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a b s t r a c t 

Recently, we developed a population balance framework describing the precipitation of calcium-silicate- 

hydrate, a key nanomaterial in the construction industry and with potential applications in biomedicine, 

environmental remediation, and catalysis. In this article, we first refine our computational workflow by 

developing a more efficient and robust method for the solution of the moment-transformed population 

balance equations. Then, we generalize our framework by coupling to PHREEQC, a widely used open- 

source speciation solver, to enhance the adaptability of the framework to new systems. Using this im- 

proved computational model, we perform global uncertainty/sensitivity analysis (UA/SA) to understand 

the effect of variations in the model parameters and experimental conditions on the properties of the 

product. With the specific surface area of particles as an example, we show that UA/SA identifies the 

factors whose control would allow a fine-tuning of the desired properties. This general approach can be 

transferred to other nanoparticle synthesis schemes as well. 

© 2020 The Authors. Published by Elsevier Ltd. 
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. Introduction 

Calcium-silicate-hydrate (CaO-SiO 2 -H 2 O or C-S-H for short) is

he most important phase formed during the hydration of ce-

entitious materials ( Scrivener et al., 2015 ). Aside from its key

ole in the construction industry ( Scrivener et al., 2015 ), C-S-H

as recently found diverse applications in environmental clean-

p ( Shao et al., 2018 ; Zhang et al., 2015 ; Zhao et al., 2014 ),

iomedicine ( Jiao, 2016 ; Wu et al., 2013 ; Zhu and Sham, 2014 ), and

ven catalysis ( Sheng et al., 2019 ; Xia et al., 2019 ). In the biomed-

cal field, for instance, it offers good bioactivity, biocompatibility,

nd biodegradability ( Wu et al., 2013 ; Zhu and Sham, 2014 ). Be-

ides these characteristics, the inherent nanostructured construct

f C-S-H, provides high surface areas, and its relatively low-cost

reparation warrants further research for applications where inter-

aces play a major role ( Shao et al., 2018 ; Wu et al., 2013 ). 

Recently, we developed a formalism to model the nucleation

nd growth of C-S-H using a population balance equation (PBE)

ramework ( Andalibi et al., 2018 ). The theoretical framework was

tted to the experimental data collected on the precipitation of
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 synthetic C-S-H with Ca:Si = 2, prepared under controlled con-

itions resembling the process of cement hydration (in terms of

emporal supersaturation ratio) ( Andalibi et al., 2018 ; Kumar et al.,

017 ). We estimated the optimal values for the unknown model

arameters and explained procedures for the extraction of various

utput information from the simulation. Additionally, we assessed

he merit of our computations by comparing the optimal physical

arameters and various outputs against the literature data, wher-

ver available ( Andalibi et al., 2018 ). 

Here, we build on our previous work and implement two

ivotal refinements to improve the simulation speed, robustness,

nd generality. Specifically, we replace our ad hoc equilibrium

olver in the previous work with PHREEQC, a popular freely-

vailable tool widely used for thermodynamic speciation calcula-

ions ( Parkhurst and Appelo, 2013 ). This allows for a more straight-

orward adaptation to new precipitation scenarios and opens up

he possibility of utilizing the large thermodynamic databases al-

eady included within the software ( Parkhurst and Appelo, 2013 ).

dditionally, we employ the direct quadrature method of moments

DQMOM) for the solution of the PBE, which has several advan-

ages over our previously used QMOM approach ( Dale et al., 2017 ;

aderlein et al., 2017 ; Marchisio and Fox, 2005 ). We give a detailed

erivation of DQMOM and relevant subtleties critical to the robust

nd reliable performance of the method. 
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Nomenclature 

Symbols 

A Coefficient matrix in DQMOM equation 

A 1 , A 2 Constituent matrices of A nm 

A 1, nm 

, A 2, nm 

Constituent matrices of 

A nm 

Similar to A but with discretization 

nodes expressed in nm 

a Vector of a α terms for all the discretiza- 

tion nodes 

a r Crystallite aspect ratio 

a α Time-derivative of w α

b Vector of b α terms for all the discretiza- 

tion nodes 

b α Time-derivative of ς α

b α, nm 

Time-derivative of ς α, nm 

(discretization 

nodes expressed in nm) 

d Vector of moment source term 

d nm 

Similar to d but with discretization 

nodes expressed in nm 

d G nm 

Contribution of growth to d nm 

d N nm 

Contribution of nucleation to d nm 

d Volume 
nm 

Contribution of reaction volume changes 

to d nm 

F Cumulative distribution function of the 

scaler model output 

g Kinetic order of growth 

J hom 

Rate of primary homogeneous nucle- 

ation 

J sec Rate of true catalytic secondary nucle- 

ation 

k Order of NDF moments 

k r Growth rate coefficient 

L Crystallite characteristic size 

L α Crystallite characteristic size of dis- 

cretization node α
L α, nm 

Crystallite characteristic size of dis- 

cretization node α in nm 

L̄ c Average crystallite thickness 

L̄ nm 

Average of the crystallite characteristic 

sizes at different nodes (abscissas) in nm 

L̄ p Average particle edge length 

L ∗
hom 

Critical nucleus size of primary nucle- 

ation in m 

L ∗sec Critical nucleus size of secondary nucle- 

ation in m 

M Number of uncertain parameters subject 

to UA/SA 

m k Moment of NDF of order k 

N Overall number of the nodes in DQMOM 

or the base sample size in UA/SA 

n Number density function (NDF) (for 

crystallites) 

n e Molar abundance of element e 

n p Particle number concentration 

P Preconditioning matrix 

r Number of finite differences in Elemen- 

tary Effect Test 

S Source term embracing all the solid for- 

mation/transformation processes 

S G Source term for crystal growth 

S i PAWN sensitivity index or VBSA main ef- 

fect for input parameter i 

S N Source term for nucleation 
e

S Ti Total-order sensitivity index for input 

parameter i in VBSA 

S̄ k Moment source term ( Eq. 12 ) 

S̄ G 
k 

Moment source term for growth 

S̄ Volume 
k 

Moment source term for changes in the 

system volume (flow systems) 

SSA c or SSA Crystallite Specific surface area of crystallites (m 

2 /g 

solid) 

SSA p or SSA Particle Specific surface area of particles (m 

2 /g 

solid) 

t Time 

V Volume of the reaction suspension 

V ( y ) Unconditional output variance (in VBSA) 

w α Wight of discretization node α
X Input sample matrix for sensitivity anal- 

ysis 

X A , X B , X C Input sample matrices constituting the 

Sobol’ sequences 

x Vector of model input factors (UA/SA) 

y Scaler model output (UA/SA) 

Greek letters : 

α Discretization node index 

α Vector composed of a α and b α terms for 

all the discretization nodes 

αnm 

Similar to α but with discretization 

nodes expressed in nm 

γ Interfacial tension 

� j 
i 

Perturbation in EET 

δ Dirac delta function 

δ′ First derivative of the delta function 

μEET EET sensitivity index 

σ Cohesion energy 

σ EET Standard deviations of finite differences 

in EET 

ς α Weighted abscissa of discretization node 

α ( ≡ w αL α) 

ς α, nm 

Weighted abscissa of discretization 

node α with sizes expressed in nm 

( ≡ w αL α, nm 

) 

Having this improved simulation framework, we assess the be-

avior of the C-S-H precipitation model by applying global un-

ertainty/sensitivity analysis (UA/SA) with different model param-

ters as the source of uncertainty. The propagation of uncer-

ainty into different model outputs such as crystallite dimen-

ions, particle edge length, specific surface areas, and precipita-

ion yield is examined thoroughly using three different methods,

amely, PAWN (derived from the developers names, Pianosi and

agener) ( Pianosi and Wagener, 2018 , 2015 ), Elementary Effect

est ( Morris, 1991 ; Saltelli et al., 2007 ), and variance-based sensi-

ivity analysis (VBSA) ( Saltelli et al., 2010 , 2007 ). The application of

hese complementary methods enables unambiguous appraisal of

he model performance, which in turn facilitates complexity reduc-

ion, i.e. , by fixing uninfluential parameters to reasonable values.

his also allows for a more robust calibration during the regres-

ion to experimental data ( Pianosi et al., 2016 ; Saltelli et al., 2007 ).

dditional implications of such global UA/SA concerns the robust-

ess of model predictions in response to different sources of un-

ertainty/variability in the model parameters ( Pianosi et al., 2016 ;

altelli et al., 2007 ). Besides these outcomes, our work provides

he first example of UA/SA on a kinetic model of precipitation, and

hus can serve as a benchmark for future studies in this direction

refer to ( Iversen and Sin, 2019 ; Öner et al., 2020 ) for more recent

xamples of UA/SA applied to chemical process systems). 
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Once we obtained a comprehensive understanding about the

odel structure, we implement another UA/SA on a model of re-

uced complexity and incorporate uncertainty from different ex-

erimental conditions. The goal is to aid the design of nanoparticu-

ate products by gaining insight from computer experiments. Often,

ptimal operating conditions for a synthesis protocol are found us-

ng one-at-a-time (OAT) experimental designs ( Saltelli et al., 2007 ;

u et al., 2013 ). An example of this practice in the preparation

f synthetic C-S-H is the work by Wu et al. where ultrathin par-

icles possessing surface areas as high as 505 m 

2 /g were obtained

y tuning different experimental conditions such as reactant con-

entration, addition rate, aging time, synthesis temperature, and

he solvent used for washing the precipitate during filtration. Be-

ides covering a limited space of the possible input conditions, this

pproach overlooks the probable interaction effects between vari-

us combinations of the inputs. The latter could produce drastically

ifferent behavior compared to when only one input parameter is

hanged at a time ( Saltelli et al., 2007 ). A global UA/SA circumvents

hese limitations and offers an inexpensive alternative to exam-

ne a wide range of operating conditions varied in an all-at-a-time

ashion ( Öner et al., 2020 ; Pianosi et al., 2016 ; Saltelli et al., 2007 ).

ith this approach, we propose practical recommendations in or-

er to improve the properties of the final product. As an exam-

le, we demonstrate the key influence of reagent addition rate, in

 well-mixed semi-batch reactor, on the accessible specific surface

rea of the final product. This can be further compounded with ad-

ustments in the solution chemistry to obtain a product with dis-

inctly higher specific surface area. 

. Theory 

The overall computational workflow for PBE modeling of pre-

ipitation processes is explained in detail in our recent articles

 Andalibi et al., 2018 ; Carino et al., 2018 , 2017 ) and other literature

 Haderlein et al., 2017 ; Peng et al., 2015 ; Schroeder et al., 2014 ;

chwarzer et al., 2006 ). Therefore, in this section we will focus on

he developments brought forward by the current work. First, we

ill review the essential characteristics of the precipitation system

o be studied, and enumerate the limitations of our previous work.

hen, we will explain the application of DQMOM to solve the PBE

odel for a well-mixed system with crystallite size as the inter-

al coordinate. Finally, we will present the underlying idea behind

ifferent sensitivity measures employed to assess the input-output

elationships in the overall coupled thermodynamic-kinetic frame-

ork. 

.1. Population balance equation and its solution using DQMOM 

Consider a population of crystallites whose size distribution is

volving over time. The number density function (NDF; n ) describ-

ng this distribution is a function of time ( t ) and crystallite charac-

eristic size ( L ), and can be approximated by a discretized distribu-

ion as 

n ( L, t ) = 

N ∑ 

α=1 

w α( t ) δ( L − L α( t ) ) (1) 

here α denotes the discretization nodes with weights w α at sizes

or abscissas) L α , N is the overall number of the nodes, and δ is the

irac delta function ( Marchisio and Fox, 2013 , 2005). For a homo-

eneous system (namely, one with uniformity across the physical

pace), the temporal evolution in NDF can be expressed using the

o-called population balance equation (PBE) 

∂n = S ( L ) (2) 

∂t 
here S is a source term embracing all the solid forma-

ion/transformation processes such as nucleation, growth, and ag-

regation, inflows and outflows of crystallites, and possible changes

n the volume of reaction liquor. In the kinetic modeling of precipi-

ation processes, the PBE is solved along with differential equations

ritten for mass balances ( viz. , the conservation of elements inside

he reactor). 

Substituting Eq. (1) in Eq. (2) (the time-dependences are

ropped for simplicity) 

N ∑ 

α=1 

d w α

dt 
δ( L − L α) −

N ∑ 

α=1 

w α
d L α

dt 
δ′ ( L − L α) = S ( L ) (3) 

here δ′ ( L − L α) is the first derivative of the generalized delta

unction ( Arfken et al., 2012 ). Now, defining the weighted abscis-

as 

ς α = w αL α (4) 

e will have the following ODE upon substitution in Eq. (3) 

N ∑ 

α=1 

d w α

dt 
δ( L − L α) −

N ∑ 

α=1 

(
d ς α

dt 
− L α

d w α

dt 

)
δ′ ( L − L α) = S ( L ) 

(5) 

Defining 

 α ≡ ∂ w α

∂t 

 α ≡ ∂ ς α

∂t 

(6) 

ollowed by substitution in Eq. (5) , gives 

N ∑ 

α=1 

a α
[
δ( L − L α) + L αδ

′ ( L − L α) 
]

−
N ∑ 

α=1 

b αδ
′ ( L − L α) = S ( L ) (7) 

Applying the moment transformation defined as 

m k ( t ) ≡
∫ ∞ 

0 

L k n ( t, L ) dL ∼= 

N ∑ 

α=1 

w α( t ) L k α (8) 

nd knowing ( Arfken et al., 2012 ) ∫ ∞ 

0 

L k δ( L − L α) dL = L k α (9) 

∫ ∞ 

0 

L k δ′ ( L − L α) dL = −kL k −1 
α (10) 

e transform Eq. (7) by multiplying both sides by L k α and integrat-

ng over [0, ∞ ) yielding 

( 1 − k ) 

N ∑ 

α=1 

L k αa α + k 

N ∑ 

α=1 

L k −1 
α b α = 

∫ ∞ 

0 

L k S ( L ) dL (11) 

Now, defining the moment source term S̄ k 

S̄ k ≡
∫ ∞ 

0 

L k S ( L ) dL (12) 

Eq. (11) can be recast into a matrix form as (boldface symbols

re vectors and matrices) 

α = [ A 1 , A 2 ] 

[
a 

b 

]
= d (13) 

here 

 1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 · · · 1 

0 · · · 0 

−L 2 1 
. . . 

( 1 − k ) L k 1 
. . . 

2 ( 1 − N ) L 2 N−1 
1 

· · ·
. . . 

· · ·
. . . 

· · ·

−L 2 N 
. . . 

( 1 − k ) L k N 
. . . 

2 ( 1 − N ) L 2 N−1 
N 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

2 N×N 

(14) 
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A 2 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 · · · 0 

1 · · · 1 

2 L 1 
. . . 

kL k −1 
1 
. . . 

( 2 N − 1 ) L 2 N−2 
1 

· · ·
. . . 

· · ·
. . . 

· · ·

2 L N 
. . . 

kL k −1 
N 
. . . 

( 2 N − 1 ) L 2 N−2 
N 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

2 N×N 

(15)

α = [ a 1 , a 2 , . . . , a N , b 1 , b 2 , . . . , b N ] 
T = 

[
a 

b 

]
2 N×1 

(16)

and for a well-mixed homogeneous system (namely, no depen-

dence on physical space) 

d = 

[
S̄ 0 , S̄ 1 , . . . S̄ k , . . . , S̄ 2 N−1 

]T 
(17)

Note that since A is not dependent on w α it can be defined

even for nodes with zero weight. 

At this juncture, let us elaborate on some technical issues as-

sociated with DQMOM and their resolution. For nanoparticle for-

mation and transformation systems, matrix A can be extremely ill-

conditioned, complicating the accurate solution of the linear sys-

tem in Eq. (13) ( Dale et al., 2017 ). The first reason for this ill-

conditioning can readily be understood by looking at the rows of

matrix A which are composed of abscissas raised to nonnegative

integers. Working with SI units and with crystallite sizes in the

order of nanometers (10 -9 m), the rows of matrix A will assume

very different scales spanning several orders of magnitude ( e.g. , 44

and 35 orders of magnitude variability in A 1 and A 2 , respectively

for N = 3). To alleviate this problem, we can follow the abscissas in

nanometers. Thus, defining L α,nm 

≡ L α × 10 −9 and substitution in

Eq. (11) 

( 1 − k ) 

N ∑ 

α=1 

L k α,nm 

a α × 10 

−9 k + k 

N ∑ 

α=1 

L k −1 
α,nm 

b α × 10 

−9 ( k −1 ) 

= 

∫ ∞ 

0 

L k S ( L ) dL 

(18)

Moreover, substitution in Eq. (6) gives b α, nm 

as 

b α ≡ d ( w αL α) 

dt 
= 

d 
(
w αL α,nm 

× 10 

−9 
)

dt 
= 10 

−9 × b α,nm 

(19)

Inserting this unit adjusted variable into Eq. (18) yields 

( 1 − k ) 

N ∑ 

α=1 

L k α,nm 

a α + k 

N ∑ 

α=1 

L k −1 
α,nm 

b α,nm 

= 10 

9 k 

∫ ∞ 

0 

L k S ( L ) dL (20)

which in matrix form reads 

A nm 

αnm 

= [ A 1 , nm 

, A 2 , nm 

] 

[
a 

b nm 

]
= d nm 

(21)

with 

A 1 , nm 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 · · · 1 

0 · · · 0 

−L 2 1 ,nm 

. . . 

( 1 − k ) L k 1 ,nm 

. . . 

2 ( 1 − N ) L 2 N−1 
1 ,nm 

· · ·
. . . 

· · ·
. . . 

· · ·

−L 2 N,nm 

. . . 

( 1 − k ) L k N,nm 

. . . 

2 ( 1 − N ) L 2 N−1 
N,nm 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

2 N×N 

(22)
 2 , nm 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 · · · 0 

1 · · · 1 

2 L 1 ,nm 

. . . 

kL k −1 
1 ,nm 

. . . 

( 2 N − 1 ) L 2 N−2 
1 ,nm 

· · ·
. . . 

· · ·
. . . 

· · ·

2 L N,nm 

. . . 

kL k −1 
N,nm 

. . . 

( 2 N − 1 ) L 2 N−2 
N,nm 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

2 N×N 

(23)

nm 

= [ a 1 , a 2 , . . . , a N , b 1 ,nm 

, b 2 ,nm 

, . . . , b N,nm 

] 
T = 

[
a 

b nm 

]
2 N×1 

(24)

d nm 

= 

[
S̄ 0 , S̄ 1 × 10 

9 
, . . . S̄ k × 10 

9 k 
, . . . , S̄ 2 N−1 × 10 

9 ( 2 N−1 ) 
]T 

(25)

Note that the Eqs. (21 - 25 ) are the same as Eqs. (13 - 17 ) but ex-

ressed in terms of abscissas in nm. In our experience, this scaling

rocedure is an inevitable step in the application of DQMOM to

he process of nanoparticle formation. Yet another reduction in the

ondition number of matrix A nm 

can be readily achieved by pre-

onditioning which makes the convergence of the iterative solu-

ion more robust and faster ( Press et al., 2007 ). This is particularly

mportant when dealing with particulate processes that give rise to

harp changes in the particle phase space ( e.g. , nucleation or aggre-

ation) ( Dale et al., 2017 ). Here, we applied a left preconditioning

sing a diagonal matrix with main diagonal elements 

P ii = 

L̄ i −1 
nm 

+ ̄L i −2 
nm 

2 

; i = 1 , . . . , 2 N 

(26)

here L̄ nm 

is the average of the abscissas in nm 

L̄ nm 

= 

1 

N 

N ∑ 

α=1 

L α,nm 

(27)

Therefore, instead of solving the system of linear equations in

q. (21) we solve 

P −1 A nm 

αnm 

= P −1 d nm 

(28)

With P being diagonal, its inverse P −1 can trivially be obtained

ia inverting the main diagonal elements ( Arfken et al., 2012 ). 

After these considerations, solving Eq. (28) at each time step

f integrating the set of ordinary differential equations (ODE set

omposed of PBE + mass balances) yields a and b nm 

. For the

DE solvers to work efficiently, the dependent variables have to be

roperly scaled ( Shampine et al., 2003 ). Here, having the weights

n the range of 10 20 crystallites.m 

-3 (or higher), both a α = 

∂ w α
∂t 

nd b α,nm 

= 

∂( w αL α,nm ) 
∂t 

can be extremely large, especially during

he burst of nucleation (nucleation rates are in excess of 10 16 

rystallites.m 

-3 .s -1 for typical model parameters ( Andalibi et al.,

018 )). To bring these values to the order of unity, we solved the

DE set for log 10 of the weights and weighted abscissas 

d( log 10 w α) 

dt 
= 

d w α

dt 
× 1 

w α ln 10 

(29)

d ( log 10 ς α,nm 

) 

dt 
= 

d ς α,nm 

∂dt 
× 1 

ς α,nm 

ln 10 

(30)

here ς α, nm 

≡ w αL α, nm 

. 

Now, let us describe the constituents of the source term S̄ k . For

olecular growth (which could be size-dependent ( Andalibi et al.,

018 )) in a homogenous system we have ( Marchisio and Fox, 2005 )

S G ( L ) = − ∂ 

∂L 
[ n ( L, t ) G ( L ) ] (31)

Therefore, 

S̄ G k = 

∫ ∞ 

L k S G ( L ) dL = k 

∫ ∞ 

L k −1 G ( L ) × n ( L, t ) dL (32)

0 0 
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hich was obtained using integration by parts ( Arfken et al., 2012 ).

ow, using Eq. (1) 

S̄ G k = k 

N ∑ 

α=1 

w αL k −1 
α G ( L α) (33) 

In fact, this is the N-point quadrature approximation of the

rowth source term for moment order k ( Andalibi et al., 2018 ;

archisio and Fox, 2005 ). In matrix format and for abscissas in

anometers 

 

G 
nm 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 

N ∑ 

α=1 

w αG ( L α) × 10 

9 

. . . 

k 
N ∑ 

α=1 

w αL k −1 
α G ( L α) × 10 

9 k 

. . . 

( 2 N − 1 ) 
N ∑ 

α=1 

w αL ( 
2 N−2 ) 

α G ( L α) × 10 

9 ( 2 N−1 ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

iag 
(
1 , 10 

9 
, . . . , 10 

9 k 
, . . . , 10 

9 ( 2 N−1 ) 
)

× A 2 

diag ( w 1 , w 2 , . . . , w N ) ×

⎡ 

⎢ ⎢ ⎣ 

G ( L 1 ) 
G ( L 2 ) 

. . . 
G ( L N ) 

⎤ 

⎥ ⎥ ⎦ 

(34) 

here diag () denotes a diagonal matrix. 

For nucleation, the source term is ( Marchisio and Fox, 2005 ) 

S N ( L ) = J hom 

δ
(
L − L ∗hom 

)
+ J sec δ( L − L ∗sec ) (35) 

here J hom 

and J sec are the rates of primary homogeneous and true

econdary nucleation processes (crystallites.m 

-3 .s -1 ) while L ∗
hom 

and

 

∗
sec are the respective critical nucleus sizes (in m). Therefore, the

orresponding moment source term ( ̄S N 
k 

) is 

S̄ N k = 

∫ ∞ 

0 

L k S N ( L ) dL = L ∗hom 

k J hom 

+ L ∗sec 
k J sec (36) 

Again, in matrix form 

 

N 
nm 

= diag 
(
1 , 10 

9 
, . . . , 10 

9 k 
, . . . , 10 

9 ( 2 N−1 ) 
)

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 1 

L ∗
hom 

L ∗sec 

. . . 

L ∗
hom 

k 

. . . 

L ∗
hom 

2 N−1 

. . . 

L ∗sec 
k 

. . . 

L ∗sec 
2 N−1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

×
[

J hom 

J sec 

]
(37) 

Finally, the source term for changes in the system volume (for

ow systems) reads 

S̄ Volume 
k = −m k 

d ( ln V ) 

dt 
(38) 

here V is the volume of the reaction suspension. Again, in matrix

orm 

 

Volume 
nm 

= − d ( ln V ) 
dt 

diag 
(
1 , 10 

9 
, . . . , 10 

9 k 
, . . . , 10 

9 ( 2 N−1 ) 
)

×

⎡ 

⎢ ⎢ ⎣ 

m 0 

m 1 

. . . 
m 2 N−1 

⎤
⎥⎥⎦

(39) 

Another complication arises from the fact that PBE only tracks

he evolution of crystallites. Therefore, an additional differential

quation is required to account for the time variation of parti-

le number concentration ( n p ; particles.m 

-3 ) ( Andalibi et al., 2018 ;
arino et al., 2017 ). Again, with n p adopting very large values we

olve the ODE for log 10 of n p 

d ( log 10 n p ) 

dt 
= 

d n p 

dt 
× 1 

n p ln 10 

(40) 

d n p 

dt 
= −n p 

d ( ln V ) 

dt 
+ J hom 

(41) 

Besides the PBE set and the ODE for n p , we have to solve for

ass balances over elemental abundances ( n e ) inside the solution.

ince in the current precipitation system the molar amounts are

n mmol range the derivatives are defined in terms of mmol.s -1 

o bring them closer to the order of unity. The rate of precip-

tate formation therefore provides the coupling between kinetics

nd thermodynamic speciation calculation at each time step of in-

egrating the ODE set ( Andalibi et al., 2018 ; Haderlein et al., 2017 ;

chroeder et al., 2014 ). We will discuss the estimation of the ther-

odynamic driving force for precipitation later in Section 3.1 . 

.2. Description of precipitation system and limitations of our 

revious work 

The precipitation system studied here is the formation of syn-

hetic C-S-H with Ca:Si ratio 2 ( Andalibi et al., 2018 ; Kumar et al.,

017 ). The precipitate is composed of nanofoils that are a few nm

hick and in the order of 100 nm wide ( Fig. 1 (a) and (b)). These

wo-dimensional nanoparticles are made up of highly defective

rystallites, of a thickness typically below 10 nm, which are ar-

anged with liquid crystalline-type orientational order ( Fig. 1 (b)

nd (c)). Recently, we proposed a pathway ( Fig. 1 (d)) for the for-

ation of this nanoparticulate material and tested that by regress-

ng the experimental kinetic data using a computational model

ased on population balance equation (PBE) modeling. The frame-

ork included primary nucleation, true catalytic secondary nucle-

tion, and molecular growth, and accounted for the time evolution

f the precipitation driving force by applying thermodynamic equi-

ibrium to the reactions among the aqueous species (local equi-

ibrium assumption ( Andalibi et al., 2018 ; Haderlein et al., 2017 )).

rom a mathematical perspective, the framework consisted of a

et of ordinary differential equations (ODEs) written for the dy-

amic evolution in the moments of crystallite size distribution (the

BE part) and elemental amounts in the system (the mass bal-

nces). Our computational model showed very good plausibility

n terms of the goodness of fit, the consistency of the regressed

odel parameters with respect to the knowledge from the litera-

ure, and reasonable mechanistic and kinetic predictions. This in-

ludes, for instance, the predicted size of crystallites and particles

hich were compatible with previous experimental and theoreti-

al observations, or the invariably undersaturated state of solution

ith respect to portlandite similar to experimental observations

 Andalibi et al., 2018 ). 

In the computational framework mentioned above, the PBE set

as solved using the quadrature method of moments (QMOM)

 Andalibi et al., 2018 ; Marchisio et al., 2003 ). Although QMOM

s a reliable and popular method for this task ( Marchisio and

ox, 2005 ; Schroeder et al., 2014 ; Silva et al., 2010 ), a widely

sed variation called direct quadrature method of moments (DQ-

OM) offers several advantages. For instance, QMOM requires a

oment inversion algorithm at every time step to find the dis-

rete approximation to the size distribution. This is often an ill-

onditioned problem and reduces the computational efficiency

f the method drastically ( Haderlein et al., 2017 ; Marchisio and

ox, 2013 ; Silva et al., 2010 ). On the contrary, DQMOM directly fol-

ows the discrete abscissas and weights approximating the size dis-

ribution, and employs commonly used numerical methods such

s matrix inversion instead of moment inversion algorithms. This
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Fig. 1. Summary of synthetic C-S-H precipitation system studied here. (a) Transmission electron micrograph of C-S-H particles with foil like morphology; (b) schematic rep- 

resentation of C-S-H nanofoils composed of defective crystallites nematically ordered in two dimensions; (c) internal structure of C-S-H crystallites from atomistic simulations 

( Kumar et al., 2017 ; Kunhi Mohamed et al., 2018 ); (d) the proposed precipitation pathway for synthetic C-S-H of Ca:Si = 2 ( Andalibi et al., 2018 ). Adapted with permission 

from Ref. ( Andalibi et al., 2018 ) Copyright 2018 The Royal Society of Chemistry. 
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makes the method more convergent and extremely fast ( Dale et al.,

2017 ; Haderlein et al., 2017 ; Silva et al., 2010 ), to an extent that

Haderlein et al. ( Haderlein et al., 2017 ) have employed it for the

development of “flow-sheeting” software tools. Other benefits of

DQMOM over QMOM are its more efficient coupling to fluid dy-

namics and straightforward extension to multivariate distributions

(namely, with more than one internal coordinate) ( Marchisio and

Fox, 2013 , 2005). The latter is particularly important in the case of

C-S-H as oftentimes the precipitation leads to variable composition

solid solutions ( Lothenbach et al., 2019 ) necessitating the applica-

tion of at least two internal coordinates, namely, size and compo-

sition ( Andalibi et al., 2018 ). 

Another limitation of our previous work is related to the man-

ner of applying the local equilibrium assumption. There, we cal-

culated the supersaturation ratio at fixed time steps selected de-

pending on how fast the precipitation consumes the precursors

( Andalibi et al., 2018 ). Therefore, supersaturation ratio was an ex-

ternally calculated quantity provided to the ODE function (the

function calculating the derivatives as a function of time and de-

pendent variables ( Shampine et al., 2003 )). This is very similar

to the approach adopted by Myerson et al. who only recalculated

the supersaturation ratio when there was significant (more than

0.1%) change in the amount of the precipitate ( Peng et al., 2015 ).

This approach was employed to minimize the computational bur-

den of speciation calculations. Additionally, similar to the work by

Haderlein et al. ( Haderlein et al., 2017 ) and Galbraith and Schneider

( Galbraith and Schneider, 2014 ), a bespoke speciation solver was

developed to expedite the overall simulation ( Andalibi et al., 2018 ).

Even though our equilibrium solver and that by Haderlein et al. are

developed in a general fashion, this practice limits the applicabil-

ity of the developed tools, as it requires setting up a thermody-

namic database for every single new scenario. Instead, there are a

number of powerful freely-available thermodynamic solvers with

huge databases already implemented, such as PHREEQC and GEMS

( Kulik et al., 2013 ; Parkhurst and Appelo, 2013 ). Therefore, in this

work we will present a general-purpose protocol for the coupling

of PHREEQC to the PBE simulations of precipitation processes with

the former imbedded within the ODE function. 

2.3. Uncertainty/sensitivity assessment (UA/SA) 

To quantitatively apportion the variability in the output of the

PBE simulation to various sources of uncertainty in the input

(factors), we applied model-independent sensitivity analysis us-
ng three popular methods: PAWN ( Pianosi and Wagener, 2018 ,

015 ), Elementary Effect Test or the method of Morris (EET)

 Morris, 1991 ; Saltelli et al., 2007 ), and variance-based sensitiv-

ty analysis (VBSA) using quasi-Monte Carlo samples generated by

he method of Sobol’ ( Saltelli et al., 2010 , 2007 ). In this section,

e will briefly explain these concepts to facilitate the comprehen-

ion of the results. The interested reader is referred to the rele-

ant literature for a more in depth discussion ( Pianosi et al., 2016 ;

altelli et al., 2007 ). 

As Saltelli et al. ( Saltelli et al., 2007 ) argued, UA/SA consists in

he examination of uncertainty in parameters (input factors) prop-

gating through a mathematical model all the way to the model

utputs ( Saltelli et al., 2007 ). One way to do this task is through

onte Carlo analysis, wherein a set of row vectors are generated

y sampling the input variability space of different model param-

ters. The accumulation of these sets gives an input matrix with

ach row corresponding to a set of model parameters whose intro-

uction to the model allows a single simulation run. Therefore, any

A/SA requires an input sample matrix. When the model describes

 physicochemical process, the input factors can broadly be classi-

ed in two groups. The first group includes the operating condi-

ions ( e.g. , temperature and reactant concentrations) whose tuning

an potentially change the course of the process and the proper-

ies of the final product. The second group consists of the uncer-

ain model parameters such as those in the kinetic equations ( e.g. ,

rowth rate coefficient and interfacial tension). 

In order to generate the input sample matrix described ear-

ier, low-discrepancy Sobol’ sequences were constructed by first

enerating an input sample X of size 2 N × M , where N is the

ase sample size, and M denotes the number of uncertain param-

ters ( e.g., M = 5 for five model parameters subject to SA). Sam-

le X was generated using Latin hypercube sampling (LHS) strat-

gy ( Pianosi et al., 2016 , 2015 ; Saltelli et al., 2007 ). This sample

as then resampled to build three matrices X A , X B , and X C , where

 A and X B are simply the first and last N rows of X , respectively,

hile X C is a block matrix of M recombinations of X A and X B 

 C = 

⎡ 

⎢ ⎢ ⎣ 

X C, 1 

X C, 2 

. . . 
X C, M 

⎤ 

⎥ ⎥ ⎦ 

(42)

here X C , i is an N × M matrix whose columns are all taken from

 B except for the i th column which is taken from X A ( Saltelli et al.,

007 ). The resampling is done because of the particular way the
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stimation approach is designed to calculate the sensitivity indices

n VBSA via a quasi-Monte Carlo method (see Eqs. (4.21) and (4.23),

nd the discussion therein, in ( Saltelli et al., 2007 )). Once we have

 A , X B , and X C , the computational model should be run with all

he rows in sample matrices as input model parameters giving a

otal of N × ( M + 2 ) sample outputs. 

The first SA method applied here is PAWN, a density-based

or moment-independent) method recently developed by Pianosi

nd Wagener ( Pianosi and Wagener, 2018 , 2015 ). The central idea

ehind this method is to compute sensitivity through variations

n the cumulative density function (CDF) of the output, induced

y fixing one input factor. In practice, this is achieved via esti-

ating the divergence between unconditional output CDF, namely

hat generated by varying all the input factors, and the condi-

ional CDF generated by fixing an individual factor to a prescribed

alue. Several values within the input variability space can be as-

igned to the prescribed value, a practice referred to as multi-

le conditioning, to generate a number of divergence values that

an be aggregated in some kind of statistic ( Pianosi et al., 2016 ;

ianosi and Wagener, 2018 , 2015 ). In PAWN, the divergence is ex-

ressed in terms of Kolmogorov-Smirnov (KS) statistics which is

he maximum vertical distance between the conditional and un-

onditional CDFs ( Pianosi and Wagener, 2018 , 2015 ). In mathemat-

cal terms, defining the input-output relation as y = f (x ) (with

 = [ x 1 , x 2 , . . . , x M 

] T a vector of M input factors and y a scaler out-

ut), the PAWN sensitivity index for the i -th input factor is defined

s ( Pianosi and Wagener, 2018 ) 

S i = stat 
x i 

max 
y 

∣∣F y ( y ) − F y | x i ( y | x i ) 
∣∣ (43) 

In this equation, F y ( y ) and F y | x i ( y | x i ) denote the unconditional

nd conditional CDFs of the output y , respectively, and stat 
x i 

rep-

esents a statistic (mean, median, or maximum) that can be se-

ected by the user over the multiple conditioning intervals. Fur-

hermore, the term max 
y 

| F y (y ) − F y | x i ( y | x i ) | is merely the KS statis-

ic described earlier (consult Fig.1 of ( Pianosi and Wagener, 2018 )

or a concise schematic summary of the ideas behind PAWN). 

PAWN, and moment-independent methods in general, are par-

icularly useful in case of highly skewed or multimodal output

istributions. In such cases, variance is not an adequate proxy

f uncertainty and variance-based methods (see below) can no

onger be applied ( Pianosi and Wagener, 2018 ). Another advan-

age of these methods is that they can be estimated from generic

amples, that is, without requiring tailored sampling strategies

 Pianosi et al., 2016 ; Pianosi and Wagener, 2018 ). Therefore, in this

ork we use the samples generated as described earlier to esti-

ate the average and maximum of KS statistics calculated over

0 conditioning intervals ( Noacco et al., 2019 ). To distinguish influ-

ntial and uninfluential input factors, following Khorashadi Zadeh

t al. ( Khorashadi Zadeh et al., 2017 ) we artificially introduced

 dummy input factor that does not appear in the model and,

hus has no impact on the output. Therefore, the sensitivity index

maximum of KS statistic) corresponding to this factor defines the

hreshold for parameter screening ( Khorashadi Zadeh et al., 2017 ;

oacco et al., 2019 ). 

The second SA method used here is the Elementary Effect Test

 Morris, 1991 ; Saltelli et al., 2007 ). In this case, the idea is to

orrelate model sensitivity with the effect of perturbing the in-

ut factors—one at a time—on the model output. An example of

his approach is to estimate ( e.g. , by finite differences) the par-

ial derivatives with respect to different model parameters at their

ominal values. In this form, the method is computationally very

heap but only provides local sensitivity information ( Pianosi et al.,

016 ). A global extension of this technique is to compute perturba-

ions from multiple points within the input variability space, fol-

owed by aggregating them in some type of statistic. The most
opular method in this group uses the average of r finite differ-

nces (also known as Elementary Effects or EEs) as the sensitivity

easure ( μEET ) ( Pianosi et al., 2016 ; Saltelli et al., 2007 ). Here, a

efined measure taking the absolute values of EEs is used to avoid

ancelation due to sign differences ( Campolongo and Saltelli, 1997 ).

herefore for the i -th input factor we have ( Pianosi et al., 2016 ) 

μE E T,i = 

1 

r 

r ∑ 

j=1 

f 
(
x j 

1 
, . . . x j 

i 
+ � j 

i 
, . . . x j 

M 

)
− f 

(
x j 

1 
, . . . x j 

i 
, . . . x j 

M 

)
� j 

i 

c i 

(44) 

here � j 
i 

is the perturbation applied to the i -th parameter in

he estimation of the j -th elementary effect and c i is an appro-

riate scaling factor. Beside the average of EEs, standard devia-

ions ( σ EET ; the standard deviation of the terms inside the sum-

ation in Eq. (44) ) provide information about the degree of inter-

ction between the parameters and/or their level of nonlinearity

 Pianosi et al., 2016 ; Saltelli et al., 2007 ). 

The last method employed in the current study is the variance-

ased SA (VBSA) ( Saltelli et al., 2010 , 2007 ). This method assumes

hat the output variance is an indicator of its uncertainty and the

ontribution of each input factor to this variance is a measure of

ensitivity. This technique handles nonlinear and non-monotonic

unctions/computational models, as well as those exhibiting inter-

ctions between their factors. Besides, it is able to capture the in-

uence of each factor’s full-range of variation ( Nossent et al., 2011 ;

altelli et al., 2010 ; Yang, 2011 ). Perhaps, the biggest drawback of

his method is the large number of simulation runs it requires for

onvergence ( Pianosi et al., 2016 ; Yang, 2011 ). A workaround for

his limitation can be the application of meta-models ( Al et al.,

019 ), although at the expense of approximating the original com-

utational model ( Morris and Moore, 2015 ). Aside from computa-

ional aspects, another limitation of VBSA is that, variance is not

 meaningful gage for highly skewed or multimodal output distri-

utions and hence, for such situations VBSA indices are not ap-

ropriate measures of sensitivity anymore ( Pianosi et al., 2016 ;

ianosi and Wagener, 2018 ). 

In VBSA, typically two types of indices are defined, first-order

nd total-order. First-order indices (also known as main effects, S i )

easure the direct contribution of individual input factors to the

ariance of output distribution. Equivalently, this can be thought of

s the reduction in the output variance achievable by fixing inputs

ne at a time ( Becker and Saltelli, 2015 ). Mathematically, we have

 Pianosi et al., 2016 ) 

S i = 

V x i [ E x ∼i ( y | x i ) ] 
V ( y ) 

= 

V ( y ) − E x i [ V x ∼i 
( y | x i ) ] 

V ( y ) 
(45) 

here operator E x ∼i 
calculates the expected value of the model

utput y over all possible values of input parameters except for x i 
hich is fixed (conditional mean; x ~i is the vector of all parame-

ers but x i ), operator V x i represents the variance calculated over all

ossible values for x i , and V ( y ) is the unconditional output variance

 Saltelli et al., 2010 , 2007 ). In a model where output variability is

nly a result of main effects (lack of interactions between inputs),
M ∑ 

 =1 

S i = 1 and the model is said to be additive. Nevertheless, in

omplex computational models, this is rarely the case and main ef-

ects do not sufficiently describe the output variability. Considering

he high computational expense, particularly for larger M , that has

o be incurred to estimate all the interaction effects, one may cal-

ulate total-order sensitivity indices, S Ti , which embrace the main

ffect as well as all the interactions (of any order) involving the in-

ut factor x i ( Becker and Saltelli, 2015 ; Homma and Saltelli, 1996 )

S T i = 1 − V x ∼i 
[ E x i ( y | x ∼i ) ] 

V ( y ) 
= 

E x ∼i 
[ V x i ( y | x ∼i ) ] 

V ( y ) 
(46) 
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Fig. 2. The overall algorithm for the PBE simulation of a precipitation process. Black boxes comprise the main workflow backbone ( e.g. , “demo.m” script in the SI), blue 

represents the content of the ODE function, and red refers to the integration of the ODE set using an appropriate solver (MATLAB’s ode15s in this case ( Shampine et al., 

2003 )). All the symbols are defined in the main text.(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.). 
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Here, V x ∼i 
[ E x i ( y | x ∼i ) ] is the variance due to all main effects and

interactions not involving x i and thus 
V x ∼i 

[ E x i 
( y | x ∼i ) ] 

V (y ) 
is the main ef-

fect of x ~i ( Pianosi et al., 2016 ). Therefore, the remaining variance

would be due to all terms that include x i ( Becker and Saltelli, 2015 ;

Homma and Saltelli, 1996 ). Considering the nature of total effect

indices, they are particularly suited for parameter screening as hav-

ing zero total effect is a necessary and sufficient condition for an

input parameter to be uninfluential ( Pianosi et al., 2016 ). 

3. Implementation 

3.1. Thermodynamic speciation via coupling to PHREEQC 

PHREEQC is a freely-available geochemical reaction solver ca-

pable of simulating a variety of processes including solid-liquid-

gas equilibria, surface complexation, ion exchange, and much more

( Parkhurst and Appelo, 2013 ). Aside from its carefully devel-

oped internal database, there are many comprehensive third-party

databases including Cemdata18, specifically developed for cemen-

titious systems ( Lothenbach et al., 2019 ). With such a broad range

of capabilities and extensive thermodynamic infrastructure, cou-

pling PBE simulations with PHREEQC opens up new avenues in

the practical and facile application of this powerful method to

the understanding and design of particulate processes. Such cou-

pling is facilitated by an already developed module called IPhreeqc,

which enables interfacing with different scripting languages such

as MATLAB and Python via Microsoft COM (component object

model) ( Charlton and Parkhurst, 2011 ; Wissmeier and Barry, 2011 ).

Very recently, a number of articles have been published reporting

the coupling of PHREEQC with PBE simulations ( Dietemann et al.,

2019 ; Rehage et al., 2019 ; Zhang et al., 2018 ). Nonetheless, to the

best of our knowledge none of these publications provided the cor-

responding computer code and procedures for the implementation.

Here, we developed a function (the file “eqbrmSolver.m” in the SI)

that provides a general interface for PHREEQC speciation calcula-

tions in MATLAB. Briefly, information about the solution chemistry

( e.g. , different com pounds and their concentrations) and experi-

mental conditions (such as temperature or gasses at constant par-
ial pressure in equilibrium with solution) are provided to the in-

erface, which in turn passes the data into PHREEQC solver via the

OM object. These inputs are provided using keywords in a fash-

on similar to PHREEQC syntax (Figure S 1). This allows the simu-

ation of precipitation in practically unlimited number of systems

nd scenarios without the necessity to rewrite the speciation code

nd/or its database. The information passed as the outputs of spe-

iation calculation are the mass of water solvent, solution density,

lemental concentrations, species concentrations and activities, pH,

onic strength, and saturation indices ( SI = log 10 ( 
IAP 
K sp 

) with IAP be-

ng the ionic activity product ( Parkhurst and Appelo, 2013 )) with

espect to different solid phases. 

In the current study, we employed the Cemdata18 database

 Lothenbach et al., 2019 ) for all the aqueous reactions and the den-

ity and solubility product of the precipitate (C-S-H with Ca:Si = 2)

ere taken from our previous paper ( Andalibi et al., 2018 ). 

.2. Overall simulation workflow 

Fig. 2 summarizes the steps involved during the simulation of

 precipitation process (implemented in MATLAB R2019a). An ex-

mple simulation is presented in the “demo.m” script provided in

he SI. All the core PBE simulations are handled by “pbe.m” func-

ion while the output provided by this function suffices for the

alculation of any other output of interest. For instance, knowing

he moments allows one to calculate different crystallite and parti-

le characteristics such as size and specific surface area. Similarly,

nowing the amount of water solvent (input to “pbe.m”) and tem-

oral mole amounts of all the elements, one can back calculate the

ull speciation using the function “eqbrmSolver.m”. 

For a typical scenario that simulates 24 hours of precipita-

ion with known model parameters (from our previous work

 Andalibi et al., 2018 )) on an ordinary HP laptop, with dual-core

ntel® Core TM i5-4310 M CPU @ 2.70 GHz 2.70 GHz processor and

.00 GB of RAM, the run time was 80 seconds. This is roughly half

he time it took using our previous PBE code (which was using

MOM and bespoke speciation solver). It is worth noting that in

he current version, in contrast to our previous code, the specia-
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ion calculations are embedded within the ODE function. In other

ords, the calculation is performed at every time step selected by

he ODE solver, which makes the total number of such calculations

uch greater in number than in our previous code. Therefore, the

eal speed up due to the application of DQMOM (in the modified

orm introduced here) in place of QMOM is much larger, consistent

ith previous reports ( Haderlein et al., 2017 ; Silva et al., 2010 ) (see

I Section 1 for further details on the implementation of the work-

ow). 

.3. Problem setting and implementation of UA/SA 

The UA/SA presented in this study was mostly implemented us-

ng the SAFE package, an open-source MATLAB toolbox that in-

ludes various functions for the generation of input samples, es-

imation and evaluation of sensitivity indices, and extensive visu-

lization tools ( Pianosi et al., 2015 ). Following our previous work

he target of uncertainty/sensitivity analysis, that is, the PBE model

or the precipitation of synthetic C-S-H, has five unknown parame-

ers: interfacial tension ( γ ), cohesion energy ( σ ), growth rate coef-

cient ( k r ), kinetic order of growth ( g ), and crystallite aspect ratio

 a r ) ( Andalibi et al., 2018 ). Below we will discuss the feasible un-

ertainty domain for each of these parameters. 

The nominal value of interfacial tension from our previous re-

ression to experimental data was estimated to be in the range of

.05-0.06 J.m 

-2 ( Andalibi et al., 2018 ). Preliminary numerical ex-

eriments proved that 0.065 is a suitable upper bound as larger

alues gave unrealistically hindered nucleation. Under the condi-

ions of interest the surface charge density of C-S-H particles lies

n the range of 0.4 C.m 

-2 ( Plassard et al., 2005 ). From Figure 8.2

n Mersmann’s handbook this could bring about 0.025 J.m 

-2 varia-

ion in the interfacial tension between C-S-H and liquid solutions.

herefore, a lower bound of 0.04 J.m 

-2 was assumed for γ . Again,

umerical experiments showed that smaller γ would result in un-

ealistically early nucleation (at very low supersaturation ratios) or

ven spinodal decomposition ( Kashchiev, 2003 ). 

Theoretical considerations dictate that the relative cohesion en-

rgy between an already precipitated solid substrate and secondary

uclei is in the range 0-2 ( Andalibi et al., 2018 ; Marchisio, 2009 ;

utaftschiev, 2001 ; Testino et al., 2005 ). Preliminary tests, how-

ver, indicate that in our system of interest values larger than

nity would give extremely small effective interfacial tensions

or secondary nucleation, particularly when the interfacial tension

s close to the lower bound set earlier. Additionally, a value of

/ γ = 2, which corresponds to coherent interfaces or epitaxial

rowth, hardly happens in precipitation from liquid solutions be-

ause of ions and solvent molecules adsorbed onto the surface of

he substrate ( Marchisio, 2009 ). This is compounded with the ex-

remely defective nature of C-S-H crystallites hampering the for-

ation of interfaces with matching lattices ( Andalibi et al., 2018 ;

umar et al., 2017 ). All things considered, a pragmatic upper bound

f 1 was selected for σ / γ . 

In our previous work, we fitted values in the order of 10 -9 to

he parameter k r and 2 for parameter g ( Andalibi et al., 2018 ). For

he sake of UA/SA, values within one order of magnitude around

0 -9 were considered. As suggested by Marino et al. ( Marino et al.,

008 ), to sample the variability space more uniformly, consider-

ng the variation of k r over two orders of magnitude, log 10 k r was

referred for the sampling. As for kinetic order of growth we sam-

led in the range 1-3 which is the typical variation range covering

ough growth, dislocation-controlled mechanisms and surface nu-

leation regimes ( Mersmann, 2001 ; Söhnel and Garside, 1992 ). 

Finally, the ratio of crystallite edge length to its thickness re-

ressed in our previous work was 0.5 ( Andalibi et al., 2018 ). There-

ore, an input range 1/3 to 1 was considered for the possible

ariability. For all the input factors uniform probability distribu-
ion functions were considered for the generation of the sample

 Noacco et al., 2019 ). 

Concerning the model outputs of interest, the size of crystal-

ites and particles, their specific surface areas (SSA), C-S-H pre-

ipitation yield (conversion with respect to equilibrium compo-

ition), solution pH, and saturation index with respect to port-

andite, all quantities after 12 hours of precipitation, are quali-

atively examined (uncertainty analysis). Subsequently, quantita-

ive assessment in the form of global sensitivity analysis was per-

ormed on three selected outputs: crystallite thickness ( ̄L c ), particle

dge length ( ̄L p ), and specific surface area of particles ( SSA p ). These

re of special practical relevance and they can be compared to

xperimentally measured values ( Andalibi et al., 2018 ; Jiao, 2016 ;

ichardson, 2004 ; Wu et al., 2013 ; Zhang et al., 2015 ). We started

ith a base sample size of N = 20 0 0 (corresponding to 14,0 0 0

nput sample points) and extended the X matrix using the SAFE

oolbox function “AAT_sampling_extend” to assess the convergence

ehavior of different sensitivity measures. Throughout this work,

ootstrapping over 10 0 0 resamples has been used to estimate the

5% confidence bounds on all the SA indices ( Noacco et al., 2019 ;

ianosi et al., 2015 ). 

As a last note regarding the implementation of UA/SA,

he application of the input matrix generated as discussed in

ection 2.3 is straightforward in the case of PAWN and VBSA meth-

ds. On the other hand, to apply EET using the Sobol’ sample, the

nput and output were converted to the format required by EET

unctions. This was done using the function “fromVBSAtoEET” in

he SAFE toolbox, which rearranges the matrices X B , Y B , X C , and Y C 

o that they can be used to calculate EET indices from a radial de-

ign ( Pianosi et al., 2015 ; Saltelli et al., 2007 ). With this approach,

he number of sampling points ( r ) would be equal to the Sobol’

ase sample size ( N ). 

. Results and discussion 

.1. Uncertainty analysis with model parameters as input factors 

In this section, we employ visual tools (scatter plots and his-

ograms) to appraise the propagation of uncertainty from model

arameters to different model outputs. Fig. 3 (a) shows the his-

ograms for average crystallite thickness and edge length ( ̄L c and

 r ̄L c , respectively) with probability normalization while Fig. 3 (b)

ortrays the corresponding results for particle edge length ( ̄L p ).

rom Fig. 3 (a) we can see that the crystallite thickness and edge

ength are typically a few nm, consistent with previous reports for

ifferent C-S-H products ( Andalibi et al., 2018 ; Gatty et al., 2001 ;

umar et al., 2017 ; Richardson, 2004 ; Wu et al., 2013 ; Zhang et al.,

004 ). Particle edge length, instead, is typically 1-2 orders of mag-

itude larger and its distribution assumes a very long tail spanning

p to a few μm ( Fig. 3 (b)) ( Scrivener et al., 2019 ). 

Concerning the specific surface area ( viz. , surface area per unit

ass of precipitate), the hierarchical structure of the solid C-S-

 gives rise to two types of surfaces. One is the overall area

f the external surfaces of crystallites ( i.e. , neglecting the inter-

al crystallite structure; SSA Crystallite ), and the other only considers

he external surface of particles neglecting the surfaces embedded

ithin the bulk of the particles (SSA Particle ). Therefore, by defini-

ion SSA Particle ≤ SSA Crystallite with the equality happening in the

bsence of secondary nucleation and aggregation (in other words,

hen every crystallite is a particle by itself). SSA Crystallite is cal-

ulated from the zeroth moment of crystallite size distribution

which is directly available from PBE simulations) and L̄ c while we

an estimate SSA Particle from n p and L̄ p (see the Electronic Sup-

lementary Information in Ref. ( Andalibi et al., 2018 ) for the es-

imation of L̄ p using geometrical considerations). Fig. 3 (c) shows

he scatter plots for SSA Particle vs. SSA Crystallite and Fig. 3 (d) pro-
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Fig. 3. Results of uncertainty analysis with model parameters as input factors. (a) Probability-normalized histograms of crystallite thickness and edge length; (b) probability- 

normalized histogram of particle edge length; (c) specific surface area (SSA) of particles vs. that of crystallites (the black dashed line is the identity line); (d) probability- 

normalized histograms of crystallite and particle SSA; (e) scatter plot of precipitation yield vs. interfacial tension; (f) dependence of final saturation index with respect to 

portlandite on final solution pH. 
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vides the corresponding histograms. In Fig. 3 (c), we can easily see

that the condition SSA Particle ≤ SSA Crystallite holds (no data above

the identity line) confirming the correct performance of our PBE

simulations. Another important constraint is that SSA Crystallite has

to always be smaller than or equal to the total surface area of C-

S-H building units. Assuming all the calcium in solution is con-

verted to C-S-H and knowing the surface area of a single build-

ing unit (1.1297 ×10 -18 m 

2 ; estimated from C-S-H molar volume

( Andalibi et al., 2018 ) and considering a cubic shape, which has

the highest surface area among cuboids with similar volume), the

theoretical upper bound for SSA Crystallite would be 6014 m 

2 /g. As

we can see in Fig. 3 (c) we are well within this constraint. From

Fig. 3 (d), with the presumed input variability space, the typical val-

ues for SSA Crystallite and SSA Particle are a few tens up to around 20 0 0

m 

2 /g. 

Another output of PBE simulation is the precipitation yield cal-

culated as 

P recipitation yield ( % ) = 

V 0 × c Ca, 0 − V end × c Ca,end 

V end × c Ca,SLE 

× 100 (47)

where V 0 and V end refer to the initial and final volume of the reac-

tion medium, respectively, c Ca , 0 and c Ca, end are the corresponding

Ca concentrations, and c Ca, SLE is the Ca concentration at the end if

precipitation reaches equilibrium. From Fig. 3 (e), there is a strong

relation between γ and precipitation yield, wherein the yield can

drop significantly at higher γ . This is anticipated because larger γ
hinders the onset of primary nucleation ( Andalibi et al., 2018 ). It is

worth noting that much weaker correlations, if at all, are observed

with other input parameters (Figure S 2). 
Another simulation output is the saturation index ( SI ) with

espect to portlandite, a solid phase that competes with C-S-H

or precursor ions during the precipitation ( Andalibi et al., 2018 ;

umar et al., 2017 ; Richardson, 2004 ). In Fig. 3 (f) we have plot-

ed this quantity vs. the solution pH at the end of the precipi-

ation (after 12 h). From this plot, an unambiguous correlation is

isible, where SI increases monotonically with pH. In our previous

ork, we showed that under the examined operating conditions

he system was always undersaturated with respect to portlandite,

onsistent with experimental observations ( Andalibi et al., 2018 ;

umar et al., 2017 ). Nevertheless, according to Fig. 3 (f) at higher

H values portlandite may precipitate along with C-S-H. Indeed,

ur simulations with nominal model parameters ( Andalibi et al.,

018 ) but at a higher inflow NaOH concentration ( e.g. , 4 times

he value reported in ( Andalibi et al., 2018 ) giving a final pH of

3.2; Figure S 14(a)) showed that the system does become super-

aturated with respect to portlandite in line with certain experi-

ents (refer to SI Section 2 for further discussion) ( Kumar, 2017 ;

ichardson, 2004 ). 

Now let us examine the mapping of input uncertainty to three

elected outputs L̄ c , L̄ p , and SSA p . From Fig. 4 , we see that vari-

bility in parameter g has almost no effect on any of the outputs

as implied by the uniformity of the scattered points and the lack

f pattern ( Pianosi et al., 2016 )). Concerning other input factors,

owever, the relative degree of uncertainty propagation depends

n the output. From Fig. 4 (a-c, e), parameters γ , σ / γ , log 10 k r , and

 r are all influential with respect to L̄ c as the output, with σ / γ
aving less impact compared to others. Consulting Fig. 4 (f-h, j), un-

ertainty in σ / γ clearly has the highest effect on the variability of
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Fig. 4. Scatter plots of crystallite thickness (a-e), particle edge length (f-j), and particle surface area (k-o) vs. different input model parameters (base sample size 20,0 0 0). 
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¯
 p (strong pattern formed by the scattered data points) while γ ,

og 10 k r , and a r have much less of an impact. A similar argument

pplies to SSA p (although to a lesser extent) with the output being

uch more sensitive to σ / γ ( Fig. 4 (k-m, o)). In the next section,

e will present the quantitative assessment of sensitivity with re-

pect to different model parameters. 

.2. Sensitivity analysis with model parameters as input factors 

Fig. 5 summarizes the PAWN sensitivity indices calculated with
¯
 c , L̄ p , and SSA p as the outputs (obtained from a sample of size

40,0 0 0; see SI Section 2 for the convergence analysis of the in-

ices). The top row is the mean KS statistic across the ten con-

itioning intervals while the bottom row present the maximum

f KS. The latter can also be used to identify the influential and

ninfluential input factors by comparing the sensitivity indices to

hat of a dummy variable (which has no effect on the model out-

ome) ( Khorashadi Zadeh et al., 2017 ; Noacco et al., 2019 ). From

oth indices, we can clearly verify the minimal effect of g on

he studied model outputs consistent with the conclusions made

rom the scatter plots as discussed earlier (see previous section

nd Fig. 4 ). Indeed, taking the maximum KS statistic as the sen-

itivity measure, it is barely higher than the value estimated for

he dummy input ( Fig. 5 (d-f)). With L̄ c as the model output, the

est of the parameters are all influential with σ / γ being slightly

bove the dummy variable, and γ , log 10 k r , and a r exhibiting quite

imilar higher influences ( Fig. 5 (a,d)). With L̄ p and to a lesser ex-

ent SSA p , variability in σ / γ has the highest impact on the out-

ut uncertainty. Except for the uninfluential factor g , the rest of

odel parameters have similar impact over these two outputs

 Fig. 5 (b,c,e,f)). 

Fig. 6 summarizes the SA results using the EET method (see SI

ection 2 for the convergence analysis of the indices). We have
lotted the average of absolute values for the EEs ( μEET ) against

he standard deviations of EEs normalized by their respective av-

rages ( σ EET / μEET ). We will refer to the latter as the coefficient of

ariation (C.V.) although strictly speaking C.V. is obtained using the

verage of signed EEs (and not the absolute values) ( Menberg et al.,

016 ; Morris, 1991 ; Saltelli et al., 2007 ). Again, consistent with the

esults obtained from the scatter plots ( Fig. 4 ) and PAWN ( Fig. 5 ),

e observe very little effect from g on different outputs ( Fig. 6 ;

EET for g is invariably much smaller than that of the most influ-

ntial factor). With L̄ c as the model output, σ / γ is identified as the

econd least influential parameter while close values are predicted

or the other inputs (similar to PAWN; Fig. 6 (a) and Fig. 5 (a,d)).

long the same lines, with L̄ p and to a smaller degree SSA p , σ / γ
as the highest impact on the output with sensitivity indices be-

ng 48 and 12 times that of g , respectively ( Fig. 6 (b,c)). 

Another observation from our EET analysis is related to the

evel of nonlinearity in model parameters and/or the degree of in-

eraction between them. Following a method proposed by Garcia

anchez et al. ( Garcia Sanchez et al., 2014 ), C.V. values can be clas-

ified in four regions [0, 0.1], [0.1, 0.5], [0.5, 1], and > 1. These re-

ions correspond to almost linear, monotonic, almost monotonic,

nd markedly non-monotonic and/or interacting parameters, re-

pectively. From Fig. 6 (a,b) (and Figure S 5(a,b)), we see that with
¯
 c and L̄ p as outputs all the parameters exhibit a high degree of

onmonotonicity and/or interaction. With SSA p , however, although

arameters γ and g exhibit highly nonlinear and/or interactive be-

avior, the output is almost monotonic with respect to parameters

/ γ , log 10 k r , and a r ( Fig. 6 (c) and Figure S 5(c)). 

Fig. 7 summarizes the SA results based on the variance-based

ethod of Sobol’. Here, considering the sluggish convergence of

he sensitivity measures (in particular, the total effects for L̄ c and
¯
 p , Figure S 6(d,e); see SI Section 2 for the convergence analysis of

he indices), we have further explored the possible application of
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Fig. 5. PAWN sensitivity indices in the form of mean (a-c) and maximum (d-f) of the KS statistic, with 95% confidence intervals obtained from bootstrapping, for crystallite 

thickness (a,d), particle edge length (b,e), and particle surface area (c,f) as the outputs (sample size of 140,0 0 0). 

Fig. 6. Sensitivity indices obtained using EET with crystallite thickness (a), particle edge length (b), and particle surface area (c) as the outputs (sample size of 120,0 0 0). The 

results are presented as the mean of Elementary Effects plotted against their coefficients of variation (all the 95% confidence intervals are estimated by bootstrapping). 
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output transformation. Therefore, rank transformation ( i.e., replac-

ing the numerical value of the output with its ranking within the

sample) and log 10 transformation, which have been very popular in

the literature ( Homma and Saltelli, 1996 ; Saltelli and Sobol’, 1995 ),

are included in Fig. 7 (d-f) and Fig. 7 (g-i), respectively. 

From Fig. 7 (a) we see that with L̄ c as the output the main

effects are generally small, with σ / γ and g assuming zero and

log 10 k r being barely above zero. On the other hand, the total effects

account for the output variability signifying the nonadditive nature

of the input factors ( Saltelli et al., 2010 , 2007 ; Saltelli and Sobol’,
995 ). This is consistent with the C.V. values observed from EET

 Fig. 6 (a) and Figure S 5(a)) all being larger than 1. Nevertheless,

ven at such a high sample size (140,0 0 0) the confidence intervals

re wide and there is overlap between the total effect of σ / γ with

og 10 k r , and log 10 k r with g ( Fig. 7 (a)). Therefore, we attempted a

econd SA fixing g = 2 (which we already know is practically un-

nfluential) and going up to a sample size of 288,0 0 0 (base sam-

le = 48,0 0 0). Doing that, the confidence intervals of σ / γ fall well

elow the other three influential parameters ( γ , log k r , and a r ;
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Fig. 7. Variance-based sensitivity indices for L̄ c , L̄ p , and SSA p (a-c) and their rank (d-f) and log 10 transformations (g-i) as the outputs, with a sample size 140,0 0 0 (base 

sample size N = 20,0 0 0; S i and S Ti are the main and total effects, respectively, and the 95% confidence intervals are estimated by bootstrapping). 
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igure S 7(a)). This outcome is consistent with our previous results

rom PAWN and EET ( Fig. 5 (a,d), Fig. 6 (a), and Figure S 5(a)). 

Consulting Fig. 7 (b), we note the same problem with L̄ p as with
¯
 c . This time, however, even at an input sample size of 288,0 0 0

he confidence bounds overlap significantly (Figure S 7(b)). This

bservation can readily be explained by looking at the probabil-

ty histograms of the output, extending over three orders of mag-

itude ( Fig. 3 (b)). In other words, the complication arises from

he highly skewed distribution of L̄ p with a skewness of 30 (com-

are with 10.7 for L̄ c ; Fig. 3 (a)) ( Pianosi et al., 2016 ; Pianosi and

agener, 2018 ). One remedy to this problem is the application

f rank ( Fig. 7 (e) and Figure S 7(e)) or log 10 ( Fig. 7 (h) and Fig-

re S 7(h)) transformation both making the confidence intervals

ery narrow. Nonetheless, we have to note that sensitivity analysis

n transformations of an output cannot always be converted back

he non-transformed output ( Homma and Saltelli, 1996 ; Iman and

ora, 1990 ; Saltelli and Sobol’, 1995 ). In fact, rank transforma-

ion frequently increases the relative weight of the main effects at

he expense of interaction terms. Consequently, the effect of those

actors influencing the output mostly by way of interaction with

ther parameters may be underestimated in a rank-based analysis

 Saltelli and Sobol’, 1995 ). In a similar way, in our particular exam-

le ( Fig. 7 (d-i) and Figure S 7(d-i)) for all the transformed outputs

both rank and log 10 ) the interactions are dampened rendering the

otal effects almost equal to the main effects. Especially, with pa-

ameters γ , log 10 k r , and a r affecting L̄ p mainly via interactions (see

heir zero main effects in Fig. 7 (b) and Figure S 7(b)), upon trans-

ormation they apparently become much less influential (that is,
hey adopt smaller total effects; Fig. 7 (e,h) and Figure S 7(e,h)).

he same complication can be traced in Fig. 7 (d,g) (and Figure S

(d,g)) because parameters mainly affect L̄ c by way of interactions.

Another interesting feature can be seen in variance-based in-

ices with log 10 SSA p as the output ( Fig. 7 (i) and Figure S 7(i)).

ere, in contrast to the case with untransformed output variable

 Fig. 7 (c) and Figure S 7(c)), the indices have very broad confi-

ence intervals that significantly overlap and make any conclusive

eduction impossible ( Pianosi et al., 2016 ). A closer examination

f probability distributions of SSA p and its log 10 transformation re-

eals that while the former is almost unimodal ( Fig. 3 (d)) the latter

s highly multimodal (Figure S 8). Quantitatively, the Hartigan’s dip

est of unimodality ( Freeman and Dale, 2013 ; Hartigan, 1985 ) gives

-values of 0.11 (insignificant multimodality) and 0 (significant

ultimodality) for the untransformed and log 10 transformed vari-

ble, respectively. Therefore, aside from the complication in con-

erting SA results from transformed outputs back to the original

nes ( Homma and Saltelli, 1996 ; Iman and Hora, 1990 ; Saltelli and

obol’, 1995 ), log 10 transformation may render the output distri-

ution multimodal limiting the applicability of VBSA to such sce-

arios ( Pianosi et al., 2016 ; Pianosi and Wagener, 2015 ). It is worth

oting that the latter problem should not happen with rank trans-

ormation, as the converted distribution is always uniform and

hus unimodal ( Hazewinkel, 2002 ). 

To summarize the results presented in this section, we showed

hat the different outputs might have very different degrees of sen-

itivities with respect to various uncertain input model parameters.

or example, while the average particle size is extremely sensitive
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to the relative cohesion energy between the crystallites, the mean

crystallite size is only weakly dependent on this parameter. This

is an invaluable piece of information when calibrating the model

using experimental data as it allows one to rationally decide on

the methods used to collect such data. Furthermore, one has to be

cautious about the interpretation of sensitivity results and always

crosscheck the outcome of several independent methods to make

sure the results are reasonable and conclusive ( Noacco et al., 2019 ;

Pianosi et al., 2015 ). 

4.3. UA/SA with selected model parameters and experimental 

conditions as input factors 

Now that we have examined the model behavior in detail, we

can turn our attention to the ultimate goal of the current study,

that is, the theory-driven design of nanoparticle synthesis pro-

cesses. Ideally, a precipitation model should be able to explain the

process as a function of experimental conditions alone. In other

words, all the parameters in the theoretical framework have to

be defined as a function of operating conditions such as temper-

ature, concentrations of reagents, ionic strength, etc . This is not an

easy task because the development of such models requires exten-

sive and sometimes independent sets of experimental data to iden-

tify the mechanistic steps involved and calibrate the correspond-

ing theoretical constructs. For instance, Schroeder et al. attempted

to calibrate such a framework for the formation and polymorphic

transformation of calcium carbonate ( Schroeder et al., 2014 ). Al-

though they accounted for different physicochemical aspects and

correlated different parameters with the environmental conditions

inside the reactor, limited success was achieved in reproducing the

experimental data given the extremely complicated nature of the

precipitation process. In the specific case of C-S-H precipitation,

additional complications arise due to the nature of the precipi-

tate usually forming a solid solution whose composition depends

on the environmental conditions and may evolve as a function of

time ( Andalibi et al., 2018 ; Prieto et al., 2016 ; Thomas et al., 2011 ).

Therefore, with the experimental kinetic data being scarce for syn-

thetic C-S-H ( Andalibi et al., 2018 ; Kumar et al., 2017 ), it is only

possible to semi-quantitatively design the product properties as we

will present in this section. 

In its novel environmental ( Shao et al., 2018 ; Zhang et al.,

2015 ; Zhao et al., 2014 ), biomedical ( Jiao, 2016 ; Wu et al., 2013 ;

Zhu and Sham, 2014 ), and catalysis applications ( Sheng et al., 2019 ;

Xia et al., 2019 ), the accessible specific surface area of C-S-H prod-

uct ( i.e., SSA p ) is one of the most important properties of interest.

Therefore, in this section we mainly focus on this characteristic,

while information about crystallite and particle sizes are addressed

for benchmarking against the literature data. 

From the discussion in the previous sections, we found that

among the model parameters g is significantly less influential

and its impact is barely above the dummy variable. Addition-

ally, our previous studies showed that the aspect ratio of C-S-H

crystallites is 0.5 irrespective of mixing flow rate ( Andalibi et al.,

2018 ). Interestingly, the same aspect ratio was found for lower

Ca:Si solids based on atomistic simulations ( Dolado et al., 2011 ).

Therefore, in this section we fix these parameters to nominal val-

ues g = 2 and a r = 0 . 5 . The rest of the model parameters were

also constrained within reasonable neighborhoods of the regressed

parameters taken from our previous study (0.05 ≤ γ ≤ 0.06;

0.5 ≤ σ / γ ≤ 1; −9 ≤ log 10 k r ≤ lo g 10 ( 5 × 10 −9 ) ) ( Andalibi et al.,

2018 ). In particular, the considered ranges are similar to the confi-

dence intervals obtained earlier ( Andalibi et al., 2018 ), slightly ex-

panded to compensate for the limited window in which the exper-

imental data were collected. The judgement was based on prelim-

inary UA where different expanded ranges were selected and the

outputs were evaluated until they fell in the literature and/or phys-
cally accessible window. For instance, interfacial tensions larger

han 0.06 give unrealistically hindered nucleation while values

maller than 0.05 lead to the limit of monomer-sized critical nu-

leus size (spinodal decomposition). This procedure allows us to

ccount for potential variations in these parameters when the ex-

erimental conditions deviate from those under which the regres-

ion data were collected. This is critical especially for parameters

ighly sensitive to the environmental conditions (such as inter-

acial tension and cohesion energy). Fixing suach parameters to

ominal values does not allow for considering the possibility of

arameter variations arising from the changes in the experimen-

al conditions and leads to less reliable conclusions. 

Having the uncertainty window for the model parameters in

lace, we investigate the effect of four experimental variables

n the outcome of precipitation, in a moderately wide neighbor-

ood of the nominal experimental conditions we previously used

or regression ( Andalibi et al., 2018 ). This includes the precipi-

ation temperature (10-50 °C; see SI Section 1 for details on the

emperature-dependence of C-S-H dissolution constant), the ini-

ial concentration of Ca(NO3) 2 inside the reactor (0.01-0.1 mol/kg

ater; the ratio of Na 2 SiO 3 to Ca(NO3) 2 is kept constant at the

riginal value of 0.5), the concentration of NaOH in the inflow

tream (0.1-0.4 mol/kg water), and the rate of inflow stream ( Q ;

.5-10 mL/min). 

Fig. 8 summarizes the distributions of crystallite and particle

izes and specific surface areas. With the model parameters vary-

ng in a practically more accessible neighborhood of the values re-

ressed to experimental data, we anticipate the distributions pre-

ented in this figure match the variations in real systems more

losely. As before, the crystallite dimensions are in the range of

 few nm, in agreement with experimental observations for dif-

erent C-S-H products ( Andalibi et al., 2018 ; Gatty et al., 2001 ;

umar et al., 2017 ; Richardson, 2004 ; Wu et al., 2013 ; Zhang et al.,

004 ) ( Fig. 8 (a)). It is worth noting that the extreme values of

-S-H crystallite size can be obtained experimentally by carefully

djusting the synthesis conditions. For instance, Mehrali et al. ob-

ained C-S-H crystallites as large as 13 and 25 nm in the presence

f sodium dodecyl sulfate ( Mehrali et al., 2014 ). 

From Fig. 8 (b) we see that the particle edge length can as-

ume values up to a few hundreds of nm. It is worth mentioning

hat there are fewer reports on the size of synthetic C-S-H parti-

les, which may coincide with the correlation/cutoff length com-

only measured in SANS and SAXS and is of the same order as

hat we observe here ( Chiang et al., 2012 ; Ioannidou et al., 2016 ;

ennings et al., 2007 ). TEM images also give values within the

ange of a few tens to a few hundreds of nm for the width of C-S-

 particle ( Andalibi et al., 2018 ; Kumar et al., 2017 ; Mehrali et al.,

014 ). 

From Fig. 8 (c) the condition SSA Particle ≤ SSA Crystallite can be ver-

fied. In fact, with the lower bound for σ / γ being 0.5, there is al-

ays significant contribution from secondary nucleation rendering

he SSA Particle smaller than SSA Crystallite . From Fig. 8 (d), we note that

he corresponding distributions for SSA Particle and SSA Crystallite give

alues in the order of 400 and 1600 m 

2 /g. 

Fig. 9 (a-g) presents the scatter plots for SSA p as a function of

ifferent individual input factors. Among the model parameters,

/ γ appears to be the most influential factor, in line with our

esults in the previous sections (note the pattern formation in

ig. 9 (b)). Among the experimental conditions, the addition flow

ate of silicate solution seems to dominate the output variabil-

ty, albeit with a lower impact when compared to σ / γ ( Fig. 9 (g)).

ig. 9 (h) shows the colored scatter plot for these two factors with

arker colors proportional to the output value. The emergence

f color patterns in such a plot is a simple and intuitive tool to

ssess the degree of interaction between pairs of input factors
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Fig. 8. Results of UA with selected model parameters and experimental conditions as the input factors. (a) Probability-normalized histograms of crystallite thickness and 

edge length; (b) Probability-normalized histogram of particle edge length; (c) Specific surface area (SSA) of particles vs. crystallites (the black dashed line is the identity 

line); (d) Probability-normalized histograms of crystallite and particle SSA. 

Fig. 9. Scatter plots of particle surface area vs. different factors in UA with selected model parameters and experimental conditions as the uncertain inputs. (a-g) Output 

plotted against individual inputs; (h) Scatter plot of Q vs. σ / γ with marker color proportional to the value of output. 
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Fig. 10. Results of SA with selected model parameters and experimental conditions as the input factors. PAWN sensitivity indices in the form of mean (a-c) and maximum 

(d-f) of KS statistic, with 95% confidence intervals obtained from bootstrapping, for crystallite thickness (a,d), particle edge length (b,e), and particle surface area (c,f) as the 

outputs (sample size of 54,0 0 0). 
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( Pianosi et al., 2016 , 2015 ). From Fig. 9 (h) a weak pattern can be

discerned (upper left region) where simultaneous occurrence of

high Q and low σ / γ gives rise to exceptionally higher surface areas

(see also Figure S 11(c) presenting the corresponding EET results

where C.V. for the three most influential parameters are all below

unity indicating weak interactions among the parameters). 

For a quantitative assessment of variability propagation to

model outputs, PAWN sensitivity indices were estimated for dif-

ferent model parameters and experimental conditions as input fac-

tors. Fig. 10 summarizes the results with L̄ c , L̄ p , SSA p as the out-

puts (consult Figure S 10 for the convergence of PAWN indices;

similar conclusions can also be obtained using EET as depicted in

Figure S 11). For L̄ c , log 10 k r and Q are the most influential factors

( Fig. 10 (a,d)). All of the experimental variables have low influences

on L̄ c barely above the dummy index ( Fig. 10 (d)). The larger impact

of flow rate can be understood from the fact that at higher addi-

tion rates, the supersaturation build up is larger which in turn in-

duces more contribution from nucleation events to the overall pre-

cipitate. Put differently, higher nucleation rates give rise to larger

number of crystallites among which the remaining precursor is di-

vided giving rise to smaller crystallites (the same trend was also

detected in our previous work; see Table 1 in Ref. ( Andalibi et al.,

2018 )). 

Looking at Fig. 10 (b,e), L̄ p is most sensitive to σ / γ with the rest

of input factors having minimal effects only marginally above the

dummy index. Physically, this means that the relative rates of pri-

mary and secondary nucleation events determine the final particle

size. 
P  
With SSA p as the SA target, again σ / γ is the most influential pa-

ameter ( Fig. 10 (c,f)) compatible with our scatter plots ( Fig. 9 (b)).

esides, among the experimental conditions, we can distinguish a

omparable dependence on Q ( Fig. 10 (c,f); similar inference as in

catter plot Fig. 9 (g)). Conversely, the SSA p of the product is much

ess sensitive (in a global sense) with respect to the other experi-

ental variables. This is a favorable outcome as it allows for opti-

izing this key property by tuning the synthesis conditions. There-

ore, higher surface areas can generally be obtained by increasing

 irrespective of the value other uncertain input factors assume.

rom a physical point of view, this can again be explained in the

ight of supersaturation buildup brought about by higher Q (pro-

iding the limiting reactants—Na 2 SiO 3 and NaOH—faster), which

avors primary nucleation over secondary nucleation (and nucle-

tion, in general, over growth) ( Dirksen and Ring, 1991 ). Conse-

uently, higher particle number concentrations are obtained mak-

ng the overall surface area larger. 

Previously, Wu et al. synthesized C-S-H (of lower Ca:Si ratios)

ith specific surface areas ranging between 100 and 500 m 

2 /g, ob-

ained by varying the synthesis conditions ( Wu et al., 2013 ). Our

esults show that there is room for further improvement by in-

reasing the addition flow rate of silicate solution although one has

o optimize the design of the synthesis reactor for maximal mixing

 Jiang and Braatz, 2019 ). This can be reinforced by the synergis-

ic effect of lowering the cohesion energy (that is, lowering σ / γ ;

ig. 9 (b)) which can be induced either by increasing the relative

oncentration of monovalent ions ( e.g. , adding a sodium salt to the

ixture) or by working at lower pH values ( Jönsson et al., 2005 ;

lassard et al., 2005 ). Of course, this conclusion only applies to
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he set of synthesis conditions investigated here and carefully cal-

brated computational models are needed to cover scenarios that

re more diverse. This includes, for instance, different reactant ra-

ios (which typically induces variations in the Ca:Si ratio of the

recipitate ( Sheng et al., 2019 )), alternative addition orders, differ-

nt pH levels, and the inclusion of other reagents/surfactants (be-

ide those used in the original experiments ( Andalibi et al., 2018 )).

till in the absence of extensive experimental data, the theory-

riven approach presented in this section proves to be a promising

ool to gain insight about the outcome of the process as a function

f different operation conditions. 

. Conclusions 

In summary, we presented a faster, more user-friendly, and

ore robust version of our previous PBE modeling framework (put

orward in Ref. ( Andalibi et al., 2018 )) describing the process of

recipitation from liquid solutions. This was achieved by replacing

ur speciation function with an interface to PHREEQC, providing

ccess to the large databases already implemented in this popular

oftware. Thanks to this modification, the adaptation to new pre-

ipitation scenarios is made much more straightforward and can

e performed using keywords similar to the conventions used in

HREEQC, eliminating the need to prepare the database file for ev-

ry new system. Another modification was the application of DQ-

OM, which offers several advantages in terms of speed, robust-

ess, and adaptability over our previously implemented method

QMOM). Subtle technicalities in the implementation of DQMOM

o obtain a reliable and quickly converging solution method were

xplained to allow replication/extension of the current work by

ther researchers. We also provide fully commented MATLAB codes

mplementing the PBE simulation workflow in the accompanying

upporting Information. 

Upon developing an improved computational framework, three

ifferent global uncertainty/sensitivity analysis (UA/SA) methods

ere applied to understand the behavior of the model in response

o uncertainty in various model parameters. For several simula-

ion outputs, either we demonstrated the consistency of the re-

ults from different SA measures or explained the reason behind

he inadequacy of the applied method. In the latter case, for in-

tance, we presented particle edge length as an output whose

ighly skewed distribution limited the applicability of variance-

ased indices. Having a comprehensive picture of the uncertainty

ropagation through the model, we simplified the variability space

f the model parameters and employed UA/SA as a tool for the

heory-driven design of nanoparticle formation processes. Here,

e showed that—within simplifying assumptions such as the con-

tancy of C-S-H composition across the considered experimental

onditions—one could take advantage of UA/SA to decide on the

ptimal synthesis conditions for a target property in the final prod-

ct. The procedure was demonstrated using the specific surface

rea of particles as the output, revealing the critical role of reagent

ddition rate and intercrystallite cohesion energy in obtaining the

esirable outcome. These results warrant similar future studies us-

ng mechanistic kinetic models with carefully calibrated parame-

ers that are only dependent on the system specifications. Such

odels allow for UA/SA over a wide range of operating conditions,

hich subsequently provide an invaluable basis for the rational de-

ign of production units. In the particular case of C-S-H system ex-

mined here, future experimental work relating the effect of dif-

erent factors—most importantly, mixing/hydrodynamics as well as

dditives such as polymers and/or salts—on the properties of the

roduct could lead to the development of more predictive mod-

ls, which in turn guide the synthesis more decisively. In a broader

ense, the current study provides a basis for future effort s where
eticulously developed computational models guide the practical

mplementation in the laboratory. 
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