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Abstract
The study of strong gravitational lenses is a relatively new scientific field in astronomy with

many applications in cosmology. Its unique observables allow astronomers to trace dark

matter, determine the expansion of the universe and study galaxy evolution. While strong

lenses are relatively rare phenomena, recent and future improvements in observational in-

strumentation are expected to lead to a sharp increase in the number and quality of their

observation. With that increase comes however an observational challenge from the sheer

quantity of data the lenses are hidden in. Current classification and modelling techniques are

simply not capable of handling the new data in a reasonable timeframe. As a consequence

this thesis concerns itself with the development and improvement of numerical methods

necessary to find and analyse these newly found lenses, borrowing from deep learning and

high performance computing techniques.

Deep learning, a field of machine learning, shows significant success in finding lenses in

simulations. Performing significantly better than any other classification method, CNN-

based lens finders reach almost the required classification efficiency and accuracy for a fully

automated Euclid strong lensing pipeline. Its dependency on a varied and complete training

set and the difficulty creating it make its immediate application to new surveys however more

difficult.

Incorporating high performance computing techniques and more concurrent algorithm de-

sign into lens analysis results in crucial speed-ups for strong lens analysis. Applied to Lenstool,

a popular mass modelling tool for gravitational lenses, the resulting software can be run on

modern supercomputers, using Graphics Processing Units (GPU) and CPUs simultaneously.

Running it on state-of-the-art hardware makes it possible to reduce computation time to an

acceptable level when mass modelling complex cluster lenses.
Keywords: Strong Gravitational Lenses – High Performance Computing – Lens-modelling – Deep

Learning – Euclid
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Résumé
L’étude des lentilles gravitationnelles est un domaine de recherche récent en astronomie qui possède

une multitude d’application en cosmologie. Les observables uniques que présentent les lentilles per-

mettent aux astronomes d’observer indirectement la matière noire, de calculer le taux d’expansion de

l’univers et d’étudier l’évolution des galaxies. Bien que les lentilles gravitationnelles soient un phéno-

mène rare, on prédit une forte augmentation du nombre et de la qualité des lentilles gravitationnelles

trouvées due aux avancées technologiques en matière d’instrumentation observationnelle. Cette forte

augmentation met les astronomes face à des nouveaux problèmes liés à la quantité de données ayant

besoin de traitement. Les techniques de classification et modélisation actuelles ne sont simplement

pas capables d’analyser autant de données dans un délai raisonnable. C’est donc à cause de ceci que le

sujet de cette thèse est le développement et l’amélioration de méthodes numériques utilisées pour la

recherche et l’analyse de lentilles gravitationnelles.

Le deep learning, un sous-domaine du machine learning, produit des résultats impressionnants pour la

recherche de lentilles. Basé sur des concours de classification de lentilles, les algorithmes de recherche

basés sur des CNN se sont révélés plus efficaces que n’importe quelle autre méthode sur le marché. Leur

efficacité actuelle est presque suffisante pour atteindre les critères de qualité demandés par la mission

Euclid dans le but de construire une pipeline automatisée de recherche de lentilles. En revanche la

dépendance de ces modèles à un set d’entraînement varié et réel rend leur application problématique

sur des missions d’observation n’ayant pas encore produit de données.

L’utilisation de techniques de calcul de haute performance et le design plus parallèle d’algorithmes per-

met l’augmentation de la vitesse de calcul nécessaire dans l’analyse de lentilles gravitationnelles. Basé

sur Lenstool, un outil réputé de modélisation de masse de lentilles gravitationnelles, l’incorporation de

ces techniques dans Lenstool-HPC permet son utilisation sur les superordinateurs les plus modernes,

utilisant simultanément GPU (Graphics Processing Unit) et CPU. L’utilisation de matériel informatique

de pointe permet donc de réduire le temps de calcul à un niveau acceptable lors de la modélisation de

lentilles gravitationnelles.
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Introduction

Astronomy is historically a science constantly starved for more data. The physical phenomena studied

by astronomers are of an order of magnitude in terms of mass, energy and duration which simply

cannot be recreated in a controlled lab environment. While numerical simulations can help with this,

astronomers are essentially limited to what they can observe in the night sky. Luckily the universe

is big enough to provide us with an ample amount of almost every type of situation possible as long

as we can find and observe them. This means that the data available to us is mostly limited by our

observational capacities, based on the running of extremely expensive and specialised ground-based

and space-based telescopes that each time produce seemingly trickle amounts of new data for data-

starved astronomers. Observation proposals for observation time on the best performing telescopes

were and still are a matter of huge competition between scientists.

Improvements in observational techniques and the more and more international projects coming

together are now starting to reverse this almost fundamental fact of astronomy. New telescopes generate

so much data that in certain cases, astronomers have access to more data than is humanely possible to

sort through using the human eye. Astronomers have to contend more and more with the so called "Big

Data revolution" that is slowly becoming a staple in many other sectors. The exciting new possibilities

that this new data presents come with their own set of challenges that astronomers are starting to

grapple with. How does one handle such a huge quantity of data quickly and safely? How do we need

to change the methods we already use to handle the amount of data and still reach our science goals?

Strong lens astronomers have already many extremely powerful semi automated optimisation and

machine learning tools but the limits of these techniques are starting to be felt strongly.

In my case, due to my involvement in the EUCLID Strong Lensing Working group and my professor

Jean-Paul Kneib’s involvement in cluster modelling, the problems I tackled were specifically the search

for strong gravitational lenses and the modelling of cluster lenses. To solve these challenges, I worked

heavily together with the HPC experts from the SCITAS department at EPFL and various machine-

learning experts around the world. This thesis is therefore a technical one, firmly set in the world of

astroinformatics.

The thesis is organised into three main parts: strong lensing theory, strong lensing detection and

strong lensing analysis. The strong lensing theory gives an overview of the science objectives and

the mathematical framework behind strong gravitational lenses. The strong lensing detection part

comes directly from my work on the Euclid pipeline with the Euclid Strong Lensing Working Group and

handles the detection of galaxy scale lenses using deep learning models like CNN. The strong lensing

analysis part describes the work we did to rewrite Lenstool, a popular mass modelling tool for cluster

scale lenses, to handle the increasingly precise available data for strongly lensed clusters.
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1 Strong Lensing

"Matter bends light". This seemingly simple statement lies at the source of one of the most striking

and visually impressive astrophysical phenomenon visible in the night sky: the strong gravitational

lens.

Figure 1.1 – Galaxy cluster Abell 370. Each streak of light is in fact a magnified image of an
even more distant galaxy behind the cluster. These images appear distorted and displaced
because of the gravitational pull of Abell 370 which acts as a lens. Around 100 galaxies are
multiply imaged by this effect. Credit: NASA, ESA, and J. Lotz and the HFF Team (STScI)

The photons emitted by distant light-sources are affected by the gravitational pull of the objects in

their paths and therefore slightly deviated resulting in what astronomers call the weak-lensing effect.

Because matter is not homogeneously distributed in the universe, most light-sources appear to us
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Chapter 1. Strong Lensing

slightly displaced, distorted and magnified compared to how they should appear.

In rare cases, when a light source is almost perfectly aligned with a high density mass like clusters or

single galaxies, the deflection is sufficient to create multiple images of the source. The capacity of

creating multiple images sets the distinction between strong and weak lensing effect.

Three interesting properties set strong gravitational lensing apart as an interesting research subject.

First, its observables like relative positions and time-delays depend on the gravitational potential

of the foreground object or "lens". This allows the study of the spatial distribution of Dark Matter

(DM) inside galaxies which is the main provider of gravitational potential at these scales. Secondly,

these observables also depend on the overall geometry of the universe through the angular diameter

distances between observer, deflector and source. This makes them effective additional constraints for

cosmology. Thirdly, the magnification created by the deflection of light which can increase flux by order

of magnitudes allows for the discovery and study of objects too faint for actual instruments to detect.

Figure 1.2 – A strong gravitational lens system: Photons emitted by a distant light sources are
deflected by the gravitational potential of objects in their path, in this case a cluster of galaxies.
The distorted light-rays that arrive at earth make the initial galaxy appear to us multiple times,
magnified and distorted. Credit NASA, ESA

In this chapter we will go over the basic theory of strong gravitational lensing, the main science

objectives using strong lenses and the difficulties involved in finding and using these lenses for science

purposes. Since this thesis is not intended as a literature review, for more details the reader can refer to

the book by Schneider et al. (1992) and the excellent annual reviews by Treu (2010) and Blandford and

Narayan (1992).
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1.1. History

1.1 History

The concept that matter could bend light is not a new one and was already formulated by Isaac Newton

as an open question in 1704 as a logical consequence of his gravity theory. If light was made up of small

particles, it would stand to reason that they too would be affected by the gravitational pull of other

objects. Following this line of thought, assuming the corpuscular theory of light and Newtons laws of

gravitation, Pierre Simon Laplace noted in 1799 that "the attractive force of a heavenly body could be so

large, that light could not flow out of it" (Laplace, 1799). This represents one of the first theories on the

existence of black holes. Based on these ideas in 1801, J. Soldner (Soldner, 1801) and Einstein (Einstein,

1911) 100 years later calculated respectively the "newtonian" and "relativistic" deflection of light by a

gravitational potential. From these calculations came the idea to observe if and how much the position

of stars near the sun was deflected by the mass of the sun. This was done during a solar eclipse in 1919,

constituting the first observational proof of relativity theory and corroborating Einstein’s calculations,

(a) Solar Eclipse snapshot from
1919 with the first deflection
measurement of stars near the
sun corroborating Einstein rel-
ativity theory.

(b) 0957+561, The first gravi-
tational lens found, a quasar
doubly lensed by a galaxy ob-
served in 1979 (Walsh et al.,
1979)

(c) 0957+561, The same doubly
lensed quasar as to the left this
time zoomed in and observed
using the Wide Field and Plan-
etary Camera 2 (WFPC2).

Figure 1.3 – Early gravitational lens observation

The idea that gravity could not only deflect but also act as a lens and create multiple images seems to

have been first stated by A.S Eddington (Eddington, 1920) and followed up by R.W Mandl (Einstein,

1936). However the idea of stars bending light in such a fashion was considered very unlikely to be

observed with the then generation of telescopes. Only in 1937, did Zwicky (Zwicky, 1937) go on to

consider nebulae as potentials massive enough to act as lenses, establishing then, that with nebulae

acting as lenses, it should be almost certain to observe a lens in a certain area of the sky. Theory

continued to develop on how to exploit gravitational lensing if ever found following the discovery

of quasars as possible lensed objects but it was still considered an esoteric field until D. Walsh, R.F

Carswell and R.J Weymann announced the detection of the first gravitational lens candidate 0957+561,

a doubly lensed quasar lensed by a galaxy in 1979 (Walsh et al., 1979). The subsequent search and

findings of more gravitational lensing candidates convinced more and more of the research community

of the validity of the lensing hypothesis with the first international conference on lensing held in

Toronto in 1986. Since then gravitational lenses have become an established science sector with many

applications in cosmology and galaxy morphology.
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Chapter 1. Strong Lensing

1.2 The Lens Equation

What is initially surprising when first starting to work with lenses is the relative simplicity of the physical

theory behind them compared to other fields.

At the core of lensing theory lies a simple geometrical relation, called the lens equation. Consider a

homogeneous Friedmann-Robertson-Walker (FRW) universe with cosmological density parameterΩ0

in which we have a lens system comprised of a luminous source S, a high density mass object acting

as a lens L and an observer O. The angular diameter distances between them can be described as by

convention as Ds = D(0, zs ), Dl = D(0, zL), and Dl s = D(zl , zs ).

Figure 1.4 – A Lens-system is comprised of a luminous source S, a high density mass L and the
observer O. The light emitted in all directions by the source S is bent around the mass L by its
gravitational pull and arrives on multiple different paths at the observer O.

The lens equation is derived using simple geometry from a schematized lens-system (Fig. 1.4) and

connects the observed image position θ to the source position β

β= θ−α(θ) (1.1)

through the reduced deflection angle α(θ) (also called scaled deflection angle). The reduced deflection

can be calculated from the deflection angle α̂(Dlθ) as follows.

α(θ) = Dl s

Ds
α̂(Dlθ) (1.2)

α̂(Dlθ) is the deflection angle that a light ray would experience when passing through a specific point
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1.2. The Lens Equation

of the lens-plane. The lens-plane is defined as the plane perpendicular to the line between lens and

observer centered around the lens.

Because the distances between the objects of interest are of order of magnitudes bigger than their sizes,

the deflection angles can always be considered small. This allows us to use the weak field approximation

of general relativity, meaning that for a thin lens the whole problem can be described as the following

series of Poisson like equations:

∇2ψ(Dlθ) = 8πGΣ(Dlθ) (1.3)

where ψ(Dlθ) is the 2D Newtonian gravitational potential obtained and Σ(Dlθ) the 2D-surface mass

density projected unto the lens-plane . From that potential we can derive the deflection angle:

α̂(Dlθ) =∇ψ(Dlθ)/c2 (1.4)

These equations establish a link between the 2D-surface mass density of the lens (Σ(Dlθ)), the distance

between observer, source and lens and the observed position of the multiply imaged sources which is

crucial for the science applications of gravitational lensing. For more details on the hypothesis involved

and the formal proof of the equations above, please refer to Blandford and Narayan (1992); Schneider

et al. (1992).

The lens equation represents a non-linear problem. For each image position θ there exists an unique

source position β but the inverse is not necessarily true. When source, lens and observer are sufficiently

aligned unto one axis, the lens equation can have multiple different θ solutions. This is characteristic

of the strong lensing regime with each solution being the position of one multiple image.

From the lens equation we can derive also other lens properties and observables. The Jacobian of the

lens equation defines the inverse magnification tensor written as

∂~β

∂~θ
= δi j − ∂2ψ

∂~θi
~θ j

=
(

1−κ−γ1 −γ2

−γ2 1−κ+γ1

)
, (1.5)

with the shear components γ1 and γ2 representing the local distortion of a source image. The conver-

gence parameter κ measures the isotropic part of the magnification. From its relation to Σ(Dlθ) the

2D-surface mass density projected unto the lens-plane, we can define the critical density Σcr

κ(Dlθ) = Σ(Dlθ)

Σcr
, Σcr = c2

4πG

Ds

Dl Dl s
= 0.35 g cm−2

(
Ds

1Gpc DlDls

)−1

. (1.6)

Σcr defines the limit between the weak and strong lensing regime with a lens with multiple images

having Σ > Σcr . That limit also defines the lines (on the image plane) called critical lines when the
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magnification of the lens becomes formally infinite. As an example in the case of a point source, the

local magnification is given by the determinant of the magnification tensor.

µ= 1

(1−κ)2 −γ2
1 −γ2

2

(1.7)

For non-point sources the magnification also depends on the surface brightness distribution of the

source. When κ≈ 1, the magnification becomes formally infinite allowing compact images close to the

critical line to be magnified by up to two orders of magnitude. Critical lines can be unlensed back unto

the sourceplane, forming caustics. Every source crossing a caustic will generate two more or two less

images, with each pair being stretched along the critical lines. A schematised example for a spherical

and elliptical lens can be found in Fig 1.5.

1.3 Galaxy and Cluster Scale Lenses

Gravitational lenses come in many shapes and forms but a general classification can be made based

upon the object acting as a lens. Typically strong gravitational lenses can be separated into galaxy and

cluster lenses. Examples of galaxy lenses are Fig. 1.6a and 1.6b and for cluster lenses, Fig. 1.1, 1.8 and

1.12.

For galaxy lenses, any type of galaxy can act as a lens provided it is massive enough. The most

commonly found galaxy type acting as a lens are massive elliptical galaxies of velocity dispersion

between 200-300 km.s−1. The resulting lens images are relatively simple compared to cluster lenses

because the lensing potential of one galaxy is fairly homogeneous. These lenses have an einstein radii of

approximately Er = 1.′′0 and are typically lens quasars (QSO) or radio sources. These objects are found

more often because they are typically bright and are easier to pick out. Spiral galaxy lenses are less

likely to be found despite being more numerous than elliptical galaxies because their lesser mass leads

to a lower einstein radius and a lower angular separation between the images. They exist but are simply

much more difficult to detect since the multiple images cannot be distinguished from each other or the

lens. A good example is the Sloan Lens ACS survey (SLACS) using the Hubble Space telescope (HST)

which has observed and confirmed in detail 130 lenses (Auger et al., 2009). The lensing galaxies have

an average velocity dispersion of 248 km.s−1, with an rms scatter of 46 km.s−1. They consist of 80%

elliptical, 10% lenticular and 10% massive spiral lenses. Lenses with lower velocity dispersion exist but

for them the lensed image separation drops to below 0.′′3−0.′′4 which is the current detection limit for

the HST and the Very Large Array (VLA). As the resolution of telescopes improves further, less massive

lenses should be discovered.

Most confirmed galaxy lenses are observed up to redshift z < 0.4, mainly because for these redshift

ranges spectroscopic information is easier to get than for higher redshift objects. Spectroscopy in turn

is necessary for confirming if an object is a lens or not and for accurate redshift measurement. The

source objects redshift can go back as far as redshift z < 4 (see Fig.1.7a,Treu (2010)) with some even

higher redshift sources having been confirmed.

Cluster lenses are objects so massive that they always act in some way as a lens. They are composed

of hundred of galaxies, making them the most massive virially bound objects in the universe, and

the deflection maps they form are a lot more complex than for galaxy scale lenses. A massive DM
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1.3. Galaxy and Cluster Scale Lenses

Figure 1.5 – Caustic and critical lines generated respectively by a spherical and elliptical lens.
As each source crosses a caustic line in the source plane, it generates two more or two less
multiple images. The multiple images appear on the image plane in the regions set by the
critical lines. Near the caustic lines, the amplification and deformation effect is highest, so
that sources start forming distorted arcs and Einstein rings. Caustic lines closest to the center
correspond to the furthest critical lines. The ellipticity of the lens influences if an Einstein ring
is formed: the more spherical a lens, the more perfect the resulting Einstein ring.
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(a) Horseshoe Einstein Ring (b) Einstein cross

Figure 1.6 – Gravitational Lens observation using the Hubble Space telescope (HST). The left
image shows a background galaxy distorted into an almost perfect Einstein ring (LRG 3-757).
The right is a quadruply lensed quasar (Q2237+030) with a fifth image at the center too faint to
observe. Credit: NASA, STScI, and ESA

halo contributes the bulk of the deflection potential with each separate galaxy member of the cluster

contributing an additional significant amount of gravitational potential (see Fig 1.7b & 1.8). The higher

mass and larger size means that they affect a much bigger area than galaxy lenses. The MAssive Cluster

Survey (MACS) clusters (Ebeling et al., 2001; Kneib and Natarajan, 2011) have for example a median

Einstein radii of around 28.′′. The corresponding critical and caustic lines are extremely dependent

on the complex underlying mass distribution of the cluster, making clusters a prime case studies for

DM observation. The higher mass also results in higher amplification factors. Amplification factors of

4 are commonly observed and can reach up to 40 close to the critical lines. The higher amplification

allows fainter sources at even higher redshifts to be observed with Lyman alpha emitters having been

observed up to z < 8 (Stark et al., 2007; Clément et al., 2011). Most sources are however observed

between redshift 3 < z < 7. Cluster redshifts tend to be between 0.2 < z < 0.8.

1.4 Science Objectives and Applications

Strong lenses are interesting objects to study because of their unique observables which can be used to

answer many open questions. Astronomers can use them to measure the mass of the lensing galaxies

without needing the mass to be luminous. This is crucial in dark matter studies. The magnification

of distant objects by strong lenses allows us to probe the Universe at the highest redshifts ever and

they have a unique application in cosmography through time delay calculation using multiply lensed

quasars. The following section goes briefly over these science applications, to give the reader an

overview of the potential of lenses. For more details on the corresponding science applications, please

refer to the corresponding citations.
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(a) Redshift distribution of galaxy scale lenses
and of corresponding lensed sources in SLACS,
COSMOS, CLASS and SQLS survey. Credit:
Treu (2010)

(b) Amplification map example for Abell 2744
based on the lens model by Jauzac et al. (2016).
The clear lines where the amplification is highest
trace perfectly the critical lines of the lens system.
Cluster lenses have typically more complex lens
models because of the perturbative potential of
each member galaxy.

Figure 1.7

1.4.1 Study of Dark Matter

The standard cosmological model which stands at the center of modern astronomy predicts that

the mass energy content of the universe consists of 5% baryonic matter, 27% dark matter, and 68%

dark energy. The two latter parts scientists know almost nothing about. However Dark matter (DM) is

considered to interact with baryonic matter mainly through gravitational interaction. With strong lens

deflection depending only on the gravitational interaction, the mass measurements of lensing galaxies

and clusters through strong lenses become an excellent way for us to constrain DM.

Around galaxies and clusters the existence of massive DM haloes is now a widely accepted fact. DM

halos have been detected by kinematic studies of galaxies, through weak lensing studies for statistical

sample up to z < 5 (Wechsler and Tinker, 2018) but also by strong lensing. Using strong gravitational

lenses one can calculate the mass of the lensing galaxy inside its Einstein radius. For massive elliptical

galaxies however, up to z ∼ 1 acting as lens galaxies, the masses found inside of the Einstein ring clearly

exceed the stellar mass M∗ inferred from the flux of the galaxies. Another type of non-luminous matter

therefore has to exist to explain this surplus mass which is typically accepted to be DM.

The precise mass measurements strong lensing provides can be used to accurately compute the fraction
of DM inside galaxies which is necessary to the understanding of the interplay of baryons and DM

(Jiang and Kochanek, 2007). These studies also serve to constrain and explain the fundamental plane
relation for early type galaxies, which links effective radius, effective surface brightness and stellar

velocity dispersion (Bolton et al., 2007, 2008; Thomas et al., 2011).

Strong gravitational lens mass-measurements can be combined with dynamical studies to explore
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Chapter 1. Strong Lensing

Figure 1.8 – Redshift distribution of object in cluster Abell 2744: The different redshifts ranges
are color-coded and spatially represented on the image. The corresponding redshift distri-
bution is shown in the histogram in the lower panel. The blue and purple redshifts belong
to objects in the foreground between us and the cluster. Green corresponds to the cluster
members and red and yellow to the sources behind the cluster being lensed. Credit: Mahler
et al. (2018)14



1.4. Science Objectives and Applications

Figure 1.9 – Mass-density profiles of lens galaxies inferred from a strong lensing and dynamical
analysis. The luminous matter (red) combines with the dark matter halo (blue) to form an
almost perfect isothermal mass profile (black) with γ= 2. The vertical dashed line shows the
location of the Einstein radius. (Figure from Treu & Koopmans 2004)

the mass distribution of galaxies because they resolve a mass anisotropy degeneracy that dynamical

studies face (Treu and Koopmans, 2004; Barnabè et al., 2009). The resulting mass-profiles show that

there seems to be a remarkable regularity in the mass structures of early-type galaxies coined the

bulge-halo conspiracy. Early-type galaxies all seem to have approximately isothermal mass-profiles

best described by a powerlaw ρ(r ) ≈ r γ with γ ≈ −2 out to very large radii with almost flat rotation

curves (Rusin and Kochanek, 2005; Koopmans et al., 2009). Recent studies (Ruff et al., 2011; Sonnenfeld

et al., 2015; Shankar et al., 2017, 2018) have shown that variations do occur in function of projected

stellar mass density and redshift but no definite explanation has been found yet.

Strong lensing can also be used to probe the core-cusp problem. Early dark matter Nb-body sim-

ulations have predicted that dark matter halos all possess similar "cuspy" density profiles that can

be fitted by simple analytical functions like the Navarro-Frenk-White (NFW) profile ρDM ≈ r−γ with

γ ≈ 1 (Navarro et al., 1997). In other words they predicted a "cuspy" mass density in their center.

Observations however show that dwarf, spiral galaxies and galaxy clusters tend to have shallower inner

mass density profiles, forming more of a "core" at the center of the DM halos (Sand et al., 2008; Zitrin

et al., 2015).

The core-cusp problem is an exceptional observational constraint which can be solved by making

some revision to Cold Dark Matter (CDM) theory (Yoshida et al., 2000; Ahn and Shapiro, 2005) or by

adapting the nature of DM. It could also mean that certain baryonic processes like stellar feedback

have a significant effect on DM halo evolution and cannot simply be neglected (Navarro et al., 1996;

Teyssier et al., 2013; Peirani et al., 2017).

Another open question for which strong lensing is interesting is the excess subhalo problem. Following

standard cosmology, DM halos should host a certain number of subhalos also called substructures.

However when comparing N-body simulations to observational data, significantly more substructures

are generated in the simulations than actually observed. While clusters have hundreds of verified

galaxies within their own halos, galaxies have very few luminous satellites that could correspond to the

predicted substructures. This could be because these substructures consist only of DM and therefore

are not visible or that cosmological theory is wrong on the number of subhalos generated. Strong lenses

are critical for answering this question because they are the best at detecting DM substructure and
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comparing it to simulation. This can be mostly done through the study of flux anomalities of lenses.

These flux anomalies are due to the perturbation of the magnification pattern of the lens which could

be generated by the presence of DM substructures. More details on the excess subhalo problem can be

found in the review by Kravtsov (2010).

1.4.2 Cosmic telescope

A straightforward use case for strong gravitational lenses is as a nature-made telescope. With it, it is

possible to resolve galaxies of the distant universe (at redshift above z >> 0.1) with more details than

using only man-made telescopes (Marshall et al. (2007); Riechers et al. (2008); Sharon et al. (2019)).

This can be used for example to study the stellar initial mass function (IMF) of high redshift galaxies as

with “The Cosmic Horseshoe” lens (Fig. 1.6a, Quider et al. (2009)). More details on IMF can be found in

the review on IMF by Bastian et al. (2010).

Cluster lenses are especially useful in this regard because of the huge magnification they can reach,

up to factors of 40x (Kneib et al., 2004; Richard et al., 2011). With the magnification being wavelength

independent, cluster observations have been done not only in the visible but also in the submiliter

(Smail et al., 1998), mid infrared (Altieri et al., 1999) and far infrared domain (Altieri et al., 2010).

Submillimeter observations are used for high redshift submillimeter galaxy detection (1 < z <5.5) (Smail

et al., 1998), to measure their exact contribution to the background radiation. From this we know that

submillimeter galaxies generate a significant fraction of the energy output of all galaxies in the early

Universe (Blain et al., 2002). Submillimeter observations also allow us to study the starforming regions

of these galaxies in great detail (Swinbank et al., 2010). Mid-infrared observations probe similarly to

submillimiter observations the faint and distant mid-infrared galaxy population and their contribution

to the cosmic mid-infrared background radiation. Far-infrared observations were used for the study of

Extremely Red Objects (ERO), some particularly peculiar galaxies (peculiar galaxy morphology study)

which revealed themselves mostly to be young dusty star bursts at 2 < z < 3 (Schaerer et al., 2007; Vieira

et al., 2013).

The extreme amplification region around critical lines allows for the detection of Lyman alpha emitters

present at very high redshift (4 < z < 7). Lyman alpha emitters are extremely young galaxies which act as

probes crucial for the study of the reionisation period of the Universe (Stark et al., 2007; Clément et al.,

2011).

1.4.3 H0 measuring through time-delay monitoring

One other exciting science application for strong gravitational lenses concerns the Hubble H0 constant

which measures the expansion rate of the universe. The true value of H0 is another open question

in astronomy which is leading to contention inside the astronomical community. Not considering

strong gravitational lenses, two famous H0 measurement methods find significantly different values for

H0. With both methods, one based on Cepheid and supernova measurement and the other on cosmic

microwave background (CMB) predictions using the Planck satellite, being independent from each

other, this H0 tension hints strongly to a problem in our cosmological models.

H0 measurements using time-delays was pioneered by the H0LiCOW collaboration (Suyu et al., 2017),

a program specialised in monitoring strongly lensed quasars for time delay calculation. Quasars (QSO)

are extremely bright sources with variable luminosities of time scales ranging around days and months.
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Figure 1.10 – Light curves for the four lensed images of the quasar HE 04351223. The relative
shifts in magnitude are chosen to ease visualization, and do not influence the time-delay
measurements. Credit: (Bonvin et al., 2017)

When observing multiply imaged quasars, it is possible to observe a time-delay between the multiply

imaged signals (Fig. 1.10).

This time delay depends on the matter distribution in the lens galaxy, on the overall matter distribution

along the line of sight (which can perturb measurements) and on the cosmological parameters, primar-

ily H0. This approach to measure H0 was first suggested by Refsdal (1964) but only after an extensive

monitoring campaign by the COSMOGRAIL project and complex modelling efforts were first results

achieved (Bonvin et al., 2017). Instead of bridging the results of both preceding methods and pointing

to some unaccounted for observation bias, it exacerbated the H0 tension by corroborating the Cepheid

based result (Fig. 1.11).

1.5 Finding Strong Lenses

One of the main problems astronomers encounter when using gravitational lenses is the scarcity of

data. Lenses are rare phenomena with only roughly a 1 to 1000 chance of appearing for every other

astronomical object observed (Collett, 2015). To find lenses, we have to rely on major ground based sky

surveys, and then use expensive spectroscopic follow-up to confirm the lens. In these surveys the first

lenses were found serendipitously by simple human eye observation of the data, but the ever increasing

amount of data quickly made this an unreasonable proposition. Semi-automatic machine learning

tools like arc finders (More et al., 2012), PCA based finders (Paraficz, D. et al., 2016) and, when available,

spectroscopic analysis were quickly developed and used to help in the task. This made possible the

creation of the first catalogs of lenses, allowing strong gravitational lenses to be finally used for science

purposes.

We can mention here the Cosmic Lens All Sky Survey (CLASS) (Browne et al., 2003), searching for

radio-loud gravitationally lensed systems with approximately 30 confirmed lenses to its name, or the

Sloan Lens ACS (SLACS) Survey with some 150 confirmed lenses with subsequent Hubble follow-up

observation (Shu et al., 2017).

However present-day and upcoming surveys like KIDS (Kilo Degree Survey), Euclid, DES (Dark Energy

Survey) (Diehl et al., 2017), HSC (Hyper Suprime Cam) (Chan et al., 2019) and others (More et al., 2012;
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Figure 1.11 – Comparison of H0 constraints for early-universe and late-universe probes in a
flat CDM cosmology (H0LICOW XIII.). One can clearly see the non agreement between the
cosmic microwave background (CMB) based results and the Cepheid and time-delay results.
Figure credits : Vivien Bonvin/Martin Millon.

Talbot et al., 2018) generate so much data that detecting promising lens-candidates by human eye

interaction is becoming impossible. To give an idea of the magnitude of the problem, only around 600

confirmed lenses have been found to date and Euclid alone proposes to find 100 000 galaxy lenses and

5 000 cluster lenses hidden in a corresponding amount of information (Collett, 2015). More efficient

and automated methods have therefore become even more crucial. This is the subject of the strong

lensing detection part of this thesis.

1.6 Gravitational Lens Mass Modeling

Another problematic for strong lens astronomers is the scarcity of precise mass-models. To model the

mass distribution inside galaxy clusters, the standard procedure is to use the multiply imaged lensed

sources as constraints to calculate the fit of a specific mass distribution. As additional metric, one can

use the magnitude of the images and the shape of the images, since lensing theory affects and predicts

these values, but the image position remains the main constraint used for lens-modelling. The best-fit

mass distribution is then found by using a domain sampler like a Markov Chain Monte Carlo sampler

(MCMC).

The problem astronomers face in producing mass models is the sheer complexity of the models. We

will go more into details in the chapter dedicated to this but the models we produce can depend on

hundreds to thousands of free parameters to accurately depict the complexity of the mass distribution
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1.6. Gravitational Lens Mass Modeling

Figure 1.12 – MACSJ0416-2403: a strongly lensed cluster with approximately 200 images. The
white lines give an overview of the complex underlying mass distribution. The lower part of
the image is a zoomed cutout of the cluster indicated by the yellow rectangle. The multiple
images are indicated by small colored circles. Credit: Jauzac et al. (2014)

of a cluster. Strong lens modellers are therefore affected by the well-known curse of dimensionality.

Simply put, the parameter space we have to explore to find the close to optimum solution expands

exponentially in function of the free parameters making a full exploration extremely lengthy in the case

of numerous free parameters.

In addition to this for each step, the fit computation of the tested mass distribution is computationally

costly. The non-invertible nature of the lens equation that allows it to have multiple solution and

therefore to generate multiple images for one source precludes an analytical solution. It is easy to

unlens a point unto the source plane but impossible to relens it. Instead the algorithm is forced to

rasterise the lens-plane, unlens every pixel of the grid unto the source plane and check for a source.

As a consequence one optimisation run of a complex cluster like the MACSJ0416-2403 (Fig. 1.12) can

last for weeks, potentially even months. These computation times are simply not acceptable anymore

with observational data of massive clusters likely to improve in the future. To handle this problem, we

worked on developing a High Performance Computing mass modeling tool for cluster lenses. This is

the subject of the strong lensing analysis part of this thesis.
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2 Deep Learning

The amount of data that astronomers, especially observers, are required to handle has long reached a

critical amount. We are reliant on machine-learning based semi-automatic and automatic methods to

classify the objects we detect and to predict the variables of our cosmological models. As a consequence,

machine learning has been for some time an area of high interest for astronomers. Among the many

fields of machine learning however, deep learning is still something of a new field for astronomy. While

by the time of writing this thesis the process is already well underway, astronomers are still discovering

many different possible applications of deep-learning in their research.

Since in this thesis, we explored the viability of deep learning for strong gravitational lens classification,

in this chapter we will go over the core concepts of machine learning and deep learning in particular.

Most of these core concepts come from the book "Deep Learning" by Goodfellow et al. (2018) which

I recommend for further theoretical details. If the reader is interested in more practical examples, I

strongly recommend the classic MNIST and Keras tutorials.

2.1 History

For classification problems in general, the last decade has seen the resurgence of a particular field

of machine learning called Deep Learning. Deep learning is a machine learning field that groups

together methods using artificial neural networks. The initial idea, which dates back to the early fifties,

was to create models that imitated the human brain. Perceptrons (Rosenblatt, 1957) organised into a

layer, each representing a simplified version of a biological neuron, were able to learn linear functions

allowing for some simple classication tasks. The initial attempts of single-layer perceptrons had some

success but were unable to learn any non linear functions until 1986. It was then that Rumelhart

et al. (1986) showed that by backpropagating training errors through layers it was possible to stack

multiple layers of perceptrons. Following the universal approximation theorem (Cybenko, 1989; Hornik,

1991), the more layers were stacked the more complex the functions learned could be. The prohibitive

computation cost of the training and high success rate of other methods like Support Vector Machines

(SVM) however slowed down research in the domain until 2012. Interest picked up, and continues

up to today, when a convolutional neural network (CNN) called "ALexNet" (Krizhevsky et al., 2012)

beat the best preceding score in the Large Scale Visual Recognition Challenge(LSVRC) by halving the

errors rates from 26% to 16% using graphics processing units (GPU). With more advanced versions of

neural networks with less prohibitive training costs available and GPUs to compensate for those, deep

learning has now become one of the fastest expanding current research fields, specialised in image
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Chapter 2. Deep Learning

recognition and parameter estimation.

2.2 Learning for Machines

Deep learning belongs to the machine learning algorithm category. One thing that differentiates

machine learning algorithms from others is that they are capable of learning. What that exactly means

is the critical component to understand when using them.

According to Mitchell (1997), "a computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E."

The concept of learning here refers to the capability of the software to "learn" how to best perform a

certain task on data based on some metric that we give it. Any task for which a performance metric can

be written could theoretically be learned: classification, regression, data denoising, anomaly detection,

etc. The performance metric which is often specific to the task is what allows us to measure how well a

program is doing. From it we can define a loss or cost function which has to be minimized to increase

performance. The learning or minimization process of the loss function is done by letting the program

experience a data set. At each step, depending on its performance, it updates its model parameters

following an optimisation procedure to reduce the loss.

Generalisation to unseen data

The key concept here is that the goal of learning is not to perform well on already seen data but on

data it has never seen before. This means the software has to generalise its learned experience. This is

the main difference between machine learning problems and optimisation problems. To evaluate the

generalisation, or more commonly known, the test error, data sets are often divided into two sets, a

training set and a test set. The training set is used to train the predictive model while the test set is used

only to measure its generalisation performance and not used at all for training.

How can we expect an algorithm learning on training data to perform well on test data it has never seen

before? This is possible because we make a certain set of assumptions on the data-generating process

behind the training and test. These are the i.i.d assumptions which suppose that the examples in

the data sets are independent from each other and identically distributed, meaning generated using

the same underlying probability distribution. The model is trained using the training set to learn the

underlying probability distribution and using this knowledge to perform well on any data using that

distribution. As a consequence of this, the test error will almost always be higher than the training

error.

Performance

Determining how well a machine learning algorithm is performing therefore depends on two factors: Its

ability to have a small training error, and to generalise well, meaning to keep the difference between test

and training error small. Avoiding underfitting (high training errors) and overfitting (big difference

between training and test scores) are the two major challenges of the learning process. A model’s

tendency to overfit or underfit depends on the models capacity, its capability of modelling a wide

variety of complex functions. An excellent example for this is the linear regression model (see Fig.2.1).
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2.3. Deep Learning Models

Figure 2.1 – Overfitting and underfitting with linear regression: The blue points are randomly
generated from a distribution function (orange) with some added noise. The blue line is a
linear regression model with polynomial features of degree 1, 4 and 15 fitting the data (blue
points) trying to estimate the underlying distribution function. At degree 1 it is underfitting:
the model is not complex enough to fit the data (high training error) or the underlying function.
At degree 15 the model is too complex, it captures perfectly every point but does not generalise
well the underlying distribution function: it is overfitting. To correctly estimate the distribution
function, a balance between both has to be achieved. The figure was generated using the scikit
python module.

A models tendency to overfit can also come from a training set which is not big enough to truly sample

the underlying probability distribution. In these cases increasing the size of the training set can often

help the model reduce overfitting.

Essentially statistical learning theory (Vapnik, 1995) tells us that "the discrepancy between training and

test error is upper bound by the models complexity which shrinks with increasing training size". This

gives us the theoretical proof that machine learning models can learn to work with never seen before

data. In practice, achieving this can be a bit more complex.

Summary

To summarise the preceding, a basic machine learning problem and solution consists of four things:

An extensive data set divided into training and test set following the i.i.d assumptions, a costfunction

adapted to the task needed, an optimisation procedure to minimise the costfunction and a machine

learning model to perform the task.

The model must be sufficiently complex to not underfit the problem while not so complex as to

overfit. Overfitting can be worked against using larger dataset and better optimisation functions. Every

algorithm belonging to the machine learning class follows these concepts.

2.3 Deep Learning Models

Deep learning is a term that is used to describe a network using artificial neurons. Given an input x,

neural networks try to learn a function y = f (x;θ) with y being for example some classification of x.
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They are called networks because to model complex functions, they are often composed of multiple

minor functions f (x) = f 3( f 2( f 1(x))) called layers of the network. The overall length is associated

with the depth of the network thus the name "deep". The deeper it is the more complex functions it

can represent. The last layer of the network is called the output layer which will give the result of the

function learned by the network. All layers in between input and output layer are commonly coined as

hidden layers.

The term "neural" originates historically from the decision to organise these layers into units that act

in parallel each representing a vector to scalar function. The units resemble neurons because they

output a single value from multiple output and in most cases imitate how neurons fire when receiving

sufficient input. However while the initial research was partly inspired by neuroscience, modern neural

network research has now branched out into different directions.

2.3.1 Artificial Neural Network

The previous concepts being a bit abstract, I will go over them using the Artificial Neural Network (ANN)

as a more detailed example. The ANN is among the simplest neural networks models still used to date

and is an excellent example for deep learning concepts and tutorials.

The model

Like most neural networks, it is composed of multiple layers of artificial neurons and can be used to

model a response variable like class labels or target variables from a series of input features.

Each neuron in a layer is a weighted linear function which takes as input all the output of the preceding

layers (see fig.??). The output is then fed through a non linear activation function before being passed

to the neurons of the next line. The output is therefore

a(
∑

wi xi +b) (2.1)

with wi the weights for each input, b a bias and a() the activation function. The weights and biases
of each neuron are trainable parameters meaning they will be updated to improve the capabilities

of the network. The non-linear activation functions are considered hyperparameters, they do not

change during training and are decided at the conception of the model. These non-linear functions are

important because they make it possible for the ANN to learn non-linear models. Activation functions

essentially determine if a neuron is activated ("fires") or not and therefore if its input is to be considered

by the subsequent layers. They also typically normalise the output which avoids overstimulation of the

following neurons. They are many different types of activation functions that are commonly used with

different advantages and disadvantages.

Gradient based learning

Neural networks and therefore ANN use the same gradient descent based learning as most machine

learning algorithms. Using a predefined costfunction one computes an error gradient that defines how

to change the weights in a layer so as to improve the final output. To update the parameters of the
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2.3. Deep Learning Models

Figure 2.2 – Typical layer of an Artificial Neural Network (ANN): Composed of multiple neurons.
Each neuron outputs a weighted sums of its inputs passed through a non-linear activation
function. Each layer uses the outputs from the preceding layers as inputs.

Figure 2.3 – A four layer deep artificial neural network composed of an input layer, two hidden
layers and one output layer. Input and hidden layers can be composed of any number of
neurons and are fully connected to the preceding one. The output layer scales its size to the
desired output size, which in the case of a simple regression is one.

27



Chapter 2. Deep Learning

Figure 2.4 – Three commonly used activation functions for hidden layers: ReLU, Leaky ReLU
and ELU. ReLUs by removing the possibility of low firing neurons to learn, they introduce
greater sparsity into the neural networks which allows for quicker learning. Leaky ReLUs and
ELUs are evolved versions of ReLU that avoid its drawback of "killing" too many neurons. All
three are efficient against the vanishing gradient problem.

hidden layers, we use the back propagation algorithm (Rumelhart et al., 1986). The backpropagation

algorithm calculates the partial derivatives of the cost-function with respect to any weight or bias

in the network. Using these partial derivatives, a gradient descent method can be used to change

the parameters so as to minimise the costfunction and shift closer to the desired output. The main

difference with other machine learning techniques is that the nonlinearity of deep learning models

means that most interesting cost functions we might want to use are not convex anymore. As a

consequence using gradient descent based learning we will rarely find the global minima (the optimum

solution) but only something close to it. This means that training a deep learning network is a more

heuristic affair than for classic machine learning. The initial parameters at the start of the training will

have a significant impact on the networks capabilities and multiple different training runs will result in

different models.

Additionally gradient descent based learning possesses one notable weakness which leads to the

vanishing and exploding gradient problems. As the error gradient is back -propagated to deeper layers

it can become unstable and can either vanish or increase exponentially (Pascanu et al., 2012; Pascanu

et al., 2012). If it vanishes, training will not improve the network further, while if it explodes, the network

will probably simply not work. Activation functions are extremely useful to mitigate the vanishing

gradient problem. The Rectified Linear Unit activation function (ReLU) (see Fig.2.4) for example forces

the gradient to be either 1 or 0.

ReLU(x) = max(0,x), ReLU′(x) =
{

1 x > 0

0 x < 0

}
(2.2)

In this way it avoids the vanishing gradient problem entirely and introduces greater sparsity into the

network by "killing" low firing neurons(Glorot et al., 2011). This has drawbacks since it can kill too

many neurons which is why the leaky ReLU and ELU activation have been developed. By allowing

dead neurons to learn just a bit, they avoid the dead ReLU problem and still are efficient against the

vanishing gradient problem.
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Figure 2.5 – Example of a typical CNN "LeNet5" by LeCun et al. (1998) for handwritten number
recognition. It’s composed of two convolution layers with each layer followed by a pooling
layer reducing the dimension of the output. The network is finished by two fully connected
layers that flatten the output from the convolution layers to the desired output of 10. Image
Credit LeCun et al. (1998)

Other types of activation function exist but the field is so diverse that I will not go into details. Activation

function research is extremely active and changes rapidly. While ELU and ReLU were considered state

of the art at the writing of this thesis, this can change in the future.

2.3.2 Convolutional Neural Network

Convolutional neural networks (CNN), first introduced by LeCun et al. (1998), are widely credited

for the actual deep learning renaissance. Most commonly used for 2D image processing, they were

the first deep learning network truly being used for commercial application, for bank checks and

handwriting recognition in the 1990s. The current interest in them however began when they won the

annual ImageNet object recognition challenge of 2012 setting them as the new gold standard of image

recognition. Since then, similar networks have won continuously other object recognition challenges

and almost every research and industry branch has expressed their interest in them.

Convolutional neural networks are a variant of neural networks where the neurons of every layer are

not fully connected to the preceding layers but take as input only a few neighbouring neurons. Every

neuron of the same layer also shares the same weights and bias. The resulting operation corresponds

to a convolution operation, with the neurons acting as a convolution matrix more commonly known as

kernel. The output of the layer becomes a feature map which is then given to the next layer. Since every

layer corresponds to only one kernel, which is not enough for complex models, CNNs use one more

dimension than classic ANNs. Each CNN layer will be composed of multiple neuron layers each with a

different kernel looking for different features. A CNN layer for a 2D image will output a feature map for

each kernel it has which taken together create a 3D feature map. The concept of depth of a CNN layer

should not be confused with the depth of a neural network which is why they are commonly known as

features.

There are three reasons why CNNs are so powerful compared to ANNs and other machine learning

models: Sparse connectivity, parameter sharing and translational invariance

Compared to ANNs, CNNs neurons are connected only to a few neurons of the preceding layer because

the needed convolution kernel can be much smaller than the input. Typically we use 3 by 3 kernels
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Figure 2.6 – CNNs neurons are connected to only a few preceding neuron through a convolu-
tion kernel. The resulting fewer connections make it easier and less computationally costly
to train CNNs compared to fully connected networks. Through consecutive layers, deeper
neurons see more of the total picture. If the network is deep enough or the final layer is fully
connected, the network sees the whole picture without losing parts of it.

meaning every neuron is connected only to 9 other neurons. Supposing we are processing a 6000 by

6000 pixel image, an ANN neuron would have 3,6×107 connections compared to a CNN’s 9 connections.

These extremely sparse interactions make CNN a lot less computation intensive than ANN, allowing

deeper and more complex models. While the neurons see only the closest neurons of the preceding

layers, because of the depth of the networks and because the last layer is often fully connected, with

each layer the deeper neurons see more of the whole picture.

In addition to the sparse interaction as stated before the neurons of each layer share their weights

and biases. This parameter sharing means that during training the parameters of each feature layer

are identical and updated in exactly the same way. This again reduces training computation costs

considerably and makes deeper networks possible. It also justifies the terminology of "feature map"

because the kernel of each layer becomes specialised in a specific feature detection, like edges for

example. Parameter sharing also means that the layer will be translation equivariant, which should

not to be confused with invariance. A function f is equivariant with respect to a transformation T

if f (T (x)) = T ( f (x)). In other words, applying the transformation to x is equivalent to applying it

to the result f (x). In the case of invariance we would have f (T (x)) = f (x) ,which CNNs achieve an

approximation of using pooling layers.

To further reduce the dimension of the CNN, a typical CNN set of layers will use a pooling layer after

a convolution layer. The pooling layer replaces the output of a convolution with a summary statistic

of the nearby outputs, effectively reducing the dimensions of the output layer. The most commonly

used pooling layer, the max pooling layer, keeps only the maximum value of a rectangular 2 by 2 grid,

reducing the size of the output layer by four. Others keep only the norm or a weighted average. The

pooling layers make the CNN model approximately invariant to small translation in the input. This

can be important in image detection where one is often more interested in knowing if a feature is

present than where it is exactly.

These three features are the main reason why CNNs are still today considered state-of-the-art for visual
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Figure 2.7 – Example of a LeNet 5 style CNN with two convolutional layers, two pooling layers
and two fully connected layers classifying a handwritten 8. The closer to light blue a point is,
the more the corresponding neuron has been activated. The first convolution layer highlights
easy to understand points of interest like the edges of the form 8 and the presence of two
circles inside the handwriting. Already with the second convolutional layer (third layer from
the bottom) however, the relationship between neurons become too complex for us to keep
track of them. This image was created using the interactive tool developed by Harley (2015).

classification tasks. But while they have been applied to many generic classification problems, at the

beginning of this thesis they hadn’t been applied to lens finding. The next chapter shows therefore how

these CNNs can be adapted to the strong gravitational lens detection problem.
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3 Euclid Lens Finder

3.1 Preface

Euclid is one of the major space surveys planned for the next decade. Covering 15000 deg2 of the

observable night sky at half the precision of the Hubble Space telescope with one visual and 3 near-

infrared bands, it has immense scientific potential especially for strong lensing application. Based

on early prediction (Collett, 2015), we expect to find around 200000 lenses and 5000 cluster lenses in

the wide survey. The predicted abundance of objects is staggering and necessitates the development

of fully automated detection methods for the mission. As part of the Euclid Strong Lensing Science

Working Group (SLSWG), we organised and participated the Galaxy Galaxy Strong Lensing challenge

(GGSLC) to test ideas for the strong lensing pipeline. The paper below details the CNN version we

developed for it.

3.2 Paper

This chapter is presented in the form of a published paper as Christoph Schaefer, Mario Geiger,

Thibault Kuntzer, and Jean-Paul Kneib, Deep Convolutional Neural Networks as strong gravitational

lens detectors, Astronomy & Astrophysics, 611, A2 (2018).
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ABSTRACT

Context. Future large-scale surveys with high-resolution imaging will provide us with approximately 105 new strong galaxy-scale
lenses. These strong-lensing systems will be contained in large data amounts, however, which are beyond the capacity of human
experts to visually classify in an unbiased way.
Aims. We present a new strong gravitational lens finder based on convolutional neural networks (CNNs). The method was applied to
the strong-lensing challenge organized by the Bologna Lens Factory. It achieved first and third place, respectively, on the space-based
data set and the ground-based data set. The goal was to find a fully automated lens finder for ground-based and space-based surveys
that minimizes human inspection.
Methods. We compared the results of our CNN architecture and three new variations (“invariant” “views” and “residual”) on the
simulated data of the challenge. Each method was trained separately five times on 17 000 simulated images, cross-validated using
3000 images, and then applied to a test set with 100 000 images. We used two different metrics for evaluation, the area under the
receiver operating characteristic curve (AUC) score, and the recall with no false positive (Recall0FP).
Results. For ground-based data, our best method achieved an AUC score of 0.977 and a Recall0FP of 0.50. For space-based data, our
best method achieved an AUC score of 0.940 and a Recall0FP of 0.32. Adding dihedral invariance to the CNN architecture diminished
the overall score on space-based data, but achieved a higher no-contamination recall. We found that using committees of five CNNs
produced the best recall at zero contamination and consistently scored better AUC than a single CNN.
Conclusions. We found that for every variation of our CNN lensfinder, we achieved AUC scores close to 1 within 6%. A deeper
network did not outperform simpler CNN models either. This indicates that more complex networks are not needed to model the
simulated lenses. To verify this, more realistic lens simulations with more lens-like structures (spiral galaxies or ring galaxies) are
needed to compare the performance of deeper and shallower networks.

Key words. gravitational lensing: strong – methods: numerical – methods: data analysis – techniques: image processing –
cosmology: observations – dark matter

1. Introduction

Future strong gravitational lense (SL) studies will help fur-
ther constrain cosmology and galaxy evolution. As of today,
galaxy-scale lenses have been used successfully to constrain
the Hubble constant by measuring the time-delay of lensed
images of quasars independently of other measurement tech-
niques (Bonvin et al. 2016; Suyu et al. 2017). The magnification
of lensed source-objects allows observations and studies of back-
ground objects at much higher redshifts than are usually visible
to telescopes (Kneib et al. 2004; Richard et al. 2011; Atek et al.
2015). Measurement of galaxy-scale SLs can accurately con-
strain the total mass of the galaxy by probing the dark matter
structure. This can be used to estimate the fraction of dark mat-
ter in galaxy halos when used in combination with weak-lensing
analysis (Gavazzi et al. 2007) or by itself (Jiang & Kochanek
2007; More et al. 2011; Sonnenfeld et al. 2015). It can also be
used to constrain the slope of the inner mass density profile
(Treu & Koopmans 2002a,b; More et al. 2008; Koopmans et al.
2009; Cao et al. 2016) and the initial stellar mass function

(Treu et al. 2010; Ferreras et al. 2010; Leier et al. 2016). One of
the largest lens catalogs was produced by the Sloan Lens ACS
Survey (SLACS) with about 100 observed lenses (Bolton et al.
2008). These SLs were discovered by selecting lens candidates
from the spectroscopic database of the Sloan Digital Sky Survey
(SDSS). Lens candidates were chosen by identifying the spec-
troscopic signature of two galaxies in the spectra, one galaxy
at a greater distance than the other. These candidates were then
verified by follow-up observation using the Hubble Space Tele-
scope.

Historically, SLs were found serendipitously by human in-
spection of data. However, a systematic search by experts is
too time-consuming to be a practical proposition for future
large-scale surveys unless it were to involve citizen scientists.
For example, the number of new lens systems from the Eu-
clid mission (Laureijs et al. 2011) and from the Large Synop-
tic Survey Telescope (LSST Science Collaboration et al. 2009)
survey is expected to reach at least 105 SLs among 109 objects
(LSST: Oguri & Marshall 2010; HST: Pawase et al. 2014; Eu-
clid: Collett 2015). Similarly, the amount of SLs found by the
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SKA survey is expected to be on the same order of magnitude
(McKean et al. 2015). Efficient automated gravitational lens-
finding techniques are urgently needed.

The Spacewarps project1 was an attempt to use and train non-
experts at lens classification. Through an interactive website,
amateur scientists were trained to sort through data from
CFHTLS (Marshall et al. 2015). They found 29 promising new
lens candidates in the survey (More et al. 2016), but this method
will likely be too slow and too much subject to human error
for future data sets. Semi-automated methods like arc detectors
using clustering techniques have been used with some success
(Lenzen et al. 2004; Cabanac et al. 2007) and have been further
improved. Joseph et al. (2014) and Paraficz et al. (2016) added
machine-learning to these techniques, using a Principal Compo-
nent Analysis (PCA) based approach to remove the foreground
galaxy from the image and facilitate the detection of arcs. Re-
cently, Petrillo et al. (2017) and Jacobs et al. (2017) started us-
ing convolutional neural networks (CNNs) for lens detection.
CNNs belong to a class of efficient image-classifier techniques
that have revolutionized image processing (Lecun et al. 1998). In
astrophysics, they have been applied successfully to galaxy mor-
phology (Huertas-Company 2015), redshift estimation (Hoyle
2016), and spectra analysis (Hála 2014).

The Euclid Strong-Lensing working group, in collaboration
with the Bologna lens factory2, has started the Galaxy-Galaxy
Strong-Lensing challenge3 (GGSLC: Metcalf et al., in prep.) in
light of future large-scale imaging surveys such as the Euclid
mission. The goal was to determine the best technique for find-
ing gravitational lenses for both ground-based and space-based
imaging.

Our goal was to explore and optimize CNN architectures for
lens classification. We successfully applied it to the GGSLC and
were awared first and third place in the two categories of the
GGSLC. In this paper, we present the CNN lens finder in detail
that we created for the GGSLC challenge and discuss the advan-
tages and disadvantages of CNN lens classifiers when applied on
simulated and real data. The paper is organized as follows. Sec-
tion 2 gives a brief overview of artificial neural networks (ANN)
and CNNs and their usage in image processing. Section 3 out-
lines the details of our algorithm implementation and the two
winning CNN architectures of the challenge, while in Sect. 4
we present some interesting alternative architectures. Section 5
summarizes the results of the different architectures we applied
to GGSLC data, and we discuss them.

2. Theory

2.1. Artificial neural network

Artificial neural networks are machine-learning techniques in-
spired by the study of the human brain (Hebbian learning: Hebb
1950). ANNs are capable of learning classification or regression
tasks in N dimensions by training using a set of labeled exam-
ples. This makes them easily applicable to complex problems for
which explicitly programmed solutions or mathematical mod-
els are difficult to write. The main drawback of ANNs is the
computation cost of the training procedure. More modern train-
ing techniques coupled with advances in GPU processing power
made ANNs versatile and capable of being applied to almost any
data set. They are created by stacking layers of neurons together.

1 https://spacewarps.org/
2 https://bolognalensfactory.wordpress.com/
3 metcalf1.bo.astro.it/blf-portal/gg_challenge.html

Fig. 1. Left: structure of a neuronal unit. Each neuron implements a lin-
ear combination (using weights wi and a bias b) of its input x followed
by a nonlinear activation function a(x). Right: ANN structure. Neurons
in the same layer all receive the same input. The stacking of layers al-
lows the ANN to define a model parametrized by the weight variables
of the network.

Each neuron implements a linear combination (using weights wi
and a bias b) of its input x followed by a nonlinear activation
function a(x),

y(x) = a


N∑

i=1

wixi + b

 , (1)

where N is the dimension of the inputs.
A layer consists of multiple neurons applied to the same in-

put. Each output is passed as an input to the next layer. This
cascade of nonlinear combinations of inputs ends at the output
layer (see Fig. 1). In a classical ANN, all possible connections
are established and exploited, in short, it is fully connected. A
neuron in a given layer will transmit its outputs to all neurons
in the next layer. Every layer between the input and the output
layer is called a hidden layer. The initial input layer is sometimes
also called a front layer. An ANN model is parametrized by the
weights w and biases b of the neurons.

These weights and biases are trained iteratively. ANNs make
predictions when presented with a training input. As the model
parameters are randomly initialized, the first predictions are very
different from the ground truth of the input.

The ANN then evaluates the error according to some pre-
defined cost function and computes appropriate corrections to
the parameters. These prediction errors are propagated backward
through the layers, from the output to the front layer, and induce
parameter updates. The technique is known as back-propagation
(Rumelhart et al. 1986) and is commonly built on gradient de-
scent for the computation of the parameter updates.

2.2. Convolutional neural network

Deep ANNs, models that have more than one or two hid-
den layers, perform better than shallow networks. The math-
ematical evidence for this statement is still scarce, but it is
empirically observed. The continued growth in computation
power made ANNs interesting for scientific application. How-
ever, computational cost of training increases with depth, and
limitations in gradient-based procedures are challenging perfor-
mance obstacles. Training with gradient methods generates a so-
called vanishing-gradient problem, first identified by Hochreiter
(1991). The magnitude of the gradient diminishes as it is back-
propagated through the layers. The typical result is that layers
close to the front layer effectively stop learning. While still af-
fected by the vanishing-gradient problems, CNNs limit its ef-
fect by reducing the number of connections and sharing weights.
This mitigation motivated the development of CNNs and their

A2, page 2 of 9



C. Schaefer et al.: Deep convolutional neural networks as strong gravitational lens detectors

convolutions max pooling convolutions fully connected

input: 101x101x1
101x101x4

50x50x4

50x50x8
2048

output: 1

Fig. 2. Example of a CNN architecture: The input image undergoes a
series of convolution layers into a series of feature maps. The first con-
volution transforms the 101 × 101 pixel image into four 101 × 101 pixel
feature maps. To lower computation cost, max-pooling layers are used
in between convolutions. They reduce the dimensionality of the image,
dividing the size of the image by two. A fully connected layer then com-
bines all feature maps for the classification.

subsequent application to image recognition (Lenet-5 model,
Lecun et al. 1998).

The breakthrough for CNN came when Krizhevsky et al.
(2012) created an architecture that won the 2012 ImageNet
Large-Scale Visual Recognition Challenge4. His submission
achieved a classification error of only 15.3% compared to the
second-best submission with 26.2% obtained by a method not
based on a neural network. CNNs have been used extensively in
image processing ever since.

Our CNNs (Fig. 2) are created by stacking the following lay-
ers: convolution layers convolve the input image by a number of
small kernels (or features maps, typically of dimension 3 × 3 to
7×7). The parameters to be optimized during training are the in-
dividual kernels. These weights are shared by all neurons in the
layers (the kernels are the same for the whole layer). Pooling lay-
ers reduce the dimensionality of the input to decrease the num-
ber of parameters and avoid overfitting. The most common pool-
ing technique is the max-pooling method. It partitions the input
image into non-overlapping quadrants and yields the maximum
value in the quadrant. Fully connected (fc) layers are the classic
ANN neuron layer. Every input is connected to every neuron of
the layers. They are used as the final CNN layers to merge the
information contained in the feature maps into the desired out-
put form. Dropout layers are only active during training. They
randomly sever half the connections between the two layers they
separate (Hinton et al. 2012). This is done to reduce coadaption
of the neurons (learning the same features) and reduce overfit-
ting. Batch normalization layers normalize and shift the output
along a small input sample B = {x1...m} following the equation

yi = γ
xi − µB

σ2
B

+ β, (2)

where µB and σB are the mean and the variance over B. γ and
β are two model parameters of the layer. Batch normalization is
used to increase the training speed of the CNN (Ioffe & Szegedy
2015).

Convolution layers take advantage of the local spatial cor-
relation in the data. Stacking multiple convolution layers im-
plies a global treatment of the signal, making the network shift-
invariant (i.e., features will be detected independently of their
position). This make CNNs especially effective when treating
images (Mallat 2016).

2.3. Data set of the Galaxy-Galaxy Strong-Lensing
Challenge

The data for the GGSLC was provided by the Bologna lens fac-
tory challenge. The Bologna lens factory project is a complex

4 http://image-net.org/

lens-simulation project. It is based on the Millennium simula-
tion (Lemson & Virgo Consortium 2006), with modeling of the
gravitational lensing effect using the Glamer ray-tracing tool
(Metcalf & Petkova 2014) and with MOKA to create the multi-
plane dark halos and their substructures (Giocoli et al. 2012).
The models and the parameters used to generate the simulations
were blinded for the duration of the challenge.

Each image of the SL challenge was a 101×101 pixel stamp
centered around an object. Participants had to submit a confi-
dence value p ∈ [0, 1] for each image. An object with a high con-
fidence value was interpreted as a lens. Two categories of data
were proposed with separate data sets, each with 20 000 training
and 100 000 test images: (i) a space-based data set that consisted
of images in a single visible band (simulating exposures of the
Euclid instrument VIS); and (ii) a ground-based data set with
images taken in four bands (U, G, R, and I) with a lower singal-
to-noise ratio (S/N) and random masking of pixels, mimicking
noisy data.

The ratio of lenses to non-lenses in the simulated data was
much higher than in reality, around one-to-one, as an imbalance
of examples (called skewed classes) can lead to biases. The re-
sults are have been made public, and a detailed discussion of
the simulations and results will be provided in Metcalf et al. (in
prep.). Our baseline architecture submission to GGSLC ranked
first in the space-based data category and third in the ground-
based category (Fig. 9). CNNs in general dominated the chal-
lenge. CNN-based methods filled the seven best submission in
both categories.

3. CNN lensfinder: architectures

For this paper, four different types of CNN architectures were
applied to the training data of the GGSLC: a simple CNN ar-
chitecture that forms the baseline comparison for the paper, a
so-called residual architecture based on the paper by He et al.
(2015), and two further architectures with additional invariant
properties. The final version of each architecture was selected
after a heuristic study of the parameter space.

3.1. Baseline architecture

The baseline architecture as shown in Fig. 3a was inspired from
typical CNN architectures that performed well in the ImageNet
competition (Simonyan & Zisserman 2014). It is organized by
stacking convolution blocks. This simple baseline architecture
achieved first place in the space component of GGSLC. A con-
volution block is the superposition of 2 convolutional layers fol-
lowed by a pooling layer to reduce the dimensionality of the im-
age and a batch-normalization layer. The baseline architecture
is comprised of 8 convolutional layers, organized into 3 convo-
lution blocks and 2 stand-alone layers, and 3 fully connected
layers at the top. There is thus a total of 11 layers. With the ex-
ception of the initial layer, every convolution layer uses 3×3 con-
volution kernels for efficiency reasons (Simonyan & Zisserman
2014). The first convolution layer uses a 4 × 4 kernel to yield an
even number of pixels for easier manipulation. At each convolu-
tion block, the number of features was doubled, resulting in 256
features in the last block. The fully connected layers used either
1024 or 2048 features.

For each layer, we chose a modified version of the rectifier
linear unit (ReLU) activation function because of its sparse rep-
resentation capability (Glorot et al. 2011; Arpit et al. 2016). The
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Fig. 3. Visualization of the baseline and residual architecture for the
CNN lensfinder: the convolution blocks (red) indicate the size of the
kernel and the number of features. The fully connected blocks (yel-
low) indicate the number of features. The arrows indicate the flow of
the data, and between the blocks, we show the dimensionality of the
input (Npixel × Npixel × Nfeatures). The last fully connected layer yields a
confidence value of the object being a lens. The initial layer has Nb fea-
tures, either one or four, depending on the category of the data (space
and ground, respectively). Batch normalization and dropout layers are
indicated as gray blocs.

activation is given by

f (x) =
1√
π − 1

(√
2πmax(0, x) − 1

)
. (3)

Inputs of the networks have dimension of 101× 101×Nb, where
Nb is the number of bands (Nb = 1 for space and Nb = 4 for
ground). The wavelength-dependent information (in the third di-
mension) is handled naturally by extending the kernel dimension
from two to three (spatial to spatial plus wavelengths).

3.2. Residual architecture

A common way for improving CNN is to increase the depth, that
is, the number of convolutional layers. With creating increas-
ingly deeper CNNs comes the vanishing-gradient problem de-

Fig. 4. Structure of a residual block: The feature maps F(x) from two
stacked convolutional layers are added to input x. Each green circle
represents a convolutional layer.

tailed before. At some point in the training process, the accuracy
starts to saturate and degrade, generating an upper limit to the
possible depth of CNNs. To compensate for this, He et al. (2015)
introduced residual learning. In the GGSLC challenge, Francois
Lanusse’s deep lens classifier (Lanusse et al. 2018) used residual
learning to create a 46-layer deep CNN that won the ground part
of the challenge. We adapted our residual architecture to ana-
lyze the advantages and disadvantages compared to the baseline
CNN.

In a classical convolution layer, the feature map is created
from scratch, that is, it learns an unreferenced mapping. The end-
goal of the training process is to find parameters that minimize
the cost function. We denote by H(x) the optimum feature map
and by F(x) the map currently held in the parameters. In other
words, the training updates F(x) until

H(x) = F(x). (4)

In contrast, residual networks train by optimizing a residual
mapping x, or the difference between the ideal and the real fea-
ture map. He et al. (2015) stated that it is easier to optimize the
residual feature map than the unreferenced map,

H(x) = F(x) + x, (5)

where x is the identity mapping obtained by using shortcut con-
nections skipping the convolution layers (Fig. 4). Our residual
architecture as shown in Fig. 3b is 20-layer deep with 3 small
residual blocks, 4 large residual blocks, and 3 fully connected
layers with 1024 features. The small residual block is composed
of 2 convolutions and 1 shortcut, keeping the same number of
features. The large residual block is composed of 3 convolu-
tions and 1 shortcut followed by a convolution layer, doubling
the number of features.

3.3. Implementation details

Other than the differences in the approach to the problem, the
networks shared a number of implementation details that we out-
line here.

– Cost function: we chose the binary cross-entropy cost func-
tion as the cost function C driving the training,

C = − 1
N

∑{
y ln(yp) + (1 − y)

[
(1 − ln(yp)

]}
, (6)

where N is the number of training examples, y is the ground
truth, and yp is the classification prediction.

– Data augmentation: to increase the number of training sam-
ples, we used data-augmentation techniques. The goal is to
generate more examples out of the original training set by
exploiting physically invariant transformations, for example,
rotating the image by 90 degrees. The benefit of increasing
the training set size is to reduce overfitting.Taking advantage
of the dihedral group symmetry (Fig. 6) of the lens problem,
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the training sets were augmented using 90-degree rotations
and flipping operations. We did not use rotation angles dif-
ferent than 90 degrees to avoid having to interpolate in pixel
space.

– Training: the challenge training set was subdivided into a
training set (of 17 000 images) that was used by the net-
works to learn and a validation set (3000 images strong)
to check the performances on an independent set. The per-
formance was monitored every 1000 steps by evaluating
predictions made on the validation set. At each training
step, we randomly selected batches of 30 images (15 lenses
and 15 non-lenses) and ran the learning procedure for
∼250–300 epochs using the ADAM minimization algorithm
(Kingma & Ba 2015). We trained five networks with the
same architecture and selected the best-performing individ-
ual.

– Library: the models were implemented using the
Tensorflow library (Abadi et al. 2015) on a GeForce
GTX 1060 graphic card. The training time took ap-
proximately 1 h/100 epochs for the baseline model and
2 h/100 epochs for the residual model. The final prediction
of the classification for the challenge on the 100 000 test
images took approximately 20 min.

3.4. Image invariance

The idea behind these two next architectures was to deal with the
inability of most lens finders to recognize and handle the invari-
ant features of gravitational lenses. CNNs are, by design, already
invariant to translation, but not to rotation, scaling, and flipping.
The pretraining data augmentation phase renders them more ro-
bust to these symmetry operations, but not invariant. By modi-
fying the CNN architecture so as to be invariant or more robust
to different types of symmetries, we expect to reduce identifica-
tion errors. The following sections describe how we increased
the invariance of our models.

3.4.1. Views architecture

Several models trained to accomplish the same task form a com-
mittee. Predictions of a committee typically result in some sort
of weighted combination of its members’ predictions. They have
been used to improve classification results for example on the
MNIST5 problem (Ciresan et al. 2011) or to detect anomalies in
the predictions (Nguyen et al. 2014).

The views architecture (Fig. 5b) trains two neural networks
separately to look for lenses of different sizes. The first network
looks at the whole image, detecting large lenses spanning the
whole image. The second uses only the central part of the im-
age. By combining the prediction of the two networks, smaller
lenses should be detected while not neglecting the detection of
the larger lenses. In other words, the first network takes as input
the whole image, like the baseline model, while the second only
accepts a smaller stamp of 45×45 pixels. To simplify the smaller
network, we used only 5 × 5 convolution layers and fewer fea-
tures at each layer.

3.4.2. Invariant architecture

The invariant architecture adds additional invariant properties to
the model. While relatively untested, this has been used with

5 MNIST database of handwritten digits, http://yann.lecun.com/
exdb/mnist/
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Fig. 5. Visualization of the invariant and views architecture for the CNN
lensfinder: the convolution blocks (red) indicate the size of the ker-
nel and the number of features. The fully connected blocks (yellow)
indicate the number of features. The arrows indicate the flow of the
data, and between the blocks, we show the dimensionality of the in-
put (Npixel × Npixel × Nfeatures). The last fully connected layer yields a
confidence value of the object being a lens. The initial layer has Nb fea-
tures, either one or four, depending on the category of the data (space
and ground, respectively). Batch normalization and dropout layers are
indicated as gray blocs.

success for a galaxy morphology classifier on Galaxy Zoo data
(Dieleman et al. 2015, 2016). The invariant architecture takes
advantage of the dihedral symmetry of the lens-finding problem
(Fig. 6) by using dihedral equivariant convolutional layers that
we refer to as Dec layers.

At the level of the input layer, eight operations of the same
convolution kernel, transformed by a different transformation of
the dihedral group, are applied to the input image. The output is
divided into eight different output channels (see Fig. 7),

yi = Conv(x, Fi) i ∈ {0, . . . , 7}, (7)
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Fig. 6. Representation of the dihedral symmetry group: An optimal lens
finder should be invariant to the operations of this group (i.e., flipping
and rotation).

Fig. 7. Dihedral equivariant architecture: Kernels with identical colors
but different orientation are identical kernels to which a different dihe-
dral operations has been applied. Phase 1: seperation into eight chan-
nels, one for every input channel and member of the dihedral group.
Phase 2: convolution of the eight channels with eight separate kernels.
Each output channel from a Dec layer is the sum of all the input chan-
nels convolved by all feature kernels of the layer transformed by one of
the dihedral operations. Phase 3: the eight channels are summed, giving
a dihedral invariant result.

where i is one of the eight specific dihedral transformation and
Mi is the filter to which a dihedral transformation has been ap-
plied.

Compared to the baseline version, for the Dec layer there are
eight different convolution kernel instead of one: one kernel for
each transformation of the dihedral group (Fi, i ∈ {0, . . . , 7}).
Each kernel is initialized and trained separately from each other.
Each output channel in a Dec layer is the sum of all the input
channels convolved by all the different feature kernels of the
layer transformed by one of the dihedral operations (Fig. 7). The
result of the eight channels, y j, is a dihedral invariant quantity,

y j =

7∑

i=0

Conv(xi, jF j−1◦i) j ∈ {0, . . . , 7}. (8)

The two layers illustrated in Fig. 7 have the property of being
invariant with respect to the dihedral group. Our invariant archi-
tecture is shown in Fig. 5a and follows the same fundamental
scheme as the baseline architecture. Since using eight channels
increases computation time and makes the model more prone to
overfitting, the number of features of the convolutional layers is
divided by four. The invariance was tested by checking that ro-
tated and flipped versions of the same image are attributed the
same score by the classifier.

4. Results

In this section we describe the results of the different architec-
tures applied to the GGSLC data.
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Fig. 8. Receiver operating characteristic (ROC) curve: The GGSLC
ranked the classifiers as a function of the area under the ROC curve
(AUC). For a perfect classifier, the score is 1, and for a random classi-
fier, it is 0.5.

4.1. Performance metric

We first start by a brief overview of the performance metrics we
used to quantify the performance of the lens classification.

– The true-positive rate (TPR) measures how well the classifier
detects lenses from the whole population of objects,

TPR =
NTrue positives

NTrue psitives + NFalse negatives
· (9)

This metric is also known as recall. The best algorithms have
a TPR close to 1.

– The false-positive rate (FPR) measures the contamination of
the positive detections by false positives,

FPR =
NFalse positives

NTrue negatives + NFalse positives
· (10)

The best algorithms have an FPR close to 0.
– The receiver operating characteristic (ROC) is a visual rep-

resentation of the TPR and FPR. Since they depend on the
threshold t ∈ (0, 1) defined to distinguish objects as lenses
or non-lenses, the ROC curve (Fig. 8) is created by plotting
TPR(t) as a function of FPR(t) for t ∈ (0, 1). The challenge
ranked the classifiers as a function of the area under the ROC
curve (AUC), which is the integral of the ROC curve between
an FPR of 0 and 1. A perfect classifier would score 1, while
a randomly predicting classifier would score 0.5.

4.2. Training, submission, and results

After the challenge deadline, we tested our four architectures
on the GGSLC data. As for the baseline architecture, we used
our 17 000-image training set and the 3000-image validation set.
Each architecture was trained five separate times. In Table 1
we show the result of this committee training. The performance
is also evaluated in Table 3 on the challenge test data as the
ground-truth values were released to participants after the sub-
mission deadline. The standard deviation of the five runs is also
given. The two metrics used to evaluate the performance of the
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Table 1. Training results: rach architecture was run five separate times.

Space Training Validation
baseline 0.9920 ± 0.0020 0.9764 ± 0.0017
views 0.9898 ± 0.0030 0.9753 ± 0.0021

residual 0.9958 ± 0.0028 0.9765 ± 0.0024
invariant 0.9997 ± 0.0003 0.9719 ± 0.0016
Ground Training Validation
baseline 0.9953 ± 0.0090 0.9905 ± 0.0082
views 0.9980 ± 0.0010 0.9924 ± 0.0006

residual 0.9990 ± 0.0023 0.9932 ± 0.0027
invariant 0.9999 ± 3 × 10−6 0.9880 ± 0.0030

Notes. The training and validation AUC scores are the mean of these
runs. The error is the standard deviation.

methods are the (i) the AUC and (ii) the zero false-positives,
Recall0FP (that is, the fraction of lenses recovered with zero
false-positives).

The AUC results are much better for ground-based data than
for space-based data (Fig. 9) although the images have a lower
S/N than the space-based images. This increased performance
could be due to the increased amount of information in the form
of the four bands, instead of the single VIS-like band for space.
The lower S/N in the ground-based data does not seem to hinder
prediction.

The baseline, views, invariant and residual architectures
achieved equally good AUC results on the validation set and the
test set within the standard deviation of the runs. This is surpris-
ing because deeper networks, like the residual one, are expected
to perform better than shallower models. The scores are too close
to the optimum to confidently distinguish between the architec-
tures. The most likely explanation is that the simulated data were
too simple for the CNN lensfinder. The simulations did not in-
clude spiral galaxies or some other ring-like objects capable of
confusing gravitational lens classifiers. A more complex method
was therefore not needed to classify the data correctly. The dif-
ference that can be seen between the validation scores and the
test scores in Tables 1 and 3 can be attributed to a slight overfit-
ting. This is probably due to the small size of the validation set
we used in comparison to the test set.

The invariant architecture has a lower validation AUC score
than the others, but performs equally well on the test set. This
may indicate that the invariant architecture generalizes the lens
model better than other architectures. This could be due to the
imposed invariant properties, as we have given the model some
additional knowledge. This has no effect on the final test score
but could become important when applying the CNN lensfinder
to real data. Since the amount of known galaxy-scale lenses is
small, a sufficiently large training set for a CNN lensfinder can
only be obtained by simulated lenses (see Petrillo et al. 2017,
for a CNN lensfinder applied to CHFTLS data). The caveat here
is that CNNs trained on simulation might miss lenses because
the simulated training set was unrealistic. The better the CNNs
generalize the lens model, the lower the chance that they will
missidentify objects. Ideas exist to force CNNs to focus on the
lens model. One is to use multiple different simulations to create
lenses (Jacobs et al. 2017). Adding dihedral invariance to CNNs
could be another way of doing this.

The ground-based results are extremely encouraging, espe-
cially because of the purity of the score. In a classification
problem with a 1-to-1000 ratio between lenses and non-lenses,

Table 2. Confusion matrix (baseline architecture, GGSLC challenge)
for TPR0.

Space-based Classified as non-lens Classified as lens
Non-lens 59742 40

lens 20957 19264

Ground-based Classified as non-lens Classified as lens
Non-lens 50042 17

lens 21754 28194

Notes. The TPR0 threshold was chosen by the GGSLC organizers for
no false-positive in the first 10 000 images of the test set.

Table 3. Test, Recall0FP , and Recall1FP results.

Space Test AUC Recall0FP Recall1FP

baseline 0.9322 ± 0.0016 0.01 ± 0.02 0.04 ± 0.04
committee b. 0.9326 0.01 0.01

views 0.9324 ± 0.0013 0.26 ± 0.06 0.28 ± 0.07
committee v. 0.9343 0.30 0.32

residual 0.9322 ± 0.0006 0.23 ± 0.04 0.29 ± 0.03
committee r. 0.9346 0.29 0.30

invariant 0.9332 ± 0.0006 0.27 ± 0.04 0.28 ± 0.05
committee i. 0.9399 0.32 0.33

Ground Test AUC Recall0FP Recall1FP

baseline 0.9761 ± 0.0011 0.44 ± 0.13 0.49 ± 0.08
committee b. 0.9773 0.50 0.55

views 0.9746 ± 0.0011 0.35 ± 0.19 0.43 ± 0.17
committee v. 0.9759 0.35 0.39

residual 0.9775 ± 0.0006 0.44 ± 0.06 0.46 ± 0.07
committee r. 0.9795 0.50 0.55

invariant 0.9774 ± 0.002 0.39 ± 0.11 0.45 ± 0.05
committee i. 0.9813 0.49 0.49

Notes. Each architecture was run five times. The test scores are the
mean of these runs.

algorithms with even a very small contamination can be domi-
nated by false positives. The baseline model performs well on the
metric Recall0FP = 0.44 in the ground-based test set (Table 3).
In a more realistic setting with a ratio of lenses to non-lens ob-
jects, we would have found 22 out of the 50 lenses in a test set
containing 100 000 images without any false positives.

Table 3 shows that the standard deviation of Recall0FP is
large. Using the CNN that performed best on the validation set
does not guarantee the best Recall0FP or even best AUC score
(Figs. 10 and 11). The metrics vary depending on the individ-
ual result of the training run. To mitigate this, we grouped the
five training runs of our model in a committee of CNNs. The
committee output is taken as the average of their prediction. By
compensating for each other’s shortcomings, committees stabi-
lize the results and achieve a better-than-average result for the
AUC metric as well as for the Recall0FP metric (Table 3, Figs. 12
and 13). The invariant model especially is improved by this and
obtains the best scores for the space-based data.

5. Conclusions

We presented a strong gravitational lens finder based on con-
volutional neural networks (CNN). The method showed strong
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Fig. 9. ROC curve of our baseline architecture submission to the
GGSLC challenge. The solid line is the curve from our submission.
Blue is the ground-based data category, red is the space-based data cat-
egory.

10−4 10−3 10−2 10−1 100

Contamination (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l(

TP
R

) invariant

views

baseline

residual

training

validation

test

Fig. 10. Logaritmic ROC curves on ground-based data. Training (dotted
line), validation (half-dotted line) and test (solid line) score of all four
architectures. Data come from the best of five runs in terms of validation
set score.
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Fig. 11. Logaritmic ROC curves on space-based data. Training (dotted
line), validation (half-dotted line) and test (solid line) score of all four
architectures. Data come from the best of five runs in terms of validation
set score.
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Fig. 12. Logaritmic ROC curve of the baseline committee on ground-
based data. The curve is the result of the baseline committee (five base-
line CNNs taken together). The shaded areas represent the minimum
and maximum values from the five stand-alone baseline CNNs.
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Fig. 13. Logaritmic ROC curve of the invariant and residual commit-
tee on space-based data. The curve is the result of the committee (five
invariant or residual CNNs taken together). The shaded areas represent
the minimum and maximum values from the five stand-alone invariant
or residual CNNs.

performances on simulated data. It won the first place and third
place in the Strong Gravitational Lens Challenge (GGSLC), re-
spectively, in the space-based and ground-based data category.
We have also presented three other variations of that lensfinder,
among which, a residual CNN based on the recent architecture
developed by He et al. (2015).

We found that CNNs perform better on ground-based data
than on space-based data despite the lower S/N. This is probably
due to the additional bands, which add information, but this still
has to be confirmed. This can be done, for instance, by limiting
the ground-based data to one band and comparing to the other re-
sults. All four CNNs achieved almost perfect ROC curve scores
on the simulated data, with the highest area under the ROC curve
(AUC) score up to 0.9775 for ground-based and 0.933 for space-
based data. They also achieved a recall with a zero false-positive
(Recall0FP) of 50% for ground-based and of 32% for space-based
data. We showed that the best Recall0FP results were achieved
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by committees of CNNs instead of single CNNs. Committees
of CNNs consistently scored the best AUC scores. We also ob-
served that adding rotation invariance to CNNs grouped together
in committees produces the best space-based Recall0FP score.

Because all results are almost equally good, more conclu-
sions about the best CNN model cannot be drawn. Most likely
the simulations did not include enough lens-like objects capable
of inducing false positives in the lensfinder, that is, the simula-
tions were likely not realistic enough. This might explain why,
contrary to expectations, the residual CNN has not performed
better than the others. We will further explore CNN algorithms
in the future GGSLC.
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3.3 Outlook

This section concentrates on the evolution of strong lens finding set after the writing of the above paper.

3.3.1 The problem of simulated data and applying on real data

The simulation problem

One of the main conclusions from the preceding paper is that in the first GGSLC challenge (Metcalf

et al., 2019), the simulations were not complete enough to truly test and distinguish between the best

performing algorithms. The problem here does not lie with the simulation of the lenses, which is not a

problem of incredible complexity, but with the simulation of the non lens objects. Simulating all the

different objects existing in the universe is simply an impossibility for us at the moment.

Yet one of the weaknesses of CNNs is that they can react badly to input they have never seen before.

Confronted with such an input, CNNs will essentially generate a random classification which could

rate higher than real lenses. We have no real fail-safe to guard against this eventuality since we do not

have a metric for the "newness" of the input. The best way to avoid this is by letting the CNN "see"

every permutation possible of the data, which means presenting it with a training set as complete as

possible.

To address this problem, the most popular simulation concept proposed among the contestants during

the evaluation of the challenge was the copy-paste concept. The idea is to combine the simulated

lenses with real data from the survey to act as false positives. Beyond allowing possible false positives

to be comprehensively studied by the network, the data has the added side-benefit to already have

the correct point spread function (PSF) and other effects that the simulated data might not have

perfectly recreated. They are a few unexplored drawbacks to it since we could conceivably tag real

strong gravitational lenses as a non lenses and therefore contaminate the training set, depending on

how carefully one constructs the training set. The amount of falsely tagged objects should affect the

model only minimally but rigorous testing would be needed for certainty.

Petrillo and Jacobs, two of our competitors on the GGSLG challenge, followed up partially on the idea,

applying their CNN from the GGSLG challenge to the KIDS, CFTHLS, and DES survey (Petrillo et al.,

2017; Jacobs et al., 2017, 2019) in the objective to generate a lens candidate catalogue. They constructed

the training set using simulated lenses and carefully selecting the objects acting as false positives, i.e.

a set of elliptical, spiral and irregular galaxies taken from the survey population. Despite excellent

training scores, the application on real data proves a lot more difficult than expected.

Application to non simulated data

To cite Jacobs et al. (2017) first try as an example: Having applied the CNN to the 171 square degrees

of the CFHTLS survey, they produced a list of 18,861 of candidates which included a "total of 63 of

565 previously found lens candidates (11%) and 14 of 103 confirmed lenses (14%). Of the remaining

candidates, using follow-up visual inspection 18,400 were found to be false positives by the authors

and only 149 as potential lens candidate." The 199 true positives represent a purity of only 1% for the

estimated completeness of 11-14 %.

These results, disappointing considering the promises CNNs showed on simulated data in the previ-
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Name type AUROC TPR0 TPR10 short description
CMU-DL-Resnet-ground3 Ground-Based 0.98 0.09 0.45 CNN
CMU-DL-Resnet-Voting Ground-Based 0.98 0.02 0.10 CNN
LASTRO EPFL Ground-Based 0.97 0.07 0.11 CNN
CAS Swinburne Melb Ground-Based 0.96 0.02 0.08 CNN
AstrOmatic Ground-Based 0.96 0.00 0.01 CNN
Manchester SVM Ground-Based 0.93 0.22 0.35 SVM
GaborManchester2 Ground-Based 0.89 0.00 0.01 Human Inspection
ALL-star Ground-Based 0.84 0.01 0.02 edges/grad./Log. Reg.
CAST Ground-Based 0.83 0.00 0.00 CNN
SVMYattaLensLite Ground-Based 0.82 0.00 0.00 SExtractor
LASTRO EPFL Space-Based 0.93 0.00 0.08 CNN
CMU-DL-Resnet Space-Based 0.92 0.22 0.29 CNN
GAMOCLASS Space-Based 0.92 0.07 0.36 CNN
CMU-DL-Resnet-Voting Space-Based 0.91 0.00 0.01 CNN
AstrOmatic Space-Based 0.91 0.00 0.01 CNN
CMU-DL-Resnet-aug Space-Based 0.91 0.00 0.00 CNN
Kapteyn Resnet Space-Based 0.82 0.00 0.00 CNN
CAST Space-Based 0.81 0.07 0.12 CNN
Manchester1 Space-Based 0.81 0.01 0.17 Human Inspection
Manchester SVM Space-Based 0.81 0.03 0.08 SVM / Gabor
NeuralNet2 Space-Based 0.76 0.00 0.00 CNN / wavelets
YattaLensLite Space-Based 0.76 0.00 0.00 Arcs / SExtractor
All-now Space-Based 0.73 0.05 0.07 edges/grad./Log. Reg.
GAHEC IRAP Space-Based 0.66 0.00 0.01 arc finder

Table 3.1 – GSLC challenge results sorted by AUROC (Area Under the Receiver Operating
Characteristics curve) score. Results taken from Metcalf et al. (2019). In both space-based
and ground-based categories, which imitate the respective observational conditions, CNNs
overwhelmingly beat the other methods including human eye observation. Different types of
CNN however did not seem to improve results beyond basic CNNs. TPR0 is the ratio of true
lenses before finding the first false positive, TPR10 the ratio before the first 10. These metrics
are a non conventional way of measuring the recall capability of a classifier, i.e. how many
true lenses it finds compared to the amount of false ones. The low performance there was
addressed using K-fold variation/committee techniques and layered training phases (see my
preceding paper or Jacobs et al. (2019)).
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Figure 3.1 – Example of lenses vs false positives. The first row shows examples of correctly
identified lensed with the orange line highlighting the lens features like the Einstein ring, the
arcs and the position of multiple images. The second shows possible false positives examples
that a network or human could easily mistake for lenses.

ous challenges, point towards an overfitting problem. The model trained on simulated data simply

generalises badly to the test data mainly because the simulated training data is not realistic enough.

My own paper and the one of Jacobs et al. (2019) explore a few commonly used options to improve

the performance significantly, like the K-fold variation (similar to commitee) techniques and layered

training phases. These improvements have managed to make CNNs extremely usable on large surveys,

as a method for presorting obvious non lenses from possible lens candidates. Some projects have

started using them to simplify and amplify the use of citizen science in strong lens finding (Sonnenfeld

et al., 2020). CNNs have definitely found their place in strong lens finding there. Further improvements

should be achievable through improvements to the training set with better simulations and better

representation of likely false positives. Research efforts continue in this direction, with for example the

lens finding group around Frédéric Courbin, who are currently testing a new batch of simulations.

Even with these improvements however, we are able to pick mainly the "low-hanging fruits" among

strong lenses and these "easy" lenses might not be the most interesting lenses depending on our

research objective. Our CNNs have not yet proven to be good at lens outlier detection. All of Jacob’s

applications also continue to require a certain amount of human interaction and verification of the lens

candidates, simply because such a CNN model cannot be fully trusted due to the high false positive

rate. This makes its application to large scale survey complicated since a fully automated system is
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almost certainly needed for surveys of the size of Euclid.

3.3.2 Options for Euclid

Ideally the goal for Euclid was to create a fully automated strong lens finder capable of reliably finding

strong lenses of any type. As stated above, the current generation of CNNs is not quite capable of

reaching this ambitious goal, still having to work on the outlier detection aspect, the completeness and

the high false detection rate of lenses. These are issues that further improvements to the training data

might overcome but since Euclid has not generated any data yet that could be used to create such a

training set, this could be problematic.

Stage-wise training and application

With Euclid not launched yet, we have no access to real data to create realistic training sets. To test

their pipelines, the big survey missions use simulations, which accurately represent all observational

defects but, as for the GGSLC challenge, do not show a complete representation of the astronomical

objects. This essentially precludes us from presenting a CNN based strong lens finder before the

mission is launched, since we cannot apply the copy-paste concept. What we can do however, is use a

simulation-trained CNN lens finder and iteratively retrain it with the new incoming data as we get it.

That this could work can be inferred from the studies made on the transferability of feature learned by

neural networks and stage-wise training (Yosinski et al., 2014; Barshan and Fieguth, 2015). The network

would essentially improve its performance the more we augment its training set with real observed data.

Thanks to the classification efficiency of CNNs, we can classify data much faster than it is acquired by

Euclid, making multiple classification runs eminently feasible. If we combine this with active learning

where the learning algorithm can query an expert observer to label some highly uncertain data points

for him, acting as a teacher, we could even further improve its capabilities.

Gravitational lens database

A critical component, that has to be done, is the creation of a comprehensive lensing database. With

an exception for the non publicly accessible master lens database by Leonidas Moustakas and Joel

Brownstein, no such database exist to the best of my knowledge. With the many different papers

about lens finders, there exists a multitude of catalogues of lens candidates of various certainty in the

literature but nobody has yet collected them all. For this reason I have worked on the development

of a web accessible database that should assemble all lenses of the various available surveys. With

the main infrastructure finished, there remains a literature review to be done in order to regroup all

already found lensed candidates into it before the database can be published. Such a database would

centralise all found lenses at one place, allow us to easily add confirmed lenses to training simulation

needed for iterative training and to better plan subsequent confirmation of known lens candidates,

Method combination

Another possibility which has not gotten much attention yet for the pipeline preparation is to run

multiple different types of methods concurrently and combine the results. Since combining multiple

CNNs together has the tendency to create a more robust model with better test results, why not

combine radically different methods? As long as the computational resources available are sufficient, it
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is possible to run methods like Hartley’s SVM (Hartley et al., 2017) alongside CNN and combine their

results. With every method specialised in a certain kind of lens, we should be less biased on finding

lenses. Knowing how much this is true would merit a more thorough investigation.

Another possibility would be to layer different methods on top of CNN. With CNN doing a presorting of

the data, using semi automatic conventional lens finder or citizen science could become feasible again.

Visual check-up and bayesian statistics

While all the above mentioned problem can and will be solved, there is one aspect where current CNN

cannot deliver and that is the possibility of avoiding some kind of visual check-up. Without a way

to measure our confidence in the prediction, visual check-ups cannot be removed from the pipeline.

Luckily, the uncertainty problem is well known and its solution is high on the wish-list of deep learners.

An impressive research effort is taking place at the moment into combining bayesian probability theory

to deep learning but to the best of my knowledge, no real breakthrough has been achieved yet (Gal and

Ghahramani, 2016; Osawa et al., 2019).
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4 High Performance Computing

Software taking too much time is a problem common to all sectors of industry and science. Something

any of us knows is the pain of waiting for weeks for your code to finish doing its tasks, creating the

results you need for an urgent deadline. In this age of big data, astronomers surprisingly often work

at the forefront, creating software that have to handle ludicrous amount of data. As I have shown

in the previous chapter, for Euclid we use deep learning to create efficient and fast lens-finders to

surmount the big data problem. But Euclid is still considered a small project at big data levels. The

Square Kilometer Array (SKA), one of the most ambitious radio telescope projects available, will, if

the actual technical parameters are to be believed, create every day an amount of data equal to the

actual Internet. The Hubble Space telescope generates images of lens clusters of such a high quality

that modelling the lenses inside them takes months.

At this level, creating software capable of handling these quantities of data can still be achieved but

only through a rigorous software engineering effort using High Performance Computing (HPC). HPC is

the discipline specialised in optimising software performance by taking into account computational

hardware design. This thesis goes deeper into HPC that one would expect from an astronomer, which

is why the following chapter is dedicated to an introduction of the basic HPC concepts needed to

understand the following papers.

4.1 Brief History

4.1.1 The numerical revolution

The numerical revolution is best summarised by Moore’s Law. In 1965 Gordon Moores stated that

the number of transistors that can be fitted unto a microchip will double every two years with costs

being halved. That statement became a truism known as Moore’s Law, which was taken as the stated

long-term planning goal of the semiconductor industry. With the clockspeed of processors following

roughly the same evolution, this exponential growth was so important that software optimisation

became slightly secondary. High performance software development was not essential since by waiting

a few years, you achieved the desired speed-up anyway.

In recent years however, engineers have had difficulties increasing the clockspeed on processors.

Transitor miniaturisation is starting to reach its limit at atomic levels with the smallest transistors

to-date being 5 nm big. Every development step is accompanied by increasing cost and problems like
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Figure 4.1 – Moore’s Law: The number of transistors (red) that can be fitted unto a microchip
is doubled every two years. With frequency (green) not keeping up however, the single thread
performance (blue) of a CPU is stagnating, shifting hardware from serial to parallel with an
increase in number of cores (black).
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temperature diffusion show that Moore’s Law is finally reaching its end.

4.1.2 Little’s Law and the Ninja Gap

To keep up with increasing demands of more computation power and with hardware engineers not

being able to increase clockspeed anymore, development ideology changed to take a parallel approach.

Taken from queuing theory, John Little proved in 1961 (Little, 1961) that the "long-term average number

L of customers in a stationary system is equal to the long-term average effective arrival rate multiplied

by the average time that a customer spends in the system".

Applying Little’s Law to the software optimisation problem, it translates to

T = P

L
(4.1)

with T the computation throughput, P the amount of parallel operations and L the latency of the

operation. The latency is the time it takes the processor to do a specific operation, which is linked in

part to its clockspeed.

Since latency improvement was reaching a dead-end, hardware developers used parallelism to further

increase the throughput of their hardware. Single core CPUs evolved into multicore processors with

every core capable of independent computation. CPU cores acquired the capability of computing

the same scalar operation simultaneously as a vector on multiple different data. An extreme example

of this design philosophy are Graphics Processing Unit (GPU). Developed for the computationally

intensive task of displaying images, GPUs are specifically designed to execute thousand of operations

concurrently. This allows them, despite having a higher latency than CPUs, to reach higher throughput

values. The parallel design of the resulting hardware allowed engineers to continue to deliver the

computation power promised by Moore’s Law.

The consequence of this however, is that software and algorithm design has to change to take advantage

of the existing parallelism. Especially in astronomy where most software is developed on a case to case

basis and professionally maintained software is rare, we are experiencing an increasing performance

gap called the "Ninja Gap". Coined by Satish et al. (2012) as "the performance gap between naively

written C/C++ code that is parallelism unaware (often serial) and best-optimized code on modern multi-

/many-core processors", this performance gap promises to become worse as more multicore processors

are developed further. HPC specialises in reducing this Ninja gap to a minimum by introducing

parallelism into serially designed software to take into account the parallel design of the hardware.

4.2 Strong Scaling vs Weak Scaling

Ideally, if we double the amount of computation units, the computation time of a task should be

divided by two. However, depending on the amount of communication needed, tasks possess different

amounts of parallelism potential. Any serial sub-task depending on the results of a previous sub-task

will create a non parallelisable overhead and this overhead limits the amount of speed-up achievable

through parallelisation. To study how much a task is limited by its serial part, it is necessary here to

make a distinction between the strong and weak scaling of tasks.
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Figure 4.2 – Amdahl’s and Guststafson’s Law show the theoretical speed-up reached when
distributing computational work over multiple resources. The evolution depends on the
amount of non parallelisable portions of the algorithm (colored lines) and if the computational
load scales with the resources (strong vs weak scaling). The legend (colored lines) shows the
fraction of parallel parts in the algorithm.

Strong scaling studies the speed-up of a task in function of computation units for a fixed workload, while

weak scaling assumes the workload increases in function of computation units. Using Amdahl’s Law

and Gustafson’s Law for strong scaling and weak scaling respectively we can calculate the theoretical

speed-up of a task based on its parallelisable portion. Amdahl’s Law states:

S(s) = 1

(1−p)+ p
s

(4.2)

with S the theoretical speed-up, p the execution time of the parallelisable portion before parallelisation

and s the speed-up of the parallelisable portion when distributed over more ressources.

Gustafson’s Law states:

S(s) = (1−p)+p · s (4.3)

As can be seen in Fig.4.2, using Amdahl’s Law, even for tasks with a low proportion of serial parts,

the speed-up gained by increasing the amount of resources will quickly hit a maximum threshold

defined by the serial part of the task. This showcases an apparent bottleneck that parallel computing is

facing. In reality however, the size of the problems we try to resolve often scales with the amount of

computation power at our disposal. While we may not be able to do a certain task faster, we could do

the same task on a larger scale in the same time as before. Gustafson’ Law (Fig.4.2) showcases exactly

this, with no threshold and the amount of serial parts of task only impacting the efficiency of the linear
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scaling.

Strong and weak scaling are studied during benchmarks to evaluate the efficiency of the parallelisation

of a program and before deployment on HPC clusters. They allow users to optimally balance the cost

of using multiple computation units with the desired speed-up when launching the software on HPC

clusters.

Understanding the difference between weak and strong scaling is therefore crucial to understand how

to reformulate a problem to best take advantage of parallelism and to develop an algorithm that can

perform well on HPC clusters.

4.3 Parallelism

4.3.1 Parallelism levels

During algorithm design, depending on the task and the used hardware, parallelism can be extracted

at multiple different levels. The following list is non exhaustive but the main levels to know about

are Task Level Parallelism (TLP), Data-level Parallelism (DLP), and Instruction Level Parallelism (ILP).

When designing a parallel algorithm that scales well, it is important to decide how to best distribute the

computation load over these levels.

Task Level Parallelism

Task Level Parallelism measures the amount of different tasks performing concurrently over multiple

processors. Supposing an algorithm can be subdivided into multiple independent tasks, Task Level

Parallelism will concentrate on distributing these tasks to work in parallel over multiple computation

units. Hardware-wise, this can be done on a multi-core CPU distributing tasks over the multiple cores

of a CPU as threads, or over multiple different CPUs.

Data Level Parallelism

Data level Parallelism, in contrast to TLP, measures parallelism gained by running the same task

simultaneously on different data. Matrix operation for example entails making the same operation

on multiple rows of different data. Distributing this operation over multiple CPUs, cores or using the

single core vectorisation capability, all belong to the DLP level.

Instruction Level parallelism

Instruction Level Parallelism measures the amount of instruction executed simultaneously by the

processor. An example for an ILP technique is instruction pipelining. To complete an instruction, a

CPU processor has to execute different tasks like fetching instructions, accessing memory and writing

the results to the register. All of these tasks, modern CPUs are capable of doing simultaneously but

not for the same instruction. To take advantage of this, in instruction pipelinining, the compiler will

overlap independent instructions so as to fully occupy the CPU’s task capabilities. These techniques

also include out-of-order executions and branch prediction.
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ILP techniques are mainly implemented automatically by the compiler level, without needing specific

developer input, except for a few compiler commands.

4.4 Understanding the hardware

Designing fast software does not only require a well designed parallel algorithm but also has to take

into account the capabilities of the underlying hardware. Historically Flynn’s Taxonomy (Flynn, 1967)

was used to describe the distinct classes of parallel architecture: Single Instruction Single Data stream

(SISD), Single Instruction Multiple Data stream (SIMD), Multiple Instruction Multiple data stream

(MIMD) and Multiple Instruction Single data stream (MISD). Clusters of CPUs & GPUs, multicore CPUs,

CPU cores and GPUs, all are classified into these classes or their variations, although only SIMD and

MIMD are really still used today.

4.4.1 CPUs & SIMD (Vectorisation)

SIMD is a class of parallel computers with multiple processing elements that perform the same opera-

tion on multiple data points simultaneously. These types of computers exploit Data Level Parallelism

to increase their throughput. Most modern CPU processors are small-scale SIMD class computers

because they include SIMD instructions which can be used to upgrade scalar operations to vector

operations. This vectorisation can be done manually or using the compiler autovectorisation function.

Using the compiler autovectorisation is arguably the easiest option to exploit these capabilities but to be

able to use them one has to pay attention to the memory layout. Software development usually uses the

Abstract Data Structures (ADS) paradigm where data is organized into structures or classes with their

attributes stored contiguously in memory. This "Array of Structure" (AoS) layout has several advantages,

it being intuitive for humans to understand and that in a single memory access, the processor likely

has access to the whole structure.

To use the SIMD units however the data has to be organised into a "Structure of Array" (SOA) layout

where the attributes of multiple structures are sorted by type and not by specific object. Using the SOA

layout, one memory access fills the register with data of the same attribute which is exactly what is

needed for SIMD operations. More details on this subject can be found in both papers of Chapter 6.

4.4.2 Clusters & MIMD

Multicore CPUs and clusters of multiple CPUs and/or GPUs belong to the Multiple Instruction, Multiple

Data (MIMD) class. MIMD machines have multiple processing elements that perform asynchronously

and independently. They can apply different instructions on different types of data making them the

most versatile parallel computer class. Variations exist depending on the memory model. Multicore

CPUs "share" their memory, meaning they have access to a globally available memory. This makes

memory access easier but is difficult to scale to more than a hundred of processing units. CPU clusters

distribute memory over the distinct processing elements, each with their distinct memory. While

scalable, it means the software has to handle all the memory transfer necessary for the computation,

possibly creating memory bottlenecks.
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4.4.3 GPUs & SIMT

Single Instruction Multiple Threads (SIMT) is a variant of SIMD which highlights the difference between

CPU and GPU programming. SIMT is an execution model used mainly by GPUs which tries to hide

the inevitable latency of memory access through multi-threading. In contrast to CPUs with few cores

and low latency, GPUs possess an abundance of computation units organised into warps with a high

latency. Only a few of these warps can be run simultaneously but by switching between tasks during

memory access, the GPU can compute continuously without having to wait for memory access. This

effectively "hides" the latency but it does require problems which can provide the necessary amount of

computation.

Another downside is that threads inside warps cannot run different instructions simultaneously. Any

thread divergence like those caused by if-else statements are handled by letting the whole warp first

handle the "if" and then the "else" statement. The more divergent the threads the more performance

you lose to a point of extreme inefficiency, which makes a coherent control-flow vital. If-else statements

can still be used but need to take into account warp-size and behaviour.

4.4.4 CPU vs GPU?

The differences between CPUs and GPUs can be summarised thusly. CPUs are universal workhorses

with few but very efficient cores. They are specialised in reducing latency to a minimum and any

algorithm that possesses an important amount of serial tasks like a recursive algorithm will benefit

from using them. GPUs are parallelism specialists with lots of slow cores. GPUs are more tricky to

use because they will only be efficient if the problem has enough parallel computation to hide the

high latencies. The computation units of GPUs are simpler than CPUs, with less arithmetic support,

divergence problems and other peculiarities. However, the more computation, the better GPUs will be,

even to the point of significantly beating CPUs. The choice of using one or the other or even both is

therefore entirely dependent on the problem.
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5 Cluster Lens Modelisation

Once strong lenses are found and confirmed comes another crucial step before being able to use them

for any science application: the mass modelling. All scientific applications using strong gravitational

lenses depend strongly on precise models. The more precise the model, the lower the error bars of the

resulting science. Typically, parametric mass models are fitted to the lenses using the multiply imaged

sources as constraints. Galaxy lenses are much more numerous and have, compared to cluster lenses,

a relatively easy to produce mass model. Using simulation and analytical profiles, astronomers have

already a good idea of the mass profile of a galaxy. This allows us to fit analytical models controlled by

only a few free parameters to the observational data and the corresponding parameter space is quite

small. Using one or two parametric models is often sufficient to model a well-resolved galaxy lens,

giving us an idea of the Einstein radii and the mass behind.

Mass modeling however reaches a whole new level of complexity when studying cluster scale lenses.

Clusters can be comprised of up to 200 galaxies, each having to be modelled by a parametric mass

model. Each galaxy possesses a non negligible gravitational potential and can significantly change the

lensing effect. Multiple images used as constraints can jump up to 200 and more, each which has to be

checked at every step of the mass model fitting. All this makes cluster mass-modelling a non trivial task

for strong lens astronomers. The following chapter will give an overview of the complexities involved

with the process and an in-depth introduction to Lenstool, a highly successful lens-modelisation

software first created by Kneib et al. (1996) and maintained and developed by Jullo et al. (2007); Jullo

and Kneib (2009).

5.1 Clusters Lenses

Galaxy clusters are the largest virially bound structures in the universe. Consisting of hundreds of

galaxies and some massive dark matter halos, the massive gravitational potential they possess distorts,

amplifies and multiplies the galaxies lying behind them to create a sky image of considerable confusion

and beauty (Fig. 1.12). Reaching up to an amplification factor up to ≈ 40 (Kneib and Natarajan, 2011)

allowing astronomers to observe early universe galaxies with redshift of up to 9-12 and map complex

DM halos merging, clusters are rife with scientific potential.

To take full advantage of them, galaxy cluster surveys have done amazing work to provide quality

photometric and spectroscopic data of cluster lenses. Amongst the most significant are the three

surveys done using the Hubble Space Telescope (HST): the CLASH (Cluster Lensing And Supernova
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survey with Hubble) which observed in-depth 25 massive galaxy cluster (Postman et al., 2012), the

HST Frontier Fields project (Lotz et al., 2017) for the observation of six deep fields centered on strong

lensing galaxy clusters from Abell et al. (1989); Ebeling et al. (2001) and its current follow-up project

Buffalo (Beyond Ultra-deep Frontier Fields And Legacy Observations) (Steinhardt et al., 2018).

5.2 Modelling Clusters

Modelling clusters is done using the multiply lensed images of distant light sources as constraints to fit

multiple parametric mass models to a cluster. In theory the resulting composite mass model of this

fitting process accurately describes the mass-distribution of the cluster. To make this process easier,

astronomers use specialised mass modelling software like Lenstool (Kneib et al., 1996; Jullo et al., 2007),

on which the following part of the thesis is based.

5.2.1 Parametric models

Lenstool for example proposes over 50 different mass models, with new ones added almost every year,

allowing mass modellers to easily fit their preferred mass distribution. Among the more commonly

used mass distributions feature the Pseudo Isothermal Elliptical Mass Distribution (PIEMD), first

introduced by Kassiola and Kovner (1993), and its "dual PIEMD" variant by Elíasdóttir et al. (2007),

which is essentially a truncated PIEMD with a core and a scaling radius. Lenstool supports also the

popular Navarro-Frenk-White profile (NFW) (Navarro et al., 1996) created by studying dark matter

N-body simulations predictions. To avoid overfitting, the complexity of mass-models that can be

fitted to a cluster depends on the amount of constraints available. Luckily due to improvements in

observations, the amount of constraints available for massive clusters are increasing making more

complex mass-models possible. Using Multi Unit Spectroscopic Explorer (MUSE) spectroscopy for

example, Lagattuta et al. (2017) & Lagattuta et al. (2019) increased the amount of multiply imaged

sources with secure redshift from 4 to 45 for the cluster Abell 370.

5.2.2 Constraining the model

Constraining the mass in cluster cores using multiple images lens systems is done through maximising

a gaussian likelihood for the observed data D and parameters p of the model:

L = Pr(D|p) =
N∏

i=1

1∏ni
j=1σij

p
2π

exp− χ2
i

2 (5.1)

with N the number of systems, ni the number of multiple images for the system i and χ2 the error

between model prediction and constraints given by:

χ2
i =

ni∑
j=1

[θ j
obs −θ j (p)]2

σ2
i j

(5.2)
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Figure 5.1 – Three of Lenstool’s most used parametric mass distributions: Singular Isothermal
Elliptical mass distribution (SIE), Pseudo Isothermal Elliptical Mass Distribution (PIEMD) and
the Navarro-Frenk-White profile (NFW). These distributions show well the core-cusp problem
astronomers face when modelling galaxies with NFW belonging to the cuspy mass profiles and
PIEMD introducing a core radius (here for r = 5) where mass stops increasing when reaching
the center of the galaxy, modelling a smooth core. Here ρ0,ρc ,rc ,rcut ,rs are all parameters
that will be constrained, with the multiple images acting as constraints.

with θ j
obs the position of image j , θ j (~p) the position of image j predicted by the current model and σi j

the error on the position of image j .

There also exists a variant using the source position as constraints instead of image positions:

χ2
Si

=
ni∑

j=1

[θ j
S (p)−< θ j

S (p) >]2

µ−2
j σ2

i j

(5.3)

with θ
j
S (p) the source position of the observed image j , < θ

j
S (p) > the barycenter position of the ni

source positions and µ j the magnification for image j . Being less constraining but much faster to

compute, it is usually used for an initial fitting phase to pre-constrain the model. Initially when the

model is not well constrained, the solutions proposed are so far from the truth that the number of

multiple images generated often do not match the number of constraints. This leads to the model

simply being completely rejected, which does not give us much useful information about the parameter

distribution. Using source positions as initial constraints to constrain the model makes it possible to

constrain the model sufficiently that switching to multiple image constraints becomes viable.

In general the fitting process goes through multiple iterations, first using only more securely spec-

troscopy identified sources which in turn allows us to confirm or find less secure multiply imaged

sources to gradually increase the accuracy of the mass models.
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5.2.3 Cluster mass components

Clusters are not well represented by a single parametric model. Usually the cluster gravitational

potential is described by the sum of multiple parametric models which can be grouped into two

different types of potentials

φtot =
∑

i
φci +

∑
j
φg j

where φci are the smooth, large-scale potentials representing the cluster dark matter and the intra-

cluster gas andφg j are the smaller perturbing potentials due to the individual cluster galaxies (Natarajan

and Kneib, 1997).

This separation is necessary because the lensing due to the mass of each individual galaxy member

cannot be neglected. Following the studies of Kneib et al. (1996); Natarajan and Kneib (1997); Natarajan

et al. (1998), the consensus is that the sum of the individual dark matter halos of each galaxy represents

approximately 10% of the total cluster mass and therefore can significantly affect the lensing behaviour.

While most galaxy members simply increase the total mass of the cluster, in some cases the lensing

effect of a galaxy can affect the position and the multiplicity of lensed images. For this reason, when

modelling clusters, the final model also includes a parametric model for each galaxy that is within two

times the Einstein radius of the cluster.

5.2.4 Bayesian MCMC

To explore the parameter space of the parametric models used, we typically use a sampler, in our case a

bayesian MCMC sampler. In general the bayesian approach is prefered in situations where we do not

have enough data to fully constrain the model. The bayesian frame work (Jullo et al. (2007)) allows us

to add our existing knowledge about the parameters as a prior function. This is especially useful in

avoiding degeneracies (multiple solutions to the same problem). The bayesian approach is based on

Bayes’ theorem

Pr(p|D,M) = Pr(D|p,M)Pr(p|M)

Pr(D|M)
(5.4)

with Pr(p|D,M) the posterior Probability Density Function (PDF), Pr(D|p,M) the likelihood of getting

the observed data D given the parameters p of the model M, Pr(p|M) the prior PDF for the parameters

and Pr(D|M) the evidence.

For each step of the sampling process, we calculate the Likelihood for a certain set of parameters p
of the proposed model M . The sampler will calculate the posterior PDF using the above mentioned

Bayes’ theorem and then use it as a new prior. We are essentially incorporating with each step the new

knowledge we gained when testing a set of parameters into the prior. The bayesian MCMC sampler

converges to the posterior PDF which is highest for the set of parameters p, which gives the best fit to

the constraints and is consistent with the prior PDF, essentially representing the prior knowledge we

have of the system.
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The evidence Pr(D|M) acts as a sort of Occam’s razor1 because it measures the complexity of the model

M and penalises more complex models. Lenstool uses the Bayesys3 package by John Skilling2 which

generates samples following the bayesian principle quickly. It is resistant to local optima and can

propose new models even for a multidimensional parameter space quickly.

5.2.5 The curse of dimensionality

With the increase in quality of observational data and our need to model that data as accurately as

possible, astronomers now face a common problem in optimisation and sampling which is called the

"curse of dimensionality". This refers to the exponential growth of the volume associated with adding

new dimensions to a mathematical space. In our case this is the parameter space, the mathematical

space created by the total amount of different parameters possible for the current parametric mass

model. As an example, to uniformly sample with 10−2 unit interval a 1 unit cube (3 dimensions), one

would need 102 points. In our case, considering a model with 100 parametric mass models (1 for

smooth cluster halo, and 99 for cluster member), and each model with 6 parameters, one would have

to sample (102)600

102 = 101198 points for the same 10−2 unit interval.

Bayesian based MCMC sampling, which is much more efficient than uniform sampling, can actually

constrain such a parameter space with fewer samples, but even using it, the process takes time. And the

more complex the models astronomers wish to use, the bigger the parameter space and the more time

it takes. As a rough estimate, one modelling run for a cluster can take up to a month. Truly finishing

a model for a typical cluster necessitates multiple of these runs, making the publication of a precise

cluster model a lengthy proposition.

5.3 Lenstool

Mass modelling software like Lenstool incorporates all the above concepts in a handy package to allow

for easier mass modelling. Development on Lenstool was started by Jean-Paul Kneib in his Phd thesis

(Kneib et al., 1996) with bayesian statistics later implemented by Eric Jullo (Jullo et al., 2007). It has

been heavily and successfully used (Richard et al., 2007; Limousin et al., 2008; Richard et al., 2009;

Jauzac et al., 2014, 2018) since then. It is already well optimised but the time problems of modelling

stated above are starting to affect the software. This is what made us decide to rewrite the software

to be more compliant with the current computer hardware in the hope of gaining efficiency. Before

doing that however an in depth understanding of the bottlenecks is essential. One is of course the curse

of dimensionality affecting the MCMC exploration mentioned previously, but another one is the fit

computation.

5.3.1 Fit computation

For the image fit computation, Lenstool proposes two types of methods, the brute force and the image

transport method. Both of these have advantages and disadvantages.
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Figure 5.2 – Brute force lens equation resolution. Using the lens equation, we project one
of the images I2 onto the source plane, which gives us a source position. Then every cell
of a quadractic grid is unlensed unto the source plane and checked for the presence of the
source. Typically, each cell is divided into two triangles for more efficient source checking. If an
unlensed cell contains the source, its lensed counterpart is kept as a solution. The barycenter
of that triangle is considered the position of a predicted multiple image.
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Brute force

The brute force method is the algorithmically simplest way we have to solve the lens equation. Since

the lens equation is non invertible, it is easy to compute the source position from the images but to do

the inverse is analytically impossible. In this direction the lens equation has multiple solutions, each

corresponding to the different multiply lensed image positions. To solve this, we typically trace a grid

in the image plane and unlens that grid unto the source plane.

Supposing we have one family of three multiple images I1, I2, I3, all generated by the same source.

Using the lens equation and the to be tested mass distribution, we project one of the images onto

the source plane giving us a source position. We then unlens each cell of the quadratic grid onto the

source plane and check for the presence of a source. A cell found containing the source is retained

as a solution. For an ideal mass distribution, these solutions will be identical with the constraints

that generated them. Since usually the tested mass distribution deviates from reality, the computed

theoretical images will not correspond exactly to the other images (Fig.5.2). This deviation is the χ2

error metric mentioned in Eq. 5.2 used to evaluate the mass distribution.

This method is extremely stable but computationally slow because the size of the quadratic grid

determines the precision of the prediction. Since we want the prediction to be as precise as the

observational material, for a Hubble Frontier Fields (HFF) cluster image of 200′′ the grid needs to have a

size of 6000 by 6000 pixels for a precision of 0.03′′. The unlensing of this grid however is computationally

intensive because for each corner one has to calculate the deflection gradient. This gradient is the

sum of the deflection gradients of each single mass distribution of the cluster. With a cluster of 200

members to unlens one grid, one would have to do around 1010 computations of complex gradient

operations.

Image transport

A popular alternative in Lenstool is the image transport method which proposes an iterative solution to

the problem. Instead of unlensing an entire grid, the method starts by un-lensing a triangle around

the constraints where it should find at least one source. It subdivides the triangle into four smaller

triangles, checks which subtriangle has the source and then redoes the process, zooming in on the

predicted image position. This method needs a lot less deflection computation than the brute force

approach and is sequentially much faster. It suffers however from multiple problems that make it less

stable and more tricky to use. It works for example only when the model is already reasonably close to

reality because it does not handle missing images well. When the counterpart of a constraint does not

exist with the current model, or if two images are close enough together that they are in one triangle

the iterative loop is broken or simply ignores an image, falsifying the results.

Another problem is the zoom-in problem, inherent to any zoom approach in the source plane. The

triangles in the image and the source plane are simply a set of three points. The subtriangles are created

by taking the middle point between two points of the initial triangle (Fig. 5.3). However since any line

in the image plane when unlensed unto the source plane is distorted into a curve, the area covered by

the fours subtriangles in the source plane will not be the same as the initial triangle. Instead the sub

triangles will either not cover some part of the initial triangle or check outside the triangle. This can lead

to a missing image problem or even shifted predictions. These problems increase with magnification

1"All things being equal, the simplest solution tends to be the best one."
2https://www.inference.org.uk/bayesys/
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Figure 5.3 – Schematised zoom-in problem: The image transport method consists of iteratively
subdividing a triangle centered around a constraint, zooming in to the necessary precision
(blue star). While fast, it is not perfectly stable. Because of the lens effect distortion, the
subdivided triangles do no cover the same area as the initial triangle. This can cause sources to
be mistakenly found (red star) or lost (yellow star). While small initially, this problem increases
with amplification, making the method break down around the critical lines.

and the method breaks down near the critical line. Lenstool handles these problems using checks

and a more sophisticated version of the algorithm, capable of stepping back and adapting the triangle

size, but the solution is not perfect. This makes the model fitting using image transport tricky to use,

introducing possible errors. Typically, lens modellers will use image transport to fine-tune a model

when the model is already well determined, to avoid most of these problems.
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Lenstool-HPC is a remake of the original Lenstool code using modern HPC concepts. The goal was

to keep it as close as possible to the original software while making it capable of running on modern

supercomputers. This development of its concurrent capabilities allows the software to keep up with

future computer architecture, ensuring its longevity while the essentially identical user interface allows

an easier transition for active users from Lenstool to Lenstool-HPC.

This chapter gives an overview of the design process and presents the details in two papers written

on the subject of Lenstool-HPC. The first of the following papers works on the question of numerical

precision, presenting error propagation calculation through Lenstools equations with benchmarks to

verify the theoretical calculations. It showcases the reduced energy consumption and higher speed-up

one would gain from using single floating point format instead of double for storing numerical numbers.

The second paper presents the first version of Lenstool-HPC, with benchmarks of its efficiency and

speed-up compared to Lenstool.

6.1 Lenstool-HPC design

Before starting the development of an HPC code, it is necessary to set a rigorous design plan that

answers the basic design questions. What algorithms do we use? What are the bottlenecks? What

levels of parallelisation can we exploit? On what hardware do we run the software? What numerical

precision do we need? Drafting an initial comprehensive design of these questions is necessary to avoid

dead-ends and repeated work.

The algorithm choice is dominated by the scaling question. Depending on its parallelisable portion, a

slower algorithm can quickly become faster when distributed over multiple cores than its faster, more

serial counterpart. For this reason, for Lenstool-HPC we took the brute force approach as the main

fitting algorithm. Despite being slower, it is eminently more parallelisable and more stable than the

image transport method. Cluster lens modelling, at least in the case of Lenstool using the brute force

method, suffers from four specific bottlenecks: the computation of one deflection angle gradient using

parametric model, the computation of those gradients over a grid, the computation of the fit of the

model once those gradients are computed and the sampling of the parameter space using an MCMC

sampler. Each of these bottlenecks can be optimised at different levels of parallelisation shown in detail

in Fig. 6.1 so as to get every possible computation potential out of the available hardware. The gradient

computation and grid gradient computation represent a classic SIMD/SIMT problem which is ideal for
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Figure 6.1 – Schematised design plan of Lenstool-HPC. The fit computation is an complex
MIMD problem which distributes different tasks over multiple CPUs and GPUs using MPI. Of
these tasks, gradient computation is the most time intensive and is accelerated at the DLP and
TLP level using vectorisation, multi-core CPUs and GPUs.

a DLP and TLP implementation. It is a big workload with a lot of independent operations which can

easily be distributed over multiple CPU cores and GPUs. The fit computation itself, which contains

the gradient computations, is an MIMD problem, with multiple complex operations which can be

distributed using MPI over multiples CPUs and GPUs. This allows the usage of GPUs for SIMD/SIMT

problems like the gradient computation, and CPUs for the more sequential part of image/constraint

association.

The question of what numerical precision is needed revealed itself to be a more complicated question,

which we address in detail in the following paper.

6.2 High Performance Computing for gravitational lens modeling:

single vs double precision on GPUs and CPUs

6.2.1 Preface

The question of whether to use single or double floating point numbers (better known as float and

double) to store the numerical values during the computation is one that most scientist will never

ask themselves and this with some justification. The underlying time-consuming error propagation

calculation are difficult to justify in the current fast-paced publishing scientific lifestyle. Most scientist

create codes to test some new concepts quickly. To avoid problems always using the highest machine

precision available makes sense when you do not care about computational speed and want to avoid

numerical errors.
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As soon as the codes evolve however into more definite scientific software which become widely used,

an error propagation analysis does become important. First the impact of finite machine precision is

widely underestimated and the numerical error originating from even doubles could have an impact on

observational data already suffering from experimental errors and observational biases. Secondly the

cost of running softwares like Lenstool especially in the case of huge datasets can become prohibitive

in terms of energy cost. Running a super-cluster is extremely expensive, something which is often

underestimated especially by young scientists. The Pizdaint supercomputer for example takes 2,300 kW

to run which is roughly the equivalent of 1850 households while the most powerful supercomputer, the

Tian-He 21, has an energy consumption of 18,000 kW, the equivalent of 14450 households. With many

of these supercomputers existing around the world and the growing demand for them, any attempt at

reducing these costs can have a serious beneficial impact in financial and ecological terms. Thirdly, as

we show in the paper, single precision floating point computations are in general faster than double,

because the hardware has been built for it and it can do more computations simultaneously. For widely

used scientific software, faster computation is always a boon.

6.2.2 Paper

This chapter is presented in the form of a published paper as Markus Rexroth, Christoph Schaefer,

Gilles Fourestey, and Jean-Paul Kneib, High Performance Computing for gravitational lens modeling:

single vs double precision on GPUs and CPUs, Astronomy and Computing, [Volume 30, January 2020,

100340].

1https://www.top500.org/lists/2019/11/
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a b s t r a c t

Strong gravitational lensing is a powerful probe of cosmology and the dark matter distribution. Efficient
lensing software is already a necessity to fully use its potential and the performance demands will only
increase with the upcoming generation of telescopes. In this paper, we present a proof-of-concept
study on the impact of High Performance Computing techniques on a performance-critical part of
the widely used lens modeling software LENSTOOL. We implement the algorithm once as a highly
optimized CPU version and once with graphics card acceleration for a simple parametric lens model.
In addition, we study the impact of finite machine precision on the lensing algorithm. While double
precision is the default choice for scientific applications, we find that single precision can be sufficiently
accurate for our purposes and lead to a big speedup. Therefore we develop and present a mixed
precision algorithm which only uses double precision when necessary. We measure the performance
of the different implementations and find that the use of High Performance Computing Techniques
dramatically improves the code performance both on CPUs and GPUs. Compared to the current
LENSTOOL implementation on 12 CPU cores, we obtain speedup factors of up to 170. We achieve this
optimal performance by using our mixed precision algorithm on a high-end GPU which is common in
modern supercomputers. We also show that these techniques reduce the energy consumption by up to
98%. Furthermore, we demonstrate that a highly competitive speedup can be reached with consumer
GPUs. While they are an order of magnitude cheaper than the high-end graphics cards, they are rarely
used for scientific computations due to their low double precision performance. However, our mixed
precision algorithm unlocks their full potential. Consequently, the consumer GPU delivers a speedup
which is only a factor of four lower than the best speedup achieved by a high-end GPU.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The ΛCDM cosmology standard model describes our universe
with great precision, but it also introduces two unknown quan-
tities, Dark Energy and Dark Matter. They dominate the energy
density of the universe (e.g., Ade et al., 2016), but their physical
nature has so far remained elusive. Consequently their study is
one of the prime targets of cosmological research.

Strong gravitational lensing is a unique tool for cosmology, as
it is sensitive to the total (baryonic and dark) matter density and
thus it probes Dark Matter directly (see e.g. Kneib and Natarajan,
2011; Schneider et al., 2006, for reviews). Its application has
led to constraints on cosmological parameters (e.g., Jullo et al.,
2010; Bonvin et al., 2017) and the Dark Matter self-interaction

∗ Corresponding author.
E-mail address: christophernstrerne.schaefer@epfl.ch (C. Schäfer).

cross-section (e.g., Randall et al., 2008; Bradač et al., 2008). In
addition, the magnification effect of a strong gravitational lens
can be used to study the early universe and to constrain its
reionization (e.g., Atek et al., 2015; Ishigaki et al., 2015). Strong
lensing requires deep, high-resolution data and indeed the field
has prospered thanks to programs like the Cluster Lensing And
Supernova survey with Hubble (CLASH, Postman et al., 2012) and
the Hubble Frontier Fields (HFF, Lotz et al., 2017).

Future missions like Euclid, the James Webb Space Telescope
(JWST), the Large Synoptic Survey Telescope (LSST), and the Wide
Field Infrared Survey Telescope (WFIRST) will provide a large
amount of excellent data sets for lensing. These will enable the
lensing community to further push the boundaries of cosmolog-
ical knowledge. This, however, will only be feasible if we are
able to efficiently harvest the wealth of information available
in the data. This will be a challenge, e.g. due to the amount of
data available or the high quality of the data, which permits the

https://doi.org/10.1016/j.ascom.2019.100340
2213-1337/© 2019 Elsevier B.V. All rights reserved.
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creation of lens models with a high level of detail and precision,
but also requires more computing time. Gravitational lensing
software and pipelines will have to be ready to process these data
sets in a reasonable amount of time.

Therefore we are currently redesigning the strong lensing soft-
ware LENSTOOL1 (Jullo et al., 2007; Kneib et al., 1996). LENSTOOL
has been successfully used to model many strong lensing galaxy
clusters with high precision (see e.g. Jauzac et al., 2014, 2015;
Limousin et al., 2016, for recent lens models) and has been serving
the lensing community for more than two decades. In a recent
comparison of strong lensing modeling software it has performed
very well (Meneghetti et al., 2016). However, the HFF data sets
provided the greatest number of lensing constraints so far and
this posed a computing challenge for LENSTOOL. It took several
weeks to compute a single HFF lens model and several different
lens models from different priors are required to find the best
fitting model.

The new version is designed to meet this computation chal-
lenge by using High Performance Computing (HPC) methods. The
LENSTOOL algorithms are very well suited for massive parallelism
and we employ this technique to accelerate the computations.
While we focus on lensing by galaxy clusters, a recent publication
by Tessore et al. (2016) has shown that massive parallelism holds
also great promise for the modeling of galaxy lenses. In this
paper, we discuss the central lensing algorithm of LENSTOOL and
in particular the performance-critical computation of deflection
potential gradients. We have implemented the gradient compu-
tation algorithm using two different hardware types in order to
be able to compare performance. The first version is a highly
optimized and parallelized CPU code and the second version uses
Graphics Processing Unit (GPU) acceleration.

During the development phase, we have asked ourselves the
question: Can we do even better by using single precision instead
of the commonly used double precision? The computing power
of both CPUs and GPUs is higher for single precision (see e.g.
Eijkhout et al., 2016; Besl, 2013), so we can expect a significant
performance improvement. The downside is that this might lead
to an error in our results if single precision is not precise enough
for our computations. Therefore we use error propagation to
compute the impact of single precision on the results of the
central lensing algorithm. In addition, we measure and compare
the single and double precision performance of both CPU and GPU
implementations.

The paper is organized as follows: Section 2 gives a concise
introduction to strong gravitational lensing and the LENSTOOL
algorithms. It also presents the CPU and GPU implementations.
Section 3 introduces the single and double precision floating-
point representations and investigates if single precision is pre-
cise enough for our computations. We present and compare the
performance measurements of the single and double precision
CPU and GPU implementations in Section 4. We discuss our
results in Section 5 and conclude in Section 6.

2. Accelerating lensing with massive parallelism

2.1. Strong gravitational lensing

Galaxies and galaxy clusters are so dense that they locally de-
form space–time. As a result, they can act as a lens for background
objects, which are magnified and distorted or even multiply im-
aged. Lensing also changes the locations at which we observe the
lensed images on the sky so that they are typically not coincident
with the locations at which we would observe the background

1 Open source software publicly available at https://projets.lam.fr/projects/
lenstool/wiki.

sources in the absence of lensing. In practice, we can only observe
the lensed images of a background source, but not the background
source itself. However, the position of the background source on
the sky can be calculated with the lens equation (see e.g. the
reviews Kneib and Natarajan, 2011; Bartelmann and Schneider,
2001, for a derivation),

β = θ − α(θ), (1)

where the two dimensional vectors β, θ, and α describe re-
spectively the location of the source in the source plane, the
location of the lensed image in the image plane, and the scaled
deflection angle. Note that these quantities are angles. In the case
of multiple images, the lens equation has more than one solution
θ for a fixed value of β (e.g., Bartelmann and Schneider, 2001).
The lens equation is derived under the assumption that we have
only one lens, that the gravitational field is weak enough so that
the field equations of General Relativity can be linearized, that
we can use the Born approximation, and that the physical extent
of the lens is small compared to the angular diameter distances
between observer and lens, DOL, and lens and source, DLS.

The background objects are typically extended sources like
galaxies. The shape of the lensed images will differ from the
shape of the source, since the light coming from the object at
coordinate β′ will be lensed slightly differently than the light
coming from the object at coordinate β′′ (e.g., Bartelmann and
Schneider, 2001). Therefore we can use the lens equation to
compute θ for each coordinate β of the object and thus the shape
of the lensed image due to isotropic and anisotropic distortion.

The scaled deflection angle α is the gradient of the deflection
potential ψ ,

α = ∇ψ, (2)

ψ(θ) =
1
π

∫
R2

d2θ ′ κ(θ′) ln |θ − θ′|, (3)

and ψ depends on the dimensionless projected surface mass
density κ ,

κ(θ) =
Σ(θ)
Σcrit

, (4)

Σcrit =
c2

4πG
DOS

DOLDLS
, (5)

where Σ(θ) is the projected surface mass density,

Σ(θ) =
∫

dz ρ(θ, z), (6)

and we defined the critical projected surface mass density Σcrit.
Here ρ is the mass density, c is the speed of light, G is the
gravitational constant, and DOS is the angular diameter distance
between observer and source. We can see from these equations
that α and thus the strength of the lensing effect depend on the
projected surface mass density. Therefore lensing probes the total
surface mass density of the lens, including baryonic and Dark
Matter components.

The value of κ is a good indicator to distinguish the so-called
‘‘weak’’ and ‘‘strong’’ lensing regimes. In the case of weak lensing,
the lensed image is only slightly distorted, while in the case
of strong lensing, the image is distorted strongly enough that
multiple images appear. A mass distribution which has κ ≥ 1
somewhere produces multiple images for some source positions
β (e.g., Bartelmann and Schneider, 2001). In the case of cluster
lensing, the strong lensing area and thus the multiple images are
typically located in the central regions of the cluster, where the
projected surface mass density is large enough (e.g., Kneib and
Natarajan, 2011).

We will illustrate gravitational lensing with an example. We
will look at a simple lens model, the Singular Isothermal Sphere
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(SIS), which we will use for the remainder of this paper as it
has a relatively simple mathematical expression and is thus very
instructive. The projected surface mass density is

Σ(θ) =
σ 2
v

2GDOL|θ|
, (7)

where σv is the line-of-sight velocity dispersion of the ‘‘particles’’
(e.g. galaxies in a galaxy cluster), which are assumed to be in virial
equilibrium (e.g., Bartelmann and Schneider, 2001). Thus we have

κ(θ) =
θE

2|θ|
, (8)

θE = 4π
(σv

c

)2 DLS

DOS
, (9)

where we defined the Einstein deflection angle θE. Using Eqs. (2)
and (3), we find that the magnitude of the scaled deflection angle
is constant,

|α| = θE. (10)

We see that the lens equation has infinitely many solutions for
β = 0, namely each point on the circle with radius θE. Therefore
a background source at this location will be strongly lensed into
a perfect Einstein ring.

2.2. Strong lensing algorithm

2.2.1. Overview
LENSTOOL models strong lensing galaxy clusters by using

parametric models of the large-scale cluster halos and the galaxy-
scale halos. In a typical merging cluster, we have two large-scale
halos and hundreds of galaxy halos. Depending on the chosen
parametric model, we have several free parameters such as x and
y position, velocity dispersion, etc. for each halo. It is possible
to constrain the range of the free parameters or to reduce their
number, e.g. by assuming a scaling relation like the Faber–Jackson
relation (Faber and Jackson, 1976) for galaxy-scale halos (Natara-
jan et al., 1998). Nevertheless, the best lens model will still be hid-
den in a massive, high dimensional parameter space. LENSTOOL
uses BayeSys3,2 a Bayesian Markov Chain Monte Carlo (MCMC)
software package, to sample this parameter space (see Jullo et al.,
2007, for a detailed description). For each parameter combination
probed by the MCMC, LENSTOOL computes the goodness of fit
of the corresponding lens model given the observational data. It
does this by modeling the lens with the given set of parameters
and, using this model, lensing the observed multiple images into
the source plane and subsequently back into the image plane,
see Fig. 1. If the probed lens model is close to the true matter
distribution, the re-lensed multiple image positions will be close
to the observed multiple image positions and the goodness of fit
parameter

χ2
=

∑
i

∑
j

(xobs,ij − xij)2

σ 2
ij

(11)

will be small (Jullo et al., 2007). We denote the observed position
of multiple image j of multiple image system i with xobs,ij, the re-
lensed position with xij, and the error budget of the position with
σij. Since the parameter space probed by the MCMC is massive,
it typically takes several weeks of computation time to find the
best model for lenses with HFF-like data.

There are two ways to speed up the computation. The first is
to speed up the MCMC, e.g. by parallelizing it. The second way is
to speed up the χ2 computation. In this paper, we will focus on
accelerating a crucial part of it, the gradient computation. Since

2 Publicly available at http://www.inference.org.uk/bayesys/.

Fig. 1. Lenstool computes the multiple image positions predicted by a lens
model (red triangles, image plane). In the first step, it lenses the observed
multiple images (green dots, image plane) onto their respective predicted
sources (yellow dots, source plane) and computes their barycenter (red dot,
source plane). In the second step, it decomposes the image plane pixels into
triangles and lenses each triangle into the source plane. Every time that the
source plane triangle includes the barycenter, a predicted multiple image is
found. If the lens model is close to the true model, these re-lensed images
will be located very close to the observed images. Note that image plane pixels
lensed into the source plane will typically be distorted due to the strong lensing
effect. We do not show this effect to keep the figure simple. As a result of
this distortion, squares are not always mapped onto squares and we thus have
to partition the pixels into triangles (top left corner, image plane), which are
always mapped onto triangles. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

we will have to take a very precise look at the algorithm when we
compute the impact of single and double precision on its result,
we will now present a detailed description.

2.2.2. Gradient computation in the χ2 algorithm
Before we present the χ2 algorithm, we reformulate the lens

Eq. (1) by introducing

Ψ =
DOS

DLS
ψ (12)

and making the gradient dependence explicit:

β1 = θ1 −
DLS

DOS
(∇Ψ (θ))1,

β2 = θ2 −
DLS

DOS
(∇Ψ (θ))2. (13)

As a result, we only have to compute the constant DLS/DOS once
instead of for every image pixel. Note that the deflection po-
tential at position θ is a superposition of all cluster-scale and
galaxy-scale deflection potentials ψcluster and ψgalaxy,

ψ(θ) =
∑

ψcluster(θ)+
∑

ψgalaxy(θ), (14)

(see e.g. Jullo et al., 2007) and as a result we have

∇Ψ (θ) =
∑
∇Ψcluster(θ)+

∑
∇Ψgalaxy(θ). (15)

We see that the lens equation is computationally cheap to eval-
uate once the total gradient ∇Ψ is known. The computation of
∇Ψ , however, involves potentially complicated gradient calcula-
tions for hundreds of potentials and as we will see in the next
paragraph, it has to be computed for every pixel in our image.
The Hubble Space Telescope Advanced Camera for Surveys (HST ACS)
produces images with 4096 × 4096 pixels at a pixel scale of
≈ 0.05 arcsec/pixel (Avila et al., 2017), which we can typically
upsample to 0.03 arcsec/pixel (Lotz et al., 2017), so that HFF
images have a total of ≈ 6730× 6730 pixels ≈ 45 million pixels.
This shows that the computation of ∇Ψ is computationally ex-
pensive and an excellent target for speedup with HPC parallelism
methods.
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The χ2 computation is now performed as follows. We compute
∇Ψ for each pixel of the image plane. Then we loop over each
multiple image j in each multiple image system i. For each mul-
tiple image, we use Eq. (13) to compute the source coordinates,
βij,1 and βij,2. Subsequently, we determine the barycenter of the
sources of a given multiple image system i. If we are close to
the true lens model, all multiple images will be mapped onto ap-
proximately the same source location, but in general the locations
of the predicted sources can differ substantially, which makes it
necessary to use the barycenter. In the next step, we re-lens the
barycenter back into the image plane to obtain the locations of
the multiple images predicted by the lens model. However, the
lens equation cannot easily be inverted, so we have to find the
locations in a different way. First, we divide each pixel in the
image plane into two triangles, see Fig. 1. We do this because
lensing always maps triangles onto triangles, but not squares onto
squares. Second, we lens each triangle into the source plane by
using Eq. (13) and we check if the barycenter is inside this triangle
in the source plane. If it is, a predicted multiple image location in
the image plane is found. Once we have found the locations of
all predicted multiple images for all multiple image systems, we
compute the χ2 according to Eq. (11).

The gradient calculations will naturally differ for different
chosen parametric models. As an example, we present the gra-
dient computation for a generalized form of the SIS, the pseudo-
elliptical SIS (henceforth called SIE), in Algorithm 1. It is necessary
to generalize the parametric model, as we want to use this algo-
rithm to model any SIS lens configuration by simply choosing the
appropriate number of lenses and parameter values. We expand
our treatment of the SIS in Section 2.1 by following the procedure
in Golse and Kneib (2002). We introduce the pseudo-ellipticity of
the deflection potential, ϵ, and the coordinate system

R =
√
θ21,ϵ + θ

2
2,ϵ,

φ = arctan
(θ2,ϵ
θ1,ϵ

)
, (16)

with

θ1,ϵ =
√
a1,ϵ θ1,

θ2,ϵ =
√
a2,ϵ θ2, (17)

a1,ϵ = 1− ϵ,

a2,ϵ = 1+ ϵ. (18)

Note that we call ϵ a pseudo-ellipticity, because the resulting
elliptical shapes will only correspond to ellipses with classical
ellipticity ϵ′ = 1 − b/a, where a and b are the semi-major and
semi-minor axes of the ellipse, for small values of ϵ (Golse and
Kneib, 2002). Therefore we assume in the following ϵ ≪ 1. The
advantage of using a pseudo-elliptical parametric model is that
it leads to relatively simple analytic expressions of the derived
lensing quantities (Golse and Kneib, 2002). Now we can simply
calculate the values of the pseudo-elliptical deflection potential
ψϵ at location θ by using the relation (Golse and Kneib, 2002)

ψϵ(θ) = ψ(R, φ), (19)

and analogous for Ψϵ . The resulting pseudo-elliptical shape is
stretched along the θ1-axis, so that we have Φ = 0, where Φ
is the counter-clockwise angle between the semi-major-axis and
the θ1-axis. Algorithm 1 extends this approach to potentials with
Φ ̸= 0 by using rotations. We obtain the following equations for
the scaled deflection angle (Golse and Kneib, 2002),

α1,ϵ(θ) = |α(R)|
√
a1,ϵ cos(φ),

α2,ϵ(θ) = |α(R)|
√
a2,ϵ sin(φ). (20)

We can now combine Eqs. (2), (9), (10), (12), and (20) to derive
the gradient expressions for the SIE,(
∇Ψϵ

)
1 = (1− ϵ) b0

θ1

R
,(

∇Ψϵ
)
2 = (1+ ϵ) b0

θ2

R
, (21)

where we introduced the parameter

b0 = 4π
(σv

c

)2
. (22)

The presented equations for the SIE always reduce to the pre-
viously presented equations for the spherical SIS for ϵ = 0.

Algorithm 1 Compute ∇Ψϵ in each image pixel for a SIE
Require: θcenter, b0, ϵ, Φ ∀ SIE lenses, image I
Output: ∇Ψϵ ∀ pixels (θ1, θ2) ∈ I

1: Procedure gradient(I,{θcenter,i, b0,i, ϵi,Φi}):
2: for all (θ1, θ2) ∈ I do
3: for i ∈ SIE lenses do
4: ∆θ1,i ← θ1 − θcenter,i,1
5: ∆θ2,i ← θ2 − θcenter,i,2
6: ∆θ ′1,i ← ∆θ1,i cos(Φi)+∆θ2,i sin(Φi)
7: ∆θ ′2,i ← ∆θ2,i cos(Φi)−∆θ1,i sin(Φi)
8: Ri ← sqrt

(
(∆θ ′1,i)

2(1− ϵi)+ (∆θ ′2,i)
2(1+ ϵi)

)
9: (∇Ψϵ)1,i ← (1− ϵi) b0,i ∆θ ′1,i/Ri

10: (∇Ψϵ)2,i ← (1+ ϵi) b0,i ∆θ ′2,i/Ri

11: (∇Ψϵ)′1,i ← (∇Ψϵ)1,i cos(−Φi)
+ (∇Ψϵ)2,i sin(−Φi)

12: (∇Ψϵ)′2,i ← (∇Ψϵ)2,i cos(−Φi)
− (∇Ψϵ)1,i sin(−Φi)

13: end for
14: (∇Ψϵ)1 ←

∑
i (∇Ψϵ)′1,i

15: (∇Ψϵ)2 ←
∑

i (∇Ψϵ)′2,i
16: end for
17: return {∇Ψϵ}

2.3. CPU and GPU implementations

We developed two versions of the gradient computation for
Benchmark and comparison purposes, one for CPUs and one for
GPUs.

2.3.1. CPU
The performance-optimized CPU version of the gradient com-

putation is coded in C++3 using the following techniques. First,
we structure our data in the Structures of Arrays (SoA) format
instead of the Arrays of Structures (AoS) format.

In the SoA format the data is stored as a structure of arrays,
each array possessing the same type of information. The more
human intuitive AoS format stores the data as an array comprised
of multiple different data structures. Using the SoA format results
in the data occupying contiguous parts of the memory, which
is usually beneficial for vectorized computations (e.g., Eijkhout
et al., 2016; Besl, 2013). Second, we use Advanced Vector Exten-
sions (AVX) technology available on the latest CPU generations
to harvest their built-in vectorization potential. AVX (Advanced
Vector Extensions) is an instruction set architecture that im-
plements SIMD (Same Instruction Multiple Data, Eijkhout et al.,
2016) Data Level parallelism on x86 CPUs. It allows compatible
CPUs to execute the same operations on multiple data paths

3 C++ is a programming language standardized by the International
Organization for Standardization, public website: https://isocpp.org/.
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(vectors) at the same time, thus increasing arithmetic throughput
accordingly. For instance, AVX can operate on 4 DP numbers at
once and AVX512 on 8. The main disadvantages of AVX (and
SIMD in general) is that not all algorithms are a priori vector-
izable, and vectorizable codes are required to use specific data
structures (e.g. Structure Of Array) in order to be fully efficient
(Fig. 2). Implementing these data structures can be cumbersome
in the overall code design. Third, we parallelize the computation
using Open Multi-Processing (OpenMP)4 on the outermost loop
of Algorithm 1. Each core of the multi-core CPU will now work
on computing the total gradient for its assigned pixel and thus
we compute the gradients for several pixels in parallel.

2.3.2. GPU
We implement the GPU version of the algorithm with CUDA.5

First, we structure our data again in the SoA format. Second, we
use the massively parallel architecture of GPUs to parallelize the
gradient computation. Modern GPUs have many Streaming Mul-
tiprocessors (SM), which in turn consist of many Streaming Pro-
cessors (SP), so the total amount of processor cores is computed
by multiplying the two (e.g., Eijkhout et al., 2016). The number
of cores available depends on the GPU model, for example the
Nvidia Tesla P100 (henceforth called P100) possesses 3584 cores
for single precision computations (Nvidia Corporation, 2016). In
addition, GPUs are designed to be extremely efficient at switching
between threads, where all threads in a single block of threads
execute the same instruction (Eijkhout et al., 2016). Therefore
we can effectively use many more threads than we have GPU
cores. Different blocks of threads can be processed independently.
This GPU parallelism is called Single Instruction Multiple Thread
(SIMT) (Eijkhout et al., 2016). We use GPU threads to parallelize
the outermost loop of Algorithm 1. Each GPU thread computes the
total gradient for its assigned pixel. Therefore we can compute the
gradients for thousands of pixels simultaneously.

3. Finite machine precision errors in strong lensing

3.1. Single and double precision

Modern computers usually store real numbers in the IEEE 754
single precision floating-point representation (henceforth called
SP) or the IEEE 754 double precision floating-point representa-
tion (henceforth called DP) (Institute of Electrical and Electronics
Engineers, 2008, see e.g. Goldberg (1991) for an overview of
floating-point arithmetic). A real number x ∈ R in decimal
representation is thus stored in a binary format,

x = σ × x̄2 × 2e, (23)

where the integer e is the exponent, the sign σ equals +1 or −1,
and x̄2 is a binary number satisfying (1)2 ≤ x̄2 < (10)2 (Institute
of Electrical and Electronics Engineers, 2008). Note that the binary
number x̄2 consists of several integer digits d ∈ {0, 1}, i.e. x̄2 =
d0.d1d2 . . . dp−1. Left of the decimal point, d0 corresponds to the
binary integer representation. To the right di for i > 0 are
used for the binary fraction representation with di = 2−i. In
the remainder of this paper we will denote the binary format
by using the subscript 2, so (1)2 and (10)2 correspond to the
numbers 1 and 2 in decimal representation. For example, the
number 2.25 would correspond to σ = +1, x̄2 = (1.001)2, and

4 OpenMP is an application programming interface managed by the non-
profit OpenMP Architecture Review Board, public website: http://www.openmp.
org.
5 CUDA is a parallel computing platform and programming model for general

computing on GPUs managed by Nvidia Corporation, public website: https:
//developer.nvidia.com/cuda-zone.

Fig. 2. This illustration shows how data stored in the Structures of Arrays (SoA)
and Arrays of Structures (AoS) formats is loaded into registers. The parameters X,
Y, and Z are part of their respective data sets T1 , T2 , T3 , and T4 . A CPU core with
AVX technology uses registers to process 4 parameters simultaneously, but this
requires a homogeneous memory layout. Data stored in the SoA format provides
this homogeneous memory layout without any additional operation and can be
processed after being loaded into the registers. Data stored in the AoS format is
first loaded into the registers and subsequently rearranged by shuffling the data
between the registers. These shuffle operations consume time and thus lead to
lower performance.

e = (1)2.6 The number of digits in x̄2 is called the precision p
of the representation. According to IEEE 754, SP has a precision
of p = 24 digits and an exponent −126 ≤ e ≤ 127, while DP
has p = 53 and −1022 ≤ e ≤ 1023. SP values are stored using 4
bytes (= 32 bits) and DP values using 8 bytes (= 64 bits) (Institute
of Electrical and Electronics Engineers, 2008). As a result, DP can
store a number x with higher accuracy than SP, but this comes
at the price of increased memory consumption and usually also
reduced computing performance (e.g., Besl, 2013; Eijkhout et al.,
2016).

Both DP and SP have only a limited amount of memory avail-
able and thus their accuracy is limited. We define the machine
epsilon ϵ as the difference between 1 and the next larger number
that can be stored using the given representation (Eijkhout et al.,
2016). For SP and DP we thus have respectively ϵ = 2−23 ≈
1.2 × 10−7 and ϵ = 2−52 ≈ 2.2 × 10−16. These errors are so
small that they might seem unimportant at first, but they will
be magnified by the different computing operations performed
in the course of an algorithm, so that they can become very large
and relevant once the final result is obtained.

To illustrate this point, we now look at a hypothetical cal-
culator.7 For simplicity, it does not use SP or DP, but a decimal
number representation with 6 digits precision and no exponent.
We compute a relatively simple function, f (x) = x × (

√
x+ 1 −

√
x). For x = 50,000, the result from the hypothetical calculator

is 100, while the true result is 111.8, so we have a relative
error of more than 10%. To understand this behavior, we take a
look at the different steps which the calculator has to perform.
It computes

√
50001 and rounds the result to 6 digits (result:

223.609) and then it repeats these steps for
√
50000 (result:

223.607). Therefore we have two rounding errors, but they are
very small. However, now the calculator subtracts two almost

6 In practice, the leading bit of x̄2 would be implicit and e would be stored
as a biased exponent, but we can ignore such intricacies here to simplify the
presentation.
7 This illustration is inspired by an example in the lecture notes of Catalin

Trenchea, available online at http://www.math.pitt.edu/~trenchea/math1070/
MATH1070_2_Error_and_Computer_Arithmetic.pdf.
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Table 1
Theoretical maximum computing performance for our used CPU and GPU models. These values can only serve as a rough indicator of expected performance, as the
real application performance will depend on many parameters such as the used algorithm and its implementation. We list the base frequency for the CPU while we
use the boost frequency for the GPUs, as the CPU typically reaches the boost frequency only on a few cores and not on all cores simultaneously. We compute the
CPU maximum computing performance using the following formula: Two operations per cycle ×frequency ×AVX vectorization ×number of cores (Besl, 2013). Note
that the AVX factor for SP is two times larger than for DP. We use the same formula, but without the AVX factor, for GPUs. Graphics cards have a different number
of cores for SP and DP computations and thus a different maximum performance. The number of GPU cores listed in the table is for SP computations. Due to the
lower number of DP cores, the Nvidia GTX 1080 Ti’s GP102 GPU has thirty-two times less performance in DP computations than in SP (e.g., Harris, 2016), while the
P100’s GP100 GPU and the V100’s GV100 GPU are two times slower (Nvidia Corporation, 2016, 2017b). The number of cores and the frequencies are taken from
Intel Corporation (2014) and Nvidia Corporation (2017a,b, 2016).

Intel Xeon E5-2680 v3 Nvidia GTX 1080 Ti Nvidia P100 Nvidia V100
12 cores, 2.50 GHz 3584 cores, 1582 MHz 3584 cores, 1480 MHz 5120 cores, 1530 MHz

Double precision 240 GFLOPS 354 GFLOPS 5304 GFLOPS 7833 GFLOPS
Single precision 480 GFLOPS 11340 GFLOPS 10609 GFLOPS 15667 GFLOPS

equal numbers to obtain 000.002, so only the last number of
the result is a significant digit. We have lost a lot of accuracy
which we cannot recover. The subsequent multiplication does not
increase the error, but it propagates it into the final result. This
example illustrates that even with the high precision available in
modern computers, the result of a sufficiently long and complex
algorithm can be significantly affected by the chosen number
representation.

DP permits a much higher accuracy than SP and therefore it
is tempting to simply use it for all computations. However, this
accuracy comes at the price of computing performance. As shown
in Table 1, this is particularly true for GPUs. While the theoretical
maximum computing performance of a modern CPU decreases by
a factor of two, the peak performance of a consumer GPU like
the Nvidia GeForce GTX 1080 Ti (henceforth called GTX) drops by
two orders of magnitude. This is a significant problem for GPU-
accelerated scientific software, where SP is often not accurate
enough. To ameliorate this issue, graphics card manufacturers
introduced new hardware specifically designed to improve the
DP performance. The P100 and its recently released successor, the
Nvidia Tesla V100 (henceforth called V100) achieve half of their
SP performance when using DP. However, these special purpose
GPUs are much more expensive than regular consumer GPUs like
the GTX, typically by an order of magnitude. Table 1 shows that
the SP performance of a high-end consumer GPU is comparable
to the SP power of the special purpose GPUs. Thus, if it is possible
to use SP instead of DP in our lensing algorithm, we would not
only significantly increase the code performance on both CPUs
and GPUs, but we might also be able to achieve a close to optimal
performance with relatively cheap hardware.

3.2. Computing finite precision errors for strong lensing

We will now show that using SP in Algorithm 1 is accurate
enough for a large fraction of the image pixels. We restrict our-
selves again to the SIE model. It is possible to generalize these
results to other parametric models, but the fraction of the image
for which SP is accurate enough will vary and has to be computed
for each model independently.

The lens Eq. (13) maps the pixels in the image plane onto
pixels in the source plane. We assume a HFF pixel size of 0.03 arc-
sec and we maximize the lensing effect by using DLS/DOS = 1.
As a result, the lens equation is now a simple subtraction of
∇Ψϵ(θ1, θ2). We now look at an observed multiple image in the
image plane. Note that our ability to locate the multiple image
is observationally constrained by the size of the image pixels, so
there is an observational error budget on the image location of
half a pixel. In addition, the algorithm lenses both the triangular
pixel and the image position into the source plane. It is possible
that their respective errors due to machine precision have the
same magnitude but the opposite sign, and therefore the error
budget shrinks by another factor of two. As a result, the value of

∇Ψϵ can be considered accurate enough if the error E is smaller
than a quarter of a pixel. Thus our upper limit for the gradient
error is Ei ≤ 7.5× 10−3 arcsec, where i = 1, 2.

However, this error budget does not yet account for the mag-
nification effect of strong lensing. Background sources and dis-
tance scales appear magnified when they are strongly lensed
and consequently distance scales in the image plane like pixel
sizes will be de-magnified when they are mapped into the source
plane. The resulting error budget for ∇Ψϵ becomes thus Ei ≤
7.5 × 10−3 arcsec/Mi, where Mi is the magnification along the
θi-axis.

In Appendix we derive an upper bound for the error of ∇Ψϵ
due to finite machine precision. We assume that the lens is a
strong lensing cluster modeled with two cluster-scale SIE halos.
The SP upper error bound along the θi-axis is ∆(∇Ψϵ) ≤ 2.3 ×
10−3 arcsec if we use the following approach. As discussed in
Appendix, we compute the gradients with SP except in pixel grids
of 400×400 pixels around cluster-scale halos and 20×20 pixels
around galaxy-scale halos, where we use DP. In these regions
the SP error would be so large that it could alter the result.
This corresponds to approximately 1% of all image pixels. As
a result, SP is accurate enough for each of the remaining 99%
of the image pixels if the respective magnification along both
θi-axes is Mi ≤ 3.26. In strong lensing, we typically measure
the magnification of the area of a multiple image and not the
magnification along an axis. The measured values are typically
single digits (see e.g. Jauzac et al., 2015, for magnification values
of a HFF cluster). While these values cannot easily be converted to
axis-magnifications due to the typically arc-like shape of strongly
magnified images, they strongly suggest that SP will be accurate
enough for a large fraction of the image. However, strong lensing
clusters have critical lines where the magnification diverges. In
the case of the SIS, this critical line is the Einstein ring. While
the magnification does not become infinite in practice (see e.g.
Bartelmann and Schneider, 2001, for a detailed discussion), it can
become very large and thus SP will no longer be accurate enough.
Consequently, we can use SP for a large fraction of the image, but
we also need to implement a mechanism which ensures that we
compute the gradients with DP whenever SP is not enough due
to high magnification.

3.3. Fixing the missing accuracy close to critical lines

We add the missing accuracy close to critical lines as follows.
First, we compute ∇Ψϵ for each pixel in the image using the ap-
proach presented in the previous subsection. Second, we compute
for each pixel

δ1(θ1, θ2) = (∇Ψϵ)1(θ1, θ2)− (∇Ψϵ)1(θ1 −∆x, θ2),

δ2(θ1, θ2) = (∇Ψϵ)2(θ1, θ2)− (∇Ψϵ)2(θ1, θ2 −∆x), (24)

which is computationally cheap because we have already com-
puted the gradient values for all pixels. For the HST ACS, we
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Fig. 3. The source plane pixels (yellow) are greatly distorted with respect to
the corresponding regular image plane pixels (red). This example shows the
distortions caused by a single symmetrical SIS lens (blue) for angles of −45,
0, 45, and 90 degrees. Note that the greatest distortion occurs perpendicular
to the lensing direction, but small lensing effects can also occur alongside this
direction, as the example for the 90◦ angle shows. The magnitude of this effect is
typically negligible compared to the perpendicular distortion. (For interpretation
of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

have a pixel height and width ∆x = 0.03 arcsec. Note that δi
corresponds to the change of the pixel length along the θi-axis
due to lensing into the source plane. Third, we recompute ∇Ψϵ
in DP for all pixels where

|0.03 arcsec− δi(θ1, θ2)| < 0.0092 arcsec (25)

for i = 1, 2, which implies that Mi > 3.26. We derive this
condition by computing the pixel length in the source plane
∆xsource along the β1-axis,

|∆xsource,1(θ1, θ2)| = |β1(θ1, θ2)− β1(θ1 −∆x, θ2)|

= |∆x− δ1(θ1, θ2)|, (26)

where we used the lens equation. An analogous relation holds
for the β2-axis. Note that taking the absolute value of ∆xsource
is necessary because lensing can change the image parity (see
e.g. the review Kneib and Natarajan, 2011). For the assumed
HFF pixel scale, the condition that Mi > 3.26 translates into
∆xsource,i < 0.0092 arcsec. The lensing effect along the θ1- and
θ2-axis is shown in Fig. 3 and the criterion in Eq. (25) is illustrated
in the top part of Fig. 4.

We can assume that each source is lensed along a chosen θi-
axis, as this can be achieved by a simple change of the image
plane coordinate system. However, the shape of the image plane

Fig. 4. The values of ∇Ψϵ must be recomputed in DP if the distorted and
de-magnified source plane pixels (yellow) become smaller than the error due
to finite machine precision (green box). The regular image plane pixel is
overplotted in red. The top figure illustrates the lensing example with an angle
of 90 degrees shown in Fig. 3 and the bottom figure demonstrates the example
with an angle of 45 degrees. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

pixels is not invariant under such a transformation, as Fig. 3
illustrates. Therefore we need two additional criteria. We define

δ3(θ1, θ2) = (∇Ψϵ)1(θ1, θ2)− (∇Ψϵ)1(θ1, θ2 −∆x),

δ4(θ1, θ2) = (∇Ψϵ)2(θ1, θ2)− (∇Ψϵ)2(θ1 −∆x, θ2), (27)

and we recompute ∇Ψϵ in DP if

|δi(θ1, θ2)| > 0.0104 arcsec (28)

for i = 3 or i = 4. This case is illustrated in the bottom part of
Fig. 4.

In summary, we compute ∇Ψϵ in SP everywhere except in
small patches centered on the origin of each lens as described in
Appendix and for the pixels where the criteria defined in Eqs. (25)
and (28) hold. This is illustrated in Fig. 5.

4. Performance measurements

We implement both the GPU and the CPU version of the gradi-
ent computation twice, once in SP and once in DP. The respective
versions are identical up to the change in precision. In addition,
we implement the mixed precision algorithm for both types of
hardware. In the first step, this algorithm computes the result
for each pixel in SP. In the second step, it checks which results
are not accurate enough and recomputes these with DP. For
this purpose, the algorithm uses the criterions developed in the
previous section. The GPU implementation of the mixed precision
algorithm uses asynchronous computations and load balancing
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Fig. 5. Difference between the values of (∇Ψϵ )1 computed with our mixed
precision and DP algorithms for a single spherical cluster-scale SIS lens. The
color white indicates a difference of zero. The green pixels are calculated with
SP and the white and blue pixels are re-computed with DP. The error for every
pixel is within the allowed error bounds. The rectangular patch around the lens
center in which we use DP is clearly visible. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

for the second step, i.e. the computation of the most expensive
DP calculations can be dispatched asynchronously between the
CPU and the GPU. We adjust the load balancing for the different
GPU models. As Table 1 shows, this is particularly interesting for
the GTX: The use of a hybrid CPU/GPU approach alleviates the
very low DP performance of this card and drastically reduces the
impact of the DP computations on the overall run time. From
an implementation point of view, the load balancing split be-
tween CPU and GPU is performed manually according to an input
parameter that depends on the floating point throughput ratio
between each component. Auto-tuning this parameter would re-
quire some form of work-adjusting strategy that is beyond the
scope of this paper.

In the next step, we want to measure the performance gain
of using HPC methods in strong lensing. For this purpose, we
measure the time which the different software implementations
require to compute the gradient of a HFF-like cluster lens for each
pixel of a Hubble image. We have repeated this measurement
several times and find that the benchmark results are stable,
i.e. they do not significantly vary in different runs with the same
setup. We also compute the gradients with the current LENSTOOL
software, which serves as a reference. We assume a ΛCDM cos-
mology with H0 = 70 km/(s Mpc), Ωm = 0.3, and ΩΛ = 0.7.
We use an image with 6730 × 6730 pixels and a pixel scale
of 0.03 arcsec/pixel to simulate images from the HST ACS. The
galaxy cluster consists of two cluster-scale and 700 galaxy-scale
halos like in the HFF cluster Abell 2744 (e.g., Jauzac et al., 2015).
We model the lens using SIE halos. The lens redshift is 0.3 and
all sources are at the same redshift zsource = 2.0. For a realistic
velocity dispersion we use as a reference the ones determined
by Jauzac et al. (2015) for one cluster-scale halo approximately
1200 km/s and for a galaxy halo roughly 150 km/s. These values
correspond to the velocity dispersion parameter of the parametric
lens model chosen in Jauzac et al. (2015), which is not identical to
measured line-of-sight velocity dispersions of galaxies. The exact
conversion must be computed numerically, but for our purposes
a rough agreement is enough, so we can use a conversion factor
of 0.85 (Elíasdóttir et al., 2007). This leads to σv ≈ 1000 km/s

Fig. 6. Values of (∇Ψϵ )1 computed in DP for the HFF-like galaxy cluster lens
used for the performance benchmark. The yellow contours indicate the area in
which at least one of the conditions shown in Eqs. (25) and (28) is triggered.
The patches for the halo centers are not displayed. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

and we choose this value and a pseudo-ellipticity of the potential
ϵ = 0.05 for the first cluster scale halo. For the second large-scale
halo, we use σv = 700 km/s and ϵ = 0.04. We model the galaxy
halos by allowing σv and ϵ to randomly vary between 10 and
15 km/s and 0 and 0.15, respectively. Note that the galaxy halo
velocity dispersions are approximately a factor ten smaller than
the ones used in Jauzac et al. (2015), because the magnitude of the
scaled deflection angle for a SIE does not decrease with distance
from the lens center, as it does for more realistic parametric lens
models. Thus we need to decrease the velocity dispersion to limit
the lensing effect of individual galaxies at large separations from
the galaxy.

Fig. 6 presents the gradient values in θ1 direction for the
cluster lens. Fig. 7 shows that the error resulting from our mixed
precision algorithm is within the allowed limit for each pixel.
Fig. 8 illustrates the hypothetical error of a pure SP algorithm
close to a cluster-scale halo. We see that the area in which we
re-compute ∇Ψϵ shown in Fig. 5 covers nicely the area in which
the SP error is largest.

Table 2 and Fig. 9 present the benchmark performance of
the different gradient computation implementations. Each Bench-
mark was run 10 times and the minimum result was kept so as to
minimize the impact of Operating system/network jitters. Stan-
dard deviation of the runs were at most at 10%. The speedup of
the HPC-optimized codes with respect to the current LENSTOOL
software is considerable. The indicated LENSTOOL performance is
obtained by using all 12 CPU cores. It is thus the best currently
achievable speed, as LENSTOOL cannot be run on multiple com-
puter nodes and its performance is thus limited by the number of
CPUs available on a single node. In addition, the mixed precision
implementations are consistently faster than the DP ones, which
validates our approach. The HPC CPU version reduces the run
time of the benchmark by one order of magnitude and the GPU
implementations by up to two while keeping the error within
the allowed bounds. The consumer-grade GTX card displays the
largest performance gain with respect to the DP computation.
Fig. 10 demonstrates that our HPC-optimized CPU software scales
almost perfectly with the number of cores available on a single
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Fig. 7. Difference between the values of (∇Ψϵ )1 computed with our mixed
precision and DP algorithms for the HFF-like galaxy cluster lens used for the
performance benchmark. The color white indicates a difference of zero. The
green pixels are calculated with SP and the white and blue pixels are re-
computed with DP. The error for every pixel is within the allowed error bounds.
The small rectangular patches around the 700 galaxy halo centers in which we
use DP are clearly visible. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 8. Difference between the values of (∇Ψϵ )1 computed with a pure SP
algorithm and a DP algorithm. The figure shows a zoom-in on a cluster-scale
SIE halo of the HFF-like galaxy cluster used in the performance benchmark. The
areas with the largest errors follow clearly the pattern shown in Fig. 5. Therefore
our mixed precision algorithm would re-compute these pixels with DP and thus
ensure the accuracy of the result.

node using multi-threading. Fig. 11 compares the benchmark
performance of the Nvidia GTX with the high-end GPU based
on the same Pascal GPU architecture (Nvidia P100). The P100 is
an order of magnitude more expensive than the GTX. The P100
is considerably faster when only DP is used, which is expected
as it was designed for this purpose. However, as soon as the
mixed precision algorithm is used, the GTX reduces its run time
dramatically and the performance comes close to the P100.

5. Discussion

The performance measurements in the last section demon-
strate clearly the value of HPC methods for strong lensing soft-
ware. They lead to a speedup of one to two orders of magnitude,

Fig. 9. Logarithmic plot of the benchmark performance for the different gradient
computation implementations. We calculate the gradient for each pixel in the
simulated HST image of a HFF-like galaxy cluster lens. The current LENSTOOL
software serves as performance reference. The HPC-optimized implementation
on the same Intel CPU with 12 cores is called CPU. It is already an order
of magnitude faster. The GPU implementations can reduce the run time by
another order of magnitude. Note that the mixed precision GPU algorithm uses
a hybrid CPU/GPU approach. The mixed precision algorithm is faster than the
DP implementation for each of the different hardware devices.

Fig. 10. The performance of the HPC-optimized CPU code scales almost perfectly
with the number of used CPU cores on a single computing cluster node.

depending on the chosen hardware. In addition, our measure-
ments show that GPUs are perfectly suited for the massively
parallel lensing calculations. As expected, the high-end GPUs have
a big performance advantage in DP computations, but our mixed
precision algorithm and the hybrid CPU/GPU approach bring the
consumer GPU’s performance very close to its more expensive
siblings. Note that the use of mixed precision also benefits the
benchmark performance of the high-end GPUs and of the CPU,
but not on the same scale. Mixed precision thus leads to a perfor-
mance benefit regardless of used hardware while also delivering
accurate results.

Furthermore, Table 3 demonstrates that the use of HPC meth-
ods dramatically reduces the energy consumption. We estimate
the required energy to solution of the respective gradient compu-
tation implementations by multiplying the Thermal Design Power
(TDP) of the used hardware with the time to solution. Note that
we use only the TDP of the CPU and the GPUs for the energy to
solution computations and we neglect the power consumption
of other components which is typically considerably lower (see
e.g. Cumming et al., 2014, for a detailed energy-efficiency study
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Table 2
Benchmark results of the gradient computation implementations for a HFF-like lens. We show the double and mixed precision run
times for the HPC-optimized CPU version using 12 cores and the three GPU models. The mixed precision algorithm for the GPUs
uses a hybrid CPU/GPU implementation. Column three presents the measured run time advantage of mixed precision over double
precision. Note that the mixed precision algorithm requires a substantial amount of additional computations compared to the double
precision algorithm, as it must check for which pixels single precision is accurate enough and for which ones the gradient must
be recomputed in double precision. Despite this overhead, the mixed precision implementation is the fastest for all four hardware
devices. The fourth column shows the speedup of the mixed precision implementation with respect to the best currently achievable
speed of LENSTOOL.

Run time Run time Run time reduction Speedup factor
Double precision Mixed precision Double → Mixed precision compared to
(seconds) (seconds) (%) LENSTOOL

CPU 8.1 7.40 9 9
GTX 6.8 1.58 77 42
P100 0.71 0.58 18 115
V100 0.46 0.39 15 171

Table 3
Energy comparison of the different gradient computation implementations for one run of the benchmark. We estimate the energy to solution by multiplying the
Thermal Design Power (TDP) of the different hardware devices with the respective benchmark run times. In the case of the mixed precision GPU implementations,
which use a hybrid CPU/GPU approach, we add the TDPs of the GPU and the CPU. The TDP values are taken from Intel Corporation (2014) and Nvidia Corporation
(2016, 2017a,b). The last column shows the percentage of energy saved by using the double or mixed precision algorithm instead of the current LENSTOOL software.

Hardware Energy to solution Energy to solution Energy saved Energy saved compared
TDP Double precision Mixed precision Double → Mixed precision to LENSTOOL
(Watt) (Joule) (Joule) (%) (%)

LENSTOOL 120 8016 – – –
CPU 120 972 888 9 88/89
GTX 250 1700 585 66 79/93
P100 300 213 244 −15 97/97
V100 300 138 164 −19 98/98

Fig. 11. Benchmark performance for a high-end GPU (Nvidia P100) and the
consumer graphics card (Nvidia GTX). Both GPUs are based on the Pascal GPU
architecture. The Nvidia V100 is based on the more recent Volta architecture
and thus not shown in this comparison. The P100 is an order of magnitude
more expensive than the GTX and especially designed for DP performance in
scientific applications. Consequently it clearly outperforms the GTX when only
DP is used. However, the mixed precision algorithm in combination with the
hybrid CPU/GPU approach greatly accelerates the performance of the GTX and
its run time comes close to the P100.

of a computing cluster). Energy savings of up to 98% are possible
compared to the current LENSTOOL software. The HPC techniques
are thus friendly to the environment and lower the electricity bill
of the computing cluster. While the use of the mixed precision
algorithm further reduces the energy consumption in the case of
the CPU and the GTX, its use increases the required energy for the
P100 and the V100. This is due to the hybrid CPU/GPU approach in
the mixed precision implementation for the GPUs. In the case of
the GTX, the decrease in run time can handily offset the additional
power consumption of the CPU, while this is not the case for the
high-end GPUs.

It is possible to generalize this approach to other commonly
used parametric lens models like the Navarro–Frenk–White
(NFW) profile (Navarro et al., 1997, 1996) or the dual Pseudo
Isothermal Elliptical mass distribution (dPIE) (e.g., Elíasdóttir
et al., 2007; Kassiola and Kovner, 1993). However, this will lead
to much more complicated and longer gradient computation
algorithms than the one for the SIE studied in this paper. As a
result, it is possible that the resulting error due to finite machine
precision will become bigger, too. While the exact fraction of
the image for which SP is accurate enough must be explicitly
calculated and studied for the respective model, it is possible
that it will be considerably lower than for the SIE. Therefore
the performance gain from using mixed precision might shrink
accordingly. A separate study will be necessary to determine
whether the expected performance gain is worth the effort.

Finally, it is necessary to discuss legal aspects of the GPU
drivers provided by the graphics chip manufacturer, Nvidia. The
drivers are required to use the hardware and their use is sub-
ject to certain terms and conditions, which Nvidia has recently
updated. These new terms might be interpreted to prohibit the
use of consumer-grade graphics cards like the GTX in computing
clusters, which is the typical deployment in the scientific commu-
nity. Thus the customers would be effectively forced to buy the
much more expensive high-end GPUs, even though the cheaper
graphics cards might be fully sufficient for the intended appli-
cation. The authors of this paper are strongly concerned about
this development, in particular given the limited financial budgets
of academic research worldwide. Therefore they have contacted
Nvidia and were informed in writing that Nvidia has no intentions
to prohibit the use of the cheaper consumer-grade cards for the
non-commercial purposes of researchers. The authors urge Nvidia
to formalize this permission for scientific use by including it in
the terms and conditions or preferably to remove this restriction
altogether, thus allowing everyone to use the GPU which best
suits their respective needs.

6. Conclusion

In this paper, we demonstrate the value of High Performance
Computing techniques for strong lensing software. We study
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a performance-critical part of the widely used LENSTOOL lens
modeling software, namely the deflection potential gradient com-
putations of the χ2 calculation algorithm. We present and discuss
an optimized CPU version with Advanced Vector Extensions and
OpenMP and a GPU implementation in CUDA for a SIE lens model.

In addition, we calculate the impact of finite machine precision
on the strong lensing algorithm. We demonstrate for the SIE
model that single precision is accurate enough for a large part
of the image. We develop a mixed precision algorithm which al-
lows us to use single precision for performance while computing
critical parts of the image in double precision.

Finally, we measure the computing performance for a galaxy
cluster lens similar to the Hubble Frontier Fields. We find that
our HPC techniques accelerate the computation by an order of
magnitude on CPUs and by up to two orders of magnitude on
GPUs. In addition, they reduce the energy consumption by up to
98%. The mixed precision approach delivers the best performance
for every type of hardware while providing accurate results. It
also permits to harness the full potential of a consumer-grade
GPU, which can achieve a competitive benchmark performance
for a small fraction of the monetary cost of a high-end GPU.

Acknowledgments

MR thanks Yves Revaz for fruitful discussions of GPU-
accelerated computing. GF gratefully acknowledges support from
the EPFL Faculté des Sciences de Base. This work was supported
by EPFL, Switzerland through the use of the facilities of its Sci-
entific IT and Application Support Center. The authors gratefully
acknowledge the use of facilities of the Swiss National Super-
computing Centre (CSCS) and they thank Colin McMurtrie and
Hussein Harake for their continued support. This research made
use of matplotlib (Hunter, 2007), Inkscape, Astropy (Robitaille
et al., 2013), TeX Live, Wolfram Alpha, and NASA’s Astrophysics
Data System.

Appendix. Finite machine precision error in ∇Ψϵ computation
for SIE

We compute the error for ∇Ψϵ for a SIE parametric model
due to finite machine precision. To do so, we investigate each
line of the ∇Ψϵ Algorithm 1, we compute the respective error
due to finite machine precision, and we propagate the resulting
errors into the next line of the algorithm. We use ϵ to denote the
machine epsilon as defined in Section 3.1 and we have ϵ ≈ 10−7
and ϵ ≈ 10−16 for single and double precision, respectively.
Thus we can neglect terms of the order O(ϵ2) and higher. We
make the assumption that the computer stores the result of one
line of the algorithm, which typically corresponds to one line of
code, in regular registers or memory. In addition, we assume that
intermediate results, which occur while processing one line of the
algorithm, are stored in extended precision registers, which are
e.g. typically present in x87 Floating-Point Units (FPUs). As a re-
sult, we can neglect error contributions due to machine precision
for these intermediate results. Note that this is no longer the case
if we use Streaming SIMD Extension (SSE) or AVX registers, as
these do not use extended precision.

The Appendix is organized as follows: In Appendix A.1, we
present the error propagation rules, in Appendix A.2 we derive
a mathematical expression for the error of ∇Ψϵ and we write it
in a compact form by defining appropriate error variables, and in
Appendix A.3 we compute upper bounds for the error.

A.1. Error propagation rules

We use the following error propagation rules which give upper
limits on the propagated error:

Addition:

x± ϵa+ y± ϵb = x+ y± ϵ(|a| + |b|) (A.1)

Subtraction:

x± ϵa− y± ϵb = x− y± ϵ(|a| + |b|) (A.2)

Multiplication:

(x± ϵa)(y± ϵb) = xy± ϵ|ay| ± ϵ|xb| ± O(ϵ2)

= xy± ϵ(|ay| + |xb|) (A.3)

Division:
x± ϵa
y± ϵb

=
x
y
± ϵ
|ay| + |bx|
y2 ± ϵby

(A.4)

Proof.
x± ϵa
y± ϵb

−
x
y
=

(x± ϵa)y− x(y± ϵb)
y2 ± ϵby

=
xy± ϵay− xy± ϵbx

y2 ± ϵby

= ±ϵ
|ay| + |bx|
y2 ± ϵby

General, infinitely differentiable function f (x):
We can use the Taylor expansion to first order,

f (x± ϵa) = f (x)± ϵaf ′(x), (A.5)

if the contribution from higher order terms is negligible:

f n(x)anϵn

f ′(x)aϵn!
≈ 0 ∀n > 1,

where f n(x) denotes the nth derivative.

A.2. Error computation

We will denote a result x stored in a regular register or
memory with stored(x). We want to derive an upper limit on
the final error, so we will assume that each of these storage
operations produces an error, stored(x) = x ± ϵx, and we
propagate these errors. Note that in practice the storing of results
does not necessarily produce an error and, since the storing error
is basically due to a rounding operation, errors from different
storing operations can cancel each other.

We compute now the machine precision error for one SIE lens
at pixel (θ1, θ2):

∆θ1 = θ1 ± ϵθ1 − (θcenter,1 ± ϵθcenter,1)

= θ1 − θcenter,1 ± ϵ(|θ1| + |θcenter,1|). (A.6)

stored(∆θ1) = θ1 − θcenter,1 ± ϵ(|θ1| + |θcenter,1|)

± ϵ(|θ1 − θcenter,1|)± O(ϵ2)
= θ1 − θcenter,1 ± ϵ(|θ1|
+ |θcenter,1| + |θ1 − θcenter,1|)

= ∆θ1,t ± ϵA1. (A.7)

In the last line, we introduced the true, error-free value of ∆θ1,
∆θ1,t = θ1 − θcenter,1. In addition, we implicitly defined the error
variable A1, which contains all the terms which contribute to the
error.

∆θ2 = θ2 ± ϵθ2 − (θcenter,2 ± ϵθcenter,2)

= θ2 − θcenter,2 ± ϵ(|θ2| + |θcenter,2|). (A.8)
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stored(∆θ2) = θ2 − θcenter,2 ± ϵ(|θ2| + |θcenter,2|)

± ϵ(|θ2 − θcenter,2|)± O(ϵ2)
= θ2 − θcenter,2 ± ϵ(|θ2|
+ |θcenter,2| + |θ2 − θcenter,2|)

= ∆θ2,t ± ϵA2, (A.9)

where we again implicitly defined ∆θ2,t and A2.

∆θ ′1 = (∆θ1,t ± ϵA1) cos(Φ ± ϵΦ)
+ (∆θ2,t ± ϵA2) sin(Φ ± ϵΦ)
= (∆θ1,t ± ϵA1)[cos(Φ)± sin(Φ)ϵΦ]

+ (∆θ2,t ± ϵA2)[sin(Φ)± cos(Φ)ϵΦ]. (A.10)

As we have sin(Φ) ≤ 1 and cos(Φ) ≤ 1, we can obtain an upper
bound on the error by replacing the respective sine and cosine
expressions in the parts which contribute to the error with 1:

∆θ ′1 = (∆θ1,t ± ϵA1)[cos(Φ)± ϵΦ]
+ (∆θ2,t ± ϵA2)[sin(Φ)± ϵΦ]
= ∆θ1,t cos(Φ)± ϵ(|A1 cos(Φ)| + |∆θ1,tΦ|)

+ ∆θ2,t sin(Φ)± ϵ(|A2 sin(Φ)| + |∆θ2,tΦ|)+ O(ϵ2)
= ∆θ1,t cos(Φ)± ϵ(|A1| + |∆θ1,tΦ|)
+ ∆θ2,t sin(Φ)± ϵ(|A2| + |∆θ2,tΦ|)

= ∆θ1,r ± ϵ(|A1| + |A2| + |∆θ1,tΦ| + |∆θ2,tΦ|). (A.11)

In the last line we implicitly defined the true value after rotation,
∆θ1,r .

stored(∆θ ′1) = ∆θ1,r ± ϵ(|A1| + |A2| + |∆θ1,tΦ| + |∆θ2,tΦ|

+ |∆θ1,t cos(Φ)| + |∆θ2,t sin(Φ)|)+ O(ϵ2)
= ∆θ1,r ± ϵ(|A1| + |A2| + |∆θ1,tΦ|

+ |∆θ2,tΦ| + |∆θ1,t | + |∆θ2,t |)

= ∆θ1,r ± ϵB, (A.12)

where we again replaced sine and cosine with 1 and implicitly
defined the error variable B.

Similarly, we obtain for ∆θ ′2 :

∆θ ′2 = (∆θ2,t ± ϵA2)[cos(Φ)± ϵΦ]
− (∆θ1,t ± ϵA1)[sin(Φ)± ϵΦ]
= ∆θ2,t cos(Φ)± ϵ(|A2| + |∆θ2,tΦ|)

− ∆θ1,t sin(Φ)± ϵ(|A1| + |∆θ1,tΦ|)+ O(ϵ2)

= ∆θ2,r ± ϵ(|A1| + |A2| + |∆θ1,tΦ| + |∆θ2,tΦ|). (A.13)

In the last line we implicitly defined the true value after rotation,
∆θ2,r .

stored(∆θ ′2) = ∆θ2,r ± ϵB. (A.14)

In this Appendix, we denote the pseudo-ellipticity of the
deflection potential with p instead of ϵ to avoid confusion with
the machine epsilon. We further define p⋆ = 1 − p, p† = 1 + p
and we obtain: (see Eq. (A.15) given in Box I)
We define the true value of R,

Rt =

√
∆θ21,r (1− p)+∆θ22,r (1+ p), (A.16)

and use a Taylor expansion to obtain (see Eqs. (A.17) and (A.18)
given in Box II
where we implicitly defined the error variable C .

∇Ψϵ,1 = (1− p± ϵp⋆)(b0 ± ϵb0)
∆θ1,r ± ϵB
Rt ± ϵC

= [(1− p)b0 ± ϵ(2b0p⋆)]
∆θ1,r ± ϵB
Rt ± ϵC

+ O(ϵ2)

= [(1− p)b0 ± ϵ(2b0p⋆)]
[
∆θ1,r

Rt
± ϵ
|BRt | + |C∆θ1,r |

R2
t ± ϵ|CRt |

]
= (1− p)b0

∆θ1,r

Rt
± ϵ

[ ⏐⏐⏐2b0p⋆∆θ1,rRt

⏐⏐⏐
+

⏐⏐⏐(1− p)b0
|BRt | + |C∆θ1,r |

R2
t ± ϵ|CRt |

⏐⏐⏐ ]
+O(ϵ2)

= ∇Ψϵ,t,1 ± ϵ

[
|2∇Ψϵ,t,1|

+

⏐⏐⏐(1− p)b0
|BRt | + |C∆θ1,r |

R2
t ± ϵ|CRt |

⏐⏐⏐ ]
, (A.19)

where we implicitly defined the true value of the gradient,
∇Ψϵ,t,1.

stored(∇Ψϵ,1) = ∇Ψϵ,t,1 ± ϵ
[
|3∇Ψϵ,t,1|

+

⏐⏐⏐(1− p)b0
|BRt | + |C∆θ1,r |

R2
t ± ϵ|CRt |

⏐⏐⏐ ]
+O(ϵ2)

= ∇Ψϵ,t,1 ± ϵD1, (A.20)

where we implicitly defined the error variable D1.

∇Ψϵ,2 = (1+ p± ϵp†)(b0 ± ϵb0)
∆θ2,r ± ϵB
Rt ± ϵC

= [(1+ p)b0 ± ϵ(2b0p†)]
∆θ2,r ± ϵB
Rt ± ϵC

+ O(ϵ2)

= [(1+ p)b0 ± ϵ(2b0p†)]
[
∆θ2,r

Rt
± ϵ
|BRt | + |C∆θ2,r |

R2
t ± ϵ|CRt |

]
= (1+ p)b0

∆θ2,r

Rt
± ϵ

[ ⏐⏐⏐2b0p†
∆θ2,r

Rt

⏐⏐⏐
+

⏐⏐⏐(1+ p)b0
|BRt | + |C∆θ2,r |

R2
t ± ϵ|CRt |

⏐⏐⏐ ]
+O(ϵ2)

= ∇Ψϵ,t,2 ± ϵ

[
|2∇Ψϵ,t,2|

+

⏐⏐⏐(1+ p)b0
|BRt | + |C∆θ2,r |

R2
t ± ϵ|CRt |

⏐⏐⏐], (A.21)

where we implicitly defined the true value of the gradient,
∇Ψϵ,t,2.

stored(∇Ψϵ,2) = ∇Ψϵ,t,2 ± ϵ
[
|3∇Ψϵ,t,2|

+

⏐⏐⏐(1+ p)b0
|BRt | + |C∆θ2,r |

R2
t ± ϵ|CRt |

⏐⏐⏐ ]
+O(ϵ2)

= ∇Ψϵ,t,2 ± ϵD2, (A.22)

where we implicitly defined the error variable D2.

∇Ψ ′ϵ,1 = (∇Ψϵ,t,1 ± ϵD1) cos(−Φ ± ϵΦ)
+ (∇Ψϵ,t,2 ± ϵD2) sin(−Φ ± ϵΦ)
= (∇Ψϵ,t,1 ± ϵD1)[cos(−Φ)± sin(−Φ)ϵΦ]

+ (∇Ψϵ,t,2 ± ϵD2)[sin(−Φ)± cos(−Φ)ϵΦ]. (A.23)

As we have sin(Φ) ≤ 1 and cos(Φ) ≤ 1, we can obtain an upper
bound on the error by replacing the respective sine and cosine
expressions in the parts which contribute to the error with 1:

∇Ψ ′ϵ,1 = (∇Ψϵ,t,1 ± ϵD1)[cos(−Φ)± ϵΦ]
+ (∇Ψϵ,t,2 ± ϵD2)[sin(−Φ)± ϵΦ]
= ∇Ψϵ,t,1 cos(−Φ)± ϵ(|∇Ψϵ,t,1Φ|
+ |D1 cos(−Φ)|)+∇Ψϵ,t,2 sin(−Φ)

± ϵ(|∇Ψϵ,t,2Φ| + |D2 sin(−Φ)|)+ O(ϵ2)
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R =
√
(∆θ1,r ± ϵB)2(1− p± ϵp⋆)+ (∆θ2,r ± ϵB)2(1+ p± ϵp†)

=

√
(∆θ21,r ± ϵ|2∆θ1,rB|)(1− p± ϵp⋆)+ (∆θ22,r ± ϵ|2∆θ2,rB|)(1+ p± ϵp†)+ O(ϵ2)

=

√
∆θ21,r (1− p)± ϵ(|∆θ21,rp⋆| + |2∆θ1,rB(1− p)|)+∆θ22,r (1+ p)± ϵ(|∆θ22,rp†| + |2∆θ2,rB(1+ p)|)+ O(ϵ2)

=

√
∆θ21,r (1− p)+∆θ22,r (1+ p)± ϵ(|∆θ21,rp⋆| + |∆θ

2
2,rp†| + |2∆θ1,rB(1− p)| + |2∆θ2,rB(1+ p)|). (A.15)

Box I.

R = Rt ± ϵ
|∆θ21,rp⋆| + |∆θ

2
2,rp†| + |2∆θ1,rB(1− p)| + |2∆θ2,rB(1+ p)|

2|Rt |
. (A.17)

stored(R) = Rt ± ϵ

(
|∆θ21,rp⋆| + |∆θ

2
2,rp†| + |2∆θ1,rB(1− p)| + |2∆θ2,rB(1+ p)|

2|Rt |
+ |Rt |

)
+ O(ϵ2)

= Rt ± ϵC, (A.18)

Box II.

= ∇Ψϵ,t,1 cos(−Φ)± ϵ(|∇Ψϵ,t,1Φ|
+ |D1|)+∇Ψϵ,t,2 sin(−Φ)± ϵ(|∇Ψϵ,t,2Φ| + |D2|)
= ∇Ψϵ,r,1 ± ϵ(|∇Ψϵ,t,1Φ| + |∇Ψϵ,t,2Φ| + |D1| + |D2|),

(A.24)

where we implicitly defined the true value of the first gradient
component after rotation, ∇Ψϵ,r,1.

We use the relation

|∇Ψϵ,t,1 cos(−Φ)+∇Ψϵ,t,2 sin(−Φ)|
≤ |∇Ψϵ,t,1 cos(−Φ)| + |∇Ψϵ,t,2 sin(−Φ)|

≤ |∇Ψϵ,t,1| + |∇Ψϵ,t,2| (A.25)

to obtain:

stored(∇Ψ ′ϵ,1) = ∇Ψϵ,r,1 ± ϵ(|∇Ψϵ,t,1Φ| + |∇Ψϵ,t,2Φ| + |D1|

+ |D2| + |∇Ψϵ,t,1| + |∇Ψϵ,t,2|)+ O(ϵ2)

= ∇Ψϵ,r,1 ± ϵF , (A.26)

where we implicitly defined the error variable F .

∇Ψ ′ϵ,2 = (∇Ψϵ,t,2 ± ϵD2) cos(−Φ ± ϵΦ)
− (∇Ψϵ,t,1 ± ϵD1) sin(−Φ ± ϵΦ)
= (∇Ψϵ,t,2 ± ϵD2)[cos(−Φ)± sin(−Φ)ϵΦ]

− (∇Ψϵ,t,1 ± ϵD1)[sin(−Φ)± cos(−Φ)ϵΦ]. (A.27)

As we have sin(Φ) ≤ 1 and cos(Φ) ≤ 1, we can obtain an upper
bound on the error by replacing the respective sine and cosine
expressions in the parts which contribute to the error with 1:

∇Ψ ′ϵ,2 = (∇Ψϵ,t,2 ± ϵD2)[cos(−Φ)± ϵΦ]
− (∇Ψϵ,t,1 ± ϵD1)[sin(−Φ)± ϵΦ]
= ∇Ψϵ,t,2 cos(−Φ)± ϵ(|∇Ψϵ,t,2Φ|
+ |D2 cos(−Φ)|)−∇Ψϵ,t,1 sin(−Φ)

± ϵ(|∇Ψϵ,t,1Φ| + |D1 sin(−Φ)|)+ O(ϵ2)
= ∇Ψϵ,t,2 cos(−Φ)± ϵ(|∇Ψϵ,t,2Φ| + |D2|)
− ∇Ψϵ,t,1 sin(−Φ)± ϵ(|∇Ψϵ,t,1Φ| + |D1|)
= ∇Ψϵ,r,2 ± ϵ(|∇Ψϵ,t,1Φ| + |∇Ψϵ,t,2Φ| + |D1| + |D2|),

(A.28)

where we implicitly defined the true value of the second gradient
component after rotation, ∇Ψϵ,r,2.

We use the relation

|∇Ψϵ,t,2 cos(−Φ)−∇Ψϵ,t,1 sin(−Φ)|
≤ |∇Ψϵ,t,2 cos(−Φ)| + |∇Ψϵ,t,1 sin(−Φ)|

≤ |∇Ψϵ,t,2| + |∇Ψϵ,t,1| (A.29)

to obtain:

stored(∇Ψ ′ϵ,2) = ∇Ψϵ,r,2 ± ϵ(|∇Ψϵ,t,1Φ| + |∇Ψϵ,t,2Φ| + |D1|

+ |D2| + |∇Ψϵ,t,1| + |∇Ψϵ,t,2|)+ O(ϵ2)

= ∇Ψϵ,r,2 ± ϵF . (A.30)

As a result, the total error of one computed ∇Ψϵ for one pixel
(θ1, θ2) due to finite machine precision is ϵF for both gradient
components.

A.3. Upper error bounds for cluster- and galaxy-scale SIE lenses

A.3.1. Centered SIE lenses
Let us consider a single lens at the origin of a two dimensional

image plane coordinate system,

(θcenter,1, θcenter,2) = (0, 0). (A.31)

We assume that the point (θ1, θ2) for which we compute ∇Ψϵ
lies on the θ1-axis. We assume that we can do so without loss
of generality, as this can be achieved by a simple rotation of the
coordinate system. This simplifies the expression for the A terms
to

A1 = 2|θ1|,

A2 = 0. (A.32)

We want to maximize the errors to obtain an upper bound.
Therefore we maximize the angle Φ , which always appears as an
error increasing factor in the error variables. Due to the symmetry
of an ellipse, the largest value is Φ = π . As a result, we have

B = 2|θ1| + π |θ1| + |θ1| = (3+ π )|θ1|. (A.33)

Note that our coordinate system is now rotated by 180 degrees,
so we have

∆θ1 →−∆θ
′

1,
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∆θ2 →−∆θ
′

2. (A.34)

Next, we note that the pseudo-ellipticity p is typically small and
that it appears in the error variables in connection with ∆θ ′1 as a
factor 1−p and in connection with∆θ ′2 as a factor 1+p. Therefore
we will minimize it and assume p = 0. Thus we have

C =
|θ21 | + (6+ 2π )|θ21 |

2|θ1|
+ |θ1| = (4.5+ π )|θ1|. (A.35)

The lensing effect will be maximal for a source at high redshift,
so we assume DOS/DLS = 1 and thus we have

|∇Ψϵ,1| = |(∇ψ)1| = θE,

|∇Ψϵ,2| = |(∇ψ)2| = 0, (A.36)

b0 = θE, (A.37)

and thus

D1 ≈ 3θE + θE
(3+ π )|θ1|2 + (4.5+ π )|θ1|2

|θ1|
2 = (10.5+ 2π )θE,

D2 ≈ θE
(3+ π )|θ1|2

|θ1|
2 = (3+ π )θE. (A.38)

We now rotate the coordinate system by −180 degrees,

∇Ψϵ,1 →−∇Ψ
′

ϵ,1,

∇Ψϵ,2 →−∇Ψ
′

ϵ,2, (A.39)

and we obtain

F = πθE + (10.5+ 2π )θE + (3+ π )θE + θE ≈ 27θE. (A.40)

As a result, we have for a cluster-scale halo with θE = 20 arcsec

Fcluster-scale = 540 arcsec (A.41)

and for a galaxy-scale halo with θE = 0.2 arcsec

Fgalaxy-scale = 5.4 arcsec. (A.42)

For single and double precision, we have respectively ϵSP ≈ 1.2×
10−7 and ϵDP ≈ 2.2× 10−16, and thus the upper error bounds

ϵSPFcluster-scale ≈ 6.5× 10−5 arcsec,

ϵSPFgalaxy-scale ≈ 6.5× 10−7 arcsec, (A.43)

ϵDPFcluster-scale ≈ 1.2× 10−13 arcsec,

ϵDPFgalaxy-scale ≈ 1.2× 10−15 arcsec. (A.44)

The computed gradients for each halo are finally added up to
obtain the total gradient,

∇Ψϵ,i =
∑
k

∇Ψ ′ϵ,i,k, (A.45)

and as a result, the respective errors are combined as well. How-
ever, the respective errors can have different signs and magni-
tudes, so we expect to see some error cancellation. We estimate
the total gradient error in the following way: We neglect the
contribution from the galaxy-scale halos and we add the respec-
tive upper error bounds of the cluster-scale halos. Neglecting the
galaxy-scale lenses is justified, because first, their absolute errors
are two orders of magnitude smaller than those of the cluster-
scale halos, and second, we add many of these halos which are
typically scattered throughout the image, so we expect significant
error cancellation effects. We are left with typically two cluster-
scale halos. The error contribution from these halos will depend
on their respective parameters. To obtain an upper bound, we will
add up the respective upper bounds on the gradient, so we have

∆(∇Ψϵ,i)SP ≈ 1.3× 10−4 arcsec,

∆(∇Ψϵ,i)DP ≈ 2.4× 10−13 arcsec. (A.46)

A.3.2. General SIE lenses
In the previous part, we implicitly assumed that the finite ma-

chine precision error is invariant under translations and rotations
of the coordinate system. As a result, it was sufficient to compute
the error for a single centered SIE lens and we could use the result
to derive the total error for the cluster lens system. However, we
now show that this assumed invariance only holds approximately
and only far away from the lens center.

Let us consider a HST ACS image. We let the origin of the
coordinate system coincide with the first pixel of the image in
the lower left corner. Consequently all pixel values are positive,
so we have

|θi| ≤ |θi − θcenter,i| + |θcenter,i| (A.47)

and thus the upper bounds for the A terms are

A1 = 2|∆θ1| + 2|θcenter,1|,

A2 = 2|∆θ2| + 2|θcenter,2|, (A.48)

where

|∆θi| = |θi − θcenter,i|. (A.49)

We want to maximize the errors to obtain an upper bound.
Therefore we maximize the angle Φ , which always appears as an
error increasing factor in the error variables. Due to the symmetry
of an ellipse, the largest value is Φ = π . As a result, we have

B = 2|∆θ1| + 2|θcenter,1| + 2|∆θ2| + 2|θcenter,2|
+ π |∆θ1| + π |∆θ2| + |∆θ1| + |∆θ2|

= (3+ π )|∆θ1| + (3+ π )|∆θ2| + 2|θcenter,1| + 2|θcenter,2|.
(A.50)

Note that our coordinate system is now rotated by 180 degrees,
so we have

∆θ1 →−∆θ
′

1,

∆θ2 →−∆θ
′

2. (A.51)

Next, we note that the pseudo-ellipticity p is typically small and
that it appears in the error variables in connection with ∆θ ′1 as a
factor 1−p and in connection with∆θ ′2 as a factor 1+p. Therefore
we will minimize it and assume p = 0. Thus we have Eq. (A.52)
in Box III. The lensing effect will be maximal for a source at high
redshift, so we assume DOS/DLS = 1 and thus we have

|∇Ψϵ,1| = |(∇ψ)1| ≤ θE,

|∇Ψϵ,2| = |(∇ψ)2| ≤ θE, (A.53)

b0 = θE, (A.54)

and thus, see Eq. (A.55) in Box IV and see Eq. (A.56) in Box V. We
now rotate the coordinate system by −180 degrees,

∇Ψϵ,1 →−∇Ψ
′

ϵ,1,

∇Ψϵ,2 →−∇Ψ
′

ϵ,2. (A.57)

We first compute one part of the error variable F , namely
Eq. (A.58) in Box VI.
Each term in this equation is maximized if we simultaneously
maximize∆θ1 and∆θ2 for a fixed radius

√
|∆θ21 | + |∆θ

2
2 |. We can

see this by rewriting the following relations in polar coordinates,
|∆θ1| + |∆θ2|√
|∆θ21 | + |∆θ

2
2 |

=

√
|∆θ21 | + |∆θ

2
2 |(|cos(φ

′)| + |sin(φ′)|)√
|∆θ21 | + |∆θ

2
2 |

≤
√
2, (A.59)
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C =
|∆θ21 | + |∆θ

2
2 | + (6+ 2π )|∆θ21 | + (6+ 2π )|∆θ22 | + (12+ 4π )|∆θ1||∆θ2| + 4(|∆θ1| + |∆θ2|)(|θcenter,1| + |θcenter,2|)

2
√
|∆θ21 | + |∆θ

2
2 |

+

⏐⏐⏐√|∆θ21 | + |∆θ22 | ⏐⏐⏐
=

(12+ 4π )|∆θ1||∆θ2| + 4(|∆θ1| + |∆θ2|)(|θcenter,1| + |θcenter,2|)

2
√
|∆θ21 | + |∆θ

2
2 |

+ (4.5+ π )
⏐⏐⏐√|∆θ21 | + |∆θ22 | ⏐⏐⏐. (A.52)

Box III.

D1 ≈ 3θE + θE
(3+ π )(|∆θ1| + |∆θ2|)

√
|∆θ21 | + |∆θ

2
2 | + 2(|θcenter,1| + |θcenter,2|)

√
|∆θ21 | + |∆θ

2
2 |

|∆θ1|
2
+ |∆θ2|

2

+ θE
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√
|∆θ21 | + |∆θ

2
2 |

|∆θ1|
2
+ |∆θ2|

2 + θE
(6+ 2π )|∆θ21 ||∆θ2| + 2(|∆θ21 | + |∆θ1||∆θ2|)(|θcenter,1| + |θcenter,2|)

(|∆θ21 | + |∆θ
2
2 |)

3
2

= θE

[
3+

(3+ π )(|∆θ1| + |∆θ2|)+ 2(|θcenter,1| + |θcenter,2|)+ (4.5+ π )|∆θ1|√
|∆θ21 | + |∆θ

2
2 |

+
(6+ 2π )|∆θ21 ||∆θ2| + 2(|∆θ21 | + |∆θ1||∆θ2|)(|θcenter,1| + |θcenter,2|)

(|∆θ21 | + |∆θ
2
2 |)

3
2

]
, (A.55)

Box IV.

D2 ≈ 3θE + θE
(3+ π )(|∆θ1| + |∆θ2|)

√
|∆θ21 | + |∆θ

2
2 | + 2(|θcenter,1| + |θcenter,2|)

√
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2
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2
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2
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2
2 |)

3
2

= θE
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(3+ π )(|∆θ1| + |∆θ2|)+ 2(|θcenter,1| + |θcenter,2|)+ (4.5+ π )|∆θ2|√
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+
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2
2 |)

3
2

]
. (A.56)

Box V.

|D1| + |D2| = θE

[
6+

(6+ 2π )(|∆θ1| + |∆θ2|)+ 4(|θcenter,1| + |θcenter,2|)+ (4.5+ π )(|∆θ1| + |∆θ2|)√
|∆θ21 | + |∆θ

2
2 |

+
(6+ 2π )(|∆θ21 ||∆θ2| + |∆θ1||∆θ

2
2 |)+ 2(|∆θ21 | + |∆θ

2
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(|∆θ21 | + |∆θ
2
2 |)

3
2

]
. (A.58)

Box VI.
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|∆θ21 ||∆θ2| + |∆θ1||∆θ
2
2 |

(|∆θ21 | + |∆θ
2
2 |)

3
2

=
(|∆θ21 | + |∆θ

2
2 |)

3
2 (cos2(φ′)|sin(φ′)| + |cos(φ′)| sin2(φ′))

(|∆θ21 | + |∆θ
2
2 |)

3
2

≤
1
√
2
, (A.60)

|∆θ21 | + |∆θ
2
2 | + 2|∆θ1||∆θ2|

(|∆θ21 | + |∆θ
2
2 |)

3
2

=
(|∆θ21 | + |∆θ

2
2 |)(cos

2(φ′)+ sin2(φ′)+ 2|cos(φ′)||sin(φ′)|)

(|∆θ21 | + |∆θ
2
2 |)

3
2

≤
2√

|∆θ21 | + |∆θ
2
2 |

, (A.61)

so we choose φ′ = π/4. In addition, the error due to the lens
center is also maximized if we maximize both center coordinates
simultaneously. As a result, we have

|∆θ1| = |∆θ2|,

|θcenter,1| = |θcenter,2|. (A.62)

This choice also fixes the absolute value of the gradient in ∆θ1
and ∆θ2 direction,

|∇Ψ ′ϵ,1| = |(∇ψ)1| =
θE
√
2
,

|∇Ψ ′ϵ,2| = |(∇ψ)2| =
θE
√
2
. (A.63)

We have used an upper limit of θE for the gradient value in the D
error variables which we can now replace with θE/

√
2. Inserting

these results into Eq. (A.58), we have

|D1| + |D2| = θE

[
6
√
2
+ (6+ 2π )

√
2+

16|θcenter,1|
√
2|∆θ1|

+
√
2(4.5+ π )+

6+ 2π
√
2

]
= θE

(
16.5
√
2+ 4π

√
2+

8
√
2|θcenter,1|
|∆θ1|

)
, (A.64)

and we obtain

F = 2π

√
2θE
2
+ θE

(
16.5
√
2+ 4π

√
2

+
8
√
2|θcenter,1|
|∆θ1|

)
+2

√
2θE
2

≈ 47θE +
8
√
2|θcenter,1|
|∆θ1|

θE. (A.65)

We see that the assumption that the machine precision error is
invariant under translations and rotations of the coordinate sys-
tem is approximately correct far away from the lens center. The
computed correction factor is less than two. However, close to the
center we obtain a divergent correction term. This divergence is
not a problem, as the SIE lens model itself has a divergence at the
center, see e.g. Eq. (8). This unrealistic property of the SIE model is
well known and other, more realistic parametric lens models do
not suffer from this divergence at the center. Therefore neither
single nor double precision are accurate enough at the center,
but since the SIE is not a realistic lens model at its center, this
is perfectly acceptable.

First, we compute the error variable F ′ without the 1/|∆θ1|
term for a cluster-scale halo with θE = 20 arcsec,

F ′cluster-scale = 940 arcsec, (A.66)

and for a galaxy-scale halo with θE = 0.2 arcsec,

F ′galaxy-scale = 9.4 arcsec. (A.67)

For single and double precision, we have respectively ϵSP ≈ 1.2×
10−7 and ϵDP ≈ 2.2× 10−16, and thus the upper error bounds

ϵSPF ′cluster-scale ≈ 1.1× 10−4 arcsec,

ϵSPF ′galaxy-scale ≈ 1.1× 10−6 arcsec, (A.68)

ϵDPF ′cluster-scale ≈ 2.1× 10−13 arcsec,

ϵDPF ′galaxy-scale ≈ 2.1× 10−15 arcsec. (A.69)

Now we maximize the magnitude of the 1/|∆θ1| correction
term by assuming a lens center

(θcenter,1, θcenter,2) = (200 arcsec, 200 arcsec). (A.70)

The smallest non-divergent separation from the lens center is one
pixel and for a HST ACS image with a pixel size of 0.03 arcsec we
obtain a correction

FC
cluster-scale ≈ 1.5× 106 arcsec,

FC
galaxy-scale ≈ 1.5× 104 arcsec, (A.71)

and thus

ϵSPFC
cluster-scale ≈ 1.8× 10−1 arcsec,

ϵSPFC
galaxy-scale ≈ 1.8× 10−3 arcsec, (A.72)

ϵDPFC
cluster-scale ≈ 3.3× 10−10 arcsec,

ϵDPFC
galaxy-scale ≈ 3.3× 10−12 arcsec. (A.73)

The accuracy requirement computed in Section 3 shows that
single precision is not accurate enough very close to the center
of an isolated cluster lens, even in the absence of a magnification
Mi. For an isolated galaxy lens, it is sufficient close to the center
as long as Mi ≤ 4. Therefore we will use double precision to
compute the gradients in a pixel grid of 400×400 pixels centered
on the respective cluster lens halos and in a grid of 20×20 pixels
centered on the respective galaxy lens halos. For a HFF-like lens
with 700 galaxy-scale halos and two cluster-scale halos we thus
have to use double precision for 6 × 105 pixels out of a total of
45×106 pixels. This corresponds to approximately 1% of all image
pixels. The correction terms for cluster-scale and galaxy-scale
halos at a separation of 201 pixels and 11 pixels are respectively

FC
cluster-scale ≈ 7505 arcsec,

FC
galaxy-scale ≈ 1371 arcsec, (A.74)

and thus we have

Fcluster-scale ≈ 8445 arcsec,

Fgalaxy-scale ≈ 1381 arcsec, (A.75)

and

ϵSPFcluster-scale ≈ 1.0× 10−3 arcsec,

ϵSPFgalaxy-scale ≈ 1.7× 10−4 arcsec, (A.76)

ϵDPFcluster-scale ≈ 1.9× 10−12 arcsec,

ϵDPFgalaxy-scale ≈ 3.0× 10−13 arcsec. (A.77)
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The computed gradients for each halo are finally added up to
obtain the total gradient,

∇Ψϵ,i =
∑
k

∇Ψ ′ϵ,i,k, (A.78)

and as a result, the respective errors are combined as well. How-
ever, the respective errors can have different signs and magni-
tudes, so we expect to see some error cancellation. We estimate
the total gradient error in the following way: We add the error
contributions of two galaxy-scale lenses including upper bounds
on the correction terms, but we neglect the remaining galaxy-
scale halos and we add the respective upper error bounds of the
cluster-scale halos. Neglecting the remaining galaxy-scale lenses
is justified, because the dominating correction term decreases
quickly with separation from the lens center and we expect
only very few galaxies to be so close to each other that their
respective correction terms are non-negligible and add up. The
errors without correction term are three orders of magnitude
smaller than those of the cluster-scale halos and we add many of
these lenses, which are usually scattered throughout the image,
so we expect significant error cancellation effects. The error con-
tribution from the typically two cluster-scale halos will depend
on their respective parameters. To obtain an upper bound, we will
add up the respective upper bounds on the gradient. In total, we
have

∆(∇Ψϵ,i)SP ≈ 2.3× 10−3 arcsec,

∆(∇Ψϵ,i)DP ≈ 4.4× 10−12 arcsec. (A.79)
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Chapter 6. Lenstool-HPC

6.3 Lenstool-HPC: A High Performance Computing based mass mod-

elling tool for cluster-scale gravitational lenses

6.3.1 Preface

The following paper is the presentation of the first version of Lenstool-HPC. We showcase the compu-

tational capabilities of Lenstool-HPC’s deflection angle gradient and fit computation using extensive

benchmarks run on the Swiss national computing center (CSCS) clusters in Lugano. It gives details on

how we achieve these speed-ups using vectorisation, efficient use of hardware and an hybrid GPU-CPU

implementation.

6.3.2 Paper

This chapter is presented in the form of a published paper as Christoph Schaefer, Gilles Fourestey,

and Jean-Paul Kneib, "Lenstool-HPC: A High Performance Computing based mass modelling tool for

cluster-scale gravitational lenses", Astronomy and Computing, [Volume 30, January 2020, 100360].
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a b s t r a c t

With the upcoming generation of telescopes, cluster scale strong gravitational lenses will act as an
increasingly relevant probe of cosmology and dark matter. The better resolved data produced by
current and future facilities requires faster and more efficient lens modelling software. Consequently,
we present Lenstool-HPC, a strong gravitational lens modelling and map generation tool based on High
Performance Computing (HPC) techniques and the renowned Lenstool software. We also showcase
the HPC concepts needed for astronomers to increase computation speed through massively parallel
execution on supercomputers. Lenstool-HPC was developed using lens modelling algorithms with high
amounts of parallelism. Each algorithm was implemented as a highly optimised CPU, GPU and Hybrid
CPU–GPU version. The software was deployed and tested on the Piz Daint cluster of the Swiss National
Supercomputing Centre (CSCS). Lenstool-HPC perfectly parallel lens map generation and derivative
computation achieves a factor 30 speed-up using only 1 GPU compared to Lenstool. Lenstool-HPC hybrid
Lens-model fit generation tested at Hubble Space Telescope precision is scalable up to 200 CPU–GPU
nodes and is faster than Lenstool using only 4 CPU–GPU nodes.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

With the advent of high-precision astronomy and big data,
high performance computing (HPC) has reached a critical im-
portance for astrophysicists. Astrophysical codes developed over
10 years ago are not able to keep up with the amount of data that
new instruments are bringing in. To handle these new challenges
it is now necessary to implement HPC techniques and alterna-
tive thinking to speed up these softwares. One such example is
Lenstool, a mass modelling tool for strong gravitational lenses.
These lenses are rare astrophysical phenomena where a distant
light-source is aligned so closely with a foreground galaxy or
cluster that its images appear to an Earth observer multiple times.
The images appear distorted and magnified similar to objects
seen through an unfocused lens. They take the shape of distorted
arcs, multiple images and Einstein rings. These distortions are due
solely to the gravitational potential of the foreground galaxies
or cluster which acts as a lens. This allows specialised mass-
modelling software like Lenstool1 (Jullo et al., 2007; Kneib et al.,
1996) to create precise mass-models of the lenses by fitting

∗ Corresponding author.
E-mail address: christophernstrerne.schaefer@epfl.ch (C. Schäfer).

1 Publicly available at https://projets.lam.fr/projects/lenstool/wiki.

parametric mass-models (Limousin et al., 2008; Richard et al.,
2011; Jauzac et al., 2015) using Bayesian MCMC samplers (see
Fig. 1 in Jauzac et al. (2014)).

The astrophysical interests are multiple. They are used to
study the dark matter profile of lensing galaxies (Jauzac et al.,
2015) and calculate the dark-baryonic matter ratio (Jiang and
Kochanek, 2007; More et al., 2011; Sonnenfeld et al., 2015).
Lensed Quasars are used for time-delay studies which constrain
the Hubble constant (Bonvin et al., 2016; Suyu et al., 2017) and
the magnification effect of gravitational lenses allows for the
study of high-redshift background objects (Kneib et al., 2004;
Richard et al., 2011; Atek et al., 2015).

These precise mass-models are obtained by observers through
an iterative process using Lenstool’s modelling capabilities re-
peatedly, adding new observational constraints. Using Lenstool
however, especially on deep Hubble Space Telescope (HST) obser-
vations, is becoming extremely time-consuming possibly taking
up to one month for one iteration. Beyond slowing down the
release of precise mass-models, it severely limits the capability
of observers to test new theories for the assembly of mass in
galaxy-clusters.

To tackle this problem, we developed Lenstool-HPC, a new
parallelism aware library which uses High Performance Comput-
ing (HPC) techniques to increase computation-speed by orders of

https://doi.org/10.1016/j.ascom.2019.100360
2213-1337/© 2020 Elsevier B.V. All rights reserved.
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Fig. 1. MACSJ0416-2403: The cluster has 68 confirmed multiple lensed back-
ground sources. The isolines trace the distribution of matter in the cluster which
were computed using Lenstool. The highlighted (green) rectangle represents a
zoomframe of the cluster showing the fainter multiple images. Credit. Jauzac
et al. (2014). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

magnitude through parallelisation. Lenstool-HPC was developed
for CPUs and GPUs using CUDA and C++ in a collaboration be-
tween HPC experts and astrophysicists. The first section presents
a brief overview of the theory behind gravitational lensing and
Lenstool mass modelling algorithm and the computational chal-
lenge it poses. This is followed by a section summarising the
HPC notions that defined the development of the library before
presenting the library itself. We finish this paper with detailed
benchmark results of the library, studying in particular the speed-
up and scaling of the lensing map generation and mass modelling
fit computation compared to Lenstool on modern CPU and GPU
clusters.

2. Gravitational lens mass-modelling

2.1. Gravitational lens theory overview

A gravitational lens system of first order can be represented
by projecting the lens and the source respectively on an image
and source plane. We usually can assume that the size of the
lens in the line-of-sight direction is negligible compared to the
distance between observer, lens and source, this is the ‘‘thin-
lens’’ approximation. Then the gravitational lensing phenomenon
can be summarised by a simple trigonometric equation called the
lens-equation:

β⃗ = θ⃗ − α⃗(θ⃗ ) , (1)

where β⃗ is the angular position of the source in the source-plane
and θ⃗ the angular position of the image in the lens-plane. The
deflection angle α⃗ is the gradient of the lensing potential:

ψ(θ⃗ ) =
1
π

∫
R2

d2θ ′κ(θ⃗ ) ln |θ⃗ − θ⃗ ′
| , (2)

where κ(θ⃗ ) is the surface mass density of the lens-plane defined
as

κ(θ⃗ ) =
Σ(Ddθ⃗ )
Σcrit

with Σcrit =
c2

4πG
Ds

DlDls
, (3)

Fig. 2. Schematic of the lensed images formed by three sources due to the
gravitation potential of a non singular isothermal sphere. The red source is
outside the caustic lines therefore has only lensed image. The green source is
inside a caustic line and is lensed three times. The blue source is almost perfectly
aligned with the centre of the lens and is starting to form an Einstein ring.

and Σcrit is the critical surface mass density. Ds, Dl and Dls are
respectively the distance from the observer to the source, to the
lens and between lens and source. The lensing potential ψ(θ⃗ ) is
the normalised Newtonian gravitational potential, satisfying the
relations α⃗ = ∇ψ and κ = ∇

2ψ .
The distortion of the images described by the following Jaco-

bian matrix (the magnification matrix) is derived from the lens
equation:

A⃗−1(θ⃗ ) =
∂β⃗

∂θ⃗
= (δij −

∂2ψ(θ⃗ )
∂θi∂θj

) =

(
1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
,

(4)

where γ1 and γ2 are the shear components, quantifying the
amount and direction of the gravitational shear.

The magnification value is related to the determinant of the
Jacobian matrix as

µ(θ⃗0) =
1

det(A⃗−1)
. (5)

The points where det(A⃗−1) = 0 form the critical lines where
the magnification is theoretically infinite. In practice the wave-
nature of light leads to finite amplification. Their unlensed
counter-part in the source plane are called caustics. These caus-
tics set the boundaries of areas where the image of a source
is not just distorted but also multiplied. Every source which
moves across will have two more or less lensed images (Fig. 2).
More details on lensing theory can be found in Bartelmann and
Schneider (2001).

2.2. Mass-modelling

Lenstool (Kneib et al., 1996; Jullo et al., 2007; Jullo and Kneib,
2009) creates mass-models for lensing cluster by fitting paramet-
ric mass-models to each individual cluster sub-halos. Depending
on the parametric model used, the free parameters can vary. They
include generally the position of the centre of the sub-halo, its
dispersion velocity, its ellipticity and orientation, as well as other
free parameters specific to the model (Elíasdóttir et al., 2007)
in particular related to the mass profile. In clusters of galaxies,
the main constraints used for fitting are the position of identified
multiple lensed images.

Each image is unlensed onto the source-plane using the mass-
model to be tested. In the case of a perfect model all images
should end up at the same point in a source plane. However,
in practice the model is off, so the corresponding sources of the
multiple-images are at slightly different positions. Sending back
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Fig. 3. Lenstool Mass modelling: Multiply imaged sources (green dots) work as
constraints. Each image position is lensed onto the source-plane (yellow dots)
using the current mass-model. The barycentre of these constraints (red dot) is
taken as the best approximation of the source position and then lensed back into
the lens-plane (red triangles). The difference between the constraints and lensed
back source approximation gives an approximation of the fit of the mass-model.
(For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

the barycentre of these positions to the image plane (see Fig. 3),
we can define a cost-function that Lenstool will try to minimise:

χ2
=

N∑
i

χ2
i =

N∑
i

Mi∑
j

(cij − xij)2

σ 2
ij

(6)

where N is the number of lensed sources, Mi the multiplicity of
those sources, cij the multiple-image constraints, xij the back and
forth lensed constraints and σ 2

ij the error-budget. The exploration
of the parameter space and of the optimum solution is done
using a Bayesian Markov Chain Monte Carlo Algorithm (MCMC).
More details on the procedure can be found in Jullo et al. (2007)
and Kneib et al. (1996).

The number of optimised free parameters depends on the
parametric model used but can range up to a thousand for a
typical cluster-lens model (see Jauzac et al. (2014, 2015)). In
the high dimensionality of the problem lies the first compu-
tational challenge from Lenstool. Even using a Bayesian MCMC
algorithm, Lenstool has to try an enormous amount of parameter-
combinations to find solutions that minimise the cost-function.

2.3. Chi2 Computation

The second computational challenge is the Chi2 computation
based on the unlensing and relensing of multiple imaged sources.
Unlensing a point into the source-plane is a simple but non
revertible application of the lens-equation (Eq. (1)). The multi-
ple solutions for the relensing problem can as a consequence
not be computed analytically. To compute predicted multiple
images of a source, the ‘‘brute force’’ approach is to unlens a
image-plane grid unto the source-plane and check each quad-
rant for the presence of the source (see Fig. 4). Lenstool avoids
this computationally costly approach by using a variant of the
‘‘image-transport’’ method (Schneider et al., 1992).

The method works as follows: It defines a triangle around
the constraint that does not contain any other constraint but is
likely to contain the source. The triangle is then subdivided into
4 smaller triangles. Each triangle is checked for the source. If a
triangle containing the source is not found, the immediate envi-
ronment of the triangle is searched. The subdividing process is
continued recursively until a precision of 10−4 arcsec is reached.
While a lot faster than the brute force approach, this method is

Fig. 4. Graphical representation of the unlensing of the quadratic triangular grid
from the image-plane unto the source plane. The lines which delimit the area
where the grid folds unto itself (where therefore multiple images can be found)
are the caustic lines.

not fully stable. Extremely strong amplification near the critical
lines can degrade the zoom-in process sufficiently to lose images
which can complicate the modelling process.

2.4. Lensing maps

The third computational challenge we address is the compu-
tation of lensing maps. Lensing maps are used to visualise crucial
information of the lens-system. Each map is organised into a
rectangular grid defined on the image-plane, each grid cell usually
being the size of a pixel of image data. Information that can be
visualised are the projected surface mass density κ of the lenses,
the projected shear γ (norm, direction, individual components),
the amplification µ or its inverse, the lens deflection field, the
lensing potential ϕ, the time delay surface and variations thereof.
More information on these maps can be found at: https://projets.
lam.fr/projects/lenstool/wiki.

Lensing-maps are also used to calculate the statistical error
inherent to the Bayesian process. In order to compute the map
variances, full-resolution lensing maps have to be generated for
each tested parameter-combination which is a time-consuming
task.

The critical part of the lensing map computation is the second
order derivatives of the gravitational potentials of each cluster
member, which allow to compute κ , γ and µ:

κ(x, y) =

Nh∑
i

1
2

(
∂xxφ(x, y) + ∂yyφ(x, y)

)
(7)

γ 2(x, y) =

Nh∑
i

1
4

((
∂xxφ(x, y) − ∂yyφ(x, y)

)2
+

(
∂xyφ(x, y)

)2) (8)

µ = ((1 − κ)2 + γ 2)−1 (9)

with Nh the number of halos, which includes the large scale
components and the sub-halos (attached to each cluster galaxy).
At each grid-point the second-order derivative contribution of
each cluster member is added up to compute the total derivative.
The advantage of Lenstool’s parametric mass-models is that their
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single and double derivative can be explicitly calculated through
analytical function rather that through a numerical calculation.
This makes the computation of the various lensing properties
fast, as analytically calculated gradient are faster to compute
and do not suffer the numerical errors introduced by numerical
derivation and interpolation.

Despite this advantage, the computational challenge is impres-
sive. For Abell 2744 (Jauzac et al., 2015) error calculation (one
of the Hubble Frontier Field Cluster [HFF]), 10 014 maps with
6000 × 6000 pixels had to be generated. With 258 parametric
potentials this corresponds to 109 derivatives per map for a grand
total of 1014 derivative computations. The total process adds
up to a total of 300 CPU hours using Lenstool just for the map
generation.

3. High Performance Computing (HPC)

Due to the impossibility of increasing much further the clock-
frequency of processors (Mudge, 2001), hardware development
focus has gone into integrating multiple cores capable of multiple
simultaneous operations. This was motivated by Little’s Law (Bai-
ley, 1997), which states that the performance of computation
can be increased through parallel execution. In other words
performance can be improved by distributing the work on mul-
tiple computation units. Multicore CPUs and GPUs are the conse-
quences of this design choice. This increasingly parallel execution
orientated development does not work well with parallelism
unaware (often serial) algorithms like Lenstool’s Image transport
method which lack the necessary concurrency for parallel ex-
ecution. This creates large performance gaps called the Ninja
Gap (Satish et al., 2012).

The following section introduces a few essential concepts of
High Performance Computing (HPC) necessary to understand how
to remove this gap: (1) how performance for software is defined
and can be improved and (2) how to implement the different
parallelism strategies on CPU and GPUs.

3.1. Software performance and parallelism

The performance of a software, better known as its through-
put, is defined as the number of Floating-point operation per
second [flop/s] it is capable of performing. Little’s Law states that
the throughput ([flop/s]) of a computation is equal to the level
of parallel computation instances divided by the latency ([s]).
Latency is defined as the time of a single computation instance to
process and store an operation. The amount of parallelism that a
software can reach is directly related to the level of concurrency
the underlying algorithm possesses where concurrency refers to
the ability of an algorithm to execute parts of itself out of order
without affecting the final outcome.

Throughput =
Parallelism
Latency

The obvious consequence of Little’s Law is that it is possible for
software with high parallelism but also higher latency to achieve
a higher performance than non parallel low latency software. To
achieve optimum computation speed it is therefore necessary to
choose carefully the underlining algorithms so as to be ‘‘paral-
lelism aware’’ meaning balancing a high level of concurrency with
low latency.

Increasing performance can therefore either be done by reduc-
ing latency or increasing concurrency to fully use the available
parallel computation capabilities of the hardware. HPC tends to
focus on the latter.

Fig. 5. Scaling at a node level: This example CPU is AVX capable, meaning each
of his cores is capable computing 4 scalar operations in parallel. This CPU can
compute 16 scalar operations distributed over 4 cores (TLP) in vectors of size 4
(DLP) simultaneously.

3.2. Hardware

Software computation speed is extremely dependent on the
hardware it runs on. CPUs and GPU rely on different parallelism
strategies to achieve an optimum throughput which need to
be taken into account in the development. Multicore CPUs are
mainly designed for single thread performance (Hölzle, 2010).
Their lower latencies make them ideal for less parallelisable ap-
plications that use irregular patterns or data structures. GPUs
in contrast are designed for massively parallel software. Their
individual threads are slow but the much higher number of them
allows to hide their high latency and achieve a high throughput
on problems with a high number of simple and parallelisable
computation.

3.2.1. Parallelism on CPUs
A CPU consists of multiple cores sharing memory, each capa-

ble of executing different independent tasks. Each core can also
execute multiple operations simultaneously for the same task by
generalising scalar operations to vectors and matrix operations.
At a single CPU (node) level, parallelism is typically divided into
three levels: Thread-level parallelism (TLP), Data-level parallelism
(DLP) and Instruction-level parallelism (ILP).

TLP optimises the concurrent execution of tasks (threads) be-
tween the different cores, handled by libraries such as OpenMP,
Intel’s TBB or POSIX pthreads. It mainly handles the problems that
come from sharing resources like the memory.

DLP handles the vectorisation of scalar operations on a single
CPU core using Advanced Vector Extension (AVX). AVX2 and
AVX-512 (Advanced Vectorisation Extension) capable CPUs can
vectorise respectively 4 to 8 scalar operations through the SIMD
(Single Instruction Multiple Data) programming model (Kreinin,
2011) (Fig. 5). This additional parallelism level comes theoret-
ically at a low development cost. Most compilers are capable
of doing implicit vectorisation without developer input by iden-
tifying vector operations in the algorithm (Intel, 2015). Vector
operations however require that the AVX registers are loaded
homogeneously with the necessary information using Data struc-
tures of type Structure of Array (SOA). Data structures of SOA type
stores data of the same type into one parallel array contrary to the
more conventional Array of structure (AOS) which interleaves the
information (see Fig. 6) (Besl, 2013; Intel, 2013).

ILP leverage’s the superscalar capabilities of modern CPUs,
allowing multiple independent instructions to be handled at once.
This is mainly handled by the compiler and falls outside of the
scope of this paper (Intel, 2019).
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Fig. 6. Preparation for vectorisation with a heterogeneous memory and AOS
structures: The CPU core first loads from the main memory the needed
information into AVX registers. Those registers have to be shuffled multiple
times to achieve the needed homogeneous layout. Once the computations are
done, they have to be reshuffled back into the AOS structure. Beyond the obvious
time loss, the compiler is not able to vectorise these operations automatically.
If developers still wish to implement AOS structures, SIMD pragmas have to
be used to vectorise the operations manually. Xi , Yi and Zi represent fictional
position information.

3.2.2. Parallelism on GPUs
Originally developed for gaming, GPUs are composed of mul-

tiple Streaming Multiprocessors (SM) each consisting of multiple
Streaming Processors (SP). SP are capable of computing arithmetic
operations and are grouped together into warps which share
instruction sets.

The important difference between GPUs and CPUs is that GPUs
are not designed for single thread performance (Hölzle, 2010).
GPU threads have much higher latencies than CPUs for floating
point operations and memory transfer. To maximise throughput,
GPUs are designed to be massively multithreaded. Using the
SIMT (Single Instruction, Multiple Threads) programming model,
GPUs have hardware threading support that allows hundreds of
threads to be active simultaneously, each computing operations
in parallel (Lindholm et al., 2008; Nvidia, 2012).

The downside of this approach is that if an algorithm has a low
level of concurrency, its GPU throughput will be dominated by
the high latency (Valkov, 2010; Liang et al., 2013). If the problem
does not propose enough parallel computation to hide the high
latency, computation speed will be extremely slow. This makes
GPUs compared to CPUs limited in their choice of problems.

Another important aspect of GPU optimisation is paying at-
tention to the ILP problems like divergent execution paths. CPU
compilers tend to extract ILP more efficiently than GPUs us-
ing modern techniques like Out-Of-Order or speculative execu-
tion (Intel, 2019) without any developer input needed. While DLP
is implicitly optimised by the SIMT model (Kreinin, 2011), ILP for
GPUs has to be explicitly coded.

4. Lenstool-HPC

Lenstool is comprised of three crucial computations which
constitute a bottleneck and can be parallelised: the computation
of the deflection potential gradient over a grid, the computation
of the χ2 and the MCMC sampler. Lenstool-HPC has to date
fully optimised the first two of those computations. The gradient
computation over a grid is a trivially parallelisable problem with
no need for communication between the different parallel tasks
for which Lenstool-HPC proposes a CPU-OpenMP and a GPU based
solution. It is vectorisable and has enough parallel computation
to hide the GPU latencies. In contrast the computation of the χ2

is a typical example of a non trivially parallelisable algorithm. It

possesses divergent execution paths controlled by the presence
of a source in a triangle, atomic operations which cannot be
parallelised and imposes a certain amount of communication
between the different tasks. For this Lenstool-HPC proposes a
pure-CPU based and a mixed CPU–GPU implementation of the
brute-force approach.

4.1. Gradient computation

Computing the various lensing maps or the brute force com-
putation of the χ2 necessitates the computation of the deflection
potential gradient over the whole image. This is done by defining
a rectangular grid over the image. For each point the gradient
can be calculated analytically from the deflection potentials mod-
elled by multiple parametric potentials. The total gradient in a
certain point is simply the sum of the first order derivative of all
parametric potentials at that specific point:

∇φ(x, y) =

Nh∑
φi(x, y) (10)

where Nh is the number of parametric potentials.
The gradient computation of different points is independent

of each other. Both the CPU-OpenMP and GPU implementation
can therefore distribute the task of computing the gradient of
a single point to separate computation units. The CPU version
uses the implicit vectorisation capability of the intel compiler to
additionally vectorise the gradient computation of a single point.

4.2. χ2 Computation

In contrast to computing deflection gradients, the image trans-
port method based χ2 computation is extremely difficult to par-
allelise. To be able to efficiently distribute the work over multiple
computation units, Lenstool-HPC therefore uses the more compu-
tationally intensive but less serial brute-force approach algorithm
with GPUs. The algorithm can be subdivided into four main
stages: The gradient computation of a grid, the source compu-
tation based of the constraints, finding images by delensing and
checking the grid, and computing the χ2 based on the found
images.

The distribution of these tasks in Lenstool-HPC Hybrid CPU–
GPU implementation is summarised in Fig. 7. The gradient com-
putations are divided among the available GPUs. During that time
the CPU computes the positions of the sources in the source-
plane and sends the information to the GPUs. Once the gradients
and the sources are known, the GPUs can start searching for the
images by delensing and checking the grid for sources, again by
subdividing the grid. Each image found is stored temporarily and
at the end of the computation send to the CPU. This operation
possesses a divergent execution path, based on if an image is
found or not. As a consequence the computation incurs an over-
head based on the different amount of found images in each
GPUs operational territory. Once all images have been found and
received, the master CPU assigns them to their closest constraint
and then computes the χ2.

The purely CPU-based implementation distributes the work
similarly to the Hybrid CPU–GPU version with the exception that
all CPU cores calculate the sources positions.

4.3. Implementation

We developed Lenstool-HPC to be similar to Lenstool to assure
continuity for Lenstool users. Lenstool-HPC can be compiled as a
library with the above mentioned functions and as an executable
with the same image-plane mapping capabilities as Lenstool. All
mapping methods have been tested against the corresponding
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Fig. 7. Each GPU is assigned a part of the grid where it computes the gradient. During that time the CPU computes the positions of the sources in the source-plane
and sends the information to the GPUs. Once the gradients and the sources are known, the GPUs can start searching for the images by delensing and checking the
grid for sources, again by subdividing the grid. Each image found is stored temporarily and at the end of the computation send to the CPU. This operation possesses
a divergent execution path, based on if an image is found or not. As a consequence the computation incurs an overhead based on the different amount of found
images in each GPUs operational territory. Once all images have been found and received, the master CPU assigns them to their closest constraint and then computes
the χ2 . The purely CPU-based implementation distributes the work similarly to the Hybrid CPU–GPU version with the exception that all CPU cores calculate the
same sources positions.

Table 1
Characteristics and sustained performance of Computing Cluster used for the Lenstool-HPC benchmarks.
Name Piz Daint CPU Piz Daint GPU Tave Helvetios Fidis

CPU type E5-2695 v4 E5-2690 v3 Xeon Phi 7230 Xeon Gold 6140 E5-2690 v4
Microarchitecture Broadwell Haswell Knight’s Landing Skylake Broadwell
Number of cores 36 12 64 36 24
Frequency (GHz) 2.1 2.6 1.3 2.3 2.6
Memory size (GB) 64 64 112/16a 192 128

FP Peak (Gflops/s) 1200 488 1785 2136 1068
stream copy (GB/s) 116 59.7 87/465a 164 120

GPU type P100
Frequency (GHz) 1.126
Memory size (GB) 16

FP Peak (Gflops/s) 4546
Stream copy (GB/s) 489

aDDR4/MCDRAM.

Lenstool-maps and found correct inside the boundaries of numer-
ical errors. The χ2 computation is for the moment only available
as a function of the library for future MCMC development. The
executable works in exactly the same way as Lenstool, with a
master parameter file, and separate file for constraints and mass-
modelling potentials as described in the Lenstool wiki.2 The χ2

computation is also resistant to missing image problem near
caustic lines because of the brute-force approach used. The soft-
ware and installation instruction can be found at https://git-cral.
univ-lyon1.fr/lenstool/LENSTOOL-HPC.

5. Results and benchmarks

This result and benchmark section is organised as follows:
First an analysis of the effects of CPU vectorisation and GPUs on
the gradient computation. Second a study on the scaling of the
CPU and GPU implementation of the χ2 computation. The scaling
studied here is the strong scaling, meaning the same amount of
operations distributed over more Nodes.

The Benchmark configurations were taken from an example
strong lensing model of MACS J1149.5+2223 from here on named
M1149. It is made of 217 different potentials, modelling the
cluster. To constrain the model 80 sources have been generated,
adding to a total of 227 multiple images. The grid spans over
150 by 150 arcseconds and has 5000 by 5000 pixels for a typical

2 https://projets.lam.fr/projects/lenstool/wiki.

Hubble sampling of 0.03 arcseconds (resolution of ∼0.1 arcsec
or better). The Benchmarks were run on five different clusters
summarised in Table 1. We have chosen to concentrate on the
Helvetios CPU cluster and the Piz Daint hybrid CPU–GPU cluster.
Both are comprised of the most modern CPU and GPUs on the
market we had access to at the writing of this paper. This will
allow us to compare the peak performance of the CPU and GPU
version of Lenstool-HPC. To enable a fair comparison of the single-
map generation algorithm, we upgraded Lenstool’s algorithm to
support multicore parallelism, distributing the computational op-
eration in the same way as Lenstool-HPC ’s CPU version over
the multiple cores. Lenstool has already OpenMP parallelisation
in its native code but it is only implemented in its multi-map
generation algorithm.

5.1. Core scaling analysis

First we studied the scaling at a single processor level, mean-
ing how well it scaled on multiple cores. The benchmark task was
to compute one full 5000 × 5000 gradient map for the M1149
model. Compared were Lenstool, Lenstool-HPC using AOS struc-
tures, Lenstool-HPC using SOA structures and no vectorisation and
Lenstool-HPC using SOA structures with vectorisation. The results
are summarised in Fig. 8 and are detailed in Tables A.2 and A.3 .
They were run ten times each on Helvetios with AVX 512 capable
machines and on Fidis with AVX2 capable machines and no signif-
icant standard deviation was observed. An additional Benchmark
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Table A.2
Core scaling analysis results on Helvetios on AVX512 capable machines. The results shown are the mean of 10 runs.
Core scaling results Helvetios AVX512

Cores Lenstool Lenstool-HPC

Lenstool [s] Scaling AOS [s] Scaling SOA novec [s] Scaling SOA AVX2 [s] Scaling SOA AVX512 [s] Scaling

1 281.92 ± 0.051 1.0 235.47 ± 0.040 1.0 307.80 ± 0.069 1.0 107.04 ± 0.067 1.0 65.09 ± 0.068 1.0
2 146.79 ± 0.428 1.9 122.71 ± 0.539 1.9 160.21 ± 0.504 1.9 55.90 ± 0.091 1.9 34.07 ± 0.051 1.9
3 99.68 ± 0.155 2.8 83.43 ± 0.178 2.8 108.74 ± 0.085 2.8 38.20 ± 0.027 2.8 23.35 ± 0.246 2.8
4 76.04 ± 0.103 3.7 63.88 ± 0.097 3.7 83.25 ± 0.055 3.7 29.23 ± 0.059 3.7 19.10 ± 0.262 3.4
5 62.07 ± 0.002 4.5 51.32 ± 0.001 4.6 66.85 ± 0.001 4.6 23.54 ± 0.003 4.6 16.21 ± 0.020 4.0
6 51.16 ± 0.003 5.5 43.16 ± 0.002 5.5 55.79 ± 0.002 5.5 19.66 ± 0.004 5.4 13.56 ± 0.005 4.8
7 43.86 ± 0.001 6.4 36.72 ± 0.003 6.4 47.88 ± 0.002 6.4 17.03 ± 0.045 6.3 11.68 ± 0.048 5.6
8 38.31 ± 0.002 7.4 32.37 ± 0.002 7.3 41.83 ± 0.002 7.4 15.90 ± 0.127 6.7 11.21 ± 0.059 5.8
9 34.12 ± 0.006 8.3 28.60 ± 0.002 8.2 37.23 ± 0.003 8.3 14.44 ± 0.001 7.4 10.48 ± 0.037 6.2
10 30.81 ± 0.030 9.1 25.75 ± 0.016 9.1 33.48 ± 0.010 9.2 13.76 ± 0.009 7.8 9.44 ± 0.008 6.9
11 28.32 ± 0.019 10.0 23.57 ± 0.032 10.0 30.62 ± 0.032 10.1 11.84 ± 0.032 9.0 8.65 ± 0.019 7.5
12 27.23 ± 0.153 10.4 22.50 ± 0.146 10.5 29.36 ± 0.147 10.5 11.42 ± 0.072 9.4 8.59 ± 0.057 7.6
13 26.13 ± 0.001 10.8 21.71 ± 0.001 10.8 28.27 ± 0.001 10.9 11.13 ± 0.001 9.6 8.62 ± 0.001 7.5
14 24.31 ± 0.002 11.6 20.20 ± 0.005 11.7 26.40 ± 0.002 11.7 10.33 ± 0.001 10.4 7.85 ± 0.002 8.3
15 22.71 ± 0.004 12.4 18.88 ± 0.004 12.5 24.57 ± 0.009 12.5 9.66 ± 0.004 11.1 7.20 ± 0.001 9.0
16 21.64 ± 0.057 13.0 17.97 ± 0.035 13.1 23.46 ± 0.028 13.1 9.18 ± 0.020 11.7 6.74 ± 0.001 9.7
17 20.69 ± 0.003 13.6 17.19 ± 0.000 13.7 22.46 ± 0.007 13.7 8.79 ± 0.001 12.2 6.50 ± 0.002 10.0
18 19.64 ± 0.012 14.4 16.25 ± 0.021 14.5 21.19 ± 0.025 14.5 8.44 ± 0.001 12.7 6.15 ± 0.002 10.6

Table A.3
Core scaling analysis results on FIDIS on AVX2 capable machines. The results shown are the mean of 10 runs.
Core scaling results FIDIS AVX2

Cores Lenstool Lenstool-HPC

Lenstool [s] Scaling AOS [s] Scaling SOA novec [s] Scaling SOA AVX2 [s] Scaling

1 406.87 ± 0.003 1.0 374.36 ± 0.005 1.0 515.32 ± 0.003 1.0 228.90 ± 0.001 1.0
2 203.61 ± 0.010 2.0 187.25 ± 0.002 2.0 257.95 ± 0.011 2.0 115.46 ± 0.001 2.0
3 135.92 ± 0.002 3.0 124.80 ± 0.005 3.0 172.01 ± 0.012 3.0 76.38 ± 0.001 3.0
4 101.83 ± 0.008 4.0 93.58 ± 0.001 4.0 129.87 ± 0.007 4.0 57.51 ± 0.000 4.0
5 81.47 ± 0.001 5.0 74.85 ± 0.002 5.0 103.23 ± 0.005 5.0 45.90 ± 0.001 5.0
6 67.96 ± 0.001 6.0 62.46 ± 0.002 6.0 86.08 ± 0.003 6.0 38.36 ± 0.000 6.0
7 58.29 ± 0.001 7.0 53.57 ± 0.001 7.0 73.84 ± 0.001 7.0 32.92 ± 0.001 7.0
8 51.40 ± 0.002 7.9 46.80 ± 0.001 8.0 64.98 ± 0.002 7.9 29.09 ± 0.001 7.9
9 45.34 ± 0.002 9.0 41.68 ± 0.001 9.0 57.37 ± 0.001 9.0 25.81 ± 0.000 8.9
10 40.94 ± 0.001 9.9 37.47 ± 0.001 10.0 51.62 ± 0.001 10.0 23.09 ± 0.000 9.9
11 37.23 ± 0.002 10.9 34.11 ± 0.001 11.0 47.24 ± 0.002 10.9 21.02 ± 0.000 10.9
12 34.16 ± 0.000 11.9 31.28 ± 0.001 12.0 43.05 ± 0.001 12.0 19.26 ± 0.000 11.9
13 31.72 ± 0.001 12.8 28.87 ± 0.001 13.0 39.74 ± 0.001 13.0 17.79 ± 0.000 12.9
14 29.29 ± 0.002 13.9 26.87 ± 0.001 13.9 36.97 ± 0.001 13.9 16.54 ± 0.000 13.8

Fig. 8. Core Scaling analysis results: In histograms are compared Lenstool, Lenstool-HPC with SOA layout without vectorisation (novec) and with vectorisation (SIMD).
We observe a speedup of factor 4 for AVX512 machines and factor 2 for AVX2 machines compared to Lenstool. Without vectorisation Lenstool-HPC with SOA layout
is slightly slower than Lenstool, indicating that for gradient computation AOS layouts allow for faster memory access than the SOA layout. Lenstool-HPC AVX scaling
diminishing in function of cores (orange and green line) on Helvetios also indicates that memory overheads are getting significant and that we are hitting hardware
limits. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

was run on Helvetios with the amount of zmm-registers limited
to AVX2 levels.

It is immediately obvious that on Helvetios, Lenstool-HPC with
vectorisation is indeed faster than Lenstool by approximately a
factor 4. This does not correspond to our theoretical expecta-
tions for AVX 512 capable machines which use vectors of size 8

for double-precision floating point operations. This almost twice
slower behaviour seems to be due to Intel limiting the frequency
of the cores depending on the workload. According to Intel (2017,
2019), the AVX512 and AVX2 top frequency is limited at a lower
rate than the non AVX one because of the differing thermal
and electrical requirements. The results on the slower AVX-2
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Fig. 9. Benchmark and Scaling results of Lenstool-HPC on Pizdaint GPU (CSCS) and Helvetios (EPFL): the blue histogram shows the time results in function of the
number of computation units (nodes) used. The yellow and red lines indicate respectively the ideal and actual scaling of Lenstool-HPC computation time in function
of nodes used. The horizontal green line shows Lenstool’s best computation time. When the blue histogram is below the green line is the point when Lenstool-HPC
brute force approach to lensing beats Lenstool’s image transport method. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

capable Fidis machine and the AVX2-limited Helvetios run seem
to confirm this. They show the same tendencies as on Helvetios
with a speed-up gained by vectorisation around 1.77 for Fidis and
2.22 for AVX2 limited Helvetios which corresponds roughly to
half the theoretically expected factor 4.

It is interesting that, when deactivating vectorisation with the
compiler flag no-vec, Lenstool actually performs better than the
Lenstool-HPC SOA version. For comparison purposes, we created
a Lenstool-HPC AOS version with the results shown in Tables A.2
and A.3 which improves on the Lenstool results. The speed-up due
to vectorisation is however still significant enough to beat our
own AOS version. This lower performance by the non vectorised
SOA version could suggest that the memory access using SOA

layout is not optimised for the gradient computation but more
in detailed tests would be necessary to be certain.

In the Helvetios results, we also observe a decrease in par-
allelism efficiency the more cores are used. This is probably
due to bandwidth saturation (Intel, 2010) because of the in-
creased amount of information used by AVX operations. AVX512
operations use 8 times more information than non vectorised
operations and 2 times more than AVX2. The decrease in effi-
ciency over 18 cores is not too important but it does show that
we are starting to approach the hardware limits of actual CPUs.
FIDIS does not show the same trend because even with a 4 times
increase in speed due to AVX2, bandwidth saturation will not be
significant compared to the total operation time.
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Table A.4
Distributed scaling analysis results. The benchmarks were run on the CSCS pizdaint CPU and GPU machines and the EPFL Helvetios and Grand Tave CPU clusters. All
results shown are in seconds.
Piz Daint@CSCS-GPU

Nodes Gradient Source Delense Comm χ2 Total Strong scaling Lenstool 7.0

1 0.93 0.0025 0.1210 1.40 × 10−5 2.1 × 10−5 1.05 1.00 0.35
2 0.47 0.0155 0.0643 7.92 × 10−3 2.3 × 10−5 0.54 1.93 0.35
4 0.24 0.0205 0.0412 7.87 × 10−3 2.5 × 10−5 0.29 3.56 0.35
8 0.12 0.0195 0.0230 8.51 × 10−3 2.8 × 10−5 0.17 6.31 0.35
16 0.06 0.0282 0.0279 8.13 × 10−3 3.2 × 10−5 0.10 10.19 0.35
32 0.04 0.0279 0.0155 8.64 × 10−3 3.2 × 10−5 0.06 16.54 0.35
64 0.03 0.0310 0.0215 9.08 × 10−3 3.3 × 10−5 0.07 15.97 0.35
128 0.02 0.0148 0.0079 9.29 × 10−3 3.6 × 10−5 0.04 28.52 0.35

Piz Daint@CSCS-CPU

Nodes Gradient Source Delense Comm χ2 Total Strong scaling Lenstool 7.0

1 5.99 0.0022 0.7999 2.70 × 10−5 2.1 × 10−5 6.82 1.00 0.301
2 3.04 0.0022 0.4247 2.06 × 10−4 2.3 × 10−5 3.48 1.96 0.301
4 1.51 0.0030 0.2069 3.01 × 10−4 2.5 × 10−5 1.75 3.90 0.301
8 0.80 0.0030 0.1101 1.46 × 10−3 2.8 × 10−5 0.91 7.47 0.301
16 0.44 0.0030 0.0616 2.14 × 10−3 3.2 × 10−5 0.51 13.42 0.301
32 0.28 0.0030 0.0421 4.85 × 10−3 3.2 × 10−5 0.33 20.67 0.301
64 0.25 0.0031 0.0268 8.18 × 10−3 3.3 × 10−5 0.28 24.33 0.301
128 0.17 0.0030 0.0320 8.55 × 10−3 3.6 × 10−5 0.23 29.96 0.301

Helvetios@EPFL

Nodes Gradient Source Delense Comm χ2 Total Strong scaling Lenstool 7.0

1 4.63 0.0011 0.5894 1.50 × 10−5 1.2 × 10−5 5.25 1.00 0.230
2 2.34 0.0017 0.2989 3.53 × 10−4 1.3 × 10−5 2.65 1.98 0.230
4 1.18 0.0013 0.1534 4.50 × 10−4 1.1 × 10−5 1.34 3.92 0.230
8 0.62 0.0015 0.0787 2.47 × 10−4 9.0 × 10−6 0.71 7.44 0.230
16 0.35 0.0015 0.0405 2.95 × 10−4 9.0 × 10−6 0.39 13.42 0.230
32 0.20 0.0015 0.0219 8.25 × 10−4 9.0 × 10−6 0.24 22.33 0.230
64 0.13 0.0015 0.0135 1.28 × 10−3 1.0 × 10−5 0.14 37.15 0.230
128 0.11 0.0015 0.0217 1.68 × 10−3 1.0 × 10−5 0.13 39.15 0.230

Tave@CSCS

Nodes Gradient Source Delense Comm χ2 Total Strong scaling Lenstool 7.0

1 2.45 0.0054 1.1759 1.0 × 10−4 1.73 × 10−4 3.78 1.0 2.8
2 1.23 0.0060 0.5921 2.1 × 10−4 1.05 × 10−4 1.90 2.0 2.8
4 0.62 0.0061 0.3013 3.1 × 10−4 1.06 × 10−4 0.96 3.9 2.8
8 0.38 0.0061 0.1828 1.12 × 10−3 1.08 × 10−4 0.57 6.6 2.8
16 0.25 0.0061 0.1219 6.33 × 10−3 1.10 × 10−4 0.40 9.6 2.8
32 0.13 0.0062 0.0642 1.13 × 10−2 1.14 × 10−4 0.22 17.5 2.8
64 0.14 0.0062 0.0633 2.29 × 10−2 1.14 × 10−4 0.23 16.5 2.8
128 0.14 0.0062 0.0632 4.67 × 10−2 1.13 × 10−4 0.25 15.0 2.8

5.2. Distributed scaling

The Chi2 benchmarks time the full Chi2 computation and its
four main stages: The gradient computation of a grid, the source
computation based of the constraints, finding images by delens-
ing and checking the grid and computing the Chi2 based on
the found images. The benchmark was distributed and scaled
over 128 nodes which was our maximum available number of
test nodes. In contrast to the core scaling analysis, due to time-
constraint on the allotted server time we could not rerun them
multiple times to study the standard deviation. The results are
summarised in Fig. 9 and more details can be found in the ap-
pendix. The two main stages to pay attention to are the gradient
computation and the delensing stage.

5.2.1. Gradient computation
The computation of a 5000 × 5000 lensing map on one Piz-

daint P100 GPU takes only 0.93 s. At a single node level, compared
to a Helvetios node with 36 cores, the single GPU version outper-
forms Lenstool-HPCs CPU version by a factor 5 and Lenstool by a
factor 10. Since we upgraded Lenstools single map generation to
be distributable at a node level, for the common user the P100
version actually outperforms it by a factor 360.

Figs. 8a and 9b show the scaling of the gradient computation
for CPUs and GPUs up 128 Nodes. Up to 32 nodes the software

scales well with a parallelism efficiency of 0.75. Around 64, for
both GPU and CPUs, the scaling worsens with a parallelism effi-
ciency of around 0.5. This is mainly because the shrinking amount
of work per node is starting to be insufficient to hide the latencies
of the computation. The parallelism efficiency should rise the
more complex the problem, but the inverse is also true. The gra-
dient computation could still be distributed over more than 128
nodes for slight gain but we were limited here by the available
hardware.

At 128 nodes, Lenstool-HPC is 55.3 times faster than its sin-
gle node GPU version, meaning approximately 500 times faster
than Lenstool’s single map gradient computation. The parallelised
CPU version is roughly 4 times slower than its parallelised GPU
counter part. It remains competitive enough that even users who
do not have access to GPU cluster can generate lensing map
efficiently. For cost-conscious users who wish a reasonably high
efficiency, with 32 P100 GPUs at one map every 0.04 s we can do
the Abell 2744 error computation (Jauzac et al., 2015) with 10014
in 166 min, a bit less than 3 h. This is 25 times faster than the
Lenstool version especially tuned for the Benchmarks.

5.2.2. Delensing and searching for images
As stated above, this task is not trivially parallelisable. While

the work can distributed over the different GPUs, the divergent
execution path that appears when an image is found, impacts
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Fig. A.10. Benchmark and Scaling results of Lenstool-HPC on Pizdaint CPU (CSCS) and Grand Tave (CSCS): the blue histogram shows the time results in function
of the number of computation units (nodes) used. The yellow and red lines indicate respectively the ideal and actual scaling of Lenstool-HPC computation time
in function of nodes used. The horizontal green line shows Lenstool’s best computation time. When the blue histogram is below the green line is the point when
Lenstool-HPC brute force approach to lensing beats Lenstool’s image transport method. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

the parallelism efficiency quickly. Already at 4 GPU nodes (see
Fig. 9c), we are at an efficiency of 0.73 and seem to saturate
around 8 nodes. At a single node level this does not impact us
much (see Fig. 9e). The task takes only 11% of the total runtime,
with the rest going to the gradient computation. However, since
the gradient is scaling well, already on 16 cores the delens-
ing task takes 27% of the total runtime with noticeable effects.
The parallelism efficiency of the total χ2 computation starts to
drop around 8 nodes by the delensing task before it saturates
completely around 32 nodes. This final saturation is not only
due to worsening of the gradient computation efficiency. The

computation time of the gradients over 32 to 128 GPUs simply
has reached the same level as the computing of the sources on
the CPUs around 0.04 to 0.02 s. Since the delensing task depended
on both gradient computation and source computation, it cannot
start without both having finished running, creating the observed
saturation.

The CPU version in contrast shows a lot less degradation to its
parallelism efficiency, at least up to 64 nodes. This corresponds
to our expectation since CPUs have less but faster computation
units than GPUs. The amount of work per core never reaches a
stage when it is insufficient to hide the latencies of the divergent
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execution paths. CPUs compilers have also been already heavily
optimised to handle these complex operations.

With this in mind, the Lenstool-HPC ’s brute force GPU version
manages to beat Lenstool fully recurrent image transport with
only 4 GPUs (see Fig. 9e) and can still scale up 32 for a total
speedup of 5.9. Lenstool-HPC brute force CPUs version is less
successful, managing to beat Lenstool only with 64 nodes for a
speed-up of 1.7 but also demonstrates more parallel efficiency.
Depending on the hardware developments of the future, they
could become an extremely credible option.

6. Conclusions

We have shown that it is possible to use modern HPC based
programming to greatly speed up conventional gravitational lens
mass modelling software. On P100 GPUs et SLK CPUs the new
Lenstool-HPC GPU based library has shown to be 360 times faster
than Lenstool on single map computation and 10 times faster on
multi-map computation with only a single GPU. The necessary
gradient computation has shown to scale extremely well up to
64 nodes with a Hubble Frontier Fields’ size problem, generating
an additional corresponding speed-up. The brute force imple-
mentation proposed for the mass-model χ2 computation beats
Lenstool recursive but tricky to use image-transport implementa-
tion with only 4 GPUs and scales reasonably well up to 32 nodes.
Additionally Lenstool-HPC non recursive HPC implementation of
lens-modelling tools will scale with future hardware develop-
ments, ensuring future speed-ups that recursive options will not
have. Future development will go towards the full integration
of the library into Lenstool and optimisation of the last bottle
necks, in particular the (MCMC) optimisation process. This will
be combined with a thorough comparison to other GPU and non
GPU based Lens-modelling tools to assess and further improve
Lenstool-HPCs Lens-modelling process.

The achieved speed-up is key to continue using Lenstool for
clusters with many constraints, and to allow a fast evaluation
(through the lensing maps) of the quality and properties of the
lensing mass models computed. As an example, having a fast
lensing maps computation allows quick evaluation of the lensing
model and the identification of where the fit is good or bad,
allowing us to focus on the modelling. Ultimately, a fast code will
allow to address the ‘‘bad RMS’’ of models (typically larger than
10× the Hubble image resolution) and understand its origin.

The C++ and CUDA based library is publicly available on Github
https://git-cral.univ-lyon1.fr/lenstool/LENSTOOL-HPC .
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Appendix. Benchmark results

Tables A.2–A.4 and Fig. A.10 contain all information of the
Benchmarks we did for Lenstool-HPC run on the clusters sum-
marised in Table 1.
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6.3. Lenstool-HPC: A High Performance Computing based mass modelling tool for
cluster-scale gravitational lenses

6.3.3 Outlook

Lenstool-HPC has, at the time of writing of this thesis, implemented methods solving and optimising

two of the three main bottlenecks of Lenstool’s modelisation algorithm. It also contains all of the

necessary infrastructure for easier future development. While the gradient computation runs at peak

parallel efficiency, the fit computation can be still further improved. For example by defining a smaller

search area around specific constraints instead of checking the whole grid, one can reduce the total

amount of cell-checking done when looking for images. This would significantly improve the overall fit

computation. The utility of Lenstool-HPC at the moment is mainly based on its capacity to generate

gradient maps almost instantaneously. It can be used to significantly speed up any application using

them, including the error computation of the bayesian parameter space exploration.

The third bottleneck, the parameter space exploration using an MCMC algorithm, remains for the

moment an unfinished task. Once a working implementation of the bayesys3 package by John Skilling

is added, Lenstool-HPC can be used for lens modelling but it will not run at optimum throughput.

MCMC samplers are not trivially parallelisable algorithms since the concept behind them is inherently

serial. The main idea, as stated in chapter 5, is that the consecutive exploration of the parameter

space allows for a more informed distribution of the parameters. The fewer steps are used, the less

informed the distribution is. The literature of the bayesys3 package states that it is parallelisable up to

10 concurrent MCMC chains but to the best of our knowledge, based on discussions with Eric Jullo, any

concurrent application of the bayesys3 package significantly increases the probability of it converging

to local minima. This reduces the confidence that astronomers can have in the models proposed by

the method, which is not acceptable.

The overlying Nested Sampling concept introduced by John Skilling (Skilling, 2006) however does

not necessarily require the use of MCMCs. Other variations exist and have been implemented like

MultiNest (Feroz et al., 2009), PolyChord (Handley et al., 2015) and DNest4 (Diffusive Nested Sampling)

(Brewer and Foreman-Mackey, 2016). Each of these use different sampling techniques that are not

based on MCMCs even if the main concept behind them remains bayesian and as such serial. The

logical next step would therefore be to do an in-depth test study of these bayesian based samplers to

find a replacement for the current bayesys3 method. What future studies should particularly focus

on is evaluating the concurrency capabilities of the different methods, i.e. their parallel computation

potential, to ascertain that a future HPC implementation really is as efficient as it can be. If no good

replacement exists, creating a bayesian based model selection method that is truly compatible with

HPC infrastructure will be crucial. Without it, anyone using bayesian statistics in the future HPC-based

world will be hampered by low computation speed due to less efficient parallelism. Due to the multiple

domains involved, I believe that to properly perform this task a team combining at least astrophysical,

high performance computing and statistical skills is needed.
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