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1 Introduction

1.1 Motivation

Autonomous manufacturing is an interesting research field that can benefit from Machine
Learning approaches. Traditional control techniques can be combined with artificial intelli-
gence in order to allow robots to learn new behaviours through demonstration. Researchers
at Siemens Corporate Technology in United States have developed a set of gears to test
different robot learning approaches for the assembly process as shown on figure (1). The
assembly of these gears requires high precision and the ability to learn changing complex
dynamics. [8]

Figure 1: Set of gears proposed by Siemens Corporate Technology in Berkeley, California
as benchmark for learning approach developments

In fact, traditional control and Artificial Intelligence approaches are combined to increase
the automation flexibility in tasks such as assembly; because robot learning covers the
methodology, theory and art of enabling a robot, or any other automation system, to learn
new skills and adapt to a flexible environment. Also computer vision techniques are used
in industrial robots. In fact, vision guided robots can be the potential application of the
algorithm developed in this project.

1.1.1 Vision Guided Robots

A VGR1 System is basically a robot fitted with one or more cameras used as sensors to
provide a secondary feedback signal to the robot controller to more accurately move to a
variable target position [16]. VGR is rapidly transforming production processes by enabling
robots to be highly adaptable to the new production line set up, while dramatically reducing

1Vision Guided Robot
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the cost and complexity of fixed tooling previously associated with the design and set up
of robots. So the overall benefits of VGR are listed below:

• Switching between products and batch runs is software controlled and very fast, with
no mechanical adjustments

• High residual value, even if production is changed

• High machinery efficiency, reliability, and flexibility

• Possibility to integrate a majority of secondary operations such as deburring, clean
blowing, washing and measuring

• Reduces manual work

1.2 Tools

In this project, a sensor is needed to provide color and depth data. Thus, Kinect Xbox
is selected (section 1.2.1). Moreover, for the implementation of the machine learning al-
gorithms, Scikit Learn framework is used (section 1.2.2). Besides, OpenCV and Open3D
libraries are utilized because they allow to process the acquired image and three dimen-
sional data (sections 1.2.3 and 1.2.4).

1.2.1 Kinect Xbox

The Kinect sensor is a horizontal bar connected to a small base with a motorized pivot
and is designed to be positioned lengthwise above or below the video display as shown on
figure(2a). The device features a 3D Depth sensor (IR Emitter with IR Camera and Depth
Sensor), RGB camera (Color Sensor), Microphone array and Tilt motor shown on figure
(2b).[10] Here, it is utilized to acquire RGB image with its corresponding depth sensor
data.

(a) Sensor

(b) Components

Figure 2: Microsoft Kinect Xbox Version 1

1.2.2 Scikit Learn

There are several Python libraries which provide solid implementations of a range of ma-
chine learning algorithms. One of the best known is Scikit-Learn, a package that provides
efficient versions of a large number of common algorithms. Scikit-Learn is characterized
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by a clean, uniform, and streamlined API, as well as by very useful and complete online
documentation.[9] In this project, Scikit-learn is used for clustering and data pre-processing.

1.2.3 OpenCV

OpenCV (Open source computer vision) is a library of programming functions mainly
aimed at real-time computer vision.[12] It is used to detect contours and modify images.

1.2.4 Open3D

Open3D is an open-source library that supports rapid development of software that deals
with 3D data. The Open3D front-end exposes a set of carefully selected data structures
and algorithms in both C++ and Python. The back-end is highly optimized and is set up
for parallelization. [21] Here Opne3D is used for image registration, point cloud extraction
using RGB image with depth sensor data and camera calibration.

2 Theory

In this section an overall explanation of key aspects of the theoretical concepts that are
used in this project is provided. In fact, it is focused on the concepts which are used in
order to build an algorithm to infer assembly of two Siemens challenge objects introduced
on previous section. First, data are standardized in order to utilize them for unsupervised
learning. Next, based on intrinsic calibration parameters of Kinect Xbox sensor for its
RGB images, the corresponding point cloud of each RGB frame with its depth sensor data
is required to be computed. Then initially a contour around each component is drawn in
order to detect number of objects for clustering. Furthermore, in order to reduce the noise
effect at acquired data, a technique based on image registration is used, and then Fast
Point Feature Histograms are utilized to replace the (x,y,z) and color features. In fact,
Fast Point Feature Histograms provide features which are invariant to the position and
orientation of the objects, so it is used to reduce the noise effect on section 3.5. Finally,
a metric to measure the difference between distributions is introduced. This measure is
used to infer the assembled objects by comparison of similarity between assigned clusters
to each objects.

2.1 Data Standardization

In order to train a model based on features with different order of magnitude or different
dimensions it is required to standardize data. For example in this project, the dimension
of (x, y, z) features is different from the dimension of the RGB color features,and the order
of magnitude of the depth sensor data is different from the order of magnitude of (x, y)
features. Data standardization is applied by removal of the mean value of each feature and
scaling the remaining by corresponding standard deviation.[15]
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2.2 Contours

In object detection, contour is a curve which joins all of the continuous points along the
boundary in an image. The boundary is defined by the sharp difference between the pixel
values. In fact, contours are the boundaries of a shape with same intensity. For example, in
this project the input frame is transferred to a gray-scale image then a threshold is applied
to distinguish the components from each other and the background. Then the threshold
result of that gray-scale image is used to distinguish the boundary of the components and
draw the corresponding contours. [1] Therefore, in order to increase the detection accuracy
of the boundaries, the binary equivalence of the image is used.[19]

2.3 Gaussian Mixture

A Gaussian mixture model is a probabilistic model that assumes all the data points are
generated from a mixture of a finite number of Gaussian distributions with unknown param-
eters. One can think of mixture models as generalizing k-means clustering to incorporate
information about the covariance structure of the data as well as the centers of the latent
Gaussians.[4] Initially, GMM is mainly utilized to cluster the acquired data. The aim was
to infer the objects by using evaluation criteria of the unsupervised learning to fit Gaus-
sians on each objects. So it was expected that the optimum number of required Gaussians
would be equal to the number of objects. However, because of the facts that data are
noisy and components are too small and close to each other this approach for utilization of
GMM was unsussessful as is described in section 4.1. Then based on the results, only one
Gaussian model is fit to each detected objects by computer vision techniques. Afterwards,
the Gaussian model is used to infer the assembly of any object pairs.

2.4 Point Feature Histograms

The goal of Point Feature Histograms (PFH) formulation is to encode a point’s k-neighborhood
geometrical properties by generalizing the mean curvature around the point using a multi-
dimensional histogram of values.[14] This highly dimensional hyperspace provides an infor-
mative signature for the feature representation, is invariant to the 6D pose of the underlying
surface, and copes very well with different sampling densities or noise levels present in the
neighborhood.

A Point Feature Histogram representation is based on the relationships between the points
in the k-neighborhood and their estimated surface normals. Simply put, it attempts to
capture as best as possible the sampled surface variations by taking into account all the
interactions between the directions of the estimated normals. The resultant hyperspace is
thus dependent on the quality of the surface normal estimations at each point.

Figure (3) presents an influence region diagram of the PFH computation for a query point
(pq), marked with red and placed in the middle of a circle (sphere in 3D) with radius r, and
all its k neighbors (points with distances smaller than the radius r) are fully interconnected
in a mesh. The final PFH descriptor is computed as a histogram of relationships between
all pairs of points in the neighborhood, and thus has a computational complexity of O(k2).
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Figure 3: Influence region diagram of point feature histogram

To compute the relative difference between two points pi and pj and their associated
normals ni and nj , we define a fixed coordinate frame at one of the points (look at figure
(4)).

Figure 4: uvw coordinate system between two points inside influence region

Using the above uvw frame, the difference between the two normals ns and nt can be
expressed as a set of angular features as follows:

where d is the Euclidean distance between the two points ps and pt, d = ‖pt − ps‖2. The
quadruplet 〈α, φ, θ, d〉 is computed for each pair of two points in k-neighborhood, therefore
reducing the 12 values (xyz and normal information) of the two points and their normals
to 4.

To create the final PFH representation for the query point, the set of all quadruplets is
binned into a histogram. The binning process divides each features’s value range into b
subdivisions, and counts the number of occurrences in each sub-interval. Since three out
of the four features presented above are measure of the angles between normals, their
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values can easily be normalized to the same interval on the trigonometric circle. A binning
example is to divide each feature interval into the same number of equal parts, and therefore
create a histogram with b4 bins in a fully correlated space. In this space, a histogram bin
increment corresponds to a point having certain values for all its 4 features. So the values
of the bin with maximum height is chosen as PHF representation of the query point.

2.5 Fast Point Feature Histograms

The theoretical computational complexity of the Point Feature Histogram as described in
previous section for a given point cloud P with n points is O(nk2), where k is the number
of neighbors for each point p in point cloud P . For real-time or near real-time applications,
the computation of Point Feature Histograms in dense point neighborhoods can represent
one of the major bottlenecks.

Fast Point Feature Histograms (FPFH) is the simplified version of point feature histogram
which reduces the computational complexity of the algorithm to O(nk), while still retaining
most of the discriminative power of the PFH.[2]

First, for each query point pq a set of tuples α, φ, θ between only itself and its neighbors are
computed as based on the method described in last section. Then the calculated histogram
is called Simplified Point Feature Histogram (SPFH). Thereafter according to equation (1),
k neighbors of each point are re-determined, and the neighboring SPFH values are used to
weight the final histogram of Pq (called FPFH).

FPFH(pq) = SPFH(pq) +
1

k

k∑
i=1

SPFH(pk)
ωk

(1)

where the weight ωk represents a distance between the query point pq and a neighbor
point pk in some given metric space, thus scoring the (pq, pk) pair, but could just as well be
selected as a different measure if necessary. To understand the importance of this weighting
scheme, figure (7) presents the influence region diagram for a k-neighborhood set centered
at pq.
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Figure 5: Schematic representation of points involved in fast point feature histogram calcu-
lation for a query point pq

Therefore, for a given query point pq, the algorithm first estimates its SPFH values by
creating pairs between itself and its neighbors (illustrated using red lines). This is repeated
for all the points in the dataset, followed by a re-weighting of the SPFH values of pq using
the SPFH values of its pk neighbors, thus creating the FPFH for pq.

2.6 Image Registration

Image registration is the process of transforming different sets of data into one coordinate
system.[7] Registration is necessary in order to be able to compare or integrate the data
obtained from different measurements. In this project image registration is utilized in
order to cancel out the noise effect which presents in captured frames. So herewith the
theory behind two image registration techniques including global registration and iterative
closest point registration is discussed. The utilization of these registrations is explained at
implementation section.

2.6.1 Global Registration

Global registration refers to a class of registration algorithms which do not require an
alignment for initialization. Therefore, these methods produce less tight alignment than
local registration methods. Furthermore, the result of global registration can be utilized
as initialization of the local methods.[5]
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2.6.2 Iterative Closest Point Registration

Iterative Closest Point Registration or ICP registration is a local registration method.
Local registration algorithms, in contrast with the global registration algorithms, require
initial transformation to align roughly the source point cloud to the target point cloud.[6]
Thus, ICP registration requires three inputs: source point cloud, target point cloud and the
and an initial alignment transformation between them. Basically, ICP algorithm iterates
over first finding the accordance set K = (t, s) from target point cloud T, and source
point cloud S which has been transformed with the current transformation matrix T at
each iteration, and second updating the transformation T by optimization of an objective
function E(T) defined over the accordance set K. There are various options to choose the
objective function. One of them which is used in this project is :

E(T) =
∑
(t,s)

‖ t−Ts ‖2 (2)

And the ICP registration which is based on cost function written on equation (2) is called
point-to-point ICP algorithm, because the cost function minimizes the sum of Euclidean
distance between the matched point from target point cloud with the transformation of its
corresponding point at the source point cloud.

2.7 Kullback–Leibler Divergence

Kullback-Leibler divergence, also called relative entropy, is a measure to specify difference
between two probability distribution. In other words, Kullback-Leibler divergence is a
measure of surprise, and if it is equal to zero it means that the two distributions are
identical. In contrast, large Kullback-Leibler divergence value indicates two distributions
are more different from one another.[11] For discrete probability distributions P and Q
defined on the same probability space, the Kullback–Leibler divergence is the expectation
of the logarithmic difference between P and Q and is defined as equation (3):

DKL(P ‖ Q) = −
∑
(x∈χ)

P (x)(log(P (x))− log(Q(x))) (3)

So if P and Q are both multi-variable normal distributions with means µ0 and µ1 and
covariance matrices Σ0 and Σ1 with same dimension k, then relative entropy between
them is defined as equation (4):

DKL(P ‖ Q) =
1

2
(tr(Σ−11 Σ0) + (µ1 − µ0)TΣ−11 (µ1 − µ0)− k + ln |Σ1| − ln |Σ0|) (4)

Equation (4) provides relative entropy measured in nat 1. So if it is divided by ln 2 it
provides the divergence in bits.

3 Implementation and Explanation

In this project, the model proposed by Siemens is considered as a benchmark for the
development of an inferring algorithm which combines computer vision techniques with

1natural unit of information
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unsupervised learning to infer assembly process. Therefore, the components shown on
figure (1) using a 3D printer with scale of 0.9 with respect to the original components were
printed. So the results of the project can be used for development of inference capability
of vision guided robots.

In this section, the models that have been developed to infer the assembly of two distinct
objects are described. It is assumed that there are two input frames. First frame includes
some number of assembly objects placed separate from each other, and second frame also
includes the same objects but one object is either removed away or assembled with another
object of first frame. According to the ultimate goal, the inference system should be able
to detect the missing object and to infer which object has been merged with which one in
second frame. So the inputs of the models are two RGB images with their corresponding
depth sensor data, and the output is the assembled pair of objects.

3.1 Initial Models

Initially it was attempted to use data standardization, principle component analysis, clus-
tering algorithms including Birch1, GMM, DBSCAN2, Mean-shift and K-means, and clus-
tering performance evaluation like Calinski-Harabasz Index. The idea was to provide nor-
malized and rich data for clustering algorithm, tune the hyper parameters and use eval-
uation index to choose the optimum number of clusters. It would be expected that the
proposed idea would allow the system to infer the number of objects. However, based on
he results that will be provided on next section this overall idea was replaced by proposal
of models described next.

3.2 model_1

This model is the first model which could successfully infer the missing object and also
detect if it has been merged with another object. This model can detect two assembled
object except when the noise between data influences the results. Practically, the only
drawback of this model is that it cannot detect if the small bar for the gears shown in
figure (12a) has been merged with L shaped asymmetric object shown on figure (12c).
Now step by step each main operations starting from the input frames is explained.

1. In order to apply morphological operation (i.e here erosion) the RGB image is con-
verted to gray-scale image:

2. The gray-scale image is eroded by an appropriate kernel size in order to not allow
small hallow inside gears to be detected as a contour:

3. Next a fixed-level threshold is applied to distinguish the boundary between the white
background and objects, and the output is used to fit a closed contour to each objects.

4. Then the center of each contours are found and its corresponding (x, y, z) values on
the point cloud are recorded.

5. Using a loop color and depth vales corresponding to all pixels outside each contours

1Balanced Iterative Reducing and Clustering using Hierarchies
2Density-Based Spatial Clustering of Applications with Noise
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are put to a constant value1; therefore, at each time a frame with level depth and
identical color outside of each contour is obtained.

6. After intrinsic calibration and having the point cloud of data, features are standard-
ized to have zero mean and unit variance.

7. After points of background are removed, using full covariance matrix one Gaussian
model is assigned to each object with initial mean point.

3.3 model_2

In this model a GMM2 with number of clusters equal to the number of detected closed
contours is trained. Also shade of object caused by illumination is removed by putting red
color for all pixels inside each contour. Final model in fact is able to detect the objects
but it is not capable of inferring which object has been assembled with which one; because
the objects are too close to each other and there is noise and missing points at input data.
This noise causes difference between one frame to another even if the position of object
has remained unchanged. Therefore, noise deteriorates the clustering results.

3.4 model_3

In order to improve model_13 which has provided some desirable results, model_3 is
also proposed. This model has been created based on model_1, but there are some key
differences between them which are described below:

1. Surface normals are calculated.

2. FPFH4 of point cloud are calculated which includes 33 features. In fact, any change
in the position or orientation of the objects could influence the clustering results. So
in particular, FPFH is used to make the features be invariant to the position and
orientation of the objects.

3. Finally each Gaussian models are trained based on FPFH features.

This model can also infer the objects between two input frames. However, it cannot infer
the pair of merged objects. Furthermore, there is also noise effect because if two frames
taken from an identical scene are provided, then there is also unacceptable Kullback-Leibler
divergence between the detected clusters which indicates that the problem of noise has not
solve.

3.5 model_4

This model is also written based on model_1 which aims to improve its inference. There
are some key modifications applied to model_4 which are:

1Note that the constant value for depth should not be chosen equal to zero as point cloud generator
function of Open3d framework removes the points with zero depth from point cloud so assignment of the
initial mean point for each clusters would be technically problematic. For more information refer to the
code.

2Gaussian Mixture Model
3Texts with the blue color corresponds to the code
4Fast Point Feature Histograms
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1. Erosion is not used to remove out small contours detected for the hollow inner parts of
gears. Instead, based on number of points of each contours, the ones with less points
than a threshold are removed. In this way, only contours around the components
remains and the contours are as tight as possible. This allows to not have background
on fitting a Gaussian on each object, so the influence of level-depth background is
minimized and it helps to improve cluster fitting to the data.

2. This model takes a couple of frames for the first and second scenes. So there are four
frames give to this model as input. Each couple of frames taken from the scene but
two times so they are different from each other because there exists noise at acquired
data.

3. Global registration between each couple of frames are found. In order to find global
registration a method called execute_global_registration is provided which also em-
beds down sampling of point cloud with an appropriate voxel size.

4. Then transformation matrix of point-to-point ICP registration is calculated. After-
wards, one of the frames among each couple is transformed by this result to decrease
the noise effect by making the transformed point cloud be as close as possible to the
second frame at the same pair of frames. In other words, a pair of point clouds pc1
and pc2 are considered, and local transformation T between them is calculated, and
pcd1 is transformed by T to acheive the third point cloud pcd3 which is more similar
to pcd2. As an example, the point clouds of initial couple of frames for one object
before and after transforming point cloud of one of them using ICP registration is
shown on figure (6).

5. Finally for data standardization only (x, y, z) features are standardized with respect
to each other in order to not allow data related to color influence the input data
given to the clustering algorithm.

(a) Point cloud of pcd1 in yellow with point cloud
of pcd2 in cyan

(b) Point cloud of pcd3 in yellow with point cloud
of pcd2 in cyan

Figure 6: Point cloud of pair of initial point clouds before and after transforming one of
them by point-to-point ICP registration
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According to (6), it is demonstrated that after transforming the first point cloud by point-
to-point ICP registration the difference between the first and second point cloud decreases.

Figure 7: Schematic representation of key concepts used in model_4 represented for as-
sembled parts shown on figure (17b)

3.6 Summary of the Implemented Models

To summarize the capabilities and characteristics of each models is provided on table (1).
So any two objects that have been assembled could be detected by model_4 as soon as
noise effect would decrease.

Name Detection of all ob-
jects

Inferring any pair of
assembled objects

Noise reduction

model_1 3 7 7

model_2 3 7 7

model_3 3 7 7

model_4 3 3 3

Table 1: Summary of capability of each proposed models

Also summary of key features used in each models is provided on table (2).
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Name Used methods
Initial models

• Data standardization
• PCA1

• Background removal
• GMM, Birch, K-means, Mean-shift or DBSCAN

model_1
• Data standardization
• Contours
• Erosion
• Removal of points outside contours
• Mean point initialization
• Gaussian distribution

model_2
• Data standardization
• Contours
• Erosion
• Background removal
• Removal of shade of objects
• Mean point initialization
• Gaussian distribution

model_3
• Data standardization
• Contours
• Erosion
• Removal of points outside contours
• FPFH features calculation
• Gaussian distribution based on FPFH features

model_4
• Data standardization
• Tight contours
• Removal of points outside contours
• Point-to-point ICP registration
• Gaussian distribution

Table 2: Summary of key methods used in each proposed models

4 Results and Discussion

In this section the results of inference of the assembly of two objects is presented. First the
results of initial attempts are qualitatively mentioned and described. Then the results of
two scenarios with their explanation are provided. Finally, the noise reduction capability
of model_4 is demonstrated.

14
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4.1 Initial Attempts

Initially, it is attempted to detect number of components by evaluation criteria of unsuper-
vised clustering. In other words, initially, GMM1 was used to cluster data and based on
clustering performance evaluation the optimum number of clusters to be calculated. It was
expected that the optimum number of clusters would be equal to number of components
plus one for the background as a separate cluster. However, this approach would provide
incorrect results. As an example shown on figure (8), using GMM at the best performance
provides totally wrong clustering. Part of this unsuccessful result was because of the fact
that the background would influence the clustering.

(a) Clusters

(b) Calinski-Harabasz Index versus number of clusters for GMM

Figure 8: GMM results for the optimum K=8 based on Calinski-Harabasz index with
principal component analysis with three features

Therefore in order to remove the background before using clustering to detect objects,
GMM with pre defined two number of Gaussians was applied to data as shown on figure
(9).

1Gaussian Mixture Model
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Figure 9: Point cloud of scene after clustering based on GMM with K=2

According to figure (9), GMM could distinguish the background from the components.
So it was used to remove out the background. Next, the scene after background removal
was provided to GMM to distinguish components and at the best result it could roughly
distinguish objects as shown on figure (10). This figure demonstrates the fact that GMM
could not detect correctly number of components. This would be because of the facts
that either components are too small and close to each other that it would influence the
detection or there is noise at data and/or randomly missing depth sensor data. Also the
shadow around gear teeth would influence the results.

Figure 10: Point cloud of scene after background removal and clustering points based on
GMM using only (x,y) features with optimum K=8 based on Calinski-Harabasz Index

4.2 Scenario One

In this scenario first frame includes all seven components separately put on a table as
shown on figure (11a). Second frame shown on figure (11b) includes the same objects and
the same positions but the small bar is merged with its corresponding gear.
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(a) first frame (b) second frame

Figure 11: Scenario one

The detected objects with their numbering for first and second frames are represented on
figure (12) and (13), respectively.

(a) Small Bar: Contour No. 1 (b) Hollow Gear: Contour No. 2

(c) L-shaped Support: Contour No. 3 (d) Bar: Contour No. 4

(e) Small Gear: Contour No. 5 (f) Large Gear: Contour No. 6

(g) Double-row Gear: Contour No. 7

Figure 12: Detected objects with their numbering by model_1 for input frame shown on
figure (11a)
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(a) Hollow Gear with Small Bar: Contour No. 1 (b) L-shaped Support: Contour No. 2

(c) Bar: Contour No. 3 (d) Small Gear: Contour No. 4

(e) Large Gear: Contour No. 5 (f) Double-row Gear: Contour No. 6

Figure 13: Detected objects with their numbering by model_1 for input frame shown on
figure (11b)

Corresponding Kullback-Leibler divergence measure between each couple of detected distri-
butions of model_1 for the given input image and depth sensor data of Kinect is provided
on table (3).
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Figure 13 Object
Hollow
Gear
with
Small
Bar

L-
shaped
Sup-
port

Bar Small
Gear

Large
Gear

Double-
row
Gear

F
ig
ur
e
12

O
bj
ec
t Small Bar 28.6 36.49 92.05 71.84 49.05 47.14

Hollow Gear 3.22 76.43 271.88 57.95 35.44 10.57
L-shaped Support 30.09 0.03 14.65 50.71 7.43 24.31

Bar 293.66 20.32 0.15 365.39 47.36 182.72
Small Gear 30.1 212.66 217.31 0.83 94.19 20.86
Large Gear 23.23 18.3 116.49 71.37 0.11 10.49

Double-row Gear 9.77 40.02 75.25 12.25 10.5 0.09

Table 3: Kullback-Leibler divergence between detected objects from data corresponding to
figure(11a) in columns and objects from data corresponding to figure(11b) in rows

In spite of highlighting the minimum value of each columns on table (3), each columns of
this table from minimum value to the maximum value in ascending order is sorted, and
their corresponding indices are logged at table (4). Therefore, the highlighted row of table
(4) specifies the number of object on the frame (11a) which is the most similar one to the
object corresponding to each column on figure (11b). So according to table (4), based on
Kullback-Leibler divergence the objects number 1 to 6 on figure (13) are detected to have
the least difference with objects 2, 3, 4, 5, 6 and 7 respectively on figure (12).

Figure 13 Object
Hollow
Gear
with
Small
Bar

L-
shaped
Sup-
port

Bar Small
Gear

Large
Gear

Double-
row
Gear

Figure 12 Object Hollow
Gear

L-shaped
Support

Bar Small
Gear

Large
Gear

Double-
row
Gear

Table 4: Matched objects based on Kullback-Leibler divergence from data corresponding
to figure(11a) and figure(11b) using model_1

Also, the divergence values corresponding to each cells of table (4) is provided on table (5).
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object number on figure (13)
Hollow
Gear with
Small Bar

L-shaped
Support

Bar Small
Gear

Large
Gear

Double-
row Gear

di
ve
rg
en

ce
va
lu
e 3.22 0.03 0.15 0.83 0.11 0.09

9.77 18.3 14.65 12.25 7.43 10.49
23.23 20.32 75.25 50.71 10.5 10.57
28.6 36.49 92.05 57.95 35.44 20.86
30.09 40.02 116.49 71.37 47.36 24.31
30.1 76.43 217.31 71.84 49.05 47.14
293.66 212.66 271.88 365.39 94.19 182.72

Table 5: Sorted Kullback-Leibler divergence between detected objects from data corre-
sponding to figure(11a) in columns

According to table (5) and (4), it is concluded that among the detected pair of objects, the
pair including the object number 1 of figure (11b) and object number 2 of figure (11a) which
match with each other with Kullback-Leibler divergence equal to 3.22 has the maximum
divergence among the detected pairs of objects. Therefore, this fact demonstrates that
the missing object from figure (11b), which is object number 1 on figure (11a), has been
merged with object number 2 in figure (11a). The detection result as a point cloud is also
shown on figure (14).

(a) Detected pair of merged objects (b) Point cloud of detected pair of merged objects

Figure 14: Inference of merged components for scenario one

4.3 Scenario Two

Using the method discussed on previous section for Scenario One based on model_1 for
examination of the results for assembly of each two pairs of figure (11a), successfully it
can be inferred which object has been merged with which one except when the gear bar
on figure 12(a) is assembled with L-shaped component on figure 12(c). Therefore, in this
scenario detection of the merged objects is made to be able to detect also merging of these
two components. First, the performance of model_1 for this scenario is examined. For this
reason, RGB and depth sensor data corresponding to figures (15a) and (15b) are given to
model_1.
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(a) First frame (b) Second frame

Figure 15: Scenario two input frames

(a) Small Bar: Contour No. 1 (b) Hollow Gear: Contour No. 2

(c) L-shaped Support: Contour No. 3 (d) Small Gear: Contour No. 4

(e) Bar: Contour No. 5 (f) Double-row Gear: Contour No. 6

(g) Large Gear: Contour No. 7

Figure 16: Detected objects with their numbering by model_1 for input frame shown on
figure (15a)
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(a) Hollow Gear: Contour No. 1 (b) L-shaped with Small Bar: Contour No. 2

(c) Small Gear: Contour No. 3 (d) Bar: Contour No. 4

(e) Double-row Gear: Contour No. 5 (f) Large Gear: Contour No. 6

Figure 17: Detected objects with their numbering by model_1 for input frame shown on
figure (15b)

Finally, after computation of the Kullback-Leibler divergence between Gaussian distribu-
tion corresponding to each of the detected contours of figure (16) with each distribution of
detected contours on figure (17) the results are logged on table (6)
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Figure 17 Object
Hollow
Gear

L-
shaped
with
Small
Bar

Small
Gear

Bar Double-
row
Gear

Large
Gear

F
ig
ur
e
16

O
bj
ec
t Small Bar 26.88 18.15 59.41 49.35 33.02 43.64

Hollow Gear 0.04 57.11 53.59 378.24 24.52 2.9
L-shaped Support 16.0 0.2 30.89 17.32 5.35 16.48

Small Gear 30.57 112.18 0.08 234.28 51.13 25.7
Bar 178.22 21.18 249.35 0.04 40.96 131.76

Double-row Gear 13.32 11.36 23.53 61.83 0.01 5.29
Large Gear 5.21 35.87 37.57 182.54 8.64 0.02

Table 6: Kullback-Leibler divergence between detected objects from data corresponding to
figure(15a) in columns and objects from data corresponding to figure(15b) in rows

Minimum divergence value of each column of table (6) is highlighted which points to the
matching pair of objects. Additionally, sorting the results shown on table (6) finally it
is concluded that model_1 is capable of matching the objects between two frames but
it is not able to decide which object has been merged with which one. In other words,
among the detected pair of distributions based on analysis addressed at previous section,
the maximum divergence between the distributions is expected to be for the object which
also another object has assembled with it. Thus, in this scenario model_1 is not able to
infer merged objects. One reason is the fact that there is noise at the captured data. In
order to reduce the effect of noise, model_4 is provided.

Now the result of Kullback-Leibler divergence after sorting and matching the divergence
values between each possible pair of objects from table (7) it is concluded that objects are
detected correctly and the corresponding Kullback-Leibler divergence between detected
pairs is logged on table (8).

Figure 17 Object
Hollow
Gear

L-
shaped
with
Small
Bar

Small
Gear

Bar Double-
row
Gear

Large
Gear

Figure 16 Object Hollow
Gear

L-shaped
Support

Small
Gear

Bar Double-
row
Gear

Large
Gear

Table 7: Matched objects based on Kullback-Leibler divergence from data corresponding
to figure(11a) and figure(11b) using model_1

23



Inferring Assembly Objects and Sequences from Demonstrations

Figure 17 Object
Hollow
Gear

L-
shaped
with
Small
Bar

Small
Gear

Bar Double-
row
Gear

Large
Gear

Kullback-Leibler divergence 0.0271 0.0328 0.0149 0.0258 0.0024 0.0068

Table 8: Kullback-Leibler divergence value between distribution of each matching pair of
objects in figure (16) and (17)

According to table (7) and (8), by assuming the fact that one object from first frame
has been merged with another object and considering the maximum Kullback-divergence
between distributions of matching pair of objects, it is concluded that the object number
1 of figure (16) has been merged with object number 3 of the same figure as it is shown as
object number 2 in figure (17).

4.4 Data Noise Reduction

One of the sources of having unsuccessful results utilizing model_1 is noise in input data.
So, it is necessary to reduce the influence of input data noise in order to be able to increase
inference capability of the system which allows to detect merged objects. Now a compar-
ison between model_4 and model_1 is studied in order to demonstrate noise reduction
capability of model_4. Two input frames taken from an identical scene shown on figure
(15a) are provided to model_1 and model_4. The final results are represented on table
(9).

object name on figure 16
Small
Bar

Hollow
Gear

L-
shaped
Sup-
port

Small
Gear

Bar Double-
row
Gear

Large
Gear

model_1 0.007 0.044 0.006 0.072 0.034 0.011 0.017
model_4 0.004 0.03 0.003 0.002 0.11 0.006 0.002

Table 9: Kullback-Leibler divergence results between detected pair of objects from data
corresponding to figure (16) based on results of model_1 and model_4

Ideally, Kullback-Leibler divergence between pair of detected pair of objects should be
equal to zero inasmuch as the each pair represent one identical object therefore the normal
distribution fitted to each object at each pair should be identical. However, there is nose
in data acquisition which influences the final results so the divergence between each pair
is not equal to zero. According to table (9), utilizing model_4 decreases the divergence
between each detected pair of objects except for object number five on figure (16e). This
happens because of the fact that model_4 downsamples data which eliminates the furthest
data points on the point cloud, and as object number five is a small gear bar on the top
right corner of the taken frame, less number of reliable data-points remains for clustering
so it influences the final result.
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5 Conclusion

At the beginning, different unsupervised learning algorithms including GMM, Birch, Mean-
Shift, K-means and DBSCAN were used to cluster the image and depth sensor data.
However, it was not possible to fit the clusters on each objects quite separately in as much as
data are too noisy and the components are too small and near each other. Afterwards in this
project, the capability of inferring small assembly objects is demonstrated by combining the
machine learning unsupervised learning with computer vision algorithms. It is proved that
vision techniques can assign a contour around each object. Next, the object type is inferred
by fitting a Gaussian model to each detected contours. Then, the noise effect on the results
decreased considerably by utilizing image registration. Finally after reducing the noise
effect, it was possible to infer which pair of the objects merged together. Nonetheless, the
hyper-parameters of the final proposed algorithm require to be tuned for any new scenario;
These hyper-parameters include threshold for removal of the contours detected for the holes
inside the hollowed gear, the voxel size for down-sampling, the ratio of maximum distance
between point clouds used for noise reduction, and the point numbers for KNN1 used for
FPFH feature calculation.

6 Appendix

6.1 GitHub Repository

IAOD2 GitHub repository was created for version control of the project and systematic
improvement and record of codes. This allowed the author to facilitate testing different
possible methods by logging the changes in a clear way. Herewith HTTPS and SSH links
to the repository are provided:
https://github.com/mahdinobar/IAOD.git
git@github.com:mahdinobar/IAOD.git
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