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Science is what we understand well enough to explain to a computer.
Art is everything else we do.

— Donald Knuth
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Abstract
The problem of style transfer consists in transferring the style from one signal to another while

preserving the latter’s content. This project explores the applications of style transfer techniques
to speech signals. In particular, such techniques are used to address Voice Conversion (VC).
This problem can be formulated with the style transfer framework and consists of changing the
speaker identity (style) of a speech signal at will while preserving the same linguistic information
(content).

Style transfer is an inherently ill-posed problem; i.e., there is not a unique solution. Moreover,
there are no standardized objective measures to evaluate the results. The effect of this is twofold.
Firstly, the lack of such metrics hinders the training process. Secondly, it is hard to benchmark
different methods.

The first problem is tackled by using an AutoEncoder (AE) architecture. The raw speech is
mapped to a lower-dimensional latent space where linguistic and speaker content is separated.
During training, the model learns to reconstruct the original raw speech from this representation.
When performing VC, the latent representation is modified to match the target speaker. This
work presents two variants of this approach named FastVC and PhonetVC.

The problem with comparing to the state-of-the-art is solved with the large-scale crowd-
sourced perceptual evaluations performed in the Voice Conversion Challenge. The 2020 edition
of this challenge centers in non-parallel VC. In particular, a variant of FastVC was submitted for
the cross-lingual task, where the target and source speakers speak different languages. FastVC
outperformed the VC Challenge baselines and ranked in the top half of the classification in Mean
Opinion Score (MOS) quality results among all the participants.

The unsupervised representations found with FastVC are shown to be speaker-independent
and easily mapped to the human phoneme alphabet. The analysis of such representations confirms
that encoder-decoder architectures allow disentangling the style and content of a speech signal.
Overall, FastVC offers high-quality results for the task of VC while providing speedy conversions.
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1 Introduction
One of the main strengths of machine learning is its data-driven nature. Models can solve

a wide variety of tasks and be implemented in very different setups with successful results.
Moreover, with transfer learning, it is relatively easy to reuse work in similar domains. One
could thus solve a problem to some extent from some scientific domain without knowing its
underlying meaning. Nonetheless, extensive knowledge of that domain is needed to improve the
solutions in the form of inductive biases and priors.

Overall, one can benefit a lot from the machine learning research community by adapting pre-
viously successful solutions to many problems in almost any scientific domain. In particular, the
computer vision community is actively developing new algorithms and architectures that have
been proven to be beneficial to other domains such as speech. One clear example of such architec-
tures are Convolutional Neural Networks (CNNs), which were first trained with backpropagation
by LeCun et al. (1989). This architecture was designed to exploit the similarity of neighboring
pixels in natural images and achieve the desirable equivariance property. A common approach
for audio applications is to apply such architectures to the spectrogram, which corresponds to
the squared magnitude of the Short-Time Fourier Transform (STFT) of the input waveform. The
result of the STFT is a 2-dimensional complex signal representing time and frequency. Thus, the
spectrogram, by being a real 2-dimensional signal, can be interpreted as an image. The spectro-
gram has smooth transitions, which make the locality assumption of CNNs valid. However, the
equivariance property is no longer desirable, since shifting of the spectrogram is translated into
a time delay or a frequency modulation of the signal. Nevertheless, even if the inductive bias of
CNNs does not precisely fit the nature of spectrograms, this architecture is still widely used for
such signals.

The problem of working with spectrograms becomes harder when it comes to invertibility. One
can recover the original signal using the inverse STFT from both the magnitude and phase of the
STFT when the Constant OverLap-Add (COLA) property is satisfied (Smith, 2011). However,
the phase component of a speech signal is tricky to model because it has a noisy structure and a
circular nature provided that it is an angle. Thus, the assumptions of CNNs are far from being
satisfied with this signal. One common approach is to use the classical method introduced by
Griffin and Jae Lim (1984) to recover the phase from the spectrogram. Even if the phase is
essentially random, relative phase differences over time matter perceptually. Due to this latter,
de Chaumont Quitry et al. (2019) proposed to learn the time-derivative of the phase and then
integrate instead of trying to learn a seemingly random pattern. Results of phase prediction
algorithms are still far from giving real phases and usually produces metallic audios. However,
Griffin and Jae Lim (1984) is still used in some recent works.

The more recent approaches to the problem of spectrogram inversion have nowadays shifted
from recovering the phase and using inverse STFT to relying on conditional generative models
that directly produce waveforms. If we model waveforms directly, we are implicitly modeling the
phase of its STFT as well, but we do not run into the issues that make the modeling of phase so
cumbersome.

Inverting spectrograms that are directly extracted from raw speech is a challenging problem.
However, in applications like Text-To-Speech (Wang et al., 2017) and Voice Conversion (VC)

1



1. Introduction 2

(Qian et al., 2019; Tobing et al., 2019; Pasini, 2019), the spectrogram itself is respectively modeled
from text or some speech and speaker features. In such cases, the spectrogram that has to be
inverted generally has imperfections (see Section 4.1). The generative model can learn to invert
a representation with such imperfections. Moreover, it can also work with lossy spectrogram
representations as it is the case for the mel-spectrogram.

The fact that generative models work better than the classical methods for phase recovering
and deterministic STFT inversion is mainly due to the inductive biases with which some of the
most successful models are endowed. Speech is a signal with dependencies in both neighboring
samples and over long time spans on the time domain due to, e.g., the periodicity of voiced
speech and the intonation or pitch contour. WaveNet (van den Oord et al., 2016) models such
long-term dependencies by introducing stacked causal dilated convolutions, which exponentially
augment the receptive field with the number of layers (see Section 2.3.1). The large receptive field
allows taking into account more past samples, which allows modeling longer time dependencies
without the need to have very deep models. Another approach to model both short and long-
term dependencies is to have different modules running at multiple resolutions. This hierarchical
structure is implemented in SampleRNN (Mehri et al., 2016) and in the discriminators of Kumar
et al. (2019) (see Section 2.3.2). The success of these approaches shows the importance of expert
knowledge.

1.1 Style Transfer

This project tackles the problem of speech style transfer, including the generation of raw
speech and hence the previously discussed issues. On top of that, the style transfer problem
requires the modification of high-level signal features, making it an even more challenging task.
Deep learning is especially suited for this task due to the quality of the representations learned
from data. These representations capture latent variables of the signal that can be useful to
represent the abstract concepts of content and style of a signal required in the style transfer
problem.

Neural style transfer was introduced in Gatys et al. (2015) and has been mostly applied to
images (Dumoulin et al., 2016) and videos (Ruder et al., 2016). This task is defined for two input
signals, which we will refer to as source and target. The task is then to transfer the target signal’s
style to the source signal while preserving its content. Therefore, the success in this task requires
semantic reasoning about the input signal (Johnson et al., 2016).

The style transfer problem statement includes the abstract terms of content and style, which
makes this task loosely defined mathematically speaking. Figure 1.1 depicts an example of image
style transfer. The concepts of content and style may be clearer with the preceding example, but
they still lack a proper definition.

VC can be considered as a case of speech style transfer, where the content refers to the
linguistic information of a speech signal, and the style refers to the speaker. The task of VC then
consists of modifying a speech signal uttered by some source speaker as another target speaker
uttered it. In such a task, the linguistic information is preserved, but speaker-dependent features
are changed.

Both style transfer and VC problems are inherently ill-posed; there is not a single correct
output. For the case of VC, even if it is easy for a human to identify the concepts of linguistic
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(a) Source image. (b) Target image. (c) Stylised image.

Figure 1.1: Example of image style transfer from Engstrom (2016). The stylised image (c) has
the content of the source image (a), which is a photograph of the MIT Stata Center, and the
style of the target image (b), the artwork Udnie by Francis Picabia. Note that the source and
target image don’t necessarily have to have the same size.
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(b) First samples in the waveform domain.

Figure 1.2: Comparison between 4 speech signals sampled at 44.1 kHz of 0.1s each with the same
speaker uttering the sound /a/. All the recordings sound almost identical but are very different
in the waveform domain. The frequency representations of such signals are also different but have
some similarities such as the formants (local maximums). This motivates the use of frequency
representations of the speech signals such as the STFT.

content and speaker style, it is hard to quantify how similar the result is to the target speaker
or how unaltered is the linguistic content.

The same content can be uttered by the same speaker in many different ways, as shown in
Figure 1.2. Additionally, there are many transformations on the waveform level that do not affect
the content at all. Some examples are different timing, intonation, volume, or flipping of the sign
of the signal.

The difficulty in assessing VC systems brings other problems. On the one hand, the lack
of objective measures hinders choosing a training strategy and an objective function. On the
other hand, most of the works in VC only report subjective scores. The subjective score gives
an idea of how a system works, but such scores may be biased. Therefore, many papers claim
state-of-the-art results, but it is impossible to compare two models if they only report subjective
scores.
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1.2 Document Structure

Chapter 2 reviews some of the existing solutions for the problems of style transfer, VC, and
speech synthesis. The most influential works for this project are more thoroughly analyzed, with
particular emphasis on AutoVC and MelGAN (Section 2.1.1 and Section 2.3.2, respectively).
This section also provides an overview of the VC challenge in Section 2.4, which serves as a
benchmark for this project.

Chapter 3 presents the proposed system for VC, FastVC. This system is an adaptation of
the state-of-the-art model AutoVC introduced by Qian et al. (2019). This system is modified to
meet the requirements of the VC challenge 2020, where more than 90 research teams competed
to achieve the best VC system.

Besides the speech quality and the target similarity, which are the factors evaluated in the VC
challenge, this project also centers on achieving faster conversions. This latter is not evaluated
in the challenge, and in fact, most of the VC papers do not report the speed of conversion.
Nonetheless, achieving fast inference in audio can be even more challenging than generating
good conversions due to the high temporal resolution of raw audio.

The speed requirements are met using MelGAN (Kumar et al., 2019), which generates raw
speech in a non-Auto-Regressive (AR) fashion. The resulting system presented in Chapter 3 inte-
grates an AutoEncoder (AE) adapted from AutoVC (Qian et al., 2019) and the raw speech gen-
erator from Kumar et al. (2019). To achieve real end-to-end training, a simple network that can
be initialized to yield exact spectrograms is proposed. The aim is that pre-trained models using
(mel-)spectrograms can be easily adapted for end-to-end training. Even if the mel-spectrogram
is a ubiquitous representation that considers human perception, more efficient representations
that are better suited for a given task can be learned (see Section 3.1).

Chapter 4 compares the proposed models and presents an analysis of the speech represen-
tations found by FastVC. Such representations aim at disentangling the linguistic and speaker
information and are shown to be speaker-independent and similar to phonemes. The subjective
evaluations obtained with the samples submitted to the VC challenge are presented in Section 4.5.

Finally, Chapter 5 wraps up the project and proposes some improvements to our work and
future directions for the VC problem.



2 Literature Review
Style transfer requires the extraction of the content and the style of a signal. In Gatys et al.

(2015), the hypothesis is that content and style are related to respectively low and high-level
representations of the image, as depicted in Figure 2.1. Such representations are respectively
found in the feature maps obtained by the first and last layers of a CNN. The model obtaining
those feature maps is not explicitly trained for the style transfer problem, but instead, a VGG-
Network (Simonyan and Zisserman, 2015) trained on object recognition is used.

Once the style and content are defined, the approach is to optimize over the pixel values of
an input image initialized to white noise. The aim is to match both the content and the style of
the generated image to that of the source and target image, respectively.

Figure 1: Convolutional Neural Network (CNN). A given input image is represented as a set
of filtered images at each processing stage in the CNN. While the number of different filters
increases along the processing hierarchy, the size of the filtered images is reduced by some
downsampling mechanism (e.g. max-pooling) leading to a decrease in the total number of
units per layer of the network. Content Reconstructions. We can visualise the information
at different processing stages in the CNN by reconstructing the input image from only know-
ing the network’s responses in a particular layer. We reconstruct the input image from from
layers ‘conv1 1’ (a), ‘conv2 1’ (b), ‘conv3 1’ (c), ‘conv4 1’ (d) and ‘conv5 1’ (e) of the orig-
inal VGG-Network. We find that reconstruction from lower layers is almost perfect (a,b,c). In
higher layers of the network, detailed pixel information is lost while the high-level content of the
image is preserved (d,e). Style Reconstructions. On top of the original CNN representations
we built a new feature space that captures the style of an input image. The style representation
computes correlations between the different features in different layers of the CNN. We recon-
struct the style of the input image from style representations built on different subsets of CNN
layers ( ‘conv1 1’ (a), ‘conv1 1’ and ‘conv2 1’ (b), ‘conv1 1’, ‘conv2 1’ and ‘conv3 1’ (c),
‘conv1 1’, ‘conv2 1’, ‘conv3 1’ and ‘conv4 1’ (d), ‘conv1 1’, ‘conv2 1’, ‘conv3 1’, ‘conv4 1’
and ‘conv5 1’ (e)). This creates images that match the style of a given image on an increasing
scale while discarding information of the global arrangement of the scene.

3

Figure 2.1: The content reconstructions are obtained recovering the input image from the feature
maps. The style representations compute correlations between subsets of feature maps. Note that
indeed the style representation that better fits the style of the image is obtained using high-level
representations, while low-level representations are better at capturing the content.

The main drawback of the approach by Gatys et al. (2015) is that since optimization is
performed over the input, the resulting image has to be iteratively computed by performing
gradient updates on the combination of content and style losses. Since these losses are different
for different styles and contents, inference requires solving an optimization problem for each pair
of source and target signals. Several methods differing from optimization-based style transfer
have been proposed to compute a fixed mapping function (Johnson et al., 2016; Zhu et al.,
2017; Mor et al., 2019; Beckmann et al., 2019). Such mapping functions are especially suited for
applications where time or resources are constrained.

VC requires the factorization of speech into linguistic and non-linguistic information to modify
this latter at will without changing the linguistic content of the source audio. There are two main
frameworks for the data-driven approach to VC. These are parallel and non-parallel VC.

5
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(a) Spectrum of original signal.
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(b) Spectrum of original signal shifted 4 semi-
tones up.

Figure 2.2: Pitch shifting with a signal of a speaker uttering a long vowel /i/. Note that the spec-
tral envelope is preserved, but the fundamental frequency changes. The pitch shifting algorithm
used in this example is the implementation by McFee et al. (2020).

A parallel speech dataset consists of pairs of time-aligned utterances with the same linguistic
content but uttered by different speakers. The approach to VC is then to learn the mapping
between them (Abe et al., 1988). This kind of data is scarce and the pairs of utterances are
typically not perfectly aligned. The usual approach is to use Dynamic Time Warping (DTW) so
that each time-aligned frame pair shares the same linguistic information. However, the research
community is moving towards non-parallel training.

Non-parallel VC is a more challenging framework, but contrary to parallel VC, it can use
virtually any speech dataset for training. The results with this approach are typically worse
than parallel VC (Lorenzo-Trueba et al., 2018), which drives some methods first to construct
pseudo-parallel datasets using acoustic clustering of source and target speakers (Sundermann
et al., 2006).

Taigman et al. (2017) introduced zero-shot voice generation, i.e., the generation of speech from
speakers unseen during the training phase. Zero-shot conversion introduces a new problem to VC
and can only be performed in multi-speaker models that use data-driven speaker representations.
However, this problem is not treated in this work because pre-trained networks can be used to
compute such speaker representations as in Qian et al. (2019).

The d-vectors introduced by Jia et al. (2018) are one example of such representations that can
be computed for arbitrary long audios and offers reliable representations with only a few seconds
of speech. Such representations can be interpreted as a decomposition of each speaker’s identity
into a vector space whose basis represent different speaker styles or eigen-voices (Barbany, 2018,
Section 3.3.).

2.1 Conversion function

Although simple conversion functions are capable of changing the speaker’s identity, it is
insufficient to convert a specific source speaker’s voice into another specific target speaker’s
voice. One of such simple functions is frequency warping, which can change the pitch without
altering the envelope as in Figure 2.2.
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However, more sophisticated conversion functions are needed to adequately model a nonlinear
mapping between source and target voices that need to be developed to convert speaker identity
(Toda et al., 2016). Various conversions functions have been proposed using, amongst others,
Gaussian Mixture Models (Stylianou et al., 1998), Restricted Boltzmann Machines (Nakashika
et al., 2014), or Gaussian process regression with kernel functions (Pilkington et al., 2011). The
dominant approach is to model the conversion function with generative models built using Deep
Neural Networks, usually called Deep Generative Models.

Generative models learn the underlying distribution from which the input is assumed to be
independently drawn from. Speech signals are structured data with a time dimension, and thus
the assumption of independence is far from being satisfied. Instead of learning the distribution
of samples, generative models learn the conditional distribution of a sample given its previous
samples (van den Oord et al., 2016; Mehri et al., 2016). Generating samples only conditioned on
the previous samples produce babbling sounds that resemble speech but lack coherent linguistic
information. The approach to generate coherent speech is to further condition these models on
lexical information so that the generated samples represent the sound that we want to produce.

A conditioning signal can be of various shapes and rates, and we can differentiate between
local and global conditioning, which are also referred to as dense and sparse conditioning, respec-
tively (Dieleman, 2020). Regarding speech, the generative models are typically conditioned on
phonemes, which are a local conditioning signal running at a lower rate than the raw waveform
samples. In multi-speaker settings, the generative models are also conditioned on the speaker’s
identity, a global conditioning signal. Some popular Deep Generative Models include AR models,
the decoder of Variational AutoEncoders (VAEs) and Generative Adversarial Networks (GANs).

AR models are powerful because they can capture correlations, especially local dependencies,
between the different elements in a sequence. However, each sample has to be drawn sequentially
because the samples’ distribution at a given time depends on the previous samples, making the
generation slow.

A VAE is a two-stage network. The first stage encodes a given input into a latent represen-
tation of lower dimensionality with a known distribution, typically a unit Gaussian. The second
stage decodes the latent representation to obtain a reconstruction as similar to the input as pos-
sible. In the case where the latent representation is not enforced to match a certain distribution,
the network is called an AE.

GANs take a very different approach to capture the data distribution. In this setup, two
networks are trained simultaneously: a generator attempting to produce examples that fit the
underlying distribution of the data given latent vectors, and a discriminator attempting to dif-
ferentiate between the real inputs and the generator’s outputs. In doing so, the discriminator
provides a learning signal for the generator, which enables it to better match the data distribu-
tion.

The drawback of adversarial models is that, even if they produce more realistic examples
than likelihood-based models, they are worse at capturing the full diversity of the data distribu-
tion. This behavior is particularly useful in densely-conditioned settings since, in such cases, the
variability is mostly constrained. An example of a densely conditioned setting is Text-to-Speech
(TTS): given an excerpt of text, the model should generate a realistic utterance corresponding
to that excerpt. In this case, there is no need to generate every possible variation, but one good-
sounding utterance is enough. In this setting, realism is more important than diversity, which is
already captured by the conditioning signal.
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The AE structure allows extracting meaningful latent representations of speech in an unsu-
pervised fashion. These representations are ideally able to capture high-level semantic content
from speech such as phoneme identities (Chorowski et al., 2019) and thus could avoid manu-
ally labeling speech datasets. This content can be leveraged to generate speaker-independent
utterances.

Some of the most successful works in VC rely on generative models like AEs or VAEs that
compress the input signal and recover it from the compressed representation. The compressed
signal is in a lower-dimensional space, which enforces the model to find compact representations
only containing the relevant information needed to reconstruct the signal.

One approach to disentangle the linguistic and speaker information with this method is to
make one of the former irrelevant for the reconstruction. In Barbany (2018), this is done by
feeding uncompressed speaker information to the decoder. Speaker disentanglement, in this case,
can be justified with the redundancy principle (Barlow, 1989). Since the decoder is explicitly
conditioned on the speaker identity, the encoder does not have to capture speaker-dependent
information in the latents. The desired speaker independence is achieved if the dimension of the
latent space satisfies the following trade-off. On the one hand, it has to be sufficiently small to
factor out the speaker’s information. On the other hand, it has to be large enough to allow for
perfect reconstruction and thus capture as much of the input data as possible.

2.1.1 AutoVC

AutoVC was proposed by Qian et al. (2019), and it was the first system to perform zero-shot
VC. This system achieves state-of-the-art results in many-to-many VC with non-parallel data.
Despite the astonishing results of this approach, the architecture of AutoVC is basic and based
on a simple conditional AE. Note that AEs learn to compress and decompress an input signal,
so VC does not happen during training. When AutoVC is in conversion mode, both the latent
representation obtained by the encoder and the target speaker information are used to generate
the output speech.

Let X1 and X2 be the log-scale mel-spectrograms of the source and target speech signals.
AutoVC is only fed these two signals, so any kind of transcription or time-aligned feature is
needed. The converted speech is obtained using four different modules, as depicted in Figure 2.3.
Note that during training, both the source and the target inputs are the same, i.e., X2 = X1. In
this case, the output of the decoder is denoted as X̂1→1.

Zero-shot VC is achieved using the pre-trained speaker encoder. In particular, the speaker
encoder Es (module (b) in Figure 2.3) is trained by the AutoVC authors using the architecture
and the Generalized End-to-End (GE2E) loss described in Wan et al. (2017). The GE2E is
particularly suitable for the task of speaker representation because it maximizes the similarity
of the embeddings belonging to a given speaker and minimizes the similarity of the embeddings
for utterances of different speakers. The speaker encoder network is trained with the GE2E loss
alone, and its weights are not updated during the training of AutoVC.

The training objective of AutoVC includes the usual self-reconstruction loss of AEs. In par-
ticular, the expected squared `2 norm between the input and the output is used (2.1).
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AUTOVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss
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Figure 3. AUTOVC architecture. The number above each block represents the cell/output dimension of the structure. ConvNorm denotes
convolution followed by batch normalization. BLSTM denotes bi-directional LSTM, whose white block denotes forward direction, and
grey block denotes backward direction. (a) The content encoder. The Es(·) module is of the same architecture as in (b). (b) The style
encoder. (c) The decoder. (d) The spectrogram inverter. (e) and (f) demonstrate the downsampling and upsampling of the forward and
backward outputs of the Bi-directional LSTM, using a up/downsampling factor of 3 as an example. The real up/downsampling factor is
32. The lightened feature denotes that they are removed; the arrows denote copying the feature at the arrow origin to the destination.

the loss specified in Eq. (5), we add an initial reconstruction
loss defined as

Lrecon0 = E[‖X̃1→1 −X1‖22], (11)

where X̃1→1 is the reciprocal of X̃1→2 in the reconstruction
case, i.e. when U2 = U1. The total loss becomes

min
Ec(·),D(·,·)

L = Lrecon + µLrecon0 + λLcontent. (12)

Although Eq. (12) deviates from Eq. (5), on which Thm. 1
rests, we found empirically that this improves convergence
and does not harm the performance.

4.4. The Spectrogram Inverter

We apply the WaveNet vocoder as introduced in Van
Den Oord et al. (2016), which consists of four deconvo-
lution layers. In our implementation, the frame rate of the
mel-spetrogram is 62.5 Hz and the sampling rate of speech
waveform is 16 kHz. So the deconvolution layers will up-
sample the spectrogram to match the sampling rate of the
speech waveform. Then, a standard 40-layer WaveNet con-
ditioning upon the upsampled spectrogram is applied to
generate the speech waveform. We pre-trained the WaveNet
vocoder using the method described in Shen et al. (2018) on
the VCTK corpus.

5. Experiments
In this section, we will evaluate AUTOVC on many-to-many
voice conversion tasks, and empirically validate the assump-
tions of the AUTOVC framework. We strongly encourage
readers to listen to the demos4.

4https://auspicious3000.github.io/autovc-demo/

5.1. Configurations

The evaluation is performed on the VCTK corpus (Veaux
et al., 2016), which contains 44 hours of utterances from 109
speakers. Each speaker reads a different set of sentences, ex-
cept for the rainbow passage5 and the elicitation paragraph.
So the conversion setting is non-parallel. Depending on the
conversion tasks, different subsets of speakers were selected.
The data of each speaker is then partitioned into training
and test sets by 9:1. AUTOVC is trained with a batch size
of two for 100k steps, using the ADAM optimizer. The
speaker embedding is generated by feeding 10 two-second
utterances of the same speaker to the speaker encoder and
averaging the resulting embeddings. The weights in Eq. (12)
are set to λ = 1, µ = 1.

We performed two subjective tests on Amazon Mechanical
Turk (MTurk)6. In the first test, called the mean opinion
score (MOS) test, the subjects are presented with converted
utterances. For each utterance, the subjects are asked to
assign a score of 1-5 on the naturalness on the converted
speech. In the second test, called the similarity test, the
subjects are presented with pairs of utterances. In each pair,
there is one converted utterance, and one utterance from the
target speaker uttering the same sentence. For each pair,
the subjects are asked to assign a score of 1-5 on the voice
similarity. We follow the design in Wester et al. (2016)
to cue the subjects to judge if the speakers are the same,
and how confident they are with their judgment. Thus the
similarity score of 5 corresponds to the same speaker with
high confidence, and 1 corresponds to different speakers

5http://web.ku.edu/ idea/readings/rainbow.htm
6https://www.mturk.com/

Figure 2.3: AutoVC (Qian et al., 2019) model architecture in conversion mode. The target signal
X2 is fed to the style encoder (b), which outputs the representation of the target speaker,
s2 := Es(X2). The source signal X1 is also fed to the style encoder (b) giving s1 := Es(X2).
The input of the content encoder (a) is the source signal X1 and the latter source speaker
representation s1. The content encoder applies information bottlenecks to the input and outputs
the forward and backward code, denoted as C1→ and C1← respectively. The output of the
content encoder (C1→,C1←) := Ec(X1, s1) and the target speaker representation s2 are fed
to the decoder, which outputs the log-scale mel-spectrogram X̂1→2 := D(C1→,C1←, s2), that
contains the content of the source signal and the style of the target. This representation is mapped
to raw speech with (d). The subfigures (e) and (f) represent the downsampling and upsampling
of C1→ and C1← respectively.

Lrecon = E
[∥∥∥X̂1→1 −X1

∥∥∥2
2

]
(2.1)

To avoid getting over-smoothed outputs as reported for the VAE model for VC proposed by
Kameoka et al. (2018), an additional initial self-reconstruction loss term is added. The decoder
D (module (c) in Figure 2.3) uses a residual network to build the finer details of the output. The
usual self-reconstruction loss uses the decoder’s output, but this same loss is also used on the
rough reconstruction obtained before the residual network (2.2). Adding this term was reported
to empirically improve the convergence in Qian et al. (2019).

Lrecon0 = E
[∥∥∥X̃1→1 −X1

∥∥∥2
2

]
(2.2)

Alongside the previous reconstruction losses, an additional content code reconstruction error
is added. The input X1 is transformed so that the codes (C1→,C1←) := Ec(X1) don’t contain
speaker information. As aforementioned, this is achieved by providing the uncompressed speaker
information to the decoder. Speaker-independent codes will allegedly be achieved if the encoder
compresses the signal enough, and the decoder is still able to obtain a faithful reconstruction.
The content encoder applies an information bottleneck that both reduces the dimension along the
mel-scale and downsamples the signal in the temporal dimension (modules (e,f) in Figure 2.3).

Note that if speaker disentanglement is achieved, the codes of the reconstructed signal
Ec

(
X̂1→1

)
should be the same as those of the original signal. The fact that the codes should



2. Literature Review 10

match is because X1 and X̂1→1 should only differ on the speaker information, which is not rep-
resented on the codes. The code consistency is enforced by adding the expected `1 norm between
the codes from the original and reconstructed signal (2.3).

Lcontent = E
[∥∥∥Ec (X̂1→1

)
− Ec(X1)

∥∥∥
1

]
(2.3)

The AE, which includes the content encoder Ec and the decoder D, is then trained with the
objective function in (2.4), where λ = µ = 1 in Qian et al. (2019).

min
Ec,D
{Lrecon + µLrecon0 + λLcontent} (2.4)

The output of the AE is mapped to raw speech by first upsampling the spectrogram to
match the original speech waveform’s sampling rate and then applying WaveNet conditioned on
the upsampled spectrogram (van den Oord et al., 2016).

For all the qualities that AutoVC offers, this model was chosen as a starting point for this
project.

2.1.2 CycleVAE

Tobing et al. (2019) proposed CycleVAE, a system that performs VC with non-parallel data
by means of a compression-decompression scheme. Differing from AutoVC, the information bot-
tleneck of CycleVAE is modeled with a VAE and not a plain AE, which means that the latents
are enforced to follow a known distribution. CycleVAE learns one-to-one mappings, so a different
model for each pair of source and target speakers is needed.

The breakthrough of Tobing et al. (2019) is that they propose incorporating VC during train-
ing. Performing VC during the training procedure helps overcome the performance degradation
that comes from the impossibility to evaluate the converted speech. Having no parallel data
means that there is no target signal for the converted speech, so the usual approach is to train on
self-reconstruction. Even if this is the case, VC is incorporated in the CycleVAE training flow by
performing more than one conversion and only evaluating those outputs whose target speaker is
the original speaker. Each of such conversions is denoted as cycle and includes the computation
of both the reconstructed (target speaker is the source speaker) and converted spectra (target
speaker is not the source speaker).

The CycleVAE flow is depicted in Figure 2.4. Note that not only the source but also a target
speaker is used during training in this case, and the reconstruction loss is computed when the
converted speech at the end of one cycle corresponds to the source speaker. CycleVAE is then
trained, minimizing the sum of all the reconstruction losses for each cycle.

CycleVAE uses spectral envelope parameters and excitation features as input. In particular,
the first 35 Mel-Frequency Cepstral Coefficients (MFCCs) are used as spectral envelope parame-
ters. For the excitation features, log-scale pitch contour, a voiced/unvoiced flag, and aperiodicity
coding coefficients are used. The former parameters are computed using WORLD (MORISE
et al., 2016).
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2. Conventional VAE-based VC
The flow of conventional VAE-based VC is illustrated by
the upper part of Fig. 1. Let Xt = [e

(x)⊤
t , s

(x)⊤
t ]⊤,

e
(x)
t = [e

(x)
t (1), . . . , e

(x)
t (De)]

⊤, and s
(x)
t =

[s
(x)
t (1), . . . , s

(x)
t (Ds)]

⊤ be the De + Ds, De, and Ds-
dimensional feature vectors of the input, the excitation, and the
spectra, respectively, at frame t. In the training phase, given a
set of network parameters {θ,φ}, a sequence of input features
X = [X⊤

1 , . . . ,X
⊤
T ]

⊤ and time-invariant Dc-dimensional
source speaker-code features c(x) [19], a set of updated
network parameters {θ̂, φ̂} is estimated by maximizing the
variational lower bound function [23] as follows:

{θ̂, φ̂} = argmax
θ,φ

T∑

t=1

L(θ,φ,Xt, c
(x)), (1)

where

L(θ,φ,Xt, c
(x))=−DKL(qφ(zt|Xt)||pθ(zt))

+Eqφ(zt|Xt)
[log pθ(s

(x)
t |zt,c

(x))], (2)

qφ(zt|Xt)=N (zt;f
(µ)
φ (Xt), diag(f

(σ)
φ (Xt)

2)), (3)

pθ(s
(x)
t |zt,c

(x))≈N (s
(x)
t ; gθ(ẑ

(x)
t , c(x)), I), (4)

ẑ
(x)
t =f

(µ)
φ (Xt)+f

(σ)
φ (Xt)⊙ ǫ s. t. ǫ ∼ N (0, I). (5)

zt denotes a Dz-dimensional latent feature vector, fφ(·) de-
notes an encoder network, gθ(·) denotes a decoder network, ⊙
denotes an element-wise product, and N (;µ,Σ) is for a Gaus-
sian distribution with mean vector µ and covariance matrix Σ.

Therefore, the reconstructed source spectra feature vector
ŝ
(x)
t , i.e., estimated spectra with the same speaker characteris-

tics as the input source speaker, is given by

ŝ
(x)
t = gθ(ẑ

(x)
t , c(x)). (6)

On the other hand, the converted source-to-target spectra ŝ(y|x)
t ,

i.e., estimated spectra with the voice characteristics of a desired
target speaker, is given by

ŝ
(y|x)
t = gθ(ẑ

(x)
t , c(y)), (7)

where c(y) denotes the time-invariant Dc-dimensional target
speaker-code features [19]. In this paper, we use not only
source, but also target speakers as input in training. In order
to use the corresponding target speaker as the input speaker,
i.e., optimization of reconstructed target spectra and/or perform-
ing target-to-source conversion, the notations of x and y, in
Eqs. (1)–(7), are swapped with each other. Though, the perfor-
mance of VAE-based VC is noticeably insufficient because the
conversion flow is not considered in the parameter optimization.

3. Proposed CycleVAE-based VC
In this paper, to improve the VAE-based VC, as illustrated in
Fig. 1, we propose CycleVAE, which is capable of recycling the
converted spectra back into the system, so that the conversion
flow is indirectly considered in the parameter optimization. A
similar idea has also been proposed as a cycle-consistent flow
in a self-supervised method for visual correspondence [24].

In the proposed CycleVAE-based VC, the parameter opti-
mization is defined as follows:

{θ̂, φ̂} = argmax
θ,φ

T∑

t=1

L(θ,φ,Xt, c
(x), c(y)), (8)
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Figure 1: Flow of the conventional VAE-based (upper-part) and
the proposed CycleVAE-based (whole diagram) VC. Converted
input features include converted excitation features, such as lin-
early transformed F0 values. One full-cycle includes the esti-
mation of both reconstructed and cyclic reconstructed spectra.
Each of encoder and decoder networks are shared for all cycles.

where

L(θ,φ,Xt, c
(x), c(y))=

N∑

n=1

−DKL(qφ(zn,t|Xn,t)||pθ(zt))

−DKL(qφ(zn,t|Ŷ n,t)||pθ(zt))

+Eqφ(zt|Xt)
[log pθ(s

(x)
n,t = s

(x)
t |zn,t,c

(x))]

+ Eq
φ(zt|Ŷ t)

[log pθ(s
(x|x)
n,t = s

(x)
t |zn,t,c

(x))], (9)

qφ(zn,t|Ŷ n,t)=N (zn,t; f
(µ)
φ (Ŷ n,t), diag(f

(σ)
φ (Ŷ n,t)

2)),

(10)

pθ(s
(x|x)
n,t |zn,t,c

(x)) ≈ N (s
(x)
t ; gθ(ẑ

(y|x)
n,t , c(x)), I), (11)

ẑ
(y|x)
n,t =f

(µ)
φ (Ŷ n,t)+f

(σ)
φ (Ŷ n,t)⊙ ǫ s. t. ǫ ∼ N (0, I),(12)

where s(x)
n,t and s

(x|x)
n,t are random variables, s(x)

t is an observed
value, and

Ŷ n,t = [ê
(y|x)⊤
t , ŝ

(y|x)⊤
n,t ]⊤, (13)

ŝ
(y|x)
n,t = gθ(ẑ

(x)
n,t, c

(y)), (14)

ŝ
(x)
n,t = gθ(ẑ

(x)
n,t, c

(x)), (15)

Xn,t = [e
(x)⊤
t , ŝ

(x|x)⊤
n−1,t ]⊤, (16)

ŝ
(x|x)
n,t = gθ(ẑ

(y|x)
n,t , c(x)). (17)

The index of the n-th cycle is denoted as n. The total number
of cycle is N . Ŷ n,t denotes the converted input features at n-th
cycle, ê(y|x)

t denotes the converted source-to-target excitation
features, e.g., linearly transformed F0, ŝ(x|x)

n,t denotes the cyclic
reconstructed spectra at n-th cycle, and at n = 1, ŝ(y|x)

1,t =

ŝ
(y|x)
t , ŝ(x)

1,t = ŝ
(x)
t , ẑ(x)

1,t = ẑ
(x)
t and X1,t = Xt. Hence,

in the proposed CycleVAE-based VC, the conversion flow is
indirectly optimized through the consideration of the converted
spectra ŝ

(y|x)
n,t in each n-th cycle.

675

Figure 2.4: CycleVAE (Tobing et al., 2019) flow. The conventional VAE/glsae-based flow corre-
spond to the first cycle (upper-part). Each encoder and decoder have the same parameters for
all cycles.

Let f0 be the random variable representing the instantaneous pitch or fundamental frequency.
Let µsrc and σsrc be the mean and standard deviation of this quantity amongst all the speech
signals of the source speaker. In order to preserve the intonation, which is determined by the
pitch contour, the source speaker pitch is used. However, to resemble the characteristics of the
target speaker, the estimated log-scaled pitch of the target speaker ̂log f0,trg obtained with (2.5)
is used to condition the raw speech generator.

̂log f0,trg = µtrg +
σtrg
σsrc

(log f0,src + µsrc) (2.5)

CycleVAE achieves fast conversions in its variant using Parallel WaveGAN (Yamamoto et al.,
2019) as a raw speech generator1.

2.1.3 VQ-VAE

Vector Quantization (VQ)-VAE was introduced in the paper entitled Discrete Neural Repre-
sentation Learning by van den Oord et al. (2017). The main contribution of this work was the
incorporation of VQ in the latent representation obtained by the encoder of a VAE, which gives
discrete latents. The encoder of the VAE generates real latents that are then substituted by one
of the K vectors in the codebook. In particular, the real latent is substituted with the codebook
vector that is closer in the `2 norm sense.

The quantization operator is non-differentiable since it is a piece-wise constant function. To
jointly train the encoder and decoder networks, van den Oord et al. (2017) use the straight-
through estimator by Bengio et al. (2013), which consists in copying the gradients from the
quantized latents to those before quantization. The codebook elements are updated using the
VQ objective, which uses the `2 error to move the codebook elements towards the encoder
outputs.

1An implementation of CycleVAE+Parallel WaveGAN used as a baseline for the Voice Conversion Challenge
2020 can be found in the following GitHub repository: https://github.com/bigpon/vcc20_baseline_cyclevae.

https://github.com/bigpon/vcc20_baseline_cyclevae
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Figure 2.5: Schema of VQ-VAE in the configuration to perform voice-style transfer. Image taken
from https://avdnoord.github.io/homepage/vqvae/.

VQ-VAE has been successfully applied to speech, images and videos (van den Oord et al.,
2017). Its configuration to perform speech style transfer is shown in Figure 2.5. Note that, in this
case, the decoder network is a WaveNet (van den Oord et al., 2016). The speaker disentanglement
of the latents is achieved by conditioning such a decoder on both the latents and a speaker
embedding. In particular, one-hot embeddings are used to represent the speaker’s identity. This
system is trained in reconstruction so that non-parallel data can be used.

2.2 Mapping from speaker-independent features

Given that VC requires the factorization of speech into linguistic and non-linguistic informa-
tion, one natural approach is to use representations that lack speaker information. Such repre-
sentations are then fed into a system along with the information of the target speaker.

Sun et al. (2016) proposed the use of Phonetic PosterioGrams (PPGs) over senones. PPGs
are a two-dimensional feature representing the posterior probability of each phonetic class for
each temporal frame. The phonetic class may be words, phones, or senones, which are context-
dependent phonetic units.

2.2.1 ASR+TTS

Another approach that yields high-quality conversions is first transcribing the text using an
Automatic Speech Recognition (ASR) system and then using a TTS model conditioned on the
target speaker and the transcription. This approach’s success comes from the fact that the two
systems have been widely studied, and there are already several solutions at the user level in the
form of virtual assistants. Some examples of these systems are Apple’s Siri, Amazon’s Alexa, or
Google’s Assistant. Such a system recognizes a command uttered by the user by using an ASR
system. The transcription is then processed, and the query is answered by the virtual assistant
using a TTS system.

https://avdnoord.github.io/homepage/vqvae/
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A recipe to perform VC using the concatenation of ASR and TTS systems can be found in
the open-source End-to-end Speech Processing Toolkit (ESPnet) (Hayashi et al., 2019; Inaguma
et al., 2020; Watanabe et al., 2018). This system in particular is used as a baseline for the 2020
VC challenge.

The previous approaches use a pre-trained model to compute the speaker-independent rep-
resentation. Such a model is not explicitly trained for the VC task, and its parameters are not
modified to avoid the filtering of speaker information. Even if the ASR approach offers in general
outstanding results, in the case of using text as an intermediate representation, the temporal
information is completely lost. Moreover, most of the speaker-independent features also lack
para-linguistical information such as the intonation, which can potentially lead to conversions
having different meanings in some cases.

2.2.2 Adversarial training

Another approach to achieve speaker-independent representations while preserving para-
linguistical and timing information is to extract latent variables from speech and explicitly enforce
them to be speaker-independent. Enforcing speaker independence can be done with an adver-
sarial setting, where a classifier is trained to predict the speaker from the latent representation.
The loss from such classifiers can then be used to learn the mapping from the input signal to the
latent space (Barbany, 2018, Section 3.2.2.). With this method, the representation can be better
suited for the task of VC by jointly training the feature extractor and the conversion modules.

Chou et al. (2018) proposed such an adversarial setting for non-parallel VC. This work was
one of the first successful implementations of a GAN-based model working with multiple speakers.
Previous research in GANs for VC was mainly based in Zhu et al. (2017), which required one
pair of generator and discriminator for each target speaker.

In this work, the input waveform is mapped to a latent representation with an encoder. This
latter is then reconstructed with a decoder. This decoder uses both the latent representation
computed with the encoder and the target speaker identity. The model is trained on reconstruc-
tion, and a speaker classification enforces the latent representation to be speaker-independent. By
training an additional speaker classifier, Chou et al. (2018) showed that the adversarial classifier
was needed to enforce speaker-independent latent representations for their proposed architecture.

With this approach, the obtained STFTs of the conversions tend to be blurry and have
artifacts. To overcome this problem, Chou et al. (2018) proposed a second training stage where
the generator of a GAN is trained to build the fine details of the spectrum obtained with the
previous decoder.

MelGAN-VC is a model for non-parallel VC uniquely based on GANs with mel-spectrograms
as input proposed by Pasini (2019). MelGAN-VC works with arbitrarily length audios by splitting
and concatenating spectrograms but needs one pair of generator and discriminator networks for
each target speaker. This method uses the classical Griffin-Lim algorithm (Griffin and Jae Lim,
1984) for mel-spectrogram inversion instead of using a conditional generative model. Note that
even if the name of the method is MelGAN-VC, this model has nothing to do with MelGAN
from Kumar et al. (2019).

Kameoka et al. (2018) proposed StarGAN, a GAN-based framework for non-parallel many-
to-many VC. StarGAN solves the problem of needing one pair of generator and discriminator
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by speaker that Pasini (2019) has by conditioning both networks with the speaker identity. The
generator learns to map the input features to the target domain, and the discriminator network
tries to predict whether the generated signal belongs to the target domain or not. An additional
domain classifier is used to ensure that the generated samples have the desired attributes, e.g.,
are classified as if they belong to the target speaker.

2.3 Speech Synthesis

One common approach for voice conversion is to leverage existing generative models for the
task of raw speech generation. Using such models reduces the problem of VC to the generation
of conditioning signals used for generative models to create raw speech. The conditioning signal
is a representation with lower-resolution than the raw speech. Such representation is usually
chosen to be efficiently calculated from the raw speech signal and easy to model. However, this
representation has to preserve enough information to allow faithful inversion. Some examples of
speech conditioning signals are time-aligned linguistic features and mel-spectrograms.

The same two-stage process of audio modeling is widespread in the literature, not only in VC
but also in TTS. For this latter, a first model converts text into a conditioning signal, which is
then fed to a generative model that produces raw speech (Wang et al., 2017; Sotelo et al., 2017).
In this section, three of the most popular generative models for raw audio synthesis used in the
recent VC literature are presented.

2.3.1 WaveNet

WaveNet (van den Oord et al., 2016) is a generative model for raw audio waveform generation.
The model is fully probabilistic and AR, with the predictive distribution for each audio sample
conditioned on the previous samples. The joint probability of a waveform is factorized as a
product of conditional probabilities, whose distribution is modeled by a stack of dilated causal
convolutional layers (see Figure 2.6). Causality makes WaveNet an AR model, and the dilation
allows increasing the receptive field by orders of magnitude without needing many layers or large
filters that would greatly increase the computational cost.

In particular, WaveNet exponentially increases the dilation factor, and with 32 layers where
each convolution has a kernel size of 2, 1024 samples can be encompassed. WaveNet has a recep-
tive field of 240 ms, which translates to 3840 samples at 16 kHz, the frequency at which WaveNet
runs. Nevertheless, this is not enough to model some long-term dependencies like prosody. Bad
prosody modeling translates into unnatural speech, but this problem can be solved by condition-
ing the WaveNet on pitch contours predicted with an external model at a lower frequency. In
particular, WaveNet uses a prosody conditioning signal at 200 Hz. The same problem with the
modeling of long-term dependencies appears in this project and is discussed in Section 4.2.

Training aWaveNet is fast, given that the CNN architecture allows parallelizing the prediction
of the sample values at all time steps by using the ground-truth sample values to predict a new
sample. However, during inference, each input sample must be drawn from the output distribution
before it can be fed as input for the next sample’s prediction. Therefore, WaveNet is poorly suited
to parallel processing and hard to deploy in a real-time production setting.
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Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1×1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt−1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)

ln (1 + µ)
,

3

Figure 2.6: Stack of dilated causal convolutional layers from van den Oord et al. (2016).

2.3.2 MelGAN

MelGAN (Kumar et al., 2019) is a non-AR fully convolutional model for raw speech gener-
ation. Non-AR models are usually orders of magnitude faster than AR models. This is due to
the fact that speech generation can be highly parallelized in the non-AR case, which is specially
suited for GPUs and TPUs.

MelGAN learns the distribution of raw speech conditioned on log-scale mel-spectrograms
through the two-player minimax game of a GAN (Goodfellow et al., 2014). Unlike regular GANs,
MelGAN uses multiple discriminators that run at different rates, which fits the hierarchical
structure of long and short time dependencies in speech. In particular, MelGAN uses three
discriminators D1, D2 and D3. D1 operates on raw audio, D2 on audio downsampled by a factor
of 2, and D3 on audio downsampled by a factor 4. The downsampling in all cases is performed
using strided average pooling with kernel size 4. Several multi-scale discriminators introduce the
inductive bias of the long and short term dependencies of speech. Kumar et al. (2019) shows that
this multi-level structure is necessary because using the single discriminator used in traditional
GANs introduces metallic audio.

Figure 2.7 depicts the MelGAN model architecture. Note that the generator is composed of
dilated convolution, which again gives an inductive bias of the long-range correlation of speech
signals as in van den Oord et al. (2016). The dilation factor is chosen to grow exponentially
with the kernel size to avoid checkerboard artifacts, which in audio translates to high-frequency
hissing noises.

Each discriminator Dk is trained using the Hinge loss version of the GAN objective (2.6),
where x is the raw waveform and s the conditioning signal. The discriminators are window-based,
which means that they learn to distinguish the distribution of real and fake audio chunks, not
entire audio sequences. Such discriminators can be applied to audio sequences of variable length
(Kumar et al., 2019).

min
Dk
{Ex[min(0, 1−Dk(x))] + Es[min(0, 1 +Dk(G(s)))]} ∀k ∈ [3] (2.6)

Note that in the above equations, the generator does not have a global noise input as tradi-
tional GANs do, even though the mel-spectrogram inversion is an ill-posed problem. Having a
deterministic generative model is counterintuitive because there is not a unique mapping between
the mel-spectrogram and the raw temporal signal. After all, the former is a lossy representation
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Figure 1: MelGAN model architecture. Each upsampling layer is a transposed convolution with
kernel-size being twice of the stride (which is same as the upsampling ratio for the layer). 256x
upsampling is done in 4 stages of 8x, 8x, 2x and 2x upsampling. Each residual dilated convolution
stack has three layers with dilation 1, 3 and 9 with kernel-size 3, having a total receptive field of 27
timesteps. We use leaky-relu for activation. Each discriminator block has 4 strided convolution with
stride 4. Further details can be found in the Appendix 6.

layers are not carefully chosen. Donahue et al. (2018b) examines this for raw waveform generation
and finds that such repeated patterns lead to audible high frequency hissing noise. We solve this
problem by carefully choosing the kernel-size and stride for our deconvolutional layers as a simpler
alternative to PhaseShuffle layer introduced in Donahue et al. (2018b). Following Odena et al. (2016),
we use kernel-size as a multiple of stride. Another source of such repeated patterns, can be the dilated
convolution stack if dilation and kernel size are not chosen correctly. We make sure that the dilation
grows as a power of the kernel-size such that the receptive field of the stack looks like a fully balanced
(seeing input uniformly) and symmetric tree with kernel-size as the branching factor.

Normalization technique We noticed that the choice of normalization technique for the generator
was extremely crucial for sample quality. Popular conditional GAN architectures for image generation
(Isola et al., 2017; Wang et al., 2018b) use instance normalization (Ulyanov et al., 2016) in all the
layers of the generator. However, in the case of audio generation we found that instance normalization
washes away important important pitch information, making the audio sound metallic. We also
obtained poor results when applying spectral normalization (Miyato et al., 2018) on the generator as
suggested in Zhang et al. (2018); Park et al. (2019). We believe that the strong Lipshitz constraint on
the discriminator impacts the feature matching objective (explained in Section 3.2) used to train the
generator. Weight normalization (Salimans & Kingma, 2016) worked best out of all the available
normalization techniques since it does not limit the capacity of the discriminator or normalize the
activations. It simply reparameterizes the weight matrices by decoupling the scale of the weight
vector from the direction, to have better training dynamics. We therefore use weight normalization in
all layers of the generator.

2.2 Discriminator

Multi-Scale Architecture Following Wang et al. (2018b), we adopt a multi-scale architecture with
3 discriminators (D1, D2, D3) that have identical network structure but operate on different audio
scales. D1 operates on the scale of raw audio, whereas D2, D3 operate on raw audio downsampled
by a factor of 2 and 4 respectively. The downsampling is performed using strided average pooling
with kernel size 4. Multiple discriminators at different scales are motivated from the fact that audio
has structure at different levels. This structure has an inductive bias that each discriminator learns

4

Figure 2.7: MelGAN (Kumar et al., 2019) model architecture.

of the latter. However, Kumar et al. (2019) hypothesizes that the conditioning imposed by the
mel-spectrogram is very strong, and thus noise input is not essential.

Regarding the training of the generator, two losses are used: the usual discriminator’s signal
of GAN training (2.7), but also an additional feature matching loss (2.8). This latter is similar
to a perceptual loss (Gatys et al., 2015; Johnson et al., 2016), and differs from other regularizers
used in conditional GANs that try to match the input signal. This loss aims at matching each
i−th feature map in every of the T layers of each discriminator for both real and generated
speech.

The `1 norm on the difference between the generated output and the original raw waveform
was reported to introduce sound artifacts in Kumar et al. (2019). On the other hand, the feature
matching loss offers high-level descriptors that better model the nature of real speech signals.

LD(G,Dk) = Es

−∑
k∈[3]

Dk(G(s))

 (2.7)

LFM (G,Dk) = Ex

[
T∑
i=1

1

Ni

∥∥∥D(i)
k (x)−D(i)

k (G(s))
∥∥∥
1

∣∣∣∣∣ s conditioning extracted from x

]
(2.8)

The generator network is then trained with the objective function in (2.9) with λ = 10 in
Kumar et al. (2019).

min
G
{LD + λLFM} (2.9)

MelGAN is a high-speed conditional generative model that offers comparable quality to some
slower AR models, such as WaveNet (van den Oord et al., 2016). The downside of this model is
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that it assumes that the conditioning signal is temporally aligned to the input. So even if the
generative model could potentially be conditioned on other signals than the mel-spectrogram,
the length of the desired raw waveform has to be a multiple of the length of the conditioning
signal.

2.3.3 Parallel WaveGAN

Parallel WaveGAN (Yamamoto et al., 2019) is yet another popular generative model for
audio synthesis consisting of a non-AR model based on GAN. The generator network is inspired
by WaveNet (van den Oord et al., 2016), but uses non-causal convolutions and uses random
Gaussian noise as input. Therefore, the predicted samples are not fed back to the generator, and
the speech generation process can be parallelized.

As it was the case for MelGAN, Parallel WaveGAN also uses an additional loss term alongside
the adversarial loss given by the discriminator. The approach, in this case, is not to apply the `1
norm to the raw waveform nor to use feature matching as in MelGAN. Instead, `1 and Frobenius
norms are used on the STFT magnitudes of the signal at different resolutions. The use of losses
at several resolutions incorporates the inductive bias of the hierarchical structure of speech while
it avoids forcing a match on the unsupervised representations given by the feature maps of the
discriminators in MelGAN.

2.4 Voice Conversion Challenge

The Voice Conversion Challenge is a biannual workshop at INTERSPEECH, the world’s
largest technical conference on speech processing and applications. The first edition of the VC
Challenge was held in 2016 and was aimed at evaluating and understanding different VC. The
VC Challenge aims at improving VC technology, that is, without focusing on any particular
application, using a common dataset, metrics, and baseline systems provided by the organizers.
As mentioned in Chapter 1, one of the most significant difficulties of VC is the lack of objective
measures. Subjective scores give an idea of the quality of a system, but the subjectivity makes
comparing different approaches impossible solely based on these scores. The VC Challenge also
evaluates the systems using subjective scores, but each system is rated by listeners from the same
population. Since the compared systems are anonymized, and both the evaluators’ population
and the dataset are common, a faithful system comparison can be performed.

Another goal of the VC Challenge is to bring together different teams from both academia
and industry to look at a common goal. In particular, each of the three challenges so far has
introduced new unsolved problems, which make the VC problem harder.

The first edition of the Challenge (Toda et al., 2016) was centered in models trained on clean
parallel data. The results of the Challenge set new baselines for the VC task and helped to share
views about unsolved problems.

The second edition (Lorenzo-Trueba et al., 2018), included parallel but also non-parallel VC.
The data also halved with respect to the past Challenge edition to force the systems to generalize
with fewer data as shown in Table 2.1. This edition provided subjective comparisons but also
introduced the evaluation of systems using spoofing performance (Kinnunen et al., 2018). The
spoofing performance measured the vulnerability of speaker verification systems against samples

http://www.vc-challenge.org/
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Challenge Language Training Number of Testing
Utterances Speakers Utterances

VCC 2016 Monolingual 162 parallel 4 source, 4 target 54

VCC 2018 Monolingual 81 parallel 4 source, 4 target 35
Monolingual 81 non-parallel 4 source, 4 target 35

VCC 2020 Monolingual 20 parallel, 50 non-parallel 4 source, 4 target 25
Cross-lingual 70 non-parallel 4 source, 6 target 25

Table 2.1: Summary of VCC 2016, 2018, and 2020 adapted from Sisman et al. (2020).

obtained with VC systems and thus rated the matching of speech characteristics.

One of the teams that submitted samples to the 2018 Challenge (N10) vastly outperformed all
the other systems in all the metrics. The results presented in the VC Challenge are anonymized.
However, the organizers asked permission to the N10 authors and made an exception to describe
this system, given its supremacy. The N10 system by Liu et al. (2018) achieves VC with a
conversion function that converts the acoustic features extracted from the source speech using the
STRAIGHT (Kawahara, 2006) vocoder. Such converted acoustic features are used to condition
WaveNet (van den Oord et al., 2016), which generates raw speech.

In particular, the N10 system uses acoustic features, including MFCCs and pitch, and a
speaker embedding. The conversion model includes a speaker-independent content feature ex-
tractor, mapping the former acoustic features to phonetic transcriptions. Such mapping is learned
using hundreds of hours of recording with aligned phonetic transcriptions. The conversion func-
tion also includes a speaker-dependent feature predictor that converts the content features to
the target speaker. Since the content feature extractor and the content predictor are trained
separately, the N10 system can be used in parallel and non-parallel settings. The authors of this
system also performed some manual checks and annotations of the VC Challenge data. Some
of these manual checks include pitch extraction errors and the removal of speech segments with
irregular phonation (Lorenzo-Trueba et al., 2018).

The third edition of the Challenge (VCC20) registered the highest participation amongst the
previous editions, with more than 90 research groups around the globe enrolled. This edition was
centered on non-parallel training, and two tasks were presented on this framework.

Similarly to the 2018 edition, one task was to perform VC within the same language. The
second task, however, introduced a new problem termed as cross-lingual VC. In this setting, the
source and target speakers speak different languages. Note that, following the speech style transfer
and VC formulation, the source content is unaltered, so this task does not include translation of
the linguistic content.

For the 2020 edition of the Challenge, the organizers provided speech samples and imple-
mentations of two baseline systems. One of these systems was an implementation of CycleVAE
(Tobing et al., 2019) with Parallel WaveGAN (Yamamoto et al., 2019) as a conditional genera-
tive model (see Section 2.1.2). The second baseline was a concatenation of an ASR system and
a TTS system (see Section 2.2.1) using ESPNET (Hayashi et al., 2019; Inaguma et al., 2020;
Watanabe et al., 2018) and Parallel WaveGAN (Yamamoto et al., 2019). Samples from the N10
system from the 2018 edition were also provided for comparison.



2. Literature Review 19

2.5 Applications

VC can be used to modify a speech signal so that it sounds as spoken by a target speaker.
The ability to clone someone’s voice can be used to customize audiobooks, dubbing in the movie
industry, and clone voices of historical persons. This internship was driven by the application
of VC to customizing avatar voices, which could be used to offer speech anonymization, which
preserves the privacy of the speaker and can potentially be a desirable feature in environments
such as online gaming. This could also avoid gender discrimination in this environment.

Some of the non-obvious applications of VC include aids for vocally impaired people such as
patients of dysarthria (Kumar and Kumar, 2016) and laryngectomees (Doi et al., 2014). These
methods consist of enhancing the speech uttered by people with some disease affecting speech
by improving its intelligibility. They can be formulated as a speech transfer problem, where
the content is the linguistic information as in VC. However, in this case, the target style is the
patient’s voice without any vocal impairment.

Another related application is silent speech interfaces (Toda et al., 2012). In this case, there is
no input speech signal, but the aim is to generate speech based on other signals such as ultrasound
images of the tongue and lip movements or the electromyography of the larynx and the speech
articulator muscles. This technique is thus also suited for vocally impaired patients but can also
be used as electronic lip reading. This problem can also be formulated in the framework of style
transfer, but with signals of different nature.

VC can also be applied to voice changing for expressive speech (Turk and Schroder, 2010),
where instead of changing the speaker of a speech signal, other para-linguistical factors such as
the intonation and the stress are modified. Other uses of VC are accent conversion for computer-
assisted learning (Felps et al., 2009) and vocal effects for singers (Villavicencio and Bonada,
2010).

VC can also have malicious applications such as the fooling of speaker verification systems.
One of the main goals of VC is to match the speaker characteristics of the target speaker, and
thus VC systems can potentially match the biometrics derived from speech. Given that subjective
scores are not directly related to spoofing, Kinnunen et al. (2018) proposes an assessment of VC
systems with spoofing measures computed with biometric speech systems. The advances in VC
are also relevant to build robust verification systems and are used in spoofing databases as
adversarial examples (Wu et al., 2017).



3 Methodology
As mentioned in Chapter 1, a common approach for audio and speech applications is to

use the STFT, or one of its variants such as the mel-spectrogram, as input. In this chapter,
we discuss a method to implement this transformation with CNNs. The advantage is that the
initial weights give the usual transformation, but such weights can be learned. Learning the
transformation from waveforms can potentially find better representations suited for each task
and recover information not included in the mel-spectrogram due to its lossy nature.

This chapter also describes the two main Speech Style Transfer approaches that were followed
through all this project. Both systems are trained using non-parallel data and perform many-to-
many VC. The sole input of both systems is raw speech and speaker identifiers, so no annotations
or other kinds of additional information are required.

On the one hand, we propose FastVC, an AE-based framework that disentangles the linguistic
and speaker’s information using a compression-decompression scheme. This method lies in the
class of conversion functions described in Section 2.1.

On the other hand, we explore a method based on mapping speaker-independent features
to raw speech. This family of methods is described in Section 2.2 and alleviates the conversion
model from separating the speaker’s information by using features that lack this content. Using
speaker-independent features is a more straightforward approach, but some representations may
not be speaker-independent or missing crucial linguistic information.

In the last section of this chapter, the experimental setup of all the experiments is described.

3.1 Fourier initialization

The implementation of learnable versions of digital signal processing components was already
studied in (Engel et al., 2020). Implementing speech processing techniques with learnable models,
in general, endows such models with powerful inductive biases about the structure of speech
signals. As discussed in Chapter 1, these inductive biases are, in most cases, beneficial and allow
for better results. Moreover, some approaches also reduce the number of free parameters.

One example of an implementation of a typical signal processing filter with neural networks is
SincNet. This model was proposed by Ravanelli and Bengio (2018) and restricts the convolutional
filters to implement band-pass filters with learnable cutoff frequencies. In other words, each filter
only has two learnable parameters: the low and high frequencies determining the ideal band-pass
filter. SincNet is thus one case of inductive bias that reduces the number of needed weights.

Tancik et al. (2020) proposed Fourier feature mappings, where the output is restricted to
be the pair of sine and cosine of some higher-dimensional vector that is later fed to a neural
network. This Fourier feature mapping is presented in (3.1), where v is an input point and B
a random Gaussian matrix where each entry is drawn independently from a zero-mean normal
distribution.

20
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γ(v) = [cos(2πBv), sin(2πBv)]T (3.1)

Implementing the function mapping raw speech to mel-spectrograms with CNNs does not
restrict the neural network’s expressive power. Instead, this allows training with raw waveforms
as input with any of the vast family of deep learning models working with mel-spectrograms.

The proposed initialization sets the weights of the transformation network to the Fourier
eigenvectors and the mel filter-bank coefficients. This initialization aims at providing the same
performance both when using mel-spectrograms as input and at the beginning of plugging the
proposed model and using waveforms as input. Switching from deterministic mel-spectrogram
computation to a learnable transformation that provides the same results allows training on top
of an already working model. When choosing an adequate objective function, this could be used
to improve the model performance further.

The STFT is a powerful general-purpose audio processing tool (Smith, 2011). The purpose
of the mel-scale is to represent the perceived difference between frequencies. Humans can easily
differentiate low frequencies that differ e.g., 100 Hz, but this same distance is hardly perceived
in high frequencies.

For a window w ∈ ZN and hop length h, the STFT of a waveform x is defined as follows:

X[m,ω] :=

N∑
k=0

x[m · h+ k]w[k]e−j
2πωk
N (3.2)

The STFT is complex valued, but we can decompose it into its real and complex part, which
can be written in the form of a 1-dimensional convolutional layer with stride h and kernel size
N .

X[m,ω] =
N∑
k=0

x[m · h+ k]w[k] cos

(
2πωk

N

)
− j

N∑
k=0

x[m · h+ k]w[k] sin

(
2πωk

N

)
(3.3)

X = Conv1D(x;θ0,Real)− jConv1D(x;θ0,Imag) (3.4)

where θ0,· contains the initial weight matrix and bias vector defining the 1-dimensional con-
volution. In particular, the bias is initialized to zero, and the weight comprises the window
coefficients and the real and imaginary parts of the Fourier eigenfunctions.

The mel-spectrogram S can be written as.

S := M|X| = M
√

Conv1D(x; θ0,Real)2 + Conv1D(x; θ0,Imag)2 (3.5)

where M is the filterbank matrix to combine Fourier Transform bins into mel-frequency bins.
Note that (3.5) can be also expressed with a 1-dimensional CNN with kernel size 1. This latter
basically consists in a matrix multiplication followed by the addition of some bias, which is
initialized to zero.
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3.2 FastVC

FastVC is an end-to-end model that performs fast many-to-many cross-lingual VC and is
trained using non-parallel data. This system is mainly based on AutoVC by Qian et al. (2019),
which is described in Section 2.1.1. FastVC belongs to the family of models described in Sec-
tion 2.1, which perform VC by learning a mapping between the speech features of the source
speech and those of the converted speech. This latter has the same linguistic information as the
source speech but different speaker information. In particular, FastVC learns this mapping with
an AE framework that is trained on the reconstruction of mel-spectrograms. The FastVC model
architecture is depicted in Figure 3.1.

AutoEncoder

Target	speaker	identity

Output	mel-spectrogramInput	mel-spectrogram

Source	speaker	identity

Mel-spectrogram
Transform

Mel-spectrogram
Inverter

Figure 3.1: FastVC model architecture during conversion mode. During training, both the input
and output speech and the source and target speaker embeddings are the same.

Equally to AutoVC, FastVC uses log-scale mel-spectrograms as inputs. However, the Mel-
spectrogram Transform module in Figure 3.1 is a CNN-based learnable module and not a fixed
transformation as in AutoVC. This module can be trained and is initialized to provide exact
mel-spectrograms using the techniques described in Section 3.1.

To obtain the inputs to the AutoEncoder module in Figure 3.1, the spectrogram of the raw
speech is passed through an 80-channel mel-scale filter-bank. As shown in (3.5), the filter-bank
matrix combines Fourier Transform bins into mel-frequency bins. In particular, AutoVC uses a
filter-bank with minimum and maximum frequencies. By default, the mel-scale transformation
considers all the frequencies, ranging from 0 to half the sampling rate. Setting a range of fre-
quencies like in Qian et al. (2019) provides a higher resolution for such range. Having a higher
resolution for the mid-range is consistent with the fact that the human ear is not very sensitive
at low or high frequencies compared to the highest sensitivity attained in the 1 − 5 kHz range.
However, obviating high frequencies can result in loss of intelligibility, and not considering low
frequencies can result in poor modeling of speech features such as the pitch. Given the previ-
ous justifications, which are in line with the transformation performed in Kumar et al. (2019),
no minimum and maximum frequencies were set in the mel-scale transformation. Finally, a log
dynamic range compression is applied to the resulting mel-spectrogram.

Before computing the mel-spectrogram, Qian et al. (2019) applies reflection padding to the
input waveform. FastVC follows this same approach but using the same amount of padding as
in Kumar et al. (2019), which differs from the one used in AutoVC. Qian et al. (2019) then
apply signal pre-processing techniques to the padded waveform, including the filtering with a
Butterworth high pass filter (Butterworth, 1930) and the addition of noise. The Butterworth
filter is a high-pass filter with a very flat response before the cutoff frequency by design and has
a quick roll-off around such frequency value. This filter is applied to remove the high-frequency
noise of the original signal, and then synthetic noise is added for robustness purposes. These
techniques were not incorporated in FastVC, which is again in line with the design choices of
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Kumar et al. (2019).

The theoretical guarantees justifying the VC capabilities of AutoVC hold under the assump-
tion that the speaker embeddings of different utterances of the same speaker are the same, and
those from different speakers are distinct. Even if this is consistent with the GE2E loss used to
train the speaker encoder, the speaker embeddings differ from one speaker to another. In fact,
those speaker embeddings do not exhibit the assumed properties, as shown in Figure 3.2.

Qian et al. (2019) solve this issue by using the average speaker embedding of 10 two-second
speech signals of the same speaker. However, given that the speaker embeddings do not cluster,
this solution may not be the best. Instead, FastVC uses one-hot encoded speaker embeddings,
which satisfy the former assumption and suffice for conventional many-to-many VC. Using one-
hot embeddings means that the speaker conditioning signal is not extracted from data, and thus
it is exactly the same for all the audios of each speaker. One-hot encoded speaker embeddings
are used in van den Oord et al. (2017), which uses a similar framework for VC.

(a) Representation using Principal Component
Analysis (PCA). Before applying the dimen-
sionality reduction, the data was normalized by
shifting each point by the centroid and making
it unit norm. This preprocessing is performed
by default in Smilkov et al. (2016).

(b) Representation in the iteration 2000 of un-
supervised t-Distributed Stochastic Neighbor
Embedding (t-SNE) with perplexity 30, learn-
ing rate 10.

Figure 3.2: 3-dimensional representations of the 256-dimensional speaker embeddings obtained
with the style encoder of AutoVC using the architecture and weights provided by Qian et al.
(2019). In particular, this embeddings represent 480 utterances sampled uniformly from the
female speakers p225,p228 (represented with light and dark blue, respectively) and the male
speakers p226,p227 of the VCTK dataset (Veaux et al., 2016) (represented with red and pink
respectively). This representations have been obtained using the embedding projector tool de-
veloped by Smilkov et al. (2016).

The larger overlap between AutoVC and FastVC takes place in the AutoEncoder module in
Figure 3.1. Given that this implements the conversion function and thus is the core for VC, this
module is depicted with more detail in Figure 3.3.

The encoder network learns to factor out speaker information in the latent representations in
an unsupervised way. This behavior arises naturally because the decoder gets the source speaker
identity for free during training, so the limited bandwidth of the latents is used to represent the
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Figure 3.3: Diagram of the AE module for FastVC. The AutoEncoder comprises the Encoder
and the Decoder, but also the PostNet. The PostNet builds the finer details of the spectrogram,
which is excessively smooth before this module.

speaker-independent information.

Chorowski et al. (2019) claimed that the latent representations found by AEs do not factor
the speaker out. Instead, their findings showed that to achieve speaker disentanglement, a VAE,
which produces distributions over latents instead of deterministic encodings, or its VQ version,
was required. However, Heck et al. (2016) showed that conditional AEs with speaker-dependent
encoders effectively achieve the desired speaker-independent latent representations. This is con-
sistent with the fact that the frequency representation of the speech sounds depend on the vocal
tract structure of the speaker.

In FastVC, both the encoder and the decoder are conditioned on the speaker identity of the
source and target speaker, respectively. This speaker identity is concatenated with the other
input signal at every time step. For a mel-spectrogram of N channels and T temporal bins, the
resulting input has shape (N + S) × T , where S is the dimension of the speaker embedding.
Note that this corresponds to the number of distinct speakers in the dataset when using one-hot
embeddings.

One of the most crucial design choices in implementing a conversion function for VC learned
on speech reconstruction is choosing adequate information bottlenecks. FastVC also uses dimen-
sionality reduction in the frequency dimension and temporal downsampling. The former is very
easy to implement since it only needs to reduce the number of channels in the encoder and
to augment it back to match the input value. Downsampling a signal is also trivial when no
bandwidth reduction is applied since it only consists of discarding samples. In this case, no anti-
aliasing filter is applied, but the original signal is directly decimated. There are many methods
to perform upsampling, and it can be critical in some cases. FastVC takes the same approach as
Qian et al. (2019), which consists of performing upsampling with a causal variant of the nearest
neighbor interpolation technique.

Chorowski et al. (2019) proposed the use of the time-jitter regularization. This approach helps
to model the slowly-changing phonetic content by avoiding the use of latent vectors as individual
units. The time-jitter regularization consists of replacing each latent vector with either one or
both of its neighbors. The temporal upsampling approach that FastVC follows can be interpreted
as a causal version of the time-jitter regularization proposed in Chorowski et al. (2019), with the
time jitter as a hyper-parameter that corresponds to the downsampling factor.

The information bottleneck introduces two pivotal hyperparameters for the speaker disentan-
glement; the latents’ dimension and the downsampling factor. As aforementioned in Section 2.1,
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these values should provide enough compression so that speaker information cannot be stored
in the latent representation. At the same time, the compressed signal should contain enough
information so that, along with the target speaker identity, a faithful reconstruction is possible.

In particular, FastVC doubles the temporal downsampling factor with respect to Qian et al.
(2019). This design choice achieves speaker-independent phoneme-like latents that solve the pitch
inconsistency problems of AutoVC reported in Qian et al. (2020). See Section 4.2 for more details.

FastVC generates speech with a sampling rate of 22050 Hz, which makes AR models un-
suitable, especially if fast conversions are desired. AR models produce one sample at a time by
conditioning the model on the past samples, so generating a waveform at this rate can take
plenty of time. The generation is obviously slower for complex models requiring a vast number
of operations to generate each sample.

Obtaining fast conversions was one of the desired specifications of the VC models developed in
this work, so AR models were not adequate. In the original AutoVC paper, a WaveNet (van den
Oord et al., 2016) conditioned on the log-scaled mel-spectrogram is used as a generative model
for raw speech. This model is one of the most widely used generative models for raw speech
synthesis due to its high speech quality but requires tens of billions of floating-point operations
per second. This number of operations is too high for running in real-time on a CPU. In fact,
this is even too high for a GPU, given that the model generates one sample at a time and cannot
be parallelized. Overall, WaveNet requires several minutes to generate only one second of audio.

To achieve fast inference, FastVC resorts to using a non-AR generative model. This design
choice is the main reason for the fast conversions obtained with this approach. Moreover, using a
generative model circumvents the problem of generating raw speech with only the magnitude of
the spectrogram, as already mentioned in Chapter 1. In particular, the mel-spectrogram inverter
is chosen to be MelGAN by Kumar et al. (2019).

3.2.1 Training

GANs are notoriously difficult to train, with mode collapse and oscillations being a common
problem (Liang et al., 2018). For this reason, the basic FastVC model uses the pre-trained weights
for MelGAN provided by Kumar et al. (2019). The publicly available weights for MelGAN require
a different conditioning signal than the WaveNet variant used in AutoVC. In particular, the
differences in the required conditioning signal of the raw speech generative model are in the hop
length parameter and the padding strategy. The former gives a conditioning signal of different
temporal rates, and the latter modification has to be incorporated to exactly match the length
of the input waveform. The public MelGAN weights are trained for 400k iterations on the LJ
Speech dataset by Ito and Johnson (2017). This dataset is disjoint from the one used to train
FastVC (see Section 3.4.1). However, Kumar et al. (2019) show that MelGAN can generalize to
unseen speakers. In particular, the generalization test is performed on VCTK, one of the datasets
used to train FastVC.

Even if the authors of AutoVC shared the pre-trained weights for this model, the AE mod-
ule in FastVC is trained from scratch to match the conditioning signal required by the mel-
spectrogram inverter. The coupling of the AE and the mel-spectrogram inverter is done by
training the former instead of the latter because training MelGAN is significantly more complex
than training a simple AE. The basic version of FastVC is obtained by only training the AE mod-
ule using (2.4), which is the same loss used to train AutoVC. The initial rough mel-spectrogram
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reconstruction error (2.1) has the same weighting as the regular mel-spectrogram reconstruction
error (2.1), which is at the same time the same as the content error (2.3). In other words, µ = 1
and λ = 1 in (2.4). This configuration is trained using the ADAM optimizer by Kingma and
Ba (2014) with the default PyTorch (Paszke et al., 2019) parameters, that is, a learning rate of
0.001, β1 = 0.9, and β2 = 0.99.

After training the AE of FastVC, the resulting reconstructed log-mel spectrogram suffers
from over-smoothing (see Section 4.1). Since the generative model for raw speech synthesis is
conditioned on original log-mel spectrograms, this potentially generates some artifacts. To allow
the model to use information that may be not included in the mel-spectrogram or generate
more efficient representations for the task of VC, FastVC also allows for the joint training of
neighboring modules. That is, the input transformation can be learned at the same time as the
weights of the AE. Also, the AE and the mel-spectrogram inverter can be jointly trained, and also
real end-to-end training can be achieved. Additionally, the fine-tuning of the mel-spectrogram
inverter weights is also possible.

FastVC is trained by phases when updating the weights of one of the subsets of modules of the
former paragraph. The training by phases is done by fixing coherent intermediate representations
and using pre-trained modules. Put differently, the basic module serves as a starting point, and
the training that updates the parameters for other modules is considered fine-tuning. FastVC
follows this approach to avoid the vast amount of data or time and computational resources
that training an end-to-end system of these characteristics from scratch would require. During
the training of other modules than the AE, the intermediate representations are relaxed. In
other words, when the transform is learned, the autoencoder uses other inputs than a simple
mel-spectrogram, and when MelGAN is trained, the conditional signal can also differ from mel-
spectrograms.

In the case that the AE is the last trainable module, the same objective function used for the
basic configuration is chosen, and the same training techniques are applied. When also training
MelGAN, the discriminators’ objective function is chosen to be (2.6) as in Kumar et al. (2019).
To ensure that the linguistic information is captured, a cycle-consistency loss term is added. This
loss term enforces the codes of the original and converted speech to be the same, i.e., it enforces
VC to be idempotent. We speculate that this is enough to achieve quality speech that preserves
the lexical content.

In particular, an additional regularization term is added to the generator objective (2.9) to
consider the code consistency that is specific of the VC problem and not included in the loss
function optimized in Kumar et al. (2019). The content loss (2.3) is weighted by λ = 20 and
added to the total objective of the generator. The amount of regularization for the content loss
is chosen to ensure that all the losses have the same order of magnitude, so the content loss is
considered, and the weight updates decrease its value. For this setting, ADAM is also used as
the optimization algorithm. In this case, however, with a learning rate of 10−4, β1 = 0.5, and
β2 = 0.9. These specific values are suggested in Daskalakis et al. (2017) to train GANs with
ADAM, and also used in Kumar et al. (2019).

3.2.2 Variants

The AE module in FastVC in the basic configuration is trained to achieve a reconstruction
with the minimum distortion in the `2-norm sense. Achieving a perfect reconstruction in an
AE is burdensome, and in the case of FastVC, the reconstructed mel-spectrograms suffer from
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over-smoothing (see Section 4.1). Using a generative model for mel-spectrogram inversion can
compensate for such imperfections, but it is worth studying methods that minimize the perceived
artifacts given a value of distortion. The `2 norm on STFTs is arguably far from perceptual mea-
sures and could create artifacts. Using the mel-spectrogram already considers human perception,
but some other metrics could be a better fit.

An approach to obtain a mel-spectrogram that corresponds to perceptually good speech
was to try the power-law loss instead of the Mean Squared Error (MSE). The change in the
reconstruction objective of the AE module was motivated by Kim and Stern (2010), which
claimed that power-law loss correlates with the human perception of loudness. In particular,
in the power-law experiment, FastVC used the variant of (3.6) with α = 0.5 as described in
Kadioglu et al. (2020). This same objective was used with the mel-spectrogram instead of the
STFT.

P-law(x, y, α) = ‖‖STFT(x)‖αF − ‖STFT(y)‖αF ‖1 (3.6)

However, the use of this metric on the FastVC AE module resulted in non-converging
weights. This is probably the case because the power-law does not only attain its minimum
when STFT(x) = STFT(y) as does the MSE. One sufficient condition for the minimum is to
have spectrograms with the same singular values. Moreover, the choice of α < 1 eliminates the
desirable convexity of the norms.

Inspired by the cyclic training of Tobing et al. (2019), a variant of FastVC with VC in the
training flow was also analyzed. However, instead of computing conversions and reconstructions
at every cycle as CycleVAE (see Section 2.1.2), the approach was to perform VC two times. The
source speaker’s characteristics are changed by those of the target speaker in the first forward
pass of FastVC. The AE is trained on reconstruction, so a second VC is performed with the
same FastVC model to map the speaker characteristics of the previous output back to the source
speaker. The objective function with cyclic training is very similar to (2.4) with two main differ-
ences. First of all, both the reconstruction and the rough reconstruction are the outputs of the
second conversion. Secondly, the content loss is the average of the content losses of both forward
passes. Unlike the previous approach, the cyclic training resulted in decreasing losses, but the
results were perceptually worse than those obtained with the usual reconstruction training.

AEs find compact representations of the input signal that allow for its recovery. FastVC re-
quires that these representations are speaker-independent, but this is not explicitly enforced. The
fact that the encoder disentangles the speaker in an unsupervised fashion can be explained with
the redundancy principle (Barlow, 1989). However, adversarial training of the latent representa-
tions as in Chou et al. (2018) could further disentangle the speaker’s information and downplay
the design choices of the information bottleneck.

In this variant, FastVC uses a speaker classifier that is an adaptation of the ZDiscriminator
used in Mor et al. (2019), where this module is used to achieve class-independent latent represen-
tations in the Universal Music Translation Network. The minimax game here is for the encoder
to seek class-independent latents and the classifier to classify them correctly. This network is
trained with the cross-entropy loss on the speaker labels using the ADAM optimizer with a
learning rate of 0.001, β1 = 0.9, and β2 = 0.99. The negative loss, termed as domain confusion
loss in Mor et al. (2019), is added as a regularizer to the global objective with a weighting of
η = 0.1.
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Phonological Class List of phonemes

Vocalic /a/, /e/, /i/, /o/, /u/
Consonantal /b/, /tS/, /d/, /f/, /g/, /x/, /k/, /l/, /L/, /m/, /n/, /p/, /R/, /r/, /s/, /t/
Back /a/, /o/, /u/
Anterior /e/, /i/
Open /a/, /e/, /o/
u Close /i/, /u/
Nasal /m/, /n/
Stop /p/, /b/, /t/, /k/, /g/, /tS/, /d/
Continuant /f/, /b/, /tS/, /d/, /s/, /g/, /L/, /x/
Lateral /l/
Flap /R/
Voice /a/, /e/, /i/, /o/, /u/, /b/, /d/, /l/, /m/, /n/, /r/, /g/, /L/
Strident /f/, /s/, /tS/
Labial /m/, /p/, /b/, /f/
Dental /t/, /d/
Velar /k/, /g/, /x/
Pause /sil/

Table 3.1: Classification of Spanish phonemes into phonological classes from Vásquez-Correa
et al. (2019).

3.3 PhonetVC

PhonetVC is a model trained on non-parallel data that performs fast many-to-many VC.
This model was conceived as a variant of FastVC. However, it is presented in a separate section
since it belongs to a different family of methods (see classification in Chapter 2). The idea of
PhonetVC is to avoid relying on the encoder network of the AE module in FastVC to disen-
tangle the speaker’s information. In FastVC, the speaker-independence of the latents is justified
with the redundancy principle or the adversarial classifier. However, in these cases, the latent
representation may still contain speaker information, as reported in Qian et al. (2020). Using
speaker-independent inputs alleviates the VC from disentangling the speakers’ information from
the latent representations, but depends on the performance of pre-trained feature extractors.
Moreover, these systems require, in general, large amounts of transcribed data, whose collection
is very costly and time-consuming.

PhonetVC takes a similar approach as Sun et al. (2016) and solves this problem by using
probabilities of phonetic classes as input to the decoder instead of latent representations. In
particular, PhonetVC relies on Phonet, a toolkit to compute posterior probabilities of phonolog-
ical classes by Vásquez-Correa et al. (2019). Phonological features are speaker-independent and
directly related to which sound is being uttered. The motivation of Phonet comes from pathologi-
cal speech processing, where phonological features are attractive because of their interpretability,
which comes from its relation to the movements of the articulators in the vocal tract.

Phonet estimates posterior probabilities of the occurrence of different phonological classes
using a bank of parallel bidirectional Recurrent Neural Networks (RNNs). The models proposed
in Vásquez-Correa et al. (2019) are trained on Mexican Spanish annotated speech data and can
detect the phonological classes with accuracy over 90%. The variant used in PhonetVC uses all
the phonetical classes shown in Table 3.1, which results in an 18-channels input.

PhonetVC uses an estimation of the Phonological Log-Likelihood Ratio (PLLR) features
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instead of the latent representations found by the encoder of FastVC. The schema of PhonetVC
is depicted in Figure 3.4. The decoder network takes its architecture from FastVC, and the chosen
mel-spectrogram inverter is again MelGAN (Kumar et al., 2019). Given that the decoder’s input
is different from that in FastVC, this network is trained from scratch using the same objective
as FastVC. The output mel-spectrogram is then fed to MelGAN.

Phonet works with waveforms sampled at 16 kHz. In order to use the latter, PhonetVC also
generates speech at 16 kHz. As mentioned in Section 2.3.2, one of the downsides of MelGAN
is that it assumes that the conditioning signal is temporally aligned to the input. Moreover,
the MelGAN pre-trained weights provided by Kumar et al. (2019) are trained with audio at
22050 Hz and different windowing strategies. In particular, the hop length value used in Phonet
is different from the default value in MelGAN, which forces the use of upsampling layers with
different upsampling ratios in the MelGAN generator. The mel-spectrogram inverter is adapted
to not use waveform padding before the representation in temporal bins to match the design
choices of Phonet.

Target	speaker	identity

Output	mel-spectrogram

Phonet Mel-spectrogram
Inverter

Decoder

PLLRs

Figure 3.4: PhonetVC model architecture during conversion mode. During training, the target
speaker embeddings represents the speaker uttering the input waveform.

3.4 Experimental setup

This section describes the setup for the experiments performed with PhonetVC, FastVC, and
the latter variants.

3.4.1 Dataset

The main dataset used for this project is the Voice Cloning Toolkit (VCTK) described in
Veaux et al. (2016). The VCTK dataset is chosen as the main dataset for its widespread use for
the VC task (van den Oord et al., 2017; Chou et al., 2018; Qian et al., 2019, 2020). Moreover,
MelGAN is shown to generalize to the speakers of this dataset even if not seen during training.

The VCTK dataset is a public speech dataset consisting of 44 hours of English speech and
its transcriptions. There are a total of 109 speakers with various accents, and on average, each
of them has around 400 utterances and 24 minutes of data. Even if there are some parallel
utterances, the dataset is essentially non-parallel. The VCTK corpus speech was recorded in a
hemi-anechoic chamber of the University of Edinburgh using an omnidirectional microphone.
The speech was recorded with a sampling frequency of 96kHz sampling frequency and with a
24-bit resolution and then downsampled to 48 kHz and converted into 16 bits.

The model comparison of the VC Challenge is performed with samples generated using the
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dataset of the same Challenge. This dataset has ten speakers, including one pair of male and
female speakers for each of the non-English languages (Finnish, German, and Mandarin) and a
couple of male and female English speakers. In particular, the training dataset contains 1 hour
of speech in total, with each speaker having 70 utterances, which in total account for less than
7 minutes on average. More details of this dataset are provided in Table 2.1. The use of the
VC Challenge training dataset is essential but not enough to train a model such as FastVC. In
this project, the VCTK and VCC datasets were simply merged, which is a common and allowed
approach in the Challenge.

The evaluation partition of the VC Challenge dataset is disjoint from the training dataset and
was released near the end of the Challenge. The Challenge dataset contained 25 new sentences
uttered by the source speakers and did not contain transcriptions. The use of manual annotations
was allowed for the training partition of the dataset, but not for the evaluation partition. The
data for the VC Challenge is sampled at 24 kHz and stored in a 16-bit format.

The need for speaker-independent latents poses a representation learning problem. Ideally,
the latent representations found by the encoder network in FastVC disentangle the speaker’s
information and contain linguistical information. van den Oord et al. (2017) show that the
discrete latent representations found by VQ-VAE are similar to phonemes by learning a mapping
from the codebook indices of the embeddings used at a given time to the phoneme uttered at
the corresponding step. In order to make this comparison, phonetic annotations are needed. Not
the VCTK corpus nor the VC Challenge dataset include phonetic annotations, so an additional
dataset was needed.

The TIMIT dataset by Garofolo et al. (1993) is chosen for the representation task. This
dataset is public and contains speech data and hand-verified time-aligned phoneme transcriptions.
In particular, only the test partition of this dataset is used to avoid incorporating a lot of new
speakers. This dataset was used for data analysis purposes and is not included in the models
trained for the VC Challenge. The TIMIT training partition contains 168 speakers and a total
of 1.4h of speech, accounting for an average of 30s per speaker. This data has a sampling rate of
16 kHz and a resolution of 16 bits.

All the experiments use a batch size of 16 and train on 90% of the available data. The
remaining 10% is left for testing purposes. Note that since VC is not performed during training,
the pair of source and target speakers will be different in inference. However, the data partition
is performed for rigorousness, especially for the reported reconstruction results.

The data used in both models come from the previous datasets, which have different sampling
frequencies. In both cases, the input waveforms are resampled to match the sampling rate of the
model. That is, the inputs to FastVC are resampled to 22050 Hz and the inputs to PhonetVC to
16 kHz. For these two models, the input and output audio is quantized with 16 bits. Note that
for both models, one-hot encoded embeddings are used. The use of one-hot embeddings means
that the models have different dimensions for each distinct training set and thus need different
weights.

3.4.2 System specifications

The FastVC and PhonetVC models have been developed using PyTorch (Paszke et al., 2019),
and the code has been tested for Python 3.6,3.7, and 3.8. The I/O operations have been performed
using the external TorchAudio library from PyTorch. For additional signal process functionalities,
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SciPy (Virtanen et al., 2020) and Librosa (McFee et al., 2020) have been used, and NumPy
(Oliphant, 2006) has been used for general numerical computation. Additionally, the Phonet
toolkit used in PhonetVC uses Keras (Chollet et al., 2015).

All the training was performed on a server with a single Nvidia GeForce GTX 108 GPU with
CUDA v9.1.8 and an Intel(R) Core(TM) i7-8700K @ 3.70GHz CPU.



4 Results
This chapter presents the results obtained with the previous models. FastVC is given partic-

ular emphasis, for it is the most successful model amongst the tested ones. In particular, FastVC
was the chosen model to generate conversions to the VC Challenge.

In particular, the variant of FastVC submitted to the Challenge only uses AE training and has
32-dimensional latents that run at 2.5 Hz. This specific model has around 32 million parameters
and a memory footprint of 2.02 GB in conversion mode, and it was the best-rated proposal in
a small subjective evaluation test ran at Logitech1. For this subjective test, four conversions
for the monolingual task and 4 for the cross-lingual task were created for several models. The
tested models included AutoVC, the chosen FastVC and one variant with 64-dimensional latents,
and the the two VC Challenge baselines: ASR+TTS (see Section 2.2.1) and CycleVAE (see
Section 2.1.2). AutoVC was included to compare the success of the modifications of FastVC
concerning this model. The Challenge baselines were added to compare our system to the previous
state-of-the-art.

FastVC took AutoVC by Qian et al. (2019) as a starting point. One of the main requirements
was to speed-up this model while preserving high speech quality. After all the modifications
described in Section 3.2 and optimizing the performance of the baseline implementation, the
conversions are significantly faster to those obtained with AutoVC. In particular, the conversions
are computed around 500x faster than AutoVC and takes 4x less than the duration of the
generated audio on CPU2. However, this latter has one caveat and is that the whole speech
waveform is needed to perform VC with FastVC. Therefore, the speed of results does not imply
that real-time continuous VC is possible with the proposed model.

This chapter is structured as follows. First of all, the over-smoothing problem from which
AEs, and in particular also FastVC, usually suffer, is illustrated and discussed. Secondly, the
pitch contours of some of the samples generated with FastVC are analyzed and compared to
those obtained using AutoVC. Then, the latent representations obtained by the AE in FastVC are
analyzed. In particular, the analysis confirms that the unsupervised representations are speaker-
independent and similar to the human phoneme alphabet as in van den Oord et al. (2017).

The last part of this chapter evaluates the proposed models. First of all, an objective eval-
uation framework for VC systems using Perceptual Evaluation of Speech Quality (PESQ), an
industry standard for evaluating voice quality, is proposed. Lastly, the subjective evaluations of
the VC Challenge models are presented.

4.1 Over-smoothing problem

One common problem of AEs and especially VAEs is that the reconstructions are usually
over-smoothed (Chou et al., 2018; Liu et al., 2018; Qian et al., 2019). FastVC and PhonetVC

1The subjective test was run in mid-May, and the Challenge submission deadline was at the end of the same
month.

2Intel(R) Core(TM) i7-8700K @ 3.70GHz CPU.
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(a) Input with linguistic content. (b) Reconstruction of input with linguistic con-
tent.

(c) Input without linguistic content. (d) Reconstruction of input without linguistic
content.

Figure 4.1: Comparison between the input and reconstructed mel-spectrograms in the basic
configuration of FastVC where only the AE is trained. Examples from segments with and without
linguistic information are provided.

follow the approach proposed by Qian et al. (2019) to tackle this problem, which consists in
incorporating the PostNet module depicted in Figure 3.3. This module is based on residual
networks (He et al., 2015) and is aimed at building the finer details on top of the smoothed
output mel-spectrogram. However, the inputs fed to the mel-spectrogram inverted still suffer
from over-smoothing.

Inverting over-smoothed mel-spectrogram gives poor quality and buzzy-sounding speech, as
noted in Kameoka et al. (2018). Using a generative model for the mel-spectrogram inversion can
compensate for such over-smoothing. However, in some cases, learning to compensate for overly
smooth conditioning signals requires the fine-tuning of the speech generation models, which
sometimes is costly. In particular, MelGAN provides high-quality speech even if used with the
pre-trained weights, which have not been trained on the same dataset as FastVC and are not
enforced to compensate for the input irregularities. Figure 4.1 shows the over-smoothed outputs
of the FastVC model submitted to the VC Challenge, which as discussed in Section 4.5 still
provide high-quality speech.

4.2 Pitch inconsistencies

AutoVC achieved state-of-the-art results by disentangling of the speaker’s identity in the
latent representations. However, Qian et al. (2020) shows that prosodic information leaks through
the bottleneck, causing the target pitch to fluctuate unnaturally. To tackle this issue, Qian et al.
(2020) proposed to remove not only the speaker identity from the latent representations but also
the prosodic information.

The approach to achieve latents that do not contain prosody information is the same as the
one followed in Qian et al. (2019) to achieve speaker independence. Qian et al. (2020) propose to
feed uncompressed pitch information to the decoder, so the latent representations do not contain
this information according to the redundancy principle Barlow (1989). The disentangling of
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this information is again sensitive to the hyperparameters governing the information bottleneck.
In particular, the prosody information fed to the decoder corresponds to a pitch estimation
computed for each frame.

In conversion, the prosody of the source should be taken into account, for it being para-
linguistical information that can change the meaning of the utterance. To match the target
speakers’ prosody style, Qian et al. (2020) propose applying the simple transformation described
in (2.5). Using this transformation effectively maintains the source waveform intonation but
provides the target speaker’s characteristics.

The temporal downsampling factor proposed in Qian et al. (2020) is larger than that used
for the original AutoVC, given that the latent representations in the former model contain more
information than in the latter. The downsampling factor matches the design choice of the FastVC
model submitted to the VC Challenge, which does not suffer from the unnatural fluctuation of
the pitch. This result suggests that the latent representation rate proposed in Qian et al. (2019)
was too high, thus allowing the filtering of speaker information when combined with the proposed
dimensionality reduction bottleneck.

4.3 Exploring the latent representations

An interesting topic that arises from FastVC is the representation learning problem based on
extracting speaker-independent features in an unsupervised fashion. van den Oord et al. (2017)
claimed that the discrete latents obtained with VQ-VAE were closely related to phoneme. In
particular, a 49.3% accuracy in phone classification based on the latents was achieved, while
prior most likely phoneme gives 7.2% accuracy. A more complete analysis of the VQ-VAE repre-
sentations is performed in Chorowski et al. (2019). In this paper, the unsupervised extraction of
meaningful latent representations from the speech is studied. The aim is to learn high-level rep-
resentations that can capture the linguistic content of the signal while being robust to unwanted
low-level variations.

As described in Section 3.4.1, the TIMIT (Garofolo et al., 1993) dataset is used to identify
the linguistic content in the latent representations. Similarly to van den Oord et al. (2017);
Chorowski et al. (2019), the approach is to predict the phoneme from the latent representations.
A simple perceptron is used to find the existence of a hypothetically simple correspondence
between phonemes and latents. This model is trained using the latent representations extracted
from the TIMIT used data with a trained FastVC network. The obtained latents are split into
train, validation, and test partitions accounting for the 70%, 10%, and 20%, respectively.

The information bottleneck on the temporal dimension chosen for the FastVC model used
in the Challenge yields a latent representation with a 2.5 Hz rate. This rate is a factor of 10
lower than the rate of the latents in VQ-VAE. The average phoneme rate is around 10 Hz Van
Kuyk et al. (2017); Cernak et al. (2017), which means that each latent vector at a given time
represents more than one phoneme. Each latent vector had to be assigned a label to train a
classifier on top, which poses a problem since, on average, each latent comprises around four
phonemes. Three approaches were followed, involving the classification of latent vectors into
phonemes, diphones, and triphones. Phonemes are a unit of sound that allows distinguishing
words in a language. Diphones are an adjacent pair of phones, and triphones represent three
consecutive phonemes. When considering phonemes, each latent was assumed to represent the
phoneme with a larger intersection in the temporal domain. The same approach was followed
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(a) Pitch contour with source speaker SEF2 (English female), content E10004 and target
speaker TEM2 (English male).
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(b) Pitch contour with source speaker SEF1 (English female), content E10004 and target
speaker TGM1 (German male).

Figure 4.2: Comparison of pitch contours of source speech signal and conversions with AutoVC
(Qian et al., 2019) and FastVC, our model. The source and target speakers used for the conver-
sions in these plots belong to the VCC20 dataset. The pitch contour has been computed using
the algorithm implemented in Jadoul et al. (2018).
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Classifier Accuracy

Linear classifier on raw latents 42.45%
Linear classifier on quantized latents (256 clusters) 40.09%
Linear classifier on quantized latents (128 clusters) 34.43%
Linear classifier on quantized latents (41 clusters) 31.13%

Random classifier 2.44%
Prior most likely phoneme on train partition 9.43%

Table 4.1: Results of the mapping from phonemes to latents. The latents were computed using
FastVC on the test partition suggested in the TIMIT dataset (Garofolo et al., 1993). The resulting
latents were then randomly split into train (70%), validation (10%) and test partitions (20%). The
perceptron was trained with cross-entropy loss using SGD with learning rate 0.01 and momentum
0.9. The training stopped the first iteration that the loss increased in the validation partition.
VQ was performed using the implementation of Pedregosa et al. (2011) for 41 (the number of
distinct phonemes), 128 (the value used in VQ-VAE) and 256 clusters.

using diphones and triphones. Contrarily to VQ-VAE, the latent representations obtained with
FastVC are not quantized. The classification accuracy of the latents quantized using VQ is also
reported to compare how this quantization affects. This quantization is performed offline and
not incorporated in the training of the latents as in van den Oord et al. (2017).

The phoneme classifier was trained by minimizing the cross-entropy loss with Stochastic Gra-
dient Descent (SGD) and early stopping on the loss on the validation partition. The classification
accuracies on phonemes computed over the test partition are reported in Table 4.1. Regarding
the prediction of diphones, the classification accuracy of the perceptron was 33.33%, while a ran-
dom classification has an accuracy of 0.45%. The classification accuracy of a classifier based on
always choosing the most probable class is 17.78%. The results obtained with triphones were not
significantly better than those obtained with the most probable class classifier. Even if the latent
representations’ low rate suggested that a latent represents a combination of sounds rather than
a single phoneme, the number of distinct units with groups of phonemes exponentially grows
with the group size. This growth implies that there are more classes to predict, and instances of
some of them may not even be seen during training. The latter justifies the performance drop
when predicting diphones and triphones instead of single phonemes.

The results in Table 4.1 suggest that there is indeed a correspondence between latents and
phonemes. Such correspondence is preserved when the latent representations are quantized with
256 clusters. However, for quantizations with less resolution, the performance drop is significant.
For comparison, VQ-VAE van den Oord et al. (2017) uses a 128-dimensional discrete space and
obtains a classification accuracy of 49.3%, while a choosing the prior most likely phoneme gives a
7.2%. A classification drop from the results in van den Oord et al. (2017) is expected due to the
lower rate representation. The details of the phoneme classifier and its training are not shared
in van den Oord et al. (2017), which in case of not being a perceptron, could further justify the
performance drop.

Overall, the results of the phoneme mapping are surprising given the hard assumption on the
label assignment and the very low rate of the latent representation. These results suggest that
the latent representations are similar to the human phonetic alphabet and, hence, are strictly
related to the linguistic information as hypothesized.

FastVC was built on the hypothesis that the latent representations are speaker-independent.
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Figure 4.3: Learned transformation for segment with linguistical content.

Speaker independence is achieved by the redundancy principle, as mentioned in Section 3.2.
One of the variants of FastVC consisted of building a speaker classifier to enforce such indepen-
dence implicitly (see Section 3.2.2). This speaker classifier is trained simultaneously as FastVC
and provides a learning signal intended to remove the speaker’s information from the latent
representation. To test whether this classifier is useful, the speaker predicted from the latent
representation is reported. In this case, the hypothesis is not that there is a simple correspon-
dence as it was the case for the last experiment, but only the prediction capabilities are tested.
Therefore, the speaker classifier trained along with FastVC was used instead of a new simpler
model. In particular, the speaker classifier consists of a 3-layer CNN with averaging over the time
dimension (Mor et al., 2019).

The speakers were predicted using this classifier with the latents obtained with a trained
FastVC. Even if the classifier network was trained at the same time as FastVC, the prediction
accuracy was 0% when the speaker-independence signal was used on the latents and when it was
not, which confirmed our hypothesis. These results were obtained with a model that was trained
using 278 speakers. These speakers belong to the VCTK corpus (Veaux et al., 2016) and the test
partition of the TIMIT dataset (Garofolo et al., 1993). The speaker-independence results suggest
that the redundancy principle is enough to achieve speaker-independence, which is in line with
the results reported in Qian et al. (2019, 2020).

FastVC allows the training with raw waveforms as input. The techniques to train this module
are proposed in Section 3.1, and are aimed at learning problem-dependent transformations better
suited than the widely used general-purpose mel-spectrogram. In particular, the representations
found with the transformation module of FastVC are sparser than the mel-spectrogram in general.
Moreover, the transformation seems to capture the difference between speech with and without
linguistic content as shown in Figure 4.3 and Figure 4.4.

Note that the transformation for segments with linguistic content is slightly sparser but very
similar to a mel-spectrogram (see Figure 4.1 for reference). However, the noise segments that
lack linguistic content have very few non-zero coefficients (zeroes represented with black). These
results are consistent with the hypothesis that the latent representation found by the encoder of
FastVC encodes the linguistic content. Overall, learning the transformation from raw waveforms
can allow a better allocation of the space resources to the essential features for a given task.
Moreover, the learned distinction between segments with and without linguistic content can act
as an in-built Voice Activity Detector (VAD) that can likely reduce the output noise during
silences.



4. Results 38

Figure 4.4: Learned transformation for noise segment.

4.4 Objective evaluation

One of the main difficulties in building style transfer models is that there are no standardized
objective measures (see Chapter 1). The lack of such metrics hinders the system comparison
and the performance of ablation studies. In this section, some objective measures are proposed
to evaluate the proposed models. In particular, the proposed measures use PESQ, an objective
method that rates the speech quality by predicting the Mean Opinion Score (MOS).

The MOS is a quality measure ranging from 1 to 5, where 1 and 5 represent bad and excellent
quality, respectively. This score is subjective and based on the average rating given by human
evaluators. In particular, this subjective metric is widely used when testing speech generation
systems and is the metric used for the model comparison in the VC Challenge.

As discussed in Chapter 2, using parallel datasets simplifies the VC problem and in general
yields better results than non-parallel VC. The reason is that parallel datasets provide target
utterances for the converted samples. Even if such samples are not the unique solution, they are
enough to learn a conversion function that generalizes to unseen utterances.

The fact that PESQ is not used as a standardized measure to substitute MOS is that the
former requires both the desired waveform and the one generated with the evaluated system. The
evaluation in PESQ is performed sample-by-sample, and thus is adequate for evaluating TTS
systems or speech coding techniques but not suited for the evaluation of VC systems at all.

Even if there is no known desired waveform in the VC problem, this metric is performed on
100 parallel utterances from the testing partition of FastVC. As mentioned before, when training
with parallel data, the desired waveform is not unique, so low PESQ results are expected. To
match the length of the converted and the target waveforms, DTW is applied. In particular,
FastDTW from Salvador and Chan (2007) is used.

The results with this objective evaluation are shown in Figure 4.5. The PESQ values are
very similar for all the different systems and have a large variance. The best system, according
to this comparison, is the variant of FastVC with cyclic training. However, this system yields
poor conversions, as mentioned in Section 3.2.2. This suggests that the PESQ evaluation is not
suited for the VC model comparison. This can be justified by the ill-posedness of the problem; a
valid output other than the parallel utterance may be obtained. Therefore, high-level descriptors
would be needed for this case to account for valid outputs that differ from the parallel utterance
at signal level.

The approach that FastVC takes to deal with non-parallel data is to learn the conversion
function on the task of speech reconstruction. The reconstruction performance alone is not a
useful metric to evaluate a VC system because it does not measure the speaker’s disentanglement.
In particular, perfect reconstruction can be achieved if there is no information bottleneck at all
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Figure 4.5: Boxplot of parallel conversion PESQ.

and thus also no speaker-independent latents.

In this case, the PESQ measure is more suited since self-reconstruction was learned during
training, and mapping to the same speaker is a valid VC instance. The results are presented in
Figure 4.6. Note that this comparison rates FastVC as the best model, which is consistent with
the subjective evaluation performed in the company.

The results on reconstruction also show that, as mentioned in Section 3.2.2, the variant
of FastVC with cyclic training does not yield better results. With the proposed evaluation,
this modification shows an enormous variance, with that model giving the best and the worst
individual results.

FastVC with end-to-end training performs worse in terms of PESQ than FastVC. This can be
justified because in the end-to-end training, the aim is not to match the input mel-spectrogram
but to maximize the GAN objective. A future subjective evaluation would be needed to confirm
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Figure 4.6: Boxplot of reconstruction PESQ.

if the PESQ also correlates with the perceived quality in such cases.

4.5 VC Challenge results

The problem with comparing the proposed models to the state-of-the-art is solved with the
large-scale crowd-sourced perceptual evaluations performed in the VC Challenge. According to
the feedback received on the subjective test ran at Logitech, the best model for the monolingual
task was ASR+TTS (see Section 2.2.1). The success of this solution in the monolingual task is
not surprising given the high-quality ASR and TTS English systems that are already found at
the consumer level. Since FastVC was perceptually not better to the Challenge baselines for the
monolingual task, the participation in this task was withdrawn.

Regarding the cross-lingual task, FastVC reported the best results. Therefore, the converted
samples generated for this task were submitted to the Challenge. From more than 90 participant
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teams, only 33 teams submitted samples, including the two Challenge baselines and the VC
Challenge 2018 winner. Out of these teams, 11 come from the industry, as is the case of FastVC.
The other teams divide into 17, coming from academic institutes, and two from personal par-
ticipation. Thirty-one teams participated in the monolingual conversion task, whereas 28 teams
participated in the cross-lingual conversion task.

The subjective evaluations are performed using MOS. The evaluations test the naturalness,
which is the preservation of the source content, and the similarity to the target speaker. These
evaluations are performed by 206 Japanese listeners and 124 English listeners.

The results in the Challenge are anonymized. The label T15 represents FastVC. The Chal-
lenge baselines, CycleVAE and ASR+TTS, are the teams T16 and T22. The identity of the
winner of the VC Challenge 2018 was also revealed, and corresponds to T11.

Figure 4.7 depicts the naturalness results classified by the evaluators’ language. In both cases,
FastVC outperformed the Challenge baselines but had worse results than the past Challenge
laureate, which scored fifth in this year’s edition.

Figure 4.8 shows the similarity results, were FastVC downgraded concerning the naturalness
results. The poor matching of the target speaker characteristics can be justified because the
dataset is imbalanced. As discussed in Section 3.4.1, the VC Challenge dataset contains few
data, which is not enough to train FastVC. The former dataset was combined with the VCTK
corpus by Veaux et al. (2016), which contains around 3.5x more data per speaker. This problem is
further emphasized, considering that most of this data comes from English speakers. In this case,
there are around 45h of English speech and only 14 min of the non-English languages included
in the cross-lingual task. Potential solutions to this problem are discussed in Chapter 5.
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Figure 1.4: Naturalness results for task 2. MOS scores are arranged in accordance with their mean values (red dots). 

!9

(a) Japanese listeners.

Figure 2.4: Naturalness results for task 2. MOS scores are arranged in accordance with their mean (red dot). 

!31

(b) English listeners.

Figure 4.7: Naturalness results for the cross-lingual task of the Voice Conversion Challenge 2020.
MOS scores are arranged in accordance with their mean (red dot).



4. Results 43

Figure 1.5: Similarity results of the target speaker for task 2. 

Similarity scores are arranged in accordance with their mean (red dot).  

!10

(a) Japanese listeners.

Figure 2.5. Similarity results of the target speaker for task 2. 

Similarity scores are arranged in accordance with their mean (red dot). 
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(b) English listeners.

Figure 4.8: Similarity results for the cross-lingual task of the Voice Conversion Challenge 2020.
Similarity scores are arranged in accordance with their mean (red dot).
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Figure 1.6(a): Scatter plot matching naturalness and similarity scores to target speaker 
for task 2 when averaging all speaker pairs (y-axis is similarity percentage).  

!11

(a) Japanese listeners.

Figure 2.6(a): Scatter plot matching naturalness and similarity scores to target speaker for task 2 when averaging all speaker pairs (y-axis is 
similarity percentage). 

!33

(b) English listeners.

Figure 4.9: Scatter plot matching naturalness and similarity scores to the target speaker for the
cross-lingual VC task when averaging all speaker pairs.



5 Conclusions and future work
This work proposed FastVC, an end-to-end non-parallel system for cross-lingual VC. FastVC

has a simple AE structure trained on speech reconstruction but outperforms the VC Challenge
baselines on the cross-lingual task of this year’s Challenge in terms of naturalness. FastVC can
convert audios of arbitrary lengths and perform many-to-many VC with a single network.

FastVC only trains on speech waveforms and speaker identities, so it requires no annotations.
Instead, some of the models submitted to the Challenge required transcriptions, linguistic infor-
mation, or supra-segmental information such as the intonation. The use of these features either
requires manually annotated datasets, which are scarce, or automatic labeling systems. Some of
the Challenge participants reported using manual labeling and verification of such transcriptions
for its later use.

A few approaches amongst the systems that submitted to the Challenge also involved tempo-
rally aligning the transformed features using methods such as DTW and using pitch-synchronous
algorithms. Other systems used excitation and phase prediction and correction techniques to im-
prove the waveform synthesis. Additionally, some approaches apply a variety of pre-processing
and post-processing techniques.

Compared to other approaches, FastVC is a straightforward model that works on unprocessed
raw data and has no external annotations. Instead, all the representations are computed from data
in an unsupervised fashion with a simple AE structure. FastVC is also language-independent,
which means that its behavior does not change with different input languages. According to
the subjective evaluation performed in the company, the ASR+TTS baseline attained the best
performance on the monolingual VC task. However, the perceived performance of this approach
substantially decreased for the cross-lingual task. The performance drop is justified with the
language dependence of the model, which relies on intermediate text annotations.

A given text may be uttered in different ways for distinct languages, so text annotations
cannot be used in the cross-lingual task. The text annotations may be mapped to phonemes, but
some phonemes also vary from one language to another. In the case of Mandarin, an additional
difficulty arises for this model. Mandarin characters are ideographic, so a previous conversion to
Pinyin, the romanization system for Mandarin, is needed.

Compared to the former approach, FastVC preserves timing information, which is not stored
in the text transcription but is a para-linguistical feature that may change the meaning of an
utterance. FastVC also preserves prosodic features but could be disentangled from them using
the same redundancy principle used to achieve speaker-independent latents. This approach’s
success is discussed in Qian et al. (2020), which opens a new window to the general style transfer
problem. Following these ideas, information bottlenecks on the input signal and uncompressed
style information can be used to obtain style-free latent representations for different definitions
of style and content.

This project also explored the use of speaker-independent features. Similarly to the ASR+TTS,
PhonetVC first extracts speaker-independent features related to the uttered sound. To do so, it
relies on Phonet by Vásquez-Correa et al. (2019). These features are later merged with the target
speaker information to perform VC. Another approach would be to use other speaker-independent

45
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representations such as the AM part of an AM-FM decomposition. This representation is ex-
plored in Motlicek et al. (2020). In particular, the AM decomposition is shown to be related to
content and FM decomposition to the speaker. This decomposition could potentially be used to
avoid finding speaker-independent latent representations and speaker representations.

FastVC is presented with several variants that take inspiration from the most successful VC
systems. This work proposes the use of objective scores to compare them, which differs from
the general trend only to report subjective scores in VC. In particular, the PESQ score on the
reconstructed speech is a good indicator of the performance when applied to AE frameworks with
speaker-independent latents. This score does not require the participation of human evaluators
and is not subjective and potentially biased depending on the population of evaluators.

This project also explores the unsupervised latent representations extracted with the proposed
model, which disentangle the speaker’s information in an unsupervised way and are closely related
to phonemes. The speaker independence test could potentially be used with the PESQ objective
measure for an exhaustive evaluation of VC models.

Despite the good results in naturalness exhibited by FastVC in the VC Challenge, this model
is worse than the state-of-the-art at capturing the speaker’s style of speakers with few data. As
discussed in Section 4.5, this is justified with the fact that the training dataset is very imbalanced
concerning the language, and the performance could be degraded for non-English speakers. One
possible approach to tackle the language imbalance problem is to incorporate additional non-
English speech datasets to balance the languages.

The approach of adding additional datasets for the minority languages adds even more speak-
ers, which reduces the problem to data imbalance only concerning the data per speaker. However,
the percentage of data per speaker on the VC Challenge would be even smaller in this case. A
different approach to tackle dataset imbalance is to compute the loss only over the Challenge
data and use the performance on the larger dataset as a regularizer to enforce generalization.
This approach is referred to as the multi-reader technique and described in Wan et al. (2017).

The use of speaker embeddings computed from waveforms instead of using one-hot represen-
tations could also potentially solve the problem of having few data per speaker. Following the
interpretation in (Barbany, 2018, Section 3.3.), such representations decompose the speaker’s
characteristics into a basis of speakers. Therefore, having speakers with similar characteristics in
this space could help the model achieve good performance with few data per speaker. However,
the implementation of this approach on AutoVC was reported to give worse results in the sub-
jective evaluation. The performance was reported to further drop with languages not seen during
training. Additionally, achieving good speaker representation needs a wide variety of speakers,
(Jia et al., 2018).

One of the main objectives of this work was to implement fast high-quality VC systems. Given
the speed of FastVC, the company showed interest in achieving real-time continuous VC. FastVC
uses the whole audio waveform as input during the conversion phase, but real-time systems
require working with audio chunks. Two approaches were followed for the real-time generation,
including taking non-overlapping chunks and overlapping windows. After the conversion of the
overlapping windows, these were merged using the overlap-add method. However, the VC results
obtained with the window values required for real-time speech applications failed at capturing
the target speaker’s style. These adverse results are justified with the very low rate of the latents,
which could be solved using lower downsampling factors. This higher rate should be compensated
with more dimensionality reduction or the incorporation of additional information bottlenecks
such as VQ.
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As mentioned in Section 3.2, choosing the correct information bottleneck is crucial. However,
there are no theoretical results for such values. The problem of non-parallel VC was reduced
to a speech reconstruction problem in FastVC. To set the rate and dimension of the latent
representations, these could be interpreted as the features extracted in a speech coding scheme.
Wang and Kuo (1998) proposed a low rate speech coding scheme using classical methods that
operates at 800bps, which is the lowest bitrate of classical speech codecs. With this result in
mind, one could determine the theoretical information bottleneck needed only to encode linguistic
information.

Choosing the latents’ rate to be that of the phonemes, which is around 10 Hz Van Kuyk et al.
(2017); Cernak et al. (2017), one could represent each latent using VQ with as many clusters
as distinct phonemes there are. A similar analysis of speech signals is detailed in Cernak et al.
(2017), where a theoretical information rate of speech is proposed. In particular, this work finds
an upper bound of around 100 bps. The gap between this value and the codec proposed in Wang
and Kuo (1998) could be filled with speech representations extracted using similar techniques as
FastVC.

The latent representations obtained with FastVC ideally preserve the salient features of the
encoded data and are invariant to nuisance low-level signal details. This latent signal repre-
sentation allows disentangling different factors of variation in the data and discarding spurious
patterns. Following from this latter, FastVC could be used in denoising. Since the latent repre-
sentations have a lower rate than the raw speech, they will not store the randomness of the signal
but only the critical information that allows for proper reconstruction of the mel-spectrogram in
the `2-norm sense.

The main flaw of the proposed architecture is that FastVC is not explicitly trained for the
task of VC due to the lack of parallel utterances. Instead, FAstVC learns a coding scheme that
disentangles the linguistic and non-linguistic components of the speech, relying on information
bottlenecks and the redundancy principle.

A more natural approach goes back to the original style transfer problem formulation. In
the case of VC, we can identify the content as the linguistic information of the speech signal
and the speaker as its style (see Chapter 1). One way to test the performance in the VC task
is to evaluate both of them using ASR and speaker classifier systems. This approach could use
systems that implement a differentiable mapping so that one could train a model with first-order
methods.

The idea would be simple: since the proposed architecture is expressive enough, one could
use the same model or a variant of it. Instead of training on reconstruction, however, the model
could be trained using the gradients provided by the ASR and classifier systems. This training
scheme is depicted in Figure 5.1.
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Speaker
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Figure 5.1: Scheme for training FastVC explicitly on VC. The ASR and speaker classifier have
frozen parameters; they are only used for the content and style losses. These are computed using
the audio transcription and target speaker respectively.
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