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Abstract

Stochastic optimization is a popular modeling paradigm for decision-making under un-
certainty and has a wide spectrum of applications in management science, economics and
engineering. However, the stochastic optimization models one faces in practice are intractable,
and numerical solutions necessitate approximations. The mainstream approach for making
a stochastic optimization model amenable to numerical solution is to discretize the proba-
bility distribution of the uncertain problem parameters. However, both the accuracy of the
approximation as well as the computational burden of solving the approximate problem scale
with the number of scenarios of the approximate distribution. An effective means to ease
the computational burden is to use scenario reduction, which replaces an accurate initial
distribution accommodating many scenarios with a simpler distribution supported on only
few scenarios that is close to the initial distribution with respect to a probability metric.

Using the Wasserstein distance as measure of proximity between distributions, we provide
new insights into the fundamental limitations of scenario reduction, and we propose the first
polynomial-time constant-factor approximations for a popular scenario reduction problem
from the literature. As scenario reduction is equivalent to clustering, it suffers from two
well-known shortcomings. Namely, it suffers from outlier sensitivity and may produce highly
unbalanced clusters. To mitigate both shortcomings, we formulate a joint outlier detection
and clustering problem, where the clusters must satisfy certain cardinality constraints. We cast
this problem as a mixed-integer linear program (MILP) that admits tractable semidefinite and
linear programming relaxations. We propose deterministic rounding schemes that transform
the relaxed solutions to feasible solutions for the MILP. We also prove that these solutions
are optimal in the MILP if a cluster separation condition holds. Finally, we develop a highly
efficient scenario reduction method for a large-scale hydro scheduling problem. Specifically,
we study the optimal operation of a fleet of interconnected hydropower plants that sell energy
on both the spot and the reserve markets, and we propose a two-layer stochastic programming
framework for its solution. The outer layer problem (the planner’s problem) optimizes the
end-of-day reservoir filling levels over one year, whereas the inner layer problem (the trader’s
problem) selects optimal hourly market bids within each day. We prove that the trader’s
problem admits a scenario reduction that dramatically reduces its complexity without loss of
optimality, which in turn facilitates an efficient approximation of the planner’s problem.
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Zusammenfassung

Die stochastische Optimierung umfasst beliebte Methoden zur Modellierung von Entschei-
dungsproblemen unter Unsicherheit und hat eine Vielzahl moglicher Anwendungen sowohl
in der Betriebs- und der Volkswirtschaftslehre als auch in den Ingenieurwissenschaften. In
der Praxis haben stochastische Optimierungsmodelle aber meist keine analytische Losung,
und numerische Losungsverfahren beruhen deshalb fast immer auf Approximationen. Das
am weitesten verbreitete Approximationsverfahren beruht auf einer Diskretisierung der Wahr-
scheinlichkeitsverteilung der unsicheren Problemparameter. Allerdings nehmen sowohl die
Genauigkeit als auch die Komplexitit des resutierenden diskretisierten Optimierungsmodells
mit der Anzahl der Szenarien in der diskreten Verteilung zu. Eine effektive Methode um den
Rechenaufwand zu verringern ist die Szenarioreduktion, welche eine anfingliche genaue
Verteilung mit vielen Szenarien durch eine nahe Verteilung mit nur wenigen Szenarien ersetzt,
wobei man die Ndhe zwischen Verteilungen mittels einer Wahrscheinlichkeitsmetrik misst.

In dieser Dissertation zeigen wir zuerst die fundamentalen Grenzen der Szenarioreduktion auf,
wenn man als Wahrscheinlichkeitsmetrik die Wasserstein-Distanz verwendet. Wir beschreiben
zudem das erste polynomielle Approximationsverfahren mit einer garantierten Giite fiir ein
weitverbreitetes Szenarioreduktionsproblem aus der Literatur. Aufgrund seiner Aquivalenz
zum Clusteringproblem weist die Szenarioreduktion zwei wohlbekannte Defizite auf: Sie ist
sensibel ggii. Ausreissern, und sie neigt zur Bildung héchst unausgeglichener Cluster. Wir
adressieren beide Nachteile durch die Formulierung eines simultanen Ausreissererfassungs-
und Clusteringproblems, in welchem die Cluster bestimmte Kardinalitdtsvorgaben erfiillen
miissen. Wir formulieren dieses Problem als ein gemischt-ganzzahliges Optimierungsproblem,
welches effizient l6sbare semidefinite und lineare Relaxierungen aufweist. Wir entwickeln
deterministische Rundungsverfahren, welche die Losungen der Relaxierungen in zuldssige
Losungen des urspriinglichen Optimierungsproblems iiberfiihrt. Weiterhin beweisen wir, dass
diese Losungen im urspriinglichen gemischt-ganzzahligen Optimierungsproblem optimal
sind, wenn eine bestimmte Cluster-Separationsbedingung erfiillt ist. Schliesslich entwickeln
wir eine hochst effiziente Szenarioreduktionsmethode fiir die Bewirtschaftung grosser Wasser-
kraftwerke. In diesem Kontext analysieren wir die optimale Bewirtschaftung einer Gruppe von
Wasserkraftwerken die Energie sowohl auf dem Spot- als auch auf dem Reservemarkt anbieten,
und wir entwickeln ein zweischichtiges stochastiches Optimierungsverfahren zur Losung
dieses Problems. Die dussere Schicht unseres Verfahrens (das Planungsproblem) optimiert
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die téglichen Reservoir-Fiillmengen iiber den Zeitraum eines Jahres, wohingegen die innere
Schicht unseres Verfahrens (das Handelsproblem) die optimalen stiindlichen Marktgebote
innerhalb eines Tages auswéahlt. Wir zeigen, dass das Handelsproblem einer Szenarioreduk-
tion zugidnglich ist, welche eine verlustfreie Komplexitidtsreduktion ermdoglicht, und dass
das resultierende reduzierte Handelsproblem wiederum eine effiziente Approximation des
Planungsproblems erlaubt.

Stichworter: Stochastische Optimierung; Robuste Optimierung; Szenarioreduktion; Clustering;
Wasserkraft; Reservemairkte
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|§ Introduction

Decision problems in management, economics or engineering almost always involve exoge-
nous uncertain parameters. These parameters may be uncertain due to measurement errors
or simply because they are not yet known at the time when the problem is formulated and
solved. Indeed, when a manufacturer decides on a production plan for next year, the demands
of the products and the prices of the raw materials are not yet available and can at best be
estimated statistically. In this case, one aims to find decisions that perform well under all
possible realizations of the uncertain parameters. If the uncertain problem parameters are
governed by a known probability distribution, then the determination of an optimal policy
amounts to solving a stochastic optimization model or stochastic program. While stochastic
programming offers great modeling power and can therefore be used in a vast number of
applications, the resulting mathematical optimization problems are hard. If the probability
distribution governing the uncertain problem parameters is continuous, then we are con-
fronted with an optimization problem over an infinite-dimensional function space. As exact
analytical solutions are usually out of the question, modelers need to resort to approximations.
The mainstream approach for making a stochastic optimization model amenable to numerical
solution is to discretize the underlying continuous probability distribution.

The computational burden of solving the approximate stochastic program scales with the
number of discretization points or scenarios in the approximate distribution. The fewer sce-
narios, the faster we can solve the approximate problem. However, large numbers of scenarios
lead to better solution accuracy. The main aim of this thesis is to study the fundamental
trade-off between the number of scenarios and the accuracy of the approximate distribution.

1.1 Scenario Reduction

A discrete approximate distribution that is close to the true continuous distribution can con-
veniently be generated by drawing a large number n of samples from the true distribution.
Alternatively, it could be constructed directly from 7 real historical observations of the un-
certain parameters. The larger n, the better the approximation of the true distribution, but
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the longer it takes to solve the underlying stochastic program. An effective means to ease the
computational burden is to use scenario reduction, an approach pioneered by Dupacova et al.
(2003), which aims to approximate the initial n-point distribution with a simpler m-point
distribution with m « n that is as close as possible to the initial distribution with respect
to a probability metric; see also Heitsch and Rémisch (2003). The modern stability theory
of stochastic programming shows that the Wasserstein distance is the natural choice for this
probability metric. Indeed, Roémisch and Schultz (1991) demonstrate that the optimal values
of two-stage stochastic programs with random right-hand sides are Lipschitz continuous
in the distribution of the uncertainty if the space of probability distributions is equipped
with a Wasserstein metric. They further prove that the optimal solution mapping is Hélder
continuous in the Wasserstein metric. Similar continuity results are established for chance
constrained programs. A stronger quantitative stability theory of stochastic programming
relies on the Fortet-Mourier metric, which generalizes the Wasserstein metric but offers im-
proved convergence rates; see Rachev and Romisch (2002). For a survey of classical stability
results in stochastic programming see Dupacova (1990) or Romisch and Wets (2007).

In the following we distinguish continuous scenario reduction, where the atoms of the reduced
distribution may be chosen freely, and discrete scenario reduction, where the atoms of the
reduced distribution must be chosen from among those of the input distribution. While the
continuous scenario reduction problem offers more flexibility and is therefore guaranteed to
find (weakly) better approximations to the initial empirical distribution, the existing stochastic
programming literature has exclusively focused on the discrete scenario reduction problem.
This is partly due to the fact that continuous scenario reduction generates new scenarios
that can be improbable in view of the true probability distribution, especially if its support is
disconnected or non-convex. As in discrete scenario reduction the support points are fixed and
the scenario reduction problem can be reformulated as a linear program over the probabilities,
which admits an explicit solution (Dupacova et al. 2003). The continuous scenario reduction
problem, on the other hand, is intractable as it encapsulates the A" 2?-hard metric K-median
problem (Kariv and Hakimi 1979) and the A" 22-hard K-means clustering problem with K = m
(Mahajan et al. 2009, Aloise et al. 2009) as special cases.

Heitsch and Romisch (2003) have shown that the discrete scenario reduction problem admits
a reformulation as a mixed-integer linear program (MILP), which can be solved to global
optimality for n < 10% using off-the-shelf solvers. For larger instances, however, one must
resort to approximation algorithms. Most large-scale discrete scenario reduction problems are
nowadays solved with a greedy heuristic that was originally devised by Dupacova et al. (2003)
and further refined by Heitsch and Romisch (2003). For example, this heuristic is routinely
used for scenario reduction in the context of power systems operations; see, e.g., Parvania and
Fotuhi-Firuzabad (2010), Ruiz et al. (2009) or Conejo et al. (2010a) and the references therein.
Despite its practical success, we will show in Chapter 2 of this thesis that this heuristic fails to
provide a constant-factor approximation for the discrete scenario reduction problem.
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1.2 Clustering

Clustering aims to partition a set of datapoints into a set of clusters so that datapoints in
the same cluster are more similar to one another than to those in other clusters. As such,
clustering—as a method of unsupervised machine learning—can be viewed as a synonym for
scenario reduction, as used in stochastic programming. In fact, any clustering algorithm can
be used for scenario reduction and vice versa. Among the myriad of clustering approaches
from the literature, K-means clustering stands out for its long history dating back to 1957
as well as its impressive performance in various application domains, ranging from market
segmentation and recommender systems to image segmentation and feature learning (Jain
2010b).

An important variant of the standard clustering problem is the cardinality-constrained clus-
tering problem, which is defined as the task of partitioning n datapoints into K clusters
of prescribed sizes, so as to minimize the sum of the squared intra-cluster distances. The
cardinality-constrained clustering problem is of interest for the following reasons. Firstly, it
has been shown by Bennett et al. (2000) and Chen et al. (2006) that the algorithms commonly
employed for the unconstrained K-means clustering problem frequently produce suboptimal
solutions where some of the clusters contain very few or even no datapoints. In this context,
cardinality constraints can act as a regularizer that avoids local minima of poor quality. Sec-
ondly, many application domains require the clusters to be of comparable size. This is the case,
among others, in distributed clustering (where different computer clusters should contain
similar numbers of network nodes), market segmentation (where each customer segment
will subsequently be addressed by a marketing campaign) and document clustering (where
topic hierarchies should display a balanced view of the available documents); see Banerjee
and Ghosh (2006) and Balcan et al. (2013). Finally, and perhaps most importantly, K-means
clustering is highly sensitive to outliers. A comprehensive and principled treatment of outlier
detection methods can be found in the book of Aggarwal (2013).

To date only two solution approaches have been proposed for the cardinality-constrained
clustering problem. Bennett et al. (2000) combine a classical local search heuristic for the
unconstrained K-means clustering problem due to Lloyd (1982) with the repeated solution
of linear assignment problems to solve a variant of problem (3.1) that imposes lower bounds
on the cluster sizes. Banerjee and Ghosh (2006) solve the balanced version of problem (3.1),
where all clusters must have the same size, by sampling a subset of the datapoints, perform-
ing a clustering on this subset, and subsequently populating the resulting clusters with the
remaining datapoints while adhering to the cardinality constraints. Balanced clustering is
also considered by Malinen and Frédnti (2014) and Costa et al. (2017). Malinen and Fréanti
(2014) proceed similarly to Bennett et al. (2000) but take explicit advantage of the Hungarian
algorithm to speed up the cluster assignment step within the local search heuristic. Costa et al.
(2017) propose a variable neighborhood search heuristic that starts from a random partition
of the datapoints into balanced clusters and subsequently searches for better solutions in the
neighborhood obtained by an increasing number of datapoint swaps between two clusters.
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Although all of these heuristics tend to quickly produce solutions of high quality, they are not
known to be polynomial-time algorithms, they do not provide bounds on the suboptimality of
the identified solutions, and their performance may be sensitive to the choice of the initial
solution. Moreover, neither of these local search schemes accounts for outliers.

In recent years, several conic optimization schemes have been proposed to alleviate the short-
comings of these local search methods for the unconstrained K-means clustering problem
(Peng and Wei 2007, Awasthi et al. 2015). Peng and Wei (2007) develop two semidefinite
programming relaxations of the unconstrained K-means clustering problem. Their weaker
relaxation admits optimal solutions that can be characterized by means of an eigenvalue
decomposition. They further use this eigenvalue decomposition to set up a modified K-means
clustering problem where the dimensionality of the datapoints is reduced to K — 1 (provided
that their original dimensionality was larger than that). To obtain an upper bound, they solve
this K-means clustering problem of reduced dimensionality, which can be done either exactly
by enumerating Voronoi partitions, as described in Inaba et al. (1994), or by approximation
methods such as those in Hasegawa et al. (1993). Using either approach, the runtime grows
polynomially in the number of datapoints n but not in the number of desired clusters K.
Hence, this method is primarily suitable for small K. Similar conic approximation schemes
have been developed by Elhamifar et al. (2012) and Nellore and Ward (2015) in the context of
unconstrained exemplar-based clustering.

Awasthi et al. (2015) and Iguchi et al. (2017) develop probabilistic recovery guarantees for
the stronger semidefinite relaxation of Peng and Wei (2007) when the data is generated by a
stochastic ball model (i.e., datapoints are drawn randomly from rotation symmetric distribu-
tions supported on unit balls). More specifically, they use primal-dual arguments to establish
conditions on the cluster separation under which the semidefinite relaxation of Peng and Wei
(2007) recovers the underlying clusters with high probability as the number of datapoints n
increases. The condition of Awasthi et al. (2015) requires less separation in low dimensions,
while the condition of Iguchi et al. (2017) is less restrictive in high dimensions. In addition,
Awasthi et al. (2015) consider a linear programming relaxation of the unconstrained K-means
clustering problem, and they derive similar recovery guarantees for this relaxation as well.

Two more papers study the recovery guarantees of conic relaxations under a stochastic block
model (i.e., the dataset is characterized by a similarity matrix where the expected pairwise
similarities of points in the same cluster are higher than those of points in different clusters).
Ames (2014) considers the densest K-disjoint-clique problem whose aim is to split a given
complete graph into K subgraphs such as to maximize the sum of the average similarities of
the resulting subgraphs. K-means clustering can be considered as a specific instance of this
broader class of problems. By means of primal-dual arguments, the author derives conditions
on the means in the stochastic block model such that his semidefinite relaxation recovers the
underlying clusters with high probability as the cardinality of the smallest cluster increases.
Vinayak and Hassibi (2016) develop a semidefinite relaxation and regularize it with the trace
of the cluster assignment matrix. Using primal-dual arguments they show that, for specific
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ranges of the regularization parameter, their regularized semidefinite relaxation recovers the
true clusters with high probability as the cardinality of the smallest cluster increases. The
probabilistic recovery guarantees of Ames (2014) and Vinayak and Hassibi (2016) can also be
extended to datasets containing outliers.

1.3 Contributions and Structure of the Thesis
This thesis is structured as follows.

Chapter 2 takes a fresh look at the classical results in the scenario reduction literature. We
study both continuous scenario reduction, where the atoms of the reduced distribution may
be chosen freely, and discrete scenario reduction, where the atoms of the reduced distribution
must be chosen from among those of the input distribution. Using the Wasserstein distance
as measure of proximity between distributions, we characterize those distributions that are
least susceptible to scenario reduction, i.e., that have maximum Wasserstein distance to their
closest m-point distributions for some prescribed m < n. We also provide sharp bounds on
the added benefit of continuous over discrete scenario reduction. Finally, we propose the first
polynomial-time constant-factor approximations for both discrete and continuous scenario
reduction as well as the first exact exponential-time algorithms for continuous scenario
reduction. The material of Chapter 2 has been published in the following journal paper.

* Napat Rujeerapaiboon, Kilian Schindler, Daniel Kuhn, Wolfram Wiesemann. Scenario
reduction revisited: Fundamental limits and guarantees. Mathematical Programming
(in press, published online on 6 April 2018).

Chapter 3 views the scenario reduction problem from the perspective of clustering and ad-
dresses two major shortcomings of the mainstream K-means clustering algorithm: the ap-
proach suffers from outlier sensitivity and may produce highly unbalanced clusters. This
is undesirable when K-means clustering is used to simplify the distribution of a stochastic
program because outliers could have a detrimental effect on its optimal solutions and because
unbalanced clusters give rise to non-uniform approximating distributions that eventually
make inefficient use of the available computational resources. To mitigate both shortcomings,
we formulate a joint outlier detection and clustering problem, which assigns a prescribed
number of datapoints of the empirical input distribution to an auxiliary outlier cluster and
performs cardinality-constrained K-means clustering on the residual dataset, treating the
cluster cardinalities as a given input. We cast this problem as a mixed-integer linear program
(MILP) that admits tractable semidefinite and linear programming relaxations. We propose
deterministic rounding schemes that transform the relaxed solutions to feasible solutions for
the MILP. We also prove that these solutions are optimal in the MILP if a cluster separation
condition holds. The material underlying Chapter 2 has been published in the following
journal paper.
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¢ Napat Rujeerapaiboon, Kilian Schindler, Daniel Kuhn, Wolfram Wiesemann. Size Mat-
ters: Cardinality-Constrained Clustering and Outlier Detection via Conic Optimization.
SIAM Journal on Optimization 29(2), 1211-1239, 2019.

Chapter 4 develops a highly efficient scenario reduction method for a large-scale hydro
scheduling problem. Specifically, we study the optimal operation of a fleet of interconnected
hydropower plants that sell energy on both the spot and the reserve markets, and we propose
a two-layer stochastic programming framework for its solution. The outer layer problem (the
planner’s problem) optimizes the end-of-day reservoir filling levels over one year, whereas
the inner layer problem (the trader’s problem) selects optimal hourly market bids within each
day. Using an information restriction whereby the planner prescribes the end-of-day reservoir
targets one day in advance, we prove that the trader’s problem simplifies from an infinite-
dimensional stochastic program with 25 stages to a finite two-stage stochastic program with
only two scenarios. We thus reduce the scenarios of the problem dramatically without any loss
of optimality. Substituting the reduced reformulation back into the outer layer and approxi-
mating the reservoir targets by affine decision rules then allows us to simplify the planner’s
problem from an infinite-dimensional stochastic program with 365 stages to a two-stage
stochastic program that can conveniently be solved via the sample average approximation.
The material underlying Chapter 4 originates from the following working paper.

* Napat Rujeerapaiboon, Kilian Schindler, Daniel Kuhn, Wolfram Wiesemann. A Planner-
Trader Decomposition for Multi-Market Hydro Scheduling. Submitted to Operations
Research, 2020.

Chapter 5 distills the key insights of the thesis and outlines future research directions.

1.4 Statement of Originality

I hereby certify that the content of this thesis is the product of my own work with some
assistance from my supervisor Prof. Daniel Kuhn as well as my co-authors Prof. Wolfram
Wiesemann and Prof. Napat Rujeerapaiboon.
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Fundamental Limits and Guarantees

The goal of scenario reduction is to approximate a given discrete distribution with another
discrete distribution that has fewer atoms. We distinguish continuous scenario reduction,
where the new atoms may be chosen freely, and discrete scenario reduction, where the new
atoms must be chosen from among the existing ones. Using the Wasserstein distance as
measure of proximity between distributions, we identify those n-point distributions on the
unit ball that are least susceptible to scenario reduction, i.e., that have maximum Wasserstein
distance to their closest m-point distributions for some prescribed m < n. We also provide
sharp bounds on the added benefit of continuous over discrete scenario reduction. Finally, to
our best knowledge, we propose the first polynomial-time constant-factor approximations for
both discrete and continuous scenario reduction as well as the first exact exponential-time
algorithms for continuous scenario reduction.

2.1 Introduction

The vast majority of numerical solution schemes in stochastic programming rely on a dis-
crete approximation of the true (typically continuous) probability distribution governing the
uncertain problem parameters. This discrete approximation is often generated by sampling
from the true distribution. Alternatively, it could be constructed directly from real historical
observations of the uncertain parameters. To obtain a faithful approximation for the true dis-
tribution, however, the discrete distribution must have a large number 7 of support points or
scenarios, which may render the underlying stochastic program computationally excruciating.

An effective means to ease the computational burden is to rely on scenario reduction pioneered
by Dupacovid et al. (2003), which aims to approximate the initial n-point distribution with a
simpler m-point distribution (m < n) that is as close as possible to the initial distribution with
respect to a probability metric; see also Heitsch and Romisch (2003). The modern stability
theory of stochastic programming indicates that the Wasserstein distance may serve as a
natural candidate for this probability metric. Indeed, Rémisch and Schultz (1991) show that,
under suitable regularity conditions, the optimal values of two-stage stochastic programs with
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random right-hand sides are Lipschitz continuous in the distribution of the uncertainty if the
space of probability distributions is equipped with a Wasserstein metric. They further prove
that the optimal solution mapping is Holder continuous in the Wasserstein metric. Similar
continuity results are established for chance constrained programs. A stronger quantitative
stability theory of stochastic programming relies on the Fortet-Mourier metric, which general-
izes the Wasserstein metric but offers improved convergence rates; see Rachev and Rémisch
(2002). For a survey of classical stability results in stochastic programming see Dupacova
(1990) or R6misch and Wets (2007).

Our interest in Wasserstein distance-based scenario reduction is also fuelled by recent progress
in data-driven distributionally robust optimization, where it has been shown that the worst-
case expectation of an uncertain cost over all distributions in a Wasserstein ball can often be
computed efficiently via convex optimization (Mohajerin Esfahani and Kuhn 2017, Zhao and
Guan 2015, Gao and Kleywegt 2016). A Wasserstein ball is defined as the family of all distribu-
tions that are within a certain Wasserstein distance from a discrete reference distribution. As
distributionally robust optimization problems over Wasserstein balls are harder to solve than
their stochastic counterparts, we expect significant computational savings from replacing the
initial n-point reference distribution with a new m-point reference distribution. The benefits
of scenario reduction may be particularly striking for two-stage distributionally robust linear
programs, which admit tight approximations as semidefinite programs (Hanasusanto and
Kuhn 2016).

Suppose now that the initial distribution is given by P = }_;c; p;6¢,, where &; € R% and p; € [0,1]
represent the location and probability of the i-th scenario of P for i € I = {1,..., n}. Similarly,
assume that the reduced target distribution is representable as Q = }_ je; g6¢;, where {j € R4
and q; € [0,1] stand for the location and probability of the j-th scenario of Q for j € J =
{1,...,m}. Then, the type-I Wasserstein distance between P and Q is defined through

1/1
Yjeymij=piViel

d(P,Q) = | min YN miplEi—gilt

+ iel jeJ YierWij=qjvje]

where [ = 1 and | - || denotes some norm on IRd; see, e.g., Heitsch and Romisch (2007) or
Pflug and Pichler (2011). The linear program in the definition of the Wasserstein distance can
be viewed as a minimum-cost transportation problem, where 7; ; represents the amount of
probability mass shipped from §; to {; at unit transportation cost [|§; — /|l ! Thus, dll P,Q)
quantifies the minimum cost of moving the initial distribution P to the target distribution Q.

For any = < R?, we denote by 2 (Z, n) the set of all uniform discrete distributions on = with
exactly n distinct scenarios and by 22(E, m) the set of all (not necessarily uniform) discrete
distributions on = with at most m scenarios. We henceforth assume that P € %(Rd, n.
This assumption is crucial for the simplicity of the results in Sections 2.2 and 2.3, and it is
almost surely satisfied whenever P is obtained via sampling from a continuous probability
distribution. Hence, we can think of P as an empirical distribution. To remind us of this
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interpretation, we will henceforth denote the initial distribution by ,,. Note that the pairwise
difference of the scenarios can always be enforced by slightly perturbing their locations, while
the uniformity of their probabilities can be enforced by decomposing the scenarios into
clusters of close but mutually distinct sub-scenarios with (smaller) uniform probabilities.

We are now ready to introduce the continuous scenario reduction problem
Ci(By,m) = min {di®n, ©): Qe P @R, )},

where the new scenarios {;, j € J, of the target distribution Q may be chosen freely from
within R?, as well as the discrete scenario reduction problem

D;(®,,m) = ngn {d;P,,Q): Qe P(supp®,), m)},

where the new scenarios must be chosen from within the support of the empirical distribution,
which is given by the finite set supp(l]%) ={&;: i€ I}. The terms discrete and continuous sce-
nario reduction are chosen because of their intimate relationship to discrete and continuous
facility location, respectively; see e.g., Drezner and Hamacher (2004). Note that the literature
sometimes refers to continuous scenario reduction as scenario generation (Lohndorf 2016).

Even though the continuous scenario reduction problem offers more flexibility and is therefore
guaranteed to find (weakly) better approximations to the initial empirical distribution, to our
best knowledge, the existing stochastic programming literature has exclusively focused on the
discrete scenario reduction problem. This is partly due to the fact that continuous scenario
reduction generates new scenarios that can be improbable in view of the true probability
distribution, especially if its support is disconnected or non-convex.

Note that if the support points { j» J € J, are fixed, then both scenario reduction problems
simplify to a linear program over the probabilities g}, j € J, which admits an explicit solution
(Dupacova et al. 2003, Theorem 2). Otherwise, however, both problems are intractable. Indeed,
if I = 1, then the discrete scenario reduction problem represents a metric k-median problem
with k = m, which was shown to be A4 2?-hard by Kariv and Hakimi (1979). If [ = 2 and
distances in R? are measured by the 2-norm, on the other hand, then the continuous scenario
reduction problem constitutes a k-means clustering problem with k = m, which is A 2?-hard
even if d = 2 or m = 2; see Mahajan et al. (2009) and Aloise et al. (2009). For a comprehensive
review of data clustering approaches, we refer to Jain et al. (1999).

Heitsch and Rémisch (2003) have shown that the discrete scenario reduction problem admits
a reformulation as a mixed-integer linear program (MILP), which can be solved to global
optimality for n < 103 using off-the-shelf solvers. For larger instances, however, one must
resort to approximation algorithms. Most large-scale discrete scenario reduction problems are
nowadays solved with a greedy heuristic that was originally devised by Dupacov4 et al. (2003)
and further refined by Heitsch and Romisch (2003). For example, this heuristic is routinely
used for scenario reduction in the context of power systems operations; see, e.g., Parvania and
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Fotuhi-Firuzabad (2010), Ruiz et al. (2009) or Conejo et al. (2010a) and the references therein.
Despite its practical success, we will show in Section 2.4 that this heuristic fails to provide a
constant-factor approximation for the discrete scenario reduction problem.

This paper extends the theory of scenario reduction along several dimensions.

(i) We establish fundamental performance guarantees for continuous scenario reduction
when [ € {1,2}, i.e., we show that the Wasserstein distance of the initial n-point dis-

L= across all initial

distributions on the unit ball in R. We show that for [ = 2 this worst-case performance

tribution to its nearest m-point distribution is bounded by

is attained by some initial distribution, which we construct explicitly. We also provide
evidence indicating that this worst-case performance reflects the norm rather than the
exception in high dimensions d. Finally, we provide a lower bound on the worst-case
performance for [ = 1.

(ii) We analyze the loss of optimality incurred by solving the discrete scenario reduction
problem instead of its continuous counterpart. Specifically, we demonstrate that the
ratio D;(®,,, m)/C;(®,,, m) is bounded by V2 for I =2 and by 2 for [ = 1. We also show
that these bounds are essentially tight.

(iii) We showcase the intimate relation between scenario reduction and k-median clustering.
By leveraging existing constant-factor approximation algorithms for k-median cluster-
ing problems due to Arya et al. (2004) and the new performance bounds from (ii), we
develop the first polynomial-time constant-factor approximation algorithms for both
continuous and discrete scenario reduction. We also show that these algorithms can be
warmstarted using the greedy heuristic by Dupacova et al. (2003) to improve practical
performance.

(iv) We present exact mixed-integer programming reformulations for the continuous sce-
nario reduction problem.

Continuous scenario reduction is intimately related to the optimal quantization of probability
distributions, where one seeks an m-point distribution approximating a non-discrete initial
distribution. Research efforts in this domain have mainly focused on the asymptotic behavior
of the quantization problem as m tends to infinity, see Graf and Luschgy (2000). The ramifica-
tions of this stream of literature for stochastic programming are discussed by Pflug and Pichler
(2011). Techniques familiar from scenario reduction lend themselves also for scenario tree
generation, where one aims to construct a scenario tree with a prescribed branching structure
that approximates a given stochastic process with respect to a probability metric, see, e.g.,
Pflug (2001) and Hochreiter and Pflug (2007).

The rest of this paper unfolds as follows. Section 2.2 seeks to identify n-point distributions on
the unit ball that are least susceptible to scenario reduction, i.e., that have maximum Wasser-
stein distance to their closest m-point distributions, and Section 2.3 discusses sharp bounds

10
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on the added benefit of continuous over discrete scenario reduction. Section 2.4 presents
exact exponential-time algorithms as well as polynomial-time constant-factor approximations
for scenario reduction. Section 2.5 reports on numerical results for a color quantization and a
capital budgeting problem. Unless otherwise specified, below we will always work with the
2-norm on R?,

Notation: We let [ be the identity matrix, e the vector of all ones and e; the i-th standard
basis vector of appropriate dimensions. The i j-th element of a matrix A is denoted by a; ;. For
A and B in the space S” of symmetric n x n matrices, the relation A > B means that A— B is
positive semidefinite. Generic norms are denoted by || - ||, while || - || , stands for the p-norm,
p=1l.For=Ec R4, we define 22 (Z, m) as the set of all probability distributions supported on at
most m points in = and &P (E, n) as the set of all uniform distributions supported on exactly n
distinct points in Z. The support of a probability distribution P is denoted by supp(P), and the
Dirac distribution concentrating unit mass at & is denoted by 6¢.

2.2 Fundamental Limits of Scenario Reduction

In this section we characterize the Wasserstein distance C;(P,,, m) between an n-point empiri-
cal distribution P,, = %Z?zl 0¢, and its continuously reduced optimal m-point distribution
Q € (R4, m). Since the positive homogeneity of the Wasserstein distance d; implies that
C;(P',, m) = A- C;(P,,, m) for the scaled distribution P/, = %2?21 81¢,, A € Ry, we restrict our-
selves to empirical distributions lﬁ’n whose scenarios satisty |€;]l, <1, i =1,...,n. We thus
want to quantify

Ci(n,m)=_max {C;Pp,m): I€l2<1 VEesupp@,)}, @.1)
P,eP:(RY,n)

which amounts to the worst-case (i.e., largest) Wasserstein distance between any n-point
empirical distribution P, over the unit ball and its optimally selected continuous m-point
scenario reduction. By construction, this worst-case distance satisfies El(n, m) =0, and the
lower bound is attained whenever n = m. One also verifies that El (n,m) < El(n, 1) <1 since
the Wasserstein distance to the Dirac distribution §¢ is bounded above by 1. Our goal is to
derive possibly tight upper bounds on C;(n, m) for the Wasserstein distances of type [ € {1,2}.

In the following, we denote by B3(/, m) the family of all m-set partitions of the index set I, i.e.,
BU,m)={L,....In} : @ #L,.... w1, Uil =1, [n]j=9 Yi#j},

and an element of this set (i.e., a specific m-set partition) as {I;} € B (I, m). Our derivations
will make extensive use of the following theorem.

Theorem 2.1. For any type-I Wasserstein distance induced by any norm | - ||, the continuous

11
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scenario reduction problem can be reformulated as

1/1

C;(P,,m)= min min I i ||l . 2.2)
I\"n ()5, m) ]Zeﬂ]eﬂ% ,EZI zl J

Problem (2.2) can be interpreted as a Voronoi partitioning problem that asks for a Voronoi
decomposition of R% into m cells whose Voronoi centroids £, ..., {,, minimize the cumulative
[-th powers of the distances to n prespecified points 1,...,& .

of Theorem 2.1. Theorem 2 of Dupacovd et al. (2003) implies that the smallest Wasserstein
distance between the empirical distribution P, € (R, n) and any distribution Q supported
on a finite set = c R? amounts to

d;(®,,
Qeg(l_n 1Pr, Q) =

1/1
Zmlnllfl ZII] ,

zeI

where Z(Z,00) denotes the set of all probability distributions supported on the finite set =.
The continuous scenario reduction problem C;(®,,, m) selects the set =* that minimizes this
quantity over all sets in = c R? with |Z| = m elements:

1/1

Cl(lP’n,m) = min (2.3)
Iy =i

j1s

Zmlnllfz il

Nierl

One readily verifies that any optimal solution {{7,...,{,} to problem (2.3) corresponds to a
feasible solution {I,..., I;} to problem (2.2) with the same objective value if we identify the
set I;.* with all observations &; that are closer to { 7 than any other ¢ 7, (ties may be broken
arbitrarily). Likewise, any optimal solution {I7,..., I ,’,*1} to problem (2.2) with inner minimizers
{r,....C fn} translates into a feasible solution {{%,...,{ »} to problem (2.3) with the same
objective value. O

Remark 2.2. (Minimizers of (2.2)) For | = 2, the inner minimum corresponding to the set I;

is attained by the mean C; =mean(l;) = ﬁ Yier; &;. Likewise, for [ = 1, the inner minimum
]

corresponding to the set I; is attained by any geometric median

¢7 =gmed(I)) € argmin )_ [1§; - &;ll,
CieR? iel;

which can be determined efficiently by solving a second-order cone program whenever a
p-norm with rational p = 1 is considered (Alizadeh and Goldfarb (2003)).

Instead of setting the scenarios of the reduced m-point distribution to the centroids of the
Voronoi cells found in (2.2), Léhndorf (2016) suggests to select one random scenario from
within each Voronoi cell and argues that the resulting reduced distribution captures the
dispersion of the original distribution more accurately.

12
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The rest of this section derives tight upper bounds on C;(n, m) for Wasserstein distances of
type [ =2 (Section 2.2.1) as well as upper and lower bounds for Wasserstein distances of type
I =1 (Section 2.2.2). We summarize and discuss our findings in Section 2.2.3.

2.2.1 Fundamental Limits for the Type-2 Wasserstein Distance

We now derive a revised upper bound on C;(n, m) for the type-2 Wasserstein distance. The
result relies on auxiliary lemmas that are relegated to the appendix.

Theorem 2.3. The worst-case type-2 Wasserstein distance satisfies C»(n, m) < /22

Note that whenever the reduced distribution satisfies m > 1, the bound of Theorem 2.3 is
strictly tighter than the naive bound of 1 from the previous section.

Proof of Theorem 2.3. From Theorem 2.1 and Remark 2.2 we observe that
] 1/2
. 2
al _ max min — ; —mean(/l;)
Coln,m) = picpa 1pepim n]%,ezlj I3 D

S.t. I€illo<1 Viel.

Introducing the epigraphical variable 7, this problem can be expressed as

— 1
C;(n, m) = max —T
TER, {f[}QRd n )
s.t. 1<) Y |&—mean(|, ViIj}ePU,m) 2.4)
jE]iEIj
f,’Tf,' <1 Viel.

For each j € Jand i € I}, the squared norm in the first constraint of (2.4) can be expressed in
terms of the inner products between pairs of empirical observations:

1 2
[§—meanp [y = — i1 - ¥ &
7 &>l

! (Iljlzfini—lejl Y& TE+ Y &+ Y & TEr.

11> kel; kel; kK€l
k#k!
Introducing the Gram matrix
S=1&1,...,&n " [€1,...,€41 €S", S =0 and rank(S) < min{n, d} (2.5)

13
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then allows us to simplify the first constraint in (2.4) to

1
2
TSZWZ |Ij| Sii_2|Ij| Z Sik + Z Skk + Z Skk' |-
JjeJ it iel; kel; kel; k,k'€l;
k#k'

Note that the second constraint in problem (2.4) can now be expressed as s;; < 1, and hence
all constraints in (2.4) are linear in the Gram matrix S.

Our discussion implies that we obtain an upper bound on C,(n, m) by reformulating prob-
lem (2.4) as a semidefinite program in terms of the Gram matrix S

1
max —7T
TeER,SeS” n
1
2
S.t. TSZWZ |1 Sii_zlljlzsik+zskk+ Z Skk!
jes Wil ier; kel; kel kkel; (2.6)
k#zk'

Vit e PU,m)
$>0, s;;<1 Viel,

where we have relaxed the rank condition in the definition of the Gram matrix (2.5). Lemma 2.21
in the appendix shows that (2.6) has an optimal solution (7*,S*) that satisfies $* = al + fee"
for some a, f € R. Moreover, Lemma 2.22 in the appendix shows that any matrix of the form
S =al+ B117 is positive semidefinite if and only if & = 0 and a + nf = 0. We thus conclude
that (2.6) can be reformulated as

1
max —T
T,a,peR N
st. ts(n-ma, a+p=<1 2.7)

a=0, a+nf=0,
where the first constraint follows from the fact that for any set I; in (2.6), we have

1
1112

Y 1P+ B) =21 (a+ 1)+ Y (a+B+ Y ﬁ)=(|1j|—1)a,

i€Ij kEIj k,k’EIj
k#k'

and Zj€](|1j| —1)a =(n—-m)asince |I| = n and |J| = m. The statement of the theorem now

. . . . — _1
follows since problem (2.7) is optimized by t* = %, a* = %4 and p* = - O

The proof of Theorem 2.3 shows that the upper bound /2= on the worst-case type-2 Wasser-

stein distance C(n, m) is tight whenever there is an empirical distribution P, € Z:(RY, n)

whose scenarios &1,...,&, correspond to a Gram matrix S = [&1,...,&,] T [€1,...,&n] = # -
1

meeT, which implies [|€;]l2 = /s;; = 1 for all i € I. We now show that such an empirical
distribution exists when d = n—1.

14
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Proposition 2.4. For d = n—1, there is P, € Z:(R%, n) with || &[l, < 1 for all & € supp(P,,) such

that C,(®,,, m) = \/ T

Proof. Assume first that d = n and consider the empirical distribution P, = % Z?zl O¢, defined

through
éi=ye+(x—ye; eR" with x= _1and -t (2.8)
1 .V y 1 y \/m' :
A direct calculation reveals that S = [£1,...,&,] T [€1,...,&,] = 51— L eeT.

To prove the statement for d = n — 1, we note that the n scenarios in (2.8) lie on the (n—1)-
dimensional subspace .# orthogonal to e € R”. Thus, there exists a rotation that maps . to
R” ! x {0}. As the Gram matrix is invariant under rotations, the rotated scenarios give rise to an
empirical distribution [@n e Z(R" 1, n) satisfying the statement of the proposition. Likewise,
for d > n the linear transformation &; — (1,0) " &;, 1 € R™" and 0 € R"*(@-), generates an
empirical distribution ), € 22 (R?, n) that satisfies the statement of the proposition. O

Proposition 2.4 requires that d = n — 1, which appears to be restrictive. We note, however,
that this condition is only sufficient (and not necessary) to guarantee the tightness of the
bound from Theorem 2.3. Moreover, we will observe in Section 2.2.3 that the bound of
Theorem 2.3 provides surprisingly accurate guidance for the Wasserstein distance between
practice-relevant empirical distributions P, and their continuously reduced optimal distribu-
tions.

2.2.2 Fundamental Limits for the Type-1 Wasserstein Distance

In analogy to the previous section, we now derive a revised upper bound on C;(n, m) for the
type-1 Wasserstein distance.

Theorem 2.5. The worst-case type-1 Wasserstein distance satisfies Ci(n,m) < \/ ’;‘T'{’

Note that this bound is identical to the bound of Theorem 2.3 for [ = 2.

Proof of Theorem 2.5. Leveraging again Theorem 2.1 and Remark 2.2, we obtain that

= 1
Ci(n,m) = max min — & —emed(I;)
! ) {&}cR? {Ij}E‘B(I,m)an:E]i;:j ” i~8 J “2
st.  l&ill2<1 Viel

We show that Cy(n, m) < Co(n, m) forall nand m = 1,..., n, which in turn proves the statement

15



Scenario Reduction Revisited:
Chapter 2 Fundamental Limits and Guarantees

of the theorem by virtue of Theorem 2.3. To this end, we observe that

Ci(n,m) < max min —ZZ”fz mean(I)|,

{&sRe {I;1ePU m) ]E]zel (2.9
s.t. I€illo<1 Viel
1/2
max min Z Z ||£, mean(I])”
€Ikt UERULm) | 1 i, ? (2.10)

S.t. &l <1 Viel,

where the first inequality follows from the definition of the geometric median, which ensures
that

> [¢i-gmedtp], < X [ -meantp], Vies

i€l iel;

and the second inequality is due to the arithmetic-mean quadratic-mean inequality (Steele
2004, Exercise 2.14). The statement of the theorem now follows from the observation that the
optimal value of (2.10) is identical to Cy(n, m). O

In the next proposition we derive a lower bound on 61 (n,m).

Proposition 2.6. For d > n—1, the worst-case type-1 Wasserstein distance satisfies C, (n, m) =

(n—m)(n—m+1)
n(n-1)

Proof. Assume first that d = n, and consider the empirical distribution [@n with scenarios
defined as in (2.8). Let {I;} € B(I, m) be an arbitrary m-set partition of I. Note that gmed( i) =
mean([;) for every j € J due to the permutation symmetry of the &;, which implies that
0€df; (mean(;)) for each fj(C) = Z,-dj ||ye +(x—-ye; - C||2, j € J. Thus, we have

|1§; - meanczp],

x+ (- Dy)? x+ (L1 -Dy\2]
(x—’—y) +(|Ij|—1)(y—]—y)
1] 1]

n(lI;1-1) 12
(n—1)|1j|

|IJ|_1 1/2 )
(x— Viel;,

1]

where the last equality follows from the definitions of x and y in (2.8). By Theorem 2.1 and
Remark 2.2 we therefore obtain

Cl (I]ﬁ)n, m)

min L3 5 g -meantip

{j}ePd,m n ]E]lEI

= [1;1(115] = 1).
I}efﬁ(lmn/n(n 1) ]ZE] I
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By introducing auxiliary variables z; = |1j| — 1 € Ny, j € J, we find that determining C; ®,, m)
is tantamount to solving

. 1 .
Ci(P,,m) = \/ﬁ {ery}lé%o{z,/zj(zj+l): sz:n—m}.

jeJ JjeJ

Observe that the objective function of z; = n—mand z, =... = z,,, = 0 evaluates to v/(n— m)(n— m+1),

which implies that C; (®,,, m) < y/ (”_’Z)(El%m Hence, it remains to establish the reverse in-
equality. To this end, we note that

r 1/2
Y2+ = | Xz + D+ Y (720 +2p0+2))
i€ jer JiTel
J#
r 1/2
= ZZ]'(Z]'+1)+ Z Zjzj
| jer JiTel
%7

1/2

= \/(n—m)(n—m+1),

= :(ZZJ)2+ZZJ

jeJ jeJ

and thus the claim follows for d = n. The cases d = n—1 and d > n can be reduced to the case
d = n as in Proposition 2.4. Details are omitted for brevity. O

Proposition 2.6 asserts that C; (n, m) > =

—™ = C2(n, m) whenever d = n—1. Together with The-
orem 2.5, we thus obtain the following relation between the worst-case Wasserstein distances

oftypes/=1and [ =2:
E;(n, m) sfl(n, m) SEZ(I’l, m).

We conjecture that the lower bound is tighter, but we were not able to prove this.

2.2.3 Discussion

Theorems 2.3 and 2.5 imply that C;(n,m) < /1 p for large n and for € {1,2}, where p = 2
represents the desired reduction factor. The significance of this result is that it offers a priori
guidelines for selecting the number m of support points in the reduced distribution. To see
this, consider any empirical distribution P, = %Zie 10¢;, and denoteby r =0and p € R the
radius and the center of any (ideally the smallest) ball enclosing &, ..., &}, respectively. In this

case, we have

. 1 _
CiPp,m)=r-C|=) 8gu,m|<r-Ci(n,m)Sr-\/1-p, (2.11)
. Gion

iel r
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where the inequality holds because [|({; — ) /7|2 < 1 for every i € I. Note that (2.11) enables us
to find an upper bound on the smallest m guaranteeing that C;(P,,, m) falls below a prescribed
threshold (i.e., guaranteeing that the reduced m-point distribution remains within some
prescribed distance from |]3>n).

Even though the inequality in (2.11) can be tight, which has been established in Proposition 2.4,
one might suspect that typically C;(,,, m) is significantly smaller than r - \/m when the
points &; € R, i € I, are sampled randomly from a standard distribution, e.g., a multivariate
uniform or normal distribution. However, while the upper bound (2.11) can be loose for
low-dimensional data, Proposition 2.7 below suggests that it is surprisingly tight in high
dimensions—at least for [ = 2.

Proposition 2.7. For any € > 0 and 6§ > 0 there exist ¢ > 0 and d € N such that

P&l <1VielandC,

%Zagi,m)z\/l—p—a)zl—e, (2.12)

iel

where p = %, and the support points ;, i € I, are sampled independently from the normal
distribution P with mean 0 € R? and covariance matrix (Vd — 1 +¢) 21 € $¢.

Proposition 2.7 can be paraphrased as follows. Sampling the ;, i € I, independently from
the normal distribution P yields a (random) empirical distribution ,, that is feasible and
6-suboptimal in (2.1) with probability 1 —e. The intuition behind this result is that, in high
dimensions, samples drawn from P are almost orthogonal and close to the surface of the
unit ball with high probability. Indeed, these two properties are shared by the worst case
distribution (2.8) in high dimensions.

Proof of Proposition 2.7. Theorem 2.1 and Remark 2.2 imply that

1
c3 Z(S;i,m): min =Y Y |[& —mean(I)|3. (2.13)

1
nier U ePUm) 1 ey jeT,

From the proof of Theorem 2.3 we further know that (2.13) can be expressed as a continuous
function f(S) of the Gram matrix S = [£,. &l TIEL, ..., &), that s,

) 1 1
min —) —5
UjePd,m n ey 1]

2
f8) = Z(|Ij| sii =211 ) sik+ ) Skk+ ). Skr |-
iEIj kEIj kEIj k,k’EIj

k#k'

n—-m

An elementary calculation shows that f(l) = = =1-p. Thus, by the continuity of f(-), there
exists 17 € (0,1) with \/f(S) = /1 — p— 6 whenever ||S — |l pax < 7.

We are now ready to construct P. First, select ¢ > 0 large enough to ensure that

4 _2\"
(1——2e‘4) >1--.
c 2

o™
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Then, select d € N large enough such that

vd-1-c¢ €
—_—=>1- and n(n-1)®(-n(vVd-1+¢)<-,
vd-1+c¢ 7 7 2

where ®(-) denotes the univariate standard normal distribution function. Observe that the
distribution P is completely determined by ¢ and d. Next, we find that

n . 1

P*111&ill2<1Viand C, ;

Zé;i,m)z\/W—é)

iel
>P" (| &;ll, <1 Vi and IS [llmay < 1)
=P"(1-n=<|&ll<1Viand [§] &l <nVi# j)
vd-1-c¢ . P £ i
> p" (— <I§ill2 <1 Viand ] &1 <sn 1§12 Vi# j
d-1+c
Epn(vd—l—c

X &l <1 Vi + P (1ETE <&l Vi £ ) =1, 210
T T Isile l) (1] &1 <n-1&;l12 Vi # j)

where the first and second inequalities follow from the construction of ) and c, respectively,
while the third inequality exploits the union bound. We also have

n
p" —MS||£.|| <1Vil=P —'d_l_csuf <1
d—1+ e Vd-1+ e
— C — C
>(1_ie—f)n>1_5 2.15)
- c? -2 '

where the equality holds due to the independence of the &;, while the first and second in-
equalities follow from Lemma 2.8 in Hopcroft and Kannan (2012) and the construction of c,
respectively. By the choice of d, we finally obtain

P (1€ &1 <n-1€l2 Vi # j) 2 1= 3 P" (1] &;12n-1;12)
i#]
zl—n(n—l)CD(—n(vd—1+c))2l—g. (2.16)
The equality in (2.16) holds due to the rotation symmetry of °, which implies that

P (1E] &1z n-1€12) =P (1] e1] =) = 2@(-n(Vd -1+ ).

The claim then follows by substituting (2.15) and (2.16) into (2.14). O

Figure 2.1 compares Co(m, n) with Cy (®,,, m) for P,, uniform or normal, 7 = 100, m € {10,...,100}
and d € {25,50,75,100}. The n original support points are sampled randomly from the uniform
distribution on the unit ball (left panel) and the normal distribution from Proposition 2.7
with ¢ = 2.97, which ensures that | &;]l, = 1 with 95% probability (right panel). Note that
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Figure 2.1 - Comparison between C, (®,,, m) and C,(n, m) under uniform (left panel) and
normal (right panel) sampling.

C, P n»m) is random. Thus, all shown values are averaged across 100 independent trials. Fig-
ure 2.1 confirms that C, (lﬁ’n, m) approaches the worst-case bound 62 (n, m) as the dimension
d increases.

2.3 Guarantees for Discrete Scenario Reduction

For n-point empirical distributions P,, = % i, 0¢, supported on R4, we now study the loss of
optimality incurred by solving the discrete scenario reduction problem instead of its continu-
ous counterpart. More precisely, we want to determine the point-wise largest lower bound
x,;(n, m) and the point-wise smallest upper bound x;(n, m) that satisfy

K, (n,m)-C1 Py, m) < DiBr,m) < K (n,m)-CBr,m) VB, € PR, 1) (2.17)

for the Wasserstein distances of type / € {1,2}. Note that the existence of finite bounds «, (n, m)
and x;(n, m) is not a priori obvious as they do not depend on the dimension d. Moreover,
while it is clear that x;(n, m) = 1 if it exists, it does not seem easy to derive a naive upper bound
onk;(n, m).

Our derivations in this section will use the following result, which is the analogue of Theo-
rem 2.1 for the discrete scenario reduction problem.

Theorem 2.8. For any type-/ Wasserstein distance induced by any norm || - ||, the discrete
scenario reduction problem can be reformulated as

1/1

. 1
. . 1
Di(Py,m)= min |- min 16: —&;ll
" ()P, m) njejcje{fi:ielj}iez,j e

Proof. The proofis similar to the proof of Theorem 2.1 and is therefore omitted. O

The remainder of this section derives lower and upper bounds on x,(n, m) and x;(n, m) for
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Wasserstein distances of type / = 2 (Section 2.3.1) and [ = 1 (Section 2.3.2), respectively. To
eliminate trivial cases, we assume throughout this section that n =2, me {1,...,n—1} and
d=2.

2.3.1 Guarantees for the Type-2 Wasserstein Distance

We first bound x»(n, m) in equation (2.17) from above (Theorem 2.9) and below (Proposi-
tion 2.10).

Theorem 2.9. The upper bound x»(n, m) in (2.17) satisfies X»(n, m) < v/2 for all n, m.

Proof. The proof proceeds in two steps. We first show that k» (7, m) < /2 for all n when m = 1
(Step 1). Then we extend the result to all n and m (Step 2).

Step1: FixanyP, € Zz(R%, n). W.l.o.g., we can assume that mean(l) = 0 and %Ziel 1€; |I§ =1
by re-positioning and scaling the atoms &; appropriately. Note that the re-positioning does not
affect C,(P,,,1) or D, (®,,, 1), and the positive homogeneity of the Wasserstein distance implies
that the scaling affects both Cg(l]ﬁ’n, 1) and D, ([Iﬁ’n, 1) in the same way and thus preserves their
ratio x,(n,1). Theorem 2.1 and Remark 2.2 then imply that

1/2

Co(P,,1) = = 1.

1
- Y I1€; —mean(D |3

iel

Step 1 is thus complete if we can show that D, ([ﬁ’n, 1) < V2. Indeed, we have

N 1 1
D3P, 1) = min =Y & —¢&;l3 =min ;Z(&—E;)T(zi—zﬂ

iel iel
1 T T T 1 T T
= min — 16 —28. & +& ~):m1n— ( i +& )
min - (878288 +478) = min 3 (g]8+47 (2.19
1
. 2 2 . 2
= min s+ — |5 = 1+min s < 2,
nin 1413 n;ﬂnélnz min 141

where the first equality is due to Theorem 2.8, the fourth follows from }_;.; &; = n-mean(I) =0,
and the inequality holds since minje; 1§15 < L ¥ e/ [1€;115 = 1.

Step 2: Fixany P,e ,@E([Rd, n). Theorem 2.1 and Remark 2.2 imply that
1/2

. 1
C(®, m= min |-— |1&; — mean(I;) |3
2en I} ePU,m n];,lez,] Si 72
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For an optimal partition {I]’f} to this problem, C, (®,,, m) can be expressed as

1/2 1/2

Yol - meanur*)u2

lEI*

. 171
CoPnm)= |y —c2
jeJ

with (jghi==

II*I

From our discussion in Step 1 we know that C; ; represents the type-2 Wasserstein distance

between the conditional empirical distribution [P] | Yie * O¢, and its closest Dirac distri-

II*

bution, that is, Cg([F’,,, 1). Analogously, we obtain that

|I*| 1/2 1/2
Dy Py, m) < ZLDij] with Dy j = nnn—*anl &l
jeg 1 ” |z€I*
1/2
< Z (265) = V2G Py m),
jeJ

where the first inequality holds since the optimal partition {Ij*} for C, (P, m) is typically

suboptimal in D, (I n» m), the second inequality follows from the fact that D; ; = D ® Z;, 1) and
Dy(P],1) < vV2C, (P, 1) due to Step 1, and the identity follows from the definition of C,, j- The
statement now follows. O

Figure 2.2 — Empirical distributions in R® that maximize the ratio between D;(®,,1) and
Cl(Iﬁ’n, Dforl=2and ||| ="z (eft panel) aswellas I=1and || - || = || - [l; (right panel). In
both cases, the continuous scenario reduction problem is optimized by the Dirac distribution
at 0 (marked as x), whereas the discrete scenario reduction problem is optimized by any of
the atoms (such as o).

Proposition 2.10. There is [I3>n € @E(Rd, n) with D, (lﬁ’n, m) = \/ECZ (I]3>n, m) for all n, m.

Proof. In analogy to the proof of Theorem 2.9, we first show the statement for m =1 (Step 1)
and then extend the result to m > 1 (Step 2).
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Step1: The first step in the proof of Theorem 2.9 shows that [P, € 22 (R, n) satisfies Dy (P, 1) =
V2C(P,,1) if Y & =0 and & ]l =... = |&,]l = 1. For an even number n = 2k, k € N,
both conditions are satisfied if we place &1,...,& on the surface of the unit ball in R% and
then choose &;.; = —¢&; for i = 1,..., k (see left panel of Figure 2.2 for an illustration in R3).
Likewise, for an odd number n = 2k + 3, k € Ny, we can place &1,...,& on the surface of

the unit ball, choose &;..; = —¢; fori=1,...,k and fix 5111 = €1, Expan = —%el + ‘/7§e2 and

__1 V3
$2k43 = —3€1 — €.

Step 2: To prove the statement for m > 1, we construct an empirical distribution P,, €
P (R, n) whose atoms satisfy supp([li’n) =E1UZ, with|Z;|=n-m+1and |2, =m—1. The
atoms &1,...,&,—m+1 in E; are selected according to the recipe outlined in Step 1, whereas
the atoms &,,—j+2,...,&€, in o satisty & ppr14: = (1 +iM)ey, i =1,...,m—1, for any number
M satisfying M > 2v/n—m+1. A direct calculation then shows that the atoms in =, are
sufficiently far away from those in Z; as well as from each other so that any optimal partition
{I]’f} to the discrete scenario reduction problem in Theorem 2.8 as well as the continuous
scenario reduction problem in Theorem 2.1 consists of the sets {i : {; € E1} and {i}, &; € =».
The result then follows from the fact that either problem accumulates a Wasserstein distance
of 0 over the atoms in =,, whereas the Wasserstein distance of D»(®,, m) is a factor of v/2
bigger than the Wasserstein distance of C» (®,,, m) over the atoms in Z; (see Step 1). O

Theorem 2.9 and Proposition 2.10 imply that ¥, (1, m) = v/2 for all n and m, that is, the bound
isindeed independent of both the number of atoms 7 in the empirical distribution and the
number of atoms m in the reduced distribution. We now show that the naive lower bound of 1
on the approximation ratio is essentially tight.

Proposition 2.11. The lower bound x,(n, m) in (2.17) satisfies x,(n, m) = 1 whenever n > 3
and me{l,...,n—2}, whilex,(n,n-1) = V2 always.

Proof. We first prove x,(n,m) =1when m=1and n =3 (Step 1) and when m € {2,...,n -2}
(Step 2). Then, we show x, (n,n—1) = V2 (Step 3).

Step 1: Choose P, € Z:(R%, n) such that the first n— 1 atoms &1, ...,&,_; are selected accord-
ing to the recipe outlined in Step 1 in the proof of Proposition 2.10 and &, = 0. We thus have
mean(/) =0, and Theorem 2.1 and Remark 2.2 imply that the optimal continuous scenario re-
duction is given by the Dirac distribution &g. Since 0 € supp(P,,), we have C»(P,,,1) = D, (P, 1)
and the result follows.

Step 2: To prove the statement for m > 1, we proceed as in Step 2 in the proof of Proposi-
tion 2.10. In particular, we construct an empirical distribution P,e : (R4, n) whose atoms
satisfy supp(®,,) = Z; UZ, with |Z,| = n—m+1 and |Z,| = m — 1. The atoms &1,...,&m_ms1
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in Z; are selected according to the recipe outlined in Step 1 of this proof, whereas the re-
maining atoms &,—m+1,...,&, in Ea satisty &,—p114+i = 1+ iM)ey, i =1,...,m—1, for any
M >2+v/n—m+1. A similar argument as in the proof of Proposition 2.10 then shows that
Co (P, m) = Dy (P, m).

Step 3: Fixany [Iﬁ>n € %(Rd, n). W.Lo.g., assume that {¢,,_1, &} is the closest pair of atoms
in terms of Euclidean distance, and let dmin = 1€, — €n-1ll2- One readily verifies that the
partition I}* ={j,,j=1,...,n-2,and I;{_l = {n— 1, n} optimizes both the discrete scenario
reduction problem in Theorem 2.8 as well as the continuous scenario reduction problem
in Theorem 2.1. We thus have Cy(P,,,n — 1) = ——=dmin and Do(®,,, n — 1) = == dmin, which

van vn
concludes the proof. O

Hence, for any empirical distribution P, € 2 (R?, n) the type-2 Wasserstein distance between
the minimizer of the discrete scenario reduction problem and P,, exceeds the Wasserstein
distance between the minimizer of the continuous scenario reduction problem and P,, by up
to 41.4%, and the bound is attainable for any n, m.

2.3.2 Guarantees for the Type-1 Wasserstein Distance

In analogy to Section 2.3.1, we first bound «; (1, m) from above (Theorem 2.12) and below
(Proposition 2.13). In contrast to the previous section, we consider an arbitrary norm || - ||, and
we adapt the definition of the geometric median accordingly.

Theorem 2.12. The upper bound «;(n, m) in (2.17) satisfies x;(n, m) < 2 whenever m €
2,...,n—2}aswell as ¥ (n,1) 52(1—%) andx;(n,n—1)<1.

Proof. We first prove the statement for m = 1 (Step 1) and then extend the result to m €
{2,...,n—2} (Step 2) and m=n—1 (Step 3).

Step1: FixanyP, € Z:(R% n). As in the proof of Theorem 2.9, we can assume that gmed([) =
0 and % Y ie1 I€;:ll = 1 by re-positioning and scaling the atoms &; appropriately. Theorem 2.1
and Remark 2.2 then imply that for m = 1, we have

N 1
Ci1(Pp,1) = ;Z I€; —gmed (D] = 1.

iel
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Step 1 is thus complete if we can show that D1 (P, 1) <2(1 - %) Indeed, we have

R 1 1
D;(Py, 1) 1}161}1 ﬁZIlii—ijI =min — ) [&-¢&ll

il JEL T ey

IA

min Yo (€N +1E51) = I?Eip %((n—2)||§j||+2|lfi||)

Jel 1 iy i€l

in < ((n-2IE;1+n) = 1+ 22 min ¢ ||<2(1 1)
min — ((n - il+n) = ——-min ||&;]| = -—1,
jel n I n jel ! n
where the two inequalities follow from the triangle inequality and the fact that min e/ [|€; ] <

LY ierll€ill = 1, respectively.

Step2: Fixany ﬂﬁ’n € %(Rd, n). Theorem 2.1 and Remark 2.2 then imply that

” 1
Ci(P,,m)= min — |&; —emed(I;)].
Bom)= min 55 16 -gmedl

Let {I]’.*} be an optimal partition for this problem. The same arguments as in the proof of
Theorem 2.9 show that

X II7] 1
Dy(®n,m) < Y —=Di;  with Dyj=min— Y [I& -l
jer ety Uity
17 , 1 ’
=) @G with €y ;= 1% 2 14— gmedTp)l,
ier Jj lEI;f

and the last expression is equal to 2 C; (P,,, m) by definition of C;, j-

Step3: Forn=2and m=n-1=1,Step 1 shows thatx;(2,1) <2(1- %) =1. For n>2 and
m = n -1, the statement can be derived in the same way as the third step in the proof of
Proposition 2.11. We omit the details for the sake of brevity. O

Proposition 2.13. There is P,, € 2;(R?, n) such that D, (®,, m) =2 (1- %) Ci(®,,, m) under

the 1-norm for all n divisible by 2m, all m and all d = ﬁ

Proof. We first prove the statement for m = 1 (Step 1) and then extend the result to m > 1
(Step 2). Throughout the proof, we set k = 5~ and consider w.l.o.g. the case where d = k.

Step 1: Fix P, € Z: (R4, n) with the atoms &; = +e; aswellas &,; = —e;, i = 1,..., k. The sym-
metric placement of the atoms implies that gmed(I) = 0 and hence C; (,,, 1) = 1. Furthermore,
we note that [|§; —&;[l; =2 forall i # j, that is, any two atoms are equidistant from another
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(see right panel of Figure 2.2 for an illustration in R%). By Theorem 2.8, any 1-point discrete
scenario reduction results in a Wasserstein distance of 2 "T‘l to ,,.

Step 2: To prove the statement for m > 1, we construct an empirical distribution P,, €
2:(R%, n) whose atoms satisfy supp(P,,) = U;”zl E]+ UE]_.) with IE}“I = IEJ‘.I =k j=1,...,m.
The atoms &3(j_1)k+1,--+»§2(j—Dk+k IN E;' satisfy §»(j_1)k+i = +€; + jMey, i = 1,..., k, whereas
the atoms &a(j_1)k+k+1,---,62jk IN E]‘ satisfy &o(j_1)k+k+i = —€i + jMey, i = 1,..., k, for any
number M satisfying M > 2n + 2. The same arguments as in the proof of Theorem 2.9 show
that any optimal partition {I].*} to the discrete scenario reduction problem in Theorem 2.8
as well as the continuous scenario reduction problem in Theorem 2.1 consists of the sets
indexing the atoms in E; @] E]_., j=1,...,m. Step 1 shows that the continuous scenario
reduction problem accumulates a Wasserstein distance of 1 over each set, whereas the discrete
scenario reduction problem accumulates a Wasserstein distance of 2 2’26—;1 over each set. The
result then follows from the fact that there are m such sets and hence the ratio of the respective

overall Wasserstein distances amounts to m(22’2“—zl)/ m=2(1- %) O

Theorem 2.12 and Proposition 2.13 imply that ¥ (n, m) € [2(1 — m/n),2] for all n and m €
{2,...,n—2}. For the small ratios m : n commonly used in practice, we thus conclude that the
bound is essentially independent of both the number of atoms n in the empirical distribution
and the number of atoms m in the reduced distribution. We close with an analysis of the lower
bound x, (n, m).

Proposition 2.14. The lower bound x, (n, m) in (2.17) satisfies k; (n, m) = 1 for all n, m.

Proof. The proof widely parallels that of Proposition 2.11, with the difference that the atoms
&1,...,&, of the empirical distribution [, are placed such that a geometric median (as opposed
to the mean) of each subset in the optimal partition coincides with one of the atoms in that
subset. This allows both continuous and discrete scenario reduction to choose the same
support points for the reduced distribution, hence incurring the same Wasserstein distance.
Details are omitted for brevity. O

In conclusion, for any P n € Py (IRd, n) the type-1 Wasserstein distance between the minimizer
of the discrete scenario reduction problem and P, exceeds the Wasserstein distance between
the minimizer of the continuous scenario reduction problem and P,, by up to 100%, and this
bound is asymptotically attained for decreasing ratios m : n.

2.4 Solution Methods for Scenario Reduction Problems

We now review existing solution methods and propose new solution schemes for the discrete
and continuous scenario reduction problems. More precisely, we will study two heuristics for
discrete and continuous scenario reduction, respectively, that do not come with approximation
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guarantees (Section 2.4.1), we will propose a constant-factor approximation scheme for both
the discrete and the continuous scenario reduction problem (Section 2.4.2), and we will
discuss two exact reformulations of these problems as mixed-integer optimization problems
(Section 2.4.3).

In the remainder of this section, we denote by D, P n» =) the type-1 Wasserstein distance be-
tween P, and its closest distribution supported on the finite set =. Moreover, for an algorithm
providing an upper bound D; (P, m) on the discrete scenario reduction problem in R%, we de-
fine the algorithm'’s approximation ratio as the maximum fraction D;(®,,, m)/ D;(®,, m), where
the maximum is taken over all 7 and m, as well as all empirical distributions P,, € 2 (R?, n).

2.4.1 Heuristics for the Discrete Scenario Reduction Problem

We review in Section 2.4.1 a popular heuristic for the discrete scenario reduction problem
due to Dupacové et al. (2003). We will show that despite the simplicity and efficiency of the
algorithm, there is no finite upper bound on the algorithm’s approximation ratio. Note that
this analysis carries over to the fast forward heuristic due to Heitsch and Rémisch (2003),
which generates the same reduced distribution at a lower computational cost. In Section 2.4.1
we adapt a widely used clustering heuristic to the continuous scenario reduction problem,
and we show that this algorithm’s approximation ratio cannot be bounded from above either.

Dupacova et al.’s Algorithm

We outline Dupacovd et al.’s algorithm for the problem D;(P,,, m) below.

DUPACOVA ET AL.’S ALGORITHM FOR Dl(|]3>n, m):

1. Initialize the set of atoms in the reduced set as R — @.

2. Select the next atom to be added to the reduced set as

¢ e argmin D;(P,, RU{L}H)
Cesupp®,)

and update R — RU {{}.

3. Repeat Step 2 until |R| = m.

Given an empirical distribution P,, € 2;(R%, n), the algorithm iteratively populates the reduced
set R containing the atoms of the reduced distribution Q. Each atom { € supp(P,,) is selected
greedily so as to minimize the Wasserstein distance between P, and the closest distribution
supported on the augmented reduced set R U {{}. After termination, the distribution @ can be
recovered from the reduced set R as follows. Let {I;} € (I, m) be any partition of supp(®,)
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into sets Iz, € R, such that I; contains all elements of supp(,,) that are closest to { (ties may
be broken arbitrarily). Then Q = }.¢cr q¢6¢, where g; = |I¢|/n.

Theorem 2.15. For every d = 2 and [, p = 1, the approximation ratio of Dupacov4 et al.’s
algorithm is unbounded.

Proof. The proof constructs a specific distribution ,, (Step 1), bounds D;(,,, m) from above
(Step 2) and bounds the Wasserstein distance between [, and the output Q of Dupagova et
al.’s algorithm from below (Step 3).

Step1l: Fixd=2,1,p=1and m =4, and consider the empirical distribution P, e Z:(R%, n)
with n =4z + 1 for some positive integer z as well as supp(|]3>n) =E1U---UE U {4241} with
E] = {z(j—l)z+1,-~-»€jz}y ] = 11~-~)4) and

H1cPBe(+e1), EpcBe(—ey), EzcB.(+ey), ZqcPB(—e)

and &4,41 =0, where %B.(x) = {§ € RY : & — xll, <€} denotes the e-ball around x. Here, € >0 is
small enough so that each atom in =; is closer to 0 than to any atom in any of the other sets
E;. The triangle inequality then implies that

I§ilpel-€,1+e] V&€,
1§i=&1llp=2-2¢ V& €E,, (2.19)

I§i—&1llp=1-¢€ V& €E3UE,.

Step 2: By construction, we have that

” N z+1 z z z
D;(P,,4) < d;|P,, ——0¢ + O, + Of., + 1)
1B 4) ’( WAzl % Az+1 %% Az+1 %% dz+1 ‘“)
1/1
4
< |2 SN &l | + 1z — &2
dz+1\| Dz, P P
is=j
1/1 1/1
1 4 4z2'el + (1 +¢)!
< Y ¥ eol|l+a+et|| = frzerre )
4z+1 j=1&iex; 4z+1

where the first inequality holds because &;,&2,,&3;,84, € supp(|]3>n), the second inequality
holds since moving the atoms in Z; to §,, j = 1,...,4, and §4.+1 to &, represents a feasible
transportation plan, and the third inequality is due to (2.19) and the triangle inequality.

Step 3: We first show that for a sufficiently small € > 0, Dupacova et al.’s algorithm adds
&4,+1 =0 to the reduced set R in the first iteration. We then show that under this selection, the

28



Scenario Reduction Revisited:
Fundamental Limits and Guarantees Chapter 2

output Q of Dupacovd et al.’s algorithm can be arbitrarily worse than the bound on D; (P, 4)
determined in the previous step.

To show the first point, the symmetry inherent in supp(P,,) implies that it suffices to show that
d; ®,,80) < d (I]ﬁ’n,(?;] ). To this end, we note that

. 1 & 1 & 4z
dl@,,60) = ——Y Y &L < ——> Y a+el = ——a+e
AR i
4Z+1j=1€i€5j 4Z+1j:1£,-65j 4z+1
due to equation (2.19), while at the same time
[ 4z+1 ;
d,([P,,0f) = P —
l( n fl) 4z+1 l; ”El 51||p
1 4l z2=-20)l+2z+ 11 -¢)!
> YolEi-&ll = :
4z+1 ;7 4z+1

As € tends to 0, we have that

1/1
< '[[] d AFD (5
= ll : 1Py, f,),

4z 1/1

4z+1

22l 42241
4z+1

lim d;(®,,8¢) <
e—0

where the strict inequality is due to / = 1. As a consequence, we may conclude that there
indeed exists an € > 0 such that Dupacovi et al.’s algorithm adds &4,+; = 0 to the reduced set R
in the first iteration.

As for the second point, we note that after adding 4.1 = 0 to the reduced set R, there must
be at least one subset =, j € {1,...,4}, such that no éieZ j is contained in the final reduced
set R. Assume w.l.0.g. that this is the case for j = 1. We then have

1/1
Z(l _6) 1/1
4z+1

N 1
di(Py, Q) = a2+ 1 Y. l1&;-ol,

&€

and combining this with the result of Step 2, we can conclude that the approximation ratio
d; (Pn,@)/Dl(@n,4) approaches oo as z — oo and zel — 0. O

We remark that the algorithm of Dupacovd et al. can be improved by adding multiple atoms to
the reduced set R in Step 2. Nevertheless, a similar argument as in the proof of Theorem 2.15
shows that the resulting improved algorithm does not allow for a finite upper bound on the
approximation ratio either.

k-Means Clustering Algorithm

The k-means clustering algorithm has first been proposed in 1957 for a pulse-code modulation
problem (Lloyd 1982), and it has since then become a mainstay clustering approach in many
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application domains, for instance market segmentation, recommender systems, and image
segmentation as well as feature learning (Jain 2010a). It aims to partition a set of observations
X1,...,X, into m clusters Sy, ..., Sy, such that the intra-cluster sums of squared distances are
minimized. By generalizing the algorithm to arbitrary powers and norms, we can adapt the
algorithm to our continuous scenario reduction problem as follows.

k-MEANS CLUSTERING ALGORITHM FOR C; (|]3>n, m):

1. Initialize the reduced set R ={{1,...,{m} S supp([ﬁ’n) arbitrarily.

2. Let{lj} € B3(I, m) be any partition whose sets I;, j € J, contain
all atoms of supp(|]3> n) that are closest to {; (ties may be broken
arbitrarily).

3. Foreach j€ J,update {; — argmin{Zl—E[j 1E; -1 Ce R4},

4. Repeat Steps 2 and 3 until the reduced set R no longer changes.

For the empirical distribution P,, € 2 (R%, n), the algorithm iteratively updates the reduced
set R containing the atoms of the reduced distribution Q through a sequence of assignment
(Step 2) and update (Step 3) steps. Step 2 assigns each atom &; € supp(P,,) of the empirical
distribution to the closest atom in the reduced set, and Step 3 updates each atom in the
reduced set so as to minimize the sum of /-th powers of the distances to its assigned atoms
from supp([la> n)- After termination, the continuously reduced distribution Q can be recovered
from the reduced set R in the same way as in the previous subsection.

Remark 2.2 implies that for /=2 and ||- || = || - [l2, Step 3 reduces to §; — %ﬂ Yje1; 6, inwhich
case we recover the classical k-means clustering algorithm. Although the algorithm terminates
at a local minimum, Dasgupta (2008) has shown that for [ =2 and || - || = || - ||2, the solution
determined by the algorithm can be arbitrarily suboptimal. We now generalize this finding to
generic type-! Wasserstein distances induced by arbitrary p-norms.

Theorem 2.16. If initialized randomly in Step 1, the approximation ratio of the k-means
clustering algorithm is unbounded for every d, [, p = 1 with significant probability.

Proof. In analogy to the proof of Theorem 2.15, we construct a specific distribution P,, (Step 1),
bound D;(®,,, m) from above (Step 2) and bound the Wasserstein distance between P, and
the output Q of the k-means algorithm from below (Step 3).

Step 1: Fix d,l,p =1 and m = 3, and consider the empirical distribution P,e .@E([Rd, m)
with n = 3z + 1 for some positive integer z as well as supp([ﬁ’n =E1UZyU{é3,41} With By =
{1,...,8220, B2 ={&2241,...,€3,} and

Z)C Be(—ey), ZpcB(0) for ee(0,1/4), (2.20)
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aswell as 3,1 = e;, where again %, (x) = {& € RY : 1§ —xll» < €}. By construction, the distance
between any pair of atoms in =; is bounded above by 2¢ < 1 j=1,2, whereas the distance
between two atoms from Z; and =, is bounded from below by 1 — 2¢ > %

Step 2: A similar argument as in the proof of Theorem 2.15 shows that

. 2k k 1
d; (uwn,—a_ So 5 )

C1(P,,3)

IA

+ +
3k+1 & 3k+1 3k+1 ©

3Z€l 1/1

3z+1

1/1
1 (Z IEi+enlll,+ > ||zi||;)} < ,

3z+1 §i€E) §i€Ey

where the last inequality follows from (2.20).

Step 3: We first show that with significant probability, the algorithm chooses a reduced set
R containing two atoms from Z; and one atom from E; in the first step. We then show that
under this initialization, the output Q of the algorithm can be arbitrarily worse than the bound
on C;(P,,,3) determined above.

In view of the first point, we note that the probability of the reduced set R containing two
atoms from E; and one atom from Z, after the first step is (%) (f)/(szsf' 1) and approaches
44.44% as z — oo. In the following, we thus assume w.L.o.g. that R = {{,{2, {3} with §1,{2 € 5

and {3 € £, after the first step.

As for the second point, we note that Step 2 of the algorithm assigns the atoms &; € Z; to
either §; or {», whereas the atoms &; € =, U{&3,.1} are assigned to 3. Hence, the update of the
reduced set R in the next iteration satisfies {1, {2 € %.(—e;), whereas {3 is chosen with respect
to the set £y U {&€3,41}. The algorithm then terminates in the third iteration as the reduced set
R no longer changes. We thus find that

1/1

d®,,Q) = Y €= &l

1 / l 1/1
>|—— _ + 3 ‘
z [Sz+1(||ész Eally + 18521 csnp)]

3z+1 £
Recall that &3, € 98.(0) and &3,+1 = e;, which implies that

1632 = &3llp + 1183241 =83l p = 1183241 —&32lp = 1k,

and that at least one of the two terms [|3; — {3, or [|§32+1 — {31l is greater than % We thus
conclude that

a—gl 1V

d®,,Q = | ——
1Py, Q) = 2132+ 1)

which by virtue of Step 2 implies that d;(®,,,Q)/C;(®,,,3) — co as € — 0. O
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2.4.2 Constant-Factor Approximation for the Scenario Reduction Problem

We now propose a simple approximation scheme for the discrete scenario reduction problem
under the type-1 Wasserstein distance whose approximation ratio is bounded from above by 5.
We also show that this algorithm gives rise to an approximation scheme for the continuous
scenario reduction problem with an approximation ratio of 10. To our best knowledge, we
describe the first constant-factor approximations for the discrete and continuous scenario
reduction problems.

Our algorithm follows from the insight that the discrete scenario reduction problem under the
type-1 Wasserstein distance is equivalent to the k-median clustering problem. The k-median
clustering problem is a variant of the k-means clustering problem described in Section 2.4.1,
where the [-th power of the norm terms is dropped (i.e., [ = 1). In the following, we adapt
a well-known local search algorithm (Arya et al. 2004) to our discrete scenario reduction
problem:

LOCAL SEARCH ALGORITHM FOR Dl(Iﬁ’n, m):

1. Initialize the reduced set R < supp(P,,), |R| = m, arbitrarily.

2. Select the next exchange to be applied to the reduced set as
&,¢" eargmin{D;®,, RUIGI\L'D : €, &) € (supp®,) \ R) x R},

and update R — RU{{}\ {{'}if D;(P,,, RUIGI\ ') < D;(P,,, R).

3. Repeat Step 2 until no further improvement is possible.

For an empirical distribution ,, € 22 (R, n), the algorithm constructs a sequence of reduced
sets R containing the atoms of the reduced distribution Q. In each iteration, Step 2 selects
the exchange RU{¢}\{{'}, § € supp(l]ﬁ’n) and ¢’ € R, that maximally reduces the Wasserstein
distance D;(P,,, R). For performance reasons, this ‘best fit’ strategy can also be replaced with a
“first fit’ strategy which conducts the first exchange R U {¢}\ {¢'} found that leads to a reduction
of Dy ® n», R). After termination, the reduced distribution @ can be recovered from the reduced
set R in the same way as in Section 2.4.1.

It follows from Arya et al. (2004) that the above algorithm (with either ‘best fit’ or ‘first fit') has
an approximation ratio of 5 for the discrete scenario reduction problem for all d. We now show
that the algorithm also provides solutions to the continuous scenario reduction problem with
an approximation ratio of at most 10.

Corollary 2.17. The problems Dl(I]a> n,m) and C; ® n, m) are related as follows.

1. Any approximation algorithm for D, (P,, m) under the 2-norm with approximation
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ratio « gives rise to an approximation algorithm for C, (P, m) under the 2-norm with
approximation ratio v2a.

2. Any approximation algorithm for D; (P,,, m) under any norm with approximation ratio
a gives rise to an approximation algorithm for C; (P, m) under the same norm with
approximation ratio 2a.

Proof. The two statements follow directly from Theorems 2.9 and 2.12, respectively. O

As presented, the local search algorithm is not guaranteed to terminate in polynomial time.
This can be remedied by a variant of the algorithm that only accepts exchanges RU {{}\ {¢'}
that reduce the Wasserstein distance D; (|]3>n, R) by at least e/ ((n— m) m) for some constant € > 0.
It follows from Arya et al. (2004) that for any e, this variant terminates in polynomial time and
provides a (5 + €)-approximation for the discrete scenario reduction problem. The algorithm
can also be extended to accommodate multiple swaps in every iteration, which lowers the
approximation ratio to 3 + € at the expense of additional computations.

We remark that there is a wealth of algorithms for the k-median problem that can be adapted
to the discrete scenario reduction problem. For example, Charikar and Li (2012) present a
rounding scheme for the k-median problem that gives rise to a polynomial-time algorithm for
D, (I]ﬁ’n, m) with an approximation ratio of 3.25. Likewise, Li and Svensson (2016) introduce a
pseudo-algorithm for the k-median problem that offers, to our knowledge, the best currently
available constant approximation guarantee of 1+ v/3 +¢. Finally, Kanungo et al. (2004)
propose a local search algorithm for the k-median problem that gives rise to a polynomial-
time algorithm for D, (P, m) under the 2-norm with an approximation ratio of 9 +¢. In all
three cases, Corollary 2.17 allows us to extend these guarantees to the corresponding versions
of the continuous scenario reduction problem.

2.4.3 Mixed-Integer Reformulations of the Discrete and Continuous Scenario Re-
duction Problems

We first review a well-known mixed-integer linear programming (MILP) reformulation of the
discrete scenario reduction problem D;(®,, m):
Theorem 2.18. The discrete scenario reduction problem can be formulated as the MILP

1
L — min —<(I,D
Dj(Pyp,m) = min  —(I1,D)

)

s.t. lle=e, [I< e}LT, ATe=m (2.21)
MeR™", Ae{0,1}",
withDeS" and d;; = [§; — & I encoding the distances among the atoms in supp(l]%).
Proof. See, e.g., Heitsch and Rémisch (2003). O
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In problem (2.21), the decision variable 7;; determines how much of the probability mass of
atom &; in P, is shifted to the atom ¢ j in the reduced distribution @, whereas the decision
variable 1; determines whether the atom §; € supp(P,,) is contained in the support of Q.
A solution (IT*,A*) to problem (2.21) allows us to recover the reduced distribution via Q =
%Z;?:leTH*e j ~55j. Problem (2.21) has n binary and n? continuous variables as well as
n? + n+ 1 constraints.

The runtime of any known algorithm for solving the MILP (2.21) is superpolynomial in n and
m because the discrete scenario reduction problem is A 22-hard. For a fixed m however, the
discrete scenario reduction problem can be solved exactly in polynomial time by, for example,
exhaustively enumerating ( ,’Zl) possible supports of the reduced distribution. Note that the
optimally reduced uniform distribution supported on m = n/2 points can be determined
much more efficiently by solving a matching problem (Stockbridge and Bayraksan 2013). We
highlight, however, that our reduced distribution Q is not necessarily uniform.

We now consider the continuous scenario reduction problem. Due to its bilinear objective
function, which involves products of transportation weights 7;; and the distances [§; - ; I
containing the continuous decision variables ¢ ;, this problem may not appear to be amenable
to a reformulation as a mixed-integer convex optimization problem. We now show that such a
reformulation indeed exists.

Theorem 2.19. The continuous scenario reduction problem can be formulated as the mixed-
integer convex optimization problem

. 1+
1 - min —e'c
C®Pmm = ey n
s.L I[le=e (2.22)

1€ —¢il' <ci+ M -m;;) Viel,Vje]
Me{0,1}"™, ceR?, &,...,{mERY,

where M = max; jer1§; — & I denotes the diameter of the support of P,

In problem (2.22), the decision variable 7;; determines whether or not the probability mass
of atom &; in the empirical distribution P, is shifted to the atom & j in the reduced distribu-
tion @, whereas the decision variable c; records the cost of moving the atom &; under the
transportation plan II.

Proof of Theorem 2.19. 'We prove the statement by showing that optimal solutions to prob-
lem (2.22) correspond to feasible solutions in problem (2.2) with the same objective function
value in their respective problems and vice versa.

Fix a minimizer (IT*, ¢*, {7, ...,&},) to problem (2.22), which corresponds to a feasible solution
(1;},¢7,...,&5) in problem (2.2) if we set I = {i € I : m}; = 1} for all j € J. Note that ¢} =

& —¢ }* I for J€Jand i€ I;. Thus, both solutions adopt the same objective value.
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Conversely, fix a minimizer ({I].*},I,’ ¥,...,&x) to problem (2.2). This solution corresponds to
a feasible solution (11, ¢,{7,...,{},) to problem (2.22) if we set n;; = 1if i € I]’.* and 7;; =0
otherwise for all j € J, as well as ¢; = ||&; —C}* ||l forall i € I; and j € J. By construction, both
solutions adopt the same objective value. O

A solution (IT*, ¢*,{7,...,{};,) to problem (2.22) allows us to recover the reduced distribution
viaQ = %Z i e'Il*e 0 o Problem (2.22) has nm binary and n + md continuous variables
as well as nm + n constraints. We now show that (2.22) typically reduces to an MILP or a
mixed-integer second-order cone program (MISOCP).

Proposition 2.20. For the type-1 Wasserstein distance induced by ||- ||, or || - |0, problem (2.22)
reduces to an MILP. For any type-/ Wasserstein distance induced by || - [|,, where [ = 1 and
p = 1 are rational numbers, problem (2.22) reduces to an MISOCP.

Proof. Inview of the first statement, we note that [|§; — §jll1 < ¢; + M(1 — ;) is satisfied if and
only if there is ¢;j € RY such that

<p,-j2€i—zj, <p,~jzcj—£,- and eT(PijSCi+M(1—7Tij).
Likewise, [§; — & jllco < ¢; + M(1 — ;) holds if and only if there is ¢; j € R with
<pije2£,~—{j, ([)ijeZCj—fi and pij=ci+ MO —-m;j).

As for the second statement, we note that ||§; — {; Il <c¢i+ M1 -n; j) is satisfied if and only if
there is ¢b; j € R such that

$ij = 1§ =&jllp and ¢; < ci+ M1 —1;)).

For rational [/, p = 1, both inequalities can be expressed through finitely many second-order
cone constraints (Alizadeh and Goldfarb 2003, Section 2.3). O

2.5 Numerical Experiments

In the following, we explore the performance of discrete scenario reduction in a color quanti-
zation problem (Section 2.5.1) and a stochastic capital budgeting problem (Section 2.5.2).

2.5.1 Color Quantization

Color quantization aims to reduce the color palette of a digital image without compromising
its visual appearance. In the standard RGB24 model colors are encoded by vectors of the form
(r,g,b) €1{0,1,...,255}3. This means that the RGB24 model can represent a vast number of
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16,777,216 distinct colors. Consequently, color quantization serves primarily as a lossy image
compression method.

In the following we interpret the color quantization problem as a discrete scenario reduction
problem using the type-1 Wasserstein distance induced by the 1-norm on R3. Thus, we can
solve color quantization problems via Dupacova’s greedy heuristic, the local search algorithm
or the exact MILP reformulation (2.21). In our experiment we aim to compress all 24 pictures
from the Kodak Lossless True Color Image Suite (http://rOk.us/graphics/kodak/) to m =
21,...,29 colors. As the MILP reformulation scales poorly with 7, we first reduce each image
to n <1,024 colors using the Linux command “convert -colors”, which is distributed through
ImageMagick (https://www.imagemagick.org). We henceforth refer to the resulting 1,024-
color images as the originals.

In all experiments we use an efficient variant of Dupacové’s algorithm due to Heitsch and
Rémisch (2003) (DPCV), and we initialize the local search algorithm either with the color palette
obtained from Dupacovd’s algorithm (LOC-1) or naively with the m most frequent colors of the
original image (LOC-2). The MILP (2.21) is solved with GUROBI 7.0.1 (MILP). All algorithms
are implemented in C++, and all experiments are executed on a 3.40GHz i7 CPU machine with
16GB RAM. We report the average and the worst-case runtimes in Table 2.1. Note that DPCV,
LOC-1 and LOC-2 all terminate in less than 14 seconds across all instances, while MILP requires
substantially more time (the maximum runtime was set to ten hours). Moreover, warmstarting
the local search algorithm with the color palette obtained from DPCV can significantly reduce
the runtimes.

DPCV LOC-1 LOC-2 MILP
Average (secs) 2.16 2.60 3.59 1,349.71
Worst-case (secs) 8.21 9.89 13.69 36,120.99

Table 2.1 — Runtimes of different methods for discrete scenario reduction.

As an example, Figure 2.3 shows the image “kodim15.png” as well as the results of different
color quantization algorithms for m = 16. While the outputs of LOC-1, LOC-2 and MILP are
almost indistinguishable, the output of DPCV has ostensible deficiencies (e.g., it misrepresents
the yellow color around the subject’s eye). For comparison, we also show the output of the
color quantization routine in Microsoft Paint (MS Paint). Figure 2.4 visualizes the optimality
gaps of DPCV, LOC-1 and LOC-2 relative to MILP (i.e., their respective approximation ratio —
1). Our experiment suggests that the local search algorithm is competitive with MILP in terms
of output quality but at significantly reduced runtimes. Moreover, the local search algorithm
LOC-1 warmstarted with the color palette obtained from DPCV is guaranteed to outperform
DPCV in terms of optimality gaps.
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(a) Original (b) MS Paint (c) DPCV

(d) LOC-1 (e) LOC-2 (f) MILP

Figure 2.3 — Outputs of different color quantization algorithms for image “kodim15.png”.

2.5.2 Capital Budgeting

We follow Hanasusanto et al. (2015b) in considering an investment planning problem of a
venture capitalist. With a total budget of B, the venture capitalist wishes to sponsor a subset of
N different projects. She may decide to become an early adopter of a project k by investing
before observing some risk factors & € RF, or she may choose to become a laggard by investing
after observing ¢. To fund a project k € {1,..., N}, the venture capitalist needs to pay an
uncertain cost of ci(¢). After providing funding for project k, she earns a random profit of
rr(&) as an early adopter, or 87 (&) for some 0 € (0,1) as a laggard.

Supposing further that the venture capitalist is risk-neutral, we can formulate a profit-maximizing
two-stage stochastic program as

max  Ep(r@)’ (x+0y(&))
st. x,y@eio, 1}V
c®)T(x+y@&)<B } P-as,
x+y) =1

(2.23)

where P denotes the distribution of the risk factors {. Here, the binary variables x; and
(&) adopt the value 1 if the venture capitalist decides to invest in project k before and after
observing the risk factors &, respectively.

We solve the capital budgeting problem (2.23) in a data-driven fashion, whereby the unknown
true distribution P of the random vector £ is replaced with an empirical distribution ,, on
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Figure 2.4 — Optimality gaps of DPCV (dashed lines with boxes), LOC-1 (solid lines with pluses)
and LOC-2 (solid lines with stars) relative to MILP.
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n independent samples from P. In doing so, (2.23) can be equivalently cast as an integer
optimization problem with N (7 + 1) binary variables x, y1, ..., y, € {0,1}"V, where y; captures
the second-stage decisions in scenario &;.

In our numerical experiments, we consider N = 10 projects and F = 3 risk factors. Furthermore,
we model the cost and profit of project k as

k@ =01+ &/2)c) and 1 (&) =1+¥] &7,

where cg and r,g denote the nominal cost and the nominal profit of project k, respectively.

Similarly, the vectors ®; and W can be interpreted as the factor-loadings of the nominal cost
and profit of project k, respectively.

We repeat the following experiment 100 times. In each round, we independently sample
empirical risk factors &; (1 <i < n = 200) uniformly from the hypercube [-1, 11¥, and the
nominal costs ¢ from the hypercube [0, 101V. We further set r° = ¢°/5, B=e"¢"/2, and
0 = 0.9. Following Rubinstein and Kroese (2007), the factor loadings ®; and ¥ (1 < k< N)
are sampled uniformly from the probability simplex in RF. The empirical distribution P, is
then reduced to a distribution Q supported on m € {20, 40, ...,200} scenarios by using the local
search algorithm warmstarted by Dupacovd’s algorithm (LOC-1). We compare the optimal
objective values and runtimes of the emerging reduced integer programs with those of the full
integer programs in Figure 2.5. All integer programs are solved with GUROBI 7.0.1.

(%)

Approximation Error
Relative MILP Solving Time (%)

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
m/n (%) m/n (%)

Figure 2.5 — Approximation errors (left panel) and runtimes (right panel) of the reduced capital
budgeting problem for different reduction factors m/n. The solid lines represent the averages,
while the shaded areas capture the intervals between the 10% and 90% quantiles across 100
independent simulation runs.

Our numerical experiments suggest that scenario reduction may offer a first-order reduction
in runtime at the expense of a mere second-order reduction in accuracy.

Appendix: Auxiliary Results

The proof of Theorem 2.3 relies on the following two lemmas.
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Lemma 2.21. The semidefinite program (2.6) admits an optimal solution (z,S) with S =
al+ 117 for some a, B € R.

Proof. Let (1,8*) be any optimal solution to (2.6), which exists because (2.6) has a continuous
objective function and a compact feasible set, and denote by & the set of all permutations of I.
For any o € G, the permuted solution (7,$?), with s =s*

o (D)o () is also optimal in (2.6). Note
first that (7,S%) is feasible in (2.6) because

Z |I]|2 Z (lI]|23?1_2|I]| Z S?k—'— Z Sgk+ Z SZk’)

]E] lEIj k€Ij kEI]‘ k,k'EIj
k#zk'
02 * o
‘:’TSZHUIQZ('I %s;; — 211 |Zszk+zskk+ > Skk’)’
jej iel? kel; k,k'el;
k;ék’

where the index sets I}’ ={o(i): i € I} for j € J form an m-set partition from within ‘B (1, m),
and because §° = 0 and s7, sa(mm < 1for all i € I by construction. Moreover, it is clear that
(7,87) and (7,S*) share the same objective value in (2.6). Thus, (7,S8?) is optimal in (2.6) for

everyo € G.

The convexity of problem (2.6) implies that (7,S) with S = # Y ses SY is also optimal in (2.6).
The claim follows by noting that S is invariant under permutations of the coordinates and thus
representable as al + 117 for some a, § € R. O

Lemma 2.22. For a, 8 € R the eigenvalues of § = al+ 117 € S” are given by a + nf (with
multiplicity 1) and a (with multiplicity n—1).

Proof. Note that S is a circulant matrix, meaning that each of its rows coincides with the
preceding row rotated by one element to the right. Thus, the eigenvalues of S are given by
a+pa+ p}. +...p;“1), j=0,...,n—1, where p; = e?"'//" and i denotes the imaginary unit;
see, e.g., Gray (2006). For j = 0 we then obtain the eigenvalue a + nf, and for j =1,...,n—1we

obtain the other n—1 eigenvalues, all of which equal a because ¥./~1 e?77/k/" = (1 - 2717) /(1 -
2711 jl n) =0, O
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8] Cardinality-Constrained Clustering
and Outlier Detection via
Conic Optimization

Plain vanilla K-means clustering has proven to be successful in practice, yet it suffers from
outlier sensitivity and may produce highly unbalanced clusters. To mitigate both shortcom-
ings, we formulate a joint outlier detection and clustering problem, which assigns a prescribed
number of datapoints to an auxiliary outlier cluster and performs cardinality-constrained
K-means clustering on the residual dataset, treating the cluster cardinalities as a given input.
We cast this problem as a mixed-integer linear program (MILP) that admits tractable semidefi-
nite and linear programming relaxations. We propose deterministic rounding schemes that
transform the relaxed solutions to feasible solutions for the MILP. We also prove that these
solutions are optimal in the MILP if a cluster separation condition holds.

3.1 Introduction

Clustering aims to partition a set of datapoints into a set of clusters so that datapoints in the
same cluster are more similar to one another than to those in other clusters. Among the myriad
of clustering approaches from the literature, K-means clustering stands out for its long history
dating back to 1957 as well as its impressive performance in various application domains,
ranging from market segmentation and recommender systems to image segmentation and
feature learning (Jain 2010b).

This paper studies the cardinality-constrained K -means clustering problem, which we define as
the task of partitioning N datapoints &1,...,&n € R% into K clusters I, ..., Ix of prescribed sizes
ni,..., ng, with ny +...+ ng = N, so as to minimize the sum of squared intra-cluster distances.
We can formalize the cardinality-constrained K-means clustering problem as follows,

minimize Zlk(:lzidkllffi—nlk(zjelkfj)nz
(3.1)

subjectto (Iy,...,Ix) € B(ny,...,ng),
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where
Bn,..., ng) = {(11,...,1K) el = g Yk, UX o= 11, N, inI = @ Vkﬂ}
denotes the ordered partitions of the set {1,..., N} into K sets of sizes n,, ..., ng, respectively.

Our motivation for studying problem (3.1) is threefold. Firstly, it has been shown by Ben-
nett et al. (2000) and Chen et al. (2006) that the algorithms commonly employed for the
unconstrained K-means clustering problem frequently produce suboptimal solutions where
some of the clusters contain very few or even no datapoints. In this context, cardinality con-
straints can act as a regularizer that avoids local minima of poor quality. Secondly, many
application domains require the clusters Iy, ..., Ix to be of comparable size. This is the case,
among others, in distributed clustering (where different computer clusters should contain
similar numbers of network nodes), market segmentation (where each customer segment will
subsequently be addressed by a marketing campaign) and document clustering (where topic
hierarchies should display a balanced view of the available documents); see Banerjee and
Ghosh (2006) and Balcan et al. (2013). Finally, and perhaps most importantly, K-means clus-
tering is highly sensitive to outliers. To illustrate this, consider the dataset in Figure 3.1, which
accommodates three clusters as well as three individual outliers. The K-means clustering
problem erroneously merges two of the three clusters in order to assign the three outliers to
the third cluster (top left graph), whereas a clustering that disregards the three outliers would
recover the true clusters and result in a significantly lower objective value (bottom left graph).
The cardinality-constrained K-means clustering problem, where the cardinality of each cluster
is set to be one third of all datapoints, shows a similar behavior on this dataset (graphs on
the right). We will argue below, however, that the cardinality-constrained K-means clustering
problem (3.1) offers an intuitive and mathematically rigorous framework to robustify K-means
clustering against outliers. A comprehensive and principled treatment of outlier detection
methods can be found in the book of Aggarwal (2013).

Unconstrained K-means Clustering without Outliers (25.21) Constrained K-means Clustering without Outliers (54.28)
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Figure 3.1 — Sensitivity of the (un)constrained K-means clustering problem to outliers. Indi-
cated in parentheses next to the panel titles are the respectively achieved sums of squared
intra-cluster distances.

To our best knowledge, to date only two solution approaches have been proposed for prob-
lem (3.1). Bennett et al. (2000) combine a classical local search heuristic for the unconstrained
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K-means clustering problem due to Lloyd (1982) with the repeated solution of linear assign-
ment problems to solve a variant of problem (3.1) that imposes lower bounds on the cluster
sizes ny,..., ng. Banerjee and Ghosh (2006) solve the balanced version of problem (3.1), where
ny = --- = ng, by sampling a subset of the datapoints, performing a clustering on this subset,
and subsequently populating the resulting clusters with the remaining datapoints while ad-
hering to the cardinality constraints. Balanced clustering is also considered by Malinen and
Fréanti (2014) and Costa et al. (2017). Malinen and Frédnti (2014) proceed similarly to Bennett
et al. (2000) but take explicit advantage of the Hungarian algorithm to speed up the cluster
assignment step within the local search heuristic. Costa et al. (2017) propose a variable neigh-
borhood search heuristic that starts from a random partition of the datapoints into balanced
clusters and subsequently searches for better solutions in the neighborhood obtained by an
increasing number of datapoint swaps between two clusters. Although all of these heuristics
tend to quickly produce solutions of high quality, they are not known to be polynomial-time
algorithms, they do not provide bounds on the suboptimality of the identified solutions, and
their performance may be sensitive to the choice of the initial solution. Moreover, neither of
these local search schemes accommodates for outliers.

In recent years, several conic optimization schemes have been proposed to alleviate the short-
comings of these local search methods for the unconstrained K-means clustering problem
(Peng and Wei 2007, Awasthi et al. 2015). Peng and Wei (2007) develop two semidefinite
programming relaxations of the unconstrained K-means clustering problem. Their weaker
relaxation admits optimal solutions that can be characterized by means of an eigenvalue
decomposition. They further use this eigenvalue decomposition to set up a modified K-means
clustering problem where the dimensionality of the datapoints is reduced to K — 1 (provided
that their original dimensionality was larger than that). To obtain an upper bound, they solve
this K-means clustering problem of reduced dimensionality, which can be done either exactly
by enumerating Voronoi partitions, as described in Inaba et al. (1994), or by approximation
methods such as those in Hasegawa et al. (1993). Using either approach, the runtime grows
polynomially in the number of datapoints N but not in the number of desired clusters K.
Hence, this method is primarily suitable for small K. Similar conic approximation schemes
have been developed by Elhamifar et al. (2012) and Nellore and Ward (2015) in the context of
unconstrained exemplar-based clustering.

Awasthi et al. (2015) and Iguchi et al. (2017) develop probabilistic recovery guarantees for
the stronger semidefinite relaxation of Peng and Wei (2007) when the data is generated by a
stochastic ball model (i.e., datapoints are drawn randomly from rotation symmetric distribu-
tions supported on unit balls). More specifically, they use primal-dual arguments to establish
conditions on the cluster separation under which the semidefinite relaxation of Peng and Wei
(2007) recovers the underlying clusters with high probability as the number of datapoints N
increases. The condition of Awasthi et al. (2015) requires less separation in low dimensions,
while the condition of Iguchi et al. (2017) is less restrictive in high dimensions. In addition,
Awasthi et al. (2015) consider a linear programming relaxation of the unconstrained K-means
clustering problem, and they derive similar recovery guarantees for this relaxation as well.
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Two more papers study the recovery guarantees of conic relaxations under a stochastic block
model (i.e., the dataset is characterized by a similarity matrix where the expected pairwise
similarities of points in the same cluster are higher than those of points in different clusters).
Ames (2014) considers the densest K-disjoint-clique problem whose aim is to split a given
complete graph into K subgraphs such as to maximize the sum of the average similarities of
the resulting subgraphs. K-means clustering can be considered as a specific instance of this
broader class of problems. By means of primal-dual arguments, the author derives conditions
on the means in the stochastic block model such that his semidefinite relaxation recovers the
underlying clusters with high probability as the cardinality of the smallest cluster increases.
Vinayak and Hassibi (2016) develop a semidefinite relaxation and regularize it with the trace
of the cluster assignment matrix. Using primal-dual arguments they show that, for specific
ranges of the regularization parameter, their regularized semidefinite relaxation recovers the
true clusters with high probability as the cardinality of the smallest cluster increases. The
probabilistic recovery guarantees of Ames (2014) and Vinayak and Hassibi (2016) can also be
extended to datasets containing outliers.

Awasthi et al. Iguchi et al. Ames Vinayak and Hassibi This Paper
data generating model stochastic ball | stochasticball | stochastic block stochastic block none/arbitrary
type of relaxation SDP +LP SDP SDP SDP SDP +LP
type of guarantee stochastic stochastic stochastic stochastic deterministic
guarantee depends on N yes yes yes yes no
guarantee depends on d yes yes no no no
requires balancedness yes yes no no yes
proof technique primal-dual primal-dual primal-dual primal-dual valid cuts
access to cardinalities no no no no yes
outlier detection no no yes yes yes

Table 3.1 - Comparison of Recovery Guarantees for K-means Clustering Relaxations.

In this paper, we propose the first conic optimization scheme for the cardinality-constrained
K-means clustering problem (3.1). Our solution approach relies on an exact reformulation of
problem (3.1) as an intractable mixed-integer linear program (MILP) to which we add a set
of valid cuts before relaxing the resulting model to a tractable semidefinite program (SDP) or
linear program (LP). The set of valid cuts is essential in strengthening these relaxations. Both
relaxations provide lower bounds on the optimal value of problem (3.1), and they both recover
the optimal value of (3.1) whenever a cluster separation condition is met. The latter requires all
cluster diameters to be smaller than the distance between any two distinct clusters and, in case
of outlier presence, also smaller than the distance between any outlier and any other point.
The same condition (in the absence of outliers) was used in Elhamifar et al. (2012) and Awasthi
et al. (2015). Our relaxations also give rise to deterministic rounding schemes which produce
feasible solutions that are provably optimal in (3.1) whenever the cluster separation condition
holds. Table 3.1 compares our recovery guarantees to the results available in the literature. We
emphasize that our guarantees are deterministic, that they apply to arbitrary data generating
models, that they are dimension-independent, and that they hold for both our SDP and LP
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relaxations. Finally, our algorithms extend to instances of (3.1) that are contaminated by
outliers and whose cluster cardinalities 7y, ..., ng are not known precisely. We summarize the
paper’s contributions as follows.

1. We derive a novel MILP reformulation of problem (3.1) that only involves NK binary
variables, as opposed to the standard MILP reformulation that contains N? binary
variables, and whose LP relaxation is at least as tight as the LP relaxation of the standard
reformulation.

2. We develop lower bounds which exploit the cardinality information in problem (3.1).
Our bounds are tight whenever a cluster separation condition is met. Unlike similar
results for other classes of clustering problems, our separation condition is deterministic,
model-free and dimension-independent. Furthermore, our proof technique does not
rely on the primal-dual argument of SDPs and LPs.

3. We propose deterministic rounding schemes that transform the relaxed solutions to
feasible solutions for problem (3.1). The solutions are optimal in (3.1) if the separation
condition holds. To our best knowledge, we propose the first tractable solution scheme
for problem (3.1) with optimality guarantees.

4. We illustrate that our lower bounds and rounding schemes extend to instances of prob-
lem (3.1) that are contaminated by outliers and whose cluster cardinalities are not
known precisely.

The remainder of the paper is structured as follows. Section 2 analyzes the cardinality-
constrained K-means clustering problem (3.1) and derives the MILP reformulation underlying
our solution scheme. Sections 3 and 4 propose and analyze our conic rounding approaches for
problem (3.1) in the absence and presence of outliers, respectively. Section 5 presents numeri-
cal experiments, and Section 6 gives concluding remarks. Finally, a detailed description of the
heuristic proposed by Bennett et al. (2000) for cardinality-constrained K-means clustering is
provided in the appendix.

Notation: We denote by 1 the vector of all ones and by ||-|| the Euclidean norm. For symmetric
square matrices A,B € SV, the relation A = B means that A — B is positive semidefinite, while
A =B means that A — B is elementwise non-negative. The notation (A, B) = Tr(AB) represents
the trace inner product of A and B. Furthermore, we use diag(A) to denote a vector in RV
whose entries coincide with those of A’s main diagonal. Finally, for a set of N datapoints

&1,...,&n, weuse D e SV to denote the matrix of squared pairwise distances dij=18&i-¢; 2.

3.2 Problem Formulation and Analysis

We first prove that the clustering problem (3.1) is an instance of a quadratic assignment
problem and transform (3.1) to an MILP with NK binary variables. Then, we discuss the
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complexity of (3.1) and show that an optimal clustering always corresponds to some Voronoi
partition of R¥.

Our first result relies on the following auxiliary lemma, which we state without proof.

Lemma 3.1. For any vectors &1,...,&, € R?, we have

n 1 n
1€ -1 EpP=— Y 1&-&1°
igi J=1 2”:’,12:1 !

Proof. See Zha et al. (2002, p. 1060). O

Using Lemma 3.1, Costa et al. (2017) notice that the K-means objective can be stated as a sum
of quadratic terms. In the following proposition, we elaborate on this insight and prove that
problem (3.1) is a specific instance of a quadratic assignment problem.

Proposition 3.2 (Quadratic Assignment Reformulation). The clustering problem (3.1) can be
cast as the quadratic assignment problem

minimize 5 (W,P,DP}), (3.2)

where W € SV is a block diagonal matrix with blocks 7-117 € $™, k = 1,...,K, G" is the
set of permutations of {1,..., N}, and P is defined through (P;);; =1if (i) = j; (Ps);; =0
otherwise.

Proof. We show that for any feasible solution of (3.1) there exists a feasible solution of (3.2)
which attains the same objective value and vice versa. To this end, for any partition (Iy,..., Ix)
feasible in (3.1), consider any permutation o € SN that satisfies o' ({1 + Zf;ll Niy..., Zle n;}) =
Ix forall k=1,...,K, and denote its inverse by o~ L. This permutation is feasible in (3.2), and it
achieves the same objective value as ([y,..., Ix) in (3.1) because

K . , 1E 1 1&1 1 -
Dy 16i = 7 Xjer &)1 ZEZ_ > dij=zz_ > da(i)a(j)=z<w»PaDPg>;
k=1licly k=1"%k i jeI, k=1 "k  jeo1 (1)

where the first equality is implied by Lemma 3.1, the second equality is a consequence of the
definition of o, and the third equality follows from the definition of W.

Conversely, for any o € G feasible in (3.2), consider any partition (I, ..., Ix) satisfying I; =
o1+ Zf;ll Ni,. ..,Zle n;}) for all k=1,..., K. This partition is feasible in (3.1), and a similar
reasoning as before shows that the partition achieves the same objective value as o in (3.2). O

Generic quadratic assignment problems with N facilities and N locations can be reformulated
as MILPs with Q(N?) binary variables via the Kaufmann and Broeckx linearization; see, e.g.,
Burkard (2013, p. 2741). The LP relaxations of these MILPs are, however, known to be weak, and
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give a trivial lower bound of zero; see, e.g., Zhang et al. (2013, Theorem 4.1). In Proposition 3.3
below we show that the intra-cluster permutation symmetry of the datapoints enables us to
give an alternative MILP reformulation containing only NK <« Q(N?) binary variables. We
also mention that the related, yet different, cardinality-constrained exemplar-based clustering
problem can be formulated as an MILP containing Q(N 2y binary variables; see Mulvey and
Beck (1984).

Proposition 3.3 (MILP Reformulation). The clustering problem (3.1) is equivalent to the MILP

minimize 2Zk 1nkZl] 1 ”n”

subject to ﬂiE{O,l},nij€R+ i,j=1,...,.N,k=1,...,K
valnk—nk k=1,....K (2)
YK mk=1 i=1,...,N
nsznfnLﬂ;?—l i,j LN, k=1 K

The binary variable nf in the MILP &2 satisfies ni.“ =1lifiely; nif = 0 otherwise. At optimality,

k k

ni;= IIlaX{T[;C +n]]? —1,0}isequalto 1if i, j € Iy (i.e., ;= n]]? =1) and 0 otherwise.

Proof of Proposmon 3.3. At optimality, the decision variables 17 in problem 7 take the values

n’f] = max{n + n —1,0}. Accordingly, problem £ can equ1valently be stated as

minimize 2Zk 1 e Z” ld,]max{ni + 7T} 1,0}

subject to nie{O,l} i=1,..,N, k=1,...,K @)
valnk—nk k=1,....K
YK mk=1 i=1,...,N.

In the following, we show that any feasible solution of (3.1) gives rise to a feasible solution
of &' with the same objective value and vice versa. To this end, consider first a partition
(Iy,..., Ix) thatis feasible in (3.1). Choosing th =1ifiel; and nf =0 otherwise, k=1,...,K,
is feasible in 22’ and attains the same objective value as (I1,..., Ix) in (3.1) since

K
Z Z ”El (Z]EIk£])|| Z Z dz]— Z Z dz]maX{ﬂ«' +7T —1,0}.
k=1iely 2kl ki jer 2klnkl]1

Here, the first equality is implied by Lemma 3.1, and the second equality follows from the
construction of nk By the same argument, every nf feasible in &' gives rise to a partition
I1y..0I), I ={i: ;= =1} for k =1,...,K, that is feasible in 22’ and that attains the same
objective value. O

Remark 3.4. Note that zero is a (trivial) lower bound on the objective value of the LP relaxation
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of the MILP £2. As a consequence, this LP relaxation is at least as tight as the LP relaxation of
the Kaufmann and Broeckx exact MILP formulation of problem (3.2), which always yields the
lower bound of zero. It is also possible to construct instances where the LP relaxation of the
MILP £ is strictly tighter.

K-means clustering with cardinality constraints is known to be NP-hard as it is a special case
of cardinality-constrained p-norm clustering, which was shown to be NP-hard (for any p > 1)
by Bertoni et al. (2012). The restriction to the Euclidean norm (i.e., p = 2), however, allows for
a more concise proof, which is given in the following proposition.

Proposition 3.5. K-means clustering with cardinality constraints is NP-hard even for K = 2.
Hence, unless P = NP, there is no polynomial time algorithm for solving problem (3.1).

Proof. In analogy to Proposition 3.3, one can show that the unconstrained K-means clus-
tering problem can be formulated as a variant of problem 22 that omits the first set of as-
signment constraints, which require that Zﬁ.\i 1 nf = ny for all k= 1,...,K, and replaces the
(now unconstrained) cardinality ny in the objective function by the size of I, which can
be expressed as Zﬁ\ilnf.
tering problem by solving problem 2 for all cluster cardinality combinations (n;, np) €
{1,N-1),(2,N—-2),...,(LN/2],[N/2])} and selecting the clustering with the lowest objec-
tive value. Thus, in this case, if problem & were polynomial-time solvable, then so would be

the unconstrained K-means clustering problem. This, however, would contradict Theorem 1

If K = 2, we can thus solve the unconstrained K-means clus-

in Aloise et al. (2009), which shows that the unconstrained K-means clustering problem is
NP-hard even for K = 2 clusters. O

In the context of balanced clustering, similar hardness results have been established by Pyatkin
et al. (2017). Specifically, they prove that the balanced K-means clustering problem is NP-
complete for K = 2 and % = 3 (i.e., the shared cardinality of all clusters is greater than or
equal to three). In contrast, if K = 2 and % =2 (i.e., each cluster should contain two points),
balanced K-means clustering reduces to a minimum-weight perfect matching problem that
can be solved in polynomial-time by different algorithms; see Cook and Rohe (1999, Table I)
for a review.

In K-means clustering without cardinality constraints, the convex hulls of the optimal clusters
do not overlap, and thus each cluster fits within a separate cell of a Voronoi partition of R?,
see e.g., Hasegawa et al. (1993, Theorem 2.1). We demonstrate below that this property is
preserved in the presence of cardinality constraints.

Theorem 3.6 (Voronoi Partition). For every optimal solution to problem (3.1), there exists a
Voronoi partition of R? such that each cluster is contained in exactly one Voronoi cell.

Proof. We show that for every optimal clustering (Iy,..., Ix) of (3.1) and every k, ¢ € {1,...,K},
k < ¢, there exists a hyperplane separating the points in I} from those in I,. This in turn
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implies the existence of the desired Voronoi partition. Given a cluster I,,, for any me {1,...,K},
define its cluster center as {,,;, = # Yier, ¢i,andlet h = L. — §, be the vector that connects the
cluster centers of I} and I,. The statement holds if kT (§;, — &;,) = 0 for all iy € Iy and i, € I, as
h itself determines a separating hyperplane for I and I, in that case. We thus assume that
hT(& i, —&i,) <0forsome iy € Iy and iy € I,. However, this contradicts the optimality of the
clustering (1, ..., Ix) because

h' (&, —&,)<0 = -8 (&, —&i,)<0
= &L+ &80 <E]Lo+E] Lk
= &, —Cel?+ &, —Coll* < 1&i — Skl + &1, =&l

where the last equivalence follows from multiplying both sides of the second inequality with 2
zind then completing thfe squares by adding & 1{ i+ Cr+E ;6 i,*+&, ¢, onbothsides. Defining
I = I U{ipd\ {ix} and Ip = I, U {ig} \ {iz}, the above would imply that

YoNE—CkllP+ Y NE=CelP+ Y. Y i —Emll®

iel; icl, m=1,...,.K i€l,,
mgik,0}
2 2 2
< Y& =GP+ Y 1E =GP+ Y Y 1€ —Eml®.
i€l iely m=1,...,.K i€l
me{k,l}

The left-hand side of the above inequality represents an upper bound on the sum of squared
intra-cluster distances attained by the clustering (Iy,..., I, ..., I, ..., Ix) since {; and {, may
nlkzie I &; and n%Zie I, &;, respectively. Recall that the

cluster centers are chosen so as to minimize the sum of the distances from the cluster center to

not coincide with the minimizers

each point in the cluster. We thus conclude that the clustering (I, ..., I [ I /..., 1) attains
a strictly lower objective value than (3, ..., Ix) in problem (3.1), which is a contradiction. O

3.3 Cardinality-Constrained Clustering without OQutliers

We now relax the intractable MILP &2 to tractable conic programs that yield efficiently com-
putable lower and upper bounds on 2.

3.3.1 Convex Relaxations and Rounding Algorithm

We first eliminate the 17’1.C i variables from 22 by re-expressing the problem’s objective function
as

151 &
d;jmaxim} + 75 1,0} = Z Y. dijmynt,

K K
%Zi zm?fézi
k=1"% i,j=1 k=1 "k i j=1

k=1" i,

mMz
mlvlz

1
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where the last equality holds because the variables nif are binary. Next, we apply the variable
transformation xll“ — Zni.c — 1, whereby &2 simplifies to

minimize %ZK LZN d,-j(1+xl’.€)(1+x;?)

k=1 ny i,j=1
subject to xfe{—1,+1} i=1,...,N, k=1,...,,K (3.3)
N _k_ _ ’
Zizlxl.—Zrlk—N k=1,....K
K L k_ P
DX =2-K i=1,...,N.

Here, xll“ takes the value +1 if the i-th datapoint is assigned to cluster k and —1 otherwise. Note
that the constraints in (3.3) are indeed equivalent to the first two constraints in &2, respectively.
In Theorem 3.7 below we will show that the reformulation (3.3) of the MILP &2 admits the SDP
relaxation

minimize (D, X} 5 (MF+ 11T +xF 17+ 19 7))

subject to (x*, M5 e Gspp(nk) k=1,...,K (Zspp)

K k_
¥k %k =@-K1,
where, for any 7 € N, the convex set €, (n) < RN x SV is defined as

1"x=2n-N,M1=(2n-N)x
diagM) =1, M > xx'
M+11T+x1T+1x" =0
M+11T-x1"T-1x"=0
M-11T+x1"T-1x"<0
M-11T-x1T+1x" <0

Cspp(m) =14 (x,M) eRY x SV

Note that %SDP(n) is semidefinite representable because Schur’s complement allows us to

T as a linear matrix inequality; see, e.g., Boyd and Vandenberghe

express the constraint M > xx
(2004). Furthermore, we point out that the last four constraints in 6, (n) are also used in the
reformulation-linearization technique for nonconvex programs, as described by Anstreicher

(2009).

We can further relax the above SDP to an LP, henceforth denoted by Z%;p, where the con-
straints (x¥, MK) € Espp (1) are replaced with (xk, MFK) € 6, p(ng), and where, for any n e N,
the polytope €, ,(n) is obtained by removing the non-linear constraint M = xx' from Cspp(1)-

Theorem 3.7 (SDP and LP Relaxations). We have min 2 ;p < min Zgpp < min 2.

Proof. The inequality minZ21p < minZspp is trivially satisfied because €, (n) is constructed
as a subset of 6| ,(n) for every n € N. To prove the inequality min Zspp < minZ?, consider
any set of binary vectors {xk}lk(:1 feasible in (3.3) and define M* = x*(x*)T for k = 1,...,K.
By construction, the objective value of {x*}X_ in (3.3) coincides with that of {(x*,M*)}X_|
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in Zspp. Moreover, the constraints in (3.3) imply that
MF1 = xF x5 T1 = @ne - NxF,  diagmF) =1, MF=xFhHT
and

ME+11T +xF1 T +165 T =+ + x50 +x5T =0
ME+11T —xF1T 1R T =+ -xfa-x5HT =0
MF—11T +xF1T -1 T =—a-x5a+x5T <0

MF—11T —xF1T +15 T = —a+xHa-x5T <o,

which ensures that (xk,Mk) € %SDP(nk) for every k. Finally, the constraint 2115:1 xF=02-K1
in Zgpp coincides with the last constraint in (3.3). Thus, {(x¥, M’C)}*Ik(:l is feasible in Zspp. The
desired inequality now follows because any feasible point in (3.3) corresponds to a feasible
point in Zspp with the same objective value. Note that the converse implication is generally
false. =

Remark 3.8. In the special case when K = 2, we can half the number of variables in Zspp and
Z1p by setting x*> = —x! and M? = M! without loss of generality.

It is possible to show that Z;p is at least as tight as the naive LP relaxation £ of the MILP 22,
where the integrality constraints are simply ignored. One can also construct instances where
Ry p is strictly tighter than £. We also emphasize that both LP relaxations entail O (N?K)
variables and G(N?K) constraints.

Proposition 3.9. We have min%1p = min £.

Proof. Consider a feasible solution {(xk,Mk)}Ik(:1 of Z1p. Its feasibility implies that

(@ i, xf=2-KVi, ) XL x=2m-NVk (0 mf-xi-xf+120Vijk.

k

Next, set ni.‘ = (xllC +1)/2 and nfj = i(mfj +x; + x;? +1) forall i, j, k. Then,

NK ok 1yi N yN ok _ " ok k., .k ..
@) Xy, =1Vi, (b) XL, 7i = ni Yk, (0)77,-]-27T +7r].—1Vz,],k.

i

Hence, this solution is feasible in Z. A direct calculation also reveals that both solutions attain
the same objective value in their respective optimization problems. This confirms that %1 p is
arelaxation that is at least as tight as £. O

Next, we develop a rounding algorithm that recovers a feasible clustering (and thus an upper
bound on &) from an optimal solution of the relaxed problem Zspp or %1 p; see Algorithm 1.

Recall that the continuous variables x¥ = (x{‘, e lei,)T in Zspp and Z1p correspond to the
binary variables in (3.3) with identical names. This correspondence motivates us to solve a
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Algorithm 1 Rounding algorithm for cardinality-constrained clustering

1: Input: #; ={1,..., N} (data indices), ny €N, k=1,..., K (cluster sizes).
2: Solve Zspp or Z1p for the datapoints &;, i € .#), and record the optimal xt .. xKeRrN,
3: Solve the linear assignment problem

N K N K
H’eargmax{z N kb abeqo,1), Yok =ne vk, Y nb=1 Vi}.
1 i=lk=1 i=1 k=1

4: Set I]'C —{i: (]‘[’)i.c =1}forallk=1,...,K.
5: Set . — nlkziefizi forallk=1,... K.
6: Solve the linear assignment problem

N
M e argmin{ >

K N K
Y k& -Cpl? Ak eq0,1y, Y ak = np vk, Y Ak =1 \ﬁ}.
I i=1k=1 j

i=1 k=1

7. Set Iy — {i: (@*)¥ =1} forall k=1,..., K.
8: Output: Iy,..., Ik.

linear assignment problem in Step 3 of Algorithm 1, which seeks a matrix IT € {0, VK with
nf = %(xll‘ + 1) for all i and k subject to the prescribed cardinality constraints. Note that even
though this assignment problem constitutes an MILP, it can be solved in polynomial time
because its constraint matrix is totally unimodular, implying that its LP relaxation is exact.
Alternatively, one may solve the assignment problem using the Hungarian algorithm; see,

e.g., Burkard et al. (2009).

Note that Steps 5-7 of Algorithm 1 are reminiscent of a single iteration of Lloyd’s algorithm for
cardinality-constrained K-means clustering as described by Bennett et al. (2000). Specifi-
cally, Step 5 calculates the cluster centers {, while Steps 6 and 7 reassign each point to the
nearest center while adhering to the cardinality constraints. Algorithm 1 thus follows just
one step of Lloyd’s algorithm initialized with an optimizer of Zspp or Z1p. This refinement
step ensures that the output clustering is compatible with a Voronoi partition of R¢, which is
desirable in view of Theorem 3.6.

3.3.2 Tighter Relaxations for Balanced Clustering

The computational burden of solving Zspp and %1 p grows with K. We show in this section
that if all clusters share the same size #n (i.e., ny = n for all k), then Zspp can be replaced by

minimize - (D,M' + 11T+ x"17T+1(x") T+ (K -1 (M+11T+x17+1x 7))

(%pp)
subjectto (x!',M"), (x,M) € Gpp(n), x'+(K-Dx=@2-K1, xj=1, SoP

whose size no longer scales with K. Similarly, Z1p simplifies to the LP %EP obtained from
P/‘ZIS)DP by replacing €, (n) with €6 ,(n). This is a manifestation of how symmetry can be
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exploited to simplify convex programs, a phenomenon which is studied in a more general
setting by Gatermann and Parrilo (2004).

Corollary 3.10 (Relaxations for Balanced Clustering). We have min ,%Iljp <min %’S’DP <min 2.

Proof. The inequality min%EP < min %g’DP

min ‘%tS)DP < min £, we first add the symmetry breaking constraint x% =1to the MILP £2. Note

that this constraint does not increase the optimal value of &2. It just requires that the cluster

is trivially satisfied. To prove the inequality

containing the datapoint &; should be assigned the number k = 1. This choice is unrestrictive
because all clusters have the same size. By repeating the reasoning that led to Theorem 3.7, the
MILP £ can then be relaxed to a variant of the SDP Zspp that includes the (linear) symmetry
breaking constraint x% = 1. Note that the constraints and the objective function of the resulting
SDP are invariant under permutations of the cluster indices k =2,..., K because nj = n for all
k. Note also that the constraints are not invariant under permutations involving k = 1 due to
the symmetry breaking constraint. Next, consider any feasible solution {(x¥, Mk)}’;f:1 of this
SDP and define

1K 1 k
x:—Zx and M= —— M*.
K-1/, K-1

e

Moreover, construct a permutation-symmetric solution {(xéc , M\é‘)}lki1 by setting

xslle, xsk=x Vk=2,...,K,

M. =M!, MF=M vk=2,.., K

By the convexity and permutation symmetry of the SDP, the symmetrized solution {(x¥, M§)}»I]€<:1
is also feasible in the SDP and attains the same objective value as {(xk, Mk)}lk(zl. Moreover, as
the choice of {(x¥, M’C)}Ik(:1 was arbitrary, we may indeed restrict attention to symmetrized so-
lutions with x* = x/ and M¥ = M forall k, ¢ € {2, ..., K} without increasing the objective value
of the SDP. Therefore, the simplified SDP relaxation ‘%gDP provides alower bound on 2. O

If ny = nfor all k, then the SDP and LP relaxations from Section 3.3.1 admit an optimal solution
where both x* and M are independent of k, in which case Algorithm 1 performs poorly.
This motivates the improved relaxations %ls)Dp and %Ep involving the symmetry breaking
constraint x% = 1, which ensures that—without loss of generality—the cluster harboring the
first datapoint &; is indexed by k = 1. As the symmetry between clusters 2,..., K persists
and because any additional symmetry breaking constraint would be restrictive, the optimal
solutions of ,%EDP and ?/ZEP only facilitate a reliable recovery of cluster 1. To recover all clusters,
however, we can solve %EDP or ,%EP K —1 times over the yet unassigned datapoints, see
Algorithm 2. The resulting clustering could be improved by appending one iteration of Lloyd’s
algorithm (akin to Steps 5-7 in Algorithm 1).

In contrast, the naive relaxation £ of & becomes significantly weaker when all cardinalities
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are equal. To see this, we note that a solution nf =1/K and 171.“]. =0foralli,j=1,...,N
and for all k =1,...,K is feasible in £ (i.e,, it satisfies all constraints in problem & except
the integrality constraints which are imposed on nf) whenever K = 2. Hence, the optimal
objective value of £ is zero. This could be avoided by adding a symmetry breaking constraint
n} =1 to problem £ to ensure that the cluster containing the first datapoint &; is indexed by
k = 1. However, the improvement appears to be marginal.

Algorithm 2 Rounding algorithm for balanced clustering
1: Input: .# ={1,..., N} (data indices), n € N (cluster size), K = N/n € N (# clusters).
2. fork=1,..., K—1do
3 Solve %2, or 27, for the datapoints &;, i € ., and record the optimal x' € R/,
4: Determine a bijection p : {1,...,|.%|} — % such that x>
5
6
7

1 1
o) = Xp2) = Z Xp(g)
Set It — {p(1),...,p(n)} and Py, — F\ .
: Set Iy — %k
: Output: Iy,..., Ik.

3.3.3 Comparison to existing SDP Relaxations

We now compare Zspp and @EDP with existing SDP relaxations from the literature. First, we
report the various SDP relaxations proposed by Peng and Wei (2007) and Awasthi et al. (2015).
Then, we establish that two of them are equivalent. Finally, we show that Zspp and ;%’gDP are
relaxations that are at least as tight as their corresponding counterparts from the literature.
The numerical experiments in Section 3.5 provide evidence that this relation can also be strict.

Peng and Wei (2007) suggest two different SDP relaxations for the unconstrained K-means
clustering problem and an SDP relaxation for the balanced K-means clustering problem. All
of them involve a Gram matrix W € S with entries w; i=¢ iTE j- Their stronger relaxation for
the unconstrained K-means clustering problem takes the form

minimize (W,l-Z)
subjectto Ze SV C8Y)
7>0,72=0,71=1, Tr(Z) =K,

where [ denotes the identity matrix of dimension N. Note that the constraints Z=0and Z1 = 1
ensure that Z is a stochastic matrix, and hence all of its eigenvalues lie between 0 and 1. Thus,
further relaxing the non-negativity constraints leads to the following weaker relaxation,

minimize (W,l-Z)
subjectto Ze SV (PW )
12Z>0,Z1=1, Tr(Z) =K.

Peng and Wei (2007) also demonstrate that 2%, essentially reduces to an eigenvalue problem,
which implies that one can solve 2%, in (K N2) time; see Golub and Loan (1996). Their SDP
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relaxation for the balanced K-means clustering problem is similar to 2%, and takes the form

minimize (W,l-Z)
subjectto Ze SN @w®)
Z>0,0<Z<(K/N)11',Z1=1, Tr(Z) = K.

Awasthi et al. (2015) suggest another SDP relaxation for the unconstrained K-means clustering
problem, based on the same matrix of squared pairwise distances D considered in this paper,

minimize (D,Z)
subjectto Ze SV ()
2>0,72=20,71=1, Tr(Z) =K.

The following observation asserts that the stronger relaxation 2%, of Peng and Wei (2007)
and the relaxation </ of Awasthi et al. (2015) are actually equivalent.

Observation 1 The problems 2%\ and <f are equivalent.

Proof. Begin by expressing the objective of 22%/; in terms of the pairwise distance matrix D,
1 1
(Wi-2)= > |2(w,0) - (2w, Z) - (D,Z) | + 5(D.Z)
1 1
=3 |2(w,0) - (2w+D,Z)| + 5(D.2)

1 1
@ > |2(W,1) - (1diag(W) " + diag(W) 17, Z) | + 5(D.2)

%[2(w,u> ~(1diagW)",Z) - (diagW) 17,Z)]| + %(D,Z)
(3.4)

% |21r(W) - Tr(21 diag(W) ") ~ Tr(diag(W) 17 2) | + %(D,Z)

o 1

. |21r(W) - Tr(1 diagW) ") - Tr(diagW) 17)] + %(D,Z)

% |2(17 diag(w)) — 1" diag(w) - 1" diag(W)| + %(D,Z)

%(n,zy

Here, (a) follows from the observation that the i j-th element of the matrix 2W + D can be
writtenas 2&] & +11&;—&;1? = 11§; 1>+ ;11% and (b) uses the insights thatZ1 =1and 1" Z=1".
Comparing 22%', and &, identity (3.4) shows that the two relaxations are equivalent because
their objective functions are the same (up to a factor two) while they share the same feasible
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set. O

Next, we establish that Zgspp is at least as tight a relaxation of the cardinality-constrained
K-means clustering problem (3.1) as the stronger relaxation 2%, of Peng and Wei (2007).

Proposition 3.11. We have min Zspp = min 2%/ ;.

Note that, through Observation 1, Proposition 3.11 also implies that Zspp is at least as tight as
the relaxation o« of Awasthi et al. (2015).

Proof of Proposition 3.11. To prove that Zgpp is at least as tight a relaxation as 2%, we will
argue that for every feasible solution {(xk, Mk)}I,f:l of Zspp one can construct a solution

K
1
Z=-Y —M+11T+xf 1T 4157
=1 Nk

1
45
which is feasible in 22%, and achieves the same objective value. We first verify the feasibility
of the proposed solution Z. Note that Z is symmetric by construction. Next, we can directly
verify that Z is positive semidefinite since

Z>0 = MemT+xf1T+ 15T =0 Vk=1,...,.K
= vrM+T+ 1T 15 ) v=0 veeRY  vk=1,...,
= v (T 1T 16 v=0  veerRY  vk=1,.,K
= () +@"1)’+2(0 %) (vT1) =0 veeRY  Vk=1,..,K
= (T x*+vT1)’=0 VeeRY  Vk=1,..,K,

where the third implication is due to the definition of Cspp (1K), which requires that MK >
x%(xX)T. The last statement holds trivially because any quadratic form is non-negative. Next,

we can ensure the element-wise non-negativity of Z, again through the definition of Gspp(Ni):
Z20 = M'+11T+x 1T +10HT =20 vk=1,..,K.

Furthermore, combining the definition of SDP(nk) and the constraint 2115:1 xF=@2-K)1of
ZRspp, we can see that each row of Z indeed sums up to one:

= 1X1
Z1=-Y —MF1+11T1+x*1T1+15 D)
4 5k
1 &1 k k
==Y —(@ng— N)x*+ N1+ Nx* + 2n. - N)1)

x*+1=1.

1
DN | =
DM~

=~
Il
—
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Finally, the trace of Z is uniquely determined as follows:

= 1&1
Tt@Z) =~ Y —TrMF+117 +xF 17 +1(x5)7)
! i ! (2N +2(17x5)
1 &1
=-3Y —(2N+2@2nt-N)) =K.

Thus, Z is feasible in % 1, and it remains to prove that it achieves the same objective value as
the original solution {(xF, Mk)}lk(:1 in Zspp. Invoking relation (3.4), it is easy to see that

— 1, - 1 K1
(W,1-Z) = §<D,Z> = §<D’ Z n—k(Mk+11T+xle+1(xk)T)>-
k=1

The proof thus concludes. O

Finally, we assert that 222, is at least as tight a relaxation of the balanced K-means clustering

SDP
problem as the corresponding relaxation WW? of Peng and Wei (2007).

Proposition 3.12. We have min %'S’DP = min 9371/11).

Proof. To show that %IS’DP is at least as tight a relaxation as @W‘f, we will again argue that for

every feasible solution {(x',M!), (x,M)} of %EDP one can construct a solution

- K

Z= N (M +11T +x" 1T+ 1@ D+ K -DM+117 +x17 +1x 7))
that is feasible in 92‘7//11’ and achieves the same objective value. Following similar steps as
in the proof of Proposition 3.11, one can verify that Z indeed satisfiesZ = 0,Z > 0,71 = 1
and Tr(Z) = K. In order to see that Z < (K/N)11", note from the definition of €spp(n) (Where
n = N/K denotes the shared cardinality of all clusters) that

oM -1 H=m'-1n"+x'1"T-1EHH+ ' -1 T -1 T 1) <0 = Ml <117,
2M-111)=M-11"T+x1"-1xH)+M-11"T—-x1"+1x")<0 = M<11'.

b

gpp» ANy arbitrary element

Using this insight and the constraint 1+ (K-1Dx=2-K)1of%
z;j of Z can be bounded above as desired,

_ K
zij:m((m}j+1+x}+x]1.)+(K—1)(m,~j+1+x,~+xj))

<£(2K+x1+(K—1)x~+x1+(K—1)x-) K
T 4N i T )N

Finally, a direct calculation reveals that the objective of %lS’DP evaluated at {(x!,M%), (x,M)}
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coincides with the objective of 9’71/11’ evaluated at Z, which from (3.4) is equal to %(D,Z).

Hence, ,%’E’DP is at least as tight a relaxation as 22#?, and the proof concludes. O

Note that while Propositions 3.11 and 3.12 demonstrate that our SDP relaxations Zspp and
QZIS)DP are at least as tight as their respective counterparts by Peng and Wei (2007), similar tight-
ness results cannot be established for our LP relaxations. Indeed, our numerical experiments
based on real-world datasets in Section 3.5 show that both % p and %EP can be strictly weaker
than 2% 1 and 2% °, respectively. Furthermore, it is possible to construct artificial datasets
on which even 2%, outperforms Z1p and Q?EP.

3.3.4 Perfect Recovery Guarantees

We now demonstrate that the relaxations of Section 3.3.2 are tight and that Algorithm 2 finds
the optimal clustering if the clusters are perfectly separated in the sense of the following
assumption.

(S) Perfect Separation: There exists a balanced partition (Ji,..., Jx) of {1,..., N} where each
cluster k=1,..., K has the same cardinality | /x| = N/K € N, and

max maxd;; < min min  d;;.
1<k<Ki,jeJi I<ki<ky<Ki€J, j€Jk,

Assumption (S) implies that the dataset admits the natural balanced clustering (Jy, ..., Jx),
and that the largest cluster diameter (i.e., maxj<g<x max; jej, d;;) is smaller than the smallest
distance between any two distinct clusters (i.e., minj <, <x,<x Min;e Jiy i€k, dij).

Theorem 3.13. If Assumption (S) holds, then the optimal values of %ﬁp and £ coincide.
Moreover, the clustering (/3,..., Jx) is optimal in 22 and is recovered by Algorithm 2.

Put simply, Theorem 3.13 states that for datasets whose hidden classes are balanced and well
separated, Algorithm 2 will succeed in recovering this hidden, provably optimal clustering.

Proof of Theorem 3.13. Throughout the proof we assume without loss of generality that the
clustering (/1,..., Jx) from Assumption (S) satisfies 1 € Jj, that is, the cluster containing the
datapoint &; is assigned the number k = 1. The proof now proceeds in two steps. In the first
step, we show that the optimal values of the LP %EP and the MILP 2 are equal and that they
both coincide with the sum of squared intra-cluster distances of the clustering (J1,..., Jx),
which amounts to

1 K
gkz > dij.

—1i,jelk
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In the second step we demonstrate that the output (I, ..., Ix) of Algorithm 2 coincides with the
optimal clustering (J1,..., Jx) from Assumption (S). As the algorithm uses the same procedure
K times to recover the clusters one by one, it is actually sufficient to show that the first iteration
of the algorithm correctly identifies the first cluster, that is, it suffices to prove that I} = J;.

Step 1: For any feasible solution (x!, x,M!, M) of %EP, we define H,We SV through

H=M'+11"T+x"17+1x")" and W=M+11"T+x1"T+1x". (3.5)
From the definition of ‘to”LP(n) it is clear that H, W = 0. Moreover, we also have that

Y hij=Y ml+NN-D+2(N- D)1
i# i
—@2n-NP-N+N(N-1)+2(N-1)2n-N) =4n(n-1).

A similar calculation for W reveals that }_; jwij=4n(n—-1). Next, we consider the objective
function of %EP, which can be rewritten in terms of W and H as

1 1
%(D,H+(K—1)W>:E;jdij(hij+(l<—l)wij). (3.6)
The sum on the right-hand side can be viewed as a weighted average of the squared distances
d;j with non-negative weights h; j + (K — 1)w; j, where the total weight is given by

Y (hij+ (K=Dw;;) =4Kn(n-1).
i#]

Furthermore each weight h;; + (K — 1) w;j is bounded above by 4 because
hij+(K=1wjj = (mj;+1+x] + x5+ (K=1)0mj + 1+ x; + X))

(3.7
< 2K+ () + (K= 1)x;) + (x] + (K= 1)x)) = 4,

where the inequality holds because M',M < 11T (which we know from the proof of Proposi-
tion 3.12) and the last equality follows from the constraint xX+(K-1)x=2-K)lin %EP.

Hence, the sum on the right-hand side of (3.6) assigns each squared distance d;; with i # j
a weight of at most 4, while the total weight equals 4Kn(n —1). Alower bound on the sum is
thus obtained by assigning a weight of 4 to the Kn(n — 1) smallest values d;; with i # j. Thus,
we have

1 1
- D,H+ (K-1)W) = > {sum of the Kn(n — 1) smallest entries of d;; with i # j}
n n

1 K
=5, 2 dij

k=1 i,jE]k

(3.8)
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where the last equality follows from Assumption (S). By Lemma 3.1, the right-hand side of (3.8)
represents the objective value of the clustering (Jy,..., Jx) in the MILP £2. Thus, %EP provides
an upper bound on £2. By Corollary 3.10, P/‘ZIL)P also provides a lower bound on 2. We may
thus conclude that the LP relaxation %Ep is tight and, as a consequence, that the clustering
(J1,...,Jx) isindeed optimal in £2.

Step 2: As the inequality in (3.8) is tight, any optimal solution to ,%EP satisfies h;j + (K —
)w;; = 4 whenever i # j and i, j € J; for some k = 1,...,K (i.e, whenever the datapoints
¢i and &; belong to the same cluster). We will use this insight to show that Algorithm 2
outputs I = Ji.

Forany i € J;, the above reasoning and our convention that 1 € J; imply that h;; +(K—-1)w,; = 4.
This in turn implies via (3.7) that mii =mqy;=1forallieJ;.

From the definition of <€Lp(n), we know that
oM +11 = +11 T+ 1T 1 D+ F 11T =T 1) 20 = M= -11T.

This allows us to conclude that

N
2n-N=)Y m};=Y m};+Y mj;=2n+(N-n)(-1)=2n-N,
i=1 ie/, i¢]y

where the first equality holds because M'1 = (2n — N)x', which is one of the constraints in

%EP, and because of our convention that x% = 1. Hence, the above inequality must be satisfied
as an equality, which in turn implies that m{i =—1foralli¢J;.

For any i ¢ J;, the 1i-th entry of the matrix inequality ML +11T—x'1T—1(xH T = 0 from the
definition of ‘ng(n) can be expressed as

0< mh+1—x%—x} vi=1,...,.N = x} <-1,
where the implication holds because m%i = —1 for i ¢ J; and because x% =1 due to the
symmetry breaking constraint in @EP. Similarly, for any i € J;, the ii-th entry of the matrix

inequality M' + 117 —x'17 —1(x") " = 0 can be rewritten as
0smj;+1-2x} Vi=1,...N = x; <1,
where the implication follows from the constraint diag(M!) = 1 in %EP.

As xj <1forallie J, and x; < —1forall i ¢ J;, the equality constraint 1" x' =2n— N from the
definition of 6| ,(n) can only be satisfied if xl.1 =1forallie J; and xl.1 =—1foralli¢ J;. Since
Algorithm 2 constructs I7 as the index set of the n largest entries of the vector x!, we conclude
that it must output I; = J; and the proof completes. O
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Theorem 3.13 implies via Corollary 3.10 that the optimal values of ’%)tS)DP and &2 are also equal.
Thus, both the LP and the SDP relaxation lead to perfect recovery.

In the related literature, Assumption (S) has previously been used by Elhamifar et al. (2012) to
show that the natural clustering can be recovered in the context of unconstrained exemplar-
based clustering whenever a regularization parameter is chosen appropriately. In contrast,
our formulation does not rely on regularization parameters. Likewise, Theorem 3.13 is rem-
iniscent of Theorem 9 by Awasthi et al. (2015) which formalizes the recovery properties of
their LP relaxation for the unconstrained K-means clustering problem. Awasthi et al. (2015)
assume, however, that the datapoints are drawn independently from a mixture of K isotropic
distributions and provide a probabilistic recovery guarantee that improves with N and deteri-
orates with d. In contrast, our recovery guarantee for constrained clustering is deterministic,
model-free and dimension-independent. If Assumption (S) holds, simpler algorithms than
Algorithm 1 and 2 can be designed to recover the true clusters. For instance, a simple threshold
approach (i.e, assigning datapoints to the same cluster whenever the distance between them
falls below a given threshold) would be able to recover the true clusters whenever Assumption
(S) holds. It seems unlikely, however, that such approaches would perform well in a setting
where Assumption (S) is not satisfied. In fact, Awasthi et al. (2015) show that their LP relaxation
fails to recover the true clusters with high probability if Assumption (S) is violated. In contrast,
the numerical experiments of Section 3.5 suggest that Algorithms 1 and 2 perform well even if
Assumption (8) is violated.

Remark 3.14. To our best knowledge, there is no perfect recovery result for the cardinality-
constrained K-means clustering algorithm by Bennett et al. (2000), see Appendix, whose
performance depends critically on its initialization. To see that it can be trapped in a local
optimum, consider the N = 4 two-dimensional datapoints &; = (0,0), &2 = (a,0), &3 = (a, b)
and &4 = (0, b) with 0 < a < b, and assume that we seek two balanced clusters. If the algorithm
is initialized with the clustering {{1,4}, {2,3}}, then this clustering remains unchanged, and the
algorithm terminates and reports a suboptimal solution with relative optimality gap b?/a? — 1.
In contrast, as Assumption (S) holds, Algorithm 2 recovers the optimal clustering {{1, 2}, {3, 4}}
by Theorem 3.13.

3.4 Cardinality-Constrained Clustering with Outliers

If the dataset is corrupted by outliers, then the optimal value of (3.1) may be high, indicating
that the dataset admits no natural clustering. Note that the bounds from Section 3.3 could still
be tight, i.e, it is thinkable that the optimal clustering is far from ‘ideal’ even if it can be found
with Algorithm 2. If we gradually remove datapoints that are expensive to assign to any cluster,
however, we should eventually discover an ‘ideal’ low-cost clustering. In the extreme case, if
we omit all but K datapoints, then the optimal value of (3.1) drops to zero, and Algorithm 2
detects the optimal clustering due to Theorem 3.13.

We now show that the results of Section 3.3 (particularly Proposition 3.3 and Theorem 3.7)
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extend to situations where ny datapoints must be assigned to an auxiliary outlier cluster
indexed by k =0 (ZI,C(:O ni = N), and where neither the distances between outliers and retained
datapoints nor the distances between different outliers contribute to the objective function.
In fact, we could equivalently postulate that each of the ny outliers forms a trivial singleton
cluster. The use of cardinality constraints in integrated clustering and outlier detection
has previously been considered by Chawla and Gionis (2013) in the context of local search
heuristics. Inspired by this work, we henceforth minimize the sum of squared intra-cluster
distances of the N — ng non-outlier datapoints. We first prove that the joint outlier detection
and cardinality-constrained clustering problem admits an exact MILP reformulation.

Proposition 3.15 (MILP Reformulation). The joint outlier detection and cardinality-constrained
clustering problem is equivalent to the MILP

i lyK 1 yN ..k
minimize 3}, Ziyjzld,]nl.j

k=1 ny
subjectto m¥e{0,1}, n¥;eR,  ij=1,.,N, k=0, K
Nk =n k=0,...,K (2°)
YK =1 i=1,..,N
nfzaf+ak-1 i,j=1,..,N, k=0,....K

Proof. This is an immediate extension of Proposition 3.3 to account for the outlier cluster. O

In analogy to Section 3.3.1, one can demonstrate that the MILP £2° admits the SDP relaxation

minimize % (D,Zlk(:1 nik (Mk +117 +xk17T + l(xk)T))
subjectto  (x*,M¥) e €pp(m) k=0,...,K (Z3np)

YR X =01-K1.

Moreover, Z g, can be further relaxed to an LP, henceforth denoted by 27}, by replacing the
semidefinite representable set G, (1) in %, with the polytope €, ,(ng) forall k=0,..., K.
Theorem 3.16 (SDP and LP Relaxations). We have min 2¢,, < min £2,., < min %°.

LP — SDP —

Proof. This result generalizes Theorem 3.7 to account for the additional outlier cluster. As it
requires no fundamentally new ideas, the proof is omitted for brevity. O

The relaxations %, and 27, not only provide a lower bound on 2°, but they also give rise to
arounding algorithm that recovers a feasible clustering and thus an upper bound on &#°; see
Algorithm 3. Note that this procedure calls the outlier-unaware Algorithm 1 as a subroutine.

Ifall normal clusters are equally sized, i.e., ny = nfor k=1,..., K, then 23, can be replaced by
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Algorithm 3 Rounding algorithm for joint outlier detection and cardinality-constrained clus-
tering

: Input: % ={1,..., N} (data indices), nx €N, k=0,..., K (cluster sizes).

: Solve %gDP or %7}, for the datapoints &;, i € %, and record the optimal xRN,
: Determine a bijection p : %y — .%, such that xg(l) > xg(z) = xg(N).

: Set Iy — {p(1),...,p(np)} and # — FH\I.

: Call Algorithm 1 with input (%, {”k}lk(zl) to obtain Iy, ..., Ik.

: OQutput: Iy, ..., Ik.

DA s W N =

minimize % (D,M + 117 +x17+ le)

(%Ob
subjectto (x,M) € Gspp(n), (x°,M%) € Gspp(g), Kx+x°=(1-K)]1,

SDP)

b
P

‘%(s)gp by replacing €, (n) and €, (n9) with 6, ,(n) and 6| ,(no), respectively. Note that the
cardinality ng = N — Kn may differ from n.

whose size no longer scales with K. Similarly, %7, simplifies to the LP 2{p obtained from

Corollary 3.17 (Relaxations for Balanced Clustering). We have min %zlf, < min %ggp < min 2?°.

Proof. This follows from a marginal modification of the argument thatled to Corollary 3.10. O

If the normal clusters are required to be balanced, then Algorithm 3 should be modified as
follows. First, in Step 2 the relaxations ,%(S’BP or %ﬂi Lp»
respectively. Moreover, in Step 5 Algorithm 2 must be called as a subroutine instead of

Algorithm 1.

can be solved instead of ,%"S)DP or %

In the presence of outliers, the perfect recovery result from Theorem 3.13 remains valid if
the following perfect separation condition is met, which can be viewed as a generalization of
Assumption (8).

(S’) Perfect Separation: There exists a partition (Jo, /1,..., Jx) of {1,..., N} where each normal
cluster k =1,..., K has the same cardinality | Jx| = (IN — ng)/ K € N, while

max maxd;;< min ~ min d;; and max maxd;;<_ min_ d;j.

1<k<Ki,jeJk 1<ki<k;<Ki€]Jk,j€Jk, 1<k<Ki,jeJi i€y, je{l,...N\{i}
Assumption (§8’) implies that the dataset admits the natural outlier cluster J and the natural
normal clusters (/y,..., Jx). It also postulates that the diameter of each normal cluster is strictly
smaller than (i) the distance between any two distinct normal clusters and (ii) the distance
between any outlier and any other datapoint. Under this condition, Algorithm 3 correctly
identifies the optimal clustering.
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Theorem 3.18. If Assumption (§’) holds, then the optimal values of %ﬁi and 22° coincide.
Moreover, the clustering (Jo, ..., Jx) is optimal in £2° and is recovered by Algorithm 3.

Proof. The proof parallels that of Theorem 3.13 and can be divided into two steps. In the
first step we show that the LP relaxation %EE for balanced clustering and outlier detection is
tight, and in the second step we demonstrate that Algorithm 3 correctly identifies the clusters
(Jo,...,Jx). As for the second step, it suffices to prove that the algorithm correctly identifies
the outlier cluster Jy. Indeed, once the outliers are removed, the residual dataset satisfies
Assumption (S), and Theorem 3.13 guarantees that the normal clusters (Jy, ..., Jx) are correctly

identified with Algorithm 2.

As a preliminary, note that (x,M) € 6 p(n) implies

diagM+11"T +x1"T +1x7) =0 = x= -1,

diagM+11T —x1" —1x7) =0 = x < +1,

where the implications use diag(M) = 1. Similarly, (x°,M°) € €, , (1) implies -1 < x% < +1.

Step 1:  For any feasible solution (x°,x,M° M) of %25, introduce the auxiliary matrix H =
M+11" +1x" +x17. Recall from the proof of Theorem 3.13 that H = 0 and

Z hij :4n(n— 1).
i#]

The constraint Kx+x° = (1-K)1 from %fg ensures via the inequality —1 < x% that x < (% -1)1.
Recalling from the proof of Theorem 3.13 that M < 117, we then find

2 1) 2 Vi,j=1 N (3.9
—-1|=—= Vi j=1,.,N. .
% J

2
hij=m;jj+1+xi+x;<1+1+|=-1|+
ey e (K ) K

Similar arguments as in the proof of Theorem 3.13 reveal that the objective function of the
joint outlier detection and (balanced) clustering problem %EB can be expressed as

K 1
— (D,H) = o {sum of the Kn(n — 1) smallest entries of d;; with i # j}
n

8n
Ly ¥
- di:
2n iz

(3.10)

where the equality follows from Assumption (§’). By Lemma 3.1, the right-hand side of (3.10)
represents the objective value of the clustering (Jy, ..., Jx) in the MILP 2#°. Thus, %&E pro-
vides an upper bound on &#°. By Corollary 3.17, %gg also provides a lower bound on Z7°.
We may thus conclude that the LP relaxation %fg is tight and, as a consequence, that the
clustering (Jy, ..., Jx) is indeed optimal in £#°.
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Step 2: As the inequality in (3.10) is tight, any optimal solution to ‘%Eg satisfies h;; = %

whenever i # j and i, j € Ji forsome k =1,...,K (i.e.,, whenever §; and &; are notoutliers and
belong to the same cluster). This in turn implies via (3.9) that x; = % —1forallie Ullle Tk
Furthermore, the constraint 1" x = 2n — N from %Lp(n) implies

K
2n—N= Z in+ inan(%—l)+ Z(—l):Zn—N,

k=1i€e]k i€y i€y

where the inequality holds because —1 < x. Thus, the above inequality must in fact hold as an
equality, which implies that x; = —1 for all i € Jy. The constraint Kx + x° = (1 — K)1 from ,%"L)E
further implies that x) = —1 forall i € UX_, Jy and x = +1 for all i € Jo.

Since Algorithm 3 constructs I as the index set of the ny = N — Kn largest entries of the

0

vector x°, we conclude that it must output Iy = Jy, and the proof completes. O

Remark 3.19 (Unknown Cluster Cardinalities). The joint outlier detection and cardinality-
constrained clustering problem 22° can also be used when the number of outliers is not
precisely known and only an estimate of the relative size (as opposed to the exact cardinality)
of the clusters is available. To this end, we solve 22 for different values of ng, respectively
assigning the remaining N — ny datapoints to clusters whose relative sizes respect the available
estimates. The value nj representing the most reasonable number of outliers to be removed
from the dataset can then be determined using the elbow method; see, e.g., Gareth et al. (2017,
Chapter 10).

As an illustration, consider again the dataset depicted in Figure 3.1 which showcases the
crux of outlier detection in the context of cardinality-constrained clustering. In Section 1,
we inadvertently assumed to have the knowledge that the dataset under consideration was
contaminated by three outliers. To demonstrate the practical usefulness of our approach, we
will now employ the elbow method to determine the number of outliers rny without making
any assumptions about the dataset. As elucidated in Remark 4, the ideal value of ny can be

determined by solving problem 22° repeatedly. However, as 22° constitutes an intractable

ob
SDP

resulting objective values in logarithmic scale in Figure 3.2. It becomes apparent that nj =3

optimization problem, we solve its convex relaxations %EB and 222, instead and plot the
is most appropriate as it marks the transition from the initially steep decline pattern of the
objective value to a substantially flatter decline pattern. Note that ng needs to be a multiple of
K =3 to allow for balanced clustering.

3.5 Numerical Experiments

We now investigate the performance of our algorithms on synthetic as well as real-world
clustering problems with and without outliers. All LPs and SDPs are solved with CPLEX 12.7.1
and MOSEK 8.0, respectively, using the YALMIP interface on a 3.40GHz i7 computer with
16GB RAM.

65



Cardinality-Constrained Clustering and Outlier Detection via

Chapter 3 Conic Optimization
2 —A—log(min R{p)
A8 g LP) |+
9 —v—log(min R¢\p
2 o2r ]
e
° L i
g
g of 1
<
+~
g o-r ]
<
&0
S 2r .
—

3 I I I I I '!
0 5 10 15 20 25

no

Figure 3.2 — Elbow plot for the dataset depicted in Figure 3.1.

3.5.1 Cardinality-Constrained K-Means Clustering (Real-World Data)

We compare the performance of our algorithms from Section 3.3 with the algorithm of Bennett
et al. (2000), see Appendix, and with the two SDP relaxations proposed by Peng and Wei
(2007) on the classification datasets of the UCI Machine Learning Repository (http://archive.
ics.uci.edu/ml/) with 150-300 datapoints, up to 200 continuous attributes and no missing
values. Table 3.2 reports the main characteristics of these datasets. In our experiments,
we set the cluster cardinalities to the numbers of true class occurrences in each dataset. It
should be emphasized that, in contrast to the other methods, and with exception of the two
balanced datasets, the SDP relaxations of Peng and Wei (2007) do not have access to the
cluster cardinalities. They should thus be seen as a baseline for the performance of the other
methods. Furthermore, we remark that all datasets severely violate Assumption (S). Indeed,
the ratios of largest cluster diameter to smallest distance between clusters (when the clusters
are determined by the true labels) vary from 7 to 149, while they should be smaller than one in
order to satisfy Assumption (S). Also, only two datasets actually entail balanced clusters.

Table 3.3 reports the lower bounds provided by Z1p/ %EP and Zspp/ ,%'S’DP (LB), the upper
bounds from Algorithms 1 and 2 (UB), the objective value of the best of 10 runs of the al-
gorithm of Bennett et al. (UB), randomly initialized by the cluster centers produced by the
K-means++ algorithm of Arthur and Vassilvitskii (2007), the coefficient of variation across these
10 runs (CV), the respective lower bounds (LB) obtained from the SDP relaxations 2% / 3?’7//11’
and 2% , of Peng and Wei (2007), and the solution times for each of these methods. The latter
was limited to a maximum of three hours, and in one case (namely, “Glass Identification”),
Rspp did not terminate within this limit. The

“ n

signs in Table 3.3 indicate this occurrence.

The obtained lower bounds of Zspp/ *%ls)Dp allow us to certify that the algorithm of Bennett et al.
(2000) provides nearly optimal solutions in almost all instances. Also, both Algorithms 1 and 2
are competitive in terms of solution quality with the algorithm of Bennett et al. (2000) while
providing rigorous error bounds. Moreover, as expected in view of Propositions 3.11 and 3.12,

for all datasets Zspp/ P/'ZIS)DP yield better lower bounds than the SDP relaxations 2%/ 3?’7//11’
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and 2% , of Peng and Wei (2007). The lower bounds obtained from %1p/ .%EP are competitive
with those provided by the relaxations 2% 1 / 9’7//‘1’, and they are always better than the lower
bounds provided by their relaxation 2% ,. It should be mentioned, however, that one can
construct instances where the situation is reversed, i.e., both 2%/ 9}”7//5’ and 2% , are tighter
than Z1p/ %EP. Peng and Wei (2007) also suggest a procedure to compute a feasible clustering
(and thus upper bounds) for the unconstrained K-means clustering problem. However, this
procedure relies on an enumeration of all possible Voronoi partitions, which is impractical for
K = 3; see Inaba et al. (1994). Furthermore, it is not clear how to impose cardinality constraints
in this setting.

N d K ng

ID | Dataset Name (# datapoints) | (# dimensions) | (# clusters) (cardinalities) balanced
1 Iris 150 4 3 50, 50, 50 yes

2 Seeds 210 7 3 70,70, 70 yes

3 Planning Relax 182 12 2 130, 52 no

4 Connectionist Bench 208 60 2 111,97 no

5 Urban Land Cover 168 147 9 23,29, 14, 15,17, 25, 16, 14, 15 no

6 Parkinsons 195 22 2 48, 147 no

7 Glass Identification 214 9 6 70,76,17,13,9,29 no

Table 3.2 — Overview of the main dataset characteristics.
R1pl R, Zspp/ REpp Bennett et al. PW1IPWD PW

1D UB LB time [s] UB LB time [s] UB CV [%] time [s] LB time [s] LB time [s]
1 814 78.8 17 814 81.4 584 81.4 0.0 6 81.4 154 15.2 0.02
2 620.7 539.0 46 605.6 605.6 3,823 605.6 0.0 7 604.5 1,320 19.0 0.03
3 325.9 297.0 24 315.7 315.7 2,637 315.8 0.3 9 299.0 510 273.7 0.02
4 312.6 259.1 49 280.6 280.1 3,638 280.6 0.4 6 270.0 1,376 246.2 0.04
5 3.61e9 3.17e9 2,241 3.54e9  3.44e9 10,754 3.64e9 9.2 13 2.05e9 460 1.94e8 0.02
6 1.36e6 1.36e6 22 1.36e6 1.36e6 2,000 1.36e6 15.1 7 1.11e6 777 6.31e5 0.02
7 469.0 377.2 232 - - - 438.2 28.4 13 321.9 1,500 23.8 0.03

“w o»

Table 3.3 - Performance of %1p, Zspp, Bennett et al., and Peng and Wei. The signs indicate
that the problem instance could not be solved within a time limit of three hours.

Specifically, in the context of the two balanced datasets (i.e., “Iris” and “Seeds”), we can enrich
the preceding comparison with the heuristics proposed by Costa et al. (2017) and Malinen and
Frénti (2014). As for the variable neighborhood search method of Costa et al. (2017), we were
provided with the executables of the C++ implementation used in that paper. For the “Iris”
dataset, the best objective value out of 10 independent runs of this method was 81.4 (which is
provably optimal thanks to the lower bounds provided by Zspp and 3371/11’) and the time to
execute all runs was 0.12 seconds. For the “Seeds” dataset, the best objective value out of 10
independent runs was 605.6 (again, provably optimal in view of the lower bound provided
by Zspp) and the overall runtime was 0.53 seconds. The algorithm of Malinen and Frénti
(2014) follows the same steps as the one of Bennett et al. (2000) with the improvement that the
cluster assignment step is solved by the Hungarian algorithm, which provides better runtime

guarantees and typically solves faster than interior-point methods for LPs. For this reason,
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the upper bounds of Malinen and Frinti (2014) for the “Iris” and “Seeds” dataset coincide
with those of Bennett et al. (2000) while their algorithm can be expected to terminate faster. A
direct comparison of the time complexity of these two methods can be found in Malinen and
Fréanti (2014).

3.5.2 Cardinality-Constrained K-Means Clustering (Synthetic Data)

We now randomly generate partitions of 10, 20 and 70 datapoints in R? that are drawn from
uniform distributions over K = 3 unit balls centered at {1,{» and {3, respectively, such that
11—&21= 1181 —&30 = 1§2 -3l = 6. Theorem 3.13 shows that %lﬁp is tight and that Algorithm 2
can recover the true clusters whenever n; = ny = n3 and § = 4. Figure 3.3 demonstrates that
in practice, perfect recovery is often achieved by Algorithm 1 even if § < 4 and n; # ny # ns.
We also note that Zspp outperforms Z1p when § is small, and that the algorithm of Bennett
et al. frequently fails to determine the optimal solution even if it is run 10 times. In line with
the results from the real-world datasets, Zspp and Z1p are tighter than the stronger SDP
relaxation of Peng and Wei (2007). Furthermore, it can be shown that in this setting the weaker
relaxation of Peng and Wei (2007) always yields the trivial lower bound of zero. The average
runtimes are 7s (Z1p), 106s (Zspp), 11s (Bennett et al.) and 15.6s (Peng and Wei).

3.5.3 Outlier Detection

We use %7, and Algorithm 3 to classify the Breast Cancer Wisconsin (Diagnostic) dataset. The
dataset has d = 30 numerical features, which we standardize using a Z-score transformation,
and it contains 357 benign and 212 malignant cases of breast cancer. We interpret the malig-
nant cases as outliers and thus set K = 1. Figure 3.4 reports the prediction accuracy as well
as the false positives (benign cancers classified as malignant) and false negatives (malignant
cancers classified as benign) as we increase the number of outliers ny from 0 to 400. The
figure shows that while setting ny = 212 (the true number of malignant cancers) maximizes
the prediction accuracy, any choice ng € [156,280] leads to a competitive prediction accuracy
above 80%. Thus, even rough estimates of the number of malignant cancer datapoints can
lead to cancer predictors of decent quality. The average runtime is 286s, and the optimality
gap is consistently below 3.23% for all values of ng.

3.6 Conclusion

Clustering is a hard combinatorial optimization problem. For decades, it has almost exclusively
been addressed by heuristic approaches. Many of these heuristics have proven to be very
successful in practice as they often provide solutions of high, or at least satisfactory, quality
within attractive runtimes. The common drawback of these methods is that there is typically
no way of certifying the optimality of the provided solutions nor to give guaranteed bounds on
their suboptimality.
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Figure 3.3 — Comparison between different algorithms for (cardinality-constrained) K-means
clustering for 100 datapoints where the cardinalities are given by (n,, ny, n3) = (10,20,70).
Indicated in parentheses next to the panel titles are the respectively achieved sums of squared
intra-cluster distances.

Maybe precisely because of this shortcoming, more recently, convex optimization approaches
have been proposed for solving relaxed versions of the clustering problem. These conic
programs are polynomial-time solvable and offer bounds on the suboptimality of a given
solution. Furthermore, the solutions of these conic relaxations can be “rounded” to obtain
actually feasible solutions to the original clustering problem, which results in a new class of
heuristic methods.

The results presented in this paper follow precisely this recent paradigm. Combined, conic
relaxations and (rounding) heuristics offer solutions to the clustering problem together with
a-posteriori guarantees on their optimality. Naturally, one would also wish for attractive
a-priori guarantees on the performance of these combined methods. The conditions required
to derive such a-priori guarantees are still quite restrictive, but the strong performance of
these methods on practical instances makes us confident that this is a promising avenue for
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Figure 3.4 — Outlier detection for breast cancer diagnosis.

future research.

Appendix: Algorithm of Bennett et al. (2000)

The algorithm of Bennett et al. (2000) is designed for a variant of problem (3.1), where only
lower bounds on the clusters’ cardinalities are imposed. This algorithm has a natural extension
to our cardinality-constrained clustering problem (3.1) as follows.

Algorithm 4 Algorithm of Bennett et al. for cardinality-constrained clustering

1: Input: £ ={1,..., N} (data indices), np e N,k =1,..., K (cluster sizes).
2: Generate the cluster centers {,...,{x € R%.
3: Solve the linear assignment problem

N K N K
e argmin{ YN afNE -l ak e, Y ab = vk, Y ab=1 w}.
I i=1k=1 i=1 k=1

: Set I — {i: (m*)¥ =1} forallk=1,...,K.
: Set(khnikzielkcfi forallk=1,...,K.

: Repeat Steps 3-5 until there are no more changesin {3,...,{k.
: Output: I4,...,Ik.

N O G s

Algorithm 4 adapts a classical local search heuristic for the unconstrained K-means clustering
problem due to Lloyd (1982) to problem (3.1). At initialization, it generates random cluster
centers {, k =1,...,K. Each subsequent iteration of the algorithm consists of two steps.
The first step assigns every datapoint &; to the nearest cluster center while adhering to the
prescribed cluster cardinalities, whereas the second step replaces each center {; with the
mean of the datapoints that have been assigned to cluster k. The algorithm terminates when
the cluster centers {j,...,{x no longer change.
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Peak/off-peak spreads on European electricity spot markets are eroding due to the ongoing
nuclear phaseout and the steady growth in photovoltaic capacity. The reduced profitability
of peak/off-peak arbitrage thus forces hydropower producers to participate in the reserve
markets. We propose a two-layer stochastic programming framework for the optimal operation
of a fleet of interconnected hydropower plants that sell energy on both the spot and the reserve
markets. The outer layer problem (the planner’s problem) optimizes end-of-day reservoir
filling levels over one year, whereas the inner layer problem (the trader’s problem) selects
optimal hourly market bids within each day. Using an information restriction whereby the
planner prescribes the end-of-day reservoir targets one day in advance, we prove that the
trader’s problem simplifies from an infinite-dimensional stochastic program with 25 stages to
a finite two-stage stochastic program with only two scenarios. Substituting this reformulation
back into the outer layer and approximating the reservoir targets by affine decision rules then
allows us to simplify the planner’s problem from an infinite-dimensional stochastic program
with 365 stages to a two-stage stochastic program that can conveniently be solved via the
sample average approximation. Numerical experiments based on a cascade in the Salzburg
region of Austria demonstrate the effectiveness of the suggested framework.

4.1 Introduction

Electricity from renewable sources, e.g., wind, geothermal, solar and hydropower, has seen
its share growing in European electricity markets in recent years. The increase of renewable
energies is resulting in numerous environmental and economic benefits. However, electricity
generation from some of these sources, especially wind and solar, is intermittent and difficult
to forecast because of its reliance on weather and sunlight conditions. Hence, there is a
growing need to invest in power plants with storage capacities that can produce or consume
electricity on a short notice. For example, pumped-storage hydropower plants are capable of
buffering short-term fluctuations in demand and supply because of their storage capabilities
and negligible start-up times.
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In terms of wholesale electricity markets, most generation companies in Switzerland, France,
Germany, Luxembourg and Austria participate in the European Energy Exchange (EEX), which
is one of the largest electricity markets in central Europe.! Among the markets offered by EEX,
the European Power Exchange Spot (EPEX SPOT) is an exchange for power spot trading. It
consists of different forward markets, with the main component being the day-ahead market.
Generation companies operating pumped-storage hydropower plants typically trade in this
market. In the remainder of the paper, we use the terminology spot market to refer to this day-
ahead market. Traditionally, pumped-storage hydropower plants benefit from participating in
the spot market by releasing the water downstream for electricity generation at peak times
and by pumping the water upstream during off-peak periods for future generation (‘buy low
and sell high’). In doing so, the generation companies exploit the spreads between peak and
off-peak electricity prices to make immediate profits. However, these spreads are eroding since
2008 (Mayer 2014) for two main reasons: (i) the phaseout of nuclear power plants throughout
Western Europe and (ii) the rapid growth in photovoltaic capacity; see Morris and Pehnt (2015)
as well as Wirth (2016). Nuclear power plants are important sources of base load power. As a
result, their withdrawal from the electricity markets increases the base load electricity prices.
On the other hand, the growth in photovoltaic capacity increases the amount of electricity
supply during daytime, which significantly overlaps with the weekdays’ peak hours and thus
reduces the peak electricity prices.

As the spot market is a day-ahead market, electricity supply and demand are settled on the day
before delivery. In practice, supply and demand cannot be matched ex ante for many reasons.
Examples include operational outages, withdrawal of power plants due to maintenance and
sudden changes in demand. While small mismatches between supply and demand are usually
corrected by trading in intraday markets, larger mismatches need to be handled separately.
Moreover, since wind and sunlight conditions can change abruptly and are difficult to predict
with high accuracy, wind and solar production is highly volatile. Thus, as the penetration of
renewable energy sources increases, the resulting fluctuations can be large, and they cannot
be absorbed completely in the spot and intraday markets (Conejo et al. 2010b).

To maintain the frequency of the electricity grid at 50Hz, the imbalances between demand
and supply have to be diminished. To achieve this, the transmission system operators procure
ancillary services (in this case, control energy) in advance on separate markets.! These
markets have different names in different countries, such as balancing markets, reserve
markets, regulation markets, and control markets. To avoid terminological confusion, we
will consistently use the term reserve market in the remainder of the paper. For a succinct
overview of how the reserve markets work and what role the hydropower producers play in
these markets, we refer interested readers to Beck and Scherer (2015) as well as Hirth and
Ziegenhagen (2015).

Ihttps://www.eex.corn
IThe European Network of Transmission System Operators for Electricity (ENTSOE) publishes the list of
transmission system operators in Europe, available at https://www.entsoe.eu.
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When electricity demand and supply differ in a particular control area, the transmission system
operator can request reserve market participants to increase or decrease their electricity
output up to a certain capacity limit agreed a day in advance. For generation companies, the
benefit of trading in the reserve markets is two-fold. First, they collect capacity prices for
every unit of power made available, regardless of whether the reserve capacities are activated
or not. Second, they also earn activation prices for every unit of energy that is actually
requested by the transmission system operator in order to iron out unforeseen supply-demand
mismatches. Since the amount of energy requested can be positive (upward regulation)
or negative (downward regulation), we distinguish between reserve-up and reserve-down
markets, respectively. The opportunity to participate in the reserve markets should ease the
pressure on hydropower producers who are struggling to recover original profitability on the
spot market because of the eroding peak/off-peak spreads.

The aim of this paper is to develop a stochastic programming framework for maximizing
the total revenues of a hydropower producer trading simultaneously in both the spot and
reserve markets. The resulting optimization model is computationally challenging because it
involves a large number of decision stages as well as significant uncertainty in electricity prices,
natural inflows into the reservoirs and reserve market activations. For example, if the planning
horizon spans one year, electricity is traded daily, and the reserve markets are operated hourly,
then the number of decision stages already exceeds a few thousands. Furthermore, in a
system with multiple connected reservoirs, a coordinated water release and pumping policy is
required because the water released from an upstream reservoir contributes to the inflows of
its downstream reservoir(s).

As pointed out by Shapiro and Nemirovski (2005), multistage stochastic programs ‘generically
are computationally intractable already when medium-accuracy solutions are sought.” It would
appear hopeless for us to directly solve the formulated stochastic program. Inspired by
Pritchard et al. (2005), we decompose the problem temporally, which in our case is achieved by
subdividing the planning horizon into days. Prior to the beginning of each day, the generation
company sets end-of-day water level targets for all reservoirs. These end-of-day reservoir
targets are obtained by solving a yearly reservoir management problem (the planner’s problem),
which takes the form of an “inter-day" stochastic program. To gain tractability, we solve this
stochastic program by linear decision rules techniques (Ben-Tal et al. 2004a, Shapiro and
Nemirovski 2005, Kuhn et al. 2011). For predetermined end-of-day reservoir targets, the
generation company then solves another stochastic program to determine optimal bids for
both the spot and reserve markets (the trader’s problem), while respecting the reservoir targets
prescribed by the planner’s problem, robustly across all possible reserve market activations.
We show that, for fixed end-of-day reservoir targets, this “intra-day" stochastic program can
equivalently be reduced to a tractable linear program.

The contributions of this paper may be summarized as follows.

(i) We propose a bi-layer stochastic programming framework for maximizing the revenue
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of a hydropower producer who trades in the spot and reserve markets and whose power
plant has arbitrary topology. Our model accounts for uncertainty in electricity spot
prices, capacity prices, activation prices, natural inflows and reserve market activations.
We assume that the hydropower producer wishes to be robust with respect to the
reserve capacity activations, as non-compliance would incur high penalties or lead to
an exclusion from the reserve markets.

(ii) Using an information restriction whereby the hydropower producer prescribes the end-
of-day reservoir targets one day in advance, we prove that the inner layer of our stochas-
tic program (the trader’s problem) simplifies from an infinite-dimensional stochastic
program with 25 stages to a finite two-stage stochastic program with only two scenarios.

(iii) By approximating the daily reservoir targets through affine decision rules, we simplify
the outer layer of our stochastic program (the planner’s problem) from an infinite-
dimensional stochastic program with 365 stages to a two-stage stochastic program that
can conveniently be solved via the sample average approximation.

(iv) We apply our decomposition scheme to a cascade of three reservoirs operating in the
control area of the Austrian Power Grid AG (APG). Our experimental results suggest that
hydropower producers can significantly increase their revenues by participating in the
reserve markets.

Lohndorf et al. (2013) study the revenue maximizing operating policy of a hydropower pro-
ducer that controls multiple connected reservoirs. The model has later been extended to the
operation of wind farms by Wozabal and Rameseder (2020). Both models differ from ours in
the following key aspects: (i) they only consider bidding on the spot market, whereas we allow
for the simultaneous bidding on the spot and reserve markets; (ii) they optimize the producer’s
entire supply function, whereas we restrict ourselves to a single point on this function; and
(iii) they use stochastic dual dynamic programming and approximate dynamic programming
to solve the resulting problems, whereas we employ a combination of complexity reduction
techniques and affine decision rules. Gauvin et al. (2017, 2018) combine robust optimization
with affine decision rules to solve hydropower production models that minimize the risk
of floods. To this end, Gauvin et al. (2017) develop a model that minimizes the conditional
value-at-risk of the total weighted floods over the planning horizon, subject to limited water
spilling capacities and water flow delays between reservoirs. Gauvin et al. (2018) minimize
the expected value of the penalized aggregated flooding, assuming that the random inflows
are governed by a linear time series. Carpentier et al. (2019), finally, study an energy storage
problem where the degradation of batteries (controlled by a battery replacement policy) is
modeled as a slow dynamics component and the amount of stored energy (controlled by a
charging/discharging strategy) is modeled as a fast dynamic component, respectively. Our
approach differs from theirs in that (i) they only consider bidding on the spot market, whereas
we allow for the simultaneous bidding on the spot and reserve markets; and (ii) they use
approximate dual dynamic programming to solve the resulting problem, whereas we employ
a combination of complexity reduction techniques and affine decision rules.
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The remainder of the paper unfolds as follows. Section 4.2 develops two variants of the bidding
problem faced by a hydropower producer, leading to two stochastic programs that will be
referred to as the individual bidding model and the collective bidding model. Section 4.3
transforms both formulations to equivalent bi-layer stochastic programs. Sections 4.4 and
4.5 present reductions for the inner layers of these bi-layer stochastic programs. Section 4.6
solves the resulting simplified bi-layer stochastic programs using a decision rule architecture.
Finally, Section 4.7 applies the proposed method to a cascade of hydropower plants situated
in the Salzburg region of Austria.

Notation: We denote by 0 and 1 the appropriately sized vectors of all zeros and all ones,
respectively. The Hadamard product is denoted by “o " and refers to the element-wise vector
multiplication. For any x € R, we set x* = max{x,0} and x~ = max{—x,0} such that x = x* —x".
All random objects are defined on a probability space (Q, &,P) consisting of a sample space
Q, a o-algebra & < 29 of events and a probability measure P on .%. For a o-algebra ¢ < %,
we denote by & k() the set of all integrable, ¢-measurable functions g: Q — IRk, andif k=1,
we simply write £ (¥9).

4.2 Individual and Collective Bidding Models

We consider a hydropower generation company that operates a cascade of reservoirs and
trades electricity in both the spot and the secondary reserve market. We represent the topology
of the interconnected reservoirs by a directed acyclic graph with a set of nodes £ representing
the reservoirs and a set of arcs «f € Z x % representing the hydraulic connections between
the reservoirs. We denote the cardinalities of #Z and «/ by R and A, respectively. A tuple (r, ')
is an arc in « if r is an upstream reservoir of 7’ (and hence r’ is a downstream reservoir of
r). Without loss of generality, we assume that each arc is equipped with a generator that
converts kinetic energy of water flowing downstream into electric energy and with a pump
that uses electric energy to lift water upstream. Note that some of these generators and
pumps may have zero capacity, which models situations in which these devices are actually
absent. Without loss of generality, we further assume that the graph has a unique sink node
(denoted by ® in schematic representations and indexed by R). This dummy reservoir has
infinite volume and models the discharge into a river at the end of the reservoir cascade.
Accordingly, arcs discharging into this dummy reservoir may be equipped with generators, but
not with pumps. In line with real hydropower plants, we assume that every reservoir (except
the aforementioned dummy reservoir) has at least one outgoing arc along which water can
be discharged whenever required. The topology of the cascade can be encoded conveniently
through an R x A incidence matrix M, where for each (r, a) € Z x «f we have that

—1 ifarc aleaves reservoir r,
mrq=4 +1 ifarc aentersreservoirr,

0 otherwise.

75



A Planner-Trader Decomposition for
Chapter 4 Multi-Market Hydro Scheduling

The planning horizon should span at least one year in order to account for the seasonality
of electricity prices and water inflows. We partition the planning horizon into days indexed
byde2:={1,...,D}, as well as into hours indexed by t € 9 :={1,..., T}. This means that T is
divisible by D, that is, the planning horizon is assumed to accommodate an integral number
of days. We further denote by H = T'/D the number of hours per day, but we emphasize that
all subsequent results remain valid for any H € N, e.g,, if we partition each day into 15 minute
intervals. The present time is modeled by a fictitious hour ¢ = 0 on day d = 0. It is followed by
hour =1 on day d = 1, that is, the first hour of the planning horizon. For any ¢, ¢ € {0}uJ~
with ¢ </, we denote the set of hours between and including ¢ and t" as [¢, t'] = {t,t +1,...,1'}.
Note in particular that [z, t] = {#}. Furthermore, we denote by d(¢) the day containing hour
t and by 9 (d) the set of all hours in day d. Finally, we introduce the following functions of
dePandteg:

1 (d) = last hour of day d, 1 (¢) = last hour of day d(),
| (d) = first hour of day d, | (¢) = first hour of day d(1),
| (d) = lasthour of day d -1, | (¢) = lasthour of day d(z) — 1.

By slight abuse of notation, the operators { (-), | (-) and | (-) are defined both on 2 and . The
correct interpretation of these operators will always be clear from the context. Observe also
that the two |} (-) operators are not strictly needed because they can be expressed in terms
of | (-) via the identities || (d) =1 (d—1) and |} () =1 (d(t) — 1). However, they are useful to
simplify notation.

Each reservoir is characterized by—potentially time-dependent—lower and upper bounds on
its filling level. The time dependence of these bounds may reflect changing safety margins
that are imposed to account for the seasonality of inflows, scheduled maintenance work or
environmental regulations. For each hour t € 97, we collect the lower and upper reservoir
bounds in the vectors w, € [Rf m? and w, € (R, U {+ooh)® [m3], respectively. The bounds for
the dummy reservoir are simply given by w, , =0 and w;,g = +oo. Similarly, the generator and
the pump installed along a given arc are characterized by upper bounds on the generation and
the pumping flow, respectively, (the lower bounds are trivially zero) and by their efficiencies,
which may also depend on time. For any t € 9, we collect the upper bounds on the hourly
water flows through the generators and pumps in the vectors g, € R{ [m®] and p, € R} [m?],
respectively. Also, for any ¢ € 97, we group the generator efficiencies in the vector n; €
[Rf [MWh/m?3] and the inverse pump efficiencies in the vector {; € Rf [MWh/m?3]. The laws of
thermodynamics imply thatn; < {,forall te I .

The decision problem of the hydropower generation company is affected by three types of
risk factors, namely fluctuating market prices, uncertain reserve activations as well as natural
inflows into the reservoirs caused by unpredictable meteorological phenomena. We assume
that these risk factors are exogenous (i.e., the company has no means to impact them) and that
they have finite expectation. Specifically, we denote the spot prices by 7} € R, [$/MWh] and
the capacity prices for up- and down-regulation by 7} € R, [$/MWh] and 7} € R, [$/MWh],
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respectively. We assume that these prices may change from one hour to the next but are
revealed one day in advance at time | (¢). This is an approximation to reality, where the
markets are cleared during the day. We make it to avoid clutter. In case of a call-off on the
reserve market, the producer will receive a financial compensation equal to the activation
price Wl[l € Ry [$/MWh] or ¢} € R, [$/MWh] multiplied with the amount of energy requested
for up- or down-regulation, respectively. The activation prices are revealed in real time. The
uncertain reserve activations, which are also revealed in real time, are modeled by Bernoulli
random variables p} and p}, which evaluate to 0 if there is no call-off and to 1 if there is a
call-off on the reserve-up or the reserve-down market, respectively. We assume that there
is never a simultaneous call-off on the reserve-up and the reserve-down market, that is, p}
and pY cannot evaluate to 1 at the same time. This assumption is reasonable as long as the
power generation company sells electricity in a single bidding zone that may either face an
over-supply or an under-supply of electricity, but not both at the same time. We further
assume that the support of the reserve activations at time ¢, conditional on the history up to
time ¢ —1, is independent of any past information. In other words, regardless of the past, there
is always a strictly positive probability that the tuple (p}, p}) may take any of the values in
{(0,0),(1,0), (0,1)}. Moreover, we assume that the reserve activations are serially independent
and independent of all other exogenous uncertainties. This is justified because reserves should
only be activated in case of an unexpected event. Finally, we denote the natural inflows into
the various reservoirs by the vector ¢; € R¥ [m3], and we assume that they are revealed a day
in advance at time |} (¢) thanks to an accurate forecast.

We gather all random variables whose values are revealed in hour ¢ € {0} UJ in the vector

(0, 78, 7Y, L) ifr=0,
&=1 Wil el pl iy, a, ay, N ) ifre Y (90,
WiHyy et e7) otherwise.

Similarly, we gather all random variables whose values are revealed within the interval [z, ¢'] in
the vector &(;,7 = (&1,...,& ). Furthermore, we capture the information revealed during this
time interval by the o-algebra %, = 0(&|;,r)), i.e., the o-algebra generated by &|;, . For ease
of notation, when ¢ = 0, we simply write &[; and &y, respectively.

The hydropower generation company must decide each day how much energy to offer on the
different markets in every hour of the following day. This in turn necessitates a strategy for
operating the reservoir system that is guaranteed to honor all market commitments. There
are two complementary paradigms for bidding on the different markets, which we refer
to as individual bidding and as collective bidding. To understand their difference, recall
that energy is produced by the generators and consumed by the pumps installed along the
arcs. Under the individual bidding paradigm, the company places an individual bid for
every arc of its reservoir system. We gather these individual (arc-specific) bids placed on the
spot market, the reserve-up market and the reserve-down market in the vectors sy, u;, v; €
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ZLA(F 1)) IMWh], respectively. Under the collective bidding paradigm, on the other hand,
the hydropower company places a single bid on each market but does not specify which arc
will be used to produce (or consume) the promised amount of energy. Collective bidding is
non-inferior to individual bidding because it increases the producer’s flexibility in choosing
the generation and pumping decisions. By a slight abuse of notation, we denote the collective
bids placed on the spot market, the reserve-up market and the reserve-down market by
StyUp, Ve € L(F ) IMWhI, respectively. The two bidding paradigms will give rise to two
different, but intimately related optimization models, whose connections will be scrutinized
in detail. In particular, the analysis of the (simpler) individual bidding model provides the
basis for the analysis of the collective bidding model. Overall, however, we believe that the
collective bidding model reflects the operation of real power plants more faithfully and may
thus more useful in practice. Both models involve the water flows along the arcs as well
as the reservoir filling levels as real-time operational decisions. Specifically, we denote the
generation flows, i.e., the amounts of water running through the turbines in each hour, by
g€ ,%A(gm) [m3] and the consumption flows, i.e., the amounts of water running through
the pumps in each hour, by p; € ZA(E[ 1) [m3]. Furthermore, we assume that one can spill
unlimited amounts of water z; € ££A(97[ 1) [m3] along all arcs from the upstream reservoirs to
the downstream reservoirs. The reservoir filling levels at the end of each hour are denoted by
w, € LR (F ) M.

We assume that the hydropower generation company is risk-neutral but aims to satisfy all
constraints robustly—especially those related to reserve market commitments. Thus, its
objective is to maximize the expected cumulative revenues across the entire planning horizon
while maintaining its ability to respond to all possible call-offs on the reserve markets. In the
context of the individual bidding model, the objective function thus takes the form

Yiea E[mS1T s, + (% + oYy 1 Tuy + (¥ + oYy )1 T vy,
The non-anticipativity constraints to be respected are
St U,V € xA(g[U(t)]), 8Pz € ipA(g[t]), wy e fR(g[t]) Vted.

While spot market bids have no sign restrictions (i.e., the company can both buy or sell
electricity in the spot market), bids in the reserve markets as well as the operational flow
decisions must be non-negative. Also, the flow decisions must obey the capacity limits of the
respective pipes. Furthermore, the reservoir levels must stay within the respective bounds.
Thus, we require

0<u;,0<v,0<g;,<g,0=<p;<p, 0=z, w,<w;<w; Vte T, P-as.

In addition, the hydropower company is obliged to produce and/or consume energy according
to its market commitments. If the same system operator is responsible for both the spot
and the reserve markets, then the market commitments are enforced through the following
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constraint
St+ptur—pjvi=1ni08—&§iop: Vte T, P-as.

Taking into account the natural inflows, the reservoir filling levels obey the dynamic equation
wi=wi_1+¢;+M(g:—p:r+2z;) Vteg, P-a.s.

Finally, in order to prevent the eventual depletion of the reservoirs at the end of the planning
horizon, the hydropower company imposes the following terminal water level constraint

wy<wr P-a.s.

In summary, if the company decides to adopt the individual bidding model, it must solve the
stochastic optimization problem

sup Y eq E[mS1T s+ @+ oty T u, + (¥ + oYy vy]

s.t. Styut,erocfA(g[u(m), gr,Pr,ZﬁfA(gm), wt€ffR(9m) Vieg

0<u;,0<v,0=g,<g,0=p;<p,;,0=2 Vted, P-as 0
St+piur—pivi =108 —8iop; Vte T, P-a.s
wr=wi_1+¢;+M(g;— pr+2zy) Vte T, P-as.
W, Sw swy, wy<wr Vteg, P-as

Conversely, in the context of the collective bidding model, the objective function takes the
form

S req E[myse + (n} + oYy u, + Gy + pyve),
and the non-anticipativity constraints to be respected are
Sy U, Ve € L(Fym)), 86 P2t € LNFw), wee L2 (Fy) Vied.

As in the individual bidding model, all decision variables must reside within their bounds, that
is,

0<u;, 0<v,0=g,<g,0=p;<p;, 0=z, w,<w;<w; VteJ, P-as.

As the hydropower company now only places aggregate bids, the market commitments are
enforced through a scalar (instead of a vector-valued) constraint of the form

st+p}lut—p¥v,:1ﬂgt—é’jpt Yte T, P-as.

The reservoir dynamics and termination constraints remain unchanged. Thus, if the company
decides to adopt the collective bidding model, it must solve the stochastic optimization
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problem

sup  Yreg E[myse+ (n} +piwue+ (i + pjw))v,]

St Sy U Ve € L(F ), gt,pr,zf€$A(9[t]), Wy EgR(gm) Yied

0<u;, 0<v;,0<8,<8,0=<p;<p;, 0=z Vte T, P-as.
st+p‘;ut—p‘t’vt=njgt—51pt Yte T, P-as. ©
wi=wi1+¢+M(g—pr+2) VieT, P-as.
W, Swiswy, wy<wr Vteg, P-a.s.

4.3 Planner-Trader Decomposition

We will demonstrate here that both problem (I) and problem (C) can be decomposed into
subproblems that lend themselves to further simplification. To this end, we first establish a
basic property of the topology matrix M, which will be crucial for the derivations below.

Lemma4.1. Forany h e RE-1 h <0, there exists z€ R4, z>0, such that Mz =[h",-1"h]".

As every arc a € & connects an upstream and a downstream reservoir, every column of M
has exactly two non-zero elements that are equal to +1 and —1, respectively. Hence, 1™z =
0"z =0for any z € R4, that is, not all elements of the Mz can have the same sign. Lemma 4.1
strengthens this elementary result by asserting that we can always find z = 0 such that the
first R — 1 components of Mz match a prescribed non-positive vector, while only the last
component of Mz is non-negative.

Proof of Lemma 4.1. We recall that the dummy reservoir R represents the unique sink of our
cascade topology (%, «). For any reservoir r € Z \ {R}, there thus exists a simple directed path
from r to R with arcs «f " < «f. For each such reservoir r, choose a vector z” € Rf_‘ such that
z), =—h,if ae o4"; = 0 otherwise. It follows from the definition of the incidence matrix M that

+h, ifi=r

Mz'); = Y miaz), = Y miqz, =3 —h, ifi=R VieR.
acsd aesd’”
0 otherwise

Indeed, there is a single arc a € «/" that leaves i = r, which implies that m; ,(—h,) = (-1)(=h;).

Likewise, there is a unique arc a € «/" that enters i = R, which implies that m; 4,(—h;) =

(+1)(—h;). For intermediate nodes on the path from r to R, the terms (—1)(—h;) and (+1)(-h;)

corresponding to the entering and the leaving arc cancel each other out. If i is not contained

in the path from r to R, finally, then m; , is zero for all a € «/". We thus conclude that
R

Mz" = h,e, — h,eg, where {eit,, denotes the canonical basis for R¥, and hence

R-1 R-1
Mz=M) z' =) (he —heg) =[h',-1"h"
r=1 r=1
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for z = 21;2:—11 z'". Since z = 0 by construction, this concludes the proof. O

We are now ready to reformulate the individual bidding model (I) as a coupled bi-layer stochas-
tic program, where the outer layer problem (the planner’s problem) optimizes over the reservoir
filling levels with a daily granularity, whereas the inner layer problem (the trader’s problem)
optimizes over the bidding decisions with an hourly granularity. To this end, recall that the de-
cision variables {w};cg in problem (I) represent the end-of-hour filling levels of the reservoirs.
In order to reformulate (I), we will overload notation and denote by {w }4c9, {w}4e9 and
{w 4} 4e9 the end-of-day reservoir filling levels and their lower and upper bounds, respectively,
where wg = wy@a), W, =W, and wg = wy g for all d € 2. Next, we use the reservoir balance
constraints to re-express all end-of-hour filling levels {w;};c5 in terms of the end-of-day
filling levels {w } 4c9, the hourly flow decisions {g;, ps, z:} reg and the natural inflows {¢} ;e .
Specifically, for every hour ¢ € 9 (d) on day d € 2 we obtain

t
w;=wg1+ Z ¢ +M(g; — pr +2z).
=|(d)

Using this relation, the individual bidding model (I) can be recast equivalently as

sup  Yreg E[mS1T s+ (8 + ply1 T, + (¥ + oYy T vy

s.t. Sy UV E fA(f}"w(,)]), 8P % € 3‘4(9[,]), w, € $R(37[T(d)]) Vde®,VteT (d)

0<u;,0=<v,0=g,<g,0=p,=<p, 0=z YdeD, VteT (d), P-as.
st+piur—pivi=mnrog:—Crop; VdeD,Vte T (d), P-as.
w,<wg, +Z£:1(d} ¢ +M(g; — pr+2z;) W, VdeD, Vte T (d), P-as.
Wy=Wi_1+Yreq@Pr+M(g —pr+2z;) Vde2, P-as.
w,Swg<wy, wy<wp Vde9, P-as.

(4.1)

Note that the end-of-day reservoir bounds in the last line are implied by the end-of-hour
reservoir bounds two lines above and are thus redundant. However, they will be instrumental
for proving the tightness of a relaxation of problem (4.1) to be derived below. Next, we
introduce another auxiliary problem that imposes the daily reservoir balance constraints
as inequalities rather than equalities.

sup  Y,eq E[m31T s+ (% + 1 Tuy + (¥ + oY1 T vy

st spu,v € LYNF ), 8o Pz € LNF ), wie LY Fyay) YdeD, Vie T (d)

0<u;,0<v,0<g,<g,0<p,<p, 0=z VYdeD,Vte T (d), P-as.
St+piu—pivi=n08~8op; VdeD, Vi€ T (d), P-as.
W, Swa +X0_ e+ Mg —pr+2z) W, VdeD,Vte T (d), P-as.
Wi <Wi_1+Yreq @@ Pr + Mg — pr+2;) Vd e, P-as.
w,Swy<wy, wy<wp Vde?, P-as.

(4.2)
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The next proposition asserts that the optimization problems (4.1) and (4.2) are indeed equiva-
lent. Specifically, we will show that any slacks between the left- and right-hand sides of the
daily reservoir balance constraints can systematically be eliminated by spillage. The exis-
tence of suitable spillage decisions that make all the reservoir balance constraints binding is
guaranteed by Lemma 4.1.

Proposition 4.2. The optimal values of problems (4.1) and (4.2) are equal.

Proof. As problem (4.2) is a relaxation of problem (4.1), it suffices to show that any feasible so-

lution of problem (4.2) corresponds to a feasible solution of problem (4.1) that attains the same
objective function value. Thus, consider an arbitrary feasible solution {(s;, #;, v+, 81, Pt 26, W)} (t,d)e T x2
of (4.2). Since the daily reservoir balance constraints are imposed as inequalities, we may
introduce a slack variable h; , for each day d € 2 and for each reservoir r € Z \ {R}, which is

defined as

hd,r =Wqr— Wqg-1,r — Zref]'(d) [(»br,r + X aeo Mrq(8r,a— Prat ZT,a)] .

One readily verifies that hy, € Zj1(4) and that h;, < 0 P-almost surely. Lemma 4.1 thus

implies that for each day d there exists 2, € ,Cf[‘?( o With

2;=20 P-as. and Mz, = [h(;,—lThd]T P-a.s.

Next, we show that the solution {(s;, u;, v/, &1, ps, 2}, w;l)}(t, deg xo involving the spillage deci-
sions

z; ifre1(92)

z, =
Zi+Zg(n ifre (92

for all € 9~ and the end-of-day reservoir filling levels

/ wd,r ifr ?éR

War =\ ¢1@ d 1Tp . s
ZT:1 [(»br,R +Y ges MRa(8r,a+ Zr,a)] _Zdrzl 1 hy ifr=R

for all d € 2 and r € % is feasible in (4.1). To see this, note that z; and w/, are non-anticipative
and P-almost surely non-negative because the dummy reservoir has no children, that is,
mpg,q € 10,+1} for all a € /. In addition, for any reservoir r € Z \ {R}, we have that

w;l—l,r +2reT (@) [(pbr,r + Y aest Mra(8r,a— Prat Z-lr,a)]

/ N
=SWi,t > aest MraZd,a+ Zref/‘(d) [(pr,r +2 aeet Mr,a(8ra— Prat ZT.a)]

/
=Wt hd,r + Zref/‘(d) [¢r,r + X aeet Mra(8r,a— Pra+ Zr,a)] = W;yr

for all days d € 2, where the three equalities follow from the construction of z}, the properties
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of Z; and the definition of h, respectively. Similarly, for the dummy reservoir R, we have that

w;l—l,R +2XreT (@) [d’r,R +2acet MRa(8r,a— Prat Z;,a)]

! A

= Wy_) g+ Lac MRa2d,a+ Lreg d) | Pr,R + Laces MR.a(&r,a = Pra+ 21,d)]
I T

=Wy 1R~ 1 hg+ Zreﬂ‘(d) [(pT,R +X aeet MR,a(81,a— Pr,a+ ZT,a)]

I T
=Wy 1 r™ 1 hy +Zref/‘(d) [(p‘r,R +2 ge MR,a(8r,a+ ZT,a)] = wii,R

for all day d € 9, where the third equality holds because no arc incident on reservoir R
accommodates a pump, which implies that mpg ,p; o = 0 for all a € o . Hence, the new solution
satisfies all daily reservoir balance constraints as equalities. Finally, we need to ascertain that
the filling levels {w;y rlaeo of the dummy reservoir R still respect the hourly reservoir bounds.
However, this is trivially the case because w, = 0 and w; g = +oo, regardless of the hour z. [

We are now ready to decompose the individual bidding problem (I), which jointly maximizes
over all hourly and daily decisions, into planning and trading subproblems that maximize only
over the daily and the hourly decisions, respectively. The proposed decomposition assumes
that a fictitious planner and a fictitious trader collaborate so solve problem (I) in the following
manner. The planner determines the end-of-day reservoir levels by solving the stochastic
program

sup Y aeq E[TL, (wa 1, wa, &(yay)]

s.t. wg€ $R(9[T(d)]) YdeD (IP)
w,swiswy Vd e, P-as.
wy < wp P-a.s.,

which maximizes the expected daily profits accrued over the entire planning horizon. Here,
the function Hfi(wd_l, wg, &y a)) represents the expected profit earned by the trader on day d
via individual bidding, conditional on the information &4 available at the beginning of the
day and conditional on the initial and terminal reservoir levels w;_; and w, respectively,
imposed by the planner. The function H;(wd_l, wg, &) evaluates the optimal value of the
stochastic program

sup E[Xjeq (@31’ s+ @} +ptwH1 T u, + () + oy D1 v | Eyay]

S.t. S, U,V E R4, 8P % € $A(9H(d),ﬂ) Vte T (d)
0<u;, 0sv;,0=<8,<g,0=<p;,<p,, 0=z, Vte T (d), Pleya,-a-s- T
S+ piu—pivi=miog—Lop; Vie T (d), Pz -a-s -
w,<wg_1+ Zi:ud) ¢ +M(g; — pr+2z;) W, Ve T (d), Pig, -as.
Wy <Wq-1+)Y req @) Pr +M(gr — pr+27) Pie iy -a-s-
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solved by the trader. We emphasize that the trader’s problem (IT) may be infeasible for
some reservoir targets w,_; and w, in which case Hld(wd_ 1, Wa, &) evaluates to —oo and
thus introduces implicit constraints in the planner’s problem (IP). We also highlight that
problem (IT) constitutes a stochastic program with contextual information (Ban and Rudin
2019, Bertsimas and Kallus 2020), where the contextual covariates &[4 do not directly impact
the problem but impact only the (conditional) distribution of the random variables in the
objective and the constraints.

The next proposition asserts that the planner-trader decomposition incurs no loss of optimal-
ity.

Proposition 4.3. The optimal values of problems (4.2) and (IP) are equal.

Proof. Observe that if the reservoir filling levels {w;} ;e are fixed, then the remaining deci-
sions in problem (4.2) are no longer coupled across days. This allows us to decompose the
stochastic program (4.2) into an outer maximization problem over the end-of-day reservoir fill-
ing levels {w;} e and a series of (mutually independent) inner stochastic programs maximiz-
ing over the bidding decisions {(s;, #;, v;)} ;e 5 (4) and the operational decisions {(g;, pr, Z1)} e (),
one for each day d € 9. Formally, problem (4.2) is thus equivalent to the outer stochastic
program

SUp Y 4ew fIId(Wd—l, wq)

s.t. wg€ .,%R(g[“d)]) VdeD
wW,swi<wy Vd e, P-as.
wy < wp P-a.s.,

where ﬂ;(wd_l, w,) stands for the optimal value of the inner (parametric) stochastic program

sup E[Xieq@ sl si+ @+ oyl u, + (1) + oYy vy

S.t. S, U,V E 3‘4(33[”((1)]), 8P % € ,%A(gzm) Vte T (d)
O0<u;, 0<v;,0=<8;,<g,0<p;<p, 0=z, Vte I (d), P-a.s.
si+piu—pjvi=m08-§rop; Vte T (d), P-a.s. @
W, <wq_1+ Zi:l(d) ¢ +M(g; —p: +2z;) <W, YteT (d), P-as.
Wq < Wq-1+Yreg ) Pr+M(gr — pr +21) P-as.,

which optimizes only over decisions pertaining to day d. Observe that problem (4.3) differs
from the trader’s problem (IT) in that it maximizes an unconditional expectation of the profits
earned on day d and in that its decision variables may still adapt to information revealed prior
to day d.
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We will now use Lemma 4.22 from the appendix to show that flld(wd_l, w,) coincides with the
expectation of H{i(wd_ 1, Wa,&y@))- For notational convenience, we abbreviate the random
variables revealed before the beginning of day d as & g = &1y(a)) and those revealed in each hour
h=1,...,Hofdayd by ‘ffh] = &[y(a)+n)- Furthermore, we gather the hourly decisions of day d
in the vectors

d
xf = (se, ue, vl ) € L4 F ),

A
x;‘f = (8u@)+h Pu(d)+h» By (d)+h) € %3 Fu@w+n) Yh=1,..., H.
Using this notation, the profit earned on day d can be expressed more concisely as

Yrer @1 s+ (0} +pwD1 T ue + (ny + oYyl T v,

if (xgl Ve ,xl‘_ll) satisfies all P-almost sure

d (4.d d gd _
f (xo*""xH’g[H] - constraints of problem (4.3) in scenario ffH],

—00 otherwise.

Problem (4.3) can thus be represented abstractly as

d(d d gd
i | sup  E[f4(xg, ..., x5, )]
a\Wa-1,Wq) =
st x§ € LAY ), x! € LNFy@en) Vh=1,.., H.

By the extended interchangeability principle established in Lemma 4.22 in the appendix, we
thus find

sup E[f4(xg,... x4, &0,)18¢]

My (wa-1, wa) = E
st x§ eRHA xle LTy ya+m) Vh=1,...H

Unravelling the abbreviations shows that the stochastic program inside the expectation coin-
cides with the trader’s problem (IT), whose optimal value is given by Hld (Wa_1,waq, &) O

We will now show that the collective bidding model (C) admits a similar planner-trader de-
composition. Using the same slight overload of notation as before, we denote the end-of-day
reservoir filling levels as well as their lower and upper bounds as {wg}geo, (W lacp and
{wa}4eco, respectively. Adapting the water level constraints accordingly, model (C) admits the
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equivalent reformulation

sup  Xieg E[mfse+ O} + Py ue + () + pYy v
St So U, Vi € LT ), 8o Pz € LY F i), wa€ LN (Fy) VAED, VieT (d)

0<u;, 0<v;,0=<8,<8,0=p;<p;,, 0=z VdeP,Vte T (d), P-a.s.
se+plu—plvi=n.g - p: YdeD, Vte T (d), P-as.
w,<wg_+ Zi:l(d) ¢ +M(gr — pr +2;,) W, YdeD,Vte T (d), P-as.
Wq=Wa-1+Yreg(a)Pr+M(gr—pr+2) Vd e, P-as.
w,Swyg =Wy, Wo=<wp Vde9, P-as.,

(4.4)

where the end-of-day reservoir bounds in the last line are again redundant for now. They will
however be useful for strengthening the relaxation (4.5) below, which differs from (4.4) only in
that the daily flow-reservation constraints are imposed as inequalities rather than equalities.

sup  Yreg E[mys: + (v} + pyyue+ (ry + piy vi]
St St Uy U € LT ), §oPrz € LN Fin), wae LV Fay) VAED, VieT (d)

0<u;, 0<sv;,0=<8,<8,0=p;<p;,, 0=z Vde2,Vte T (d), P-as.
se+plu—plvi=n.g - p: Vde9,Vte T (d), P-as.
w,<wg_i+ Zi:ud) ¢ +M(g; — pr +2;) SW; YdeD,Vte T (d), P-as.
Wi =Wa1+Yreq @ Pr +M(gr — pr+20) Vde2, P-as.
w,Swyg =Wy, Wo=<wp Vd e, P-a.s.

(4.5)

The following proposition asserts that the two optimization problems (4.4) and (4.5) are
equivalent.

Proposition 4.4. The optimal values of problems (4.4) and (4.5) are equal.

Proof. Observe that (4.5) is a relaxation of (4.4). Using a very similar construction as in the
proof of Proposition 4.2, one can show that for every feasible solution of (4.5) one can construct
a feasible solution of (4.4) that attains the same objective function value. Details are omitted
for brevity. O

The relaxed collective bidding model (4.5) admits again a planner-trader decomposition.
Specifically, the planner determines the end-of-day reservoir levels by solving the stochastic
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program

sup Y aeo E[G(wa 1, wa, &yay)]

s.t. wg€ fR(g[T(d)]) VdeD
w,swgswy Vd e, P-as.

(CP)

wy < wp P-a.s.,

where the function Hg (wq-1,wq, &y (ay) evaluates the optimal value of the stochastic program

sup ¥ reqa E[m5s, + rl + plyu + @} + piy) v |y ]

s.t. S;, U, Vi €ER, g1, pr, 2t € $A(§[1(d),t]) VteT (d)
0<u;,0=<v,0=<g,<8,0=p;=<p;,0=2 Vie T (d), Pig g, -as.
st+p%u—pVvi=m]8-¢! p: Vie T (d), Pig g, -2as
W, Swy 1 +X]_| 4 Pr t Mg —pr+z) W, Ve T (d), Pigy-a-s.
Wi<Wg_1+Yreq @@ Pr +M(gr — pr +2;) P&y -@-S-

(CT)

solved by the trader on day d. As in the case of the individual bidding model, the planner-trader
decomposition is tight. This claim is formalized in the following proposition.

Proposition 4.5. The optimal values of problems (4.5) and (CP) are equal.

Proof. The proposition follows from an argument similar to the one in the proof of Proposi-
tion 4.3, involving Lemma 4.22 from the Appendix. Details are omitted for brevity. O

In conclusion, we emphasize that the proposed planner-trader decompositions both result in
exact reformulations of the underlying individual and collective bidding models (I) and (C),
respectively, and that they involve no approximations. These decompositions are useful
because the trader’s subproblems can be reduced to tractable linear programs under a mild
information restriction. Sections 4.4 and 4.5 detail this reduction for the individual and
collective bidding models, respectively.

4.4 Reduction of the Individual Trading Model

The individual trading problem (IT) constitutes an infinite-dimensional stochastic program
because it optimizes over functional flow decisions. Such problems are known to be intractable
in general (Dyer and Stougie 2006b, Hanasusanto et al. 2015a). In the remainder of this section
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we will show, however, that the stochastic program (IT) is equivalent to a finite-dimensional
linear program if the planner chooses the reservoir filling levels one day ahead of time. Note
that selecting w, at the end of day d—1 rather than the end of day d amounts to an information
restriction whereby the planner sacrifices potentially useful information revealed during
day d and thus foregoes some of the achievable expected profit. In other words, requiring
that the reservoir filling levels be pre-committed a day in advance leads to a conservative
approximation of the individual planning problem (IP). In Section 4.5 below we will impose
the same restriction on the collective planning problem (CP). For later reference, we formally
state this approximation below.

Approximation 4.6 (Information restriction). For every d € &, the decision variable w, in the
planning problems (IP) and (CP) is restricted to PR (Flt@a-n) = gR(g[U(d)]) c ER(g[T(d)]).

Under Approximation 4.6, the end-of-day reservoir filling level w,; becomes a measurable
function of &y (4);, which captures the information available to the trader at the beginning of
day d. Similarly, the natural inflows {¢p;} e (g) of day d were assumed to be predictable at the
beginning of the day and can therefore also be expressed as measurable functions of & ()).
Finally, the coefficients

E[771]an], E[0rf +piw1|&an] and E[Gr]+pyyD1|Eyay] VeI (d)

of the (here-and-now) bidding decisions {(s;, #;, 1)} ;eg () in the objective function of prob-
lem (IT) constitute measurable functions of &4 thanks to the properties of conditional
expectations. We may thus conclude that, once a particular realization of &) is fixed, the
individual bidding problem (IT) reduces to a multistage stochastic program with H+1 decision
stages, where the reserve activations {(p}, p})} ;e () are the only exogenous uncertain param-
eters affecting the constraints, and the objective function is independent of the (wait-and-see)
flow decisions {(g:, Pr, 20)} te T (d)-

Based on these insights, we should expect that, conditional on &), the wait-and-see deci-
sions {(g:, Pr, 21)} reg (@) can be restricted to measurable functions of the reserve activations
without sacrificing optimality. This additional information restriction gives rise to the opti-
mization problem

sup  E[Yreq @i’ se+ @} + ptyh 1T ws+ () + pwD1 v | €y ]

st U v R, g prz e LAF] ) ) Vie T (d)

0<u;,0=<v,0<8,<8,0=p,=<p;,, 0=z, Vieg(d), Pig iy -a-s- (4.6)
Ssc+piur—pjvi=n;08—&§iop; Vte T (d), Ple gy s ’

W, <wg_ +Z§:1(d) G +M(gr—pr+2)<sw; VieT (d), Py, -as.
Wi <Wq_1+YreqaPr + Mg —pr+2;) Pleya,-a-s-

where g{ﬂl @ = o({(p%, P} i -1@) denotes the o-algebra generated by the reserve activations

within the interval [] (d), f]. The following proposition establishes that problem (4.6) is indeed
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equivalent to the individual trading problem (IT), in spite of the additional information
restriction.

Proposition 4.7. Under Approximation 4.6, the optimal values of problems (IT) and (4.6) are
equal.

Proof. Proof Throughout this proof we will fix a realization of the contextual covariates & q)),
which reflects the trader’s information when solving problem (IT) for day d. Approximation 4.6
then implies that w;-; and w, reduce to deterministic constants. In addition, Pi¢, , becomes
an unconditional distribution. Below we will denote the expectation with respect to this
distribution by Ejg | . [].

As problem (4.6) is a restriction of problem (IT), it suffices to show that for every feasible solu-
tion {(s;, us, Vs, 81, Pt 20)} reg (@) Of (IT) there is a feasible solution {(s}, u}, v}, g}, P}, 2)} teg (a)
of (4.6) that attains the same objective value. Such a solution can readily be constructed as

(sp, Uy, v) = (s, ur,v7) and (g1, P12) = Ejgy, (86 P 20 (0T, 01 ()] VEET ().

The equality of objective values is immediate because the objective function only depends
on the bidding decisions, which are preserved. The non-anticipativity constraints g;, p}, z} €
££A(ffﬁ (). are also satisfied thanks to the defining properties of conditional expectations.
To show that the almost sure constraints hold, we recall first that the reserve activations are
serially independent and independent of all other sources of uncertainty. This implies that
{(pY, p‘,’)}TT:t +1 is independent of the non-anticipative flow decisions g;, p;,z; € ZA(E[ 1d),n)

under the distribution IP>|§W o that is

(81 P20 = Eigy 0 (86 P 20 HOY, 09V )] Pl -a-s- 4.7)

forall t € 7 (d). The feasibility of {(s}, u}, v}, g}, P}, 2))} tc 7 (a) in (4.6) therefore follows from the
feasibility of {(s;, us, v+, 81, Pr, 20)} reg (@) in (IT) and the linearity of the almost sure constraints
in (4.6), which implies that they all remain valid under conditional expectations. For example,
the new solution {(s}, u}, v}, g, P}, 2,)} teg (@) Obeys the end-of-day reservoir bound in (4.6)
because

wd = IEI{[U(d)] [wd | {(p]-i-l) p‘;)}g:l(d)
= Bigyay [Wd—l +Yreq @ Pr +M(gr — pr+20) | {0, 091 )

=Wg-1+ Zn—:f/‘(d) (PT +M(g; - p/r + Zé) Vie “O/—(d)’ P|§[U(dna‘s"

where the first equality follows from Approximation 4.6, whereby w, is deterministic when
f[u(d)] is kept fixed, the inequality holds because {(s;, #;:, Vs, 81, Pt 21)} e 5 (q) Satisfies the upper
reservoir bounds in (IT), and the last equality follows from (4.7). Thus, the claim follows. O
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Proposition 4.7 asserts that solving the infinite-dimensional stochastic program (IT) is tan-
tamount to solving the simplified stochastic program (4.6), which is in fact equivalent to a
finite-dimensional yet prohibitively large linear program. To see this, recall that the reserve
activations (p‘;, p}) have only three possible realizations (0,0), (1,0) or (0, 1) regardless of any
past information. Thus, the o-algebra 3?5 .1 generated by all reserve activations revealed
over the interval [| (d), t] accommodates 340 atoms. We conclude that any wait-and-see
decision in the space ££A(55[’I @
can therefore be uniquely encoded by A-3/"Y() parameters. As the linear stochastic pro-

) is piecewise constant with up to 3:"4(?) pieces in R* and

gram (4.6) encompasses H + 1 stages overall (one here-and-now stage and H wait-and-see
stages), it is equivalent to a linear program with @ (A -3") decision variables and constraints.
Thus, its supremum is attained whenever the problem is feasible (which may not be the case
for some end-of-day reservoir targets w,;) and bounded (which is always the case because the
generation and pumping capacities induce bounds on the market decisions).

We now simplify problem (4.6) in two steps and show that it has the same optimal value as a
much smaller, efficiently solvable linear program. In the first step we add valid inequalities to
problem (4.6), which are needed to ensure that the subsequent simplifications incur no loss of
optimality.

Proposition 4.8. Any feasible solution of (4.6) satisfies s, — v, = —{;op, forall t € I (d).

Proof. Any feasible solution of the stochastic program (4.6) satisfies the energy delivery con-
straint s; + pYu, — pjv,=1n,08,—§,op; forall t € T (d) Py, ~almost surely. Similarly, for
any t € 3 (d), we have that g; = 0 and p; < p, P, -almost surely. In combination, these
inequalities imply

St+prur—pivi =108 ~8opr2-§op2-§op, VteT (d), Py, -as.
As the scenario (pY, p) = (0,1) has strictly positive probability under P ¢, , we thus find
S[_V[Z—Ctoﬁt VIELO/—(d),

which proves the statement. O

By Proposition 4.8, the deterministic inequalities s; — v; = —{, o p, are valid for all t € I (d)
and can therefore be appended to problem (4.6) without affecting its feasible set. Observe that
s;+§;op, comprises the arc-wise maximum bids in the reserve-down market on which the
company can deliver in case of a call-off. To see this, note that s; , is the amount of energy
produced on arc a for the spot market and that {; ,p, , represents the maximum amount
of energy that can be absorbed on arc a by pumping. In case of a call-off on the reserve-
down market, the energy production on arc a can thus be reduced at most by s; 4 +{;ap,,.
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Appending the valid inequalities to (4.6), we obtain

max E[Yjeq @il s+ @+ oty u + @)+ pYy N1 v | €y ay]

st spun v eRY, grprnz e LAF] ) ) VieT (d)
0<u;,0<v,0=8,<8,0=p;<p, 0=z VieT(d),Pg,, as.
st+piur—pivi=mi08:—&op;: Ve T (), Pigy-as. (4.8)
si—v=2-§iop, VteT (d)

W, <wq_ +Zi:1(d) G +M(gr—pr+2)<w; VteT (d), Py, -as.

Wy = Wi+ reqq)Pr + Mg — pr +2;) Pigya-a-s.
which is equivalent to problem (4.6) by virtue of Proposition 4.8.

Next, we show that problem (4.8) is equivalent to the reduced stochastic program

max  E[Yieq@milT s+ () + iyl ue+ () + oYy v [ Epyan]

s.t. S Uy, vte[RA, gt,pt,zte[RA VteT (d)
O0<u;, 0<=v,0=<8,<g,0=p;<p;, 0=z, VieT(d)
Si+tur=mi08—rop; VieJ (d) aIT")
S;—vr=-§0op; Vte I (d)
ytswd_l+Z£:l(d)¢T+M(gT—pT+zT)Swt VteT (d)

Wi <Wq1+Yreq @ Pr+ Mg —pr+2;).

Problem (IT") involves only here-and-now decisions, and its constraints are deterministic
conditional on &y 4). In fact, it constitutes a linear program with G (A- H) decisions and
constraints.

Proposition 4.9. Under Approximation 4.6, the optimal values of (4.8) and (IT") are equal.

Proof. We will prove the proposition by showing that every feasible solution of problem (4.8)
corresponds to a feasible solution of problem (IT") with the same objective value and vice
versa.

To prove the first direction, fix any feasible solution {(st, U, Vs, 8n P zt)} 1T (d) of prob-
lem (4.8) and an arbitrary realization of the contextual covariates &;;4). Then, there exists
an event Qg € & with PMW o) [Qo] = 1 such that all constraints of (4.8) are satisfied pointwise
for all w € Q. Next, select any sample wg € Qg with p} (wo) =1 and p}(wo) = 0 for all r € T (d).
Note that the set of all samples satisfying these conditions has a positive probability (and is
therefore non-empty) by our assumptions about the statistics of the reserve activations. Next,
define deterministic flow decisions g} = g;(wo), p} = p:(wo) and z; = z;(wo) for all t € T (d).
One readily verifies that {(s;, u, v7, 8}, P}, 2))} ;e 5, 18 feasible in (IT") because the constraints
of the stochastic program (4.8) corresponding to scenario wy coincide with the constraints of

the deterministic linear program (IT"). Also, the objective value of {(s, us, V¢, &}, P}, 2))} ¢ T
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in (IT") coincides with that of {(s;, u, v1, 81, P1, 20} ¢ 7@ in (4.8) because the two solutions
involve identical market bids.

To prove the opposite direction, we fix any feasible solution {(st, Uu;, Vs, 8t szt)}te T @ of
the reduced trader’s problem (IT"), and by Lemma 4.23 in the appendix we may assume
without loss of generality that this solution satisfies the complementarity constraints g;op; =0
for all t € 9 (d). We will argue below that one can systematically construct flow decisions

{(8), P} teg(a) that satisfy

8taPra€ L Fl 4 ) (4.92)
0=8/4=81a Plg ) -2-S- (4.9b)
0= pla<Pra P&y -a-S- (4.90)
Mt,a8t,a~CraPta= Sta+ PilUa=PiVia Plé 0 -a-S- (4.9d)
8ta~Pra=<8ta=Pra Plg 0y -2-S- (4.9¢)

forall te 9 (d) and a € . As g1,qapt,a = 0, we can distinguish two cases for each hour-arc pair
(¢, a), which necessitate two different constructions of the corresponding flows g;y , and plz, a

Casel (g;,,=0):

We set g, =0 and p; , = — (51,0 + P} Ur,a — PV1,a)/{1,a. It is easy to verify that (g} ,, p} )
satisfies (4.9b) and (4.9d). The non-anticipativity constraints (4.9a) are also met because the
reserve activations p‘; and p} are revealed in hour ¢. In order to establish (4.9¢) and (4.9e), we
first observe that the given feasible solution of the reduced trader’s problem (IT") satisfies

StatUna=Nra8ta—CraPra = Pra=—(Sta+Urall1a

where the implication holds because g;, = 0. As p} <1 and as p}, u;, and v, , are non-
negative, we may thus conclude that p; , < p’t, +- Hence, the constructed pumping decision
p’ty o meets requirement (4.9e). Finally, requirement (4.9¢) is satisfied because 0 < p; , < p’t’ a
and because

! _ u \ —
Pra=—Gratpruta=— PV ta < —(Sta—V,a)/Ct,a <Pt o

where the second inequality follows from the valid cut derived in Proposition 4.8, which
constitutes one of the constraints of the reduced trader’s problem (IT"). Thus, g; , and p; ,
satisfy (4.9).

Case 2 (g;,, > 0):

We set g;,a =(Sta+PiUra— P} Vi,a)/Mt,q and p;f,a =(Sta+PiUta— P Vt,a)” /{1a- These flow
decisions manifestly satisfy the non-anticipativity constraints (4.9a).
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If$t,0+p}Uta— P{V1a <0, then we have g, , =0and p; , = (51,0 + P} Ut,a = P} V1,a) /1,0, and
one can proceed as in Case 1 to show that the requirements (4.9b)—(4.9¢) are met. From now
on we may thus assume that s; 4 + p} 1,4 — pyVs,q > 0, in which case g;’u = (Stya+ P} Ura—
PY{V1a)/Nq and p’t’ « = 0. Note first that the requirements (4.9c) and (4.9d) are trivially met.
We further find that

8ra = Sta+PtUna=Pivea)/Mia < (Sta+Unad)Mia = 8a<8ra (4.10)

where the second equality follows from the constraint s; , + t;,4 = 7¢,a8t,a — {t,aPr,a Of prob-
lem (IT") and the complementarity condition g; ,p:,, = 0, which implies that p; , = 0. Hence,
requirement (4.9c) is satisfied. Finally, as p’t' a = Pt,a = 0, the inequality (4.10) also implies
that requirement (4.9e) is met. Thus, g;y « and p', , satisfy again all of the requirements listed
in (4.9).

Given the flow decisions {(g;, p’t)}t€ 7@ constructed above, we are now ready to introduce
compatible spill decisions z} = z; + (8; — p) — (g;— p}) for all t € I (d). In the remainder of the
proof we will demonstrate that the constructed solution {(s;, u;, v, g}, p}, z})} is feasible

in (4.8).

teJ (d)

Note first that we need not be concerned with the constraints that only involve the market
decisions {(s;, U, V/)} ;e (4), Which are trivially satisfied because {(s;, u;, v, 8¢, Pt 20)} te T ()
is feasible in problem (IT"). Moreover, all constraints of problem (4.8) that do not involve
the spill decisions are satisfied because of (4.9). It remains to verify that the spill decisions
are non-anticipative as well as non-negative and that the reservoir-balance constraints are
satisfied. To this end, we note first that z, inherits non-anticipativity from g and p}. Simi-
larly, z} inherits non-negativity from z, thanks to (4.9e). Finally, we highlight that (g}, p}, z})
impacts the reservoir balance constraints only through the net water outflows g; — p} + z,
which coincide with g; — p; + z; by the construction of z;. This guarantees via the feasibil-
ity of {(st, U, Vs, 81, Pt z,)}t€ T ) in (IT") that the reservoir balance constraints are satisfied.
Therefore, {(s;, ur, V1, 81, Py 21} e () 1S indeed feasible in (4.8).

The claim now follows because {(s;, U, V1, 81, P1, 20} ;e g (q) a0d {(St, Ur, V1, 81, P 20} e ()
share the same market decisions, which implies that these two solutions attain the same
objective values in their respective optimization problems. Thus, we can always find a feasible
solution of (4.8) that attains the same objective value as any feasible solution of the reduced
trader’s problem (IT"). O

In summary, the results of this section show that, as long as the end-of-day reservoir levels
are fixed a day in advance, the infinite-dimensional trader’s problem (IT) is equivalent to the
tractable linear program (IT"), whose size scales linearly with the number A of arcs in the
reservoir system and the number H of hours per day. This key insight is formalized in the
following theorem.
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Theorem 4.10. Under Approximation 4.6, the optimal values of (IT) and (IT") are equal.

Proof. This is an immediate consequence of Propositions 4.7, 4.8 and 4.9. O

Proposition 5 Proposition 6 Proposition 7
(YY) u e ———— jor IRNCNG) N u——— ™ 4.8) |« > (ITH

Figure 4.1 - Illustration of the relations between different versions of the trader’s problem.
Dashed arcs represent trivial relaxations, and solid arcs represent non-trivial implications
proved in the referenced propositions.

The relations between the various optimization problems studied in this section are illustrated
in Figure 4.1. Every arc encodes a relation A < B, where A and B represent the optimal values
of the problems at the arc’s tail and head, respectively. Dashed arcs indicate trivial relaxations,
and solid arcs represent non-trivial implications proved in the referenced propositions.

We emphasize that the constant decision rules corresponding to the deterministic optimal flow
decisions {(g:, P+, z1)} reg () of problem (IT") fail to be optimal in (IT). In fact, any constant
decision rules are infeasible in (IT) unless the trader is inactive on the reserve markets. To see
this, assume to the contrary that u#; # 0 or v; # 0 for some ¢ € 9 (d), in which case the left-hand
side of the energy delivery constraint for hour ¢ in problem (IT) is uncertain with different
realizations for different reserve activations, while the right-hand side is deterministic. Thus,
restricting the wait-and-see decisions in (IT) to constant decision rules would force the reserve
market bids u#; and v; to zero for all ¢ € 9 (d), thus resulting in a useless approximation of the
trader’s original problem (IT).

Even though naively interpreting the optimal solutions of (IT") as constant decision rules
fails to provide feasible, let alone optimal, policies for (IT), it is possible to efficiently convert
the optimal solutions of the tractable linear program (IT") to optimal solutions of the multi-
stage stochastic program (IT). For later use, we describe this transformation in the following
corollary.

Corollary 4.11. Under Approximation 4.6, if {(st, u;, vt,gt,pt,zt)}teg_(d) is optimal in (IT")
and satisfies g; o p; = 0 for all r € I (d), then {(s¢, u;, vt,g;,p’t,z;)}teg_(d) is optimal in (IT),
where

0 ifg[’a =0,

/

8ta= .
¢ { (Sta+P%Ua—P V) Mea i£8,a>0,

) ~(Stat+Piuta= P V) Cta ifg1a=0,
Pta=

(Sta+pPrUta=P{Vea) I$ta  £81a>0,
and z; = z; — (g8} — py) + (8 —py) forall t € T (d).
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An optimal solution of problem (IT") satisfying the complementarity conditions g;o p; =0 is
guaranteed to exist by Lemma 4.23 in the appendix. The proof of this lemma also reveals how
an arbitrary feasible solution of (IT") can be converted to another feasible solution with the
same objective value that satisfies g; o p; = 0 by using elementary algebraic manipulations.

Proof of Corollary 4.11. From the proof of Proposition 4.9, we know that {(s;, u;, v, g/, p}, z,)} e T (d)
is feasible in problem (4.8), which implies that it is also feasible in the relaxations (4.6) and
(IT) of problem (4.8). Evidently, {(s, s, v1, g1, P}, 21)} e 54y Attains the same objective value
across all these problems because all of them display the same objective function, which
only depends on the bidding decisions {(s;, #;, v/)}e5 (g)- Theorem 4.10 thus implies that

(sy,us, v, 8, P, 20)} . oy is not only feasible but also optimal in problem (IT). O
8vPr2fteT y

In the remainder of this section we leverage Theorem 4.10 to construct a restriction of the indi-
vidual bidding model (I) that is susceptible to further approximations and numerical solutions.
To this end, note first that Approximation 4.6 restricts the planner’s original problem (IP) to

sup Y aen E[IT, (w1, wa, &)

s.t. wg€ S%R(gw(d)]) VdeD
w,swg<wy Vd e, P-as.

(IP")
Wy < Wwp P-a.s.,

where the end-of-day reservoir levels w, are chosen one day in advance and thus adapt to
information available at time |} (d). Under this information restriction, Theorem 4.10 allows
us to compute the optimal value Hii (wq-1,wq,&y(ay) of the trader’s problem (IT) by solving
the linear program (IT"). This insight further enables us to prove that the planner’s reduced
problem (IP") is equivalent to

sup Y g E[AS1 s+ T+ 71" vy

st s, v € LNFT), 8Pz € LNFT), wae LM F ) VdeD, Ve T (d)

0<u;,0=<v;,0=<g8,<8,0=<p;<p,, 0=z VdeP,Vte T (d), P-a.s.
Sttur=m08:—8ropy, Si— v =-§0p, VdeD, Vie T (d), P-as. ([N
w,swg_, +Z§:l(d)¢T+M(gT—pT+zT) <w,; VYdeD, Vte T (d), P-as.
Wi =<Wg_1+Y req @) Pr +M(gr — pr +2;) Vde9, P-as.
W ,<wg<wgy, Wy=<wp Vde2, P-as,,

where

iy =E[n | &y, &Y =E[n}+ ot} | Eyen] and 7Y =E[x]+piy]|Eyw] Vied.

Problem (I") can be viewed as a reduction of the original individual bidding model (I).

Theorem 4.12. The optimal values of the problems (IP") and (I") are equal, and they are
smaller than or equal to the optimal value of problem (I).
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Proof. From Propositions 4.2 and 4.3 we know that the individual bidding model (I) has the
same optimal value as the planner’s problem (IP), and it is easy to see that problem (IP") is
obtained by applying Approximation 4.6 to problem (IP). As this approximation consists in
restricting the planner’s information structure, the optimal value of problem (IP") is no larger
than that of problem (I). It remains to be shown that (IP") and (I') share the same optimal
value. As Approximation 4.6 is in force, we may conclude via Theorem 4.10 that the optimal
value H;(wd_l, wg, &) of the stochastic program (IT) coincides with the optimal value of
the linear program (IT"). Substituting (IT") into (IP") and using Theorem 14.60 by Rockafellar
and Wets (2010) to move the maximization over the trading and flow decisions out of the
expectation and the sum finally yields (I"). O

The individual bidding model (I) and its reduction (I') differ in the following aspects.

* In problem (I) the market decisions (s;, #;, v;) are adapted to information that is avail-
able at the beginning of day d(t), while the operational decisions (g;, p;, z;) are adapted
to real-time information. In contrast, in (I") these decisions are taken under perfect
information.

¢ Problem (I) has random recourse because the reserve market bids in the energy delivery
constraints are multiplied by the uncertain reserve activations. In contrast, problem (I")
has fixed recourse because all reserve activations were eliminated from the constraints.

¢ Problem (I') accommodates the valid cuts derived in Proposition 4.8, which are absent
in (I).

We highlight again that problem (I") was obtained from the original individual bidding
model (I) by applying a single information restriction, whereby the end-of-day reservoir
levels must be chosen one day in advance. No other approximations have been applied.

4.5 Reduction of the Collective Trading Model

Armed with a profound understanding of the individual bidding model (I), we are now ready
to analyze the more flexible collective bidding model (C). Using a similar reasoning as in
Section 4.4, we will show that the trader’s problem (CT) can again be reformulated as a
tractable linear program if the reservoir targets imposed by the planner are chosen a day
in advance. We thus subject the planner’s problem (4.5) to the information restriction of
Approximation 4.6, which reduces the achievable expected revenue but makes the feasible set
of the trader’s problem (CT) independent of all exogenous uncertainties except for the reserve
activations {p}, p}}reg (@) As the objective function of (CT) depends only on the bidding
decisions {(sy, Uy, V1)}eg (4), We may restrict the operational decisions {(g;, pr, 21)} reg (a) 1O
depend only on the reserve activations without sacrificing optimality. Doing so results in the
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following variant of the trader’s problem,

sup  E[Xjeq @ w58+ () + ptyu, + () + pYw ve | §yan]

st.  SspunVieR, g, przr€ ££A(97[‘I(d)yt]) Vte I (d)
0<u;, 0=v;,0=<g8,<8,0=<p;=<p,,0=2; VieT (d), P, -as @11)
st+p‘;ut—p‘t’vt=njg[—&';pt VieT (d), Pigy-as. .

W, <wq_ +Z£:1(d) ¢ +M(g: —pr+2z;) <w,; V€T (), Pigy-a-s.

Wyg<wgi-1+Yreq @) P +M(gr—pr+20) Pie iy -a-s.

where gﬁ(d),r] is again defined as o ({(pY, p‘,’)}izl(d

tion of the trader’s problem (CT), their optimal values can be shown to coincide.

))- Even though (4.11) constitutes a restric-

Proposition 4.13. Under Approximation 4.6, the optimal values of (CT) and (4.11) are equal.

Proof. As in the proof of Proposition 4.7, one may condition any feasible solution of prob-
lem (CT) on the history of reserve activations to construct a feasible solution of problem (4.11)
that adopts the same objective value. Details are omitted for brevity. O

Proposition 4.13 reduces the infinite-dimensional stochastic program (CT) to the much sim-

p
[l(d),1]
all £ € 7 (d), one readily verifies that problem (4.11) is equivalent to a prohibitively large linear

pler stochastic program (4.11). By counting the atoms of the underlying o-algebras %, for
program with G(A- 3H) decision variables and constraints. In analogy to Section 4.4, however,
we can apply two additional simplifications, which will reveal that problem (4.11) is indeed
also equivalent to an efficiently solvable linear program with & (A - H) decision variables and
constraints. As a first step towards this goal, we derive a family of valid inequalities that may
be appended to problem (4.11).

Proposition 4.14. Any feasible solution of (4.11) satisfies s; — v; = - Tﬁt forall t € 9 (d).

Proof. The proof widely parallels to that of Proposition 4.8 and is thus omitted for brevity. O

The valid inequalities of Proposition 4.14 characterize the maximum bids on the reserve-
down market (collectively across all arcs of the reservoir system) that can be honored under
all possible realizations of the reserve activations. Appending these valid inequalities to
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problem (4.11) yields

max  E[ Y eq a5+ ) + ot u+ 0} + oYy ve | Erycay]

st.  SpunViER, 81 Pr 2 € ,%A(,@[‘I(d)’t]) Vte T (d)
O0<u;,0=sv;,0=<g8;,<8,0<p;<p, 0=z, VieT (d), Py, -as.
se+p%u—pVve=n, g~ p: Vie T (d), Pigyyy-as.  (4.12)
si—v=2-¢'p, Vie T (d)

w,<wi +Z£:1(d) ¢ +M(g; — pr+2z;) W, Ve T (d), Pgy,,-a.s.

W< Wq-1+Yreq(d) P +M(gr— pr+21) Pl gy -a-s-
which is equivalent to problem (4.11) by Proposition 4.14.

Next, we show that problem (4.12) is equivalent to the reduced stochastic program

max E[Y eq @ m5s+ @+ plyDus + (@@ + oYy ve | Eya ]

s.t.  S,un UV ER, gt,pt,zte[RA VteJ (d)
0<u;,, 0=v;,0=<8,<g8,0=<p;,<p; 0=z, VteT (d)
sc+ur=n;8-¢ p: Vie T (d) (CTH
Si—vi 2§, p; VteT (d)

w,Swi +z§:l(d)¢,+M(g,—p,+z,) <w; Vte T (d)

Wqg=Wgq_1+ Zreﬂ‘(d) ¢ +M(g; — pr + z;),

Like problem (IT"), problem (CT") involves only here-and-now decisions, and its constraints
are deterministic conditional on &[(4). In fact, it constitutes a linear program of size G (A - H).

To demonstrate that problems (CT") and (4.12) share the same optimal value, we develop a
fundamentally new proof strategy that establishes a link to the individual bidding models
studied in Section 4.4. Specifically, using techniques familiar from Proposition 4.9, we first
show that the optimal value of (CT") is larger or equal to that of (4.12) (see Proposition 4.15
below), and then we develop a new duality argument to prove that the optimal value of (IT")
is larger or equal to that of (CT") (see Proposition 4.16 below). This new approach is needed
because the aggregation of arc-wise market bids into a single collective bid in the energy deliv-
ery constraints and in the valid inequalities of Proposition 4.14 make it difficult to construct a
feasible solution for problem (4.12) from a feasible solution of problem (CT") by using similar
arguments as in the proof of Proposition 4.9.

Anticipating the results of Propositions 4.15 and 4.16, the relations between the various
variants of the trader’s problem studied so far are illustrated in Figure 4.2. Every arc encodes
arelation A < B, where A and B represent the optimal values of the problems at the arc’s
tail and head, respectively. Dashed arcs indicate trivial relaxations, and solid arcs represent
non-trivial implications proved in the referenced propositions. Interpreting Figure 4.2 as a
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Figure 4.2 — Illustration of the relations between different variants of the trader’s problem.
Dashed arcs represent trivial relaxations, and solid arcs represent non-trivial implications
proved in the referenced propositions.

directed (multi)graph, we note that Propositions 4.15 and 4.16 complete a counter-clockwise
loop that visits each node, which implies that the optimal values of all optimization problems
are in fact equal. This implies in particular that the more flexible collective bidding model
does not generate higher revenues than the individual bidding model. We will discuss this
insight in more detail after proving Propositions 4.15 and 4.16.

Proposition 4.15. Under Approximation 4.6, the optimal value of problem (CT") is larger or
equal to that of problem (4.12).

Proof. The claim follows from a simple adaptation of the corresponding argument in the proof
of Proposition 4.9 and can thus be omitted for brevity. O

Proposition 4.16. Under Approximation 4.6, the optimal value of problem (IT") is larger or
equal to that of problem (CT").

Proof. The claim follows if we can show that for every feasible solution of problem (CT")
there exists a feasible solution of problem (IT") that attains the same objective value. To this
end, we select an arbitrary feasible solution {(s;, us, V¢, 8, Pt» Z21)} e (a) Of problem (CT") and
aim to show that problem (IT") admits a feasible solution {(s}, &}, v}, &+, P+, 2:)} re 7 (a) With the
same flow decisions that satisfies lTs’[ = s lTu’t = u; and lTv’t = v, forall t € 9 (d). These
identities ensure that the two solutions adopt the same objective values in their respective
optimization problems.

As the flow decisions {(g:, pr, 21)} reg () are preserved, their upper and lower bounds as well
as the reservoir level constraints are trivially satisfied. It thus suffices to show that there exist
individual market bids {(s}, u}, v})} ;e (q) that are consistent with the prescribed collective
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market bids {(s;, U, Vr} e (@) and that satisfy all remaining constraints of problem (IT"), that
is, the non-negativity constraints, the energy delivery constraints, and the valid inequalities
from Proposition 4.14. Formally, such individual market bids exist if and only if the optimal
value of the feasibility problem

min 0
st sieR, u,eR?, v, eRrs
1'sl =5, 1Tu,=u, 170, = v, (4.13)
sptuy =108 -§op;
s —Vi==§iop;
vanishes for each hour ¢ € 9 (d), provided that {(s;, u;, Vs, 8¢, Pt> 21)} reg (a) is feasible in (CT").
Assigning dual variables a, B,y € R to the consistency constraints for the market bids, A € R4

to the energy delivery constraints and p € R? to the valid inequalities from Proposition 4.14,
the linear program dual to the above feasibility problem can be represented as

max as;+Pus+yve+ATmog—§op) —p' Copy)

st. a,ByeER AeRA, peR?
al+A+u=0 (4.14)
Bl1+A<0
Y1-pu=<0.

Strong duality holds because the feasible set of the dual problem contains the origin. In the
remainder we will argue that the objective value of any feasible solution (a, 8,7, A, p) of the
dual linear program (4.14) is bounded above by 0. To this end, we define y = minge s g =0
and note that combining the first two constraints in (4.14) yields (8 — a) 1- [ <0, which in
turn implies that f — a — p < 0. We thus find

as;+Bu+yvi+ AT mogi—Eop) —p' 0P,

= as;+Pus+yve+ (A+ﬂ)T(ﬂt°gt_Ct°pt) —MT(TltOgt'*‘Cto(ﬁt_Pt))

< as+Pu+yvi—amig & p)—p; g +& B, —po)

= asg+Pur+yvi—als;+u) — pls, +ug + $ip)

= (B-a—pue+yve—pls +$0P)

< (B-a-pui+pw-si—§P) <0,
where the first inequality exploits the relations A + p = —al (by the feasibility of a, A and u
in (4.14)) and p1 < p (by the construction of p) together with the non-negativity of g; and
P: — p: (by the feasibility of g; and p; in (CT")). The second equality follows from the energy

delivery constraints in (CT"), and the second inequality holds because y < u (by the feasibility
of y in (4.14) and the construction of y) and v; = 0 (by the feasibility of v; in (CT")). The last
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inequality, finally, follows from our earlier observations that f —a — y <0 and ¢ = 0 combined
with the relations u; =0and v, — s, - { Iﬁt < 0 (by the feasibility of s;, u; and v; in (CT")).

In conclusion, we have demonstrated that the optimal value of the dual feasibility prob-
lem (4.14)—and thus also that of its primal counterpart—must vanish. As our arguments hold
for any feasible solution {(s;, us, Vs, 81, Prr 21)} teg () Of (CT') and for any ¢ € I (d), the claim
follows. O

The results of Sections 4.4 and 4.5 as visualized in Figure 4.2 culminate in the following main
theorem.

Theorem 4.17. Under Approximation 4.6, the optimal values of the trader’s collective bidding
models (CT) and (CT") and the trader’s individual bidding models (IT) and (IT") are all equal.

Proof. By construction, the problems (CT) and (CT") are relaxations of the problems (IT)
and (IT"), respectively. This is because the energy delivery constraints in the collective bidding
models can be obtained by aggregating those in the individual bidding models over all arcs
a € &/. In view of this, Proposition 4.16 implies that the optimal values of (IT") and (CT") are
in fact equal. From Theorem 4.10 we further know that problem (IT) also shares the same
optimal value. Finally, as problem (CT) is a relaxation of (IT) and as Propositions 4.13, 4.14
and 4.15 imply that the optimal value of (CT) is smaller or equal to that of (CT"), we conclude
that (IT) displays also the same optimal value as (CT) and (CT") (and (IT")). This observation
completes the proof. O

In the remainder we use Theorem 4.17 to simplify the collective bidding model (C). To this
end, note first that Approximation 4.6 restricts the planner’s problem (CP) to

sup Yiew [E[Hg(wd—bwd,f[u(d)])]

s.t. wgye€ gR(g[U(d)]) YdeD (CPr)
w,swg<wy Vd e, P-as.
wy < wp P-a.s.

Theorem 4.17 thus allows us to compute the optimal value Hg(wd_l, wg, &) of the trader’s
problem (CT) by solving the linear program (CT"). One can also show that (CP") is equivalent
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to

sup Yieq E[ASsi+AY 1 Tu+ 7717 vy

st S,V € LT, 8Pz € LNF ), wae LX(F ) VdeD, Ve T (d)

0<u;, 0=v,0=<8;,<8,0=p;=p,, 0=z VdeP, Vte T (d), P-as.
S+ U= nIgt—CtTpt, Sp—Up = —Cjﬁt Vde9, YVte T (d), P-a.s.
W swa 1+ Y|, $r + Mg —prt+z) SW, VdeP, Vte T (d), P-as.
Wy <Wq_1+Yreq @ Pr + Mg — pr+2;1) Vd e, P-as.
W ;Swyg<Wq, Wo=<wp Vde9, P-as.,

(&)

where 7}, 7} and 7} are defined as in Section 4.4. Problem (C') can be viewed as a reduction
of (C).

Theorem 4.18. The optimal values of the problems (CP") and (C") are equal, and they are
smaller than or equal to the optimal value of problem (C).

Proof. The proofis similar to that of Theorem 4.12 and thus omitted. O

The collective bidding model (C) differs from (C") in the same way as the individual bidding
model (I) differs from (I"). Specifically, in contrast to (C), the reduced collective bidding
model (C") has fixed recourse, and all market bids and flow decisions in (C") are taken under
perfect information. Unlike problem (C), its reduction (C") further accommodates the valid
inequalities derived in Proposition 4.14. Note that (C") was simply obtained from (C) by
applying Approximation 4.6.

4.6 Numerical Solution of the Reduced Collective Bidding Model

Approximation 4.6 allowed us to reduce the individual bidding model (I) to (I') and the col-
lective bidding model (C) to (C"). The reduced models (I') and (C") still constitute infinite-
dimensional linear programs over spaces of measurable functions, and thus there is little hope
to solve them exactly. Key advantages of the reduced models (I') and (C") over the respec-
tive original bidding models are that they have fixed recourse and that all market bids and
operational decisions are taken under perfect information, while only the reservoir targets
obey complicating non-anticipativity constraints. Below we will show that (I') and (C") can be
addressed with standard techniques.

From Theorem 4.17 we know that, under Approximation 4.6, the individual and collective
bidding models generate the same expected revenue, which implies that the hydropower
producer should have no strict preference for either of these models. In the remainder of
the paper, we will thus focus on the collective bidding model, which has the advantage of
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reflecting standard market practice. To make problem (C") amenable to numerical solution,
we further reduce it to a two-stage stochastic program by restricting the reservoir filling levels
to parsimonious affine decision rules that depend on the observable random parameters only
through a few judiciously chosen features.

Approximation 4.19 (Affine Decision Rule Restriction). For all d € &, the end-of-day reservoir
filling levels are representable as

Wi=Ag+ Py (XreqayP:)+¥a (Zl:dfl) ‘Pr) +pa(F Lrea @)

for some fixed vectors A4, g € RR and matrices ®;, ¥ ; € RE*E,

Approximation 4.19 restricts the reservoir filling levels at the end of day d to affine functions
of the following features: (i) the cumulative natural inflows into the reservoirs across day d,
(ii) the cumulative natural inflows into the reservoirs across the planning horizon until the
end of day d — 1 and (iii) the average spot price on day d. The proposed affine decision
rules are parsimonious as they compress the history of all observations into a few relevant
features, but they are flexible enough to allow the planner to set different reservoir targets
for wet and dry days, for wet and dry seasons as well as for high- and low-price days. Thanks
to our standing assumptions, all of the proposed features are observable at the beginning of
day d, and therefore the non-anticipativity conditions w, € £*(Z v, d €2, imposed by
Approximation 4.6 are automatically satisfied.

Note that Approximation 4.19 restricts the functional form of the reservoir targets, and thus
it results in a conservative lower bound on the optimal value of problem (C"), which itself
underestimates the optimal value of the original collective bidding model (C) by virtue of
Theorem 4.18. We further emphasize that Approximation 4.19 reduces problem (C') to a a
two-stage stochastic program with here-and-now decisions A4, g € Rf and @4, ¥ ; € RR*R,
d € 9, which are chosen without any information about &7}, and with wait-and-see decisions
e, Up, U € L(Fi7)) and gy, pr, 21 € LA(F 1), t € T, which are chosen under perfect infor-
mation about &;7}. The emerging two-stage stochastic program can then be solved with the
popular sample average approximation (Shapiro et al. 2009).

Approximation 4.20 (Sample Average Approximation). The original probability measure P is
replaced with a discrete empirical measure P = % zan:l 0,m, where 6 ,,m stands for the Dirac
point mass at ™, and where 0™ € Q, n =1,..., N, constitute independent samples from P.

We emphasize that, even though we use an empirical probability measure P when solving the
decision rule approximation of problem (C'), the conditional expectations 7}, 7} and 7} in
the objective function of (C") are pre-computed under the original measure P.

Affine decision rule approximations are now routinely used in linear adjustable robust op-
timization (Ben-Tal et al. 2004b) and linear multistage stochastic programming (Chen et al.
2008). If the uncertain problem parameters are supported on a conic representable set, then
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the best affine decision rules can be computed exactly by solving a tractable convex program.
For general uncertainty sets, the best affine decision rules can still be computed approximately
via sampling techniques. This idea has been investigated by Vayanos et al. (2012) and Bodur
and Luedtke (2018) in the context of robust optimization and stochastic programming, respec-
tively. If all wait-and-see decisions are restricted to affine decision rules, then the original
multistage problem reduces to a one-stage problem. Better approximations can be obtained by
restricting only a subset of decision variables (the state variables) to affine decision rules while
retaining the flexibility of the remaining ones (the recourse variables). If the state variables
are chosen so that the optimization problem decouples temporally, then Bodur and Luedtke
(2018) argue that the original multistage problem reduces to a two-stage problem where the
decision rule coefficients of the state variables and the values of the recourse variables are
determined in the first and the second stage, respectively. In our context, the end-of-day water
levels can be chosen as the state variables and the bidding and flow decisions as the recourse
variables, respectively. Under the Approximations 4.6 and 4.19, Theorem 4.18 again ensures
that the resulting two-stage approximation enjoys a fixed recourse.

While the collective bidding model (C) determines a policy for the entire planning horizon 2,
in practice one solves the problem repeatedly in a rolling horizon fashion and each time
only implements the decisions of the first day for the following reasons: (i) The true state
of the world w may differ from all discretization points @™, n = 1,..., N, of the empirical
measure P, and thus the sample average approximation does not provide any recourse deci-
sions corresponding to w. (ii) Problem (C) only models a finite time window of the perpetual
operation of the reservoir system, which adversely affects the decisions towards the end of the
planning horizon 2. (iii) Resolving problem (C) on a daily basis ensures that the end-of-day
reservoir targets adapt to all available information, and it reduces the conservatism of the
affine decision rule approximation.

In the following we describe two complementary approaches for approximately solving the
collective bidding model (C) and for constructing near-optimal market and operational deci-
sions for the first day of the planning horizon. Both approaches first solve the linear program
obtained by applying Approximations 4.6, 4.19 and 4.20 to problem (C) and record the optimal
reservoir targets w; for the end of day 1. Note that w; is deterministic by virtue of Approxi-
mation 4.6. Next, both approaches solve the linear program (CT") for d = 1 with inputs wy
and w;, which is equivalent to the trader’s problem (CT) on day 1, and record the optimal
collective market bids {(s;, s, V)} e (1)-

From now on the two approaches proceed differently. The first—naive—approach solves
the linear program (4.13) to compute for each hour t € 9 (1) a set of individual market
bids (s, us, v;) that are compatible with the given collective market bids (s, #y, v;). Recall
that problem (4.13) is guaranteed to be feasible by Proposition 4.16. The resulting solution
{(S:,Us, Vs, 81, Pty Z1)} e (1) i optimal for problem (IT") and can thus be converted to an opti-
mal solution {(s;, u;, v;, 8}, P}, 2)} e 1) for problem (IT) by applying the procedure described
in Corollary 4.11. By construction, the resulting solution {(s;, u;, v, 8}, P}, 2))} e (1) is there-
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fore optimal for problem (CT).

The naive approach suffers from the following shortcoming. Once the reservoir targets w; and
the market bids {(s;, s, vr)}reg (1) are fixed, the trader’s problem (CT) reduces to a feasibility
problem for the flow decisions. While we have proved that at least one set of feasible flow
decisions exists (which is explicitly constructed by the naive approach described above),
common sense suggests that there are usually many flow decisions that meet the reservoir
targets and are compatible with the market bids. Problem (CT) is indifferent between these
feasible solutions and sets no incentive to exceed the reservoir targets, which have been
chosen to be satisfiable even under the most adverse call-off scenarios on the reserve markets.
Under other call-off scenarios, however, it is often possible to exceed the reservoir targets.
This would be beneficial in view of Lemma 4.1, which implies that higher reservoir levels must
lead to non-inferior future profits because excess water can always be spilled through to the
dummy reservoir R. By constructing arbitrary feasible flow decisions, the naive approach for
solving (CT) may unnecessarily sacrifice future profits.

The second—more forward-looking—approach for solving the trader’s problem (CT) aims at
exceeding the reservoir targets. Specifically, among all feasible flow decisions, this approach
seeks those that maximize the total value of all reservoirs, which is obtained by multiplying
the vector of reservoir filling levels with a prescribed vector v € RR [$/m3] of water values.
While the proposed approach will be independent of the particular choice of v, it is natural to
set v to a supergradient of the planner’s maximum expected profit with respect to the initial
reservoir filling levels wy, which can be estimated by solving the dual of problem (C) under the
Approximations 4.6, 4.19 and 4.20. Lemma 4.1 then implies that v = 0. In addition, we have
v = 0 because water in the dummy reservoir is lost for future energy production. Given the
water values, we then construct the flow decisions (gg, pg, zg) sequentially for each 6 € (1)
by solving the multistage stochastic program

sup V' (wo+X%_ ¢ +M(g; — pr +20)
st g9,Po,29 ERY, g1, pr,2i€ LN Fpgir,)  Vielf+1,H

0<g,<8,0=p;<p, 0=z Vie(0,H], Pg,-as. (4.15)
St+pl[lut—p‘[/l/t:7]—ll:gt—c:pt VtE[@,H], P|§Ial-a.s. .

w,swy+Y!_ P +M(g —pr+2z;)<w; Vie(6,H], Pg,-as.

wy < wo+ Y req ) Pr+ M(gr — pr+27) Plgg -as.

with inputs wy, wn, {(ss, U, Ve)}reg ) and {(g[,p[,zt)}?:—ll. Problem (4.15) is designed to avoid
unnecessary spillage in hour 0. Specifically, it seeks here-and-now decisions (gp, pg, z9) that
maximize the total value of the reservoirs at the end of hour 6, while ensuring that all end-of-
day reservoir targets can be met and all market commitments can be honored by some future
wait-and-see decisions {(g;, pt,zt)}igﬂ.
with the naive approach described above are always feasible in (4.15) and that the forward-

We emphasize that the flow decisions constructed

looking approach described here is guaranteed to yield a feasible solution for the trader’s
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problem (CT).

As problem (4.15) constitutes a multistage stochastic program with random recourse, it ap-
pears to be computationally hard. Nevertheless, (4.15) is equivalent to the tractable linear
program

max VT(wo + Z?:1 ¢ +M(g:—pr+ ZT))

st.  gnpnzieRA Vte (6, H
0<g8,<8,0=p,<p,, 0=z Vtell, H]
S9+pgtio —Ppve =1y 80— Eg Po (4.16)
st+ut=1]Igt—CtTpt Vtel0+1,H]

w,<wy+Y! P +M(gr—pr+z)<w; Vi€l H

w1 < wo+Y regq)Pr + Mg — pr +2).

Proposition 4.21. Under Approximation 4.6, the optimal values of (4.15) and (4.16) are equal.

Proof. The proof reuses arguments that were developed to show the equivalence of (IT)
and (IT") as well as that of (CT) and (CT"). As no new ideas are needed, details are omitted for
brevity. O

The proposed approach for constructing flow decisions is motivated by the solution degen-
eracy of problem (CT). Specifically, our approach seeks flow decisions that are not only
compatible with the given reservoir targets and market commitments but also maximize the
flexibility for future operations by saving as much water as possible. More generally, solution
degeneracy poses a formidable challenge in robust optimization, where it has been recognized
that some optimal solutions of a robust optimization problem perform significantly better
than others in non-worst-case scenarios. General techniques for constructing Pareto-optimal
solutions of robust optimization problems are described by Iancu and Trichakis (2014). Our
approach is inspired by these techniques.

4.7 Case Study: Gasteiner Tal Cascade

We apply our planner-trader decomposition to a hydropower cascade located in the Gasteiner
Tal, Austria. We describe the problem instance in Section 4.7.1, and we present our results in
Section 4.7.2.

4.7.1 Problem Parameters

The Gasteiner Tal cascade comprises three reservoirs: the Bockhartsee annual reservoir with
a capacity of 18,500,000 m3, the Nassfeld daily reservoir with a capacity of 230,000 m® and
the Remsach compensation reservoir with a capacity of 40,000 m3. The Bockhartsee reser-
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voir is connected to the Nassfeld reservoir by the Nassfeld pumped-storage plant that has a
generating capacity of 40,600 m®/h and a generation efficiency of 6.68 x 107* MWh/m?, as
well as a pumping capacity of 28,500 m®/h and an inverse pumping efficiency of 9.35 x 10~
MWh/m3, respectively. The Nassfeld reservoir is connected to the Remsach reservoir by the
Bockstein plant with a generating capacity of 41,400 m3/h and an efficiency of 10.3 x 107
MWh/m?3, and the Remsach reservoir is connected to the Gasteiner Ache river by the Remsach
plant with a generating capacity of 50,400 m®/h and an efficiency of 5.41 x 10~* MWh/m?3.
Together, the cascade produces 264,000 MWh of electricity per year and covers the demand of

approximately 75,000 households.!"!

We model the hourly natural inflows into the three reservoirs as
Grr = (@rtta,r + Baw,r) 1H with @, ~ A (1,07) and fa, ~H (0,05 ),

where the average daily inflow ug ,, d € 9, into reservoir r € Z is derived from meteorological
data. The affine transformation of the average daily inflows is determined by a random long-
term factor a, that is constant throughout the planning horizon and captures the hydrological
year type (dry vs. wet year), as well as random additive noises 8, , that capture daily fluctua-
tions. The variances af of a, and Uir of B, » are derived from the variations observed in the
historical meteorological data. Note that this model implicitly assumes that every reservoir
receives a constant rate of inflow throughout each day.

We further assume that the hourly spot prices fluctuate around a given deterministic price
forward curve. Following Haarbriicker and Kuhn (2009), we set

wy =y, RO
E[exp(xy)]

0,"Y and where the risk factor

where {nf) JteT denotes the price forward curve observed at time
x; follows a mean-reverting process with a stochastic long-term mean y;. Specifically, x; and

y: are governed by the stochastic difference equations
X=X+ a(yr—x)+0oxw; and y =y + ayw¥

initialized by xp = yp = 0; see Pilipovic (2007). Here, wf and w¥ follow i.i.d. standard Gaussian
distributions. Note that this model satisfies E [n}] = 7] , forall t€ I,

We assume that the hourly capacity prices satisfy 7} = 77 = 0 throughout the planning horizon.
In fact, the capacity prices have eroded in the recent past, and they tend to be significantly
smaller than the spot and the activation prices. Our assumption of vanishing capacity prices
implies that we are underestimating the revenues to be earned on the reserve market. In line

ITFyrther details of the cascade can be found online athttps: //www. salzburg-ag. at/content/dam/web18/doku-
mente/unternehmen/erzeugung/Kraftwerke-GasteinerTal.pdf.
VThe price forward curve was constructed from historical EEX spot prices, available at https://www.eex.com.
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with historical averages, we draw the reserve activations (p}, p) independently according to

(0,0) with probability 0.98,
(p},p)) =< (1,0) with probability 0.01,
(0,1) with probability 0.01.

This construction satisfies our assumptions that there are no simultaneous call-offs on the
reserve-up and the reserve-down market, that all three call-off scenarios have a strictly positive
probability for every ¢t € 9~ and that the call-offs are serially independent as well as indepen-
dent of all other sources of uncertainty. Finally, we assume that the activation prices y} and v}
are independent of any information &y, available at the beginning of day d (), which implies
that they enter problem (C") only through their unconditional expectations. We identify these
expectations with their respective empirical averages, which we compute separately for peak
and off-peak hours.

4.7.2 Results

We now apply the decomposition methods developed in this paper to the Gasteiner Tal case
study from Section 4.7.1. In our experiments, we set D = 364, and we employ N = 50 scenarios
for the sample average approximation. All results are averaged over 25 statistically independent
runs.

Probabilities
Probabilities

" i cioho 1. o o, | | | |
0 50 100 150 200 250 300 100 150 200 250 300
Revenues [in 10° Euros] Revenues [in 103 Euros]

Figure 4.3 — Histogram of daily out-of-sample revenues for the spot-reserve (left) and the
spot-only model (right). For given revenues on the x-axis, the y-axis reports the probability
that any given day achieves these revenues.

We first evaluate the benefits of simultaneously participating on the spot and reserve markets.
To this end, we compare the out-of-sample revenues generated by the collective bidding
model (hereafter ‘spot-reserve model’) with those of a variant of the collective bidding model
that only operates on the spot market, thus enforcing u; = v, =0 P-a.s. for all r € 9 (hereafter
‘spot-only model’). Figure 4.3 compares the daily revenues of both models. It turns out that the
daily revenues of the spot-reserve model exceed those of the spot-only model only on 171.21
days on average (i.e., with a 47.04% chance). The expected margin of the spot-reserve model
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Figure 4.4 — Cumulative out-of-sample revenues of the spot-reserve (dark region) and the
spot-only model (light region). The shaded regions show the intervals between the 10% and
90% percentiles, whereas the bold lines represent the medians.

over the spot-only model, conditioned on those days where the spot-reserve outperforms the
spot-only model amounts to 46,184.03 €/d. However, the conditional expected margin of the
spot-only model over the spot-reserve model is only 581.52 €/d. Figure 4.3 shows that this
difference is caused by large tail margins that can be generated by participating in the reserve
market. Even though these tail margins are realized with a small probability, they are crucial
for the long-term profitability of the cascade. Indeed, Figure 4.4 compares the cumulative
out-of-sample revenues generated by both models. The simultaneous bidding on the spot
and reserve markets results in average daily revenues of 50,127.79 €/d, whereas the exclusive
bidding on the spot market results in daily revenues of 28,761.69 €/d. In other words, trading
on the reserve market enables the hydropower producer to increase the daily revenues by
more than 74% on average.

A more detailed analysis of the revenues revealed that the spot-reserve model sells more energy
on the spot market than the spot-only model and that it simultaneously offers all of this energy
(as well as some excess energy) on the reserve-down market. This is caused by the attractive
activation prices on the reserve-down market, and it explains why the spot-reserve model
generates slightly lower revenues than the spot-only model on a typical day: By operating
more aggressively on the spot market, the model accepts moderately lower daily revenues on
52.96% of the days in exchange for significantly larger daily revenues on 47.04% of the days.
The spot-reserve model does not participate in the reserve-up market since the activation
prices on that market are less attractive.

We next investigate the predictive accuracy of the spot-reserve model. To this end, Figure 4.5
visualizes a realization of the out-of-sample daily revenues across the time horizon, together
with the in-sample predictions of the daily revenues on day 0 as well as day 180. We observe
that the out-of-sample daily revenues tend to stay inside the predicted intervals, but that

109



A Planner-Trader Decomposition for
Chapter 4 Multi-Market Hydro Scheduling

o
=

n
o
T

-
(o]
T

(o]
T

Cumulative Revenues [in 108 Euros]
i B

1 50 100 150 200 250 300 350
Day

Figure 4.5 — Predicted vs. realized daily revenues in the spot-reserve model. The bold line
shows a random realization of the realized out-of-sample revenues, whereas the light-shaded
(dark-shaded) region represents the interval between the 10% and 90% percentiles of the
future in-sample revenues predicted on day 0 (day 180).

the intervals widen as the model looks further into the future. We emphasize that the daily
revenue predictions are updated every day, rather than only twice during the horizon as shown
in the figure.

Figure 4.6 visualizes the daily out-of-sample filling levels of the three reservoirs. We observe
that the decision rules correctly capture the different time scales of the reservoir dynamics:
The filling level of the Bockhartsee annual reservoir changes slowly throughout the year, and
its dynamics are mostly informed by the annual snow melt that happens around day 300-350,
whereas the Nassfeld and the Remsach reservoir operate at a much faster pace. Note that in
our experiments, all lower reservoir bounds are set to zero. In practice, one typically imposes
strictly positive lower reservoir bounds to protect the aquatic life as well as to avoid a negative
impact on tourism.

Decision rule architecture Avg. daily revenues Percentage loss

Perfect foresight solution 55,754.47 € 0.00%

Wa=Ag+ @ (Lpr)+ Vo (Xpr) + pa(F X73) 53,050.22 € -4.85%
Wi =Ag+ @4 (LPr)+pa(5X7) 52,915.51 € -5.09%
wqg=Ag+¥q(Lpr)+pa(5X7) 52,654.82 € -5.56%

Wy =Ag+®; (L) +¥a (X ) 52,194.82 € -6.38%
wy=2A4 51,454.53 € -7.71%

Table 4.1 — Average daily revenues as well as percentage losses (relative to the perfect foresight
solution) of various decision rule architectures.

We close with an investigation of the suboptimality of our affine decision rule approximation.
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Figure 4.6 — Daily filling levels of the Bockhartsee, Nassfeld and Remsach reservoirs (top to
bottom). The shaded regions represent the intervals between the 10% and 90% percentiles;
the bold lines denote the median values.

To this end, Table 4.1 compares the average daily revenues generated by our decision rules,

1d-1
wd=/1d+(1>d( > fl’r) +‘I’d( > (Pr) +Ha (Pll > ﬂi)
7€ (d) =1 1€ (d)

(cf. Approximation 4.19), with the average daily revenues generated by more restricted decision
rule architectures that set one or all of the feature weights ®,, ¥; and p,  to zero. We also
report the average daily revenues generated by the (unachievable) perfect foresight solution
that chooses all water levels after observing the entire realized sample path &;7). We observe
that each feature of the decision rule contributes to the overall revenues and that our decision
rule approximation closes 37.11% of the gap between the static solution w; = A4 and the
perfect foresight solution.
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Appendix

Consider a generic multistage stochastic program of the form

sup E[f(xo,...,x7,&77)]

(4.17)
S.T. xoeffno(go), xt€$nt(g[[]) vi=1,...,,T,

where P denotes the joint distribution of the random vectors &, € R*, t = 0,..., T, and f
constitutes a normal integrand in the sense of (Rockafellar and Wets 2010, Definition 14.27),
that is, its epigraph epi(f(:,&[r})) is a closed-valued measurable multifunction of &;7;. We
assume that f may adopt the value +oo and thereby encode P-almost sure constraints on the
decisions variables. We also retain the notational conventions for combined random vectors
and o-algebras introduced in Section 4.2. The proofs of Propositions 4.3 and 4.5 rely on the
following lemma, which follows from Theorem 14.60 by Rockafellar and Wets (2010) and the
properties of conditional expectations.

Lemma 4.22. The optimal value of the multistage stochastic program (4.17) equals

£ sup E[f(xo,...,%7,&17)) | €0

) (4.18)
S.T. x0€Rn0, xt€$nt(g[1,[]) ve=1,...,T

where P¢, denotes the distribution of &;7) conditional on &p.

Proof. Asjoint optimization over the stage-wise decision variables is equivalent to sequential
optimization, we can rewrite the multistage stochastic program (4.17) as

sup sup - sup sup E[f(x0,...,x7,&1)].
XELM (Fy) x1€L™M (F ) X7 1 €L T-V(Fr-1) Xr€L"T (F(17)

By (Rockafellar and Wets 2010, Theorem 14.60), the above problem is equivalent to

sup f(xo,...,x7,&[1))
xreR"T

sup sup e sup E
XpELM(Fy) x€L™ (Fy) X7 1 €L T-1(F[7-1)

Recalling the tower property of conditional expectations, we can rewrite the resulting problem
as

sup sup L sup E|E

sup f(xo,-~-yxT»£[T])|£[T—1]
XELM0 (Fo) X1 €L ™M (Fy) X7 1 ELT-1(F|1-1))

x7eR"T

and invoke the interchangeability theorem of Rockafellar and Wets (2010) once again to prove
its equivalence to

sup sup -k
XELM (Fy) x€L™M (Fy)

sup L

x7-1€ER"T-1

sup f(xo,--.,xT,f[T])‘f[T1]”

xreR"T
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Repeating this argument, it is possible to move all supremum operators inside the appropriate

o

Applying the interchangeability theorem of Rockafellar and Wets (2010) in the reverse direction,

conditional expectation layers such as to obtain the equivalent problem

E sup f(xo,---,xT,f[T—l])’f[T—l] '“‘f[l]

xrER"T

sup E

xR0

sup E

x1ER™

xR

we can then move the second supremum out of its conditional expectation layer to obtain

E| sup sup [

Xp€R™ x,€ L™ (F))

sup --- E

X ER"2

&

sup f(xO;---,xTyz[T—l])|€[T—1]
x7€ER"T
Iterating this argument from the outside to the inside, it is indeed possible to move all supre-
mum operators into the outermost conditional expectation layer and thus obtain

E| sup sup sup e sup E

x€R™ x1€LM(F)) €L (Fpp) €L (F,1)

fxo,...,x7,&0) |fo]

Re-combining the stage-wise supremum operators finally yields problem (4.18). O

The proof of Proposition 4.9 relies on a technical yet intuitive lemma, which asserts that there
is no benefit in simultaneous generation and pumping.

Lemma 4.23. The optimal value of the reduced planner’s problem (IT") does not decrease if
we append the complementarity constraints g;o p, =0 for all t € I (d).

Proof. Consider any feasible solution {(st, u;, v, 80 P zt)}t€ T of problem (IT"), and con-

struct a new solution {(s;, us, v, g, p}, z,)}

reg () With adjusted flow decisions

g =8-CioA:, pr=pi—mioA;, zi=z+E—n)oA,

where A, € R4 is defined through At,q =min{g; 4/Cs.a, Pr.alMt,a}- This new solution preserves
the market decisions and consequently the objective value of the original solution, and it
is readily seen to satisfy the complementarity constraints g; o p}, = 0 for all t € I (d). The
claim thus follows if we can show that the new solution is feasible in (IT"). To this end, note
that A; = 0, which implies that g, < g; < g, p} < p: < p, and z, = 0, where the last inequality
exploits our standing assumption that §; > n,. Similarly, the inequalities {; 0o A; < g; and
n:°A; < p; ensure that g, = 0 and p), = 0. Finally, observe that g, —p,+z, = g, — p: + z;
(i.e., the net reservoir outflows remain unchanged) and ;o g, —{;op, =n;08; - {0 p; (i.e,
the arc-wise net energy production quantities remain unchanged), which implies that the
new solution satisfies the reservoir balance constraints and the energy delivery constraints,
respectively. In summary, we have shown that the new solution is indeed feasible in (IT"), and
thus the claim follows. O
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Conclusion

Since its inception in the 1950s, stochastic programming has advanced to one of the most
widely adopted methodologies for addressing uncertainty in optimization problems. Despite
its widespread use, stochastic programs are generically intractable, even if only two time stages
are considered (Dyer and Stougie 2006a, Hanasusanto et al. 2016). While the computational
burden of two-stage problems can be alleviated by approximating the probability distribution
governing the random parameters through a discrete distribution supported on finitely many
atoms, multi-stage stochastic programs are severely computationally intractable even if only
approximate solutions are sought. Similar difficulties arise in the more recent distribution-
ally robust optimization paradigm when the ambiguity sets are defined relative to nominal
distributions; see, e.g., Mohajerin Esfahani and Kuhn (2017).

Chapter 2 of this thesis revisited the scenario reduction problem, whose objective is to approxi-
mate a given probability distribution with one that has fewer atoms and that thus alleviates the
computational burden of solving the associated stochastic program. By measuring the quality
of the resulting approximation through the Wasserstein distance, we extended the existing
body of literature on scenario reduction in several dimensions. In particular, we proved that
we can restrict the search for an approximating probability distribution without much loss to
those distributions whose atoms are contained in the support of the original distribution. We
also showed that the scenario reduction problem, despite being computationally intractable,
can be approximated to a constant factor by a variant of a well-known local search algorithm.

Chapter 3 studied the K-means clustering problem. This problem is a special case of the
scenario reduction problem of Chapter 2 when the probability distribution is discrete and
places equal weight on all atoms and when the approximation quality is measured by the type-
2 Wasserstein distance induced by the Euclidean norm. We discussed several theoretical and
practical drawbacks of the plain vanilla K-means clustering problem. These disadvantages
motivated us to introduce cardinality constraints which limit the number of data points that
each cluster can contain. We solved the emerging cardinality-constrained clustering problem
by semidefinite and linear programming relaxations. We proved that our relaxations are
tight for the balanced clustering problem as long as a separation condition holds, and we
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showed experimentally that the relaxations remain almost tight even in unbalanced clustering
problems where the separation condition is violated.

In Chapter 4, we determined an approximately optimal reservoir management and multi-
market bidding strategy for a hydropower producer who simultaneously operates on both the
spot and the reserve markets. While this problem can be formulated as a multi-stage stochastic
program, its solution is very challenging due to the large number of time stages as well as the
presence of a random recourse caused by the stochastic activation of the reserve capacities.
By restricting the information base of certain decisions, we successively reduced the problem
to a two-stage problem with fixed recourse that is amenable to an efficient solution. In other
words, by disregarding some of the information available to the hydropower producer, we
obtained a potentially less profitable policy that can however be computed efficiently. We
carried out numerical experiments to showcase the benefits of our solution approach and the
profitability of operating on the reserve market.

5.1 Future Research Avenues

While preparing the material of Chapters 2 to 4, we identified several promising areas for
future research. It would be instructive, for example, to study how the scenario reduction
approach of Chapter 2 could incorporate the risk preferences of the decision maker; see, e.g.,
Arpon et al. (2018). Likewise, we have so far been unable to characterize the gap between the
semidefinite and the linear programming relaxation for the cardinality-constrained clustering
problem (cf. Chapter 3). While it is clear that the semidefinite relaxation is at least as tight as
the linear one, it would be insightful to develop a priori bounds on their difference. Finally,
our hydropower scheduling problem in Chapter 4 employs several simplifying assumptions
that should be lifted in future work. In particular, we made the crucial assumption that
the transmission system operator is allowed to call upon the producer’s reserve capacities
throughout the planning horizon (albeit with a small probability). In reality, the transmission
system operator may not be able to exploit reserve capacities consecutively for a prolonged
period of time. Likewise, we assumed that the hydropower producer is a price taker that faces
exogenous capacity and activation fees, whereas in practice the hydropower producer submits
an offer curve to the transmission system operator.
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