Light-absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan plateau

Light‐absorbing impurities (LAIs) in snow of the southeastern Tibetan Plateau (TP) and their climatic impacts are of interest not only because this region borders areas affected by the South Asian atmospheric brown clouds but also because the seasonal snow and glacier melt from this region form important headwaters of large rivers. In this study, we collected surface snow and snowpit samples from four glaciers in the southeastern TP in June 2015 to investigate the comprehensive observational data set of LAIs. Results showed that the LAI concentrations were much higher in the aged snow and granular ice than in the fresh snow and snowpits due to postdepositional processes. Impurity concentrations fluctuated across snowpits, with maximum LAI concentrations frequently occurring toward the bottom of snowpits. Based on the SNow ICe Aerosol Radiative model, the albedo simulation indicated that black carbon and dust account for approximately 20% of the albedo reduction relative to clean snow. The radiative forcing caused by black carbon and dust deposition on the glaciers were between 1.0–141 W m−2 and 1.5–120 W m−2, respectively. Black carbon (BC) played a larger role in albedo reduction and radiative forcing than dust in the study area, enhancing approximately 15% of glacier melt. Analysis based on the Fire INventory from NCAR indicated that nonbiomass‐burning sources of BC played an important role in the total BC deposition, especially during the monsoon season. This study suggests that eliminating anthropogenic BC could mitigate glacier melt in the future of the southeastern TP.

Published in:
Journal of Geophysical Research: Atmospheres, 122, 13, 6915-6933

 Record created 2020-09-04, last modified 2020-10-29

Rate this document:

Rate this document:
(Not yet reviewed)