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Abstract	
Living organisms can catalyze many thousands of biochemical reactions that they 

use to convert energy and matter, which provides them with the essentials for life. The sum 
of these chemical reactions happening in an organism is called metabolism. Understanding 
metabolism is crucial to elucidate the fundamental principles of biology, and further to en-
able us to redesign it for the sustainable, biosynthetic production of bio-based fuels, com-
modity chemicals and medicines. Mathematical models are essential to organize and un-
derstand the complexity of metabolism. They usually represent metabolism as a network of 
reactions, but they tend to neglect the exact molecular structure of the metabolites. To 
redesign metabolic reactions, however, a mechanistic understanding of metabolic reactions 
and their catalysts, proteins called enzymes, is essential. 

In this work, a mathematical description of enzymatic reaction mechanism, called general-
ized reaction rules, is applied to computationally simulate and predict metabolic processes 
at the level of atoms. Each reaction rule describes the catalytic activity of an enzyme, or a 
group of enzymes, at the mechanistic level by encoding the rearrangement of atoms in the 
reaction. The reaction rules are called "generalized", because they mimic the ability of a 
single enzyme to catalyze multiple reactions by acting on a range of substrates.  

Using these reaction rules, we first developed a computational representation of metabo-
lism that allowed tracking single atoms throughout complex metabolic reaction networks. 
The principle of atom-tracking was then used to develop a graph-theory based method to 
represent and analyze metabolic networks, and to reliably identify metabolic pathways for 
the biosynthesis of chemicals. Next, we applied the generalized reaction rules to predict all 
possible novel, hypothetical reactions from known biological compounds, and we stored 
the five million generated novel reactions in a database called ATLAS. Finally, the developed 
tools and resources were applied to specific engineering and research problems, such as 
the biosynthetic pathway design for the biofuel bisabolene and the plastic precursor 1,4-
butanediol. We further predicted a biosynthesis route for the pharmaceutical tetrahy-
dropalmatine and engineered a yeast strain to produce it. Finally, we show that our tools 
can be used to mine available genome sequences to find organisms that can degrade xeno-
biotics. 

Our findings suggest that the atom-level representation of metabolism can greatly contrib-
ute to its understanding, exploration and prediction. Given the complexity of atom-level 
modeling of metabolic processes, we propose metrics that can approximate the atom-level 
information to conserve the information at the level of big, hypothetical metabolic 
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networks like ATLAS. This database plus the developed pathway search techniques form a 
valuable resource for scientists to help characterizing unknown biosynthesis pathways to-
wards secondary metabolites, and for metabolic engineers to design novel bioproduction 
pathways for chemicals. Hopefully, these considerations will contribute to a better under-
standing of metabolism, advance the exploration of the bioproduction of drugs and other 
valuable molecules, and accelerate metabolic engineering efforts to realize the switch from 
a petroleum-based chemical industry towards a more sustainable, bio-based production of 
society's chemical needs. 

Keywords	
Computational biology, metabolic modeling, biochemical networks, atom-mapping, reac-
tion prediction, enzyme promiscuity, pathway search, metabolic engineering
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Résumé	
Les organismes vivants ont la capacité de catalyser des milliers de réactions chi-

miques qu’ils utilisent lors de la transformation de l’énergie et de la matière, leur fournis-
sant les éléments essentiels à la vie. L’ensemble de toutes ces réactions biochimiques est 
appelé métabolisme. La connaissance du métabolisme est non seulement déterminante 
pour la bonne compréhension des principes fondamentaux de la biologie, mais aussi le pré-
requis dans la modification d’organismes afin de produire des biocarburants, des produits 
chimiques et des médicaments de façon biosynthétique. Des modèles mathématiques sont 
essentiels pour organiser et comprendre la complexité du métabolisme. Dans ces modèles, 
les processus métaboliques sont représentés par des réseaux de réactions biochimiques, 
mais ces représentations ont tendance à négliger les structures moléculaires exactes des 
métabolites. Pour construire et modifier des réactions métaboliques à des fins d’ingénierie 
biologique, il est essentiel de comprendre ces réactions et leurs catalyseurs, les enzymes, 
au niveau mécanistique. 

Dans ce travail, nous avons utilisé des descriptions mathématiques des mécanismes de ré-
action enzymatiques, appelés règles de réaction généralisées, pour les appliquer à la simu-
lation et prédiction de processus métaboliques au niveau atomique. Chaque règle de réac-
tion définit l’action d’une enzyme au niveau mécanistique par la description du réarrange-
ment des atomes accompli par l’enzyme. De plus, ces règles sont appelées “généralisées” 
parce qu’elles reproduisent la capacité d’une seule enzyme à catalyser plusieurs réactions 
différentes en agissant sur une série de substrats. 

Sur la base de ces règles de réactions, nous avons créé un modèle computationnel du mé-
tabolisme, permettant le suivi individuel des atomes à travers la complexité des réactions 
métaboliques. Le traçage des atomes a ensuite été utilisé pour développer une méthode 
basée sur la théorie des graphes pour analyser de manière systématique des réseaux méta-
boliques, et y identifier de façon fiable des voies métaboliques pour la biosynthèse des mo-
lécules chimiques. Nous avons ensuite utilisé les règles de réaction pour la prédiction de 
nouvelles réactions hypothétiques. En appliquant celles-ci à des composés biologiques, 
nous avons créé une base de données de cinq millions de nouvelles réactions, appelée 
ATLAS. Cette ressource peut aider les scientifiques à caractériser les voies biosynthétiques 
des molécules biologiques, ainsi qu’être utilisée dans le cadre de la bio-ingénierie pour iden-
tifier des voies de synthèse biologiques de composés chimiques. Finalement, nos outils ont 
été appliqué à des problèmes spécifiques d’ingénierie et de recherche, comme le design des 
voies biosynthétiques d’un biocarburant et d’un précurseur de la synthèse de plastique. De 
plus, ces outils nous ont permis de créer une levure capable de produire le composé 
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pharmaceutique tétrahydropalmatine, ainsi que d’identifier des organismes aptes à la bio-
dégradation de xénobiotiques. 

Ce travail suggère que la représentation du métabolisme au niveau atomique contribue à 
son analyse, son exploration et à sa prédiction. Nous espérons que ces considérations vont 
participer à une meilleure compréhension du métabolisme, avancer la biosynthèse de com-
posés de valeur industrielle ou pharmaceutique, et accélérer les efforts d’un changement 
d’une industrie basée sur la pétrochimie, vers une production biologique et durable des 
composés chimiques. 

Mots-clés	

Biologie computationnelle, modélisation du métabolisme, réseaux biochimiques, cartogra-
phie des atomes, prédiction de réactions, promiscuité des enzymes, recherche de voies mé-
taboliques, ingénierie métabolique 
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Chapter	1 Introduction	
Our societies today heavily rely on petroleum as a source of energy and everyday 

products. Burning fossil fuels makes it possible for us to cheaply drive cars, heat our homes, 
cook food, to name just a few. On top of that, a plethora of products are chemically synthe-
sized from petroleum-based feedstocks: Many pharmaceuticals, industrially relevant chem-
icals (e.g., paint, glue, solvents), beauty products (e.g., creams, make-up) are chemically 
synthesized from petroleum-based precursors, also called commodity chemicals. To sum it 
up, we heavily rely on petroleum – but unfortunately, there are many problems associated 
with our dependence on the black gold.  

While petroleum is a cheap and convenient source of energy, burning it carbon dioxide 
(CO2) to our atmosphere, where it accumulates and causes the rise of global temperatures; 
It is therefore the major driver of anthropogenic climate change. In the case the raw petro-
leum is not used to produce fuels, it can be chemically refined to bulk chemicals used in 
petrochemistry, which are used as precursors in petrochemical industry. Chemical synthe-
sis, on their side, make use of toxic catalysts that can pollute the environment if not properly 
contained. Finally, other than its negative effect on climate and environment and its limited 
supply, relying on petroleum is problematic from a geopolitical point of view: Petroleum 
occurs only in specific regions of the globe, and due to the heavy dependence of our socie-
ties on the material, petroleum-rich regions are often politically contested and many of 
them have been the showplace of territorial conflicts in the recent past. Decentralizing our 
sourcing of energy and bulk chemicals is therefore crucial to move towards more sustaina-
ble societies in an intact environment1. 

But is there an alternative to petroleum? Petroleum has been produced over thousands of 
years from dead organisms such as algae and zooplankton, which have been buried in sed-
imentary rock, decomposed by bacteria under anaerobic conditions and fossilized under 
high heat and pressure. Its original source is therefore biomass. If we could source fuels, 
bulk chemicals and their derivatives directly from biomass, we could decrease the release 
of additional CO2 into the atmosphere. One promising solution to achieve the shift from 
petroleum to biomass is using microbes as miniature chemical factories to convert organic 
material such as plant waste products into high-value chemicals such as fuels, bulk chemi-
cals and specialty chemicals. Microbes such as yeast or lactic acid bacteria have been used 
in by humanity for thousands of years to refine food and to save it from perishing through 
fermentation. For example, the fungus yeast converts sugars to ethanol in the production 
of wine and beer, and to bubble of CO2 in bread. Using microbes to refine a biomass source 
is called biotechnology, a process that can be used to provide green fuels and to sustainably 
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produce bulk and fine chemicals. To convince microbes to do this job for us however, we 
need to exactly tell them how to do it. And if we want to talk to them, we first need to learn 
their language. 

1.1 Nature’s	language	
Deciphering the underlying principles of the biological world is an ongoing quest, and we 
are still far away from having an understanding comparable to other disciplines such as 
physics, whose principles can be used to build stable bridges, create computers, or design 
rockets that go to mars. Biology turned out to be a lot more complicated: Living organisms 
eat, excrete, grow, reproduce, and die. They can take a mindboggling number of shapes and 
show behaviors beyond our imagination – and most strangely, we are part of them. First 
attempts to organize living things resulted in the classification of organisms by Carl Linnaeus 
in 17582. One century later, Charles Darwin hypothesized that the classes proposed by Lin-
naeus have been formed through evolution from a common ancestor3, which, at the very 
beginning, was probably some simple, unicellular being that already did what all biological 
entities do today – eat, excrete, grow, reproduce, die. However, the molecular mechanism 
of evolution was not known until Watson and Crick unveiled the genetic code, written on 
long chains of molecules called DNA. DNA turned out to harbor all the information neces-
sary to build an organism, to keep it alive, and to do all the things that organisms do – climb 
on trees, be trees, degrade compost, photosynthesize, make you sick, or fly around glowing 
after sunset.  

The DNA encodes how to do all of this: The entities of the genetic code are called genes, 
and they are transcribed into messenger molecules called RNA. The RNA is then translated 
into sequences of amino acids, and these sequences are fold up to form proteins. The pro-
teins are then either used to build physical structures in the cell, or they catalyze specific 
chemical reactions in the cell. These specialized proteins are also called enzymes, and their 
task is to control the chemical processes in the cell. To wrap it up, the biochemical reactions 
are controlled by proteins, which are controlled by genes, giving rise to the Gene-Protein-
Reaction (GPR) association.  

Given the right genes, biochemical reactions can be streamlined to convert one chemical 
structure over several reaction steps into a totally different one, for example CO2 into sugar, 
sugar into fat, and fat back to CO2. This process is called metabolism: Every organism - 
whether it is a yeast cell in a beer fermenter, a tree or a lion - takes up nutrients (glucose 
vs. CO2 and light vs. gazelle), extracts the energy from the input (energy of photons vs. 
chemical energy in glucose vs. gazelle meat), uses the energy and the chemical compounds 
to build and maintain itself and to move (yeast biomass vs. tree trunk vs. lion’s fur), and 
finally excretes unused by-products (ethanol vs. oxygen vs. gazelle bones). Metabolism can 
therefore be described as the global integration of biochemical reactions, catalyzed by en-
zymes, which leads to the overall chemical conversion of energy and matter in a cell.  

However, even though we can read the genetic code, we still do not fully understand how 
it is used to produce certain physiologies or to make organisms behave in a certain way. 
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There are two main reasons for this: The first problem is that linking a gene to a physiolog-
ical output is not straightforward: The interactions between the many elements involved in 
a biological process give rise to complex behavior. In other words, even if we understand 
the exact function of each single gene, enzyme or metabolic reaction, the final biological 
outcome may be difficult to predict and even counter-intuitive. The second problem is that 
many processes and elements have not been characterized yet, or cannot be quantified 
easily in experiments. I will first discuss complex interactions and how to model them, and 
second examine the type of data that collected in biological research. 

1.1.1 Systems	biology	
For decades, the reductionist approach has been the main driver for advancing biological. 
In this approach, single elements such as genes, proteins, organisms, diseases are studied 
in isolation. Reductionism has provided us with a detailed understanding of molecular 
mechanisms and their roles in nature, and lead to an accumulation of biological data and 
knowledge. However, it became more and more clear that understanding a single molecular 
process is not sufficient to explain a physiological output due to complex interactions be-
tween the different molecular actors. The problem of complex behavior in biology is ad-
dressed in systems biology4. In contrast to the reductionist approach, systems biology tries 
to obtain a holistic understanding of biological processes. Systems biology integrates ac-
quired biological knowledge into mathematical models that can reproduce biological be-
havior5, or predict biological behavior under conditions that are not accessible experimen-
tally (e.g., the metabolism of intracellular parasites). These models translate the complex 
nature of a biological or biochemical process into a simplified mathematical description. A 
model consists of a set of mathematical equations that describe the process, and when fed 
with an input condition (i.e., variables), will produce an output (i.e., result values) using 
mathematical and computational techniques6. The model does not need to be an exact copy 
of the reality, but it should capture the main interactions of the process under study. Com-
putational, or in silico, modeling approaches have been successfully applied to study cellular 
signaling cascades, metabolic fluxes, gene and protein interactions, cell-cell interactions, to 
name a few. Systems biology has entered many branches of biological research where it 
advances our understanding of complex phenomena such as cancer7, vector-borne diseases 
(e.g., malaria), host-pathogen interactions, microbial communities, and it has potential ap-
plications in biodremediaton8. 

1.1.2 Data	in	biology:	the	“omics”	era	
The second problem that hampers the prediction of physiology from the genetic sequence 
is our incomplete knowledge of biological systems. In the past decade, technological ad-
vances in experimental techniques have flooded biology-related research fields with tre-
mendous amounts of high-throughput data on different levels that allowed to quantify 
many elements at the same time. This new type of experimental acquisition of data is gen-
erally referred to as the “omics”. The omics approach regroups different biological quanti-
fication techniques which are organized by the type of biological elements they measure, 
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e.g., genomics, transcriptomics, proteomics, metabolomics, fluxomics. Technical advances 
in genome sequencing, for example, have led to an abundance of sequenced genomes of 
different organisms that are stored in publicly available databases. To determine which 
genes are expressed at a given moment in a cell, transcriptomics is used to quantify the 
available RNA or, in a similar way, proteomics can be applied to determine the presence of 
proteins in a cell. To capture the metabolic state of a cell, metabolomics techniques can 
quantify the chemical species present in the cell. The common feature of the omics ap-
proaches is that the cell’s physiological state can be sampled at a given time point on differ-
ent levels. These methods, however, generate huge amounts of data that need to be ana-
lyzed. Analyzing these data is challenging because of the complex, non-linear relationships 
between the sampled elements. Statistical analysis methods are usually used to analyze 
omics data, but they are not always sufficient to take full advantage of the highly informa-
tive data and to draw biological conclusions. Alternatively, the acquired data can be inte-
grate into mathematical models that account for the complex relationships between the 
single elements measured in an -omics experiment. The synergy of systems biology and 
omics techniques can be used to refine biological models and to gain an overall understand-
ing of cellular processes. 

1.1.3 Synthetic	biology	and	metabolic	engineering	
The systematic understanding of biological processes that has emerged in the past decades 
enabled scientists to rationally engineer biological systems. Engineering biological systems 
belongs to the field of synthetic biology, which has been promoted as a promising approach 
to help achieving the United Nations’ Sustainable Development Goals9. In synthetic biology, 
existing biological parts (e.g., transcription factors in gene regulatory circuits) are reassem-
bled and modified to change the behavior of an organism and to design new biological func-
tions10. Many tools in synthetic biology are based on genome editing, which has become 
easier and more accessible thanks to the development of CRISPR tools that enable precise 
editing of genomes. Synthetic biologists rely on well-established principles from other en-
gineering disciplines, such as the Design-Build-Test cycle: A new process is designed on pa-
per or computationally, implemented in biological system, and then tested for perfor-
mance. If the engineering objective is not reached, the cycle will go into a next round of re-
designing, building and testing. To go back to the original question: Can we harness the 
engineering principles from synthetic biology in combination with the modelling approach 
from systems biology and the large-scale data from the omics to engineer organisms to sus-
tainably produce second-generation fuels, chemicals and pharmaceutical compounds11?  

To achieve this, we will have to re-engineer microbial metabolism using metabolic engineer-
ing. Microbes have been used to transform chemicals since the dawn of humanity in a well-
known process called fermentation. Fermentation describes the conversion of certain mol-
ecules in food (e.g., carbohydrates) into energy and other products (e.g., ethanol) in the 
absence of oxygen. For example, the fungus Saccharomyces cerevisiae, commonly known 
as baking yeast, can convert complex sugars from cereals into alcohol. The fermentation of 
grape juice into wine is driven by the growth of a diversity of microbes like yeast, and lactic 
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acid bacteria are responsible for turning milk into yoghurt. With the advent of genetic engi-
neering tools, non-native chemicals have been added to the repertoire of compounds pro-
duced biologically from simple sugars within microbial hosts organisms, such as second-
generation biofuels (e.g., bisabolene), pharmaceuticals (e.g., artemisinin, opioids) and com-
modity chemicals (e.g., 1,4-butanediol). A host organism, also sometimes called chassis, is 
an organism that is genetically engineered to produce a compound of interest. Usually, the 
host is a well-studied bacterium or a fungus for which molecular tools (e.g., transformation 
vectors) are readily available, such as Escherichia coli or Saccharomyces cerevisiae. Current 
efforts are expanding the range of compounds that can be produced in microorganisms, 
and in parallel scaling up microbial production from laboratory to industrial scale. To 
achieve the scale up in terms of product range and production rate, it is essential to under-
stand in detail the underlying metabolic processes. 

1.2 Metabolism		
Understanding metabolism to be able to engineer it for the production of fuels and chemi-
cals is only one aspect of why studying it is important. First of all, metabolism is at the in-
tersection between chemistry and biology, and understanding of how life works at the 
chemical level is a fundamental research question. Metabolism integrates genetic and en-
vironmental inputs, and the resulting metabolic state of a cell directly reflects its physiology. 
From a medical point of view, studying human metabolism is important to understand the 
mechanism of metabolic diseases and cancer as well as the influence of microbiota. 

Metabolism can be organized in different parts with distinct functions: The core metabolism 
is responsible for the major mass and energy turnover, and can be divided in glycolysis and 
gluconeogenesis, pentose phosphate metabolism, tricarboxylic acid (TCA) cycle and py-
ruvate metabolism. The metabolites produced in the core can then be assimilated into 
amino acids, fatty acids, and other biomass building blocks (BBBs) that are used to build 
cellular structures such as proteins, lipids, or DNA. Studying the core metabolism is crucial 
to understand the overall energy and mass turnover, which is important in metabolic engi-
neering to reroute core metabolic fluxes to optimize the production of a target compound. 
At the periphery of metabolism, secondary metabolic pathways produce compounds that 
are not directly necessary for the survival of an organism. Secondary metabolites constitute 
the chemical defense of plants and fungi, they are used as coloring agents by animals to 
enhance their reproductive success, or they are produced by plants to attract pollinators 
through attractive fragrances. In plants and fungi, secondary metabolism is particularly di-
verse, because unlike animals, these organisms cannot run away from their predators and 
need to rely on defensive chemical agents to protect them against grazing animals, parasites 
or diseases. Different organism might react very differently to these toxic compounds: For 
example, fragrant compounds produced by aromatic herbs as a chemical defense are ap-
preciated by humans to spice food. Thanks to its high chemical diversity and its various ef-
fects on humans, secondary metabolism is an important source for therapeutic and recrea-
tional drugs.  
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The rate at which certain metabolites are consumed by an enzyme and turned into a prod-
uct is called a metabolic flux. Metabolic fluxes are very dynamic and can change quickly as 
a consequence of environmental or genetic perturbations. The overall distribution of met-
abolic fluxes at a given time point is called the fluxome. Unlike the proteome, transcriptome 
or the metabolome, the fluxome cannot be measured directly: The distribution of metabolic 
fluxes has to be inferred from data points that are accessible experimentally, such as the 
rate of consumption of a substrate molecule, or the production of CO2 by a cell culture. 
Hence, modeling approaches are indispensable to characterize metabolic fluxes.  

1.2.1 Metabolic	modeling	
A systematic understanding of metabolism is fundamental for modeling metabolism. Met-
abolic models can help us characterize metabolic fluxes, predict the metabolic response of 
an organism, and identify knowledge gaps in our understanding of the organism. To model 
metabolism, we consider it as an open system where energy and mass can go in (i.e., input) 
and flow out modified (i.e., output). In between, metabolic reactions transform the input 
molecules into the output molecules through sequences of metabolic reactions, called path-
ways. The set of metabolic reactions present in an organism is called metabolic network.  

One of the prerequisites for modeling metabolism is an exact representation of the cellular 
metabolic network. To obtain a full description of the metabolism of an organism, we can 
take advantage of the genome, and translate the encoded information through the GPR 
relationship into a set of reactions that can be performed in the cell. The network of all 
possible reactions, given the genetic sequence of an organism, is then used to construct a 
so-called GEnome-scale metabolic Model (GEM). The GEM therefore describes all the bio-
chemical reactions happening in a cell based on the genetic information. It is important that 
all the metabolites in the network are connected through reactions with each other to form 
a stoichiometrically correct, mathematical description of metabolism.  

The mathematical framework can then be used to model the metabolic behavior of an or-
ganism in an approach called constraint-based modeling. For this, the stoichiometric con-
straints of the reactions are used to determine the possible solution space of metabolic 
fluxes in the cell. Additionally, flux constraints are added that represent the exchange of 
metabolites between the cell and its environment (e.g., oxygen uptake, CO2 secretion, eth-
anol production). The constraint-based model can then be used to optimize a specific goal 
(e.g., maximization of growth, or production of target compound). For example, to simulate 
growth, a biomass reaction is added to the model that consumes the different BBBs that 
are used to build biomass in experimentally determined ratios. To maximize growth, we can 
now solve an optimization problem that maximizes the objective (i.e., growth). Flux Balance 
Analysis (FBA) is performed to find the distribution of metabolic fluxes that optimizes the 
given objective12. To explore the limits of the solution space described by the constraint-
based model, we can perform Flux Variability Analysis (FVA), which finds the lower and up-
per bounds of all the fluxes in the model. 
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Usually, it is desirable to reduce the size of the solution space of the metabolic fluxes to 
increase the accuracy of biological conclusions drawn from the model. To this aim, different 
techniques have been developed to further constrain the solution space with additional 
data. For example, the model can be constrained by adding thermodynamic constraints and 
experimental data on metabolite concentrations in the cell and analyzed using Thermody-
namic Flux Analysis (TFA)13. The solution space of a constrained-based metabolic model can 
be further constrained by integrating different kinds of data, such as transcriptomics and 
proteomics measurements or kinetic data, or by considering the production cost of en-
zymes14,15. 

Metabolic models are excellent frameworks to test the completeness of our knowledge 
about the biochemical processes in the cell. As long as a model cannot reliably reproduce 
the physiological properties of a cell, we can assume that we miss an essential aspect of the 
physiological phenomenon under study. One of the recurrent knowledge gaps in metabolic 
models are missing reactions in metabolic pathways that make the production of a biomass 
building block impossible, resulting in an infeasible model. This issue can be bypassed by 
adding artificial reactions that, by deduction, have to be in the organism to produce a given 
metabolite known to be produced by the cell. This process, called gap-filling, solves the 
problem in the model, but it leaves us with an orphan reaction that misses a catalyzing en-
zyme. The completeness of a model can be further tested by comparing model predictions 
with experimental data. For example, in silico knockout experiments remove reactions one 
by one from the model to predict the effect of gene knock-out experiments. In case the 
predictions do not match the experimental data, this means that the organism can some-
how compensate the loss of the knocked-out step through an alternative pathway, and that 
our model misses this information. These examples illustrate that metabolic models are ex-
tremely useful to identify knowledge gaps and to direct future research efforts towards new 
discoveries.  

1.2.2 Knowledge	gaps	in	metabolism	
The systems biology approach to metabolism not only taught us how single elements are 
linked in metabolism, but also gave a us a systematic overview of missing links, or 
knowledge gaps. These gaps hinder efficient engineering of organisms – we need to fill the 
gaps and complete our knowledge. As discussed, metabolic models are extremely helpful 
to pinpoint blind spots in our knowledge of biochemistry. In the following, we will discuss 
four different types of knowledge gaps relevant in metabolism: (i) Unknown gene function, 
(ii) unknown reactions due to promiscuous enzymatic activity, (iii) orphan reactions, and (iv) 
orphan compounds (Figure 1.1). 
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Figure 1.1: Different levels of unknowns in metabolism. 

For many open reading frames (i.e., sequences in the genome that can be translated into 
proteins, ORFs), the function of the encoded protein is not known. For example, 1,155 out 
of 4,505 (25%) of protein-coding genes in the well-studied model organism Escherichia coli 
are missing a functional annotation16. Since 1,567 out of the 3,350 annotated gene products 
are enzymes, we can assume that a bit less than half (~500) of the unknown gene products 
are enzymes. To assign functions to gene sequences, homology-based approaches are 
broadly used. For this, an amino acid sequence is compared to a database of manually an-
notated sequences: The more two sequences are similar, the higher the probability that the 
proteins perform the same function in the organism. If no similar sequence can be found, 
experimental approaches are required to determine the exact function of the gene in the 
organism.  

Even if we know one function of a given protein sequence, it is possible that the protein also 
performs secondary functions. In metabolism, enzymes that catalyze secondary reactions 
that are different from their main, or native, catalytic activity are called promiscuous. Two 
types of promiscuous enzymatic activity are generally distinguished; substrate promiscuity, 
also called substrate ambiguity of multi-specificity, and catalytic promiscuity, also called 
moonlighting17. Substrate promiscuity means that one enzyme can catalyze the same type 
of reaction using different substrates, while the catalytic promiscuity is used to designate 
enzymes that can catalyze different types of biotransformations. When talking about en-
zyme promiscuity we usually mean substrate promiscuity, since this case is more common 
in nature. Since secondary catalytic activities are by definition weaker than the native func-
tion, they are more difficult to detect experimentally. Low catalytic side activities very often 
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remain undetected, unless the enzyme is tested specifically in vitro (or in vivo) for promis-
cuous enzymatic activity. 

Another possible case is that a given enzymatic activity is known to exist, but no gene se-
quence has been assigned to it. These enzymes, whose activity has either been character-
ized in vitro or whose existence has been deducted from gaps in metabolic networks, are 
called orphan enzymes18. In 2013, 22% of EC numbers were found to be orphan19.This high 
percentage of unknown gene-protein-reaction assignments is problematic because it ham-
pers the automatic reconstruction of GEMs by producing gaps in the metabolic networks 
that have to be filled manually. Moreover, it compromises our biochemical resources that 
are essential for the design of novel, industrially relevant bioproduction pathways.  

Another aspect of missing knowledge is the existence of metabolites in nature for which no 
biosynthesis pathway is known. These metabolites have been identified through mass spec-
trometry experiments and are mostly derived from organisms with important secondary 
metabolisms, i.e. plants and fungi. In KEGG (Kyoto Encyclopedia of Genes and Genomes)20,21, 
one of the most comprehensive databases for metabolic data, almost 10,000 biological 
compounds are not part of any metabolic reaction, meaning that their biosynthesis has not 
been characterized yet. These compounds are called orphan compounds, and many of them 
are secondary metabolites that are only produced in low abundance by specific organisms 
and therefore difficult to measure, or big, complex structures with long biosynthesis path-
ways that are complicated to characterize21. 

The named knowledge gaps have been systematically addressed in the past. For example, 
since the problem of orphan enzymes was pointed out in 200422,23, the number of orphan 
enzymes could be decreased by community efforts from 38% to 22% within ten years. Other 
efforts systematically integrated orphan compounds in KEGG through bio- and cheminfor-
matic approaches21,24. Hence, if the problem can be named and quantified, it can be ad-
dressed more easily. However, it seems that what we know today is only a fraction of what 
possibly exists in nature. First of all, only known 1.3 million organisms have been described 
today, out of an estimated number of 8.7 million species25. The number of sequenced or-
ganisms is even slightly lower, at less than one million according to the sequence database 
UniProt26. From a chemical point of view, the number of known molecules in known organ-
isms is , which is estimated to be only a small fraction of possible biochemical molecules, 
even when considering the tight constraints posed by biology on physical conditions such 
as temperature pressure and pH27. These numbers strongly suggest that we have only ex-
plored a fraction of the chemo- and biodiversity present in nature, and that exploring and 
predicting the hypothetical biochemical space should be a priority to advance the field.  

1.3 Metabolism	at	the	level	of	atoms	
Bridging the knowledge gaps in metabolism is crucial to complete our understanding of 
metabolic processes. To confirm the function of genes, explore promiscuous activities, find 
orphan enzymes and characterize biosynthesis pathways, the only approach that guaran-
tees correct results is experimental. Unfortunately, experimental confirmation demands 
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high investments in terms of time, money, and workforce. Computational approaches are 
required to guide our efforts and to generate hypotheses about the true function of a gene, 
or the potential sequence of an orphan enzyme. Bioinformatics has provided efficient tools 
to assign function to genes by comparing gene sequences. In metabolism, modeling bio-
chemical processes at the network level of reactions and metabolites has proven useful to 
find knowledge gaps, but these methods are not capable to provide hypotheses on how 
these gaps might be solved. For instance, a genome-scale metabolic network cannot predict 
the way how an enzyme rearranges atoms in a biochemical reaction, or how the activity of 
an enzymes changes as a consequence of a genetic modification. However, these aspects 
are particularly important if we want to predict the potential of enzymatic catalysis. We 
need cheminformatic tools to represent biochemical processes at a mechanistic level and 
to predict and explore the potential of enzymatic catalysis. 

In this thesis, we address the need of computational approaches for the representation of 
enzymatic reaction mechanisms. We model enzymatic action in silico at the atomic level to 
generate hypothesis on the existence metabolic reactions in biological systems and to pre-
dict potential to-be-engineered biochemical functions.  

1.3.1 Enzymes	in	silico	
Several tools have been developed in the past to mimic the activity of enzymes using so-
called enzymatic reaction rules. Generalized enzymatic reaction rules are used to predict 
biochemical reactions based on known enzymatic reaction mechanisms. An important fea-
ture of reaction rules is that they are “general”, meaning that one reaction rule always cat-
alyzes a same type of biochemical reaction, but can apply this biotransformation on a range 
of substrates showing the same reactive site. Generalized reaction rules thus computation-
ally mimic the promiscuous activity of an enzyme or a group of related enzymes. The rules 
can be derived manually by biochemists from biochemical knowledge28,29, or they can be 
automatically extracted from known enzymatic reactions30–33. Extracting reaction rules au-
tomatically from biochemical databases is fast, but the quality of the reaction rules will 
heavily depend on the correctness of the reference data. Furthermore, the automatic ex-
traction of rules is prone to errors, especially in cases where the reaction mechanism is not 
easily derived from structural comparison between substrate and product. On the other 
side, manual derivation and curation of reaction rules is extremely time consuming, but it 
guarantees the biochemical correctness of the implemented reaction mechanisms.  

For the named reasons, the work presented here is based on the computational reaction 
prediction tool BNICE34–36. BNICE, which stands for Biochemical Network Integrated Com-
putational Explorer, has at its core a comprehensive set of expert-curated, generalized en-
zymatic reaction rules. The development of BNICE has been started at the Northwestern 
University in 2005 as a tool for computational prediction of biochemical reaction network. 
Since then, BNICE has been applied to a diverse set of problems including the prediction of 
biosynthesis pathways for 2nd-generation fuels and commodity chemicals37,38, the predic-
tion of biodegradation pathways for xenobiotic compounds39 and the exploration of 
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biosynthesis pathways of antibiotic polyketides40 and lipids41. BNICE is also at the source of 
the ATLAS of Biochemistry database of novel reactions between known biological com-
pounds42, and it has been used to construct the database MINEs that predicts potential me-
tabolites derived from the known metabolome43. The development has been continued in-
dependently at EPFL, and renamed into BNICE.ch. In the past ten years, its database of re-
action rules has been continuously expanded from 291 in 2014 to 447 in 2019. In the pro-
cess, many reaction rules have been created to cover enzymatic reactions from secondary 
metabolism with complex reaction mechanisms (e.g., ring-forming (S)-norcoclaurine syn-
thase or chalcone synthase) on the way toward a comprehensive modeling framework of 
biochemical reaction mechanisms. 

BNICE.ch computationally describes metabolites, reactions and enzymes (Figure 1.2): In 
BNICE.ch, compounds are represented as Bond Electron Matrices (BEM), which describe the 
molecule as a mathematical graph where atoms are nodes, and bonds are edges. Enzymes 
are represented by reaction rules, which describe the possible reactive site configurations 
recognized by the enzyme, and the reaction mechanisms performed by the enzyme in the 
form of a matrix defining the bonds broken and formed during the reaction. Each reaction 
rule comes in a forward and a reverse version, which form together a bidirectional reaction 
rule. The BNICE.ch reaction rules are organized according to the Enzyme Commission (EC) 
classification, which assigns a four-digit classifier to each enzyme. The first level of the EC 
number defines the type biochemical reaction catalyzed by the enzyme (i.e., transferases, 
hydrolases, lyases, isomerases, ligases and translocases). The second EC level defines the 
type of the functional groups that the enzymes act on, and the third level represents the 
cofactors involved in the reaction or another property used to further classify the enzyme. 
BNICE.ch reaction rules are defined up to the third EC level, which means that a given reac-
tion rule can act on a range of different substrates harboring the defined reactive sites. In 
that sense, a reaction rule represents catalytic elasticity of an enzyme. 

 

 

Figure 1.2: Computational representation of the biochemical actors in BNICE.ch. 
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The BNICE.ch reaction rules have three important characteristics: (i) The reaction mecha-
nisms are encoded at the atomic level, and we can therefore use them to map atoms in 
biochemical reactions, (ii) since the exact substrate is not defined in the rule, we can apply 
them on a range of substrates harboring the same functional site to mimic enzyme promis-
cuity, and iii) we can take advantage of the description of the reactive site in the rule to find 
the reactive sites on a given substrate. In the following, we will discuss each aspect and its 
practical applications for biochemical in silico studies. 

1.3.2 Atom-level	resolution	of	reaction	mechanism	
The atom-level description of reaction mechanism in the BNICE.ch reaction rules form the 
methodological basis automatically to map atoms in biochemical reactions, and further to 
trace atoms through metabolic pathways and networks. By applying a reaction rule on a in 
silico-labeled substrate, BNICE.ch will rearrange the labeled atoms according to the reaction 
mechanisms stored in the rule and produce a labeled product, where every atom carries 
the label of its previous position in the substrate. To create labeled, linear pathways, we can 
to apply the next reaction rule on the labeled product, and to continue this procedure iter-
atively until the final metabolite of the pathway is produced. The manual derivation of the 
reaction mechanisms encoded in the reaction rules guarantees the correctness of the atom-
mappings provided by BNICE.ch. Atom-maps are therefore in agreement with available bi-
ochemical knowledge, making them atom-maps particularly reliable. Applications of this 
feature of the BNICE.ch reaction rules are presented in Chapters 2 and 3 of this thesis.   

1.3.3 Promiscuity-based	prediction	of	biochemical	reactions	
A second important feature of the BNICE.ch reaction rules is the fact that only the functional 
group recognized by the enzyme is defined, but not the exact substrate. A single reaction 
rule can therefore recognize a broad range of substrates, and transform them into corre-
sponding products according to the encoded reaction mechanism. This procedure not only 
reconstructs known metabolic reactions - it also predicts novel, hypothetical reaction that 
are feasible according to biochemical principles. These novel enzymatic activities are poten-
tially performed by an enzyme in nature as a result of the promiscuous activity of the en-
zyme, or it can be engineered by genetically altering the binding pocket of the enzyme to 
allow the new substrate. The first case is of particular importance to fill gaps in metabolic 
networks and to discover yet uncharacterized biosynthesis pathways towards secondary 
metabolites (e.g., plant natural products). Both cases form a valuable starting point for en-
zyme design in metabolic engineering, especially when the pathways to be engineered in-
volve non-natural compounds. Chapter 4 of this thesis shows the value of reaction predic-
tion in filling the gaps in our knowledge of metabolism, and Chapter 5 further illustrates the 
utility of enzyme prediction in different applications. 
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1.3.4 Predicting	putative	enzymes	for	novel	reactions		
The third crucial aspect of BNICE.ch reaction rules is its encoded definition of the reactive 
site that is recognized by the enzyme. For example, the encoded reactive site pattern can 
be used to quickly screen big numbers of molecules for potential biological activity. An ap-
plication of this feature will be discussed in Chapter 4 (4.4.3). More importantly, the 
knowledge of reactive sites is key to predict putative enzymes for novel and orphan reac-
tions: The in-house computational tool BridgIT takes advantage of the reactive sites en-
coded in the reaction rules to compare a query reaction to all known, enzyme-catalyzed 
reactions, and to calculate similarity scores between the reactions44. Predicted enzymes can 
either catalyze the orphan reactions, or they can be genetically modified to accommodate 
the new substrate in their active site. BridgIT, related tools and their applications are dis-
cussed in detail in Chapter 5 (5.1.4). 

1.4 This	thesis	
In this work, atom-level biochemical modeling is used to tackle different problems in the 
exploration, analysis and engineering of metabolism. We show that the computer-encoded 
knowledge of enzymatic reaction mechanisms has a broad range of applications, ranging 
from atom-mapping and -tracing in metabolism, over predicting novel, potentially existing 
or to-be-engineered biochemical reactions, to efficiently navigating big biochemical data in 
the search for metabolic pathways. The topics are presented in chapters as follows (Figure 
1.3): In Chapter 2, we employ the mechanistic description of enzymatic action to obtain 
atom-maps for metabolic reactions, and to simulate stable-isotope tracer experiments in 
silico. Next, the experience gained from tracking atoms was exploited to develop a novel, 
efficient pathway search method that is capable to search large biochemical networks 
(Chapter 3). In Chapter 4, we use the promiscuous characteristic of generalized enzymatic 
reaction rules to systematically predict novel biochemical reactions around known biologi-
cal and bioactive compounds, and we create a database series that hold the hypothetical 
biochemical networks and makes them accessible to the public. In Chapter 5, we present 
several applications of the aforementioned methods, including retrobiosynthetic pathway 
design to commodity chemicals and fuels, the prediction of pharmaceutical derivatives from 
known secondary metabolic pathways, and the prediction of biodegradation pathways for 
xenobiotic compounds. A final chapter summarizes the findings and proposes an outlook 
on future developments (Chapter 6). 

Working in an interdisciplinary field like computational systems biology requires collaborat-
ing with other scientists specialized in specific tools or experimental techniques. During my 
PhD, I had the pleasure to work with many different people, and to ensure that they get the 
credits for their contributions, each Subchapter starts with a short statement on who has 
done what, printed in grey italics. 

I wish you, dear reader, a pleasant time reading my thesis on modeling, predicting and min-
ing metabolism at atom-level resolution. 
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Figure 1.3: Overview on the different levels of metabolism addressed in this thesis. Red numbers indicate re-
spective Chapters and Subchapters. 
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Chapter	2 Atom-level	 resolution	 of	
metabolic	networks	
The results presented in this Subchapter have been obtained in collaboration with several 
people under the project lead of the author of this thesis. The master student and later in-
tern, Beatriz Lopes, contributed to the implementation of the iAM.NICE framework, applied 
it to E. coli and performed the substrate-utilization analyses on Plasmodium falciparum 
(Subchapter 2.4) under the supervision of the author. Furthermore, Dr. Anush Chiapino-Pepe 
implemented the 13C-FBA framework, and Zhaleh Hosseini implemented and performed 13C-
FBA on E. coli. Subchapter 2.1 and 2.3 will be published as an article with the mentioned 
contributors as co-authors. Subchapter 2.2 introduces the previously published iAM.NICE 
workflow, developed by the author under the direct supervision of Dr. Noushin Hadadi.  

Understanding metabolism at atom-level resolution is a difficult challenge, yet it 
is extremely useful to decipher the nature of metabolic processes. The following Chapter 2 
is dedicated to modeling metabolism at atom-level resolution. The first Subchapter (2.1) 
introduces the importance of atom-level metabolic modeling and its importance to meas-
ure metabolic fluxes. Subchapter 2.2 discusses the atom-level representation of enzymatic 
reaction mechanisms as reaction rules, and how the knowledge encoded in reaction rules 
can be used to map atoms in metabolic reactions, pathways and networks. Next, we intro-
duce a new approach to model stable-isotope experiments using 13C-labeled glucose in Sub-
chapter 2.3. Subchapter 2.4 shows an application of computational carbon tracing in the 
malaria parasite Plasmodium falciparum, and is followed by a conclusion (Subchapter 2.5). 

2.1 Quantification	of	cellular	metabolic	fluxes	
The distribution of metabolic fluxes defines the physiological state of the cell1, and its study 
is crucial to advance our understanding of the cellular metabolic responses to environmen-
tal and genetic changes. With flux profiles, we quantify the flux percentages at each branch-
ing point in metabolism. This study of metabolic flux distributions, also called fluxomics, has 
been described as the functional output of the combined omics, i.e., genomics, tran-
scriptomics, proteomics and metabolomics2. Hence, exact flux profiles are important to un-
derstand, analyze and compare metabolic processes in living organisms, and also to evalu-
ate interactions between a cell’s environment and its genetic material. In particular, we can 
further use the outcome of fluxomics studies in metabolic engineering efforts to design and 
optimize strains towards the creation of powerful cell factories. Currently, there are two 
popular methods to estimate metabolic fluxes inside cells: (i) stable-isotope tracing 
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experiments combined with 13C-Metabolic flux analysis (13C-MFA), and (ii) constraint-based 
methods seeking to optimize a biological objective, such as Flux Balance Analysis (FBA). In 
the following, the term “optimization-based methods” is used to refer to the latter, keeping 
in mind that 13C-MFA also solves an optimization problem (i.e., minimizing the difference 
between the experimental data and the underlying model). 

2.1.1 13C-Metabolic	flux	analysis	(13C-MFA)	
13C-MFA combines experimental measurements with computational fitting to obtain meta-
bolic flux distributions2–4. 13C-MFA relies on 13C stable-isotope labeling experiments, where 
the carbon atoms of the substrate are partially or fully replaced with their stable isotope 
(13C) (Figure 2.1). The isotope-labeled substrate is taken up by the cell, metabolized and 
incorporated into proteinogenic amino acids or other molecules that contribute to biomass. 
The distribution of isotope isomers (isotopomers) of different metabolites in the biomass is 
then measured experimentally, usually using gas chromatography-mass spectrometry (GC-
MS). The experimental isotopomers data plus flux measurements for uptake and secretion 
rates are then used to infer flux distributions in the cell by solving a fitting problem. In order 
to correctly interpret the isotopomer data, atom-mapped metabolic networks are an im-
portant prerequisite. 13C-MFA generally relies on small, hand-curated atom-mapped repre-
sentations of the central carbon metabolism and of a selection of amino acid biosynthesis 
pathways. 

 

Figure 2.1: The 13C-MFA workflow.  

Please note that the carbon positions in glucose are usually numbered in the reverse sense than shown here. 
Hence, the isotopomer C1 is generally referred to as [6-13C], and C6 is [1-13C]. UTC is also known as [U-13C]. 

 

However, these atom-mapped core networks have several shortcomings. First of all, there 
is no consensus in the set of represented metabolic pathways in the core network, and be-
cause of its small size spanning only the central carbon metabolism and amino acid 
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biosynthesis, the atom mapped networks fail to capture the totality of carbon transitions. 
The latter implies that overall stoichiometric constraints and full cofactors balances are usu-
ally not considered in atom-mapped core networks. Second, there is no systematic way to 
define the core model for non-model species. The standard core model only holds true for 
specific sets of species and cell cultures, thus compromising the determination of fluxes in 
other organisms and metabolic states5. This happens despite the fact that isotope labeling 
experiments have proven particularly useful to characterize the metabolism of non-model 
organisms, to identify bottlenecks and wasteful bioproduct pathways and to finally use the 
acquired knowledge for the metabolic engineering of those organisms6. Third, it has been 
shown that flux fitting within genome-scale models affects the flux ranges obtained by 13C-
MFA, meaning that full metabolite and cofactor balance is crucial for obtaining reliable re-
sults7. Fourth, 13C-MFA requires solving a non-linear optimization problem, with fluxes as 
parameters, which may result in multiple locally optimal solutions for the flux distribution8. 
Fifth, ad-hoc assumptions of flux directionalities within the network may bias the results of 
the analysis. Finally, while confidence intervals for fluxes can be obtained from statistical 
analysis, the flux distribution obtained from 13C-MFA remains a unique solution of the flux 
state and does not embrace the more realistic concept of flux ranges as employed in opti-
mization-based models. 

The named shortcomings compromise our ability to fully take advantage of the information-
heavy results from 13C labeling experiments, and therefore to accurately quantify the met-
abolic state of a cell. We believe that these issues could be solved by using organism-specific 
genome-scale models describing the overall stoichiometry of metabolism, followed by a ro-
bust, standardized reduction of the model and subsequent optimization-based flux analysis. 
However, it is currently not possible to directly integrate isotope-labeling data into this type 
of model. 

2.1.2 Optimization-based	methods	to	estimate	flux	ranges	
FBA is a constraint-based modeling technique to calculate feasible flux ranges in a pseudo 
steady-state given the stoichiometric constraints of the reactions in the cell9,10. FBA relies 
on the definition of an objective function (e.g., growth) to describe the overall goal of the 
organism and the associated metabolic flux profiles. By optimizing the objective function, 
FBA calculates feasible flux distributions given the stoichiometric constraints. In order to 
narrow down the solution space, additional constraints such as growth rate and rates of 
metabolite exchange with the media (uptake and secretions) can be added. Thermody-
namic Flux Analysis (TFA)11 reduces the number of degrees of freedom in the system by 
computing the possible flux directionalities of each reaction based on feasible concentra-
tion profiles12, and it further allows the integration of thermodynamic and metabolomics 
data.  

FBA, TFA and other constraint-based modeling methods require stoichiometrically correct 
descriptions of metabolism, in the format of metabolic networks. In an ideal case, the met-
abolic network includes all the metabolic reactions that occur in a cell. The gold standard 
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for metabolic models are GEnome-scale metabolic Models (GEMs), which are directly de-
rived from annotated genome sequences, and which comprehensively describe metabolic 
processes in the organism under study.  

2.1.3 FBA	versus	MFA	
In the analysis of labeling data, 13C-MFA can directly evaluate metabolic profiles using pre-
cise quantification of stable-isotope species. However, the advantage of FBA vs 13C-MFA lies 
in the usage of constraints derived from the integration of omics data sets to analyze alter-
native genome-wide metabolic profiles that describe a cellular state like the one measured 
with 13C data. The complementarity of these two approaches has been nicely illustrated by 
Chen et al., who used both FBA and 13C-MFA in parallel to study internal metabolic flux dis-
tribution of Escherichia coli (E. coli)13. The flux distributions calculated by 13C-MFA are fre-
quently used to constrain metabolic models or to validate fluxes resulting from constraint-
based modeling techniques. However, constraining a GEM with fluxes calculated from 13C-
MFA transfers biased assumptions of the small core model in 13C-MFA to the GEM, a prob-
lem that has been discussed for a while2,14. It has recently been addressed by Gopalakrish-
nan et al., showing that adding proper stoichiometry, cofactor balance and biomass equa-
tions to the core network improves the accuracy of the flux distribution15. A similar ap-
proach has been proposed by García Martín et al., where the fitting problem of 13C-MFA 
was directly solved within the GEM in order to include cofactor balances and peripheral 
metabolic fluxes, such as the biosynthesis fluxes towards target compounds8. 

As a conclusion, integrating labeling data directly into the FBA analysis would make it pos-
sible to take advantage of both the stoichiometric precision of the GEMs and the density of 
flux information inferred from stable-isotope experiments. Here, we suggest a new ap-
proach that, unlike previously published method, integrates isotopomer distributions in the 
form of constraints within FBA and TFA. With this approach, we systematically analyze met-
abolic flux profiles consistent with 13C-labeling data for the study of metabolism and the 
production of all biomass building blocks (BBBs) at a genome-scale. We thus avoid the sep-
arate resolution of fitting problem for labeled fluxes and an optimization problem for the 
rest of the GEM.  

The most important prerequisite to model isotopomer distributions in a cell is the ability to 
track single carbon atoms in a metabolic network. The problem of automatically obtaining 
biochemically correct atom-mapped reactions and tracing atoms through pathways and 
networks has been addressed in my master thesis and published in 201716. The method, 
named iAM.NICE and summarized in the following Subchapter, forms the basis of con-
straint-based atom-level modeling of metabolism. 
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2.2 Tracing	 single	 atoms	 through	 reactions,	 pathways	
and	networks	

The iAM.NICE tool, published in Biotechnology journal, has been developed under the direct 
supervision of Dr. Noushin Hadadi (project lead, manuscript). Pipeline development, network 
generation and data analysis were done by the author of this thesis. This section presents 
the iAM.NICE workflow, as published in the Biotechnology Journal in 2016 by Hadadi et al.16. 

Metabolic networks are typically drawn at the level of metabolites, which are connected by 
biochemical reactions. While this representation of metabolism is useful for studying met-
abolic processes at the network level, it does not provide any information on flow of atoms 
in metabolism. Yet, this information is crucial for the interpretation of stable-isotope label-
ing experiments to study the distribution of metabolic fluxes or the turnover of certain ele-
ments in metabolism. An atom-level representation of metabolic reactions is further crucial 
to understand the exact reaction mechanism performed by the enzyme. 

Atom-maps can be derived by hand, although this approach is tedious. As an example, KEGG 
has discontinued the manual curated, semi-automatic approach of mapping atoms in reac-
tions (RPAIR database17) due to the increased efforts of curating a fast-growing biochemical 
database. As an alternative, computational approaches can be used to map atoms in chem-
ical and biochemical reactions. There are two main approaches to the problem based on 
graph theory18,19: The first approach seeks to optimize the conservation of molecular sub-
structures by looking for the Maximum Common Subgraph (MCS) between the reactants 
and the products20–26, and the second approach tries to minimize the number of bonds bro-
ken and formed during the chemical transformation by determining the minimal chemical 
distance27–31. Finally, mixed approaches include training data have been proposed in the 
past to decrease the number of erroneous mappings32. Mixed approaches are also available 
as AutoMapper in ChemAxon and as Atom Atom Mapping Tool in the Reaction Decoder Tool 
(RDT). However, none of the mathematical approaches can guarantee the correctness of its 
atom mappings; The underlying problem is that the mathematical solution is not necessarily 
the biochemically correct one, and the true atom map of a reaction may only be determined 
by studying the enzymatic reaction experimentally using labeled substrates. For example, 
mapping atoms in biochemical reaction catalyzed by ligases and isomerases are particularly 
challenging because these enzymes can perform complex rearrangement of atoms that are 
not captured by automatic atom mapping tools. Hence, in order to know the true atom 
mapping of a biochemical reaction, one needs to know the reaction mechanism performed 
by the catalyzing enzyme. In the following, we present a method for automatic atom map-
ping of reactions on the basis of generalized enzymatic reaction rules that encode the 
atomic rearrangement performed by an enzyme. The reaction rules are expert-curated rep-
resentations of biochemical knowledge, thus guaranteeing the biochemical correctness of 
the resulting atom maps. The algorithm is called iAM.NICE and can be employed to map 
atoms in reactions and pathways, and it can finally be used to track atoms through complex 
metabolic networks. 
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2.2.1 Atom-mapped	biochemical	reactions	
iAM.NICE is an extension of BNICE.ch, and it stands for in silico Atom Mapped Network In-
tegrated Computational Explorer. At its core are the BNICE.ch enzymatic reaction rules, 
which describe the exact mechanism of an enzymatic reaction at the atomic level (Figure 
2.2): The substrate, represented by a bond-electron matrix (substrate matrix), is recognized 
by the active site of an enzyme, represented by the recognition matrix in the reaction rule. 
The reaction mechanism, encoded in the operator matrix, is then applied to the part of the 
substrate recognized by the reaction rule. The result is a product matrix that describes the 
molecular structure of the product molecules. In order to generate an atom map of the 
reaction, we label the atom positions in the substrate and we apply the reaction rule that 
reconstructs the reaction we want to analyze. The reaction rule then transfers the label 
from the atom position in the substrate to the corresponding atom position in the product, 
thus creating an atom-map of the reaction.  

Exploiting the reaction mechanism encoded in the expert-curated reaction rules to map at-
oms ensures that the atom mapping is biochemically correct. Given the biochemical cor-
rectness of the encoded reaction mechanisms, the reaction rules can further be used to 
resolve unclear mechanisms in metabolic reactions 

Another advantage of this approach is that we can now go one step further and apply a 
consecutive reaction rule on the labeled product of the first reaction, thus mapping atoms 
over two or more sequential reaction steps. In the following, we will focus on tracing carbon 
atoms throughout reactions, pathways and networks. It should be noted, however, that the 
method can readily be applied to study the metabolic fate of elements other than carbon. 

 

Figure 2.2: Generalized reaction rules represent the action of a substrate-promiscuous enzyme at atom-level 
resolution.  
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2.2.2 Atom-mapped	metabolic	pathways	
Being able to trace each atom throughout a metabolic pathway is crucial to evaluate, for 
example, the carbon efficiency of a biosynthetic pathway in metabolic engineering, and to 
interpret the outcome of stable-isotope labeling experiments. By applying BNICE.ch reac-
tion rules iteratively on a substrate, we can map atoms through metabolic pathways (Figure 
2.3). In a first generation, the reaction rule representing the first reaction in the pathway is 
applied to the initial substrate, generating a labeled product. In a second generation, the 
reaction rule representing for the second biotransformation is applied the product of the 
first reaction, and so on, until the final, labeled product of the pathway is produced. The 
result is an exact mapping of each atom position in the precursor(s) of the pathway to the 
product molecule(s). 

 

Figure 2.3: All the carbon atoms of glucose are traced simultaneously through the first four reaction steps of 
glycolysis in four generations. 

 

2.2.3 Tracing	atoms	in	the	substrate	through	metabolic	networks	
Tracing single atom position in a substrate throughout a whole metabolic network can help 
us to determine the flow of elements in metabolism or to study the usage of molecular 
moieties within the metabolic network. Tracing atoms in silico through metabolic networks 
has also been used in the past to find metabolic pathways25,33–35. For linear pathways, map-
ping all the atoms of the substrate simultaneously to the final product is straight-forward. 
However, as soon as certain metabolites are recycled in the pathway, as it is the case in 
metabolic networks, the emerging cycles will contribute to the scrambling of the labels. In 
these cases, it is more informative to look at a single atom at a time to reduce the complex-
ity of the resulting atom map. To trace single carbon atoms from a substrate through a met-
abolic network, the same procedure is used as for linear pathways; Reaction rules are ap-
plied iteratively on a in silico labeled substrate until no more isotopomers (i.e., labeled me-
tabolites) are generated. The result is a map of all possible paths that the labeled atom can 
take within the reaction constraints of the network. For example, the carbon at position 
four in glucose can end up in two different positions in the downstream metabolite py-
ruvate, as illustrated in Figure 2.4. It is important to note that even though we trace only 
one single atom at time, the overall atom map of the network is still conserved in the reac-
tion rules. This tracking of atomic positions in silico is equivalent to 13C-labeling experiments, 
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where a substrate is isotopically labeled in one of the carbon positions, fed to the cell and 
metabolized.  

The ability to trace atoms through metabolic networks in silico is one of the prerequisites 
to predict carbon label distribution from labeled substrates within a constraint-based 
model, which is discussed in the next Subchapter (2.3). 

 

 

Figure 2.4: Tracing the carbon atom at position four of glucose through parts of the central carbon metabolism 
illustrates the generation of carbon-labeled networks in iAM.NICE (adapted from Hadadi et al.16). 
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2.3 Atom-level	modeling	of	E.	coli	
Now that we know how to trace atoms through metabolic networks, the next aim is to in-
tegrate the carbon-tracing network into constraint-based modeling framework. Here, we 
present a workflow for systematic reconstruction and analysis of atom-mapped genome-
scale models, termed 13C-FBA and illustrated in Figure 2.5. 13CFBA addresses the limitations 
of previously developed 13C-MFA and FBA frameworks, as previously discussed in Subchap-
ter 2.1. The aim of our work is to achieve the integration of atom-level information into a 
constraint-based modeling approach in order to allow direct integration of stable-isotope 
labeling data. For this, we needed a well-studied model organism for which labeling data is 
available, as well as a GEM of the organism.  In a first step, we organize and reduce the 
GEM. Second, we apply thermodynamic network analysis to determine the directionalities 
of the reactions in the GEM. Third, we annotate the reactions with reaction mechanisms 
(i.e., BNICE.ch reaction rules), which are used by iAM.NICE in step four to track the labeled 
atoms of different glucose tracers throughout the network. In step five, the labeled net-
works are then merged into the constraint-based framework, which is used to predict label-
ing patterns in the biomass building blocks. The final, hybrid model is finally used to study 
the propagation of the labels through the model and for the integration of experimental 13C 
labeling data. The following sections describe each step of the workflow in detail. The work-
flow is illustrated by the application of 13C-FBA on the GEM of E. coli, and we finally compare 
the outcome with the results obtained by similar approaches. 

2.3.1 Reduction	of	the	E.	coli	GEM		
To illustrate our workflow, we chose E. coli as a model organism for its well-curated meta-
bolic models, as well as for the abundance of available scientific literature and experimental 
labeling data. Here, we used the GEM created by Orth et al., iJO136636. The first step of our 
workflow consists of reducing the GEM of E. coli. To achieve this, we applied a bottom-up 
systematic method proposed by Ataman et. al, called redGEM, which reduces the complex-
ity of a genome-scale model into a core model37. The complementary method of redGEM, 
called lumpGEM38, finds biosynthesis pathways towards the BBBs and lumps them into sin-
gle reactions that represent the stoichiometry of the whole lumped pathway. The reduced 
model preserves key properties from the original model such as biomass production, by-
product yield, concentration variability and gene essentiality37. Hence, it matches the re-
quirements discussed previously of a consensus model suitable for atom-level reconstruc-
tion. We applied the systematic reduction on the E. coli GEM to generated a reduced met-
abolic model, called redEcoli, that serves as a reference for subsequent atom-mapping stud-
ies. The original model counts 1805 metabolites, 2583 reactions and 102 BBBs. redEcoli 
counts 309 metabolites and 539 reactions, which are composed of 119 metabolic reactions, 
188 lumped reactions, 231 transport reactions between the cytosol, the periplasm and the 
extracellular space, and one biomass reaction. The 119 metabolic reactions that are part of 
the selected core subsystems glycolysis/gluconeogenesis, pentose phosphate pathway, TCA 
cycle, pyruvate metabolism, and the electron transport chain. The 102 BBBs are produced 
from the core metabolism via the 188 lumped reactions.  
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Figure 2.5: The 13C-FBA workflow explains the creation of a reduced hybrid model in five steps, plus a final step 
for analysis and model validation. Abbreviations: genome-scale model (GEM), Thermodynamic Flux Analysis 
(TFA), flux directionality profile (FDP), bidirectional reactions (BDRs), amino acids (AA), biomass building blocks 
(BBBs). The third-level EC numbers in step three represent enzymatic reaction rules, and LUMP_1 stands for a 
lumped reaction rule converting core precursors into BBBs. 

 

2.3.2 Thermodynamic	analysis	of	redEcoli	
In the second step of the workflow, we aim to further constrain redEcoli by determining the 
thermodynamically feasible flux directionalities for each reaction in the model in aerobic 
conditions, assuming maximal cell growth. For this, we curated redEcoli thermodynamically 
following the standard approach defined within the TFA framework39,40. We then performed 
a Thermodynamic Variability Analysis (TVA) of redEcoli to identify the directionalities of the 
reactions that satisfy mass balances of all metabolites and cofactors, as well as thermody-
namic constraints at predefined intracellular conditions (see Materials and Methods) to 
support growth. Nine reactions were found to operate both in the forward and reverse di-
rection, which we call bi-directional reactions (BDRs) in the following. These reactions are 
catalyzed by the enzymes acetaldehyde dehydrogenase (ACALD), fumarase (FUM), malate 
dehydrogenase (MDH), phosphoglucose isomerase (PGI), ribulose 5-phosphate 3-epi-
merase (RPE), transaldolase (TALA) and transketolase 1 and 2 (TKT1, TKT2), and triose-
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phosphate isomerase (TPI). A theoretical number of 29 (512) flux directionality profiles 
(FDPs) would result from all possible combinations of directionalities of the nine reactions. 
From those, we selected six FDPs supporting maximal growth and representing changing 
flux directionalities in different metabolic subsystems. The six selected FDPs affect the flux 
directionalities of the four enzymes ACALD, FUM, PGI and TALA, representing changes in 
the pyruvate metabolism, citric acid cycle, glycolysis and pentose phosphate pathway, re-
spectively (Table 2.1). 

Table 2.1: Six different FDPs were chosen for further analysis, considering four (green rows) out of nine bidi-
rectional reactions (BDRs). 1 indicates that the reaction is operating in the forward direction in the specific 
FDP, and -1 in the reverse direction. 

 

2.3.3 Curation	of	redEcoli	with	reaction	mechanisms	
In a third step, we obtained an atom-mapping model of redEcoli by applying iAM.NICE, 
which, to our knowledge, is the only computational tool for automatic mapping of single 
atoms in metabolic reactions, pathways and networks that ensures the correctness of the 
mapping based on biochemical reaction mechanisms. iAM.NICE is an extension of the retro-
biosynthesis tool BNICE.ch41, which has initially been developed to predict biochemical re-
action networks using expert curated, generalized biochemical reaction rules. Each reaction 
rule encodes the exact reaction mechanism of an enzyme in a general way, meaning that 
the rule can apply its biochemical transformation on a set of substrates harboring the same 
reactive site. A single reaction rule can be applied on a range of in silico labeled substrates 
to generate biochemically correct atom maps for the resulting metabolic reactions.  

To curate the reactions in redEcoli with reaction mechanisms, we first categorized the 119 
metabolic reactions in the core of the reduced model. They included 22 reactions that only 
involved cofactors that were not produced by the core and hence would not get labeled 
from glucose in the core, as well as four polymerization reaction reactions that were ex-
cluded from the reaction rule assignment, which left us with 93 core reactions for reaction 
rule assignment. 65 generalized reaction rules were required to represent all the reaction 
mechanism in redEcoli. The result of this procedure is an atom-mapping model of the E. coli 

BDRs FDP1 FDP2 FDP3 FDP4 FDP5 FDP6 Reaction equation

ACALD -1 -1 1 1 1 1 Acetaldehyde + CoA + NAD+ ⇌ Acetyl-CoA + H+ + NADH

FUM 1 1 1 1 -1 1 Fumarate + H2O ⇌ L-Malate

MDH 1 1 1 1 1 1 L-Malate + NAD+ ⇌ Oxaloacetate + H+ + NADH

PGI 1 1 1 1 -1 -1 D-Glucose 6-phosphate ⇌ F6P

RPE 1 1 1 1 1 1 D-Ribulose 5-phosphate ⇌ Xu5P

TALA -1 1 -1 1 1 1 G3P + S7P ⇌ E4P + F6P

TKT1 1 1 1 1 1 1 R5PP + Xu5P ⇌ G3P + S7P

TKT2 1 1 1 1 1 1 E4P + Xu5P ⇌ F6P+ G3P

TPI 1 1 1 1 1 1 Dihydroxyacetone phosphate ⇌ G3P
G3P: Glyceraldehyde 3-phosphate, S7P: Sedoheptulose 7-phosphate, E4P: D-Erythrose 4-phosphate,     
Xu5P: D-Xylulose 5-phosphate, F6P: D-Fructose 6-phosphate, R5PP: Alpha-D-Ribose 5-phosphate 
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core metabolism, annotated with reliable, biochemically confirmed reaction mechanism 
that can be readily used to map and track atoms.  

2.3.4 Atom-mapped	core	metabolism	of	redEcoli	
Once an atom-mapped model of the core has been established, we can feed it with glucose 
molecules labeled in different carbon positions and study the distribution of the in silico 
labels throughout the network. To analyze the atom-level model of the E. coli core metab-
olism, we first investigated the effect of different physiological states, represented by Flux 
Directionality Profiles (FDPs), and labeling positions in glucose on the generation of carbon-
labeled network. In a second labeling experiment, we labeled the BBBs differently in each 
carbon position, and we traced back the possible origins of each atom in the precursor me-
tabolites of the core. Next, we traced carbons through the whole redEcoli, from the sub-
strate to the BBBs, in order to create carbon-mapped networks for a range of specific label-
ing configurations of the tracer substrate glucose, that could finally be analyzed using FBA-
related tools. 

Using iAM.NICE, we generated 28 core labeled networks that were a product of the combi-
nation of six singly-labeled glucose molecules with the six named FDPs (Table 2.2). The 28 
labeled models are of different size regarding the number of labeled reactions and metab-
olites involved, which depends on the position of the labeled carbon in glucose and the FDP 
applied for the network reconstruction. The lack of assumed directionality in the nine bi-
directional reactions is referred to as noFDP. Since noFDP has less directionality constraints, 
more combinations of isotopomers are possible which leads to bigger isotopomer networks 
than the FDPs 1 to 6. Furthermore, the number of produced isotopomers is highest for car-
bon label positions 4, 5 and 6 in glucose and smallest for carbon label at position 2. The 
theoretical maximum of isotopomers (1435) is only obtained in the case of unconstrained 
bi-directional reactions in noFDP, combined with UTC, C5 and C6 glucose. The FDPs 5 and 6 
are identical in their numbers of generated isotopomers, indicating that the reaction direc-
tionality of FUM in the TCA cycle does not impact the labeling distribution. The opposite is 
the case for glycolysis enzyme PGI, which, if operating in the reverse direction (FPPs 5 and 
6), more than triples the number of isotopomers for C4 and C5, and reduces by three the 
number of isotopomers for C6. The difference between the FDPs gives a first hint on the 
different flux distribution between different physiological states of a cell, and it highlights 
the importance of pre-assumed flux directionalities in the generation of atom-mapped net-
works. 
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Table 2.2: Number of compounds for each combination of an FDP with a labeled glucose substrate. Different 
isotopomers are counted as different compounds. 

	
	

2.3.5 Atom-mapped	biomass	production	pathways	
Next, we had to formulate lumped reaction rules that would map the atoms in the precur-
sors to the atoms in the BBBs, in order to reconstruct the lumped reactions obtained from 
lumpGEM. For this, we first analyzed a total of 70 biosynthesis subnetworks for twenty 
BBBs. lumpGEM generated four levels of subnetworks: Smin is the set subnetworks that 
connect the precursors to a given BBB using the least number of reaction steps. Smin+1 is 
the set second-shortest subnetworks, and so on, until Smin+3. Using iAM.NICE in reverse 
mode, we traced the carbon atoms of 20 BBBs in E. coli through the biosynthesis subnet-
works back to its core precursors using iAM.NICE. We analyzed the resulting carbon-
mapped subnetworks from core precursors to BBBs for a total of 30 subnetworks (Table 
2.3), which were found to be representative for all of the 70 initial subnetworks. The reason 
for this is that many subnetworks only differed in their usage of cofactors, which did not 
affect the carbon labeling. We finally used generated carbon maps to formulate lumped 
reaction rules.  

  

FDP Unlabeled C1 C2 C3 C4 C5 C6 UTC

1 68 377 137 94 417 404 381 417

2 68 377 137 94 429 438 383 449
3 68 371 135 94 411 398 375 411

4 68 371 135 94 423 432 377 443

5 68 371 135 94 1429 1429 81 1429

6 68 371 135 94 1429 1429 81 1429

none 68 402 141 402 1435 1435 1435 1435
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Table 2.3: The subnetworks towards 20 BBBs have been generated by lumpGEM. Grey shades indicate repre-
sentative subnetworks that are used to create lumped reaction rules and that are visualized online. The full 
information on subnetworks generated by lumpGEM and their reconstruction in iAM.NICE can be found in the 
Appendix (Table A1). 

	
To validate the labeled subnetworks, we compared them manually to the lumped reactions 
used in traditional 13C-MFA. As a reference, we use a state-of-the-art atom-mapping model 
for 13C-MFA published by Leighty, R. W. & Antoniewicz in 201342. The reference model has 
some systematic differences with our model. For instance, the reference model does not 
explicitly write the oxidized form NAD(P)+, and H2O and H+ molecules are omitted. Further-
more, our lumped reactions always describe the biosynthesis starting with core metabo-
lites, while the reference model uses BBBs as precursors for the biosynthesis of downstream 
amino acids. E.g., we start the biosynthesis of isoleucine from aspartate, while the reference 
model starts from the intermediate threonine.  

The lumped reactions for the 20 amino acids under study can be classified into three cate-
gories: (A) single lumped reactions, (B) multiple lumped reactions with conserved carbon 
transformation, and (C) multiple lumped reactions with different carbon transformation 
(Table 2.3). 

Biomass Building 
Block

Name of 
subnetwork Degree Number of 

reactions Category Biomass Building 
Block

Name of 
subnetwork Degree Number of 

reactions Category

S1_ala Smin 1 S1_met Smin 21
Sminp1 2 S2_met Smin 20

S1_arg Smin 9 Smin 20
Sminp1 11 Smin 21

S1_asn Smin 1 S3_met Sminp1 22
Sminp1 2 S4_met Sminp1 22

S1_cys Smin 11 Sminp1 22
Smin 11 Sminp1 22
Sminp1 13 Sminp1 22
Sminp1 13 Sminp1 22

Glutamine S1_gln Smin 1 A Sminp2 23
S1_gly Smin 6 Sminp2 23
S2_gly Sminp1 7 S5_met Sminp2 23
S3_gly Sminp1 7 Sminp2 23

Sminp2 8 S6_met Sminp2 23
S1_his Smin 17 Sminp2 23

Smin 17 Sminp2 23
Sminp1 18 Sminp2 23
Sminp1 18 Sminp2 23
Sminp2 19 Sminp2 23
Sminp2 19 Sminp3 24
Sminp3 20 S7_met Sminp3 24
Sminp3 20 Sminp3 24

Isoleucine S1_ile Smin 10 A Sminp3 24
Leucine S1_leu Smin 9 A S8_met Sminp3 24
Lysine S1_lys Smin 9 A Sminp3 24

Sminp3 24
Sminp3 24
Sminp3 24
Sminp3 24

Chorismate S1_chor Smin 7 A Phenylalanine S1_phe Smin 10 A
Putrescine S1_ptrc Smin 6 A S1_pro Smin 4

Sminp1 6
Serine S1_ser Smin 3 A

Threonine S1_thr Smin 5 A
S1_trp Smin 15

Sminp2 17
S2_trp Sminp2 17

Sminp3 18
Tyrosine S1_tyr Smin 10 A

S1_val Smin 4
Sminp1 5

Non-amino acid building blocks

Proline B

Tryptophan C

Valine B

Cysteine B

Glycine C

Histidine B

Proteinogenic amino acids Proteinogenic amino acids

Alanine B

Methionine C

Arginine B

Asparagine B
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A. Single lumped reactions (including chorismate, glutamine, isoleucine, leucine, lysine, 
phenylalanine, putrescine, serine, threonine, tyrosine): The atom maps for these 
lumped reactions are exactly the same as in the reference model, except that choris-
mate and putrescine are not present in the reference model. 

B. Multiple lumped reactions with conserved carbon transformation (including alanine, ar-
ginine, asparagine, cysteine, histidine, proline). For these cases, alternative lumped re-
actions use different cofactors, but the carbon transformation remains unchanged. The 
lumped reactions for these amino acids are exactly the same as the ones used in the 
reference model, with the exception of the histidine biosynthesis pathway, where the 
cofactor usage is slightly different; Our model uses glutamate and ammonia where the 
reference model uses glutamine as a nitrogen source, and we produce formate where 
the reference model produces 10-formyltetrahydrofolate. Furthermore, different sub-
networks consume different numbers of ATP molecules, varying from four to six. The 
reference model consistently uses five ATPs. 

C. Multiple lumped reaction with different carbon transformation (including glycine, me-
thionine and tryptophan): For these three amino acids, we found differences in terms 
of labeling between the alternative subnetworks.  

The biosynthesis pathway of glycine starts from the core metabolites aspartate and 3-phos-
phoglycerate. In the case of aspartate, two carbon atoms are freed to end up in either ac-
etaldehyde or formate. The single carbon atom liberated from 3-phosphoglycerate forms 
formate. In the reference model, the two precursors are the same, one producing glycine 
from aspartate through threonine, and the other producing glycine from 3-phosphoglycer-
ate via serine. The difference lies in the carbon byproduct: the first pathway (via aspartate) 
produces acetaldehyde or acetyl-CoA, while the reference model only produces acetyl-CoA. 
The second pathway (via serine) sends the carbon to formate, while the reference model 
produces 5,10-methenyltetrahydrofolate. These differences in glycine production between 
our model and the reference model mainly result from the different definitions of the scope 
of the lumped reactions, and do not necessarily reflect a biochemical disagreement. 

The second amino acid with carbon-changing biosynthesis pathways is methionine. The 
main backbone of the methionine molecule consists of four carbon atoms coming from the 
precursor aspartate (Figure 2.6A). The S-methylation is catalyzed by methionine synthase 
(METS), which takes the methyl from the folate one-carbon pool. According to the genome-
scale model of E. coli, this carbon pool can be supplied by either formate, 3-phosphoglycer-
ate or aspartate. In the reference model, the methyl group comes directly from a predefined 
folate one-carbon subnetwork. Since our model does not have a separate pool for one-car-
bon metabolism, the subnetworks for the production of methionine include parts of the 
one carbon metabolism and therefore suggest three different carbon precursors from the 
core metabolism for the methyl group. Furthermore, the cysteine precursor in the reference 
model is replaced by the cysteine precursors aspartate or 3-phosphoglycerate in our model.  
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In the case of tryptophan, our method proposes two lumped reactions to produce this 
amino acid (Figure 2.6B). The first lumped reaction uses erythrose-4-phosphate, ribose-5-
phosphate and two phosphoenolpyruvates as carbon substrates. One of the phosphoe-
nolpyruvate molecules is transformed into pyruvate, which further reacts with indole to 
give tryptophan. The last step is catalyzed by the enzyme tryptophanase (TRPAS2). In the 
second lumped reaction, one of the phosphoenolpyruvates is replaced by 3-phosphoglycer-
ate and transformed into serine, which reacts with indole to give tryptophan. In this second 
case, the last step is catalyzed by the enzyme tryptophan synthase (TRPS2). The reference 
model only uses the route via serine, without considering the action of TRPAS2. Further-
more, the reference model uses the conversion of glutamine to glutamate as a nitrogen 
source, while our lumped reaction integrates ammonia via the action of the enzyme gluta-
mine synthetase (GLNS). 

Interestingly, we found that the differences in labeling patterns appearing in category C are 
dependent on the level of subnetwork generation. The most basic set of subnetworks, Smin, 
contains 21 reconstructed subnetworks. Only methionine has two subnetworks at this level 
(S1_met and S2_met), one using aspartate and the other using 3-phosphoglycerate as car-
bon source for the S-methyl group. All of the other BBBs are represented by exactly one 
subnetwork. 

The next level of minimal network, Smin+1, generates 5 new subnetworks. The alternative 
subnetwork for glycine (S3_gly) adds 3-phosphoglycerate as carbon source for glycine bio-
synthesis. Also, the new subnetwork for methionine (S3_met) adds formate as a possible 
carbon source for the S-methyl group in methionine. New subnetworks for glycine, proline 
and methionine (S2_gly, S2_pro and S4_met) are also added in Smin+1, but even though 
their carbon input and output of the lumped reactions are modified, these changes do not 
have any consequence on the labeling pattern of the corresponding BBBs. The next level, 
Smin+2, adds three new subnetworks; The new subnetwork for tryptophan (S2_trp) allows 
3-phosphoglycerate instead of phosphoenolpyruvate as a carbon source for tryptophan bi-
osynthesis. The new subnetworks for methionine (S5_met and S6_met), however, do not 
add any new labeling patterns in the BBBs. In the last level of subnetwork expansion, 
Smin+3, the added subnetworks for methionine (S7_met and S8_met) do not contribute to 
new labeling patterns for methionine either. 

We conclude from this analysis that expanding the size of the subnetworks can add alter-
native carbon sources for BBBs, as shown in the cases of methionine, glycine and trypto-
phan. The labeled subnetworks from the core precursors to all the BBBs are organized in a 
database and visualized online. The website (http://lcsb-databases.epfl.ch/pathways/La-
belingList) is accessible for academic use upon subscription.  
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Figure 2.6: Carbon origins and labeled subnetworks for methionine (A) and tryptophan (B). Different atom posi-
tions in the amino acids are indicated with different colors. The number of reaction steps between the BBB and 
its labeled precursor is given. For the subnetwork visualization, different colors are used to mark the reaction 
that carry a label in the different subnetworks (colored edges) as well as the corresponding precursors (colored 
frames). (A) Blue arrows represent the subnetworks S1_met, S4_met, S5_met and S7_met, red by S2_met, and 
green and turquoise by S3_met, S6_met and S8_met. The turquoise subnetwork is an alternative reaction path 
that does is redundant with the green route in terms of labeling and final lumped stoichiometry. (B) The blue 
reaction maps to subnetwork S1_trp, and the pink reactions show the alternative used in S2_trp. Green and 
yellow arrows show alternative routes without influence on the labeling pattern. The short names of the me-
tabolites and enzymes match the identifiers from iJO136636.	

2.3.6 The	redEcoli	atom-level	network	
In the third step of the workflow, we appended the lumped reaction rules derived from the 
atom-mapped subnetworks to the core of redEcoli, which resulted in a full redEcoli atom-
mapping model containing 92 compounds and 103 reactions. The network is divided into a 
core with 68 compounds and 72 reactions, and the lumped reactions derived from the car-
bon-mapped subnetworks with 30 lumped reactions and 24 non-core compounds. The re-
dEcoli atom-mapping model was then used to generate carbon-mapped networks for each 
FDP and for each carbon position in glucose (C1 – C6) and for UTC glucose, resulting in a 
total of 28 carbon-mapped networks for further analysis. As an example, the carbon-
mapped network for C1 without any directionality constraints on the nine BDRs had a final 
size of 1,159 compounds (i.e., unlabeled and labeled metabolites) and 8,254 reactions (i.e., 
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reactions carrying carbon labels, and reactions not carrying any carbon labels), out of which 
6,672 were lumped reactions. This labeled example network was used to construct a hybrid 
model in the next step as a proof of concept. 

2.3.7 Construction	of	an	atom-level,	stoichiometric	hybrid	model	of	
redEcoli	

The carbon-mapped redEcoli networks are used as a starting point to build a hybrid atom-
level stoichiometric model of E. coli, which can be employed to determine the origin of car-
bon atoms in the Biomass Building Blocks, to predict the isotopomer distribution of 13C-
labeling experiments for different physiological states and to refine flux range predictions 
by constraining the model with 13C labeling data. To create a hybrid atom-level model of 
redEcoli for a given labeled input substrate (e.g., glucose C1 labeled), the labeled network 
produced in the previous step is merged into the redEcoli model (Figure 2.7). The merging 
process consists of the following steps: (i) All isotopomers identified with iAM.NICE are 
added to redEcoli. (ii) All labeled reactions are added to redEcoli. (iii) The same same bio-
chemical constraints (i.e., pre-assigned directionalities) are conserved for unlabeled reac-
tions and their corresponding labeled reactions. (iv) Uptake and secretion reactions are 
added for isotopomers, in case the corresponding non-labeled metabolite can be taken up 
and secreted in redEcoli. (v) Pooling reactions are added to combine the BBB isotopomers 
into a single BBB metabolite pool, which is consumed by the biomass reaction. (vi) Pooling 
reactions are added for all of the precursor compounds that are used to produce unlabeled 
BBBs, in order to ensure that unlabeled and labeled precursors flow towards BBBs that are 
not included in the carbon-mapped redEcoli network. This procedure ensures that the 
added labeling information does not interfere with the basic functionalities of the E. coli 
model. FBA is used to confirm that growth is not affected. Resulting from the merging pro-
cedure, the hybrid redEcoli model for C1 in the case of noFDP counted 1,403 metabolites 
and 10,235 reactions. 
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Figure 2.7: Schematic of the hybrid model of redEcoli. Thick grey arrows represent labeled reactions, thin black 
arrows represent unlabeled reactions, and dashed arrows represent lumped reactions. AA: amino acid, BBB: 
biomass building block, glc: glucose, g6p: glucose 6-phosphate, f6p: fructose 6-phosphate, PGI: phosphoglucoi-
somerase, glc_ex: glucose exchange flux, ala: alanine, prec: precursor. 

 

2.3.8 Refining	flux	ranges	by	incorporating	experimental	13C	distri-
butions		

The analysis of the hybrid model is still ongoing. To benchmark our approach, we will inte-
grate the experimental data from Leighty, R. W. & Antoniewicz42 into our model and com-
pare our conclusions with their results, obtained from a state-of-the-art 13C-MFA analysis. 
In their experiment, they grow E. coli on hundred percent single-labeled glucose substrates, 
ranging from C1 to C6. They then measured 18 amino acid fragments that arose from the 
fragmentation of ten different proteinogenic amino acids. For each amino acid fragment, 
and for each possible single-labeled glucose substrate, the percentages of labeled carbon 
have been determined by GC-MS. To compare with their results, we incorporated the ex-
perimentally determined ratios into the hybrid redEcoli model without directionality con-
straints (noFDP) at the level of the pooling flux ratios of amino acid isotopomers towards 
biomass amino acids. Currently, we are performing Flux Variability Analysis to determine 
the allowed flux ranges for each labeled core reaction. These results will enable us to 
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benchmark our method against the standard 13C-MFA analysis, and hopefully provide new 
insights into the distribution of fluxes in E. coli in different physiological conditions. 

2.3.9 Conclusions	and	Outlook	
Here, we propose a combined framework of a biochemically correct atom tracking method 
with a constraint-based metabolic modeling approach for the exact modeling and analysis 
of 13C labeling experiments. Our method overcomes the need of a top-down construction 
of atom-mapped core models by applying a robust, systematic reduction technique to the 
genome-scale model of E. coli. By constraining the model with thermodynamic data, we 
could show that pre-assumed reaction directionalities in the core model affect the interpre-
tation of labeling experiments. We further illustrated the importance of a robust definition 
of lumped reactions for amino acid production. Finally, we constructed at a hybrid model 
that allows direct integration of experimentally obtained ratios of labeled amino acids. To 
sum it up, the 13C-FBA workflow can be used to directly constrain a metabolic model with 
stable-isotope labeling data, which will further help guiding experimental design in terms of 
tracer optimization.  

While this study focuses on tracing carbon atoms, the approach can be readily used to track 
elements other than carbon. However, only a few experimental studies have systematically 
looked at the system-wide distribution and cycling of non-carbon elements such as oxygen, 
phosphate or sulfur in E. coli or other model organisms, which makes it currently difficult to 
benchmark predictions. However, 15N-labeling has been extensively used to study nitrogen 
metabolism in plants43, showing the interest in such studies in other organisms. Given that 
our approach is based on manually encoded biochemical reaction rules, and given that we 
validated our approach on carbon transformations, we can reasonably expect that our 
method can correctly trace elements other than carbon. 
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2.4 	Tracking	substrate	utilization	in	the	malaria	parasite	
The following Subchapter summarizes the work accomplished by master student Beatriz 
Lopes under the co-supervision of Professor Nuno Gonçalo Pereira Mira from the Instituto 
Superior Técnico, Lisboa and available on the University website (https://fenix.tecnico.ulis-
boa.pt/downloadFile/1689244997257940/thesis_BeatrizLopes.pdf). The GEM of the ma-
laria parasite has been developed by Dr. Anush Chiappino-Pepe44, and her master student 
Thomas Gordon-Lennox performed the reduction of the GEM. The purpose of this Subchap-
ter is illustrative, since the main work has been presented as a master thesis. 

For some organisms, it is particularly difficult to measure metabolic activity experimentally. 
Such is the case for the parasite Plasmodium falciparum, a protist living inside two hosts, 
human and mosquitos, and the major cause for malaria45. Studying P. falciparum is difficult 
for multiple reasons. First of all, the parasite changes its physiology drastically throughout 
the different stages of its life cycle. The parasite enters the human system in the form of 
sporozoites through the bite of an infected mosquito. From the blood stream, the parasite 
reaches the liver where it multiplies, before being released again into the blood stream 
where it infects the red blood cells (i.e., erythrocytes) for reproduction. The so-called the 
blood stage is the symptomatic part of the infection. Another reason why the metabolism 
is difficult to study is its close and complex interaction with the host, which makes it difficult 
to measure metabolic properties (e.g., consumption rate of different substrates) of the ob-
ligate intracellular parasite. These factors make it difficult to study the P. falciparum and to 
develop new drug targets, which are urgently needed given the emergence of strains that 
are resistant to the standard artemisinin-based treatment46. Computational approaches are 
therefore key to understand the metabolism of the parasite and to identify metabolic func-
tions that are essential for its survival. These essential functions are potential drug targets 
that are important for the development of new medicines47.  

In a recent substrate essentiality study, it has been shown that P. falciparum can compen-
sate the lack of certain substrates if similar substrates containing the essential molecular 
moieties are present in the media (Figure 2.8)44. However, to understand how the parasite 
metabolizes different substrates, and which molecular moieties are important for the par-
asite to sustain itself and reproduce, an atom-level model of the parasite was thought to 
provide deeper insights. On this basis, we decided to build an atom-mapping model of P. 
falciparum in the infectious blood stage of the parasite. The two objectives of this project 
were (i) to reconstruct an atom-level, genome-scale metabolic network that would allow us 
to track single atoms throughout the metabolism of P. falciparum and (ii) to study the sub-
strate utilization of the parasite by tracking single carbon atoms of different substrates. To 
achieve this, we first constructed a reduced atom-level model of P. falciparum, which was 
further used to track single carbon atoms throughout the metabolic network. The qualita-
tive analysis of carbon distribution revealed new insights into the carbon metabolism of P. 
falciparum, and we could show the usefulness of iAM.NICE to analyze the metabolism of 
non-model organisms.  
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Figure 2.8: Substrate metabolites can substitute each other in the media in iPfa. Each essential substructure, or 
moiety, can be obtained from a range of alternative substrates. Adapted from Chiappino-Pepe et al.44. 

2.4.1 Tracing	substrate	atoms	in	a	reduced	model	of	P.	falciparum		
To study the substrate utilization of P. falciparum at the atomic level, we chose the genome-
scale metabolic model iPfa44, which has 1066 reactions and 1258 metabolites and consists 
of five distinct compartments (i.e., cytosol, nucleus, mitochondrion, endoplasmic reticulum, 
apicoplast). In iPfa, the metabolic objective is defined as the production of 73 BBBs that are 
essential for the survival of the parasite. In the blood stage, the erythrocytes provide a rich 
medium to the parasites, meaning that all of the twenty proteinogenic amino acids and nine 
additional BBBs can be directly obtained from the human blood cell.  

One crucial point for studying non-model organisms at the atomic level is a consistent re-
duction of the genome-scale model. Organizing its complexity helps to focus the atom-level 
studies on the most important parts of metabolism, while keeping intact the properties of 
the genome-scale model. iPfa was reduced using redGEM37 and lumpGEM38 around the sub-
systems glycolysis, TCA cycle, pyruvate metabolism, pentose phosphate pathway, electron 
transport chain, isoprenoid metabolism, redox metabolism and hemoglobin digestion. The 
resulting reduced model, called rediPfa, is specific to the blood stage of the parasite. It con-
sists of a core network of 365 metabolites and 341 reactions, plus 61 lumped reactions that 
produce 41 BBBs from core precursors. Out of the remaining BBBs, three are produced in 
the core, nine are directly taken up from the host (e.g., lipoate, thiamine, choline, fatty ac-
ids), and twenty can be obtained from of hemoglobin digestion (i.e., amino acids).  

To obtain an atom-level description of P. falciparum, rediPfa was annotated with BNICE.ch 
reaction mechanisms. 80% of the metabolic reactions in rediPfa could be reconstructed with 
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reaction rules, which allowed the production of all of the 44 produced BBBs in rediPfa. The 
remaining reactions were not added to the atom level reconstruction, since they were not 
interfering with the carbon labeling of the BBBs, such as electron transfers between cofac-
tors and reactions involving compounds without defined structure. 

In a first study, we simulated 13C tracer experiments by labeling carbon atoms in the three 
different carbon sources glucose, glucosamine and fructose. Based on the experimental ob-
servation that the parasite secretes amino acids in the blood stage, we chose two different 
FDPs within rediPfa that allowed at least 90% of the maximal growth, one maximizing the 
secretion of amino acids by the cell, and one minimizing it. We further performed several in 
silico labeling experiments on the reduced model by labeling carbon atoms in the three dif-
ferent substrates and observing their fate in the different metabolites. Analyzing the differ-
ent labeling distribution for different combinations of flux directionality profiles and label-
ing scenarios showed, for example, that only the carbons originating from glucose were 
metabolized through the pentose phosphate pathways. We also found that maximizing the 
secretion of amino acids resulted in a higher number of generated isotopomers, which sug-
gests that the three carbon sources were preferentially used to produce the different BBBs, 
while the amino acids obtained from the degradation of hemoglobin were rather directly 
secreted by the cell instead of entering the central carbon metabolism. As a conclusion, we 
could show that directionality assumptions significantly affected the distribution of the car-
bon labels within the parasite.  

In a second study, we traced the atoms from core precursors to corresponding BBBs. For 
example, we identified six different BBBs that carried the carbon labels originating from 
guanosine monophosphate (GMP) (Figure 2.9). In this case, we could show that the carbon 
atoms in the six-member ring of the nucleobase guanine conserve their positions, while the 
ribose moiety is transformed in the BBBs derived from tetrahydrofolate. This type of analy-
sis allowed us to automatically identify the origins of the carbon atoms of the different BBBs 
in iPfa.  

2.4.2 Conclusions		
In this work, we could show that the proposed framework for atom-tracing in combination 
with network reduction can be applied to study organisms other than E. coli. However, there 
are multiple challenges associate with modeling the metabolism of eukaryotes. The exist-
ence of different cellular compartments, changing cellular physiology in time (i.e., life cycle) 
and space (i.e., different organs), sparser availability of experimental data and an increased 
number of knowledge gaps make in silico atom-tracing more complex. In this study, we did 
not differentiate between the different cellular compartments for atom-mapping and we 
focused on a single stage in the life cycle of the parasite to simplify the problem. However, 
future developments should consider these particularities to obtain more coherent atom-
level models for eukaryotes. Finally, we believe that the standardized reduction and organ-
ization of the GEM is essential to successfully model the metabolism of eukaryotes at the 
level of atoms.  
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Figure 2.9: Example output of a substrate utilization study on guanosine monophosphate (GMP). Different col-
ors designate the corresponding atomic positions in the molecular structures of the BBBs. THF: Tetrahydro-
folate, GTP: Guanosine triphosphate. 

 

2.5 Conclusion	and	outlook	
In this chapter, we extensively explored the potential of the atom-level descriptions of en-
zymatic reaction rules to provide an atom-level resolution of metabolic reactions, pathways 
and networks. The first achievement has been to show that BNICE.ch can provide biochem-
ically correct atom maps for reactions automatically. On the pathway level, we illustrated 
how walking tracing atoms backwards from secondary metabolites to core metabolites 
could reveal the atomic origin of the molecules. Finally, we postulate that tracing atoms in 
systematically reduced GEMs could provide a solid framework to analyze and model iso-
topic labeling experiments for a broad range of organisms. Even though 13C-FBA will need 
further testing, development and investigation, we believe that our approach can improve 
the current interpretation and application of stable-isotope labeling experiments.  

One outcome of the atom-mapping and -tracing studies is also educational: Acquiring a 
sense for metabolism at atomic resolution fueled the development of further tools and 
methods, as will be detailed in the following chapters. In particular, the concept of atom-
mapping and -conservation within metabolic pathways has greatly helped to provide better 
computational solutions to the pathway search problem in big metabolic networks. 
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Chapter	3 Atom-conserving	 meta-
bolic	pathway	search	
 

During the work on Chapter 2, it became clear that the mapping and tracing of 
single atoms is of particular importance in metabolism, and that the information of atomic 
flow can help us better understand certain concepts, such as the concept of a metabolic 
pathway. The term “pathway” has been used in metabolic research since the first biochem-
ical studies to describe consecutive biotransformations of metabolites. A key characteristic 
of a pathway is that a given property is conserved from an initial substrate to a final product. 
Usually, this property is a molecular substructure, but it can also be electrons or protons in 
specific cases such as the electron transport chain.  Hence, if we know how to track the 
atoms of conserved substructures in a metabolic network, we can use this knowledge to 
retrieve metabolic pathways from biochemical networks. 

Indeed, finding biotransformation pathways in biochemical networks is an important chal-
lenge in metabolic engineering. For example, one would like to produce a molecule of in-
terest in cell chassis. In order to find all the possible pathways that lead from a precursor 
compound, native to the chassis, to the target molecule to be engineered, a computational 
pathway search is recommended to list all the possible alternative pathways that can be 
extracted from a biochemical database. This database may consist of known reactions (e.g., 
KEGG), but it can also include novel, predicted reactions as created by retrobiosynthesis 
tools such as BNICE.ch.  

The following chapter will be submitted with the title “Finding metabolic pathways in large 
networks through atom-conserving substrate-product pairs”. Since all of the presented 
work has been done by the author, no contribution statement was added to this chapter. 
The tool developed here, named NICEpath, is currently hosted on the code sharing platform 
c4science.  

3.1 The	quest	for	metabolic	pathways	
Extracting meaningful metabolic pathways from large metabolic networks is essential for 
the computational design of bioproduction pathways, for the elucidation of biosynthesis of 
natural products, and for the fundamental understanding of metabolism. These metabolic 
pathways, which describe the transformation from a source molecule over consecutive re-
action steps into a target molecule, act as the roadmap guiding these various applications1–
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3. Traditionally, metabolic pathways were drawn by hand after directly inferring the trans-
formations from experimental evidence. However, the advent of the omics era and the dra-
matic increase of computational resources has drastically changed the way we study bio-
chemistry. Our knowledge is now collected in continuously growing databases, providing 
new opportunities for fundamental research and metabolic engineering, though this makes 
the by-hand design of pathways nearly impossible and obsolete. Additionally, these new 
extensive resources can be used to design non-canonical pathways that do not exist in na-
ture. While many of these novel pathways have been historically designed by intuition using 
paper and pencil, it is likely that more efficient solutions will be missed. To address this 
challenge, computational pathway search tools have been developed to extract metabolic 
pathways from biochemical databases4,5. 

Overall, a biosynthesis pathway converts one or several metabolites into a final target me-
tabolite containing all or most of the atoms found in the precursor compound or converts 
a more complex metabolite back into simpler building blocks that conserve the atoms of 
the original metabolite. Hence, unless stated otherwise, atom conservation between start 
and end point defines a metabolic pathway. If we want to find biosynthetic or biodegrada-
tion pathways, we therefore have to look for atom-conserving reaction paths connecting 
start and end metabolite(s). The objective of pathway search methods is to find “biologically 
meaningful” pathways, which are here defined as biochemical routes that fulfill the follow-
ing criteria: (i) Core atoms are conserved throughout the pathway; (ii) loops are not allowed, 
meaning that no metabolite appears twice; and (iii) other metabolites that contribute to 
the main biotransformation route in a lesser degree are considered as cofactors or co-sub-
strates. Expressed in a more general way, we aim to recover linear metabolic pathways as 
they are shown in textbooks, but through an automated approach.  

3.1.1 Graph	representation	of	metabolism	
There are different ways to mathematically describe a metabolic network, i.e., stoichio-
metric matrix or graph theory, and hence different approaches to analyzing biochemical 
networks and finding pathways4. However, only graph-based methods are suitable for large-
scale applications due to their computational efficiency, so we will not consider other ap-
proaches here. Different methodologies have been developed in the past to (i) represent 
metabolic networks as mathematical graph structures, and (ii) to find pathways within the 
graph from a given source to a target metabolite. To bias a biochemically blind graph search 
algorithm towards biologically meaningful pathways, different approaches have been ex-
plored in the past, such as the exclusion of cofactors from the network, defining reactant 
pairs through the chemical similarity of compounds, and atom or substructure conservation 
throughout the pathway6,7. Atom conservation in general, and carbon conservation specifi-
cally, have been shown to be a valuable criterion for finding biologically meaningful path-
ways8–12.  
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There are several existing solutions to pathway discovery that employ the concept of atom 
conservation. Initially, the tracking of single atoms was used by Arita et al. to calculate net-
work properties of the metabolism of Escherichia coli8. Later, atom tracking was used to 
improve the quality of pathway search tools by ensuring that one or several atoms were 
conserved throughout the pathway9,10,13,14. Atom-tracking methods have been shown to 
find biologically relevant pathways, though the high quality comes with an increased com-
putational cost. An alternative strategy has been pursued by the Kyoto Encyclopedia of 
Genes and Genomes (KEGG). Their reactions are annotated with chemical structure align-
ments, also called substrate-product pairs or reactant pairs (short RPAIRS). KEGG’s pathway 
prediction server, named PathPred, uses the reactant pairs to create a searchable graph of 
biologically meaningful biotransformations15. Instead of tracking atoms individually, Path-
Pred approximates the atom conservation by defining atom-conserving reactant pairs, 
which decreases the complexity of the path search problem. However, their classification 
system is based on a combination of manual curation and automatic annotation—a strategy 
that is not easily applicable to large biochemical networks, such as the ATLAS of Biochemis-
try with its more than one hundred thousand predicted reactions16. Large biochemical da-
tabases, especially those including hypothetical reactions, require reliable and computa-
tionally efficient algorithms to extract possible biochemical pathways.  

3.1.2 Atom-conserving	 pathway	 search	 for	 large	 biochemical	 net-
works		

Here, we address the challenge of efficiently searching and analyzing big biochemical net-
works. We propose a new method, named NICEpath, that biases the graph search towards 
atom-conserving pathways. To achieve this, we calculate weighted reactant-product pairs 
that reflect the atom conservation in each reaction, and we use the atom-conserving pairs 
to represent biochemical reaction networks as weighted graphs that are compatible with 
efficient search algorithms. The pathways found by NICEpath therefore fit the definition of 
“biologically meaningful” in the sense that they fulfill the three criteria mentioned earlier. 
The algorithm finds atom-conserving pathways first and returns a pathway list ranked ac-
cording to atom conservation. NICEpath can be readily employed to extract and compare 
metabolic pathways from overall biochemical database (e.g., KEGG) or from metabolic net-
works specific to an organism (e.g., genome-scale models). The method can be further ap-
plied to efficiently search large biochemical networks, as they are generated by reaction 
prediction tool such as BNICE.ch. 
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3.2 The	NICEpath	method	
Our approach can be divided into four steps (Figure 3.1): (i) The first step consists of acquir-
ing an atom-level representation of each reaction. The atom maps can come from data-
bases, atom-mapping algorithms, or, in our case, enzymatic reaction rules. (ii) In a second 
step, each atom-mapped reaction is decomposed into all the possible reactant-product 
pairs. For each pair, we calculate the Conserved Atom Ratio (CAR) from the number of con-
served atoms between reactant and product and the size of the molecules in terms of num-
ber of atoms. (iii) The atom-weighted substrate-product pairs are used to construct a 
weighted undirected graph, where the distance between reactants and products are in-
versely proportional to the CAR. (iv) Once the graph of weighted substrate-product pairs is 
constructed, we can apply well-established graph search methods to find the shortest 
paths, which will naturally represent the pathways that conserve the highest number of 
atoms. NICEpath uses the Yen’s k-shortest loop-less path17 algorithm, a standard method to 
find a given number of shortest paths in weighted graph, avoiding the repetition of nodes.  

 
Figure 3.1: The workflow of the pathway search is divided in two parts. The first two steps (left) describe the 
atom weighting of the network from atom-mapped reactions. In this study, steps 1 and 2 are performed by 
BNICE.ch. Steps 3 and 4 (right), implemented in NICEpath, take the atom-weighted network as an input to create 
a searchable graph structure and finally apply a Yen’s k-shortest pathway search. 

3.2.1 Biochemically	correct	atom-mapping	with	BNICE.ch	
Atom-mapped reactions are the prerequisite for calculating weighted reactant-product 
pairs. Here, we use the computational tool BNICE.ch, developed to predict hypothetical bi-
ochemical networks, to calculate biochemically correct atom mappings of enzymatic reac-
tions. The core of BNICE.ch consists of generalized biochemical reaction rules that describe 
the biochemical reaction mechanisms of enzymatic reactions. The reaction rules are applied 
to a molecular structure to (i) reconstruct atom-mapped, known biochemical reactions; and 
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(ii) to predict all possible biochemical transformations that a given compound can undergo 
along with the product compounds generated in the process. Here, BNICE.ch calculates 
atom maps for metabolic reactions using the mechanistic knowledge stored in the reaction 
rules, as described by Hadadi et al18 and discussed in Chapter 2. At this step, other tools for 
the automatic atom mapping of reactions may also be applied to generate atom maps19–21. 

3.2.2 Calculation	of	weighted	reactant-product	pairs	
The following steps are applied to each reaction in the network to generate atom-weighted 
reactant-product pairs: (i) Each reaction is split into all possible reactant-product pairs. (ii) 
For each pair of reactant and product, the number of common atoms (nc) between reactant 
and product is calculated along with the total number of atoms in the reactant (nr) and the 
total number of reactants in the product (np). Hydrogen atoms are omitted from the calcu-
lation. (iii) For each pair, the ratio of conserved atoms (in the following, called Conserved 
Atom Ratio, or CAR) is calculated with respect to the reactant (CARr) and with respect to the 
product (CARp).  

 

𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑛𝑛
𝑛𝑛

, 𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑛𝑛
𝑛𝑛

 

 

(iv) To calculate a bidirectional CAR, the mean CAR is multiplied with a correction factor that 
increases with the size difference between the number of common atoms and the total 
number of atoms in the molecule.  

 

𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐶𝐶𝐶𝐶𝐶𝐶 +	𝐶𝐶𝐶𝐶𝐶𝐶

2
∙ �1 − |𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐶𝐶𝐶𝐶𝐶𝐶 |�	 

 

The only exception to this approach is made for reactions involving the cofactor Coenzyme 
A (CoA). In a molecule, CoA is treated as a single atom when it occurs in both the reactant 
and in the product, mainly because the high number of conserved atoms between the com-
parably big CoA leads to high CARs, thus masking the biochemically more interesting con-
nections between the smaller metabolites that are attached to and detached from CoA dur-
ing metabolic transformations. The final CAR value is used to weight reactant-product pairs 
in the network. 
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3.2.3 Assigning	 mechanisms	 to	 biochemical	 reactions	 from	 the	
KEGG	reference	network	

We used KEGG as a reference database for enzymatic reactions, from which we extracted 
all reactions that have an associated mechanism in BNICE.ch. If a given reaction from KEGG 
could be reconstructed with BNICE.ch, it was assigned a reaction mechanism that allowed 
us to retrieve the number of conserved atoms between each reactant-product pair. The set 
of KEGG reactions with assigned reaction mechanisms and pre-calculated CAR values was 
used for further validation and as an example network for network analysis and pathway 
search. The set of BNICE.ch curated KEGG reactions will be available from the NICEPath re-
pository. 

3.2.4 Graph	representation	of	biochemical	networks	
For a given reaction network, NICEpath loads all the reactant-product pairs to generate a 
weighted, undirected graph, where metabolites are nodes connected by edges, represent-
ing the reactant-product relationship. Edges are assigned a weight that defines the relation 
between two connected nodes. To use state-of-the-art shortest-path graph search algo-
rithms, highly atom-conserving reactants should be close to each other, and pairs that only 
share a few atoms should be further away. Hence, we convert the CAR into a distance:  

𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝	𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭:					𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 =
𝟏𝟏

𝑪𝑪𝑪𝑪𝑪𝑪
			 

 

NICEpath accepts two alternative ways to calculate the distance, which can be used to mod-
ulate the influence of the atom conservation on the weight of the reactant-product pair.  

square	root	transformation:							𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 	 �
1

𝐶𝐶𝐶𝐶𝐶𝐶
	 

exponential	transformation:					𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 	
e
𝑒𝑒

 

 

The type of transformation can be changed to square root or exponential depending on the 
nature of the pathway search problem, i.e., the structures of source and target molecules 
as well as the estimated number of biotransformation used to convert one into the other. 
The distance measure is used to reconstruct a directed graph whose edge weights represent 
the atomic distance between reactants and products. For longer pathways, we recommend 
using the exponential transformation because it increases the penalty for pairs with low 
CARs, which makes the search more conservative in terms of atoms. For this study, we 
grouped duplicate KEGG compounds into one node. Duplicates were identified based on 
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the first fourteen letters of the InChIKey, which means that different stereoisomers of the 
same molecular structure were merged into one node. 

3.2.5 Finding	metabolic	pathways	with	graph	search	
NICEpath applies a Yen’s k-shortest loop-less path search to extract the shortest pathways 
from the weighted network of reactant-product pairs17 using the python package NetworkX. 
As inputs, the pathway search algorithm takes a weighted graph, a source compound, a 
target compound, and the maximum number of shortest paths (k) to be found. As soon as 
this number k is reached, the algorithm stops and returns all the k-shortest paths in terms 
of summed edge weights.  

The run time of NICEpath depends on the structure of the network, the distance between 
the source and target compound in the graph, the number of pathways to be found, and 
the maximum pathway length allowed. As an example, to find 10,000 pathways of maxi-
mum length 100, the algorithm runs for about 15 minutes on a standard desktop computer 
using a single core. If there are several source compounds given as input, NICEpath runs 
path searches in parallel for different source compounds using all available cores. 

3.2.6 Network	analysis		
NICEpath first calculates standard network statistics, such as the number of nodes and 
edges, and then extracts an undirected, unweighted network from the original network by 
only considering edges with a CAR higher than a given threshold. For this new network, the 
number of components, or disjoint graphs, is extracted, and the biggest component is fur-
ther analyzed regarding its size relative to the previous network as well as its diameter. 
Since searching for pathways between two compounds belonging to different disconnected 
graphs will not yield any good pathways, NICEpath will warn the user in this case. 

3.2.7 Software		
The NICEpath code can be executed with any python version up to 3.7. The NetworkX py-
thon library (https://networkx.github.io/) was used to implement and search the reaction 
graph. An extensive list of libraries used will be available in the specification file in the re-
pository. 
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3.3 Results	and	discussion	
To demonstrate the utility and biological importance of our methods, this section starts 
with a validation of the biochemical relevance of the CAR metric. It is followed by a short 
graph-theoretical analysis of the KEGG reaction network and concluded by two practical 
examples of pathway searches within the KEGG network. 

3.3.1 The	CAR	captures	the	main	biotransformations		
To validate the biochemical relevance of weighted substrate-product pairs, we compared 
them to the KEGG RPAIR database consisting of manually curated, atom-mapped, substruc-
ture-conserving reactant-product pairs, called RPAIRs22. KEGG differentiates between five 
types of RPAIRS: “main”, “cofac”, “trans”, “ligase”, and “leave”. The four latter ones de-
scribe cofactor pairs, small groups transferred by transferases, nucleotide triphosphate con-
sumption by ligases, and the addition or removal of small inorganic compounds by lyases 
and hydrolases, respectively. The first type, “main”, describes the main biotransformation 
in a given reactions. To take the alcohol dehydrogenase reaction as an example, the main 
pair would be the transformation of the primary alcohol to the aldehyde, and the conver-
sion of the cofactor NAD+ to NADH would be of type “cofac” (Figure 3.2). “Main” pairs that 
are used to draw the KEGG metabolic pathway maps. Therefore, a method that accurately 
predicts KEGG RPAIRS of type “main” can be used to reconstruct biologically relevant met-
abolic pathways. It should be noted at this point that KEGG discontinued the manual defi-
nition and curation of RPAIRS in 2016. 

 

Figure 3.2: Example of relation between KEGG RPAIRs and the CAR value in a biochemical reaction. (A) Alcohol 
dehydrogenase, (B) decarboxylation reaction. 

We validated the NICEpath method by predicting KEGG RPAIRS of type “main” using the 
concept of the Conserved Atom Ratio. We used BNICE.ch to calculate CAR values for a test 
set of 6,546 KEGG reactions for which the exact reaction mechanism is known, and which 
are, therefore, reconstructed by BNICE.ch. From these 6,546 reactions, we determined 
10,747 substrate-product pairs with a non-zero CAR, meaning that at least one non-hydro-
gen atom is conserved between the substrate and the product (Appendix Table A2). Out of 
these 10,747 pairs, 5,148 were found to be KEGG RPAIRS of type “main”. Since RPAIRs are 
defined based on the conservation of structural moieties within a reaction, we hypothesized 
that the higher the CAR value, the more atoms conserved between a substrate and a prod-
uct, and hence the higher the probability that the pair would be a KEGG RPAIR of type 

NNAADD++ NNAADDHH

RPAIR: “main”
CAR: 1.00

RPAIR: “cofac”
CAR: 1.00

CCOO22RPAIR: “leave”
CAR: 0.22

RPAIR: “main”
CAR: 0.56

BA
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“main”. We should therefore be able to predict the membership of a pair to the set of 
“main” KEGG RPAIRS by using a given CAR threshold as a classifier. 

To test our hypothesis that the CAR is a good predictor for a reactant-product pair to be of 
KEGG RPAIR type “main”, we performed a Receiver-Operator Characteristic (ROC) analysis 
(Figure 3.3). The reference for true pairs were the 5,148 “main” RPAIRs (true positives), and 
the remaining 5,599 pairs were used as true negatives. For 100 CAR cutoff values between 
zero and one we calculated the number of good predictions (i.e., number of pairs with a 
CAR above the cutoff and of type “main”, or true positives) and bad predictions (i.e., number 
of pairs with a CAR above the cutoff and not of type “main”, or false positives). By drawing 
true positives versus false positives, we found an Area Under Curve (AUC) of 0.88. An AUC 
between 0.8 and 0.9 is generally considered an “excellent discrimination”23. We further 
show the tradeoff between sensitivity and specificity, as well as the Youden’s index (i.e., 
sensitivity + specificity - 1) to characterize this tradeoff24 and to determine an optimal CAR 
cutoff. We found that the Youden’s index is maximal at a CAR equal to 0.34, which suggests 
that this is the optimal CAR cutoff to tell whether a given substrate-product pair conserves 
enough atoms to be considered a “main” pair. This analysis shows that we can reliably use 
the CAR to predict KEGG RPAIRS of type “main”. The network of weighted KEGG reactant 
pairs for 6,546 KEGG reactions is included in the NICEpath program and used as a reaction 
database in the default search.  

 

Figure 3.3: (Left) The ROC curve shows the prediction of KEGG RPAIRS of type "main" by CAR score from 
BNICE.ch. (Right) The trade-off between specificity (blue) and sensitivity (red). The Youden’s index (yellow) 
reaches its maximum (0.66) at a CAR value of 0.34. 

3.3.2 Graph-theoretical	analysis	of	metabolic	networks	
Characterizing biochemical networks from a graph-theoretical point of view can be used to 
evaluate the quality and connectivity of the represented network, and also bring new in-
sights into the overall organization of metabolism.  Furthermore, knowing the graph-theo-
retical properties of a biochemical network can be crucial for anticipating potential prob-
lems in the pathway search. NICEpath provides basic network statistics that allow us to 
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assess the quality of the data. Here, the weighted graph of the KEGG network used for val-
idation initially contained 5,578 compounds, or nodes, and 20,911 directed edges repre-
senting reactant-product pairs.  

Certain graph properties are not defined for weighted directed graphs, such as the number 
of components or the network diameter. For calculating these properties, a simple, non-
directed graph was generated by removing reactant-product pairs with a CAR lower than 
the previously calculated threshold of 0.34 and by removing the weights on the remaining 
reactant-product pairs. The unweighted graph contains 5,518 nodes and 5,541 edges, which 
are distributed over 813 smaller disjoint graphs, or so-called components. The biggest com-
ponent contains 2,663 nodes (48%) and 3,422 edges (62%), and it has a network diameter 
of 40. In other words, the longest shortest pathway connecting two compounds counts 40 
biotransformation steps in the main component of the KEGG network. This means that the 
KEGG network is dominated by a one big component, or subnetwork, that includes half of 
the metabolites in KEGG and represents the core metabolism plus connected secondary 
metabolism. The remaining metabolites are organized in small, disconnected subnetworks, 
which we hypothesize to be mostly secondary metabolites without defined biosynthesis 
pathways. 

3.3.3 Finding	biologically	relevant	pathways	with	NICEpath		
To illustrate the output of NICEpath, we discuss two example pathway searches. In the first 
example, we tried to biochemically connect tyrosine to caffeate, and we allowed a maxi-
mum number of ten pathways to be found, and only one reaction alternative was returned 
in case several reactions could do the same biotransformation. The pathway search resulted 
in ten pathways with lengths ranging from two to six consecutive reaction steps (Table 3.1). 
The quality of the pathway can be estimated from the pathway score and the average CAR. 
The pathway score sums the distances for each reactant-product pair in the pathway. The 
score reflects both the length of the pathway as well as the quality of atom conservation 
within the pathway, and it is eventually used by NICEpath to rank the paths. The average 
CAR estimates the quality of the pathway by averaging the atom conservation over each 
reaction step.  

Out of these ten best pathways, the pathways ranked first, second, and fifth were chosen 
for visual inspection (Figure 3.4). The first pathway had a very low score of 2.24 combined 
with a high average CAR (0.89) and a length of two, which indicates that the pathway is of 
good quality because it can be synthesized in a small number of steps with high atom con-
servation. Indeed, KEGG proposes this pathway in the pathway map for phenylpropanoid 
biosynthesis, meaning that it is biologically relevant. The second pathway, although longer, 
has a similarly high average CAR of 0.93, a length of four steps, and it can also be found in 
KEGG. To contrast these two good pathway examples with a poor example, the pathway 
ranked fifth shows a slightly lower average CAR of 0.81, which is due to the attachment and 
subsequent detachment of a one-carbon unit. Out of five reaction steps, the last step is 
redundant with the first pathway, while the first four steps describe a detour from tyrosine 
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to coumarate (C00811). This last, suboptimal pathway cannot be found in the KEGG map 
for phenylpropanoid biosynthesis. 

Table 3.1: Output of example pathway search from tyrosine (C00082) to caffeate (C01197). KEGG identifiers are 
used to specify compounds and reactions.  

 

 

Figure 3.4: The pathways from Table 3.1 with index numbers 1, 2 and 5 connecting tyrosine and caffeate are 
visualized in detail for comparison. For each biotransformation, the CAR value as well as the default distance 
(d) are indicated. 

In a second example search, we tried to find pathways connecting the compounds tyrosine 
and syringin. The number of pathways to be found was restricted to five, and we used three 
different transformations to calculate the distance between reactant-product pairs: The de-
fault transformation 1/CAR, the square root transformation, and the exponential transfor-
mation. Using the default option, NICEpath first listed three short pathways with a low av-
erage CAR (~0.5), followed by two longer pathways with high average CAR (~0.8) (Table 
3.2). The square root option yielded only short pathways with a low average CAR, while the 

Index Pathway 
length Intermediates Reaction IDs Pathway 

score
Average 

CAR

1 2 C00082->C00811->C01197 R00737->R07826 2.24 0.89

2 4 C00082->C00811->C00223->C00323->C01197 R00737->R01616->R07436->R01943 4.32 0.93

3 4 C00082->C01179->C03672->C00811->C01197 R00729->R03336->R08766->R07826 4.33 0.93

4 4 C00082->C00079->C00423->C00811->C01197 R07211->R00697->R02253->R07826 4.52 0.89

5 5 C00082->C00826->C00079->C00423->C00811->C01197 R00732->R00691->R00697->R02253->R07826 6.27 0.81

6 6 C00082->C01179->C03672->C00811->C00223->C00323->C01197 R00729->R03336->R08766->R01616->R07436->R01943 6.41 0.94

7 6 C00082->C00811->C00223->C00323->C00406->C01494->C01197 R00737->R01616->R07436->R01942->R02194->R03366 6.44 0.93

8 6 C00082->C00079->C00423->C00540->C00223->C00323->C01197 R07211->R00697->R02255->R08815->R07436->R01943 6.50 0.93

9 6 C00082->C00811->C00423->C00540->C00223->C00323->C01197 R00737->R02253->R02255->R08815->R07436->R01943 6.50 0.93

10 6 C00082->C00079->C00423->C00811->C00223->C00323->C01197 R07211->R00697->R02253->R01616->R07436->R01943 6.60 0.91
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exponential option only resulted in longer pathways of high average CAR. Interestingly, all 
the long pathways with high CAR were identified as known metabolic pathways in KEGG, 
indicating that the exponential transformation operator is helpful to reliably search for 
longer pathways.  

Two pathways were chosen to understand in detail the influence of the type of transfor-
mation used for calculating the distances between reactants and products: one was short 
with a low CAR (A) and one was long with a high CAR (D*) (Figure 3.5). Pathway A connected 
tyrosine to syringin in four reaction steps, with a relatively low average CAR of 0.51. As al-
ready indicated by the low CAR, the pathway turned out to be a shortcut through glucose, 
with no atoms conserved between tyrosine and syringin. The pathway was ranked first in 
the default and the square root transformation types, but, interestingly, ranked 1114th in 
the exponential case. The exponential transformation increases the penalty of atom loss in 
biotransformation, which leads to a higher pathway score assigned to the shortcut pathway. 
Pathway D* connected tyrosine to syringin in eight reaction steps, with a high average CAR 
of 0.86. It was ranked first using an exponential transformation, ranked fourth using the 
default distance calculation, and ranked 43rd for the square root case. This second pathway 
kept the molecular core structure of tyrosine and modified it to produce syringin, conserv-
ing a maximum number of atoms. Remarkably, this pathway is part of the KEGG pathway 
map for phenylpropanoid biosynthesis, and it can therefore be called a confirmed, biologi-
cally meaningful pathway.  

These two examples of pathway search problems illustrate the capacity of NICEpath to ef-
ficiently extract biologically relevant pathways from large biochemical networks. The algo-
rithm robustly handled searches for long pathways of eight and more biotransformation 
steps, as they are usually present in secondary metabolism. 

 

Table 3.2: Output of pathway search from tyrosine (C00082) to syringin (C01197). Pathways are mapped across 
the different distance transformations with letters indicated in the column “Mapping”. Pathways marked with 
an asterisk (*) correspond to known metabolic pathways that fulfil the criteria for biologically relevant pathways. 

	

Distance Index Pathway 
length Intermediates Mapping Pathway 

score
Average 

CAR

1
"#$	

1 4 C00082->C00811->C16827->C00031->C01533 A 9.06 0.51

2 4 C00082->C00811->C04415->C00029->C01533 B 9.86 0.48

3 4 C00082->C00811->C16827->C00029->C01533 C 9.86 0.48

4 8 C00082->C00811->C01197->C01494->C05619->C00482->C05610->C02325->C01533 D* 9.88 0.86

5 8 C00082->C00811->C01197->C01494->C02666->C12204->C05610->C02325->C01533 E* 9.90 0.85

1
"#$

2

1 4 C00082->C00811->C16827->C00031->C01533 A 5.93 0.51

2 4 C00082->C00811->C04415->C00029->C01533 B 6.18 0.48

3 4 C00082->C00811->C16827->C00029->C01533 C 6.18 0.48

4 5 C00082->C00079->C00423->C04164->C00031->C01533 F 7.00 0.58

5 5 C00082->C00811->C00423->C04164->C00031->C01533 G 7.00 0.58

e1 "#$(

)

1 8 C00082->C00811->C01197->C01494->C05619->C00482->C05610->C02325->C01533 D* 11.09 0.86

2 8 C00082->C00811->C01197->C01494->C02666->C12204->C12205->C02325->C01533 H* 11.13 0.85

3 8 C00082->C00811->C01197->C01494->C02666->C00590->C12205->C02325->C01533 I* 11.13 0.85

4 8 C00082->C00811->C01197->C01494->C02666->C12204->C05610->C02325->C01533 E* 11.13 0.85

5 9 C00082->C00811->C00223->C00323->C00406->C12203->C00411->C05610->C02325->C01533 J* 11.79 0.90
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Figure 3.5: Comparison of two pathways (A and D*) from the pathway search connecting tyrosine to syringin. 
For each biotransformation, the CAR value as well as the default distances for each transformation are indi-
cated. d(dflt): default distance, d(sqrt): square root transformation, d(exp): exponential transformation. 

3.3.4 Limitations	and	future	challenges	
However, there are cases in which NICEpath will not find satisfactory solutions. Possible 
reasons for suboptimal results are (i) the network does not contain the necessary reactions 
to connect the starting compound to the target compound, and (ii) the source and the tar-
get compound do not initially have a lot of atoms in common. The first issue can be solved 
by adding the missing reactant-product pairs to the network. Missing steps can be hypoth-
esized manually or predicted using reaction prediction tools such as BNICE.ch. The second 
issue is more complex, since it depends on the molecular structure of the source and target 
compound, as well as on the real number of biochemical transformations needed to trans-
form one into the other. Possible solutions to improve the output include breaking down 
the search into several sub-searches by identifying intermediates and increasing the penalty 
on atom loss by using an exponential transformation of 1/CAR to weight the reactant-prod-
uct edges in the graph. 

While our algorithm successfully circumvents the recurrent problem of shortcuts through 
small hub metabolites, it does not satisfactorily avoid shortcuts through big hub metabolites 
such as Coenzyme A (CoA). In fact, reactant pairs involving CoA structures on both sides 
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have a lot of atoms in common, and hence a high CAR value. For this reason, NICEpath ex-
cludes CoA by default from the reactant pair network. 

3.4 Conclusion	
We introduce a new pathway search method based on weighted reactant-product pairs. To 
our best knowledge, this is the first to use automatically generated atom-weighted reac-
tant-product pairs in combination with a k-shortest graph search approach. We bench-
marked our method for reactant-pair weighting against the KEGG RPAIR database, and we 
discussed the advantages of NICEpath on practical examples. The strong point of NICEpath 
is that it is suitable for big biochemical networks, spanning more than hundreds of thou-
sands biochemical reactions, such as hypothetical reaction networks generated by retrobi-
osynthesis tools and predictive biochemistry16. We estimate that the future development 
of reaction prediction tools, based on biochemical reaction rules or machine learning meth-
ods, will yield big hypothetical reaction networks that require optimized search tools to ef-
ficiently extract biochemical pathways. 

Finally, the herein proposed framework will lay the foundation for further developments. 
Other types of weights, such as kinetic and thermodynamic considerations, can be inte-
grated into the weighting of substrate-product pairs to steer the pathway search towards 
biochemically feasible pathways, and a set of user-defined parameters will make it easy to 
fine-tune the pathway search. We plan to make the NICEpath tool available on GitHub, in-
cluding a collection of 5,434 known metabolic reactions with pre-calculated atom-weighted 
reactant pairs. The graph representation method and the pathway search developed in this 
Chapter will find practical application in Chapter 4 and 5 of this thesis.
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Chapter	4 ATLASx	 -	 Databases	 for	
predictive	biochemistry	

The ATLAS of Biochemistry is a repository of known and predicted biochemical 
reactions for synthetic biology and metabolic engineering applications1. Predictive bio-
chemistry is not only key to design biosynthesis pathways towards new bioengineering tar-
gets such as pharmaceuticals and commodity chemicals, but also to find and fill the 
knowledge gaps in our current understanding of metabolism. This chapter starts with an 
introduction on the knowledge gaps in biochemistry, followed by short review on recent 
advances in the field of reaction prediction (Subchapter 3.1). Next, we discuss the ATLAS 
methodology (Subchapter 3.2), and we present the results of the ATLAS update 2018 (Sub-
chapter 3.3). Finally, we introduce extended versions of ATLAS, named bioATLAS and 
chemATLAS, as well as the future extension novATLAS (Subchapter 3.4).  

4.1 “Dark	matter”	in	metabolism		
Metabolic “dark matter” designates biochemical processes that are difficult to measure and 
barely understood, i.e. underground metabolism. These underground processes are the re-
sult of the unknown or promiscuous activity of enzymes2,3, and they manifest themselves in 
unexpected resistance to gene knock-outs, novel natural products and chemical derivates 
of damage-prone metabolites4. These unknowns limit our general understanding of metab-
olism, and they further hamper the advancement of metabolic engineering applications to-
wards the creation of sustainable cell factories. While the omics era has provided us with a 
huge amount of genomic, transcriptomic, proteomic and metabolomic data, linking these 
data to metabolic functions is lagging behind5,6: For example, we know 25 % percent of pro-
teins in E. coli, one of the best studied model organism, do not have a function assigned7, 
and almost 10,000 metabolites are orphan in KEGG8. On top of that, it is not possible to 
accurately assess the number of unknown promiscuous side-reactions of enzymes or yet 
uncharacterized compounds. Hence, inferring the physiology of a cell from omics data re-
mains an open challenge in the modeling of metabolism, which means that our knowledge 
of metabolic processes remains incomplete. Biochemical assays are the ultimate solution to 
identify new enzymatic functions and to detect novel natural products. However, these ex-
periments can only focus on a single process at a time, and they are long and expensive. 
Consequently, alternative ways are needed to systematically explore the metabolic dark 
matter arising from the elasticity of enzymatic catalysis in an unbiased and global approach, 
which can be provided by computational approaches. 
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4.1.1 Cheminformatic	approaches	
The past decades have shown increasing interest in computational solutions to biological 
questions. Diverse tools have emerged that can bridge the knowledge gaps in metabolism 
through cheminformatic predictions of potential metabolic reactions, uncharacterized me-
tabolites and novel enzyme functions. Most of these tools have been developed for meta-
bolic engineering applications, where the goal is to find biosynthetic routes that produce a 
given target compound in a host organism9–13. This problem is solved by biochemically 
“walking back”, reaction step by reaction step, from the target to known precursor com-
pounds that are native to the host organism. This procedure is called retrobiosynthesis and 
implemented in a range of tools such as BNICE.ch14,15, RetroPath2.016,17, NovoStoic18, 
ReactPRED19. These methods rely on the concept of generalized enzymatic reaction rules: A 
reaction rule encodes the biochemistry of a substrate-promiscuous enzyme by describing 
the pattern of the reactive site recognized by the enzyme, as well as the molecular atom-
rearrangement performed by the enzyme. By applying the rule on a substrate that is non-
native to the represented enzyme, the rule can predict if the substrate can be recognized 
by the enzyme, if the biotransformation can occur, and what will be the potential product. 
The concept of reaction rules is also employed by enviPath20, a database for predicting bio-
degradation mechanisms, and by MINEs21, a database that predicts potential biological 
products for mass-spectrometry applications. For a more detailed discussion of tools for 
reaction prediction and retrobiosynthesis, the reader is referred to Chapter 5 of this thesis. 
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4.1.2 The	ATLAS	of	Biochemistry	
The existing tools for predictive biochemistry are useful to answer a given research or engi-
neering question, but they do not quantify and explore metabolic “dark matter” in a global, 
unbiased manner. Here, we approached the “dark matter” quest by creating and ATLAS of 
known and novel, predicted biochemistry from generalized enzymatic reaction rules. In the 
ATLAS of Biochemistry database series, abbreviated with ATLASx, we predict and recon-
struct biochemical reactions within a predefined biochemical scope and store them in a da-
tabase for further analysis. The aim of the ATLASx project is twofold: On one hand, we want 
to answer the fundamental question of unknown and engineerable biochemistries, and on 
the other hand, we want to provide a useful resource for synthetic biology and metabolic 
engineering applications. To be useful for the latter, our databases are connected to a user-
friendly web interface allowing easy access to the hypothetical biochemical networks. A 
powerful pathway search tool further allows to answer specific research and engineering 
questions by searching for biotransformation routes between a source and a target com-
pound. Thanks to the direct visualization of the pathways, the results can be manually in-
spected and evaluated without requiring any advanced computational skills.  

The original ATLAS of Biochemistry has been created by applying the complete set of 
BNICE.ch reaction rules to all of the metabolites stored in the Kyoto Encyclopedia of Genes 
and Genomes (KEGG)22. The approach resulted in the generation of more than 130,000 
novel reactions and the integration of almost 4,000 orphan KEGG compounds into at least 
one novel enzymatic reaction (Figure 4.1). We validated the predictive power of ATLAS by 
showing that more than half of the KEGG reactions added in 2015 were already part of AT-
LAS based on the KEGG version of 2014. More recently, Yang et al. experimentally validated 
hypothetical ATLAS reactions and used them to construct novel one-carbon assimilation 
pathways23. The ATLAS of Biochemistry has been published in 2016 during my first year of 
PhD1, and by the end of 2019, we had provided ATLAS access to more than 90 research 
groups. The interest from the community in this work encouraged us to push the develop-
ment of ATLAS towards unprecedented biochemical dimensions by predicting reactions be-
yond the compound space of KEGG. By expanding the scope of ATLAS step by step, we hope 
to provide a more comprehensive overview on the hypothetical potential of metabolism 
and to provide better and more adapted reaction and pathway predictions to metabolic 
engineers.  
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Figure 4.1: The biochemical reaction network of the ATLAS of biochemistry. Reactions are color-coded according 
to their pathway annotations in KEGG. The network has been drawn in the open-source graph tool Gephi24. 

The scope of an ATLAS project is defined by the origin of the compounds that will be con-
nected through reaction reconstruction and prediction (Figure 4.2). In the original ATLAS for 
example, the scope was defined by the compound data available in KEGG. In the following, 
we will discuss the extension of the ATLAS scope to the biological and bioactive space in the 
bioATLAS project, and we will get an idea of how its extension to the chemical space, 
chemATLAS, will look like. Finally, we will evaluate the potential and challenges of predicting 
novel compounds that are not known to any biological or chemical database, and therefore 
part of the hypothetical compound space. 

 

Figure 4.2: Defining the scope of different compound spaces and their associated ATLAS projects. 
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4.2 The	ATLAS	workflow	
The ATLAS of Biochemistry, published in ACS Synthetic biology in 2016, was developed with 
Dr. Noushin Hadadi (project lead, manuscript) and Adrian Shajkofci (website development). 
Pipeline development, reaction reconstruction, reaction generation and data analysis were 
done by the author. This section only presents the ATLAS workflow, omitting any results 
published in the article. 

Creating an ATLAS for a given biological or chemical scope requires several working steps 
involving different cheminformatic tools and analysis methods. The overall ATLAS workflow, 
discussed in the following, has been established for the original ATLAS of Biochemistry. The 
technical pipeline has evolved over time, but the concept stayed the same (Figure 4.3): The 
minimal input is a database of compounds, defining the scope of the ATLAS project, and a 
set of generalized reaction rules, defining the biochemical reaction mechanisms considered. 
Before starting the workflow, a quality check is necessary for the collected data (see 4.2.1, 
Database curation). If a reaction database is available for the chosen scope, as it is the case 
for biological databases, it can be used as a source of biochemical knowledge for defining 
reaction rules and later to cross-validated predicted reactions (see 4.2.2, Reconstruction of 
known reactions). The first step of the workflow consists of applying all of the generalized 
reaction rules on all of the compounds in the database using BNICE.ch, thus creating all 
potential reactions between the compounds (see 4.2.3, Prediction of novel reactions). If a 
reaction database is available, BNICE.ch will look up the generated reactions in the database 
and label them as known or novel (predicted). In a second step, the generated reactions are 
annotated with Gibbs free energy of reaction estimated by the Group Contribution 
Method25 (GCM) and, for novel reactions, with putative enzymes using the enzyme predic-
tion tool BridgIT26 (see 4.2.4, Reaction annotation and analysis). Finally, the annotated re-
actions, known and predicted, are collected in a database and made available via an inter-
active web interface (see 4.2.5, ATLAS web interface). 
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Figure 4.3: Overview on the general ATLAS workflow 

4.2.1 Database	curation	
Each database has its own standards regarding the representation, quality and annotation 
of compounds and reactions. As a consequence, we first need to filter and curate the col-
lected data before applying feeding it to BNICE.ch. We start with filtering the compounds, 
and then analyze the reactions based on the compounds filtering and other criteria. 

To ensure that all the compounds can be read by BNICE.ch we remove compounds with 
undefined molecular structures, such as polymers with an unknown number of repetitions, 
generic compounds or entries with more than one disconnected structure, e.g. salts. Some 
compounds have R-groups, which can be handled BNICE.ch and therefore are not removed. 
If several databases are used in an application scope, the data needs to be unified and du-
plicates should be removed based on a unique identifier. It is important to note at this point 
that we do not treat different stereoisomers separately, but merge them into a single com-
pound entry. The reason for this is that the downstream tool BNICE.ch was configured to 
not differentiate between distinct stereoisomers, in order to allow a broader prediction 
range of the generalized reaction rules. 

In case the scope of the project is biological, reactions are collected and filtered as well. 
Since the reactions are not a direct input to BNICE.ch, but used for cross-checking, compar-
ison and annotation, their processing is slightly different. Instead of removing reactions 
from the collection, we divide them into three sets of different quality. To be part of the 
top-quality set, the reaction should only involve compounds with defined molecular 
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structure, be elementally balanced, have a known reaction mechanism as well as a catalyz-
ing enzyme assigned. This set can later be used to assess the BNICE.ch reaction coverage. 
For reactions without any enzyme assigned (i.e., orphan reactions) that still contain at least 
one clearly defined molecular structure on each side, BNICE.ch might still find a correct re-
action mechanism in its collections of reaction rules even if the cofactors are unknown or 
unbalanced. The remaining low-quality reactions are not used in the reaction reconstruc-
tion, but they can later be used to assess the quality of the database. 

4.2.2 Reconstruction	of	known	reactions	
To assess the coverage of the collected metabolic reactions by BNICE.ch reaction rules, we 
try to assign each reaction with a reaction rule, and therefore with a reaction mechanism. 
To do this, we apply all the rules on the participating compounds of a reaction, and we check 
whether or not the reaction can be reconstructed in one or several reaction steps. We dif-
ferentiate the following cases: (i) the reaction is exactly reconstructed, (ii) the main bio-
transformation is reconstructed using an alternative set of cofactors, (iii) the reaction is re-
constructed in two consecutive reaction steps via compound that is part of the project 
scope, and (iv) the reaction is reconstructed in three reaction steps. This analysis results in 
the annotation of reactions with exact reaction mechanism, the corresponding third-level 
EC number coming from the reaction rule, as well an estimated Gibbs free energy of reac-
tion provided by GCM. The reaction reconstruction identifies reaction mechanisms for or-
phan reactions and proposes potential multi-step reaction sequences for reactions with un-
clear mechanisms. The reconstruction process also presents an opportunity to identify im-
portant reactions that are not yet reconstructed by any BNICE.ch reaction rule, and to add 
the missing mechanisms to the collection of reaction rules. 

4.2.3 Prediction	of	novel	reactions	
To generate all possible reactions within the chosen scope of compounds, we apply each 
reaction rule to all of the compounds using BNICE.ch. Given a substrate compound, 
BNICE.ch generates all product structures that are possible according to the biotransfor-
mation encoded in the reaction rules. The products are compared against the compound 
database, and only products (and associated reactions) are retained that are part of the 
predefined scope of the project. The reactions are then checked against the reaction data-
base to determine whether the reaction is known, biological, or novel, hypothetical, and 
added to the ATLAS database. Reactions predicted by BNICE.ch are by default assigned with 
a reaction mechanism, and therefore elementally balanced. The organization of reaction 
rules according to the Enzyme Commission (EC) classification further allows assigning a 
third-level EC number to the predicted reaction. 

4.2.4 Reaction	annotation	and	analysis	
In order to evaluate the thermodynamic and biocatalytic feasibility of the predicted reac-
tions, ATLAS provides an estimated Gibbs free energy (ΔGrʹ°) for each reaction as well as 
enzyme predictions for novel reactions. The ΔGrʹ° is calculated from the Gibbs free energy 
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of formation (ΔGfʹ°) of each of its reactants and products, which is estimated by the Group 
Contribution Method (GCM)25 integrated in BNICE.ch. To assess the biocatalytic feasibility 
of the predicted reactions, we apply the computational enzyme prediction tool BridgIT26 to 
each reaction. BridgIT compares the structure of the novel reaction to all known reactions, 
calculates a similarity score for each comparison and finds a the most similar known reac-
tion that has an enzyme associated. A more detailed discussion of BridgIT and other enzyme 
prediction tools can be found in Chapter 5 (5.1.3, Finding enzymes for predicted reactions). 
The reaction with the highest similarity score and its associated enzyme is used to annotate 
the novel reactions, thus providing a metric for their biocatalytic feasibility. The annotation 
of reactions with estimated ΔGrʹ° and putative enzymes allows us to draw of the energy and 
EC distributions for known versus novel reactions, and to compare them.  

Finally, knowledge of the exact reaction mechanism is used to determine reactant-product 
pairs for each reaction, which are necessary to construct a searchable graph representation 
of the ATLAS network. Reaction rules can be used to map atoms in a reaction, as demon-
strated in Chapter 2. The atom maps can subsequently be used to calculate a Conserved 
Atom Ration (CAR) for each substrate-product pair in a reaction and to determine biologi-
cally relevant pairs, as shown in Chapter 3. For the first, KEGG-based ATLAS projects we 
used reactant pairs with a CAR above 0.34 to construct a searchable graph, which is used 
by the online pathway search application. For later ATLAS projects within a broader com-
pound scope, we directly constructed an atom-weighted graph and matched it with an 
adapted pathway search, Yen’s k-shortest loopless path search27, for the efficient online 
prediction of pathways within the ATLAS network. 

4.2.5 ATLAS	web	interface	
The web interface has originally been developed and maintained until 2016 by Adrian Shaj-
kofci. Since then, the database and the website have been maintained and extended by the 
author. 

Visualizing the ATLAS data online via a web interface is essential to share the predictions 
with the scientific community. For the ATLAS versions within the KEGG scope, one can 
search through and download the reconstructed KEGG reactions only, or the totality of re-
actions in ATLAS. An integrated pathway search application further allows querying ATLAS 
for biochemical pathways between a given precursor and a target compound. The website 
is accessible at https://lcsb-databases.epfl.ch/pathways/atlas/, with free registration for ac-
ademia upon subscription. 
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4.3 The	update	-	ATLAS	2018		
This Subchapter will be submitted to the journal ACS Synthetic Biology as a technical note. 
The work has been achieved in collaboration with Homa Mohammadi-Peyhani (reaction 
generation, manuscript), Anastasia Sveshnikova (enzyme prediction) and Alan Scheidegger 
(compilation of reactions). The author has been in charge of the project lead, the manuscript 
and the reconstruction of KEGG reactions. 

The ATLAS of Biochemistry8 was created based on the biochemical knowledge available in 
KEGG 201522. Since then, KEGG has added 802 new metabolites, 918 new reactions, and 
633 enzymes to its collection. We took advantage of this newly available data to validate 
some of the reactions and enzymes predicted in 2015, and we seized the opportunity to 
integrate the new compounds and reactions into ATLAS to expand the space of predicted 
reactions. Furthermore, two main aspects of our workflow had been significantly improved 
in the meantime. First, the set of bidirectional reaction rules was increased from 360 to 400. 
Many of the new rules were created to reconstruct some more complex reactions of sec-
ondary metabolism, which are more difficult to be generalized, and hence were not consid-
ered previously.  Second, BridgIT has been adapted to integrate information about the re-
active site into the comparison of reactions, which greatly improved its predictive power. In 
the following, we discuss the updated ATLAS statistics and illustrate the improvements com-
pared to the first version, referred to as ATLAS 2015. The latest version of ATLAS, referred 
to as ATLAS 2018, is available online (http://lcsb-databases.epfl.ch/atlas/).  

4.3.1 Reconstruction	of	known	reactions	
We applied the previously described ATLAS methodology to the newly available data, and 
we compared the generated reactions to the metabolic reactions stored in KEGG. The KEGG 
database contained 18,254 compounds as of February 2018 (Table 4.1). In a first prepro-
cessing step, we removed 999 compounds without clearly defined molecular structures 
(e.g., polymers, proteins). The filtered dataset comprised 17,255 compounds, out of which 
4,587 were not involved in any KEGG reaction. These disconnected compounds, called “or-
phan” metabolites, did not participate in any known biotransformation in the KEGG meta-
bolic space. Out of the 10,829 reactions in KEGG, 76 involved compounds with an undefined 
structure that were removed, resulting in a filtered set of 10,753 reactions. Out of these, 
8,041 reactions were reconstructed with BNICE.ch reaction rules and 5,780 reactions were 
exactly reconstructed. Another 1,708 reactions were reconstructed using alternative cofac-
tors, out which 123 reactions were poorly characterized in KEGG (i.e., reaction mechanism 
not known, incomplete reaction). The remaining 553 reactions were reconstructed in two 
(408 reactions) or three (145 reactions) reaction steps.  

A total of 2,712 KEGG reactions were not reconstructed with BNICE.ch. First, 1,544 reactions 
did not fulfill the BNICE.ch requirements for reconstruction, such as reactions involving pol-
ymer structures, generic compounds, or compounds without a defined molecular structure, 
as well as elementally unbalanced reactions and stereoisomerase reactions. Additionally, 
the reaction rules are organized according to the Enzyme Classification (EC) system, so each 



 ATLASx - Databases for predictive biochemistry 

 
102 

reconstructed or predicted reaction is automatically assigned a third-level EC number cor-
responding to the non-substrate specific EC classification of the reconstructing reaction 
rule. Another 308 reactions had partial or missing EC number annotations, indicating that 
the reaction mechanisms are not known and therefore no rule has been created for these 
reactions. The remaining 860 reactions were not reconstructed because their reaction 
mechanisms are very specific and hence not readily generalizable.  

4.3.2 Validation	of	novel	ATLAS	reactions	
To validate the predicted reactions in ATLAS, we analyzed the novel reactions predicted in 
2015 that became known in KEGG 2018. Out of the 958 reactions newly added to KEGG, 
only 239 reactions involved compounds that were already present in KEGG 2015, meaning 
that they could have been predicted in the original ATLAS. Out of these 239 reactions, 107 
were already present in ATLAS. In other words, the existence of hypothetical reactions in 
ATLAS 2015 was confirmed in KEGG 2018, demonstrating the predictive power of BNICE.ch. 
Next, we examined the enzymes that BridgIT suggested in ATLAS 2015 for these 107 novel 
reactions, out of which 75 had an enzyme assigned. Interestingly, we found that the pre-
dicted EC numbers for 64 out of 75 reactions match the EC number proposed in KEGG up to 
the third level. For example, the novel reaction rat104204 was predicted to have an EC num-
ber of 2.4.1.-. BridgIT suggested R08946 as the most similar reaction, which was known to 
be catalyzed by 2.4.1.245. In 2018, KEGG confirmed the promiscuous activity of 2.4.1.245 
for this reaction and named it R11306. In ATLAS 2018, we additionally mapped the novel 
reactions to reaction databases other than KEGG. Interestingly, we found that 996 predicted 
reactions in ATLAS were not actually novel, but known to at least one of the repositories 
Brenda, Reactome, HMR, MetaCyc, or Rhea, which shows that the predictive power of AT-
LAS goes beyond KEGG. ATLAS reactions that can be found in any of these databases are 
linked accordingly in the updated version. 

4.3.3 ATLAS	2018	statistics	
ATLAS 2018, based on KEGG 2018, now has 149,052 reactions, out of which 5,780 are known 
to KEGG. Compared to 2015, we added 385 known and 11,173 novel reactions. Thanks to 
predicted reactions, ATLAS now integrates 4,587 out of 9,857 orphan KEGG metabolites, 
meaning those that do not have a known catalyzing enzyme.  

To find putative enzymes for the reactions in ATLAS, we applied the enzyme prediction tool 
BridgIT. With the latest version of the tool, the new predictions were significantly better in 
the updated ATLAS: BridgIT correctly matched 92% of ATLAS reactions to the same EC class 
as BNICE.ch rules, whereas the previous version only matched around 60% (Table 4.1). For 
each ATLAS reaction, we provide the top three candidate enzymes, and we also include 
BridgIT results for known KEGG reactions to provide alternative enzymes for a known reac-
tion. As a qualitative example of an improved prediction, we analyzed the ATLAS reaction 
rat109456, whose closest BridgIT candidate had a low matching score of 0.67. In ATLAS 
2018, the reaction is now known, and BridgIT found three very similar reactions, all of them 
with a higher score than in the previous version (Figure 4.4). 
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Table 4.1: Overview on compound, reaction and enzyme statistics in KEGG and ATLAS 

  ATLAS 2015 ATLAS 2018  Change 

KEGG com-
pounds 

Total number of compounds  17,450 18,254 + 5% 

Filtered compounds (fc) 16,798 17,255  

Orphan KEGG compounds 
(okc) 

9,371  

(56% of fc) 

9,857 

(57% of fc) 

 

KEGG reac-
tions  

Total number of reactions 9,135 10,829 +19% 

Filtered reactions 8,592 10,753  

BNICE.ch Number of bidirectional en-
zymatic reaction rules 

360 400 +11% 

KEGG reaction 
reconstruction 

Covered reactions total 6,651 8,041 +20% 

Exact coverage 5,270 5,780  

Alternative cofactor usage 916 1,708  

2-step reconstruction 387 408  

3-step reconstruction 78 145  

ATLAS statis-
tics 

 

Total number of reactions 137,877 149,052 +8% 

Novel reactions 132,607 143,272  

Total number of compounds 10,362 10,939  

Number of orphan com-
pounds integrated in ATLAS  

3,945 

(42% of okc) 

4,587 

(47% of okc) 
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Figure 4.4: The reaction with ATLAS identifier rat109456 is an example of a reaction that was novel in ATLAS 
2015 and that is now cataloged in KEGG. (left) rat109456 along with its most similar reaction and candidate 
enzyme, predicted by an earlier version of BridgIT to calculate structural reaction similarities. (right) rat109456 
in ATLAS 2018 is now cataloged in KEGG as R11332 with EC 5.3.1.33. Two alternative enzyme candidates are 
proposed by the updated version of BridgIT. 

 

We have updated the ATLAS of Biochemistry to integrate new biochemical data from KEGG 
2018 using an updated set of generalized reaction rules and by employing an improved ver-
sion of BridgIT to enhance the enzyme predictions for novel reactions. This study demon-
strates the dynamic nature of biochemical knowledge and highlights the need for continu-
ous updates of database-dependent applications. In particular, we showed that integrating 
databases other than KEGG into the ATLAS workflow adds value to the prediction of reac-
tion and enzyme.  
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4.4 bioATLAS	and	chemATLAS	-	reactions	emerging	from	
biological	and	bioactive	compounds	

The results presented in this Subchapter have been obtained in collaboration with Homa 
Mohammadi-Peyhani (data collection, reaction generation, pipeline and database develop-
ment), Anastasia Sveshnikova (reactive site analysis) and Victor Viterbo (curation of reaction 
databases). The author has been in charge of the project lead, the manuscript, as well as 
pipeline and website development. 

One major drawback of ATLAS is, however, its limitation to KEGG compounds. We estimated 
that integrating molecular structures from different biological, biochemical and chemical 
database would greatly enhance the application range and the predictive power of the da-
tabase: For example, many drugs and plant natural products with undefined or putative 
biological function were not included in KEGG compounds scope. Furthermore, we showed 
that in many cases, compounds from databases other than KEGG can help to reconstruct 
multi-step metabolic reactions, or to bridge broken biosynthesis routes towards secondary 
metabolites. Predicting enzymatic reactions from biochemical compounds retrieved from 
databases other than KEGG will help to integrate information from different sources, and 
to expand the scope of our predictions.  

To achieve this this, we decided to expand the ATLAS scope to all known biological and 
biochemical compounds (Figure 4.5). We first collected over 60,000 biochemical reactions 
from ten publicly available databases, and over 1.5 million biological and bioactive com-
pounds from eight databases, and we stored the data in a database called bioDB. The com-
pounds in bioDB form the biological and bioactive compound space. We also collected all 
compounds from the chemical database PubChem, representing the chemical space. We 
then applied the ATLAS workflow, as described in Subchapter 4.2, to the biological and bio-
active compound space using an updated set of 447 bidirectional reaction rules. We gener-
ated all biochemically possible reactions whose products were part of the biological and 
bioactive compound space, stored in the bioATLAS database. Products that were belonging 
to the chemical space were stored as chemATLAS. The result is a database of more than 1.7 
million known and novel biochemical reactions connecting one million biological and bioac-
tive compounds. Due to the increased size of the compound space, some of the steps in the 
workflow had to be adapted and will be discussed in the next subsection. 
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Figure 4.5: Different types of reactions in ATLAS derived from of the biological and bioactive compound space. 

4.4.1 New	tools	&	methods	
The first versions of ATLAS were small enough to be stored and analyzed in a text-based 
format. Based on our experience with the KEGG ATLAS, we projected to exceed an esti-
mated one million reactions for bioATLAS, which would make text-based analysis difficult 
and inefficient. To be able to efficiently store, retrieve and analyze the increased amount of 
data, we created an SQL-based database hosted on our in-house server. The database ar-
chitecture has been developed by my colleague Homa Mohammadi-Peyhani and is not fur-
ther discussed here. The new database format required changes in the BNICE.ch framework, 
which closely interacts with the database, as well as in the web interface that displays da-
tabase content. One important change is the switch from a data-heavy, PNG-based visuali-
zation of compounds to the SMILES viewer developed by Probst and Reymond28. Further-
more, we took advantage of the graph extraction method presented in Chapter 3 to repre-
sent the generated data as an atom-weighted graph and to perform pathway search within 
the hypothetical biochemical network.  

Given the increased number of compounds to be analyzed, we divided the reaction gener-
ation process into two consecutive steps. The first step consists of screening all the com-
pounds in the database for reactive sites. For this, we checked if the reactive site description 
of a given reaction rule matches any substructure in the compounds database. We kept the 
information on which reaction rules could recognize which compounds, and we analyzed 
this first result separately. In a second step, we applied each reaction rule to the compounds 
known to be recognized by the rule in question to generate all possible reactions. 

Finally, the increased size of the generated biochemical networks required powerful graph 
search and analysis methods. For this, we employed the tools developed in Chapter 3 that 
are based on the Python toolbox NetworkX. For the efficient calculation of network diame-
ters we used the Python version of the SNAP toolbox29. 
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4.4.2 Collecting	biochemical	data	
To start with, we selected the publicly available biochemical databases that match the bio-
logical and bioactive scope. All compound entries were collected from MetaCyc, Model 
SEED, KEGG compound and drug databases, Drugbank, ChEBI, HMDB, MetaNetX, and 
ChEMBL (Table 4.2). From the collected compounds, only entries associated to a molecular 
structure were imported to our database. Next, the imported compounds were unified 
based on their 2D canonical SMILES, and annotations from different databases were merged 
into one compound entry in the database, resulting in 1,698,524 unique compounds. As a 
result, different tautomers, stereoisomers and charged states of a same compound were 
merged into one compound entry in our database. However, not all of these compounds 
could be used as a direct input for the ATLAS workflow. Compound entries that describe 
more than one disjoint molecular structure, e.g. salts, were excluded from the bioATLAS 
scope. As a result, the input for the ATLAS workflow summed up to 1,500,222 biological and 
bioactive compounds. 

Table 4.2: Compounds from different sources imported to bioDB 

 Databases  Description  Collected   Imported   Unique 

BI
O

LO
G

IC
AL

 

 MetaCyc 
Metabolites found in sequenced 

organisms 
15,819 14,828 13,499 

 Model SEED 
Metabolites from KEGG and 

GEMs 
33,995 20,665 18,436 

 KEGG Com-

pound 

Compounds and biopolymers rel-

evant to biology 
18,625 17,397 15,869 

BI
O

AC
TI

VE
 

 KEGG Drug 
Approved drugs in Japan, USA & 

Europe 
11,140 7,766 7,765 

 Drugbank 
Approved & discovery-phase 

drugs 
8,350 6,279 4,217 

 ChEBI 
Chemical Entities of Biological In-

terest  
56,530 32,691 32,352 

 HMDB 
Small metabolites found in the 

human body 
228,017 177,096 100,031 

 MetaNetX 
Metabolites found in GEMs (excl. 

lipids) 
200,132 183,788 128,308 

 ChEMBL Bioactive compounds 1,727,112 1,595,615 1,522,924 

  Total bioDB  
 

2,297,709 2,056,125 1,698,524 

 bioATLAS input    1,500,222 

 Total chemDB    77,934,143 
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We also imported all chemical compounds that can be found in PubChem30 for further com-
parison, although they were not used as an input for the ATLAS workflow in this study. Any 
known compounds that can be found in the chemical database PubChem, but that is not 
part of the bioDB, was assigned to the chemical space. We are aware that this classification 
is somewhat artificial, since compounds from the chemical space may actually be of biolog-
ical origin, yet they are not present in any biological or bioactive database. We will see later 
that this artificial classification hides an opportunity to re-assign compounds of the chemical 
space to the biological compound space. The unfiltered chemical space counts a total of 
77,934,143 unique compounds and is referred to as chemDB. 

Reactions were collected from KEGG, BRENDA31, Rhea32, BiGG33, SEED34, MetaNetX35, Meta-
Cyc36, HMDB37, Reactome38 and BKMS-react39 (Table 4.3). After filtering out reactions con-
taining undefined molecular structures (e.g. polymers, proteins) and reactions that were 
not elementally balanced, 29,637 reactions were left. Out of these, we could assign 
BNICE.ch reaction mechanisms to 15,474 of them. 

 

Table 4.3: Overview on collected reactions from different databases and their reconstruction with BNICE.ch 
reaction rules 

*Reaction mechanism present in BNICE.ch reaction rule database 

Data-
bases 

Col-
lected 

Imported Unique Non-     
orphan 

Elementally 
balanced 

Reaction 
mechanism* 

HMDB 8,182 5,108 4,380 3,417 3,177 1,276 

MetaCyc 16,052 15,438 12,726 9,614 7,879 6,177 

KEGG 10,829 10,685 10,179 9,667 9,010 7,230 

Meta-
NetX 

42,182 40,767 25,647 14,194 12,733 6,944 

Reac-
tome 

1,872 1,568 814 342 406 213 

Rhea 20,770 19,325 13,114 10,808 10,401 6,045 

Model 
SEED 

44,031 44,010 28,332 9,816 14,290 6,773 

BKMS 31,740 18,139 18,139 15,493 10,556 7,742 

BiGG 28,299 16,581 8,681 3,874 3,445 947 

BRENDA 31,741 9,214 7,044 6,629 6,825 4,310 

 Total  235,698 180,835  61,234 30,376 29,637 15,474 
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To summarize, we unified biochemical reactions and compounds from a total of fifteen dif-
ferent sources into one database, named bioDB. bioDB holds 1,500,222 unique biological or 
bioactive compounds, and 61,308 unique biochemical reactions. Around one fourth of the 
reactions are associated to a reaction mechanism as encoded in the BNICE.ch reaction rules.  

4.4.3 Analysis	of	reactive	sites	
As a first analysis for the collected biological and bioactive compounds, we aimed to deter-
mine their biochemical reactivity of the by screening them for reactive sites. To achieve this, 
we applied the reactive site recognition encoded in the BNICE.ch reaction rules to all of the 
compounds in bioDB. As a result, each compound was assigned a list of reaction rules that 
can recognize one or more reactive sites on the molecular structure. The number of reaction 
rules assigned to a compound is as an indicator for the diversity of functional groups, or the 
biochemical versatility, of the molecule.  

We found that 1,498,307 out of 1,500,222, or 99.8%, of collected biological and biochemical 
compounds had at least one reactive site. By looking at the distribution of reactive sites 
versus number of carbon atoms in the molecule, we found that most of the compounds 
(87%) had between 50 and 200 reaction rules assigned, within a range from five to twenty 
carbon atoms (Figure 4.6A).  

 

Figure 4.6: (A) Heatmap showing the distribution of compounds as a function of their number of carbon atoms 
versus the number of reaction rules assigned to them. The color indicates the number of compounds on a loga-
rithmic scale. (B) Four compounds for which BNICE.ch could not find any reactive site. a) Bis(trifluoromethyl)per-
oxide(BTP), b) cucurbit[8]uril, c) Bis(trifluoromethyl)germane, d) bis[tricarbonyl(η5-cyclopentadienyl)molyb-
denum](Mo—Mo). 

From the remaining 1,915 compounds without any reactive site, 958 had unclear molecular 
structures containing R groups (e.g., R-Cl). Another 752 compounds did not contain any car-
bon (e.g., inorganic ions), and 184 were found to be big molecules, many of them with 
closed aromatic ring structures that were not accessible for the reaction rules (e.g., fuller-
ene). 16 compounds contained only one carbon atom that was not accessible to metabolism 
(e.g., CFe8S9). The remaining four compounds were found to be chemically synthesized 
molecules with medical or research applications (Figure 4.6B). Even though these 

A B
a) b)

c) d)
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compounds do not seem to have the chemical capacity to participate in any biochemical 
reaction, their presence in biological databases can still be justified through their interaction 
with living organisms.  

4.4.4 Prediction	of	novel	reactions	
At the time of writing, the reaction prediction process was still ongoing. All of the results 
discussed in the following represent an intermediary snapshot of work in progress (26 De-
cember 1019). Daily updated database and network statistics can be found online under 
https://lcsb-databases.epfl.ch/Atlas2/Statistics.  

Next, we expanded bioATLAS from the compound space in bioDB by predicting novel, hy-
pothetical reactions from known biological and bioactive compounds. To achieve this, we 
applied the 477 bidirectional reaction rules on the 1,498,307 in bioDB that were assigned 
at least one reaction rule in the previous step of the workflow. Reactions whose products 
were part of the biological and bioactive compounds space were stored to bioATLAS, and 
reactions whose products that were only part of the chemical compound space were stored 
to chemATLAS. We predicted a total of 5,389,453 novel reactions from biological and bio-
active compounds. 1,711,285 (32%) out them occurred exclusively between biological and 
bioactive compounds, and the remaining 3,678,168 reactions involved at least one com-
pound from the chemical space. In terms of compounds, bioATLAS integrates almost two 
thirds (906,979 out of 1,500,222) of the compounds fed to the ATLAS workflow. One of the 
objectives of the ATLAS method is to integrate orphan compounds into the biochemical re-
action space. The bioDB counts 1,492,594 orphan compounds that are not involved in any 
known reaction, even though they are labeled as biological or bioactive molecules. Interest-
ingly, 60% (899,351) out of these orphan compounds could be integrated into at least one 
novel ATLAS reaction.  

4.4.5 Network	analysis	
To analyze the properties of the newly created biochemical network, we explored bioDB, 
bioATLAS and chemATLAS from a graph-theoretical point of view. Graph theory has been 
repeatedly employed to analyze metabolic networks, by representing compounds as nodes 
and biochemical transformations as edges. However, most methods either are based on 
manually derived reactant-product pairs (e.g., KEGG RPAIR network40), or they define a set 
of cofactors to be excluded from the analysis to avoid the generation of hubs by currency 
metabolites. Here, we rely on the method proposed in Chapter 3, called NICEpath, that 
weights each substrate-product pair according the number of atoms conserved between 
the substrate and the product. The weight, or Conserved Atom Ratio (CAR), is then trans-
formed into a distance between the substrate node and the product node, and the two are 
connected by an edge representing the biotransformation. Since a same biotransformation, 
or reactant-product pair, can occur in more than one reaction, each edge in the network 
represents all the reactions that transform the substrate to the product. The proposed 
method allows the construction of an atom-weighted graph that can be used to find meta-
bolic pathways by using common graph search algorithms. Moreover, the atom-weighted 
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graph can be analyzed to derive global properties of the biochemical networks. To calculate 
the weights on each pair, NICEpath requires that each reaction is annotated with a reaction 
mechanism that allows the calculation of the atom conservation between the substrate and 
the product. This condition is met for all bioDB reactions with assigned reaction rules, and 
for all predicted reactions in bioATLAS and chemATLAS. 

We constructed three networks with different biochemical scopes: The 15,474 mechanisti-
cally curated reactions in bioDB translated into 15,142 weighted edges connecting 7,628 
bioDB compounds. The bioATLAS network connects 906,979 compounds in 1,711,285 reac-
tions, represented by 2,487,983 edges, and chemATLAS connects 1,924,960 compounds in 
5,389,453 reactions, represented by 5,600,259 edges (Table 4.4). For many types of net-
work analysis however, an unweighted graph is required. Since we know from previous 
studies presented in Chapter 3, substrate-product pairs with a very low degree of atom con-
servation may not be biologically relevant. We could show that a cut-off of 0.34 in the con-
served atom ratio predicts best predicts  the manually curated reactant pairs of type “main” 
in KEGG40. Hence, we removed edges with a CAR below 0.34, and we removed the weights 
from the remaining edges. The result is a new set of unweighted graphs, which can be ana-
lyzed using standard graph analysis algorithms. 

The connectivity of a biochemical reaction network can give us insights into the compre-
hensiveness our knowledge, and help us identifying missing biochemical links. To assess the 
connectivity of the graph, we counted the number of connected components, i.e., disjoint 
graphs, or islands in the network (Figure 4.7A). We found that the total number of compo-
nents increased with the network expansion from bioDB to bioATLAS to chemATLAS (Table 
4.4). However, the number of components relative to the size of the network, or the num-
ber of components divided by number of nodes, decreased from 0.17 in bioDB, to 0.10 in 
bioATLAS, to 0.08 in chemATLAS, suggesting that the network becomes more connected by 
increasing the scope expansion. Next, we had a closer look at the size distribution of the 
components and we found that each of the networks was dominated by one big compo-
nent, followed by a big number of secondary components of maximal 16 compounds in-
volved (Figure 4.7B). While the biggest component in bioDB only includes 59% of the num-
ber of edges, this number rose to 73% in bioATLAS and reached almost 80% in chemATLAS. 
From this, we can conclude that integrating bioactive and chemical compounds makes the 
biochemical network denser. This statement is further confirmed by the diameter metrics: 
To calculate the diameter of a network, one needs to find all the shortest paths between all 
the possible combination of nodes in the network. The longest shortest path is called diam-
eter of the network, and the average length of shortest paths between any two nodes is 
called effective diameter. Here, we found that the effective diameter is decreased in bioAT-
LAS and chemATLAS compared to bioDB, which means that the shortest connections be-
tween any two nodes has decreased on average. The network diameter was decreased from 
bioDB to bioATLAS, representing a densification of the network, and increased again when 
including chemical compounds, suggesting expansion of the network towards novel chem-
istry and integration of previously disconnected components.  
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Table 4.4: Network statistics of bioDB, bioATLAS and chemATLAS networks. 

Network Property bioDB bioATLAS chemATLAS 

Weighted 
network 

Number of nodes 7,628 906,979 1,924,960 
Number of edges (CAR > 0) 15,142 2,487,983 5,600,259 

Un-
weighted 
network 

Number of nodes 7,537 703,046 1,902,991 
Number of edges, unweighted 
(CAR > 0.34) 7,460 1,058,683 2,757,348 

Number of components (disjoint 
graphs)   1,259 89,926 162,920 

Biggest   
compo-
nent 

Number of nodes 3,359 356,889 1,235,405 
Number of edges  4,405 769,999 2,193,872 
Percent of total number of 
nodes  44.57 % 50.76 % 64.92 % 

Percent of total number of edges  59.05 % 72.73 % 79.56 % 
Diameter (longest shortest path) 43 32 38 
Effective diameter (average 
shortest path) 12 10 10 

 

 

Figure 4.7: (A) Visual overview on different statistics and network properties calculated for bioDB, bioATLAS and 
chemATLAS. (B) Size distribution of disconnected components in the network of each of the three database 
scopes. 
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4.5 Conclusion	and	outlook	
Based on the 1.5 million known biological and bioactive compounds in bioDB, we predicted 
more than 1.7 million biochemically possible biotransformations between biological and bi-
oactive compounds using 477 generalized reaction rules, and we stored them in bioATLAS. 
We further predicted more than 3.6 million reactions involving compounds from the chem-
ical space, resulting in a total of almost 5.4 million reactions in our database. From this new 
wealth of information, we extract insightful numbers on the connectivity and reactivity of 
biologically relevant molecules. Finally, we provide public access to our database through 
an online search interface including a powerful pathway search algorithm, which can be 
used for the design of novel metabolic pathways. Daily updated database statistics as well 
as a preliminary version of the search interface can be accessed at https://lcsb-data-
bases.epfl.ch/Atlas2. 

While the ATLAS expansion of biologically relevant compounds is complete, only a fraction 
(0.025%) of the chemical space has been integrated into biochemical reactions so far. Fur-
ther work will include the systematic screening of the 75 million PubChem compounds for 
potentially biochemically active structures, and the prediction of biochemical reaction be-
tween them. Currently, the bioATLAS reaction generation is in its final phase, and the bio-
derived part of chemATLAS is already available (Table 4.5).  

Table 4.5: Overview on the past, current and projected development of the ATLASx databases 

Database Compound 
scope 

# Compounds 
screened 

#  Compounds 
integrated 

# Reactions 
(total) 

# Known 
reactions 

# Reaction 
rules 

State of 
develop-
ment 

ATLAS 2015 KEGG 2015 16,798 10,362 137,877 5,370 361 Published 

ATLAS 2018 KEGG 2018 17,255 10,939 149,052 5,780 400 Submitted 

bioATLAS 

All biological 
and bioactive 
databases 
(2019) 

1,500,222 906,898 1,711,285 15,474 447 
Work in 
progress 

chemATLAS 
All chemical 
databases 

77,934,143 1,912,769 5,389,453 15,474 447 
Work in 
progress 

novATLAS 
BNICE.ch pre-
dicted novel 
compounds 

- - - - - Projected 

 

From our experience working with different classes of compounds, we learned that for 
many of them, although naturally produced by organisms, are not recorded in any database. 
A typical example is plant secondary metabolism, where the promiscuous activity of so-
called “decoration” enzymes (e.g., methyltransferases) may lead to the production of small 
amounts of diverse derivatives of the known secondary metabolites. Another case are 
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short-lived intermediate species that are unstable or quickly consumed by enzymes down-
stream in the biosynthesis path. Even though the chemical structures of these intermedi-
ates have never been studied, their chemistry is important in the characterization and de-
sign of biosynthetic pathways. While BNICE.ch predicts these potential novel derivatives, 
they are usually excluded from the solution space in the BNICE.ch network generation be-
cause they easily lead to combinatorial explosions in the number of potential products with 
each iteration. In an ATLAS-type of approach however, novel compounds could be inte-
grated in a more targeted fashion: By predicting novel compounds around each compound, 
we could avoid combinatorial explosion by only keeping novel structures that connect to 
two known compounds (i.e., a node degree of two or more), or by applying machine learn-
ing techniques that predict the biochemical feasibility of the novel structures to filter out 
compounds with a low probability to exist in biological conditions. Exploring the space of 
hypothetical biochemical structures will eventually help us to predict compounds that are 
difficult to be detected experimentally, such as hypothetical metabolic intermediates or 
secondary metabolites produced at very low concentrations. The creation of an ATLAS 
reaching out to the chemical space of novel compounds, novATLAS, will further help to map 
dark matter in metabolism.  

To conclude this chapter, the ATLASx project is a dynamic, continuously evolving effort to 
integrate the scattered knowledge of metabolism into an overall hypothetical biochemical 
reaction network. The future discovery of new metabolic structures and enzymatic reaction 
mechanisms will continue to feed the ATLAS workflow and, consequently, to improve our 
predictions for metabolic engineering applications. 
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Chapter	5 Applications:	Predicting	bi-
otransformations	with	 cheminformatic	
tools	

The tools, methods and databases described in the previous chapters have been 
applied to solve a variety of research questions and metabolic engineering problems. De-
pending on the scientific questions, different computational tools and resources have been 
combined to provide an optimal, adapted answer. At the very core of these applications is 
always BNICE.ch, originally designed to solve retrobiosynthesis problems. In this chapter, 
we will first discuss retrobiosynthesis in general (Subchapter 5.1), followed by an illustration 
of the theory of a typical retrobiosynthesis problem (Subchapter 5.2). We further introduce 
two alternative applications of BNICE.ch: The first one is the prediction of potential engi-
neering targets and their associated bioproduction pathways that can be derived from a 
given metabolic pathways (Subchapter 5.3), and the second study examines the ability of 
BNICE.ch to predict the biodegradability of xenobiotic chemicals (Subchapter 5.4). 

5.1 Retrobiosynthesis	

Retrobiosynthesis is a well-established method to discover potential bioproduction routes 
for chemicals of industrial interest. The underlying principle of “walking back” from a target 
compound, reaction step by reaction step, until a suitable precursor is reached, has first 
been explored by organic chemists1–3. In chemical retrosynthesis, reversed synthetic reac-
tion rules are applied iteratively on a target compound. The result of this procedure are 
possible synthetic pathways, connecting the target molecule for synthesis back to cheaper 
commodity chemicals. The approach has been adapted to biosynthetic pathways, giving rise 
to a range of retrobiosynthesis tools that try to connect the target compounds to biologi-
cally available precursor compounds, but only a few of them are subject to continuous de-
velopment. The most popular, continuously maintained retrobiosynthesis tools are 
BNICE.ch4,5, RetroPath6,7 and novoStoic8,9. Recent reviews provide a critical overview of 
these tools and discusses in detail their potential as well as their limitations10–14.  

Compared to their counterparts from chemical synthesis, retrobiosynthesis methods have 
an additional set of challenges to solve. Aspects such as the availability of the precursor in 
the host organism, availability of cofactors, thermodynamic feasibility in ambient condi-
tions, the toxicity of intermediates and the availability of enzymatic catalysts should be 
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considered before trying to implement a predicted pathway into the host. Different tools 
considering different aspects are summarized in Table 5.1. 

This Subchapter describes the state-of-the-art workflow of retrobiosynthesis based on the 
methods described in the previous chapters. The workflow is divided into four main steps 
(Figure 5.1): (i) The generation of a hypothetical biochemical reaction network around the 
target, (ii) the search for metabolic pathways that connect the target to potential precursor 
compounds produced by the chassis organism, (iii) stoichiometric and thermodynamic fea-
sibility of the proposed pathway within the genome-scale model of the chassis organism, 
and (iv) finding suitable enzymes for each known and predicted reaction step in the path-
way. For each part of the workflow, we list alternative method that can be used instead of 
the BNICE.ch-based tools.  

 

 

Figure 5.1: Schematic of BNICE.ch-based retrobiosynthesis workflow. A hypothetical biochemical network is ex-
panded around the target compound (red dot). Pathways connecting the host metabolism to the target (red 
path) are retrieved and evaluated for stoichiometric, thermodynamic and enzymatic feasibility. 
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Table 5.1: Available retrobiosynthesis tools and their characteristics (adapted and updated from Hadadi and 
Hatzimanikatis10).  

Tool 
Generalized 
reaction 
rules 

Gibbs free 
energy of 
reaction  

Network stoi-
chiometry (1) 
and thermo-
dynamics (2) 

Enzyme 
identifica-
tion tool 

Toxicity 
of inter-
mediates 

Host or-
ganism 
specificity 

Availa-
bility 

References 

BNICE* Yes GCM15 Yes (1,2) BridgIT16  Yes 
Open 
data via 
ATLAS17 

Tool development4, 
applications5,18–23, re-
views10,24,25, experi-
mental validation26 

RetroPath 
series** 

Yes Yes Yes (1) 
Selenzym
e27,28 

Yes29 Yes 

Open-
source & 
open 
data via 
XTMS 

Tool develop-
ment6,7,30,31, re-
views32, pathway 
search33, experi-
mental validation34 

novoStoic Yes Yes35 Yes (1,2) Yes  Yes 
Open-
source 

Tool development8, 
reviews9,13 

GEM-Path Yes GCM15 Yes (1,2) Yes  Yes  Tool development36 

SimPheny Yes Yes37  Manual  Yes 
Com-
mercial 

Tool development 
(Genomatica)38, ex-
perimental valida-
tion39 

ReactPRED Yes Yes     
Open-
source 

Tool development40 

Transform-
MinER 

Yes   Yes   
Online 
tool 

Tool development41 

DESHARKY    Yes  Yes  
Tool development42, 
review43 

ReBiT Yes Yes      Review44 

Cho et al. Yes Yes      
Tool development 
and application45 

*The development of BNICE has started at Northwestern University in 2004, and later been continued at EPFL under the 
new name BNICE.ch. Here, publications based on both versions are included. 

**Comparison includes the original RetroPath method as well as its extended versions RetroPath2.0 and RetroPath RL 
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5.1.1 Iterative	network	generation		

Retrobiosynthesis starts with defining the biochemical search space: What kind of metabo-
lites and reactions should be considered? In the most restricted setting, the search is limited 
to known metabolites and reaction of a specific organism. From there, the search space can 
be expanded to all known biological compounds and reactions, then to novel reactions, to 
compounds only found in chemical databases, and finally it can even include novel molecu-
lar structures. Depending on the question we try to address with retrobiosynthesis, and on 
how much biochemical knowledge is available for the target compound, the search space 
will be delimited differently. In the standard case, the target is a known biological or chem-
ical compound, and we will consider all known chemical and biological compounds, as well 
as all known and predicted biochemical reactions. Known compounds and reactions can be 
collected from databases such as KEGG46, MetaCyc47 and BRENDA48, and chemical com-
pounds can be taken from chemical databases such as PubChem49. In the following, we will 
refer to compounds that are only present in chemical databases as “chemical compounds”. 
However, not all molecules present in nature can be found in biological database, and they 
may only exist in chemical databases, meaning that a “chemical compound” in our defini-
tion may still be of biological origin. Finally, we need to define the type of biochemistry 
considered in the network generation by choosing an appropriate set of generalized, bio-
chemical reaction rules. While for specific questions it can be advantageous to restrain the 
possible biochemistry to certain types of EC classes or to enzymatic rules already known to 
be present in the host organisms, we generally opt for the whole set of available reaction 
rules to cover all of known biochemistry. 

Once the search space is defined, we apply a network generation algorithm to expand a 
hypothetical reaction network around the target compound (Figure 5.2).  In a first iteration, 
the reaction rules are applied one by one to the target compound, thus generating all pos-
sible reactions and products that lie within the search scope. The products of the first iter-
ation are then analyzed to determine whether or not they should be subject to further net-
work expansion. For example, we can decide to only further follow compounds with a spe-
cific elemental composition or a given maximal molecular weight. We can also look at the 
ratio of conserved atoms between the target and the product, and only validate reactions 
conserving a minimal ratio of atoms. These metrics can be used to designate products that 
are eligible for further network expansion. These eligible products are then used as sub-
strates in a second iteration of reaction generation, and so on, until a predefined number 
of iterations is reached, or until the computational resources are exhausted. In the standard 
case, the resulting network contains known and novel, hypothetical reactions between 
known biological and chemical molecules. 
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Figure 5.2: The BNICE.ch network generation process. 

 

Alternatives to BNICE.ch for network generation with continued developments are the pre-
viously mentioned RetroPath6,7 and novoStoic8,9.  RetroPath relies on a set of automatically 
generated reaction rules, where the atomic diameter of the rule is a parameter that needs 
to be defined a priori. NovoStoic extracts its reaction rules based on an algorithm termed 
rePrime that encodes reaction centers using a prime factorization-based technique. An-
other related tool, called enviPath has been specifically designed for biodegradation path-
ways and it employs a set of expert-curated biodegradation rules50,51. While all of these 
tools rely on the concept of generalized reaction rules, their network generation processes 
differ in terms of available parameters and user interaction with the algorithm. 

5.1.2 Pathway	search	within	hypothetical	metabolic	network	

Once we have generated a hypothetical biochemical network, we want to extract possible 
sequences of reactions that connect the target compound to back to precursor compounds 
in the host organism. The extraction of pathways can be achieved by solving an optimization 
problem, or by finding paths in a graph-based representation of the metabolic network, as 
reviewed by Wang et al.13. Here, we employ an atom-conserving, graph-based pathway 
search termed NICEpath and explained in detail in Chapter 3. 

NICEpath takes as input the network generated by BNICE.ch, where each reaction is anno-
tated with a metric that defines substrate-product pairs, weighted based on the number of 
atoms conserved between the substrate and the product. The Conserved Atom Ratio (CAR) 
is used to construct a searchable, weighted graph, where compounds are nodes, biotrans-
formations are edges, and where edge weights represent the conservation of atoms in a 
given biotransformation. The weights are inversed values of the CAR, meaning that sub-
strate-product pairs with a high number of conserved atoms close to each other in the 
graph, and pairs that only conserve few atoms are far away from each other. This 

Target

Generation 1

Generation 2

Generation 3 CCoommppoouunndd  eelliiggiibbllee  ffoorr  
ffoolllloowwiinngg  ggeenneerraattiioonn  
Fits within predefined 
constraints regarding 
size, database 
membership, …

Compound not further 
expanded

BBiioottrraannssffoorrmmaattiioonn  
vvaalliiddaatteedd
Fits within predefined 
constraints regarding 
the number of 
conserved atoms, …  

Reaction not validated
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representation enables us to apply a powerful graph search method to extract the shortest 
pathways from the overall reaction network, biased towards atom-conserving routes.  

The following parameters can be set by the user to fine-tune the pathway search algorithm: 
(i) Maximal number of reaction steps and maximal number of pathways, (ii) the maximum 
number of alternative reactions to be returned for each edge (e.g., alternative cofactor us-
ages for a given biotransformation), (iii) the model identifier of the organism to which we 
want to connect the input compound(s). The resulting pathways are automatically ranked 
based on the sum of the individual distances in each reaction. NICEpath further provides 
information on the average CAR in the pathway, the number of known, novel and total re-
action steps involved. For a more detailed discussion of NICEpath and other pathway search 
tools, the reader is referred to Chapter 3 of this thesis. 

5.1.3 Stoichiometric	and	thermodynamic	pathway	feasibility	

In a next step, we evaluate the stoichiometric and thermodynamic feasibility of each path-
way in the GEM of the chassis organisms. This procedure is necessary to remove infeasible 
routes and to rank the remaining routes based on yield. A metabolic model of the host or-
ganism is a pre-requisite for the following analyses.  

A first criteria of feasibility is that the compounds participating in the pathway are balanced 
with regard to the organisms’ metabolism in terms of cofactor usage and co-substrate avail-
ability. To assess the stoichiometric feasibility, each predicted pathway is appended to the 
GEM of the chassis organism, and the production of the target compound is optimized in a 
Flux Balance Analysis52 (FBA) type of problem. If the target compound can be produced, the 
pathway is stoichiometrically feasible, and the maximum theoretical yield from the main 
carbon substrate is calculated. 

A second criteria is the thermodynamic feasibility of the production of the target com-
pound. In order to evaluate the thermodynamic feasibility, thermodynamic data has to be 
collected or calculated for the compounds and reactions in the pathway. A common ap-
proach to estimate the thermodynamic properties is the Group Contribution Method 
(GCM)15. The estimations of the Gibbs free energy of formation and the Gibbs free energy 
of reaction are a prerequisite to perform Thermodynamics-based Flux Analysis53,54 (TFA) on 
the production of the target molecule in the chassis model. We determine whether the 
compound can be produced from a thermodynamic point of view by optimizing the produc-
tion of the target in TFA, and we calculate the maximum theoretical yield in the thermody-
namically constrained model.  

5.1.4 Finding	enzymes	for	predicted	reactions		

Once the pathways are established and their feasibility evaluated in the GEM of the host 
organism, we need to ensure that each step in the pathway can be catalyzed by an enzyme. 
For each reaction, three cases are possible: (i) The reaction is known, and biological data-
bases provide information on the enzyme catalyzing the reaction, (ii) the reaction is known, 
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but no enzyme has been associated yet to the biotransformation, or (iii) the reaction is 
novel, not known to any database, and predicted by a BNICE.ch reaction rule. Reactions 
belonging to the latter two cases are generally called “orphan”, and we need to rely on 
chem- and bioinformatic tools to find a known enzyme that is either promiscuous enough 
to catalyze the novel reaction, or that could be engineered to perform the desired biotrans-
formation. These tools can also be applied to known reactions with associated enzymes 
(first case) if one is looking for alternative enzymes that are more compatible with the host 
organism, or if one is seeking to explore the promiscuous reaction space of an enzyme. 

Enzyme prediction relies on the comparison of the molecular structures of the reaction and 
its participating reactants by using so-called “reaction fingerprints”, which represent the 
reaction in a condensed string of characters. These fingerprints are then compared among 
each other, and similarity measures such as the Tanimoto distance can be employed to 
score the structural similarity between the reactions55. In practice, one first establishes a 
reference database listing all known reactions, their associated enzymes and their reaction 
fingerprints. Next, the fingerprint is calculated for each novel query reaction and compared 
to the reference database. Reactions showing high structural similarity are retrieved along 
with their similarity score and their associated enzymes.  

In our workflow, we use the computational tool BridgIT to associate known enzymes to the 
novel reactions generated by BNICE.ch16. BNICE.ch already provides information on the type 
of reaction by defining the EC number up to the third level. The information on the reactive 
site stored in the reaction rule is further used to center the fingerprint generation on the 
reactive site and its surrounding structure. These reactive-site centric fingerprints are then 
used to find the known reactions that are most similar to the novel query reactions in terms 
of reactivity, reactive site, and molecular structure. The known reactions and associated EC 
numbers can be easily mapped to protein and gene sequences using standard bioinformatic 
resources such as UniProt56. 

Alternative methods such as EC-BLAST57, Selenzyme28 or E-zyme58 employ similar 
cheminformatic approaches to identify enzymes for orphan reactions. Like BridgIT, EC-
BLAST and E-zyme rely on reactive-site centric comparison, which has been shown to be 
crucial to correctly identify promiscuous enzymatic activity. 

5.1.5 Ranking,	visualization	and	availability	

Each step in the retrobiosynthesis workflow adds its own set of scores to the resulting path-
ways: The network generation provides information on the nature of the participating com-
pounds and reactions in the network, i.e. the size of the compounds, whether the com-
pounds and reactions can be found in any biological or chemical databases, the type of bi-
ochemistry involved, etc. The pathway search outputs the length of the pathway as well as 
a metric for atom conservation throughout the pathways. The stoichiometric and thermo-
dynamic analyses calculate the theoretical maximal yield and tell us whether or not a given 
pathway is feasible within the host organism. Finally, enzyme annotation tools calculate a 
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similarity score between novel, predicted reactions and known enzyme-catalyzed reactions 
to estimate the feasibility of biocatalysis for the predicted reactions. Given all of these 
scores and rankings, it is up to the scientist to decide which ones should be prioritized in 
the final ranking of pathways, depending on the specific case of application and the objec-
tive of the project. For this reason, the final ranking should be individually adapted for each 
retrobiosynthesis project, taking into account the specific needs and constraints of the met-
abolic engineering task. 

A recurrent criticism of retrobiosynthesis tools is that compared to the number of available 
tools, only a small fraction of the predictions has been validated experimentally. Potential 
reasons for this are (i) the difficult accessibility of tools, which are either closed-source or 
not easy to use by experimentalists without background in informatics, and (ii) the lag time 
between prediction and experimental validation. For example, the first hypothetical reac-
tions predicted in the ATLAS of Biochemistry ,published in 2016, have been validated in an 
experimental study only recently26. This example shows that it is crucial to invest in the ac-
cessibility of tools and, even more so, in data visualization for communicating effectively 
with experimental collaborators. 

While other retrobiosynthesis tools opt for full open-source solutions, the BNICE.ch frame-
work is closely tied to an infrastructure of communicating databases on an in-house server. 
Furthermore, our overall retrobiosynthesis framework involves the application of different 
tools such as BridgIT and pathway evaluation within the host model, which require a trained 
expert to optimize each step in the workflow towards the bioengineering goal (e.g., choice 
of chassis, consideration or exclusion of specific reaction mechanisms, compounds to be 
avoided due to patenting conflicts). Hence, we believe that providing curated retrobiosyn-
thesis results online in a user-friendly, open-access manner is currently the best solution to 
share our data. All of our predicted and published pathways can be consulted and manually 
inspected under https://lcsb-databases.epfl.ch/pathways/GraphList.  
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5.2 Retrobiosynthesis	for	1,4-butanediol	and	bisabolene	

The results of this Subchapter were generated with the help of Omid Oftadeh, who per-
formed the stoichiometric and thermodynamic analysis of the pathways in, and Homa Mo-
hammadi-Peyhani, who predicted enzymes with BridgIT. The yeast model used for pathway 
evaluation has been thermodynamically curated by Maxime Curvat. 

The following Subchapter is dedicated to the exemplar illustration of a typical retrobiosyn-
thesis project, with the aim of benchmarking our retrobiosynthesis workflow. As a show-
case, we chose the two industrially important compounds 1,4-butanediol (1,4-BDO) and 
bisabolene. Both compounds have been the subject of several successful metabolic engi-
neering efforts, yet their chemical structures are very different. Here, we apply the state-
of-the-art retrobiosynthesis workflow to both of these compounds, and we compare our 
results with information available in biochemical databases and in scientific literature. 

1,4-BDO is a major commodity chemical that is widely used in industry for the chemical 
synthesis of different plastics, elastic fibers and pharmaceuticals, with a global market of 
over 2.5 million tons per year. It is not native to any known organism, and traditionally 
sourced from petroleum-based feedstocks. The bioproduction of 1,4-BDO has been 
achieved for the first time by Yim et al. in 2011, using Escherichia coli (E. coli) as a host 
organism39. In 2015, Liu and Lu reported a more advanced metabolically engineered system 
for autonomous 1,4-BDO bioproduction in E. coli from D-xylose that integrated genetic con-
trol tools from synthetic biology59. Another biosynthetic route was introduced by Wang et 
al. in 2017 that makes use of a rationally redesigned diol dehydratase60.  

The chemical bisabolene is a natural product belonging to the chemical group of terpenes, 
also called isoprenoids61, and its chemical properties make it a good candidate for biosyn-
thetic alternative to diesel fuel62. Bisabolene is naturally produced by some groups of 
fungi63, and it has also been found in essential oils extracted from lemon and from different 
member of the lamiaceae family, where it contributes to the balsamic odor. The natural 
biosynthesis of bisabolene has first been characterized in Abies grandis, where the com-
pound is produced from farnesyl diphosphate by the enzyme bisabolene synthase64. Farne-
syl diphosphate is produced from the precursors isopentenyl pyrophosphate (IPP) and di-
methylallyl pyrophosphate (DMAPP), which are synthesized either via the mevalonate path-
way, or via the non-mevalonate pathway, also called the MEP pathway. A synthetic route 
for the biosynthesis of isoprenoids has recently been discovered by Clomburg et al. and 
termed isoprenoid alcohol pathway65. 

Bisabolene has been the target of several bioengineering studies in the past. In 2011, E. coli 
and Saccharomyces cerevisiae (S. cerevisisae) have been engineered through to produce 
bisabolene from simple sugars for the first time62. In contrast to the engineered biosynthesis 
of 1,4-BDO involving the design of novel biochemical reactions, the bisabolene bioproduc-
tion in yeast was achieved through heterologous expression of the bisabolene synthase 
from Abies grandis. Biosynthesis of the isoprenoid has further been reported in a the 
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cyanobacterium Synechococcus sp. PCC 7002 and in Streptomyces venezuelae66,67. Bisabo-
lene exists in the form of the different isomers a-, b- and g-bisabolene, which differ in the 
position of the double bond close to the ring. Since the engineered strains all produce a-
bisabolene, we focused our study on this specific isomer. On top of that, there are several 
stereoisomers possible due to two stereocenters in the molecule, but which are not further 
distinguished for the computational analysis.  

In the following, we perform an overall, state-of-the-art retrobiosynthetic analysis of these 
two compounds, starting with the exploration of the biochemical space around the target 
molecules.  

5.2.1 Generation	of	biochemical	reaction	network	around	target	

compounds	

To generate a hypothetical reaction network around the target compounds, we applied the 
BNICE.ch retrobiosynthetic network generation on the two target compounds 1,4-BDO and 
bisabolene. The following constraints were applied at this stage: The network generation 
was limited to seven iterations, and only compounds known to the LCSB database were 
allowed to be produced. Also, compounds eligible for the next generation needed to (i) have 
maximum two carbon atoms more than the target compound, and (ii) be connected to an 
eligible compound from the previous generation via a biotransformation with a CAR higher 
than or equal to 0.34, a cutoff previously found to be optimal to predict biologically relevant 
substrate-product pairs (see Chapter 3). Finally, the algorithm would not start a new gener-
ation when the general limit of 100,000 reactions or 20’000 compounds is reached to avoid 
using up all of the allocated memory resources in the following generation. 

Given these constraints, BNICE.ch predicted a reaction network of 22,765 compounds and 
122,139 reactions for 1,4-BDO, and a network of 48,852 compounds and 207,634 reactions 
for bisabolene (Figure 5.3). The results show that the network generation evolved differ-
ently for the two compounds. The main reason for this difference is the upper limit on the 
number of carbons, which was set to six for 1,4-BDO and to 17 for bisabolene. Hence, the 
latter produced a bigger network due to a higher number of possible chemical structures. 
As a result, the network generation algorithm stopped after six generation for bisabolene 
because the memory resources were used up. 
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Figure 5.3: Compounds produced in each BNICE.ch iteration during the network generation process for 1,4-BDO 
(blue) and bisabolene (orange). Solid lines indicate the total number of compounds, and the dashed lines show 
the number of biological KEGG compounds.  

5.2.2 Finding	pathways	to	host	precursors	

Once we had a network of known and novel, hypothetical reactions around the target com-
pounds, we tried to connect each target to all precursors in common between the gener-
ated network and the genome-scale model of the host organisms. For 1,4-BDO, the only 
host organisms engineered for bioproduction was E. coli, represented in our approach by 
the genome-scale model iJO136668. Bisabolene bioproduction has been engineered in four 
organisms in the past; E. coli, S. cerevisiae, Synechococcus sp. PCC 7002 and in Streptomyces 
venezuelae. The first three organisms are here represented by iJO1366, iMM90469 and 
iJB785 (for Synechococcus elongatus PCC 7942)70, respectively. Unfortunately, no genome-
scale model was available for Streptomyces venezuelae. 

For each precursor found in the respective models, we analyzed the shortest 100 paths con-
necting the precursor to the target, considering a maximum of six alternative reactions per 
edge in the network. From the resulting pathways, we ignored those that required a co-
substrate not present in the organism. We further removed pathways that produced mo-
lecular oxygen and that fixed carbon dioxide, since these reactions are generally strongly 
unfavorable in terms of thermodynamics, with estimated Gibbs free energies of reaction of 
generally more than ~10 kcal/mol. Finally, no native E. coli intermediates were allowed in 
the pathway to reduce redundancy between the pathways. 

For 1,4-BDO, we found a total of 6,313 pathways for 155 precursor compounds from E. coli. 
The shortest pathway connects 1,4-BDO to butanol in two reaction steps, and the longest 
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connects the target to 5-Phosphoribosyl diphosphate in nine reaction steps. For bisabolene, 
we found 4,468 pathways for 71 precursor compounds in E. coli, with the number of reac-
tion steps ranging from one to eleven. We further found 4,187 pathways for 83 precursor 
compounds in S. cerevisiae, and 4,474 pathways for 72 precursor compounds in Synecho-
coccus, with the same range of pathway length as for E. coli. The precursor compounds 
found in the different species were largely the same: 67 precursors were found in all the 
GEMs of the three species. 16 precursors were unique to yeast, while four precursors were 
only found in E. coli and Synechococcus, and one precursor was unique to Synechococcus. 
The set of pathways found for Synechococcus and E. coli were exactly the same, with one 
single exception; Synechococcus had 7 extra pathways for the precursor D-1-Aminopropan-
2-ol O-phosphate. Since the results for E. coli and Synechococcus were almost identical, and 
given the fact that there was no in-house, thermodynamically curated GEM for Synechococ-
cus, we decided to perform the stoichiometric and thermodynamic pathway evolution only 
within E. coli and yeast GEMs. In general, the pathways for 1,4-BDO tended to be shorter, 
which is due to the fact that the structure of the molecule is simpler and closer to the central 
carbon metabolism (Figure 5.4). The pathway length distribution for bisabolene turned out 
to be very similar between E. coli and yeast. We had a closer look at these pathways and we 
found that 3,280 pathways (78%) were identical between E. coli and yeast. Comparing these 
pathway properties can give us a first impression on which organisms might be more suited 
than others for the bioproduction of a given compounds. However, a stoichiometric and 
thermodynamic analysis is needed to ensure the feasibility of the pathways within the pro-
posed host organisms. 

 

Figure 5.4: Distribution of pathway lengths for 1,4-BDO in E. coli and for bisabolene in E. coli and S. cerevisiae. 
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5.2.3 Stoichiometric,	thermodynamic	and	biocatalytic	pathway	

evaluation	

To determine the stoichiometric feasibility of the pathways, we inserted them one by one 
into the GEM models of the respective organisms, and we performed FBA to see if the com-
pound can be produced. In E. coli, 3,695 out of 6,313 pathways for 1,4-BDO were stoichio-
metrically feasible, starting from 102 out of the initial 155 precursors. For bisabolene, 3,374 
out of 4,187 pathways were FBA feasible in E. coli, for 52 out of 71 precursors. In yeast, 
2,578 out of 4187 pathways to bisabolene were feasible, for 52 out of 83 precursors. We 
further reduced the number of pathways by filtering out those that were not feasible from 
a thermodynamic point of view. For the thermodynamically feasible pathways we also cal-
culated the maximum possible yield per glucose molecule. The TFA analysis left us with 325 
pathways towards 17 different precursors for 1,4-BDO in E. coli, 1,417 pathways towards 
32 precursors for bisabolene in E. coli and 52 pathways towards 10 precursors in yeast (Ta-
ble 5.2). Given that the original sets of pathways for bisabolene are very similar for E. coli 
and yeast, we will need further investigation into the thermodynamic properties of the two 
models to explain the remarkable difference in the number of feasible pathways.  

A closer look at the shortest pathways for each target revealed differences in how the com-
pound was connected to the host metabolism (Figure 5.5): 1,4-BDO connected to the chem-
ically related native E. coli metabolite 4-hydroxybutanoic acid in only three steps, and to 3-
hydroxypentanoate and 3-methyl-2-oxopentanoate in four steps. Bisabolene connected to 
trans, trans-farnesyl diphosphate in one, two or three reaction steps, and additionally to 
dimethylallyl diphosphate within four reaction steps. Interestingly, these two compounds 
are known biosynthesis products of the MEP pathway which is active in E. coli and produces 
the precursors for the biosynthesis terpenoid backbone. In yeast, terpenoids are produced 
via the mevalonate pathway. Accordingly, the shortest pathways found in yeast connect to 
the mevalonate pathway intermediates (R)-5-phosphomevalonate and (R)-mevalonate. 

In a previous retrobiosynthesis study on 5-methylethylketone (MEK), 3,679,610 novel path-
ways towards five precursors were reconstructed from a biochemical reaction network gen-
erated by BNICE.ch5. Out of these novel pathways, only 487,411, or 13.2%, were found to 
be stoichiometrically feasible and 18,622, or 0.5%, were thermodynamically feasible. In con-
trast, 5.1% and 33.9% of pathways reconstructed by NICEpath were found to be feasible for 
1,4-BDO and bisabolene, respectively. The difference between these two studies is that the 
previous approach performed a pathway search algorithm on an unweighted, undirected 
graph that did not take into account atom conservation between substrate-product pairs. 
Even though the results are not directly comparable, this outcome still confirms the value 
of the atom-conserving graph search approach employed in NICEpath. 
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Table 5.2: Stoichiometric and thermodynamic filtering of pathways found by NICEpath in E. coli. Abbreviations: 
# PWs - Number of pathways, % PWs - Percentage of pathways kept after filtering with respect to the total 
number of pathways, # prec - Number of precursors)  

 

1,4-BDO – E. coli Bisabolene - E. coli Bisabolene - Yeast 

 

# PWs % PWs # prec # PWs % PWs # prec). # PWs % PWs # prec 

All path-
ways 

6,313 100.0% 155 4,183 100.0% 71 4,187 100.0% 83 

FBA feasible 3,695 58.5% 102 3,774 90.2% 52 2,578 61.6% 52 

TFA feasible 325 5.1% 17 1,417 33.9% 32 52 1.2% 10 

 

 

Figure 5.5: Distribution of pathway length after stoichiometric and thermodynamic curation, respectively. Pre-
cursor compounds of the shortest pathways are listed for each analysis. 

Finally, each reaction step in a pathway needs to be catalyzed by enzyme. For known reac-
tion steps, suitable enzymes can be found in biochemical databases, but for novel reaction 
steps, an enzyme prediction tool like BridgIT is indispensable. Here, we applied BridgIT on 
all the reactions to find all the known enzymes that may have the biochemical potential to 
catalyze the desired steps. In case the reaction is already known, alternative enzymes can 
still be interesting in case the known enzyme does not express well in the host, or if the 
known enzyme creates patent-related issues. We extracted the top five hits BridgIT hits for 
each reaction, not considering hits with a BridgIT score lower than the recommended 
threshold of 0.3, below which BridgIT results have been shown to not be significant any-
more16. For each pathway, we calculated the average BridgIT score by considering the high-
est score for each reaction step in order to provide an overall metric assessing the availabil-
ity of enzymes. 
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5.2.4 Pathway	ranking,	visualization	and	comparison	

The result of our retrobiosynthesis approach is a list of theoretically feasible pathways lead-
ing from precursors present in the host organism to the target compound. Pathways are 
annotated with a set of metrics consisting of a pathway length score (the inverse of the 
number of reaction steps), the average atom conservation, the maximum yield from glu-
cose, and a score for enzyme availability. An overall ranking is achieved by adding the dif-
ferent scores, each one ranging from zero to one. The ranked pathways have been uploaded 
to our website (https://lcsb-databases.epfl.ch/pathways/GraphList), where users can con-
sult the pathways and re-rank them based on their own criteria.  

First, we examined the 325 thermodynamically feasible pathways for 1,4-BDO, and we se-
lected top-ranking pathways to illustrate the influence of the different ranking criteria on 
the overall pathway score (Table 5.3). However, when we compared the engineered bio-
synthetic pathways reported in literature to our pathways, none of the reported pathways 
could be found in our results (Figure 5.6). Possible reasons for this might be that the neces-
sary reaction mechanisms were not present in the set of applied BNICE.ch reaction rules, 
that the pathway search could not find these pathways or that FBA or TFA considered these 
pathways as infeasible. Additional investigations will be required to settle this question. 
Nevertheless, our workflow could find interesting alternative routes for the production of 
1,4-BDO. 

Table 5.3: Overview on top pathways for the bioproduction of 1,4-BDO in E. coli, ranked by their overall score. 
The yield is calculated for glucose. 

Ran
k 

Precursor 
Path-
way 
length 

1 / 
Path-
way 
length 

Known 
reac-
tion 
score* 

Mean 
BridgI
T 
score 

Max 
yield 
[mol/mo
l] 

Max 
yield 
[g/g] 

Aver-
age 
CAR 

Over-
all 
score 

1 
(S)-3-Methyl-2-oxopenta-
noic acid 5 0.2 0.2 0.670 0.435 0.218 0.69 2.195 

2 
(S)-3-Methyl-2-oxopenta-
noic acid 5 0.2 0.2 0.669 0.435 0.218 0.69 2.194 

3 
(S)-3-Methyl-2-oxopenta-
noic acid 5 0.2 0.2 0.637 0.435 0.218 0.72 2.192 

… 
(S)-3-Methyl-2-oxopenta-
noic acid         

11 (S)-Malate 5 0.2 0 0.632 0.535 0.268 0.73 2.097 

12 (S)-Malate 5 0.2 0 0.642 0.535 0.268 0.71 2.087 

13 (S)-Malate 5 0.2 0 0.616 0.535 0.268 0.73 2.081 

14 4-Hydroxybutanoic acid 3 0.333 0 0.733 0.448 0.244 0.56 2.074 

15 L-Aspartate 6 0.167 0 0.610 0.527 0.264 0.76 2.064 
*Number of known reactions / pathway length 
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Figure 5.6: Comparison of the three synthetic 1,4-BDO bioproduction pathways in E. coli with two of the top-
ranked pathways in this study. Protonation states and corresponding names of compounds originating from 
BNICE.ch are not corrected for pH 7. For example, 4-hydroxybutanoic acid corresponds to 4-hydroxybutyrate in 
standard biological conditions. 

Second, we examined the top-ranked pathways for bisabolene in E. coli (Table 5.4) an in 
yeast (Table 5.5). Since both organisms are capable of producing the immediate precursor 
of bisabolene, farnesyl diphosphate (FPP), it is not surprising that NICEpath finds the short-
est pathways from this metabolite in E. coli (Figure 5.7). In yeast, the top-ranking pathways 
start from 5-phosphomevalonate and mevalonate, both intermediates from the mevalo-
nate pathway active in yeast, and produce bisabolene from farnesyl phosphate. This is sur-
prising, since FPP is known to be present in yeast. A closer investigation revealed that the 
pathway from FPP to bisabolene has been found by NICEpath, but filtered out because the 
pathway was not thermodynamically feasible in the yeast GEM. A more detailed analysis of 
the thermodynamic properties of the yeast model will hopefully answer why the production 
from FPP was not considered feasible. 

Table 5.4: Top five pathways for bisabolene in E. coli. The yield is calculated for glucose. 

Rank Precursor Pathway 
length 

1 / Path-
way 
length 

Known 
reaction 
score* 

Mean 
BridgIT 
score 

Max yield 
[mol/ mol] 

Max 
yield 
[g/g] 

Aver-
age 
CAR 

Overall 
score 

1 FPP 1 1 0 1 0.285 0.323 0.51 2.795 

2 FPP 2 0.5 0.5 0.734 0.285 0.323 0.76 2.779 

3 FPP 3 0.333 0.333 0.954 0.285 0.323 0.65 2.556 

4 FPP 3 0.333 0.333 0.954 0.283 0.321 0.65 2.554 

5 FPP 3 0.333 0.333 0.871 0.285 0.323 0.63 2.453 

*Number of known reactions / pathway length. FPP: Farnesyl diphosphate 
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Table 5.5: Top five pathways for bisabolene in yeast. The yield is calculated for glucose. 

Rank Precursor 
Path-
way 
length 

1 / Path-
way 
length 

Known 
reaction 
score* 

Mean 
BridgIT 
score 

Max yield 
[mol/mol] 

Max 
yield 
[g/g] 

Aver-
age 
CAR 

Overall 
score 

1 5-PMev 3 0.333 0 0.930 0.250 0.284 0.55 2.063 

2 5-PMev 4 0.25 0 0.812 0.250 0.284 0.66 1.972 

3 5-PMev 5 0.2 0 0.889 0.250 0.284 0.57 1.909 

4 (R)-Mevalonate 4 0.25 0 0.899 0.250 0.284 0.50 1.899 

5 5-PMev 5 0.2 0 0.882 0.246 0.279 0.57 1.898 
*Number of known reactions / pathway length. 5-PMev: (R)-5-Phosphomevalonate 

 

Figure 5.7: Biosynthesis pathways for bisabolene in nature, and top-ranked pathways in E. coli and yeast. Ab-
breviations: Inorganic phosphate (Pi) and diphosphate (PPi). 

5.2.5 Conclusion	

This study illustrates a state-of-the-art retrobiosynthetic approach for the discovery of new 
biosynthesis pathways for the production of chemicals of industrial interest. It should be 
mentioned at this point that further analyses can be applied to narrow down the space of 
feasible pathways, for example by minimizing the loss of carbon to CO2, by including kinetic 
constraints, or by biasing the ranking towards a specific engineering goal, for example to 
circumvent patents by excluding affected enzymes and pathway intermediates. Further-
more, it should be emphasized that this approach is unbiased regarding the type of bio-
chemistry considered and the selection of precursor compounds. The only human interven-
tion in our retrobiosynthesis workflow is, for the moment, the choice of the chassis organ-
ism. Future developments of the workflow will address this matter by proposing an auto-
mated screen that is able to select the best-suited host from a range of organisms.  
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5.3 Exploring	the	chemodiversity	around	the	noscapine	

pathway		

This subchapter is the result of a collaboration with the experimental lab of Professor Chris-
tina Smolke at the University of Stanford, which started in the context of a four-months ex-
change sponsored by the private company Firmenich. The subchapter is a condensed version 
of manuscript, to be submitted. Experimental results have been obtained by Dr. James 
Payne, and BridgIT results have been provided by Homa Mohammadi-Pehani. 

Plants synthesize a remarkable range of complex and valuable molecules, known as plant 
natural products (PNPs), commonly used as flavors, fragrances, and medicines. However, 
production of these molecules via extraction from plant biomass can be limited by slow 
growth, low yield, laborious extraction and purification procedures, and variability due to 
weather and climate change. Furthermore, while many modern medicines are natural prod-
ucts, a significantly higher fraction are derivatives of natural products71. The range of PNP 
derivatives accessible to researchers is typically limited to those that can be easily produced 
chemically from PNPs extracted from plants, while we can envision many more potential 
derivatives that could be made via regioselective enzymatic functionalization of PNPs and 
their intermediates. Microbial production of PNPs can potentially address these concerns, 
and additionally facilitates production of novel PNP derivatives by leveraging the genetic 
tractability of well-established microbial hosts to alter the heterologous biosynthetic path-
way. 

Since the landmark production of artemisinic acid, a precursor to the antimalarial artemis-
inin, in Saccharomyces cerevisiae in 200672, there has been a rapid increase in the size and 
complexity of pathways expressed heterologously.14 This has been demonstrated clearly by 
the progress made on the bioproduction of benzylisoquinoline alkaloids (BIAs), a class of 
PNPs of particular medicinal interest, with members providing analgesic, antitussive, and 
anticancer effects. In 2015, the de novo biosynthesis of the BIAs thebaine and hydrocodone 
in S. cerevisiae was reported73, the latter of which is 11 enzymatic steps from endogenous 
metabolites, and in 2018 the de novo biosynthesis was reported for the non-opioid BIA 
noscapine74, 16 enzymatic steps from endogenous metabolites. Halogenated derivatives of 
tyrosine were fed to the engineered yeast strains comprising the reconstructed noscapine 
biosynthetic pathway to produce halogenated derivatives of noscapine intermediates. 
However, the non-native substrates were not tolerated as well as the native substrates of 
the pathway enzymes, and as such derivatives of only early intermediates in the pathway 
were produced. Accessing derivatives of later pathway intermediates with a feeding strat-
egy will thus require engineering of key pathway enzymes to accommodate the new sub-
strates or feeding of derivatives of later intermediates, which are of increasing chemical 
complexity and often not commercially available. 

An alternative approach to produce derivatives of PNPs and their intermediates would be 
to integrate additional enzymes into microbes expressing heterologous PNP biosynthetic 
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pathways. Enzymes that are able to accept and functionalize intermediates or products 
along a PNP pathway would thus produce novel products in vivo from the natural precur-
sors. However, producing new-to-nature compounds necessarily entails the use of enzymes 
for other than their natural function, and in most cases an enzyme will not be known a priori 
with the desired non-native function. Given the wealth of enzymatic knowledge that has 
been accumulated, a computational method to predict enzymes that may catalyze a desired 
transformation will greatly expedite the development of biosynthetic pathways engineered 
to produce new-to-nature products. 

Here, we develop a computational workflow to identify potential derivatives of intermedi-
ates of a given biosynthetic pathway and subsequently predict enzyme candidates that may 
carry out the desired transformation(s) (Figure 5.8). In contrast to previously reported retro-
biosynthesis studies, in which a predicted pathway to a given target is generated, our work-
flow begins with a set of starting compounds (i.e., the intermediates of a heterologous bio-
synthetic pathway) and determines a suite of novel target compounds and associated path-
ways that can be generated. The method expands the chemical space around a pathway of 
interest using BNICE.ch to create a map of all compounds accessible with known biosyn-
thetic chemistries. As the chemical space is large for even a pathway of modest complexity, 
we implemented a filtering strategy by ranking the full set of potential compounds by the 
number of PubMed and patent citations reported to prioritize compounds that have been 
previously explored for their biomedical potential. Other ranking algorithms can readily be 
employed in the workflow, and compounds that have not appeared in previous reports 
could be prioritized for their potential novelty. The method then identifies enzymes capable 
of carrying out the desired transformations on the prioritized set of compounds using the 
enzyme prediction tool BridgIT. Finally, the top predicted enzyme candidates are experi-
mentally characterized to validate those capable of producing the target molecule. 

 

Figure 5.8: Overall workflow. Left: Applied design-build-test cycle. Right: Computational workflow. Circles rep-
resent compounds, edges represent biotransformations. Green is used to designate known biological reactions 
and compounds, blue circles are compounds from the chemical space without specific biological annotation, 
and red circles show compounds selected for their popularity in scientific literature and in the patent landscape. 
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We applied the described workflow to the reconstructed noscapine biosynthetic pathway 
in yeast. Using the workflow, we narrowed our search to enzyme candidates capable of 
producing (S)-tetrahydropalmatine, a PNP found in plants of the genus Corydalis widely 
used in Chinese herbal medicine and not previously produced from heterologous BIA path-
ways. (S)-Tetrahydropalmatine has been shown to possess analgesic and anxiolytic effects 
and has shown promise as a potential treatment for opiate addiction75–77. After experi-
mental evaluation of the top six enzyme candidates in yeast strains engineered to produce 
the noscapine biosynthetic intermediate (S)-tetrahydrocolumbamine de novo, two enzymes 
were identified that enabled production of (S)-tetrahydropalmatine. In addition, one of the 
screened enzymes was shown to produce an N-methylated derivative of (S)-tetrahydro-
columbamine. To our knowledge, our work describes the first use of a computational work-
flow to produce a novel product from a heterologous biosynthetic pathway. As the number 
of reconstructed heterologous pathways for PNPs continues to increase, we anticipate that 
the described workflow can be used to produce many novel, chemically complex com-
pounds spanning diverse therapeutic activities. 

5.3.1 Computational	expansion	of	the	noscapine	pathway	

A biosynthetic pathway to a product of interest can potentially be employed to produce 
numerous derivative compounds by performing chemical transformations on the functional 
groups of the product and its intermediates. The more complex the molecule (and thus the 
more functional groups available for derivatization), the more intermediate compounds ex-
amined, and the more chemical transformations examined, the larger the number of deriv-
atives that can potentially be made. Furthermore, by iterating this procedure on the prod-
ucts of each chemical transformation, the potential space is further expanded; with each 
successive generation employed, the number of products increases exponentially. Prior to 
doing any experiments, the hypothetical space of pathway derivatives can be predicted us-
ing reaction prediction tools such as BNICE.ch.  

Here, we applied the BNICE.ch network generation on the noscapine pathway, starting from 
(S)-norcoclaurine, using 442 reaction rules. The portion of the noscapine pathway recon-
structed with BNICE.ch in this work involves a total of 17 metabolites connected by 17 re-
actions which are catalyzed by a total of 11 generalized reaction rules. We performed the 
BNICE.ch network generation starting from all 17 of these metabolites, and initially ex-
panded the pathway for four generations, allowing both known and novel reactions to be 
generated, as well as allowing all compounds known to any biological, bioactive, or chemical 
database. This initial expansion produced a network spanning 4,838 compounds and 17,597 
reactions (Table 5.6). Of these 17,597 reactions, 244 were known either in the KEGG data-
base or as a part of the noscapine pathway, meaning that each is known to be catalyzed by 
a well-characterized enzyme that is linked to a genetic sequence from at least one organism. 
Of the 4,838 compounds, 720 were classified as biological or bioactive, meaning they were 
found in a biological database or one of the bioactive databases ChEBI or CHEMBL. The re-
maining compounds are classified as chemical compounds, as information regarding them 
could only be found in PubChem. 
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Table 5.6: Overview on BNICE.ch network statistics 

 

As our analysis was focused on BIAs, we required at least one compound on each side of 
the reaction to have a minimal elemental composition of the minimal BIA, 1-benzylisoquin-
oline, which has 16 carbon atoms, 13 hydrogen atoms, and 1 nitrogen atom. The resultant 
BIA network spanned 1,518 compounds, of which 99 were known to biological or bioactive 
databases, and 7,527 reactions, of which 49 were known biological reactions. It was appar-
ent that our network was not uniform about the entire length of the noscapine biosynthetic 
pathway (Figure 5.9). The upstream portion of the network, nearest to (S)-norcoclaurine, is 
highly connected, whereas the network in the downstream portion closer to noscapine is 
less populated. This is likely due to the fact that the downstream intermediates in the path-
way and their derivatives are increasing in size and complexity, which makes it difficult to 
detect them experimentally and to characterize their structure. As a consequence, they are 
less likely to be represented in any biological and chemical database, and therefore not part 
of the predicted network despite their increased diversity in functional groups. 

Reactions Compounds

Raw BNICE.ch network Total 17597 4838
Biological / bioactive 244 720

Benzylisoquinoline alkaloid network Total 7527 1518
Biological / bioactive 49 99

Potential targets 1501
Potential targets with annotation (min 1 citation/patent) 545
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Figure 5.9: Visualization of the expanded biosynthesis network of the noscapine pathway. The nodes and edges 
drawn in red shows the original noscapine pathway. Around the original pathway, the predicted network of 
compounds (nodes) and reactions (edges) is visualized. The top 10 compounds in terms of popularity (total 
number of patents plus citations) are named and localized on the map. The color of the nodes shows in which 
iteration the compound has been generated in the network reconstruction process, which is also the number of 
reaction steps between the original pathway and the compound. The size of the nodes is proportional to the 
popularity. The molecular structure of the pathway precursor, norcoclaurine, and the final product, noscapine, 
are shown. The free graph visualization tool Gephi was used for network visualization78. 

5.3.2 Ranking	candidate	compounds	by	popularity	

When far more potential compounds are generated by BNICE.ch than can be reasonably 
experimentally evaluated, as was the case with our exploration of the space surrounding 
the noscapine pathway, it is necessary to rank the candidate compounds in some manner 
to guide experimental effort. Numerous ranking criteria could be employed, depending on 
what properties the desired compound(s) should possess79. For example, if searching for 
new drug candidates, Lipinski’s rule of five80 could be employed, prioritizing compounds of 
a given molecular mass, calculated partition coefficient, and/or number of hydrogen bond 
donors and acceptors. One could also prioritize the chemical novelty of the potential com-
pounds by prioritizing those that have never before been synthesized, in order to most ef-
fectively leverage the biosynthesis platform to manufacture molecules that could not be 
made chemically. 

We chose to rank the noscapine-derived compounds by “popularity”, a measure of the 
number of publications and patent annotations, in order to focus on compounds that could 
be applicable to the work of other researchers; the number of publications was derived 
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from both PubChem and PubMed, while the number of patent annotations was extracted 
from PubChem. We used the PUG-REST service to retrieve information on compounds from 
the PubChem website (https://pubchem.ncbi.nlm.nih.gov/)81 on the number of associated 
patents and citations. Complementary, we used the Entrez Programming Utilities (E-utili-
ties) API service to search the PubMed database for citations by compound name82. We 
then screened the 1,501 potential target compounds (1,518 satisfying the BIA requirement 
described above, minus the 17 compounds that are a part of the noscapine pathway) and 
found that 204 returned at least one PubMed reference, while 467 had at least one patent 
associated with them. In total, at least one annotation (citation or patent) was obtained for 
545 distinct compounds (Appendix Table A3). 

The most popular compound by total rank (the sum of the number of citations and patents) 
was papaverine, with 22,918 total annotations. The compounds bicuculline and berberine 
ranked second and third with 16,118 and 12,154 total annotations, respectively. Bicuculline 
was the most popular compound when ranked specifically by citations, with 13,209 PubMed 
citations, followed by papaverine with 7,947 and berberine with 5,403. Conversely, papa-
verine had the highest number of associated patents with 14,971, thus giving it the highest 
total annotations, followed by berberine with 6,751 patents and thebaine with 4,012 pa-
tents. The disparity in ranking between citations and patents observed with bicuculline po-
tentially reflects its research history. While bicuculline is widely employed in medical re-
search to mimic epilepsy in mice, and as such ranks first in number of citations, it is ranked 
fourth in patent count, possibly reflecting a relative lack of clinical applications. Instead of 
focusing on total annotations as we have done, the ranking could potentially be restricted 
to citations, to emphasize research interest, or patents, to emphasize commercial interest. 
All of the compounds with at least one annotation were considered as potential bioengi-
neering targets. 

5.3.3 Construction	of	biosynthetic	pathways	to	target	compounds	

While the application of a ranking algorithm to the potential compounds generated by 
BNICE.ch, whether it prioritizes popularity, novelty, drug-likeness, or some other property, 
will help to identify top candidate compounds, it will not necessarily prioritize those which 
can be feasibly produced experimentally. In order to avoid the laborious construction and 
evaluation of pathways that are unlikely to produce the compound of interest, it is helpful 
to apply additional computational filters to determine the best candidates for bioproduc-
tion. We chose to apply the three following criteria in order to determine a single compound 
to focus on: (i) the production pathways toward the target is feasible in terms of thermody-
namics and enzyme availability; (ii) the target compound is as close as possible to the origi-
nal pathway in order to minimize the number of enzymes that must be integrated for ex-
perimental validation; and (iii) the target molecule is a potential or confirmed pharmaceu-
tical. 

We first wanted to ensure the biological feasibility of the potential pathways to our target 
compounds. For the top 50 ranked potential target compounds, we enumerated all the 
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possible pathways connecting each target to intermediates in the noscapine pathway within 
a maximum of four reaction steps using NICEpath. Reactions known to have a high standard 
Gibbs free energy of reaction, i.e. reactions producing molecular oxygen or binding carbon 
dioxide to the substrate, as well as reactions that demethylate the substrate via S-adeno-
sylmethionine were not considered to avoid thermodynamic and catalytic bottlenecks. We 
found feasible pathways for 42 out of 50 targets, furnishing a total of 1,338 pathways (Table 
5.7). To assess the catalytic feasibility of the pathways, we predicted enzymes for each novel 
reaction step involved using BridgIT16. BridgIT calculates a reactive-site centric similarity 
score (BridgIT score) between the novel reaction and a reference database of known, well-
characterized reactions by comparing the molecular fingerprints on and around the reactive 
sites of the reactants. The output is a ranked list of candidate enzymes and associated sim-
ilarity scores that indicate the probability of the candidate enzyme to catalyze the novel 
reaction. We collected the best BridgIT hits of each reaction in the pathway and calculated 
the mean, thus providing an overall metric to describe the catalytic feasibility of the path-
ways. 

Interestingly, the known biosynthetic pathway for protopine and the proposed pathways 
for papaverine were both part of our solution space, which lends credence to our approach. 
Furthermore, our solution space suggests additional alternative pathways for the biosyn-
thesis of these compounds. All of our proposed pathways are available in a visualization 
online at https://lcsb-databases.epfl.ch/pathways/GraphList. 

We next wanted to ensure the target compound is as close to the original pathway as pos-
sible. Given the richness of our reaction network, we were able to restrict our search to 
compounds only one step away from a noscapine pathway intermediate and still have 15 
potential targets, each of them produced by a feasible reaction and associated with a 
ranked list of predicted, putative enzymes ( 
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Table 5.8). Among these compounds, (S)-tetrahydropalmatine was chosen for its high pop-
ularity score, its feasible biosynthetic pathway, and its reported medicinal interest. (S)-Tet-
rahydropalmatine is naturally found in plants from the genus Corydalis in the Papaveraceae 
family, and it is also produced by additional plants, e.g. Stephania rotunda, that are tradi-
tionally used in Chinese herbal medicine. (S)-Tetrahydropalmatine (synonymous with levo-
tetrahydropalmatine) has been widely used for its analgesic, anxiolytic, and sedative effects 
as an alternative to opiates and benzodiazepines, and furthermore has shown promise in 
treating opiate, cocaine, and methamphetamine addiction77. 
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Table 5.7: List of 50 most popular compounds in the generated network, based on number of associated patents 
and PubMed citations in the PubChem database. The compounds are ranked by the sum of the number of cita-
tions and patents. For each potential target, the number of feasible pathways as well as the noscapine pathway 
precursor are indicated. 

 

 

  

Rank Name # 
Citations

# 
Patents

Total 
(Citations + Patents)

# 
Pathways Precursor

1 Papaverine 7947 14971 22918 204 (S)-Reticuline

2 Bicuculline 13203 2915 16118 0

3 Berberine 5403 6751 12154 2 (S)-Canadine

4 Thebaine 532 4012 4544 12 (S)-Reticuline

5 Palmatine 892 548 1440 4 Tetrahydrocolumbamine

6 Tetrahydropalmatine 530 355 885 2 Tetrahydrocolumbamine

7 1-benzylisoquinoline 198 602 800 0

8 Coptisine 451 327 778 85 (S)-Scoulerine

9 Protopine 357 419 776 30 (S)-cis-N-Methylcanadine

10 alpha-Hydrastine 131 623 754 0

11 Jatrorrhizine 477 233 710 0

12 Laudanosine 228 283 511 10 (S)-Reticuline

13 Columbamine 131 235 366 1 Tetrahydrocolumbamine

14 Magnoflorine 204 158 362 6 (S)-Reticuline

15 Salutaridine 85 264 349 1 (S)-Reticuline

16 Norlaudanosoline 144 177 321 3 (S)-Norcoclaurine

17 Stepholidine 157 140 297 1 Tetrahydrocolumbamine

18 Allocryptopine 111 159 270 2 (S)-cis-N-Methylcanadine

19 Spinosine 3 262 262 2 3'-Hydroxy-N-methyl-(S)-coclaurine

20 Corydaline 67 117 184 4 Tetrahydrocolumbamine

21 Stylopine 56 116 172 12 (S)-Scoulerine

22 Chileninone 85 70 155 5 (S)-Scoulerine

23 Phellodendrine 42 111 153 3 (S)-Reticuline

24 Laudanidine 23 112 135 3 (S)-Reticuline

25 Cryptopine 28 103 131 420 (S)-Scoulerine

26 Epiberberine 128 0 128 64 (S)-Scoulerine

27 Isocorydine 74 53 127 24 (S)-Reticuline

28 Salutaridinol 30 86 116 2 (S)-Reticuline

29 Tetrahydrobenzylisoquinoline 36 78 114 0

30 Tetrahydropapaverine 21 89 110 129 (S)-Reticuline

31 1-[(4-methoxyphenyl)methyl]isoquinoline 44 30 74 0

32 Codamine 13 61 74 2 (S)-Reticuline

33 Norreticuline 33 40 73 3 (S)-Reticuline

34 Dehydrocorydaline 66 6 72 12 Tetrahydrocolumbamine

35 Berlambine 17 53 70 8 (S)-Canadine

36 Corydine 24 34 58 24 (S)-Reticuline

37 Demethyleneberberine 23 34 57 2 Tetrahydrocolumbamine

38 Corytuberine 18 39 57 1 (S)-Reticuline

39 Lambertine 30 23 53 6 (S)-Canadine

40 Xylopinine 16 37 53 43 (S)-Reticuline

41 Corypalmine 11 42 53 0

42 (1R)-1-(3-Hydroxy-4-methoxybenzyl)-6-methoxy-1,2,3,4-tetrahydroisoquinoline 0 45 45 0

43 Armepavine 28 15 43 2 (S)-N-Methylcoclaurine

44 1,2-Dehydroreticuline 3 40 43 1 (S)-Reticuline

45 1-benzyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline 0 41 41 0

46 Nandinine 1 39 40 1 (S)-Scoulerine

47 N-(5-oxo-4,4-dipropyl-3-oxolanyl)-4-(trifluoromethyl)benzenesulfonamide 3 35 38 0

48 6,7-dimethoxy-1-[(4-methoxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline 0 38 38 18 (S)-Coclaurine

49 4-(1-isoquinolylmethyl)phenol 6 29 35 0

50 Capaurine 6 29 35 4 Tetrahydrocolumbamine
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Table 5.8: List of compounds ordered by descending popularity that are one reaction step away from the 
noscapine pathway. 

 

5.3.4 Selection	of	candidate	enzymes	for	tetrahydropalmatine	bi-

oproduction	

Once a compound of interest is chosen, there still remains the task of selecting the enzyme 
or enzymes that are most likely to carry out the desired transformation. While at this point 
only a single strain is required to evaluate each enzyme candidate, each of which can be 
synthesized, cloned, and expressed on a plasmid relatively quickly and inexpensively, there 
are initially an unwieldy number of potential enzyme candidates to evaluate. Since at this 
step an enzyme candidate is simply any enzyme that is known to carry out the same trans-
formation – to use our example of the desired conversion of (S)-tetrahydrocolumbamine to 
(S)-tetrahydropalmatine, any enzyme which performs an O-methylation, regardless of the 
substrate on which it performs it, is a candidate – the list of candidates can be hundreds or 
thousands of enzymes long. It is thus useful to perform one last computational ranking be-
fore experimental evaluation, this time to determine which of the candidate enzymes are 
most likely to perform the desired transformation. 

We sought to do this by determining which enzymes had native substrates that most closely 
resembled our desired substrate, (S)-tetrahydrocolumbamine, by closely analyzing the 
BridgIT results obtained in the previous step. (S)-Tetrahydropalmatine can be produced in 
one step via the methylation of the 2-hydroxyl of the noscapine intermediate (S)-tetrahy-
drocolumbamine with the concomitant conversion of S-adenosylmethionine to S-adeno-
sylhomocysteine (Figure 5.10). While this reaction has been reported as a side reaction of 
some enzymes,83 it is not the native function of those enzymes. As such the KEGG database 
contained the reaction but without any associated gene sequence, as it mainly focuses on 
native enzyme functions, and our BNICE.ch search compared its predictions only to the na-
tive activity of enzymes reported in KEGG. Hence, BridgIT analysis suggested a ranked list of 

Popularity 
rank Name Best BridgIT 

score Predicted EC

3 Berberine 1.00 1.3.3.8
6 Tetrahydropalmatine 1.00 2.1.1.89

13 Columbamine 0.99 1.3.3.8
15 Salutaridine 1.00 1.14.19.67
16 Norlaudanosoline 0.99 1.14.14.102
17 Stepholidine 0.78 1.14.13.31
18 Allocryptopine 0.32 1.14.13.239
24 Laudanidine 1.00 2.1.1.291
31 Codamine 0.79 2.1.1.121

33 Norreticuline 0.09 1.5.3.10
37 Corytuberine 0.56 1.14.19.67

39 Lambertine 0.45 1.3.1.29
43 Armepavine 1.00 2.1.1.291

43 1,2-Dehydroreticuline 1.00 1.5.1.27
46 Nandinine 1.00 1.14.19.73
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enzymes to catalyze this reaction, based on the structural similarity of the (S)-tetrahydro-
columbamine methylation to the native reactions of those enzymes (Table 5.9). 

 

Figure 5.10: Metabolic pathway to (S)-tetrahydropalmatine from (S)- norcoclaurine in yeast. For each reaction, 
the enzyme identifier and the EC number are indicated. In addition, the similarity of each reaction with respect 
to the proposed biosynthetic step for tetrahydropalmatine is indicated with the BridgIT score (bold red) ob-
tained by BridgIT analysis. 

Perhaps unsurprisingly, the methyltransferases in the noscapine pathway were found to be 
high ranking candidates for catalyzing the predicted reaction, as their native substrates are 
necessarily quite similar in structure. Ranked fourth and fifth, both with BridgIT scores of 
0.75, were the enzymes 6OMT (2.1.1.128) and 4’OMT (2.1.1.116), which O-methylate the 
noscapine pathway intermediates (S)-norcoclaurine and (S)-3'-Hydroxy-N-methylcoclau-
rine, respectively. The enzyme ranked 15th with a BridgIT score of 0.64 was found to be 
S9OMT (2.1.1.117), one example of which is yPsS9OMT, which was present in our pathway 
to catalyze the step immediately upstream of our desired transformation. These high 
BridgIT scores indicated a potential promiscuous activity of these OMTs on (S)-tetrahydro-
columbamine. On the other hand, the first native enzyme from S. cerevisiae, the poly-
prenyldihydroxybenzoate methyltransferase (2.1.1.114), was ranked 24th with a score of 
0.59, indicating that there would likely be no interference from native yeast enzymes with 
the pathway.  

The candidate enzyme with the highest BridgIT score was found to be the tetrahydrocolum-
bamine 2-O-methyltransferase (2.1.1.89) with the maximum possible score of 1.00, indicat-
ing identity of query and proposed reaction. However, it turned out to have no sequence 
assigned in our reference database. One of the highest ranked enzymes was the colum-
bamine O-methyltransferase from Coptis japonica (2.1.1.118; referred to here as CjCo-
lOMT), which converts the compound (S)-columbamine to (S)-palmatine. (S)-Columbamine 
is very similar in structure to (S)-tetrahydrocolumbamine, differing only in that the tetrahy-
droisoquinoline moiety of (S)-tetrahydrocolumbamine has effectively undergone a four-
electron oxidation to yield the quinoline moiety of (S)-columbamine, and as such this was a 
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very promising candidate for our desired transformation, with a BridgIT score of 0.76. This 
enzyme had previously been tested in vitro and found to possess promiscuous activity on 
(S)-tetrahydrocolumbamine as well. This activity, however, was not linked to any known 
enzyme in KEGG.  

5.3.5 In	vitro	and	in	vivo	bioproduction	of	tetrahydropalmatine	

The workflow described in the previous sections served to create a ranked list of enzymes 
likely to produce the desired product of interest. Many researchers utilizing this workflow 
might only screen a single-digit number of enzymes to find out that suits their needs; we 
thus decided to focus our efforts on a similarly small selection in order to mirror future 
users’ experiences. While the primary concern is to validate that the candidate enzyme suc-
cessfully produces the product of interest in vivo when integrated into the parent biosyn-
thetic pathway, further characterization of the candidate enzyme is often beneficial. This is 
particularly true when high titers of the desired product are required, as enzyme engineer-
ing may need to be performed on the candidate enzyme to increase its activity, in particular 
in case the substrate is non-native. 

In order to survey an experimentally manageable but still diverse set of enzymes, six of the 
top 25 hits from BridgIT were chosen for experimental validation. These enzymes were se-
lected due to the broad range of native substrates they possess as well as their diverse par-
ent organisms, with hits screened that are of plant, bacterial, and animal origin (Table 5.9). 
These six candidates – CjColOMT, ObEugOMT, AtCafOMT, HsSerOMT, SaPurOMT, and LjFla-
OMT – were expressed off of plasmids in the yeast strain YCS1171, a de novo (S)-reticuline 
biosynthetic strain which synthesizes (S)-reticuline from fed sugars74. The predicted OMTs 
were each cloned into two S. cerevisiae expression vectors, one plasmid containing a high-
copy number origin of replication, the other containing a low-copy number. One of the 
OMTs, ObEugOMT, failed to clone into either vector, while one other, HsSerOMT, cloned 
into only the low-copy construct. The other nine constructs were all cloned successfully, 
verified by sequencing, and used to transform the de novo THCB producing strain. In order 
to detect the (S)-tetrahydropalmatine potentially produced by the in silico predicted en-
zymes, a commercial standard of (S)-tetrahydropalmatine was purchased and first used to 
develop an optimized LC-MS/MS method. After three days’ growth in defined media, the 
strains were analyzed for (S)-tetrahydropalmatine production. 

The highest ranked candidate, CjColOMT, was found to produce a statistically significant 
increase in the amount of (S)-tetrahydropalmatine produced (Figure 5.11). Remarkably, we 
also observed the production of a lower amount of (S)-tetrahydropalmatine in every strain 
tested. Our first suspicion was that one or more of the other methyltransferases present in 
the (S)-tetrahydrocolumbamine pathway was responsible for the production of the back-
ground level of (S)-tetrahydropalmatine; the native substrates of these enzymes are pre-
cursors of (S)-tetrahydrocolumbamine that are very similar in structure to (S)-tetrahydro-
columbamine, and thus it is possible that they may be able to accommodate the chemically 
related (S)-tetrahydrocolumbamine as well. In fact, three of the methyltransferases in the 



 Applications: Predicting biotransformations with cheminformatic tools 

 
148 

pathway – S9OMT, which acts natively on (S)-scoulerine, 6OMT, which acts on norcoclau-
rine, and 4’OMT, which acts on 6-methyl-(S)-laudanosoline – were assigned high scores by 
the BridgIT analysis for their potential activity on (S)-tetrahydrocolumbamine. 

Table 5.9: Reaction similarities between the predicted tetrahydropalmatine-producing reaction and its top 25 
most similar reactions from the BridgIT reference database. 

 

 

 

Figure 5.11: Tetrahydropalmatine production in yeast transformed with different OMT-encoding plasmids after 
5 days growth. +pCS2812: low-copy number plasmid, +pC2952: high-copy number plasmid. MRM: Multiple Re-
action Monitoring counts. 

 

Rank
BridgIT 
score

Predicted 
EC

Enzyme Native substrate Type of substrate Native organism Activity on THCB

1 1.00 2.1.1.89 Predicted reaction1

2 0.98 2.1.1.291 Ps7OMT (S)-Reticuline BIA P. somniferum Not tested

3 0.76 2.1.1.118 CjColOMT2 Columbamine BIA Coptis japonica Active

4 0.75 2.1.1.128 Ps6OMT (S)-Norcoclaurine BIA P. somniferum Already in pathway

5 0.75 2.1.1.116 Ps4’OMT 3’-Hydroxy-N-methyl-(S)-coclaurine BIA P. somniferum Already in pathway

6 0.73 2.1.1.121 No enzyme available

7 0.72 2.1.1.146 ObEugOMT Isoeugenol Phenylpropanoid Ocimum basilicum (Bail) No activity

8 0.72 2.1.1.323 No enzyme available

9 0.69 2.1.1.330 No enzyme available

10 0.69 2.1.1.38 SaPurOMT O-Demethylpuromycin Antibiotic Streptomyces alboniger No activity

11 0.68 2.1.1.6 CatOMT Catechol Phenol Diverse Not tested

12 0.66 2.1.1.212 LjFlaOMT 2,4’,7-Trihydroxyisoflavanone Flavanonoid Lotus japonica No activity

13 0.65 2.1.1.336 No enzyme available

14 0.64 2.1.1.4 HsSerOMT N-Acetylserotonin Neurotransmitter Homo sapiens (Human) No activity

15 0.64 2.1.1.117 yPsS9OMT3 (S)-Scoulerine BIA P. somniferum Already in pathway, active

16 0.63 2.1.1.231 Fla4’OMT 4’-Hydroxyflavone Flavonoid Glycine max (Soybean) Not tested

17 0.63 2.1.1.68 Caf3OMT (E)-Caffeate Phenylpropanoid Diverse Not tested

18 0.62 2.1.1.104 AtCafOMT Caffeoyl-CoA Phenylpropanoid Arabidopsis thaliana No activity

19 0.61 2.1.1.150 Caf3OMT (E)-Caffeate Phenylpropanoid Medicago sativa (Alfalfa) Not tested

20 0.61 2.1.1.222 UbOMT 3-Demethylubiquinol Quinone Diverse bacteria Not tested

21 0.61 2.1.1.108 No enzyme available

22 0.60 2.1.1.279 AnOMT trans-Anol Phenol Pimpinella anisum (Anise) Not tested

23 0.60 2.1.1.94 Tab16OMT 16-Hydroxytabersonine Terpene indole alkaloid Catharanthus roseus Not tested

24 0.59 2.1.1.114 3,4-Dihydroxy-5-all-trans-polyprenylbenzoate Diverse, incl. S. cerevisiae Natively present yeast

25 0.59 2.1.1.25 No enzyme available



 Applications: Predicting biotransformations with cheminformatic tools 

 
149 

In addition to S9OMT, 6OMT, and 4’OMT, there is one additional methyltransferase present 
in the (S)-tetrahydrocolumbamine pathway: CNMT, which acts natively on 6-methyl-(S)-nor-
coclaurine. In the pathway we originally constructed, the specific isoforms of these four 
methyltransferases were all derived from Papaver somniferum, and thus were specifically 
named Ps6OMT, PsCNMT, Ps4’OMT, and yPsS9OMT (the y in the last enzyme denoting that 
it had been codon optimized for S. cerevisiae). When attempting to purify these enzymes 
from E. coli, conditions were found that furnished Ps6OMT, PsCNMT, and yPsS9OMT, as 
well as CjColOMT, but no conditions could be found that afforded soluble Ps4’OMT. Accord-
ingly, we then looked to alternative isoforms of 4’OMT from other species, and chose three 
– Cj4’OMT, Ec4’OMT, and Tf4’OMT – of which we integrated five variants (both E, coli codon 
optimized and S. cerevisiae codon optimized versions of Cj4’OMT and Ec4’OMT were used) 
into the de novo (S)-tetrahydrocolumbamine strain to replace the copies of Ps4’OMT pre-
sent. All five of these strains still produced high titers of (S)-tetrahydrocolumbamine, and 
all five still displayed increased production of (S)-tetrahydropalmatine when CjColOMT was 
expressed on a plasmid. 

All five of the alternative 4’OMTs were found to express well in E. coli and were purified for 
in vitro analysis. The substrate for the reaction, (S)-tetrahydrocolumbamine, was generated 
from a large-scale in vitro bioconversion of (S)-scoulerine, which is commercially available, 
with a variant of TfS9OMT. In vitro bioconversions of (S)-tetrahydrocolumbamine were then 
performed with purified stocks of either Ps6OMT, PsCNMT, one of the five 4’OMTs, 
yPsS9OMT, and CjColOMT. These reactions showed no in vitro production of (S)-tetrahy-
dropalmatine by Ps6OMT, PsCNMT, or any of the 4’OMTs, and reactions on their native 
substrates confirmed that the purified enzymes obtained are all active, but simply possess 
no activity on the non-native substrate (S)-tetrahydrocolumbamine (Figure 5.12A). It is 
worth noting that PsCNMT did accept (S)-tetrahydrocolumbamine as a substrate, but the 
resultant product was presumably the N-methylated derivative, as no (S)-tetrahydropal-
matine production was observed with PsCNMT (Figure 5.12B). In contrast, a small amount 
of (S)-tetrahydropalmatine was observed to be produced by yPsS9OMT, while a significantly 
larger amount was produced by CjColOMT. The fact that these two enzymes were highly 
ranked candidates produced by our computational workflow, with CjColOMT having the 
second highest BridgIT score of all enzymes in the reference reaction database, validates 
our workflow for predicting new products accessible from a biosynthetic pathway and 
providing actionable, effective enzyme suggestions. From one perspective, the success of 
these two enzymes may seem unsurprising; both perform similar reactions on chemically 
very similar substrates. In fact, both of these enzymes have been reported to have promis-
cuous activity toward (S)-tetrahydrocolumbamine in vitro84 but again, non-native enzyme 
activities were not initially considered by ourselves, BNICE.ch, or BridgIT when making pre-
dictions. In cases where such non-native activity data are available, they may be buried in 
the literature and not a part of an easily searchable database, and thus might be overlooked 
by or unavailable to bioengineers; in these cases, our workflow can rapidly provide predic-
tions which recapitulate these data. And in cases where such data are not known, our 
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workflow has demonstrated that it is capable of inferring likely off-target activity from only 
native enzyme data.  

 

Figure 5.12: (A) Screening methyltransferases in tetrahydropalmatine pathway for enzymatic activity on (S)-tetrahydrocolum-
bamine. (B) Quantification of enzyme activity, comparing CjOMT, Ps6OMT, yPsS9OMT, CNMT. The product of CNMT is not 
tetrahydropalmatine, but presumably the N-methylated product of tetrahydrocolumbamine (structure shown). EIC: Extracted 
Ion Counts. 

5.3.6 Conclusion	

We developed a new pipeline to specifically explore the biochemical surroundings of bio-
synthetic pathways for PNPs and we successfully predicted and implemented the produc-
tion of a pharmaceutical molecule, (S)-tetrahydropalmatine, in a host organism suited for 
industrial production. We further confirmed our approach by recovering known biosynthe-
sis pathways for papaverine and protopine, and we also suggest new biosynthetic routes 
for these and other compounds of potential pharmaceutical value. Our workflow was able 
to predict promiscuous enzymatic activities of two of the top candidates, CjColOMT and 
yPsS9OMT, and we confirmed the activity of these enzymes on (S)-tetrahydrocolumbamine 
in vitro. We also discovered the N-methylating activity of PsCNMT on tetrahydrocolum-
bamine, leading to the production of N-methylated THCB. Our workflow can be applied to 
any other class of natural products to (i) expand the bioproduction scope of existing pro-
ducer strains (for example for opioids73, flavonoids85,86, cannabinoids87, carotenoids88) or (ii) 
to generate hypotheses about the presence of potential side-products of biosynthetic path-
ways that have previously gone undetected. The biochemical network presented in this 
work is a collection of bioengineering opportunities for scientists aiming to produce one or 
several of the detected metabolites in the vicinity of noscapine. We believe that our ap-
proach has the power to direct research towards new discoveries and to drive engineering 
efforts towards the bioproduction of valuable chemicals and pharmaceuticals. 
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5.4 Predicting	potential	biodegradation	of	xenobiotics	

The work presented in this Subchapter is the result of a master project accomplished by Ba-
sile Laurent, supervised by the author of the thesis. The purpose of this Subchapter is illus-
trative since the main work has been presented as a master thesis. 

Xenobiotics are man-made chemicals that do not naturally occur in organisms, and for many 
of them nature does not have the enzymatic mechanisms in place to break them down into 
the basic building blocks of life. Anthropogenic chemicals can be a danger to humans and 
to the ecosystem in general if they are toxic to living organisms, or if they are released in 
large amounts into nature, as it is the case for PET. A broader definition of xenobiotics also 
includes naturally occurring compounds (e.g., antibiotics) that are released into the envi-
ronment in big quantities where they threaten the natural ecosystem.  

Microorganisms can be harnessed to degrade pollutants in wastewater treatment, or in the 
bioremediation of chemically polluted sites. However, for many xenobiotics there is cur-
rently no biological strategy to remove them from the environment. To amend this, com-
putational tools have been developed in the past to systematically study biodegradation 
pathways, and to predict potential biodegradation routes. One important tool is enviPath50, 
an online resource that collects biodegradation pathways and provides predictions based 
on generalized reaction rules specific to biodegradation reaction mechanisms. BNICE.ch has 
also been applied in the past to predict biodegradation pathways for 4-chlorobiphenyl, phe-
nanthrene, γ-hexachlorocyclohexane, and 1,2,4-trichlorobenzene89. More general, the ap-
plications of systems biology to the biodegradation and bioremediation problem have been 
comprehensively reviewed by de Lorenzo in 2008, and Dvořák et al. in 201790,91. One of the 
discussed ideas is the application of genetic engineering to create strains capable of degrad-
ing problematic pollutants92.  

However, there are several problematic aspects in the application of genetically modified 
organisms in bioremediation and wastewater treatment93. First of all, the release of genet-
ically modified organisms into the environment obstacle can be problematic because of 
safety concerns and regulations. Second, engineered organisms are generally more vulner-
able than their wild-type counterparts, which can be due to an increased plasmid burden, 
or to a suboptimal redistribution of metabolic resources that decreases the overall robust-
ness of the host. To bypass active genetic engineering of microbes, we hypothesized that 
there might exist organisms in nature that already have a native capacity to degrade a given 
pollutant. These organisms would use a given compound as a carbon or energy source, or 
they would have the capability to reroute their metabolism to degrade it. Finally, some or-
ganisms might have the right composition of enzymes that would evolve to degrade the 
pollutant under the pressure of natural selection in the presence of the compound. Unfor-
tunately, many microorganisms are not culturable and therefore difficult to study experi-
mentally. Advances in genome sequencing, however, made available the genomes of many 
microorganisms found in the environment. This wealth of genetic information can be mined 
for organisms that have the metabolic capabilities to degrade xenobiotics94. 
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Here, we present a workflow to computationally predict biosynthesis pathways for a given 
xenobiotic and to find the enzymatically best-suited organisms from available genomics da-
tabases. To do this, we find putative enzymes for each reaction step in the predicted bio-
degradation pathway, and we mine the database UniProtKB95 for organisms that have all 
the necessary enzymes to perform these functions. UniProtKB is a community-driven data-
base of functionally annotated protein sequences collected from whole-genome sequenc-
ing data, as well as from specific experimental evidence. It is divided into the high-quality 
database Swiss-Prot containing manually annotated protein sequences, and TrEMBL, con-
taining automatically annotated proteins based on sequence homology. By taking ad-
vantage of the vast collection of data in UniProtKB, we tried to find organisms with the nec-
essary genes to perform the desired reactions. Since many of the predicted reaction steps 
predicted by BNICE.ch are unknown, the enzymes assigned might not be known to perform 
the desired functions. In this case, we rely on the metabolic plasticity of prokaryotes to 
adapt to feed on the new, xenobiotic carbon sources96. 

5.4.1 Predictive	biodegradation	workflow	

In this study, we wanted to assess if we can adapt the previously described retrobiosynthe-
sis tools to determine the biodegradability of xenobiotics. The proposed workflow consists 
of four steps (Figure 5.13): First, a hypothetical reaction network is generated around the 
xenobiotic compound of interest using BNICE.ch, only allowing known chemicals in the net-
work. Second, we search for potential biodegradation routes using NICEpath. To ensure that 
the end points of the pathways (i.e., the biodegradation products) are known metabolites 
that can be readily converted by the majority of organisms, we search for pathways that 
connect to metabolites present in E. coli. The reason for this choice is the completeness of 
the E. coli genome-scale model, and the absence of specific biodegradation capabilities and 
extended secondary metabolism that would bias our results. Also, since we knew in advance 
that most of the organisms identified from UniProtKB would not have a genome-scale 
model available for stoichiometric and thermodynamic analysis, we decided to implement 
thermodynamic constraints (i.e., removing O2-producing/CO2-fixing reactions) directly at 
the pathway search level. In a third step, we assigned putative enzymes and corresponding 
similarity scores to each reaction step in the pathway using BridgIT. For each identified en-
zyme with a BridgIT score higher than 0.3 (recommended threshold), we retrieved all the 
prokaryotes from UniProtKB that had a gene with a corresponding EC annotation. The Uni-
ProtKB entries were classified into “reviewed” if they were part of the Swiss-Prot database, 
and “unreviewed” if they were part of TrEMBL. Finally, we analyzed each of the predicted 
pathways to see if we could find organisms that have potentially catalyzing enzyme for each 
reaction step in the pathway. If such an organism could be found, we assigned a pathway 
score to the combination of pathway and organism that reflects the BridgIT scores, as well 
as the conserved atom ratios (CARs) of each reaction step involved. More precisely, each 
reaction was assigned a reaction score which consist of one third of the CAR, plus two thirds 
of the BridgIT score. The overall pathway score was calculated as the geometric mean of 
reaction scores, which is the product of reaction scores in the pathway to the power of one 
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over the length of the pathway. The pathway score allowed us to obtained a ranked list of 
organisms that might be able to degrade the compound under study. 

 

Figure 5.13: Workflow to assess the biodegradability of xenobiotics and to identify organisms with the poten-
tial capacity to degrade the xenobiotic of interest. 

5.4.2 Evaluation	of	biodegradation	for	six	xenobiotics	

To evaluate the utility of our approach, we applied the workflow on six xenobiotics of dif-
ferent sources and belonging to different chemical classes (Figure 5.14A). The first com-
pound, toluene, has been chosen because it is known to be degraded by several bacteria 
and fungi, and could therefore be used to validate our workflow. We also analyzed a poly-
ethylene terephthalate (PET) dimer, which is a major threat to marine life. Recently, scien-
tists discovered that the bacterium Ideonella sakaiensis could degrade PET thanks to PET-
hydrolyzing enzyme, named PETase97. The two antibiotics lefamulin and erythromycin were 
chosen for their chemical complexity, especially the presence of big carbon cycles. The deg-
radation of antibiotics is of major concern in wastewater treatment, since their release into 
the environment encourages the emergence and spread of resistance mechanisms against 
these compounds. The list of compounds is completed by the two fungicides isopyrazam 
and prothioconazole, both environmental pollutants that accumulate in soil and water. The 
workflow was applied to each of these compounds, and the outcome is discussed in the 
following.  
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Figure 5.14: (A) Compounds chosen as input for the proposed biodegradation workflow. (B) Network generation 
around six xenobiotics using BNICE.ch. The number of compounds is indicated after each iteration in the net-
work generation process. Compounds colored in blue map to the left scale, and compounds colored in green 
map to the right scale. 

 

We were able to generate reaction networks around all of the six compounds within the 
known compound space (Figure 5.14B), and we observed two types of networks: (i) net-
works facing a combinatorial explosion of compounds, and (ii) networks reaching a plateau 
and converge after some generations. The two antibiotics belonged to the second category, 
while the other four compounds belonged to the first category. For all of the input com-
pounds, we retrieved pathways connecting to E. coli metabolisms, annotated the predicted 
reactions with enzymes using BridgIT, and finally collected the organisms known to express 
these enzymes. Preliminary results suggest that we could identify organisms for toluene, 
PET and isopyrazam. For the two antibiotics lefamulin and erythromycin and for prothio-
conazole however, no organisms could be found. We will first discuss the preliminary results 
obtained for toluene, PET an isopyrazam, and then discuss the bottlenecks we identified in 
degradation of the three remaining compounds. 

Among the top ten organisms for toluene, we could find Pseudomonas fluorescens and 
Klebsiella pneumoniae, which had pathway scores of 0.56 and were associated with toluene 
degradation in literature98,99. Another organism found in the top ten, Mycolicibacterium 
chlorophenolicum (also known as Mycobacterium chlorophenolicum) with a pathway score 
of 0.57, is known to degrade the structurally similar compound chlorophenol100. For two 
other identified organism, Cedecea lapagei and Microbacterium trichothecenolyticum with 
pathway scores of 0.58 of 0.57, respectively, no evidence for toluene degradation could be 
found in the literature. For the degradation of PET, the preliminary results suggest Pseudo-
monas aeruginosa, Pseudomonas fluorescens, Pseudomonas putida, Achromobacter 
piechaudii ATCC 43553, and Cupriavidus oxalaticus. Interestingly, the three Pseudomonas 
species have been reported to degrade the synthetic polymers nylon, polyester and polyu-
rethane101,102. The known PET-degrader Ideonella sakaiensis, however, has not been identi-
fied so far in our results, even though its genome is available and annotated in UniProtKB. 
For the degradation of the fungicide isopyrazam, preliminary results suggest Cupriavidus 
taiwanensis with a pathway score of 0.59. This organism has been reported to degrade the 
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pesticide chlorpyrifos103. The presented examples taken from our preliminary results show 
that our workflow has indeed the capacity to identify organisms capable of biodegradation 
for a chemical compound of interest, only given its molecular structure. Based on these first 
insights, we will be able to fine-tune the parameters used in the workflow, and to further 
investigate on the obtained results. 

For the two antibiotics and for prothioconazole, no organisms could be identified. The net-
work expansion of both lefamulin and erythromycin converged after six and ten genera-
tions, respectively. Closer investigations revealed that both compounds could be broken 
down into smaller structures, but that the main carbon rings (i.e., cyclooctane ring for 
lefamulin, and erythronolide B for erythromycin) would not undergo further reactions in 
BNICE.ch. Effectively, none of their potential degradation products was part of any chemical 
database. Hence, we will need to consider novel compounds in the BNICE.ch network gen-
eration to further study the degradation of these substructures. For prothioconazole, all of 
the predicted pathways included a biotransformation step for which no catalyzing enzyme 
could be found with a BridgIT score above the set threshold of 0.3. Missing an enzyme for 
this crucial step, no organisms could be identified. Further investigation into this compound 
will include allowing novel compounds in the network generation, extended pathway search 
to find alternative pathways, and the reconsideration of our biochemical reaction rules for 
biodegradation purpose. 

5.4.3 Conclusions	

We demonstrated that our workflow has the potential to identify organisms with xenobi-
otic-degrading capacities, given only the molecular structure of the pollutant. Even though 
we could not find organisms for all of the compounds studied, we were able to identify 
potential biochemical bottlenecks in the degradation of these compounds. The presented 
work marks a first step towards the integration of sequence data into a BNICE.ch-based 
workflow. However, it still has potential for optimization, in particular regarding the scoring 
of pathways and organisms. Furthermore, finding branched pathways instead of linear 
pathways would help us to trace all of the potential degradation products, especially in the 
case of big, complex compounds such as antibiotics. Finally, our approach can be extended 
to eukaryotes to identify pollutant degrading fungi and plants, the latter especially for soil 
bioremediation. We believe that that mining the wealth of available sequencing data is a 
promising alternative to identify organisms with desired metabolic functions, and to avoid 
the use of genetic engineering for applications where it is not easily applicable. 
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Chapter	6 Conclusions	 and	 perspec-
tives	
The purpose of this final chapter is to summarize the presented achievements, and to dis-
cuss future perspectives regarding the development of computational methods to model, 
predict and mine metabolism. In particular, we will emphasize the opportunities provided 
by the presented methods to better characterize and design metabolism for metabolic en-
gineering, drug discovery and synthetic biology applications in the future.  

6.1 Conclusions	
As a whole, this thesis explores different aspects and applications of the computational rep-
resentation of enzymatic catalysis. The mechanistic knowledge of enzymatic action enabled 
us to draw an atom-level representation of metabolism, and thanks to the promiscuous 
nature of the encoded reaction mechanisms, we could explore the potential biochemical 
reaction space in different biological contexts. In the following paragraphs, we will recapit-
ulate the major learnings from each aspect examined in the presented work. 

To begin with, we employed the reaction rules representing enzymatic reaction mecha-
nisms to map atoms throughout metabolic reactions, pathways and networks (Chapter 2). 
The atom-mapped networks could then be used to simulate 13C tracer experiments in E. 
coli, by integrating carbon-labeled isotopomer networks into a constraint-based modeling 
approach. Although this novel framework will need further testing, the preliminary results 
are promising. Thanks to the systematic reduction and organization of the metabolic model 
used for the in silico labeling experiments, our approach was shown to be readily applicable 
to non-model organisms such as the malaria parasite Plasmodium falciparum. 

The experience and insights gained from tracing atoms through metabolic reactions and 
networks fueled the development of a novel approach for pathway search (Chapter 3). The 
presented tool, named NICEpath, takes into account the conservation of atoms between a 
substrate and product to construct a searchable graph structure of a biochemical reaction 
network. We validated the proposed metric, called Conserved Atom Ration (CAR), through 
comparison with a manually curated database of substrate-product pairs obtained from the 
KEGG database. We further showed that NICEpath can be applied to reliably extract biolog-
ically relevant pathways from large metabolic networks such as KEGG or ATLAS.  
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Next, we explored the potential of the generalized enzymatic reaction rules, encoding the 
catalytic elasticity of enzymes, to predict novel, hypothetical biochemical reactions (Chapter 
4). The resulting database series, named ATLASx, contains known and novel biochemical 
reactions within different compound scopes. The first ATLAS of Biochemistry database was 
built by predicting novel biochemical reactions between known KEGG compounds, relying 
on biochemical knowledge encoded in the reaction rules. As of today, more than 150 re-
search groups have requested access to the ATLAS database. Furthermore, some of the pre-
dicted reactions have been validated experimentally, highlighting the interest of the scien-
tific community in such a resource and its utility to advance metabolic engineering. The 
continued expansion of ATLAS towards all biological and bioactive compounds (bioATLAS), 
and further to chemicals (chemATLAS), has shown first, promising results by proposing the 
integration of more than 900,000 bioactive compounds and close to two million chemicals 
into the biochemical reaction space. To provide access to this wealth of data, we developed 
an interactive web interface that allows to search for compounds, reactions and pathways, 
the latter one enabled by a back-end architecture featuring the previously developed NICE-
path method. 

Finally, we applied the presented tools and methods to three different engineering and re-
search problems. We first introduced a refined retrobiosynthesis workflow for industrial 
and scientific applications, and we then applied it to the commodity chemical 1,4-butane-
diol and to the biofuel bisabolene to predict potential biosynthesis pathways. We further 
computationally explored the potential derivates of the noscapine pathway, we assessed 
their popularity and finally chose the pharmaceutical compound tetrahydropalmatine for 
bioproduction in yeast. In a last study, we adapted the retrobiosynthesis tools to evaluate 
the biodegradability of xenobiotics, for which we additionally developed a method to iden-
tify and rank organisms by their ability to degrade such compounds. 

6.2 Future	perspectives	
The insights and learnings from this work lay the foundation for future developments and 
investigations, out of which two major aspects are discussed in the following: (i) The in-
creased consideration of non-model organisms in computational approaches, and (ii) the 
improvement of the availability of computational pathway design tools for the scientific 
community. 

6.2.1 Towards	non-model	organisms	
In the presented work, we mainly discussed and applied the developed methods on a small 
selection of well-studied model organisms, such as E. coli and S. cerevisiae. The two excep-
tions are the application of iAM.NICE to study the malaria parasite Plasmodium falciparum, 
and our first steps in the territory of biodegradation where we screened the sequence da-
tabase UniProtKB for organisms potentially capable of biodegradation. These two studies 
highlighted the value of our tools for the analysis of non-model organisms, as well as the 
importance to consider non-model organisms in our workflows. A first step towards this 
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objective is made in NICEpath, which can take a GEM as an input to find pathways connect-
ing to metabolites present in the organism. Furthermore, systematic reduction approaches 
such as redGEM and lumpGEM enable the consistent organization of genome-scale models, 
which is particularly useful to analyze non-model organisms. While the availability of ge-
nome-scale models still suffers from a bias towards easily culturable model organisms, high-
throughput sequencing techniques have helped to populate sequence databases such as 
UniProtKB with genomic sequences obtained from the environment. The available se-
quence data can be used to integrate non-culturable, non-model organisms into our pre-
dictions and considerations. As a conclusion, broadening our horizon towards non-model 
organisms will hopefully lead to new discoveries in the study of microbial communities, vec-
tor-borne diseases, and bioengineering of non-standard organisms such as extremophiles 
for bioengineering in salt water conditions. 

6.2.2 Next-generation	pathway	design		
Designing metabolic pathways for biosynthesis in an accurate and reliable manner is chal-
lenging. In an ideal case, all the necessary methods would be integrated in one single tool 
that can predict biosynthesis pathways, evaluate them in the context of a host organisms, 
find adapted enzymes and provide codon-optimized gene sequences that can be readily 
used to transform the host organisms for the bioproduction of a compound of interest. This 
idea has been discussed by Nielsen and Keasling, who imagined a biological Computer-Aided 
Design (CAD) tool, as it is widely used in other engineering disciplines such as mechanical, 
electrical and civil engineering, for metabolic engineering1. The output of such a BioCAD 
would be an experimental recipe that enables bioengineers to create new strains for bi-
oproduction of any desired chemical compound. Even though such a tool is not yet reality 
for metabolic engineering, it has been achieved for chemical synthesis. The Chematica plat-
form proposes a computer-assisted planning of synthesis routes based on the concepts of 
retrosynthesis and chemical reaction rules2. Chematica has been successfully applied to 
generate synthesis recipes that could be directly used by chemists to perform complex syn-
theses of a range of benchmark chemicals, without requiring any prior experience in multi-
step organic synthesis 3. These predictions were generated within 15-20 minutes thanks to 
the integration of several mathematical and computational techniques such as graph the-
ory, linear programming, artificial intelligence and expert-curated chemical knowledge. A 
tool providing such accurate predictions in a short time would be desirable for metabolic 
engineering, and it would help to accelerate the expansion of range of biosynthetically pro-
duced chemicals. 

To achieve a comparable success rate for biological systems however, we first need to over-
come multiple challenges, most of themdue to the complexity of biological systems. Cur-
rently, available computational techniques were not sufficient to design de novo biosyn-
thetic pathways in a fast and reliable way comparable to Chematica. For example, 
knowledge gaps in biology affect the accuracy of biosynthetic predictions, and additional 
factors should be considered such as choice of the best chassis organism, uncertainties in 
the activity of enzymes (e.g., kinetic properties, substrate promiscuity), and metabolic 
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network properties. To consider these factors, an intelligent integration of available 
knowledge is required to predict biosynthesis pathways in a way comparable to chemical 
synthesis. We estimate that by efficiently integrating available biochemical data and by em-
ploying well-calibrated prediction tools for reactions, enzymes, network structures and reg-
ulatory mechanisms, we can one day achieve the same efficiency in predicting biosynthetic 
routes in metabolic engineering as it is now possible for chemical synthesis. Future work 
will also help us to automatically detect and, if possible, fill knowledge gaps in metabolism, 
such as missing biosynthesis steps in secondary metabolism, underground enzymatic activ-
ity and metabolic dark matter, on a large scale. 

We believe that databases like ATLAS can help us move towards the objective BioCAD. Like 
Chematica, the ATLASx databases are built on a solid basis of chemical knowledge incorpo-
rated by generalized reaction rules. ATLASx provides hypothetical reactions, annotated with 
putative enzymes, and is searchable thanks to an integrated, efficient pathway search. In 
the future, we will have to find systematic ways to reliably integrate novel biochemical com-
pounds, and we will further invest efforts into making our databases more user-friendly, 
improve the visualization of pathways and make it more accessible for non-specialists in 
general. Providing additional analysis tools on our site, such as thermodynamic feasibility 
calculations in a chassis organism of choice and integrated tools for extended enzyme pre-
diction, will additionally improve the value of ATLASx and bring the idea of a BioCAD one 
step closer to reality.  
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Appendix		
Table	A1:	Lumped	reactions	for	20	BBBs	and	their	reconstruction	in	
iAM.NICE	
[See Appendix.xlsx – A1] 

Table	 A2:	 Reactant	 pairs	 in	 KEGG	 with	 non-zero	 CAR	 and	 corre-
sponding	RPAIR	annotation	
[See Appendix.xlsx – A2] 

Table	A3:	Noscapine	pathway	derivatives	ranked	by	popularity		
[See Appendix.xlsx – A3] 

 

The appendix is be published on the Zenodo platform and accessible at https://ze-
nodo.org/record/3703123 (DOI: 10.5281/zenodo.3703123). 

Tools and databases are hosted on https://lcsb-databases.epfl.ch/. 
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