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Abstract

This thesis is concerned with gauge theories, their complicated vacuum and resulting effects.
After an introduction to the subject, it is divided into four parts.
Firstly, we treat the problem of chiral charge dynamics at finite temperature. Quantum field
theory predicts a possibility for massless fermions to be transferred into electromagnetic fields
with non-zero helicity and vice-versa. This phenomenon has applications ranging from
cosmology to heavy-ions physics. We present a numerical investigation from first principles of
the resulting complex dynamics and find a qualitative agreement with previous studies based
on hydrodynamical approaches but measure rates that differ by up to an order of magnitude.
We interpret this effect as contributions coming from small scales not previously taken into
account.
Secondly, we present a study of open-boundary conditions in lattice QCD at finite
temperature. They were designed to ease up the problem of ”topological freezing”, which
plagues numerical simulations close to the continuum limit. In particular, we determine the
length of the ”boundary zone” for two different temperatures. We also use the boundary
effects to extract screening masses.
Thirdly, we move on to present a compendium of lattice techniques, including some new
algorithms, to perform real-time classical simulations of bosonic matter, Abelian and
non-Abelian gauge fields in an expanding universe. We also briefly introduce C osmoL attice,
a numerical software designed to perform such simulations, which are particularly interesting
to study the reheating phase of our universe.
Finally, we study yet another technique to probe non-perturbative sectors of field theories.
Namely, we show that one can reconstruct the Schwinger pair production rate, which is the
rate of production of particles due to the presence of a strong electric field, using only a few
terms of the weak magnetic field expansion. This surprising result is obtained by using
techniques coming from the field of resurgence and the analysis of asymptotic expansions.
We conclude this work by presenting some general outlooks, sharing aspects of all these
different yet related topics.
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Résumé

Cette thèse traite des théories de jauges, en particulier de leurs états fondamentaux complexes
et des effets qui en résultent. Suite à une introduction, ce travail est divisé en quatre parties.
La première se charge d’étudier la dynamique de la charge chirale à températures finies. La
théorie des champs quantiques prédit que les fermions de masse nulle aient la possibilité de se
transformer en champ électromagnétique d’hélicité non-nulle et vice-versa. Ce phénomène a
des applications tant en cosmologie qu’en collisions d’ions lourds. Nous présentons une étude
numérique basée sur une théorie fondamentale de la dynamique compliquée associée à cet effet.
Nos résultas sont en accord qualitatifs avec les études précédentes basées sur des approches
hydrodynamiques bien que nous mesurions des ”taux” qui diffèrent de jusqu’à un ordre de
grandeur. Nous interprétons ce résultat comme venant de contributions associées à de faibles
échelles d’énergies, non prises en compte jusque là.
Dans la seconde, nous présentons une étude sur l’utilisation de conditions aux bords dites
”ouvertes” dans le contexte de la chromodynamique sur réseaux à températures finies. Ces
conditions ont été introduites pour diminuer le problème de ”figeage topologique”, qui hante
les simulations numériques prochent de la limite du continu. En particulier, nous avons
déterminé la longueur de la ”zone de bord” pour deux températures différentes. Nous avons
également utilisé les effets aux bords pour extraire des masses de Debye.
Troisièmement, nous présentons un recueil de techniques, dont certains nouveaux algorithmes,
pour faire des simulations sur réseau de la dynamique classique de certains types de matière
bosonique, qu’elle soit faite de champs de jauges Abéliens ou non, le tout dans un univers en
expansion. Nous introduisons aussi brièvement C osmoL attice, un programme dédié à des
simulations de ce genre, qui ont un intérêt particulier pour étudier la phase de ”réchaufement”
de notre univers.
Finalement, nous étudions encore une autre technique qui permet de sonder les secteurs
non-perturbatifs d’une théorie des champs. Nous montrons que le taux de création de
Schwinger, qui mesure le taux de particules créées par un champ électrique intense, peut être
inféré seulement des quelques premiers termes de la série asymptotique pour un faible champ
magnétique. Ce résultat surprenant a été obtenu en utilisant des techniques venant du
domaine de la ”résurgence” et de l’analyse des séries asymptotiques.
Nous concluons ce travail en présentant des directions de recherche mêlant différents aspects
de ces projets.
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Foreword

The main focus of this thesis is gauge theories and various associated non-perturbative
phenomena. After an introduction, parts II and III are concerned with anomalous processes
and gauge topology, while parts IV and V cover particle creation in different contexts.
All these effects happen only because of the complicated structure of gauge theories. They are
interacting four-dimensional quantum field theories, potentially in presence of fermions, with a
built-in redundancy and even a non-trivial internal topology in the non-Abelian case. To
disentangle these different layers of complexity and identify the one responsible for a given
process can be challenging. As such, we dedicate part I to a substantial general introduction
to the topic. In chapter 1, after having justified the use of gauge theories in the first place and
introduced Abelian and non-Abelian gauge fields, we describe, in what we think are ”minimal
settings”, the effects and methods we study in later parts of this work. In chapter 2, we use
the ”quantum rotor”, i.e. a quantum particle on a circle, to introduce key concepts related to
vacuum degeneracy and the dynamics of vacuum transitions. We also use this model to
introduce some tools, namely importance sampling simulations of Euclidean path integrals and
the classical-statistical evolution of equations of motion and discuss their limitations. To
discuss particle creation and anomalous processes, we move on to field theory in chapter 3. To
keep it as simple as possible, we consider the Schwinger model and compute the particle
production rate in a constant background electric field. We then discuss the ”chiral anomaly”,
which relates the non-conservation of the fermionic chirality to variations of gauge fields. The
advantage of this simple 1+1 dimensional model is that, while keeping the main features of
the computations intact, it reduces the technical burden. To conclude the introduction, we
move back to gauge theories and explain the spontaneous emergence of a non-trivial vacuum
structure in non-Abelian gauge fields and present standard gauge-invariant techniques to
discretise them.
Part II contains research material regarding the non-trivial dynamics induced by the chiral
anomaly in systems with Abelian gauge fields. It is composed of two chapters. In chapter 5,
we present relevant physical situations where this dynamic has an impact, together with the
appropriate literature. Chapter 6 contains original work published in reference [1]. It reports
classical real-time numerical simulations of an effective model that encodes chiral-anomaly
induced effects on gauge fields.
Part III deals with Euclidean path integral simulations of SU (3) gauge fields and the use of
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Foreword

open-boundary conditions at finite temperature. Typically, numerical simulations in field
theory use periodic boundary conditions to minimise effects of the boundaries. In the presence
of topological sectors, such boundary conditions lead to poor sampling of the field space when
approaching the continuum limit. This problem can be reduced by using open-boundary
conditions. In chapter 7, we present some subtleties related to topology on the lattice and
open-boundary conditions. Chapter 8 contains results published in reference [2] about the use
of such boundary conditions in a finite-temperature set-up.
Part IV examines particle production in the early universe. Its main physical motivation is the
study of the end of inflation and the subsequent production of standard model particles.
Chapter 9 presents relevant physics, namely the concept of ”slow-roll” inflation and the
”preheating” of the universe. Chapter 10 contains most of the material of reference [3], which
is a compendium on real-time simulation techniques of reheating. In particular, it contains
original evolution algorithms for dynamical gauge-fields. This chapter also includes a brief
description of C osmoL attice, an open-source, modular, and user-friendly simulation
software that was developed with references [3] and which will be made publicly available [4].
Part V is the last part of this thesis which contains original research. While also being
concerned with particle production, it is somehow different from the other parts. It is related
to the topic of resurgence. As explained in chapter 11, field theories have sometimes been
conjectured to have a rich hidden analytic structure, based on the notion of ”transseries”,
which are roughly speaking extensions of asymptotic series to the domain of analytically
continuable functions. Chapter 12, published in reference [5], applies some recent ideas
formulated in this context to the simple phenomenon of pair-creation in a constant electric
field. In particular, it is shown that even if this phenomenon is non-perturbative, it can be
reconstructed from a finite number of terms of the corresponding perturbative expansion.
Finally, part VI draws conclusions and present general outlooks.

Notations: Throughout this work, we will use natural units with ~= c = 1. When working in
Lorentzian signature, we will follow the ”mostly plus” convention for our metric. Except when
mentioned otherwise, we will adopt Einstein’s convention; repeated indices are summed over.

viii



Contents
Acknowledgements i

Abstract (English/Français) iii

Foreword vii

I Introduction 1

1 A first look at gauge theories 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Scalar electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Non-Abelian gauge theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 A detour to lower dimensions: the quantum rotor 11
2.1 Periodicity and θ-vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Topology-changing processes: classical vs quantum . . . . . . . . . . . . . . . . . 17
2.3 Euclidean path-integral simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Classical simulations: ”sphaleron” rate in a perdiodic potential . . . . . . . . . . 27
2.5 A word of caution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 A detour to lower dimensions: the Schwinger model 33
3.1 Pair production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Chiral anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Path integral measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Levels crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 A second look at gauge theories 49
4.1 Topology and θ-vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Semiclassics, instantons and |n〉-vacua . . . . . . . . . . . . . . . . . . . . . 49
4.1.2 The θ-Vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Discretising gauge theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

ix



Contents

II Chiral Charge Dynamics 57

5 Chiral anomaly in practice 59
5.1 Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Chiral magnetic effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Foreword to [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Chiral charge dynamics in Abelian gauge theories at finite temperature [1] 67
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 Lattice results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.1 Chemical potential decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.2 Inverse cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.3 Decay in the presence of an external magnetic field . . . . . . . . . . . . . 76
6.2.4 Chiral magnetic rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Comparison to MHD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.1 Qualitative behaviour and initial plateaus . . . . . . . . . . . . . . . . . . 85
6.3.2 Self-similarity and inverse cascade . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.3 Chiral magnetic rate and MHD . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.5 Lattice set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.6 Fluctuation-dissipation theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

III Finite Temperature Lattice QCD 101

7 Topology on the lattice 103
7.1 Topology of SU (3) on the Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2 Open-boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.3 Foreword to [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8 Open-Boundary Conditions in the Deconfined Phase [2] 111
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2 Open-boundary conditions and setup . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.3 Boundary zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.4 Screening masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.4.1 Scalar screening mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.4.2 Pseudo-scalar screening mass . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.5 Topological susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

x



Contents

IV C osmoLattice 131

9 Physical motivations: preheating 133
9.1 Slow-roll inflation and its end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.2 Preheating and particle creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.3 Foreword to [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

10 The art of simulating the early Universe 141
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

10.1.1 The Numerical Early Universe: a laboratory for non-linear high energy
physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

10.1.2 Purpose of this manuscript. Introducing C osmoL attice . . . . . . . . 146
10.1.3 Conventions and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

10.2 Field dynamics in the continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
10.2.1 Scalar and Gauge field interactions in flat space-time . . . . . . . . . . . 151
10.2.2 Field dynamics in an expanding background . . . . . . . . . . . . . . . . . 154
10.2.3 Dynamics of the expanding background . . . . . . . . . . . . . . . . . . . . 155

10.3 Field dynamics in a computer: the lattice approach . . . . . . . . . . . . . . . . . 157
10.3.1 Lattice definition and discrete Fourier transform . . . . . . . . . . . . . . 157
10.3.2 Lattice representation of differential operators . . . . . . . . . . . . . . . . 159
10.3.3 Evolution algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
10.3.4 Higher-order integrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
10.3.5 Integrator properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

10.4 Lattice formulation of interacting scalar fields . . . . . . . . . . . . . . . . . . . . 176
10.4.1 Continuum formulation and natural variables . . . . . . . . . . . . . . . . 176
10.4.2 Lattice formulation of interacting scalar fields: O (d t 2) accuracy methods 179
10.4.3 O (d t n) Lattice formulation of interacting scalar fields . . . . . . . . . . . 184
10.4.4 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

10.5 Lattice formulation of gauge fields, I: U (1) interactions . . . . . . . . . . . . . . . 186
10.5.1 Continuum formulation and natural variables . . . . . . . . . . . . . . . . 187
10.5.2 Non-compact Lattice formulation of scalar-gauge dynamics . . . . . . . . 188
10.5.3 Compact Lattice formulation of scalar-gauge dynamics . . . . . . . . . . 191
10.5.4 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

10.6 Lattice formulation of gauge fields, II: SU (N ) interactions . . . . . . . . . . . . . 196
10.6.1 Continuum formulation and natural variables . . . . . . . . . . . . . . . . 196
10.6.2 Lattice formulation of scalar-gauge dynamics . . . . . . . . . . . . . . . . 197
10.6.3 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

10.7 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
10.7.1 Stochastic spectrum of scalar fluctuations . . . . . . . . . . . . . . . . . . 202
10.7.2 Charged scalars and gauge fields . . . . . . . . . . . . . . . . . . . . . . . . 204

10.8 A working example: the SU (2)×U (1) gauge invariant inflaton . . . . . . . . . . . 208
10.8.1 Model details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
10.8.2 Lattice simulations: U (1) gauge interactions . . . . . . . . . . . . . . . . . 214

xi



Contents

10.8.3 Lattice simulations: SU (2)×U (1) gauge interactions . . . . . . . . . . . . 222
10.9 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
10.10Cristoffel symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
10.11Friedmann’s equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
10.12FLRW with Cadabra2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

V Resurgence at Finite Order 237

11 A snapshot of resurgence 239
11.1 A tale about transseries, Borel summation and others . . . . . . . . . . . . . . . 239
11.2 Foreword to [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

12 Schwinger pair production from Padé-Borel reconstruction [5] 243
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
12.2 Schwinger effect, generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
12.3 Strong-field regime from weak-field expansion . . . . . . . . . . . . . . . . . . . . 246
12.4 Schwinger effect reconstructed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
12.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

VI Conclusion 253

Bibliography 259

Curriculum Vitae 281

xii



Part IIntroduction

1





1 A first look at gauge theories

Gauge theories are central to our current understanding of Nature. They are constructed by
promoting invariance of the theory under specific reparametrisations of the fields to a building
principle. In this respect, gauge theories are often said to be ”gauge-invariant” or sometimes
”gauge redundant”, as this reparametrisation invariance is not a physical symmetry per se. In
this section, we will present and recall the basic properties of Abelian and non-Abelian gauge
theories.

1.1 Motivation

The appearance of gauge redundancy in electrodynamics can be traced to the requirement of
Lorentz invariance. We will here briefly recall this argument, following references [6, 7].

We start with an experimental fact: at least at scales we can presently access, the principles of
physics are invariant under Lorentz transformations. As explained at length in [6], this fact,
once combined with the principles of quantum mechanics and some relatively mild
assumptions about locality, leads naturally to the use of quantum fields which transforms
under representations of the Lorentz group as building blocks of our theories. A second
experimental fact is that electromagnetism can accurately be described by the theory of a
massless vector of spin one. It makes us want to construct a massless quantum field of spin
one, i.e. a field which transforms as

U (Λ)vµ(x)U−1(Λ) =Λ
ν
µvν(x) (1.1)

under the action of the Lorentz group. Unfortunately, because of the internal structure of the
Lorentz group and as shown explicitly in reference [6], this cannot be done consistently.
Instead, the best that can be done is to construct a field which transforms as

U (Λ)Aµ(x)U−1(Λ) =Λ
ν
µAν(x)+∂µΩ(Λ, x) , (1.2)

3



Chapter 1. A first look at gauge theories

with Ω(Λ, x) some known function.

Explicit Lorentz symmetry can be maintained by constructing a theory invariant under the
change

Aµ(x) → Aµ(x)+∂µα(x) (1.3)

for an arbitrary function α. Solely out of A′s, we can only construct the following combination

Fµν = ∂µAν−∂νAµ , (1.4)

which we will refer to as the field-strength tensor. The lowest order in derivative, non-trivial
action which can be then built out of Fµν is

SFµν
=

∫
d4x

(
−

1

4
FµνFµν

)
(1.5)

where the factor 1
4
is a canonical normalisation. This is of course nothing else than the action

of free electromagnetism. The associated equations of motion

∂µFµν = 0 (1.6)

are half of Maxwell’s equations, the other half being associated to Bianchi’s identity

∂µF̃µν = 0 , (1.7)

where we defined F̃µν = 1
2
ǫµνρσFρσ, the dual of Fµν.

An interesting question is to see what happens when we try to couple electromagnetism to
matter. For the sake of clarity, let us consider the case of scalar fields. We need to find a
construction that, despite the non-trivial transformation of the gauge fields under Lorentz
(1.2), maintains explicit Lorentz invariance. A trivial way to achieve this is to use again only
the field strength tensor. The lowest order in derivative interaction we can write is of the type

FµνFµνφ , (1.8)

with φ some scalar field. It is a perfectly valid coupling but is, however, an operator of
dimension five mediating short-range interactions. In particular, it does not lead to the
expected Coulomb-type potential characteristic of electromagnetism. Fortunately, interactions
of the type (1.8) are not the most general ones we can write down. In particular, the action

Si nt =
∫

d4xG[Φ,∂νΦ, Aν,Fνρ] (1.9)

can be invariant under (1.2) if G has the correct equations of motion. A simple example is

G = Aµ jµ , (1.10)
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1.1. Motivation

with jµ a conserved current ∂µ jµ = 0.

To couple dynamical matter, let us look at what is the appropriate transformation of G under
an infinitesimal Lorentz transformation ǫ(x). Then, action (1.9) transforms as

Si nt [Aα+∂αǫ]−S[Aα] =
∫

d4x
δG

δAα
∂αǫ (1.11)

=−
∫

d4x∂α

(
δG

δAα

)
ǫ (1.12)

which is equal to zero if
∂α

(
δG

δAα

)
= 0 . (1.13)

A first trivial case corresponds to interactions only with Fµν like in (1.8). Then, δG
δAα

= 0.

A key realisation to build more general interactions is that the relation (1.13) also occurs as
the conservation law associated with the following joint local symmetry

Aµ(x) → Aµ(x)+∂µα(x) = Aµ(x)+∂µǫ(x) (1.14)
Φ

a → e iα(x)T a

Φ
a ≈Φ

a + iǫ(x)T a
Φ

a ≡Φ
a +δΦa , (1.15)

with Φ
a some matter content which transforms as specified, T a is a charge associated to Φ

a ,
no sum intended and we also wrote the corresponding infinitesimal transformations by ǫ(x).
Under this joint transformation, action (1.9) transforms as

Si nt [Φa +δφa ,∂Φa +∂δΦa , Aα+∂αǫ] =
∫

d4x

[
δG

δΦa
δΦa +

δG

δ∂µΦa
∂µδΦ

a +
δG

δAα
∂αǫ

]
(1.16)

=
∫

d4x

[
δG

δΦa
iǫT a

Φ
a +

δG

∂µδΦa
∂µ(iǫT a

Φ
a)+

δG

δAµ
∂µǫ

]
(1.17)

=
∫

d4x

[
δG

δΦa
iǫT a

Φ
a −∂µ

δG

∂µδΦa
(iǫT a

Φ
a)−∂µ

δG

δAµ
ǫ

]
(1.18)

=
∫

d4x

[
−∂µ

δG

δAµ
ǫ

]
= 0 (1.19)

where we assumed that G depends only on first derivatives of Φ and used equations of motion
to cancel the two terms.

We can take the joint local symmetry (1.14) and (1.15) as a building tool; any matter action
invariant under these transformations can be coupled to (1.8) in a Lorentz invariant way.
Transformations (1.14) and (1.15) are referred to as gauge transformations. As we will see in
the next section, it is often useful to take invariance under gauge transformations as a starting
point. In this way, matter content which enjoys some global symmetries can be associated
with some gauge fields by ”gauging” these global symmetries, i.e. making them local and
constructing the relevant invariant actions.
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Chapter 1. A first look at gauge theories

1.2 Scalar electrodynamics

In this section, we want to present the simplest theory of electromagnetism interacting with a
matter field, namely scalar electrodynamics. Our task is to couple a free complex scalar field

Sφ =
∫

d4x
(
−∂µϕ∗∂µϕ−m2ϕ∗ϕ

)
, (1.20)

to the action (1.5). This action is invariant under the transformation ϕ→ e iαϕ but is not
under ϕ→ e iα(x)ϕ. It can be made invariant by promoting the standard derivatives to gauge
covariant derivatives

Dµϕ= ∂µϕ− i g A Aµ . (1.21)

This covariant derivative then transforms as Dµϕ→ e iα(x)Dµϕ under

Aµ → Aµ−
i

g A
∂µα(x) (1.22)

ϕ→ e iα(x)ϕ (1.23)

and the action
S =

∫
d4x

(
−

(
Dµϕ

)∗
Dµϕ−m2ϕ∗ϕ

)
(1.24)

is invariant under the same transformations. The factor g A acts as a coupling constant and the
factor of i is conventional. Together with the kinetic term for the gauge fields, it makes the
action of scalar electrodynamics

Ssem =
∫

d4x

(
−

1

4
FµνFµν−

(
Dµϕ

)∗
Dµϕ−m2ϕ∗ϕ

)
. (1.25)

The associated conserved current (1.19) is

j
µ

U (1)
= g AImϕ(Dµϕ)∗ . (1.26)

The equations of motion which follow from taking the variation of the action are

∂νFνµ = j
µ

U (1)
(1.27)

DµDµϕ= m2ϕ . (1.28)

Of course, they reduce to the free electromagnetic (1.6) when we decouple the matter field.
Note that we still have Bianchi’s identities (1.7) as they are purely geometric; in the sense that
they are an intrinsic property of Fµν.

Another fact we want to mention is that the field-strength tensor Fµν can be expressed solely
in terms of covariant objects as a commutator of covariant derivatives

[Dµ,Dν]ϕ= i g AFµνϕ . (1.29)
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1.3. Non-Abelian gauge theory

It will also be of interest to have the expressions for the energy-momentum tensor. Generically,
for an action S =

∫
d4x

p−g L given in term of some Lagrangian density L in some metric gµν

with determinant g , the corresponding energy-momentum tensor is, see [8] for more details

Tµν =−2
∂L

∂gµν
+ gµνL . (1.30)

In the case of action (1.25) in Minkowski space-time, we split it into a gauge field contribution
T em
µν , which is the same as for free electrodynamics, and a scalar contribution T s

µν. We get

T sem
µν = T em

µν +T s
µν (1.31)

T em
µν = FµαFνβη

αβ−ηµν
1

4
FαβFαβ (1.32)

T s
µν = 2(Dµϕ)∗Dνϕ−ηµν

(
Dαϕ

)∗
Dαϕ−ηµνm2ϕ∗ϕ . (1.33)

As we will see later on in this work, the classical dynamics can be a valuable interest in many
situations.

Before moving on to the non-Abelian theory, we want to point out that, at least at first sight,
action (1.5) is not the only Lorentz scalar of dimension four which can be constructed out of
Fµν. One can also write down

SF̃µν
=

∫
d4x

(
−
θem

4
FµνF̃µν

)
, (1.34)

with F̃µν = 1
2
ǫµνρσFρσ the dual field-strength tensor. In an Abelian theory and on its own, such

a term has no consequences on the dynamics1 as it can be rewritten as the following total
derivative

FµνF̃µν = ∂µK
µ

A
(1.35)

K
µ

A
= ǫµνρσAν∂ρ Aσ . (1.36)

We will nonetheless see in part that II coupling this operator to some other fields describes
rich physics. We will also see in chapter 4.1 these kinds of operators leads to some very
interesting phenomena in non-Abelian theories.

1.3 Non-Abelian gauge theory

Thinking in terms of gauge invariance, it is useful to run the argument presented at the end of
section 1.1 in reverse. Instead of starting from a Lorentz invariant gauge field and try to
couple it to matter, leading to the ”gauging” of the global symmetry, we can start from a

1Strictly speaking, this statement is not correct. Such a coupling is physical in the presence of background
electromagnetic fields; it used for example to describe topological insulators. We refer the interested reader to
reference [9] for a more thorough discussion.
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Chapter 1. A first look at gauge theories

globally symmetric matter action and demand its invariance under local transformations. This
inevitably leads to the need of a gauge field which transforms appropriately under these local
transformations. In this spirit, non-Abelian gauge theories arise naturally when gauging
matter theories which have a global non-Abelian symmetry2.

For the sake of simplicity, let us consider a matter field which transforms under the
fundamental representation of SU (N )

Φ=




Φ
1

...
Φ

N


 ∈ CN , Φ→ΩΦ , Ω ∈ SU (N ) . (1.37)

The following simple generalisation of the free action (1.20) is invariant under this
transformation

SΦ =
∫

d4x
(
−∂µΦ†∂µΦ−m2

Φ
†
Φ

)
. (1.38)

For the same reasons, i.e. still because of the derivative, this is not invariant under a local
SU (N ) transformation. Indeed, we have

∂µΦ→Ω∂µΦ+
(
∂µΩ

)
Φ . (1.39)

In analogy to (1.21), this can be fixed by introducing a vector potential Aµ and a covariant
derivative

DµΦ= ∂µΦ− i gB AµΦ, (1.40)

provided that Aµ transforms as

Aµ →ΩAµΩ
−1 − i

1

gB
∂µ (Ω)Ω−1 . (1.41)

Then, the action
S =

∫
d4x

(
−

(
Dµ

Φ
)†

DµΦ−m2
Φ

†
Φ

)
(1.42)

is invariant under local SU (N ) transformations.

To build a covariant object out of Aµ, let us compute, as in (1.29), the commutator of two
covariant derivatives. In this case, we obtain

[Dµ,Dν]Φ=
(
∂µAν−∂µAν+ [Aµ, Aν]

)
Φ (1.43)

≡ i gBGµνΦ , (1.44)

where we defined a non-Abelian field-strength tensor Gµν. We have that

2A more convincing argument, which is beyond the scope of this section, is given in [10], where it is shown
that the requirement of tree-level unitarity, which is tied to renormalisability, implies gauge redundancy.
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1.3. Non-Abelian gauge theory

[Dµ,Dν]Φ→Ω[Dµ,Dν]Φ and also Φ→ΩΦ, we obtain that Gµν transforms as

Gµν →ΩGµνΩ
−1 . (1.45)

So far, we have not specified to which set Aµ and Gµν belong. We recognise in (1.45) the
adjoint action of the group SU (N ) and thus Gµν is a natural member of the Lie algebra su(N ).
As such, it can be expanded onto a basis of generators of su(N )

Gµν =Ga
µνT a . (1.46)

We follow the convention of taking T a to be hermitian generators of su(N ), satisfying the
following identities

[T a ,T b] = i fabc T c ,Tr(T a ,T b) =
1

2
δab (1.47)

Tr(T a) = 0 (1.48)

with the second line being the defining property of su(N ).

It is then consistent to take Aµ to also be in the Lie algebra, as this is consistent with the
gauge transformation (1.41). Indeed, the first term is nothing more than the action of the
adjoint representation. Then, the term

(
∂µΩ

)
Ω

−1 is also part of the algebra, as long as
Ω ∈ SU (N ). This is easily shown by using the exponential map from the algebra to the group
and writing Ω= exp(iωaT a).

As in the Abelian case, the lowest in derivatives scalar and gauge-invariant operators we can
build from the gauge fields are

SGµν
=−

∫
d4x

(
1

2
Tr

(
GµνGµν

)
+
θ

2
Tr

(
GµνG̃µν

))
. (1.49)

The second term, referred to as the θ-term, can again be rewritten as a total derivative, see for
example [11]

Tr
(
GµνG̃µν

)
= ∂µK

µ

A
(1.50)

K µ = ǫµνρσTr

(
AνFρσ−

2

3
AµAνAρ

)
. (1.51)

As such, it also does not affect the classical equations of motion. Due to the complicated
internal structure of the non-Abelian groups, it does, however, impact the quantum physics;
we defer this discussion to chapters 4.1 and drop the θ-term for the remainder of this section.

This said we can write down the relevant action with matter and SU (N ) gauge fields

SN A =
∫

d4x

(
−

1

2
Tr

(
GµνGµν

)
−

(
Dµ

Φ
)†

DµΦ−m2
Φ

†
Φ

)
. (1.52)
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Chapter 1. A first look at gauge theories

The classical equations of motion are a simple generalisation of the ones in the U (1) case. For
the matter field, U (1) covariant derivatives become a SU (N ) covariant derivative. The only
difference appears in the gauge sector, where due to the non-Abelian nature of the fields, the
normal derivative acting on the field strength is also replaced by a gauge covariant derivative,
defined as

DµGνρ = ∂µGνρ+ [Gµ,Gνρ] . (1.53)

In this light, the equations of motion are

DνGνµ = j
µ

SU (N )
(1.54)

DµDµφ= m2
Φ , (1.55)

with j
µ

SU (N )
= gBImΦ(Dµ

Φ)†. The energy-momentum is also a straightforward generalisation of
the Abelian case and is obtained by summing over the group components

T N A
µν = T SU (N )

µν +T s
µν (1.56)

T SU (N )
µν =Ga

µαGa
νβη

αβ−ηµν
1

4
Ga

αβGαβ a (1.57)

T s
µν = 2(DµΦ)†Dνφ−ηµν (DαΦ)† Dα

Φ−ηµνm2φ†φ . (1.58)

To conclude, let us mention that it is sometimes useful to reabsorb the coupling constant gB

(or g A in the Abelian case) inside the gauge fields. In this case, the action of the gauge part
become

∫
d4x − 1

2g 2
B

Tr
(
GµνGµν

)
. We will use sometimes this convention, depending on the

context.

Before moving on and discuss some more intricated quantum effects, we will do two detours to
lower dimensions to introduce some concepts in simpler set-ups, where analytical computations
can be carried through.
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2 A detour to lower dimensions: the
quantum rotor

Arguably the simplest class of systems which display a non-trivial vacuum structure is the
quantum mechanics of a periodic variable of period R. In this section, we will present its
physics at length, as some subtleties of field theories already arise in this example, where
everything can be computed explicitly. It is also a natural playground to illustrate the
principles beyond the somewhat more involved numerical simulations which will be discussed
later on in this work. References will be cited in due time, but let us mention that the main
inspirations for this section are references [12–14].

2.1 Periodicity and θ-vacuum

Let us consider a free periodic particle

Hper. =
p̂2

2m
. (2.1)

We impose periodicity on the wave-function amplitudes
∣∣ψ(φ+R)

∣∣2 =
∣∣ψ(φ)

∣∣2
. (2.2)

This can be realised if the eigenvectors
∣∣φ

〉
satisfy

∣∣φ+R
〉
= e iθ

∣∣φ
〉

, (2.3)

with θ ∈ [0,2π) some phase. This condition is a restriction on the spectrum of the Hamiltonian
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Chapter 2. A detour to lower dimensions: the quantum rotor

(2.1). This is seen as follow
∣∣φ+R

〉
= e i Rp̂

∣∣φ
〉

(2.4)
=

∑

p∈Sp(Hper.)

e i Rp |p〉〈p|φ〉 (2.5)

!= e iθ
∑

p∈Sp(Hper.)

|p〉〈p|φ〉 (2.6)

=⇒ e i Rp != e iθ , ∀p ∈ Sp(Hper.) (2.7)

with ∑
p∈Sp(Hper.) a sum/integral over all eigenvalues in the spectrum Sp(Hper.) of Hper. and we

used in equation (2.4) that translations are generated by p̂. We see that in order to satisfy
relation (2.7), the eigenvalues need to be of the form

p ≡ pl =
2πl

R
+

θ

R
, l ∈N . (2.8)

and the spectrum of Hper. is discrete.

As we will soon see, this phase affects observables. Before moving on to this discussion, let us
rephrase its origin in a fashion that will directly translate to more complicated theories which
display similar behaviours. As already realised, the periodicity imposed by (2.3) is an
invariance under translations by R, which are generated by the unitary operator Û = e i Rp̂ . It
means that Û commutes with Hper. and as such, we can find a basis of our Hilbert space in
which Û and Hper. are simultaneously diagonal. The operator Û has a continuous spectrum
e iλ with λ ∈ [0,2π). In other words, we can pick up a basis |p,λ〉 such that H |E ,λ〉 = E |p,λ〉
and Û |p,λ〉 = e iλ|p,λ〉. Condition (2.3) means that we restrict the Hilbert space to states with
a given eigenvalue θ.

A first interesting quantity we will look at is the free energy of the system. At zero
temperature, it is nothing else than the ground state energy. Its high-temperature limit will
also be of interest later on in this work. We thus want to compute

F (T,θ) =−T lnZ (2.9)

with T the temperature, Z = Trρ̂0 the partition function and ρ̂0 = e−
Hper.

T the equilibrium
density matrix. In our simple case, the partition function can be written in these different
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2.1. Periodicity and θ-vacuum

forms

Zper. =
∑

l∈N
〈pl |e−

Hper.

T |pl 〉 (2.10)

=
∑

l∈N
e−

1
2mT

(
2πl
R
+ θ

R

)2

= e
− θ2

2R2mT

∑

l∈N
e
− 2π

R2mT
(πl 2+lθ) (2.11)

= e
− θ2

2R2mT θ3

(
iπθ

R2mT
,

2πi

R2mT

)
(2.12)

= R

√
mT

2π
θ3

(
−
θ

2
,

i R2mT

2π

)
(2.13)

= R

√
mT

2π

∑

n∈N
e
−

(
mT R2n2

2
+iθn

)

(2.14)

with θ3(z|τ) the third Jacobi θ-function, see [15],

θ3(z|τ) =
∑

l∈N
e iπτl 2

e2i l z (2.15)

which, by using Poisson summation formula on the defining sum, can be shown to satisfy the
following functional relation

θ∋(z|τ) = (−iτ)−1/2e−i z2

πτ θ3

(
−

z

τ
,−

1

τ

)
. (2.16)

Equations (2.11) and (2.14) correspond to respectively to a low and a high-temperature
expansion of the partition function. We show the behaviour of the free energy as a function of
θ for different temperatures in figure 2.1. As can be understood from equation (2.11), the free
energy develops cusps at odd-integer multiple of π in the limit T → 0. There, only one of the
exponential dominates and we have

lim
T→0

F (T,θ) =
1

2mR2
min
l∈N

(θ+2πl )2 . (2.17)

The other limit T →∞ is understood from the sum (2.14). The leading contribution is a
constant, coming from the terms with n = 0, and the leading θ-dependence comes from the
exponents with n =±1

F (T,θ) ∼−T

[
log

(
R

√
mT

2π

)
+2e−

R2mT
2 cos(θ)

]
(2.18)

Both of these limits are of special interests as they are the same as in more complicated
models. They also both displays two key features of the θ-parameter; the free energy depends
on θ and its minimum is at θ = 0.

Equation (2.14) has a natural interpretation in terms of path integral. We recall that, given
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Figure 2.1 – θ-dependence of the free energy for the quantum rotor, for different temperatures.
The asymptotic expressions (2.17) and (2.18) are also depicted. The low-temperature expression
develops characteristic cusps at multiple of π while the high-temperature expression is well
approximated by an exponentially small cosine plus a constant.

the classical action which corresponding to (2.1)

Sti ,t f
=

∫t f

ti

dt
1

2
mφ̇2 , (2.19)

transition amplitudes can be computed through the following functional integration

〈φi , ti |φ f , t f 〉 =
∫

Dφexp
(
i Sti ,t f

[φ]
)

, (2.20)

where the measure Dφ stands for all possible trajectories interpolating between xi and x f .
Another salient feature of the path integral is that it can also be used to compute statistical
ensemble averages; we refer the reader to [16] for a pedagogical introduction to the path
integral formalism in quantum mechanics. It is achieved by an analytic continuation to
Euclidean space t →−iτ. Then, any thermal average

〈TE

{
Ô1Ô2 . . .

}
〉T = Tr

(
ρ̂TE

{
Ô1Ô2 . . .

})
(2.21)

can also be computed through a functional integral

〈TE

{
Ô1Ô2 . . .

}
〉T =

∫

φ(0)=φ(β)
DφO1O2 . . .e

−SE
0,β , (2.22)

with β= 1
T
the inverse temperature and SE the resulting Euclidean action. The operator TE

stands for Euclidean time ordering. In the presence of a potential, we have
SE =

∫
dτ1

2
mφ̇2 +V (φ) and one can think of it as describing the motion of a particle in an

inverted potential. We see that in our particular case of a free particle, the Euclidean action is
the same as the Minkowski one. Periodic boundary conditions in time are imposed to recover
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2.1. Periodicity and θ-vacuum

the trace.

As we are interested in the non-interacting case, we are left with a Gaussian functional integral
and can solve it explicitly. We will compute the partition function

Z =
∫

φ(0)=φ(β)
Dφe

−SE
0,β . (2.23)

To do so, we compute the saddle point of the Euclidean action with the relevant periodic
boundary conditions

φ̈= 0 (2.24)
φ(0) =φ(β) . (2.25)

To highlight the differences, let us start by recalling what happens in infinite space rather than
on a circle, Then, only solutions with φ̇cl . = 0 are admissible. Namely, all classical solutions are
given by

φcl =φ0 , ∀τ ∈ [0,β] . (2.26)

for all φ0 ∈R. The path integral becomes then
∫

dφ0

(∫
Dδφe−

∫
dτm

2
δ̇φ

2
)

(2.27)

where the integral over φ0 is a ”sum” over all classical solutions and the remaining functional
integral over fluctuations is the usual fluctuation prefactor. It can be evaluated by using, for
example, the Van Vleck-Pauli-Morette formula or the Gelfand-Yaglom formula, see for
example [17]. In the particular case of a free particle, with our thermal conditions, it gives

∫
Dδφe−

∫
dτm

2
δ̇φ

2

=

√
mT

2π
. (2.28)

The integral over φ0 diverges in the case of the infinite line. We can regularise it by
considering a line of size R. We then get

Zl i ne = R

√
mT

2π
. (2.29)

We see that Zl i ne 6=Zper. but that Zl i ne is equal to the term with n = 0 of Zper..

The other terms in Zper. arise as other solutions to the classical equations of motion (2.25).
Indeed, in a periodic system, the solution (2.26) is not the only valid classical solution.
Thanks to the periodicity, the particle can move by a full period with a constant velocity,
chosen such that the thermal periodic boundary conditions are satisfied, namely

φ̇n
cl = T Rn , (2.30)
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Chapter 2. A detour to lower dimensions: the quantum rotor

with n ∈N an integer. The fluctuation determinant is still given by (2.28) and we also get a
factor R coming from the integration over the initial point φ0, but now we have contributions
from several classical solutions to sum over

Zper. = R

√
mT

2π

(∑
n

e−
mT R2n2

2

)
(2.31)

which is nothing else than (2.14) in the case θ = 0.

Before discussing the case θ 6= 0 in this description, some comments are of order. First, we see
that the effect of the periodicity is to allow for more classical solutions. The associated
physical picture is the following. On a line, imposing periodic boundary condition is time, a
classical particle is doomed not to move. Quantum corrections are only fluctuations around
this classical solution. On the other hand, on a circle, the particle can wind around n-times
with a constant velocity and be at its original location at the time τ=β, hence solving the
classical equations and the boundary conditions. Classically, the vacuum solution, i.e. the one
of least energy, is still the one where the particle stays at rest. Quantum mechanically, the
existence of other classical solutions with finite energy signals the fact that quantum
tunnelling happens with a finite probability. The sum in (2.31) contains the corrections due to
these tunnelling events and they are exponentially suppressed.

This description is exact in the case of a free particle as the path integral is Gaussian and all
fluctuations are taken into account by the prefactor. Nonetheless, when interactions are
present, the general picture does not change. In the presence of degenerate vacua, the
existence of finite energy classical solutions that interpolates between them signals the
presence of quantum tunnelling. The path integral can be sorted around as contributions of
these tunnelling events and fluctuations around them. This is the semiclassical approximation.
Note also that the appearance the ”flat direction” φ0 is due to to the extra invariance by any
translations of the free particle and is not a generic feature.

Now let us turn back to the appearance of the θ parameter in the path integral description.
We see that we can get the missing term in (2.31) by adding a term of the sort

Sθ
τi ,τ f

= iθ

∫τ f

τi

dτ
ẋ

R
, (2.32)

to the classical action. This is actually the correct procedure and also has a natural
interpretation in terms of trajectories. Paths that winds around n-times interpolates from the
state |φ〉 to |φ+nR〉. For θ 6= 0, they pick up a phase as in equation (2.3), which can be
incorporated to the action as the term (2.32), using nR =

∫
dt ẋ.

Once more we see that the origin of this θ-angle is of pure quantum nature, as the term (2.32)
does not affect the classical equations of motion, being a total derivative.

Before moving on to investigate other aspects of this model, let us sum-up the main features
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2.2. Topology-changing processes: classical vs quantum

we described so far in terms that will, hopefully, resonate with field theories we will encounter
in this work later on.

• Periodicity in field space is linked to a set of discrete transformations represented by an
operator Û , here translations by nR.

• It creates a degeneracy of classical vacua. We can label them by picking up one at
random, labelling it by 0 and then labelling by n the one we get by applying Û n-times.
The field space is ”topologically non-trivial” and different vacua correspond to different
topological sectors.

• Invariance under the action of Û of physical observables requires only invariance up to a
phasis θ on the state vectors.

• A given θ corresponds to a given eigenvalue of Û .

• Different θ corresponds to different theories.

• The existence of classical solutions which interpolates between different vacuum indicates
the presence of quantum tunnelling and the quantum vacuum is a superposition of the
”classical” vacua.

2.2 Topology-changing processes: classical vs quantum

As we saw in section 2.1, the classical solutions which extend more than a period are
associated with tunnelling events between classical vacua. The fact that fields can explore
different vacua leads to a different physics. This is not specific to the quantum rotor and is a
feature shared by all theories whose field-space has a non-trivial topology. A key information
to grasp the contribution coming from the existence of these different topological sectors is
how much the system explores them. In the case of the quantum rotor, a natural quantity to
study is the distribution of solutions contributing to the path integral as a function of

n =
1

R

∫
dτφ̇ . (2.33)

This is nothing else than the distance in units of the period; any solutions with n > 1 will have
travelled more than one period. Note that with thermal periodic boundary conditions, n is
forced to be an integer. This distribution is can be characterised by the m-averages 〈nm〉 and,
thanks to (2.32), they can conveniently be computed as

〈nm〉T =
∂mZ

∂θm

∣∣∣∣
θ=0

, (2.34)

where we specified the discussion to the case θ = 0. As Z is an even function of θ, only m-even
averages are non-zero. A Gaussian distribution will only have its m = 2 average non-zero; in
this sense higher m characterise non-Gaussianities.

17



Chapter 2. A detour to lower dimensions: the quantum rotor

Actually, while the moments (2.34) contains the relevant information, they are not the cleanest
way to package it. As often, it is more convenient to look only at the connected part of 〈nm〉,
which is obtained by taking the derivative of the logarithm of Z , namely the free energy (2.9).
Also, to have a well defined quantity in the thermodynamic limit, it is more conventional to
consider the free energy density f = F

R
instead of the free energy. Having this in mind, we can

expand f as [13]
f (T,θ) = f (T,0)+χ(T )θ2

(
1+

∞∑

n=1

b2n(T )θ2n

)
. (2.35)

The coefficient χ(T ) is directly proportional to 〈n2〉

χ(T ) =
〈n2〉

R
(2.36)

since 〈n〉 = 0 for θ = 0. It is called the topological susceptibility. This name reflects the fact
that it is the second derivative of the free energy and it also characterises the response to a
would-be constant topological charge background. The other coefficients are higher-order
moments of the free energy.

Again, in the case of the quantum rotor, this can be computed explicitly. And again, of
particular interest are the high and low-temperature limits. From equations (2.17) and (2.18),
we see that

lim
T→0

χ(T ) =χ0, lim
T→0

b2n(T ) = 0 (2.37)

χ(T ) ∼
T→∞

e−
R2mT

2 , lim
T→∞

b2n(T ) = b∞
2n . (2.38)

At zero temperature, the distribution of n is exactly Gaussian, while at high temperature the
width of the distribution is exponentially suppressed and tunnelling becomes very unlikely.

A key point which is difficult to overemphasize is that all the discussion we just had is a
Euclidean description and is related to quantum tunnelling processes. Even though it is not
apparent in the free case we considered, the classical solutions the topological susceptibility
measures the variance of are intrinsically solutions to the Euclidean equations of motion and
are understood semiclassically as describing tunnelling processes. Equation (2.38) means that
such tunnelling processes are suppressed at high-temperature. What equation (2.38) does not
say is that the particle stays around the vacuum it started. Indeed, even classically, thermal
fluctuations allow the particle to move along the period. The rate at which different vacuum
are visited is even expected to grow with the temperature, as more energy is available.

To understand how this arises in the formalism, it is interesting to compute this rate explicitly,
as presented in [12]. Let us define

n(τ,0) =
1

R

∫τ

0
dτφ̇=

1

R

(
φ(τ)−φ(0)

)
(2.39)
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2.2. Topology-changing processes: classical vs quantum

and the following Euclidean correlator

G(τ,τ′) = 〈TE

{
n(τ,0),n(τ′,0)

}
〉T . (2.40)

In these terms, we have
χ(T ) =

G(β,β)

R
. (2.41)

The corresponding Minkowski correlator is given by

G(τ,τ′) →G(iτ, iτ′) ≡G(t , t ′) = 〈TM

{
n(t ,0),n(t ′,0)

}
〉T , (2.42)

which is nothing else than the usual real-time time-ordered propagator, as the notation TM

indicates.

Our goal is to understand how this two-point function is exponentially suppressed in Euclidean
time but monotonically growing in Minkowski time, as a function of the temperature. To do
so, we will explicitly compute the leading contribution in temperature to this two-point
function. As we discussed above, can split contributions into topological sectors. The ones
which do not belong to the sector n = 0 are associated with quantum tunnelling and are
exponentially suppressed. To look for a contribution which is not, it is thus enough to restrict
the effort to the sector n = 0. In this context, it means we will do the computation as if we had
not imposed periodicity (2.2); we will consider a truly free particle.

Restricting ourselves to equal times t > 0, in terms of (2.39), we need to compute

〈TM {n(t ,0),n(t ,0)}〉T =
1

R2
〈TM

{
(φ(t )−φ(0))(φ(t )−φ(0)))

}
〉F

T +O

(
e−

mT R2

2

)
(2.43)

=
1

R2
〈φ(t )2 −2φ(t )φ(0)+φ2(0)〉T +O

(
e−

mT R2

2

)
(2.44)

where we used the fact that t > 0, reordered the product according to the time ordering and
kept track of the exponentially small effect we are neglecting by keeping explicit the O(e−n2T )

contributions. The only quantity we need to know is 〈φ(t )φ(t ′)〉T in a free theory. In the free
case, to be well-defined, this quantity needs to be regulated. Following [12], we will obtain it
as the zero-frequency limit of a harmonic oscillator. We thus consider the following system

H =
1

2m
p̂2 +

1

2
mωǫx̂2 (2.45)

and will send the regulator ωǫ to zero at the end of the computation.

A detailed presentation of thermal field theory techniques is beyond the scope of this work and
we refer the interested reader to [18,19]. We will nonetheless recall some basic definitions to
make this computation reasonably self-contained, mostly following the presentation of [18].

As in the zero temperature case, the ordering in time of operator is crucial and different
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Chapter 2. A detour to lower dimensions: the quantum rotor

orderings lead to different variables. The first two correlators we can define are the so-called
Wightman’s functions

G>(t , t ′) = 〈φ(t )φ(t ′)〉T (2.46)
G<(t , t ′) = 〈φ(t ′)φ(t )〉T =G>(t ′, t ) . (2.47)

Of interest is also be the spectral correlator

ρS(t , t ′) =G>(t , t ′)−G<(t , t ′) . (2.48)

where the subscript S was added to differentiate it from the density matrix. In these terms,
time ordered correlators are

GTM (t , t ′) = θ(t − t ′)G>(t , t ′)+θ(t ′− t )G<(t , t ′) . (2.49)

These correlators can be defined in general, not only for a thermal ensemble. In this context,
thermal equilibrium states that all these correlators are not independent but related one to
another. It is the well-known Kubo-Martin-Schwinger (KMS) relation

G>(t , t ′) =G<(t + iβ, t ′) , (2.50)

which is easily obtained from (2.46) and (2.47) by writing down explicitly the thermal average
and treating ρ̂ as an imaginary-time evolution operator.

It is often useful to manipulate these expressions in Fourier space. As equilibrium states are by
definition time-translation invariant, all these correlators truly depend only on time differences
and can be written Fourier space as

G>(k0) =
∫∞

−∞
dte i k0tG>(t ,0) (2.51)

G<(k0) =
∫∞

−∞
dte i k0tG<(t ,0) (2.52)

ρS(k0) =G>(k0)−G<(k0) . (2.53)

The KMS relation becomes
G<(k0) = e−βk0G>(k0) (2.54)

and combined with (2.53) leads to the following two relations

G>(k0) =
(
1+

1

eβk0 −1

)
ρS(k0) (2.55)

G<(k0) =
ρS(k0)

eβk0 −1
. (2.56)

This is all we need to compute (2.44). Indeed, in the case of the harmonic oscillator, the
spectral correlator (2.48) can be easily computed, see for example [18]. The resulting spectral

20



2.2. Topology-changing processes: classical vs quantum

function is
ρS

SHO(k0) =
2π

m
sgn(k0)δ(k2

0 −ω2
ǫ) (2.57)

with sgn(k0) the sign function. It is nothing else but the reflection of the fact that by
definition a simple harmonic oscillator is monochromatic and of frequency ωǫ. With this at
hand and realising that we only need to compute G>(t ,0), we simply plug (2.57) in (2.55) and
compute its inverse Fourier transform

G>(t ,0)SHO =
1

2π

∫∞

−∞
e−i k0t

(
1+

1

eβk0 −1

)
ρS

SHO(k0) (2.58)

=
∫∞

0
dk0

[
e−i k0t

(
1+

1

eβk0 −1

)
−e i k0t

(
1+

1

e−βk0 −1

)]
δ(k0 −ωǫ)

2ωm
(2.59)

=
1

2mω

(
−2i sin(ωǫt )+

e−iωǫt

eβωǫ −1
−

e iωǫt

e−βωǫ −1

)
(2.60)

where we split the initial integration in two to take into account the sign function explicitly.
The special case of equal times reduces to

G>(t , t )SHO =G>(0,0)SHO =
1

2mωǫ
coth

(
βωǫ

2

)
. (2.61)

Altogether, equation (2.44) becomes

〈TM {n(t ,0),n(t ,0)}〉T = lim
ωǫ→0

{
1

mωǫ

(
coth

(
βωǫ

2

)
+2i sin(ωǫt )

)
(2.62)

−
e−iωǫt

eβωǫ −1
+

e iωǫt

e−βωǫ −1

}
+O

(
e−

mT R2

2

)

=
1

m

(
i t +

t 2

β

)
+O

(
e−

mT R2

2

)
. (2.63)

The result (2.63), which was first derived in [12] is exactly the kind of expression we were
hoping for. We started from the following apparent puzzle. In Euclidean space, the topological
susceptibility, which is a two-point function of n(τ) evaluated at τ=β, is exponentially
suppressed. On the other hand, even from classical physics, we expect the particles to travel
more and more periods as the temperature rises, because of thermal fluctuations. This should
also manifest itself in the two-point function of the topological charge. And as we can see in
(2.63), it does. The real-time rate does grow as T rises. And upon analytic continuation
t →−iβ we find back the Euclidean exponential suppression.

Actually, in this case it is informative to reinsert the factor of ~. We get

〈TM {n(t ,0),n(t ,0)}〉T =
1

m

(
i t~+

t 2

β

)
+O

(
e
−mT R2

2~2

)
. (2.64)

21



Chapter 2. A detour to lower dimensions: the quantum rotor

Taking the classical limit ~→ 0, we find no tunnelling at all and a real rate equal to

〈TM {n(t ,0),n(t ,0)}〉cl .
T =

t 2

mβ
, (2.65)

which is exactly what the classical computation of the correlator would lead to, as the
equipartition theorem states that 1

2
mv2 = 1

2
T . Note also that the time ordering was crucial to

find the result (2.63). If one does not reorder the term φ(t )φ(0)+φ(0)φ(t ) in (2.44), one ends
up computing G>(t ,0)SHO +G<(t ,0)SHO and the imaginary part of (2.63) drops out. The
classical result is recovered, as it should since classical physics is not sensitive to time ordering.
But this correlator does not continue to the correct one in Euclidean time and one cannot read
out contributions to the topological susceptibility from there.

Let us summarise what was learnt in this section. As soon as a system possesses different
topological sectors, transitions from one to another play an important role. Such transitions
can happen in two ways, either through quantum tunnelling or thanks to thermal fluctuations.
The former is a quantum phenomenon which is exponentially suppressed in the classical limit.
The latter is a classical one which becomes more and more important as the temperature
increases.

Before moving on, let us also comment on terminology. The classical solutions to the
Euclidean equations of motions are generically called ”instantons” and they describe
tunnelling. When a potential is turned on, the real-time transitions are still triggered by
thermal fluctuations, but the rate is more complicated to compute classically as the potential
now competes against them. The leading contribution to the rate can be estimated by a
specific solution to the real-time classical equations of motion and this solution is called
”sphaleron” [20]. Correspondingly, the late time growth rate of correlators of the type (2.42) is
called the ”sphaleron rate”.

2.3 Euclidean path-integral simulations

The quantum rotor is also a natural playground for numerical simulations. A particularly
useful technique is to compute the Euclidean path integral numerically on a lattice. It can be
done when the Euclidean action is positive definite, as in this case e−SE can be interpreted as a
probability distribution and importance sampling methods can be applied to generate field
configurations according to it. Plentiful of algorithms are available and we defer the reader
to [21, 22] for pedagogical introductions in the context of lattice QCD. In this section, we want
to present some results obtained for the quantum rotor, mostly concerning topological
transitions and the topological susceptibility. Already in this simple system, we will see the
emergence of some difficulties in sampling correctly different topological sectors, difficulties
that worsen for more complicated systems.

Here, we use the Metropolis algorithm presented in [13], the reference from which this section
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2.3. Euclidean path-integral simulations

is mostly inspired from. The idea behind Metropolis is to generate a Markov chain whose
stationnary distribution corresponds to the probability one wants to sample and then select
states of the chain once it has reached its steady state. A mild complication in the case of the
quantum rotor is to define a variable that is properly periodic and whose winding number
(2.33) is integer. A way to do this is to consider the following action [13]

Ssi m.
E =

1

2

N−1∑

j=0

(x j+1 −x j )% 1
2

a
(2.66)

where we fixed R = m = 1. We have then x ∈ [0,1). The time interval is discretised in N points
separated by a Euclidean time a = β

N
and x j denotes x( j ·a). Boundary conditions in time need

to be imposed. To simulate a thermal system, we take them to be periodic. The quantity

(x − y)%
1

2
=





x + y if |x − y | ≤ 1
2

x + y −1 if x − y > 1
2

x + y +1 if x − y <−1
2

(2.67)

measures the distance between two points on the circle.

The advantage of considering such a simple case is that some intuition on what is happening
in the system can be gained by directly looking at configurations generated by the Markov
chain. We do this in figure 2.2 where we plot a configuration together with n(τ) =

∫τ
ẋdτ′ .

Note that for a periodic variable, n(τ) is not quite x(τ)−x(0), as the former measures the net
distance travelled whereas the second one is just a periodic coordinate. In other words, n(τ)

keeps track of the winding while x(τ)−x(0) does not. This plot N = 2000 and a = 0.01, giving
T = 0.05. Recalling that we fixed R = m = 1, this corresponds to a low temperature and we do
see that the Euclidean particle often changes topological sector, signalling frequent tunnelling.
To understand qualitatively how a Euclidean transition looks like in an actual configuration,
we restrict in figure 2.3 the Euclidean time range from 0 to 120 and plot the resulting
trajectory in polar coordinates. We also show the corresponding classical solution in a plain
line. And what we obtain is indeed a trajectory that winds around the circle once. We also
note the presence of relatively strong fluctuations atop of the semiclassical solution.

To regain results in the continuum, we need to take the limit a → 0. When trying to do that,
we encounter a problem which is particularly severe for topological observables, the one of
critical slowing down. Taking the continuum limit of a lattice model can be understood from a
renormalisation group perspective as flowing a theory towards a continuum fixed point. Such
fixed points are associated with second-order phase transitions and thus to diverging
correlation lengths. Algorithms which are based on local steps are known not to perform well
in such situations; they start to require an exponential amount of time to explore all of the
relevant phase space, see for instance [23] for more information.

As we will see, we are also confronted with such a phenomenon in our simple toy model. The
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Figure 2.2 – A Euclidean configuration obtained from a Metropolis algorithm. In dark blue,
we show the ”compact” coordinates, which spans between −1

2
and 1

2
and in lighter blue n(τ) =∫

dτẋ, which keeps tracks of the total distance traveled from the origin. The dashed square
highlight a part of the trajectory where a topological transition happens; this is the part which
is shown in figure 2.3.
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xcl = 0.008t

x(τ)

Figure 2.3 – Part of a Euclidean configuration which displays a tunnelling event, together with
the corresponding semiclassical constant velocity solution. To get a better representation of
what is happening, we treat it as an angle and plot it in polar coordinates.
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2.3. Euclidean path-integral simulations

existence of a topological charge, from a semiclassical point of view, splits the phase space into
disconnected domains. They are disconnected because to deform a path with a given
topological charge into one with a different topological charge, one needs to perform a
discontinuous transformation, which strictly speaking corresponds to a contribution with an
infinite action. In terms of the lattice model, what needs to be done is to be able to, with one
update step of the algorithm, transform a path which winds around n-times into a path which
winds around n ±1 times. With a coarse discretisation, there is no problem as there is no clear
notion of discontinuous transformations; the sectors are not disconnected and the action
barrier between them is low. However, as the discretisation is refined, the action-cost related
to transformations which add or remove winding to path grows together with the emergence of
continuity.

The best way to get some understanding of this phenomenon is perhaps to watch it happening
to the quantum rotor. We fix the temperature to be T = 0.5, which is still relatively low. As
such we expect quantum transitions to give a non-negligible contribution to the path integral.
In figure 2.4 we consider what happens to the topological charge for three different lattice
spacings. We consider 100 configurations of our Markov chain, each separated by 500

iterations. The upper row shows the distribution of the topological charge as histograms, while
the bottom row shows the topological charge history. We see that for the larger lattice spacing,
there is no correlations between the different configurations and different topological sectors
are sampled according to their weight in the path integral. Already for the second lattice
spacing, we see this is not the case anymore. Different topological sectors are sampled but
ineffectively. More problematically, we can see from the histories of the topological charge the
presence of correlations between configurations we would like to be independent. The last
lattice spacing, only 20% smaller than the intermediate one, displays no topological transitions
at all, it is completely ”frozen” in the Q = 0 sector. This previous discussion can be made more
quantitative by computing the autocorrelation time of the topological charge along the Markov
chain, see [23] for a careful discussion. We will not do it here but we want to mention the
result of [13] were this analysis was done for the quantum rotor. It was found that this
autocorrelation time scales as exp(1/a), a scaling already found in other system possessing
topological sectors, see [13] and references therein. This clarifies what was meant by the fact
that the algorithm needs an exponential time to explore all the different sectors of the phase
space.

To conclude this discussion on critical slow-down and topological freezing, we show on figure
2.5 two different full snapshots of configurations of total topological charge n = 0, both at the
same temperature T = 0.5. The first one is for a lattice spacing of a = 0.01 while the second one
corresponds to a = 0.001. We can very visually see the effect of topological freezing. In the first
case, the Euclidean particle constantly winds around the circle, but with a net amount of 0

turns. In the second case, the particle never goes around the circle.

To ease up this problem, several solutions have been proposed, see again [13] and references
therein. Here we want to present one, namely using different boundary conditions. In the case
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Figure 2.4 – Histograms and history of the topological along the Metropolis generated Markov
chain, for different lattice spacings. As the continuum limit is approached, the topological
transitions become sparser and sparser; the system ”freezes” in the n = 0 topological sector.
The first sign of this freezing is the emergence of long autocorrelation in the charge’s history,
signalled by plateau’s, as for the intermediate lattice spacing in this picture.
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Figure 2.5 – Particle’s trajectory for some generic configurations, far from the continuum
(left-hand side) and close to the continuum (right-hand side). We see that in the first case, the
path easily winds around the circle, even though the total number of winding sums-up to zero.
On the contrary, the second case suffers from topological freezing and the particle never goes
around the circle.
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of quantum mechanics, once we decide to compute thermal averages, we do not have the
choice of boundary conditions, so let us imagine for a moment we do not want to compute
thermal correlators and that we indeed have a free choice of boundary conditions. We saw in
the previous discussion that the appearance of topological freezing can be understood as the
appearance of action barriers between topological sectors. In turns, these action barriers are
related to the fact that one cannot continuously deform a path of a given topological charge
into another. And this is intrinsically related to the fact that by imposing periodic boundary
conditions, i.e. that the final position of the particle is the same than the initial one, we
impose the number of turns to be integers, creating disconnected sectors. Were we to impose
different boundary conditions, let us say setting xNτ

= 0, we would not be in the presence of
disconnected sectors and we would expect a better sampling of the topological charge. In the
case of the quantum rotor, this is precisely what happens and the autocorrelation time of the
topological charge is found to scale as N 2

τ [13]. As explained in this reference, a dependence on
Nτ rather than on a is expected in this case, as the gain in sampling the topological charge can
be interpreted as flowing from the boundary and the information takes time to travel inwards.

The aim of this section was to introduce the concept of Euclidean path integral simulations
and discuss the problem of topological freezing, which already appears in a simple model like
the quantum rotor.

2.4 Classical simulations: ”sphaleron” rate in a perdiodic po-
tential

We saw in section (2.2) that at finite temperature, topological transitions mostly happens
thanks to thermal fluctuations. In cases were analytical results are not available, one needs to
rely on numerical estimates. We described in the previous section how the Euclidean path
integral can be simulated. The obstruction is that such simulations gives direct access to
Euclidean correlators of the type (2.40) while the relevant information is encoded in the
real-time ones of the type (2.42). In principle, as we are talking about thermal equilibrium
and all different correlators are related, one can attempt to extract real-time information from
the Euclidean data, by realising that the Euclidean correlator is related to the spectral
function (2.53) as [18,19]

G(τ,0) =
∫∞

0
dωρ(ω)

cosh
(
ω(τ−β/2)

)

sinh(βω/2)
. (2.68)

Once the spectral function is known, any real-time correlator can be recovered. All the
problem lies in inverting numerically the integral equation (2.68). This is a notoriously hard
problem which makes Euclidean simulations less appealing to extract Minkowski quantities.
We refer interested readers to the recent review [24] and references therein for further
discussions related to such inversions and to reference [25] for a discussion in relation to the
sphaleron rate.
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Chapter 2. A detour to lower dimensions: the quantum rotor

However, when the temperature is not negligible compared to the potential energy, we saw
that the topological transitions were likely to be dominated by classical thermal fluctuations.
When such cases arise, another path opens up to study these processes as it is now relevant to
solve numerically the corresponding classical-statistical problem. In principle, we could
continue to explore our free periodic particle. Its classical physics being completely trivial, it
seems to us more appropriate to deviate from this example and consider the more interesting
case of a periodic potential. To illustrate the method, we study the classical dynamics of a
particle with the following Hamiltonian

H =
1

2
ẋ2 +E0 sin6(x) , (2.69)

where the potential was chosen for its periodicity and for the fact that the corresponding
equations of motion

ṗ =−6E0 sin5(x)cos(x) (2.70)
ẋ = p (2.71)

do not admit any obvious closed form.

To compute classical correlators of the type (2.65), we proceed as follow. First, we generate
thermal initial conditions, namely a set of points x0, v0 which are distributed according to the
Boltzmann distribution e−βH . This can be done by using the same techniques described in
section (2.3), but in one dimension less (simply numbers in this case, n-dimensional fields for
classical simulations in n +1 dimensions). Then, for every initial conditions in this set, the
classical equations of motion (2.70) and (2.71) are solved numerically. The correlators, or any
other observable of interest, are then computed for every solution and averaged over. The
result gives an estimator for the thermal average of the given observable.

To conclude this section and to illustrate the technique, we present some results obtained for
the Hamiltonian (2.69) with E0. In figure 2.6, we show the potential under consideration. In
figure 2.7 we consider three temperatures. On the top two rows, we show the distributions of
initial conditions obtained using a simple Metropolis algorithm. The velocities are simply
Gaussian, with a variance proportional to the temperature. The positions (taken modulo the
period for this plot) also behave in the expected way. For T << m, the initial point is located
around the vacuum. the spread is larger for T = m but one still feels the effect of the potential.
For T >> m, the initial positions are almost uniformly distributed, as in the case of a free
particle. These distributions of initial conditions also reflect themselves in the third row of
the same figure, where we show a set of classical solutions obtained for some of these initial
conditions. At low temperature, the particle is confined in the well it started. At intermediate
temperature, thermal fluctuations with enough energy start to happen so that the particle can
travel the valley of vacua. And at high temperature, this is what happens most of the time.

With these classical solutions at hand, we can now compute any statistical average we desire.
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Figure 2.6 – Potential used to illustrate the use of classical simulation. It has a degenerate set
of vacua at integer multiples of π.

We show in 2.8 a numerical determination of the correlator 〈(x(t )−x(0))2〉cl for T
m

= 1 and
T
m

= 10 (in the case T
m

= 0.1, the topological transitions do not happen often enough so as to
provide us with an easy way to measure this correlator). From the computation presented in
section 2.2, equation (2.65), we expect it to go as t 2 at high temperature when the system
behaves like a free particle. This is what we observe. We also see that this t 2 behaviour
happens for smaller temperature as well. This is the case simply because, as soon as the
particle has enough energy to pass a barrier, it will travel to infinity with a mean that grows
linearly. Even if this would be beyond the scope of this illustratory study, one can also extract
the coefficient in front of t 2, which would be in this case the equivalent of a field-theory
”sphaleron-rate”. One then would also study its dependence on the temperature and the
energy barrier E0.

To conclude this section, let us summarise its main point. When thermal fluctuations
dominate over quantum tunnelling, it may be the case that classical-statistical physics is a
good approximation. If this is so, classical simulations can be used to estimate relevant
parameters. They are performed by solving the classical equations of motions using initial
conditions distributed according to the thermal equilibrium distribution function and the
results are obtained by averaging over them.

2.5 A word of caution

Despite all of the interesting physics that already arise in a simple quantum mechanical model,
we wish to conclude this section with a word of caution: quantum mechanics is not field theory.
And as such, we cannot expect to capture all field theoretical effects in this system. For
example, no thermal collective effects or any other kind of many-body behaviour have a chance
to be encoded in a single degree of freedom, be it quantum or not. Let us briefly discuss two
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Figure 2.7 – Classical simulations for three different temperatures. The first row shows the
Gaussian distribution of initial velocities, which becomes wider and wider as the temperature is
increased. The second row shows the distribution of initial position modulo a period together
with one period of the potential. As expected, at low temperature, most of the particles
start at the bottom of the wells. At high temperature, they are uniformly distributed and
at intermediate temperatures, we see the competition between thermal fluctuations and the
potential. The third rows show classical solutions to the equations of motion, for some of the
generated initial conditions; observables are computed by averaging over such solutions. At
low temperature, it is very unlikely to escape the potential well and all trajectories stay in the
well they started from. At high temperature, we get back a free particle which does not feel
the potential. And for intermediate temperatures, both kinds of trajectories contribute.
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Figure 2.8 – Classical correlator linked to the ”sphaleron-rate”. Errors were computed by
considering 1000 classical solutions and using statistical bootstrap. The expected t 2 growth is
observed and we also observe a temperature dependence of the corresponding coefficient.

explicit cases when our quantum particle differs from what is expected from some quantum
field theories.

Consider the asymptotic behaviour of the topological charge correlator at late time. We saw
two examples in section 2.2 and 2.4 where this correlator grows as t 2 for late times. This is
actually something that has to be expected for one-dimensional systems. The phenomenon is
dominated by classical dynamics. For a particle moving in a periodic potential, there are two
kinds of solutions. First, the particle may not have enough energy to cross the potential
barrier. These solutions do not contribute significantly to the correlator. The ones that do are
the ones when the particle has enough energy to cross the barrier. But because of energy
conservation, it means it will just continue to cross all barriers, forever. Integrated over a
period, its motion will be effectively the one of a free particle, leading to n(t ) ∼ t and thus
n(t )2 ∼ t 2. The prefactor will, of course, depend of the specifics of the problem.

The situation in field theory is different and the key reason is the following. A field theory is a
theory of (infinitely) many degrees of freedom. A topological charge can be thought of as an
effective dynamical degree of freedom emerging from this (infinitely) many-body system1. And
as such, taken on its own, its dynamics will not be conservative. Picturing a complicated
vacuum structure with many vacua, the intuition is that it will visit all these vacua following a
random walk. This means that we should expect that 〈n2〉 ∼ t , as this is the behaviour of the
variance of a random walk; we defer the reader to reference [27] for a statistical treatment of
the topological charge dynamics. The point is that this intuition seems to be correct and this
linear in time behaviour is what is observed in different field theories, see references [25, 28, 29]
for examples.

1For a not-so-related-but-interesting discussion on this subject, see [26].
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Figure 2.9 – Topological susceptibility of the quantum rotor for m = R = 1 on in linear (left)
and logarithmic (right) scales. The x-axis is normalised by the pseudo critical temperature.
The linear scale shows in which sense T ∗ is a critical temperature; it connects two different
behaviour of the theory. The logarithmic scale emphasise the logarithmic suppression which
happens at high temperature.

A second example where our standard quantum particle in a periodic potential or on a circle
cannot be used to describe the physics is when a phase transition is present, as phase
transitions do not occur in local one-dimensional system [30]. For example, the asymptotic
behaviour of the free particle’s free energy (2.9) is identical to the one of a pure SU (N ) gauge
theory. However, this theory is known to experience a first-order phase transition at some
critical temperature Tc , see for instance [19]. The topological susceptibility is expected to be
discontinuous across the phase transition and thus cannot match exactly one obtained from a
quantum particle.

It is interesting to note that except for the discontinuity, the behaviour is still qualitatively the
same. Indeed, one can define a ”pseudo critical temperature” in the case of the free particle,
when the two different representations (2.11) and (2.14) of the path integral at θ = 0 are
self-dual. This happens at T ∗ = 2π

mR2 and we show in figure the topological susceptibility of the
quantum rotor as a function of the temperature. Results for pure SU (3) can, for example, be
found in reference [31] and their global trend is not so dissimilar.

These remarks close this part on free periodic quantum mechanics, which was shown to be an
impressively rich toy model.
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3 A detour to lower dimensions: the
Schwinger model

We now move on to field theory to discuss some effects which are not present in normal
quantum mechanics, namely the phenomenon of pair production in strong fields and the chiral
anomaly. The former is tied to the fact that the particle number is not conserved in field
theory. Under some conditions, here the presence of some strong background fields, it is
energetically more favourable to create charged particles out of the vacuum to quench the fields
instead of sustaining them. The latter is more subtle and is related to the intrinsic nature of
fermions. In some situations, classical symmetries of the theory do not survive quantisation.

To study these, it is enough to go to 1+1 dimensions and consider fermions1 coupled to a U (1)

gauge field Aµ

SE =
∫

d2x

[
ψ (/∂+ i /A+m)ψ+

1

4g 2
FµνFµν

]
, (3.1)

where we directly wrote the action in Euclidean space, Fµν = ∂µAν−∂νAµ and where the ”slash”
notation denotes, as usual, contraction to gamma matrices /A = γµAµ. We work with Euclidean
γ-matrices which satisfy the Clifford algebra

{
γµ,γν

}
= 2δµν (3.2)

and define
γ5 = iγ0γ1 . (3.3)

When needed, we use the following representation for the γ-matrices

γ0 =


0 −i

i 0


 , γ1 =


0 1

1 0


 , γ5 =


1 0

0 −1


 . (3.4)

This model was studied early on in the massless case [32–34] where fermions were found to be
confined. The study was extended to the massive case in [35,36] and confinement was found to

1For pair production, charged scalars would also do.
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persist. This model is also sensitive to the addition of a θ-term [36]. Because of these features,
it can be used as a toy-model for QCD.

3.1 Pair production

As previously mentioned, a genuine expectation in field theory is the possibility of creating
pairs of particles out of the vacuum by applying strong fields. This was realised in the very
early days of field theory, notably in reference [37]. A natural way to frame the question is the
following. Consider quantum electrodynamics in some box of volume V and apply a constant
electric field E . When will particles be created? It turns out that this question can be
answered by neglecting the back-reaction of the created particles and simply considering the
problem in a constant electric field. The problem was first solved in reference [38]. In such a
case, the fermionic effective action can be computed exactly and displays an imaginary part,
which is then interpreted as giving the rate of particle creation.

In this section, we want to present this computation. We will do it in the Schwinger model,
where the computation simplifies, mostly because of the simpler Lorentz structure in 1+1

dimensions. It is worth noting that here it makes sense to use it as a proxy for QED only as
long as we neglect the back-reaction since the dynamics of fermions are qualitatively different
in both theories.

This aside, the computation proceeds in exactly the same way. We compute the effective
action obtained by integrating out the fermionic part of the action

SE
ψ =

∫
d2x

[
ψ (/∂+ i /A+m)ψ

]
(3.5)

in the presence of a static and homogeneous Fµν. We write its only non-vanishing component
as

F01 = E . (3.6)

We also define a covariant derivative

/D = /∂+ i /A . (3.7)

To conduct the computation, we will fix the following gauge

A0 = 0

A1 = E x0 . (3.8)

To have finite energy, we restrict our domain to be x0 ∈ [0,T ], x1 = [0,R], but neglect finite
size-effects.
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3.1. Pair production

Action (3.5) is quadratic and as such can be explicitly computed

−Se f f = Lndet( /D +m) (3.9)

=
1

2

[
TrLn( /D +m)+TrLn

(
/DT +m

)]
(3.10)

=
1

2
TrLn

(
m2 − /D /D

)
, (3.11)

where we used the cyclicity of the trace and the relation γT
µ =−CγµC with C the charge

conjugation operator. These manipulations are not necessary per se but make the next
computations easier.

For convenience, we define the following operators

pµ =−i∂µ (3.12)
Πµ = pµ+ Aµ . (3.13)

In particular Πµ =−i Dµ and we want to compute

−Se f f =
1

2
TrLn

(
m2 + /Π /Π

)
. (3.14)

We then use Schwinger parametrisation. It is based on the following integrals

log

(
b

a

)
=−

∫∞

0
du

(
e−bu −e−au

u

)
. (3.15)

It allows us to rewrite

−Se f f =
1

2
TrLn

(
m2 + /Π /Π

µ2

)
(3.16)

=−
1

2

∫∞

0
duTr

(
e−m2u

u

(
e− /Π /Πu −e−(µ2−m2)u

))
. (3.17)

We also have
/Π /Π=Π

2 −Eγ5 (3.18)

and we focus on computing the traces2. Then

Tr
(
e− /Π /Πu

)
= 2cosh

(
f Eu

)
Tr

(
e−Π

2u
)

(3.19)

= 2cosh
(

f Eu
)∫

dx0dx1 〈x0, x1|e−Π
2u |x0, x1〉 (3.20)

= 2cosh
(

f Eu
)∫

dx0dx1KR×S1 (x0, x1,u; x0, x1,0) (3.21)

2With a slight abuse of notation, we use the same symbol to denote operator and matrix traces.
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with x0, x1 labelling a complete basis of position eigen-states and

K (xb0, xb1,u; xa0, xa1,0) = 〈xb0, xb1|e−Π
2u |xa0, xa1〉 (3.22)

is the position-kernel of the operator Π
2.

To compute this kernel, we deviate from reference [38], which solves some operator equations.
Here, we present a path integral derivation of this result. Such a kernel admits the following
path integral representation

K (xb0, xb1, s; xa0,xa1,0) =C

∫
xi (0)=xi a
xi (s)=xi b

Dx0Dx1Dp0Dp1 (3.23)

exp

(
i

∫
ds′

(
p0ẋ0 +p1ẋ1 −Hcl (x0, p0, p1)

))
(3.24)

with Hcl (x0, p0, p1) = (p0 −h0)2 + (p1 −E x0 −h1)2 and C is a normalisation constant. This
Hamiltonian is nothing else than a two-dimensional harmonic oscillator and the path integral
can be done. First, we integrate out the momenta. We get a −iπ coefficient coming from the
two Gaussian integrations. The remaining exponential is given by i times the classical action

K (xb0, xb1, s; xa0, xa1,0) =−iπC

∫
xi (0)=xi a
xi (s)=xi b

Dx0Dx1 (3.25)

exp

(
i

∫
ds′Lcl (x0, x1

)
,

and Lcl is found to be

Lcl =
1

4

(
ẋ0

2 + ẋ1
2
)
−E ẋ1x0 − ẋ0h0 − ẋ1h1 . (3.26)

Since we are left with a quadratic Lagrangian, the saddle point method will give the exact
result. We can write it as

K (xb0, xb1, s; xa0, xa1,0) =−iπCN exp(i Scl [x0a , x1a , x0b , x1b]) . (3.27)

With N a fluctuation prefactor, computed later on, and Scl [x0a , x1a , x0b , x1b] the classical
action

∫
ds′Lcl (x0, x1) computed over solutions to the classical equations of motion with

boundary conditions x0(0) = x0a , x1(0) = x1a , x0(s) = x0b , x1(s) = x1b. They are found to be

x0(s′) =
1

2cos(E s)

[
sin(E(2s′− s))(x0b −x0a)+ sin(E s)(x0b +x0a)

+
(
cos(E(2s′− s)

)
−cos(E s))(x1b −x1a)

]
(3.28)

x1(s′) =
1

2cos(E s)

[
sin(E(2s′− s))(x1b −x1a)+ sin(E s)(x1b +x1a)

−
(
cos(E(2s′− s)

)
−cos(E s))(x0b −x0a)

]
(3.29)
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and lead to the following functional

Scl [x0a , x1a , x0b , x1b] =
1

4

[
E cot(E s)

(
(x0b −x0a)2 + (x1b −x1a)2

)

−2E(x0b +x0a)(x1b −x1a)
]

−h0(x0b −x0a)−h1(x1b −x1a) . (3.30)

We compute the prefactor N using the Van-Vleck-Pauli-Morette formula [39], which asserts
that

N 2 = det

(
∂2Scl

∂xi a∂x j b

)
(3.31)

= det


−

1
2

E cot( f E s) −E
2

−E
2

−1
2

f E cot(E s)


 (3.32)

=
E 2

4

1

sin(E s)2
. (3.33)

All in all we obtain

K (xb0, xb1, s; xa0, xa1,0) =−iπC
E

2

1

sin(E s)
(3.34)

exp

(
i

1

4

[
E cot(E s)

(
(x0b −x0a)2 + (x1b −x1a)2

)

−2(E(x0b +x0a))(x1b −x1a)]−h0(x0b −x0a)−h1(x1b −x1a)

)
.

We fix C by requiring that lims→0 K (xb0, xb1, s; xa0, xa1,0) = δ2(xi b −xi a)

∫∞

−∞
dx0b

∫∞

−∞
dx1b lim

s→0
K (xb0, xb1, s; xa0, xa1,0) = lim

s→0
−

iπC

2s

∫∞

−∞
dx0b

∫∞

−∞
dx1b

exp

(
i

1

4

[
E cot(E s)

(
(x0b −x0a)2 + (x1b −x1a)2

)

−2(E(x0b +x0a)(x1b −x1a)]−h0(x0b −x0a)−h1(x1b −x1a)

)
(3.35)

= 2π2C
(!)= 1 (3.36)

and we get C = 1
2π2 . At the end of the day, we obtain the expression for the kernel

K (xb0, xb1, s; xa0, xa1,0) =−i
E

4π

1

sin(E s)
(3.37)

exp

(
i

1

4

[
E cot(E s)

(
(x0b −x0a)2 + (x1b −x1a)2

)

−2(E(x0b +x0a))(x1b −x1a)]−h0(x0b −x0a)−h1(x1b −x1a)

)
.
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Figure 3.1 – Schwinger prescription and integration contour for the effective action.

With this result at hand, we obtain the following expression for the trace

Tr
(
e− /Π /Πu

)
=

T RE

2π
coth(Eu) , (3.38)

which leads to, taking µ to cancel the s = 0 pole of the coth,

Se f f =
RT E

4π

∫∞

0
du

e−m2u

u

(
coth(Eu)−

1

Eu

)
. (3.39)

This expression is purely real but this is only because it is the effective action in Euclidean
time. To obtain a real-time expression, we need to perform the analytic continuation
T = i TM ,E =−i EM

SM = i Se f f =−
RTM EM

4π

∫∞

0
du

e−m2u

u

(
cot(EM u)−

1

EM u

)
. (3.40)

Even if not apparent at a first look, this expression has an imaginary part. As such, it is not
well defined, as the contour of integration runs over the poles of the cotangent. The correct
prescription consists in not fully rotating back E → e−iπ/2EM but rather E → e−i (π/2+ǫ).
Equivalently, one can shift the poles as un = nπ

EM
e iǫ and integrate (3.40) over the contour

depicted in figure 3.1. The imaginary part is then computed as
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∫∞

0
du

e−m2u

u

(
cot(EM u)−

1

EM u

)
= i

∫∞

0
du

e−i m2u

u

(
coth(EM u)−

1

EM u

)

+2πi
∞∑

n=1

e
−nπ m2

EM

nπ
(3.41)

Im

(∫∞

0
du

e−m2u

u

(
cot(EM u)−

1

EM u

))
=Re

(∫∞

0
du

e−i m2u

u

(
coth(EM u)−

1

EM u

))

+2
∞∑

n=1

e
−nπ m2

EM

n
. (3.42)

Now the trick is to realise that the real part of this integral is symmetric under u →−u. As
such, we have the following relation

Re

(∫∞

0
du

e−i m2u

u

(
coth(EM u)−

1

EM u

))
=

1

2
Re

(∫∞

−∞
du

e−i m2u

u

(
coth(EM u)−

1

EM u

))
. (3.43)

This last integral can be evaluated using Cauchy’s theorem again and receives contributions
from the poles a u =−i nπ

EM
. All in all, we find

Im

(∫∞

0
du

e−m2u

u

(
cot(EM u)−

1

EM u

))
=

∞∑

n=1

e
−nπ m2

EM

n
(3.44)

and thus

Im(SM ) =−
RTM EM

4π

∞∑

n=1

e
−nπ m2

EM

n
. (3.45)

The imaginary part we found is exponentially small, its largest contribution starting to be
non-negligible only for strong fields EM ∼ m2, as one would expect.

3.2 Chiral anomaly

A yet more subtle quantum phenomenon which can be studied with the help of Schwinger
model is the one of the chiral anomaly. In the massless case m = 0, action (3.1) is invariant
under global chiral rotations ψ→ e iγ5αψ. It turns out that the only way, preserving gauge
invariance, to quantise the theory breaks this symmetry. In terms of conserved quantities, this
means that the axial current j

µ
5 =ψγµγ5ψ is not conserved at the quantum level. And its

non-conservation is related to the gauge fields as follow

∂µ j
µ
5 =

ǫµνFµν

2π
. (3.46)

This section will aim at computing this relation in two different ways. For an extensive review
and plenty of different derivations of the chiral anomaly in the Schwinger model, we refer the
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reader to reference [40].

3.2.1 Path integral measure

The first derivation we want to present will be in the path integral formalism, as first
introduced in reference [41], following the presentation of [40] and [42]. The breaking of chiral
symmetry upon quantisation has a clear origin when thinking in terms of functional integral.
Indeed, the action is not the only ingredient that needs to be invariant under a given
symmetry; fields also enter the computation through the measure. And in the case of the
chiral anomaly, this object is precisely not invariant and leads to the equation (3.46). To see
so, we will explicitly compute how the fermionic path integral

∫
DψDψe−

∫
d2xψ(/∂+i /A)ψ (3.47)

transforms under an infinitesimal space-time dependent chiral rotation

ψ→ (1+ iγ5ǫ)ψ (3.48)
ψ→ψ(1+ iγ5ǫ) . (3.49)

As we already know by Noether theorem, from the invariance of the action when ǫ is constant,
we will have ∫

d2xψ (/∂+ i /A)ψ→
∫

d2xψ (/∂+ i /A)ψ+
∫

d2xǫ∂µ J
µ
5 . (3.50)

To compute the transformation of the measure, let us assume that we are working on a
manifold such that i /D is a hermitian operator and that we have at hand a basis made out of
its eigenfunctions

i /Dφn =λnφn (3.51)
ψ=

∑
n

anφn (3.52)

ψ=
∑
n

bnφ
†
n (3.53)

∑
n

φn(x)φ†
n(y) = δ2(x − y) (3.54)

∫
d2xφ†

m(x)φn(x) = δmn , (3.55)

with an ,bn anti-commuting Grassmann numbers. It transforms the fermionic measure as a
product of the expansion coefficients

DψDψ=
∏
n

dandbn , (3.56)
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and what is left to do is to understand how it transforms under an infinitesimal chiral rotation
(3.48). Writing it out explicitly, we have

∑
n

anφn →
∑
n

(anφn + iγ5ǫanφn) ≡
∑
n

a′
nφn (3.57)

∑
n

bnφ
†
n →

∑
n

(bnφ
†
n +bnφ

†
niγ5ǫ) ≡

∑
n

b′
nφ

†
n (3.58)

To rewrite that as an expansion over the φn basis (recall that γ5φn is not a basis
eigenfunction), we extract the relevant coefficients a′

n using orthonormality (3.55)

a′
n = an +

∑
m

∫
d2xamφ†

niγ5ǫφm (3.59)

b′
n = bn +

∑
m

∫
d2xbmφ†

miγ5ǫφn . (3.60)

The associated Jacobian is given by

J =
∏
n

(1+Tr

∫
d2xφ†

niγ5ǫφn)2 (3.61)

or in exponential form as

J = exp

(
−2i Tr

∫
d2xǫ

∑
n

φ†
nγ5φn

)
. (3.62)

As φn and φ†
n are evaluated at the same point, this sum is divergent and needs to be regulated.

A convenient way to do it is to rewrite it as follow

∑
n

φ†
nγ

5φn =
∑
n

lim
M→∞

φ†
nγ

5e
− λ2

n

M2 φn =
∑
n

lim
M→∞

φ†
nγ

5e
− (i /D)2

M2 φn (3.63)

and define a regulated sum by swapping the limit and the sum. We are then left to evaluate

lim
M→∞

∑
n

φ†
nγ

5e
− (i /D)2

M2 φn . (3.64)

We expand φn ,φ†
n in Fourier modes

Tr
∑
n

φ†
nγ

5e
− (i /D)2

M2 φn =
1

4π2
Tr

∫∫
dk2dk ′2 ∑

n

φ†
n(k)e−i kxγ5e

− (i /D)2

M2 φn(k ′)e i k ′x (3.65)

=
1

4π2
Trγ5

∫
dk2e−i kx e

− (i /D)2

M2 e i kx , (3.66)
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where we used the cyclicity of the trace to reorder the expression together with the
orthonormality (3.54) to perform one of the momentum integral. Once again, we have

− /D2 =−γµγνDµDν (3.67)

=−
1

2

(
γµγνDµDν+γνγµDνDµ

)
(3.68)

=−
1

2

(
γµγνDµDν−γµγνDνDµ+2D2

)
(3.69)

=−D2 −
1

2
γµγν[DµDν] (3.70)

=−D2 + i
1

2
γ5ǫµνFµν (3.71)

and also
D2 = (∂2 − A2 +2i Aµ∂µ+ i∂µAµ) . (3.72)

This leads to

Trγ5e−
i
2
γ5ǫµνFµν

∫
dk2e−i kx e

D2

M2 e i kx = Trγ5e
1

M2

(
− i

2
γ5ǫµνFµν−∂µAµ

) ∫
dk2e−i kx e

1

M2

(
−k2−2Aµkµ

)
e i kx

(3.73)

= Trγ5e
1

M2

(
− i

2
γ5ǫµνFµν−∂µAµ

) ∫
dk2e

1

M2

(
−k2−2Aµkµ

)
(3.74)

= Trγ5e
1

M2

(
− i

2
γ5ǫµνFµν−∂µAµ

) ∫
dkke

− k2

M2

∫
dθe

− 2Aµkµ

M2 . (3.75)

We want now to keep only the terms which survive the M →∞ limit. To do so, we do the
change of variable k ′ = k

M

Trγ5e
1

M2

(
− i

2
γ5ǫµνFµν−∂µAµ

)
M 2

∫
dk ′k ′e−k ′2

∫
dθe−

2Ak′ cosθ
M . (3.76)

The only terms from the integral which survives both the limit M →∞ and the trace will be
the one of order one. Namely,

∫
dk ′k ′e−k ′2

∫
dθe−

2Ak′ cosθ
M ∼ 2π

∫∞

0
dk ′k ′e−k ′2

=π . (3.77)

Finally, we get

lim
M→∞

∑
n

φ†
nγ

5e
− (i /D)2

M2 φn =−
iǫµνFµν

4π
(3.78)

and the Jacobian (3.62) reads
J = e−

∫
d2xǫ

ǫµνFµν

2π . (3.79)

Altogether, the fermionic path integral (3.47) transforms as
∫

DψDψe−
∫

d2xψ(/∂+i /A)ψ →
∫

DψDψe−
∫

d2xψ(/∂+i /A)ψ

(
1+

∫
d2xǫ

(
∂µ j

µ
5 −

ǫµνFµν

2π

))
(3.80)

42



3.2. Chiral anomaly

keeping only the leading terms in ǫ. However, such a transformation is just a field redefinition
and cannot change the path integral. It imposes that

∂µ j
µ
5 =

ǫµνFµν

2π
(3.81)

with this identity understood as a quantum average. This is the anomaly equation (3.46).
This derivation shows that the anomaly can be understood as a quantum violation of Noether
theorem, coming from the non-invariance of the fermionic measure in the path integral.

3.2.2 Levels crossing

Even if the last derivation in terms of path integral clearly identifies the origin of the anomaly,
it does not give much physical intuition about what is going on. Such intuition can be gained
by understanding the energy spectrum of the theory in terms of chirality eigenstates and how
it depends on the ”electromagnetic” field. We will see that the anomaly can be understood as
a ”Hilbert’s hotel”-like rearrangement of the spectrum caused by ǫµνFµν. This section is
inspired from references [40,43]. We also refer the interested reader to reference [44].

Let us consider again the massless Schwinger model. To regularise it, we will this time
consider it on a spatial circle of length R and for tractability we will neglect the backreaction
of fermions on the gauge field; in other words, we will treat Aµ as an external background field.
We moreover fix the gauge such that

A0 = 0 (3.82)
A1 = A1(t ) . (3.83)

We will want to compute the energy spectrum associated with the one-particle problem. As
such, we can directly work in Minkowski space, with the following Lagrangian density

L =ψi /Dψ , (3.84)

which leads to the following Dirac equation

/Dψ= 0 . (3.85)

In this context, it is best rewritten in terms of left and right-handed modes. Explicitly,
choosing the following representation for the Minkowski γ-matrices

γ0 =


0 −i

i 0


 , γ1 =


 0 −i

−i 0


 , γ5 =


−1 0

0 1


 , (3.86)

43



Chapter 3. A detour to lower dimensions: the Schwinger model

we get 
 (i∂t + i∂x − A1)ψR

(−i∂t + i∂x − A1)ψL


=


0

0


 . (3.87)

We need to choose boundary conditions for the fermions and we will take them to be
antiperiodic, as would be done in a thermal setting, but periodic fermions would be as
appropriate and lead to the same answer [43]. Thanks to this antiperiodicity, we have the
following modes decomposition

ψ=
1

R

∑
n

ψn(t )e i 2π(n+1/2)
R

x . (3.88)

To find the energy spectrum, we consider left and right stationary waves

φL
n(t ) =


e−i E L

n t

0


 , φR

n (t ) =


 0

e−i E R
n t


 . (3.89)

Plugging this back in equation (3.85), we find by comparison

E L/R
n =∓

(
n +

1

2

)
2π

R
± A1 . (3.90)

Note that these stationary waves are a good approximation only when the time derivative of
A1 can be neglected, which can always be engineered in this situation as A1 is treated as a
background field under control.

A key discussion which has been missing up to know is what are the acceptable values for A1.
Schwinger model is a gauge theory invariant under gauge transformations of the type

ψ→ e iα(t ,x)ψ . (3.91)

It is enough to require invariance under local gauge transformations, i.e. gauge
transformations for which α(t , x) is continuous. On the circle, it is equivalent to ask for α to
be periodic α(t , x +R) =α(t , x). Coincidentally, there is class of gauge transformations with
discontinuous gauge function α which also leaves invariant the theory. They are called large
gauge transformations and are of the type αl ar g e (x, t ) = 2πn

R
x . Their effect is simply to shift

the gauge potential by a constant

A1(t ) → A1(t )+
2πn

R
. (3.92)

In practice, this means that we can restrict A1 to be in the range
[
0, 2πn

R

)
; A1 is naturally the

coordinate of a circle.

Keeping this in mind, we can now draw the spectrum as a function of A1 and we get picture
3.2. We see that for non-zero values of A1, the energy levels of left and right-handed particles
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A1

E
L/R

UV cutoff

UV cutoff

0
2π

R

E
L

E
R

•

◦

L-particle

R-hole

Figure 3.2 – Energy levels of left and right-handed particles in a background field A1. The
spectrum is degenerate only when A1 ∝ 2πn

R
. n ∈ N. An adiabatic evolution of A1 by 2πn

R

reshuffles the spectrum and can be understood as the creation of left or right-handed particles.
If the theory has a UV cutoff, the level crossing can be monitored there instead.

are not degenerate anymore, up until A1 reaches the value 2π
R
. At this point, the energies are

again degenerate but the whole spectrum has reordered itself. Every right-handed level has
been shifted upwards while every left-handed one has been shifted downwards. The physical
consequences of this reordering of the spectrum can be understood by considering a state which
is a vacuum sea a l a Dirac. Take a state where all negative energy states are filled. Now turn
on adiabatically A1 from 0 to 2π

R
. At this value, the energy states are again degenerate, but

now a left-handed particle was created together with right-handed ”hole”, which in this picture
is interpreted as a right-handed anti-particle. During this process, the vector (”electric”)
charge is conserved, as the hole and the particle have opposite vector charges, but the axial
charge changes by two units, since both the hole and the particle have an axial charge of one

∆Q A = 2 . (3.93)

In other words, every time A1 go through a period, the axial charge changes by two units,
which can also be written per unit time as

∆Q A

∆t
=

R

π

∆A1

∆t
. (3.94)
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Chapter 3. A detour to lower dimensions: the Schwinger model

In terms of the axial current, this is nothing else but the anomaly equation (3.46).

What may appear as surprising with respect to this derivation of the anomaly is the fact that
it appears as an IR phenomenon, namely a reordering of the energy spectrum around the
ground state, while in the path integral derivation it was clearly a UV effect. These two sides
of the anomaly are a generic property. To illustrate this, we will present here a UV-derivation
from the one-particle solution (3.89), following [40].

We can try to directly compute the currents on the Dirac sea. Before doing so we need to
regularise them as the sum over infinitely many negative energy states do not converge. As in
reference [40], we use the gauge-invariant point-splitting regularisation, introduced in
reference [32]. The idea consists in tracking down the UV divergence to the fact that we want
to evaluate the product of operators at the same point. One of the correlators is moved by an
ǫ and gauge invariance is maintained by introducing the appropriate parallel transporter
e−i

∫x+ǫ
x dx A1

jµ = lim
ǫ→0

ψ(t , x +ǫ)γµψ(t , x)e−i
∫x+ǫ

x dx A1 (3.95)

j
µ
5 = lim

ǫ→0
ψ(t , x +ǫ)γµγ5ψ(t , x)e−i

∫x+ǫ
x dx A1 . (3.96)

Explicitly, our Dirac sea is

ψD (t , x) =
1

R

−∞∑

n=−1

φL
n(t )e i 2π(n+1/2)

R
x +

1

R

∞∑

n=0

φR
n (t )e i 2π(n+1/2)

R
x . (3.97)

We want to compute the associated charges

Q = lim
ǫ→0

∫
dx j 0 (3.98)

Q A = lim
ǫ→0

∫
dx j 0

5 . (3.99)

To do so, we consider

j
µ

D
=

1

R
lim
ǫ→0

( −∞∑

n=−1

e i 2π(n+1/2)
R

ǫ+
∞∑

n=0

e i 2π(n+1/2)
R

ǫ

)
e−i

∫x+ǫ
x dx A1 (3.100)

j
µ

5D
=

1

R
lim
ǫ→0

( −∞∑

n=−1

e i 2π(n+1/2)
R

ǫ−
∞∑

n=0

e i 2π(n+1/2)
R

ǫ

)
e−i

∫x+ǫ
x dx A1 . (3.101)

The left and right-handed charges of the Dirac sea are then obtained as

QL/R =
1

2
(Q ±Q A) . (3.102)
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Remembering the fact that A1 is constant, we get

QL = lim
ǫ→0

−∞∑

n=−1

e iǫ
(

2π(n+1/2)
R

−A1

)
= lim

ǫ→0
−

i e−iǫA1

2sin
(
πǫ
R

) =−
i R

2πǫ
−

A1R

2π
(3.103)

QR = lim
ǫ→0

∞∑

n=0

e iǫ
(

2π(n+1/2)
R

−A1

)
= lim

ǫ→0

i e−iǫA1

2sin
(
πǫ
R

) = i R

2πǫ
+

A1R

2π
. (3.104)

This leads to Q = 0, as expected. On the other hand, we find

Q A =
i R

πǫ
+

A1R

π
. (3.105)

The divergent piece is subtracted off and we find a regulated Q A

Q A =
A1R

π
(3.106)

which leads to the anomaly in the form of equation (3.94).

In this case, the anomaly can be interpreted simultaneously as a UV and IR effect has an
intuitive interpretation [43]. When considering the rearrangement of the spectrum (3.94), we
counted how many levels crossed zero. Imagining now that the theory has some UV cutoff on
highly excited states, the number of levels crossing zero is equal to the number of processes
going beyond the cutoff. As such, it makes sense that the variation of A1 can be monitored by
tracking out what happens there.

We encountered three different ways of computing the chiral anomaly. The first, computing
the variation of the path integral measure, precisely pinpoints how a classical symmetry may
not be a quantum one. The second and third, using the idea of level crossing and of Dirac sea,
require more hand-waving but provide a physical intuition about what the anomaly is; the
variation of the gauge field leads to a reshuffling of the matter energy spectra, leading to
potential particle creation.

These are by far not the only ways to compute and understand the chiral anomaly. One can,
for example, understand it as emerging from loop diagrams in the perturbative expansion; it is
actually how this phenomenon was discovered [45,46]. Another approach which sheds yet a
different light on the phenomenon is the so-called index theorem, which predicts the anomaly
from a purely geometrical perspective. Indeed, at least on compact manifolds, Fµν or its
higher-dimensional equivalent is related to the number of left-handed minus the number of
right-handed zero-modes of the Dirac operator, see for example [47].
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4 A second look at gauge theories

The quantum rotor and the Schwinger model allowed us to introduce a variety of subtle effects
in quantum theories. It is now time to move back to four dimensions and discuss how these
effects manifest themselves in theories relevant to Nature. In particular, in this chapter, we
will discuss why non-Abelian theories have an intrinsically complicated vacuum structure.
Then, as quantum field theories in four dimensions are not analytically solvable and often
numerical investigations can be of help, we will explain how one can discretise gauge theories
preserving gauge invariance.

4.1 Topology and θ-vacuum

We want to start by discussing the vacuum structure of non-Abelian field theories. We will
first see that, semiclassically, contributions to the path integral of non-Abelian theories can be
sorted into different disconnected sectors. These sectors are interpreted as emerging from the
non-trivial topology of the gauge group itself. They are tied to the existence of inequivalent
classical-vacua which can be connected only by a class of ”discrete” gauge transformations, the
so-called large gauge transformations. As in the case of the quantum rotor, this picture leads
to the existence of a θ-vacuum, which can also be understood in terms of a Hamiltonian
description and is tied to the existence of a non-zero topological susceptibility.

4.1.1 Semiclassics, instantons and |n〉-vacua

To keep the discussion simple, we will focus on the gauge group SU (2). To try to gain some
insights into the theory, we start from the Euclidean action

SE
SU (2) =

1

g 2

∫
d4x

1

2
Tr

(
GµνGµν+ iθTr

(
GµνG̃µν

))
, (4.1)

where we kept the θ-term for the sake of generality and conventionally rescaled the field by the
coupling constant g . Note that upon analytic continuation, the θ-term picks up a factor of i .
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We can now try to develop a semiclassical picture. This corresponds to a saddle point
approximation of the corresponding path integral, so the first step is to find the saddle points.
By definition, they are the stationary point of the classical action and as such are solutions to
the classical equations of motion

DµGµν = 0 , (4.2)

with Gµν → 0 at infinity. The trivial saddle Gµν = 0 corresponds to an absolute minimum of the
classical action and dominates the path integral. It is however not the only solution to the
equations of motion. In particular, one can explicitly check that, for example,

(
Ai nst .
µ

)a
= ηµνa xντa 1

r 2 +ρ2
(4.3)

(
G i nst .

µν

)a
=−2ηµνaτ

a ρ2

(r 2 +ρ2)2
, (4.4)

solve the equations of motion, see for example [11]. The symbols ηµνa are the t’Hooft symbols,
whose non-vanishing components are given by

η0i a =−ηi 0a = δi a (4.5)
ηi j a = ǫi j a . (4.6)

The matrices τa = σa

2
with σa the Pauli matrices are taken as SU (2)’s generators. The

parameter ρ is a free parameter and as such (4.3) and (4.4) are a one parameter family of
solutions. Finally, r 2 = t 2 +xi xi is the Euclidean radius.

A key property of (4.4) is that it is a self-dual solution, in the sense that Gµν = G̃µν. As such,
the associated classical action is given by

Si nst . =
8π2

g 2
(1+ iθ) . (4.7)

Remarkably, even though it is a total derivative, the term GµνG̃µν leads to a non-vanishing
contribution to the action. This is very reminiscent of what happened in the case of the
quantum rotor in section 2.1. There, the non-zero contribution could be associated to
configurations with a non-trivial topology. The related observable was
n = 1

R

∫
dτẋ = 1

R

(
x(β)−x(0)

)
. The solution with n = 1 was the one with ẋ = R

β ; interpolating
from the point x = 0 to x = R.

Building on this analogy, we see that a quantity that may be of interest is the Chern-Simons
form (1.51). To have a clear interpretation, we will work in the gauge A0 = 0. Before
transforming (4.3) and (4.4) into this gauge, let us define the Chern-Simons number

ncs(t ) =
∫

d3xK 0 . (4.8)
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In the temporal gauge and taking into account Gµν → 0 at infinity, we have
∫

d4xTr
(
GµνG̃ µν

)
=

∫∞

−∞
dt∂0ncs(t ) (4.9)

= ncs(∞)−ncs(−∞) . (4.10)

More interestingly, we can now try to understand why this total derivative contributes to the
action. As per the boundary conditions on the field strength Gµν → 0, we have that

ncs(±∞) =−
2

3

∫
d3xǫi j k Tr

(
Ai A j Ak

)
. (4.11)

Moreover, to obtain Gµν → 0, we need the gauge potential to asymptote to a pure gauge
configuration

Aµ → iΩ±∞∂µΩ
−1
±∞, (4.12)

with Ω±∞ some SU (2) transformations. Plugging this back in (4.13), we obtain an expression
of the form

ncs(±∞) =−
2

3

∫
d3xǫi j k Tr

((
Ω±∞∂iΩ

−1
±∞

)(
Ω±∞∂ jΩ

−1
±∞

)(
Ω±∞∂kΩ

−1
±∞

))
. (4.13)

Following [11], we can compute explicitly what are the Ω± associated to (4.3) and (4.4). We
are looking for a gauge transformation Ω

Ai nst
µ → At

µ =ΩAi nst .
µ Ω

−1 − i∂µΩΩ
−1 . (4.14)

The requirement At
0 = 0 imposes

Ω
−1∂0Ω= Ai nst .

0 = xaτa
1

xi xi + t 2 +ρ2
, (4.15)

which determines Ω up to a gauge transformation which depends only on spatial coordinates.
This remaining gauge freedom is just enough to set

lim
t→−∞

At
i = iΩ−∞∂µΩ

−1
−∞ = 0 , (4.16)

where we used the fact that Ai nst .
µ → 0 at t ±∞ and thus Ω±∞ = limt→±∞Ω. Without loss of

generality we thus set Ω− = 1. This acts as a boundary condition for (4.15) and allows to solve
it explicitly. One then finds [11]

Ω= e−iτa x̂a F (x i xi ,t ), (4.17)

F (xi xi , t ) =
√

xi xi

√
xi xi +ρ2


arctan




t
√

xi xi +ρ2


+

π

2


 , (4.18)
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with x̂ a unit vector of three-dimensional space. The advantage of having this explicit solution
is that we can find the t →∞ asymptote explicitly

Ω+∞ = e−iτa x̂a F1(x i xi ) (4.19)

F (xi xi )1 =π

√
xi xi

√
xi xi +ρ2

. (4.20)

This tells us that the classical solution (4.3) and (4.4), expressed in temporal gauge and after
fixing the residual gauge redundancy, interpolate a vacuum state with Aµ = 0 to another with
Aµ a pure gauge different from zero. This may come as a surprise, as one might have thought
that all pure gauge solutions to be strictly equivalent. As we just saw explicitly, this is not the
case and can be understood by studying the internal structure of the gauge group. As
explained in details in references [11] and [42], picking one or another Ω±∞ at infinity in our
four-dimensional Euclidean space can be understood as a mapping from the three-sphere into
SU (2). For SU (2) (and any simple Lie group), such mappings split into a countable infinity of
different families such that one cannot take a representative of a given family and continuously
deform it into a representative of a different family. Moreover, one can assign a numbering to
this set of family through some topological invariant. For SU (2), the relevant invariant,
sometimes called the Cartan-Maurer form [42], is

n[Ω] =
1

24π2

∫
d3xǫi j k Tr

((
Ω∂iΩ

−1
)(
Ω∂ jΩ

−1
)(
Ω∂kΩ

−1
))

. (4.21)

Up to normalisation, it is nothing more than equation (4.13). Our non-Abelian theories
possess different vacua, labelled by an integer, which can be retrieved by computing the
Cartan-Maurer invariant. The Chern-Simons number is the Cartan-Maurer invariant when
evaluated on vacuum configurations; for configurations that interpolate between different
vacuum, it keeps track how many families apart the vacua are. Gauge transformations which
are not smoothly connected to the identity are sometimes called large-gauge transformations.

These interpolating configurations, the ”instantons” solutions, can be characterised by their
topological charge

Q =
1

16π2

∫
d4xTr

(
GµνG̃µν

)
, (4.22)

which is nothing else than, in temporal gauge, the difference between Chern-Simons numbers.
For instantons, Q is an integer. For generic fields, as in the case of the quantum rotor, this will
depend on boundary conditions.

To summarise, we presented a non-trivial solution to the classical equations of motion for
SU (2), whose natural interpretation led us to discover that the theory has a set of
disconnected vacuum. The solution (4.3) and (4.4) are referred to as ”instantons” and they
can be interpreted as tunnelling events from one to a neighbouring vacuum. This is embodied
in the so-called topological charge, which is equal to one in the case of (4.3) and (4.4). From a
semiclassical perspective, one has solutions with charges Q ∈ Z and the path-integral can be
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4.1. Topology and θ-vacuum

evaluated around these different saddles. For generic fields, the values of Q will depend on the
boundary conditions imposed on the theory and may or may not be integer-valued.

4.1.2 The θ-Vacuum

As in the case of the quantum rotor in section 2.1, the existence of a degenerate set of
inequivalent vacua is tied to the existence of a θ-parameter. We will see in this section that it
can be understood beyond semiclassics from a Hamiltonian perspective.

Relevant references related to this discussion are [48–50]. We start with the following SU (N )

Lagrangian (with no θ-term) in Minkowski space

L =−
1

2g 2
Tr

(
GµνGµν

)
. (4.23)

We then move on and apply Dirac’s procedure to canonically quantise the theory [51]. We
represent the Lagrangian L in terms of a generalised Hamiltonian H of the form

L =
1

2g 2

(∫
d3xB a i Ȧa

i −H +
∫

d3x∂i B a i Aa
0

)
(4.24)

H =
∫

d3x

(
1

2
(B a

i )2 +
1

4
(F a

i j )2

)
. (4.25)

The extra part is to take into account Gauss law as a constraint

∂i B a
i = 0 . (4.26)

In this sense, Aa
0 is not a dynamical variable but act as a Lagrange multiplier for the

constraint. We further define the operator associated with Gauss law

G[Aa
0 ] =

∫
d3x∂i B a i Aa

0 . (4.27)

For our purpose, we will not need to proceed through the whole associated quantisation
procedure. The first comment we want to make is that the operator G[Aa

0 ] is the generator of
gauge transformations with gauge function Aa

0 [49]. It is seen by computing the associated
classical Poisson-bracket

{G[A0], Aa
i } = [Ai , A0]a +∂i Aa

0 , (4.28)

which is nothing else than the infinitesimal version of transformation (1.41). We recall the
reader than the Poisson bracket are defined as, with p and q a pair of conjugate field variables
and f and g arbitrary functions of them

{ f (p, q), g (p, q)} =
δ f

δq

δg

δp
−
δ f

δp

δg

δq
, (4.29)
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with δ f
δq

standing for a functional derivative.

Restricting ourselves to continuous Lagrange parameters, we see that G[A0] generates only
gauge transformations which are connected to the identity. In the quantum theory, the
physical Hilbert space is singled out by the condition

G[A0]|Ψphy s.〉 = 0 . (4.30)

In the previous section, we saw that not all gauge transformations can be continuously
obtained from the identity. Consider for example Ω

1 a large gauge transformation, of
Cartan-Maurer index n = 1. It can be written as Ω

1 = e iG[A1
0], with A1

0 not smoothly connected
to zero. As in the case of the quantum rotor and ”large” translations of R, since G[A1

0]

commutes with the Hamiltonian, the operator Ω
1 can be simultaneously diagonalised with the

Hamiltonian. Then, physical states can be classified according to the eigenvalues of Ω1

Ω
1|Ψphy s.〉 = e iθ|Ψphy s.〉. (4.31)

Because of the fact it commutes with the Hamiltonian, this becomes a ”superselection rule”;
time evolution happens only in a given θ sector as Ω

1e i H t |Ψphy s.〉 = e iθe i H t |Ψphy s.〉.

Note that the choice of Ω1 over Ω
n for any n does not impact the discussion as we can show

by induction than given (4.31), we have Ω
n |Ψphy s.〉 = e i nθ|Ψphy s.〉.

As for the quantum rotor, this θ parameter can be understood from different perspectives.
From a semiclassical perspective, it affects the path integral because of topologically
disconnected sectors in field space. From the operator perspective, it arises because of the
presence of an extra discrete symmetry of the theory.

In any events, the sensitivity to the θ-parameter goes in hand with the existence of a non-zero
topological susceptibility, defined exactly in the same way as for the quantum rotor in
equation (2.35). Moreover, its very-high temperature dependence is expected to be the
same [52]. The zero-temperature limit is not exactly known, but expression (2.17) has been
computed to be also the leading term in a large N expansion of the partition function [53,54],
with N the number of colors.

4.2 Discretising gauge theories

To conclude this introduction and to be able to move on to the main parts of this work, we
want to discuss how gauge theories can be represented on a discrete lattice. First, this has an
intrinsic theoretical interest, as a lattice can be used to regularise a quantum field theory. This
was, for example, the pursued goal of [55], which pioneered the use of gauge fields on a lattice.
Then, it is necessary to perform numerical simulations, be them of the sort presented in
section 2.3 to simulate Euclidean path integrals or of the sort of the one presented in section
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2.4 which deals with classical equations of motion.

As we saw in section 1.1, gauge invariance is required to build a consistent quantum
representation of the Lorentz group. This is tied to the fact massive vector fields have more
propagating degrees of freedom than massless ones. Gauge invariance is there to remove these
extra degrees of freedom by ”killing” the transverse modes. As such, to have a sound
regularisation and capture only the degrees of freedom which are wanted, we need to find a
discretisation of gauge fields which is gauge invariant at the lattice level. A pedagogical
introduction to lattice techniques in the context of lattice QCD can, for example, be found
in [22].

To illustrate the procedure and for concreteness, let us consider the action (1.52) in Euclidean
space

SE =
∫

d4x

(
1

2g 2
Tr

(
GµνGµν

)
+

(
Dµ

Φ
)†

DµΦ+m2
Φ

†
Φ

)
. (4.32)

with Gµν a SU (N ) gauge fields and Φ a n-uplet complex scalar field. We introduce a four
dimensional lattice Λ of size N 4 and side-length L. Equivalently, we can define a lattice
spacing a = N

L
. The complex scalar field is discretised ”naively”, to every lattice point n ∈Λ we

associate a n-uplet Φ(n).

The naive approach does not lead to gauge covariant objects in the case of gauge fields. This
can be easily seen from the matter covariant derivative. Were we to discretise the derivative
using forward (or any other) finite differences and assigning su(n)-valued vectors Aµ(n) to
every lattice point, we would write

Dnai ve
µ Φ(n) =

Φ(n +aµ̂)−Φ(n)

a
+ i Aµ(n) . (4.33)

with µ̂ a unit vector in the direction µ. It is obviously not gauge covariant for any finite a.
This can be traced back to the fact that Φ(n +aµ̂) are not evaluated at the same point and as
such do not transform with the same gauge transformation.

We already encountered in section 3.2.2 a situation where it was needed to evaluate a gauge
invariant combination of operators evaluated at different poinst when we consider the
point-splitting regularisation. In this case, gauge invariance is preserved thanks to the
introduction of a parallel transporter

Uγ(x, y) =P e i
∫
γ Aµdxµ

, (4.34)

where P is a path ordering operator and γ is a path running between x and y . These objects,
which belong to the group SU (N ) and not its Lie-algebra, have the convenient property of
transforming as [22]

Uγ(x, y) →Ω(x)Uγ(x, y)Ω(y)† . (4.35)

55



Chapter 4. A second look at gauge theories

This suggests the following. At every lattice point, introduce a set of four parallel transporters

Uµ(n) = e i
∫n+aµ̂

n Aνdxν

. (4.36)

In particular, we can now build objects of the sort Uµ(n)Φ(n +aµ̂) which transforms in the
same way as Φ(n). It also means that a finite difference of the sort

D+
µΦ=

Uµ(n)Φ(n +aµ̂)−Φ(n)

a
(4.37)

do transform covariantly. Moreover, simply by Taylor expanding in a, we see that we
appropriately recover the continuum covariant derivative.

These parallel transporters which link neighbouring lattice points are naturally referred to as
”link” variables. They can also be used to construct covariant objects which reproduce the
field strength tensor Gµν in the continuum limit. The simplest such object is the so-called
plaquette operator

Pµν =U (n)µU (n +aµ̂)νU †
µ(n +aν̂)U †

ν(n) , (4.38)

whose expansion in a give [22]
Pµν = e i a2Gµν(n)+O(a3) . (4.39)

Of course, as in the case of finite differences, one can always devise more complicated
composite object which have a smaller discretisation error.

With these results, we have everything at hand to discretise the action (4.32)

SΛ = SΛ

G +SΛ

Φ
(4.40)

SΛ

W =
2

g 2

∑

n∈Λ

∑
µ<ν

ReTr
(
1−Pµν(n)

)
(4.41)

SΛ

Φ
=

∑

n∈Λ
a4

[(
DµΦ

)†
DµΦ+m2

Φ
†
Φ

]
. (4.42)

The particular discretisation (4.41) used for the gauge fields is the renowned Wilson’s action,
introduced in [55].

Such a discretisation scheme can then be used to perform MC simulations of the path integral
of the type presented in section 2.3. The very same discretisation techniques can be applied to
Minkowski field equations, as is needed for real-time simulations. We defer the reader to
chapter 10 for additional discussion and specific examples of this type.
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5 Chiral anomaly in practice

The chiral anomaly is not a peculiarity of the Schwinger model or of 1+1 dimensions. Rather,
it is a feature of gauge theories coupled to massless Dirac fermions. Consider a
four-dimensional theory of the sort

S =
∫

d4x

(
−

1

4
FµνFµν−

1

2
Tr

(
GµνGµν

)
+ψ /Dψ

)
. (5.1)

with Fµν a U (1) gauge field, Gµν a SU (2) gauge field, Dµψ= ∂µψ+ i g A Aµ+ i gBGµ the covariant
derivative and Aµ,Gµ the gauge vectors associated to Fµν and Gµν. The story is the same as in
section 3. At the classical level, it enjoys two global symmetries, vectorial and axial rotations

Ψ→ e iαψ (5.2)
Ψ→ e iγ5αψ , (5.3)

which are associated to two conserved currents

jµ =ψγµψ (5.4)
j
µ
5 =ψγµγ5ψ . (5.5)

Quantisation requires some regularisation and such regularisation necessarily breaks one of
these symmetries. As we cannot afford to break the vectorial one, as this would come in hand
with a breaking of gauge invariance, we sacrify the axial symmetry and the current is not
conserved anymore. Following, for example, closely the argument presented in section 3.2.1,
one finds [42,56]

〈∂µ j
µ
5 〉 =

g A

8π2
FµνF̃µν+

gB

4π2
Tr(GµνG̃µν) . (5.6)

As in the 1+1 dimensional case, we see that the anomaly is a portal between the fermionic
sector and the gauge sector. In particular, it couples to the topological operators FµνF̃µν and
Tr(GµνG̃µν).

Early on, a lot of attention has been directed to the non-Abelian contribution to equation
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(5.6), see for example [57–59] in the context of the axial U (1) problem in the standard model.
or [60] for the role it can play in the context of baryogenesis. This contribution is of special
interest because of the non-trivial topology of the non-Abelian group, as discussed in section
4.1. In particular, we saw there exists saddle-point solution to the path integral with
non-vanishing GµνG̃µν. Despite their contributions being exponentially suppressed, they are
not wild quantum excursions away from the classical vacuum. These contributions then lead
to a spontaneous violation of the axial current.

Even though no such configuration exists in the Abelian case, because of the trivial topology
of the U (1) group, the Abelian contribution to the chiral anomaly can still act as a portal
between the fermionic and gauge sector. In particular, in a dynamical context, it is not
difficult to envision situations where either fermionic chiral charge or ”helical” gauge fields, i.e.
gauge fields with a non-vanishing FµνF̃µν, are generated through unrelated processes. The
anomaly can then be used to efficiently transfer one into the other.

In this part of this work, we will be concerned with this phenomenon and its dynamics. In
particular, we will review in this chapter a few physical situations where the Abelian
contribution to the chiral anomaly and the details of its dynamics is of crucial importance.

5.1 Cosmology

One of the first fields which recognised the potential importance of the Abelian contribution to
the chiral anomaly is cosmology [61,62]. Before moving on to describe specific scenarios, we
need to discuss which anomalous symmetries are relevant. Let us first recall the fermionic
content of the standard model; we refer the interested reader to [63] for a pedagogical
introduction. From the perspective of the weak force SU (2), it splits into left-handed doublets,
which are charged under SU (2), and into two right-handed singlets, which are not. The strong
force SU (3) splits the particle between quarks, which are charged triplets under SU (3) and
leptons, which are not. The U (1)Y -hypercharge couples to all particle. This structure comes
into three copies or ”families”. As such, we consider the following matter content

Q i
L ,ui

R ,d i
R , l i

L ,e i
R . (5.7)

Rotating any of these fields by a single phase is not a symmetry of the Lagrangian and the
associated currents are explicitly broken. However, atop of this explicit breaking, they each
receive an anomalous contribution. The equivalent effect in Schwinger model is given by
equations (3.103) and (3.104), where the left and right-handed rotations are both anomalous.
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In particular, adapting from reference [64], these contributions are given by

∂µ j
µ

Q i
L

=+(Nc Nw y2
Q )

g ′

16π2
YµνỸ µν+·· · =+

1

6

g ′

16π2
YµνỸ µν+ . . . (5.8)

∂µ j
µ

ui
R

=−(Nc y2
uR

)
g ′

16π2
YµνỸ µν+·· · =−

4

3

g ′

16π2
YµνỸ µν+ . . . (5.9)

∂µ j
µ

d i
R

=−(Nc y2
dR

)
g ′

16π2
YµνỸ µν+·· · =−

1

3

g ′

16π2
YµνỸ µν+ . . . (5.10)

∂µ j
µ

l i
L

=+(Nw y2
L)

g ′

16π2
YµνỸ µν+·· · =+

1

2

g ′

16π2
YµνỸ µν+ . . . (5.11)

∂µ j
µ

e i
R

=−(y2
eR

)
g ′

16π2
YµνỸ µν+·· · =−

g ′

16π2
YµνỸ µν+ . . . , (5.12)

where Nc = 3 is the number of color and Nw = 2 the number of flavour, the dots stand for the
contributions coming from the explicit breaking and the anomaly associated with the other
gauge fields. The constant g ′ is the gauge coupling to U (1)Y and we used the value of the
different hypercharges

yQ =
1

6
, yuR

=
2

3
, ydR

=−
1

3
, ylL

=−
1

2
, yeR

=−1 . (5.13)

The standard model do possess classical symmetries, they are associated to baryon and lepton
number. They are defined as

U (1)B : Q i
L ,ui

R ,d i
R , l i

L ,e i
R → e i 1

3
αQ i

L ,e i 1
3
αui

R ,e i 1
3
αd i

R , l i
L ,e i

R (5.14)
U (1)l : Q i

L ,ui
R ,d i

R , l i
L ,e i

R →Q i
L ,ui

R ,d i
R ,e iαl i

L ,e iαe i
R . (5.15)

They are both anomalously broken. We can see this explicitly for U (1) by combining the above
contributions. We then get

∂µ j
µ

B
=−

g ′

32π2
YµνỸ µν+ . . . (5.16)

∂µ j
µ

l
=−

g ′

32π2
YµνỸ µν+ . . . , (5.17)

where the dots stand now only for the other anomalous contributions. From there, we see that
at least with respect to the U (1)Y sector, we can retrieve a symmetry that is non-anomalous
by considering B − l ; do first a U (1)B rotation of parameter α, followed by a U (1)l rotation of
−α. Actually, this combination is also not anomalous with respect to SU (2) and SU (3). The
remaining anomalous symmetry is conventionally taken to B + l , which consists in performing
two rotations with the same parameter α. This gives

∂µ j
µ

B−l
= 0 (5.18)

∂µ j
µ

B+l
=−

g ′

16π2
YµνỸ µν+ . . . . (5.19)
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In terms of conserved charges, this means that no processes in the standard model can change
the number of baryons minus the number of leptons while fluctuations in gauge fields can
change the number of baryons plus the number of leptons. It is, for example, the key idea
behind models that try to achieve electroweak baryogenesis [60]. Below, we briefly review
three different situations/scenarios were the U (1) contribution can also be of interest.

Helical fields’ contribution to baryogenesis

A relevant question to ask is whether the U (1) contribution can affect the process of
baryogenesis in a similar fashion than the non-Abelian one. The naive is answer is no, as no
spontaneous variation of YµνỸ µν is expected. What can happen on the other hand, under
some circumstances, is a transfer of preexisting helicity YµνỸ µν into fermions. This was first
pointed out in [62,65], where it was shown that inhomogeneous helical hypermagnetic fields
could lead to potential B + l fluctuations. While the presence of an initial hypermagnetic field
has to be postulated, different beyond the standard model scenarios can predict such kind of
fields, see for example [66–68] and references therein.

The main obstacle for this idea to effectively affect baryogenesis is the problem of ”sphaleron
washout”. As the electroweak phase transition is actually a crossover [69,70], sphaleron
processes, which are thermal fluctuations that carry a SU (2)-topological charge, are in thermal
equilibrium and, through the SU (2) anomaly equations, tend to erase any preexisting B + l

asymmetry. The question of whether contributions from hypermagnetic fields to baryogenesis
can survive this crossover is still an open question [71,72].

Generation of helical fields in the unbroken phase

Another cosmological phenomenon that may be related to the Abelian contribution to the
anomaly is the potential existence of primordial magnetic fields. Over the last decades,
observational evidence has started to build up pointing towards the presence of coherent
magnetic fields correlated over enormous distances, deep into the intergalactic voids, see
reference [73] for a review. These large correlations are difficult to explain when considering
the creation of magnetic fields by astrophysical processes, pointing towards ”primordial”
magnetic fields created in the very early stages of the universe.

Using the contribution from the chiral anomaly is an interesting idea as it naturally generates
helical fields, which are by their nature coherent fields. It was first studied in [61], where the
following mechanism was put forward. In equations (5.8)-(5.12), the right-handed electron has
a special role. Indeed, the only anomalous contribution it receives when rotated by a phase
comes from U (1), as it is not charged under the other gauge groups. The explicit breaking, as
for the other particles, is proportional to the Yukawa’s coupling, which is notoriously small in
the case of the electron. Hence, the associated reaction rate is small. In practice, this means
that there is some temperature above which it can be completely neglected. Above this
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temperature, rotation of the right-handed electron becomes an effective symmetry, with an
anomalous U (1)Y non-conservation. Reference [61] used this effective anomalous symmetry to
create helical hypermagnetic fields starting from some hypothetic excess of right-handed
fermions. The created hypermagnetic fields are then converted into regular magnetic fields at
the electroweak phase transition.

The main problem of these kinds of scenarios is that they tend to produce magnetic fields
which are not correlated over sufficiently large distances, see for example [68].

Evolution of helical field in the Higgs phase

Until now, we only discussed phenomena happening in the symmetric phase of the electroweak
theory. The symmetry B + l receives an anomalous contribution from the U (1)Y because the
left and right-handed charges are not the same. In this sense, U (1)Y is a chiral interaction.
This is not the case of U (1)e.m. which couples to right and left-handed particles in the same
way. As such, we do not have any anomalous Abelian contribution to the breaking of B + l in
the Higgs phase.

It was however argued in references [74,75] that effects associated to a U (1) anomalous
contribution are relevant to the dynamics of magnetic fields even for a range of temperatures
below the electroweak crossover. The argument is also based on the smallness of the electron
Yukawa coupling. In the broken phase, the only interaction that refrains the chiral rotation
eL → e iαeL ,eR → e−iαeR from being a symmetry is the electrons Yukawa interaction. Even if
active, a naive estimate of the chirality flipping processes that occur through this interaction
shows that it does not overwhelm the U (1)e.m. anomalous contribution associated to this chiral
rotation. As such, to have a reliable model of magnetic field evolution, one has to take into
account this interaction. This argument led to the development of numerical simulations of
such models [76].

Note however that this effect depends on a precise and reliable estimate of both of the chirality
flipping rate and of the rate at which the anomalous transfer occurs. It is not clear that such
estimates exist at the moment and the intricacies of this complicated dynamics remain an
open question.

5.2 Chiral magnetic effect

In a different context, another interesting effect related to the chiral anomaly is the so-called
”chiral magnetic effect”. Already many years ago, it was realised in [77] that a theory of
massless fermions in presence of a chiral imbalance and subject to a background magnetic field
will develop an electric current along the magnetic field.

The origin of this effect can be understood in several different ways, see [78]. We will follow
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the argument first presented in [79]. Consider a Dirac fermion in a constant magnetic field
oriented along the z-direction. Then, its motion is confined to the x − y plane and its spectrum
is given by Landau levels [30] (a spectrum that can be mapped to the Schwinger model’s one
we considered in section 3.2.2). In the absence of background fields, the left and right-handed
spectra are degenerate. A chiral imbalance can be introduced by introducing left and
right-handed µL ,µR chemical potential or equivalently a chiral chemical potential
µ5 = 1

2
(µL −µR ). It creates an energy splitting of 2µ5 between the left and right-handed energy

band.

To understand the dynamics of the system, we can resort to an energy balance argument. To
convert a right-handed particle into a left-handed particle costs an energy of ∆ǫ= 2µ5, where
the factor two is actually ∆Q A with Q A the axial charge. In terms of rates, it gives

∆ǫ

∆t
=

µ5∆Q A

∆t
=µ5

g

4π2

∫
d3x~E ·~B , (5.20)

thanks to the anomaly relation (5.6) and with ~E and ~B the U (1) electric and magnetic fields.
This energy flux has to come from somewhere; we can extract it from an electric current ~jC ME .
The power delivered by an electric current is

∫
d3x~j ·~E and we obtain the following relation

∫
d3x~jC ME ·~E =µ5

g

4π2

∫
d3x~E ·~B . (5.21)

An expression of the current can then be obtained by taking the limit ~E → 0. We get

~jC ME =µ5
g

4π2
~B . (5.22)

This current can be understood as the result of the fact that the magnetic fields lifts the spin
degeneracy between particle and anti-particle; they will move in opposite directions and thus
create an electric current.

The relevance of this effect in heavy-ions collisions and its potential observational signature in
terms of charge separation was pointed out in references [80–82]. It was first observed in a
tabletop condensed matter experiment, as reported in reference [83]. Its direct experimental
observation in heavy-ions collisions is actively sought, with evidence of its occurrence building
up over the year [84]. Recently, the STAR collaboration reported new observations of charge
separation in proton-gold and gold-gold collisions [85], seemingly consistent with the chiral
magnetic effect. A precise measurement of this effect in this context would be a unique way to
probe experimentally topological properties of QCD, as the initial chiral imbalance which
triggers the charge separation is expected to partly come from event-by-event QCD sphaleron
processes.

Before concluding this section, we would like to mention an interesting idea to use the chiral
magnetic effect in a controlled set-up to produced entangled two-states system to engineer
quantum Q-bits [86,87]. This shows how diverse the physics related to the Abelian
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contribution to the chiral anomaly is.

5.3 Foreword to [1]

As we just saw, the chiral anomaly in four-dimensions, even through its Abelian contribution,
leads to a variety of phenomena which can potentially be of great importance. As already
mentioned, to make concrete predictions about these phenomena, we need to have a precise
understanding of the chiral charge dynamics, not only at the qualitative level but also
quantitatively. Both theoretical efforts, with the advent of chiral kinetic theory, see [88] and
references therein, and progresses on chiral magneto-hydrodynamics (chiral MHD) [89], and
numerical ones, with extended simulations of chiral MHD [76] and first principle
simulations [90–93], have been undertaken. In the next part 6, we present our contribution [1]
to this effort, in the instance of real-time classical simulations.

65





6 Chiral charge dynamics in Abelian gauge
theories at finite temperature [1]
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Abstract: We study fermion number non-conservation (or chirality breaking) in Abelian gauge
theories at finite temperature. We consider the presence of a chemical potential µ for the
fermionic charge, and monitor its evolution with real-time classical lattice simulations. This
method accounts for short-scale fluctuations not included in the usual effective
magneto-hydrodynamics (MHD) treatment. We observe a self-similar decay of the chemical
potential, accompanied by an inverse cascade process in the gauge field that leads to a
production of long-range helical magnetic fields. We also study the chiral charge dynamics in
the presence of an external magnetic field B , and extract its decay rate Γ5 ≡−d logµ

d t
. We

provide in this way a new determination of the gauge coupling and magnetic field dependence
of the chiral rate, which exhibits a best fit scaling as Γ5 ∝ e11/2B 2. We confirm numerically the
fluctuation-dissipation relation between Γ5 and Γdiff, the Chern-Simons diffusion rate, which
was obtained in a previous study. Remarkably, even though we are outside the MHD range of
validity, the dynamics observed are in qualitative agreement with MHD predictions. The
magnitude of the chiral/diffusion rate is however a factor ∼ 10 times larger than expected in
MHD, signaling that we are in reality exploring a different regime accounting for short scale
fluctuations. This discrepancy calls for a revision of the implications of fermion number and
chirality non-conservation in finite temperature Abelian gauge theories, though no definite
conclusion can be made at this point until hard-thermal-loops are included in the lattice
simulations.

A.F. contribution: Creation of the parallelised simulation software. Generation of the data.
The analysis and the writing of the paper have been done jointly with the coauthors.
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6.1 Introduction

Anomalous processes can be relevant in a large number of phenomena, from high energy
particle physics to condensed matter. One of the most well-known applications is the
explanation of the π0 → 2γ decay in quantum electrodynamics (QED), whereas in quantum
chromodynamics (QCD) they play a decisive role in the resolution of the UA(1) problem [57,94].
The rate at which anomalous processes occur is actually a relevant quantity whenever we are
dealing with out-of-equilibrium processes. In highly energetic and dense matter environments
like in the early universe, the fluctuations of gauge and scalar fields – sphalerons [20] – lead to
rapid fermion number non-conservation in the Standard Model (SM) [60], and to chirality
non-conservation in QCD [95]. The SU (2) sphaleron rate is a crucial quantity to assess the
viability of electroweak baryogenesis [60], and has been extensively studied across decades,
both from a purely analytical side and with the help of numerical simulations. Studies have
been carried out in the pure SU (2) theory in Refs. [96–106] and in the electroweak theory
e.g. [107–110], see [70] for the latest up-to-date prediction using the measured Higgs-mass.

Anomalous U (1) processes have received some attention, especially in the cosmological context.
In the electroweak theory of the SM, the anomaly in the fermionic and/or chiral current
actually contains a U (1) contribution, which is associated with the hypercharge field in the
Higgs unbroken phase and to the photon field of QED in the Higgs broken phase. As in
Abelian gauge theories there are no large gauge transformations, nor vacuum configurations
with different Chern-Simons numbers, there is no irreversible fermion (or chiral) number
non-conservation, contrary to the case of non-Abelian theories. This does not prevent however
the fermion/chiral number in Abelian theories to be transferred into gauge configurations
carrying Chern-Simons number, and to re-appear back again due to changes in the gauge field
background. These processes may have an important impact on the problems of
baryogenesis [62, 67, 71, 72, 111], magnetic field generation in the early universe [61], and chiral
asymmetry evolution at ∼ MeV temperatures [74]. Anomalous U (1) processes have also
received a renewed interest in the quark-gluon plasma community, where the chiral magnetic
effect [77, 78] and its potential experimental signatures are being studied, see [84] for a review.

The above U (1) case have been studied mostly within the framework of
magneto-hydrodynamics (MHD), which is an effective description accounting for distance
scales exceeding the mean free path of the charged particles involved in the problem, see
e.g. [89, 112], or [76] for recent numerical simulations. Despite the relevance of these processes,
a full study beyond MHD, taking into account small scale fluctuations in detail, remains to be
done. Some attempts in this direction were made in [90,91], where out-of-equilibrium
techniques were implemented. The main limitations of these studies were the intrinsic
numerical cost associated with a full-fledged treatment of fermions. Another approach was
initiated in [29], of which this paper is a natural continuation. To explain the aim of the
present research, let us set up a working model and fix notation. We are interested in the
study of physics described by scalar electrodynamics coupled to a massless vector-like fermion
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field Ψ, so that our starting lagrangian is

L =−
1

4
FµνFµν− Ψ̄γµDµΨ− (Dµφ)∗(Dµφ)−V (φ) , (6.1)

where Fµν is the field strength tensor of the U (1) gauge field Aµ, Dµ = ∂µ− i e Aµ and

V (φ) = m2|φ|2 +λ|φ|4 . (6.2)

Taking a positive squared mass m2 > 0, we can chose its value so that the lagrangian (6.1)
becomes a toy-model for the SM hypercharge sector close to the electroweak phase transition.
The chiral fermionic current Jµ = Ψ̄γµγ5Ψ is not conserved at the quantum level, and satisfies
the anomaly equation

∂µ J
µ
5 =

e2

8π2
FµνF̃µν = N f ∂µK µ , (6.3)

where F̃µν = 1
2
ǫµνρσFρσ is the hodge-dual of Fµν, N f is the number of flavours and

K µ = e2

8π2 ǫ
µνρσAν∂ρ Aσ is the Chern-Simons current. It follows that the Chern-Simons number

NC S = K 0 is identified with the magnetic helicity density [we use a (−,+,+,+) signature and
ǫ0123 =−ǫ0123 = 1]

NC S =
e2

8π2
~A ·~B . (6.4)

In the particular case of a homogeneous fermion distribution, the anomaly equation reduces to
(we fix N f = 1 from now on)

∂0 J 0
5 = ∂µK µ . (6.5)

This allows us to write an effective description without fermions. Integrating them out, they
can be represented by a (homogeneous) chemical potential µ sourced by the Chern-Simons
number [113,114]. Furthermore, in the case of massless fermions, the relation between the
chiral current and the chemical potential can be written in a closed form as1

J 0
5 =

1

6
µT 2 +

µ3

6π2
. (6.6)

The anomaly, which represents a violation of chirality, can then be recast as an equation for µ

d

d t

(
1

6
µT 2 +

µ3

6π2

)
=

e2

8π2

1

V

∫
d 3x FµνF̃µν . (6.7)

The equations of motion of the scalar and gauge fields, together with the anomaly equation
(6.7), can be actually derived from an effective action

1This is obtained for the ensemble average of the number density with the Fermi-Dirac distribution in the

presence of a chemical potential: J 0
5 ≡ n+−n−, with n± = 1

2π2

∫∞
0 dE E 2

(
1+e

E±µ
T

)−1

.
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Se f f =−
∫

d 4x
(
(Dµφ)∗(Dµφ)−V (φ)+

1

4
FµνFµν−

1

2
(∂0a)2 −

1

4M 4
(∂0a)4 −

e2

(4π)2

a

Λ
FµνF̃µν

)
, (6.8)

upon identifying ∂0a =Λµ, Λ2 = T 2/12 and M 4 = π2T 4

9
, where T is the temperature of the

system. The potential V (φ) was given in Eq. (6.2).

The main aim of this work is to extract the decay rate of the chemical potential in the
presence of an external magnetic field. This quantity is related to the Chern-Simons number
diffusion rate in the absence of chemical potential through the fluctuation-dissipation theorem
(we discuss this in detail in appendix 6.6). It is of special interest as the corresponding
diffusion rate has been measured from (independent) simulations in Ref. [29]. The
fluctuation-dissipation relation is a near-equilibrium relation, relevant for small chemical
potentials µ≪ T . Having this in mind, we will restrict our attention to the reduced system

Se f f =−
∫

d 4x
(
(Dµφ)∗(Dµφ)−V (φ)+

1

4
FµνFµν−

1

2
(∂0a)2 −

e2

(4π)2

a

Λ
FµνF̃µν

)
,

(6.9)

which corresponds to neglecting the µ3 term in the anomaly equation, hence leading to a linear
dynamics in µ. We have explored the dynamics of this system for different values of µ, solving
the linear equations of motion that follow from Eq. (6.9). In the case of large chemical
potential µ≫ T , the correct physical regime is rather described by the non-canonical kinetic
term of a(t ) that we have neglected in Eq (6.9). Keeping that term as in the full action (6.8),
would lead however to a non-linear set of equations of motion, requiring a more complicated
algorithm for solving the evolution of the system in a lattice. In this work we focus for
simplicity in the linearised description (at the level of the equations of motion) of the system
given by Eq. (6.9), independently whether this corresponds to the correct description of the
physical regime expected for a given µ. Fortunately, in order to extract the chiral decay rate of
the chemical potential in the presence of a magnetic field, it is enough to explore the regime
µ< T , for which Eq. (6.9) represents the correct description of the system.

We start nonetheless studying the system with large non-vanishing initial values of the
chemical potential, µ> T . Even though, as mentioned, Eq. (6.9) does not correspond to the
correct description of this physical regime, we still expect to get a qualitative understanding of
the system dynamics. In this case, the chemical potential is expected to be unstable, forced to
decay down to lower values. Due to volume effects unavoidable in any lattice simulation, the
chemical potential cannot decay completely, and rather relaxes into a volume-dependent finite
critical value µc . By reaching a large enough volume in the lattice, we have achieved
sufficiently small values of µc , so that we can characterise well the chemical potential decay. In
particular, we observe that the decay proceeds through a self-similar/power-law regime, while
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at the same time the gauge field long-wavelengths develop an inverse cascade spectrum.

Next, we move into the main aim of our present work, studying the system in the presence of a
background magnetic field. In this case, the theory becomes similar to its non-Abelian
counterpart, as the vacuum becomes degenerate. In particular, µ decays exponentially all the
way down to zero. We have measured the corresponding rate Γ5 ≡−d logµ

d t
in the regime of

small µ≤ T , where (6.9) describes the physically relevant theory. We provide in this way a new
determination of the parametric dependence of the chiral rate Γ5, which exhibits a best fit
scaling as Γ5 ∝ e11/2B 2, with no residual volume dependence, where B is the external magnetic
strength. Furthermore, we have compared this prediction comparing the magnitude and
parametric scaling of Γ5 obtained from our present lattice simulations against direct
measurements of Γdiff from (independent) simulations previously presented in Ref. [29], which
according to the fluctuation-dissipation argument should be related as Γ5 = 6Γdiff/T 3, with T

the temperature of the system.

On the technical side, the discretisation of this theory needs to be done with care, especially
when considering the Chern-Simons number. An appropriate discretisation scheme for Abelian
gauge theories, reproducing the continuum limit of the theory to quadratic order in the lattice
spacing, was presented in [115]. It obeys the following properties on the lattice: i ) the system
is exactly gauge-invariant, and i i ) shift symmetry of the axion is exact2. Property i ) implies
that physical constraints such as the Gauss law or Bianchi identities, are exactly verified on
the lattice (up to machine precision). Property i i ) implies that the lattice formulation
naturally admits a construction of the topological number density with a total (lattice)
derivative representation K ≡ FµνF̃µν =∆

+
µK µ, which reproduces the continuum expression

K = ∂µK µ ∝ ~E ·~B up to O (d x2
µ) corrections. Without this property, the interaction a FµνF̃µν

cannot be interpreted as a derivative coupling, and hence is not really shift symmetric. As it is
precisely the shift symmetry which justifies the functional form of the interaction in first place,
it is therefore relevant to preserve exactly such symmetry at the lattice level. Hence, in the
present work, we obtain results from numerical simulations based on the discretisation scheme
presented in Ref. [115]. In appendix, we provide a summary of the key equations of such lattice
formulation. For further technical details we refer the interested reader directly to Ref. [115].

Most of what is known about anomalous U (1) dynamics comes from MHD predictions, which
represent the long-wavelength effective description of our system. To get analytic insights, it is
interesting to compare our findings with this effective theory. The phenomena we observed
(e.g. self-similar decay of the chemical potential, gauge field inverse cascade dynamics, etc) are
qualitatively well-modeled by MHD-inspired models, even though these do not take into
account the full-fledged short-scale dynamics present in our lattice simulations.

The paper is organised as follows. In section 6.2, we present the outcome of our lattice
simulations. Namely, we study the evolution of an initially non-vanishing large chiral chemical

2An equivalent formulation for non-Abelian gauge theories was originally introduced in [116, 117]. In
non-Abelian gauge theories the shift symmetry is however not preserved exactly on the lattice.
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potential µ in the absence of an external magnetic field. This leads to a characterisation of the
self-similar decay of µ, and of the gauge field inverse cascade dynamics. We then add an
external magnetic field, which introduce a vacuum degeneracy, and allows for the complete
decay of the chemical potential. This gives us a way to measure in the physically relevant
regime the amplitude and parametric dependence of the decay rate Γ5, which we compare with
Γdiff as inferred from previous simulations. Section 6.3 is devoted to the comparison of our
results to MHD. We provide there a simplified MHD model which allows us to describe the
gross feature of the system. We then characterise the inverse cascade phenomenon and see
that its dynamical evolution can be well fit to an MHD-like ansat z. We also discuss the
expected parametric dependence of the chiral rate. In section 6.4 we discuss our results and
present future outlooks. Appendix 6.5 recaps the lattice setup and in appendix 6.6 we review
the derivation of the fluctuation-dissipation relation between the chiral rate and the
Chern-Simons diffusion one.

6.2 Lattice results

In this section, we report the results obtained from our lattice simulations. We select from a
thermal ensemble (with µ= 0) initial configurations, which we then evolve following the
(lattice version of) the classical equations of motions derived from (6.9), with initial condition
µ(0) =µ0 6= 0. We follow the evolution of the chemical potential, which in the symmetric phase
is expected to be unconditionally unstable, leading to the creation of long-range gauge
fields [118,119]. We start by investigating the general features of the chemical potential
evolution in the absence of a background magnetic field, making sure that the volume
dependence of our observables is under control. Then, we study the self-similar behaviour of
the decay for large initial chemical potential, and characterise the associated inverse cascade
dynamics of the gauge field. We show that the magnetic power spectrum flows to the infrared
modes. After that, we switch on a homogeneous background magnetic field. This is achieved
by the use of twisted boundary conditions [120], which are already introduced in the
Monte-Carlo process that generates the initial configuration (we describe this in appendix 6.5).
We observe different regimes, and in particular, we focus on the exponential decay induced by
the presence of the external magnetic field. This allows us to extract the chiral magnetic decay
rate Γ5 =−d logµ

d t
, and characterise its parametric dependence.

6.2.1 Chemical potential decay

The existence of an instability can be understood by looking at the free energy of the system
under consideration. In momentum space, the usual magnetic term Hmag = 1

2
~B 2 ∼ 1

2
k2 A2

competes with the chemical potential term H
CS
=µNC S ∼± e2

8π2 µk A2, where the different sign
corresponds to the different polarisations of the gauge field, reflecting the chiral nature of the
coupling. The chiral term may become dominant at small momenta, and for the gauge field
polarisation for which H

CS
and Hmag have opposite sign, an instability occurs for sufficiently
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Figure 6.1 – Chemical potential evolution for different lattice sizes and initial values. Upper
panels: Evolution of the chemical potential for different lattice sizes for a relatively small (left
panel) and a relatively large (right panel) initial chemical potential. The dotted lines show the
value of the critical potential predicted by equation (6.11). As expected, finite volume effects
are observed for chemical potential close enough to critical. Far enough from the critical value,
all lattices give the same results. Lower panel: Evolution of the chemical potential for different
initial values, on the largest N = 448 lattice we have simulated. As the initial value is decreased,
the size of the initial pl ateau increases. For large chemical potential, we observe a power law
decay, which is related to some self-similar behaviour.

infrared modes
k <

e2

4π2
µ= kc . (6.10)

In particular, if all k’s on the lattice are larger than the critical k, no instability can develop.
As the lattice momentum is discrete and has a minimum value kmi n , it implies the existence of
a critical chemical potential below which no instability can develop. Equation (6.10) can be
rewritten to understand what is the largest chemical potential which is stable given a
momentum resolution. Using the smallest momentum in a lattice kmi n = 2π

N dx
, with N the

number of lattice points in one direction and dx the lattice spacing, we find

µc =
8π3

e2N dx
. (6.11)
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For µ<µc (e, N ,dx) the instability is not captured any more for the given lattice. From now on
we set T dx = 1, as any re-scaling of the lattice spacing can be translated into an inverse
re-scaling of the gauge coupling constant e2. In this way, relevant scales are always guaranteed
to be captured in the lattice (see [29] for more details). In the upper panels of figure 6.1 we
show the behaviour of the chemical potential for different lattice sizes (in this figure and in the
following, we indicate in brackets the corresponding units in powers of the temperature T ).
The critical threshold predicted by (6.11) is clearly appreciated, as indicated by the dotted
lines in the figure. As long as the chemical potential remains much larger than the critical
value for a given lattice size N , all simulations agree, as expected, independently of the volume.
On the other hand, some finite volume effects are observed around the critical value. In
particular, we see in the top right panel that for the smallest volume considered N = 56, the
chemical potential displays some oscillations just before approaching the critical value; such
oscillations disappear for larger volumes. In the lower panel, we display the chemical potential
evolution for different initial values, for the largest N = 448 lattices we simulated. For large
enough initial values, we observe a power law decay, which as we will explain in section 6.2.2,
corresponds to a self-similar behaviour.

Another phenomenon we observe is that the smaller the initial chemical potential, the longer it
takes for the decay to be triggered. In other words, we see the emergence of long pl ateaus,
gradually longer the smaller the initial value of the chemical potential is. This phenomenon
makes the regime of very small chemical potential difficult to be captured well on a lattice.
Atop of requiring large volumes to decrease the critical chemical potential, one has to perform
increasingly longer simulations.

6.2.2 Inverse cascade

In the previous subsection, we have seen that finite volume effects are under control for
sufficiently large lattices N ≫ 50, and that long initial pl ateaus appear for small chemical
potentials. A remarkable feature of the chemical potential evolution in this context is that for
large initial values, its decay corresponds to a universal power-law. We show this phenomenon
in figure 6.2 for different charges and initial values of the chemical potential. After some
transient behaviour, all decays enter a power-law regime well described by a t−1/2 behaviour.
All the dependence on the parameters comes from the charge and lies in the prefactor as we
illustrate in the right-hand side part of the figure.

Actually, this phenomenon goes in pair with what is known as an inverse magnetic cascade.
The decay of the chemical potential induces a transfer of magnetic energy from the ultraviolet
(UV) into the infrared (IR). In other words, long-range magnetic fields are created. We
consider the magnetic power-spectrum

ǫB (k) =
1

2π2

(
dx

N

)3 〈
k3|B̃(k)|2

〉
|k| , (6.12)
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Figure 6.2 – Left: Chemical potential decay for different electric charges and different initial
values. The dashed lines are the fits to a power-law (errors on the fit to the exponent are
specified but not plotted). We see that the exponent is compatible with −1

2
. Right: Chemical

potential normalised by e2. The data collapse shows that µ(t ) ∝ e2g (t ) with g (t ) a function
independent of e2.

where the quantity 〈. . .〉|k| denotes an angular average over the spherical shell of radii
[|k|− 1

2
∆k, |k|+ 1

2
∆k), with ∆k = kmin ≡ 2π

N d x
the binning width. The quantity

B̃(k) =
∑

x e−i~k·~x~B(x) is the lattice discrete Fourier transform of ~B(x) and has the same units as
~B(x). This definition has the advantage of being volume independent and it is simply related
to the real-space volume average as 〈~B 2〉

V
=

∑
k

kmin

k
ǫB (k) mimicking the continuum relation

〈~B 2〉 =
∫

dk
k
ǫB (k).

In figure 6.3, we plot the time evolution of the magnetic spectrum, where an energy flow from
UV scales into IR scales, i.e. an inverse cascade, is clearly observed. As the chemical potential
starts decaying, the magnetic energy is gradually transferred into the lower modes, so that at
the end of the simulation most of it is peaked around the smallest lattice mode kmin. Another
way to display this information is by looking directly at the spatial distribution of the
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Figure 6.3 – Magnetic power spectrum on a 4483 lattice with µ0 = 60µ448
c and e2 = 1. In the

3D-plot, we also show the evolution of the chemical potential (the reader is referred to figure
6.2 for the correct scale). As the decay proceeds, we assist to a steady transfer of energy
towards the IR. In the end, most of the magnetic energy is stored in the minimal frequency.
The UV part of the spectrum is related to the intrinsic UV sickness of the classical theory.

magnetic field, as we do in figure 6.4. There we show snapshots of the magnetic field arrows,
together with some representative field lines emanating from the center. In the left panel of
figure 6.4, we see that, immediately after thermalisation, no characteristic structures in the
magnetic field distribution are observed. However, after the inverse cascade process occurs, we
see long-range magnetic fields, as depicted in the right panel of figure 6.4, where the field lines
reach out through the whole lattice.

6.2.3 Decay in the presence of an external magnetic field

The dynamics of a chiral charge is of special interest in the presence of a background magnetic
field Bi = 1

2
ǫi j k F j k . In this case, as detailed in [29], the vacuum of the theory is degenerate and

the situation is closely related to its non-abelian counterpart. As already mentioned, such a
background can be introduced on the lattice through the use of twisted boundary
conditions [120]. The main difference from the case without magnetic field is that the chiral
charge is now unconditionally unstable, and can decay all the way down to zero.

The early dynamics of the system depends crucially on the strength of the magnetic field. For
large enough ones, it will drive the chiral charge decay from the beginning onward. For weak
external magnetic fields, we expect the system to evolve initially like in the absence of magnetic
field, and settle down to the critical value µc . The chemical potential cannot stay however in
the state µ=µc in the presence of a background magnetic field, and eventually decays to zero.

These two limiting situations can be well observed in our simulations. We can also study the
transition between them, see in particular figure 6.5. There we plot the contribution to the
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Figure 6.4 – Snapshots of the magnetic field just after thermalisation (left panel) and at the
end of the inverse cascade (right panel) on a 4483 lattice with µ0 = 60µ448

c and e2 = 1. The blue
’ribbons’ are field lines emanating from a small plane placed in the center of the box. They can,
for instance, be drawn by following the motion of a test magnetic charge initially on the plane.
At early times, no special structure is seen, since the magnetic field is homogeneous and well
thermalised. At the end of the simulation, after the inverse cascade process has operated for a
long while, the magnetic field has developed a long-range order, leading to structures which
permeate the whole lattice. This is the spatial counterpart to the IR power displacement in
Fourier space described below Eq. (6.3).
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Figure 6.5 – Chiral chemical potential energy evolution for a variety of external magnetic
fields. The lines EBext

= 1
2

B 2
ext are the energies of the external magnetic field, to give a reference

point. Upper plot: Large initial chemical potential. We see three regimes. First, when the
external magnetic field’s energy is much smaller than the initial chemical potential energy, it
has no effect on the initial dynamics; the system evolves as if there was no external background
(orange curve). After some time spent in the critical pl ateau, the system eventually decays to
a µ= 0 state. For a large external magnetic energy, the system does not enter the self-similar
regime and the decay happens through the external magnetic field from the beginning (green
curve). Between these two regimes, there is an intermediate one, where both effects contribute
(pink curve). Lower plot: Small initial chemical potential. A similar discussion applies as in
the upper plot, though the system exhibits now higher sensitivity to the external magnetic
field, as the ratio between the chemical and magnetic energy is smaller.
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total energy from the chemical potential µ2T 2

24
3. This allows us to compare the chemical

potential energy with respect to that of the external magnetic field. In the upper panel, we
plot configurations with large initial values of the chemical potential, whereas the analogous
plots for weaker initial chemical potential values are presented in the lower panel. As a
reference, we also display the outcome from simulations with the same initial chemical
potential but no magnetic field. The dashed lines represent the magnetic energy carried by the
external background. Looking first at the weakest magnetic fields, we see that its influence on
the chemical potential is minimal. For larger initial chemical potentials, the simulations are
almost not affected while in the case of smaller chemical potentials the length of the initial
pl ateau is slightly reduced. As expected, we see that the chemical potential relaxes first to its
critical value, before undergoing a secondary decay due to the presence of the background
magnetic field. For stronger background magnetic fields (top red curve, and bottom red and
blue curves), we observe a transition regime where both effects are competing. In this case, the
system is not sensitive any more to the finite number of infrared modes; the chemical potential
does not stabilise to a critical value. In both cases, it happens when the external magnetic
energy is roughly two orders of magnitude smaller than the initial chemical potential energy.
For even larger magnetic energies, we enter into a different dynamical regime, where the
chemical potential decays quickly to zero through damped oscillations.

It is also instructive to look at the spatial distribution of the magnetic field. In figure 6.6, we
show the magnetic field lines corresponding to the orange and red curves in the top panel of
Fig. 6.5, associated with large initial chemical potentials. In the left panels of Fig. 6.6, we
show the field lines just after thermalisation, and in the right panels we show the field line
distribution at the final stage of the decay. As expected, the magnetic field is initially oriented
along the direction of the external magnetic field (which, without loss of generatily, was chosen
to be oriented along the z-axis), and the stronger the external magnetic field the less
important the thermal fluctuations are. In the final stage, we still see lattice-size structures.
For weaker magnetic fields, the decay is essentially driven by the chiral instability of the
chemical potential, so the field lines extend in all directions, as in the case without magnetic
fields. Yet the effect it is still visible due to the presence of the external magnetic field, as
more field lines expand along the z-direction. For a larger magnetic field background, the field
lines which are not aligned to the z-axis are suppressed at the end of decay, and we essentially
see only field strength lines along the z-axis.

6.2.4 Chiral magnetic rate

As presented in the previous section, the evolution of the system in the presence of an external
magnetic field is subject to two competing dynamics. On the one hand, there is the intricate
evolution related to the anomaly-induced creation of long-range gauge fields. On the other
hand, the external magnetic field acts as a vacuum reservoir and induces an exponential decay

3Of course this represents a ”physical” energy only for µ< T .
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Figure 6.6 – Magnetic fields after thermalisation (left panels) and at the end of the evolution
(right panels), obtained for N = 224 and µ0

5 = 30µ224
c . Blue ribbons are the field lines emanating

from a subplane in the center of the lattice. For both values of the external magnetic field, the
initial configuration looks similar, with the magnetic field lines oriented along the z-direction.
The final states are however different. For the weaker Bext (orange curve of figure 6.5), the
magnetic field develops long-range structures in transverse directions to the z-direction. For
the larger Bext, the final structures tend to be more aligned to the z-direction.
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6.2. Lattice results

Fit quantity Fit χ2/dof

Γ5 10−2.094±0.008(B)2.001±0.009(e2)2.76±0.01 0.88
Γ5

B 2 10−2.103±0.002(e2)2.75±0.01 1.13
Γ5

e11/2 10−2.098±0.008(B)2.005±0.008 1.13
Γ5

e6 10−2.0±0.1(B)2.1±0.1 155
Γ5

e11/2B 2 10−2.10±0.02 1.16
Γ5

e6B 2 (1.9±0.1) ·10−3 ln
(

62±13
e2

)
1.80

Table 6.1 – Chiral dissipation rate Γ5. The errors are two standard deviations and are not
rescaled by the χ2/do f .

of the chemical potential. In this section, we are interested in this dynamic.

To extract Γ5 from our simulations, we proceed as follow. To disentangle the magnetic driven
decay from the rest of the dynamics, we take our initial chemical potential to be the critical
one. Thanks to our large volumes, it also allow us to reach the physically relevant regime
µ< T . As explained in section 6.2.1, the anomaly-related instability does not develop for
sub-critical chemical potentials. Representative evolution of the critical chemical potential in
the presence of an external field are shown in the upper-left plot of 6.7. We see, as expected, a
clear exponential decay. This allows us to measure Γ5. We show its B 2 dependence for different
volumes in the upper-right panel of 6.7. We observe a good convergence to the infinite volume
limit, as the N = 448 and N = 224 cases differ only in ∼ 0.5%. We thus pursue the investigation
only on the N = 448 lattices, adding a 1% systematic error to take into account any potential
remaining volume dependence. We obtain that there is virtually no deviation from the
expected B 2 dependence.

In the lower-left panel of Fig. 6.7, we look at the charge dependence of the rate. Fitting our
data, we find that they are well modeled by a ∝ e11/2 dependence. This can also be seen in the
lower-right panel of Fig. 6.7, where we show Γ5

e11/2B 2
ext

. All the different determinations collapse
to a constant; there is very little remaining dependence on the charge and magnetic field.

More quantitatively, we present in Table 6.1 the different fits we performed to our data. All
the main fits agree with each other, giving an almost exact B 2 magnetic dependence, an
effective e11/2 charge dependence and a prefactor of 10−2.1 ≈ 0.0079. To check the robustness of
the coefficients, we also to tried to fit Γ5

e6 with f (B) =αBβ. Such a hypothesis is clearly
excluded by the data as it leads to a χ2/dof of 155. We also present in this table a fit in
Γ5 = aB 2e6 ln

(
b
e

)
to show that the charge dependence can also potentially interpreted as

logarithmic corrections to a leading e6 scaling. As we will discuss in section 6.3.3, this is what
can be expected from theoretical predictions.

These numbers may be compared to the values of the topological charge diffusion rate, which
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Figure 6.7 – Upper left: Exponential decay of the chemical potential for µ0
5 = µc . Upper

right: Volume dependence of the measured decay. We observe convergence to in the infinite
volume limit. The N = 448 results differ only in a few parts in thousands from a naive linear
extrapolation using the N = 224 and N = 448 results. Lower left: Charge dependence of the
decay rate. We observe a deviation from the dominant e6 scaling. We can well describe it by
an effective e11/2 dependence. Lower right: Full scaling of the rate. We see that the quantity

Γ5

e11/2B 2
ext

is almost constant. The remaining charge and magnetic field dependence is very weak.

82



6.3. Comparison to MHD

Fit quantity Fit χ2/dof〈
Q2

〉

V t
10−3.00±0.23 · (e2)2.87±0.12 ·B 2.06±0.07 ·V 0.05±0.09 0.67〈

Q2
〉

V te6 10−3.06±0.24 ·10−3 ·B 2.05±0.08 ·V 0.06±0.09 0.74〈
Q2

〉

V te11/2 10−2.93±0.24 ·10−3 ·B 2.06±0.08 ·V 0.03±0.06 0.74〈
Q2

〉

V tB 2 10−2.91±0.21 ·10−3 · (e2)2.87±0.12 ·V 0.03±0.04 0.70〈
Q2

〉

V te6B 2 10−2.90±0.10 ·V 0.06±0.08 0.76〈
Q2

〉

V te11/2B 2 10−2.84±0.20 ·V 0.00±0.04 0.77

Table 6.2 – Diffusion rate Γdiff from [29], re-analysed. We take advantage of this re-analysis
to take into account the statistical fluctuations in the fit, which was not done in [29]. The
errors represent two standard deviations. The relatively small χ2/do f shows some degree of
overfitting. As we do not use it to rescale the errors, they are probably overestimated.

at large time reads
〈Q2(t )〉 = ΓdiffV t (6.13)

with Q(t ) = Ncs(t )−Ncs(0), Ncs(t ) = e2

8π2

∫
dx3~A ·~B . This quantity was measured in [29], and it is

related to Γ5 through a standard fluctuation-dissipation argument4

Γ5 = 6
Γdiff

T 3
. (6.14)

For the sake of the comparison, we present in Table 6.2 a re-analysis of the data of Ref. [29].
Unfortunately, the diffusion rate is a harder quantity to extract and leads to a less precise
quantification. As the results of [29] were obtained at different small volumes, we keep an
explicit volume dependence in our fits, even if we find it to be weak. Taking as a measured
value Γ5 = 10−2.10±0.02B 2e11/2/T 3 leads to a prediction Γdiff = 10−2.88±0.02B 2e11/2. The prefactor
and the magnetic field dependence are consistent with the measurements of Γdiff reported
in [29]. At first sight, the scaling with e2 seems to be in mild tension, but further analysis
shows that the data from Ref. [29] does simply not constrain well enough the charge
dependence of Γdiff. This can be seen in the fits in Table 6.2, where either scalings ∝ e11/2 and
∝ e6 are compatible with the data, exhibiting a similar χ2/do f . We conclude that within the
errors, the fluctuation-dissipation relation Eq. (6.14) is well verified.

6.3 Comparison to MHD

Different approaches can be followed to get some analytical understanding of a system in the
presence of a chiral chemical potential. Recently, progresses have been made towards
establishing a chi r al−kinetic theory, which adds to the usual Boltzmann-like approach a

4Note that the corresponding expression in [29] contains a factor 2 wrong, see appendix 6.6 here, for a
clarification of this.
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self-consitent treatment of the anomaly, see [88] and references therein for more information.
Valuable knowledge may also be gained in the hydrodynamical regime by studying the
effective field theory of the long wavelength field modes together with the electromagnetic
interactions. In this approach, matter is a fluid, characterised by its velocity field. A variety of
interaction terms going from the simple linear response electric conductivity to direct coupling
of the velocity which can induce turbulence can be added. This kind of approach is referred to
as MHD. The equations can be further modified to take into account anomalous
processes [61, 62], to give anomalous MHD. Recently, an extensive study was carried out, both
at the theoretical level [89] and using numerical simulations, [76] of full anomalous MHD
models. We refer the interested reader to these references for more details.

To try to gain someunderstandong of our results, we will attempt to model the system using a
truncated set of MHD equations. Namely, we will focus on the magneto-dynamics part, not
considering any hydrodynamics evolution.

∂~E
∂t

= e~j −~∇×~B − e2

4π2 µ~B , ∂~B
∂t

=~∇×~E ,

dµ
dt

= 3e2

T 2π2
1
V

∫
dx3~E ·~B , ~j =−σ~E .

(6.15)

where σ is the linear-response electric conductivity.

This approximation will turn out to qualitatively work surprisingly well. Indeed, as our lattice
simulations describes the full-dynamics of our matter field, there is no apr i or i reasons for the
matter field to contribute little to the global dynamics. It is even likely that in some regimes
not explored in this work, matter effects which would be described as turbulence in a
hydrodynamic language should manifest themselves.

In particular, this model predicts the existence of a chiral magnetic rate. Indeed, the evolution
equation for µ can be rewritten as, neglecting the time derivative of the electric field,

dµ

dt
=−

3e2

T 2π2σ

1

V

∫
dx3

(
e2

4π2
µ~B +~∇×~B

)
~B . (6.16)

Taking B to be constant, we then obtain

µ∝ e−Γ
(M HD)
5 t , (6.17)

with Γ
(M HD)
5 = 3e4B 2

4π4σT 2 . We will compare it to our results in section 6.3.3.

Finally, note that from now on, when we refer to MHD or MHD-like predictions, we have in
mind the specific model (6.15).
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Figure 6.8 – Left: Single-mode MHD solution for some typical value of the parameters. The
value of k is chosen to correspond to the minimal k which can be simulated on lattices of sizes
N = 56 and N = 448. We further set σ= 0.1,e2 = 1 and take f0 = ḟ0 = 1 as initial values. We also
plot the predicted breaking time, which gives a good estimate for the end of the exponential
growth. Right: Corresponding chemical potentials.

6.3.1 Qualitative behaviour and initial plateaus

As presented in previous sections, the chemical potential is transferred into long-range helical
magnetic fields which carry a non-vanishing Chern-Simons number. To understand at a
qualitative level some of the observed features, like the existence of pl ateaus in the initial
stage, we can consider the evolution of a maximally helical field under anomalous MHD-like
dynamics. In the presence of a background magnetic field in the z- direction, this corresponds
making the ansat z [118]

A1 = f (t )sin(kz)−
B

2
y, A2 = f (t )cos(kz)+

B

2
x, A3 = fz (t ) , (6.18)

which leads to

f̈ = k f

(
e2µ

4π2
−k

)
−σ ḟ , (6.19)

µ̇=
3e2

T 2π2

(
B ḟz −k f ḟ

)
, (6.20)

f̈z =−σ ḟz −
e2

4π2
µB. (6.21)

Let us first consider this toy-model without an external magnetic field (B = 0, fz (t ) = 0). Then
the system of equations reduces to

f̈ = k f

(
e2µ

4π2
−k

)
−σ ḟ , µ=−k

3e2

2T 2π2
f 2 +k

3e2

2T 2π2
f 2

0 +µ0 . (6.22)
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Figure 6.9 – Upper panel: Chern-Simons number evolution. Lower panel: Chemical potential.
In both cases, non-solid lines are fits obtained from the model (6.22). Dotted ones correspond
to a fit over the full time range whilst dashed lines were obtained by restricting t < 10. We see
that the model is appropriate only for the initial part of the evolution.

By plugging in the expression for µ into the first equation of (6.22), we obtain a non-linear
equation for f (t ). Solving it numerically also gives us access to the evolution of µ(t ). Here, we
take f0 and σ to be some free parameters to be fitted. Examples of the time evolution of f (t )

and µ(t ) obtained with this procedure, are shown in figure 6.8. Despite being in qualitative
agreement, this simple modeling does not capture completely the fine details, especially for
large initial chemical potentials. In figure 6.9, we compare the modeling based on the ansatz
(6.18) with the numerical outcome from our lattice simulations. The lower panel shows the
chemical potential whilst the upper panel shows the Chern-Simons number, which is useful to
understand the initial dynamics. Solid lines were obtained from our simulations, while dashed
and dotted ones are numerical solutions to equations (6.22) for different parameters
(conductivity and initial conditions).

Let us first consider the case µ0 = 8µc , as the model gives a better description for relatively
small chemical potentials. The dotted curves were obtained by fitting the ansat z model to the
whole range of data. When looking at the chemical potential, we see that the model is able to
describe reasonably well the initial pl ateau, but fails to describe well the decay. Actually,
when looking at the Chern-Simons number, we see that even the initial phase is not very well
described by this fit. A remedy to this is to restrict the fitting range to early times, where the
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system should be closer to the model. For example, the dashed curves are obtained by
restricting the fitting range to times t < 10/T (delimited by a solid vertical black line). This
gives a much better description of the initial phase; essentially the initial evolution is well
captured by the simple ansat z. At a later stage, when a more complex dynamics has
developed, such as the creation of long-range magnetic fields following a process of inverse
cascade (or what can be described as a turbulent regime in MHD), the model is too simplistic
to capture well the physics. The same can be said about large initial chemical potentials, as in
the case of µ0 = 60µc depicted in the figure. There, we see explicitly that the power-law decay
(expected due to the generation of long-range magnetic field) is completely missed by the
ansat z modeling. The red and orange vertical solid lines are a visual guide indicating the
saturation of the Chern-Simons number and of the corresponding chemical potential.

We can get a better understanding of the early dynamics of f (t ) and µ(t ) in the ansat z

modeling, by simply perturbing equation (6.22), i.e. considering f (t ) = f0 +δ f (t ), so that

f0k2 −
e2

4π2
f0kµ0 +k2δ f (t )+

3e4

4π4T 2
f 2

0 k2δ f (t )−
e2

4π2
kµ0δ f (t )+σδ̇ f (t )+ δ̈ f (t )

+
9 f0k2e4

8π4T 2
δ f (t )2 +

3k2e4

8π4T 2
δ f (t )3 = 0. (6.23)

Keeping the linear order terms in δ f and neglecting the terms proportional to f 2
0 (we do not

start in a state with an helical field), the equation reduces to
(
k2 −

e2

4π2
kµ0

)(
f0 +δ f (t )

)
+σδ̇ f (t )+ δ̈ f (t ) = 0. (6.24)

This is a driven harmonic oscillator which admits a solution as

δ f (t ) ≈
e−

σ
2

t

2ωe f f

(
2 f0ωe f f cosh

(
ωe f f t

)
+ (2 ḟ0 + f0σ)sinh

(
ωe f f t

))
− f0 , (6.25)

where ḟ0 is the initial time derivative of f (t ), and we have defined

ω2
e f f =

e2

4π2
kµ0 −k2 +

(σ
2

)2
. (6.26)

Eq. (6.25) indicates, first of all, that the solution corresponds to an IR instability for the modes
k < e2

4π2 µ0, which grow exponentially fast. Secondly, by estimating the range of validity of this
solution, we can estimate the duration of the chemical potential pl ateau until the onset of its
decay. Indeed, the breakdown of this approximation corresponds to the end of the exponential
growth of f (t ), which in turn triggers the chemical potential decay. The approximations cease
to be valid when higher order perturbations become non-negligible. To see this in detail, we
keep only the exponentially growing part of the solution and neglect the constant term,

δ f (t )as ≈
exp

((
−σ

2
+ωe f f

)
t
)

2ωe f f

(
f0

(
ωe f f +

(σ
2

))
+ ḟ0

)
. (6.27)
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Figure 6.10 – Numerical solution to our single-mode MHD model for three different magnetic
fields and some reasonable initial conditions. The behaviour is in qualitative agreement with
the numerical outcome from lattice simulations, see Fig. 6.5. Three regimes appear to be
present: one initially dominated by the chiral instability (orange curve), another where the
decay is strongly induced by the external magnetic field (blue curve), and an intermediate
regime (pink curve).

The relative weight between the linear to second-order perturbation terms in the equation of
motion 6.23, and linear to third order terms, are defined by the ratios

r2(t ) =
k2 − e2

4π2 kµ0

9 f0k2e4

8π4T 2

1

δ f (t )as
, r3(t ) =

k2 − e2

4π2 kµ0

3k2e4

8π4T 2

1

δ f (t )2
as

(6.28)

We expect the linear approximation to breakdown whenever either of these ratios become of
order one. We thus define the breakdown time tb to be

tb ≡ min(t2, t3) , with r2(t2) ≡ 1, r3(t3) ≡ 1. (6.29)

In figure 6.8, we show how this prediction performs, comparing the linearisation (dotted lines)
to the numerical solution to Eq. (6.22). We see that tb in (6.29) gives a reliable prediction of
the range of validity of the linearisation regime. In conclusion, the duration of the initial
pl ateau can be estimated well with our simple MHD-inspired ansat z equation (6.18).

In the presence of an external magnetic field, the system of equations (6.19) does not admit a
simple enough analytic treatment. We can solve them nonetheless numerically. We show the
chemical potential obtained from numerical integration of these equations in figure 6.10. As in
the previous case, we see that it captures reasonably well the dynamics of small chemical
potentials. For weak magnetic fields, it is dominated by the chiral instability of the chemical
potential. The system evolves as in the absence of magnetic fields, reaches a pl ateau and only
at later times it decays to zero because of the presence of the magnetic background field. For a
sufficiently large background magnetic field, the decay is driven by the presence of such field,
driving quickly the system into a µ= 0 state. For intermediate external magnetic fields, we
have a superposition of the two effects.
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6.3.2 Self-similarity and inverse cascade

The power law decay ∝ t−1/2 of the chemical potential reported in section 6.2.2 was also
predicted in the context of MHD in several works [61,74,75,121,122]. More specifically,
various analysis of the time evolution of the magnetic spectrum, have been carried out in
refs. [61,121,122]. We will now compare these modelings with the outcome from our numerical
simulations. First of all, we repeat the analysis of refs. [61, 121,122]. The starting point in
MHD are equations (6.15). Taking the curl of the first equation and neglecting the second
time derivative of ∂2~B

∂t 2 ≈ 0, the equation for the magnetic field can be recast as

σ
∂~B

∂t
=∇2~B +

e2

4π2
µ(~∇×~B) . (6.30)

We can now decompose the magnetic field in an orthonormal helicity basis Q±(~k,~x), which
corresponds to a basis5 of eigenvectors of the curl operator,

~B(x, t ) =
∫

d3k

(2π)3

(
~α+(t ,~k)Q+(~k,~x)+~α−(t ,~k)Q−(~k,~x)

)
, (6.31)

so that ~k ×Q±(~k) =±kQ±(~k). In that basis Eq. (6.30) reduces to

∂α±(t ,~k)

∂t
=

1

σ

(
−k2 ±

e2

4π2
µ(t )k

)
α±(t ,~k) , (6.32)

which admits as a solution

α±(t ,~k) =α±
0 (~k)exp

[
1

σ

(
−k2t ±k

e2

4π2

∫t

t0

dt ′µ(t ′)

)]
. (6.33)

Furthermore, as soon as
∫t

t0
dt ′µ(t ′) becomes sizable, α−(t ,~k) becomes sub-dominant.

Neglecting the latter, we can then write

|B(t ,~k)|2 ≈ |α+
0 (~k)|2 exp

[
2

σ

(
−k2t +k

e2

4π2

∫t

t0

dt ′µ(t ′)

)]
. (6.34)

Equation (6.34) represents a prediction based on MHD, which we can use to compare against
our data. A further simplification we make, following [121], is to neglect the ~k dependence6 of
the initial amplitude α+(~k) ≈α+

0 . This leads us to write down the following function

B 2
f i t (k,c1,c2,c3) = exp

(
c1k2 + c1 · c2k + c3

)
, (6.35)

5The precise form of the basis depends on the base space the analysis is performed, e.g. Ref. [61,121] considers
R

3 whilst Ref. [122] used a sphere. In the analytical description above we will simply work in a Euclidean base
space R

3, as we are describing the continuum theory. Were we to write down a basis for the torus, we could
construct it nonetheless from a superposition of the basis of [121].

6Note that we could also get rid of it by considering ratios of |B(t ,~k)|2 at different times. An analysis using
this method turned out to be less accurate, we believe because of the small number of momenta we can use for
the fits.
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Figure 6.11 – Left: Time evolution of 1
2π2

(
dx
N

)3
|B̃(k)|2 against MHD inspired fits, see equation

(6.12). Right: Fit’s parameters as a function of time. The coefficient c1 allows for a determination
of an effective conductivity, σe f f , c2 can be used to check the validity of the fit, as it is expected
to follow the evolution of the integrated chemical potential, which is indeed the case. Lastly, c3

can also be used as a posteriori check, as it is supposed to be a constant. The fits are based on
MHD predictions and show a remarkable agreement in the qualitative description.

which will be used as a fit to |B(k, t )|2 obtained from our simulated data at different times.
This is precisely what we show in figure 6.11. In the left panel we plot |B(k, t )|2 for three
different times together with a best fit of the form (6.35). Despite the limited number of
modes available, we see that the data is well fit by a functional form as in Eq. (6.35).

Let us look now at the time dependence of the fit coefficients c1,c2 and c3. From comparing
(6.35) and (6.34), we expect c1 to be a linear function of t . This is exactly what we observe in
figure 6.11, where the top right panel displays a linear fit from our data as
c1(t ) = (18.0±0.1)t + (256±20). The crossing of the fit with the y-axis encodes actually various
effects. First of all, we learn that t0 is not zero, and rather corresponds to an initial time at
which |B(t ,~k)|2 is equal to |α+

0 |
2 (we will estimate it shortly, in a self-consistent manner, from

the fit to the second coefficient c2). Secondly, a non-zero crossing may also reintroduce some
k2 dependence in the initial condition, which will partially compensate for the approximation
α+(~k) ≈α+

0 .

The coefficient c2 is expected to go as M(t0, t ) ≡ 1
t

e2

4π2

∫t
t0

dt ′µ(t ′). Its dependence on t0 allows us
to estimate this initial time, by comparing it to M(t0, t ) for different values of t0, and looking
for the best match. This is shown in the middle right panel of figure 6.11. This procedure
leads to an estimated value of as t0 ≈ 9.2/T . A last check is provided by the lower right panel
of figure 6.11, which shows how close c3 is to a constant. The fact that this MHD-inspired
model achieve such a good description of the data is a bit surprising, as the chemical potential
probed here lie outside of the range of validity of (6.15). The relevant length scales which are
to be compared are the typical instability length scale associated to the chemical potential
decay, li nst ∼ 1

ki nst
= 4π2

e2µ
to the typical mean free path in the plasma λ∼ 1

α2T
. MHD is expected
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to be valid for li nst >λ, which happens for µ< e2T . The only place where the ”breaking” of
the effective theory can be seen is if we try to extract a conductivity from the coefficient c1.
This gives an effective conductivity σe f f = (0.11±0.01)T , which differs from the kinetic theory
prediction, see section 6.3.3 for more details.

An interesting question would be to compare σe f f to the intrinsic measurement of our
system’s conductivity with the use of the Kubo formula [123]. For classical field theories on a
lattice with finite volume V , for a homogeneous and isotropic plasma, σ can be written as [29]

σ=
∫

d t Σ(t ) , Σ(t ) ≡
1

V T

1

3

3∑

i=1

∫
d 3x

∫
d 3 y

〈
ji (x, t ) ji (y,0)

〉
, (6.36)

where ji are the spatial components of the electric current, and 〈...〉 is an ensemble average
over different realisations of our thermal initial conditions. This formula is readily to be
implemented as an observable in our lattice simulations. The expression is however UV
sensitive (in the free theory it is even linearly divergent with momentum), so the results are
expected to be sensitive to the natural UV cutoff imposed by the lattice kmax ∼ 1/d x. The
correlator in (6.36) is expected to decay exponentially in time, Σ(t ) ∼ exp(−γt ), and to oscillate
with the plasma frequency. When obtaining numerically Σ(t ) from our simulations, it exhibits
an oscillatory pattern with frequency considerably smaller than 1/T , which is presumably
attributed to the plasma frequency (plots of this can be found in figure 7 (right panel) of
Ref. [29], so we do not reproduce them here again). After some time, oscillations occur around
zero, indicating the dumping. However, the presence of short time oscillations, associated with
the lattice UV cutoff, is also very noticeable. These contribute to make the behaviour of Σ(t )

very ’noisy’, making difficult to obtain a trustworthy attempt to extract σ by this procedure.

Note that even if we were to extract a conductivity from this method, there is no reason to
expect it to be equal to the quantum field theory computation. Indeed, as it is a
UV-dominated quantity, it is sensitive to the distribution of large-momentum modes, which
are intrinsically different between the classical and quantum field theory, see [100] for a careful
discussion on this issue.

6.3.3 Chiral magnetic rate and MHD

As mentioned at the beginning of the section, one can infer a chiral magnetic-rate from MHD

Γ
(M HD)
5 =

3e4B 2

4π4σT 2
. (6.37)

To be able to use this prediction, we need to use the kinetic theory prediction for the
conductivity. The computation consists in finding the coefficient σ in the relation ~j =−σ~E
where ~E is an external uniform and time-independent electric field and ~j is the induced electric
current. The main process to be taken into account is the mutual scattering of charged
particles with an energy of the order of temperature. At leading-log order, for one charged
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fermion species, it can be estimated as [124]

σF ≃
124ζ(3)2

π3(3π2 +32)

T

e2 log(qF/e)
. (6.38)

For one charged scalar species, the conductivity has been also obtained recently as [125]

σS ≃
3225ζ(3)2

π3

T

e2 log(qS/e)
. (6.39)

The coefficients qF, qS are ∼O (1), but can only be fixed from matching a computation at full
leading order. The leading behaviour of the chiral rate is then expected to scale, independently
of whether we use the fermion or scalar computation, as

Γ5 ∝ e6B 2 ln(q/e)/T 3 , (6.40)

with q some O (1) parameter.

In the case of a charged fermion species, the coefficient qF in the log can be determined using
the full leading numerical result, for instance evaluated at e2 = 4π

137.04
, as can be read out from

table 2 of Ref. [126]. Matching such value to Eq. (6.38), leads to qF = 4.2, and hence to

σF ≃
124ζ(3)2

π3(3π2 +32)

T

e2 ln(4.2/e)
. (6.41)

Unfortunately, there is no analogous full leading computation available for the scalar field case,
so we cannot determine exactly the value of qS. Assuming that qS = qF, then σS remains
∼ 14.5% smaller than σF. If we consider, however, values within the range
e.g. qF −2 ≤ qS ≤ qF +2, then σS ranges, for e = 1, between ∼ 56% larger and ∼ 33% smaller,
compared to σF given by Eq (6.41) evaluated at e = 1. The difference becomes however smaller
for smaller values of e.

In section 6.2.4, were we extracted this rate in the physical region µ< T , we observed an
almost perfect B 2 dependence of Γ5, but a certain deviation from an exact ∝ e6 scaling. In
particular, fitting to a simple power law ∝ ep , we obtain a best fit with p = 11/2, whereas
fitting to a form e6 ln

q
e
we obtain q = 7.9, see Table 6.17. Both of these fits describe well our

data, although the logarithmic fit leads to a slightly worse χ2/do f . Given our limited range of
values of e2, we cannot clearly discriminate between these two options.

Using as a reference σF , we can now estimate a chiral magnetic decay rate from MHD and
compare it to our simulations. Plugging in numbers, we get

σF ≃
31.4

e2 log(17.6/e2)
T , (6.42)

7Note that we present there the result of the logarithmic fit as a function of q2 ≈ 62.
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which for e2 = 1 gives σF ≃ 10.95T . In the presence of a background magnetic field B , the chiral
rate is actually inversely proportional to the conductivity, and it is given by

Γ
(M HD)
5 =

3e4

4π4σF T 2
B 2 ≃ 2.45 ·10−4 log(17.6/e2)e6B 2/T 3, (6.43)

which for e2 = 1 is Γ
(M HD)
5 (e2 = 1) ≃ 7.0 ·10−4 ·B 2/T 3. In general then, Γ(M HD)

5 ∼ 7×10−4 ·e6 ·B 2,
modulo electric charge logarithmic corrections. Alternatively, from the fluctuation-dissipation
relation Γdiff = 1

6
Γ5T 3, the effective diffusion rate is expected in MHD as

Γ
(M HD)
diff

≃ 4.1 ·10−5 log(17.6/e2)e6B 2 , (6.44)

which e.g. for e2 = 1 is Γ
(M HD)
diff

≃ 1.1 ·10−4 ·B 2, or again in general Γ(M HD)
diff

∼ 10−4 ·e6B 2 modulo
logarithmic corrections on the electric charge.

Comparing these rates against our numerical fits to Γ5 (c.f. Table 6.1) or against the fits to
Γdiff from Ref. [29] (c.f. Table 6.2), we observe that the numerically extracted rates are a factor
∼ 10 larger than the MHD counterparts. In particular for e2 = 1 and imposing an exact scaling
∝ B 2 over our data (something that it is very well verified, recall the discussion in
section 6.2.4), we obtain8

Γ
(num)
5

Γ
(M HD)
5

∣∣∣
e2=1

= 11.2+0.1
−0.1 ,

Γ
(num)
diff

Γ
(M HD)
diff

∣∣∣
e2=1

= 10.5+6.5
−4.0 . (6.45)

The two ratios in Eq. (6.45) are, as expected, consistent with each other, even if these are
numbers independently obtained. This is simply due to the fact that the
fluctuation-dissipation argument relating Γ5 and Γdiff, is actually well verified in our data
(within the errors of the diffusion rate), recall section 6.2.4. In summary, both the chiral decay
rate or the Chern-Simons diffusion rate, obtained by completely independent simulations, lead
to rates much larger than predicted in the MHD picture. This is the main quantitative result
of our work.9

The equations (6.45) lead us to conclude that formula (6.37) is not describing correctly the
rate of fermion number non-conservation in the presence of magnetic fields in our system. We
take this as an evidence of the impact of short-scales fluctuations on the system dynamics.
Assuming this to be correct, it calls for a revision of the cosmological implications of fermion
number and chirality non-conservation in finite temperature Abelian gauge theories.

In fact, the failure of the MHD to predict correctly the CS diffusion rate in the presence of a
magnetic field is not surprising. The MHD is only valid at distances larger than the mean free

8The ratio Γ
(num)
5 /Γ(M HD)

5 of Eq. (6.45) was obtained with the power law fit Γ
(num)
5 ∝ e11/2. If the ratio is

obtained instead with the logarithmic fit Γ
(num)
5 ∝ e6 ln

(
62
e2

)
, this yields (for e2 = 1) Γ

(num)
5 /Γ(M HD)

5 = 11.3+1.0
−1.4,

which is equally consistent with the other ratios.
9Note that this result can also be interpreted as having an effective conductivity 10 times smaller than that

coming from kinetic theory.
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path of particles in the plasma and thus it is not accounting correctly for the shorter scale
electromagnetic fluctuations that may change the CS number and which are automatically
included in our simulations. The similar phenomena exists in the diffusion of the CS number
in non-Abelian theories, where the relevant distance scale ∼ 1

αT
is much smaller than the

scattering length ∼ 1
α2T

. Though our lattice simulations, being classical in nature, do not
include several effects - hard thermal loops (HTL) and scattering of energetic particles with
energy ∼O (T ), we do believe that they are reliable. The HTLs introduce a Debye-screening of
the electric fields, plasmon masses for thermal excitations, and the Landau damping [127,128].
All these effects have the energy scale ∼ eT . In our discretised system, the similar effects are
generated through lattice artifacts [129]. With our parametrisation, we have a UV cutoff of
order ∼ T , which will induce corrections mimicking HTLs [129]. Regarding the effect of
collisions on the CS diffusion rate, we expect them to be negligible, as the longest scales which
enters our problem is smaller than the mean free path. As detailed in section 2.2 of [29], the
length scale associated to the chemical potential decay is the typical size of a configuration
carrying CS-number one lC S ∼ 1

αT
, while the mean free path in the plasma is of order lm f ∼ 1

α2T
.

These conjectures can be checked by including HTLs and effective collision terms into classical
equations of motion along the lines of ref. [105,130,131]. We leave this for the future work.

6.4 Conclusions

In this work, we studied the evolution of the fermionic charge in an Abelian gauge theory at
finite temperature, which can be a proxy either for fermion non-conservation or for chirality
breaking. In section 6.2.1, we studied the dependence of the evolution on the initial value of
the chemical potential. We observed that for small chemical potential, it develops long initial
pl ateaus, before the decay is triggered. We saw in section 6.2.2 that for larger initial chemical
potential, the decay happens through a self-similar process. This leads to a phenomenon of
inverse cascade in the gauge field sector, with power transferred from UV to IR scales. We
observed and quantified both of these phenomena, measuring the critical exponent of the
chemical potential self-similar decay to be −1

2
.

In section 6.2.3, we moved on to the study of the effect of an external magnetic field on the
chemical potential evolution. Both for large and small initial chemical potential, three different
situations can happen. First, when the external magnetic field is small, the chemical potential
relaxes to its critical value, in the same way that in the absence of chemical potential. Then,
from the critical value, it eventually decays to zero. For large external magnetic field, the
dynamic is fully determined by the magnetic field, and the decay happens through damped
oscillations. For moderate magnetic fields, both effects can be observed at the same time.

A way to isolate the effect of the external magnetic field influence is to study configurations
with initial chemical potential equal to the critical one, as presented in 6.2.4. Then, only the
exponential decay is visible. Following this procedure, we could extract a chiral dissipation
rate and study its dependence on the parameters of the theory, finding
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Γ5 = 10−2.10±0.02B 2e11/2/T 3. We also compared this rate to the fluctuation rate of the
topological charge in the absence of chemical potential, which was measured in Ref. [29].
These rates are related through a fluctuation-dissipation theorem. We found a good agreement
between them, providing a solid self-consistency check for our framework.

In section 6.3 we analysed our results in light of MHD, which is the long-wavelength effective
theory of our system. Despite being out of its range of validity, qualitative features of the
chemical potential can be well described. For example, in section 6.3.1, we provide a simplified
MHD modeling which reproduces the time-scale of the observed pl ateaus in the chemical
potential decay. In section 6.3.2 we also showed that the spectrum evolution of the inverse
cascade is well-modeled by a MHD-inspired description. In section 6.3.3, we studied the chiral
rate in the physically relevant range of chemical potentials. We showed that our numerical
rates are an order of magnitude larger than the MHD predictions. We interpreted this as
evidence of the effect of short-scale fluctuations on the system dynamics. This can potentially
shed a new light on the role of the abelian contribution to the anomaly on fermion
number/chirality violating processes.

The main outlook of this work will be to confirm or refute these results. We intend to verify
numerically the effects of hard thermal loops and collisions, using some effective theory, see
e.g. [105,130,131].

Another direction which remains to be explored is the regime of extremely small chemical
potential. This is however challenging from a technical point of view, as the smaller the initial
values of the chemical potential, the larger the volume needs to be, given the existence of a
critical value µc . Moreover, one also need longer simulations, as the initial pl ateau gets
longer. Our computer resources thus limits us to explore systematically this regime.
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Appendices

6.5 Lattice set-up

The results presented in this work were obtained using the lattice discretisation presented in
Ref. [115]. Initial conditions for the gauge fields and the scalar fields are drawn from a thermal
ensemble, generated by a simple Metropolis algorithm. Gauss law is then enforced on the
thermalised configurations. After that, the system is evolved along the classical trajectory
specified by the set of discretised equations of motion

π=∆
+
o ϕ ∆

−
o π=

∑

i

D−
i D+

i ϕ−V,ϕ∗ (6.46)

Ei =∆
+
o Ai ∆

−
o Ei = 2e, Im{ϕ∗D+

i ϕ}−
∑

j ,k

ǫi j k∆
−
j Bk −

e2

4π2
µB (8)

i
(6.47)

µ=
T

2
p

3
∆
−
o a ∆

+
o µ=

3

π2

1

T 2

e2

N 3

∑

~n

1

2

∑

i

E (2)
i

(B (4)
i

+B (4)
i ,+0

) (6.48)
∑

i

∆
−
i Ei = 2e Im{ϕ∗π} (6.49)

with

E (2)
i

≡
1

2
(Ei +Ei ,−i ) B (4)

i
≡

1

4
(Bi +Bi ,− j +Bi ,−k +Bi ,− j−k ) (6.50)

B (8)
i

≡
1

2

(
B (4)

i
+B (4)

i ,+i

)
, (6.51)

and ∆
±
µ f =± 1

dx
( f±µ− f ), D±

µ f =± 1
dx

(e∓i edxµAµ(n± 1
2

) f±µ− f ) the forward/backward finite
difference operator and covariant derivatives. The notation fa,µ means that the component a

of the vector field f is to be evaluated at the point ~n + µ̂, with µ̂ a unit displacement in the
direction µ, fa,µ = fa(n + µ̂). Notice that the equations are built out of composite field so that
all the fields can be expanded consistently about the same point to reproduce the continuum
equations to order O(dx2). The scalar fields live on lattice edges while the gauge fields are link
variables; they live on half-integer sites. The time differential operators evolve by half a step in
times. More details are to be found in [115].

The constant background magnetic field is introduced through twisted boundary
conditions [120], which imposes a constant flux. To specify, we modify the periodic boundary
conditions of the first component of our gauge field as follow

A1(1, N ,n3) = A1(1,0,k)−
2πnmag

dx
∀k ∈ [0, N −1]. (6.52)

This corresponds to introducing a constant background magnetic field in the z-direction of
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magnitude B = 2πnmag

(dxN )2 .

For large volumes, it is essential to initiate the Monte-Carlo with configurations which already
satisfy the twisted-boundary conditions (6.52). This can be achieved by taking as seed

Ai ni t
1 (i , j ,k) =−

2πnmag

dxN 2
j −δ j 0

2πnmag

dxN
+δ j 0δi 1

2πnmag

dx
(6.53)

Ai ni t
2 (i , j ,k) = δ j 0

2πnmag

dxN
i −δ j 0

2πnmag

dx
+δ j 0δi 0

2πnmag

dx
+δ j 0δi 1

2πnmag

dx
(6.54)

Ai ni t
3 (i , j ,k) = 0, (6.55)

where the non-trivial dependence of A2 ensures that A is consistent. In more details, a gauge
field which lives on a periodic manifold must transform as

Aµ(x +N · î ) = Aµ(x)+∂µαi (x) , (6.56)

with potentially three different gauge transformations αi , one by direction. These gauge
transformations cannot be completely arbitrary, they satisfy so-called compatibility conditions.
These are the requirement that the relation of the gauge field value at a given point
x +N · î +N · ĵ to its value at x better not depend on whether one first goes through the i or
through the j boundary. In other words, we have

Aµ(x +N · î +N · ĵ ) = Aµ(x +N · ĵ +N · î ) (6.57)

which implies

∂µ(x)αi (x)+∂µα j (x +N · î ) = ∂µα j (x)+∂µαi (x +N · ĵ ) (6.58)

The twisted boundary conditions (6.52) tells us that ∂1α2(1, j ,k) =−2πnmag

dx
. The choice of

initial field (6.53) - (6.55) is made to satisfy the compatibility conditions (6.57).

6.6 Fluctuation-dissipation theorem

The dissipative chiral decay rate Γ5 is related to the diffusion rate of the topological charge
〈Q2(t )〉 = ΓV t . To derive this relation, we will use Zubarev’s formalism [133], in the spirit of
Ref. [27]. We treat µ as a dynamical variable and want to understand its out of equilibrium
properties. To do so, we introduce a ”local equilibrium” partition function

ρLE = exp
(
−βH +V Tχ(t )µ(t )

)
(6.59)
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with χ(t ) some Lagrange parameter which drives µ(t ) locally out of equilibrium and the factor
V T 2 was introduced to make χ(t ) of the same dimensions than µ. The function H is the
Hamiltonian associated with our system. The relevant µ-dependent part is

Hµ =
1

24
µ2V T 2 (6.60)

This function is used to compute 〈µ〉 at any time [133] and thus determines χ(t ) as a function
of 〈µ〉.

〈µ〉 =
∫∞
−∞ dµ µexp

(
− 1

24
µ2V T +χµV T

)
∫∞
−∞ dµexp

(
− 1

24
µ2V T +χµV T

) = 12χ (6.61)

However, it is not stationnary, i.e. it does not satisfy Liouville’s equation

dρ

dt
=

∂ρ

∂t
+ {ρ, H } = 0, (6.62)

with 〈· · · 〉 the usual Poisson brackets. A way to fix this is to introduce a second density matrix

ρ = N lim
ǫ→0+

exp

(
−

H

T
+V T 2ǫ

∫t

−∞
eT ǫ(t−t ′)χ(t ′)µ(t ′)dt ′

)
(6.63)

with N such that ρ integrates to one. Integrating by part and neglecting χ̇(t ), i.e. considering
slow processes, this can be recast as

ρ = N lim
ǫ→0+

exp

(
−

H

T
+V Tχµ−V T

∫t

−∞
eT ǫ(t−t ′)χ(t ′)µ̇(t ′)dt ′

)
(6.64)

≡ N (h) lim
ǫ→0+

exp

(
−

H

T
+h

)
(6.65)

with h =V Tχµ−V T
∫t
−∞ eT ǫ(t−t ′)χ(t ′)µ̇(t ′)dt ′. Working at linear order in h, it becomes

ρ = lim
ǫ→0+

ρ0(1+h +〈h〉0) (6.66)

≈ lim
ǫ→0+

ρ0(1+V Tχµ−V T

∫t

−∞
eT ǫ(t−t ′)χ(t ′)µ̇(t ′)dt ′+〈h〉0) (6.67)

where ρ0 = N0e−
H
T and 〈h〉0 is the average with respect to ρ0.

To obtain a relation between the chiral decay rate and the diffusion rate of the topological
charge, we compute 〈µ̇〉 using eq. (6.67). Using the fact that in equilibrium we have 〈µ̇〉0 = 0
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and 〈µ̇µ〉0 = 0, we obtain

〈µ̇〉 =−V Tχ(t ) lim
ǫ→0+

〈
∫t

−∞
eT ǫ(t−t ′)µ̇(t ′)µ̇(t )dt ′〉

0
(6.68)

where again we assumed that χ(t ) as a weak dependence on time. Now we can make use of the
anomaly equation (6.7)

〈µ̇〉 =−V Tχ(t )

(
3e2

4T 2π2

1

V

)2

·

lim
ǫ→0+

〈
∫t

−∞
eT ǫ(t−t ′)

∫
d 3x FµνF̃µν(x, t ′)

∫
d 3xFµνF̃µν(y, t )dt ′〉

0
(6.69)

=−χ(t )
9 ·16

T 3V
lim
ǫ→0+

〈
∫t

−∞
eT ǫ(t−t ′)q(t ′)q(t )dt ′〉

0
, (6.70)

with q(t ) = e2

16π2

∫
d 3x FµνF̃µν(x, t ) the topological charge density. With this notation and

setting taking t = 0 as a reference time, we can define the topological charge as

Q(t − t0) =
∫t

t0

dt ′q(t ′). (6.71)

Inserting Eq. (6.61) and setting ǫ= 0, we then have

〈µ̇〉 =−〈µ〉
12

T 3V
lim

t ′′→∞
〈Q(t ′′)q(0)〉0 , (6.72)

This last quantity also appears in the diffusion rate of the topological charge. In the absence of
chemical potential, Q(t ) follows a random walk and we can define its diffusion rate by,
following the convention of [29]

〈Q2(t − t0)〉 = ΓdiffV (t − t0), (6.73)

for times t much larger than a reference time t0
10. We can differentiate this expression by t0

to get

−2〈Q(t − t0)q(t0)〉 =−ΓdiffV (6.74)

=⇒ 〈Q(t − t0)q(t0)〉 =
ΓdiffV

2
(6.75)

10In equation (6.13), we implicitly set t0 = 0.
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Finally, plugging this in (6.76), we get

〈µ̇〉 =−〈µ〉
6

T 3V
ΓdiffV , (6.76)

Leading to the relation
Γ5 = 6

Γdiff

T 3
. (6.77)
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7 Topology on the lattice

As we saw in chapter 2 and 4, not only thermal fluctuations but also quantum fluctuations of
the topological charge are important in non-Abelian theories. A natural way to study these
fluctuations is through importance sampling simulations of the path integral, as presented in
section 2.3 for a quantum mechanical system. Before being able to study these fluctuations, we
need to understand what happens to the topological structure of our theory once discretised.
It will be the content of this section.

7.1 Topology of SU (3) on the Lattice

In this work, we will only be concerned with gauge fields without any fermions. As described
in section 4.2, the fundamental objects used in numerical simulations of non-Abelian gauge
fields are the so-called link variables Uµ(n). At first glance, the situation on the lattice
concerning topology is not promising. Indeed, our semiclassical discussion on topologically
charged solutions in section 4.1.1 was based on the existence of the notion of paths in field
space and the existence of disconnected classes of such paths which cannot continuously be
deformed one into the other. These notions are tied to the notion of continuity and as such do
not exist on the lattice; the topology of SU (N ) on a lattice is, in a strict sense, trivial.

It would, however, seem likely that some notion of topological fields can be defined on the
lattice, as fields will tend in the continuum limit to fields with a well-defined charge. Indeed,
such a notion exists and was described in reference [134]. In the continuum, the fact that some
fields cannot be deformed into one another by a continuous transformation can be rephrased
as the fact that one cannot find an interpolating family of fields with a finite action for every
intermediate field. On the lattice, the ”infinite” is replaced by some finite value p. The
statement is then the following. All fields such that their action is smaller than p can be
grouped into equivalence classes of topological charge Q. Classes are disconnected, in the sense
that fields belonging to different classes cannot be interpolated between by a family of fields
such that all the fields have an action smaller than p. Moreover, this charge Q matches the
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continuum definition of the topological charge.

The expressions for the discretised version of Q which emerge in this way are complicated and
”non-local”, in the sense that they involve many fields that do not live at the same point, see
for instance the constructions in references [134,135], making their use impractical. One would
like to be able to obtain the topological charge by simply discretising the continuum operator
GµνG̃µν and taking the continuum limit. The problem with this naive approach is that any of
these discretisations will mix with other operators of the same dimensions, which generically
require additional renormalisation to have a well-defined continuum limit, see
references [25,116,136,137] for related discussions.

This said, there are still several ways to extract an appropriate topological charge from such
discretisations [138–142], which are all to some extent based on the idea of ”smoothing out”
the gauge fields to remove the dangerous UV fluctuations mentioned previously.

The method introduced in [141], the so-called ”Wilson” or ”gradient”-flow, has a very sound
theoretical ground and many interesting properties which are of use beyond topology. The
main idea behind its introduction was the concept of ”trivialising maps” [143]. In spirit, they
are very similar to the Hamilton-Jacobi formulation of classical mechanics. There, one looks
for a canonical transformation of the conjugate variables that makes the dynamics of the new
variables trivial; all the physics is then encoded in the transformation. Trivialising maps are
field transformations whose Jacobian exactly cancels out the original action in the path
integral, making it trivial. While trying to build exactly such maps for a strongly interacting
theory like QCD is most likely hopeless, it was realised in reference [143] that some simple
differentiable flow was an approximate trivialising map, in the case of the pure SU (3) theory.
This flow can be written as [141]

V̇µ(n,τ) =−g 2δVµ(n,τ)

(
SΛ

W

)
Vµ(n,τ) (7.1)

Vµ(n,0) =Uµ(n) , (7.2)

with τ a fictitious flow time and where δVµ(x,τ) stands for the first order variation with respect
to Vµ(x,τ). The Wilson action SΛ

W was defined in equation (4.41).

The fact that it is an approximation to a trivialisation map and that it smoothes out UV
fluctuations is not so surprising, as this flow follows the steepest descent towards solutions
which minimise the action. Another remarkable property of the Wilson flow is that it acts as a
non-perturbative renormalisation scheme [141]; observables evaluated at non-zero flow-time are
UV-finite.

Altogether, Wilson’s flow is a particularly adequate tool to study the topology of SU (3) lattice
configurations, by computing the topological charge

Q =
∫

d4x q(x) =
1

32π2

∫
d4x ǫµνρσTrGµνGρσ (7.3)
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at finite flow-time. We show the effect of Wilson’s flow on the topological charge density on
some small toy-lattices (N = 204 at 6

g 2 = 6.2) in figure 7.1, reproduced from reference [144].
Starting from wildly fluctuating configurations at τ= 0, the fields are gradually smoothed out
and localised stable topological excitations are unravelled.

Before continuing, let us also mention another way to measure the topological charge. As
briefly discussed in section 3.2.2, the topological charged can be extracted from the zero-modes
of the Dirac operator, computed in the background of the gauge configurations. The
advantage of the methods based on this index theorem is that they do not need regularisation.
They are, on the other hand, very costly to implement, see [137] and references therein for
more information.

7.2 Open-boundary conditions

The problem of topological freezing described in the case of quantum mechanics in section 2.3
is also present in pure Yang-Mills and QCD simulations, for essentially the same reasons. As
the continuum is approached, continuity is better and better approximated and topological
sectors become more and more well-separated. Algorithms get stuck in given sectors and stop
being ergodic, see [145] for a detailed study.

A natural way to attempt to ease up this problem is to trade periodic boundary conditions,
which forces the fields to have integer topological charge, for boundary conditions which do not
constraint the topological charge. This can be achieved by imposing ”open-boundary
conditions” on the field-strength tensor [146], as we will summarise in this section.

Instead of usual periodic boundary conditions, consider a theory with the following ”open”
boundary conditions

Gµν(x)|xµ=0 =Gµν(x)|xµ=T = 0 , for a given µ and ν= 0,1,2,3 . (7.4)

Even though boundary conditions should not matter once the thermodynamic and continuum
limits are taken, they can and do impact the finite-size system. We can show for example that
with such conditions, the topological charge is not quantised, following reference [146]. A
special type of fields which satisfies (7.4) is given by

Aµ = ∂νAµ = 0 at xµ = 0. (7.5)

Any such field can be smoothly connected to zero without violating the boundary conditions.
Now let us consider an arbitrary field which satisfies (7.4). Consider applying a gauge
transformation and consider how its µ component transforms

Aµ →ΩAµΩ
−1 − iΩ∂µΩ

−1 . (7.6)
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Figure 7.1 – Evolution of a two-dimensional slice of the topological charge density under Wilson
flow, for some small lattices. The initial wild small scale fluctuations are tamed by the flow
evolution and become smooth fields, with localised topological charge excitations. Reproduced
from reference [144].
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while they are not in the latter case. Reproduced from reference [144].

The solution to the differential equation

AµΩ
−1 − i∂µΩ

−1 = 0 , (7.7)

will send Aµ to zero altogether. Moreover, the family of functions Ωs solving the differential
equation

s AµΩ
−1
s − i∂µΩ

−1
s = 0 (7.8)

Ωs |xµ=0 = 0, s ∈ [0,1], (7.9)

smoothly sends the field to a field which obeys conditions (7.5), which in turns can be
smoothly mapped to zero. The field space is contractible and as a result, the topological
charge is not quantised. Note also that one can impose open-boundary conditions in more
than one directions without changing this result, as one can always impose successive gauge
transformations in different directions without violating the boundary conditions.

In figure 7.2, also reproduced from reference [144], we illustrate these results with the same toy
lattices with N = 20, 6

g 2 = 6.2 by measuring the topological charge on a set generated with
periodic boundary conditions and one generated with open-boundary conditions in all three
spatial directions, after some finite Wilson flow-time. In the first case, the topological charges
are quantised, while they are not in the second case.

Despite this difference, and as expected from the fact the continuum/infinite volume physics
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should not depend on boundary, the local aspect of the topological charge density is very
similar in both cases. This can be seen on figure 7.3, reproduced from reference [144], where
we show the topological charge density evolution under Wilson flow of one of our toy-lattices
with open-boundary conditions. Except for the fact that the topological charge density
vanishes on the boundary because of the boundary conditions, it is virtually indistinguishable
from the equivalent figure with periodic boundary conditions, figure 7.1. Note also the fact
that the total charge seems to converge to an integer is a misleading coincidence related to the
specific configuration which was chosen to be displayed.

7.3 Foreword to [2]

Open-boundary conditions have been introduced in reference [146] in a zero temperature
context, and have been successfully used in a number of study, amongst which [147–156]. Even
if Euclidean topology-changing processes are suppressed at high temperatures, as discussed in
section 2.2, they remain relevant at moderate ones and topological freezing can also be a
hindrance. In reference [2], we carried the first study with open-boundary conditions in a
spatial direction at finite-temperature and studied the generic temperature dependence of the
boundary induced effects on observables. This study is the content of the next part.
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8 Open-Boundary Conditions in the Decon-
fined Phase [2]

Authors: Adrien Florio, Olaf Kaczmarek, Lukas Mazur

Reference: arXiv v2 of Eur. Phys. J. C, 79(12):1039, 2019, doi:
10.1140/epjc/s10052-019-7564-z

Abstract: In this work, we consider open-boundary conditions at high temperatures, as they
can potentially be of help to measure the topological susceptibility. In particular, we measure
the extent of the boundary effects at T = 1.5Tc and T = 2.7Tc . In the first case, it is larger than
at T = 0 while we find it to be smaller in the second case. The length of this ”boundary zone”
is controlled by the screening masses. We use this fact to measure the scalar and pseudo-scalar
screening masses at these two temperatures. We observe a mass gap at T = 1.5Tc but not at
T = 2.7Tc . Finally, we use our pseudo-scalar channel analysis to estimate the topological
susceptibility. The results at T = 1.5Tc are in good agreement with the literature. At T = 2.7Tc ,
they appear to suffer from topological freezing, which prevents us from providing a precise
determination of the topological susceptibility.

A.F. contribution: Idea of the project, large contribution to the writing of the paper. Analysis
and numerical simulations done jointly with the coauthors.

8.1 Introduction

In general, finite-size systems differ from their infinite-volume counterpart. One of the most
simple examples is the ”particle-in-a-box” whose momenta are quantised. Not only the
compactness, but also the boundary conditions affect the system. There, different choices lead
to different quantisation conditions. The only restriction on such choices is that the infinite
volume physics needs to be recovered in the thermodynamic limit. This requirement satisfied,
the only remaining differences are related to the convergence to the infinite volume limit.
When the system is discretised, discretisation effects may also vary between different types of
boundary conditions.
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In some circumstances, such differences may be used as algorithmic tools to improve numerical
simulations. A typical example of this is the use of open-boundary conditions (OBC) in lattice
QCD, which have been introduced in [146] as means to reduce autocorrelations of the
topological charge. These autocorrelations become critical as the continuum is approached.
and are signaled by the freezing of gauge field ensembles in given topological sectors. In this
example, instead of considering QCD with periodic boundary conditions (PBC), which leads
to a discrete topological charge

Q =
∫

d4x q(x) =
1

32π2

∫
d4x ǫµνρσTrGµνGρσ, (8.1)

the idea is to impose OBC in at least one of the directions. In this system, Q spans a
continuum range of value. This then lifts the topological barrier responsible for the topological
freezing and improves the sampling of the configuration space.

Having small autocorrelations is crucial to keep control of the statistical errors in Monte Carlo
simulations [145,157]. A poor sampling of the topological charge affects in principle all
observables, leading to finite volume effects (see [158,159] for practical examples). The
situation is partially improved when considering QCD in the deconfined phase. For T > Tc , the
order parameter which quantifies the variance of the topological charge, i.e. the topological
susceptibility χ= 〈Q2〉

V
, decreases with T . At asymptotically-high temperatures, it is even

suppressed as T −7 [52]. Nonetheless, for moderate temperatures, Q 6= 0 configurations still
contribute in a non-negligible way to the path-integral. In this context, OBC may also be of
interest at non-zero temperatures1. However, before being able to use them systematically, an
analysis of the influence of temperature on the boundary effects remains to be done. This is
the content of this study, which focuses on pure SU (3) gauge theory, as dynamical matter is
not expected to drastically change the results.

In section 8.2, we recall known facts about OBC and discuss our datasets and methodology.
Then, in the spirit of the zero temperature analysis of [153], we investigate in section 8.3 the
typical length over which the boundary effects propagate, the ”boundary zone”. We observe a
noticeable temperature dependence. These differences can be understood in terms of the
temperature dependence of the lightest propagating states’ screening masses, which we study
in section 8.4. As a by-product, we report in section 8.5 an extraction of the topological
susceptibility from our rather large volumes simulations. We finally discuss our results in
section 8.6.

8.2 Open-boundary conditions and setup

Conventional lattice QCD simulations use (anti-)periodic boundary conditions in all directions,
for the obvious reason that they minimise boundary effects. In this study, we consider the use

1For a very exploratory study, see [160].
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of OBC in one of the spatial directions (taken for definiteness to be the x direction). This
amounts setting the field-strength tensor to zero outside the lattice. In this case the Wilson
action reads [146]

SOBC =−
β

3

∑

P

w(P )Tr1−P , (8.2)

where the sum runs over all the plaquettes

Pµν =Uµ(n)Uν(n + µ̂)Uµ(n + ν̂)†Uν(n)† (8.3)

whose corners are in the interval [x = 0, x = Nx −1]. The U ’s are the usual link variables and
the quantity w(P ) is an integration weight

w(P ) =





1 if P ∈ bulk
1
2
if P ∈ x-face

. (8.4)

A bulk point is a point in the interval [1, Nx −2]. A plaquette is on a x-face if it is not oriented
along x and all of its corners are at x = 0 or x = Nx −1. As shown in [146], the continuum limit
of this theory has a trivial topology in field space; all the admissible fields are connected by
local gauge transformations.

Such boundary conditions break translational invariance and introduce boundary effects.
These effects may be understood as the propagation of excited states from the boundary. Here
we summarise the core of the argument, following [161–163].

For the sake of clarity, let us first recall the argument for OBC in the time direction; it
straightforwardly transposes to OBC in the x direction. To quantise our Euclidean theory, we
write down a transfer matrix T̂ = e−Ĥ with Ĥ the Hamiltonian, the Euclidean equivalent of the
evolution operator. It evolves states between temporal slices. In particular, going from the
state

∣∣γi

〉
at t = 0 to the state

∣∣γ f

〉
at t = T , and given an operator O inserted at t , we can write

〈O〉OBC =
1

Z

〈
γ f

∣∣∣ T̂ −(T−t )O(t )T̂ −t
∣∣∣γi

〉
. (8.5)

To label our basis of states, we use the lattice version of the translation operators and get a
basis consisting of

∣∣En(~p)
〉
, with n labelling extra quantum numbers and ~p the momentum

eigenstates. Inserting a complete basis of states, we can then write
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〈O〉OBC =
1

Z

∑

n,~p,m,~q

γi
n,~pγ

f ∗
m,~q

·
〈

Em(~q)
∣∣ T̂ −(T−t )O(t )T̂ −t

∣∣En(~p)
〉

(8.6)

=
1

Z

∑

n,~p,m,~q

γi
n,~pγ

f ∗
m,~q

e−(T−t )Em (~q)e−tEn (~p) ·
〈

Em(~q)
∣∣O(t )

∣∣En(~p)
〉

, (8.7)

with γ
i , f

n,~p
= 〈En(~p)

∣∣γi , f 〉. Now we see that the main contribution comes from the state with
smallest energy. We then have a tower of exponentially suppressed corrections. More explicitly,
using the fact that the main contribution to Z is γi

0γ
f ∗
0 e−E0T (obtained by setting O(t ) = 1 in

our expansion), we find

〈O〉OBC = 〈0|O |0〉+α1e−(E1−E0)t +β1e−(E1−E0)(T−t ) + . . . .

with α1 and β1 some matrix elements.

In other words, OBC do not project out directly on the vacuum state but are affected by
states which propagate from the boundary. We also see that, at least in some limits, the
corrections should be dominated by an exponential decay in the lightest state. We will take
advantage of this in section 8.4. Note that this argument can be generalised to two-point
functions [162] and higher-point functions.

In the case of OBC in the x direction, the previous analysis can be repeated by replacing the
slicing in the t direction by a slicing in the x direction when quantising the system. Then H

and P̂x exchange roles, with P̂x the translation operator in x. Modulo this, the derivation goes
through.

To measure the topological correlators, we used the gluonic definition of the topological charge
density. It requires some smoothing of the gauge fields, which was performed by using the
gradient flow [141]. The fundamental gauge fields Aµ(x) are evolved to finite flow-time τ,
B(x,τ), using the flow equation

Ḃµ(x,τ) = DνGνµ(x,τ), Bµ(x,τ)|τ=0 = Aµ(x), (8.8)
Dµ = ∂µ+

[
Bµ(x,τ), ·

]
. (8.9)

The associated smearing radius is
p

8τ. It is implemented on the lattice by using the standard
Wilson gauge action (Wilson flow). The integration is done using a third order Runge-Kutta
algorithm with a step-size of 0.01, which was tested to be small enough for the lattice
parameters of this study.

The configurations we used are listed in table 8.1. The quenched configurations were generated
using a heat bath and an overrelaxation algorithm. One update consists of one heat bath and
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N 3
s ×Nt β a[fm] lp

8t0

T
Tc

nOBC nPBC

643 ×6 6.139 0.074 10.0 1.5 257 442

883 ×8 6.335 0.056 10.4 1.5 430 533

1123 ×10 6.498 0.045 10.7 1.5 246 155

Continuum extrapolations for OBC 1.5 -
Continuum extrapolations for PBC 1.5 -

643 ×4 6.253 0.063 8.52 2.7 533 512

883 ×6 6.55 0.042 7.81 2.7 318 532

1203 ×8 6.778 0.031 7.86 2.7 533 532

Continuum extrapolations for OBC 2.7 -
Continuum extrapolations for PBC 2.7 -
1023 ×6 6.64 0.037 7.98 3.0 479 472

Table 8.1 – Lattices used in this study. The spatial size of the lattice is denoted l .

four overrelaxation steps. To make sure that the configurations are sufficiently thermalised we
discard configurations from the first 4000 iterations. Configurations are measured every 500

Monte Carlo steps to minimise the autocorrelations. Working with flowed configurations, we
use the scale t0 with the interpolation given in [164] to convert to physical units. The
statistical errors were estimated by using Jackknife resampling.

To compute the topological charge and energy density we used the clover-shaped field strength
tensor

Gµν(x) =
( −i

8a2

(
Qµν(x)−Qνµ(x)

))

AH

, (8.10)

where AH is the projection on the traceless antihermitian part and Qµν is defined as

Qµν(x) =Uµ,ν(x)+Uν,−µ(x)+U−µ,−ν(x)+U−ν,µ(x), (8.11)

with the plaquette discretisation Uµ,ν.

8.3 Boundary zone

As explained in section 8.2, the presence of a boundary affects observables in the bulk, at least
close to the boundary. The length of this ”boundary zone” depends on how the observables
couple to the lightest propagating states. To quantify this effect and in order to compare it to
the zero temperature case, we adopted the method of [153]. We compute the value of the
clover action density as a function of the distance to the boundary and extract the length of
the boundary zone, i.e. the length over which this observable is significantly different from its
bulk value. In more detail, for lattices with OBC in the x direction and some operator O, we
define its sub-average at a distance r , inside a sub-volume of size (Nx −2r )×Ny ×Nz ×Nt from
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Figure 8.1 – Clover action density as a function of the distance from the open-boundary, at T =
1.5Tc configurations and reference flow-time t0. Left: Electric component. Right: Magnetic
component. Both components show a consistent scaling to the continuum and an agreement
between OBC and PBC in the bulk. Also, we see the effect of the open-boundary. The fact
that the two components are not equal is a finite temperature effect (see y-axis). We also see
that they do not couple to the same boundary states.

the boundary, by

Or =
1

Ny Nz Nt

1

(Nx −2r )

Ny−1∑

y=0

Nz−1∑

z=0

Nt−1∑

t=0

Nx−r−1∑
x=r

O(x, y, z, t ), (8.12)

with 0 ≤ r < Nx /2−1. For r = 0, we expect the strongest dependence on the boundary
excitations. By studying the r -dependence, we can then characterise the typical size of the
boundary contamination.

At non-zero temperature, the clover action density leads to two independent gluon
condensates [165,166]

Est =
1

4
Ga

0i Ga
0i , Ess =

1

4
Ga

i j Ga
i j ; (8.13)

a ”magnetic condensate” Ess and an ”electric condensate” Est .

In figure 8.1, we show both densities at the reference flow-time t0 for our different
configurations at T = 1.5Tc . All temperatures used in our study behave in a qualitatively
similar way. First, we see as expected the existence of a boundary zone and an agreement
between OBC and PBC in the bulk of the lattices, i.e. when r is sufficiently large to suppress
the effects of the boundary on the sub-volume. Then we see that the component which displays
the largest boundary zone is Ess . The reason is that it couples to a lighter state than Est .

To compare different results in all fairness, we proceed to a continuum extrapolation of both
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p
8t0.

condensates. In figure 8.2, we show this continuum extrapolation for T = 1.5Tc and three
different radii. As reported in [141], the region close to the boundary is affected by linear
lattice spacing artifacts when Wilson’s action is used without further improvements. We evade
this complication by computing our continuum extrapolation only in the region where the O(a)

corrections are negligible. This region turned out to be large enough for all purposes of this
study.

Different temperatures are compared in figure 8.3, together with the zero temperature result
of [153]. In this plot, we show the energy density normalised to its bulk value. We see that the
length of the boundary zone depends on temperature. At 1.5Tc we find it to be about 50%

larger than at zero temperature while we find it reduced by 20% at 2.7Tc , consistently with our
fixed lattice spacing results at 3Tc . This is also consistent with the temperature dependence of
the screening masses. Actually, the behaviour of the observables in the boundary zone gives a
handle on these screening masses, which will be discussed in the next section.

8.4 Screening masses

As explained in section 8.3, the boundary effects are controlled by the masses of the
propagating states in the theory. In pure SU (3) gauge theory at finite temperature, these are
the screening masses [167].

In this section, we will take advantage of the boundary effects to extract the lightest scalar and
pseudo-scalar screening masses. In particular, as the lightest scalar mass is expected to be the
lightest state in our system, its value controls the length of the boundary zone of section 8.3.
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Figure 8.3 – Comparison of the normalised clover action between different temperatures. We
report in this figure the zero temperature results of [153] in blue. We observe the length of
the boundary zone to depend on temperature. At 1.5Tc , we see that the boundary effects
propagate over a larger distance than at zero-temperature. We take as a conservative estimate
of the boundary zone at 1.5Tc a length of l

1.5Tc

b
≈ 2.2

p
8t0 (black dashed line). This has to

be compared with the l 0
b
≈ 1.6

p
8t0 of [153] (blue dashed line). For higher temperatures, the

boundary zone gets smaller again. At 2.7Tc we estimate it to be of length l
2.7Tc

b
≈ 1.45

p
8t0.

8.4.1 Scalar screening mass

The strong boundary contamination seen in the Ess channel in figure 8.1 suggests that it might
be an appropriate probe to extract the scalar screening mass m0+ , which will correspond to the
lowest screening mass of the state which couples to Ess . At zero temperature, it would be the
lowest glueball state. Such a strategy was used in [148,149] to extract glueball masses.

To make Ess ultraviolet (UV) finite and be able to take the continuum limit, we study it at
some finite flow-time. To have good control of our errors, we perform a simultaneous fit of the
type

Ess(r ) =αexp(−m0+r )+β+γa2 (8.14)

with r a radius in the boundary zone (see section 8.3). The constant β has to reproduce the
continuum bulk value and the γ factor encodes the a2 finite lattice spacing corrections.

We look for an intermediate range r ∈ [rmi n ,rmax ] of values where we can extract a candidate
mass m0+. On the left-hand side of figure 8.4 we show the behaviour of ∆E r

ss t 2
0 for different

flow-times (top panel) together with the extraction of the screening mass for different rmi n and
different flow-times. We also checked that the results were not sensitive to the choice of rmax .

The extracted screening mass should be flow-time independent, being the mass of some states
(the flow evolution will mix different operators but not change the operator basis), and we see
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with its τ→ 0 limit. Already qualitatively, one can see that there is an exponential decay,
whose exponent does not seem to be sensitive to the flow-time, whilst its prefactor does.
Bottom left: Extraction of the effective mass as a function of the minimal radius used in the
exponential fit. We see that when the parameter saturates to a plateau, different flow-times
lead to the same prediction, as expected. Note that our errors seem to be overestimated for
large rmi n; we do not correct for this. Top right: Normalised prefactor of the exponential.
This quantifies the interactions with the boundary states and increases with flow-time. This is
due to the smoothing effect of the flow evolution; generically it increases the overlap between
states. Bottom right: Corresponding effect on the boundary zone, its length increases with
the flow-time as the bulk states interact more and more strongly with the boundary states.
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that within our precision it is. Outside the plateau region, the masses differ but they do match
once a plateau is reached. Typically, small flow-times lead to a worse signal. The reason lies in
the smoothing effect of the flow. For larger flow-times, the errors are reduced and generally
speaking overlap between states increases, as do their matrix elements. We can verify this by
looking at the prefactor α of our exponential fit, normalised by the bulk value. This quantifies
the strength of the interaction with the 0+ boundary state. We extract it using the same
procedure as for the screening mass and report its flow-time dependence on the top panel on
the right-hand side of figure 8.4. As expected, we see it growing with the flow-time. This also
explains the behaviour of the boundary region as a function of the flow-time, which is shown
in the lower panel on the right-hand side of figure 8.4. The more we flow, the stronger the
interaction with the boundary gets and the larger the boundary zone becomes. This suggests
that upon a good knowledge of the flow dependence of the observable under consideration,
smaller flow-times are advantageous with respect to the boundary contaminations.

In this spirit, it is also instructive to perform the same mass extraction in the limit of zero
Wilson flow. It serves two purposes. First, it allows checking the robustness of our results.
Then, since Ess is directly related to the energy-momentum tensor Tµν, taking the zero
flow-time limit provides a properly renormalised observable. This would, for example, be
required to extract any running quantities, such as the matrix elements encoded in α. More
precisely let us consider [168]

Uµν(x,τ) =Ga
µρ(x,τ)Ga

νρ(x,τ)−
1

4
δµνGa

σρ(x,τ)Ga
σρ(x,τ) (8.15)

E(x,τ) =
1

4
Ga

σρ(x,τ)Ga
σρ(x,τ). (8.16)

We can write
Ess(x,τ) =

1

4
(Ui i (x,τ)−U00(x,τ))−2E(x,τ). (8.17)

The flow dependence then reads, using the expansions of [168],

Ess(x,τ) =
cT (τ)

4

(
T R

i i −T R
00

)
−

cE (τ)

2

{
GµνGµν

}R − c1(τ), (8.18)

with T R
µν the renormalised field strength tensor and

{
GµνGµν

}R the renormalised version of
GµνGµν. The coefficients can be expanded perturbatively as

cT (τ) = g 2
0 +O

(
g MS

(
(8τ)−1/2

))
(8.19)

cE (τ) = 1+O
(
g MS

(
(8τ)−1/2

))
, (8.20)

with g0 the bare coupling and g MS the running coupling in the MS scheme (see also [169]).
The coefficient c1 is a mixing with unity and is set to c1(τ) = 〈E(τ, xbul k )〉 where by xbul k we
mean the value in the centre of the lattice in the case of OBC. This sets the vacuum
expectation of the trace of the energy-momentum tensor to zero [153]. Equation (8.18) allows
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to obtain a renormalised quantity to study the screening mass,

∆E r
ss = lim

τ→0

(
E r

ss(τ)−E
rbul k
ss (τ)

)
. (8.21)

The zero flow-time extrapolation is shown in the top left plot of figure 8.4. To perform the
extrapolation, we used a quadratic fit and checked that the result was insensitive to higher
order corrections. An example at fixed radii is shown on figure 8.5. As expected, the extracted
screening mass is compatible with the one obtained at other flow-times, as is shown in the
left-hand side of figure 8.6.

We also extracted the screening mass at T = 2.7Tc , but did not extrapolate to zero flow-time;
this is shown in figure the right-hand side of 8.6. Note that the mass is noticeably larger at
2.7Tc than at 1.5Tc ; see section 8.4.3 for a discussion. Consistently, the errors are also larger at
2.7Tc . It also explains why we did not proceed to a zero flow-time extrapolation. As we may
see, the signal quickly worsens at small flow-time and the noise reduction associated to the
flow is crucial to extract the mass. It is thus extracted at t0.

8.4.2 Pseudo-scalar screening mass

Upon considering different operators, this method allows us to access the mass of the screening
states of different quantum numbers. In this section, we will proceed with the mass
determination of the pseudo-scalar screening state. One of the first continuum operators which
come to mind and couples to the pseudo-scalar sector is the topological charge density

q(x) =
1

32π2
ǫµνρσTrGµνGρσ (8.22)
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Figure 8.6 – Left-hand side: Measured screening masses at different flow-times, at T = 1.5Tc .
They agree within statistical uncertainties. We clearly see the noise reduction associated with
the Wilson flow. The relatively small value of the scalar screening mass allows for a precise
measurement and a zero flow-time extrapolation. Right-hand side: Screening mass at
different flow times at T = 2.7Tc . A larger mass is associated with larger uncertainties (mind
the different scales).

Unfortunately, we cannot proceed with its integrated average, as we did in section 8.4.1 with
the energy density, as 〈Q〉 = 0 in our case, with Q the topological charge (eq. (8.1)); in other
words we are in the sector θ = 0, with θ the QCD θ-angle. To circumvent this issue, we
consider the two-point function of q over different sub-volumes,

χr ≡ 〈q2〉r =
1

Ny Nz Nt

1

(Nx −2r )
〈q

2
(r )〉, (8.23)

where we defined an averaged q,

q(r ) =
Nx−r−1∑

x=r

Ny−1∑

y=0

Nz−1∑

z=0

Nt−1∑

t=0

q(x, y, z, t ). (8.24)

In other words, χr is the average of topological charge square over a sub-volume. As the
notation suggests, this quantity is related to the topological susceptibility, see section 8.5. 2

We show the r dependence of this quantity in figure 8.7 for various ensembles (some ensembles
were omitted for the sake of clarity). Let us start discussing the ones at 1.5Tc (left-hand side
of figure 8.7). As expected, we see again a boundary zone in the case of OBC and a saturation
away from it. In the very centre of the lattice, χr displays a characteristic ”bump”. This
feature is inherited from the behaviour of the correlator 〈q(x)q(0)〉 around x = 0 (see [170] for a
detailed discussion).

The results at 2.7Tc display the same global features as the ones at T = 1.5Tc , with a notable
exception: χr does not completely saturate; we observe a drift in its plateau value. We
understand this effect as a manifestation of topological freezing (the lattices at 2.7Tc are finer

2Note however that it is not the same quantity as is often used to study the topological susceptibility with
OBC. Often, one considers the point-to-all two-point function of the topological charge, with the source far from
the boundary (one can even average over different sources), see [151] for more details.
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Figure 8.7 – Topological charge density square.. The legend’s labels correspond to Nt . For
readability, we show only a subset of our data. At T = 1.5Tc (left-hand side), everything
behaves as expected. The topological charge density square converges when integrated from the
bulk and saturates to a constant value, which we can identify with the topological susceptibility.
The OBC have the same bulk behaviour but suffer from exponentially suppressed contributions
from the boundary states. The T = 2.7Tc case (right-hand side) is more interesting. We see
that even the PBC charge density does not saturate. It can be interpreted as an indication
of topological freezing, as it is known that the charge density over a sub-volume is less
autocorrelated than the total charge [145]. The OBC presents a similar pattern, calling for a
more careful analysis of their autocorrelation time.

than the one at 1.5Tc), see section 8.5 for a discussion.

In all cases, to extract the screening masses, we are only interested in the exponential decay
from the boundary. We use the same strategy as in the previous section. As the pseudo-scalar
is heavier, we perform the extraction at flow-time t0 to have a good signal to noise ratio; as in
the case of the scalar mass at 2.7Tc , the signal quickly deteriorates for smaller flow-times. We
show the results in figure 8.8. The errors are comparable to the ones obtained for the scalar at
2.7Tc , as the masses are of similar magnitude. We also checked that the masses are (within the
statistical uncertainties) independent of the maximal radius used for the fit, as long as this
radius is taken within the plateau region of χr .

8.4.3 Discussion

All masses determined in this study are shown in physical units in figure 8.9. As expected,
being less symmetric, the pseudo-scalar state is heavier than the scalar state. Whilst certainly
present at T = 1.5Tc , the difference is not statistically significant at 2.7Tc . This is an indication
of dimensional reduction; at high temperature, the scalar and pseudo-scalar are expected to
become degenerate [172].

On the same plot, we also show the values obtained in [171] by measuring the asymptotic
behaviour of the energy density. The qualitative behaviour is the same but we observe a shift
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Figure 8.8 – Left-hand side: Extraction of the pseudo-scalar screening mass from the boundary
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extract the mass from the plateau value. Right-hand side: Extraction of the pseudo-scalar
screening mass from the boundary pollution at T = 2.7Tc . We observe a milder temperature
dependence than in the scalar sector.
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Figure 8.9 – Summary plot for the screening masses in [MeV]. Only statistical errors are shown.
Firstly, as expected, the scalar screening mass is the lightest of the two states. Then, the
behaviour of the masses is consistent with the behaviour of the boundary zone. At T = 1.5Tc ,
the scalar screening mass is lighter than the T = 0 lightest glueball. At T = 2.7Tc it is heavier.
The behaviour of the pseudo-scalar mass is also consistent; from a large mass gap between the
two channels at T = 1.5Tc , we move to an almost degeneracy at T = 2.7Tc , which is a signal of
dimensional reduction. On this figure, we also show the fixed lattice spacing results of [171].
The 15% discrepancy can most likely be attributed to systematic uncertainties (fixed lattice
spacings, finite volume effects and conversion to physical units), even though a systematic
difference between our methods cannot be excluded.
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Figure 8.10 – Left-hand side: Topological charge history for PBC at 1.5Tc . Every configuration
is separated by 500 sweeps (see section 8.2). The different topological sectors are well sampled.
Right-hand side: Topological charge history for PBC at 2.7Tc . We observe clear signs of
topological freezing at T = 2.7Tc . A very rough estimation gives τauto > 300. This confirms the
behaviour observed in figure 8.7.

of about 15%. Even if part of this discrepancy can presumably be explained by the fact that
the results of [171] are at fixed lattice spacings and other systematics, an intrinsic difference
between the two methods cannot be excluded.

Setting this aside, the data of [171] indicates that the main contribution to the pseudo-scalar
mass is linear in T , as would be expected from perturbation theory at high temperatures.
Taking this for granted, we can estimate that the scalar screening mass becomes heavier than
the lightest glueball at around 2Tc . This should correspond to the temperature at which the
boundary zone becomes strictly smaller than the zero temperature one. And indeed, the fact
that the scalar screening mass at 1.5Tc is lighter than the lightest T = 0 glueballs and that the
T = 2.7Tc scalar screening mass is heavier is consistent with what was reported in figure 8.3
about the length of the boundary zone.

8.5 Topological susceptibility

Actually, the topological charge density square presented in section 8.4.2 also allows us to
extract a value for the topological susceptibility. Indeed, as the continuum topological
susceptibility is defined to be

χ=
d2E(θ)

dθ2
(8.25)

=
1

V

1

Z

∫
D A

(∫
d4x

∫
d4 y q(x)q(y)

)
e−S[A], (8.26)
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to Nt . Right-hand side: Topological charge density square on our finest lattice for OBC,
PBC and Q = 0 PBC configurations at T = 2.7Tc . We see that the correlator behaves similarly
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with the E(θ) the vacuum energy at non-zero θ,3

E(θ) =−
1

V
lnZ , (8.27)

we expect the plateau value of χr to give the topological susceptibility.

We show the obtained values in figure 8.7. The 1.5Tc case is the most straightforward and
leads to a clean signal. We perform a global fit on our three ensembles of the type
f (a) = c1 ·a2 +χ to remove the discretisation effect and extract the constant χ. For PBC, we fit
from the boundary up to rmax = 2

p
8t0. In the case of OBC, we excluded the data in the

boundary zone. Correspondingly, we used values in the range [1.3
p

8t0,2
p

8t0]. It gives us
measurements for the topological susceptibility

χOBC (1.5Tc )t 2
0 = 2.47(15) ·10−5 (8.28)

χPBC (1.5Tc )t 2
0 = 2.298(89) ·10−5, (8.29)

which are in good agreement with χ(1.5Tc )t 2
0 = 2.25(12) ·10−5 of [170] and

χt (1.5Tc )t 2
0 ∈ [1.5 ·10−5,4.4 ·10−5], the global fit of reference [31]. They are also consistent with

the fixed lattice spacing results of [173].

At 2.7Tc the situation is more intricate, as it is not clear that χr saturates to a plateau. The
trouble comes from two reasons. First, as it was already discussed in [13] in the context of a
toy model with OBC, χr can present a slow convergence as a function of r . This is what we
see in the centre of the lattice. Then, the behaviour of the PBC configurations seems to
indicate that our ensembles are partially frozen.

3We recall that Euclidean SU (3) gauge theory at non-zero θ can be described by the Lagrangian L = LSU (3)
θ=0

+
iθq.
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First, in figure 8.10, we show the history of the topological charge for PBC. We observe a clear
difference between the two temperatures. At 2.7Tc , the topological transitions are highly
correlated. Then, in figure 8.11, we focus on our finest configurations at those two
temperatures. We also display the results obtained when restricting ourselves to the Q = 0

sector, i.e. by artificially freezing our lattices. Of course, at 1.5Tc , the effect of freezing is
drastic, as a lot of topological transitions are still to be expected. What is more interesting is
the qualitative behaviour of χr . For small sub-volumes, the value for the topological
susceptibility is not so far from the unfrozen value but decreases for larger sub-volumes. It is
consistent with the observation reported in [145], where it was observed that the topological
charge measured on sub-volumes is less autocorrelated than the total charge. It is also
intimately tied to the fact that the freezing of the topological charge is only a finite volume
effect, one of the key ideas behind master field simulations [170,174], where very large volumes
are generated and the ensemble average is obtained by summing over decorrelated
sub-volumes. The fact that we do not get the correct value for the topological susceptibility is
only due to our volumes being too small to perform sub-volume averages in fixed sectors.

This discussion can also be applied to the 2.7Tc case. However, there, the same kind of
behaviour is present in the ”unfrozen” case, which seems to indicate some partial freezing of
our ensembles. This seems to be confirmed by the behaviour of the topological charge history
of the PBC, which displays long correlations between jumps in topological sectors of the same
sign; it shows correlations of at least 300 configurations. Unfortunately, the OBC shows a
similar kind of behaviour. This stresses the point that OBC are not a remedy to the
topological freezing but only a potential improvement.

This discussion shows that no reliable estimate of χ(2.7Tc ) can be extracted from figure 8.7
without further investigations of the autocorrelations. In particular, it confirms that even with
these relatively large volumes, an extraction of the topological susceptibility from Q2 cannot
be done reliably without a much larger statistics.

Note also that the way we extracted the topological susceptibility in this work is not the only
way to do it. One can also consider the point-to-all integrated two-point function of the
topological charge, with the source far-away from the boundary [151]

χ2pt (r, l ) =
1

Nt Ny Nz

1

2l

Nx /2+l−1∑

x0=Nx /2−l

Nx−r−1∑
x=r

q av (x0)q av (x0 +x), (8.30)

with

q av (x) =
Ny−1∑

y=0

Nz−1∑

z=0

Nt−1∑

t=0

q(x, y, z, t ). (8.31)

The first sum in (8.30) is an average over sources that are far enough from the boundary while
the second sum is a genuine integration. The quantity 2l is the number of source points which
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Figure 8.12 – Topological charge density square χr versus topological charge integrated two-
point function χ2pt . Both methods are consistent in their determination of the topological
susceptibility. In this figure, χ2pt was averaged over 24 source points.

are averaged over. While we did not systematically study this quantity, we did check that our
method is consistent with this definition. In figure 8.12, we show χr and χ2pt (r,12) for our
largest configurations at T = 1.5Tc . Note that the choice l = 12 is presumably not optimal and
the error bars associated to χ2pt can presumably be reduced by tuning this parameter. We see
that both methods are consistent; a careful study of their different systematics and how they
relate is left as a potential interesting outlook.

8.6 Conclusion

In this study, we started a first systematic investigation of OBC at high temperature. The
main difficulty in dealing with OBC is the presence of boundary effects. In section 8.3, we
investigated the typical propagation length of these effects and compared it to the zero
temperature results of [153]. At T = 1.5Tc , the boundary zone is larger than at T = 0, while it
is smaller at T = 2.7Tc and T = 3.0Tc . These differences can be understood in terms of the
temperature dependence of the mass of the lightest state in our system, namely the scalar
screening mass. Actually, the boundary contamination gives us means to measure this
screening mass, giving results which are consistent with the already existing literature (see
section 8.4.3). In particular, we predict that the scalar starts to be heavier than the T = 0

lightest glueball at around T = 2Tc . It tells us that the use of OBC in the region T ∈ [Tc ,2Tc ] is
more delicate than at T = 0 but becomes gradually easier at temperatures above 2Tc . This is
potentially useful as it is the interesting range of temperatures to measure the topological
susceptibility, for example [175]. Moreover, we do not expect the situation to change
drastically in full QCD, in the deconfined phase.

We also used the boundary effects in the pseudo-scalar channel to estimate the corresponding
screening mass. We measured a sizable mass gap between the scalar and pseudo-scalar at
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T = 1.5Tc . Moreover, we could confirm that this gap reduces at higher temperature, which is
an expected signal of the dimensional reduction taking place at high enough temperatures.

As a by-product of the pseudo-scalar analysis, we could extract a precise measurement of the
topological susceptibility at T = 1.5Tc , which is in good agreement with the recent results
of [170]. Finally, the same analysis at T = 2.7Tc exhibits some signs of topological freezing. A
potential interesting outlook consists in studying quantitatively how the autocorrelation time
depends on the lattice spacing and temperature and how it compares to the master field
approach [170]. Even so, it shows again that even with rather large volumes, the
determination of the topological susceptibility is delicate. This supports the recent
efforts [170,176], which have been undertaken to reassess the robustness of high-temperature
studies of the topological susceptibility. In particular, a careful reconsideration of the finite
size effects on its determination, even in the quenched case, is called for.
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In this chapter, we will treat yet another aspect of non-perturbative field theory, particle
creation after the end of the initial inflationary era of our universe. We will see that real-time
numerical simulations are also needed in this case. Moreover, results depend on the model for
inflation, and as the specifics of inflation are relatively poorly constraints, many different
models are viable. All of these models require in principle dedicated numerical simulations.
Publicly available software designed to perform such simulations exist [177–184], but at the
time of writing none incorporate non-Abelian fields and only the recently announced [184]
incorporate Abelian gauge fields. To fill in this gap, we wrote a new software,
C osmoL attice, which is also able to simulate SU (2)-gauge fields. The algorithms designed to
this purpose as well as demonstrations of its capability are presented in the next chapter; this
is where the original research content can be found (most of which is also part of reference [3]).
In this chapter, we present the relevant physics, namely recall basics of slow-roll inflation and
the main mechanism behind particle creation at its end.

9.1 Slow-roll inflation and its end

In this section, we briefly recall basics fact about inflation. Introductions to this subject can
be found in references [185,186] or any modern textbook about cosmology. Cosmology is based
on the observation that, at large scales, we live in a spatially homogeneous and isotropic
universe. The only four-dimensional homogeneous and isotropic metric is the
Friedmann-Lemaître-Robertson-Walker (FLRW) one and can be described by the following
line element

ds2 = dt 2 −a(t )

(
dr 2

1−K r 2
+ r 2dθ2 + r 2 sin2(θ)dφ

)
. (9.1)

The constant K is the curvature of the space and a(t ) is the scale factor. A negatively curved
FLRW space is referred to as closed. A positively curved FLRW space is called open. When
K = 0 we talk about a flat space.

The only dynamical degree of freedom in this metric is the scale factor. Its equations of
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motion are found by developing Einstein’s equations

Gµν =
1

m2
p

Tµν (9.2)

for the FLRW metric. In equation (9.2), Gµν is the Einstein’s tensor, m2
p = 1

8πGN
the reduced

Planck mass, GN Newton’s constant and Tµν is the energy-momentum tensor defined in
equation (1.30). Note also that we did not write down a cosmological constant Λ, as its
presence is not relevant at early times. The resulting equations are called the Friedmann’s
equations and read

ȧ2

a2
=

ρ

3m2
p

−
K

a2
(9.3)

ä

a
=−

ρ+3p

6m2
p

. (9.4)

The quantities p and ρ are the pressure and energy density associated with non-gravitational
fields. They are defined in analogy to a perfect fluid, whose energy-momentum tensor is

T
f l ui d
µν = (p +ρ)vµvν+pgµν (9.5)

with vν the fluid’s velocity field. In the fluid’s rest frame (vi=0, v0 =−1, so that vµvµ =−1),
this gives

T
f l ui d

00 = ρ (9.6)

T
f l ui d

i i
= pa2 . (9.7)

We then define, for generic matter content

ρ = T00 (9.8)

p =
a−2

3

3∑

i=0

Ti i . (9.9)

Observations suggest that our universe is almost flat, possibly even exactly flat and the term
in K in equation (9.3) can be neglected. Then, the evolution of the scale factor can be
parametrised in terms of an equation of state for the non-gravitational fields

p =ωρ . (9.10)

For ω= const ant , the Friedmann’s equations can be solved and one finds

a(t ) ∝ t 2/(3+3ω), ω 6= −1 (9.11)
a(t ) ∝ ect ω=−1 (9.12)
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with c some constant. The equation of state for purely non-relativistic matter is ω= 0 while
the one of pure radiation is ω= 1

3
.

Assuming that the evolution of the universe occurred only in phases where the dominant
equation of state is the one of matter or radiation leads to some problems. First, the ”flatness”
problem, which comes about because of the present value of the measured curvature density
Ωk =− K

ȧ2 . Current bounds give [186] |Ωk | < 0.005 and tracing it back in time with a power-law
evolution of the scale factor leads to an extremely fine-tuned initial value for K . Second is the
”horizon” problem. The observation of a largely homogeneous cosmic microwave background
together with only a power-law like evolution of the scale factor would imply a causal
correlation between different causal patches.

Both of these problems can be solved by assuming an initial era of expansion where the scale
factor grows exponentially. This era is called inflation. As equation (9.12) indicates, this can
be achieved if the field content which dominates has an equation of state of ω=−1. The
paradigmatic model of inflation consists of a homogeneous scalar field φ, the ”inflaton”,
evolving in some potential V . As we will derive in more details in the next chapter, the
corresponding field equations are

φ̈+3H φ̇+
∂V

∂φ
= 0 , (9.13)

where we defined the Hubble rate as H = ȧ
a
. We are also interested in the energy components

ρφ =
1

2
φ̇2 +V (φ), pφ =

1

2
φ̇2 −V (φ) . (9.14)

We see that we can achieve the appropriate equation of state if

1

2
φ̇2 <<V (φ) . (9.15)

This will be our first ”slow-roll” condition. In particular, with this assumption, the
Friedmann’s equation (9.3) simplifies to

H 2 =
1

3m2
p

Vφ . (9.16)

For inflation to last long enough (see references [185–187] for a quantitative description of this
statement), we need our first slow-roll condition to be satisfied for long enough time. This will
happen only if the friction term in the equation of motion (9.13) dominates over φ̈. This leads
to our second slow-roll condition

|φ̈| <<H φ̇ . (9.17)

After some massaging, these two equations can be rewritten as dimensionless ratios involving
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only the potential and its derivatives; these are the ”potential” slow-roll parameters

ǫV =
m2

p

2




∂V
∂φ

V (φ)


 , (9.18)

ηV = m2
p




∂2V
∂φ2

V (φ)


 . (9.19)

Both ǫV and ηV must be much smaller than one to have slow-roll inflation. These two
parameters are useful to decide whether a particular potential can sustain slow-roll inflation or
not.

We can also directly consider the behaviour of H to characterise inflation. The trick is to
rewrite ä = a(Ḣ +H 2). To have inflation, we need at least ä > 0, leading to the condition

ǫH =−
Ḣ

H 2
< 1 . (9.20)

Inflation ends when ǫH = 1. We can also write a second slow-roll parameter to ensure that
inflation occurs over sufficiently long times. It is defined as the rate of change of ǫH

ηH =
˙ǫH

H ǫH
, (9.21)

and also needs to be smaller than one. For a careful discussion on slow-roll parameters, we
refer the reader to reference [188].

Inflation needs to end at some point and the ”inflaton” needs to transfer its energy into
standard model fields, to populate the universe as we see it today. This transfer is called
preheating and is the subject of the next section. To discuss it, it is important to understand
how the inflaton behaves at the end of inflation. For concreteness, let us take V (φ) = 1

2
m2φ2.

In figure 9.1, we show the numerical solution to the system of ordinary differential equations
(9.13) together with the Friedmann equation for H , with a large field amplitude as an initial
condition. We can clearly see on the left-hand side of the figure the initial slow-roll phase,
characterised, both by the mild change of the field amplitude and the smallness of ǫH . At the
end of this phase, around mp t ≈ 230, the field reaches the bottom of its potential and starts
oscillating around it. As we will see, these oscillations around the minimum will drive
preheating.

In the case of the quadratic potential, the form of these oscillations can be understood
analytically. In a slow-phase approximation, one can show [186]

φ(t ) ≈φat t .(t ) =
2
p

2mp cos(m(t − t f ))
p

3m(t − t f )

(
1+

sin(2m(t − t f ))

2m(t − t f )

)
, (9.22)

with t f the time at which the slow-roll regime ends. This solution is compared to the full
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Figure 9.1 – Left-hand side: Numerical solution to the homogeneous scalar field equations
and of the slow-roll parameter ǫH . We see the slow-roll regime and its end, when ǫH becomes
of order one. Right-hand side: Evolution of the homogeneous inflaton just after the end of
the slow-roll regime. An approximate analytic solution is also plotted.

numerical solution on the right-hand side of figure 9.1 and we see it is a good approximation.
Moreover, for any potential with a quadratic minimum, the inflaton will be driven towards this
solution.

To conclude this part, note that considering the inflaton to be a homogeneous field breaks
down soon after the end of the slow roll regime, as we will discuss in the next section.
Numerical solutions of the full partial differential equations are needed and this is what
C osmoL attice is designed for.

9.2 Preheating and particle creation

Once the inflaton exits slow-roll, the universe is not expanding exponentially fast anymore. All
the energy of the universe is stored in this field and now needs to be redistributed into other
particles. This can happen because of quantum fluctuations. Any field is at least coupled to
the inflaton through gravitation and can be dynamically fed energy.

An appropriate theoretical framework to treat this problem analytically is to consider the
oscillating homogeneous mode of the inflaton as a classical background field to which quantum
fluctuations are coupled [189]. We will present below one of the main process responsible for
these energy transfers, namely parametric resonance. We will restrict ourselves to the simpler
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case without expansion, for a quadratic potential. For more details and a thorough analytical
treatment of the effect of an expanding background, we refer the reader to reference [189].

We consider inflation with a quartic potential m2

2
φ2 and model its evolution at the end of

inflation by
φ(t ) =Φcos(mt ) . (9.23)

To mimic interactions with other standard model particles, we add a quartic interaction to a
daughter particle φ, and consider the following potential

V (φ,χ) =
m2

2
φ2 +

g

2
φ2χ2 , (9.24)

with g some dimensionless coupling constant. Recalling that we treat φ as a classical
background, this means that we need to study the field operator χ̂, whose evolution is dictated
by the following Hamiltonian

Ĥ =
1

2
Π̂χ

2 +∇χ̂2 +
g

2
χ̂2

Φ
2 cos2(mt ) . (9.25)

This is nothing else than a simple harmonic oscillator with a time-varying frequency. The
operator χ̂ can also be expanded into creation and annihilation operators ak , a†

k
[187]

χ̂(x, t ) =
∫

dk3χk (t )∗âk e i~k·~x +χk (t )â†
k

e−i~k·~x , (9.26)

provided the mode function solves the classical equations of motion with the time-varying
frequency

χ̈k + (k2 + g 2
Φ

2 sin2(mt ))χk = 0 . (9.27)

The main mechanism to drive particle creation comes from the fact that periodic ordinary
differential equations of this type admit unstable solutions. The mathematical analysis of such
equations is known as Floquet’s theory. In our case, it tells us [186] that the most general
solution is given in as

χk (t ) = eµk t v+(t )+e−µk t v−(t ) , (9.28)

with µk the so-called Floquet’s exponent and v±(t ) = v±(t +T ) some periodic functions of the
same period T than the effective frequency (”Bloch waves” in a condensed matter context).

As outlined in [186], the Floquet’s exponent can be exactly computed for every mode and
given parameters by solving numerically the associated equation. To understand the
phenomenon of particle creation, it is important to pin down which modes display an
instability and for which set of parameters. This can be achieved through a parameter scan,
often referred to as a Floquet’s chart in this context.

In figure 9.2, we show the result of this analysis applied to equation (9.27). The colour-map
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represents the real part of the Floquet’s exponent; exponential growth happens only when it is
non-zero. It is standard to map equation (9.27) to a Mathieu equation

ẍk + (Ak −2q cos(2z))xk = 0 , (9.29)

with a resonance parameter

q =
g 2

Φ
2

4m2
(9.30)

and Ak = k2

m2 . We see the emergence of resonance bands, where the Floquet’s exponent has a
non-zero real part, leading to an exponential growth of the corresponding mode. This
exponential growth reflects itself in the particle occupation number and is then interpreted as
particle creation.

This kind of instabilities are known has parametric resonances and are a feature of fields
evolving in a periodic classical background. An interesting fact is that to have an exponential
growth, some energy need to be already present in χk (0) or χ̇k (0), has the only compatible
solution of the type (9.28) with χk (0) = 0 and χ̇k (0) = 0 is χk = 0. For preheating, quantum
fluctuations play the role of seeds.

Parametric resonances remain when the expansion of the universe is accounted for, but the
details are more intricated and we refer the interested reader to references [186,187,189].

The exponential creation of particles due to these parametric resonances brings the system
into a classical regime with large occupation numbers and one expects the dynamics to be well
captured by the classical field equations of motions. In particular, they can be solved
numerically to take into account the inhomogeneities in the field φ, which also grows
exponentially due to parametric resonances and the back reaction of χ into φ, which is crucial
to shut-off the exponential growth of χ. Such kind of numerical simulations are what
C osmoL attice was designed for and are further described in the next chapter.

9.3 Foreword to [3]

As already mentioned several times, classical real-time simulations are essential to capture the
non-linear dynamics responsible for the preheating of our universe. In reference [3], mostly
reproduced in the next chapter, we present a compendium on lattice techniques to perform
such simulations. In particular, we introduce a new set of algorithms to solve the dynamics of
scalar, Abelian and non-Abelian gauge, precise of up to O (dt 10). This work is meant to be the
theory companion to C osmoL attice, a scalable and user-friendly code, easily modifiable,
which implements the presented algorithm and is to be publicly released [4].
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Figure 9.2 – Floquet’s chart as a function of the momentum and the resonance parameter q =
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φ2χ2. We see the appearance of resonance bands where

the Floquet’s exponent has a non-zero real part. Modes in this region will grow exponentially
and lead to particle production.
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10 The art of simulating the early Uni-
verse [3]*

Authors: Daniel G. Figueroa, Adrien Florio, Francisco Torrenti, Wessel
Valkenburg

Reference: arXiv:2006.15122

Abstract: We present a comprehensive discussion on lattice techniques for the simulation of
scalar and gauge field dynamics in an expanding universe. After reviewing the continuum
formulation of scalar and gauge field interactions in Minkowski and FLRW backgrounds, we
introduce the basic tools for the discretization of field theories, including lattice gauge
invariant techniques. Following, we discuss and classify numerical algorithms, ranging from
methods of O (δt 2) accuracy like staggered leapfrog andVerlet integration to the Yoshida
integrators accurate up to O (δt 10). We adapt these methods for their use in classical lattice
simulations of the non-linear dynamics of scalar and gauge fields in an expanding grid in 3+1

dimensions, including the case of ‘self-consistent’ expansion sourced by the volume average of
the fields’ energy and pressure densities. We present lattice formulations of canonical cases of:
i ) Interacting scalar fields, i i ) Abelian U (1) gauge theories, and i i i ) Non-Abelian SU (2) gauge
theories. In all three cases we provide symplectic integrators, with accuracy ranging from
O (δt 2) up to O (δt 10). For each algorithm we provide the form of relevant observables, such as
energy density components, field spectra and the Hubble constraint. We note that all our
algorithms for gauge theories always respect the Gauss constraint to machine precision, even
in the case of ‘self-consistent’ expansion. As a numerical example we analyze the
post-inflationary dynamics of an oscillating inflaton charged under SU (2)×U (1). We note that
the present manuscript is meant as part of the theoretical basis for the code C osmoL attice,
a multi-purpose MPI-based package for simulating the non-linear evolution of field theories in
an expanding universe, to be released in 2020.

*Content of this chapter: Contrary to what is done in other chapters, we do not reproduce the
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full content of reference [3]. We removed a few sections about some specific algorithms. Note
that section 10.2.1 and section 10.3.2.2 have some overlap with material presented in chapter 1
and 4; we decided to include them anyhow to keep the integrity of the paper. Note also that
we added appendices with some computations relating to the FLRW metric.

Author’s contribution: Development of about two third of the code, including the expression
template gauge algebra, C osmoL attice interface, the measurements and the evolution
algorithms. Design of the dedicated velocity-Verlet algorithms up to order O(dt 10).
Contributions to the redaction of the paper.

10.1 Introduction

10.1.1 The Numerical Early Universe: a laboratory for non-linear high energy
physics

Compelling evidence [190] supports the idea of inflation, a phase of accelerated expansion in
the early universe, which provides both a solution to the shortcomings of the hot Big Bang
framework [191–197], and an explanation for the origin of the primordial density
perturbations [198–202]. Inflation is often assumed to be driven by a scalar field, the inflaton,
with potential and initial conditions appropriately chosen to sustain a long enough period of
accelerated expansion. To switch to the standard hot Big Bang cosmology, a reheating period
must be ensured after inflation, converting the energy available into light degrees of freedom
(dof), which eventually thermalize and dominate the universe energy budget. This transition
process is an integral part of the inflationary paradigm, although observationally much less
constrained than the inflationary period itself. For reviews on inflation and reheating,
see [203–206] and [186,187,207,208].

In many scenarios, the inflaton oscillates around the minimum of its potential following the
end of inflation, initially in the form of a homogeneous condensate. Particle species coupled
sufficiently strongly to it are then created in energetic bursts. If the particles are bosons, their
production is driven by parametric resonance, resulting in an exponential transfer of energy
within few oscillations of the inflaton [189,209–215]. If the particles are fermion species, there
can also be a significant transfer of energy [216–219], albeit no resonance can be developed due
to Pauli blocking. Particle production in this way, of either bosons or fermions, corresponds to
a non-perturbative effect, which cannot be described with standard quantum field theory
(QFT) perturbative techniques. Furthermore, particle species created by these effects are
typically far away from thermal equilibrium, and in the case of bosonic species their
production is exponential, so they eventually ‘backreact’ onto the inflaton, breaking apart its
initial homogeneous condition. The dynamics of the system becomes non-linear from that
moment onward. All of these effects, from the initial particle production to the eventual
development of non-linearities in the system, represent what is referred to as a preheating
stage. In order to fully capture the non-perturbative, out-of-equilibrium and eventual
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non-linearities of preheating, we need to study such phenomena on a lattice. This requires the
use of classical field theory real-time simulations, an approach valid as long as the particle
species involved in the problem have large occupation numbers nk ≫ 1, so that their quantum
nature can be neglected [220,221].

Parametric particle production can also be developed in the early universe, in circumstances
other than preheating. For instance, in the curvaton scenario [222–225], the initially
homogeneous curvaton (a spectator field during inflation) may decay after inflation via
parametric resonance, transferring abruptly all its energy to other particle species [226–229]. If
the Standard Model (SM) Higgs is weakly coupled to the inflationary sector, the Higgs can be
excited either during inflation [230–232], or towards the end of it [233,234], in the form of a
condensate with large amplitude. The Higgs then decays naturally into the rest of the SM
species via parametric effects [231,234–239], some time after inflation1. In supersymmetric
(SUSY) extensions of the SM we encounter flat directions [248,249], configurations in field
space where the renormalizable part of the scalar potential is exactly flat (as SUSY must be
broken, the exact flatness is however typically uplifted by various effects [250]). During
inflation, due to quantum fluctuations, field configurations can be developed with a large
expectation value along these directions [249, 251]. If such scalar condensates have a soft mass,
its amplitude starts oscillating after inflation once the Hubble rate becomes smaller than its
mass [250,252], possibly ensuing an explosive decay of the field condensate due to
non-perturbative resonant effects [253–255].

In certain types of inflationary models where spontaneous symmetry breaking plays a central
role, tachyonic effects can also lead to non-perturbative and out-of-equilibrium particle
production, eventually driving the system into a non-linear regime. One example of this is
Hybrid inflation [256], a family of models where the inflationary stage is sustained by the
vacuum energy of a Higgs-like field. During inflation, the effective squared mass of the Higgs
field is positive defined, but becomes negative when the inflaton eventually crosses around a
critical point. The Higgs then sustains a tachyonic mass that leads into an exponential growth
of the occupation number of its most infrared (IR) modes below its own tachyonic mass
scale [257–260]. This continues until the mass square becomes positive again, due to the Higgs
own self-interactions. In Hilltop-inflation, inflation is sustained while the inflaton slowly rolls
from close to a maximum of its potential (the ‘hilltop’) towards its minimum, located at some
non-vanishing scale. When the inflaton amplitude crosses a certain threshold, inflation ends,
and the inflaton starts oscillating around its minimum. Its effective squared mass then
alternates between positive and negative values, as the inflaton rolls back and forth between
the minimum of its potential and the region of negative curvature where inflation ended.
Fluctuations of the inflaton then grow exponentially during successive tachyonic phases.

Preheating effects have been also studied in models with gravitationally non-minimal coupled

1Note that this differs from the Higgs-Inflation scenario [240,241], where the Higgs also decays after inflation
into SM fields via parametric effects [236,242–247], but as the Higgs plays the role of the inflaton, this scenario
belongs to the category of preheating.
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fields [246,261–266], and in particular, recently, in multi-field inflation scenarios [267–271]. In
the latter, a single-field attractor behavior is developed during inflation, later persisting during
preheating. Due to this, particle production after inflation becomes more efficient than in
multi-field models with minimal couplings, where a de-phasing effect of the background fields’
oscillations leads to a damping of the resonances [208,272–275].

Furthermore, as gauge fields are naturally present in the SM and in many of its extensions,
their presence in inflationary scenarios has also been considered. Due to their bosonic nature,
gauge fields can exhibit highly nonlinear dynamics during preheating. For instance, if the
inflaton enjoys a shift-symmetry, a topological coupling to a gauge sector is allowed. In the
case of U (1) gauge fields, preheating effects have been studied in axion-inflation
scenarios [276–281], showing that an interaction φF F̃ leads to an extremely efficient way to
reheat the universe, as well as to very interesting (potentially observable) phenomenology.
In [1, 115,279] an improved lattice formulation of an interaction φF F̃ between an axion-like
field and a U (1) gauge sector was constructed, demonstrating that the topological nature of
F F̃ as a total derivative ∂µK µ, can be actually realized exactly on a lattice (hence preserving
exactly the shift symmetry at the lattice level). Interactions between a singlet inflaton and an
Abelian gauge sector, via f (φ)F 2, or a non-Abelian SU (2) gauge sector, via f (φ)TrG2, have
also been explored in the context of preheating [282,283].

In Hybrid inflation models, the presence and excitation of gauge fields have also been
addressed extensively, both for Abelian and non-Abelian scenarios, obtaining a very rich
phenomenology, see e.g. [284–294]. The case of preheating via parametric resonance, with a
charged inflaton under a gauge symmetry, has however not been considered very often in the
literature2. Nothing is wrong per se about considering an inflaton charged under a gauge
group [and hence coupled to some gauge field(s)], as long as one constructs a viable working
model, respecting the observational constraints. In such a case, when the inflaton starts
oscillating following the end of inflation, the corresponding gauge bosons will be parametrically
excited. This has been studied in detail in Ref. [295], for both Abelian U (1) and non-Abelian
SU (2) gauge groups. Actually, in this manuscript we also consider a similar model for which
we compute the preheating stage via parametric resonance effects into U (1) and U (1)×SU (2)

sectors. A natural realization of an inflationary set-up where the inflaton is charged under a
gauge group is the Higgs-Inflation scenario [240,241], where the SM Higgs is the inflaton.
There the electroweak gauge bosons and charged fermions of the SM are coupled to the Higgs,
and thus they experience parametric excitation effects during the oscillations of the Higgs after
inflation [236,242–247]. If the SM Higgs is rather a spectator field during inflation, the
post-inflationary decay of the Higgs into SM fields has also been considered
in [238,239,296–298].

In general, the non-linear dynamics characteristic of preheating scenarios and in general of

2Possibly, this is partially due to the fact that there is no particular need to ‘gauge’ the inflationary sector,
and partially because of the potential danger that gauge couplings may induce large radiative corrections in the
inflaton potential, spoiling the conditions to sustain inflation.
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non-perturbative particle production phenomena, are interesting not only by themselves, but
also because they may lead to cosmologically relevant and potentially observable phenomena.
Among these, we highlight:

• The generation of scalar metric perturbations [299–308], possibly leading to the
formation of primordial black holes [309–317].

• The production of stochastic gravitational wave backgrounds by parametric
effects [280,281,293,318–334]. For a recent review see [335].

• The creation of topological defects, like cosmic string networks [184,257,293,336,337],
and their evolution during the scaling regime [338–344] and corresponding emission of
GWs [345].

• The creation of soliton-like structures like oscillons [324,327,328,330,333,337,346–351]
and similar structures [306,352–354].

• The realization of magnetogenesis [277,291,292,355–358] and baryogenesis
mechanisms [277,284–286,286–288,359–366].

• The determination of the post-inflationary equation of state, and its implications for the
CMB inflationary observables [347,367–371], or for the dark matter relic
abundance [372].

In general, the details of nonlinear phenomena are difficult to grasp, when not impossible, by
analytic calculations. In order to fully understand the non-linearities developed in a given
model, the use of numerical techniques becomes necessary. The non-trivial results arising from
the non-linear dynamics of early universe high-energy phenomena, represents an important
perspective in determining the best observational strategies to probe the unknown physics
from this era. It is therefore crucial to develop numerical techniques, as efficient and robust as
possible, to simulate these phenomena. Numerical algorithms developed for this purpose must
satisfy a number of physical constraints (e.g. energy conservation), and keep the numerical
integration errors under control. It is actually useful to develop as many techniques as
possible, to validate and double check results from simulations. Only in this way, we will
achieve a certain robustness in the predictions of the potentially observational implications
from non-linear high energy phenomena. Furthermore, the techniques developed for studying
nonlinear dynamics of classical fields, are common to many other non-linear problems in the
early universe, like the dynamics of phase transitions [1, 29,131,131,259,260,373–375] and
their emission of gravitational waves [376–382], cosmic defect formation [175,184,293,383–389],
their later evolution [338–344,390,391] and gravitational wave emission [293,345,392],
axion-like field dynamics [349, 353, 393–396], moduli dynamics [397, 398], etc. These techniques
can also be used in applications of interest not only to cosmology, but also to other high
energy physics areas. For example, classical-statistical simulations have been used to compute
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quantities such as the sphaleron-rate [70,96–110] and to study the Abelian [1, 29,90–93] and
non-Abelian [399] dynamics associated to the chiral anomaly, as well as for spectral
quantities [400,401], and some properties of the quark-gluon plasma [402–405].

10.1.2 Purpose of this manuscript. Introducing C osmoL attice

As just reviewed in the previous section, the phenomenology of high-energy non-linear
processes in the early universe is vast and very rich. In order to make reliable predictions of
their potentially observable consequences, we need appropriate numerical tools. The Numerical
Early Universe, i.e. the study of high-energy non-linear field theory phenomena with numerical
techniques, is an emerging field, and it is increasingly gaining relevance, especially as a
methodology to assess our capabilities to experimentally constrain (or even determine) the
physics of this (yet) unknown epoch. It is because we recognize the importance of this, that we
have created this dissertation, the content and purpose of which we explain next.

The present manuscript is part of the theoretical basis for the code C osmoL attice, a modern
multi-purpose MPI-based C++ package, to be publicly released in 2020 as a user-friendly
software for lattice simulations of the non-linear dynamics of scalar and gauge field do f in an
expanding background, with the expansion rate of the universe ’self-consistently’ sourced by
the fields themselves. Of course, exploring numerically the nonlinear dynamics of interacting
fields during the early universe is not a new idea, as witnessed by the increasing number of
lattice codes dedicated to this purpose that have appeared within the last years. With the
exception of the recent GFiRe code [184], that includes integrators for Abelian gauge theories,
previous public packages were dedicated only to interacting scalar fields, either with finite
difference techniques in real space, like Latticeeasy [177], Clustereasy [178], Defrost [179],
CUDAEasy [406], HLattice [181], PyCOOL [182] and GABE [183], or pseudo-spectral codes like
PSpectRe [180] and Stella [348]. In most of the mentioned codes, metric perturbations
(whenever present) are sourced passively, neglecting backreaction effects on the dynamics of
the scalar fields. Notable exceptions to this are HLATTICE v2.0, and especially the recent
GABERel [307], which allows for the full general relativistic evolution of non-linear scalar field
dynamics. Given that all these codes are already available, one may wonder what is the point
of releasing yet a new one. In order to answer this, let us explain the purpose of
C osmoL attice, which is actually twofold:

1. C osmoL attice is meant to be a ‘platform’ for users to implement any system of
equations suitable for discretization on a lattice. That is, C osmoL attice is not a code
for doing one type of simulation with one specific integration technique, such as e.g. the
real-time evolution of interacting scalar fields sourcing self-consistently the expansion of
the universe. The idea is rather something else: C osmoL attice is a package that
introduces its own symbolic language, by defining field variables and operations over
them. Therefore, once the user becomes familiar with the basic ‘vocabulary’ of the new
language, they can write their own code: be it for the time evolution of the field
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variables in a given model of interest, or for some other operation, like a Monte-Carlo
generator for thermal configurations. One of the main advantages of C osmoL attice is
that it clearly separates the phy si cs (i.e. fields living on a lattice and operations
between them) from the i mplement ati on det ai l s, such as the handling of the
parallelization or the Fourier transforms. For example, let us imagine a beginner user
with little experience in programming, and with no experience at all in parallelization
techniques. With C osmoL attice, they will be able to run a fully parallelized
simulation of their favourite model (say using hundreds of processors in a cluster), while
being completely oblivious to the technical details. They will just need to write a basic
model file in the language of C osmoL attice, containing the details of the model being
simulated. If, on the contrary, the user is rather an experienced one and wants to look
inside the core routines of C osmoL attice and modify, for example, the
MPI-implementation, they can always do so, and perhaps even contribute to improving
them. On top of this, C osmoL attice includes already a library of basic routines and
field-theoretical operations. This constitutes a clear advantage of using
C osmoL attice as a platform to implement a given scenario over writing your own code
from scratch. In particular, C osmoL attice comes with symbolic scalar, complex and
SU (2) algebras, which allows to use vectorial and matrix notations without sacrificing
performances. Furthermore, C osmoL attice is MPI-based and uses a discrete Fourier
Transform parallelized in multiple spatial dimensions [407], making it very powerful for
probing physical problems with well-separated scales, running very high resolution
simulations, or simply very long ones. C osmoL attice will be made publicly available
in 2020, and it will come with a detailed manual explaining its whole structure and the
basic instructions to start running your own simulations.

2. C osmoL attice includes already a set of algorithms to evolve lattice scalar-gauge
theories in real-time, which can be selected with a single ‘switch’ option. Part of this
document can be actually considered as the theoretical basis for such algorithms. In fact,
this manuscript is really meant to be a primer on lattice techniques for non-linear
simulations, as we present a comprehensive discussion on such techniques, in particular
for the simulation of scalar and gauge field dynamics in an expanding universe. In
Section 10.2 we review first the formulation of scalar and gauge field interactions in the
continuum, both in a flat space-time and in Friedmann-Lemaître-Robertson-Walker
(FLRW) backgrounds. In Section 10.3 we introduce the basic tools for discretizing any
bosonic field theory in an expanding background, including a discussion on lattice gauge
invariant techniques for both Abelian and non-Abelian gauge theories. Next, we
introduce and classify a series of numerical algorithms, starting from methods of O (δt 2)

accuracy, staggered leapfrog andVerlet integration, passing and covering higher-order
integrators accurate up to O (δt 10), such as the Yoshida methods. In the following
Sections 10.4, 10.5 and 10.6, we adapt the previous algorithms to a specialized use for
classical lattice simulations of scalar and gauge field dynamics in an expanding
background in 3+1 dimensions. We put special care to include the possibility of
’self-consistent’ expansion of the universe, sourcing the evolution of the scale factor by
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the volume average of the fields’ energy and pressure densities, independently of whether
the fields are scalars, Abelian gauge fields, or non-Abelian gauge fields. In Section 10.4,
we present a variety of lattice formulations of interacting scalar fields, consisting in
different integrators which can reproduce the continuum theory to an accuracy ranging
from O (δt 2) to O (δt 10). Analogously, in Sections 10.5 and 10.6, we present a set of
algorithms for Abelian U (1) gauge theories, and Non-Abelian SU (2) gauge theories,
respectively, again with an accuracy ranging between O (δt 2) and O (δt 10). In the case of
interacting scalar field methods, we provide both symplectic and non-symplectic
integrators, whereas for gauge fields only symplectic integrators are built. For every
algorithm presented, we always provide the form of the most significant observables, such
as the energy density components, relevant field spectra, and the form of the Hubble
constraint. The latter is verified by our symplectic algorithms with an accuracy that
depends on the integrator order, reaching even down to machine precision in the case of
the highest order schemes. Furthermore, it is worth noting that our integration
algorithms for gauge theories always respect exactly, down to machine precision, the
Gauss constraint, independently of the order of the integrator. This remains true even in
the case of self-consistent expansion, independently of whether the gauge sector is
Abelian or non-Abelian. We note that all the explicit-in-time algorithms presented in
Sections 10.4 - 10.6 are already implemented in C osmoL attice, and will be made
therefore publicly available once C osmoL attice is released.

It should be also noticed that this manuscript represents only Part I of our intended discussion
on lattice techniques for the simulation of scalar and gauge dynamics in an expanding universe.
In this document we focus on the presentation of general integration techniques (Section 10.3),
and in their use to build explicit-in-time integration algorithms for canonical scalar-gauge
theories, i.e. for field theories with canonically normalized kinetic terms and standard scalar
potential (Section 10.4) and scalar-gauge Abelian (Section 10.5) and non-Abelian (Section 10.6)
interactions. We would like to highlight that we present higher-order integration algorithms
for interacting scalar fields, similar to those in HLattice [181], which built algorithms with
accuracy up to O (δt 6). We go a step beyond building also explicit implementations for all the
orders, including the highest ones O (δt 8) and O (δt 10). Analogously, we also present
higher-order integration algorithms for Abelian U (1) gauge theories, similar to those
in GFiRe [184]. We demonstrate explicitly for the first time their numerical implementation for
all accuracy orders, including now O (δt 6), O (δt 8) and O (δt 10). Furthermore, we also present
here, to the best of our knowledge for the first time, an algorithm for non-Abelian SU (N )

gauge theories, which is symplectic, explicit in time, of arbitrary order, and preserving exactly
the Gauss constraint, while solving for the expansion of the universe self-consistently. As a
numerical example to test our algorithms in scalar-gauge canonical theories, we analyze the
post-inflationary preheating dynamics of an oscillating inflaton charged under SU (2)×U (1) in
Section 10.8. We postpone the discussion about methods for non-canonical scenarios for Part
II of our dissertation on lattice techniques, to be published elsewhere [408], together with the
public release of their implementation in C osmoL attice. Non-canonical scenarios are
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theories e.g. with non-minimal gravitational couplings, or more generally with kinetic terms
with non-trivial field metrics, as considered e.g. in [183,270,271]. Non-canonical scenarios may
also include interactions between field variables and their conjugate momenta, as naturally
arising in exact derivative couplings between an axion-like field and gauge fields, as considered
e.g. in [279]. Non-canonical interactions can be numerically complicated to deal with, and
usually require integration techniques which are either non-symplectic or simply more involved,
typically with high memory requirements, and often not explicit in time. It is precisely
because of these circumstances that we naturally separate the methods for canonical
scalar-gauge theories presented here in Part I, in Sections 10.4 - 10.6, from the numerical
integrators that we will present for non-canonical interactions in Part II [408].

To conclude this section, let us mention that precisely because C osmoL attice is a platform
rather than a specialized code for certain type of scenarios, there is a number of extensions
(beyond the routines currently discussed here in Part I, or planned to be presented in Part II),
which we would like to add in C osmoL attice in the mid-term, as we go updating and
improving the code in time. We hope to eventually consider (perhaps in collaboration with
you?) the following aspects:

• Addition of fermions. Even though this is numerically very costly, one can simulate
out-of-thermal-equilibrium dynamics of classical bosonic fields coupled to quantum fermions.
This has been done by [409] and successive works [410–412], combining the lattice
implementation based on the the quantum mode equations proposed in [413], with the ‘low
cost’ fermions introduced in [414].

• Computation of metric perturbations. This could be done for scalar and vector
perturbations following [181], whereas tensor perturbations representing gravitational waves
(GW), can be obtained following [415] (based on the idea originally proposed in [321]), as this
allows for general GW sources built from either scalar and gauge fields (or even fermions if
they were present).

• Addition of relativistic hydrodynamics. This can be useful to describe scenarios where a
classical scalar field, playing the role of an order parameter in a phase transition, is coupled to
a relativistic fluid by means of a phenomenological friction term. This is the basis to describe
numerically the dynamics of first order phase transitions [1, 29,131,131,259,260,373–375] and
their emission of gravitational waves [376–382].

• Addition of new ‘initializer’ routines. So far we have only considered the initialization of field
fluctuations in Fourier space (on top of homogeneous field values), given a theoretical
spectrum as an input. However, in order to simulate e.g. the dynamics of a network of cosmic
strings or other type of topological defects, different algorithms have been used to create
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initially the defect network in configuration space, see e.g. [338–345,390,391,416].

• Addition of ‘importance sampling’ algorithms. Monte-Carlo algorithms and Langevin
dynamics are used to generate fields according to some probability distributions. They can be
used to set up thermal initial conditions to study e.g. chiral charge dynamics in gauge theories
at finite temperature [1, 29]. Alternatively, one could turn C osmoL attice into a general
platform to sample positive definite path integrals. While specific and highly optimized
open-source codes exist to simulate lattice QCD [417,418], to the best of our knowledge, there
is no truly versatile software to easily simulate other theories.

10.1.3 Conventions and notation

Unless otherwise specified, throughout the document we use the following conventions. We use
natural units c = ~= 1 and choose metric signature (−1,+1,+1,+1). We use interchangeably the
Newton constant G, the full Planck mass Mp ≃ 1.22 ·1019 GeV, and the reduced Planck mass
mp ≃ 2.44 ·1018 GeV, related through M 2

p = 8πm2
p = 1/G. Concerning space-time coordinates,

Latin indices i , j ,k, ... = 1,2,3 are reserved for spatial dimensions, and Greek indices
α,β,µ,ν, ... = 0,1,2,3 for space-time dimensions. We use the Einstein convention of summing
over repeated indices only in the continuum, whereas on the lattice, in general, repeated
indices do not represent summation. We consider a flat FLRW metric
d s2 =−a2α(η)dη2 +a2(η)δi j d xi d x j with α ∈Re a constant chosen conveniently in each
scenario. For α= 0, η denotes the coordinate time t , whereas for α= 1, η denotes the
conformal time τ=

∫
d t ′

a(t ′) . For arbitrary α, we will refer to the time variable as the α-time. We
reserve the notation ()· for derivatives with respect to cosmic time with α= 0, and ()′ for
derivatives with respect to α-time with arbitrary α. Physical momenta are represented by p,
comoving momenta by k, the α-time Hubble rate is given by H = a′/a, whereas the physical
Hubble rate is denoted by H =H |α=0. Cosmological parameters are fixed to the CMB values
given in [190,419]. Our Fourier transform convention in the continuum is given by

f (x) =
1

(2π)3

∫
d 3k f (k)e−i kx ⇐⇒ f (k) =

∫
d 3x f (x)e+i kx . (10.1)

10.2 Field dynamics in the continuum

In this section, we describe briefly the formulation of scalar and gauge field dynamics in the
continuum. We review first the case of interacting fields in a Minkowski background in
Section 10.2.1, starting with scalar fields only, and then introducing gauge symmetries and the
corresponding gauge field degrees of freedom (dof). We then promote the background metric
into a curved manifold, and specialize our study to the case of a spatially-flat, homogeneous,
and isotropic space-time, described by the FLRW metric. We consider the dynamics of scalar
and gauge fields living in a FLRW background in Section 10.2.2, and the dynamics of the
background itself, as sourced by the fields that live within it, in Section 10.2.3.
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10.2.1 Scalar and Gauge field interactions in flat space-time

Let us consider first a set of Ns relativistic interacting scalar fields with action in flat
space-time

SS =−
∫

d 4x

{
1

2
∂µφi∂µφi +V ({φ j })

}
, (10.2)

where i , j = 1, ...Ns label the fields, and the potential V ({φ j }) characterizes the interactions and
self-interactions among fields. Because of the normalization constant 1/2 in front of the kinetic
terms ∂µφi∂µφi , we will refer to these fields as canonically normalized scalar fields. We note
that space-time indices are raised with the Minkowski metric, e.g. ∂µφ≡ ηµν∂νφ. The equations
of motion (EOM) of the system are obtained from minimizing Eq. (10.2). This leads to

−�ηφi +
∂V

∂φi
= 0, with �η ≡ ηµν∂µ∂ν = ∂α∂α . (10.3)

In a more explicit form, the EOM can be written as

φ̈i −
#»∇ 2

φi +
∂V

∂φi
= 0 ⇐⇒





φ̇i ≡ πi ,

π̇i = #»∇ 2
φi − ∂V

∂φi
.

(10.4)

Let us now consider a general scalar-gauge theory in the continuum, including three types of
(canonically normalized) scalar fields: a singlet φ, a U (1)-charged field ϕ, and a
[SU (N )×U (1)]-charged field Φ; as well as the corresponding Abelian Aµ and non-Abelian
Bµ =C a

µ Ta gauge vector bosons. Here {Ta} are the N 2 −1 group generators of SU (N ), satisfying
the properties of the SU (N ) Lie algebra

[Ta ,Tb] = i fabc Tc , Tr(Ta) = 0 , Tr(TaTb) = 1
2
δab , T †

a = Ta , (10.5)

with fabc the totally anti-symmetric structure constants of SU (N ). In the particular case of
SU (2), Ta ≡σa/2 (a = 1,2,3), with σa the Pauli matrices

σ1 =


0 1

1 0


 , σ2 =


0 −i

i 0


 , σ3 =


1 0

0 −1


 . (10.6)

For later convenience we also write some of their properties,

[σa ,σb] = 2iǫabcσc , Tr(σa) = 0 , Tr(σaσb) = 2δab , σ†
a =σa , (10.7)

with ǫabc the total anti-symmetric tensor.
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We can write a gauge invariant action as

S = −
∫

d 4x

{
1

2
∂µφ∂

µφ+ (D A
µϕ)∗(D

µ

A
ϕ)+ (DµΦ)†(Dµ

Φ)+
1

4
FµνFµν+

1

2
Tr{GµνGµν}+V

}
(10.8)

=
∫

d 4x

{
φ̇2

2
−
|~∇φ|2

2
+|D0ϕ|2 −|~Dϕ|2 +|D0Φ|2 −|~DΦ|2 +

|~E |2

2
−
| ~B|2

2
+

∑
a

(
|~Ea |2

2
−
| ~Ba |2

2

)
−V

}
,

with a potential V ≡V (φ, |ϕ|, |Φ|) describing the interactions among the scalar fields,

φ ∈Re , ϕ≡ 1p
2

(ϕ0 + iϕ1) , Φ=




ϕ(0)

ϕ(1)

...
ϕ(N−1)



= 1p

2




ϕ0 + iϕ1

ϕ2 + iϕ3

...
ϕ2N−2 + iϕ2N−1




, (10.9)

and where we have introduced standard definitions of covariant derivatives (denoting Q A and
QB the Abelian and non-Abelian charges) and field strength tensors,

DA
µ ≡ ∂µ− i

1

2
Q A g

A
Aµ , (10.10)

Dµ ≡ I DA
µ− i gBQB B a

µ Ta , (10.11)
Fµν ≡ ∂µAν−∂νAµ , (10.12)
Gµν ≡ ∂µBν−∂νBµ− i [Bµ,Bν] , (10.13)

with I the N ×N identity matrix. In the second line of (10.8) we have used the properties of
the generators, displayed in Eq. (10.5), to obtain

Gµν ≡Ga
µνTa ⇒

1

2
Tr(GµνGµν) ≡

1

2
Ga

µνG
µν
a ; Ga

µν ≡ ∂µB a
ν −∂νB a

µ + f abc B b
µB c

ν , (10.14)

and introduced Abelian and non-Abelian electric and magnetic fields as

Ei ≡ F0i , Bi =
1

2
ǫi j k F j k , E a

i ≡Ga
0i , Ba

i =
1

2
ǫi j kG

j k
a . (10.15)

The equations of motion (EOM) of the system can be obtained from minimizing Eq. (10.8).
They are

∂µ∂µφ = ∂V
∂φ [Singlet]

D
µ

A
D A

µϕ = ∂V
∂|ϕ|

ϕ
|ϕ| [U (1)-charged]

DµDµΦ = ∂V
∂|Φ|

Φ

|Φ| [U (1)×SU (N )]

∂νFµν = J
µ

A
[Abelian vector]

(Dν)abG
µν

b
= J

µ
a [Yang-Mills vector]

, (10.16)
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where (DνO)a = (Dν)abOb ≡ (δab∂ν− fabc B c
ν)Ob, and the currents are given by

J
µ

A
≡ g AQ

(ϕ)

A
I m[ϕ∗(D

µ

A
ϕ)]+ g AQ(Φ)

A
I m[Φ†(Dµ

Φ)] , (10.17)
J
µ
a ≡ 2gBQB I m[Φ†Ta(Dµ

Φ)] . (10.18)

It is straightforward to show that both action (10.8) and the EOM (10.16) are invariant under
the following set of gauge transformations,

φ(x) −→ φ(x) , [singlet]

ϕ(x) −→ ω(x)ϕ(x) , ω(x) = e−i
g A
2

Q
(ϕ)

A α(x) ,

Φ(x) −→ ω(x)Ω(x)Φ(x) , Ω(x) ≡ e−i gB QBβa (x)Ta , ω(x) = e−i
g A
2

Q (Φ)
A α(x) ,

Aµ(x) −→ Aµ(x)−∂µα(x)

Bµ(x) −→ Ω(x)Bµ(x)Ω†(x)− i
gB QB

[∂µΩ(x)]Ω†(x)

Gµν(x) −→ Ω(x)Gµν(x)Ω†(x) ,

(10.19)

with α(x) and βa(x) arbitrary real functions, Q
(ϕ)

A
and Q(Φ)

A
the Abelian charges of ϕ and Φ,

and QB the non-Abelian charge of Φ.

Using the definitions in Eq. (10.15), we can also write the EOM in vectorial form, making
more explicit the individual terms in each equation:

φ̈− #»∇ 2
φ = −V,φ , (10.20)

ϕ̈− #»

D
2

Aϕ = −V,|ϕ| · (ϕ/|ϕ|) , (10.21)

Φ̈− #»

D
2
Φ = −V,|Φ| · (Φ/|Φ|) , (10.22)

#̇»

E − #»∇ × #»

B = #»

J A ≡ g AQ
(ϕ)

A
I m[ϕ∗ #  »

D Aϕ]+ g AQ(Φ)
A

I m[Φ† #»

DΦ] , (10.23)
(

#»

D0
#»

E )a − (
#»

D × #»

B)a = #»

Ja ≡ 2gBQ(Φ)
B

I m[Φ†Ta
#»

DΦ] , (10.24)
−#»∇ #»

E = J A
0 ≡ g AQ

(ϕ)

A
I m[ϕ∗(D A

0 ϕ)]+ g AQ(Φ)
A

I m[Φ†(D0Φ)] , (10.25)
−(

#»

D
#»

E )a = (J0)a ≡ 2gBQ(Φ)
B

I m[Φ†Ta(D0Φ)] . (10.26)

We note that the last two equations in Eq. (10.26) represent constraint equations, as they
correspond to the equations associated with the temporal component of the gauge field, which
is not dynamical. These constraints are equivalent to the standard Gauss Law of
electromagnetism #»∇ #»

E = ρ. In particular, they are the generators of gauge transformations [49].
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10.2.2 Field dynamics in an expanding background

To describe the expansion of the Universe we consider a flat
Friedmann-Lemaître-Robertson-Walker (FLRW) metric, with line element

ds2 = gµνdxµdxν =−a(η)2αdη2 +a(η)2δi j dxi dx j . (10.27)

where a(η) is the scale factor, δi j is the Euclidean metric, and α is a constant parameter that
will be chosen conveniently in a case by case basis. The choice α= 0 identifies η with the
coordinate time t , whereas α= 1 makes η the conformal time τ≡

∫
d t ′

a(t ′) . For the time being, we
will consider α as an unspecified constant, and we will refer to η as the α-time variable.
Note -. Recall that we reserve the symbol ḟ ≡ d f /d t for derivatives with respect to the
coordinate time, whereas f ′ ≡ d f /dη will indicate derivative with respect to any α-time
variable.
For later convenience we write explicitly the metric and inverse metric elements,

g00 =−a(η)2α ; gi j = a(η)2δi j ; g 00 =−a(η)−2α ; g i j = a(η)−2δi j . (10.28)

To obtain the EOM in curved space, we follow the minimal gravitational coupling prescription,
making the following replacements into the flat space-time equations,

ηµν → gµν , (10.29)
∂γV

αβ..
µν.. ≡V

αβ..
µν.. ,γ → ∇γV

αβ..
µν.. ≡V

αβ..
µν.. ;γ =V

αβ..
µν.. ,γ+Γ

α
γσV

σβ..
µν.. −Γ

σ
γµV

αβ..
σν.. + ... , (10.30)

where V;µ =∇µV represents a (gravitational) covariant derivative, Γµ

αβ
are the Christoffel

symbols, and V
αβ..
µν.. is an arbitrary tensor. Using the non-vanishing Christoffel symbols of the

FLRW metric, see appendix 10.10,

Γ
0
00 =α

a′(η)

a(η)
, Γ

0
i j = a−2α+2 a′(η)

a(η)
δi j , Γ

i
i 0 =

a′(η)

a(η)
, (10.31)

we can obtain, via the minimal coupling prescription, the EOM in an expanding Universe. In
practice, we can obtain directly the transformation of the derivative terms in the scalar and
gauge field EOM, by making use of the following identities for the divergence of a vector and a
rank-2 anti-symmetric tensor,

∇σV σ =
1
p

g

∂(V σpg )

∂xσ
=

1

a3+α
∂(V σa3+α(t ))

∂xσ
= gσλ∂σVλ+ (3+α)

a′

a
V 0 , (10.32)

∇σFσλ =
1
p

g

∂(Fσλpg )

∂xσ
=

1

a3+α
∂(Fσλa3+α(t ))

∂xσ
(10.33)

= (3+α)
a′

a
g 0λgαβFλβ+∂σ(gσλgαβFλβ) , (10.34)
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where g =−det (gµν). This leads to

∂µ∂
µφ −→ ∇µ[∂µφ] = a−2αφ′′−a−2∂i∂iφ+ (3−α)

a′

a
φ′ , (10.35)

∂µFµν −→ ∇µFµν = gνν

(
−a−2α∂0F0ν+a−2∂i Fiν− (3−α)a−2α a′

a
F0ν

)

−a−2αF0ν∂0gνν . (10.36)

Using these identities and the metric elements (10.28), we obtain the EOM in an expanding
background as

φ′′−a−2(1−α) #»∇ 2
φ+ (3−α)

a′

a
φ′ = −a2αV,φ , (10.37)

ϕ′′−a−2(1−α) #»

D
2

Aϕ+ (3−α)
a′

a
ϕ′ = −a2αV,|ϕ| · (ϕ/|ϕ|) , (10.38)

Φ
′′−a−2(1−α) #»

D
2
Φ+ (3−α)

a′

a
Φ

′ = −a2αV,|Φ| · (Φ/|Φ|) , (10.39)

∂0F0i −a−2(1−α)∂ j F j i + (1−α)
a′

a
F0i = a2α J A

i , (10.40)

(D0)ab(G0i )b −a−2(1−α)(D j )ab(G j i )b + (1−α)
a′

a
(G0i )b = a2α(Ji )a , (10.41)

∂i F0i = a2 J A
0 , (10.42)

(Di )ab(G0i )b = a2(J0)a , (10.43)

where the currents on the r hs of the gauge field EOM are still given by Eqs. (10.17)-(10.18).
We note that Eqs. (10.42) and (10.43) are the generalization of the U (1) and SU (2) Gauss
constraints in an expanding background. When we discretize the system of equations later on,
we will use them as an indicator of the correctness of the discretization scheme, by checking
whether the constraints are preserved at all times during the field evolution.

10.2.3 Dynamics of the expanding background

If the expansion of the Universe is dictated by some external do f different than the fields we
are evolving, say e.g. a fluid with a given equation of state, we will refer to this case as fixed
background. If on the contrary, the matter fields (scalar or gauge) for which we are solving
their dynamics are the ones which govern the expansion of the Universe, we will refer to this
case as self-consistent expansion. In general, the evolution of the scale factor a(η) is dictated
by the stress-energy tensor of matter fields via the Friedmann equations. Denoting the
background energy and pressure densities as ρ̄ and p̄, the stress-energy tensor of a background
perfect fluid is given by

T̄µν ≡ (ρ̄+ p̄)uµuν+ p̄gµν , gµνuµuν =−1 =⇒





ρ̄ = a−2α T̄00 ,

p̄ = 1
3a2

∑
j T̄ j j ,

(10.44)
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where we have used uµ = (aα,0,0,0) and uµ =−(a−α,0,0,0). The evolution of the scale factor is
then determined by the Friedmann equations, which, in α-time, read as, see appendix 10.11,

H 2 ≡
(

a′

a

)2

= a2α ρ̄

3m2
p

,
a′′

a
=

a2α

6m2
p

[(2α−1)ρ̄−3p̄] . (10.45)

Let us consider first the case of a fixed background. If the expansion of the Universe is created
by an external fluid with constant equation of state w ≡ p/ρ, the two Friedmann equations can
be combined into a single equation as

2a′′+ (1+3ω−2α)
a′2

a
= 0 , (10.46)

with solution

a(η) = a(ηi)

(
1+

1

p
H i (η−ηi)

)p

, H (η) =
H i(

1+ 1
p
H i (η−ηi)

) =
H i

p
√

a(η)/a(ηi)
, p ≡

2

3(1+ω)−2α
,

(10.47)
where ηi is some initial time. In order to solve the scalar/gauge field dynamics, we just need
then to plug in the above expressions for a(η) and H (η) into the EOM of the matter fields.

In the case of self-consistent expansion, we need an expression for the energy
momentum-tensor of the scalar/gauge matter fields, and then take a volume average of the
corresponding local expressions of the energy and pressure densities, which source the
Friedmann equations. From the Lagrangian in Eq. (10.8) we can actually derive a local
expression for the stress-energy tensor of the scalar and gauge fields as

Tµν = −
2
p

g

δ(
p

gL )

δgµν
= gµνL −2

δL

δgµν
(10.48)

= −gµν

(
gαβ

[
(DαΦ)†(DβΦ)+ (D A

αϕ)∗(D A
βϕ)+

1

2
(∂αφ)(∂βφ)

]
+

1

4
gαδgβλ(Ga

αβGa
δλ+FαβFδλ)+V

)

+
[

2(DµΦ)†(DνΦ)+2(D A
µϕ)∗(D A

νϕ)+ (∂µφ)(∂νφ)
]
+ gαβ

(
Ga

µαGa
νβ+FµαFνβ

)
,

where in the first equality we used3 δ(
p

g ) =−1
2

gµν
p

g δgµν, and in the second we used
δgαβ =−gαµgβνδgµν. Using FµνFµν =− 2

a2(1+α)

∑
i F 2

0i
+ 1

a4

∑
i , j F 2

i j
(similarly for Ga

µν), and
(DµΦ

†)(Dµ
Φ) =−a−2α(D0Φ)†(D0Φ)+a−2(DiΦ)†(DiΦ) (similarly for the U (1)-charged and

singlet scalar fields), we obtain for the energy and pressure densities,

ρ = Kφ+Kϕ+KΦ+Gφ+Gϕ+GΦ+KU (1) +GU (1) +KSU (2) +GSU (2) +V , (10.49)

p = Kφ+Kϕ+KΦ−
1

3
(Gφ+Gϕ+GΦ)+

1

3
(KU (1) +GU (1))+

1

3
(KSU (2) +GSU (2))−V , (10.50)

3Had we wanted to obtain Tµν with the space-time indices above, then we should use instead δ(
p

g ) =
+ 1

2 gµνpg δgµν .
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with V the interacting scalar potential, whereas the kinetic and gradient energy densities are

Kφ = 1
2a2αφ

′2

Kϕ = 1
a2α (D A

0 ϕ)∗(D A
0 ϕ)

KΦ = 1
a2α (D0Φ)†(D0Φ)

;

Gφ = 1
2a2

∑
i (∂iφ)2

Gϕ = 1
a2

∑
i (D A

i
ϕ)∗(D A

i
ϕ)

GΦ = 1
a2

∑
i (DiΦ)†(DiΦ)

;

KU (1) = 1
2a2+2α

∑
i F 2

0i

KSU (2) = 1
2a2+2α

∑
a,i (Ga

0i
)2

GU (1) = 1
2a4

∑
i , j<i F 2

i j

GSU (2) = 1
2a4

∑
a,i , j<i (Ga

i j
)2 .

(10.51)

(Kinetic-Scalar) (Gradient-Scalar) (Electric & Magnetic)

Whenever dealing with scenarios with self-consistent expansion of the Universe, we then need
to take first a volume average of the local expressions in Eqs. (10.49), (10.50), so that we
obtain the background energy and pressure densities ρ̄ and p̄, within a given volume. Plugging
back the background quantities into the Friedmann Eqs. (10.45), will determine then the
evolution of the universe within the chosen volume, namely

(
a′

a

)2

=
a2α

3m2
p

〈
Kφ+Kϕ+KΦ+Gφ+Gϕ+GΦ+KU (1) +GU (1) +KSU (2) +GSU (2) +V

〉
, (10.52)

a′′

a
=

a2α

3m2
p

〈
(α−2)(Kφ+Kϕ+KΦ)+α(Gφ+Gϕ+GΦ)+ (α+1)V (10.53)

+ (α−1)(KU (1) +GU (1) +KSU (2) +GSU (2))
〉

,

where 〈...〉 represents volume averaging. As long as the volume is sufficiently large compared to
the scales excited in the matter fields, this approximation should lead to a well-defined notion
of a ’homogeneous and isotropic’ expanding background, within the given volume.

10.3 Field dynamics in a computer: the lattice approach

10.3.1 Lattice definition and discrete Fourier transform

In order to simulate the dynamics of interacting fields, we will consider a cubic lattice with
N sites per dimension. As we are interested in three spatial dimensions, the lattice will have
therefore N 3 points in total, labeled as

n = (n1,n2,n3), with ni = 0,1, ..., N −1, i = 1,2,3 . (10.54)

We will often refer to this set of points simply as the lattice, the grid, or even more
colloquially, as the box. For convenience we define

1̂ ≡ (1,0,0) , 2̂ ≡ (0,1,0) , 3̂ ≡ (0,0,1) , (10.55)
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as unit vectors on the lattice, corresponding to positive displacements of length

δx ≡
L

N
, (10.56)

in each of the independent directions in the continuum. We will refer to δx as the lattice
spacing.

A continuum function f(x) in space is represented by a lattice function f (n), which has the
same value as f(x) at x = nδx. We note that whereas in a flat background, positions {x} and
their corresponding lattice sites {n} represent physical spatial coordinates, in an expanding
background they will rather represent comoving spatial coordinates. Unless specified otherwise,
we will always consider periodic boundary conditions in the three spatial directions, so that
f (n+ ı̂N ) = f (n), i = 1,2 or 3.

The periodic boundary conditions in coordinate space imply that momenta must be
discretized, whereas the discretization of the spatial coordinates implies that any definition of
a discrete Fourier transform must be periodic. For each lattice we can then consider always a
reciprocal lattice representing Four i er modes, with sites labeled as

ñ = (ñ1, ñ2, ñ3), with ñi =−
N

2
+1,−

N

2
+2, ...,−1,0,1, ...,

N

2
−1,

N

2
, i = 1,2,3 . (10.57)

We then define the discrete Fourier transform (DFT) as

f (n) ≡
1

N 3

∑

ñ

e−i 2π
N

ñn f (ñ) ⇔ f (ñ) ≡
∑
n

e+i 2π
N

nñ f (n) , (10.58)

from where we obtain
∑
n

e i 2π
N

nñ = N 3δn,ñ . (10.59)

As expected, it follows that Fourier-transformed functions are periodic in the reciprocal lattice,
with periodic boundary conditions as f (ñ+ ı̂N ) = f (ñ), with ı̂ analogous unit vectors as in
Eq. (10.55), but defined in the reciprocal lattice.

Let us emphasize that from the above discussion, it follows that we can only represent
momenta down to a minimum infrared (IR) cut-off

kIR =
2π

L
=

2π

Nδx
, (10.60)

such that ñ labels the continuum momentum values k = (ñ1, ñ2, ñ3)kIR. Furthermore, there is
also a maximum ultraviolet (UV) momentum that we can capture in each spatial dimension,

ki ,UV =
N

2
kIR =

π

δx
. (10.61)
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The maximum momentum we can capture in a three-dimensional reciprocal lattice is therefore

kmax =
√

k2
1,UV

+k2
2,UV

+k2
3,UV

=
p

3

2
N kIR =

p
3
π

δx
. (10.62)

In many situation, it will useful to define the power − spectr um of f , with ensemble average
〈 f 2〉 in the continuum defined as

〈 f 2〉 =
∫

d logk P f (k) , 〈 fk fk ′〉 = (2π)3 2π2

k3
P f (k)δ(k−k′) . (10.63)

In a lattice, the ensemble average is substituted by a volume average,

〈 f 2〉V =
d x3

V

∑
n

f 2(n) , (10.64)

so that using the discrete Fourier transform we just defined, we obtain

〈 f 2〉V =
1

2π2

∑

|ñ|
∆ logk(ñ) k3(ñ)

(
δx

N

)3 〈∣∣ f (ñ)
∣∣2〉

R(ñ) , (10.65)

with 〈(...)〉 ≡ 1
4π|ñ|2

∑
ñ′∈R(ñ)(...) an angular average over the spherical shell of radius

ñ′ ∈
[
|ñ|, |ñ+∆ñ|

]
, and ∆ñ a given radial binning. We also defined ∆ logk(ñ) ≡ kI R

k(ñ)
. Identifying

this with Eq. (10.63), we obtain the following expression for the discrete power spectrum

P f (k) ≡
k3(ñ)

2π2

(
δx

N

)3 〈∣∣ f (ñ)
∣∣2〉

R(ñ) . (10.66)

Finally, let us notice that we will be dealing in general with spatially dependent functions
representing field amplitudes at a given time. As time goes by in the simulation, the
amplitude of the functions will change. We can therefore think of the above functions
depending not only on their coordinates n (or reciprocal coordinates ñ), but also depending on
a discrete variable n0 = 0,1,2, ... counting the number of time iterations in a simulation. In
general, n0 labels a time η= η∗+n0δη, where δη is the temporal step chosen in the evolution,
and η∗ denotes an initial time. We will think therefore of the above functions as 4-dimensional
functions, and we will often write them as f (n) = f (n0,n), or f (ñ) = f (n0, ñ). We will use the
notation 0̂ to represent the advance of one time step, so e.g. f (n + 0̂) = f (n0 +1,n).

10.3.2 Lattice representation of differential operators

10.3.2.1 Derivative operators and lattice momenta

The action or the equations of motion contain continuum derivatives, so we need to replace
these with lattice expressions that have the correct continuum limit. A simple and symmetric
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definition of a lattice derivative is e.g. the centered or neutral derivative

[∇(0)
µ f ] =

f (n + µ̂)− f (n − µ̂)

2δxµ
−→ ∂i f(x)

∣∣
x≡nδx+n0δη

+O (δx2
µ) , (10.67)

where in the case of spatial derivatives δxµ refers to the lattice spacing δx, whereas for
temporal derivatives it refers to the time step δη (typically bounded to be smaller than δx).
The expression to the right-hand side of the arrow indicates where and to what order on the
lattice spacing/time step the continuum limit is recovered. The neutral derivative in
Eq. (10.67) has the drawback that it is insensitive to spatial variations at the smallest scale we
can probe, ∼ δx, or temporal variations within a time of the order of the actual time step ∼ δη.
Because of this, a definition involving the nearest spatial/temporal neighbors can be preferable.
A standard way to do this, is to define the forward and backward derivatives

[∇±
µ f ] =

± f (n ± µ̂)∓ f (n)

δxµ
−→





∂i f(x)
∣∣

x≡nδx+n0δη
+O (δxµ) .

∂i f(x)
∣∣

x≡ (n±µ̂/2)δxµ +O (δx2
µ) .

, (10.68)

which recover the continuum limit to linear or to quadratic order on the lattice spacing/time
step, depending on whether we interpret that the discrete operator lives in n or in between the
two lattice sites involved n ± µ̂/2. This shows that in order to recover a continuum differential
operation on the lattice, not only it is important to use a suitable discrete operator, but also
to determine where it ’lives’. Depending on this choice, the operator might be symmetric or
not with respect to the given location, hence recovering the continuum limit up to an even or
an odd order on the lattice spacing/time step, respectively. To improve accuracy, one could
also consider lattice derivatives which involve more points, typically leading to definitions that
have a symmetry either around a lattice site or around half-way between lattice sites, see for
instance [179].

Depending on the choice of lattice operator ∇i for the spatial derivatives, the discrete Fourier
transform will lead to different lattice momenta. In general, for any given derivative operator,
the value of the derivative [∇i f ] will be a linear combination of the field values at different
lattice sites,

[
∇i f

]
(l) =

∑
m Di (l,m) f (m), with Di (l,m) a real-valued function of two variables

on the lattice. Since we want the derivative to be translation invariant, Di (l,m) can only be a
function of the difference l−m, i.e. Di (l,m) = Di (l−m), and we can write

[
∇i f

]
(l) =

∑
m

Di (l,m) f (m) =
∑
m

Di (l−m) f (m) =
∑

m′
Di (m′) f (l−m′) . (10.69)

For example, for the neutral derivative (10.67),

D0
i (m′) =

δm′,−ı̂ −δm′,ı̂

2δx
, (10.70)
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whereas for the nearest-neighbor derivative (10.68),

D±
i (m′) =

±δm′,∓ı̂/2 ∓δm′,±ı̂/2

δx
if l = n+

ı̂

2
; D±

i (m′) =
±δm′,∓ı̂ ∓δm′,0

δx
if l = n . (10.71)

The Fourier transform of the derivative [∇i f ] is

∇i f (ñ) =
∑
n

e
2πi
N

ñ·n ∑
m

Di (n−m) f (m) =
∑

n′
e

2πi
N

ñ·n′
Di (n′)

∑
m

e
2πi
N

ñ·m f (m) ≡−i kL(ñ) f (ñ) , (10.72)

leading to define the lattice momentum kLat(ñ) as

kLat(ñ) = i
∑

n′
e

2πi
N

ñ·n′
Di (n′). (10.73)

Conversely, any function kLat(ñ) with the correct leading behaviour kLat(ñ) ≈ ñkIR in the IR
limit |ñ|≪ N , defines a lattice derivative through the inverse Fourier transform.

In practice, for the neutral derivative (10.67) we obtain

k0
Lat,i =

sin(2πñi /N )

δx
, (10.74)

whereas for the forward/backward derivatives (10.68),

kLat,i = 2
sin(πñi /N )

δx
if l = n+

ı̂

2
; k±

Lat,i =
sin(2πñi /N )

δx
± i

1−cos(2πñi /N )

δx
if l = n . (10.75)

We note that for anti-symmetric lattice derivatives with Di (−m′) =−Di (m′), the lattice
momentum kLat must be real.

10.3.2.2 Lattice gauge invariant techniques

Discretizing a gauge theory requires a special care in order to preserve gauge invariance at
the lattice level. It is not enough to recover gauge invariance in the continuum, sending the
lattice spacing/time step to zero, as gauge invariance is meant to remove spurious transverse
degrees of freedom. If we were to discretize a gauge theory substituting all ordinary derivatives
in the continuum EOM by finite differences like those in Eqs. (10.67), (10.68), the gauge
symmetry would not be preserved on the lattice and these spurious degrees of freedom would
be propagating.

In order to understand this, let us consider the simplest possible case of a gauge theory, say an
Abelian-Higgs model in flat space-time, with Lagrangian −L = (∂µ+ i e Aµ)ϕ∗(∂µ− i e Aµ)ϕ +
1
4

FµνFµν + V (ϕ∗ϕ). This system is invariant under continuum gauge transformations
ϕ(x) → e−iα(x)ϕ(x), Aµ(x) → Aµ(x)− 1

e
∂µα(x) simply because the transformation of

∂µ(e−iα(x)ϕ(x)) leads to a term i∂µα(x)e−iα(x)ϕ(x), whereas the transformation of the gauge
field in −i e Aµe−iα(x) leads to a term identical but of opposite sign, +i∂µα(x)e−iα(x)ϕ(x), which
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cancels out the previous one. However, if we discretized the system by simply promoting
continuum derivatives into finite differences, say ∂µ f (x) →∆

+
µ f (x), then

∆
+
µ (e−iα(x)ϕ(x)) 6=∆

+
µ (e−iα(x))ϕ(x)+e−iα(x)

∆
+
µϕ(x), and thus the transformation of the field

derivative does not produce a term compensated by the gauge field transformation in
−i e Aµe−iα(x). The reason is simple, the Leibniz rule ( f g )′ = f ′g + f g ′ does not hold for finite
difference operators. The situation is no different in non-Abelian theories.

How can we restore gauge invariance on the lattice? To mimic a continuum gauge theory on
the lattice, we must adopt a special discretization procedure that preserves some sort of
discretized version of gauge transformations. Lattice gauge invariance is actually necessary in
order to preserve constraints that follow from the EOM, in particular the Gauss laws. In order
to introduce a general formalism valid for gauge theories (either Abelian or non-Abelian), let
us consider the more general case of a SU (N ) invariant theory. We introduce then a parallel
transporter, connecting two points in space-time

U (x, y) = Pexp

{
−i

∫y

x
d xµAµ

}
, (10.76)

where Pexp{...} means path-ordered along the trajectory. The crucial observation is that under
a gauge transformation of the gauge fields, recall Eq. (10.19), the parallel transporter
transforms as

U (x, y) →Ω(x)U (x, y)Ω†(y) , (10.77)

which in the Abelian case reduces simply to U (x, y) →U (x, y)e−i (α(x)−α(y)). Therefore, according
to Eq. (10.77), a parallel transporter transforms exactly as the field strength transforms for
x = y , Eq. (10.19). Thus, considering the minimal connector between two space-time sites
separated only by one lattice spacing/time step, x(n) ≡ nδx +n0δt , x(n + µ̂) ≡ nδx +n0δt +δxµ,
we define the link variables as

U0,n ≡ Pexp

{
−i

∫x(n+0̂)

x(n)
d t ′A0

}
≈ e−iδt A0 , Ui ,n ≡ Pexp

{
−i

∫x(n+ı̂)

x(n)
d x Ai

}
≈ e−iδx Ai , (10.78)

where the gauge field, and hence the link, is considered to live in the point n + µ̂
2
. We also

define U−µ,n =U †
µ,n−µ ≡U †

µ(n − 1
2
µ̂). Before we continue, it will useful at this point to establish

some conventions to simplify the notation of upcoming expressions.

Convention -. From now on, unless stated otherwise, a scalar field living in a generic lattice
site n = (no ,n) = (no ,n1,n2,n3), i.e. ϕn =ϕ(n), will be simply denoted as ϕ. If the point is
displaced in the µ−direction by one unit lattice spacing/time step, n + µ̂, we will then use the
notation n +µ or simply by +µ to indicate this, so that the field amplitude in the new point is
expressed by ϕ+µ ≡ϕ(n + µ̂). In the case of gauge fields, whenever represented explicitly on the
lattice, we will automatically understand that they live in the middle of lattice points,
i.e. Aµ ≡ Aµ(n + 1

2
µ̂). It follows then that e.g. Aµ,+ν ≡ Aµ

(
n + 1

2
µ̂+ ν̂

)
. In the case of links, we
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will use the notation Uµ ≡Uµ,n ≡Uµ(n + µ̂/2), and hence Uµ,±ν =Uµ,n±ν ≡Uµ(n + µ̂/2± ν̂). Even
though the lattice spacing δx and the time step δt do not need to be equal, we will loosely
speak of corrections of order O (δx), independently of whether we are referring to the lattice
spacing or the time step (the latter is actually always forced to be smaller than the former). In
lattice expressions we will never consider summation over repeated indices.

In the continuum limit, we recover the gauge fields simply from

(I −Uµ,n)

iδxµ
−→ Aµ

(
n +

1

2
µ̂
)
+O (δx) . (10.79)

It turns out that we can actually build the action or EOM for any gauge theory, preserving a
discretized version of the gauge symmetry, using only link variables and no gauge fields. That
is known as the compact formulation of lattice gauge theories, which can be applied to both
Abelian and non-Abelian gauge theories. Actually, in the case of non-Abelian theories,
compact formulations are the only way to discretize them while respecting gauge invariance on
the lattice. In Abelian gauge theories, however, it is still possible to make use of an explicit
representation of the gauge fields, in the so called non-compact formulation. Below we provide
both. We introduce now standard definitions for l i nks, pl aquet tes and lattice covariant
derivatives, specialized to both Abelian and non-Abelian gauge groups. We provide also basic
definitions, together with useful approximations and expressions (in the case of Abelian
theories for both compact and non-compact formulations):

—– U(1) toolkit —–

Links : Vµ ≡ e−i d xµAµ = cos(d xµAµ)− i sin(d xµAµ); V−µ ≡V ∗
µ,−µ; V ∗

µ Vµ = 1;

Plaquettes : Vµν ≡VµVµ,+µV ∗
µ,+νV ∗

ν ≃ e−i d xµd xν[Fµν+O (δx)]; V ∗
µν =Vνµ ;

Covariant Derivs. : (D±
µϕ)(l) =±

1

δxµ
(V±µϕ±µ−ϕ) , l = n±

1

2
µ̂

Expansions :





(D±
µϕ)(l) −→ (Dµϕ)(l)+O (δx2) l = n± 1

2
µ̂

Re{Vµν} −→ 1− 1
2

d x2
µd x2

νF 2
µν+O (δx5) , l = n+ 1

2
µ̂+ 1

2
ν̂

I m{Vµν} −→ −d xµd xνFµν+O (δx3) , l = n+ 1
2
µ̂+ 1

2
ν̂

(10.80)

Expressions :





∑
n

1
4

F 2
µν

∼=−1
2

∑
n

Re{Vµν}

d x2
µd x2

ν
=−1

4

∑
n

(Vµν+V ∗
µν)

d x2
µd x2

ν
+O (δx2)

∑
n

1
4

F 2
µν ≃

∑
n

1
4

I m2{Vµν}

d x2
µd x2

ν
=−

∑
n

1
4

(Vµν−V ∗
µν)2

d x2
µd x2

ν
+O (δx2)


 (Compact)

∑
n

1
4

F 2
µν ≃ 1

4

∑
n(∆+

µ Aν−∆
+
ν Aµ)2 +O (δx2)

]
(Non−Compact)
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Gauge Trans





φ −→ e+iαφ

Aµ −→ Aµ+ 1
e
∆
+
µα

U±µ −→ e+iαU±µe−iα±µ




=⇒





D±
µφ −→ e+iα(D±

µφ)

Uµν −→ Uµν (gauge inv. !)

—– SU(N) toolkit —–

Links : Uµ ≡ e−i d xBµ = e−i d xB a
µTa ; U−µ ≡U †

µ,−µ; U †
µUµ =I

Plaquettes : Uµν ≡UµUν,+µU †
µ,+νU †

ν ≃ e−i d xµd xν[G a
µνTa+O (d xµ)] ; U †

µν =Uνµ

Covariant Derivs. : (D±
µΦ)(l) =±

1

δxµ
(U±µΦ±µ−Φ) −→ (DµΦ)(l)+O (δx2), l = n±

1

2
µ̂

Expansions :





(D±
µΦ)(l) −→ (DµΦ)(l)+O (δx2) , l = n± 1

2
µ̂

(Uµν−U †
µν) −→ −2iδxµδxνGµν+O (d x3

µ) , l = n+ 1
2
µ̂+ 1

2
ν̂

Tr[Uµν] −→ 2− d x2
µd x2

ν

4

∑
a(Ga

µν)2 +O (d x5
µ) , l = n+ 1

2
µ̂+ 1

2
ν̂

(10.81)

Expressions :





1
2

Tr[GµνGµν] = 1
4

∑
a(Ga

µν)2 ∼=− Tr[Uµν]

d x2
µd x2

ν
+O (δx2) ,

Gµν =Ga
µνTa ≃ i

2d xµd xν
(Uµν−U †

µν)+O (δx2) ,

Ga
µν ≃ 1

d xµd xν
Tr[(i Ta)(Uµν−U †

µν)]+O (δx2)

Gauge Trans.





Φ −→ ΩΦ , Ω≡ e+iαa Ta

U±µ −→ ΩU±µΩ
†
±µ


 =⇒





D±
µΦ −→ Ω (D±

µΦ)

Uµν −→ ΩUµνΩ
†

Tr{Uµν} −→ Tr{Uµν}

In the of case of SU (2), any element can be written as

Uµ = cµ0I +
3∑

a=1

i cµaσa =
3∑

ν=0

cµνσ̄a , σ̄a ≡ (1, i~σ) ,
3∑

ν=0

c2
µν = 1 , (10.82)

or, in matrix form (in the gauge U0 =I )

Ui ≡Ui (ci 0,ci 1,ci 2,ci 3) =


 ci 0 + i ci 3 ci 2 + i ci 1

−ci 2 + i ci 1 ci 0 − i ci 3


 , U †

i
=Ui (ci 0,−ci 1,−ci 2,−ci 3) . (10.83)
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Useful expressions for the electric and magnetic fields are

E a
i = Ga

0i ≈
1

δtδx
Tr[(i Ta)(U0i −Ui 0)] =

1

δtδx
Tr[(i Ta)(U0i −U †

0i
)] , (10.84)

Ba
i =

1

2
ǫi j kGa

j k ≈
ǫi j k

2δx2
Tr[(i Ta)(U j k −Uk j )] . (10.85)

10.3.3 Evolution algorithms

Solving the field dynamics in an expanding background in a lattice consists in writing some
appropriate discrete version of the EOM [say Eqs. (10.37)-(10.39) for scalar fields,
Eqs. (10.38)-(10.43) for gauge fields, and Eqs. (10.52)-(10.53) for the scale factor], and then
iterate the discrete EOM for a finite number of time steps. In general we will have to follow the
evolution in each spatial lattice site of a number of do f representing real field amplitudes, say
one per singlet, two per complex field, four per doublet, etc, as well as the Lorentz components
of each gauge field considered. Let us denote these do f collectively as the field amplitudes { f j },
with j some index labeling all the real field amplitudes involved in a given scenario, and {π j }

their conjugate momenta. As the scale factor is only a homogeneous do f (sourced by the
volume averaged energy and pressure densities built from the matter do f ), we will not include
it in the previous numbered list of do f ’s, and we will rather treat it as a separate variable
a(η), with conjugate momenta πa ≡ a′(η). For example, in a theory with two singlet scalar
fields, say φ and χ, and self-consistent expansion, we can consider { f1, f2} ≡ {φ(x),χ(x)} and
{π1,π2} ≡ {φ′(x),χ′(x)}, and then separately a(η) and πa(η) = a′(η). Looking at the EOM in the
continuum Eqs. (10.37)-(10.39) and scale factor Eqs. (10.52)-(10.53), we note the following
structure in the system of equations (independently of the nature of fields involved),

πa(η) = a′(η) , (10.86)
π′

a(η) = Ka[a(η),V̄ (η), K̄ (η),Ḡ(η)] , (10.87)
πi (x,η) = Di [ f ′

i (x,η), a(η),πa(η); { f j (x,η)}, { f ′
j 6=i (x,η)}] , (10.88)

π′
i (x,η) = Ki [ fi (x,η),πi (x,η), a(η),πa(η); { f j 6=i (x,η)}, {π j 6=i (x,η)}] , (10.89)

where Di [...] is a functional – the drift – that defines the conjugate momentum of the ith do f ,
Ki [...] is another functional – the kernel or kick –, that determines the interactions of the ith
do f with the rest of do f ′s (possibly including itself), and finally Ka[...] is given by the square
root of the r hs of Eq. (10.53), based on the volume averages 〈...〉 of the different do f

contributions to the potential, kinetic and gradient energy densities, V̄ (η) ≡ 〈V 〉,
K̄ ≡ {K̄ j (η) ; K̄ j (η) ≡ 〈K j 〉} and Ḡ ≡ {Ḡ j (η) ;Ḡ j (η) ≡ 〈G j 〉}.
For canonical kinetic terms, Di depends on f ′

i
but not on any other f ′

j 6=i
. We note also that we

have separated within the argument of each kernel Ki , the amplitude and momentum of the
ith do f itself, from the amplitudes and momenta of the rest of do f ’s. The latter actually act
merely as ’instantaneous’ parameters for an infinitesimal evolution of the ith do f . Hence, in
general, we will only care about the dependence of the ith kernel Ki on fi and πi .
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Furthermore, we will encounter often that the time derivative π′
i
of a given do f can (and often

will) depend on its amplitude fi , but not on πi itself. This is actually not a physical requisite,
but rather a mathematical requisite we will seek. In fact, the EOM in the continuum as
written so far, lead to kernels Ki that depend on πi , see e.g. the friction terms in
Eqs. (10.37)-(10.41). However, from the point of view of the stability of the numerical
algorithms used to solve the discrete EOM, it will be convenient to ’massage’ appropriately the
EOM, so that we arrive into effective kernels Ki that do not depend4 on πi . We will see later
on how to do this in a case by case basis. For the time being, we will consider that this
condition has been achieved, implicitly assuming that pertinent manipulations (if any) of the
field variables in the EOM have been made to grant it. Taking into account all the above
considerations, the typical system of equations we will want to solve (for a theory with
canonical kinetic terms) looks as follows

πa(η) = a′(η) , (10.90)
π′

a(η) = Ka[a(η),V̄ (η), K̄ (η),Ḡ(η)] , (10.91)
πi (x,η) = Di [ f ′

i (x,η), a(η); ...] , (10.92)
π′

i (x,η) = Ki [ fi (x,η), a(η),πa(η); ...] . (10.93)

Let us note that, although any possible dependence of the drift Di on πa would not pose a
problem to the algorithms presented below, in practice we do not know of any theory that
produces such dependence, so we have removed it as an explicit argument from Di . A discrete
version of the EOM will then have a scheme similar to

πa(η) = ∆0a(η) , (10.94)
∆0πa = Ka[a(η),V̄ (η), K̄ (η),Ḡ(η)] , (10.95)

πi (x,η) = Di [∆0 fi (x,η), a(η); ...] , (10.96)
∆0πi (x,η) = Ki [ fi (x,η), a(η),πa(η); ...] , (10.97)

with ∆0 some discrete operator mimicking continuum time derivatives. As we will see in a
moment, introducing time operators as simple as

(∆±r
0 f ) =

± f (n ± rδt )∓ f (n)

rδt
−→





(∆+
0 f ) = f (n+δt )− f (n)

δt
, Standard Forward Deriv.

(∆−
0 f ) = f (n)− f (n−δt )

δt
, Standard Backward Deriv.

(∆
+ 1

2

0 f ) = f (n+δt/2)− f (n)
(δt/2)

, +1
2
Forward Deriv.

(∆
− 1

2

0 f ) = f (n)− f (n−δt/2)
(δt/2)

, −1
2
Backward Deriv.

(10.98)

will actually enable us to address all basic algorithms to iterate coupled finite difference
equations like (10.94)-(10.97), mimicking continuum coupled differential equations like
(10.90)-(10.93).

4The kernel Ki will typically also not depend on the rest of conjugate momenta {πi 6= j }, except in the case of
non-canonically normalized kinetic terms. As already said, we leave this case for future work.
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10.3.3.1 Staggered leapfrog

One of the simplest methods for solving second order differential equations is the leapfrog
algorithm. Let us illustrate it by solving a simple one-dimensional problem, consisting in one
do f x(t ) that depends only on a time variable t , with EOM

ẍ(t ) =K [x(t )] . (10.99)

Taylor expanding the position at the next step we obtain

x(t +δt ) = x(t )+ ẋ(t )δt +
1

2
K [x(t )]δt 2 + ... ≡ x(t )+ ẋ(t +δt/2)δt + ... , (10.100)

where in the second equality we have substituted the Taylor expansion of the velocity at half
time step

ẋ(t +δt/2) = ẋ(t )+
δt

2
K [x(t )]+ ... ≡ ẋ(t −δt/2)+K [x(t )]δt + ... , (10.101)

and where we have used that ẋ(t ) = ẋ(t −δt/2)+K [x(t −δt/2)]δt +O (δt 2) and
K [x(t −δt/2)]δt +O (δt 2) =K [x(t )]δt +O (δt 2). Applying recursively the above relations
between velocity and position, we obtain

x(t ) = x(t −δt )+ ẋ(t −δt/2)δt , (10.102)
ẋ(t +δt/2) = ẋ(t −δt/2)+K [x(t )]δt , (10.103)

x(t +δt ) = x(t )+ ẋ(t +δt/2)δt , (10.104)
ẋ(t +3δt/2) = ẋ(t +δt/2)+K [x(t +δt )]δt , (10.105)

....

The leapfrog method has an accuracy of order O (δt 2), because each step advances x or πx in
terms of its derivative at the middle of the step. This is better than the simpler Euler method,
which has O (δt ) accuracy. This can be demonstrated by simply noting the accuracy of the
derivative expressions (x(t +δt )−x(t ))/δt ≃ ẋ(t +δt/2)+O (δt 2) and
(ẋ(t +δt/2)− ẋ(t −δt/2))/δt ≃ ẍ(t )+O (δt 2). Let us label the initial time as t0, and start with
initial conditions x0 ≡ x(t0) and ẋ0 ≡ ẋ(t0). We can obtain first ẋ(t0 +δt/2) = ẋ0 +1/2K [x0]δt ,
and from then on, iterate as follows: (x(t0), ẋ(t0 +δt/2)) −→ (x(t1), ẋ(t1 +δt/2)) −→ ... −→
(x(tn), ẋ(tn +δt/2)), with tn ≡ t0 +nδt , and n the number of iterations.

In terms of the previously introduced time derivative operators, we can simply write the
algorithm as

∆
+
0 xn = πn+1/2 , (10.106)

∆
+
0 πn+1/2 = K [xn+1] , (10.107)

understanding that xn lives at ’integer’ times tn ≡ t0 +nδt and πx at ’semi-integer’ times
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tn+1/2 ≡ tn +δt/2 = t0 + (n +1/2)δt , so that ∆
+
0 xn ≡ (xn+1 −xn)δt lives at tn+1/2, whereas

∆
+
0 πn+1/2 ≡ (πn+3/2 −xn+1/2)δt lives at tn+1. Due to this separation into variables that live at

integer times and conjugate momenta that live at semi-integer times, sometimes people refer
to this method as the ’staggered’ leapfrog algorithm. We will content ourselves with simply
referring to it as the leapfrog algorithm.

The leapfrog method, encapsulated in Eqs. (10.106)-(10.107) can be extended readily to
multiple do f , simply labeling them with some index as xi

n and πi
n+1/2

, with i = 1,2,3, ...

counting the number of do f . Namely

∆
+
0 xi

n = πi
n+1/2 , (10.108)

∆
+
0 π

i
n+1/2 = Ki

[
xi

n+1, {x
j 6=i
n+1}

]
, (10.109)

where the kernels Ki represent the interaction of the ith do f xi with the rest of do f s {x j 6=i }.
However, this method is only applicable to conservative forces5, i.e. to EOM with kernels that
only depend on amplitude variables K ≡K [{xi (t )}]. This method can be therefore applied
readily to our field theory EOM (10.94)-(10.97) in a flat space-time background. If the
expansion of the Universe is switched off, i.e. a = 1 and ȧ = ä = 0, we can ignore the first two
Eqs. (10.94)-(10.95) and take care of evolving only (10.96)-(10.97), which represent the
evolution of the matter field do f in a flat background. Switching back to our α-time variable,
say η(n0) ≡ η0 +n0δη with n0 counting the number of time steps, we can solve
Eqs. (10.96)-(10.97) with a leapfrog scheme simply as

∆
+
0 fi (x,n0) = πi (x,n0 +1/2) , (10.110)

∆
+
0 πi (x,n0 +1/2) = Ki

[
{ f j (x,n0 +1)}

]
, (10.111)

with i = 1,2,3, ... counting our field theory do f , e.g. scalar field real components and gauge
field Lorentz components.

We note now that in any set of discrete EOM mimicking continuum EOM, the spatial
coordinates x are discretized, being represented by a finite set of lattice sites n = (n1,n2,n3)

with ni = 0,1,2, ..., N −1, and N the number of lattice sites per spatial dimension (recall
Section 10.3.1 for definitions). This implies that spatial derivatives appearing in the discrete
EOM, e.g. the Laplacian operator for scalar fields ∇2 f , will be substituted by lattice derivative
operators like in Eq. (10.68). Due to this, the kernels in the discretized EOM are not functions
of the point n only, but also of its nearest neighbours, e.g. n± ĵ , with j = 1,2,3. The correct
form of the discretized field EOM in a flat background will then look like

∆
+
0 fi (n,n0) = πi (n,n0 +1/2) , (10.112)

∆
+
0 πi (n,n0 +1/2) = Ki

[
{ f j (m,n0 +1)}

]
, (10.113)

5In reality nothing prevents you from applying it to non-conservative forces with K =K [x(t ), ẋ(t )], but then
its stability properties and its O (δt 2) accuracy will be lost.
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with m representing n and its nearest neighbours (to be determined in each case depending on
the choice of lattice spatial derivatives).

Note that the leapfrog algorithm cannot be applied directly to scenarios where the expansion
of the universe is considered (either background or self-consistent expansion), without a careful
choice of which do f to evolve. Indeed, the EOM of matter fields in FLRW, c.f. Eq. (10.88),
have kernels K [...] containing conjugate momenta πi , due to the presence of the friction terms
∝ (a′/a) f ′

i
in the field EOM, see e.g. Eqs. (10.37)-(10.41). Furthermore, the Friedmann

equation π′
a =Ka[a,V̄ , K̄ ,Ḡ] [c.f. Eq. (10.87)], also contains the kinetic terms K̄ ≡ {K j }, built

from the conjugate momenta of the fields. As conjugate momenta πi and πa live, in a leapfrog
algorithm, naturally at semi-integer times ηn+1/2, the leapfrog algorithm for kernels which
contain conjugate momenta will not work, as they should rather live at integer times ηp for
the algorithm to be stable and order O (δt 2). As we will show in Sections 10.4.2.1, it is possible
to overtake this problem by means of field re-definitions and/or manipulations of the EOM, so
that we can have a consistent iterative scheme with appropriate kernels, even in the presence
of an expanding background. So for now, let us assume that we managed to obtain do f such
that the kernels do not depend on the momenta. We then have the following leapfrog
algorithm in an expanding universe

Leapfrog in an expanding background

∆
+
0̂
πa(n,n0 −1/2) = Ka

[
a(n0),V̄ (n0), K̄ (n0),Ḡ(n0)

]
, (10.114)

∆
+
0̂
πi (n,n0 −1/2)) = Ki

[
{ f j (m,n0)}, a(n0)

]
, (10.115)

∆
+
0̂

a(n0) = πa(n0 +1/2) , (10.116)
∆
+
0 fi (n,n0) = Di [πi (n,n0 +1/2), a(n0 +1/2)] , (10.117)

Its concrete applications to the case of interacting scalar, Abelian and non-Abelian gauge fields
are discussed in Section 10.4 through 10.6.

10.3.3.2 Verlet integration

Let us dig up again the one-dimensional problem of a single do f that depends only on time,
x(t ), with EOM

ẍ(t ) =K [x(t )] , (10.118)

say with initial condition t0 = 0, x(0) = x0 and ẋ(0) =π0. Recall that in order to initiate the
previously discussed leapfrog algorithm, we initially needed x0 and π1/2 ≡ ẋ(δt/2), so we
proposed to obtain the initial half-time step displaced velocity as π1/2 ≃π0 + 1

2
δtK [x0]+O (δt 2)

(or equivalently, from applying ∆
+
0̂/2

π0 = 1
2
K [x0]). Now, following the leapfrog prescription, we

would apply ∆
+
0 x0 =π1/2 leading to x1 at order O (δt 2), and then ∆

+
0 π1/2 =K [x1] leading to π3/2
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at order O (δt 2), and so on and so forth with successive iterations. However, after obtaining x1,
we might as well apply ∆

+
0̂/2

π1/2 = 1
2
K [x1], leading to π1, also at order O (δt 2). Essentially, by

applying the velocity part of the leapfrog algorithm at two equal and successive half time steps
(with one position update in between), we can simply jump from (x0,π0) to (x1,π1), and from
there to (x2,π2), and so on and so forth. In other words, we can actually obtain the position
and velocity always at integer times, up at order O (δt 2), with a ’kick - drift - kick’ scheme as

πn+1/2 = πn + 1
2
δtK [xn] ,

xn+1 = xn +πn+1/2δt ,

πn+1 = πn+1/2 + 1
2
δtK [xn+1] ,





⇐⇒





∆
+
0̂/2

πn = K [xn] ,

∆
+
0 xn = πn+1/2 ,

∆
+
0̂/2

πn+1/2 = K [xn+1] .

(10.119)

In reality, this method is nothing else than the leapfrog algorithm, but adding an ’extra’
computation of the conjugate momenta at integer times in each iteration,

xn+1 = xn +πn+1/2δt ,

πn+3/2 = πn+1/2 +δtK [xn+1] ,
(
πn+1 = πn+1/2 + 1

2
δtK [xn+1]

)





⇐⇒





∆
+
0 xn = πn+1/2 ,

∆
+
0 πn+1/2 = K [xn+1] ,

(
∆
+
0̂/2

πn+1/2 = K [xn+1]
)

.

(10.120)

Alternatively, since we may only care about the amplitudes and conjugate momenta at the
same moment, say at integer times, the scheme can be put into a ’drift-kick’ scheme, simply by

xn+1 = xn +πnδt + 1
2
K [xn]δt 2 ,

πn+1 = πn + 1
2

(K [xn]+K [xn+1])δt ,



 ⇐⇒





∆
+
0 xn = πn + δt

2
K [xn] ,

∆
+
0 πn = 1

2
(K [xn]+K [xn+1]) .

(10.121)

The method, represented by either scheme Eq. (10.119), Eq. (10.120) or Eq. (10.121), is known
as the velocity-Verlet algorithm. Let us remark that the 2-step scheme has actually no
advantage versus the 3-step scheme, as in reality the number of operations is the same: the
2-step scheme simply contains the ’third’ step in the drift (i.e. in the right hand side of the
amplitude updates). The 2-step scheme is only a convenient way of writing the algorithm in a
more compact way.

If instead we apply the coordinate part of the leapfrog algorithm at two equal and successive
half time steps (with one velocity update in between), then the method turns into the
position-Verlet algorithm, which in a ’drift-kick-drift’ scheme, has the form

xn+1/2 = xn + 1
2
πnδt ,

πn+1 = πn +δt ·K [xn+1/2] ,

xn+1 = xn+1/2 + 1
2
πn+1δt ,





⇐⇒





∆
+
0̂/2

xn = πn ,

∆
+
0 πn = K [xn+1/2] ,

∆
+
0̂/2

xn+1/2 = πn+1 .

(10.122)

As before, this is nothing more than a standard leapfrog algorithm (with variables half time
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step shifted), plus an extra computation at each time step. Position-Verlet is also an algorithm
of order O (δt 2). The position-Verlet algorithm can also be put in a 2-step scheme like

πn+1 = πn +δt ·K [xn + δt
2
πn] ,

xn+1 = xn + δt
2

(πn +πn+1) ,



 ⇐⇒





∆
+
0 πn = K [xn + δt

2
πn] ,

∆
+
0 xn = 1

2
(πn +πn+1) ,

(10.123)

which again is just a more compact manner to write the algorithm: the number of operations
is still three at each time step, with the ’third’ step now contained inside the argument of the
kick.

The application of either Verlet algorithm to field theories in a flat space-time background is
straightforward. Introducing again η(n0) ≡ ηi +n0δη as the discrete α-time variable (ηi some
initial time), and i = 1,2,3, ... labeling the field theory do f (namely scalar field real
components and gauge field Lorentz components), the velocity-Verlet algorithm reads

∆
+
0̂/2

πi (n,n0) = Ki

[
{ f j (m,n0)}

]
, (10.124)

∆
+
0 fi (n,n0) = πi (n,n0 +1/2) , (10.125)

∆
+
0̂/2

πi (n,n0 +1/2) = Ki

[
{ f j (m,n0 +1)}

]
, (10.126)

whereas the position-Verlet algorithm is

∆
+
0̂/2

fi (n,n0) = πi (n,n0) , (10.127)

∆
+
0 πi (n,n0) = Ki

[
{ f j (m,n0 +1/2)}

]
, (10.128)

∆
+
0̂/2

fi (n,n0 +1/2) = πi (n,n0 +1) . (10.129)

Here, like in the staggered leapfrog algorithm, m on the r hs represents n and its nearest
neighbours, which are determined by the choice of lattice spatial derivatives.

As in the case of leapfrog algorithms, to apply these algorithms to the case of an expanding
universe, a careful choice of do f has to be taken. This choice will again be presented in
Sections 10.4-10.6. Assuming we have do f such that the kernels are independent of the
momenta, the velocity- and position-Verlet algorithms in respective ’kick-drift-kick’ and
’drift-kick-drift’ schemes read as

Velocity-Verlet in an expanding background

∆
+
0̂/2

πa(n,n0) = Ka

[
a(n0),V̄ (n0), K̄ (n0),Ḡ(n0)

]
, (10.130)

∆
+
0̂/2

πi (n,n0) = Ki

[
{ f j (m,n0)}, a(n0)

]
, (10.131)

∆
+
0̂

a(n0) = πa(n0 +1/2) , (10.132)

a(n0 +1/2) =
1

2
(a(n0)+a(n0 +1)) , (10.133)

∆
+
0 fi (n,n0) = Di [πi (n,n0 +1/2), a(n0 +1/2)] , (10.134)

171



Chapter 10. The art of simulating the early Universe

∆
+
0̂/2

πi (n,n0 +1/2) = Ki

[
{ f j (m,n0 +1)}, a(n0 +1)

]
, (10.135)

∆
+
0̂/2

πa(n,n0 +1/2) = Ka

[
a(n0 +1),V̄ (n0 +1), K̄ (n0 +1),Ḡ(n0 +1)

]
, (10.136)

Position-Verlet in an expanding background

∆
+
0̂/2

fi (n,n0) = Di [πi (n,n0), a(n0)] , (10.137)
∆
+
0̂/2

a(n0) = πa(n0) , (10.138)

∆
+
0̂
πi (n,n0) = Ki

[
{ f j (m,n0 +1/2)}, a(n0 +1/2)

]
, (10.139)

K̄ (n0 +1/2) =
1

2

(
K̄ (n0 +1)+ K̄ (n0)

)
(10.140)

∆
+
0 πa(n,n0) = Ka

[
a(n0 +1/2), K̄ (n0 +1/2),Ḡ(n0 +1/2),V̄ (n0 +1/2)

]
, (10.141)

∆
+
0̂/2

a(n0 +1/2) = πa(n0 +1) , (10.142)
∆
+
0̂/2

fi (n,n0 +1/2) = Di [πi (n,n0 +1), a(n0 +1)] , (10.143)

It is important to note that in both position- and velocity-Verlet algorithms for an expanding
background, the kernels Ki [...] of the matter do f must not depend on πa , as the latter already
depend on the conjugate momenta through the volume averaged kinetic energy K̄ [{π j }]. An
advantage of the Verlet algorithm(s) is that they can readily be turned into more accurate
schemes, as will be explained in Section 10.3.4.1.

10.3.4 Higher-order integrators

Here we show the construction of higher-order integrators with accuracy O (δt 4), O (δt 6),
O (δt 8) and even O (δt 10), based on the use of O (δt 2) staggered/synchronous leapfrog
algorithms as building blocks.

10.3.4.1 Yoshida method: recursive Verlet integration

The O (δt 2) Verlet integration methods, introduced in Section 10.3.3.2 to solve the problem
ẍ(t ) =K [x(t )] with initial conditions x(t0) = x0, ẋ(t0) =π0, can be used recursively as building
blocks to conveniently construct integrators of higher (even) order O (δt n). The idea is to
decompose appropriately a single time step δt into s sub-steps δti = wiδt (with ∑s

i=1
wi = 1),

in such a way that the errors of the intermediate steps cancel up to order n. In practice, the
only thing that has to be done is to iterate s-times the Verlet algorithm (10.119) or (10.122),
using each time the appropriate δti sub-step. For example, using (10.119) as the building

172



10.3. Field dynamics in a computer: the lattice approach

block, one full step δt of the algorithm must be divided in the sum of different δti ’s as follows,




t (0) = tn

π(0) ≡πn

x(0) ≡ xn

=⇒





π(i )
1/2

=π(i−1) +ωi
δt
2

K [x(i−1)]

x(i ) = x(i−1) +π(i )
1/2

ωiδt

π(i ) =π(i )
1/2

+ωi
δt
2

K [x(i )]





i =1, ..., s

=⇒





tn+1 = tn +δt

πn+1 ≡π(s)

xn+1 ≡ x(s) .

For information about how to construct a specific algorithm, i.e. how to find the corresponding
weights ωi , we refer the interested reader to the original paper by Yoshida [420]. Here we
simply collect in Table 10.1 sets of δti ’s characterizing algorithms of order
O(δt 4),O(δt 6),O(δt 8) and O(δt 10), see [420,421] for their derivation. We will refer to these
algorithms as V V 4,V V 6,V V 8 and V V 10, while we will refer to the standard velocity Verlet
building block as V V 2.

Some comments are, however, in order. First, the number of steps required to reach a given
accuracy grows quickly. For example, V V 4 requires only 3 times more operations than V V 2,
while V V 10 requires 31 times more operations than V V 2. Actually, to go from one algorithm
to the next, the number of steps in each iteration is slightly more than doubled every time.
This gives a rule of thumb as of when it is beneficial to use the next more accurate algorithm:
if in order to reach some target precision, the time step must be decreased by more than a
factor two, then we should consider using the next more accurate algorithm.

This said, let us write for completeness how this algorithm reads for our expanding fields,
again assuming that a clever choice of do f has been made





π(0)
i

≡πi (n,n0)

f (0)
i

≡ fi (n,n0)

a(0) ≡ a(n0)

π(0)
a ≡πa(n0)

=⇒





π
(p)

a,1/2
= π

(p−1)
a + ωpδη

2
Ka

[
a(p−1),K

(p−1)
,G

(p−1)
,V

(p−1)
]

π
(p)

i ,1/2
= π

(p−1)

i
+ ωpδη

2
Ki [a(p−1), f

(p−1)

j
}]

a(p) = a(p−1) +ωpδηπ
(p)

a,1/2
,

a
(p)

1/2
= 1

2

(
a(p) +a(p−1)

)

f
(p)

i
= f

(p−1)

i
+ωpδηD

[
a

(p)

1/2
,π

(p)

i ,1/2

]

π
(p)

i
= π

(p)

i ,1/2
+ ωpδη

2
Ki [a(p), f

(p)

j
}]

π
(p)
a = π

(p)

a,1/2
+ ωpδη

2
Ka

[
a(p),K

(p)
,G

(p)
,V

(p)
]





p =1, ..., s

=⇒





πi (n,n0 +1) ≡π(s)
i

fi (n,n0 +1) ≡ f (s)
i

a(n0 +1) ≡ a(s)

b(n0 +1) ≡ b(s)

(10.144)
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where a
(p)

1/2
,π

(p)

i 1/2
,π

(p)

a 1/2
are intermediates values and we explicitly wrote down the temporal

derivatives. Note also that the same can be done using position-Verlet as a building block.

10.3.5 Integrator properties

Finally, before we move into the discussion of applications of standard algorithms into our
interactive field theories, let us mention the list of desired properties that we may want to
demand in order to have a good numerical integrator:

• Time reversal. Dynamical processes are time-reversible if their EOM are invariant under
a change in the sign of the time variable. Since this is an exact symmetry of the
continuum EOM, it is desirable that a numerical approximation respects the same
property. An evolution algorithm for discrete EOM respects time reversibility if we can
integrate forward p steps, and then reverse the direction of integration and integrate
backwards p steps, to arrive exactly at the original starting initial condition.

• Symplectic nature. Dynamical processes driven by conservative forces (i.e. from kernels
that do not depend on conjugate momenta or on any time-dependent external function)
respect the Liouville’s theorem; the infinitesimal phase-space area per degree of freedom
is preserved as the system evolves. As this area-preserving property is an exact feature
of the continuum EOM which we want to solve, it is desirable that a numerical
integrator respects such a conservation law. Numerical schemes that do so are referred to
as symplectic. The relevance of having a symplectic integrator is that they possess a
great stability: since the phase-space area is preserved during the evolution, there cannot
be situations where the field amplitudes or their conjugate momenta (and hence their
energy) increase without bound, because this would expand the phase-space area.
Symplectic integrators offer therefore numerical conservation of energy6 to a good degree,
which improves the higher the accuracy O (δt p ) of the integrator itself.

• Integration accuracy. Depending on the nature of a given numerical integrator method,
we may obtain an accuracy in the integrated field amplitudes and conjugate momenta of
the order O (δt p ), typically with p = 2,4,6,8 or even 10. Our default algorithms have
always an accuracy O (δt 2). However, basic O (δt 2) integrators can be converted into
higher-order integrators using techniques due to Haruo Yoshida. Essentially, by applying
the basic algorithm over a number of adjusted different timesteps chosen so that the
errors cancel, far higher-order integrators can be obtained. For symplectic integrators
this is particularly interesting, as the degree of conservation of energy (Hubble constraint
for expanding backgrounds) will increase significantly as we improve the integrator
accuracy.

6In the case of scenarios with an expanding background, by conservation of energy we actually mean the
preservation of the Hubble constraint 3m2

p H2 = ρ.
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Name Order wi = δti

δt
q

V V 4 O(δt 4)
w1 = w3 = 1.351207191959657771818

w2 =−1.702414403875838200264
3

V V 6 O(δt 6)

w1 = w7 = 0.78451361047755726382

w2 = w6 = 0.23557321335935813368

w3 = w5 =−1.1776799841788710069

w4 = 1.3151863206839112189

7

V V 8 O(δt 8)

w1 = w15 = 0.74167036435061295345

w2 = w14 =−0.40910082580003159400

w3 = w13 = 0.19075471029623837995

w4 = w12 =−0.57386247111608226666

w5 = w11 = 0.29906418130365592384

w6 = w10 = 0.33462491824529818378

w7 = w9 = 0.31529309239676659663

w8 =−0.79688793935291635402

15

V V 10 O(δt 10)

w1 = w31 =−0.48159895600253002870

w2 = w30 = 0.0036303931544595926879

w3 = w29 = 0.50180317558723140279

w4 = w28 = 0.28298402624506254868

w5 = w27 = 0.80702967895372223806

w6 = w26 =−0.026090580538592205447

w7 = w25 =−0.87286590146318071547

w8 = w24 =−0.52373568062510581643

w9 = w23 = 0.44521844299952789252

w10 = w22 = 0.18612289547097907887

w11 = w21 = 0.23137327866438360633

w12 = w20 =−0.52191036590418628905

w13 = w19 = 0.74866113714499296793

w14 = w18 = 0.066736511890604057532

w15 = w17 =−0.80360324375670830316

w16 = 0.91249037635867994571

31

Table 10.1 – Time steps required to construct higher-order velocity Verlet algorithms. A given
algorithm requires q iterations. The coefficients are symmetric, in each case, with respect to
the intermediate ωi parameter. Note that we reported here only the algorithms of a given
order with the minimal number of steps. For others, see Ref. [421].
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• Efficiency. We obviously want to make our numerical integration as fast as possible, so if
we need to choose between two integration methods with the same accuracy O (δt p ) but
different levels of energy conservation, we might still prefer the faster integrator even if it
has worse energy conservation (as long as it can be confronted against the outcome from
other integrators with better energy conservation).

10.4 Lattice formulation of interacting scalar fields

10.4.1 Continuum formulation and natural variables

Let us consider a set of interacting real scalar fields {φa} with canonically normalized kinetic
terms. If they live in a FLRW background gµν = diag(−a2α, a2, a2, a2), with line element
d s2 =−a2αδη2 +a2(η)d~x2 and α-time η, their action can be written like

S = −
∫

d 4x
p−g

(
1

2
∂µφb∂

µφb +V ({φc })

)
=

(
f∗
ω∗

)2

S̃ , (10.145)

with

S̃ =
∫

d 3x̃δη̃

{
1

2
a3−α∑

b

φ̃′2
b −

1

2
a1+α∑

b,k

(∇̃k φ̃b)2 −a3+αṼ ({φ̃c })

}
, (10.146)

the action expressed in the dimensionless variables

φ̃a ≡
φa

f∗
, δη̃≡ a−αω∗d t , d x̃i ≡ω∗d xi , (10.147)

where ′ ≡ d/d τ̃ and ∇̃i ≡ ∂/∂x̃i , and where a dimensionless potential has been introduced as

Ṽ ({φ̃c }) ≡
1

f 2
∗ω

2
∗

V ({φc })
∣∣∣
φc= f∗φ̃c

. (10.148)

The EOM in the dimensionless variables follow immediately from varying the action S̃,

φ̃′′
a −a−2(1−α)∇̃2φ̃a + (3−α)

a′

a
φ̃′

a +a2αṼ,φ̃a
= 0. (10.149)

The expansion of the universe, on the other hand, is dictated by the Friedmann equations,
sourced by the volume averaged energy and pressure densities 〈ρφ〉, 〈pφ〉 of the fields. Writing
the relevant part of Eqs. (10.52), (10.53) in program variables (10.147), we have

a′′ = a2α+1

(
f∗

mp

)2 1

6
[(2α−1)〈ρ̃φ〉−3〈p̃φ〉] , a′2 = a2α+2

(
f∗

mp

)2 1

3
〈ρ̃φ〉 , (10.150)
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with program energy and pressure densities defined as

ρ̃φ ≡
ρ

f 2
∗ω

2
∗
= K̃φ+ G̃φ+ Ṽ , ; p̃φ ≡

p

f 2
∗ω

2
∗
= K̃φ−

1

3
G̃φ− Ṽ , (10.151)

where

K̃φ =
1

2a2α

∑

i

(φ̃′
i )2 , G̃φ =

1

2a2

∑

i ,k

(∇̃k φ̃i )2 . (10.152)

As in reality we need the volume averages 〈...〉 of expressions (10.152), we define for convenience

EK ≡
1

2a2α

∑

i

〈
(φ̃′

i )2
〉

, EG ≡
1

2a2

∑

i ,k

〈
(∇̃k φ̃i )2

〉
, EV ≡

〈
Ṽ ({φ̃ j })

〉
, (10.153)

so that the Friedmann equations read
(

a′

a

)2

=
a2α

3

(
f∗

mp

)2 [
EK +EG +EV

]
, (10.154)

a′′

a
=

a2α

3

(
f∗

mp

)2 [
(α−2)EK +αEG + (α+1)EV

]
. (10.155)

If on the contrary the expansion of the universe is sourced by an external fluid, say with
constant barotropic equation of state w ≡ 〈p〉/〈ρ〉, then we obtain the scale factor simply from
the analytical expression

a(η̃) = a0

(
1+

1

p
H̃0(η̃− η̃0)

)p

, with p =
2

3(1+ω)−2α
, (10.156)

where we fixed the initial conditions at an initial time η̃0 (= 0, typically) to a0 = a(η̃0) and
H̃0 ≡ H̃ (η̃0), and introduced a dimensionless program Hubble rate H̃ = aα

ω∗
H , with H ≡ ȧ/a the

physical Hubble parameter.
Program variables –. We will refer to the dimensionless field and space-time variables in
Eq. (10.147) as the lattice or program variables, and to the dimensionless potential in
Eq. (10.148) as the lattice or program potential 7. The values of α, f∗ and ω∗ can be chosen, in
principle, arbitrarily. However, certain choices can be more convenient than others, depending
on the form of the potential V . First, let us consider the choice of α. In principle, this could
be chosen at will: we could take α= 0 if we wanted to solve our dynamics in cosmic time,
whereas we could choose α= 1 if we wanted to solve it in conformal time (up to dimensionful
constant factors). However, there are many situations in which an oscillatory field dominates
the energy budget of the system for a long time, with a time-dependent oscillation period
Tosc(t ). As the integration techniques introduced in the previous sections assume a constant
time step, we would not be able to resolve later oscillations of the field with the same accuracy
as early ones. This could cause stability problems in the simulation at late times, if the

7We will also define dimensionless program variables for the charged scalars and gauge fields in Eqs. (10.226)
and (10.309).
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oscillation period were to decrease with time. Therefore, if we were in such a situation, it
would be extremely convenient to choose a value of α that makes the oscillation period
constant in the new α-time variable. In Section 10.8 we show an example of this in the context
of a scalar field oscillating around the minimum of a monomial potential.

Let us now consider f∗. For this, let us imagine a scenario in which one scalar field (say φ) has
initially a homogeneous configuration with a certain initial amplitude Φ∗. A natural choice
would be to fix the dimensionful normalization constant as f∗ =Φ∗, so that as long as that
field dominates the energy budget during the dynamics, its normalized amplitude φ̃ will be of
order unity (modulo red-shifting dilution factors due to the expansion of the universe). This is
often the case in models with parametric resonance, such as the preheating scenario presented
in Section 10.8. If on the contrary, relevant field(s) in the dynamics start with vanishing (or
small) amplitude but acquire a vacuum expectation value 〈φ〉 = v later on, it might be
convenient to take f∗ = v . This will be the case e.g. in models with spontaneous symmetry
breaking, like in phase transitions and cosmic defect formation. Finally, let us consider ω∗. If
the dominant scalar field of the system oscillates say with a frequency Ωosc(η) (possibly
time-dependent), it can be convenient to take, for instance, ω∗ =Ωosc(η∗), at the time η= η∗ of
onset of field oscillations. However, if the time scale ∆η∗ of excitation of other fields is rather
the relevant time scale in the problem, it might be more convenient to choose ω∗ of the order
of 1/∆η∗. Another possibility would be to simply set f∗ =ω∗, so we prevent ratios f∗/ω∗
(naturally appearing e.g. in the initial condition of scalar field fluctuations) to become tiny or
extremely large, see Section 10.7.

In summary, if the choice of α, f∗ and ω∗ is made judiciously, it will lead to order unity field
amplitudes and time scales, in the naturally dimensionless program variables. This would
achieve a twofold objective. first, a better handle of the program variables in the computer, as
order unity numbers are more convenient to deal with from a computational point of view.
And second, an easier and more transparent conversion of the dimensionless computer
program variables into physical mass/time scales characteristic of each given scenario.
From now on, we assume that independently of the scenario we are dealing with, a convenient
choice of (α, f∗, ω∗) has been made. In order to solve the dynamics of the interacting scalar
fields on a computer, we need now to obtain some discretized version of the continuum
EOM (10.149) expressed in the natural variables (10.147), (10.148). We need to do two things:
first, to substitute somehow the time and spatial continuum derivatives by lattice operators
mimicking such continuum differential operations up to some order O (δxµ); and second, to
solve the resulting discrete lattice EOM with some algorithms. Our toolkit to address these
two aspects was provided in Section 10.3, where we introduced both lattice differential
operators and evolution algorithms. Armed with such toolkit, we have essentially two options:
1) Lattice action approach. This is based on discretizing the continuum action, so that it is
substituted by a lattice version. Varying such lattice action with respect to the lattice field
do f , leads to lattice EOM enjoying whichever symmetry the lattice action enjoyed in first
place. Constraint equations (expected as a consequence of the symmetries) are then
automatically satisfied at the lattice level.
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2) EOM discretization approach. This is based on discretizing the continuum EOM directly.
Here we simply substitute the partial derivatives involved in certain terms of the continuum
EOM by appropriate lattice operators mimicking those continuum derivatives. This method
allows to envisage lattice EOM adapted to essentially any evolution algorithm we wish to use.
Either approach 1) or 2) may have its advantages and disadvantages depending on the model
and circumstances. Whereas for EOM in flat space-time the two approaches are essentially
very similar, this might not be case in an expanding universe, particularly in the presence of
gauge fields. As for the time being we only deal with scalar sectors in expanding backgrounds
in this section, we will simply present next the series of algorithms that one can envisage to
engineer lattice EOM that can be solved with the evolution algorithms we introduced in
Section 10.3.

10.4.2 Lattice formulation of interacting scalar fields: O (d t 2) accuracy meth-
ods

10.4.2.1 Staggered leapfrog from a lattice action

A lattice version of action (10.146) can be written using e.g. forward derivatives
[c.f. Eq. (10.68)] for the time derivatives and the spatial gradients. Promoting integrals into
discrete sums

∫
dη(...) ≡ δη

∑
n0

(...),
∫

d x3(...) ≡ δx3 ∑
n(...), we obtain

S̃L = δη̃δx̃ 3
∑
n0

∑
n

{
1

2
a3−α
+0/2

∑

b

(∆̃+
0 φ̃

b)2 −
1

2
a1+α∑

b,k

(∆̃+
k φ̃

b)2 −a3+αṼ ({φ̃c })

}
. (10.157)

Note that we have not determined yet at what times the scale factor lives in, and we have
rather referred to a scale factor at integer and half-integers times, whenever appropriate. The
logic to specify where the scale factor lives in each term of the action, is to consider the time
the operator it is multiplied to lives in. Thus, as (∆̃+

0 φ̃
(a))2 lives at n0 +1/2, we write its

pre-factor as a3−α
+0/2

, whereas (∆̃+
k
φ̃(a))2 lives at n0, so we write its pre-factor as a1+α, etc.

Varying this action with respect each field do f , δφa
SL = 0, leads to the discrete EOM

∆̃
−
0 [a3−α

+0/2∆̃
+
0 φ̃b] = a1+α∑

k

∆̃
−
k ∆̃

+
k φ̃b −a3+αṼ,φ̃c

, b = 1,2, ..., Ns (10.158)

with Ns the total number of scalar fields.

Let us now deal with the expansion of the universe. We need to express the Friedmann
equations as a function of program expressions for the volume averaged field energy and
pressure densities 〈ρφ〉, 〈pφ〉. We introduce first a discretized version of EK ,EG and EV ,
c.f. Eq. (10.153),

EK ≡
1

2a2α
+0/2

∑
a

〈
(∆̃+

0 φ̃a)2
〉

, EG ≡
1

2a2

∑

a,k

〈
(∆̃+

k φ̃a)2
〉

, EV ≡
〈

Ṽ ({φ̃c })
〉

(10.159)
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with EG and EV naturally living at integer times n0, and EK at semi-integer times n0 +1/2. We
need to decide now whether we consider a scale factor living ’naturally’ at integer or
semi-integer times. If we consider that a lives at semi-integer times, then it is natural to define
the operator b ≡ ∆̃

+
0 a−0/2 living at integer times, and hence identify the first and second

derivative [via the Friedmann equations in (10.154), (10.155)] of the scale factor as

a′ → ∆̃
+
0 a−0/2 ≡ b , (10.160)

a′′ → ∆̃
+
0 b =

1

3

(
f∗

mp

)2

a1+2α
+0/2

[
(α−2)EK +αEG + (α+1)EV

]
. (10.161)

with EG ≡ (EG +EG ,+0̂)/2 and EV ≡ (EV +EV ,+0̂)/2, so that they live at semi-integer times, like
the scale factor and EK . Alternatively, if we think of the scale factor living at integer times, we
can define the operator b+0/2 ≡ (∆̃+

0 a) living at semi-integer times, and identify the first and
second derivative of the scale factor as

a′ → ∆̃
+
0 a ≡ b+0/2 , (10.162)

a′′ → ∆̃
+
0 b−0/2 =

1

6

(
f∗

mp

)2

a1+2α
[

(α−2)EK +αEG + (α+1)EV

]
, (10.163)

with EK ≡ (EK ,−0̂/2 +EK ,+0̂/2)/2 living at integer times, as much as a,EG and EV .

From a practical or computational point of view, choosing a scale factor living at integer or
semi-integer times, is actually irrelevant. If we choose that it lives at e.g. integer times, we will
always be forced to obtain it also, within each iteration, at semi-integer times, from the
semi-sum of its two values at the closest integer times. And vice versa. In order to provide an
iterative scheme, we still need to decide on the conjugate momenta π̃(a)

+0/2
, which will be

implemented through forward derivative operators. The question is whether to choose that
π̃(a)
+0/2

represents the time-derivative of each field, i.e. φ′
a , or rather represents a3−αφ′

a , as the
EOM actually naturally suggest. It turns out that depending on this choice the integrator will
be accurate to order O (δη) or O (δη2). All together, we can obtain the following
implementations of a staggered leapfrog algorithm (here IC stands for Initial Condition, and
HC for Hubble Constraint):
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I) Iterative scheme for π̃(a)
+0/2

≡ ∆̃
+
0 φ̃a and scale factor a(n0 +1/2):

IC : {φ̃a ,b} at η̃0, {π̃(a)
−0/2

, a−0/2} at η̃0 −0.5δη̃ (10.164)
a+0/2 = a−0/2 +bδη̃ −→ a ≡ (a+0/2 +a−0/2)/2 (10.165)

π̃(a)
+0/2

=
(

a−0/2

a+0/2

)3−α
π̃(a)
−0/2

+ a−(3−α)
+0/2

(
a1+α∑

k

∆̃
−
k ∆̃

+
k φ̃

(a) −a3+αṼ,φ̃(a)

)
(10.166)

φ̃(a)
+0 = φ̃(a) +δη̃π̃(a)

+0/2
(10.167)

b+0 = b +
δη̃

3

(
f∗

mp

)2

a1+2α
+0/2

[
(α−2)EK +αEG + (α+1)EV

]
, (10.168)

HC : b2 =
1

3

(
f∗

mp

)2

a2α+1
(
EK +EG +EV

)
. (10.169)

II) Iterative scheme for π̃(a) ≡ ∆̃
+
0 φ̃

(a)
−0/2

and scale factor a(n0)

IC : {ã, π̃(a)} at η̃0, {φ̃(a)
−0/2

,b−0/2} at η̃0 −0.5δη̃ (10.170)
φ̃(a)
+0/2

= φ̃(a)
−0/2

+δη̃π̃(a) (10.171)

b+0/2 = b−0/2 +
δη̃

3

(
f∗

mp

)2

a1+2α
[

(α−2)EK +αEG + (α+1)EV

]
, (10.172)

a+0 = a +b+0/2δη̃ −→ a+0/2 ≡ (a0 +a)/2, (10.173)

π̃(a)
+0 =

(
a

a+0

)3−α
π̃(a) +a−(3−α)

+0

(
a1+α
+0/2

∑

k

∆̃
−
k ∆̃

+
k φ̃

(a)
+0/2

−a3+α
+0/2Ṽ,φ̃(a)

∣∣∣
+0/2

)
, (10.174)

HC : b2
+0/2 =

1

3

(
f∗

mp

)2

a2α+1
+0/2

(
EK +EG ,+0/2 +EV ,+0/2

)
, (10.175)

III) Iterative scheme for π̃(a)
+0/2

≡ a3−α
+0/2

∆̃
+
0 φ̃a and scale factor a(n0)

IC : {φ̃(a), a, } at η̃0, {π̃(a)
−0/2

,b−0/2} at η̃0 −0.5δη̃ (10.176)

π̃(a)
+0/2

= π̃(a)
−0/2

+
(

a1+α∑

k

∆̃
−
k ∆̃

+
k φ̃

(a) −a3+αṼ,φ̃(a)

)
(10.177)

b+0/2 = b−0/2 +
δη̃

3

(
f∗

mp

)2

a1+2α
[

(α−2)EK +αEG + (α+1)EV

]
, (10.178)

a+0 = a +b+0/2δη̃ −→ a+0/2 ≡ (a+0 +a0)/2, (10.179)
φ̃(a)
+0 = φ̃(a) +δη̃π̃(a)

+0/2
a−(3−α)
+0/2

, (10.180)

HC : b2
+0/2 =

1

3

(
f∗

mp

)2

a2α+1
+0/2

(
EK +EG +EV

)
, (10.181)
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IV) Iterative scheme for π̃(a) ≡ a3−α
∆̃
+
0 φ̃

(a)
−0/2

and scale factor a(n0 +1/2)

IC : {π̃(a),b} at η̃0, {φ̃(a)
−0/2

, a−0/2} at η̃0 −0.5δη̃ (10.182)
a+0/2 = a−0/2 +bδη̃ −→ a ≡ (a+0/2 +a−0/2)/2 (10.183)
φ̃(a)
+0/2

= φ̃(a)
−0/2

+δη̃π̃(a)a−(3−α) (10.184)

π̃(a)
+0 = π̃(a) + a1+α

+0/2

∑

k

∆̃
−
k ∆̃

+
k φ̃

(a)
+0/2

−a3+α
+0/2Ṽ,φ̃(a)

∣∣∣
+0/2

(10.185)

b+0 = b +
δη̃

3

(
f∗

mp

)2

a1+2α
+0/2

[
(α−2)EK +αEG ,+0/2 + (α+1)EV ,+0/2

]
, (10.186)

HC : b2 =
1

3

(
f∗

mp

)2

a2α+1
(
EK +EG +EV

)
. (10.187)

While all these iterative schemes descent from the same action (10.157), they are truly
different algorithms, based on the choice of conjugate momenta and time domain of the scale
factor. In fact, iterative schemes I and I I , which are basically very similar as they are based
on (discretized versions of) the same choice πa ≡φ′

a , are only accurate to order O (δη).
Iterative schemes I I I and IV , also very similar to each other as they are based on (discretized
versions of) the choice πa ≡ a3−αφ′

a , are however accurate to order O (δη2). This becomes
manifest in numerical simulations by monitoring the Hubble constraint 3m2

p H 2 = ρ, which in
the case of schemes I and I I is only verified to order O (δη) by Eqs. (10.169), (10.175), whereas
in the schemes I I I and IV , Eqs. (10.181), (10.187) are verified to order O (δη2). This is a first
illustration of the importance of choosing the appropriate conjugate momentum to evolve the
equations.

10.4.2.2 Synchronized Leapfrog: Position- and Velocity-Verlet

While in Section 10.4.2.1 our starting point was a lattice action from which we derived the
lattice EOM, here we will rather discretize directly the continuum EOM, without introducing
a conformal rescaling, similarly to what was done in Section 10.4.2.1, using a re-definition of
the field variables. Considering again the EOM of Ns scalar fields canonically normalized,
c.f. Eq. (10.149), we immediately conclude that the field variables’ kernel depend on the
conjugate momenta through the friction term (3−α)H φ̃′

b
. This seemingly appears as an

impediment to apply staggered or synchronized leapfrog methods. The EOM as derived
initially from the continuum action (10.145), can however be written as

(a(3−α)φ̃′
b)′−a1+α∇̃2φ̃b +a3+αṼ,φ̃b

= 0, b = 1,2, ..., Ns , (10.188)

so that only when expanding the first term (and after multiplying by a−(3−α)), the standard
second derivative and friction terms φ̃′′

b
+ (3−α)H φ̃′

b
become explicit. Instead of expanding

such terms, the form of Eqs. (10.188) invites to rather re-write them more naturally in a
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Hamiltonian-like scheme as

φ̃′
b = a−(3−α)π̃b , (10.189)

π̃′
b = a1+α∇̃2φ̃b −a3+αṼ,φ̃b

, (10.190)

where it is manifest that the kernel does not depend on the conjugate momenta. Analogously,
the second Friedmann equation (10.155) can then be written as

a′ = b , (10.191)

b′ =
a1+2α

3

(
f∗

mp

)2 [
(α−2)EK +αEG + (α+1)EV

]
, (10.192)

where EK ≡
1

2a6

∑

i

〈
(π̃i )2

〉
, EG ≡

1

2a2

∑

i ,k

〈
(∇̃k φ̃i )2

〉
, EV ≡

〈
Ṽ ({φ̃ j })

〉
, (10.193)

This immediately invites for the application of either staggered or synchronized leapfrog
methods. In fact, the methods I I I and IV from Section 10.4.2.1 correspond precisely to the
application of a staggered leapfrog scheme. We will thus focus now on the application of
synchronized leapfrog schemes, also known as Verlet integrators, either velocity- or
position-based. Following Section 10.4.2.2, these algorithms read:
I) Velocity-Verlet scheme for interacting scalar fields in an expanding background

IC : {φ̃(i ), π̃(i ), a,b} at η̃0 , (10.194)

b+0/2 = b +
1

3

(
f∗

mp

)2

a1+2α
[

(α−2)EK +αEG + (α+1)EV

]δη̃
2

, (10.195)

π̃(i )
+0/2

= π̃(i ) +
(

a1+α∑

k

∆̃
−
k ∆̃

+
k φ̃

(i ) −a3+αṼ,φ̃(i )

)
δη̃

2
, (10.196)

a+0 = a +b+0/2δη̃ , (10.197)

a+0/2 =
a+0 +a

2
, (10.198)

φ̃(i )
+0 = φ̃(i ) +δη̃π̃(i )

+0/2
a−(3−α)
+0/2

, (10.199)

π̃(i )
+0 = π̃(i )

+0/2
+

(
a1+α
+0

∑

k

∆̃
−
k ∆̃

+
k φ̃

(i )
+0 −a3+α

+0 Ṽ,φ̃(i )

∣∣∣
+0

)
δη̃

2
, (10.200)

b+0 = b+0/2 +
1

3

(
f∗

mp

)2

a1+2α
+0

[
(α−2)EK ,+0 +αEG ,+0 + (α+1)EV ,+0

]δη̃
2

, (10.201)

HC : b2 =
1

3

(
f∗

mp

)2

a2(α+1)
(
EK +EG +EV

)
, (10.202)

II) Position-Verlet scheme for interacting scalar fields in an expanding background

IC : {φ̃(i ), π̃(i ), a,b} at η̃0 , (10.203)

a+0/2 = a +b
δη̃

2
, (10.204)
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φ̃(i )
+0/2

= φ̃(i ) +
δη̃

2
π̃(i )a−(3−α) , (10.205)

π̃(i )
+0 = π̃(i ) +

(
a1+α
+0/2

∑

k

∆̃
−
k ∆̃

+
k φ̃

(i )
+0/2

−a3+α
+0/2Ṽ,φ̃(i )

∣∣∣
+0/2

)
δη̃ , (10.206)

EK ,+0/2 =
EK ,+0 +EK

2
, (10.207)

b+0 = b +
1

3

(
f∗

mp

)2

a1+2α
+0/2

[
(α−2)EK ,+0/2 +αEG ,+0/2 + (α+1)EV ,+0/2

]
δη̃ , (10.208)

a+0 = a+0/2 +b+0
δη̃

2
, (10.209)

φ̃(i )
+0 = φ̃(i )

+0/2
+
δη̃

2
π̃(i )
+0a−(3−α)

+0 . (10.210)

HC : b2 =
1

3

(
f∗

mp

)2

a2(α+1)
(
EK +EG +EV

)
, (10.211)

Both algorithms have O (δη2) accuracy and are equivalent in efficiency (number of steps per
iteration, complexity of the steps), so one can equally use one or the other, and obtain the
same results. Verlet integrators have however three steps per iteration (as they come in a
kick-drift-kick or drift-kick-drift fashion) versus two steps of the staggered leapfrog integrators
I I I and IV from Section 10.4.2.1 (which come in a dr i f t −ki ck or ki ck −dr i f t scheme).
Verlet integrators is therefore some ∼ 30−40% slower than staggered leapfrog algorithms. They
can however be used to implement higher-order in δη with the method presented in Section
10.3.4.1, see Section 10.4.3.1.

10.4.3 O (d t n) Lattice formulation of interacting scalar fields

10.4.3.1 Verlet Integration nth order

In order to consider any of the higher-order Verlet integrators that we introduced in
Section 10.3.4.1, we need to re-write first the EOM (10.189)-(10.192) for Ns interacting scalar
fields dictating the expansion of the universe, as follows

a′ = b , (10.212)
φ̃′

i = a−(3−α)π̃i , (10.213)
π̃′

i = Ki [a, {φ̃ j }] , (10.214)
b′ = Ka[a,EK ,EG ,EV ] , (10.215)
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where

Ki [a, {φ̃ j }] ≡ a1+α∇̃2φ̃i −a3+αṼ,φ̃i
, (10.216)

Ka[a,EK ,EG ,EV ] ≡
1

3

(
f∗

mp

)2

a1+2α
[

(α−2)EK +αEG + (α+1)EV

]
, (10.217)

EK ≡
1

2a6

∑

i

〈
π̃2

i

〉
, EG ≡

1

2a2

∑

i ,k

〈
(∇̃k φ̃i )2

〉
, EV ≡

〈
Ṽ ({φ̃ j })

〉
. (10.218)

Decomposing one time step δη=
∑s

p=1δηp into s sub-steps δηp = wpδt , so that ∑s
p=1 wp = 1,

the idea is to iterate s-times one of the Verlet algorithms, (10.119) or (10.122), using each
time the appropriate δηp sub-step. Without loss of generality we use the Velocity Verlet
algorithm (10.119) as the building block, obtaining





π̃(0)
i

≡ π̃i (n,n0)

φ̃(0)
i

≡ φ̃i (n,n0)

a(0) ≡ a(n0)

b(0) ≡ b(n0)

=⇒





b
(p)

1/2
= b(p−1) +ωp

δη̃
2

Ka[a(p−1),E
(p−1)

K
,E

(p−1)

G
,E

(p−1)

V
]

π̃
(p)

i ,1/2
= π̃

(p−1)

i
+ωp

δη̃
2

Ki [a(p−1), {φ̃
(p−1)

j
}]

a
(p)

1/2
= a(p−1) +b

(p)

1/2
ωp

δη̃
2

φ̃
(p)

i
= φ̃

(p−1)

i
+ωpδη̃π̃

(p)

i ,1/2
(a

(p)

1/2
)−(3−α) ,

a(p) = a
(p)

1/2
+b

(p)

1/2
ωp

δη̃
2

,

π̃
(p)

i
= π̃

(p)

i ,1/2
+ωp

δη̃
2

Ki [a(p), {φ̃
(p)

j
}]

b(p) = b
(p)

1/2
+ωp

δη̃
2

Ka[a(p),E
(p)

K
,E

(p)

G
,E

(p)

V
]





p =1, ..., s

=⇒

=⇒





π̃i (n,n0 +1) ≡ π̃(s)
i

φ̃i (n,n0 +1) ≡ φ̃(s)
i

a(n0 +1) ≡ a(s)

b(n0 +1) ≡ b(s) .

(10.219)

By choosing the appropriate weights wp ’s from Table 10.1, the errors of the intermediate steps
cancel up to order O (δηn), with n = 4,6,8 and 10 for s = 3,7,15 and 31, respectively.

Finally we deal with the Hubble constraint. Like in the RK 4 case, here both field amplitudes
and conjugate momenta live at the same integer times (after each full iteration over the
s-subintervals), so we simply write

HC : b2 =
1

3

(
f∗

mp

)2

a2(α+1)
(
EK +EG +EV

)
, (10.220)

evaluated at any integer time. Note that a similar algorithm of accuracy O(δt 6) has been
previously introduced in Ref. [181].

185



Chapter 10. The art of simulating the early Universe

10.4.4 Observables

To conclude this section, we collect the main observables of interest, such as energies and
power-spectra. In the case of scalar fields, we are mostly concerned with the fields and
conjugate momenta themselves, φ̃i and π̃i . In particular, we typically monitor their mean
value and their variance.

10.4.4.1 Energy components

We can define the kinetic and gradient energy for each field as follows,

E
φi

K
=

1

a6
〈(π̃i )2〉 , E

φi

G
=

1

a2

∑

j

〈(∆̃+
j φ̃i )2〉 , (10.221)

while the total potential energy is defined as

EV = 〈Ṽ ({φ̃i })〉 . (10.222)

In most cases, the potential can naturally be written as a sum of p different terms
V ({φ̃i }) =

∑
a Va({φ̃i }), which are typically the different mass terms and interactions of the fields.

Therefore, we also measure
EVa

= 〈Ṽa({φ̃i })〉 . (10.223)

10.4.4.2 Spectra

Finally, we can also consider the power spectrum of each individual field. Following our
conventions in Eq. (10.66), we define

P φ̃i
(k(ñ)) =

k3(ñ)

2π2

(
δx̃

N

)3

〈|(φ̃i )(ñ)|2〉R(ñ) , (10.224)

P π̃i
(k(ñ)) =

k3(ñ)

2π2

(
δx̃

N

)3

〈|π̃i (ñ)|2〉R(ñ) . (10.225)

10.5 Lattice formulation of gauge fields, I: U (1) interactions

We can now move on to the lattice formulation of the U (1) gauge sector, which consists in
developing an appropriate discretization for Eqs. (10.38) and (10.40), together with
Friedmann’s law (10.53). In particular, we will generalize the staggered leapfrog algorithm of
Section 10.4.2.1, the velocity-Verlet one of Section 10.4.2.2, and its higher-order generalizations
introduced in Section 10.4.3.1. For simplicity, we restrict the presentation to the case of a
single complex scalar field ϕ coupled to a single Abelian gauge field Aµ, as the generalization
to a larger number of fields is straightforward. Note also that for conciseness, we present
explicitly only the velocity-Verlet versions of the Verlet’s algorithm. The position one is
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straightforwardly obtained by inverting the roles of the momenta and fields, as explained in
Section 10.4.2.2.

10.5.1 Continuum formulation and natural variables

We define the following pr og r am variables for the U (1)-charged scalars and the Abelian gauge
fields as

ϕ̃=
1

f∗
ϕ, Ãµ =

1

ω∗
Aµ . (10.226)

The normalization of the charged scalar is identical to the one of the scalar singlet, introduced
in Eq. (10.147). However, the gauge field is normalized with respect ω∗, so it cancels the one
coming from δx̃µ in the link, i.e. Vµ ≡ e−iδxµAµ = e−iδx̃µ Ãµ ≡ Ṽµ. The continuum equations of
motion in these variables are, in the temporal gauge Ã0 = 0,

(a3−αϕ̃′)′−a1+α ~̃D
2

A ϕ̃=−aα+3Ṽ,|ϕ̃|
ϕ̃

|ϕ̃|
, (10.227)

∂̃0(a1−αF̃0i )−aα−1∂ j F̃ j i = a1+α J̃ A
i , (10.228)

where all field and spacetime variables are program variables, and as such, are indicated with a
‘∼’. By inspecting these equations, we can naturally identify appropriate definitions for the
conjugate momenta of the field variables as

π̃ϕ ≡ a3−αϕ̃′ , (10.229)
(π̃A)i ≡ a1−αF̃0i . (10.230)

We define the program kinetic energies of the fields as

E
ϕ

K
=

1

a6
〈π̃2

ϕ〉 , (10.231)

E A
K =

1

2a4

3∑

i=1

〈(π̃A)2
i 〉 . (10.232)

For convenience, let us also define the following kernels for each of the amplitudes and
momenta,

(π̃ϕ)′ =K ϕ[a,ϕ̃, Ãi ] , (10.233)
(π̃A)′i =K A

i [a,ϕ̃, Ãi ] , (10.234)

K ϕ[a,ϕ̃, Ãi ] ≡−aα+3Ṽ,|ϕ̃|
ϕ̃

|ϕ̃|
+a1+α ~̃D

2

A ϕ̃ , (10.235)

K A[a,ϕ̃, Ãi ]i ≡ a1+α J̃ A
i +aα−1∂̃ j F̃ j i . (10.236)
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10.5.2 Non-compact Lattice formulation of scalar-gauge dynamics

We first present here a spatial discretization of the kernels using non-compact variables, which
means that the variables to evolve are the field amplitudes and momenta themselves,
{ϕ̃, π̃ϕ, Ãi , (π̃A)i }. Using our U (1)-toolkit (10.3.2.2), we get

K ϕ[a,ϕ̃, Ãi ] =−aα+3Ṽ,|ϕ̃|
ϕ̃

|ϕ̃|
+a1+α∑

i

D̃−
i D̃+

i ϕ̃ , (10.237)

K A[a,ϕ̃, Ãi ]i = a1+α
(
g AQ

(ϕ̃)

A
I m[ϕ̃∗Ṽi ϕ̃]+ . . .

)
+aα−1

∑

j

(
∆̃
−
j ∆̃

+
j Ãi − ∆̃

−
j ∆̃

+
i Ã j

)
, (10.238)

where the dots are here to remind the reader that any fields coupled to the U (1) gauge field
will contribute to its kernel through the gauge current. For example, an SU (N )-doublet Φ̃

would add a contribution of the sort g AQ(Φ̃)
A

I m[Φ̃†Ṽi Φ̃]. For conciseness, let us also define a
kernel for the scale factor as

K b[a,ϕ̃, π̃ϕ, Ãi , (π̃A)i ] =
a2α+1

3m2
p

(α−2)(E
ϕ

K
+ . . . )+α(E

ϕ

G
+ . . . ) (10.239)

+ (α+1)EV + (α−1)
(
E A

K +E A
G . . .

)
,

corresponding to Friedmann’s equation (10.53). We reproduced only the terms directly
relevant to the U (1) gauge sector; the dots are here again to remind the reader that other
contributions will enter if some other sectors are also present (e.g. scalar singlets). The kinetic
energies are defined in (10.231) and (10.232). We discretize the remaining gradient and
potential energies as follows,

E
ϕ

G
=

1

a2

∑

i

〈(D̃ A +
i ϕ̃)∗(D̃ A +

i ϕ̃)〉 , (10.240)

E A
G =

1

2a4

∑

i , j<i

〈(∆̃+
i Ã j − ∆̃

+
i Ã j )2〉 , (10.241)

EV = 〈Ṽ (ϕ̃, . . . )〉 . (10.242)

Finally, a crucial quantity to monitor is the Gauss law, which must be obeyed at all times
during the simulation. It is written in the continuum in Eq. (10.42). In terms of program
variables, we can discretize it as follows,

−
∑

i

∆
−
i (π̃A)i = g AQ

(ϕ)

A
I m[ϕ̃∗π̃ϕ] . (10.243)

10.5.2.1 Staggered Leap-Frog

Let us now consider the time evolution of these equations. We first present an adaptation of
the staggered leapfrog algorithm of order O(δη2) to our system. Momenta are evaluated at
semi-integer times, while fields live at integer times. When needed, the former/latter can be
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evaluated at integer/semi-integer times by interpolation. In particular, this is needed in the
scale-factor kernels,

K b[a,ϕ̃, π̃ϕ, Ãi , (π̃A)i ] =
a2α+1

3m2
p

(α−2)(E
ϕ

K
+ . . . )+α(E

ϕ

G
+ . . . )+ (α+1)EV

+ (α−1)
(
E A

K
+E A

G

)
. . . . (10.244)

The algorithm to evolve the fields and their momenta by one time step proceeds as follows:

Staggered Leapfrog Non-Compact
IC :

{
a,b−1/2,ϕ̃,

(
π̃ϕ

)
−1/2

, Ãi , (π̃A)i ,−1/2

}
at η̃0. (10.245)

(
π̃ϕ

)
+1/2

=
(
π̃ϕ

)
−1/2

+δη̃K ϕ[a,ϕ̃, Ãi ] , (10.246)
(π̃A)i ,+1/2 = (π̃A)i ,−1/2 +δη̃K A[a,ϕ̃, Ãi ]i , (10.247)

b+1/2 = b−1/2 +δη̃K b[a,ϕ̃, π̃ϕ, Ãi , (π̃A)i ] , (10.248)
a+0 = a +δη̃b+1/2 , (10.249)

a+1/2 =
a+0 +a

2
, (10.250)

ϕ̃+0 = ϕ̃+δη̃

(
π̃ϕ

)
+1/2

a3−α
+1/2

, (10.251)

Ãi ,+0 = Ãi +δη̃
(π̃A)i ,+1/2

a1−α
+1/2

, (10.252)

HC : b2 =
1

3

(
f∗

mp

)2

a2(α+1)
(
E
ϕ

K
+E

ϕ

G
+E A

K
+E A

G +EV

)
, (10.253)

where the last line is the corresponding Hubble constraint. We see that the scale factor also
needs to be interpolated, as it enters into the relation between the conjugate momenta and the
fields’ time derivative. Note also that this scheme can be obtained from an action principle,
similar to the analogous scalar singlet case.

10.5.2.2 Velocity-Verlet

The equations can also be solved with a velocity-Verlet scheme of order O(δη̃2), similarly to
the analogous scalar case. The algorithm to update the system proceeds as follows,

Velocity-Verlet VV2 Non-Compact
IC :

{
a,b,ϕ̃, π̃ϕ, Ãi , (π̃A)i

}
at η0. (10.254)

(
π̃ϕ

)
+1/2

= π̃ϕ+
δη̃

2
K ϕ[a,ϕ̃, Ãi ] , (10.255)
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(π̃A)i ,+1/2 = (π̃A)i +
δη̃

2
K A[a,ϕ̃, Ãi ]i , (10.256)

b+1/2 = b +
δη̃

2
K b[a,ϕ̃, π̃ϕ, Ãi , (π̃A)i ] , (10.257)

a+0 = a +δη̃b+1/2 , (10.258)

a+1/2 =
a+0 +a

2
, (10.259)

ϕ̃+0 = ϕ̃+δη̃

(
π̃ϕ

)
+1/2

a3−α
+1/2

, (10.260)

Ãi ,+0 = Ãi +δη̃
(π̃A)+1/2

a1−α
+1/2

, (10.261)

(
π̃ϕ

)
+0

=
(
π̃ϕ

)
+1/2

+
δη̃

2
K ϕ[a+0,ϕ̃+0, Ãi ,+0] , (10.262)

(π̃A)i ,+0 = (π̃A)i ,+1/2 +
δη̃

2
K A

i [a+0,ϕ̃+0, Ãi ,+0]i , (10.263)

b+0 = b+1/2 +
δη̃

2
K b[a+0,ϕ̃+0,

(
π̃ϕ

)
+0

, Ãi ,+0, (π̃A)i ,+0] , (10.264)

HC : b2 =
1

3

(
f∗

mp

)2

a2(α+1)
(
E
ϕ

K
+E

ϕ

G
+E A

K +E A
G +EV

)
, (10.265)

where the last line is again the Hubble constraint. Note that a similar integrator, based on a
position-Verlet method, was recently presented in Ref. [184].

10.5.2.3 Velocity-Verlet nth order

In order to construct the higher order integrators VV4, VV6, VV8 and VV10, one simply
needs to apply the method described in Section 10.3.4.1. Explicitly, by choosing ωp in Table
10.1, it proceeds as follows,

π̃(0)
ϕ ≡ π̃ϕ(n,n0)

ϕ̃(0) ≡ ϕ̃(n,n0)

Ã(0)
i

≡ Ãi (n,n0)

(π̃A)(0)
i

≡ (π̃A)i (n,n0)

a(0) ≡ a(n0)

b(0) ≡ b(n0) ,





=⇒ (10.266)
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=⇒





(
π̃ϕ

)(p)

1/2
= π̃

(p−1)
ϕ + ωpδη̃

2
K ϕ

[
a(p−1),ϕ̃(p−1), Ã

(p−1)

i

]

(π̃A)
(p)

i ,1/2
= (π̃A)

(p−1)

i
+ ωpδη̃

2
K A

[
a(p−1),ϕ̃(p−1), Ã

(p−1)

i

]
i

b
(p)

1/2
= b(p−1) + ωpδη̃

2
K b

[
a(p−1),ϕ̃(p−1), π̃

(p−1)
ϕ , Ã

(p−1)

i
, (π̃A)

(p−1)

i

]

a(p) = a(p−1) +ωpδη̃b
(p)

1/2

a
(p)

1/2
= a(p)+a(p−1)

2

ϕ̃(p) = ϕ̃(p−1) +δη̃

(
π̃ϕ

)(p)

1/2(
a

(p)

1/2

)3−α

Ã
(p)

i
= Ã

(p−1)

i
+ωpδη̃

(π̃A )
(p)

1/2(
a

(p)

1/2

)1−α

(
π̃ϕ

)(p) =
(
π̃ϕ

)(p)

1/2
+ ωpδη̃

2
K ϕ

[
a(p),ϕ̃(p), Ã

(p)

i

]

(π̃A)
(p)

i
= (π̃A)

(p)

i ,1/2
+ ωpδη̃

2
K A[a(p),ϕ̃(p), Ã

(p)

i
]i

b(p) = b
(p)

1/2
+ ωpδη̃

2
K b

[
a(p),ϕ̃(p),

(
π̃ϕ

)(p)
, Ã

(p)

i
, (π̃A)

(p)

i

]
,





p =1, ..., s

(10.267)

=⇒





π̃ϕ(n,n0) ≡ π̃(s)
ϕ

ϕ̃(n,n0) ≡ ϕ̃(s)

Ãi (n,n0) ≡ Ã(s)
i

(π̃A)i (n,n0) ≡ (π̃A)(s)
i

a(n0) ≡ a(s)

b(n0) ≡ b(s) ,

(10.268)

HC : b2 =
1

3

(
f∗

mp

)2

a2(α+1)
(
E
ϕ

K
+E

ϕ

G
+E A

K +E A
G +EV

)
. (10.269)

10.5.3 Compact Lattice formulation of scalar-gauge dynamics

As presented in Section 10.3.2.2, the link variables Vi can also be used as “fundamental”
variables to be solved, instead of the gauge field amplitudes Ai . This leads to a ‘compact’
discretization of the U (1) gauge sector. In this approach, we keep the same definitions for
momenta as before, (10.229) and (10.230). However, we take for the gauge fields’ kernel,

K A
i [a,ϕ̃,Ṽi ]i = a1+α

(
g AQ

(ϕ)

A
I m[ϕ̃∗Ṽi ϕ̃]+ . . .

)
+

aα−1

δx̃3

∑

j

(
Ṽi j − Ṽi j − j

)
. (10.270)

where the second term is a backward discretization of ∂̃ j F̃ j i . This can of course be replaced by
some other discretization, this precise one corresponds to a discrete action made out of a

191



Chapter 10. The art of simulating the early Universe

plaquettes. The magnetic energy can be approximated by

E A
G =

2

a4δx̃4

∑

i , j<i

(1−Re(Ṽi j ))2 . (10.271)

The last difference with respect to the non-compact formulation is how the link variables are
evolved in time. In order to understand this, let us compute the continuum time derivative of
a link

(Ṽi )′ = ∂0e−iδx̃ Ãi =−iδx̃(Ãi )′Ṽi , (10.272)

or in terms of the conjugate momenta,

(Ṽi )′ =−i
δx̃

a1−α (π̃A)i Ṽi . (10.273)

The scale factor kernel K b[a,ϕ̃, π̃ϕ,Ṽi , (π̃A)i ] is then understood to be computed with these
energies. Having defined all the necessary ingredients, we can write down the corresponding
modified evolution algorithms for the compact formulation.

10.5.3.1 Staggered Leap-Frog

In this case, the only difference with respect to the non-compact formulation is how the drifts
are given. The algorithm is

Staggered Leapfrog Compact
IC :

{
a,b−1/2,ϕ̃,

(
π̃ϕ

)
−1/2

,Ṽi , (π̃A)i ,−1/2

}
at η0. (10.274)

(
π̃ϕ

)
+1/2

=
(
π̃ϕ

)
−1/2

+δη̃K ϕ[a,ϕ̃,Ṽi ] , (10.275)
(π̃A)i ,+1/2 = (π̃A)i ,−1/2 +δη̃K A[a,ϕ̃,Ṽi ]i , (10.276)

b+1/2 = b−1/2 +δη̃K b[a,ϕ̃, π̃ϕ,Ṽi , (π̃A)i ] , (10.277)
a+0 = a +δη̃b+1/2 , (10.278)

ϕ̃+0 = ϕ̃+δη̃

(
π̃ϕ

)
+1/2

a3−α
+1/2

, (10.279)

Ṽi ,+0 = Ṽi − iδη̃δx̃
(π̃A)i ,+1/2

a1−α
+1/2

Ṽi , (10.280)

HC : b2 =
1

3

(
f∗

mp

)2

a2(α+1)
(
E
ϕ

K
+E

ϕ

G
+E A

K
+E A

G +EV

)
. (10.281)
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10.5.3.2 Velocity-Verlet

Again, only the drifts differ in the velocity-Verlet algorithm with respect to the non-compact
case. We get

Velocity-Verlet VV2 Compact
IC :

{
a,b,ϕ̃, π̃ϕ,Ṽi , (π̃A)i

}
at η0. (10.282)

(
π̃ϕ

)
+1/2

= π̃ϕ+
δη̃

2
K ϕ[a,ϕ̃,Ṽi ] , (10.283)

(π̃A)i ,+1/2 = (π̃A)i +
δη̃

2
K A[a,ϕ̃,Ṽi ]i , (10.284)

b+1/2 = b +
δη̃

2
K b[a,ϕ̃, π̃ϕ,Ṽi , (π̃A)i ] , (10.285)

a+0 = a +δη̃b+1/2 , (10.286)

a+1/2 =
a+0 +a

2
, (10.287)

ϕ̃+0 = ϕ̃+δη̃

(
π̃ϕ

)
+1/2

a3−α
+1/2

, (10.288)

Ṽi ,+0 = Ṽi − iδη̃δx̃
(π̃A)i ,+1/2

a1−α
+1/2

Ṽi , (10.289)

(
π̃ϕ

)
+0

=
(
π̃ϕ

)
+1/2

+
δη̃

2
K ϕ[a+0,ϕ̃+0,Ṽi ,+0] , (10.290)

(π̃A)i ,+0 = (π̃A)i ,+1/2 +
δη̃

2
K A

i [a+0,ϕ̃+0,Ṽi ,+0]i , (10.291)

b+0 = b+1/2 +
δη̃

2
K b[a+0,ϕ̃+0,

(
π̃ϕ

)
+0

,Ṽi ,+0, (π̃A)i ,+0] , (10.292)

HC : b2 =
1

3

(
f∗

mp

)2

a2(α+1)
(
E
ϕ

K
+E

ϕ

G
+E A

K +E A
G +EV

)
. (10.293)
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10.5.3.3 Velocity-Verlet nth order

The higher order integrators VV4, VV6, VV8 and VV10 for the compact formulation are also
obtained by a simple modification of the drifts,

π̃(0)
ϕ ≡ π̃ϕ(n,n0)

ϕ̃(0) ≡ ϕ̃(n,n0)

Ṽ (0)
i

≡ Ṽi (n,n0)

(π̃A)(0)
i

≡ (π̃A)i (n,n0)

a(0) ≡ a(n0)

b(0) ≡ b(n0) ,





=⇒ (10.294)

=⇒





(
π̃ϕ

)(p)

1/2
= π̃

(p−1)
ϕ + ωpδη̃

2
K ϕ

[
a(p−1),ϕ̃(p−1),Ṽ

(p−1)

i

]

(π̃A)
(p)

i ,1/2
= (π̃A)

(p−1)

i
+ ωpδη̃

2
K A

[
a(p−1),ϕ̃(p−1),Ṽ

(p−1)

i

]
i

b
(p)

1/2
= b(p−1) + ωpδη̃

2
K b

[
a(p−1),ϕ̃(p−1), π̃

(p−1)
ϕ ,Ṽ

(p−1)

i
, (π̃A)

(p−1)

i

]

a(p) = a(p−1) +ωpδη̃b
(p)

1/2

a
(p)

1/2
= a(p)+a(p−1)

2

ϕ̃(p) = ϕ̃(p−1) +δη̃

(
π̃ϕ

)(p)

1/2(
a

(p)

1/2

)3−α

V
(p)

i
= V

(p)

i
− iδη̃δx̃

(π̃A)
(p)

1/2(
a

(p)

1/2

)3−α V
(p)

i

(
π̃ϕ

)(p) =
(
π̃ϕ

)(p)

1/2
+ ωpδη̃

2
K ϕ

[
a(p),ϕ̃(p),Ṽ

(p)

i

]

(π̃A)
(p)

i
= (π̃A)

(p)

i ,1/2
+ ωpδη̃

2
K A[a(p),ϕ̃(p),Ṽ

(p)

i
]i

b(p) = b
(p)

1/2
+ ωpδη̃

2
K b

[
a(p),ϕ̃(p),

(
π̃ϕ

)(p)
,Ṽ

(p)

i
, (π̃A)

(p)

i

]
,





p =1, ..., s

(10.295)

=⇒





π̃ϕ(n,n0) ≡ π̃(s)
ϕ

ϕ̃(n,n0) ≡ ϕ̃(s)

Ṽi (n,n0) ≡ Ṽ (s)
i

(π̃A)i (n,n0) ≡ (π̃A)(s)
i

a(n0) ≡ a(s)

b(n0) ≡ b(s) ,

HC : b2 =
1

3

(
f∗

mp

)2

a2(α+1)
(
E
ϕ

K
+E

ϕ

G
+E A

K +E A
G +EV

)
. (10.296)

As we will see in next section, an advantage of the compact formulation is that it directly
generalizes to non-Abelian groups, contrary to the non-compact one. However, before moving
on, let us introduce some relevant observables for the U (1) gauge sector.
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10.5.4 Observables

We group here observables whose mean value and variance are of interest,

U (1) matter: Re[ϕ̃] , I m[ϕ̃] , Re[π̃ϕ] , I m[π̃ϕ] , |ϕ̃| , |π̃ϕ| . (10.297)

U (1) gauge fields, non-compact: Ẽi =
1

a1−α (π̃A)i , B̃i =
1

2

∑

j k

ǫi j k (∆̃+
j Ãk − ∆̃

+
k Ã j ),

|~̃E |, | ~̃B| . (10.298)

U (1) gauge fields, compact: Ẽi =
1

a1−α (π̃A)i , B̃i =−
1

2δx̃4

∑

j k

ǫi j k (Re(Ṽ j k )),

|~̃E |, | ~̃B| . (10.299)

Note that, as presented in the U (1)-toolkit (10.3.2.2), other discretizations are possible for the
magnetic field.

10.5.4.1 Energy components

We collect here the different expressions for the energy components of the system,

U (1) matter: E
ϕ

K
=

1

a6
〈π̃2

ϕ〉 , E
ϕ

G
=

1

a2

∑

i

〈(D̃ A+
i ϕ̃)∗(D̃ A+

i ϕ̃)〉 . (10.300)

U (1) gauge fields, non-compact: E A
K =

1

2a4

3∑

i=1

〈(π̃A)2
i 〉 ,

E A
G =

1

2a4

∑

i , j<i

〈(∆̃+
i Ã j − ∆̃

+
i Ã j )2〉 . (10.301)

U (1) gauge fields, compact: E A
K =

1

2a4

3∑

i=1

〈(π̃A)2
i 〉 ,

E A
G =

2

a4δx̃4

∑

i , j<i

(1−Re(Ṽi j ))2 . (10.302)

Potential: EV = 〈Ṽ (ϕ̃, . . . )〉 , (10.303)

where ‘K’, ‘G’, and ‘V’ indicate kinetic, gradient, and potential energies.

10.5.4.2 Spectra

The last quantities of interest are the power spectra, which according to the discrete
expression of Eq. (10.66), we define as follow,
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P ϕ̃(k(ñ)) =
k3(ñ)

2π2

(
δx̃

N

)3

〈|Re(ϕ̃)(ñ)|2 +|I m(ϕ̃)(ñ)|2〉R(ñ) , (10.304)

P π̃ϕ
(k(ñ)) =

k3(ñ)

2π2

(
δx̃

N

)3

〈|Re(π̃ϕ)(ñ)|2 +|I m(π̃ϕ)(ñ)|2〉
R(ñ)

, (10.305)

P A

Ẽ
(k(ñ)) =

k3(ñ)

2π2

(
δx̃

N

)3

〈
∑

i

|Ẽi (ñ)|2〉
R(ñ)

, (10.306)

P A

B̃
(k(ñ)) =

k5(ñ)

2π2

(
δx̃

N

)3

〈
∑

i

|Ãi (ñ)|2〉
R(ñ)

, [non-compact] , (10.307)

P A

B̃
(k(ñ)) =

k3(ñ)

2π2

(
δx̃

N

)3

〈
∑

i

|B̃i (ñ)|2〉
R(ñ)

, [compact] , (10.308)

with the electric and magnetic fields defined as in equations (10.298) and (10.299). The extra
powers of k(ñ) in the non-compact magnetic field spectra come from the spatial derivative of
Ãi .

10.6 Lattice formulation of gauge fields, II: SU (N ) interactions

Let us now introduce a set of new Gauss-preserving evolution algorithms for a SU (N ) gauge
sector with self-consistent expansion of the universe. We will follow closely what has been
done for the compact U (1) formulation. As in the previous section, we explicitly present only a
velocity-Verlet algorithm; the corresponding position Verlet one is straightforwardly obtained
from there.

10.6.1 Continuum formulation and natural variables

We define the following program variables for the non-Abelian gauge fields and complex
doublet, as follows

Φ̃=
Φ

f∗
, B̃ a

µ =
B a
µ

ω∗
, (10.309)

mimicking the definition for the U(1) gauge sector, see Eq. (10.226). Again, our lattice
formulation will be based in these variables.

We start again by identifying an appropriate set of conjugate momenta. This is again achieved
by rewriting the continuum equations (10.39) and (10.41) appropriately. In the temporal
gauge, they are

(a3−α
Φ̃

′)′−a1+α ~̃D
2
Φ̃=−aα+3Ṽ,|Φ̃|

Φ̃

|Φ̃|
, (10.310)

∂0(a1−α(G̃0i )a)−aα−1(D̃ j )ab(G̃ j i )b = a1+α J̃ a
i . (10.311)
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10.6. Lattice formulation of gauge fields, II: SU (N ) interactions

From here, we define the conjugate momenta as

π̃Φ = a3−α
Φ̃

′ , (10.312)
(π̃B )a = a1−αG̃a

0i . (10.313)

The associated kinetic energies of the two field sectors become

EΦ

K =
1

a6
〈π̃†

Φ
π̃Φ〉 , (10.314)

E B
K =

1

2a4

∑

a,i

〈
(
(π̃B )a

i

)2〉 . (10.315)

Finally, we define the following kernels as

(π̃Φ)′ =K Φ[a,Φ̃,Ũi ] , (10.316)
(
(π̃B )a

i

)′ =K B [a,Φ̃,Ũi ]a
i , (10.317)

K Φ[a,Φ̃,Ũi ] ≡−aα+3Ṽ,|Φ̃|
Φ̃

|Φ̃|
+a1+α ~̃D

2

A Φ̃ , (10.318)

K B [a,Φ̃,Ũi ]a
i ≡ a1+α J̃ a

i +aα−1(D̃ j )ab(G̃ j i )b , (10.319)

which allows us to proceed with the discretization and time evolution of the EOM.

10.6.2 Lattice formulation of scalar-gauge dynamics

For non-Abelian gauge fields, we do not have the choice between compact and non-compact
variables: the compact formulation is required to maintain gauge invariance. As such, we
discretize the kernels as follows,

K Φ[a,Φ̃,Ũi ] =−aα+3Ṽ,|Φ̃|
Φ̃

|Φ̃|
+a1+α∑

i

D̃−
i D̃+

i Φ̃ , (10.320)

K B [a,Φ̃,Ũi ]i = a1+α
(
2gBQ(Φ)

B
I m[Φ̃†Ũi Φ̃]+ . . .

)
+

aα−1

δx̃3

∑

j

(
Ũi j −Ũ †

j ,− j
Ũi j − jŨ j ,− j

)
, (10.321)

where the second term in the SU (N ) kernel is a backward finite difference approximation of
the gauge covariant derivative D̃G̃i j . We also used matrix notation, for conciseness. Using our
SU (N )-toolkit (10.81), we see that the magnetic energy can be written as

E B
G =

2

gB a4δx̃4

∑

a,i , j<i

〈Tr(i TaŨi j )2〉 . (10.322)
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As in the compact U (1) case, we need to relate our conjugate momenta to the time derivative
of the link. We use the same relation in the continuum as before,

(Ũi )′ = ∂0e−iδx̃B̃i ≈−iδx̃(B̃i )′Ũi , (10.323)

which in terms of the conjugate momenta is

(Ũi )′ ≈−i
δx̃

a1−α (π̃B )i Ũi , (10.324)

with no sum intended. Note that in this case, this relation is valid only at leading order in δx

because of the non-commutativity of the fields.

Finally, a crucial quantity to monitor is the Gauss law, which must be obeyed at all times
during the simulation. Based on the continuum expression in Eq. (10.43), we discretize it in
matrix notation as

−
∑

i

∆
−
i (π̃B )i = 2gBQ(Φ̃)

B
I m[Φ̃†π̃Φ] . (10.325)

10.6.2.1 Staggered Leap-Frog

Let us now consider different evolution algorithms to solve the field dynamics in the compact
formulation, following closely the same script as for the U (1) gauge sector. We begin with a
straightforward generalization of the staggered leap-frog algorithm. It gives

Staggered Leapfrog
IC :

{
a,b−1/2,Φ̃, (π̃Φ)−1/2 ,Ũi , (π̃B )i ,−1/2

}
at η0. (10.326)

(π̃Φ)i ,+1/2 = (π̃Φ)−1/2 +δη̃K Φ[a,Φ̃,Ũi ]i , (10.327)
(π̃B )i ,+1/2 = (π̃B )i ,−1/2 +δη̃K B [a,Φ̃,Ũi ]i , (10.328)

b+1/2 = b−1/2 +δη̃K b[a,Φ̃, π̃Φ,Ũi , (π̃B )i ] , (10.329)
a+0 = a +δη̃b+1/2 , (10.330)

a+1/2 =
a+0 +a

2
, (10.331)

Φ̃+0 = Φ̃+δη̃
(π̃Φ)+1/2

a3−α
+1/2

, (10.332)

Ũi ,+0 = Ũi − iδη̃δx̃
(π̃B )i ,+1/2

a1−α
+1/2

Ũi , (10.333)

HC : b2 =
1

3

(
f∗

mp

)2

a2(α+1)
(
EΦ

K
+EΦ

G +E B
K
+E B

G +EV

)
. (10.334)

In particular, note that the scale factor kernel is also evaluated using semi-sums of the
different kinetic energies.
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10.6.2.2 Velocity Verlet

Mimicking the algorithm developed for the analogous U(1) gauge sector, we obtain

Velocity Verlet VV2
IC :

{
a,b,Φ̃, π̃Φ,Ũi , (π̃B )i

}
at η0. (10.335)

(π̃Φ)+1/2 = π̃Φ+
δη̃

2
K Φ[a,Φ̃,Ũi ] , (10.336)

(π̃B )i ,+1/2 = (π̃B )i +
δη̃

2
K B [a,Φ̃,Ũi ]i , (10.337)

b+1/2 = b +
δη̃

2
K b[a,Φ̃, π̃Φ,Ũi , (π̃B )i ] , (10.338)

a+0 = a +δη̃b+1/2 , (10.339)

a+1/2 =
a+0 +a

2
, (10.340)

Φ̃+0 = Φ̃+δη̃
(π̃Φ)+1/2

a3−α
+1/2

, (10.341)

Ũi ,+0 = Ũi − iδη̃δx̃
(π̃B )i ,+1/2

a1−α
+1/2

Ũi , (10.342)

(π̃Φ)+0 = (π̃Φ)+1/2 +
δη̃

2
K Φ[a+0,Φ̃+0,Ũi ,+0] , (10.343)

(π̃B )i ,+0 = (π̃B )i ,+1/2 +
δη̃

2
K B

i [a+0,Φ̃+0,Ũi ,+0]i , (10.344)

b+0 = b+1/2 +
δη̃

2
K b[a+0,Φ̃+0, (π̃Φ)+0 ,Ũi ,+0, (π̃B )i ,+0] , (10.345)

HC : b2 =
1

3

(
f∗

mp

)2

a2(α+1)
(
EΦ

K +EΦ

G +E B
K +E B

G +EV

)
. (10.346)

10.6.2.3 Velocity Verlet nth order

The higher-order integrators VV4, VV6, VV8 and VV10 are also obtained by a simple
modification of the drifts,
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π̃(0)
Φ

≡ (π̃Φ) (n,n0)

Φ̃
(0) ≡ Φ̃(n,n0)

Ũ (0)
i

≡ Ũi (n,n0)

(π̃B )(0)
i

≡ (π̃B )i (n,n0)

a(0) ≡ a(n0)

b(0) ≡ b(n0) ,





=⇒ (10.347)

=⇒





(π̃Φ)
(p)

1/2
= (π̃Φ)(p−1) + ωpδη̃

2
K Φ

[
a(p−1),Φ̃(p−1),Ũ

(p−1)

i

]

(π̃B )
(p)

i ,1/2
= (π̃B )

(p−1)

i
+ ωpδη̃

2
K B [a(p−1),Φ̃(p−1),Ũ

(p−1)

i
]i

b
(p)

1/2
= b(p−1) + ωpδη̃

2
K b[a(p−1),Φ̃(p−1), π̃Φ (p−1),Ũ

(p−1)

i
, (π̃B )

(p−1)

i
]

a(p) = a(p−1) +ωpδη̃b
(p)

1/2

Φ̃
(p) = Φ̃

(p−1) +δη̃
(π̃Φ)

(p)

1/2

a
(p) 3−α
1/2

Ũ
(p)

i
= Ũ

(p)

i
− iδη̃δx̃

(π̃B )
(p)

1/2

a
(p) 1−α
1/2

Ũ
(p)

i

(π̃Φ)(p) = (π̃Φ)
(p)

1/2
+ ωpδη̃

2
K Φ

[
a(p),Φ̃(p),Ũ

(p)

i

]

(π̃B )
(p)

i
= (π̃B )

(p)

i ,1/2
+ ωpδη̃

2
K B [a(p),Φ̃(p),Ũ

(p)

i
]i

b(p) = b
(p)

1/2
+ ωpδη̃

2
K b[a(p),Φ̃(p), π̃Φ (p),Ũ

(p)

i
, (π̃B )

(p)

i
] ,





p =1, ..., s

(10.348)

=⇒





(π̃Φ) (n,n0) ≡ (π̃Φ)(s)
i

Φ̃(n,n0) ≡ Φ̃
(s)

Ũi (n,n0) ≡ Ũ (s)
i

(π̃B )i (n,n0) ≡ (π̃B )(s)
i

a(n0) ≡ a(s)

b(n0) ≡ b(s) ,

(10.349)

HC : b2 =
1

3

(
f∗

mp

)2

a2(α+1)
(
EΦ

K +EΦ

G +E B
K +E B

G +EV

)
. (10.350)
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10.6.3 Observables

Finally, we write here several observables that are of interest. Let us start with the following
averages,

SU (2) matter: Φ̃
a , (π̃Φ)a , |Φ̃|, |π̃Φ| . (10.351)

SU (2) gauge fields: Ẽ a
i =

1

a1−α (π̃B )a
i , B̃a

i =
ǫi j k

2δx̃2
Tr[(i Ta)(Ũ j k −Ũk j )],

|Ẽ B | =
∑

a,i

(
Ẽ a

i

)2
, |B̃B | =

∑

a,i

(
B̃a

i

)2
. (10.352)

10.6.3.1 Energy components

The different energies associated to the SU (N ) gauge sector are

SU (2) matter: EΦ

K =
1

a6
〈π̃†

Φ
π̃Φ〉 , EΦ

G =
1

a2

∑

i

〈(D̃+
i Φ̃)∗(D̃+

i Φ̃)〉 . (10.353)

SU (2) gauge fields: E B
K =

1

2a4

∑

a,i

〈
(
(π̃B )a

i

)2〉 , E B
G =

2

gB a4δx̃4

∑

a,i , j<i

〈Tr(i TaŨi j )2〉 . (10.354)

Potential: EV = 〈Ṽ (Φ̃, . . . )〉 , (10.355)

where ‘K’, ‘G’ and ‘V’ refer to kinetic, gradient, and potential energy.

10.6.3.2 Spectra

We also define the associated power-spectra of each field sector as follows,

P
Φ̃

(k(ñ)) =
k3(ñ)

2π2

(
δx̃

N

)3

〈
∑
a

|Φ̃a(ñ)|2〉
R(ñ)

, (10.356)

P π̃Φ
(k(ñ)) =

k3(ñ)

2π2

(
δx̃

N

)3

〈
∑
a

| (π̃Φ)a (ñ)|2〉
R(ñ)

, (10.357)

P B

Ẽ
(k(ñ)) =

k3(ñ)

2π2

(
δx̃

N

)3

〈
∑

i ,a

|Ẽ a
i (ñ)|2〉

R(ñ)

, (10.358)

P B

B̃
(k(ñ)) =

k3(ñ)

2π2

(
δx̃

N

)3

〈
∑

i ,a

|B̃a
i (ñ)|2〉

R(ñ)

, (10.359)

with the electric and magnetic fields defined as in equations (10.352). We note that the
spectra are homogeneized over all directions in space and field-space.
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10.7 Initial conditions

We describe in this section how to set the initial conditions of the different fields, both in the
continuum and on the lattice. The initial condition of any field consists of a homogeneous
mode, over which a particular spectrum of fluctuations is added. In particular, let us denote
the initial time of our simulations as t∗, and add the subindex “*” to any quantity evaluated
at such time. The initial conditions of e.g. a scalar singlet can be written, in our notation, as

φ(x, t∗) ≡ φ̄∗+δφ∗(x) , (10.360)
φ̇(x, t∗) ≡ ¯̇φ∗+δφ̇∗(x) , (10.361)

where the bar denotes the homogeneous component of a given quantity. The numerical values
of φ̄∗ and ¯̇φ∗ depend on the details of the specific field model being simulated. For example, in
Section 10.8, we take the scalar field φ as the inflaton field sourcing the accelerated expansion
of the Universe, so in this context, φ̄∗ and ¯̇φ∗ can be conveniently chosen as the inflaton
amplitude and derivative at the end of inflation, i.e. when the inflaton oscillatory regime
starts.

In this section we focus on how to set the initial fluctuations of the different fields. We first
explain in Section 10.7.1 how to set a spectrum of scalar fluctuations on the lattice, so that
they recover the expected distribution of fluctuations in the continuum limit. After that, we
explain in Section 10.7.2 how to set the initial fluctuations of the charged fields and the
(Abelian and non-Abelian) gauge fields, putting a special emphasis on achieving preservation
of the Gauss constraint(s) up to machine precision.

10.7.1 Stochastic spectrum of scalar fluctuations

Let us consider the scalar field given in Eqs. (10.360)-(10.361). Given the homogeneous modes
φ̄∗ and ¯̇φ∗, we want to set an appropriate set of classical fluctuations δφ∗(x) and δφ̇∗(x) at
time t = t∗, in order to mimic quantum vacuum fluctuations as well as possible. In the
continuum, we can write

〈
δφ2

〉
=

1

2π2

∫
d logk k3Pδφ(k) ,

〈
δφkδφk′

〉
≡ (2π)3Pδφ(k)δ(k−k′) , (10.362)

where 〈· · · 〉 represents an ensemble average, and Pδφ(k) is the power spectrum. Although these
quantities must obviously be evaluated at the time t = t∗, here we have dropped the “∗" to
simplify notation, as we will do in the remainder of this section. For initial conditions
representing quantum vacuum fluctuations, we choose

Pδφ(k) ≡
1

2ωk,φ
≡

1

2
√

k2 +m2
φ

, m2
φ ≡

∂2V

∂φ2
(φ= φ̄) , (10.363)
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where ωk,φ ≡
√

k2 +m2
φ
is the frequency of the mode, and mφ is the effective mass of the field,

evaluated in terms of the homogeneous field components.

On the lattice, we want to set the fluctuations of the scalar field so that expression (10.362) is
recovered in the continuum limit. In the discrete we substitute the stochastic expectation
value by a volume average as

〈
δφ2

〉
V =

δx3

V

∑
n

δφ2(n) =
1

N 6

∑

ñ

∣∣δφ(ñ)
∣∣2

, (10.364)

where we have used Eq. (10.59). Decomposing the summation into radial and angular parts,
we obtain

〈
δφ2

〉
V =

1

N 6

∑

|ñ|

∑

ñ′∈R(ñ)

∣∣δφ(ñ)
∣∣2 =

4π

N 6

∑

|ñ|
|ñ|2

〈∣∣δφ(ñ)
∣∣2

〉
R(η̃)

, (10.365)

where 〈(· · · )〉R(ñ) ≡ 1
4π|ñ|2

∑
ñ′∈R(ñ)(· · · ) is an angular average over the spherical shell of radius

ñ′ ∈ [|ñ|, |ñ|+∆ñ, with ∆ñ a given radial binning. This leads to

〈
δφ2

〉
V =

4π

k3
IR

N 6

∑

|ñ|
∆ logk(ñ) k3(ñ)

〈∣∣δφ(ñ)
∣∣2

〉
R(ñ)

, (10.366)

=
1

2π2

∑

|ñ|
∆ logk(ñ) k3(ñ)

L3

N 6

〈∣∣δφ(ñ)
∣∣2

〉
R(ñ)

, (10.367)

where ∆ logk(ñ) ≡ kIR

k(ñ)
, k(ñ) ≡ kIRñ and kIR ≡ 2π

L
. In order to mimic on the lattice the

continuum stochastic initial condition, we impose

〈
δφ2

〉
V =

1

2π2

∑

|ñ|
∆ logk(ñ) k3(ñ)Pδφ(k) , (10.368)

from where we identify

〈∣∣δφ(ñ)
∣∣2

〉
R(ñ)

=
(

N

δx

)3

Pδφ(k) . (10.369)

The initial variance of the Fourier modes on the lattice, expressed in the program variables of
Eq. (10.147), must be taken therefore as

∣∣δφ̃(ñ)
∣∣2 ≡

(
ω∗
f∗

)2 (
N

δx̃

)3

P̃δφ(k̃(ñ)) , (10.370)

where P̃δφ ≡ω∗Pδφ is the (dimensionless) power spectrum in program units. With this choice,
we reproduce the continuum correctly,

〈
δφ2

〉
V =

1

2π2

∑

|ñ|
∆ logk(ñ) k3(ñ)Pδφ(k(ñ)) −→

1

2π2

∫
d logk k3Pδφ(k) . (10.371)
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The key point of the identification made in Eq. (10.369), is that
〈
δφ2

〉
V in Eq. (10.371) does

not depend explicitly on the volume V = (N ·δx)3, as required in order to correctly reproduce
the continuum result. For quantum fluctuations with distribution (10.363), we shall write

∣∣δφ̃(ñ)
∣∣2 ≡

(
ω∗
f∗

)2 (
N

δx̃

)3 1

2
√

k̃2(ñ)+m̃2
φ

, m̃2
φ ≡

∂2Ṽ

∂φ̃2
(φ̃= ˜̄φ) , (10.372)

where k̃ ≡ k/ω∗ and m̃φ ≡ mφ/ω∗ are the momentum and effective mass in program variables.

Note that this expression gives an account of the appropriate radial distribution of the
amplitude of the fluctuations on the lattice, but does not describe how the amplitude changes
point by point. Moreover, we also need to consider the fluctuations of the time-derivative of
the field. In this regard, let us note that the field modes have a time-dependence as
δφk ∝ (1/a)e±iωk t , with a the scale factor. The frequency ωk may depend on time, but we
assume that the initial conditions are set in an adiabatic regime, ω̇k /ω2

k
≪ 1. Taking the

time-derivative of the field mode, we get δφ̇k = (±iωk −H)δφk. Choosing one sign in this
expression is equivalent to choosing a preferred direction in position space, so although this
effect should be irrelevant in the dynamics once the non-linearities of the simulated process
kick in, we follow the prescription of Latticeeasy to define isotropic initial conditions [177].
In particular, at each lattice point in momentum space, we add to the field amplitude in
program units a sum of left-moving and right-moving waves as follows,

δφ̃(ñ) =
1
p

2
(δφ̃1(ñ)e iθ1(ñ) +δφ̃2(ñ)e iθ2(ñ)) , (10.373)

δφ̃′(ñ) =
1
p

2
i ω̃k (δφ̃1(ñ)e iθ1(ñ) −δφ̃2(ñ)e iθ2(ñ))− H̃δφ̃(ñ) , (10.374)

where ω̃k ≡
√

k̃2(ñ)+m̃2
φ
and H̃ ≡ H/ω∗ are the frequency of the mode and the Hubble

parameter in program units. In this expression, θ1(ñ) and θ2(ñ) are two random phases which
vary uniformly in the range [0,2π) from point to point, and δφ̃1(ñ) and δφ̃2(ñ) are two
amplitudes that also vary from point to point, according to a Gaussian distribution with the
corresponding variance to reproduce (10.372). Note that Latticeeasy imposes an additional
constraint δφ̃1(ñ) = δφ̃2(ñ) at each lattice site, which could pose problems in non-gaussianity
studies (see the discussion in [179]). This is in principle not necessary for real scalar singlets,
but the situation is different for charged scalar fields under a gauge group, see the discussion
below.

10.7.2 Charged scalars and gauge fields

Let us now consider the initial conditions for the gauge fields, as well as of the charged fields
coupled to them. In this work we are considering scalar fields charged under U (1) and
SU (N )×U (1) gauge groups, which we denote as ϕ and Φ respectively. We recall that these
fields are composed of multiple real components: 2 in the case of ϕ, and 2N in the case of Φ.
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As the potential only depends on the absolute value of these fields, we can set the same initial
amplitude to the homogeneous modes of all their components. In particular, we set for each
real component ϕn of the charged field (n = 0,1, . . .2N −1),

ϕn(x, t∗) ≡
|ϕ∗|
2N /2

+δϕ∗(x) , (10.375)

ϕ̇n(x, t∗) ≡
|ϕ̇∗|
2N /2

+δϕ̇∗(x) , (10.376)

where |ϕ∗| and |ϕ̇∗| are the initial homogeneous components of the complex field norm and its
time derivative (which must be chosen for each particular model), and δϕ∗(x) and δϕ̇∗(x) are
the corresponding initial fluctuations spectra. For simplicity, we will drop the “∗” notation
from now on. Mimicking the functional form of the scalar singlet fluctuations (10.373)-(10.374),
we impose to the charged scalar fields on the lattice the following fluctuations,

δϕ̃n(ñ) =
1
p

2
(δϕ̃n1(ñ)e iθn1(ñ) +δϕ̃n2(ñ)e iθn2(ñ)) , (10.377)

δϕ̃′
n(ñ) =

1
p

2
i ω̃k,n(δϕ̃n1(ñ)e iθn1(ñ) −δϕ̃n2(ñ)e iθn2(ñ))− H̃δϕ̃n(ñ) , (10.378)

where ω̃k,n ≡ωk,n/ω∗ =
√

k̃2 + (∂2Ṽ /∂ϕ̃2
n) is the initial effective frequency of the field mode of

each component in program units. Therefore, for a charged field with 2N real components,
there are 8N functions to be fixed, ( fn1, fn2, θn1, θn2) (with n = 0,1, . . .2N −1). In principle, all
of these functions should change from lattice point to lattice point according to the probability
distributions described above, i.e. Eq. (10.372) for fn1 and fn2, and uniformly in the range
[0,2π) for θn1 and θn2. However, as we shall see, we will need to impose certain constraints to
these functions in order to preserve the Gauss constraints initially.

Let us now consider the fluctuations of the Abelian and non-Abelian gauge fields. We will
consider first the fluctuations in the continuum, and generalize to the discretized case later on.
For the gauge fields we shall impose

Ai (x, t∗) ≡ 0 , (10.379)
B a

i (x, t∗) ≡ 0 , (10.380)
Ȧi (x, t∗) ≡ δȦi∗(x) , (10.381)
Ḃ a

i (x, t∗) ≡ δḂ a
i∗(x) , (10.382)

i.e. we impose the amplitude of the gauge fields to be exactly zero at all lattice points, while
we set an initial spectrum of fluctuations to their time-derivatives (but no homogeneous
components). Because of this, the magnetic energy is exactly zero initially, while there will be
some amount of electric energy, due to the fluctuations of the time-derivatives. The
fluctuations of the charged scalars and gauge fields must be imposed in such a way that the
Gauss constraints are initially preserved. If this is achieved, then the dynamical evolution of
the field EOM will guarantee that these constraints are preserved at later times. The Gauss
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constraints for the SU (2)×U (1) gauge-invariant theory considered in this work are given in
(10.42)-(10.43). These are

∂i F0i (x) = J A
0 (x) , J A

0 (x) ≡ g AQ
(ϕ)

A
I m[ϕ∗ϕ′]+ g AQ(Φ)

A
I m[Φ†

Φ
′] , (10.383)

(Di )ab(G0i )b(x) = J a
0 (x) , J a

0 (x) ≡ 2gBQB I m[Φ†TaΦ
′] . (10.384)

where we have set the initial scale factor to a = 1 for simplicity. By Fourier transforming both
sides of the equation, we get

k i A′
i (k) = J A

0 (k) , k i B a′

i (k) = J a
0 (k) . (10.385)

where J A
0 (k) and J a

0 (k) are the Fourier transforms of each current. Finally, by multiplying each
side by k i , we get

A′
i (k) = i

ki

k2
J A

0 (k) , B a′

i (k) = i
ki

k2
J a

0 (k) . (10.386)

The complex scalar fields fluctuations δϕ∗(x) and δϕ̇∗(x) are given by Eqs. (10.377)-(10.378)
(we are still working in the continuum, so all involved functions must be interpreted as
functions of the continuous spatial coordinate x, instead of the lattice point n). They generate
fluctuations on the currents J A

0 (x), and J a
0 (x). Therefore, we can impose fluctuations to the

gauge fields in momentum space via Eqs. (10.386), and then transform back to position space
to obtain δȦi∗(x), δḂ a

i∗(x).

The above procedure should, in principle, initially preserve the Gauss constraints. However,
we must guarantee that the imposition of Eq. (10.386) does not add a spurious non-zero
homogeneous mode to the gauge fields. We must then check that J A

0 (k = 0) = J a
0 (k = 0) = 0 (note

that if this is not implicitly assumed in (10.386), we would be dividing the right hand side by
zero). For concreteness, let us consider the case of a complex doublet Φ charged under a
U (1)×SU (2) gauge group (the case of the U (1)-charged field ϕ is just a particular case, as we
explain below). The homogeneous modes of the Abelian and non-Abelian currents (10.383)
and (10.384) can be written in terms of the complex field fluctuations as

J A
0 (k = 0) =

∫
d 3xJ A

0 (x) ∝
∫

d 3kRe[ϕ∗
0 (k)ϕ′

1(k)−ϕ′
0(k)ϕ∗

1 (k)+ϕ∗
2 (k)ϕ′

3(k)−ϕ′
2(k)ϕ∗

3 (k)] = 0 ,

J 1
0 (k = 0) =

∫
d 3xJ 1

0 (x) ∝
∫

d 3kRe[ϕ∗
3 (k)ϕ′

0(k)−ϕ′
3(k)ϕ∗

0 (k)+ϕ∗
1 (k)ϕ′

2(k)−ϕ′
1(k)ϕ∗

2 (k)] = 0 ,

J 2
0 (k = 0) =

∫
d 3xJ 2

0 (x) ∝
∫

d 3kRe[ϕ∗
0 (k)ϕ′

2(k)−ϕ′
0(k)ϕ∗

2 (k)+ϕ∗
1 (k)ϕ′

3(k)−ϕ′
1(k)ϕ∗

3 (k)] = 0 ,

J 3
0 (k = 0) =

∫
d 3xJ 3

0 (x) ∝
∫

d 3kRe[ϕ∗
1 (k)ϕ′

0(k)−ϕ′
1(k)ϕ∗

0 (k)+ϕ∗
2 (k)ϕ′

3(k)−ϕ′
2(k)ϕ∗

3 (k)] = 0 .

One way to guarantee these conditions are respected is to set all the integrands to zero. By
solving the corresponding system of linear equations, we get the following three conditions,

Re[ϕ′
m(k)ϕ∗

0 (k)−ϕ′
0(k)ϕ∗

m(k)] = 0 , m = 1,2,3 , (10.387)
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which mix the different real components of the doublet. This condition is in general not
fulfilled when all the functions fn1, fn2, θn1 and θn2 in the scalar fluctuations (10.373) and
(10.374) are unconstrained. However, by substituting these expressions into Eq. (10.387), we
can prove that the above condition is satisfied when the following relations hold,

δϕn1(k) = δϕn2(k) , n = 0,1,2,3 , (10.388)
θm2(k) = θ02(k)+θm1(k)−θ01(k) , m = 1,2,3 . (10.389)

The first relation imposes the same amplitude to the left and right waves of each real scalar
component’s fluctuations. The second line consists in a set of three different constraints that
must be imposed to the eight phases appearing in the four components of the doublet.
Therefore, in the case of the SU (2)-charged doublet, one can simply generate randomly δϕ01,
δϕ02, δϕ10, δϕ20, δϕ30 θ01, θ02, θ11, θ21, and θ31 according to the corresponding probability
distributions, and then impose δϕ11, δϕ21, δϕ31, θ12, θ22 and θ32 via Eqs. (10.388)-(10.389).
This procedure guarantees that the homogeneous modes of the current is zero initially, and
hence that the Gauss laws are preserved8.

Let us remark that a similar procedure can be applied to the simpler case of a U (1)-charged
field ϕ. In this case there are only two real scalar components, δϕ0(k) and δϕ1(k), so there are
only three constraints to be fulfilled: δϕ01(k) = δϕ02(k), δϕ11(k) = δϕ12(k), and
θ12(k) = θ02(k)+θ11(k)−θ01(k). The procedure to set the initial fluctuations is therefore
analogous to the SU (2)×U (1) case.

Finally, let us consider the translation of this procedure developed in the continuum to the
lattice. For charged scalar fields, the only difference is that the different functions δϕab and
θab are only defined in each lattice point, instead of being continuum functions. Therefore,
some of these parameters must be randomly generated at each lattice site ñ according to the
corresponding probability distribution, while the others must be imposed at each lattice site
via the constraint equations (10.388)-(10.389). On the other hand, for gauge fields we must
start from the discrete Gauss equations. As we are not imposing fluctuations to the amplitude
of the gauge fields, the discrete Gauss constraints (10.243) and (10.325) simply become, in
position space and in physical variables,

∑

i

∆
−
i ∆

+
0 Ai (n) = J A

0 (n) ,
∑

i

∆
−
i ∆

+
0 B a

i (n) = J a
0 (n) , (a = 1,2,3) . (10.390)

8Another possibility to guarantee constraints (10.387) would be to just impose the relations, ϕ′
m (k) =

ϕ′
0(k)ϕ∗

m (k)/ϕ∗
0 (k) directly for m = 1,2,3, where the functions in the r hs of this expression are to be generated

according to the probability distributions (10.373) and (10.374), without imposing the constraints (10.388) and
(10.389). However, using this procedure, the fluctuations generated for the 0th-component have typically very
different amplitudes than for the other components, of one or more orders of magnitude of difference. Moreover,
the spectra of the 0th-component depends very much on the particular random realization of the fields. This
makes us prefer the procedure described in the bulk text.
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By taking a discrete Fourier transform in both sides of the equation, we get

∆
+
0 Ai (ñ) = i

k−
Lat,i

(k−
Lat,i

)2
J A

0 (ñ) , ∆
+
0 B a

i (ñ) = i
k−

Lat,i

(k−
Lat,i

)2
J a

0 (ñ) , (a = 1,2,3) . (10.391)

Note that, as we are taking the backward spatial derivative ∆
−
i
in Eq. (10.390), then the

corresponding complex lattice momentum k−
Lat,i

must appear in Eq. (10.391) after Fourier
transforming, which is defined in Eq. (10.75). Therefore, in order to set the fluctuations of the
gauge field derivatives on the lattice, we first add the fluctuations to the real components to
compute the corresponding currents, then transform the currents to momentum space and
impose expressions (10.391) to the gauge fields, and finally transform the gauge fields back to
position space.

10.8 A working example: the SU (2)×U (1) gauge invariant infla-
ton

In order to illustrate some of the techniques and concepts explained previously, we study in
this section the dynamics of a specific scalar-gauge field theory using lattice simulations. In
particular, we are going to consider an observationally viable single-field inflationary model,
with monomial potential energy V (φ) ∝φp around the minimum, and a ’flattening’ at large
field amplitudes. We will study the post-inflationary stage of preheating, which is triggered by
the inflaton oscillations around the minimun of its potential. As an example of the
gauge-invariant lattice techniques presented above, we will couple the inflaton to both scalar
and gauge fields (which we denote indistinctly as daughter fields from now on), and study the
transfer of energy from the inflaton to these fields.

The structure of this section is as follows. First, we present in Section 10.8.1 the details of how
inflation and preheating proceed in the model under consideration. In particular, we will
review the two resonant phenomena that govern the post-inflationary dynamics: parametric
resonance of the daughter field(s), and self-resonance of the inflaton. After that, we present
the results of our lattice simulations. In Section 10.8.2 we consider the case of a U (1) gauge
invariant inflaton, coupled to an Abelian gauge field through a covariant derivative. In Section
10.8.3 we consider the case of a SU (2)×U (1) gauge invariant inflaton, coupled simultaneously
to a SU (2)×U (1) gauge sector (formed by Abelian and non-Abelian gauge fields) and a
massless scalar singlet.

10.8.1 Model details

Let us consider a scalar field φ with the following potential energy,

V (φ) =
Λ

4

p
tanhp

( |φ|
M

)
, (10.392)
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where Λ and M have dimensions of energy, and p is a positive number. The particular form of
this potential is based on α-attractor models of inflation, see Ref. [422]. The field amplitude is
introduced as an absolute value, so the potential has a minimum at φ= 0 independently of the
choice of p. Similarly, the potential develops a plateau V (φ) →Λ

4/p at large field amplitudes
φ≫ M . We take φ as the inflaton field responsible of the early inflationary stage of the
Universe, and consider in detail the following stage of preheating. Although the numerical
values of the model parameters (Λ, M , p) are in principle independent, they are in practice
constrained by the observed amplitude of the scalar perturbations in the CMB,
i.e. Λ=Λ(M , N

CMB
, p), with N

CMB
= 50−60 the number of e-folds between the end of inflation

and the horizon crossing of the relevant perturbations.

The potential (10.392) can be expanded around the minimum as the following monomial
function,

V (φ) =
1

p
λµ4−p |φ|p , λµ4−p ≡Λ

4M−p , (10.393)

where λ is dimensionless and µ has dimensions of energy. The product of parameters λµ4−p in
Eq. (10.393) is fixed in terms of (Λ, M , p) to match the exact potential (10.392) in the limit
φ≪ M . The field value that separates the monomial and plateau regimes in the exact
potential can be estimated by computing its inflection point, i.e. the amplitude at which
V

,φφ(φi) = 0. It is given by

φi = Marcsinh

(√
p −1

2

)
. (10.394)

The monomial potential (10.393) is a very good approximation to the exact potential (10.392)
for field amplitudes φ≪ M . In particular, in the limit M →∞, the inflaton potential (10.392)
recovers the monomial function (10.393) exactly, recovering this way the well-known chaotic
inflation scenario.

Inflation takes place during the slow-roll decay of the inflaton, which starts at large field
amplitudes and proceeds towards the minimum of the potential. The inflaton acquires a
sizable effective mass approximately when the slow-roll conditions break down, and as a
consequence, starts oscillating around the minimum. The field amplitude φ∗ when the
slow-roll parameter ǫV ≡ m2

pl
V 2

,φ/(2V 2) obeys ǫV (φ∗) = 1 is

φ∗ ≡
M

2
arcsinh

(p
2pmpl

M

)
−−−−→
M→∞

pmplp
2

, (10.395)

where we have also written the corresponding inflaton amplitude in the limit M →∞. In this
model, inflation happens for field amplitudes φ&φ∗, while the oscillatory regime which follows
takes place for φ.φ∗. Therefore, the field amplitude φ=φ∗ constitutes a natural initial
condition for our lattice simulations. If M &mp , we have that φ∗ ≪φi, so the inflaton is
already in the positive-curvature region of the potential when the slow-roll regime breaks, and
does not enter into the tachyonic region during the subsequent inflaton oscillations. In that
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case, we can safely take the monomial potential (10.393) as a very good approximation to the
exact potential (10.392) during preheating. On the other hand, if M .mp we have that
φ∗ ≫φi, so the inflaton does enter into the tachyonic region during at least the first
oscillations. Here we consider only the first scenario, so our results do not depend very much
on the details of the transition between the monomial function and the plateau. In particular,
we will fix the value M = 10mp on the lattice simulations, whose results we present below.

The equation of motion of the homogeneous component of the inflaton in the limit M →∞ is

φ̈+3Hφ̇+Ω
2(φ)φ= 0 , Ω(φ) ≡

p
λµ

4−p

2 |φ|
p−2

2 , (10.396)

which corresponds to a harmonic oscillator with time-dependent effective frequency Ω(φ) and
friction term ∝ 3Hφ̇, induced by the expansion of the universe. The oscillation frequency is
constant for p = 2, but depends explicitly on the field amplitude (and hence on time) for p 6= 2.
This equation can be solved together with the Friedmann equation (10.52) in the homogeneous
approximation, with initial conditions deep in slow-roll. During inflation we have φ≫φ∗, or
equivalently, H(φ) ≫Ω(φ). Eventually, when the field amplitude becomes approximately
φ≃φ∗, the condition H(φ) =Ω(φ) holds, and the inflaton starts oscillating. The solutions for
the inflaton amplitude and scale factor can be approximated during the oscillatory regime
as [423]

φ(t ) ≃ Φ(t )F (t ) , Φ(t ) =Φ∗

(
t

t∗

)−2/p

, (10.397)

a(t ) ∝ a∗

(
1+

3p

2+p
H∗t

) 2+p

3p

∼ t
2+p

3p . (10.398)

In Eq. (10.397), Φ(t ) is a decaying amplitude that starts at a certain time t∗ from some initial
amplitude Φ∗ ≃φ∗, while F (t ) is an oscillatory function that is periodic for p = 2 and
non-periodic for p 6= 2. The quantities a∗ and H∗ are the scale factor and Hubble parameter at
time t = t∗. Note that this field configuration gives rise, for times H∗t ≫ 1, to a
matter/radiation-dominated equation of state for p = 2,4 respectively.

In order to do lattice simulations of this system, we have to appropriately fix the program
variables ( f∗, α, ω∗), defined in Eq. (10.147). First, we want to use variables that guarantee
that typical numbers of certain physical quantities (such as field amplitudes or range of excited
momenta) are of order unity. And second, as the evolution algorithms discussed above assume
a constant time step, we want to use a program time variable that guarantees an approximately
constant oscillation frequency. This way, each oscillation period is well resolved independently
of how long the simulation time is. In this regard, we get from Eqs. (10.397) and (10.398) that
the inflaton oscillation frequency (defined in Eq. 10.396) scales with the scale factor as

Ω(φ) ∼ω∗

(
t

t∗

)4/p−2

∼
(

a

a∗

) −3(p−2)

(p+2)

, ω∗ ≡
p
λµ

4−p

2 φ
p−2

2
∗ , (10.399)
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where ω∗ is the oscillation frequency at the onset of oscillations. Therefore, a convenient
choice of program variables is

α= 3
p −2

p +2
, f∗ ≡φ∗ , ω∗ ≡Λ

2M− p

2 φ
p−2

2
∗ . (10.400)

Note that for this choice of units, program time corresponds to cosmic/conformal time for
p = 2,4 respectively, up to a dimensionful constant factor. The corresponding program
potential Ṽ (φ̃) of our model, defined in Eq. (10.148), can be then written as

Ṽ (φ̃) ≡
1

f 2
∗ω

2
∗

V (φ̃)

=
1

p

(
M

φ∗

)p

tanhp

(
φ∗|φ̃|

M

)
, (10.401)

and its first and second derivatives are

∂Ṽ

∂φ̃
= 2

(
M

φ∗

)p−1 tanhp (φ∗|φ̃|/M)

sinh(2φ∗|φ̃|/M)
sgn(φ̃) , (10.402)

∂2Ṽ

∂φ̃2
= 4

(
M

φ∗

)p−2 (
p −cosh(2φ∗|φ̃|/M)

) tanhp (φ∗|φ̃|/M)

sinh2(2φ∗|φ̃|/M)
, (10.403)

where sgn(φ̃) is the sign function.

10.8.1.1 Preheating

Let us now review how preheating proceeds in this model. The post-inflationary dynamics of
an inflaton with potential (10.392) has been studied with lattice simulations in the past: in the
absence of inflaton interactions to other species in [347,368], with interactions to a second
scalar field with non-canonical kinetic terms in [370], and more recently, with quadratic
interactions to a daughter field in [371]. In all of these studies, the fields involved were real
scalars. Here, in order to illustrate the gauge-invariant lattice techniques introduced in the
previous sections, we couple for the first time the inflaton field to a gauge structure.

Let us start by considering a daughter massless scalar field χ, coupled to the inflaton via a
quadratic interaction. The potential of such a theory can be written as

V (φ,χ) =
1

p
λµ4−p |φ|p +

1

2
g 2φ2χ2 , (10.404)

where g is a dimensionless coupling constant, and we have taken the limit M →∞ in the
inflaton potential. When inflation ends at the amplitude φ=φ∗, the energy budget of the
Universe is dominated by the homogeneous component of the inflaton. Therefore, the
evolution of the inflaton amplitude and scale factor can be described approximately by
Eqs. (10.397)-(10.398) during the first inflaton oscillations, and it is natural to also use the
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program variables defined in (10.400) in this context. With this choice, the program potential
(again in the limit M →∞) is

Ṽ (φ̃, χ̃) ≡
1

f 2
∗ω

2
∗

V (φ̃, χ̃)

=
1

p
|φ̃|p +

1

2
q∗φ̃

2χ̃2 , (10.405)

where the resonance parameter q∗ is defined as the following dimensionless ratio,

q∗ ≡
g 2φ2

∗
ω2
∗

. (10.406)

The first and second derivatives of the program potential with respect to the two fields are

∂Ṽ

∂φ̃
= |φ̃|p−2φ̃+q∗χ̃

2φ̃ ,
∂Ṽ

∂χ̃
= q∗φ̃

2χ̃ , (10.407)

∂2Ṽ

∂φ̃2
= (p −1)|φ̃|p−2 +q∗χ̃

2 ,
∂2Ṽ

∂χ̃2
= q∗φ̃

2 . (10.408)

During the first stages of preheating, the linearized fluctuations of both fields have
time-dependent effective masses, induced by the oscillations of the inflaton homogeneous mode.
These masses vary non-adiabatically each time the inflaton crosses zero, which triggers an
exponential growth of the amplitude of the field modes for certain bands of momenta. More
specifically, the post-inflationary dynamics is governed by the interplay of two different
resonant phenomena, which may or may not be present for certain choices of model
parameters. These are:

• Self-resonance of the inflaton: The inflaton has a time-dependent effective mass
m2

φ ∝|φ|p−2 for p 6= 2, see Eq. (10.404). In these cases, the (conformally rescaled)
inflaton fluctuations can grow exponentially during this regime as |δφ̃k |2 ∝ e2νk z , where
Re(νk ) > 0 for certain momenta bands, and νk ≡ νk (k; p) the corresponding so-called
Floquet index. These bands are always narrow for all reasonable values of p, ∆k/k̄ . 0.1

(with k̄ the average momentum inside the band), and the maximum Floquet index
within each band is maximum Re(νk ). 0.035.

• Parametric resonance of the daughter field: Similarly, the daughter field also has
a time-dependent mass m2 ∝ g 2χ2 for any of choice of p as long as the quadratic
interaction is present, see Eq. (10.404). Due to this, the (conformally rescaled) daughter
field fluctuations can also grow exponentially as |δχ̃k |2 ∝ e2µk z , with Re(µk ) > 0 for
certain ranges of momenta, and µk ≡µk (k, q∗; p) the corresponding Floquet index. The
key parameter signaling the strength of the resonance is the effective resonance
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parameter qres, which is defined as

qres ≡ q∗a
6(p−4)

p+2 , (10.409)

and evolves with the expansion of the universe. If qres & 1, the parametric resonance is
broad: the width of the resonance bands for all values of p is ∆k/k̄ ∼ 1, and the
maximum Floquet index within those bands is typically Re(µk ) ∼ 0.1−0.2. In this case,
the maximum momenta excited by the main resonance band scales as k ∼ q1/4

res ω∗,
modulo some multiplying scale factor term. On the other hand, if qres ≪ 1, the width of
the bands is very small ∆k/k̄ ≪ 1, and we say that the resonance is narrow. This second
effect cannot be typically captured on the lattice due to lack of resolution. Note that qres

changes with time, so the type of resonance may change during preheating: it decreases
with time for p < 4, grows for p > 4, and remains constant for p = 4. Therefore, the type
of parametric resonance (either broad or narrow) can change as the Universe expands.

If broad parametric resonance of the daughter field is present (i.e. if qres > 1), it is almost
always a stronger effect than the inflaton self-resonance. However, parametric resonance
eventually becomes narrow for p < 4, even if it was broad initially. This contrasts with inflaton
self-resonance, which is always present independently of the value of p, as long as p 6= 2. The
different behaviour of these phenomena for different model parameters is key to understand
how energy distributes between the different field sectors during preheating, as well as the
evolution of the post-inflationary evolution of the equation of state.

Let us now consider a scenario in which the inflaton (in this case a complex doublet Φ) is
coupled to a SU (2)×U (1) gauge sector via a gauge-invariant covariant derivative. Fortunately,
the simpler scalar theory described above constitutes an excellent proxy for this more complex
model, as the dominant interaction term generated by the covariant derivative is also quadratic.
In order to see this, let us consider the covariant derivative term in action (10.8), which
contains the interaction between the inflaton and the gauge fields. It can be expanded as

(~DµΦ)†(~Dµ
Φ) = (∂µΦ)†∂µΦ+

1

4
Q2

A g 2
A|Φ|2|~A|2+

1

4
Q2

B g 2
B |Φ|2

∑
a

|~B a |2+Q A g AQB gB

∑
a

~A·~B a(Φ†TaΦ) . . . ,

(10.410)
where we have ignored terms of the type ∼ (∂µΦ)Φ, which are subdominant during the early
linear regime. The first term in Eq. (10.410) gives rise to the usual Laplacian in the field
equations. The second and third terms constitute quadratic interactions between the inflaton
and the Abelian and non-Abelian gauge fields respectively. These are analogous to the
quadratic interaction of Eq. (10.404) between the inflaton and a secondary scalar field, with
the identification g →Q A g A/2 and g →QB gB /2 in each case. Mimicking the notation of
Eq. (10.406), it is then natural to define the resonance parameters of the Abelian and
non-Abelian gauge fields as

qA∗ ≡
Q2

A g 2
A|Φ∗|2

4ω2
∗

, qB∗ ≡
Q2

B g 2
B |Φ∗|2

4ω2
∗

, (10.411)
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where |Φ∗| ≡φ∗ is the amplitude of the inflaton norm at the end of inflation, which we set
equal to Eq. (10.395). Therefore, we can use the scalar theory as a proxy to study the
equivalent U (1) or SU (2) gauge-invariant theories, at least during the initial linear regime. In
particular, in the gauge scenario the inflaton can also develop fluctuations via self-resonance,
while the gauge fields can also get excited via parametric resonance. However, non-linearities
become relevant at later times, so important differences between the scalar and gauge theories
may appear later on. Finally, the fourth term in Eq. (10.410) appears when the inflaton is
coupled to a full SU (2)×U (1) gauge sector. One can prove that the effect of such term is to
couple the EOM of the Abelian and non-Abelian gauge fields, so that they experience
parametric resonance with a common resonance parameter qeff∗ = qA∗+qB∗. The details of the
parametric resonance process in the presence of Abelian and non-Abelian gauge fields, as well
as the relevance of that term, will be discussed in more detail in an upcoming work [424]. This
goes beyond the objective of this manuscript, which is mainly to illustrate lattice
gauge-invariant techniques in a specific physics model.

10.8.2 Lattice simulations: U (1) gauge interactions

Simulation p M/mp Λ
4 q∗ N k̃IR δt̃

U(1) 2 10 1.8 ·1065 4 ·104 128 4 5 ·10−3

U(1) 4 10 4.3 ·1065 102 128 0.6 10−2

U(1) 6 10 6.8 ·1065 1 128 0.15 7 ·10−4

SU(2) × U(1) + χ 2 10 1.8 ·1065 4 ·104 128 4 3 ·10−4

SU(2) × U(1) + χ 4 10 4.3 ·1065 102 128 0.6 10−2

Table 10.2 – Benchmark model and lattice parameters used in the U (1) and SU (2)×U (1)+χ

gauge simulations

We now proceed to discuss the results from our lattice simulations. We start by considering
the post-inflationary dynamics of a complex inflaton field ϕ≡ 1p

2
(ϕ0 + iϕ1) with potential

energy (10.392) [where we must substitute φ→ϕ], coupled to an Abelian gauge boson Aµ via a
gauge-invariant covariant derivative. The model and lattice parameters considered in the
simulations are provided in Table 10.2. We have chosen a set of three representative power-law
coefficients, p = 2,4,6. In each case, the resonance parameter qA∗ is fixed to guarantee broad
parametric resonances at the onset of the inflaton oscillatory regime. We have fixed the value
M = 10mp as a benchmark, which guarantees that the inflationary slow-roll condition breaks
down in the positive-curvature region of the potential. As described above, the initial
exponential growth of the gauge field modes during broad parametric resonance takes place
mainly within an infrared band of width p . p∗ ≡ q1/4

A∗ω∗ (modulo a multiplying scale factor
term). However, when the energy transferred to the gauge fields is large enough, they
backreact onto the inflaton homogeneous condensate, which triggers a propagation of the
spectra of all fields to the ultraviolet. Due to this, the minimum momenta k̃IR and number of
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points per lattice side N are chosen, in each case, to guarantee that both the initial infrared
growth and the following ultraviolet propagation are well resolved on the lattice.

We start by showing in Fig. 10.1 the evolution of the volume-averaged inflaton norm
|ϕ| ≡

√
ϕ2

0 +ϕ2
1, equation of state w ≡ p/ρ, and scale factor as a function of program time η̃

[d η̃≡ a−αω∗d t , c.f. (10.147)], for each of the three power-law coefficients p = 2,4,6. As
described above, the inflaton can be approximated as a homogeneous condensate during its
first oscillations, and the evolution of the inflaton amplitude and scale factor are
approximately given by Eqs. (10.397)-(10.398). From these expressions, we deduce that the
amplitude of the inflaton oscillations scales initially as |ϕ| ∼ a

−6
p+2 , so |ϕ| ∼ a−3/2, a−1, a−3/4 for

p = 2, 4, 6, respectively. Therefore, in the Figure we have multiplied the inflaton norm by the
inverse of these factors, so the amplitude of the rescaled inflaton oscillations is initially
constant. Although the inflaton homogeneous regime holds qualitatively well during the first
inflaton oscillations, the energy stored in gauge fields and inflaton gradients grows
exponentially due to broad parametric resonance. Eventually, the fraction of transferred
energy is so large that they backreact onto the inflaton, destroying the homogeneity of the
condensate. We identify this time scale as the backreaction time η̃br. From the simulation, we
get η̃br ≃ 130, 40, 70 for p = 2, 4, 6 respectively.

Let us now focus on the post-inflationary evolution of the equation of state w ≡ p/ρ, i.e. the
ratio between the (volume-averaged) pressure and energy densities of the system. Initially, the
inflaton oscillates coherently around the minimum, which gives rise to similar oscillations in
the equation of state in the range −1 < w < 1. From Eqs. (10.397)- (10.398), we can compute
that the effective (i.e. oscillation-averaged) equation of state in this regime is approximately
w̄ ≡ (p −2)/(p +2). This corresponds to w̄ = 0, 1/3, 1/2 for p = 2, 4, 6 respectively, which
agrees with our lattice results, see the middle column of Fig. 10.1. After backreaction, the
equation of state stops oscillating, and slowly evolves towards the asymptotic values w → 0 (for
p = 2) and w → 1/3 (for p = 4, 6). We will be able to understand these results better in light of
the evolution of the energy distribution, which we discuss below. We also show the scale factor
as a function of program time in the right panels of Fig. 10.1. We know that during the initial
linear regime, the scale factor evolves in cosmic time as a ∼ t

2+p

3p [c.f. (10.398)]. By substituting
this expression in the program time definition (10.147), we get that the scale factor evolves as
a ∼ η̃

p+2

6 in terms of program time, in agreement to what we see on the lattice.

We can understand better the evolution of these quantities if we focus on the evolution of the
energy distribution. In the left panels of Fig. 10.2 we show the total energy of the system as a
function of time (Eq. 10.49), for the considered power-law coefficients p = 2, 4, 6. We also
depict the evolution of each of its individual contributions: the kinetic, gradient, and potential
energies of the inflaton, as well as the electric and magnetic energies of the gauge fields (see
Eq. (10.51) for their exact expressions). As described above, the effective equation of state
during the initial linear regime is w̄ ≃ (p −2)/(p +2), so the total energy decays during the
initial regime as ρ ∼ a−3(1+w̄) = a

−6p

p+2 , which corresponds to ρ ∼ a−3, a−4, a−4.5 for p = 2,4,6,
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Figure 10.1 – Average values of the scalar field norm, equation of state w , and scale factor as a
function of time, for three U (1) gauge simulations with p = 2 (top row), p = 4 (middle row),
and p = 6 (bottom row). The effective equation of state is indicated by orange solid lines. The
backreaction time η̃br in indicated for the first two quantities with a vertical dashed line. In
the scale factor panels we have added the prediction a ∼ η̃

p+2

6 , coming from the linear regime of
homogeneous inflaton oscillations.
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respectively. Therefore, we have multiplied the energies by the inverse of those factors, so that
the rescaled total energy is constant initially. We also depict in the right panels of Fig. 10.2
the evolution of the energy ratios ǫi ≡ ρ̃i /ρ̃ for the same simulations, i.e. the relative
contribution of each of the energy components to the total energy. By construction, the sum of
all ratios is one.

As expected, the energy budget of the Universe is initially dominated by the kinetic and
potential energies of the inflaton, while the other energies are subdominant,
i.e. 〈E A

K 〉,〈E
A
G 〉,〈Eϕ

G
〉≪ 〈Eϕ

K
〉,〈EV 〉. However, a very small fraction of the initial energy is stored

in the electric and inflaton gradient energies, due to the spectrum of fluctuations imposed to ϕ

and Ȧi . In contrast, the initial magnetic energy is exactly zero (up to machine precision), as
we do not set fluctuations to the amplitude of the gauge field Ai , see Eqs. (10.379)-(10.382). In
any case, these energies soon start growing exponentially due to parametric resonance, as seen
in the three simulations. These energies become sizable approximately at the backreaction
time η̃≃ η̃br, and the inflaton homogeneous condensate gets destroyed via backreaction effects.
From then on, non-linear effects become relevant, and the system eventually achieving a
stationary regime at late times. Remarkably, we observe that the inflaton gets virialized very
quickly after inflation, with their oscillation-averaged energies satisfying the relation
〈Eϕ

K
〉 ≃ 〈Eϕ

G
〉+ p

2
〈EV 〉, for the three cases p = 2, 4, 6. Similarly, we observe equipartition between

the electric and magnetic energies at late times, 〈E A
K 〉 ≃ 〈E A

G 〉.

It is very interesting to analyze how the energy is distributed at very late times in the
simulation, i.e. well within the non-linear regime. This was studied recently in Ref. [371] in the
context of a real singlet inflaton with the same potential as here, coupled to a massless scalar
singlet via a quadratic interaction. Although here we are considering a gauge sector, the
explanation developed in Ref. [371] also applies here. In particular, we find that the energy
distribution at late times is determined by the choice of p in the inflaton potential. For p = 2,
the inflaton cannot get excited via self-resonance, but the daughter field does get excited via
broad parametric resonance because qA∗ > 1. However, the effective resonance parameter
(10.409) decreases with time, so parametric resonance eventually becomes narrow. After that,
the inflaton kinetic and potential energies dilute as matter, while the other ones dilute as
radiation or faster. Due to this, at very late times we get the energy ratios ǫ

ϕ
K ,ǫ

V
→ 0.5, with

the other ratios becoming negligible. This explains why the effective equation of state goes to
w → 0 at late times in Fig. 10.1. On the other hand, for p = 4, 6, both the inflaton and the
gauge fields are always being excited resonantly at late times: inflaton self-resonance is always
present for p > 2, while parametric resonance is always broad at late times because qres is
either constant (for p = 4) or grows with time (for p > 4). Therefore, the energy contributions
of both field sectors are sizeable at late times. In the case p = 4, the inflaton possesses 60% of
the total energy of the system at very late times (divided by half between kinetic and gradient
energy), while the gauge fields possess the other 40% (divided also by half between electric and
magnetic energy). Moreover, the inflaton potential energy becomes negligible, which explains
why the effective equation of state goes to w → 1/3 at late times in Fig. 10.1. We expect this
final distribution to be quite independent on the choice of q∗, as will be seen in Ref. [424] in a
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Figure 10.2 – Left panel: Evolution of the total energy ρ̃ ≡ ρ/( f 2
∗ω

2
∗) for the U (1) gauge

simulation and p = 2,4,6, as well as of each of its individual contributions: kinetic, gradient,
and potential energies of the inflaton, as well as electric and magnetic energies of the gauge
field. These quantities are multiplied by the factor ∼ a

6p

p+2 . Right panel: Evolution of the energy
ratios ǫi ≡ ρ̃i /ρ̃ for the same simulations as in corresponding left panel. The sum of all ratios is
one.
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Figure 10.3 – Spectral evolution of the electric field k̃3|Ẽk |2 (left panels) and magnetic field
k̃3|B̃k |2 (right panels), as a function of k̃ ≡ k/ω∗, for the U (1) gauge simulations with p = 2,
4, 6. Each line shows the spectra at different moments of the evolution, going from red lines
(early times) to purple lines (late times).
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Figure 10.4 – Comparison of “energy conservation” in the U (1) gauge simulation with p = 4, for
different evolution algorithms: velocity-Verlet (orders 2, 4, 6, 8, and 10), as well as staggered
leapfrog (order 2).

slightly different context. This contrasts with the simulations of the analogous scalar theory
simulated in Ref. [371], where the energy is distributed 50%-50% between the inflaton and the
daughter field. On the other hand, in the gauge simulations for p = 6 we do observe
equipartition between inflaton and gauge energies at late times, although the simulation is not
long enough in this case to determine if this distribution will hold for later times, or if it will
slowly evolve towards the 60%-40% distribution observed for p = 4.

Finally, we show in Fig. 10.3 the spectra of the electric and magnetic fields for the three
power-law potentials p = 2, 4, 6 considered here. As expected from the linear analysis, mainly
field modes within an infrared band k̃ ≡ k/ω∗ . q1/4

∗ grow exponentially during the initial linear
regime, at times η̃< η̃br. However, when backreaction happens at time η̃= η̃br, the growth of
the infrared band saturates, and the different fields start populating modes of increasingly
high momenta due to rescattering. The spectra eventually saturate, showing a peak at larger
scales. This process is qualitatively similar for the different choices of p considered here.

10.8.2.1 Accuracy tests

In flat space and in conservative systems, energy conservation can be used to monitor the
precision of evolution algorithms. However, we are now considering an expanding Universe,
and in particular, we are using the second Friedmann equation (10.155) to evolve the scale
factor. In this context we can instead check that the first Friedmann equation (10.154) holds
during the evolution. However, contrary to the Gauss laws (which are preserved by design
when the discretized equations are gauge invariant), the first Friedmann’s law will be only
approximately respected. We will loosely refer to this second Friedmann’s equation being
respected as “energy conservation”, in analogy to the flat case. In particular, we require that
the relative difference between the left and right hand sides of Eq. (10.154), which we denote
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Figure 10.5 – Conservation of the Gauss law as a function of time for the U (1) gauge simulation
with p = 4.

by ∆e, obeys always ∆e ≪ 1. The better the accuracy of the evolution algorithm used to solve
the lattice equations, the better “energy” is preserved. In order to illustrate this, we show in
Fig. 10.4 the evolution of ∆e as a function of time, for the case p = 4. The lattice equations
have been solved with different accuracy orders of the velocity Verlet algorithm, introduced in
Section 10.3.3.2. As expected, the higher the order, the better the “energy” is preserved: the
violation of “energy conservation” at time η̃≃ 400 is ∆e ≃ 3 ·10−3, 2 ·10−4, 7 ·10−7, 5 ·10−11, and
6 ·10−12, for VV2, VV4, VV6, VV8, and VV10 respectively. This means that “energy
conservation” improves by factors ∼12, 360, 104, and 8, as we increase the order of the
integrator from one to the next one, i.e. from VV2 to VV4, VV4 to VV6, etc. Interestingly,
the value of ∆e saturates for VV10: in that case, the error in the scale factor constraint is due
exclusively to an accumulation of machine precision errors, so using velocity-Verlet algorithms
of higher-orders than VV10 will not improve the energy constraint anymore. Of course, the
negative side of using higher-order iterators is the increase of the required computation time.
Finally, we have also solved the field dynamics with a second-order staggered leapfrog
algorithm (see Section 10.3.3.1), which we denote as LF2. Remarkably, this algorithm slightly
improves “energy conservation” at late times with respect VV2, as observed in the Figure.

Let us now focus on the conservation of the Gauss constraint, given in Eq. (10.42). As already
mentioned, the Gauss constraint must be always satisfied up to machine precision,
independently of the accuracy of the integrator, as it is a direct consequence of the lattice
equations of motion: a violation of the Gauss constraints is a violation of gauge invariance.
We show in Fig. 10.5 the relative difference between the left and right hand sides of Eq. (10.42)
as a function of time, which we denote as ∆g. At the onset of the simulation we get ∆g ∼ 10−9,
which is explained by the ∼ 7 orders of magnitude of difference between the amplitudes of the
inflaton homogeneous mode and its fluctuations. After backreaction, the relative difference
decreases down to ∆g ∼ 10−13, and starts increasing slowly from then on, due to a constant
accumulation of machine precision errors.
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10.8.3 Lattice simulations: SU (2)×U (1) gauge interactions

We now consider a scenario in which a complex doublet Φ with potential (10.392) [where we
must substitute φ→Φ] acts as an inflaton field, and it is simultaneously coupled to 1) a
SU (2)×U (1) gauge sector via a gauge-invariant covariant derivative, and 2) a massless
secondary scalar field χ via a quadratic interaction Vint(|Φ|,χ) ≡ (1/2)g 2|Φ|2χ2, with g a
dimensionless coupling constant. The strength of the parametric resonance is determined, in
each case, by the corresponding resonance parameter: q∗ for the scalar field (see Eq. 10.406),
and qA∗ and qB∗ for the U (1) and SU (2) gauge fields (see Eqs. 10.411). Here we fix
qA∗ = qB∗ = q∗ for illustrative purposes, with q∗ > 1 to have broad parametric resonance for all
daughter field sectors. We have simulated the preheating process for the power-law coefficients
p = 2, 4, and studied the post-inflationary dynamics of the system. The lattice and model
parameters chosen for the simulations are given in Table 10.2, and are similar to the analogous
U (1) simulations. In particular, we choose again M = 10mp , which ensures that the inflaton
always oscillates in the positive-curvature region of its potential. Similarly, the number of
points and volume of the lattice are chosen, in each case, to resolve well both the infrared
resonant bands, as well as the following propagation of the spectra towards the UV after
backreaction.

The evolution of the inflaton amplitude, equation of state, and scale factor are, in this case,
qualitatively similar to the examples shown for the U (1) gauge simulation in the previous
section. Therefore, we proceed to consider directly the evolution of the energy distribution,
which differs in some aspects with respect to the U (1) case. We show in Fig. 10.6 the evolution
of the total energy of the system during preheating, as well as of each of its different
contributions, for p = 2, 4. These are the kinetic and gradient energies of the scalars Φ and χ,
the electric and magnetic energies of the U (1) and SU (2) gauge sectors, the inflaton potential
energy Ṽpot ≡ ˜|Φ|4, and the interaction energy Ṽint ≡ (1/2)q∗|Φ̃|2χ̃2 between Φ and χ. As in the
U (1) case, we have multiplied the different energies by the appropriate scale factor term, so
that the (oscillation-averaged) total energy is constant during the initial linear regime. We
also show the evolution of the energy ratios ǫi ≡ ρ̃i /ρ̃, which sum one by construction.

As expected, the energy budget is dominated by the inflaton homogeneous mode initially, so
the kinetic and potential energies of the inflaton dominate over all the other energy
contributions. However, the kinetic and gradient energies of all daughter fields grow
exponentially due to broad parametric resonance, as well as the inflaton gradient energy.
These contributions become sizeable enough at a certain time scale, destroying the inflaton
homogeneous condensate via backreaction effects. As before, we denote this time scale as the
backreaction time η̃br. From the simulations, we get η̃br ≃ 60,40 for p = 2, 4 respectively. From
then on, the non-linearities of the field EOM can no longer be ignored, and affect the
dynamics of the system, achieving a stationary regime at late times. As in the U (1) gauge
simulation, we observe that the system gets virialized very quickly, with the inflaton energies
obeying 〈EΦ

K 〉 ≃ 〈EΦ

G 〉+ p
2
〈EV 〉+〈Eint〉 when averaged over oscillations. Also, we also have

equipartition between the kinetic and gradient energies of all daughter field sectors at late

222



10.8. A working example: the SU (2)×U (1) gauge invariant inflaton

p=2
EK
Φ
EG
Φ
EK
A

EG
A

EK
B

EG
B

EK
χ
EG
χ
EV

Eintρ˜

0 100 200 300 400 500
10

-8

10
-6

10
-4

0.01

1

η˜

a
3
ρ˜

p=2ϵKΦϵGΦϵKAϵGAϵKB
ϵGBϵKχϵGχϵVϵint

10 50 100 500 1000
0.0

0.2

0.4

0.6

0.8

1.0

η˜

ϵ i
p=4

EK
Φ
EG
Φ
EK
A

EG
A

EK
B

EG
B

EK
χ
EG
χ
EV

Eintρ˜
0 100 200 300 400 500

10
-7

10
-4

0.1

η˜

a
4
ρ˜

p=4ϵKΦϵGΦϵKAϵGAϵKB
ϵGBϵKχϵGχϵVϵint

5 10 50 100 500
0.0

0.2

0.4

0.6

0.8

1.0

η˜

ϵ i

Figure 10.6 – Left panel: Evolution of the total energy in program units, ρ̃ ≡ ρ/ω∗, as well
as of each of its energy contributions, for the SU (2)×U (1)+χ gauge simulations with p = 2, 4.
Quantities are multiplied by the factor ∼ a

6p

p+2 . Right panel: Evolution of the energy ratios for
the same simulations as in the left panels.

times, as can be observed in the Figure.

Let us now comment about how the energy distributes at very late times. Let us consider first
the case p = 2. Here we observe a qualitatively similar behaviour than in the equivalent U (1)

simulation: although the inflaton kinetic and potential energy ratios decay around
backreaction time, at later times they start growing again. The reason is the same as in the
U (1) simulations: the inflaton does not get excited via self-resonance for p = 2, while the
parametric resonance of the daughter fields eventually becomes narrow (because the effective
resonance parameter (10.409) decreases with time). Therefore, at very late times neither of the
two resonant phenomena is present, and the inflaton slowly recovers all the energy of the
system due to the different dilution rates of the energy contributions (the inflaton behaves as
matter, while the daughter fields as radiation). Due to this, although our simulations are not
long enough to observe this effect, we expect that ǫ

ϕ
K ,ǫ

V
→ 0.5 at asymptotically late times.

Moreover, this energy configuration also gives rise to a matter-dominated equation of state at
late times, w → 0.

Let us focus now on the simulation with p = 4. In this case, the effective resonance parameter
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(10.409) remains constant. Therefore, as we have fixed q∗ = qeff > 1 for all daughter field
species (scalar χ, Abelian and non-Abelian gauge bosons), they experience a broad parametric
excitation during the whole time evolution of the system, including at late times. Similarly,
the inflaton is also being excited due to the oscillations of its own homogeneous mode, and
develops fluctuations via self-resonance. Neither of the two effects dies out, which could
explain why neither of the two field sectors (inflaton or daughter fields) possesses 100% of the
total energy at asymptotically late times. In our particular scenario, we observe that at the
end of the simulation, the inflaton possesses ∼30% of the total energy, the scalar singlet ∼4%,
the U (1) gauge sector ∼16%, and the SU (2) gauge sector ∼50%. In each of the four cases, the
energy is divided half and half between kinetic and gradient contributions. These results are in
contrast with the analogous U (1) simulation, which show that ∼60% of the total energy
remains in the inflaton at late times. From this result, we can conclude the (somewhat
expected) result that the larger the number of daughter fields, the larger the amount of energy
that gets transferred to them from the inflaton. Finally, let us also observe that the inflaton
potential and inflaton-χ interaction energies go to zero at late times, εV ,εint → 0, as in the
analogous U (1) gauge simulation. Due to this, the effective equation of state goes to w → 1/3

at late times.

We also show in Fig. 10.7 the evolution of the spectra of all fields involved: the norm of the
inflaton |Φ|, the scalar singlet χ, and the electric and magnetic energies of the U (1) and SU (2)

sector. We observe in all cases the same qualitative behaviour: first an exponential growth of
the field modes within an infrared band, which saturates at backreaction time, followed by a
propagation of the spectra towards the UV, populating modes of higher and higher momenta.
The initial infrared growth of the gauge fields is in agreement with the linear analysis
presented above, except in the case of the inflaton, which does not experience broad
parametric resonance. The inflaton growth is, instead, triggered by backreaction effects from
the daughter fields.

10.8.3.1 Accuracy tests

Finally, it is always important to check that both “energy conservation” and the Gauss
constraints are preserved at all times during the simulation. Let us consider first the left of
panel of Fig. 10.8, where we show the relative difference between the left and right hand sides
of the 1st Friedmann equation as a function of time (denoted as ∆e), for p = 4. Naturally, we
require ∆e ≪ 1 in order to trust the results of our simulations. For illustrative purposes, we
have solved the field dynamics with velocity-Verlet evolution algorithms of orders 2 and 4, for
the same lattice and model parameters. As expected, the higher the accuracy of the integrator,
the better “energy” is preserved: at time η̃≃ 340 we get ∆e ≃ 2.2 ·10−3 for VV2, and
∆e ≃ 1.1 ·10−4 for VV4, i.e. VV4 preserves “energy” a factor ∼ 20 better than VV2. However,
the negative side is that the required simulation time for VV4 increases with respect VV2, as
expected. In principle, one should be able to improve the accuracy of the integrator arbitrarily
up to machine precision, as in the analogous U (1) gauge simulation shown in Fig. 10.4. This
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Figure 10.7 – Spectral evolution of all the fields involved in the SU (2)×U (1)+χ lattice simulations
as a function of k̃ ≡ k/ω∗, for p = 4. From left to right and from top to bottom, we show the
inflaton, the massless scalar χ, the electric and magnetic fields of the U (1) gauge sector, and
electric and magnetic fields of the SU (2) gauge sector. Each line shows the spectra at different
times during the field evolution, from red (early times) to purple (late times).
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Figure 10.8 – Left panel: Evolution of the relative error in “energy conservation” for the
SU (2)×U (1)+χ simulation with p = 4, obtained for the VV2 and VV4 algorithms. Right panel:
Evolution of the relative error in the Gauss constraints of the U (1) and SU (2) gauge sectors,
for the same simulation.

can be useful if one wants to apply this algorithm to any particular scenario requiring
extremely good energy conservation. This is always at the expense, of course, of longer
simulation times.

In the right panel of Fig. 10.8 we show how the Gauss laws are preserved during the
simulation. In this case there are two Gauss laws that must be satisfied: one for the U (1)

sector (given in Eq. 10.25), and another one for the SU (2) sector (given in Eq. 10.26). We
measure this by the parameter ∆g , which as defined before, is the relative difference between
the left and hand sides of the corresponding Gauss constraints. As explained before, these
constraints must be preserved up to machine precision independently of the chosen evolution
algorithm, as they are a direct consequence of the gauge invariance that our careful
discretization techniques maintain on the lattice equations. We observe a similar behaviour as
in the analogous U (1) gauge simulations: before backreaction we have ∆g ∼ 10−9 for both
gauge sectors, due to the large relative difference between the amplitudes of the inflaton
homogeneous mode and its fluctuations. After backreaction we get ∆g ≃ 10−13, and from then
on, the error slowly grows due to a constant accumulation of machine precision errors in each
time step. At time η̃≃ 340 we get ∆g ∼ 10−12 for both U (1) and SU (2) gauge sectors, which
shows that both Gauss constraints are exceptionally well preserved during the simulation.

10.9 Summary and outlook

The present document represents Part I of a comprehensive dissertation on lattice techniques
for the simulation of non-linear dynamics in the early Universe. Here we have focused on the
lattice treatment of canonical scalar-gauge field theories in an expanding Universe, considering
an arbitrary number of interacting (real and complex) scalars and (Abelian and non-Abelian)
gauge fields. This suffices to describe the majority of physically relevant scenarios from the
early universe. In addition, we plan to discuss methods for non-canonical interactions in an
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upcoming Part II [408], like those in theories with non-minimal gravitational couplings, or in
general with non-minimal kinetic terms, as well as non-canonical interactions defined by the
product between field variables and their conjugate momenta.

Let us summarize the content of the present work. In Section 10.2 we reviewed first the field
dynamics of scalar-gauge theories in a continuum space-time, both with and without
expansion of the Universe. We considered a theory containing different kinds of scalars
(singlets, U (1)-charged, and SU (N )×U (1)-charged scalars) and (Abelian and non-Abelian)
gauge fields. We wrote explicitly the EOM of such theory, as well as introduced the notation
later used throughout the document. We then introduced in Section 10.3 basic concepts of
lattice techniques, with a special emphasis on how to discretize appropriately gauge theories to
preserve gauge invariance on the lattice. We then introduced basic evolution algorithms for
the integration of the field EOM: staggered leapfrog and Verlet methods, with accuracy O (δt 2).
We also showed how some of these basic algorithms can be used as building blocks for the
higher-order Yoshida integrators, with accuracy up to O (δt 10).

In the following three sections we focused on developing lattice formulations for the different
field sectors of the canonical theories considered here. In Section 10.4 we considered the case
of multiple interacting scalar fields. We first have introduced a set of dimensionless field and
spacetime variables, which we have call the lattice or program variables. When thoughtfully
defined, these variables can be very useful when working on a lattice. Our lattice algorithms
are therefore written in terms of these variables. We explained how to apply different
evolution algorithms to solve the scalar EOM, as well as define different useful observables. In
Section 10.5 we developed the same ideas for gauge theories with U (1) interactions, and in
Section 10.6 we did the same for gauge theories with SU (N ) interactions. In Section 10.7 we
described how to set the initial conditions for the different kinds of fields, both in the
continuum and on the lattice. For scalar fields, we imposed a spectrum of classical vacuum
fluctuations, which mimics the expected spectrum of quantum fluctuations in a FLRW
Universe. For gauge fields, we discussed how to set their initial conditions so that Gauss
constraint is preserved from the beginning.

Finally, in Section 10.8, we simulated the dynamics of a specific scalar-gauge field model with
C osmoL attice, to illustrate some of the techniques presented in the previous sections. In
particular, we considered the preheating dynamics of a charged inflaton, with monomial shape
around the minimum of its potential. We considered two different scenarios: 1) a U (1)-charged
scalar coupled to an Abelian gauge field, and 2) a SU (2)×U (1) charged scalar coupled to
Abelian and non-Abelian gauge fields simultaneously, as well as to a scalar singlet. We
considered different model parameters, and in particular, we studied different power-law
coefficients in the monomial function. We studied the evolution during preheating of several
relevant observables: the inflaton mean amplitude value, the evolution of the scale factor and
of the equation of state, the energy distributions among field components, and the relevant
field spectra. We showed explicitly how each Gauss constraint is preserved to machine
precision during the evolution of the system. We also demonstrated the power of the
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higher-order Verlet evolution algorithms implemented in C osmoL attice, which can be used
to obtain energy conservation up to machine precision in simulations of scalar-gauge theories
in an expanding Universe.

Let us emphasize here that, to the best of our knowledge, we are presenting for the first time
an algorithm for non-Abelian SU (N ) gauge theories, which is symplectic, explicit in time, and
preserving exactly the Gauss constraint, while solving for the expansion of the universe
self-consistently. Furthermore, it can be made of arbitrary order. Besides, we also present
higher-order integration algorithms for Abelian U (1) gauge theories, similar to those
in GFiRe [184], demonstrating explicitly for the first time their numerical implementation for
the highest orders, in particular for O (δt 6), O (δt 8) and O (δt 10). Similarly, we also present
higher-order integration algorithms for interacting scalar theories, similar to those
in HLattice [181], but going also to higher-orders, in particular building explicit
implementations for O (δt 8) and O (δt 10).

The concepts and techniques discussed in this dissertation, in particular the explicit-in-time
algorithms presented in Sections 10.4 - 10.6, are already implemented in our present code
C osmoL attice, a user − f r i endl y and highly modular C++ MPI-based code for lattice
simulations of non-linear classical dynamics in an expanding universe, that we plan to publicly
release before the end of 2020. Most of the algorithms presented in this work are bundled in a
high-level interface which allows the user to add almost effortlessly models with different
interaction potentials, and easily add new integration algorithms. Moreover, the library has
been designed in such a way to allow the user to use complex, vectorial and matricial
representation of fields, to keep the lattice equations resembling as much as possible to the
continuum ones. This level of abstraction is achieved through the use of compile-time code
generation, using C++ expression templates, so that performance is never sacrificed.

The aim of this manuscript has been to illustrate different concepts of lattice gauge-invariant
techniques and of general integration methods, which we have then specialized and adapted for
their use in the context of canonical scalar-gauge field theories. We expect that the work we
have developed so far here (soon to be complemented by Part II [408]) shall be useful for a
large fraction of the research community interested in the early universe, let it be completely
inexperienced researchers in lattice field theory simulations, or very experienced ones.

To conclude, we comment on several aspects that we plan to explore in forthcoming works
(either in Part II or elsewhere), both in the near and in the mid-term future:

• The development of lattice techniques for the discretization of theories with non-minimal
kinetic terms. As the drift and kick functionals in these theories typically contain a
linear combination of conjugate momenta of other fields, explicit-in-time symplectic
integrators (such as staggered leapfrog or Verlet integrators) are not appropriate.
However, one can resort to explicit (non-symplectic) Runge-Kutta methods (this has
been done in e.g. [183]), or even to higher-order implicit (yet symplectic) integrators like

228



10.9. Summary and outlook

the Gauss-Legendre methods. As mentioned before, we postpone a specialized discussion
of these problems to Part II of our dissertation on lattice techniques [408]. The
implementation of the corresponding algorithms in C osmoL attice will also be made
publicly available in that moment.

• In a similar spirit, the axial couplings of a pseudo-scalar field with a gauge sector is also
of great interest. An implicit method for the interaction of an axion-like field φ with a
U (1)-gauge sector through a shift invariant coupling φFµνF̃µν, has been in fact explored
in [115,276–281]. In particular, an exactly lattice-shift-symmetric formulation was
developed in [115], and was later on generalized to an expanding background in [279].
We could revisit and generalize this kind of approaches in light of the algorithms
presented here in Section 10.3, coming possibly with many potential outlooks. We plan
to present a specialized discussion on these interactions in Part II [408].

• The creation of tensor perturbation representing gravitational
waves [280,281,293,318–335], as well as the dynamics of scalar metric
perturbations [299–308] (possibly leading to the formation of primordial black
holes [309–317]) are all topics of great interest. In the case of tensor perturbations, we
plan to follow [415] (based on an idea originally proposed in [321]), as this technique
allows for generic sources independently of the field content of the theory studied.
Although we have not decided about a clear strategy for a general solver of scalar metric
perturbations yet, one possibility would be to follow [181].

• The inclusion of fermions in the simulations. Of course, the notion of ‘classical fermions’
does not exist due to Pauli-blocking, and hence a straightforward discretization and
evolution of the Dirac equation would not be useful. However, as first realised in [413],
one can still study real-time fermions’ dynamics in a semi-classical formulation of the
out-of-equilibrium Schwinger-Keldysh formulation, see also references [90,92,425].
Combining the lattice implementation proposed in [413], with the ‘low cost’ fermions
introduced in [414], [409–412] have succeeded in simulating out-of-equilibrium dynamics
of classical scalar fields coupled to quantum fermions. These simulations are however
very costly in terms of computer memory, and only very small lattices have been
considered until now.

• The addition of other initialization procedures. Depending on the problem, initializing
fields in real space might be more convenient than imposing a certain mode spectrum in
Fourier space, as we did in Section 10.7. As mentioned in the introduction, to simulate
e.g. the dynamics of field string networks or any other type of cosmic defects, one needs
to create in first place the defect network in configuration space, see
e.g. [338–345,390,391,416], and then evolve the field configuration from then onward
(typically after a diffusion phase to force the system to reach a scaling regime as fast as
possible). Although different problems may require completely different initializers, it
might be useful to consider making a library for specialized ones for cosmic strings, other
topological defects, and other circumstances.
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• The addition of ‘cooling’ procedures for the initial condition for gauge fields. Another
improvement would be to use cooling algorithms to initialize gauge fields. Instead of
imposing the Gauss constraints by hand as we have done in Section 10.7.2, one can
impose completely unconstrained fluctuations to the gauge fields, and then remove the
unwanted transverse degree’s of freedom by a minimization procedure [28,116]. For
thermal initial conditions, one can also thermalize the system while exactly preserving
Gauss law through some Langevin dynamics [426]. Studying such algorithms will allow
us to consider different initial conditions and thus study yet another variety of models.
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Appendices

10.10 Cristoffel symbols

The most straightforward way to obtain them is by deriving the geodesic equations. To do so,
we start from the action from a unit mass free particle

S
1par t

f r ee
=

∫
dsgµνẋµẋν =

∫
ds

(
−a(η)2αη̇2 +a(η)2δi j ẋi ẋ j

)
, (10.412)

where ḟ denotes the differentiation with respect to s. From now on, we will also write f ′ for
the differentiation with respect to η. Then, we compute the variation with respect to the
coordinates and compare to the canonical form of the geodesic equations

ẍµ+Γ
µ

αβ
ẋαẋβ = 0 . (10.413)

We start with the η-variation. Using the relations
(
a(η+δη)2α−a(η)2α

)l i n = 2αa(η)2α−1a′(η)δη (10.414)
ȧ(η) = a′(η)η̇ , (10.415)
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and integrating by part the terms of the sort δ ḟ , we find
(
S

1par t

f r ee
[η+δη]−S

1par t

f r ee
[η]

)l i n
=

∫
ds

(
−2αa(η)2α−1a′(η)η̇2δη−2a(η)2αη̇δη̇

+2a(η)a′(η)δi j ẋi ẋ jδη
)

(10.416)

= 2

∫
ds

(
αa(η)2α−1a′(η)η̇2 +a(η)2αη̈

+a(η)a′(η)δi j ẋi ẋ j
)
δη= 0 (10.417)

(
S

1par t

f r ee
[xi +δxi ]−S

1par t

f r ee
[xi ]

)l i n
=

∫
ds

(
a(η)2δi j ẋ jδẋi

)
(10.418)

=
∫

ds
(
−a(η)2ẍi −2a(η)a′(η)η̇ẋi

)
δxi (10.419)

In canonical form, this gives us the following geodesic equations for

η̈+α
a′(η)

a(η)
η̇2 +a−2α+2 a′(η)

a(η)
δi j ẋi ẋ j = 0 (10.420)

ẍi +2
a′(η)

a(η)
η̇ẋ j = 0 . (10.421)

It tells us that the following Cristoffel symbols are non-vanishing

Γ
0
00 =α

a′(η)

a(η)
(10.422)

Γ
0
i j = a−2α+2 a′(η)

a(η)
δi j (10.423)

Γ
i
i 0 =

a′(η)

a(η)
. (10.424)

With the Cristoffel’s symbols at hand, we can move on to derive the Friedmann’s equations
(9.3) and (9.4) for the line element (10.27).

10.11 Friedmann’s equations

The Friedmann’s equations are obtained by computing the Einstein tensor associated to
(10.27) and plugging it in Einstein’s equations (9.2). Rather than repeating here explicitly the
derivation of the FLRW Einstein tensor, we join in appendix 10.12 a Cadabra
notebook [427,428] which computes it from the metric. The non-vanishing components are

G00 = 3a
′
(η)2a(η)−2 (10.425)

Gi i =
(
(2α−1)a′(η)2 −2a(η)a′′(η)

)
a(η)−2α (10.426)

As already mentioned, in a cosmological context, these equations are often rewritten in terms
of energy density ρ and pressure p. They are defined in analogy by comparing to the
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energy-momentum tensor of a perfect fluid.

T
f l ui d
µν = (p +ρ)vµvν+pgµν (10.427)

with vν the fluid’s velocity field. In the fluid’s rest frame, vi=0, v0 =−aα, so that vµvµ =−1),
giving

T
f l ui d

00 = ρa2α (10.428)

T
f l ui d

i i
= pa2 . (10.429)

We thus define, for generic matter content

ρ = a−2αT00 (10.430)

p =
a−2

3

3∑

i=0

Ti i (10.431)

and rewrite Einstein’s equations as

a
′
(η)2 =

a2α+2

3m2
p

ρ (10.432)

(
(2α−1)a′(η)2 −2a(η)a′′(η)

)
=

1

m2
p

a2α+2p (10.433)

For further uses, it is convenient to combine equations (10.432) and (10.433) to get an
equation for a′′(η)

a′′(η) =
1

6m2
p

a2α+1
(
(2α−1)ρ−3p

)
. (10.434)

10.12 FLRW with Cadabra2

In this appendix, we present computations of the rescaled FLRW Einstein’s tensor using the
Cadabra software [427,428].

In this notebook, we compute the Einstein’s tensor for FLRW, with a rescaled time.

1 {t,x,y,z}::Coordinate.
2 {\mu,\nu,\alpha,\beta,\sigma,\rho}::Indices(values={t,x,y,z}, position=fixed).
3 \partial{#}::PartialDerivative.
4 g_{\mu\nu}::Metric.
5 g^{\mu\nu}::InverseMetric.
6 a::Depends(t).

We start by defining our FLRW metric. The parameter b allows to go from coordinate time to conformal time,
or any other time rescaling.

1 flrw := {g_{t t}=-a**(2b), g_{x x}=a**2, g_{y y}=a**2, g_{z z}=a**2}.
2 complete(flrw, $g^{\mu \nu}$);
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[
gt t =−a2b , gxx = a2, g y y = a2, gzz = a2, g t t =−a−2b , g xx = a−2, g y y = a−2, g zz = a−2

]

We then compute the Cristoffel’s symbols, Riemann tensor, Ricci tensor and Ricci scalar.

1 ch:= \Gamma^{\mu}_{\nu\rho} = 1/2 g^{\mu\sigma} (
2 \partial_{\rho}{g_{\nu\sigma}}
3 +\partial_{\nu}{g_{\rho\sigma}}
4 -\partial_{\sigma}{g_{\nu\rho}} ):
5 evaluate(ch, flrw, rhsonly=True);

Γ
µ
νρ = 1

2 gµσ (∂ρgνσ+∂νgρσ−∂σgνρ )

Γ
µ
νρ =�νρ

µ





�z t
z = ∂t aa−1

�y t
y = ∂t aa−1

�x t
x = ∂t aa−1

�t t
t = b∂t aa−1

�t z
z = ∂t aa−1

�t y
y = ∂t aa−1

�t x
x = ∂t aa−1

�z z
t = a

(
−2b+1

)
∂t a

�y y
t = a

(
−2b+1

)
∂t a

�x x
t = a

(
−2b+1

)
∂t a

In more compact notations, this gives Γ
i
i t

= a′
a , Γt

t t = b a′
a , Γt

i j
= a−2b+2 a′

a δi j .

1 rm:= R^{\mu}_{\nu\alpha\beta} = \partial_{\alpha}{\Gamma^{\mu}_{\nu\beta}}
2 -\partial_{\beta}{\Gamma^{\mu}_{\nu\alpha}}
3 +\Gamma^{\mu}_{\sigma\alpha} \Gamma^{\sigma}_{\nu\beta}
4 -\Gamma^{\mu}_{\sigma\beta} \Gamma^{\sigma}_{\nu\alpha};

Rµ
ναβ = ∂αΓ

µ
νβ−∂βΓ

µ
να+Γ

µ
σαΓ

σ
νβ−Γ

µ
σβΓ

σ
να

1 substitute(rm, ch)
2 evaluate(rm, flrw, rhsonly=True);
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Rµ
ναβ =�νβ

µ
α





�x x
t

t =
(
−b(∂t a )2 +a∂t t a

)
a−2b

�y y
t

t =
(
−b(∂t a )2 +a∂t t a

)
a−2b

�z z
t

t =
(
−b(∂t a )2 +a∂t t a

)
a−2b

�t x
x

t =
(
−b(∂t a )2 +a∂t t a

)
a−2

�t y
y

t =
(
−b(∂t a )2 +a∂t t a

)
a−2

�t z
z

t =
(
−b(∂t a )2 +a∂t t a

)
a−2

�x t
t

x =
(
b(∂t a )2 −a∂t t a

)
a−2b

�y t
t

y =
(
b(∂t a )2 −a∂t t a

)
a−2b

�z t
t

z =
(
b(∂t a )2 −a∂t t a

)
a−2b

�t t
x

x =
(
b(∂t a )2 −a∂t t a

)
a−2

�t t
y

y =
(
b(∂t a )2 −a∂t t a

)
a−2

�t t
z

z =
(
b(∂t a )2 −a∂t t a

)
a−2

�y y
z

z = a−2b (∂t a )2

�x x
z

z = a−2b (∂t a )2

�z z
y

y = a−2b (∂t a )2

�x x
y

y = a−2b (∂t a )2

�z z
x

x = a−2b (∂t a )2

�y y
x

x = a−2b (∂t a )2

�y z
z

y =−a−2b (∂t a )2

�x z
z

x =−a−2b (∂t a )2

�z y
y

z =−a−2b (∂t a )2

�x y
y

x =−a−2b (∂t a )2

�z x
x

z =−a−2b (∂t a )2

�y x
x

y =−a−2b (∂t a )2

Or in other words R t
i t i

= (−ba′2 +aa′′)a−2b , Ri
t t i

= (−ba′2 +aa′′)a−2 and Ri
j i j

= a−2b a′2 .

1 rc:= R_{\sigma\nu} = R^{\rho}_{\sigma\rho\nu};
2 substitute(rc, rm)
3 evaluate(rc, flrw, rhsonly=True);

Rσν = Rρ
σρν

Rσν =�σν





�x x =
(
−b(∂t a )2 +a∂t t a +2(∂t a )2 )

a−2b

�y y =
(
−b(∂t a )2 +a∂t t a +2(∂t a )2 )

a−2b

�z z =
(
−b(∂t a )2 +a∂t t a +2(∂t a )2 )

a−2b

�t t = 3
(
b(∂t a )2 −a∂t t a

)
a−2

1 rs:= R = g^{\mu\nu} R_{\mu\nu};
2 substitute(rs,rc)
3 evaluate(rs,flrw, rhsonly=True);

R = gµνRµν

R = 6
(
−b(∂t a )2 +a∂t t a + (∂t a )2

)
a

(
−2b−2

)

1 et := G_{\mu \nu} = R_{\mu \nu} - R/2 g_{\mu \nu};
2 substitute(et,rc)
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3 substitute(et,rs)
4 evaluate(et,flrw, rhsonly=True);

Gµν = Rµν− 1
2 Rgµν

Gµν =�µν





�x x =
(
2b(∂t a )2 −2a∂t t a − (∂t a )2 )

a−2b

�y y =
(
2b(∂t a )2 −2a∂t t a − (∂t a )2 )

a−2b

�z z =
(
2b(∂t a )2 −2a∂t t a − (∂t a )2 )

a−2b

�t t = 3(∂t a )2a−2

Or in other words Gi i =
(
(2b −1)a

′2 −2aa′′
)

a−2b and Gt t = 3a
′2a−2.
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11 A snapshot of resurgence

In the last part of this work, we leave the realm of numerical simulations and discuss a
different tool to make non-perturbative predictions, namely the concept of resurgence. We will
be concerned with series expansions, complex functions and analytic continuations. A series is
defined by its radius of convergence; when infinite, it means that it corresponds to an analytic
function. A finite radius of convergence signals a singularity.

Quantum field theory seems to fare worse in this respect, as most of perturbation theory is
expected to have zero radius of convergence; perturbative series are expected to be
”asymptotic” [429]. Typically, the coefficients of asymptotic series are factorially growing,
sometimes worse. The inclusion of nopt terms onward improves the precision of the
computation and from the nopt +1 term the series starts to differ exponentially fast from the
expected answer.

The program of resurgence is based on tools which allow reconstructing entire functions from
asymptotic series in a well-defined way. As such, it intimately connects what would normally
be considered as perturbative phenomena to non-perturbative ones, which are a crucial part of
the full answer. In this chapter, we will briefly outline some of the key ideas relevant to the
work presented in the next chapter. We refer the reader to references [430–432] for real
introductions to the subject.

11.1 A tale about transseries, Borel summation and others

As it was already discussed in this work, the semiclassical expansion is constructed from a
saddle point approximation. In simple cases, observables O are computed schematically as

O =
∑
n

an

(
1

x

)n

︸ ︷︷ ︸
perturbative expansion

+
∑

s∗

semiclassical action︷ ︸︸ ︷
e−S[s∗]

∑
n

as∗

n

(
1

x

)n

︸ ︷︷ ︸
perturbative expansion

around saddle s∗

, (11.1)
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with s∗ a potentially infinite family of saddle point and
(

1
x

)
a small parameter. First, we have

as the main contribution the perturbative expansion around the vacuum, to which we add
saddle points or ”instantons” contributions. These effects are exponentially small and come
together with extra perturbative expansions computed in the background of the saddle
solutions, see for example [433,434]. Typically, all of the perturbative expansions present in
this expression are only asymptotic.

The mathematical concept behind this kind of concatenated asymptotic series weighted by
”non-perturbative” factors such as exponentials and logarithms is the one of ”transseries”.
They are used in the context of asymptotic analysis of partial differential equations. Their
main feature is that the collection of all transseries is closed under analytic continuation [430].
In other words, a transseries is well behaved under analytic continuation. This has to be
contrasted with simple asymptotic expansions, which are not. An intuitive example of why
they cannot be is the following. By the nature of an asymptotic expansion, functions that
differ only by an exponentially small correction in the expansion parameter will have the same
asymptotic expansion. However, once analytically continued in the complex plane, the
exponentially small corrections can become of order one and are completely missed by the
asymptotic expansion.

What makes the theory of transseries potentially relevant to physics is that transseries are not
arbitrary. In particular, the asymptotic series associated to different ”non-perturbative” factor
are connected one to another through ”bridge equations” [432], which are ”compatibility”
conditions in the complex plane, similar in spirit to the WKB matching conditions around
turning points in quantum mechanics. In particular, it means that starting only from, for
instance, the perturbative expansion around the vacuum, one can infer information about the
expansion around the ”instanton” solution.

A key tool in these discussions is the Borel summation. It is a resummation technique that can
be used to assign in a well-defined way a function to an asymptotic series. It can be
understood as being based on the following formal manipulation. Given a series
Σ(x) = a0 +

∑∞
n=1 an

(
1
x

)n , write [431]

Σ(x) = a0 +
∞∑

n=1

an
1

(n −1)!

∫∞

0
dpe−px pn−1 (11.2)

→ a0 +
∫∞

0
dpe−px

∞∑

n=1

an

(n −1)!
pn−1 ≡

∫∞

0
dpe−pxB(Σ)(p) . (11.3)

For absolutely convergent series, going from equation (11.2) to equation (11.3) is an equality.
In the case of asymptotic series, it is only a formal manipulation, as the sum is not convergent.
It is the key step of Borel summation. The quantity

B(Σ)(p) =
∞∑

n=1

an

(n −1)!
pn−1 (11.4)
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is called the Borel transform of Σ(x). Thanks to the division by (n −1)!, it converts asymptotic
series into convergent series, provided that the original coefficients do not grow faster than
factorially. In this case, equation (11.3) corresponds to a well-defined function and is the Borel
resummation of Σ(x).

Actually, the analytical structure of B(Σ)(p) is of crucial importance. For example, the
integral over p in (11.3), which is nothing else than a Laplace transform, can only be taken
unambiguously in directions in the complex p plane absent of singularities. The presence of
these singularities, associated with the so-called Stokes phenomenon, is what eventually lead
to the ”bridge equations” mentioned previously, which link perturbative expansions in different
sectors.

11.2 Foreword to [5]

Over the past years, many impressive works have been carried on the topic of resurgence and
its potential use in quantum mechanics, field theory and string theory, see for
instance [432,435–441]. One of the most exciting aspects of this program is that a careful
analysis of the all-orders vacuum perturbative expansion is enough to reconstruct
non-perturbative phenomena. This aspect is also potentially what could make these techniques
useless in any realistic strongly interacting field theory, as there one can in principle compute
only a few terms of the perturbative expansion.

Recently, reference [442] started a rigorous analysis of the following question. How much
information about non-perturbative contributions in a transseries is it possible to extract by
knowing only a finite number of terms from the leading asymptotic expansion? They
investigated this in the context of the Painlevé I equation and were surprisingly able to
reconstruct the whole complicated analytic structure of its solutions with a finite number of
terms of its asymptotic expansion around real infinity.

In the next section, whose content is reference [5], we applied the reasoning of reference [442]
to the case of Schwinger pair creation, explained in section 3.1. This simpler situation turned
out to be an ideal playground to illustrate the potential power of such techniques.

241





12 Schwinger pair production from Padé-
Borel reconstruction [5]

Author: Adrien Florio

Reference: arXiv v2 of Phys. Rev. D,101(1):013007, 2020, doi: 10.1103/PhysRevD.101.013007

Abstract: In this work, we show how the knowledge of the first few terms of the
Euler-Heisenberg Lagrangian’s weak-field expansion in a magnetic field background is enough
to reconstruct the pair-production rate in a strong electric field background. To this end, we
study its associated truncated Borel sum using Padé approximants, as advocated in a recent
work by Costin and Dunne, J. Phys. A52, 445205 (2019).

12.1 Introduction

In recent years, the program of ”resurgence” has started to collect a number of successes in
quantum mechanics and field theory. The idea behind it is that the typical asymptotic
expansions that are to be dealt with, for example usual weak coupling expansions, are to be
understood as being part of a transseries. In simple terms, transseries are sums of asymptotic
series weighted by non-perturbative factors such as exponentials and logarithms. A typical
example is the semi-classical expansion, which is a sum of perturbative/asymptotic expansions
around different saddle points. We refer the reader to [430,431] for pedagogical introductions
to the topic.

The very analytic structure of transseries implies consistency relations between the different
constituent asymptotic series. In particular, large order coefficients of a given expansion are
known to be related to the small order coefficients of neighboring expansions. While being
seemingly a mathematical curiosity, these relations have, for example, been used to predict the
loop expansion around an instanton background for the quantum mechanical Sine-Gordon
potential [435], predictions which have been explicitly verified up to three loops using
diagrammatic methods [434]. For other interesting examples and reviews, we defer the reader
to [432,437–440] and references therein.
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An immediate complaint against the potential practical usefulness of such approaches is that
the knowledge of large orders terms of realistic quantum field theories expansions is not
necessarily available. In this spirit, reference [442] started to investigate the amount of
”non-perturbative” information that can be extracted from a finite number of terms of an
asymptotic expansion. Stunningly, using relatively few terms of the asymptotic expansion of
solutions to the Painlevé I equation around real infinity, they were able to reconstruct the
whole highly non-trivial analytic structure of this solution throughout the whole complex
plane. In a similar spirit, the works [443,444] successfully explored the phase diagram of the
λφ4 field theory by computing weak coupling expansions up to nine loops and studying their
associated Borel sums.

Having in mind general quantum field theories, these are proofs of principle that a lot of
non-perturbative information might be at our hand, waiting to be extracted from perturbative
expansions.

This short note’s aim is to illustrate again the potential use of some of the ideas developed in
these works in field theory, using one of the simplest ”non-perturbative” effects at hand,
namely Schwinger pair production. In particular, we will present two results. First, the
knowledge of a few terms of the weak-field expansion of the Euler-Heisenberg effective
Lagrangian in a background magnetic field is enough to reconstruct its strong-field behavior.
Then, and perhaps more interestingly, the same knowledge is enough to reconstruct the
Euler-Heisenberg effective Lagrangian in a background electric field, for weak and strong fields,
including its imaginary part. This means that this imaginary part, which gives the particle
production rate in a constant electric field, can be inferred from a few terms of a perturbative
expansion.

12.2 Schwinger effect, generalities

Schwinger pair production is one of the most basics field-theoretic non-perturbative effect,
see [445] for an extensive review. Its simplest realization is the vacuum emission of charged
particles in the presence of strong electric fields. A way to study it is to compute the one-loop
fermionic effective action in a background electromagnetic field. Then, the phenomenon of
pair-productions is signaled by the appearance of an imaginary part in the effective action. For
the sake of simplicity, we will hereafter restrict ourselves to the constant background case.
There, one can explicitly write down the effective Lagrangian [37]. For a purely magnetic field,
it admits the following closed-form [445]

Le f f (B) =
(eB)2

2π2

[
ζ′H

(
−1,

m2

2eB

)
+ζH

(
−1,

m2

2eB

)
ln

(
m2

2eB

)
−

1

12
+

1

4

(
m2

2eB

)2 ]
, (12.1)

with ζH (s, a) the Hurwitz zeta function and ζ′H (s, a) its derivative with respect to s. The
parameters m and e are respectively the fermion’s mass and electric charge, while B is the
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strength of the constant background magnetic field. This expression is real and there is no
pair-production in a magnetic background, as there is apriori no magnetically charged particle
to be produced. The case of a pure electric field background is recovered by analytically
continuing B →±i E [446] (note that in this sense (12.1) can also be understood as the
Euclidean space effective Lagrangian in an electric field background). Then, the effective
Lagrangian does develop an imaginary part, which can be written as [446]

Im
(
Le f f (E)

)
=

m4

8π3

(
eE

m2

)2

Li2

(
e−

m2π
eE

)
(12.2)

=
m4

8π3

(
eE

m2

)2 [
e−

m2π
eE + . . .

]
, (12.3)

with Li2 the second polylogarithm. From this expression, it is easy to see the famous
exponential suppression to the production rate Γpr od , which by definition is [445]

Γpr od = 2Im
(
Le f f

)
. (12.4)

Another representation of (12.1) that will be of use is the following Laplace-type
integral [37,38]

Le f f (B) =−
e2B 2

8π2

∫∞

0

dp

p2

(
coth p −

1

p
−

p

3

)
e−

m2 p

eB . (12.5)

From this representation, it is clear that the imaginary part in the electric case comes from the
contribution to the integral of the poles of the hyperbolic cotangent at integer multiples of iπ.

In the rest of this work, we will be concerned with the weak-field expansion of (12.1). It is
given as [445,447]

Le f f (B) ∼
m4

4π2

∞∑

n=0

(−1)n(2n +1)!
ζ(2n +4)

(2π)2n+4

(
2eB

m2

)2n+4

, (12.6)

with ζ(x) the Riemann zeta function. For the electric field, the expansion reads

Le f f (E) ∼
m4

4π2

∞∑

n=0

(2n +1)!
ζ(2n +4)

(2π)2n+4

(
2eE

m2

)2n+4

. (12.7)

Both series are asymptotic because of the factorial growth of their coefficients. They are also
both real to all orders. It is in this sense that the rate (12.4) is a non-perturbative quantity; at
any given order in (12.7), Γpr od = 0.
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Actually, these weak-field expansions can be resummed to (12.5) using Borel summation. In
this language, again, the imaginary part appears because of the presence of poles in the
Laplace transform; (12.6) is ”Borel summable” while (12.7) is not.

12.3 Strong-field regime from weak-field expansion

Following [442], we want to understand how much of the full Lagrangian (12.1) we can
reconstruct using a finite number of terms in (12.6). To this purpose, again as in [442], we
construct the corresponding truncated Borel sum. From it, we build Padé approximants,
which are then used to compute a resummed Lagrangian L r es

e f f
through a Laplace transform.

The idea behind this procedure is to try to exploit the fact that, while the original expansion
is only asymptotic, its Borel transform is convergent. Note also that very similar techniques
were already used in the 80′s, see for example [448] for a thorough review on QCD strong
coupling expansion.

To keep notations clear, we set x = m2

2eB
and write the asymptotic expansion (12.6), truncated

at order N , as

Le f f (x, N )

m4
∼

1

64π6

1

x4

N∑

n=0

(−1)n(2n +1)!
ζ(2n +4)

(2π)2n

(
1

x

)2n

(12.8)

=
1

64π6

1

x4

N∑

n=0

a2n

(
1

x

)2n

, (12.9)

with a2n = (−1)n(2n +1)!
ζ(2n+4)
(2π)2n . We also define a truncated Borel sum

BL e f f (p, N ) =
N∑

n=1

a2n

(2n −1)!
p2n−1. (12.10)

With these definitions, we construct a Padé approximant of (12.10). Padé approximants are
rational functions constructed to match a given series at specific points. They are typically
used to try to reproduce the analytical structure of a function by extrapolating it away from
some regions. Their rational nature allows for the emergence of poles and branch cuts, which
appear as accumulations of poles. They can be found in a variety of places in the physics
literature. As a specific example, we can mention attempts to analytically continue Euclidean
lattice data to Minkowski space through Padé approximants, see [24] and references therein.

To have easy access to the poles of our Padé function and have good control over the
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Figure 12.1 – Magnetic field effective Lagrangian. Closed-form (plain line), weak-field expansion
(dotted lines) and Padé-Borel reconstruction (dashed lines) for different truncation order N .
The weak-field expansion has a typical asymptotic behavior; every order makes it break down
faster. The Padé-Borel reconstruction takes advantage of the fact that the Borel sum is
convergent; every order improves the answer.

numerical Laplace transform, we use Padé approximants of the type

P 2N BL e f f (p, N ) =
N∑

n=1

cn

1+bn p
. (12.11)

The coefficients cn ,bn , which are in principle complex numbers, are computed by matching
this expression to (12.10) around p = 0, see [449] for an explicit algorithm.

Finally, we compute our resummed Lagrangian as follows

L r es
e f f

(x, N )

m4
=

1

64π6

1

x4

(
a0 +

∫∞

0
dpe−pxP 2N BL e f f (p, N )

)
. (12.12)

Note in particular that without the Padé interpolation, we would have achieved nothing, as in
this case (12.12) would literally be equal to (12.9).

We show the result of this procedure, which from now on we will refer to as Padé-Borel
reconstruction, in figure 12.1. The plain black line is the closed-form (12.1). The dotted lines
are the truncated weak-field expansions, for different truncation N . The dashed lines are the
Padé-Borel reconstructed expressions for the same N . Note that x →∞ resp. x → 0

corresponds to the weak resp. strong-field regime, the goal being to be able to extrapolate from
the former to the latter. Being an asymptotic expansion, every order makes it break down for
larger values of x, i.e. for weaker fields. On the contrary, the Padé-Borel reconstruction

247



Chapter 12. Schwinger pair production from Padé-Borel reconstruction [5]

improves as N increases. This boils down to the fact that the Borel sum (12.10) is convergent;
every new order contributes making the result more accurate. For example, only four terms of
the weak-field expansion can be used to probe the strongly-coupled regime as far as x = 0.2.

This is our first result. With the knowledge of only the first few terms of the weak-field
expansion (12.6), it is possible to explore the regime of strong magnetic fields by first
constructing the corresponding truncated Borel sum, Padé approximating it and computing its
Laplace transform.

12.4 Schwinger effect reconstructed

Now, we will show that this method, using the same data, actually also gives access to the
regime of strong electric fields. In particular, we will see that we can use it to recover the
Schwinger pair production rate.

To consider an electric field, we proceed with the analytic continuation x →∓i x. This leads us
to study

L r es
e f f

(∓i x, N )

m4
=

1

64π6

1

x4

(
a0 +

∫∞

0
dpe±i pxP 2N BL e f f (p, N )

)
. (12.13)

Technically, to compute this Laplace transform, we consider all the different fractions of
(12.11) separately. We then rotate the integration contour in the complex plane by some angle
and take into account any poles we might have crossed in the process.

Let us first look at what we obtain for the real part of the resummed electric field effective
Lagrangian obtained through this analytic continuation, figure 12.2. As in the magnetic case,
few terms of the weak Lagrangian allows for a precise extrapolation up into the strong-field
regime. In particular, the reconstruction is able to predict correctly non-trivial features such
as the change of signs which happens around x = 0.1 (note that we are plotting the absolute
value).

More interesting are the results for the imaginary part of the effective Lagrangian, i.e. the
pair-production rate. They are shown in figure 12.3. They behave in exactly the same way;
few terms of the weak-field expansion still give a quantitatively correct prediction of the rate.
As little as the first two terms are required to reconstruct an imaginary part which is
qualitatively correct at weak-field. With only the first six terms one can make quantitative
predictions up to strong fields. This has to be contrasted again with the original asymptotic
series, which uses the same data but is real to all orders.

The perhaps surprising capability of the Padé-Borel reconstruction to recover the
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pair-production rate is due to the fact that the Padé approximants of the truncated Borel
sums are able to reproduce the correct analytic structure of the Borel sum. In terms of our
variable x, the actual Borel sum (12.5) is a meromorphic function with single poles at x = 2πi n

for n ∈ Z,n 6= 0. As already mentioned, the imaginary part (12.3) can be understood as coming
from the contribution of every single pole. It is dominated by the lowest-lying ones at x =±2πi

Γ
lead .
pr od

2
=

1

32π3x2
e−2πx , (12.14)

which we also show in figure 12.3.

As the Padé-Borel approximants are constructed only from an asymptotic expansion around
the real axis it is, however, a non-trivial fact that they are able to mimic correctly this
analytic structure. We show it occurring in figure 12.4, where we display the poles of our Padé
approximants. As the truncation order N is taken to be larger, they accumulate around
x = 2πi n. Note that to approximate the correct prefactors, a single pole is replaced by a
combination of different ones centered around x = 2πi n. The leading poles at ±2πi are first
reproduced accurately by the truncation order N = 6, which is consistent with the behavior of
the results presented in figure 12.3.

This is our second and most important result. The knowledge of a few terms of the weak-field
expansion of the effective Euler-Heisenberg Lagrangian in a magnetic field background is
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enough to reconstruct the particle production rate in a strong electric field.

12.5 Conclusion

This work can be summarized as follows: using only the truncated weak-field asymptotic
expansion of the Euler-Heisenberg effective Lagrangian in a magnetic background, we were
able to reconstruct the full Euler-Heisenberg Lagrangian, including its imaginary part which
gives the Schwinger pair production rate. This may come as a surprise, as this rate is zero at
all-orders of the weak-field asymptotic expansion.

What this result suggests, as already realized in [442], is that all coefficients in such
asymptotic expansions contain information about the analytic structure of the underlying
transseries in the whole complex plane. This information can be extracted by studying the
associated Borel sum even upon truncation to a finite number of terms, by taking advantage of
the fact that the Borel sum is a convergent series. Another remarkable fact is that the
knowledge of the truncated Borel sum along the real axis is enough to gain information about
its analytic structure, using Padé approximants, throughout the complex plane. In particular,
this means that the underlying transseries is constrained enough to force the Padé
approximants to develop poles at the correct locations.

The precise mechanism behind this phenomenon remains to be better understood; this will be
essential to apply this method to unsolved problems and obtain trustworthy predictions. The
aim of this work was however to illustrate its potential use in a simple physical problem.

Acknowledgments. The author wants to thank G. Dunne for an inspiring talk, S. Valgushev for
stimulating conversations and its invitation to BNL, where the aforementioned talk was given,
and M. Shaposhnikov for feedback on this work. The author is supported by the Swiss
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The end. . .

Both the dynamics and the vacuum structure of gauge theories are extremely rich. In this
thesis, we studied four such instances.

The first problem we tackled is the effect of the chiral anomaly on the evolution of an
electromagnetic plasma in the presence of a chiral imbalance. As we argued, a precise
understanding of the underlying dynamics would have implications in fields ranging from
cosmology to heavy-ions physics. Current knowledge and quantitative predictions are mostly
based on hydrodynamic-like approaches [89,112] and therefore cannot account independently
for fluctuations smaller than the mean free path of the system. Recently, an effort to
accommodate such effects from first principles simulations was started, directly studying
fermions [90–93]. In reference [1], presented in chapter 6, we aimed to achieve the same
understanding following another road. We conducted classical real-time simulations of a scalar
plasma, incorporating the effect of the anomaly in an effective way using a chiral chemical
potential. The main result of this study can be framed as follows. While the qualitative
features of this system are particularly well described by the relevant hydrodynamic approach,
the quantitative predictions taking into account short-scale fluctuations can vary by an order
of magnitude from the hydrodynamical predictions. In particular, we extracted the chiral
decay rate, which quantifies the exponentially swift relaxation of a chiral chemical potential
into gauge fields in the presence of a background magnetic field. We found this rate to be ten
times larger than the one predicted by hydrodynamic. Such a difference, together with other
discrepancies reported in [92, 93], strongly motivates further studies to elucidate the impact of
short-scale fluctuations on the chiral dynamics.

In part III, we left Abelian gauge fields and Minkowski space to consider non-Abelian fields
and Euclidean path integral simulations. In particular, motivated by the problem of
topological freezing, namely the poor sampling of different topological sectors as the
continuum limit is taken, we studied in reference [2], the content of chapter 8, the use of
open-boundary conditions at finite temperature. A crucial quantity to determine when using
open-boundary conditions is the ”boundary zone”, namely the length over which boundary
effects are not negligible. In a field theory setting, these interactions of operators with the
boundary can be understood as being mediated by propagating states of the underlying theory.
In this sense, one expects the typical length of the boundary zone to be inversely proportional
to the lightest propagating state. We measured this length for two different temperatures. Its
value and temperature dependence were found to be compatible with the former interpretation.
It was in turn used to determine screening masses at finite temperatures using an independent
approach from what was previously done in the literature.

Combining aspects of the two previous projects, we presented in chapter 10 a compendium on
lattice techniques to perform real-time classical simulations of scalars, Abelian and
non-Abelian gauge fields, in an expanding Friedmann-Robertson-Lemaître-Walker universe.
Their main applications lie in, but are not limited to, the fields of early cosmology and
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reheating. In particular, we reported new algorithms, some with remarkable accuracy, to
evolve gauge fields and demonstrated their robustness in a simulation combining U (1) and
SU (2) gauge fields with their matter content. Alongside this project, we developed a scalable,
user-friendly, extendable code, C osmoL attice, to perform these kinds of simulations. One of
the main advantages of its flexibility is that its main module could also serve as a base to
perform simulations of the type presented in chapter 6.

At last, in part V, we diverted from the realm of numerical simulations to study another way
to probe non-perturbative physics, by using techniques coming from the field of ”resurgence”.
For some years now, a research program has been built on the idea that quantum field theories
may have a rather constrained hidden analytical structure and that elucidating these
constraints may be used as a tool to probe physics. In reference [5], presented in chapter 12, we
applied recent ideas from this topic [442] to the simple problem of Schwinger pair-production.
Such processes, namely the creation of particles by strong electric fields, are considered to be
non-perturbative, as they are seemingly not captured by the weak-field perturbative expansion.
Surprisingly, by only using a few terms from the weak-field expansion in a background
mag neti c-field, we were able to reconstruct the strong field behaviour, both for electric and
magnetic fields. It means in particular that we were able to extract the Schwinger
pair-production rate only starting from the weak-magnetic field expansion at finite order.

All these four different topics present surprising connections. For instance, ideas emerging
from the field of resurgence are actively being researched in lattice QCD to ease the so-called
”sign-problem”, see for instance [450] for a review. Importance sampling algorithms can only
be used to sample probability distributions. Euclidean path-integrals cannot be interpreted as
such when the action is not positive definite and these algorithms cannot be applied directly.
A way to parametrise the constrained analytical structure predicted in the context of
resurgence is the so-called Lefschetz thimbles. The field space is complexified and the path
integral is deformed in some specific complex directions, the ”thimbles”. It was realised in
reference [451] that these ideas might be applied to numerical simulations, to reduce the sign
problem. Next, to conclude this thesis looking forward, we will discuss a potential outlook
which takes advantage of, albeit different, similar connections.

. . . or not

The research presented in this work opens up many possibilities for further explorations.
Chiral charge dynamics is not a solved problem and further investigation is required.
Open-boundary conditions can be used at finite temperature to improve the determination of
topology-sensitive observables above the phase transition. The preheating of zillions of
inflationary models needs to be studied. Resurgence at finite order needs to find a situation
where original predictions can be made.

Rather than developing on specific outlooks of each project, which are still mentioned in their
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respective conclusions, we want to pitch a potential direction of research that groups aspects of
these four different projects.

We saw in chapter 6 that classical real-time simulations of a chirally charged scalar plasma
lead to a prediction of the chiral decay rate ten times larger than one would expect from a
hydrodynamical approach. We also argued that even if interesting in and of itself, one need to
assess the effects of quantum and thermal corrections to make this result robust. Lastly, we
also saw that this rate is related through a fluctuation-dissipation theorem to helicity diffusion
in the absence of chiral chemical potential.

Such a ”helicity-diffusion rate” can in principle be extracted directly from Euclidean path
integral simulations of a U (1) gauge field coupled to a complex scalar, thus taking directly into
account quantum and thermal effects. Moreover, studying this system would be interesting
towards extracting similar quantities in more complicated theories such as QCD. Indeed, as we
already mentioned in section 2.4, extraction of dynamical rates, or more generically ”transport
coefficients”, from Euclidean data is a notoriously difficult problem, as it involves
reconstructing Minkowski correlators from a finite number of points of the Euclidean
correlators. Despite having been performed with some success for different quantities, see for
instance [452] and references therein, coefficients coming from ”topological correlators”, such
as the sphaleron rate, are believed to be even harder to extract [25]. This is related to the fact
that the topological charge is not easy to define on a lattice, see chapter 7. This problem can
be both circumvented or mimicked by a non-compact or compact formulation of the U (1)

gauge fields. Moreover, this study would motivate the development of a Monte-Carlo interface
on top of the same core module as C osmoL attice, which would be of great help to study all
different models that do not have dedicated code as QCD does.

In any events, gauge theories still abound of fascinating problems to be solved and as such
remain an exciting playground for research.
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