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Abstract
In the field of plasma physics, suprathermal ions are encountered e.g. in astrophysical jets,

the solar wind, as well as fusion plasmas, where they originate from neutral beam injection or

fusion reactions. One aspect of shared interest with astrophysical settings is their transport by

different forms of plasma turbulence that may generally exhibit non-diffusive character. There-

fore, fast ion cross-field transport by electrostatic turbulence is investigated on the TORoidal

Plasma EXperiment (TORPEX), in the simple magnetized torus geometry. Lithium ions in the

30-70 eV range are injected toroidally into hydrogen plasmas, with electron temperatures of

typically below 5 eV. Previous studies identified sub- to superdiffusive regimes of transport,

depending on the fast ion energy and related gyro- and drift-averaging effects.

The first part of this thesis investigates the phenomenon of local intermittency, as quantified

by the skewness of fast ion time-series. A comprehensive data-set of fast ion time-series is

presented to establish observations of intermittency across all non-diffusive transport regimes.

Through the development of an experiment-based particle tracing algorithm, the physical

picture of a small, but meandering fast ion beam is clarified and the generation of local

intermittency demonstrated through synthetic time-series. Furthermore, an analytical model

is presented to predict the skewness of such time-series solely based on their time-average

value and two basic beam parameters. Its application to the experimental data shows very

good agreement between the predicted and the measured skewness. These combined findings

demonstrate conclusively how intermittency is generated across all transport regimes in our

system, or by any type of meandering beam.

The second part of this thesis advances the statistical description of non-diffusive fast ion

transport through Fractional Diffusion Equations (FDEs). To improve upon physical short-

comings of models that assign distributions with infinite variance to the random jumps of

particles, we utilize tempered Lévy distributions, that exponentially truncate jumps beyond a

chosen scale. The FDE and propagator of Truncated Asymmetrical Fractional Lévy Motion

(TAFLM) are derived by judiciously adapting earlier path-integral methods. Being generally

non-Gaussian at early times, the propagators converge arbitrarily slowly to Gaussians in the

long-time limit, while preserving their overall non-diffusive behaviour. Very good agreement

with fluid-tracer results from the Global Braginskii Solver is found in the most strongly spread,

quasi-diffusive regime. Here, the finite domain size of the turbulent plasma structures can

now take effect through the truncation scale. Further use of these statistical methods can be

discussed across the wider field of bounded, non-diffusive transport.
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Résumé
A travers le domaine de la physique des plasmas, les ions supra-thermiques sont trouvés

par exemple dans les jets astrophysiques, le vent solaire, et bien-sûr dans les plasmas de

fusion, où ils proviennent de l’injection des faisceaux de particules neutres ou des réactions de

fusion. Un aspect d’interêt commun pour ces domaines, est leur transport par des différentes

formes de turbulence de plasma, qui peut s’effectuer, en général, d’une manière non-diffusive.

Donc, le transport de tels ions rapides par la turbulence électrostatique à travers des champs

magnétiques est étudié sur une EXpérience de Plamsa TORoidale (TORPEX), dans une confi-

guration magnétique hélicale et ouverte. Des ions de lithium d’une énergie de 30 à 70 eV sont

injectés toroidalement dans un plasma d’hydrogène, dont la température des électrons vaut

typiquement moins de 5 eV. Auparavant, des régimes de transports sous- à supra-diffusifs

furent identifiés, ainsi que leur dépendence de l’énergie des ions rapides qui est liée à des

effets de moyennement par les gyrations et les dérives des ions dans le champ.

La première partie de cette thèse traite le phénomène d’intermittence locale, qui se quantifie

par l’asymétrie statistique des séries chronologiques des ions rapides. Une base de données ex-

haustive est présentée pour établir des observations d’intermittence à travers tout les régimes

de transport non-diffusif. Par le développement d’un algorithme numérique pour trouver les

trajectoires des ions à partir de données experimentales sur la turbulence, nous clarifions

la nature physique de notre système comme un faisceau concentré, mais perpétuellement

en mouvement transversal. La génération d’intermittence dans ce système est démontrée

par des séries chronologiques numériques. Ensuite, un modèle analytique est présenté qui

permet de prédire l’intermittence de telles séries chronologiques directement à partir de

leurs valeurs moyennes, et deux paramètres de base du faisceau. Son application à la base de

données experimentale montre un bon accord entre les prédictions et l’intermittence mesurée.

L’ensemble de ces résultats démontre de façon concluante comment de l’intermittence est

générée à travers tous les régimes de transport dans notre système, ainsi que par des faisceaux

en mouvement transversal en général.

La deuxième partie de cette thèse présente des avancées sur la description statistique du

transport non-diffusif des ions rapides par des Equations de Diffusion Fractionnaires (FDEs).

Pour surmonter certains défauts physiques de tels traitements qui modélisent les sauts aléa-

toires des particules par des distributions avec une variance infinie, nous exploitons des

distributions de Lévy tempérées, qui tronquent la probabilité des sauts de façon exponen-

tielle sur une échelle de longueur donnée. La FDE et le propagateur du modèle de Truncated

Asymmetrical Fractional Lévy Motion sont donc dérivés en adaptant judicieusement des
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Résumé

méthodes d’intégrale de chemin vues auparavant. Généralement non-Gaussien au début, les

propagateurs convergent lentement à la forme Gaussienne plus tard, mais en gardant le même

caractère non-diffusif. Une correspondance excellente avec des distributions numériques des

ions rapides, sur la base du code fluide Global Braginskii Solver, est trouvée dans le régime

quasi-diffusif et long-terme, où les ions se sont répandus le plus. La taille finie du domaine des

structures de plasma turbulentes peut maintenant prendre effet par la longueur de troncature.

Davantage d’applications de ces méthodes statistiques pourraient se présenter à travers le

domaine général de transport non-diffusif spatialement délimité.

Mots clefs : Physique des plasmas, statistique, turbulence, blobs, ions rapides, transport anor-

mal, supra-diffusion, sous-diffusion, intermittence, faisceau de particlues, distributions de Lévy,

diffusion fractionnaire, effets de troncature, processus aléatoire stable tempéré
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Zusammenfassung
Im Gebiet der Plasmaphysik werden suprathermische Ionen sowohl in astrophysikalischen

Jets und im Sonnenwind behandelt, als auch in Fusionsplasmen, wo sie durch Neutralteilche-

ninjektion oder Fusionsreaktionen entstehen. Ein Aspekt von gleichsam geteiltem Interesse

ist ihr Transport durch verschiedene Formen von Plasmaturbulenz, welcher im allgemeinen

nicht-diffusive Chrakteristika haben kann. Daher wird die Streuung von solch ‘schnellen’

Ionen durch elektrostatische Turbulenz im TORoidalen Plasma EXperiment (TORPEX) unter-

sucht, senkrecht zu dessen helikalen Magnetfeldlinien. Lithiumionen im Energiebereich von

30 bis 70 eV werden toroidal in Wasserstoffplasmen injiziert, welche typische Elektronentem-

peraturen von weniger als 5 eV aufweisen. Vorausgegangene Untersuchungen identifizierten

sub- bis superdiffusive Transportformen, abhängig von der Injektionsenergie, welche die

durchschnittlichen Auswirkungen turbulenter elektrischer Felder während der magnetischen

Kreis- und Driftbewegung der Ionen bestimmt.

Der erste Teil dieser These untersucht das Phänomen lokaler Intermittenz, welche durch die

statistische Schiefe von Zeitreihenmessungen der lokalen Dichte schneller Ionen quantifiziert

wird. Ein umfassender experimenteller Datensatz wird präsentiert, der die Beobachtung sol-

cher Intermittenz in jedweder nicht-diffusiver Transportform der schnellen Ionen hinterlegt.

Ein Algorithmus zur Simulation ihrer Teilchenbahnen mithilfe experimenteller Messungen

des Hintergrundplasmas wurde entwickelt, und verdeutlicht die Erscheinungsform eines

kleinen, konzentrierten Teilchenstrahls von schnellen Ionen, der durch die Plasmaturbulenz

quer bewegt und abgelenkt wird. Die Entstehung lokaler Intermittenz wird durch die resul-

tierenden Spitzen in künstlichen Zeitreihenmessungen veranschaulicht. Desweiteren wird

ein analytisches Modell präsentiert, welches erlaubt die statistische Schiefe der Zeitreihen

vorherzusagen, lediglich aufgrund ihrer Mittelwerte, sowie zwei grundlegender Parameter

des Teilchenstrahls. Angewandt auf die experimentellen Zeitreihenmessungen wird eine sehr

gute Übereinstimmung zwischen der vorhergesagten und gemessenen Schiefe sichtbar. Die

Gesamtheit dieser Erkenntnisse demonstriert auf schlüssige Weise, wie lokale Intermittenz in

unserem System in allen nicht-diffusiven Transportformen entsteht, gleichwie auch bei jeder

ähnlichen Art von beweglichem Teilchenstrahl.

Der zweite Teil dieser These verbessert die statistische Beschreibung des globalen Trans-

ports der schnellen Ionen durch Fraktionale Diffusionsgleichungen. Um die physikalischen

Unzulänglichkeiten von Modellen zu überwinden, die Wahrscheinlichkeitsverteilungen mit

unendlicher Varianz für die zufälligen Schritte der Teilchen ansetzen, benutzen wir tempe-

rierte Lévy-Verteilungen, welche die Wahrscheinlichkeit von Schritten über einer gewissen
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Zusammenfassung

Abschnittslänge exponentiell unterdrücken. Die Diffusionsgleichung und Greensche Funktion

des Modells der Truncated Asymmetrical Fractional Lévy Motion (TAFLM) wird durch die

sorgfältige Anpassung früherer Methoden basierend auf Pfadintegralen hergeleitet. Obwohl sie

anfangs eine im allgemeinen nicht-Gaußsche Form hat, konvergiert die Greensche Funktion

beliebig langsam zu einer Normalverteilung üeber längere Zeiträume, wobei ihre Streuung

ihren nicht-diffusiven Charakter beibehält. Sehr gute Übereinstimmung mit der Entwicklung

von simulierten Teichenverteilungen, erstellt mithilfe des Global Braginskii Solvers, besteht

während der asymmetrischen, quasi-diffusiven Transportform, in welcher die schnellen Ionen

am weitesten gestreut werden. Hier kann nun die typische Weite des Wirkungsbereiches der

verantwortlichen Plasmaturbulenz durch die gesetzte Abschnittslänge des TAFLM Modells

beschrieben werden. Weitere Anwendungen dieses Modells im allgemeinen Rahmen von

Studien zu räumlich begrenztem, nicht-diffusivem Transport können diskutiert werden.

Stichwörter: Plasmaphysik, Statistik, Turbulenz, Blobs, Schnelle Ionen, Anomaler Transport,

Superdiffusion, Subdiffusion, Intermittenz, Teilchenstrahl, Lévy-Verteilungen, Fraktionale Dif-

fusion, Begrenzte Zufallsschritte, Temperierte stabile Zufallsprozesse
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1 Introduction

To give context to this work, we firstly outline how the growing global demand for energy is

approached by current technologies and introduce Magnetic Confinement Fusion (MCF) as a

sustainable long-term concept. Due to the extreme temperatures required for fusion reactions,

the reactants are present in the form of a plasma. The occurrence of both turbulence as well as

energetic ions are central to many settings across plasma physics, ranging from fusion devices

to astrophysics. We thus motivate the experimental, numerical and analytical studies of this

thesis, that aims at describing general transport phenomena of fast ions in plasma turbulence

on the TORoidal Plasma EXperiment (TORPEX).

1.1 Approaches to sustainable energy

One of the most pressing challenges of our time is to satisfy humanity’s ever growing demand

for energy [1, 2]. With limits on many fossil resources seeming imminent in our life-time[3],

and the first irreversible effects of climate change becoming a reality [4, 5, 6], it is more crucial

than ever that this demand be satisfied through sustainable, emission-free energy production.

Unfortunately, global political initiatives culminating in the Paris Climate Agreement are

mostly falling short in both their goals [7, 8] and application [9]. Substantial investments are

required towards the implementation of renewable energies such as wind and solar power

[1, 10, 2]. In fact, they are already becoming an appreciable portion of e.g. the German

and European energy market [2], despite various subsidy programs not yielding long-term

economic success [11]. Regardless, many projections on the requirements for the future

energy market identify these renewable energies as a cornerstone [1, 2, 12].

Therefore, it is imperative to address certain limitations intrinsic to these methods of energy

production. For reasons of climate and geography, many countries have difficulties imple-

menting solar or wind power on a self-sustaining scale, as both require a certain minimum

of available area and high-load periods with favourable conditions to be viable [13]. While

solar power is additionally restricted to day-time hours, the high-load periods for wind power

are more irregular. This ‘intermittency’ in energy production must be compensated by op-
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Chapter 1. Introduction

timizing the relative contributions of wind- and solar power, as well as provisions for power

redistribution, storage or back-up to satisfy a likewise variable base-line demand, unless

excessive over-capacities in solar and wind power are to be developed [10, 14, 15]. Although

e.g. a fully coordinated European grid would be highly beneficial, it is far from implemented

and the most important contributions in terms of power compensation would come from

outlying countries with relatively independent weather conditions, such as Spain, that would

in turn stand to profit the least [10, 15]. While highly desirable from an environmental stand-

point, hydrogen-based storage systems are under development, but face clear technical and

economical challenges, hindering large scale deployment [16].

Hydro-electricity is an emission-free renewable energy to compensate intermittent energy

production as both storage and back-up, but most countries can only derive a modest per-

centage of their energy from it, since the extent of potentially exploitable river-sections or

coast-line remains limited [17, 13, 1]. The globally growing number of droughts [4] is an

additional constraint on how much water could be dedicated to energy production [17].

France, for instance, supplies the largest portion of their base-load from nuclear fission

power-plants [14, 2] instead. The proposed ‘generation IV’ power-plants are to improve on

most aspects of safety, maintenance and cost, while waste-management in particular is to

be improved through closed fuel cycles e.g. in fast neutron reactor types, which also reduce

the amount of required fuel through breeding reactions [18, 19]. However, this latter aspect

may result in conflicts with certain nuclear non-proliferation agreements, and exemplifies

how nuclear fission programs are bound to face national and international security concerns

[19]. Further public and political reluctance was rekindled with long-term impacts by the

Fukushima Dai-ichi incident [12, 2]. However, even renewable energies on their own can come

with potential drawbacks before an uncertain political or even security-related background,

as they render different locales vulnerable to energy dependencies [20]. This thesis is not

going to help change any of this. However, fusion energy just might, and we will be discussing

applications of the presented work related to this domain.

1.2 Fusion energy

1.2.1 Basic concepts

In nature, nuclear fusion is the energy source of stars such as our sun, and therefore the original

fuel of most surface-based processes on our planet [21, 22], including life. In young proto-stars,

hydrogen is compressed and heated under its own gravity eventually forming a plasma [23].

Once the present protons are energetic enough to tunnel through their repulsive Coulomb

potential during collisions, fusion reactions are initiated and liberate nuclear binding energy

[23] (see Fig 1.1). As nucleo-synthesis progresses towards heavier isotopes and elements, stars

develop complex fusion reaction cycles and evolve in a dynamic equilibrium of outward heat

transport and gravity [23].

2



1.2. Fusion energy

Experimentally, the fusion of deuterium ions was discovered in beam-target experiments by

Oliphant, Harteck and Rutherford [24] even 4 years before the documentation of neutron-

induced uranium fission through Hahn, Meitner and Frisch in 1938 [25]. However, since

light-element fusion does not allow for the same kind of avalanche-like process [21], it took

longer to utilize the much greater energetic potential offered by fusion reactions such as [26]

D + D −→
 T + p (4MeV)

3He + n (3.3MeV)
(1.1)

D + T −→ 4He + n (17.6MeV) (1.2)

D + 3He −→ 4He + p (18.3MeV) (1.3)

T + T −→ 4He + 2n (11.3MeV) . (1.4)

Their reaction probabilities (cross-sections, see Fig. 1.2) still require very high temperatures,

although they are not diminished by any electro-weak processes, such as β-decay in solar

proton fusion [23, 27]. The first man-made fusion device was the ‘Trinity’ hydrogen bomb

in 1951, which surpassed the achievable yield of early fission warheads by multiple orders

of magnitude [28], also due to the higher difference in nuclear binding energy per reactive

nucleon. The fission process however was still needed to compress and heat the hydrogen

isotope fuel sufficiently [28]. Due to the greater reaction cross-section at the same energies, a

D-T mixture has since been chosen as fuel for most fusion applications [21, 27].
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reactants. Data retrieved from [29], see attributions.
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Chapter 1. Introduction

Figure 1.2 – Cross-sections σ for the given fusion reactions, in which the first given reactant
is incident as a beam with energyE onto the second reactant as stationary target. Note the
much larger cross-sections of the D-T-reaction (red). This tendency still holds in a fusion
plasma, where the full velocity distributions for both reactants need to be considered [21, 22].
Calculated from [26].

The extreme required temperatures became however only one part of the challenge for the

simultaneously initiated pursuit of stable, controlled fusion energy [30, 22]. Since the re-

actants must remain in the form of a plasma, its particles and energy need to be confined

over a sufficient amount of time to self-initiate enough fusion reactions to achieve a stable

net-energy gain [30, 21]. Intuitively, this requires that the losses through outward transport

and Bremsstrahlung from the fusion plasma be offset by the confined heating power from

the fusion-born α-particles and externally supplied heating power[21]. Such a power-balance

leads to the given temperature T and density n of a fusion plasma placing a minimum con-

straint on its confinement time τE and vice-versa. The minimum value of their ‘triple-product’

for a D-T plasma is found near T ≈ 15keV and further constrained by the fact that the ratio of

fusion power to heating power (the ‘Q-factor’) be greater than 1 to gain energy [21]. Similarly

presented by Lawson in 1957 [31], the achievement of such a ‘break-even’ in fusion is thus

characterized by

nT τE ≥ Q

Q+5
8.3atms = fα8.3atms, (1.5)

where fα denotes the fraction between α-heating to total heating power. Once α-heating

contributes at least as much as the external heating power, i.e. fα = 0.5 ⇐⇒ Q= 5, the fusion

plasma is designated as ‘burning’ and if no external heating power is required, fα = 1 ⇐⇒
Q=∞, the point of full ‘ignition’ is reached [21].
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1.2. Fusion energy

1.2.2 Inertial Confinement Fusion

Inertial Confinement Fusion (ICF) attempts ignition by imploding only a millimeter-sized

capsule of frozen DT-fuel directly or indirectly using high-power lasers [21, 27] as illustrated

in Fig. 1.3(a). The extreme increase in density and temperature involved are traded-off

against only less than a nano-second of confinement time, during which the fuel remains

compressed under its own inertia [27]. Due to the scalable similarities with hydrogen bombs,

much research into this US-based approach remained largely classified until the 90ies [30].

Since then, a more international effort has been put forth [27] while the National Ignition

Facility (NIF) was implemented [32, 33] at Lawrence Livermore National Lab. Despite an

achieved break-even between absorbed and emitted power within the capsule [34], the point

of ignition has not been achieved [35], e.g. due to multi-scale hydrodynamic instabilities

[see Fig. 1.3(b)] forming at the ablation front and preventing sufficient hot-spot heating

and ‘burn-through’ of the D-T fuel [36, 27, 37]. Improvements in laser pulse shapes [38],

implosion capsule and hohlraum design [39, 40], diagnostic modeling [41, 42] and possibly

pre-magnetization [43, 44] can aid to increase performance, but have so far been insufficient.

While this intrinsically pulsed approach to controlled fusion would have the advantage of not

requiring any steady-state control, it would likely require more than one successfully ignited

implosions per second [27]. This aim seems still further from realistic as, for instance, the

required 1.8 MJ flash-bulb pumped lasers have shown recovery times of at least over 5 hours

and opto-electrical efficiencies of . 1% [45]. Recent improvements in efficiency and repetition

rate through pumping diodes have been realized only on much smaller energy scales [46].

(a) Artists impression of the ‘indirect drive’ set-up
as used on the NIF. The laser-beams illuminate the
inner wall of a hollow metal cylinder, the ‘hohlraum’,
from which intense X-rays are re-emitted that ab-
late the outer layer of the fuel capsule within, driv-
ing the implosion. Source: LLNL , see attributions.

(b) Evolution of seeded multi-mode insta-
bilities during a ‘high-foot’-pulse implo-
sion illustrated with constant density con-
tours simulated with the CHIMERA 3D code.
Reprinted from [41] with permission from
AIP. See attributions.

Figure 1.3 – Illustrations for the Inertial Confinement Fusion concept.

1.2.3 Magnetic Confinement Fusion

The concept of Magnetic Confinement Fusion (MCF) is instead based on the fact that the

charged particles in a fusion plasma interact with magnetic fields through the Lorentz-force,
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Chapter 1. Introduction

which constrains them onto helical trajectories around magnetic field lines [22, 21]. Based on

initial concepts by Tamm and Sacharov in 1951, Russian teams thus pursued devices featuring

a ring-shaped magnetic geometry of closed field-lines to pursue the stable confinement of a

low-density plasma [47]. Later dubbed "toroidal chamber and magnetic coil", abbreviated

in Russian to ’to-ka-mak’, this arrangement was the first step towards the most thoroughly

developed fusion energy concept today [47, 30, 21] (see Fig. 1.4).

central solenoid
poloidal field poloidal 

field coil

toroidal 
field coiltotal field-line

toroidal field induced 
plasma current

Figure 1.4 – Principal coils and magnetic field configuration of a tokamak. The central solenoid
drives the inductive plasma current and its ‘flux swing’ thus limits the operation time, unless
other methods of non-inductive current drive are used [21]. Source: Hindawi open access, see
attributions.

In addition to the toroidal magnetic field, a poloidal field is introduced by driving a toroidal

current through the plasma, as well as respective field coils. This prevents vertical charge

separation due to particle drifts, which would destabilize the plasma quickly [21]. Other waves

and instabilities stem from perturbations of the magnetic field due to interactions with the

plasma as well as the present currents [48]. This has led to a concerted effort to optimize

the magnetic geometry of the tokamak further through theory, simulations and experiments

[49]. Since 1992, the Tokamak à Configuration Variable (TCV) [50] at the Swiss Plasma Center

(formerly Centre de Recherche en Physique de Plasma, CRPP) equipped with 16 independently

adjustable poloidal field coils is central to this effort (see Fig. 1.5).

Plasma heating is firstly achieved as the current driven in the plasma incurs resistance [21],

which unfortunately diminishes with rising temperatures [51]. Beyond this point, micro-

wave heating techniques successfully exploit a complex set of resonances in the motion of

the plasma particles around the present magnetic field-lines, and can also drive currents

non-inductively [49]. When used in a localized and well-timed manner, microwave-injection
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1.2. Fusion energy

(a) Technical drawing of the TCV tokamak
vacuum vessel (light gray) with carbon
tiles (dark gray), and equipped with 14
toroidal field coils (red), 16 poloidal shap-
ing coils (blue) and the solenoid coils
(green).

(b) Classical
single-null,
diverted

(c) Maximum
elongation,
limited

(d) Minimum
triangularity,
limited

Figure 1.5 – TCV schematic and small selection of available plasma shapes. Source: SPC, see
attributions.

can also prevent or stabilize certain resistive magnetic perturbations, so-called neoclassical

tearing modes [52]. In addition, Neutral Beam Injection (NBI) is used in most larger MCF

devices for directly transferring energy and momentum into the plasma core, as well as driving

current [49]. Further research, especially at TCV [53], is for instance addressing problems of

real-time control, disruption physics and the optimization of the ‘divertor’ concept [49, 54].

By purposefully opening the outer field-lines of the tokamak plasma [see Fig. 1.5(b)], particles

and energy are to be guided onto particularly heat- and radiation-resistant plates. In ’limited’

plasma configurations [see Fig. 1.5(c,d)], the closed field-lines directly intersect the material

boundary, which offers less control over both heat and impurity transport. In both cases, the

region of open-field lines beyond the closed plasma core is denoted as Scrape-Off-Layer (SOL).

To render the divertor power-fluxes of prospectively more than 10MWm−2 managable, the

concept of ‘detachment’ is currently being optimized, whereby the plasma and power-flux

to the divertor-target are reduced through a localized increase in neutral gas and impurity

density and the resulting increase in omnidirectional radiative power-losses [54, 55, 56]. The

most powerful operational tokamak to date is the Joint European Torus (JET), based in the

UK, which in 1997 temporarily achievedQ= 0.62 during its most successful D-T campaign

[57, 58].

A different magnetic confinement concept was proposed by Spitzer already in 1951 [59].

"Stellarators" employ coil geometries that directly introduce a rotational transform in the

field-lines to cancel magnetic particle drifts, and thus reduces classical transport while also
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Chapter 1. Introduction

Figure 1.6 – Vacuum-vessel (gray) with planar (red) and non-planar (3D) magnetic coils (blue)
of the Wendelstein 7-X stellarator, featuring magnetic field-lines with a 5-fold rotational
transform. Source: IOP open access, see attributions.

eliminating the need to drive a large plasma current [22, 21]. Nonetheless, the confinement

times of early devices such as the "model C" did not nearly match those of competing tokamaks

[47]. However, the concept has received renewed attention since the late 1980ies [30, 22], as

the current-driven instabilities in large scale tokamaks became evident, which are avoided

in stellarators [21]. After optimizing non-planar coil configurations to further control the

neo-classical transport of different plasma components, the most advanced stellarator today

is the Wendelstein 7-X [60], based in Germany. While it is currently reaching all the goals that

motivated its design, it remains a much more demanding machine to construct and maintain

compared to tokamaks of a similar scale, due to the loss of axis-symmetry. Uncertainties also

remain with regards to scalability [61] and burning plasma operation.

Therefore, the first fusion reactor aimed at achieving a significant and stable power-gain will

be the ITER tokamak [62] with construction underway in southern France [63]. The current

‘European Research Roadmap to the Realisation of Fusion Energy’ [64] from the EUROfusion

consortium plans the start of operation by the end of 2025, and D-T experiments at Q= 10

in the 2030ies. Based on these findings and pending input from the stellarator community,

the design of the first demonstration power plant (DEMO) [65, 66] is to be finalized in parallel.

With operation to begin around 2050, fusion energy is to be available for the international

energy market in the 2nd half of this century [64].

Only & 100kg of reactants are needed to drive a GW-scale power-plant over a year [67]. As

tritium has a radioactive half-life of only 12.3 years, it is not found in nature, but is to be bred

directly at the power-plant [67] or in fission facilities [68] from lithium-6. Lithium is currently

mined at reasonable cost, but is also extractable from virtually inexhaustible reserves in sea-

water [69]. Deuterium likewise occurs naturally with ≈ 30g per tonne of sea-water, so that

the primary resources for D-T fusion could potentially meet the global demand for millions
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1.3. Turbulence and fast ions

(a) Technical drawing of the ITER tokamak
including surrounding cryostat chamber,
with a standard-person for scale (red circle).

(b) Photo of the ‘pit’ into which the ITER cryostat is
to be placed, taken in September 2019.

Figure 1.7 – Illustrations of the ITER tokamak project. Source: ITER Organization, see attribu-
tions.

of years [61]. The helium produced in fusion reactions is chemically inert, and a valuable

resource in itself e.g. for superconductors. Other neutron-activated materials in the reactor

would require regular decomissioning, but with much lower radio-toxicity compared to fission

reactors, while some alternatives could even permit recycling within a century [61]. This and

the complete absence of greenhouse-gas emissions during operation make nuclear fusion

the kind of abundant, sustainable and ‘green’ energy source humankind requires. The small

quantities and long-term availability of reactants also make the operation of fusion-based

power-plants feasible in most locations around the globe, pending construction logistics and

cost [30]. Clearly, fusion energy is also not bound to the same kind of intermittency as solar or

wind power, but represents an on-demand source of energy [30, 21]. Since fusion therefore

has the potential to offset all the discussed limitations of renewable energies, its most likely

commercial use will be to complement them whenever required to ensure a constant, safe

and sustainable baseline production of energy [30, 61].

1.3 Turbulence and fast ions

One of the main challenges in MCF is the spontaneous development of waves that can grow

into instabilities through the different energy sources available within the plasma and are

often accompanied by the development of turbulence in the non-linear regime [21]. Where

present, the formation of irregular flows, eddies and structures associated with turbulence

leads to non-local ‘anomalous’ transport of particles and energy [21], which often dominates

over predictions based on particle orbits in neo-classical theory [70]. For instance, in the

core of MCF devices, temperature and density gradients lead to instabilities at the ion and

electron cyclotron scale, causing micro-turbulence and fluctuations in density, temperature

and plasma potential, while in some conditions even magnetic perturbations could play an
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appreciable role [[71, 72] and references therein]. The steep gradients near the plasma edge of

tokamaks also drive mainly electrostatic turbulence and the associated filamentary transport

accounts for the majority of heat and particle losses across the SOL [72, 73, 74, 75]. Overcoming

this limitation is the main motivation for operation in H-mode [76], i.e. a high confinement

regime in which extremely steep gradients near the edge can form in conjunction with shear

flows that mitigate turbulence [77, 78, 79]. Advanced tokamak scenarios aim to similarly create

additional internal transport barriers using specialized magnetic configurations and localized

heating [71].

Another important feature of fusion plasmas is the presence of ions with far greater speeds

than the thermal average in the plasma. These suprathermal, or ‘fast’, ions occur as fusion

reaction products or through the use of NBI in fusion plasmas [49]. Their confinement in

particular is essential to the success of any future fusion device, as they need to transfer

their energy to the rest of the plasma through collisions to effectively achieve and maintain a

self-heating or ‘burning’ fusion plasma [80, 81, 82]. In the closed field-lines of tokamaks, they

are known to interact with and drive a variety of alfvénic and tearing modes [83, 80, 81]. The

effects of micro-turbulence on fast ions have likewise been investigated [84, 85].

In space and astrophysical plasmas, both turbulence as well as fast ions are likewise present,

albeit on very different scales. Specifically, magneto-hydrodynamic types of turbulence are

more ubiquitous here [86], ranging from interstellar turbulence [87, 88] to the solar wind [89]

in interplanetary space. In the interstellar medium, cosmic ray protons are found from jets of

massive stellar objects, or super-nova-like events, and indeed interact with magnetic turbulent

structures if their gyro-radii are of smaller scales [90, 91]. In the solar wind, fast ions are

found in the form of Solar Energetic Particles (SEPs) stemming from magnetic reconnection

events and related turbulent dynamics [92]. They are subject to interactions with the solar and

interplanetary magnetic fields and the turbulent features arising within them [93, 94, 95, 96].

(a) Astrophysical jets above the accretion
discs of black holes produce ultra-high en-
ergy particles.

(b) Solar Energetic Particles are produced during reg-
ular solar activity, but particularly accompany solar
storms.

Figure 1.8 – Examples for the occurrence of suprathermal ions in astrophysical settings. Source:
NASA, see attributions.
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In general, the interaction of fast ions with turbulence can be subject to a variety of non-local

features and memory-like effects, that render transport processes very complex to describe.

For an efficient macroscopic description it can thus become necessary to abandon the usual

paradigm that all transport be a combination of diffusion and advection, but has non-gaussian

and non-diffusive characteristics instead. Furthermore, the direct observation of fast ions in

many of the mentioned settings is limited to single-point measurements, like Fast Ion Loss

Detectors (FILD) in MCF devices [82], or satellites in the magnetosphere [97].

1.4 Motivation and outline for this thesis

The fundamental investigation of suprathermal ion transport by plasma turbulence has

therefore become central to the research on the TORoidal Plasma EXperiment (TORPEX)

[98, 99, 100]. This basic plasma device allows the controlled generation of turbulence with very

well-characterized features in a helical geometry of open magnetic field-lines [101]. We inject

and study the broadening of a toroidally propagating beam of suprathermal Li-6 ions through

the present electrostatic turbulence [102, 99]. Already previous studies identified this process

as generally non-diffusive [103], also by leveraging fluid-tracer simulations [104, 105] based

on the Global Braginskii Solver (GBS) code [106]. Locally measured time-series of the fast ion

current undergoing superdiffusion were found to feature significant time intermittency, as

quantified by their skewness [107]. To effectively reflect the non-local and non-markovian

features determining the time-average cross-field transport, the model of Asymmetrical Frac-

tional Lévy Motion (AFLM) was developed [108].

In this thesis, we present significant advances in the description of all these different fast ion

transport phenomena. Certain avenues of research, like links between the intermittency in

local fast ion time-series and the globally present transport regime, are drawn to a preliminary

conclusion [109, 110, 111]. Others, like the use of Fractional Diffusion Equations (FDEs) are

continued and generalized to account for physical bounds in fast ion transport [112]. Yet

other avenues are opened, like investigations with a newly commissioned multi-point fast ion

detector [113], or the description of turbulent fast ion transport in more complex magnetic

geometries.

Throughout, we place strong emphasis on the judicious and utility-driven development and

application of statistical methods to infer and describe general features of the present system.

Often, they will appear to take priority over the treatment of the underlying physical processes,

that in many aspects have already been quantified successfully in earlier works [104, 107]. We

ask the reader to bear with us in these sections, as it is precisely the versatility of these methods

and models that has the potential to contribute to the more meaningful interpretation of

transport phenomena in a variety of related systems or even other fields of science.

This thesis is organized as follows: Chapter 2 introduces the TORPEX experiment and gives an

overview over the different studies carried out here in parallel. New additions to the hardware

are presented and the experimental set-up and methods for fast ion studies are described
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in detail. Chapter 3 exhaustively presents measurements to characterize the prevalence of

local fast ion time-series intermittency across different global transport regimes ranging from

sub- to super- and quasi-diffusion. To motivate different aspects of the later analysis, chapter

4 shows relevant findings from a numerical fast ion tracing algorithm, that was developed

to utilize Langmuir probe measurements in TORPEX to provide the relevant 3D fields. After

comparison to expectations from experiments and GBS fluid-code simulations, the focus is

on the qualitative comparison between the fast ion beam profile at a given instant and the

time-average profile. After thus motivating the physical picture of a meandering instanta-

neous fast ion beam, chapter 5 presents an analytical model to predict the skewness of local

time-series from their time-average value. By successfully applying this model to the data

presented in chapter 3, we conclusively demonstrate how intermittency is generated across

all observed non-diffusive transport regimes. Further considerations on simple two-valued

time-series complement the analysis as a potential model for extremely narrow meandering

beams. In Chapter 6, we proceed towards the second central subject of this thesis, Fractional

Diffusion Equations (FDEs) [114, 115, 116]. We give a review of the differences to local and

markovian processes, and how non-diffusive features are implemented in Continuous Time

Random Walks (CTRWs) [117, 116] and Generalized Langevin Equations (GLEs) [118, 119].

The focus is then placed on truncation effects achieved by exponentially tempering the heavy

tailed Lévy-distributions of particle step-sizes [120, 114]. Finally, we combine the truncated

description of step-sizes from a CTRW with a non-markovian GLE and derive the propagator

and FDE of Truncated Asymmetrical Fractional Levy Motion (TAFLM) using path-integrals

for the first time to our knowledge. The propagator features many advantageous properties

compared to un-truncated descriptions, such as exponentially tempered tails and analytical

and finite moments at all orders, while maintaining a non-diffusive spreading at all times.

As expected, the analytical expressions for its variance, skewness and kurtosis reflect non-

Gaussian features at short times, but eventually recover Gaussianity due to the Central Limit

Theorem. Consequently, we apply the TAFLM description to numerically obtained fast ion

distributions in chapter 7 and illustrate its general advantages and limitations in describing

non-diffusive systems. Chapter 8 briefly summarizes further avenues of fast ion research on

TORPEX that have been embarked upon, including the use of an X-point magnetic geome-

try, before reviewing the central findings of the thesis and highlighting the most important

conclusions.
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2 Experiments on TORPEX

In this chapter, we give an overview of the plasma production and dynamics on the TORoidal

Plasma EXperiment (TORPEX), and the main diagnostics used in their characterization. Since

they are essential to the results presented in the upcoming chapters, particular emphasis

is given to Langmuir Probes (LPs) and the HEXagonal Turbulence Imaging Probe Upgrade

(HEXTIP-U). Thereafter, the equipment and measurement techniques directly dedicated to

fast ions are introduced. The key elements of previous studies are reviewed, as well as recent

additions to the experimental set-up, before presenting measurements on the intermittency

of fast ion transport in the next chapter.

2.1 The TORPEX device and turbulence

All experiments presented in this thesis have been carried out on the TORPEX basic plasma

device (see Fig. 2.1) [121, 99, 100], which has been in operation at the Swiss Plasma Center

(formerly Centre de Recherche en Physique de Plasma) at the École Polytechnique Fédérale

de Lausanne since 2003 [98]. The project was originally aimed at the reliable reproduction

and characterization of different plasmas in helical magnetic field-lines, i.e. in the Simple

Magnetized Torus (SMT) geometry [101], through its uniquely flexible and comprehensive

diagnostic access [122, 121]. The most important parameters of the machine and the SMT

plasmas relevant to the following chapters are summarized in table 2.1.

Hydrogen plasmas can be created through the injection of microwaves in the Electron Cy-

clotron (EC) frequency range [48]. As the toroidal magnetic field strength features its char-

acteristic 1/R-dependence, it serves to set the location of the plasma source via the radial

position of the EC-resonance layer on the High-Field-Side (HFS) [124]. With increasing plasma

density, a significant amount of plasma is also produced at the less localized Upper-Hybrid

(UH) resonance [124], as both O-mode and X-mode polarizations are present due to wall

reflections of the injected waves. At a microwave-power of 150 W, we can achieve an ionization

of < 1% of the neutral gas. This set-up can be maintained for more than 20 minutes using

a 1 kW magnetron that injects microwaves continuously from the bottom of the vessel. For
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HEXTIP-1

Fast ion source GEA

mw-antennas

Isat -profile

Vfloat -profile

mw-scattering 
CS-profile

R

Z

D

HEXTIP-2

Figure 2.1 – The TORPEX device and fast ion set-up in the SMT configuration. The combination
of toroidal field coils (beige) and vertical field coils (green) produces the helical magnetic field
as indicated by the purple field-line. The Langmuir probe arrays HEXTIP-1 and -2 are used to
characterize the plasma profile at 250 kHz through ion saturation current (left) and floating
potential (right) measurements (Figs. 2.5,2.9, Sec. 2.2). Fast ions with energiesE of 30 eV (red)
to 75 eV (blue) are injected from a modulated, toroidally movable source and propagate over a
toroidal distance D to the poloidally movable Gridded Energy Analyzer (GEA), performing
locked-in or time-resolved measurements (see Secs. 2.4,2.5 and Ch. 3). Independently, the
scattering of micro-waves by plasma structures has been studied using separate microwave
antennas outlined in the back to produce Conditionally Sampled profiles of the scattering
process ([123], Sec. 2.3).

usually less than 800 ms, a larger magnetron can alternatively inject up to 50 kW of pulsed

power from the Low-Field-Side (LFS), whereby the higher densities lead to strongly dominant

absorption at the UH-layer [125]. The generated SMT plasma is continuously subject to rapid

parallel transport along the magnetic field-lines, such that all structures within the plasma are

relatively well field-aligned [101]. With the given pitch angle, a field-line takesN ≈ 2.4 toroidal

turns from the bottom to the top of the vessel, so that one often finds similar plasma densities

at a vertical separation of ∆Z ≈ 16cm in the same poloidal cross-section [101, 126].

Driven by the radial pressure gradient, this results in the formation of an ideal interchange

mode with a vertical wave number of kz ≈ 2π
∆Z ≈ 35radm−1 [127, 128]. At a frequency of

fint ≈ 10kHz, the interchange mode propagates upwards with a phase velocity of ≈ 1.6kms−1,

resulting in vertical losses of plasma [129]. As intrinsic to interchange modes, charge separa-
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tion occurs and leads to potential gradients within its plasma density structures, due to the

curvature and gradient drifts in this magnetic geometry [22]. Since they reinforce the density

perturbations via E×B-drifts to highly non-linear regimes, this allows turbulence to develop

[122, 126, 121]. TORPEX plasmas generally have β < 10−4, so that magnetic perturbations are

negligible and the observed modes and turbulence remain electrostatic [130, 121]. Within

the turbulence excited through the ideal interchange mode, the intermittent formation of

coherent, dipolar plasma filaments, so-called ‘blobs’, is observed [121, 131]. They detach

from the mode, especially in the presence of a steepened local density gradient [132], and

continue to propagate outward under their E×B-drifts [131, 133]. Generally, a wide range of

sizes and speeds of blobs is produced in different gases [134], but structures in an interchange-

dominated hydrogen plasma with a FWHM of dblob > 3cm typically propagate with a velocity

of ∼ 1kms−1 and thus reach the LFS region within less than 100µs while decaying. For an

increasedN & 7, field-parallel dynamics become important and a resistive interchange regime

has been identified through simulations [128]. Collisionalities in TORPEX appear too high

to accommodate the steep pressure gradients required for a drift-interchange dominated

scenario suspected earlier [130]. While most structures observed at these higher N appear

thus sheath-disconnected with k|| 6= 0, blobs show nonetheless the described dominant inter-

change character during their generation, as reflected in the π
2 phase between their density

and potential fluctuations [129]. Throughout this thesis, we will focus on SMT plasmas in the

ideal interchange regime.

Electrostatic turbulence and blobs are a ubiquitous feature within the source-free open mag-

netic field lines in the Scrape-Off-Layer (SOL) of tokamaks, where they are the main contributor

to the ‘anomalous’ transport of heat and particles in the plasma edge [72, 73, 74]. It is due to

this relevance, that they have been studied fundamentally in TORPEX as outlined above. In

particular, the Global Braginskii Solver (GBS) fluid code [128, 106] became central to this effort

and has been extensively validated against experiments [137, 138], as have other turbulence

simulations since [75].

In 2013, an internal toroidal conductor was added into TORPEX [139]. This copper ‘wire’

with a diameter of 2 cm can carry up to 1 kA of current to generate a poloidal field within

the vessel. Even though the most delicate pieces of the current feed-through into the vessel

are water-cooled, such currents can be maintained only over a few seconds without the risk

of melting parts of the assembly. The wire is fixed at R = 0 and can be moved to different

vertical positions by raising or lowering the feed-through as well as 3 stainless steel filaments

from which it is suspended. By carefully choosing this position and the currents in the wire

and the vertical field-coils, we can now access a variety of more complex magnetic field-line

configurations such as a quasi-circular geometry, different single X-points, a double X-point

and even a snowflake configuration [139]. Studies of the plasma dynamics in quasi-circular

field-lines [140] and blob propagation in an X-point geometry [141] which were carried out in

the frame of Fabio Avino’s thesis [135] are only relevant for the final outlook of this one. When

TORPEX is operated in the SMT configuration, the wire is suspended at Z = 17.5cm, where it

acts as a merely locally important plasma sink, such as the TORPEX vessel.
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Table 2.1 – TORPEX key parameters for the SMT plasmas used for the fast ion measurement
campaigns in this thesis. The given values are to be understood as bounds and approximations
due to the intrinsic variability of plasma conditions. The given collision frequencies and
mean free paths are calculated from the basic plasma parameters as shown in [22], while the
estimates for the Coulomb logarithms are taken from [26]. Similar results are given e.g. in
[135, 136].

TORPEX device
Major / minor radius R0 = 1m a = 0.2m
Toroidal field coils 28
Toroidal field current IBΦ = 367A
Toroidal magnetic field atR= 0 BΦ = 74mT
Vertical field coils 6
Vertical field current IBz = 95A
Vertical magnetic field Bz ≈ 2mT
Pitch angle and connection length θ ≈ 1.5◦ ⇒ L≈ 15m
MW heating power Pmw = 150W
EC-resonance position REC ≈−14cm
H2 pressure pH2 ≈ 6×10−5 mbar
HEXTIP grid constant dHT = 3.5cm
HEXTIP acquisition rate fHT = 250kHz
Main plasma parameters
e− / ion temperature Te ≈ 4eV À Ti < 1eV
e− / ion density ne =ni ≈ 1016 m−3

e− / ion thermal velocity vth,e ≈ 840km s−1 À vth,i < 9.8km s−1

e− / ion Larmor frequency Ωe ≈ 13GHz À Ωi ≈ 7.1MHz
e− / ion Larmor radii ρL,e ≈ 0.1mm ¿ ρL,i < 2mm
e− Debye length λD ≈ 0.15mm
Plasma frequency ωe ≈ 5.6GHz
e− / ion collision frequency [22] νee ≈ 71kHz > νii ≈ 10kHz

e− / ion mean free path λmfpee ≈ 11.8m > λmfpii ≈ 0.9m
Radial pressure gradient scale Lp = p

∂Rp
≈ 4cm

Neutral density nn ≈ 1.5×1018 m−3

Ionization fraction fi < 1%
e− / ion-neutral collision frequency νen ≈ 250kHz À νin ≈ 15kHz

e− / ion-neutral mean free path λmfpen ≈ 3.3m > λmfpin ≈ 0.7m
Interchange mode and blobs
Mode vertical wave number kz ≈ 35radm−1

Mode parallel wave number k|| ≈ 0
Mode frequency fint ≈ 10kHz
Blob frequency nearR= 0 fblob ∼ 1kHz
Blob FWHM nearR= 0 dblob ≈ 3−7cm
Blob velocity (radial) vblob ∼ 1km s−1
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2.2. Langmuir probe measurements

We now give an overview of the most important diagnostics and analysis methods employed

to characterize TORPEX plasmas.

2.2 Langmuir probe measurements

Langmuir Probes (LPs) are electrodes that are exposed directly to the plasma. Since the first

descriptions of their working principles by Irving Langmuir in the early 1920ies [142], their

versatility and practical simplicity have been utilized across the field and their physics thus

subject of ongoing research, as well as many more standard texts [143, 144, 145]. Only a

conceptual summary is given here, focusing on the probe types and measurement techniques

employed to obtain the plasma density, temperature and potential on TORPEX.

Depending on the specific purpose and location, the plasma facing probe tip of an LP can

take various shapes, but is generally kept small, such that its presence does not perturb the

ambient plasma more than necessary. This perturbation occurs through a plasma ‘sheath’

that forms around the probe tip, as it would on any surface. The lighter, and thus generally

faster electrons are adsorbed more readily onto the surface than the ions, such that the quasi-

neutrality of the plasma is broken within this layer of multiple Debye-lengths thickness. The

negative charge on the surface results in a potential drop that leads to the effective repulsion

of further electrons and acceleration of ions towards the sheath. The thus affected pre-sheath

region and the sheath therefore find an equilibrium, that is largely determined by the local

temperature difference between ions and electrons. In settings with TeÀ Ti as in TORPEX,

this simplifies to an electron temperature Te dependence for both the pre-sheath size and the

local potential drop ∆V . Furthermore, this equilibrium leads to the Bohm-criterion, requiring

the ions to enter the sheath above their sound speed cs =
√

kBTe
mi

. If the LP is left floating, no

net current is drawn from the plasma, i.e. leading to ‘ambipolar’ flows. With a known Te, this

requirement can be used to infer the the local plasma potential Vp from measurements of this

(negative) floating potential Vf ,

Vp = Vf +∆V = Vf + ln
√

2π
mi

me︸ ︷︷ ︸
≈3formi=mp

Te for Ti¿Te (2.1)

If a more negative bias is applied to the probe, the potential drop is enhanced and the sheath

region expands as discussed further below. While ions are drawn towards the probe, electrons

are being repelled rapidly as the bias reaches values comparable to −2kBTe
e , i.e. enough to repel

electrons across the wider range of their thermal speeds. Beyond the point where electrons are

effectively repelled, the obtainable ion current density saturates with decreasing bias towards

a value jsat, which is constrained by the local number of ions that are available. While still

subject to the marginal Bohm-criterion, the total ion saturation current Isat on a probe can
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Chapter 2. Experiments on TORPEX

therefore be used to infer the plasma (ion) density ni through

Isat =Aeff q
ni
2
cs︸ ︷︷ ︸

jsat

=Aeffq
ni
2

√
kBTe
mi

, (2.2)

if the effective probe surfaceAeff , and local Te are a known. When applying a bias between

Vf and Vp, the probe begins to draw more electron current. From the roll-over into this steep

slope of the I-V characteristic of the LP in this range of bias (see Fig. 2.2), one can in fact

deduce Te (and thus Vp), by fitting it to the established analytical formula

I(V ) = Aeff jsat

[
1−exp

(
V −Vf
kBTee−1

)]
, (2.3)

as predicted from a basic 1D model of a non-magnetized sheath with Maxwellian electrons and

cold ions, valid up to V .Vp [144]. When V ¿Vp for non-planar LPs, one furthermore needs

to account for the ‘sheath expansion’ enhancingAeff , e.g by additionally fitting the slope of

the Isat branch in the I-V curve, or by using the Child-Langmuir law to deduce an expression

forAeff =Aeff (V −Vp) [146]. For V >Vp, ions are fully repelled and large, often fluctuating,

electron currents are drawn from the plasma. The consistent analytical description of currents

in this electron saturation region is still open [145]. In practice, the much larger currents

drawn [see Fig. 2.2(a)] can pose a heating risk to the integrity of the cabling and electronics of

the probe. Therefore, consistently strongly positive bias is usually avoided in LPs.

(a) Full range of bias voltage sweep. (b) Zoom of the Isat branch.

Figure 2.2 – Example of an I-V characteristic obtained from ≈ 2.5×105 samples during a 330 Hz
sweep on a probe of the SLP diagnostic. The red dots represent the calibrated measurements,
while the dark blue crossed line and surrounding shaded area show the mean and standard
deviation from Gaussian weighted moving average smoothing. The current variations are due
to fluctuations in the plasma, as well as pick-up noise and possibly probe contamination. Also
shown are the floating potential (cyan) at I = 0 and the range of suspected plasma potentials
(magenta), depending on the estimated Te ≈ 4.8±0.5eV. In the Isat branch for V <Vf , note
the steadily increasing current with decreasing bias due to sheath expansion in (b).
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2.2. Langmuir probe measurements

Various types of LPs and LP arrays have been commissioned for TORPEX (see Fig. 2.3). The

Slow Langmuir Probe (SLP) array features eight aligned LP tips and can be moved radially

across the plasma and rotated to adjust resolution in the vertical direction [101, 121, 147]. The

2-dimensional Single Sided Langmuir Probe (2DSSLP) array provides 8 probes separated by

1.5 cm, and is mounted on a ball-joint probe arm to scan across the plasma cross-section

[140]. Since their probe tips are covered on all but one flat side, they are not affected by sheath

expansion and one can even compare asymmetries in the plasma conditions in the toroidal

direction. Coupled to the appropriate amplifiers and acquisition circuits [148], all these probes

can be fed a periodic bias voltage sweep at frequencies of commonly ≈ 330Hz. The acquired

full I-V characteristics, as shown in Fig. 2.2, are digitized at a frequency of 250kHz. While

all plasma parameters can be inferred from these sweeps as described above, the respective

quantities by definition represent time-averages. Since arbitrarily rapid sweeps are often

unfeasible and ultimately limited by the acquisition frequency, measurements with floating

probes or under constant bias (typically ≈−40V) are used to acquire Vf or Isat time-series

describing the local evolution of the plasma.

(a) (b)

(c)

Figure 2.3 – Selection of movable Langmuir probes currently available on TORPEX: (a) The
Slow Langmuir Probe (SLP), (b) the 2-Dimensional Single Sided Langmuir Probe (2DSSLP)
and (c) the Five tip tRIPLE probe (FRIPLE).

The most comprehensive 2D studies of plasma structures in TORPEX were undertaken with

the HEXagonal Turbulence Imaging Probe (HEXTIP). Commissioned in 2005, HEXTIP was

a single, fixed array of 86 cylindrical LPs covering most of the poloidal cross-section with a

grid-constant of 3.5cm [122]. Twelve subgroups of probes can either be used independently

either in Vf , Isat or swept mode. The probe signals are filtered and amplified by respectively

suitable circuitry and digitized likewise at a sampling frequency of 250kHz. In 2015, we
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Chapter 2. Experiments on TORPEX

Figure 2.4 – Profiles interpolated from the basic statistics of time-series measurements of Vf
on HEXTIP-1 (a-c) and plasma density (from Isat) on HEXTIP-2 (d-f). Crosses indicate the
positions of active probe tips. The time-average (mean) is shown in (a,d) and the standard
deviation in (b,e), both in units of V and m−3 respectively. Note the localization of the strongest
fluctuations in the mode region nearR≈−12cm in (e). The transition to the blob-region is
identified by their intermittent density peaks leading to positive skewness in (f), beginning
near R ≈ −10cm. However, both detached blob- and elongated mode-structures can be
present intermittently, with blobs gradually dominating towards the centre and HFS (see Fig.
2.5).

commissioned the Upgraded version of the diagnostic, HEXTIP-U, as detailed in Ref. [149].

It consists now of two poloidal LP arrays, HEXTIP-1 and HEXTIP-2 (see Fig. 2.1), at opposite

toroidal locations with 95 probes each. The probes near the centre and the LFS are mounted

on a pair of movable arms to facilitate operation with the internal toroidal conductor. This

two-fold set-up has allowed direct and time-resolved 3D measurements regarding the field-

alignment of all structures within the plasma [149]. Many blobs appear to remain in fact

connected to the mode along one portion of the field-line, while they already appear detached

on another. In keeping with the above definitions, we will therefore prefer the more general

term ‘plasma structures’ when describing different effects on the propagation of fast ions.
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2.2. Langmuir probe measurements

Furthermore, we can now acquire time-resolved measurements of Vf and Isat over the full

poloidal cross-section simultaneously, by dedicating one HEXTIP array to each (see profiles in

Figs. 2.1).

To approximate plasma density values from the Isat data using Eq. 2.2, we assume Te ≈ 5eV

from swept measurements in the mode region, andAeff = 13mm2 near a bias of V ≈−40V.

Profiles interpolated from the mean of the resulting density and Vf time-series in the SMT are

shown in Fig. 2.4(a,d) respectively and are in good agreement with scans from swept probes.

The profiles of their standard deviations in (b,e) indicate the location of the interchange

mode on the HFS, while the intermittent character of blob propagation in the centre and

LFS is commonly quantified by the positive skewness of the density time-series as in (c)

[126, 150, 151]. The skewness is defined as the 3rd standardized central moment of the time-

series [152] and will be given detailed treatment in the context of fast ion transport in Ch.

3. Note the differences to Fig. 2.5 and Fig. 2.9, showing instantaneous ‘snapshots’ of the

plasma density and floating potential for comparison. To further assess the statistical average

behaviour of plasma structures, the technique of Conditional Sampling (CS, see Sec. 3.3) has

long been known through investigations e.g. in unmagnetized, beam-generated ion acoustic

turbulence [153, 154], as well as studies of coherent structures in toroidal magnetized plasmas

[155, 156]. Therefore, it has since also been utilized on TORPEX across many different plasma

scenarios [133, 131, 147]. Both of these methods are therefore also adapted to analyze the

propagation of fast ions within these turbulent plasmas (see Ch. 3, Ref. [107]). A wide range

of other techniques was also applied to study the statistical properties of different plasma

structures, ranging from simple correlation studies over Fourier methods to 2D gradient

analysis and structure tracking [126, 121, 129]. However, they are not as pertinent to what

follows.

To finally characterize the local evolution of Te, time-resolved measurements can be taken

with a triple Langmuir probe. The Five tip tRIPLE probe (FRIPLE) is the most advanced such

probe in TORPEX and can also provide direct measurements of the plasma potential and

vertical electric field across the 1.6 cm covered by its tips [157]. Therefore it has been used

to study the validity of the ‘isothermal assumption’, whereby Te of plasma structures is on

average approximated by a known constant. Already conditionally sampled sweeps with SLP

in hydrogen showed Te ≈ 2.4±0.3eV across typical blobs [133, 147]. This indicates a possible

systematic over-estimate of density measurements with HEXTIP of up to ≈ 30% for similar

structures on the HFS. Averages based on time-resolved measurements with FRIPLE generally

confirmed the results of swept LPs but found significant Te fluctuations in the mode region.

However, these appear to only introduce an error of < 15% in instantaneous density estimates

here, and averages are well recovered. However, they can be more significant for the estimate of

the sheath potential drop and Vp here [157]. While this still plays a role in the blob-dominated

region, the fluctuations in the directly measured floating and plasma potential appear much

more similar here and radial particle flux measurements are dominated by fluctuations in Vf
[157]. Moreover, the deduction of E×B-flow patterns based on Vf -profiles had already been

demonstrated as a feasible approximation during blob-propagation studies [129]. While their
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Figure 2.5 – Instantaneous plasma density profile (‘snapshot’), interpolated from one set of
Isat measurements on HEXTIP-2, as digitized every 4µs. Note the mode structures connected
to the plasma source region on the HFS, and one slowly detaching blob-like structure. Probes
on the LFS ceramic arms can be radially displaced by up to 7 cm from outside the vessel.

accuracy can thus be expected to deteriorate towards the mode region and the HFS, we will

estimate turbulent electric fields based on the gradients of Vf -measurements in upcoming

chapters. Fast ions mostly remain in the centre of the cross-section, so that this method is in

particular applied when analyzing their cross-field motion.

2.3 Other plasma diagnostics

A number of other diagnostics have been employed on TORPEX to complement LPs and

pursue further investigations outside the frame work of this thesis. For instance, a Photron

Ultima APX-RS fast framing camera can be used in conjunction with a Hamamatsu C10880-03

image intensifier unit to observe visible light emissions at acquisition frequencies of up to

100kHz. A detailed description of early studies until 2008 can be found in Ref. [158]. This

set-up can capture mid- to high-resolution images, depending on the chosen acquisition rate,

while representing a fully non-perturbative method of measurement. Although observations

tangential to the toroidal direction successfully imaged blob-like plasma structures in a wide

field of view, their statistical properties do not directly correspond to LP observations, as the

recorded light emissivities are intrinsically line-integrated measurements. For observations

at an angle perpendicular to the toroidal direction (along Z), the field of view was restricted

to part of the mode-region of the plasma. However, the PDF of the amplitudes of emissiv-
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2.3. Other plasma diagnostics

ity fluctuations and their power spectral density were in strong overall agreement with the

corresponding statistics of plasma density fluctuations simultaneously recorded on HEX-

TIP. To address the line-integration problem in the tangential view, a tomographic inversion

technique was employed and allowed a spatial resolution of 2cm in the poloidal plane [159].

Both, the time-averaged plasma emissivity profiles and the location, extent and frequency of

the interchange mode agreed well with electrostatic measurements. Further analysis using

Conditional Sampling and Fourier-techniques corroborated these observations, as well as the

expected presence of small-scale structures beyond the resolution of HEXTIP [159, 99].

(c)(b)(a) (b)

Figure 2.6 – (a) Cathodoluminescent screen installed on a limiter inside a TORPEX sector.
(b) Solenoid for locally enhancing the axial magnetic field towards EC-resonance to produce
seeded blobs. (c) Rendering of a TORPEX sector with horn antennas for the injection and
detection of mm-range microwaves. The profile shows conditionally sampled contours for
positive (red) and negative (blue) density fluctuations based on Isat measurements on HEXTIP,
and the corresponding simulated microwave intensity on a gray-scale. Note the shadows
behind density peaks and adjacent high intensity due to wave scattering.

Since 2017, we have explored an alternative method to specifically study smaller scales in

a single poloidal plane through the installation of a cathodoluminescent ZnO-Zn screen

onto a limiter. With optical filters for most of the direct emissions from the plasma, the fast

camera recorded mm-resolution traces of plasma density fluctuations exciting a range of

∼ 500nm-wavelength emissions from the screen. Preliminary studies were performed on SMT

hydrogen plasmas as well as on argon plasma blobs seeded with an in-vessel coil (Fig. 2.6(a,b),

[160]). They reveal the presence of decaying plasma structures down to millimeter scales.

Their trajectory-averaged speed and size seem to mostly follow expectations from previously

established scaling-laws. Further studies will focus on the fragmentation process of the seeded

blobs and the identification of secondary instabilities.

From 2014 to 2017, the fundamental mechanisms of microwave-scattering by plasma struc-

tures has been investigated on TORPEX [123], in the frame of a Eurofusion Enabling Research

project ‘Physics of radiofrequency wave scattering by turbulent structures’. Microwaves are
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injected at 29.7GHz by a horn antenna through an elongated top-side flange, and detected

by another identical antenna through the opposite bottom flange. To reduce the ubiquitous

presence of ambient microwave noise from the magnetron, a custom insulated microwave

detection circuit was implemented [161]. It was demonstrated that plasma structures scatter

the injected microwaves in a clear pattern that is consistent with the change in plasma fre-

quency and refractive index induced by their density fluctuations. Full-wave simulations in

COMSOL were devised from first principles and show excellent agreement with measurements.

This holds especially when they were applied to plasma density profiles, that are obtained

by averaging over many detected instances of each particular type of plasma structure (CS

plasma profiles, see Fig. 2.1, background). For the details of these highly fruitful investigations

and their successful continuation on TCV [162], we refer to the thesis of Oulfa Chellaï [163].

2.4 Fast ion experimental set-up

The fundamental interactions of suprathermal ions with plasma turbulence have been in-

vestigated on TORPEX since 2006 [102]. The key parameters of the current experimental

set-up in the SMT geometry are summarized in table 2.2. We firstly introduce its different

principal components in the following, as similarly described in previous works [164, 136],

before presenting new additions to the equipment.

2.4.1 Fast ion injection

With plasma temperatures of typically less than 5 eV, suprathermal ions can be injected via

thermionic emission from an 6Li+ ion source [99], with the full source assembly illustrated

in Fig. 2.7(a). Thermionic emission requires a source temperature of over 1000◦C, which is

achieved by driving 2.2 A of current through a heating filament within the source. At 9-9.5

V, this results in Pheat ≈ 24W of heating power [136]. When heating a source for the first

time, this power needs to be built up slowly by augmenting the voltage by 0.5 V every 20-30

minutes to allow an appropriate time for the source to de-gas in the vacuum. The source is

mounted within a two-grid assembly of molybdenum and tungsten, chosen to withstand the

immediate temperatures around the source. The source itself is positively biased, as well as

its surrounding molybdenum casing, while a negative bias is applied to the first, ‘internal’

grid in front of the source. A full illustration of the biasing schemes of the ion source as well

as the detector is given in Fig. 2.8. The perpendicular electric fields resulting from the total

voltage drop between source and grid serve to extract the fast ions and accelerate them into a

beam-like current. The second, ‘external’ grid is grounded to shield the internal parts of the

assembly from the plasma. Therefore, ions decelerate in this region and the fast ion injection

energyE is effectively set by the source bias alone. Furthermore, the external grid is used to

measure part of the injected current, to provide a base-line for the expected fast ion current

densities during measurements (see below). With a computed grid opacity of ≈ 25%, the

current on the external grid represents at most one third of the actually injected current in
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Figure 2.7 – (a) Photo of the ion source grid assembly and its casing. The numbered parts are:
(1) Casing top (Boron Nitride), (2) Casing base (BN), (3) Source mount (BN) with heating wires
clamped to the source, (4) Biased source housing (Mo), (5) Grid spacers (BN), (6) Internal
grid (W) clamped in holder (Mo), (7) External grid with holder, (8) Canals with grid wiring, (9)
Fixture for source arm, setting the injection angle θ. (b) Labeled rendering of the ion source
movable system. Fast ion trajectories from simulations (see Ch. 4) are illustrated again in red
and blue for 30 eV and 70 eV ions respectively. The wiring is shown separately in Fig. 2.10.
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Figure 2.8 – Schematic illustration of the voltages and biases the fast ions experience from their
thermionic emission from the Li6-doped source, up until they reach the collector electrode
inside the front-side Gridded Energy Analyzer (see below). A second back-side detector
features the same biasing to produce a reference signal of pure noise from the plasma. Note
that a sheath potential drop of a few volts is experienced by the fast ions both when exiting as
well as entering the external grids of the source assembly and detector respectively.

the absence of a plasma. During the incremental heating, this current is acquired with a

multi-meter to verify the quality of each source. The same method was still used to monitor
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source quality between different TORPEX discharges for much of the presented data. However,

residual current fluctuations during certain discharges became quite apparent when an ion

source began to be ‘depleted’, i.e. when its current response to a given bias weakens due to use.

Hence, a separate circuit was designed to directly acquire the external grid current in each

shot during phases without plasma (see Sec. 2.4.3). The source and grid assembly is encased

in boron-nitride (BN). This material is both vacuum-compatible and heat-resistant while it

insulates most conducting parts of the assembly from the plasma. The two-component casing

is held together by 4 ceramic screws, which are additionally secured with liquid ceramics. As

shown in Fig. 2.7(b), the casing is mounted on a Z-shaped arm, insulated with fiber glass mesh,

that fixes the source position in the poloidal plane at [R=−1cm, Z =−14.5cm]. There, the

source is fixed such that the fast ion beam is injected at an angle of 6.5±1.5◦ with respect to

the horizontal direction. While the injection energy largely determines the fast ion velocity

parallel to the magnetic field v||, this angle sets their perpendicular velocity v⊥ and therefore

their Larmor radii ρL. The source arm is mounted in turn on a movable chassis, that can be

advanced along a toroidal rail with an ultrasonic motor over a distance of 48cm. At both ends

of the rail, two breaker switches engage on the chassis, preventing the motor from advancing

any further. From the chassis, the various cable contacts for the motor, its encoder, the end-of-

rail sensors and the source itself are guided through a custom flange connector to the outside

of the vessel and their respective power-supplies. Recent improvements to the wiring and

hardware inside the vessel are detailed in Sec. 2.4.3.

2.4.2 Fast ion detection

Once the fast ions have propagated through the plasma over the chosen toroidal distance

D, we employ two back-to-back Gridded Energy Analyzers (GEAs) to detect them [102]. Also

referred to as retarding field analyzers, these detectors consist of a series of two tungsten grids

and a copper collector, that follow a similar biasing scheme to the fast ion source assembly.

The first, external grid is grounded to shield most of the bulk plasma. Since the density of

the injected fast ion current is less than 0.001% that of the bulk plasma, additional filtering

is necessary. The second, internal grid is biased to Vint = −60V to specifically reject even

the high-energy tail of plasma electrons. The collector is biased to Vcol ≥+15V to repel any

residual high-energy bulk ions. Nonetheless, significant noise remains in the fast ion signal.

For instance, secondary electrons that are emitted through collisions onto the internal grid

can cause significant stray signals. Moreover, the intricate wiring, filter and amplification

circuitry is bound to pick up a minimum of electrical noise (see Sec. 2.4.3). Therefore a second

GEA is mounted on the back-side of the first. Since its signal should consist of the same noise

from the plasma, pick-up and cross-talk, the backside-signal is subtracted the front-side signal

during the last stage of the signal amplification. While this is found to result in a significant

noise reduction on average, some residual noise remains in the final GEA signal, which is

digitized at a frequency of 250kHz. In order to establish statistical differences between the fast

ion signal and the residual noise, the fast ion source is modulated into alternating ‘on-phases’

and ‘off-phases’ at a frequency of 23Hz, which become apparent on the source current signal
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Figure 2.9 – Rendering of the back-to-back Gridded Energy Analyzer, mounted on a retractable
ceramic arm through a flange with a ball joint. This allows the detection of fast ions across
most of the poloidal cross section. An instantaneous floating potential profile, interpolated
from one set of Vf measurements on HEXTIP-1, is shown in the background. The trajectories
of the 30 eV (red) and 70 ev (blue) fast ions were integrated using the tracing method in Ch. 4
based on Vf data from the same shot and time-period as the profile shown.

(see Fig. 2.12(b)) and the GEA signal (see Ch. 3). All measurements of the GEA are presented

as current densities, as the calibrated measured current is divided by the detector aperture.

2.4.3 Recent additions

In the following, we turn towards improvements and additions that were made to the fast ion

experimental equipment in the course of the presented thesis work. Their development was

chiefly motivated by the challenges and questions raised when acquiring the results presented

in Ch. 3. Since the systems described in the later subsections have thus only become available

more recently, they are to firstly contribute to the ongoing investigations outlined in Ch. 8.

Improved ion source equipment

From the very beginning of our experimental campaign, one of the main challenges was the

installation of the fast ion source and its arm, without the ability to remove the corresponding

sector from TORPEX. With the internal toroidal conductor, removing the adjacent movable

sector is now also substantially more demanding as the conductor needs to be lowered to the

centre of the vessel beforehand, and even then the sector can only be displaced by less than

17 cm radially. Furthermore, the choice of sector was limited through the installation of the
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Table 2.2 – Parameters of the fast ion injection and detection system, as well as their trajectories.
Vertical drifts are comprised of pitch-angle, curvature and a negligible gradient component
(see [136]). The average Larmor radii and speeds for ions on ‘realistic trajectories’ account for
the given (Gaussian) uncertainties in the injection angle and energy. Their values are thus
drawn from particle distributions from the Monte-Carlo simulations in Ch. 4.

Injection
Injection energy E = 30−70±2eV
Injection angle θ =+6.5±1.5◦ (w.r.t. horizontal)
Injection position (poloidal) R=−0.5cm , Z =−14.5cm
Filament heating power Pheat. 25W
Total filament bias 70−140V
Total injected current Iin ≈ 10−15µA
Source life-time under bias 5−12h
Measurement
Source-detector distance D = 126−171cm (toroidal)
Detector aperture A = π

4 × (8mm)2 = 50mm2

Internal grid bias Vint =−60V
Collector bias Vcol =+15−20V
Peak and total measured current Ip ≈ 1.5µA . I = 2.2−5.0µA
Total amplifier gain 56×103 × [20−200]
Ideal trajectories 30 eV 70 eV
Larmor frequency Ωf = 1.2MHz
Velocity parallel toB v|| = 38km s−1 58km s−1

Velocity perpendicular toB v⊥ = 3.3km s−1 5km s−1

Larmor radius ρf = 2.8mm 4.2mm
Propagation time overD = 171cm τtof ≈ 55µs 36µs
Vertical drift speed vz ≈ 0.8km s−1 1.8km s−1

Vertical displacement (D = 171cm) ∆f ≈ 4.5cm 6.8cm
ion collision frequency [22, 26] νfi. 42Hz 20Hz

ion mean free path λmfp
fi

& 0.9km 3.1km

neutral collision frequency νfn ∼ 23kHz 35kHz

neutral mean free path λmfp
fn

∼ 1.7m

Realistic trajectories 30 eV 70 eV
Av. velocity parallel toB v|| ≈ 30km s−1 46km s−1

Av. velocity perpendicular toB v⊥ ≈ 6km s−1 9km s−1

Av. Larmor radius ρL ≈ 4.9mm 7.5mm
Av. vertical drift speed vz ≈ 0.8km s−1 1.8km s−1

Av. vertical displacement (D = 171cm) ∆f ≈ 4.5cm 6.8cm

second HEXTIP array, and ultimately determined by the maximum achievable source-detector

distance without having the fast ion beam cross this probe array. While the mechanical

installation and alignment of the source arm became simply more challenging, the delicate

individual electric connections from the source arm to the chassis proved too fragile to handle.
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2.4. Fast ion experimental set-up

Two copper wires with a diameter of ≈ 0.25mm apply the bias for the internal and external

source grids, while wires with a diameter of ≈ 0.6mm carry the heating current and bias of

the fast ion source. The latter ones would intermittently loose contact during the heating

procedure, which would often result in uncontrollable, perpetually oscillating heating currents.

Furthermore, the given number of individual exposed connectors posed a risk for mechanical

faults (see Fig. 2.10(a)).

(a) (b)

Figure 2.10 – (a) Photo of the old individual connections between the source arm and the
chassis. One cable wrapped itself around the end of the rail, immobilizing the chassis. (b)
Photo of the improved wiring with 4-pin Fischer connector.

Therefore, the electrical wiring of the source arm was entirely replaced. All four contacts to

the source assembly remained copper wiring, insulated by heat-shrink made of teflon (PTFE,

PolyTetraFluoroEthylene). Close to the source, the teflon transitions as before to ceramic

tubing to withstand the source temperatures during operation. The individual electrical

contacts from the source arm to the chassis were however replaced by one single 4-pin

Fischer connector (see Fig. 2.10(b)). The current oscillations during the source heating were

significantly reduced, along with the risk of cables wrapping around the ends of the rail.

Additionally, the exposed copper wiring near the source grids was bent into a slightly wave-like

form. When one of the grids would snap from its wire due to wear over time, the remaining

contact can now be straightened and reconnected to the grid, instead of requiring a full

replacement.

Additional source arms

The detailed investigation of time-resolved fast ion measurements during the early ballistic

transport phase has become another research interest on TORPEX. The onset of measurable

correlations with HEXTIP data or entropy transfer to the fast ions could be used to quantify

the transition into the interaction phase more precisely. Such measurements require the ion

source to be positioned only centimetres away from the GEA. Given the minimum distance

between the corresponding flanges on TORPEX, and the fixed length of the toroidal rail of the
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Chapter 2. Experiments on TORPEX

fast ion chassis, this positioning required the development of a new, extended source arm as

shown in Fig. 2.11(a).

This extended source arm advances the position of the fast ion source by 25cm in the toroidal

direction and fixes it at [R=−1cm, Z =−3.5cm] in the poloidal plane. These coordinates can

easily be reached by the movable system of the GEA, whose radial motor is not powerful enough

to operate reliably were the GEA to be inclined by more than −17◦ w.r.t. the horizontal. At the

same time, the source arm accounts for the significant curvature of the toroidal coordinate

over this length, so that the injection angle of the fast ions remains purely vertical. Another

attachment was added onto the opposite end of the source arm, so that its orientation w.r.t.

the chassis is fixed even under the weight of the arm and source. Since the toroidal torque

of this assembly is also significant, and the movable chassis is not designed to cope with it, a

precise counter-weight was added along the negative toroidal direction. The only remaining

inevitable torque on the chassis is thus counter-clockwise around the rail, due to the combined

weight of all these components. While the motor of the chassis should in principle be largely

unaffected by this change, the chassis itself was not designed robustly enough to maintain the

required precision in its alignment with the rail. After extensive testing and a full replacement

of all movable parts including the motor, it has become clear that certain elements of the

chassis structure and the rail itself will need to be adapted to allow a reliable operation without

risk to the delicate piezo-electric elements of the ultrasonic motor. While the principal design

changes have been agreed upon, such as a more symmetric distribution of the alignment

springs, the implementation and testing of the new chassis will be beyond the time frame of

this thesis.

(a) (b)

periscopic 
segment

fixture for  
injection anle

Figure 2.11 – (a) Photo of the extended source arm for investigations of the ballistic transport
phase. Note its curvature in the toroidal direction and the counter-weight at the back. (b) Photo
of the source arm for flexible injection positions around R = Z = 0, including a periscopic
segment. Both arms are equipped with a custom fixture to place and install them more
consistently and securely on the chassis.

A third source arm shown in Fig. 2.11(b) was commissioned for the investigation of fast ion

propagation in a magnetic geometry featuring an X-point. Due to the interplay of the vertical

magnetic and electrostatic drifts, the number of fast ions crossing the X-point is expected

to change significantly depending on their injection position in its vicinity (see Sec. 8.1.3).
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2.4. Fast ion experimental set-up

Therefore, the source arm for this investigation allows for a flexible injection position near the

centre of the poloidal cross-section. The vertical source position can be set over the interval of

Z = [−2,6]cm by rotating the arm, while the simultaneous change in the toroidal location of

the source should only affect the injection angle of the fast ions negligibly. By adjusting the

periscopic segment close to the chassis, the horizontal source position can be set between

R= [−1,1]cm. This degree of flexibility allows to compensate offsets in the measured position

of the X-point and conduct comparative studies for injection positions above and below this

location.

Injection current acquisition

Many of the statistics from time-resolved fast ion measurements in the following chapters

will be shown to depend on the total fast ion current. The total detectable current is found by

integrating the fast ion mean profiles, and appears a useful proxy in most scenarios. However,

the actually injected current can vary and fluctuate between different discharges and mea-

surement positions, especially as the ion source begins to be depleted. While these changes

were formerly tracked on a multi-meter connected between the external grid and the ground,

this practice appeared insufficient to account for injection current fluctuations during a given

discharge (see Ch. 3). Therefore a dedicated circuit has been implemented (see Fig. 2.12),

so that a time-resolved current signal from the external grid of the source assembly can be

acquired during each such ‘shot’. These currents of 10s ofµA are converted into a voltage signal

by a trans-impedance amplifier, which is then filtered and further amplified in a second stage.

Due to the highly sensitive nature of the measurement, both are equipped with decoupling

capacitors. The gain of the first amplifier is fixed at ×103, while the second can be chosen as

×103 or ×104. The 1st order low-pass filter can thus be set to a cut-off frequency of between

1.67Hz, and 167Hz. However, since we usually employ the 23Hz source modulation, the latter

cut-off is set, as well as a total gain of ×106, by using the 10nF capacitor and the 100kΩ resistor.

With this gain, we arrive at a sensitivity of 1V per 1µA of external grid current. With an opacity

of ≈ 25%, the fast ion current actually injected into the plasma should be ≈ 3× larger. When a

plasma is present, the electron current drawn on the external grid is approximately 3 orders

of magnitude larger, so that the circuit quickly saturates and becomes unstable. Therefore, a

brief acquisition period without plasma is added at the end the discharge, and allows for the

acquisition of a clear fast ion current signal, as illustrated in Fig. 2.12(b). Although the chosen

cut-off frequency is significantly above the source modulation, a residual capacitive effect is

apparent before the acquired current reaches a stable value in each on-phase.

It should be noted that there remains a factor of ≈ 3−4 disagreement between the correspond-

ing injected currents and the integrated current of the mean-profiles in the following chapter.

A reduction of ≈ 40% is certainly due to the ≈ 20−25% opacity of the external and internal

grid of the GEA respectively. Furthermore, some current is likely lost directly at injection as the

source casing aperture is slightly smaller than the source grids. Further losses can be caused

by irregularities and sheath effects at the plasma interfaces or due to the Larmor motion of
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Vout Iin V+ V-

10 100 nF

1000 kΩ100

(a) Photo of the circuit box, with labeled con-
nectors and switches to choose resistors and
capacitors as outlines in (c).

(b) Acquired time-series Iin(t). The plasma
production is stopped at 1.5 s, so that the
circuit no longer saturates from e− cur-
rents.

1 kΩ 100 kΩ

1 MΩ

100 Ω

GND
+15 V
-15 V

Iin

Vout

10 nF100 nF

(c) Circuit diagram. The decoupling capacitors are to buffer potential noise from the power supply
and have capacitances of 100nF each. While future iterations could employ a fixed filter on
the first amplifier or even 2nd order filtering, the signal can likely still saturate during plasma
operation.

Figure 2.12 – Illustrations of the acquisition circuit for the current on the external source grid.

the ions leading to a modified effective detector area. Lastly, some minor attenuation of the

beam might be due to neutral collisions, which will be discussed in Sec. 2.5. ForD = 171cm,

the current estimate results in ≈ 20% losses, while a possible error of 50% in λmfp
fn

would yield

up to ≈ 60% losses. Nonetheless, measurements indicate that both the measured injected

and total detected current are approximately proportional to one another. Therefore, either

can be used when assessing relative differences in statistics between different fast ion profiles.

However, only a consistent measure of the injected current can account for shot-to-shot

variations.
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2.4. Fast ion experimental set-up

Multi-channel fast ion detector

As described above, the back-to-back GEA system is restricted to single point measurements.

Many analysis methods, such as Fourier analysis, or correlation studies rely on at least two

simultaneous measurements, so that the concept of a multi-channel detection system has

long been under discussion at TORPEX. Finally, this concept has taken shape in the form of a

5-fold Gridded Energy Analyzer, short ‘multi-GEA’ (see Fig. 2.13), that we have designed, imple-

mented and commissioned in the frame of the TP4 internships and ‘travail de spécialisation’

of the master student Lyes Kadi.

(a)

(b) (c)(c)

Figure 2.13 – (a) Isometric view and (b) side-view cross-section of the multi-GEA assembly.
The numbered parts are: (1) Casing base (PEEK), (2) Collectors (steel) with wiring gap, (3)
Grid-holders (steel), (4) Grid (external, tungsten), (5) Grid spacer (PEEK), (6) Casing shell
(PEEK), (7) Grid screws (PEEK), (8) Casing screws (steel), (9) Probe arm (ceramic), secured
with steel screw. In (c), we show a photo of the installed multi-GEA inside TORPEX, next to the
single-point, back-to-back GEA. Both are retracted to the LFS.

Various considerations influenced its design. The horizontal orientation is meant to facilitate

two-point studies related to the radial fast ion transport in the SMT to complement most
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Chapter 2. Experiments on TORPEX

previous and current investigations. Five separate collector were implemented, to simultane-

ously study correlations at different separations and ensure a certain redundancy should any

one detector fail. The size of each collector was chosen as large as the existing GEA, so that

the same lower limit on detectable currents should apply. A quadratic shape was preferred

however, such as to not waste any space in the detector cross-section. The device size was in

turn restricted to not exceed the dimensions of existing diagnostics, that are known to perturb

the plasma for a significant portion of the torus behind them. Other dimensions, such as

its thickness were set by practical constraints for the available materials and the efforts in

mounting the GEA on a ceramic probe arm. The casing and spacer-elements are machined in

PEEK (PolyEther Ether Ketone), which is both vacuum-compatible and heat-resistant enough

for operation in TORPEX. All collectors share the same tungsten grids, which are secured by

stainless steel frames in front of the 5 separate stainless steel collectors. The detector casing

as well as the steel-frames are secured with PEEK-screws, so that each grid and collector is

fully insulated from one another. All wiring is executed in standard insulated copper, that

has proven sufficiently compatible with the TOPEX vacuum in the past. The 1mm separation

between all exposed conducting elements was chosen as similar to the spacings in the ion

source. Detailed estimates show that the risk of electrical breakdown within the vacuum-

regime of TORPEX is negligible at the given magnitudes of bias voltages of less than 100 V. The

first findings from the detector tests and preliminary results from fast ion measurements, as

well as the path towards upcoming studies are outlined as an outlook in Sec. 8.1.1.

2.5 Previous fast ion studies

The principal behaviour and non-diffsuive spreading of fast ions in the SMT geometry of

TORPEX have been the subject of extensive experimental investigations in the frame of the

doctoral theses of G. Plyushchev [164] and A. Bovet [136], as well as the numerical work of K.

Gustafson [104]. Here, we aim to recall the most crucial results to give more specific context

and motivations for the investigations pursued in the following chapters.

2.5.1 Basic fast ion dynamics

After injection along the toroidal direction, the studied 6Li+ ions are found to generally drift

vertically upwards, as expected from the magnetic pitch angle, curvature and gradient drifts,

although the contribution of the latter is almost negligible [104]. Their mean free path for

collisions on thermal ions of λmfp
fi

> 900m, indicates fast ion transport in the experiments

presented is effectively collision-less, pending collisions with neutral particles. Lacking more

precise cross-section data for this specific interaction, a classical hard-sphere estimate yields

λmfp
fn

≈ 8m [136], if one also neglects the contribution of H2 molecules. Cross-sections of

similar non-resonant collisions are available for example for T+ on H2 [165]. This result

in an estimate of ∼ 6m, but since 6Li+ features an occupied s-shell, lower values might be

found. Measurements of the fast ion beam without plasma generation do not show significant
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2.5. Previous fast ion studies

broadening, indicating that neutral collisions do not strongly affect the spatial distribution

of fast ions. Furthermore, due to the lower mass of the neutrals, elastic collisions may only

lead to . 25% momentum loss for central impacts. The broadening of e.g. their perpendicular

velocity distribution, due to variations in injection energy and angle (see Tab. 2.2, ‘Realistic

trajectories’, and Ch. 4), most likely exceeds such collisional effects from the start. Therefore it

has been assumed that, on average, the dominant source of broadening of the propagating

fast ion beam are the turbulent E×B-drifts due to potential fluctuations associated with the

various electrostatic plasma structures [104, 107, 103].

Owing to the field aligned nature of the ideal interchange-driven turbulence with k|| ≈ 0, the

strongest electric fields and associated drifts develop in the poloidal plane. The propagation

of turbulent structures occurs on similar time-scales as the interchange mode of fint ≈ 10kHz,

so that their local variations are on similar or slower time-scales compared to the fast ion gyro

frequency of
Ωf
2π = 190kHz. Polarization drifts associated with the local time-variations in the

turbulent electric fields are consequently small compared to E×B-dynamics, and only lead to

small average increases of the fast ion energy in some cases [104].

2.5.2 Measuring time-average cross-field transport

During the most comprehensive experimental studies [103], the broadening of the injected

fast ion beam was investigated by acquiring the time-averaged poloidal profile at various

toroidal locations at injection energies of either 30 eV or 70 eV. To improve the signal to noise

ratio, lock-in amplification was used with a source modulation frequency of 1073kHz [166].

The typical acquisition frequencies were reduced to 500Hz and the shot duration extended to

. 10min, during which the movable GEA scanned multiple locations in the poloidal plane.

The time average poloidal fast ion profile, ‘mean profile’ in the following, was interpolated from

these measurements. To better quantify the broadening of the mean profile, the horizontal

width of the fast ion beam was calculated at each toroidal location through an average of the

variances of horizontal slices of the profile, each weighed by the proportion of the total fast

ion current it contained [166]. The obtained data is shown by the squares in Fig. 2.14, and

compared to numerical results based on GBS fluid-tracer simulations (bands) discussed below.

The total detected fast ion current I is defined by numerically integrating the mean profile.

The horizontal width was preferred to the vertical, as no magnetic drifts should occur in this

direction, so that only the effects of the turbulent electric fields should manifest. While initially

subject to Larmor oscillations, the fast ion beam width was observed to increase much more

strongly for lower fast ion injection energies [103].

2.5.3 GBS fluid-tracer simulations

To assess the broadening of the fast ion beam in terms of transport, consistent knowledge of

the fast ion propagation time is required. While there exists an approximate mapping to the

propagation distance, i.e. the source-detector distanceD, the small variations in the injection
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Figure 2.14 – Comparison of the experimental fast ion beam width (squares) with expectations
based on GBS simulations (bands) forE = 30eV (red) andE = 70eV (blue). Most experimental
data agrees well with GBS simulations (bands, see Fig. 2.15), within expected measurement
errors. Reproduced and adapted with permission from [103], see attributions.

energyE and injection angle θ do lead to time-of-flight dispersion especially at largerD [103].

Furthermore, the measured fast ion beam width is bound to reflect uncertainties e.g. in the

injected current and GEA position across different measurements in the mean profile.

Basic methodology

Therefore, numerical fast ion simulations [104, 105] were undertaken using the Global Bragin-

skii Solver (GBS) fluid code [167, 128, 106]. The locally more than 100× lower density of the

fast ions compared to the bulk density justifies the treatment of fast ions as tracer particles.

The employed 2D version of GBS solves the drift-reduced Braginskii equations describing

the evolution of the line-integrated plasma potential, density and electron temperature in

SMT geometry (including curvature effects)[104, 137], without separating equilibrium and

fluctuation scales. In the radial directionR, Dirichlet boundary conditions are used for density,

temperature and vorticity [136], while the boundary conditions in the vertical direction are

periodic [137]. On an initial background of random noise, constant density and temperature

sources are modeled in accordance with the EC and UH resonance layer positions in TORPEX

[137]. These build up gradients such that turbulent radial transport develops and grows until

the total wall losses balance the sources and a quasi-steady state is reached [137, 104]. Nu-

merically, derivatives w.r.t. time are approximated by an RK-4 scheme, and spatial derivatives

by 2nd order central differences [168]. The time-step is normalized [137] to R0
cs

≈ 50µs and
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spatial coordinates to ∼ cs
Ωi

≈ 2.8mm in TORPEX SMT plasmas.

Assumptions and feasibility

While the assumptions of Ti ¿ Te and β¿ 1 are clearly justified here, other conditions for

the application of this fluid model required further attention, especially regarding particle

collisions (see Tab. 2.1). As the plasma is strongly magnetized, the characteristic scale of steps

between collisions perpendicular to the magnetic field is of the order of the Larmor radii,

and thus indeed much smaller than the described turbulent structures. However, parallel

step-sizes are characterized by the thermal mean free paths, and only ion-ion mean-free-paths

are significantly smaller than the field-line connection length. Regarding collision frequencies,

electrons collide with each other (or with ions) at a frequency above that of the interchange

mode, whereas ion-ion collisions occur merely on the same time-scale. Therefore, thermal

equilibration within the turbulent structures, as assumed by a fluid treatment, is not fully

obvious to justify. Furthermore, the vast majority of the particles in TORPEX are neutral atoms

and molecules, with which both ions and electrons collide much more frequently and well

within the scales of the device, possibly contributing to thermal equilibration. Nonetheless,

the simulated modes and turbulent features in the 2D and 3D versions of GBS were found in

good structural agreement with measurements, e.g. from HEXTIP and FRIPLE, throughout a

wide range of validation studies in the quasi-steady regime[137, 128, 138].

Fast ion tracer simulations

Consequently, the described 2D version of GBS was also used in conjunction with fast ion

studies, with certain adjustments to the crucial plasma potential fluctuations. For instance,

the potential fluctuation level was rescaled by a weighing function, such that their impact on

fast ion transport could be investigated more systematically, or to achieve better agreement

with measured electric field profiles. For instance, near the fast ion injection position, the

fluctuations in the plasma potential measured by FRIPLE appeared on average weaker than

those in simulations, so the latter were scaled by ×0.75 during simulations pertaining to the

direct comparisons with experimental fast ion profiles [166, 136]. Therein, the trajectories of

bunches of 40 such tracer particles were simultaneously integrated over propagation times far

in excess of those observed experimentally [103]. To allow a comparison to the experiment,

their injection speed, orientation and position were assigned randomly according to Gaussian

distributions appropriately representing the ion source [104, 166]. To obtain a statistically

meaningful simulation of the time-average fast ion transport, 4000 such bunches were traced

at regularly timed intervals. This provides a statistically significant sample of different plasma

structures from GBS [136]. The simulated horizontal fast ion beam variance as a function

of propagation time σ2
R(t) was found to converge within 0.01% to results using up to 6000

bunches of 100 tracers [136]. To compare the simulations to experimental results, the poloidal

profile of the fast ion beam as a function of fast ion propagation distance was extracted using

a synthetic diagnostic [166]. The horizontal width of these time-averaged profiles was then
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calculated as a weighted average of multiple horizontal slices [169, 166]. As shown in Fig. 2.14,

excellent agreement with experimental measurements was established [103].
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Figure 2.15 – Radial variance of the simulated fast ion trajectories as function of propagation
time, for the same settings and energies as in Fig. 2.14. The transport exponents for the
different non-diffusive regimes are indicated where they were fitted to the slope. Reproduced
and adapted with permission from [103], in attributions.

2.5.4 Non-diffusive transport regimes

Larmor-oscillations notwithstanding, the numerically obtained horizontal variance of the

beam σ2
R(t) were found to often grow non-linearly in time, i.e. σ2

R∝ tν with ν 6= 1 in various

studies [104, 166, 103]. This confirmed the fast ion transport in the TORPEX SMT configu-

ration as generally non-diffusive, with a ‘transport exponent’ ν, as illustrated in Fig. 2.15

[103]. Initially, the injected fast ions require a certain time before interaction with the plasma

becomes measurable, so that transport features a ballistic phase (ν ≈ 2), approximately lasting

for their first half gyro-period [104]. During the following ‘interaction phase’ fast ions with an

injection energy ofE = 30eV are transported superdiffusively (ν > 1), while ions ofE = 70eV

undergo subdiffusion (ν < 1) [104, 103]. This reduction for higher ion energies was conclu-

sively attributed to stronger gyro- and drift-averaging over the present plasma structures

and their potential fluctuations, due to their larger Larmor-radii and stronger vertical drifts.

After 4-5 gyro-periods, the superdiffusive fast ions have spread over a horizontal distance

comparable to the plasma density and temperature gradient scales and smoothly transition

into quasi-diffusion (ν ≈ 1) [103]. Furthermore, their radial distribution is significantly skewed
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during this ‘asymmetric’ transport phase [104, 103]. Higher energy ions continue to experience

subdiffusion at all times considered [103].

2.5.5 Fractional diffusion models

Albeit initialized as Gaussians, the radial fast ion distributions in simulations quickly attain

strongly non-gaussian shapes [108]. Since the present transport is heavily determined by

gyro-averaging and drift-effects in a turbulent environment, it clearly presents certain non-

local and non-markovian features [170, 108]. When attempting a mathematical description in

terms of a random walk, this corresponds to the potential presence of heavy-tailed step-size

and waiting-time distributions, so that the propagator of this transport is indeed no longer

subject to the classical Central Limit Theorem (CLT) [118, 114]. The specific framework for

such descriptions are usually either Continuous Time Random Walks (CTRWs) [117, 116, 114]

or Generalized Langevin Equations (GLEs) [118, 119]. To interpret TORPEX fast ion data, one

successful approach was the development of Asymmetrical Fractional Lévy Motion (AFLM).

This model was able to successfully recover many of the non-gaussian features of the radial

fast ion distribution in the super- to quasi-diffusive case [108]. However, the heavy tails of the

propagator represented a strong over-estimate far from the bulk of the distributions. Further-

more, certain moments of the AFLM-based distributions intrinsically diverge, which cannot be

fully reconciled with the finite width and moments of the physical fast ion distributions. These

limitations are thus to be addressed and circumvented through the formalism presented in Sec.

6.4. It should be noted that an earlier description in terms of a CTRW-based Lévy-Walk also

fruitfully recovered different non-diffusive transport regimes, while bounding step-sizes by a

certain waiting-time through a power-law [170]. However, this coupling between their distri-

butions prevents the derivation of analytical forms of their propagator and diffusion equations

in all but exceptional cases [136]. Furthermore, no asymmetrical features could be recovered

and the correlations between the step-sizes and waiting times inferred in simulations were

not well described by the fitted power-laws at all scales [170, 136].

2.5.6 Time-resolved measurements and intermittency

With the principal fast ion transport regimes established [103], a first set of time-resolved

measurements were taken [107] without lock-in amplification atD = 40cm, similar to those

described in Sec. 2.4. The intermittency of the acquired time-series was quantified by their

skewness during the ion-source on-phases, compared to the off-phases. Intermittency levels

distinctly above the background values were only found for fast ions undergoing superdiffusion

and local time intermittency therefore suspected as a possible hallmark of this transport regime

[107]. It is clear that any such link between the global nature of non-diffusive transport and

local features of time-resolved measurements would be highly valuable in any setting with

limited diagnostic access. Given the extreme conditions in a fusion plasma and the intrinsic

limitations in measuring fast ions in space, there is no shortage of such situations across

the field of plasma physics. Conditional Sampling of the fast ion mean-profiles was used to
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quantify their average response to plasma structures detected on HEXTIP and superdiffusive

ions showed the expected stronger deviations from their mean position. These deviations

were found in good qualitative agreement with the dipole-like nature of these structures and

the resulting localized E×B-drifts [107], although no direct conditional measurement of the

plasma potential was included.

The detailed investigation of the prevalence and generation of local time intermittency during

the non-diffusive transport of the fast ion is the first central subject of this thesis. It is addressed

through an extensive and comprehensive set of measurements across all fast ion transport

regimes on TORPEX in Ch. 3. Numerical particle tracing as performed on GBS results is

combined with experimental measurements of floating potential fluctuations in Ch. 4 to semi-

quantitatively illustrate important aspects of the instantaneous and time-average response of

fast ions to plasma structures. In Ch. 5, the insights from these preceding chapters are then

leveraged to motivate an analytical model, that can predict the local skewness of a fast ion

time-series solely based on its mean-value.
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The first central subject of this thesis is the study of local time-intermittency during the

non-diffusive spreading of the fast ion beam through its interaction with plasma turbulence.

As outlined in chapter 1, preliminary studies associated intermittency exclusively with the

superdiffusive transport regime. Since such a direct link between a local observation and

the globally present transport regime would be highly intriguing, more detailed studies have

been undertaken and presented in Refs. [110],[111], from which we will draw extensively in

what follows and Ch. 5. Beginning from a clearer picture on how we quantify intermittent

behavior using the skewness of GEA time-series, a comprehensive set of measurements is

presented that leads us to observe intermittency with varying prevalence across all present

non-diffusive fast ion transport-regimes. Using conditional sampling in conjunction with

HEXTIP-1 and HEXTIP-2, we then verify how the generation of intermittency in different parts

of the time-average fast ion beam is related to the movement of positive and negative plasma

density and potential fluctuations. Further analysis is shown to require at least qualitative

knowledge on the instantaneous dynamics of the full fast ion beam, motivating the numerical

investigations in Ch. 4.

3.1 Quantifying intermittency

Naturally, the first question to address is how one should meaningfully quantify any local

time-intermittency in our system. Already the term ‘intermittency’ itself is often used rather

loosely in the literature to denote a variety of irregularly occurring behaviors in complex

systems. A more clearly defined application to time-series is found in the context of chaos,

where intermittency describes the seemingly spontaneous and unpredictable emergence of

bursts of chaotic, irregular behaviour during an otherwise well-predictable process [171]. As

such, it is often treated based on its description in the field of fluid-dynamics and turbulence

[86], where the term ‘intermittency’ is commonly used to describe the irregular formation

of coherent structures in a turbulent environment. Furthermore, the term distinguishes

these structures from other, regular and periodic patterns, as e.g. the waves and modes that

may drive the turbulence. If one observes a large enough region of the turbulent fluid, the
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appearance of irregularly spaced coherent ‘patches’ has thus been described as ‘intermittent’

[86]. When performing a continuous single point measurement, e.g. of the fluid vorticity, such

patches can lead to the local observation of irregular and ‘intermittent’ bursts and patterns if

a macroscopic flow is present in the fluid. However, distinctly different spatial patterns can

give rise to locally very similar observations. For instance, if the flow pattern is not well-known

at all times, one cannot always distinguish between locally forming and decaying structures

or irregularly spaced, stable patches that are advected by a turbulent flow. These spatial

details are rarely fully known in settings with a limited number of measurement points such

as ours. We therefore use the term ‘time-intermittent’ to solely describe the irregular local

observation of bursts, or ‘peaks’ in the acquired fast ion current density time-series as shown

in Fig. 3.1. It is implied, that the occurrence of these peaks is distinct from any Gaussian

random noise (see insets), and does not follow a regular mode-like pattern. To further clarify,

the term is not used to describe the rare attainment of any particular peak value compared

to others. Given the ubiquitous presence of noise in our measurements, we rather intend it

to describe the irregular observation of a variety of possible peak-values distinctly above the

local mean and standard deviation of the time-series. Assumptions on any underlying spatial

distributions will be developed step-by step using different analysis methods. In chapter 5,

we finally incorporate the essential aspects of these assumptions into an analytical model to

predict the local time-intermittency of the fast ion transport based on the local time-average

fast ion current density.

Having defined our use of the term ‘time-intermittency’, it remains to quantify its observation.

For this, accounting for the present noise in the fast ion time-series is essential at every step.

Therefore, we generally describe the value of the locally measured GEA on-phase signal as

a random variable S that represents the sum of the random variables for the actual local

fast ion current density J and the local noise N , i.e. we have S = J +N . For simplicity,

we assume J and N to be independent random variables and verify this assumption where

appropriate. While the statistical properties of the distribution of S are measurable during the

on-phases of the GEA signal, the properties of the noise N are available during the off-phases.

By combining this information in a statistically meaningful way, one can draw conclusions on

the statistics of our query J .

In particular, the higher order central standardized moments of a time-series, such as its

skewness γ and kurtosis κ, have proven useful in quantifying time-intermittency across

different settings [86, 172], including SMT plasmas [126, 150, 173] and previous work on fast

ions [107] on TORPEX. For a time-series Si =S(ti), drawn atN regular time-intervals ti from

the random variable S , they are respectively defined as

γS =
∑N
i (Si−µS )3[∑N
i (Si−µS )2

] 3
2

= µS3

σ3
S

(3.1)
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Figure 3.1 – Samples from fast ion time-series forE = {30,70}eV acquired atD = 171cm, with
on-phases shown in red, off-phases in black. The inset PDFs belong to the on-phase and are
annotated with the local fast ion signal mean [µJ ] = mAm−2, the on-phase standard deviation
[σS ] = mAm−2 and the (dimensionless) on-phase skewness γS . In (a,c), we show time-series
with the highest µJ for the givenE andD, while (b,d) correspond to the highest γS . While all
distributions feature heavy tails, note the higher skewness in time-series with more distinct
outliers w.r.t. the lower local mean. Their acquisition locations in the poloidal plane are
indicated in Figs. 3.2,3.4(c,f).

and

κS =
∑N
i (Si−µS )4[∑N
i (Si−µS )2

]2 = µS4

σ4
S

. (3.2)

As the sums representing the higher order central moments µS3,4 in the numerators are

most strongly incremented by the contributions furthest from the mean µS , they naturally

indicate the presence of peaks and outliers [86, 174]. The appropriate normalization w.r.t. the

standard deviation σS =µ1/2
S2 of the time-series ensures that the values of these statistics are

sensibly scaled towards the average fluctuation level, that would be expected to characterize

an underlying Gaussian process. Deviations from the resulting Gaussian reference values

can therefore indicate any disproportionate presence of peaks, and thus time-intermittency,

as described above. When calculating the skewness, any such statistical deviations that are

symmetric about the mean of the time-series cancel of course. However, peaks due to the fast

ion current density must be strongly positive by definition, so that this concern is mitigated.

While we have nonetheless investigated both the skewness and kurtosis in the quantification

and analysis of time-intermittency, we thus often focus on the skewness as the more practical

statistical quantity. The presence of high kurtosis across the fast ion time-series was generally

found to follow very similar trends.
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Since the cumulants of independent random variables are additive [152], it is possible to

decompose any moment-based statistics into contributions from the fast ions current J and

the noise N . For the on-phase mean and variance, one straightforwardly finds [107]

µS =µJ +µN , σ2
S =σ2

J +σ2
N . (3.3)

Using this and the preceding definitions, the on-phase skewness becomes

γS = µS3

σ3
S

= µJ 3 +µN3(
σ2
J +σ2

N

) 3
2

=
σ3
J γJ +σ3

NγN(
σ2
J +σ2

N

) 3
2

(3.4)

and the kurtosis

κS = µS4

σ4
S

=
µJ 4 −3σ4

J +µN4 −3σ4
N(

σ2
J +σ2

N

)2 +3 =
σ4
J (κJ −3)+σ4

N (κN −3)(
σ2
J +σ2

N

)2 +3 . (3.5)

Wishing to quantify the properties of the fast ion signal component J , we rearrange for its

mean and variance (for comleteness)

µJ =µS −µN , σ2
J =σ2

S −σ2
N . (3.6)

as well as for the skewness

γJ = σ3
SγS −σ3

NγN(
σ2
S −σ2

N
) 3

2

(3.7)

and for the kurtosis

κJ = σ4
S (κS −3)−σ4

N (κN −3)(
σ2
S −σ2

N
)2 +3 . (3.8)

All quantities on the RHS of Eqs. 3.6-3.8 are available through measurements in either the

on- or off-phases of the fast ion source modulation. While γJ and κJ represent statistics

that meaningfully quantify time-intermittency from the fast ion signal component, these

quantities feature a major practical drawback as they diverge in regions with a low fast ion

signal, where σS and σN take on similar values. However, it is precisely at the low density edge

of the time-average fast ion beam where the most distinctively time-intermittent behaviour is

expected [107]. Therefore, the above quantities are not employed to describe and compare

the locations and dynamics of the strongest time-intermittency in the time-resolved fast

ion profiles or CS fast ion profiles in the upcoming sections. Instead, we use the on-phase

skewness γS . In contrast to previous studies [107], we do not subtract the local background

noise skewness γN , as the difference of these quantities is no longer a skewness itself (see Eq.

3.7). Instead, we focus on the prevalence of γS above the maximal observed background value

of γN ≈ 2. The injected fast ion current has been sufficiently increased to allow distinctive

enough time-series measurements for this comparison. Nonetheless, we will make use of all

the above considerations repeatedly in chapter 4, when comparing simulated fast ion statistics
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to our measurements, and in chapter 5, when predicting measurements based on an analytical

model.

3.2 Statistics of measured time-series

The primary method to assess the prevalence of local time-intermittency across the various fast

ion transport regimes are time-resolved fast ion profiles, constructed from the statistics of time-

series measurements taken across the poloidal plane at one specific source-detector distance

126cm ≤D ≤ 171cm, and at a constant injection energy of E = {30,50,70}eV. According to

earlier studies [103] (see Sec. 2.5), fast ion withE = 70eV undergo subdiffusive transport here,

whereas those injected withE = 30eV are completing a smooth transition from a super- to a

quasi-diffusive regime, with strongly asymmetric radial transport. Fast ions with E = 50eV

are assumed to represent an intermediate, and therefore subdiffusive case. To verify the

time-average fast ion drifts and transport, the mean-profiles shown in Figs. 3.2,3.3,3.4(a-c) are

based on an interpolation from locally determined values of µJ , accounting for the offsets due

to noise and the acquisition system. The width and location of these profiles is in reasonably

good agreement with expectations from previous studies with lock-in detection [103].

A small increase in most measured widths by ≈ 15% is likely due to slight systematic variations

in the injection angle θ. While the corresponding transport exponents would therefore likely

differ to some degree from earlier finds, their precise values are of little consequence to the

analysis of time-intermittency in the following. However, since we intend to quantify and

localize its prevalence via interpolated skewness profiles based on γS [see Figs.3.2-3.4(d-f)],

the importance of the local noise N compared to the fast ion signal J (see Eq. 3.4) becomes

crucial. This holds in particular for comparisons between different profiles, since the total

detected fast ion current I varied significantly between them. This was inevitable due to

differences in the overall quality of the ion sources, as well as their gradual depletion during

each campaign. Despite best efforts to compensate for these issues by continually adapting the

source bias via the internal grid, the total detected currents found by numerically integrating

each mean-profile vary between I ≈ 2.2−5µA, as detailed in the captions of Figs.3.2-3.4, with

an average of Iav = 2.85µA.

To account for these variations between profiles, we normalize the moments of the fast ion

component J in the measured µJ and γS by the factor c= Iav
I for each profile, i.e. we let

µJ 7→ cµJ , γS 7→ c3σ3
SγS + (1−c3)σ3

NγN

(c2σ2
S + (1−c2)σ2

N )3/2
, (3.9)

before interpolating the shown profiles. Note that in the limit of c→∞, one retrieves γS 7→
γJ (see Eq. 3.7), as the impact of the noise contribution becomes negligible. The noise

contribution to γS that avoids the divergence in the region of σ2
S →σ2

N is thus given a more

experimentally consistent weight relative to the fast ion contribution to the measurements.

Remaining variations in the detectable current between the discharges within some profiles
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were found non-negligible, particularly in Fig. 3.3(c,f). Therefore later analysis was performed

predominantly on the data taken atE = 30eV andE = 70eV. Here, fluctuations were mostly

held within a margin of ∼ 15%, indicated by the external source grid currents between shots.

The applied source bias was hence kept more stable. Nonetheless, these findings motivated

the development of the injection current acquisition circuit (Sec. 2.4.3), which confirmed this

estimate of the fluctuations.

From the skewness profiles shown in Figs.3.2-3.4(d-f), it is clear that there are instances of γS
distinctly above the maximum background value of γN ≈ 2.2 across all fast ion energies and

propagation distances. The highest values of γS still appear on the edge of the mean-profile

towards the LFS. Towards the HFS, the noise contribution increases with the average intensity

of local plasma density fluctuations (see Fig. 2.4(d,e)) and lowers γS . As before [107], the

highest values of skewness are neither observed near the peak of the mean-profile, since the

increased µJ diminishes the contribution of the outlying peaks in the 3rd central moment

(see Eq. 3.1, Fig. 3.1(a,c)). The maxima of γS across all profiles are summarized in Fig. 3.5.

Figure 3.2 – Profiles of the fast ion signal mean µJ (a-c) and on-phase skewness γS (d-f) for an
injection energy of E = 30 eV at increasing source-detector distancesD. With a total detected
fast ion currents of I ≈ {2.3,2.4,3.3}µA (a-c), all profiles have been normalized according to
Eq. 3.9. The circles in (c) show the different GEA positions where measurements were taken,
while their size approximately indicates the detector aperture with 8 mm diameter. Note the
wider spread and lower vertical position of the mean profiles compared to higher energies in
Figs. 3.3, 3.4. Furthermore, the highest instance of normalized γS ≈ 7.7 is found in (f). The
green crosses in (d,f) show the positions where the time-series for Fig. 3.1(a,c) were taken.
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Note how they follow more consistent trends after normalization (see circles vs. crosses),

especially in the 70 eV case. The maximum γS appear higher in the super- to quasidiffusive

case ofE = 30eV, and generally constant or increasing with longer propagation distancesD.

While the precise values of these maxima do depend on the specifically chosen value of c,

these general trends appear rather consistent across a range of at least ±20% (see error-bars).

The reasons for this behavior will become more apparent when investigating the generation

of time-series in Ch. 4 and when motivating the analytical model for the prediction of γS in

Ch. 5.

However, the presented measurements already allow the conclusion that time-intermittency

in our context is not an intrinsic feature of any particular non-diffusive transport regime,

but occurs to varying degrees across all of them. This key result presented in [110, 111] thus

signifies a departure from the expectations of earlier studies [107], ultimately prompting the

more detailed numerical and analytical studies on the generation of intermittency in this

Figure 3.3 – Normalized profiles of the fast ion signal mean µJ (a-c) and on-phase skewness
γS (d-f) for an injection energy of E = 50 eV at source-detector distances D and with total
detected fast ion currents of I ≈ {2.2,2.2,2.7}µA (a-c). The circles in (c) show again the different
GEA measurement positions and aperture size. The spread and vertical positions in (a-c) lie
between the two extremes in Figs. 3.2,3.4. The skewness values in (f) appear diminished
compared to lower D, which can be due to more unstable injection currents between and
during the discharges in this profile, which occurred as the ion-source began to deplete. The
source bias was adjusted in an attempt to compensate, and the total detected current thus
increased on average nonetheless.
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system, as presented in Ch. 4 and Ch. 5 respectively. To firstly characterize the occurrence of

the intermittent peaks within fast ion time-series in relation to the propagation of different

plasma structures on a purely experimental basis, we now extend their analysis through

conditional sampling methods [107].

3.3 Conditional Sampling

The technique of Conditional Sampling (CS) [153, 156] has long been used on TORPEX

[131, 133, 99] to establish a statistical relation from observations on one reference time-series

measurement, usually from an LP, to concurrent observations on time-series data from other

diagnostics, which have included other LPs, the fast framing camera, or the GEA. To do so,

one firstly defines events of interest via the reference time-series. For instance, we detect the

local propagation of a plasma structure such as a blob, by imposing an absolute threshold on

the measured plasma density fluctuation δn(t) =n(t)−〈n〉t, where 〈〉t denotes the local time

average [see Fig. 3.6(a)].

Figure 3.4 – Normalized profiles of the fast ion signal mean µJ (a-c) and on-phase skewness
γS (d-f) for an injection energy of E = 70 eV at the source-detector distances D. The total
detected fast ion currents are I ≈ {5.0,3.0,2.4}µA. Note the diminished spreading and higher
vertical positions in (a-c) compared to Figs. 3.2,3.3. The normalized γS are consistently lower
than for lower E, but there are still instances above the maximum measured background
value of γN ≈ 2.2. The green crosses in (d,f) show the positions where the time-series for Fig.
3.1(b,d) were taken.
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The precise time-index of each event is defined as the first peak-value within each interval

exceeding the defined threshold [see Fig. 3.6(b)]. A consistent time window of τ =±120µs

at a 4µs time-step is selected around the event (τ = 0), defining each conditional sample

(shaded green). These time-windows defined by the reference are then also selected on all

other concurrently measured time-series [e.g. the GEA in Fig. 3.6(c)]. By averaging the values

of a time-series within all the selected time-windows separately for each time-step in τ , one

obtains the Conditionally Averaged Sampling (CAS) result for this time-series. Collectively,

these CAS results can thus characterize the average dynamics of our system around the times

when the imposed condition on the reference is met. For example, by interpolating profiles for

each τ from the CAS results of δn(t) data from HEXTIP, one observes the propagation of a CAS

plasma structure around the selected reference probe (c.f. ‘CAS blobs’ [131]), as illustrated for

τ = 0 in Fig. 3.9(a).

Consequently, we wish to characterize the average dynamics of the fast ion beam in response

to CS plasma density structures using the GEA time-series [107, 136]. This however requires

two more adaptations of the sampling method. Firstly, only one fast ion time-series was taken

Figure 3.5 – The circles show the maxium values of γS for the profiles shown in Figs. 3.2-3.4,
except 3.3(f) due to current fluctuations. An additional profile forE = 70eV atD = 160cm was
included as well. For reference, crosses show the corresponding values before normalization.
The top of each error-bar corresponds to a 20% increase in the normalization factor c, the
bottom to the same decrease. If they were produced by a different choice of Iav, the errors
shown would thus be systematic. However, this likewise serves to illustrate the influence
of random errors through fluctuations in the injected current I , that for the shown profiles
are usually estimated as smaller. Any offsets in D from D = {126,146,171}cm have been
added merely for better visibility. The dashed line indicates the highest measured background
skewness γN .
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Figure 3.6 – Illustration of the conditional sampling process. The plasma density time-series
from HEXTIP-1 (a), is taken as reference and events defined by an absolute threshold (dashed
black) above the mean (blue), which is commonly removed during sampling. The time-
windows of conditional samples are shaded green on the reference as well as the concurrently
sampled GEA-signal (c). As shown in (b), the samples are centered with τ = 0 on their first
reference signal peak. To obtain the conditional average, the samples from each time-series
are averaged at each value of τ at 4µs time-resolution. Note that not all peaks in (a) correspond
to a signal peak in (c), indicating statistical variations between the events defined in (a) as
well as in the response of the fast ion beam. The fact that the peak of the fast ion signal can
precede the plasma density peak, as in (b,d), is mostly due to the GEA being positioned ≈ 3cm
below and outward from the reference in this shot. The conditional average dynamics relevant
to these examples are illustrated in Fig. 3.7(a-c).

during each discharge. Therefore, we have to include all the discharges pertaining to a given

fast ion profile, and obtain one conditional average each. Based on the GEA measurement

position of each discharge, profiles are then obtained across all measurement positions for

each τ . The reference probe on HEXTIP and the chosen density threshold thus need to be

kept consistent throughout all shots in the profile, and the high reproducibility of TORPEX

plasmas becomes indispensable. Secondly, one needs to treat the on- and off-phases within

the fast ion signal appropriately. As for the mean profile of µJ , we average the conditional

samples of each type of phase separately and subtract the off-phase conditional average from

the on-phase conditional average before interpolating the fast ion CS-profiles, as shown in

Figs. 3.7,3.8. This subtraction does not only remove constant signal offsets, but also reduces

any systematic noise signatures that specifically occur (on average) due to the passage of a

structure across the GEA, e.g. through secondary electron emission from its internal grid (see

Sec. 2.4).

In Fig. 3.7, we show the response of the fast ion CS-profile to the propagation of positive
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Figure 3.7 – Fast ion CS-profiles (red scale) forE = 30eV(a-c) andE = 70eV (d-f) atD = 171cm
during the propagation of a positive CS plasma density structure. Positive (green) and negative
(blue) plasma density contours are shown at δn=±{0.6,1.2,1.8}×1015 m−3. The gray dashed
outlines show the fast ion mean profile at its 10%, 50%, and 90% contour. The gray cross
shows the centre-of-mass for the mean profile, the purple cross for the CS-profile. The chosen
HEXTIP reference probe is marked by the green x.

density fluctuations detected with δn> 3.5×1015 m−3 on a HEXTIP reference probe (green

cross), based on the treatment of time-series data as detailed in Fig. 3.6. The contours of δn

(green, blue) represent conditional average samples of plasma structures. Given the position

of the fast ion beam and the reference probe, they do not represent ‘CAS-blobs’, but also

average over contributions from particularly elongated mode structures (see Secs. 2.1,2.2).

These structures feature typical auto-correlation times of τac. 50µs [107], which is close to

the half-period of the mode with f−1
int ∼ 100µs. For τ ¿ τac in the Fig. 3.7(a,d), the plasma

conditions are less constrained by the applied sampling and therefore the fast ion profiles

resemble their time-average (gray contours). Once the CS plasma structure approaches at

τ ≈ −τac (b,e), the fast ion profiles are displaced outward to the LFS. Finally, the fast ions

appear to stream down and back around the structure when it passes the reference probe at

τ ≈ 0 in (c,f). The displacements of their centre-of-mass (purple cross) from its time-average

position becomes maximal, before slowly returning to the mean position for τ > 0. Generally,

these displacements are more distinct for E = 30eV than for E = 70eV, with peak values of

≈ 2cm and ≈ 1.2cm respectively. As seen in previous studies at D ≈ 40cm [107], the effects

of gyro- and drift-averaging over the turbulent structures are reflected more strongly in the

subdiffusive 70eV case. However, due to the ≈ 4× longer time-of-flight of the fast ions, their
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overall displacements are larger as they interacted with the plasma structures for longer. The

fast ions giving rise to the profile at τ = 0 can thus be affected by the field-aligned plasma

structures along their whole trajectory after their emission at the source (marked red) at

τ ≈−55µs and τ ≈−36µs, depending on the associated potential fluctuations.

Figure 3.8 – Fast ion CS-profiles (red scale) forE = 30eV(a-c) andE = 70eV (d-f) atD = 171cm
during the propagation of a negative CS plasma density structure. Positive (green) and negative
(blue) plasma density contours are shown again at δn=±{0.6,1.2,1.8}×1015 m−3, and all other
elements have the same significance as in Fig. 3.7. Note that the HEXTIP reference probes
(green x) are chosen below the mean-profiles in this case.

Qualitatively, the displacement pattern described above is in good agreement with the clock-

wise E×B-flows around the negative side of a dipole near the bottom of the density fluctuation,

as expected from an ideal interchange mode and the blobs detaching from it [131, 129, 107].

This is illustrated in Fig. 3.9(a), for the same conditionally sampled plasma density con-

tours as in Fig. 3.7(c). To further verify this behavior, a complementary CS analysis on the

passage of negative density fluctuations illustrated in Fig. 3.8 was performed by selecting

δn < −1.8×1015 m−3 on the plasma density time-series of a HEXTIP probe again for both

E = 30eV and E = 70eV at D = 171cm. The fast ion CS-profiles still resemble their time-

average for τ ¿ τac(a,d), it is displaced inwards to the HFS in (b,e) and then upward in (c,f)

as the negative density fluctuation propagates through the region of the time-average fast

ion beam. This pattern would be consistent with the anti-clockwise E×B-flows on the right

of an expected positive potential fluctuation towards the middle and bottom of the negative

density fluctuation [see Fig. 3.9(a)]. The time-indices τ in (b,c,d,f) were chosen to illustrate

the strongest horizontal and overall displacements of the centres of mass, which are again
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≈ 2× stronger in the 30eV case. The offset in the values of τ compared to the 70eV case can in

part be attributed to their difference in time-of-flight and the position of the two different ref-

erences probes, now between the source and the mean-profile. For the fast ions to be affected

by the inward drift as in (b,d), the fluctuation needs to propagate past the region of the source,

so that fast ions are displaced during a significant portion of their trajectory before being

detected ≈ 56µs and 36µs later. Hence, the effect should appear earlier for the 70eV case, and

so should the following upward displacement by the same argument. Furthermore, due to

the lower position of the reference probes compared to Fig. 3.7, we find the fast ions affected

at larger values of τ , when the suspected potential fluctuation is fully crossing through the

region of the time-average fast ion profile. Furthermore, most quantitative features of these

profiles, such as the precise direction and magnitude of the centre-of-mass displacement, are

affected by statistical uncertainties, especially in the edge shapes of the fast ion CS profiles [see

already Fig. 3.7,3.8(a,d)]. Thus there is also uncertainty in which τ illustrates these features

best. Nonetheless, the qualitative observations of the effect of different plasma structures are

in good agreement with the expected E×B dynamics.

-

+

-
+

-

+

-

Figure 3.9 – (a) Full CS plasma density profile from HEXTIP-1, corresponding to Fig. 3.7(c),
with the potential structures (dashed) and associated E×B drifts (magenta) as qualitatively
estimated from the observations of the fast ion CS profiles. (b) Corresponding full CS floating
potential profile, based on concurrent measurements with HEXTIP-2, with superimposed CS
density contours projected along magnetic field lines. Note that both density and potential
fluctuations are similar at vertical separations of ≈ 16cm due to the field alignment of plasma
structures in the ideal interchange regime of the SMT.

To obtain a more concrete description of the conditionally averaged E×B-drifts experienced

by the fast ions in Fig. 3.7, we used the array HEXTIP-2 to obtain floating potential time-series

concurrent to density time-series on HEXTIP-1 used above. In Fig. 3.9(b), the CS profile of

floating potential fluctuations δVf (t) =Vf (t)−〈Vf 〉t corresponding to the CS density profile

in (a) is shown. The density contours super-imposed on (b) are projected along the SMT
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field-lines to account for the toroidal separation of both arrays. The arrows show the direction

and relative magnitude of E×B-drifts induced by the potential gradients. They are expected

to constitute a valid approximation at least towards the centre of the TORPEX cross-section

(see Sec. 2.2). These drifts indeed follow the expectations from the motion of the fast ions

indicated in (a), and feature the π
2 phase w.r.t. the density fluctuations characteristic for an

ideal interchange mode. Since the CS was performed with positive density fluctuations as

reference, the drifts around the negative ones are less distinct, and the negative potential

fluctuations in the wake of more elongated or detaching plasma structures are offset towards

the LFS. Note that the potential fluctuations around positive density structures appear more

detached from the interchange-mode than the density contours.

Lastly, we wish to outline how the indicated reference probes on HEXTIP were chosen. As

a first criterion, their distance from the time-average fast ion profile is constrained by the

spatially limited correlations in this turbulent environment, as observed on HEXTIP [149],

making the probe nearest to the peak of the fast ion profile (as in Fig. 3.7) the intuitive choice.

However, the extended time-period spent by the fast ions in the plasma, and the vertical

distance over which they propagate may also be needed to take into account by choosing a

lower probe. Since the subject of interest was the generation of the most intermittent time-

series [marked in Figs. 3.2,3.4(f)], a reversed CS analysis was performed by choosing their

on-phases as a reference with a 2σS threshold for fast ion peaks, and sampling the concurrent

HEXTIP measurements during the same time-windows. These conditionally sampled plasma

density profiles showed the most significant density fluctuations propagating near the chosen

probes. Conversely, CS with other reference probes on HEXTIP led to similar, but often less

consistent results than those shown above, especially when increasing the distance from the

fast ion beam region.

3.4 Motivations for further analysis

Although CS-profiles can give very illustrative insights on the physical effects leading to the

movement of the fast ion beam. The dipolar potential structures associated with positive and

negative plasma density fluctuations have been found to displace the fast ions towards the

locations of the most intermittent measurements, respectively in the lower LFS and upper

HFS portion of the time-average fast ion profiles. However, the fast ion CS-profiles represent

by definitions average statistics, from which individual events can differ strongly especially if

significant noise is present in the analyzed time-series. One key indication that this difference

is important in our case is the fact that the detected peaks in the fast ion time-series (see Fig.

3.1) attain distinctly higher values than found anywhere in the CS-profiles. This would suggest

that the profiles of the fast ion beam at a given moment, henceforth the instantaneous profile,

can be much more narrow and concentrated than the time-average mean profile. This picture

of a meandering instantaneous fast ion beam, that gives rise to larger time-average profiles

through its motion, is the very basis for the analytical model that was devised to predict the

skewness of the locally generated time-series as detailed in Refs. [109],[110],[110]. Before
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presenting these results in Ch. 5, it is thus instructive to review the investigations attempting

to further characterize the instantaneous profiles of the beam in the next chapter. Since

such profiles cannot be obtained from single point measurements, we turn mostly towards

numerical studies, which are nonetheless guided by experimental measurements of the SMT

plasma conditions in TORPEX.
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4 Experiment-based particle tracing

In this chapter we aim to characterize the fast ion beam and its profiles at a given time,

the instantanoeus beam, in relation to its conditional and total time-averages shown in the

preceding chapter. With multi-point measurements of fast ions becoming available only now

(see Sec. 2.4.3), the following investigations had to be pursued using numerical simulations. A

particle tracer using floating potential measurements from HEXTIP has been implemented

and is used to shed light on the qualitative dynamics of the instantaneous beam. Predictions

on the time-average profile are used for matching experimental measurements and previous

results based on GBS. While certain quantitative limitations are found mainly due to the finite

resolution of HEXTIP, statistical features such as the skewness of synthetic time-series are in

good agreement with expectations. The obtained results aid us in establishing a more concrete

picture of the meandering instantaneous fast ion beam, which will be helpful for developing

the analytical model in the following chapter.

4.1 Particle tracing

The explicit Boris-algorithm [175], as detailed in appendix B, is one of the most well established

ways to numerically integrate the trajectories of charged particles in response to the Lorentz

force, with the equations of motion

dt~r = ~v

dt~v = q

m

(
~E(~r,t)+~v× ~B(~r,t)

)
. (4.1)

To advance the particle positions ~ri and velocities ~vi from one time-frame τi to the next

τi+1 = τi+∆τ , half of the contribution from the electric field is added before, the other half

after the contribution from the magnetic field is treated. Due to its excellent long-term

numerical stability e.g. in terms of energy conservation, even at time steps that are only a few

times smaller than the particle gyro-orbit, different variants of this algorithm have been used

in a wide range of Particle In Cell (PIC) [176] simulations as well as full-orbit codes for fast ion

studies [177, 178]. Only recent studies have clarified that these favourable features are indeed
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linked to volume conservation in phase-space [179]. Albeit different methods have been

chosen for tracing fast ions based on GBS results [104], comparisons with the Boris-algorithm

were still employed to validate initial tests. Therefore the Boris-algorithm has also been used

as the basis for the particle tracer implemented in the frame of this thesis. For numerical

simplicity, an implementation in a Cartesian coordinate system (x,y,z) was chosen into which

all inputs to the tracer were transformed from the practically more convenient rotated local

coordinates (x1,y1,z1) as shown in Fig. 4.2.

These required inputs are the initial velocity and position of a particle, as well as the magnetic

field ~Bi(~ri,τi) and electric fields ~Ei(~ri,τi) that it experiences at a given time-frame and position.

To firstly sample the time-average fast ion beam, we integrate the trajectories of particle

bunches ofNp ≥ 400 tracers each, injected at intervals ∆t≤ 50µs over a duration of ≥ 200ms,

similar to studies with GBS for later comparison. The initial conditions for the particle position,

injection energy and the vertical and horizontal injection angles are drawn randomly, mostly

from Gaussian distributions. The specific initial conditions for different studies are given in

their respective sections below.

Just as for GBS, we assume toroidally symmetric magnetic fields that do not vary in time.

They are computed using routines established for a variety of magnetic geometries during the

thesis work of Fabio Avino [135], that only require inputs for the currents to the toroidal and

vertical field coils of TORPEX, as well as the internal toroidal conductor if used. In practice,

the toroidal field features a ‘ripple’ depending on the distance to the closest field-coil, but

these variations [see Fig. 4.1(a-b)] amount to < 10% for x1 < 1.1m and are thus neglected

for computational efficiency. In the SMT, we use the ‘vertical ideal’ configuration for the

poloidal field as illustrated in Fig. 4.1(c). The full field ~Bi(~ri,τi) = ~Bi(x1,i,y1,i) is computed at

∆x1 =∆y1 = 1mm spatial resolution across the poloidal cross section.

The flexibility in the choice of magnetic field is one intrinsic advantage over GBS, that also

motivated the complementary development of this tracing algorithm. Changing to a magnetic

geometry different from the slab or SMT, and especially to X-points, has been a major analytical

and numerical undertaking for GBS spanning the past and current thesis works of Paola Paruta

[168] and Carrie Beadle [180]. The capacity to feed any available magnetic geometry on

TORPEX into the present tracing algorithm is however already implemented from the start,

pending the availability of inputs for the continually evolving turbulent electric fields on

TORPEX. We will attempt to extract statistically useful approximations of these fields from

the gradients of interpolated time-resolved Vf measurements from HEXTIP (see Fig. 2.9), in

contrast to GBS, where the plasma potential can be evolved continuously down to sub-mm

and sub-µs scales. The principal trade-off is therefore between the small-scale accuracy of

the FORTRAN90-based GBS and the flexibility and simplicity of the experiment-based tracer

implemented in MATLAB.

In the next sections, we discuss how the evolving electric fields in this tracing algorithm

are computed, and address the impacts of the limited resolution and probe arrangement of
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(c)
8060 100

Figure 4.1 – The toroidal magnetic field strengthBΦ in our settings is shown across the poloidal
cross section for a toroidal location between adjacent field coils in (a), and in the plane of
a field-coil in (b). The variations towards the LFS, commonly known as field ‘ripple’, are
of limited consequence to the fast ions propagating and are therefore neglected here. In (c)
direction and field-strength of the poloidal magnetic fieldBpol is shown, along with the present
vertical field coils and their currents. No currents are fed to the supplementary E-coils or the
central solenoid A-coils. While the variations in both field components are small near the
centre of the cross-section, they do affect the local magnetic pitch angle. All related quantities
are thus often indicated as approximate.

HEXTIP on the type of conclusions one can draw to complement or prepare more demanding

studies with GBS in the future.

4.2 Incorporating HEXTIP measurements

As outlined in Sec. 2.2, previous studies on CAS-blobs and with FRIPLE have shown that

at least statistically, the gradients of Vf can provide a consistent basis for the computation

of electric fields. Thus we utilize time-resolved Vf measurements across the poloidal plane

from at least one array of HEXTIP, available at intervals of 4µs during a shot of ≈ 1s duration.

Since the trajectories of the fast ions are integrated over their full orbits of ≈ 5.3µs duration,

the Vf time-series samples required for the integration of each injected bunch of tracers are
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interpolated onto a time-resolution of typically ∆τ = 0.1µs during propagation. Some studies

with a higher time-resolution of ∆τ = 0.05µs were performed as well, but only negligible

differences in the statistics of the fast ion trajectories could be discerned.

Within the area covered by the probes of HEXTIP, a 2D floating potential profile of 1mm

resolution is produced using natural neighbour interpolation for each τi during the propaga-

tion of each injected bunch, as shown near HEXTIP in Fig. 4.2. With a typical time-of-flight

≈ {56,36}µs for tracers withE = 30eV andE = 70eV, respectively, overD ≈ 171cm, this cor-

responds to Nτ ≈ {560,360} interpolations for each of the ≈ 4000 injected bunches. Fully

recalculated interpolations in MATLAB at each instant would augment run-times by ∼ 90h.

However, the geometry of the interpolations remains constant over all instances. Therefore, the

specific indices and weights for the natural neighbours of all query-points are pre-calculated

from the appropriate voronoi tessellations with the HEXTIP probe positions, and stored as

constant arrays. Thus, each interpolation can be reduced to a simple vector operation and

sum, shortening the allocated run-time by factor of ×20. Furthermore, should the propaga-

tion times of consecutively injected bunches overlap, only the interpolations for new τi are

re-calculated.

Y

XΦx1 = R + 1 m

z1

y1 = Z

Figure 4.2 – Illustration of the projection of Vf profiles interpolated on HEXTIP (right) along
magnetic field lines (purple) to a different toroidal location (left), here near the fast ion source.
The profiles appear accordingly similar where the field-line intersects them. Note furthermore,
that due to the increase in magnetic pitch angle towards the LFS, the projected profile appears
lowered further there. Again, fast ion trajectories are shown in red forE = 30eV and in blue for
E = 70eV and have been obtained with the presented tracer. The static Cartesian coordinate
system (X,Y,Z) used by the Boris-algorithm is indicated in the centre, along with the rotated
coordinate system (x1,y1,z1) used to project Vf and calculate the electric fields. Both are
right-handed, with a counter-clockwise rotation angleΦ. We chooseΦ= 0 on theX-axis to lie
in the detector plane.

As detailed in Sec. 2.1, field-aligned electrostatic turbulence is observed in the settings investi-
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gated here. But albeit field-aligned, the interpolated potential profiles on the poloidal plane

of HEXTIP are not simultaneously representative of the plasma along the full trajectory of

the tracer particles. To obtain a better approximation at another toroidal location, field-lines

are traced from the local poloidal plane (resolved at likewise 1mm) onto the HEXTIP plane,

and the floating potential value of each field-line calculated by 2D linear interpolation on the

HEXTIP Vf profile, as illustrated near the fast ion source in Fig. 4.2. The limited statistical

impact of neglecting fluctuations in plasma temperature on the ultimately derived E×B flows

has been discussed in Sec. 2.2. Of course, such a field-line calculation at each τi is again far

too computationally demanding. Therefore, the indices and weights for the interpolation of

the Vf of each field-line are again pre-calculated and stored as constant arrays, so that they

are executable with the same efficiency as the natural neighbour interpolations described

above. However, these indices and weights depend on the specific toroidal location of interest,

so that a larger array is required if the toroidal direction is to be well-resolved.

The appropriate toroidal location during the propagation of a bunch of tracers is determined

by the elapsed time-of-flight τi, i.e. by approximating all toroidal locations by a local mean

for the purpose of the local potential calculation. The necessary field-line projection is thus

carried out once at each τi for each bunch, requiring up to Nτ sets of interpolation indices

and weights to be readily stored for different field-lines. The Boris-algorithm iterates on the

exact position and velocity for each tracer, showing that mainly due to an initial spread of

injection energies and angles, the toroidal velocities of the tracers is approximately Gaussian

distributed. However, even at the final τi, when the toroidal mean position of the particle

distribution is crossing the detector plane, ≈ 95% of the tracers’ toroidal positions are still

found within ±20cm of their mean location. Given a magnetic pitch angle of θ ≈ 1.5◦, we find

up to ≈ 2.5mm vertical offsets in the field-line position for the 1σ majority of the tracers. It

furthermore reduces approximately linearly towards zero for lower τi. Therefore, this offset in

projecting the Vf profile for different tracers is deemed statistically acceptable for the majority

of the integrated trajectories.

The local profiles of the electric field in the x1 and y1 direction are calculated for each τi
through a 4th order central difference gradients on the interpolated and projected Vf profiles,

as illustrated in Fig. 4.3. While no artifacts due to the 1mm resolutions or projections are

apparent, it is clear that the strongest values and gradients, e.g. of the vertical electric field in

(b), are centred on the projected probe locations of HEXTIP. The peaks of density and potential

measurements tending to be centred on the probe locations is a well-known limitation of this

diagnostic, so that such artifacts in the profiles are expected. Smaller structures especially can

appear to jump between probes or completely fail to be resolved [160]. While it is still deemed

the dominant source of uncertainty and statistical errors in the tracing algorithm, a few factors

mitigate ensuing issues.

Firstly, the CS-analysis in the preceding chapter strongly indicates that larger, well-resolved

plasma structures are responsible for the dominant motion of the fast ion beam, especially

towards the locations where the strongest intermittency is measured. Since we are ultimately
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Figure 4.3 – (a) Interpolated and field-line projected instantaneous Vf profile (in V), as shown
on the left in Fig. 4.2. The green arrows indicate the locally calculated electric fields, per-
pendicular to the contours. In (b) the vertical electric field component (in Vm−1) is shown,
with clearly dominant variations near the peaks of the potential profile at the projected probe
locations of HEXTIP. Such deviations are alleviated in (c), showing the gyro-averaged vertical
electric field, for an assumed gyro-radius of 7 mm.

most interested in this specific behavior and the generation of the observed time-series peaks,

unresolved smaller structures may not be crucial for the assessment. The underlying reason is

that, secondly, the trajectories of fast ions average over small structures, and thus also over

any local deviations in the electric fields. The gyro-averaged electric fields shown in Fig. 4.3(c)

show indeed a clear reduction of the artifacts seen in (b). Moreover, due to their vertical drifts,

fast ions at later τi have propagated at varying distances of HEXTIP probe locations, so that

related over- and under-estimates of the local fields can again average to some degree over

their trajectory. As established before [104, 103], both gyro- and drift-averaging effects should

be more important, and in this case thus more beneficial, to the treatment of tracers with

higher injection energies.

It should be mentioned that since there is no uniquely defined approach to finding gradients

on irregular grids, other methods for the calculation of the electric fields have been tried.

Although e.g. Shepard’s method [181] results in electric fields that feature much less distinctive

peaks near the probe-positions, they effectively reduce the resolution of HEXTIP even further

as each gradient point is based on a weighted average of the Vf values of multiple surrounding

probes. This obfuscates the shape and propagation of all but the very largest structures and

the calculated fields are clearly no longer perpendicular to the interpolated floating potential

contours.
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4.3 Time-average cross-field transport

In studies with GBS, the amplitude of simulated plasma potential fluctuations was weighted

by a function along the major radiusR (here x1) [104, 136], and the amplitude of the extracted

vertical electric fields in some cases [136] scaled again by a constant to match experimental

measurements with FRIPLE. While such a scaling of the fields extracted from HEXTIP of the

order of ×2 appears again necessary compared to FRIPLE, the present irregularities near the

HEXTIP probe positions hinder a more detailed comparison. Furthermore, different scaling

factors appear appropriate towards the HFS and LFS, i.e. towards the interchange mode or

further across the blob-dominated region respectively. Thus, the situation would have to be

re-examined if one were to change the fast ion injection position e.g. to investigate statistical

variations between these different environments.

Since the focus of this numerical investigation will be the behaviour of the fast ion beam at a

given instant, we therefore instead use the time-average fast ion beam to determine the most

appropriate scaling factorEf in our specific settings. The evolution of the horizontal variance

of the time-average beam as a function of propagation time is matched to the results from

GBS (see Sec. 2.5) for both the 30 eV case and the 70 eV case individually. For the fitting of their

transport exponents, the corresponding variance is defined based on the displacements of the

tracer particles, so that the results are not offset by the spatial distribution of the initial particle

positions. While one could choose a point-like injection, previous studies used Gaussian

distributions to more accurately model the aperture size of the fast ion source [136]. However,

we select larger uniform distributions with a width of 1.2cm along x1 and 14cm along y1,

centered in the middle of the poloidal cross-section, to further average any dependence of the

results on the initial distance from HEXTIP probe positions.

The remaining initial conditions correspond to those of the most pertinent cases in GBS

[103, 136]. The injection energy is normally distributed with a mean of E = {30,70}eV and

a standard deviation of 5% of these values. Two injection angles are set, with δ1 = −0.1rad

corresponding to the average vertical angle with the toroidal direction −z1, and δ2 =±0.1rad

taken as the average horizontal angle to the same axis. The second angle is defined as positive

for injection towards the HFS. Since we should have δ2 ≈ 0 in the experimental setting, the

average is set to a positive or negative value primarily to assess the impact of systematic

variations during particle injection on our results. Again, both angles are normally distributed

with a standard deviation of 0.08rad, to represent uncertainties and the impact of stray fields

during injection. This results in a significant initial spread in parallel velocity v|| and also

Larmor radii ρL, as shown for both ion energies in Fig. 4.4. Based on the mean values of these

distributions, the ‘realistic’ fast ion parameters in Tab. 2.2 were calculated.

4.3.1 Comparison to experiments and GBS

To obtain the time-average fast ion distribution for each τi, bunches ofNp = 400 particles are

injected at 50µs intervals over a duration of 200ms. At each τi, their displacements (x1,y1)
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Figure 4.4 – In (a) the initial distributions of velocities v|| parallel to ~B is shown forNp = 1.6×105

tracers with the injection angles |δ1| = |δ2| = 0.1±0.08rad. Red indicates an injection energy
ofE = 30±1.5eV, blue the case ofE = 70±3.5eV. With velocities perpendicular to ~B of thus
typically ≈ 10% of v||, the resulting distributions of Larmor-radii are shown in (b). The lines
indicate the mean-values of the ditributions, as given together with their standard deviation
as uncertainty.

are calculated from the Cartesian (X,Y,Z) coordinates in the Boris-algorithm and binned at

1mm resolution. Only a negligible number of tracers ever propagates beyond the limits of the

projected interpolation region of the floating potential, and is declared lost. Figure 4.5 shows

the variance of the binned fast ion beam along x1, i.e. the cross-field directionR in our case.

For both the 30 eV case in (a) and the 70 eV case in (b), the results appear in good qualitative

agreement with those from GBS, as retrieved from Fig. 2.15 [103] and shown in a darker shade

here.

However, there is a difference in gyro-frequency between both sets of results, that is likely

related to slight differences in the prescribed magnetic fields and the field chosen to calculate

the average gyro-frequency Ω. Furthermore, if ions were to propagate into systematically

different radial positions they would experience a different average magnetic field strength

along their trajectories. Therefore, the agreement between both sets of results is not readily

quantified e.g. by the R2 or the χ2 between the curves (see App. A). Instead, we choose to

take the differences between the values of the closest local maxima into account, mostly since

the calculation of the shown transport exponents is based on these points. These differences

are then divided by their appropriate statistical errors, before taking the squared sum. The

requisite error estimates include both, the upper and lower bound on the GBS results, as

well as the ≈ 15% uncertainty on the current results, estimated e.g. by changing δ2. Since

we wish to later investigate the instantaneous beam during the latest shown propagation

times, corresponding to most tracers reaching D ≈ 171cm, the fit of the last maximum is

prioritized. In the 30 eV case, the shown result is a compromise between the best final and
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Figure 4.5 – Evolution of the variance of the horizontal displacement of the tracers as a function
of propagation time, averaged over all injected bunches forE = 30eV in (a) andE = 70eV in
(b). The graphs shown correspond to the best match with the previous results (darker shaded)
based on GBS, as specified in the text. The points used for extracting the displayed transport
exponents from the fitting the displayed slopes (bold), are shown in magenta, red and blue for
the super-, quasi- and subdiffusive transport regimes respectively.

overall agreements, and achieved for δ1 = δ2 =−0.1rad andEf ≈ 2.3. In the 70eV case, both

the best overall and final fit are found simultaneously for δ2 =+0.1rad =−δ1 andEf ≈ 1.6.

The difference between the values for Ef between both energies are likely related to the

different degrees of gyro- and drift averaging especially over structures of smaller scales. The

transport induced by these unresolved features is likely to play a role especially during early

τi, prompting stronger deviations between different trajectories even before the fast ions

propagate over the scale of larger structures. Lacking these small scale contributions, the

parameterEf is to compensate their role by enhancing the fields of the resolved structures by

a different degree for both ion energies. Since small scale structures are found to play a lesser

role in the 70 eV case, it is reasonable to assume that this leads to a lower appropriate value of

Ef . Later during transport, once the beams have spread across few cm, we however find an

over-estimate of the continued radial spreading.

Nonetheless, the principal non-diffusive transport regimes of the fast ions are well recovered

by fitting the slope of the maxima in Fig. 4.5. As before, the variance and propagation times

fitted (circles) in each transport phase were reduced by the values at the first maximum of

said phase (crosses), treated as the respective initial condition. The details for all such fits are

discussed in Ref. [136] and generalized more formally in Ch. 7. It is however important to

note that any specific values of fitted transport exponents should be treated as local averages

in propagation time. Should we choose, for instance, to include the second maximum into
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the fit in (b), the transport exponent would drop to ν ≈ 0.6. Including the first maximum into

the superdiffusive fit would increase the transport exponent to ν ≈ 1.5. While the principal

transport regimes thus remain through most of the indicated fits, their particular transport

exponents should be regarded rather as transient at most scales, in both the current and the

previous results from GBS [103, 136].

4.4 Average vs. single bunch profiles

To assess the behaviour of a fast ion beam, we now use normally distributed initial positions

in x1 and y1, with standard deviations of 1.2mm, centered at x1 = 0 and y1 =−10cm. While

this does change e.g. the evolution of σ2
R compared to Fig. 4.5, deviations approximately lie

within the indicated uncertainties and the principal transport regimes are mostly unaffected.

Figure 4.6 shows examples of the binned positions of the tracers of all injected bunches, at the

indicated propagation times. They correspond to the end of ballistic transport in (a,d), early

super- and subdiffusive transport in (b) and (e) respectively, and the time when most tracers

are crossing the detector plane atD ≈ 171cm in (c,f).

Neglecting at first the described toroidal time-of-flight dispersion of the tracers, these profiles

J(x1,y1,τi) can serve as an approximation of the time-average fast ion profiles µJ (R,Z) as

shown in Sec. 3.2. For comparison, they are therefore likewise normalized such that they show

the local density of a supposed Iav = 2.85µA of injected fast ion current. Furthermore, the

raw data is convolved with a circular box kernel with 8mm diameter to account for the finite

resolution of the GEA detector. Note the good qualitative agreement of the shape and densities

between Figs. 3.2,3.4(c) and Fig. 4.6(c,f) respectively, owing to the choice of initial conditions

andEf . Only the vertical position y1 was chosen ≈ 5cm higher in the tracer, further from the

boundary of the interpolation region of Vf .

To finally investigate how much smaller the instantaneous fast ion beam is compared to the

time-average, we firstly compare the size of single bunches j(x1,y1,τi) of injected tracers to

the presented average over all bunches J(x1,y1,τi). To ensure a significant sample size, the

number of injected particles was augmented toNp = 160,000 for every bunch, still injected

at time intervals of 50µs over a duration of 200ms. Due to the optimized handling of vector-

operations in MATLAB, this increases the run-time of the tracer algorithm only from ≈ 10h to

≈ 50h. The variances of the particle positions of every injected bunch σ2
j is calculated along

x1 and y1 at each τi and stored.

Figure 4.7(a,b) shows the σj(τ ) for both ion energies along both directions, averaged over all

bunches. The τ when most tracers arrive at the detector distanceD = 171cm are given in cyan

forE = 70eV and magenta forE = 30eV. The dashed lines show intervals in τ that correspond

to up to ≈ 15cm of spread among the tracers along D at these times. Conversely, most

tracers crossing the detector plane at any given instant should thus be contained within these

indicated intervals of propagation time τ . Certain fundamental differences in the behaviour

of j(x1,y1) become clear between both energies. Especially the horizontal width in (a) is still
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Figure 4.6 – Profiles J(x1,y1,τi) in mAm−2, based on binning all injected tracer bunches for
E = 30eV (a-c) and E = 70eV (d-f) at the given propagation times τ , as proxies for time-
averaged fast ion profiles in Ch. 3, pending deviations from time-of-flight dispersion of the
tracers.

dominated by the gyro-phase of the fast ions in the 70 eV case, whereas the bunches for the 30

eV case are often more strongly affected by the turbulent electric fields. The shape of j(x1,y1)

at a given τ can thus vary, depending on which gyro-phase it belongs to. Tracers that arrive

simultaneously at the given detector location can represent an average over many possible

gyro-phases, and thus yield yet different profiles (see Fig. 4.9). Near detection, the average

widths of the bunches are however similar between both energies however. Nonetheless, 70 eV

bunches spread more quickly in the vertical direction due to their overall higher magnetic drift

velocities (see Tab. 2.2). Therefore it is predominantly 30 eV ions for which we still find some

contribution with σj < 4mm, that can result in the most dominant observed peak current

densities. This is further explored in the context of skewness measurements in the following

section and Sec. 5.4.

In Fig. 4.7(c,d), we show the ratios between σj in the x1 and y1 directions and the respective

standard deviation of the J(x1,y1,τi), denoted σJ (τ ). The bands are again defined by the 1σ
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Figure 4.7 – The average width (standard deviation) σj of the single bunch profiles j(x1,y1) is
shown along x1 and y1 in (a) and (b) respectively. The results for the 30 eV case are shown in
red, the 70 eV case in blue. The bands indicate the 1σ width of the generally non-Gaussian
distributions of σj for each τ . In (c) and (d) the ratio of σj with the standard deviation σJ of
the average bunch profiles (see Fig. 4.6) is shown, again along x1 and y1 respectively. The
intervals of τ relevant to the detector plane atD = 171cm are shown in cyan and magenta as
described in the text.

interval of the distributions of σj(τ ). The single bunches j(x1,y1,τi) near detection appear

on average ≈×3 and ≈×1.7 smaller than their total average J(x1,y1,τi) in the 30 eV and the

70 eV case, respectively. This again points toward a more strongly meandering ion beam for

lower ion energies, which will be described by an analytical model in Sec. 5.3.

To better illustrate the shapes and locations of j(x1,y1,τi), the positions of the tracers at their

final τi are binned for 300 such bunches. Figures 4.8,4.9(a) allow direct comparisons with

the total averages forE = {30,70}eV, respectively, as shown in Fig. 4.6(c,f) for a few selected

examples. The binned j(x1,y1) are scaled to show densities for Iav = 2.85µA of total fast ion

current, and convolved with the kernel representing the GEA aperture. Note that the peak
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Figure 4.8 – Profiles of 7 examples of single bunches j(x1,y1) forE = 30eV, binned at a single
τi = 56µs in (a) or binned with the synthetic diagnostic at the correspondingD = 171cm in
(b), across all relevant τ . The gray contours show the average bunch profile from Fig. 4.6(c), at
its 10%, 50% and 90% contours.

observed values on the color-scales (jp) are in generally good agreement with the time-series

peaks in Ch. 3, pending differences in the total current.

Again, all bunch profiles are clearly consistent with the expected picture of a smaller, more

concentrated instantaneous fast ion beam that forms the time-average profiles at the detector

location through its meandering motion while generating the observed intermittent peaks in

the detected signal, as expected from Fig. 4.7. The shapes of individual profiles vary greatly,

from circular to streak-like, especially forE = 30eV. Nonetheless, many of the most peaked

examples approximate unimodal and only slightly elliptical shapes.

The profiles in Figs. 4.8,4.9(b) are computed using a synthetic diagnostic plane atD = 171cm.

The positions of the tracers are not binned at one given τi, but as they each cross this toroidal

position, before being convolved with the GEA aperture kernel. If each j(x1,y1,τi) remained

constant as its tracers cross the detector plane, there would be no discernible difference to

the profiles in (a). However, in the 30 eV case, the synthetic diagnostic profiles appear on

average less peaked and more spread out, as the bunch is continuously being deflected and

sometimes deformed in response to the turbulent electric fields. This effect is expected to be

weaker in the 70 eV case, due to slower and more localized responses to the turbulent fields as

found in Sec. 3.3. Conversely, we indeed find the synthetic diagnostic profiles in (b) to be on

average more peaked than their counterparts in (a). This is likely due to the gyro-phase effects

as seen in Fig. 4.7(a,b), that dominate the widths of these profiles. Focusing on the stronger

horizontal variations in (a), one would expect the average width over the interval τ relevant

to the synthetic diagnostic (marked in cyan) to be only ≈ 70% of the width at the central τi
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Figure 4.9 – Profiles of 4 examples of single bunches j(x1,y1) forE = 70eV, binned at a single
τi = 36.6µs in (a) or binned with the synthetic diagnostic at the correspondingD = 171cm in
(b). The gray contours show the average bunch profile from Fig. 4.6(f), at its 10%, 50% and
90% contours.

used for binning the profiles in Fig. 4.9(a). Reciprocally, the ≈ 40% increase in the observed

densities in (b) concurs with these expectations.

Figure 4.10 – Histograms of the peak detected values jp of the profiles j(x1,y1), forE = 30eV
andE = 70eV in (a) and (b), respectively. Results for the profiles binned at a single τi in Fig.
4.8,4.9(a) are shown in the darker red and blue respectively, while those for binning with the
synthetic diagnostic are shown in magenta and cyan.

To succinctly assess the statistical differences between the profiles binned at a single τi and

those binned with the synthetic diagnostic at D = 171cm, Fig. 4.10 shows the histograms

of the peak values of j(x1,y1), designated jp, for all 300 recorded profiles in the 30 eV case
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and the 70 eV case in (a) and (b), respectively. They clearly reflect the different behaviors

between the two energies as described above, while the given range of values in the 30 eV case

fit the approximate magnitudes of the peaks observed in Fig. 3.1(a,c), pending differences in

total fast ion current. The values in the 70 eV case appear at least ≈ 30% too low even then,

possibly due to a reduced effective detector area for the larger Larmor radii of these ions, or

a systematic numerical over-estimate of their spreading. Indeed, a truly continuous tracer

injection would probably impart more tracers in a gyro-phase with a more concentrated beam

into the profiles in Fig. 4.9(b), raising the average detected jp.

4.5 Synthetic time-series

Figure 4.11 – Examples of synthetic fast ion time series, obtained as described in the text. In (a),
we show the time series with the highest time-average, and in (b) the highest skewness, after
including the noise contribution. The respective maxima of µJ = 0.79mAm−2 and γS = 8.9
can be read in Fig. 4.12, where their positions are indicated by green crosses.

This leads us to the key point of generating synthetic time-series to analyze their statistics in

comparison to those found in the preceding chapter. In any case, their treatment demands

significant computational time, as one needs to inject tracer bunches at the very least every

4µs, given by the original time-resolution of the acquisition systems of HEXTIP and other

LPs. Currently, this requires ≈ 48h of run-time for every 16ms of synthetic time-series. In the

simplest case, we treat each bunch of tracers as arriving simultaneously at the diagnostic at

one given τi, similarly to the profiles j(x1,y1) shown in Fig. 4.8,4.9(a). However, we do not bin

their locations in this case, but calculate their distance from a given set of detector locations,

simply due to memory constraints. For each tracer within d
2 = 4mm of such a location, the

corresponding value of the time-series at this instant is augmented by one. The time-series are

in the end re-scaled to the given total current Iav = 2.85µA corresponding to the full number

of tracers Np = 1.6×105. Examples generated with E = 30eV are shown in Fig. 4.11. The

synthetic mean-profile generated from such a set-up for is shown in Fig. 4.12(a), similar to

the profile in Fig. 4.6(c). However, an injection position at y1 =−14.5cm was chosen here, in

concordance with the experimental set-up. Similarly, the average injection angle was set to

δ2 = 0 along the horizontal and δ1 =+0.1rad along the vertical. The electric field scaling factor
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Ef = 2.4 yielded a slightly wider profile, but with overall similar statistics compared to the

above, as partly published in [109].

Figure 4.12 – In (a), the mean-profile interpolated from the time-average of 46ms long syn-
thetic time-series is shown. The 116 detector locations and the relevant aperture size are
shown by the gray circles. In (b) the values of their skewness γS are interpolated, with average
noise contributions added as specified in the text. Both profiles would likely become smoother
for longer durations of the time-series, but already feature a distinct resemblance to their
experimental counterparts in Fig. 3.2(c,f), pending increased noise towards the HFS. The
green crosses indicate the positions where the time-series shown in Fig. 4.11 were generated.

To generate the on-phase skewness (γS ) profile in Fig. 4.12(b), from the skewness of the time-

series (γJ ), the noise contribution is added according to Eq. 3.4. We choose σN = 1mAm−2

and γN = 1.3 as typical values near the injection position along x1. While the specific values for

γS vary for different choices, we find good qualitative agreement with expectations from Sec.

3.2 and previous work, as the highest values of γS lie around the maximum of the synthetic

mean-profile in (a). Furthermore, the maximum γS ≈ 8.9 is similar to the maximum found

in Figs. 3.2(f) and 3.5 of γS ≈ 7.9, especially given the potential uncertainties of the injected

current. However, especially since the noise contribution should diminish towards the LFS,

the skewness maxima there are likely over-estimating the experimental results. Given the

higher accessible values of jp for this kind of profile as shown red in Fig. 4.10(a), compared to

the time-series e.g. in Fig. 3.1(a,c), this is not entirely unexpected. However, the application of

a planar synthetic diagnostic, resulting in a range of jp shown in magenta may not necessarily

yield better results in all cases. Since the integration time and time-resolution of the GEA is

typically smaller than the up to ≈ 10µs passage time of the bunch through the diagnostic plane,

the observed spreading of the obtained profiles j(x1,y1) and the diminished values of jp in Fig.
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4.10(a) are at least partially artificial. Furthermore, the application of this synthetic diagnostic

for every bunch would increase the run-time of the tracer even further. However, especially in

the 70 eV case, its necessity becomes evident as any jp-distributions and thus the time-series

skewness obtained as shown here would strongly depend on the specific gyro-phase of the

tracer bunches at the final τi.

If we wish to appropriately account for the residual effects due to the simplified tracer de-

tection conditions, one would be required to generate the synthetic time-series while inject-

ing bunches at much shorter intervals than the given GEA time-resolution, ideally quasi-

continuously at intervals near the integration time-step ∆τ = 0.1µs. Furthermore, the syn-

thetic diagnostic would have to keep track of the absolute time-base at every τi for every

bunch, so that multiple bunches contribute to the number of detected tracers at a given step

in the time-series. Clearly, this would require a strong increase in computational resources,

although e.g. the time needed for interpolations of the floating potential would be limited due

to overlap between bunches, and the treatment of different time-series intervals can be run in

parallel. For a better idea of scale, it should be pointed out that while keepingNp = 1.6×105 for

good 2D resolution, with bunches injected at intervals of 0.1µs, we would effectively integrate

one tracer trajectory for approximately every 4 actual 6Li ions in TORPEX, assuming a total

current of 1µA.

With such substantial efforts required, one needs to weigh them against the potential improve-

ments in the quality of the generated data. Especially given the assumptions, approximations

and interpolations needed for obtaining the turbulent electric fields for the tracer, a better

agreement with experiments than obtained here would seem in any case ostensibly difficult

to justify quantitatively.

4.6 Conclusions and outlook

In this chapter, we have described the application of a full-orbit Monte-Carlo fast ion tracer,

based on the Boris-algorithm. The strongest uncertainties in the statistics of the integrated

fast ion trajectories are probably due to the interpolations employed to approximate the

time-resolved turbulent electric fields from floating-potential measurements with HEXTIP.

After scaling the fields and adopting similar initial conditions, good agreement between the

non-diffusive spreading of the time-average fast ion beam, as an average over all bunches,

was found in comparison to GBS and thus also to experimental measurements in current

and previous studies [103, 136]. We then bin single bunches of tracers in the poloidal plane

either at given propagation times or at a fixed detector distance. This clearly establishes

the physical picture of an instantaneous fast ion beam, that generates larger time-average

profiles through its meandering motion across the poloidal plane, which also leading to

intermittent time-series. Certain key parameters of the meandering instantaneous beam have

been estimated, such as its potential shapes, its width σj compared to that of the total average

σJ , and the distributions of detected current density peaks jp. They will all be relevant for the
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application of an analytical model of the time-series skewness in the following chapter. It now

also appears more clear, how the total and conditional averaged profiles in preceding sections

are constructed, and we have the capacity to better formulate expectations for the envisaged

use of multiple simultaneous detectors, as outlined in Sec. 2.4.3. The generated synthetic

time-series yield similar for the mean- and skewness profiles compared to experiments in Sec.

3.2. Therefore, the presented tracer appears to be a qualitatively, and to a limited degree also

quantitatively, useful tool for the statistical characterization of fast ion motion in the turbulent

plasmas of TORPEX.

Instead of pursuing ever better time-resolutions and quantitative predictions, it seems more

worthwhile to focus on some of the intrinsic advantages of this tracer for upcoming studies.

For instance, it is straightforward to inject tracers only at time-indices retrieved by condi-

tionally sampling any HEXTIP signal, or even the GEA. Using the floating potential data for

these specific times, one can directly construct conditionally averaged synthetic profiles for

comparison with experiments. Furthermore, one could directly observe how far the distribu-

tions of the bunches during these times deviate from the distributions observed without any

condition.

Furthermore, changing the ion-species or the magnetic geometry inside TORPEX is a basic

feature of this tracer, pending the availability of HEXTIP data. Initial tests for the characteri-

zation of the propagation of Li+ ions in the vicinity of an X-point or of Ca+ ions in the SMT

have already begun. Of course, as detailed in the preceding sections, the parameters of the

tracer, and especially the electric field scaling, will have to be adapted e.g. by comparisons of

time-average measurements in experiments.

If more quantitatively accurate statistical simulations are required in a well-specified case, it

would appear instructive to return to GBS, especially if small-scale structures are expected

to play a distinctive role in the spreading of the fast ions. With single [168] and even double-

null [180] configurations now available, the extensive benchmarking of GBS results against

upcoming experiments on TORPEX will likely prove the most reliable basis for estimating local

transport exponents, although an estimate on some general transport regimes could possibly

be obtained from the tracer as shown here. The generation of synthetic time-series based on

GBS results should be possible in the same way as outlined above, but would likely also face

intrinsic challenges in terms of computational effort.
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Based on the findings in the preceding chapters, we now introduce an analytical model for

the prediction of intermittency in the local time-series generated by a meandering particle

beam. This formalism originally presented in Ref. [109], allows to predict the skewness of

such a time-series based on its time-average (mean) value. Only up to two basic parameters

of the system need to be known, and are treated as free fit parameters here to illustrate the

consistency between the predicted and measured skewness γS during the GEA on-phases for

the profiles taken atE = {30,70}eV. Good agreement is found across all present non-diffusive

transport regimes. Fluctuations in the injected fast ion current are confirmed as the most

likely dominant source of remaining uncertainties. In the last section, we consider a simplified

model of a highly concentrated meandering beam, resulting in time-series with only two

values, alternating as the beam enters and leaves the detector area. Comparing the simplified

form of the skewness γS,B in such a case with measurements of γS shows better agreement in

the 30 eV case due to the on average smaller instantaneous beam profiles there (see Ch. 4).

In our specific case, this can thus be seen as an indirect relative indicator for a time-series to

belong to the super- to quasi-diffusive set of measurements. Most of the concepts and results

of this chapter have been similarly published in Refs. [110] and [111].

5.1 The meandering fast ion beam

The basic elements of the analytical model describing the meandering beam profile are

illustrated in Fig. 5.1. Since we wish to treat the observed distributions of particles across

the poloidal plane at one given toroidal location based on the measurements in Ch. 3, we

return to the coordinates R = (R,Z) for convenience. At a given detector location R0, the local

time-average current density J (R0) is given by the convolution of the current density profile at

a given instant j(R) with a PDF f (R), which describes probability of finding j(R) centred at any

given position at any time. In this sense, f (R−R0) acts as the propagator of j(R) towards R0

and is referred to as the ‘displacement PDF’ reflecting the statistics of the meandering motion
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Figure 5.1 – Illustration of the key quantities and parameters used in the analytical model of
the meandering fast ion beam, as described in the text.

of the fast ion beam. Through the symmetry of convolutions [182], we can likewise write

J(R0) =
∫
j(R−R0)f (R)dRdZ . (5.1)

For simplicity, all distributions are assumed to be well-bounded and feature constant, and

rotationally symmetric, unimodal shapes. Compared to Ref. [109], we have furthermore made

the implicit assumption that the response function of the GEA detector at R0 is uniform across

its aperture, by defining J (R) and j(R) as the corresponding current densities, consistent with

the preceding chapters. Based on certain basic parameters of these distributions, like their

standard deviations σJ and σj or the peak value of the instantaneous profile jp, we aim to

describe the skewness of time-series measurements at any given measurement location. This

is accomplished by finding expressions for the requisite moments of these measurements,

that at an order q are defined by generalizing Eq. 5.1 to

Jq(R0) =
∫
j(R−R0)q f (R)dRdZ , (5.2)

where we identify J1(R) = J(R) =µJ (R) as seen in Ch. 3. Specifically, we require the second

and third order central moments JC,2 and JC,3 given in general by [182]

JC,2 = J2 −J2 , JC,3 = J3 −3JJ2 +2J3 , (5.3)

to express the fast ion signal skewness γJ as defined by [182]

γJ = JC,3

J3/2
C,2

= J3 −3JJ2 +2J3(
J2 −J2

)3/2
. (5.4)
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For practicality, we obtain an expression for the on-phase skewness γS again by adding the

contribution of the local noise as measured during off-phases of the ion source, according to

Eq. 3.4

γS = J3 −3JJ2 +2J3 +σ3
NγN(

J2 −J2 +σ2
N

)3/2
. (5.5)

Thus, the prediction of the intermittency of the observed time-series as quantified in Ch. 3 is

contingent on finding useful expressions for Jq.

5.2 Intermittency in subdiffusion

As the simplest scenario, we can attempt to approximate the distributions of j(R), f (R) and

thus by extension J(R) as Gaussians with zero mean i.e.

j(R) = I

2πσ2
j

e
− (R2+Z2)

2σ2
j = jp e

− (R2+Z2)
2σ2
j (5.6)

f (R) = 1

2πσ2
f

e
− (R2+Z2)

2σ2
f (5.7)

⇒ J(R) = I

2πσ2
J

e
− (R2+Z2)

2σ2
J , (5.8)

where I again represents the total fast ion current and we have σ2
J =σ2

j +σ2
f by definition. In

this case, the integral in Eq. 5.2 can be solved analytically to yield

Jq(R) = q−1sqρ
(2−2sq)j

(q−sq)
p J(R)sq (5.9)

with sq = [
1−ρ2 (

1−q−1)]−1
,

where we have defined the width ratio of the instantaneous to the time-average profile ρ= σj
σJ

<
1. With this parameter as well as jp = I

2πσ2
j

we can therefore write the moments of any locally

observed time-series in terms of the local value of the time-average profile J(R) =µJ (R) and

thus predict its skewness using Eq. 5.5. While we could take estimates for both parameters e.g.

from the results of Ch. 4, we firstly assess whether this method can at all yield a consistent result

for the prediction of the skewness purely within a given set of experimental data. Therefore,

we treat both ρ and jp as free parameters in a least-χ2-fit (see App. A) of the predicted γS
against its experimentally measured values.

The expected errors ε of the predicted skewness are calculated similarly to those for the peak

measured on-phase skewness shown in Fig. 3.5, i.e. by assuming up to 15% uncertainty in the

injected fast ion current and applying Eq. 3.9 to find the resulting difference in γS .To avoid

over-weighing data-points with low values of γS and J(R), a minimum bound for this error

was enforced based on intrinsic statistical variations of the measured skewness quantified

through bootstrapping, analogous to the discussed method for Ch.7 in App. A.
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Figure 5.2 – Predicted vs. measured on-phase skewness γS for 70 eV ions at D =
{126,146,171}cm (a-c) as shown in the profiles in Fig. 3.4(d-f). The predictions are based on a
minimum-χ2-fit of the analytical model assuming Gaussian distributions.

The results of this fit for the subdiffusive regime are shown in Fig. 5.2 and there appears

generally strong agreement between predictions and measurements with minimal reduced χ2

(see App. A) of χ2
r = {5.4,1.1,0.9} for (a-c). It appears remarkable that it is indeed the strongest

outliers from the fit, especially in (a), that feature the largest potential errors. Furthermore,

these errors place the bounds of these values often very close to the diagonal. This indicates

that the fluctuations of the injected current that these error-estimates are based upon are

indeed a consistent qualitative and quantitative explanation for the dominant deviations of

some predictions.

The peak current density for the best fits with jp = {37.4,26.1,19.0}mAm−2. When scaling

these towards Iav = 2.85µA from the given total currents of I = {5.0,3.0,2.4}µA we find jp =
{21.2,25.0,22.9}mAm−2. These values appear similar to the highest time-series peaks e.g. in

Fig. 3.1(b,d), which belong to the data-set in (c), but still include noise. The histograms from

the tracing algorithm in Fig. 4.10 also correspond to the case in (c), but indicate systematically

lower values. This can be due to a combination of effects such as a different width of the

instantaneous profile σj , possibly due to gyro-motion effects, or an over-estimate of the

effective detector area. Yet, the fitted width-ratio parameters ρ = {0.67,0.68,0.65} appear

realistic e.g. compared to the range of numerical estimates in Fig. 4.7, which do not include

aperture effects. Choosing an effective detector diameter of d = 4−6mm instead of 8mm

brings the tails of jp-histograms up to jp ≈ 20mAm−2, suggesting a significant, albeit not

exclusive, contribution to the observed differences. Comparing to Fig. 4.9(b) for instance, one

can also see that the instantaneous fast ion beam j(R) can often deviate from the assumed

Gaussian shape. Nonetheless, results with similarly good agreement were firstly presented in

Ref. [110], where a least-R2-fit was performed simultaneously on the predicted expressions

for JC,2 and JC,3. While the importance of injection current fluctuations for outliers in the fits

was stipulated, it was not demonstrated as consistently as through the above error analysis.

For comparison, Fig. 5.3 shows the predictions of JC,2 and JC,3 (blue) compared to the
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Figure 5.3 – The second and third central moment JC,2 and JC,3 of the fast ion signal shown
for the subdiffusiveE = 70eV case for the profiles atD = {126,146,171}cm from top to bottom.
The black dots represent experimental values and the blue lines predictions based on the
results from Fig. 5.2. The calculation of both, including their indicated errors and the 95%
confidence bands, are detailed in the text.

values computed from measurements (dots), as done in Eq. 3.6 and the numerator of Eq. 3.7

respectively. The results shown here are not fitted, but computed directly using the parameters

from the fits of the on-phase skewness. The bands identify predictions based on the 95%

confidence region of the fit parameters as detailed in App. A. The error-bars on the data are

based on the impact of an estimated 10% variation in the injected fast ion current. Since the

noise contributions have been removed from the experimental data, this leads directly to

relative errors of up to 21% and 33% respectively. Since a current fluctuation would affect both
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moments proportionately, the errors in γS are smaller and the errors in γJ should fully cancel

by definition. This is another reason for which the fitting of the skewness was preferred given

the present method of error-estimation.

Although the experimental obtained profiles in Fig. 3.4 as well as numerically generated

instantaneous profiles in Fig. 4.9(b) clearly show non-Gaussian features, it is thus shown that

the assumptions made here still produce fairly accurate predictions of time-intermittency in

the subdiffusive transport regime.

5.3 Intermittency in super- to quasi-diffusion

For the larger super- to quasi-diffusive profiles obtained withE = 30eV, fits of similar quality

can be obtained using the Gaussian model, but the fitted parameters ρ over-estimate the

expected range of values from Fig. 4.7 by a factor of ≈ ×2. The time-average profiles (see Fig.

3.2) show even more strongly non-Gaussian features and the highest values of skewness are

obtained in their heavy tail regions, so that the assumptions of purely Gaussian distributions

in the model can clearly no longer be valid. Therefore, a different approach for finding the

moments Jq is needed. We now perform a 2nd order Taylor expansion in R and Z of the

displacement PDF f (R) in Eq. 5.2 about R0, i.e. letting

Jq(R0) =
Ï

j(R−R0)qf (R)dRdZ

≈
Ï

j(R−R0)q
[
f (R0)+ (R−R0)∂Rf

∣∣
R0

+ (Z−Z0)∂Zf
∣∣

R0

+1

2
(R−R0)2∂2

Rf
∣∣

R0
+ 1

2
(Z−Z0)2∂2

Zf
∣∣

R0

+(R−R0)(Z−Z0)∂Z∂Rf
∣∣

R0

]
dRdZ . (5.10)

All odd orders can be dropped for any symmetric (even) form of j(R). Specifically, we will

continue to approximate j(R) as a symmetric Gaussian as in Eq. 5.6. This straightforwardly

results in the properties

Ï
j(R)q dRdZ =

Ï
jqp exp

[
−q(R2 +Z2)

2σ2
j

]
dRdZ = jq−1

p I

q
, (5.11)

Ï
R2j(R)q dRdZ =

Ï
Z2j(R)q dRdZ =

jq−1
p Iσ2

j

q
, (5.12)Ï

RZj(R)q dRdZ = 0 , (5.13)

which simplify Eq. 5.10 up to 4th order corrections to

Jq(R0) ≈ jq−1
p I

q

[
f (R0)+

σ2
j

2
(∂2
R+∂2

Z )f
∣∣

R0

]
(5.14)
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From the case q = 1 we find f (R0) ≈ I−1J(R0). Therefore, we lastly assume that f (R) changes

likewise on a typical scale similar to σJ , i.e. we approximate∣∣∣∂2
Rf (R)

∣∣
R0

∣∣∣∼ ∣∣∣∂2
Zf (R)

∣∣
R0

∣∣∣∼σ−2
J f (R0) . (5.15)

Dropping the subscript, this finally yields

Jq(R) ≈ jq−1
p

q
J(R)

[
1+O

(
σ2
j

2σ2
J

)]
= jq−1

p

q
J(R)

[
1+O

(
ρ2

2

)]
≈ jq−1

p

q
J(R) . (5.16)

Imposing ρ2 ¿ 1 in the last step seems well-justified from the numerical results concerning

j(R) in Fig. 4.7 and Fig. 4.8, as well as the observed peaks in the time-series e.g. in Fig. 3.1(a,c).

From Eq. 5.3 we find for the second and third central moments

JC,2 = 1

2
jpJ(R)−J(R)2 , (5.17)

JC,3 = 1

3
j2
pJ(R)− 3

2
jpJ(R)2 +2J(R)3 . (5.18)

We can likewise predict the on-phase skewness again using Eq. 5.5 based on J(R), while

treating jp as free fitting parameter. The results of the minimum-χ2-fits are shown in Fig. 5.4.

Figure 5.4 – Predicted vs. measured on-phase skewness γS for 30 eV ions at D =
{126,146,171}cm (a-c) as shown in the profiles in Fig. 3.2(d-f). The predictions are based on a
minimum-χ2-fit of the analytical model using a Taylor expansion of f (R) about R0 as shown
in Eq. 5.10 to express Jq.

With minimal reduced χ2 of χ2
r = {2.5,2.8,4.3} for (a-c), the predictions are again in good

overall agreement with measurements. The requisite errors have been calculated as de-

scribed in the previous section. The peak current density inferred from the best fits is

jp = {9.7,8.5,15.3}mAm−2. Pending noise, the latter value appears similar to the time-series

peaks in Fig. 3.1(a,c). When scaling again towards Iav = 2.85µA with the total currents of

I = {2.35,2.4,3.3}µA one finds jp = {11.7,10.1,13.0}mAm−2. This is in strong agreement with

the central values of the jp-histogram in Fig. 4.10(a), drawn from the synthetic diagnostic
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(magenta).

The comparison between the JC,2 and JC,3 calculated from measurements with those pre-

dicted from the above fit is shown in Fig. 5.5. The calculations of the experimental values

and errors are carried out as in the preceding section, while the predictions and their 95%

confidence bounds are now drawn from the confidence region of the single fitted parameter

jp (see App. A).

Figure 5.5 – The second and third central moment JC,2 and JC,3 of the fast ion signal shown
for the super- to quasi-diffusiveE = 30eV case for the profiles atD = {126,146,171}cm from
top to bottom. The black dots show again experimental values, while the red lines are based
on the results from Fig. 5.4.

Overall, we still find reasonable, but less strong agreement between predictions and measure-

ments compared to the preceding section. Again, the error-bars in Fig. 5.4 indicate rather
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consistently that the suspected variations in the injected fast ion current are a major contrib-

utor to the observed deviations. In practice, especially the higher injected currents proved

more difficult to maintain consistently, so that the larger deviations in Fig. 5.4(c) are not

surprising. Moreover, the shapes of the numerically generated instantaneous profiles j(R) in

Fig. 4.8(b) clearly deviate from the assumed Gaussian shapes in many cases. The given degree

of agreement between predictions and measurements is achieved most likely only because

higher detected values of jp dominate JC,3 and the calculated values of skewness, and these

values tend to belong to relatively concentrated and at least approximately Gaussian shaped

j(R). The impact e.g. of inclined and elliptical Gaussians and non-constant beam shapes have

been discussed for the 1D case in Ref. [109], and the applied model is expected to similarly

hold under these modifications.

5.4 Comparison to two-valued time-series

We now consider the limit of ρ¿ 1, which is even more stringent than ρ2 ¿ 1 in the preceding

section. If we furthermore assume a finite detector size with a diameter dÀσj eventually in

this limit, we reach a point where at most instances, j(R) is either fully detected or not at all.

This results in observed time-series becoming binary in this sense, i.e. ultimately with the two

possible values jp = 4I
πd2 and zero respectively. The mean µJ of such a two-values time-series

withM entries and containingN peaks is given by µJ = Njp
M , and its skewness is hence found

as

γJ ,B =
1
M

∑M
i=1 (ji−µJ )3[ 1

M

∑M
i=1 (ji−µJ )2

] 3
2

=
N
M (jp−µJ )3[
N
M (jp−µJ )2

] 3
2

=
√
M

N
=

√
jp

µJ
. (5.19)

Including contributions from noise, we find for the on-phase skewness

γS,B =
µJ j

2
p(1− µJ

jp
)3 +σ3

NγN[
µJ jp(1− µJ

jp
)2 +σ2

N

] 3
2

. (5.20)

In our experiments, the diameter of the detector d= 8mm is similar to the sizes of the typical

fast ion Larmor-radii. A simultaneous detection of the full instantaneous fast ion beam is

therefore unlikely, as can be seen from the lower jp < 4I
πd2 = 57mAm−2 (for I = Iav = 2.85µA)

usually seen in both the time-series and numerical results, especially in the subdiffusive case.

However, if we wish to gain insight into the parameters of j(R) based on single time-series, it

is still worth comparing γS against γS,B. Smaller discrepancies would indicate that the time-

series is better approximated by the two-valued model, as a larger fraction of j(R) is detected

at many instances, indicating an on average smaller instantaneous beam-profile. Based on

the different Larmor radii (see 2.2, Fig. 4.4), the numerical results in Fig. 4.7 and the fits in
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the preceding sections, on would suspect this to be the case for the super- to quasi-diffusive

regime here. In Fig. 5.6, we show the relative error ε= γS,B−γS
γS,B

computed on the time-series

from the treated profiles withE = {30,70}eV andD = {126,146,171}cm, as a function of µJ
and γS .

Figure 5.6 – Relative error ε between the on-phase skewness of a two-valued time-series (Eq.
5.20) and the experimentally measured values, as a function of γS and µJ . Most time-series
treated in the preceding 2 sections have been included. Circles correspond to theE = 30eV
set, crosses toE = 70eV.

To only rely on local observations, jp was not taken from the previous sections, but calculated

as the average of the 10th upper percentile of the measured values for each time-series. We

find that for most time-series withE = 70eV, a distinctly higher value of ε is attained near a

given γS and µJ than for those with E = 30eV. Similar, albeit less distinct, results between

both ion energies were obtained for other chosen percentiles down to 0.5%. In the far edges of

the time-average fast ion beam, the full peak of j(R) is detected too rarely (if at all), so that it

is not feasible to define jp through any given upper percentile. Thus, a few such cases with

µJ < 0.1mAm−2 and γS < 0.05 have been excluded.

This concurs with the expectation that j(R) is on average more concentrated in the super- to

quasi-diffusive case, particularly when considering the highest observed values for jp, that

impact the value of the skewnesses most strongly. Therefore, combined with the local mea-
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surements of γS and µJ as shown in Fig. 5.6, we have a relative indication of whether a given

time-series belongs to the subdiffusive or the super- to quasi-diffusive set of measurements,

which does not require results or parameter estimates from simulations or fitting. The absolute

values of ε of course still vary depending on the specific local definition of jp, as well as the

actual effective detector diameter. Furthermore, due to the stronger variations in σj , this

observation can become less consistent at early propagation times, especially for higherE.

5.5 Conclusions

In this chapter we have leveraged the insights into the qualitative dynamics of the meandering

fast ion beam from Ch. 4, to motivate and introduce an analytical model [109] that can

predict the moments of time-series generated in such a system, based on their time-average

values. Using concise analytical expressions for the prediction of the skewness of fast ion

time-series, we find good agreement with measurements in both the subdiffusive as well

as the super- to quasi-diffusive regimes. To arrive at these concise expressions, different

assumptions had to be made between both cases, based on the differences in the dynamics

of the meandering fast ion beam. The high consistency in the presented results illustrates

conclusively how local time-intermittency can be generated across all non-diffusive transport

regimes in our system, as shown in [110, 111]. Since no intrinsic assumptions are made on

the physics underlying the meandering beam motion, this statistical model can potentially be

applied to any conceptually similar systems. For the treatment of non-Gaussian beams, the

assumption of a distinctly smaller instantaneous beam compared to its time-average profile is

however essential. While not requiring a point-like source specifically, a relatively small source

region is therefore needed in our settings. In general, if a larger, but still distinctly meandering

particle beam was present, one could additionally adopt certain methods to infer certain

features of the instantaneous beam profile shape [109]. The impact of different types of more

dominantly mode-like or blob-like plasma structures on the presented results could also be

investigated e.g. by using injection positions towards the HFS or LFS respectively or changing

the position of the EC resonance layer. In closing, we considered how skewness is generated by

a consistently point-like meandering beam, that produces two-valued time-series. Comparing

this skewness measure to the actual skewness of a time-series can yield a relative indication on

whether a time-series belongs to the subdiffusive or super- to quasi-diffusive data-set. While a

specific transport regime cannot be inferred solely based on the present level of intermittency

(skewness), this illustrates how one can leverage additional information or assumptions on

the system to gain insights into different global behaviours of the fast ions based on local

measurements.
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6 Statistical modeling of non-diffusive
transport

Having described the generation of local time-intermittency across all observed non-diffusive

transport regimes through experimental, numerical and analytical studies, the following

chapters present the second central subject of this thesis. The model of Truncated Asymmetric

Fractional Lévy Motion (TAFLM) is derived through path-integral methods adapted from

[183] for the first time to our knowledge [112], as a general statistical model for bounded

non-diffusive transport. Subsequently, it is applied to cross-field transport of fast ions in SMT

plasma turbulence. To provide a more detailed and generally accessible discussion of the

subject, this chapter firstly reviews different random-walk based approaches to the description

of diffusion. We then motivate the introduction of Lévy statistics for their generalizations to

non-diffusive transport, as described by Fractional Diffusion Equations (FDEs), while focusing

on relevant previous work [108]. Finally, tempered stable distributions are introduced in the

context of Ref. [120], to discuss how they help address physically problematic properties of

FDEs, such as certain diverging moments in the associated Green’s functions. With these key

properties in mind, we then construct the TAFLM model by building directly on the methods

presented in Refs. [120] and [183] and previous work in Ref. [108, 136]. Most of the content

related to the derivation in Sec. 6.4 and some of the analysis in Ch. 7 have been successfully

published by the author in Ref. [112].

6.1 Review of diffusion models

The first comprehensive phenomenological and mathematical description of diffusion is often

credited to Fick in 1855 [184]. Based on his experiments with salt solutions, he surmised that

the local flux of a solute J(x) at a given point x be driven opposite the local gradient of the

concentration n(x). Fick’s 1st Law thus reads

J(x) = −Ddxn(x) , (6.1)

whereD denotes a proportionality constant. Immediately, he drew the analogy to Fourier’s

treatment of heat transport [185] and identified the same resulting equation for the evolution
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of n(x)

∂tn(x,t) = −D∂2
xn(x,t) , (6.2)

commonly known as the ‘Diffusion Equation’ (DE) in one dimension or ‘Fick’s 2nd Law’,

identifyingD as the diffusion coefficient. Formally, the 2nd Law can be derived by substituting

his 1st Law into the continuity equation

∂tn(x,t) = ∂xJ(x,t) , (6.3)

while assuming D to be independent of position. Fick’s treatment thereby relies on the

fundamental assumptions that the local transport of n(x,t) is entirely determined by effects

that can be described as both, local in space at x, and local in time at t (‘markovian’).

6.1.1 Einstein’s random walk model

Although Fick made extensive use of the concepts of atoms and molecules, that were ‘at

least tolerated by most physicists as a useful tool’ [184], he mostly argued about supposed

differences in the forces of attraction and repulsion between different particle species and

the implications on their average motion towards an equilibrium. It was only in 1905/06 that

Einstein [186] consistently formulated the microscopic picture of Brownian particle motion in

terms of a random walk (see e.g. Fig. 6.1) and thus re-derived the diffusion equation and its

coefficient in terms of microscopic quantities [116].

In one dimension x, it is assumed that starting at t= 0 a particle undertakes random steps ∆x

at given time intervals ∆t. The step-sizes are distributed independently and symmetrically

according to a PDFP (∆x) =P (−∆x), whereas the time-steps∆t are constant. For the evolution

of a given distribution of walkers n(x,t), we can thus write

n(x,t+∆t) =
∫ ∞

−∞
n(x+∆x,t)P (∆x)d∆x≡ 〈n(x+∆x,t)〉 , (6.4)

where 〈.〉 thus denotes the average over the distribution P (∆x). One can perform a Taylor

expansion of n(x,t) in space by assuming ∆x as a small expansion parameter for a peaked

distribution P (∆x). For an expansion in time, it is assumed that the induced variations are

thus also appropriately small over the expansion parameter ∆t. These expansions thus yield

n(x,t)+∆t∂tn(x,t) ≈ 〈n(x,t)〉+〈∆x〉∂xn(x,t)+ 1

2
〈∆x2〉∂2

xn(x,t) (6.5)

∆t∂tn(x,t) ≈ 1

2
〈∆x2〉∂2

xn(x,t) . (6.6)

To clarify, we have thus implicitly assumed and that P (∆x) is peaked and bounded such that it

features finite (and decreasing) moments at all even orders. Odd orders in the expansion are

neglected due to the symmetry of P (∆x). The 0th order terms cancel as 〈1〉 = 1. In the limit of

sufficiently small expansion parameters compared to sufficiently large scales of x and t, the
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so-called ‘fluid-limit’ [117] in the following, we therefore retrieve the diffusion equation

∂tn(x,t) = 〈∆x2〉
2∆t︸ ︷︷ ︸
D

∂2
xn(x,t) . (6.7)

These assumptions are then effectively equivalent to those of space- and time-locality in Fick’s

description. However, the diffusion coefficient is now given by the variance of the step-sizes

∆x and the waiting-time ∆t between steps. Note that supposing exponentially distributed

∆t and thus averaging the LHS of Eq. 6.5 represents an equivalent ansatz to the above for

tÀ∆t. The solution n(x,t) of this equation for a Dirac-δ initial condition n(x,0) = δ(x), i.e. its

propagator, or Green’s functionG(x,t), is given as the well-known Gaussian distribution

G(x,t) = 1p
4πDt

exp

(−x2

4Dt

)
(6.8)

and can be obtained straightforwardly e.g. by using a Fourier transforms.

6.1.2 Langevin’s approach

Only a few years after Einstein and independently Smoluchowski [187] published their works

on Brownian motion, Langevin formulated a different approach [188, 189]. The acceleration

of a particle is expressed as the sum over a constant damping term with coefficient γ and a

random contribution ξ(t), e.g. by collisions,

d2
tx=−γdtx+ξ(t) . (6.9)

This equation of motion, the Langevin Equation (LE), is thus termed a stochastic differential

equation, as ξ(t) formally represents a stochastic process, that can take a variety of realizations.

In the simplest case, ξ(t) is assumed to be a markovian process, i.e. with vanishing correllations

between different times. The resulting velocities v(t) and the trajectory x(t) can be written as

a stochastic integral equations [190],

v(t) = dtx= v0e
−γt+

∫ t

0
e−γ(t−t′)ξ(t′)dt′ , (6.10)

x(t) = v0

γ
(1−e−γt)+ 1

γ

∫ t

0
(1−e−γ(t−t′))ξ(t′)dt′ , (6.11)

for arbitrary time-scales and assuming v(t = 0) = v0 and x(t = 0) = 0. At short times, the

damped exponential terms can model friction between collisions, a behaviour that is not

treated by Einstein’s approach. Solving these equations corresponds to determining the

average behaviour of particles subject to this process, i.e. finding their propagator in velocity-

space G(v,t) and configuration-space G(x,t) respectively. This was first accomplished by

Ornstein and Uhlenbeck [190] by taking moments of U = v−v0e
−γt and S = x− v0

γ (1−e−γt)
involving Eqs. 6.10,6.11, proving that the distributions ofG(U,t) andG(S,t) take the Gaussian
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Figure 6.1 – In (a), 20 random walk paths generated from a standard normal distribution of
step-sizes, taken atN = 50 regular time intervals∆t= 0.1 until t= 5 are shown. The propagator
G(x,t) is shown in (b) at the times t = {0.3,1,5} in blue, green and dark yellow respectively,
as indicated by the dashed lines in (a). To illustrate the shape of the ‘light’ tails of these
distributions, G(x,t) is again shown with a logarithmic ordinate in (c) as well as a doubled
range in x. The dimensions in space and time are of arbitrary units of length L and time T ,
while the propagators are normalized and thus have arbitrary units ofL−1. These conventions
and the ranges in x are kept for comparison with other distribution types below. As will
be outlined in the presentation of the Central Limit Theorem (CLT) below, the step-sizes
are scaled to the appropriate step-times by ∆t1/2. Alternatively, the time-argument of the
propagator would need to be rendered adimensional (i.e. N = t

∆t ), and straightforwardly
represent and N-fold convolution of the independently drawn step-size distributions. With
the more practical convention chosen here and in the following, the same could be illustrated
by letting ∆t= 1.

Normal form. For γtÀ 1, Einstein’s result forG(x,t) is retrieved from the latter as expected.

Correspondingly, the stochastic equation for Ordinary Brownian Motion (OBM) is obtained in

the same limit directly from Eq. 6.11

x(t) = v0

γ
+ 1

γ

∫ t

0
ξ(t′)dt′ , (6.12)

for which step-wise generalizations are introduced in the following sections, up to the deriva-

tion of Truncated Asymmetrical Lévy Motion (TAFLM) in the next chapter.

For completeness, it should be noted that various classical Langevin Equations, e.g. also of

harmonically bound particles, can be treated and solved in a number of ways [191, 192, 193].

90



6.1. Review of diffusion models

Already in Ref. [190], techniques are applied to first retrieve the corresponding non-stochastic

equations of motion of a propagator through the moments of the Langevin Equations. These

are referred to as Fokker-Planck equations and describe, in the most general cases, the full

evolution of the distributionG(x,v,t) in phase-space, as e.g. for the free damped Brownian

particle [192]

∂tG=−v∂xG+γ
(
∂vv+D

γ
∂2
v

)
G . (6.13)

Formally, a possible ansatz is given by casting the Langevin Equations into an integral form

x(t+∆t)−x(t) =
∫ t+∆t

t
vdt′ , (6.14)

v(t+∆t)−v(t) =
∫ t+∆t

t
−γv+ξdt′ (6.15)

and iteratively Taylor-expanding the non-stochastic parts of the integrands about x(t) and

v(t) to 1st order. The Fokker-Planck equation is then found by identifying the different terms

of its Kramers-Moyal-Expansion (the formal generalization of Eq. 6.5) from the moments of

the expanded forms of Eqs.6.14, 6.15. Through these, the diffusion coefficient is introduced

through the correlations of the noise terms 〈ξ(t1)ξ(t2)〉 = 2Dδ(t1 − t2), where 〈.〉 still denotes

the distribution average over ξ(t). The diffusion equation can be retrieved as a simplified case

based on Eq. 6.12. It corresponds to the ‘over-damped’ scenario of Eq. 6.9 as the accelleration

term is effectively dropped compared to the damping and stochastic terms, yielding the

differential form of the OBM equation dtx= 1
γ ξ(t). This is not counter-intuitive, as in Einstein’s

approach, the particle is treated as stationary in between distinct jumps. In this context, the

continuous motion of a particle can still be treated e.g. using Persistent Random Walks with

Poisson-distributed waiting times, as we have done in Ref. [194] to investigate transient non-

diffusive transport regimes in the short-time regime. However, since we wish to treat fractional

generalizations of Eq. 6.12 in the following, the availability of moment-based averages is

subject to certain constraints. Hence a path-integral based approach for solving the resulting

Langevin Equations has been adopted from Ref. [195] for the work in Ref. [108] as well as the

following.

6.1.3 The Gaussian limit

From the perspective of a Brownian random walk as an uncorrelated random process, it is

indeed inevitable that the solutions to the classical diffusion equation embodies the form

of a Gaussian Normal distribution, no matter the method of description and solution. The

stochastic integral equation 6.12 represents the limit of an infinite sum of random variables

ξ(tn) that in case of statistical independence, for a finite variance, zero means and uniform

‘smallness’, must converge to a Normal distribution, according to the Central Limit Theorem as

given by Feller [196]. Various forms of this theorem have been formulated since Laplace, who

extended De Moivre’s and Bernoulli’s work that demonstrated the Normal distribution as an

approximation for binomial distribution [197]. Many of the most pre-eminent mathematicians
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of the 19th and early 20th century contributed to its formalization and generalization including

Poisson, Markov, Lindeberg and Lyapunov, until the most definitive proofs were given by Lévy

and Feller [196, 197]. These treatments are thus very detailed, and we only recall a simplified

proof valid for random variables with finite moments, featuring a common mean of zero and

variance σ2, as similarly shown e.g. in [191, 182]. This furthermore highlights the importance

of characteristic functions, which will be used extensively in the following. The characteristic

function of a probability distribution P (ξ) of a (continuous) random variable ξ is defined as

its Fourier transform

P̂ (k) =
∫
eikξP (ξ)dξ = 〈eikξ〉 . (6.16)

The .̂-notation will be used to denote both Fourier transforms in space, as well as Laplace

transforms in time in the following. The nature of the transform can be deduced from the

indicated transform variables k and s, respectively. If no transform variable is given for brevity,

a pure Fourier transform is implied. The characteristic function is directly linked to the

moments of P (x) (assumed finite), and we can deduce by definition

P̂ (k) = 〈eikξ〉 = 〈
∞∑
n

(ik)n

n!
ξn〉 ⇒ 〈ξn〉 = (−i)n∂nk P̂ (k)

∣∣∣
k=0

. (6.17)

If all moments converge indeed, we can likewise take the sum outside the integral and therefore

expand

P̂ (k) =
∞∑
n

(ik)n

n!
〈ξn〉. (6.18)

If we now consider the N-fold sum of (any) independent random variables y = ∑N
n=1 ξn, its

characteristic is given by

P̂y(k) =
∫
eik

∑N
n=1 ξn

N∏
n=1

P (ξn)dξn =
N∏
n=1

∫
eikξnP (ξn)dξn , (6.19)

since the joint PDFs of independent random variables must be separable as a product. Note

that this equivalently implies that the PDF of a sum of independent random variables be the

convolution of their individual PDFs. To make the most use of a series-expansion as in Eq.

6.18, we re-scale to z = yN−1/2, which yields up to second order

Pz(k) '
(
1− σ

2k2

2N

)N
⇒ lim

N→∞
Pz(k) = e −σ2k2

2 , (6.20)

where we approach an exact limit for large enoughN , since higher orders of the expansion

become negligible. Fourier-inverting Pz(k) therefore yields a normalized Gaussian with zero

mean and variance σ2. Alternatively, one can allow different finite means and variances for

P (ξn) and scale the sum byN−1 to find that P (z) converges to a δ-function on the average of

the means [182]. Conversely, when un-scaling towards y the distribution variance grows as

Nσ2.

This limit has the far reaching implication that no matter the description, the limit of any
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population of random walkers with any such step-size distributions as described above, will

ultimately converge to a Gaussian and, at an average constant rate of steps, the variance of this

Gaussian will grow linearly in time σ2 ∝ tν with ν = 1 being the ‘transport exponent’. These

are thus the defining features of all diffusive transport. Indeed for the variance of Einstein’s

result we immediately identify σ2 = 〈∆x2〉 = 2Dt. This was likewise recovered in Langevin’s

paper [188], who also identifiedD = RT
γN = kBT

γ by considering the average 1D kinetic particle

energy m
2 〈ξ2〉 = RT

2N .

6.2 Non-diffusive transport

The fundamental assumptions for all descriptions of the random-walk based classical diffusion

processes are therefore locality in space and markovianity in time, and are embodied by

the given constraints on the probability distributions. Since these assumptions are hardly

restrictive and often well-justified in practice, the paradigm that all observed transport be a

combination of advection and diffusion has successfully underpinned a plethora of transport

studies e.g. in physics and chemistry. In principle, even turbulent transport can be described

as a combination of classical diffusion and turbulent advection [86, 21]. However, since the

advection patterns are often inherently unpredictable, the construction of effective statistical

models for the resulting global transport can be difficult. The introduction of effective diffusion

coefficients based on global instead of local observations has thus become common practice

for many plasma simulations seeking to include the effects of turbulence, e.g. on particle

and heat transport in tokamaks [21]. Sophisticated transport codes such as UEDGE [198]

and SOLPS-ITER [199], aimed at predicting conditions in the tokamak SOL, have indeed

been successfully implemented based on these considerations. Nonetheless, this approach

inherently neglects the fact that the fundamental assumptions underlying the diffusion model

may no longer be satisfied, and non-Gaussian transport features may thus occur. In the case

of fast ions specifically, both, the presence of medium-scale turbulent electric fields as well

as the large Larmor radii of these ions represent a clear departure from the assumptions of

locality and often result in highly non-Gaussian statistics, as already outlined in the previous

chapters. Therefore, we will instead review and build upon the statistical methods that have

been specifically devised to describe inherently non-diffusive transport, as outlined in many

of the above examples.

In fact, more and more scenarios have emerged in modern research, where complex or non-

linear systems appeared to behave in a non-local or non-markovian manner, resulting in

non-diffusive transport [116, 200, 114]. In bio-chemistry for instance, it has become clear that

the transport of proteins does not always follow Gaussian statistics [201, 202]. This general

observation was made for transport in a variety of fields in the life-sciences, such as animal

roaming [203, 204], human travel [205] and epidemiology [206]. Non-Gaussian statistics have

become a wide field of interest in mathematics [118], and have found further applications in

finance [207], criminology [208] and even quantum mechanics [209].
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Other applications in physics [116, 114] are routed around the subject of turbulence. In partic-

ular, the intermittent observation of coherent structures can lead to non-diffusive behaviour,

with examples in both atmospheric physics [210] and plasma physics [211]. Naturally, the

description of non-diffusive fast ion transport has thus also been subject to a variety of inves-

tigations in this context, both in astrophysical [93, 212, 96] and laboratory settings [94, 95],

including fusion plasmas [84] and previous work in our group [104, 107, 103].

6.2.1 Lévy stable distributions

In the context of random walk descriptions, many non-diffusive settings have in common, that

either particle steps, the waiting time between them or both can favour disproportionately

large values compared to the diffusive case. More specifically, if one wishes to describe trans-

port with a long-time propagator other than a Gaussian with σ2 ∝ t, we require distributions

for the particle step sizes P (ξ) and waiting timesw(τ ) that abandon some of the assumptions

underlying the classical Central Limit Theorem. The further generalization of this theorem

was indeed successfully treated e.g. by Lévy and Khintchine [213], as well as Kolmogorov and

Gnedenko [214]. Following the outlines in [116, 118] here, it states that if the distribution

P (Z) of an appropriately normalized sum of independent, identically distributed (iid) random

variables

Z =AN +
∑N
n=1 ξn

BN
, (6.21)

converges for N →∞ with some {AN } ∈ R and {BN } ∈ R > 0, P (Z) must converge to a dis-

tribution that is thus defined as ‘stable’. No assertions on the moments of the individual

distributions P (ξn) are made, except that for a finite variance, the Gaussian case must be

recovered. This is in fact equivalent [118, 116] to stipulating the iid random variables ξn and

their normalized sum to follow the same form of distribution P and thus requiring

P

(
N∑
n=1

ξn

)
=P (

BNξ+AN
)

, (6.22)

for someAN ∈R andBN ∈R> 0 for anyN ≥ 2. Following Eq. 6.19 this reads in terms of the

characteristic function

P̂ (k)N = P̂ (BNk)eikAN . (6.23)

This equation is solved exactly by the characteristic function that consequently defines the

family of α-stable Lévy distributions Lα(ξ) with and exponent of

lnL̂α(k) = iµk−σα|k|α


[
1+ iθsgn(k) tan(πα2 )

]
for α 6= 1[

1+ iθsgn(k) 2
π ln |k|] for α= 1

, (6.24)

where sgn(k) is the sign function. Inserting and equating the real and imaginary parts of

Eq. 6.23 straightforwardly yieldsBN =N 1
α > 0 andAN = (N −N 1

α )µ. Note that this scaling

generalizes the method applied for Eq. 6.20. The parameter 0 <α≤ 2 denotes the ‘index of
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6.2. Non-diffusive transport

stability’ of the distribution, and we recover the Gaussian for the special case of α= 2, with

a variance of 2σ2. The parameter −1 ≤ θ ≤ 1 determines the asymmetry of the distribution,

where e.g. θ < 0 results in a distributions that are skewed to the right. The scale of the

distribution is given by σ, and a shift can be induced by µ, but is set to zero in the following

for simplicity. Examples of markovian random walks with such step size distributions are

shown in Fig. 6.2. By definition of α-stable random variables, their propagator must remain

an α-stable distribution, as it represents an increasing number of their convolutions.

Figure 6.2 – We show 20 random walks based on a Lévy stable distribution Lαξ of step-sizes,
taken at regular time-intervals of ∆t= 0.1 in (a). The parameters of Lαξ are chosen according
to Eq. 6.24 as α= 1.4, σ = 1 and θ = 0.6. Note the distinctly non-Gaussian properties of the
propagators of the same form in (b), in particular the much heavier, algebraic tails compared
to Fig. 6.1, each following G(x,t) ∼ |x|−(α+1). With a significant θ > 0, their left tail in (c) for
x< 0 is heavier still than the right, but converges to the same overall slope. Note that similar,
markovian random walks and identical propagators would be found if the given step sizes
∆twere not constant, but followed an exponential distribution type with an average of ∆t, as
described by Poisson-processes. With a transport exponent of e.g. ν = 2

α1.43 > 1 from Eq. 6.33,
any markovian Lévy-stable processes with α< 2 fall within the superdiffusive regime.

Many equivalent parameterizations exist [116, 136], and are usually adopted to simplify the

algebra of a given problem. Note that the above parameters, except α, are often combined and

redefined in this process and thus take different values. For instance, in [116] and previous

work [108, 136] one finds for α 6= 1

lnL̂α(k) = iµk−σα|k|α exp

[
isgn(k)

πθ

2

]
, (6.25)

where the new asymmetry parameter must follow the restrictions |θ| ≤α for α< 1 and |θ| ≤
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2−α for 1 < α< 2. Closed form expressions of the distributions Lα(ξ) are only available in

a few special cases of α, so that most manipulations in the following are performed on the

characteristic function. However, it can be shown e.g by Taylor-expanding L̂α(k) to 1st order in

k before Fourier-inverting, that we have Lα(ξ) ∼ |ξ|−(α+1) for ξ→±∞. These heavy, algebraic

tails of Lα(ξ) thus accommodate e.g. the described occurrences of long jumps, while their

variance becomes infinite for any α< 2.

6.2.2 Continuous Time Random Walks

To use Lévy distributions in the description of a non-markovian random walk, we firstly turn

to the generalization of Einstein’s approach in the form of Continuous Time Random Walks

(CTRWs) as introduced by Montroll and Weiss in 1965 [117]. This model has since received

extensive attention as outlined in [116, 200, 114] and generally defines the arrival probability

η(x,t) of a random walker at a given time and position as

η(x,t) =
Ï

dx′dt′η(x′, t′)w(t− t′)P (x−x′)+δ(x)δ(t) , (6.26)

where w(τ ) denotes the waiting time distribution. It has been assumed that step-sizes and

waiting times are independent, and their distribution thus separable. The equation for the

propagator of a CTRW is consequently defined by

G(x,t) =
∫ t

0
dt′η(x,t′)

(
1−

∫ t−t′

0
dτ w(τ )

)
. (6.27)

After solving Eq. 6.26 for η̂(k,s) using a Fourier-Laplace transform from (x,t)-space into (k,s)-

space, the result can be inserted into the Fourier-Laplace transform of Eq. 6.27 to yield the

well-known Montroll-Weiss equation

Ĝ(k,s) = 1

1− P̂ (k)ŵ(s)

(
1− ŵ(s)

s

)
. (6.28)

To approach the generalized form of the governing diffusion equation, we again employ the

fluid limit, i.e. we let k¿ 1 and s¿ 1 in Fourier-Laplace space. This yields P̂ (k) = L̂α(k) →
1−σα|k|α exp(isgn(k)πθ2 ), for the parameterization in Eq. 6.25. Since only positive values of

waiting times are allowed, a one-sided Lévy distribution must be used if we wish to generalize

from the Markovian case. Again using the parameterization in Eq. 6.25, they are available for a

stability index α→ β < 1, with a minimum value of θ =−β, such thatw(τ ) is only defined for

τ > 0 while still obeying w(τ ) ∼ τ−(β+1) for τ →∞ and conversely ŵ(s) → 1−σβwsβ for s¿ 1.

Inserting into Eq. 6.28, this yields to 1st order

Ĝ(k,s) = σβws
β−1

σβwsβ −σα|k|α exp(isgn(k)πθ2 )
, (6.29)
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from which we can separate all explicit dependence on s and k to find

sβĜ(k,s)−sβ−1 = σα

σβw
|k|αe(isgn(k)πθ2 )Ĝ(k,s) . (6.30)

On the LHS one recognizes the Laplace transform of the Caputo derivative CDβ
t of fractional

orderβ and on the RHS the Fourier transform of the Riesz-Feller derivativeRFDα,θ
x of fractional

order α and asymmetry θ [215]. The forms of all fractional integro-differential operators

relevant to these chapters are motivated and summarized in App. C. Inverting both transforms

therefore yields the general space- and time-Fractional Diffusion Equation (FDE)

CDβ
t G(x,t) = σα

σβw︸︷︷︸
Dα,β

RFDα,θ
x G(x,t) (6.31)

The long-range dependence in x and t introduced by the heavy tailed Lévy distributions,

are therefore embodied by the integrals involved in these fractional derivatives. Since they

determine the weight and range of the respective integration kernels, the stability indices α

and β are respectively referred to as the space-fractional exponent and the time-fractional

exponent, while the scaling parameters determine the fractional diffusion coefficientDα,β .

The initial conditions enter the equation by the finite lower limit of the Caputo derivative, as

the differentiation occurs inside the integral in this case. Note that we recover Markovianity

through a 1st order time-derivative for β = 1, but only recover a Gaussian propagator by

simultaneously letting α= 2 to retrieve the 2nd order spatial derivative, which results in the

ordinary diffusion equation. The general propagator solutionsG(x,t) have been detailed by

Mainardi, Luchko and Pagnini in Ref. [215], but again do not possess a general closed form.

They can rather be written as Fox-H or Meijer-G functions in terms of Mellin-Barnes integrals

or series representations [215, 216]. Examples for sub- and superdiffusive CTRWs are shown

in Figs. 6.3 and 6.4 respectively.

Many key properties of the CTRW transport process can already be illustrated using Ĝ(k,s).

Writing the Fourier-Laplace inversion of Eq. 6.29, the probability of finding a random walker

between x and x+dx at time t is given by

G(x,t)dx= 1

4π2i

∫ ∞

−∞
dke−ikx

∮ δ+i∞

δ−i∞
dsest

σβws
β−1

σβwsβ −σα|k|α exp(isgn(k)πθ2 )
dx , (6.32)

where the usual conventions of convergence hold for the contour choice in the inverse Laplace

transform. This probability is invariant under the similarity transformation {x,t} → {cHx,ct}

for H = β
α , which can be shown through the changes of the integration variables k 7→ c−Hk

and s 7→ c−1s, as expected from the scaling properties of Fourier and Laplace transforms.

Therefore,G(x,t) is classified as H-self-similar and its moments have to follow a fixed scaling

in time, withH denoting the Hurst-exponent. Suppose some possibly fractional moments 〈xq〉
of order q ∈ R> 0 exist and follow 〈xq〉∝ tqν/2, where ν > 0 denotes the transport exponent
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Figure 6.3 – Sub-diffusive (ν = 0.7), symmetric CTRWs as in (a) are generated by using a
one-sided Lévy-stable waiting time PDF, with time-fractional exponent β = 0.6 < 1 in this
case. Consequently we chose α= 2β

ν = 1.71, allowing for a still visible number of long jumps.
However, the waiting times outweigh this effect and reduce transport to the subdiffusive
level, andG(x,t) stays peaked near the origin for longer (b). The tails ofG(x,t) in (c) remain
nonetheless heavy especially compared to the Gaussian case.

as defined above from the case q→ 2. Based on the self-similarity property, one immediately

finds

〈(cHx)q〉 = cqH〈xq〉∝ (ct)
qν
2 ⇒ ν = 2H = 2β

α
. (6.33)

This directly illustrates the non-diffusive nature of such a CTRW, and permits to identify the

cases of subdiffusion for 2β < α, and super-diffusion for 2β > α. The case 2β = α denotes

quasi-diffusion, which is more general than the diffusive case due to the possible presence of

non-Gaussian features. Note that the variance 〈x2〉 ofG(x,t) need not (and does not) always

converge. To directly investigate diverging moments, one can either analytically truncate

them above a given scale [116], or use Monte-Carlo sampling on an appropriate numerical

implementation of the propagator up to a desired degree of convergence. Furthermore, it

should be noted that, the functional form of the inverse Laplace transform in Eq. 6.32 is known

to be the Mittag-Leffler function and one can therefore write [215]

Ĝ(k,t) = Eβ

(
σα|k|α exp(isgn(k)

πθ

2
)tβ

)
with Eβ(τ ) ≡

∞∑
n=0

τn

Γ(βn+1)
, (6.34)

from which the above invariance becomes even more directly visible.
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Figure 6.4 – In (a), we show non-markovian superdiffusive CTRWs with ν = 1.5. While we
still have β = 0.9 < 1 for the time-fractional exponent, long waiting times are clearly less
prevalent compared to Fig. 6.3. To return to superdiffusion, the space fractional exponent
was additionally lowered to α= 1.2, to allow for an increase in longer jumps. Consequently,
the bulk of the propagator in (b) clearly decays faster, and the tails in (c) are distinctly heavier
than in Fig. 6.3.

6.2.3 Generalized Langevin Equations

Naturally, also Langevin’s approach can be adapted to accommodate non-diffusive transport

and has been discussed extensively in the literature [116, 119, 136, 118]. A particularly in-depth

treatment is given by Samorodnitsky and Taqqu [118], where such definitions and properties

as in the following are analyzed from first principles. Non-markovian behavior is implemented

by introducing a non-constant friction coefficient γ(t), and requiring a convolution instead

of a simple multiplication in Eq. 6.9 to arrive at the Generalized Langevin Equation (GLE).

Equivalently, one can directly generalize Eq. 6.12 (with v0 = 0) by introducing a memory kernel

M (t) into the integral

x(t) =
∫ t

0
M (t− t′)ξ(t′)dt′ = 1

Γ(H +1/2)

∫ t

0
(t− t′)H− 1

2 ξ(t′)dt′ . (6.35)

This choice of kernel defines Fractional Brownian Motion (FBM) [217], if the random incre-

ments ξ are drawn from a Gaussian distributionP (ξ). A second generalization is implemented

by choosing α-stable Lévy distributions, to allow for non-local behaviour, resulting in a defini-
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tion for Fractional Lévy Motion

x(t) = 1

Γ(H −1/α+1)

∫ t

0
(t− t′)H− 1

α ξ(t′)dt′ = 0IH−1/α+1
t ξ(t) . (6.36)

For brevity, we can use the notation of the Riemann fractional integral 0Iqt of order q that

this equation represents [183, 209] (see App. C). The exponents of the kernels have been

chosen such that the above equations yield H-self-similar solutions, as will become apparent

later. With probability distributions for the random increments that are stationary in time,

these radom processes are classified as H-self similar with stationary increments, short H-

sssi. The invariance under the similarity transform {x,t} → {cHx,ct} can already be intuited

here. For the scaling of ξ(t), consider the scaling of the discretized sums of random steps in

the Generalized Central Limit Theorem of N
1
α . With N being related to t by an arbitrarily

small constant ε = t
N , this suggests a step-size scaling of c1/α, before being weighed by the

memory kernel. Indeed, it can be shown straightforwardly that Markovian Lévy processes are

H-self similar withH = 1
α , since the β = 1 case of the CTRW must be equivalent by definition.

Inspecting the OBM in Eq. 6.12 as the simplest case, it can however be seen that due to its

position inside the integral, ξ acquires an additional scaling inversely to time (e.g. as a velocity

would in Eq. 6.12), leading to a total of ξ→ c1/α−1ξ under the similarity transform. From this,

the invariance of the FLM equation and any special cases such as FBM are directly verified.

As detailed e.g. in previous work [136], the use of these memory kernels can lead to persistent or

anti-persistent behaviour in the trajectories x(t), as their auto-correlations between different

times can either become positive or negative depending on the choice of H > 1
α or H <

1
α . Keeping the definition of β = αH > 0, this corresponds to β > 1 and β < 1 respectively.

Furthermore, based on the scaling of the moments of such an H-sssi process, the values of

β are bounded to β ≤ 1 for α < 1 and β ≤ α for 1 ≤ α < 2 [118, 183]. We emphasize that this

implementation of non-Markovianity is not equivalent to the CTRW approach that utilizes

heavy-tailed waiting-times. This is illustrated in Figs. 6.5 and 6.6 for a subdiffusive and a

superdiffusive FLM process, with their transport exponents chosen such that they correspond

to those shown for the CTRWs in Figs. 6.3,6.4.

The method employed to find the propagator of these processes that we will focus on in all that

follows has been introduced by Calvo, Sánchez and Carreras in Refs. [195, 183]. This approach

discretizes the integrals of the trajectories until x(t=T ) intoN →∞ steps of duration ε= T
N ,
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Figure 6.5 – Random walks as realizations of subdiffusive FLM processes with ν = 0.7 are
shown in (a), with both β = 0.6 and α= 1.71 as for the CTRW case in Fig. 6.3. While waiting
times are not needed to be drawn randomly in this approach, and long jumps are still possible,
the average trajectories only diverge slowly due to anti-correlations introduced between
consequent increments with β < 1. Note that due to the simpler Fourier transforms involved
in the numerical calculations of the propagators in (b,c), that do not involve a Mittag-Leffler
function on the characteristic exponent anymore, there is no discontinuity in slope at x= 0.

based on Feynman’s path-integral approach to quantum field theory such that

x(T ) = lim
N→∞

N∑
n=1

δxn = lim
N→∞

N∑
n=1

ε1/α−1 ξn

Γ(β−1
α +1)

nε∫
(n−1)ε

(T − t)β−1
α dt

= lim
N→∞

N∑
n=1

εH ξn

Γ(β−1
α +2)

[
(N −n+1)

β−1
α +1 − (N −n)

β−1
α +1

]
︸ ︷︷ ︸

Bn

= lim
N→∞

N∑
n=1

εH ξn

Γ(β−1
α +2)

Bn ξn . (6.37)

Analogous to the above scaling arguments, it is assumed that under discretization ξ(t) →
ε1/α−1ξn and that ξn be constant over the arbitrarily short step duration of each integral. Within

this framework, the probability measure for each step is the distribution of theLα(ξn)dξn, and

the propagator is thus defined by anN -fold nested convolution of these step-size distributions
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Figure 6.6 – In (a), we show realizations of non-Markovian superdiffusive Lévy processes,
again with ν = 1.5 as in the CTRW case in Fig. 6.4. To illustrate the introduction of positive
correlations between consequent increments, we chose β = 1.3 > 1 here and note that the
steps in many trajectories tend to follow consistent trends in the positive or negative direction,
and therefore diverge faster than a diffusive case. The chosen value of α = 1.73 is still very
close to most other cases suggesting a similarly moderate occurrence of long jumps.

G(x(T ),T ) = lim
N→∞

f (N,T )
∫
δ
(
ξN − Γ(β−1

α +2)x(T )

εH︸ ︷︷ ︸
A

+
N−1∑
n=1

Bn ξn
)∏
n

= 1NLα(ξn)dξn (6.38)

up to a normalization factor f (N,T ). The GLE of x(T ) represents the constraint on the path

and thus enters within a δ-function. In its discretized form above, it has been rearranged

for the last increment ξN (with BN = 1), and can thus be used to solve the last convolution

integral

G(x(T ),T ) = lim
N→∞

f (N,T )
∫
Lα

(
A−

N−1∑
n=1

Bn ξn

)∏
n

= 1N−1Lα(ξn)dξn . (6.39)

Retrieving the form of the propagator G(x,t) therefore relies on the ability to evaluate the

remainingN −1 nested convolutions analytically and before taking the limitN →∞ again. In

Ref. [183] this is accomplished for symmetric Lévy distributions of ξn by iteratively using the

identity ∫
Lα(ξ)Lα(y−cξ)dξ = 1

gα(c)
Lα

(
y

gα(c)

)
with gα(c) = (1+cα)1/α, (6.40)
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which is proven there by using their scaling properties in Fourier-space. Since these apply to

both symmetric and asymmetric distributions alike, Bovet likewise deduced the propagator

for Asymmetrical Fractional Lévy Motion (AFLM) using the parameterization in Eq. 6.25 as

detailed in Refs. [108, 136] as

G(x,T ) = 1

Q(T )
Lα

(
x

Q(T )

)
with Q(T ) = TH

β1/αΓ(β−1
α +1)

. (6.41)

The appropriate FDE is found by taking the time-derivative of the resulting Ĝ(k,t) before

Fourier-inverting again, which yields

∂TG(x,T ) = σαtβ−1

Γ(β−1
α +1)α︸ ︷︷ ︸
Dα,β (t)

RFDα,θ
x G(x,t) . (6.42)

In the case of θ = 0, RFDα,θ
x reduces to the symmetric Riesz-derivative RZDα

x as shown in Ref.

[183] (see also App. C). In the case of α= 2, σ = 1, the propagator for FBM is recovered as [195]

G(x,T ) =
√
β

2π

Γ(H +1/2)

T β/2
exp

(−βΓ(H +1/2)2x2

2T β

)
(6.43)

and the spatial derivative smoothly recovers the ordinary 2nd order. Focusing on the time-

dependence, a ‘stretched time-derivative’ [136, 218] of ∂Tβ = 1
βTβ−1∂T is recovered in all cases,

so e.g. the FDE in the AFLM case can be written

∂TβG(x,T ) = σα

βΓ(β−1
α +1)α︸ ︷︷ ︸
Dα,β

RFDα,θ
x G(x,t) . (6.44)

In line with the concepts of positive or negative step-correlations, time is scaled to advance the

decay of the δ-function initial conditions faster or slower than in the ordinary β = 1 case. This

becomes particularly clear in the FBM case, where the time-dependence of the variance is

changed to σ2 ∝ tβ . Note that if we keep an ordinary time-derivative as before, the fractional

diffusion coefficient acquires time-dependence, which remains a fundamental difference to

CTRW descriptions. The only direct equivalent is therefore the Markovian case of β = 1. Since

the time-dependence in FLM therefore does not take the form of a Mittag-Leffler function, the

propagator keeps the much more tractable (albeit not generally closed) form of the underlying

step-size distributions.

The AFLM model was used successfully to model the asymmetric and superdiffusive nature of

the (horizontal) cross-field transport of fast ions withE. 30eV in the SMT geometry, based

on simulations with GBS (see Sec. 2.5). Yet, certain practical and conceptual problems have

remained. As described above, Lévy distributions are characterized by their heavy tails, im-

plying the possibility of infinitely long jumps and indeed suggest non-finite spreading when
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considering the diverging variance of G(x,t). Infinitely long jumps are natural impossibil-

ities for physical particles, and indeed the tail region of the numerically simulated fast ion

distributions is strongly over-estimated by any AFLM fits [108, 136]. In practice, some of the

mathematical implications of diverging moments can be avoided as only finite numbers of

tracers (walkers) are ever considered, and sample moments can be taken at any order. This

results in an effective truncation of the distribution and its moments above some scale, related

to the probability of finding at least one walker of a given sample number [219]. However,

this scale thus appears somewhat arbitrarily defined. In practice, truncations can rather be

due to attaining a certain, experimentally relevant scale that limits the effective domain size

of a given transport process. In the following, we will therefore introduce models treating

truncation effects at a fixed spatial scale explicitly, in order to derive Truncated Asymmetrical

Lévy Motion (TAFLM) using the above path-integral methods.

The crux of the derivation will therefore lie in choosing and scaling our truncation parameter

in such a way as to enforce a constant truncation effect, by compensating the memory kernel.

This way, we will recover the ability to use an identity similar to Eq. 6.40.

6.3 Tempered stable distributions

In 1994, Mantegna and Stanley proposed the model of truncated Lévy flights, already with

applications to turbulence in mind [220]. Koponen’s approach from 1995 [221], in which he

employs an exponential decay of e−λ|x|, quickly became a widely used basis for investigations

of tempered stable random processes, as e.g. those presented in depth in Refs. [222, 223].

A variety of distributions that temper the heavy tails of the α-stable Lévy case have been

discussed and remain an active field of research in applied mathematics [224] as they indeed

share the useful feature of finite moments at all orders [223, 224]. Applications of tempered

stable dynamics range again across many fields, and are found particularly in finance [172,

223, 224], but also e.g. in criminology [225] and of course physics [120, 226, 114].

We will utilize a form and parameterization based on Refs. [120, 114], and thus write the

characteristic exponentΛα,λ(k) of a tempered α-stable Lévy distribution Pα,λ(ξ) with 0 <α≤
2 , α 6= 1 as

ln P̂α,λ(k) ≡Λα,λ(k) =− σα

2cos(απ2 )︸ ︷︷ ︸
σαM

[
(1+θ)(λ+ ik)α+ (1−θ)(λ− ik)α−2λα−2iθkαλα−1 ]

.

The truncation parameter employed here is λ> 0, and represents an inverse truncation length-

scale. While many authors utilize different parameters for the left- and right tail described

by the first and second term respectively [223, 224], we will restrain ourselves to a symmetric

truncation length at first. Clearly, σ > 0 still functions as a scale-parameter, and −1 ≤ θ ≤ 1

quantifies the asymmetry of the distribution. As neither is essential for the distribution, unless

it is single-sided, they will only appear in the explicitly written forms ofΛα,λ(k). The third term
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preserves the normalization of the distribution, requiring P̂α,λ(k = 0) = 1. The fourth term

centers the distribution with its mean at zero, as can be shown by letting ∂kP̂α,λ(k)|0 = 0. In

contrast to [120], this term is kept for the full given range ofα as we exclude the λ= 0 case, that

would otherwise cause it to diverge for α< 1. The centering of the distributions will facilitate

their application to numerical fast ion distributions, as we wish to focus on their cross-field

spreading without having to consider residual drifts. General closed form expressions of

the distributions Pα,λ(ξ) are not available here either, but their tail behaviour of Pα,λ(ξ) ∼
e−λ|ξ||ξ|−(α+1) can be verified again e.g. by the first order terms of a series expansion of the

characteristic. Again, examples of markovian random walks using this type of distribution are

shown in Fig. 6.7.

Figure 6.7 – Again, (a) shows 20 random walks with their step-sizes drawn from truncated
Lévy stable distributions. Their parameters with α= 1.4 and θ = 0.6 are chosen equivalently to
those in the Lévy stable case in Fig 6.2, but a truncation parameter of λ= 0.1 has been added.
Therefore, jumps beyond the truncation scale λ−1 = 10 are being suppressed. Following the
CLT, this implies that markovian tempered stable processes must be of a diffusive nature and
recover FBM in the long run as discussed in [222, 223], although clearly non-Gaussian be-
haviour occurs within the truncation scale, which is reflected in initially likewise non-Gaussian
propagators as shown in (b). The tails illustrated in (c) follow the exponentially tempered
algebraic trend G(x,t) ∼ e−λ|x||x|−(α+1), and are therefore found between the algebraic tails
from Lévy-type processes and the Gaussian case.

6.3.1 A truncated CTRW

Following the development in Ref. [120] further, one can use the characteristic Λα,λ(k) for

the step-size distributions, which immediately yields for the fluid-limit of the Montroll-Weiss-
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Equation 6.28

Ĝ(k,s) = σβws
β−1

σβwsβ −Λα,λ(k)
. (6.45)

This is therefore solved in Fourier-space analogously to Eq. 6.34 as Ĝ(k,t) = Eβ
(
Λα,λ(k)tβ

)
,

for which explicit series and further integral representations are given in [227], as well as finite

double series expressions for all integer moments. However, some crucial properties of these

propagators can again be made apparent just by writing the probabilitiesG(x,t)dx explicitly

using the inverse Fourier transform. For the Markovian case of β = 1 we have

G(x,t)dx = 1

2π

∫ ∞

−∞
dk exp

{
− ikx+ tσαM[

(1+θ)(λ+ ik)α+ (1−θ)(λ− ik)α

−2λα−2iθkαλα−1 ]}
dx , (6.46)

for which the solution should be equivalent to the corresponding uncorrelated tempered

stable process [222]. Clearly, due to the introduction of the truncation parameter λ> 0 into the

characteristic, the invariance under the transformation {x,t} → {cHx,ct} is lost, and therefore

also the resulting scaling of the moments in Eq. 6.33. With their heavy tails truncated, these

distributions are thus no longer H-self-similar. However, if we scale the truncation parameter

inversely to x, we recover invariance under the transformation {x,t} → {cHx,ct,c−Hλ}, as

would be expected from the scaling properties of Pα,λ(ξ) [219]. We will make use of this

property in the following section, to adapt tempered stable distributions for the random

increments ξ(t) in a GLE.

The FDE associated with the truncated CTRW is again found by rearranging the Montroll-Weiss

equation as in Eq. 6.30, and the performing an inverse Fourier-Laplace transform to yield

[120]

σβw CDβ
t G(x,t) = σαM

[
(1−θ)e−λx−∞Dα

x

(
eλxG(x,t)

) + (1+θ)eλx xDα
∞

(
e−λxG(x,t)

)]
−2σαMλαG(x,t) − 2σαMαθλα−1∂xG(x,t)

σβw
σα

CDβ
t = λDα,θ

x G(x,t)− 2MλαG(x,t)−2Mαθλα−1∂xG(x,t) . (6.47)

The operators −∞Dα
x and xDα∞ denote the left-handed and the right-handed Liouville deriva-

tives of order α respectively [209]. Their explicit definitions, along with the truncated asym-

metrical fractional derivative λDα,θ
x are given again in App. C. The third term results from the

normalization requirement, and the fourth term represents the centering drift in the θ 6= 0

case. The coefficient Dα,β is found again as its inverse on the LHS, but will affect not just

the diffusion terms, but also the normalization and drift, so that its interpretation as a pure

diffusion coefficient is no longer exhaustive. Examples of tempered CTRWs as described here

are shown along with their propagators in Fig. 6.8

As we proceed towards a model for a Langevin-based alternative to the truncated CTRW, it

should be kept in mind that the Markovian case as illustrated in Fig. 6.7 of both approaches
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6.4. Truncated Asymmetrical Fractional Lévy Motion

Figure 6.8 – Random walks based on the truncated CTRW model are shown in (a), with
α= 1.2 and β = 0.9 as in the superdiffusive CTRW case in Fig. 6.4. A small truncation of only
λ= 0.05 has been introduced, effectively limiting Lévy-type jumps to the shown domain-size
of λ−1 = 20 when comparing panel (a,b). Although the principal shapes of the propagators in
(b) still appear very similar, their tails in (c) are clearly diminished due to the suppression of
the longest jumps.

should recover the same FDE, with a first order time-derivative on the LHS.

6.4 Truncated Asymmetrical Fractional Lévy Motion

While much of the above introduction to truncated CTRWs has likewise been given in a more

condensed form in Ref. [112], we will now present the core of this paper. Based on the path-

integral methods for its solution from Ref. [195] we wish to develop a case where the path

increments are drawn from a tempered stable distribution. Starting from the same GLE as

in Eq. 6.36, we firstly need to apply a discretization again. For the increments we will still

assume ξ(t) → ε1/α−1ξn, based on the scaling properties of uncorrelated tempered stable

processes illustrated from the Markovian CTRW, if we simultaneously insist that the truncation

parameter scales inversely to this. This of course implies that the truncation parameter for the

increments ξ acquires time dependence. In a different context, some uses of time-dependent

truncation parameters have been discussed in [228] and related works, but we will still need

to determine their specific forms required for the TAFLM process in the following.

Since there is thus no difference to the rest of the integral in the GLE, the discretization from
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Chapter 6. Statistical modeling of non-diffusive transport

Eqs.6.37 is still taken as valid under this condition, giving

x(T ) = lim
N→∞

N∑
n=1

δxn = lim
N→∞

N∑
n=1

εH

Γ(β−1
α +2)

Bn︸ ︷︷ ︸
Sn

ξn . (6.48)

Since we wish to implement a constant truncation-scale in space, we must thus insist that this

be a property of the distribution of δxn, i.e. that we have

P (δxn) =Pα,λ(δxn) =Pα(δxn|λ) ∀n . (6.49)

Since we insist on the same truncation scale λ−1 and thus the same form of distribution at

all steps δxn, the process is rendered stationary in this sense. As in the last step, we will from

now on write the truncation parameter as an argument of P , separated by the |-notation, as

showing its manipulations is impractical for subscripts.

To progress the solution we require the form of the distribution of ξn. From the above, it is clear

that ξn is related to δxn by a local scaling induced by the memory kernel of δxn → S−1
n δxn.

Again enforcing the requirement of the truncation parameter to always scale inversely to the

argument of the distribution, we find

P (ξn) = P

(
δxn
Sn

)
= Pα(ξn|Snλ) = Pα(ξn|γn) , (6.50)

where we have defined the discretized time-dependent truncation parameter γn =Snλ. To

obtain units of time in the scaling factor Sn, as one would while returning towards the con-

tinuous form of the GLE, we require indeed a factor of ε1/α−1, so that the inverse scaling

under discretization as described above appears valid for this choice of truncation. Further-

more, the product γnξn occurring in any exponential truncation factors, as in P (ξn|γn) ∼
e−γn|ξn||ξn|−(α+1) to first order, clearly remains dimensionless as required. The resulting ran-

dom walks as incrementally described by Eq. 6.48 are illustrated in Fig. 6.9, along with their

propagators as detailed in the following.

With the distribution Pα(ξn|γn) determined for each step n, we continue to adopt the same

definition of the propagator as given in Eqs. 6.38,6.39 without further changes to the form of

the constraint, provided ξn are drawn accordingly, i.e.

G(x(T ),T ) = lim
N→∞

f (T,N )
∫
Pα

(
A−

N−1∑
n=1

Bnξn
∣∣∣γN

)
N−1∏
n=1

Pα(ξn|γn)dξn . (6.51)

To solve the remainingN −1 convolutions, we need to verify if an identity such as Eq. 6.40 is

still iteratively valid for this choice of distribution. For ease of notation during this, we write

γn = Snλ = Bnγ with γ = εH λ

Γ(β−1
α +2)

, (6.52)
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6.4. Truncated Asymmetrical Fractional Lévy Motion

Figure 6.9 – Random walks according to as described by the discretized GLE in Eq. 6.48,
using truncated α-stable random variables for step-increments for a symmetric case. The
parameters α= 1.73 and β = 1.3 have been chosen as for the untruncated, superdiffusive case
in Fig. 6.6. However, due to the same slight truncation as for the CTRW case with λ= 0.05, the
impact of the heavy jumps is curtailed, which reduces the transport exponent from ν = 1.5 to
ν = β = 1.3, as will be demonstrated in the sections below.

to then verify if∫
Pα(x|cγ)Pα(y−cx|γ)dx= 1

gα(c)
Pα

(
y

gα(c)

∣∣∣γgα(c)

)
with gα(c) = (1+cα)1/α . (6.53)

This can be illustrated most directly by treating the propagator for the simplest case ofN−1 = 2,

for which Eq. 6.51 becomes

G(x,t) =
∫
Pα(A−B2ξ2 −B1ξ1|γ)Pα(ξ1|γ1)Pα(ξ2|γ2)dξ1dξ2

=
∫
Pα(A−B2ξ2 −ξ1|γ)Pα(

ξ1

B1
|γ1)Pα(ξ2|γ2)

dξ1

B1
dξ2

=
∫
I1Pα(ξ2|γ2)dξ2 , (6.54)

where we have used γN = γ and changed the inner integration variable ξ1 7→ ξ1/B1. We now

evaluate the inner integral I1, for which we have c=B1, x= ξ1, y =A−B2ξ2 when comparing

to Eq. 6.53. Analogously to the probability distribution Pαξn|γn, we furthermore now denote
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Λα,γn(k) =Λα(k|γn) for clarity. Evaluating I1 thus reads

I1 = F−1

B1

{
F {Pα(A−B2ξ2 −ξ1|γ)}F

{
Pα

(
ξ1

B1

∣∣∣γ1

)}}
= F−1 {

P̂α(k|γ)P̂α(B1k|B1γ)
}

(A−B2ξ2)

= F−1
{

exp
[
Λα(k|γ)+Λα(B1k|B1γ)

]}
(A−B2ξ2)

= F−1
{

exp
[
(1+Bα

1 )Λα(k|γ)
]}

(A−B2ξ2)

= F−1
{
P̂α(gα(B1)k |gα(B1)γ)

}
(A−B2ξ2)

= 1

gα(B1)
Pα

(
A−B2ξ2

gα(B1)

∣∣∣gα(B1)γ

)
. (6.55)

This demonstrates that Eq. 6.53 is valid for the first convolution. This is accomplished specifi-

cally by our choice of γ1 =B1γ as truncation parameter, so that we can use Λα(B1k|B1γ) =
Bα

1 Λα(k|γ) in the 4th line. To show that this procedure remains valid iteratively, we continue

to evaluate the 2nd integral in Eq. 6.54, for which we again change the integration variable

ξ2 7→ gα(B1)ξ2
B2

, yielding

G = 1

gα(B1)

∫
Pα

(
A−B2ξ2

gα(B1)

∣∣∣gα(B1)γ

)
Pα(ξ2|B2γ)dξ2

= 1

B2

∫
Pα

(
A

gα(B1)
−B2ξ2

∣∣∣gα(B1)γ

)
Pα

(
gα(B1)ξ2

B2

∣∣∣ B2

gα(B1)
gα(B1)γ

)
dξ2

= 1

gα( B2
gα(B1) )gα(B1)

Pα

 A

gα( B2
gα(B1) )gα(B1)

∣∣∣gα( B2

gα(B1)

)
gα(B1)γ


= 1

(1+Bα
1 +Bα

2 )1/α
Pα

(
A

(1+Bα
1 +Bα

2 )1/α

∣∣∣(1+Bα
1 +Bα

2 )1/αγ

)
.

Therefore we have shown that Eq. 6.53 can be used to iteratively evaluate the convolutions

within the propagator in Eq. 6.51. Using the relation(
N−1∑
n=1

Bα
n

)1/α

∼ (β−1
α +1)

β1/α
NH (6.56)

in the limit ofN →∞, as proven in [195], we therefore recover the TAFLM propagator as

G(x,T ) = f (N,T )Pα

(
Γ(β−1

α +2)β1/αx(T )

(β−1
α +1)εHNH

∣∣∣ (β−1
α +1)NHεH λ

Γ(β−1
α +2)β1/α

)

G(x,T ) = 1

Q(T )
Pα

(
x

Q(T )

∣∣∣λQ(T )

)
with Q(T ) = TH

β1/αΓ(β−1
α +1)

. (6.57)

In second step, the normalization factor f (N,T ) was again verified straightforwardly in
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6.4. Truncated Asymmetrical Fractional Lévy Motion

Fourier-space by taking

1 = Ĝ(k)|k=0 =Q(T )fP̂α(kQ(T )|λQ(T ))|k=0 =Q(T )f exp
[
Q(T )α Λα(k|λ)

]|k=0︸ ︷︷ ︸
0

. (6.58)

The above assumptions therefore lead us to a form ofG(x,t) that appears to be an intuitive,

albeit not necessarily straightforward, generalization from the FLM case in Eq. 6.41, since we

continually insisted on the inverse scaling of the truncation parameter compared to x. Again

returning to Fourier-space, the associated FDE is found analogously to the one in Eq. 6.44 by

taking

∂T Ĝ(k,T ) = ∂T P̂α(kQ(T )|λQ(T )) = ∂T exp
[
Q(T )αΛα(k|λ)

]
= exp

[
QαΛα(k|λ)

]
Λα(k|λ)∂TQ(T )α

= T β−1

Γ(β−1
α +1)α

Λα(k|λ)Ĝ . (6.59)

After an inverse Fourier transform and re-introducing the stretched-time derivative and the

coefficientDα,β = σα

βΓ(β−1
α +1)α

this yields

D−1
α,β∂TβG(x,T ) = λDα,θ

x G(x,T )−2M [λαG(x,T )+αθλα−1∂xG(x,T )] , (6.60)

where we retrieved the RHS of the FDE of truncated CTRW in Eq. 6.47 as expected, so that

the markovian case β = 1 indeed yields the same FDE in both cases. This concludes the

path-integral based derivation of our TAFLM model, as detailed in Ref. [112] for the first time

to our knowledge.

To further verify this propagator and its properties, a Monte-Carlo solution based on the

discretized GLE in Eq. was implemented for comparison, similar to the procedure employed

to illustrate the different types of random walks throughout. As shown in Fig. 6.10, there is

generally excellent agreement with the analytical form of the propagator at in both the bulk

and the tails of the distributions, pending the finite number (107) of random walkers. For

a weak truncation of λ = 0.1 in (a-c), there are strongly non-Gaussian features present, as

already expected form Fig. 6.9. The chosen α= 1.4 results in heavy tails, that are tempered

only beyond the truncation scale of λ−1 = 10. They clearly approach the expected trend

G(x,t) ∼ e−λ|x||x|−(α+1) (dashed green), especially compared to the tails of an un-truncated

distribution with G(x,t) ∼ |x|−(α+1) (dashed gray). Due to the chosen asymmetry of θ = 0.6,

the left tail [cyan and magenta in (c)] is heavier still than the right, even at longer ranges. The

bulk of the distribution is still well contained within the chosen truncation scale, and therefore

the Central Limit Theorem has not yet taken fully effect. The converse is the case for a strong

truncation of λ= 10 as shown in (d-f), with the same remaining parameters. The bulk of the

distribution follows almost indistinguishably a Gaussian shape (dashed green), and a residual

asymmetry is only apparent in the slightly heavier left far tail in (f).
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(a)

(b)

(c) (f)

(d)

(e)

Figure 6.10 – Comparison between the analytical form of the propagator G(x,t) (red) and
binned Monte-Carlo solutions (blue crosses) based on 107 radom walks as illustrated in Fig.
6.9, where we are showing the time T = 5 here after likewiseN = 50 random steps. For (d-f),
the truncation parameter was augmented to λ= 10, resulting in a closely Gaussian transport,
albeit both are strictly subdiffusive with ν = β = 0.8.

These behaviours can be assessed more quantitatively using the moments ofG(x,t). Since all

moments of truncated Levy distributions are however finite for a finite truncation λ> 0 [219],

this property should extend to the propagator for t > 0 and H > 0. Therefore, they can be

found using the appropriate integer derivatives in Fourier-space as shown in Eq. 6.17. For the

CTRW case this has been done e.g. in [227], while the technique is applied to tempered stable

processes in [223], where combinations of moments are even employed for direct parameter

estimation. In our zero-centered stretched-time case, we thus find for the variance σ2
G of the

propagator

σ2
G = µ2 = −[∂2

kĜ− (∂kĜ)2]|k=0 = −∂2
kΛα,λ(k)|k=0Q

α

= α(α−1)

−cos
(
πα
2

)︸ ︷︷ ︸
>0∀α

σαλα−2Q(T )α . (6.61)

From this, the transport exponent is identified as ν = β at all time-scales, in contrast to ν = 2β
α

in the un-truncated case. The same result is only obtained there in the case of FBM, by letting

α= 2. We likewise restrict our attention to values of β ≤ 2, and thus transport regimes up to
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ballistic transport as detailed in Ch. 3. Considering the skewness SG, we have

SG = µ3

µ3/2
2

= ∂3
kĜ−3∂2

kĜ∂kĜ+ (∂kĜ)3[
∂2
k
Ĝ− (∂kĜ)2

] 3
2

∣∣∣
k=0

= ∂3
kΛα,λ(k)Qα[

∂2
k
Λα,λ(k)Qα

] 3
2

∣∣∣
k=0

= α(α−1)(α−2)

−cos
(
πα
2

)︸ ︷︷ ︸
<0∀α

( −cos
(
πα
2

)
α(α−1)︸ ︷︷ ︸
>0∀α

) 3
2
θ[σλQ(T )]

−α
2 . (6.62)

As should be expected from a process converging to a Gaussian, the skewness is decaying

over time, specifically with SG∝T−β2 . The property SG∝−θ directly reflects how a positive

asymmetry parameter results in a heavy left-hand tail, which could be reversed by redefining θ.

To further quantify the tail behaviour in the symmetric case, one can similarly find the excess

kurtosis

KG = µ4

µ2
2

−3 = ∂4
kĜ−4∂3

kĜ∂kĜ+6∂2
kĜ(∂kĜ)2 −3(∂kĜ)4[

∂2
k
Ĝ− (∂kĜ)2

]2

∣∣∣
k=0

−3 = ∂4
kΛα,λ(k)Qα[

∂2
k
Λα,λ(k)Qα

]2

∣∣∣
k=0

= (α−2)(α−3)cos
(
πα
2

)
−α(α−1)︸ ︷︷ ︸

>0∀α

[σλQ(T )]−α . (6.63)

With KG > 0 for any finite t, this defines the TAFLM propagator as leptokurtic, while it con-

verges towards the Gaussian mesokurtic case withKG∝T−β . Furthermore both SG andKG

appear invariant under the transformation {t,λ} → {ct,c−β/αλ}, as would be expected from

the invariance property of G(x,t), and the product σλ must be dimensionless for a scale

parameter σ with units of length. The variance being additionally scaled by λ−2 is thus also

intuitive from its units.

The behaviour of these moments is not dissimilar to those in the CTRW case as given by

[227], particularly compared to the obtained dependences on λ and t in the first terms of

his summations. Furthermore, their scaling with time is generally very indicative towards

the convergence to a Gaussian for large λ or t. Since the convergence to Brownian Motion

was documented in detail in [222, 223], it seems intuitive that we should converge towards

Fractional Brownian Motion in the same way, just with a re-scaled time-axis T β . This brings

the possible restrictions between the parameter values of α and β as detailed in Sec. 6.2.3 to

our attention [118]. Knowing that all moments of our distributions are finite and seemingly

converge to FBM could lead one to view the FBM restriction ofH < 1 as generally applicable.

However, it must be emphasized, that α in our case is more akin to a shape parameter, only

affects tail behaviour up to the truncation scale and is not responsible for the bounding of

any moments. More concisely, the underlying assumption of an H-sssi process is no longer

generally valid in our case. However, the assumptions of a non-degenerate, stationary process

with finite moments still do appear valid, and could be used to construct similar inequalities

as those used to bound FLM parameter-space in Ref. [118]. The use of their self-similar

scaling property can be emulated by using the scaling property of tempered stable processes.

113



Chapter 6. Statistical modeling of non-diffusive transport

However, this would lead to a bound that depends on the ratio of fractional moments strictly

of order q < 1 with differently scaled truncation parameters. Including the approximation of

such moments and comparisons with non-Gaussian FBM models [118], we have not yet been

able to further pursue these investigations in detail. However, since tempered Lévy processes

mediate between Lévy-stable dynamics in the short term and Gaussian dynamics in the long

term, it seems reasonable that this should continue to be the case. Since we will be dealing

with strongly non-Gaussian distributions in the following, we have therefore not restricted our

parameter space toH < 1 when attempting parameter fits in the region of α< 1. Interestingly,

the parameter region of the best fits of TAFLM distributions does seem to approximately follow

the FLM bound ofH < 1
α naturally in this case.

The only restriction between α and β that we require regardless is

β−1

α
+1 > 0 ⇒ α> 1−β , (6.64)

such that the order of the fractional integral that defines the GLE 0I
β−1
α +1
t remains positive.

In the converse case, its Γ-function would attain a negative argument, leading to invalid

propagators. Furthermore, divergent cases would be encountered when the argument draws

near negative integers. While one could replace the fractional integral by an appropriately

defined fractional derivative instead, this case has not been studied here as it does not appear

relevant to the study of the fast ion distributions in the following.
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7 Truncated Lévy motion in fast ion
transport

Having introduced various statistical models for non-diffusive transport up to the derivation

of Truncated Asymmetrical Fractional Lévy Motion (TAFLM) via path-integrals, we now seek

to apply this model to distributions of fast ion tracers obtained using the Global Braginskii

Solver (GBS) code. Many of the below results have similarly been published in Ref. [112], and

as therein, we credit A. Bovet with the production of the raw fast ion tracer data during his

previous investigations leading to Refs. [108, 103, 136]. Before attempting to fit distributions as

predicted from TAFLM to the extracted tracer distributions directly, we consider their variance,

skewness and kurtosis separately and compare their time evolution to expectations from the

analytical results at the end of the preceding chapter. This analysis proves highly useful in

assessing the applicability of TAFLM model in different transport regimes and supports the

most consistent results in the asymmetric, quasi-diffusive case. The details of the employed

fitting methods and estimate of statistical errors are described in App. A for brevity.

7.1 Treating numerical fast ion distributions

As detailed in Sec. 2.5, experimental measurements of the time-average fast ion profiles in

the TORPEX SMT plasma [169, 103] were complemented by fluid-tracer simulations with GBS

[128, 106] to enable the identification of different non-diffusive regimes [104, 103, 136] during

previous studies. As the cross-field transport was to be assessed, the transport exponents

were extracted from the horizontal variance (alongR) of numerically sampled distributions of

fast ions as a function of their propagation time [103], as also shown in Sec. 4.3. To proceed

to a more general comparison between higher order moments as predicted by the TAFLM

model and those of GBS-based fast ion distributions, some details of the fitting process will be

clarified.

Any analysis is done on the distributions of the radial displacements of the fast ion tracers,

denoted here F (R,t), not their absolute positions. This is done to emulate a δ-distributed

initial condition as assumed by definition for a Green’s function G(R,t). For the sake of

experimental comparison, Gaussian initial conditions were used to describe the numerical
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injection region within the ≈ 8mm aperture of the fast ion source casing. Since the fast ion

transport process is then to be decomposed into multiple consecutive phases with different

transport exponents, each phase must be treated separately and an initial condition F0(R) =
F (R,t0) be defined at their beginning t0. The TAFLM model is not able to recover time-varying

or transient transport exponents either, as can be seen directly from Eq. 6.61, so we will

continue this practice. Formally, the predicted distributionsN (R,T ) at a time T = t− t0 are

thus defined by the convolution

N (R,T ) =
∫
G(R−R′,T )F0(R′)dR′ , (7.1)

where we recall the full form ofG(R,T ) from Eqs. 6.57,6.58,6.45 as

G(R,T ) = 1

Q(T )
Pα

(
R

Q(T )

∣∣∣λQ(T )

)
with Q(T ) = TH

β1/αΓ(β−1
α +1)

= 1

2π

∫
exp

{
− ikR−Q(T )α σα

2cos(απ2 )

[
(1+θ)(λ+ ik)α

+ (1−θ)(λ− ik)α−2λα−2iθkαλα−1
]}
.

Each transport phase can feature a propagator G(R,T ) with a different set of parameters
~Θ= (α,H,σ,θ,λ) and thus also differences in transport exponents ν = β =αH and asymmetry

θ. In the last section of this chapter, these predictions will be fitted directly against the

corresponding F (R,T ). We will therefore assume the corresponding units of length for the

dimensional parameters [σ] = cm and [λ] = cm−1, without always stating them explicitly.

Moreover,H = β
α was chosen as the second parameter to better visualize parameter bounds of

the un-truncated AFLM model, whose adaptation is still under investigation for TAFLM as

outlined at the end of Sec. 6.4. However beforehand we separately fit the variance, skewness

and kurtosis of the evolvingF (R,T ) to the time-dependences on the transport exponent ν = β,

as predicted by Eqs. 6.61-6.63. All statistical quantities related to these different distributions

will carry one of the corresponding subscripts F ,N ,G and 0.

For consistency, the fast ion tracer distributions F (R,T ) have been extracted from two sets of

GBS-based simulations performed by our former group member A. Bovet, as acknowledged

already in Ref. [112]. Similarly described in Secs. 2.5,4.3, bunches of 40 tracer trajectories

each were integrated at 4000 sufficiently spaced time-intervals such as to sample different

realizations of the quasi-steady turbulent plasma conditions simulated with GBS. The result-

ing distributions F (R,T ) are binned from Np = 1.6×105 trajectories recorded at 968 steps

in propagation time of ≈ 0.26µs length and their statistics were found well converged e.g.

compared to results from runs with 6000 bunches of 100 particles. While we use two sets of

previously recorded trajectories in the following, the methods and conventions for retriev-

ing, interpolating and ultimately fitting the requisite data have been adapted or replaced as

outlined in the following and App. A.
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7.2 TAFLM analysis of the moments of fast ion distributions

The main goal of analyzing the different moments of the fast ion propagator is to establish

how consistently the evolution of their bulk, tails and asymmetry can be described by the

TAFLM approach before attempting a direct fit of their parameters. With five dimensions and

few restrictions in parameter space, the shape of the distributions is quite flexible and may

even reveal itself as over-parameterized in certain cases, e.g. if trade-offs between parameters

occur due to some residual trends or noise in the data. Further constraints and indications on

the applicability of the TAFLM model are therefore highly advantageous from any practical

standpoint.

In Fig. 7.1(a), we show the evolution of the radial variance σ2
F of the numerically obtained

distributions of the radial fast ion displacement F(R,T). Results for an injection energy of

E = 30eV are shown in thin-lined red, while those forE = 75eV are shown in blue. As shown

in previous studies (see Sec. 2.5), and reiterated in Ch. 4, the variance and all other quantities

show oscillations due to the Larmor-motion of the particles narrowing and widening the beam

periodically until their spreading due to the turbulent electric fields eventually dominates.

To assess the changing statistics of the fast ion distribution due to the latter effect, we again

focus on the data-points at times when σ2
F has a local maximum, as indicated by the circles.

Points expected to belong to the previously established super-diffusive regime are given in

orange, the later asymmetric and quasi-diffusive regime in red and the subdiffusive regime

in purple. The distributions taken at their first respective maximum t0 (see crosses) serve as

their respective initial conditions F0(R). To perform the fit of the transport exponent, we need

the variance of the propagator σ2
G(T ). Adopting the definition of Eq. 7.1 with an expected

distribution F (R,T ), this is found as

σ2
G =σ2

F −σ2
0 ∝T β , (7.2)

analogous to the method used in previous work [103, 136]. In Fig. 7.1(b), we thus show

the σ2
G, obtained at the times chosen for each transport phase (still circles), while the time

base T has been shifted accordingly to their respective t0, and scaled to the angular fast

ion gyro-frequency Ω ≈ 1.2MHz as given in Tab. 2.2. The slope of the straight line fits on

these logarithmic axes thus leads to the shown transport exponents ν = β, which are indeed

similar to those given e.g. in Sec. 2.5 (from [103]) for the super- to quasi-diffusive regimes.

Based on standard methods using the covariance matrix of the employed R2-measure for

the quality of fit [229], we estimate an error of . 5% on the values of most fitted slopes. The

larger value for the still subdiffusive regime is probably due to a selection of later time-indices

here, as similarly seen in Sec. 4.3. It should thus again be noted that the specific choice of the

maxima for all transport phases distinctly affects the values of the inferred transport exponents

and other parameters. However, their overall behaviour and the given regime of transport

appear relatively consistent for similar choices. Returning to Fig. 7.1(a), the bold lines indicate

predictions based on the fits in (b), found after inverting Eq. 7.2.
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Figure 7.1 – The variance (a,b), skewness (c,d) and excess kurtosis (e,f) are shown for the
distributions of fast ion tracer displacementsF (R,T ) (a,c,e) and as inferred for the propagator
G(R,T ) (b,d,f) by taking the initial conditions F0(R) into account for each transport phase
using Eqs. 7.2-7.4. The propagation times on the abscissa have been scaled by the Larmor
frequencyΩ and are shifted to the beginning of each transport phase in (b,d,f). As described
in the text, bold lines show fits on the selected data-points (circles) of each quantity to the
time-dependences expected for TAFLM propagators given in Eq. 6.61-6.63 in (b,d,f), while
dashed lines indicate expectations purely based on the fits of the variance. The transport
exponents ν = β inferred from each fit is shown in the corresponding pannels. Bold and
dashed lines in (a,c,e) are found based on these fits after inverting Eqs. 7.2-7.4.

In (c) the modulus of the skewness |SF | is shown, as the tracer distributions withE = 30eV

are negatively skewed due to stronger fluctuations in the plasma potential towards the HFS
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of TORPEX driving stronger turbulent transport. Such observations already motivated the

deployment of the un-truncated AFLM model in this case. In the 70 eV case, distributions

appear approximately symmetric with |SF | < 0.1, and the sign ofSF changes between different

selected times. Therefore this case is excluded here, and only the 30 eV case of the modulus of

the propagator skewness |SG| with

SG = σ3
FSF −σ3

0S0(
σ2
F −σ2

0

) 3
2

∝T−β/2 (7.3)

is fitted in the super- and the quasi-diffusive regimes as shown in (d). Note that the first part

of Eq. 7.3 has the same structure as Eq. 3.7, since also the sum of two random variables

that are assumed independent has a distribution given by the convolution of their individual

distributions, as also outlined in Sec. 6.1.3. Clearly, the superdiffusive case is problematic as

|SG| grows, leading to an unphysical, negative estimate of the transport exponents. While |SF |
also grows in the asymmetric regime, we find that |SG| indeed decays after taking the initial

conditions into account, albeit more slowly than would be expected from the fits of σ2
G. For

comparison, the dashed lines indicate the slopes that would be attained by using the transport

exponents found from the fits of σ2
G in (b).

In (e), we show the excess kurtosisKF for the asymmetric regime only, as we find mesokurtic

(KF ≈ 0) distributions with during superdiffusion withKF < 0.07, so that any further decay

as expected from Eq. 6.63 cannot be feasibly fitted. In the subdiffusive regime, we even find

KF < 0, i.e. platykurtic forms of the distributions F (R,T ). Even after accounting for initial

conditions and using

KG = σ4
FKF −σ4

0K0(
σ2
F −σ2

0

)2 ∝T−β , (7.4)

we still findKG < 0 in the subdiffusive case, which is incompatible with Eq. 6.63, as it defines

TAFLM propagators as lepto- to mesokurtic. The remaining asymmetric case shown in (f)

features a decaying KG, with a slope that is consistent with the decay in |SG|, as shown by

the similar inferred transport exponents. As again illustrated by the dashed line, both remain

distinctively lower than the parameter found for the growth of σ2
G though. Since contributions

from the tails of the distributions affect the higher moments more strongly, this indicates

that there may be some discrepancies between the evolution of the bulk and the tail when

modeling them using TAFLM propagators in the following.

7.3 Fitting the TAFLM propagator

We will now attempt to fit the predicted distributionsN (R,T ) calculated through Eq. 7.1 to

the corresponding fast ion tracer distributions F (R,T ). For each transport phase, we select

the same initial times and propagation times as during the fitting of the moments above.

However, the fit now simultaneously involves the full 5-dimensional parameter space ~Θ. We

use again a least-χ2-method to quantify the quality of a fit for each set of parameters ~Θ on the
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TAFLM propagatorG(R,T ) that is used to predict the distributionsN (R,T ) for all considered

propagation times T simultaneously. The details of the method are given in App. A. The main

motivations for deviating from standard approaches are in fact the resulting high number of

N > 200 fitted data-points across each transport phase, as well as the presence of irregularities

such as valleys and flat minima of χ2 in many regions of parameter-space, particularly in the

superdiffusive and subdiffusive regimes. Hence no local minimum finder has been used, but

full scans of χ2 across the relevant ranges of ~Θ are performed. A given set of parameters is

deemed part of the region of acceptable fits (see Figs. 7.2,7.4,7.6), if its χ2 is below a threshold,

that is set based on the expected level of statistical fluctuations from sampling F (R,T ), as

quantified by bootstrapping (see also App. A). The best-fitting distributionsN (R,T ) with the

parameters that minimize χ2 are shown against F (R,T ) for selected T in Figs. 7.3,7.5,7.7. As

can be seen from the given reduced χ2 of these fits with nd degrees of freedom, denoted again

χ2
r = χ2

nd
, the distinctly best agreement is found in the quasi-diffusive, asymmetric transport

regime. Nonetheless, the results for the sub- and superdiffusive regimes are shown to begin

with, as they serve to illustrate how naive applications of the TAFLM model can be misleading,

which in turn highlights the value of the pre-analysis performed in the previous section.

7.3.1 Subdiffusive regime

In Fig. 7.2, we show four projections of parameter-space and indicate through the color-scale

how many acceptable fits are found at each pair of shown parameters, given the indicated

discrete steps in parameter resolution. As visible in many of the projections in the following,

note that the parameter regions of acceptable fits are often not continuous. Furthermore, the

total number of acceptable fits changes with the parameter resolution and their χ2-threshold

values used for each transport phase. Regardless, the structure of this region can reflect

problems for the fitting of the TAFLM model as well as how much certainty (if any) one should

attach to the best-fitting set of parameters with χ2
min, shown by red crosses. In (a), we can

see that most acceptable fits lie naturally within the parameter bounds of the un-truncated

AFLM model, i.e. to the left and below the dashed gray line. Furthermore, the shape of

the region follows the line defined by the expected β = α
H = 0.74. From (b) one suspects a

high degree of uncertainty in the asymmetry parameter θ, as expected from the inconsistent

trends of the skewness SG. In (c), we find a clear parameter trade-off between α and λ, both

competing in the assignment of a limited degree of heaviness towards the poorly defined,

flat tails of N (R,T ). Since the best possible fit to these platykurtic distributions using a

TAFLM propagator is achieved with a mesokurtic Gaussian, with subdiffusively growing width,

the trade-offs are even more dire in (d). Since any large choice in λ is bound to produce

approximately Gaussian propagators, the whole range of λ & 5 can potentially produce a

similar level of fit-quality, if the scale parameter σ compensates the truncation accordingly

in the bulk. Since there are no sufficiently populated tails, this trade-off cannot result in any

discrepancies there. Otherwise this would be expected e.g. given that the relation between σ

and λ differs between the variance in Eq. 6.61, which grows with σαλα−2 and the skewness

and kurtosis in Eqs. 6.62,6.63, where only the product σλ enters.
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Figure 7.2 – Illustration of the parameter-space relevant for fitting the TAFLM model in the
subdiffusive regime. The region of acceptable fits (see App. A) is shaded blue, with the
color-scale indicating how many acceptable fits are found at each pair of parameters from
(a) to (d), given the shown parameter resolutions. Red crosses indicate the set of parameters
corresponding to χ2

min, for which the fit result is shown in Fig. 7.3. In (a), we show the location
of β fitted using σ2

G [see Fig. 7.1(b)] in green. Furthermore, we delineate the parameter bounds
of the un-truncated AFLM model withH ≤ 1 for α≥ 1 andH ≤ 1

α for α< 1 in dashed gray.

Given the stringent choice of statistical errors in the χ2 calculation, it is finally not surprising

that even the best fits result in a reduced χ2 of more than 50. Therefore, as expected from the

previous section, this transport regime appears unsuitable for modeling with TAFLM, and the

only useful parameter-estimate of β is more straightforwardly achieved by fitting σ2
G. Note

however that, pending the obvious discrepancies near the peak of the distributions, the fitted

N (R,T ) still appear to conform relatively well to the rest of the data F (R,T ) as seen in Fig.

7.3, due to the flexible shape of the TAFLM propagator, that is thus not just unsuitable but also

over-parameterized for this problem. If a less stringent error estimate was chosen in the χ2

calculation, e.g. a fixed 10% based on some systematic uncertainties, this would effectively

more than triple the errors near the peaks and diminish the reduced χ2 potentially below 5,

and thus mislead conclusions that do not consider the full region of similar fits or analyze the
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Figure 7.3 – Best fits when using the TAFLM model to describe the fast ion distributions in the
subdiffusive regime, on both a linear scale in (a) and a logarithmic scale in (b). The indicated
times T elapsed since attaining the initial condition (dotted black). The dataF (R,T ) is dotted,
with its error-bars based on statistical uncertainties from bootstrapping (see App. A). The
lines indicate the respectively predictedN (R,T ) as defined in Eq. 7.1, with the parameters of
G(R,T ) shown by red crosses in Fig. 7.2. The units on the ordinate are of inverse length and
correspond to normalized distributions in all cases, as in the previous chapter. The reduced
minimal χ2, with nd = 209 degrees of freedom in this fit, reflects clear discrepancies near the
peak of the distributions.

moments of F (R,T ).

7.3.2 Superdiffusive regime

In Fig. 7.4, we illustrate the parameter region of acceptable fits for the superdiffusive regime.

In (a), we find very strong agreement with the value β = 1.24 inferred from fitting σ2
G. However,

almost all fits that appear acceptable are outside the region of permissible parameters of

the un-truncated AFLM model. While a strong (and growing) asymmetry is quite clearly

indicated in (b), we find some residual trade-offs between λ and α in (c) and very clearly

problematic trade-offs between again between λ and σ in (d), albeit not quite as spread as

in the subdiffusive case. The source of these trade-offs remains at least partially the fact that

the far tails of the fitted distributions are still very poorly populated, so that the latter two

parameters can compete for the scale of the bulk of the distribution. However, as can be seen

in Fig. 7.5, there are very clear non-Gaussian features present, so that the TAFLM model is not

as over-parameterized as in the previous case. However, the fact that the skewness |SG| grows

in this regime still seems to imply that early left tails [(b), blue] are over-estimated, and later

under-estimated (yellow) by the TAFLM model, limiting accuracy and allowing other trade-offs.

For instance, a relatively strong truncation by the large λ > 1 still leads to a visible second

trade-off with α towards lower values, to find the seemingly same, imprecisely fitted degree

of heaviness in the near-tails of the distribution compared e.g. to the scale of its peak-region.

Given that β appears quite effectively determined by the growth of σ2
G over time, any decrease

in α thus pushesH into the region of non-permissible values for AFLM.
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Figure 7.4 – Illustration of the parameter region of acceptable fits in the superdiffusive regime,
as projected and described for the subdiffusive case in Fig. 7.2. Note the reduced, but nonethe-
less problematic valleys in (c) and (d). While the region conforms strongly to the expected β
(green) from the growth of σ2

G, most of it lies outside the permissible parameter region of the
AFLM case. Further analysis of these features is given in the text. The red crosses show again
the parameter set for χ2

min, used to fit the distributions in Fig. 7.5.

Interpreting the parameters of the obtained best fits is therefore problematic. Especially the

truncation parameter still appears arbitrary, and we do not immediately find any physically

resolvable effects on a fixed scale of λ−1 ∼ 0.3cm that would hinder transport. Especially

taking into account the findings in the later, asymmetric regime, a more consistent conclusion

can instead be drawn assuming we have not yet reached a scale where truncation effects play

a well quantifiable role. Therefore assuming the lowest indicated λ. 1 to be most pertinent,

these would indicate that a higher value of α≈ 1.3 is more applicable and indeed, this results

in a few acceptable fits that lie near this value with H . 1 in the region of permissible fits

for AFLM. Therefore, assuming a small impact of fixed-scale truncation effects in this regime

appears more consistent.

The importance of such considerations, aided by the analysis of the moments and parameter-
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scans, can be regarded as more crucial in this regime, than in the subdiffusive one, since even

the highly stringent error-estimates employed in the χ2 measure here lead to fits in Fig. 7.5

with a minimal reduced χ2 of less than 10. Since any increase in error uncertainties would

quickly result in values near unity, this case provides a clear example of how misleading fits

could be found, and how additional analysis as in the proceeding section is needed for a

reasonable assessment of the applicability of the TAFLM model.

Figure 7.5 – Best fits of the TAFLM model for the superdiffusive regime, on a linear (a) and
logarithmic scale (b), with all distributions again normalized. For the indicated times T
since attaining the initial condition (black, dotted), predictionsN (R,T ) are shown with lines
compared to the dotted data points from F (R,T ), again indicating their respective statistical
uncertainties. The minimal reduced χ2, with nd = 152 degrees of freedom here, reflects an
overall decent agreement of the model with the data, despite it not being strictly applicable.

7.3.3 Quasi-diffusive regime

Finally, we turn to the fitting of the TAFLM model in the asymmetric, quasi-diffusive transport

phase, for which the region of acceptable fits is illustrated in Fig. 7.6. It becomes immediately

apparent that this region is now much better bounded in parameter-space, and only limited

trade-offs are seen. In (a), α and H of most acceptable fits still lie near the line of β = 0.91

as found from fitting σ2
G, and occupies the fully permissible region of values of AFLM. The

asymmetry parameter for all acceptable fits is still significant, but no longer near its maximum

value as seen in (b). A limited trade-off between λ and α remains in (c), but is strictly limited

to values λ < 1. In complete contrast to the two previos examples, the parameter region

between λ and σ in (d) appears the most localized, suggesting a likely value of λ≈ 0.25. This

localization in parameter-space most likely results from the fact that the sampled F (R,T )

are now increasingly populated also in their far-tails. Since the shape of both bulk and tails

must now be modeled simultaneously, the potential for parameter trade-offs is drastically

reduced. Furthermore, there is now drastically problematic trend such as a growth of |SG|
during superdiffusion, that would likewise lead to a substantial trade-off between fit quality

during early and late times T for different sets of parameters. Some of the residual uncertainty

is nonetheless due to the fact that the left-tails of the distributions as seen in Fig. 7.7(b) at
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Figure 7.6 – Parameter regions of acceptable fits in the asymmetric, quasi-diffusive regime,
as similarly shown for the sub- and superdiffusive case in Figs. 7.2 and 7.4 respectively. Note
the absence of any significant valleys and trade-offs in parameter-space here, particularly
in (d), since both the bulk and tails of the distributions F (R,T ) are populated during this
transport phase. Further analysis is given in the text, particularly regarding the inferred
truncation parameter λ≈ 0.25. In (a), we find again reasonable agreement with the line of
β expected from analyzing σ2

G, and most acceptable fits have returned within the (dashed)
bounds associated with the AFLM case. The parameters corresponding to χ2

min are again
marked by red crosses and were used to produce the fits shown in Fig. 7.7.

late times appear slightly over-estimated, as the skewness of the distributions decays more

slowly than would be expected from the growth of σ2
G, as discussed in the previous section.

Nonetheless, a very high quality of agreement is reflected by the minimum reduced χ2 of 3.6,

both in the bulk and tails of the distribution.

In this case, one may reasonably attempt to give a physical interpretation to the truncation

parameter, as the tails of the distributions appear distinctly and consistently affected beyond

the scale of λ−1 ≈ 4cm. Recalling Ch. 2 and Tab. 2.1, this is indeed very close to the pressure-

gradient scale in TORPEX. The size of the domain over which significant plasma density

fluctuations tend to propagate also has an extent of 2λ≈ 8−10cm, often centered near the
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investigated fast ion profiles. Since it is these plasma structures whose potential fluctuations

result in the turbulent electric fields responsible for the cross-field transport of fast ions

as illustrated in Sec. 3.3, it does appear reasonable that any apparent truncation scale be

determined by the domain of their average dynamics. Since the fast ions are now beginning

to propagate across the extent of this domain, the TAFLM model appears applicable in this

regime, and recovers an intuitive parameter-value for the employed λ.

Finally, it should also be noted, that the somewhat larger extent of the region of acceptable fits

compared to the bounded cases in the other transport regimes is also due to a systematically

higher threshold in χ2 compared to its minimum. As discussed in the concluding remarks of

App. A, a more restrictive threshold and smaller regions of acceptable fits could be discussed

in this case from a purely statistical stand-point, without affecting the error-estimates in the

χ2-measure itself.

Figure 7.7 – Best fits of the TAFLM model in the quasi-diffusive regime, again shon on linear
and logarithic scales in (a) and (b) respectively, with normalized distributions. The fitted
predictionsN (R,T ) (lines) at the indicated times T since the initial condition (black) are in
very strong agreement with the data in both bulk and tails of F (R,T ) (dotted), often close to
or within the associated statistical uncertainties. This is also reflected by the shown minimal
reduced χ2, here with nd = 339 degrees of freedom in the fit.

7.4 Conclusions

Based on the fast ion tracer distributions obtained using GBS, we have illustrated both the

limitations and the potential of applying the TAFLM model as a statistical description of non-

diffusive transport. Given the significant freedom in shaping the TAFLM propagator within

the parameter-space ~Θ= (α,H,σ,θ,λ), fits of apparently good quality can often be obtained

especially if uncertainties beyond the minimal statistical errors were to be assigned to the data.

However, physically instructive direct fits are only obtained in the quasi-diffusive, asymmetric

regime, where the bounds of the transport domain indeed begin to affect the further propaga-

tion of the tracers, as similarly seen in other studies on tempered stable distributions [219].

When this is not the case, parameter trade-offs can produce misleading fits, especially if the
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tails of the distributions are not well populated with data-points. Additional considerations

are needed to distinguish such scenarios. The analysis of the evolution of variance, skewness

and kurtosis compared to expectations from their analytical forms prescribed in TAFLM has

proven highly effective in this regard. We therefore recommend it as a general first step when

investigating the use of TAFLM in any other scenarios, to avoid precipitate conclusions from

brute-force fitting attempts.

Succinctly put: One does not simply fit truncated fractional diffusion models.

As confirmed by the presented results, TAFLM seems generally of most use in systems where

non-diffusive transport, experiences a physical bound at a consistent length-scale of steps. In

any such settings, one can potentially obtain reasonable predictions on the dispersal of a given

initial particle distribution, if appropriate, constant model parameters can be set e.g. based

on a smaller subset of data. The existence of a maximal particle velocity is not an equivalent

criterion to the above, unless one treats the mid- to long-term behaviour of the markovian

case, which is intrinsically consistent with jumps over constant, uncorrelated time-intervals.

For a more general treatment of particles undergoing jumps in velocity space at arbitrary

time-scales, we refer the reader to the formalism akin to Persistent Random Walks detailed in

Ref. [194], which is beyond the scope of this thesis.
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8 Outlook and conclusions

In this thesis, a number of other investigations have been put forth, which have only been

touched upon in passing, or when presenting the TORPEX experiment in Ch. 2. Here, we

wish to give a brief account of the current state of some, that will most likely be pursued

further in the future and open new avenues of investigations. Thereafter, we summarize

the conclusions and perspectives gained from the presented findings on intermittency and

truncated fractional diffusion models.

8.1 Other avenues of investigation

8.1.1 Multiple time-series

Much of the analysis presented in Sec. 3.3 and Ch. 5, as well as the vast majority of the

numerical efforts in Ch. 4, were motivated by the fact that our investigations have been limited

to single-point measurements, not unlike other settings where fast ions are investigated, as

e.g. satellites in the Van-Allen belts [97]. The multi-GEA presented in Sec. 2.4.3 featuring

five adjacent collectors is dedicated to overcoming this limitation in TORPEX. Besides sig-

nificantly increasing the efficiency of time-resolved and time-average measurements, the

path would be opened towards new analysis techniques such as correlation studies, or an

adapted CS-method just to begin with. Further investigations could thus focus around a more

detailed characterization of the instantaneous fast ion beam motion in different transport

regimes. To some degree, the detector could in principle even assess the shape of a wider

instantaneous beam, e.g. from a larger source region. Such results, as well as correlation

studies could then potentially be linked to further analysis methods based on the meandering

beam model detailed in [109]. The design and commissioning of the developed hardware was

largely successful as outlined in the first two project reports by L. Kadi [230, 113]. During a

preliminary experimental campaign, strong reductions in capacitive and inductive pick-up

noise were achieved through the careful and well-insulated wiring used inside and outside the

TORPEX vacuum vessel[231]. Nonetheless, a number of issues prevented the investigation

from progressing further, mainly related to the employed electronic equipment.
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The existing amplification circuitry only permits two collector channels that are subtracted in

a single amplifier during the last stage. To utilize at least two of the provided collectors simul-

taneously, a second amplifier was introduced to separately amplify both collector signals. Due

to the reduced noise on both channels, a subtraction akin to that of the back-side GEA signal

in the current set-up did not appear necessary at first. However, setting a consistent reference

to ground between all elements of the equipment proved increasingly challenging. Likely

related to this, the on-phase signal would receive an inconsistent negative offset compared to

the weaker off-phase signals, so that even the obtained mean-profiles would appear negative,

despite fast ion peaks still appearing as positive in the calibrated time-series as expected.

These shifts in the signal mean also inevitably affect the measured values in skewness, that

nonetheless appeared most significant in the tail regions of the suspected fast ion profiles as

expected e.g. from Ch. 3.

Furthermore, the introduction of noise from the plasma, even at low densities, hindered

correlation analysis. Since many plasma structures (few cm) are larger than adjacent collectors

(8 mm), the signal noise is highly correlated between them. In fact, with an often smaller or

deformed instantaneous fast ion beam as expected from Ch. 4, correlations often appeared

weaker during ion source on-phases. While attempts were made to account for such noise-

induced correlations, also while adapting CS-techniques, results remained largely inconclusive

and a more in-depth analysis is needed. The outlined preliminary results are given in the third

report by L. Kadi [231].

Above all, it has become abundantly clear that a customized implementation of a five-fold

amplification circuit, with a single common ground and noise-insulated power-supplies, is

required to make data from the multi-GEA amenable to analysis. The introduction of a 6th

‘blind’ channel can also aid in the identification of noise within the system. While this circuitry

has now mostly been conceptualized by M. Baquero and P. Lavanchy [232], its implementation

into a new fast ion electronics crate and slave are not foreseen before autumn 2020.

8.1.2 Onset of transport

Since the time-average measurement campaigns by A. Bovet [169, 103] and the related analysis

by K. Gustafson [104], the transition of early ballistic behavior of the fast ion trajectories, or

their gyro-center, to other non-diffusive transport regimes has attracted interest. As the mea-

sured transport exponents during this transition are bound to be transient as well, a clearer

experimental quantification of the onset of measurable turbulent transport based on fast ion

time-series measurements, e.g. through transfer entropy analysis [233], has been under prepa-

ration. A better understanding on how the ballistic transport exponent gradually transitions

to sub- or superdiffusive values could be obtained by combining such early measurements

with analysis based on the formalism presented in [194], treating random walks in velocity

space and transient transport exponents between early and late propagation times.

Based on existing measurements, such an investigation would have to be performed at source-
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detector distances of at mostD < 15cm. Given the current limitations on available ports on

TORPEX with two HEXTIP arrays, a new arm has been implemented for the ion source, to

advance its position in the toroidal direction and allow arbitrarily close distances D to the

closest possible location of the GEA. As shown in Fig. 2.11(a), a counter-weight has been added

on the back of this source arm to reduce any torques on the movable system in the direction

of the rail. Nonetheless, the total added weight of this piece appears to be too challenging

a load for the fast ion movable system. Even during recent campaigns with the standard

Z-shaped source arm [see Fig. 2.7(b)], the piezo-electric motor often appears blocked due to

uneven strains in the springs that clench the ceramic ball-bearings of the chassis onto the

rail. This, combined with an uneven radius of curvature of the toroidal rail, is known to lead

to misalignments of the revolving gear that is engaged by the motor, causing it to block. The

additional torque about the toroidal axis introduced by the heavier version of the source arm

thus renders a reliable use of the movable system impossible in its current state. Due to the

described general problems with the assembly, a new implementation of the system has been

discussed, focusing on a more robust dynamic alignment between the chassis and the rail,

as well as the symmetric distribution and compensation of added load. This overhaul is not

foreseen to be completed before the end of 2020, and will most likely require extensive testing

and adjustments as work progresses, similar to the original commissioning of the movable

system in 2012.

8.1.3 Complex field-line configurations

The possibility of producing complex magnetic field-line geometries has been extended

through the thesis work of F. Avino [135], opening new research avenues on the TORPEX de-

vice. Measurements of fast ion transport in partially closed field-lines or near an X-point would

potentially be of more direct interest to research related to fusion devices with similar magnetic

topologies. However, the required operation of the internal toroidal conductor introduces

further technical difficulties. Even when water-cooled, shot durations must be kept within a

few seconds to not over-heat the device. This is more than sufficient for time-resolved mea-

surements, but can preclude the effective use of lock-in amplification. Since many explored

scenarios show local plasma densities distinctly higher than in the SMT configuration, lock-in

measurements may however become essential there. An alternative X-point configuration has

been introduced for an ongoing Enabling Research project headed by C. Theiler, with the aim

of again providing a reproducible test-bench for the validation of multiple turbulence codes,

including GRILLIX, STORM, TOKAM3X, FELTOR and of course GBS [234]. The projections

of the magnetic field-lines into the poloidal plane are outlined in gray in Figs.8.1,8.2. Since

this set-up does not require the internal toroidal conductor, but uses two oppositely directed

currents in the vertical magnetic field coils, the option of using lock-in amplification is kept

open. Furthermore, the absence of the toroidal conductor from the centre of the device allows

more freedom for choosing the fast ion injection position and considerably facilitates the

movement of the GEA detection system across the poloidal cross-section.
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Figure 8.1 – Results from X-point configuration experiments with HEXTIP-U. Profiles inter-
polated from the time-average and standard deviation of plasma-density time-series from
HEXTIP-1 are given in (a) and (b) respectively, with units of ×1015m−3, while (c) shows the
profile of their skewness. Densities are again converted from ion-saturation currents by approx-
imating a constant Te = 5eV. The crosses show the positions of functioning Langmuir-probe
tips, while poloidal projections of magnetic field-lines outline the X-point and its four ‘legs’ in
gray. In (d) and (e), we show interpolated profiles of the time-average and standard deviation
of floating potential time-series as measured by HEXTIP-2 in units of V. The corresponding
skewness profile is given in (f).

The principal characteristics of the plasmas produced in this X-point configuration as mea-

sured with HEXTIP-U are given in Fig. 8.1. The time-average plasma density profile in (a)

shows lower maximum densities compared to the SMT plasmas in Fig. 2.4, but are positioned

closer to the centre of the cross-section. Moving the EC-resonance further to the HFS than

shown here tends to impede a reliable plasma breakdown, especially if we wish to maintain

a relatively low injection power of 150W. In (b), the strongest fluctuations occur near the

observed density gradients, and like the time-average profile, extend more distinctly into

the region above the X-point than below. In recent measurements, this asymmetry has been

reversed by inverting the direction of the toroidal field [235]. The positive skewness of the
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HEXTIP density time-series shown in (c) still indicates the intermittent propagation of dif-

ferent plasma structures. These are detected more frequently near the ’legs’ leading from

the X-point, making them quite visible in this profile. Plasma structures are not observed to

propagate far across the legs of the X-point, which is likely due to faster parallel transport

along the field-lines. Respectively shown in (d) and (e) the time-average floating potential

and its fluctuations therefore also remain close to zero in the LFS region, analogous to the

density. Since most plasma structures may still carry positive and negative fluctuations in

floating potential, the skewness profile in (f) appears much less distinct than its counterpart

for density.

This naturally leads to the expectation that turbulent fast ion propagation, due to the electric

fields associated with such potential fluctuations, should be affected by the legs in a similar

manner. This is supported by first results from the tracer algorithm presented in Ch. 4 in the

X-point configuration. As illustrated in Fig. 8.2, the fraction of tracers that ultimately cross

into the lower region is strongly dependent on how far above the X-point they were injected.

In (a-c) we see results for an injection position at x1 = 100cm and y1 =+2cm, while results in

(d-f) are obtained by injecting at y1 = 0cm. In both cases, we takeE = 30eV to firstly focus on

the case least affected by gyro- and drift-averaging. The adjustment factor for the strength

of the electric fieldsEf = 2.2 is chosen as for the SMT, but should be verified as soon as full

experimental measurements of the time-average fast ion profile are available.

Going forward, quantifying the fraction of fast ions crossing the X-point experimentally as

a function of injection position and energy thus seems to be a promising first step in char-

acterizing the effect of X-points on their turbulent transport. Many of the newly introduced

parts of the fast ion set-up have to work in tandem to pursue this investigation. The position

of the X-point inside the TORPEX vessel has been verified to ≈ 3mm accuracy, so that with the

newly developed periscopic probe-arm (see Sec. 2.4.3), injection at different positions should

be consistently possible. Since a wide spread of the fast ions can be expected as seen in Fig.

8.2(c,f), lock-in detection may indeed be needed at the corresponding longer source-detector

distances ofD ≈ 171cm. This holds especially in the region close to and above the X-point,

where significant plasma density fluctuations introduce noise.

An additional problem has been found in the form of a certain population of suprathermal

electrons apparently propagating counter-clockwise there, and introducing significant, asym-

metrical noise through the back-side GEA of the older detection set-up. Since even biases near

the maximum of the available range have not sufficiently mitigated the effect, measurements

with the single-sided multi-GEA prove more promising at this point. Additionally, some por-

tions of larger time-average fast ion profiles could lie outside the range of angles at which the

movable system of the GEAs reliably functions, if estimates from Fig. 8.2 apply. An estimate of

the total current, and thus the fraction of ions in any given region, is therefore only possible

if a workable measurement of the injected fast ion current using the dedicated acquisition

circuit in Fig. 2.12 is supplied. A detailed quantification of the expected losses from grids,

apertures and other factors should be carried out, e.g. in the frame of the investigation of early
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Figure 8.2 – Poloidal fast ion tracer profiles J(x1,y1,τ ) in units of mAm−2, averaged over all
≈ 4000 injected bunches of 400 tracers each, at the indicated propagation times τ . A total
injected current of 2.85µA has again been assumed. Pending effects due to time-of-flight
dispersion as described in Ch. 4, Fig. 4.6 for the SMT, these profiles provide first estimates
of time-average fast ion profiles (see Sec. 3.2) in the X-point configuration. Profiles (a-c) are
based on an injection position of x1 = 100cm and y1 =+2cm, while y1 = 0cm was chosen in
(d-f). The magnetic field geometry is again outlined in gray. An artifact is visible on the upper
outer leg in (c,f), due to a Langmuir probe on HEXTIP-1 beginning to malfunction, leading to a
local deformation of the profile. This issue has meanwhile been addressed for current studies.

transport, so that the currents measured on the external grid of the source assembly can be

more reliably converted to total measurable currents with the multi-GEA. A refurbishment of

the movable systems with slower, more powerful motors is planned in the upcoming months.

Furthermore, the ion source assembly requires more detailed attention as no discernible ion

current could be injected from the last two installed sources. Thorough maintenance of the

wiring, grids and insulating parts, as performed before the longer experimental campaign on

time-resolved measurements, is currently underway.

Nonetheless, any eventual conclusions on the potential non-diffusive nature of fast ion trans-

port in devices with similar magnetic topology, such as a tokamak divertors, must be taken

with severe scrutiny. While the generally established results on the increased effects of orbit-

averaging of lower energy ions can give first indications, the particular turbulent structures
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in each environment and their statistics need to be analyzed in detail. Benchmarking efforts

on various turbulence codes and especially GBS for the simulation of such plasma structures

are ongoing, and should be concluded before investigating fast ion trajectories e.g. by using

similar tracing-methods as in the SMT [104, 103]. Such simulations should be able to help

bridge the remaining gap between preliminary results from the presented fast ion tracer

and upcoming experimental measurements, and could hopefully lead to some more general

applications.

8.2 Intermittency studies

Moving on towards the conclusions of the work presented within this thesis, we firstly return

to the studies of local time-intermittency across the different non-diffusive regimes of fast

ion turbulent transport. Quantified by the skewness of local fast ion time-series from the

GEA, earlier investigations only found distinct intermittency above the local noise level during

superdiffusion [107, 136]. A comprehensive set of time-average and skewness profiles based

on time-resolved fast ion measurements have been presented in Ch. 3 as in Refs. [110, 111],

and includes both the sub-diffusive regime for injection energies of E = 70eV, as well as

the super- to quasi-diffusive regime forE = 30eV. Distinct instances of time-intermittency

are found across all investigated transport regimes, in particular in the outer regions of the

time-average fast ion beam. Both the time-average and skewness profiles are now normalized

to a common total fast ion current. This gives the fast ion signal a consistent weight relative

to statistical contributions from the background noise. The consequently found maximum

values of skewness appear still higher in the super- to quasi-diffusive regimes, and grow with

increasing source-detector distance, i.e. with fast ion propagation time. Investigations using

conditional sampling analysis consistently indicates the average response of the fast ions to

the dipole-like potential fluctuations associated with larger plasma structures from the ideal

interchange-mode. Fast ions withE = 30eV move almost twice as strongly in response to the

turbulent E×B-flows compared to theE = 70eV case. As already reasoned in [104, 103], ions

with higher injection energies remain subject to stronger gyro- and drift averaging, as well as

proportionately smaller propagation times in the plasma.

Throughout the analysis, we were led to suspect that the intermittent peaks in the fast ion

time-series indicate instances of a much smaller and more concentrated instantaneous fast

ion beam, compared to the time-average and CS-profiles. Lacking as of yet the capacity

of reliably acquiring multiple simultaneous fast ion measurements, we have introduced a

numerical tracing algorithm in Ch. 4, to investigate the statistical properties of the simulated

instantaneous fast ion beam. The tracer uses an arbitrary static magnetic geometry as input

(here the SMT), as well as time-resolved floating potential measurements from HEXTIP-U

to approximate the turbulent electric fields of TORPEX plasmas. Tracers are injected with

similar initial conditions compared to earlier investigations based on GBS [104, 103] and

their trajectories integrated using the explicit Boris-method. The time-average behaviour of

the tracers was studied to adjust the impact of electric fields to match the GBS studies, and
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thus the experiment. The statistics of individual bunches of simultaneously injected tracers

coupled with a synthetic diagnostic indicate indeed that the instantaneous fast ion beam

often features a distinctly smaller width than the time-average, particularly forE = 30eV. With

peak current densities similar to those expected form experimental measurements, synthetic

time-series were generated for the 30 eV case [109]. Given a reasonable contribution from

noise, their skewness profile shows strong qualitative and often even quantitative agreement

with experimental data. These insights helped to establish the principal physical picture of

a concentrated, meandering fast ion beam, which over time builds a distinctly larger time-

average profile.

In Ch. 5, we have introduced the principal elements of an analytical model that is based on

the physical picture described above, as detailed in [109]. Firstly assuming approximately

Gaussian instantaneous and time-average profiles with constant shape for simplicity, this

model closely recovers many instances of the skewness of time-series in the subdiffusive

data-set, given their time-average value. The model parameters fitted in this process are the

instantaneous peak fast ion current density, and the ratio between the widths of the instanta-

neous and time-average fast ion profile. Generally good agreement with expectations from

time-series measurements and the fast ion tracer are found, pending expected deviations

due to fluctuations in the injected fast ion current and from the limited resolution of the

tracer respectively. However, the presence of non-Gaussian features in the fast ion profiles is a

limiting factor in the applicability of the model here, so that a different approach based on the

assumption of a very small instantaneous beam width was adopted for the 30 eV case. Results

for the predicted values of skewness are again in good overall agreement with measurements,

as are the fitted peak instantaneous current densities. In closing, some additional considera-

tions on point-like meandering beams and the expected skewness of the resulting two-valued

time-series often yield distinct relative differences between the 30 eV and the 70 eV data-set,

when comparing the expected skewness to measurements.

We have therefore established a consistent model for the generation of intermittency across all

investigated non-diffusive transport regimes in our system. It is our hope that the developed

analytical methods, as applied here and in [110, 111], will prove a useful tool in general

settings where meandering particle beams are investigated, since no intrinsic assumptions

on the underlying physics are made. It furthermore provides an illustrative example for the

importance of considering the specific statistical dynamics of a given system when analyzing

intermittency in the wider context of non-diffusive transport.

8.3 Truncation effects

In the second part of this thesis, we develop a truncated fractional diffusion model for the

statistical description of fast ion cross-field transport in SMT plasmas as simulated using GBS.

Therefore, much of Ch. 6 was dedicated to reviewing the necessary mathematical concepts,

starting with Einstein’s and Langevins descriptions of diffusion as the result of the local and

136



8.3. Truncation effects

markovian random walk process of Ordinary Brownian Motion. Starting from a review of

Central Limit Theorems, we systematically recapitulated generalizations of both approaches

towards non-Gaussian and non-diffusive Continuos Time Random Walks (CTRWs) and Gen-

eralized Langevin Equations (GLEs) respectively, leading to different forms of Fractional

Diffusion Equations. While both acquire non-local features due to the use of heavy-tailed Lévy

stable distributions for the step-sizes of the underlying random walks, their implementation

of non-Markovian behaviour differs. While CTRWs rely on heavy-tailed distributions for the

waiting times between steps, GLEs feature a memory-kernel, that gives different weights to

consecutive random steps. These weights introduce positive or negative correlations between

these steps, by effectively stretching the time-variable in the FDE. One solution method for

such a GLE has been established in [183] based on path-integrals, and was already adopted

successfully to deduce the FDE and Green’s function (‘propagator’) of the Asymmetrical Frac-

tional Lévy Motion (AFLM) process in previous work [108]. This model successfully recovered

the non-diffusive and asymmetrical features of superdiffusive fast ion cross-field transport

in GBS simulations. However, like many similar descriptions, AFLM features a heavy tailed

propagator due to random steps with infinite variance. Since quasi-infinite jumps cannot

be executed by any physical particles, this leads to severe over-estimates in the tails of the

propagator, compared to simulated or measured fast ion distributions.

One method to address this criticism in fractional diffusion models, is the use of tempered

stable distributions for the step-sizes in the underlying random walk. As proposed in [221],

an exponential truncation beyond a certain, fixed scale is used. This truncation still allows

for the presence of non-Gaussian features at short scales in space and time. However, we

ultimately recover Gaussian features due to the Central Limit Theorem taking effect at large

scales and long times. This concept has been applied successfully in a variety of settings such

as the description of tempered stable processes e.g. in [222, 223] and tempered CTRWs e.g.

in [120]. Based on the conventions and parameterization in the latter, we again formulate a

GLE and generalized the solution methods from [183] to derive the propagator and FDE for

Truncated Asymmetrical Fractional Lévy Motion through path-integrals as detailed in [112].

Since all moments of the generally non-Gaussian propagator of this non-diffusive process are

finite, concise expressions for its variance, skewness and kurtosis as a function of time were

obtained directly from the corresponding derivatives in Fourier-space.

Finally, we applied the TAFLM model to the fast ion tracer distributions from GBS simulations

in Ch. 7. With five parameters to determine the shapes of the propagator in terms of scale,

asymmetry, and the relative weights and shape of its tails and bulk over time, the TAFLM model

can yield highly flexible fits. Especially in scenarios where the tails of the tracer distributions

are not well populated, this leads to over-fitting and can result in misleading estimates for the

fitted parameters, in particular the applied truncation scale. Transport in the subdiffusive and

early superdiffusive regimes are not appropriately modeled, although fitting results may ap-

pear promising on first glance, especially during superdiffusion. To discern such problematic

cases more distinctly, the separate fitting of the time evolution of the variance, skewness and

kurtosis, by using the available analytical results for TAFLM, has proven highly effective. While
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some residual uncertainties remain, the most promising results for the application of TAFLM

have thus been found in the later asymmetric and quasi-diffusive transport regime. The

inferred truncation scale of ≈ 4cm on each side of the propagator is strongly reminiscent of

the radial pressure gradient scales in the TORPEX SMT plasma. Since the fast ions have spread

out significantly in this transport phase, the truncation scale naturally reflects the domain

over which the dominantly responsible plasma structures propagate, as e.g. illustrated using

CS-analysis in Ch. 3.

The possible applications for the TAFLM description range across many fields, in which

bounded fractional dynamics are being investigated. We hope that it can continue to serve as

a useful statistical tool, as well as the methods outlined for the assessment of its suitability.

Further generalizations of TAFLM are possible, e.g. by the currently investigated introduction

of two separate truncation scales for the left- and right-hand tails as in [223]. It remains to be

seen whether the introduction of even more fit parameters would be useful for the application

to fast ion transport. In this context, we welcome any further discussions with groups outside

plasma physics, that are currently investigating similar approaches, and possibly even different

versions of TAFLM outside our knowledge. Within plasma physics, there are many instances,

where purely empirically justified models for transport descriptions are employed, e.g. in

the simulation of plasma profiles in the bounded, turbulent edge region of tokamaks. It may

prove instructive to assess the utility of a bounded, non-diffusive description such as TAFLM

in comparison to the currently employed effective diffusion models. The relatively concise

analytical results may in turn even limit the complexity of numerical implementations.

As stated from the outset in Ch. 1, we have therefore attempted to judiciously adopt, develop

and apply different statistical models to better describe the intermittent and non-diffusive

aspects of fast ion transport in a bounded turbulent environment as found in the TORPEX

device. We therefore hope that the continued improvement of these methods, along with the

results they provide, will prove a small aid in the analysis of statistical problems in science,

and in particular plasma physics aimed at the pursuit of fusion energy.
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A.1 Chi-squared fitting

At multiple points in this thesis, we need to assess the quality of agreement between different

numerically obtained data-sets (Ch. 4) or the goodness of fits between experimental or

numerical data and analytical predictions (Chs. 5,7). The generally preferred method is χ2-

minimization, usually through a combination of parameter-scans and local minimum finders

supplied in MATLAB R2016b. This goodness-of-fit measure has been extensively documented

in statistics standard texts such as [229] and is defined as

χ2 =
N∑
i=1

(
Di(xi)−Yi(xi)

εi

)2

(A.1)

for a fit of N data-points Di(xi) to the predicted or fitted values Yi(xi), both defined at the

same arguments xi. When Yi represents a set of points generated from a fitting function

Yi =Y (xi|~Θ) with parameters ~Θ, the formal definition becomes

χ2
(
~Θ|{Di}

)
=

N∑
i=1

(
Di−Y (xi|~Θ)

εi

)2

(A.2)

In any case, the assumed errors {εi} in the data points are key to the application of this method.

Since through these, the fit of each point in the data-set is weighed by the relative degree

of certainty in the attained values, we usually employ methods to bound {εi} from below, so

as to not over-weigh points in the lower tails of the set, that often feature stronger impacts

of statistical noise (see below). Beyond this, χ2 fitting allows by definition the treatment

of fits across a wide range of values. Conversely, a least-R2-fit, defined by letting εi = 1∀i,
naturally places higher weights on larger values in the set, which may not be desirable in all

circumstances.

To scale the attained value of χ2 with the given number of data-pointsN , the reduced χ2 is

defined as χ2
r = 1

nd
χ2, with nd being the number of degrees of freedom in the fit. This number

is defined as nd =N −nθ−nc, where nθ is the number of fitted parameters and nc the number
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of present constraints on the fit, such as normalizations. By design, finding χ2
r ∼ 1 defines a

good fit as, on average, all fitted or predicted points lie approximately within their specified

errors.

A variety of methods employs the χ2-probability distribution in the analysis of the goodness of

a least-χ2-fit, or the calculation of confidence intervals on the fitted parameters. At their core

lies the assumption that all given errors εi represent the standard deviations of statistically

independent Gaussian distribution centered on the fit, from which the associated measure-

ments Di be drawn upon repeating the experiment. The probability of obtaining a given

value of χ2 from a set of measurement points with nd degrees of freedom is then given by the

χ2-probability distribution

P (χ2|nd) = (χ2)nd/2−1

2nd/2Γ(nd2 )
exp

(
−χ

2

2

)
. (A.3)

For instance, a p-test could thus be performed using the cumulative χ2-distribution up to

the obtained value of χ2. However, the precise result is heavily dependent on the particular

error values chosen, and can thus be misleading unless the above assumptions are satisfied

in the same detail. Any unresolved trends in the data can quickly lead to diminished values

of probability, especially for higher nd. Alternatively, one can find confidence bounds by

performing a parameter scan in the vicinity of minimum χ2 =χ2
min, and find the parameter-

region containing e.g. 95% of the probability content, irrespective of the particular assigned

probability values. This has been done to visualize the variability of the predicted vs. the

measured values of the central moments of the fast ion time-series in Ch. 5, Figs. 5.5,5.3.

Specifically, their bands indicate the minimum and maximum attainable predicted values

using the parameters within the confidence region defined by fitting the predicted on-phase

skewness to measurements. If the χ2 values around χ2
min appear approximately parabolic in

parameter-space, the region with χ2
r ≤χ2

min,r+1 is often similarly identified as confidence

region, as it includes by definition all fits that, on average, pass within the 2σ region of the

Gaussians that the measurements are assumed to be drawn from.

A.2 Bootstrap error estimates

In Ch. 5, the error estimates on the skewness are based on fluctuations in the injected fast

ion current as a known dominant source of shot-to-shot deviations in the measurements.

However, such a direct estimate is not always available. Especially when treating fast ion tracer

distributions F (R,T ) in Sec. 7.3, which are numerically obtained based on GBS results, the

assignment of measurement errors for the purpose of χ2-minimization is not as straightfor-

ward. One possibility is using the bootstrap method, as described with numerous applications

in [236]. Through it, we can quantify the statistical uncertainties in the distribution, due

to the finite number of available samples, i.e. the Np = 1.6×105 tracer displacements, that

are assigned into the set of bins centered at R = {Ri}. To do so, each data-set at one given
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T = Tj is re-sampled with replacement a total of likewise Np times, to generate a synthetic,

bootstrapped data-set, from which the distribution Fbs(R,Tj) is obtained using the same bin

centresR= {Ri}. This can naturally lead to slightly different numbers of tracers in each bin

Fbs(Ri,Tj), compared to the original F (Ri,Tj). After repeating this process a statistically

significant number ofNbs = 1000 times, the obtained numbers of tracers in each binRi form

an approximately Gaussian distribution, and the corresponding statistical error εi is taken as

its standard deviation. For all of the distributions F (R,Tj) under consideration, it should be

noted that almost all obtained εi(j) fall within ≈ 10% of
√
F (Ri,Tj). These errors εi should

be regarded indeed as the smallest reasonable estimate of uncertainty in the distributions

F (R,T ), as they do not take any other sources of random or systematic error into account that

may affect the data-set of tracer displacements itself.

A.3 Acceptable fits of the TAFLM propagator

Having motivated our error-estimates for the different F (R,T ) in Sec. 7.3, it remains to define

χ2-measure for the quality of the fits. To begin with, the total number of regularly spaced

bins was chosen as <
p
Np
3 , to find distributions with a smooth, single peak. However, to

avoid the largest statistical errors in the far tails, we firstly exclude any bins with less than 15

tracers within them. Since the (normalized) distributions F (R,Tj) spread for later times Tj ,

the number of bins considered in the fit nb(j) can thus change between them. As the full time

evolution of the distributionsF (R,T ) in a given transport phase is to be fitted, we furthermore

consider allNT times in the set {Tj} simultaneously in the fit, and likewise write εi = εi(j) for

clarity. This yields for the quality of fit measure

χ2
(
~Θ

∣∣F (R,T )
)
=
NT∑
j=1

nb(j)∑
i=1

(
F (Ri,Tj)−N (Ri,Tj |~Θ)

εi(j)

)2

, (A.4)

whereN (R,T |~Θ) are the tracer distributions predicted by convolving the TAFLM propagator

G(R,T ) with parameters ~Θ= (α,H,σ,θ,λ) with the initial conditionF0(R) as shown in Eq. 7.1.

Again, the minimum of χ2 is to indicate the best fit between prediction and data.

However, for some cases in Sec. 7.3, the relevant regions in parameter-space feature multiple

adjacent local minima in χ2, or even valleys and flat regions along different dimensions, so

that detailed parameter-scans appear in order. Furthermore, it is problematic to judge the

relative importance of different minima by assigning probabilities using the χ2 distribution in

Eq. A.3. All fits feature nd > 200, and thus values of χ2
min& 1000. Even if the χ2 value of a given

parameter set was only 1% higher than χ2
min, it would be assigned an ≈×e−5 lower probability.

While mathematically inevitable, this seems misleading from a practical standpoint, since

even a minuscule level of statistical fluctuations in F (R,T ) can introduce similar or larger

changes to χ2
min (see Fig. A.1) itself. Consequently, any confidence bounds based on such

relative probabilities would be highly restrictive and loose any information on the structure of

χ2 in the parameters space that χ2
min is embedded in.
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We therefore choose a less reductive approach for indicating parameter regions of acceptable

fits, and hence visualize the uncertainties attached to the parameters of the best fits. The

degree of statistical uncertainties in the distributions F (R,T ) is by definition reflected in

the bootstrapped distributions Fbs(R,T ) as described above. Using the same, best fitting

parameter-set ~Θb identified by χ2
min of the original data-set F (R,T ), we re-calculate the

corresponding χ2
bs =χ2(~Θb|Fbs) on allNbs = 1000 bootstrapped distributions Fbs(R,T ). The

closely Gaussian distributions of χ2
bs are shown for the subdiffusive, superdiffusive and quasi-

diffusive transport phase in Fig. A.1(a), (b) and (c) respectively. Only those sets of parameters
~Θ are deemed acceptable, whose χ2-fit with the original data F (R,T ), i.e.χ2(~Θ|F ), falls below

the upper 2σ-value of the shown distributions. These definitions of the regions of acceptable

fits are thus intrinsically based on the expected level of statistical uncertainty in each data-set,

instead of an arbitrary or conventional threshold in χ2. Their locations in parameter-space

illustrated in the projections in Figs. 7.2,7.4 and 7.6 thus effectively indicate potential trade-

offs between different parameters, that produce fits of practically similar, albeit not identical

quality.

(a) (b)

(c)

χ2
bs

χ2
bs

χ2
bs

Figure A.1 – Distributions of the χ2 calculated on the Nbs = 1000 bootstrapped data-sets
Fbs(R,T ), using the best fitting parameters ~Θb of the original data, i.e. χ2

bs =χ2(~Θb|Fbs). Re-
sults are shown for the sub-, super- and quasi-diffusive data-set in (a), (b) and (c) respectively.
The red curves show a Gaussian with its mean and variance taken from the un-binned values
of χ2

bs. The red dashed line shows the χ2
min of the original data F (R,T ) for comparison. The

maximum threshold of χ2 for χ2(~Θ|F ) to qualify a parameter set ~Θ as an acceptable fit of
F (R,T ), is defined as the upper 2σ value (blue line) of the χ2

bs distribution.
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A few concluding remarks should be made regarding the calculations of χ2
bs. As outlined

in Ref. [112], we have pursued a modified approach in which the distributions of χ2
bs are

found by actually locating the χ2
min for each Fbs(R,T ) separately. However, in most cases

the identified parameter-set still corresponds to ~Θ from the χ2
min of the original F (R,T ).

Therefore, distributions as in Fig. A.1 are expected to generally only differ negligibly from

these, while obtainable at a fraction of the computational effort.

The position of the χ2
min of the original data F (R,T ) (red, dashed line) is significantly shifted

relative to the mean of the χ2
bs distributions when comparing (c) to (a) and (b). The likely

dominant underlying reason is that the tails of F (R,T ) and Fbs(R,T ) reach further in the

quasi-diffusive regime, as illustrated in Fig. 7.7. Therefore, they contain a higher number of

bins that have collected a relatively small number of tracers compared to the bulk. Under

bootstrapping, it is the bins with relatively small numbers of tracers, that will be subject

to the largest relative uncertainties, which renders the bootstrapped distributions Fbs(R,T )

subtly less smooth compared to F (R,T ). One could argue, that the resulting shift in values is

somewhat artificial, and should be removed, i.e. that we only consider the actual spread of the

Gaussian distributions ofχ2
bs when defining theχ2 threshold. While this makes little difference

to the parameter regions and trade-offs shown in the sub- and superdiffusive regimes, the

bounded region of acceptable fits in the quasi-diffusive regime would appear indeed more

concentrated near ~Θ at χ2
min. However, even in this less restrictive form, the presented data is

found quite informative, as e.g. the inferred truncation scale is found very similar to radial

density gradient scales in the SMT plasmas.
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B The Boris algorithm

As stated in Sec. 4.1, the method chosen to advance the fast ion tracer position and velocity

is the Boris-algorithm. Originally proposed in Ref. [175], it has become a standard choice

in a variety of applications and detailed documentation can be found in many textbooks on

numerical methods such as Ref. [237]. The equations of motion for the position ~r and velocity

~v with

dt~r = ~v (B.1)

dt~v = q

m

[
~E+

(
~v× ~B

)]
(B.2)

are discretized into propagation times t = {τi} separated by a time interval ∆τ , and can be

integrated explicitly. While defining~t= q
2m∆τ

~B0, the integration scheme for the step from τ0

to τ1 reads

~v− = ~v0 + q

2m
∆τ ~E0 (B.3)

~v′ = ~v−+~v−×~t (B.4)

~v+ = ~v−+~s = ~v−+ 2

1+ ∣∣~t∣∣2

(
~v′×~t

)
(B.5)

~v1 = ~v++ q

2m
∆τ ~E0 (B.6)

~r1 = ~r0 +~v1∆τ . (B.7)

To advance the velocities, half of the contribution from the electric field is added before, the

other half after treating the rotation due to the magnetic field in Eqs. B.4-B.5. The angle of this

rotation can be approximated using the small angle formula

θ

2
≈ tan

(
θ

2

)
= q

2m
∆τ

∣∣ ~B0
∣∣= ∣∣~t∣∣ . (B.8)

The approximate rotation process is geometrically visualized in Fig. B.1.

First, the vector ~v′ bisecting the angle θ is found in Eq. B.4. Then, its orthogonal ~s is used in Eq.
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Figure B.1 – Illustration of the ~v× ~B-rotation of ~v− into ~v+ through the vector operations given
in Eqs. B.4-B.5.

B.5 to rotate ~v− into ~v+, while |~s| is fixed by the requirement of |~v−| = |~v+| leading to the factor
2

1+t2 . While the approximation of θ introduces a small phase error [176], the computational

cost of the tan(.) function is avoided. Note further that the energy and the magnitude of

the momentum of the tracers are exactly conserved in this step. Relativistic corrections are

straightforwardly possible, but clearly unnecessary in our settings.
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C Fractional derivatives

The concept of differentiation to non-integer orders was studied already in the 18th century

by Leibniz and Euler and the arising field of fractional calculus has received renewed attention

in applied mathematics over the past decades [238, 114, 209]. The related definitions and

properties of ‘fractional’ derivatives and integrals are documented with varying conventions

in number of textbooks, such as [238, 209], along with their historical development. We mostly

follow [209] here and in the text, unless specified otherwise.

In the 19th century, different types of fractional derivatives were defined in terms of series

representations, based on their expected action on a given type of basis function, i.e. separately

for polynomials (by Riemann), exponentials (by Liouville) and trigonometric functions (by

Fourier). Their later representation in terms of integrals were based on Cauchy’s repeated

integral theorem that states for well-behaved functions that

aInx f (x) ≡
∫ x

a

∫ xn−1

a
...

∫ x1

a
f (x0)dx0 ...dxn−1 = 1

(n−1)!

∫ x

a
(x−x′)n−1f (x′)dx′ , (C.1)

which is proven by induction. Krug extended this theorem to fractional order α ∈R> 0 in 1890,

so that e.g. the ‘left-handed’ Riemann fractional integral (see e.g. Eq. 6.36) can be defined as

0Iαx f (x) = 1

Γ(α)

∫ x

0
(x−x′)α−1f (x′)dx′ (C.2)

where we find that polynomials xk→ 0 in the lower limit. The ‘right-handed’ version of the

integral is defined analogously by swapping the integral limits and keeping the argument of

the kernel positive i.e.

xIα0 f (x) = 1

Γ(α)

∫ 0

x
(x′−x)α−1f (x′)dx′ (C.3)

Fractional differentiation is accomplished by combining fractional integrals with integer
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differentiation, so that the left- and right-handed Riemann derivatives of order α read

0Dα
xf (x) = d

dx

1

Γ(1−α)

∫ x

0
(x−x′)−αf (x′)dx′ , (C.4)

xDα
0 f (x) = d

dx

1

Γ(1−α)

∫ 0

x
(x′−x)−αf (x′)dx′ . (C.5)

Using the limits ±∞ instead, where we have e∓kx→ 0 (for k > 0), yields the definition of the

Liouville fractional derivatives

−∞Dα
xf (x) = d

dx

1

Γ(1−α)

∫ x

−∞
(x−x′)−αf (x′)dx′ , (C.6)

xDα
∞f (x) = d

dx

1

Γ(1−α)

∫ ∞

x
(x′−x)−αf (x′)dx′ . (C.7)

One particularly useful feature is by design the properties of the Fourier-transform F {.}(k) of

the latter, i.e. we have

F
{
−∞Dα

xf (x)
}
(k) = (−ik)αf̂ (k) , F

{
xDα

∞f (x)
}
(k) = (ik)αf̂ (k) . (C.8)

The definition of a symmetrized version thus follows naturally in the form of the Riesz deriva-

tive with

RZDα
xf (x) = −(

−∞Dα
x +xDα∞

)
2cos

(
π
2α

) f (x) ⇐⇒ F
{
RZDα

xf (x)
}
(k) = −|k|αf̂ (k) , (C.9)

where α→ 2 smoothly retrieves the second order ordinary derivative. The particular useful-

ness of this derivative in fractional diffusion is linked to the fact that its Fourier-transform

corresponds to the first order term of the characteristic of a symmetric α-stable Lévy distribu-

tion (with σ = 1), so that it appears naturally as the space-fractional derivative in FDEs with

symmetric propagators. Its generalization to the asymmetric case is given by the Riesz-Feller

derivative as in [215] with

RFDα,θ
x f (x) = −[

sin
(
π
2 (α+θ)

)
−∞Dα

x + sin
(
π
2 (α−θ)

)
xDα∞

]
sin(πα)

f (x) (C.10)

⇐⇒ F
{
RFDα,θ

x f (x)
}
(k) = −|k|α exp

(
isgn(k)

πθ

2

)
f̂ (k) , (C.11)

where with an asymmetry parameter θ→ 0 one retrieves the Riesz derivative. Again, we find

exact correspondence when comparing the Fourier transform to the characteristic exponent of

asymmetric Lévy distributions as parameterized in Eq. 6.25, so that the Riesz-Feller derivative

naturally appears in asymmetric space-fractional FDEs (see [215]).

Following the same pattern, a different generalization is undertaken when introducing the

truncated asymmetrical fractional derivative λDα,θ
x , as e.g. used in the CTRW equation Eq.
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6.47 in [120] with

λDα,θ
x f (x) = −1

2cos
(
π
2α

)[
(1−θ)e−λx−∞Dα

x

(
eλxf (x)

)
+ (1+θ)eλx xDα

∞
(
e−λxf (x)

)]
(C.12)

⇐⇒ F
{
λDα,θ

x f (x)
}
(k) = −[

(1+θ)(λ+ ik)α+ (1−θ)(λ− ik)α
]

2cos
(
π
2α

) f̂ (k) .(C.13)

The exponential truncation clearly tempers the arguments of the corresponding Liouville

derivative in the limits ±∞ as part of the convolution kernel. For the symmetric, untruncated

case with λ→ 0 and θ→ 0 we recover the Riesz derivative.

Lastly, it should be remarked, that the order of differentiation and fractional integration is no

longer interchangeable as for the integer orders. This leads to the distinct definition of the

Caputo derivative with

CDα
t f (t) = 1

Γ(1−α)

∫ t

0
(t− t′)−αdf (t′)

dt′
dt′ . (C.14)

This derivative is found most useful when applied on a time-like domain as it allows for the

implementation of initial conditions through the finite lower limit of the integral, that is

not lost due to differentiation. As seen e.g. also in [215], this is most directly shown in its

Laplace-transform L{.}(s) with

L
{
CD

α
t f (t)

}
(s) = sαf̂ (s)−sα−1f (t→ 0+) for 0 <α≤ 1 , (C.15)

which can be found in all Fourier-Laplace forms of CTRW equations as in Eq. 6.30, if the

waiting-times between steps are drawn from one-sided stable distributions.
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Acronyms

2DSSLP 2-Dimensional Single Sided Langmuir Probe
AFLM Asymmetrical Fractional Lévy Motion
C(A)S Conditional (Average) Sampling
CTRW Continuous Time Random Walk
EC Electron Cyclotron
FBM Fractional Brownian Motion
FDE Fractional Diffusion Equation
FLM Fractional Lévy Motion
GBS Global Braginskii Solver
GEA Gridded Energy Analyzer
GLE Generalized Langevin Equation
FRIPLE Five tip tRIPLE probe
HEXTIP-U HEXagonal Turbulence Imaging Probe - Upgrade
HFS High Field Side
LFS Low Field Side
LP Langmuir Probe
OBM Ordinary Brownian Motion
SLP Slow Langmuir Probe
SMT Simple Magnetized Torus
TAFLM Truncated Asymmetrical Fractional Lévy Motion
TCV Tokamak à Configuration Variable
TORPEX TORoidal Plasma EXperiment
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Repeatedly used symbols

c Normalization factor for variations in fast ion injection current
D Toroidal distance between fast ion source and detector
E Fast ion injection energy
f,f (R) PDF of displacements of instantaneous fast ion profile
F, F (R,T ) Fast ion tracer distributions based on GBS simulations
G, G(R,T ) Propagators of different types of random walks
H Hurst exponent / self similarity exponent
j, j(R) Instantaneous fast ion profile
J, J(R) Time-average fast ion profile
N (R,T ) Predicted fast ion tracer distributions obtained via propagator
P (.),P (ξ) PDFs in various contexts, e.g. of random noise increments ξ
R = [R,Z] Coordinates in poloidal plane - horizontal, vertical
t Time in local fast ion time-series (up to Ch. 5)
t Propagation time of random walkers and fast ion tracers (after Ch. 5)
T Propagation time of fast ions in given transport regime
x Generic spatial coordinate in random walks
α Space fractional exponent
β Time fractional exponent
γx Skewness in fast ion time series, various subscripts
ε Arbitrarily small time increment
θ Asymmetry parameters
~Θ Vector of TAFLM parameters used in fitting
λ Truncation parameter
µx Time-average (mean) in fast ion time-series, various subscripts
ν Fast ion transport exponent
ξ Fluctuating force / noise increments in random walks
σ Standard deviation in various contexts, Chs.6,7: scale parameter
τ Propagation time of fast ions since injection (up to Ch. 5)
Ω Fast ion Larmor frequency
S Subscript for time-series statistics during ion source on-phase
N Subscript for time-series statistics during ion source off-phase
J Subscript for noise-reduced time-series statistics
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Figure attributions

Figure 1.1 While the figure was produced by the author, the displayed data was retrieved

from Table 1 and Fig. 1 in Ref. [29]: Ghahramany, N. and Gharaati, S. and Ghanaatian, M:

New approach to nuclear binding energy in integrated nuclear model, Journal of Theoretical

and Applied Physics, vol. 6, pp.3, Springer, 2012, https://link.springer.com/article/10.1186/

2251-7235-6-3, available as Open Access publication via Springer Link under Creative Com-

mons Coyright license 2.0 . Compared to the original table and figure, only a smaller subset of

data is shown here, on a logarithmic abscissa. Changed axes labels and annotations have been

added.

Figure 1.3(a) Cropped from: NIF Hohlraum as nif-1209-18059.jpg, Credits to Lawrence Liver-

more National Laboratory (LLNL), permitted uses under Creative Commons copyright license

CC BY-NC-SA 4.0, as stated under Copyright and Reuse at https://www.llnl.gov/copyright-and-reuse,

retrieved from: https://lasers.llnl.gov/media/photo-gallery?id=nif-1209-18059, date: 31.10.19

Figure 1.3(b) Reprinted from Ref. [41], with permission from AIP. License number: 4743751427715,

07.01.2020, Furthermore, the author appears as 3rd author on Ref. [41].

Figure 1.4 Adapted from: Schematic of a tokamak chamber and magnetic profile., by S. Li, H.

Jiang, Z. Ren, C. Xu: ‘Optimal Tracking for a Divergent-Type Parabolic PDE System in Current

Profile Control’, for Abstract and Applied Analysis, 2014, 940965, Hindawi, doi:10.1155/2014/940965,

available under Creative Commons copyright license 4.0. The annotations have been simpli-

fied by the author, and their font adjusted.

Figure 1.5(a) Cropped from: TCV 3D views by Matthieu Toussaint as TCV_1, permission to use

obtained from original author, retrieved from: https://crpplocal.epfl.ch/gallery/v/scientific/

crpptcv/assembly/TCV_1.jpg.html date: 10.11.2019

Figure 1.5(b-d) Cropped from: Omnium gatherum of TCV plasma shapes. Figure 2.3.2 of Ch.

Schlatter PhD thesis as TCV_shapes, permission to use and modify obtained from original

author, retrieved from: https://crpplocal.epfl.ch/gallery/v/scientific/crpptcv/assembly/TCV_

shapes.pdf.html date: 09.11.2019

Figure 1.6 Cropped from: Schematic view of the Wendelstein 7-X superconducting mag-

nets system with non-planar coils (blue) and planar coils (brown). as 800px-Wendelstein_7-
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X_schematic_view_of_magnets_system.jpg, by M. Nagel, C.P. Dhard, H. Bau, H.-S. Bosch, U.

Meyer, S. Raatz, K. Risse and T. Rummel : ‘Cryogenic commissioning, cool down and first

magnet operation of Wendelstein 7-X’, IOP Conference Series: Materials Science and Engi-

neering, vol. 171,1, 012050, IOP, 2017, https://doi.org/10.1088/1757-899X/171/1/012050,

Available from IOP Publishing under Creative Commons copyright license 3.0, see https:

//creativecommons.org/licenses/by/3.0/

Figure 1.7(a) Re-used from: The largest tokamak in the world, 15 January 2013, as in-cryostat

overview 20130116.jpg, ITER Image Gallery, Credit ©ITER Organization, http://www.iter.org/,

Permitted for educational and informational use, furthermore cleared with ITER Commu-

nications office, retrieved from: https://www.iter.org/doc/all/content/com/gallery/media/

7-technical/, date: 12.11.2019

Figure 1.7(b) Re-used from: The precision of a clockmaker, 04.09.2019, as pit_from_above.jpg,

ITER Image Gallery, Credit ©ITER Organization, http://www.iter.org/, Permitted for edu-

cational and informational use, furthermore cleared with ITER Communications office, re-

trieved from: https://www.iter.org/doc/all/content/com/gallery/construction/tkmcomplex/

pit_from_above.jpg, date: 12.11.2019

Figure 1.8(a) Cropped from: Accelerating Jet, as xrbs_nustar.jpg, HEASARC picture of the week,

credit: NASA/JPL-Caltech, Published: November 6, 2017, A service of the Astrophysics Science

Division at NASA/GSFC, Generally non-copyrighted, permitted for non-commercial use, as

outlined in Media Usage Guidelines under https://www.nasa.gov/multimedia/guidelines/index.html

retrieved from: https://heasarc.gsfc.nasa.gov/docs/objects/heapow/archive/compact_objects/

xrbs_nustar.html date: 22.06.2019

Figure 1.8(b) Cropped from: Sun’s Busy Week, as COR2_busyweek.jpg, Courtesy of STERE-

O/COR2 consortium (NASA), Generally non-copyrighted, permitted and encouraged for

educational and non-commercial use, as outlined in STEREO Copyright Notice under https:

//stereo.gsfc.nasa.gov/gallery/copyright.shtml retrieved from: https://stereo.gsfc.nasa.gov/

gallery/item.php?id=stereoimages&iid=229 date: 15.01.2020

Figure 2.12(a,b) Technical drawings credited to Swiss Plasma Center Technical Drawing and

Design Office, Robert Bertizzolo, permission to use and adapt obtained.

Figure 2.13 Reprinted figure from Ref. [103], with permission from APS. License number:

RNP/20/JAN/021876, 13.01.2020, Permission for adaptations obtained from original author.

Fonts changed, labels adapted and grid lines added by author.

Figure 2.14 Reprinted figure from Ref. [103], with permission from APS. License number:

RNP/20/JAN/021876, 13.01.2020, Permission for adaptations obtained from original author.

Fonts changed, annotations adapted and grid lines added by author.

All further photography in Figs. 2.3, 2.6(a,b), 2.7(a), 2.9(a,b), 2.10(a,b), 2.11(a), 2.12(c) has been
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156

https://doi.org/10.1088/1757-899X/171/1/012050
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://www.iter.org/doc/all/content/com/gallery/media/7 - technical/
https://www.iter.org/doc/all/content/com/gallery/media/7 - technical/
https://www.iter.org/doc/all/content/com/gallery/construction/tkmcomplex/pit_from_above.jpg
https://www.iter.org/doc/all/content/com/gallery/construction/tkmcomplex/pit_from_above.jpg
https://heasarc.gsfc.nasa.gov/docs/objects/heapow/archive/compact_objects/xrbs_nustar.html
https://heasarc.gsfc.nasa.gov/docs/objects/heapow/archive/compact_objects/xrbs_nustar.html
https://stereo.gsfc.nasa.gov/gallery/copyright.shtml
https://stereo.gsfc.nasa.gov/gallery/copyright.shtml
https://stereo.gsfc.nasa.gov/gallery/item.php?id=stereoimages&iid=229
https://stereo.gsfc.nasa.gov/gallery/item.php?id=stereoimages&iid=229


The 3D illustrations of TORPEX and the fast ion systems in Figs. 2.1, 2.5, 2.6(c), 2.7(b), 2.8, 4.2

have been assembled, textured and rendered by the author in Blender 2.78, and incorporate

parts and older files supplied by A. Bovet. Most 3D model files were supplied from the archives

of the Swiss Plasma Center Technical Drawing and Design Office and sometimes adapted by

the author.

All remaining figures consist of graphs produced in MATLAB 2016b-2018b, by The MathWorks

Inc., Natick MA, USA. The routines for creating Fig. 4.1 are credited to Fabio Avino. If similar

figures to those presented in this work have been published by the author, references to

the respective journal papers are given usually at the beginning of the sections where the

published content is adapted.

For the illustrations of different types of random walks, the following MATLAB resources are
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[222] J. Rosiński. Tempering stable processes. Stoch. Proc. Appl., 117(6):677–707, 2007.

[223] U. Küchler and S. Tappe. Tempered stable distributions and processes. Stoch. Proc.

Appl., 123(12):4256–4293, 2013.

174



Bibliography

[224] H. Fallahgoul and G. Loeper. Modelling tail risk with tempered stable distributions: an

overview. Ann. Oper. Res., pages 1–28, 2019.

[225] C. Pan, B. Li, C. Wang, Y. Zhang, N. Geldner, L. Wang, and A.L. Bertozzi. Crime modeling

with truncated Lévy flights for residential burglary models. Math. Mod. Meth. Appl. S.,

28(09):1857–1880, 2018.

[226] M.C. Mariani, I. Florescu, I. Sengupta, M.P.B. Varela, P. Bezdek, and L. Serpa. Lévy models

and scale invariance properties applied to geophysics. Physica A, 392(4):824–839, 2013.

[227] A. Liemert and A. Kienle. Fundamental solution of the tempered fractional diffusion

equation. J. Math. Phys., 56(11):113504, 2015.

[228] B. Podobnik, P.Ch. Ivanov, Y. Lee, and H.E. Stanley. Scale-invariant truncated Lévy

process. EPL (Europhysics Letters), 52(5):491, 2000.

[229] P.R. Bevington and D.K. Robinson. Data reduction and error analysis for the physical

sciences - 3rd ed. McGraw-Hill, New York, 2003.

[230] L. Kadi. Designing a suprathermal ion detector in TORPEX. Technical report, Ecole

Polytechnique Fédérale de Lausanne - Swiss Plasma Center, 2017.

[231] L. Kadi. Investigation of suprathermal ions in TORPEX with a quintuple GEA. Technical

report, Ecole Polytechnique Fédérale de Lausanne - Swiss Plasma Center, 2018.

[232] M. Baquero-Ruiz and P. Lavanchy. On the proposed multi-gea electronics system.

private communication.

[233] T. Schreiber. Measuring information transfer. Phys. Rev. Lett., 85(2):461, 2000.

[234] D. et. al. Galassi. Global simulations of the interaction between edge turbulence and

magnetic X-point in magnetized toroidal plasmas. Poster contribution, 7th International

Workshop on Plasma Edge Theory in Fusion Devices, UCSD, La Jolla, California, USA, .

[235] D. Galassi. On plasma measurements in the central X-point geometry in torpex. private

communication, .

[236] B. Efron and R. J. Tibshirani. An introduction to the bootstrap. MG Stat. Pro., 57:17,

1993.

[237] C.K. Birdsall and A.B. Langdon. Plasma physics via computer simulation. CRC press,

Boca Raton, 2018.

[238] I. Podlubny. Fractional Differential Equations, volume 198 of Mathematics in Science

and Engineering. Academic Press, San Diego / Boston, 1998.

175





Acknowledgements

None of this work, however useful it may prove or not, would have been possible without the

continued professional support of my colleagues at the Swiss Plasma Center. My thanks go to

all those who helped to get TORPEX running on occasion - from the mechanical, electronic

and electrical engineers to the other members of my research group, especially Oulfa, Paolo,

Marcelo and Ivo. My peers in the office - Lorenzo, Pedro, Mengdi, Francesco and Mirko -

deserve my deep thanks for their good humour, helpful advice and so many a good chuckle.

Furthermore, I am very grateful to Ambrogio Fasoli and Paolo Ricci, whose advice on my

papers was always highly appreciated. To them, Ivo, and Jean-Phillipe Hogge go my thanks for

their inspiring roles in teaching, that were a pleasure to assist in.

As the person with whom I have been working most closely, Marcelo Baquero deserves my

thanks for patiently introducing me to the practical realities experimental physics, his sub-

stantial analytical work on intermittency, hundreds of invaluable discussions over the years,

and for always treating me as a true colleague. As my thesis advisor, I am deeply grateful to Ivo

Furno - for offering me this opportunity 5 years ago, for his intensely contagious curiosity, for

the freedoms in pursuing my ideas, for his ability to bring things into focus, for his encour-

agement in failure and success and for his humanity and understanding, whenever a delay

occurred. Rest both assured that your continued positivity has been thoroughly appreciated

on a professional and personal level.

On the latter, I also wish to thank all my friends close and far, who have supported me with so

many a kind word and pat on the back. Many thanks to the Cuerel family for welcoming me

to Switzerland and inspiring me through the lives you chose. To Anna, Ronny, their daughter

Maria and her little sibling - thank you for always reminding me that there is so much more

meaning and joy to wrest from life. So many thanks and "biiiiiiiig hugs" go to my friend

Margaret-Anne, who always had an open ear when some venting was needed, encouraging

words despite her own struggles, and who made me keep and loose my bit of sanity in equal

measures.

Above all, I wish to thank my parents, without whom any of this would not have been possible.

My everlasting, deepest thanks for your calm support and far-sighted advice, for your patience

when I was busy as ever, for all the peaceful times we shared as well as the arguments, for

keeping me tethered and feeling at home and for pushing me to reach just a bit further.

177



Acknowledgements

Lausanne, April 10, 2020 Fabian Manke

178



Fabian Manke
Sur Villard 7, 1026 Denges, Switzerland
Q fabian.manke@epfl.ch
Ó +41 2169 36588 Æ +41 7677 89233

www.linkedin.com/in/fabian-manke-sci

Personal data
Date/place of birth: 04/07/1991, Zittau, Germany

Most recent position
01/09/2015 -
29/02/2020

PhD Plasma Physics (defended) - EPFL, Swiss Plasma Center, Lausanne, Switzerland
- Fundamental plasma physics on the TORPEX device, both experimental and numerical
- Description of non-diffusive fast ion transport through analysis of intermittent time-series
and development of truncated fractional diffusion equations

Education and work experience
10/2011-08/2015 MSci Physics with Theoretical Physics, Imperial College London, UK

First Class Honours
Master project: Modeling neutron diagnostics for inertial fusion experiments

08/2014-09/2014 Internship Geometrical description of stellarator coils in C++, Max Planck Institute for
Plasma Physics, Greifswald, Germany

06/2014-08/2014 UROP Undergraduate Research OPportunity on inertial fusion neutron spectra, Imperial
College London, UK

07/2013-09/2013 UROP Undergraduate Research OPportunity on charge transport in dye molecules for
photovoltaics, Imperial College London, UK

09/2010-08/2011 Social service Volunteer with Action Reconciliation Service for Peace (ARSP / ASF):
Full-time on-site assistant in a L’Arche living community for people with mental handicap,
Wambrechies, France

Transferable skills
IT general Office Suite, LaTeX (incl. Beamerposter), Linux, git version control, GIMP, blender

Programming Matlab (professional), Fortran90, C++ (advanced), Python (basic)
Experimental Handling high-vacuum equipment, D-TACQ acquisition systems, basic electronics
Mathematics Data-driven statistics and fitting, non-gaussian random processes, fractional calculus

Achievements
07/2019 Invited talk at the European Physical Society’s 46th Conference on Plasma Physics
06/2016 Faculty commendation for quality in a teaching assistantship
10/2015 Tessella prize for software, awarded for the best computational master projects
03/2013 Division 2 finalist medal for waltz at UK Inter-Varsity Dance Competition

Languages
German (native), English (C2), French (C1), Italian (basic)

Interests
Reading, fitness sports, ballroom dancing, finance

179



Publications
First author F. Manke, M. Baquero-Ruiz, I. Furno, O. Chellaï, A. Fasoli, and P. Ricci:

"Truncated Lévy motion through path-integrals and applications to nondiffusive suprather-
mal ion transport", Phys. Rev. E 100, 052122, APS, 2019
F. Manke, M. Baquero-Ruiz, I. Furno, O. Chellaï, A. Fasoli, and P. Ricci:
"Characterizing time intermittency in nondiffusive fast ion transport through plasma
turbulence", invited talk and contribution to 46th EPS Conference on Plasma Physics
(Milan 07/2019), Plasma Phys. Control. Fusion 62, 014004, IOP, 2019
F. Manke, M. Baquero-Ruiz, I. Furno, O. Chellaï, A. Fasoli, and P. Ricci:
"Time intermittency in nondiffusive transport regimes of suprathermal ions in turbulent
plasmas", Phys. Rev. E 99, 053208, APS, 2019
F. Manke, J.M. Frost , V. Vaissier , J. Nelson and P. R. F. Barnes:
"Influence of a nearby substrate on the reorganization energy of hole exchange between
dye molecules", Phys. Chem. Chem. Phys. 17, 7345-7354, RSC, 2015

Co-author M. Baquero-Ruiz, F. Manke, I. Furno, A. Fasoli, P. Ricci:
"Particle transport at arbitrary timescales with Poisson-distributed collisions", Phys. Rev.
E 100, 052134, APS, 2019
M. Baquero-Ruiz, S. Alberti, O. Chellaï, I. Furno, T. Goodman, F. Manke, P. Micheletti,
G. Plyushchev, and A. K. Skrivervik: "Optically isolated millimeter-wave detector for the
Toroidal Plasma Experiment", Rev. Sci. Instrum. 89, 124702, AIP, 2018
O. Chellaï, S. Alberti, M. Baquero-Ruiz, I. Furno, T. Goodman, F. Manke, G.
Plyushchev, L. Guidi, A. Koehn, O. Maj, E. Poli, K. Hizanidis, L. Figini, and D. Ricci:
"Millimeter-Wave Beam Scattering by Field-Aligned Blobs in Simple Magnetized Toroidal
Plasmas", Phys. Rev. Lett. 120, 105001, APS, 2018
M. Baquero-Ruiz, F. Manke, I. Furno, A. Fasoli, P. Ricci:
"Meandering particle bunches and a link between averages of time series of particle counts
and higher-order moments", Phys. Rev. E 98, 032111, APS, 2018
M. Baquero-Ruiz, F. Avino, O. Chellai, A. Fasoli, I. Furno, R. Jacquier, F. Manke, and
S. Patrick: "Dual Langmuir-probe array for 3D plasma studies in TORPEX", Rev. Sci.
Instrum. 87, 113504, AIP, 2016
J.P. Chittenden, B.D. Appelbe, F. Manke, K. McGlinchey, and N.P.L. Niasse:
"Signatures of asymmetry in neutron spectra and images predicted by three-dimensional
radiation hydrodynamics simulations of indirect drive implosions", Rev. Sci. Instrum. 87,
113504, APS, 2016

180


	Abstract (English/Français/Deutsch)
	Contents
	Introduction
	Approaches to sustainable energy
	Fusion energy
	Basic concepts
	Inertial Confinement Fusion
	Magnetic Confinement Fusion

	Turbulence and fast ions
	Motivation and outline for this thesis

	Experiments on TORPEX
	The TORPEX device and turbulence
	Langmuir probe measurements
	Other plasma diagnostics
	Fast ion experimental set-up
	Fast ion injection
	Fast ion detection
	Recent additions

	Previous fast ion studies
	Basic fast ion dynamics
	Measuring time-average cross-field transport
	GBS fluid-tracer simulations
	Non-diffusive transport regimes
	Fractional diffusion models
	Time-resolved measurements and intermittency


	Time intermittency studies
	Quantifying intermittency
	Statistics of measured time-series
	Conditional Sampling
	Motivations for further analysis

	Experiment-based particle tracing
	Particle tracing
	Incorporating HEXTIP measurements
	Time-average cross-field transport
	Comparison to experiments and GBS

	Average vs. single bunch profiles
	Synthetic time-series
	Conclusions and outlook

	Analytical modeling
	The meandering fast ion beam
	Intermittency in subdiffusion
	Intermittency in super- to quasi-diffusion
	Comparison to two-valued time-series
	Conclusions

	Statistical modeling of non-diffusive transport
	Review of diffusion models
	Einstein's random walk model
	Langevin's approach
	The Gaussian limit

	Non-diffusive transport
	Lévy stable distributions
	Continuous Time Random Walks
	Generalized Langevin Equations

	Tempered stable distributions
	A truncated CTRW

	Truncated Asymmetrical Fractional Lévy Motion

	Truncated Lévy motion in fast ion transport
	Treating numerical fast ion distributions
	TAFLM analysis of the moments of fast ion distributions
	Fitting the TAFLM propagator
	Subdiffusive regime
	Superdiffusive regime
	Quasi-diffusive regime

	Conclusions

	Outlook and conclusions
	Other avenues of investigation
	Multiple time-series
	Onset of transport
	Complex field-line configurations

	Intermittency studies
	Truncation effects

	Fitting methods
	Chi-squared fitting
	Bootstrap error estimates
	Acceptable fits of the TAFLM propagator

	The Boris algorithm
	Fractional derivatives
	Acronyms
	Repeatedly used symbols
	Figure attributions
	Bibliography
	Acknowledgements
	Curriculum Vitae



