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Abstract
Time travel has always been a fascinating topic in literature and physics. In cryptography,
one may wonder how to keep data confidential for some time. In this dissertation, we will
study how to make private information travel to the future. This dissertation consists of
three parts: Timed-release encryption, witness encryption and self-encryption.
With timed-release encryption, one can send to a counterpart a message which cannot be
read before some time has elapsed. One possible solution is to use a third party. At every
time period, the third party releases a time bound key, and a ciphertext which is encrypted
for a time period requires the time bound key of that time period for decryption. Then,
a problem occurs when the counterpart somehow loses the release time of ciphertext. We
propose a solution by introducing a master time bound key which can be considered as a
valid time bound key of all time periods. We propose a provably secure construction and
show the experimental results.
In 2018, Liu, Jager, Kakvi and Warinschi introduced a timed-release encryption scheme
based on a blockchain with proof-of-work and witness encryption. Current proposals
of witness encryption are based on multilinear maps. In this part, we propose a new
construction without. We propose the notion of hidden group with hashing and make a
witness encryption from it. We show that the construction is secure in a generic model.
We propose a concrete construction based on RSA-related problems. Namely, we use an
extension of the knowledge-of-exponent assumption and the order problem. We finally
estimate the cost of the bitcoin blockchain implementation. Although our estimates are
still high (for a release time of one hour / one year, we respectively use ciphertexts of
567 MB / 4.5 TB and a decryption time of 27 min / 5.2 months on a single core), there
is room for improvement by a factor 20 000 by adapting the blockchain structure and
by adopting a hash function which is better adapted to this type of programming than
SHA256.
In self-encryption, a device encrypts some piece of information for itself to decrypt in the
future. We are interested in security of self-encryption when the state occasionally leaks.
Applications where self-encryption operates are cloud storage, when a client encrypts files
to be stored, and in 0-RTT session resumptions, when a server encrypts a resumption
key to be stored by the client. Previous works focused on forward secrecy and resistance
to replay attacks. In our work, we study post-compromise security. Post-compromise
security was already solved in ratcheted instant messaging schemes, at the price of having
an inflating state size. However, it was not known whether state inflation was necessary.
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Abstract

We prove here that this is the case.
In our results, we prove that post-compromise security implies a super-linear state size in
terms of the number of ciphertexts which can still be decrypted by the state. We apply
our result to self-encryption for cloud storage and 0-RTT session resumption, and also
to secure messaging. We further show how to construct a secure scheme matching our
bound on the state size.
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Résumé
Le voyage dans le temps a toujours été un sujet fascinant, que ce soit en littérature
ou en physique. De même, en cryptographie, nous nous demandons comment conserver
des données confidentielles pendant un certain temps. Dans cette thèse, nous étudions
comment faire voyager des informations privées vers le futur. Ce travail est divisé en trois
parties : le chiffrement temporisé (timed-release encryption), le chiffrement de témoin
(witness encryption) et l’auto-chiffrement (self-encryption).
Le chiffrement temporisé permet d’envoyer un message qui ne pourra pas être lu avant un
certain temps. Une solution possible consiste à utiliser une tierce partie. Plus précisément,
à chaque période de temps la tierce partie génère une clé temporelle ; cette clé est ensuite
nécessaire au déchiffrement des textes chiffrés pour ladite période de temps. Cependant,
un problème se produit quand le destinataire du message chiffré oublie ou perd le temps
de relâche (de déchiffrement) de celui-ci. Nous proposons une solution en introduisant
une clé temporelle maîtresse (master time bound key), qui peut être considérée comme
une clé temporelle valable pour toutes les périodes. Nous prouvons ensuite formellement
la sécurité de notre construction et montrons les résultats expérimentaux obtenus.
En 2018, Liu, Jager, Kakvi et Warinschi ont introduit un chiffrement temporisé basé sur
une blockchain avec une preuve de travail et un chiffrement de témoin. Les propositions
actuelles de chiffrement de témoin sont basées sur des fonctions multilinéaires. Dans cette
partie, nous proposons la notion de groupe caché avec hachage. Puis, en nous basant
sur ce concept, nous présentons une nouvelle construction de chiffrement de témoin qui
n’utilise pas de fonctions multilinéaires. Nous montrons ensuite que la construction est
sécurisée dans un modèle générique. Plus précisément, notre construction est basée sur des
problèmes liés à RSA, comme une variante de l’hypothèse de connaisance-de-l’exposant
et du problème d’ordre. Enfin, nous estimons la performance de notre proposition quand
elle est implémentée avec la blockchain bitcoin. Bien que nos estimations soient encore
élevées (pour un temps d’une heure / un an, nous utilisons respectivement des textes
chiffrés de 567 Mo / 4, 5 To et un temps de déchiffrement de 27 min / 5, 2 mois sur un
seul processeur), une amélioration d’un facteur de 20 000 est possible en adaptant la
structure de la blockchain, ainsi qu’en adoptant une fonction de hachage mieux adaptée à
ce type de programmation que SHA256.
En auto-chiffrement, un appareil chiffre certaines informations destinées à lui-même et à
déchiffrer dans le futur. Nous nous sommes intéressés à la sécurité de l’auto-chiffrement en
présence de fuites d’information occasionnelles. Typiquement, l’auto-chiffrement est utilisé
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Résumé

quand un client souhaite chiffrer des informations afin de les stocker de façon sécurisée
sur un serveur distant, ou quand un serveur chiffre une clé de reprise qui sera conservée
par le client dans une session 0-RTT. Les travaux précédents se sont concentrés sur la
confidentialité persistante et la résistance contre des attaques par rejeu. Dans notre travail,
nous étudions la sécurité en présence de corruption (sécurité post-compromission). Dans les
systèmes de messagerie instantanée à cliquet (ratcheting), la sécurité post-compromission
est garantie au prix d’une taille d’état qui augmente. Cependant, savoir si cette inflation
de l’état est nécessaire restait un problème en suspens. Nous prouvons ici que c’est le
cas. Plus précisément, nous montrons que la sécurité en présence de corruption implique
une taille d’état super-linéaire en terme du nombre de textes chiffrés qui peuvent encore
être déchiffrés par l’état. Nous appliquons notre résultat à l’auto-chiffrement destiné au
stockage d’informations sur des serveurs distants et à la reprise de session 0-RTT, ainsi
qu’aux systèmes de messagerie sécurisée. Nous montrons en outre comment construire un
système sécurisé atteignant notre borne sur la taille de l’état.
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1 Introduction

Cryptography is the science of information security. In order to construct a secure
cryptosystem, we need cryptography. Then, how can we assess if a cryptosystem is
secure? We usually assess it by the hardness of attacks whose time complexity is somehow
bounded. Namely, λ-bit security refers to the hardness of attacks whose time complexity
is at least 2λ. The notion of time is therefore an important element in cryptography.

The notion of time is not only a metric to assess the security but also a metric to evaluate
the performance of cryptosystem. When we are evaluating the performance, there are
numerous ways to evaluate it depending on the purpose. When a cryptosystem is used
for security, encryption eventually slows down the entire processing. The execution
time is therefore a metric which is considered in many cases. Cryptographic protocols
sometimes deploy some techniques to decrease the number of exchanged messages between
two participants in order to decrease the execution time of the protocol. One well-
known example is the semi-static Diffie-Hellman key exchange. Instead of using an
ephemeral key, a server uses a static key, and a client generates a shared key from the
static key without communicating with the server. So, the client can send the first
message, which is encrypted by using the shared key, and his/her ephemeral public
key to the server at the time. Therefore, the server and the client save a round-trip
time in their communication. Another example is the zero round-trip time (0-RTT) key
exchange [GHJL17, DJSS18, AGJ19]. The 0-RTT key exchange does not require any
communication between a server and a client to establish a shared key and it eventually
makes entire communication faster.

When one wants to send to a counterpart a message which should not be read before
some time, the best way is to send the message at the time when it can be. However, this
can only be done if the sender is available at the time when the message can be read. We
now assume that the sender is not available to communicate with the counterpart at the
time when the message should be read. One of the easiest solutions is to use a trusted
third party which transfers the message at the desired time, but we would ideally prefer
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Introduction

requiring no third party, or at least imposing no specific storage on the third party side.

The time-lock puzzle [RSW96, BGJ+16, MT19] can generate a puzzle which requires the
specific amount of computations to retrieve the data in it. By generating a time-lock puzzle
which contains a decryption key, we can construct a timed-release encryption scheme
which requires the specific amount of computations to decrypt a ciphertext. However, as
we can only control the amount of computations, this approach of timed-release encryption
cannot fully control the decryption time which will depend on the computational capacity
of one who decrypts. There exists another approach of the timed-release encryption which
tries to control the time when a ciphertext can be decrypted. By using a third party
which periodically releases some information, we can construct a time-release encryption
scheme which uses such information to decrypt the ciphertext.

The time that we want to control is not only the decryption time but also the arrival
time of new input to the system. As the blockchain-based system does not want to be
flooded by the arrival of new blocks, it demands some additional computations for each
block to be added to the blockchain. For example, Bitcoin [Nak19], which is one of the
most famous system based on a blockchain, requires the hash value of a block to have
some leading zeros in order for the block to be added in the blockchain.

Depending on applications, we sometimes need the ability to send a secret to ourself in
the future. When a server and a client require some data for future communications,
one efficient solution is to make the server encrypt the data and make the client to keep
the ciphertext for future communications. So, the server actually encrypts some data
for itself in the future. Since the encryption and the decryption are done by the same
entity and the server does not know when a ciphertext will return, it will cause different
security issues.

In this dissertation, we tackle the problem of sending secrets to the future and bring
contributions to these methods.

Outline of Thesis

In Chapter 2, we present the notations that we use through this dissertation and some
definitions that we use. We give the following definitions:

• Weil pairing

• Bilinear Diffie-Hellman problem

• NP language

• Subset sum problem

2
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In Chapter 3, we focus on the timed-release encryption. In this chapter, we tackle one
potential problem of timed-release encryption: the impossibility of decryption when the
release time is lost. We first formally define primitives and security definitions of the timed-
release encryption. Then, we propose a construction of timed-release encryption, and
analyze its security. Moreover, we implement our construction and show the experimental
results.

In Chapter 4, we study another approach of timed-release encryption. Recently, Liu et al.
[LJKW18] proposed a timed-release encryption scheme from a witness encryption scheme
and the Bitcoin blockchain. In this chapter, we propose the notion of a hidden group with
hashing (HiGH) and construct a witness key encapsulation model, which can be easily
extended to a witness encryption scheme, on top of HiGH. Moreover, we further analyze
practical aspects of the timed-release encryption scheme based on a witness encryption
scheme and the Bitcoin blockchain.

In Chapter 5, we study a different problem related to sending secrets for the future:
sending a secret to ourself. There exist two different resiliency notions depending on
the time corruption happens: forward secrecy and post-compromise security. We first
define self-encryption and prove that the state size must super-linearly increase in order
to achieve forward secrecy and post-compromise security at the same time. Moreover, we
apply our result to the self-ratcheted scheme and the bipartite ratcheted scheme.

We conclude in Chapter 6, and introduce some possible research directions.

Personal Bibliography

This dissertation is based on the following papers:

• Gwangbae Choi and Serge Vaudenay. Timed-release encryption with master time
bound key. In WISA 2019

• Gwangbae Choi, F. Betül Durak, and Serge Vaudenay. Post-compromise security
in self-encryption. (Under submission)

• Gwangbae Choi and Serge Vaudenay. Sending secrets to the future - witness
encryption without multilinear maps. (Under submission)
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2 Preliminaries

In this chapter, we will show the notations and definitions that we will use through this
dissertation.

2.1 Notations

When E is an elliptic curve and K is a field, E(K) represents a group of points on the
elliptic curve E, including the point at infinity, whose x-coordinate and y-coordinate are
defined in K. We denote a concatenation of two bit strings a and b as a||b and an empty
input or output by ⊥. We write x $← G if x is uniformly chosen from a set G. We denote
an empty string or algorithm by ε. For any probabilistic algorithm f(x), we denote an
instance of the algorithm f(x) with a sequence of random coins γ as f(x; γ). For any
g in some group G, a subgroup generated by g is written as 〈g〉. Let X : Ω → S and
Y : Ω→ S be two random variables. Then, the statistical distance between two random
variables X and Y is d(X,Y ) = 1

2

∑
s∈S |Pr[X = s]−Pr[Y = s]|. We denote the uniform

distribution over a set G by UG. We denote the indicator function by 1r. We consider
“words” as bitstrings (i.e. we use a binary alphabet) and |x| denotes the bit length of x.
1a is the bitstring of length a with all bits set to 1. #S denotes the cardinality of the
set S. negl(λ) denotes any function f such that for all c > 0, for any sufficiently large λ,
we have |f(λ)| < 1

λc , and we also say that the function f is negligible. Similarly, Poly(λ)

denotes any function f such that there exists c > 0 such that for any sufficiently large λ,
we have |f(λ)| < λc.

2.2 Weil Pairing

A pairing is a bilinear map which maps two groups into a third group whose cardinalities
are equal. In cryptography, a pairing can be used to construct cryptosystems [BF03,
BB04, DT07, CHKO06, CLQ05, HYL05, BC04, CHS07] and it can even be used for
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attack [MOV93]. The Weil pairing is an instantiation of pairing. We use the definition
of the Weil pairing from Silverman [Sil09, III.8.1]. Let K be a finite field and E be an
elliptic curve over K. The Weil pairing e : E[m] × E[m] −→ µm, where E[m] is the
m-torsion subgroup of E and µm is the group of the m-th roots of unity in the algebraic
closure K̄, satisfies the following properties.

1. Bilinear: ∀P1, P2, Q1, Q2 ∈ E[m], e(P1+P2, Q1) = e(P1, Q1)e(P2, Q1) and e(P1, Q1+

Q2) = e(P1, Q1)e(P1, Q2).

2. Non-degenerate: ∀P ∈ E[m],∃Q ∈ E[m] such that e(P,Q) 6= 1.

3. Alternating: ∀P ∈ E[m], e(P, P ) = 1.

4. Galois invariant: ∀σ ∈ GK̄/K , e(P σ, Qσ) = e(P,Q)σ.

We note that the Weil pairing can be efficiently computed by the Miller’s algorithm
[M+86].

2.3 Bilinear Diffie-Hellman Problem

The Diffie-Hellman problem is one of most famous problems in cryptography, and the
bilinear Diffie-Hellman problem is a problem which is similar to the Diffie-Hellman
problem on the groups where a bilinear map exist. We define two variations of the bilinear
Diffie-Hellman problem as follows.

Definition 1 (Decisional bilinear Diffie-Hellman problem [BF03]). Let Gen(1λ) = π =

(λ,K,E,m, e) be an algorithm which generates an appropriate instance of the decisional
bilinear Diffie-Hellman problem, given the security parameter λ, where K is a field, E is
an elliptic curve over K, and e : E[m]× E[m] −→ µm is a bilinear map.

We say that the decisional bilinear Diffie-Hellman problem is hard for Gen if

AdvDBDH
A (λ) =

∣∣Pr
[
DBDH-0AGen(λ)→ 1

]
− Pr

[
DBDH-1AGen(λ)→ 1

]∣∣
is a negligible function in λ for all probabilistic and polynomial time algorithm A where
DBDH-d is defined as follows for d ∈ {0, 1}.
Game DBDH-dAGen(λ)

1: π ← Gen(1λ)

2: (a0, b0, c0)
$← Z3

m

3: (a1, b1, c1)
$← Z3

m

4: (P,Q)
$← E[m]× E[m]

5: d′ ← A(π, P,Q, a0P, b0P, c0P, a0Q, b0Q, c0Q, e(P,Q)adbdcd)

6: return d′

6



2.4. NP Language

Definition 2 (Computational bilinear Diffie-Hellman problem [BF03]). Let Gen(1λ) =

π = (λ,K,E,m, e) be an algorithm which generates an appropriate instance of the
computational bilinear Diffie-Hellman problem, given the security parameter λ, where K
is a field, E is an elliptic curve over K, and e : E[m]× E[m] −→ µm is a bilinear map.

We say that the computational bilinear Diffie-Hellman problem is hard for Gen if

AdvCBDH
A (λ) = Pr

[
CBDHAGen(λ)→ 1

]
is a negligible function in λ for all probabilistic and polynomial time algorithm A where
CBDH is defined as follows.
Game CBDHAGen(λ)

1: π ← Gen(1λ)

2: (a, b, c)
$← Z3

m

3: (P,Q)
$← E[m]× E[m]

4: Z ← A(π, P,Q, aP, bP, cP, aQ, bQ, cQ)

5: return whether Z = e(P,Q)abc

2.4 NP Language

In cryptography, we usually need a hard problem to make a system secure, and a
hard problem is usually in an NP language. We formally define NP language and the
NP-completeness as follows.

Definition 3 (NP language). Let L be a language. The language L is in the class NP if
there exists a predicate R and a polynomial P such that L is the set of all words x for
which there exists a witness ω satisfying R(x, ω) and |ω| ≤ P (|x|), and if we can compute
R in time polynomially bounded in terms of the size of x.

Definition 4 (NP-completeness). A language L is NP-complete if it belongs to the class
NP and for any language L′ in NP, there exists a polynomially bounded deterministic
algorithm Encode-Inst such that for all x, x ∈ L⇐⇒ Encode-Inst(x) ∈ L′.

2.5 Subset Sum Problem

The subset sum problem is an NP problem. It is well-known that the subset sum problem
is NP-complete [Kar72]. Intuitively, the subset sum problem is a problem of finding a
subset of a given set of integers whose sum is equal to a target value. The Subset Sum
(SS) NP language is defined by:

Instance: a tuple x = (x1, . . . , xt, s) of non-negative integers.

Witness: a tuple ω = (a1, . . . , at) of bits ai ∈ {0, 1}, i = 1, . . . , t.

7
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Predicate R(x, ω): a1x1 + · · ·+ atxt = s.

8



3 Time-Based Cryptography

Consider a user who holds a secret. Suppose that he must commit to disclosing his secret
at some given time in the future. A requirement is that no one should learn the secret
earlier and the protocol should complete in the future even though the user may not be
present. For instance, the secret could be the wills of the user and the user could be
deceased at the time of release. This is what timed-release encryption aims at.

The concept of timed-release encryption was first proposed by May [May93]. The idea is
to introduce the concept of time into an encryption scheme, especially into the decryption
algorithm. There are two distinct approaches. One is to focus on the amount of time it
takes to decrypt and the other is to have a third party to unlock encryption in due time.
It finds applications [RSW96] in sealing a bid in auction, issuing mortgage electronic
payments to be made in the future, encrypting a diary to be released after 50 years,
or even enforcing key escrow after a legal period. We could also imagine to commit
on a secret value so that the hiding property would fade by itself, to automatically
declassify top secret documents, or to enforce a true key expiration by releasing the keys
after expiration. When used in signatures, this would make sure that (non-registered)
signatures become deniable after expiration of their keys.

The first category of timed-release encryptions uses time-lock puzzles [RSW96], which
involves heavy computation for the decryption. The second one involves a third party
[COR99, BC04, CLQ05, CHKO06, HYL05, CHS07]. It requires a time bound key which
is periodically released by the trusted server for the decryption.

The timed-release encryption with a time-lock puzzle was first introduced by Rivest et
al. [RSW96] in 1996. The concept of puzzle was introduced by Merkle [Mer78] in 1978.
However, Rivest et al. showed that the Merkle’s puzzle is not suitable for a time-lock
puzzle as it is parallelizable, so it offers no guarantee on the amount of time required
to decrypt. Rivest et al. proposed a way to achieve timed-release encryption based on
RSA. The user generates an RSA modulus n, picks r and uses the key r2t mod λ(n) mod n

to encrypt the secret. This can be done with O(log t + log n) modular multiplications
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using the secret factors of n. The ciphertext consists of n, r, and the encryption. To
decrypt, anyone could compute r2t mod n in t modular squares. As the ciphertext can
be generated without any input from the counterpart, a single ciphertext can be sent to
multiple users, and all of them can correctly decrypt it after some sequential computations.
However, this solution is a bit unfair because receivers with lower computational power
take more time than powerful receivers, and the time of release is not an absolute time.

Solving timed-release encryption with a trusted third party is essentially trivial: one can
share the secret with the third party (a notary) and let him disclose it in the future. We
can also solve timed-release encryption with a semi-trusted third party who works as a
beacon: it releases a decryption token at every time period and the encryption encodes
the time of release. It is possible to combine this idea with encryption to a target receiver
so that the honest-but-curious beacon is not able to decrypt, without colluding with
the target receiver. From now on, we call this beacon as trusted server. The solutions
based on trusted server were thoroughly studied in many papers. Rivest et al. [RSW96]
proposed a construction in which the trusted server does not store any message but this
scheme suffers from problems of anonymity and confidentiality. Crescenzo et al. [COR99]
proposed a construction based on a conditional oblivious transfer which allows a sender to
be anonymous. But the receiver cannot be anonymous and the trusted server is a subject
to denial-of-service attack. Later, Blake and Chan [BC04] proposed a construction based
on the identity-based encryption scheme by Boneh and Franklin [BF03] in which the
trusted server interacts with neither the sender nor the receiver. As Blake and Chan did
not provide any security notion, Cathalo et al. [CLQ05] proposed its security notions
and improved its construction. Based on the construction of Blake and Chan, Hwang et
al. [HYL05] proposed a construction with pre-open capability which allows a receiver to
decrypt before the release time by using the pre-open key. As security analysis of this
construction was not sufficient, Dent and Tang [DT07] introduced additional security
models for the construction of Hwang et al. On the other hand, Cheon et al. [CHKO06]
proposed a construction of authenticated timed-release encryption. Later, Chalkias et al.
proposed a more efficient timed-release encryption scheme [CHS07]. In 2009, Nakai et al.
[NMKM09] proposed a generic construction of the timed-release encryption with pre-open
capability by using an identity-based encryption and a public key encryption. Their
generic construction was improved by Matsuda et al. [MNM10] in terms of efficiency.
In 2010, Paterson et al. [PQ10] proposed the time-specific encryption paradigm. In
time-specific encryption, a ciphertext can only be decrypted during a chosen time interval
rather than after a chosen time. Therefore, the time-specific encryption can be seen as
the generalization of the timed-release encryption. Later, Kasamatsu et al. [KME+16]
showed how the time-specific encryption can be derived from forward-secure encryption.

The approach with a time-lock puzzle does not require any trusted server, but the sender
does not have the full control on the release time of the encrypted message as it depends
on the computational power of the receiver and the time it started to decrypt. With
the approach which uses a trusted server, the release time can be fully controlled by the

10
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sender as it requires a time bound key which will be released by the trusted server at the
release time. However, for the protocol to work, it is necessary to include a trusted server
and thus it may lead to security vulnerabilities due to the addition of another participant
in the protocol.

In this chapter, we focus on the approach with a trusted server and we will study another
potential problem which was not considered in previous works. In the previous works, the
release time was usually somehow known to the receiver and the receiver could execute
the decryption algorithm with the time bound key of the corresponding release time.
Then, what happens if the receiver loses the release time? The receiver obviously cannot
deduce which time bound key should be used for the decryption. The receiver therefore
cannot correctly decrypt the ciphertext because the time bound key of the release time is
required for the decryption. In existing constructions, a ciphertext can be separated into
two parts: encrypted message and release time. As the release time cannot be extracted
from the encrypted message part, a ciphertext becomes undecryptable if the release time
part is somehow corrupted. By introducing the master time bound key, we can avoid the
such problem. However, the probability that only the release time is corrupted might be
low in the real world. But by the nature of the timed-release encryption, the time that
the receiver waited becomes useless along with the loss of the release time. Therefore,
the introduction of such functionality might be meaningful for the receiver.

There already exist some easy ways to solve this problem. The sender can for example
store the release time after the encryption, and send it again when the receiver asks
the release time. This approach however cannot be an actual solution of the problem
since an intuitive goal of timed-release encryption is to send a message for the time
period when the sender and the receiver do not communicate. Another approach which
does not require any communication between the sender and the receiver is to make the
receiver to decrypt with all time bound keys. This solution however requires too much
computation, compared to the normal decryption, and the receiver requires a way to
check the correctness of the decrypted message.

The constructions with pre-open capability [HYL05] might be a solution for the problem
of losing the release time by giving the pre-open key which allows the decryption without
the time bound key. The sender however needs to know the release time of the ciphertext
to generate the corresponding pre-open key, it is equivalent to store the release time on
the sender side. If the sender is storing the release time of the ciphertext, the sender can
simply resend the release time to the receiver. The problem therefore becomes trivial.
We hence consider the case neither the sender nor the receiver knows the release time.

11
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Our Contribution and Structure

In this chapter, we propose a better solution on this problem. We introduce a master time
bound key which can be used as a valid time bound key for any release time. The receiver
therefore can ask to the trusted server to decrypt a ciphertext of an unknown release
time. This however can raise another problem with confidentiality of the message if the
receiver needs to send the entire ciphertext to the trusted server for the decryption with
master time bound time bound key. Our solution also solves this problem. A ciphertext
of our construction consists of three elements. The receiver needs to send a single element
to the trusted server to do the computation with master time bound key. As this element
is independent from the message, the trusted server cannot learn anything about the
message.

The master time bound key moreover can be used when the trusted server terminates
its service. As a time bound key of the release time is needed for the decryption, the
ciphertext whose release time is after the termination of the trusted server can never be
decrypted. If it is more important not to lose the message than being decrypted before
its release time, the trusted server needs to reveal its secret key or all future time bound
keys to make the users able to decrypt their ciphertexts. If the trusted server reveals its
secret key, receivers must implement another decryption algorithm which decrypts with
the trusted server secret key instead of a time bound key. If the trusted server generates
all future time bound keys (and possibly encrypt them with a timed-release encryption of
another server), there might have a problem with the storage complexity if the amount of
remaining time periods is huge. All of these solutions therefore require some additional
works. However, if the trusted server has the master time bound key, it is enough if the
trusted server releases the master time bound key at the end of its service. Moreover, the
storage overhead is minimized since the size of master time bound key is equal to the
size of time bound key and the trusted server does not need to generate a bunch of time
bound keys for future time periods.

Finally, our master time bound key can play the role of a backup solution to decrypt
messages in emergency situations (e.g. sudden disappearing of the trusted server).

In this chapter, we propose a timed-release encryption scheme which has the master time
bound key that can be used to decrypt a ciphertext of any time period. In Section 3.1,
we define primitives of timed-release encryption, and we then define its security models in
Section 3.2. In Section 3.3, we propose a construction of timed-release encryption scheme
with master time bound key and analyze its security with the security models that we
defined. In Section 3.4, we will propose appropriate parameters depending on the security
level, and then we will show the experimental results of our construction for different
security levels in Section 3.5.
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3.1. Primitives of Timed-Release Encryption With Master Time Bound
Key

3.1 Primitives of Timed-Release Encryption With Master
Time Bound Key

In this section, we formally define the primitives of timed-release encryption with master
time bound key. Our primitives are similar to the primitives in literatures [DT07, CHKO06,
CLQ05, HYL05, BC04]. The difference however is the key generation algorithm of the
trusted server outputs the master time bound key along with the secret key and the
public key.

Let S be a sender, R be a receiver and TS be a trusted server. We define a timed-release
encryption scheme with master time bound key as follows:

Definition 5 (Timed-release encryption scheme with master time bound key). A timed-
release encryption scheme consists of the following algorithms:

• Setup(1λ) = π is a probabilistic polynomial time algorithm which generates a system
parameter π given a security parameter λ.

• KeyGenTS(π) = (skTS, pkTS,mkTS) is a probabilistic polynomial time algorithm of
the trusted server TS which takes a system parameter π, and generates a secret key
skTS, a public key of the trusted server pkTS and a master time bound key mkTS.

• KeyGenR(π) = (skR, pkR) is a probabilistic polynomial time algorithm of the receiver
R which takes a system parameter π, and generates a secret key skR and a public
key of the receiver pkR.

• Broadcast(skTS, t, π) = τt is a probabilistic polynomial time algorithm of the trusted
server TS which takes a secret key of the trusted server pkTS, scheduled broadcast
time t and a system parameter π, and broadcasts time bound key τt.

• Enc(pkTS, pkR,m, t, π) = c is a probabilistic polynomial time algorithm of the sender
S which takes a trusted server public key pkTS, a receiver public key pkR, a message
m, release time t, and a system parameter π, and outputs a ciphertext ct.

• Dec(skR, τt, ct, π) = m is a deterministic polynomial time algorithm of the receiver
R which takes a receiver secret key skR, a time bound key at the release time t τt, a
ciphertext ct, and a system parameter π, and outputs a message m or ⊥.

Then, we expect a timed-release encryption scheme to satisfy the following condition:

• For any security parameter λ, for any system parameter π = Setup(1λ), for any
trusted server key pair (skTS, pkTS,mkTS) = KeyGenTS(π), for any receiver key pair
(skR, pkR) = KeyGenR(π), for any message m and for any time period t,

Pr
γ1,γ2

[Dec(skR,Broadcast(skTS, t, π; γ1),Enc(pkTS, pkR,m, t, π; γ2), π) = m] = 1
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Figure 3.1 – Exchanged values between participants

and
Pr
γ

[Dec(skR,mkTS,Enc(pkTS, pkR,m, t, π; γ), π) = m] = 1

The key generation algorithm of the receiver KeyGenR sometimes takes the trusted server
public key pkTS as input. We however define our KeyGenR to be independent from pkTS

as it was done in some constructions [NMKM09, MNM10]. If KeyGenR is dependent to
pkTS, the receiver needs to get the trusted server public key before the generation of its
key pair. If they are independent, the receiver does not need any communication with
the trusted server before the release time, it will be therefore more efficient.

We consider two security objectives of the timed-release encryption. One is the confi-
dentiality of the message until its release time against the receiver. The other is the
anonymity of the sender and the receiver against the trusted server.

3.2 Security Models

In this section, we define security models of timed-release encryption. As a timed-release
encryption brings a trusted server into cryptosystem, we can consider the following
adversaries:

• A receiver who wants to decrypt a ciphertext before the release time;

• A trusted server which is eavesdropping the communication between a sender and a
receiver and wants to break the confidentiality of a message;

• An eavesdropper who wants to decrypt a ciphertext without any secret key.

Similarly, we propose security definitions with three attack models: Chosen plaintext at-
tack (CPA), non-adaptive chosen ciphertext attack (CCA1), and adaptive chosen ciphertext
attack (CCA).

We assume that the receiver and the trusted server never collude as the attack is trivial
in that case. Along with the decryption key, the release time is also required for the
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decryption. We assume that the release time is known to adversaries as it can be found
by an exhaustive search if it is unknown.

We adopt the security models of Dent and Tang [DT07]. So, the adversary has always
access to the time bound key oracle while the access to the decryption oracle is restricted
by the attack models. However, our security models are slightly different from them.
The adversary can get any time bound key except that of the challenge time period by
querying to the oracle. Therefore, the time periods are not necessary to be an increasing
sequence and they can be a decreasing sequence or an arbitrary sequence. Moreover,
the decryption oracle takes a ciphertext and a time bound key as inputs, instead of
taking a ciphertext and a time period. Thus, only the trusted server type adversary can
decrypt any ciphertext, except the challenge ciphertext, of the challenge time period as it
can generate corresponding time bound key and other adversaries cannot decrypt any
ciphertext of the challenge time period. This is an appropriate setting for the timed-release
encryption because all ciphertexts with same time period become decryptable at the same
time, along with the release of the time bound key from the trusted server. Therefore, no
one can decrypt a ciphertext of the challenge time period as long as the trusted server is
not malicious.

In this section, we will describe three security models, which are indistinguishability
against the receiver type adversary, the trusted server type adversary and the eavesdropper
type adversary, that we will use in the rest of this chapter. We first define security games
with oracles in Table 3.1.

Table 3.1 – Outputs of the decryption oracles O1 and O2, and the time bound key oracle
Q for security games by attack types.

O1(τ ′, ct′) O2(τ ′, ct′) Q(t′)

CPA ε ε C.Broadcast(skTS, t
′, π)

CCA1 C.Dec(skR, τ
′, ct′, π) ε C.Broadcast(skTS, t

′, π)
CCA C.Dec(skR, τ

′, ct′, π) C.Dec(skR, τ
′, ct′, π) C.Broadcast(skTS, t

′, π)

When the adversary is on the receiver side, the receiver secret key can be selected by the
adversary. Therefore, the decryption oracle can always be simulated by the adversary if
it has the access to the time bound key oracle, to which the adversary always has the
access. Hence, CPA, CCA1 and CCA are equivalent and then we only consider the CPA
model. The IND-R-CPA game is defined as follows:
Game IND-R-CPA-bAC (λ):
1: π ← C.Setup(1λ)

2: (skTS, pkTS,mkTS)← C.KeyGenTS(π)

3: (pkR,m0,m1, t, s1)← AQ(·)
1 (pkTS, π) . s1: State of A1

4: ct← C.Enc(pkTS, pkR,mb, t, π)

5: b′ ← AQ(·)
2 (ct, s1)

6: if t was queried to Q by A1 or A2 then abort
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7: return b′

When the adversary is on the trusted server side, the trusted server key pair is under the
control of the adversary. Therefore, the adversary can compute a time bound key of any
time period, and the access to time bound key oracle Q is not necessary. In the CCA1
and CCA models, the adversary has the capacity to decrypt a ciphertext with a chosen
time bound key by querying to the oracle O1 when it picks the challenge messages and
the challenge time period. In the CCA model, the adversary can decrypt a ciphertext, if
it is not the challenge ciphertext, with a chosen time bound key by querying to the oracle
O2 when it outputs the response bit. For ATK ∈ {CPA,CCA1,CCA}, the IND-TS-ATK
game is defined as follows:
Game IND-TS-ATK-bAC (λ):
1: π ← C.Setup(1λ)

2: (pkTS, s0)← A0(π) . s0: State of A0

3: (skR, pkR)← C.KeyGenR(pkTS, π)

4: (m0,m1, t, s1)← AO1(·,·)
1 (pkR, s0) . s1: State of A1

5: ct← C.Enc(pkTS, pkR,mb, t, π)

6: b′ ← AO2(·,·)
2 (ct, s1)

7: if c was queried to O2 by A2 then abort
8: return b′

When the adversary is an eavesdropper, the adversary is passive and the trusted server
key pair and the receiver key pair are honestly computed. In the CCA1 and CCA models,
the adversary can get the time bound key of a chosen time period by querying to Q, and
has the capacity to decrypt a ciphertext with a chosen time bound key by querying to
the oracle O1 when it selects the challenge messages and the challenge time period. If
the challenge time period is already queried to Q, the game will be aborted as the time
bound key of the challenge time period should not be given to the adversary. In the CCA
model, the adversary can still obtain the time bound key of a chosen time period, except
the challenge time period, by querying to Q, and can decrypt a ciphertext, if it is not the
challenge ciphertext, with a chosen time bound key by querying to the oracle O2 when it
outputs the response bit. For ATK ∈ {CPA,CCA1,CCA}, the IND-ATK game is defined
as follows:
Game IND-ATK-bAC (λ):
1: π ← C.Setup(1λ)

2: (skTS, pkTS,mkTS)← C.KeyGenTS(π)

3: (skR, pkR)← C.KeyGenR(pkTS, π)

4: (m0,m1, t, s1)← AO1(·,·),Q(·)
1 (pkTS, pkR, π) . s1: State of A1

5: ct← C.Enc(pkTS, pkR,mb, t, π)

6: b′ ← AO2(·,·),Q(·)
2 (ct, s1)

7: if t was queried to Q by A1 or A2, or c was queried to O2 by A2 then abort
8: return b′
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Moreover, we also propose weaker security models, which are the security against selective
time chosen plaintext attacks (ST-CPA), selective time non-adaptive chosen ciphertext
attacks (ST-CCA1), and selective time adaptive chosen ciphertext attacks (ST-CCA). The
difference from CPA, CCA1, and CCA is that the adversary needs to claim its challenge
time period before getting any public key. Then, there are some differences in security
games. For the trusted server type adversary, A0 will output the challenge time period t.
For the receiver type adversary and the eavesdropper type adversary, A0, which takes π
as input and outputs the challenge time period t and the state s0, will be given as an
extra algorithm, and A1 takes s0 as input instead of π. For instance, the IND-R-ST-CPA-b
game is defined as follows.
Game IND-R-ST-CPA-bAC (λ):
1: π ← C.Setup(1λ)

2: (t, s0)← A0(π) . s0: State of A0

3: (skTS, pkTS)← C.KeyGenTS(π)

4: (pkR,m0,m1, s1)← AQ(·)
1 (pkTS, s0) . s1: State of A1

5: ct← C.Enc(pkTS, pkR,mb, t, π)

6: b′ ← AQ(·)
2 (ct, s1)

7: if t was queried to Q by A1 or A2 then abort
8: return b′

3.2.1 Security Notions

Based on the security games that we stated in Section 3.2, we define the following security
notions:

Definition 6 (IND-P-ATK security). Let C be a timed-release encryption scheme. Then,
we say that the timed-release encryption scheme C is IND-P-ATK secure if

AdvIND-P-ATK
A,C (λ) =

∣∣∣∣∣Pr
[
IND-P-ATK-0AC (λ)→ 1

]
− Pr

[
IND-P-ATK-1AC (λ)→ 1

] ∣∣∣∣∣
is a negligible function in λ for all probabilistic and polynomial time algorithm A for
(P,ATK) ∈ ({TS, ε} × {CPA,CCA1,CCA, ST-CPA, ST-CCA1, ST-CCA}) ∪ ({R} × {CPA,
ST-CPA}).

3.2.2 Relation Between Security Models

As the difference between CCA, CCA1 and CPA (resp. ST-CCA, ST-CCA1 and ST-CPA)
is about the accessibility of oracles, we can deduce that IND-P-CCA (resp. IND-P-ST-
CCA) security implies IND-P-CCA1 (resp. IND-P-ST-CCA1) security and IND-P-CCA1
(resp. IND-P-ST-CCA1) security implies IND-P-CPA (resp. IND-P-ST-CCA) security for
P ∈ {R,TS, ε}. Moreover, we have the following relations.
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Theorem 1 (IND-P-ATK security ⇒ IND-ATK security). Let C be a timed-release en-
cryption scheme. If C is IND-P-ATK-secure, then C is IND-ATK-secure for ({TS} ×
{CPA,CCA1,CCA,
ST-CPA, ST-CCA1, ST-CCA}) ∪ (P,ATK) ∈ ({R} × {CPA, ST-CPA}).

Theorem 2 (IND-P-ATK security ⇒ IND-P-ST-ATK security). Let C be a timed-release
encryption scheme. If C is IND-P-ATK-secure, then C is IND-P-ST-ATK-secure for
(P,ATK) ∈ ({TS, ε} × {CPA,CCA1,CCA}) ∪ ({R} × {CPA}).

We can assume that t is in a small set (e.g. one value for each day of the calendar). By
guessing t, we obtain the following result.

Theorem 3 (IND-P-ST-ATK security ⇒ IND-P-ATK security). Let C be a timed-release
encryption scheme. If the set of time periods t is polynomially bounded and C is IND-P-ST-
ATK-secure, then C is IND-P-ATK-secure for (P,ATK) ∈ ({TS, ε}× {CPA,CCA1,CCA})∪
({R} × {CPA}).

Th. 1 and Th. 2 are trivial as the knowledge of some secret values, and given information at
the selection of the challenge time period are the differences between them. Consequently,
IND-TS-CCA and IND-R-CPA are the strongest security notions and IND-ST-CPA is the
weakest security notion. The summary of relations between security notions can be seen
in Fig. 3.2.

IND-TS-ST-CCA IND-TS-ST-CCA1 IND-TS-ST-CPA

IND-TS-CCA IND-TS-CCA1 IND-TS-CPA

IND-ST-CCA IND-ST-CCA1 IND-ST-CPA

IND-CCA IND-CCA1 IND-CPA

IND-R-ST-CPA

IND-R-CPA

Figure 3.2 – Relations between security models. The reductions with the solid line are
tight. The reductions with the dashed line only hold when the time periods are a small
set, they, therefore, are not tight.
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3.3 Construction With Master Time Bound Key

In this section, we propose a timed-release encryption scheme TRE which has the master
time bound key. In addition, our construction does not require KeyGenR to be dependent
to pkTS and a hash function which maps to a point on the elliptic curve. Let hκ be a
collision-resistant hash function from K∗×E[q] to a set F , E be an asymmetric encryption
scheme which consists of (KeyGen,Enc,Dec) with plaintext space K × F , and fπ be a
pseudorandom generator from µq to K, i.e. for ω ∈ µq uniformly distributed, fπ(ω)

is computationally indistinguishable from the uniform distribution over K. Then, our
construction with plaintext space K∗ is as follows. We note that our Broadcast is similar
to KeyGen of the identity-based encryption scheme of Boneh and Boyen [BB04] and
TS-release of the timed-release encryption scheme of Cathalo et al. [CLQ05]. In [BB04],
KeyGen generates the secret key of a user which can be used to compute the inverse of
the random value which is multiplied to the message. In [CLQ05], TS-release computes
g−(s+H(t)) where s is the secret key, H(t) is the hash of a time period t and g is a generator
of a group.

• TRE.Setup(1λ): Pick two prime numbers p and q such that q|(p± 1). Pick the finite
field K = Fp2 and a supersingular elliptic curve E(K) of cardinality (p± 1)2. Then,
compute q-torsion subgroup E[q] and the Weil pairing e : E[q]×E[q] −→ µq where
µq is the group of q-th roots of unity in K. Pick κ from the key space of h and
output π = (λ,K,E, q, e, κ).

• TRE.KeyGenTS(π): Pick P and Q from E[q] such that |〈P 〉| = |〈Q〉| = q and
P /∈ 〈Q〉, and pick a, b, c, d uniformly from Z∗q until 〈(1, a)〉, 〈(b, 1)〉 and 〈(c, d)〉 are
distinct subgroups of Zq × Zq. Then, compute

mkTS = (1− ab)(bd− c)−1(bP +Q),

skTS = (a, b, c, d, P,Q)

and
pkTS = (pk

(0)
TS, pk

(1)
TS, pk

(2)
TS) = (P + aQ, bP +Q, cP + dQ),

and output skTS, pkTS and mkTS.

Property 1. e(P, P ) = e(Q,Q) = 1, e(P,Q)e(Q,P ) = 1 and e(P,Q) 6= 1.
(See the proof below.)

Property 2. e(pk(0)
TS, pk

(1)
TS) = e(P,Q)1−ab 6= 1 because 〈(1, a)〉 and 〈(b, 1)〉 are

distinct subgroups of Zq × Zq.

• TRE.KeyGenR(1λ): Generate a pair of secret and public keys (sk, pk) by calling
E .KeyGen(1λ). Then, output skR = sk and pkR = pk.
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• TRE.Broadcast(skTS, t, π): Pick s uniformly from Z∗q . Compute

τt =


sP + (ab− 1)(c+ bt)−1Q, if t = −d
(1− ab)(d+ t)−1P + sQ, if t = −cb−1

s(d+ t)−1P + (s+ ab− 1)(c+ bt)−1Q, otherwise.

Property 3. e(τt, t · pk(1)
TS + pk

(2)
TS) = e(mkTS, t · pk

(1)
TS + pk

(2)
TS) = e(P,Q)1−ab

(See the proof below.)

• TRE.Enc(pkTS, pkR,m, t, π): Output ⊥ if m /∈ K∗. Pick r1 uniformly from Z∗q and
pick r2 uniformly from K∗. Then, compute

ct0 = m · r2,

ct1 = r1t · pk(1)
TS + r1 · pk(2)

TS,

ct2 = E .Enc(pkR, (r2 + fπ(e(pk
(0)
TS, pk

(1)
TS)r1), hκ(ct0, ct1)))

and output ct = (ct0, ct1, ct2).

Property 4. e(τt, ct1) = e(pk
(0)
TS, pk

(1)
TS)r1

• TRE.Dec(skR, τt, ct, π): Compute

(r′2, σ) = E .Dec(skR, ct2).

Output
m = ct0 ·

(
r′2 − fπ(e(τt, ct1))

)−1

if σ = hκ(ct0, ct1), and output ⊥ otherwise.

Proof of Property 1. e(P, P ) = e(Q,Q) = e(P+Q,P+Q) = 1 comes from the alternating
property of the Weil pairing. Hence, 1 = e(P + Q,P + Q) = e(P,Q)e(Q,P ) due to
bilinearity. Now, assume that there exists P,Q ∈ E[q] \ {O} such that P /∈ 〈Q〉 and
e(P,Q) = 1. Then, we have e(P, αP + βQ) = e(P,Q)β = 1 for any α, β ∈ Zq. As q is
prime, {αP + βQ : α, β ∈ Zq} = E[q]. Hence, it contradicts non-degeneracy, and such P
and Q do not exist. Consequently, e(P,Q) 6= 1 and e(P,Q)−1 = e(Q,P ).

Proof of Property 3. When t 6= −d and t 6= −cb−1, we have

e(τt, t · pk(1)
TS + pk

(2)
TS)

= e(s(d+ t)−1P + (s+ ab− 1)(c+ bt)−1Q, (c+ bt)P + (d+ t)Q)

= e(s(d+ t)−1P, (d+ t)Q)e((s+ ab− 1)(c+ bt)−1Q, (c+ bt)P )

= e(P,Q)se(Q,P )s+ab−1

= e(P,Q)1−ab.
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When t = −d, we have

e(τt, t · pk(1)
TS + pk

(2)
TS) = e(sP + (ab− 1)(c+ bt)−1Q, (c+ bt)P )

= e(P,Q)1−ab.

Similarly, when t = −cb−1, we have

e(τt, t · pk(1)
TS + pk

(2)
TS) = e((1− ab)(d+ t)−1P + sQ, (d+ t)Q)

= e(P,Q)1−ab.

With mkTS, we can also obtain the same result regardless of t.

e(mkTS, t · pk
(1)
TS + pk

(2)
TS)

= e((1− ab)(bd− c)−1(bP +Q), (c+ bt)P + (d+ t)Q)

= e((1− ab)(bd− c)−1bP, (d+ t)Q)e((1− ab)(bd− c)−1Q, (c+ bt)P )

= e(P,Q)(1−ab)(bd−c)−1(b(d+t)−c−bt))

= e(P,Q)1−ab.

By the choice of parameters, the q-th torsion subgroup E[q] is a proper subset of E over
K. As E[q] ∼= Zq × Zq [Sil09], there exist q + 1 distinct subgroups of order q in E[q]

and every element in E[q] \ {O} generates a subgroup of order q. Therefore, we can
deduce that e(P,Q) = 1 ⇐⇒ P ∈ 〈Q〉 for all P,Q ∈ E[q]. Hence, in TRE.KeyGenTS,
|〈P 〉| = |〈Q〉| = q always holds and P /∈ 〈Q〉 holds with probability of q

q+1 for any P and
Q randomly chosen from E[q], and P /∈ 〈Q〉 can be easily verified by checking if e(P,Q)

is not equal to 1.

Assume that E .Dec(sk, E .Enc(pk,m)) = m always holds for any message m and key pair
(sk, pk) generated by using E .KeyGen with some random coin. Then, TRE.Dec is correct
if e(pk(0)

TS, pk
(1)
TS)r1 = e(τt, ct1). From the choice of keys, we have

e(pk
(0)
TS, pk

(1)
TS)r1 = e(P + aQ, bP +Q)r1

= e(P, bP +Q)r1e(aQ, bP +Q)r1

= e(P, bP )r1e(P,Q)r1e(aQ, bP )r1e(aQ,Q)r1

= e(P,Q)r1(1−ab).

As ct1 = r1(t · pk(1)
TS + pk

(2)
TS), the decryption is always correct.
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3.3.1 Security Analysis

In this section, we will show the following results:

• IND-CPA security of E implies IND-TS-CPA security of TRE. This security does not
depend on hκ which could be set to a constant function;

• IND-CCA security of E and the collision-resistance of hκ imply IND-TS-CCA security
of TRE;

• Hardness of the decisional bilinear Diffie-Hellman problem and the PRG property
of fπ imply IND-R-ST-CPA security of TRE.

We note that the IND-TS security does not depend at all on the pairing structure. Actually,
in this malicious trusted server model, the cryptosystem is equivalent to

TRE.Enc(pkR,m; r2) = (m · r2, E .Enc(pkR, (r2, hκ(ct0, ct1)))).

Therefore, the security solely relies on the one of E .

Theorem 4 (IND-TS-CCA security). Let A be an IND-TS-CCA adversary against TRE
which runs in time η with advantage δ. Then, there exist an IND-CCA adversary B against
E and a collision adversary C against hκ. The advantage of adversary B is at least δ− δhκ
and its time complexity is η + ηe + ηfπ + ηhκ where ηe is the time to evaluate the pairing
e(·, ·), ηe is the time to evaluate the pairing e(·, ·), ηfπ is the evaluation time of fπ, ηhκ is
the evaluation time of hκ and δhκ is the advantage of C.

Proof. Let B be an IND-CCA adversary against E . Then, B consists of two algorithms
BO
′
1

1 , which chooses two messages m0 and m1 by using the decryption oracle O′1, and B
O′2
2

which guesses the random bit b by using the decryption oracle O′2, given an encryption of
mb.
Algorithm BO

′
1

1 (pk):
1: π ← TRE.Setup(1λ)

2: (pkTS, s
′
0)← A0(π)

3: (m′0,m
′
1, t, s

′
1)← AO1

1 (pk, s′0)

4: parse pkTS = (pk
(0)
TS, pk

(1)
TS, pk

(2)
TS)

5: r1
$← Z∗q

6: r2
$← K∗

7: r′2 ← m′1
−1 ·m′0 · r2

8: ct0 ← m′0 · r2 . equal to m′1 · r′2
9: ct1 ← r1t · pk(1)

TS + r1 · pk(2)
TS

10: m0 ← (r2 + fπ(e(pk
(0)
TS, pk

(1)
TS)r1), hκ(ct0, ct1))

11: m1 ← (r′2 + fπ(e(pk
(0)
TS, pk

(1)
TS)r1), hκ(ct0, ct1))

22



3.3. Construction With Master Time Bound Key

12: s1 ← (ct0, ct1, s
′
1)

13: return m0,m1, s1

Algorithm BO
′
2

2 (c, s1):
14: parse s1 = (ct0, ct1, s

′
1)

15: b← AO2
2 ((ct0, ct1, c), s

′
1)

16: return b

Oracle O1((ct′0, ct
′
1, ct

′
2), τ ′):

17: (r′2, σ)← O′1(ct′2)

18: if σ = hκ(ct′0, ct
′
1) then

19: m← ct′0 · (r′2 − fπ(e(τ ′, ct′1)))−1

20: return m

21: end if
22: return ⊥

Oracle O2((ct′0, ct
′
1, ct

′
2), τ ′):

23: if c = ct′2 then
24: (adversary C only): if hκ(ct0, ct1) = hκ(ct′0, ct

′
1) and (ct0, ct1) 6= (ct′0, ct

′
1) then

yield a collision
25: return ⊥
26: end if
27: (r′2, σ)← O′2(ct′2)

28: if σ = hκ(ct′0, ct
′
1) then

29: m← ct′0 · (r′2 − fπ(e(τ ′, ct′1)))−1

30: return m

31: end if
32: return ⊥

The adversary C gets κ as input and simulates everything else in the game played by B.
It can only succeed when the oracle O2 is given ct′2 = c. If B ends then C fails.

When c is an encryption ofm0, (ct0, ct1, c) is an encryption ofm′0 with correct distribution.
When c is an encryption of m1, we need to check that (ct0, ct1, c) is an encryption of m′1
with correct distribution. As ct1 is independent to r2, we only need to check if ct0 has
correct distribution. By the construction, ct0 = m · r2 is uniform in K∗ because r2 is
uniformly chosen from K∗ for any m. Then, ct0 has correct distribution when c is an
encryption of m1. Indeed, (ct0, ct1, c) has correct distribution and it is an encryption of
m′0 · r2 · r′2

−1. As r′2 = m′1
−1 ·m′0 · r2, we can deduce that (ct0, ct1, c) is an encryption of

m′1. As O′1 can decrypt any ciphertext which is encrypted with E , O1 can decrypt any
ciphertext encrypted with TRE. O2 should be able to decrypt any ciphertext encrypted
with TRE if given ciphertext is not equal to the challenge ciphertext, i.e. (ct0, ct1, c).
However, O′2 can only decrypt a ciphertext which is encrypted with E if given ciphertext
is not equal to c. Therefore, when A2 queries a ciphertext (ct′0, ct

′
1, c) to O2 where

(ct′0, ct
′
1) 6= (ct0, ct1), O2 can only output ⊥ because it cannot queries c to O′2. Then, we
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will show that the decryption of (ct′0, ct
′
1, c) is ⊥ when (ct′0, ct

′
1) 6= (ct0, ct1). As hκ is

collision resistant, the advantage of finding (ct′0, ct
′
1) such that (ct0, ct1) 6= (ct′0, ct

′
1) and

hκ(ct0, ct1) = hκ(ct′0, ct
′
1) is negligible. Then, the advantage of finding (ct′0, ct

′
1, c) whose

decryption is not ⊥ is also negligible. Therefore, O2 cannot correctly decrypt a ciphertext
with negligible probability. Hence, when δhκ is the advantage of C, the advantage of B
is lower bounded by δ − δhκ where δ is the advantage of A, and the time complexity of
B is η + ηe + ηfπ + ηhκ where η is the running time of A, ηe is the time to evaluate the
pairing e(·, ·), ηfπ is the evaluation time of fπ and ηhκ is the evaluation time of hκ.

Theorem 5 (IND-TS-CPA security). Let A be an IND-TS-CPA adversary against TRE
which runs in time η with advantage δ. Then, there exists an IND-CPA adversary B
against E. The advantage of B is at least δ and its time complexity is η + ηe + ηfπ where
ηe is the time to evaluate the pairing e(·, ·), ηe is the time to evaluate the pairing e(·, ·)
and ηfπ is the evaluation time of fπ.

Proof. The proof is same with the proof of Th. 4. We simply replace hκ by an identity
function. We then make the oracles to always output an empty output.

Theorem 6 (IND-R-ST-CPA security). Let A be an IND-R-ST-CPA adversary against
TRE which runs in time η with advantage δ. Then, there exist an algorithm B which solves
the decisional bilinear Diffie-Hellman problem and a distinguisher D between fπ(Uµq) and
UK . The advantage of B is at least δ−3/q−δfπ and its time complexity is η+3ηe+ηE.Enc
where δfπ is the advantage of D, ηe is the time to evaluate the pairing e(·, ·), and ηE.Enc
is the execution time of E .Enc.

Proof. We use IND$-R-ST-CPA security, an equivalent notion to IND-R-ST-CPA in which
the adversary selects only one message and obtains the encryption of this message or
a random one. The equivalence is proven by Bellare et al. [BDJR97]. Let A be an
IND$-R-ST-CPA adversary. Then, by using A, we can construct B, which solves the
decisional bilinear Diffie-Hellman problem, as follows.
Algorithm B(π, P,Q, aP, bP, r1P, aQ, bQ, r1Q,Z):
1: (t, s0)← A0(π)

2: (c′, d)
$← Zq × Z∗q

3: if c′P − tbP = O then
4: return whether Z = e(aP, cQ)c

′t−1

5: end if
6: pkTS ← (P + aQ, bP +Q, c′P − btP + dQ)

7: if e(pk(0)
TS, pk

(1)
TS) = 1 then

8: return whether Z = e(P, r1Q)

9: else if e(pk(0)
TS, pk

(2)
TS) = 1 then

10: return whether Z = e(t−1(c′aP − dP ), r1Q)

11: else if e(pk(1)
TS, pk

(2)
TS) = 1 then
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12: return whether Z = e(aP, r1Q)c
′(d−t)−1

13: end if
14: (pkR,m0, s1)← AQ1

1 (pkTS, s0)

15: r2
$← K∗

16: ω ← e(P, r1Q)Z−1

17: ct0 ← m0 · r2

18: ct1 ← c′r1P + (d+ t)r1Q

19: ct2 ← E .Enc(pkR, (r2 + fπ(ω), hκ(ct0, ct1)))

20: b′ ← AQ2
2 ((ct0, ct1, ct2), s1)

21: return ¬b′

Oracle Q1(t′):

22: s
$← Zq

23: τt′ ← (1 + sc′)(t′ + d)−1P + c′(t′ − t)−1(t′ + d)−1aP + s(t′ − t)(t′ + d)−1bP + (t′ −
t)−1aQ+ sQ

24: return τt′

Oracle Q2(t′):
25: if t′ = t then
26: return ⊥
27: end if
28: s

$← Zq
29: τt′ ← (1 + sc′)(t′ + d)−1P + c′(t′ − t)−1(t′ + d)−1aP + s(t′ − t)(t′ + d)−1bP + (t′ −

t)−1aQ+ sQ

30: return τt′

In order for the algorithm B to get the correct response from the adversary A, pkTS
should be a valid trusted server public key and the inputs should be correctly distributed.
Firstly, we show that the computational bilinear Diffie-Hellman problem can be easily
solved when pkTS is not valid. pkTS is valid if three subgroups generated by pk

(0)
TS, pk

(1)
TS

and pk
(2)
TS are distinct. Then, we have three possible cases. If e(pk(0)

TS, pk
(1)
TS) = 1, we have

1 = e(pk
(0)
TS, pk

(1)
TS) = e(P + aQ, bP +Q) = e(P,Q)1−ab.

Then, we can deduce that ab ≡ 1 (mod q). Therefore, e(P,Q)abc = e(P,Q)c = e(P, cQ).
If e(pk(0)

TS, pk
(2)
TS) = 1, we have

1 = e(pk
(0)
TS, pk

(2)
TS) = e(P + aQ, c′P − tbP + dQ) = e(P,Q)d−a(c′−tb).

Then, we can deduce that ab ≡ (ac′−d)t−1 (mod q) and we can obtain abP = t−1(c′aP −
dP ). Therefore, e(t−1(c′aP − dP ), cQ) = e(P,Q)abc. If e(pk(1)

TS, pk
(2)
TS) = 1, we have

1 = e(pk
(1)
TS, pk

(2)
TS) = e(bP +Q, c′P − tbP + dQ) = e(P,Q)bd−c

′−tb.
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Then, we can deduce that b ≡ c′(d−t)−1 (mod q). Hence, we can obtain e(aP, cQ)c
′(d−t)−1

= e(P,Q)abc.

Table 3.2 – Mapping between the variables in TRE and the variables in the algorithm B.

In TRE In the algorithm B
P,Q, a, b, d, t, r1, r2, pkR, skR P,Q, a, b, d, t, r1, r2, pkR, skR

m m0

c c′ − tb

Now, we need to check the distribution of the inputs to the adversary A. As P , Q, d, r2,
pkR and skR are selected as they are selected in TRE. However, a, b, and r1 are uniformly
distributed over Z∗q in TRE while they are uniformly distributed over Zq in the algorithm
B by Def. 1. As m is selected by the adversary A, we only need to check the distribution
of c′ − tb. As c′ is uniformly chosen from Zq, c′ − tb is uniformly distributed over Zq.
When c′P − tbP = O, we have c′ − tb ≡ 0 (mod q). Then, we can solve the decisional
bilinear Diffie-Hellman problem as we can compute b by ct−1 mod q and then compare Z
with e(aP, r1Q)b. Hence, c′ − tb is uniformly distributed over Z∗q when the trusted server
public key pkTS is computed.

The distribution of the outputs of the oracles Q1 and Q2 needs to be checked. For a
fixed time period t′, there exist exactly q possible values of τt′ which satisfy e(τt′ , ct1) =

e(pk
(0)
TS, pk

(1)
TS)r1 and TRE.Broadcast outputs one of these values. By the choice of s, Q1

and Q2 can output q different values for a fixed t′. Although Q1 cannot return an output
for t′ = t or t′ = −d, and Q2 cannot return an output for t′ = −d, the distribution of the
outputs of Q1 and Q2 are computationally indistinguishable from the actual distribution
as q is exponential in the security parameter λ. Hence, the distribution of the outputs of
the oracles Q1 and Q2 are computationally indistinguishable from the real distribution.

When Z = e(P,Q)abr1 , (ct0, ct1, ct2) is an encryption of the message m0 with the public
key pkTS. When Z is random value from µq, (ct0, ct1, ct2) is an encryption of the message
m∗ = m0 · r2 · (r2 + fπ(e(P,Q)r1Z−1) − fπ(e(P,Q)r1(1−ab)))−1. In IND$-R-ST-CPA,
the correct distribution of m∗ is the uniform distribution over K∗. As fπ makes a
computationally indistinguishable distribution from the uniform distribution over K, m∗

is also computationally indistinguishable from the uniform distribution over K∗ while the
random message should be uniformly chosen from K∗. If we replace fπ(·) by a uniform
distribution over K, m∗ is uniformly distributed over K∗ which is the correct distribution
for m∗. Therefore, the advantage of B is reduced by the advantage of D at most where D
is a distinguisher D between fπ(Uµq) and UK . When switching to the distribution for B,
the probability of success is reduced by 3/q + δfπ at most. Hence, the advantage of B to
solve the decisional bilinear Diffie-Hellman problem is lower bounded by δ − 3/q − δfπ
and the time complexity of B is η + 3ηe + ηE.Enc where δfπ is the advantage of D, ηe is
the time to evaluate the pairing e(·, ·), and ηE.Enc is the execution time of E .Enc.
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Using Th. 3, we obtain IND-R-CPA security when the domain of t is small.

3.3.2 Decryption With Master Time Bound Key

The biggest difference between our construction and other constructions is the existence of
the master time bound key. By using the master time bound key, a ciphertext of unknown
release time can be decrypted. By our construction, a ciphertext consists of (ct0, ct1, ct2).
In order to decrypt a ciphertext, we need to compute e(τt, ct1) should be computed. Due
to Property 3, the master time bound key mkTS can replace any time bound key. Indeed,
the receiver only needs to ask the trusted server to compute e(mkTS, ct1) to decrypt the
ciphertext. As ct1 is independent from the message, the trusted server cannot learn
anything about the message while computing e(mkTS, ct1).

Similarly, the trusted server can terminate its service without any computational and
storage overhead while preventing losing the encrypted data of users by revealing the
master time bound key. As the master time bound key can replace any time bound key,
we do not need any extra algorithm for the decryption with mkTS. This is an advantage
for the trusted server, as it does not need to provide any additional algorithm for the
decryption with master time bound key.

On the other hand, the time bound key τt which is generated by TRE.Broadcast can be
equal to the master time bound key mkTS depending on the random value s. Therefore,
the master time bound key can be broadcasted by the trusted server as a time bound key
of a certain time period. However, it can happen with probability of at most 1/(q − 1)

where q is exponential in the security parameter λ. As 1/(q − 1) is negligible in λ, the
probability that a fresh time bound key is equal to the master time bound key is negligible.
Moreover, the trusted server could also easily prevent this problem by comparing the
time bound key with master time bound key before the broadcast.

3.3.3 Discussion

In our construction, we are selecting a specific elliptic curve, which is a supersingular
elliptic curve with j-invariant 0 or 1728, in order to minimize computation overhead.
However, any pairing-friendly curve can be used for our construction if the q-torsion
subgroup has the size of q2.

As our construction uses an elliptic curve over an extension field Fp2 , we first need
to know what is the computational overhead compared to other constructions which
work on Fp. However, it is not easy to compare the exact overhead because some
constructions [BC04, CLQ05, CHKO06, HYL05, CHS07] are based on the generic bilinear
pairing, and some constructions [NMKM09, MNM10] are based on the generic identity-
based encryption. Therefore, their computational cost is dependent on the underlying
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bilinear pairing and the underlying identity-based encryption scheme. An identity-based
encryption scheme is usually based on the bilinear pairing1, and it always requires at least
one evaluation of the bilinear pairing. One of most common instantiation of the bilinear
pairing is to use the Weil pairing or the Tate pairing after applying a distortion map to
one of two input points. As the distortion map maps a point defined on the elliptic curve
over a field Fp to Fp2 , the computation of the Weil pairing or the Tate pairing is actually
the computations on Fp2 . Therefore, the asymptotic complexities of our construction
and other constructions are similar as long as the bilinear pairing is the most complex
computation.

Our construction can also be built on the top of generic bilinear pairings. Let G be
an additive cyclic group, GT be a multiplicative cyclic group, and ê : G × G −→ GT
be a bilinear pairing. If we define P = (g, 0), Q = (0, g) and e(aP + bQ, cP + dQ) =

e((ag, bg), (cg, dg)) = ê(ag, dg)ê(cg, bg)−1, we can obtain the same construction on the
top of generic pairing. The computation of e however requires two evaluations of a generic
bilinear pairing ê. As we mentioned in the previous paragraph, a generic bilinear pairing
is usually instantiated with the Weil pairing or the Tate pairing. We therefore use the
Weil pairing over Fp2 for the efficiency. We note that the construction with a generic
pairing can be more efficient than our construction with the Weil pairing if one can
instantiate a more efficient bilinear pairing.

In our construction, the encryption requires a single evaluation of the Weil pairing e.
As the encryption always requires to compute e(pk(0)

TS, pk
(1)
TS), it can be precomputed

by the trusted server and integrated into the trusted server public key. Therefore,
we can make the encryption faster by replacing the trusted server public key pkTS to
(e(pk

(0)
TS, pk

(1)
TS), pk

(1)
TS, pk

(2)
TS).

3.4 Parameter Selection

As our construction is based on the hardness of bilinear Diffie-Hellman problem on an
elliptic curve, the discrete logarithm problem on the elliptic curve can be reduced to a
discrete logarithm problem on a finite field extension by using a pairing [MOV93]. We
therefore need to select parameters while considering attacks on the both elliptic curve
and finite field extension. As our elliptic curve always has the embedding degree 2, the
selection of p needs to consider the hardness of the discrete logarithm problem on Fp2 .
For instance, we require 3072-bit of group size and 256-bit of exponent size for finite
field crptography, and 256-bit of point order for elliptic curve cryptography for 128-bit
security by NIST recommendation [BBB+12]. As P and Q have the order q, we require
p to be a 1536-bit prime and q to be a 256-bit prime for 128-bit security. On Table 3.3,
we summarized the minimum bit length of p and q by security level.

1There also exist several identity-based encryption schemes which do not require a bilinear pairing
[AB09, ABB10, DG17], but we do not compare with them.
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Table 3.3 – Bit length of p and q by security level λ

λ log2 p log2 q

80 512 160
112 1024 224
128 1536 256
192 3840 384
256 7680 512

In the parameter generation, one major problem is the generation of p and E. As p
should be a multiple of q and E should be a supersingular elliptic curve of cardinality
(p± 1)2 over Fp2 , we need an efficient way to generate p and E. Instead of generating a
random prime and a random supersingular elliptic curve, we can use the elliptic curves
which are known to be supersingular. One of possible ways is to use an elliptic curve with
j-invariant 0 or 1728. For an elliptic curve of j-invariant 0, we need to select p such that
p ≡ 2 (mod 3). Instead p should satisfy p ≡ 3 (mod 4) for an elliptic curve of j-invariant
1728 in order for the elliptic curve to be supersingular. In these cases, the cardinality of
E is (p+ 1)2. We therefore only need to sample an appropriate prime number p for the
parameter selection.

As p should be a large prime which satisfies either p ≡ 3 (mod 4) or p ≡ 2 (mod 3), and
q|(p+ 1) at the same time, it might require more computational resources compared to
the generation of a random prime of the same bit length [JPV00]. The computation of
p however is only required once in the lifetime of the system. Due to the constraints
on p, the generation of p is 2 times slower by rejection sampling if we use a standard
prime number generation. However, it can be improved by modifying standard prime
number generations to first check if p satisfies either p ≡ 3 (mod 4) or p ≡ 2 (mod 3)

before checking if p is prime.

3.4.1 Relation Between Keys And Release Times

We now study the scenario where multiple trusted servers are sharing a single system
parameter, which means that these trusted servers are using the same elliptic curves and
all their public keys are in the same q-torsion subgroup E[q]. Therefore, there might exist
some relations between public keys of trusted servers.

By our trusted server key generation algorithm, each component of the public key pk
(0)
TS,

pk
(1)
TS and pk

(2)
TS are generators of different subgroups of order q. As there exist q + 1

subgroups of order q and q − 1 elements of a subgroup are generators of the subgroup,
there exist q(q+ 1)(q− 1)4 possible trusted server public keys. As e(pk(0)

TS, pk
(1)
TS) ∈ µq and

t · pk(1)
TS + pk

(2)
TS ∈ E[q], there only exist q3 possible (e(pk

(0)
TS, pk

(1)
TS), t · pk(1)

TS + pk
(2)
TS) pairs.

Hence, there must exist two different trusted server public keys such that an encryption
of a message with one trusted server public key is also a valid encryption of same message
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with another trusted server public key by the pigeonhole principle.

Let pkTS,0 = (pk
(0)
TS,0, pk

(1)
TS,0, pk

(2)
TS,0) be a trusted server public key and (ct0, ct1, ct2) be an

encryption of a message m with pkTS,0 for a release time t. In order for (ct0, ct1, ct2) to be
a valid ciphertext under another trusted server public key pkTS,1 = (pk

(0)
TS,1, pk

(1)
TS,1, pk

(2)
TS,1)

for a release time t′, e(pk(0)
TS,0, pk

(1)
TS,0) = e(pk

(0)
TS,1, pk

(1)
TS,1) and t · pk(1)

TS,0 + pk
(2)
TS,0 = t′ ·

pk
(1)
TS,1 + pk

(2)
TS,1, (ct0, ct1, ct2) should be satisfied. We can then easily deduce that

(−α · pk(1)
TS,0, α

−1 · pk(0)
TS,0, t · pk

(1)
TS,0 + pk

(2)
TS,0 − t

′α−1 · pk(0)
TS,0)

and
(α · pk(0)

TS,0, α
−1 · pk(1)

TS,0, (t− t′α−1) · pk(1)
TS,0 + pk

(2)
TS,0)

satisfy given conditions for α ∈ Z∗q .

Let GK̄/K be the Galois group of K̄/K where K̄ is the algebraic closure of K. For
σ ∈ GK̄/K , we have e(P,Q)σ = e(P σ, Qσ) where P σ = (P σx , P

σ
y ) where Px and Py are

x- and y-coordinates of the point P . By the choice of our parameters, there only exists
σ = p such that P σ 6= P . As q|(p ± 1), we have p ≡ ∓1 (mod q) and we can deduce
that e(∓P p, Qp) = e(P p,∓Qp) = e(P,Q) for any P,Q ∈ E. Hence, a ciphertext under a
public key pkTS,0 = (pk

(0)
TS,0, pk

(1)
TS,0, pk

(2)
TS,0) for a time period t is a valid ciphertext under

a public key

(∓α(pk
(0)
TS,0)p, α−1(pk

(1)
TS,0)p, t · pk(1)

TS,0 + pk
(2)
TS,0 − t

′α−1(pk
(1)
TS,0)p)

or
(±α(pk

(1)
TS,0)p, α−1(pk

(0)
TS,0)p, t · pk(1)

TS,0 + pk
(2)
TS,0 − t

′α−1(pk
(0)
TS,0)p)

for a release time t′ for any α ∈ Z∗q .

3.5 Experimental Result

We implemented our construction to measure the performance. In our construction, we
require an asymmetric scheme E , a collision-resistant hash function hκ and a pseudorandom
generator fπ. We however omitted them in our experiment.

We also applied some optimizations to our construction for the implementation. In
Enc, pk(0)

TS is only used for the computation of e(pk(0)
TS, pk

(1)
TS)r1 and never be reused. We

therefore replaced pk
(0)
TS in the trusted server public key by e(pk(0)

TS, pk
(1)
TS)r1 . By this, Enc

does not require any pairing computation while KeyGenTS requires an additional pairing
computation.

The experiment was done on a machine with the AMD Opteron 8354 processor with
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128 GB of memory. The implementation was done by using the SageMath 8.7. In the
experiment, all parameters are selected as we described in Section 3.4 for each security
level λ. We executed each instance for 1000 times and computed the average execution
time of each algorithm. The results are on Table 3.4 and the source code that we used
can be found from Appendix A.1.

Table 3.4 – Execution time for each security level

λ Setup KeyGenTS Broadcast Enc Dec

80 9.863174 s 0.631875 s 0.177999 s 0.090850 s 0.309342 s
112 67.008768 s 1.291937 s 0.315217 s 0.158717 s 0.547850 s
128 164.499172 s 2.067859 s 0.457077 s 0.226914 s 0.796429 s
192 4571.065143 s 9.203592 s 1.553107 s 0.793923 s 2.796017 s

As we can find from the results, Setup requires a lot of computational resources. However,
most of its execution time is due to the sampling of a large prime number which satisfies
the conditions in Section 3.4. However, this computation can be easily parallelized, and
Setup needs to be run only once at the start of the service. The execution times of
KeyGenTS, Enc and Dec are not significant, but we can find that the execution time of Enc
is faster than the execution time of Dec as Enc does not require any pairing computation
due to the optimization, that we stated above, while Dec requires a pairing computation.
When a trusted server is selecting the interval between two consecutive release times, the
execution time of Broadcast should be taken into account as the trusted server should be
able to compute a time bound key between two release times. For instance, this interval
must be larger than 1.5 seconds if we are aiming 192-bit of security. We can however use
the interval which is smaller than the execution time of Broadcast by parallelizing the
computations of Broadcast. Let t0, t1, . . . be time periods. If the interval between ti and
ti+1 for i ∈ {0, 1, . . .} is x times smaller than the execution time of Broadcast, we can
use x threads to compute time bound keys by making the j-th thread to compute time
bound keys for time periods tax+j for j ∈ {0, . . . , x− 1} and non-negative integer a. As
the execution time of Broadcast is smaller than the interval between ti and ti+x, all time
bound keys, except first x− 1 time bound keys, can be computed before its release time.
For first x− 1 time bound keys, the trusted server can precompute them before it starts
its service.

We note that Enc requires additional computations to evaluate E .Enc, hκ and fπ, and
Dec requires additional computations to evaluate E .Dec, hκ and fπ in the real world
application.

3.6 Conclusion of Chapter

In this chapter, we proposed a timed-release encryption scheme which has the master
time bound key. With master time bound key, a ciphertext can be decrypted even if
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the release time of the ciphertext is unknown. We also showed that our construction is
IND-TS-CCA-secure and IND-R-ST-CPA-secure. Moreover, we proposed the parameters
by security levels, and we implemented our construction and showed its performance.
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4 Witness Key Encapsulation Model

In Chapter 3, we have studied on timed-release encryption with a third party. In this
chapter, we study a way to improve it by using a witness key encapsulation mechanism.

Third parties that we have seen in Chapter 3 supposed to be centralized. But they could
be distributed, with the assumption that at least one part is honest. Let assume a set
of third parties whom we call delegates. The secret holder can use secret sharing to
distribute shares to each delegate. Delegates would simply release their shares in the
future at the given date. Concretely, the shares would be encrypted with their public
key and their secret key would be released. Managing the protocol could be enforced
by a smart contract which could reward the delegate for participating or punish them
for not releasing on time. Such solutions were proposed by Ning et al. [NDHC18] and
Li and Palanisamy [LP19]. One problem is that we now need to agree on a contract,
reward delegates, and also make everyone (delegates included) to pay some deposit at
the beginning of the protocol. The money is blocked until the protocol ends.

Avoiding third parties is more challenging.

Essentially, a smart contract could implement an obfuscated code which only checks time
and releases the secret if time has passed. The confidentiality of the secret inside the
code is based on obfuscation. There are two difficulties with this:

• we need to have a secure way to verify that some time has passed in a program
(smart contracts have no clock);

• currently known obfuscation schemes are based on multilinear maps which are not
efficient so far.

The first problem is solved with blockchains based on a proof-of-work. Essentially, a
long-enough valid blockchain is a proof that some time has elapsed. Contrarily to timed-
release encryption where every receiver must spend a huge amount of work to decrypt,
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here we use the fact that some work was already done by the blockchain infrastructure.
The verification is easier. Letting ω denote the blockchain, the verification is done by
checking a predicate R(t, ω) on an instance t, telling that ω is a valid blockchain of length
at least t. This idea, combined with witness encryption (as presented next) solves the
timed-release problem, as shown by Liu et al. [LJKW18].

Witness encryption was first proposed by Garg et al. [GGSW13]. The idea is that a secret
is encrypted together with an instance x of an NP language. The resulted ciphertext can
be decrypted by using a witness ω for the instance, which is verified by a relation R(x, ω).

Witness encryption based on an NP-complete language is a powerful primitive as it implies
a witness encryption based on any NP language. Anyone can encrypt a message for
anyone who could solve a given equation R(x, .). This is very nice to encrypt a bounty.

There are several kinds of witness encryption schemes. Regular schemes offer IND-CPA
security when the encryption key x does not belong to the language. However, in that
case, decryption is not possible either. Extractable schemes are such that for any efficient
adversary, there must exist an efficient extractor such that it is hard, either for the
adversary to decrypt, or for the extractor having the same inputs not to produce a witness.
Like obfuscation, existing constructions of extractable witness encryption are based on
multilinear maps which are currently heavy algorithms. To mitigate their complexity,
offline schemes allow efficient encryption but have an additional setup algorithm which
does the heavy part of the scheme.

Cramer and Shoup proposed the notion of Hash-proof systems which is also based on NP
languages [CS02]. Those systems use a special hash function which has a public key and
a secret key. We can hash an instance x either with its witness ω together with the public
key, or with the secret key alone. Somehow, the secret key is a wildcard for a missing
witness. Hash-proof systems are used to build adaptively secure cryptosystems [CS03].
We encrypt a message by picking a random (x, ω) pair in the relation R and hashing x
to obtain a key to encrypt the message. The value x must be added in the ciphertext.
We decrypt using the secret key. In witness encryption, the construction is upside down:
we encrypt by generating a key pair for the hash-proof system and we hash using the
secret key. The value of the public key must be added in the ciphertext. We decrypt by
hashing with a witness and the public key. One problem is to build a hash-proof system
with extractable security for an NP-complete problem.

The notion of security with extractor of the witness encryption is non-falsifiable [Nao03].
There exists other non-falsifiable notions which use extractors. For instance, the knowledge-
of-exponent assumption (KEA) was proposed by Damgård in 1991 [Dam91]. It says that
for any efficient adversary, there must exist an efficient extractor such that given (g, gy)

in a given group, it is hard, either for the adversary to construct a pair of form (gx, gxy),
or for the extractor having the same input not to produce x. KEA can be proven in the
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generic group model [Den06, AF07].

Witness encryption can be achieved using obfuscation: the ciphertext is an obfuscated
program which takes as input ω and releases the plaintext if R(x, ω) holds. As shown by
Chvojka et al. [CJK19], this can also be turned into an offline witness encryption scheme.
Hence, it seems that all solutions reduce to obfuscation.

Our contribution

In this chapter, we construct an efficient witness encryption scheme1 for a variant of the
subset sum problem (which we show to be NP-complete). Concretely, an instance is a
tuple x = (x1, . . . , xt, s) of vectors, a witness is a vector ω = (a1, . . . , at) of non-negative
small integers, and R(x, ω) is equivalent to the vectorial equation a1x1 + · · ·+ atxt = s.
In the regular subset sum problem, all ai must be boolean and the vectors xi and s are
actually integers. Here, we require the ai to be polynomially bounded and vectors have
some dimension d.

Our encryption scheme is based on the following idea which we explain for d = 1 as
follows: encryption generates a (n, `, g, k) tuple such that g has multiplicative order `
modulo n and k is invertible modulo `. The values k and ` are not revealed. Then, the
ciphertext consists of (n, g, y1, . . . , yt, e) with yi = kxi mod ` and the encryption e of the
secret by using the key h = gk

s
mod n. The decryption rebuilds h = gy

a1
1 ···y

at
t mod n

from the ciphertext and the witness, then decrypts e. The key idea in the security is that
the operations need to be done in the hidden group of residues modulo `. The product
ya1

1 · · · y
at
t can only be done over the integers, assuming that the ai’s are small. However,

the basis-g exponential reduces it modulo ` in a hidden manner.

Interestingly, computing the products ya1
1 · · · y

at
t from reduced yi values resembles to the

notion of graded encoding, which is the basis of currently existing multilinear maps. In
our construction, a 1-level encoding of x is kx mod `. Hence, each yi is a 1-level encoding
of xi and ya1

1 · · · y
at
t is an encoding of a1x1 + · · ·+ atxt of level a1 + · · ·+ at. The level of

encoding is proportional to the size of the integer.

Our construction is based on the following homomorphism from Zd to the hidden group
Z∗` :

(x1, . . . , xd) 7→ kx1
1 · · · k

xd
d mod `

This hidden group is included in a larger structure Z in which we can do multiplications
which are compatible with the hidden group. However, we later need to reduce elements
in a compatible and hidden manner. We call this reduction operation hashing. In our
construction, it is done by the y 7→ gy mod n function. We formalize the notion of hidden
group with hashing (HiGH).

1Actually, we construct a KEM.

35



Witness Key Encapsulation Model

To be able to prove security, we need an assumption which generalizes the knowledge-
of-exponent assumption: we need to say that computing h implies being able to write
it as the exponential of some (multiplicative) linear combination of the yi’s with known
exponents. To do so, we must make the group sparse over the integers (so that we
cannot find element by chance). For that, we duplicate the basis-k exponential like in the
Cramer-Shoup techniques [CS98]. Then, we formulate two computational assumptions.
The first one, which we call the kernel assumption says that it is hard to find a non-zero
vector x mapping to 1 by the above homomorphism, with only public information (i.e., the
ciphertext). We show that it is equivalent to the order assumption for the RSA parameter
n in Th. 10. The second one, which is non-standard, is similar to the knowledge of
exponent assumption, and so is non-falsifiable.

We prove security in a generic HiGH model. We also propose an RSA-based HiGH for
which we prove security (under non-standard but realistic assumptions) for instances x
which have no a1x1 + · · ·+ atxt = 0 relation with small ai.

We derive some programming techniques to encode a system of boolean equations into
our variation of the subset sum problem. We apply our construction to the timed-release
construction of Liu et al. [LJKW18] with the bitcoin infrastructure. We show that using
a slightly different block structure, we can significantly reduce the complexity.

4.1 Primitives of Witness Key Encapsulation Mechanism

We adapt the primitives of witness encryption from Garg et al. [GGSW13] so that we
have a key encapsulation mechanism instead of a cryptosystem.

Definition 7 (Witness key encapsulation mechanism (WKEM)). Let L be an NP language
defined by the predicate R. A witness key encapsulation mechanism for the language L
consists of following two algorithms and a domain Kλ defined by a security parameter λ:

• Enc(1λ, x)→ K, ct: A probabilistic polynomial-time algorithm which takes a security
parameter λ and a word x ∈ L as inputs, and outputs a plaintext K ∈ Kλ and a
ciphertext ct.

• Dec(ω, ct)→ K/⊥: A deterministic polynomial-time algorithm which takes a witness
ω and a ciphertext ct as inputs, and outputs a plaintext K or ⊥ which indicates the
decryption failure.

Then, the following property is satisfied:

• Perfect correctness: For any security parameter λ, for any word x and witness
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ω such that R(x, ω) is true, we have

Pr
γ

[
Dec(ω, ct) = K|(K, ct)← Enc(1λ, x; γ)

]
= 1.

Clearly, if we have a WKEM for an NP-complete language, we can make a WKEM for any
NP language.

Based on security notions of extractable witness encryption [GKP+13] and KEM [CS03],
we define extractable indistinguishability as follows.

Definition 8 (Extractable indistinguishability). Let (Kλ,Enc,Dec) be a WKEM for L.
Given an adversary A, we define the following game with b ∈ {0, 1}:
Game IND-EWEbA(1λ, x):
1: Enc(1λ, x)→ K1, ct

2: pick a random K0 ∈ Kλ
3: A(x,Kb, ct)→ r

4: return r

We define the advantage of A by

AdvIND-EWE
A (x) = Pr[IND-EWE1

A(x)→ 1]− Pr[IND-EWE0
A(x)→ 1]

We say that WKEM is extractable indistinguishable for a set X of instances x if for any
probabilistic and polynomial-time IND-EWE adversary A, there exists a probabilistic and
polynomial-time extractor E such that for all x ∈ X, E(x) outputs a witness of x with
probability at least AdvIND-EWE

A (x) or at least 1
2 up to a negligible term:

∀x ∈ X Pr[R(x, E(x))] ≥ min

(
AdvIND-EWE

A (x),
1

2

)
− negl(λ)

Note that for x 6∈ L, no witness exists so E(x) outputs a witness with null probability.
Hence, it must be the case that AdvIND-EWE

A (x) = negl(λ) for all x ∈ X−L. This property
for all x 6∈ L is actually the weaker (non-extractable) security notion of witness encryption.

Ideally, we would adopt this definition for the set X of all possible words. The reason why
we introduce X is to avoid some “pathological” words making our construction insecure.

Chvojka et al. [CJK19] requires Pr[R(x, E(x))] to be “non-negligible” (without defining
what this means). In our notion, we require more. Namely, we require extraction to be
as effective as the attack.

The reason why the extractor extracts with probability “at least Adv − negl or at least 1
2 ”

is that we do not care if the extractor is not as good as the adversary when the adversary
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has an advantage close to 1. We only care that it is either “substantially good” or at least
as good as A.

We define extractable one-way security, which is a weaker security notion than extractable
indistinguishability. Later, we show that an extractable one-way scheme can be trans-
formed into an extractable indistinguishable one by generic transformation. Hence, we
will be able to focus on making an extractable one-way WKEM.

Definition 9 (Extractable one-wayness). Let (Kλ,Enc,Dec) be a WKEM for L. Given
an adversary A, we define the following game:
Game OW-EWEA(1λ, x):
1: (ROM only) pick a random function H
2: Enc(1λ, x)→ K, ct

3: A(x, ct)→ h

4: return 1h=K

In the random oracle model (ROM), the game starts by selecting a random hash function
H and Enc, Dec, and A are provided a secure oracle access to H. We define the advantage
of A by

AdvOW-EWE
A (x) = Pr[OW-EWEA(x)→ 1]

We say that WKEM is extractable one-way for a set X of instances x if for any probabilistic
and polynomial-time OW-EWE adversary A, there exists a probabilistic and polynomial-
time extractor E such that for all x ∈ X, E(x) outputs a witness of x with probability at
least AdvOW-EWE

A (x) or at least 1
2 up to a negligible term:

∀x ∈ X Pr[R(x, E(x))] ≥ min

(
AdvOW-EWE

A (x),
1

2

)
− negl(λ)

As for IND-EWE, we observe that we must have AdvOW-EWE
A (x) = negl(λ) when x ∈ X−L.

Indistinguishable implies one-way. As a warm-up, we show the easy result that
extractable indistinguishable implies extractable one-way.

Theorem 7. Let (Kλ,Enc,Dec) be a WKEM for L. We assume that 1/|Kλ| is negligible.
If WKEM is extractable indistinguishable for a set X of instances x, WKEM is also
extractable one-way for X.

Proof. Let A be an OW-EWE adversary against WKEM. We first construct an IND-EWE

adversary B against WKEM which simulates A. The extractor coming from B will define
an extractor for A.
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Adversary B(x,Kb, ct)

1: A(x, ct)→ K

2: return 1Kb=K

In the IND-EWE game, ct is generated in the same way as it is generated in OW-EWE

game. The adversary B therefore simulates A with the same input distribution. When b is
1, the decapsulation of ct is Kb. Thus, B outputs 1 if A outputs the correct decapsulation
of ct. We deduce

Pr[IND-EWE1
B(x)→ 1] = Pr[OW-EWEA(x)→ 1].

When b is 0, Kb is independent from K. So Pr[IND-EWE0
B(x) → 1] = 1/|Kλ| which is

assumed to be negligible. Then, we can deduce that the advantage of B in the IND-EWE

game is

AdvIND-EWE
B (x) = Pr[OW-EWEA(x)→ 1]− 1

|Kλ|
= AdvOW-EWE

A (x)− negl(λ).

We now assume that WKEM is IND-EWE-secure for X. There exists an extractor E which,
for and x ∈ X, outputs a witness of x with probability at least AdvIND-EWE

B (x) or 1
2 , up to

a negligible term. We observe that E is also an extractor for the OW-EWE adversary A.
The probability for E to output ω is at least AdvOW-EWE

A (x) or 1
2 up to a negligible term.

Hence, WKEM is also OW-EWE-secure.

Strongly secure from weakly secure transform. We now propose a generic WKEM

transformation from OW-EWE-secure to IND-EWE-secure. The construction uses a
random oracle. Let WKEM0 = (K0

λ,Enc0,Dec0) be an OW-EWE-secure WKEM and H
be a random oracle from K0

λ to Kλ. Our transformation is WKEM = (Kλ,Enc,Dec) as
follows:

Enc(1λ, x):
1: Enc0(1λ, x)→ h, ct

2: K ← H(h)

3: return K, ct

Dec(ω, ct):
4: Dec0(ω, ct)→ h

5: K ← H(h)

6: return K

The intuition behind this transformation is the hardness of guessing an input to the
random oracle H from the output.

Theorem 8. If WKEM0 is extractable one-way for a set X of instances, then WKEM

from the above transformation is extractable indistinguishable for X in the random oracle
model.

39



Witness Key Encapsulation Model

Proof. Let H be a random oracle. Let A be a IND-EWE adversary for WKEM. Then, we
will construct an extractor E .

If H is a random oracle, in one execution of the IND-EWE game, we can define the event
Eh that A queries H with h. We are interested in the h defined during the encryption
in IND-EWE which is also a preimage of K1. If ρ designates the random coins of A and
responses designate the sequence of query responses from H, the probability distribution
of (x,K0, ct, ρ, responses)|¬Eh and of (x,K1, ct, ρ, responses)|¬Eh are identical. Hence,
IND-EWE1

A(x) and IND-EWE0
A(x) are identical games as long as Eh does not occur. We

deduce that Eh occurs with the same probability when b = 0 and b = 1, and

Pr[Eh] ≥ AdvIND-EWE
A (x)

by the difference lemma [Sho04]. We construct the following OW-EWE adversary against
WKEM0:
B(x, ct):
1: pick K0 ∈ Kλ at random
2: pick some random coins ρ
3: run AH(x,K0, ct; ρ) and look at responses
4: pick i at random, i ≤ #responses

5: K ← ith output of H in responses

6: return K

where #responses is the number of oracle queries made by A. This adversary in the
OW-EWE game simulates perfectly the execution of the IND-EWE0

A game, in which Eh
may occur. If Eh occurs and h is the ith input to H, then B(x, ct) outputs the correct
decryption of ct. Hence, the advantage is at least Pr[Eh]

#responses . We deduce

AdvIND-EWE
A (x) ≤ AdvOW-EWE

B (x)× Poly(λ)

Due to OW-EWE security, there exists an extractor E(x) which extracts a witness for x
with probability at least AdvOW-EWE

B (x) or 1
2 . We can run the extractor a polynomial

number of times and check if it outputs a valid witness. We can show that by iterating
enough, either we extract with probability at least AdvIND-EWE

A (x) or at least 1
2 . We can

conclude.

4.2 Hidden Group With Hashing

We define a new structure HiGH with correctness and security notions.
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4.2.1 Definitions

We define the hidden group with hashing (HiGH) by some polynomially bounded algo-
rithms.

Definition 10 (Hidden group with hashing). A hidden group with hashing (HiGH) in
dimension d consists of the following algorithms:

• Gen(1λ)→ pgp, tgp: A probabilistic polynomial-time algorithm which generates at
random some public group parameters pgp and some trapdoor group parameters tgp.

• Hom(tgp, x)→ y: A deterministic polynomial-time algorithm which maps x ∈ Zd

to y. We denote by Gtgp the set of all Hom(tgp, x), for x ∈ Zd. When it is clear
from context, we omit tgp and write Hom(x) and G.

• Mul(pgp, y, y′)→ z: A deterministic polynomial-time algorithm which maps a pair
(y, y′) to a new element z. We denote by Spgp,tgp the smallest superset of Gtgp which
is stable by this operation. When it is clear from context, we omit pgp and write
Mul(y, y′) and S.

• Prehash(pgp, y) → h: A deterministic polynomial-time algorithm which maps an
element y ∈ S to a “pre-hash”.2 When it is clear from context, we omit pgp and
write Prehash(y).

we define by induction

Pow(y1, . . . , yt, 1
a1 , . . . , 1at) = Mul(Pow(y1, . . . , yt, 1

a1 , . . . , 1at−1), yt)

for at > 0 and

Pow(y1, . . . , yt−1, yt, 1
a1 , . . . , 1at−1 , 10) = Pow(y1, . . . , yt−1, 1

a1 , . . . , 1at−1)

with Pow(y1, . . . , yt, 1
0, . . . , 10, 11) = yt. In other words, Pow reduces a sequence of∑t

i=1 ai elements (y1, . . . , y1︸ ︷︷ ︸
a1 times

, . . . , yt, . . . , yt︸ ︷︷ ︸
at times

) into a single element by using Mul.

We write the ai inputs to Pow in unary to stress that the complexity is polynomial in
terms of

∑
i ai.

These algorithms must be such that

• they are all polynomially bounded;

2We call it a pre-hash because our standard transformation to strongly-secure WKEM hashes it to
make the final key.
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• Prehash is injective over G;

• for all Gen(1λ)→ pgp, tgp, x, x′ ∈ Zd, y, y′ ∈ S

Prehash(y)=Prehash(Hom(x))

Prehash(y′)=Prehash(Hom(x′))

=⇒Prehash(Mul(y,y′))=Prehash(Hom(x+x′)) (4.1)

Lemma 1. Given a HiGH, we have the following properties.

1. For all Gen(1λ)→ pgp, tgp, for all t, (x1, . . . , xt) ∈ (Zd)t, and non-negative integers
a1, . . . , at, if yi = Hom(xi), i = 1, . . . , t, we have

Prehash (Pow (y1, . . . , yt, 1
a1 , . . . , 1at)) = Prehash(Hom(a1x1 + · · ·+ atxt))

2. Prehash(S) = Prehash(G)

3. For any y ∈ S, there exists a unique z ∈ G such that Prehash(y) = Prehash(z). We
call z reduced and we denote it by

Red(y) = G ∩ Prehash−1(Prehash(y))

4. The ∗ operation on G defined by y ∗ y′ = Red(Mul(y, y′)) makes G an Abelian group
and Hom a surjective group homomorphism from Zd to G. We denote by Ker the
kernel of Hom.

Proof. We note that elements of the set S are constructed by making a finite sequence of
Mul on G elements. We prove all properties in sequence.

1. This property is proven by induction using (4.1).

2. As G ⊆ S, we have Prehash(G) ⊆ Prehash(S).

Due to (4.1), we show by induction that for any y ∈ S, there exists at least one
z ∈ G such that Prehash(y) = Prehash(z). Hence, Prehash(S) ⊆ Prehash(G).

We conclude that Prehash(S) = Prehash(G).

3. As Prehash is injective on G, for any h, there exists no more than one element in
G ∩ Prehash−1(h). The previous property shows that for h = Prehash(y), y ∈ S,
there exists at least one. Hence, there is one and only one.

4. As Red maps to G, G is closed for the ∗ operation. Clearly, Hom(0) is a neutral
element, due to (4.1). If y = Hom(x), then Hom(−x) is the inverse of y. Finally, if
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y = Hom(x), y′ = Hom(x′), and y′′ = Hom(x′′),

(y ∗ y′) ∗ y′′ = Red(Mul(y ∗ y′, y′′))
= Red(Mul(Mul(y, y′), y′′))

= Hom(x+ x′ + x′′)

and it is the same for y ∗ (y′ ∗ y′′). So, ∗ is associative. Commutativity in G is
inherited from the one in Zd.

Possible generalization. We could replace the domain Zd of the xi by any Z-module.
E.g., the domain of xi could be any Abelian group: an elliptic curve, a lattice, etc.

Intuitive link to graded encoding. In HiGH, we want that running Pow is hard if some
ai are not small. We assume that there are sets L1, L2, . . . such that S ⊆ L1 ∪ L2 ∪ · · ·
and G ⊆ L1. Li is a set of “level-i encodings”. Note that Li’s may be overlapping. We
assume that if y1 ∈ Li and y2 ∈ Lj , then Mul(y1, y2) ∈ Li+j . Intuitively, the level of
encoding corresponds to a level of complexity to process the elements, so that computing
Pow(y1, . . . , yt, 1

a1 , . . . , 1at) has complexity which is directly linked to the sum of the ai.

4.2.2 HiGH Knowledge Exponent Assumption (HiGH-KE)

Definition 11. A HiGH satisfies the HiGH Knowledge Exponent Assumption for a set X
if for any PPT algorithm A′, there exists a PPT algorithm E ′ such that for all x ∈ X,
the probability that the following game returns 1 is negligible:
Game HiGH-KE(1λ, x):
1: parse x = (x1, . . . , xt, aux)

2: Gen(1λ)→ (pgp, tgp) . this defines G = Homtgp(Zd)
3: yi ← Hom(tgp, xi), i = 1, . . . , t

4: pick ρ
5: A′(x1, . . . , xt, y1, . . . , yt, pgp, aux; ρ)→ h

6: if h 6∈ Prehash(pgp, G) then abort3

7: E ′(x1, . . . , xt, y1, . . . , yt, pgp, aux, ρ)→ (1a1 , . . . , 1at) . ai∈{0,1,2,...}

8: if Prehash(pgp,Hom(tgp, a1x1 + · · ·+ atxt)) = h then return 0
9: return 1

The point is that whenever the adversary succeeds to forge an element h of Prehash(G),
the extractor, who has the same view, should almost always manage to express it as the

3We stress that this step may not be simulatable by a PPT algorithm.
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Prehash of a combination of the known pairs (xi, yi), with small coefficients ai. The nice
thing about this assumption is that it allows to get similar results as in the generic group
model (i.e., to extract the combination) by remaining in the standard model.

This assumption combines the preimage awareness of Prehash and the knowledge-of-
exponent assumption in G.

By Prehash being preimage aware, we mean that whenever A succeeds to forge an element
of Prehash(S) (which is also Prehash(G)), then he must know some preimage in S.

Generic HiGH model. We model what a generic HiGH is and we prove HiGH-KE security
in this idealistic model.

The objective of HiGH is to have a sparse subgroup G of a bigger group Ḡ so that it is
hard to forge a G element except by manipulating known ones. Elements of Ḡ may be
represented in many different ways having various “size” which impact the complexity
of group operations. For that, a representation of an element of Ḡ is attached to an
integer which we call its level, to keep the analogy with graded encoding. The generic
model is relative to a probability distribution of a tuple (ϕ,H, H̄), where ϕ is a group
homomorphism from Zd to H̄ and H = ϕ(Zd) is a subgroup of H̄. (The H and H̄ groups
are the hidden versions of G and Ḡ.) We define the following oracles.

Gen: (This oracle can only be called once.) Pick a random tuple (ϕ,H, H̄), where ϕ :

Zd → H̄ is a group homomorphism andH = ϕ(Zd). Without loss of generality, write
H̄ = {0, . . . ,#H̄ − 1} and denote by � the group operation. Take m = dlog2 #H̄e.
For y ∈ Z2m , denote [y] = y mod #H̄ ∈ H̄. For i = 0, 1, 2, . . ., pick a random
permutation πi on Z2m . Return pgp = m and tgp empty.

Hom(x): If x has negative components, abort. Return (π1(ϕ(x)), 1).

Mul((y, 1i), (z, 1j)): If i = 0 or j = 0, abort. Otherwise, return

Mul((y, 1i), (z, 1j)) = (πi+j([π
−1
i (y)] � [π−1

j (z)]), 1i+j)

Prehash(y, 1i): Return π0([π−1
i (y)]).

To link with previous notations, we have G = {(π1(y), 1); y ∈ H}, S = {(πi(y), 1i); y ∈
H, i > 0}, and Ḡ = {(π1(y), 1); y ∈ H̄}.

Intuitively, elements (y, 1i) are represented by an m-bit number which is encoded by πi
so that the adversary does not see the real value. Elements are given with a “level of
encoding” i which starts at i = 1. When we multiply a level-i encoding with a level-j
encoding, we obtain a level-(i+ j) encoding. (We cannot multiply by a level-0 encoding.)
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Again, encoding levels in inputs of Mul and Prehash are given in unary to stress that the
level of encoding is polynomially bounded.

If the adversary picks an m-bit number y at a level i, it “represents” [π−1
i (y)] which is

in H̄. If H is sparse in H̄, the adversary cannot forge a (y, 1i) such that [π−1
i (y)] ∈ H,

except by making combinations of known ones. The permutation π0 is only used by
Prehash.

Theorem 9. For a distribution of (ϕ,H, H̄) such that #H/#H̄ is negligible in the above
construction, the HiGH-KE assumption holds (for any set X).

Proof. The oracles can define the permutations π0, π1, π2, . . . by lazy sampling.4 At the
beginning of the game, the adversary A′ receives the instance x = (x1, . . . , xt, s) ∈ (Zd)t+1,
yi = πi(ϕ(xi)), and m. During the game, A′ uses the Mul and Prehash oracles which
iteratively fill the tables defining the permutations. During the game, we let D be the set
of all (y, 1i) with y ∈ Z2m and i ≥ 0 for which π−1

i (y) is defined in the table of πi. We say
that D is the set of all defined encodings. Let D′ = {π−1

i (y); (y, 1i) ∈ D}. When A′ starts
running in the game, we have D = {(yi, 1); i = 1, . . . , t} and D′ = {ϕ(xi); i = 1, . . . , t}.

We can define an extractor E ′ who runs A′ and observes the interactions between
A′ and the Mul and Prehash oracles. The extractor keeps a list L which is initially
L = ((y1, 1), . . . , (yt, 1)). Elements of L are called the free elements. Whenever Mul or
Prehash is queried with one (or two) input (y, 1i) which is not in D, the extractor appends
(y, 1i) to the list L. Let L = ((y1, 1

i1), . . . , (y#L, 1
i#L)).

If the adversary makes a query with (y, 1i) not in D, the value in π−1
i (y) is not defined

yet. The probability that it becomes a D′ ∪ H element is negligible. The probability
that Mul returns an element of D′ ∪H is negligible too. This means that, except with
negligible probability, only the t first elements from L represent an element in H.

By induction, except with negligible probability, the following properties are satisfied:

• for every (y, 1i) ∈ D with i > 0, the extractor knows (a1, . . . , a#L) with a1, . . . , a#L

non-negative such that

Prehash(Pow(L, 1a1 , . . . , 1a#L)) = Prehash(y, 1i)

a1i1 + · · ·+ a#Li#L = i

• in this representation, either at+1 = · · · = a#L = 0 or (y, 1i) does not represent an
element of H;

• for every (h, 10) ∈ D, either (h, 10) ∈ L and π−1
0 (h) 6∈ H, or the extractor knows

(y, 1i) ∈ D such that h = Prehash(y, 1i) and i > 0.
4Lazy sampling is made by filling up, whenever needed, the tables for πi which are initially empty.
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Whenever A′ returns h ∈ Prehash(G), the extractor deduces (y, 1i) ∈ D such that
h = Prehash(y, 1i) then a1, . . . , at such that

h = Prehash(Pow(y1, . . . , yt, 1
a1 , . . . , 1at))

Hence, h = Prehash(Hom(a1x1 + · · ·+ atxt)).

4.2.3 HiGH Kernel Assumption (HiGH-Ker)

Definition 12. A HiGH satisfies the HiGH Kernel assumption for a set X of instances
x = (x1, . . . , xt+1) if for any PPT algorithm A′′, for any x ∈ X, the probability that the
following game returns 1 is negligible.
Game HiGH-Ker(1λ, x):
1: parse x = (x1, . . . , xt+1)

2: Gen(1λ)→ (pgp, tgp)

3: yi ← Hom(tgp, xi), i = 1, . . . , t+ 1

4: run A′′(x1, . . . , xt+1, y1, . . . , yt+1, pgp)→ z

5: if z = 0 then abort
6: if Prehash(pgp,Hom(tgp, z)) 6= Prehash(pgp,Hom(tgp, 0)) then abort
7: return 1

This means that even with a few (xi, yi) pairs for Hom, it is hard to find a kernel element.

4.3 Our Instantiation of HiGH

We propose an instantiation of HiGH from the hardness of factorization of RSA modulus.
Let GenRSA(1λ) be an algorithm which outputs a tuple (n, `, g) where n is an RSA
modulus and g is an element of order ` in Z∗n. Our proposed instance is given in Fig. 4.1.
Encryption generates a (n, `, g, k) tuple such that g has multiplicative order ` modulo
n and k is invertible modulo `. The values k and ` are not revealed. They are used to
derive a sequence (k1, k

′
1, . . . , kd, k

′
d) of elements of Z∗` such that there is a hidden relation

k′i = kθi (mod `).

The hidden group is Ḡ = (Z∗` )2 which has representation in Z2. We can Prehash with the
basis-g exponential modulo n. We use the group

G = {(kα1ξ1+···+αdξd , kθ(α1ξ1+···+αdξd)) mod `; ξ1, . . . , ξd ∈ Z} ⊆ Ḡ

Assuming that the αi are relatively prime, we have G = {(kξ, kθξ) mod `; ξ ∈ Z}. We have
Red(ν1, ν2) = (ν1 mod `, ν2 mod `). The kernel is a subgroup Ker of Zd of all (ξ1, . . . , ξd)

such that α1ξ1 + · · · + αdξd = 0 modulo the order of k. Prehash is injective on Z2
` , so

on G. G is the hidden group of the super-structure S ⊆ Z2. We stress that Mul makes
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operations in the super-structure S of the hidden group G, and that Pow needs the ai to
be small because elements of Z2 can become huge.

Gen(1λ):
1: GenRSA(1λ)→ (n, `, g) . g of order ` in Z∗n

example

1. pick an RSA modulus ` of length λ

2. pick a random α such that p = α`+ 1 is prime

3. pick a random β such that q = β`+ 1 is prime

4. set n = pq

5. pick g as a random number power αβ modulo n until it
has order `

2: pick k ∈ Z∗` at random
3: pick α1, . . . , αd, θ ∈ Z∗ϕ(`) at random
4: ki ← kαi mod `, i = 1, . . . , d

5: k′i ← kθαi mod `, i = 1, . . . , d

6: pgp← (n, g) . public group parameters
7: tgp← (`, (ki, k

′
i)i=1,...,d) . trapdoor group parameters

8: return (pgp, tgp)

Hom(tgp, ξ):
9: parse tgp = (`, (ki, k

′
i)i=1,...,d)

10: parse ξ = (ξ1, . . . , ξd)

11: ν1 ← kξ11 · · · k
ξd
d mod `

12: ν2 ← k′1
ξ1 · · · k′d

ξd mod `

13: return (ν1, ν2)

Mul(pgp, ν, ν ′):
14: parse ν = (ν1, ν2)

15: parse ν ′ = (ν ′1, ν
′
2)

16: zi ← νiν
′
i, i = 1, 2

17: return (z1, z2)

Prehash(pgp, ν):
18: parse pgp = (n, g)

19: parse ν = (ν1, ν2)

20: hi ← gνi mod n, i = 1, 2

21: return (h1, h2)

Figure 4.1 – Our HiGH Construction

Vulnerability. We can see that if an adversary can implement an algorithm A(ξ), which
outputs an integer, such that for a random ξ ∈ Zd, |A(ξ)| ≤ B and A(ξ) ≡ kξ11 · · · k

ξd
d

(mod `) with probability p such that 1/p is polynomially bounded (we say that A weakly
implements one component of Hom), then he can run it on random instances ξ, ξ′, ξ′′

with known relation ξ′′ = ξ + ξ′ and obtain A(ξ), A(ξ′), and A(ξ + ξ′). With this, the
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adversary can deduce a multiple of `, then all ki. It works the same for all kθi . This means
that the adversary obtains tgp. Hence, implementing ξ 7→ Hom(tgp, ξ) (even weakly) is
equivalent to knowing tgp.

Similarly, given some (xi, yi) pairs with yi = Hom(xi), if an adversary finds some small5

a′i (positive or negative) such that
∑

i a
′
ixi = 0, then he can compute∏

i

y
max(0,a′i)
i,j −

∏
i

y
max(0,−a′i)
i,j

for j = 1, 2, which are multiples of `. Their gcd `′ is a multiple of ` which can be used in
its place. Then, the adversary can recover some (possibly big or negative) a′′i such that∑

i a
′′
i xi = s and compute z =

∏
i y
a′′i
i mod `′ then h = gz mod n.

This means that for the HiGH-KE to hold on X, there should be no x ∈ X with a small
relation

∑
i a
′
ixi = 0.

Efficient implementation. To reduce the size of tgp, we can replace the (ki, k
′
i)i family

by a seed which generates k, α1, . . . , αd, θ.

Knowledge-of-exponent assumption. In our construction, Prehash(S) is included in
the set of all (gk

ξ
mod n, gk

θξ
mod n), ξ ∈ Z. This set has a structure and it seems hard,

even when n, g, ` are known, to forge an element (h1, h2) without knowing a pair of
integers (ν1, ν2) such that hi = gνi mod n, i = 1, 2, and (ν1, ν2) mod ` ∈ G.

The knowledge-of-exponent assumption on G says that whenever A succeeds to forge an
element in S from some (xi,Hom(xi)) pairs, then he must know some combination of
those pairs which has the same Red. We add in our notion that the combination must be
with small coefficients because the adversary does not know how to compute powers in S
without having data blowing up.

More precisely, Wu and Stinson define the generalized knowledge-of-exponent assumption
(GKEA) [WS07] over a group G. It says that for an adversary who gets y1, . . . , yt ∈ G
and succeeds to produce z ∈ G, there must be an extractor who would, with the same
view, make a1, . . . , at ∈ Z such that z = ya1

1 × · · · × y
at
t .

In our group G = {(kξ mod `, kθξ mod `); ξ ∈ Z}, this assumption is usual, even when `
is known. In our settings, ` is not known but the xi are known.

We conjecture that the HiGH-KE assumption holds in our construction for every (x1, . . . , xt)

such that there is no relation a1x1 + · · ·+ atxt = 0 with small ai.

5By “small”, we mean that computing y|ai|i over Z is doable.
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Kernel assumption. The RSA order assumption says that given an RSA modulus `
and a random k ∈ Z∗` , it is hard to find a positive integer z′ such that kz′ mod ` = 1. The
game is defined relative to the distribution P of ` as follows:
1: pick a random ` following P
2: pick a random k ∈ Z∗` uniformly
3: run B(`, k)→ z′

4: if z′ = 0 or kz′ mod ` 6= 1 then abort
5: return 1

For our construction, the HiGH-Ker problem is at least as hard as the RSA order problem.

Theorem 10. Let ` be a random modulus following distribution P . Given an adversary
A with advantage AdvHiGH-KerA in the HiGH-Ker game, we can construct an adversary B
with same advantage (up to a negligible term) in the order problem with this modulus
distribution, and similar complexity.

Proof. We consider an adversary A playing the HiGH-Ker game with input x. We define
an adversary B(`, k) playing the order game. The adversary B receives (`, k) from the
order game then simulates the rest of the HiGH-Ker game with A. Then, there is a little
problem to select α1, . . . , αd, θ because B does not know ϕ(`). However, by sampling in a
domain which is large enough, the statistical distance between the real and simulated
distributions of (pgp, tgp) is negligible. A may give some kernel elements z = (z1, . . . , zd)

from which B can compute α1z1 + · · ·+ αdzd. The simulation of oracles in the generic
HiGH model is straightforward. Hence, B succeeds in his game with (nearly) the same
probability as A succeeds in the HiGH-Ker game.

The complexity overhead of B is only to run the simulation of the oracles with lazy
sampling.

4.4 WKEM from HiGH

We now construct a WKEM based on a HiGH and prove its security.

4.4.1 Construction

Our construction is based on a variation Multi-SS of the subset sum problem SS. We
extend SS to the Multi-SS NP language defined by a polynomial P by:

Instance: a tuple x = (x1, . . . , xt, s) of vectors of non-negative integers.

Witness: a tuple ω = (1a1 , . . . , 1at) with non-negative integers ai, i = 1, . . . , t.

Predicate R(x, ω): a1x1 + · · ·+ atxt = s and ai ≤ P (|x|) for i = 1, ..., t.
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It is not hard to see that Multi-SS is NP-complete. Actually, we provide a Karp reduction
of SAT to Multi-SS in Section 4.5 in order to “program” a boolean satisfiability problem
into Multi-SS.

We abstract our WKEM scheme with HiGH for the Multi-SS language on Fig. 4.2.
Essentially, to encrypt with x, we generate a HiGH, we put all yi = Hom(xi) in the
ciphertext, and the plaintext is

h = Prehash(Hom(s))

To decrypt with ω = (1a1 , . . . , 1at), we compute

h′ = Prehash(Pow(y1, . . . , yt, ω)).

We first show that our construction is correct. Due to the correctness property (4.1) of
HiGH, we have

Prehash(Pow(y1, . . . , yt, ω)) = Prehash(Hom(a1x1 + · · ·+ atxt)).

If R(x, ω) holds, we have a1x1 + · · ·+ atxt = s. We can then deduce that h = h′.

Enc(1λ, x):
1: parse x = (x1, . . . , xt, s)

2: Gen(1λ)→ (pgp, tgp)

3: yi ← Hom(tgp, xi), i = 1, . . . , t

4: z ← Hom(tgp, s)

5: h← Prehash(pgp, z)

6: set ct = (y1, . . . , yt, pgp)

7: return h, ct

Dec(ω, ct):
8: parse ct = (y1, . . . , yt, pgp)

9: parse ω = (1a1 , . . . , 1at)

10: z′ ← Pow(pgp, y1, . . . , yt, ω)

11: h′ ← Prehash(pgp, z′)

12: return h′

Figure 4.2 – WKEM construction

We show in the next section that WKEM is an extractable one-way witness key encapsu-
lation mechanism for instances of the NP language L = Multi-SS.

Reusability of the parameters. The generated HiGH parameters (pgp, tgp) may require
some computational effort in each encryption. This could be amortized by reusing some
of the values. Namely, in our proposed HiGH, the parameters `, n, g could be reused. As
generating the parameters (k, α1, . . . , αd, θ) requires no effort, it is advised not to reuse
them. Indeed, reusing them would help an adversary to pool many (xi, yi) pairs in the
very same structure. It is also nice not to store them as the dimension d can be very
large. Then, finding a linear relation with small coefficients would become easier and
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easier with the number of pairs.

However, using a long term ` is harming forward secrecy because disclosing it allows to
decrypt all encryptions.

4.4.2 Security Proof

Now, we show that our construction is extractable one-way.

Theorem 11. The WKEM construction for Multi-SS on Fig. 4.2 is extractable one-way
for a set X of instances x = (x1, . . . , xt, s) if the underlying HiGH satisfies the HiGH-KE
and the HiGH-Ker assumptions for X.

Proof. Let A be an OW-EWE adversary. We first construct an algorithm A′ for the
HiGH-KE game in Section 4.1 as follows which receives a target s as an auxiliary input
aux:
A′(x1, . . . , xt, y1, . . . , yt, pgp, aux; ρ):
1: parse s from aux

2: x← (x1, . . . , xt, s)

3: ct← (y1, . . . , yt, pgp)

4: A(x, ct; ρ)→ h

5: return h

Thanks to the HiGH-KE assumption, there exists an extractor E ′ making the HiGH-KE
game return 1 with negligible probability for every x ∈ X. We then construct the
extractor E as follows:
E(1λ, x):
1: parse x = (x1, . . . , xt, s)

2: Enc(1λ, x)→ (K, ct) . K is not needed
3: parse ct = (y1, . . . , yt, pgp)

4: set aux to s
5: pick ρ at random
6: E ′(x1, . . . , xt, y1, . . . , yt, pgp, aux, ρ)→ ω

7: return ω

Below, we detail the OW-EWE game (on the left) and the HiGH-KE game (on the right).
To make the comparison easier, we expanded Enc and A′ in gray in a line starting with a
dot.
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OW-EWE(1λ, x):
1: . parse x = (x1, . . . , xt, s)

2: . Gen(1λ)→ (pgp, tgp)

3: . yi ← Hom(xi), i = 1, . . . , t

4: . z ← Hom(s)

5: . K ← Prehash(z)

6: . ct← (y1, . . . , yt, pgp)

7: pick ρ at random
8: A(x, ct; ρ)→ h

9: return 1h=K

HiGH-KE(1λ, x1, . . . , xt, s):
1: parse x = (x1, . . . , xt, s)

2: Gen(1λ)→ (pgp, tgp)

3: yi ← Hom(xi), i = 1, . . . , t

4: pick ρ at random
5: . ct← (y1, . . . , yt, pgp)

6: . A(x, ct; ρ)→ h

7: if h 6∈ Prehash(G) then abort
8: E ′(x1, . . . , xt, y1, . . . , yt, pgp, s, ρ) →

(1a1 , . . . , 1at)

9: if Prehash(Hom(a1x1+· · ·+atxt)) = h

then return 0
10: return 1

Clearly, everything until Step 7 is equivalent, with the same random coins. When
OW-EWE returns 1, h is in Prehash(G) so HiGH-KE does not abort. Instead, it returns 0
or 1. We know that HiGH-KE returns 1 with negligible probability. Hence,

Pr[HiGH-KE→ 0] ≥ Pr[OW-EWE→ 1]− negl

Cases when HiGH-KE returns 0 are the one when E extracts successfully. Therefore,
E extracts ω satisfying Prehash(Hom(a1x1 + · · · + atxt)) = h with probability at least
Pr[OW-EWE→ 1]− negl. Due to the properties of HiGH, this implies that a1x1 + · · ·+
atxt − s ∈ Ker.

We construct the following algorithm:
A′′(x1, . . . , xt, s, y1, . . . , yt, z, pgp):
1: set aux to s
2: pick ρ at random
3: E ′(x1, . . . , xt, y1, . . . , yt, pgp, aux, ρ)→ ω

4: parse ω = (1a1 , . . . , 1at)

5: return a1x1 + · · ·+ atxt − s

If we expand the HiGH-Ker game with the above algorithm, we can find that HiGH-Ker is
similar to the OW-EWE extractor E . The lines starting with a dot in gray (up to the E ′

call in A′′) correspond to E except the computation of K in Enc. In the extractor E , K
is never used after being computed from Enc. Therefore, the computation of K can be
ignored without losing the equivalence.
HiGH-Ker(1λ, x):
1: . parse x = (x1, . . . , xt, s)

2: . Gen(1λ)→ (pgp, tgp)

3: . yi ← Hom(xi), i = 1, . . . , t

52



4.5. Subset Sum Programming

4: . z′ ← Hom(s)

5: . run A′′(x1, . . . , xt, s, y1, . . . , yt, z
′, pgp)→ z

6: if z = 0 then abort
7: if Prehash(pgp,Hom(tgp, z)) 6= Prehash(pgp,Hom(tgp, 0)) then abort
8: return 1

Due to the HiGH-Ker assumption, the probability that the game returns 1 is negligible.
Then, the probability that E returns ω such that a1x1 + · · ·+atxt 6= s is negligible. Hence,
we deduce that what E returns is actually such that a1x1 + · · ·+atxt = s with probability
AdvOW-EWE

A (x)− negl(λ).

4.5 Subset Sum Programming

The WKEM is supposed to be decapsulated by one who knows the corresponding witness
of the Multi-SS language instance. We propose below a way to “program” some equations
and constraints into a Multi-SS instance.

The first step is to express an equation in a Multi-SS way. Namely, it should be encoded
into a linear equation (or several) with positive terms, the linear part on the left-hand
side, the constant term on the right-hand side.

For instance, we “program” b = a1 XOR a2 as follows

b = a1 XOR a2

a1, a2, b ∈ {0, 1}

}
↔



a1 + a2 + b+ 2c = 2

b+ b̄ = 1

a1 + ā1 = 1

a2 + ā2 = 1

a1, a2, b, ā1, ā2, b̄, c ∈ {0, 1, 2, . . .}

Here, c appears as a necessary “garbage variable”. The b̄ variable is necessary to keep
non-negative coefficients. The equations ai + āi = 1 encode the constraint ai ∈ {0, 1}.

The boolean equation b = a1 NOR a2 with constraint a1, a2, b ∈ {0, 1} can be encoded
into

a1 + a2 + c+ 2b̄ = 2

b+ b̄ = 1

c+ c̄ = 1

a1 + ā1 = 1

a2 + ā2 = 1

with garbage c and additional variable b̄.

Interestingly, the system b1 = a1 XOR a2 and b2 = a1 NOR a2 with constraints
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a1, a2, b1, b2 ∈ {0, 1} can be encoded with no garbage variable into

a1 + a2 + b1 + 2b̄2 = 2

b1 + b̄1 = 1

b2 + b̄2 = 1

a1 + ā1 = 1

a2 + ā2 = 1

Any Boolean circuit can be formulated by equations with XOR, NOR, and NOT gates. If
we have nV Boolean variables, nNOT NOT gates, nXOR XOR gates, and nNOR NOR gates,
by taking that all variables will be negated, we obtain a system of

t = 2nV − 2nNOT + nXOR + 2nNOR

variables (nV−nNOT non-negated variables, their negations, nXOR+nNOR garbage variables,
and the negation of the NOR garbage), nXOR+nNOR equations of form a1+a2+a3+2a4 = 2,
and nV − nNOT + nNOR equations of form a1 + a2 = 1. That is,

d = nXOR + 2nNOR + nV − nNOT

equations.

Based on this programming technique, we can reduce the following SAT problem to
Multi-SS to prove that Multi-SS is also NP-complete.

Instance: a set of d equations of form vi = vj ∗ vk for any Boolean operator
∗ and a set of t variables v1, . . . , vt.

Witness: a tuple ω = (a1, . . . , at) of bits ai ∈ {0, 1}, i = 1, . . . , t.

Predicate R(x, ω): if vi = ai for i = 1, . . . , t, then every equation is satisfied.

Theorem 12. For any polynomial P such that for all ` ≥ 1 we have P (`) ≥ 1, Multi-SS
is NP-complete.

Proof. We reduce SAT to Multi-SS. As all Boolean operators can solely be written with
NOR gates, we assume without loss of generality that all SAT instances x have only
equations of form vi = vj NOR vk.

We use our programming technique to express each SAT equation with 5Multi-SS equations
and 5 additional variables. In total, we obtain d′ = 2d + t equations with t′ = 2t + d

variables. This is a Multi-SS instance x′ = Encode-Inst(x). Clearly, x′ has a Multi-SS
solution if and only if x has a SAT solution.

Hence, SAT reduces to Multi-SS. Since SAT is NP-complete, so is Multi-SS.
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Example 1. The system of equations

u = v NOR w

v = u XOR w

w = NOT u

u, v, w ∈ {0, 1}

has unique solution (u, v, w) = (0, 1, 1). If u, v, w are encoded into integers a1, a2, a3

respectively, we can encode the equations into

c1 + 2a1 + a2 + a3 = 2

a2 + 2c2 + a1 + a3 = 2

a3 + a1 = 1

a2 + ā2 = 1

c1 + c̄1 = 1

a1, a2, a3, c1, c2, ā2, c̄1 ∈ {0, 1}

where c1 and c2 are garbage variables, leading us to


2 1 1 1 0 0 0

1 1 1 0 2 0 0

1 0 1 0 0 0 0

0 1 0 0 0 1 0

0 0 0 1 0 0 1





a1

a2

a3

c1

c2

ā2

c̄1


=


2

2

1

1

1



The unique solution with non-negative coefficients is (0, 1, 1, 0, 0, 0, 1).

In WKEM, we write ki = kαi mod ` and k′i = kθi mod `. The ciphertext is

ct =

(
n , g ,

k2
1k2k3 , k1k2k4 , k1k2k3 , k1k5 , k

2
2 , k4 , k5

k′1
2k′2k

′
3 , k

′
1k
′
2k
′
4 , k

′
1k
′
2k
′
3 , k

′
1k
′
5 , k

′
2

2 , k′4 , k
′
5

)

(We omitted the mod` for simplicity.) The key is

h = Prehash
(
k2

1k
2
2k3k4k5, k

′
1

2
k′2

2
k′3k
′
4k
′
5

)
Clearly, expressing it as a combination of the known values is equivalent to solving the
Multi-SS problem.

However, this toy example also nicely illustrates the vulnerability we indicated: a non-zero
kernel element of the equations would leak ` and be insecure. If we write the equation
Xa = s in a matrix form, we can see that the vector a = (1, 0,−1,−1, 0, 0, 1)T is such
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that Xa = 0. This translates into

(k2
1k2k3)× (k1k2k3)−1 × (k1k5)−1 × (k5) = 1

hence
(k2

1k2k3)× (k5)− (k1k2k3)× (k1k5) ≡ 0 (mod `)

4.6 Case Studies: Timed-Release Encryption from Bitcoins

Liu et al. [LJKW18] proposed a way to construct a time-lock encryption by using a
witness encryption and the Bitcoin blockchain. The authors defined an NP-relation from
the Bitcoin blockchain, namely the hardness of finding new blocks, and showed that we
can construct a time-lock encryption scheme which uses the arrival of a new block in the
Bitcoin blockchain as a reference clock. The time-lock encryption eventually allows a
sender to encrypt a message which can be decrypted after some blocks are added to the
blockchain.

However, the authors did not show how we can reduce it to the underlying NP problem
of the witness encryption. In this chapter, we will show how to reduce it to Multi-SS in
order to study its practical aspects.

We first recap the structure of the Bitcoin blockchain. According to the Bitcoin developer
reference [bit], a block consists of two parts: a block header and transactions. The block
header is always 80 bytes and consists of following values:

• ver: 4-byte integer which indicates the block version;

• prev_hash: 32-byte hash of the previous block header computed with SHA256-
SHA256;

• merkle_root: 32-byte root hash of the Merkle tree derived from transactions;

• time: 4-byte unsigned integer which indicates the time that the miner started
hashing the block header;

• nBits: 4-byte unsigned integer which indicates the difficulty target;

• nonce: 4-byte unsigned integer which can be arbitrary selected by the miner.

In order for a block to be added into the Bitcoin blockchain, the block is verified in several
ways. We however focus on the verification of the hash of the block header. If a block is
added into the Bitcoin blockchain, the SHA256-SHA256 hash of the block header should
be smaller than nBits in the block header, i.e. the hash of the block header starts with a
number of leading zero bits which is a function of the nBits field.
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Let Bi = (veri, prev_hashi,merkle_rooti, timei, nBitsi, noncei) be a Bitcoin block header.
Then, the NP language on the Bitcoin blockchain is defined as follows:

Instance: a tuple x = (t, δ1, . . . , δt, h) of non-negative integers.

Witness: a tuple ω = (B1, . . . , Bt) of t Bitcoin block headers Bi =

(veri, prev_hashi,merkle_rooti, timei, nBitsi, noncei).

Predicate R(x, ω): for i = 1, . . . , t

prev_hash1 = h

SHA256(SHA256(veri‖prev_hashi‖merkle_rooti‖timei‖nBitsi‖noncei))=prev_hashi+1

SHA256(SHA256(veri‖prev_hashi‖merkle_rooti‖timei‖nBitsi‖noncei))≤2δi

As a new block is added to the Bitcoin blockchain approximately every 10 minutes, a
corresponding witness of an NP instance will be found after around 10 · t minutes if we
use the hash of the block header of latest block of the Bitcoin blockchain as h.

We want to implement some subset sum programming for the predicate verification.

The SHA256 separates the input into chunks of 512-bit after padding the input, and then
it iteratively applies the compression function, which takes a 256-bit hash value and a
512-bit chunk and outputs a 256-bit updated hash value, to each 512-bit chunk with an
initial hash value. One block takes two chunks. Hence, we need three compressions to
verify one block.

The SHA256 compression uses the two following functions:

Ch(X,Y, Z) = (X ∧ Y )⊕ (¬X ∧ Z)

Ma(X,Y, Z) = (X ∧ Y )⊕ (X ∧ Z)⊕ (Y ∧ Z)

A SHA256 compression starts by extending the input chunk. For that, it needs 48

additions of four 32-bit inputs and 48× 2 = 96 XOR of three 32-bit inputs. Then, the
main loop, with 64 iterations, uses for each iteration two 3-ary 32-bit XOR, one 32-bit
Ch, one 32-bit Ma, one 5-ary 32-bit addition, and three 2-ary 32-bit additions. Finally,
it terminates with eight 2-ary 32-bit additions. We do not count rotations and shifts as
they come for free in subset sum programming.

Using the subset sum programming technique, every bit variable amust have a complement
ā which sum to 1 by design. A 3-ary XOR of a1, a2, a3 bits can be programmed by the
equation

a1 + a2 + a3 + b̄+ 2c = 3 b+ b̄ = 1 (4.2)

with result b and garbage c. (No constraint needed on c.) Hence, it generates 3 output
variables using 2 equations. A q-ary addition modulo 232 of 32-bit inputs ai =

∑31
j=0 ai,j2

j ,
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i = 1, . . . , q, can be programmed by

q∑
i=1

31∑
j=0

ai,j2
j +

31∑
j=0

b̄j2
j + 232c = 232+dlog2 qe − 1

bj + b̄j = 1

0 ≤ j ≤ 31
(4.3)

with a garbage variable c which can be any non-negative integer (hence with no additional
constraint). It generates 65 output variables using 33 equations. By enumerating all
possibilities, we can prove that Ch(a1, a2, a3) can be programmed by

5a1 + 6a2 + a3 + 2b+ c1 + 4c2 + 10c3 = 14 b+ b̄ = 1
c1 + c̄1 = 1

c2 + c̄2 = 2
(4.4)

with result b and boolean garbage c1, c2, c3, c4. It generates 7 output variables using
4 equations. By enumerating all possibilities, we can prove that Ma(a1, a2, a3) can be
programmed by

a1 + a2 + a3 + 2b̄+ c = 3 b+ b̄ = 1 c+ c̄ = 1 (4.5)

with result b and garbage c. It generates 4 output variables using 3 equations.

Table 4.1 – SS instances and corresponding operations

Number Operation Ref. #variables #equations
48 b = a1 + a2 + a3 + a4 mod 232 Eq. (4.3) 65 33
48× 2× 32 b = a1 ⊕ a2 ⊕ a3 Eq. (4.2) 3 2
64× 2× 32 b = a1 ⊕ a2 ⊕ a3 Eq. (4.2) 3 2
64× 32 b = Ch(a1, a2, a3) Eq. (4.4) 7 4
64× 32 b = Ma(a1, a2, a3) Eq. (4.5) 4 3
64 b = a1 + a2 + a3 + a4 + a5 mod 232 Eq. (4.3) 65 33
64× 3 b = a1 + a2 mod 232 Eq. (4.3) 65 33
8 b = a1 + a2 mod 232 Eq. (4.3) 65 33

Table 4.1 summarizes the number of equations and added variables. Hence, one com-
pression generates 64 312 output variables with 38 968 equations. We deduce that the
length-t blockchain verification generates 192 936t variables with 116 904t equations. As
we have 640t input variables, we obtain a Multi-SS instance with t′ = 193 576t variables
and d = 116 904t equations. Equations are quite sparse, so easy to store.

We assume that the RSA modulus ` is of 2048 bits and that a modulo ` power of size |`|
takes 1.4 ms on a single core.

Using a witness for one hour duration requires t = 6. Hence, we use about 1.2 Million
variables and 700 000 equations. As equations have a constant number of non-zero terms,
to encrypt requires to compute several millions of linear combinations and 2(t′+1) powers
of k modulo `. The ciphertext will take 2t′|`| ≈ 567 MB. To decrypt requires to compute
t′ integer multiplications, followed by two big exponentials modulo n with exponent of
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size t′|`|. We can estimate the time to 27 core.minutes.

Using a witness for one year duration requires t of order 50 000. Hence, about 9.7 Billion
variables and 5.8 Billion equations. The ciphertext is now of 4.5 TB. Decryption will take
5.2 core.months.

We can clearly do better with blockchains which would be optimized for this purpose.
For instance, by having a block structure of form blocki = (prev_hashi, block_hashi)
where block_hashi contains the hash of everything but prev_hashi, we now have only
one compression to compute per block instead of three for verification. We improve
performance by a factor 3. We can also suggest alternate hash functions which would have
a subset sum programming which is more efficient. We can hope for another improvement
factor of 3. Finally, we can also enrich the linear chaining scheme of blocks with shortcuts.
If we want to protect against an adversary who processes 1% of the computational power
of bitcoin miners, we can shortcut the chain by chunks of 100 blocks. We improve
performance by another factor 100. Finally, we reduce the ciphertext to 5 GB and the
decryption complexity to 4 core.hours for a witness of 1 year.

We can further investigate hash functions design which are adapted to subset sum
programming. There are hash functions based on ring-LWE [LPR10, PR06]. We consider
a ring R = Zp[θ]/P (θ) where P is a polynomial of degree n. The hash function is defined
by a random (public) key (x1, . . . , xm) ∈ Rm. To hash a list (a1, . . . , at) of integers such
that 0 ≤ ai < 2B i = 1, . . . , t and t ≤ nm, we form yj =

∑n−1
i=0 (ajn+i−n+1 − B)θi and

output
∑m

j=1 xjyj mod P (θ) mod p, to be written in basis 2B. We can program this inton−1∑
i=0

m∑
j=1

xjθ
i(ajn+i−n+1 −B) mod P (θ)


θk

=

dlog2B pe−1∑
`=0

(bk,` −B)(2B)` + pck

for k = 0, . . . , n− 1 and bk,` + b̄k,` = 2B. Above, we denote by [·]θk the coefficient of θk of
a polynomial in θ. Hence, we have n+ ndlog2B pe equations with n+ 2ndlog2B pe output
variables.

One suggested parameter vector is n = 126, m = B = 8, p ≈ 223 [LPR10]. One
compression can compress mn log2(2B) = 4032 bits and produce n log2 p = 2898 bits. We
obtain 882 equations producing 1638 variables. If prev_hash has 2898 bits, the rest of the
bitcoin block fits within 4032 bits and we can verify one block with one compression. Thus,
we need d = 882t equations and t′ = 1638t variables to verify a chain of t blocks. Hence,
for t = 6, we have a ciphertext of 2t′|`| ≈ 4.8 MB and decryption needs 14 core.seconds.
For t = 50 000, we have a ciphertext of 20 GB and decryption needs 32 core.hours. With
shortcuts every 100 blocks, this becomes 200 MB and 19 core.minutes, respectively. This
is a total improvement factor of 20 000.
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4.7 Circuit to System of Equations

In the previous section, we have shown that we can transform SHA-256 into a system
of equations. In this section, we will show how to do the same for an arbitrary circuit.
As we have already shown that we can represent a NOR operation in an equation, it is
clear that we can represent any circuit as a system of equations. However, it may not
necessarily be efficient in terms of number of variables, as we need a garbage variable in
the system for every NOR operation. So, we require a way to transform a small circuit to
a system of equations and at the same time reduce the number of garbage variables in
the system.

Let f(b1, . . . , bn) = b′1, . . . , b
′
m be a circuit which takes an n-bit input and produces an

m-bit output. When we transform it into a system of equations, we already know that we
need at least n variables for input bits and m variables for output bits, but the number
k of garbage variables changes depending on the circuit. After the transformation, we
will get several equations a1x1 + · · · an+m+kxn+m+k = s where (a1, . . . , an) correspond to
input variables (b1, . . . , bn), (an+1, . . . , an+m) correspond to output variables (b′1, . . . , b

′
m),

and (an+m+1, . . . , an+m+k) correspond to garbage variables for some k. We therefore
need an efficient algorithm to find x1, . . . , xn+m+k, s which implement the given circuit.

More formally, we want to construct a system of affine equations in a1, . . . , an+m+k such
that:

• for any solution a1, . . . , an+m+k of non-negative integers, we have a1, . . . , an+m in
{0, 1};

• for any a1, . . . , an+m in {0, 1}, (an+1, . . . , an+m) = f(a1, . . . , an) if and only if there
exists some non-negative integers an+m+1, . . . , an+m+k such that a1, . . . , an+m+k is
a solution.

We first show that an arbitrary circuit f , with n-bit input and m-bit output, can be
implemented in n+m+ 1 equations with k = 2n + n+m garbage variables. As circuit f
is deterministic, there exist 2n input/output pairs. Then, we can construct the following
system of equations: {

a1x1 + · · ·+ an+m+2nxn+m+2n = s

ai + an+m+2n+i = 1 for i = 1, ..., n+m

where

• xi ← 2i−1, for i ∈ {1, . . . , n+m}

• xt ← 2n+m+1−
∑n+m

j=1 bjxj , where t = n+m+1+
∑n

i=1 2i−1bi for b1, . . . , bn ∈ {0, 1}
and (bn+1, . . . , bn+m) = f(b1, . . . , bn)
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• s← 2n+m+1

By construction, we have
∑n+m

i=1 bixi < 2n+m for any b1, . . . , bn+m ∈ {0, 1}. This implies
xn+m+i > 2n+m for i ∈ {1, . . . , 2n}. Due to ai + an+m+2n+i = 1, a1, . . . , an+m ∈ {0, 1}.
We deduce

a1x1 + · · ·+ an+m+2nxn+m+2n = s

⇔ a1x1 + · · ·+ an+mxn+m︸ ︷︷ ︸
<2n+m

+an+m+1xn+m+1 + · · ·+ an+m+2nxn+m+2n = 2n+m+1

⇒ 2n+m < an+m+1 xn+m+1︸ ︷︷ ︸
>2n+m

+ · · ·+ an+m+2n xn+m+2n︸ ︷︷ ︸
>2n+m

≤ 2n+m+1

⇒
2n∑
i=1

an+m+i = 1.

For any solution of the system of equations, there always exists exactly one non-zero
value in an+m+1, . . . , an+m+2n . Assume that an+m+i = 1 for some i ∈ {1, . . . , 2n}. As
the solution should satisfy the equality a1x1 + · · ·+ an+m+2nxn+m+2n = s, we have

a1x1 + · · ·+ an+m+2nxn+m+2n = s

⇔ a1x1 + · · ·+ an+mxn+m + xn+m+i = s

⇔ a1x1 + · · ·+ an+mxn+m + 2n+m+1 −
n+m∑
j=1

bjxj = s

(where i− 1 =

n∑
j=1

2j−1bj and bn+1, . . . , bn+m = f(b1, . . . , bn))

⇔ a1x1 + · · ·+ an+mxn+m =
n+m∑
j=1

bjxj

Thus, a1, . . . , an+m satisfy an+1, . . . , an+m = f(a1, . . . , an). As all input/output pairs of f
are used for xn+m, . . . , xn+m+2n , for any a1, . . . , an+m ∈ {0, 1} such that an+1, . . . , an+m =

f(a1, . . . , an), there exists an index i where the given a1, . . . , an+m and an+m+k = 1 is a
solution of the system of equations. Hence, the system of equations is equivalent to the
circuit f .

In practice, we can possibly find better transformation in terms of number of garbage vari-
ables and s. We could find better implementation by bruteforcing on (x1, . . . , xn+m+k, s)

after fixing some value for k, and we found some interesting observations.

Firstly, the minimal number k of garbage variables is upper bounded by n+m.
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Moreover, if there exist two input values such that swapping these input values do not
change the output, i.e. there exist i, j in {1, . . . , n} such that i < j and

f(b1, . . . , bi, . . . , bj , . . . , bn) = f(b1, . . . , bj , . . . , bi, . . . , bn)

for every b1, . . . , bn ∈ {0, 1}, the minimal system of equations has xi = xj .

From these observations, we can expect that the hash computation in the Bitcoin block
chain can be transformed into a system of equations with 3072 variables (1280 input
variables, 256 output variables and 1536 garbage variables). However, it is not easy to
find the actual system of equations because it requires to compute hashes for all possible
inputs.

4.8 Conclusion of Chapter

We have shown how to construct a WKEM for a variant of the subset sum problem, based
on HiGH. This is secure in the generic HiGH model. We proposed an HiGH construction
based on RSA which has a restriction on the subset sum instances. One open question is
to make it work even for instances having a small linear combination which vanishes. We
can use this WKEM for timed-release encryption using blockchains. However, using it in
practice may need further optimizations, including in the blockchain infrastructure.

Another interesting challenge is to build a post-quantum HiGH.
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5 Self-Encryption

In many deployed applications, the design of the application involves various devices
communicating with each other securely. They sometimes require one of the devices to
encrypt some piece of information that will be used in the future by itself. We call it
self-encryption: encrypting data which will be decrypted by the same entity generating it.
One application is massive client-server connections where there are millions of clients
connecting to a server, causing the server not being able to afford to store any client-
specific information. On the other hand, recent protocols such as TLS 1.3 empowers the
server to resume past sessions without going through a new round-trip handshake when
a client reconnects to the server.1 While clients, surely, would benefit from a smooth
connection experience, the server has to “remember” each session in a secure manner,
possibly by keeping a (small or big) size of state. More precisely, when a client connects
to a website for the first time, the web server generates a cookie including a ticket for the
client. This ticket is a piece of information that helps the server to remember the session.
Somehow, this is a helper that the server encrypts for itself and gives to the client to store
locally. When the client reconnects to the same website with her ticket, the server can
resume their previous session by decrypting the ticket. As desired, it gives the freedom
not to store any client-specific information on the server-side. However, the server needs a
secret state for the cryptographic operations which are used in generating and decrypting
tickets. From the security point of view, then, the concern becomes to provide security
against replay attacks or occasional exposures of the internal state of the server.

In general, the internal state is any type of information that would let a device decrypt
(some part of) the communication. In this work, we investigate the security of a self-
encryption state which comes in two forms: forward secrecy (FS) and post-compromise
security (PCS). Intuitively, forward secrecy provides security for the past communication
when exposure happens, whereas post-compromise security aims to heal the future
communication when exposure occurs [CGCG16]. Before going forward with security, we
list three applications in different settings with different functionality where the security

1As of November 2019, 34% of TLS connections use session resumption [HARV19].
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of self-encryption would be critical.

0-RTT in TLS 1.3. In the TLS 1.3 protocol, a client connects to a server and establishes
a common secret key through a handshake key agreement protocol. This is succeeded
with a full round trip time (1-RTT) communication. Ideally, when the client reconnects
to the same server after a while, the connection should be resumed with no round trip
time (0-RTT). Although 0-RTT has been an active research domain in the last few years,
currently, in practice, it is achieved through two elementary approaches called Session
Caches and Session Tickets as described very thoroughly by Aviram, Gellert, and Jager
(AGJ) [AGJ19]. In the former technique, the server resumes the session by assigning each
client a different resumption key for each connection and sending the client a look-up index
that links to the resumption key. The ticket is that index. When the client comes back,
it includes the ticket and the payload data. This provides forward secrecy. Nevertheless,
the solution depends on maintaining a big database on the server, which is not alluring.

The other approach for 0-RTT in TLS 1.3 configurations is to create session tickets for
each client by using a long-term secret key K (the ticket encryption key). Therefore,
instead of storing a unique key for each session, the server generates a secret material for
each client and encrypts it under K. The secret material is called resumption key whereas
the encrypted resumption key is the ticket. The client stores both the resumption key and
the ticket. Later on, the client encrypts the payload with the resumption key and includes
her ticket in 0-RTT message to remind herself. The server can clearly decrypt the ticket
with K and retrieve the resumption secret to decrypt the payload. This approach surely
avoids storing a big database, it is easy to implement and integrate in existing systems,
yet, it does not provide any kind of security in the case of a key exposure.2

In their recent work, Aviram, Gellert, and Jager (AGJ) [AGJ19] studied the forward
secrecy and the resistance to replay attacks of session resumption, specifically focusing on
session tickets. However, they did not consider PCS in their security model which is the
main focus of the present work.

Cloud storage. In a single client-server cloud storage, the client wants to outsource her
files in a remote storage (cloud) in an encrypted form. The encryption of the files occur
locally on the client who keeps the secret decryption material. If the client encrypts all
files with the same key, the leakage of the key becomes catastrophic as all files (even the
removed ones) become compromised. Besides, the client aims to minimize the storage on
her local while maintaining strong security in case of a compromise of her internal state.
This cloud storage problem is the same as the 0-RTT problem: the cloud client and the
0-RTT server do not want to store any file-specific information while conserving security.

2In TLS 1.3, the long-term key K is updated every few hours by assuming that all the clients will
resume their sessions in the “life-time” of K. Nevertheless, as soon as the key K is compromised, there is
neither FS nor PCS for the period where K is active.
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On the other hand, regulations mandate the encrypted files to be updated from an old
key to a new key often enough. This is called key rotation. It is part of a common good
practice in key management. System admins should not let keys age too much nor be used
more than what the encryption method can guarantee to be secure. The fundamental
motivation, however, comes with the desire to achieve resilience to key exposure. Besides
encryption and decryption, key rotation uses two other algorithms: one computing a key
update token from an old key, a new key, and a ciphertext header, and one computing the
new ciphertext from the old one and the key update token. Essentially, the adversary, who
sees some ciphertexts and obtains some keys as well as some key update tokens, should
not be able to decrypt, except what is trivially implied by correctness. Key rotation was
formally studied by Boneh et al. [BLMR13]. More recently, Everspaugh et al. [EPRS17]
considered the integrity problem with key rotation.

The naive way to achieve key rotation would be that the client downloads the encrypted
files on the local, decrypts them with the existing key, generates a new fresh key and
updates the old key, re-encrypts and finally outsources back. However, it is a very
cumbersome solution for the client. The main task of key rotation is to avoid the
complexity of communication and the complexity of treatment on the client side. In
practice, AWS and Google deploy a more practical methods based on hybrid encryption:
a header is formed by encrypting an ephemeral key and the rest of the ciphertext is
formed by encrypting the plaintext with the ephemeral key. Key rotation is done by
updating the header but keeping the same ephemeral key. This was argued to be a bit
cheating with the concept of key rotation as the encryption of data under the same key
was remaining.

We tackle the privacy problem differently. Instead of updating a ciphertext to be
decryptable with a chosen key, we let ciphertexts unchanged but update the state which
is stored by the client3. Naturally, our concern becomes more focused on the storage
space on the client side. Key rotation assumes that a client who has stored n files would
keep all k keys which are necessary to decrypt these files. And as soon as a key needs to
be rotated, some operation would be required for all ciphertexts using this key, hence n

k

on average. It means that the number k of stored keys (memory complexity) multiplied
by the number of ciphertext updates is the number of stored files which is n. In our
setting, the client stores one state (which is shorter than storing n keys) and needs no
operation on ciphertexts.

Instant messaging. Post-compromise security in instant messaging was formally studied
during the last few years [PR18, JS18, JMM19, ACD19, DV19]. Bidirectional secure
communication applications can be seen as a particular form of self-encryption. In fact,
roughly speaking, we can merge both participants into one single device which would
encrypt for itself. A ratcheted scheme is normally FS and PCS secure, hence defines an

3We do not mean to pick a fresh key to “rotate” the key and update the header as practiced by AWS.
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FS and PCS secure self encryption which we call a self-ratchet.

Our Perspective. In order to study the security of self-encryption, we consider a scheme
which generates ciphertexts with the ability to decrypt later, even when the state to
decrypt evolves. We define it in a way that it covers the three (and potentially more)
applications we described earlier. Furthermore, we are interested in forward secrecy
and post-compromise security of these systems. The former captures that the system
generates ciphertexts that should remain decryptable for a limited time and that are
not going to be decryptable anymore after they “expire” (it could happen either because
the settings allow the ciphertexts to stay alive for a limited time or because the keys
are “punctured” on purpose). The ciphertexts that are still decryptable are called active
ciphertexts. Making a ciphertext become inactive is a way to have forward secrecy: if
the state of the scheme is exposed after a ciphertext becomes inactive, this ciphertext
is still safe. The PCS defines what happens to the security after an exposure of a state.
When an exposure takes place, the post-compromise secure system should be able to heal
the state such that the ciphertexts after the healing are secure. In many studies, PCS is
interchangeably used with healing.

While studying self-ratcheted schemes with PCS guarantees (as well as FS), it was intuitive
to expect that the state size of any post-compromise secure self-ratcheted scheme will
grow. However, it was not clear why and with what bounds we could achieve it. The first
and primary contribution of our work is to show that we cannot achieve post-compromise
security better than adding a trivial solution to already existing efficient forward secure
schemes.

As for forward security, AGJ [AGJ19] specifically consider the session resumption in
TLS 1.3 and they designed solutions for FS and replay attacks without providing any
PCS. Their construction is practical. In another study by Günther et al. [GHJL17] and
Derler et al. [DJSS18], the authors consider a slightly different solution to the session
resumption with forward secrecy. In these works, the motivation is to let the clients
resume connections without having to store any session-specific information on her local.
The authors decided to do so by letting the client keep only the long-term public key pk

of the server. Therefore, they look for forward-secure solutions when the long term secret
key sk evolves throughout time although the associated public key never changes, hence
the clients never updates its state. Although it is remarkable that such schemes with
forward secrecy exist, both constructions are far from being practical due to the heavy
cryptographic tools they use. Therefore, we rather focus on the FS scheme AGJ to add
PCS.

66



Self-Encryption

Our contribution

In the present work, we start with the definition of a minimal primitive called Self-
Encrypted Queue (SEQ) with correctness and one-way (OW) security. It gives the minimal
functionality for any PCS construction, more particularly self-encryption schemes. Then,
we prove that for every SEQ primitive with states of bounded length, there is an adversary
with small complexity and high probability of success to break OW security. This result
led us to conclude that when self-encryption is post-compromise secure, it must have
a state which grows more than linearly in the number of active ciphertexts, say n.4 It
shows that we can achieve post-compromise security only with a state size larger than
linear in n. This does not provide the practicality we were hoping for. Therefore, we
define a refinement which is a relaxed version of post-compromise security. In layman
terms, we look into the following case: Maybe the first ciphertext that will be generated
after an exposure is not secure, but the system could be designed to heal the security
after the generation of ∆ ciphertexts, where ∆ is a constant parameter of our scheme.
We call it ∆-PCS. We show that in refined definitions, the state size is super-linear in n

∆

as opposed to growing super-linear in n.

We prove that this impossibility result applies both in self-encryption and in secure
messaging. In addition to this, we prove that this result is tight by constructing a simple
self-encryption scheme achieving ∆-PCS with a state size matching our bounds.

After our impossibility results, we focus on few applications by borrowing already existing
formal interfaces from AGJ [AGJ19] in order to add PCS security in the discussed settings.
We modify the interface in a way that decryption and puncturing happens with separate
function calls in case the puncturing is not always necessary. Later on, we look at secure
ratcheted protocols which provides PCS security from the literature. We show that the
state of these protocols grows linearly (in terms of number of keys) as they “ratchet”
every time a new message is generated, hence falling into the case where ∆ = 1. On the
other hand, we have two secure communication protocols given by Alwen, Coretti, and
Dodis (called ACD and ACD-PK) [ACD19] which model well what Signal is deploying.
We observe that the state in both schemes does not grow linearly like other PCS schemes.
This is due to the fact that these two protocols do not guarantee ∆-PCS for any constant
∆. In fact, healing happens only when the direction of communication changes.

We conclude that adding PCS to FS-secure systems can be succeeded at the price of a
minimal state growth with proven bounds and we cannot hope for better.

4It grows linearly if we take the key size as a memory unit. (The key size cannot have a constant bit
length. Otherwise, exhaustive search breaks it with constant complexity.)
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Structure of Chapter

In Section 5.1, we define a basic PCS-secure primitive called SEQ and we prove that its
state size must grow super-linearly. In Section 5.2, we apply this result to self-encryption.
We construct a scheme based on AGJ with super-linear growth and PCS security. Finally,
in Section 5.3, we show how to apply our result to instant secure messaging.

5.1 Impossibility Result

In this section, we first define a minimal primitive called Self Encrypted Queue (SEQ)
achieving post-compromise security. This primitive is not meant to have any concrete
application. However, we will prove that (examples of) useful primitives imply SEQ, and
that SEQ must have a linearly growing state.

5.1.1 Definition of a Minimal Primitive

We define below a minimal primitive which works in two phases: It iteratively generates
a sequence of plaintext/ciphertext pairs (pt, ct) by updating its state. Then, it takes
the sequence of ct in the same order as generated and recovers the exact sequence of pt.
The primitive is minimal in the sense that all considered applications which claim PCS

must achieve this functionality and even more (such as being able to receive the list of
ct in different order, or to have encryption and decryption steps mixed up). We build
self-encryption with the help of SEQ primitive in the following sections.

Definition 13 (SEQ). A Self Encrypted Queue (SEQ) is a primitive defined by

Gen(1λ)→ st which generates an initial state;

Enc(st)→ (st′, pt, ct) which updates the state and adds to the queue a new message which
is pt in clear and ct in encrypted form;

Dec(st, ct)→ (st′, pt/⊥) which updates the state and decrypts ct which leads the queue.
This is deterministic.

We say that SEQ is correct to level-n if the correctness game in Fig. 5.1 never returns
1.

The principle of this primitive is that a state is updated at every encryption/decryption
so that the new state can decrypt the released ciphertext in the order they have been
released. In the correctness game, the queue is filled up with (ct1, . . . , ctn), then emptied.

Definition 14. Let n(λ) and ∆(λ) be polynomially bounded positive integer functions of
a security parameter λ. SEQ security is defined by the OWm,∆,λ game in Fig. 5.1. We
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Correctness at level-n:
1: Gen(1λ)→ st0
2: for i = 1 to n do . fill up the queue
3: Enc(sti−1)→ (sti, pti, cti)
4: end for
5: for i = 1 to n do . empty the queue
6: Dec(stn+i−1, cti)→ (stn+i, pt

′
i)

7: if pti 6= pt′i then return 1
8: end for
9: return 0

Game OWm,∆,λ(A):
1: Gen(1λ)→ st0
2: for i = 1 to m do
3: Enc(sti−1)→ (sti, pti, cti)
4: end for
5: A(1λ, stm−∆, ct1, . . . , ctm)→ z
6: return 1z=ptm

Figure 5.1 – Correctness and OW games for SEQ

Gen(1λ):
1: st← (λ, []) . a list of length 0
2: return st

Enc(st):
3: parse st = (λ, L)
4: pick pt of length λ at random
5: L← (L, pt) . append pt in L
6: st← (λ, L)
7: ct← ⊥
8: return (st, pt, ct)

Dec(st, ct):
9: parse st = (λ, L)

10: parse L = (pt, L′)
. pt is the first length-λ element of st

11: st← (λ, L′)
12: return (st, pt)

Figure 5.2 – A trivial SEQ

say that SEQ with level n is ∆-secure if for any PPT adversary A,

λ 7→ max
1≤m≤n

Pr[OWm,∆,λ(A)→ 1]

is a negligible function.

The value of ∆ represents the time the scheme needs to heal security after an exposure.
This means that ∆ steps after exposing the state, the new state has become safe again
and the encryptions to follow will protect confidentiality. In the game, stm−∆ is exposed
and the goal of the adversary is to decrypt ctm. Most secure schemes are 1-secure, because
security heals after ∆ = 1 encryption.

It is easy to design a secure SEQ of level n with a state with O(n) keys inside. For
instance, for any n, the scheme in Fig. 5.2 is a 1-secure SEQ to level n with state of size
nλ, where λ is the security parameter. This SEQ is trivially correct: st accumulates all
pt in a queue during encryption and releases them during decryption. It is also perfectly
secure: pt is independent from the corresponding ct and from the previous states. Hence,
any OWm,∆,λ adversary has an advantage of 2−λ.

Ideally, states should not inflate. For that, one can count on ct to transport a helper to
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recover pt without having to store it in st. However, we prove next that a correct and
OW-secure SEQ primitive with st in a space ST of size 2o(n logn) does not exist.

5.1.2 Impossibility Result

Lemma 2. There exists a (small) constant c such that for every probability α > 0 and
integers n, `, ∆, k, for every correct SEQ primitive of level n as in Def. 13 with st in a
space ST of size |ST | ≤ 2`, there exist m ≤ n and an OWm,∆,λ adversary A of complexity
(n−m+ ∆)TEnc +mTDec + c, and advantage at least

Pr[OWm,∆,λ(A)→ 1] >
α

n

(
1−

(
1

k
+
k − 1

2
α

)b n∆c
2`

)

where TEnc and TDec are the complexities of Enc and Dec.

Interestingly, for k = 2 and α = 1
bn/∆c , this lemma gives Pr[OWm,∆,λ(A) → 1] >

∆
n2 (1− e2`−b

n
∆c). Thus, it is clear that ` ≤

⌊
n
∆

⌋
− 2 is insecure.

We can be more precise and obtain insecurity when `∆
n is bounded by a logarithmic term

(of the security parameter). Let ε = 2
− `+1
bn/∆c . Lemma 2 with α = ε2

2 and k =
⌈

2
ε

⌉
gives

the following result:

Theorem 13. There exists a (small) constant c such that for every integers n, `, and
∆, for every correct SEQ primitive of level n as in Def. 13 with st in a space ST
of size |ST | ≤ 2`, there exist m ≤ n and an OWm,∆,λ adversary A of complexity
(n−m+ ∆)TEnc +mTDec + c, and advantage at least

Pr[OWm,∆,λ(A)→ 1] >
1

4n
2
−2 `+1
bn/∆c

where TEnc and TDec are the complexities of Enc and Dec.

This means that the state needs a size ` such that `∆
n is superlogarithmic to

achieve ∆-security up to n encryptions.

We can now prove Lemma 2.

Proof of Lemma 2. Let us consider a correct primitive of level n with st in a space ST
such that |ST | ≤ 2`. We will show that it is insecure. To do so, we will first express
that the state st after n encryptions is subject to some constraints. Namely, constraints
are defined as st being able to decrypt the generated sequence of ct correctly. The
constraints increase with n, and the set of possible st values which make decryption
correct decreases. The set of constrained states does not decrease exponentially because
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of the surprising existence of “super states” which are able to decrypt more than their
constraints. Namely, super states can decrypt encryptions from the “future” which have
not been generated yet. This is counter-intuitive. This set of super states is a hard core
in the set of constrained states. We show that the set of constrained but non-super states
does decrease exponentially. Hence, by taking n large enough, constrained states become
all super states: the state after n encryptions must be a super state. We use the property
of the super state to mount an attack.

We first define notations. We extend the Enc and Dec functions. First of all, with random
coins ρ, we write Enc(st; ρ) = (st′, pt, ct) and consider Enc as deterministic with explicit
coins. For X ∈ {Enc,Dec} and y ∈ {st, pt, ct}, we denote by Xo_y the generated output
of type y by the X operation: for both Enc and Dec, the output components define
subfunctions Enco_st, Enco_pt, Enco_ct, Deco_st, Deco_pt by

Enc(st; ρ) = (Enco_st(st; ρ),Enco_pt(st; ρ),Enco_ct(st; ρ))

Dec(st, ct) = (Deco_st(st, ct),Deco_pt(st, ct))

We further extend those functions with a variable number of inputs ρ or ct. We define

Enco_st(st, ρ1, . . . , ρi) = Enco_st(Enco_st(st, ρ1, . . . , ρi−1); ρi)

Deco_st(st, ct1, . . . , cti) = Deco_st(Deco_st(st, ct1, . . . , cti−1), cti)

with the convention that Enco_st(st) = st and Deco_st(st) = st, i.e., the functions with zero
coins do nothing but returning st unchanged. Next, Enco_pt(st, ρ1, . . . , ρi) is the list of
generated pt, Enco_ct(st, ρ1, . . . , ρi) is the list of generated ct, and Deco_pt(st, ct1, . . . , cti)

is the list of decrypted pt:

Enco_pt(st, ρ1, . . . , ρi) =
(
Enco_pt(Enco_st(st, ρ1, . . . , ρj−1); ρj)

)
j=1,...,i

Enco_ct(st, ρ1, . . . , ρi) =
(
Enco_ct(Enco_st(st, ρ1, . . . , ρj−1); ρj)

)
j=1,...,i

Deco_pt(st, ct1, . . . , cti) =
(
Deco_pt(Deco_st(st, ct1, . . . , ctj−1); ctj)

)
j=1,...,i

Let stn be the state which is obtained after n encryptions, before starting the decryption
phase. In order to characterize the constraints on stn coming from the first i encryptions,
we introduce a set C[ri] corresponding to (and indexed with) each update operation
ri = (st0, ρ1, . . . , ρi). Due to correctness, stn must decrypt Enco_ct(ri) to Enco_pt(ri), due
to correctness. Hence, we define

C[ri] =
{
st ∈ ST ;Deco_pt(st,Enco_ct(ri)) = Enco_pt(ri)

}
Clearly, for any i and any st0, ρ1, . . . , ρn, we have

Enco_st(st0, ρ1, . . . , ρn) ∈ C[st0, ρ1, . . . , ρi]
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We note that C[r0], where r0 = st0 is the set of states subject to no restriction, hence
C[st0] = ST . Furthermore, we note that

C[rn] ⊆ · · · ⊆ C[r2] ⊆ C[r1] ⊆ C[r0] = ST

A state in C[ri−∆] decrypts well the first i−∆ ciphertexts. It may also be in C[ri−∆, ρi−∆+1,

. . . , ρi] if it decrypts the next ∆ ciphertexts produced with coins ρi−∆+1, . . . , ρi. It may
also be in C[ri−∆, ρ

′
i−∆+1, . . . , ρ

′
i] and decrypt ∆ ciphertexts produced with other coins.

With good probability, some state may actually have the “super-power” to decrypt ci-
phertexts produced with ∆ more random coins. We call those stated the super states.
Intuitively, this is unexpected to happen but we show below that super-states exist and
an adversary can build some easily.

More concretely, let α > 0 be the probability from the statement of the theorem. We
define a set of super states for rj−∆ = (st0, ρ1, . . . , ρj−∆):

S[rj−∆] =

{
st ∈ ST ; Pr

ρ′j−∆+1,...,ρ
′
j

[st ∈ C[rj−∆, ρ
′
j−∆+1, . . . , ρ

′
j ]] > α

}

This set S[rj−∆] defines a set of states which are α-likely to decrypt a “fork” in the
sequence of random coins. (See Fig. 5.3.)

We note that S[rj−∆] ⊆ C[rj−∆] as for st ∈ S[rj−∆], there must exist (due to a non-zero
probability) ρ′j−∆+1, . . . , ρ

′
j such that

st ∈ C[rj−∆, ρ
′
j−∆+1, . . . , ρ

′
j ] ⊆ C[rj−∆]

We define a union of super states as follows:

S∪[st0, ρ1, . . . , ρn−∆] = S[st0] ∪ S[st0; ρ1] ∪ · · · ∪ S[st0; ρ1, . . . , ρn−∆]

Clearly
S∪[rn−∆] ⊇ · · · ⊇ S∪[r1] ⊇ S∪[r0]

The idea of the proof is to show that states with too many constraints tend to become
super-states. Namely, we first prove that for n large enough, C[rn] is included in S∪[rn−∆]

with large probability p. This means that after n encryptions, a state becomes a super-
state. Hence, this state belongs to some S[rm−∆], with a random m ≤ n. We now take a
fixed value ofm which is taken with probability at least 1

n . (It exists, due to the pigeon-hole
principle.) We take n encryptions from random coins st0, ρ1, . . . , ρm−∆, ρ

′
m−∆+1, . . . , ρ

′
n.

We deduce that there is a probability at least p
n to get a state st′n in S[rm−∆]. If it

happens, st′n decrypts what is generated by the fork st0, ρ1, . . . , ρm with probability at
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least α (by definition of the super states). We define an adversary that exploits this fact
in Fig. 5.3. The m encryptions with st0, ρ1, . . . , ρm are generated by the game, the state
stm−∆ leaks, and the adversary can fork to construct st′n from it. We obtain the success
probability of the adversary in the OWm,∆,λ game:

Pr[OWm,∆,λ(A)→ 1] >
αp

n
(5.1)

In what follows, we show that p ≥ 1−
(

1
k + k−1

2 α
)b n∆c 2`.

•st0

•st1

•st2

•stm−∆

•st′n ∈ S[rm−∆]

•

•stm

generated with
(ρm−∆+1, . . . , ρm)

generated with
(ρ′m−∆+1, . . . , ρ

′
n)

A(1λ, stm−∆, ct1, . . . , ctm):
1: st′m−∆ ← stm−∆

2: for i = m−∆ + 1 to n do
3: pick ρ′i
4: Enc(st′i−1; ρ′i)→ (st′i, pt

′
i, ct
′
i)

5: end for
6: for i = 0 to m− 1 do
7: Dec(st′n+i, cti+1)→ (st′n+i+1, pti+1)
8: end for
9: return ptm

Figure 5.3 – Starting from state st0 and applying m encryption that generates ct1, . . . , ctm,
we hope that leaking stm and forking to n encryptions in total will end up in st′n ∈ S[rm−∆].
Therefore, st′n decrypts all the ciphertext with probability at least α.

Let i be an integer. We consider for the moment that st0, ρ1, . . . , ρi−∆ are fixed. For
simplicity, we denote

Ci−∆ = C[st0, ρ1, . . . , ρi−∆]

Ci(~ρ) = C[st0, ρ1, . . . , ρi−∆, ~ρ]

S∪i−∆ = S∪[st0, ρ1, . . . , ρi−2∆]

S∪i = S∪[st0, ρ1, . . . , ρi−∆]

for a vector ~ρ of dimension ∆. We take k independent random ∆-dimensional vectors
~ρj , for integers j = 1, . . . , k and we define Ci,j = Ci(~ρj). (k is defined in the statement
of the Lemma.) Given ~ρj fixed and some st ∈ Ci,j − S∪i fixed, we have st 6∈ S∪i meaning
that st 6∈ S[st0, ρ1, . . . , ρi−∆], thus

Pr
~ρj′

[st ∈ Ci,j′ ] ≤ α

for any ~ρj′ independent vector indexed with j′ 6= j, by definition of Si and Ci,j′ . We
count ∣∣(Ci,j′ − S∪i ) ∩ (Ci,j − S∪i )

∣∣ =
∑

st∈Ci,j−S∪i

1st∈Ci,j′
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Ci−∆

Ci,j Ci,j′

S∪i

Figure 5.4 – Illustration of the intersection (Ci,j′ − S∪i ) ∩ (Ci,j − S∪i )

We obtain

E
~ρj′

[∣∣(Ci,j′ − S∪i ) ∩ (Ci,j − S∪i )
∣∣] ≤ α|Ci,j − S∪i | ≤ α|Ci−∆ − S∪i−∆|

for any j, j′, and ~ρj with j 6= j′. This is illustrated in Fig. 5.4. Clearly, we can then
randomize ~ρj and obtain

E
[∣∣(Ci,j′ − S∪i ) ∩ (Ci,j − S∪i )

∣∣] ≤ α|Ci−∆ − S∪i−∆|

for any j and j′ with j 6= j′.

Let Aj = Ci,j − S∪i . This denotes one of the k subsets of A = Ci−∆ − S∪i−∆. We have

k∑
j=1

|Aj | ≤ |A|+
∑

1≤j<j′≤k
|Aj ∩Aj′ |

Indeed, any element x of A occurring in exactly m subsets Aj is counted m times on the
left-hand side and 1 + m(m−1)

2 times on the right-hand side. However, m ≤ 1 + m(m−1)
2

for every integer m. We deduce

E

 k∑
j=1

|Ci,j − S∪i |

 ≤ (1 +
k(k − 1)

2
α

)
|Ci−∆ − S∪i−∆|

Given that all E [|Ci,j − S∪i |] are equal, we have proven that

E
~ρ

[
|Ci(~ρ)− S∪i |

]
≤
(

1

k
+
k − 1

2
α

)
|Ci−∆ − S∪i−∆|
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We can now randomize ρ1, . . . , ρn−∆ as well and obtain

E
[
|C[st0, ρ1, . . . , ρn]− S∪[st0, ρ1, . . . , ρn−∆]|

]
≤
(

1

k
+
k − 1

2
α

)b n∆c
|ST |

We bound |ST | ≤ 2` and Pr[E 6= ∅] ≤ E[|E|] (due to the Markov inequality) for a random
set E and obtain

Pr[C[st0, ρ1, . . . , ρn]− S∪[st0, ρ1, . . . , ρn−∆] 6= ∅] ≤
(

1

k
+
k − 1

2
α

)b n∆c
2`

By assumption on the size of ST , for n large enough, we obtain that the set difference
C[st0, ρ1, . . . , ρn]−S∪[st0, ρ1, . . . , ρn−∆] is likely to be empty which means that the states
in C[st0, ρ1, . . . , ρn] are super states. By the definition of C[rn], Enco_st(st0; ρ1, . . . , ρn) ∈
C[st0; ρ1, . . . , ρn]. Hence, Enco_st(st0; ρ1, . . . , ρn) is likely to be in S∪[st0, ρ1, . . . , ρn−∆].
More precisely,

Pr[Enco_st(st0, ρ1, . . . , ρn) 6∈ S∪[st0, ρ1, . . . , ρn−∆]] ≤
(

1

k
+
k − 1

2
α

)b n∆c
2`

If Enco_st(st0, ρ1, . . . , ρn) ∈ S∪[st0, ρ1, . . . , ρn−∆], it means there exists (at least) one
m ≤ n such that

Pr
~ρ′

[Enco_st(st0, ρ1, . . . , ρn) ∈ C(st0, ρ1, . . . , ρm−∆, ~ρ
′)] > α

Therefore, we obtain the success probability in the OWm,∆,λ game (from Eq. (5.1)):

Pr[OWm,∆,λ(A)→ 1] >
α

n

(
1−

(
1

k
+
k − 1

2
α

)b n∆c
2`

)

The complexity of A is n−m+ ∆ encryptions and m decryptions.

5.2 Self-Ratchet

5.2.1 Definitions

Consider a self-ratcheted scheme SR = (lg, Init,Enc,Dec,Punc) with the following syntax:

• lg(λ) (length of the plaintext)

• SR.Init(1λ)
$−→ st (output an initial state for the device)

• SR.Enc(st, pt)
$−→ (st′, ct) (update the state while producing a pt/ct pair, with

pt ∈ {0, 1}lg(λ))
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• SR.Dec(st, ct)→ pt or ⊥ (decrypt ct into pt)

• SR.Punc(st, ct)→ st′ (update the state by puncturing ct in st)

In our settings, there exists a device following a protocol which produces some pt/ct for
itself so that it can eventually decrypt ct to recover pt in the future. Encryption is stateful.
The protocol makes sure that when the device should no longer be able to decrypt ct

and should be secure against any future state exposure, it can “puncture” the state. This
means that the state st which can decrypt ct is replaced by a new (punctured) state st′ so
that ct is not decryptable by st′ any more. With this notion, we aim at forward secrecy.
We aim at post-compromise security as well: a state exposure should not compromise
future encryptions.

Definition 15 (SR). A self-ratcheted scheme (SR) is a primitive SR = (Init,Enc,Dec,

Punc) which is n-correct in the sense that for any sequence sched, the game in Fig. 5.5
never returns 1. Here, sched is a sequence of scheduled instructions which can be of three
different types: (“Enc”, pt) (encrypt plaintext pt), (“Dec”, j) (decrypt the j-th produced
ciphertext), and (“Punc”, j) (puncture the j-th produced ciphertext).

The correctness notion must consider any order of Enc/Dec/Punc instructions. This
is what sched is modeling. We describe what should happen when this sequence of
instructions is sched. Actually, we declare in Lct the ciphertexts which are “active” and
we put in Lpt how they are expected to decrypt.

Compared to SEQ, an SR does not update the state in decryption (this is rather done by
a separate function) and decryption can be done in any order of the ciphertexts (i.e., not
only in the oder they have been created).

This definition assumes that the number of “active” ciphertexts remains bounded by a
parameter n (line number 5).

Application to cloud storage. SR schemes can be used for cloud storage where a
client wants to store her files on the cloud in an encrypted form. Ideally, a single file is
encrypted with SR.Enc to obtain a ct. For retrieval, the SR.Dec is run to decrypt the
file. Eventually, when the client wants to remove the file from the cloud, the protocol
will puncture her state for ct. The first desired security is that after a client erases an
encrypted file, even though a copy was illegally kept and the state of the client later
leaks, the file is unrecoverable. This is forward secrecy. It is achieved by puncturing. The
second desired security is that after the state of a client has leaked, if the client wants to
store a new file in the cloud, this file should be safe, as long as no exposure occurs during
the activity time of this file. This is post-compromise security. It is achieved by what we
call self-ratchet.
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1: SR.Init(1λ)
$−→ st

2: set lists Lpt and Lct to empty
3: for i = 1 to |sched| do
4: if schedi parses as (“Enc”, pt) for some pt then
5: if the number of Lct entries which are different from ⊥ is at most n− 1 then
6: SR.Enc(st, pt)→ (st, ct)
7: Lpt ← (Lpt, pt)
8: Lct ← (Lct, ct)
9: end if

10: else if schedi parses as (“Dec”, j) for some j then
11: if Lct[j] exists and Lct[j] 6= ⊥ then
12: SR.Dec(st, Lct[j])→ pt
13: if pt 6= Lpt[j] then return 1
14: end if
15: else if schedi parses as (“Punc”, j) for some j then
16: if Lct[j] exists and Lct[j] 6= ⊥ then
17: SR.Punc(st, Lct[j])→ st
18: Lct[j]← ⊥
19: end if
20: end if
21: end for
22: return 0

Figure 5.5 – Correctness game for SR of level n

One problem specific to cloud storage is that files are typically big and SR should handle
them in encryption, decryption, and puncturing. One common approach is to use a domain
expander based on a hybrid construction. Like the KEM/DEM hybrid cryptosystems, we
can use SR to encrypt an ephemeral key K and symmetrically encrypt the plaintext with
K.

We could also add key rotation, if required, by using SR to encrypt the encryption key: to
encrypt a file pt, we pick a random key k (in the key domain of the key rotation scheme)
and we run C̃1 ← SR.Enc(st, k). Then, we encrypt pt with k following the key rotation
scheme and obtain a header C̃2 and C. The ciphertext is ct = (C̃1, C̃2, C). To rotate the
key k, we puncture st with C̃1, produce a new value for C̃1 with a new k and run the key
rotation scheme on (C̃2, C).

Application to 0-RTT session resumption. SR schemes can be used for 0-RTT
session resumption. Essentially, a server having a secure connection with a client using a
key K would use SR.Enc(st,K) to issue a ticket ct and send ct to the client. To resume
a session, the client, who kept K and ct, would resend ct to the server who would use
SR.Dec to recover K. The server might also immediately puncture it to avoid any replay
of the ticket ct and for forward secrecy.
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Previous work on 0-RTT session resumption. Def. 15 is more general than the
definition of 0-RTT session resumption [AGJ19]. The differences are as follows:

• SR separates SR.Dec and SR.Punc instead of having both functionalities in the same
algorithm;

• the notations for 0-RTT session resumption are Setup, TicketGen, and ServerRes

instead of Init, Enc, Dec.

There is no formal definition of correctness for 0-RTT session resumption in Aviram et
al. [AGJ19]. However, we can fairly assume it is the same as our notion of correctness in
Def. 15, but when sequences sched are limited such that every decryption is followed by
puncturing: for all i and j, if schedi = (“Dec”, j) then schedi+1 = (“Punc”, j). In 0-RTT
session resumption, it makes sense to merge SR.Dec with SR.Punc as one of the security
goal is precisely to prevent a ct to be replayed. For cloud storage, the client may need to
decrypt the same ct several times before she removes the file from the cloud. Hence, we
keep SR.Dec and SR.Punc separate.

We adapt the security definition of 0-RTT session resumption with our notations to which
we add specific instructions for post-compromise security. We define the INDSR,opt

b,n,∆,λ(A)

game in Fig. 5.6. We also generalize it to adaptive security. In the AGJ security model,
the game starts with many OEnc and only after that, the adversary can play with oracles
except OEnc (it is somehow non-adaptive). The AGJ model uses opt = {FS, replay} and
it is formalized for key establishment rather than encryption. (This means that there
is a Test oracle to test a decryption instead of a Challenge oracle to get an encryption
challenge.)

Definition 16 (SR security). Let n(λ) and ∆(λ) be polynomially bounded positive integer
functions of a security parameter λ. The option set opt specifies some variants in the
game in Fig. 5.6. The advantage is

AdvIND
SR,opt

n,∆,λ (A) =
∣∣∣Pr
[
INDSR,opt

1,n,∆,λ(A)→ 1
]
− Pr

[
INDSR,opt

0,n,∆,λ(A)→ 1
]∣∣∣

We say that SR is IND-opt secure at level n with delay ∆ if for any PPT adversary
A, λ 7→ AdvIND

SR,opt

n,∆,λ (A) is a negligible function.

When “replay” ∈ opt, the security notion aims to address replay attacks. Hence, decryption
must puncture, as well. When “FS” ∈ opt, the security notion aims to capture forward
secrecy without post-compromise security. Absence of FS in opt is a stronger security
notion as it captures FS and PCS together.
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Game INDSR,opt
b,n,∆,λ(A):

1: Init(1λ)→ st
2: Active,Revealed← ∅
3: challenged← false
4: AfterExp← ∆
5: AOEnc,ODec,Challenge,OPunc,OExp(1λ)→ b∗

6: return b∗

Oracle OEnc(pt):
7: if |Active| ≥ n then return ⊥
8: SR.Enc(st, pt)→ (st, ct)
9: Active← Active ∪ {ct}

10: Revealed← Revealed ∪ {ct}
11: AfterExp← AfterExp + 1
12: return ct

Oracle ODec(ct):
13: if ct ∈ Active− Revealed then
14: return ⊥
15: end if
16: SR.Dec(st, ct)→ r
17: if “replay” ∈ opt then OPunc(ct)
18: return r

Oracle OPunc(ct):
19: SR.Punc(st, ct)→ st
20: Active← Active− {ct}
21: Revealed← Revealed− {ct}
22: return

Oracle Challenge(pt1):
23: if challenged then return ⊥
24: if |Active| ≥ n then return ⊥
25: if AfterExp < ∆ then return ⊥
26: pick pt0 of same length as pt1 at random
27: SR.Enc(st, ptb)→ (st, ct)
28: Active← Active ∪ {ct}
29: AfterExp← AfterExp + 1
30: challenged← true
31: return ct

Oracle OExp():
32: if (¬challenged and “FS” ∈ opt) or

(Active− Revealed 6= ∅) then
33: return ⊥
34: end if
35: AfterExp← 0
36: return st

Figure 5.6 – Indistinguishability game for self-ratchet

5.2.2 Impossibility Result

Theorem 14. For every integer n, `, ∆ > 0 and any n-correct self-ratcheted scheme SR

following Def. 15, and such that st belongs to a space of size bounded by 2`, there exist a
(small) constant c and an adversary of complexity (n−m+ ∆)TEnc +m(TDec + TPunc) +

(n+ ∆)T$ +m+ c having advantage

AdvIND
SR,opt

n,∆,λ (A) >
1

4n
2
−2 `+1
bn/∆c − 2−lg(λ)

for opt = ⊥ and opt = replay, and where T$ is the complexity to pick an element of
{0, 1}lg(λ) at random and TEnc, TDec and TPunc are the complexities of Enc, Dec and Punc.

Proof. We construct a SEQ from a self-ratcheted protocol SR in Fig. 5.7. Clearly, the
n-correctness of SR implies the n-correctness of S for any n. The SEQ scheme only
imposes ciphertexts to be received in the same order as they have been produced.

Due to Th. 13, there exists m and an OWm,∆,λ adversary B such that Pr[OWm,∆,λ →
1] = p with p > 1

4n2
−2 `+1
bn/∆c . Then, we can construct an INDSR,opt

b,n,∆,λ adversary A as in
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S.Gen = SR.Init

S.Enc(st):
1: pick K ∈ {0, 1}lg(λ) at random
2: return SR.Enc(st,K)

S.Dec(st, ct):
3: SR.Dec(st, ct)→ K
4: if K 6= ⊥ then SR.Punc(st, ct)→ st
5: return (st,K)

Figure 5.7 – SEQ from SR

AOEnc,ODec,Challenge,OPunc,OExp(1λ):
1: for i = 1 to m−∆ do
2: pick pti at random
3: OEnc(pti)→ cti
4: end for
5: OExp()→ stm−∆

6: for i = m−∆ + 1 to m− 1 do
7: pick pti at random
8: OEnc(pti)→ cti
9: end for

10: pick ptm at random
11: Challenge(ptm)→ ctm
12: B(stm−∆, ct1, . . . , ctm)→ z
13: return 1z=ptm

Figure 5.8 – Adversary against SR based on an adversary for SEQ

Fig. 5.8.

The Challenge oracle encrypts ptm which is either ptm or random. As A simulates well
the OWm,∆,λ game, we have Pr[z = ptm] = p. Hence, Pr[INDSR,opt

1,n,∆ → 1] = p and
Pr[INDSR,opt

0,n,∆ → 1] = 2−lg(λ). Hence, the advantage is p− 2−lg(λ).

The adversary A picks m plaintexts and issues m− 1 OEnc queries, one OExp query and
one Challenge query, and then simulates an OWm,∆,λ adversary B. The complexity of B
is the complexity of n −m + ∆ encryptions and m decryptions, and the complexities
of S.Enc and S.Dec are respectively TEnc + T$ and TDec + TPunc. The complexity of A
therefore is n−m+ ∆ encryptions, m decryptions, m punctuations, m+ 1 oracle calls
and (n+ ∆) random selections.

5.2.3 Constructions

We provide a generic construction SR from an FS-secure self-ratcheted scheme FSSR

providing forward secrecy. For every ∆, we create a new structure with forward secrecy
and store it. Given a scheme FSSR offering only forward secrecy, we construct SR as in
Fig. 5.9.

Theorem 15. Let n(λ) and ∆(λ) be polynomially bounded positive integer functions of a
security parameter λ. Let opt be either ⊥ or {replay}. Let FSSR be a self-ratcheted scheme
which is IND-(opt ∪ {FS}) secure at level ∆. Then, SR (in Fig. 5.9, with parameter ∆) is
a self-ratcheted scheme which is IND-opt secure at level n with delay ∆.
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SR.Init(1λ):
1: st← (0, [])

. a counter set to 0 and
an empty list

2: return st

SR.Dec(st, ct):
3: parse st = (c, L) and ct = (i, ct0)
4: FSSR.Dec(L[i], ct0)→ pt
5: return pt

SR.Punc(st, ct):
6: parse st = (c, L) and ct = (i, ct0)
7: FSSR.Punc(L[i], ct0)→ L[i]

. L[i] is updated
8: st← (c, L)
9: return st

SR.Enc(st, pt):
10: parse st = (c, L)
11: if c = 0 then
12: c← ∆
13: FSSR.Init(1λ)→ s
14: L← (L, s)

. add a new FSSR state in L
15: end if
16: c← c− 1
17: set ` to the length of L
18: FSSR.Enc(L[`], pt)→ (L[`], ct0)

. L[`] is updated
19: st← (c, L)
20: ct← (`, ct0)
21: return (st, ct)

Figure 5.9 – Post-compromise secure self-ratchet from forward secure self-ratchet

Proof. Let opt be either ⊥ or {replay} and B be an IND-opt adversary against SR with
delay ∆. Assume that B queries at most q encryption and challenge queries. Then, we
can construct an IND-(opt ∪ {FS}) adversary A against FSSR at level ∆ as shown on
Fig. 5.10.

By the construction, SR generates a new state of FSSR for each ∆ encryptions. The
adversary A therefore simulates the IND-opt security game with delay ∆ while trying
to replace ∆ ciphertexts by the ciphertexts that the adversary is challenging. If the
oracle Challenge′ does not abort the game, the adversary A can correctly guess b if B can
correctly guess it. The probability that the game is not aborted by Challenge′ is about
∆/q. Then, the advantage of A is

AdvIND
FSSR,(opt∪{FS})

∆,·,λ (A) =
1

dq/∆e
AdvIND

SR,opt

n,∆,λ (B)

As q is polynomially bounded and ∆ ≥ 1, AdvIND
SR,opt

n,∆,λ (B) is negligible if AdvIND
FSSR,(opt∪{FS})

∆,·,λ (

A) is negligible. Hence, SR is IND-opt secure at level n with delay ∆ if FSSR is IND-
(opt ∪ {FS}) secure at level ∆.

Optimization. Our SR scheme can obviously be optimized for storage. For each state
L[i], we can add a counter of active ciphertexts with L[i] which is incremented by Enc and
decremented by Punc (after checking that decryption works). Then, when the counter
becomes 0, L[i] can be erased.

Another convenient optimization holds when the application wants to operate bulk
puncturing of too old ciphertexts. This implies to erase all first L[i]. It is quite compatible
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AOEnc,ODec,Challenge,OPunc,OExp(1λ):

1: idx
$←− {1, . . . , dq/∆e}

2: SR.Init(1λ)→ st
3: Active,Revealed← ∅
4: challenged← false
5: AfterExp← ∆
6: BOEnc′,ODec′,Challenge′,OPunc′,OExp′(1λ)→ b′

7: return b′

Subroutine OEnc′(pt):
8: if |Active| ≥ n then return ⊥
9: SR.Enc(st, pt)→ (st, ct)

10: parse ct = (`, ct0)
11: if ` = idx then
12: OEnc(pt)→ ct0
13: end if
14: ct← (`, ct0)
15: Active← Active ∪ {ct}
16: Revealed← Revealed ∪ {ct}
17: AfterExp← AfterExp + 1
18: return ct

Subroutine ODec′(ct):
19: if ct ∈ Active− Revealed then
20: return ⊥
21: end if
22: parse ct = (`, ct0)
23: if ` = idx then
24: ODec(ct0)→ pt
25: else
26: SR.Dec(st, ct)→ (st, pt)
27: end if
28: if “replay” ∈ opt then OPunc′(ct)
29: return pt

Subroutine OPunc′(ct):
30: parse ct = (`, ct0)
31: if ` = idx then
32: OPunc(ct0)
33: else
34: SR.Punc(st, ct)→ st
35: end if
36: Active← Active− {ct}
37: Revealed← Revealed− {ct}
38: return

Subroutine Challenge′(pt):
39: if |Active| ≥ n or AfterExp < ∆ then
40: return ⊥
41: end if
42: parse st = (c, L)
43: if (c 6= 0 or |L| 6= idx − 1) and (c = 0 or
|L| 6= idx) then

44: abort the game
45: end if
46: SR.Enc(st, pt)→ (st, ct)
47: Challenge(pt)→ ct
48: Active← Active ∪ {ct}
49: AfterExp← AfterExp + 1
50: challenged← true
51: return ct

Subroutine OExp′():
52: parse st = (c, L)
53: if |L| ≥ idx then
54: OExp()→ st′

55: if st′ = ⊥ then return ⊥
56: L[idx]← st′

57: end if
58: AfterExp← 0
59: return (c, L)

Figure 5.10 – FS adversary for FSSR based on an adversary for SR

with recent policies of session resumption: a session which is too old cannot be resumed.

5.2.4 FS-Secure Self-Ratcheted Scheme (Adapted from AGJ)

We adapt the generic construction from Aviram et al. [AGJ19] based on a puncturable
PRF denoted as PPRF. We define PPRF as a set of following algorithms:

• Setup(1λ)→ kPPRF which generates an initial PPRF key;

• Eval(kPPRF, x)→ y/⊥ which computes a pseudo-random output from the PPRF key

82



5.2. Self-Ratchet

and x;

• Punc(kPPRF, x)→ k′PPRF which updates the PPRF key.

We use authenticated encryption with associated data AEAD = (Gen,Enc,Dec). (In our
notation, the second input to Enc and Dec is the associated data i.e. the header to be
authenticated.) The construction is in Fig. 5.11. The complete security proof is presented
in the following subsection along with the security of PPRF and AEAD. We only need
AEAD to be a secure encryption scheme. We kept AEAD as it was in AGJ [AGJ19] and it
would still be useful to authenticate ct.

FSSR.Init(1λ):
1: PPRF.Setup(1λ)→ kPPRF
2: st← (kPPRF, 0)
3: return st

FSSR.Enc(st, pt):
4: parse st = (kPPRF, cnt)
5: κ← PPRF.Eval(kPPRF, cnt)
6: if κ = ⊥ then return ⊥
7: ct0 ← AEAD.Enc(κ, cnt, pt)
8: ct← (cnt, ct0)
9: st← (kPPRF, cnt + 1)
10: return st, ct

FSSR.Dec(st, ct):
11: parse st = (kPPRF, cnt)
12: parse ct = (cnt′, ct0)
13: κ← PPRF.Eval(kPPRF, cnt

′)
14: if κ = ⊥ then return ⊥
15: pt← AEAD.Dec(κ, cnt′, ct)
16: return pt

FSSR.Punc(st, ct):
17: parse st = (kPPRF, cnt)
18: parse ct = (cnt′, ct0)
19: PPRF.Punc(kPPRF, cnt

′)→ kPPRF
20: if kPPRF = ⊥ then return ⊥
21: st← (kPPRF, cnt)
22: return st

Figure 5.11 – FS-secure SR

AGJ presented two possible PPRF constructions. One is based on the Camenisch-
Lysyanskaya RSA accumulator [CL02]. The other is based on a Merkle tree [Mer87].

RSA-based PPRF. The RSA-based construction uses a PPRF key of linear size in terms
of the number of encryptions and can only handle a polynomial number of encryptions.
This is the total number of encryptions, i.e. not only the ones remaining active. We
give the construction in Fig. 5.12, using a random oracle H and the list of first odd
primes (p1, . . . , pm). In the original paper [AGJ19], the authors have shown that the
above construction is a secure PPRF in the random oracle model, under the strong RSA

assumption. The PPRF key is of size 2λ+m. However, the N part of the key can be set
as a domain parameter which is common to many keys.

In our construction, the device only needs to encrypt ∆ messages per PPRF key. Hence,
we can set m = ∆ in the above PPRF, meaning that the FS-secure self-ratcheted scheme
has states of size λ+ ∆ + log2 ∆ plus λ bits of common parameter N . Finally, our secure
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PPRF.Setup(1λ):
1: generate an RSA modulus N = pq of length
λ using safe primes

2: erase p and q
3: pick g ∈ ZN at random
4: r ← (0, 0, . . . , 0) ∈ {0, 1}m
5: kPPRF ← (N, g, r)
6: return kPPRF

PPRF.Eval(kPPRF, x):
7: parse kPPRF = (N, g, r)
8: if rx = 1 then return ⊥
9: Px ←

∏m
i=1 p

ri·1i6=x

i

10: y ← H(gPx mod N)
11: return y

PPRF.Punc(kPPRF, x):
12: parse kPPRF = (N, g, r)
13: if rx = 1 then return ⊥
14: g ← gpx mod N
15: rx ← 1
16: kPPRF ← (N, g, r)
17: return kPPRF

Figure 5.12 – RSA-based PPRF

self-ratcheted scheme has states of size

` =
n

∆
(λ+ ∆ + log2 ∆) + log2 ∆ + λ (5.2)

We can see that `∆
n is at least linear in λ, hence super-logarithmic.

Tree-based PPRF. The tree-based constructions is formed with two functions G0 and
G1 from {0, 1}λ to itself, which we extend to functions Gx for every binary word x by
Gxy(L) = Gy(Gx(L)). Then, the PPRF defines a binary tree of depth d which is partially
labeled. The PPRF key is a set of (x, L) pairs where x is a binary word (hence a node in
the binary tree) and L is its label in {0, 1}λ. Initially, the key consists of the label of the
root ε. To evaluate on x, one should find a labeled node (y, L) such that y is a prefix of x,
write x = yz, and return Gz(L). The interface of the PPRF only takes d-bit input x (i.e.
leaves), but our evaluation is defined for every node. To puncture a leaf x, one should find
this y again and replace (y, L) from the key by the list of (x′, L′) with x′ = yz1 · · · zi−1z̄i
and L′ being the evaluation on x′, where z1 · · · z|z| is the binary expansion of z and z̄i is
the bit complement of zi. Hence, a PPRF key is an anti-chain with no siblings. In the
worst case, it could inflate by d pairs at every puncture, but the maximum length is of
2d−1 pairs.

Same as the RSA construction, one only needs to evaluate 2d = ∆ leaves. In the worst
case, a PPRF key has length 2d−1 × dλ which is 1

2λ∆ log2 ∆. Hence, the FS-secure self-
ratcheted scheme has states of size bounded by 1

2λ∆ log2 ∆ + log2 ∆. Finally, our secure
self-ratcheted scheme has states of size

` =
n

∆

(
1

2
λ∆ log2 ∆ + log2 ∆

)
+ log2 ∆
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which is larger than with the RSA-based method.

5.2.5 FS-Security of FSSR

PPRF. We assume for simplicity that Eval and Punc are deterministic in PPRF and the
PPRF correctness imposes that for every kPPRF, x, y such that x 6= y, we have

PPRF.Eval(kPPRF, y) = PPRF.Eval(PPRF.Punc(kPPRF, x), y)

(This is the case for the RSA-based scheme in Fig. 5.12.) We define the PPRF-security by
the indistinguishability of b in the game in Fig. 5.13. The set Q keeps all active challenge
queries. They are added by the Challenge oracle. They can be removed by the OPunc

oracle. The OEval oracle refuses to evaluate an active challenge query, as it would make
a trivial attack. Similarly, Challenge refuses to re-evaluate an active challenge query. The
OExp oracle similarly refuses to answer if some challenge queries are still active. The
OExp oracle can only be used as a last oracle query, which is enforced by the exposed flag.
The adversary is limited to q queries to either Challenge or OEval.

INDPPRF
b,q,λ :

1: kPPRF ← PPRF.Setup(1λ)
2: Q← ∅
3: exposed← false
4: z ← AChallenge,OEval,OPunc,OExp(1λ)
5: return z

Challenge(x):
6: if x ∈ Q or exposed then return ⊥
7: if q PPRF.Eval have been done then re-

turn ⊥
8: Q← Q ∪ {x}
9: y0

$←− Y
10: y1 ← PPRF.Eval(kPPRF, x)
11: return yb

OEval(x):
12: if x ∈ Q or exposed then return ⊥
13: if q PPRF.Eval have been done then re-

turn ⊥
14: y ← PPRF.Eval(kPPRF, x)
15: return y

OPunc(x):
16: kPPRF ← PPRF.Punc(kPPRF, x)
17: Q← Q− {x}
18: return

OExp():
19: if Q 6= ∅ then return ⊥
20: exposed← true
21: return kPPRF

Figure 5.13 – PPRF security game

AEAD. We define security of authenticated encryption with associated data (AEAD) with
the game in Fig. 5.14. Actually, this is the security of a symmetric encryption scheme,
as we need no authentication in our model. Besides the challenge encryption, there is
no chosen plaintext. The adversary can make chosen ciphertext decryption queries. The
adversary is limited to q queries in total.

Theorem 16. Consider the construction FSSR in Fig. 5.11. For every INDFSSR,FS-
adversary A which is limited to qe calls to either OEnc or Challenge and qd calls to
ODec, there exist two INDPPRF-adversaries Bb, b = 0, 1, and qe INDAEAD-adversaries Ccnt,
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INDAEAD
b,q,λ :

1: κ← AEAD.Gen(1λ)
2: Revealed← ∅
3: z ← AODec,Challenge(1λ)
4: return z

ODec(ad, ct):
5: if q queries have been made then return
⊥

6: if (ad, ct) ∈ Revealed then return ⊥
7: pt← AEAD.Dec(κ, ad, ct)
8: return pt

Challenge(ad, pt1):
9: if q queries have been made then return
⊥

10: pick pt0 at random of same length as pt1
11: ct← AEAD.Enc(κ, ad, ptb)
12: Revealed← Revealed ∪ {(ad, ct)}
13: return ct

Figure 5.14 – AEAD security game

cnt = 1, . . . , qe, such that

AdvIND
FSSR,FS

n,∆,λ (A) ≤
1∑
b=0

AdvIND
PPRF

qe+qd,λ
(Bb) +

qe∑
cnt=1

AdvIND
AEAD

qd,λ
(Ccnt)

Proof. Let us consider the INDFSSR,FS
b,n,∆,λ game played with an adversary A.

First, we transform A into an adversary A′ who simulates A until it makes a successful
OExp query. Then, A′ makes this OExp query as well to get the state st. After this query,
A′ continues to simulate A but makes no oracle query any more. Instead, A′ simulates all
oracles responding to A. Given st, A′ can impersonate the device. Only the knowledge
of b is missing, but this is only used by the Challenge oracle if challenged is false. OExp
can only succeed if challenged is true, due to the FS option in INDFSSR,FS. Hence, there
cannot be any Challenge query needing b any more. Consequently, A′ can easily simulate
all oracles. The INDFSSR,FS

b,n,∆,λ game with A′ has exactly the same advantage:

AdvIND
FSSR,FS

n,∆,λ (A) = AdvIND
FSSR,FS

n,∆,λ (A′)

Then, we construct for each b an adversary Bb who simulates A′, all oracles in the game
in Fig. 5.6 and the algorithms of FSSR in Fig. 5.11, but every PPRF operation. This
adversary Bb plays in an INDPPRF

1,qe+qd,λ
game.

• The PPRF.Setup(1λ) execution in FSSR.Init(1λ) at the beginning of the game is
done by the INDPPRF

1,qe+qd,λ
game.

• The PPRF.Eval(kPPRF, x) execution from FSSR.Enc(st, pt) which is in the Challenge(pt)
query in the INDFSSR,FS

b,n,∆,λ game is simulated by a Challenge(x) oracle call to the
INDPPRF

1,qe+qd,λ
game. Thanks to the transformation into A′, the exposed abort con-

dition of Challenge in Fig. 5.13 is never met. As FSSR.Enc increments a counter
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cnt = x, Challenge queries are never made on a repeated input x. Hence, the x ∈ Q
abort condition of Challenge in Fig. 5.13 is never met either. In the INDPPRF

1,qe+qd,λ

game, Challenge and OEval are equivalent. The simulation is perfect.

• The other PPRF.Eval(kPPRF, x) executions are simulated by OEval(x) oracle calls,
unless x ∈ Q. If x ∈ Q, it means that it was a Challenge query before and that
x was not punctured. Hence, the result of PPRF.Eval(kPPRF, x) should be known
and we do not need to query OEval(x) for that, thanks to the correctness property.
Thanks to the transformation into A′, the exposed abort condition of OEval in
Fig. 5.13 is never met. The simulation is perfect.

• The PPRF.Punc(kPPRF, x) executions from FSSR.Punc(st, ct) in the OPunc(ct) query
in Fig. 5.6 are simulated by OPunc(x) oracle calls in Fig. 5.13. The simulation is
perfect.

• The reveal of kPPRF in the OExp query in the end of the game in Fig. 5.6 is done
using an OExp oracle call in Fig. 5.13. Clearly, all elements of Q should have been
cleared as we must have Active− Revealed = ∅ in the INDFSSR,FS

b,n,∆,λ game.

This creates an adversary Bb for the INDPPRF
b′,qe+qd,λ

game. This perfectly simulates
INDFSSR,FS

b when b′ = 1:

AdvIND
FSSR,FS

n,∆,λ (A′) =
∣∣∣Pr
[
INDPPRF

1,qe+qd,λ
(B1)→ 1

]
− Pr

[
INDPPRF

1,qe+qd,λ
(B0)→ 1

]∣∣∣
Due to the PPRF security, the outcome is indistinguishable from the one obtained with
b′ = 0. The advantage gap is of

AdvIND
PPRF

qe+qd,λ
(B1) + AdvIND

PPRF

qe+qd,λ
(B0)

Now, we can consider the INDPPRF
0,qe+qd,λ

game with Bb and revert the previous transformation.
We obtain that the adversary A′ is unchanged but the game becomes some Γb game like
INDFSSR,FS, but with modified oracles as follows:

• for each Challenge(pt) query, the game looks at the state st = (kPPRF, cnt), picks
a random κ, uses it instead of the result of PPRF.Eval(kPPRF, cnt), and keeps in
memory that cnt is mapped to κ as long as cnt remains active (i.e. in the set Q);

• for each ODec(ct) query on some ct = (cnt, ct0) with a cnt which is remembered in
memory, when cnt is still active, the game also bypasses PPRF.Eval to use the same
κ directly.

We have

AdvIND
FSSR,FS

n,∆,λ (A′)− AdvΓ
λ(A′) ≤ AdvIND

PPRF

qe+qd,λ
(B1) + AdvIND

PPRF

qe+qd,λ
(B0)
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Finally, for each value of the counter cnt, we define an INDAEAD game with an adversary
Ccnt. Again, Ccnt simulates A′, oracles in Γb and FSSR algorithms in Fig. 5.11, but some
AEAD executions with a target key κ corresponding to cnt.

• For any Challenge(pt1) query by A′ (which induces Bb making a Challenge(x) query
in Fig. 5.13) such that the state has form st = (kPPRF, cnt) for some kPPRF, we
have cnt = x and a random κ is selected to replace PPRF.Eval(kPPRF, cnt) before
computing AEAD.Enc(κ, ptb). Instead, Ccnt does not select κ and rather queries
Challenge(pt1) in the INDAEAD game. The result ct∗ is kept in memory. Note that
no OEnc query by A′ needs to run PPRF.Eval(kPPRF, cnt) as the counter cnt is
incremented. However, some ODec queries by A′ may need it.

• For other Challenge(x) queries, Ccnt aborts.

• For any timeA′ should remember the hidden value of κ to make a AEAD.Dec(κ, ad, ct)
computation, Ccnt checks if (ad, ct) is equal to the value of (cnt, ct∗) above (which
should not happen as it would mean that Bb tries to decrypt the challenge cipher-
text, hence ct ∈ Active− Revealed in ODec in Fig. 5.6) and return ⊥ in that case,
otherwise call ODec(ad, ct).

We have
Pr[Γb(A′)→ 1] =

∑
cnt

Pr[INDAEAD
b (Ccnt → 1]

Hence,
AdvΓ

λ(A′) ≤
∑
cnt

AdvIND
AEAD

qd,λ
(Ccnt)

5.2.6 Experimental Results

We instantiate an SR based on FSSR with the RSA-based PPRF. We assumed that the
same RSA modulus is used for all PPRF keys, the RSA modulus so is precomputed and
given as a parameter to SR. Hence, the cost of setting up the RSA modulus is not covered
in our analysis. For H and AEAD, we used SHA-256 and AES-GCM.

Our experiment was done on a machine with the AMD Opteron 8354 processor and
128 GB of RAM by using the SageMath version 8.7. We picked a common 2048-bit RSA
modulus.

We tried many values for ∆ from ∆ = 100 to ∆ = 10 000 by steps of 100. We measured the
worst case complexity of an SR.Enc encryption, which is actually the very first one when
nothing is punctured and which includes FSSR.Init, as well as the best case complexity
of SR.Enc, which is the very last one after all other values have been punctured. For
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accuracy, we did it 1000 times for each ∆ and took the average. The results are plotted
in Fig. 5.15.

On the plot, we added the total state size divided by the total number n of encryptions
as it goes to infinity. This is essentially `

n with ` given by Eq.(5.2). As we can see, the
execution time grows linearly with ∆ while `

n − 1 is inverse proportional to ∆.
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Figure 5.15 – The execution time of SR.Enc in the worst/best case and the state size
divided by the number of encryptions with 2048-bit RSA modulus.

5.3 Bipartite Ratcheted Communication

5.3.1 Definitions

We consider a ratcheted scheme S = (Gen,Enc,Dec) following the syntax

• S.Gen(1λ)→ (stA, stB) (generate a pair of states)

• S.Enc(st)→ (st′, pt, ct) (update the state while producing a pt/ct pair)

• S.Dec(st, ct)→ (st′, pt) (update the state while decrypting ct)

To avoid defining a general correctness and security for ratcheted schemes, which is
quite lengthy and complicated, we only adopt a definition matching a particular case
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1: S.Gen(1λ)→ (stA0 , st
B
0 )

2: for i = 1 to n do
3: S.Enc(stAi−1)→ (stAi , pt

′
i, ct

′
i)

4: S.Dec(stBi−1, ct
′
i)→ (x, pt′i)

5: S.Enc(x)→ (stBi , pti, cti)
6: end for

7: x← stAn
8: for i = 1 to n do
9: S.Dec(x, cti)→ (x, pt)
10: if pt 6= pti then return 1
11: end for
12: return 0

Figure 5.16 – Correctness game for a simple ratcheted scheme of level-n

of our interest. This is the case when one participant Alice desperately tries to reach
her counterpart Bob by consistently sending messages without receiving any response,
while Bob actually acknowledges for the receipt of every message from Alice but his
acknowledgments somehow never make it through. (See Fig. 5.17.)

Definition 17. A simple ratcheted scheme is a primitive S defined by S = (Gen,Enc,

Dec) which is n-correct in the sense that the game in Fig. 5.16 never returns 1.

ct1
ct2

ct3

...

...

ctn...

stB0

stB1

stB2

stB3

stBn

stA0

stA1

stA2

stA3

stAn

Figure 5.17 – Simulation of the level-n correctness game

In this communication pattern, protocols such as PR [PR18], JS [JS18], JMM [JMM19],
and DV [DV19] have growing states. We can clearly see it on the implementation results by
Caforio et al. [CDV19]. Protocols such as Signal [Sys17] or ACD [ACD19] keep constant-
size states but offer no post-compromise security in our communication pattern. In fact,
in ACD, Alice keeps sending messages in the same “epoch” (following the terminology
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of ACD [ACD19]) using the forward secret scheme called FS in ACD, while Bob receives
those messages from an old epoch (for him) and keeps sending messages in his own epoch,
using FS as well. As the FS scheme is deterministic, it offers no post-compromise security.
In ACD-PK, there is an extra public-key encryption but the decryption key remains
constant within the same epoch. Hence, exposing stA1 is enough to decrypt all ciphertexts
in both ACD and ACD-PK.

Post-compromise security should make impossible to decrypt ctm which was released
after having ratcheted ∆ times both participants after the last state exposure which
revealed stAm−∆ and stBm−∆. For instance, with ∆ = 1 and m = 2, it should be impossible
on Fig. 5.17 to compute pt2 from (stA1 , st

B
1 , ct1, ct2). This is formalized by the following

definition.

Definition 18. Let n(λ) and ∆(λ) be polynomially bounded positive integer functions of
a security parameter λ. For a simple ratcheted scheme S which is n-correct, we define
the game in Fig. 5.18 with parameters m ≤ n and ∆ > 0: We say that S with level
n is ∆-secure if for any PPT adversary A, λ 7→ max1≤m≤n Pr[OWm,∆,λ(A)→ 1] is a
negligible function.

OWm,∆,λ:
1: S.Gen(1λ)→ (stA0 , st

B
0 )

2: for i = 1 to m do
3: S.Enc(stAi−1)→ (stAi , pt

′
i, ct

′
i)

4: S.Dec(stBi−1, ct
′
i)→ (x, pt′i)

5: S.Enc(x)→ (stBi , pti, cti)
6: end for
7: A(1λ, stAm−∆, st

B
m−∆, ct1, . . . ctm)→ x

8: return 1x=ptm

Figure 5.18 – OW game for a simple ratcheted scheme

5.3.2 Impossibility Result

Theorem 17. For every integer n, `, ∆ > 0 and any n-correct simple ratcheted scheme
S following Def. 17, and such that (stA, stB) belongs to a space of size bounded by 2`,
there exist m ≤ n and an adversary of low complexity having advantage

Pr[OWm,∆,λ(A)→ 1] >
1

4n
2
−2 `+1
bn/∆c

in the security game of Def. 18.

Proof. We construct a SEQ protocol P as shown in Fig. 5.19. If S is n-correct (in the
sense of Def. 17), then this new scheme P is correct to level n (in the sense of Def. 13).
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This comes from a direct translation of definitions. Furthermore, any adversary against
P (in the sense of Def. 14) translates into an adversary against S in the sense of Def. 18:
given (stAm−∆, st

B
m−∆) the adversary decrypts ctm. Advantages are the same. We conclude

by applying Th. 13.

P.Gen(1λ)→ st:
1: S.Gen(1λ)→ (stA, stB)
2: st← (stA, stB)
3: return st

P.Dec(st, ct)→ (st′, pt):
4: parse st = (stA, stB)
5: S.Dec(stA, ct)→ (st′A, pt)
6: st′ ← (st′A, stB)
7: return (st′, pt)

P.Enc(st)→ (st′, pt, ct):
8: parse st = (stA, stB)
9: S.Enc(stA)→ (st′A, pt

′, ct′)
10: S.Dec(stB, ct

′)→ (st′B, pt
′′)

11: S.Enc(st′B)→ (st′′B, pt, ct)
12: st′ ← (st′A, st

′′
B)

13: return (st′, pt, ct)

Figure 5.19 – Simple ratchet S to SEQ

5.4 Conclusion of Chapter

We defined a self-encryption mechanism involving a device which encrypts a secret message
for herself to use in the future. We are interested in security when the state of a device
in such settings leaks causing the leakage of the secret message. We started giving some
instances where self-ratcheting finds applications in cloud storage, when a client encrypts
files to be stored, and in 0-RTT session resumption, when a server encrypts a resumption
key to be kept by the client. Unlike previous works which focused on forward secrecy and
resistance to replay attacks, we studied how to add post-compromise security, as well.

We first proved that post-compromise security implies a super-linear state size in terms of
the number of ciphertexts which can still be decrypted by the state. We then give formal
definitions of self-ratchet. We finally showed how to design a secure scheme satisfying our
bound on the state size.

Furthermore, we showed that our results on the growth of state size matches with existing
secure bidirectional secure messaging applications. Given the fact that the messaging
applications provide different level of PCS, we observed that there exist some protocols
such as ACD without growing state size. It is due to the fact that the protocol is secure
with a weaker notion of PCS which could allow constant-size states. It would be interesting
to investigate weaker PCS notions in self-encryption applications such as cloud storage or
0-RTT.
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6 Conclusion

In this dissertation, we have studied several problems in cryptography which are related
to sending secrets to the future.

In the first part, we proposed a timed-release encryption scheme with master time bound
key. By using the master time bound key, a ciphertext could be decrypted even though
the release time is unknown. This can be an advantage in the case when it is more
important not to lose the data. We also proved that our construction is secure under
the bilinear Diffie-Hellman hardness assumption. In our experimental result, we studied
the change of execution time of our construction by security level. In the real world
application, we can make the computations faster by parallelizing some computations or
with precomputations.

In the second part, we defined the notion of hidden group with hashing, and built a witness
key encapsulation model on top of it. We have proven that the underlying hard problem of
our witness key encapsulation model is NP-complete, so that we can generate a ciphertext
from any NP instance. Moreover, we have analyzed the timed-release encryption from
witness encryption and the Bitcoin blockchain. In this case, there is no trusted server in
the system and Bitcoin miners replace the role of trusted server. We however have shown
that this instantiation is costly due to the structure of SHA-256, and proposed a way to
improve it by replacing SHA-256 by another hash function.

In the third part, we studied post-compromise security in self-encryption. We have proven
that we need a state which super-linearly increases in terms of the number of active
ciphertexts, i.e. ciphertexts which can be correctly decrypted with the current state,
in order to achieve post-compromise security and forward secrecy at the same time in
self-encryption. We then applied this result to several cases.
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Conclusion

Future Work

In cryptography, there still exist plenty of problems which are related to time. One of
common problem in cryptography, also in any field of computer science, is to improve
the efficiency of a protocol or a system, and the execution time is usually a part of
efficiency. We therefore can say that we always have some time-related problems to solve
in cryptography.

Conversely, there also exist some algorithms whose goal is to slow down the system. For
example, there exists a time-lock puzzle [RSW96, BGJ+16, MT19] which wants to control
the time to solve a puzzle and a verifiable delay function [BBBF18, Wes19, DFMPS19,
Pie18] which wants to control the time to generate a proof. For both of them, one of
interesting research direction is to find a construction which is post-quantum secure.

This is also the same for our research. The timed-release encryption scheme and the
witness key encapsulation model that we proposed in this dissertation are based on
hardness assumptions which can be broken by a quantum computer. Therefore, in the
post-quantum era, both of them will be insecure. Some researches might be needed to
investigate if we can build a construction which is post-quantum secure.

For the timed-release encryption scheme with master time bound key, we needed a master
time bound key to decrypt any ciphertext as it is hard to extract the associated release
time from a ciphertext. The introduction of the master time bound key introduced a new
problem as the trusted server needs to decide in which case it will accept the decryption
with the master time bound key and in which case it will reject. Ideally, the trusted
server should accept if the release time of ciphertext is already passed, but there is no
efficient way to check it from the ciphertext. We will therefore require a way to efficiently
verify it.

94



A Source Codes

A.1 TRE Benchmark Source Code

1 import hashlib
2 import time
3

4 def setup(lbd , lbd2):
5 q = random_prime (2^lbd , lbound =2^(lbd -1))
6 p = 6* randint (2^(lbd2 -lbd -1), 2^(lbd2 -lbd))*q-1
7 while not p.is_pseudoprime ():
8 q = random_prime (2^lbd , lbound =2^(lbd -1))
9 p = 6* randint (2^(lbd2 -lbd -1), 2^(lbd2 -lbd))*q-1

10 K = GF(p)
11 R.<y> = K[]
12 K = K.extension(R.irreducible_element (2), ’x’)
13 E = EllipticCurve(K, [0, 1])
14 return (K, E, q, R)
15

16 def keygen_TS(parms):
17 K = parms [0]
18 E = parms [1]
19 q = parms [2]
20 R = parms [3]
21

22 P = None
23 while P is None:
24 try:
25 a = K(R.random_element (1))
26 P = E([a, sqrt(a^3 + 1)])
27 except:
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28 pass
29 P = ((K.characteristic ()+1)//q)*P
30 while P == E(0):
31 P = None
32 while P is None:
33 try:
34 a = K(R.random_element (1))
35 P = E([a, sqrt(a^3 + 1)])
36 except:
37 pass
38 P = ((K.characteristic ()+1)//q)*P
39

40 Q = randint(1,q-1)*E([P.xy()[0]^K.characteristic (), P.xy
()[1]^K.characteristic ()]) + randint(0,q-1)*P

41 zq = Integers(q)
42 a = zq.random_element ()
43 b = zq.random_element ()
44 c = zq.random_element ()
45 d = zq.random_element ()
46 while a == 0 or b == 0 or c == 0 or d == 0 or a*b == 1 or

c*a == d or b*d == c:
47 a = zq.random_element ()
48 b = zq.random_element ()
49 c = zq.random_element ()
50 d = zq.random_element ()
51

52 a = a.lift()
53 b = b.lift()
54 c = c.lift()
55 d = d.lift()
56 pk1 = b*P+Q
57 return (a,b,c,d,P,Q), ((P+a*Q).weil_pairing(pk1 , q), pk1 ,

c*P+d*Q)
58

59 def broadcast(sk, t, parms):
60 K = parms [0]
61 E = parms [1]
62 q = parms [2]
63 R = parms [3]
64

65 a = sk[0]
66 b = sk[1]
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67 c = sk[2]
68 d = sk[3]
69 P = sk[4]
70 Q = sk[5]
71 zq = Integers(q)
72

73 s = zq.random_element ()
74 while s == 0:
75 s = zq.random_element ()
76 s = s.lift()
77

78 if t == zq(-d):
79 print "-d"
80 return s*P + (a*b - 1)*power_mod(c+b*t, -1, q)*Q
81 elif t == zq(-c*power_mod(b,-1,q)):
82 print "-cb^-1"
83 return (1-a*b)*power_mod(d+t,-1,q)*P + s*Q
84 else:
85 return s*power_mod(d+t,-1,q)*P + (s+a*b-1)*power_mod(

c+b*t,-1,q)*Q
86

87 def enc(pk1 , pk2 , m, t, parms):
88 K = parms [0]
89 E = parms [1]
90 q = parms [2]
91 R = parms [3]
92

93 m = K(m)
94

95 r1 = Integers(q).random_element ()
96 while r1 == 0:
97 r1 = Integers(q).random_element ()
98 r1 = r1.lift()
99

100 r2 = K(R.random_element (1))
101

102 wp = pk1 [0]^r1
103

104 ct0 = m * r2
105 ct1 = r1*(t*pk1[1] + pk1 [2])
106 ct2 = r2 + wp
107 return (ct0 , ct1 , ct2), r1, r2

97



Appendix A. Source Codes

108

109 def dec(sk2 , tau , ct, parms):
110 K = parms [0]
111 E = parms [1]
112 q = parms [2]
113

114 wp = tau.weil_pairing(ct[1], q)
115 return ct[0]/(ct[2] - wp)
116

117 lbd = 160 # log_2 q
118 lbd2 = 512 # log_2 p
119

120 t_setup = []
121 t_keygen = []
122 t_broadcast = []
123 t_enc = []
124 t_dec = []
125

126 it = 1000
127

128

129 for i in xrange(it):
130 print ’Iteration %03d’% i
131 start = time.time()
132 parms = setup(lbd , lbd2)
133 end = time.time()
134 t_setup.append(end - start)
135

136 m = parms [0]( parms [3]. random_element (1))
137 t = Integers(parms [2]).random_element ().lift()
138

139 start = time.time()
140 sk, pk = keygen_TS(parms)
141 end = time.time()
142 t_keygen.append(end - start)
143

144 start = time.time()
145 tau = broadcast(sk, t, parms)
146 end = time.time()
147 t_broadcast.append(end - start)
148

149 start = time.time()
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150 ct, r1, r2 = enc(pk, 0, m, t, parms)
151 end = time.time()
152 t_enc.append(end - start)
153

154 start = time.time()
155 pt = dec(0, tau , ct, parms)
156 end = time.time()
157 t_dec.append(end - start)
158

159 if pt != m:
160 print "decryption error"
161

162 print " Setup = %.06f"% mean(t_setup)
163 print " Keygen = %.06f"% mean(t_keygen)
164 print "Broadcast = %.06f"% mean(t_broadcast)
165 print " Encrypt = %.06f"% mean(t_enc)
166 print " Decrypt = %.06f"% mean(t_dec)
167 print "="*30
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