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This turkey found that he was fed at 9 a.m. However, being a good inductivist, he did not jump

to conclusions. He waited until he had collected a large number of observations of the fact

that he was fed at 9 a.m. Finally, his inductivist conscience was satisfied and he carried out an

inductive inference to conclude, "I am always fed at 9 a.m.". Alas, this conclusion was shown

to be false in no uncertain manner when, on Christmas eve, instead of being fed,

he had his throat cut.

— Bertrand Russel

This thesis is dedicated to my wife and to my family.
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Abstract
The field of quantum chemistry has recently undergone a series of paradigm shifts, including

a boom in machine learning applications that target the electronic structure problem. Along

with these technological innovations, the community continues to identify shortcomings in

traditional KS-DFT approaches and develop improved approximations. The original work

presented in this thesis addresses a selection of open questions along these two lines. Specifi-

cally, the thesis is structured to reflect the ongoing advancement of traditional (deterministic)

approaches toward more recent examples exploiting (statistical) non-linear regression tech-

niques.

The first section of the thesis focuses on analyzing the performance of approximate density

functionals and dispersion correction schemes on chemical situations that are not well-

represented in standard benchmark databases of van der Waals complexes. A first example

discusses how the synergy between delocalization error and London dispersion interactions

in asymmetrically charged radical cation dimers remains problematic, even for the most

recent density functionals. Solutions are provided to improve the description of these sys-

tems that are typical charge-carrier in organic electronic materials. While this first chapter

focuses on non-covalent interactions between molecules in their electronic ground-state, very

little is known about the consequences of an incomplete treatment of London dispersion

interactions involving molecules upon photo-excitation. Using the prototypical stilbene pho-

toswitch as a working example, the second chapter demonstrates that completely neglecting

these interactions in the excited states leads to qualitative failures in the description of the

photodeactivation process. The conclusions presented in this chapter apply broadly to any

photoswitch functionalized with large and polarizable side chains.

In contrast to traditional (deterministic) quantum chemistry, machine learning-based variants

are still in their infancy when facing the challenge of targeting fundamental, albeit complex,

quantum chemical objects. The subsequent chapters describe the development and applica-

tion of machine-learning techniques to predict the molecular electron density [ρ(r )] using an

atom-centered representation compatible with symmetry-adapted Gaussian process regres-

sion (SA-GPR). Concrete applications of the framework are shown for a chemically rich set

of dimers, whose predicted electron densities serve to compute covalent and non-covalent

interaction fingerprints, electrostatic potentials, as well as quantitative interaction energies.

The transferability of the model is demonstrated by the accurate prediction of ρ(r ) for a set

of pentapeptides. Combining transferability and accuracy, our regression framework grants

access to the density information of complex chemical systems at a fraction of the traditional
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Abstract

ab-initio computational cost.

The final chapter exploits the complementarity of both strategies and proposes a machine

learning framework capable of quantifying the deviation of approximate density functionals

from the piecewise linearity condition of exact DFT. The predicted curvature information is

applied both for restoring the correspondence between the Kohn-Sham HOMO eigenvalue

and the first ionization potential in optimally tuned DFT functionals as well as to provide a

large-scale analysis of the relationship between the deviation from the piecewise-linearity

condition and the chemical and structural patterns.

Overall, the work discussed in this thesis is part of a more comprehensive effort to extend

the applicability of KS-DFT to uncommon chemical situations and to increasingly complex

molecular systems by leveraging the latest advances in "quantum machine-learning".

Keywords: Quantum Chemistry, Density Functional Theory, Machine Learning, Electron

Density, Delocalization Error, Non-Covalent Interactions

iv



Résumé
La chimie quantique a récemment subi une série de changements de paradigme, notamment

un boom des applications d’apprentissage automatique qui ciblent les problèmes de structure

électronique. Parallèlement à ces innovations technologiques, la communauté scientifique

continue d’identifier les limites des approches KS-DFT traditionnelles et de développer de

meilleures approximations. Le travail original présenté dans cette thèse aborde une sélection

de questions ouvertes dans ces deux domaines. Plus précisément, la thèse est structurée de

manière à refléter l’avancement des méthodes traditionnelles (déterministes) vers approches

plus récentes, qui utilisent des techniques de régression non linéaire (statistique).

La première section de la thèse analyse la performance des fonctionnelles de la densité et des

corrections de dispersion dans des situations chimiques qui ne sont pas bien représentées

par les bases de données standard. Un premier exemple montre comment la synergie entre

l’erreur de délocalisation et les interactions de dispersion reste problématique même pour

les fonctionnelles les plus récentes dans les dimères radicalaires chargés asymétriquement.

Des solutions sont fournies pour améliorer la description de ces systèmes, qui representent

typiquement les porteurs de charge dans les semi-conducteurs organiques. Alors que ce pre-

mier chapitre se focalise sur les interactions non-covalentes entre les molécules dans leur état

fondamental, on sait très peu de choses sur les conséquences d’un traitement incomplet des

interactions de dispersion entre des molécules photo-excitées. En utilisant le stilbène comme

exemple de "photoswitch", le deuxième chapitre démontre que négliger ces interactions dans

les états excités conduit à des erreurs qualitatives dans la description du processus de photo-

déactivation. Les conclusions présentées dans ce chapitre s’appliquent à tout "photoswitch"

characterisé par de longues chaînes latérales polarisables.

Contrairement à la chimie quantique traditionnelle (déterministe), les variantes basées sur

l’apprentissage automatique sont encore à leurs débuts face au défi de cibler des objets chi-

miques quantiques fondamentaux, bien que complexes. Les chapitres suivants décrivent le

développement et l’application de techniques d’apprentissage automatique pour prédire la

densité moléculaire [ρ(r )] en utilisant une représentation locale et compatible avec la régres-

sion du processus gaussien adaptée à la symétrie (SA-GPR). Des applications concrètes sont

présentées pour un ensemble chimiquement riche de dimères, dont les densités prédites sont

utilisées pour calculer la signature de leurs interactions covalentes et non-covalentes, leurs

potentiels électrostatiques, ainsi que leurs énergies d’interaction. La transférabilité du modèle

est démontrée par la prédiction de ρ(r ) pour un ensemble de pentapeptides. Combinant

transférabilité et précision, notre modèle de régression permet d’accéder à l’information sur
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Abstract

la densité des systèmes chimiques complexes à une fraction du coût des calculs ab-initio

traditionnels.

Le dernier chapitre exploite la complémentarité des deux stratégies et propose un cadre

d’apprentissage automatique capable de quantifier la déviation des fonctionnelles de densité

de la condition de linéarité par morceaux de la DFT exacte. Les courbures prédites sont

appliquées à la fois pour restaurer la correspondance entre la valeur propre de la HOMO et

le premier potentiel d’ionisation et pour fournir une analyse à grande échelle de la relation

entre l’écart par rapport à la condition de linéarité par morceaux et les proprités chimiques et

structurels.

Dans l’ensemble, les travaux abordés dans cette thèse s’inscrivent dans un effort global visant

à étendre l’applicabilité de la KS-DFT à des situations chimiques non-standard et à des

systèmes moléculaires de plus en plus complexes tout en tirant parti des dernières avancées

de "l’apprentissage machine quantique".

Mots clefs : Chimie Quantique, Théorie de la Fonctionnelle de la Densité, Intelligence Artifi-

cielle, Densité Électronique, Erreur de Délocalisation, Interactions Non-Covalentes
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1 Introduction

The longstanding goal of quantum chemistry is to establish a coherent relationship between

the structure and composition of a molecule and its electronic properties. In principles, there

is no constraint in the way this connection can be drawn. From a physical perspective, this

relation takes the form of the electronic structure problem, that is the task of determining the

state of motion of electrons in the field generated by a set of atomic nuclei.1,2 Alternatively,

given a sufficiently high amount of data, the same connection can be drawn statistically us-

ing non-linear regression approaches such as kernel-based machine-learning and artificial

neural networks. 3 Despite being equally valid, the deterministic and the statistical approach

to quantum chemistry differ dramatically in their stage of development and offer, in conse-

quence, challenges of different nature. The open questions and the interplay between these

complementary perspectives on quantum chemistry are the objects of interest of this thesis.

Traditionally, chemical information has been accessed using the deterministic approach,

which relies on the development and application of a hierarchy of physically motivated

approximations to the exact solution of the electronic Schrödinger equation. Conjugating a low

computational cost with an ever-increasing accuracy, Kohn-Sham density functional theory

(KS-DFT) 4,5 has become one of the most successful deterministic frameworks for the solution

of the electronic structure problem. Through the careful and systematic exploration of the

chemical space, approximate KS-DFT has experienced in the last two decades an outstanding

evolution,6–11 which resulted in the identification and development of corrections for its

major pitfalls: the delocalization error, 12–17 the incomplete description of London dispersion

interactions 18–21 and the single-reference nature of the Kohn-Sham determinant. 4,7,10,17,22,23

Despite this general progress, some chemical situations still represent a challenge for the

accuracy of commonly used approximations and correction schemes. These problematic

cases are the object of interest in the first part of this thesis. A particular focus is dedicated to

the synergistic interplay between delocalization error and London dispersion interactions in

asymmetrically charged radical cation dimers and to the analysis of the effects of (missing)

London dispersion interactions beyond the standard ground-state situation.

In contrast to Kohn-Sham density functional theory, kernel-based machine-learning and
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Chapter 1. Introduction

artificial neural networks in quantum chemistry are quite at an early stage of their evolution.

Nonetheless, the applications of these frameworks are currently thriving, with the develop-

ment of predictive models for countless molecular properties. Once trained, these models

are orders of magnitude faster to evaluate than traditional ab-initio computations, allowing

the exploration of otherwise unimaginably vast chemical spaces, 24–31 the access to complex

chemical properties at a fraction of the usual computational cost32–35 and the pursuit of

statistically converged results without the need to sacrifice quantum chemical accuracy. 36–40

The unbound potential of artificial intelligence applications in quantum chemistry is currently

limited only by the large amount of data needed to construct reliable predictive models. In

this sense, kernel-based methods are particularly appreciated in the community as they are

the most compatible with a limited number of training instances.41,42 The evolution of the

predictive power of machine-learning in the last few years correlates with the mathemat-

ical complexity of the targeted molecular properties, which has grown from simple scalar

(e.g., atomization and isomerization energies) 25,41,43 to vectors and tensorial quantities (e.g.,

forces,37,44,45 multipole moments,46 (hyper-)polarizabilities47,48) up to complex functions

and fields such as potential energy surfaces,49–52 the electron density32–34,53–55 and many-

body wavefunction. 35 Among all these properties, the electron density is a compelling target

for non-linear regression, since it formally contains the same information as the many-body

wavefunction, but it is also simply connected with real-space coordinates and properties.56

Therefore, the second part of this thesis focuses on the construction of a machine-learning

model of the electron density. The validity of the density predictions is further demonstrated

on prototypical applications such as the topological analysis of bonding and intermolecular

interactions and the treatment of electrostatic interactions.

Finally, the third and last objective of this thesis aims at connecting the two approaches and

demonstrating how non-linear regression and unsupervised learning become efficient tools

to analyze, understand and correct fundamental limitations of approximate functionals. In

fact, the deterministic and the statistical approach to quantum chemistry are not mutually

exclusive and can largely benefit one from the other. For instance, Müller, Burke and coworkers

have demonstrated in a recent landmark work that machine-learning can be used to approxi-

mate the kinetic energy functional and its derivatives for one-dimensional, noninteracting

fermions. 57 In a complementary example, it is shown that the accuracy of the same machine-

learning model can be improved by imposing constraining conditions derived for exact density

functional theory. 58 Moreover, the large majority of modern exchange-correlation functionals

are developed by combining physically motivated Ansätze with the fitting of adjustable param-

eters against datasets of accurate molecular properties (for a comprehensive overview see Ref.

11). This deep-rooted practice constitutes further evidence of the historical complementarity

of practical KS-DFT and statistical inference.

The material of the thesis is organized as follows.

An overview of the relevant theoretical background is presented in Chapter 2. We first in-

troduce the range-separation of the two-electron potential and atom-pairwise dispersion
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corrections as commonly used strategies to overcome the delocalization error and to account

for van der Waals interactions in approximate density functionals. A separate section dis-

cusses two practical strategies used to efficiently solve the Kohn-Sham equation that have

been crucial to represent the electron density for machine-learning applications. Finally, we

summarize the theoretical foundations of Gaussian process regression (GPR) and the smooth

overlap of atomic positions (SOAP) 59 for the regression of molecular properties.

Chapter 3 reports an example of a class of molecules that represents a serious challenge even

for modern density functionals and correction schemes: the π-dimer radical cations. In the

first part of the chapter, we describe the development of a jointly fitted, dispersion corrected,

range-separated hybrid density functional (ωB97X-dDsC), specifically built to provide the

maximum balance between the treatment of long-range London dispersion and reduction

of the delocalization error. The performance of ωB97X-dDsC as well as of other modern

functionals of the same family is tested against a database of small π-dimer radical cations,

Orel26rad.60 In the interest of assessing more realistic systems, we additionally report the

construction of a dataset of large radical cation dimers (CryOrel9), against which we test the

performance of density functionals and state-of-the-art wavefunction based methods.

In Chapter 4, we analyze the consequences of van der Waals interactions on the properties of

chemical systems beyond their electronic ground state. Here, we compare the excited state

properties and molecular dynamics computations of the prototypical cis-stilbene molecule

with its 3-3’,5-5’-tetra-tert-butyl derivative. While the explicit treatment of London dispersion

interactions results in negligible changes for the cis-stilbene, we show that these attractive

forces have a substantial impact on the energetics and structural evolution of its substituted

derivative. In particular, London dispersion interactions impact the outcome of the simulation

qualitatively, increasing the number of trajectories leading to the photocyclization product.

Chapter 5 presents the construction of a local machine-learning framework for the non-linear

regression of the valence electron density. The accuracy of the model is demonstrated by

predicting the electron density of a conformationally diverse dataset of small hydrocarbons.

The scalability and the transferability of the model are then shown with the prediction of

the valence electron density of octane and octatetraene while training exclusively on smaller

hydrocarbons.

A further development of the machine-learning model presented in the previous chapter is

shown in Chapter 6. Here, we introduce a different Ansatz for the expansion of the electron

density in local, atom-centered contributions, enabling the treatment of core electrons. The re-

gression model is then used to obtain qualitative and quantitative insights using the predicted

densities in an ensemble of sidechain–sidechain dimers extracted from the BioFragment

database (BFDb).61 The transferability of the model to more complex chemical systems is

demonstrated by predicting and analyzing the electron density of a collection of polypeptides.

In Chapter 7, we show how the combination of supervised and unsupervised machine-

learning techniques can be used to analyze and correct the spurious energy-curvature versus
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particle number in a selection of common density functionals. 13 In the first part, we build the

regression model using the average energy-curvature between the neutral and the first radical

cation state of 7165 organic molecules taken from the QM7 database. Then, this information is

used for the optimal tuning of the range-separation parameter in LC-ωPBE. In the last section,

we apply an unsupervised dimensionality-reduction algorithm to find patterns connecting

molecular structure and composition with the degree of convexity of the curvature.

Finally, Chapter 8 completes this thesis by summarizing the main conclusions and presenting

possible future developments.
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2 Theory

This chapter provides an overview of the theoretical background relevant to the material

presented in this thesis. In particular, the first two sections introduce range-separated hybrid

functionals and atom-pairwise dispersion corrections as strategies to overcome two of the

most evident failures of approximated Kohn-Sham DFT: the delocalization error and the

incomplete description of London dispersion. A separate section is dedicated to density-fitting

and grid integration, because of their fundamental role in the work presented in Chapters

5 and 6 as practical tools for the efficient decomposition of the molecular electron density.

Finally, the last section summarizes the theoretical foundations of Gaussian process regression

(GPR) and introduces the smooth overlap of atomic positions (SOAP) as a powerful tool for

the regression of both scalar and tensorial molecular properties.

2.1 The delocalization error: energy curvature and range-separated

functionals

The piecewise linear behavior of the total electronic energy as a function of the particle number

[E(N )] is an exact condition of density functional theory.13,17,62,63 Following the original

demonstration, 13 the ground state of a chemical system with N +ω particles (0 ≤ω≤ 1) at zero

temperature is a statistical mixture of two pure states with N and N +1 electrons, respectively

denoted |ΨN 〉 and |ΨN+1〉. In order to conserve the total number of particles, the probabilities

associated to these states have to be 1−ω for |ΨN 〉 and ω for |ΨN+1〉. As a consequence, the

expectation value of the Hamiltonian operator (Ĥ ) applied on the two-state ensemble is given

by

〈Ĥ〉N+ω = (1−ω) · 〈ΨN |Ĥ |ΨN 〉+ω · 〈ΨN+1|Ĥ |ΨN+1〉 = (1−ω)EN +ωEN+1, (2.1)

Eq. 2.1 shows that the total energy between two integer-particle points is indeed a linear
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function of ω with slope EN+1 −EN and intercept EN . In general, however, this condition

is not realized in common density functional approximations (DFAs), which are instead

characterized by a convex (approximately parabolic)64 E(N ) curve.15,17,65–70 The origin of

this incorrect behavior has been attributed to the fact that the LDA and GGA exchange-

correlation holes always integrate to -1 electron.65 While this sum rule is exact for integer

states and infinite systems, 71 it is generally too negative for fractional electron numbers. 65,72

The resultant deviation of (semi-)local functionals from piecewise linearity causes the over-

stabilization of fractional-particle states and the over-delocalization of electron densities.

These spurious effects are known under the collective name of delocalization error and affect

the evaluation of the dissociation limit of molecules and ions, 13,14,66 the interaction energies

of heterodimers (e.g., charge-transfer complexes),15,73,74 the estimation of the molecular

polarizability 75,76 and the fundamental gap. 77–80

In contrast to LDA and GGA functionals, the Hartree-Fock approximation is characterized

by a concave E(N ) curvature and overly localized electrons.67,68 Since the seminal work of

Becke, 81,82 the inclusion of Hartree-Fock exchange has been widely recognized as an effective

way to reduce the delocalization error in (semi-)local functionals.17,83–86 Although the con-

struction of global hybrids was originally proposed on the basis of the adiabatic connection

approach, 87–90 the mutual cancellation of the E (N ) curvature offers an alternative perspective

on the benefits of mixing.62,67 Nevertheless, adding a constant fraction of Hartree-Fock ex-

change through all space violates, yet another exact condition of DFT: the exchange-correlation

potential should decay as −1/r for r −→∞, where r represents the distance of an electron from

the atomic nucleus. 91–93 As demonstrated by Almbladh and von Barth, 92 an electron escaping

from a finite system should experience at large distances the mean-field of the ion it leaves,

which corresponds to the Coulomb potential of a single positively charged particle. Although

the asymptotic behavior of density functionals is generally incorrect (e.g., LDA has an exponen-

tial decay), 93 even the simplest approximations are highly accurate at short inter-electronic

distances. 89,94,95 In fact, the short-range exchange-correlation energy can be represented as a

local expansion of the on-top pair density [Π(r ,r )] and its derivatives, which are respectively

exact and nearly exact already in LDA.96 The accuracy of simple density functionals in inter-

electronic regions, where the wavefunction expansion converges slowly, 97,98 was the original

motivation proposed by Savin for splitting the two-electron Coulomb operator in a short- and

a long-range part. 99,100 The most compelling advantage of range-separation is that it restores

the exact asymptotic behavior of density functionals, by gradually increasing the fraction

of exact-exchange as the inter-electronic distance increases. Although other propositions

exist,96,99,101 the splitting of the Coulomb potential is typically performed on the basis of a

weighted error function [erf(ω · |r 1 − r 2|)], so that

1

|r 1 − r 2|
= 1−erf(ω · |r 1 − r 2|)

|r 1 − r 2|
+ erf(ω · |r 1 − r 2|)

|r 1 − r 2|
(2.2)
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where ω is an adjustable parameter that determines how fast the change from short- to

long-range regime occurs, while r 1 and r 2 are two electronic coordinates. In principle, the

optimal value of this parameter is system dependent62,99,102,102,103 and should be computed

by enforcing the Koopmans’/Janak’s theorems or by minimizing the energy-curvature with

respect to the number of particles.104,105 On the other hand, this procedure breaks size-

consistency, 106 and therefore the common practice is to keep theω parameter fixed for a given

functional.

The problem of combining system-specific range-separation and size-consistency have been

addressed with the introduction of two distinct approximations: local range-separation and

range-separated local hybrids. 107 Both methods are extensions of the local hybrid approach

(LH), 108 where a local mixing function (LFM) determines the amount of exact-exchange to mix

at each point in space (for a recent review on LH, see Ref. 109). In the local range-separation

approach, the ω parameter is position-dependent [ω(r )] and it is determined locally on the

basis of a gradient expansion of the characteristic correlation length, given by the Wigner-

Seitz radius. 110 In contrast, range-separated local hybrids are characterized by a universal ω

parameter and a position-dependent admixture of HF-exchange at short-range. 111,112 Similar

to local hybrids, these methods are characterized by nonstandard two-electron integrals,108

whose evaluation hinders their computational efficiency. As a consequence, their use is not

widespread and standard range-separated hybrids still represent the most commonly used

approach to reduce the effects of the delocalization error in routine computations.

The previous paragraphs presented the problem of the energy curvature in the general case

of many-electron systems. In the one-electron limit the deviation from piecewise linearity is

also well-defined and it is the manifestation of another limitation of approximate KS-DFT, the

self-interaction error (1-e SIE). 12,113–118 This term indicates a condition where the two-electron

energy of a one-electron system is not zero, as the particle experiences a repulsive Coulomb

interaction with itself. While the presence of the self-interaction error was already observed in

the earliest times of DFT, 119–121 it was only in 1981 that Perdew and Zunger reported the basic

requirement for an arbitrary functional to be one-electron SIE free: 12

Eee [ραi ,0] = 1

2

∫
dr 1dr 2

ραi (r 1)ραi (r 2)

|r 1 − r 2|
− 1

2

∫
dr 1dr 2 ρ

α
i (r 1)

δEXC [ραi ,0]

δραi (r 1)
ραi (r 2) = (2.3)

= J [ραi ]+Exc [ραi ,0] = 0 (2.4)

where Eee denotes the two-electrons potential energy, ραi (r ) = |φi (r ,α)|2 are the single-particle

densities associated with the i th α-spin orbital [φi (r ,α)], J is the classical Coulomb repulsion

energy as defined by the first integral in Equation 2.3 and the functional derivative
δEXC [ραi ,0]
δραi (r 1)

represents a general exchange-correlation potential with energy Exc . The same expression

applies to β-spin electrons.
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By enforcing the equality in Equation 2.4, the exchange-correlation energy of a given functional

(Exc [ρα,ρβ]) is corrected for the one-electron self-interaction as

E SIC
xc = Exc [ρα,ρβ]−

(∑
i ,σ

J [ρσi ]+Exc [ρσi ,0]

)
. (2.5)

Equation 2.5 (PZ-SIC) is exact by construction for one-electron systems and the correction

term reduces to zero for the exact exchange-correlation functional. However, since the PZ-SIC

depends on single orbital densities (as opposed to the total density), it is not invariant under

orbital unitary transformations. 12,122,123 As first suggested in the original work, 12 performing

orbital localization prior to correction bypasses the problem, but it simultaneously introduces

an undesirable dependence on the chosen localization scheme. 124–126 Another possibility to

solve the problem is to use the PZ-SIC in combination with an optimized effective potential

method,127 which, however, increases dramatically the overall computational cost. More

recent alternatives to restore the unitary invariance in PZ-SIC include its reformulation on the

basis of Fermi orbitals (FO-SIC) 128 or its self-consistent implementation in combination with

optimal complex orbitals. 129,130

In contrast to approximate KS-DFT, the Hartree-Fock method does not suffer from the self-

interaction error, as the self-exchange contribution (E HF
X ) exactly cancels the self-Coulomb

interaction (J ) for one electron in orbital φ(r ),

E HF
X [φ(r )] =−1

2

∫ ∫
dr 1dr 2

φ∗(r 1)φ(r 1)φ∗(r 2)φ(r 2)

|r 1 − r 2|
= −J (2.6)

Therefore, the electronic energy of the Hartree-Fock method is piecewise linear for one-

electron systems, but not in the many-electron case.67,68 The same argument holds also for

density functionals relying on 100% exact exchange (e.g., MCY2131 and M06-HF132), which

do not generally perform better than other hybrids for many-electron systems. 15,16,66,118 The

E(N ) curvature, therefore, represents a more effective metric than the one-electron SIE to

assess the overall quality of density functional approximations.

2.2 Atom-pairwise dispersion corrections in Kohn-Sham DFT

As early as the mid-90s, it was recognized that approximate exchange-correlation density

functionals yield an inconsistent description of London dispersion interactions.18–21 Since

then, several correction schemes to KS-DFT have been proposed and can be classified into

three distinct categories: 133,134 explicit non-local correlation functionals (e.g., vdW-DF 135,136,

VV10137), effective 1-electron potentials (e.g., DCACP,138,139 Minnesota functionals140), and
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2.2. Atom-pairwise dispersion corrections in Kohn-Sham DFT

ad-hoc atom-pairwise dispersion corrections. The last family of corrections qualifies for a

more detailed discussion in this thesis, due to its central role in the Chapters 3 and 4.

Ad-hoc (or semiclassical) 134 atom-pairwise schemes are the most commonly used corrections

in routine computations due to their computational efficiency and accuracy. 133,134,141,142 The

common feature of these corrections is that the London dispersion energy is computed be-

tween atom pairs and added a posteriori to the converged KS-DFT computation. Their shared

theoretical foundation lies into the evaluation of long-range inter-electronic correlations with

a perturbative approach. 134 Within this framework, the order in the perturbation expansion

determines the maximum number of interactions considered, i.e. pairwise schemes are trun-

cated to second-order (PT2, Eq. 2.7).143 By including higher terms, the majority of ad-hoc

dispersion corrections have been extended to account for many-body effects. 144–146

The general form of pairwise dispersion corrections is obtained by considering the PT2 cor-

relation energy between two molecular fragments (A,B) placed at infinite distance from one

another (RAB →∞). In the limit where the electronic excitations of each fragment are localized,

the second-order correlation energy (E PT 2
cor r ) becomes the square of the Coulomb interaction

between two transition densities: 134

lim
RAB→∞

E PT 2
cor r = E AB

di sp =− ∑
i ,a∈A

∑
j ,b∈B

(i a| j b)2

ωai +ωb j
, (2.7)

where i j and ab are the usual indices for occupied and unoccupied orbitals, (i a| j b) is the

Coulomb integral written in Mulliken notation, and the two ω are the excitation energies

including the effects of the inter-fragment interactions (coupled excitations). Although not

strictly needed,147 the evaluation of Eq. 2.7 is greatly simplified by the expansion of the

Coulomb potential in multipole moments, among which the first non-vanishing contribution

is given by the dipole-dipole term (µi a). In the case of spherical atoms, the leading multipole

term of Eq. 2.7 is

E AB
di sp =−3

2

∑
i ,a∈A

∑
j ,b∈B

|µi a |2|µ j b |2
(ωai +ωb j )R6

AB

=−C AB
6

R6
AB

, (2.8)

where C AB
6 is the dipole-dipole dispersion coefficient. Inclusion of higher multipole inter-

actions (dipole-quadrupole, dipole-octopole, quadrupole-quadrupole, etc.) add to Eq. 2.8

additional terms with a faster radial decay (R−8,R−10, etc.).

For practical applications, Equation 2.8 and its extensions have two main drawbacks. First,

the dispersion coefficients (C AB
n , with n=6,8,10...) can be derived from experimental dipole

oscillator strengths 148 or computed using frequency-dependent polarizabilities, 144,149,150 but
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they are rarely known for any two arbitrary molecular fragments. As common practice in

force field applications,151 the general strategy to overcome this limitation is to compute

the inter-fragment C AB
n as a pairwise sum of their atomic dispersion coefficients, scaled

to account for their dependence on the molecular environment. Second, the multipole

expansion of the Coulomb potential is only well-defined at large inter-fragment distances

and diverges for RAB → 0. The singularities of the Eq. 2.8 are avoided in practice using a

damping function ( f n
d amp ), which goes to zero 148,152–156 or to a finite negative value 147,157–159

for RAB → 0. Including these two practical expedients, the most general expression of the

London dispersion energy in semiclassical atom-pairwise schemes becomes

E AB
di sp =− ∑

x∈A

∑
y∈B

∑
n=6,8,10...

C x y
n

Rn f n
d amp , (2.9)

where x and y are atomic indices.

Modern atom-pairwise corrections can be regrouped into five different families: Grimme’s

DFT-D method (D2, 154 D3, 144 D3(BJ) 160 and recently D4 161), the Tkatchenko-Scheffler vdW-

TS scheme, 162 the approaches based on maximally localised Wannier functions (vdw-WF), 163–165

those based on Becke-Johnson’s exchange-hole dipole moment (XDM157–159,166–168 and

dDsC 169–171) and the local response dispersion method (LRD) 172,173. Each of these corrections

is different from the others according to the particular choice of the damping function, order

of truncation (n) and the way the dispersion coefficients and their dependence on molecular

environments are evaluated.

Among all the mentioned schemes, we present a more detailed description of the dDsC

dispersion correction, due to its central role in Chapter 3. The dispersion coefficients in

dDsC are computed within the framework of the Becke-Johnson exchange-dipole moment

(XDM). 157–159,166–168 The underlying idea of the formalism is that an electron and its exchange

hole are characterized by nonvanishing multipole moments, whose mutual interactions with

the exchange and induced multipole moments of another fragment are responsible for London

dispersion forces. 166,168 The description of the exchange hole is, therefore, a crucial aspect

of the XDM formalism. In the original work,166 Becke and Johnson used the exact nonlocal

expression for the hole and later introduced a linear-scaling variant157 based on the local

Becke-Roussel (BR) formalism. 174 By construction, the BR model reproduces the properties of

the exact exchange hole up to second-order in a local Taylor expansion around a reference

point 174 and depends, as a consequence, on the electron density [ρ(r )], as well as its curvature

[∇2ρ(r )] and the local kinetic energy density [
∑

(∇ψ(r ))2]. In contrast, the dDsC dispersion

correction uses a reformulation of the exchange hole with reduced numerical complexity, as it

is only based on the electron density and the reduced density gradient. 170 In dDsC, the square

10



2.2. Atom-pairwise dispersion corrections in Kohn-Sham DFT

of the exchange-hole dipole moment for spin σ [µ2
X ,σ(r )] takes the following form:

µ2
X ,σ(r ) = (

A · s · rse−B ·s)2
, (2.10)

where s = |∇ρ(r )|
2(3π2)1/3ρ4/3(r ) is the reduced density gradient, rs =

(
3

4πρ(r )

)1/3
is the local Wigner-Seitz

radius, A=2 and B=1 are two fixed parameters fit on rare gas homodimers. 170 As in the original

XDM method, the atomic partitioning of µ2
X (r ) is performed as:

〈µ2
X ,A〉 =

∑
σ

∫
dr w A(r )ρσ(r )µ2

X ,σ(r ). (2.11)

In contrast to XDM (and vdW-TS), however, the atomic weights w A(r ) are computed in dDsC

with the classical Hirshfeld-dominant partitioning, which is a binary scheme that attributes

full weight (w A(r ) = 1) only to the atom with the largest classical Hirshfeld contribution. This

variant of the Hirshfeld scheme retains the numerical ease of the classical partitioning and

simultaneously defines well-localized atomic basins, which are naturally compatible with

exchange hole multipole expansion. 175

Using Eq. 2.11, the dispersion coefficients for two atoms are computed via a modified Slater-

Kirkwood formula166,176,177 as

C AB
6 =

α0
Aα

0
B 〈µ2

X ,A〉〈µ2
X ,B 〉

α0
B 〈µ2

X ,A〉+α0
A 〈µ2

X ,B 〉
(2.12)

where α0
A and α0

B are the atom-in-molecule static polarizabilities, estimated scaling the free

atomic polarizability with the ratio between the atom-in-molecule and the free atomic vol-

ume.178 Higher-order (C8 and C10) dispersion coefficients can be evaluated by generalizing

the above description to the exchange-quadrupole and octupole moments.

The damping of the dDsC correction is based on the universal Tang and Toennies damping

function152,153

f2n(x) = 1−exp(−x)
2n∑

k=0

xk

k !
. (2.13)

The damping argument x in Eq. 2.13 is defined as x = bRAB , where RAB is the distance between

11



Chapter 2. Theory

two atoms and b is an additional damping factor. In contrast to the original formulation where

b is only a fitted parameter, 152 the damping factor in dDsC is itself a function of the interatomic

distance and contains a second Fermi-like function
(
F (x) = 2

ea0 ·x+1

)
that controls the behavior

of the correction at short distances (Eq. 2.14): 171

bdDsC (RAB ) = F (x) ·b(RAB →∞). (2.14)

The argument of the Fermi-like function is defined as

x =
(

2qAB + |(ZA −N D
A )(ZB −N D

B )|
RAB

)
N D

A +N D
B

N D
A ·N D

B

, (2.15)

where ZA is the nuclear charge of atom A, N D
A its Hirshfeld dominant population, and

qAB = ∫
dr w A(r )wB (r )ρ(r ) is a covalent bond index based on the overlap of Hirshfeld clas-

sical populations of atoms A and B [w A(r ) and wB (r )]. Using the preceding definitions, it

follows that F (x) = 1 for RAB →∞ and F (x) = 0 for RAB → 0. The second term, b(RAB →∞),

denotes the asymptotic value of the damping parameter that is estimated on the basis of the

effective atom-in-molecule polarizabilities. 171 The dDsC damping function is controlled by

two functional dependent parameters, one scaling the steepness of the Fermi function and the

other adjusting the value of b(RAB →∞). Combining an efficient evaluation of dispersion coef-

ficients with a double damping function, dDsC offers enough flexibility to accurately describe

electron correlation effects at all ranges, from the intra- to the inter-molecular domain.

2.3 Numerical Aspects of Kohn-Sham Equations

The exact ground-state electronic energy of a chemical system (E0) can be expressed on the

basis of the Hohenberg-Kohn theorems 56 and their extension to N-representablea densities 179

as:

E0 = min
ρ→N

(
min
Ψ→ρ

〈Ψ|T̂ + V̂ext + V̂ee |Ψ〉
)

, (2.16)

where the constrained search is first performed over all the antisymmetric wavefunctions

(Ψ) that yield a fixed trial density (ρ) and then over all the trial densities that integrate to

the correct number of electrons (N). T̂ , V̂ext and V̂ee are, respectively, the kinetic energy, the

aAn N-representable density is any density that can be obtained from an antisymmetric wavefunction.
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2.3. Numerical Aspects of Kohn-Sham Equations

external potential (electron-nuclei) and the electron-electron (see Eq. 2.3) operators. In 1965,

Kohn and Sham proposed a practical reformulation of the original DFT framework, where the

fully interacting reference system was replaced by an artificial set of non-interacting electrons

with the same ground-state density. 4 The exact wavefunction of the non-interacting system

simply reduces to a single determinant (Ψs), whose kinetic energy (Ts) is readily evaluated as:

Ts[ρ] = min
Ψs→ρ

〈Ψs |
N∑
i
−1

2
∇2

i |Ψs〉 = 〈Ψs[ρ]|
N∑
i
−1

2
∇2

i |Ψs[ρ]〉 . (2.17)

Using Equation 2.17, the total electronic energy in Kohn-Sham DFT can be written as

E [ρ] = Ts[ρ]+Eext[ρ]+ J [ρ]+ [(T [ρ]−Ts[ρ])+ (Vee [ρ]− J [ρ])] = (2.18)

= Ts[ρ]−∑
A

ZA

∫
dr

ρ(r )

|r −R A|
+ 1

2

∫
dr 1dr 2

ρ(r 1)ρ(r 2)

|r 1 − r 2|
+EXC [ρ]. (2.19)

The above expression defines the external potential energy (Eext[ρ], ZA and RA being the

charge and position of nucleus A), the classical electron-electron repulsion (J [ρ]), as well as the

exchange-correlation energy functional (EXC [ρ]), whose exact form and analytic dependence

on the density remain yet unknown.

Any routine Kohn-Sham DFT computation relies on practical numerical strategies to evaluate

the different terms in Equation 2.19. These backbone tools are both physically motivated

approximations and numerical schemes that dictate the overall scaling and tractability of the

computations. Among these techniques, which range from SCF accelerators 180–189 to the gen-

eration of an initial guess for the density 190–194 to the numerical evaluation of integrals, 195–199

the density-fitting approximation and the grid integration of the exchange-correlation func-

tional are particularly relevant for the work presented in this thesis.

2.3.1 Density Fitting

The development of fitting techniques to reduce the computationally demanding evaluation

of four-center two-electron integrals (e.g., Eq. 2.20) has been an active field of research since

the early days of quantum chemistry. 200,201

(ab|cd) =
∫

dr 1dr 2
χa(r 1)χb(r 1) χc (r 2)χd (r 2)

|r 1 − r 2|
=

∫
dr 1dr 2

ρab(r 1)ρcd (r 2)

|r 1 − r 2|
(2.20)

Density fitting (DF) is an alternative approach to the exact evaluation of Eq. 2.20, which is
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Chapter 2. Theory

widely used to approximate the Coulomb and exchange terms in HF and DFT, 202–204 as well

as to accelerate integral transformations in post-HF methods. 205–211 The technique consists

of approximating the binary products of atomic orbitals [χa(r )χb(r )] by an expansion on an

auxiliary basis set φAux(r ), 207,212–215 such as

ρab(r ) =χa(r )χb(r ) =
Naux∑

P
d ab

P φAux
P (r ) = ρ̄P (r ). (2.21)

The expansion coefficients (d ab
P ) are obtained by minimizing a functional of the error between

the approximated [ρ̄P (r )] and the ab-initio [ρab(r )] one-electron densities. Originally derived

by Whitten in the context of ab-initio correlated methods214 and subsequently popularized

for DFT applications by Dunlap, Connolly and Sabin, 215 the most widely used functional has

the form of a Coulomb integral:

εab =
∫

dr 1

∫
dr 2

[ρab(r 1)− ρ̄P (r 1)][ρab(r 2)− ρ̄P (r 2)]

|r 1 − r 2|
. (2.22)

In other (less common) formulations of Eq. 2.22, the Coulomb potential is replaced by a

different operator, including overlap (δ(r 1 −r 2)), 202,213,216 anti-Coulomb (−|r 1 −r 2|) 217 and,

more recently, the attenuated-Coulomb operator
(

1−erf(ω|r 1−r 2|)
|r 1−r 2|

)
. 218

Minimizing the Coulomb energy of the fitting residuals according to Eq. 2.22 leads to the

following definition of the coefficients:

d ab
P =∑

Q
(ab|Q)[J−1]QP (2.23)

where (ab|Q) and [J ]QP are respectively three- and two-center electron repulsion integrals.

Using Eqs. 2.21 and 2.23, the usual four-center two-electrons integrals (Eq. 2.20) takes the

following form:

(ab|cd) =
Naux∑
PQ

(ab|Q)[J−1]QP (P |cd) (2.24)

where the summation is performed over the auxiliary basis set. As the final expression (Eq.

2.24) only depends on two- and three-centers integrals, the overall scaling of its evaluation

is reduced to O(N 3) from the formal O(N 4), where N is the number of atomic orbitals. This
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2.3. Numerical Aspects of Kohn-Sham Equations

result makes density fitting particularly useful for computations involving large molecules

and basis sets. Moreover, avoiding four-center integrals accelerates dramatically the integral

transformations from the atomic to the molecular orbitals basis,211 which is a fundamental

advantage to contain the overall cost of post-HF methods. Recent developments in the density

fitting approach, such as the MARI-J method of Ahlrichs and coworkers 219 or the CFMM-DF

technique developed in the Head-Gordon group, 220 aim at further reducing the O(N 3) scaling

and reaching the final goal of a linear scaling evaluation of electron repulsion integrals.

2.3.2 Grid integration of the Exchange-Correlation Potential

All the integrals needed to compute the Kohn-Sham electronic energy (see Eq. 2.19) can be

evaluated analytically, with the only exception of those involving the exchange-correlation

potential [VXC (r )]. 221 The complexity of this type of integrals can be effectively shown using

the simplest approximation for an exchange functional (Dirac’s exchange): 222

EX [ρ] =−3

4

(
3

π

)1/3 ∫ ∞

−∞
dr ρ(r )4/3. (2.25)

Only particularly simple forms of ρ(r ) (e.g., uniform electron gas or a single Gaussian function

in the minimal basis hydrogen atom) allows the analytical evaluation of the above expression.

Therefore, numerical integration is unavoidable in the majority of cases and KS-DFT compu-

tations commonly require an integration grid. The characteristics of the real-space grid, such

as its distribution and size, are essential to ensure a good trade-off between computational

efficiency and high numerical accuracy. 223 Numerical quadrature, in fact, does not alter the

overall scaling of KS-DFT computations, but it does add a large prefactor dependent on the

total grid size. 224 As the exchange-correlation potential is mainly governed by the behavior of

the electron density (e.g., Eq. 2.25) and its derivatives, the most effective quadrature grids are

constructed according to the features of the density, such as its accumulation and loss of its

angular structure approaching the nuclei. 195

While several quadrature schemes exist for molecules, their large majority is based on the

decomposition of the molecular integrals into a sum of weighted atomic contributions, where

the atomic domains are usually obtained by dividing the molecule in Voronoi polyhedra225

or in overlapping continuous cells.195 The integration over each atomic domain is further

divided in radial and angular parts. Radial integration is commonly performed by transforming

the integration limits (0 ≤ r < ∞) to a finite interval, often 0 ≤ x < 1 or −1 ≤ x < 1. Then,

the quadrature is performed using a Gauss(-Chebyshev) scheme195,223 or using the Euler-

MacLaurin formula for a chosen set of radial points. 196,226

In contrast to radial integration, where many equally efficient schemes are available,227 an-

gular quadrature is mostly performed using Lebedev grids (Figure 2.1).228–232 This scheme
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Figure 2.1 – Lebedev grid with 2030 points on the unit sphere. The color code shows the
integration weight of each point.

samples the unit sphere with grid points taken from an inscribed octahedron, starting from

the 6 vertices, continuing with the 8 and 12 centers of the faces and sides, adding points until

the desired density is reached. The weight of each point is defined in such a way that the grid

exactly integrates all spherical harmonics up to order L ∼p
3n −1, where n is the number of

grid points. 224 In addition, Lebedev grids are invariant under the rotations of the octahedral

group and under inversion, which facilitates the use of molecular symmetries to reduce the

number of angular points, as practically all the common molecular point groups are directly

subgroups of Oh or have large subgroups in common with it.

Besides Lebedev grids, angular quadrature can be performed directly using products grids

of the spherical polar coordinates, using a Gauss-Legendre scheme for θ and a simple Gauss

scheme for φ.196 Nevertheless, this methodology is much less efficient as it requires 3
2 more

points than the Lebedev integration to integrate all the spherical harmonics up to the same

order. 224

2.4 Gaussian process regression

The original paradigm of quantum chemistry relies upon the construction of a hierarchy of ever

more accurate physical approximations to reach the exact solution of the Schrödinger equation.

Given these models and a molecule, it is possible to compute any chemical property, with an

accuracy dependent on the degree of approximation of the chosen model. Mathematically,

this procedure can be expressed as a given set of molecular variables (e.g., atomic positions,

charges, spin-states, etc.) {x1, x2, ..., xN } to be mapped onto a set of molecular properties

{y1, y2, ..., yN }, through a known function f : X −→ Y .
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2.4. Gaussian process regression

The core concept behind machine-learning techniques, also valid for quantum chemical

applications, is to invert this relation and given a set of variables and their respective properties

{(x1, y1), (x2, y2), ..., (xN , yN )} infer the mapping f , in order to be able to predict the property

(ya ) for any new input value (xa ). 233–235 In contrast to traditional quantum chemistry, where

the form of the mapping is uniquely determined by the physical approximations made, any

function compatible with the data would be equally valid in the inductive framework of

machine-learning.236 Since only a finite number of points are known, there is always an

infinite set of functions that satisfies all the relations X −→ Y . This is an impasse for which a

step forward is to assume some of the characteristics (e.g., the smoothness) of the mapping f

and to attribute to each function a prior probability on this basis. Although in this way some

functions are much more likely than others, they are still infinitely many.

The key to solve this issue is to consider the infinite set as a stochastic distribution of contin-

uous functions (i.e., the distribution of a stochastic process), rather than as individual units.

Within a Bayesian framework,237,238 the prediction of the properties (ya ) of new inputs (xa )

can be derived from the probability distribution over the functions given the known data

[p( f |X ,Y )] as:

p(ya |xa , X ,Y ) =
∫

d f p( f |X ,Y )p(ya |xa , f ). (2.26)

The evaluation of the terms in Equation 2.26 is greatly simplified if the stochastic process

is a Gaussian process (GP), i.e., if any finite collection of its random variables is normally

distributed. 239 In fact, akin to a standard Gaussian distribution, only the first and the second

moment (i.e., the mean [µ(X )] and covariance [K (X , X ′)] functions) are necessary to com-

pletely determine a Gaussian process.240 It follows that if the Bayesian prior for f is let to

be a GP, then the posterior p(ya |xa , X ,Y ) can be written in terms of a multivariate Gaussian

distribution: 236

p(ya |xa , X ,Y ) =N (ya |µ∗,K ∗) (2.27)

where,

µ∗ = K (X , xa )T K (X , X )−1Y and

K ∗ = K (xa , xa )−K (X , xa )T K (X , X )K (X , xa ).

The choice of the covariance function (or kernel) [K (X , X ′)] is a key element of Gaussian

process regression (GPR), as it can be selected ad hoc on the basis of educated assumptions

about the form of the targeted function. 236,241,242 As K (X , X ′) measures the covariance of two

input values, it can be also considered, with a change of perspective, as a measure of their
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similarity (or proximity). In general, not any arbitrary function can be a kernel, the condition

being that it must be positive semidefinite (i.e., all the eigenvalues of its matrix form are

non-negative). 243

Figure 2.2 shows an example of the use of a Gaussian process for the Bayesian regression of a

simple one dimensional function using a squared exponential kernel (K (X , X ′) = e
|X−X ′ |2

2σ2 ). 236

Note that the functions in the Figure are only for illustrative purposes, as the mean prediction

and the confidence interval are computed with a virtually infinite set of functions.

a) b)

Figure 2.2 – a) Five functions drawn from a GP prior with µ = 0 and a squared exponential
covariance function. b) Five functions from a GP posterior after data (black points) were given
to the model. The black dashed line represents the mean prediction and the gray area is the
2σ confidence interval.

2.4.1 The SOAP representation and similarity kernels

Applying the GPR framework to solve quantum chemistry problems implies devising a strategy

to encode molecular information into a set of input vectors ({X }). 25,27,38,59,244–251 For the sake

of the regression, these vectors are required to completely determine the targeted property and

to encode all its fundamental symmetries. 59,250 For example, the Hamiltonian and, thus, the

energy of any given molecule is defined by the number of electrons (N ) and the external po-

tential (Vext ), which are determined in turn by the position of the nuclei (RI ) and their charges

(ZI ). 252 Therefore, RI and ZI carry sufficient information to build a molecular representation

for the regression of the electronic energy.

A particular aspect of some electronic properties, such as the electron density [ρ(r )], is that

they are local and depend significantly only on their immediate chemical environment. 253,254

Consequently, the representation of the chemical information to target these "nearsighted"

properties benefits to be local as well.255 In practice, even global extensive properties (such

as the total electronic energy) can be partitioned into local or atom-based contributions and

targeted with local representations. This procedure makes the regression scalable for large
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systems since local atom-centered representations can be transferred from smaller fragments

(see, for instance, Chapters 5 and 6).

The Smooth Overlap of Atomic Positions (SOAP) is a local similarity measure between two

atomic environments that allows bypassing altogether the use of a representation. 59 The main

concept of SOAP is to compute the similarity (S) between neighboring environments as the

inner product (overlap) of two atom-centered densities:

S(ρ,ρ′) =
∫

drρ(r )ρ′(r ) (2.28)

where ρ(r ) are approximated by a sum of Gaussian functions centered on each atom of the

neighborhood (χ),

ρχ(r ) = ∑
i∈χ

exp

(
(r i − r )2

2σ2

)
(2.29)

The measure S(ρ,ρ′) is invariant over the permutation of atomic environments, but not over

changes in their orientation. Nevertheless, the rotational invariance can easily be recovered

by integrating over all possible orientations of one of the two environments:

K̄ (ρ,ρ′) =
∫

dR̂

∣∣∣∣∫ drρ(r )ρ′(R̂r )

∣∣∣∣n

(2.30)

where n ≥ 2 is an integer exponent needed to prevent the two integrals to be exchanged and

thus to preserve the angular information. For most applications and to raise the sensitivity of

the SOAP kernel to changes in atomic positions, it is beneficial to normalize the kernel and

enhance its non-linearity by raising it to some power ζ≥ 2,

K (ρ,ρ′) =

 K̄ (ρ,ρ′)√
K̄ (ρ,ρ)K̄ (ρ′,ρ′)


ζ

(2.31)

For the applications relevant to this thesis, both exponents in Equations 2.30 and 2.31 are set

to 2.

In practice, the evaluation of the integrals in Equation 2.30 is greatly simplified if the atom-

centered densities [ρχ(r )] are expressed in a basis composed of orthogonal radial functions
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and spherical harmonics for the angular part. In this way, it is possible to construct a SOAP

representation in the form of a power spectrum, whose elements for each pair of atoms (Z1, Z2)

are defined as

p(r )Z1,Z2

n,n′,l =π
√

8

2l +1

∑
m

c∗(r )Z1

n,l ,mc(r )Z2

n′,l ,m (2.32)

with c(r )Z
n,l ,m representing the projections of ρχ(r ) onto the orthogonal basis set. Using the

power spectrum representation, the SOAP similarity kernels take the form of a dot product.

K (p , p ′) =
(

p ·p ′√
(p ·p)(p ′ ·p ′)

)ζ
. (2.33)

2.4.2 Symmetry-adapted Gaussian process regression

The SOAP kernel, as defined in the previous section, is invariant under translation, rotation,

and permutation of the environments and encodes all the fundamental symmetries to target a

scalar molecular property. On the other hand, the formalism is not covariant with symmetry

operations applied to any arbitrary tensor of an order higher than zero (e.g., multipole mo-

ments, polarizabilities, stress tensor, etc.).256,257 This poses no particular problem for small,

rigid molecules (e.g., CO2), as it is possible to regress the properties in a local frame of reference

where all the tensors would be aligned. 46,258 On the other hand, this limits tremendously the

chemical diversity that can be targeted with SOAP-based GPR.

The generalization of the SOAP similarity kernel for the regression of any arbitrary-order tensor

can be obtained by averaging over all symmetry operations Ŝ: 47

kµν(ρ,ρ′) =
∫

dŜµνk(ρ, Ŝρ′) (2.34)

where µν are indices of two sets of axes. In particular, the requirement for tensor regression

is that the kernel should be covariant with the group of all rotations about the origin of the

3D Euclidean space [SO(3) group]. According to SO(3) algebra, any Cartesian tensor can be

decomposed in its spherical components as a linear combination of spherical harmonics. 259

In this basis, the transformation under rotation of any tensor is represented by the Wigner Dλ
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matrix. 260,261 Accordingly, the SOAP similarity kernel (Eq. 2.30) has to be modified as:

K̄ λ(ρ,ρ′) =
∫

dR̂Dλ(R̂)

∣∣∣∣∫ drρ(r )ρ′(R̂r )

∣∣∣∣n

. (2.35)

These symmetry-adapted kernels encode the correct geometrical transformations of tensors

of any arbitrary rank and do not require alignment of the molecules to a fixed reference frame.

Using these matrices as a measure of the covariance between different atomic environments

within a symmetry-adapted GPR framework (SA-GPR) allows the scalable and transferable

regression of any molecular property.
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3 Balancing DFT Interaction Energies in
Radical Cation Dimers

This chapter is based on the following publication:

A. Fabrizio, R. Petraglia, C. Corminboeuf, Balancing DFT Interaction Energies in Charged

Dimers Precursors to Organic Semiconductors, J. Chem. Theory. Comput., submitted. Chem-

Rxiv. Preprint. https://doi.org/10.26434/chemrxiv.11309480.v1.

3.1 Introduction

The necessity of characterizing and validating the robustness of density functional approx-

imations (DFAs) has motivated the construction of a variety of benchmark databases (e.g.,

Ref. 262 and datasets therein) that target either specific chemical properties or specific classes

of compounds. These collections of highly accurate data have aided in the development of

improved functionals and dispersion corrected schemes that have increased the applicability

and robustness of the Kohn-Sham density functional theory (KS-DFT) framework. 11

In the last two decades, several databases focusing on intermolecular interactions have flour-

ished. 263 Besides the fact that non-covalent interactions are ubiquitous and crucial for under-

standing molecular structures and properties, 134 the interest in non-covalent interactions is

also methodological. In fact, accurately describing intermolecular interactions, especially Van

der Waals forces, has been a longstanding challenge within Kohn-Sham density functional

theory. 134,264,265

In practice, one can categorize existing databases of intermolecular interaction energies

into three distinct classes. The first includes datasets that specifically target non-covalent

interactions, which includes Hobza’s popular S22266 along with its corrections267,268 and

extensions, 269,270 as well as the S66 271 set, Grimme’s S12L, 272 Sherrill’s NBC10 273,274, and the

SSI databases.275 A second class consists of databases assessing interaction energies along

with other thermochemical and kinetics properties such as GMTKN30 276,277 along with its

extension, 262 and Zhao and Truhlar’s NCIE53. 140 Finally, a third category is oriented towards

machine-learning and data-driven (combinatorial) applications and differs from the others by
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the exceptional size of the dataset (i.e., thousands of entries). This class includes the databases

of Friesner, 278 Shaw, 279 Head-Gordon280 and the recent BFDb from Sherril group. 61 Overall,

the large majority of these databases focuses on the intermolecular interactions between

two closed-shell molecules constituting a neutral dimer, and only rarely between charged

open-shell molecules.

Yet, charged open-shell dimers are equally relevant for both the methodological and appli-

cation purpose. The smallest functional units of organic electronic materials (e.g., organic

photovoltaics, 281 organic field-effect transistors 282 and organic light-emitting diodes 283) are,

for instance, composed of π-dimer radical cations.283–285 The Orel26rad60 database, intro-

duced in 2012 by one of us, illustrates the rather poor accuracy of functionals augmented

by an atom-pairwise dispersion energy correction. This poor performance arises from the

combined effect of the incomplete description of London dispersion interactions and the delo-

calization error, which can be pinpointed as the source of dramatic failures not only in radical

cations dimers 60,286, but also in halogen, 287 pnicogen288 and chalcogen bonds, 289 as well as

solvated ions. 290,291 In particular, dispersion-corrected semilocal and hybrid functionals tend

to strongly overbind radical cation dimers at their equilibrium structures and exhibit incorrect

asymptotic behavior. On the other hand, long-range corrected exchange functionals improve

the description of the asymptotic region, but severely underestimate the interaction energies

at equilibrium. In general, these functionals perform not better than dispersion-corrected HF,

which indicates that the poor performance of DFAs is rooted in a lack of medium-short range

correlation contributions. 60,292,293

While Orel26rad provides a useful set of π-dimer radical cations motifs and interaction en-

ergies, both the size and the complexity of the database remain limited. In practice, organic

electronics involve large molecules that feature a variety of possible packing motifs.294–296

This raises a question regarding extending the conclusions drawn from the Orel26rad com-

pounds to larger and more realistic dimer motifs. In particular, the ability of the functionals to

balance delocalization error and London dispersion interactions must be addressed for larger

dimers. Indeed, both these effects will grow with the system size 128,272 but the exchange and

dispersion energies will decay at a different pace.

Here, we build and analyze an extension to Orel26rad, which includes 9 large dimers used in

practice as organic semiconductors (CryOrel: Crystal of Organic Electronics). The CryOrel9

dimers are representative of three different crystal arrangements : brickwork, herringbone and

columnar-lamellar packing.297 CryOrel9 is aimed at testing the accuracy of standard DFAs

and wavefunction-based methods (such as USAPT0, MP2 and RPA) beyond the Orel26rad

model systems, as well as at identifying those chemical situations and crystal motifs that are

prone to larger errors.

To analyze these large dimers, we expand the original scope of functionals tested on Orel26rad

and parametrize a variant of theωB97X functional 298 jointly-fitted with the density-dependent

dispersion correction (dDsC). 169–171 This variant is compared with its parent density function-
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als, ωB97X-D3, 299 ωB97X-V, 300 ωB97M-V, 280 and ωM06-D3 299, which clarifies whether these

approaches are suitable to achieve an accurate description of organic electronics units both in

their charged and neutral states.

3.2 Methods and Computational Details

3.2.1 The CryOrel9 set

The CryOrel9 dataset is aimed at overcoming specific limitations of OREL26rad, while retain-

ing a focus on π-dimer radical cations that are relevant for the field of organic electronics.

OREL26rad, as well as its neutral counterpart Pi29n, includes the simplest model systems

of charge carriers for organic electronics arranged at their gas-phase minima. In contrast

to the OREL26rad model systems, the nine CryOrel9 compounds are precursors of known

semiconductors that are up to five times larger and arranged according to their experimentally

determined crystal arrangement (Figure 3.1). While the herringbone packing is the most com-

mon, the brickwork arrangement is typical of chemical situations, where a π-conjugated core

is functionalized with sterically demanding lateral substituents, such as in TIPS-pentacene. 301

This class of molecules with layered packing motifs generally exhibits the most efficient trans-

port properties.285 The last columnar/lamellar packing is typical of disk-shaped molecules

such as hexabenzocoronene, which forms liquid-crystal phases upon substitution with floppy

peripheral groups. 302

Following the same protocol that was used for Orel26rad,60 monomer geometries extracted

from the X-Ray data were optimized at B3LYP 82,303,304/6-31G* in Gaussian 16. 305 The radical

cation dimers are constructed by assembling a neutral and a radical cation monomer for

each compound without further relaxation. To preserve the crystal packing symmetries,

the center of mass (C.O.M.) distances and the tilt-angles between the monomers are fixed

to experimentally determined values. X-Ray data were taken either from original literature

(ETTDM-TTF,306 BDT307 ) or the Cambridge Structural Database308 (DITT,309 FPP-DTT,310

BBBT,311 DBT-Sulfone, 312 QTH,313 DBT,314 BTTT315 ). A dataset containing all relevant files

will be made available upon publication in the Materials Cloud public repository.

3.2.2 Benchmark level

Interaction energies of the nine dimers were computed at estimated DLPNO-CCSD(T) 316,317

/CBS as implemented in the ORCA code. 318 The success of DLPNO-CCSD(T) for benchmarking

large chemical systems is undoubtedly due to its favorable scaling, as well as its established

accuracy. 317,319,320 Nevertheless, correlation energies converge slowly with respect to the basis

set size and extrapolations to complete basis set (CBS) are needed. Following the procedure

proposed by Neese and coworkers,321 the interaction energies were computed after a two-

point extrapolation using Dunning’s cc-pVDZ and cc-pVTZ basis sets. 322
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Figure 3.1 – The CryOrel9 set classified by the characteristic crystal packing of each com-
pound a) 2D brickwork, b) columnar-lamellar and c) herringbone packing. The meaning of
abbreviations in the Figure is detailed in Appendix A (Table A.2).

The Boys-Bernardi scheme was applied to all computations to correct for basis set superposi-

tion error (BSSE). 323 To avoid errors stemming from spin-contamination, computations were

performed at the ROHF-DLPNO-CCSD(T) level. 324

3.2.3 Density functionals and wavefunction based computations

Two main aspects of the density functionals have been tested on the CryOrel9 database:

the influence of the fraction or range of exact exchange and the sensitivity of the result to

different dispersion correction schemes. Additional details on the functional tested and their

performance can be found in the Appendix A.

DFT computations were performed using the def2-TZVP basis set325 and a fine grid for

the meta-GGA and meta-hybrid functionals. Computations with the GGA, global hybrids,

TPSS326 and ωB97X-D were performed with GAMESS-US;327,328 the Minnesota functionals

were tested in Gaussian 16; 305 ωB97X-D3, ωB97X-V, ωB97M-V and ωM06-D3 were computed

using QChem. 329

Along with these common DFAs and dispersion corrections, three wavefunction based meth-

ods (i.e., RPA, MP2, and U-SAPT0) were also tested. In principles, RPA can be also thought of

as an extension of the density functional test set that seamlessly includes non-local correla-
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tion effects and exact HF-exchange. 330 MP2 and U-SAPT0 computations were performed in

combination with the 6-31G*(0.25) and the jun-cc-pVDZ basis sets, respectively.

Random phase approximation 331,332 (RPA) computations used the resolution of identity and

the frozen core approximation in Turbomole 7.1. 333 The self-consistent Kohn-Sham orbitals

were obtained from previously converged PBE 334,335 computations. The complete basis set

results (RPA/CBS) were computed using three-point extrapolation, following established

protocols.336 MP2/6-31G*(0.25)337 computations were performed in Molpro 2015, 338 using

the resolution of identity approximation. Unrestricted symmetry-adapted perturbation theory

(USAPT0 339) was performed as implemented in the Psi4 software package, 340 along with the

suggested jun-cc-pVDZ basis set. 341

3.2.4 Fitting and validation ofωB97X-dDsC

ωB97X-dDsC belongs to a larger family of dispersion-corrected range-separated hybrid density

functionals derived from Head-Gordon and Chai’s ωB97X. Their general structure relies upon

the B97-type expansion of inhomogeneity-correction factors (ICFs), 342 combined with a fixed

fraction of HF-exchange that gradually increases up to 100% in the long-range. Each functional

declines this common paradigm as well as the parametrization in a different way. For instance,

ωB97M-V introduces an additional dependence on the kinetic energy density and results from

the systematic generation and testing of a combinatorial library containing approximately

1010 candidate functional forms. Yet, a common and very relevant feature in the present

context is that all the functionals in the series are jointly-fit with a dispersion correction. Chai

pursued the same strategy with ωM06-D3, combining range-separation and joint-fitting of

the dispersion correction on top of the M06 meta-hybrid functional.

The choice of the dispersion scheme provides a further classification. ωB97X-D andωB97X-D3

are based on ad-hoc atom pairwise corrections that account for only one class of non-additive

effects (type-A, following the Dobson’s classification343). It is worthwhile noting that non-

additive effect beyond the pairwise approximation (type-B) can be accounted for through the

addition of a three-body term (Axilrod-Teller-Muto) to DFT-D 144,344 or to infinite-order as in

the many-body-dispersion scheme (MBD) of Tkatchenko and coworkers, 145 as well as in RPA

and CCSD. 330 Theses effects are crucial for large systems, as demonstrated on nanoscale mate-

rials 345 and large fullerenes. 346 Nevertheless, the size of the dimers studied here is significantly

smaller than these examples and pairwise additivity remains a practical choice. In fact, the

relative importance of many-body contributions with respect to higher-order pairwise terms

(C8 and C10) is still a subject of debate.146,272,347,348 In particular, it has been demonstrated

that, even for small dimers, C8 and C10 capture nearly half the dispersion energy 159 and that,

when omitted, the leading C6 term mimics their role and results in a systematic overbinding

of dispersion interactions. 146,348 In this respect, the dispersion correction of ωB97X-dDsC in-

cludes all dispersion pairwise coefficients up to third-order (C6, C8 and C10). The more recent

variants tested hereafter, ωB97X-V and ωB97M-V, include an explicitly non-local correlation
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term rooted in VV10. 137,343

Akin to ωB97X-D and ωB97X-D3, ωB97X-dDsC is tuned by 15 adjustable parameters (5 for the

exchange gradient-correction factors, 5 for the same-spin correlation and 5 for the opposite-

spin correlation). Four additional parameters determine the range-separation, control the

fixed fraction of exact exchange at short-range and tune the damping function of the dispersion

correction.

As for the other members of the ωB97X series, ωB97X-dDsC obeys the uniform electron gas

limit. A constraint that fixes 3 functional parameters and allows the remaining 16 to vary

freely. The task of simultaneously optimizing these parameters was tackled with a time-

and memory-efficient algorithm divided into two recursive sub-procedures, which rely on

partial parameter optimization using frozen densities. Given the high dimensionality of the

optimization problem, the dependence on initial conditions of the parameters was evaluated

by perturbing the optimized set. The parameters of the proposed functional were found to

be stable to a 10% perturbation. Figure 3.2 is a diagrammatic illustration of the sequential

procedure used in the determination of the 19 adjustable parameters that tune ωB97X-dDsC.

Figure 3.2 – Main algorithm used for the optimization.

The main optimization algorithm is divided into two recursive procedures, delimited in Figure

3.2 by a blue and a red box. The first one (in blue) is responsible for data generation and

storage, input handling and decision making, while the nested processes (in red) perform the

actual optimization.

The algorithm requires the user to input the molecular geometry of each molecule of the train-

ing set (xyz format), as well as to provide the initial guess for the parameters to optimize. Those

data are used to generate input files compatible with a modified version of the GAMESS pro-
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gram package 327,328 and then to run a single point computation where the electronic densities

are optimized self-consistently. The relaxed densities and the effective atomic polarizabilities

are then stored as external files in the memory (RAM). Using the data stored in the RAM, the

core optimization process computes single point energies and returns the mean absolute

error (MAE) of the training set relative to a specific array of parameters. The MAE is then

minimized using a constrained version of the Broyden-Fletcher-Goldfarb-Shanno algorithm

(L-BFGS-B) 349, in order to find the optimal parameters for a specific density (OPD(i)). At this

point, the algorithm is able to compare the initial and the updated parameters and decide

to either conclude the optimization or to iterate the cycle. The convergence criterion is met

when the array of parameters remain unchanged after the optimization process.

The original GAMESS code was adapted to the necessity of reading functional parameters

from an external input and storing important data, densities and polarizabilities in external

unformatted files. A renewed version of the subroutines for the computation of the dDsC

dispersion correction was also implemented in the final operational version. The optimization

core was designed to use only 14 subroutines of the entire GAMESS program package in order

to return the single point energy for each chemical system.

Both parameter training and validation of the functional were performed using a modified

version of the GAMESS-US program package.327,328 The full list of optimized parameters is

available in Appendix A of the original paper (Table A.1). During the functional parametriza-

tion, numerical integrations were performed on the fast SG-1 grid226 (50/194), while for

validation a finer Euler-Maclaurin-Lebedev grid was used (75/302). The parametrization and

validation of the functional were performed using the def2-TZVPD basis set. Since no signif-

icant dependence on diffuse functions was found, all other computations were performed

with the def2-TZVP basis set.

The 19 adjustable parameters of ωB97X-dDsC have been optimized to reduce the mean

absolute error (MAE) on the same training set originally as used for ωB97X-D and in large

part for ωB97X-D3. As reported in Figure 3.3, this set includes atomization energies (G2),

ionization potentials (IP), electron affinities (EA), proton affinities (PA), hydrogen transfer

barrier heights (HTBH), non-hydrogen transfer barrier heights (NHTBH), and non-covalent

interactions (S22).

The general performance of the trained ωB97X-dDsC is similar to that of ωB97X-D, with only

a slight overall improvement of about 0.2 kcal ·mol−1 over the whole set. This result is not

surprising considering that ωB97X-dDsC and ωB97X-D share the same exchange-correlation

functional form. Exceptions to these similar performances include proton affinities (PA), as

well as forward and reverse barrier heights in the HTBH set for which the MAE ofωB97X-dDsC

decreases by about 0.7 kcal ·mol−1 with respect to ωB97X-D.
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Figure 3.3 – Mean absolute error (MAE) of ωB97X-dDsC on the training set. ωB97X-D is shown
for the sake of comparison.

3.3 Results and discussion

Having demonstrated the accuracy of ωB97X-dDsC on the training set, we now compare its

performance with that of standard dispersion-corrected density functional approximations,

including theωB97X variants andωM06-D3 on the Orel26rad and Pi29n datasets. The averaged

performance of the functionals is reported in Figure 3.4 using two statistical metrics to probe

their absolute (MAE: mean absolute error) and their relative deviation (MAPE: mean absolute

percentage error).

Figure 3.4 – (left) MAE of illustrative functionals on the radical cation dimers of Orel26rad and
the corresponding neutral compounds of Pi29n.(right) MAPE of the same functionals on the
Orel26rad dataset. The horizontal line represents the MAPE of ωB97X.

Overall, impressive results are achieved for the neutral, closed-shell dimers in Pi29n, for which

each of the dispersion corrected functional variants tested herein achieved errors lower than

1 kcal ·mol−1. In particular, the best performing ωB97M-V (MAE of 0.1 kcal ·mol−1) matches

its MAE on the neutral van der Waals dimers in the original training set. 280

30



3.3. Results and discussion

The mean absolute error on the radical cation dimers, in contrast, varies substantially among

the ωB97-series, ranging from the 1 kcal ·mol−1 MAE for ωB97X-dDsC to 2.84 kcal ·mol−1

for ωM06-D3. The three best-performing variants: ωB97X-dDsC, ωB97X-D, and ωB97X-D3

share a common design principle and are based on a uniformly truncated and high-order

(quartic) polynomial series of inhomogeneity correction factors (ICF).155,299 This principle

has been abandoned in recent variants starting from ωB97X-V, as individual determination

of the truncation orders for each component of the functional allowed for a reduction in the

number of fitted parameters with only small variations in the overall accuracy on the original

training set.300 The slight accuracy loss on Orel26rad (The MAEs of the meta-GGA variants,

ωB97M-V reach 3.00 kcal ·mol−1) suggests that reducing the flexibility of the core functional

(i.e. the non-dispersion term) might alter the robustness.

The relative metric, mean absolute percentage error (MAPE), provides further information

on the robustness. While the MAEs probe the magnitude of the error, the MAPEs indicate

whether these deviations are proportional to the magnitude of the interaction energy. The

MAEs and MAPEs on Orel26rad follow the same trend except for ωB97X, ωB97X+dDsC and

LC-BOP-LRD. The MAE ofωB97X is one of the largest but its MAPE is lower thanωM06-D3 and

ωB97M-V. This mismatch implies that even ifωB97X leads to large errors, its deviation is larger

for systems with the highest interaction energy (owing to the missing dispersion correction

term). The errors of the dispersion-corrected variants characterized by a MAPE higher than

ωB97X (i.e., ωB97M-V and ωM06-D3) correlate less with the magnitude of the interaction

energies and are, in this respect, less systematic.

The advantage of the joint-fitting of the functional and dispersion correction ( i.e., ωB97X-

dDsC) is assessed in Figure 3.4 by comparison with the originalωB97X, where the dDsC disper-

sion correction has been fitted a posteriori without modifying the functional parametrization

(noted as ωB97X+dDsC). ωB97X+dDsC performs well both radical cationic dimers and the

neutral Pi29n complexes. For Orel26rad, ωB97X+dDsC has a MAE similar to the most recent

ω-variant, but a much smaller MAPE. Hence, modification of the ωB97X core is at the origin

of the poorer scaling with the interaction energy magnitude in ωB97X-V and related forms.

Comparing ωB97X+dDsC and ωB97X-dDsC highlights the advantage of jointly fitting the

functional and the dispersion correction parameter, especially for Orel26rad (where the error

magnitude is cut in half), at the condition of keeping the same flexibility in the core as the

parentωB97X. Analyzing the two damping function parameters for the two approaches reveals

a two-fold increase in both parameters a0 and b0, which correlates with the doubling of the

parameters tuning the leading orders of the opposite-spin correlation term inωB97X-dDsC 171

(Appendix A).

Figure 3.4 reports energies associated with equilibrium geometries but the ability to properly

describe the interactions of radical charged dimers out-of-equilibrium is as relevant. In line

with our work on the OREL26rad database, 60 we compute the interaction energy profiles of

(furan)·+2 and (thiophene)·+2 with the ωB97X-series and ωM06-D3 (Figure 3.5). The challenging

nature of these two energy profiles is evident when compared with the PBE0-dDsC and LC-
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BOP-LRD profiles.

Figure 3.5 – Interaction energy profiles for the radical cation dimers of a) furan and b) thio-
phene. Insets zoom into the equilibrium region. CCSD(T)/CBS, LC-BOP-LRD and PBE0-dDsC
values are taken from Ref. 60.

All the dispersion-corrected range-separated DFAs tested retrieve the CCSD(T)/CBS limit

in the asymptotic region with the exception of ωB97X-D for the furan dimer. The deviation

suggests that a ω value higher or equal to 0.25 is necessary to recover the correct asymptotic

behavior in radical cation dimers.

More variations are observed closer to the equilibrium region as illustrated by the too repulsive

ωB97X-V, and ωM06-D3 that contrast with the best performing ωB97X-dDsC and ωB97M-V.

The common features leading to the best performance on OREL26rad rely upon a uniformly

truncated and highly flexible exchange-correlation core fitted jointly with an atom-pairwise

damped dispersion correction. Despite their higher MAEs, the more recent ω-variants are

highly accurate on specific systems, as exemplified by the ωB97M-V profiles. This variability

in performance suggests that their robustness across size and molecular arrangement is

limited as the errors are more system dependent. These observations further motivate the

construction of a more challenging set of radical cation dimers.

3.3.1 CryOrel9 dataset

The mean absolute errors of three wavefunction-based methods (i.e., RPA/CBS, MP2/6-

31G*(0.25), and U-SAPT0/jun-cc-pVDZ) are evaluated on the CryOrel9 dataset with respect to

the DLPNO-CCSD(T) reference data (see Figure 3.6-a).

The accuracy of RPA on neutral van der Waals assemblies has been assessed extensively

for both molecules350–354 and solid-state systems. 355–357 With an overall MAE slightly above

0.5 kcal ·mol−1 for CryOrel9, RPA/CBS appears as a reliable benchmark for charged assemblies

of radical cations. Given the relatively small average difference between DLPNO-CCSD(T)

and RPA, it is legitimate to wonder which of the two methods would be the preferable ref-
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a) Wavefunction based methods b) Range-separated hybrids (ω-family)  

Figure 3.6 – Mean absolute error of a) the tested wavefunction based methods and b) the range-
separated functionals of the ω-family on the CryOrel9 with respect to DLPNO-CCSD(T)/CBS
reference.

erence level. In this respect, it is worth noting that the RPA ground-state correlation energy

is only equivalent to a ring-diagrams simplification of the coupled-cluster doubles (rCCD)

equations, 358 while DLPNO-CCSD(T) contains all the diagrams of the CCSD(T) method, with

a restriction of the excitation only to the most relevant virtual orbital subspace.316 On this

basis, DLPNO-CCSD(T) is retained as the preferred reference method.

The CryOrel9 MAE of the less computationally demanding MP2/6-31G*(0.25), is rather low (i.e.,

about 1.00 kcal ·mol−1) but twice that of OREL26rad, 60 showing the limit of exploiting the error

cancellation between MP2 and the modified basis set. Also relying on error cancellation, 341

the performance of U-SAPT0/jun-cc-pVDZ is here similar to MP2/6-31G*(0.25).

In addition to its reasonable performance on CryOrel9, U-SAPT0 provides a chemical rational-

ization of the individual energetic contributions to the total interaction energy. Comparing

OREL26rad and CryOrel9 highlights that both the absolute and the relative contribution of

London dispersion associated with CryOrel9 double at the detriment of induction (Figure 3.7,

pie charts and bars). For this set, the sum of two contributions, London dispersion and the

exchange, represent 75% of the total interaction energy. This percentage is significantly higher

than Orel26rad, for which the four contributions are balanced.

The increase of the absolute and relative contributions of London dispersion interactions is

readily explained by the dimer sizes (more atom pairs and larger polarizability). The lowering

of the induction term is also related to the larger size of the cationic monomer, as the density

of the hole (and the strength of the associated electrostatic field) is distributed among a larger

number of atomic centers. Finally, the electrostatic interactions do not change significantly as

expected from the total charge that remains identical between the two sets.

Even though the relative contributions to the interaction energy of all the crystal motifs

in CryOrel9 are similar, the absolute contributions vary greatly with the relative packing
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Figure 3.7 – Relative and absolute values of U-SAPT0 contributions averaged over CryOrel9
and Orel26rad (left) and divided per type of preferred crystal arrangement in CryOrel9 (right).

orientation. The U-SAPT0 analysis of each type of supramolecular arrangement identifies

the brickwork packing as quantitatively different from the other motifs as it exhibits stronger

interactions (Figure 3.7). In line with previously published SAPT analyses of π-stacked neutral

dimers, 359,360 the larger magnitude of the London dispersion and exchange component in the

brickwork motif is justified by the shorter distances and larger orbital overlap between the

monomers with respect to other packing motifs.

In light of these considerations, it is not surprising that the overall functional performance

on CryOrel9 (see Figure S3) is mainly dictated by their ability to accurately describe systems

dominated by pronounced London dispersion interactions and large exchange contributions.

Top panels of Figure 3.8 reports the correlation between the absolute error in the interaction

energy for a selection of dispersion-corrected range-separated functionals and the absolute

U-SAPT0 exchange and dispersion contributions.

Although the general accuracy fluctuates from dimer to dimer, none of the functionals has

difficulty with the interaction energy of the leftmost dimer (BBBT), characterized by the lowest

absolute dispersion and exchange contribution. The most problematic dimers belong to the

brickwork motif (DITT and FPP-DTT) or correspond to the smaller stacked dimers from the

columnar category (DBT-Sulfone). The common characteristic of these sensitive systems

is evident when regrouping them according to the angle between their average monomer

planes (tilt angle). This leads to two categories: stacked (angle < 10◦) and tilted (angle >
45◦) in the bottom panel of Figure 3.8. For each dimer, we report the standard deviation of

the absolute error among the functionals tested. This variation is up to 5 times larger for

the stacked dimers. The exception is ETTDM-TTF that has a small tilt angle but is highly

asymmetric, as only one of its monomers is planar. By construction, all the dimers in CryOrel9
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Figure 3.8 – (top) Correlation between absolute errors of the functionals with respect to DLPNO-
CCSD(T)/CBS and the U-SAPT0 (top left) exchange and (top right) dispersion contributions.
Each point represents one dimer of the CryOrel9 dataset. Color code represents different
density functionals, while packing motifs are indicated with different symbols. (bottom)
Spread of the error among the ω-family (standard deviation) for each dimer in CryOrel9. The
color code highlights the classification on the basis of the tilt angle, reported on top of each
histogram. The inset shows an orthographic view of the ETTDM-TTF dimer.

are built by assembling an optimized neutral and a radical cationic monomer at the crystal

position without further relaxation (Section 2.1). However, the localization of the spin density

on the monomer cation is less pronounced in the planar stacked dimers, and thus much more

dependent upon the chosen functional. DBT-sulfone dimer represents an extreme case for

which the most recent functional variants (e.g., ωB97XM-V) place the spin density on the

opposite "neutral" monomer (see spin-densities in Appendix A) causing the largest errors.

The interaction energy profiles of three dimers representative of each packing motif (Figure

3.9-a,b,c) completed by the ETTDM-TTF asymmetric example are shown in Figure 3.9-d.

Generally, all the functionals retrieve the same asymptotic regime as the DLPNO-CCSD(T)

reference but some of them suffer from instabilities in the form of a wiggling with increasing

the intermonomer distance (see ωB97X-D3, ωB97M-V and ωM06-D3 in the inset of Figure

3.9-d) or/and an underestimation at the medium range (ωM06-D3). In the equilibrium region,
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the quality of the ωB97X-D profiles varies greatly depending on the dimers: BDT, ETTDM-TTF

strongly underbind, whereas the profile of the herringbone DBT is highly accurate. On the

performance spectrum, ωB97M-V and ωM06-D3 lead to exactly the opposite trends as they

are excellent for ETTDM-TTF and BDT but underbind the rest. Overall, the ωB97X-dDsC

profiles appear to be most robust across these specific systems.

a) DITT : Brickwork b) BDT : Lamellar-Columnar

c) DBT : Herringbone d) ETTDM-TTF : Brickwork, asymmetric

Figure 3.9 – Interaction energy profiles for the radical cation dimers of a) DITT, b) BDT, c) DBT
and d) ETTDM-TTF.

In general, the evolution from the small model systems of OREL26rad to the relatively larger

radical cationic dimers of CryOrel9 is associated with a redistribution of the relative impor-

tance of interaction energy contributions largely in favor of London dispersion interactions.

This regime, where Pauli exchange and London dispersion contribute to more than 75% of

the total interaction energies, does not significantly increase the range of errors of the tested

approaches but highlights other trends. An important one lies in the overall deteriorating

performances of ωB97X-D and ωB97X-D3 that are especially problematic with the Brickwork

arrangements. The most recent variant ωB97M-V (and to a lesser extent ωB97X-V) built from

statistical models essentially suffer from a singularity in the spin density of DFTB-Sulfones

and from irregular MAEs ranging from very low for some systems but the largest for others.

Although distinct by construction, ωM06-D3 also shows irregular errors but systematically

underbind the profiles away from equilibrium. Amongst this functional series, ωB97X-dDsC

performs best. While the reasons for this achievement are difficult to rationalize, they likely
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stem from the additional flexibility brought by the density-dependent double damping char-

acteristic of dDsC. 169–171 In this dispersion correction, the argument of the universal Tang and

Toennies damping function152,153 is modified with a second damping term, which accounts

for the regions of strong density-overlap (covalent-regime). 169,361 This combination provides

better control of the medium-range correlation, which is generally underestimated in radical

cation dimers. 60

3.4 Conclusion

The quantum chemical description of radical cationic dimers that are key species in molecular

organic materials is known to be challenging. The 2012 Orel26rad dataset 60 already illustrated

the advantage of fitting jointly the dispersion correction with a long-range corrected exchange

functional to provide both the proper dimer dissociation behavior and avoid underbinding

at the equilibrium geometries. In this chapter, we construct CryOrel9, a more realistic set of

radical cationic dimers that are extracted from distinct crystal arrangements including the

brickwork and herringbone motifs.

We explore the performance of the ωB97X functional series on their interaction energy and

dissociation profiles. To improve their description, we also parametrized a variant of ωB97X

jointly-fitted with the dDsC density-dependent dispersion correction. RPA, USAPT0 and

MP2/6-31G*(0.25) results are also provided and compared to the DLPNO-CCSD(T)/CBS

reference.

ωB97X-dDsC is the most robust DFAs tested owing to the use of density overlaps in the damp-

ing function that control the damping in the medium range. The combinatorially-optimized

variant ωB97M-V is highly accurate for some radical cationic dimers, but its robustness across

chemical diversity and different spatial arrangements is not guaranteed. Alternatively, the

parent functionals (i.e., ωB97X-D and ωB97X-D3) are limited by the poorer description of the

brickwork arrangement. In the prospect of overcoming the delicate interplay of errors that

characterizes radical cation dimers, non-linear regression techniques could provide a solution.

One foresees two strategies to achieve this goal. The first relies on the pragmatic application

of system-dependent machine learning corrections to the interaction energy of approximate

functionals with, for instance, ∆-ML. The second approach, which has been successfully ap-

plied to two-electrons, one-dimensional systems, 362 works on a more fundamental level and

relies on the statistical learning of fully non-local exchange-correlation potentials. Given that

the reliability of machine-learning models depends strongly on the accuracy of the underlying

electronic structure methods used for their training, the approaches tested in this chapter

as well as their comparison with the DLPNO-CCSD(T) reference appear essential. Such a

data-driven effort would also involve the construction of much larger database in the spirit of

BFDb 61 (or the database of Shaw and coworkers 279) which was successfully used for training

transferable machine learning model capable of predicting the electronic structure properties

of large dimer systems. 34
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Finally, from a chemical perspective, U-SAPT0 on CryOrel9 showed that planar, π-stacked

dimers are the most challenging systems, leading to large errors for most DFAs. This result is es-

pecially important considering the variety of molecular precursors of organic semiconductors

that crystallize in a characteristic brickwork or columnar packing.
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4 London dispersion and photochemi-
cal processes of molecular switches

This chapter is based on the following publication:

A. Fabrizio, C. Corminboeuf, How do London dispersion interactions impact the photochemi-

cal processes of molecular switches ?, J. Phys. Chem. Lett., 2018, 9, 464-470.

Accurately describing ubiquitously present London dispersion interactions 363 has been a long-

standing challenge for standard density functional approximations.264,364,365 Today, several

conceptually different approaches addressing this issue exist including the popular dispersion

correction schemes DFT-D of Grimme and coworkers, 133,144,154,160 density-dependent disper-

sion corrections based on Becke-Johnson’s exchange dipole moment (XDM157–159,166–168 and

dDsC 169–171), Tkatchenko and Scheffler’s TS 162 and MBD 145 methods, and the local-response

dispersion (LRD) model by Sato and Nakai. 172,173 Aside from these ad hoc corrections, alterna-

tives within the density functional theory (DFT) framework include the explicitly nonlocal

density-based functionals (e.g., vdW-DF 135,136, VV10 137) and the effective one-electron poten-

tials (e.g., DCACP, 138,139 M06L 366). However, each of these approaches was specifically derived

to describe van der Waals (vdW) interactions in the ground state.134 This raises a question

regarding the adequacy of available methods to describe van der Waals interactions in excited

states.

In practice, three scenarios exist where an incomplete treatment of London dispersion upon

optical excitation could result in substantial errors (Figure 4.1). In the first case, the electronic

transition occurs only on a localized portion of the molecule, while attractive long-range forces

dominate the interactions between the remaining unexcited portions (Figure 4.1-a). This is,

for instance, common in organic photovoltaics where chromophores are often functionalized

with long alkyl side chains to improve solubility. 367 In the second case, the optical properties

of a photoexcited molecule can change significantly when they interact with a ground-state

molecule (Figure 4.1-b). In nature, this is seen in phenomenon such as co-pigmentation,

which determines the stability and the modulation of flower and vegetable color, 368 as well as

chemosensing 369 and (micro)solvated dyes. A third situation involves the interaction between

two photoexcited molecules or fragments (Figure 4.1-c). Aromatic excimers typically belong

39



Chapter 4. London dispersion and photochemical processes of molecular switches

to this category. 370–372

Figure 4.1 – Upon optical transition, London dispersion dominates the interaction between:
a) unexcited fragments; b) a photoexcited and a ground state molecule; c) two photoexcited
molecules.

Because of their inability to adapt to electronic transitions or dramatic structural changes,

most of the dispersion correction schemes mentioned above would struggle for categories

2 and 3 (Figure 4.1-b and Figure 4.1-c), but might provide a qualitatively correct description

of dispersion interactions for category 1 systems. The complexity for describing systems

belonging to the latter two categories is only intensified by the inherent shortcomings associ-

ated, for instance, with functional choice in describing the excited states or with the adiabatic

approximation in linear response time-dependent density functional theory (LR-TDDFT). 373

Computational work addressing the role of vdW interactions in category 2 and 3 systems

remains relatively scarce but efforts toward the development of sophisticated schemes, which

capture London dispersion effects proper to excited states (e.g., repulsive dispersion374–376)

or which focus on the interaction of arbitrary state are currently on-going.377–382 In general,

these schemes require a fairly complex quantum electrodynamical treatment of the vdW-

Casimir potential, so that their application have yet been restricted to nothing but the simplest

chemical systems and perfectly homogeneous media. Other relevant examples include the

analytical expression for the static polarizabilities of the s- and p-symmetric excited states

of atoms383 introduced by Adelman and Szabo but excited-state polarizabilities (and subse-

quent dispersion forces) require expensive computational techniques (such as the complex

polarization propagator method) that are, generally, best for benchmarking.384,385 Density

matrix functional theory has also been extended386 to treat vdW interactions for the pro-

totypical two-electron triplet H2 molecule, but the formalism cannot easily be adapted to

treat larger systems. Within the context of LR-TDDFT, significant effort has been placed in

achieving proper aromatic excimer energetics (category 3). The potential energy surfaces of

aromatic excimers can be reasonable characterized at the TD-B3LYP level, even when the

same functional fails dramatically for the ground state complex. 387 Subsequent work showed
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that the use of a dispersion corrected functional in the LR-TDDFT computation improved

the dissociation energy curves of benzene/pyridine excimers.388 A small number of studies

evaluated the binding energies of excited complexes belonging to category 2 computed using

either an atom pairwise correction389,390 or the LRD model.391 A noted improvement was

generally observed, although the need for reparametrizing the correction or the functional

was often advocated. Similar warnings were raised when using the innovative self-consistent

field (SCF) algorithm alternative to TDDFT (i.e. the maximum overlap method). 392,393

While the relevance of accounting for London dispersion interactions in static computations

for excited molecules belonging to categories 2 and 3 has been at least partially recognized,

many similar questions remain unanswered for category 1 systems. For instance, how do van

der Waals interactions between non-excited large substituents impact excited state processes?

Wegner et al. 394 offered a first response by demonstrating that the cis- to trans- thermostabil-

ity of azobenzene switches is dramatically improved by increasing substituent bulk. While

focusing on thermal isomerization process (as opposed to photoisomerization), these results

further emphasize the necessity of reevaluating our general perception of steric hindrance,

which may be diminished by intramolecular attractive London dispersion forces. 363 This com-

putational work addresses this exact question and explores the role of vdW interactions in the

photochemical processes of cis-stilbene (A) and it substituted 3,3’,5,5’-tetra-tert-butyl-stilbene

(B) analogue (Figure 4.2).

Figure 4.2 – Structure of the compounds studied: A cis-stilbene. B cis-3,3’-5,5’-tetra-tert-butyl-
stilbene.

To this end, we compare the static and dynamic excited state energy profiles based on dis-

persion corrected functionals [PBE0-D3(BJ), PBE0-dDsC, B3LYP-D3(BJ)], their uncorrected

variants, as well as a wavefunction-based method (CC2). Our results clearly demonstrate that

the effect of dispersion interactions in the excited state process is not negligible.

Stilbene and its derivatives typically undergo reversible photoisomerization processes and 6π-

electrocyclization upon exposure to UV light. 395–397 The first singlet excited state corresponds

to a fairly pure HOMO-LUMO transition exclusively localized on the stilbene core. In line with

the crowded substituted azobenzene derivatives, 394 vdW interactions between the tert-butyl

substituents in the meta-positions of stilbene strongly influence the potential energy surface

of both the S0 and S1 states. Specifically, the ground state geometries of B optimized at the
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uncorrected PBE0 level deviates dramatically from those determined at the CC2 level. In

contrast, PBE0-D3(BJ), PBE0-dDsC, VV10, and M06-2X geometries agree closely with the

wavefunction based method (see structures and RMSD in the supporting information of

the original paper). Specifically, the long-range correlation effects between the tert-butyl

substituents cause the ground state minimum of B to be more compact (i.e., a reduced central

dihedral angle) than stilbene (A), which essentially converge to the same geometry regardless

of the optimization level. Relevantly, only the PBE0 (uncorrected) geometries for B possess a

dihedral angle similar to that of stilbene (A). The close similarity of the optimized structures

obtained with the four conceptually different methods [PBE0-D3(BJ), VV10, M06-2X and CC2]

emphasizes the relevance of London dispersion interactions in shaping the ground state

minimum geometry of B and, as a result, its Franck-Condon region.

As previously observed, 398,399 the stationary point on the S1 surface of cis-stilbene (A) is struc-

turally close to the photocyclization product, 4a,4b-dihydrophenantrene (DHP). Therefore,

the distance between the 2 and 2’ carbon atoms of the stilbene core is a key variable for

characterizing the structural similarity of the relaxed excited state structures of A and B (sup-

porting information of the original paper). Akin to the ground state, the S1 minimum of both

A and B computed with TDA-PBE0-D3(BJ) agrees closely with the CC2 optimized structures.

In contrast, strong deviations are observed between the TDA-PBE0 S1 minimum of B and

the CC2 reference (RMSD ten times larger than with TDA-PBE0-D3(BJ)). In other words, the

evolution of B away from its Frank-Condon region (FC) toward its S1 minimum is dictated not

only by the driving force of the electronic transition, but also by the existence of attractive

dispersion interactions between the large unexcited substituents. This phenomenon is best

illustrated by examining the static excited state profiles between the fully optimized S0 and S1

minimum (Figure 4.3).

At each point of the profiles, the horizontal axis in Figure 4.3 matches the root mean square

deviation (RMSD) between the structures at the TDA-PBE0-D3(BJ) and TDA-PBE0 levels. The

choice of coordinates in Figure 4.3 is discussed in more details in Section 5 of the supporting

information of the original paper. Overall, the RMSDs allow for the mapping of the energy

profiles of both levels on the same horizontal axis. Additionally, the RMSDs encode, directly

on the axis, the information relative to the magnitude of the structural differences upon the

introduction of the dispersion correction. The two TDA-PBE0 and TDA-PBE0-D3(BJ)) excited

state profiles of A show no significant deviation in the adiabatic excitation energies. The

same trend holds for their geometry, as the RMSD of the mass weighted coordinates falls

into a narrow range between 0.01-0.08 Å(x-axis, Figure 4.3, left). In contrast, the excitation

energies of B using the two levels deviate gradually (up to 0.7 eV, y-axis, Figure 4.3, right) when

approaching the minimum structure close to the cyclization product (DHP-like minimum). In

particular, the excitation energy of B computed with the dispersion corrected scheme, which

is lower than for the bare functional, can be explained by the simultaneous occurrence of two

physical phenomena: first, upon electronic excitation, the two phenyl rings in both A and B

undergo a conrotatory motion, which brings the 2 and 2’ carbon atoms closer. The resulting

distortion of the phenyl rings destabilizes the ground state, which, eventually, becomes nearly
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Figure 4.3 – Energy profiles (in eV) of molecule A (left) and B (right). Faded lines: S0 and S1

energies relative to the S0 minimum. Solid lines: excitation energies. For the red lines, the
D3(BJ) dispersion correction was added to the (TDA-)PBE0/def2-SVP level computations.

degenerate with the S1 state in the region where the photocyclization product is formed. In

the case of B, however, the attractive interactions between the large tert-butyl substituents

enhance the rotational motion of the phenyl rings resulting in a more compact structure in

which the ground state is even more destabilized. Compared to stilbene (A), the presence

of the tert-butyl substituents depresses the potential energy surface of S1, resulting in a

minimum that is further away from the crossing with the ground state (Figure 4.4, green

arrows) with a higher barrier. From a methodological perspective, failure to account for van

der Waals interactions results in an additional shift of the S1 minimum even further away

from the crossing region (toward longer C-C distances) and a significant rise in energy of the

crossing point with the ground state (purple arrows). Chemically, the presence of tert-butyl

substituents in B should not preclude the accessibility of the photocyclization pathway as

followed by stilbene (A). In fact, the accessibility of this pathway can only be hindered owing

to the limitations of the level of theory chosen for its description (vide infra).

Despite being insightful, the static pictures seen in Figures 4.3 and 4.4 misses several key

aspects of the main photoreactions that occur within A and B. If these molecules acquire

enough kinetic energy, the potential energy barriers on the S1 surface of B could be overcome

and reach the crossing point leading to the photocyclization product (intersection of blue and

black lines, Figure 4.4). This should indeed be the case, since it is experimentally known 400 that

meta-substituents do not preclude access to the photocyclization pathway of bare stilbene.

Excited state adiabatic dynamics simulations are a cost-effective tool that complements the

static picture by including effects of kinetic energy and molecular vibrations. We initiated 100

trajectories on the S1 surface for both A and B, sampling the ground state configurations from
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Figure 4.4 – Left panel, TDA-PBE0-D3(BJ). Right panel, TDA-PBE0. Comparison between the
S1 energy profiles of molecules A (red and orange lines) and B (black and blue lines). Purple
arrows: barrier to crossing point with the ground state. Green arrows: shift of the S1 minimum
of B with respect to A. The energies are relative to the respective S0 minima.

an independent trajectory run in the canonical ensemble (NVT) at 300 K. While the dispersion

correction does not qualitatively alter the evolution of stilbene (A) in its S1 state, different

conclusions are drawn for the tert-butyl substituted stilbene (B). In 18% of the trajectories, a

discrepancy in the outcome of the simulation is observed between the dispersion-corrected

and uncorrected functionals. As shown in Figure 4.5, the disagreement mainly originates from

an increased accessibility to the photocyclization pathway, which arises from the improved

description of weak interactions. Provided the inclusion of the D3 dispersion correction,

the number of trajectories ending in the photocyclization of molecule B increases decisively

(Figure 4.5: black points in the blue circle).

Figure 4.5 – Dynamical evolution of the central dihedral angle (green atoms) and 2-2’ carbon-
carbon distance (red atoms) on the S1 surface of the tert-butyl substituted stilbene (B). Left
panel: TDA-PBE0-D3. Right panel: TDA-PBE0. The DHP crossing point region is indicated in
blue. The molecular configuration upon the termination of a trajectory is indicated by black
dots.

In line with the previously discussed static picture, this result supports the conclusion that

44



4.1. Computations Methods

a full treatment of van der Waals interactions is critical in capturing the proper evolution of

B in its first electronic excited state. In this case, London dispersion overpowers repulsive

interactions that result from crowding of the tert-butyl groups, which allows the system to

reach the photocyclization crossing region from the S1 minimum.

In conclusion, we demonstrated that van der Waals interactions beyond the common ground-

state chemical situation cannot be neglected a priori. Using molecules stilbene (A) and 3,3’,5,5’-

tetra-tert-butyl-stilbene (B) as prototypical examples, we found that while the rearrangement

of the electronic density upon excitation remains the principle driving force of the excited state

processes, London dispersion shapes the potential energy surface and the structural evolution

of the photoexcited molecules. This is a crucially important point for excited state molecular

dynamic simulations, which may produce erroneous results if the underlying electronic

structure method is incapable of accurately treating effects arising from London dispersion

forces. From a chemical perspective, comparisons with bare stilbene (A) reveal that the

substitution with tert-butyl groups in B results in a stable DHP-like minimum well separated

in structure from the crossing region with the ground state. Failure to fully account for van

der Waals interactions on the methodological level increases the extent of this structural

separation and simultaneously causes a rise in the crossing region energy. The resulting

hindrance of the photocyclization pathway for B happens solely as a consequence of the

failings of the level of theory, not as a result of the chemical substitution with bulky tert-butyl

groups.

4.1 Computations Methods

The excited states of stilbene (A) and tert-butyl substituted stilbene (B) were computed using

linear response TD-DFT within the Tamm-Dancoff approximation (TDA). 401 Single reference

methods such as LR-TDDFT cannot provide the correct two-dimensional branching of the

conical intersections with the ground state, so that their validity near these regions may be

questioned. However, it has been shown that Tamm-Dancoff approximation improves signifi-

cantly the description of molecules away from their equilibrium geometry and specifically

allows to access reliable geometries and energetics in the vicinity of crossing points with the

ground state at the TDDFT level (e.g. Ref. [ 402 ]). Unless explicitly stated otherwise, both

single point computations and geometry optimizations were performed with the Turbomole

7.1 program package. 333 The ground and excited-state geometries of molecules A and B were

computed using three global hybrid functionals (PBE0 403,404, B3LYP 82,303,304, BHHLYP 81) and

a range-separate functional (CAM-B3LYP 405) combined with the def2-SVP 325 basis set. The

basis set dependence of the excitation energies was analyzed for both molecule A and B and

resulted in small deviation in the order of 1.75-2.7% of the total excitation energy. Each geome-

try optimization was performed at first with the bare functional and then including Grimme’s

D3(BJ) dispersion correction.160 The vertical excitations and geometry optimizations using

the PBE0 functionals were also combined with the dDsC dispersion correction169–171 as im-

plemented in a development version of QCHEM. 329 CC2 level computations were performed
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using the resolution of identity and the frozen core approximation. In contrast to LR-TDDFT,

CC2 accounts for the effects of non-local correlation,406 such as van der Waals interactions.

Additionally, detailed benchmarking of the method demonstrated its reliability not only near

equilibrium geometries, but also in the proximity of conical intersections. 407 Molecular struc-

tures between the fully optimized S0 and S1 minima were obtained by linear interpolation of

the internal coordinates, while the reaction coordinate was scaled using the root mean square

deviations (RMSD) of the dispersion corrected structures, relative to those of the uncorrected

functional. The adiabatic dynamics simulations were performed using the GPU-accelerated

software TeraChem (version 1.9). 408–410 Initial conditions for excited-state dynamics were sam-

pled from a 40 ps long ground state dynamics trajectory within the NVT ensemble (Langevin

thermostat 300K). Both ground state and excited state dynamics were computed using the

PBE0 functional combined with the 6-31G basis set (for a discussion on the basis set see

Supporting Information of the original paper). For each molecule A and B, two batches of 100

trajectories were initiated on the S1 surface; the first batch using PBE0 combined with the

Grimme’s D3 dispersion correction, while the second using the uncorrected functional. All

excited-state trajectories were evolved within the NVE ensemble with a time step of 0.5 fs for a

maximal time of 1 ps for molecule A and 1.5 ps for molecule B. If the energy difference between

the S1 and S0 surfaces dropped below 0.5 eV, the trajectories were terminated, assuming a

crossing with ground state surface. Molecular structures were visualized with VMD. 411
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5 Transferable Machine-Learning Model
of the Electron Density

This chapter is based on the following publication:

A. Grisafi, A. Fabrizio, B. Meyer, D. M. Wilkins, C. Corminboeuf, M. Ceriotti, Transferable

Machine-Learning Model of the Electron Density, ACS Cent. Sci., 2019, 5, 57-64.

with a modified content that places more emphasis on the underlying quantum chemical chal-

lenge, i.e. the construction of an atom-centered electron density representation compatible

with transferable machine-learning.

5.1 Introduction

One of the most compelling consequences of the first Hohenberg-Kohn theorem 221 is that the

molecular charge density [ρ(r )] contains exactly the same information about any molecular

property as the electronic wavefunction. This fundamental equivalence, combined with its

simple and unique dependence on real-space variables, have contributed to make the electron

density one the most important chemical properties of atoms and molecules. Being a quantum

mechanical observable, ρ(r ) can be obtained experimentally from high-resolution electron

diffraction412,413 and transmission electron microscopy, 414 or alternatively from solving the

electronic structure problem through ab-initio computations. However, both approaches may

become rapidly demanding when the density has to be evaluated for thousands of different

molecules/conformations or very large chemical systems.

Machine-learning models are currently emerging as an effective technique to tackle this kind

of large scale problems, allowing to bypass the computational cost of ab-initio computations.

In particular, kernel-based methods are thriving, 41,43 with reported applications ranging from

energies,25 to forces,37,44,45 spectra,415, polarizabilities,47,48 and density functionals.57 The

mathematical complexity of the quantities targeted with statistical learning is rapidly evolving,

following the introduction of ever more sophisticated molecular representations and of kernels

able to capture fundamental symmetry conservation laws. Yet, the regression of a scalar field

such as the electron density remains a non-trivial task.
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Predicting the electron density only given a set of nuclear positions represents a challenge for

both the regression model and for quantum chemistry. From the machine-learning perspec-

tive, it is essential to construct a model able to predict the amplitude of the field simultaneously

at every point in space and to capture all the rotational symmetries of the density. From the

quantum chemical perspective, it is necessary to provide a representation of the electron

density compatible with the learning framework. The most direct approach consists in rep-

resenting both the molecular structure and the density on a real-space grid. In this way, it is

possible to learn and predict ρ(r ) in each point of the molecular space, at the cost, however,

of a particularly intense computational effort. 54,55,416 A different solution has been proposed

by Brockherde et al., which have recently built a machine-learning model of the electron

density using a smoothed representation of the external potential as fingerprint.32 In this

framework, ρ(r ) is decomposed onto an orthogonal basis and the molecular information is

encoded with a global representation, which allows the construction of many independent

kernel-ridge regression models. These choices make the model extremely accurate for small

and rather rigid molecules, but also impose substantial constraints to its transferability to

large and flexible chemical systems.

In this chapter, we introduce a machine-learning model of the valence electron density that

overcomes these limitations. The model is scalable and transferable, i.e. it is able to accurately

predict ρ(r ) for large and flexible systems while being trained only on small molecules. The

backbone of the model is the choice of an atom-centered, non-orthogonal basis set to rep-

resent the density field, in a spirit similar to orbital localization techniques417–421 and to the

multipole analysis of X-ray diffraction. 422–426 The regression of these local density components

is performed within a recently introduced symmetry-adapted Gaussian process regression

framework, which allows taking advantage of the fundamental symmetries of the decomposed

electron density.

The regression model is tested on an ensemble of different conformations of saturated and

unsaturated hydrocarbons of increasing size. The accuracy of the learning exercise is analyzed

on the smallest molecules including ethene (C2H4), ethane (C2H6), butadiene (C4H6) and

butane (C4H10). As a final result, demonstrating the transferability and the scalability of the

model, the valence electron density of octatetraene (C8H10) and octane (C8H18) is predicted

on the basis of the information gathered from butadiene and butane.

5.2 Expansion of the electron density into an atom-centered, non-

orthogonal basis set

The decomposition of molecular properties into additive local contributions is a well-esta-

blished practice in quantum chemistry, as demonstrated by the abundance of linear-scaling,

embedding and fragment decomposition electronic structure methods. 420,427–434 Local and

additive partitioning is theoretically justified by the concept of “nearsightedness” 253,254 of all

local electronic properties, among which the density is a prototypical example. As already
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largely shown in the current literature,25,435–439 additivity and locality are two fundamental

qualities to achieve an efficient transferability of machine-learning models.

While several, conceptually different decomposition schemes exist for the electron den-

sity, 440,441 none of them can be defined uniquely. 442 Instead of choosing a priori a particular

scheme, which would hinder the generality of the model, we introduce locality by expanding

the density as a sum of atom-centered, non-orthogonal basis functions

ρ(r ) =∑
i
ρi (r ) =∑

i k
c i

k φ
i
k (r ) =∑

i k
c i

k φk (r − r i ) = ∑
i nlm

c i
nlm Rn(r − r i )Y m

l (r̂i ), (5.1)

where Rn are Gaussian functions and Y m
l are spherical harmonics. In this way, it is possible to

build a regression model for ρ(r ), based on the expansion coefficients c i
nlm and the position

of the nuclei.

Working with a non-orthogonal basis ensures the efficient transferability of the model, but

has the main disadvantages that the prediction of the density expansion coefficients c i
nlm(x)

cannot be performed independently one from the others as all the density components are

coupled by the overlap matrix. This becomes evident when expressing the projections (w i
k ) of

the density on the basis functions

w i
k = 〈ρ|φi

k〉 =
∫

dr ρ(r ) φk (r − r i ). (5.2)

These projections are not simply the expansion coefficients c i
k , but they are coupled to them

by Sc = w, where Si i ′
kk ′ = 〈φi

k |φi
k ′〉 is the overlap matrix element between two basis functions. In

addition, the evaluation of the integral in Equation 5.2 has to be performed with the highest

numerical accuracy, in order to avoid the introduction of spurious noises in the machine-

learning model. For instance, integration of the angular part of Equation 5.2 on a regular cubic

grid would lead to noisy predictions, resulting in unphysical changes of the electron density

upon rotation of a molecule. To avoid this problem, we evaluated the angular part of Equation

5.2 on a particularly dense Lebedev grid, constructed using 2030 angular points.196,226 The

radial integration is less problematic and can be directly performed on an equispaced radial

mesh of 200 points spanning a cutoff distance of rcut = 6 Å.

A second important issue in computing the expansion coefficients in Equation 5.1 is the

potential ill-conditioning of the overlap matrix. In quantum chemistry, the commonly used

strategy to address this problem is the reduction of the size of the radial basis set by contraction

of the primitives. Therefore, the final basis set used in the density decomposition has been

obtained by the contraction of an initial set of 12 primitives. The contraction coefficients have

been optimized by simultaneously minimizing the root mean square density error and the
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condition-number of the overlap matrix. 443

5.3 Symmetry-Adapted Gaussian Process Regression for the Elec-

tron Density

Encoding the correct rotational symmetries of the electron density in real space is far from

being trivial and requires the development of symmetry-adapted regression strategies. This

problem has been long known and analyzed in the context of the determination of electron

densities by experimental X-ray diffraction.424–426,444,445 In this field, one of the most widely

used approaches describes the valence electron density as a multipolar expansion 446–449 simi-

lar in spirit to Equation 5.1. In practice, however, the prediction of the electron density with tra-

ditional multipolar models relies on existing pseudoatom libraries, such as ELMAM, 423,450–452

ELMAM2,453,454 UBDB,422,455, Invarioms456 and SBFA457. The most straightforward solu-

tion in the context of machine-learning would be to choose a fixed frame of reference and

align all the tensorial components of the targeted property by rotation and translation. 46,258

Regrettably, this strategy is only applicable for rather small and rigid molecules for which

such symmetry operations are well-defined. In contrast, our machine-learning model aims at

describing the electron density of arbitrarily complex and flexible molecules.

Gaussian process regression (GPR) can be reformulated to account for the symmetries of the

SO(3) group, which has been already demonstrated for the regression of vectors 458 and tensors

of any order.47 This symmetry-adapted-Gaussian-process-regression (SA-GPR) framework

can be readily applied to a density decomposition expressed as in the previous section, where

the prediction of the density components becomes,

c i
nlm(x) = ∑

j∈M

∑
|m′|Él

k l
mm′(Xi ,X j ) x j

nlm′δαiα j (5.3)

where, k l (Xi ,X j ) is a kernel matrix of dimension (2l +1)× (2l +1) that expresses both the

structural similarity and the geometric relationship between an atom-centered environment

Xi of the target molecule and a set M of reference environments X j . The regression weights

x j
nlm′ are determined from a set of N training configurations and their associated electron

densities.

In particular, the choice of spherical harmonics as the angular basis in Equation 5.1 allows

regrouping the coefficients according to their angular momentum l in a set of spherical multi-

poles c i
nl of dimension 2l +1. In this way, the density can be decomposed in a sum of spherical

tensor components with rank l , beginning with the spherical elements (l = 0) and increasingly

adding anisotropy (l > 0). Restraining the model to l = 0 would result in a predicted density

similar in spirit to the widely used promolecular approach, 459 or superposition of spherical

atom densities (SAD). 193

Upon the accurate evaluation of Equation 5.2, the coefficients could be, in principle, simply
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determined by multiplication with the inverted overlap matrix. However, this direct procedure

led to rather poor regression accuracy and unstable predictions. The reason behind this poor

performance is rooted in the fact that the overlap matrix S is often ill-conditioned, which

dramatically amplifies any arbitrarily small numerical error done in the evaluation of w . To

overcome this problem and improve the accuracy of the model, the basis set decomposition

and the construction of the machine-learning model have been combined in a single step. In

other words, we require the regression model not only to predict the electron density, but also

to find, out of the many nearly equivalent decompositions of ρ, the one which best fits the

target density associated with a given structure.

The problem can be cast into a single least-square optimization of a loss function that mea-

sures the discrepancy between the reference and the model densities,

L (x) = ∑
A ∈N

∫
dr

∣∣∣∣∣ρA (r )− ∑
i∈A

∑
k

c i
k (x)φk (r − r i )

∣∣∣∣∣
2

+η |x |2 . (5.4)

where N runs over the training set and i runs over the environments of a given training

structure. The second term in the loss is a regularization, which avoids overfitting. In this

context, η represents an adjustable parameter that is related to the intrinsic noise of the

training dataset.

The coefficients c depend parametrically on the regression weights x via Eq. (5.3); by differen-

tiating the loss with respect to x j
nlm one obtains a set of linear equations that make it possible

to evaluate the weights in practice. In compact notation, the solution of this problem reads

x = (
K T SK +η1

)−1
K T w (5.5)

where x and w are vectors containing the regression weights and the density projections on

the basis functions, while K and S are sparse matrix representations containing the symmetry-

adapted tensorial kernels and the spatial overlaps between the basis functions. The simi-

larity measures in the regression formula (Equation 5.5) are the λ-SOAP kernels (see Chap-

ter 2).47 These kernels are a generalization of the scalar (λ = 0) smooth overlap of atomic

positions framework59 that has been used successfully in the construction of interatomic

potentials 436,460 and in the prediction of molecular properties. 461,462

It should, however, be stressed that the final regression problem is highly non-trivial. The

kernels that involve environments within the same training configuration are coupled by the

overlap matrix, so that all the regression weights x for different elements, radial and angular

momentum values must be determined simultaneously. An efficient implementation of an

ML model based on Equation (5.5) requires the optimization of a basis set for the expansion,

the evaluation of ρ(r ) on dense atom-centered grids, the sparsification of the descriptors that

are used to evaluate the kernels, and the determination of a diverse, minimal set of reference

environments X j .
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BASIS SET DECOMPOSITIONPROATOMIC 

〈ερ〉(%) C2H4 C2H6 C4H6 C4H10

Proatomic 18.06 19.23 16.79 18.13
Basis Set 1.04 1.14 0.98 1.19

Figure 5.1 – Density errors at different level of representation: (left) superposition of isolated
atomic densities, (right) optimized basis set. Red and blue isosurfaces refer to an error of
±0.005 Bohr−3 respectively. The density errors for the structure depicted are reported in the
two panels, while the table reports the mean errors over the whole training set for the C2 and
C2 molecules.

5.4 Results and Discussion

5.4.1 Charge decomposition analysis

The main drawback of expanding the density into local contributions is the introduction of a

decomposition error along with the intrinsic prediction error related to the statistical nature

of machine-learning. With a basis set of 4 contracted radial functions and angular momentum

components up to l = 3, the typical error in the density decomposition can be brought down

to about 1%. To develop a more intuitive understanding of the relative magnitude of the

decomposition error, we compare it to the error that can be expected using promolecular

densities, which ranges from 16 to 20% for the different molecules in the dataset (Figure5.1).

The form of the Ansatz for the density decomposition (Equation 5.1) allows the individual

analysis of each angular momentum channel l . This is shown in Figure,5.2 where the isotropic

l = 0 functions largely determine the general shape of the density. Nevertheless, higher

angular momenta are crucial to describe fundamental anisotropies of the electron density:

the l = 1 functions capture the gradient of electronegativity in the C–H bonds, the l = 2

functions describe the σ and π system of the C–C bonds along the main chain, while l = 3

absorb all the other non-trivial anisotropies. The bottom panel of the Figure shows the

contribution to the valence electron density of angular momentum l and atomic type α, i.e.

σ(l ,α) =
√∑

n〈|c i
ln −〈c i

l n〉|2〉αi=α, with the average 〈·〉 involving all the atoms of the same type

included in the dataset. After baselining the valence electron density by subtraction of the

mean atomic density of pure l = 0 character, the l = 1 components largely dominate the charge

density variability associated with hydrogen atoms. Higher angular momenta also carry a
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Figure 5.2 – (top) representation of the angular momentum decomposition of the electron den-
sity. Red and blue isosurfaces refer to ±0.01 Bohr−3 respectively. (bottom) angular momentum
spectrum of the valence electron density of C2 and C4 datasets. The isotropic contributions
l = 0 express the collective variations with respect to the dataset’s mean value, while the mean
is statistically zero for l > 0.

substantial contribution to the description of the carbon atom density in alkenes (l = 2) and

alkanes (l = 3), in agreement with the existing literature. 423

5.4.2 Density learning with SA-GPR

The performance of the machine-learning model in terms of the prediction accuracy of the

electron density as a function of the number of training molecules is shown in Figure 5.3.

The structural flexibility of the molecules largely controls the accuracy of the final machine-

learning model. The error in the smallest systems, such as ethene and ethane, decreases

rapidly, showing that these molecules could be perfectly learned in a less-sophisticated frame-

work based on the alignment to a fixed frame of reference. On the other hand, butadiene is

more challenging both because of its greater conformational variability (e.g., cis and trans con-

formers, as well as distorted configurations approaching the isomerization transition-state)

and because its π-density is more sensitive to small molecular deformations. The difficulty of
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Figure 5.3 – Learning curves for C2 and C4 molecules. (left) % mean absolute error of the
predicted SA-GPR densities as a function of the number of training molecules. The error
normalization is provided by the total number of valence electrons. (right) root mean square
errors of the exchange-correlation energies indirectly predicted from the SA-GPR densities and
directly predicted via a scalar SOAP kernel, as a function of the number of training molecules.
Dashed lines refer to the error carried by the basis set representation.

the learning exercise is increased for butane due to its flexibility and the broad spectrum of in-

tramolecular non-covalent interactions spanned by the many different conformers contained

in the dataset. For these reasons, this kind of system is expected to benefit most from an ML

scheme that can adapt its kernel similarity measure to different orientations of molecular

fragments.

The learning curves are obtained by varying the number of training molecules up to 800

randomly selected configurations out of the total of 1000. The remaining 200 molecules for

each of these random selections are used to estimate the error in the density prediction. The

measure of the error is the mean absolute difference between the predicted and quantum

mechanical densities, i.e., ερ(%) = 100×〈∫ dr
∣∣ρQM(r )−ρML(r )

∣∣〉/Ne.

The accuracy of the model in ethene and ethane is limited by the error of the basis set repre-

sentation (around 1% for all molecules) and decreases rapidly, converging to saturation with

only 10 training molecules. Due to their increased complexity and conformational flexibility,

butadiene and butane are more challenging, but eventually also reach the basis set limit with

100 training structures. While this level of accuracy was demonstrated to be sufficient for den-

sity applications in real-space, 459 using the predicted ρ(r ) to compute exchange-correlation

energies remains a challenge. In particular, evaluating the PBE exchange-correlation func-

tional EXC [ρ] with the SA-GPR predictions results in root mean square errors of 0.9 and 1.7

kcal/mol for ethene and ethane, 1.9 kcal/mol for butadiene and 3.5 kcal/mol for butane with

the full training set. Again, the performance of the model is limited by the underlying basis set

decomposition error, suggesting that the predictions could potentially reach a higher overall

accuracy. Nevertheless, it has to be noted that, as far as the exchange-correlation energy is

concerned, adopting a direct, conventional scalar regression should lead to vastly superior

performance while requiring a much simpler machine-learning scheme (Figure 5.3 rightmost

panel).
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5.4.3 Size-extensive extrapolation

While the choice of a local basis set decomposition inevitably introduces additional errors

in the regression, it is the backbone of the scalability and the transferability of the model. In

practice, the locality of the basis implies that the regression weights x j
nlm can be learned from

any compound and used as building blocks to predict the density of much more complex

molecules. As long as the training set contains enough chemical diversity to capture all

the possible local environments of the desired target, the density can be directly obtained

by computing the similarity measures (k l (Xi ,X j )) between the target molecule (Xi ) and

the reference training environments (X j ). The computational cost of such prediction is

proportional to the number of atom-centered environments, which makes the model strictly

linear scaling in the size of the target molecule.

QM

ML

ML − QM

  

〈ερ 〉= 1.40%

ερ= 1.81%ερ= 1.41%
〈ερ 〉= 1.83%

Figure 5.4 – Extrapolation results for the valence electron density of one octane (left) and one
octatetraene (right) conformer. (top) DFT/PBE density isosurface at 0.25, 0.1, 0.01 Bohr−3,
(middle) machine-learning prediction isosurface at 0.25, 0.1, 0.01 Bohr−3, (bottom) machine-
learning error, red and blue isosurfaces refer to ± 0.005 Bohr−3 respectively. Relative mean
absolute errors averaged over 100 conformers are also reported for both cases.

To demonstrate the accuracy of the extrapolation, we predict the valence electron density of

octatetraene and octane, using only the reference environments and the regression coefficients
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trained on the butadiene and butane data. While the term extrapolation perfectly captures

the increased complexity of the targets with respect to the training molecules, the procedure

is, in fact, an interpolation in the space of local environments. For instance, an optimal

extrapolation accuracy is obtained using a machine learning cutoff of rcut = 3 Å, instead of

rcut = 4.5 Å used for same-molecule predictions. The reduction of the optimal cutoff radius

is not only a technical issue, but it shows that beyond 3 Å the environments of octane and

octatetraene differ substantially from those in the corresponding C4 compounds. In the ideal

case, reducing the representation cutoff radius could be avoided by extending the training set

to include molecules of a size comparable to the extrapolation targets.

For both octane and octatetraene, the extrapolation is carried out on a dataset made of the

100 most diverse structures extracted by farthest point sampling from the 300 K replica of

a long REMD run. The final accuracy of the model, obtained for the using the full dataset

(training and test) of butadiene and butane, reaches a mean absolute percentage error of

1.8% for octatetraene and of 1.4% for octane. As shown in Figure 5.4 for two representative

configurations, the extrapolation model reproduces quite accurately the general structure

of the valence electron density of both octane and octatetraene. The largest error occurs in

the middle regions of octatetraene, for which no analogous examples are contained in the

butadiene training dataset.

Besides these prototypical examples, the SOAP representation can be extended to more com-

plex molecules and condensed phases 463, and has been shown to achieve an impressive accu-

racy predicting the properties of larger molecules while training on very simple compounds 48.

Obtaining similar results for the electron density involves some technical challenges, con-

nected with the presence of correlations between coefficients due to the non-orthogonal

basis expansion, which makes the cost of training (but not of predicting) the density scale

unfavorably with system size.

5.5 Conclusions

The work described in this chapter demonstrates how accessing some of the most fundamental

molecular properties, such as the electron density, requires the development of technically

sophisticated machine-learning models. Aiming at transferability across molecules of different

size and composition, a scheme has to be local and should account for the fundamental

physical symmetries of the problem without any other a priori assumption. Our model fulfills

these requirements by decomposing the density in optimized atom-centered basis functions,

using a symmetry-adapted regression scheme, and designing a loss function that relies only

on the total electron density as a physically-meaningful constraint.

The performance of our model was trained and evaluated on a dataset of ground-state valence

electron densities of simple saturated and unsaturated hydrocarbons, achieving in all cases an

error of the order of 1% on the predicted density. Given its accuracy and its simple dependence

only on nuclear positions, the model could find several different chemical applications, such
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as in the analysis of X-ray 423 and transmission electron microscopy experiments.

Finally, the model could be further improved by, among others, better choice of the decompo-

sition scheme and of the basis set or using computationally cheap semi-empirical methods to

provide a baseline for the electron density prediction in a ∆-learning framework. In fact, the

work presented in this chapter has to be seen as a first successful attempt to apply transferable

machine learning to molecular properties with complex fundamental symmetries. Other

examples of properties that would benefit from such an approach are the Hamiltonian and the

density matrix, vector fields and density response functions. The wide variety of chemical ap-

plications spanned by these properties emphasizes the potential impact of symmetry-adapted

Gaussian process regression applied to fundamental quantum chemical properties.

5.6 Computational Details

As a demonstration of our framework, we consider hydrocarbons, using a dataset of 1000

independent structures of ethene, ethane, butadiene, and butane. Atomic configurations are

generated by running replica exchange molecular dynamics (REMD) simulations at the density

functional tight binding level 464, using a combination of the DFTB+ 465 and i-PI 466 simulation

software. 467 In order to construct a realistic and challenging test of the ML scheme, we chose

the replica at T = 300 K and selected a diverse set of 1000 configurations, by a farthest point

sampling (FPS) algorithm based on the SOAP metric461,468. For each selected configuration

we computed the valence electron pseudo density at the DFT/PBE level with SBKJC effective

core potentials.

The problem of representing a charge density in terms of a non-orthogonal localized basis

set shares many similarities with that of expanding the wavefunction. For this reason, we

resort to many of the tricks used in quantum chemistry codes, including the use of Gaussian

type orbitals (GTOs) to compute the basis set overlap analytically, and the contraction of 12

regularly spaced radial GTOs down to 4 optimized functions. We find that angular momentum

channels up to l = 3 functions are needed to obtain a decomposition error around 1% for

the density. The coefficients of the contraction are optimized to minimize the mean charge

decomposition error and the condition number of the overlap matrix for the four molecules. 443

A systematic analysis of the interplay between the details of the basis set and the performance

of the ML model goes beyond the scope of this work. It is likely however that substantial

improvements of this approach could be achieved by further optimization of the basis.
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6 Electron density learning of non-
covalent systems

This chapter is based on the following publication:

A. Fabrizio, A. Grisafi, B. Meyer, M. Ceriotti, C. Corminboeuf, Electron density learning of

non-covalent systems, Chem. Sci., 2019,10, 9424-9432.

6.1 Introduction

Non-covalent interactions (NCIs) govern a multitude of chemical phenomena and are key com-

ponents for constructing molecular architectures.469 Their importance fostered an intense

research effort to accurately quantify their magnitude and develop an intuitive characteriza-

tion of their physical nature using quantum chemistry. 470–474 Among the different approaches

to characterize non-covalent interactions, one of the simplest and most generally applicable

takes as a starting point the electron density ρ(r ) that encodes, in principle, all the informa-

tion needed to fully characterize a chemical system221. Despite the fact that the universal

functional relationship between total energy and ρ(r ) remains unknown, existing approxima-

tions within the framework of Kohn-Sham DFT (KS-DFT) 4 do permit access to all molecular

properties within a reasonable degree of accuracy. 7,8,11

Properties that can be derived exactly from the electron density distribution include molecular

and atomic electrostatic moments (e.g., charges, dipole, quadrupoles), electrostatic potentials

and electrostatic interaction energies. Knowledge of these quantities is fundamental in diverse

chemical applications, including the computation of the IR intensities 475, the identification of

binding sites in host-guest compounds, 476–478 and the exact treatment of electrostatics within

molecular simulations. 479 Moreover, analyzing the deformation of ρ(r ) in the presence of an

external field provides access to another set of fundamental properties, namely molecular

static (hyper)polarizabilities and, thus, to the computation of Raman spectra480 and non-

linear optical properties. 481–484

The natural representation of the electron density in real space makes it especially suitable for

accessing spatial information about structural and electronic molecular properties, including
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X-Ray structure refinement485–490 and representations using scalar fields.474 Routinely used

examples include the quantum theory of atoms in molecules (QTAIM),491,492 the density

overlap region indicator (DORI), 493 and the non-covalent interaction (NCI) index. 459,494

ρ(r ) is generally obtained by solving the electronic structure problem through ab-initio com-

putations. The main advantage of this approach is that it returns the variationally optimized

electronic density for a given Hamiltonian. Yet, ab-initio computations can become increas-

ingly burdensome if ρ(r ) has to be evaluated for thousands of different molecules or for very

large chemical systems, such as peptides and proteins. These large scale problems are typically

tackled using a more scalable approach that consists of either using linear scaling techniques

such as Mezey’s molecular electron density LEGO assembler (MEDLA)495,496 and adjustable

density matrix assembler (ADMA)497–499, as well as approaches based on localized molecu-

lar orbitals, such as ELMO.500–503 Another methodology belonging to this second category

involves the use of experimental techniques, such as X-Ray diffraction, to probe the electron

density and subsequently reconstructing ρ(r ) through multipolar models 504–506 and pseudo-

atomic libraries, such as ELMAM,423,450–452 ELMAM2, 453,454 UBDB,422,455 Invarioms456 and

SBFA. 457 While successful, these two methodologies have intrinsic limits: the first is unable to

capture the deformations of the charge density due to intermolecular interactions unless a

suitable fragment is generated ad-hoc, while the second relies on experimental data and is dif-

ficult to extend to thousands of different chemical systems at once. Recently, the development

of several machine-learning models targeting the electron density has effectively established

a third promising methodology, with the potential to overcome the limitations of the more

traditional approaches.

The first machine-learning model of ρ(r ) was developed on the basis of the Hohenberg-Kohn

mapping between the nuclear potential and the electron density.32,507 Although successful,

the choice of the nuclear potential as a representation of the different molecular conforma-

tions and the expansion of the electron density in an orthogonal plane-wave basis effectively

constrained this landmark model to relatively small and rigid molecules with limited trans-

ferability to larger systems. Recently, we proposed an atom-centered, symmetry-adapted

Gaussian process regression47 (SA-GPR) framework explicitly targeting the learning of the

electron density.33 Using an optimized non-orthogonal basis set, pseudo-valence electron

densities could be predicted in a linear-scaling and transferable manner, meaning that the

model is able to tackle much larger chemical systems than the those used to train the regres-

sion model. A third approach, that can also achieve transferability between different systems,

uses a direct grid-based representation of the atomic environment to learn and predict the

electronic density in each point of the molecular space. 54,55,416 Representing the density field

on a large set of grids points rather than on a basis set effectively avoids the introduction of a

basis set error, but also dramatically increases the computational effort.

One should also consider that machine learning, being a data-driven approach, requires

high-quality, diverse reference data. Fortunately, several specialized benchmark databases

that target NCIs have appeared over the past decade. From the original S22 266 to NCIE53 140,
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S66271, NBC10/NBC10ext273–275, and S12L272,508, the evolution of these datasets has, gen-

erally, followed a prescription of increasing the number of entries, principally by including

subtler interactions and/or larger systems. In this respect, the databases of Friesner, 278 Head-

Gordon, 280 Shaw, 279 and the recent BFDb of Sherrill, 61 constitute a special category because

of their exceptional size (reaching thousands of entries) which are now sufficiently large to be

compatible with machine-learning applications. Beyond their conceptual differences, each

of these benchmark sets aim at improving the capability of electronic structure methods to

describe the energetic aspects of non-covalent interactions.

In this chapter, we introduce a dramatic improvement of our previous density-learning ap-

proach by making the regression machinery of ρ(r ) compatible with density-fitting auxiliary

basis sets. These specialized basis sets are routinely used in quantum chemistry to approx-

imate two-center one-electron densities. Here, the auxiliary basis sets are used directly to

represent the electron densities that enter our machine-learning model, with the additional

advantage of avoiding the arbitrary basis set optimization procedures on the machine-learning

side. This enhanced framework leverages the transferability of our symmetry-adapted regres-

sion method and is capable of learning the all-electron density across a vast spectrum of 2291

chemically diverse dimers formed by sidechain-sidechain interactions extracted from the

BioFragment Database (BFDb) 61. The performance of the method is demonstrated through

the reproduction of ρ(r ) between and within each monomer forming the dimers. The accuracy

of the predicted densities is assessed by computing density-based scalar fields and electro-

static potentials, while the errors made with respect to the reference densities are computed

by direct integration on three-dimensional grids. As a major breakthrough, the model is used

to predict the charge density of a set of 8 polypeptides (∼100 atoms) at DFT accuracy in few

minutes.

6.2 Methods

Gaussian process regression (GPR) can be extended to encode all the fundamental symmetries

of the O(3) group, effectively allowing machine-learning of all the molecular properties that

transform as spherical tensors under rotation and inversion operations.47,509 In the specific

case of the electron density, the scheme relies upon the decomposition of the field into

additive, atom-centered contributions and the subsequent prediction of the corresponding

expansion coefficients.33 In SA-GPR, each molecule is represented as a collection of atom-

centered environments, whose relationships and similarities are measured by symmetry

adapted kernels. An in-depth discussion about how a symmetry adapted regression model of

the electron density can be constructed is reported in the supplementary materials.

The decomposition of the electron density in continuous atom-centered basis functions is the

cornerstone of the scalability and transferability of our SA-GPR model. Beside being generally

desirable, these properties are actually crucial to accurately describe the chemical diversity

present in the BioFragment Database within a reasonable computational cost. On the other

61



Chapter 6. Electron density learning of non-covalent systems

hand, the projection of the density field onto a basis set leads to an additional error on top

of that which can be ascribed to machine learning. In practice, all the efforts placed into

achieving a negligible machine-learning error are futile if the overall accuracy of the model is

dictated by a large basis set decomposition error.

Standard quantum chemical basis sets are generally optimized to closely reproduce the behav-

ior of atomic orbitals 2 and results in unacceptable errors if used to decompose the electronic

density (Figure 6.1). In contrast, specialized basis sets used in the density fitting approximation

(also known as resolution-of-the-identity (RI) approximation)204–206,211,214,510,511 are specif-

ically optimized to represent a linear expansion of one-electron charge densities obtained

from the product of atomic orbitals. Using the RI-auxiliary basis sets {φRI
k }, the total electron

density field can be expressed as:

ρ(r ) =
Naux∑

k

(
NAO∑
ab

Dab d ab
k

)
φRI

k (r ) =
Naux∑

k
ckφ

RI
k (r ) (6.1)

where, Dab is the one-electron reduced density matrix and d ab
k are the RI-expansion coeffi-

cients. Given a molecular geometry, the value of the basis functions can be readily computed

at each point of space, leaving the ck expansion coefficients as the only ingredient needed by

the machine-learning model to fully determine ρ(r ) (more details in the ESI).

As shown in Figure 6.1, the use of the RI-auxiliary basis sets results in nearly two orders

of magnitude increase in the overall accuracy with respect to the corresponding standard

basis set. The addition of diffuse functions marginally improves the performance of the

decomposition, but leads to instabilities of the overlap matrix (high condition number) and

increases dramatically the number of basis functions per atom.

In practice, Weigend’s cc-pVQZ/JKFIT204 basis set (henceforth: cc-pVQZ-RI) offers the best

trade-off between accuracy and computational demand and therefore represents the best

choice for the density decomposition.

6.2.1 Computational Details

The dataset of molecular dimers has been selected from the side-chain side-chain interac-

tion (SSI) subset of the BioFragment Database (BFDb).61 The original set is made of 3380

dimers formed by amino-acids side-chain fragments taken from 47 different protein struc-

tures. Dimers with more than 25 atoms as well as those containing sulfur atoms were not

considered. While the total number of sulfur-containing structures is too small to enable the

machine-learning model to accurately capture its rich chemistry, the inclusion of the larger

systems does not increase dramatically the chemical diversity of the dataset. The final dataset

contains a total of 2291 dimers.

As shown in Figure 6.2, the complete set of 2291 dimers spans a large variety of dominant

interaction types, ranging from purely dispersion dominated complexes (in blue) to mixed-
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Figure 6.1 – (left) Decomposition error of the electron density of a single water molecule:
evolution of the absolute percentage error depending on the choice of decomposition basis
set. (right) Comparison of the density error made with the standard and the RI-auxiliary
cc-pVQZ basis set ( cyan and orange isosurfaces refer to an error of ±0.005 Bohr−3). Reference
density: PBE/cc-pVQZ.

influence (green and yellow) to hydrogen-bonded and charged systems (red). We retain the

same classification criteria as in the original database to attribute the nature of the dominant

interaction.

For each dimer, the reference full-electron density has been computed at the ωB97X-D/cc-

pVQZ level using the resolution of identity approximation for the Coulomb and exchange

potential (RI-JK). This implies that RI-auxiliary functions up to l = 5 are included for carbon,

nitrogen and oxygen atoms while auxiliary functions up to l = 4 are used for hydrogen atoms.

6.3 Results and Discussion

The training set for the density-learning model was chosen by randomly picking 2000 dimers

out of a total of 2291 possibilities. The remaining 291 were used to test the accuracy of

the predictions. Given the tremendous number of possible atomic environments (∼40 000)

associated with such a chemically diverse database, a subset of M reference environments

was selected to reduce the dimensionality of the regression problem (see Supplementary

information). To assess the consequences of this dimensionality reduction, the learning

exercise was performed on three different sizes M = {100,500,1000} for the reference atomic

environments.

Figure 6.3 summarizes the performance of the machine learning algorithm, expressed in

terms of the mean absolute difference between the predicted and the reference densities
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Chapter 6. Electron density learning of non-covalent systems

Figure 6.2 – Ternary diagram representation of the attractive components of the dimer interac-
tion energies for the 2291 systems considered in this chapter. The values of the SAPT analysis
are taken from Ref. 61.

(QM). Here, only the machine-learning error is shown as the reference densities derive from

the RI-expansion of the computed ab-initio densities. Since the test set contains molecules

of different sizes, the contribution of each dimer has been weighted considering the ratio

between its number of electrons and the total number of electrons in the test set.

ερ(%) = 100× 1

Ne

∑
i

N i
e

∫
dr

∣∣∣ρi
QM (r )−ρi

ML(r )
∣∣∣∫

drρi
QM (r )

(6.2)

where the sum is performed over the 291 dimers of the test set, Ne is the total number of

electrons, N i
e is the number of electrons in a dimer, ρi

QM (r ) and ρi
ML(r ) are, respectively,

the ab-initio and the predicted density amplitudes at a point. Both integrals of Eq. 6.2 are

evaluated in real-space over a cubic grid with step size of 0.1 Bohr in all direction and at least 6

Å between any atom and the cube border.

As shown in the first panel of Figure 6.3, 100 training dimers were sufficient to reach satura-

tion of the density error around 0.5% for M=100. This result already outperforms the level

of accuracy reached in our previous chapter, which is remarkable given the large chemical

diversity of the dataset and the consideration of all-electron densities. Learning curves ob-

tained with M=500 and M=1000 show steeper slopes, approaching saturation at about 2000

training dimers with errors that were reduced to ∼0.2-0.3%. The predicted full-electron den-
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Figure 6.3 – Learning curves with respect to RI-expanded densities (ML error). (left) weighted
mean absolute percentage error (ερ(%)) of the predicted SA-GPR densities as a function of the
number of training dimers. The weights correspond to the number of electrons in each dimer
and the normalization is defined by the total number of electrons. Color code reflects the
number of reference environments. (right) ερ(%) of the predicted SA-GPR densities (M=1000)
divided per dominant contribution to the interaction energy according to Ref. 61.

sities are five times more accurate than the previous predictions of valence-only densities

(approximately 1%). 33 A more detailed analysis of the M=1000 learning curve reveals a strong

dependence on the nature of the dominant interaction (Figure 6.3). Specifically, stronger

non-local character in the interaction yields a larger error. This is especially prevalent for

dimers dominated by electrostatic interactions (i.e., hydrogen bonds, charged systems), which

are characterized by errors that are twice as large as those found in other regimes.

The origin of this slow convergence arises from two factors. First, only about 20% of the

dimers are dominantly bound by electrostatics. 61 The priority of the regression model is thus

to minimize the error on the other classes. Second, there is a fundamental dichotomy between

the local nature of our symmetry-adapted learning scheme and the long-range nature of the

interactions. In fact, the electron density encodes information about the whole chemical

system at once, while the machine-learning model represents molecules as a collection of 4

Å wide atom-centered environments. This difference in the spatial reach of the information

encoded in the target and in the representation is a limitation. In this respect, a global molec-

ular representation, which includes the whole chemical system, would be more suitable, but

this would imply renouncing to the scalability and transferability of the model. Given a large

enough training set, however, our SA-GPR model is able to capture the density deformations

due to the field generated by the neighboring molecule. The reason is rooted in the intrinsic

locality of density deformations and in the concept of “nearsightedness”253,254 of all local

electronic properties, which constitutes a theoretical justification for a local decomposition of

such quantities.

The fundamental advantage of setting the electron density as the machine-learning target

is the broad spectrum of chemical properties that are directly derivable from ρ(r ). For in-
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Chapter 6. Electron density learning of non-covalent systems

stance, the predicted charge densities are the key ingredient in density-dependent scalar fields

aimed at visualizing and characterizing interactions between atoms and molecules in real

space. Examples of the density overlap region indicator (DORI)493 are given in Figure 6.4

for representative dimers. Compared to the rather featureless ρ(r ), DORI reveals fine details

of the electronic structure, which constitute a more sensitive probe for the quality of the

machine-learning predictions. In particular, it reveals density overlaps (or clashes) associated

with bonding and non-covalent regions on equal footing through the behavior of the local

wave-vector (∇ρ(r )/ρ(r )). 512–514

London
Dispersion

Mixed
Regime

Electrostatics
Ab-initio

(cc-pVQZ-RI)
SA-GPR
Predicted

Ab-initio
(cc-pVQZ-RI)

SA-GPR
Predicted

SA-GPR
Predicted

Ab-initio
(cc-pVQZ-RI)

sgn(λ2)ρ(r)

Figure 6.4 – DORI maps of representative dimers for each type of dominant interaction (DORI
isovalue: 0.9). Isosurfaces are color-coded494 with sg n(λ2)ρ(r ) in the range from attractive
-0.02 a.u. (red) to repulsive 0.02 a.u. (blue). In particular, sg n(λ2)ρ(r ) < 0 characterizes
covalent bonds or strongly attractive NCIs (e.g. H-bonds); sg n(λ2)ρ(r ) ∼ 0 indicates weak
attractive interactions (van der Waals); sg n(λ2)ρ(r ) > 0 repulsive NCIs (e.g. steric clashes).

As shown in Figure 6.4, the intra- and intermolecular DORI domains obtained with the SA-

GPR densities are indistinguishable from those in the ab-initio maps. This performance is

especially impressive for the density clashes associated with low density values, as is typical

for the non-covalent domains. All the features are well captured by the predicted densities

ranging from large and delocalized basins typical of the van der Waals complexes (in green) to

the compact and directional domains typical of electrostatic interactions, to intramolecular

steric clashes (e.g. phenol, mixed regime). A quantitative measure of the DORI accuracy for

the most characteristic basin of each type of interaction is reported in the ESI. Overall, these

results illustrate that the residual 0.2% mean absolute percentage error does not significantly

affect the density amplitude in the valence and intermolecular regions that are accurately
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6.3. Results and Discussion

described by the SA-GPR model. The highest amplitude errors are concentrated near the

nuclei in the region dominated by the core-density fluctuations.

The versatility of the machine-learning prediction is further illustrated by using the predicted

densities to compute the molecular electrostatic potential (ESP) for the same representative

dimers (Figure 6.5).
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SA-GPR
Predicted

SA-GPR
Predicted

Ab-initio
(cc-pVQZ-RI)

Figure 6.5 – Electrostatic potential (ESP) maps of representative dimers for each type of
dominant interaction (density isovalue: 0.05 e− Bohr−3). ESP potential is given in Hartree
atomic units (a.u.).

ESP maps based on predicted densities agree quantitatively with the ab-initio reference

and correctly attribute the sign and magnitude of the electrostatic potential in all regions of

space. Importantly, the accuracy of the ESP magnitude remains largely independent of the

dominant interaction type. This is especially relevant for charged dimers (electrostatics) as

it demonstrates that despite slower convergence of the learning curve for this category, the

achieved accuracy of the model is sufficient to describe the key features of the electrostatic

potential.

The most widespread applications of ESP maps exploit qualitative information (e.g., iden-

tification of the molecular regions most prone to electrophilic/nucleophilic attack) but the

electrostatic potentials can be related to quantitative properties such as the degree of acidity of

hydrogen bonds and the magnitude of binding energies. 515–519 As a concrete example related

to structure-based drug design, we used a recent model that estimates the strength of the

stacking interactions between heterocycles and aromatic amino acid side-chains directly from
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Chapter 6. Electron density learning of non-covalent systems

the ESP maps.517,518,520 This model derives the stacking energies of drug-like heterocycles

from the maximum and mean value of their ESP within a surface delimited by molecular van

der Waals volume (at 3.25 Å above the molecular plane). 517 Following this procedure, we used

the ESP derived from the ML predicted densities to compute the binding energies between a

representative heterocycle included in our dataset, the tryptophan side-chain, and the three

aromatic amino acid side-chains (Figure 6.6).
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Figure 6.6 – (left) Electrostatic potential maps 3.25 Å above the plane of the tryptophan
(TRP) side-chain. The van der Waals volume of TRP is represented in transparency. The color
code represents the electrostatic potential in kcal/mol according the scale chosen in Ref. 517.
(Right) Stacking interaction energies of TRP with the phenylalanine (PHE), tyrosin (TYR) and
tryptophan (TRP) side-chains computed as detailed in Ref. 517 on the basis of ab-initio (top)
and ML-predicted (bottom) ESP.

Comparison between ab-initio and ML predicted stacking interaction energies shows that

the deviations in the ESP maps lead to minor errors on the order of 0.05 kcal/mol. The

largest deviations in the ESP would appear further away from the molecule, beyond the region

exploited for the computation of the energy descriptors (i.e., the sum of the atomic van der

Waals radii). The predicted ESP shows larger relative deviations far from the nuclei owing to

the error propagation of the density predictions ρ(r ) to the electrostatic potential φ(r ). This

can be best understood in the reciprocal space, where the deviations of the potential at a

given wave-vector k are related to the density error by δφ̂(k) = 4πδρ̂(k)/k2. Because of the

k−2 scaling, the error on φ(k) increases as k → 0, implying that larger relative errors of the

electrostatic potential are expected in regions of space where φ(r ) is slowly varying (i.e., thus
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determined by the long wavelength components).

6.3.1 Prediction on Polypeptides

The tremendous advantage of the atom-centered density decomposition is to deliver a machine-

learning model that depends only on the different atomic environments and not on the identity

of the molecules included in the training set. Thanks to its transferability, the model provides

access to density information of large macromolecules, at the sole price of including sufficient

diversity, that can capture the chemical complexity of a larger system. The predictive power of

this extrapolation procedure is demonstrated by using the machine-learning model exclusively

trained on the 2291 BFDb dimers to predict the electron density of 8 polypeptides taken from

the Protein DataBank (PDB). 521 The performance of the ML model for each macromolecules,

labelled by their PBD ID, is reported in Figure 6.7.

Overall, the predictions lead to a low average error of only 1.5% for the 8 polypeptides, which

is in line with the highest density errors obtained on the BFDb test set. Relevantly, the largest

discrepancies are obtained for 3WNE, which is the only cyclopeptide of the set. The origin of

these differences can be understood by performing a more detailed analysis on a representative

polypeptide, the leu-enkephalin (4OLR). The errors in this percentage range do not affect the

density-based properties, such as the spatial analysis of the non-covalent interactions with

scalar fields (Figure 6.8 top right panel). Yet, the density differences indicate that the highest

absolute errors occur along the amino acid backbone (Figure 6.8 lower panels). In addition,

the analysis of the relative error with the Walker-Mezey L(a,a’) index496 shows the highest

similarity at the core (99.3%), slowly decreasing while approaching the non-covalent domain

(96.3%) (Figure 6.8 top left panel). The L(a,a’) index complements the density difference

Figure 6.7 – Weighted mean absolute percentage error (ερ(%)) with respect to ωB97X-D/cc-
pVQZ densities of the predicted densities extrapolated for 8 biologically relevant peptides
(protein databank ID).
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Err. Vol. =  7.18%
Err. Int. = 3.43% 

Err. Vol. =  3.8%
Err. Int. = 14.5%

Figure 6.8 – (top left) predicted electron density of enkephalin (PBD ID: 4OLR) at three iso-
values: 0.5, 0.1, and 0.001 e− Bohr−3. For each isosurface, the L(a,a’) similarity index with
respect to ab-initio density is reported. (top right) DORI map of enkephalin (DORI isovalue:
0.9) colored by sg n(λ2)ρ(r ) in the range from -0.02 a.u. (red) to 0.02 a.u. (blue) (lower left) den-
sity difference between predicted and ab-initio electron density (isovalues ± 0.01e− Bohr−3).
(lower right) density difference between predicted and ab-initio electron density of 3WNE
(isovalues ± 0.01e− Bohr−3).

information by showing that the actual density amplitudes and the prediction error do not

decrease at the same rate. Nevertheless, the loss of relative accuracy remains modest and the

quality of the density is mainly governed by the predictions along the peptide backbone, which

are especially sensitive for the more strained 3WNE cyclopeptide. Although similar chemical

environments were included in the training set, the error is mainly determined by the lack

of an explicit peptide bond motif and cyclopeptides in the training set. While this limitation

could be addressed by ad hoc modification of the training set, the overall performance of the

machine-learning model is rather exceptional as it provides in only a few minutes, instead

of almost a day (about 500 times faster for e.g. enkephalin with the same functional and

basis set), electron densities of DFT quality for large and complex molecular systems. For

comparison, the superposition of atomic densities (i.e., the promolecular approach), which

has been used to qualitatively analyze non-covalent interactions in peptides and proteins (e.g.

Ref. 459) lead to much larger mean absolute percentage errors (17 times higher, see Figure S1

in the ESI).
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6.4 Conclusion

Given its central role in electronic structure methods, the total electron density is a very

promising target for machine learning, since accurate predictions of ρ(r) give access to all the

information needed to characterize a chemical system. Among the many possible properties

that can be computed from the electron density, the patterns arising from non-covalent

interactions constitute a particular challenge for machine learning models owing to their

long-range nature and subtle physical origin. An effective ML model should be transferable

across different systems, efficient in learning from relatively small training sets, and accurate

in predicting a ρ(r) both in the quickly-varying region around the atomic nuclei, in the tail and

– crucially for the study of non-covalent interactions – in those regions that are characterized

by low densities and low density-gradients. In this chapter we have presented a model that

fulfills all of these requirements, based on an atom-centered decomposition of the density

with a quadruple-zeta resolution-of-identity basis set, a symmetry-adapted Gaussian Process

regression ML scheme, and training on a diverse database of 2000 sidechain-sidechain dimers

extracted from the biofragment database.

The model reaches a 0.3% accuracy on a validation set, that is sufficient to investigate density-

based fingerprints of NCIs, and to evaluate the electrostatic potential with sufficient accuracy

to quantitatively estimate residue-residue interactions. The transferability of the model is

demonstrated by predicting, at a cost that is orders of magnitude smaller than by explicit

electronic structure calculations, the electron density for a demonstrative set of oligopeptides,

with an accuracy sufficient to reliably visualize bonding patterns and non-covalent domains

using the DORI scalar field. Even though the model reaches an impressive accuracy (0.5%

mean absolute percentage error) for dimers that are predominantly bound by electrostatic

interactions, the comparatively larger error suggests that future work should focus on resolving

the dichotomy between the local machine learning framework and the long-range nature of

the intermolecular interactions.
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7 Learning the energy curvature versus
particle number

This chapter is based on the following publication:

A. Fabrizio, B. Meyer, C. Corminboeuf, Machine learning models of the energy curvature versus

particle number for optimal tuning of long-range corrected functionals, J. Chem. Phys., 2020,

accepted.

7.1 Introduction

The extension of Hohenberg-Kohn density functional theory (HK-DFT)56 to non-integer

particle numbers led to the determination of two fundamental properties of exact DFT.13

The first is the piecewise linearity condition, which imposes that the total energy as a func-

tion of the (fractional) particle number [E(N)] must evolve as a series of straight-line seg-

ments.13,17,62,63 The second is the derivative discontinuity, which establishes that the exact

exchange-correlation potential is characterized by sudden jumps while varying across integer

particle numbers. 13,522–526

Approximate density functionals do not fulfill these requirements. Instead, they are generally

characterized by a convex E(N) curvature and by continuously derivable exchange-correlation

potentials. 15,17,65–70 As demonstrated by Kronik, Baer and coworkers, 62 these two quantities

are related and therefore the knowledge of the first is sufficient to quantify the extent of

the second. Using the same argument, the minimization of the energy curvature has the

consequence of correcting the effects of the missing derivative discontinuity, restoring the

compliance of approximate functionals to the exact conditions of DFT. Failure to comply with

these requirements exacerbates the effects of the delocalization error, 7,17,68,527,528 leads to an

incorrect dissociation behavior of heterodimers13,14,66 and causes the Kohn-Sham frontier

orbital eigenvalues to deviate respectively from the ionization potential and the electronic

affinity. 77–80

The existence of a relationship between the curvature and the derivative discontinuity is

especially convenient, as the first can be readily evaluated for a given functional and chemical

73



Chapter 7. Learning the energy curvature versus particle number

system according to the following expression: 62

C N
av g =

∫ N

N−1
C N (x)d x = εN

HOMO −εN−1
LU MO , (7.1)

where C N
av g represent the average curvature between two integer point with N and N − 1

electrons, while εN
HOMO and εN−1

LU MO are the eigenvalues of the frontier orbitals of the N and

N −1 particle states for a fixed molecular geometry. Equation 7.1 is exact and it is a direct

consequence of the Janak’s theorem. 77,529

The straightforward accessibility of the energy curvature information and its relation with

fundamental pitfalls of approximate density functionals have been the fertile ground for its

use in numerous practical applications. For instance, the minimization of C N
av g serves as a

formally motivated criterion for the compound-specific optimal tuning of range-separated

hybrid density functionals. 104,105 The accuracy of such functionals has been largely demon-

strated in the computations of outer-valence spectra,530 optical rotations,531 fundamental

and optical gaps.532–534 The energy curvature has been also applied as a criterion to charac-

terize the severity of the delocalization error in approximate functionals and to rationalize

on this basis their relative accuracy.64,73,86,535–537 In a different context, the curvature infor-

mation had a central role in the validation of ensemble generalizations of standard density

functionals,63,538–540 carefully designed to retrieve the correct piecewise-linearity behavior

of E(N) and the derivative discontinuities in the exchange-correlation potential. Finally, the

curvature information is applied to develop correction schemes for existing approximate

exchange-correlation density functionals. 62,541–544

The relevance of the information encoded into the energy curvature, corroborated by the ex-

tent of its possible applications, contrasts with the modest chemical complexity and relatively

low number of molecules for which the curvature has been reported. 62,535

Recently, machine-learning (ML) techniques have been redefining the scale and the complex-

ity achievable by traditional quantum chemical problems. 545 Supported by the construction

of large molecular databases, 24–26,61,245,279,546 the machine-learning approach promotes the

large-scale screening of virtually any targeted molecular quantity, with reported examples

ranging from simple ground-state properties41 to complex objects such as electron densi-

ties32–34,55 and the many-body-wavefunction.35 In addition, machine-learning techniques

have been intensively used to promote the access to system-specific quantities such as atomic

parameters for semi-empirical computations, 547 atomic and molecular multipoles moments,

polarizabilities and overlap integrals in the context of intermolecular potentials.46,548 Tack-

ling the up-scaling problem with artificial intelligence techniques is especially advantageous,

as they reduce the computational cost of accessing molecular properties,41,549,550 allow ex-

trapolating the acquired information to larger and more complex chemical systems551,552

and promote the analysis and identification of non-trivial similarity patterns in otherwise
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unimaginably large amounts of data. 553

For these reasons, we here report the construction of a machine-learning model of the average

energy curvature (C N
av g ) of a set of 7165 organic molecules taken from the QM7 database. 24,25

In this chapter, the focus is placed on the curvature between the neutral and the first radical

cation state of each molecule, as its minimization leads to compliance with the Koopmans’

theorem.104 The applicability of the regression framework is demonstrated by performing

system-specific optimal tuning of the LC-ωPBE functional67,554,555 based on the predicted

curvatures. In addition, the transferability of the model is tested by predicting the optimal

range-separation parameters and estimating the ionization potential of two larger molecules

of practical use, relevant for the field of hole transport materials. Finally, we address the

question of whether specific chemical patterns are more prone to deviation from piecewise

linearity using unsupervised dimensionality reduction algorithms to draw statistically robust

relationships between the structure/composition of the molecules and their average energy

curvature.

7.2 Learning Curves

The training set for the non-linear regression of C N
av g was selected by randomly choosing

6465 molecules out of the QM7 database, leaving the remaining 10% for out-of-sample (oos)

predictions. The hyperparameters of the model have been tuned for each functional by 10-fold

cross-validation on a randomly selected set containing 10% of the 6465 molecules. The param-

eters were optimized using a simplex algorithm and an array of 42 different initial conditions

sampling a large scale of possible hyperparameter values. At each iteration of the simplex

algorithm and for each initial condition, a new set for cross-validation containing 10% of the

6465 molecules was randomly selected. The performance of the model was then evaluated

by training on 5 sub-sets of different sizes (100, 500, 1000, 2000 and 5000 molecules) while

predicting on a validation set of fixed size (645 molecules). The final learning curve (Figure 7.1)

is obtained by randomly sampling the training and the validation set 10 times and averaging

the mean absolute errors (10-fold cross-validation). The regression model reported in the

Figure uses the spectrum of London and Axilrod-Teller-Muto (SLATM) molecular represen-

tation,250,251 as it was the best performing for the largest training set size (further details in

Appendix B).

As shown in the above Figure, the difficulty of the learning exercise largely depends on the level

of theory at which the energy curvature is computed. The learning of PBE0 403,404/def2-SVP

and LC-ωPBE 67,554,555/def2-SVP is the most straightforward, followed by PBE 334,335/def2-SVP

and finally Hartree-Fock (HF/def2-SVP). As already apparent in the upper panels of Figure 7.1,

this specific ordering is directly related to the amount of variation of the target quantity (C N
av g )

within each functional and method. As shown in Figure 7.2, the mean absolute error of the

model trained on 5000 molecules correlates nearly perfectly with the standard deviation of

C N
av g for each level of theory.
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HF: CN
avg Distribution PBE0: CN

avg Distribution

Figure 7.1 – Learning curves of the average energy-curvature (C N
av g ) as a function of the training

set size. The learning exercise is reported for three functionals and Hartree-Fock (HF) using
the def2-SVP basis set. The error bars correspond to the standard deviation of the 10-fold
cross-validation. The models were built using the SLATM molecular representation. In the
upper panels, we report the distribution of C N

av g across the QM7 database at HF and PBE0.
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Figure 7.2 – MAE of the model at a training set size of 5000 molecules as a function of the
standard deviation of C N

av g using the three functionals and HF.

Following Eq. 7.1, the energy curvature depends on the HOMO eigenvalue of the neutral

molecule [N-HOMO] and the LUMO eigenvalue of its radical cation [(N-1)-LUMO]. Therefore,

the relative robustness of each functional in describing these two quantities could be invoked

to rationalize the overall spread of its C N
av g . However, as shown in the left panel of Figure
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7.3, the individual variations of the frontier orbital energies are not sufficient to explain the

overall trend found for C N
av g . All the functionals are characterized by similar orbital energies

standard deviations, whereas HF shows larger deviations. Importantly, the spread of the

individual orbital eigenvalues within each method (Figure 7.3 left panel) is much larger than

the standard deviation of their difference (C N
av g , Figure 7.2 x-axis), with the sole exception of

HF for which the two are comparable. The narrower distribution of the curvature across the

dataset effectively makes this quantity a simpler learning target when compared to previously

published efforts to learn individual orbital energies. 28,245,556,557

Figure 7.3 – (left) Standard deviations of N-HOMO and (N-1)-LUMO through QM7 with three
functionals and HF. (right) Pearson’s correlation coefficient between the N-HOMO and (N-1)-
LUMO energies at different levels of theory.

The ordering of Figure 7.2 is retrieved only after combining the information about the varia-

tion of the orbital energies with the one about their correlation (Figure 7.3, right panel). In

particular, the frontier orbital eigenvalues correlate almost perfectly in LC-ωPBE and PBE0,

while their correlation is lower in PBE and very poor within HF. Consequently, the difficulty

of the learning exercise ultimately depends on the consistency of a method in describing the

orbital energies both of the neutral and the radical cation state of a molecule.

The poor covariance between the frontier orbital eigenvalues in Hartree-Fock is the conse-

quence of the different ways in which the occupied and the unoccupied manifolds are treated

within the method. In particular, the orbital energies of the occupied manifold, hence the

HOMO eigenvalue of the neutral molecule, is determined in Hartree-Fock by the effective

potential of N-1 particles, as the exchange cancels out the self-interaction contribution. This

is not the case for the unoccupied manifold, where the effective potential originates from the

totality of the particles. In contrast, the energies of both the occupied and the unoccupied

orbitals in density functional theory are determined by an N-1 particle effective potential, as

the (approximate) exchange-correlation hole excludes a single electron from each and every

orbital.
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Figure 7.4 – Schematic representation of the regression framework for the prediction of the
optimal range separation parameter per compound. For each molecule, nine independent
models predict the energy curvature at LC-ωPBE at nine γ values ranging from 0.1 to 0.9
Bohr−1. The system-specific optimal γ parameter, for which C N

av g = 0, is then found by a cubic
spline interpolation.

7.3 System-specific γ-tuning

The energy curvature predicted for each molecule by the machine-learning model can be

readily applied as a criterion for system-specific γ-tuning of range-separated hybrid density

functionals. Usually, the tuning procedure consists in adjusting the range-separation parame-

ter to satisfy as closely as possible the Koopmans’ theorem for both the neutral and the anionic

state of a targeted molecule. 104 This method is by far the most commonly used and relies on

the knowledge of the ionization potential either from a computational/experimental reference

or from an on-the-fly estimation using ∆SCF procedures. 104,105,558 As already demonstrated

by Kronick, Baer, and coworkers62, the minimization of C N
av g in approximate functionals

implies their compliance to the Koopmans’ theorem. Therefore, the optimal range-separation

parameter for a specific compound can be found by imposing the curvature to be identically

zero.

Figure 7.4 schematically illustrates a modification of the regression framework as presented in

the previous section, which uses the curvature information to determine the optimal γ param-

eter for a given chemical system. In particular, the procedure consists of nine independent

kernel ridge regression models, each targeting C N
av g at different values of the range-separation

parameter. In the last step, a cubic spline interpolation of the predicted curvatures leads to

the optimal γ parameter (i.e., the γ value for which C N
av g = 0) for a given molecule.

To avoid the introduction of unpredictable noise in the data, we considered here only those

compounds, for which all the computations converged. In consequence, the model was

trained using the energy curvature of 5754 small organic molecules taken from the QM7

database and used to predict the system-specific optimal LC-ωPBE γ values for a test set of
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Figure 7.5 – Absolute error between −εHOMO of LC-ωPBE and its γ-tuned variant and the
ionization potential at IP-EOM-CCSD across the 640 molecules of the test set. Optimal γ
values derive from the model described in Figure 7.4. The height of the histogram represents
the mean absolute error, while the bars show the maximum and the minimum deviations.

640 molecules. Upon a single point computation using the tuned functional, the ionization

potential of each molecule is evaluated as −εHOMO and compared to the corresponding value

at IP-EOM-CCSD. For consistency, all computations are performed with the def2-SVP basis

set. Figure 7.5 shows the accuracy of estimated IPs averaged over the test set for the standard

LC-ωPBE and its γ-tuned variant. The error bars show the maximum and the minimum

deviation from the IP-EOM-CCSD reference registered among the 640 molecules.

The tuning procedure based on the predicted curvatures results in a five-fold decrease of the

average ionization potential error compared to the standard functional. The robustness of the

predictions is further demonstrated by the fact that the worst error made with the γ-tuned

variant is only as high as the average error made with the standard LC-ωPBE.

Including several hundreds of different molecules, the test set represents a sufficiently large

ensemble for a statistically relevant analysis of the optimal range-separation parameter in

LC-ωPBE. By registering the frequency of appearance of the predicted γ values, it is shown

that their distribution tends to a Gaussian function centered around 0.32 Bohr−1 (Figure 7.6).

Out of the 640 molecules, only 12 are characterized by an optimal γ parameter close to the

0.4 Bohr−1 of the standard functional. In all those cases where system-specific γ-tuning is

not possible, for instance in the computation of dimer binding energies,106 the distribution

in Figure 7.6 demonstrates that fixing the range-separation parameter of LC-ωPBE to 0.32

Bohr−1 would reduce the curvature for the majority of molecules.

The discrepancy with the original parametrization of LC-ωPBE has to be interpreted as the

results of a different optimization strategy. Here, the suggested 0.32 Bohr−1 minimizes the
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Chapter 7. Learning the energy curvature versus particle number

Figure 7.6 – Distribution of the optimal γ parameters [Bohr−1] across the 640 molecules of the
test set as predicted by the model described in Figure 7.4. The red line show the value of the
range-separation parameter in the standard LC-ωPBE.

energy curvature for the highest number of compounds in a comprehensive dataset of organic

molecules. Following the works of Baer, 62,104 fixing the γ parameter by minimization of the en-

ergy curvature is a formally motivated procedure, as it leads to compliance with the Koopmans’

theorem and exact conditions of DFT. The original approach used for the parametrization of

LC-ωPBE is more pragmatic and seeks to minimize the error of the functional against different

energy-based benchmark databases. 555 The formal issue associated with this second strategy

is that the range-separation parameter inevitably compensates for unrelated deficiencies in

the rest of the approximated exchange-correlation functional.

7.4 Extrapolation

The machine-learning models presented in the previous paragraphs rely on a global molecular

representation, i.e. each vector in the feature space characterizes one specific compound. As

the energy curvature is a molecular property, this kind of representation is highly suitable and

easily applicable to the regression problem. On the other hand, a model based on a global

molecular representation is not transferable: it cannot be trained on simple compounds and

used to predict larger molecules.559 This issue can be tackled using local representations,

which encode the molecular information as a collection of atoms in their environments. By

establishing similarity measures between local atomic environments, rather than between

whole molecules, local representations lead to transferable models, applicable to larger and

more diverse molecules than those included in the training set (see, for instance, Refs. [ 34,560,

561]). The regression framework shown in Figure 7.4 is general and can be readily extended to

local, atom-centered molecular representations. More details about the modification of the

learning framework to accommodate locality and transferability are given in Appendix B.
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Figure 7.7 – Extrapolation: optimal γ parameter derived from the model described in Figure
7.4 for two large molecules relevant for the field of hole-transporting materials compared to
the value obtained by ab-initio optimal tuning. The value of −εHOMO for both the standard LC-
ωPBE and its γ-tuned variant (ML and ab-initio) are reported along with reference ionization
potentials. Experimental IPs are taken from Refs. [ 562,563]

Figure 7.7 shows the application of the local regression framework to predict the optimal γ

values of two large molecules commonly used in hole-transporting materials: 564,565 N,N’-Bis(3-

methylphenyl)-N,N’-diphenylbenzidine (TPD) and 4,4’,4”-Tris[(3-methylphenyl)phenylamino]

triphenylamine (m-MTDATA). The model was exclusively trained on the local environments

of the small organic molecules of the QM7 database using the atomic spectrum of London

and Axilrod-Teller-Muto (aSLATM)250,251 representation.

The −εHOMO computed with standard LC-ωPBE is a rather poor approximation of the ion-

ization potential of TPD and m-MTDATA with errors around 1 eV compared to the ab-initio

references (bt-PNO-IP-EOM-CCSD and ∆SCF at DLPNO-CCSD). Upon ML-based γ-tuning

the error with respect the wavefunction based methods is reduced to 0.1-0.2 eV for both

molecules. In addition, the optimal γs from machine learning and the corresponding IPs are

in very close agreement with the optimal parameters obtained ab-initio by minimizing the

difference between −εHOMO and the neutral-cation ∆SCF energy (∆γ = 0.025 Bohr−1 and 0.01

Bohr−1). These results, obtained on compounds four times larger than the largest molecule

in the training set, demonstrate the transferability of the local model and its applicability

to targeted complex molecules. Interestingly, the optimal γ parameters for both TPD and

m-MTDATA are much lower than any value obtained on the smaller molecules of the QM7 test
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set (Figure 7.6). This behavior is consistent with the results of the existing literature 85,566–568

and further supports the conclusion that γ can be interpreted as the inverse of an effective

conjugation length dependent on the system size. Finally, the HOMO eigenvalue of PBE0 is the

farthest from the ab-initio reference, but the closest to the experimental values obtained by

cyclic voltammetry in organic solution (TPD) 562 or by ultraviolet photoemission spectroscopy

in amorphous solid-state (m-MTDATA).563 This result is not unexpected (see, for instance,

Refs. 569,570) and shows that the error made by the global hybrid mimics the effects of the

condensed phase environment (e.g. solvent, crystal field). 571,572

7.5 Unsupervised learning and analysis of the QM7 dataset

The large chemical diversity contained in the QM7 database promotes a thorough assessment

of the relation between the energy-curvature computed with a given functional and the system-

specific structural and compositional patterns. However, drawing such a relationship for

thousands of molecules inevitably leads to a high-dimensional problem, which is unsuitable

for analysis and visualization. In this context, non-linear dimensionality reduction algorithms

reveal the underlying structure of high-dimensional data by projecting complex vectors into

lower dimensions. Figure 7.8 shows a two-dimensional representation of the chemical diversity

of the database using t-distributed Stochastic Neighbor Embedding (t-SNE). 573 This algorithm

converts the similarity between molecules, which is defined herein as the euclidean distance

between their SLATM representation, to the probability of being each other’s neighbors. The

embedding of high-dimensional data into lower dimensions is then performed by ensuring

that the joint probability between molecules should not change upon projection. While the

two axes (dimensions) obtained after a t-SNE transformation have no formal physical or

chemical meaning, it is still possible to identify at least a qualitative correlation between

chemical properties and the dimensions in Figure 7.8 vide infra.

The application of t-SNE to QM7 on the basis of the SLATM representation for each molecule

SLATM reveals clusters of compounds with similar chemical patterns, mainly defined by the

presence or the absence of heteroatoms and their connectivity. In particular, the vertical axis

(Dim. 2) somehow correlates with the number of heteroatoms, from zero (alkanes, bottom)

to two or more non-carbon atoms (hydroxyamines and oxyamines, top). The horizontal axis

follows instead a gradient of chemical composition going from the oxygen-based compounds

(left) to nitrogen-containing molecules (right), passing from mixed species. Each point is

color-coded by its average energy curvature computed at PBE/def2-SVP to establish a global,

qualitative connection between these macro-families of compounds and the degree of their

deviation from piecewise linearity. The choice of PBE is motivated by the fact that the absence

of Hartree-Fock exchange leads to a curvature that represents an upper limit for the other

functionals.

Figure 7.8 highlights seven key families characterized by at least one region of high average

energy curvature (in red). Out of those clusters, three contains only oxygen as heteroatom
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Figure 7.8 – Two-dimensional t-SNE map of the QM7 database on the basis of the SLATM
representation. Each point represents a compound colored by its average energy curvature
computed with PBE/def2-SVP. The diverging color map highlights the data with the highest
and the lowest average energy curvature. Each of the clusters contains molecules with similar
patterns, which are defined by the corresponding numbering.

(alcohols[7], ethers[15] and acids/esters [8]), two includes sp-hybridized carbons (cyano

groups [11] and alkynes [13]), one contains only nitrogen (amines [10]) and the last group

includes the amides [9]. In contrast, alkanes (with the exception of the smallest methane and

ethane, see discussion below)[16], diamines separated by long carbon chains [14], all sulfur-

containing compounds [5] and amidines [6] are all characterized by lower curvatures. These

trends suggest that the presence of increasingly electron-rich heteroatoms tends to increase

the average energy curvature. In particular, the presence of oxygen atoms is especially sensitive

as shown by the qualitative difference between amides and amidines. The low average energy

curvature that characterizes all sulfur-containing compounds suggests that the presence of

heteroatoms beyond the second row of the periodic table does not have a critical impact

on the deviation from piecewise linearity. In addition to heteroatoms, the hybridization of

the carbon centers is also a relevant factor as illustrated by the contrast between alkanes

and alkynes groups. These conclusions are consistent with previous work on charge transfer

complexes574,575 and delocalization error.537 In particular, the results presented here are

comparable with the work of Kronik and Baer, 62 who report the average energy curvature for

a set of nine small molecules, whose order can be rationalized in terms of the presence of

electron-rich heteroatoms, their hybridization, and the molecular size.

Although not explicitly evident in the mapping of Figure 7.8, the molecular size is, in fact,

crucial to determine the extent of the average energy curvature. To emphasize this point,
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Figure 7.9 – Correlation between the average energy curvature at PBE/def2-SVP and the
size of the molecules. The mean values (dots) are computed averaging C N

av g over all the
compounds with the same number of non-hydrogen atoms. The error bar represents one
standard deviation from the mean. The inset shows the average energy curvature of all the
compounds in QM7 with 3 non-hydrogen atoms. The color code in the inset highlights the
presence of oxygen (red), nitrogen (blue) or carbon only compounds (black).

Figure 7.9 correlates the curvature at PBE/def2-SVP and the size of the molecules, upon

averaging C N
av g over all the molecules with the same number of non-hydrogen atoms (Nheav y ).

Although the mean values for Nheav y = 1 and Nheav y = 2 are not statistically significant (i.e.,

these categories include only 1 and 3 molecules respectively), the robust inverse size/curvature

relationship justifies the high curvature of the smallest alkanes (Cluster 16 Figure 7.8).

The error bars in Figure 7.9 shows that within every Nheav y there is a distribution of curvatures

that reflect the chemical composition. The analysis of the subset with 3 non-hydrogen atoms

is especially suitable as it contains sufficient compounds to reflect general trends but is

simultaneously small enough to list all its molecules. The inset of Figure 7.9 shows the energy

curvature of all the compounds with Nheav y = 3 ordered from the highest to the lowest. This

plot validates the conclusions drawn from the t-SNE map, as the curvature decreases with

the electron-richness of the heteroatom (O > N > C). One exception due to the effects of

hybridization is acetonitrile, which has a slightly higher, but comparable curvature to methyl

ether. Complementing the information of the t-SNE map, the inset Figure reveals the high-

energy curvature of 3-membered rings (oxirane, aziridine, and cyclopropane) that are generally

considered to act as unsaturated systems. 576
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7.6 Conclusion

The average energy curvature with respect to the particle number is a crucial system-dependent

property of density functionals, which quantifies their deviation from the exact conditions

of DFT and therefore affects their accuracy. Related to the lack of derivative discontinuity in

the exchange-correlation potential and thus to the degree of severity of the delocalization

error, the information about this quantity has been successfully used for optimal tuning of

long-range corrected functionals and to correct Kohn-Sham orbital eigenvalues to match

ionization potentials and electron affinities. In this chapter, we have proposed the construc-

tion of a machine-learning model of the average energy curvature and shown its applications

for the system-specific tuning of the LC-ωPBE functional. In parallel, unsupervised learning

techniques have been applied to obtain qualitative information about particular chemical

patterns and molecular properties which results in highly convex curvatures.

As the curvature is both a system-specific and a functional dependent quantity, we have

first shown that the learning exercise is not equally difficult for any given functional, but it

depends on its ability to describe on equal footing the neutral and the radical cation state of a

molecule. This result implies that the possible spread of value for the average energy curvature

is not equal for all methods. In particular, the largest standard deviation for the curvature is

registered for Hartree-Fock, due to the poor correlation between the neutral molecule HOMO

eigenvalue and the LUMO of the radical cation.

Training several independent models to target the curvature at LC-ωPBE for different values of

its range-separation parameter led to the construction of a second framework dedicated to the

system-dependent optimal tuning of the functional. The use of the predicted γ parameters

resulted in a five-fold increase of the accuracy when estimating the first ionization potential

(IP) with −εHOMO with respect to the standard functional. The distribution of the predicted

range-separation parameters on the QM7 database shows that the original 0.4 value of LC-

ωPBE is far from optimal to minimize energy curvature. As a generalization of the framework,

we use a local molecular representation for the training and demonstrate the transferability

of the modified model by estimating the optimal γ-values and computing the ionization

potentials of two larger molecules, relevant for the field of hole-transporting materials.

Finally, projecting the high dimensional SLATM representation of QM7 in two dimensions

with a t-SNE algorithm revealed the underlying structure of the database. In particular, the

mapping showed several distinct clusters enclosing molecules similar to each other in terms

of their scaffold and presence of heteroatoms. The curvature values across these clusters

were found to assume the highest values for compounds with second row heteroatoms, most

frequently oxygen, or for compounds with sp-hybridization. Additional analysis of the data

supports the existence of an inverse correlation between molecular size and the average energy

curvature.
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7.7 Computational Details

The molecular geometries for all species were taken as published in the QM7 database.24,25

The curvatures were computed according to Equation 7.1 using the orbital eigenvalues of the

neutral and the first radical cation state of each molecule. All the computations using PBE,

PBE0, LC-ωPBE and Hartree-Fock were performed in Gaussian16,305 in combination with

the def2-SVP325 basis set. The first ionization potential energies at IP-EOM-CCSD 577,578 and

bt-PNO-IP-EOM-CCSD579,580 were obtained with Orca 4.0318 using the def2-SVP basis set

for consistency with the DFT values. The density fitting approximation was applied in the

bt-PNO-IP-EOM-CCSD computation. The machine-learning representations and similarity

kernels were obtained using the Quantum Machine Learning toolkit QMLcode581 with the

exception of SOAP59 (see Appendix B), which was computed using DScribe 0.3.2.582 The

mathematical form of the similarity kernels was chosen as standard procedure according to

the specific representation. The two-dimensional map of the QM7 database was generated

using the t-SNE 573 algorithm as implemented in the scikit-learn package. 583
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8 General Conclusions and Outlook

Modern quantum chemistry stands at a thrilling stage of its development. Along with the chal-

lenges of the traditional approaches, recent technological innovations such as GPU accelerated

software and machine learning are redefining the paradigms of the field. The work presented

in this thesis reflects this evolution and simultaneously demonstrates that the deterministic

and the statistical perspectives to quantum chemistry are complementary. In this context, the

role of density functional theory is central as it provides a common underlying framework for

all the material covered. The chemical situations, the methods and the applications discussed

here belong to a larger effort that aims at broadening the domain of applicability of density

functional theory and are part of a more comprehensive collection of novel methodologies to

access fundamental chemical properties of complex molecular systems.

The first part of this thesis focused on identifying concrete chemical situations, which still

represent a challenge for the application of standard computational procedures, approximate

density functionals, and correction schemes. Built in 2012, the Orel26rad dataset has already

demonstrated the failure of common density functionals in computing the interaction ener-

gies of simple radical cation dimers, which are the fundamental functional units in organic

electronic materials. With the construction of CryOrel9, the conclusions drawn from Orel26rad

are extended to a more realistic set of radical cation dimers, taken from the crystal structure of

actual organic semiconductors and representative of their different crystal arrangements. Us-

ing both datasets, we analyzed the performance of recent functionals of the ωB97X series and

proposed a variant ofωB97X jointly-fitted with the dDsC density-dependent dispersion correc-

tion. The ability to balance delocalization error and London dispersion interactions, capital in

Orel26rad, is even more crucial in CryOrel9 as both these effects grow with the system size, but

decay at a different pace. The use of density overlaps in the ωB97X-dDsC damping function

improves the description of medium-range interactions, making the functional particularly

suitable to compute the properties of radical cation dimers. The combinatorially-optimized

ωB97M-V yields highly accurate results for some radical cationic dimers, but its robustness

across chemical diversity and different spatial arrangements is not guaranteed. Results from

U-SAPT0 analysis on CryOrel9 revealed that not all the supramolecular arrangements are
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equally challenging. Planar, π-stacked dimers are the most difficult systems to describe, lim-

iting the overall accuracy of most of the density functionals, including ωB97X-D, ωB97X-D3

and ωB97X-V.

The second example reported focuses on the modulation of excited state processes by London

dispersion interactions in molecular switches bearing bulky lateral substituents. In particular,

we have compared the static excited state energy profiles and the outcome of excited stated

molecular dynamics simulations of a prototypical photoswitch (stilbene) and a substituted

variant (3,3’,5,5’-tetra-tert-butyl-stilbene) using dispersion corrected functionals, their un-

corrected variants, and CC2 as a reference method. These computations revealed that while

the rearrangement of the electronic density upon excitation remains the principal driving

force of the excited state processes, the inclusion of London dispersion interactions is cru-

cial to correctly describe the potential energy surfaces and thus the structural evolution and

photo-deactivation pathways of the excited molecules. Failure to account for van der Waals

interactions leads to qualitatively incorrect results for the substituted stilbene, and in par-

ticular to a spurious hindrance of its photocyclization pathway. Overall, London dispersion

interactions beyond the common ground-state chemical situation cannot be neglected a

priori. In addition, we have demonstrated that standard dispersion corrections, parametrized

in principles only for the ground-state, are nevertheless largely beneficial to describe the

excited state processes of molecules with sizable, but otherwise not photoexcited substituents.

Alongside the challenge of improving existing deterministic approaches as discussed in the

previous paragraph, the recent advances in the machine learning technology defy quantum

chemistry to provide learnable representations of complex, yet fundamental, molecular prop-

erties. In this context, the second part of the thesis reports the construction, the refinement

and the applications of a local and transferable machine learning model of the electron den-

sity. Inspired by well-established linear-scaling, embedding and fragmentation methods, we

proposed a decomposition Ansatz for the electron density on atom-centered, non-orthogonal

basis functions. This local representation of ρ(r ) provides a suitable target for symmetry-

adapted Gaussian process regression, as demonstrated with the accurate prediction of the

valence electron density for a set of hydrocarbons of increasing complexity. In addition, the

transferability of the model is shown by predicting the electron density of octane and octate-

traene, while only training on butane and butadiene.

This first, proof-of-principles, model is then refined using a specialized density-fitting basis set

for the decomposition. This choice is shown to be two-fold beneficial. First, the residual basis

set error is halved with respect to standard basis sets, which are optimized to model the wave-

function. Second, within the density-fitting framework, the basis set expansion coefficients

can be computed analytically, simplifying the regression of the core electron density. The

improved model is tested on a challenging set of amino acid side-chains dimers, taken from

the Biofragment database (BFDb). The accuracy of the predicted electron densities has been

shown for a variety of applications, including the identification of covalent and non-covalent

interaction fingerprints with the DORI scalar field, the computation of electrostatic potentials

and the estimation of stacking interaction energies of planar heterocycles. The transferability
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is further demonstrated with the prediction of the electron density of a series of complex

polypeptides.

Finally, Kohn-Sham density functional theory and machine learning are combined in the

last work. Here kernel-based non-linear regression and dimensionality reduction algorithms

are applied on a comprehensive database of small organic molecules (QM7) to analyze and

correct one of the well-known limitations of approximate density functionals: the spurious

energy versus particle number curvature. In particular, the focus has been placed on the

average energy-curvature between the neutral and the first radical cation state, which is

responsible for the deviation of the Kohn-Sham HOMO eigenvalue from the first ionization

potential. As a first result, we show that learning the average energy-curvature is not equally

difficult for any given functional, but it depends on its ability to describe on equal footing

the neutral and the radical cation state of a molecule. The information obtained from the

trained models is then used to develop a second framework for the γ-tuning of LC-ωPBE.

Using the predicted range-separation parameters allows a five-fold increase in the accuracy of

the first ionization potential computed as the negative of the Kohn-Sham HOMO eigenvalue.

Reference IPs have been evaluated at IP-EOM-CCSD level. The distribution of the predicted

range-separation parameters on the QM7 database shows that the original 0.4 value of LC-

ωPBE is far from optimal. Instead, the distribution of the predicted parameters is characterized

by an expectation value of 0.32. As a final result, we apply t-distributed Stochastic Neighbor

Embedding (t-SNE) as a dimensionality reduction algorithm to highlight specific chemical

patterns that are prone to large energy-curvature.

The results presented in the previous paragraphs summarize the main conclusions of this

work and set the stage for new compelling perspectives, as outlined in the following sections:

Extension of the machine learning model of the electron density to condensed phase and

excited states.

The machine learning model of the electron density reported in Chapter 5 and 6 represent

a particular case of a much more general framework, applicable to many different chemical

situations. Its most simple and readily available generalization consists in the regression of

a state-specific density, e.g. the response density from TDDFT computations, instead of the

ground-state density only. Slightly more involved from the quantum chemical perspective

is the regression of the transition density, as it would require the reformulation of the local

decomposition procedure. On the other hand, the ability to compute transition densities

at a fraction of the actual ab-initio cost would be invaluable to address large scale excited

state problems, such as the combinatorial screening of thousands of photochemically active

molecules and their properties.

Besides targeting systems beyond their electronic ground-state, a different extension of the

model could focus on the condensed phase and in particular, on molecular crystals. This

goal could be achieved by combining the existing machine learning architecture with the

Gaussian and augmented-plane-wave method, which allows expressing the density matrix

of periodic systems in terms of an atom-centered, local basis. This framework would allow
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translating to the condensed phase all the analysis tools presented in the previous Chapters,

with broad applications ranging from screening to the identification of polymorph fingerprints

in molecular dynamics simulations.

Drawing a robust statistical relationship between ρ(r ) and the exchange-correlation en-

ergy with machine learning.

As first highlighted by Becke,342 the guaranteed existence and uniqueness of a functional

relationship between the energy and the electron density fundamentally justify the introduc-

tion of a certain degree of empiricism in the development of approximate density functionals.

Taking this premise to the extreme, most of the physical arguments used in the construction

of exchange-correlation density functionals could be discarded, in favor of a purely statically

drawn relationship between EXC and ρ(r ). In perspective, this could be achieved by construct-

ing a non-linear regression model of the exchange-correlation hole (hXC(r,r′)), which defines

the EXC as follows,

EXC[ρ] = 1

2

∫
dr

∫
dr′ρ(r)

hXC(r,r′)
|r− r′| ρ(r′). (8.1)

Targeting hXC(r,r′) would result in a truly universal model, as the system-dependence of EXC

would be exclusively encoded in the density. The construction of such a model presents,

nevertheless, difficulties of a different nature. From the quantum chemical perspective, the

challenge consists in finding a form of Equation 8.1 compatible with the learning framework.

On the other hand, the machine learning model has to be carefully constructed to include all

the symmetries of the exchange-correlation hole and to avoid numerical instabilities related

to the divergence of the Coulomb potential for r = r ′.

Tackling the static correlation problem with symmetry-adapted machine learning: the on-

top pair density.

The on-top pair density [Π(r )] is a local electronic property defined as the probability of

finding two electrons at the same position in space: 22

Π(r ) =
(

N

2

) ∑
σ,σ′

∫
|Ψ(r ,σ,r ,σ′, x3, ..., xN )|2d x3...d xN (8.2)

As originally proposed by Becke, Savin and Stoll,584 standard Kohn-Sham density func-

tional theory can be generalized to describe multideterminental states by reformulating

the exchange-correlation functionals in terms of the total electron density and the on-top

pair density. This early work has paved the way for the more recent development of multi-

configuration pair-density functional theory 585–593 and the use ofΠ(r ) as an effective metric

to quantify static correlation in simple molecular systems.594 However, obtaining accurate
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on-top-pair densities can be a computationally demanding task especially for large chemical

systems. Therefore, the construction of a transferable machine learning model ofΠ(r ) is an

appealing perspective, which would set the stage to address the static correlation problem

in Kohn-Sham DFT bypassing ab-initio computations. The existing symmetry-adapted GPR

architecture could be used to attain this objective, on the condition of proposing an efficient

local decomposition scheme able to capture the radial and the angular features of the on-top

pair density.
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A CryOrel9 and ωB97X-dDsC

A.1 Functional performance on CryOrel.

Figure A.1 – MAE of tested functionals on the CryOrel dataset. Blue: GGAs; pale orange:
meta-GGAs; pink: global hybrids; cyan: meta-hybrids. Range-separated hybrids follow the
same color code as in previous Figures. Oblique bars are drawn to mark the same functional
used with a different dispersion correction.

As visible in Figure A.1, the robustness of the theoretical method employed for describing

the radical cationic dimers is dictated by its ability to treat delocalization error and Lon-

don dispersion interactions. These two aspects have been tested using an illustrative set

of GGA (B97,342 PBE334,335 and BLYP303,595), meta-GGA (TPSS,326 M06L 366 and M11L596),

global hybrid (B3LYP,82,303,304 PBE0403,404 and BHHLYP81,303), meta-hybrid (M06,597 M06-

2X 597 and M06-HF 132) and range-separated hybrid (ωB97X-D, 155 ωB97X-D3, 299 ωB97X-V, 300

ωB97M-V, 280 ωM06-D3, 299 M11 598, ωB97X-dDsC) functionals. Long-range dispersion inter-

actions were accounted for using ad hoc post-SCF dispersion corrections (-D3(BJ)160 and
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-dDsC 169–171), as well as nonlocal correlation functionals (i.e., VV10, 137 forωB97X-V,ωB97M-V)

or effective one-electron potentials (M06 family).

A.2 ωB97X-dDsC

Equations A.1, A.2 and A.3 illustrate the general form of the GGA exchange-correlation core,

which is characteristic of the B97 family. 342

EGG A
X =∑

σ

∫
dr ·eLSD A

Xσ (ρσ)
m∑

i=0
CX ,i ui (A.1)

EGG A
Cσσ =

∫
dr ·eLSD A

Cσσ (ρσσ)
m∑

i=0
CCσσ,i ui (A.2)

EGG A
Cαβ =

∫
dr ·eLSD A

Cαβ (ραβ)
m∑

i=0
CCαβ,i ui (A.3)

where eLSD A
X is the LSDA exchange factor, eLSD A

Cσσ the same-spin correlation factor, eLSD A
Cαβ the

opposite-spin correlation factor. The corresponding polynomial expansion coefficients are

indicated with a capital C. ui is a function of the reduced density gradient (s) weighted by an

attenuation factor (γ) and it has the following general form:

u = γs2

1+γs2 . (A.4)

In ωB97X-dDsC, as in ωB97X-D, 155 the polynomial expansion in Equations A.1, A.2 and A.3 is

truncated at the fourth power (m=4). Building upon the GGA form, the exchange contribution

of the range-separated hybrid functional is constructed as follows:

EX =∑
σ

∫
dr ·eLSD A−SR(ω)

Xσ (ρσ)
m∑

i=0
CX ,i ui +C HF

X ·E HF−SR(ω)
X +E HF−LR(ω)

X (A.5)

where C HF
X is the parameter determining the fraction of exact (Hartree-Fock) exchange at

short range.
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Adding the contribution from the dDsC dispersion correction 169–171 to Equations A.2, A.3 and

A.5 yields the full exchange-correlation ωB97X-dDsC functional:

EωB97X−dDsC
XC = EX +EGG A

Cσσ +EGG A
Cαβ +EdDsC (A.6)

Each component of Equation A.6 is tuned by at least two adjustable parameters. Table A.1

resumes the numerical value of all the optimized coefficients for ωB97X-dDsC, ωB97X+dDsC

(where only the dispersion correction is reparametrized), ωB97X-D and ωB97X-D3. The latter

functionals are included for comparison purposes.

Table A.1 – Adjustable parameters of theωB97X-D,ωB97X-D3,ωB97X-dDsC andωB97X+dDsC
functionals

-D -D3 -dDsC +dDsC

CHF
x 0.222036 0.195728 0.202143 0.157706

C0
x 0.777964 0.804272 0.797857 0.842294

C1
x 0.661160 0.698900 -0.100588 0.726479

C2
x 0.574541 0.508940 2.371856 1.04760

C3
x -5.25671 -3.744903 -0.099302 -5.70635

C4
x 11.6386 10.060790 1.647653 1.32794

C0
c,σσ 1.000000 1.000000 1.000000 1.000000

C1
c,σσ -6.90539 2.433266 -5.161406 -4.33879

C2
c,σσ 31.3343 -15.446008 21.971045 18.2308

C3
c,σσ -51.0533 17.644390 -36.945577 -31.7430

C4
c,σσ 26.4423 -8.879494 20.00011 17.2901

C0
c,αβ 1.000000 1.000000 1.000000 1.000000

C1
c,αβ 1.794130 -4.868902 5.479632 2.37031

C2
c,αβ -12.047700 21.295726 -28.015938 -11.3995

C3
c,αβ 14.084700 -36.020866 19.533086 -31.7430

C4
c,αβ -8.50809 19.177018 3.351842 17.2901

ω 0.2 0.25 0.275752 0.3

a 6 - - -

sr,6 - 1.281 - -

sr,8 - 1.094 - -

ATT0 - - 59.57 23.30

BTT0 - - 1.25 0.757
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A.3 The CryOrel Set

A dataset containing all relevant structural and benchmark data will be made available upon

publication in the Materials Cloud public repository.

Table A.2 – Abbreviations used in the CryOrel set

Abbreviation Definition

Type I
DITT: (diindeno)-dithienothiophene
ETTDM-TTF: (ethylenethio)(thiodimethylene)-tetrathiafulvalene
FPP-DTT: (perfluorophenyl)(phenyl)-dithienothiophene

Type II
BBBT: benzo-bis(benzothiophene)
BDT: bis(dithiophene)
DBT-Sulfone: dibenzothiophene-Sulfone

Type III
BTTT: bis(thiophene)-thienothiophene
DBT: dibenzothiophene
QTH: quaterthiophene

A.4 Spin Densities

The difference between the α- and the β-spin densities (spin-density) is a readily available

probe of the charge (de-)localization in real-space. In Figure A.2, we report the spin-densities

of three dimers from the CryOrel9 dataset, the first two being representative of the stacked and

tilted class and the third (ETTDM-TTF) showing how structural asymmetry helps restoring the

correct attribution of radical cation character. The two functionals chosen represent opposite

bounds of the error on the interaction energies of the stacked dimers. In the upper panels of

Figure A.2, it can be seen how ωB97M-V converges to the incorrect solution, attributing the

majority of the spin-density to the neutral monomer. In contrast, both functionals correctly

describe the spin-densities of the tilted and the asymmetric dimer.
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ωB97X-dDsC ωB97M-V

DBT-Sulfone

ETTDM-TTF

BBBT

* *

* *

* *

Figure A.2 – Spin-densities (isovalue: +0.01 e−Bohr−3) of DBT-Sulfone (stacked class), BBBT
(tilted class) and ETTDM-TTF (stacked, but asymmetric) with two functionals (ωB97X-dDsC
and ωB97M-V), representative of the lower and the upper bound of the interaction energy
error. Red asterisks mark which monomer has been optimized as a radical cation.
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B Energy Curvature: representations
and local regression

B.1 Performance of different molecular representations in learn-

ing the average energy curvature

100 1000 5000
Training set size

0.1

0.2

Te
st

 se
t e

rro
r [
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]
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Figure B.1 – Learning curves of the average energy-curvature (C N
av g ) at LC-omeg aPBE/def2-

SVP in function of the training set size. The learning exercise is reported for four different
molecular representations: the Coulomb matrix (CM), the Bag of Bonds (BoB), the spectrum of
London and Axilrod-Teller-Muto (SLATM) and the smooth overlap of atomic positions (SOAP).
The error bars correspond to the standard deviation of the 10-fold cross-validation.

The performance of a machine-learning model targeting chemical properties depends strongly

on the way the molecular information is represented.59,250 A suitable representation consti-

tutes in fact a meaningful relationship between the target property (herein the average energy

curvature) and the molecular structure and composition. Over the last few years, several

physically motivated molecular representations have been proposed, each of them including

an increasing amount of chemical information.25,27,38,59,244–251 Figure B.1 shows the perfor-
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mance in terms of mean absolute error of the average energy curvature computed at LC-ωPBE

level using four different molecular representations: the Coulomb matrix (CM),25 the Bag

of Bonds (BoB),247 the spectrum of London and Axilrod-Teller-Muto (SLATM) 250,251 and the

smooth overlap of atomic positions (SOAP). 59

Overall, the SLATM representation leads to the lowest mean absolute error at the full training

set and to the steepest learning curve. The final accuracy of the other representations tested is

nevertheless comparable, resulting in particularly small deviations ranging from 4 meV (BoB)

to 24 meV (CM).

B.2 Local framework for the regression of the energy curvature

The average energy curvature (C N
av g ) for a fixed functional is a molecular property, whose

partitioning into atomic contributions cannot be defined uniquely. Instead of imposing a

priori a decomposition scheme, we construct a machine-learning model able to perform the

regression and simultaneously find the most suitable atomic partitioning of C N
av g . Figure B.2 is

a schematic representation of such a regression framework. First, the molecular information

is vectorized as a collection of atomic environments using the aSLATM representation. Then,

Gaussian similarity kernels are evaluated between all the local environments, resulting in a

Nat X Nat matrix, where Nat is the number of atoms in the training set. Since the dimension-

ality of the target C N
av g is instead equal to the number of compounds, the lines of the kernel

matrix are averaged for the atoms belonging to each molecule. Building a molecular similarity

measure by averaging its local atomic contributions is not a novelty, but it represents the most

straightforwards solution when evaluating the similarity of different compounds on the basis

of a local representation. 599

Figure B.2 – Schematic representation of the local framework for the regression of the energy
curvature.

The rectangular kernel resulting from the averaging procedure cannot be directly inverted to

solve the regression problem. This over-complete (redundant) problem can be tackled using a
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sparse regression technique originally developed for signal recovery: the orthogonal matching

pursuit (OMP) algorithm. 600,601 Given a fixed number of non-zero parameters(nNonZ er oCoe f f ),

this method is able to approximate the optimum regression weights vector (ωsol ) by

ωsol = ar g mi n ||Y −Kω||22 Subject to ||ω||0 ≤ nNonZ er oCoe f f (B.1)

where K is a over-complete kernel and Y is the regression target. For the model presented in

this work the 300 non-zero coefficients were found to be optimal.
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