Continuous-Domain Signal Reconstruction Using L-p-Norm Regularization

We focus on the generalized-interpolation problem. There, one reconstructs continuous-domain signals that honor discrete data constraints. This problem is infinite-dimensional and ill-posed. We make it well-posed by imposing that the solution balances data fidelity and some L-p-norm regularization. More specifically, we consider p >= 1 and the multi-order derivative regularization operator L = D-N0. We reformulate the regularized problem exactly as a finite-dimensional one by restricting the search space to a suitable space of polynomial splines with knots on a uniform grid. Our splines are represented in a B-spline basis, which results in a well-conditioned discretization. For a sufficiently fine grid, our search space contains functions that are arbitrarily close to the solution of the underlying problem where our constraint that the solution must live in a spline space would have been lifted. This remarkable property is due to the approximation power of splines. We use the alternating-direction method of multipliers along with a multiresolution strategy to compute our solution. We present numerical results for spatial and Fourier interpolation. Through our experiments, we investigate features induced by the L-p-norm regularization, namely, sparsity, regularity, and oscillatory behavior.


Published in:
Ieee Transactions On Signal Processing, 68, 4543-4554
Year:
Jan 01 2020
Publisher:
Piscataway, IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
ISSN:
1053-587X
1941-0476
Keywords:
Laboratories:




 Record created 2020-09-09, last modified 2020-10-29


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)