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Continuous-Domain Signal Reconstruction Using
Lp-Norm Regularization

Pakshal Bohra and Michael Unser, Fellow, IEEE

Abstract—We focus on the generalized-interpolation problem.
There, one reconstructs continuous-domain signals that honor
discrete data constraints. This problem is infinite-dimensional
and ill-posed. We make it well-posed by imposing that the solution
balances data fidelity and some Lp-norm regularization. More
specifically, we consider p ≥ 1 and the multi-order derivative
regularization operator L = DN0 . We reformulate the regularized
problem exactly as a finite-dimensional one by restricting the
search space to a suitable space of polynomial splines with knots
on a uniform grid. Our splines are represented in a B-spline
basis, which results in a well-conditioned discretization. For a
sufficiently fine grid, our search space contains functions that
are arbitrarily close to the solution of the underlying problem
where our constraint that the solution must live in a spline
space would have been lifted. This remarkable property is due
to the approximation power of splines. We use the alternating-
direction method of multipliers along with a multiresolution
strategy to compute our solution. We present numerical results
for spatial and Fourier interpolation. Through our experiments,
we investigate features induced by the Lp-norm regularization,
namely, sparsity, regularity, and oscillatory behavior.

Index Terms—Interpolation, Regularization, Lp-norm, Splines.

I. INTRODUCTION

Regularization techniques are commonly used for the reso-
lution of ill-posed problems. When these problems are for-
mulated as optimization tasks, a standard way of applying
regularization is to introduce a penalty term in the cost func-
tional, which penalizes solutions with undesirable properties.
For example, `2-regularization [1], [2] and, more recently,
`p-regularization [3]–[7] has been widely used to reconstruct
discrete-domain signals from their measurements.

In this work, we focus on problems where the object of
interest f is defined over a continuum. In such cases, a
natural candidate for the regularization term is ‖L{f}‖, where
the choice of the operator L and the norm ‖ · ‖ allows us
to incorporate prior knowledge about f . Continuous-domain
regularization schemes such as Tikhonov [1], [8], [9], which
uses the L2-norm ‖·‖L2

, and generalized total variation (gTV)
[10], which involves the use of the M-norm ‖ · ‖M (an
extension of the L1-norm), have been intensively studied and
their behavior is well-documented. To see the effect of these
schemes, we consider the interpolation problem shown in Fig-
ure 1. The objective there is to construct a continuously defined
function that passes through the given data points exactly.
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Fig. 1: Interpolation of data points symbolized by crosses.
The solid line represents an arbitrary solution. For the other
two cases, it is regularization that dictates how the points are
connected.

However, as shown in the figure, it is possible to construct
infinitely many valid solutions. In this problem, we regularize
the solution by imposing a minimum-norm requirement of
the form ‖L{f}‖. This enables us to obtain solutions with
certain desired properties. It is well-known that Tikhonov (or
L2) regularization tends to produce smooth solutions while
gTV regularization promotes sparsity. These characteristics
can be seen in Figure 1. For example, when we impose gTV
regularization with L = D (the derivative operator), we obtain
a piecewise-constant solution whose derivative is sparse.

The purpose of this paper is to study the effect of
continuous-domain Lp-norm regularization for a general p ≥ 1
and a multi-order derivative operator L = DN0 . To that end,
we consider the generalized interpolation problem with Lp-
norm regularization. Generalized interpolation is an exten-
sion of interpolation. Specifically, given certain measurement
functionals (ν1, ..., νM ) and a value (or measurement) ym
corresponding to each functional, we aim at constructing a
continuously defined function that explains the measurements
exactly. We formulate this problem as

min
f
‖DN0{f}‖Lp s.t. 〈νm, f〉 = ym, m = 1, 2, ...,M, (1)

where ‖·‖Lp
denotes the Lp-norm.
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A. Why Generalized Interpolation?

The reconstruction of a signal f from a finite number
of linear measurements y ∈ RM is a standard problem.
Its ill-posedness is counteracted by regularization. Since the
measurements are usually noisy, it is often formulated as the
unconstrained optimization task

S = arg min
f∈X

(
E
(
y,ν(f)

)
+ λR(f)

)
, (2)

where X is a suitable function space, the operator ν : f 7→
ν(f) = (〈ν1, f〉, . . . , 〈νM , f〉) describes the measurement
model, E : RM×RM → R is a data-fidelity term which forces
the solution to be consistent with the given measurements
and R is the regularization. It can be shown1 that, if E is
strictly convex and R is convex, then all the solutions f∗ ∈ S
generate the same measurement vector z0 = ν(f∗) ∈ RM .
This property allows us to characterize the solution set S as

S = arg min
f∈X

R(f) s.t. ν(f) = z0. (3)

By understanding the effect of the regularization term R(f)
in (3), we can understand its effect for a much broader class
of problems such as (2).

B. Related Work

The Lp-regularized interpolation problem and its variants,
with p ≥ 1 and L = DN0 , have been studied in [11]–[16]
in the context of approximation theory and splines. These
works are theoretical, for the most part. They discuss the
existence of a solution, conditions of optimality, and provide
the functional form of the N0th derivative of the solution.
A specific instance of minimizing the Lp-norm of the second
derivative of polynomial spline interpolants has been looked at
in [17] and [18]. To the best of our knowledge, however, there
exists no work that numerically solves the general continuous-
domain problem (1) and demonstrates the effect of Lp-norm
regularization.

C. Contributions

In this paper, we propose an algorithm to compute the
solution to (1). Through a series of experiments, we then
identify some properties of Lp-norm regularization. Our work
complements [19], [20], where the recovery of signals is
defined over a continuum, too, but without consideration
of continuous-domain regularization. Here is a list of our
contributions.
• We discretize the continuous-domain problem (1) by

using a basis that consists of shifted polynomial B-
splines of degree N0, with knots on a uniform grid. This
basis leads to an exact discretization, thus transform-
ing our continuous-domain problem into an equivalent
finite-dimensional discrete one which can be solved by
algorithms such as the alternating-direction method of
multipliers (ADMM) [21].

• We implement a multiresolution algorithm that progres-
sively decreases the grid size until a solution with the

1See the Appendix.

desired precision is obtained. This strategy relies on the
theory of approximation. It dictates that, when the grid
size is sufficiently small, the search space spanned by our
B-spline basis contains functions that are arbitrarily close
to the solution of the full continuous-domain problem
where our constraint that the solution must live in a spline
space would have been lifted.

• We present numerical results for measurement operators
that correspond to interpolation in the spatial and Fourier
domains. In these experiments, we show the existence
of a continuum of solutions as p varies from ∞ to 1.
We then examine properties of Lp-regularized solutions
such as sparsity, regularity (smoothness) and, oscillatory
behavior and overshoot, as well as the effect of N0 on
the solutions.

The paper is organized as follows: In Section II, we intro-
duce the continuous-domain framework and discuss some ex-
isting theoretical results. We provide background information
on polynomial splines in Section III. Section IV includes the
details of our discretization scheme, along with a discussion
on the approximation power of splines. We present the mul-
tiresolution algorithm in Section V and illustrate our numerical
results in Section VI.

II. GENERALIZED INTERPOLATION

In this section, we define and discuss the key components of
our framework: the measurement operator, the regularization
operator, the regularization norms, and the search space for
the optimization problem. We then briefly review theoretical
results available for this problem.

A. Continuous-Domain Framework

In generalized interpolation, the aim is to construct a
function f : R→ R that explains the measurements y ∈ RM ,
with

ν(f) = (〈ν1, f〉, . . . , 〈νM , f〉) = y, (4)

where 〈νm, f〉 represents the action of the linear functional
νm : f 7→ 〈νm, f〉 = νm(f) ∈ R. When νm and f are ordinary
functions defined over R, the mth measurement is given by
the Lebesgue integral 〈νm, f〉 =

∫
R νm(x)f(x) dx. In the pure

interpolation problem, the measurement functionals are shifted
Dirac distributions νm = δ(· − xm), with the property that
〈δ(· − xm), f〉 = f(xm).

In order to specify the regularization operator L, we in-
troduce the Schwartz space S(R) of smooth and rapidly
decaying functions defined over R. Its continuous dual is the
space of tempered distributions, denoted by S ′(R). In our
framework, we focus on regularization operators of the form
L = DN0 : S ′(R)→ S ′(R), where D is the derivative operator
extended to S ′(R) [22, Chapter 3] and N0 ≥ 1. The null
space of the operator DN0 is NDN0 = span{pn}N0

n=1, with
pn(x) = xn−1. The Green’s function of DN0 is denoted by
ρDN0 ; it satisfies the property that DN0{ρDN0} = δ. The
Green’s function is not unique due to the existence of the
null space.
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Next, we specify the the continuous-domain Lp-norm. For
a measurable function w : R→ R, the Lp-norm (1 ≤ p <∞)
is defined as

‖w‖Lp ,
(∫

R
|w(x)|p dx

) 1
p

, (5)

while the L∞-norm is defined as2

‖w‖L∞ , ess sup
x∈R

|w(x)|. (6)

Equation (5) also specifies the Lp quasi-norm for values of
p ∈ (0, 1). The Lebesgue space of functions Lp(R) = {w :
R→ R | ‖w‖Lp <∞}, where p ∈ [1,∞], is a Banach space.
Here, we also define theM-norm used in gTV regularization,
which is closely related to L1 regularization, as

‖w‖M , sup
ϕ∈S(R),‖ϕ‖∞=1

〈w,ϕ〉 (7)

for any w ∈ S ′(R). The Banach space associated with ‖·‖M
is M(R) = {w ∈ S ′(R) | ‖w‖M < +∞}. The M-norm is
an extension of the L1-norm. Indeed, for any w ∈ L1(R), we
have that

‖w‖M = ‖w‖L1 . (8)

However, the Dirac impulse δ is included in M(R) with
‖δ‖M = 1 but does not belong to L1(R). Thus, we have
that L1(R) ⊂M(R).

Finally, we define the search spaces for the gTV-regularized
and Lp-regularized problems as

M(N0)(R) = {f ∈ S ′(R) | DN0{f} ∈ M(R)} (9)

L(N0)
p (R) = {f ∈ S ′(R) | DN0{f} ∈ Lp(R)}. (10)

There, we consider all generalized functions in S ′(R) for
which the regularization term is finite.

Now that we have described all the components involved in
our regularized generalized-interpolation framework, we state
the optimization problems that we consider in this work. They
are

SM = arg min
f∈M(N0)(R)

‖DN0{f}‖M s.t. ν(f) = y (11)

Sp = arg min
f∈L(N0)

p (R)
‖DN0{f}‖Lp

s.t. ν(f) = y, (12)

where N0 ≥ 1.

B. Theoretical Results

Before the discussion of theoretical results, we need to make
some assumptions.
Assumption 1. In the following statements, the symbol X rep-
resents the search space M(N0)(R) or L(N0)

p (R), depending
on the problem at hand.

i) The measurement operator ν is weak∗-continuous on X .

2The essential supremum is a generalization of the supremum in Lebesgue’s
theory of integration. For a measurable function w : R → R, it is the
smallest value a ∈ R such that w(x) ≤ a almost everywhere (i.e., everywhere
except on a set of measure zero). The essential supremum is equivalent to the
supremum for continuous functions.

ii) For the given measurements y ∈ RM and measurement
operator ν, there exists at least one function f0 ∈ X
such that ν(f0) = y.

iii) The intersection of the null spaces of ν and DN0 is {0}.

Assumption (1.i) implies that the measurement functionals
satisfy νm ∈ Y for m = 1, ...,M , where the predual space
Y is such that X = Y ′. In practice, this imposes a minimum
degree of regularity and decay on {νm}Mm=1. Assumption (1.ii)
states a feasibility condition and is needed to ensure that the
generalized interpolation problem is well-defined. If (1.i) holds
and the νm are linearly independent, then (1.ii) is satisfied for
any y ∈ RM . Assumption (1.iii) ensures that the problem is
well-posed over the null space of the regularization operator,
where the penalization is immaterial. This can be checked by
verifying that the matrix P with entries [P]m,n = 〈νm, pn〉 is
full-rank.

For the gTV-regularized and L2-regularized problems, there
exist representer theorems that provide a parametric character-
ization of the possible range of solutions. In the case of L2

regularization, the solution is unique, smooth, and lies in a
finite-dimensional subspace that depends on the measurement
and regularization operators [9]. The gTV problem can have
infinitely many solutions, but the extreme points of the solution
set SM are known to be splines whose type depends on the
regularization operator only [10]. These splines have adaptive
knots which are fewer than the number of measurements. On
applying the operator DN0 to these extreme points, we recover
Dirac impulses at the knot locations, which implies a sparse
N0th order derivative. We refer to such solutions as the sparse
solutions of the gTV problem.

Beside providing insights about the nature of the solutions,
the representer theorems also play a role in the design of
numerical methods to solve these problems. The parametric
forms of the solution provided by the theorems are used for
the discretization of the continuous-domain problems, leading
to finite-dimensional optimization tasks which can be solved
using standard optimization algorithms. A detailed comparison
of L2 versus gTV regularization can be found in [9]. The
reader can refer to [9], [23] for the algorithms.

In this work, our main focus is on (12) with a general p ≥ 1.
This kind of a problem has been addressed in [11] for the
case of pure interpolation, when the measurement functionals
are Dirac impulses. Here, we state the result from [11] in
a form that is compatible with our framework. When p ∈
(1,∞), there exists a unique solution f0 to the Lp-regularized
interpolation problem. It satisfies

DN0{f0} =
|v0|q−1

‖v0‖q−2Lq

sgn(v0), (13)

where 1
p + 1

q = 1 and

v0(x) =

M∑
m=1

amρDN0 (x− xm) +

N0∑
n=1

bnpn(x) (14)

is a polynomial spline with knots at the data points {xm}Mm=1,
and where {am}Mm=1 and {bn}N0

n=1 are suitable sets of coef-
ficients. On setting p = 2, we recover the result given in
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Fig. 2: Causal B-splines βN0

h (x) with scaling factor h.

[9]. Equations (13)-(14) show that the N0th derivative of the
solution to our continuous-domain problem lies in a finite-
dimensional manifold. The solution itself can then be obtained
by taking an N0-fold integral, subject to adequate boundary
conditions. However, for p 6= 2, we have a nonlinear mapping
in (13). This makes it difficult to interpret other effects of
regularization on the solution. Moreover, due to this nonlinear
mapping, these solutions do not readily lend themselves to
a discretization scheme, unlike in the gTV and L2 cases.
Therefore, we propose a spline-based discretization scheme to
numerically solve the Lp-regularized generalized-interpolation
problem for p ≥ 1.

III. POLYNOMIAL SPLINES

Polynomial splines of degree N0 form an essential compo-
nent of our discretization scheme. They are piecewise-defined
functions where each piece is a polynomial of degree N0.
These pieces are connected in a manner such that the first
(N0−1) derivatives of the function are continuous. The points
where the pieces are connected are called knots. A cardinal
polynomial spline of degree N0 has its knots on the integer
grid and can be expressed uniquely in the form of a B-spline
expansion [24]

f(x) =
∑
k∈Z

c[k]βN0
+ (x− k), (15)

where βN0
+ (x) is the causal B-spline of degree N0 and

(c[k])k∈Z are the expansion coefficients. The causal B-spline
of degree 0 is defined as:

β0
+(x) =

{
1, if 0 ≤ x < 1

0, otherwise,
(16)

while the causal B-spline of degree N0 is obtained by the
(N0 + 1)-fold convolution of β0

+(x) given by

βN0
+ (x) = (β0

+ ∗ β0
+ ∗ ... ∗ β0

+)︸ ︷︷ ︸
N0 convolutions

(x). (17)

We are interested in polynomial splines with knots located on
a uniform grid of size h (in other words, the knots lie in hZ).
Such a spline of degree N0 admits the B-spline expansion

fh(x) =
∑
k∈Z

ch[k]βN0

h (x− kh), (18)

where βN0

h (x) = βN0
+

(
x
h

)
is the causal scaled B-spline of

degree N0. It is uniquely specified by its coefficients ch =
(ch[k])k∈Z. We illustrate in Figure 2 that βN0

h (x) is compactly
supported in [0, (N0 + 1)h]. In fact, the B-spline βN0

h (x) is
the polynomial spline of degree N0, with knots in hZ, that
has the shortest support [25].

Polynomial splines are closely linked to derivative operators
of the form DN0 (N0 ≥ 1). The operator DN0 is associated
with the scaled B-spline of degree (N0 − 1) according to

DN0{βN0−1
h }(x) =

1

hN0−1

∑
k∈Z

dN0
[k]δ(x− kh). (19)

The sequence (dN0 [k])k∈Z is characterized by its z-transform

dN0(z) = (1− z−1)N0 (20)

and is supported in {0, . . . , N0}. In Table I, we provide the
explicit forms of βN0−1

h (x) and (dN0 [k])k∈Z for N0 = 1, 2, 3.

IV. DISCRETIZATION SCHEME

A. Search Space

We discretize the continuous-domain problem (12) by re-
stricting the search space to a suitable space of polynomial
splines, defined as

LN0

p,h(R) =
{∑
k∈Z

c[k]βN0

h (· − kh) : c ∈ `N0
p (Z)

}
, (21)

where βN0

h is the scaled B-spline of degree N0, h > 0 is the
grid size, and

`N0
p (Z) =

{
(c[k])k∈Z : (dN0 ∗ c) ∈ `p(Z)

}
. (22)

The choice of the search space LN0

p,h(R) is guided by its
exact discretization property which we discuss in Section
IV-B. Moreover, the approximation power of splines ensures
that, when h is sufficiently small, the search space LN0

p,h(R)
contains functions that are arbitrarily close to the solution of
the unrestricted continuous-domain problem (12). We present
a detailed argument for this in Section IV-D. The fact that
LN0

p,h(R) is represented in a B-spline basis is another advan-
tage. B-splines are compactly supported and form a Riesz basis
[26], thus resulting in a well-conditioned discretization.

B. Exact Discretization

The exact discretization property of the function space
LN0

p,h(R) stems from Proposition 1.

Proposition 1. For any function f ∈ LN0

p,h(R) with p ∈ (0,∞],
we have that

‖DN0{f}‖Lp
=
∥∥∥ 1

hN0−1/p
(dN0 ∗ c)

∥∥∥
`p
. (23)
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TABLE I: The operator DN0 and the scaled B-spline βN0−1
h (x) and sequence (dN0 [k])k∈Z associated with it.

L = DN0 βN0−1
h (x) (dN0 [0], . . . , dN0 [N0])

D β0
h(x) =

{
1, 0 ≤ x < h

0, otherwise
(1,−1)

D2 β1
h(x) =


x/h, 0 ≤ x < h

(2h− x)/h, h ≤ x < 2h

0, otherwise
(1,−2, 1)

D3 β2
h(x) =


x2/2h, 0 ≤ x < h

(−2x2 + 6xh− 3h2)/2h2, h ≤ x < 2h

(3h− x)2)/2h2, 2h ≤ x < 3h

0, otherwise

(1,−3, 3,−1)

Proof. A scaled B-spline of degree N0 can be expressed as

βN0

h (x) =
1

h
(βN0−1
h ∗ β0

h)(x). (24)

Using (19) and (24), we deduce that

DN0{βN0

h }(x) =
1

hN0

∑
k∈Z

dN0
[k]β0

h(x− kh). (25)

Therefore, for any f ∈ LN0

p,h(R) it stands that

DN0{f}(x) =
1

hN0

∑
k∈Z

(dN0
∗ c)[k]β0

h(x− kh). (26)

Equation (26) implies that DN0{f} is a piecewise-constant
function. For p ∈ (0,∞), the following holds:

‖DN0{f}‖Lp =
(∫

R

∣∣∣ 1

hN0

∑
k∈Z

(dN0 ∗ c)[k]β0
h(x− kh)

∣∣∣p dx
) 1

p

=
(∑
k∈Z

h
∣∣ 1

hN0
(dN0

∗ c)[k]
∣∣p) 1

p

= ‖ 1

hN0−1/p
(dN0

∗ c)‖`p . (27)

For the case p =∞, we have that

‖DN0{f}‖L∞ = ess sup
x∈R

∣∣∣ 1

hN0

∑
k∈Z

(dN0 ∗ c)[k]β0
h(x− kh)

∣∣∣
= sup

k∈Z

∣∣∣ 1

hN0
(dN0

∗ c)[k]
∣∣∣

= ‖ 1

hN0
(dN0

∗ c)‖`∞ . (28)

On plugging the parametric form (21) of any function f ∈
LN0

p,h(R) into Problem (12) and using Proposition 1, we obtain
the equivalent discrete problem

Sp,h = arg min
c∈`N0

p (Z)
‖ 1

hN0−1/p
(dN0 ∗ c)‖`p

s.t.
∑
k∈Z

c[k]ν(βN0

h (· − kh)) = y (29)

The important thing to note here is that Problem (29) is exactly
equivalent to the continuous-domain problem (12) restricted
to the search space LN0

p,h(R). In other words, by solving

the above discrete problem, we effectively find a solution
to the restricted continuous-domain problem, which is given
by
∑
k∈Z c

∗[k]βN0

h (· − kh) with c∗ ∈ Sp,h. As indicated by
Proposition 1, this discretization scheme is also valid for Lp
quasi-norm regularization with p ∈ (0, 1). However, these
values of p correspond to non-convex problems.

Interestingly, the function space LN0

1,h(R) can also be used
for discretizing the gTV problem (11), which then also hap-
pens to be equivalent to the p = 1 case.

Proposition 2. For any function f ∈ LN0

1,h(R), we have that

‖DN0{f}‖M = ‖DN0{f}‖L1
. (30)

Proof. Equation (26) implies that DN0{f} is piecewise-
constant. Moreover, since (dN0 ∗ c) ∈ `1(Z), we conclude that
DN0{f} ∈ L1(R). The relationship between theM-norm and
L1-norm (8) leads to (30).

By restricting the search space in (11) to LN0

1,h(R) and using
Propositions 1 and 2, we obtain the discrete problem (29) with
p = 1.

The salient and novel aspect of our method is the exact
discretization of the continuous-domain problem. To the best
of our knowledge, there is no prior work that discretizes
Lp-regularized continuous-domain problems, with a general
p, exactly. As mentioned earlier, the cases of p = 2 and
gTV have also been handled in [9], [23]. However, those
discretization schemes have been specifically derived from
representer theorems for L2 and gTV regularization, and
unlike the method proposed in this paper, are not applicable
for other values of p.

C. Finite-Dimensional Problem
In practice, we assume that the measurement functionals νm

are supported over a finite interval IT = [0, T ]. Consequently,
a finite number of B-spline expansion coefficients are now
involved in the constraint term in (29). We denote the set of
the indices of these coefficients by K = {kmin, . . . , kmax}; the
cardinality of this set is |K| = N . We now state Proposition
3, which has been adapted from Lemma 3 in [23].

Proposition 3. If the measurement functionals {νm}Mm=1 are
supported in IT , then a solution c∗ ∈ Sp,h of Problem
(29) is uniquely determined by the N coefficients c∗|K =
(c∗[kmin], . . . , c∗[kmax]).
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This result ensures that we only need to optimize over the
N B-spline coefficients that affect the constraint (or data)
term in (29). As described in [23], the expansion coefficients
outside the interval of interest IT can be set in a way such that
all the regularization terms that they affect are nullified. This
allows us to write the infinite-dimensional convolution in (29)
as a matrix multiplication, leading to the finite-dimensional
optimization problem

Sp,h = arg min
c∈RN

‖Lc‖`p s.t. Hc = y, (31)

where the system matrix H : RN → RM is

H =


...

...
ν(βN0

h (· − kminh)) · · · ν(βN0

h (· − kmaxh))
...

...

 , (32)

and the regularization matrix L : RN → RN−N0 is

L =
1

hN0− 1
p


dN0

[N0] · · · dN0
[0] 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 dN0

[N0] · · · dN0
[0]

 .
(33)

The solutions c∗ ∈ Sp,h and c∗ ∈ Sp,h are related in
the following manner: c∗ = c∗|K = (c∗[kmin], . . . , c∗[kmax]).
Proposition 3 implies that the solution to Problem (29) can
be uniquely determined from c∗. Thus, we conclude that
Problem (31) is equivalent to the continuous-domain problem
(12) ((11), respectively) restricted to the search space LN0

p,h(R)

(LN0

1,h(R), respectively), in the sense that the continuous-
domain solution can be fully described by c∗.

D. Effect of the Grid Size

So far, we have seen that the solutions to our continuous-
domain problems, when restricted to LN0

p,h(R), can be obtained
by simply solving the finite problem (31). Now, we look at
the influence of the grid size h on these solutions. We define
a linear projection operator for the function space LN0

p,h(R) as

P
L

N0
p,h

{f}(x) =
∑
k∈Z

〈
f,

1

h
β̃N0

( .
h
− k
)〉
βN0
+

(x
h
− k
)
, (34)

where β̃N0 is a (generalized) function such that〈
βN0
+ (· − p), β̃N0(· − q)

〉
= δ(p− q). (35)

The operator defined in (34) is a valid projection operator
since it is idempotent. This can be shown by using the
biorthonormality condition (35).

We now state Theorem 4, adapted from [27], which bounds
the Lp-norm of the error between a function f ∈ L

(N0)
p (R)

(the search space of the unrestricted continuous-domain prob-
lem, as defined in (9)) and its projection onto LN0

p,h(R).

Theorem 4. Let P
L

N0
p,h

be a linear projection operator for

LN0

p,h(R), as defined in (34). When p ∈ (1,∞), the error of
approximation for any f ∈ L(N0)

p (R) is

‖f − P
L

N0
p,h

{f}‖Lp = O(hN0). (36)

For a small-enough grid size h, the error of approxima-
tion for any f ∈ L

(N0)
p (R) will be negligible. Therefore,

our restricted search space LN0

p,h(R) will contain functions
(projections) which are arbitrarily close to the solution of the
unrestricted continuous-domain problem. Finally, to compute
the solution to the restricted continuous-domain problem, we
only need to solve the finite problem (31).

V. MULTIRESOLUTION ALGORITHM

In this section, we discuss a multiresolution algorithm that
computes a solution with the desired precision by gradually
making the grid finer.

A. Solving the Finite Problem for a Fixed Grid Size

We first discuss the algorithm that we use to solve finite-
dimensional problems of the form (31). As constrained-
optimization problems are typically harder to solve numeri-
cally compared to their unconstrained counterparts, to make
the optimization easier we consider the unconstrained version
of (31) given by

S′p,h = arg min
c∈RN

(
‖y −Hc‖22 + λψp(‖Lc‖`p)

)
(37)

where λ ∈ R+ is the regularization parameter and the function
ψp : R+ → R+ is defined as

ψp(x) =

{
xp if p ∈ [1,∞),
x if p =∞, (38)

Since ψp is monotonic over R+, the solution(s) to the con-
strained problem (31) can be obtained from (37) in the limit
by taking λ → 0. Thus, we propose to solve our finite-
dimensional problem (31) by solving (37) with a very small
value of λ.

The case p = 2 is special since then the optimization
problem (37) is quadratic and can be solved directly without
the need for an iterative algorithm. The unique solution in
this scenario can be obtained by solving the linear system
of equations (HTH + λLTL)c∗ = HTy, which is obtained
by setting to zero the gradient with respect to c of the cost
functional in (37). This can be done by various methods,
including direct matrix inversion.

For the values of p ∈ [1,∞] \ {2}, we use the well-known
ADMM [21] to solve Problem (37). The update rules for
ADMM in our case are

ck+1 = (HTH +
ρ

2
LTL)−1(HTy +

ρ

2
LT (zk + uk)) (39)

zk+1 = proxλ̃ψp(‖·‖`p )
(Lck+1 + uk) (40)

uk+1 = uk + Lck+1 − zk+1, (41)
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where c and z are the primal variables, u is the dual variable,
ρ > 0 is the augmented-Lagrangian parameter and λ̃ = λ/ρ.
The proximal operator of a function g is defined as [28]

proxg(x) = arg min
u

(
1

2
‖u− x‖22 + g(u)

)
. (42)

For p = {1,∞}, the proximal operators involved in (40) have
the closed-form expressions

proxλ̃‖·‖`1 (x) = sgn(x)⊗max(|x| − λ̃, 0) (43)

proxλ̃‖·‖`∞ (x) = x− λ̃proj‖·‖`1≤1(x/λ̃), (44)

where the operators sgn(·) and max(·) are applied component-
wise, ⊗ denotes component-wise multiplication, and the pro-
jection operator is

proj‖·‖`1≤1(x) = arg min
u:‖u‖`1≤1

‖u− x‖22. (45)

This projector is computed as explained in [29]. Thus, the
proximal operators can be computed efficiently for these two
cases.

In general, we do not have a closed form expression for the
proximal operator when p ∈ (1,∞). The additive separability
of the function ψp(‖ · ‖`p) can be used to observe that

[proxλ̃ψp(‖·‖`p )
(x)]m = proxλ̃|·|p([x]m). (46)

Now, we only need to compute the proximal operator for
the 1D function λ̃| · |p : R → R, which we do with the
help of lookup tables (LUTs). We provide in Figure 3 a few
examples of LUTs. An efficient implementation is achieved
by exploiting properties of proxλ̃|·|p(·) such as antisymmetry
and monotonicity.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

1

1.5

p=1.3

p=1.7

p=3

p=5

Fig. 3: Lookup tables for the proximal operators of | · |p

So far, we have seen that ADMM can be used to com-
pute the unique solution to (37) when p ∈ (1,∞). When
p = {1,∞}, ADMM gives us one out of the possibly many
solutions. In order to obtain a sparse solution for p = 1, we
follow the procedure proposed in [9]. The solution c∗ ∈ S′p,h
obtained via ADMM is used to generate the measurements
yλ = Hc∗. Using these “denoised” measurements, Problem

(37) is then recast as a linear program which we solve using
the simplex algorithm [30]. The simplex algorithm guarantees
that we reach an extreme point of S′1,h, which is sparse.

B. Grid Refinement

We begin with a coarse grid hinit and make it finer gradually
until a further decrease of the grid size does not affect the
solution much. At each iteration t ∈ W, we pick a grid size
ht = hinit/2

t, splitting the grid from the previous iteration in
half. We then solve the corresponding finite problem.

For this sequence of grid sizes, we observe that the search
spaces are embedded like LN0

p,ht
(R) ⊂ LN0

p,ht+1
(R). This

ensures that, by splitting the grid in half, we obtain a refined
solution that is at least as good in terms of the cost function.
Finally, we keep making the grid finer until the relative
decrease in cost is less than some desired tolerance level
ε. Another advantage of this embedding property is that the
solution from the previous grid can be used as initialization
for ADMM, which tends to improve the speed of convergence.
This algorithm is adapted from the work in [23].

Algorithm 1 Multiresolution Algorithm

1: Input: p, T , y, ν, N0, λ, hinit, ε.
2: Output: c∗
3: Initialization: c = 0, t = 0, rel error = ε + 1,

prev cost = +∞
4: while rel error > ε do
5: h = hinit/2

t

6: Update H, L
7: if p = 2 then
8: c = (HTH + λLTL)−1HTy
9: else

10: c ← ADMM(c↑2; p, y, H, L, λ)

11: rel error = |cost(c) − prev cost| / prev cost
12: prev cost = cost(c)
13: t ← t + 1

14: if p = 1 then
15: yλ = Hc
16: c∗ = Simplex(yλ, H, L)
17: else
18: c∗ = c

In Algorithm 1, c↑2 corresponds to the coefficients c
modified to match a grid that is twice as fine as that of c.
The routine ADMM(c↑2; p, y, H, L, λ) runs ADMM on
Problem (37) with c↑2 as the initialization while the routine
Simplex(yλ, H, L) runs the simplex algorithm on the linear
program obtained from Problem (37) by using the denoised
measurements yλ.

VI. NUMERICAL EXPERIMENTS

We now present numerical results that allow us to identify
certain properties of Lp-norm regularization and thus under-
stand its effect. We have implemented our multiresolution al-
gorithm using GlobalBioIm [31], a MATLAB library designed
for solving inverse problems.
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A. Setup

In our experiments, we have considered two types of
measurement functionals.
• Dirac Impulses: In this setting, the given measurement

operator takes the form ν(f) =
(
〈δ(·−x1), f〉, . . . , 〈δ(·−

xM ), f〉
)

=
(
f(x1), . . . , f(xM )

)
, where the points

{xm}Mm=1 lie within the interval IT . This operator corre-
sponds to the standard interpolation problem that was dis-
cussed in Section I. We ensure that the points {xm}Mm=1

are pairwise distinct and that M ≥ N0, so that the
operator ν satisfies the condition NDN0 ∩Nν = {0}.

• Dephased Cosines: In this case, the measurement func-
tionals are ν1 = 1[0,T ] and νm = cos(ωmx+θm)×1[0,T ]

for m = {2, 3, . . . ,M}. This operator corresponds to
a variant of the Fourier interpolation problem which
is relevant to magnetic resonance imaging. In order
to construct such an operator and the corresponding
measurements for our experiments, we first generated a
function s and picked a threshold frequency ωmax such
that the spectrum of s had little energy above ωmax. The
frequencies ωm were then drawn uniformly at random
from (0, ωmax] while the phases θm were drawn uniformly
at random from [0, π). This operator ν was applied to s to
generate the measurements that we use in the experiments
involving dephased cosines.

The regularization parameter was set to λ = 10−10 in the first
two experiments and λ = 10−15 in the last two experiments.
For all examples that we present in this section, the grid
tolerance was set to ε = 10−3. In each example, we compute
the solution for several values of p ∈ [1,∞].

B. Results

1) Continuum of Solutions & Sparsity: We first present two
examples (Figures 4 and 5) to talk about the behavior of
the solution as the value of p is changed. In these examples,
the measurement functionals are Dirac impulses (interpolation
problem) and the regularization operator is L = D2. Both
examples show that, as we vary p from ∞ to 1 (note that
p = 1 corresponds to the gTV case), the solutions gradually
move towards the (or one of the) gTV solution(s). For the
example in Figure 4, the computed gTV solutions with and
without applying the simplex are the same and resemble a
linear spline with two knots, in agreement with [10]. It can be
shown that this particular sparse solution is the unique solution
to the gTV problem. In this case, we see that the solution for
p = 1.001 is close to the unique sparse gTV solution.

By contrast, the configuration of the data points in Figure
5 is such that the gTV problem has multiple solutions. This
can be seen in the plots as the solution obtained by running
the simplex after ADMM is sparse (linear spline with three
knots), while the solution obtained via ADMM only is non-
sparse. Interestingly in this case, the solution for p = 1.001
is close to a non-sparse gTV solution. Based on the above
observations and additional experiments of the same nature,
we make several claims.
• There exists a continuum of solutions when p is varied

from ∞ to 1.

• When the gTV problem has a unique solution, the contin-
uum converges to that unique sparse solution as p→ 1.

• When the gTV problem has multiple solutions, the con-
tinuum converges to one of its non-sparse solutions as
p→ 1.

We discuss two implications of our claims. Firstly, the
existence of a continuum implies that one can use Lp-norm
regularization with p ∈ (1,∞), to “interpolate” between the
properties of the gTV and L∞ solutions. One such property
is regularity or smoothness. In Figures 4 and 5, we observe
that the smoothness of the solution reduces as p decreases.
Secondly, we conclude that Lp-norm regularization with a
small p can be used as a sparsity-promoting prior in settings
where the gTV solution is guaranteed to be unique. This is
in line with the use of discrete `p-norm regularization, with a
small p, in compressed-sensing frameworks.

As further illustration, we also provide an example with
the dephased-cosine measurement functionals. In this case, the
regularization operator was L = D, leading to a piecewise-
constant gTV solution in Figure 6. The continuum of solutions
and change in regularity, as p is varied from∞ to 1, is evident
in this figure.

2) Gibbs-Like Oscillations: In the interpolation of step-like
functions using splines, Gibbs-like oscillations are observed
at the discontinuities [17], [32], [33]. We use the step and
staircase functions (Figure 7) to investigate this effect in our
Lp-regularized problem. In these cases, we observe that the
solutions exhibit an oscillatory behavior (with an overshoot at
the discontinuity) which decreases as p goes from ∞ to 1.
Moreover, as p becomes smaller, the oscillatory effect of the
discontinuity becomes more localized. We claim that
• Lp-norm regularization with a smaller p results in weaker

Gibbs-like oscillations at the edges.

We would like to point out that the above claims exclude
the special case of spatial interpolation with L = D. Here, all
values of p ∈ (1,∞) generate the same solution, which is a
linear spline with knots at the data points. This can be inferred
from the theoretical result stated in Section II.

3) Effect of N0: We now discuss the influence of the
operator L = DN0 which is the second component of our
regularization term. In Figure 8, we present an example where
we fix p = 1.5 and compute the solutions for different values
of N0. Our general observation is that
• For any p ∈ [1,∞], the solution becomes smoother and

exhibits more oscillations as N0 increases.

4) Comparison with Shannon’s sinc interpolation: Consider
a standard interpolation problem with uniformly spaced points

xm = m∆, m = 1, 2, ...,M, (47)

where ∆ > 0 is the spacing between any two consecutive
points xm, and measurements {ym}Mm=1. In this case, the well-
known sinc interpolant is given by

fsinc(x) =

M∑
m=1

ym sinc
(x−m∆

∆

)
. (48)



9

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Fig. 4: Unique gTV solution (L = D2). The simplex and ADMM solutions are coincident.
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Fig. 5: Multiple gTV solutions (L = D2).
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Fig. 6: Dephased-cosine measurement functionals (L = D, M = 15). For p = 1, the simplex and ADMM solutions are
coincident.
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Fig. 7: Illustration of Gibbs-like oscillations (L = D2). For p = 1, the simplex and ADMM solutions are coincident.
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Fig. 8: Effect of the regularization operator DN0 for a fixed
p = 1.5.
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Remarkably, the variational formulation (12) of the above
interpolation problem includes Shannon’s sinc interpolation
scheme as a special case corresponding to p = 2 and N0 →∞
[34].

In many applications such as image scaling and image
registration, smoother interpolating functions are desirable
since they are well-behaved with well-defined multi-order
derivatives. While fsinc(x) is a highly regular function, un-
fortunately it also exhibits strong Gibbs-like oscillations at
sharp transitions. On the other hand, as observed in the
previous experiments, by controlling the values of p and N0,
Lp-regularized solutions can be made to achieve a balance
between smoothness and oscillatory behaviour.

To illustrate this advantage of our framework, we consider
interpolation of the data points from Figure 8. We compute
the maximum overshoot (which is related to the extent of
the oscillations) of the sinc interpolant and the Lp-regularized
interpolant for several values of p and N0, and we plot the
results in Figure 9. For ease of comparison, we indicate the
maximum overshoot for sinc interpolation, which is quite high,
as a horizontal dashed line. The plots for the Lp-regularized
solutions show that N0 and p (more so when N0 is small) can
be varied to control the overshoots or oscillations, and balance
them with the desired smoothness.

VII. CONCLUSION

We have implemented a multiresolution algorithm to solve
numerically the generalized-interpolation problem with Lp-
norm regularization, along with its unconstrained variants.
We have shown that an appropriate grid-based B-spline basis
can be used to exactly discretize the (restricted) continuous-
domain problem. Based on previous results from approxi-
mation theory and splines, we have argued that as the grid
size goes to zero, the computed solution approaches the
solution of the unrestricted continuous-domain problem. With
the help of numerical results in the context of spatial and
Fourier interpolation, we have established the existence of a
continuum of solutions as p goes from ∞ to 1. Finally, we
have made insightful observations about properties of the Lp-
regularized solutions such as sparsity, regularity, and Gibbs-
like oscillations.

APPENDIX

Consider the unconstrained optimization problem in (2):

S = arg min
f∈X

(
E
(
y,ν(f)

)
+ λR(f)︸ ︷︷ ︸

J(f)

)
. (49)

Here, we show that if E is strictly convex and R is convex,
then all the solutions f∗ ∈ S generate the same measurement
vector z0 = ν(f∗). The proof is adapted from [35] and is
based on standard arguments in convex analysis.

Let f∗1 , f
∗
2 ∈ S be two solutions of (49) such that they

produce different measurements i.e., ν(f∗1 ) 6= ν(f∗2 ). Let the
minimum value of the objective function be J∗ = J(f∗1 ) =

J(f∗2 ). For a candidate function fc = αf∗1 + (1− α)f∗2 , with
α ∈ (0, 1), we have

J(fc) = E
(
y,ν

(
αf∗1 + (1− α)f∗2

))
+ λR

(
αf∗1 + (1− α)f∗2

)
<

(
α
(
E
(
y,ν(f∗1 )

)
+ λR(f∗1 )︸ ︷︷ ︸

J∗

)
+ (1− α)E(y,ν(f∗2 )) + λR(f∗2 )︸ ︷︷ ︸

J∗

)
= J∗. (50)

The above strict inequality is due to the fact that E is strictly
convex and R is convex. The relation J(fc) < J∗ is a
contradiction and thus ν(f∗1 ) = ν(f∗2 ) = z0.
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Mathématique de France, vol. 67, pp. 102–113, 1939.

[16] S. Karlin, “Interpolation properties of generalized perfect
splines and the solutions of certain extremal problems.
I,” Transactions of the American Mathematical Society,
vol. 206, pp. 25–66, 1975.

[17] J. E. Lavery, “Univariate cubic Lp splines and shape-
preserving, multiscale interpolation by univariate cubic
L1 splines,” Computer Aided Geometric Design, vol. 17,
no. 4, pp. 319–336, 2000.

[18] P. Auquiert, O. Gibaru, and E. Nyiri, “C1 and C2-
continuous polynomial parametric Lp splines (p ≥ 1),”
Computer Aided Geometric Design, vol. 24, no. 7, pp.
373–394, 2007.

[19] I. Daubechies, M. Defrise, and C. De Mol, “An iterative
thresholding algorithm for linear inverse problems with
a sparsity constraint,” Communications on Pure and
Applied Mathematics: A Journal Issued by the Courant
Institute of Mathematical Sciences, vol. 57, no. 11, pp.
1413–1457, 2004.

[20] ——, “Sparsity-enforcing regularisation and ISTA revis-
ited,” Inverse Problems, vol. 32, no. 10, p. 104001, 2016.

[21] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Foundations
and Trends in Machine learning, vol. 3, no. 1, pp. 1–122,
2011.

[22] M. Unser and P. Tafti, An Introduction to Sparse Stochas-
tic Processes. Cambridge, United Kingdom: Cambridge
University Press, 2014, 367 p.

[23] T. Debarre, J. Fageot, H. Gupta, and M. Unser, “B-
spline-based exact discretization of continuous-domain
inverse problems with generalized TV regularization,”
IEEE Transactions on Information Theory, vol. 65, no. 7,
pp. 4457–4470, July 2019.

[24] I. Schoenberg, “Contributions to the problem of approx-
imation of equidistant data by analytic functions: Part
A.— On the problem of smoothing or graduation. A first
class of analytic approximation formulae,” Quarterly of
Applied Mathematics, vol. 4, no. 1, pp. 45–99, 1946.

[25] I. J. Schoenberg, Cardinal Spline Interpolation. SIAM,
1973, vol. 12.

[26] M. Unser and T. Blu, “Cardinal exponential splines: Part
I—Theory and filtering algorithms,” IEEE Transactions
on Signal Processing, vol. 53, no. 4, pp. 1425–1438,
April 2005.

[27] J. Lei, “Lp-approximation by certain projection opera-
tors,” Journal of Mathematical Analysis and Applica-
tions, vol. 185, no. 1, pp. 1–14, 1994.

[28] P. L. Combettes and J.-C. Pesquet, “Proximal splitting
methods in signal processing,” in Fixed-Point Algo-
rithms for Inverse Problems in Science and Engineering.
Springer, 2011, pp. 185–212.

[29] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra,
“Efficient projections onto the l1-ball for learning in high

dimensions,” in Proceedings of the 25th International
Conference on Machine Learning, ser. ICML ’08. New
York, NY, USA: ACM, 2008, pp. 272–279.

[30] G. B. Dantzig, A. Orden, and P. Wolfe, “The generalized
simplex method for minimizing a linear form under linear
inequality restraints,” Pacific Journal of Mathematics,
vol. 5, no. 2, pp. 183–195, Oct. 1955.

[31] E. Soubies, F. Soulez, M. McCann, T.-A. Pham, L. Do-
nati, T. Debarre, D. Sage, and M. Unser, “Pocket guide
to solve inverse problems with GlobalBioIm,” Inverse
Problems, 2019.

[32] F. Richards, “A Gibbs phenomenon for spline functions,”
Journal of Approximation Theory, vol. 66, no. 3, pp. 334–
351, 1991.

[33] Z. Zhang and C. F. Martin, “Convergence and Gibbs’
phenomenon in cubic spline interpolation of discontin-
uous functions,” Journal of Computational and Applied
Mathematics, vol. 87, no. 2, pp. 359–371, 1997.

[34] A. Aldroubi, M. Unser, and M. Eden, “Cardinal spline
filters: Stability and convergence to the ideal sinc inter-
polator,” Signal Processing, vol. 28, no. 2, pp. 127–138,
August 1992.

[35] R. J. Tibshirani, “The lasso problem and uniqueness,”
Electronic Journal of statistics, vol. 7, pp. 1456–1490,
2013.


