective index

of the two hybridized modes respectively, and λ is the optical wavelength. The optimal

length is determined by the coupling strength between the tapered fiber and the waveguide,

which is set by the gap in between. Figure 3.4 shows the optimal coupling length versus

the gap between the tapered fiber and the coupling waveguide. When the taper touches

the waveguide, a shortest coupling length could be obtained. To meet the phase matching

condition, the waveguide is designed with width of 0.28µm to be mode matched with the
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Figure 3.4 – Optimal coupling length versus the gap between the taper and the waveg-
uide.The taper is assumed to have a diameter of 1µm and the width of the waveguide is
chosen to be ∼ 2.9µm.

taper with a diameter of 1µm. The optimal coupling length for the waveguide is ∼ 2.9µm.

In order to reduce the scattering loss, the nanobeam width, i.e. 529nm, is tapered down to

280nm adiabatically, which follows a three-order polynomial function of the waveguide length.

Besides, we force the derivative of the polynomial function to be zero at the both ends of

the tapering section. We verify the simulation with both FEM simulations with Comsol and

Finite Difference Time Domain simulations with Lumerical, which gives a ηwg > 90% in an

ideal coupling case. Due to phase mismatch between the waveguide and the tapered fiber, we

obtain typical single-pass waveguide coupling efficiencies ηwg > 50% experimentally.

Coupling
Tapered
Bend

Cavity

Bridge
Support

Figure 3.5 – Device design. The OMC is shown in red. The bended waveguide is shown in
dark green. The tapered waveguide section is shown in light green. The coupling waveguide is
shown in light blue. The supporting bridge is shown in dark brown and the pads are shown in
light brown. The tapered fiber is shown in light red.

The full design for the device is shown in Fig. 3.5. To suspend the device layer, we implement a

waveguide bridge support, which is connected to two supporting pads before the coupling

waveguide. This leads to roughly 10% of scattering loss. On the other side, the nanobeam
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is directly connected to a supporting pad. In the earlier designs, we choose to use the same

waveguide bridge to support the other side of the taper, which however introduces a lot of fiber

vibrations during the optical measurement. This in return leads to large power fluctuation.

During actual measurements, we intentionally introduce a tilt for the taper alignment, where

the taper touches the isolated supporting pad before touching the front supporting bridge,

which eliminates the taper vibration.

3.3 Fabrication

The fabrication of silicon OMC with high accuracy is challenging and reiterative, which starts

with the design and ends with characterization of the properties of the devices. However,

the properties of the finalized OMC are typically far from the original targeted designs. This

requires improvements at any of the fabrication steps: design, electron beam lithography,

device etching, photolithography, mesa etching, sample cleaning and undercut. Due to the

nano-scale dimension and required high accuracy, the available methods are quite restrictive.

Because of the sensitivities to all sorts of perturbations during the fabrication, it is very

important to attempt to do everything along the way exactly the same, to control all the

parameters.

Reactive Ion Etching

Photolithography Mesa deep RIE HF undercut, cleaning

ZEP(HSQ), Ebeam Resist

Protection Layer HSQ

 Coated With Ebeam Resist

Silicon Dioxide

Silicon Device Layer

Bulk Silicon

Diced and Grinded SOI chip EBeam Lithography

Coated With Protection Layer

AZ9260

Figure 3.6 – Fabrication Process Flow. Dark blue layer is the substrate silicon. Gray layer is
the buried oxide. Light blue layer is the silicon device layer. Yellow layer is the Ebeam resist.
Two types of different Ebeam resists are adopted in this thesis, i.e. ZEP and HSQ. Red layer is
the photoresist AZ9260, while the green layer is a protection layer of HSQ.

Figure 3.6 shows the fabrication steps. Starting from standard 8" Silicon On Insulator (SOI)

wafer (Soitec), we dice it into 1.5cm×1.5cm chips with backside oxide layer removed and
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3.3. Fabrication

also substrate silicon grinded, which leads to a final thickness of 380um for the whole chip

for later convenience during cleaving. It has a silicon device layer of 220nm and 2µm buried

oxide layer. We pattern our chips with electron beam lithography (EBL). Before doing EBL,

the chip is cleaned with oxygen plasma for surface activation. Then it is coated with Ebeam

resist. Throughout this thesis, two types of Ebeam resists are tested, ZEP520 and Hydrogen

silsesquioxane (HSQ). The different results from these two resists are summarized in the

Appendix. To achieve higher resolution and stability, the parameters are optimized during

the EBeam job preparation step with proximity effect correction and electron beam writing

order. After the exposure and development, the chip is mounted on a silicon carrier wafer for

etching.

A reactive ion etching (RIE) step is followed to etch the silicon device layer. As the verticality of

the sidewalls and surface roughness here are critical for the optical scattering loss, the gas ratio,

gas flow and also the etching time is optimized. After the device layer etching, the ebeam resist

is removed by Remover 1165 and Piranha (a mixture of sulfuric acid and hydrogen peroxide).

To open an area for taper fiber coupling, an additional photolithography and deep RIE are ap-

plied to create a mesa structure. Before continuing the photolithography step, one protection

layer of HSQ is coated and baked at 450 degree for 1 hour to prevent the device layer from

contacting the photoresist. After this, we coat the chip with photoresist AZ9260 and perform

the photolithography. Then the silicon dioxide and the substrate silicon are etched to isolate

the final structure from surroundings for later measurement.

After removing all the resist, the device layer is undercut in diluted 10% hydrofluoric acid to

suspend the device on test by removing the silicon dioxide. Following an additional Piranha

cleaning step to remove organic residuals, the sample is finally dipped into 2% hydrofluoric

acid to terminate the device surface with hydrogen atoms.

A typical scanning electron microscope image of the finalized sample is shown in Fig. 3.7(a).

In this case, we uses ZEP as the ebeam resist and fluorine based pseudo-Bosch process for

the RIE step. The zoom-in image is shown on the right in Fig. 3.7(b,c), where the OMC shows

perfect verticality and surface roughness of the sidewalls. In the fabrication, a systematic study

of the etching process together with the EBL at CMI EPFL is performed, which is detailed in

the Appendix of the this thesis.

Besides the sidewall verticality and surface roughness, the geometric variations during the

entire process also play a very important role, as the optomechanical coupling and the optical

loss are rather sensitive to the geometric change. A step by step imaging during the entire
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Figure 3.7 – Scanning Electron Microscope Image of the fabricated sample (a) SEM image
of the entire OMC structure. (b) Top view of the OMC nanobeam. (c) Tilted view of the OMC
with details of the sidewalls.

process is always necessary. In the end of our fabrication process, we implement an image

processing procedure to analyze the SEM picture with the pixel information saved in the meta

file.

The result for a processed image is shown in Fig. 3.8. In this case, the SEM picture has a pixel

size of 3.56nm/pixel and the width of the nanobeam is calibrated to be around 530.5nm close

to the target value 529nm. The elliptical holes are analyzed with corresponding numbers

shown. For each OMC cavity, we take two SEM pictures scanning both horizontally and verti-

cally. For example, for a horizontally placed OMC, the nanobeam width and the semi-minor y

axes(vertical) are more accurate when scanning vertically. We perform such analysis statisti-

cally on tens of cavities on the same chip to obtain detailed information for the nanobeam

and ellipses. Here hx corresponds to the semi-major x axes (horizontal) while hy corresponds

to the semi-minor y axes(vertical). The p is the pitch. The difference between the obtained

averaged results and the design parameters are shown in Fig. 3.8(b). For the ellipses, hx and

hy shows anti-correlation while the pitch is quite stable. The difference between the aver-

aged fitted values and design parameters is fed into the next run of fabrication with adjusted

parameters. For each batch of samples, we typically keep 20 cavities for image processing.

3.4 Experimental System Details

3.4.1 Room Temperature Measurement

The sample is firstly characterized at room temperature to obtain basic properties of OMC,

such as the optical resonant wavelength λ and decay rate κ, mechanical frequencyΩm and
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Figure 3.8 – Image processing of the SEM picture of the silicon OMC. (a) A typical processed
SEM picture of the OMC with a resolution of 3.56nm/pixel. The holes in the nanobeam
are analyzed and labeled with corresponding number. (b) Statistic variances of the ellipse
sizes and pitches compared to the designed parameters over 20 cavities with same design for
reference. hx corresponds to the semi-major x axes (horizontal) while hy corresponds to the
semi-minor y axes(vertical). p is the pitch, which indicates the position of each ellipse.

damping rate Γm and vacuum optomechanical coupling rate g0. A typical room temperature

characterization setup is shown in Fig. 3.9. As shown in Fig. 3.9(b), the chip is mounted on a

stage with three-dimensional access through a piezo-positioner of nanometer resolution. A

top camera with a long working distance objective is used for device imaging. A tapered fiber

is glued on a glass holder for optical coupling.

The optical resonance is probed by scanning the piezo voltage of an external-cavity diode

laser(ECDL). The reflected light from the cavity is calibrated with a fiber-loop reference cavity

which has a free spectral range(FSR) of 158MHz. In typical measurements, we obtain ηwg ∼
50%, which however critically depends on the coupling condition and also the wavelength.

Figure 3.10 shows the normalized optical reflection from the OMC that we used in the work

demonstrating laser cooling to the zero-point energy [145], which is one of the best samples

we obtained in this thesis in terms of optical linewidth. The optical reflection is normalized to

the off-resonant values, which shows a deep in the reflection around cavity resonance. The

normalized reflection is calibrated with a fiber-loop reference cavity with a Lorentzian fit as

shown in the green curve in Fig. 3.10, from which we obtain a κ∼ 2π×220MHz. In this case,

the cavity is undercoupled, which gives κex ∼ 2π×70MHz. We note that, the coupling depth
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Figure 3.9 – Room temperature characterization setup. (a) Scheme of the measurement
setup. PM, phase modulator; VOA, variable optical attenuator;FPC, fiber polarization con-
troller; BHD, balanced heterodyne detector; SA, spectrum analyzer; NA, network analyzer;
PLL, phase-locked loop. (b) Photo of the characterization setup.

on resonance is given by the expression,

R = (κex −κ0)2

(κex +κ0)2 . (3.9)
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Figure 3.10 – Optical characterization of the OMC. The normalized reflection from the OMC
with κ/2π= 220MHz is shown in blue curve, which is normalized to the off-resonance reflec-
tion. A Lorentzian fit of the normalized reflection is shown in green curve.

For critically coupled cavities, i.e. κex = κ0, the normalized reflection on resonance is zero.

However, we could not differentiate κex and κ0 simply from the normalized reflection from

such one-sided cavities.

The number of holes in the in-coupling mirror controls its reflectivity and, hence, the external

coupling rate, which is verified by numerical simulations. To validate this, within the same
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Figure 3.11 – OMCs of different external coupling rates. Open circles show the measured κ.
Green dashed line shows the estimated κ0. The blue curve shows a linear fit of the measured κ
to the estimated κ0. The cavities are from the same chip and have the same OMC design with
different hole numbers in the in-coupling mirror to control the external coupling rate. The
averaged intrinsic loss is κ/2π= 0.78GHz.

batch, we sweep the number of holes for the low reflectivity mirror of the OMC, while main-

taining the same hole number for the high reflectivity mirror. In our mask design, we place

several OMCs with different number of holes adjacently, which leads to different external

coupling rate κex while maintaining approximately the same κ0.

In Fig. 3.11, we show statistically κex and κ for tens of OMCs on the same chip. The measured

κ ranges from 2π× 800MHz to 2π× 6GHz with hole number of low reflectivity mirror changed

from 13 to 10. We could estimate the external coupling rate and the intrinsic loss, which

are presented also in Fig. 3.11. With different holes number, we could see that the external

coupling rate κex is changed from 2π× 40MHz ( under-coupled) to 2π× 7GHz ( over-coupled),

while the intrinsic loss is not changed that much. Here we choose to show one batch of cavities

with κ0 ∼ 2π×0.78GHz, as the variation of the coupling depth are more evident for κex swept

from tens of MHz to few GHz instead of the best OMC with κ= 2π×0.22GHz . A linear fit is

applied to the measured optical decay rate between κex and κ. By adding the number of holes

in the OMC, the external coupling decreases, as shown in the left side of Fig. 3.11.

Figure 3.9(a) shows the scheme of the characterization setup. For basic room temperature

characterization, two lasers are utilized, one pumping tone and one local oscillator which is

phased-locked to the pumping tone through a phase-lock-loop with a frequency separation

of around the mechanical frequency. The pumping tone is sent through a fiber polarization

controller (FPC) and phase modulator for weak probe generation, which later passes through

a variable optical attenuator to control the power sent to the OMC. The input power and
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Figure 3.12 – Coherent Response Measurement. The blue curve shows the reflected cavity
response of the cavity in Ref. [145] with κ/2π= 220MHz for single tone pumping at power of
∼ 500µW with frequency close to the red sideband. The red curve is a fit to a theoretical model
of the optomechanically-induced transparency.

reflected power are continuously monitored by two power meters respectively.
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Figure 3.13 – Optomechanical Induced Transparency of different pumping powers. Fine
sweep of the probing tone around the optical resonance of the cavity in Ref. [145] of κ/2π=
220MHz with different pumping tone powers. The y-axis shows the reflection amplitude from
the VNA normalized by the corresponding pumping powers.

The circulator feeds the reflected light to the detection stage. To achieve the desired tuning of

the tones relative to the optical resonance, we send the reflected light to a coherent response

setup, employing a network analyzer driving a phase modulator on the master laser [109].

For silicon, the optical absorption prevents one from injecting too much power into the

cavity. Such nonlinear optical effect is much stronger at room temperature due to the large

thermorefractive effect, and leads to thermal instability. As a result, the reflected optical signal
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are amplified by an EDFA and filtered by an optical filter to suppress the amplified spontaneous

emission noise, and detected by a fast photodiode with 12GHz bandwidth. Besides, the

reflected signal is mixed with a strong (∼ 7mW) local oscillator in a balanced heterodyne

detection scheme, and the noise power spectral density of the subtracted photocurrent is

analyzed using a spectrum analyzer.
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Figure 3.14 – Incoherent noise spectrum from heterodyne detection. Typical noise spec-
trum from BHD in the single-tone power-sweep measurements with ∆c ∼ −Ωm . The shot
noise spectrum with signal blocked is shown in blue while the noise spectrum of the thermo-
mechanical sideband is shown in red.

A typical coherent response measurement is shown in Fig. 3.12. In this case, the pumping tone

is red detuned by −Ωm relative to the cavity resonance. A weak probe generated from the PM is

scanning around the cavity resonance. In Fig. 3.12, a destructive interference is present in the

broad cavity response. The dip in the cavity reflection around the mechanical frequency arises

from the destructive interference of the direct detection of amplitude modulation caused by

the two beating tones and the phase modulation imparted by the mechanical oscillator motion

driven by the amplitude-modulated radiation-pressure. This is the optomechanically induced

transparency due to radiation pressure force [109, 110]. The fit is shown in the red curve in

Fig. 3.12 with a theoretical model [110]. We note that, in the fitting curve of Fig. 3.12, we only

consider the fundamental mechanical mode with mechanical frequencyΩm/2π∼ 5.145GHz.

As quite evident in Fig. 3.12, a second mechanical mode ofΩm/2π∼ 5.36GHz is coupled to

the optical field with much lower optomechanical coupling rate. In this thesis, we focus on

the quantum measurement of the fundamental mechanical mode.

The coherent response measurement is a standard measurement procedure to determine the

pumping tone detuning relative to the cavity resonance ∆ and also the optical linewidth κ. We
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can thus calculate the intracavity photon number n̄c .
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Figure 3.15 – Noise spectrum of balanced het-
erodyne detection. The noise spectrum is nor-
malized to the shot noise floor and is taken with
the cavity used in Ref. [145] at room tempera-
ture at different pumping powers for sideband
cooling with the cooling tone close to the red
sideband.

A series of measurements at different powers

for sideband cooling can be performed while

maintaining the pumping frequency around

the red sideband(∆=−Ωm). The increased

pumping power leads to the increased op-

tomechanical damping rate. In Fig. 3.13, a

zoomed view of the response measurement

for probe frequency around the mechanical

frequency is presented for different powers.

When the pumping power increases, the dip

in the cavity response becomes deeper and

broader, which indicates the optomechan-

ical damping of the mechanical oscillator,

and can be utilized for the calibration of vac-

uum optomechanical coupling rate through

Γ tot = Γm + n̄c
4g 2

0
κ , when pumping on the red

sideband(∆=−Ωm).

We note that, for blue detuning, the radia-

tion pressure force leads to an effective am-

plification of the mechanical motion. One

will observe the optomechanically-induced-

absorption(OMIA), where a constructive interference could be present in the broad cavity

response around the mechanical frequency.

We perform a quantum-limited measurement of the scattered thermomechanical sideband

with balanced heterodyne detection, where the optical reflected light is mixed with a LO of

high power (∼ 6mW). In our case, the LO is phased locked to the pumping laser on the blue

side with a frequency separation of around the mechanical frequency. Typical incoherent

noise spectra from the BHD are shown in Fig. 3.14. The blue curve corresponds to the shot

noise and is obtained by blocking the signal beam in the BHD. We note that the uneven shot

noise floor originates from the frequency dependent gain of the balanced detector, which

has a bandwidth of 80MHz. The red curve corresponds to the thermomechanical noise

spectrum in the single-tone power-sweep measurements with the lowest intracavity photon

number(n̄c ∼ 1). For convenience, we normalize the noise spectrum to the shot noise.
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Figure 3.16 – Effective mechanical damping rate at different intracavity photon number
for sideband cooling at room temperature. The blue dots show the fitted Γeff from the noise
spectrum at different powers of the cavity used in Ref. [145]. The red line shows a linear fit of
Γeff, from which the intrinsic damping rate Γm and vacuum optomechanical coupling rate g0

can be obtained.

Figure 3.15 shows the single-sided noise spectrum consisting of the scattered thermomechan-

ical sidebands from sideband-cooling measurements at different powers. Accordingly, we use

a Lorentzian function to the fit the noise spectrum in Fig. 3.15,

Sfit(ω) = c + Γeff As

Γ2
eff/4+ (ω−ω0)2

, (3.10)

where c, As , ω0 and Γeff are the fitting parameters. c corresponds to the noise background. A

and ω0 correspond to the area and center frequency of the sideband from the cooling tone,

with effective linewidth Γeff. From the fitted noise spectrum, we can obtain Γeff for each

intracavity photon number.

For ∆=−Ωm , Γeff has a linear dependence of n̄c as shown in Fig. 3.16. A linear fit of Γeff to

n̄c results in a mechanical damping rate Γm/2π∼ 2.626MHz and vacuum optomechanical

coupling rate g0/2π∼ 1.06MHz. The phonon occupancy can be determined using mechanical

noise thermometry by anchoring the normalized thermomechanical noise area to the room

temperature thermal bath,

n̄ f =
As/Γs

A0
s /Γ0

s

kB T

~Ωm

Γm

Γ0
s +Γm

. (3.11)

where A0
s and Γ0

s are the sideband area and the scattering rate of the cooling tone at a specific
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Figure 3.17 – Final phonon occupancy at different cooling tone intracavity photon num-
bers. This is performed on the cavity used in Ref. [145] with a linewidth κ/2π= 220MHz for
sideband cooling at room temperature.

anchor data point. In this case, it is assumed that the mechanical mode temperature T is

given by the resistive thermometer and there is no excess heating at the anchor point with the

lowest intracavity photon number. The mean phonon occupancy of the mechanical oscillator

is n̄th ' kB T /~Ωm when the mechanical mode is in equilibrium with the thermal reservoir.

In the case of negligible optomechanical damping (Γ0
s ¿ Γm), Eq. (3.11) can be simplified to

n̄ f = As /Γs

A0
s /Γ0

s

kB T
~Ωm

. In the power-sweep series, ∆c =−Ωm , we have n̄ f = As /nc

A0
s /n0

s

kB T
~Ωm

.

The calibrated final occupancy versus different intracavity photon number is presented in Fig.

3.17. At the highest pumping power (n̄c ∼ 1170), we achieve a minimum phonon occupancy

∼ 78.8, which corresponds to a mechanical mode temperature of ∼ 19.5.

As mentioned above, the ultrahigh optical Q and small mode volume of the OMC can lead to

high intracavity photon number and strong optomechanical coupling. However, this also leads

to a reduced threshold for undesired optical nonlinearity [146]. In silicon, these nonlinearities

become appreciable at elevated optical power levels, as the Kerr-type nonlinearities and two

photon absorptions. This results in both temperature rise and additional cavity frequency

change. These undesired optical nonlinearity also impose a practical limit on the number of

photons inside a cavity to achieve the strong optomechanical coupling, especially at room

temperature due to the large refractive-optical effect. For room temperature laser cooling, the

final occupation can be further reduced for example by improving the mechanical damping

rate by decreasing the gas pressure.
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3.4.2 Cryogenic Measurement

Fiber Feedthrough

1KPOT

Sorb

Vac Lock

OVC  (84L)

Liquid He4  (24L)

Liquid N2  (24L)

 He3 RESERVIOR

 Cryo Head10cm

Figure 3.18 – Design of Heliox TL Cryostat

One of the greatest challenges for quantum

measurement of mechanical motion is the

mechanical decoherence, which is deter-

mined by the thermal bath. For this reason,

most of the quantum optomechanical exper-

iments are performed in cryogenic environ-

ment.

Cryogenically cooled optomechanical crys-

tals are promising platforms for various

quantum optomechanical experiments [96,

97, 147], mainly due to their GHz-scale me-

chanical frequencies. For a OMC at tem-

peratures in the millikelvin range in a dilu-

tion refrigerators, it should be at its ground

state n̄th ¿ 1. However, the vacuum envi-

ronment combined with the nanobeam ge-

ometry and reduced thermal conductivity of

silicon at cryogenic temperatures [115], lead

to large absorption heating even at very low

probing powers [148]. This severely limits

both the minimum achievable phonon oc-

cupation and the optomechanical coopera-

tivity, set by the number of intracavity pho-

tons. Besides, extremely weak optical pulses

have to be adopted in such measurements

[96, 97, 147, 148].

We choose instead to use a 3He buffer

gas cryostat (Oxford Instruments HelioxTL),

which provides sufficient thermalization of

the sample to the gaseous 3He, as shown in

Fig. 3.18. On the top loading insert, there is a

fiber feedthrough where light is guided from

room temperature into the cryostat for opti-
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cal measurement, as shown in yellow. The vacuum lock in the middle of the probe allows

high degree of thermal isolation between room temperature and the cryogenic environment.

Several successive layers further guarantees the thermal isolation, including an outer vacuum

chamber (OVC) of pressure below 10−5 mbar, a liquid nitrogen reservoir at 77K (shown in

light brown) and inner liquid 4He reservoir at 4K (shown in light green). These layers are

isolated by an inner vacuum chamber. The bottom of the probe is loaded in the gaseous 3He

environment as shown in light blue. 3He has a critical temperature of around 3.3K. Below this,

it can be liquefied at sufficiently high pressures. A 1KPot can be filled with liquid 4He and

further pumped to decrease the temperature. This leads to the condensation of the 3He. A

sorption pump is adopted to further reduce the vapour pressure above the 3He surface, where
3He adsorbs to a sorb with very large surface area. This allows access to temperature down

to 300mK. At temperature of 1K, for our OMC with mechanical frequency of around 5GHz,

the mean phonon occupancy is ∼ 4. The sorb temperature controls the pressure of the 3He

reservoir and thus the temperature. This is tuned by a sorb needle valve, which determines

the amount of liquid 4He that passes through. We note that both the 1KPot and the sorb are

pumped by scroll pumps which are placed in a separate room around 10m away, to reduce

the excess vibration in optical measurements.

Fiber Holder

Tapered Fiber

Sample

Positioner

Sample Holder

Thermometer 
Connector

Figure 3.19 – Preparation of the Cryohead. On the left is the cryohead with the tapered fiber
and the chip mounted. Details of the nano-positioner, sample holder, tapered fiber, fiber
holder, thermometer connector are shown. On the top right is the photo of a typical chip with
about 100 cavities on it for characterization.

The cryohead is placed at the bottom of the loading insert as shown in dark brown in Fig.

3.18, where we mount the sample and all the sensors. The HelioxTL comes with an optical

window access with special coating to reduce excess radiation heating. This provides us with
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large flexibility for optical coupling. The preparation of the cryogenic setup starts from the

cryohead, which is shown in Fig. 3.19. The sample under test is shown on the top right. As

mentioned previously, we sweep the number of the holes in the OMC to adjust the external

coupling rate. Besides, we apply additional corrections to the hole sizes and the beam width

to achieve proper optical resonant wavelength. FEM simulations show that such corrections

lead to negligible degradation to the optical quality factor and optomechanical coupling rate

when the applied corrections are within ±15nm. This corresponds to a resonant wavelength

range of tens nanometers. As a result, around 100 cavities are patterned on each sample

for characterization. The sample is mounted on a copper sample holder, which is fixed to a

two-axes nano-positioner. This gives lots of flexibility for coupling the sample to the tapered

fiber, which is glued on a glass fiber holder with UV glue, i.e. Norland Optical Adhesive 81.

The UV glue has a refractive index around 1.5, which is similar to glass, and introduces no

excess scattering loss around the glue region. The contact region on the glass holder has

been intentionally roughened to ensure robust adhesion. We note that, both the UV glue and

the glass holder survive very well after cooling down of the Heliox insert despite the drastic

temperature change. Under UV radiation, the UV glue cures to a hard film but it will not

become brittle. It has a small amount of resiliency that provides strain relief from vibrations or

temperature extremes, and insures long term performance of the adhesive bond. Cryogenic

thermometers are mounted on the bottom of the cryohead, which is located around several

centimeters away from the sample and provides accurate readout of the sample temperature,

ranging from mK to room temperature.

For all the cavities of each sample, we typically adopt the same waveguide design for the

taper coupling. Before loading the Heliox insert, we adjust the taper position to achieve

optimal coupling efficiency to the OMC, which critically depends on the taper diameter. We

intentionally introduce a gentle tilt of the tapered fiber to ensure that the taper touches the

supporting pad first. As shown in the bottom of Fig. 3.19, the fiber forms a "U" shape, which

may result in excess bending loss. Although we focus on only the cavity reflection, the bending

loss can introduce excess heat load at low temperatures.

As mentioned in the sample fabrication section, the native oxide of the silicon OMC typically

leads to increased mechanical dissipation at low temperatures, due to the lattice mismatch

between silicon device layer and the native oxide. For this reason, we terminate the silicon

device layer with hydrogen atom before cooling down. The sample is cleaned with Piranha

solution and dipped into a diluted HF solution(5%) for few seconds. We then immediately

mount the sample on the probe. After pre-alignment of the taper and the sample again, the
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cryohead shown in Fig. 3.19 is then screwed inside a copper cage to protect the taper and the

nano-positioner during the loading and unloading of the Heliox insert. We take special care

to the fiber arrangement to avoid unwanted scattering loss during the probe preparation by

monitoring the fiber transmission continuously.

The Heliox insert is then mounted on top of the cryostat and pumped by a scroll pump to

a pressure below 10−3 mbar within one hour to avoid further oxidation of the OMC. A leak

test is performed on the Heliox insert, especially around the valves, connectors, clamps, and

the fiber feedthrough, to ensure perfect vacuum. Before loading the Heliox insert, the 3He

in the cryostat is typically collected in a large volume 3He dump (15L) using a cryo pump,

which is disconnected from the 3He reservoir. We then load the Heliox insert slowly and pump

the vacuum lock continuously, with the output gas analyzed by a leak detector. The sorb

temperature is kept below 20K to avoid drastic temperature decrease. To ensure sufficient

thermalization of the Heliox insert, we introduce a small amount of 3He of pressure ∼ 1mbar

into the cryostat. The temperature decreases slowly at a rate of ∼ 0.3K /min. The insert is

thermalized slowly to the cryostat overnight with the taper transmission, cryostat parameters

monitored continuously.
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Figure 3.20 – Optical resonant wavelength of OMC versus the cryostat temperature. The
resonant wavelength of an OMC with κ/2π= 1.6GHz [122] is measured by a wavemeter at low
pumping lowers around 1µW with the cryostat pressure around 1mbar.

The temperature decrease leads to the refractive index change of the silicon due to the ther-

morefractive effect. In Fig. 3.20, we show the optical resonant wavelength of a typical OMC

cavity versus the cryostat temperature below 100K. The temperature decrease leads to a de-

creased optical resonant wavelength, i.e. dn/dT > 0. We note that the thermorefractive effect

is much weaker for lower temperatures in the range of 1K to 20K [149]. Besides, for temper-

ature below 4K, intracavity photons shift the optical resonance to higher frequencies, due

to a combination of thermo-optic and thermal expansion effects in silicon. As a result, the

optical resonant wavelength decreases by around 15nm from room temperature to the base
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temperature of the cryostat. When the probe reaches the 3He bath temperature around 4K, the

cold buffer gas provides additional thermalization of the OMC sample despite the drastically

decreased thermal conductivity of silicon at cryogenic temperatures [115]. In Fig. 3.21 we

n
c
 = 8.8

n
c
 = 35

Figure 3.21 – Laser power induced heating of the mechanical mode. Mechanical mode tem-
perature of an OMC with κ/2π= 1.6GHz [122] versus cryostat temperature at different pump-
ing powers which correspond to intracavity photon number nc = 8.8 and nc = 35, with sample
pressure ∼ 25mbar. The temperature is controlled by the heater close to the sample.

show the mechanical mode temperature of a typical OMC as a function of the temperature

of the cryostat for two different pump powers, corresponding to mean intracavity photon

number of 8.8 and 35, keeping the buffer gas pressure constant at 25mbar. The mechanical

mode temperature is consistently higher for the higher input power, giving clear indication of

optical absorption heating. The cryostat can not even be thermalized at a pressure of 25mbar.

Working in a buffer gas environment enables us to substantially improve the thermalization of

our optomechanical system. The pressure of the buffer gas is controlled by a sorption pump,

and enables us to achieve much lower heating at the expense of higher mechanical damping

rate due to the gas damping. For quantum measurement of the mechanical motion of the

OMC, there is thus an optimal working condition in terms of gas pressure. Such thermalization

performance can be verified by series of sideband cooling measurements, with a single cooling

tone applied at the lower mechanical sideband, ∆ = −Ωm . In the well-resolved sideband

regime, dynamical backaction provides additional damping Γopt =CΓm where C =C0n̄c is the

optomechanical cooperativity for mean intracavity photons n̄c . The mean thermal occupation

of the oscillator is lowered to,

n̄ f =
Γmn̄th +Γoptnqbl

Γm +Γopt
= n̄th +C nqbl

1+C
, (3.12)
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Figure 3.22 – Sideband cooling of the mechanical mode of the cavity used in Ref. [122] at 4K.
(a) Mechanical occupation n̄ vs. n̄c from the mechanical noise thermometry. n̄ is anchored to
the cryostat temperature, n̄th = 17, at lowest cooling power. The solid line is a fit to the simple
heating model (3.13) with α and n̄th as free parameters, and the dashed line shows cooling in
absence of absorption heating. The inset shows total mechanical damping Γtot vs. n̄c , with a
linear fit used to extract the mechanical damping rate Γm and the optomechanical coupling
rate g0. (b) Noise spectra S I (ω), normalized to the shot noise level, at three different points.

where n̄th is the mean thermal occupation of the environment and nqbl = κ2/(16Ω2
m) is the

quantum limit of sideband cooling [55, 56], which is negligible for sideband-resolved systems.

Figure 3.23 – Signal-to-noise ratio (SNR) vs.
the cooperativity C with a fit to the model
(3.14) with free parameters η and heating α.
The measurement is performed on the OMC
of κ/2π = 1.6GHz [122] at 4K of pressure ∼
160mbar.

The simplest treatment of optical absorption

heating is provided by the linear model n̄th →
n̄th +αn̄c , where α is the extraneous heating

of the bath in terms of oscillator phonons

per intracavity photon. Within this model,

we have

n̄ f =
n̄th +αnc

1+C
, (3.13)

the asymptotic quantum limit nqbl is effec-

tively replaced by the heating limit of α/C0

phonons. In this model, we find the signal-

noise-ratio (SNR), defined as the peak of

S I (ω) relative to the noise floor,

SNR = 4ηC n̄ f

1+C
= 4η

(n̄th + [α/C0]C )C

(1+C )2 , (3.14)

62



3.4. Experimental System Details

0 50 100 150
3He buffer gas pressure (mbar)

100

200

300
m

/2
 (k

Hz
) int/2 = 84 kHz

10 2

10 1

(p
ho

no
ns

/p
ho

to
n) 10.7 K

5.1 K

(a)

(b)

Figure 3.24 – Effect of the buffer 3He gas pressure on sideband cooling of an OMC of κ/2π=
1.6GHz [122]. The 3 He gas pressure is controlled by adjusting the sorb temperature. (a)
Oscillator heating α vs. gas pressure. Measurements were done at cryostat temperature
of 4.5K except for low pressures, where insufficient thermalization leads to elevated bath
temperatures, as indicated in (b). (b) Mechanical damping vs. gas pressure. The linear field
yields intrinsic damping Γint/2π= 84kHz.

where η is the overall detection efficiency.

Figure 3.22(a) shows sideband cooling of an sample with κ/2π∼ 1.6GHz at cryostat tempera-

ture of 4K with the buffer gas pressure at 160mbar [122]. In order to calibrate n̄ f , we assume

the heating is negligible at the point of lowest power ( n̄c ∼ 2) and the oscillator is completely

thermalized to the cryostat. We infer n̄ f from the area of the noise spectra (Fig. 3.22(b)). The

SNR of the spectra is shown in Fig. 3.23. We can thus fit the data of Fig. 3.22(a) and Fig. 3.23 us-

ing Eqs. (3.13) and (3.14) respectively, which gives extraneous heating of α= 6.3×10−3 = 1.5C0

and overall efficiency η= 0.04.

To more accurately quantify the optical absorption heating rate, we studied this effect by

performing sideband cooling measurements at different buffer gas pressures, with the results

shown in Fig. 3.24. As expected, increasing the pressure leads to a decreased extraneous

heating α (Fig. 3.24a) at the cost of additional mechanical damping due to gas damping (Fig.

3.24(b)). The intrinsic mechanical damping rate is Γ int/2π∼ 84kHz. The excess mechanical

damping rate due to the gas damping has a linear dependence to the 3He buffer gas pressure,

i.e. Γgas/P ∼ 2π×1.5kHz/mbar. The combined effect of gas damping and thermalization

results in theoretical cooling limits α/C0 of 1.3–1.5 phonons at pressure of 160mbar. We

note that, at pressure of ∼ 0mbar, we achieve a minimum n̄ f of 5.7 due to extremely large
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absorption heating, despite the low Γm . Besides, for pressures below 20mbar, the cryostat

temperature can’t even be thermalized to the 4He reservoir temperature, due to the deficient

thermalization.

The experiments shown above are performed under gaseous 3He environment around 4K. As

mentioned previously, the cryostat can be operated in a regime, where the 3He in the sample

reservoir is condensed and further pumped to reduce the temperature. This enables the

sample to reach temperature below 4K, thus lowers the required input power for ground state

cooling.
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Figure 3.25 – Optical resonant wavelength and mechanical frequency of the OMC below
4K. The sample has κ/2π = 1.6GHz [122]. The temperature is controlled by the 1KPot and
sorb temperatures. Upper panel, optical resonant wavelength versus temperature at low
temperatures measured by a wavelength meter. The wavelength is monitored by a coherent
response measurement with cooling tone at ∆ ∼ −Ωm of low intracavity photon number
∼ 1.5. Lower panel, mechanical frequency versus temperature at low temperatures, shown
as the frequency difference between Ωm and LO locking frequency ΩLO. The mechanical
frequency is fitted from the noise spectrum in the BHD. Different colors correspond to different
measurement runs, which shows consistent results.

Figure 3.25 shows the optical resonant wavelength and the mechanical frequency versus the

temperature below 4K when the 3He is cooled down by the 1KPot. The cavity, used in Ref. [122],

is probed by a weak cooling tone of intracavity photon number around 1.5. The laser detuning

is maintained at ∆∼−Ωm , which is continuously monitored by the response measurement.

The mechanical noise spectrum is taken immediately from the balanced heterodyne detection
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to obtain the mechanical damping rate and the mechanical frequency. The frequency shown

in the lower panel of Fig. 3.25 is fitted from the mechanical noise spectrum with a Lorentzian

function, which is the difference between the mechanical frequency and locking frequency of

the local oscillator. In Fig. 3.25, the temperature above 1.7K is controlled by the 1KPot tempera-

ture, where 3He is not yet completely condensed. By decreasing the 1KPot temperature, lower
3He sample reservoir temperature can be achieved. We keep sorb temperature above 30K, to

release all the 3He. As shown in Fig. 3.25, the temperature decrease leads to large wavelength

increase and mechanical frequency decrease. The different colors in Fig. 3.25 correspond to

different measurement runs, which give consistent results. As the sorb temperature keeps

decreasing, it starts to pump the condensed 3Helium. This however, also pumps away the

condensed 3Helium on the sample surface, leading to a decreased resonant wavelength. We

attribute such OMC property changes to the condensed 3He on the surface of the device. The

optical frequency change is due to the larger refractive index of liquid 3He, i.e. 1.03, compared

to vacuum or gaseous 3He. The optical frequency change is given by the expression,

∆ω

ω0
=−1

2

Ð
He

(
n2

He −1
) |E0(~r )|2 d~rÐ

all n2(~r ) |E0(~r )|2 d~r
, (3.15)

where E0(r ) is the electric field distribution, n He is the refractive index of the 3Helium. The

mechanical frequency decrease is due to the mass loading of the 3He on the surface of OMC,

which is given by the expression, ∆Ωm
Ωm

=−∆m
2m , where m is the effective mass of the mechanical

mode. Preliminary analysis of the wavelength change shows that there is a condensed 3He layer

with maximum thickness of ∼ 10nm, which is verified with FEM simulations. In this sense, an

optomechanical spectroscopy of the thin film 3He is performed with high sensitivity and low

optical probing power due to the ultra-small mode volume and also strong optomechanical

coupling rate.

The study of liquid and superfluid helium has been an interesting research subject in the quan-

tum optomechanics community in recent years, given the interest in the field of superfluids.

There have been various experimental optomechanical platforms [150–159]. Optomechanical

experiments with superfluid/fluid 4He have been performed, where quantum measurement

and control of the superfluid 4He have been explored [150–154, 156–159]. In the Bowen group,

microtoroidal resonators are utilized to study the excitations of superfluid 4He, the vortex

formation, as well as the development of theoretical tools in such systems [151, 159]. The

Harris group uses the degrees of freedom offered by liquid or superfluid helium as the me-

chanical part of the system [150, 154]. This interesting approach directly takes advantage of

the optics-fluid coupling, where motional sideband asymmetry of the mechanical mode of the
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superfluid is observed. Tang’s group investigates the sensing capabilities of a microtoroidal

resonator submerged in microfluidic channels as well in superfluid helium [157]. Our result

shows an interesting direction quantum optical measurement with nanoscale 3He thin film,

which remains unexplored in the past. The behavior between these two fluids is fundamentally

different, with 4He as boson while 3He as fermion. In addition, the optomechanical crystals

can be adopted for fluid and superfluid helium study, given their very low effective mass (

100s fg) and high quality factors, thus providing a far greater sensitivity for mass sensing with

quantum limited optical detection.

/2
 (M

H
z)

1.7 1.8 1.9 2 2.1 2.2
Temperature (K)

0.5

1

1.5

2

2.5

3

Figure 3.26 – Mechanical damping rate below 4K. The measurement is performed under the
same condition as Fig. 3.25 on the same OMC [122]. The damping rate is fitted from the
mechanical noise spectrum in BHD with pumping frequency maintained at ∆∼−Ωm at low
intracavity photon number ∼ 1.5.

We note however, due to mass loading of the 3He, excess mechanical damping appears under

condensation, as shown in Fig. 3.26. The large mechanical damping rate Γ above 2.2K is due to

the high 3He pressure, similar to the previous measurements at 4K. For lower temperatures, the

mechanical mode is broadened due to 3He condensation, which can lead to extremely large

damping rate ∼ 2π×3MHz for temperatures below 1.7K, more than one order of magnitude

larger than the intrinsic mechanical damping rate. Despite the large mechanical damping rate,

the quantum limited detection of the thermomechanical sideband enables optomechanical

measurement of the thin-film 3He condensed on the OMC device layer with sufficient signal-

to-noise ratio even under such low temperatures. Due to the broadened mechanical damping

rate, the condensation of the 3He limits the laser sideband cooling for low input powers.

At high input powers, the optical absorption heating leads to the evaporation of the 3He

and restores the mechanical damping rate and also the mechanical frequency. Besides, the

condensed 3He may provide better thermalization of the sample due to the 3He evaporation.

This is investigated in more details in the work related to the laser cooling to the zero-point

energy of the nanomechanical oscillator in this thesis [145].
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4 Floquet Dynamics in Quantum Mea-

surements of Mechanical Motion

In this chapter, we show that Floquet dynamics can arise in motional sideband asymmetry mea-

surements due to presence of Kerr-type nonlinearities [122]. Floquet dynamics gives rise to an

artificially modified motional sideband asymmetry by redistributing thermal and quantum

fluctuations among the initially independently scattered thermomechanical sidebands. For

pump tones exhibiting large frequency separation, the dynamics is suppressed and accurate

quantum noise thermometry demonstrated. We develop a theoretical model based on Floquet

theory that accurately describes our observations. The resulting dynamics can be understood

as resulting from a synthetic gauge field among the Fourier modes, which is created by the

phase lag of the Kerr-type response. This novel phenomenon has wide-ranging implications

for schemes utilizing several pumping tones, as commonly employed in backaction-evading

measurements and dissipative mechanical squeezing. Our observation may equally well be

used for optomechanical Floquet engineering, e.g. generation of topological phases of sound

by periodic time-modulation.

4.1 Floquet dynamics

Floquet dynamics results from periodic modulation of quantum systems. This has been devel-

oped theoretically and experimentally over the last decades in different areas in physics. Early

application of the Floquet theorem dealt with a two-level quantum system interacting with

strong oscillating fields [160, 161]. Utilizing Floquet theorem, a temporal analog of the Bloch

theorem, a lot of exotic phenomenon has been explored in wide range of quantum systems

with the control of time-periodic external fields [161–163]. For example, by time dependent

perturbations in systems that are topologically trivial in equilibrium, new topological phases

can be generated in non-equilibrium conditions, which is the so-called Floquet topologi-

67



Chapter 4. Floquet Dynamics in Quantum Measurements of Mechanical Motion

cal insulators [164] and opens new avenues in the search of quantum materials. Similarly

concepts have also been implemented in the photonic and acoustic systems with temporal

modulation, to generate artifical gauge field and the topology protected one-way edge state

[165–167]. More recently, Floquet engineering techniques have been adopted in experiments

with many-body quantum systems [162, 163, 168, 169].

Although Floquet engineering has been applied to different fields of physics, here we show the

Floquet dynamics is observed in quantum optomechanical measurements. We demonstrate

experimentally and describe theoretically how the Kerr-type nonlinearities, i.e. light-induced

cavity frequency shifts [79, 146, 170], can lead to Floquet dynamics in the presence of multiple

drive tones, coupling of originally independent thermomechanical sidebands (e.g. Stokes

and anti-Stokes sidebands) and modification of the scattering rates. This mechanism affects

quantum measurements of mechanical motion, and we specifically demonstrate it leads to an

artificially modified quantum sideband asymmetry.

We specifically analyze this new dynamics in the context of motional sideband asymmetry [67–

70], which has received significant attention as it is a signature of the quantum-mechanical

nature of the interaction between light and engineered mechanical oscillators. The anti-Stokes

scattering (resulting in blue-shifted radiation) rate scales with n̄, while the Stokes scattering

rate scales with n̄+1, where n̄ denotes the average thermal occupation of the vibrational mode

[111]. The ratio of the two scattering rates is given by the Boltzmann factor exp(−~Ωm/kB T ),

where Ωm is the frequency of the oscillator and T its mode temperature, which therefore

allows for absolute and self-calibrated quantum noise thermometry. Such motional sideband

asymmetry has been observed in the quantized motion of laser-cooled trapped ions [171] and

cold atoms in optical lattices [172] and used for thermometry in solids [173–175] and molecules

[176], and it is commercially used in fiber optical distributed temperature measurements [177].

To exploit sideband asymmetry in optomechanical system for absolute thermometry without

the need for calibration [91], understanding all noise contributions, such as laser noises

[71, 178, 179], is crucial.

The thermal Kerr-type nonlinearity is shown to modify the motional sideband asymmetry,

giving lower temperatures than the actual ones by artificially augmenting the sideband ra-

tio. Counterintuitively, the coupling of the sidebands due to the Kerr-type nonlinearity and

the induced artificial asymmetry are even present when operating far (i.e. ×10) above the

characteristic thermal response of the system. It can only be eliminated by separating the

driving tones in frequency far beyond the bandwidth of the Kerr-type nonlinearity, as verified

by independent measurements. The intrinsic motional sideband asymmetry is then restored,
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Figure 4.1 – Optomechanical crystal and experimental setup. (a) False-color SEM image of
the silicon optomechanical crystal cavity with a waveguide for laser input coupling. The path
of the tapered fiber is indicated. The inset shows the simulated mechanical breathing mode
and optical mode. (b) SEM image of the cavity. (c) Scheme for motional sideband asymmetry
measurement using two probe tones and a cooling tone. (d) Experimental setup. PM, phase
modulator; VOA, variable optical attenuator; AOM, acousto-optical modulator; BHD, balanced
heterodyne detector; SA, spectrum analyzer; NA, network analyzer; PLL, phase-locked loop.

and enables performing self-calibrated thermometry.

4.2 Experimental Results

Our experimental system is an OMC [136], as shown in Fig. 6.2. Optically, the device functions

as a single-sided cavity with a partially transmitting input mirror. Light is evanescently coupled

from a tapered optical fiber into a waveguide that forms part of the nanobeam with efficiency

exceeding 50%. The optical resonance is at 1540nm with a linewidth of κ/2π = 1.6GHz, of

which κex = 0.3κ are extrinsic losses to the input mirror. The optical mode is optomechanically

coupled to a mechanical breathing mode of frequencyΩm/2π= 5.3GHz, strongly confined

due to a phononic bandgap, with an intrinsic linewidth of Γint/2π = 84kHz. This places

the system in the resolved sideband regime [180], i.e. Ωm > κ, as required for ground-state

cooling [55, 56]. The measured optomechanical coupling rate is g0/2π= 780kHz. Our system

is passively cooled to low initial thermal occupancy at 4.5K (thermal occupancy at bath

temperature n̄th ' 17) using a 3He buffer gas cryostat. The buffer gas provides additional

mechanical damping, increasing Γint by several 10s kHz to the actual mechanical linewidth Γm

[145]. The buffer gas environment enables greatly enhanced thermalization of the oscillator

and is necessary for cooling close to the ground state, unlike previous measurements under
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vacuum [60, 96, 97, 147, 148, 181].

To measure motional sideband asymmetry, we employ two probe tones, around upper and

lower motional sidebands, and in addition apply a strong tone near the lower sideband for

sideband cooling (Fig. 6.2c). Such multi-tone probing scheme has been applied in previous

experiments in the microwave domain [70, 182]. The two weak equal-power probes (about

nc = 100 mean intracavity photons each) are applied at frequenciesωcav±(Ωm+δ). The cooling

tone is blue-detuned from the lower probe by the frequency Ωmod, where Γm ¿Ωmod ¿ κ.

The red-detuned probe will generate a resonantly enhanced anti-Stokes Raman process, where

a probe photon is upconverted in frequency from −Ωm −δ to −δ, while destroying a phonon

in the mechanical oscillator. The converse occurs for the blue-detuned probe, where a probe

photon is downconverted fromΩm+δ to δwhile creating a phonon, thus forming the resonant

enhanced Stokes sideband. The experimental setup is shown in Fig. 6.2d. We use balanced

heterodyne detection for quantum-limited measurement of the scattered thermomechanical

sidebands in the output spectrum. The overall detection efficiency is η' 4%. We measure the

symmetrized autocorrelator of the photocurrent S I (ω) = 1
2

∫ ∞
−∞〈{Îout(t + t ′), Îout(t ′)}〉e iωt d t ,

where the average over t ′ is denoted by an overbar[70, 183]. The one-sided heterodyne

spectrum takes the form (in the resolved sideband limit)

S I (ω+∆LO) = 1+ηΓtot

{
ΓmCredn̄

Γ2
tot/4+ (ω+δ)2

+ ΓmCcooln̄

Γ2
tot/4+ (ω+δ−Ωmod)2

+ ΓmCblue(n̄ +1)

Γ2
tot/4+ (ω−δ)2

}
, (4.1)

where we have introduced cooperativities Cred,blue,cool ≡ 4g 2
r,b,c /(κΓm), the light-enhanced op-

tomechanical coupling gr,b,c ≡ g0
p

nr,b,c , reduced occupancy n̄ = Γmn̄th/Γtot, local oscillator

detuning ∆LO =ωLO −ωcav, and incorporated the effect of sideband cooling into a broadened

mechanical linewidth Γtot ' Γm(1+Ccool). In the last expression we assume weak probe tones

of equal strength, such that they do not contribute to the total mechanical damping, and

taken the good cavity limit κ/Ωm → ∞, thus neglecting the quantum backaction limit to

optomechanical cooling [55, 56], which is of no importance here. We further assume that

the cavity linewidth is much larger than the detuning and effective mechanical linewidth

κÀ δ,Γtot, such that the optical susceptibility can be evaluated on resonance, and neglect

classical laser noise. Equation (4.1) is normalized to the shot noise floor, includes the overall

detection efficiency η, and we have chosen to show only sidebands close to resonance, the

others are heavily suppressed due to the cavity resonance.

For our measurement, the red and blue cooperativities are chosen to be equal Cred =Cblue ≡C ,

such that the Lorentzian probe tone sidebands centered around ∆LO ±δ have weights pro-
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Figure 4.2 – Artificial and quantum sideband asymmetry in optomechanical sideband cool-
ing. In (a), (b), the cooling tone is detuned 80MHz from red-detuned probe. (a) Inferred n̄
(n̄ +1) from anti-Stokes (Stokes) mechanical sidebands, based on total thermomechanical
noise. Inset: Example of an actual observed noise spectrum, colored for different tones as
in the main panel. (b) The occupancy n̄ obtained from motional sideband asymmetry, ob-
tained both from the ratio of red- and blue-detuned probes, and the ratio of cooling tone and
blue-detuned probe, which shows strong disagreement. Error bars represent ±20MHz tuning
accuracy. (c), (d) show the data corresponding to (a), (b), respectively, only with the cooling
tone detuned 220MHz from red-detuned probe, where the effect of the thermal Kerr-type
nonlinearity is strongly diminished. In (c), the lower curve is a fit according to the model with
the average asymmetry of the last two points, shown in (d), used for calibration; one quantum
is added to result in the upper curve, coinciding with the Stokes sideband data. Inset (c) shows
spectra of the last data point.
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portional to C n̄ and C (n̄ +1). The asymmetry can be interpreted as a consequence of either

quantum backaction (i.e., the optical input vacuum fluctuations) or of the mechanical com-

mutation relations, depending on the detection scheme as well as the detector model used

[70, 116, 117]. From the sidebands we extract n̄ either directly using noise thermometry or

sideband asymmetry, as in previous optomechanical experiments [68, 69]. Raman thermome-

try can be done using the cooling tone sideband instead of the red-detuned probe sideband,

as long as one accounts for the difference in optomechanical coupling. Classical laser noise,

which can be a source of artificially enhanced asymmetry [71, 178, 184] is not affecting our

measurements.

Throughout the experiment, the power of the cooling tone is increased, lowering the mechani-

cal occupancy n̄ through sideband cooling, while the probe tones are held constant. Figure

4.2a,b we show thermometry results for a detuning of the red-probe from the cooling tone

of Ωmod/2π = 80MHz. In Fig. 4.2a we use the total sideband power to infer n̄ (n̄ +1) from

the anti-Stokes (Stokes) mechanical sidebands, plotted against the cooling tone intracavity

photons. Strikingly, the curves of the cooling tone and red-detuned probe do not coincide,

making it impossible to associate n̄ with either. The discrepancy is also reflected in Fig. 4.2b,

where quantum sideband asymmetries of either of the two anti-Stokes sidebands compared to

the Stokes sideband yield different n̄. We next repeat the measurement with larger seperation

between the red-detuned probe and the cooling tone, withΩmod/2π= 220MHz (Fig. 4.2c,d).

The inferred n̄ from both anti-Stokes sidebands now show excellent agreement (Fig. 4.2c), and

n̄ inferred from motional sideband asymmetry also agree within experimental errors (Fig.

4.2d). Our measurements thus show that the presence of the cooling tone, when tuned closely

to the red-detuned probe, modifies the quantum-mechanical motional sideband asymmetry.

To investigate this phenomenon further, we perform an auxiliary experiment, shown in Fig.

4.3a. Omitting the blue-detuned probe, we apply two equal power tones near the lower

mechanical sideband (still referred to as red-detuned probe and cooling tone). As illustrated in

Fig. 4.3a, the observed anti-Stokes sidebands are not equal even forΩmod ¿ κ, with the higher-

frequency sideband stronger, in disagreement with standard optomechanical theory. Keeping

the red-detuned probe fixed at ∆ = −Ωm and scanning the cooling tone, Fig. 4.3b shows

the ratio of the two sidebands, normalized to the expected bare optomechanical response,

vs. Ωmod. The normalized ratio decreases with Ωmod, only reaching the expected behavior

at Ωmod ∼ 200MHz. Note that, depending on the power used, the ratio may be very large

for small Ωmod, e.g. exceeding 2 for Ωmod/2π = 20MHz in Fig. 4.3b. Figure 4.3c shows the

noise spectra at low Ωmod/2π = 4MHz for increasing tone power, where additional higher-
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order sidebands, spaced byΩmod, are observed. These measurements point to the presence

of a cavity nonlinearity, which couples the thermomechanical sidebands and modifies the

observed asymmetry.

The existence of cavity nonlinearities due to e.g. thermal effects is not unusual and has been

observed in both bulk optical cavities as well as ultrasmall optical mode volume resonators

[146, 185–187]. While there are several potential sources for a “Kerr-type” effect, we consider

the photothermorefractive frequency shift (PTRS) as the dominant mechanism. Physically,

photons circulating in the cavity are absorbed, leading to heating, and thus shifting of the cavity

resonance (e.g., via the temperature dependent refractive index). The temperature deviation

δT is governed in the simplest case by a single timescale and temperature-independent

absorption

δṪ (t ) =−γthδT (t )+ gabs|ā(t )|2. (4.2)

Here the absorption rate is given by gabs, and the thermalization rate by γth. In the presence

of two tones, the cavity field intensity beats nc (t) = |ā(t)|2 ∝ const+cos(Ωmodt), which, via

the absorption heating, causes a periodic modulation of the cavity frequency, captured by the

detuning

∆th(t ) =∆k exp(iΩmodt )+c.c. (4.3)

where

∆k = g PTgabsāc ār√
γ2

th +Ω2
mod

e−iφth , φth = tan−1
(
Ωmod

γth

)
. (4.4)

Here āc , ār are the amplitudes of the intracavity fields produced by cooling tone and red-

detuned probe, and gPT relates cavity frequency shift to temperature deviation via ∆th =
g PTδT . Consequently the static thermal cavity shift per mean intracavity photon is given by

g 0,th = g PTg abs/γth. In principle, the nonlinear cavity frequency shift could have a number of

origins, which can be included in∆k . Here for simplicity we consider only the PTRS (4.3), such

that ∆k is given by Eq. (4.4). Additional Kerr-type nonlinearities are discussed in the end of

Sec. 6.3.

The cavity frequency modulation mediates processes in which photons are scattered from a

frequency ω to ω±Ωmod, which causes coupling of the sidebands with strength ∆k . In Section

6.3, we incorporate the PTRS into standard optomechanical theory to model our experiments,
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Figure 4.3 – Observation of asymmetric noise spectra due to Kerr-type nonlinearity. (a)
Pumping scheme with two equal red-detuned pumps. (b) The peak ratio of the observed
spectra, relative to the ratio expected from bare optomechanical response, vs.Ωmod for con-
stant power of nc = 640 intracavity photons, showing decreased effect for higher modulation
frequencies. The inset shows the spectra for data points of the same color in the main panel.
(c) Increasing the pump power for a constantΩmod/2π= 4MHz, showing higher-order Fourier
modes. Also shown are fits to the analytic model of Sec. 6.3. (d) Calibration of sideband cooling
using motional sideband asymmetry, withΩmod/2π= 220MHz, free from Kerr-type artificial
asymmetry. The oscillator is cooled down to n̄ = 1.5 phonons.

and use a Floquet approach, based on writing the cavity and mechanical annihilation opera-

tors as sums of Fourier modes, to solve the time-dependent quantum Langevin equations. In

the first approximation, corresponding to retaining the dominant Fourier modes, the output

spectrum takes the same form as above (4.1) but with modified cooperativities

C̃ red =C red
∣∣1−2i gc∆k /(grκ)

∣∣2 , (4.5a)

C̃ cool =C cool
∣∣1−2i gr∆

∗
k /(gcκ)

∣∣2 , (4.5b)

leaving the ideal theory [Eq. (4.1)] otherwise unchanged. Importantly, these expressions can

lead to an asymmetry when ∆k is complex even when gr = gc . This explains our observations

in Fig. 4.3b, where the cavity is driven by two equal-strength pumps, and asymmetric sidebands

are observed. The asymmetry diminishes asΩmod is increased beyond the bandwidth γth. A fit

to this simple model shown in Fig. 4.3b is in good agreement and captures this general behavior.

In this case ofΩmod À γth we find that the approximation Eq. (4.5) is sufficient to describe our

data, with added Fourier modes producing no change to the fitted curve. From the fit we obtain

the two quantities characterizing ∆k (4.4), γth/2π∼ 6MHz and g absg PT/4π2 ∼ 10MHz2, with

other parameters determined independently. Deviations from the data at high frequencies

may be accounted for by considering additional Kerr-type effects of higher bandwidths or

more complicated thermal behavior than that afforded by Eq. (4.2), however we keep the
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simplicity of our model and emphasize that forΩmod/2π= 220MHz used in Fig. 4.2c,d and

all our subsequent motional sideband asymmetry measurements, we consistently observe

the same normalized sideband power (i.e. same n̄) for both cooling tone and red-detuned

probe (within experimental errors of ∼ 5%), confirming the weakness of Kerr-type effects,

and allowing to operate in a regime where the quantum sideband asymmetry arising from

optomechancial quantum correlations can be observed. We also note that the coupling of red

and blue tones is negligible as their spacing is 2Ωm À γth.

In order to capture the Floquet dynamics observed in Fig. 4.3c, where a series of thermome-

chanical sidebands are generated, more Fourier modes have to be included (six optical and

five mechanical; see Fig. 4.4). The relative weight of the higher order sidebands is in good

agreement with the data. Strong thermal effects at Ωmod/2π = 4MHz lead to distortion in

the cavity linewidth measurement, introducing large detuning errors, leading to large uncer-

tanties in cavity parameters. The fits shown in Fig. 4.3c yield γth/2π in the range 4–8MHz and

g absg PT/4π2 ∼ 6–17MHz2, in close agreement with Fig. 4.3b. In order to further confirm our

model, we have carried out pump-probe response measurements of the cavity. We found the

bandwidth of power induced cavity frequency shifts (likely thermal in origin) ∼ 10MHz, in

agreement with the results presented here.

Next, we turn back to sideband measurements atΩmod/2π= 220MHz, where only the quan-

tum asymmetry is prominent. Figure 4.3d shows an extended set of measurements done at

cryostat temperature of 4.4K and buffer gas pressure of 140mbar, including occupancies n̄

inferred from both motional sideband asymmetry and power in the cooling sideband. In-

ferring n̄ from motional sideband asymmetry is straightforward, however the probes must

be weak to avoid extraneous heating of the oscillator. The much-larger signal-to-noise ra-

tio of the cooling sideband is more suitable for determination of n̄ for the highest cooling

powers. Referring to Eq. (4.1) and neglecting the weak probes, we see that apart from the

easily-measured optomehcanical parameters, accurate knowledge of the quantity η n̄th is

required. Moreover, extraneous heating due to optical absorption modifies the actual bath

occupancy from that measured, n̄th → n̄th +αnc , where α is the added bath phonons per

intracavity photon. Thus, at least one of the parameters η, n̄th,α needs to be independently

determined. It is often difficult to obtain accurate measurement of these parameters. Here we

use the sideband asymmetry at an intermediate data point to compute n̄ and, unequivocally,

η, providing calibration for the entire cooling curve of Fig. 4.3d.

The two main sources of measurement error are tuning accuracy, estimated at ±2π×20MHz =
±0.0125κ, that leads to slightly different cavity response seen by the two probes (error bars
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in Figs. 4.2 and 4.3d), and error in estimate of Lorentzian peaks of the sidebands, that yield

different n̄ values for the two flavors of asymmetry used in Fig. 4.2b,d (see inset of Fig. 4.2c).

The former error is dominant for large n̄ (small asymmetry), while the latter is dominant at

strong cooling powers hence low signal-to-noise ratios (for example the last point in Fig. 4.2d).

For every data point in Fig. 4.3d, we add these errors in quadrature. We then compute η and its

uncertainty using weighted average. The final result, η= 0.044±0.005 remains essentially the

same if we take the last few, minimum error points. This calibration gives n̄ = 1.5±0.2 (40%

ground-state occupation) for the minimum occupation in Fig. 4.3d. In addition, fitting the

entire data set yields bath thermal occupation n̄th = 17.5 and extraneous heating of α= 1.3C0..

4.3 Theory

In optomechanical measurements, precise knowledge and precision measurements of the

sources and processes that contribute to the noise spectrum are imperative, such as thermore-

fractive noise [62, 188] and noise in drive tones [114, 178, 179, 184].

To describe our experiment we take the standard optomechanical model in a rotating frame

Ĥ OM/~= [∆th(t )−∆]â†â +Ωm b̂†b̂ − g0â†â(b̂ + b̂†), (4.6)

but include the PTRS (via ∆th) as well as optical and mechanical baths. A standard calculation

[43, 189] gives quantum Langevin equations, which we linearize around the mean intracavity

field â(t ) = ā(t )+δâ(t ) (and the same for the mechanical mode) to obtain the equations for

linear optomechanics [43]

δ ˙̂a =
{

i [∆−∆th(t )]− κ

2

}
δâ + i g (t )(δb̂ +δb̂†)+p

κδâin,

δ ˙̂b =
(
−iΩm − Γm

2

)
δb̂ + i [g (t )δâ† + g∗(t )δâ]+

√
Γm b̂in,

(4.7)

where∆≈−Ωm is the average detuning of the pumps from the cavity, g (t ) = g0ā(t )exp[i (ωcav+
∆)t ] is the modulated light-enhanced optomechanical coupling strength, and the input noises

obey 〈δâin(t)δâ†
in(t ′)〉 = δ(t − t ′) and 〈b̂in(t)b̂†

in(t ′)〉 = (n̄th + 1)δ(t − t ′) (as well as standard

commutation relations). Langevin equations with periodic time-dependence can be analyzed

with a recently developed method [190]. Note that closely related models have been studied in

the context of levitated optomechanics [191, 192], where instead of the cavity, the mechanical

resonator frequency is modulated.

In the experiment, we apply up to three tones to the cavity: a strong cooling tone, as well
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as weak red- and blue-detuned probes. Since the blue-detuned probe is very far detuned

from the other two tones, it remains unaffected and we will not consider it in this section.

Cooling tone and red-detuned probe are close to the red sideband, separated in frequency

by Ωmod, as is shown in Fig. 4.3a. Neglecting all other effects, the resulting intracavity field

ā(t ) = ār e−i (ωcav+∆)t + āc e−i (ωcav+∆+Ωmod)t .

We model the PTRS [170, 193] through Eq. (4.2) in conjunction with ∆th(t) = g PTδT (t) as

discussed above. In our level of approximation we neglect the effect of the PTRS on the

mean intracavity field, such that we can solve directly for the temperature deviation. Since a

constant temperature shift leads to a static frequency shift which can be absorbed into the

overall detuning ∆, we only consider the time-dependent part

δT (t ) = gabs

∫ t

−∞
2āc ār e−γth(t−t ′) cos(Ωmodt ′)d t ′ = 2gabsāc ār√

γ2
th +Ω2

mod

cos(Ωmodt −φth), (4.8)

where the phase lag

φth = tan−1 (
Ωmod/γth

)
(4.9)

arises due to the finite thermalization time. Equation (4.8) yields the PTRS displayed in Eqs.

(4.3) and (4.4). The phase φth plays a crucial role in the observed asymmetric response. Note

that if ∆th is positive, the cavity resonance is blue-shifted. Absorption of photons in the

cavity can also lead to a delayed photothermal force on the mechanical oscillator due to the

photo-thermo-elastic effect [194–197], which in turn leads to a cavity frequency shift via the

optomechanical coupling. In our experiment the photothermal body force is negligible due

to the high mechanical frequency relative to the thermal bandwidth, thus we focus on the

photo-thermo-refractive effect.

If the two pumps lie close to the red sideband (∆≈−Ωm), and the modulation frequency is

much smaller thanΩm , as is the case here, we can neglect terms rotating at 2Ωm in a rotating-

wave approximation. However, the resulting equations still have an explicit time-dependence,

which can be removed by splitting the fields δâ and δb̂ into Fourier modes [190]

δâ(t ) =∑
n

exp(i nΩmodt )δâ(n)(t ),

δb̂(t ) =∑
n

exp(i nΩmodt )δb̂(n)(t ),
(4.10)
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�

Figure 4.4 – An illustration of the infinite array of coupled Fourier modes. The map to
Fourier modes (4.10) introduces an infinite set of coupled Langevin equations, which has
to be truncated at some order to obtain a solution. Due to the two pumps (cooling and
red-detuned probe), thermomechanical noise incident on mode δb̂(0) is distributed onto δâr

and δâc , generating two sidebands. The cavity Fourier modes are coupled due to a cavity
Kerr-type nonlinearity [∆k (4.4)]. This effect modifies the sideband weight, which to lowest
order (considering only the bold three-mode system) can be accounted for with new effective
optomechanical couplings (4.5), but in general leads to more sidebands (Fig. 4.3c), modeled
by including more Fourier modes in the description. Notably, due to the finite response time,
the coupling between the Fourier modes is complex, with the phase φth given in Eq. (4.9).

at the cost of introducing an infinite set of coupled equations of motion

δ ˙̂a(n) =
(
i ∆̃− i nΩmod −

κ

2

)
δâ(n) +δn,0

p
κδâin

+ i
(
gcδb̂(n+1) + grδb̂(n) −∆∗

kδâ(n+1) −∆kδâ(n−1)) ,

δ ˙̂b(n) =
(
−i nΩmod −

Γm

2

)
δb̂(n)

+ i
(
gcδâ(n−1) + grδâ(n))+δn,0

√
Γm b̂in,

(4.11)

which are depicted as lattice in Fig. 4.4. Here, gr,c = g0ār,c and we have written ∆th(t) =
∆k exp(iΩmodt )+c.c., and defined the residual detuning ∆̃=Ωm +∆¿ κ, which presents only

a small correction and will thus be neglected in the following.

The Fourier modes we have introduced are sometimes called auxiliary modes [99], frequency-

shifted operators [191], or sidebands. The explicitly time-dependent terms in the linearized

equations of motion (E.6) couple the Fourier modes. This off-diagonal coupling (in Fourier

space) is suppressed by the response of the modes (especially the narrow mechanical mode),

such that good approximations are obtained with only few Fourier modes.

For now, we assume that only the central modes δâr ≡ δâ(0), δâc ≡ δâ(−1),δb̂(0) are nonzero.
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These modes are shown in bold colors in Fig. 4.4 and are most relevant as they contain the

most thermomechanical noise. This reduces the equations of motion (4.11) to the matrix

equation


χ−1

opt(ω) −i gr i∆k

−i gr χ−1
m (ω) −i gc

i∆∗
k −i gc χ−1

opt(ω+Ωmod)



δâr

δb̂(0)

δâc

 =


p
κδâinp
Γm b̂in

0

 , (4.12)

where we have defined the susceptibilities

χ−1
opt(ω) = κ/2− i (ω+ ∆̃), χ−1

m (ω) = Γm/2− iω. (4.13)

Note that the Kerr-type effect thus leads to a coupling of the Fourier modes δâc and δâr ,

captured by ∆k . The noise spectrum contains mostly noise from the mechanical oscillators,

such that we can neglectδâin. Applying the red-detuned probe and the cooling tone introduces

optical damping, yielding an effective susceptibility χ−1
m,eff(ω) = Γm(1+Cred +Ccool)/2− iω.

Given the approximation (4.12), the spectrum reads

S I (ω+∆LO) = 1+ηκn̄Γm

∣∣∣∣∣ gr − i gc∆kχopt(Ωmod +ω)

χ−1
opt(ω)χ−1

m,eff(ω)

∣∣∣∣∣
2

+ηκn̄Γm

∣∣∣∣∣ gc − i gr∆
∗
kχopt(ω−Ωmod)

χ−1
opt(ω)χ−1

m,eff(ω−Ωmod)

∣∣∣∣∣
2

,

(4.14)

where we have neglected the frequency dependence of the cavity response, and introduced

the overall detection efficiency η [183, 189]. This spectrum can be understood as follows:

thermomechanical noise is filtered by the mechanical response χm,eff and is scattered to

the optical modes, where it interferes with itself. In the Fourier mode corresponding to

the red-detuned probe sideband, the amplitudes gr and i gc∆kχopt(Ωmod) add. The rate gr

comes from scattering directly into that Fourier mode, whereas i gc∆kχopt(Ωmod) has the clear

interpretation of noise scattering first into cooling mode δâc with amplitude gc , where it picks

up the optical susceptibility χopt(Ωmod), and then hopping from there onto the red-detuned

probe mode with amplitude ∆k .

We find that even for equal pump strength (gr = gc ) the thermomechanical sideband weights

can differ, as long as ∆k has a nonzero phase. This phase occurs only if Ωmod and γth are

comparable, in which case the phase lag of the thermal response behind the intracavity field

[Eq. (4.3)] is non-trivial. This phase is conjugated between the clockwise and counterclockwise
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process, allowing us to interpret it as a synthetic gauge field φth threading the triangles in Fig.

4.4. From this point of view, the interpretation is similar to the non-reciprocal noise scattering

observed in the optomechanical isolator [98], and the optoelectromechanical transducer [198],

except that here the phase arises dynamically, among the virtual Fourier modes, whereas in

these examples the phase is a direct consequence of the phase relation of drives. In the more

relevant case for thermometry, gr ¿ gc , we can neglect the backaction of the probe tones

and Eq. (4.14) reverts to the ideal theory (4.1), but now with the modified optomechanical

cooperativities displayed above [Eq. (4.5)]. The three-mode approximation is sufficient for

fitting our data in Fig. 4.3b, where mostlyΩmod À γth.

For strong driving and small Ωmod ∼ γth, the interaction ∆k between the optical Fourier

modes is enhanced [Eq. (4.4)], and thus higher-order Fourier modes are populated, and more

sidebands appear in the output spectrum. This is precisely what we observe in Fig. 4.3c. The

higher-order sidebands can be modeled by including more Fourier modes (faint color in Fig.

4.4). The matrix in Eq. (4.12) is straightforwardly generalized to larger systems. It can then be

shown [190] that the normal-ordered time-averaged noise spectrum is given by

SN (ω) =∑
n

∫
dω′

2π
〈δâ(n)†

out (ω+nΩmod)δâ(−n)
out (ω′)〉. (4.15)

The heterodyne spectrum we quote above is related through S I (ω+∆LO) = 1+ηSN (ω). In Fig.

4.3c, to capture the full Floquet dynamics, we fit the data to this model including 6 optical

Fourier modes and 5 mechanical Fourier modes [i.e. d (2) . . .d (−3), b(2) . . .b(−2) in Fig. 4.4].

We note that the intrinsic Kerr effect also leads to a cavity frequency shift∆Kerr(t ) = g Kerr|ā(t )|2
without a phase lag. The coupling strength g Kerr can be estimated through [199]

g Kerr =−ωcav
n2

n0

~ωcavc

Vmoden0
, (4.16)

where n0 is the linear refractive index, n2 the Kerr coefficient, Vmode the mode volume, and c

the speed of light. For our system we find g Kerr/2π∼−13kHz, considerably weaker than the

PTRS which has a static, single intracavity photon coupling g 0,th/2π= 1.7MHz. Additionally,

the optomechanical interaction itself gives rise to an instantaneous Kerr-type frequency

shift, ∆OM(t ) = g OM|ā(t )|2 with g OM =−2g 2
0 /Ωm '−2π×230Hz [43], negligible in our system

compared to the PTRS as well. The optomechanical Kerr effect, however, can be strong in

other systems [200, 201]. The intrinsic and optomechanical Kerr effects are instantaneous and

thus independent of pump spacing.
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4.4 Frequency Response Measurement
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Figure 4.5 – Cavity frequency response measurement. (a) Experimental setup. AM, ampli-
tude modulator. (b) Measurement scheme. An amplitude modulated pumping tone is applied
to the an optical mode at wavelength of around 1600 nm. A weak probe is sent to the funda-
mental optical mode which transduce the frequency modulation to amplitude modulation.

To verify our theory further, and to discern contributions from different Kerr-type nonlineari-

ties, we performed a cavity frequency response measurement [54, 187], shown in Fig. 4.5. In

this pump-probe scheme, a pump laser is applied to a secondary wide optical resonance at

1595nm, while a probe laser is tuned to the slope of the main optical resonance at 1540nm (Fig.

4.5b) The pump laser is amplitude-modulated with variable frequencyΩ and the correspond-

ing shift of the cavity resonance is monitored via the probe laser. A bandpass optical filter at

the output removes the reflected pump light to avoid cross-talk from the pump modulation.

The frequency response curve corresponds to a combination of low-pass filter behavior,

attributed to different physical mechanisms that dominate at different frequencies [202]. In

our case we found it best described by three low-pass components

δω=
(

a1

1+ iΩ/Ω1
+ a2

1+ iΩ/Ω2
+ a3

1+ iΩ/Ω3

)
δnc , (4.17)

with δω the cavity frequency modulation, δnc the intracavity photon number modulation,

and Ωi and ai the bandwidths and amplitudes, respectively, of the three filters. Note that

neither the intrinsic Kerr effect plateau, nor the mechanical oscillator response, were observed

in our measurements, which were dominated by detector noise at GHz frequencies.
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Figure 4.6 – Cavity frequency response at different pressures. The cavity response at three
different pressures is shown in dotted curve, fitted with a three low-pass model.

Figure 4.5c shows our cavity frequency response for different buffer gas pressures, with the

extracted bandwidths summarized in Table 4.1, from which several conclusions can be drawn.

First, at 150mbar the highest frequencyΩ3 around 15MHz, agrees with the bandwidth of the

Kerr-type effect studied in Sec. 4.2, which reinforces our observations (the lower frequencies

are too low to be observed). Second, all bandwidths increase with pressure, indicating the

role of the buffer gas in improving the thermalization of the cavity. In the range 2–150mbar,

The higher bandwidths Ω2,3 increase by an order of magnitude. Thus, the cavity response

measurement plays a key role in understanding the Kerr-type nonlinearities studied in this

work.

Pressure (mbar) 2 20 150

Ω1/2π(kHz) 16.5 17.6 24.6

Ω2/2π(MHz) 0.07 0.30 1.10

Ω3/2π(MHz) 1.84 8.62 15.4

Table 4.1 – Bandwidth from fitting the response measurements of Fig. 4.5 with the three
low-pass model (4.17).

4.5 Excess Laser Noise

External cavity diode lasers are well-known to have an excess noise in the GHz range, due to

the damped relaxation oscillation caused by carrier population dynamics. This is the main

contribution for GHz excess noise for diode lasers. As this frequency is close to the mechanical
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frequency, it is necessary to quantify the phase noise of the diode laser that we are using

[179, 184]. The presence of the excess laser phase noise leads to a limited sideband cooling

performance. On the other hand, the effect of excess laser noise on the sideband asymmetry

has been extensively studied [71, 178, 184] in both sideband resolved and sideband unresolved

regimes. In a heterodyne detection scheme, the sideband imbalance is due to the correlation

between imprecision and backaction from the probing tones. This is true also when the

probing tones are not quantum limited, for example a laser with phase noise or a microwave

source with thermal occupation. This can therefore lead to an artificially increased asymmetry.

As a consequence it is imperative that the lasers are quantum noise limited in amplitude and

phase quadrature.

Here we give an estimation of the effect from the measured excess laser noise on sideband

asymmetry. We take into consideration of the excess noise in the amplitude and phase

quadratures, defined as Cqq and Cpp respectively, as in [71]. To quantify the excess noise in

the amplitude quadrature Cqq , we measure the power spectral density S̄p of the photocurrent

at mechanical frequencyΩm to the incident optical power through direct detection, where

S̄p = 2(~ωL)2 〈ṅ〉(1+2Cqq ) = S̄shot
p + S̄ex

p . The excess amplitude noise leads to a deviation of

S̄ex
p = 4(~ωL)2 〈ṅ〉Cqq from the shot noise power spectral density, which becomes visible at

high optical power (100s µW to few mW). At the mechanical frequencyΩm/2π= 5.3GHz, for

typical probing power (0.5–2µW) we use in the sideband asymmetry measurement, Cqq (Ωm) <
10−4, which is negligible. The excess noise in the phase quadrature Cpp can be modeled as

Cpp = 〈ṅ〉Sex
φφ, where Sex

φφ is the phase noise spectral density of the laser. The phase noise of

the laser is characterized with a narrow filter cavity, which transduces the phase fluctuation of

the input field to amplitude fluctuation. For the laser (Toptica CTL) at typical current 300mA,

the relaxation oscillation frequency is around 1.94GHz with a frequency noise spectral density

of Sωω(Ωrelax) = 2×106 rad2Hz. At the mechanical frequency, the characterized frequency

noise spectral density Sωω(Ωm) is less than 105 rad2Hz. For the typical probing power, Cpp is

below 10−3. As a result, the excess laser noise in both quadratures at typical probing power at

the Fourier frequency of 5.3GHz are negligible compared to the quantum fluctuations of the

light.

4.6 Conclusion

Rapid advances in cavity optomechanics over the last decade now enable quantum control of

mechanical oscillators using electromagnetic radiation. Here we have shown that quantum

effects such as motional sideband asymmetry can be masked by classical nonlinearities, that
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lead to modification of the effective scattering rates between thermomechanical sidebands

of closely-tuned applied drives due to Floquet dynamics. Such phenomena can have sub-

stantial impact and introduce additional dynamics in those schemes utilizing continuous

monitoring of the mechanical oscillator with multiple tones, such as backaction-evading mea-

surement [121, 203], mechanical quantum squeezing [83, 84, 124, 125, 182] and dissipative

optical squeezing [204], entanglement of two mechanical oscillators [205, 206], optomechan-

ical non-reciprocity [98–100]. The observed Floquet dynamics can be exploited for future

optomechanical Floquet engineering with time periodic modulation, such as generation of

optomechanical topological phases and continuous variable quantum information [207].

Our study indicates the rich physics that remains to be explored when considering the op-

tomechanical Hamiltonian in conjunction with other types of interactions, such as Kerr-type

interactions as outlined here.
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5 Optical Back-action Evading Measure-

ment of a Mechanical Oscillator

Quantum mechanics imposes a limit on the precision of a continuous position measurement

of a harmonic oscillator, as a result of quantum backaction arising from quantum fluctuations

in the measurement field. A variety of techniques to surpass this standard quantum limit have

been proposed, such as variational measurements, stroboscopic quantum non-demolition

and two-tone back-action evading (BAE) measurements. The latter proceed by monitoring

only one of the two non-commuting quadratures of the motion. This technique, originally

proposed in the context of gravitational wave detection, has not been implemented using

optical interferometers to date.

In this chapter, we demonstrate continuous two-tone back-action evading measurement in

the optical domain of a localized GHz frequency mechanical mode of a silicon optomechanical

crystal cryogenically and optomechanically cooled in a 3He buffer gas cryostat close to the

ground state [121]. We explicitly show the transition from conventional to backaction-evading

measurement, employing quantum-limited optical heterodyne detection, and observe up to

0.67dB (14%) reduction of total measurement noise.

5.1 Introduction

In a continuous measurement of the position x̂ of a harmonic oscillator, quantum backaction

(QBA) of the measuring probe on the momentum p̂ ultimately limits the attainable precision

[30, 208], restricting ultrasensitive measurements of force or motion. For an interferometric

position measurement, in which a mechanical oscillator is parametrically coupled to a cavity,

the trade-off arising from measurement imprecision (i.e. detector shot noise) and QBA force

noise on the mechanical oscillator, dictates a minimum added noise equivalent to the oscilla-
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tor’s zero-point fluctuations, xzpf =
√
~/2mΩm , referred to as the Standard Quantum Limit

(SQL), originally studied in the context of gravitational wave detection [25, 30, 209] (here m is

the mass, andΩm the angular frequency of the mechanical oscillator). Recent advances in the

field of cavity optomechanics [43] which utilizes nano- or micro-mechanical oscillator coupled

to optical or superconducting microwave cavities, have allowed reaching the regime where the

QBA arising from radiation pressure quantum fluctuations becomes relevant. In particular,

imprecision noise far below that at the SQL has been obtained [52, 210], thus entering the

QBA-dominated regime; QBA has been observed [63, 64, 66]; and sensitivities approaching

the SQL have been demonstrated [66, 74–76].

Quantum non-demolition (QND) techniques, first proposed by Thorne, Braginsky et al. [25, 31–

33, 35], allow beating the SQL by minimizing or evading the effects of QBA. One technique to

surpass the SQL, applicable to measurements far from the mechanical resonance frequency

Ωm , utilizes quantum correlations in the probe (due to ponderomotive squeezing [71–73, 211]),

known as ‘variational readout’ [87, 88]. This technique has recently been demonstrated

in a cryogenic micromechanical oscillator coupled to an optical cavity [89, 90], and in a

room temperature nano-optomechanical system for quantum-enhanced force measurements

[91, 92]. Another possibility is utilizing squeezed light, a technique applied to gravitational

wave detectors [88, 94, 212]. More recent schemes include measurements of the collective

motion in a hybrid system composed either of two mechanical oscillators (as demonstrated

for an electromechanical system [213, 214]), or a mechanical and a ’negative mass’ oscillator

(demonstrated using an atomic ensemble [215, 216]).

Another type of QND measurement, backaction-evading (BAE) measurements introduced

by Thorne et al. [35], allow avoiding QBA entirely by measuring only one of the two slowly-

varying amplitude and phase quadratures X̂ and Ŷ , defined by x̂(t ) ≡p
2xzpf[X̂ (t )cosΩm t +

Ŷ (t )sinΩm t ], which constitute QND observables. Unlike x̂ and p̂, the conjugate observables X̂

and Ŷ are decoupled from each other during free dynamic evolution. By exclusively measuring

X̂ (say), all QBA is diverted to Ŷ and is completely absent from the measurement record.

By increasing coupling to the system (probe power), one can then arbitrarily reduce the

imprecision noise, allowing in principle unlimited sensitivity in the measurement of one

quadrature. In a cavity optomechanical system such backaction-evading (BAE) measurement

is possible by amplitude-modulating a cavity-resonant probe at frequency Ωm (Fig. 5.1a)

[31, 32, 35], equivalent to two-tone probing on the upper and lower mechanical sidebands of

the cavity (Fig. 5.1b) Two-tone BAE is applicable in the well-resolved sideband regimeΩm À κ,

where κ is the cavity linewidth. In the opposite regime of a fast cavity κÀΩm one must resort
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Figure 5.1 – Backaction-evading measurement. (a) Illustration of a cavity optomechanical
system. Light in a cavity with optical resonance ωc and full linewidth κ (of which κi intrinsic
losses) is coupled to the position x̂ of a mechanical oscillator that has frequency Ωm and
linewidth Γm . In a BAE measurement, the probe is amplitude-modulated at the mechanical
frequency Ωm , coupling to the quadrature X̂ . (b) Frequency space configuration slightly
detuned from BAE measurement, where the probe is modulated at Ωm +δ. (c) Resulting
power spectral density for an oscillator in a thermal state, showing the asymmetric Stokes
and anti-Stokes scattered sidebands, plus the heating due to QBA. (d) When tuning to the
BAE scheme δ = 0, the two sidebands coalesce and the QBA is cancelled. The remaining
imprecision noise n̄imp can be arbitrarily reduced by increasing probe power.

to stroboscopic QND measurements, requiring interaction times ¿Ω−1
m [31, 35].

To date, such two-tone BAE measurement have exclusively been demonstrated in microwave

optomechanical systems [77, 78], where they have also been utilized to perform tomography

of states produced by schemes that produce reservoir-engineered squeezed [81–85] and entan-

gled [205, 206] mechanical states. Yet, in all these experiments noise resulting from the use of a

microwave amplifiers at elevated temperatures, resulted in substantially decreased efficiency

and hindered beating the SQL [78]. Additionally, thermal noise at microwave frequencies can

be non-negligible even at cryogenic temperatures, and requires careful calibration [70]. In

contrast, optical homodyne or heterodyne detection is quantum-limited, and light is effec-

tively a zero-temperature bath, allowing self-calibrated measurements of motion [67–70, 122].

Optomechanical systems using laser light have demonstrated quantum effects up to room

temperature [91–93]. To date however, despite advances in operating in the QBA dominated

regime in cavity optomechanics, BAE measurements in the optical domain have not been

reported. BAE measurements are compounded by instabilities arising from the excitation of

higher-order mechanical modes due to the 2Ωm intensity modulation, and are susceptible to
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parametric instabilities [79, 80, 89].

5.2 Theory

The theory of dual-tone backaction-evading measurements in optomechanics has been

treated earlier [36]. Here, we demonstrate a two-tone BAE measurement in the optical domain

of an oscillator in a thermal state (average occupation n̄), using quantum-limited balanced het-

erodyne detection (BHD). We first consider theoretically the scenario depicted in Fig. 5.1b–d,

in which a cavity optomechanical system is interrogated with two tones detuned by ±(Ωm +δ)

from the cavity resonance and the two sidebands are detected using BHD.

The output optical field δâout = δâin −p
κδâ is detected using balanced heterodyne de-

tection, mixing it with a strong local oscillator with frequency ωL +∆LO (in the lab frame)

on a beamsplitter and subtracting the detected intensity from the two beamsplitter output

arms. This yields photocurrent with symmetrized PSD [217], S I (ω) ∝ Sδâoutδâout (∆LO +ω)+
Sδâ†

outδâ†
out

(∆LO −ω). Apart from a white noise floor due to shot noise, both Sδâoutδâout (ω) and

Sδâ†
outδâ†

out
(ω) contain information near ω ≈ Γeff,δ ¿ ∆LO. Hence the PSD will contain in-

formation near ∆LO dominated by one of them. Henceforth we refer all measured PSDs to

∆LO.

We specialize to the case ∆= 0 and gb = gc , as in our experiment. We can also approximate

χc (ω) ≈χc (0) since for our frequencies of interest ω¿ κ. Including finite detection efficiency

η finally yields the PSD, normalized to the vacuum noise level,

S I (ω) = 1+ηΓ2
effC

[
n̄|χm(ω−δ)|2 + (n̄+1)|χm(ω+δ)|2 +C |χm(ω−δ)−χm(ω+δ)|2

]
(5.1)

where χm(ω) = (−iω+Γeff/2)−1 is the mechanical susceptibility of the oscillator with total

mechanical linewidth Γeff, η the overall detection efficiency, and C = 4g 2
0 np /κΓeff the optome-

chanical cooperativity proportional to the input power. For δ= 0, the quadrature X̂ is given

by X̂ = √
Γeff/2χm(ω)[b†

in(ω)+bin(ω)] with PSD S̄X X (ω) = (Γeff/2)(2n̄ +1)|χm(ω)|2. The first

and second terms in brackets correspond to the anti-Stokes and Stokes scattered motional

sidebands, respectively, having the Lorentzian shape of the mechanical susceptibility. These

exhibit the well-known quantum sideband asymmetry [65, 122, 208, 218–222], resulting from

the ratio (n̄ +1)/n̄ between absorption and emission rates. The last term in brackets is the

QBA due to quantum noise in the probe light. When δÀ Γeff, QBA appears as heating of

the oscillator, adding n̄BA = C mean quanta (Fig. 5.1c). The two QBA components, which

result from interaction with the positive and negative frequency parts of the probing field,
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have opposite phase. When δ= 0 QBA is cancelled, yielding a pristine measurement of the

oscillator, S I (ω) = 1+ηΓeffC S̄X X (ω) with S̄X X (ω) = (Γeff/2)(2n̄ +1)|χm(ω)|2 (Fig. 5.1d). In this

case 2n̄BA quanta are added to the complementary quadrature [36]. In principle, one can then

increase signal-to-noise ratio, (i.e. measurement sensitivity) indefinitely, with no deleterious

effects on the measurement, simply by increasing probing power. However, even barring other

technical limitations, we have neglected bad-cavity effects, n̄bad = (κ/4Ωm)2C , where photons

scattered out of resonance interact with counter-propagating terms (neglected in the RWA) to

induce QBA [36]. In our experiment C . 10 and n̄bad ∼ 10−2 is completely negligible.

5.3 Experimental Results

We performed a BAE measurement in a silicon OMC used in Ref. [122]. Optically, the device

functions as a single-sided cavity with a partially transmitting input mirror. Light is evanes-

cently coupled from a tapered optical fiber into a waveguide that forms part of the nanobeam

(coupling efficiency exceeds 50%). The optical resonance is at 1540nm with a linewidth of

κ/2π= 1.7GHz, of which κex = 0.3κ are extrinsic losses to the input mirror. The optical mode

is optomechanically coupled to a mechanical breathing mode of frequencyΩm/2π= 5.3GHz,

strongly confined due to a phononic bandgap, and an intrinsic linewidth of Γint/2π= 84kHz.

This places the system in the resolved sideband regime [180]. The measured optomechanical

coupling parameter is g0/2π= 780kHz.

The system is placed in a 3He buffer gas cryostat (Oxford Instruments HelioxTL), which allows

us to overcome the prohibitive optical absorption heating in vacuo that has limited operation

with these devices to very low photon numbers [148] or pulsed operation [96, 97, 147, 148, 181].

We are thus able to operate at high probe powers where QBA is observable. The buffer gas

causes additional damping, increasing the mechanical linewidth toΓm = Γint+Γgas. In addition

to the BAE probes, we also apply a cooling tone red-detuned from the optical resonance,

to lower the thermal occupation n̄ f through optomechanical sideband cooling [180], n̄ f '
n̄th/(1+C cool) with n̄th the occupation of the thermal environment. The cooling tone also

provides additional damping due to dynamical backaction, Γeff = Γm(1+C cool), which is the

effective linewidth seen by the BAE probes. Note that the balanced probes do not produce

dynamical backaction. Here, C cool =C0nc is the cooling tone cooperativity defined similarly to

C but relative to the original linewidth Γm , with the single photon cooperativity C0 ≡ 4g 2
0 /κΓm ,

and nc the mean intracavity photons due to the cooling tone. The cooling tone is tuned

2π×220MHz away from the red-detuned BAE probe to mitigate the Floquet dynamics due to

Kerr-type effects [122]. At low temperatures, intracavity photons shift the optical resonance
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Figure 5.2 – Experimental observation of backaction-evasion. Data traces, normalized to
the vacuum noise level, for non-BAE (blue) and BAE measurements (red) are shown with
Lorentzian fits. The non-BAE sidebands exhibit motional asymmetry, used to self-calibrate the
measurement in units of mechanical quanta. The sum of the non-BAE sidebands, indicated in
dashed blue, is larger than in the BAE case (red) by 0.7 mechanical quanta. The right inset is a
zoom of the indicated region. The left inset shows the inferred occupation n̄ as a function of
the detuning δ. In this measurement np = 290, nc = 320, and C cool = 3.8.

to higher frequencies, due to a combination of thermo-optic and thermal expansion effects

in silicon. The cavity is optically unstable when driven with the BAE probes alone (due to

the blue-detuned probe), and an additional red-detuned (cooling) tone of sufficient power is

required. In our system we have found empirically that we need n̄c & n̄p /2 for stable operation.

The measurement setup is the same as previous sideband asymmetry experiments. The two

BAE probes (as well as the cooling tone) are derived from two phase-locked lasers. The three

tones are combined in a free-space setup and coupled with the same polarization into a single

mode fiber. By blocking each beam path we ascertain equal power for each probe, stable to

within 1%. The light reflected from the oscillator is directed to a BHD setup, where it is mixed

with a local oscillator generated by a third laser. By carefully characterizing our lasers we have

determined that classical laser noise is negligible in our system. Specifically we operate far

from the relaxation-oscillation peak of our diode laser [179, 184]. In order to accurately tune

the probes across the optical resonance, we temporarily switch the reflected light to a coherent

response measurement setup.

90



5.3. Experimental Results

2

6

10

14

18

n i
m

p

0.0 0.4 0.8 1.2 1.6

0

2

4

6

8

n,
 n

BA

1
8

n
nBA

nimp

Figure 5.3 – Effect of probe power on quantum backaction and optical absorption heating.
The measurements were carried out at 1.6K and 3He buffer-gas pressure of 30mbar, with
nc ' 420 (C cool ' 5.0). The occupation n̄ and the number of evaded QBA phonons n̄BA vs.
independently-measured C are plotted on the left axis. The error bars are due to uncertainty in
occupancy calibrated using quantum sideband asymmetry. The solid blue line plots n̄BA =C .
The dashed red line is a linear fit to n̄ with slope βC where β= 3.85. The right axis shows the
imprecision noise with a fit n̄imp = 1/8ηC yielding η= 0.04.

Figure 5.2 shows BAE measurement of the mechanical oscillator, taken at a cryostat temper-

ature of 2.0K (n̄th ∼ 7.9) and buffer-gas pressure of 46mbar. In this experiment, we vary the

detuning δ/2π from +3 to −3MHz. The total mechanical linewidth across the measurement

is Γeff/2π= 607±7kHz and the other measurement parameters are n̄p = 290, n̄c = 320, and

C cool = 3.8. When the probes are tuned away from the mechanical sidebands, δ/2π= 3MHz,

the PSD exhibits motional sideband asymmetry that can be used to self-calibrate the measure-

ment in terms of mechanical quanta (including QBA heating; see inset of Fig. 5.2), n̄+n̄BA = 6.3

in this case [67–70, 122]. When tuning the probes on the mechanical sidebands, δ/2π= 0MHz,

the total thermomechanical noise is reduced by 0.7 mechanical quanta, in perfect agreement

with independently calculated C = 0.7. Thus more than 11% of the noise in the non-BAE case

is due to QBA. This constitutes the first BAE measurement in the optical domain and the first

with quantum-limited detection.

We now turn to discuss technical limitations of BAE measurement imposed by our system.

In conventional cavity-based position measurement employing homodyne detection [75,

76], one refers the on-resonance readout to mechanical quanta, i.e., expressing the peak
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of the measured PSD as Shom
I (Ωm) ∝ n̄hom

imp + n̄BA + (n̄ + 1
2 ), where n̄hom

imp = (16ηC )−1 is the

measurement imprecision due to shot noise (cf. Fig. 5.1d). The Heisenberg uncertainty

relation requires 4
√

n̄hom
imp n̄BA ≥ 1. The SQL is achieved by minimizing the total added noise

n̄add = n̄hom
imp +n̄BA subject to this constraint, yielding n̄SQL

add = (4η)−1/2 ( 1
2 for ideal measurement).

In a BAE measurement there is no QBA component, however any device suffers extraneous

heating due to optical absorption, adding excess heating backaction n̄th
BA =βC analogous to

n̄BA. Additionally, in heterodyne detection n̄imp = (8ηC )−1, due to twice the vacuum noise

compared to homodyne detection (’image band’). The minimum added noise is n̄th
add =√

β/2η.

When β< 1
2 , BAE outperforms conventional measurement of the same efficiency.

Figure 5.3 shows a set of measurements done at 1.6K (n̄th ' 6.3) and buffer-gas pressure of

30mbar with variable probe power np and constant cooling tone power nc = 420 (set by the

maximum probe power). Both n̄ and n̄BA are plotted against the independently measured

cooperativity C , with n̄BA in excellent agreement with theory (blue solid line, slope of 1),

with maximum cancellation of n̄BA = 1.4 out of n̄ + n̄BA = 9.8 quanta, or 14% (reduction of

0.67dB). The linear fit to n̄ yields β = 3.85. Thus, although QBA is evaded in our measure-

ment, extraneous heating is still a limiting factor, as can be seen directly from Fig. 5.3. The

imprecision noise is also in excellent agreement with theory and yields η= 0.04, in agreement

with previous measurements [122] of the same system. Thus 4
√

n̄impn̄th
BA =√

2β/η= 13.88.

Compared to a measurement at the SQL with the same efficiency, the optimal added noise is

n̄th
add = 2.78× n̄SQL

add .

5.4 Conclusion

In conclusion, we have explicitly demonstrated evasion of QBA for the first time in the optical

domain, an important step for various quantum measurements with nanomechanical oscil-

lators in the sideband resolved regime. Though the current generation of devices is limited

by low efficiency and extraneous heating, improvements in design and fabrication already

yield an intrinsic optical Q-factor improvement by a factor of ∼ 5, addressing both deficiencies

[145]. This opens the path for creating motional squeezed states through reservoir engineering

[124] demonstrated so far only in the microwave domain [83, 84, 125, 182] and dissipative

squeezing of light [223] which remains elusive.
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6 Two-tone Optomechanical Instability

In this chapter, we report a new type of optomechanical instability that arises in two-tone

backaction-evading (BAE) measurements [126]. This is observed in the optical domain with a

silicon optomechanical crystal and investigated systematically in the microwave domain with

a micromechanical oscillator coupled to a microwave resonator. The parametric instability

in balanced two-tone optomechanics results from single-mode squeezing of the mechanical

mode in the presence of small detuning errors in the two pump frequencies. Counterintuitively,

the instability occurs even in the presence of perfectly balanced intracavity fields and can

occur for both signs of detuning errors. The instability imposes a fundamental limitation

on BAE measurements as well as other two-tone schemes, such as dissipative mechanical

squeezing.

6.1 Introduction

Interferometric position measurement of mechanical oscillators is the underlying principle

of the Laser Interferometer Gravitational Observatory (LIGO) [28] and constitutes one of the

most sensitive techniques for determining absolute distance available to date. In a similar

vein, cavity optomechanical systems [43], which exploit radiation-pressure coupling of light

and mechanical motion in micromechanical and nanomechanical systems, have achieved

some of the most sensitive measurements of mechanical motion relative to the zero-point

motion [75, 76]. In both settings, the quantum fluctuations of radiation pressure place a

fundamental limitation on the displacement sensitivity [25, 30, 209]. Still, there can be other

constraints, such as radiation-pressure nonlinearities. Parametric oscillatory instability [42,

51, 211, 224–228] is one of the most fundamental optomechanical effects predicted to limit the

performance of the LIGO detector by constraining the optical power below the self-induced
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oscillation threshold [227, 229–235]. It arises from the fact that radiation-pressure coupling

is intrinsically nonlinear, giving rise—in addition to static optical bistability [236]—to rich

nonlinear dynamics, leading to an intricate landscape of multiple stable attractors (dynamical

multistability) [228, 237, 238] and classical chaos [239]. It can occur in single-tone pumping

on the upper motional sideband (or blue detuned in the bad-cavity limit), which results from

a two-mode squeezing interaction (nondegenerate parametric down-conversion) between

the optical and mechanical modes. Radiation-pressure-induced parametric instability has

been observed in cavity optomechanical systems [53] and, a decade later, in the Advanced

LIGO detector itself [240]. Such dynamical instabilities in optomechanical systems place a

limit to ultrasensitive displacement measurements which require high cooperativity.

Here, we report a new type of instability in optomechanical systems with bichromatic driving,

resulting from single-mode squeezing (degenerate parametric down-conversion) of the me-

chanical mode, and is associated with the optical spring effect. More specifically, we observe

such instability in two-tone backaction-evading (BAE) measurements [25, 31, 33, 35], which

aim to surpass the standard quantum limit (SQL) of measurement of mechanical motion [30].

The two-tone instability reported here arises from deviations from the ideal BAE configuration

where there is a finite-frequency detuning error with respect to both optical and mechanical

resonance frequencies. The threshold for the onset of the instability depends on the magni-

tude of the tuning errors, and is also inversely proportional to the optical pump power. For any

given experimental inaccuracy in the pump frequency, a finite instability threshold exists in

two-tone experiments, which ultimately limits the maximum probe power and thus the achiev-

able sensitivity. As we show, these limitations can be prohibitive for strong pumping powers

aiming to surpass the SQL. The two-tone instability is intrinsic to the optomechanical interac-

tion and does not arise from extraneous effects, in contrast to previously reported instabilities

in BAE measurements associated with thermal effects [241] or two-level systems [80]. While

our focus is on BAE measurements, it is important to note that the phenomenon reported here

can affect other two-tone optomechanical protocols, such as dissipative mechanical squeez-

ing. For example, in recent work on noiseless single-quadrature amplification of mechanical

motion [242], the squeezing effect we report here produces significant deviations from the

expected system behavior.

6.2 Observation of instability in two-tone pumping

In a BAE measurement the cavity, with resonance frequency ωc , is probed with two pump

tones of equal power, each tuned to the upper and lower motional sideband of the cavity,
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Figure 6.1 – Pumping scheme leading to two-tone instability. (a) Frequency-space repre-
sentation of optical backaction-evading (BAE) measurement using two-tone pumping. An
optomechanical system is pumped with two pumps that are placed on the lower and upper
motional sideband of the cavity (shown in gray). Two detuning errors are introduced, due to
imperfect knowledge of the mechanical oscillator frequency (δ), and due to imperfect sym-
metric spacing around the cavities’ resonance frequency ωc , as expressed by ∆. Also shown
are the mechanical resonance at frequencyΩm and the scattered mechanical sidebands. The
inset shows an optomechanical system: a mechanical oscillator (position coordinate x̂) that
is the moving mirror of a Fabry-Perot cavity and that is coupled to the cavity mode by radi-
ation pressure. (b) An equivalent system, in which the two-tone pumping is mapped to a
Hamiltonian that exhibits the same dynamics as (a), consisting of a single continuous pump
field applied at ωc +δ and with the mechanical oscillator frequency obeying the substitution
Ωm →−δ. Note that δ and ∆ have been exaggerated for clarity.

i.e., at ωc ±Ωm . It can also be understood as a single pump tuned at ωc with full amplitude

modulation at the mechanical frequency Ωm . In Fig. 6.1(a) we illustrate the scheme, and

introduce a small detuning error |∆|¿ κ of the symmetrically spaced tones with respect to

the cavity resonance, as well as an error |δ| ∼ Γm in modulation frequency. The two tones are

detuned by ∆± (Ωm +δ) from the cavity resonance. The mechanical motion, due to thermal

noise and quantum back-action, imprints phase fluctuations on the reflected cavity field. The

corresponding output noise spectrum of the two probes exhibits two Lorentzians separated

by 2δ, also shown in Fig. 6.1(a). When ∆ = δ = 0, an ideal BAE measurement is performed.

The mechanical sidebands are superimposed on each other, but while thermal motion adds

in quadrature, the quantum backaction noise is canceled from the measurement record. A

hallmark of BAE measurements is witnessing, as δ is varied from a finite value to zero, a total
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mechanical noise that is lower than the sum total of the two individual mechanical noise

spectra. The total evaded backaction, expressed in units of mechanical quanta, is equal to the

optomechanical cooperativity C , proportional to the probing power.
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Figure 6.2 – Experimental observation of two-tone instability. BAE measurement in the op-
tical domain with a silicon OMC (inset). The OMC has an optical decay rate of κ/2π= 300MHz.
A sequence of measurements is shown, where the mechanical sidebands are measured via
quantum-limited heterodyne detection, normalized to the shot-noise level. Here, ωLO is the
optical frequency of the heterodyne local oscillator laser. In the sequence, the mechanical
“tuning error” δ is varied from a positive value toward zero, where δ= 0 ideally corresponds to a
BAE measurement. Because of the cavity tuning error ∆, at δ/2π= 0.04MHz a strong increase
in the total mechanical noise is observed, as well as narrowing of the sideband, instead of the
expected decrease due to backaction cancellation.

As shown in Fig. 6.2, we observe the two-tone instability in a silicon OMC [112, 243] with

a mechanical frequency Ωm/2π' 5.2GHz, optical resonance wavelength λ' 1540nm, and

cavity linewidth κ/2π = 300MHz (optical Q factor ∼ 6.5×105). The measured vacuum op-

tomechanical coupling rate is g0/2π = 930kHz. In this chapter, the OMCs are patterned

by electron beam lithography using 4% hydrogen silsesquioxane (HSQ) as a negative resist,

different from previous chapters. Pattern transfer into the device layer is accomplished by

inductively-coupled-plasma reactive ion etching (ICP-RIE) with a mixture of HBr and O2. The

sample is measured in a 3He buffer-gas cryostat (Oxford Instruments HelioxTL) [121, 122].

The buffer gas facilitates the thermalization of the sample, preventing deleterious optical

absorption heating and allows strong pumping. The various measurements reported here

were done at temperatures in the range 4.6–4.9K, and pressures 32–160mbar, resulting in a

damping rate of Γm/2π= 100–285kHz.
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δ

Figure 6.3 – Two-tone instability in the optical domain. (a) Two-tone BAE measurements
(dark red and light red dots) scanning δ with ∆ kept approximately constant. The (∆̃m ,∆̃c )
coordinate of each measurement is plotted, where ∆̃c ≡ ∆/(κ/2) and ∆̃m ≡ δ/(Γm/2). The
instability contours for the respective cooperativities, around C ∼ 2.2–2.6 (contour label),
are indicated with the same color. While one measurement sequence (C = 2.23) remains
near ∆̃c ≈ 0, the other (C = 2.58) encounters instability in the vicinity of its corresponding
contour. The highlighted dot is the measurement right before instability. (b) Same as (a) with
higher C ∼ 4.1. Here the stable region is smaller, highlighting the difficulty of achieving stable
operation due to the inaccuracy in ∆̃c . (c) Total noise power in the mechanical sidebands,
normalized to 1 for large δ, for the two measurements sequences in (a). The sudden increase
in power for the unstable data is evident. The solid lines are theoretical fits using the full
Langevin equations.

Figure 6.3 shows examples of the BAE measurements of similar cooperativities C ∼ 2.2–2.6 with

δ scanned from positive to negative values, while holding ∆ approximately constant. In the

lower measurement ∆ is farther from 0, bringing it in the vicinity of the domain of instability.

This is the same measurement as Fig. 6.2. The separation between the data and the domain

of instability is ∼ 2π×15MHz, well within the uncertainty in our measurement of ∆. Figure

6.3(b) shows similar data for higher cooperativity C ∼ 4, where uncertainty in measurement of

∆ precludes discerning between the stable and unstable behavior. Figure 6.3(c) shows the total

mechanical noise in the data of Fig. 6.3(a), with the theoretical fit obtained from the Langevin

equations (6.6). The data shown in light red, not encountering the instability, show imperfect,

asymmetric BAE behavior (due to ∆ 6= 0). The dark red data show the amplified noise prior to

the onset of instability.

6.3 Theory

It is well known that the anti-damping induced by pumping the cavity on the upper motional

sideband (or blue detuning in the bad-cavity limit) can induce a parametric oscillatory in-

stability. In principle, there exists another type of dynamical instability in this system, one
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associated with the optical spring effect, i.e., a change in the restoring force induced by light.

This cannot occur in the resolved-sideband regime, in the relevant case of weak coupling

between the mechanical mode and the cavity field. Indeed, optomechanical systems typically

employ high-quality-factor oscillators, where the shift in mechanical frequency due to dynam-

ical backaction can be neglected. However, as we show below, this instability may arise when

pumping with two tones close to the upper and lower mechanical sidebands [Fig. 6.1(a)], as in

BAE measurements, for example. In fact, as we show, the situation when pumping with two

tones and that for single-tone driving on the upper motional sideband are described by the

same linearized equations.

We consider the balanced two-tone driving on the upper and lower motional sidebands.

Following the theoretical treatment in the BAE measurement, we can obtain the Hamiltonian

Ĥ/~=−δâ†δâ∆−δb̂†δb̂δ− g (δâ +δâ†)(δb̂ +δb̂†), (6.1)

where δ≈ 0.

From the quantum Langevin equations [43, 105], we can obtain,[
Γm

2
− i (δ+ω)+ iΣ(ω)

]
δb̂(ω) =−iΣ(ω)δb̂†(ω)+ b̂in(ω), (6.2)

where the self-energy (effective coupling) is given through

Σ(ω) = 2∆g 2

(κ/2− iω)2 +∆2 . (6.3)

In Eq. (6.2) we have subsumed all noise contribution into a single generic noise input operator

b̂in(ω), which does not play a role in the instability mechanism. So far we have not made any

approximations (beyond the RWA in two-tone driving), and indeed Eq. (6.2) contains all the

effects we wish to consider here. The self-energy Σ plays two roles. First, it couples δb̂† to δb̂,

thus acting like the coupling in a degenerate parametric oscillator. Second, as a self-energy,

its real part renormalizes the frequency of the mechanical resonator and its imaginary part

modifies the effective damping.

Two-tone instability.—In backaction-evading measurements, δ is small, as it represents a

tuning error. This makes the right-hand side of Eq. (6.2) near resonant, such that it cannot

be neglected. The instability arises in a way similar to a degenerate parametric oscillator

[244]. Since κ is now a large parameter, we can neglect the frequency dependence of Σ(ω) ≈
Σ(0) ≡Σ ∈R. Note that now the self-energy Σ coincides with the optical spring effect due to a
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single drive detuned by ∆ from cavity resonance. This allows us to recast Eq. (6.2) again as an

equation of motion

δ ˙̂b(t ) =
[
−Γm

2
+ i (δ−Σ)

]
δb̂(t )− iΣδb̂†(t )+ b̂in(t ). (6.4)

This equation is the same quantum Langevin equation as one would write down for a damped

degenerate parametric oscillator. It can intuitively be viewed as arising from an optical

spring effect modulated at 2(Ωm +δ). The dynamical matrix corresponding to Eq. (6.4) has

eigenvalues −Γm
2 ±i

p
δ(δ−2Σ). For 2Σ< δ, the eigenvalues have a negative real part (damping

Γm/2) and a finite imaginary part (effective frequency ∆eff = Re
p
δ(δ−2Σ)). As Σ increases,

first the effective frequency∆eff vanishes, at which point the damping of the modes starts to be

modified. The vanishing of the effective mechanical frequency corresponds to the mechanical

oscillation phase locking to the modulated optical field. The stability condition is

4g 2δ∆<
(
Γ2

m

4
+δ2

)(
κ2

4
+∆2

)
. (6.5)

The instability threshold can also be written in terms of normalized detunings ∆̃c ≡∆/(κ/2)

and ∆̃m ≡ δ/(Γm/2), yielding 4C = (1+∆̃2
c )(1+∆̃2

m)/(∆̃c ∆̃m). This equation can only be fulfilled

for C ≥ 1, and we plot its contours in Fig. 6.4. Note that Eq. (6.5) also predicts that the instability

can occur for both negative and positive values of the two detuning errors (provided they have

the same sign), in contrast to the parametric oscillatory instability.

Further understanding of the two-tone instability, and its distinction from the parametric

oscillatory instability, can be achieved by examining the eigenvalues of the dynamical matrix,

similar to the analysis performed in Ref. [245]. The Hamiltonian Eq. (6.1) leads to the quantum

Langevin equations

δ ˙̂a =−(κ/2− i∆)δâ + i g (δb̂ +δb̂†)+p
κδâin (6.6a)

δ ˙̂b =−(Γm/2− iδ)δb̂ + i g (δâ +δâ†)+
√
Γmδb̂in. (6.6b)

Ignoring the input noise operators δâin and δb̂in, which are irrelevant in the present analysis,
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Figure 6.4 – Domains of two-tone instability. The onset of the two-tone instability is given
by the condition Eq. (6.5) and depends only on ∆̃m ≡ δ/(Γm/2), ∆̃c ≡∆/(κ/2), and the coop-
erativity C . Here we plot the domains of instability as a function of ∆̃m and ∆̃c for different
cooperativities C (given as the contour labels). As C increases the stable region in the vicinity
of the origin ∆̃m = ∆̃c = 0 becomes smaller, reducing the range of ∆̃m and ∆̃c for which the
system is stable.

the Langevin equations (6.6) can be written as a matrix equation ẋ = Mx, with

M =



−κ/2 −∆ 0 0

∆ −κ/2 2g 0

0 0 −Γm/2 −δ
2g 0 δ −Γm/2


(6.7)

and

x = [δâ +δâ†, i (δâ† −δâ), δb̂ +δb̂†, i (δb̂† −δb̂)]T . (6.8)

We note that this dynamical equation describes both single-tone pumping, with the equiva-

lence −δ→Ωm , and two-tone pumping in the well-resolved sideband regime (Fig. 6.1). An

eigenvalue of the matrix Eq. (6.7) with a positive real part leads to an exponentially increasing
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Figure 6.5 – Instability domains from eigenvalue analysis. Domains where an eigenvalue of
the dynamical matrix Eq. (6.7) has positive real part, signaling an instability. The blue domain,
in the neighborhood of −δ=Ωm ≈∆c , is the known parametric oscillatory instability. In this
domain, the imaginary part of the eigenvalue is nonzero. In reality, the mechanical frequency
is positive Ωm > 0, such that the lower right-hand part is unphysical. The red domain that
occurs for |δ|¿ κ (enlargement shown in the inset) is the two-tone instability. In this domain
δ∆ > 0, and the imaginary part of the eigenvalue is zero. The parameters used are κ = 1,
Γm = 10−2, and C = 2.

solution, and thus signals an instability. For such a dynamical linear time invariant system, we

can apply the Routh–Hurwitz stability criterion, which also results in Eq. 6.5.

Figure 6.5 shows the domains of instability in the parameter space spanned by δ and ∆. These

domains separate into two classes, corresponding to the parametric and two-tone instabilities.

In one class, which corresponds to the conventional parametric oscillatory instability, the

imaginary part of the offending eigenvalue is nonzero, corresponding to spiral dynamics [246].

The onset of the parametric oscillatory instability coincides with the transition from a stable

to an unstable spiral. This class lies in the vicinity of the diagonal ∆≈Ωm , as expected (note

that the regime δ=−Ωm > 0, although mathematically possible, is unphysical in this case).

The second class lies close to the origin, in particular |δ|¿ κ, and corresponds to the two-tone

instability. In this regime the eigenvalues are well approximated by the eigenvalues of Eq.

(6.4) due to the slow dynamics of the optical field, and the instablity domains are given by

the simple condition (6.5). The eigenvalues are real and of opposite sign, corresponding to a

saddle point, as expected from a degenerate parametric amplifier. In this picture, as the power

(∝Σ) is increased, the dynamics change from a stable spiral to a stable node and finally to a

saddle point [246]. Figure 6.4 shows the domains of two-tone instablity for different powers.
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Apart from using locking techniques to reduce∆, it may be possible to hold off the onset of the

two-tone instability by using active feedback. Feedback techniques to counter the parametric

oscillatory instability have been considered [247, 248]. In the case of the two-tone instability,

the feedback force would naturally be applied on the measured quadrature (and as such is not

of the viscous damping type).

6.4 Microwave Experiment

In the optical domain, pump frequency fluctuations and cavity frequency fluctuations are

quite large. The control of the detuning errors is of great challenge, which makes it impossible

to verify the theory above. To independently confirm the existence and universality of this

phenomenon, the measurement is performed in an entirely different optomechanical system:

an electromechanical system based on a mechanically-compliant vacuum-gap capacitor cou-

pled to a superconducting microwave resonator placed in a dilution refrigerator [249, 250].

An overcoupled (κex/2π= 2.65MHz, κ0/2π= 0.16MHz) Al superconducting microwave res-

onator with a resonance frequency of ωc /2π = 6.43GHz is coupled (vacuum coupling rate

g0/2π = 194Hz) to a mechanically compliant vacuum-gap capacitor (Ωm/2π = 6.15MHz

and Γm/2π ≈ 20Hz). The chip was cooled to about 15mK in a dilution refrigerator. Three

microwave sources with a common frequency reference are sent to the microwave optome-

chanical system: two BAE pumps with frequenciesωc +∆±(Ωm +δ) and an additional cooling

pump tuned toωc−Ωm−δcool, where δcool/2π= 400kHz. The cooling tone is applied to reduce

the thermal noise and increase the mechanical damping rate to Γeff/2π= 110Hz, allowing us

to observe the narrowing of the mechanical sidebands when approaching the instability with

better resolution.

Figure 6.6 shows two-tone instability in BAE experiment in the microwave domain, with a

cooperativity of C = 7 (here, measurement backaction includes classical noise, which should

also be canceled). We observe an exponential increase in the total noise as the detuning

δ is decreased. As δ is decreased further, the noise saturates the HEMT amplifier in the

detection chain, leading to an increased noise floor [Fig. 6.6, yellow curve]. The origin of this

instability is not a spurious effect in the experiments, as is evident from the observation that

the same behavior occurs in two very different optomechanical systems measured with very

different equipment. Instead, as shown below, the instability is a direct consequence of the

optomechanical interaction in the presence of the small tuning errors δ and ∆ and depends

only on these two parameters and the cooperativity. To validate Eq. (6.5), the threshold for

the two-tone instability in terms of δ and ∆, a two-dimensional scan is performed [249, 250].
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Figure 6.6 – Experimental observation of two-tone instability in microwave domain. BAE
measurement in the microwave domain with a mechanically compliant capacitor coupled to a
superconducting microwave resonator (inset). Measurements with both positive and negative
values of δ are shown. The measurement at δ/2π = 0.02kHz occurs within the domain of
instability (yellow curve), in which case the observed spectrum is distorted by saturation of
the HEMT amplifier used in the detection chain. Note the logarithmic y axis.

Figures 6.7(a)–(c) show the total noise in the mechanical sidebands as a function of ∆̃m and

∆̃c for three different cooperativities C . Each horizontal cut in Figs. 6.7(a)–(c) corresponds to

a measurement of the type shown in Fig. 6.2. The domains of instability are clearly evident

as areas of increased noise (in red), in excellent agreement with Eq. (6.5) (black contours). In

particular, instability only arises when ∆̃m∆̃c > 0, as predicted from Eq. (6.5), and can arise

both for red- (∆̃c < 0) and blue-detuned (∆̃c > 0) mean probe frequency. Figures 6.7(d)–(f)

show the theoretical plots corresponding to Fig. 6.7(a)–(c), again in excellent agreement.

Figures 6.7(g)–(i) show the horizontal cuts indicated in Fig. 6.7(b). The point ∆̃m = ∆̃c = 0

corresponds to a "perfect” BAE measurement, as can be seen in Fig. 6.7(g), where a 3dB

decrease in the total mechanical noise relative to ∆̃m 6= 0 due to cancellation of measurement

backaction is evident.

The predicted decrease in size of the stable region with increasing pumping power is clearly

evident in the experimental data depicted in Fig. 6.7, with ∆̃c . 1/2C required to avoid in-

stability [e.g., ∆̃c . 0.04 for C = 14 in Fig. 6.7(c)]. Overall, excellent agreement is obtained

between theory and experiment, confirming our theoretical analysis and description of the

effect. Thus, optomechanics imposes strict tuning accuracy for a given measurement sensi-
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Chapter 6. Two-tone Optomechanical Instability

Figure 6.7 – Investigation of the two-tone instability in a circuit-electromechanical system.
(a)–(c) Mapping of the total mechanical noise as a function of ∆̃m and ∆̃c , for cooperativities
C = {3.5,7,14}, respectively. The total power P in both mechanical sidebands in the output
spectra is shown, normalized to the power P0 at (∆̃m ,∆̃c ) = (−18,0) (no tuning error and far
from the BAE regime). Since data points do not align on a regular grid (accounting for small
changes in ∆̃c along the horizontal scan), the rasterization was implemented using nearest-
neighbor (Voronoi) partitioning. Solid black lines are instability thresholds from Eq. (6.5).
(d)–(f) Theory plots corresponding to (a)–(c). Gray areas are unstable regions predicted by
theory. (g)–(i) Cross sections of (b) for ∆̃c = {0,−0.07,−0.18}, respectively [nearest data points
to horizontal dashed lines in (b)]. Solid black lines are theory predictions based on the full
linear model.
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6.5. Conclusion

Figure 6.8 – Vanishing of the effective mechanical frequency. The plot shows the difference
between the measured effective mechanical frequency and pump modulation frequency as a
function of the detunings. Near the instability domain (shaded in gray), the two frequencies
become equal, which corresponds to vanishing of the effective mechanical frequency in the
rotating frame, confirming the theoretical treatment. Measurement is the same as in Fig.
6.7(b).

tivity in two-tone BAE measurements. In this case, measurement backaction is due to both

quantum and classical noise in the two microwave tones. It is important to emphasize that for

BAE measurements that allow measurements beyond the SQL, cooperativities of C À n̄m are

required, thus highlighting the stringent nature of the condition imposed by ∆̃c . 1/2C .

In Fig. 6.8 we plot the difference between δ and the change in effective mechanical frequency

of the oscillator δΩm (due to the optical spring effect), for the same data as in Fig. 6.7(b).

Near the onset of the two-tone instability, the two sidebands coincide, and this difference

approaches zero; i.e., the effective mechanical frequency Ωm +δΩm becomes equal to the

modulation frequency of the pump, Ωm +δ. This corresponds to vanishing of the effective

mechanical frequency in the frame rotating with the modulation frequency.

6.5 Conclusion

We report experimentally and explain theoretically a new type of dynamical instability that

was previously unreported in cavity optomechanics. This instability is qualitatively differ-

ent than the parametric oscillatory instability [225–227, 229, 237, 251], and originates from

degenerate parametric amplification of the mechanical mode. Our work now demonstrates

that the performance of emerging optomechanical experiments, such as backaction-evading
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measurements aimed at surpassing the standard quantum limit [78, 121], generation of quan-

tum squeezing [81, 213, 223, 252], and noiseless single-quadrature amplification [242], will be

intrinsically constrained by another instability determined by tuning accuracy and coupling

strength. Even below the instability threshold, these new dynamics need to be taken into

account.
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7 Laser cooling of a nanomechanical

oscillator to the zero-point energy

Optomechanical cavities in the well-resolved-sideband regime are ideally suited for the study

of a myriad of quantum phenomena with mechanical systems, including backaction-evading

measurements, mechanical squeezing, and generation of non-classical states. For these

experiments, the mechanical oscillator should be prepared in its ground state; residual motion

beyond the zero-point motion must be negligible. The requisite cooling of the mechanical

motion can be achieved using the radiation pressure of light in the cavity by selectively driving

the anti-Stokes optomechanical transition. To date, however, laser-absorption heating of

optical systems far into the resolved-sideband regime has prohibited strong driving. For deep

ground-state cooling, previous studies have therefore resorted to passive cooling in dilution

refrigerators. In this chapter, we employ a highly sideband-resolved silicon optomechanical

crystal in a 3He buffer gas environment at ∼2K to demonstrate laser sideband cooling to

a mean thermal occupancy of 0.09+0.02
−0.01 quantum (self-calibrated using motional sideband

asymmetry), which is −7.4dB of the oscillator’s zero-point energy and corresponds to 92%

ground state probability [145]. Achieving such low occupancy by laser cooling opens the door

to a wide range of quantum-optomechanical experiments in the optical domain.

7.1 Introduction

Laser cooling techniques developed several decades ago [57, 253–255] have revolutionized

many areas of science and technology, with systems ranging from atoms, ions and molecules

[256–262] to solid-state structures and macroscopic objects [128, 263, 264]. Among these

systems, mechanical oscillators play a unique role given their macroscopic nature and their

ability to couple to diverse physical quantities [43]. Laser cooling of mechanical systems

occurs via coupling of mechanical and electromagnetic degrees of freedom (optomechanical
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coupling) and has been demonstrated with a wide range of structures [54–56, 60, 61, 66, 74–

76, 265, 266]. It has led to the observation of radiation pressure shot noise [64], ponderomotive

squeezing of light [67, 68], and motional sideband asymmetry [67–70].

Many optomechanical protocols, including mechanical squeezing [83, 84, 124, 125, 182],

entanglement [205, 206], state swaps [101], generation of non-classical states [96, 97, 138, 147,

267], and back-action evading (BAE) measurements below the standard quantum limit (SQL)

[77, 78, 121], require ground state preparation of a well-sideband-resolved system, where

Stokes and anti-Stokes motional transitions can be driven selectively. In this case, driving

of anti-Stokes transitions can be efficiently applied to damp the motion and sideband cool

the system. The cooling limit is set by laser noise (classical or quantum) or by technical

limitations, such as absorption heating, and determines the residual thermal noise. For

the case of squeezing or BAE measurements, the amount of cooling beyond half quantum

(equivalent to the zero point energy) determines the amount of squeezing or the amount

to which the SQL on resonance is surpassed. Such deep ground-state preparation has been

demonstrated in microwave optomechanical systems [61]. In the optical domain, however,

cooling below half quantum has so far only been achieved in systems with low sideband

resolution, i.e. in the bad-cavity limit [86] or using feedback cooling [76].

Silicon optomechanical crystals (OMCs) [49, 136] that couple an optical mode at telecom-

munication wavelengths and a co-localized mechanical mode at GHz frequencies exhibit

several exceptional features, including large vacuum coupling rates ∼ 1MHz [136] as well as

ultralong phonon lifetime [137]. They have been employed in a wide range of experiments,

such as continuous quantum measurements [60, 121, 122], and probabilistic preparation of

quantum states [96, 97, 138, 147]. The compatibility of these systems with planar nanofabrica-

tion technology and their scalability have motivated studies of optomechanical topological

phenomena [139, 140], frequency conversion [102] and coupling to superconducting qubits

[103, 104]. Yet despite these promising features, ground-state preparation of silicon OMCs has

only been possible via passive cooling to milli-Kelvin temperatures in dilution refrigerators

[148, 181]. Significant heating due to optical absorption—a consequence of the extremely

small optical mode volume and inefficient thermalization [115]—has limited experiments

to use of weak laser pulses [96, 97, 137, 138, 147] and precluded continuous measurements

[121, 122, 148].
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Figure 7.1 – Optomechanical crystal and experimental scheme. (a) False-color SEM image
of the silicon optomechanical crystal cavity with a waveguide for input coupling of light. The
path of the tapered fiber is indicated by the red dashed line. The inset shows the simulated
mechanical breathing mode and optical mode. (b) SEM image of the central portion of the
silicon optomechanical crystal cavity. (c) Measurement scheme using a cooling tone for
sideband cooling and a blue probe for motional sideband asymmetry measurement. The local
oscillator (LO) is used for detection and is not sent to the cavity.

7.2 Experimental System Details

As shown in Fig. 7.1(a,b), our system consists of a quasi-one-dimensional silicon optome-

chanical crystal [121, 122, 136]. The OMC is mounted in a 3He cryostat (Oxford Instruments

HelioxTL) operated at ∼ 2.0K and a buffer-gas pressure of ∼ 40mbar, which ensures efficient

thermalization of the device [121, 122]. A tapered optical fiber is used to couple light evanes-

cently into the coupling waveguide (40% efficiency in this work). For characterization, we

monitor the laser light reflected from the single-sided optical cavity. The optical resonance

is at 1540nm with a total linewidth of κ/2π' 255MHz, of which the external coupling rate is

κex/2π' 71MHz.

The optical mode is coupled to a localized mechanical mode with frequencyΩm/2π' 5.17GHz

with an intrinsic damping rate Γint/2π' 65kHz. An independent measurement is performed

at temperature of 4K and pressure of 40mbar, from which we obtain measured vacuum

optomechanical coupling rate g0/2π= 1.08MHz and broadened mechanical damping rate
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Figure 7.2 – Experimental setup. ECDL, external-cavity diode laser; FC, filter cavity; PM,
phase modulator; VOA, variable optical attenuator; BHD, balanced heterodyne detector; SA,
spectrum analyzer; NA, network analyzer; PLL, phase-locked loop.

Γm/2π= 115±8kHz due to additional gas damping .

In this experiment, we choose to work at 2.0K and 3He buffer gas pressure ∼ 40mbar. A

schematic of the experimental setup is shown in Fig. 7.2. Three external cavity diode lasers

(ECDLs) generate the local oscillator (Toptica CTL 1550), cooling tone (Toptica CTL 1500), and

blue probe (Toptica CTL 1500). The blue probe and local oscillator (LO) are phased-locked to

the cooling tone. Different from previous chapters, both cooling tone and the blue probe are

filtered by a 50MHz bandwidth tunable Fabry-Perot filters which are locked to the respective

tones using PDH lock technique, to reject the high frequency excess laser phase noise. The

cooling tone passes through a phase modulator (PM), used to generate weak sidebands as

probes for coherent optomechanical spectroscopy. The cooling tone and the blue probe are

combined in free-space with the same polarization and sent into a single-mode fiber that

enters the cryostat. A fiber-optic circulator feeds the reflected light to the detection stage,

which can be toggled between two different paths. In the first path, the reflected light is

sent to a fast photoreceiver connected to a network analyzer for coherent optomechanical

spectroscopy, in which case the phase modulator is employed. In the second path, the reflected

light is sent to a balanced heterodyne detection (BHD) setup, where it is mixed with a strong

local oscillator (∼ 8mW) on balanced photodetectors. The power spectral density of the

photocurrent is analyzed by a spectrum analyzer. In this case, the cooling tone is not phase
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modulated.

Motional sideband asymmetry, a signature of the quantum nature of the optomechanical

interaction, was recently observed in various optomechanical systems [67–70, 122] and used

to perform self-calibrated thermometry of the mechanical oscillator close to its ground state

[68–70, 122]. In our experiments, we adopt a two-tone pumping scheme [Fig. 7.1(c)], where a

strong cooling tone near the lower motional sideband is applied for sideband cooling, while

an additional weaker ‘blue probe’ is applied near the upper motional sideband. By measuring

the resonantly-enhanced anti-Stokes and Stokes scattered sidebands, proportional to n̄ f and

n̄ f +1, respectively, the mean phonon occupancy of the oscillator n̄ f can be determined. The

frequencies of the two tones are separated by 2(Ωm +δ), and their mean is detuned from

the optical resonance frequency by ∆ [Fig. 7.1(c)]. In the presence of the cooling tone and

blue probe, the mechanical susceptibility is modified by the radiation pressure. The effective

mechanical damping rate becomes Γeff = Γm +Γopt, with the total optomechanical damping

rate (in the resolved-sideband regime) Γopt =−Γb +Γc , where

Γb(c) = n̄b(c)g 2
0

(
κ

κ2/4+ (∆±δ)2

)
, (7.1)

and n̄b and n̄c are the intracavity photon numbers of the blue probe and cooling tone, re-

spectively. In the weak coupling regime, Γopt ¿ κ, the effective mechanical frequency is

Ωeff =Ωm +δΩm , with

δΩm = g 2
0

(
n̄b

∆+δ
κ2/4+ (∆+δ)2 + n̄c

∆−δ
κ2/4+ (∆−δ)2

)
. (7.2)

The mean final phonon occupancy is given by

n̄ f =
Γmn̄th +Γb

Γeff
, (7.3)

where n̄th is the mean phonon occupancy due to the thermal environment. Importantly,

the second term in the numerator of Eq. (7.3) corresponds to quantum backaction (QBA)

heating due to resonant Stokes transitions from the blue probe [Fig. 7.1(c)]. This is in contrast

to off-resonant Stokes transitions from the cooling tone, which are completely negligible in

the well-resolved sideband regime (hereΩm/κ' 20) and set the quantum limit for sideband

cooling [86, 118–120]. In our two-tone experiments, QBA heating due to the blue probe,

Γb/Γeff, is comparable to the heating by the thermal bath at high probe powers and limits the

cooling. Thus we perform both two-tone measurements for ancillary quantum thermometry

and single-tone measurements to achieve maximum cooling power.
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In each measurement, we first determine the detuning of the cooling tone from the cavity,

∆c =∆−Ωm −δ by performing a coherent cavity response measurement [110, 121]. We then

obtain the thermomechanical noise spectrum by measuring the cavity output field using

quantum-limited balanced heterodyne detection (BHD) with a strong phase-locked local

oscillator (LO; ∼ 8mW). The frequency difference between the LO and the mean frequency of

the two pumping tones is∆LO, where 0 <−δ<∆LO. The measured heterodyne noise spectrum,

normalized to the shot noise floor, is given by

S I (Ω) = 1+ηΓeff

[ (n̄ f +1)Γb

Γ2
eff/4+ (Ω+δ−∆LO)2

+ n̄ f Γc

Γ2
eff/4+ (Ω−δ−∆LO)2

]
, (7.4)

whereη is the overall detection efficiency. The second and third terms in Eq. (7.4) correspond to

the scattered Stokes and anti-Stokes sidebands, which we use for self-calibrated thermometry

of the oscillator.
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Figure 7.3 – Coherent optomechanical spectroscopy. Reflected cavity response for single
tone detuning sweeps for various detunings of the cooling tone with respect to the optical
resonance. The curve, including the optomechanically-induced transparency, is fitted with a
theoretical model to obtain the ∆c and κ.

Our scheme differs from previous experiments that utilize equal red and blue probes alongside

a cooling tone [70, 122]. By using only two tones, we avoid coupling between scattered side-

bands due to Floquet dynamics that may introduce errors in the inferred phonon occupancy

[122]. We keep the ratio between the input powers of the cooling tone and the blue probe

around 6, to achieve both sufficient cooling and a measurable anti-Stokes signal (∝ n̄ f ). From

a series of two-tone measurements, we obtain a mean calibration coefficient between the

normalized thermomechanical sideband area Ac /Γc and the phonon occupancy n̄ f using

Eq. (7.4), where Ac is the area of the sideband from the cooling tone. The calibration coeffi-
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Figure 7.4 – Incoherent noise spectrum from heterodyne detection. Typical noise spectrum
from BHD in the single-tone detuning-sweep measurements at ∆c /2π ' −7.18GHz. The
shot noise spectrum with signal blocked is shown in blue while the noise spectrum of the
thermomechanical sideband is shown in red.

cient serves as an ancillary quantum thermometer for the mechanical mode, independent

of the resistive thermometer mounted in the cryostat. For ground state cooling, we turn

off the blue probe and perform single-tone sideband cooling measurements, keeping the

same experimental conditions and calibration. From the measured thermomechanical noise

spectrum, we can thus obtain the final occupancy using two independent calibrations, i.e.,

the ancillary quantum thermometry and the mechanical noise thermometry, where for the

latter the mechanical mode temperature is referenced to the cryostat thermometer.

7.3 Experimental Results

A single measurement consists of acquisition of the power spectral density for given system

parameters (cooling tone power, detuning, etc.) and determination of the phonon occu-

pancy using Eqs. (2.87) and (2.82), i.e. ancillary quantum thermometry and mechanical noise

thermometry. This requires reliable characterizations of κ, n̄c , n̄b and ∆c . A measurement

proceeds as follows. First, we determine the individual input and reflected powers of the

cooling tone and (for two-tone measurements) blue probe by blocking each in turn. For the

two-tone experiments, we nominally set the blue probe power to be a factor of 6 weaker than

the cooling tone. Second, we perform coherent optomechanical spectroscopy to determine

∆c and κ. Third, we switch to the BHD setup and acquire the power spectral density of the

photocurrent with the reflected signal sent to the BHD. We also take the shot-noise spectra

for each measurement by blocking the reflected light from the BHD, to account for the LO

power drift across measurements. Fourth, we record again the total input and reflected probe
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Figure 7.5 – Fitting of the incoherent noise spectrum. Typical noise spectrum from (a) a
two-tone measurement with ∆c /2π ' −5.47GHz, and (b) a single-tone measurement with
∆c /2π'−5.17GHz, along with the corresponding fitting curve.

powers. The probe powers fluctuate by less than 1% across measurements.

7.3.1 Coherent optomechanical spectroscopy

Figure 7.3 shows typical coherent optomechanical spectra at several different values of ∆c

for the single cooling tone detuning sweep measurements. The mechanical motion leads

to destructive interference with the probe generated by the phase modulator, resulting in

optomechanically induced transparency (OMIT) [109, 110] in the reflected cavity response.

We fit the data with a theoretical model to extract κ and ∆c , which are used along with the

measured powers, to determine the intracavity photon numbers.

7.3.2 Calibration using sideband asymmetry

Typical incoherent noise spectra from the BHD are shown in Fig. 7.4. The blue curve corre-

sponds to the shot noise and is obtained by blocking the signal beam in the BHD. We note that

the uneven shot noise floor originates from the frequency dependent gain of the balanced de-

tector. The red curve corresponds to the thermomechanical noise spectrum in the single-tone

detuning-sweep measurements at ∆c /2π'−7.18GHz.

For convenience, we normalize the noise spectrum to the shot noise as shown in Fig. 7.5.

Figure 7.5(a) shows the single-sided noise spectrum consisting of the scattered sidebands
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Figure 7.6 – Ancillary Quantum Thermometry for power-sweep and detuning-sweep mea-
surements. (a) and (b), calibrated final occupancy and calibration coefficient (C cal) from
sideband asymmetry of power sweep measurements. C cal is the ratio between the normalized
sideband area and the calibrated n̄ f . The error bars correspond the errors from the Lorentzian
fitting of the noise spectrum. (c) and (d), calibrated final occupancy and calibration coefficient
(C cal) from sideband asymmetry of detuning sweep measurements. The error bars include
the errors in the Lorentzian fitting of the noise spectrum and also the detuning uncertainty of
10MHz.

from two-tone sideband asymmetry measurements. Accordingly, we use a fitting function

with two Lorentzian terms,

Sfit(ω) = c + Γeff A1

Γ2
eff/4+ (ω−ω1)2

+ Γeff A2

Γ2
eff/4+ (ω−ω2)2

, (7.5)

where c, A1, A2, ω1, ω2 and Γeff are the fitting parameters. c corresponds to the noise back-

ground. A1 (A2) and ω1 (ω2) correspond to the area and center frequency of the sideband

from the cooling tone (blue probe), with effective linewidth Γeff. From Eq. (2.87) we have

A1 = ηΓc n̄ f and A2 = ηΓb(n̄ f +1), where Γb and Γc are given by Eq. (2.79). We can therefore

determine both the phonon occupancy

n̄ f =
A1/Γc

A2/Γb − A1/Γc
. (7.6)

and the calibration coefficient

C cal = A2/Γb − A1/Γc , (7.7)

which fully calibrates the measurement.
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In Fig. 7.6, we show the ancillary quantum thermometry for both the power-sweep and

detuning-sweep measurements, including the phonon occupancy and the calibration coeffi-

cient. For the power-sweep measurements as shown in Fig. 7.6(a) and (b), we choose series

of pumping powers, which ensure both sufficient laser cooling and measurable while non-

overlapping Stokes and anti-Stokes sidebands [70]. For the detuning sweep measurements as

shown in Fig. 7.6(c),(d) we choose series of ∆c close to the red sideband to obtain sufficient

laser cooling and measurable while non-overlapping Stokes and anti-Stokes sidebands. The

different calibration coefficients between the power-sweep and detuning-sweep measure-

ments are mainly due to due to the different coupling conditions of the tapered fiber. The

averaged calibration coefficient along with the corresponding standard deviation is used for

the ancillary quantum thermometry in the single-tone measurements.

The final occupancy can be determined from the sideband area,

n̄ f =
As

ΓsC cal
, (7.8)

where As and Γs are the sideband area and the scattering rate of the cooling tone for the

single-tone measurement as shown in Fig. 7.5(b).
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Figure 7.7 – Detuning dependence of quan-
tum back-action in the two-tone ancillary
quantum thermometry. The force spec-
tral density at positive mechanical frequency
SFF (+Ωm) for both the thermal force (black
curve) and the QBA from the blue probe (blue
curve) calculated from experimental values
and normalized by 2mΓm~Ωm .

In Fig. 7.7, we compare the force noise spec-

tral density at the positive mechanical fre-

quency SFF (+Ωm) (responsible for heating

the mechanical oscillator [208]) of the QBA

from the blue probe and of the thermal force,

as calculated from experimental parameters

in a two-tone detuning sweep measurement.

Here, we express SFF (+Ωm) in mechani-

cal quanta via normalization by 2mΓm~Ωm ,

where m is the effective mass. While the ther-

mal force spectral density is independent

of detuning (equivalent to n̄th ∼ 10 quanta),

the force spectral density due to QBA from

the blue probe (equivalent to Γb/Γm) peaks

around ∆c /2π=−5.1GHz, where it dominates the thermal force noise.
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7.3.3 Mechanical Noise Thermometry

The occupancy can also be determined using mechanical noise thermometry by anchoring

the normalized thermomechanical noise area to the cryogenic thermometer,

n̄ f =
As/Γs

A0
s /Γ0

s

kB T

~Ωm

Γm

Γ0
s +Γm

, (7.9)

where A0
s and Γ0

s are the sideband area and the scattering rate of the cooling tone at a specific

anchor data point. In this case, it is assumed that the mechanical mode temperature T is

given by the resistive thermometer and there is no excess heating at the anchor point. The

mean phonon occupancy of the mechanical oscillator is n̄th ' kB T /~Ωm when the mechanical

mode is in equilibrium with the thermal reservoir. In the case of negligible optomechanical

damping (Γ0
s ¿ Γm), Eq. (7.9) can be simplified to n̄ f = As /Γs

A0
s /Γ0

s

kB T
~Ωm

. In the power-sweep series,

∆c =−Ωm , we have n̄ f = As /nc

A0
s /n0

s

kB T
~Ωm

.

7.3.4 Results of Sideband Cooling
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Figure 7.8 – Power dependence of sideband cooling. (a) Pumping scheme for the power
sweep with a cooling tone at a fixed detuning of −Ωm relative to the cavity resonance and an
additional blue probe for sideband asymmetry calibration, as indicated in the dashed green
box. The frequency separation between the cooling tone and blue probe is fixed at 2(Ωm +δ).
(b) Measured effective mechanical linewidth Γeff from the noise power spectral density vs.
cooling tone intracavity photon number n̄c (red full circles) in single-tone measurements with
a theoretical plot with experimental values (blue curve). (c) and (d) Single-sided noise spectra
from balanced heterodyne detection normalized to the shot noise floor from two-tone and
single-tone measurements, respectively, with corresponding fit curves, for various intracavity
photon numbers.
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Chapter 7. Laser cooling of a nanomechanical oscillator to the zero-point energy

As noted earlier, before and after each set of measurements, both the input powers and the

reflected powers of the two tones are checked, and their fluctuation is less than 1%. Besides,

for each set of measurements the reflection efficiency varies less than 1%, which eliminates the

power/detuning dependence for the calibration efficiency. We adopt a detuning uncertainty

of ±10MHz for ∆c from the fitting error from the coherent optomechanical spectra in both

the power-sweep and the detuning-sweep series of measurements. The detuning uncertainty

is taken into consideration for the ancillary quantum thermometry and is included in the

error bars of phonon occupancy calibration in addition to the Lorentzian fitting error from

the noise spectrum. In a first set of measurements shown in Fig. 7.8, we vary the power of the
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Figure 7.9 – Mechanical Linewidth in the single-tone power-sweep measurements. The
measurement is performed with the OMC at temperature around 2K with 3He condensed.
Γm is inferred from the fitted Γeff and calculated Γc from experimental values. The error bars
corresponds to the fitting error in the Γeff. A horizontal dashed line of Γm/2π = 115kHz is
shown for comparison.

pump tones while keeping ∆c = −Ωm fixed for optimal sideband cooling. A blue probe, as

indicated in the dashed green box in Fig. 7.8(a), is utilized only for ancillary sideband asymme-

try measurements. Figure 7.8(b) shows the effective mechanical linewidth Γeff as a function

of the cooling-tone intracavity photon number n̄c , obtained from the noise spectra in the

single-tone experiments (red full circles) with a theoretical plot (blue curve) assuming a me-

chanical linewidth Γm/2π= 115kHz and vacuum coupling rate g0/2π= 1080kHz. As shown

in Fig. 7.8(b), Γeff deviates from the theoretical value for low intracavity photon numbers.

We attribute this to condensed 3He on the surface of OMC, which degrades the mechanical

linewidth at low powers but may improve the thermalization. We note that knowledge of Γm
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Figure 7.10 – Final occupancy versus the cooling tone intracavity photon number. Purple
open circles are anchored to the cryostat thermometer temperature at the lowest values of
n̄c . Green full circles utilize the averaged calibration coefficient obtained from the ancillary
two-tone sideband-asymmetry measurements, where the error bars are given by both the
errors in the Lorentzian fit and in the calibration coefficient. The inset shows an expanded
view at the highest cooling powers. The horizontal red dashed line corresponds to n̄ f = 1/2.

is required for the mechanical noise thermometry, as the additional optomechanical damp-

ing has to be considered. From independent single-tone sideband cooling measurements

performed at a temperature of 4K and pressure of 40mbar, we obtain a mechanical damping

rate Γm/2π ∼ 115kHz and vacuum optomechanical coupling rate g0/2π ∼ 1.08MHz. The

mechanical linewidth is larger for low input powers. This is due to condensed 3He on the

sample surface, as the lower temperatures ∼ 2K in the experiment are obtained by pumping

a condensed 3He reservoir. In Fig. 7.9, we show the inferred Γm = Γeff −Γc for different n̄c ,

where Γc is calculated from the experimental values. The error bars correspond to the fitting

error in Γeff. At low pumping powers, the SNR is decreased due to the broadened Γm . To have

a measurable anti-Stokes signal in the noise thermometry, we start from intracavity photon

number n̄c = 5, with calculated Γc /2π= 93kHz based on experimental values. From the fitted

effective mechanical linewidth Γeff, we estimate Γm/2π' 360kHz for n̄c = 5. This is adopted

for the mechanical noise thermometry by anchoring at 2K with n̄c = 5. Figure 7.8(c) and

(d) show a series of noise spectra from the two-tone and single-tone measurements, respec-

tively, at various values of n̄c along with Lorentzian fits. The noise spectra are normalized

to the shot noise floor, obtained by blocking the signal beam in the BHD. The left and right

thermomechanical sidebands shown in Fig. 7.8(c) are due to the cooling tone and the blue

probe, respectively. We choose a series of pumping powers that ensures both sufficient laser
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Figure 7.11 – Detuning dependence of the sideband cooling. (a) Pumping scheme for the
detuning sweep where the detuning ∆c of the cooling tone relative to the cavity resonance
is varied. An additional blue probe is used for ancillary sideband asymmetry calibration, as
indicated in the dashed green box. Frequency separation between the cooling tone and blue
probe is fixed at 2(Ωm+δ). (b) and (c) Single-sided noise spectra from the balanced heterodyne
detection normalized to the shot noise floor from two-tone and single-tone measurements,
respectively, with corresponding fit curves, for various detunings. (d) The fitted mechanical
linewidth (red full circles, left axis) and optical spring effect (blue full circles, right axis), with
corresponding theoretical plots based on experimental optomechanical parameters. (e) Signal-
to-noise ratio (SNR) vs. ∆c , with the fitting curve to a theoretical model which includes optical
heating, with excess heating rate and overall detection efficiency as free fitting parameters.

cooling and measurable, non-overlapping Stokes and anti-Stokes sidebands [70]. As the power

increases, the ratio of the areas of the red and blue sidebands, given by n̄ f Γc /(n̄ f +1)Γb [cf. Eq.

(7.4)], decreases as the mechanical oscillator approaches the ground state (n̄ f → 0), as shown

in Fig. 7.8(c). We thus obtain an averaged calibration coefficient between the normalized

thermomechanical sideband area and the final occupancy from a series of ancillary quantum

thermometry measurements. At high pumping powers, we observe an increase in the noise

floor, as evident in the middle and bottom panels in Fig. 7.8(d). This originates from beating

of the high signal power with excess noise of the LO around 5.17GHz. Figure 7.10 shows the

inferred mean phonon occupancy n̄ f vs. n̄c from the single-tone measurements, calibrated

using two independent methods. The green circles show the phonon occupancy calibrated
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using the ancillary sideband asymmetry measurements. The purple open circles show the

calibration using the cryostat thermometer by anchoring the lowest value of n̄c ∼ 5 at 2.0K.

This calibration requires knowledge of Γm , which is estimated by subtracting the calculated

value of Γopt at this power from the measured Γeff, to yield Γm/2π ' 360kHz. We note that

Γm is unnecessary using ancillary quantum thermometry, making it an ideal independent

quantum thermometer, as opposed to conventional mechanical noise thermometry. The two

methods show excellent agreement. The minimum phonon occupancy achieved in this power-

sweep experiment is 0.13+0.02
−0.02 (88% ground-state occupancy) and is reached at a cooling-tone

intracavity photon number of n̄c ≈ 776.
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Figure 7.12 – Final occupancy versus the cooling tone detuning in single-tone measure-
ments. Green full circles show calibration using the ancillary two-tone quantum thermometry.
Dashed green curve shows a theoretical plot calculated from experimental optomechanical
parameters assuming ideal thermalization. Blue curve shows a fitting curve incorporating
excess optical heating. Error bars are given by the errors in the Lorentzian fits and in the
calibration coefficient in two-tone sideband asymmetry. Purple full circles are anchored with
cryostat thermometer at ∆c /2π'−7.18GHz. The horizontal red dashed line corresponds to
n̄ f = 1/2.

In a second set of measurements, we vary the detuning ∆c of the cooling tone with respect
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Chapter 7. Laser cooling of a nanomechanical oscillator to the zero-point energy

to the cavity resonance, keeping the frequency separation of the blue probe in the ancillary

measurement and that of the LO fixed at 2(Ωm +δ) and ∆LO, respectively [Fig. 7.11(a)]. Figure

7.11(b) and (c) each show a series of measured noise spectra normalized to the shot noise

floor at various values of ∆c , together with Lorentzian fits, from the two-tone and single-tone

measurements. In the ancillary two-tone measurements, the input powers of the cooling tone

and blue probe are ∼ 350µW and ∼ 60µW respectively, with a series of values of ∆c to ensure

sufficient laser cooling and measurable, non-overlapping Stokes and anti-Stokes sidebands. To

infer n̄ f via sideband thermometry, the detuning-dependent intracavity photon number and

optical susceptibility for the two scattered sidebands must be taken into consideration. We

obtain a mean calibration coefficient between the normalized thermomechanical sideband

area and the final occupancy from the sideband asymmetry measurements. For single-tone

measurements, the cooling tone input power is ∼ 500µW. Figure 7.11(d) shows the effective

mechanical linewidth (red circles) and the optical spring effect (blue circles) obtained from a

Lorentzian fit to the noise spectrum, with excellent agreement with the respective theoretical

curves. We note that, due to the presence of high input power throughout the measurement,

the mechanical linewidth degradation observed at low powers in the previous measurement

[Fig. 7.8(b)] is absent. Figure 7.12 shows n̄ f vs. ∆c , where n̄ f is calibrated from the thermome-

chanical sideband area from the single-tone sideband cooling measurements. Green circles

are determined using the mean calibration factor obtained from sideband asymmetry mea-

surements. The theoretical dependence calculated from experimental parameters (7.3) is

shown as a green dashed curve for comparison. The theory curve is in excellent agreement

with the data except in the region where the cooling tone approaches the cavity resonance,

indicating residual optical heating [122, 148]. We fit the phonon occupancy with a model

incorporating heating [blue curve in Fig. 7.12] that is both linear and quadratic in the number

of intracavity photons. The fit indicates that the excess optical heating in our measurements

has primarily a quadratic dependence, resulting in an increase in n̄th of ∼ 1.2×10−6n̄2
c ; the

linear coefficient is negligible. This is different from previous experiments with large optical

decay rate, where linear absorption heating dominates [122]. The quadratic dependence is

suggestive of two-photon-absorption [146, 268]. We note that in any case such optical heating

cannot come from excess laser noise [114, 178, 179, 184], for which the heating rate peaks at

∆c =−Ωm . For the noise thermometry, we anchor the calibration to 2.0K, at farthest detuning

of ∆c /2π ≈ −7.18GHz. The resulting data are shown as purple full circles in Fig. 7.12. For

∆c /2π=−7.18GHz with n̄c = 330, the estimated increase in n̄th due to quadratic heating is

∼ 0.135, which is negligible compared to the bare thermal bath occupation of 8.2 phonons.

This indicates that the mechanical oscillator is well-thermalized despite the high pumping

power. The minimum phonon occupancy, occurring close to the red mechanical sideband
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(∆c /2π'−5.17GHz), is n̄ f = 0.09+0.02
−0.01, which is −7.4dB of the zero-point energy. This places

the mechanical oscillator at 92% ground state occupation. In Fig. 7.11(e), the signal-to-noise

ratio vs. ∆c for the thermomechanical noise spectrum is shown with a fit that includes the

quadratic heating model in addition to the standard sideband cooling theory. The fit yields an

overall detection efficiency η' 6.4%.

7.3.5 Excess laser noise
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Figure 7.13 – Noise floor vs. reflected power in single-tone power-sweep measurements.
Noise floor from the normalized noise spectra from the BHD in the single-tone power-sweep
measurements (purple full circles), fitted with a green line. The lower x axis corresponds to the
reflected power into the balanced heterodyne setup while the upper axis corresponds to the
intracavity photon number. The increase of the noise floor at high powers is due the beating
between the strong signal and LO.

Excess laser noise is known to constrain sideband cooling and to corrupt motional sideband

asymmetry measurements [114, 117, 178, 179, 184]. As shown in our previous work [122], the

excess laser frequency noise spectrum density Sωω(Ω) at frequency of 5.2GHz is measured

below 105 rad2 Hz. In all the measurements, the pumping tones (cooling tone and blue probe)

pass through narrow bandwidth filter cavity locked to the respective pumping tones to reject

high frequency excess phase noise. In Fig. 7.13, we presented the noise floor fitted from

the thermomechanical noise spectra in the balanced heterodyne measurements (purple full
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Chapter 7. Laser cooling of a nanomechanical oscillator to the zero-point energy

circles), which increases linearly with the reflected power (intracavity photon number) in the

single-tone power-sweep measurements (green line). In BHD, we choose a LO power of around

8mW. The beating between the highest reflected power (100µW) and vacuum noise from the

LO can lead to an increased noise floor by ∼ 1%. This can be eliminated in principle by passing

the LO through a narrow bandwidth filter cavity. However, this will introduce large insertion

loss and experimental complexity, thus is not implemented in our measurements. The noise

floor increase observed in our heterodyne measurements originates from the beating between

the high reflected power and excess noise of the LO around 5.17GHz [122]. More details

concerning the laser noise calibration are discussed in the Appendix of the thesis.

7.3.6 Conclusion
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Figure 7.14 – Recent advancement in laser cooling of mechanical resonators in various plat-
forms. Figure presented with final phonon occupation n̄ f (logarithmic scale) vs. sideband
resolution (Ωm/κ). Gray and red markers correspond to microwave and optical platforms,
respectively; 4 and ◦ correspond to noise thermometry and quantum sideband thermometry,
respectively; open and solid markers correspond to quantum-limited and non-quantum-
limited measurements, respectively. The dashed black curve corresponds to the quantum
limit for sideband cooling. The green and the red area correspond to the Doppler regime and
the sideband-resolved regime, respectively.

In conclusion, we have demonstrated high-fidelity sideband cooling to the zero-point energy

of a localized GHz mechanical mode of a silicon OMC. The residual mean phonon occupancy

is 0.09+0.01
−0.01 (92% ground state occupation). The system possess a unique blend of advanta-
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geous properties, combining high mechanical frequency, large sideband resolution, negligible

optical-absorption heating and the ability to be prepared in the ground state in the presence

of strong probing. In Fig. 7.14, we show a summary of recent advancement in laser cooling of

mechanical oscillators in various platforms using feedback or sideband cooling techniques,

with a detailed comparison. Our result enables a large number of quantum optomechanical

experiments that have remained elusive in the optical domain, including two-tone backaction-

evading measurements reaching sub-SQL sensitivity [78, 121, 126], squeezed mechanical

states [83, 84, 124, 125, 182], low-added-noise optomechanical transducers [98–100], as well

as quantum-coherent operations such as state swapping [101] and entanglement generation

[205, 206]. In addition, our results provide valuable insight to eventual microwave-optical

transducer in piezoelectric optomechanical platforms with future promise of integration to

superconducting qubits [101–104].
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8 Quantum squeezing of mechanical

motion with light

In quantum mechanics, a harmonic oscillator always has a zero-point energy even in its

ground state. The position or the momentum of the harmonic oscillator always have un-

avoidable fluctuations, which are limited by the Heisenberg uncertainty principle. However,

the minimum uncertainty for the position or the momentum can be manipulated, e.g. the

uncertainty in position can be less than the zero-point motion while the large uncertainty

is imprinted on the momentum. Such squeezed state has been obtained with optical light

and atomic motion. In this chapter we will show our results on the quadrature squeezing of

mechanical motion of an optomechanical crystal below the zero-point fluctuation using light.

8.1 Reservoir engineering

Squeezed states have received a lot of interest over the last decades [16, 269, 270] for quantum

metrology and quantum technology. For example, the squeezed vacuum is implemented

in LIGO for the enhanced sensitivity for the gravitation wave detection [94]. However, the

quantum squeezing of a harmonic oscillator is extremely challenging due to the large thermal

noise. In principle, parametric driving a harmonic oscillator can be used for the squeezing

generation by modulating the spring constant at twice the mechanical frequency [271, 272],

which is however limited by the 3-dB limit. To surpass such 3-dB limit, there have been a lot of

theoretical proposals developed in the last decade. For example, back-action evading mea-

surement together with a strong feedback force can be implemented [36, 273]. Alternatively a

detuned parametric driving in addition to a feedback force can be used [274, 275]. Besides,

mechanical squeezing can be achieved by injecting a squeezed light in to the cavity [276].

However, all these proposals are extremely challenging to realize in the optical and microwave

domain.
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Chapter 8. Quantum squeezing of mechanical motion with light

Reservoir engineering, originally proposed in the trapped ion community by engineering

the system-environment coupling [123], has also been proposed [124]. In such scheme,

the optomechanical system is bichromatically driven at the upper and lower mechanical

sidebands, while the red probe is stronger than the blue probe. In this case, the optical cavity

can be seen as a bath whose force noise is squeezed. Over the last years, this has enabled

the demonstration of mechanical squeezing in the microwave electromechanical systems

[83, 84, 125, 182].

In the optical domain, the mechanical squeezing below the zero-point motion remains elusive.

The main challenge is the thermal noise, which requires that ability of cooling the mechanical

motion below half a quanta in the sideband resolved regime. The amount of attainable

squeezing is directly limited by the final occupancy. Our result of laser cooling to the zero-point

energy allows us to prepare the mechanical squeezed state. The generation of mechanical

squeezing can be performed by a two-tone pumping scheme as discussed in the theory chapter.

There are several challenges we want to highlight here. First of all, the optomechanical system

may be subjected to other different dynamics that arises naturally under strong pumping,

such as the power dependent cavity frequency and mechanical frequency. Despite that the red

tone are much stronger than the blue tone in the two-tone pumping scheme, instability can

appear. Secondly, the detection of the mechanical squeezing can be difficult. One can obtain

the upper and lower bound of the mechanical quadrature variance from the Bogoliubov mode

noise spectrum from the imbalanced two-tone pumping. One can also indirectly infer the

quadrature variance from the noise spectrum of the Bogoliubov mode. Direct measurement

of the mechanical quadratures can be performed with back-action evading measurement

with an additional pair of blue and red probing tones. However, Floquet dynamics can arise

in such multiple tones pumping scheme, when probing on the same optical resonance. This

will result in extremely complex calibration. In principle, the probing tones can be applied

to another optical mode. However, in our case, the second order optical resonance has

much larger linewidth κ> 2π×1GHz and much weaker coupling to the mechanical mode

g0/2π< 200kHz.

In the theory section, we have introduced the theoretical treatment for the dissipative squeez-

ing. Similar to previous schemes, we consider an optomechanical system bichromatically

driven on the upper and lower sidebands, with the cooling tone stronger than the blue probe.

We consider the quantum Langevin equations of the optical and mechanical fluctuation field,
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with rotating-wave approximation,

δ̇â =
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(8.1)

Here we assume gc and gb are real numbers. Regardless of the input noise terms, this is a

linear time-invariant system under the two-tone optical driving. The stability of the system is

given by the Routh–Hurwitz stability criterion,

(
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We note that, when gb = gc = g , such criterion restores to the stability criterion for the two-tone

back-action evasion measurements, i.e.(
∆2 + κ2

4

)(
Γm

2

4
+δ2

)
≥ 4δ∆g 2. (8.3)

Compared to the BAE, the stability criteria is much more relaxed, due to the dynamical back-

action.

Such stability condition can be viewed alternatively by looking at the field equations of the

mechanical motion. Due to fast decay of the optical field, we can make the assumption of the

adiabatic decay of the optical field,

δâ = +i (gcδb̂ + gbδb̂†)+p
κexδâin +p

κ0δâvac
κ
2 − i∆

. (8.4)
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For the mechanical field, we thus have,
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The detuning error of δ and ∆ leads to the coupling between the δb̂ and δb̂†. As one tries to

squeeze one quadrature, the detuning errors in the measurements, i.e. δ and ∆, lead to the

anti-squeezing of the other quadrature, which can in turn degrade the obtained the squeezing.

The coupling between the two quadratures may result in the instability in such measurements.

8.2 Experimental Results

We performed mechanical squeezing measurement in a silicon optomechanical crystal [122,

145]. Optically, the device functions as a single-sided cavity with a partially transmitting input

mirror. Light is evanescently coupled from a tapered optical fiber into a waveguide that forms

part of the nanobeam (coupling efficiency exceeds 50%). The optical resonance is at 1540nm

with a linewidth of κ/2π∼ 255MHz, of which κex/2π= 71MHz are the external coupling rate

to the waveguide. The optical mode is optomechanically coupled to a mechanical breathing

mode of frequency Ωm/2π = 5.19GHz, and an intrinsic linewidth of Γint/2π = 65kHz. The

measured vacuum optomechanical coupling rate is g0/2π= 1080kHz. The system is placed

in a 3He buffer gas cryostat (Oxford Instruments HelioxTL) at a temperature of around 1.8 K

with a pressure of 55mbar. The buffer gas environment provides sufficient thermalization and

dissipates the heat from optical absorption at high pumping powers. This enables the strong

two-tone probing of the OMC.

The experimental setup is the same as previous ground state cooling experiments. The local

oscillator and the blue probe are phase locked to the cooling tone. Both the cooling tone and

the blue probe pass through narrow filter cavities which are locked to the respective carrier via

PDH lock technique to reject the high frequency laser phase noise. The two pumping tones

are combined in a free-space setup and maintained with the same polarization into a single

mode fiber. The reflected light is switched between a coherent response measurement and the
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BHD setup. We transit between the sideband asymmetry measurements and the mechanical

squeezing by sweeping the frequency separation 2(Ωm +δ) with δ ≥ 0 while maintaining

∆∼ 0. For each measurement, we adjust the cooling tone frequency with relative detuning of

∆c =−Ωm +δ from the coherent response measurement. The LO is locked on the right side of

cooling byΩLO ∼Ω+δ+2π×50MHz.

20 30 40 50 60 70 80
/2  (MHz)

1  

1.4

1.8

2.2

S
I

Instability
Mechanical Squeezing

Self-calibrated Sideband Cooling

Figure 8.1 – Experimental observation of mechanical squeezing. The measurements are
performed on an OMC used in Ref. [145] with an optical linewidth of κ/2π = 255MHz, at
around 1.8K with a pressure of 55mbar. Balanced heterodyne noise spectrum normalized
to the shot noise with different frequency separations, for self-calibrated sideband cooling
(blue), two-tone instability (purple) and mechanical squeezing measurements. The sideband
asymmetry noise spectrum is fitted with a double Lorentzian function (light blue) while the
mechanical squeezing spectrum is fitted with a single Lorentzian function(black).

In Fig. 8.1, we show the observation of the mechanical squeezing. Total input power of 770µW

is sent to the OMC with a refection efficiency around 16%, with a power ratio between the

cooling tone and blue probe around 2.25. Due to the high pumping power, the mechanical

linewidth is restored despite the condensed thin film liquid 3He. In this measurement, we

vary the detuning δ/2π from 25 to 0MHz. The blue curve corresponds to the noise spectrum

of the self-calibrated sideband cooling in the BHD. As the LO frequency is higher than both

scattered thermomechanical sidebands, the fundamental anti-Stokes scattered sideband from

the cooling tone is on the right while the Stokes scattered sideband from the blue probe is

shown on the right. The noise spectrum is given by,

S I (Ω+∆LO) = 1+ηΓeff

[ (n̄ f +1)Γb

Γ2
eff/4+ (Ω+δ)2

+ n̄ f Γc

Γ2
eff/4+ (Ω−δ)2

]
, (8.6)
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Chapter 8. Quantum squeezing of mechanical motion with light

where η is the overall detection efficiency. Γb(c) takes the form,

Γb(c) = n̄b(c)g 2
0

( κ

κ2/4+δ2

)
. (8.7)

From the sideband asymmetry measurement, the phonon occupation can be self-calibrated

from the fitted sideband area Ac and Ab ,

n̄ f =
Ac /n̄c

Ab/n̄b − Ac /n̄c
. (8.8)

The fitted mechanical linewidth is Γeff/2π= 8.85MHz, which is much larger than the mechan-

ical damping rate. The sideband asymmetry measurement results in a mean final phonon

occupancy of 1.167. The calibration coefficient between the phonon occupancy and the

normalized sideband area is given by,

C cal = Ab/Γb − Ac /Γc . (8.9)

The obtained calibration coefficient is adopted to calibrate the mechanical squeezing spec-

trum.

In this case, due to the strong blue probe, most of the residual phonon occupancy comes from

the QBA of the blue probe, despite the large damping rate. The red curve corresponds to the

noise spectrum of a sideband-cooled Bogoliubov mode when δ∼ 0. The noise spectrum takes

the form,

S I (Ω+∆LO) = 1+ηΓB

n̄ BG
f ΓBG

Γ2
B/4+ (Ω+δ)2

, (8.10)

where ΓB is the effective linewidth of the Bogoliubov mode and scattering rate of the Bogoli-

ubov mode is given by ΓBG = ΓBG
c −ΓBG

b . ΓBG
c/b are the scattering rate for the cooling tone and the

blue probe in the mechanical squeezing, where ΓBG
c /ΓBG

b = n̄c /n̄b . We note that for the optical

susceptibility of the Bogoliubov mode is χBG
c (Ω) = 1/(κ/2−Ω), where δ = 0 and ∆ = 0. The

fitted Bogoliubov mode has an effective linewidth ΓBG/2π= 6.38MHz, which slightly narrower

than the obtained mechanical linewidth for the self-calibrated sideband cooling. Using the

obtained calibration coefficient, the resulting phonon occupancy for the Bogoliubov mode is

n̄BG = 0.8203±0.04 < 1. The squeezing parameter is given by r = atanh(
√

n̄b/n̄c )=0.806. We

first check the lower and upper bound of the quadrature variance using the phonon occupancy
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of the Bogoliubov mode,

〈
X̂ 2

1

〉≤ e−2r [1+2n̄BG] = 0.527±0.02〈
X̂ 2

1

〉≥ e−2r [0.5+2n̄BG] = 0.427±0.02.
(8.11)

To infer the quadrature variance, we can fit the thermal decoherence rate n̄th of the mechanical

under high pumping power, From the occupation of the Bogoliubov mode, we can obtain the

thermal decoherence rate,

n̄thΓm = n̄BGΓtot
ΓBG

Γc +Γb
∼ 2π×1.90MHz. (8.12)

In the ideal case, i.e. δ= 0 and ∆= 0, the mechanical quadrature variance is given by,

〈
X̂ 2

1

〉= Γm(n̄th +1/2)+
(√
ΓBG

c −
√
ΓBG

b

)2

/2

Γtot
= 0.43±0.02. (8.13)

The estimated variance is close to the variance lower bound and −1.2dB below the zero-point

energy. The error bar here is given by the fitting of the noise spectrum.

8.3 Parametric effects

As shown in Fig. 8.1, the instability can surprisingly arise even with large effective damping

when the detuning δ is close to zero. From the coherent response measurement, we obtain

the static cavity response under strong two-tone pumping. Theoretical calculations show that

under such pumping power, the required detuning uncertainty is close to the optical linewidth,

which is extremely relaxed compared to the detuning uncertainty in our experiments, i.e.

±10MHz. We note that, the linewidth of the Bogoliubov mode is narrower than the scattered

sidebands in the sideband asymmetry measurements. This indicates additional coupling

between the two quadratures, e.g. due to excess parametric effects, such as power dependent

mechanical and optical frequency change. One possibility is the cavity frequency oscillation

due to the periodic absorption power in the cavity [122] to the photothermal effects. Such

photothermal effect can lead to significant modification to the micro-cavity spectroscopy

under strong driving considering the limited bandwidth for thermal process.

In our case, the intracavity field is given by â = ābe−i (Ωm+δ)t + āc e+i (Ωm+δ)t +δâ. The optical
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Chapter 8. Quantum squeezing of mechanical motion with light

absorption leads to the temperature change,

∆̇T =−γth∆T + g abs|a|2. (8.14)

Considering that the thermal response bandwidth γth ¿Ωm , we can obtain a set of modified

quantum Langevin equations for the field operators in the time domain,

δ̇â =
(
i∆− κ

2

)
δâ +ε(|āc |2 −|āb |2)δâ − 2εāc ābγth

Ωm
δâ† + i

2εāc āb

Ωm
δ̇â†

+ i (gcδb̂ + gbδb̂†)+p
κexδâin +p

κ0δâvac

δ̇â† =
(
−i∆− κ

2

)
δâ† +ε(|āc |2 −|āb |2)δâ† − ε2āc ābγth

Ωm
δâ − i

ε2āc āb

Ωm
δ̇â

− i (gcδb̂† + gbδb̂)+p
κexδâ†

in +
p
κ0δâ†

vac

δ̇b̂ =
(
iδ− Γm

2

)
δb̂ + i (gcδâ + gbδâ†)+

√
Γmδb̂in

δ̇b̂† =
(
−iδ− Γm

2

)
δb̂† − i (gcδâ† + gbδâ)+

√
Γmδb̂†

in.

(8.15)

where ε= g absg th/Ωm . The photothermal effects lead to the coupling between the δâ and δâ†.

We note that even with such high pumping powers, the additional terms in Eq. 8.15 due to

parametric effects are completely negligible even taking the large value we obtained from Ref.

[122]. This is mainly due to the small thermal bandwith.

8.4 Conclusion

We’ve shown the mechanical squeezing with optical light using reservoir engineering tech-

nique. The inferred mechanical quadrature variance is −1.4dB below the zero-point fluctu-

ation. Besides, we observe two-tone instability in the squeezing measurements despite the

large dynamical back-action. Independent measurement of both mechanical quadratures

can be performed via a BAE measurement in the future. Our results enable future displace-

ment and force sensing with enhanced sensitivity, such sub-SQL displacement measurement

[89, 90]. Besides, it opens new avenue to non-classical mechanical state generations, such as

the Schrodinger-cat state via phonon substraction [267].
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9 Summary and Outlook

9.1 Summary

In summary, we have shown our efforts towards the quantum measurement of mechanical

motion at the standard quantum limit.

Floquet dynamics in quantum measurement of mechanical motion. We observe the Floquet

dynamics in sideband asymmetry measurements on a silicon OMC sideband-cooled to 40%

ground-state occupation. The Floquet dynamics, resulting from the multiple pump tones,

gives rise to an artificially modified motional sideband asymmetry by redistributing thermal

and quantum fluctuations among the initially independently scattered thermomechanical

sidebands. A theoretical model developed based on Floquet theory accurately describes the

observations, which results from a synthetic gauge field among the Fourier modes.

Optical Backaction-Evading Measurement of a Mechanical Oscillator. We demonstrate the first

optical continuous two-tone backaction-evading measurement of a localized GHz frequency

mechanical mode of Silicon OMC close to the ground state. We explicitly show the transition

from conventional to backaction-evading measurement, employing quantum-limited optical

heterodyne detection, and observe up to 0.67dB (14%) reduction of total measurement noise.

Two-tone optomechanical instability. We observe two-tone optomechanical instability in the

optical domain with a silicon OMC, and develop a theoretical model to this finding. This

is investigated systematically in the microwave domain with a micromechanical oscillator

coupled to a microwave resonator. Its origin can be understood in a rotating frame as the

vanishing of the effective mechanical frequency due to an optical spring effect. This imposes a

fundamental limitation on BAE measurements, as well as other two-tone schemes, such as
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dissipative quantum mechanical squeezing.

Laser cooling of a silicon nanomechanical oscillator to the zero-point energy. We demonstrate

state-of-art continuous-wave laser sideband cooling of a silicon OMC to a mean thermal

occupancy of 0.09 quanta, verified via motional sideband asymmetry. The result overcomes

previous heating limitations and highlights the promise of silicon optomechanical crystals

for quantum-enhanced continuous displacement measurements, as low-added-noise op-

tomechanical interfaces for signal transduction and integration with superconducting qubit

technology.

Quantum squeezing of mechanical motion with light. We demonstrate the first quantum

squeezing of mechanical motion with optical light using reservoir engineering technique. The

inferred mechanical quadrature variance is −1.4dB below the zero-point fluctuation. Besides,

we observe two-tone instability in the squeezing measurements despite the large dynamical

back-action. Our results enable future quantum enhanced displacement and force sensing

and non-classical mechanical state generation.

9.2 Outlook

The feasibility of deep in the quantum back-action dominated regime, makes it possible

for a wide range of quantum enhanced measurements, such as sub-SQL measurement of

mechanical motion using two-tone BAE measurement. Besides, the high fidelity ground

state preparation of the OMC allows more efficient protocols in the pulsed regime, where

non-classical mechanical state can be generated. By coupling the quantum mechanical

motion to other degrees of freedom, such as electromagnetic field and solid-state two-level

systems, coherent quantum state transfer can be realized. For example, the ability of reaching

the ground state highlights the promise of OMC as a mechanical interface between two

optical frequencies, where coherent quantum-limited optical frequency conversion can be

achieved. The unique cryogenic system with remarkable thermalization can be adopted

also for other cryogenic experiments that require efficient heat dissipation, such as piezo-

optomechanics and electro-optical systems for microwave-optical frequency conversion and

potential integration with superconducting qubits.

136



137



Appendix A. List of Symbols

A List of Symbols

Symbol Meaning

â Photon annihilation operator

∆ Relative detuning between the laser frequency ωL and cavity resonance frequency ωcav,

κ Overall cavity intensity decay rate, including input coupling and intrinsic losses, κ= κex +κ0.

χc (ω) Optical susceptibility of the cavity, χc (ω) = [κ/2− i (ω+∆)]−1

n̄cav Mean cavity photon number, n̄cav =
〈

â†â
〉

b̂ Phonon annihilation operator

Ωm Mechanical frequency

Γint Intrinsic mechanical damping rate

Γm Mechanical damping rate

xZPF Mechanical zero-point fluctuation amplitude, xZPF =√
~/2meffΩm

χm(ω) Mechanical susceptibility, χm(ω) = [Γm/2− i (ω−Ωm)]−1

Sxx (ω) Two-sided quantum noise spectrum, Sxx (ω) ≡ ∫
d t e iωt 〈x̂(t )x̂(0)〉

n̄th Mean phonon number in thermal equilibrium, n̄th = (e~Ωm/kB T −1)−1

g0 Optomechanical vacuum coupling rate

C0 Optomechanical vacuum cooperativity, C0 = 4g 2
0 /κΓm

C Optomechanical cooperativity, C = 4n̄cavg 2
0 /κΓm

Γopt Optomechanical damping rate

δΩm Optical spring (mechanical frequency shift)

n̄ f Mean final occupancy of the mechanical resonator

X̂1,2 Mechanical quadratures, X̂1 = 1/
p

2
(
b̂e+iΩm t + b̂†e−iΩm t

)
and X̂2 =−i /

p
2
(
b̂e+iΩm t − b̂†e−iΩm t

)
.

S I (ω) Single-sided noise spectrum of the photocurrent
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B Nano Fabrication

Throughout this thesis, different processes have been developed and tested for performance

comparison. In the following sections, we will show the details of the fabrication process

developed and at the Center of MicroNanoTechnology (CMi) at EPFL.

B.1 Fabrication Runcard

1. Substrate preparation

(a) Protection coating of 8inch SOI wafer with AZ9260 of 5um

(b) Cleaving into quarters

(c) Backside oxide removal at Wetbench with BHF 7:1 for 40min

(d) Photoresist strip at Wetbench with Microposit Remover 1165

(e) Spin coating with AZ9260 of 10um

(f) Softbake at Hotplate at 115◦C for 90min

(g) Backside Grinding with Disco DAG 810 for 325um

(h) Chip dicing with Disco DAD 321 for 15mm×15mm

(i) Photoresist Strip at Wetbench with Microposit Remover 1165

2. Electron Beam Lithography

(a) Pattern Preparation.

i. Pattern generation with gdspy

ii. Layout Beamer
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A. Extraction of cells, layers or regions of interest

B. Layout operation (healing, tone-reversal, bias, Boolean functions), Reso-

lution=5nm

C. E-Beam Proximity Effect Correction

D. Output formatter for our E-Beam machines

iii. CJOB

A. Import gpf files

B. Choose proper dose,

C. Choose proper beamcurrent,

D. Export the job with estimated exposure time

(b) Ebeam Lithography

Process A, HSQ as Ebeam resist

i. Surface Activation with Tepla300. O2 plasma, 200W, 45s, 200mL/min

ii. Spin coating of HSQ XR-1541-006 with 6500RPM of 120nm

iii. Exposure with Vistec EBPG5000

iv. Development at the wet bench with TMAH25% for 30s

Process B, ZEP as Ebeam resist

i. Surface Activation with Tepla300. O2 plasma, 200W, 45s, 200mL/min

ii. Spin coating of ZEP-520 (1%) with 6500RPM of 120nm

iii. Soft bake at 180 degree for 7min

iv. Exposure with Vistec EBPG5000

v. Development at the wet bench

3. Chip Mounting on 4 inch silicon carrier wafer

(a) Quickstick at 135 °C

4. Device Etching

HSQ as Ebeam resist

Process A, Hydrogen Bromide based etching

(a) STS Multiplex ICP, HBr with O2, 1 min

Process B, Fluorine based etching

(a) Alcatel AMS200, C4F8withSF6, 18 sec
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ZEP as Ebeam resist

(a) Alcatel AMS200, C4F8withSF6, 3.5 min

5. Device Protection layer

(a) Spin Coating with HSQ,1000 RPM

(b) Thermal curing Neytech QEX 450 °C, 1 hour

6. Photolithography

(a) Chip Mounting

(b) HMDS priming

(c) Spin coating of AZ9260 with thickness of 6µm

(d) Soft bake at 115 °C for 5 min

(e) Exposure with Suss MJB4 20s.

(f) Development with 2×AZ400K+7× H2O, 3 min

7. Deep RIE Mesa Etching

HSQ as Ebeam resist

(a) Oxide etching, SPTS APS, He/C4F8, 7min

(b) Silicon etching, Alcatel AMS200, C4F8 with SF6, 21 min

ZEP as Ebeam resist

(a) HSQ etching, SPTS APS, He/C4F8 , 1min

(b) Silicon etching, Alcatel AMS200, C4F8 with SF6, 1 min

(c) Oxide etching, SPTS APS, He/C4F8, 6min

(d) Silicon etching, Alcatel AMS200, C4F8 with SF6, 21 min

8. Finalization

(a) Unmount chip from silicon carrier wafer at 100 °C

(b) Photoresist removal with Tepla300, O2 plasma, 10 min

(c) Undercut, diluted HF (10%), 3 min

(d) Piranha Cleaning, 1× H2O2 +3× H2SO4 at 100 °C, 10 min

(e) Manual cleaving of the chip

(f) Surface treatment, diluted HF (1%), several seconds
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B.2 Etching Test

Nanofabrication of the OMC is of great challenges due to the small feature size and geometric

variations. The final properties of the OMC rely critically on the geometry, surface roughness,

and the sidewall verticality. In this section, an etching test is performed with different silicon

etching processes and different EBeam resists based on the existing facilities in our cleanroom.

In the etching test, two different EBeam are analyzed, i.e. HSQ and ZEP520A. For HSQ, two

different etching processes are investigated, i.e. Fluorine and HBr based etching. For ZEP, we

study the performance of Fluorine based etching. The main aim is to obtain an optimized

process for OMC fabrication by looking at the etching results in terms of the cross sections of

the test pattern after cleaving.

After defining the pattern with EBeam resist, we use Inductively Coupled Plasma (ICP) Reactive

Ion Etching (RIE) to etch the silicon on top layer of SOI chip. During the plasma etching, the

coil of the ICP systems ionizes the etch gas which chemically attacks the material using a

sufficient powerful RF source. After ionization, the plasma is accelerated towards the carrier

wafer(in our case) fixed on the chuck. To increase the plasma density, one can increase the ICP

power which increases the etching rate. As the momentum is determined by the chuck power,

one can also increase the milling aspect of the etching. In our etching step, the wafer is held

by the chuck either by mechanical clamping or electrostatic forces while the backside of wafer

is under constant Helium flow and pressure. As a result, changes in Helium flow rate lead to

the variations of the substrate temperature, which may impact the etching processes. Besides,

the pressure changes the ion angular distribution and also the amount of lateral etching by

affecting collisions between the ions. The overall gas flow rate is also important, especially

when multiple gases are utilized. The etching time is determined by the etching condition and

device layer thickness. Longer etching time is typically required for tougher material (Si3N4

over Si) and thicker material (again Si3N4 over Si), which tends to heat up the sample and can

damage the resist.

Large variety of parameters influence the final result of the RIE step. To optimize an etching

process, it requires extensive parameters search. Samples etched with different parameters are

analyzed with scanning electron microscope(SEM). Once satisfied parameters are obtained

for desired process, it is of great importance to maintain the reproducible conditions. One

way is to maintain reproducible electrostatic and mechanical clamps to mount wafers in the

chamber. However, for parameters search with smaller chip-size substrate, it is not suitable.

Alternatively, we mount the SOI chip (1.5cm× 1.5cm) onto the carrier wafer with quickstick

which melts around 135◦C .
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B.2.1 Fluorine Based Etching - Pseudo-Bosch Etching

Different requirements for plasma etching are key to the outcome of desired patterns, which

leads to different criteria when selecting a suitable etching process. Selectivity, defined as the

ratio of the etching rate between the mask and the material, plays an important rule, since a

process with high selectivity allows for thinner mask for devices with same thickness which

enables higher fidelity lithography. One of the most commonly used process is Bosch etching

process, where two gases are used, SF6 and C4F8. SF6 would lead to isotropic etching leaving

silicon tetrafluoride SiF4 as etching product. If C4F8 is added, it would be ionized into CF2,

C2 and C3. Once they are deposited on the exposed surfaces, long polymer chains can form

and protect these surfaces from additional etching. In Bosch process, alternating SF6 based

etching and C4F8 based deposition are used to obtain high aspect ratio with good selectivity.

However, the two alternating processes end up with rough sidewalls. Here, a modified Bosch

process is used, which is called "waveguide etch" or "Pseudo Bosch etch". The two gases are

injected simultaneously. The significantly reduced etching rate and the high selectivity result

in much smoother sidewalls.

B.2.2 Hydrogen Bromide Based Etching

One alternative process to the above mentioned "pseudo Bosch process" is to use HBr based

chemistry combined with oxygen. HBr results in polymerization on polysilicon sidewalls while

oxygen provides a thin oxide layer. As HBr is very selective to the oxide, it is especially useful

for silicon-on-insulator(SOI) patterned by HSQ. With a high selectivity between 1:5 and 1:10

found in literature, it is possible to achieve resolution limits with thin layers of coated HSQ

∼ 100nm.

B.2.3 Etching Results

The pattern for the etching tests is shown in Fig. B.1. It consists of groups of trenches and

squares with different lengths ranging from 100nm to 500nm. Through each cleaving line,

we can always hit one square or line of width with target feature size, which can reveal full

information for different sizes with same etching parameters, regardless of the EBeam resist

that is used. The main purpose for the etching test is to see the cross section and more

importantly the sidewall after etching. We mount the 1.5cm×1.5cm chip on a 4-inch silicon

carrier wafer, as required by our equipments. More importantly, it mitigates the effects of

silicon loading during etching, i.e. the area-dependent etch conditions. With the silicon wafer

143



Appendix B. Nano Fabrication

Figure B.1 – Pattern for the etching test

in the etch chamber, the amount of surface area on the chip being etched has a negligible

impact on the loading condition, and allows for reproducible silicon etching regardless of the

pattern size. Besides, this improves the thermalization of the chip with helium flow on the

backside of the carrier wafer.

Before starting the etching test, we first give an overview of the parameters we use for HSQ

(with AMS200 and STS) and also ZEP (with AMS200). The substrate chips are coated with

HSQ-XR-1541-006 at the speed of 6500 RPM. The thickness of HSQ is around 120nm. We

perform the etching test with AMS200 and STS respectively. For AMS200, the recipe we use is

Si_opto, which is optimized to etch silicon. The parameters are as following:

1. SF6 of 40sccm and C4F8 of 55 sccm

2. Plasma power: 1500W , RF forward: 30W

3. Temperature: 20◦C

To obtain reproducible etching, we always perform an oxygen plasma cleaning for 10min of

the etching chamber and prime for 10 min with the real process with a dummy wafer before

the main etching process. This ensures the stability for helium flow and etching gas. The gas

ratio of C4F8 and SF6 is 1.375. The etch time is monitored by the end point detection(EPD). In

this etching test, we tried 20sec, 28sec, 32sec respectively to cover different etching conditions,

i.e. under-etching, about-etching and over-etching.
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For STS for HBr, the recipe we use is HBr_Si with another step of Condi_Br before the main

etching. The detailed steps for The Condi_Br are listed below:

1. Condi_Br

(a) O2 plasma clean

i. Power 700W

ii. O2: 10sccm

iii. Time: 30min

(b) Breakthrough

i. Ar: 20sccm

ii. Plattern Power: 125W, Coil Power: 900W

iii. Time: 15s

iv. Chamber Pressure: 5mTorr

(c) Main Etching

i. HBr: 20 sccm, O2: 1 sccm

ii. Plattern Power 60W, Coil Power 700W

iii. Time: 30min

iv. Chamber Pressure: 10mTorr

2. HBr_Si

(a) Sub_Si

i. Cl: 50sccm

ii. Plattern Power: 100W, Coil Power: 80W

iii. Time: 10s

iv. Chamber Pressure: 5mTorr

(b) Main Etching

i. HBr: 20sccm, O2: 1sccm(Optional)

ii. Plattern Power 50W, Coil Power 900W

iii. Time: 30min

iv. Chamber Pressure: 2mTorr

For the first Condi_Br, it takes more 1 hour. To ensure the same etching rate for each run,

we always etch a silicon wafer coated with photoresist first to check the reproducibility of
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the etching rate by measuring the thickness of silicon after 5min. During the HBr_Si step, to

stabilize the power, we start from 300W, then switch to 600W and in the end raise to 900W.

Besides, the chamber pressure is preset as 10mTorr for plasma generation. When the power

is stabilized at 900W, we manually change the chamber pressure from 10mTorr to 2mTorr.

This usually takes additional 10 seconds. For the etching time, we preset it as 30 seconds, and

stop manually since the machine recalculates the etching time when we change the power. In

the etching test, we try the etching time with 60 seconds, 75 seconds and 90 seconds. After

the etching, we unmounted the chip from the carrier wafer at the hotplate and remove the

quickstick on the backside using Acetone and IPA. For better imaging of the bottom of the

etched silicon, we put the chip into diluted HF (25%) for 3 minutes at room temperature and

rinse with DI water for 1 minute.

For chips coated with ZEP520, the recipe we use is Si_opto_HR, the parameters are as following:

1. SF6 of 25sccm and C4F8 of 63sccm

2. Plasma power: 1500W , RF forward: 15W

3. Temperature: 20◦C

To obtain reproducible etching, we always also do an oxygen plasma cleaning for 10min and

prime for 10min before the main etch with a dummy wafer. The temperature here is the same

as Si_opto while the RF forward power is decreased from 30W to 15W, which enables slower

etching. Besides, the gas ratio between C4F8 and SF6 is increased from 1.375 to 2.52, which

leads to smoother sidewall and also slower etching, since the flow rate of SF6 is decreased quite

a lot. The etching time here is chosen as 3minutes and 10seconds, 3minutes and 25seconds,

and 3minutes and 40 seconds, which enable us to see the different etching conditions of

silicon. After etching, we unmount the chip from the carrier wafer at the hotplate and remove

the quickstick on the backside with Acetone and IPA. Then we stripped the remaining ZEP

with UFT Remover and Piranha for 10min as described before. This will remove almost all the

residules in the structures. For better imaging of the bottom of the etched silicon, we put the

chip into diluted HF (25%) for 3minutes at room temperature and rinse with DI water for 1

minute.

To investigate the etching performance, we cleaved the chip with a diamond scribe and

perform SEM imaging of the cross section and the sidewall of the etched silicon. Here we

present the results we obtained from the etching test. Figure B.2 presents the results after

etching, before and after undercut respectively for three different etching processes.
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Figure B.2 – The etch test before and after undercut.1.a(b) Silicon underetched (overetched)
with Si_opto(HSQ) before undercut; 1.c Silicon about-etched with Si_opto(HSQ) after under-
cut; 2.a(b) Silicon underetched (overetched ) with HBr_Si(HSQ) before undercut; 2.c Silicon
about-etched with HBr_Si(HSQ) after undercut; 3.a(b) Silicon underetched (overetched) with
Si_opto_HR(ZEP) before undercut; 3.c Silicon about-etched with Si_opto_HR(ZEP) after un-
dercut.

Figure B.2 1.a(b) shows the results for chips coated with HSQ etched with AMS200 (Si_opto),

the sidewall are far from perfect for both underetched and overetched samples. We could

see curved sidewall on the bottom. The verticality of the sidewall is also far from satisfaction.

Figure B.2 1.c shows the sidewalls after undercut,we could see large curvature on the bottom,

where the silicon layer is not etched through and the etching doesn’t ensure a good verticality.

Figure B.2 2.a(b) shows the results for chips coated with HSQ while etched with STS (HBr_Si).

The sidewalls are much better compared to Fluorine based etching for both under etched and

overetched samples. HBr with oxygen leads to better sidewalls and verticality. The results

also show that for wider groves, the sidewalls are more vertical than narrow ones. As this

is a traditional problem in silicon etching with HBr, one way is to overetch the samples to

get better verticality. One can increase the etch power and also etching time. However, the

thickness of HSQ here is around 120nm, the overetching will kill almost all the coated HSQ

in the end. Figure B.2 2.c shows the sidewalls after undercut, where the verticality is much

better compared to the Fluorine based etching. Figure B.2 3.a(b) shows the results for chips

coated with ZEP etched with AMS200 (Si_optoHR). The sidewalls are almost perfect compared

to the etching results using HSQ with Fluorine Based and HBr based etching. We also obtain

perfect verticality for narrow and wide groves. As the thickness of the coated ZEP is around

350nm, we still could still push limit to thinner ZEP for higher resolution, which requires
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further parameters search. As it seems that there is a curved etch on the ZEP surface, which

would probably lead to lower resolution or crack of the part of silicon. After stripping the ZEP

with UFT Remover and Piranha and undercut, the sidewall is shown in Fig. B.2 3.c, which

shows perfect verticality and surface roughness.

In this thesis, two different fabrication processes are adopted for the silicon device etching.

Fluorine based Pseudo-Bosch etching process with ZEP as EBeam resist is developed at the

CMI at EPFL. The HBr based etching process with HSQ as EBeam resist is developed at

the Binnig and Rohrer Nanotechnology Center at IBM Research–Zurich, which includes the

samples used in Chapter 6-8. The detailed fabrication process is presented in Ref. [277].

B.3 Image Processing

In the previous section, we show how we evaluate the different etching processes with different

EBeam resists, such as HSQ and ZEP. Optomechanical properties of the OMC, however, depend

also critically on the geometry of the finalized samples, such as the hole sizes and the beam

width. A perfect understanding of feature size of the fabricated sample is important. As

mentioned previously, we apply a proximity effect correction in the EBeam step to compensate

the electron backward scattering during the Ebeam exposure. This is however not sufficient

for the finalized OMC, where the etching process also matters. We develop a matlab-based

image processing package to analyze the fabricated OMC from the SEM pictures. In Fig. B.3,

we show the graphical user interface (GUI) for the image processing. The SEM pictures of

the finalized OMC cavities is taken with a Zeiss Merlin SEM, scanning both vertically and

horizontally, with nanometer resolution. The SEM picture is taken at a voltage of 5/10kV with

a resolution of 1-10 nm/pixel. The meta files are saved in the tif file of the figures. The image

processing procedure is shown in the following,

1. Re-orientation and cropping of the image to keep only the nanobeam

2. Wiener filter applied to reduce the image noise with Matlab function wiener2

3. Binarize the image with analyzed threshold to separate the nanobeam from the back-

ground

4. Boundaries detection with Matlab Image Processing Toolbox function bwboundaries

5. Improve edge detection accuracy by introducing subpixel precision

6. Fit of the ellipses and lines of extracted features
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7. Determine the image scale from the pitch of the nanobeams

Figure B.3 – Graphical user interface for the image processing of the SEM pictures of the OMC
developed in Matlab.

After the image processing, we compare the fitted results to the both the mask design and

also the optimal design for the OMC by loading the Ebeam mask design. The individual plot

for each cavity and statistical average can be selectively chosen in the GUI. The deviation

of the actual fabricated OMC from the target design,such as the hole sizes, are fitted with

a hole-number dependent Gaussian function plus a constant, where the constant typically

matches the nanobeam width change. We apply a correction based on the statistic variations

to the EBeam mask design in the next fab run. The fabrication process is subject to external

conditions changes and the outcomes can differ slightly from batch to batch, especially for

the obtained constant from the fitting of the corrections. As a result, we typically sweep the

constant while keep the hole-number dependent Gaussian function fixed.

The code is available on Github from the following address: https://github.com/QINC-Lab/

ImageProcessing_OMC.git.
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C Optical Measurement

C.0.1 Coherent Response Measurement

For optical characterization and control, it is of utmost importance to tune the probing tones

accurately around the optical resonance. Active locking the probing tone to the cavity or

vice versa (e.g. using a Pound-Drever-Hall technique), are extremely useful for this purpose.

For example, a narrow tunable filter cavity (50MHz) can be locked to our pumping lasers to

suppress the high frequency laser noises at ∼ 5GHz, as shown in our previous experiments. In

lots of optomechanical measurements, e.g. sideband cooling, the laser has to be driven off

resonant from the cavity. The relative detuning of the pumping laser to the cavity resonance

thus becomes important, which can be obtained from the cavity coherent response. We use

passive tuning of our master laser, from which the other tones are derived. From the response

curve we extract accurate values of both laser detuning and optical linewidth.

Here we give details on the method. A simplified setup is shown in Fig. C.1. The laser is phase-

modulated using RF output of a network analyzer (NA). This weak modulation generates

two sidebands around the carrier on both sides. The carrier and sidebands are sent to the

cavity and reflected via an optical circulator. They interfere on a fast photodetector with the

photocurrent fed to the NA input. The demodulation of the RF signal results in a coherent

cavity response, which measures the magnitude and phase of the S21 parameter.

The field amplitude incident on the cavity is given by

ain(t ) ' a0

(
1+ β

2
e iΩt − β

2
e−iΩt

)
, (C.1)

with β the modulation index, a0 the field amplitude and Ω the modulation frequency. The
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∆
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ECDL
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κ

Figure C.1 – Simplified setup for optical coherent response measurements. A strong pump-
ing tone is detuned from the cavity resonance by ∆. Weak probing tones are generated by
a phase modulator (PM). The reflection from the cavity is collected for coherent response
measurements.

modulation index is directly related to the RF power sent to the phase modulator from the NA

at each modulation frequencyΩ.

The reflected light is

aout(t ) ' a0

[
r (∆)+ β

2
r (∆+Ω)e iΩt − β

2
r (∆−Ω)e−iΩt

]
, (C.2)

with

r (∆) = 1− ηcκ

κ/2− i∆
. (C.3)

The amplitude reflection coefficient at detuning ∆ and ηc ≡ κex/κ the cavity coupling param-

eter. The magnitude of the S21 parameter, theΩ frequency component of the photocurrent

|aout(t )|2, is given by (here and below we omit a constant scale factor)

|S21(Ω)| = β

2
|r (∆)r∗(∆−Ω)− r∗(∆)r (∆+Ω)|. (C.4)

For laser detuning ∆much larger than the cavity linewidth κ, the coherent cavity response

shows a perfect Lorentzian. The laser detuning and cavity linewidth can be calculated easily.

Figure C.2 shows a typical coherent response measurement, which deviates significantly from

a Lorentzian when ∆ ∼ κ. Additionally, when scanning over a wide bandwidth, one has to

consider the frequency dependence of β (due to phase modulator, rf cables, detector response

etc.). A robust and reliable procedure to calibrate the frequency dependence of the entire

detection chain is to take several traces at various detunings, and fit all of them simultaneously

to Eq. (C.4) with only ∆ variable across traces, and with a high-order polynomial in Ω as a

prefactor. This prefactor is then applied in all subsequent fits. The inset in Fig. C.2 shows the

frequency dependence of β given by the polynomial. We adjust probe detuning using this
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Figure C.2 – Coherent response determination of detuning and linewidth. An example of a
measurement with a fit Eq. (C.4), yielding κ and ∆. A correction due to extraneous frequency-
dependent response, measured and shown in the inset, is included in the fit.

method prior to each data point acquisition.

The coherent response measurement has been widely used in this thesis. For example, we

calibrate the free spectral range of the fiber loop reference cavity ∼ 187MHz. In laser noise

measurement, where the phase noise is transduced to amplitude modulation by placing the

laser off resonance, the cavity linewidth of the filter cavity and laser detuning can be obtained.

By checking the cavity response measurement, we can check the stability of the cavity resonant

frequency before and after a specific measurement, especially under cryogenic environment.

Besides, it has been adopted for the measurement of optomechanically induced transparency

with OMC, which can be additionally used for g0 calibration [110]. We note that, a slightly

modified version of this scheme is also implemented in the response measurement of the

optical cavity by pumping at a second optical mode to role out the thermal and Kerr response

[122].

C.0.2 Balanced Heterodyne Detection

In quantum optomechanics, the mechanical motion generates Stokes and anti-Stokes side-

bands. Quantum measurement of mechanical motion relies on the optical detection of these

weakly scattered thermomechanical sidebands. This becomes particularly challenging for the

measurements of the mechanical motion close to the zero-point energy. For example, in the

case where the final occupancy n̄ f = 1, the weight of the sideband compared to the carrier is

∼ 4g 2
0 /(Ω2

m). Due to the rather weak vacuum optomechanical coupling rate, the ratio between
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the scattered sideband and carrier can be as low as −70dB. Besides, in real measurements,

the total detection efficiency of the photons leaving the cavity can be much lower than unity,

due to different kinds of losses, such as the intracavity absorption, connector loss, fiber loss,

mirror loss or inefficient photodiode.

Here we assume a signal to measure with field amplitude,

â sig =
(
ā sig +δâ sig

)
e−iωs t (C.5)

where ωs is the frequency of the traveling optical field, ā sig is the mean coherent field ampli-

tude while δa sig corresponds to the field fluctuation. Direct measurement of photon number

at the photodiode is given by,

n sig = â†
sigâ sig = ā2

sig + ā sig

(
δâ sig +δâ†

sig

)
+δâ†

sigδâ sig, (C.6)

where the third term can be neglected. We note that, the measured photon flux consists

of a constant ā2
sig, and the amplitude fluctuation term ā sig

(
δâ sig +δâ†

sig

)
. The measured

photocurrent is thus dominated by a DC signal. Considering the large detector noise, the

quantum-limited detection of the field fluctuation will be quite difficult as high powers are

required which can easily saturate the photodiode. As a result, to measure weakly scattered

sideband, direct detection is typically not ideal. One solution is to use an Erbium-doped

fiber amplifier(EDFA) together with a filter cavity. We use such method to amplify the weak

reflected light in the coherent cavity response measurement, especially for low pumping

powers, due to the large noise-equivalent-power of the fast photodiode (14GHz). However,

amplification by an EDFA adds some noise to the original signal – mainly due to amplified

spontaneous emission by ∼ 5−7dB. This results in extensive calibration of the noise process

in the measured signal, such as the wavelength, power and gain dependent noise figure. A

quantum limited detection of the weakly scattered sidebands is required. Here, we discuss the

basic principles of balanced heterodyne detection. The scheme for the balanced heterodyne

detection is shown in Fig. C.3. The signal is now is combined with a strong local oscillator(LO)

through a balanced beam splitter. The LO has the field amplitude,

âLO = (ā LO +δâ LO)e−iωLOt , (C.7)

where the optical frequency ωLO =ωs +ΩLO, ā LO is the mean field amplitude and δâL is the

154



SA

−
asig

aLO

Figure C.3 – Simplified setup for Balanced Heterodyne Detection. asig and aLO are the signal
and the local oscillator, which are combined in a free space balanced heterodyne setup.

field fluctuation of the LO. The output field of the two paths,

â1 = 1p
2

(
âLO + i âsig

)
â2 = 1p

2

(
i âLO + âsig

)
,

(C.8)

are collected onto two identical independent photodiodes. The photocurrent from the two

photodiodes are subtracted, which results in the heterodyne signal,

Îout(t ) = i
(
â†

sig (t )âLO(t )− â†
LO(t )âsig(t )

)
. (C.9)

In the case of strong LO, where the LO power is much larger than the signal power, i.e. |ā LO|À∣∣ā sig
∣∣, we can obtain,

Îout(t ) = e iΩLOt ā∗
LOδâsig(t )+e−iΩLOt āLOδâ†

sig(t ), (C.10)

The (time-averaged) autocorrelator of the signal is the heterodyne spectrum,

S I (ω)het = 1

2

∫ ∞

−∞
〈{Îout(t + t ′), Îout(t ′)}〉e iωt dt , (C.11)

where the overbar denotes averaging with respect to t ′. Invoking commutation relations we

normal-order the operators in Eq. (C.11)

{
Îout(t + t ′), Îout(t ′)

}
= |ā LO|2

[
δâ†

sig(t + t ′)δâsig(t ′)e−iΩLOt +δâ†
sig(t ′)δâsig(t + t ′)e iΩLOt

]
.

(C.12)
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We can thus obtain the spectrum of the heterodyne photocurrent,

Shet
I [Ω] = |ā LO|2

(
Ssig

ââ [Ω+ΩLO]+Ssig
â† â† [Ω−ΩLO]

)
. (C.13)

The weak optical signal is amplified by the strong LO, where the noise spectral density from

the balanced heterodyne detection far exceed the detector noise. By choosing proper fre-

quency separation between the pumping frequency and the LO, it can optically mix down the

measured noise from high frequency (GHz) to a low frequency range (MHz), which can be

easily captured by a low-noise balanced photodiode. The balanced heterodyne measurements

have been widely adopted in this thesis, especially for the quantum limited detection of the

thermomechanical sidebands, such as in the ground state cooling, motional sideband asym-

metry, back-action evading measurement and mechanical squeezing. In these measurements,

the LO is derived from another laser which is phase locked to the master pumping laser. The

locking frequency between the two lasers are typically set close to the mechanical frequency.

What’s more, BHD has been intensively adopted for ultra-low noise investigation, such as the

laser noise and the cavity frequency noise, taking advantage of the flexibility of the locking

scheme.
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D Laser Noise

External cavity diode lasers are well-known to have an excess noise in the GHz range, due to

the damped relaxation oscillation caused by carrier population dynamics. This is the main

contribution for GHz excess noise for diode lasers. As this frequency is close to the mechanical

frequency, it is necessary to quantify the phase noise of the diode laser that we are using

[179, 184].

The presence of the excess laser phase noise leads to a limited sideband cooling performance

[114, 178, 179, 184]. On the other hand, the effect of excess laser noise on the sideband

asymmetry has been extensively studied [71, 178, 184] in both sideband resolved regime and

Doppler regime. In a heterodyne detection scheme, the sideband imbalance is due to the

correlation between imprecision and backaction from the probing tones. This is true also

when the probing tones are not quantum limited, which can lead to an artificially increased

asymmetry. As a consequence it is imperative that the lasers are quantum noise limited in

amplitude and phase quadrature.

Before switching to the laser noise characterization, we first give a basic introduction on

the noise properties. For a probing laser at frequency of ωL , the amplitude ain(t) could be

expressed as ain(t) = e−iωL t (ā +δâin(t)), where ā is the mean photon flux amplitude and

δain(t ) is the field fluctuation.

The field quadratures are defined as

δq̂in(t ) = δâin(t )+δâ†
in(t )

p
2

, (D.1a)

δp̂in(t ) = δâin(t )−δâ†
in(t )

i
p

2
, (D.1b)
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where [δq̂in(t ),δp̂in(t ′)] = iδ(t − t ′).

By introducing the Ci , j (i = p, q) as excess noise in the field quadratures,

δq̂in(t )δq̂in(t ′) δq̂in(t )δp̂in(t ′)

δp̂in(t )δq̂in(t ′) δp̂(t )δp̂(t ′)


= 1

2

 1+2Cqq i +2Cqp

−i +2Cqp 1+2Cpp

δ(t − t ′),

(D.2)

the input field satisfies the following relation,〈δain(t )δain(t ′)〉 〈δain(t )δa†
in(t ′)〉

〈δa†
in(t )δain(t ′)〉 〈δa†

in(t )δa†
in(t ′)〉


= 1

2

Cqq −Cpp 2+Cqq +Cpp

Cqq +Cpp Cqq −Cpp

 .

(D.3)

In order to measure the amplitude noise, we can employ direct detection of the photon flux.

The power spectral density S̄ of the photocurrent of incident optical power is given by,

S̄p = 2(~ωL)2 〈ṅ〉 (1+2Cqq ) = S̄shot
p + S̄ex

p . (D.4)

where 〈ṅ〉 is the photon flux. The noise spectral density of the shot noise and the excess

amplitude noise are given by,

S̄shot
p = 2(~ωL)2 〈ṅ〉
S̄ex

p = 4(~ωL)2 〈ṅ〉Cqq .
(D.5)

We obtain the noise spectrum for different incident power around the mechanical frequency.

A low powers, the noise spectrum increases linearly versus the incident powers, due to the

shot noise. The deviation due to excess amplitude noise compared to the shot noise, starts to

appear for high probing powers (100s µW to few mW). However, even for high incident powers

(mW), the excess amplitude noise is much less than the shot noise, which is negligible.

The excess noise in the phase quadrature Cpp can be modeled as Cpp = 〈ṅ〉Sex
φφ, where Sex

φφ is

the phase noise spectral density of the laser. To obtain the excess noise in the phase quadrature,
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Figure D.1 – Measurement Setup for the phase noise measurement with a filter cavity. A RF
tone from NA is sent to a phase modulator to generate the probing tones or the calibration tone.
The reflected light is switched between the coherent response measurement to determine the
detuning and the spectrum analyzer to obtain the noise spectrum for noise calibration.

a calibration of the laser phase noise is thus required. In our experiments, we are interested

in the phase noise around the mechanical frequency around 5GHz. A narrow cavity can be

used to transduce the laser frequency noise to the amplitude noise which can be measured by

direct detection. In principle, one can directly use the OMC for such phase noise calibration.

However, due to the large bandwidth(∼ GHz), the transduction from the phase modulation

to the amplitude modulation is insufficient for lasers with low phase noise. In our case, we

choose to work with an external MicronOptics FFP-TF2 filter cavity with a linewidth ∼ 50MHz.

The noise spectrum is firstly taken by direct detection of the reflected light with the laser far

detuned from the filter cavity S A
I (Ω), which consists of the amplitude noise and the detector

noise. We then sweep the cavity detuning in order to measure the phase noise in the range

from 0 to 6 GHz. During each sweep, a coherent cavity response measurement is performed to

obtain the relative detuning ∆ between the laser and the filter cavity. The total noise spectrum

S tot
I (Ω) is then captured with a spectrum analyzer together with a calibration tone located at

the laser detuning frequency. The calibration tone is generated by a phase modulator with

RF signal of frequency |∆|, of known modulation depth β. This enables the conversion of

the recorded noise spectrum to the phase noise spectral density. As shown previously in the

coherent cavity response measurement, the modulation depth β is frequency dependent. The

frequency dependent modulation depth can be independently calibrated by comparing the

power ratio between the generated first-order sideband and the carrier, which is essentially

given by β2/4. The phase noise spectral density can be obtained from the subtracted noise

spectrum S I (Ω) = S tot
I −S A

I , which takes the form,

S I (Ω) = Sφφ(Ω)
κ2/4

(Ω−|∆|)2 +κ2/4

S I (|∆|)
Sφφ(|∆|) , (D.6)
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Figure D.2 – Noise spectrum of the transduced phase noise around 5.3GHz. The laser model
used here is Toptica CTL1550. The direct detection of the cavity transduced amplitude fluctua-
tion with a calibration tone around 5.303GHz with known modulation depth. The amplitude
noise and the detector noise are subtracted.

where Sφφ(Ω) is the phase spectral density. Using the calibration tone with known modulation

depth β, the calibration between the total noise spectral density and the phase noise spectral

density at the frequency |∆| is given by,

S I (|∆|)
Sφφ(|∆|) =

∫
S cal

I (Ω)dΩ

β2/4
. (D.7)

where
∫

S cal
I (Ω)dΩ corresponds to the integral of the noise spectral density of the calibration

tone. The phase noise spectral density can be obtained,

Sφφ(Ω) = S I (|∆|) β2/4∫
S cal

I (Ω)dΩ

(Ω−|∆|)2 +κ2/4

κ2/4
, (D.8)

which results in the frequency noise spectral density Sωω(Ω) =Ω2Sφφ(Ω).

In Fig. D.2, typical noise spectrum of the transduced phase noise of the Totica CTL 1550 around

5.3GHz is shown with S VV(Ω). The central peak corresponds to the calibration tone. The broad

cavity transduced phase noise is also quite evident. The characterized frequency noise spectral

density Sωω(2π×5.3GHz) is ∼ 3×104 rad2Hz. In Fig. D.3, we show the calibrated frequency

noise spectral density from 1GHz to 6GHz. For the laser (Toptica CTL 1550) at typical current

300mA, the relaxation oscillation frequency is around 1.94GHz with a frequency noise spectral

density of Sωω(Ωrelax) ∼ 2×106 rad2Hz.
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Figure D.3 – Calibrated frequency noise spectral density of Toptica CTL1550. The noise
spectrum are jointly plotted for different frequency ranges by sweeping the relative detuning
between the pumping laser and filter cavity resonance.

We perform the same frequency noise measurement with the New Focus Velocity series (TLB-

6328), which turn out to have significantly higher phase noise compared to the Toptica CTL.

The measured relaxation oscillation frequency is ∼ 3.5GHz. The overall frequency noise

spectral density is more than one order of magnitude higher than the Toptica CTL around the

mechanical frequency ∼ 5GHz.

Laser noise has been proven to limit the final occupancy for sideband cooling due to the excess

heating from the excess classical noise. For a sideband resolved optomechanical system, the

final phonon occupancy of the mechanical oscillator from sideband cooling, is given by,

n̄ f =
κn̄ thΓm

4g 2
0 nc

+ κ2

16Ω2
m

+ nc

κ
Sωω. (D.9)

The first term in Eq. D.9 corresponds to the standard laser cooling. The second term corre-

sponds to the quantum limit of sideband cooling due to the quantum back-action. The excess

heating due to the laser noise is given by nc
κ Sωω, which scales linearly with the pumping power.

The optimal final occupancy can be obtained,

n̄ min
f =

√
n̄ thSωωΓm

g 2
0

, (D.10)

which is limited by the excess laser noise. For a OMC with Γm ∼ 2π× 100kHz at 4K, the

required laser frequency noise is Sωω ∼ 106rad2Hz to sideband cool to 1 phonon. For ultra-low

phonon occupancy, e.g. 0.1, the frequency noise has to be two order of magnitude lower,
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Figure D.4 – Sideband cooling of OMC at 4K with two different lasers with and without a
filter cavity. The measurement is performed on an OMC used in Ref. [145], with an optical
linewidth of κ/2π = 250MHz, at 4K with a pressure of ∼ 60mbar. Laser 1 and Laser 2 are
Toptica CTL 1550 and CTL1500 respectively. For each laser, we compare the cooling perfor-
mance with and without a filter cavity. The filter cavity is locked to the pumping laser via PDH
lock to suppress the high frequency noise. A theoretical curve calculated from experimental
parameters is shown in dashed line for comparison.

which is however quite difficult to measure using direct detection. Perfect knowledge of

the phase frequency noise at high frequency becomes extremely necessary. To reveal how

the frequency noise affects the sideband cooling performance, Figure D.4 shows the cooling

results for two Toptica lasers of different models, namely Toptica CTL 1550 and 1500, for

an OMC at 4K. Both of these two lasers are tested with and without a filter cavity. The filter

cavity with linewidth κ∼ 2π× 50MHz is locked to the respective pumping lasers using the

PDH locking technique, which gives additional 20dB of phase noise suppression around the

mechanical frequency. Besides, a theoretical cooling curve based on experimental parameters

is shown in red dashed line for comparison. For low pumping powers, the sideband cooling

results follow the theoretical curve very well. At high powers,e.g. nc ∼ 1000, a deviation from

theoretical results of the final occupancy appears, mainly due the optical heating. The light

blue dots, corresponding to the Toptcal CTL 1550 without the filter cavity, shows much larger

deviation compared to the case with the filter cavity (dark blue dots), which clearly show the

impact of the excess phase noise heating on the laser sideband cooling. For this reason, in our

experiment of laser cooling to the zero-point energy and mechanical squeezing, the pumping
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Figure D.5 – Simplified setup for noise analysis with balanced heterodyne detection. The
low noise signal laser Toptica CTL1500 passes through a filter cavity to reject high bandwidth
excess noise. The LO is phase locked to the signal at various frequencies, which is switched
between two lasers, Toptica CTL1550 and Toptica CTL1500, respectively. The signal power is
around 100µW , while the LO power is set around 6mW.

tones pass through a narrow filter cavity for noise suppression at high frequencies. Due to the

large insertion loss (PM and filter cavity) and experimental complexity, we don’t implement

such noise suppression to the local oscillator.

We note that, in the balanced heterodyne detection of the thermamechanical sideband at

high pumping powers, we consistently observe an increased noise floor compared to the

shot noise floor. Extensive exploration has been made to verify the origin of such noise floor

increase, such as cavity frequency noise, fiber noise, Brillouin scattering, device noise (bulk

acoustic wave), and laser noise. In Fig. D.5, a balanced heterodyne detection setup is adopted

to have a quantum-limited measurement of the excess noise. Due to the finite bandwidth of

the balanced photodiode (MHz), a slave local oscillator is phase locked to the master signal

laser at various frequencies. For the signal laser, we choose a Toptica CTL 1500 model, which

has quite low excess frequency noise at GHz frequency. The signal passes through a filter

cavity which is locked to the carrier to reject the noise at high frequencies. The power of the

signal laser before the beam splitter is around 100µW, which is close to the highest reflected

power we typically have in the sideband cooling experiments. The LO oscillator is switched

between a Toptica CTL 1500 and 1550, with a power of ∼ 6mW before the beam splitter. We

note that, for such noise analysis, a balanced homodyne detection can be adopted in principle.

However, due to the lack of low NEP balanced detector at GHz bandwidth, we stay with the

balanced heterodyne detection, which gives us the flexibility to have quantum-limited noise

measurement in large frequency range.

The excess noise compared to the shot noise floor in the balanced heterodyne detection is

shown in Fig. D.6. The signal laser, which is primarily adopted as the cooling tone in our
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Figure D.6 – Observed excess noise in the balanced heterodyne detection with different
local oscillators. The LO is phase locked at various frequencies away from the signal laser
ranging from 3.6GHz to 7.8GHz. The BHD spectrum is taken for each locking frequency and
jointly plotted, due to the finite bandwidth of the balanced photodiode (80 MHz).

experiments (Toptica CTL 1500), has a power of ∼ 100µW. We bypass all the unnecessary

optical devices and paths, such as PM, attenuator, filter cavity, mirrors and tapered fiber. The

result of the excess noise S ex
I normalized to the shot noise S sn

I using two different lasers for

the LO is shown in blue (Toptica CTL 1550) and red (Toptica CTL 1500) curves. The two lasers

gives different noise property at different frequencies. Due to the high signal laser power,

the excess noise shown in Fig. D.6 can be much higher than the shot noise. It has two main

contributions, the shot noise of the signal laser and the beating between the signal laser and

the excess noise of LO at high frequency. The frequency dependent excess noise observed is

mainly due to the LO excess noise. We note that, the Toptica CTL 1500 has relatively lower

noise around the mechanical frequency. As a result, we use this model as the blue probe in

our experiments and use Toptica CTL 1550 as the LO. As a side note, additional measurements

also show that the noise performance doesn’t change by introducing the optical devices used

in the experiments for the signal laser path.
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E Dissipation in optical micro-cavity

spectroscopy

In optical micro-cavities, the electromagnetic field is enhanced due to small mode volume

and low dissipation. This enables a wide range of parametric process at low powers, such as

four-wave mixing, second-harmonic generation, and light matter interactions, such as the

coupling to quantum emitters (cavity quantum electrodynamics) and mechanical motion

(cavity optomechanics). Despite the strong confinement in the cavity, optical light dissipates to

the environment due to different kinds of losses, such as external coupling, optical scattering

and absorption. Optical absorption in the micro-cavities leads to an elevated temperature,

which in turn modifies the cavity frequency, due to thermal expansion or thermorefractive

effect. Such photothermal effects become more evident when the cavity is driven by a strong

pumping field.

In cavity optomechanics, the mechanical motion is dispersively coupled to the light field in

the cavity due to radiation pressure. Interestingly, early experiments showed that the light

absorption can also be utilized to cool the mechanical motion due to the thermal delay, which

is called the bolometric effect. The photothermalrefractive effects are known to lead to a

static cavity frequency shift. The delayed nature of the thermal process in optical cavity is

treated in the early work. We’ve shown that Floquet dynamics can arise in the multiple tone

pumping schemes, where the Kerr-type nonlinearities can lead to the coupling between the

independent thermomechanical sidebands.

In this section, we show how the micro-cavity is responding to the strong coherent pump and

how the cavity spectroscopy is affected. We consider an optical cavity of resonant frequency

ωc and an input field ain = (āin +δain)e−iωL t of frequency ωL . We thus obtain,

˙̂a =
{

i [∆−∆th(t )]− κ

2

}
â +√

κex âin, (E.1)
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where ∆th = g thδT is the frequency shift due to the photothermal effects.

δṪ (t ) =−γthδT (t )+ gabs|a(t )|2, (E.2)

where g abs is temperature increase per photon and γth is the thermal decay rate. The tempera-

ture change can be obtained accordingly,

δT (t ) =
∫ t

−∞
gabse−γth(t−s)|a(t )|2 ds. (E.3)

We can linearize the intracavity field a(t ) = ā(t )+δâ(t ), where ā =p
n̄c is the mean field.

The field equation of the optical fluctuation δa can be obtained in the Fourier domain,

(−i (∆+Ω)+κ/2))δâ = g thg abs
nc

Ω− iγth

δa +√
κexδâin. (E.4)

We define the optical susceptibility,

χ0
c

(Ω) = 1

κ/2− i (∆+Ω)
(E.5)

We see that under the strong pump, the field fluctuation experiences a modified cavity re-

sponse,

δâ =χc (Ω)
p
κexδâin (E.6)

where

χc (Ω) = 1

κ/2− i (∆+Ω)− g thg abs
n̄c

Ω−iγ
th

(E.7)

The thermal decay rate γth are typically in the order of kHz ∼ MHz, which is typically lower

than the cavity linewidth. ForΩÀ γth, the fluctuation field sees an effective cavity linewidth,

κeff = κ− g thg abs
2n̄cΩ

Ω2 +γ2
th

(E.8)

and an effective detuning,

∆eff =∆−∆th − g thg abs
n̄cγth

Ω2 +γ2
th

(E.9)
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Figure E.1 – Optical cavity linewidth vs. the intracavity photon number from the coherent
response measurement. The cavity used here is the same as in Ref. [122], which is placed
in vacuum at temperature around 10K. The solid circles are from fitted from the coherent
cavity response measurement at different intracavity photon numbers while maintaining the
effective detuning to −Ωm .

where ∆th = g absg thn̄c /γth is the static frequency shift proportional to the mean intracavity

photon number n̄c . The detuning can be typically compensated by tuning the pumping laser

frequency ∆̄=∆−∆th.

A coherent response measurement can be performed for such cavity under strong driving.

From the cavity response, we can obtain the κeff under different powers. Due to nonlinear

dynamics in the cavity, such as two-photon absorption and free-carrier absorption, the cavity

linewidth typically increases when increasing the optical pumping power. However, in the

case of positive g th, which corresponds to negative thermorefractive effect (i.e. dn/dT < 0),

the effective cavity linewidth can suprisingly decrease.

In Fig. E.1, the effective cavity linewidth is shown versus the intracavity number. The mea-

surement is performed with an OMC of κ/2π= 1.7GHz at 10K with pressure ∼ 0.5mbar. As

the pumping powers increases, the effective linewidth decreases linearly, due to the optical

heating. The fitted result infers,

g thg abs
2Ωm

Ω2
m +γth

2
∼ 8.65×104 ×2π. (E.10)
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We thus can obtain,

g thg abs/(4π2) ∼ 227MHz2, (E.11)

which indicates strong absorption heating of the optical cavity.

In a cavity optomechanical system, the optical field is coupled to the mechanical motion via

radiation pressure,

˙̂a =
{

i [∆−∆th(t )]− κ

2

}
â + i g 0â(b̂ + b̂†)+p

κexâin,

˙̂b =
(
−iΩm − Γm

2

)
b̂ + i g 0â†â +

√
Γm b̂in,

(E.12)
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Figure E.2 – Final phonon occupancy
vs. the intracavity photon number. The
phonon occupancy is calibrated from me-
chanical noise thermometry in the bal-
anced heterodyne noise spectrum with
the effective laser detuning ∆eff to −Ω.
The red curve corresponds to a fitting
curve using a theoretical model with lin-
ear absorption.

We can obtain the quantum Langevin equation in

the Fourier domain,

χ−1
c (Ω)δa = i g0ā(δb +δb†)+p

κexδain

χ−1
m (Ω)δb = i g0ā(δa +δâ†)+

√
Γmδbin

(E.13)

where χm(Ω) = 1/(Γm − i (−Ωm +Ω)).

In case of Ωm À γth, for sideband cooling (∆eff =
−Ωm), the mechanical susceptibility is modified

due to the radiation pressure,

χm(Ω) = 1

Γm − i (Ωm +Ω)+4n̄c g 2
0 /κeff

(E.14)

The total damping rate

Γtot = Γm + 4n̄c g 2
0

κ− g thg abs
2n̄cΩm

Ω2
m+γth

2

(E.15)

Dynamical back-action comes from the imbal-

anced Stokes scattering and anti-Stokes scattering.

In this case, the anti-Stocks scattering is enhanced

further due to the effective cavity linewidth nar-

rowing. In principle we can fit the power depen-

dent mechanical linewidth to obtain the heating parameters.
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The output noise spectrum from a balanced heterodyne detection is given by,

S I (Ω+∆LO) = 1+ηcΓtot
n̄ f n̄c 4g 2

0 /κeff

Γ2
tot/4+Ω2

, (E.16)

In Fig.E.2, we show the calibrated final phonon occupancy from the balanced heterodyne

detection when pumping on the red sideband at different powers. A theoretical model in-

corporating linear absorption heating is used for the fitting as shown in the red curve. The

minimum phonon occupancy achieved is n̄ f ∼ 5.5 at n̄c ∼ 1200. We note that, the calibration

of the final occupancy relies on κeff. In our case, the cavity linewidth change over the entire

power sweep is ∼ 10%, which results in negligible impact on the final occupancy calibration.

However, under high pumping power, the absorption induced effective cavity linewidth change

can be comparable to the intrinsic scattering loss, for extremely high Q optical micro-cavities.

Even though the actual intrinsic cavity linewidth may not change, it can have a large impact

on the cavity spectroscopy due to the different effective linewidth and detuning.
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