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Abstract

Magnetic resonance resonance (MRI) is a widely used modality to obtain in vivo tissue information.
Clinical applications are near countless, and almost all body parts can be examined using an MR
scanner. As the method is non invasive, does not use ionizing radiation and provides excellent soft
tissue contrast, it also appears as an excellent tool for neuroscience research. The major drawback
of MRI remains the relatively long acquisition times, of the order of several minutes. During the
measurement, the subject must stay still and avoid moving at all costs, as otherwise image artefacts
will appear and potentially render the acquired data (partially) unusable. As higher image resolution
imply longer acquisition time, probing finer anatomical details imply ultimately requires dealing with
said motion. While some research goes in the way of reducing the acquisition time, it necessarily
comes at the price of lower sensitivity and hence inherently diminishes the achievable gain for high-
resolution imaging as the signal is weaker to start with.

In this work, the focus is to try and compensate for motion during brain imaging using a navigator
method. This amounts to measure not only the desired image, but also other MR based information,
called navigator, at regular intervals during the scan. A modeling step then establishes a link between
the navigators samples and the head position change. Incorporating the motion information into the
main image reconstruction framework helps to retrospectively reduce the impact of said motion and
the associated incoherences which would appear during the standard reconstruction. Brain imaging is
probably the easiest case of motion correction in MRI, as the motion can readily be well approximated
as rigid.

The navigator methods developed and investigated in this work, called FatNavs, are based on the
fat signal, which in head imaging is very sparse in space and therefore can be imaged rapidly. They
also present the advantage of reduced impact on the main image water signal.

Several implementation strategies were tested as, due to the versatility of MRI, all image contrasts
cannot be ideally navigated using a single general implementation. Applications to inversion recovery
based sequences (MP2RAGE) used a well separated navigator and image acquisition scheme. This
method being routinely acquired, comparison to Moiré Phase Tracking, the current gold standard
for motion tracking and correction, was also performed in collaboration with Hendrik Mattern from
the Magdeburg University.

For gradient-echo imaging sequences (GRE), on which time-of-flight angiography and susceptibil-
ity induced contrasts are based, both separate and mixed acquisition schemes were tested. Further-
more, for imaging protocols using long echo time, the fluctuation of the magnetic field during the scan
can also induce severe artefacts. Therefore, extension of the FatNavs to a dual-echo field-mapping
version was also explored.

Finally, combination of FatNavs with FID navigators, which lack spatial information but have
much higher temporal resolution, was investigated for both motion and field fluctuation retrospective
correction.

Keywords: MRI, Ultra-high field, Navigators, Motion correction, Field fluctuation correction,
Structural Imaging
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Résumé

L’imagerie par résonance magnétique (IRM) est une technologie couramment utilisée pour obtenir
des informations sur des tissus en condition in vivo. Ses applications cliniques sont nombreuses, et
quasiment toutes les parties du corps peuvent être examinées par un scanner IRM. C’est également
un excellent outil de recherche pour les neurosciences, car la méthode est non-invasive, n’utilise pas
de rayonnement ionisant et procure un excellent contraste entre les différents tissus. Le point faible
principal de l’IRM reste le temps d’acquisition relativement long, de l’ordre de plusieurs minutes.
Durant la mesure, le sujet doit rester stable et éviter au maximum de bouger, car autrement des
artefacts apparaissent sur l’image et peuvent la rendre potentiellement inutilisable. Comme une
plus haute résolution d’image implique des temps d’acquisition plus long, explorer les fins détails
anatomique requiert une véritable gestion du mouvement. Il est possible de diminuer le temps
d’acquisition, mais uniquement au prix d’une sensibilité plus faible, ce qui présente un avantage
limité pour la haute résolution où le signal est bas.

Dans ce travail, le but est d’essayer de compenser le mouvement ayant lieu durant l’acquisition
d’images du cerveau en utilisant une méthode basée sur des navigateurs. Cela consiste à mesurer
non seulement l’image désirée, mais également d’autres signaux IRM à intervalles réguliers, appelés
navigateurs. Une étape de modélisation permet ensuite d’établir un lien entre les navigateurs et
le changement de position de la tête. En incorporant cette information dans la reconstruction de
l’image, l’impact du mouvement et des artefacts qui y sont liés est réduit de manière rétrospective.
La correction du mouvement pour des images du cerveau est probablement le cas le plus simple en
IRM car le mouvement peut être bien approximé comme étant rigide.

Les méthodes de navigateurs développées et étudiées ici, appelées FatNavs, sont basées sur le
signal du gras qui lors de l’imagerie de la tête est un signal spatialement épars, ce qui permet de
l’acquérir très rapidement. Elles présentent également l’avantage d’avoir un impact réduit sur le
signal de l’eau, qui est le signal d’intérêt lors de l’imagerie du cerveau,

Plusieurs stratégies d’implémentation ont été testées pour être compatibles avec la versatilité
des images IRM, qui ne permet pas d’implémenter une stratégie unique et générale pour tous les
contrastes d’image. Les applications aux séquences basées sur une inversion (type MP2RAGE)
utilisent une acquisition du navigateur bien séparée de celle de l’image. Cette méthode ayant été
régulièrement employée, elle fut comparée à la méthode de référence actuelle pour la correction du
mouvement (MPT) lors d’une collaboration avec Hendrik Mattern de l’université de Magdeburg.

Pour les séquences d’imagerie de type écho de gradients, dont l’angiographie temps-de-vol et les
contrastes basés sur la susceptibilité magnétique font parties, des acquisitions de FatNavs séparée et
mixte on été testées. De plus, pour les protocoles utilisant un long temps d’écho, les fluctuations du
champ magnétique durant le scan peuvent également induire des artefacts sévères sur l’image. Ainsi,
une extension des FatNavs permettant la mesure du champ a également été étudiée.

Enfin, la combinaison de FatNavs avec des navigateurs FID, qui manquent d’informations spa-
tiales mais ont une bien plus grande résolution temporelle, a été explorée pour la correction rétrospective
du mouvement et des fluctuations du champ magnétique.
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Glossary

NMR Nuclear magnetic resonance.

MRI Magnetic resonance imaging.
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k−space Conjugate space of the 3D material world coordinates by Fourier transformation.
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Gradients Short name for the gradient coils of the scanner.

Readout Means either the signal acquisition, in the sense of digital sampling or the direction of
the associated gradient during k−space sampling.
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magnetization during readout.

TE Echo time. Time between the excitation and when the center of k−space along the readout
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Chapter 1

Introduction

1.1 Context of the thesis

From the early steps of nuclear magnetic resonance (NMR) in the 1930’s by Rabbi [1] and the
1940’s by Purcell and Bloch among others [2, 3], NMR became a reference tool in analytical
chemistry for substance identification using spectroscopy, but also found other diverse applications,
such as probing protein dynamics [4]. The potential for medical imaging applications was realized
in the 1970’s by Mansfield and Lauterbur [5, 6], and by Damadian in parallel works [7].

Magnetic resonance imaging is now a widely used imaging modality both in clinical practice and in
neuroscience research. Its non-invasive and non ionizing radiation coupled with excellent soft tissue
contrast makes it a reference technology for many medical imaging exams. According to the Swiss
Federal Statistic Office, over 601, 000 MRI exams were performed in Swiss hospitals in 2016. The
safety of MRI, especially without contrast agents, makes it a fundamental tool for brain study or
diagnostics, as both anatomical and functional information [8] can be extracted using MRI.

With increasing magnetic field strength comes the possibility to achieve very-high resolution
images, however the technique suffers from relatively long acquisition times. The MRI examination
itself is far from comfortable. This is due to the general stress of a medical examination, but also
the loud noise of the MR scanner and closed surroundings (claustrophobia). While parallel imaging
[9, 10] helped to reduce the scan-time tremendously, thick slab acquisitions are typically at least
several minutes in duration. For example, a whole brain 1 mm isotropic MP2RAGE scan with 3
fold acceleration takes over 6 minutes [11]. High resolution (≤ 0.7 mm in-plane) scans are
diagnostically very important, but also imply longer acquisition. This increases the probability of
motion during the scan, and diminishes the feasibility of reacquisition in case of non-diagnostic
image quality. While it is expected of the exact proportion of motion corrupted scans to vary
according to the subject age and medical condition, it was shown [12] that around 15% of all brain,
head and neck exams had motion artefacts making the image unusable, and an additional 30%
presented mild artefacts. Having to repeat a scan costs time and money to hospitals without
guarantee of success. Mild artefacts were defined as not likely to bias the diagnostic, however they
also give an indication of the proportion of higher resolution scans which would present comparable
or worse artefacts levels.
This work will focus on a MRI based motion correction method called fat navigators. The rest of
this chapter briefly introduces the basics of MRI physics, image acquisition and reconstruction in
sections §1.2 and §1.3 respectively. The reader familiar with these concepts is encouraged to jump
to §1.4 onwards, where the impact of motion on brain imaging is described, followed by a summary
of existing motion correction methods for brain imaging from the literature. Finally, the goals of
the thesis will be formulated.
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1.2 The physics of MRI: overview

1.2.1 The NMR signal and its dynamics

The nuclear magnetic resonance (NMR) signal originates from the interaction of nuclear spin with
an external magnetic field B. Spin is one of the fundamental properties of particles, like mass and
electric charge, and is often referred to as intrinsic angular momentum. The strength with which a
particle couples to the classical external magnetic field is determined by its gyromagnetic ratio γ,
such that the energy of interaction U in the Hamiltonian is given by the Zeeman term

Û = −γB · Ŝ (1.2.1)

where Ŝ is the spin operator. This is the usual scalar product of the magnetic field with the nuclear
magnetic moment m̂

m̂ = γŜ. (1.2.2)

The spin operators satisfy the algebra

[Ŝi, Ŝj] = ih̄
∑
k

εijkŜk (1.2.3)

where εijk stands for the Levi-Civita symbol. (1.2.3) implies that spin is fully determined by a
multiple of h̄/2, which by transitivity is called spin as well and will be written as S. Each
component of the spin operator (Ŝz for example) then has eigenvalues {−S,−S + 1, ..., S}. By the
Ehrenfest theorem, the temporal evolution of the magnetization expectation value is given by

d

dt
〈m̂〉 = γ 〈m̂×B〉 . (1.2.4)

In modern applications of NMR and in MRI, the magnetic field is constant for most of the
experiment, and is written as B = B0ez by convention. (1.2.4) disregards all other interactions
involving the spins, such as spin-spin couplings. It does not include any mechanism allowing the
magnetization of the sample to reach thermal equilibrium. The local, irreversible fluctuations of the
magnetic field at the nucleus sites induced by molecular tumbling are also not accounted for. This
process is however the source of most of the NMR signal dynamics. For example it allows
transitions between the energy levels of (1.2.1) and thus establishment of thermal equilibrium.
Hydrogen is the main source of the MRI signal, has a spin 1/2 and its gyromagnetic ratio is given by

γH1

2π
= 42.58 MHz/T. (1.2.5)

The associated Larmor frequency ν is defined from the energy levels difference and the Planck
constant by

ν =
∆E

h
=

γ

2π
B0 = γ̄B0. (1.2.6)

At room temperature (20 °C), the ratio of the Zeeman energy levels difference to the thermal
energy is very small

~γB0

kBT
≈ 6.97 · 10−6B0[T ] (1.2.7)

so that, on average, only a few spins over a 100 thousand are polarized at field strengths in the
range of MRI scanners.
In the scope of this thesis, the detailed description of microscopic interactions betweens spins is not
directly relevant to the design and interpretation of the experiments, and the interested reader is
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encouraged to consult specialized textbooks [13, 14]. Macroscopically, the dynamics of the total
nuclear magnetization M is given by the Bloch equation (1.2.8).

d

dt
Mz =γ (M×B)z +

M0 −Mz

T1

d

dt
Mx,y =γ (M×B)x,y −

Mx,y

T ∗2

(1.2.8)

This law was originally established empirically through experiments, and sees the introduction of
two characteristic times: T1 which describes the return to the thermal equilibrium magnetization
M0 and T ∗2 which describes the coherence time of the transverse magnetization. The relaxation
mechanisms depend on the underlying mobility and environment of the molecules. Therefore,
mobile water, which is the signal measured in MRI, will exhibit different relaxation rates depending
on the tissue and its condition, leading to contrast generation. Neglecting relaxation, the solution
to Bloch equation has the simple geometrical interpretation that the magnetization rotates around
the magnetic field.
It should be noted that T ∗2 includes the coherence loss due to intra-voxel field inhomogeneity, which
can be explained both by the variety of magnetic susceptibilities and structures inside the voxel
(intrinsic to the material), and by large-scale field inhomogeneity left over after shimming. By
applying two RF pulses (see §1.2.2) in succession with a time interval ∆T , it is possible to create
transverse magnetization and then flip (part of) it like an omelette. Doing so reverses the phase
accumulated in between pulses and hence will completely refocus the transverse magnetization after
an additional phase evolution time ∆T . This is called a spin-echo and leads to the definition of a
separate transverse relaxation time T2, which is larger than T ∗2 as it stems only from irreversible
processes.
Finally, another mechanism affecting the NMR signal, called magnetization transfer (MT) [15],
should be mentioned. It applies as a general term to explain spin exchange between two molecules,
when the final spin states of the nuclei have been reversed either by direct coupling or by chemical
exchange. A well accepted model is a two pools model. One of mobile water, imaged by MRI, and
one of motion restricted magnetization, such as that found in macromolecules. Due to the much
shorter T ∗2 of the latter and when saturated (i.e. Mz ≈ 0), magnetization transfer tends to pump
available magnetization from the mobile water pool to drive the system back towards equilibrium.
This induces a lower available signal for imaging and allows the probing of microscopic dynamics
between pools, which in itself can be considered as a contrast.

1.2.2 A crash course in MRI Signal detection

The following describes briefly the main components of the MR scanner and their functions, as well
as to how to acquire imaging data. An MRI scanner has three major components: the static B0

main magnet, the gradient field inserts, and the RF chain. Additionally, static coils named
shimming coils produce low order spherical harmonics in order to maximize the field homogeneity
in the region of interest.
The gradient insert allows control over the spatial variation of the z component of the magnetic
field by creating gradients G such that

Bz = B0 + G · x. (1.2.9)

Introducing a magnetic field B1 in the x–y plane allows the magnetization vector to be tilted away
from thermal equilibrium. This can be achieved if B1 oscillates close to the Larmor frequency.
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Introducing the complex parametrization B⊥ = Bx + iBy and M⊥ = Mx + iMy , the Bloch
equations become

d

dt
Mz =

i

2
γ
(
M⊥B⊥ −M⊥B⊥

)
+
M0 −Mz

T1

d

dt
M⊥ =iγ (B⊥Mz −M⊥Bz)−

M⊥
T ∗2

. (1.2.10)

The detected signal is picked up by the RF receive coil. If the magnetization has a non-zero
transverse component, it will rotate at the Larmor frequency and hence produces an electromotive
force in the coil by induction. Mathematically, expressing the Bloch equation in a reference frame
rotating around z in a counter-clockwise direction with angular velocity Ω leads to the same
formulation, but with an effective magnetic field defined as

γBz → γBz − Ω (1.2.11)

and with all vector-components (such as m⊥ and B⊥) understood as coordinates in the rotating
frame. From here onwards, everything is assumed to be in the rotating reference frame and let

γBz = Ω + γ∆B0. (1.2.12)

On resonance (∆B0 = 0) and neglecting relaxation, the application of a constant purely real
transverse field to the equilibrium magnetization M = M0ez implies

M⊥(t) = iM0 sin (γB⊥t)

Mz(t) = M0 cos (γB⊥t)
(1.2.13)

which has the simple interpretation of rotating the magnetization by a flip angle α

α(t) = γB⊥t. (1.2.14)

Therefore, introducing a circular polarized field in the transverse plane allows to manipulate both
components of the magnetization. Creating this field is the role of the RF transmit antenna. From
(1.2.10), and in the limit of small flip-angle defined as Mz ≈ constant, the general law of the final
magnetization state for an arbitrary pulse B⊥(t) of duration T is given by

M⊥(T ) = iMze
−iγ∆B0T

T∫
0

γB⊥(τ)eiγ∆B0τdτ. (1.2.15)

Under a centered time parametrization shifted by T/2 and with the associated B⊥ function
redefinition, one gets

M⊥(T ) = iMze
−i γ

2
∆B0T

T/2∫
−T/2

γB⊥(τ)eiγ∆B0τdτ (1.2.16)

which reads as: the response of the magnetization to an RF pulse is the Fourier transform of the
B⊥ pulse evaluated at the magnetization off-resonance. For arbitrary B⊥ waveform and for large
flip angle, no analytical solution exists and numerical methods must be performed to establish the
magnetization response.
By convention and because it is an experimental parameter, B⊥ is often noted B1, and both
notations may be found in this work.
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The following describes spatial encoding, generated by additional instructions to the gradient coils.
The measured signal y is

y(t) ∝
∫
M⊥(x, t) exp

(∫ t

0

−iγBz(x, τ)dτ

)
dV. (1.2.17)

Defining k as

k(t) = γ

∫ t

0

G(τ)dτ (1.2.18)

and for static off-resonance, it becomes

y(t) ∝
∫
M⊥(x, t)e−iγ∆B0(x)te−ik(t)·xdV. (1.2.19)

Measuring during a short time in which the magnetization does not undergo significant relaxation
allows sampling of the spatial Fourier transform of the transverse magnetization. The representative
sampling time is the echo time TE, defined as k(TE) = 0. How to obtain a discrete image from the
sampling is briefly explained in §1.3. In practice, the measured signal of the induced electromotive
force has to be demodulated around the frequency Ω in order to correspond to (1.2.19).
Combining gradient instructions and RF pulses, it becomes possible to select either a slab for 3D
k−space encoding or a thin slice for 2D encoding. For example, combining a cardinal sine RF pulse
with frequency f with a constant gradient Gs allows the excitation of a slab (or slice) of width

∆s =
f

γ̄Gs

(1.2.20)

along the direction of Gs, which follows directly from (1.2.16).
Finally, it should be mentioned that the transverse components of the magnetic field cannot be zero
by Maxwell laws

∇ · b = 0 and ∇× b = 0. (1.2.21)

The transverse components of the field are called the concomitant field, but can be safely neglected
at high-field.

1.3 Basics of image reconstruction

1.3.1 Cartesian acquisition and reconstruction

The following and additional discussions can be found in all reference MRI textbooks, such as [16].
A standard MRI acquisition is to sample a Cartesian grid of k−space. The following one
dimensional encoding scheme can immediately be generalized to encoding in two or three
dimensions. The measured signal y is given by

yn =

∫
m(x) exp (−ixn∆k) dx (1.3.1)

where ∆k is the experimental parameter relating to difference of the x gradient moment at
sampling time, and n ∈ {−N,−N + 1, . . . , N − 1}. The hardware dependent gain factor is assumed
to be equal to one for simplicity. The image I is reconstructed by discrete Fourier transform

I(x) =
N−1∑
m=−N

ym exp (ixm∆k) . (1.3.2)
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A direct computation shows the usual Nyquist criteria

I(x+ L) = I(x) with L =
2π

∆k
. (1.3.3)

With ∆x =
L

2N
the voxel value is given by

I(x) =

∫
m(x′)sinc

(
π

∆x
(x′ − x)

)
2Ne

−i
π

L
(x′−x)

sinc

(
π

L
(x′ − x)

)dx′. (1.3.4)

The voxel signal is therefore directly linked to the magnetization value via a convolution with a
so-called point-spread function (PSF). ∆x is the voxel resolution in the x direction, and nicely
coincides with the more formal definition of the resolution given by

resolution =

∫
PSF(x)dx

PSF(0)
. (1.3.5)

1.3.2 Parallel imaging

While a full k−space sampling is required to reconstruct the complex image, additional spatial
discrimination to that of the gradient coils exists in the acquired data if multiple receive coils are
used. For each receive channel the reconstructed image is weighted by the associated sensitivity
profile. Parallel imaging amounts to exploit this weighting as a way to speed up the image
acquisition by acquiring only part of the k−space. Many under-sampling patterns have been
proposed, and the theoretical description of the main Cartesian sampling scheme will be presented
here. Application of said schemes to FatNavs is discussed in §1.6.
Measuring one k−space point every R points in one direction leads to an effect called aliasing,
where the n-th voxel value is given by

mR(n) =
∑
k|R=0

y(k)ei2π
kn
2N =

1

R

R−1∑
r=0

m(n+
2Nr

R
). (1.3.6)

The aliasing will appear due to the violation of the Nyquist condition for each receive channel, as
can be observed from

mR(n) = mR(n+
2N

R
). (1.3.7)

The aliased images of each channel relate to underlying magnetization image m by

mR,1(n)
...

mR,nc(n)

 =


S1(n) . . . S1(n+

(R− 1)2N

R
)

...
. . .

...
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(R− 1)2N

R
)




m(n)
...

m(n+
(R− 1)2N

R
)

 = Sm. (1.3.8)

If the number of receive channels nc exceeds the acceleration factor R, and if the sensitivity maps
are different from one another, then (1.3.8) can be directly solved by inverting the S matrix. This
method is called SENSE [9], and as expected it leads to the same result as the least square solution
of the MRI signal forward problem:

arg
m

min ‖ y − ESm ‖2 (1.3.9)
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where y is the measured under-sampled data, S the sensitivity maps and E the Fourier encoding
operator.

Another established reconstruction, dubbed GRAPPA [10], fills up the non-acquired data yc(k)
directly in k−space by a linear combination of the acquired neighboring data from all channels:

yc(k) =
∑
c′,j

wc,c′,jyc′(k + δjk) (1.3.10)

where the weights wc,c′,j are estimated on fully sampled data. GRAPPA bypasses the sensitivity
maps estimation by assuming (1.3.10), which in image space is equivalent to the hypothesis that on
the spatial signal domain (m(x) 6= 0)

Sc(x) =
∑
c′,j

wc,c′,jSc′(x)eiδjk·x. (1.3.11)

1.3.3 Metrics of image quality

This short text aims to clarify the notion of a good brain image. What makes a general image
good ? The logical and probably most accurate answer is an image which represents what it
should. In the case of a brain image, the anatomy should be represented accurately, under the
limits of the acquired contrast and resolution. For example, this implies undeniably visible
boundaries of structures and no signal outside of the head.

MRI is prone to artefacts, among which motion artefacts are a common example. In a clinical
setting, the notion of diagnostic image quality arises. It qualifies whether the artefacts of the image
(if any) exclude or hinder establishing a diagnostic. The final image is meant to be interpreted by a
radiologist, therefore a sensible image comparison metric of two similar images is to ask several
radiologists if one provides different information compared to the other. For example it might be
that some slight ringing, while clearly visible, does not critically hinder the diagnosis. However for
high-resolution imaging in a research oriented context, said ringing would likely be unacceptable.
Also, in said context, accurate radiologic expertise may not be needed, as the ringing is readily
identifiable by an observer without clinical training.

It becomes natural to try and look for a measure of image quality, which would correlate to ringing
and blurring reduction. Among the many proposed [17], two often used and reliable metrics are the
gradient entropy and the normalized gradient squared. In this work, the gradient is understood as
the Euclidean norm of the 3D discrete gradient.

1.4 MR signal and motion in brain imaging

The working assumptions of this text are that concomitant field, timing errors, field inhomogeneity,
gradient non-linearity and eddy currents are all negligible. Consider a magnetization packet, of
trajectory x(t), and of weight m(t). This weight intrinsically includes relaxation effects (T2 or T ∗2 )
and previous excitation history, i.e. it depends on T1 and TR. It is proportional to the transverse
magnetization of the sample, where the proportionality constant is hardware dependent. Also,
perfect spoiling between excitations is assumed. The MR signal yc of a receive coil c as a function
of time is then

yc(t) =

∫
V

sc(x(t))m(t) exp
(
−iφ [t,x]

)
dV (1.4.1)
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where sc is the receiver spatial sensitivity profile. The exponential factor represents the spatial
encoding

φ [t,x] = γ

t∫
0

G(τ) · x(τ)dτ (1.4.2)

with G the z magnetic field gradients.
In the stationary case x is time independent, and the object image is obtained by inverse Fourier
transform of the measured signal. The position in Fourier space, or k−space, is given by

k(t) = γ

t∫
0

G(τ)dτ.

The total MR signal will be a sum of the signals for all the “magnetization packets” of the sample.
Several motion types should be distinguished at this stage:

1. Flow: Blood is intrinsically a moving signal source. The position of some blood molecules is
always changing between the RF excitation pulse, the phase (and slice) encoding gradient(s),
and the signal acquisition. This typically leads to flow artefacts in the image, coming from
the inconsistency in the encoding because of the x(τ) term. Gradient moment nulling
techniques [18] allow rewinding of the non-zero velocity induced phase contribution, and
therefore localize the blood signal more accurately (in practice, only a first moment nulling is
usually implemented).

2. Diffusion: Water molecules diffuse in tissue. This means that, inevitably, all sequence signals
have some diffusion weighting [19]. The scale of motion associated to diffusion is much
smaller than the imaging resolution, hence this type of motion is to be understood as a signal
weighting process and not an artefact source.

3. Elasticity: Blood flow is not constant over-time, but periodic. This implies that blood vessels,
at every length scale, follow contraction/dilatation periods. Ultimately, acquiring brain at
fixed time points in the cardiac cycle, allows construction of deformation maps. It was found
that the maximal displacement does not exceed 0.2 mm [20]. State-of-the-art estimates of
cardiac induced bulk motion estimates are of the same order [21].

4. Bulk motion: It is the motion of the head as a whole. Its causes are many, among them are
nodding, shifting due to an uncomfortable body position, muscle relaxation and breathing.
This is the motion one aims to quantify and then correct for.

From here onward, the term motion refers to bulk motion. A major advantage in brain MRI
compared to other body parts it that the brain is, to a very good approximation, a rigid body
(keeping in mind the elasticity and flow phenomena). This means its motion can be fully
determined with only six parameters: three for translations and three for rotations. Obviously
there are pitfalls to this approximation. For example, if the lower jaw or the tongue is in the
excited volume, the hypothesis breaks down, as they are physically not rigidly connected to the
brain. The eyes also follow a different motion than the head. However, either by a clever choice of
the phase encoding direction(s) and/or of the excited volume, the artefacts produced by these parts
can usually be pushed outside of the brain. Mathematically, rigid motion is defined as

x(t) = R(t)x(0) + d(t) (1.4.3)
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where R(t) and d(t) are the rotation matrix and translation vector respectively.
Now to model the brain MR signal in presence of motion. If m(x) now denotes the full object at
time equal 0 in (1.4.3), and if no motion takes place during the measurement of k, that is R and d
are constant during the measurement, then the signal becomes

yc(k) = exp (−ik · d)

∫
V

sc(Rx + d)m(x) exp
(
−iRTk · x

)
dV (1.4.4)

As for nearly all motion correction techniques, the change of the receiver sensitivities induced by
motion was neglected. Most often, thanks to tight foam padding of the subject head which restricts
the range of motion and the slow spatial variation of the sensitivities, this assumption is justified.
Notice that, in the event of several readouts per excitation, such as in TSE sequences, motion in
between refocusing pulses is not adequately modeled by (1.4.4). A derivation based on the general
equation (1.4.2) should be used instead .
The main implications of the motion induced signal changes are:

• While somewhat hidden in the notation of (1.4.4), spin history will potentially not be
consistent across the whole image acquisition. Indeed for spatially selective excitations,
motion will generally imply that the excited brain region during the scan is not the same
before and after moving. Furthermore, the steady-state of the newly excited region is not yet
established when acquired, adding further undesirable signal modulation. Large slabs are by
definition less sensitive to these effects, as most of the signal represents the constantly excited
regions. In all standard acquisitions, the flip angle does not vary enough on the motion range
to induce inconsistency in the signal. On the other hand, 2D acquisitions are the worst case
scenario for these spin history effects.

• As seen in (1.4.4), rotations imply that the k−space is sampled at a rotated version of the
targeted position. For translations, the well known equivalence to phase ramps in k−space is
explicit. The strength of the motion artefacts on the image depends both on the motion
parameters, and when motion takes place, i.e. where in k−space. Simulated examples are
shown in Figure 1.1.

It was shown [22] that the most prevalent motion in clinical data larger than 0.5 mm or ° is the
pitch rotation (around the left-right axis) and the head-foot translation. Motion of lower amplitude
is generally expected to be unavoidable.
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(a) Simulation of a 5°in-plane rotation.

(b) In-plane rotation angle during k−space acquisition.

Figure 1.1 – Possible impacts of motion during acquisition (simulation). Raw data used for simulation
were downloaded from https://people.eecs.berkeley.edu/~mlustig/Software.html .
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1.5 Literature review

1.5.1 Prospective and Retrospective correction

In order to correct for motion, one must first estimate the six motion parameters. If this is feasible
sufficiently often, one can feed the information back to the scanner to update the geometrical
parameters used for scanning, so that the scanner follows the subject motion. This procedure is
called prospective motion correction (PMC). It is important to understand that typically no
extrapolation is done when applying PMC, so that in reality it is slightly lagging behind the true
motion. This delay is larger if some filtering of the motion parameters is applied. PMC can also
produce unwanted image artifacts when the motion parameter estimations fall far from their true
values, for example if the marker becomes loose or changes its position relative to the brain. PMC
has the advantage that, when precise motion estimates are available, all major motion induced
problems disappear (for typical ranges of motion). No unwanted spin history alteration takes place
and the image reconstruction can be carried exactly like in a scan without motion. For Cartesian
sampling that means very fast algorithms can be readily applied.
Retrospective motion correction (RMC) involves correcting for motion only after data acquisition.
In practice, one extrapolates the motion state during the whole k−space acquisition from some
punctuated motion parameter estimates. Translations are compensated by applying the
appropriate phase-ramp correction. The correction of rotations is more involved, as it means
finding the image m such that yc = Fscm where Fc is the Fourier operator defined by the measured
k−space trajectory, i.e. locally rotated compared to the intended trajectory. Formally this problem
should be solved iteratively, and several alternatives exist to combine the receiver channels. In
practice, especially for high-resolution imaging, only the first step of the iteration is carried out
(channel-wise), and then the motion corrected images are combined. For each channel, the motion
corrected image is given by mc = F̃ †yc with F̃ † the adjoint of a fast non-uniform Fourier transform
(nuFFT) operator [23]. The main disadvantages of RMC are the following. It can only be robust
for 3D excitation based sequences because of through plane motion. Spin history effects can
however be present in case of through plane/slab motion depending on said motion amplitude and
the specific excitation pulses used. It also is much more computationally expensive for Cartesian
trajectory based sequences compared to the non corrected reconstruction.
RMC can also be used for retrospective motion de-correction of PMC data, thereby producing a
motion corrupted image, without spin history related artefacts, allowing comparison of corrected
and de-corrected images [24]. RMC could theoretically also be used to enhance the timing of
motion estimates applied during PMC, thereby mitigating the effects of PMC’s intrinsic delays.
However, current PMC methods have a high update frequency (> 10 Hz), making such
combination only likely to be useful in very specific applications.

1.5.2 External sensor based motion tracking

Here external sensors solutions will be summarized. These sensors can be MR based or rely on other
mechanisms. The idea is to attach one or several markers to the subject’s head, and track these
markers motion. The brain motion is then assumed to be the same as that of the marker. First
non-MR based methods, such as optical tracking, will be discussed. If the marker has no specific
pattern, like a homogeneous sphere, then several markers (and potentially cameras) will be needed
to fully quantify the motion parameters. On the other hand, a single marker and camera setup can
be sufficient for complete motion quantification if the marker encodes enough information, such as
checkerboards [25] and Moiré patterns [21]. Marker-less optical tracking using structured light has
also been proposed [26]. Advantages of these methods are that they are completely independent of
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the MRI sequence, and fast data processing allows for PMC at a high refresh rate (50 Hz). Because
of the high refresh rate, sequence independence and high accuracy, they are regarded as the current
gold-standard for motion tracking and have found diverse applications, such as very-high resolution
scans [27], functional MRI [28] and quantitative MRI [29]. However, they also come with
disadvantages. First and foremost, the marker is required to be in the line-of-sight of the camera.
Due to the generally closed or grid-like RF head coil geometries, this is not always possible.
Specific solutions, such as attaching the marker to a mouthpiece reaching outside of the RF coil
have been implemented. However such methods require patient specific devices.
Non-MR based methods require a cross-calibration step which links the reference frames of the
camera, in which motion is quantified, to the scanner coordinate system. Suboptimal calibration
necessarily produces wrong patient motion estimates, and visible artefacts can emerge under
moderate motion (∼ 8◦) with a one degree calibration error [30].
Sensors using the MR scanner have also been investigated. These methods usually require some
dedicated module in the imaging sequence to acquire the marker MR information, often based on
1D projections. A noticeable exception [31] uses a magnetometer and an accelerometer and,
assuming B0 and gravitational field g to be orthogonal, it can estimate rotations without any
sequence change. Such methods have the advantage to be defined directly in the scanner
coordinates system, so that cross-calibration is not needed. The latest methods rely on local RF
transmit coils [32–34]. These local coils allow for higher SNR. It has been shown that using
concentric shells in k−space allows for both translation and rotation estimates [35]. Figure 1.2
shows some hardware setup examples.
A variation of the method called gradient tones [36] uses rapidly oscillating gradient waveforms and
allows to super-impose the marker and the image encoding gradients without penalty. It was
implemented using local transmit and receive RF coils. Using a different nucleus than 1H for the
marker (19F in this case) highly reduces any interaction with the water signal studied in MRI.
Processing the phase of the marker signal yields its coordinates. It was more recently shown that
the logic of the gradient tones can also be used using only native sequence elements, without
additional oscillating gradients [37].

(a) Water based markers setup, taken from [32]. (b) Gradient tones setup, taken from [36].

Figure 1.2 – Setups for some marker based motion tracking modalities.

1.5.3 MR navigators motion tracking

MR navigation attempts to establish the subject motion using the signal model (1.4.4). An imaging
sequence can be self-navigated (which requires some redundancy in the signal acquisition), or
external navigator instructions can be added to the sequence, such as RF pulses and/or gradients
followed by signal acquisition. The mapping from navigators to motion can be done in several
ways. One approach is to compare each navigator to a reference navigator of the same kind.
Another possibility is to compare the navigator data to a more complete reference signal.
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Depending on the navigator module, the signal may not come from the whole head, but only from
the excited slice, which restricts the available motion information. Acquiring data after a 2D slice
excitation will naturally fail to properly quantify any through-slice motion, that is one translation
and 2 rotations. Accessing the six motion parameters intrinsically requires more data. For example,
neglecting rotations implies that the three central axis-lines of k−space give the projections of the
signal on each axis, and translations can therefore be inferred. The following describes
representative navigation methods proposed in the literature.
It is possible to find motion directly from the k−space data. From the magnitude one can first
estimate rotations. Once these have been taken into account the phase of the signal is used to infer
translations. To estimate rotations precisely, it is necessary (and sufficient) to sample a sphere
surface densely. This acquisition can be done once and serve as reference for future navigators, like
for the so-called cloverleaf navigators [38], or for every navigator, such as in the spherical
navigators (sNavs) approach [39, 40]. Figure 1.3 shows the trajectories of these navigators. Other
trajectories, such as spirals, have been proposed. The advantage of such methods is the very short
acquisition time. However, they have yet to demonstrate the capacity to correctly quantify small,
involuntary motion. Also, unlike image magnitude based estimates, they are more sensitive to
system imperfections (gradient delays, eddy currents) and B0 inhomogeneity.
Low resolution images can be used as navigators. However they also take a significant time for
signal acquisition, which is why they have mainly been included in imaging sequences with some
intrinsic dead time, such at MP(2)RAGE or TSE. EPI volumetric navigators (vNavs) (8 mm with
3
4

partial Fourier) have been used with PMC [41–43], but application to high-resolution imaging is
still under investigation [44].

PROMO (PROspective MOtion correction) [45] acquires three orthogonal thick (1 cm) slices during
a parent sequence’s dead-time (such as inversion recovery or turbo spin-echo). As these acquisitions
use spiral k−space trajectories, they were called SP-Nav. An example can be found in Figure 1.4b.
Motion is estimated in real-time and allows prospective correction. During the dead-time, several
SP-Navs are acquired and using the extended Kalman filter algorithm, the current motion estimate
is updated each SP-Nav, allowing a finer final estimate to be used for the imaging part of the
parent sequence. Due to the large field of view of each plane, a region of interest assumed to follow
rigid motion is defined in each navigator after registered to a brain atlas, which allows the
suppression of the neck and jaws to the motion estimates. The reference SP-Nav is the last of the
dummy scans acquired at the beginning, before the effective image acquisition.

Fat navigators (FatNavs) have also been proposed. They have the added advantage of limited
impact on the water signal and greatly benefit from parallel imaging techniques thanks to the
natural spatial sparsity of the fat signal. Proposed FatNavs include: one 2D EPI sagittal slice [46],
3D excitation followed by three 2D EPI projections [47] and highly accelerated 3D GRE [48]. The
former two methods allow PMC and show image quality improvement for large motion, while the
latter is currently restricted to RMC approaches, but has been proved beneficial even for
microscopic involuntary motion.
As mentioned previously, imaging sequences can also be self-navigated, at the price of acquisition
redundancy. Radial trajectories have many desirable properties for motion correction, but are
ill-adapted to high-resolution imaging as they rapidly become prohibitively time-consuming (this is
because the Nyquist criteria is π

2
times greater in two dimensions, and even worse in three

dimensions). The k−space center oversampling on its own leads to less pronounced large scale
motion artefacts by pure averaging. Additionally, the rigid body model allows for motion estimates.
In PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced
reconstruction)[49], blades (originally called strips) are standard Cartesian acquisitions passing
through the k−space center. Several blades are acquired at different angles, leading to a circular
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area at the center of k−space sampled for every blade. A graphical representation of the
acquisition is shown in Figure 1.4a. Therefore motion between blades can be estimated at this
lower resolution. This method is used in two dimensional acquisitions. The corrected blades with
worst correlation scores to the the mean corrected signal in the circular area are down-weighted in
the final reconstruction. This in turn reduces through-plane motion artefacts.
One can also estimate motion by using the first moments of the acquired spokes. Two dimensional
motion correction was proposed [50]. The center of mass can be found from the zeroth and first
moments, and gives the translations between the spokes acquisitions. The in-plane rotation is
computed from the second moments of translation corrected spokes. Using a gridding approach,
finding the rotation first and then the in-plane translation was implemented on segmented
acquisitions [51]. It was also shown that the segments acquisition ordering is important to reduce
gaps in the corrected k−space, and bit-reversed ordering is preferable in that respect (the bit
reversed ordering of the sequence 1 2 3 4 5 6 7 8 is 1 5 3 7 2 6 4 8). Three dimensional motion
correction is also possible. It was proposed [52] to divide a pseudo-random acquisition scheme into
motion-free data subsets, detected by change of the center of mass. Each subset covering enough
directions (thanks to the “isotropic” acquisition order), it allows low resolution images
reconstruction and registration, leading to the full motion estimates. This method proved efficient
for step-like motion. Data which cannot be corrected for is simply discarded, without creating gaps
in k−space and hence only inducing lower final SNR. Another 3D approach [53] acquires rotated
Cartesian planes in k−space after a 3D excitation. Using bit-reversed ordering of the plane angle,
successive planes are orthogonal and the parallel imaging technique GROWL is used to complete
k−space in a central cylinder, using successive plane pairs. Each plane pair therefore leads to fully
sampled central cylinders, from which three dimensional motion (relative to a reference pair) is
estimated.
Using the free induction decay (FID) signals, it is still possible to detect motion thanks to the
combination of the receiver spatial inhomogeneity [54] and the high coherence of the FID signal.
This signal is sensitive not only to motion, but also to field drifts, breathing-induced B0 changes
and eddy-currents (non-constant during imaging sequences !) for example. It has been
demonstrated as useful for detection of motion events, and can be used to decide whether another
motion specific navigator should be acquired[55].
Finally, additional assumptions can lead to motion quantification and/or correction without
acquisition redundancy. A few of such methods are presented below.
An original use of data consistency arises from parallel imaging. The SMASH hypothesis is such
that the sensitivity maps can be combined such that∑

c

wc,m(x)sc(x, y) = exp(−im∆ky) ∀x, m ∈ N. (1.5.1)

Finding the phase factors applied to fully sampled data such that the condition is best satisfied is
called SMASH Navigators [56], and was used for retrospective correction of in-plane translations .
It is a cumulative correction, growing from a reference line and using the SMASH condition with
m = 1 (growing right) or m = −1 (growing left).
In segmented acquisitions, where the subject position is assumed constant during each segment, it
is possible to retrieve the translation induced phase from correlation of highly under-sampled (one
segment only) based images [57, 58]. This works better if the acquisition field-of-view is larger than
the object.
Although not truly navigated, Projection Onto Convex Sets (POCS) reconstruction allows the
detection of inconsistent data, arguably due to motion. This data is then discarded before the final
reconstruction [59]. This logic, applied to a randomized k−space acquisition scheme allowed
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reduction of motion artefacts in 2 dimensional imaging. It is also capable of reducing artefacts due
to pulsatile motion. However, motion is not quantified.
In summary, navigator methods have mostly been implemented in imaging sequences with sufficient
dead-time. Prospective and retrospective correction have been proposed, the former uses coarser
navigator resolution but showed good image improvement in case of large deliberate motion.
Sequences without dead-time can be self navigated, but rely on some radial-like k−space
trajectory. They are therefore highly inefficient for very-high resolution imaging. Data reacquisition
allows for more uniform k−space sampling at the price of unpredictable additional scan-time.
The different navigators have not been directly compared as implementing them simultaneously is
most often not possible, or even contradictory, and repeating the same motion pattern during a
long scan is qualitative at best. Furthermore, not all navigators track the same motion parameters,
making comparison not always sensible.
Little work has been done to compare navigator methods to sensors-based ones. Most relevant is
perhaps the PROMO comparison to Moiré-Phase Tracking [60] where large (≥ 0.5 mm / °)
differences were observed.

(a) Spherical navigator, taken from [39]. b and
c shows the change in the signal magnitude after
rotation.

(b) Cloverleaf navigator, taken from [38].

Figure 1.3 – Examples of k−space based motion navigators trajectories.
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(a) PROPELLER trajectories, a) a single strip , b)
all acquired data (multiple strips), taken from [49].

(b) SP-Nav example from the PROMO approach,
taken from [45]

Figure 1.4 – Examples of image-space based navigators.

1.5.4 Auto-focusing methods

Auto-focusing methods involve a fully model-based correction. The idea is to find motion
parameters which minimize some cost function C(m). This cost function has the general form

C = artefact metric + regularization terms.

For a current trial estimate of the motion parameters p, one computes the correction operator F †p
and the cost function value is given by

C(F †py)

with y the measured data. This non linear problem is solved iteratively. Proposed metrics include
image and gradient entropies [61, 62]. The regularization terms try to enforce some prior
knowledge, such as relatively smooth motion during the scan. While these methods, by
construction, only apply motion-like correction, it is unclear to what extent the resulting image can
be trusted due to their implicit dependence on the choice of the metric. For example, the metric
value will intuitively be contrast dependent and hence introduce bias between different tissues.
Their main advantage is full blindness, making them a priori applicable to any acquired data,
without the need for additional motion-tracking hardware or sequence modifications.
Other variations of the logic exist. For example, the search space can be both the image and the
motion parameters [63]. For such methods, it was shown [64] that the acquisition order matters for
the reconstruction to converge to a satisfactory final image.
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1.6 FatNavs

The goal of this section is to introduce the technical basis used by fat navigators in their original
form. It will focus on snapshot-like FatNavs, meaning the navigators are acquired as blocks
inserted into the host imaging sequence. Their general limitations and impacts shall be discussed.

1.6.1 Fat in head MR imaging

Signal sources

The sources of fat signal observed during head MRI are the bone marrow fat, the subcutaneous fat
layer and the fat present in the ocular orbits .

The following descriptions and numbers are summarized from [65]. At the molecular level, fat is a
general name covering several families: saturated , monounsaturated and diunsaturated (i.e. with
zero, one or two double bonds between carbon atoms, respectively). These constitute roughly 30%,
45% and 25% of the fat contents in the bone marrow and the subcutaneous fat.

Many hydrogens atoms enter the composition of the fatty acid chain. The dominant signal comes
from the CH2 methylene hydrogens, at 1.3 ppm from Tetramethylsilane (TMS). In a head imaging
experiment, the water signal is the dominant signal, and hence it is convenient to consider its
resonance peak as the reference, at 4.5 ppm from TMS. Therefore, from now, all chemical shifts
should be understood away from the water peak, meaning fat resonates at around -3.2 ppm. At 7T,
this implies that fat mostly resonates roughly 1000 Hz slower than water. A comparison of both
water and fat images is shown in Figure 1.5.

Figure 1.5 – Orthogonal views of water (top) and fat (bottom) signal sources standardly found in head
MRI.

Still focusing on the methylene resonance at 7T, measurement showed fast T1 relaxation of 0.55 s.
This is significantly lower than gray and white matter (∼ 1.9 s and 1.15 s respectively [11]). The T2

value is approximately 66 ms.
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Fat selection

Let us first focus on purely spectral, i.e. spatially unlocalized, selectivity. The goal is to excite one
pool (fat) and leave the other pool (water) unperturbed. The simplest RF pulse strategy achieving
this is to use so-called binomial pulses. The idea is to apply several short (∼100 µs) square pulses
with a time delay τ between them. Assuming the RF frequency is the target frequency one wants
to excite, the idea is to fix τ such that each short pulse cancels (in part) the effect of the previous
ones on the undesired magnetization pool at chemical shift δ. An easy way to insure that is to fix
the phase-evolution time so that each pulse produces a rotation in the exact opposite direction of
the previous one, i.e. after the undesired pool rotated by π. The phase evolution is related to the
magnetization frequency offset f and the sub-pulses separation time τ by

φ = 2πfτ. (1.6.1)

This implies

τ =
1

2δγ̄B0

. (1.6.2)

With each pulse (labeled with index i ranging from 1 to N) having a positive amplitude Ai, this
leads to the condition

N∑
i=1

(−1)i+1Ai = 0. (1.6.3)

Equation (1.6.3) is satisfied if the pulses amplitudes follow a binomial expansion, that is

Ai = C
(N − 1)!

(i− 1)!(N − i)!
(1.6.4)

for some constant C. Such pulses are simply noted 1− 1, 1− 2− 1 , 1− 3− 3− 1 for N = 1, 2, 3, 4
respectively. In practice, implementation is easier with water as the reference frequency. Fat
selection is thereby simply established by adding a π phase offset to every other pulse, represented
by a bar above the amplitude. From now on the short square pulses will be called sub-pulses and
the word pulse is reserved for the complete sub-pulses chain. The more sub-pulses are added, the
sharper the frequency selectivity profile, but also the longer the total duration.
For a 1− 2̄− 1 binomial pulse, the transverse magnetization obtained from thermal equilibrium is

|M⊥| = M0
α

2

√(
sin(2φ)− 2 sin(φ)

)2
+
(

2 cos(φ)
(
cos(φ)− 1

))2

(1.6.5)

in the low flip angle (noted α) regime, for a phase evolution φ between sub-pulses. This analytical
result, which neglects relaxation and assumes instantaneous sub-pulses, is readily obtained using
Bloch equations. By construction, the maximal signal is obtained for φ = π and the minimal one
for φ = 0. The result is 2π periodic, but in practice this periodicity in φ is generally not important,
due to the absence of magnetization further off-resonance.
Figure 1.6 shows the non-linearity of the binomial pulse for large flip angles. However, both low
and high flip angle regimes show the same desired property of smooth evolution. The stop-band in
the low flip angle regime is however larger, as seen by remarking that the low flip angle curve is
always below the high flip angle one. Experimentally, this pulse is sufficient at 7T for fat/water
separation, as Figure 1.5 shows.
Finally, let us mention there also exist pulses which combine both spatial and spectral selectivity,
dubbed spatial-spectral pulses. At 7T, the 1− 2̄− 1 binomial pulse is roughly 1 ms long, whereas
spatial-spectral pulses would be around 10 ms long [66]. Combined with other considerations, this
makes such pulse very challenging for motion correction, see §1.6.3.
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Figure 1.6 – Normalized excitation profile of the 1− 2̄− 1 binomial pulse. Low and high flip angle curves
are normalized to exhibit the non linear behavior.

1.6.2 Standard FatNavs implementation

Standard FatNavs consist of a 3D GRE acquisition using a fat selective excitation. The
experimental scanning parameters are chosen as follows. Due to the non spatially selective
excitation, the readout direction is chosen as head-to-foot in order to minimize scan time, as this
direction is one along which the fat signal is the most spread out. The readout oversampling also
opens the possibility to reduce the contribution of the neck area to the final navigator image. Echo
and repetition times are chosen as short as possible.

Acquiring the navigator “in one go” minimizes motion during its measurement, leading to expected
better navigator quality and higher consistency between volumes. This snapshot-approach is used
by standard FatNavs.

Figure 1.7 shows MRI images obtainable for different voxel sizes. Clear accuracy gain is visible
between 4 mm to 2 mm, and to a lesser extent from 2 to 1.5 mm. The acquisition time of a 2mm
image covering the whole head is 1.4 s, with 4× 4 undersampling and 3⁄4 partial Fourier in two
directions. It is therefore very improbable that such a FatNavs with voxel size . 1.5 mm can be
implemented into an imaging sequence, as the acquisition time would be around 6 seconds for a 1
mm navigator ! However, enhancing the acquisition scheme can lead to higher resolution navigator
acquisition, as will be presented in §4.

As a side note, the keen observer will spot two shell like objects above the skull (especially visible
in the coronal plane of the 1 mm image). These are actually signals coming from some components
of the RF coil used (Nova 32Ch). However, their small size and low signal intensity do not impact
registration between volumes in any significant way. Therefore, they shall entirely be neglected
from now on.

The reason why high undersampling still leads to accurate FatNavs images finds itself in the signal
sparsity in space. Indeed, grossly speaking, the domain of support from fat is basically a thin shell,
compared to a filled ovoid for water. This intrinsic smallness compared to RF wavelength and
imaging FOV implies that the GRAPPA hypothesis (see (1.3.11)) is more easily satisfied under
standard experimental conditions. Conversely, this sparsity makes using a receive-coil sensitivity
maps based approach much more complex for equivalent undersampling factor. Indeed, using
GRAPPA automatically includes the signal domain of support information, whereas this has to be
actively constrained during a SENSE reconstruction for example, which is not straightforward and
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(a) 1 mm (b) 1.5 mm

(c) 2 mm (d) 4 mm

Figure 1.7 – Resolution comparison of FatNavs.

requires significant (and often time-consuming) fine-tuning.

k−space can be undersampled in many ways. Figure 1.8 shows two established undersampling
patterns, GRAPPA and CAIPI [10, 67]. The associated reconstructions are shown in Figure 1.9.
These were obtained after undersampling of a fully sampled dataset. In the case of FatNavs, the
expected gain (if any) from a CAIPI approach compared to naive GRAPPA is un-noticeable for
R = 4× 4 undersampling. The windowing on this figure is very sharp to allow to notice the small
differences in low signal regions and in the reconstruction artefacts. It seems clear that both
reconstructions lead to the same navigator quality. Going to higher (R = 6× 6) undersampling one
can spot slightly lower noise amplification in the CAIPI case, as can be seen in the posterior bone
marrow region in Figure 1.10. On the practical side, implementing a CAIPI pattern in the sequence
file which runs on the Siemens scanner is not a straightforward implementation process if one
desires to make it robust and flexible. Given the low gain of this approach, FatNavs use naive
GRAPPA undersampling patterns.

More generally, given a host imaging sequence one tries to correct motion for, going for the highest
acceleration possible for FatNavs is not necessarily the best thing to do, as any undersampling
leads to SNR loss, so a trade-off between acquisition time (both for the snapshot hypothesis and
the timing of the host imaging sequence), resolution and SNR has to be considered. As will be
shown in §5.2, even 4 mm FatNavs can correct motion in very high-resolution (0.25 mm isotropic)
angiography imaging, suggesting the need for combined higher-acceleration and high-resolution
FatNavs is questionable.

Finally, it is tempting to try to further exploit the sparsity in space of the fat signal using a more
involved image reconstruction framework. It is well known [68] that constrained reconstruction
methods can enforce desired properties (also called prior-knowledge) of the reconstructed image.
The L1 norm, usually noted ‖ · ‖1, is a constraint which promotes sparsity. With the navigator
k−space data noted y and the Fourier encoding operator noted E, the reconstructed image x̂ is
given by

x̂ = arg min
x
‖Ex− y‖2 + λ1‖x‖1 (1.6.6)

where λ1 is the relative weight of the sparsity constraint term to the first term, which enforces data
consistency. The problem becomes non-linear with such constraints, and iterative methods such as
conjugate gradient become necessary to find an estimate of the solution. Comparing to the
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Figure 1.8 – Kernels used for CAIPI and GRAPPA reconstruction of Figure 1.9. Blue dots represent
acquired data and red crosses target points to estimate. PE1 corresponds to the left-right direction and
PE2 the anterior-posterior one.

unconstrained solution, it was found that no visible gain apart from background noise suppression
were achieved, see Figure 1.11. The trade-off dilemma mentioned above has to be kept in mind,
adding to it the downside of the increased computation time necessary for solving (1.6.6).
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Figure 1.9 – Fully sampled, GRAPPA and CAIPI (R = 4× 4, ∆ = 2 ) reconstructions for 2mm FatNavs.
Reconstructions are basically indistinguishable.
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Figure 1.10 – Fully sampled, GRAPPA and CAIPI (R = 6×6, ∆ = 3 ) reconstructions for 2mm FatNavs.
The CAIPI recon shows somewhat less noise-amplification.
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(a) R = 4× 4, low λ1 (b) R = 4× 4, high λ1

(c) R = 8× 8, low λ1 (d) R = 8× 8, high λ1

Figure 1.11 – L1 constrained reconstructions after three iterations of non-linear adaptive step size con-
jugate gradient. Shown is the sum-of-squares of channels wise reconstructions performed after GRAPPA
k−space completion.
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1.6.3 Limitations and impacts

Limitations

The original FatNavs approach ideally fits in sequences with dead-time, such as MP2RAGE or
turbo-spin echo. This does not fit with many routinely used sequences, based on 3D GRE, where
the available “dead-time” would be of the order of milliseconds. While it is possible to include the
block FatNavs into GRE, this comes at the cost of of increased scan duration and disruption of the
water steady-state. Results of such an inclusion are presented in §3.

The temporal resolution of the navigator is also lacking. In a standard MP2RAGE implementation
it would amount to one navigator every six seconds. Therefore, the motion one can hope to correct
has to be either relatively slow compared to this frequency, such as drifts mainly due to muscle
relaxation. Changing from a still pose to another can be approximately captured assuming the
subject changes poses at most once in between FatNavs, and only a few times during the entire
scan. Faster or cyclic motion, such as breathing induced motion, is not resolved at all.

As the motion is corrected retrospectively and has poor temporal resolution, the host imaging
sequence should follow a 3D excitation. The larger the excited slab the better, as only a fraction of
the signal source (i.e. of excited magnetization) changes by through-slab motion, thereby leading to
a reduced violation of the reconstruction model assumption of imaging the same object in different
poses. The extreme opposite case of 2D slice-by-slice imaging could be correctable if motion takes
place only in-plane, which is very unlikely for long scans.

The fundamental working hypothesis is that the fat signal exhibits the same motion as the brain.
However, included in the navigator are the lower jaw and upper-back of the neck. It may also
happen that the subject yawns, swallows, or otherwise makes a chewing motion during navigator
acquisition. This breaks the rigid motion hypothesis and introduces some bias into the motion
estimates. As can be glimpsed from the FatNavs images, the number of voxels affected by this is
not entirely negligible. A rough estimate is that the lower jaw represents around 10% of the total
number of fat voxels. This region is therefore not expected to drive most of the registration. As the
registration tries to match every volume to a reference one, the worst case is when the reference is
significantly different than all other FatNavs. It would be possible to implement an automated test
to check how geometrically similar FatNavs are to each other, and deal with outliers accordingly.
However, in practice during this work, no subjects scanned presented non-rigid mouth motion
significant enough to motivate the implementation of such checks. Some tests were made where
only the receive channels closest to the superior posterior part of the head were considered during
reconstruction. These tests showed visually identical motion correction quality when significant jaw
motion was suspected to have an influence. They also showed slightly lower performance in absence
of such motion, presumably due to the lower number of high signal voxels leading to overall lower
available SNR.

Gradient non-linearity induces geometrical distortions far from the magnet isocenter, leading to a
warped image. This is clearly visible in the lower neck region where the fat bends towards the
anterior direction. This affects every volume, and as long as motion keeps the head in a region
where the distortion field does not vary significantly the motion parameters obtained without
unwarping the images are, for all practical purposes, identical the ones one gets after unwarping. In
our experience, padding the subject head with foam inserts allows to restrict motion to a point
where only the most severe motion patterns would make warping a relevant issue.

Finally, it has been reported that the fat contents from which the MRI signal comes can be reduced
and sometimes completely lost in emaciated patients [69]. This de facto renders FatNavs unusable
for these subjects.
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Impacts

Up to now, the assumption of the navigator having no impact on the water signal was not
questioned. As is clear from previous images, no water signal is observable in the FatNavs, apart
from the region close to the paranasal sinuses. These are due to the presence of air in the cavities,
thereby inducing a localized resonance frequency inhomogeneity which falls into the passband of
the fat-selective binomial pulse. However, the water magnetization is rotated during the
fat-selective pulse, it simply goes back to its original position. This is true as long as the pulse is
much shorter than the relaxation time of the magnetization. However, the brain contains many
structures, including some called semi-solid, consisting of macromolecules. Due to their size and
lower mobility, the magnetization of the hydrogen atoms contained by these molecules present a
very high relaxation rate, with a characteristic time of approximately 10 µs [70]. This implies that
the magnetization of such isochromats is actually reduced during the binomial pulse, as the
phase-evolution time (at 7T) of the binomial pulse is around 500 µs. This effectively leads to a
decrease of the semi-solid longitudinal magnetization. Via magnetization transfer (MT), part of the
imaged water magnetization will be recruited to counteract this loss [15]. This implies lower imaged
signal in regions where the magnetization transfer takes place significantly.
To see an example of the potential impact FatNavs can therefore have, the T1 histograms obtained
from the MP2RAGE sequence will be briefly discussed. The following results do not account for
inhomogeneous B1. However, as all experimental conditions are the same, qualitative comparison is
still valid. The tested FatNavs parameters were different flip angles as well as the delay between
the end of the second inversion readout of the MP2RAGE and the navigator acquisition.
Figure 1.12 shows that reducing said delay lowers the difference to a FatNavs free acquisition. This
is expected as magnetization has more time to reach thermal equilibrium before the next inversion
pulse, thereby allowing MT effect to dissipate and be significantly reduced. Similarly, the lower the
flip angle the lower the impact on the quantitative estimates. A more careful, quantitative analysis
and additional results for different FatNavs resolutions (i.e. varying the number of RF pulses) are
included in §2.
In time-of-flight angiography, MT can be expected to actually be beneficial to reduce the static
tissue signal, thereby augmenting the vessels-to-brain contrast. This possibility was explored and
the results are discussed in §5.2.
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Figure 1.12 – Top: T1 histograms extracted from MP2RAGE acquisition with 2mm FatNavs inclusion for
different navgiator parameters, as well as FatNavs free result.
Bottom: relative different the reference scan. See text for details.
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1.7 Structure of the thesis

Three dimensional fat navigators (FatNavs) have shown great results in cooperative subjects, and
present the added advantage of reduced interference with the water signal of interest for brain
imaging. The goal of this work is to compare FatNavs to other motion correction methods, to
expand the applicability of this method to more sequence types, to add modularity, and if possible
bypass its limited temporal resolution. The thesis is structured as follows:

• Chapter §2 directly compares 3D FatNavs to Moiré Phase tracking, the currently recognized
gold standard motion tracking modality. Motion parameters for different motion patterns and
retrospective corrections based on both methods are compared.

• Chapter §3 explores an extension to a dual-echo version and its ability to track low spatial
order temporal B0 fluctuations.

• Chapter §4 describes a faster acquisition scheme allowing for implementation on lower
performance gradient hardware and for a wider range of imaging protocols.

• Chapter §5 proposes an alternative acquisition scheme requiring much less dead-time (∼ 4
ms) than the original implementation (∼ 1 s). It demonstrates the motion correction ability
of the scheme in an in-house implementation time-of-flight angiography sequence.

• Chapter §6 explores the combination of the method from chapter §5 with FID navigators in
order to enhance the temporal resolution of the motion estimates. Combination with the
dual-echo navigators is also presented.

Chapter §2 gives qualitative and quantitative answers to both accuracy estimation and comparison
to other motion tracking methods, which are fundamental to better establish FatNavs as a valid
alternative for motion correction in anatomical neuroimaging. Chapter §3 tackles a whole different
problem in compensating field fluctuation, which is a source of significant artefacts when acquiring
long echo time T ∗2 contrast protocols, especially so at ultra-high field. Chapter §4 pushes
extensively the limits of the original FatNavs implementation, while keeping equivalent motion
correction abilities. Jointly, chapters §5 and §6 open wide the range of imaging sequences into
which FatNavs can be included, possibly with higher temporal resolution than previous
implementation schemes, for both motion and field fluctuation correction.
Unless stated otherwise, all experiments of this work were performed at the CIBM (Lausanne)
using a 7T Siemens scanner with a head-only gradient insert, using a 32 channel receive RF coil.
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Chapter 2

Comparison to Moiré phase tracking

Direct comparison of different motion correction techniques is primordial to exhibit their respective
advantages and limitations. In this spirit, FatNavs were directly compared to the current gold
standard motion tracking modality, Moiré Phase Tracking (MPT).
The following chapter follows a pre-print manuscript submitted to MRM on April 1st 2019. It is a
collaboration work with Dr. Oliver Speck’s lab in Magdeburg, Germany. Contributions are as
follows:

• Frédéric Gretsch (thesis author): Experiment design, data processing, results analysis,
manuscript redaction.

• Hendrik Mattern: Experiment design and data acquisition, results discussion, comments on
the manuscript and MPT technical part redaction.

• Daniel Gallichan: Results discussion and manuscript review.

• Olivier Speck: Manuscript review.

The article was accepted without significant changes (DOI: 10.1002/mrm.27908).
As a chapter summary, FatNavs and MPT showed equivalent retrospective corrections of
high-resolution structural images for the studied cohort of compliant subjects. In fringe cases (2
out of 18), differences were found: MPT proved superior if the subject breathed deeply and
FatNavs were the better choice in a scan when most likely the MPT marker did not stay properly
attached to the subject’s head. For a subject at rest, the RMSE between both modalities was
below 0.1 mm/°.
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2.1 Pre-print

Fat navigators and Moiré phase tracking comparison for motion
estimation and retrospective correction

Frédéric Gretsch,1 Hendrik Mattern2, Daniel Gallichan3 and Oliver Speck2,4,5,6

1 Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland

2 Department of Biomedical Magnetic Resonance, Institute of Experimental Physics,
Otto-von-Guericke-University, Magdeburg, Germany

3 CUBRIC, School of Engineering, Cardiff University, UK
4German Center for Neurodegenerative Disease, Magdeburg, Germany

5Center for Behavioral Brain Sciences, Magdeburg, Germany

6Leibniz Institute for Neurobiology, Magdeburg, Germany

Purpose: To compare motion tracking by two modern methods (fat navigators - FatNavs and
Moiré phase tracking - MPT) as well as their performance for retrospective correction of very high
resolution acquisitions.
Methods: A direct comparison of FatNavs and MPT motion parameters was performed for
several motion patterns to estimate the agreement between methods. In addition, two different
navigator resolution were applied. 0.5 mm isotropic MP2RAGE images with simultaneous MPT
and FatNavs tracking were acquired in nine cooperative subjects. Retrospective motion corrections
based on both tracking modalities were compared qualitatively and quantitatively. The FatNavs
impact on quantitative T1 maps was also investigated.
Results: Both methods showed good agreement within a 0.3 mm/° margin in subjects that moved
very little. Higher resolution FatNavs (2mm) showed overall better agreement with MPT than 4mm
resolution ones, except for fast and large motion. The retrospective motion corrections based on
MPT or FatNavs were at par in 33 cases out of 36, and visibly improved image quality compared to
the uncorrected images. In separate fringe cases, both methods suffered from their respective
potential shortcomings: unreliable marker attachment for MPT and poor temporal resolution for
FatNavs. The magnetization transfer induced by the navigator RF pulses had a visible impact on
the T1 values distribution, with a shift of the gray and white matter peaks of 12 ms at most.
Conclusion: This work confirms both FatNavs and MPT as excellent retrospective motion
correction methods for very high resolution imaging of cooperative subjects.

2.1.1 Introduction

Along with the increasing availability of ultra-high field MRI, in vivo, sub-millimeter imaging can
be achieved at reasonable SNR and scan time. However, subject motion remains a major challenge
[71] because with higher imaging resolution and correspondingly longer scan durations, both the
sensitivity to subject motion and the likelihood of motion occurring increase. At sub-millimeter
resolution unintentional subject motion is on the order of the imaging resolution, thus, even
small-scale motion such as slow head drifts and breathing can degrade the image quality [27, 72].
Several solutions to address motion have been proposed [73], especially in the case of brain
imaging, where bulk motion can be reasonably well modeled as rigid.
Moiré phase tracking (MPT) is an optical method to track subject motion with a single in-bore
camera and a single marker (attached to the subject) in six degrees-of-freedom. Using the motion
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estimates provided by this external hardware, the MR imaging volume’s position and orientation
can be updated during scanning, thus, correcting motion prospectively. This technique allowed the
highest resolution whole brain in vivo data acquisition [27], with up to 250 µm and 150 µm
isotropic resolution for anatomical [74] and vascular [75] data respectively. Due to its accuracy and
short latency, MPT is often regarded as a gold standard [21].

Another approach to motion compensation is to use MR navigators [38, 41]. Among these, fat
selective navigators (FatNavs) were proposed [46] and showed [48] successful application to
retrospective motion correction of very high-resolution protocols for T1/T2/T2* imaging with up to
350 µm isotropic resolution. The main advantages of FatNavs are that the fat signal in the head is
sparse, allowing very high acceleration for the navigators themselves, that they require no
additional hardware and that they have only minimal impact on the water signal. A hybrid
hardware/MR based-method, dubbed ‘field probes’, was recently compared to MPT [76] and
showed good agreement, but direct comparison to modern navigator methods is lacking. In this
work, we compared MPT and FatNavs motion estimates, as well as their application to
retrospective motion correction of very-high resolution acquisitions. To this end, motion estimates
of different FatNav protocols were compared to simultaneously recorded MPT estimates for various
motion patterns. Subsequently, unintentional motion in high resolution MP2RAGE was corrected
retrospectively on the basis of the FatNavs or MPT estimates. Results were analyzed qualitatively
and quantitatively to compare FatNavs to MPT.

Finally, the bias of FatNav magnetization transfer effects on T1 mapping was analyzed in a single
subject experiment. More generally, this work explores relevant advantages and disadvantages of
current navigator-based and hardware-based methods for retrospective motion correction.

2.1.2 Methods

All experiments were performed on a 7T whole-body MRI scanner (Siemens Healthineers,
Erlangen, Germany) using a 32-channel RF head coil (Nova Medical, Wilmington, Massachusetts,
USA). All eleven subjects were healthy and compliant volunteers who are regularly scanned at 7T.
Furthermore, all volunteers gave written consent prior to participation in this study, which was
approved by the local ethics committee. Two experiments were performed to (1) compare the
motion estimates of MPT against FatNavs and (2) to analyse the image reconstruction quality
using estimates from both methods for retrospective motion correction.

Moiré phase tracking

MPT (Metria Innovation, Milwaukee, Wisconsin, USA) consist of an in-bore camera, a single 15x15
mm² marker, and a tracking PC. The marker is attached to the subjects’ teeth of the upper jaw via
custom-made mouthpieces (based on individual dental impressions). Tracking in six degrees of
freedom with this single-marker, single-camera setup is realized by lithographically printing layers
on the transparent marker to generate Moiré patterns. Under rotation these patterns change and
by fitting sinusoidal functions to the gray levels along the pattern the out-of-plane-rotation can be
estimated. Standard photogrammetric techniques are used to estimate the remaining four degrees
of freedom.

Tracking is performed with 86 frames per second and the precision of the motion estimates was
previously reported as 0.01mm and 0.01 ° [21]. A detailed description and validation of the motion
correction system can be found elsewhere [21, 27]. Finally, motion estimates acquired by MPT need
to be transformed from the camera to the scanner coordinate system, using a process called
cross-calibration.
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FatNavs

FatNavs aim to acquire the fat signal of the head, mainly the subcutaneous fat, and exploit the
signal sparsity (in space) to highly accelerate the whole image acquisition using parallel imaging
[77]. The excitation consists of a binomial pulse, and a 1-2-1 implementation scheme is sufficient at
7T to almost exclusively measure fat and leave the brain signal mostly undetectable in the
navigator image.
Different implementations have been proposed, including 2D [46], 3D collapsed [47] and full 3D [48]
versions. The full 3D version was used in this study and shall be called FatNavs for simplicity.
Approximately 1.5 s are required to acquire a 2mm isotropic navigator. As with almost all
navigators, dedicated scan-time in the imaging sequence is required for the navigator acquisition,
making inversion recovery based sequences such as MP2RAGE natural candidates due to their
inherent dead-time. If no dead-time is present in the imaging sequence, alternatives can be
considered at the price of addition scan-time [78].
Unlike MPT, FatNavs do not require any additional hardware or cross-calibration. Due to the
computational load of reconstructing each accelerated FatNav and the additional latency this would
incur for real-time correction, motion correction is typically applied retrospectively for 3D FatNavs.
Finally, even with perfect fat selectivity, the navigator acquisition does have an impact on the brain
signal, mainly due to magnetization transfer (MT) effects. These effects can be reduced by using a
low excitation flip angle as the short T1 of fat allows for sufficient navigator signal, but depending
on the total duration of each section of dead-time, the influence of the MT effect may still be
directly observed.

Experiment 1: Motion estimates

During the first experiment FatNavs were acquired successively while monitoring the subject’s
motion using the MPT setup. This allowed direct comparison of rigid motion parameters with
maximal scan-time efficiency as only navigators were acquired without any parent imaging
sequence. The volunteer was asked to perform predefined motion patterns during the acquisitions.
These six patterns were: rest (no intentional motion, TA=10 min), coughing (TA=30 s, single
intentional coughing after approximately 15s of scanning, repeated three times), foot motion (dorsal
plantar flexion, TA=60s), swallowing (TA=60s, swallowing twice during scanning), deep breathing
(TA=60s), drawing a figure eight with the nose (TA=2min 30s), once slowly and once faster. For
each motion pattern two different FatNavs protocols were acquired back-to-back, namely a 2 mm
protocol (TE/TR 1.68/3.8 ms, TA=1.65 s) and a 4mm one (TE/TR 1.43/3.4 ms, TA=0.37 s), leading
to motion-estimate frequencies of 0.6 Hz and 2.7 Hz respectively. Other parameters were identical
for both scans: 1950 Hz/pixel readout bandwidth, 7° FA, 4x4 under-sampling and 3

4
partial Fourier

in both phase encoding directions (left-right and anterior-posterior).
The auto-calibration signal needed for the FatNavs GRAPPA reconstruction was acquired before
each scan ( 4 s) without intentional motion. These protocols were chosen as they proved efficient in
previous work [48, 78] and allow exploration of the tradeoff between spatial vs temporal resolution.
MPT and navigator data were synchronized by an optical trigger sent at every FatNav and stored
in the MPT log files. The FatNavs were co-registered using SPM [77], and the time closest to
acquisition of the k−space center of each navigator was defined as their measurement time-point.
The method used to quantify differences between modalities was as follows. Similarly to a
retrospective motion correction approach, the acquired FatNavs motion parameters were
interpolated linearly to the MPT measurements time-points, in a range restricted to values between
the first and last FatNavs measurements. The root mean squared of the difference between the
MPT motion parameters and the interpolated FatNavs parameters defined the FatNavs error to
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MPT, called hereafter RMSE for brevity, It was computed separately for each of the six motion
parameters.

The motion parameters ranges during FatNavs acquisition were defined as the difference between
maximum and minimum MPT estimates. Translation and rotation ranges were then defined as the
mean of the three associated motion parameters ranges, and shall serve as basis for motion
amplitude comparison. The rate of motion was estimated as follows. The root mean squared of the
temporal derivative of the MPT motion parameters were computed, then combined into the
translation (or rotation) rate by taking the mean of the three associated parameters. For the
coughing pattern, all computations were restricted to a 5 seconds window centered at the cough
peak.

Experiment 2: Retrospective motion correction using MPT and FatNavs

The second experiment, performed on nine volunteers, consisted of acquiring two 0.5 mm isotropic
MP2RAGE [11] scans (each MP2RAGE scan acquires two inversion images and generates a
combined uniform contrast which aims to maximize the gray and white matter contrast). The
volunteers were asked to stay still. Parameters were: TI1/TI2/TR 800/2700/6000 ms, α1/α2 7/5 °,
two-fold acceleration in anterior-posterior direction and 3

4
partial Fourier in left-right direction. The

total acquisition time of a scan was 23 min 34 s.

FatNavs were measured directly after the second inversion readout train[48], using the 2mm
protocol from the first experiment, but with a 3° nominal flip angle. Another difference to the first
experiment had to be made for the sequence timing to be feasible by the hardware. In order to fit
the FatNavs in the available dead-time, the center of the excitation passband of the 1-2-1 binomial
pulse was put at -7 ppm, instead of -3.3. ppm which would be fat-centered. This leads to a roughly
50% shorter excitation duration but also makes the nominal flip angle higher than the effective fat
excitation. However, the short T1 of fat and lower value of the pulse’s passband at the water
frequency allow for very sharp fat images. Again the GRAPPA calibration signal for the navigators
was acquired at the very beginning of the scan.

The MP2RAGE sequence is an excellent candidate to measure T1 maps at 7T [79]. In order to
investigate the impact of the FatNavs on the quantitative T1 maps computed from the uniform
contrast of the MP2RAGE, single scans without navigators, with 2mm FatNavs, and with 4mm
FatNavs were consecutively acquired on one additional volunteer. The T1 histograms were
computed after brain masking and no motion correction was performed in order to remove bias
from the correction method. Due to the lack of b1 maps, a global b1 efficiency for all three scans
was estimated on the navigator free acquisition to center the white matter T1 peak around
previously reported values [11]. The histogram of the scan without FatNavs was statistically
compared to both others using a Kolmogorov–Smirnov test. The peak values of each scan were
estimated by fitting the histograms with a sum of two Gaussians. Direct visual comparison of T1

maps was also performed.

The retrospective motion correction followed the same reconstruction pipeline after interpolation of
the chosen motion data (MPT or FatNavs) to the times of measurement of all readout-events. This
was done as follows: the motion estimates for each k−space readout event were linearly
interpolated from the neighboring acquired time points (i.e. every 6 s for FatNavs and 0.011 s for
MPT). No temporal filtering was applied at any step. Motion correction consisted of multiplication
by a pure phase factor (for translations) of the k−space data followed by a nuFFT [23] operator
(for rotations), and was applied channel-wise. A similar reconstruction pipeline is freely available
online [80]. Each measurement was reconstructed without motion correction, with FatNav motion
estimates, and with MPT motion estimates, thus, three datasets were created.
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Qualitatively the uniform contrast image of the raw (no motion correction) and motion corrected
images (FatNavs based or MPT based) were directly compared. Quantitatively, the normalized
gradient squared of the images was computed, as it was shown to be an excellent metric candidate
for autofocusing-based motion correction [17]. Increase of the metric generally correlates with
better image quality / lower artefacts. Both inversion images were considered as their contrast is
unbounded (unlike the uniform contrast image). The MPT system is most commonly used with
real-time updates of the scanner coordinate system. Within this study we chose to disable the
real-time update feature so that motion-estimates from the MPT could be directly compared with
those from the FatNavs within the same scan without additional bias. The difference to prospective
correction with MPT is expected to be small (for small-scale head motion) as the spatially
non-selective excitation used in the whole-head MP2RAGE protocol should be largely insensitive to
through-slab motion and incoherent spin-history artefacts.

2.1.3 Results

Direct motion estimates experiment

An example of the acquired FatNavs is presented in Figure 2.1. Figure 2.2 presents example
time-courses of the motion parameters extracted from both tracking methods. Generally, visual
inspection reveals similar trends for MPT and FatNavs, especially for slower motion. The scale of
the estimates varied between modalities, potentially explaining the offset visible at the beginning of
the 2mm rest scan. As expected, in the case of faster motion such as coughing and swallowing, the
navigators failed to track accurately the subject pose. Larger differences were observed for the
figure eight patterns.
The RMSE values between the MPT and the FatNavs motion parameters are presented in
Figure 2.3 as well as the translation and rotation ranges and rates during the scans. The RMSE
were less than 0.3 mm (and °) except for deep breathing (< 0.35 for 2mm FatNavs and < 0.5 for
the 4mm FatNavs) and figure eight pattern (& 1) . Lower spatial resolution (4mm) FatNavs
performed worse than the 2mm navigators for smaller motion range patterns(rest, feet and
swallowing). They show similar performance for deep breathing and coughing, presumably because
of a tradeoff between the temporal and spatial resolutions of the FatNavs. The figure eight pattern
was better captured by the 4mm FatNavs. The continuous, large motion of this pattern and its
higher motion rate compared to the other patterns are expected to be the primary sources of this
difference, as the 4mm FatNavs have a higher temporal resolution than the 2mm Fatnavs,
effectively rendering the subject pose closer to being constant during a navigator acquisition. The
temporal interpolation during metric computation also cannot be expected to properly capture the
true pose change between navigator measurements (i.e. every 1.65 s for the 2mm navigators).
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Figure 2.1 – Example volumes of both FatNav protocols acquired in the first experiment.
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Figure 2.2 – Representative time-courses of both slow motion (left column) and faster motion (right
column) acquired in the first experiment. Red crosses represent FatNavs and blue line represents MPT
estimates. Temporal resolution of estimates: 1.5 / 0.37 s for 2mm / 4 mm FatNavs and 0.012 s for MPT.
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Figure 2.3 – RMSE between the FatNavs and the MPT estimates for all the motion patterns acquired
during the first experiment. The translation and rotation ranges and rates are indicated in the plots. The
values in brackets are for the 4mm FatNavs scans. 2mm FatNavs outperform 4mm FatNavs for slow
motion patterns, and inversely for faster patterns.
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Retrospective motion correction comparison

Visual inspection showed in 33 out of 36 cases motion corrected images were sharper and had
overall reduced blurring and ringing artifacts compared to the uncorrected versions. Figure 2.4
shows an example of the improvements of FatNavs-based reconstruction compared to the raw
reconstruction. Neither of the correction types (i.e. FatNavs or MPT based) showed consistently
superior quality compared to the other across volunteers.

Figure 2.4 – Example views of the raw and motion corrected reconstruction using the 2mm FatNavs motion
information (volunteer 2 first scan). The MPT corrected image also showed considerable improvement,
but was inferior to the FatNavs one in this case, see Figure 2.7.

We noted only two cases where the corrected images were slightly worse than the raw
reconstruction. These were: both scans of volunteer 8 for FatNavs and the second scan of volunteer
2 for the MPT (slight additional blurring). It was asserted that volunteer 8 breathed deeply during
the scan and has a high BMI. Figure 2.5 shows both motion corrections for volunteer 8 (first scan).
The oscillating motion during acquisition was entirely missed by the FatNavs but captured by the
MPT. The ringing, notably above the cerebellum and in the upper frontal cortex, is nicely
suppressed in the MPT correction but was still present in the FatNavs correction. The FatNavs
correction was however still sharper than the raw reconstruction. Figure 2.6 shows the three
reconstructions side-by-side for the interested reader.

By contrast, the FatNavs-based correction proved superior to the MPT correction for volunteer 2,
see Figure 2.7. The motion parameters of MPT and FatNavs for this volunteer showed a similar
trend but were different in amplitudes (scan 1) and abrupt motion in the MPT estimates occurred
compared to FatNavs (scan 2). Figure 2.8 also shows the raw reconstruction for a more complete
visual impression of this fringe case.

The normalized gradient metric confirmed the visual observation previously described, and is
presented in Figure 2.9. However, it is our observation that changes of less than 2% did not
correspond to visually perceived image degradation. Disagreement between the metrics of the first
and second inversion images occurred once for FatNavs (volunteer 8 scan 2) and twice for MPT
(volunteer 6 scan 1, volunteer 9 scan 1). The FatNavs case may be linked to inconsistent
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interpolation of the motion between FatNavs compared to true motion, as the low temporal
resolution of the navigators did not capture the breathing-induced motion. In the MPT cases, the
values are small and no difference on the images could actually be found, corroborating the metric
limits mentioned above.
Slice images and histograms of the T1 values extracted from the single subject experiment without,
with 4mm, and 2mm FatNavs inclusion are presented in Figure 2.10. While T1 maps were visually
very similar, the histogram analysis shows the 4mm FatNavs T1 values to be significantly closer to
the original protocol (without navigator) than with 2mm FatNavs inclusion, but slight bias can be
still noted. This is corroborated by the Kolmogorov–Smirnov test statistics which were 0.0035 and
0.0122 for the 4mm and 2mm FatNavs respectively. The peaks of the fitted Gaussians were always
centered at lower T1 values than in the navigator free scan. For white matter, the offset was 1.7 ms
and 7.7 ms for the 4mm and 2mm FatNavs scans respectively. For gray matter it was 2.8 ms and
11.5 ms. It is interesting to note that the T1 bias differed approximately by a factor 4 between both
navigated scans, which matches the ratio of the number of RF pulses between the 2mm and 4mm
FatNavs. The same approximate ratio can be seen between the K-S statistics. As expected, the
lower number of RF pulses of the 4mm FatNavs, combined with the longer relaxation period before
the next inversion pulse, lowered the impact of magnetization transfer on the T1 maps of the water
signal compared to the 2mm navigator. While some brain signal was visible in the frontal area of
the navigator for the direct comparison experiment (see Figure 2.1), it was not the case for the
MP2RAGE experiments as the passband of the navigator excitation pulse was twice farther from
water, making magnetization transfer the dominating source of disruption of the water signal. The
approximate ad hoc b1 correction seems reasonable enough as the T1 values from the grey matter
peak are in the range of reported values in the literature.
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Figure 2.5 – Case of superior MPT correction compared to FatNavs (Volunteer 8 first scan). Notably,
ringing artefact above the cerebellum and blurring in the frontal cortex present in the FatNavs correction
are nicely suppressed by MPT.
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Figure 2.6 – Zoomed-in view of the three reconstructions for volunteer 8 first scan. While the FatNavs
image is sharper than the raw reconstruction, ringing is also more visible.
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Figure 2.7 – Case of superior FatNavs correction compared to MPT (volunteer 2 first scan), as can be
seen by the overall better delineation of structures within the cerebellum. The yellow arrow indicates such
a difference.
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Figure 2.8 – Zoomed-in view of the three reconstructions for volunteer 2 second scan. The MPT-
corrected image is arguably of slightly lesser quality than the raw reconstruction (this was the only such
case observed).

Figure 2.9 – Normalized gradient squared metric for both motion tracking modalities, and both inver-
sion images produced by MP2RAGE. Graphed is the relative change of the metric compared to the raw
reconstruction, in percent.
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Figure 2.10 – Top: slices of the T1 maps obtained for three high-resolution imaging protocols: without
navigators, with 4mm or with 2mm FatNavs. Bottom: the histograms of T1 values obtained after brain
masking. The two clear peaks correspond to white-matter and grey-matter voxels.
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2.1.4 Discussion

Experiment 1: direct comparison of voluntary motion patterns

Overall fair agreement was found between tracking modalities, and the reported accuracies confirm
that FatNavs as suitable for slow, small scale motion tracking, such as head drifts. Higher
resolution navigators (2mm) were closer to MPT estimates than 4mm navigators, as had been
expected. An exception to this observation occurred for large continuous motion of the figure eight
pattern, where we attribute the superior accuracy of the registration for 4mm FatNavs to their
four-times higher temporal resolution.

The reported RMSE values for coughing and swallowing may be slightly biased by the
non-continuous nature of these motion patterns, as it is probable that the short rest periods outside
of the motion events lower the final metric value.

Clearly, implementing FatNavs for motion correction is subjected to strict constraints by the
imaging sequence, so the results presented here are to be understood as indication of FatNavs
robustness against such motion patterns rather than FatNavs ability to correct for them, especially
because any practical implementation of the FatNavs has a much lower temporal resolution than in
this experiment. However, we believe the results obtained confirm them as valid candidates to
motion-correct sub-millimeter imaging protocols in cooperative subjects.

Experiment 2: Comparison of retrospective correction of involuntary motion

Motion correction based on either modality virtually always improved the quality of the
reconstructions. The delineation of high-resolution structures and sharpness obtained were similar
across scans and motion tracking modalities. Globally, both methods showed similar performance
when correcting for motion retrospectively within the studied cohort of compliant subjects without
intentional motion. The presented results confirm that for cooperative subjects that mostly move
slowly, FatNavs has a retrospective motion correction ability equivalent to MPT, but requires much
less effort experimentally as no custom-made mouth-piece and cameras are required. On the other
hand, more agitated subject motion is not fully recoverable by the FatNavs but are by MPT when
the mouthpiece is robustly fixated, which represent the vast majority of cases in our experience
(ten out of eleven subjects in the present work). Previously reported potential shortcomings of
both methods were observed. While conclusive evidence is not available, the results of volunteer 2,
which had sub-par MPT performance, can presumably be explained by imperfect marker fixation
to the upper jaw as both scans were impaired and similar problems did not occur for any other
volunteer. Volunteer 8 demonstrated the limits of the FatNavs approach, as large breathing motion
could not be adequately tracked. On the other-hand, MPT was naturally sensitive to these effects
and allowed for their correction.

A further effect potentially confounding FatNavs registration is gradient non-linearity. While the
individual navigator images are definitely subject to distortions, the motion range is usually limited
in practice thanks to head padding, and is low enough for the navigator distortion not to change
significantly with motion. This leads to equivalent motion estimates when using un-warped images
(data not shown).

The normalized gradient metric analysis corroborates our findings. Small metric variation did not
represent a truly perceivable visual image change, but can potentially be due to removal of smaller
scale and less coherent artefacts, unlike typical blurring or ringing suppression. Such changes are
more difficult to pinpoint on the images. The absolute value of the change is, in our opinion,
difficult to interpret, as not only different artifacts levels, but also different artifacts types, such as
ringing or blurring, impact the metric in different ways. Still the larger variation definitely
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correlated to more prominent motion artefacts as expected from the literature. We do not expect a
quantitative extrapolation of our findings beyond the studied cohort, however the FatNavs would
be expected to underperform in cases where continuous significant motion is present, such as
tremor-prone subjects, as they would lack the necessary temporal resolution, unlike MPT.
The T1 histograms showed the expected magnetization transfer impact induced by FatNavs
acquisition. However, magnetization transfer is not taken into account in the computation of the
MP2RAGE T1 maps by definition, and therefore these maps are susceptible to the specifics of the
implementation of the sequence, such as the inversion pulse used (as always for T1 mapping). These
small deviations compared to T1 values of a protocol without FatNavs should be kept in mind for
any quantitative use of the data, especially if comparing navigated and non-navigated images.
Prospective motion correction, as typically done with MPT, could theoretically reduce the artifacts
level further, and especially so for accelerated protocols. Also bypassing the nuFFT based
reconstruction theoretically allows for sharper effective resolution because of the absence of local
Nyquist criteria violation and interpolation. Nevertheless, the high quality of the MPT
reconstruction for volunteer 8, with continuously varying motion during the scans, leaves us
confident in the validity of the presented retrospective corrections. We also take the same results to
validate our implicit assumption of sufficiently accurate MPT cross-calibration for any residual
errors to be neglected.
Implementation of FatNavs into a prospectively motion corrected acquisition might also be useful
in some cases. In cases such as the example of volunteer 2 in this work, where we suspect the
superiority of the FatNavs correction was due to poor marker attachment, the difference of motion
parameters between MPT and FatNavs could be exploited to automatically detect potentially
unreliable data from the MPT. Depending on how frequently such irregularities are shown to occur,
future work could investigate the utility of additional retrospective FatNav-based correction to
account for the offset – as well as whether the MPT marker attachment itself can be made even
more reliable.

2.1.5 Conclusions

We directly compared the motion estimates of two established brain motion correction techniques,
and showed that in a retrospective motion correction framework, both methods are roughly
equivalent (up to the studied resolution and motion patterns) within the tested subject cohort.
This work confirms the FatNavs as a solid alternative to MPT for compliant subjects. Combining
results from both experiments, we recommend to tune the navigator protocol depending not only
on the imaging sequence parameters, such as resolution and amount of dead-time available, but
also on its purpose, especially so for quantitative studies as the presence of additional RF pulses for
the navigator will always have some influence on the main imaging sequence.
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Chapter 3

Block FatNavs for first order B0
fluctuation retrospective correction

This chapter introduces an extension of the standard FatNavs to a dual-echo version, allowing to
track and potentially correct for magnetic field fluctuation in addition to motion. Said fluctuation
can be of crucial importance at ultra-high field for long echo time GRE protocols, such as SWI or
QSM acquisitions. The works is presented as a post-script of a published article.

3.1 Post-print

The following is the post-print of the article DOI: 10.1002/mrm.27063. Contributions are as follows:

• Frédéric Gretsch (thesis author): Experiment design, data processing, results analysis,
manuscript redaction.

• José P. Marques: Comments on the manuscript.

• Daniel Gallichan: Results discussion and manuscript review.
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Purpose: To investigate the precision of estimates of temporal variations of magnetic field
achievable by double-echo fat image navigators (FatNavs), and their potential application to
retrospective correction of 3D GRE-based sequences.
Methods: Both head motion and temporal changes of B0 were tracked using double-echo
highly-accelerated 3D FatNavs as navigators – allowing estimation of the temporal changes in low
spatial order field coefficients. The accuracy of the method was determined by direct comparison to
controlled offsets in the linear imaging gradients. Double-echo FatNavs were also incorporated into
a high-resolution 3D GRE sequence to retrospectively correct for both motion and temporal
changes in B0 during natural and deep breathing. The additional scan time was 5 minutes (a 40%
increase). Correction was also investigated using only the first echo of the FatNav to explore the
trade-off in accuracy vs scan-time.
Results: Excellent accuracy (0.27 Hz, 1.57-2.75 Hz/m) was achieved for tracking field changes and
no significant bias could be observed. Artefacts in the 3D GRE images induced by temporal field
changes, if present, were effectively reduced using either the field estimates from the double-echo or
the first-echo-only from the FatNavs.
Conclusion: FatNavs were shown to be an excellent candidate for accurate, fast and precise
estimation of global field variations for the tested patterns of respiration. Future work will
investigate ways to increase the temporal sampling to increase robustness to variations in breathing
patterns.

Introduction

Sequences based on T ∗2 contrast have demonstrated great usefulness to brain MRI for identification
of various anomalies and conditions such as microbleeds and multiple sclerosis, but also
quantitative estimates of physical properties [81–83]. Common sequences for T ∗2 contrast, such as
susceptibility weighted imaging and quantitative susceptibility mapping, typically require long
(>20ms) echo times. While the use of ultra-high field magnets provides a significant boost to the
resolution for an equivalent signal-to-noise ratio (SNR), it also unavoidably makes these
gradient-echo based sequences more sensitive to uncontrolled phase evolution during the long echo
times [84]. These phase variations stem from both static background magnetic field inhomogeneity,
but also from dynamic events, such as breathing [85, 86] or system drifts. Several attempts at
quantifying and correcting these dynamic changes have been reported, using either navigator
techniques [87–89] or external hardware [90–93]. Navigator methods at 7T which incorporate
tracking the temporal B0 variation in full 3D have yet to be demonstrated, although some hybrid
methods went beyond a single dimension [94], where the sensitivity maps of the RF receive array
were used to provide additional 2D in-plane spatial information to a one-dimensional projection.
Ultra-high field also allows for high SNR very-high resolution (<0.5mm in plane) 3D acquisitions,
but these necessarily imply longer acquisition times, thereby further increasing the probability of
the scan being detrimentally affected by subject motion. Using parallel imaging [9, 10] , highly
accelerated fat selective navigators (FatNavs) have previously demonstrated the ability to
quantitatively track motion and significantly improve image quality using either a retrospective [48]
or a prospective [46] correction approach.
In this work we propose an extension of the FatNavs protocol to a double-echo acquisition. This
approach allows mapping of the 3D dynamic B0 variation in the fat layer, and to estimate the
associated low order field coefficients. Adding the motion information, we also show that both
effects can be retrospectively accounted for during image reconstruction, and that applying both of
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these corrections can result in a pronounced improvement in image quality for cases where these
artifacts are strong.

Methods

All experiments were conducted on a 7T head-only MR scanner (Siemens Healthcare, Germany)
using a 32-channel RF coil (Nova Medical Inc.). Two main experiments were conducted: the first
aimed at quantifying the accuracy of the B0 field estimates derived from the FatNavs. The second
was a high-resolution 3D GRE scan, which will be referred to as the host sequence, into which
FatNavs were inserted (∼ 17 minutes). For the second experiment, volunteers were first asked to
breathe deeply and slowly, after which a repetition of the scan was acquired, where this time they
were asked to breathe in the way that seemed the most natural to them. Asking compliant
volunteers to perform heavy deep breathing is expected to simulate the kinds of image artifacts that
might arise from B0 variations in less cooperative subjects or within certain patient populations.
We now introduce the necessary definitions and notations, and detail the protocols for the different
experiments thereafter.

Retrospective correction of motion and temporal B0 changes

We assume the motion can be well described by a rigid body transformation [73]

x (t) = R (t) x0 + d(t)

where R is a rotation matrix and d a translation vector. Keeping in mind the implicit time
dependence of the various variables, including k, the signal y measured in coil c at k−space
position k is related to the non-moving object ρ by

yc (k) =

∫
sc (x) ρ (x) exp

−i2π [Rk· (x− d) + ∆B0 (x)

(
TE +

kRO
G

)] d3x (3.1.1)

where sc is the receive coil sensitivity (assumed to be quasi-invariant under motion), TE is the
echo-time, kRO is the readout component of k, and G is the readout gradient amplitude.
Neglecting phase accumulation during readout, only temporal variations of ∆B0 (x) induce image
artifacts. Furthermore, these are generally well represented by low order spherical harmonics [88] .
Approximating ∆B0 to its first order components

∆B0 (x, t) = β0 (t) + β (t) ·x (3.1.2)

allows for an efficient reconstruction using a nuFFT [23] operator with ten time-dependent
parameters: six for motion and four for dynamic field variations. In k−space, β0 and d contribute
to a phase correction term, whereas R and β respectively amount to local rotations and shifts.

FatNav protocol and image reconstruction

The navigator protocol was a highly accelerated double-echo 3D GRE with a 1-2-1 binomial fat
excitation pulse. It was chosen as a compromise between voxel size, phase evolution time and total
acquisition time [77]. Parameters were: 3.94 mm isotropic resolution, 64× 64× 48 full matrix size,
3/4 partial Fourier undersampling along both phase encode directions, FA = 5◦ ,TE,1 / TE,2 / TR =
1.16 / 4.16 / 5.4 ms, readout bandwidth of 3910 Hz/pixel, and 4x4 GRAPPA acceleration, leading
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to a volume acquisition time of 583.2 ms. GRAPPA calibration lines were acquired separately as a
prescan. An equivalent single echo FatNav would take 260 ms to acquire.

FatNav reconstruction was performed as follows: first, GRAPPA was applied to recover fully
sampled k-space, from which square-root sum-of-squares (RSS) volumes of the first echo were
co-registered using the realign tool in SPM (Statistical Parametric Mapping, version 12,
registration parameters: 2 mm resolution interpolation, 3 mm smoothing window) to obtain motion
estimates. Then, again from the fully sampled k-space, we directly reconstructed all channels c and
echoes E for each volume using a nuFFT with the associated motion parameters. The resulting
complex images Ic (x,E) are therefore co-registered with the motion reference volume (the selection
of which is explained below) directly in the image reconstruction. The final field map B0 for a given
volume was defined by

2π
(
TE,2 − TE,1

)
∆B0 (x) = arg

 1

Nc

Nc∑
c=1

I∗c (x,E2) Ic (x,E1)

|Ic (x,E2) |

 (3.1.3)

where Nc is the number of receive coils. The temporal variation of the B0-field is readily obtained
by a phase difference computation to a reference FatNav. The reference volume, for both motion
and B0, was chosen as the one acquired the closest to the host sequence k−space center in
experiment 2, and as a fixed number larger than one (necessary for the magnetization to reach a
steady state) in experiment 1. At no stage is any partial Fourier filter applied and the Fourier
transform is taken after zero-padding. As the phase changes due to breathing are typically
smoothly varying, we do not expect the reduction in spatial resolution due to partial Fourier
undersampling to affect the fidelity of tracking these phase changes. We validated this assumption
by acquiring the same FatNav protocol but without any partial Fourier undersampling on one
volunteer. We retrospectively down-sampled it and compared the estimated field change coefficients
with and without partial Fourier undersampling.

The fit of the linear coefficients of temporal field variation was restricted to a fat-mask, defined by
thresholding the reference volume first-echo RSS image. The threshold value was found by direct
visual inspection and was the same for all volunteers.
This reconstruction pipeline gives direct access to the ten parameter time-courses used in the host
sequence reconstruction. As expected, the field estimates obtained in this manner are still
residually affected by subject motion – which has two main sources. The first is some inaccuracy of
the applied method, such as incorrect motion estimation or limitations of the assumption of
rigid-body motion. The second is the motion-induced change of the magnetic susceptibility spatial
distribution relative to the static superconducting magnet, which in turn produces a change of the
net magnetic field [95]. The results presented in this paper lead us to believe that the method is
sufficiently accurate for our purposes, and consider the complete quantification of the induced field
effect to be outside of the scope of this work.

We also note that the change of phase δϕci of a single voxel for a given coil c and echo i can be
modeled as

δϕci = δϕc + 2π∆B0TE,i (3.1.4)

where δϕc is the change of receiver phase due to motion and ∆B0 is the local temporal variation of
field. Therefore, in the case of negligible receive phase change, tracking temporal changes in the
field rather than absolute values does not require the use of the second echo. Indeed, letting Ic,r be
the first echo image of the reference volume for the receive coil c, then the field variation map ∆B0

can be defined as
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2πTE ,1∆B0 (x) = arg

 1

Nc

Nc∑
c=1

I∗c (x,E1) Ic,r (x)

|Ic (x,E1) |

 . (3.1.5)

Additionally, using both FatNav echoes it is also possible to derive a δϕc map, allowing for a
correction of the host data which incorporates both contributions to the temporal phase changes
(changes in receiver phase as well as changes in B0). However, we found that the magnitude of δϕc
was not large enough to make a noticeable difference in the corrected host data (see Appendix 1 for
estimation of expected magnitude for δϕc). We therefore used (3.1.3) for the dual-echo estimates
of ∆B0 and (3.1.5) for single-echo estimates of ∆B0– which is sufficient for the purposes of
correcting the host data as the ‘absolute’ value of B0 is not required.

Experiment 1: Determining the accuracy of field monitoring

In order to estimate the accuracy of the field monitoring, we acquired 72 consecutive FatNavs (after
steady state was reached), where every other volume had a predetermined offset of one of the
imaging gradients. In order to diminish the motion-related field changes which would reduce the
apparent accuracy of the method, visual inspection of the motion parameters ensured that no large
motion occurred during these acquisitions. These gradient offsets values were chosen in the (-50,50)
Hz/m range. Due to time considerations, not all offsets values for all directions were acquired for
each volunteer. However, a 20 Hz/m offset for each direction was always acquired for the four
volunteers who completed this experiment to allow direct comparison between subjects. This
corresponds approximately to the typical natural breathing range in the z direction at 7T. Using
the same value for the x and y directions allows assessment of whether the method might also show
some systematic anisotropy.
Two different methods were investigated for estimation of the gradient offset amplitude and the
associated error. Let bn, n = 1, . . ., 2N be some field coefficient as defined in (3.1.2), where N is
the number of control/offset volumes pairs. We constructed a sequence of field coefficient
differences dn which represents the measured field temporal variation. Two construction methods
were investigated: the first method uses the consecutive volume difference (CVD) sequence
dn = b2n − b2n−1, n = 1, . . ., N . It assumes the field change is exclusively due to the gradient
current offset during the measurement time of this pair of volumes. However, residual breathing
effects are bound to be captured as well, thereby diminishing the apparent precision of the offset
estimate given by the CVD method. The second method, dubbed double linear interpolation
difference (DLID), tries to evaluate consecutive FatNavs of the same kind (control or offset) at the
same time point than the sandwiched FatNav (offset or control) before doing the difference.
Mathematically the sequence studied is

dn =

{
1
2

(bn + bn+2)− bn+1 if n is odd
bn+1 − 1

2
(bn + bn+2) if n is even

n = 1, . . ., 2N − 2 (3.1.6)

Given the short volume acquisition time of the FatNavs, this method is assumed to interpolate any
residual breathing-related field change, and thus allow a less biased statistical analysis (under the
hypothesis of independent uniformly distributed noise realizations).
The precision of the method was defined from the root-mean-square-error (RMSE) of the error
sequence given by dn − T , where T is the known input offset (either zero or equal to the chosen
linear offset). This RMSE is necessarily larger than the true precision of the method, as the
following argument demonstrates. Let bi = pi + Ti + εi with pi the physiological contribution to the
field change, Ti the offset (0 or the input offset), and εi the error. Assuming the sums of mixed
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terms of the form piεj to be negligible, which is equivalent to the independence of the physiological
field change and the noise realization, the RMSE of the DLID is given by

RMSE =

√√√√ 1

2N − 2

2N−2∑
i=1

[
1

2
(pn + pn+2)− pn+1

]2

+

[
1

2
(εn + εn+2)− εn+1

]2

. (3.1.7)

White uncorrelated noise thereby implies RMSE =
√

3
2
< ε2 > in the case of perfect physiological

contributions suppression. In practice the suppression is certainly not perfect, and the RMSE is
larger than the precision of the method itself. We define the field change coefficient precision, noted
ε̄, as

ε̄ =

√
2

3
RMSE. (3.1.8)

Experiment 2: High resolution T ∗2 scans

The high resolution protocol was a 3D GRE transversal slab, with flow compensation in all
directions, nominal resolution: 0.25x0.25x1.2 mm3, full matrix size: 768× 672× 64, 3/4 partial
Fourier undersampling in both phase encode directions, FA = 9◦ , TE / TR = 25 / 30 ms,
receiver bandwidth = 220 Hz/pixel .
FatNavs were acquired between sequential k−space planes of the host sequence. This way,
disruptions to the steady-state water signal are smoothly distributed in k−space along the
innermost phase encoding loop direction, inducing only a slight blurring on the final image. Bloch
simulations for these experimental parameters for white matter, gray matter and CSF
(assumed T1 = 1.15/1.9/4.47 s respectively) showed that the point-spread function of the water
image is only marginally changed by the inclusion of the FatNavs. Its zero crossings by any
practical measure are identical and the phase changes only outside of the first lobe. The resolution
loss compared to the same scan without FatNavs is below 2%. Furthermore, contrast is barely
affected: see Figure 3.1. The temporal resolution of the FatNavs was 2 s and the total acquisition
time was 17 min 2 s, where the same GRE acquisition could have been performed in 12 min 6 s
without the additional time needed for the FatNavs.
Previous studies [96] showed that the average natural breathing period of the studied population
lying in the supine position is slightly above 4 seconds. This means that while slow, deep breathing
should be accurately sampled by the FatNavs, natural breathing is very close to the limit imposed
by the FatNavs temporal resolution. We expect that partial sampling and partial correction can
take place in this case (see Discussion for potential solutions to this limitation). The linear field
coefficient fits of the FatNav B0 maps were restricted to the host excitation slab, after fat
identification by magnitude thresholding (as explained above). Reconstructions using no field, the
zeroth ( β0 only) and first ( β0 and β) order field corrections were performed separately for data
from each receive coil and then combined using RSS. First-order correction based on field
coefficients derived from (3.1.5) was also investigated.
Magnitude bias-field correction of the GRE images was performed by a point-wise division of the
RSS image with a bias-field map. The bias-field map was found by smoothing a low-resolution
version of the image, and interpolating the result back to the 3D GRE high-resolution grid.
Quantification of image quality was evaluated using a gradient entropy metric (taking the sum of
the image entropy of the finite differences of neighboring pixels in the x, y and z directions), as
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Figure 3.1 – Bloch simulation of the water signal during the high-resolution GRE protocol with FatNav
inclusion. Dashed lines represent the steady state in absence of FatNavs. The green line is the white to
gray matter contrast. The point-spread functions associated to these signals are found by zero-padding
and shifting before taking the Fourier transform to account for the host sequence partial Fourier. They
show a resolution loss of less than 2.2%.

previous work [17, 62] showed this metric to be a strong candidate as a surrogate marker for the
subjective definition of what a “good” image is.

Results

Determining the accuracy of field monitoring

Retrospective partial Fourier down-sampling showed no significant change to the estimates of phase
variations, as can be seen in Figure 3.2. The RMSE between with and without retrospective partial
Fourier undersampling were 0.1 Hz for the 0th order term, and 1.8 / 2.5 / 4 Hz/m for the x / y / z
directions. Figure 3.3 illustrates the difference between the CVD and the DLID methods for a field
offset of 5 Hz/m in the x direction, thus theoretically leaving only noise and breathing as
contribution to the y and z field coefficients variations. Breathing is clearly observed (Figure 3.3 A.
and B). The magnitude of the breathing-induced field change is in agreement with previously
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published values at 7T. The slight bias in the x direction due to the gradient offset cancels out
when taking the mean across breathing peaks and troughs. These were found by extrema
identification of the spatial mean B0 value, computed in the fat layer mask using both FatNavs
echoes. Because breathing contributes significantly to the error estimates (Figure 3.3 C) for the
CVD method, but not for the DLID method, which shows a more homogeneous spectrum (as is
expected for random noise), all the following results were obtained using the DLID method.
Quantitatively, the mean (maximum in brackets) precision ε̄ across gradient offsets for β0, βx, βy, βz
were 0.29 (0.45) Hz, 1.57 (3.14) Hz/m, 2.35 (4.31) Hz/m and 2.75 (5.19) Hz/m respectively. As a
current offset in one gradient should not influence the field estimates for the other two directions,
these mean and maximum values include the precision of field estimates in these others directions.
Measured shift values for all volunteers are shown in Figure 3.4. All estimates matched the target
field shift (up to the first standard deviation) for the y and z directions, and one subject falls
outside the first standard deviation for the x direction. The precision of the method shows no
significant spatial anisotropy, reinforcing the absence of systematical bias in the method (by the
choice of phase encoding directions for example).
Similarly, the precision values using only the first echo of the FatNavs for β0, βx, βy, βz were 0.44
(0.91) Hz, 2.63 (5.74) Hz/m, 5.24 (15.79) Hz/m and 4.18 (11.22) Hz/m respectively. These values
are approximately double the precision of the dual-echo estimates.

Figure 3.2 – FatNavs without gradient offsets or partial Fourier were acquired. Field change coefficients
were estimated using either all the measured data, or after partial Fourier simulation (in x and y). The
RMSE between fully-sampled and partial Fourier reconstructions are 0.1 Hz for the 0th order term, and
1.8 / 2.5 / 4 Hz/m for the x / y / z directions. The higher value on z is probably due to breathing during
sampling, which is almost twice as long for this protocol than for the one used in the rest of the study
(which uses partial Fourier).
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Figure 3.3 – Example data from a single subject with a 5 Hz/m offset in the x direction every other
volume. (A) Mean B0 difference between breathing peaks and troughs in the fat layer, after masking for
fat signal. (B) Mean B0 field across entire fat signal mask vs time. Markers represent the peaks and
troughs of respiration, used to derive the plot (A). (C) Spectra of the time-courses of the estimated linear
field change in z derived from both consecutive volume difference (CVD) and double linear interpolation
difference (DLID) methods, in arbitrary units [a.u.].
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Figure 3.4 – Gradient offsets measured across volunteers. Error bars show +- 1 standard deviation.

High resolution T ∗2 scans

Representative slices of the high-resolution 3D GRE scans while breathing slowly and deeply are
shown in Figure 3.5, for all investigated reconstructions. The sharpness of anatomical features is
noticeably improved after motion correction. However, the large-scale ghosting and blurring
artefacts typically induced by breathing are not suppressed. Incorporating correction of temporal
magnetic field variations greatly reduces these artefacts, and first order correction further enhances
image quality compared to the zeroth order correction. The six motion and four dual-echo field
parameters derived from the FatNavs for these scans are shown in Figure 3.6. The parameters of
volunteer 2 deep-breathing scan, where significant field variation induced by breathing also occurs
along the y direction, indicating the utility of measuring the field variations using more than
one-dimensional projection in such cases.
Similarly, representative results of scans where the subject was asked to breathe naturally are
presented in Figure 3.7, and the corresponding motion and field parameters in Figure 3.8. Similar
levels of improvement following motion-correction were observed as in the deep-breathing
experiment – with the improvement even more striking in Volunteer 1 due to the larger motion
during that scan. Notice also that the field coefficients are also affected by motion, even though
these are defined in the co-registered FatNav-space. This is most clearly seen when sudden motion
takes place in Figure 3.8. While overall it is difficult to identify clear improvements to the image
quality when the field variations are corrected for, increasing the number of correction parameters
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did show increasing image quality for volunteer 1 (this volunteer is also the one who moved the
most). These results suggest that for healthy compliant subjects, and under the imaging
parameters used in this experiment, breathing artifacts are typically not sufficiently severe for the
correction to make a noticeable improvement. It is also plausible that breathing is not well sampled
throughout the whole scan, leading to sub-optimal corrections (see Figure 3.7).
Comparison of typical slices in the deep breathing scan for the first-order field correction using
dual-echo estimates (from (3.1.3)) or the single-echo estimates (from (3.1.5)) is shown in Figure 3.9.
The image quality of both reconstructions is very similar, and areas of subjectively ‘better’ image
quality can be found in either reconstruction. As Figure 3.10 shows, the differences between the
first-echo and dual-echo field estimates are largely explained by a simple first-order regression in
the motion parameters. This in turn implies that in case of a drift-like motion, the phase terms for
image corrections will differ by a drift as well, producing slightly shifted corrected images.
Figure 3.11 shows the reduction of gradient image entropy between the raw reconstruction and the
different corrections studied, normalized to the raw reconstruction value. We observe a decreasing
gradient entropy (compared to the raw reconstruction) as higher order field terms are taken into
accounts. The change is more pronounced for the deep breathing scan, as expected. The differences
between first-echo and dual-echo based corrections are inconsistent across scans and volunteers
(comparison shown for motion-correction and B0-correction up to 1st-order), but the gradient
entropies following both these corrections were all lower than from the lower-order corrections.
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Figure 3.5 – Representative reconstructions example for the high-resolution scan while deep-breathing.
Abbreviations stand for: raw reconstruction (Raw), motion correction only (MC), motion and zeroth order
B0 corrections, and motion and first order B0 corrections. The bottom right is the absolute difference
between both B0 order corrections, multiplied by 5. All images use the same color-map. Red arrows
highlight regions where improvements can be most clearly observed with increasing levels of correction.
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Figure 3.6 – Estimated motion and field parameters for the scans of Figure 3.5 , where the volunteers
were asked to breathe deeply.
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Figure 3.7 – Representative reconstructions example for the high-resolution scan while subject breathed
naturally. Figure organization is as in Figure 3.5.

80



Figure 3.8 – Estimated motion and field parameters for the scan of Figure 3.7 (volunteer 1), where the
volunteer was asked to breathe normally.
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Figure 3.9 – Representative motion and first-order B0 corrected images in the deep-breathing scan. First
column is using both echoes from the FatNavs to estimate the field changes, whereas the second column
uses only the first echo. The third column is the absolute difference times 5. Red arrows indicate regions
where slight depreciative change of image quality can be found compared to the image without the red
arrow.
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Figure 3.10 – Difference between the dual-echo and first echo field coefficient estimates. The scans shown
are those where the volunteers moved the most (both during the natural breathing scan). Both the raw
difference and the first-order motion-regressed difference are shown. The horizontal black lines represent
the constant zero value.

Figure 3.11 – Bar plots showing the relative reduction of image gradient entropy between the raw images
and the different corrected images for both deep breathing and natural breathing scans.
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Discussion

Determining the accuracy of field monitoring

We have developed a new method to study the robustness of estimates of linear field variations.
High quality quantification of first-order dynamic field variation was achieved by the dual-echo field
estimates. The associated variabilities (RMSE) were significantly lower than the typical range of
variation observed due to breathing. The spatial distribution of the field variations due to
breathing was also directly observed in the fat layer and agrees well with previous literature with
measurements from the brain [85].
In the direct volunteer comparison (Figure 3.4), one of the estimates falls outside one standard
deviation of the known value in the x direction. Despite this residual bias, correction using these
estimates is expected to be better than no correction at all – and this minor overestimation (in one
subject by up to ∼15%) is not expected to appreciably affect the level of correction achievable,
especially as this was only observed for a gradient in the x direction where the effect due to
breathing is the lowest.
The advantage of alternating reference and offset volumes is that residual motion-induced phase
variation is greatly reduced. Indeed, a phase difference of two volume-trains, one of reference
volumes and one with field offset volumes, would be strongly influenced by any motion occurring
during the acquisition. Only fast and large motion would influence (and artificially diminish) the
estimated precision of the DLID method for a given gradient offset. For all volunteers in this study,
we could always find a subset of 36 consecutive volume pairs for which no such larger motion took
place. Another possibility for estimating the accuracy of the method independently from the
physiological phase variations could have been to perform the experiment with breath-holding.
However, due to the practical problems of breath-holding, such as good and constant subject
cooperation, as well as decreased subject comfort, we think the DLID method, which gave reliable
results during free breathing, is a good choice. The remaining limitations of the DLID method
imply that the precision estimated in this experiment should be understood as an upper bound for
the true precision of the parameter estimation, as DLID is expected to overestimate the true value.
This experiment shows that double-echo FatNavs are well suited for accurate, fast low-order
dynamic field tracking.
First-echo based field estimates suffer greatly from the associated loss of SNR compared to
dual-echo estimates due to the shorter phase evolution period. The accuracy is reduced by a factor
of approximately 1.5 to 2. While having a longer echo time would allow for better accuracy, it may
be more sensible to acquire several echoes due to the short readout acquisition time.

High resolution T ∗2 scans

In the deep and slow breathing experiments, image quality was always greatly improved by
incorporating correction for the temporal variation of the magnetic field. Furthermore, the first
order correction demonstrated additional improvement in the reconstruction quality over the
zeroth-order correction, demonstrating the utility of accounting for the spatial dependence of
temporal field variation at ultra-high field. This dependence is not necessarily restricted to the z
direction and hence a true 3D quantification can be necessary. This is achieved by the dual-echo
FatNavs but not previous navigator methods at 7T, which typically only focus on the z direction or
use approximations to recover some spatial information from projections [94]. These methods also
typically neglected motion entirely.
The high quality of the reconstructed images suggests that the motion and field parameters were
well captured by the FatNavs. Clear impact of motion on the estimated field coefficients can also
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be seen, but the degree to which these are due to a true physical effect, such as magnetic
susceptibility distribution change, or due to methodology errors cannot easily be estimated from
this data. The consistent observation that the inclusion of each additional set of corrective
parameters in Figure 3.5 leads to additional improvements in image quality implies that the
observed interdependence of motion and field parameters is likely to have a true physical origin
rather than being due to erroneous or incomplete modelling.
In the natural breathing case, the benefits of B0 correction are marginal, and a clear difference
between zeroth and first order corrections could only be observed in one subject. While areas of
more homogenous contrast in the same tissue after field correction can be found, it is doubtful that
these differences would be worth the additional scan-time inherent to the second-echo of the
FatNavs. However, previously published results are unclear about the percentage of 3D GRE scans
which would show natural breathing artefacts. Breathing itself is very person-specific. Also, the
impact of thoracic breathing on the field variation spatial distribution is expected to be different
than that of diaphragmatic breathing, due to different air distribution changes [95]. All-in-all,
almost all regimes (breathing type, depth and frequency) could certainly be found within the
normal range of ‘natural breathing’ by some individuals. Specific populations can also be more
prone to exhibit significant field change, such as Alzheimer’s patients [97]. This makes reaching a
definitive claim on the usefulness of correcting for breathing-induced field variation very
challenging. The method proposed here is shown to make a clear improvement in image quality for
a specific sequence and in subjects with a specific breathing profile. Longer echo times would also
make the artefact worse for the same breathing pattern. All these considerations necessarily mean
that the presented results of double-echo FatNavs inclusion in high-resolution 3D GRE are very
much exploratory, but it also shows their usefulness in extreme cases.
It might be expected that the field in the fat layer could be more sensitive to motion than at the
center the brain. The fat signal is very close to the large magnetic susceptibility change of the
air-tissue boundary and this could lead to local changes in the field in the vicinity of the fat layer
that are not reflective of the changes occurring in the center of the brain. This in turn would imply
an overestimation of the field change given by the FatNavs compared to the true change in the
brain. We observed a good correspondence in this study between the measured field changes and
the subsequent improvements in image-quality when these estimates were used for correction,
suggesting that over-estimation of motion-induced field changes in the fat layer was not a major
problem in this study. We expect that discrepancies between field changes measured at the fat
layer and real field changes in the brain could explain some of the residual artifacts present in the
corrected images.
The GRE protocol used in this experiment was made ∼40% longer due to the addition of the
dual-echo FatNavs. Using only the first echo of the FatNavs for first-order field change correction
appears to perform as well as the dual-echo derived correction when assessing the overall final
image quality, but would greatly reduce the additional scan-time inherent to the navigators. Each
FatNav would be 324 ms shorter, reducing the additional scan-time to ∼18% of the original GRE
protocol duration.

The difference between dual-echo and single echo field estimates is strongly correlated to the
motion parameters. This likely arises from the fact that the dual-echo estimates remove the phase
change under motion of the receive coil sensitivities, whereas the single echo estimates do not (see
Appendix 1). This also means that the field change correction terms are a priori highly biased by
motion because of the short FatNavs echo time, and we are currently investigating the reasons why
this bias does not seem to produce additional artifacts in the reconstructions. In this study we
found that quantifying image quality was very difficult – and although the reconstructed images
corrected using single or dual-echo field estimates are measurably different, it is not clear which
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image is better. Unlike standard point-wise based image difference metrics which would be sensitive
to image shifts, gradient image entropy shows the consistent trend that the image quality continues
to increase as more correction parameters are used. However, it is insufficient to help us understand
which of the dual-echo or first echo based correction is best. Future work will investigate whether a
metric can be found that allows a more accurate reflection of the final image quality.
The most direct way to increase the temporal resolution of the FatNavs is to segment the host
sequence acquisition and acquire a FatNav between each segment. Single-echo FatNavs in a
2-segment host sequence would be a way to double the FatNavs temporal resolution, while keeping
the total scan-time equivalent to the one presented in this study. Previous conclusions suggest that
the correction quality would be at least as good as the one presented here. Alternatives which do
not add any additional scan-time, such as combination of FID navigators (one per host sequence
shot) and FatNavs are also currently being explored, but go beyond the scope of this paper. The
field change quantification method presented here can also be directly used for fitting coefficients of
higher order than only the first-order terms. The restriction to the first spatial order was chosen
solely because it allows for a much more time-efficient retrospective correction, as the linear terms
correspond to simple shifts of k-space points. Inclusion of higher-order terms would require the use
of more computationally intensive iterative reconstruction techniques [98]. However, it is likely to
remain difficult to assess whether the increased computational burden is justified without a reliable
corresponding metric for image quality.

Conclusions

This work shows that extending the previously proposed 3D FatNavs to a double-echo version
allows to capture magnetic field temporal variations with excellent precision. Both motion and field
variations (up to first order spatially) can be included in a retrospective correction of the full 3D
k-space. For strong artifacts caused by heavy breathing this correction can provide substantial
enhancement to the final image quality. Single echo estimates based corrections showed comparable
results, and hence should allow a significant reduction of the additional scan-time due to the
FatNavs second echo. The temporal sampling of the FatNavs in the current implementation is on
the limit of critical sampling for normal healthy breathing rates. Future work will investigate
approaches to increase the temporal resolution of the FatNavs, without sacrificing spatial resolution
and fidelity, to be applicable to more general breathing patterns.
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Appendix 1 – Estimation of change in coil phase due to

subject motion

We can estimate the local change in coil phase at a particular position within the head, δϕc, for
some moderate motion δx as δϕc = 2π

L
δx where L is the distance over which the phase changes by

one full cycle. As a first approximation, we can use the RF wavelength λ as an estimate of L. The
receive phase variation can be considered negligible when the ∆B0 term in (3.1.4) dominates, which
can be formulated as when 2π∆B0TE�δϕc , which corresponds to the condition ∆B0TEλ�δx .
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Assuming a typical value for ∆B0 (1 Hz) and 20cm for λ, leads to

δx [mm]�0.2× TE[ms ].

This shows that, for long echo time, such as the ∼25 ms TE used in the host sequence, the δϕc term
is negligible for motion up to around 5 mm (and indeed it was neglected in (3.1.1)).
However, in the case of large motion and short echo-times, the estimates given by (3.1.5) are
expected to contain significant bias – which can be exacerbated by the short echo-times used for
the FatNav. A single-echo FatNav might therefore falsely attribute a fraction of the measured
phase changes to being due to changes in B0 – as it will also be sensitive to δϕc. This is why in this
study we compared the estimated correction terms from the first-echo of the FatNav against those
from dual-echo – as well as comparing the effect this has on the corrected images themselves – to
test whether a single-echo FatNav would be sufficient for the chosen sequence parameters.

Post-print ends here

To summarize, this work showed that FatNavs can track first-order field fluctuation with good
precision and allow for the associated retrospective correction, especially so for deep-breathing
scans, i.e. when breathing is properly sampled. The application of FatNavs to fluctuation correction
in natural breathing cases is explored further in §6.2.1 in conjunction with FID navigators.
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Chapter 4

EPI-like FatNavs

In order to be efficient, a navigator should have as short as possible duration for a desired motion
estimates accuracy. This chapter presents an upgraded version of the 3D FatNavs acquiring several
k−space lines after each excitation pulse, in the same spirit as EPI acquisitions. It allows for more
modularity, such as the possibility to run on lesser performance gradient inserts, at lower field
strength than 7T or when included in more restrictive imaging protocols.
As a summary of this chapter, EPI-like FatNavs showed equivalent motion correction capacity than
the original FatNavs implementation but with half the acquisition time. Therefore, they can be
inserted into a much broader range of imaging protocols and hardware systems, thereby opening
the way to more potential FatNavs applications.

4.1 Definition, acquisition and corrections

The idea is to acquire several lines of the navigator 3D k−space per TR, thereby reducing the loss
of time needed by the preparation module, that is by the RF excitation and phase and slice
encoding gradients. Figure 4.1 shows this logic with six lines acquired per kernel.
A blip gradient is added on one of the non-readout encoding directions between each readout
gradient acquisition. This creates the jump in k−space.
This strategy, with n lines acquired by kernel, leads to volume acquisition duration T given by

T (n) =
N

n
∗
(
Tp + nTRO + (n− 1)Tb + Ts

)
(4.1.1)

where N is the number of kernels needed to acquired an equivalent one readout-per-kernel FatNavs,
Tp is excitation and encoding duration, Ts is the rephasing and spoiling duration, TRO the readout
duration and Tb the blip duration. Clearly, this implies a strong diminishing return, as the
reduction of acquisition time becomes hyperbolically smaller as n increases.
The implementation of this version of the navigator was entirely custom coded into the Siemens
IDEA software suite. While monopolar readout gradients were also available, they did not provide
clear benefits on the navigator image quality. They also reduced the gained efficiency due as they
had to include a rewinder gradient in the readout direction between samplings. Therefore the
associated results will not be discussed further.
The chosen encoding order, (i.e. the blip gradient moment) was such that k−space was segmented
as shown in Figure 4.2. This allows undesired, but systematic, effects to be smoothly distributed,
and hence to create less severe artefacts. These effects will now discussed in more details, as well as
how to try to correct for them.
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Figure 4.1 – Kernel for the multiple-readout per TR FatNavs. This example shows six bipolar readouts.

Figure 4.2 – k−space acquisition order for n = 6. The blip gradient is played on the segmented direction,
and each color is associated to one of the readouts during the kernel.
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4.1.1 Calibration and correction

Non-identical effects between the successive readouts include T ∗2 relaxation, gradient delay and
phase drifts due to frequency offset. The chosen ordering allows to cope with signal magnitude
decay, as pictured in an exaggerated way in Figure 4.3. This ordering only leads to slight
smoothing compared to single-readout acquisition, whereas a consecutive (i.e. classical 3D
Cartesian trajectory) would create significant aliasing as shown by the secondary peaks of the
point-spread function.

Figure 4.3 – Simulation of the alteration of the point-spread function due to signal relaxation for the
standard consecutive ordering and the one used by the EPI-like FatNavs.

While T ∗2 decay was not corrected for any further, correcting for the frequency offset and gradient
time delays was paramount, as demonstrated in Figure 4.4. This was done by acquiring a so called
calibration scan at the beginning of the sequence. This prescan amounts to play the same kernel
repetitively, with the phase, slice and blip gradients turned off. Therefore only the central readout
k−space line is sampled. The idea is to estimate the erroneous phase factors, caused by a global
signal frequency offset compared to signal demodulation frequency, and phase ramps in image space
associated to the k−space shifts caused by uncontrolled gradient time delays.
The best corrections were obtained by applying the following procedure to the calibration data.

1. Choose the reference line index ( between 1 and n) as the one which will pass by the k−space
center during a navigator acquisition. This defines the reference readout signal.

2. Pick the next line and find the phase ramps which minimize the error to the reference signal
after Fourier transformation. This phase ramp defines the time delay correction.

3. Apply the time delay correction to the calibration data. Because the readout gradients are
the same but of reversed polarity, the gradient delay is systematic across readouts and the
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Figure 4.4 – Raw and corrected reconstructions for a five readouts-per-kernel acquisition

associated correction is only applied to readouts of opposite polarities compared to the
reference readout.

4. Find the n− 1 phase factors which minimize the error between the delay corrected calibration
data and the delay corrected reference line.

The error metric used was the standard L2 norm for both parameter estimation. The final
parameters values were found by direct grid search. The number of calibration kernels should be
such to establish steady state and have sufficient SNR to estimate the correction parameters. In
practice we found that 200 such kernels were amply sufficient.
Examples of obtained phase values are shown in Figure 4.5a. The correction follows a linear trend,
with the same slope for both polarity readout gradients. This is as expected as the phase δϕ should
follow the usual relationship

δϕ(TE) = fTE (4.1.2)

with f the frequency offset. Estimated delay are shown in Figure 4.5b. The order magnitude
matches previously reported values [99]. It is to be noted that in both parameters figures, the low n
regime is different than the high n regime. This is certainly due to unequal eddy currents for the
first few readouts. This difference occurs because of the initial readout dephasing gradient, which is
played only at the beginning of the kernel. Therefore, the higher the value of n, the more similar
the state of the system for latter acquisitions. This difference, especially in magnitude, for the first
two readouts signals was visually directly observed.
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Geometrical distortion can be observed despite the proposed correction. This is because of the very
large field of view acquired (∼ 25 cm in the head-foot direction), making a zeroth order frequency
correction insufficient for correcting small spatial B0 inhomogeneity. The distortion gets worse as n
increases, which is expected. The use of a 3D B0 map might help to further reduce these
distortions, but also introducing such information in an GRAPPA-based reconstruction framework
is very challenging. Keeping the diminishing return of large n values in mind, such involved
reconstructions were not attempted as they seemed unnecessary.
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(a) Estimated phase values for frequency offset correction of EPI-like Fat-
Navs, with n = 25. The black line represents the linear extrapolation of
the last two odd readouts.

(b) Estimated gradient time delays for EPI-like FatNavs correction.

Figure 4.5 – Examples of the EPI-like FatNavs correction parameters found by the proposed method.
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4.2 Comparison to standard FatNavs

The motion tracking accuracy of EPI-like FatNavs was estimated on one healthy subject, who was
asked to reproduce a deliberate motion pattern for several scans. Each scan was an interleaved
acquisition of standard and EPI-like FatNavs, to a total of 70 volumes each. The chosen motion
was step-like, i.e. regular pose changes with rest period between changes. Each scan used a
different number of readouts (noted n) for the EPI-like FatNavs. The FatNav parameters were
based on a protocol previously shown to be efficient for motion correction [48]. These were 2mm
isotropic resolution with 3

4
partial Fourier in both phase-encoding directions and 4× 4

undersampling. The flip-angle was 15°. The echo-time of the first readout was always 1.3 ms. The
volumes acquisition times are summarized in Table 4.1.

n 1 2 3 5 6 9 18 25
Volume TR [ms] 1382 884 737 611 575 520 454 440

Table 4.1 – Acquisition times of 2mm EPI-like FatNavs protocols on the 7T CIBM scanner.

The comparsion was done as follows: both types of navigators were separately co-registered. The
motion parameters from the standard FatNavs were linearly interpolated to the measurement times
of the EPI-like FatNavs before computing the RMSE between the two estimates. This RMSE is
interpreted as an indicator of the precision of the EPI-like FatNavs.
Examples of the navigators reconstructions are found in Figure 4.6. Clear lack of fidelity arises
above n ≈ 9. The excitation pulse was centered at -3.3 ppm, making the poor shimming quite
noticeable in this experiment, as residual water signal can be observed. Latter experiments and
applications of the EPI-like FatNavs use a -7 ppm centered pulse, creating exquisite fat selectivity
at the price of lower effective flip-angle for the same RF power. Motion parameters from one scan
are graphed in Figure 4.7, where excellent visual agreement is found between both navigator
versions. The obtained RMSE for all scans are presented in Figure 4.8.
As expected, the RMSE follows the same trend as the loss of image quality at high n values.
However, they are fairly stable up to n . 6. Keeping in mind the diminishing returns in terms of
acquisition time, these results motivated EPI-like FatNavs to motion correct an MP2RAGE
protocol.
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Figure 4.6 – Corrected reconstructions of 2mm EPI-like FatNavs for different numbers of readout-per-
kernel.
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Figure 4.7 – Example of n = 6 EPI-like FatNavs motion parameters time-courses comparison to the
equivalent standard FatNavs.
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Figure 4.8 – RMSE of the direct comparison experiment of 2mm FatNavs to 2mm EPI-like FatNavs.
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4.3 Applications and proof of concept

While the flip angle used in the direct comparison experiment was high, it could be much reduced
(to 3°) without major impact on the navigator images. The reason why this inclusion is interesting
is because it allows more flexibility. For example, it becomes feasible for the hardware to acquire
higher-resolution FatNavs without changing the host imaging sequence parameters. Along with the
decreased acquisition time, another advantage can be the reduction of induced magnetization
transfer induced by the navigator acquisition. More generally, but untested, it also becomes easier
to acquire FatNavs on lesser performance gradient inserts, as well as at lower field such as 3T,
where a -7 ppm binomial pulse is over 1 ms long.
The direct comparison results have as a natural next step to try and use EPI-like FatNavs to motion
correct an MP2RAGE protocol. The imaging resolution was 0.6 mm isotropic. Figure 4.9 is an
example of the motion correction achieved by the EPI-like FatNavs (2 mm, n = 5). The associated
motion parameters are shown in Figure 4.10. Clearly, the brain structures are more sharply
delineated in the corrected version, which shows much reduced ringing and blurring artefacts.
Making full use of the shorter navigator duration, 1.5mm EPI-like FatNavs with n = 4 were
acquired during a 0.6mm isotropic MP2RAGE scan, examples of which can be found in
Figure 4.11. In all acquired datasets, retrospective motion-correction using 1.5mm FatNavs was
equivalent to the correction based on 2mm downsampled navigators. It is possible that, for that
imaging resolution (0.6mm), the accuracy of the 2mm FatNavs is such that the resolution gain of
the 1.5mm navigators does not provide significant image enhancement.
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Figure 4.9 – Top: raw reconstruction. Bottom: motion correction using 2 mm EPI-like FatNavs (n = 5).
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Figure 4.10 – Motion parameters estimated from 2mm EPI-like FatNavs with n = 5. Retrospective
correction based on these motion parameters is shown in Figure 4.9.

Figure 4.11 – EPI-like 1.5mm FatNavs reconstruction with n = 4. Top: uncorrected. Bottom: corrected.
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Chapter 5

Segmented FatNavs

The idea behind segmented FatNavs (SegFatNavs) is to incorporate FatNavs into imaging
sequences which lack dead-time long enough to acquire block FatNavs. The proposed approach
focuses on GRE based sequences which represent a considerable proportion of short dead-time
imaging sequences. First the general definition of the SegFatNavs, their limitations and processing
is introduced. Then, SegFatNavs application to angiography for motion correction is demonstrated.
They are shown to correct even for sub-millimeter unintentional motion of high-resolution images.
A proof of concept experiment at 3T also proves the validity of the method at clinical field
strength. Also the fat-selective excitation pulse MT effects can be exploited to further enhance the
vessels-to-tissue contrast.

5.1 Segmented FatNavs

5.1.1 Definition

The acquisition strategy exploits the relatively short Tr (∼3-4 ms) of the FatNav kernels, and
inserts said kernel into the available dead-time of the host imaging sequence. Gradient echo (GRE)
is the basic block of many important imaging protocols, and finds many applications at ultra-high
field, including susceptibility weighted imaging [100], quantitative susceptibility mapping and
time-of-flight angiography [75]. The inclusion of segmented Fatnavs into a 3D GRE is depicted in
Figure 5.1, where nSegments is the number of navigator readouts acquired after each imaging
kernel acquisition.

This approach is by design restricted to low values of nSegments, as otherwise the effective
repetition time between the imaging GRE kernels becomes much longer than the value of the
navigator-free protocol. The temporal resolution of the FatNavs is defined as the time during which

Run FatNavs GRAPPA calibration scan

For iPhaseEncode from 1 to nPhaseEncode

For iSliceEncode from 1 to nSliceEncode

Run imaging GRE kernel (iPhaseEncode,iSliceEncode)

For iSegment from 1 to nSegments

Run FatNavs kernel

Figure 5.1 – Ascending cartesian GRE imaging acquisition scheme with included SegFatNavs. An extra
loop over slabs can be easily added above the iPhaseEncode one for multi-slabs imaging protocols.
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a full navigator k−space is measured. As discussed previously, the low number of segments imply
that the typical temporal resolution is between 2 and 3 seconds for 4 mm, single echo FatNavs.
This implementation is thereby limited to capture low temporal resolution motion patterns if one
tries to keep the potential additional scan-time to a minimum.

5.1.2 Implementation details

Some technical implementation details will be now be detailed. In the case nSegments > 1, the
FatNavs k−space must be acquired in a reordered fashion, exactly as EPI-like FatNavs described in
§4. Indeed, the imaging sequence kernel having a typically longer duration than the FatNavs
kernel, the fat magnetization is not equal between readouts if several are acquired in a row. Rather,
different steady states are reached for all values of iSegment. This in turn implies an amplitude
modulation on the measured navigator signal and hence the k−space acquisition ordering has to be
segmented.
In practice, the segmented direction is either the phase or the slice direction of the navigator. After
the navigator parameters are fixed, the navigator k−space has effective size Np and Ns in these
directions respectively. These sizes include partial Fourier and under-sampling, so that the number
of FatNavs kernel needed to measure one 3D volume is NpNs. The algorithm to chose the
segmented direction is as follows.

- If both directions can be split into nSegments, then the direction which has the largest size is
chosen as the segmented one.

- If only one can be split, then it is chosen.

- If neither can be split, then this value of nSegments is considered invalid, and the sequence
cannot be run on the scanner.

The last condition can seem restrictive, but in practice is not very relevant. Indeed using a low
number of segments (nSegments ≤ 3) accounts for most FatNav protocols. The navigator
parameters, especially the FOV, can also be tuned slightly in order to be “segmentable”. Finally, it
could be possible to cope with such parameters by introducing dummy kernels, i.e. without signal
acquisition. It was however not worthwhile to be able to account for such cases when coding the
sequence, as the gain was minimal for potential practical applications.
Extension of the FatNavs kernel to an EPI-like FatNavs kernel for SegFatNavs can be done, but
requires nSegments = 1, as otherwise relaxation effects both during the EPI readouts and between
the navigator kernel calls would combine and induce non-smooth signal amplitude modulation
across k−space. This is certainly more time efficient than separate, single readout kernels, but does
not allow dual-echo FatNavs to track B0 fluctuation for example.

5.1.3 Acquisition ordering schemes

Now the host imaging sequence k−space sampling scheme shall be discussed. Figure 5.1 assumes
an ascending k−space acquisition ordering. Also commonly used are elliptical centric acquisitions
(called centric from here on), which measure the region closest to the k−space center in a square
spiral trajectory, sampled on the standard Cartesian grid. It was shown to further enhance venous
suppression in acquisitions using contrast agents [101]. Furthermore it may potentially reduce the
large-scale impact of bulk motion as the center of k−space is more likely to be sampled during
identical subject position. When coupled with partial Fourier, the acquisition is split in a square
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spiral part centered at kPhase = kSlice = 0 and standard ascending acquisitions to acquire the
k−space edges which are left after the center square has been measured. Figure 5.2 shows a
graphical representation of both acquisition schemes. The implementation of SegFatNavs is
identical in both cases, meaning the navigator kernel(s) is(are) run after the imaging kernel. Of
course, in both cases, the slice and phase directions may be exchanged, but we shall keep this
convention as it was used for all acquired data.

Figure 5.2 – k−space acquisition ordering. Left is ascending and right is centric. The black cross
represents the k−space center, and the color line links successive acquisitions.

Focusing on ascending acquisitions, in most cases not all FatNavs volumes are acquired over the
same values of iSliceEncode, as this would only be true if

NpNs/nSegments = nSliceEncode. (5.1.1)

This is equivalent to say that each FatNav would be acquired during exactly the inner loop of the
imaging GRE. However (5.1.1) is rarely satisfied, especially if the goal is to include FatNavs into
pre-existing imaging protocols without having to fine-tune them. This is clearly different from the
snapshot FatNavs approach, and hence not all FatNavs volumes are a priori expected to look
exactly alike, mainly due to different eddy currents states during volume acquisitions. It turns out
that these differences can introduce changes in the FatNav images significant enough to induce
slight bias in the estimated motion (and B0 fluctuation estimations, as shall be shown in §6.2.1).
However they are systematic and predictable, as they fully originate from the sequence acquisition
scheme. The next section therefore focuses on how to predict and correct these non-physiological
components.

5.1.4 Artefacts and correction procedure

The discussion first focuses on ascending acquisitions. Due to the cyclic nature of the acquisition,
the artefacts in the motion parameters are found at specific frequencies. After many scans acquired
with varying SegFatNavs and inner loop periods, a heuristic rule was found to predict the artefacts
fundamental frequency. These scans could easily be performed on a phantom, as the artefacts are
independent of the contrast and only depend on the sequence parameters. This is exemplified in
Figure 5.3, where the non-central sharp peaks are the artefacts. Indicated in the example spectra
are the SegFatNavs period (NpNs/nSegments) and the length of the inner loop of imaging sequence
(nSliceEncode). These periods are unitless and should be understood as the corresponding number
of calls of the imaging sequence kernel. In some cases, the artefacts have not only a fundamental
frequency, but also harmonic components at integer multiples of the latter. The predicted artefact
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period is, as can be expected, the least common multiple of the SegFatNavs period and the inner
loop length. While consistent in most of the tested cases, this simple rule sometimes fails as shown
in Figure 5.4, where only the fifth harmonic component is amplified. Despite a lot of arithmetic,
including the SegFatNavs internal ascending acquisition itself (with inner and outer loop lengths
equal to 12 and 9 respectively), no clear reason was found to explain the dominance of the fifth
harmonic in this case. For some imaging protocols (i.e, values of (nSliceEncode)), making some
SegFatNavs kernels dummy, i.e. without signal sampling, could help reach the divisibility condition
and make every SegFatNavs acquisitions equivalent, but it would also come at the price of lower
temporal resolution of the motion estimates .
In the case of centric acquisitions, no clear rule was found, but some protocols had similar sharp
artefact resonance(s).
Interestingly, in all acquired angiography data, using raw (i.e. with artefacts) or filtered motion
parameters never made any obviously detrimental visual difference in the reconstructions. While
this is certainly convenient, it makes no sense to use non-physiological correction parameters and
hence the filtered version was always used.
In summary, it was found that setting a protocol and measuring its potential artefacts on motion
estimates on a phantom was sufficient for all practical purpose. As a consequence, no further
research was conducted to establish a more general rule for artefact determination.
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Figure 5.3 – Several examples of the motion parameters spectra for different scanning parameters.
Translations and rotations are combined using sum-of squares and scaled for visual convenience. The
dashed black lines represent the inverse of the least common multiple of the SegFatNavs period and the
inner loop length, as well as multiples thereof.

Figure 5.4 – Puzzling example where the artefact appears only at the fifth harmonic of the least common
multiple of the SegFatNavs period and inner loop period.
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5.2 Application: Time-of-Flight

This section will show application of the SegFatnavs for time-of-flight (TOF) angiography. First
the homemade TOF sequence implementation will be described, followed by motion correction
results of high-resolution protocols at 7T, for both ascending and centric acquisition schemes. The
magnetization transfer induced by the SegFatNavs is also studied and discussed. Finally, the
transfer of the approach to a clinical 3T scanner will be introduced.

5.2.1 Sequence description

The TOF sequence aims at a bright blood signal and a low stationary tissue signal, enabling high
vessels-to-brain contrast. The idea is that blood magnetization flowing into the imaged slab will be
at thermal equilibrium magnetization, whereas the imaged slab magnetization has seen many
previous RF pulses, and hence provides less signal. The rule is therefore for the GRE kernel to have
a short echo time, for reduced blood signal decay, and short repetition time, for lower stationary
tissues signal. This angiography approach is certainly the most basic but has excellent imaging
capabilities [75]. Of course, its simplicity makes it susceptible to many undesired effects. Vessels
going out and in again of the imaged slab appear less and less bright along the path of the blood
flow. Also, additional modules are needed in order to image arteries only and remove the venous
signal. Because the clinical sequence proprietary code was not easily obtainable for the CIBM 7T
scanner, a home-made version was coded and shall be described now. The complete sequence
kernel, including SegFatNavs, is drawn in Figure 5.5.

Figure 5.5 – Homemade TOF sequence sequence kernel including venous signal suppression, flow-
compensated GRE kernel and SegFatNavs acquisition.

The implemented RF pulse was a TONE pulse, acronym of “tilted optimized nonsaturating
excitation” [102]. This pulse is designed to produce a lower flip angle where the blood flow enters
the slab, and larger one where the blood exits the slab, thereby mitigating the effects of lower
available longitudinal blood magnetization due to RF pulses during the slab traversal. The
routinely chosen excitation profile is

B̃1(ω) =

{
B1(1 + p ω

ωm
) if |ω| ≤ ωm

0 otherwise
(5.2.1)
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where ω = 0 is the center frequency of the slab, p is the linear slope of the flip angle profile and 2ωm
is the frequency range of the slab, defined as the slice-selection gradient multiplied by its thickness.
Therefore, in the small flip angles regime, the pulse is given by the Fourier transform giving

B1(t) ∝ sin(wmt)

t
+ i

p

ωm

wmt cos(wmt)− sin(wmt)

t2
. (5.2.2)

(5.2.2) is nothing other than the addition of a sinc pulse and i times the time derivative of a sinc
pulse. In practice, the pulse is truncated to a chosen duration and hence (5.2.2) is multiplied by a
Hann filter to reduce Gibbs ringing.
Flow compensation was implemented in all three directions by adding one extra gradient on all
axes allowing to null the gradients first moments (at echo time for the readout direction).
While it is possible to conceive a zero-phase version of the RF pulse, which is basically a
time-shifted expression of (5.2.2), it would need to be tailored to account for the slice-selection
gradient ramp-down. As such a version of the pulse would not require a refocusing slice gradient by
construction, slightly shorter echo-time could have been achieved had such version been
implemented, but results obtained without it were judged good enough to leave it as a potential
extension. Another extension could be to VERSE the excitation pulse to reduce power deposition
[103]. This was not attempted as the proposed sequence proved more than sufficient to test
whether SegFatNavs are, in practice, usable as motion correction navigators.
The venous saturation used was a module coded by Siemens, and the saturation band was placed
above the imaged slab. In multi-slab acquisitions, it tracks the position of the currently imaged
slab.
Direct comparison of the home-made sequence (without navigator) to the the Siemens product
sequence was carried out and no apparent differences were observed. This opened the way to
investigate the motion correction ability of SegFatNavs for TOF angiography. First the focus will
be on protocols using the ascending k−space acquisition ordering, then on those using centric
ordering.

5.2.2 Motion correction at 7T: ascending ordering

Acquisition

The following results were obtained on healthy volunteers who were asked to stay still. Two axial
high-resolution isotropic datasets were acquired, with a voxel size of 0.4 mm and 0.25 mm
respectively. The imaging slabs were 8.3 cm and 4 cm thick respectively and aimed to image the
Circle of Willis. The TONE nominal flip angle was 20° with a slope factor p of 50% in the
foot-head direction [104]. The SegFatNavs flip angle was chosen as high as possible while still
respecting standard SAR constraints. The acquisitions used nSegments = 1. Venous saturation was
set at 45°. The imaging and navigator parameters are summarized in Table 5.1. The GRAPPA
reference lines for the SegFatNavs were acquired in a pre-scan (2.3s) for each dataset. The
navigator temporal resolution was 2.25s / 2.85s for the 0.4mm / 0.25mm scan, respectively.
SegFatNavs were retrospectively co-registered using SPM to obtain the time-courses of the rigid
body motion parameters, and retrospective motion correction of the time-of-flight sequence was
performed coil-wise using a NUFFT adjoint operator approach. Finally, maximum intensity
projections (MIPs) were performed on sum-of-squares images, and brain masks (if used) were
always obtained from the motion corrected reconstruction for fairer comparisons.
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0.4 mm 0.25 mm SegFatNavs

TE [ms] 4.6 6 1.6
Effective TR [ms] 20.8 26.4 -
Undersampling - - (4 , 4)
Bandwidth [Hz/pix] 750 510 3910
Matrix size 449× 476× 208 645× 760× 160 48× 64× 64
Partial Fourier (Phase,Slice) (3/4 , 3/4) (3/4 , 3/4) (3/4 , 3/4)

Total Acquisition Time 18min17s 25min33s -

Table 5.1 – Parameters of the high-resolution TOF protocols and of the included SegFatNavs.

Results and discussion

Figure 5.6 shows an example of a SegFatNav volume , and the range of the estimated motion for all
scans (calculated independently for each motion parameter) is presented on Table 5.2.

Figure 5.6 – Example of the 4 mm SegFatNavs acquired during the 0.25 mm TOF.

Volunteers 1 and 3 remained very still, whereas volunteer 2 exhibited some mild motion. The
uncorrected and corrected images of a 0.4 mm scan are compared on Figure 5.7 (volunteer 2),
where the sagittal MIP was performed after brain extraction. The vessel sharpness is greatly
increased in the corrected reconstruction.
The 0.25 mm scan of the second volunteer clearly confirms the need of motion correction for
high-resolution protocols in even slightly uncooperative subjects. Figure 5.9 is a focus on the circle
of Willis of this scan, where significant vessels sharpness increase is obtained by motion correction.
The associated motion parameters can be found in Figure 5.9.
Figure 5.11 shows the 0.25mm scans results : the top image (volunteer 1) demonstrates excellent
venous and fat suppressions, while the bottom zoom (volunteer 3) resulted in slightly higher vessel
signal and better contrast after correction, leading to enhanced vessels visualization in this small
motion case (translations < 0.53 mm, rotations < 0.63°). The SegFatNavs motion of these scans
are shown in Figure 5.12.
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Translation range [mm] Rotation range [°]

X Y Z Pitch Roll Yaw

Volunteer 1
0.4 mm scan 0.54 0.27 1.12 0.54 0.69 0.56
0.25 mm scan 0.39 0.38 0.62 0.29 0.44 0.21

Volunteer 2
0.4 mm scan 0.67 0.65 2.78 1.06 1.16 0.43
0.25 mm scan 0.62 0.99 2.97 1.74 0.62 0.49

Volunteer 3
0.4 mm scan 0.69 0.24 0.76 0.51 0.7 0.32
0.25 mm scan 0.52 0.19 0.43 0.33 0.62 0.27

Table 5.2 – Motion range, defined as the difference between the maximum and the minimum value, for
all presented 0.4 mm and 0.25 mm scans.
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Figure 5.7 – Brain masked sagittal MIP of raw (top) and motion corrected (bottom) reconstructions for
the 0.4 mm TOF. Associated motion parameters can be found in Figure 5.8.
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Figure 5.8 – Motion parameters of the 0.4 mm scan presented in Figure 5.7.

Figure 5.9 – Focus on the Circle of Willis for a 0.25 mm scan (volunteer 2). Raw (left) and motion
corrected (right) reconstructions. Figure 5.10 shows the estimated motion parameters for this scan.

Figure 5.10 – Motion parameters of the 0.25 mm scan presented in Figure 5.9.
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Figure 5.11 – Small motion 0.25 mm scan MIPs. Top: volunteer 1, bottom: volunteer 2.
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Figure 5.12 – Motion parameters of the 0.25mm scans presented in Figure 5.11. Top: volunteer 1,
bottom: volunteer 2.
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5.2.3 Motion correction of centric acquisitions

As it is common in the clinical setting to use centric acquisitions, this part of the thesis is to check
the applicability of SegFatNavs to such protocols.

Acquired protocols

The acquired protocols were 0.5 mm isotropic axial scans, with 3/4 partial Fourier in phase and
slice directions. The imaged slab was 6.4 cm thick and the echo time was 5 ms, with an effective
repetition time of 20.7 ms. TONE and venous saturation parameters were as in §5.2.2. Two
slightly different protocols were acquired, both with nSliceEncode = 108, accounting for partial
Fourier. One scan had equal SegFatNavs period (108), and the other a slightly different value (96).
These scans shall be called cycle-matched and cycle-unmatched respectively. Of course the notion
of cycle length only makes sense for the outer edges of k−space acquisition, as depicted in
Figure 5.2. In both cases, SegFatNavs were 4x4 undersampled 4mm SegFatNavs, with
nSegments = 1, but with slightly different FOV in the left-right direction. Scan durations were 11
minutes. The reference pose is defined as the last fully sampled SegFatNav, as the acquired
trajectory passed by the k−space center last.
Volunteers were always asked to stay still. A few representative scans of the total acquired data
shall be presented, as results are similar to the ones from the ascending acquisitions.

Results

Figure 5.13 shows an example of achievable motion correction by SegFatNavs for the cycle-matched
centric acquisition described above, with the detected motion shown in Figure 5.14. All vessels a
noticeably sharper after correction. Smaller vessels emerge after correction, while in the raw
reconstruction they were undetectable. No filtering of the motion parameters was necessary in this
case.
As for cycle-unmatched acquisitions, an example of small motion detection and correction is shown
in Figure 5.15. The motion parameters are shown in Figure 5.16 and were filtered. However,
correction based on the unfiltered parameters were visually indistinguishable from the filtered based
reconstruction. While the difference between filtered and unfiltered corrections was not
distinguishable at this imaging resolution, non-physiological components would have the same
amplitude for arbitrarily higher in-plane resolution, reinforcing the idea that using the filtered
version is the best practice in the general case.
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Figure 5.13 – Raw (top) and motion corrected (bottom) 0.5 mm centric cycle-matched acquisition.
Motion parameters are plotted on Figure 5.14.
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Figure 5.14 – Estimated motion during the 0.5 mm centric cycle-matched scan shown in Figure 5.13.

Figure 5.15 – Zooms on raw (left) and motion corrected (right) reconstruction of a 0.5 mm centric cycle-
unmatched acquisition. Yellow arrows indicate regions of signal enhancement and blurring reduction.
Associated motion parameters are presented in Figure 5.16.

Figure 5.16 – Filtered motion parameters associated to Figure 5.15. Notice the very small range of
motion.
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5.2.4 SegFatNavs for inducing magnetization transfer

Historically, the 1− 2̄− 1 binomial pulse, with no phase-evolution time, was one of the first
proposed magnetization transfer (MT) inducing strategy for TOF angiography [105] where the
additional MT effect can further suppress the signal of static tissues, enhancing the vessel contrast.
This short section explores the MT effect obtainable by SegFatNavs and then compares it to the
vendor supplied, default MT weighted acquisition.

SegFatNavs flip angle impact

In this first test, two 1mm isotropic TOF acquisitions, using low and high SegFatNavs flip angle
respectively, were directly compared. Example slices are shown in Figure 5.17. The static tissue
signal is lower in the high flip angle image, as expected. Retrospectively, this motivates why the
SegFatNavs flip angle was chosen as high as possible in §5.2.2.

Figure 5.17 – 1mm isotropic images with low (left) and high (right) SegFatNavs flip angle. The images
are displayed on the same windowing scale. The higher SegFatNavs flip angle induces lower brain tissues
(and fat) signals in the TOF image.

Comparison to default MT pulse

The second test compared using the Siemens built MT module, which is a Gaussian pulse with a
1200 Hz frequency offset, 10ms duration and 500° flip-angle navigator free acquisition, to a 90°
SegFatNavs acquisition. Because of the SAR constraint of the Siemens MT pulse, an effective
repetition time of 60 ms was used in both scans. Figure 5.18 shows a combination of both
acquisitions, and no clear contrast differences are observable. Figure 5.19 shows the signal ratio of
both acquisitions after 2mm 3D tukey filtering. The ratio being very close to 1 in the brain shows
the equivalence of the MT induced by both methods.
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Figure 5.18 – 1mm isotropic acquisitions for comparing standard MT module to MT induced by SegFat-
Navs. The left side of the vertical white line is using the Siemens MT module, and the right side high flip
angle SegFatNavs. White / gray matter contrast is visibly identical in both acquisitions.

Figure 5.19 – Siemens MT module image divided by high SegFatNavs flip angle image after 2mm 3D
tukey filtering. The ratio being very close to one indicates equivalent MT effects in both acquisitions.
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Discussion and concluding remarks

In practice, a compromise has to be found between venous suppression, SegFatNavs flip angle and
power deposition limits (SAR). For a typical repetition time of around 20 ms, as is common for
TOF protocols, acquired data suggest that 45° venous suppression is sufficient, and while
SegFatNavs flip angle can often reach 60° in such conditions, the added advantages to the final
maximal intensity projection images were not actually clear-cut. Therefore, as long a sufficient
venous suppression takes place, equivalent final image quality can be reached for lower SegFatNavs
flip angle. This led to try to aim at sharper slab excitation, which is equivalent to adding zero
crossings to the TONE RF pulse. Results of these tests found that the previously used number of 5
proved to be sufficient in all tested conditions, leading to the results presented previously in §5.2.2,
§5.2.3.

5.2.5 Transfer to clinical field strength

The implementation of SegFatNavs was also tested at the Lausanne Hospital (CHUV). For this 3T
implementation, the proprietary code from Siemens clinical sequence was available, and hence the
sequence differed slightly to the home-made 7T version. The main difference was that the TONE
excitation is a zero-phase version, allowing for slightly shorter echo time. Unlike at 7T, the venous
saturation flip angle can be put at 90° while staying within the safety power deposition limits.
Also, the Siemens sequence acquires the k−space center first (center-out acquisition scheme),
opposite to the 7T implementation.
On the other hand the CHUV scanner is a PRISMA model, and has lower gradients slew-rates.
Overall this meant the repetition time of the sequence had to be lengthened to insert the
SegFatNavs acquisition, eventhough all SegFatNavs were centered at -7 ppm from water in order to
shorten the fat excitation duration.
As a proof of principle, a centric 0.5×0.5×1 mm axial scan was acquired, during which the subject
deliberately performed a nodding motion, similar to repositioning his head in search of better
comfort. Figure 5.20 shows the gain in vessel delineation as expected. The detected motion can be
found in Figure 5.21.
SegFatNavs were also added to a routine TOF clinical protocol. This routine protocol is a 0.5 mm
isotropic whole brain acquisition, divided in six slabs. The effective repetition time had to be
increased from 21 ms to 25 ms in order to include SegFatNavs. This protocol showing similar image
quality than the non-navigated one, it replaces it when a TOF contrast acquisition is requested for
a patient. An example of the 4mm navigators is shown in Figure 5.22. Clearly the imaged slab and
the venous saturation slab also impact the fat signal, as the two darker horizontal bands in the
coronal and sagittal planes illustrate. The slabs are acquired sequentially, and hence all processing
steps are slab specific in order to cope with these interactions. All navigator volumes acquired
during a slab are registered to the reference one (for this slab), and the slab data is motion
corrected in the same manner as previously. The slabs are combined after individual correction.
However, up to now, no data showed any significant motion artefacts in the MIPs, and the obtained
corrections are for all relevant purposes identical to the uncorrected version.
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Figure 5.20 – Raw (left) and motion corrected (right) 3T TOF 0.5×0.5×1 mm protocol, with a deliberate
nodding motion during the scan.

Figure 5.21 – SegFatNavs during a 3T TOF 0.5×0.5×1 mm protocol, with a deliberate nodding motion
during the scan.

Figure 5.22 – Example of 4mm SegFatNavs incorporated in the clinical TOF protocol at 3T.
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5.3 Summary and outlook

In this chapter, it was demonstrated how SegFatNavs can visibly help to restore high image quality
of high resolution angiography protocols. Consideration of the imaging sequence k−space ordering
and overall parameters should be kept in mind during the processing to prevent non-physiological
artefacts in the estimated motion. MT effects can be tuned to further enhance TOF imaging if
needed, and implementation at 3T proved successful for high-resolution acquisitions with moderate
motion.
While only the application to TOF angiography was presented, the modularity and versatility of
the SegFatNavs approach opens the way to many other imaging sequence motion navigation.
Chapter §6 will study an extension of the SegFatNavs to B0 fluctuation monitoring, and jointly
with FID navigators their application to retrospective field and motion correction in a long echo
time GRE sequence.
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Chapter 6

Combining segmented FatNavs and FID
navigators

While the SegFatNavs approach allows for varied implementations, it suffers from relatively low
temporal resolution, typically ∼ 2 s for a 4 mm navigator resolution. This might often be
unsatisfactory if one aims to sample breathing. This chapter will introduce the FID navigators
(FIDNavs), and how to implement both navigators into GRE-like sequences to obtain higher
temporal resolution motion information. As example applications, combination with dual-echo
SegFatNavs to correct for field fluctuation will be presented, as well as a sudden intentional
nodding experiment.

6.1 FID Navigators

6.1.1 Description and relation to motion

The free induction decay (FID) signal is, by its standard definition, the acquisition of the center of
k−space. Spatial information does exist in the signal y, as for each receive channel c it is weighted
by the associated sensitivity map sc:

yc(t) =

∫
sc(x)m⊥(x, t)dV (6.1.1)

where m⊥ is the total transverse magnetization. Neglecting relaxation during signal acquisition and
under motion modeled by x(t) = R(t)x0 + d(t), the FID signal becomes

yc(t) =

∫
sc(R

−1(x− d))m⊥(x0)dV. (6.1.2)

FID navigators are easily introduced into almost any imaging sequence, because the duration of the
navigator acquisition is very short, under 1 ms. The signal variation has been used to detect
motion [54], and possibly trigger image navigators for prospective correction in MPRAGE sequence
[55]. As can be seen from (6.1.2), there is no direct way to estimate motion from the FID signal
without prior knowledge. Labeling the six motion parameters by p and the signal from all receive
coils by y, the goal is to find a mapping model F such that

p(t) = F (y(t)). (6.1.3)
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The most natural expansion is the first order Taylor development of (6.1.2), giving a simple linear
model

y(t) = y(0) +
∑
i

pi(t)

∫ [
∂

∂pi
sc(R

−1(x− d))

]
p=0

m⊥(x0)dV +O(p2). (6.1.4)

In practice, (6.1.4) has to be inversed during a calibration process. A standard pseudo-inverse
approach is thereby used to solve the associated model parameters A and C where

p(t) = C + Ay(t). (6.1.5)

While according to (6.1.4), the constant term C should be linked to A and the FID signal at the
time of reference, it was found that fitting for it provides better performance, especially if the FID
navigators have a higher temporal resolution than the calibration data providing p, as will be the
case for the presented applications to segmented FatNavs (SegFatNavs from §5) in the next section.
Using external optical tracking to provide the calibration data, several linear models were tested
[106]. The best accuracy was obtained from considering both the real and imaginary parts of the
FID signal, which fits the natural expectation from (6.1.2).
While it is assumed that the range of motion is such that the sensitivity map can be well
approximated as static, the change of subject pose induces a load variation to the coil, and slightly
changes the sensitivity profiles of the receive channels (at a fixed location). However, as long as
these variations are smooth and sufficiently slow, they are included in low order expansion models.
Finally, it has been proposed to use two pre-scans where the subject is still, one acquired with the
body coil and one with the surface coil array to estimate the sensitivity [107]. If the pre-scans have
the same contrast than the FID navigator will have in the imaging sequence, the FID signal for a
given motion state can be simulated from the pre-scans to train the model. In that study the
second order expansion increased the motion estimates accuracy for motion above 4 mm or °, but
the proposed model only used the magnitude of the FID signal.
In summary, the FID navigators have excellent temporal resolution, but very poor spatial
information, and therefore require some model based on prior knowledge of the motion estimates.
This motivated the combined use of FIDNavs and SegFatNavs to try and combine the advantages
of both methods: the accuracy of motion estimates from the SegFatNavs and the high temporal
resolution from the FIDNavs.

6.1.2 Implementation

There are two ways to acquire FIDNavs without introducing additional RF pulses: either in the
imaging sequence or in the SegFatNavs. Both offer the same temporal resolution, with the
advantage of higher SNR in the SegFatNavs case if more than one navigator is acquired after each
imaging kernel call.
Due to the imaging sequence using a slab selective excitation in most protocols, a dilemma arises.
In order to acquire a true FID signal, a slice-selection gradient rewinder is required as the k−space
position has non-zero component in the slice direction (in the routine case where zero-phase
excitation pulses are not used). While completely doable in theory, in practice the slice gradient
rewinder and encoding are combined in a single effective gradient. In the Siemens GRE proprietary
code, the implementation of a true FID navigator is therefore not a trivial alteration due to all
subsequent timing computations, such as flow compensation in the slice direction. On the other
hand, this code is very versatile and allows the acquisition of many different protocols. The
compromise chosen by Maryna Waszak of the Siemens team was to acquire the navigator between
the excitation and the slice encoding. Therefore, the signal is not at k−space center. However, in a
very practical mindset, the reasoning of modeling the navigator signal variations as linear functions
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of the motion parameters is still expected to hold. With this in mind such navigator will still be
called FIDNavs, even if they do not correspond to the strict definition. Conversely, FIDNavs
included in SegFatNavs can be acquired directly after the binomial excitation and are the k−space
center signal, because the excitation is not spatially selective.
A priori, including the FID into the SegFatNavs would be advantageous because of the fat spatial
distribution. Indeed it can be expected that the receive channels FID signals are more different
from one another due to the larger difference in the associated coil sensitivity profiles. However it
was found that the large number of channels (≥ 32) usually available for head imaging reduces this
advantages, as enough channels have significantly different profiles on the water signal domain to
robustly fit the six motion parameters..
The FIDNav signal is defined as the mean of all the samples during one FIDNav acquisition, leaving
nc complex values per FIDNav, where nc is the number of receive channels. In practice, roughly the
first half of the acquisition has to be discarded. This is because the navigator is acquired as soon as
possible after the end of the excitation (RF pulse and potential slice-selective gradient) and hence
residual signal modulation effects are still observable at the beginning of the FID acquisition, see
Figure 6.1. The intial fluctuation are not explainable by motion, and hence are discarded.
Finally, a yet undiscussed effect can take place in spatially selective imaging. Through slab motion
induces spin history effects which is expected to affect the FID signal as magnetization closer to
thermal equilibrium enters the slab while steady state magnetization leaves it. This means an
overshoot is expected under such motion, which may become significant for thin slabs. In such
cases, it is doubtful the FID approach can faithfully predict motion before the slab magnetization
reaches equilibrium again. More generally, this effect becomes only large if the motion scale is of
the order of the slice excitation profile side-lobes. This would simultaneously contradict the
retrospective motion correction approach due to the imaged anatomy changing significantly during
the image acquisition.

Figure 6.1 – Magnitude of the mean FID signal across all acquisitions. Six receive channels are displayed.
The initial fluctuations are discarded.

6.1.3 Artefacts

Similarly to the SegFatNavs artefacts, the FID signal being acquired every TR, it is sensitive to
variations in eddy currents. Tests were made on a phantom in acquisitions without SegFatNavs,
where the imaging sequence slice resolution and TR was varied. The default ascending k−space
ordering as well as a smoother scheme, presented in Figure 6.2, were also compared.

127



Figure 6.2 – Default ascending k−space acquisition order (left) and modified smoother version (right).

The FIDNavs signal for both trajectories is shown in Figure 6.3. The peaks in the default Siemens
trajectory happens when the inner loop of the 3D GRE starts over. This physically corresponds to
the electric current in the gradient coil having the maximum positive value at the end of loop and
having the largest negative value at the beginning of the loop. Roughly speaking, this reverses the
eddy currents and hence induces a transient state (the peak). Afterwards, the system goes back to
a constant change between kernel calls as visible by the low positive slope before the next loop
iteration. In the smoother trajectory, the electric current variation is as small as possible, and
hence no large peaks occur, but the slope changes polarity every other cycle. This corresponds to
one polarity for progressing in the right direction in Figure 6.2, and the other for progressing left.
Increasing the repetition time and hence the dead time before excitation, the artefacts magnitude
decreases as expected. However even a 10 ms increase does not suffice to produce artefacts free
navigators, see Figure 6.4. Also, decreasing the slice resolution and hence the maximum electric
current has the same effect. Even at low resolution (2mm) and long repetition time, the artefact
are significant and should be removed in order for the navigator signal change to be of physiological
origin.

Figure 6.3 – FIDNavs signal for both trajectories of Figure 6.2 without SegFatNavs.

Figure 6.5 shows the impact of SegFatNavs inclusion. As is naturally expected, an additional
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Figure 6.4 – FIDNavs signal of the smoother trajectory when changing the repetition time (top) or the
slice resolution (bottom). The signal is smoothed in the resolution comparison for visual convenience.

repetitive fluctuation cycle linked to the SegFatNavs can be observed. It turns out that frequency
analysis of the FIDNavs signal shows two fundamental frequencies associated with the SegFatNavs.
The first is the inverse of the temporal resolution of the SegFatNavs. The second corresponds to
the length of the inner loop of the SegFatNavs. For example, if the segmented direction has 12
steps and nSegments = 3, then the associated FID signal artefact will happen every 4 navigators.
Despite the major artefact reduction of the smoother trajectory, it presents drawbacks. Due to its
definition, it is highly similar every other phase encode steps in k−space (see Figure 6.2), so that
eddy currents are exactly the same for every odd (or even) phase encode lines, but not between even
and odd. This implies a slight FOV/2 ghosting in the phase encode direction in the final image.
This was only noticeable in high-resolution phantom scans and not really significant in vivo. Also,
as the FIDNavs cyclic artefacts are not removed but only diminished, they still need to be dealt
with. The frequency of the smoother trajectory is half of the Siemens standard fully ascending
trajectory, which implies that twice more harmonics need to be removed. Therefore, after careful
considerations, the chosen implementation of the FIDNavs uses the Siemens trajectory and filters
out the artefact frequencies before using the FIDNavs in conjunction with motion information.
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Figure 6.5 – FIDNavs signal for both trajectories of Figure 6.2 with SegFatNavs (nSegments = 2).

6.1.4 SegFatNavs as prior knowledge to the FID motion model

Here the procedure to use the motion information derived from the SegFatNavs as the training
data to FIDNavs will be described.

1. The FIDNavs signal and motion parameters are filtered in the frequency domain to remove
the sharp artefacts peaks (also see §5.1.4). The following filtering rule produced satisfactory
results. As each fundamental frequency peak is of the form 1/M , where M is the number of
imaging kernel calls needed for a cycle to repeat, the filter is defined as zeroing the spectra
around all harmonics within a window of width 4

M2 . The square comes from the
approximation of the difference to a cycle of length M + 1, i.e.

1

M
− 1

M + 1
≈ 1

M2

for large M.

2. Due to the vast difference in temporal resolution between both navigator types, ones needs to
define a representative FID signal to associate with each SegFatNavs motion estimate. Let tf
be the times of measurement of the FIDNavs and yf the associated signals. yf is a 2nc
dimensional vector at each time-points, where the factor 2 is because the real and imaginary
part are concatenated.

Let the SegFatNavs measurement times (of k−space center) be called ts and the associated
motion parameters ps. One must define a mapping function T such that

T (yf )→ {yf}s (6.1.6)

where {yf}s is the representative FIDNav signal for the SegFatNav s and its motion
estimates.

The natural candidate for T is a combination of the FIDNavs acquired at times closest to ts.
In practice the mean of the Ncalib closest FIDNavs was chosen.

3. We can now turn to find the mapping functions between the representative FID signal and
the motion parameters. In the spirit of [106], this was done by solving the linear model
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ps = A{yf}s + C (6.1.7)

for A and C. In practice, the efficient and numerically stable way of solving such equation is
to rescale the 2nc FID signals to a value close to 1, and add a dummy constant FID signal
equals to 1, leading to the usual pseudo-inverse inversion problem.

4. With the mapping in hand, it is applied back to the original FIDNavs to produce high
temporal resolution motion estimates pf

pf = Ayf + C. (6.1.8)

Due to the very short repetition time, of less than 50 ms in almost all cases, the subject pose
is not expected to range significantly over few FIDNavs, therefore in practice pf is temporally
smoothed. Due to the linearity of the mapping, it is equivalent to apply the mapping to
smoother FID signal. Roughly speaking, it amounts to trade some (unnecessary) temporal
resolution for higher SNR of the motion estimates. The filter used in this work is the Tukey
filter, which is defined as

f(ν) =


1 if |ν| < C

cos2

((
|ν| − C

)
P − C

π

2

)
if C < |ν| < P

0 if |ν| > P

(6.1.9)

for passband P and constant window C. It allows a reduction of Gibbs ringing while
suppressing the high-frequency components and keeping the low frequencies ones unaltered.

The validity of the linear model was confirmed in practice in two ways. First, it can be thought a
priori that, in order to capture non-linear effects, steps 3 and 4 can be applied repeatedly in a
sliding window approach, allowing the combination of multiple local (in time) linear expansions.
However, this approach did not produce any significantly different final motion estimates or
associated corrections. Second, in datasets with many SegFatNavs volumes, a second order of the
FID signal can be incorporated into the mapping and still stay a well posed inversion problem. The
difference of the estimated motion to the linear model results were insignificant for compliant
subjects. Of course while these observations are subject (or more precisely motion) specific, their
redundancy, repeatability and concordance with [106] suggest the linear model as a reasonable
assumption. One exception where the quadratic model proved superior will be presented in §6.2.3.
Finally, if the SegFatNavs are dual echo, estimates of the B0 temporal variations can be computed
as in §3. Then, the exact same calibration and temporal resolution enhancement can be applied to
the field fluctuation parameters.
The value of Ncalib should a priori be very important. A trade-off between staying close to the
model and insure the motion state is close to SegFatNav estimate (small Ncalib values) and larger
SNR (large Ncalib values) would be expected. In practice resulting motion parameters are very
close for Ncalib = 5 and Ncalib = 36 for example, and associated motion corrected reconstructions
only showed a few percent change in the voxels values, making them effectively the same image.
Also, because the mapping does not mix the motion parameters, different values of Ncalib give the
lowest residual error during the calibrations. However the differences of said errors were so small
they did not justify further optimization.
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6.2 Example applications

First, §6.2.1 presents application of FIDNavs and dual-echo SegFatNavs acquired on elderly
subjects. Then in §6.2.2, direct link of the FIDNavs-based motion estimates to breathing and
cardiac physiological trace will be demonstrated, as well as comparison of field fluctuation
correction from FIDNavs and SegFatNavs when the latter sample breathing adequately. Finally, an
intentional motion experiment will explore the limits of the method in the case of large motion.

6.2.1 B0 fluctuation correction

Methods

Twelve healthy elderly subjects were scanned as part of a larger study. Scans were conducted by
Dr. João Jorge on the 7T CIBM scanner. One of the acquired protocols was a 3D
flow-compensated 3D-GRE axial scan, with a 0.375× 0.375× 1 mm resolution. Echo time was 20
ms and a 12° flip angle was used, along with a 120 Hz/pixel readout bandwidth. Two-fold
undersampling with 64 reference lines, as well as 3/4 partial Fourier were used in the
phase-encoding (left-right) direction to reduce the total scan duration.
The effective repetition time was 41 ms. Total scan duration was 11 minutes. The SegFatNavs
module use the dual-echo protocol from §3 with nSegments = 2, leading a 2.2 s temporal resolution.
The FIDNavs was acquired after the imaging sequence excitation pulse, had a 200 µs duration and
consisted of 64 samples the first half of which was discarded as discussed in §6.1.2. A sequence
kernel schematic can be found in Figure 6.6.

Figure 6.6 – Schematic of the sequence. Host imaging sequence is drawn blue and navigators green. Flow
compensation gradients are omitted for simplicity. While the spoiling direction is consistent between host
and SegFatNavs, the physical (xyz) axis represented by readout, phase and slice are different in practice,
but are drawn on the same line here.
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The six motion and four B0 fluctuation parameters were estimated by the SegFatNavs and served
as calibration to the FIDNavs as described in §6.1.4, with Ncalib = 54. The resulting estimates
were smoothed in time by a Tukey filter with a 1 Hz passing window and a 0.5 Hz constant
window. Motion correction was applied both with and without field fluctuation.
All reconstructions were quantitatively compared to the raw reconstruction by computing the
relative change of the normalized gradient squared metric, as for the MPT comparison work
presented in §2.

Results and discussion

Motion correction always improved the tissues boundaries sharpness, but visually no clear
differences between the FIDNavs and SegFatNavs based reconstructions could be discerned. In
most cases, significant field fluctuation artefacts remained and justified the inclusion of the
dual-echo SegFatnavs. Overall, the FID based corrections showed significant improvements over the
SegFatNavs based corrections, with better tissues homogeneity and reduced field fluctuation
induced darkening, as is exemplified in Figure 6.7.

Figure 6.7 – Example of superior image quality obtained by the FID based correction (right) compared
to the SegFatNavs based correction (left) (volunteer 1). The difference stems from the field fluctuation
correction, see Figure 6.8.

The associated field fluctuation parameters are shown in Figure 6.8, where cyclic variations are
recovered in the FID based estimates but missed in the SegFatNavs. While no physiological
information was monitored during the scan, it is plausible that these cyclic variations are the
expected breathing induced field change, as the most varying first spatial order component is in the
head-foot direction. This is the demonstration of the FIDNavs allowing to retrospectively enhance
the temporal resolution of correction parameters, which is the goal of the SegFatNavs and FIDNavs
combination. This also proves to be a valid alternative to the snapshot FatNavs approach presented
in §3, which highly suffered from low temporal resolution.
The artefacts filtering step applied to FIDNavs and SegFatNavs parameters consistently showed
superior performances compared to unfiltered parameters based corrections. Jointly, excellent
image quality of the uncorrected reconstruction for a very still subject suggests no major
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Figure 6.8 – Field fluctuation parameters (top: SegFatNavs, bottom: FIDs) associated to the reconstruc-
tions of Figure 6.7.

interferences between the imaging sequence and the SegFatNavs, see Figure 6.9 and Figure 6.10.
The corrected reconstructions showed only subtle differences for this subject. Considered together,
these observations strongly indicate that the source of cyclic artefacts found in the FIDs has no
visible impact in the images but only on the navigators.

Figure 6.11 shows the metric change for all investigated corrections. Every previous visual
observations are consistent with the quantitative results. Changes under 2% often do not represent
clearly visually different images. As expected from the images, the field fluctuation correction
greatly increases the metric further than motion correction only. The FIDNavs based
reconstructions always out-performed the SegFatNavs based reconstructions, except for the motion
only reconstruction of volunteers one and three, where the difference values are so low that they
represent absolutely no visible change of the images themselves. This better performance of the
FIDNavs based correction supports a posteriori the soundness of the implementation and the
modeling choices.

Taking a step back, using dual-echo segmented FatNavs can be thought as audacious, as the
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Figure 6.9 – Slices of the raw reconstruction of very compliant subject (volunteer 2).

navigator acquisition is spread over 2 seconds. This period is much longer than the period during
which the field is in good approximation constant for natural breathing. The reason why
retrospective correction is nevertheless achievable is the following. The fluctuating component of
the field has a large spatial scale compared to the navigator resolution, as was discussed in §3. This
means that only the center of the navigator k−space really impacts the final estimates, and the
region around said center is acquired in a shorter time-span. For example the 1 cm effective
resolution k−space is acquired in 0.67 s.
Finally, let us notice that the corrected results still show some signal artefacts outside of the brain,
which indicates that the correction (most probably the field correction) is incomplete. The RMS
value of the calibration residuals (during step 3, page 130), for all volunteers, is shown in
Figure 6.12. While the linear model provides excellent values for motion, the field coefficient are
close to the breathing range. This suggests the linear model is not a fully adequate model for
FIDNavs based field fluctuation correction. While the FIDNavs allow partial correction and
breathing recovery, the comparison to a SegFatNavs with sufficient temporal resolution to sample
breathing was not attainable in this data. Therefore a dedicated experiment was performed and is
the subject of the next section, where the link between physiological data and FIDNavs estimates
will also be directly observable.
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Figure 6.10 – Field and motion parameters of volunteer 2, as estimated by the FIDs.
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Figure 6.11 – Relative change of the gradient squared metric to the raw reconstruction for all corrections
(MC = Motion correction).

Figure 6.12 – RMS of the residual errors of the FIDNavs to SegFatNavs parameters calibration.
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6.2.2 Link to physiological processes

Methods

A compliant healthy volunteer was asked to breath deeply and slowly during a high-resolution 3D
GRE axial scan. The protocol parameters were 0.25 mm in-plane resolution and 1mm in the slab
direction, 3/4 partial Fourier in phase and slice direction, and a readout bandwidth of 40 Hz/pix
with TE/TR 24/56 ms. No further undersampling lead to a 32 min 25 sec long acquisition.
SegFatNavs parameters were the same as in §6.2.1 (4mm dual-echo), but with nSegments = 3
giving a temporal resolution of 2 seconds.
Physiological data was acquired by a respiration belt and a pulse oximeter placed on the right hand
index finger. An optical trigger sent every FIDNavs allows synchronization between the
physiological data and the MR data.
It should be recalled that this protocol was tailored to sample breathing with the SegFatNavs, and
is not optimized in any other way. Due to the long repetition time of the dual-echo SegFatNavs, it
is unlikely such high values of nSegments would ever find their place in established protocols.
All reconstruction and quantification processing was done as presented in §6.2.1. Results were
compared to those of the elderly subjects study of §6.2.1 in order to compare the B0 fluctuation
correction of SegFatNavs to that of FIDNavs.
Additionally, every FIDNavs based parameter estimates (un-smoothed) was mapped to the closest
cardiac event, and the time to the cardiac peak was stored as well. This was done after local
(in-time) demeaning to remove slow drifts. The resulting data was binned to extract the mean
motion during the cardiac cycle. A time-delay (0.17 s) was determined empirically to account for
the travel distance differences between the brain and the index finger where the cardiac trace was
measured.

Results

No visible differences between SegFatNavs and FIDNavs based reconstructions were found for
motion only corrections. However, the SegFatNavs-based field fluctuation correction was visibly of
higher image quality, with reduce blurring compared to the FIDNavs-based one, as is visible in
Figure 6.13 (the residual signal outside the brain is good indicator of incomplete artefact removal).
These observations are confirmed by the larger difference in the metric increase after correction,
summarized in Table 6.1. In this case the SegFatNavs corrections always quantitatively
outperformed the FIDNavs based corrections. When field fluctuation correction is applied, the
SegFatNavs correction had an additional 2% increase compared to the FIDNavs correction. This in
clear contrast to the results of the previous section §6.2.1, where the FIDNavs corrections had
consistently higher metric compared to the SegFatNavs.

Reconstruction Motion Corr. Motion Corr.+ B0

SegFatNavs 4.3 12.2
FIDNavs 4.0 9.8

Table 6.1 – Gradient squared metric percentage increase compared to the raw reconstruction.

The calibration residual RMS values of the FIDNavs mapping are shown in Table 6.2. These values
are in the medium range of the previous experiment in §6.2.1. The ranges of B0 parameters
oscillations were also comparable.
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x [mm] y[mm] z[mm] Pitch [°] Roll [°] Yaw [°]
0.02 0.01 0.01 0.009 0.009 0.02

β0 [Hz] βx [Hz/m] βy [Hz/m] βz [Hz/m]
0.48 3.7 5.8 8.6

Table 6.2 – RMS of the residual errors of the FIDNavs to SegFatNavs calibration.

After Tukey filtering with a 0.5 Hz constant windows and a 1 Hz passband, the motion parameters
time-courses were compared to the physiological data. The head-foot translation is shown in
Figure 6.14. The respiration trace is nicely visible in the estimated motion, and the cardiac cycle
can also be distinguished. However, for the cardiac motion, the superposition of all motion sources
makes the observation more suggestive.
The motion parameters histograms around the cardiac trace peaks are presented in Figure 6.15.
These results are very similar in amplitude to those found by MPT in [21]. The oscillatory cardiac
pattern is nicely observed in the y and z translations and in the pitch rotation, as could be
expected from the nod-like motion linked to blood flow direction.
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Figure 6.13 – Reconstructions where SegFatNavs sample deep breathing adequately. From top to bottom:
raw, SegFatNavs-based correction, FIDNavs-based correction. All corrections include motion and first
order B0 compensation.
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Figure 6.14 – Z translation as estimated by the FIDNavs, after Tukey filtering (1 Hz constant window
and 2 Hz passband). In green is the physiological data: breathing (top) and cardiac trace peaks (bottom).

Figure 6.15 – Histogram of the FIDNavs motion parameters during the cardiac cycle.
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Discussion

While undeniable gain of image quality was achieved by the FIDNavs, the SegFatNavs proved
superior for field fluctuation correction. The calibration errors and the field fluctuation amplitude
were comparable to the previously presented data, making the temporal resolution the most
significant difference.
The logical conclusion to all the results obtained by the FIDNavs is that while they allow to
enhance temporal resolution, their estimates of field fluctuation parameters is inferior to that of
SegFatNavs. As by definition of the method it is always possible to reconstruct corrected images
based on either navigator types, the inclusion of FIDNavs is always advantageous. A quick look at
the correction parameters from both modalities (such as Figure 6.8 and Figure 6.14) immediately
hints at which reconstruction is likely to be the most adequate. In any case both corrected images
can also be compared directly.
The motion during the cardiac cycle could be identified, and is close to previously reported data
from MPT tracking. Clearly, compared to the presented mean motion during the scan, there is a
lot of variability in the motion trace during each cardiac events. This variability stems from the
superposition of different motion patterns (cardiac, breathing, drifts, etc ....) on one side, and from
the inherent precision of the FIDNavs motion estimates. The latter is impossible to estimate in
vivo without external tracking, as it would require a perfectly still subject, without breathing or
cardiac activity.
However, practically speaking, the usefulness of including motion frequency components higher than
1 Hz is questionable, as the associated motion is, at most, around 0.1 mm. The range of pulsatile
motion which isn’t properly described by non-rigid motion is of the same order [20], so it is more
than likely that investing large efforts to correct for the rigid-body component is not worthwhile.
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6.2.3 Sudden intentional motion as a limitations demonstration

Methods

The acquired protocol was a single slab of a 3D home-made TOF sequence, as presented in §5.2.
The nominal resolution was 0.5 mm isotropic with a 128 size in the slab direction. Undersampling
was performed via a partial Fourier factor of 3/4 in phase and slice directions, as well as two-fold
acceleration in the phase encoding direction (left-right) with 32 calibration lines. The k−space
trajectory was the standard Cartesian ascending scheme. The SegFatNavs was the 4mm protocol as
presented before with nSegments = 1, and the FIDNavs were included in the SegFatNavs. The
venous saturation flip-angle was 45°and the readout bandwidth 330 Hz/pixel. The effective
repetition time and the SegFatNavs temporal resolution were 21 ms and 2 s respectively. The
acquisition time was 4 min 59 s.
Five different scans were acquired. One with no intentional motion (rest), and four with an
intentional nod-like motion. The motion was induced by a direct visual instruction, visualized via a
mirror attached to the RF coil array. The display viewed by the participant read Do no move as a
static screen, and a blinking red MOVE text when at a particular completion of the k−space
acquisition. Three intentional motion scans had a single nod, at the k−space center, edge and
intermediate positions respectively. The last intentional motion scan had a nod instruction every 21
s. These different patterns are summarized in Figure 6.16.
Raw, SegFatNavs and FIDNavs based reconstructions were compared. The motion parameters
estimated from the FIDNavs were smoothed with a 1Hz constant band and and 2 Hz passband
Tukey filter before correction. Three FIDNavs based reconstructions will be presented: one with
Ncalib = 96 (equivalent one whole SegFatNavs volume), one with Ncalib = 5 and the last with
Ncalib = 5 and a quadratic model mapping the FIDNavs signal to the motion parameters. The
reasoning behind these variations are that the motion being intentional larger motion range may
occur than otherwise for a compliant subject. Also, as the motion is sudden, the impact of varying
Ncalib may be more significant.
For each scan, the motion range (derived from SegFatnavs) was defined as the difference between
the maximum and the minimum motion parameters values. Additionally to the normalized
gradient squared norm computed on the 3D reconstructions, the average edge strength (AES) was
computed on the axial maximum intensity projection (MIP). It is defined as (see [108])

AES =

√
(Em)2∑
i

Ei
(6.2.1)

where m is the 2D image vector and E is the edge mask. For angiography images, it was found to
make little difference to compute the metric on the full image, as it is in good approximation its
own edge mask. Results from a healthy volunteer will be discussed.
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Figure 6.16 – Color-coded k−space trajectory (from red to black to blue), with yellow markers representing
when the nodding instruction was presented to the subject. Single nod scans are on the left and the periodic
instruction scan on the right.

Results

Table 6.3 shows the motion ranges for each scans. The volunteer was compliant as can be seen from
the rest scan. For all intentional motion scans, the pitch rotation angle and the y shift are the most
varying parameters, as expected from a nod. The periodic scan had a significantly larger range
(≥ 7°) than the other intentional motion scans (≤ 3°). For this and for its periodicity, the
associated results shall be discussed last.

First, let us present the direct observations of the different FIDNavs based reconstructions.
Comparison of the 3D datasets showed the quadratic model allowed to reduce ringing for the center
scan, but was otherwise indistinguishable to the linear model for the rest, edge and intermediate
scans. Changing the value of Ncalib showed no clear differences, except for the center scan where
blurring was slightly reduced in the Ncalib = 5 reconstruction. For these reasons, all FIDNavs
images presented here are using Ncalib = 5 and the quadratic model.

For the rest and single nod scans, the SegFatNavs and FIDNavs reconstructions did not present
significant visual differences, and did improve image quality. All FIDNavs reconstructions of these
scans are shown in Figure 6.17. The closer to the k−space center the motion takes place, the more

x y z Pitch Roll Yaw

Rest 0.29 0.30 0.45 0.32 0.14 0.16
Edge 0.48 2.97 0.74 2.13 0.20 0.12
Intermediate 0.64 3.35 1.25 2.34 0.42 0.22
Center 0.50 4.50 1.56 2.85 0.28 0.24
Periodic 1.88 14.06 4.90 7.21 1.05 0.76

Table 6.3 – Motion range for all scans as estimated from the SegFatNavs.
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incomplete the motion correction, as can be seen from the increasing blurring signal outside of the
brain and the decreasing vessels SNR.
Figure 6.18 shows the SegFatNavs and FIDNavs reconstructions of the periodic nods scan. While
improvement compared to the raw reconstruction was visible, the motion corrected reconstructions
remained very far from diagnostic quality (see the rest scan in Figure 6.17 for comparison). While
the SegFatNavs scans shows slightly sharper vessels delineation, the significant large scale artefacts
present in both reconstructions make a clear-cut comparison difficult.
The metrics percentage increases compared to the raw reconstruction are shown in Figure 6.19. For
single nod scans, both metrics reflected the qualitative observations. The quadratic FIDNavs
reconstruction was the better performing of the three FIDNavs reconstruction. For the rest and
single nod scans, the AES metric follows the observations made on MIPs and the normalized
gradient squared metric the ones on the 3D data. AES tends to be less sensitive to ringing as such
artefacts have lower visibility in maximum intensity projection, arguably explaining the
discrepancy between AES and the gradient squared results for the non quadratic FIDNavs
reconstructions of the center scan. For the periodic scan, the gradient squared metric was always
decreasing, unlike image quality, and the AES showed improvement for the SegFatNavs
reconstruction but not for the FIDNavs one, again unlike qualitative observations.
Finally, out of completeness, the reference SegFatNavs volume for registration was changed to the
third one in the center scan to check if this could be another source of error, as the reference
volume is standardly picked as the one closest to the k−space center. The comparison between
both motion traces showed the differences were negligible.
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(a) No intentional motion scan. (b) Motion trigger at k−space edge.

(c) Motion trigger at intermediate k−space posi-
tion.

(d) Motion trigger at k−space center.

Figure 6.17 – Axial MIP of the FIDNavs based motion corrected reconstructions for the rest and single-nod
scans.
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Figure 6.18 – Axial MIP of the SegFatNavs (left) and FIDNavs based motion corrected reconstructions
for the periodic nod scan.

Figure 6.19 – Relative metrics change to the raw reconstruction: AES (left) and gradient squared (right).
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Discussion

While definite gain of image quality was obtained by the motion corrections, only the edge
intentional motion scan was on par with the rest scan. The intermediate and center scans were
noticeably of lesser quality, with added blurring and slightly lower vessel sharpness associated to
lower signal. The periodic scan reconstructions would be unusable for diagnostics. This can
arguably be due to the larger motion range during the scans and the more frequent nodding, as it
can be thought as adding together the artefacts of single-nod scans. SegFatNavs and FIDNavs
reconstructions were on par in all scans except the periodic one.
The metrics results were corroborating visual observations for the rest and single nod scans. The
FIDNavs correction using a quadratic model was visually superior to a linear one for the center
scan but equivalent otherwise. The metrics however always deemed it superior.
The periodic scan results have to be taken with a grain of salt. While image improvement was
visible, it remained largely insufficient. Furthermore, the AES should presumably not be computed
without an edge mask in this case due to the large blurring artefacts. Given the large
incompleteness of the correction, no further attempts to quantify its efficacy were investigated.
In a broader perspective and comparing to all previous results obtained by SegFatNavs and
FIDNavs, large and through plane motion is certainly a main source of the poorer performance of
the retrospective motion correction in this experiment, despite the relatively large (6 cm) slab
thickness. Also, the large range of motion of this experiment certainly explains the superiority of
the quadratic model for the FIDNavs correction, whereas such model had not presented any
advantage for the previous applications.
Further work could look to repeat this experiment for in-plane motion or non-slab selective
protocols. While a definite study of the most likely motion during a scan is still lacking, it is
reasonable to think that nodding is among the predominant types, while a left-right motion isn’t.
Most slab-selective scans are however axial, hence the choices made for this experiment. While
high-resolution non-slab selective scans would certainly induce excessively long scan session
duration, larger slabs may be a worthy compromise to reduce uncorrectable spin-history effects and
better define the applicability boundaries of retrospective motion correction.
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6.3 Summary and outlook

This chapter demonstrated that FIDNavs can be used to retrospectively up-sample the temporal
resolution of correction parameters obtained from SegFatNavs. While the impact on motion
correction was not significant, tremendous gain of final image quality was obtained for field
fluctuation correction in cases where SegFatNavs under-sampled breathing. However, in cases
where the breathing is properly sampled by the fat navigators, the SegFatNavs correction is slightly
superior to the FIDNavs one, a potential sign of the limits of the quality of obtainable information
from the FID signal fluctuations.
As an extension, combination of the navigators methods presented here with auto-focusing methods
for both motion [62] and B0 fluctuation [109, 110] is certainly worthy of study. It would allow
either to constrain the auto-focusing methods by using the navigators information as prior
knowledge or initial parameters value input, or to potentially bypass some of navigators modeling
errors by giving more freedom to the self-driven methods.
Finally, the intentional nodding experiment demonstrated that FIDNavs provide similar motion
correction performance to SegFatNavs if using a quadratic model in the case of nodding. However,
they also hit the inherent limitations of the retrospective correction approach by proving incapable
of fully compensating motion when it is large and close to k−space center, as well as providing
non-diagnostic final image quality for large periodic motion.
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Chapter 7

Thesis summary and outlook

In this conclusion chapter the main results of the thesis are summarized and outlooks for future
works are discussed.

7.1 Summary of the results

Refinements of the original FatNavs implementation was proposed. Tailoring the excitation pulse
allowed to further reduce off-resonance water excitation during fat selection. Also, MT effects were
diminished when included in MP2RAGE by lowering the navigator flip-angle and maximizing
dead-time before the inversion pulse. However, in the case of very-high resolution protocols some
slight difference compared to navigator-free acquisitions can still be observed. Finally, EPI-like
FatNavs showed similar motion tracking and correction performance, while reducing the acquisition
time by half, making a 2 mm volume obtainable in around 600 ms. This opens the way to wider
applications of FatNavs.
Direction comparison to Moiré Phase Tracking confirmed the expected benefits and downsides of
FatNavs of different resolution and temporal resolution for tracking specific motion patterns. For a
still subject, both tracking methods agreed up to an accuracy . 0.1 mm (°) for 2 mm FatNavs, and
. 0.2 mm (°) for 4 mm FatNavs. The corrected 0.5 mm MP2RAGE images based on either MPT
or FatNavs were indistinguishable for a vast majority of the compliant subjects (7/9, two scans
each), superior to MPT in one case and inferior in the last one. This study establishes FatNavs as a
valid alternative to MPT in neuro-imaging research of cooperative subjects.
In order to be implemented into a much wider class of imaging sequences, segmented FatNavs were
proposed. While they retain some inherent limitations of the original FatNavs, such as low
temporal resolution, and require additional processing, they showed great potential for
time-of-flight angiography, where for example ultra-high resolution 0.25 mm scans clearly benefited
from the added motion correction. Also, the MT induced by the SegFatNavs was shown to be
equivalent to the vendor-provided MT pulse.
Combination of SegFatFavs with FIDNavs allowed to enhance the temporal resolution of the
motion estimates, and direct link to physiological events, notably breathing and cardiac functions,
was established. Still, the approach was unable to correct for large motion which took place close
to the k−space center or repeatedly during the scan.
Finally, extension of FatNavs to a dual-echo version allowed to quantify and correct for up to first
order magnetic field fluctuations. The estimated accuracy of the method was 0.3 Hz for the zeroth
order and 2.8 Hz/m for the first order components respectively. While combination with FIDNavs
made this approach more effective for subjects breathing naturally, the FIDNavs based corrections
were slightly inferior in cases where the SegFatNavs temporal resolution was sufficient to sample
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breathing. Still, very significant image quality improvements were consistently observed in elderly
subjects.

7.2 Outlook

Given the results of this work, it seems clear that some FatNavs implementations are ready to be
tested in some clinical protocols. As the original FatNavs aim mainly to capture drifts and periods
of constant pose, they are expected to work best for cooperative subjects cohort. More generally,
the implementation of some robust motion correction strategy may initiate a trend to acquire
higher-resolution images in hospitals, which in turn could help refine diagnosis in a reliable manner
compared to current protocols.
The question of the performance attained by (Seg)FatNavs in a clinical setting for a patient cohort,
potentially along FIDNavs, remains only partially explored, and is certainly of interest for further
studies as many clinical imaging protocols can afford some FatNav implementation with little
impact on the water signal and scan duration.
Applications of the SegFatNavs/FIDNavs combination to ultra-high field, phase based imaging
such as SWI or QSM may allow to reduce method-induced variability between subjects/scans,
which would be a valuable addition in neuroscience research. Furthermore, it may also prove
beneficial for MR spectroscopy, where the field change associated to motion and the long
acquisition time can often lead to unusable datasets. The impact of the navigator inclusion on the
metabolites quantification would need to be carefully studied in such implementations.
Additional contrasts not explored in this work could benefit from FatNavs, such as arterial spin
labeling or phase contrast angiography. However, not all sequences would be fit for FatNavs. For
example, introduction of FatNavs into a bSSFP type sequence should lead to significant impact on
the imaging contrast, and hence other motion correction would a priori be preferable.
Deep learning has been the source of significant interest in recent years, including applications to
medical imaging. While current deep learning based motion correction works tend to produce
over-smoothed images, implementation of deep learning steps into others motion correction
methods are without a doubt worthy of study. For example it seems a priori possible, given enough
training data, to bypass navigators reconstructions entirely and go directly from k−space data to
motion parameters. Combining navigator based motion corrected reconstructions with additional
specific deep learning tools should also help reduce residual artefacts, sourcing from either motion
or other phenomena, such as pulsatility artefacts.
In the same line of thinking, incorporating navigator information into auto-focusing algorithm may
help convergence to more accurate motion parameters estimates. Conversely, the auto-focusing part
could help augment the temporal resolution of navigator information and reduce the impact of
insufficiently accurate motion estimates.
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