
SIMPLE AND PROJECTIVE CORRESPONDENCE FUNCTORS

SERGE BOUC AND JACQUES THÉVENAZ

Abstract. A correspondence functor is a functor from the category of finite

sets and correspondences to the category of k-modules, where k is a commu-
tative ring. We determine exactly which simple correspondence functors are

projective. We also determine which simple modules are projective for the

algebra of all relations on a finite set. Moreover, we analyze the occurrence of
such simple projective functors inside the correspondence functor F associated

with a finite lattice and we deduce a direct sum decomposition of F .

1. Introduction

In the present paper, we continue to develop the theory of correspondence functors,
namely functors from the category of finite sets and correspondences to the category
of k-modules, where k is a commutative ring. Assuming that k is a field, we showed
in [BT2] how to parametrize the simple correspondence functors SE,R,V by means
of a finite set E, an order relation R on E, and a simple kAut(E,R)-module V (up
to isomorphism). Here, we determine which of them are projective (or equivalently
injective).

We say that a poset (E,R) is a pole poset if it is obtained by stacking posets
having either cardinality one or cardinality two with two incomparable elements
(see Section 2 for details).

1.1. Theorem. Let k be a field and let SE,R,V be the simple correspondence
functor parametrized by a finite set E, an order relation R on E, and a simple
kAut(E,R)-module V . The following conditions are equivalent :

(a) SE,R,V is projective.
(b) The poset (E,R) is a pole poset and V is a projective kAut(E,R)-module.
(c) Either (E,R) is a totally ordered poset or (E,R) is a pole poset and the

characteristic of k is different from 2.

Since the group Aut(E,R) of automorphisms of a pole poset is a 2-group, (b)
and (c) are easily seen to be equivalent. However, it requires much more work to
prove that (a) implies (b), and also that (b) implies (a) (see Section 4). In the case
when (E,R) is totally ordered, the projectivity of SE,R,V was already proved in
Corollary 11.11 of [BT3].

Every simple functor SE,R,V has a precursor SE,R, called the fundamental functor
associated with the poset (E,R) (see Proposition 3.4). This functor SE,R has the
advantage of being defined over any commutative base ring k. In analogy with the
theorem above, we prove in Section 5 that SE,R is projective if and only if (E,R)
is a pole poset.
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As in [BT4], the theory of correspondence functors has consequences for the
representation theory of the monoid algebra kRX , where RX is the monoid of all
relations on a finite set X. We show in Section 6 that, whenever |E| ≤ |X|, the
evaluation SE,R,V (X) is a projective kRX -module if and only if the simple functor
SE,R,V is projective. This provides a criterion, again in terms of pole posets, for
the projectivity of a simple module for the monoid algebra kRX .

Associated with a finite lattice T , there is a correspondence functor FT which is
defined over an arbitrary commutative ring k and which plays a crucial role in the
theory, see [BT3, BT4]. We know in particular that FT is projective if and only if
the lattice T is distributive, for instance if T is a pole lattice. Also, the assignment
T 7→ FT is known to be a fully faithful functor by [BT3].

If T is arbitrary, we show that FT has direct summands corresponding to pole lat-
tices appearing inside T , by means of suitably constructed idempotents in End(FT ).
Actually, most of the work is done in End(T ) (where morphisms between lattices
are defined to be k-linear combinations of join-morphisms), and then corresponding
results for End(FT ) are obtained using the fully faithful functor T 7→ FT . The con-
struction of idempotents in End(T ) is quite technical (see Section 7) but it provides
an explicit description of the part of End(T ) which corresponds to pole lattices (see
Section 8).

In Section 9, we analyze the special case of a pole lattice Q (see Theorem 9.1 for
details).

1.2. Theorem. Let Q be a pole lattice. Then End(FQ) is isomorphic to a direct
sum of matrix algebras

End(FQ) ∼= End(Q) ∼=
⊕
P

Mn(Q,P )(kAut(P ))

where P varies among pole lattices inside Q and n(Q,P ) is some explicit integer.

From this, we obtain a decomposition of FQ as a direct sum of projective functors
(Theorem 9.4) and each summand is also simple when k is a field (Corollary 9.11).
Finally, if T is an arbitrary finite lattice, we describe a projective direct summand
of FT corresponding to all pole lattices which appear inside T (Theorem 9.12).

2. Pole posets, pole lattices, and opposite morphisms

We first recall some standard facts about lattices and fix the terminology and the
notation. If T is a finite lattice, we denote by ∨ its join, ∧ its meet, and ≤T its
order relation. When the context is clear, we simply write ≤ instead of ≤T . The
unique minimal element is written 0̂ and the unique maximal element 1̂. We let
T op denote the opposite lattice, such that

x ≤T y ⇐⇒ y ≤T op x .
A join-irreducible element in T is simply called irreducible. We write Irr(T ) for the

full subposet of irreducible elements of T . Recall that 0̂ is an empty join, hence is
not irreducible. Similarly 1̂ is an empty meet. If e ∈ T is irreducible, then the half-
open interval [ 0̂, e [T has a unique maximal element, written r(e). In other words,
r(e) = sup{x ∈ T | x < e}. Similarly, if a is meet-irreducible (i.e. irreducible in
the opposite lattice T op), then we define s(a) = inf{x ∈ T | a < x}. Any finite
poset A is isomorphic to the full subposet of irreducible elements of a lattice, e.g.
the lattice I↓(A) of all subsets of A closed under taking smaller elements.

Now we introduce one of the main concepts for the present a paper. Let A and
B be two finite posets. Define A ∗ B to be the poset whose underlying set is the
disjoint union A t B and whose order relation is the union of the order relation
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of A, the order relation of B, and the requirement that a ≤ b for all a ∈ A and
b ∈ B. If A1, . . . , Ar are finite posets, then A1 ∗A2 ∗ . . . ∗Ar is defined inductively.

A pole poset is a poset of the form A1 ∗ A2 ∗ . . . ∗ Ar where each Ai either has
cardinality one, or consists of exactly two incomparable elements. If a ∈ Ai, then
clearly a has height i − 1 (with the usual convention that the minimal elements,
that is, those in A1, have height 0). The definition implies that there are two types
of elements in a pole poset P :

(a) If Ai = {a} has cardinality one, then a is comparable to every element of P .
(b) If Ai = {a, b} has cardinality two, then a is comparable to every element

of P − {b}. In that case, b will be called the twin of a and written ă. In

particular, ˘̆a = a.

Notice that a totally ordered poset is a pole poset (with no twins). We write P1

for the set of elements of the first type (the ‘totally ordered’ part of P ) and P2 for
the set of elements of the second type (the ‘twin’ part of P ).

A pole lattice is a lattice whose underlying poset is a pole poset. Whenever
a and ă are incomparable elements of height i in a pole lattice P , then they are
both join-irreducible and meet-irreducible. In this case, there is a single element
of height i − 1, namely r(a) = a ∧ ă, and a single element of height i + 1, namely

s(a) = a ∨ ă. Clearly r(a) = r(ă) and s(a) = s(ă). Also, 0̂ is the unique element of

height 0 and 1̂ is the unique element of maximal height. Finally, we note that this
discussion easily implies that any pole lattice is distributive.

2.1. Lemma. Let P be a pole lattice and let X = { 0̂ } ∪ {s(a) | a ∈ P2}. Then
P −X is the set of irreducible elements of P .

Proof : This is easy and is left to the reader.

We aim to show that pole posets can be characterized by an internal condition
which will be useful later in Section 4. Recall that a relation R on a set X is a
subset R ⊆ X ×X and that the opposite relation Rop is defined by :

(x, y) ∈ Rop ⇐⇒ (y, x) ∈ R .

Moreover, the product of two relations S and T is the relation defined by

ST := { (z, x) ∈ X ×X | ∃ y ∈ X such that (z, y) ∈ S and (y, x) ∈ T } .

Let ΣX be the symmetric group of all permutations of X. Associated with a
permutation σ ∈ ΣX , there is the relation

∆σ := {(σ(x), x) ∈ X ×X | x ∈ X} .

In particular, we write ∆X := ∆id for the identity morphism of the object X.
The map σ 7→ ∆σ is a monoid homomorphism and ∆σ is invertible for every
σ ∈ ΣX . The symmetric group ΣX acts on relations by conjugation : we write
Rσ = ∆σ−1R∆σ and σR = ∆σR∆σ−1 .

2.2. Proposition. Let P be a finite poset and let R ⊆ P ×P be its order relation
(i.e. (x, y) ∈ R ⇐⇒ x ≤ y). Let R = (P × P )−R. The following are equivalent :

(a) P is pole poset.
(b) There exists a permutation τ of P such that

∀ x, y ∈ P , if x 6≤ y , then y ≤ τ(x) .

(c) There exists a permutation τ of P such that R
op

∆τ−1 ⊆ R.
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Moreover, if (b) holds, then τ can be chosen to be an automorphism of the poset P
and, in that case, it is unique and it satisfies τ(a) = ă for all twins a ∈ P2.

Proof : First note that the equivalence of (b) and (c) follows immediately from
the definitions, because

x 6≤ y ⇐⇒ (y, x) ∈ Rop

while we always have (x, τ(x)) ∈ ∆τ−1 .

Suppose that (a) holds and define τ to be the permutation that preserves heights
and satisfies τ(a) = ă for all twins a ∈ P2. Let x, y ∈ P such that x 6≤ y. If x
is the unique element of its height, then x is comparable to all elements of P and
τ(x) = x. It follows that y < x = τ(x). If x and x̆ are distinct elements of the same
height, i.e. twins, then x is comparable to every element of P − {x̆}. Therefore, if
y 6= x̆, then y < x, hence also y < x̆ = τ(x), while if y = x̆, then y = τ(x). This
proves that we get y ≤ τ(x) in all cases, hence (b) holds.

We assume now that (b) holds and we want to prove (a). We proceed by induc-
tion on the size of P , starting from the obvious case when |P | = 1. Suppose first
that P has at least two distinct maximal elements w and z. Since w 6≤ z, we have
z ≤ τ(w) by (b), hence z = τ(w) by maximality of z. Similarly, w = τ(z). Now if
x 6≤ w, then w ≤ τ(x) by (b), hence w = τ(x), so that x = τ−1(w) = z. In other
words, if x 6= w and x 6= z, then x < w. Similarly, if x 6= w and x 6= z, then x < z.
Therefore w and z are the unique maximal elements of P and P = Q∗{w, z}, where
Q = P − {w, z}.

If x, y ∈ Q and x 6≤ y, then y ≤ τ(x) by (b). But the permutation τ exchanges
w and z, so it restricts to a permutation of Q. Therefore (b) holds for the poset Q
and, by induction, Q is a pole poset. It follows that P is a pole poset, as required.

Suppose now that P has a single maximal element w. If x 6= w, then w 6≤ x by
maximality, hence x ≤ τ(w) by (b). If τ(w) = w, then τ restricts to a permutation
of Q = P − {w} and again we are done by induction.

So we assume now that our single maximal element w satisfies τ(w) 6= w. The
condition x ≤ τ(w) obtained above means that τ(w) is the unique maximal element
of P − {w}. Assume by induction that w > τ(w) > . . . > τ i(w) and that τ j(w)
is the unique maximal element of P − {w, . . . , τ j−1(w)}, for every j = 1, . . . , i.
Then if x 6= w, τ(w), . . . , τ i(w), we have τ i(w) 6≤ x, hence x ≤ τ i+1(w) by (b).
But τ i+1(w) 6= τ(w), . . . , τ i(w), otherwise τ i(w) ∈ {w, τ(w), . . . , τ i−1(w)} which is
impossible by our induction assumption. Therefore, either τ i+1(w) is the unique
maximal element of P − {w, . . . , τ i(w)} and we continue our induction argument,
or τ i+1(w) = w.

Our induction argument must stop and we let r ≥ 2 be the smallest integer
such that τ r(w) = w. Then w > τ(w) > . . . > τ r−1(w) and τ j(w) is the unique
maximal element of P − {w, . . . , τ j−1(w)}, for every j = 1, . . . , r − 1. Moreover,
setting Q = P − {w, . . . , τ r−1(w)}, we obtain

P = Q ∗ {τ r−1(w)} ∗ . . . ∗ {τ(w)} ∗ {w}

and Q must be invariant under τ . By our main induction procedure, Q is a pole
poset. It follows that P is a pole poset. This proves (a) and we are done.

In order to prove our additional statement, we continue the analysis of the permu-
tation τ , as above. In the case when P has two maximal elements w and z, then we
have seen that τ(w) = z. Moreover τ restricts to a permutation of Q = P −{w, z}.
By induction, τ|Q can be replaced uniquely by an automorphism α of the pole
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poset Q such that α exchanges all the twins of Q. Extending α to P by requir-
ing that α exchanges w and z (as it must, as we have seen for τ), we obtain an
automorphism of P having the additional required properties.

In the case when P has a single maximal element w, then we have seen that
τ permutes cyclically the subset S = {w, τ(w), . . . , τ r−1(w)} for some r ≥ 1, and
it restricts to a permutation of Q = P − S. By induction, τ|Q can be replaced
uniquely by an automorphism α of the pole poset Q such that α exchanges all the
twins. Extending α by the identity on S, we obtain an automorphism of P having
the additional required properties.

A join-morphism from a lattice T to a lattice T ′ is a map f : T → T ′ which
commutes with joins, i.e. such that

f
( ∨
a∈A

a
)

=
∨
a∈A

f(a) ,

for any subset A of T . Similarly, a meet-morphism is a map which commutes with
meets. It is easy to see that a join-morphism is order-preserving, by considering
the join t1 ∨ t2 in the case where t1 ≤T t2 in the lattice T . Moreover, the case
A = ∅ shows that a join-morphism maps 0̂ ∈ T to 0̂ ∈ T ′. The following result is
well-known.

2.3. Lemma. Let P and T be finite lattices. Suppose that P is distributive and
let E = Irr(P ). Then any order-preserving map ϕ : E → T extends uniquely to a
join-morphism ϕ̃ : P → T .

Proof : For any p ∈ P , we can write uniquely

p =
∨
e∈E
e≤p

e

and then define the extension of ϕ by

ϕ̃(p) =
∨
e∈E
e≤p

ϕ(e) .

To check that ϕ̃ is a join-morphism, we use the fact that, for any e ∈ E and
p, p′ ∈ P , we have

e ≤ p ∨ p′ ⇐⇒ e ≤ p or e ≤ p′ .
This is because, if e ≤ p∨p′, then, e = e∧(p∨p′) = (e∧p)∨(e∧p′) by distributivity,
hence by irreducibility, either e = e ∧ p, i.e., e ≤ p, or e = e ∧ p′, i.e., e ≤ p′.

2.4. Notation.

(a) We let L be the category whose objects are the finite lattices and where, for
any finite lattices P and T , HomL(P, T ) is the set of all join-morphisms
from P to T .

(b) We denote by InjL(P, T ) the set of all injective join-morphisms P → T .
(c) We denote by SurL(T, P ) the set of all surjective join-morphisms T → P .

Recall from Section 8 of [BT3] that, for any join-morphism f : T → P , there is
an opposite morphism fop : P op → T op defined by

fop(p) =
∨

f(t)≤p

t .



6 SERGE BOUC AND JACQUES THÉVENAZ

2.5. Lemma. Let P and T be finite lattices and let f : T → P be a join-morphism.

(a) fop : P op → T op is a join-morphism. In other words, for any subset A of P ,

fop(
∧
a∈A

a) =
∧
a∈A

fop(a)

(because the meet ∧ is the join in the opposite lattice).
(b) If g : P → Q is a join-morphism, then (gf)op = fopgop.
(c) (fop)op = f .
(d) If f is surjective, then ffop = idP . In particular, fop is injective and, for

any p ∈ P ,

fop(p) =
∨

f(t)=p

t = sup
(
f−1(p)

)
.

(e) If f is injective, then fopf = idT . In particular, fop is surjective.
(f) Passing to the opposite induces bijections InjL(P, T )→ SurL(T op, P op) and

SurL(T, P )→ InjL(P op, T op).

Proof : (a), (b) and (c) are proved in Section 8 of [BT3].

(d) Let p ∈ P . The equality
∨

f(t)≤p

t =
∨

f(t)=p

t follows from the fact that f is

surjective and order-preserving. Moreover, it is clear that
∨

f(t)=p

t = sup
(
f−1(p)

)
.

Since f is a join-morphism, we get f
(

sup
(
f−1(p)

))
= p, hence ffop = idP .

(e) This follows from (b), (c), and (d) by passing to opposite morphisms.

(f) This follows from (d) and (e).

For later use, we now prove a specific result in the case when P is a pole lattice.

2.6. Lemma. Let T be a finite lattice and let P be a pole lattice. Then there is a
bijection between InjL(P, T ) and SurL(T, P ).

Proof : Associated with the pole lattice P , there is the set

E2 = {a1, ă1, a2, ă2, . . . , an, ăn}

consisting of all the twins ai, ăi, indexed in such a way that a1 < a2 < . . . < an.
Here n is a positive integer (which is zero whenever P is totally ordered). We define

wi = ai ∧ ăi , vi = ai ∨ ăi , (1 ≤ i ≤ n) ,

and we also set v0 = 0̂ and wn+1 = 1̂. Just above the pair of twins ai, ăi, there is a
totally ordered interval [vi, wi+1]. Also, we have a totally ordered interval [v0, w1]
below the pair a1, ă1, and a totally ordered interval [vn, wn+1] above the pair an, ăn.
Note that we may have vi = wi+1.

Let λ ∈ InjL(P, T ). We want to define an injective meet-morphism λ̃ : P → T
associated with λ. First we set

λ̃(ai) = λ(ai) , λ̃(ăi) = λ(ăi) (1 ≤ i ≤ n) .

Since λ is a join-morphism, we have

λ(v0) = 0̂ , λ(vi) = λ(ai) ∨ λ(ăi) (1 ≤ i ≤ n) .

Note also that

λ(wi) ≤ λ(ai) ∧ λ(ăi) (1 ≤ i ≤ n) , λ(wn+1) ≤ 1̂ .
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We have to define λ̃ on each interval [vi−1, wi], 1 ≤ i ≤ n + 1, and there are two
cases for each i.

If 1 ≤ i ≤ n, either λ(wi) = λ(ai) ∧ λ(ăi) or λ(wi) < λ(ai) ∧ λ(ăi). In the first
case, we simply set

λ̃(x) = λ(x) , ∀ x ∈ [vi−1, wi] ,

while in the second, we set

λ̃(x) = λ(s(x)) ∀ x ∈ [vi−1, wi[ , and λ̃(wi) = λ(ai) ∧ λ(ăi) ,

where s denotes the shift upwards in the totally ordered interval [vi−1, wi], that is,
s(x) = inf{y | x < y}.

Similarly, if i = n+ 1, either λ(wn+1) = 1̂ or λ(wn+1) < 1̂. In the first case, we
simply set

λ̃(x) = λ(x) , ∀ x ∈ [vn, wn+1] ,

while in the second, we set

λ̃(x) = λ(s(x)) ∀ x ∈ [vn, wn+1[ , and λ̃(wn+1) = 1̂ .

It is easy to see that λ̃ is order-preserving and injective, and moreover

λ̃(ai ∧ ăi) = λ̃(wi) = λ(ai) ∧ λ(ăi) = λ̃(ai) ∧ λ̃(ăi) .

In view of the structure of pole lattices, this means that λ̃ : P → T is a meet-

morphism, or in other words a join-morphism λ̃ : P op → T op. Therefore λ̃ ∈
InjL(P op, T op) and this defines a map

ΩP,T : InjL(P, T ) −→ InjL(P op, T op) , λ 7→ λ̃ .

In the other direction, we proceed as follows. The same construction, applied to
P op and T op, defines a map

ΩP op,T op : InjL(P op, T op) −→ InjL(P, T )

and it is elementary to check that ΩP op,T op maps λ̃ to λ, because the shift upwards
x 7→ s(x) in the opposite [v, w]op of a totally ordered interval corresponds to the shift
downwards x 7→ r(x) in the original interval [v, w]. In other words the composite
ΩP op,T op ◦ ΩP,T is the identity. Similarly, ΩP,T ◦ ΩP op,T op is the identity and it
follows that ΩP op,T op is a bijection.

Now it suffices to compose with the bijection InjL(P op, T op) → SurL(T, P ) of
Lemma 2.5 to obtain a bijection between InjL(P, T ) and SurL(T, P ).

3. Correspondence functors

We recall the basic facts we need about correspondence functors and we refer to
Sections 2–4 of [BT2] and Section 2 of [BT3] for more details. We denote by C the
category of finite sets and correspondences. Its objects are the finite sets and the
set C(Y,X) of morphisms from X to Y (using a reverse notation which is convenient
for left actions) is the set of all correspondences from X to Y , namely all subsets of
Y ×X. A correspondence from X to X is also called a relation on X. Given two
correspondences R ⊆ Z × Y and S ⊆ Y ×X, their composition RS is defined by

RS := { (z, x) ∈ Z ×X | ∃ y ∈ Y such that (z, y) ∈ R and (y, x) ∈ S } ,
and this generalizes the product of relations, defined in Section 2.

For any commutative ring k, we let kC be the k-linearization of C. The objects
are again the finite sets and kC(Y,X) is the free k-module with basis C(Y,X). In
particular, kRX := kC(X,X) is the monoid algebra of the monoid RX of all rela-
tions on X. A correspondence functor is a k-linear functor from kC to k-Mod. We
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let Fk be the category of all correspondence functors (for some fixed commutative
ring k). We define a minimal set for a correspondence functor F to be a finite
set X of minimal cardinality such that F (X) 6= {0}. For a nonzero functor, such a
minimal set always exists and is unique up to bijection.

The first instances of correspondence functors are the representable functors
kC(−, E), where E is a finite set, and more generally the functors

LE,W := kC(−, E)⊗kRE W
where W is a left kRE-module. Actually, the functor W 7→ LE,W is left adjoint of
the evaluation functor

Fk −→ kRE - Mod , F 7→ F (E) .

The correspondence functor LE,W has a subfunctor JE,W defined on any finite
set X by

JE,W (X) :=
{∑

i

φi ⊗ wi ∈ LE,W (X) | ∀ψ ∈ kC(E,X),
∑
i

(ψφi) · wi = 0
}
.

We shall work with the functor LE,W /JE,W for some specific choices of kRE-
modules W .

Recall from Section 5 of [BT1] or Section 3 of [BT4] that, for a suitable two-sided
ideal I, there is a quotient algebra kPE = kRE/I, called the algebra of permuted
orders because it has a k-basis PE consisting of all relations on E of the form ∆σR,
where σ runs through the symmetric group ΣE and R is an order relation on E. The
product of two order relations R and S in the basis PE is the transitive closure of
R∪S if this closure is an order relation, and zero otherwise. This product, together
with the conjugation action of permutations on relations, describes completely the
algebra structure of PE .

Among the kRE-modules, there is the fundamental module kPEfR, associated
with a poset (E,R), where E is a finite set and R denotes the order relation on E
which defines the poset structure. Here fR is a suitable idempotent in kPE , de-
pending on R, and kPEfR is the left ideal generated by fR. The main thing we need
to know about the fundamental module kPEfR is its structure as a bimodule. This
is described in the next result, which combines Corollary 7.3 and Proposition 8.5
of [BT1].

3.1. Proposition. Let E be a finite set and R an order relation on E.

(a) The fundamental module kPEfR is a (kRE , kAut(E,R))-bimodule and the
right action of kAut(E,R) is free.

(b) kPEfR is a free k-module with a k-basis consisting of the elements ∆σfR,
where σ runs through the group ΣE of all permutations of E.

(c) The action of the algebra of relations kRE on the module kPEfR is given
as follows. For any relation Q ∈ RE,

Q ·∆σfR =

{
∆τσfR if ∃ τ ∈ ΣE such that ∆E ⊆ ∆τ−1Q ⊆ σR,
0 otherwise .

Moreover, τ is unique in the first case.

Using the bimodule structure on kPEfR, we define

TR,V := kPEfR ⊗kAut(E,R) V ,

where V is any kAut(E,R)-module. Then TR,V is a left kRE-module for the action
induced from the action of kRE on kPEfR described in Proposition 3.1 above. The
main thing we need to know about TR,V is the following result, which is part of
Theorem 8.1 in [BT1].
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3.2. Proposition. Assume that k is a field. If V is a simple kAut(E,R)-module,
then TR,V is a simple kRE-module.

Associated with the above kRE-modules, we can now define some specific corre-
spondence functors, as in [BT2] and [BT3]. Using the fundamental module kPEfR,
we define

SE,R := LE,kPEfR/JE,kPEfR

and we call it the fundamental functor associated with the poset (E,R). Using the
module TR,V , we define

SE,R,V := LE,TR,V /JE,TR,V .

Note that SE, σR ∼= SE,R and SE, σR, σV ∼= SE,R,V , for any permutation σ ∈ ΣE .
Our next result is Proposition 2.6 in [BT3].

3.3. Proposition.

(a) The set E is a minimal set for SE,R and SE,R(E) ∼= kPEfR as left kRE-
modules.

(b) The set E is a minimal set for SE,R,V and SE,R,V (E) ∼= TR,V as left kRE-
modules.

(c) If k is a field and V is a simple kAut(E,R)-module, then SE,R,V is a simple
correspondence functor.

It is proved in Theorem 4.7 of [BT2] that, when k is a field, any simple functor has
the form SE,R,V for some triple (E,R, V ) and that the set of isomorphism classes
of simple correspondence functors is parametrized by the set of isomorphism classes
of triples (E,R, V ) where E is a finite set, R is an order relation on E, and V is a
simple kAut(E,R)-module.

We note that the fundamental functor SE,R is a precursor of SE,R,V , in the sense
of the following result.

3.4. Proposition. Suppose that V is a simple kAut(E,R)-module, hence in
particular generated by a single element v.

(a) Consider the surjective morphism of correspondence functors

Φ : LE,kPEfR −→ LE,TR,V

induced by the surjective homomorphism of kPE-modules

ΦE : kPEfR −→ kPEfR ⊗kAut(E,R) V = TR,V , a 7→ a⊗ v .

Then Φ induces a surjective morphism of correspondence functors

SE,R −→ SE,R,V .

(b) Φ induces an isomorphsim

SE,R ⊗kAut(E,R) V ∼= SE,R,V .

Proof : (a) is Lemma 2.7 in [BT3], while (b), which is far from being obvious, is
Theorem 7.9 in [BT4].

In short, it it is possible to recover SE,R,V from SE,R by simply tensoring with V .
Consequently, the fundamental functors play a crucial role throughout our work.

Another important construction of correspondence functors is obtained from
finite lattices (see [BT3] for details).
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3.5. Definition. If T is a finite lattice and X is a finite set, define FT (X) = kTX ,
the free k-module on the set TX of all functions X → T . Given ϕ : X → T and a
correspondence S ∈ C(Y,X), then Sϕ : Y → T is defined by the formula

(Sϕ)(y) =
∨

(y,x)∈S

ϕ(x) .

Then FT becomes in this way a correspondence functor.

We want to recall two main properties of this construction but we first need
some notation. Let L be the category of finite lattices and join-morphisms, as in
Notation 2.4. The k-linearization kL of L has the same objects and HomkL(T, T ′)
is the free k-module kHomL(T, T ′) with basis HomL(T, T ′). The composition of
morphisms in kL is the k-bilinear extension of the composition in L. The following
results appear in Theorems 4.8 and 4.12 of [BT3].

3.6. Theorem.

(a) The assignment T 7→ FT extends to a k-linear functor F? : kL → Fk.
Moreover, F? is fully faithful.

(b) If T is a finite lattice, then FT is projective in Fk if and only if T is dis-
tributive. In particular, if P is a pole lattice, then FP is projective.

This provides a fruitful method for handling correspondence functors. Any en-
domorphism in kL induces an endomorphism in Fk. In particular, any idempotent
endomorphism of an object T in kL produces a direct summand of the correspon-
dence functor FT . This mechanism will be exploited in Sections 7, 8, and 9.

Our next lemma gives another realization of the functor FT in a special case.
Let E be a finite set and R an order relation on E (i.e. (E,R) is a finite poset). As
in [BT3], let I↓(E,R) be the lattice of all subsets of E closed under taking smaller
elements with respect to R. Then (E,R) is isomorphic to the poset of irreducible
elements of I↓(E,R) via the map e 7→ E≤e = {x ∈ E | x ≤ e}. Notice that
r(E≤e) = E<e in the lattice I↓(E,R).

3.7. Lemma. Let (E,R) be a finite poset and let T = I↓(E,R). For any finite
set X, define a map

ρX : FT op(X) −→ kC(X,E)R , ρX(ϕ) = {(x, e) | e /∈ ϕ(x)} ⊆ X × E ,

where ϕ : X → T op is any basis element in FT op(X). Then this induces an isomor-
phism of correspondence functors ρ : FT op −→ kC(−, E)R.

Proof : The result can be obtained by combining Proposition 4.5 and Remark 8.7
in [BT3], using the isomorphism, via complementation, I↓(E,R

op) ∼= I↓(E,R)op.
We provide instead a direct proof.

Since ρX(ϕ) is a subset of X×E, it is an element of C(X,E). It is right invariant
by R because if (x, e) ∈ ρX(ϕ), i.e. e /∈ ϕ(x), and if (e, f) ∈ R, then (x, f) ∈ ρX(ϕ)
because f /∈ ϕ(x) (otherwise we would have e ∈ ϕ(x) since ϕ(x) is closed under
taking smaller elements). Hence ρX(ϕ) = ρX(ϕ)R ∈ C(X,E)R. It is elementary
to check that ρ is a morphism of functors. Moreover, it is an isomorphism because
there is an inverse morphism mapping S ∈ C(X,E)R to the function ϕS : X → T op

defined by
ϕS(x) = {e ∈ E | (x, e) /∈ S} .

The fact that S is right invariant by R implies that ϕS(x) is closed under taking
smaller elements. Details are left to the reader.

There is a direct connection between the functors associated with lattices and
the fundamental functors. This is Theorem 6.5 in [BT3].
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3.8. Theorem. Let (E,R) be a finite poset. There is a unique surjective morphism

Θ : FI↓(E,Rop) −→ SE,R
mapping the inclusion map j : E → I↓(E,R

op) to fR ∈ SE,R(E) ∼= kPEfR.

We now recall another main result from [BT3], which will be used in Section 4
(and also in Theorem 9.7). Let T = I↓(E,R) and, as in Section 9 of [BT3], consider
the element

(3.9) γT :=
∑
A⊆E

(−1)|A|η0
A ∈ FT op(E) .

Here η0
A : E → T op is the map defined by

η0
A(e) =

{
r(E≤e) = E<e if e ∈ A ,
E≤e if e /∈ A ,

with values in the lattice T , but viewed as elements of T op.

3.10. Theorem. Let (E,R) be a finite poset and let T = I↓(E,R). The subfunctor
of FT op generated by γT is isomorphic to the fundamental functor SE,R. Moreover,
the isomorphism

<γT>(E) −→ SE,R(E) ∼= kPEfR
maps γT to fR.

Proof : The first statement is Theorem 9.5 in [BT3]. The second statement can be
traced in the proof of that theorem. More precisely, if j : E → I↓(E,R

op) denotes
the inclusion map, it is shown that γT ∈ FT op(E) is the image of j ∈ FI↓(E,Rop)(E)
under a morphism

ξ : FI↓(E,Rop) −→ FT op .

On the other hand, by Theorem 3.8 above, there is a surjective morphism

Θ : FI↓(E,Rop) −→ SE,R
mapping the inclusion map j to fR ∈ SE,R(E) ∼= kPEfR. Both morphisms ξ and
Θ are proved to have the same kernel and this induces the required isomorphism
<γT> ∼= SE,R. It follows that this isomorphism maps γT to fR.

4. Characterization of simple projective functors

Throughout this section, assume that the base ring k is a field and let (E,R) be a
finite poset. Our aim is to characterize the triples (E,R, V ) such that the simple
correspondence functor SE,R,V is projective.

Since SE,R,V is isomorphic to a quotient of the fundamental functor SE,R (see
Proposition 3.4), we shall actually work with the latter. We have SE,R ∼= <γT> by
Theorem 3.10, where T = I↓(E,R) and γT is defined by (3.9). We let

ζ : <γT> −→ FT op

be the inclusion morphism. We also let

ρ : FT op −→ kC(−, E)R

be the isomorphism of correspondence functors described in Lemma 3.7 and we
define

δ := ρζ(γT ) = ρ(γT ) ∈ kC(E,E)R .

In view of the isomorphism ρ, the subfunctor <δ> of kC(−, E)R generated by δ is
isomorphic to <γT>, hence to SE,R. We shall work with δ and we first need its
precise description as a linear combination of relations.
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4.1. Lemma. Let δ := ρ(γT ) ∈ kC(E,E)R, where γT is defined by (3.9), and let
A be a subset of E.

(a) ρ(η0
A) = R

op ∪∆A, where R = (E × E) − R and ∆A = {(a, a) | a ∈ A} ⊆
E × E.

(b) δ =
∑
A⊆E

(−1)|A|(R
op ∪∆A).

(c) R(R
op ∪∆A) = R

op ∪∆A.
(d) RγT = γT and Rδ = δ.

Proof : Throughout this proof, we write x ≤ y for (x, y) ∈ R.

(a) By Lemma 3.7, we have

ρ(η0
A) = {(f, e) ∈ E × E | e /∈ η0

A(f)} =

{
{(f, e) ∈ E × E | e 6< f} if e ∈ A ,
{(f, e) ∈ E × E | e 6≤ f} if e /∈ A .

But {(f, e) ∈ E × E | e 6≤ f} = R
op

. If e ∈ A, we need to add to R
op

the element

(e, e), because e 6< e. Therefore ρ(η0
A) = R

op ∪∆A, as required.

(b) This follows from (a) and the fact that δ = ρ(γT ) =
∑
A⊆E(−1)|A|ρ(η0

A).

(c) Since ∆E ⊆ R, we have an inclusion

R
op ∪∆A = ∆E(R

op ∪∆A) ⊆ R(R
op ∪∆A) .

In order to prove the reverse inclusion, we let (a, c) ∈ R(R
op ∪ ∆A). Then there

exists b ∈ E such that a ≤ b and (b, c) ∈ Rop ∪∆A.

If (b, c) ∈ Rop, that is, c 6≤ b, then c 6≤ a, otherwise we would have c ≤ a ≤ b.

Therefore (a, c) ∈ Rop.
If (b, c) ∈ ∆A, then b = c ∈ A and there are two cases. If a = b, then (a, c) =

(a, a) ∈ ∆A. If a 6= b, then a < b = c, hence c 6≤ a, that is, (a, c) ∈ Rop.
This completes the proof that R(R

op ∪∆A) ⊆ Rop ∪∆A, hence equality.

(d) It follows from (b) and (c) that Rδ = δ, hence also RγT = γT because ρ is an
isomorphism mapping γT to δ. The latter equality was also proved in Lemma 9.3
of [BT3].

We also need some technical computations involving δ.

4.2. Lemma. As above, consider δ =
∑
A⊆E

(−1)|A|(R
op ∪∆A). Let S ∈ C(E,E)R

(that is, S ⊆ E × E and S = SR).

(a) Sδ 6= 0 if and only if there exists a permutation σ ∈ ΣE such that S = ∆σR.
(b) If S = RS and Sδ 6= 0, then there exists an automorphism σ ∈ Aut(E,R)

such that S = ∆σR.
(c) If (E,R) is a pole poset and if (R

op ∪∆A)δ 6= 0, then

A = E1 and R
op ∪∆A = ∆τR ,

where τ is the automorphism of (E,R) satisfying τ(a) = ă for all a ∈ E2

(the twin part of E) and τ(a) = a for all a ∈ E1 (the totally ordered part
of E).
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Proof : (a) The condition Sδ 6= 0 is equivalent to SγT 6= 0 (because ρ maps γT
to δ), hence also to SfR 6= 0 by Theorem 3.10. By Proposition 3.1, we obtain

Sδ 6= 0 ⇐⇒ SfR 6= 0 =⇒ ∃σ ∈ ΣE such that ∆E ⊆ ∆−1
σ S ⊆ R

=⇒ ∃σ ∈ ΣE such that R ⊆ ∆−1
σ SR ⊆ R2

=⇒ ∃σ ∈ ΣE such that R ⊆ ∆−1
σ S ⊆ R

=⇒ ∃σ ∈ ΣE such that S = ∆σR ,

using the equalities S = SR and R2 = R (by transitivity and reflexivity of R).
Conversely, if S = ∆σR, then, by Lemma 4.1, we obtain

Sδ = ∆σRδ = ∆σδ 6= 0 ,

because δ 6= 0 since it generates a nonzero subfunctor.

(b) We have S = ∆σR by (a) and since S = RS, we obtain R∆σR = ∆σR,
or in other words RσR = R, where Rσ = ∆−1

σ R∆σ. Since ∆E ⊆ R, we get
Rσ ⊆ RσR = R, hence Rσ = R because both relations have the same cardinality.
This means that ∆σ commutes with R, that is, σ is an automorphism of the poset
(E,R).

(c) By (b) applied to S = R
op ∪∆A (which satisfies S = RS by Lemma 4.1), we

have

R
op ∪∆A = ∆σR

for some automorphism σ ∈ Aut(E,R). Since (E,R) is a pole poset, σ is the identity
on E1 and interchanges some of the twins e, ĕ ∈ E2, so in particular σ = σ−1.

If e ∈ E2 and ĕ is its twin, then ĕ 6≤ e, hence (e, ĕ) ∈ Rop ⊆ ∆σR. Therefore
(e, σ(e)) ∈ ∆σ and (σ(e), ĕ) ∈ R, that is σ(e) ≤ ĕ. This shows that σ(e) cannot be
equal to e, i.e. σ(e) = ĕ. Thus σ interchanges all the twins, that is, it is equal to
the automorphism τ of the statement.

If e ∈ E1, then (e, e) ∈ ∆σ and (e, e) ∈ R, so (e, e) ∈ ∆σR. If conversely
(e, e) ∈ ∆σR, then (e, σ(e)) ∈ ∆σ and (σ(e), e) ∈ R, that is, σ(e) ≤ e. This cannot
hold if e ∈ E2, because σ(e) = ĕ 6≤ e, and therefore e ∈ E1. It follows that

e ∈ E1 ⇐⇒ (e, e) ∈ ∆σR ⇐⇒ (e, e) ∈ Rop ∪∆A ⇐⇒ (e, e) ∈ ∆A ⇐⇒ e ∈ A ,

the third equivalence using the fact that (e, e) /∈ Rop because e ≤ e. This shows
that A = E1 and completes the proof.

One of the key parts of the proof of the main result is contained in the next
lemma, which will also be used again in Section 5.

4.3. Lemma. Suppose that k is a field. Let SE,R be the fundamental functor
associated with a finite poset (E,R) and let M be a nonzero direct summand of SE,R.
If M is projective, then (E,R) is a pole poset.

Proof : Since SE,R ∼= <γT> by Theorem 3.10, we can view M as a direct summand
of <γT> and we let ω : M −→ <γT> be the inclusion morphism. As above, we
let ζ : <γT> −→ FT op be the inclusion morphism and ρ : FT op −→ kC(−, E)R be
the isomorphism of correspondence functors described in Lemma 3.7. Finally let

α : M −→ kC(−, E)R

be the composite α = ρζω.
Since M is projective and the base ring k is a field, M is also injective, by

Theorem 10.6 in [BT2]. Therefore the injective morphism α splits, that is, there
exists a surjective morphism

σ : kC(−, E)R −→M



14 SERGE BOUC AND JACQUES THÉVENAZ

such that σα = id. Thus ασ is an idempotent endomorphism of kC(−, E)R. Since
R ∈ kC(E,E) is a generator of kC(−, E)R, its image c := σ(R) ∈ M(E) is a
generator of M . Now γT generates <γT>, so we can write ω(c) = vγT for some
v ∈ kC(E,E). We know that RγT = γT by Lemma 4.1 and therefore vγT = vRγT .
Replacing v by vR, we can assume that v = vR and we do so. Thus v ∈ kC(E,E)R.
Note that c 6= 0, hence vγT 6= 0.

Now for any u ∈ kC(X,E), we have

ασ(uR) = u·ασ(R) = u·α(c) = u·ρζω(c) = u·ρζ(vγT ) = uv·ρζ(γT ) = uvδ ,

where δ = ρζ(γT ) = ρ(γT ) as in Lemma 4.1. In particular, using the fact that
δ = δR (because δ ∈ kC(E,E)R), we obtain

ασ(δ) = ασ(δR) = δvδ .

Since vγT is nonzero, so is its image vδ = ρζ(vγT ) under the injective morphism ρζ
and therefore

0 6= vδ = ασ(R) = (ασ)2(R) = ασ(vδ) = v·ασ(δ) = vδvδ ,

from which it follows that δvδ 6= 0.
Summarizing, we have proved that, under the assumption that M is projective,

the element δ = ρ(γT ) ∈ kC(E,E)R satisfies :

(4.4) ∃ v ∈ kC(E,E)R with δvδ 6= 0 .

Our aim is to show that (4.4) implies that (E,R) is a pole poset.
The condition δvδ 6= 0 implies that there exists a relation S (in the expression

of v ∈ kC(E,E)R as a linear combination of relations) such that δSδ 6= 0. In
particular Sδ 6= 0, hence S = ∆τR for some τ ∈ ΣE , by Lemma 4.2. In view of the
expression of δ obtained in Lemma 4.1, there exists a subset A ⊆ E such that

(R
op ∪∆A)∆τRδ 6= 0 .

Again, this implies that the relation (R
op ∪∆A)∆τR has the form

(R
op ∪∆A)∆τR = ∆σR

for some σ ∈ ΣE , by Lemma 4.2. Since the left hand side is invariant under
left multiplication by R (by Lemma 4.1), part (b) of Lemma 4.2 implies that ∆σ

commutes with R (i.e. σ ∈ Aut(E,R)). It follows that

(R
op ∪∆A)∆τσ−1R = R .

In particular, we deduce that

R
op

∆ψ ⊆ R , where ψ := τσ−1 .

By the characterization of Proposition 2.2, this implies that (E,R) is a pole poset,
as was to be shown.

4.5. Theorem. Let k be a field and let SE,R,V be the simple correspondence
functor parametrized by a finite set E, an order relation R on E, and a simple
kAut(E,R)-module V . The following conditions are equivalent.

(a) The simple correspondence functor SE,R,V is projective.
(b) (E,R) is a pole poset and V is a projective kAut(E,R)-module.
(c) Either (E,R) is a totally ordered poset or (E,R) is a pole poset and the

characteristic of k is different from 2.
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Proof : (b) ⇐⇒ (c). For a pole poset (E,R), the group Aut(E,R) is a 2-group
(elementary abelian), generated by all the possible transpositions of twins. In case
(E,R) is totally ordered, this group is trivial and the unique simple k-module k is
automatically projective. In case (E,R) is a pole poset but is not totally ordered,
then Aut(E,R) is nontrivial and the characteristic of k comes into play. If char(k) 6=
2, then all simple kAut(E,R)-module V are projective (by Maschke’s theorem). If
char(k) = 2, then the unique simple kAut(E,R)-module is the trivial module,
which is not projective (by the converse of Maschke’s theorem).

(a)⇒ (b). Since SE,R,V is projective by assumption and isomorphic to a quotient
of the fundamental functor SE,R by Proposition 3.4, it is isomorphic to a direct
summand of SE,R. Therefore Lemma 4.3 can be applied and it follows that (E,R)
is a pole poset.

We also have to prove that V is a projective kAut(E,R)-module. Let

T = TR,V = kPEfR ⊗kAut(E,R) V

be the simple kC(E,E)-module appearing in the definition SE,R,V := LE,T /JE,T .
By adjunction, there is an isomorphism

EndFk(LE,T ) ∼= HomkC(E,E)(T, LE,T (E)) ∼= EndkC(E,E)(T )

and this is a skew field by Schur’s lemma (it is actually the field k). This has no
nontrivial idempotent and so LE,T is indecomposable. But the surjective morphism

π : LE,T −→ LE,T /JE,T = SE,R,V

splits because SE,R,V is projective by assumption. Therefore π is an isomorphism,
by indecomposability of LE,T , hence LE,T is projective.

Evaluating this projective functor at the finite set E, we obtain a kC(E,E)-
module

LE,T (E) = T = kPEfR ⊗kAut(E,R) V

which must be projective, by Lemma 10.1 in [BT2]. Now kPEfR ⊗kAut(E,R) V is
actually a module for the quotient algebra kPE = kRE/I (see Section 3). It follows
that kPEfR ⊗kAut(E,R) V is a projective module for the algebra kPE , because of
the splitting of the composition of surjective homomorphisms

kRE −→ kPE −→ kPEfR ⊗kAut(E,R) V .

Finally, by Theorem 7.5 in [BT1], there is an isomorphism of algebras

kPE ∼=
∏
R

MnR(kAut(E,R))

for some integers nR, where R runs over all order relations on E up to isomorphism
(see also Remark 3.4 in [BT4]). Thus there is a Morita equivalence

kPE - Mod ∼=
∏
R

kAut(E,R) - Mod

and the bimodule inducing the equivalence is
⊕

R kPEfR (see Remark 7.6 in [BT1]).
Therefore kPEfR ⊗kAut(E,R) V corresponds to the kAut(E,R)-module V under
this equivalence. Since projectivity is preserved by a Morita equivalence, V is a
projective kAut(E,R)-module, as required.

(b) ⇒ (a). We assume that (E,R) is a pole poset and, as before, we write x ≤ y
for (x, y) ∈ R. Our aim is to compute δ2 and show that it is an idempotent. In
view of the expression of δ in Lemma 4.1, we have to consider terms of the form
(R

op ∪∆A)δ. By Lemma 4.2, this can be nonzero only if A = E1 and R
op ∪∆A =

∆τR, where τ ∈ Aut(E,R) is the automorphism exchanging all twins e, ĕ ∈ E2 and
fixing E1 = E − E2 pointwise.
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Thus R
op ∪ ∆E1

is the only term which can come into play and we now show
that it is indeed equal to ∆τR. For any a ∈ E1, we have (a, τ(a)) ∈ ∆τ and
τ(a) = a ≤ a, hence (a, a) ∈ ∆τR. Therefore ∆E1 ⊆ ∆τR. Since (E,R) is a pole

poset, Proposition 2.2 implies that R
op ⊆ R∆τ = ∆τR, using the fact that τ is an

automorphism of (E,R). So we obtain

R
op ∪∆E1 ⊆ ∆τR .

In order to prove the reverse inclusion, we let (a, τ(a)) ∈ ∆τ (since τ = τ−1) and
(τ(a), b) ∈ R, i.e. τ(a) ≤ b. If a ∈ E2, then τ(a) = ă, hence ă ≤ b. Then b 6≤ a, that

is, (a, b) ∈ Rop. If a ∈ E1, then τ(a) = a, hence a ≤ b. If a = b, then (a, b) ∈ ∆E1
,

while if a 6= b, then a < b, hence b 6≤ a, that is, (a, b) ∈ R
op

. This shows the
required reverse inclusion and therefore

R
op ∪∆E1 = ∆τR ,

as claimed. In particular (R
op ∪∆E1)δ = ∆τRδ = ∆τδ by Lemma 4.1. Therefore

δ2 =
∑
A⊆E

(−1)|A|(R
op ∪∆A)δ = (−1)|E1|(R

op ∪∆E1)δ = (−1)|E1|∆τδ .

Since τ permutes all the subsets A ⊆ E and preserves their cardinality, we have
∆τδ = δ∆τ . Consequently(

(−1)|E1|∆τδ
)2

= (−1)2|E1|∆2
τδ

2 = δ2 = (−1)|E1|∆τδ ,

so we obtain an idempotent.
Right multiplication by this idempotent defines an idempotent endomorphism

of the correspondence functor kC(−, E)R (notice that both ∆τ and δ commute
with R). The image of this endomorphism is the subfunctor generated by the ele-
ment (−1)|E1|∆τδ, that is, the subfunctor generated by δ because ∆τ is invertible.
But we know that <δ> is isomorphic to the fundamental functor SE,R. Therefore
SE,R is isomorphic to a direct summand of kC(−, E)R, hence a direct summand
of kC(−, E) because R2 = R is idempotent. Since kC(−, E) is a projective functor
by Yoneda’s lemma, we conclude that SE,R is projective.

Our assumption (b) also says that the kAut(E,R)-module V is projective. By
Proposition 3.4, SE,R,V is isomorphic to SE,R⊗kAut(E,R)V , which is in turn a direct
summand of SE,R ⊗kAut(E,R) kAut(E,R) ∼= SE,R. Therefore SE,R,V is projective,
proving (a).

Another proof of the implication (b) ⇒ (a) will be given later in Corollary 9.11.

5. Projectivity of fundamental functors

Given a poset (E,R), we know from Proposition 3.4 that every simple functor
SE,R,V has a precursor SE,R, called the fundamental functor associated with the
poset (E,R). This is actually defined over any commutative base ring k. The main
result of this section is analogous to Theorem 4.5.

5.1. Theorem. Let (E,R) be a finite poset. Then SE,R is a projective functor if
and only if (E,R) is a pole poset.

Proof : Assume first that SE,R is a projective functor. We allow the base ring
k to vary and we write a superscript (k) to emphasize that a functor belongs to
the category Fk of correspondence functors defined over the base ring k. Let m
be a maximal ideal of k and let C = k/m be the corresponding field. The scalar
extension functor

Fk −→ FC , F 7→ C ⊗k F
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is left adjoint of the scalar ‘restriction’ functor, which is obviously exact. Therefore,
scalar extension sends projective objects to projective objects. In particular, we see

that C ⊗k S(k)
E,R is projective.

By Theorem 6.6 in [BT4], the evaluation S(k)
E,R(X) at a finite set X has an explicit

k-basis BX . This basis is defined independently of k, so that it remains a k′-basis
for any ring extension k → k′. Therefore, the natural surjection

C ⊗k S(k)
E,R(X) −→ S(C)

E,R(X)

is an isomorphism. Since this holds for any X, we have C ⊗k S(k)
E,R
∼= S(C)

E,R and it

follows that S(C)
E,R is projective. Now the functor M := S

(C)
E,R satisfies the assump-

tions of Lemma 4.3 and this lemma then asserts that (E,R) is a pole poset, as was
to be shown.

For the converse, we use the proof of (b) ⇒ (a) in Theorem 4.5. This proof
(except the last paragraph) tells us precisely that, whenever (E,R) is a pole poset,
the fundamental functor SE,R is projective.

Another proof of the projectivity of SE,R whenever (E,R) is a pole poset will be
given later (see Remark 9.9).

6. Simple and projective modules for the algebra of relations

In this section, we assume that k is a field and we use the close link between
simple correspondence functors and simple modules for the monoid algebra kRX =
kC(X,X), in order to determine all the simple kRX -modules which are projective.
Let us first recall this link, which is Theorem 8.1 in [BT4].

6.1. Theorem. Let X be a finite set and let k be a field.

(a) The set of isomorphism classes of simple RX-modules is parametrized by
the set of isomorphism classes of triples (E,R, V ), where E is a finite set
with |E| ≤ |X|, R is an order relation on E, and V is a simple kAut(E,R)-
module.

(b) The simple module parametrized by the triple (E,R, V ) is SE,R,V (X), where
SE,R,V is the simple correspondence functor corresponding to the triple
(E,R, V ).

Pole posets appear again in the main result of this section.

6.2. Theorem. Assume that k is a field. Let X be a finite set and let (E,R, V )
be a triple as in Theorem 6.1 above. The following conditions are equivalent.

(a) The simple kRX-module SE,R,V (X) is projective.
(b) The simple correspondence functor SE,R,V is projective.
(c) (E,R) is a pole poset and V is a projective kAut(E,R)-module.

Proof : By Theorem 4.5, we already know that (b) and (c) are equivalent.
(a) =⇒ (b). Let W = SE,R,V (X). By the adjunction mentioned in Section 3,

the identity map W → SE,R,V (X) gives rise to a morphism

π : LX,W −→ SE,R,V ,

which is surjective by simplicity of SE,R,V . Since, by assumption, the kRX -module
W is projective and indecomposable, the functor LX,W is projective and indecom-
posable (see Lemma 2.4 in [BT2]) and is therefore the projective cover of SE,R,V .
By Theorem 10.7 in [BT2], we have

SE,R,V ∼= LX,W /Rad(LX,W ) ∼= Soc(LX,W ) .
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Suppose that LX,W is not simple. Then the simple functor SE,R,V appears at
least twice in a composition series of LX,W . Therefore, the simple kRX -module
W = SE,R,V (X) appears at least twice in a composition series of the kRX -module
LX,W (X). But LX,W (X) = kRX ⊗kRX W ∼= W is simple and we obtain a con-
tradiction. It follows that LX,W must be simple and so π : LX,W → SE,R,V is an
isomorphism. Since LX,W is projective, so is SE,R,V , as was to be shown.

(b) =⇒ (a). The simple functor SE,R,V must be generated by its nonzero eval-
uation SE,R,V (X) and it is projective by assumption. Therefore, by Lemma 7.3
in [BT2], the kRX -module SE,R,V (X) is projective.

7. Morphisms and idempotents corresponding to pole lattices

In this section, we construct explicit families of morphisms in the category kL of
finite lattices, where k is a commutative ring, in particular orthogonal idempotent
endomorphisms of a fixed lattice T . They involve a pole lattice P and they have
remarkable properties which will be used in Section 8 to obtain structural results
about the endomorphism algebra EndkL(T ). By means of the fully faithful functor
T 7→ FT , we will then see in Section 9 how to deduce structural results about the
correspondence functor FT , and in particular about projective direct summands
of FT .

Our results generalize those obtained in [BT3] in the special case when P is a
totally ordered lattice. We follow the same line of development, but with many
necessary additions and technical adaptations.

We first fix a pole lattice P and a surjective join-morphism π : T → P . Recall
that P1 denotes the subset of elements p ∈ P such that p is comparable to every
element of P , while P2 denotes the subset consisting of all twins. Let E = Irr(P ) be
the set of irreducible elements of P , described in Lemma 2.1. We write E1 = E∩P1

and E2 = E ∩ P2 (so that in fact E2 = P2).

7.1. Notation. We define a notation associated with the surjective join-morphism
π : T → P .

(a) For every p ∈ P , let bπp = πop(p) = sup
(
π−1(p)

)
. Whenever π is fixed, we

write simply bp = bπp .
(b) B = Im(πop) = {bp | p ∈ P}. Notice that B is a subposet of T op which

is join-closed, hence a subposet of T which is meet-closed and isomorphic
to P .

(c) For every e ∈ E1, let b−e = br(e) and b+e = be, where r(e) = sup[0̂, e[P .

(d) For every e ∈ E2 and if ĕ is the twin of e, let b−e = be and b+e = bs(e), where

s(e) = inf]e, 1̂]P = e ∨ ĕ.

7.2. Remark. The definition in (c) and (d) is not uniform since we have be = b+e
in one case and be = b−e in the other. This strange behavior will be explained in
Remark 7.10, where a uniform explanation will be given.

For every e ∈ E, choose ae ∈ [b−e , b
+
e ]T (where the subscript T emphasizes that

the interval is taken within the lattice T ). This defines a family A = (ae)e∈E with
the following property.
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7.3. Lemma. Let A = (ae)e∈E be a family of elements of T such that ae ∈
[b−e , b

+
e ]T for every e ∈ E. Then, whenever e, f ∈ E,

e <P f =⇒ ae ≤T af .

Proof : If e ∈ E2 and f ∈ E1 with e <P f , then e <P s(e) ≤P r(f) <P f and
therefore

ae ≤T b+e = bs(e) ≤T br(f) = b−f ≤T af .
The other cases are easier and are left to the reader.

By Lemma 2.3, since P is a distributive lattice, the order-preserving map E → T ,
e 7→ ae, extends to a join-morphism

jπA : P −→ T , p 7→ ap .

Explicitly, we have a0̂ = 0̂ and ae∨ĕ = ae ∨ aĕ whenever e ∈ E2 with twin ĕ (these
are the only non-irreducible elements of P by Lemma 2.1). Note that jπA is not
necessarily a section of π (see the beginning of the proof of Proposition 7.9).

Define the family B− = (b−e )e∈E and write

µ(B−, A) =
∏
e∈E

µ(b−e , ae)

where µ(−,−) denotes the Möbius function of the lattice T . Allowing the family
A to vary (i.e. ae varies in [b−e , b

+
e ]T for each e ∈ E), define

(7.4) jπ = (−1)|E1|
∑
A

µ(B−, A) jπA .

This is a k-linear combination of join-morphisms, hence an element of kL(P, T ).
The morphisms jπ have remarkable properties, in particular when jπ is composed
with the surjection π. We are going to explore those properties in a series of
propositions. We first start with a lemma.

7.5. Lemma. Let A = (ae)e∈E and Ã = (ãe)e∈E be two families as above and
fix some g ∈ E. Suppose that ãe = ae for all e ∈ E − {g}. Then the following are
equivalent :

(a) jπ
Ã

(p) = jπA(p) for all p ∈ P − {g}.
(b) If g ∈ E2, then ãg ∨ ağ = ag ∨ ağ where ğ is the twin of g.

Proof : Suppose that (b) holds. If p = e ∈ E − {g}, then ãe = ae by assumption,

that is, jπ
Ã

(e) = jπA(e). If p = 0̂, then jπ
Ã

(0̂) = 0̂ = jπA(0̂). If now p ∈ P − E and

p 6= 0̂, then p = u∨ ŭ for some u ∈ E2, by the definition of a pole lattice. If g 6= u, ŭ,
then

jπ
Ã

(p) = jπ
Ã

(u ∨ ŭ) = ãu ∨ ãŭ = au ∨ aŭ = jπA(u ∨ ŭ) = jπA(p) .

If g = u, then the assumption (b) implies that

jπ
Ã

(p) = jπ
Ã

(g ∨ ğ) = ãg ∨ ãğ = ãg ∨ ağ = ag ∨ ağ = jπA(g ∨ ğ) = jπA(p) ,

proving (a).

Assume conversely that (a) holds. If g ∈ E1, then condition (b) is empty and
there is nothing to prove. So suppose that g ∈ E2. Then

ãg ∨ ağ = ãg ∨ ãğ = jπ
Ã

(g ∨ ğ) = jπA(g ∨ ğ) = ag ∨ ağ ,

proving (b).
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7.6. Definition. Associated with the subset E = Irr(P ), there is a subfunctor
HP of FP defined as follows. For any finite set X, the evaluation HP (X) is the
k-submodule of FP (X) generated by all functions ϕ : X → P such that E 6⊆ ϕ(X).

This subfunctor is important in the theory of correspondence functors (see Sec-
tion 5 of [BT3] for details).

7.7. Proposition. Let π ∈ SurL(T, P ) and let jπ : P → T be the morphism
defined in (7.4).

(a) For any finite set X and any function ϕ : X → P such that E 6⊆ ϕ(X), we
have jπϕ = 0.

(b) jπ induces a morphism Fjπ : FP → FT vanishing on HP , hence induces in
turn a morphism

F jπ : FP /HP −→ FT .

Proof : Since (b) immediately follows from (a), it suffices to prove (a). We have

jπϕ = (−1)|E1|
∑
A

µ(B−, A)jπAϕ =
∑

ψ:X→T

(−1)|E1|
( ∑

A
jπAϕ=ψ

µ(B−, A)
)
ψ .

For a fixed ψ, we have to prove that the inner sum over A is zero. If this inner
sum is empty, then the sum is zero and we are done. Otherwise, we can choose
A such that jπAϕ = ψ. Let g ∈ E be such that g /∈ ϕ(X). Then we can modify

the family A into Ã, by changing only the image jπA(g) = ag ∈ [b−g , b
+
g ]T into

jπ
Ã

(g) = ãg ∈ [b−g , b
+
g ]T , with the extra condition that ãg ∨ ağ = ag ∨ ağ in case

g ∈ E2. The point of such a modification is that it is precisely the only kind which
does not change the equality jπAϕ = ψ, by Lemma 7.5. We set A′ = (ae)e∈E−{g}
and B′− = (b−e )e∈E−{g} and we let

jπA′ : E − {g} −→ T , e 7→ ae ,

which we extend to a join morphism jπA′ : P − {g} → T . We obtain∑
A

jπAϕ=ψ

µ(B−, A) =
∑
A′

jπ
A′ϕ=ψ

µ(B′−, A′)
∑
ãg

µ(b−g , ãg) ,

where the inner sum runs over all ãg ∈ [b−g , b
+
g ]T , with the extra condition that

ãg ∨ ağ = ag ∨ ağ in case g ∈ E2.
If g /∈ E2, then the sum runs over all ãg ∈ [b−g , b

+
g ]T and this is zero by the

definition of the Möbius function (because b−g = br(g) <T bg = b+g ). If g ∈ E2, then

the extra condition is equivalent to ãg ∨ (bg ∨ağ) = ag ∨ağ (because bg = b−g ≤ ãg),
so ãg runs over the interval [bg, ag ∨ ağ]T with the condition that its join with the
fixed element bg ∨ağ is equal to the top element ag ∨ağ. By a well-known property
of the Möbius function (Corollary 3.9.3 in [St]), the corresponding sum∑

ãg∈[bg,ag∨ağ ]T
ãg∨(bg∨ağ)=ag∨ağ

µ(b−g , ãg)

is zero, provided the fixed element bg ∨ ağ is not equal to the bottom element bg.
But this is indeed the case since bg ∨ ağ ≥T bg ∨ bğ >T bg, the latter inequality
coming from the fact that π(bg ∨ bğ) = g ∨ ğ >P g = π(bg). It follows that the
coefficient of every ψ is zero, hence jπϕ = 0.
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Now we want to compute the composite πjπ. For any subset Y of E, we define

(7.8) ρY : E −→ P , ρY (e) =


e if e ∈ Y ,

r(e) if e ∈ E1, e /∈ Y ,

s(e) if e ∈ E2, e /∈ Y .

It is easy to see that ρY is order-preserving (because, if e ∈ E2, f ∈ E1, and
e <P f , then e <P s(e) ≤P r(f) <P f , while the other cases are easier). Therefore,
by Lemma 2.3, ρY extends to a join-morphism ρY : P −→ P because the pole
lattice P is distributive. Note that ρY (p) = p for any p /∈ E. This is clear if p = 0̂.
Otherwise p = e ∨ ĕ for some e ∈ E2 by Lemma 2.1 and

p = e ∨ ĕ ≤P ρY (e) ∨ ρY (ĕ) ≤P s(e) ∨ s(ĕ) = p ∨ p = p ,

forcing equality and ρY (p) = ρY (e) ∨ ρY (ĕ) = p.

7.9. Proposition. Let π ∈ SurL(T, P ) and let jπ : P → T be the morphism
defined in (7.4).

(a) πjπ =
∑
∅⊆Y⊆E

(−1)|E−Y |ρY , where ρY is defined by (7.8).

(b) If Y 6= E, then E 6⊆ ρY (P ).

Proof : For simplicity, we write < instead of <P and ≤ instead of ≤P .
(a) If e ∈ E1 and br(e) < x in T , then r(e) < π(x) because br(e) = sup{t ∈ T |

π(t) = r(e)}. Thus if x ∈ ]br(e), be]T , we get r(e) < π(x) ≤ e, hence π(x) = e.
Similarly, if e ∈ E2 and x ∈ ]be, bs(e)]T , then π(x) = s(e). It follows that

πjπA(e) =


e if e ∈ E1 and jπA(e) ∈ ]b−e , b

+
e ]T =]br(e), be]T ,

e if e ∈ E2 and jπA(e) = b−e = be ,

r(e) if e ∈ E1 and jπA(e) = b−e = br(e) ,

s(e) if e ∈ E2 and jπA(e) ∈ ]b−e , b
+
e ]T =]be, bs(e)]T .

We see that πjπA = ρY for a suitable subset Y ⊆ E and therefore

πjπ =
∑
∅⊆Y⊆E

(−1)|E1|
( ∑

A
πjπA=ρY

µ(B−, A)
)
ρY .

For a fixed subset Y , in order to realize the condition πjπA = ρY , we have the
following possibilities :

• If e ∈ Y ∩ E1, then jπA(e) can run freely in ]b−e , b
+
e ]T .

• If e ∈ Y ∩ E2, then jπA(e) must be equal to b−e = be.
• If e ∈ (E − Y ) ∩ E1, then jπA(e) must be equal to b−e = br(e).

• If e ∈ (E − Y ) ∩ E2, then jπA(e) can run freely in ]b−e , b
+
e ]T .

It follows that the coefficient (−1)|E1|
∑
A

πjπA=ρY

µ(B−, A) is equal to

(−1)|E1|
∏

e∈Y ∩E1

( ∑
ae∈ ]b−e ,b

+
e ]T

µ(b−e , ae)
)
·

∏
e∈(E−Y )∩E2

( ∑
ae∈ ]b−e ,b

+
e ]T

µ(b−e , ae)
)

= (−1)|E1| · (−1)|Y ∩E1| · (−1)|(E−Y )∩E2|

= (−1)|(E−Y )∩E1| · (−1)|(E−Y )∩E2|

= (−1)|E−Y | ,
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using the fact that

0 =
∑

ae∈ [b−e ,b
+
e ]T

µ(b−e , ae) = 1 +
∑

ae∈ ]b−e ,b
+
e ]T

µ(b−e , ae) .

This shows that

πjπ =
∑
∅⊆Y⊆E

(−1)|E−Y |ρY ,

as required.

(b) Suppose that Y is a proper subset of E and let g ∈ E be maximal such
that g /∈ Y . We want to prove that g /∈ ρY (P ). We let p ∈ P and we prove that
ρY (p) 6= g.

If p > g, then p ∈ Y and ρY (p) = p 6= g, while if p = g, then ρY (g) 6= g.
Assume now that p 6≥ g and g ∈ E1. Then p < g and ρY (p) ≤ ρY (g) = r(g) < g.
Assume now that p 6≥ g and g ∈ E2. Then either p < g or p = ğ, the twin of g.
If p < g and p ∈ E1, then ρY (p) ≤ p < g. If p < g and p ∈ E2, then

ρY (p) ≤ s(p) ≤ g. But s(p) is reducible since s(p) = p ∨ p̆, while g is irreducible.
Therefore s(p) 6= g, hence ρY (p) < g.

If p = ğ, then p ∈ E2 and ρY (p) is either p or s(p). But neither p nor s(p) is
equal to g.

We have proved that ρY (p) 6= g in all cases, as was to be shown.

7.10. Remark. In the special case when T = P and π = id, we find that jid is
a linear combination of the maps ρY . It turns out that jid is actually an avatar
of the element γP op ∈ FP (E0) which is defined in (3.9), where E0 = Irr(P op).
We know that the element γT plays an important role throughout the theory of
correspondence functors (see Section 9 of [BT3] and Section 4 of the present paper).
The advantage of γP op is that it has a uniform definition, contrary to jP (as observed
in Remark 7.2).

To make this explicit, let E = Irr(P ), viewed as a subposet of P and E0 =
Irr(P op), viewed also as a subposet of P (so that it is actually (E0)op which is
the subposet of irreducible elements of P op). Since P is a distributive lattice, it
is isomorphic to the lattice I↓(E) of all subsets of E closed under taking smaller
elements. The passage to complements induces an isomorphism I↓(E) ∼= I↑(E)op,
where I↑(E) is the lattice of all subsets of E closed under taking greater elements.
On restriction to E, this induces an order-preserving isomorphism α : E → E0,
which turns out to map e ∈ E1 to r(e) ∈ E0

1 (in the totally ordered part) and
e ∈ E2 to its twin ĕ ∈ E0

2 (in the twin part).
Now γP op is a linear combination of maps E0 → P and we precompose it with

ατ , where τ : E → E exchanges all the twins and fixes all the other elements. We
obtain a linear combination of maps E → P and, after an explicit computation, it
turns out that

γP op α τ = ± jid ,

the sign being actually (−1)|E1|. (This computation appears explicitly in the proof
of Theorem 9.7, using a bijection ω : E0 → E which is actually the inverse of ατ .)
The definition of ρY in (7.8) was not uniform and, accordingly, jid has a rather
strange behavior. However, by means of the isomorphism ατ , the translation of all
this in terms of γP op becomes uniform.

Unfortunately, we need to work with jid rather than γP op . The reason is that
γP op ∈ FP (E0) is a linear combination of maps E0 → P , whereas, after composing
with α, we obtain order-preserving maps E → P which are extendible to endomor-
phisms P → P (because P is a distributive lattice, see Lemma 2.3). The key fact
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is that endomorphisms are better because they can be composed, in particular it
makes sense to consider idempotent endomorphisms.

We can now prove a main result concerning the composite jππ and obtain con-
sequences for the correspondence functor FP associated with the pole lattice P .

7.11. Proposition. Let π ∈ SurL(T, P ) and let jπ : P → T be the morphism
defined in (7.4). Let q : FP → FP /HP be the canonical surjection, where HP is
defined by (7.6).

(a) jππ is an idempotent endomorphism of T .
(b) The composite of F jπ : FP /HP → FT and q Fπ : FT → FP /HP is the

identity morphism of FP /HP .
(c) F jπ : FP /HP → FT is injective and embeds FP /HP as a direct summand

of FT .
(d) FjπFπ is an idempotent endomorphism of FT whose image is isomorphic

to FP /HP .

Proof : (a) This follows from (d), which is proved below, because the functor
F? : kL → Fk is fully faithful by Theorem 3.6. Alternatively, it is not difficult to
compute directly

jππjπ = jπ
∑
∅⊆Y⊆E

(−1)|E−Y |ρY = jπ idP +
∑
Y 6=E

(−1)|E−Y |jπρY = jπ ,

because E 6⊆ ρY (P ) if Y 6= E by Proposition 7.9, hence jπρY = 0 by Proposi-
tion 7.7. Then the equality jππjπ = jπ implies that jππ is an idempotent.

(b) By Proposition 7.9, for any finite set X and any function ϕ : X → P ,

FπFjπ (ϕ) = πjπϕ =
∑
∅⊆Y⊆E

(−1)|E−Y |ρY ϕ = ϕ+
∑
Y 6=E

(−1)|E−Y |ρY ϕ .

But E 6⊆ ρY (P ) if Y 6= E by Proposition 7.9, hence E 6⊆ ρY ϕ(X). In other words,
ρY ϕ ∈ HP (X), so that

FπFjπ (ϕ) = ϕ (mod HP (X)) .

Composing with the canonical map q : FP (X) → FP (X)/HP (X) and writing
q(ϕ) = ϕ, we obtain

qFπF jπ (ϕ) = qFπFjπ (ϕ) = q(ϕ) = ϕ ,

as was to be shown.

(c) This follows immediately from (b).

(d) This follows immediately from (b) and the obvious equality F jπq Fπ =
FjπFπ.

One of our aims is to show that the idempotents jππ are orthogonal. In order
to understand the product of two idempotents jθθ and jππ we need to have more
information about θjπ. This is the purpose of our next three propositions, but we
first need a lemma.
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7.12. Lemma. Let Q be a pole lattice, let θ ∈ SurL(T,Q), and let [t1, t2]T be an
interval in T . For every q ∈ Q, define

Uq = θ−1(q) ∩ [t1, t2]T = {a ∈ [t1, t2]T | θ(a) = q)} ⊆ [t1, t2]T .

Let q1 = θ(t1) and assume that Uq1 is not reduced to the singleton t1. Then for

each q ∈ Q, we have
∑
a∈Uq

µ(t1, a) = 0.

Proof : The result is obvious if Uq = ∅, so we assume that Uq is nonempty. Since
all elements of Uq have the same image under θ, so has their join and therefore Uq

has a supremum
uq = sup(Uq) ∈ Uq .

Now we have [t1, t2]T = tq∈QUq and, by assumption, Uq1 = [t1, u
q1 ]T is a nontrivial

interval, so that ∑
a∈Uq1

µ(t1, a) = 0 .

This is the starting point of an induction argument. We fix q ∈ Q and we assume

by induction that
∑
a∈Ur

µ(t1, a) = 0 for every r ∈ Q such that q1 ≤ r < q. Then we

obtain
0 =

∑
a∈[t1,uq ]T

µ(t1, a) =
∑

q1≤r≤q

∑
a∈Ur

µ(t1, a)

=
∑
a∈Uq

µ(t1, a) +
∑

q1≤r<q

∑
a∈Ur

µ(t1, a)

=
∑
a∈Uq

µ(t1, a) ,

using the induction assumption. This completes the proof.

7.13. Proposition. Let π ∈ SurL(T, P ) and θ ∈ SurL(T,Q), where P and Q
are pole lattices, and let jπ : P → T be the morphism defined in (7.4). Suppose
that θjπ 6= 0. Then the restriction of θ to the subset B = Im(πop) is injective. In
particular, |P | ≤ |Q|.

Proof : Let E = Irr(P ). By the definition of jπ, we have

θjπ = (−1)|E1|
∑
A

µ(B−, A) θjπA =
∑

ψ:P→Q

(
(−1)|E1|

∑
A

θjπA=ψ

µ(B−, A)
)
ψ .

Now fix some morphism ψ : P → Q and, for every e ∈ E and every q ∈ Q, define

Uqe = θ−1(q) ∩ [b−e , b
+
e ]T = {a ∈ [b−e , b

+
e ]T | θ(a) = q)} ⊆ [b−e , b

+
e ]T .

Here, we write B = {bp | p ∈ P}, as before. Then, since a join-morphism from P is
entirely determined on E = Irr(P ), we have

θjπA = ψ ⇐⇒ jπA(e) ∈ Uψ(e)
e ∀e ∈ E ⇐⇒ ae ∈ Uψ(e)

e ∀e ∈ E .

In particular, if ψ appears in the expression of θjπ, then U
ψ(e)
e 6= ∅ for every e ∈ E.

It follows now that the coefficient of ψ is, up to sign, equal to∑
A

θjπA=ψ

µ(B−, A) =
∏
e∈E

( ∑
ae∈Uψ(e)

e

µ(b−e , ae)
)
.

Suppose that θ|B : B → Q is not injective. Then we want to prove that the

coefficient of ψ is zero. This is the case if U
ψ(e)
e = ∅ for some e ∈ E, because we

get an empty sum, which is zero. So we assume that U
ψ(e)
e 6= ∅ for every e ∈ E.



SIMPLE AND PROJECTIVE CORRESPONDENCE FUNCTORS 25

The noninjectivity of θ|B implies that there exist two adjacent elements w < y in P
such that θ(bw) = θ(by). There are three cases.

Case 1. y ∈ E1 and w = r(y). Then bw = b−y and by = b+y . Choosing a ∈ Uψ(y)
y ,

we obtain

θ(bw) = θ(b−y ) ≤Q θ(a) ≤Q θ(b+y ) = θ(by) ,

hence θ(b−y ) = θ(a) = θ(b+y ). Since θ(a) = ψ(y), it follows that the whole interval

[b−y , b
+
y ]T is mapped to ψ(y) under θ, that is, [b−y , b

+
y ]T = U

ψ(y)
y . But then∑

ay∈Uψ(y)
y

µ(b−y , ay) = 0 ,

by the definition of the Möbius function (because b−y 6= b+y ). Therefore the coeffi-
cient of ψ is zero.

Case 2. w ∈ E2 and y = s(w). Then bw = b−w and by = b+w . Choosing a ∈ Uψ(w)
w ,

we obtain

θ(bw) = θ(b−w) ≤Q θ(a) ≤Q θ(b+w) = θ(by) ,

hence θ(b−w) = θ(a) = θ(b+w). Since θ(a) = ψ(w), it follows that the whole interval

[b−w , b
+
w ]T is mapped to ψ(w) under θ, that is, [b−w , b

+
w ]T = U

ψ(w)
w . But then∑

aw∈Uψ(w)
w

µ(b−w , aw) = 0 ,

and the coefficient of ψ is zero.

Case 3. y ∈ E2 and w = r(y). Let z = y̆ be the twin of y, so that b−z = bz.
Since w < z, we have bw < bz and

θ(by ∨ bz) = θ(by) ∨ θ(bz) = θ(bw) ∨ θ(bz) = θ(bw ∨ bz) = θ(bz) .

Letting q1 = θ(bz), we see that Uq1z contains both the minimal element bz = b−z of
the interval [b−z , b

+
z ]T and another element by∨bz, because bz < by∨bz ≤ by∨z = b+z .

Thus the assumption of Lemma 7.12 is satisfied and it follows that∑
az∈Uψ(z)

z

µ(b−z , az) = 0 .

Again the coefficient of ψ is zero and we are done.
This completes the proof of the injectivity of θ|B : B → Q. Since πop is injective

(by Lemma 2.5), its image B has cardinality |P | and therefore |P | ≤ |Q|.

Let Q be a pole lattice and χ ∈ SurL(T,Q). Using a slightly abusive notation, it
is convenient to define Ker(jχ) to be the kernel of left composition with jχ. More
precisely, for our fixed lattice P , we let Ker(jχ) be the kernel of the k-linear map

kL(P,Q) −→ kL(P, T ) , ψ 7→ jχψ .

We use this notation in the rest of the present section.

7.14. Proposition. Let π ∈ SurL(T, P ) and θ, χ ∈ SurL(T,Q), where P and Q
are pole lattices. Suppose that jχθjπ 6= 0.

(a) There exists a unique isomorphism τ : P → Q of lattices such that

θjπ = τ (mod Ker(jχ)) .

(b) Moreover, θ(bp) = τ(p), for all p ∈ P (where bp = bπp = πop(p), as before).
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Proof : We assume that jχθjπ 6= 0, and in particular θjπ 6= 0. Let E = Irr(P )
and write first

θjπ = (−1)|E1|
∑
A

µ(B−, A) θjπA =
∑

ψ:P→Q

(
(−1)|E1|

∑
A

θjπA=ψ

µ(B−, A)
)
ψ .

Let ψ : P → Q be a map appearing with a nonzero coefficient in the expression
of θjπ and let A be such that θjπA = ψ. Since jχθjπ 6= 0, we can also assume that
ψ is such that jχψ 6= 0. Proposition 7.7 implies that the function ψ : P → Q must
satisfy Irr(Q) ⊆ ψ(P ). Since ψ = θjπA is a join-morphism and Irr(Q) generates Q,
the map ψ : P → Q must be surjective. By Proposition 7.13, θjπ 6= 0 implies that
|P | ≤ |Q|. Therefore |P | = |Q|. It follows that ψ is a bijective join-morphism,
hence an isomorphism of lattices.

Proposition 7.13 also asserts that the map θ|B : B → Q is injective. Since
|B| = |P | = |Q|, it is a bijection and therefore there is a unique isomorphism
τ : P → Q such that

θ(bp) = τ(p) , ∀ p ∈ P .

For any e ∈ E, we have ψ(e) = θjπA(e) = θ(ae) for some ae ∈ [b−e , b
+
e ]T . If e ∈ E1,

then b+e = be, hence

ψ(e) = θ(ae) ≤Q θ(be) = τ(e) .

Therefore e ≤P ψ−1τ(e), so that ψ−1τ(e) = e because ψ−1τ is an automorphism
of P , hence height-preserving. Similarly, if e ∈ E2, then b−e = be, hence

τ(e) = θ(be) ≤Q θ(ae) = ψ(e) ,

so that ψ−1τ(e) ≤P e and ψ−1τ(e) = e. This shows that ψ|E = τ|E , hence ψ = τ .
Therefore, whenever A is such that jχθjπA 6= 0, then θjπA = τ . It follows that the
functions ψ which appear with a nonzero coefficient in the expression of θjπ are τ
and maps P → Q lying in Ker(jχ).

In the situation of Proposition 7.14, we can replace θ by θ′ := τ−1θ and jχ by
jχ
′

:= jχ τ . The effect of this is that we are reduced to the case where Q = P and
τ = idP , that is,

θ(bp) = p , ∀ p ∈ P .

For simplicity, we use this reduction in our final result, which is the key for under-
standing the composition of the morphisms we have introduced.

7.15. Proposition. Let π, θ, χ ∈ SurL(T, P ), where P is a pole lattice. Suppose
that θ(bp) = p for all p ∈ P (where bp = bπp = πop(p), as before).

(a) If jχθjπ 6= 0, then θ = π.
(b) We have

jχθjπ =

{
jχ if θ = π ,

0 if θ 6= π .

Proof : (a) By Proposition 7.14, we have θjπ = idP (mod Ker(jχ)), because the
automorphism τ is the identity by assumption. Moreover, as in the proof of the
previous propositions, the coefficient of idP in the expression of θjπ is equal to

(−1)|E1|
∑
A

θjπA=idP

µ(B−, A) = (−1)|E1|
∏
e∈E

( ∑
ae∈Ue

µ(b−e , ae)
)
,

where we write simply

Ue := Uee = {a ∈ [b−e , b
+
e ]T | θ(a) = e} ⊆ [b−e , b

+
e ]T .
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Since the coefficient of idP in the expression of θjπ is nonzero (it is 1), every sum∑
ae∈Ue µ(b−e , ae) is nonzero, and in particular Ue 6= ∅.
As in the proof of Lemma 7.12, Ue has a supremum ue ∈ Ue. We also define

Ve := {a ∈ [b−e , b
+
e ]T | θ(a) ≤P r(e)}

so that [b−e , ue]T = Ve t Ue, because any a ≤T ue satisfies θ(a) ≤P e, hence either
θ(a) ≤ r(e) or θ(a) = e. There are two cases.

Case A. Ve = ∅. Then Ue = [b−e , ue]T . The nonzero sum
∑
ae∈Ue µ(b−e , ae)

forces b−e = ue, hence Ue = {b−e }.
Case B. Ve 6= ∅. Then again Ve must have a supremum ve ∈ Ve, so that

Ve = [b−e , ve]T and ve <T ue. In that case, we obtain

0 6=
∑
ae∈Ue

µ(b−e , ae) =
∑

ae∈[b−e ,ue]T

µ(b−e , ae) −
∑
ae∈Ve

µ(b−e , ae) = −
∑
ae∈Ve

µ(b−e , ae) ,

because the sum over [b−e , ue]T is zero since b−e ≤T ve <T ue. Therefore∑
ae∈[b−e ,ve]T

µ(b−e , ae) =
∑
ae∈Ve

µ(b−e , ae) 6= 0

and this forces b−e = ve, hence Ue =]b−e , ue].

By assumption, we know that θ(be) = e for all e ∈ E, hence be ∈ Ue. If e ∈ E2,
then be = b−e , hence b−e ∈ Ue. This forces to be in case A and therefore we obtain :

Case A. Ue = {be} if e ∈ E2.

If e ∈ E1, then be = b+e , hence b+e ∈ Ue. This forces to be in case B with
moreover ue = b+e . Since b−e = br(e), we get :

Case B. Ue =]br(e), be] if e ∈ E1.

Let cp = θop(p) = sup
(
θ−1(p)

)
(that is, cp = bθp using Notation 7.1). Since

we assume that θ(bp) = p, we have bp ≤T cp for all p ∈ P . We now prove that
bp = cp by descending induction in the lattice T , starting from the obvious equality

b1̂P = 1̂T = c1̂P . For simplicity, we write < and ≤ for the order relation in T .
Suppose now that p ∈ P and bq = cq for every q > p. We have to discuss three
cases.

Assume that p = r(e) with e ∈ E1. Then bp ≤ cp < ce = be, hence cp ∈
[br(e), be]T = {bp} tUe (Case B). But θ(cp) = p 6= e, so cp /∈ Ue. Therefore cp = bp.

Assume that p ∈ E2. Then

b−p = bp ≤ cp < cs(p) = bs(p) = b+p .

Therefore cp ∈ [b−p , b
+
p ]T = Upt]b−p , b

+
p ]T (Case A). Since θ(cp) = p, we have cp ∈

Up = {bp}, hence cp = bp.
Assume now that p = e∧ ĕ where e ∈ E2 with twin ĕ. Then be = ce and bĕ = cĕ.

Thus we obtain
bp = be∧ĕ = be ∧ bĕ = ce ∧ cĕ = ce∧ĕ = cp ,

as was to be shown. We have now covered all cases, completing the proof that
bp = cp for all p ∈ P .

Now we obtain θop(p) = cp = bp = πop(p) for all p ∈ P , hence θop = πop. Passing
to the opposite, it follows that θ = π, as was to be shown.

(b) We now know by (a) that θ = π whenever jχθjπ 6= 0. Moreover, in that
case, Proposition 7.14 implies that πjπ is the sum of idP and an element of Ker(jχ),
using our assumption that θ(bp) = p, for all p ∈ P . Applying jχ, it follows that
jχπjπ = jχ.
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Keeping our fixed finite lattice T , we now allow the pole lattice P to vary.

7.16. Notation.

(a) PolT is a set of representatives of isomorphism classes of pole lattices P
such that SurL(T, P ) is nonempty (hence in particular |P | ≤ |T |, so that
PolT is finite).

(b) For any P ∈ PolT , the group Aut(P ) acts on SurL(T, P ) (by composition)

and we let SurL(T, P ) be a fixed chosen set of representatives of the orbits.

(c) If χ, θ ∈ SurL(T, P ) and τ ∈ Aut(P ), we define

fχ,τ,θ = jχτθ : T −→ T .

In particular, fπ,idP ,π = jππ is the idempotent of Proposition 7.11.

7.17. Remark.

(a) Let χ′ = σχ ∈ SurL(T, P ) be the image of χ under the action of σ, for

some σ ∈ Aut(P ). Then jχ
′

= jχσ−1. This is proved by going back to
Notation 7.1 and using the associated elements bχp = χop(p), respectively

bχ
′

p = χ′
op

(p) = χop(σop(p)) = χopσ−1(p) = bχσ−1(p) ,

from which the associated morphism jχ, respectively jχ
′
, is constructed, as

in (7.4). It is then elementary to check that jχ
′

= jχσ−1.
(b) Changing the choice of orbit representatives has the following effect. Let

χ′ = σχ ∈ SurL(T, P ) and θ′ = ρθ ∈ SurL(T, P ), where σ, ρ ∈ Aut(P ). It

follows from (a) that we obtain jχ
′
στρ−1θ′ = jχτθ.

(c) In particular, fπ,idP ,π = jππ is independent of the choice of π in its Aut(P )-
orbit.

Now we come to the crucial relations among the endomorphisms fχ,τ,θ.

7.18. Theorem. Let T be a finite lattice and let P,Q ∈ PolT .

(a) Let χ, θ ∈ SurL(T, P ) and τ ∈ Aut(P ). Let also π, κ ∈ SurL(T,Q) and
σ ∈ Aut(Q). Then

fχ,τ,θ fπ,σ,κ =

{
fχ,τσ,κ if P = Q and θ = π ,

0 otherwise .

(b) When P varies in PolT and π varies in SurL(T, P ), the idempotents fπ,idP ,π
are pairwise orthogonal.

Proof : Let χ′ = τ−1χ ∈ SurL(T, P ), so that jχ
′

= jχτ , by Remark 7.17. If P 6= Q,
there is no isomorphism between P and Q, by our choice of PolT . Therefore we
obtain jχ

′
θjπ = 0, by Proposition 7.14. It follows that

fχ,τ,θ fπ,σ,κ = jχτθjπσκ = jχ
′
θjπσκ = 0 .

So we now assume that P = Q. Suppose that fχ,τ,θ fπ,σ,κ 6= 0. In particular,

jχτθjπ 6= 0, that is, jχ
′
θjπ 6= 0. By Proposition 7.14, there is a unique isomorphism

ρ : P → P such that θjπ = ρ (mod Ker(jχ
′
)). Let θ′ = ρ−1θ and χ′′ = ρ−1χ′,

hence jχ
′′

= jχ
′
ρ = jχτρ. Then we obtain

0 6= jχ
′
θjπ = jχτθjπ = jχτρρ−1θjπ = jχ

′′
θ′jπ .

Moreover, since θjπ = ρ+ h with jχ
′
h = 0, we have jχ

′′
ρ−1h = 0. Therefore

θ′jπ = ρ−1θjπ = idP +ρ−1h = idP (mod Ker(jχ
′′
)) .
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The uniqueness of the automorphism in Proposition 7.14 also implies that we have
θ′(bπp ) = p for all p ∈ P (where bπp = πop(p), as before).

We are now in the assumptions of Proposition 7.15 for π, θ′, and χ′′. We deduce
that θ′ = π, so that θ and π belong to the same orbit under the action of Aut(P ).

But θ and π belong to a chosen system of representatives SurL(T, P ). Thus we
must have ρ = idP and θ = π.

It now follows that we can write θjπ = idP +h, where jχ
′
h = 0, that is, jχτh = 0.

Therefore

fχ,τ,θ fπ,σ,κ = jχτθjπσκ = jχτ(idP +h)σκ = jχτσκ = fχ,τσ,κ ,

as was to be shown.
(b) This follows from (a).

8. Subalgebras corresponding to pole lattices

In this section, we show how the results of Section 7 imply some precise information
about the structure of the endomorphism algebra EndkL(T ) of a finite lattice T ,
where k is a commutative ring.

We continue to use Notation 7.16, so P is a pole lattice running through the set
PolT and SurL(T, P ) denotes a set of representatives of Aut(P )-orbits in SurL(T, P ).

Let Mn(T,P )(kAut(P )) denote the matrix algebra of size n(T, P ) = |SurL(T, P )|,
with rows and columns indexed by the set SurL(T, P ), and coefficients in the group

algebra kAut(P ). If χ, θ ∈ SurL(T, P ) and τ ∈ Aut(P ), we let mχ,τ,θ denote the
elementary matrix having coefficient τ in position (χ, θ) and zero elsewhere.

With this notation, we can now state a main result, which was already obtained
in [BT3] in the special case when P runs over totally ordered lattices.

8.1. Theorem. Let T be a finite lattice. For each P ∈ PolT , let SurL(T, P ) be a
set of representatives of the orbits for the action of the group Aut(P ) on SurL(T, P )

and let n(T, P ) = |SurL(T, P )|.
(a) The map

IT :
⊕

P∈PolT

Mn(T,P )(kAut(P )) −→ EndkL(T ) , mχ,τ,θ 7→ fχ,τ,θ

is an algebra homomorphism (without unit elements).
(b) IT is injective.
(c) The image of IT is equal to the subalgebra ET (without unit element) of

EndkL(T ) having a k-basis consisting of all join-morphisms T → T whose
image is a pole lattice.

Proof : (a) Let P,Q ∈ PolT . If P 6= Q, then mχ,τ,θ and mπ,σ,κ are not in the
same block, so their product is 0, while the product fχ,τ,θfπ,σ,κ is also zero. If
P = Q, then the relations of Theorem 7.18 are the standard relations within a
matrix algebra of size n(T, P ) with coefficients in the group algebra kAut(P ).

(b) Since the elements mχ,τ,θ form a k-basis of
⊕

P∈PolT
Mn(T,P )(kAut(P )), it

suffices to prove that their images fχ,τ,θ are k-linearly independent. Suppose that∑
χ,τ,θ

λχ,τ,θ fχ,τ,θ = 0 ,
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where λχ,τ,θ ∈ k. Multiplying on the left by fπ,idP ,κ and on the right by fπ,σ,π, we
are left with the terms for which χ = κ and θ = π. Therefore we obtain∑

τ

λκ,τ,π fπ,idP ,κ fκ,τ,π fπ,σ,π =
∑
τ

λκ,τ,π fπ,τσ,π = 0 .

Now, by Definition 7.4, fπ,τσ,π = jπτσπ is a linear combination of distinct maps
T → T , one of them being jπB−τσπ, appearing with coefficient ±1, where we use
Notation 7.1 and set B− = (b−e )e∈E . We claim that the functions jπB−τσπ are
pairwise distinct when τ varies. This implies that each coefficient λκ,τ,π must be
zero, proving the required linear independence.

To prove the claim, we write for simplicity ρ = τσ and we allow ρ to vary. The
group Aut(P ) is isomorphic to C2×C2× . . .×C2, where each C2 acts by exchanging
two twin elements of E2 and fixing the others (where E = Irr(P ), as before). So
we consider some e ∈ E2 and we let ĕ be its twin. Then we get

jπB−ρπ(be) = jπB−ρ(e) = b−ρ(e) =

{
b−e if ρ(e) = e ,

b−ĕ if ρ(e) = ĕ .

We see that the functions jπB−ρπ are pairwise distinct when ρ varies, proving the
claim.

(c) It is clear that ET is a subalgebra. Moreover, every map jχA is a join-morphism,
where A is a family as in Lemma 7.3. Therefore jχAτθ is a join-morphism whose
image is a pole lattice, by construction. It follows that fχ,τ,θ = jχτθ belongs to ET
and hence Im(IT ) ⊆ ET .

Now we want to show that ET has a k-basis consisting of all morphisms ϕλ,τ,π
described as follows. First we fix P ∈ PolT and we let

ϕλ,τ,π = λτπ ,

where π ∈ SurL(T, P ), τ ∈ Aut(P ), λ ∈ InjL(P, T ), and where InjL(P, T ) de-
notes a set of representatives of Aut(P )-orbits in InjL(P, T ). If ϕ : T → T is a

join-morphism whose image is isomorphic to P , it is the composite ϕ = λ̃π̃ of a

surjection π̃ ∈ SurL(T, P ) and an injection λ̃ ∈ InjL(P, T ). By our choice of orbit

representatives, we have π̃ = τ1π where π ∈ SurL(T, P ) and τ1 ∈ Aut(P ), and

similarly λ̃ = λτ2 where λ ∈ InjL(P, T ) and τ2 ∈ Aut(P ). Then ϕ = λτπ = ϕλ,τ,π,
where τ = τ2τ1. It follows that

{ϕλ,τ,π | π ∈ SurL(T, P ) , λ ∈ InjL(P, T ) , τ ∈ Aut(P )}

is a k-basis of the submodule ET,P generated by all endomorphisms whose image is
isomorphic to P . Allowing P to vary in PolT , we deduce that

B =
⋃

P∈PolT

{ϕλ,τ,π | π ∈ SurL(T, P ) , λ ∈ InjL(P, T ) , τ ∈ Aut(P )}

is a k-basis of ET =
⊕

P∈PolT
ET,P .

On the other hand, it follows from (a) and (b) that

B′ =
⋃

P∈PolT

{fχ,τ,θ | χ, θ ∈ SurL(T, P ) , τ ∈ Aut(P )}

is a k-basis of Im(IT ). By Lemma 2.6, there is a bijection between InjL(P, T )
and SurL(T, P ). We can also choose representatives to obtain a bijection between

InjL(P, T ) and SurL(T, P ), because Aut(P ) acts freely on each side. Therefore B
and B′ have the same cardinality. In other words Im(IT ) and ET are free k-modules
of the same rank. We want to prove that the inclusion Im(IT ) ⊆ ET is an equality
(which is obvious if k is a field since the dimensions are equal).
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We now allow the base ring k to vary and we write a superscript (k) to emphasize
the dependence on k. Thus we have an injective algebra homomorphism

I(k)
T :

⊕
P∈PolT

Mn(T,P )(kAut(P )) −→ E(k)
T ⊆ EndkL(T )

and we let X (k) := E(k)
T / Im(I(k)

T ), so that we have a short exact sequence

0 // Im(I(k)
T )

jk // E(k)
T

pk // X (k) // 0 ,

where jk is the inclusion map and pk the canonical surjection. In the case of the

ring of integers Z, we see that X (Z) is a finite abelian group, because Im(I(Z)
T ) and

E(Z)
T are free Z-modules of the same rank. Tensoring with k is right exact, so we

obtain an exact sequence

k ⊗ Im(I(Z)
T )

1⊗jZ // k ⊗ E(Z)
T

1⊗pZ // k ⊗X (Z) // 0 .

Using the canonical bases B and B′ of Im(I(k)
T ) and E(k)

T respectively, we see that

k ⊗ Im(I(Z)
T ) ∼= Im(I(k)

T ) and k ⊗ E(Z)
T
∼= E(k)

T .

Moreover the map 1 ⊗ jZ corresponds, under these isomorphisms, to the inclusion
map jk. In particular, considering the prime field Fp for any prime number p, we
obtain an exact sequence

Im(I(Fp)
T )

jFp // E(Fp)
T

1⊗pZ // Fp ⊗X (Z) // 0 .

Since Fp is a field and the dimensions are equal, the inclusion map jFp is an equality.

Therefore Fp ⊗ X (Z) = {0} and this holds for every prime p. Thus we must have

X (Z) = {0}, because X (Z) is finite, so that the inclusion map jZ : Im(I(Z)
T )→ E(Z)

T is

an equality. Tensoring with k, it follows that the inclusion map jk : Im(I(k)
T )→ E(k)

T

is an equality as well, as required.

8.2. Remark. Let B and B′ be the two bases of ET = Im(IT ) described in the
proof. The change of basis from B to B′ is not obvious. By construction, every map
jχAτθ belongs to B, but beware of the fact that if θ and χ belong to SurL(T, P ),
then jχAτθ may be a composite T → P ′ → T for some pole lattice P ′ smaller
than P . This is because, in the construction of jχA, the family A = (ae)e∈E does
not necessarily consist of distinct elements (where E = Irr(P ) as before).

The image under IT of the identity element of
⊕

P∈PolT
Mn(T,P )(kAut(P )) is

an idempotent eT of EndkL(T ) and eT is an identity element of ET . We now prove
more.

8.3. Theorem. For every finite lattice T , let ET = Im(IT ) be the subalgebra
of EndkL(T ) appearing in Theorem 8.1, and let eT be the identity element of ET .

(a) eT =
∑

P∈PolT

∑
π∈SurL(T,P )

fπ,idP ,π.

(b) For any finite lattice T ′ and any morphism α ∈ HomkL(T, T ′), we have
αeT = eT ′α. In other words, the family of idempotents eT , for T ∈ L, is a
natural transformation of the identity functor idkL.

(c) eT is a central idempotent of EndkL(T ).
(d) The subalgebra ET is a direct product factor of EndkL(T ), that is, there

exists a subalgebra D such that EndkL(T ) = ET ×D (where ET is identified
with ET × {0} and D with {0} × D, as usual).
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Proof : (a) The identity element of
⊕

P∈PolT

Mn(T,P )(kAut(P )) is equal to

∑
P∈PolT

∑
π∈SurL(T,P )

mπ,idP ,π .

Taking its image under IT yields the required formula.

(b) We have seen in the proof of Theorem 8.1 that every element of the canonical

basis B of ET has the form ϕλ,τ,π = λτπ, where π ∈ SurL(T, P ), λ ∈ InjL(P, T )
and τ ∈ Aut(P ). Passing to the opposite, we obtain

ϕopλ,τ,π = πopτopλop = πopτ−1λop

with πop ∈ InjL(P op, T op) and λop ∈ SurL(T op, P op). It follows that the opposite of
the canonical basis element ϕλ,τ,π of ET is the canonical basis element ϕπop,τ−1,λop

of ET op . Therefore, the opposite of the identity element eT of ET must belong
to ET op . Moreover, it must be the identity element of ET op , because taking opposites
behaves well with respect to composition. Therefore (eT )op = eT op .

Now if α : T → T ′ is a join-morphism (i.e. α is in L), then the image of a pole
sublattice of T is a pole sublattice of T ′. It follows that composition with α maps
eT to a linear combination of join-morphisms with a pole lattice as an image, hence
invariant under the idempotent element eT ′ . In other words, we have

α eT = eT ′ α eT .

Applying this equation to T ′
op

, T op, and the morphism αop : T ′
op → T op, we

obtain αop eT ′op = eT op α
op eT ′op . Passing to opposites and using the above equality

(eT )op = eT op , we get
eT ′ α eT = eT ′ α .

The two displayed equations yield αeT = eT ′α. This holds as well if α is replaced
by a k-linear combination of join-morphisms (i.e. α is in kL), as was to be shown.

(c) This is a special case of (b).

(d) This follows immediately from (c).

9. Correspondence functors for pole lattices

In this section, we first consider the special case of the endomorphism algebra of a
pole lattice Q. We determine completely the structure of this algebra. Applying
then the fully faithful functor T 7→ FT , we deduce a direct sum decomposition of
the correspondence functor FQ, providing an explicit description of FQ for any pole
lattice Q. In particular, when k is a field of characteristic different from 2, FQ is
semi-simple. At the end of the section, we return to an arbitrary finite lattice T
and describe direct summands of FT corresponding to pole lattices inside T . The
results are generalizations of those obtained in [BT3] in the special case of totally
ordered lattices.

9.1. Theorem. Let Q be a pole lattice.

(a) The homomorphism of k-algebras of Theorem 8.1

IQ :
⊕

P∈PolQ

Mn(Q,P )(kAut(P )) −→ EndkL(Q) , mχ,τ,θ 7→ fχ,τ,θ ,

is an isomorphism.
(b) In particular, if k is a field and if either Q is totally ordered or if k is a

field of characteristic different from 2, then EndkL(Q) is semi-simple.
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Proof : (a) Since any join-morphism ϕ : Q → Q has an image which is a pole
lattice, the subalgebra EQ of EndkL(Q) appearing in Theorem 8.1 is the whole
of EndkL(Q). Therefore, the homomorphism IQ is surjective. By Theorem 8.1, IQ
is injective, hence an isomorphism.

(b) If Q is totally ordered, then so is each P and Aut(P ) is the trivial group. Thus
we get matrix algebras Mn(Q,P )(k). If Q is not totally ordered, then each Aut(P )
is a 2-group (and at least one of them is nontrivial, namely Aut(Q)). The group
algebra kAut(P ) is semi-simple when the characteristic of k is different from 2
(Maschke’s theorem). Therefore any matrix algebra Mq(kAut(P )) is semi-simple
and it follows that the direct sum is semi-simple as well.

Now we consider the central idempotents of EndkL(Q) corresponding to the
above decomposition into matrix algebras.

9.2. Notation. For any pole lattice P ∈ PolQ, set

βQ,P :=
∑

π∈SurL(Q,P )

fπ,idP ,π .

In particular, when P = Q, then SurL(Q,Q) = Aut(Q) and SurL(Q,Q) is a sin-
gleton which can be chosen to be {idQ}. We then define

εQ := βQ,Q = fidQ,idQ,idQ = jidQ =
∑
∅⊆Y⊆E

(−1)|E−Y |ρY ,

using Proposition 7.9, with E = Irr(Q) and ρY ∈ EndL(Q) defined by (7.8).

9.3. Proposition. The elements βQ,P , for P ∈ PolQ, are orthogonal central
idempotents of EndkL(Q), and their sum is equal to the identity. In particular, the
central idempotent εQ satisfies

εQ EndkL(Q) ∼= kAut(Q) .

Proof : For every π ∈ SurL(Q,P ), the inverse image of fπ,idP ,π under the al-
gebra isomorphism IQ of Theorem 9.1 is the matrix mπ,idP ,π of the component

Mn(Q,P )(kAut(P )) indexed by P . Summing over all π ∈ SurL(Q,P ), it follows that
the inverse image of βQ,P under IQ is the identity element of Mn(Q,P )(kAut(P )).
The first statement follows.

In the case P = Q, we know that SurL(Q,Q) is a singleton, so that the cor-
responding matrix algebra has size 1. The inverse image of εQ under IQ is the
identity element midQ,idQ,idQ of the component M1(kAut(Q)) ∼= kAut(Q). Clearly
εQ EndkL(Q) ∼= M1(kAut(Q)) ∼= kAut(Q).

We want to use the fully-faithful functor F? : kL → Fk (see Theorem 3.6) to
deduce information on the correspondence functor FQ. We already know that FQ
is projective, because the pole lattice Q is distributive (see Theorem 3.6). We apply
the functor F? : kL → Fk to the map jπ ∈ HomkL(P,Q) defined in (7.4), where

π ∈ SurL(Q,P ). By Proposition 7.7 we obtain a morphism

Fjπ : FP −→ FQ

which vanishes on HP , where HP is defined by (7.6). By Proposition 7.11, this
induces an injective morphism

F jπ : FP /HP −→ FQ
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which embeds FP /HP as a direct summand of FQ, corresponding to the idempotent
fπ,idP ,π = jππ. In particular, for P = Q, we have fidQ,idQ,idQ = jidQ = εQ and we
obtain an idempotent endomorphism FεQ of FQ with kernel HQ.

9.4. Theorem. Let Q be a pole lattice and define SQ := FQ/HQ, where HQ is
defined by (7.6).

(a) SQ is a projective correspondence functor.
(b) There are isomorphisms of correspondence functors

FεQFQ
∼= SQ ,

FβQ,PFQ
∼= Sn(Q,P )

P , for each P ∈ PolQ ,

FQ ∼=
⊕

P∈PolQ

Sn(Q,P )
P .

Proof : (a) Since the pole lattice Q is distributive, FQ is projective (Theorem 3.6).
Therefore so is its direct summand SQ.

(b) Since the functor F? : kL → Fk is fully faithful (Theorem 3.6), it induces an
isomorphism of k-algebras

EndkL(Q) ∼= EndFk(FQ) .

Now the idempotents fπ,idP ,π of EndkL(Q), for π ∈ SurL(Q,P ) and P ∈ PolQ, are
orthogonal and their sum is equal to the identity, by Theorem 9.1. It follows that
the endomorphisms Ffπ,idP ,π of FQ are orthogonal idempotents, and their sum is
the identity. Hence we obtain a decomposition of correspondence functors

FQ =
⊕

P∈PolQ

π∈SurL(Q,P )

Ffπ,idP ,π
(
FQ
)
.

By surjectivity of π : Q → P , the image of Ffπ,idP ,π = FjπFπ : FQ → FQ is

equal to the image of Fjπ : FP → FQ. Therefore Ffπ,idP ,π
(
FQ
)

= Fjπ
(
FP
)
. By

Proposition 7.11, the image Fjπ
(
FP
)

is isomorphic to SP = FP /HP and it follows
that

Ffπ,idP ,π
(
FQ
) ∼= SP .

Taking P = Q and fidQ,idQ,idQ = jidQ = εQ, we obtain the first isomorphism

FεQFQ
∼= SQ. Summing over all π ∈ SurL(Q,P ) for a fixed P , we obtain the

second isomorphism. Finally, summing over all P ∈ PolQ and all π ∈ SurL(Q,P ),
we obtain the third isomorphism.

9.5. Corollary. Let P and P ′ be pole lattices. Then

HomFk(SP ,SP ′) ∼=
{
{0} if P 6∼= P ′ ,
kAut(P ) if P ∼= P ′ .

Proof : Since SP ∼= FεPFP , the case P = P ′ follows from Proposition 9.3. Now if
P 6∼= P ′, it is easy to choose a large enough pole lattice Q such that SurL(Q,P ) 6= ∅
and SurL(Q,P ′) 6= ∅. Using the central idempotents βQ,P and βQ,P ′ of Proposi-
tion 9.3, we obtain

HomFk(FβQ,PFQ, FβQ,P ′FQ) ∼= HomFk(SP ,SP ′)n(Q,P )·n(Q,P ′) .
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Since FβQ,P and FβQ,P ′ are central idempotents of EndFk(FQ), and since they are

orthogonal if P 6∼= P ′, it follows that HomFk(FβQ,PFQ, FβQ,P ′FQ) = 0 if P 6∼= P ′,

hence HomFk(SP ,SP ′) = {0}.

9.6. Remark. Corollary 9.5 actually holds for the fundamental functors associ-
ated with any two finite posets. This more general result will be proved in another
paper.

Now we prove that the functor SQ is actually isomorphic to a fundamental functor
and we compute the ranks of all its evaluations.

9.7. Theorem. Let Q be a pole lattice and let R be the order relation on the set
E = Irr(Q) of irreducible elements of Q. Let SQ = FQ/HQ.

(a) SQ is isomorphic to the fundamental functor SE,Rop .
(b) For any finite set X, the k-module SQ(X) is free of rank

rank
(
SQ(X)

)
=

|E|∑
i=0

(−1)i
(
|E|
i

)
(|Q| − i)|X| .

Proof : (a) We use the element γQop ∈ FQ(E0) defined in (3.9), where E0 =
Irr(Qop). By a well-known result of lattice theory (Theorem 6.2 in [Ro]), the dis-
tributive lattice Qop is isomorphic to I↓(E

0, R0), where R0 is the order relation
on E0 viewed as a subset of Qop, so that (E0, R0) is the poset of irreducible ele-
ments in Qop. Note that the isomorphism Qop ∼= I↓(E

0, R0) can also be checked
easily and directly because Qop is a pole lattice. Recall that

γQop =
∑
A⊆E0

(−1)|A|η◦A ,

where η◦A : E0 → Q denotes the same map as η : E0 → Qop and η is defined by

∀e0 ∈ E0, ηA(e0) =

{
s(e0) if e0 ∈ A ,
e0 if e0 /∈ A ,

because r(e0) in the lattice Qop is equal to s(e0) in the lattice Q.
Now we define ω : E0 → Q by

ω(e0) =

{
s(e0) if e0 ∈ E0

1 ,
e0 if e0 ∈ E0

2 ,

and we notice that ω is actually a bijection between E0 and E = Irr(Q), because
in a pole lattice we have E1 = s(E0

1) and E2 = E0
2 (by an easy application of

Lemma 2.1). Then ω ∈ FQ(E0) and when we apply the idempotent FεQ we claim
that we obtain

(9.8) FεQ(ω) = (−1)|E1|γQop .

The definition of εQ (see Notation 9.2) yields

FεQ(ω) = εQ ω =
∑
Y⊆E

(−1)|E−Y |ρY ω .

The definition of ρY in (7.8) splits into two cases. If e0 ∈ E0
1 , then

(ρY ω)(e0) = ρY (s(e0)) =

{
s(e0) if s(e0) ∈ Y ,
r(s(e0)) = e0 if s(e0) /∈ Y .
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If now e0 ∈ E0
2 , then

(ρY ω)(e0) = ρY (e0) =

{
e0 if e0 ∈ Y ,
s(e0) if e0 /∈ Y .

For each Y ⊆ E, we define A ⊆ E0 by

Y ∩ E1 = s(A ∩ E0
1) and Y ∩ E2 = E2 − (A ∩ E2) .

Thus we have decompositions

Y = (Y ∩ E1) t (Y ∩ E2) ⊆ E and A = (A ∩ E0
1) t (A ∩ E0

2) ⊆ E0

and A runs through all subsets of E0 when Y runs through all subsets of E. If
e0 ∈ E0

1 , then
s(e0) ∈ Y ∩ E1 ⇐⇒ e0 ∈ A ∩ E0

1

while if e0 ∈ E0
2 , then

e0 /∈ Y ∩ E2 ⇐⇒ e0 ∈ A ∩ E0
2 .

Therefore the two cases merge into one and we obtain

(ρY ω)(e0) =

{
e0 if e0 /∈ A ,
s(e0) if e0 ∈ A ,

so that ρY ω = η◦A.
As far as the signs are concerned, we have

|E − Y | = |E1 − (Y ∩ E1)|+ |E2 − (Y ∩ E2)| = |E0
1 − (A ∩ E0

1)|+ |A ∩ E0
2 | ,

hence

(−1)|E−Y | = (−1)|E
0
1 | · (−1)|A∩E

0
1 | · (−1)|A∩E

0
2 | = (−1)|E1| · (−1)|A| .

It now follows that

FεQ(ω) =
∑
Y⊆E

(−1)|E−Y |ρY ω

= (−1)|E1|
∑
A⊆E0

(−1)|A|η◦A

= (−1)|E1|γQop .

This proves Claim 9.8 above.
Now FQ is generated by ω ∈ FQ(E0), because it is generated by ι ∈ FQ(E)

(where ι : E → Q is the inclusion), hence also by any injection from the set E0

toQ, by composing ι with a bijection between E0 and E. Since FεQ is an idempotent
endomorphism of the correspondence functor FQ, we see that FεQFQ is generated by
FεQ(ω). In other words, in view of Claim 9.8 above, FεQFQ is generated by γQop ∈
FQ(E0). Now Theorem 3.10 asserts that the subfunctor of FQ generated by γQop

is isomorphic to SE0,R0 , where (E0, R0) is the poset of irreducible elements in Qop.
But (E0, R0) ∼= (E,Rop) via the map ω : E0 → E described above. Therefore,
using the isomorphism of Theorem 9.4, we obtain

SQ ∼= FεQFQ = 〈γQop〉 ∼= SE0,R0 ∼= SE,Rop .
(b) By Definition 7.6, the canonical k-basis of SQ(X) = FQ(X)/HQ(X) is the

set Z(X) of all maps ϕ : X → Q such that E ⊆ ϕ(X) ⊆ Q. Therefore SQ(X) is free
of rank |Z(X)|. The number of maps in Z(X) has been computed in Lemma 8.1
of [BT2] and the formula is actually well-known. The formula asserts that this rank
is equal to

|Z(X)| =
|E|∑
i=0

(−1)i
(
|E|
i

)
(|Q| − i)|X|

as required.
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9.9. Remark. In view of the projectivity of SQ (Theorem 9.4), the isomorphism
SQ ∼= SE,Rop provides another proof of the projectivity of the fundamental functor
SE,Rop whenever (E,Rop) is a pole poset. This was first proved in Theorem 5.1.

9.10. Remark. The formula for the rank in Theorem 9.7 is a special case of the
general formula proved in [BT4] for the rank of the evaluation of any fundamental
functor. We have given here a direct proof in the case of a pole lattice because it
is easy, while the proof in the general case is much more elaborate.

When k is a field, we get even more.

9.11. Corollary. Let k be a field. Let Q be a pole lattice and let (E,R) be the
poset of irreducible elements in Q.

(a) For any simple kAut(Q)-module V , the functor SQ ⊗kAut(Q) V is simple,
isomorphic to SE,Rop,V .

(b) The correspondence functor SQ is projective and injective.
(c) If either Aut(Q) is trivial (which occurs if Q is totally ordered) or if the

characteristic of k is different from 2, the correspondence functor SE,Rop,V
is simple, projective, and injective.

(d) Under the assumption of (c), SQ decomposes as a direct sum of simple (and
projective) functors

SQ ∼=
⊕
V

SE,Rop,V ,

where V runs over simple kAut(Q)-modules up to isomorphism.
(e) Under the assumption of (c), FQ decomposes as a direct sum of simple (and

projective) functors

FQ ∼=
⊕

P∈PolQ

⊕
VP

(SEP ,RopP ,VP )n(Q,P ) ,

where (EP , RP ) denotes the poset of irreducible elements in P and where
VP runs over simple kAut(P )-modules up to isomorphism.

Proof : (a) Using Lemma 2.1, it is easy to check that Aut(Q) = Aut(E,R) =
Aut(E,Rop), so V is a kAut(E,Rop)-module. Recall that the fundamental corre-
spondence functor SE,Rop has a right kAut(E,Rop)-module structure (in the sense
that each evaluation SE,Rop(X) is a right kAut(E,Rop)-module, in a compatible
way with all morphisms, which act on the left). Moreover, by Proposition 3.4, we
know that the simple functor SE,Rop,V is obtained from the fundamental functor
SE,Rop by simply tensoring with V :

SE,Rop,V ∼= SE,Rop ⊗Aut(E,Rop) V , that is, SE,Rop,V ∼= SQ ⊗kAut(Q) V ,

as required.

(b) SQ is projective by Theorem 9.4. Since k is a field, it is also injective by
Theorem 10.6 in [BT2].

(c) When either Aut(Q) is trivial or the characteristic of k is different from 2,
kAut(Q) is semi-simple and every simple kAut(Q)-module is projective. Moreover,
every simple kAut(Q)-module has dimension 1 because Aut(Q) is an elementary
abelian 2-group (the only roots of unity needed are ±1). Therefore we have an
isomorphism of kAut(Q)-modules

kAut(Q) ∼=
⊕

V simple

V ,
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where V runs over all simple kAut(Q)-modules up to isomorphism. It follows that

SQ ∼= SQ ⊗kAut(Q) kAut(Q) ∼=
⊕

V simple

SQ ⊗kAut(Q) V ∼=
⊕

V simple

SE,Rop,V .

Since SQ is projective and injective by (b), so is each of its simple direct summands
SE,Rop,V .

(d) The decomposition of SQ was proved above.

(e) The decomposition of FQ follows immediately from (d) and Theorem 9.4.

In the special case of totally ordered lattices, the results of Corollary 9.11 were
already obtained in Corollary 11.11 of [BT3]. Also, notice that (c) provides another
proof of the implication (b) ⇒ (a) in Theorem 4.5.

Our last purpose in this section is to find, for any finite lattice T , all the direct
summands of FT isomorphic to a functor SP corresponding to a pole lattice P .
Recall that eT denotes the central idempotent of EndkL(T ) which is an identity
element for the subalgebra ET (see Theorem 8.3).

9.12. Theorem. Let T be a finite lattice. For every finite set X, let F pole
T (X) be

the k-submodule of FT (X) generated by all the maps ϕ : X → T such that ϕ(X) is
a pole subposet of T .

(a) F pole
T = FeT (FT ) and this is a subfunctor of FT .

(b) F pole
T is a projective direct summand of FT , isomorphic to

F pole
T
∼=

⊕
P∈PolT

π∈SurL(T,P )

SP =
⊕

P∈PolT

Sn(T,P )
P .

(c) If Q is a pole lattice, the image of any morphism FQ → FT in Fk is con-

tained in F pole
T . In particular, any subfunctor of FT isomorphic to the

functor SQ is contained in F pole
T .

(d) HomFk
(
F pole
T , Fid−eT (FT )

)
= {0} and HomFk

(
Fid−eT (FT ), F pole

T

)
= {0}.

(e) The splitting of the surjection FeT : FT → F pole
T is natural in T .

Proof : (a) Let ϕ : X → T be a map such that ϕ(X) is a pole subposet of T . Let Q
be the join-closure of ϕ(X), so that ϕ = jψ, where ψ : X → Q and where j : Q→ T
is the inclusion map. It is easy to see that Q is a join-closed pole lattice. Thus
j ∈ HomkL(Q,T ) and so j = jeQ because eQ ∈ EndkL(Q) is the identity morphism
by Theorem 9.1. Now jeQ = eT j by Theorem 8.3, hence j = eT j. Therefore

ϕ = jψ = eT jψ = eTϕ = FeT (ϕ) ,

proving that ϕ ∈ (FeT (FT ))(X).
Conversely, if ϕ ∈ (FeT (FT ))(X), then we can write ϕ = FeT (ψ) = eTψ where

ψ is a k-linear combination of maps X → T . Since eT is, by construction, a
linear combination of maps whose image is a pole poset, so is eTψ, proving that

ϕ ∈ F pole
T (X).

This shows that F pole
T = FeT (FT ) and the latter is a subfunctor of FT .

(b) As in the proof of Theorem 9.4, we apply the fully faithful functor kL → Fk
defined by T 7→ FT . There is a direct sum decomposition of functors

FT = FeT (FT )⊕ Fid−eT (FT ) = F pole
T ⊕ Fid−eT (FT ) .

The idempotent eT is the sum of the orthogonal idempotents fπ,idP ,π of EndkL(T ),

for π ∈ SurL(T, P ) and P ∈ PolT . It follows that the endomorphisms Ffπ,idP ,π



SIMPLE AND PROJECTIVE CORRESPONDENCE FUNCTORS 39

of FT are orthogonal idempotents with sum FeT . Hence we obtain a direct sum
decomposition of correspondence functors

F pole
T = FeT (FT ) =

⊕
P∈PolT

π∈SurL(T,P )

Ffπ,idP ,π
(
FT
)
.

By Proposition 7.11, the image of Ffπ,idP ,π = Fjππ is isomorphic to FP /HP = SP
and is projective by Theorem 9.4, proving the result.

(c) Let α : FQ → FT be a morphism of correspondence functors where Q is a
pole lattice. Since the functor T 7→ FT is full, α is the image of a morphism Q→ T
in kL, which is in turn a linear combination of join-morphisms f : Q → T . Any
such f has an image which is a pole subposet of T . Therefore, for any function
ϕ : X → Q, the image of fϕ is a pole subposet of T . It follows that the image of

the map Ff (X) : FQ(X)→ FT (X) is contained in F pole
T (X). Therefore, the image

of the map Ff is contained in F pole
T and so the image of α is contained in F pole

T .
The special case follows from the fact that SQ is a subfunctor of FQ, by Theo-

rem 9.4.

(d) The first statement is a consequence of (b) and (c), while the second one
follows from a dual argument. Details are left to the reader.

(e) By Theorem 8.3, the family of idempotents eT , for T ∈ L, is a natural trans-
formation of the identity functor idkL. Therefore the family of idempotents FeT ,
for T ∈ L, is a natural transformation of the identity functor idFk .

9.13. Corollary. Let F be a correspondence functor and let F pole be the sum of
all the images of morphisms FP → F , where P varies among pole lattices.

(a) The subfunctor F pole is the image of an idempotent natural transformation
εF : F → F , so that F pole is a direct summand of F .

(b) HomFk
(
F pole, (id−εF )(F )

)
= {0}.

(c) The idempotent εF is natural in F . In other words, when F varies among
correspondence functors, the family of idempotents εF is a natural transfor-
mation of the identity functor Fk → Fk.

Proof : We only sketch the main arguments of the proof. By Yoneda’s lemma
applied to a set of generators of F , there is some index set I and a surjective
morphism from a direct sum of representable functors

π :
⊕
i∈I

kC(−, Ei) −→ F

and each kC(−, Ei) is projective. Moreover, kC(−, Ei) is isomorphic to FTi for some
distributive lattice Ti (by Lemma 3.7). It follows that there is an exact sequence⊕

j∈J
FUj //

⊕
i∈I

FTi
π // F // 0

where Uj is again a distributive lattice for each j in some index set J . Let us
write ε for the direct sum of the idempotent endomorphisms of Theorem 9.12,
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independently of the lattices involved. Thus we have a commutative diagram⊕
j∈J

FUj

ε

��

//
⊕
i∈I

FTi

ε

��

π // F

εF

��

// 0

⊕
j∈J

FUj
//
⊕
i∈I

FTi
π // F // 0

where εF : F → F is induced by ε. It is easy to check that εF is an idempotent
morphism and that Im(εF ) ⊆ F pole, because Im(εF ) = Im(πε) and this is the image
under π of correspondence functors associated to pole lattices, by Theorem 9.12.
Moreover, any pole lattice P is distributive, so FP is projective. Therefore any
morphism FP → F lifts to a morphism FP →

⊕
i∈I FTi whose image must be

contained in Im(ε). Thus F pole is contained in π(Im(ε)) = Im(εF ).
The proofs of (b) and (c) are similar.
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[BT3] S. Bouc, J. Thévenaz. Correspondence functors and lattices, J. Algebra 518 (2019), 453–518.
[BT4] S. Bouc, J. Thévenaz. The algebra of Boolean matrices, correspondence functors, and

simplicity, J. Comb. Algebra 4 (2020), 215–267.
[Ro] S. Roman. Lattices and ordered sets, Springer, New York, 2008.

[St] R. P. Stanley. Enumerative Combinatorics, Vol. I, Second edition, Cambridge studies in

advanced mathematics 49, Cambridge University Press, 2012.

Serge Bouc, CNRS-LAMFA, Université de Picardie - Jules Verne,
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