
A Time Splitting Based Real-Time Iteration Scheme for Nonlinear MPC

Yuning Jiang∗, Colin N. Jones, Boris Houska

Abstract— This paper proposes a parallelizable real-time
algorithm for model predictive control (MPC). In contrast to
existing distributed and parallel optimization algorithms for
linear MPC such as dual decomposition or the alternating di-
rection method of multipliers (ADMM), the proposed algorithm
can deal with nonlinear dynamic systems as well as non-convex
stage costs. Existing real-time algorithms for MPC simulate
and compute sensitivities of the predicted state trajectories on
the whole prediction horizon. Different from this, the proposed
method uses a reversed real-time scheme, where small-scale
nonlinear MPC problems are solved on much shorter horizons
and in parallel during the feedback phase, while a large equality
constrained coupled QP is solved during the preparation step.
This makes the proposed algorithm particularly suited for
nonlinear MPC problems with long prediction horizons. The
performance and advantages of the proposed method compared
to existing real-time nonlinear MPC algorithms are illustrated
by applying the method to a benchmark case study.

I. INTRODUCTION

Model predictive control (MPC) is an advanced control
technique, widely used in industry [23], [24]. The main
idea of MPC is to solve an optimization problem at every
sampling time minimizing a given performance criterion on
a finite prediction horizon subject to a potentially nonlinear
system dynamic as well as state and control constraints.
There now exists a large variety of software [17], [10],
which implement tailored algorithms [5], [28] for solving
small to medium scale optimal control problems in real-time.
However, for distributed systems, systems that comprise a
large number of differential states, or systems for which
long prediction horizons are desired, the computation time
of state-of-the-art optimal control algorithms can become a
limiting factor.

As many optimal control algorithms are based on direct
methods [1], the question how to implement fast distributed
MPC algorithms reduces to the question how to solve large-
scale structured or distributed optimization problems. For
the class of convex optimization problems there exists a
large number of distributed optimization algorithms, which
are often based on dual decomposition [19]. Here, the dual
ascent problem can, for example, be solved by a semi-smooth
Newton method [6], [16] or other smoothing techniques
based on self-concordant barrier functions [27]. Linear MPC
controllers based on dual decomposition methods have been

∗Corresponding author.
Y. Jiang and B. Houska are with the School of Information Science

and Technology, ShanghaiTech University, Shanghai, China {jiangyn,
borish}@shanghaitech.edu.cn

C. N. Jones is with the Automatic Control Laboratory, Ecole Poly-
technique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, and
is a Visiting Professor at ShanghaiTech University, Shanghai, China
{colin.jones}@epfl.ch

developed and implemented by many authors as reviewed
in [25], [7].

Another class of distributed optimization methods for
convex optimization problems are based on the alternating
direction method of multipliers [3]. In [21] an optimal
control algorithm based on ADMM has been developed.
Here, the authors apply ADMM in order to distribute the
optimal control problem in time, i.e., the corresponding
method is applicable in order to solve linear MPC problems
with long prediction horizons. Other authors have analyzed
applications of ADMM to cooperative control [4], [14], [18].
Moreover, an inexact fast alternating minimization algorithm
for distributed MPC has been proposed in [22].

Concerning nonlinear MPC there exists algorithms, which
can be used for large-scale applications [5] such as the
sequential convex programming based method for which
most of the function evaluations, sensitivity computations
as well as convex solvers can, in principle, be paral-
lelized. For example, the nonlinear programming software
library GALAHAD [8] implements a number of augmented
Lagrangian based methods, which are suited to large-scale
applications. However, distributed nonlinear MPC methods,
which solve smaller scale nonlinear optimization problems
as part of their iterations, remain scarce. This is mostly
due to the fact that non-convex distributed optimization
is a very recent field of research for which only a few
methods exist [9]. Dual decomposition methods are not
applicable to nonconvex optimization problems, because in
general there is a duality gap. Similarly, ADMM meth-
ods are in general divergent when applied to non-convex
optimization problems, as discussed in [11]. Nevertheless,
a notable exception is the alternating direction augmented
Lagrangian based inexact Newton (ALADIN) method, which
has been proposed recently [11]. ALADIN is a distributed
nonconvex optimization problem solver. Initial attempts to
apply ALADIN in the context of nonlinear optimal control
can be found in [15].

The paper is organized as follows. Section II presents the
nonlinear MPC problems as well as a review of the main idea
for splitting optimal control problems along the time horizon.
In Section III, one of the main contributions of this paper
is outlined, namely a parallelizable scheme for nonlinear
MPC based on a real-time variant of ALADIN. Similar to
existing real-time methods [5], the scheme is divided into two
phases, a feedback phase and a preparation phase. However,
in contrast to [5], the proposed scheme solves a QP in
the preparation phase, while small-scale NLPs are solved in
parallel during the feedback phase. This has the advantage
that the run-time of the feedback phase is independent of



the prediction horizon of the NMPC controller. Section IV
provides a local stability proof, which is non-trivial and
different from [5], as the QP is solved in the preparation
phase. In Section VII, a nonlinear benchmark problem with
4 states and 2 controls is used to illustrate the performance
of the proposed real time scheme. For this example, we
observe a run-time speed-ups of a factor 16 compared to the
traditional real-iteration scheme for NMPC, as implemented
in [10]. Section VIII concludes the paper.

Notation. The indicator function is denoted by

I(x, y) =

{
0 if x = y

∞ otherwise.

We use the symbols Sn++(Sn+) to denote the set of symmetric,
positive (semi-) definite matrices in Rn×n and ‖x‖2Σ = xᵀΣx
to denote Euclidean norms with scaling Σ ∈ Sn++. The n-
dimensional open unit disk with center 0 and radius r > 0
is denoted by Bnr . A minimizer of an equality constrained
optimization problem is called a regular KKT point, if
the linear independence constraint qualification (LICQ) and
second order sufficient condition (SOSC) are satisfied [20].

II. NONLINEAR MODEL PREDICTIVE CONTROL

A. Problem Formulation

This paper concerns nonlinear discrete-time optimal con-
trol problems of the form

VN (x̂) = min
x,u

N−1∑
k=0

l(xk, uk) +M(xN )

s.t.


∀ k ∈ {0, ..., N − 1}
xk+1 = f(xk, uk) ,

x0 = x̂ .

(1)

Here, x and u denote the state trajectory and the con-
trol inputs, respectively, f : Rnx × Rnu → Rnx the dynamic
system equation, l : Rnx × Rnu → R ∪ {∞} the stage cost,
and M : Rnx → R ∪ {∞} the terminal cost. The function
VN : Rnx → R ∪ {∞} is called the optimal value function.
In the context of nonlinear MPC, x̂ denotes the current state
estimate and N the prediction horizon.

Assumption 1 The functions f and l are twice Lipschitz-
continuously differentiable on Bnx

r ×Bnu
r for a given r > 0,

we have f(0, 0) = 0 as well as l(0, 0) = 0, and there exists
a constant c > 0 such that

∀x ∈ Bnx
r , l(x, u) ≥ c (‖x‖22 + ‖u‖22) .

Notice that this assumption ensures that the matrices

A =
∂

∂x
f(0, 0) , B =

∂

∂u
f(0, 0) , Q =

1

2

∂2

∂x2
l(0, 0) ,

R =
1

2

∂2

∂u2
l(0, 0) , S =

1

2

∂2

∂x∂u
l(0, 0)

(2)

are well-defined. All these matrices can be pre-computed
offline.

Remark 1 Because this paper is about local stability anal-
ysis of a parallel nonlinear MPC scheme, inequality con-
straints on the control and state can be taken into account
by adding indicator functions of the feasible set to the stage
cost l and terminal cost M . As long as the point (0, 0) is
strictly feasible, this is not in conflict with Assumption 1, as
differentiability is only needed in a local neighborhood of
this point.

B. Terminal cost

In order to ensure that the limit function

V∞ = lim
N→∞

VN

is well defined in an open neighborhood of 0, the following
standard assumption is introduced (see [12], [24]).

Assumption 2 The pair (A,B) is (asymptotically) stabiliz-
able.

Assumptions 1 and 2 also imply that the Riccati equation,

P =AᵀPA+Q

− [APB + S] (R+BᵀPB)
−1

[AᵀPB + S]
ᵀ

has a positive definite solution P � 0 and the terminal cost

M(x) = xᵀPx

satisfies V∞(x) = M(x) + O
(
‖x‖3

)
. In order to simplify

notation, the following sections assume that M is indeed
constructed in this way, although, in principle, the consid-
erations below could also be generalized for other locally
accurate terminal cost functions.

C. Time-splitting of MPC

In order to develop efficient algorithms for solving (1),
we assume that the time horizon is split into m pieces with
N = m · n, m,n ∈ N>0. Let J : Rnx × Rnx → R ∪ {∞}
denote the cost-to-travel function,

J(a, b) = min
x,u

n−1∑
k=0

l(xk, uk)

s.t. ∀ k ∈ {0, . . . , n− 1},

xk+1 = f(xk, uk) ,

x0 = a , xn = b ,

(3)

for all a, b ∈ Rnx . Notice that the properties of J have been
analyzed in [12], where it is also shown that

VN (x̂) = min
z

m∑
j=1

J(zaj , z
b
j) +M(zbm)

s.t. ∀ j ∈ {1, ...,m− 1},
zaj+1 = zbj | λj ,
za1 = x̂ .

(4)

In the above optimization problem, we have introduced the
primal optimization variable z = [za1 , z

b
1, . . . , z

a
m, z

b
m] and

λ = [λ1, . . . , λm−1] to denote the Lagrangian multipliers of
the consensus constraints.



III. REAL-TIME PARALLELIZABLE NMPC

This section proposes a real-time algorithm to solve (4) in
a distributed manner. The algorithm is alternating between a
preparation phase, in which an LQR problem is solved on the
long horizon in order to construct parameterized arrival and
terminal cost functions for MPC problems on smaller hori-
zons. The decoupled MPC problems on the smaller horizons
are then (approximately) solved in a feedback phase. The
construction of the arrival and terminal costs is introduced
below, while details on the feedback and preparation phase
can be found in Sections III-B and III-C.

A. Parametric Arrival and Terminal Costs

Let

Ψj : Rnx × Rnx × Rnx → R
and Φj : Rnx × Rnx × Rnx → R

denote the arrival and terminal cost,

Ψj(x, z
a
j , λj−1) =

1

2

∥∥x− zaj − P−1λj−1

∥∥2

P
,

for j ∈ {2, . . . ,m} and

Φj(x, z
b
j , λj) =

1

2

∥∥x− zbj + P−1λj
∥∥2

P
,

for j ∈ {0, . . . ,m − 1}. The functions Ψj(·, zaj , λj−1) and
Φj(·, zbj , λj) can be interpreted as augmented Lagrangian
terms [3] that are parameterized in zaj , λj−1 and zbj , λj . The
main idea is to adjust the parameters during a preparation
phase that takes the coupling between the different horizon
intervals into account. Here, the scaling matrix P is equal
to the positive definite solution of the algebraic Riccati
equation, as outlined in the previous section. The first arrival
and last terminal cost terms

Ψ1(x) = I(x̂, x) , Φm(x) = M(x) = ‖x‖2P
are fixed and not parametric. Now, the objective function of
the j-th decoupled problem is given by

Jj(a, b,zj , λj−1, λj) =

Ψj(a, z
a
j , λj−1) + J(a, b) + Φj(b, z

b
j , λj) ,

(5)

where λj−1, λj , and zj = [zaj , z
b
j ] are parameters. The fol-

lowing section explains how to use these objective functions
to define a nonlinear feedback law.

B. Feedback Phase

Algorithm 1 outlines the feedback phase. Notice that this
routine is called as soon as the current state measurement
x̂ is avaiable. In order to compute the control reaction v1

0 ,
one only needs to (approximately) solve the first parametric
minimization problem on the short horizon by applying one
or more than one SQP steps. Recall that the arrival and ter-
minal costs of the short horizon problems are parameterized.
Therefore, Algorithm 1 accepts a parameter w = (z, λ) as
an input, which is determined during a preparation phase, as
disussed in the section below. A discussion of how to choose
the tuning parameter γ > 0 can be found in Section IV.

Algorithm 1 Real-Time ALADIN: Feedback Phase

Input:
• The current measurement x̂.
• Tuning constant γ > 0 and parameters w = (z, λ).

Main Steps:
1) If ‖w‖2 ≥ γ‖x̂‖2, rescale

w ← γ · w ‖x̂‖2
‖w‖2

.

2) Approximately solve the decoupled NLPs by applying
one or more SQP iterations (with pre-computed exact
Hessians at the reference trajectory),

(yj , vj) = SQPMin
(
Jj(yj0, vjn, zj , λj−1, λj)

)
(6)

for all j ∈ {1, . . . ,m} in parallel.

3) Send v1
0 to the real process.

Algorithm 2 Real-Time ALADIN: Preparation Phase

Input:
• Inexact solutions of the decoupled NLPs,

ξ =
[
y1

0 , ..., y
1
n−1, y

2
0 , ..., y

m−1
n−1 , y

m
]
, ζ =

[
v1, ..., vm

]
.

Main Steps:
1) Compute the gradients and residuals in parallel

qk =
∂

∂x
l(ξk, ζk) , rk =

∂

∂u
l(ξk, ζk) ,

ck = f(ξk, ζk)−Aξk −Bζk ,

for all k = 0, ..., N − 1 as well as qN = 2PξN .

2) Solve the coupled quadratic programming problem,

min
x,u

N−1∑
k=0

`k(xk, uk) + `N (xN ) (7)

s.t. ∀ k ∈ {0, . . . , N − 1}

xk+1 = Axk +Buk + ck | λQP
k

x0 = x̂ .

where for all k = 0, . . . , N − 1

`k(x, u) =

[
x− ξk
u− ζk

]ᵀ [
Q S
S R

] [
x− ξk
u− ζk

]
+

[
qk
rk

]ᵀ [
x− ξk
u− ζk

]
,

`N (x) = ‖x− ξN‖2P + qᵀN (x− ξN ) .

3) Set zbj = zaj+1 ← xnj+1 and λj ← λQP
nj+1 for all

j ∈ {1, . . . ,m− 1} as well as zbm = 0.



C. Preparation Phase

During the preparation phase, as outlined in Algorithm 2,
the coupled equality constrained QP (7) is solved. Because
this QP is equivalent to an extended linear quadratic regulator
(LQR) problem on the full (long) horizon, this QP can be
solved efficiently by backward and forward sweeps [24].
Here, all the matrix valued linear algebra operations can be
prepared offline as the matrix P has been pre-computed.
The solution of this LQR problem is used to update the
parameters (z, λ), which are needed to adjust the arrival and
terminal costs of the NLPs (6) in the next feedback phase.

Remark 2 Notice that the proposed real-time scheme is
different from the traditional SQP-based real-time iteration
scheme for NMPC [5]. In fact, in [5] a QP is solved during
the feedback phase while the linearization and linear algebra
preparation happens during the preparation phase. In this
sense, one could call the above scheme a reversed real-time
iteration scheme, because the long-horizon QP is actually
solved in the preparation phase. Here, the main advantage
compared to [5] is that the CPU time of the feedback phase
is independent of the horizon length N , as the short-horizon
problems are solved in parallel—and only the first problem
needs to be solved to compute the feedback reaction.

IV. LOCAL STABILITY AND PERFORMANCE ANALYSIS

In this section, the local stability of the proposed real time
scheme in Section III is analyzed. This is non-trivial in the
sense that the proposed scheme is different from the standard
real-time scheme in [5] (see Remark 2). In the following, we
use the notation u0

∞(x̂) to denote the optimal infinite-horizon
feedback law; that is, the first element of the optimal solution
of (1) for N = ∞. The following proposition is a direct
consequence of the definition of VN in (1). A more formal
proof can be found in [24], [26].

Proposition 1 If Assumptions 1 and 2 be satisfied, then

V∞(f(x̂, u0
∞(x̂))) ≤ V∞(x̂)− c‖x̂‖22 (8)

for all x̂ in an open neighborhood of 0. Moreover, we have

|V∞(x̂)− V∞(ŷ)| = O(‖x̂‖+ ‖ŷ‖)‖x̂− ŷ‖ (9)

for all x̂, ŷ in an open neighborhood of 0.

In the following, we use the notation wm(x̂) to denote the
optimal primal-dual solution of (4). Moreover, we use the
notation

wm∞(x̂) =
(
[[w∞(x̂)]1][1:m], [[w∞(x̂)]2][1:m−1]

)
to denote the components of the primal [w∞(x̂)]1 and dual
[w∞(x̂)]2 optimal infinite horizon solution that correspond
to the horizon [1 : m]. Because the matrix P is found by
solving the algebraic Riccati equation, we have [24]

wm∞(x̂) = wm(x̂) + O(‖x̂‖2) . (10)

Lemma 1 Let Assumptions 1 and 2 be satisfied and let v1
0

denote the feedback control input—as computed in Algo-
rithm 1. If w = (z, λ) denotes the input parameter after
the re-scaling step of Algorithm 1, then we have

‖f(x̂, v1
0(x̂))−f(x̂, u0

∞(x̂))‖ = O(‖x̂‖2)+O(‖w−wm∞(x̂)‖).

Proof. Recall that the objective functions Jj of the decou-
pled short-horizon MPC problems have been constructed
by adding augmented Lagrangian terms in the form of
parametric arrival and terminal costs. Thus, if we could set
w = wm∞(x̂) and if we solve these decoupled problems to
optimality, we would find the optimal feedback v1

0 = u∞(x̂).
However, in general there are two sources of errors: firstly, if
we apply only a finite number of SQP steps, a local approx-
imation error of order O(‖x̂‖2) must be taken into account,
because SQP has a locally quadratic convergence rate [20].
Here, local KKT regularity is ensured by Assumptions 1
and 2. Moreover, the fact that the parametric minimizer of the
augmented Lagrangian problems is Lipschitz continuous in
w has been proven in [2]. Thus, by combining these existing
facts, one obtains the statement of the lemma. �

Theorem 1 Let Assumptions 1 and 2 be satisfied. If the
tuning constant γ > 0 is sufficiently large, then the proposed
real-time scheme (Algorithms 1 and 2) yields a locally
asymptotically stable closed-loop controller.

Proof. First notice that—although one might intuitively
expect that the statement of this theorem holds—a formal
stability proof is not entirely straightforward, as the real-time
iteration is reversed. Here, the key idea is to apply Lemma 1
twice for two consequtive iterations. Let x̂ be the current
measurement, x̂+ the next, and x̂++ the measurement after
the next. Let us first apply Lemma 1 for the current feedback
step. Due to our particular construction of the scaling step
and since we are solving the full asymptotically accurate
QP (up to negligible terms of order 3), see (10), in the
preparation phase, we have

‖w+ − wm∞(x̂)‖ = O(‖x̂‖2) ,

where w+ denotes the primal dual solution of the QP in
Step 2 (before the shifting in Step 3 and before the next
measurement x̂ becomes available). Thus, since we assume
that γ is sufficiently large, such that the scaling step is
inactive, we can apply Lemma 1 a second time in order to
find

‖x̂++ − f(x̂+, u0
∞(x̂+))‖ = O(‖x̂+‖2) + O(‖x̂‖2) . (11)

Now, it remains to apply Proposition 1 to find that

V∞(x̂++)
(9),(11)

= V∞(f(x̂+, u0
∞(x̂+)))

+ O(‖x̂+‖(‖x̂+‖2 + ‖x̂‖2))
(8)
≤ V∞(x̂+)− c‖x̂+‖22

+ O(‖x̂+‖(‖x̂+‖2 + ‖x̂‖2)) .

The latter inequality is sufficient to establish local asymptotic
stability with V∞ being a local Lyapunov function, since



0 300 600 900 1200 1500 1800 2100

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 300 600 900 1200 1500 1800 2100

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 300 600 900 1200 1500 1800 2100

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Fig. 1. Real time trajectory of state cA, black solid line: measured trajectory, blue dashed line: predictive trajectory, red dashed line: gap at coupled node,
green dash-dotted line: closed-loop trajectory by ACADO (one SQP iteration per sampling time).

the error terms are all of order 3, while the descent has
convergence order 2. Here, the relation ‖x̂‖ = O(‖x̂+‖)
holds due to the fact that we are evaluating all functions in
the neighborhood of a regular KKT point. �

Remark 3 Notice that γ > 0 should be a sufficiently large
constant. However, the statement of Theorem 1 does not hold,
if the scaling step in Algorithm 1 is left away. For example,
if we have x̂ = 0, but w 6= 0, it is important to implement
this scaling—as the decoupled NLP solutions would return
v1

0 6= 0 otherwise and, thus, destabilize the system, although
the current state is exactly equal to 0. A discussion of how
to choose γ can—in a slighly different context—be found
in [13]. Moreover, a more detailed discussion of how the
presented ALADIN algorithm performs in the global phase,
where active set changes are present, can be found in [11].

V. NUMERICAL CASE STUDY

In this section, we apply the proposed parallelizable real
time scheme to a benchmark problem, namely a continuously
stirred tank reactor (CSTR) [10]. This CSTR model has four
states and two controls and can be written in the form

ċA(t) = u1(cA0 − cA(t))− k1(ϑ(t))cA(t)

−k3(ϑ(t))(cA(t))2

ċB(t) = −u1(t)cB(t) + k1(ϑ(t))cA(t)− k2(ϑ(t))cB(t)

ϑ̇(t) = u1(t)(ϑ0 − ϑ(t)) + kwAR

ρCpVR
(ϑK(t)− ϑ(t))

− 1
ρCp

[k1(ϑ(t))cA(t)H1 + k2(ϑ(t))cB(t)H2]

+ke(ϑ(t))(cA(t))2H3]

ϑ̇K(t) = 1
mKCPK

(u2(t) + kwAR(ϑ(t)− ϑK(t))) ,

Here, the first two states, cA and cB , are the concentrations of
cyclopentadiene (substance A) and cyclopentenol (substance
B), respectively, while the other two states, ϑ and ϑK , denote
the temperature in the reactor and the temperature at the
cooling jacket. The control inputs are denoted by u1 and u2.

We set up a closed-loop scenario using the above model,
where the parameters and control bounds are set to exactly
the same values as in [10]. The prediction horizon is set
to T = 1500 s. It is divided into m = 10 control intervals

of equal length. Moreover, in order to showcase the run-
time performance of the proposed scheme, the number of
SQP iterations per iteration in the decoupled NLP solvers
(Algorithm 1) has been limited to 1.

Fig. 1 shows the result for the state cA after the one, five,
and ten real-time iterations. Clearly, in the first iteration,
we can observe a significant consensus gap between the
first and second interval. However, already after 5 real-time
iterations the gaps are almost closed and the controller starts
to operate close to optimality. In order to assess the closed-
loop performance of the algorithm, we introduce the relative
closed-loop performance degradation, defined as

∞∑
k=0

`(xk, uk)− V∞(x̂)

V∞(x̂)
.

This closed-loop performance degradation takes the value
6.7% for the proposed real-time ALADIN iteration and 7.2%
for the classical real time algorithm from [5]. Thus, one state
that the suboptimality of these two algorithms is almost the
same.

In order to illustrate the run-time performance of the
proposed parallel real-time scheme, Table I and Table II list
the run-times of the traditional real-time iteration scheme,
as implemented ACADO Toolkit. The run-times in Table I
do not exactly coincide with the times in [10], as we have
run both algorithms on the same computer in order to arrive
at a fair comparison. Both implementations are using the
open-source code generation tools in ACADO Toolkit to
export optimized C-code [10]. Notice that the run-time of the
proposed parallel real-time scheme for a complete iteration
is about a factor 16 faster than the associated run-times of
the traditional real-time iteration scheme, as proposed in [5],
[10]. In this example, the run-time of the feedback phase
is approximately 6µs, which must be compared to the time
that it takes to solve a QP online—in this case almost 59µs.
If we implement NMPC controllers with longer prediction
horizons, the run-time benefits of the proposed scheme
become even more significant, as the proposed feedback step
does not depend on N , as long as the interval of the first
splitting interval is kept constant.



TABLE I
RUN-TIME OF ACADO CODE GENERATION [10]

CPU time Percentage

Integration & sensitivities 117 µs 65%
QP (Condensing + qpOASES) 59 µs 33%
Complete real-time iteration 181 µs 100%

TABLE II
RUN-TIME OF THE PROPOSED REAL-TIME SCHEME WITH 10 THREADS

CPU time Percentage

Parallel decoupled MPC 6 µs 55%
QP sweeps 3 µs 27%
Communication overhead 2 µs 18%
Complete real-time iteration 11 µs 100%

VI. CONCLUSIONS

This paper has introduced a parallelizable real time scheme
for nonlinear model predictive control. In contrast to [5], a
structured equality-constrained QP is solved in the prepa-
ration phase, while the feedback phase solves small-scale
MPC problems on short horizons. This has the advantage
that the run-time of the feedback phase is independent of
the prediction horizon. A main theoretical contribution of
this paper has been presented in Theorem 1, where we
have established a local closed-loop stability result for the
presented scheme. Moreover, we have compared the run-
time performance of the proposed controller compared to
traditional SQP-based real-time iterations for NMPC by
implementing a CSTR benchmark case study, where run-
time speed-ups of up to a factor 16 have been observed.

ACKNOWLEDGMENT
YJ and BH were supported by ShanghaiTech University, Grant-

Nr. F-0203-14-012. CJ was supported by the EU via FP7-ITN-
TEMPO (607 957) and H2020-ITN-AWESCO (642 682). In ad-
dition, YJ thanks Moritz Diehl and Andrea Zanelli for inspiring
discussions.

REFERENCES

[1] H.G. Bock and K.J. Plitt. A multiple shooting algorithm for direct
solution of optimal control problems. In Proceedings 9th IFAC World
Congress Budapest, volume 6, pages 4555–4559, 1984.

[2] J.F. Bonnans and A. Shapiro. Perturbation analysis of optimization
problems. Springer Science & Business Media, 2013.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed op-
timization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends R© in Machine Learning,
3(1):1–122, 2011.

[4] C. Conte, T. Summers, M.N. Zeilinger, M. Morari, and C.N. Jones.
Computational aspects of distributed optimization in model predictive
control. In 2012 IEEE 51st IEEE Conference on Decision and Control
(CDC), pages 6819–6824. IEEE, 2012.

[5] M. Diehl, H.G. Bock, J.P. Schlöder, R. Findeisen, Z. Nagy, and
F. Allgöwer. Real-time optimization and nonlinear model predictive
control of processes governed by differential-algebraic equations.
Journal of Process Control, 12(4):577–585, 2002.

[6] J.V. Frasch, S. Sager, and M. Diehl. A parallel quadratic programming
method for dynamic optimization problems. Mathematical Program-
ming Computation, 7(3):289–329, 2015.

[7] P. Giselsson, M.D. Doan, T. Keviczky, B. De Schutter, and A. Rantzer.
Accelerated gradient methods and dual decomposition in distributed
model predictive control. Automatica, 49(3):829–833, 2013.

[8] N.I.M. Gould, D. Orban, and P.L. Toint. Galahad, a library of thread-
safe fortran 90 packages for large-scale nonlinear optimization. ACM
Trans. Math. Softw., 29(4):353–372, December 2003.

[9] A. Hamdi and S. K. Mishra. Decomposition methods based on
augmented lagrangians: a survey. In Topics in nonconvex optimization,
pages 175–203. Springer, 2011.

[10] B. Houska, H.J. Ferreau, and M. Diehl. An auto-generated real-
time iteration algorithm for nonlinear mpc in the microsecond range.
Automatica, 47:2279–2285, 2011.

[11] B. Houska, J. Frasch, and M. Diehl. An augmented lagrangian based
algorithm for distributed nonconvex optimization. SIAM Journal on
Optimization, 26(2):1101–1127, 2016.

[12] B. Houska and M.A. Müller. Cost-to-travel functions: a new per-
spective on optimal and model predictive control. Systems & Control
Letters, 106:79–86, 2017.

[13] Y. Jiang, J. Oravec, B. Houska, and M. Kvasnica. Parallel explicit
model predictive control. arXiv preprint, 2019.

[14] M. Kögel and R. Findeisen. Cooperative distributed mpc using the
alternating direction multiplier method. IFAC Proceedings Volumes,
45(15):445–450, 2012.

[15] D. Kouzoupis, R. Quirynen, B. Houska, and M. Diehl. A block based
aladin scheme for highly parallelizable direct optimal control. In In
Proceedings of the 2016 American Control Conference, Boston, USA,
page 1124–1129, 2016.

[16] A. Kozma, J.V. Frasch, and M. Diehl. A distributed method for
convex quadratic programming problems arising in optimal control
of distributed systems. In 52nd IEEE Conference on Decision and
Control, pages 1526–1531. IEEE, 2013.

[17] J. Mattingley and S. Boyd. Automatic code generation for real-time
convex optimization. Convex optimization in signal processing and
communications, pages 1–41, 2009.

[18] J.F.C. Mota, J.M.F. Xavier, Pedro P.M.Q. Aguiar, and M. Püschel.
Distributed admm for model predictive control and congestion control.
In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC),
pages 5110–5115. IEEE, 2012.

[19] I. Necoara, C. Savorgnan, D.Q. Tran, J. Suykens, and M. Diehl.
Distributed nonlinear optimal control using sequential convex pro-
gramming and smoothing techniques. In Proceedings of the 48h IEEE
Conference on Decision and Control (CDC) held jointly with 2009
28th Chinese Control Conference, pages 543–548. IEEE, 2009.

[20] J. Nocedal and S. J. Wright. Numerical optimization. Springer, 2nd
edition, 2006.

[21] B. O’Donoghue, G. Stathopoulos, and S. Boyd. A splitting method for
optimal control. IEEE Transactions on Control Systems Technology,
21(6):2432–2442, 2013.

[22] Y. Pu, M.N. Zeilinger, and C.N. Jones. Inexact fast alternating
minimization algorithm for distributed model predictive control. In
53rd IEEE Conference on Decision and Control, pages 5915–5921.
IEEE, 2014.

[23] S.J. Qin and T.A. Badgwell. An overview of nonlinear model
predictive control applications. In Nonlinear model predictive control,
pages 369–392. Springer, 2000.

[24] J.B. Rawlings, D.Q. Mayne, and M.M. Diehl. Model predictive
control: Theory and design, 2nd Edition. Madison, WI: Nob Hill
Publishing, 2017.

[25] S. Richter, M. Morari, and C.N. Jones. Towards computational com-
plexity certification for constrained mpc based on lagrange relaxation
and the fast gradient method. In 2011 50th IEEE Conference on
Decision and Control and European Control Conference, pages 5223–
5229. IEEE, 2011.

[26] P.O.M. Scokaert, J.B. Rawlings, and E.S. Meadows. Discrete-time
stability with perturbations: Application to model predictive control.
Automatica, 33(3):463–470, 1997.

[27] D.Q. Tran, I. Necoara, C. Savorgnan, and M. Diehl. An inexact per-
turbed path-following method for lagrangian decomposition in large-
scale separable convex optimization. SIAM Journal on Optimization,
23(1):95–125, 2013.

[28] V.M. Zavala and L.T. Biegler. The advanced-step nmpc controller:
Optimality, stability and robustness. Automatica, 45(1):86–93, 2009.


