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Abstract

The conformal bootstrap is a non-perturbative technique designed to study conformal
field theories using only first principles, such as unitarity, crossing symmetry and the
existence of an Operator Product Expansion. In this thesis we discuss an application of
the bootstrap method in four dimensional conformal field theories. We also consider
in detail the special case where the theory is supersymmetric. In particular we focus
on the case study of four abelian currents. The non-supersymmetric setup applies to
all conformal field theories with a global abelian symmetry group. When we include
the assumption of supersymmetry, the current is taken to be the generator of the R-
symmetry, which is tied to the stress tensor due to the superconformal algebra. The
supersymmetric setup therefore applies to all local superconformal field theories. We
start by introducing all the necessary ingredients. In particular, we discuss the formalism
of the embedding space and of the conformal frame to study conformal kinematics. We
also give a supersymmetric generalization of the conformal frame formula to count
three-point tensor structures. Then we address the important problem of expanding
superspace correlators in their components. To this aim we introduce a set of differential
operators that act in superspace. Using this formalism we are able to compute the linear
relations among the operators in the same superconformal multiplet. This is a necessary
step in the computation of superconformal blocks, but it will also be useful for other
purposes that we discuss before passing to the bootstrap analysis. First we use it to
impose the averaged null energy condition on arbitrary superconformal field theories.
This will lead to interesting consequences on their local operator spectrum. Next we
focus on the case of local superconformal field theories with eight supercharges and we
prove that a certain class of operators termed “exotic primaries” cannot exist. Finally,
after a pedagogical introduction to the notion of the conformal bootstrap, we carry out a
detailed study of the correlator of four conserved currents. In particular, we compute
the conformal and superconformal blocks and the crossing equations. We conclude by
proposing several numerical studies and strategies and by showing some preliminary
results for the non-supersymmetric case.

Keywords: Conformal field theory, superconformal field theory, superspace, averaged
null energy condition, conformal bootstrap, conserved current.
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Riassunto

I1 bootstrap conforme & una tecnica non-perturbativa ideata per studiare le teorie di
campo conformi usando solamente principi primi, come l'unitarieta, la simmetria di
crossing e l'esistenza di una Operator Product Expansion. In questa tesi discutiamo
un’applicazione del metodo del bootstrap per teorie di campo conformi in quattro
dimensioni. Consideriamo in dettaglio anche il caso speciale in cui la teoria e super-
simmetrica. In particolare, ci focalizziamo sull’esempio di quattro correnti abeliane.
La formulazione non supersimmetrica si applica a tutte le teorie di campo conformi
con un gruppo di simmetria globale abeliano. Quando includiamo l’assunzione di
supersimmetria, prendiamo come corrente il generatore dell’R-simmetria, la quale &
legata al tensore energia-impulso per via dell’algebra superconforme. Di conseguenza
la formulazione supersimmetrica si applica a tutte le teorie di campo superconformi
locali. Iniziamo introducendo tutti gli ingredienti necessari. In particolare, discutiamo
il formalismo dello spazio di embedding e del frame conforme al fine di studiare la
cinematica conforme. Inoltre forniamo una generalizzazione supersimmetrica della for-
mula del frame conforme per contare le strutture tensoriali a tre punti. Successivamente
consideriamo 'importante problema di espandere i correlatori in superspazio nelle loro
componenti. A tal fine introduciamo un insieme di operatori differenziali che agiscono
nel superspazio. Usando questo formalismo siamo in grado di calcolare le relazioni
lineari tra gli operatori nello stesso multipletto superconforme. Questo € un passaggio
necessario nel calcolo dei blocchi superconformi, ma sara anche utile per altri scopi
che discutiamo prima di passare all’analisi del bootstrap. Per prima cosa lo usiamo
per imporre la condizione di energia nulla integrata su teorie di campo superconformi
arbitrarie. Successivamente ci concentriamo su teorie di campo superconformi con
otto supercariche e dimostriamo che una certa classe di operatori chiamati “primari
esotici” non puo esistere. Finalmente, dopo un’introduzione pedagogica alla nozione
del bootstrap conforme, effettuiamo uno studio dettagliato del correlatore di quattro
correnti conservate. In particolare, calcoliamo i blocchi conformi e superconformi e le
equazioni di crossing. Concludiamo proponendo diversi studi numerici e strategie e
mostrando alcuni risultati preliminari per il caso non supersimmetrico.

Parole chiave: Teorie di campo conformi, teorie di campo superconformi, superspazio,
condizione di energia nulla integrata, bootstrap conforme, corrente conservata.
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Introduction

Quantum field theory is a remarkably powerful framework, capable of describing a
vast class of phenomena in fundamental physics. We can find theories that admit a
formulation in terms of quantum fields across a wide range of energy scales. Notable
examples are the theories that describe the critical behavior of quantum and statistical
systems and the theories that study the properties of the fundamental interactions for
energies below the Planck scale. There are also numerous idealized models that do not
describe nature, but are useful for better understanding the underlying mathematical
structures of quantum field theory. Superconformal theories in various dimensions
are an example of this. Not only they constitute a theoretical laboratory for quantum
field theorists, but they also provide a dual description of String Theory in a negatively
curved background. Such a duality is often referred to as AdS/CFT correspondence,
and it is our most powerful tool aimed at understanding the quantum aspects of gravity.

Despite the importance of quantum field theory throughout nearly all branches of theo-
retical physics, our understanding of it in a non-perturbative sense is still unsatisfactory.
Naturally, most of the interesting phenomena take place in a strongly coupled regime,
where our intuition and our computational tools fall short. This means that we need a
robust and general framework in which we can study theories that exhibit a strongly
coupled behavior. In this thesis we will argue that a good candidate of such a formalism
is the so-called conformal bootstrap and we will showcase an application of it in four
dimensions. However, before introducing it, let us discuss some general aspects of
quantum field theory in order to understand better the context and the motivations.

Renormalization group flow

An important aspect of quantum field theory (QFT) is the dependence on the energy
scale. At large distances we cannot resolve the microscopic details of the system under
consideration. Therefore the high energy excitations become less and less important
as we “zoom out” and can be consistently neglected. In doing so, the Hamiltonian
restricted to only the low lying degrees of freedom is modified in order to account for
the excitations that we removed. This induces a transformation flow in the space of
parameters of the theory which takes the name of Wilsonian renormalization group (RG)
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flow.

QFTs at different energy scales may look very different. A notorious example of this is
quantum chromodynamics: the theory of strong interactions. At high energy it behaves
like a weakly interacting theory of partons and at low energies it is a strongly coupled
theory of hadrons, exhibiting confinement and chiral symmetry breaking. When the
RG flow makes the couplings grow, we quickly exit the perturbative regime and have
fewer tools at our disposal to follow the evolution of a theory. We can try to focus on
special points with enhanced symmetry, namely the fixed points: those where the flow is
stationary. The theories at the fixed points are by definition scale invariant. Furthermore,
in nearly all cases of interest scale invariance is enhanced to a larger group that includes
all transformations that preserve angles.! This is called the conformal group. QFTs that
enjoy the conformal group as a symmetry are called conformal field theories (CFT). They
will be the subject of the present thesis.

The modern perspective sees a QFT as the theory that lives along an RG flow between
an ultraviolet and an infrared CFT. This interpretation does not encompass all cases as
the UV theory need not be a CFT. However we will adopt this viewpoint here.

From an experimentalist’s perspective CFTs are quite boring: the physics looks exactly
the same at all energy scales and all particles are massless.> On the other hand theorists
find them interesting for essentially two reasons. First, according to the viewpoint given
above, they are in a sense the fundamental objects that give rise to QFTs. Secondly, CFTs
are a good approximations of a system that exhibits a separation of scales from the UV
to the IR, in an energy range equidistant from the two scales. This feature is present by
assumptions in all effective field theories and, in particular, in the Standard Model as
well.

Symmetries

Symmetries are our most powerful tool to study QFTs. We already encountered the
conformal symmetry, whose consequences will be described at length in this work.
Symmetries are of central importance in the context of critical phenomena. They are part
of what characterizes a universality class, namely the set of microscopic descriptions of a
system which flow to the same theory in the infrared. For example, the Ising universality
class is characterized by having two relevant operators (temperature and magnetization)
and a Z; global symmetry group. Furthermore we can use symmetries to constrain the

1To be more precise, scale symmetry is always enhanced to conformal symmetry in two dimensional
unitary CFTs [2]. In four dimensions instead it is still an open problem [3-5].

2This statement depends on our common way of thinking about high energy physics in terms of particles.
However there has been a proposal of a type of matter that is not comprised of particles. This type of
excitations go under the name of “unparticles” [6,7]. With this scenario in mind, a conformal sector would
actually be very interesting experimentally.

2
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local observables by means of selection rules and Ward identities.> Both are very robust
results of representation theory and therefore are independent on the coupling.

A widely studied type of symmetry involves transformations that relate objects with
different spins and statistics to each other. It goes under the name of supersymmetry.
It is not associated to a Lie group in the usual sense because the generators satisfy
graded commutation relations. Nevertheless it shares many properties with ordinary
Lie groups.

Supersymmetry was first introduced for phenomenological reasons. A possible scenario
that explains the Higgs mass naturalness is offered by a supersymmetric extension of
the Standard Model. The contributions to the Higgs mass given by loops of bosons and
fermions cancel if the theory is supersymmetric. This lead to the conjecture that there
should be new physics above ~ 1TeV which consists in superpartners to the particles of
the Standard Model. This also requires that supersymmetry must be broken as we do
not observe it at lower energies. However, the modern developments in supersymmetry
are less oriented to phenomenology and more oriented to understanding pure QFT or
quantum gravity.

The main reason why supersymmetry is still a very active area of research is that String
Theory requires it in order to be free of quantum instabilities. As a consequence, when
we compactify strings on a manifold that preserves a certain amount of supercharges, we
obtain a supersymmetic QFT at low energies (upon taking the appropriate decoupling
limit).

Furthermore the rare occasions where we can compute quantities exactly in an inter-
acting QFT typically require some amount of supersymmetry as, in that case, we have
additional tools at our disposal, like supersymmetric localization [8-10]. This is es-
sentially a consequence of the existence of protected observables. In an ordinary QFT
protected operators can only be conserved currents, otherwise the theory would be free.
Whereas in supersymmetric QFTs we have a much richer variety of protected operators,
giving rise to many beautiful mathematical structures, which we will not review in this
thesis.

When we impose supersymmetry on a CFT we obtain a superconformal field theory
(SCFT). The combination of conformal symmetry and supersymmetry implies very
strong constraints on the resulting theory. This is because the representation theory
of superconformal algebras is very stringent. The algebras have been classified by
Nahm [11] and their unitary representations have been studied in great detail leading to
a classification for all dimensions and all amounts of supercharges [12-15].

3By selection rules we mean statements like (O ... 0,) = 0if no singlet appears in the tensor product
of representations @ _; p(O;). By Ward identities we mean the class of identities that involve the integral
of a correlator containing a conserved current. Namely [ dQ (JX) ~ (Q[X]), Q being the charge operator.

3
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Conformal field theories in four dimensions

Physics in four dimensions is undoubtedly the most interesting one to study since we
live in a universe that is four dimensional (at least at the energy scales probed so far). It
is disappointing that not much is known about interacting non-supersymmetric 4d CFTs.
The only class of candidates available to us so far are the so-called Caswell-Banks-Zaks
fixed points [16,17]. They are obtained as the low energy limit of an asymptotically
free gauge theory coupled to matter, such as quantum chromodynamics. In the case
of an SU(N,) gauge theory with fundamental fermions transforming under the flavor
group SU(Nf), the fixed point exists only when Ny and N, lie in a specific range termed
conformal window, whose precise lower limit is still under debate.* At N, = 3 different
estimates of the lower bound on N range from 10 to 12. See [18] for a recent study, [19]
for a review of the lattice results and [20-24] for computations via other methods.

Naturally it is difficult to get quantitative results as the IR limit of these theories is
notoriously strongly interacting. This has to be contrasted with the situation in three
dimensions where interacting fixed points are more abundant. That is because the
Lagrangians are easier to construct since they typically consist in theories of scalars and
at most fermions. The prime example is given by the O(N) vector models. Due to the
simplicity of these theories, the perturbative e-expansion followed by resummation is
a viable approach and it gives correct results. Moreover, at large N one can also study
these theories in a 1/N perturbative expansion. Later we will say more about three
dimensions in the context of the conformal bootstrap.

If we allow for supersymmetry, the situation in four dimensions is not so dire anymore.
The amount of supersymmetry®> A can take values from 1 to 4 in four dimensions.
If ' = 1 there is recent evidence of a so-called minimal interacting SCFT, whose
Lagrangian description is still unknown [25,26]. Another example is analogous to the
Caswell-Banks-Zaks fixed point: it is a supersymmetric extension of QCD, which is
believed to have a conformal window for %NC < Ny <3N, [27].

The story for N' = 2 supersymmetry is much richer. There are several geometric
constructions inspired by the String Theory duals. Some examples are the so-called class
S SCFTs [28,29], a generalization of the Argyres-Douglas theories [30,31]. In addition,
there exists a classification of N' = 2 SCFTs with a two-dimensional Coulomb branch
(also called rank 1 SCFTs) [32,33]. All N' = 2 SCFTs are associated to a two-dimensional
vertex operator algebra through a cohomological construction [34].° This may give
insights towards a possible more general classification in the future.

On the contrary, the class of A" = 4 SCFTs is believed to contain only one theory:” N = 4

4The upper limit of N r < 12—1NC is more robust because it is accessible in perturbation theory.

5In four dimensions the number of supercharges Ngis No =4N.

6A very similar construction also works for six dimensional SCFTs with maximal supersymmetry [35].
7By one theory we mean one conformal manifold of theories. That is, one family of theories obtained by
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super Yang-Mills (SYM).? It is dual to String Theory on AdSs x S° [36] and has since
been one of the most studied examples of this duality. The only case left to discuss is
N = 3. Surprisingly, examples of such SCFTs have been found only recently [37-39] and
a bootstrap study was carried out in [40]. The reason is that any Lagrangian construction
will automatically fall back to A = 4 supersymetry due to CPT invariance. In this thesis
we will not be interested in ' = 4 or 3 supersymmetry.

It seems that the situation for N' = 1 supersymmetry is closer to the one of non-
supersymmetric CFTs. Namely our knowledge of the landscape of consistent theories
is still rather limited. This is due to the absence of all the sophisticated mathematical
structures that make an appearance after N' > 2 — like vertex operator algebras, string
constructions etc. It is worth then to adopt a more explorative approach. One possibility
is the numerical bootstrap and we will explain it shortly in the context of general (not
necessarily supersymmetric) CFTs.

1 The conformal bootstrap

Axiomatic approach to conformal field theories

In the axiomatic approach to CFTs we are interested in studying the properties of
correlation functions of local operators. Conformal symmetry completely fixes the
functional form of each three-point function up to a finite number of real numbers
called operator product expansion (OPE) coefficients. The collection of OPE coefficients,
conformal dimension and spin of all the operators in the theory is referred to as CFT
data. Higher-point correlation functions may be obtained in terms of the lower ones
by means of the so-called operator product expansion, which we will define shortly.
Therefore, if we want to fully specify all observables of local operators, it is sufficient to
simply provide the set of CFT data. Since in this context we do not care about nonlocal
operators — such as Wilson lines or defects — this is enough to fully characterize the
theory.

A distinctive feature of CFTs is that the operators live in an Hilbert space because they
can be put in a one-to-one correspondence with the states in radial quantization. As a
consequence we can always expand the product of two local operators at points x and
x + € as an infinite sum over local operators at x. This is the so-called operator product
expansion. It is possible to show that the OPE always converges in a CFT [41-43].

By taking the OPE of different pairs of operators inside a correlation function we can
eventually reduce it to sums of two-point functions. However, for n > 4-point functions

varying the marginal coupling 7.

81t should be emphasized that there is no rigorous evidence supporting this lore yet, except for the fact
that it holds true when restricted to Lagrangian theories. The uniqueness of super Yang Mills as an N = 4
SCFT is still a very important matter to be settled.
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there is more than one way to pair the operators and they all have to agree. This puts
strong, non-perturbative, constraints on the CFT under study. The axiomatic approach
consists in imposing this constraint on the correlators and “bootstrapping” the theory
from it. In this context bootstrapping refers to obtaining something out of nothing, that
is, obtaining a fully fledged quantum theory just from its consistency conditions. Clearly
crossing is not the only constraint that can be imposed. One can also require unitarity —
which will turn out to be crucial for the numerical methods — and any global symmetry
that is shared by the theories under investigation.

This axiomatic approach was initiated in the seventies with the seminal works of
Polyakov, Mack, Ferrara and several other authors [44-48].” Unfortunately, the ap-
proach in its original formulation was unable to produce concrete results for many years.
The reason is that the crossing equations are too complicated to be studied analytically
in the case of d > 2 dimensions. The case of two dimensions is special because the con-
formal symmetry is enhanced to the Virasoro algebra. Indeed there are some instances
where crossing has been solved explicitly in closed analytic form. An example is the
solution of Liouville theory with the DOZZ formula [49,50]. In higher dimensions this
quickly becomes unfeasible. However, in 2008 there was a rebirth of this program when
it was realized that the crossing equations could be studied by means of a numerical
method [51].

A numerical method

The modern revival of the conformal bootstrap was motivated by a question of natu-
ralness in the context of the theory of conformal technicolor. The details of this theory
are outside the scope of this thesis. However the concrete question that needed to be
addressed boils down to: “how high can we make the conformal dimension of ¢? if we
fix the dimension of ¢ to be Ay?”

This calls for an axiomatic approach: we want to be completely agnostic about the theory
and consider the correlator (¢p¢¢¢). Since ¢? is part of the OPE ¢ x ¢, we will be able
to constrain its dimension by imposing the crossing equations. Unitarity implies that
the OPE coefficients squared are positive numbers. This turns the crossing equation
in a particular type of convex optimization problems, for which there exist efficient
numerical algorithms in the mathematical literature.

One of the first results of the numerical bootstrap program was the determination of
the critical exponents of the 3d Ising model [52,53]. The Ising model was recognized
in a feature or “kink” present in the exclusion plots.!’ By kink we mean a noticeable

9We will not attempt to give a detailed historical account of the early developments of the bootstrap in
this introduction.
10Tt is often correct to interpret a kink as a physical theory. In this case it definitely is. An exception is
when the kink heavily depends on some additional, ad hoc, assumptions or it is numerically unstable.
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1. The conformal bootstrap

change in the slope of the exclusion bounds. Further studies we able to improve on this
result and to isolate the theory in a closed region in parameter space that is referred to as
“island.” In the latter, a crucial assumption was that there was only one Z; even relevant
scalar (in the RG sense).

Other noteworthy results in 3d are the O(N) models [54-56]. In this case the authors
obtained a family of islands, one for each value of N. More recent studies have been
focused in particular to the O(2) case because of its phenomenological relevance [57,58].

There were also several attempts to bootstrap gauge theories. See e.g. [59] where the
authors bootstrapped correlators of monopoles in QEDj;. In this axiomatic formulation
it is impossible to identify with certainty a gauge theory, because its physical correlators
will be made of gauge invariant operators. Nevertheless one can gain sufficient evidence
by comparing with available perturbative or large N computations.

Another interesting application of the bootstrap in 3d is the study of M-theory on a stack
of N coincident M2-branes. This can lead to a maximally supersymmetric SCFT in the
decoupling limit [60-62] (see also [63]). Different bootstrap studies were made in [64—66].
In particular, the results of [66] show a large variety of high precision islands.

All attempts in four dimensions have so far been unsuccessful in finding islands. The
main targets of the numerical studies are either gauge theories — inspired by the hope
of finding a Caswell-Banks-Zaks-like fixed point — or supersymmetric theories. The
seminal paper and its follow-ups were set in four dimensions and aimed at finding
general bounds [51, 67-69]. Later, a more detailed study followed [25]. Further in-
vestigations assumed the presence of global symmetries [70] such as SO(N) [71,72],
SO(N) x SO(M) [73], SU(N) [73,74] and SU(N) x SU(N) [72,75]. Other studies instead
assumed N = 1 supersymmetry [25,26,76].

Minimal supersymmetry and extended supersymmetry are fairly different in terms of
their bootstrap setups. The former is similar to the non-supersymmetric setup. The only
difference is that the contributions of operators in the same multiplets need to be grouped
together in what are known as the superconformal blocks. On the other hand the setup
for extended supersymmetry also needs to take into account the existence of protected
operators. The contributions of the protected operators can be computed in a model
independent way and can thus be input in the crossing equations. Furthermore, the
superconformal blocks are never computed explicitly as in the A = 1 case, rather they
are obtained by alternative methods which work only for protected external operators
(which are typically the cases of interest). Examples of such bootstrap studies for
N = 2,4 supersymmetry are [77-81].
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Boostrap of spinning operators

The works we cited so far consisted in applying crossing symmetry on a correlator of
four scalar operators. The bootstrap method however does not have such a limitation
and one is free to consider operators with arbitrary spin as well. The only example
considered so far in four dimensions is the bootstrap of Weyl fermions transforming
under a U(1) global symmetry [82]. Unfortunately, the bounds look rather smooth and
there is no conclusive evidence of new theories. This might be due to the fact that the
interesting theories lie well inside the allowed region and so have little effect on the
shape of the bound. In three dimensions on the other hand there have been already
several works that considered a spinning setup [58, 83, 84].

The computations quickly become very challenging and intensive as the spin is increased.
But of course there are theoretical motivations for considering other spinning operators
as well. There are two operators which are special: the conserved current (vector of
dimension d — 1) and the stress-energy tensor (rank-two symmetric traceless tensor
of dimension d). The former appears in any theory with a global symmetry, due to
the Noether theorem, and the latter appears in any local theory. Their correlators are
tightly constrained by the Ward identities and the conformal dimensions of the external
operators are fixed. This leaves us with fewer free parameters and, as a consequence,
we can obtain rigorous, theory independent, bounds on a large class of theories. For
example, an upper bound A* on the dimension of the lightest scalar in the OPE of two
currents implies that any theory with a global symmetry must have a scalar operator of
dimension less than A*. An example of this can be found in three dimensions [84].

Another motivation behind considering spinning operators is that in dimensions bigger
than three there are some CFT data which are inaccessible by bootstrapping only scalars.
Those are the data associated to operators with non-vanishing transverse spin.!! In
the OPE of spinning operators instead we can find exchanged operators of nonzero
transverse spin. Imposing assumptions on them gives us more constraining power and,
in turn, may lead to stronger bounds.

Currents are particularly interesting in the case of supersymmetric theories. Every
SCFT comes with a global symmetry:!? the R-symmetry. Representation theory dictates
that the current of the R-symmetry must be part of the same multiplet containing the
stress tensor. In supersymmetric theories with at least 8 supercharges we are in luck
because the lowest component of this multiplet is a scalar, so we do not have to resort
to an expensive spinning setup. Meanwhile for lower amounts of supersymmery the
bottom component has nonzero spin. In particular, for exactly 4 supercharges the bottom
component is precisely the R-current. The present thesis will be focused on this case.

n four dimensions the transverse spin of (j,7) is |j — 7|. In general, it is given by the number of boxes
in the Young tableaux that belong to the rows after the first one.
2Except 3d N = 1.
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It should be noted, however, that one has the possibility of regarding the current as
part of a flavor multiplet as well. In that case the analysis would be dependent on the
assumption that the theories under investigation have a global symmetry other than the
R-symmetry.

As we remarked in the previous paragraphs, considering a bootstrap setup with spinning
operators comes with many challenges. The additional indices that appear in the
correlator give rise to different tensor structures, which will most likely mix under
crossing. Furthermore, the OPE becomes considerably more involved. Computations of
this sort require the use of a powerful and general formalism that allows for automation
on a computer.

2 Studying conformal kinematics

The many formalisms in conformal field theory

In a CFT the functional form of two and three-point functions is fixed. Imposing
conformal invariance on a correlator however is not straightforward, especially if the
operators have nonzero spin. The formalism for symmetric traceless tensors for general
dimension d was developed in the nineties by Osborn and Petkou [85]. Soon after the
2008 revival it became necessary to have a lighter and more efficient formalism, in order
to open up the possibility of bootstrapping spinning operators.

If the d dimensional space is embedded in a d + 2 dimensional space with signature
(2,d) the conformal group acts linearly. Dirac was the first one to use this fact to study
wave equations [86]. This idea goes under the name of embedding formalism. In its
more recent developments it is combined with the so-called index-free formalism, where
one introduces polarizations to contract all open indices. The formulation for general
d initially dealt only with symmetric traceless representations — since they are not 4
dependent [87,88]. In four dimensions or higher there exist also non symmetric traceless
representations. If one is interested in those representations, it is probably best to make
a separate treatment for each number of dimensions. The only case studied in depth so
far is that of d = 4 [89-91]. With more work, however, it is possible to develop a theory
for general d as well [92].

Another formalism that is used goes under the name of conformal frame [93]. Unlike
the embedding formalism, here covariance is lost. However the frame is chosen such
that as many coordinates as possible are fixed to some convenient value, so that the
tensor structures become very simple objects. It is also useful for counting the number
of independent tensor structures.

The embedding formalism and the conformal frame are both indispensable for setting
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up the bootstrap of a correlator of spinning operators. There are several steps that need
to be performed: the three-point function analysis, the computation of the conformal
blocks and the crossing equations. The first two are best done with the embedding
formalism and the last one is best done in conformal frame.

The most important elements required for performing a bootstrap study are the confor-
mal blocks. They represent a contribution of a single primary operator to a four-point
function, analogously to the partial waves for a scattering amplitude. The simplest
conformal blocks are those of four external scalars and they were computed in the
pioneering works of Dolan and Osborn [94-96]. They found explicit formulas for even
spacetime dimension. Later, with the aid of the so-called recursion relations, the con-
formal blocks were computed for arbitrary complex values of d [97,98]. They are not
given in a closed for expression, but it is possible to present them in an expansion that
converges exponentially fast [99]. These recursion relations have recently been gener-
alized for the general spinning case in d = 3 [100], see also [101]. A general strategy
for computing spinning conformal blocks — which we will also adopt here — is to first
compute the conformal blocks of a minimal four-point function,!® which are referred to
as seeds. From the seeds one can then obtain the desired blocks by the action of some
conformally covariant differential operators [88,90,102,103].

There are several other approaches available in the literature. One example is the shadow
formalism [104,105]. There exists also an alternative formulation of the embedding space
which works in full generality for all representations of the spin group [106-111]. There
the conformal blocks are constructed by applying a specific set of substitution rules
on a compact expression given in terms of Gegenbauer polynomials. The elementary
building blocks of these substitution rules are a generalization of Exton G-functions. The
theory is very rich but, unfortunately, it is outside the scope of this thesis. Yet another
interesting approach consists in translating the problem of computing conformal blocks
in that of finding a solution to a quantum mechanical model called Calogero-Sutherland
model [112,113].

Superspace

The supersymmetry algebra mixes with the conformal algebra, it is therefore necessary to
introduce a new formalism when dealing with SCFTs. Since supersymmetry entails the
presence of spinors, all formalisms for superconformal symmetry tend to be dimension
specific, most commonly for d = 4.

Superconformal multiplets can be conveniently grouped in a single field that lives in su-
perspace. Superspace is an extension of ordinary Minkowsky spacetime by the addition
of Grassmannian coordinates ;. The action of the supersymmetry algebra can be seen

13Minimal means the simplest possible four-point function that exchanges the desired representation.
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2. Studying conformal kinematics

as a transformation acting on these Grassmann variables. Since each coordinate squares
to zero, the fields can be written as a terminating Taylor expansion. The coefficients of
this polynomial in the 6; are the various operators in the multiplet.

The correlation function of n superfields @y, . .., ®, automatically contains, in its Taylor
expansion in 6, all correlators of all operators in the multiplets associated to the ®;’s. In
particular, this can be used to relate among each other the OPE coefficients of the opera-
tors in the same multiplets. These relations, while being purely kinematic, cannot be
obtained by simple group theoretic arguments. The only technical obstacle is to actually
perform the expansion in 0 because the expressions of the superspace correlators are
rather involved. Part of the thesis is devoted to address this problem in great detail as it
is a vital step in the computation of superconformal blocks. The superconformal blocks
are sums of conformal blocks with appropriate coefficients dictated by the supersymme-
try algebra, and they represent the contribution of an entire superconformal multiplet to
a four-point function.

The first appearance of a complete formalism for superconformal symmetry focused
on4d N = 1[114,115]. It was later generalized to extended supersymmetry [116], in
particular V" = 2[117], and to six dimensions [118]. The case of extended supersymmetry
can also be specialized to protected operators, where the Ward identities are very strong
and greatly constrain the functional form of the four point function. As a consequence,
the blocks can be computed almost directly [119-121]. There also exists a supersymmetric
version of the embedding formalism [122,123]. The only disadvantage of this method
is that it has not been found yet a way to fully characterize the redundancies among
the various structures. It has however been successfully used for the computation of
superconformal blocks for general scalars in N' = 1 [124] and the stress tensor multiplet
in V' = 2[125].

Most of the results involving supersymmetric conformal blocks focus on scalar external
operators [120,124-130]. This does not go hand in hand with the huge progress made for
spinning operators in non-supersymmetric CFTs, as we reviewed previously. Recently
a general theory has been developed [1]. In the formalism of [1] the superconformal
blocks are computed by solving a perturbation of the Calogero-Sutherland model [112]
which becomes exact at a finite order. Another result involving general superconformal
blocks is the study of their pole structure given in [131].

In this thesis we will address the problem of computing spinning superconformal blocks.
Specifically, we will study the blocks of four currents in 4d N' = 1 SCFTs. We will
however utilize a different formalism than the one mentioned above. It consists in
the introduction of differential operators which act in superspace and can be used to
simplify the task of expanding the superspace correlators in the Grassmann variables.

11
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3 Locality

Locality implies that the energy-momentum measurements follow Gauss’ law. Namely,
the flux of energy-momentum on a codimension-one surface ¥ does not depend on
continuous deformations of X.. This requires the existence of a spin two operator which
is conserved and has dimension d: the stress-energy tensor Ty, .

The OPE coefficients of T, are tightly constrained by the conservation equations and the
Ward identities. In setting up a bootstrap problem, it is important to carefully analyze
all such constraints in order to prevent unphysical solutions being part of the search
space. As we will argue later, sometimes Ward identities alone, without any dynamical
input, may have interesting consequences on their own.

Supersymmetric Ward identities

A possible interesting problem where the Ward identities may have some impact regards
the existence of a class of superconformal multiplets called exotic primaries [132]. This
is precisely an instance where Ward identities alone are strong enough to completely
fix the three-point functions of a stress tensor multiplet and two exotic primaries. Re-
markably, however, the solution of the Ward identity turns out to be inconsistent with
supersymmetry. As a result the exotic primaries cannot appear in any local theory.

Energy conditions

Ward identities are not the only constraints that a correlator of the stress tensor has to
satisfy. Three-point function, in particular, are subject to a class of inequalities that go
under the name of averaged null energy condition (ANEC).

The averaged null energy is an observable that has a long history in jet physics — see
for example [133-135] — but it was first examined in the CFT context in the seminal
work [136]. There, it was shown that an energy-positivity condition implies constraints
on the coefficients in the three-point function of the stress-energy tensor. More precisely,
the expectation value of the stress tensor in a state |¢) integrated along a null geodesic
must be a non-negative quantity. In [136] this was viewed as a positivity requirement
for the energy measured by a hypothetical “calorimeter” placed at a large distance
from the region where |¢) is localized. It was later proved with several different
approaches [137-139]. In holographic CFTs this inequality has a simple interpretation. It
is a direct consequence of the causality of signals that dip into the bulk.

One might naively think that the only consequence of the ANEC is a system of in-
equalities on the OPE coefficients. Indeed the first applications of it did have results
of this sort [136,140]. However, it was later noted that a more careful study of the

12
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ANEC constraints leads to bounds on the conformal dimensions as well [141]. In this
thesis we study an analogous set of bounds that follow from further assuming ' = 1
supersymmetry, thus extending the results of [141].

4 Qutline

This thesis will be aimed at setting up the bootstrap problem for abelian currents in four
dimensional CFTs. All the steps leading up to the final setup will be explained in detail
and the pertinent literature will be reviewed along the way. For completeness, when
possible, we will explain the main concepts with more generality than what is needed
for the final result.

We subdivide the material in three parts, Part I studies the consequences of conformal
and superconformal symmetry on the local observables of the theory. Part II is an
interlude: it concerns the implications of locality — i.e. the existence of a stress tensor —
on any SCFT. Finally Part III contains the study of the conformal blocks of four currents.

Outline of Part 1

In more detail, Chapter 1 introduces CFTs and the correlation functions of local op-
erators. The formalism of embedding space and conformal frame are reviewed. The
material is somewhat standard and can be skipped by an expert audience, except for
Subsection 1.3.2 which is needed for Section 2.3.

Chapter 2 instead is about SCFTs. The concept of superspace is introduced, mainly
focusing on four dimensions with A/ = 1 and 2. Section 2.2 is important in order to
familiarize with the notation. Section 2.3 instead contains some partially novel results
about counting of superconformal tensor structures.

Chapter 3 introduces a set of differential operators in SCFTs for expanding supercon-
formal correlators in the Grassmann variables. This is needed for the computation of
superconformal blocks and, in general, to relate the OPE coefficients of the operators in
the same multiplet. The analysis has been done for general 4d ' = 1,2 SCFTs.

Outline of Part I1

Chapter 4 discusses the constraints of the ANEC on general four dimensional N = 1
SCFTs. The analysis consists in expanding a superspace correlator in the Grassmann
variables, applying all Ward identities and imposing the ANEC. The solution of the
inequalities is obtained by means of numerical techniques.

Chapter 5 discusses the proof of the absence of the exotic primaries from any local

13
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N = 2 SCFT.

Outline of Part III

Chapter 6 is an introduction to the concept of the conformal bootstrap. In particular,
Section 6.2 discusses the method of semidefinite programming and Section 6.4 reviews
all the tools available in four dimensions for computing conformal blocks of spinning
operators. These concepts will be all used in the subsequent chapter. This chapter can
be safely skipped by readers who are already familiar with the literature.

Finally Chapter 7 contains the computation of the conformal blocks. This is original,
but still unpublished, work. Section 7.1 contains the analysis of non-supersymmetric
three-point functions, Section 6.3 instead contains the analysis of the four-point function
(JJJ]). Section 7.3 shows the computation of the conformal blocks for all exchanged
operators. Section 7.4 and 7.5 address the necessary modifications to the setup to
include the assumption of ' = 1 supersymmetry. Section 8.1 shows the final result:
the set of crossing equations that need to be analyzed by the numerical bootstrap
machinery. Finally Section 8.2 discusses some concrete proposals for the future numerical
investigations.

Outline of the appendices

The appendices are numerous and some are rather technical. Appendix A contains
all notations and conventions used throughout the manuscript. Appendix B has more
details regarding the superspace formalism and has some identities useful for Chap-
ter 3. In particular, Appendix B.1 will turn out to be useful for the computation of
superconformal blocks. Appendix C has all the intermediate results needed for the
ANEC analysis. Appendix D contains all the results relative to the bootstrap analysis. In
particular Appendix D.1 contains necessary data for the conformal blocks, Appendix D.2
has the definition of our choice of four-point structures and finally Appendix D.3 con-
tains all the necessary information to compute superconformal blocks starting from the
non-supersymmetric ones.
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1] Conformal symmetry

1.1 The conformal group

The aim of this chapter is to introduce conformal symmetry in quantum field theories.
It is far from being a self-consistent and complete exposition. A classic reference is the
textbook [142], which mainly focuses on d = 2 but introduces the conformal group
for general d. Some of the original works on the foundations of conformal field theory
and its representation theory are [44,45,47,143]. We also refer the reader to the more
modern introductions [144-146], which are thought for d > 2 and focus on the conformal
bootstrap. A review on the subject of the bootstrap can be found in [147]. We will address
this topic later, in Chapter 6.

The conformal group in d dimensional flat space is the set of all transformations of IR“
that preserve angles. In Lorentzian signature it is isomorphic to SO(d, 2). It extends
the Poincaré group SO(d — 1,1) x R? by d + 1 additional generators, namely the di-
latation D and the special conformal transformations K. The former generates scale
transformations

= Axt, A>0, (1.1)

while the latter generate a nonlinear transformation that takes the form

x# — bt x?
u d
Yo i e PR (12)

The remaining generator are, of course, translations P, and rotations/boosts M, . It is
obvious that the generators P,, M, and D do preserve angles. The result for K, on the
other hand is slightly more involved, but after a small computation one can show that
indeed the transformation (1.2) induced on the tangent vectors! is proportional to an

1Given a transformation x* — f#(x), one can define the induced transformation on the tangent vectors

#o_, off(x)

oY P vY. It is sometimes referred to as pushforward.
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orthogonal matrix

xt — bix? oft  af? 8o
O =1 yrme ~ awdor ~ A2 0 rer 1Y

The algebra of the generators reads:

=2i(guwD — M),
[Py, K] (8u ) | (1.4)
[MP“/' o) = i(&upPs — 8o Pu) [Myv, Ko] = i(8upKv — 8pKy)
[Myw, Mor] = i(gupMua + guaMyp — 8uoMur — §uaMup) ,

all the other commutators being zero. As one can see, the generator D defines a grading,
making P of weight 1 and K of weight —1. We can thus regard them as "ladder" operators
and construct representations by diagonalizing D. More precisely, we use a strategy
similar to the method of induced representation normally used for the Poincaré group.
However, instead of choosing a frame in momentum space, we will stay in position
space, picking as a reference point the origin x = 0. The group that leaves the origin
invariant — i.e. the little group — is generated by K, M;,, and D. Local operators at
the origin are required to be finite dimensional irreducible representations of this group.
We further assume that D can be diagonalized. Since K, lowers the D weight, at some
point its action must be trivial. We thus always have a lowest weight state which is
annihilated by K;,. We call such a state a conformal primary O ¢(0)

KyOpap(0) =0, MuOpe(0) = Suu(£)Opp(0), DOpg(0) = —iAO(0), (1.5)

where A is the conformal dimension, £ denotes the spin Dynkin labels and S, is a spin £
matrix representation of SO(d — 1,1). By acting on Oy ¢(0) with P, we can generate all
the other states of the representation, which are called descendants. This allows us to
move away from the origin:

One(x) = e POy (0) 1. (1.6)

The whole representation is then infinite dimensional as it is spanned by arbitrary prod-
ucts of P, acting on the primary. We will call such a representation a conformal multiplet.
In unitary theories, the quantum numbers A and £ must satisfy some inequalities which
are called unitarity bounds. In particular, in four dimensions £ is a pair of integers (7, 7)
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and the bounds are?

A>1 (j=7=0),
ALt (j>0,7=0), W)
Az g7+ (j=07>0),
Az 3(j+])+2 (j,7 > 0).
For symmetric traceless representations in any d the bound instead is
A> 42 ¢ =0),
2 (£=0) (1.8)
A>l+d—-2 (L>0)

When a unitarity bound is saturated, one or more states in the representation become
orthogonal to the whole multiplet (and thus also null). We can therefore consistently
mod these states out. The result is still an infinite dimensional representation but with
fewer states, we will thus refer to is as a short multiplet. The simplest example of a short
multiplet is a free scalar ¢. It saturates the bound of (d —2) /2 and indeed it has a null
state

[P%,¢] = D¢ =0, (19)

as dictated by its equation of motion. Another example are the conserved currents of
any spin /. They saturate the bound ¢ + d — 2 and, by definition, satisfy the equation

[P", Jiugiz-og)) = 0. (1.10)

The vanishing of a descendant holds as an operator equation, in the sense that it still
remains true when inserted in any correlation function, up to contact terms.

((0-1)(x)O1(x1) -+ - On(xp)) = Zn:ci(xl, ce X)) 0(x = x;) . (1.11)

i=1

The functions c; are not arbitrary but may be fixed in terms of the correlation function
(Oq - - - Oy) and the transformation properties of the O;’s under the symmetry generated
by J. The relation (1.11) goes under the name of Ward identity. In the next section we
will discuss them more quantitatively. The two most common examples are ¢ = 1 where
the current is associated to an ordinary global symmetry or £ = 2 where the current is
the stress tensor and it is obviously associated to the conformal symmetry.

%It is also possible to have A = j = 7 = 0, which would correspond to the identity operator.
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1.2 Conformal correlators

1.2.1 General notions

The main focus of this thesis are conformal correlation functions of primary local op-
erators. The correlation function is defined as an expectation value in a conformally
invariant vacuum |Q)), which we will keep implicit. Conformal symmetry is strong
enough to completely fix two-point functions and fix three-point functions up to a finite
number of coefficients, referred to as OPE coefficients, where OPE stands for operator
product expansion. If we consider only scalar operators ¢; of conformal dimensions A;
then one simply has

(xip) ™% A =M =A,
(¢1(x1)¢p2(x2)) = ‘ (1.12)
0 otherwise.
where x;; := x; — x;. For generic operators the two-point function is also uniquely

fixed. However, for spin representation which are not real O has to be paired with O,
which is the operator whose conformal dimension is the same as O and whose spin
representation is the complex conjugate.’

The three-point function of three scalars is given by

A
(@1 (x1) 2 (x2) 3 (x3)) Praps , (1.13)

- |x12 | A1ps |x13 | A1z ‘x23 |A231

where Ajjx == A; + Aj — Ag. The real constant Ay, 4,4, is the OPE coefficient, which in
the case of scalar operators is unique. For spinning operators there will be in general
more than one tensor structure, each of them multiplied by an independent A coefficient.
Note that the value of Ay, ¢,¢, is physical since we normalized the operators ¢; in such
a way that their two-point function is (1.12). A general treatment of two and three-
point functions for arbitrary spinning operators in general spacetime dimensions was
initiated in [85]. We will however use a more modern method that goes under the
name of embedding formalism, which will be introduced in the next subsection. A simple
case, however, that does not require any heavy formalism it that of two scalars and a
symmetric traceless tensor of spin £. Their correlator reads

B n\ ¢
(p(x1)p(x2) O(x3)) Moo <x§3—x§,3> , (1.14)

- X1p|B123H x5 |B132—E | xps] B =0 | x x
13 23

where, with a slight abuse of notation, we defined (Z*)’ to mean Z* - - . ZM — traces.
Also in this case only one tensor structure appears. We should comment on the name

3In four dimensions (j,7)* = (J, ). If there are other quantum numbers such as a global charge, then
they should also be conjugated.
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2. Conformal correlators

"OPE coefficient." Its origin stems from the fact that we can always take the operator
product expansion (or OPE) between two operators in a CFT and the contribution of O3
in the OPE O; x O; is entirely fixed by they three-point correlator, by simply taking the
expectation value of both sides multiplied by O3. Concretely

@) ey
9(x > f’é’if‘ C(@p, %)y O (0), (1.15)

with the functions C fixed by (1.14) (we will not show it explicitly). In the above formula
the sum over operators, as well as the coefficients, are theory dependent and thus not
known a priori. The OPE can be precisely seen as an algebra on the space of local
operators, the Ap, 0,0, being the structure constants. One of the axioms of conformal
tield theory requires this algebra to be associative. This yields very strong nontrivial
constraints which will be explained in Chapter 6.

In general, a three-point function of operators O; which may have nonzero spin can be
written as a linear combination of tensor structures tj, »,¢,- Each structure is multiplied
by its own OPE coefficient

n123

<01 (Xl)OQ(X2)03(X3 Z /\01)0203t010203 (X],Xz, X3) (116)

a=

where x; is a shorthand to denote x; together with the spin polarizations that are carried
by O;. We will address the problem of enumerating these structures in the subsequent
sections.

The last correlator that we will need is the four-point function. For simplicity we will
only illustrate the case of four not necessarily identical scalars in this subsection. Even
in this simple case the kinematics starts being nontrivial, in the sense that we cannot
fix the correlator anymore but we need to allow for an arbitrary function f(u, v) of the
so-called cross ratios

2.2 2.2

_ X123 _ X14%%3 (1.17)

=22 V="57 - .
X13%X24 X13%X24

In terms of a theory-dependent f, one has [95]

4 1 x%4 1012 x%4 3034
(TTei(x)) = 13182 sz [ 33+ (2) <> f(u,0), (1.18)

2
i=1 X14 X13

with A;; == A; — A;. By using the OPE in (1.15) inside the four-point correlator, together
with the fact that two-point functions are diagonal, one can express f as a sum over the
operators in the spectrum of ¢ X ¢ N ¢z X ¢4. Other permutations are equivalently
valid and their equality stems from the OPE associativity which we mentioned before
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Chapter 1. Conformal symmetry

Figure 1.1. The null cone and the Poincaré section. An infinitesimal interval dx is mapped to its
conformal transformation dx’ by a R%? isometry and a rescaling.

and will be addressed later on in this thesis. More precisely one can write

A1z,
flu,v) = Z A¢1¢20A,1A@A,1¢3¢4 Gé,elz 34)(%0) )
OnEP1 X2

where the function g is called conformal block. We put a bar on O in the second OPE
coefficient to agree with the general case. When all external operators are scalars, the
only operators that are exchanged are symmetric traceless tensors. Thus in this case
O = O and the bar would not be necessary. Even for external scalars the conformal
blocks are somewhat complicated functions. For even dimensions they can be taken as
combinations of »F; hypergeometric functions [95,96]. Whereas in any other dimension
they can be obtained with a variety of methods, which were briefly reviewed in the
Introduction.

If, on the other hand, the external operators have nonzero spin, equation (1.18) will be
replaced by a sum over the possible tensor structures, as in (6.4). The conformal blocks
for spinning operators will be discussed in more detail in Section 6.4.

1.2.2 Embedding formalism

In the previous subsection we called this formalism modern. Although, in fact, it dates
back to Dirac [86]. We actually referred to its more recent formulation as appeared
in [87,88,92] and, more specifically, to its four dimensional specialization [89,91,148].
There exists an even more general theory which is able to deal in an uniform way with
all representations of the spin group in arbitrary dimensions [106,107,110,111]. For the
present thesis, which is focused on d = 4, we will adopt the formalism of [89,91].
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1.2. Conformal correlators

The idea behind the embedding formalism is to extend the d dimensional space to a
d + 2 dimensional space where the conformal group SO(d, 2) acts linearly. It is then
much easier to write down conformally covariant tensor structures. The wanted result
is obtained by projecting down to d dimensions. This projection is made in two steps.
First we restrict ourselves on the null cone

X2 =XtX"+X'X, =0, X*=Xx1£x1, (1.19)
and then we identify points that differ by a scale factor
XM AXM, AEeRT. (1.20)

This last condition may be enforced by choosing a section Xt = f(X*). A standard
choice is the Poincaré section which yields a flat metric in d dimensions

(X*, X, X" = (1,x%,x"). (1.21)

) |Poincaré
It is then easy to check that linear isometries in IR%? yield conformal transformations
in R¥11, This is because, after a generic transformation, the null condition X2 =0
is preserved but we may have to rescale the coordinates in order to fall back into the
section

XM AMUXN o ATTAM XN A= AT XN (x). (1.22)

Due to the null cone constraint, this results into an x dependent factor that multiplies
the d dimensional metric ds* = g, dx/dx"

ds? = dXMdX | poy, = A2dXMdXp +2dA XM Xy + (dA)2X3 (1.23)

|P0in. 4

the last two term vanish due to X? = 0 = d(X?), so we are left only with the first one
which reads A% g, dx/dx".

After this general introduction we will specialize to d = 4. The projective null cone
is therefore embedded in six dimensions. We now need to have a convenient formal-
ism to deal with tensors. In four dimensions the indices are contracted with spinor
polarizations 7,77 (see Appendix A.1). In the same fashion here we introduce twistor
polarizations S, S. The conventions follow the literature but for the reader’s convenience
they are summarized in Appendix A.2. An operator in six dimensions is taken to be a
homogeneous function satisfying

O(AX, uS, iS) = A~2"20H) Wi il O(X, 8, 5), (1.24)

where A is the conformal dimension and (j,7) the spin of O’s four dimensional coun-
terpart O(x,7,7) = O(X, S, S)|poincare- The projection down to the Poincaré patch is
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Chapter 1. Conformal symmetry

defined as (1.21) for XM, while for S and S it is defined as follows

o cb _ = yhab
Sb ‘Poincaré =1 X"‘b Poincaré ’ 5 Poincaré ~— U“X Poincaré * (125)

These projections, together with X? = XX = XX = 0, induce an equivalence relation
on the operators in six dimensions. Namely two operators O and O’ are considered
equivalent if they differ by terms proportional to XS, SX, SS or X?. We can think of this
as a "gauge freedom" which we can use to reduce the number of independent tensor
structures.

In this thesis the embedding formalism will be applied to three and four-point functions.
For this reason we will only list the building blocks that arise in the construction of
correlators with up to four points. After imposing the gauge conditions there can be
only eight different classes of building blocks. The first arises for n > 2 points, the next
four arise for n > 3 points and the last three only for n > 4 points*

Xij = —2(Xi . X]) ’

Iij = SZ‘S', Kij = Xij SiXkS',
I k Xika]' J (1.2621)
. 1 -, — —ii Xii - _
L= 85X XS, K} = L $X;S;,
]]k Xjk PN k Xikaj iNkIj
1 - — . SiX'XleSi
Il = —8:XXS;, R
kl ik Oj] ikl \/m
o (1.26b)
o SXXXS:

Ly = ———.
" V Xk Xr Xij

The three-point tensor structures t(, (o, of a given correlator (see (1.16)) are built as
products of the terms in (1.26a) such that they satisfy the correct scaling as in (1.24).
Furthermore, not all products are independent as they are subject to various nonlinear
identities. It is possible to obtain a basis of independent structures by requiring that

i) There are either only K or only K terms (or none of either)
ii) Only at most two distinct | terms out of three can appear

iii) K and Ji , cannot appear together. KX and J’,, cannot appear together.

With these simple rules writing down tensor structures becomes just an enumeration
problem. We first deal with the scaling property (1.24) for X — AX by defining a

4The labels i, j, k are all distinct and there is no sum over repeated labels.
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1.3. Counting tensor structures

prefactor

H Xz (K~ —1%;) , K =N+ %(]1 +]_l) . (127)
<
i

Then the most general tensor structure can be written as

th,0,05 = ’C3I;I (175 (K3 (K2R (KA2) s (R )M (RE)R (RE2)Rs (13 )P (T P2 (TP
] (1.28)

for some numbers m;;, k;, ki, p; that must satisfy the constraints following from points 7),
if) and iii) listed above and the scaling property (1.24) for S,S — uS, fiS. For example 7)
implies that for all 7, k; = 0 or k; = 0. Whereas ii) implies that for at least one i, p; = 0.
The constraints from scaling of S and S can be written as the following linear system

1 = moy +mz1 +ky + ks +p1,
71 = mi+miz+ka+ks+p1, (1.29)

cyclic permutations of 1,2, 3.

From (1.28) we can obtain the tensor structures in four dimension via the projection on
the Poincaré patch. See (A.22) for the projections of the building blocks defined in this
section I/, Ji ]k' l] and lKl]

Four-point tensor structures instead are built out of the terms in (1.26a) and (1.26b). It is
much harder to find a minimal set of independent structures in this case because there
are additional identities that arise at higher order and it is not known how to classify
them or how to find some general rules like i), ii), iii) listed before. We will defer the
study of four-pomt function to Sections 6.3 and 6.4. The projection to four dimensions
]Ikl, ]L]kl and L ik can be found in (A.23).

1.3 Counting tensor structures

The tool we are going to describe in this section goes under the name of conformal frame.
It can be used to count the number of allowed tensor structures in a given correlator
without having to actually construct them. By tensor structures we mean the number of
independent OPE coefficient in three-point correlators and the number of independent
functions of the cross ratios for n > 4-point correlators. A possible application is to
check that the structures obtained by other methods (such as the embedding formalism)
are indeed linearly independent and complete. It can also be used to construct the tensor
structures, but we will discuss this aspect in Section 6.3, in the context of four-point
functions. In Section 2.3 we will also describe a supersymmetric version of it. This
discussion is based on [93,113] (see also [149]). Since the signature of spacetime does
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Chapter 1. Conformal symmetry

777777777777777777777777777777

x1 =0 X3 = €1

Figure 1.2. Example of the conformal frame configuration for d > 3 and n = 5. In that case the
tensor structures multiply arbitrary functions of five "cross ratios," similar to # and v in the four
point case. RX. denotes the upper half hyperplane.

not play any role, we will switch to Euclidean for the moment.

1.3.1 Conformal frame

The advantage of this method is that it is purely group theoretical, so it is possible
to make statements about complicated representations in any number of dimensions
without any additional difficulty. Given an n-point correlator

(O1(x1) -+ - On(xn)), (1.30)

one can use the conformal symmetry to put the points x; in some preferred positions.
First we can use the d translations to set x; = 0, and then the d special conformal
transformations (1.2) to set x, = c0.”> If n > 2 we use a dilatation to set |x3| = 1 and
d — 1 rotations to set x3 = é; (or any other preferred direction). Then, continuing with
the same reasoning for k steps, if n > k we can use d — k + 1 rotations to put x;,1 in
the hyperplane spanned by éy, ..., 1. This process clearly stops as soon as k = n or
k = d + 2 because we either run out of points or of available hyperplanes. Therefore the
final configuration is

x1 =0, x =00, x3 = &1, Xj>4 € Span{éy,..., ¢ 2} ifn<d+2,
x1 =0, xp =00, X3 = &1, Xack<ds2 € Span{éy,..., 62}, | (1.31)
ifn>d+2.
Xi>d+3 unchanged
Define H to be the stability group of such a configuration. If we are in the second case

(n > d + 2) that means that we used up all symmetries so H = {1}. The same is true for
the boundary case n = d + 2. If on the other hand we are in the first case withn < d + 2,

5We imagine to work in the conformal compactification of R = %, where the point at infinity is the
north pole.
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1.3. Counting tensor structures

then we have 1(d — n + 1)(d — n + 2) rotations left and indeed they make up the group
SO(d — n +2). So the final result for n > 2 may be expressed as®

H=S0(d—m+2), m:=min(n,d+2). (1.32)

The case n = 2 is different because we never use dilatations. Therefore H becomes
SO(d) x SO(1,1). In what follows, we will be mostly interested in three-point functions.
In that case the configuration reads (0, 00, é1) and the stability group is H = SO(d — 1).

The reason why we emphasized so much the stability group H is because the number of
tensor structures can be seen as the number of H-singlets in the tensor product of the
representations of the operators ;. Define p; as the SO(d) representation of O;, Res$;
as the decomposition of a G representation into H irreducible representations and p
as the space of H-singlets in p. Calling 7(...) the number of tensor structures in the
correlator (...) one can write the following general formula

SO(d—m+2)
) , (1.33)

n(Op---0,) =dim (Resgggg)_mﬂ) ®Pk
k=1

where, recall, m = min(n,d + 2). For n = 2 the formula is a bit different because H has
the extra factor due to dilatations. Letting (p, A) be a representation of SO(d) x SO(1,1),
we have

)SO(d) xSO(1,1)

n(010,) = dim ((01, 1) ® (03, —A2) , (1.34)

where p* is the conjugate representation of p.” One can clearly see that the result is 1 if
A1 = Aj and p1 = p; and zero otherwise. The fact that we need to take this conjugation
might seem confusing at first. Why is this special only for the two-point function? The
reason is that we actually need to take this conjugate for higher points too, but in that
case it does not make any difference as far as the number of singlets is concerned. To see
why we need it, let us derive this formula using the approach of [113]. This will require
to define conformal correlators as functions on the conformal group. The discussion
of [113] is focused on four-point functions. We will adapt it to three-point functions as it
will be useful later.

1.3.2 Group theory of tensor structures

Conformal correlators can be thought of as functions on the conformal group. Let
O; transform in the representation V; := (p;, A;) of SO(d) x SO(1,1). Then it can be

®The stability group for n > 3 is actually O(d + 2 — m). However, since we will not be interested in
the properties of the correlator under parity, we will ignore this detail and only work with the connected
component SO(d + 2 — m).

"Recall, in four dimensions (j,7)* = (J, ).
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Chapter 1. Conformal symmetry

associated to the space of functions

p(e'Pg) = eMig(g) Vet €50(1,1)
IVi:={ ¢ cC®G,V) ¢(rg) = pi(r)p(g) VreSO(d) , (1.35)
o(kg) = (g) vk = e

where we denoted the conformal group as G = SO(d + 1,1) (recall that for the moment
we are in Euclidean signature). For convenience let us also define

Go=50(1,1) xSO(d),  Gp=SO0(d—1,1)p, Gx=S0(d—1,1)x. (1.36)

The subscripts P and K denote the two different Poincaré subgroups of the conformal
group: the first being the standard one and the second being the one where translations
are replaced by special conformal transformations. The definition (1.35) is very intuitive:
we want functions that transform as primaries under the left action of Gk. The product
of two such spaces can be characterized as follows

Mer=r"".=

{<p oG ey | 1T = el Vet e 80(1,1>} (1.37)
s V1 2

p(rg) = p1(r) ® p2(r)p(g) Vr € SO(d)

where we denoted V* = (p*, —A). In words, the resulting space is a space of functions
from the group to the tensor product V; ® V; which satisfy some covariance properties.
Namely the subgroup Gp needs to act covariantly on the left. This is the step where
the conjugate that we encountered in (1.34) comes about. The result (1.37) is proved in
Theorem 9.2 of [150]. Here we just sketch an intuition. The map * is a Weyl reflection
of the conformal group w : G — G. It flips the sign of D, therefore, according to the
grading discussed below (1.4), it exchanges the roles of P, and K,,. Since w is also an
inner automorphism one has
v e~1".

where T is defined in the same way as I, except that we require the action of P, to
be trivial instead of that of K. Thus, in order to prove (1.37), we need to exhibit an
isomorphism

Y MerY
P(g) — 91(8) @ 92(8)

If g € Gp we know how to recover both ¢; and ¢; as they are fixed by the covariance
properties. If instead g is a translation, ¢2(g) = ¢2(1), thus we can recover ¢; by
solving ¥(g) = ¢1(g) ® ¢2(1). Similarly, if g is a special conformal transformation,
¢1(g) = ¢1(1) and we can recover ¢, by ¥(g) = ¢1(1) ® ¢2(g). Essentially the role
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1.3. Counting tensor structures

played by the Weyl inversion is to make sure that the subgroups that act trivially on ¢4
and on ¢, do not overlap. The proof then consists in showing that this map is invertible,
but we will refer the reader to [150] for a complete derivation.

The space of three-point conformal correlators can be realized as the space of G-invariants
in the tensor product of the three representations

G G
(er QT2 @ rVa) - (erVz ? er) . (1.38)

The last product can be written as the space of functions ¢ : G X G = V1 ® V; ® V3
which satisfy the covariance properties of (1.35) in the first G factor and of (1.37) in the
second one. We will not write this out explicitly hoping that it is clear enough. In other
words, the space of functions mentioned above is fully specified by the group elements
on the coset Go\G x G/Gg.8 Passing to the G-invariants yields a double coset Go\G /Gy
(we will not show this). Let us call (T"1""2'3)G the space obtained, namely

(Mer”er”) - (rvmev) ® =

(ag) = mi(a) @ m2(a) @(g) Vae GO} (1.39)
¢(gb) = m3(b) 9(g) VbeGy) '

where 71; are the V; representations of the group to which their argument belongs. The
space of conformal correlators is precisely the codomain of these functions, i.e. the set of
values that ¢ can assume. However, claiming that the result is V; ® V5" ® V3 would be
too fast: the decomposition of an element of G into an element of its double coset is not
unique, therefore there are some compatibility conditions of the covariance properties
that need to be satisfied. The ambiguity of the coset decomposition is characterized
precisely by the stability group H. So the final result, as we expected, is

{qv € C*(GVi® Vs ®Vs) |

H
1(010,03) = dim (Resflo eV e V3) , (1.40)

as in (1.33) for n = 3, except for the * in V;, which, as we argued earlier, does not change
the final answer if n > 2.° All we need to do now is to motivate that indeed H is the
stability group of the coset decomposition Go\G/Gk. We will again present just a sketch
of the argument. It is easier to think in terms of the conformal algebra (this may miss
some discrete identifications which we do not care about). The generators of SO(d +1,1)
are Lyn, where D = Loy and M, = L. The algebra g is spanned by Lo, and L, for
w,v=2,...,d+ 1. While gk is spanned by the same generators and in addition by Ly,.

870 see this, we can make the third factor covariant with respect to the right action, instead of the left as
in (1.35). The space obtained is clearly isomorphic to I'3.

°In (1.33) we have representations of SO(d) whereas here they are representations of Gy. This makes no
difference because we can drop the SO(1,1) factor since it does not appear in H. Therefore the V;’s simply
become p;’s.
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Chapter 1. Conformal symmetry

We then single out an element which is not in any of these algebras, let us take a = L.
Any element ¢ € G may be written as

g§=g80e" "¢k, 80 € Go, gk € Gk . (1.41)

as a consequence of the Cartan decomposition. This decomposition is ambiguous: all
rotations M;j, with i,j = 3,...d + 1 commute with 2 and can thus be transferred from
the go factor to the gk factor. Therefore, at last, the stability group of the decomposition
(1.41)is H = SO(d — 1) as claimed.

1.4 Ward identities

In this brief subsection we will write down the Ward identities for the stress tensor and
a general abelian current and present a simple counting argument that appeared in [82]
to compute how many equations stem from the Ward identities of a given correlator.
Part of this subsection overlaps with the content of Paper II.

Let us denote three-point functions as
t0,0,05 (x5 1i, i) = (O1(x1) O2(x2) O3(x3)) , (1.42)

and two-point functions as

_ L i)/ 7 )]
noo (Y12, 112, 712) == (O(x1)O(x2)) = i/ ce (WZXIZJZZEZA(ZE:‘MZ) : (1.43)

We start from the abelian current case. | is a Noether current associated to a certain U(1)
global symmetry. We take O to have charge r under this group and O to be its conjugate.
Define then X as a codimension-one surface enclosing x, and x3 but not x;. The Ward
identity states

i
5 /2 dO(x23) X33 95, X2307, toyo (X5 770, 71i) = 27 g (%13, 71,3, 1,3) - (1.44)

The factor i /2 on the left hand side comes from the —1/2 obtained from x*], = — %f(”""‘ Joi
and a —i from the Wick rotation. Indeed the integral in the above equation is in Euclidean
signature and the right prescription for the Wick rotation is the one that keeps the
operators radially ordered as indicated, namely if x? = —it;, then g > » > 13. The
factor of 2 on the right hand side is a normalization for J. Since this integral depends only
topologically on the points we can evaluate it in the simplified limit x; — oo, xp3 — 0.

We proceed by considering the Ward identities for the conformal group. To each confor-
mal Killing vector €}, is associated a possibly independent identity. In the cases we will
consider in this thesis it is sufficient to impose only ¢, = x,, (dilatations) and e‘;l = 5;
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1.4. Ward identities

(translations). Dilatations and translations imply respectively the identities

i _
_g /Z dQ(x23) x%3 a’72X23a772 8112)(28772 t@T(’)(xif i, 77i) (1.452)

= —2i (A+x3-93) npp(x13,1M1,3,713),
i _
~3 /z dQ(x23) 333 3y, %2397, 0¥, toyro (X, i, 71i) (1.45b)
= —2iy-03n50(X13,11,3,71,3) ,

where y* is an arbitrary vector used to contract the free index of the translation Killing
vector.

The integrals appearing in (1.44) and (1.45) may be computed by taking a convenient
limit, namely x,3 < x13. In this limit we must only keep the terms that scale as O(x;).
It is possible that one also obtains terms of order O(ngl), but those are necessarily zero
by parity as they must have an odd number of x%’s. Taking xp3 < x13 does not affect
generality because we can always make a conformal transformation to achieve any
desired configuration. Then we specialize ¥ to be a three-sphere, so that we can use
rotational symmetry to simplify the integrand as follows

xtxV M,
[ 406 5 = o,
xhxlxPxd PNy gHeSM 4 gHAGeY
= 1.46
/dQ(x) = — 272, (1.46)
xﬂl “e. xﬂZn B (SV]VZ e (5#211—1]4211 _|_ permutations 5
/dQ(x) T = 37(2), 277,

where (2), is the Pochhammer symbol and “permutations” stands for all inequivalent
permutations of the p; indices.

An approach similar to the conformal frame defined in the previous subsection allows
us to compute the expected number of independent linear equations that stem from a
Ward identity. The topological operator that enters the stress tensor Ward identity is
given by the integral of T contracted with a conformal Killing vector &)

Lun = [ d0220,x05,9, (0 - en)0y T(x). (147)
N

It is possible to contract this again with the Killing vector, thus obtaining an object that
transforms like a primary of dimension —1

Q' (x) == e"MN(x) Ly . (1.48)

Q depends on the point x but it is not a local operator. It is instead a finite dimensional
representation of the conformal group: the adjoint [103]. Under Gy = SO(d) x SO(1,1)
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it decomposes as

Resg adj® = (fund,—1) & (adj,0) @® (e,0) @ (fund,1) (1.49)
= K, ® M, & D o P, )

where the e represents a singlet and fund and adj in the right hand side refer to the
fundamental and the adjoint of SO(d), respectively. We can imagine a Ward identity as
a three-point function involving such an operator. Therefore we can count the allowed
tensor structures by the arguments presented in the previous subsection. The stability
group H is the group of two points, namely Gy. Calling ny (O) the number of Ward
identities in (OTO) one has

G
nw(0) = (ResgoV@ QVEH® ade> 0 _ (00 ® ply @ (0 ® adj))so(d) ,
where Vp = (po, A) is the Gy representation of 0. Since we are in four dimensions
adj = (2, 0) ® (0,2) . (1.50)

We will use this formula in Chapter 4 to compute the number of Ward identities for
po = (j,0) and (j,1).
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74 Supersymmetry

2.1 The superconformal group

2.1.1 Representations of the superconformal algebra

The conformal group can be extended by the addition of some fermionic generators
which satisfy a Z, graded Lie algebra, in the same spirit as Poincaré supersymmetry.
The grading is referred to as fermion number and the supercharges have fermion
number 1. In the non conformal case one introduces some supercharges Q that square
to a translation, namely

{Qa, Qu} ~ Py 2.1)

where # is a Dirac matrix {v,, 7} = 2g,. Moreover the Q’s transform under a
spinorial representation of SO(d). Since in the conformal group we have two Poincaré
subgroups, the other being Gk (see (1.36)), one naturally has to introduce additional
supercharges that square to a special conformal transformation

{Sa,Sp} ~ 7h Ky 2.2)

In order to respect also the grading realized by the dilatation generator, Q must have
dimension 1/2 and S dimension —1/2. The algebra is thus characterized by the number
of spacetime dimensions d and the number of supercharges Ng. Typically one quotes
the number /V instead, which is Ng divided by the dimension of a minimal spinor in
d dimensions. In addition to Q and S one often has to introduce additional bosonic
generators R that commute with the conformal group and transform the supercharges
among themselves. They constitute the so-called R-symmetry algebra.

The superconformal algebras have been classified long ago [11] and their unitary rep-
resentations have been studied extensively, leading to a classification in four dimen-
sions [12,13] and in any dimension [14,15]. Surprisingly, only a finite number of values
for N and d are allowed: a mathematical obstruction prevents superconformal algebras
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to exist in dimensions greater than six; moreover, locality of the resulting superconfor-
mal field theory (SCFT) puts an upper bound on the amount of supercharges A/.! The
complete list of all superconformal algebras is given in Table A.1 in Appendix A.3.1.
This thesis is focused on the case 4d, N' = 1 and 4d, N' = 2 which have respectively
R-symmetry u(1) and su(2) @ u(1). In Appendix A.3.1 the reader can also find the
superconformal algebra and the conventions used.

The classification of unitary superconformal multiplets shares some similarities with
the non-supersymmetric case. Since S behaves like a “square root” of K one can impose
a condition stronger than primality. Namely we define superconformal primary (or
superprimary) an operator O that satisfies
,I A
$*0(0) = §°0(0) = 0. (2.3)
Clearly a superprimary is also a primary, but the converse is not necessarily true. By

applying products of the supercharges Q on O we can build the superdescendants.
Schematically

_ 14 ?
(Q'Q°0)(0) ~ [T T1Q1,40(0). (24)
i=1 j=1

These operators will not be superconformal primaries, but appropriate linear combi-
nations of them and the descendants Py, - - - P, O(0) will be conformal primaries. The
Q’s and the Q’s are nilpotent and they can be put into a canonical order by using the
anticommutation relation {Q, Q} ~ P. This means that the superdescendants will only
contain a finite number of primaries among them. Each of them can then form a full
conformal multiplet upon acting with arbitrary products of P,. The conclusion is that a
superconformal multiplet is a finite sum of conformal multiplets with various spins and
dimensions obtained by acting with Q and Q on a superconformal primary operator.

Just like the non-supersymmetric case, also here unitarity places constraints on the
allowed quantum numbers of a superprimary operator. Together with the dimension
A and the spin (j,7) we also have the u(1) R-charge r and (only for N = 2) the su(2)
Dynkin label R.? Let us first define the g, § charges as :

A=g+4g, r=2(g—4q), for N =1,
g+ 3(a—1) 25)
A=q+q, r=2(q—1q), for N =2.
The unitarity bounds for long multiplets in these variables read
29>j+2, 2§>7+2, for N =1, 26)
20>j+2+R, 2§>7+2+R, for N =2. '

n three dimensions there actually exist theories for any N, but those for V' > 8 are necessarily free.
2This means that the Cartan Rz ranges in —R/2,...,R/2.
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2.1. The superconformal group

However, unlike the non-supersymmetric case, here there are additional nontrivial
allowed values of g and § which are disconnected from the above bounds.> Namely one
can have

=0 and/or j=7=0, for N =1,

o 2.7)
7/]:0/ fOI‘NZZ.

Also in this case, when one or more of these bounds are saturated, some states become
null and we obtain a short multiplet. However now there are two kinds of short
multiplets: those which are connected to the long multiplet unitarity bound (type A
shortening) and those that satisfy one of the conditions in (2.7) (type B shortening). The
story is analogous also in other superconformal algebras: there are one or more unitary
values that are disconnected from the spectrum of long multiplets. These give rise to
shortening conditions of type A, B, etc. in some cases up to D.

Let us be more precise for the case at hand, we will follow the notation of [14]. Since we
have two sets of supercharges Q and Q, the shortening condition is specified by a pair of
letters X; X' g, where X’ LR € {L, A1, Az, B1}. The subscript indicates the level at which
one can find the null state. Furthermore we denote as [j; 7](®") an A’ = 2 multiplet and
as [j;7]") an A’ = 1 multiplet. The shortening X} can be

L: Unconstrained action of Q on O. Bound 29 > j +2 + R.
Aq: Null state [j — 1;]‘](5:1;771) = Q“(I(’)iﬁ;..lﬁgj. Saturates 2g = j + 2 + R.
2

As: Null state [O;j](Alﬁlz;r*z) = e“ﬁQyQ{SOIl'"IR). Saturates 2g =2+ R, has j = 0.

B;: Null state [1;]‘](;111”71) = Q/0""™®) Disconnected from L: g=0,j=0.
2

An analogous table can be done for the Q charges, upon changing q,j — 7,7. The N' = 1
case can be simply obtained by setting R to zero and dropping the I, ] indices.

2.1.2 Embedding of N' = 1linto N’ =2

Clearly the N/ = 2 superconformal algebra contains an ' = 1 subalgebra. The embed-
ding is not unique, but any choice is equivalent. We will pick the subalgebra generated
by Q% and QM' This leads to

grN=1 = Gn=2 — R3, gn=1 = gn=2+ Rz, (2.8)

where Rj is the Cartan of the su(2) R-symmetry.

3In a non-supersymmetric CFT the only operator disconnected from the unitarity bound is the identity
(A=0).
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For N' = 1 we denote as O the superconformal multiplet, as O the superprimary and
as (QZ Qé O), with ¢, = 0,1,2, its superdescendants, which are taken to be conformal
primaries by definition. This is a slight abuse of notation because, as we mentioned
earlier, the operator obtained by acting with Q and Q on O is not, in general, a primary.
We need to take appropriate linear combinations with the conformal descendants. This
will be discussed later. When there are multiple choices for the spin, those operators
will be distinguished by a superscript. For example (QQO) "~ has spin (j+ 1,7 — 1).

For N' = 2 instead we define (Q2‘Q, {0) to be a family of N' = 1 superconformal
primaries, with the same abuse of notation we did before. In fact, due to the anticommu-
tation relations*

{QL, sy =—40kR!;, {5 Qu}=—40kR!,, I#], 2.9)

in general such operators will not be obtained by simply acting with Q2 and Qg on O
and thus some subtractions might be needed. Each of these families will decompose in
R + 1 multiplets with the following charges

(g+m,g—m), m=—JR —3R+1,...,3R, (2.10)

where we denoted the N = 2 charges with g, 7 and the su(2) representation of O with
R. The set of all conformal multiplets inside a long N/ = 1 supermultiplet is illustrated
in Figure 2.1. The N' = 1 decomposition of a long N = 2 according to the embedding
defined above can instead be found in Figure 2.2.

2.1.3 Introducing superspace

One multiplet of great interest is the one that contains the stress tensor. Any local theory
has one, by definition. Since T itself is a short conformal multiplet, its superconformal
version must be short too. For ' = 1 it goes under the name of the Ferrara-Zumino
multiplet [151] and its superprimary is a conserved vector J,;, which is the R-symmetry
Noether current. For N = 2 instead the superprimary is a scalar J of dimension 2 [152].
The shortening conditions are of A type on either side. So, to summarize,

Jui = A1 A [1;1)
J = Ay A[0; 0] = Co0,0) -

where in the second line we also included the notation of [13]. At order (Q2Q,7)"" we
can identify precisely the Ferrara-Zumino multiplet J. Inside J, other than the R-current
J(R), we have the stress tensor at order (QQJ)*+ and the supersymmetry currents’® S m

4The generators R/ j for I # ] are the su(2)g ladder operators R+.

5Not to be confused with the conformal supercharges S* and s,
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/Q Q\
(QO)* : (QO)*
///,\\\\q—%q+1 ///,\\\\q+Lﬁ*%
Q Q Q Q
L ~, ~_
2 DO EE 2
“2531\;—L7+2 QEE%%ZZ\\Q q+3.0+3 Q/EEiC) 4271
~, ~,
@Q)* . (@ .
\\\Q i Q/// i
~_,
(QZQZO) g+1,7+1

Figure 2.1. Diagram of all operators in an ' = 1 long multiplet. Superscripts of + indicate the
choice of spin j &= 1 or 7 & 1. Subscripts indicate the g, § charges. The R-charge grows from left to
right by 1 and the conformal dimension grows from top to bottom by 1/2. A box represents the
full tower of descendants O, 9,0, 920, ...

o g+m,q—m
/Q/\Q\
(o (Q0)* o
A e A
Q Q Q Q
(Q;Z 0) q+1+m, (QgQZO)ii g+ 3 +m, (ng 0) qg+m
T
\
(ngégo)i qg+1+m, (QZZQ;O):E q—i—%—i—m
\Q q+z-m Q/ g+1-m
—

g+l+mG+1-m

Figure 2.2. Diagram of all A/ = 1 multiplets in an N/ = 2 long multiplet. Superscripts of +
indicate the choice of spin j £ 1 or 7+ 1. Subscripts indicate the N' = 1 ¢, j charges. Here m = R3
takes integer spaced values between —R/2 and R/2. The u(1)n-—, R-charge grows from left to
right by 1 and the conformal dimension grows from top to bottom by 1/2. A box represents a
family of long N’ = 1 multiplets. Underlined indices are su(2)g indices.
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and S at order (QJ) " and (QJ)™, respectively.

Another interesting multiplet is the chiral scalar ®. In N = 1 Lagrangian theories it
is a multiplet that represents the matter content: it contains a complex scalar, a Weyl
fermion and a scalar auxiliary field. In N/ = 2 instead the chiral scalar is an su(2)g
singlet and it is also called vector multiplet as it contains the gauge sector of the theory.
The expectation values of the scalars in the multiplet parametrize the so-called Coulomb
branch. The shortening condition of both the ' = 1 and the N = 2 case is of LB type
(or B1L) and therefore they have § = 0 (or, respectively, ¢ = 0). That means

y—1 = LB1[0;0]5)

/2 2.11)

@ = = LB1[0; 015(/)';) = &12000)

and similarly for their complex conjugate partners. In the second line we wrote the
multiplet in the notation of [13] as well.

A useful tool for combining together all operators inside a multiplet is superspace. All
definitions can be found in Appendix A.3.2. An operator in superspace depends on the
point x* and also on Grassmann variables 6%, 81, where I is only present in the N = 2
case. We use a shorthand z to denote the tuple x, 61, 6!, x to denote x, 1,7 and finally z to
denote z, 7, 1.

O(z) = O(x,01,8",1,77) = €472 O(x) . (2.12)

The shortening conditions can be realized in superspace as some differential equations.
In particular, the A; type shortening signifies a D,, with & contracted and a A; type a
D*D,. So for the stress tensor multiplet we have

D,J* =0, DyJ* =0, (2.13a)
e**DyD}T =0, e*DyDjpT = 0. (2.13b)

The B; type, on the other hand, consists in imposing D, Oy, iy =0, without contracting
any Lorentz indices. Therefore the chiral scalar needs to satisfy

Did =0. (2.14)

The expansion of J,4 in components reads (see, e.g. [153])
108 ai(2) = T () + 5050 (x) — £5,a(x) 6
+ 0" 0y, 0" (Tuv(x) - %%VPAap](RM(x)) (2.15)
_ %(92 3,5, (x)0"0 — %92 003, (x) — %929282]51{)(36) .
The shortening condition (2.13a) implies the following conservation and irreducibility
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conditions:
At = 0, TH = TH, = 9,5y = Ty = 9,5k = 7Sk = S ," = 0. (2.16)

The first four equations impose the conservation of the currents that generate the super-
conformal transformations, while the remaining ones simply follow from the fact that
the operators involved are irreducible representation of the Lorentz group. In order to
keep this discussion compact, we will not show explicitly the decomposition of 7 into
N = 1 multiplets.

In the chiral scalar case the shortening condition does not imply any conservation
equation, but rather it removes some operators from the multiplet. Indeed, by defining
y# = xt +i0c#0, it is easy to see that D;y* = 0 and thus, in A/ = 1 superspace,

Dpr—1(z) = ¢(y) + 0¢a(y) + 6° F(y) . (2.17)

This means that there are only half the terms in the expansion. The ' = 2 chiral
multiplet can easily be expanded in N' = 1 following the results of Subsection 2.1.2.
Defining now zg = z\gzzggzo one has
Dr—a(z) = D(20) + 03 Ya(20) + 03.F (20) ,
(I) = [O, O] (r/3) ,

r/2
2.18)
(1) /3) (
¥ =[50,y -
o (42)/2)
F=0:0],'5)5

where ® is just the chiral multiplet of (2.17), ¥ is an N/ = 1 vector multiplet and finally
F is another chiral multiplet. When r hits the A, unitarity bound, r = 2, there is an
additional conservation condition. As a consequence ¥ has at level one a self-dual free
field of spin (2,0), namely a field strength F,, = 9, A, — 9, A,, hence the name vector
multiplet. By extension, the N/ = 2 chiral multiplet ®r_; is often referred to as vector
multiplet as well.

Lastly we would like to mention another important multiplet in NV = 2 theories: the
hypermultiplet. Using the same notations as before the hypermultiplet Q can be written
as

H = BB, [0;0)%° = Bg. (2.19)

When R = 1 (doublet representation) the multiplet becomes a free field. In N/ = 1
language it can be seen as a chiral and an anti-chiral multiplet. This is particularly easy
to see from Figure 2.2 because the shortening conditions remove all the boxes except
the one at the root. So we get two N = 1 multiplets: one with q,§ = 1,0 and one with
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9,4=0,1
H= =@ e [0;0/7Y, H=Z2=3 ¢ [0;0){*.

The above equality is only schematic. For example, we purposely left unclear the
dependence on the Grassmann variables 6;, 0, as it is fixed by the shortening condition.

Both the hypermultiplet B and the chiral multiplet £, /2(0,0) Play a key role in all A = 2
quantum field theories. Their expectation values parametrize two types of moduli
spaces of vacua which are called respectively Higgs branch and Coulomb branch. These
moduli spaces of vacua are present in most Lagrangian N = 2 QFTs and their names
come from the degrees of freedom that can be found in the low energy effective field
theory. In the Higgs branch the hypermultiplet gets a vacuum expectation value thus
breaking the gauge symmetry and, as a consequence, the scalars in the multiplet are
eaten by the gauge vector which becomes massive. In the Coulomb branch, on the
other hand, the chiral multiplet is the one that gets a vacuum expectation value. Since it
transforms in the adjoint of the gauge group, this leaves a number of massless photons
in the IR theory, hence the name Coulomb. An introduction to A = 2 supersymmetry
can be found in [154].

This concludes our introduction to superspace. The interested reader can find the V' =1
superspace expansion of a generic long multiplet in Appendix B.2.

2.2 Superconformal correlators

We will follow the conventions of [155] for four dimensional spinors and utilize the
formalism of [114,115] for N' = 1 superspace and its generalization [116,117] for N = 2
superspace. See Appendix A.3.2 for more details.

2.21 N =1 superspace

Given three superconformal primaries O, O, and O3 whose sum of R-charges is 0,1 or
2 in absolute value, one can define a three-point function as

(O1(21) 02(22) O3(23)) = K 0,0, (21,2, 23931, 05,) o) (233 X1.0, K121, 713) - (2.20)
The Ko, 0, is an universal prefactor and the tg;oz encodes all the information of the three-
point function and can be expressed as a linear combination of tensor structures. The
commuting spinors x;, X; are auxiliary polarizations that are removed by the derivatives
in the prefactor. The variable Z3 collectively denotes the superconformally covariant
variables X3, ®3 and ®; whose definition can be found in (A.30). Clearly, since here the
operator O3 is treated differently, there are two other equivalent representation related
by cyclic permutations. For more details see Appendix B.1.
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The general form of the prefactor Ko, (, is the following

2 i _N\T.
1 | | (Uixigax,-)]’ (axixﬁm)h
NN 5 o 2a T .
AR T2 x3i2q1+]l X Jit7i

K:o] 0, = (2.21)

For the definition of x;; see (A.26). Note that, as the name suggests, the prefactor only
depends on the quantum numbers of the first two operators. The tg; @2 can contain all
Lorentz invariant combinations of its arguments as tensor structures. They need to be
homogeneous functions of the auxiliary spinors — with the degree dictated by the spins
ji and J; — and also satisfy a scaling property illustrated in (B.3). Due to the Schouten
identities® these tensor structures can be hard to enumerate. The expected number
can be computed by a group theoretic formula which will be introduced in Section 2.3.
Moreover, since the problem is essentially analogous to listing tensor structures in
embedding space, one can easily obtain them by using the results of [89,91] (reviewed
in Section 1.2.2). The idea is to first define the mapping

N7 )

Ky — nimj, K — mif]j (2.22)
IT;‘k — u_{l 771'U3 ;i ﬁij — U;l 171'U3 77]' ,

where we have renamed x; and {; to #; and 7j; respectively for simplicity of notation
and used Uj defined in (A.31). Then we proceed order by order in @3, ®;3. The order
zero is trivial as it suffices to apply (2.22) to the three-point function. Now say we want
to compute the order ®30;. We simply consider the three-point functions with all four
combinations of spin’

(jllj_l)l (jZ/]_Z)/ (]3 + 1/]_3 + 1) ’ (223)

and Az — Az + 1. Then, after applying the mapping (2.22), we remove the extra
113, 773 spinors with @30y, @38,73 and attach missing 73, 773 spinors with @313, @3173. For
quadratic orders it suffices to attach an overall @3 or ©3 to the three-point function with
no shifts in the spins. The same logic applies to the other orders. The constraints of
multiplet shortening and conservation can be applied directly on the t by using the
fact that the shortening differential operators always annihilate the prefactor with the
appropriate quantum numbers. This is a consequence of

~7i1 )]
d D (771)(13;71) f(xB):O/

Aj shortening: n 1a o2

1
Aj shortening: Dlzﬁ f(xm) =0, (2.24)
13

B; shortening: D1y f(x13) =0,

®The Schouten identities are explained in Appendix A.1.

7If j3 or J3 is zero the corresponding negative shift is omitted. The choice of shifting the spin labels of
the third operator is unimportant and equivalent to any other choice, even when j3j3 = 0. In that case,
correlators of operators with negative spin are defined to be identically zero.
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for x13 # 0. Similar identities hold for D. If x; = x3 we have the usual contact term
singularity. Once the differential operator is past the prefactor we can use (A.34) to act

010,
on t‘o3 .

2.22 N = 2 superspace

With a formalism similar to the previous case one can construct superconformal three-
point functions of A" = 2 primaries. First we need to introduce the following unitary
matrix

03150,
u (zi) = 6, — 4 —. (2.25)
]

By rescaling u(z;j) appropriately we obtain a unimodular matrix
1
N ] x]'iz ’ ] -
0, (zij) = Pl I (zij) i(z;) € SU(2). (2.26)
g

Let us consider three superconformal primaries (’)111, ng and (93[3. Here Z; is an su(2)
index transforming under the representation R;. Let us denote as

T (w),  uesu2), (2.27)

the representation with Dynkin label R of SU(2). The simplest cases are®

7—11](”> = ”1]' T2, 8(u) = (aAe)hIl(eaB)]z[Z(uhIz uh]2 + uh]z uhlz) . (2.28)

=

The most general three-point function then has the following form

(07 (21) 077(22) O (23)) = K0,0,(21,2/233 0310 0312) X
TE () TE 7 (0G0)) % (229)
tg;@‘ APB(Zs; X102, 1,213, 1)
with K defined in (2.21) and Z3 denoting X3, @é, O3/ (see Appendix A.3.2). The t has the
same scaling properties as the N’ = 1 case (see (B.3)). In addition it has to transform as a
tensor with the indices in the appropriate representations. The dependence on the su(2)
indices may come from ®/, @ or explicit €;; and 5} tensors.

S(O'A)I ; are the usual three-dimensional Pauli matrices and €1, = €2l = 1 is the Levi-Civita tensor.
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2.3 Counting superconformal correlators

In this section we will derive a formula analogous to (1.40) to count the number of
superconformally invariant tensor structures. The argument is identical to the one in [1]
but adapted to the case of three-point functions. The result is general and applies to all
superconformal algebras. Ultimately we will be interested in 4d, N’ = 1, for which a
formula has already been derived in Paper I. At the end of this chapter we will obtain it
as a particular case.

2.3.1 Group theory of superconformal tensor structures

One immediate obstacle to the construction of Section 1.3 is that it is quite hard to
construct functions on a superconformal group. The algebra is an easier object to deal
with. The first thing we are going to do then is to pass at the level of the algebra so that
we will not have to worry about the meaning of a supergroup.

The starting point was the space of functions from the supergroup G to a certain repre-
sentation space V
v :.=C2(G,V). (2.30)

V is taken to be a representation of Gy = SO(d) x SO(1,1) x R, where R is the R-
symmetry group. We call g the Lie superalgebra of G. Namely

g=1su(2,2/1), fordd, N =1,

(2.31)
g =su(2,2)2), ford4d, N'=2.

Define U(g) to be the universal enveloping algebra of g, namely the "freest" algebra of
all generators in g subject to the commutation relations only. For any element A € U(g)
we can write down a differential operator £4 that acts on the functions ¢ € T'V. By
evaluating this derivative at, say, the origin, we obtain something that could be called a
Taylor coefficient:

pa=Lagpe) €V. (2.32)

By varying A € U(g) we can trade the knowledge of ¢ for the knowledge of its Taylor
coefficients. ¢4 is effectively a map from U(g) to V. So we will get rid of I'V and focus
on ®" composed by all linear maps from U(g) to V

@Y := Hom (U(g), V). (2.33)

We now write a decomposition of the algebra in the grading dictated by the dilatation
operator. Namely g, is the eigenspace of D with eigenvalue n.

9=0-100_1Se S0 Oo. (2.34)
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The space g_; contains the special conformal transformations, g 1 the supercharges S,
go contains dilatations, rotations and the R-symmetry algebra ¢, g 1 has the supercharges
Q and finally g; has the translations. With a notation similar to (1.36) we define gp as
the algebra with non-negative grading and gk as the algebra with non-positive grading.
Namely

gp =00 © g1 Do, 9Kk =9-199_1 D do- (2.35)

As before, we want to refine the definition of © so that it represents a primary operator.
It suffices to put covariance properties under the left action of gx. Therefore we redefine
®as

0" = {g: U(s) = V|p(xA) = (~)"¥In(x)g(4) Vxea, AcUla)f, (236)

where 77 : go — V is the representation of V that is extended to act trivially on gx © go
and | - | is the fermion number grading. Our goal now is to compute the tensor product
of two such vector spaces. The proof of the result that we are about to give follows
the same lines used to show the form of I'V1'"2 explained in Section 1.3. Furthermore, a
complete proof is given in [1]. For these reasons we will not repeat it here.

The tensor products of two ®s reads

"1 ®Ee%2=0"" =

lo: (o) > i o V3 | p(xA) = (~1)19m, (x) @ 5 (x)p(4) Vx € go, A€ Ulg)}.
(2.37)
Notice the difference: now we ask for covariance only under gg. The representation
V5 has the same meaning as before: it is the representation obtained by conjugating 7,
with the Weyl reflection w. It simply conjugates the spin, changes sign to —A and leaves
the R-symmetry untouched. Note that the Weyl reflection w maps gx <+ gp because

w(gn) = g—n-

Let us continue with the third operator. We need to multiply by ®" and then take the
g-invariants of the result. This will yield the space of superconformal correlators. The
product is given by functions ¢ : U(g) ® U(g) — Vi ® V5’ ® V3 which satisfy suitable
covariance properties. These functions are determined by the values that they assume
in the coset U(go)\U(g) ® U(g)/U(gk). Like before, taking the g invariants turns this
into U(go)\U(g)/U(gk). Therefore we obtain

(@v1 20" @ ®v3)G _ (®V1,V2,V3)G _

g(aA) = (~1)1"9 7 (a) © 3 (a) 9(A) Va € go, A€ Ulg)

¢(Ab) = (=1)!"171755(b) p(4) Vb€ gk A€ Ug)

(2338)
Later we will denote this space again as Hom(U(g), V1 ® V5 ® V3), leaving the covari-
ance properties implicit.

{gDZ U(g) — WV ®V2*®V3
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Now the choice of going to the Taylor coefficient space pays off. The universal envelop-
ing algebra of any superalgebra can be decomposed as follows

U(g) = u(geven) & Agodd ’ (239)

where geyen is the direct sum of g,, for n even. Similarly for g,q4. Equivalently geven is the
set of bosonic generators and g,qq4 the set of fermionic ones. The space Agyqq denotes the
alternating algebra of g,q4, namely the set of all antisymmetrized products of elements
in go4q- We can use this to pass from functions on U(g) to functions on U (geven)

Hom(u(GeVen) & Agodd/ V) = H0m<u(geven)/ Agzdd & V) . (2-40)

The dual space on the left hand side Ag 4 is actually isomorphic to Agyqq. This is nice
because functions from U (geven) to any complicated vector space can be interpreted as
functions on the bosonic part of the group G x R, where R represents the R-symmetry
group and G the conformal group. Indeed we can do the argument that led us from I'V
to ® in the opposite direction. Therefore

Hom(u(geven)/Agodd o2 V) = COO(G X R/ Agodd ® V) . (241)

We are now almost done. The space of tensor structures is given by the set of values that
the functions ¢ can assume. To claim that it is Agygq ® V1 ® V5 ® V3 would be wrong
because the covariance properties on the left and on the right do not act freely. There is
again a stability group H. The bosonic part of this subgroup is H = SO(d — 1) x R. The
reason for the first factor was explained in the non-supersymmetric case. The second
factor follows immediately since R commutes with the whole conformal group, so in
the decomposition U(go)\U(g)/U(gk) it can be taken from one side to the other. There
is however an extra set of generators that we have to mod out, namely the conformal
supercharges in gg. This reduces the alternating algebra Agy4q to the alternating algebra
of the Q’s only, namely Ag% .

The final result is that the space of superconformally invariant tensor structures in the
correlator (0O10,03), which we call n(010,03), is given by

H
1(010,03) = dim (Resff Ay @O V5 ® V3) ) (2.42)

where H = SO(d — 1) x R and Gy = SO(d) x SO(1,1) x R. Since the SO(1,1) factor
does not appear in H, the conformal dimension does not play any role and we get

X " H
n(010,0;) = dim (Res?lo(d) R Ag% ® (p1,71) ® (p3,72) @ (p3, 1’3)) , (2.43)

where we use r to denote a representation of R.
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Chapter 2. Supersymmetry

2.3.2 Rederiving the formula for the case 4d, N’ =1

We want to now specialize (2.43) for the case of four dimensional N’ = 1 supersymmetry
as it will be the main focus of this thesis. This particular case of the formula first
appeared in Paper I. Here we will rederive it using the general formalism explained
before.

By looking at the function ¢ in (2.20) we can get a better intuition of the formula. Indeed
t contains all terms that can be built out of contractions of #;, 7;, X3 and ®3, ®3. Now we
can separate the terms according to the various orders in @3 and ©;. At order zero we
have the usual formula in conformal frame for the non-supersymmetric case. At order,
e.g., O3 instead we can replace all occurrences of the Grassmann variable with an extra
polarization 74. This can be interpreted as having an operator, say O, transforming in
the reducible representation p; ® (1,0). That would mean that the first j « indices are
contracted with 77; and the fictitious (j + 1)th is contracted by #4. The structures in this
case are counted by

. . 50(3)
16 (010,05) = dim (Resggggg (1,0) ® p1 ® p} @ p3> . (2.44)

Similarly, for all other possible orders in @3, ®; we can think of adding extra indices
to one of the operators and writing down formulae such as the one above. Now
the comparison to (2.43) is clear: the possible orders of @3 and @; are precisely the
elements of Ag%. The Grassmann variables anticommute and transform in the same
representations as the Q’s. So they make up the same alternating algebra.

Let us be more explicit. Consider Oy, O;, O3 to transform in the representations V; =
(pi, i), where p; are representations of SO(4) and r; are u(1) charges. Define now the
sum of the R-charges ¢

b=r1+r+r;s. (2.45)

(91 O,

As mentioned in Subsection 2.2.1, § can be 0, -1 or +-2. The function ¢! contains a

subset of the following monomials (we will drop the subscript 3 in @3 for brevity)
e'@’, o+, e, 0, 0'e', %0, >, 0 0. (246)

Which ones are present depends on the R-charges of the operators. Let us denote as
nx(010,03) the number of structures of a given order X in ®,®, where X is any
monomial in (2.46). Following the discussion above we have

11(0) = e (O1) = 12 (O1) = e (O
(0
O;
O;

@
ng(0i) = neg(
(

Res p1 ® p2 ® p3,

)
) =Resp1 ® p2 ® p3 ® (1,0), 247
)
) =

ne(O )

Resp; ® 2 ®p3 ® (0,1),
Resp; ® po ® p3 @ (1,1).

i
YY) i
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2.3. Counting superconformal correlators

SO(4)
S0(3)
general formula for the number n(O;0,03) of tensor structures in the three-point

function (O10,0,) may be written as

where Res = Res and a superscript SO(3) in all terms is understood. Then the

2711((9102(93) + n®@((91(’)2(93) 6=0,
n(010203) - n1(0102(’)3) o= :tz, (2.48)
n@(010203) + 71@(010203) 6==+1.

Now we show how this is an immediate consequence of (2.43). It suffices to notice that,
due to the factor R in H, we need to take singlets in the u(1) R-group as well. This means
that only the terms with R-charge —¢ in Ag ! will survive. For 4d, N = 1 the alternating
algebra is given explicitly as

Agy = (001 @ [0;1]), & [1;0]1 ;) @ 0,011 & [0;0]{7 01

o L1 @ 0115, @ [10]4), @ 0,015
where the notation [j; ]‘](Ar) represents p = (j,7) and R-charge r. The conformal dimension
A was included for completeness but it does not play any role here. The reader may
check that the representations with R-charge equal to —J match precisely those included
in (2.48) for all cases 6 = 0,+1,+2. For example: the case 6 = 0 selects [0; 0] §0) &)
[1; 1]50) @ [0; 0]50). According to the definitions in (2.47) this selects two n;’s and one
Nge- Similarly § = 1 selects [1;0]5;21 )@ [0;1] é;zl ), which is again in agreement with the
formula as it yields ng + ng.

It is also possible to use this formalism to account for kinematic constraints such as
permutation of the operators and conservation. It is however quite difficult to develop a
general formula that encompasses all possible cases. We will therefore postpone this
discussion to the case of two Ferrara-Zumino multiplets and a general long multiplet O,
which will be the main focus of Chapter 7.
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<] Differential operators

This chapter is based on Paper III.

3.1 Introduction

This chapter’s goal is to introduce a convenient formalism to expand a superspace
correlation function in its components. The final output of the formalism shown here
will be a set of linear relations among the OPE coefficients and norms of the operators in
the same multiplet!
(a) _ paga (D) o
A(Qféz(’)l)Oz(’)g, = M5 A010203 ’ C(Q”Qiol) = NCo,,
for some, in general rectangular, matrix M and some complex number N. Once the con-

formal blocks of all operators in a multiplet are known, it suffices to take the appropriate
linear combination following from the knowledge of M and N.

The main motivation behind seeking these kinds of relations is to be able to compute
superconformal blocks. Their knowledge is indispensable if one wants to carry a
conformal bootstrap program for studying SCFTs. A detailed account of the current state
of the art in terms of superconformal blocks is given in the Introduction and thus will
not be repeated here. The explanation of how to compute them given the results of this
section is in Section 7.5. On the other hand, there are also other interesting applications of
the formalism shown here which are explored in Chapter 4 and Chapter 5. Namely, we
can impose on the whole multiplet the constraints stemming from locality.? This often
has implications which are stronger than the ones obtained by studying the component
fields separately.

1We call A the coefficient appearing in the three-point function in some standard basis and C the
normalization of the two-point function relative to some standard convention. See Section 3.4.1 for more
details.

2 A theory is local if it admits a conserved stress tensor.
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Chapter 3. Differential operators

The approach adopted here consists in defining a set of superconformally covariant
differential operators that can be applied to any correlator in superspace. In N' = 1,
by setting the Grassmann variables to zero, one obtains a superconformal primary:.
Whereas in A/ = 2, by setting to zero only the Grassmann variables 6, 82, one obtains
an N = 1 superconformal primary. The advantage of these operators is that they have
nice covariant properties when acting on the prefactor of three-point functions, thus
allowing us to define their action directly on tg;oz in (2.20).

In order to define such differential operators we need to carefully subtract the conformal
descendants — or the superdescendants of the other supercharges in the ' = 2 case
— that are generated when acting with Q, Q on O. This is done in full generality to all
orders in A/ = 1. Whereas only some cases have been considered in N = 2. Specifically
we considered all operators with vanishing su(2) R-charge up to quadratic order in the
Q?2, Q, supercharges and all operators with su(2) R-charge 1 and 1/2 up to linear order.
By expanding the differentiated three-point function in a standard basis one can read
out the linear relations among the OPE coefficients of © and Q‘Q’O. Similarly, by acting
on two-point functions, one can obtain the relative norms, even though they are already
known in general for ' = 1 [156]. We also introduce a Mathematica package to work
on four dimensional superspace. It will be briefly explained at the end of this chapter.

The differential operators that we will define in what follows will be denoted with the
letter “D” in several different fonts. In order not to generate confusion we summarize
here their meaning. See Subsection 2.2.1 for the definition of the Z variables.

Symbol Supercharges Acts on

Dyigi N =1 z1/ 2
DQZQz / QQE@ N =1 Z3

]DQA/‘QZ’ N =2 Z1 / Z2
QQZ@ / QQZQ({ N =2 Z3

Table 3.1. Reminder for the notation of differential operators. The alternatives in the first column
represent the differential operator obtained by acting on the first / second operator, respectively.

3.2 Constructing the differential operators
321 N =1case

Strategy

In this section we derive a set of superconformally covariant differential operators D
that extract a given order in 6, 6 from an ' = 1 superconformal multiplet O(z). That is,
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3.2. Constructing the differential operators

we want them to satisfy the following property

Dy O(2)] = (Q'QT0) (%) . 3.1)

where |p means evaluating at 6 = § = 0 after taking the derivative. The set of all
operators in a long multiplet is illustrated in Figure 2.1. Clearly, by the definition of
O(z) (2.12), the first orders will be simply a derivative with respect to 6 or §. However,
the situation becomes more complicated when both £ and 7 are nonzero. In this case the
term multiplying /6" is not a conformal primary, but a linear combination of (Q‘Q’0O)
and the descendants of the previous orders. Thus we need to be able to disentangle
these contributions. Furthermore we will not be content with any form of the differential
operator. We will need to express it as a combination of chiral and antichiral derivatives
D,, D (A.29). The reason will be evident in the next section: these derivative have
nice covariant properties that allow us to pass them through the prefactor Kp,0, of a
three-point function and then their action on tg;oz can be fully recast as a derivative
with respect to X3, @3, O3.

Firstly we need to compute the exact linear combinations of descendants that appear
in the (¢ # 0 terms. This has been done already in [156] by analyzing superconformal
two-point functions. We summarize their results in Appendix B.2. Then we need an
ansatz for the differential operator that we wish to compute. Schematically we have

Dy ~ Dy, DQ ~ Dy (3.2)
Therefore an ansatz for DQg ol will be something of the form
Dyigr ~ (DQ)Z(DQ)Z + permutations, (3.3)

and the coefficients a1, ... need to be fixed in terms of the ¢;’s in (B.13-B.15). This
matching could be done by simply working out the algebra of the chiral derivatives,
namely {D,, D;} = 207, d,. However, we opted for a more convenient method. The
strategy is to define a functional that acts on the non-supersymmetric operators O(x)
and turns them into an explicit function ¢[O](x). It is then possible to implement the
rules for derivatives and index contractions in a computer algebra system and impose
the following equality.

¢[Doigr O(2)]o) (%) = 9[(Q'Q°0)] (x). (3.4)

The functional ¢ can be chosen arbitrarily as long as it is generic enough to make
(3.4) imply (3.1).3 There are a few advantages to this method. First, it can be easily

3 Another way to say this is the following: we want to prove some identities between differential
operators. The identities should hold for any choice of functions to which the operators are applied.
Therefore we need to find a set of functions which are generic enough to completely fix the ansatz, but also
as easy as possible to manipulate.
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Chapter 3. Differential operators

implemented using the package introduced in Section 3.4. Second, it is possible to
choose among many functionals thus obtaining an overconstrained system of equations
like (3.4). The existence of a solution serves as a check for our results.

A possible choice is ¢[O](x) = (XO(x)). However if X is a local operator then ¢ becomes
a quadratic functional (because necessarily X = O) and it is hard to solve the constraints.
If X is the product of two local operators we have a linear functional but there is no
choice that gives a nonzero three-point function with all possible Os. Naturally, there is
no reason why ¢ needs to be a physical correlator. This is then our choice:

x7) ! (nxi )k . -
pl0](x) = X i+ (" 65)

The parameters k, [ can be varied between 0 and, respectively, j and j to obtain a family of
functionals. The only identity that needs to be considered when comparing derivatives
of the above expression is the following

XXX 11X7] = xx7] XX + X nx 7% - (3.6)

This is particularly convenient because the main obstacle in solving (3.4) is finding all
linearly independent tensors. In this case, thanks to (3.6), a basis of independent tensors
can be simply taken to be

(ex)" (rxa)™ (xex)* (nxx)? (7x)° (7%)%,  withmn = 0. (3.7)

Now the task of fixing the ansatz for the differential operators Dy is tedious but
entirely straightforward.

First order

At first order in 6 and 6 no descendants need to be subtracted. The differential operators
are simply dy or dg, which can be then completed to chiral derivatives (A.29)

. -
Dy =—+—1"Dy,  Dg=—%=-Dy,
Q j+1 1 Q ] M
. o (3.8)
+_ Y oy, -_ 1 D,
DQ_ ]‘+1'7D"" DQ jaﬁ&D“'
As needed, these operators satisfy
D5 O(z)], = (Q0)*(x), Dg O(2)|, = (Q0)*(x). (3.9)

They will be used as building blocks for the subsequent differential operators.
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3.2. Constructing the differential operators

Orders Q? and Q?

For the quadratic order we may use the operators D*D, and D, D". However in the next
section we want to prove that all D5 commute with the prefactor of the three-point
function. This can be done easily only if all operators are expressed in terms of DS and
Dg. Since we act on homogeneous functions of # and 7 this amounts to only an overall

factor.* The result is

- Pt

The factors j(j + 1) in the numerator simply cancel the denominator of (3.8). For scalar
operators they can be omitted and D, is used without the j at the denominator.

Order QQ
This is the first order where we need to subtract the descendants. Schematically we have

Ol,5 = 08 ((QQO0) —icd,0) , (3.11)

see (B.13) for the full expression. The needed ansatz is simple. Letting s and 7 represent
either a plus or a minus sign we have

DZQ =a" D“Z’QDEj + b7 DVQDf2 . (3.12)
The coefficients a°" and b*" are a function of ¢1 if s¥ = ++, cp if sr = —+, ¢z if sy = +—
and cy if sr = ——. We will directly give the final expression by replacing the values of c;
computed in [156].
gt = 2’1"‘]" / pH — _ 257'1‘]_'
2+ +j+7 2+ +j+7
R o i S & S
2@+q-1)—j+7 20q+q-1)—j+] (3.13)
NS L S S i B
20+q-1)+j—7 2q+q—-1)+j—7]
__ 2g—j—2 b 2§—7-2

C20q+q-2)—j-7’ C 2(q+q-2)—j—]°

4 Indeed for an homogeneous function f; = 14, - - - a, f*1*¢ one has

BUD 7’]Df/ = %Dzal’/ﬂ 17‘517“1 N 77“/ qu...aq;
= 3(t+2)D*f,.
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Chapter 3. Differential operators

We should remark that these expressions are valid for a generic long multiplet. When
the multiplet is short (e.g. 29 = j + 2) the differential operators associated to null
superdescendants should be discarded.

As a quick example we can take the QQ descendant of the Ferrara-Zumino multiplet
J(z), namely the energy-momentum tensor. The result is simply one half the commutator

T(x) = = (DEDE — DEDY) J(2)

o (3.14)

as can be easily seen by lettingj =7=1and g =7 = 3/2.

Orders Q?>Q and Q?Q
The contribution at this order is shown in equation (B.14). Letting s = =+, the ansatz is

S =cDLDZDE+d°DZ DS DE +¢° D= DL DS
DQZQ cDQDQDQ—i—d DQDQDQ—i-e DQDQD , 515
s _ =SS - N+ 1 M— NS =+ 5 N~ Nt DS ’
DQZQ—C DQDQDQ-I-d DQDQDQ-i-e DQDQDQ.

The various coefficients are a function of c5 678 and 56 75. We have the following simple

relation
¢, 8, ¢ =8, —F, —& |jog,000, (3.16)
It will then suffice to quote the result for the coefficients of DX, 0 only
o AT+ + )G +T+2q+27 +2)
G+2)7-j—29-20+2)(+T+2q9+27)"
= 21(G+1) (29— j=2)(7—j+29+27)
T+2)(+7-29-20+4)(T—j+29+27-2)’
o 4+ 1)(2q+)
T—i—29-29+2)(j+]+2q9+27)"
i 47 +1)(29 —j —2)
(G+7-29-27+4)(7—j+29+27-2)
DRI+
T+2)G+7+29+29)"
L 2G4+ a17)

J+2)7-j+29+27-2)"
Order Q>Q?

At last we have the highest order in 6 and 6. The subtractions needed are six: g
through c14. This means that our ansatz will need seven terms obtained by permuting
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3.2. Constructing the differential operators

Da, Dq, DS and Dé. In total there are fourteen permutations after taking into account

{D,D} = {D, D} = 0. Not all of these are independent and the choice of seven out of
these is not unique. We made this ansatz

I - D+ p- Pt - D- Dt Dt - - Pt pt
DQZQZ = hf DQ DQ DQ DQ + f2 DQ DQ DQ DQ + f3 DQ DQ DQ DQ
- DDt Pt - - Pt pt
+fiDgDg D5 D4 + fsDg Dg D4 D} (3.18)

- Pt p-pt + - ntp-
+ fo Dg Dy Dg D + fr D Dy Df Dy

These are the values of the coefficients f;

f= AUV D@I-T -GG+ +29+27+2)
G+2)G+2)(-T-29-29+2)(j—T+29+29-2)(j+]7+29+279)
PO 16+ DG+ -] =2)27+]) _
G—=7-29-20+2)(j+7—-29-29+4)(j—T+29+29—-2)(j+]+29+29)
= _§G+VIG+D@g+))
(j+2)
y (2 +4jG +2j + 7 + 2] — 4% — 8qq + 4q — 447 + 129)
(j—7-29-20+2)(j+7-29-24+4)(j—T+29+2§-2)(j+]+29+29)"

fo A7 +1)(29 =7 =2)27+7)( —] 29— 29)
J+2)G—7—-29-2q+2)(j+7—29-27+4)(j+]+29+27)"

fom— 16j(j + D77 +1)(29 — j = 2)(2q + ) |
(j—=7-29-20+2)(j+7-29-2G+4)(—7+29+24-2)(j+]+29+27)"

4G+ 1)7G+1)(2q—j—=2)2q+ ) +7+29+27+2)
j+2)G+2)(-T7-29-20+2)(—]+29+27-2)(j+]+29+29)’
477+ D29+ )7 +7)G +]+2q9+27+2)
J+2)7—j+29+29-2)(j—]+29+27-2)(j+]+29+29)

f6:(

fr= ( (3.19)
All these expressions are available within the Mathematica package that we introduce in
Section 3.4.

322 N =2case

General remarks

Now we want to define differential operators that extract full A' = 1 superconformal
multiplets inside an A/ = 2 multiplet. The embedding of the ' = 1 subalgebra was
explained in Section 2.1.2. There we also commented on the necessity of taking suitable
linear combinations of superdescendants in order to define the superconformal primary
(Q* QJ‘ ). We only considered operators with R = {0,1,2} and give results up to the
first nontrivial order in the Grassmann variables with I = 2, leaving the general analysis
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Chapter 3. Differential operators

for future work.

Zero R-charge

If the superconformal primary is an su(2) singlet, no computation is needed at the linear
order. Indeed from (2.9) and from the fact that R+ on a singlet yields zero, one can see
that these operators are automatically A/ = 1 superconformal primaries

2D 0(2)], = (Q°0)*(2), 2D5 O(2) o = (2:0)*(2), (3.20)

where now we defined | as |,_g_( and the prefix on the differential operator as an
su(2) index

iDogr =D (3.21)

QQf ‘ D—D!,D—D;
Similarly, the order, Q%> and Q? require no subtractions as well and can be defined by
attaching an index I = 2 to (3.10).

More interesting is the order QQ. We expect a single superconformal primary at this
level. The correct differential operator is a linear combination of the operators in (3.12)
for I = 1 and 2. We will not prove this result here but postpone the discussion to
Section 3.3.2. Let us denote with a boldface D the N/ = 2 differential operators. Letting
s and t represent a sign =+, the result is

st __ st st st
with
A++:_ 2 : , A*Jr:_ 2 : ,
20+q+1)+j+7 20+4q)—j+7 (3.23)
A =— 2 At =— 2 .
20+q-1)—j-7’ 2@+q)+j—7

As a quick example we can reproduce the result of [117] for the stress tensor multiplet.
Let us denote with 7 (z) the N' = 2 superconformal primary and with J(z) the Ferrara-
Zumino multiplet. Recalling that for 7 we haveg = § =1 and j = 7 = 0, the result is

1
_ D+t _ ++ 7L p+t
J(z) =D} T, = <2DQQ J—31D% J> 0 (3.24)
with, from (3.12) and (3.8),
1 —
++7_ _Lipl P,
IDQQ \.7 — > [D,X, Da[] j (325)

Apart from an overall minus sign, which simply reflects in a different normalization, we
obtain the same linear combination.
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3.2. Constructing the differential operators

R-charge 1/2

When the su(2) R-charge is non-zero, the differential operators are nontrivial starting
from the first order. The simplest case is that of the doublet, for which we expect two
N = 1 superconformal primaries. The operator O on which they act will have an [
index. Letting s = 4, we can write general ansatze as

DL Oy = 1Dy M 0), D50 = D M Oy (3.26)

We denoted with ID the N = 2 differential operator. In order to have a superconformally
covariant operator we need to contract the index of O with an appropriate matrix. Since
we expect two multiplets to arise at each order, the solutions for M, and M must have
two degrees of freedom each. We denote the two classes of solutions as .A and B. The
matrix M may be an arbitrary linear combination of those solutions, but the basis that
we chose is the one that projects into N' = 1 multiplets of definite R-charge. In order to
avoid confusion we indicate here what term is represented by each entry

DLO1 1Dy O;

M, = <2ng o, D% Oz) , similarly for M. (3.27)

The A solution for M will be M, = A, M, = A,, with

00 — 00
AS:<1O>, As:(()l). (3.28)

The solutions does not depend on s. Whereas the B solution for M will be M, = B;,
./vls - Bs, With

2 2
B, = ~ = 0 ) B | "z 0 ,
0 1 0 1
2 2
B, = 0 | B — 0 2771 |
1 0 1 0

In this case a nontrivial linear combination is needed to obtain an NV = 1 superconformal
primary and the solution does depend on the sign s. The resulting operators will have
charges and spin dictated by Figure 2.2. As before, we defer the proof of these results to
Section 3.3.2.

(3.29)

57



Chapter 3. Differential operators

R-charge 1

The case of su(2) R-charge 1 is not conceptually different from the last section. Now the
operator will have an adjoint index A and the matrices M in (3.26) will be rectangular.

Dy Oy = Dy M{* 04, D5 0p =Dy M Oy (3.30)

We expect three degrees of freedom for the choice of M; and M. Thus we can span
the basis by three classes of solutions A, B and C. For the reader’s convenience we will
show all of them at once by taking an arbitrary linear combination of them®

5 2¢ 5 2ic _ 2ib
aA, +bB, +cCi = A AT AT E A I
- MR a+ib) L@a—ib) ¢

22C' 22ic' -5 2ib 5
aA_+bB_+cC_ = -] 2] 1—j— )
e ( Ha+ib) L(a—ib) c )
. . (3.31)
_2c __2ic _ 2ib
aAL+bBy+cCp= | 20172 2 24
T (;(a—ib) —ia+ib) ¢
2¢ _ 2ic b
aA_+bB_+cC_= 27-] . e R
( Ha—ib) —%i(a+ib)

As before, the various N/ = 1 superconformal primaries are obtained by (3.30) by
replacing M with either A, B or C. The proof these results is postponed to Section 3.3.2.

3.3 Acting on three-point functions

331 N =1case
Idea

The main goal is to fix a basis of non-supersymmetric three-point functions for a given
triplet of representations t”o1 0,057 where a = 1,...n13, and to expand the three-point
function of a superdescendant in that basis. Namely we want to find the coefficients A@)
such that

Mty

Do (T 0i(2)) |y = X, A €010, 10,0, (%2, %), (3.32)
a=1

5 As before, this choice of basis is not arbitrary but it is the one that projects on A/ = 1 multiplets with
definite R-charges.
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3.3. Acting on three-point functions

provided that the full superconformal three-point function is known.® A three-point
function can be decomposed as (2.20). When we act on it with, say, Da we get two
terms. But since Kp, 0, is bosonic, when the Grassmann variables are set to zero only
one survives

DS (T Oi(z:)) |y = Koo, DG to, P (Z3) ], - (3.33)

This is certainly convenient as we do not have to worry about the prefactor when taking
derivatives, but it is not yet what we need. If we want to compare the above expression
with a chosen basis of three-point functions we still need to expand the definitions of Z3
and to act with the spinor derivatives inside Kp,0,. It would be much better if we could
express (3.33) as

D (T, Oi(z:)) o = Ko,y 0, Dg tS;OZ(Zg) (3.34)

O 7
following [117]. Here K (g0, )+0, is the prefactor of an hypothetical three-point function
of (Q01)™, Oy and O3, if (QO;) T were a superconformal primary. It is simply a Ko, 0,
with shifted arguments

K:(Q(Ql)iOQ = ICOIOZ q1—q1—1/27 K:(Q(’)l)i(’)z = ’CO]OQ n—qa—-1/2-
f1i—q+1 q1—q1£1 (3.35)
]1*}j]i1 ]_1%'714‘1

And DS will be defined later together with all the details, but the important point is that

it is a differential operator with respect to the variables X3, @3 and ®;. Now the problem

is drastically simplified. We can choose a basis of non-nilpotent tensor structures in
0,0
t 1v2
O3

4

i (X3),  a=1,...,mp3, (3.36)

which in turn will induce a basis of non-supersymmetric three-point functions. Then
the comparison can be done at the level of the t. Assuming for now that this reasoning
works for all superdescendants one has’

a3 (Sono
Dy toy *(Za)ly= L A 15,8 7 (%), (3:37)
a=1

in place of (3.32). It is evident that (3.37) is easier to solve for A But we went too
fast in all the steps involved. First we need to show that D .57 actually commutes with
the prefactor for any ¢, . Then we also need to prove that (3.34) is always possible and
define the D y;5, operators that arise from it.

The proof of (3.34) is not hard. We need to make use of the formulas (A.34), which are
valid for any function of Z3 = X3,®;, ©3. The extra factors of x;; that appear can be

®We implicitly defined n (1¢7)23 as the number of tensor structures in ((Q'Q%01)0,03).
"Notice the swap £ < £.
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Chapter 3. Differential operators

reabsorbed in the prefactor and they give automatically the right shifts in the quantum
numbers. Then one can define the derivatives

1 1 0
Dt = “D,, Dy=—=—D,,
AR A (3.38)
1 s 1 0 = :
Df = —— "D, D-=—= Di
Q ] 1X o Q ]aX“ s

in complete analogy with (3.8).% The detailed expressions are given in Appendix B.3.
Clearly one can also define, by repeated application, the following operators

Doigt = Dot o5, psp- (3.39)
Checking for commutativity with Ko, o, requires us to show
g ty 10, T€q
0,0 0,0
(DQEQZ ICO1OZ tO; 2 — K(Ql@?)@]@z DQZQ[ tO; 2) |O = 0 . (340)

This is trivially true if £¢ vanishes: If £ or £ is 1 then we can do the same argument
as the example of before: the derivative acting on Ko, 0, is necessarily fermionic and
thus vanishing if the Grassman variables are set to zero. When, on the other hand,
¢ or 7 is 2, there are two pieces. One is fermionic an thus vanishing and the other
must be proportional to 62 or §? due to its R-charge scaling. If £/ # 0 the result is
non-trivial and will be proven explicitly in the next paragraphs. We can however argue
that the commutativity property must hold without any computation. Indeed it is easy
to convince oneself that the terms in (3.40) that survive after setting the 0’s to zero
cannot recombine to form an expression with the right prefactor and a function of X3.
Therefore, if they did not vanish, the result of D57 applied on a correlator would
not be a three-point function of conformal primaries but of a combination of primaries
and descendants. This is a contradiction by construction of the operator DQ@Z/. We
will nevertheless carry an explicit computation in order to have a non-trivial check of
our results. The rest of this section will be devoted to show that (3.40) holds and thus
complete the proof of (3.37).

Order QQ

We want to show (3.40) for ¢ = 7 = 1. There are two kinds of terms: those where one
derivative acts on K and one on t and those where both act on K. After setting the
Grassmann variables to zero only the latter may survive, so we need to focus on them.
Concretely we need to show

(" DyD + b D5DY) Koo, = 0. (3.41)

8Notice the swap j «> 7.
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3.3. Acting on three-point functions

We now use (B.19) for the first derivative and (B.20) for the second one. The expressions
obtained for different values of s, r = =+ will be proportional to the following factors:

s=r=1: att Qi+ +b""(29+)),
—s=r=1: a T (2q+7)+b T (29—j—-2),
27+7) (29-j-2) (3.42)
s=—r=1: 61+7(2(7—]__2)+b+7(2q+]‘>’
s—r—_1 A (2§-7-2)+b " (29—j—2)

From (3.13) it is easy to verify that all these quantities are zero and thus the derivative
commutes with the prefactor as needed. As we commented earlier, this depends crucially
on the fact that the differential operators do not yield conformal descendants.

Orders Q?>Q and Q?Q

For this order, only the terms with one derivative on t and two derivatives on K can
survive. Furthermore, the derivatives on K must be with respect to Q and Q. Since
also applying derivatives on t shifts the quantum numbers (see (B.21)), one needs to be
careful with the ordering. For the derivatives that act on K we use (B.19) and (B.20) as
before. There are in total eight different cases (see (3.15)): in DsQz g either the Dg or the

D, may act on the t and s may be +. Similarly in D%, o Dg or Dé may act on the t and

s may be £. For brevity we only illustrate two cases. If Dg acts on the f and s = +, the
result is proportional to

(29+j)e" —(2g+j+2)d" —(2§—7—4)ct. (3.43)
If, on the other hand, Dé acts on the t and ¢ = —, the result is proportional to
2f-j-2)e —@24-Dd —(29—j—4)¢c . (3.44)

In all cases it can be checked that the resulting expressions vanish when one replaces the
coefficients with (3.17).

Order Q*Q?

This is the last and most challenging order. The terms that can survive are of two kinds:
those where two derivatives (Dg and D Q) act on the t and the other two on the K and
those where all the derivatives act on K. Working out these cases in the same way as
we did before requires deriving formulas for repeated applications of the differential
operators, similar to those appearing in Appendix B.3. We preferred resorting to a
“brute force” approach instead. We used the explicit definition of K and applied the
derivatives on it using the Mathematica package introduced in Section 3.4. The case
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Chapter 3. Differential operators

where all derivatives act on £ is straightforward and can be done with the functions
defined in the package. The case where only two derivatives act on K requires a small
explanation first. Since t is a generic function, we cannot take explicit derivatives of it.
But we can always modify (A.34) as follows

D1, t(Z3) = —Z'(Xlg)m 615‘ agag/ g,f) t(Zs),
(3.45)

_ . Xai . -
D‘lp‘( t(Z3) = —léa ( ;_1 )2““ 85/85 glp t(Zg) ,
31
where ¢, ¢’, ¢, ¢’ are other auxiliary polarization. In this way we can factorize either a
&'D Dt or a D &' Dt and focus on the rest. Now the problem becomes explicit and
one can check whether the resulting expressions vanish.

We performed this computation and observed that, with the values of f; given in (3.19),
all expressions identically vanish. This completes the proof of (3.40).

3.3.2 N =2case
Lowest order

The lowest order 0, = 02 = 0 is almost entirely trivial. The matrices # I] appearing in the
prefactor of (2.29) reduce to

1 Xi5” : 2 x5’ :
iy (z13) |9;:g;:o = (3{312> ’ 5" (213) ‘9;:9’;:0 = <x132) ’ (3.46)
the off-diagonal components being zero. It is also obvious from (A.26) that all N = 2
quantities that depend on x;; simply reduce to the same quantity but with the N’ = 1
definition of x;;. By looking at the prefactor (2.21) it is easy to see that the factors of i
can be absorbed by shifting the g, 7 labels as follows

A 1 ~ 2
iy (z13) Ko,0, = Ko,0; |1 sqi+1/2, ' (213) Ko,0, = Ko,0,|gi—q1-172- (3:47)
(71—}71—1/2 ql—>ql+1/2

The component of O with su(2) R-charge R3 = m will have a prefactor containing

(2,1 3R—m (1,%) 2R+m_This contributes to an V' = 1 superconformal primary with g,
charges equal to (q — m, § + m), consistently with (2.10).

Zero R-charge

If the superconformal primary is an su(2) singlet, the commutativity with the prefactor
follows immediately from the A = 1 case. Indeed the structure of K¢, 0, is identical
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3.3. Acting on three-point functions

except for the fact that x;; has more Grassmann variables. The crucial observation is that
only x3; or x;5 appear. We can thus write

Xi3 = (Xl'3 — 21 911‘ éll — 21'913 9_% + 41 911' é%) (3 48)
— 2i6y; 6% — 203 6% + 4i6,; 0, '
Since there is no term mixing 6; and 6, we can simply rename the quantity inside the
parentheses as x; and carry the same exact computation as the A = 1 case. The same
argument applies to xz;. The necessary shifts that need to be applied to the prefactor
differ sightly from (3.35). They follow directly from (A.36)

~ 1
Koo, =y (z31) Koo, |qy—q+1/2

]'1*>]'1ﬂ:1/2

(3.49)

_nl
K(onl)i()z = U (213) ,C01(92 g1—q1+1/2 -

]_1%]_1:|:1/2

Then, using (A.36) followed by setting the 6,, 02 Grassmann variables to zero results in
an N = 1 superconformal correlator. The identities presented in (3.47), (3.49) imply that
the resulting superconformal primary has the desired g, § charges: (g + 1/2, §) for the
Q2 descendant and (g, 7 + 1/2) for the Q, descendant.’ The result is consistent with
Figure 2.2.

At order QQQ; instead we need to use the operator ]DQQ defined in (3.22). Here we will
adopt a different strategy from the N’ = 1 case. We will actually use the commutativity
with the prefactor to derive the form of the differential operator. The reason why this is
a valid proof is that, thanks to the formulas (A.36), we can show that the action of such
an operator on a three-point function yields a correlator of a superconformal primary.
We could have followed the same approach for the A/ = 1 case, of course. However
in the way we did it the prefactor commutativity served as an important nontrivial
check of our results. The computation is a bit more involved than that of Section 3.3.1
because we are not setting all §’s to zero but only 6, and §2. In particular, there are
non-vanishing contributions also from terms where only one derivative acts on K. We
follow a “brute force” approach similar to that of Section 3.3.1: we act either with both
differential operators D and D on the K or we act with one of them on the t and we
factorize it away using (3.45). Letting |o = |g,_g2_0, the following equation has a unique
solution for A%, given by (3.23):

t t t 0,0
(gDSQQ + A° lDSQQ) /C(Ql(gz tO; 2 |0 =

n N 0.0
= ’C(Q@;Q)Oz MZZ(Zlg)Mll (213) (;DSQ + ASt lDSQtQ)tO; 2 0’ (350)

9To see this, one needs to use the property 1,2(z31) = i1;!(z13).
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Chapter 3. Differential operators

where we used the property in footnote 9. In analogy with (3.21) and (3.39) we defined

D =D (3.51)

Q'Q! Q'Qf |D%D,,5eﬁl )

According to the shifts defined in (3.49) and the definitions in (3.46) the result of the
action on the ¢ is a superconformal primary with charges (9 + 1/2,§+ 1/2) as expected
from Figure 2.2. We can then define the analog of the ID ;5 when acting on the ¢ as

+ At Dt (3.52)

st o st
Dag =2Pgg 1700

R-charge 1/2

Following an approach similar to the last subsection here we will claim that (3.26)
annihilates the prefactor. The difference now is that the prefactor has indices: Ko, 0, I]
one of which is contracted with the matrix M. By explicitly computing the action of the
differential operators on the prefactor we can impose that it vanishes and use this to fix
the matrix M. We discover that there are two possible solutions for each case: A defined
in (3.28) and B defined in (3.29). These two choices will give rise to two independent
N = 1 multiplets when acting on the ¢. They will have charges (9 +1/2+1/2,§F1/2)
for the Q descendant and (g +1/2,7+ 1/2F 1/2) for the Q descendant, as described by
Figure 2.2. If we choose M = A we have (a | is implicit in all the following formulas)
0,051

I ~ K 0,0, K ~ 1 A D
]Da AS] lC(gl(gzu] <Zl3)t(9; 2| = K(onl)oz 231 (213)u2 <Z31) ;Dsét(’)g ’

00K _ 1 (3.53)

1 ~ K 010,12
105 AY Koo, 1, (213) t) 10212

(0,000, 12° (z13) 1127 (213) 2D o,
The first line corresponds to the Q% descendant with charges (g + 1,4 — 1/2), while the
second line corresponds to the Q, descendant with charges (g —1/2,7+ 1), as can be

seen from (3.47), (3.49) and the property in footnote 9. Similarly, if we choose M = B3
we have

I . K 0,0,[K R R
1D% B Koo, (213) tg)! 2K = Koo, I (z13) 12 (213) %
x (D501 4 B Dy 102
(3.54)
Al ~ K 010, |K A1 )
ID%BJKQ@u]@Bﬂd2|::K@gm@ul@wﬁh(mgx

00,1 » 010,22
x <ZD?2t0; B0y fo, ? ) ’
where again we have used the property of footnote 9. Now the first line corresponds to

the Q2 descendant with charges (¢, + 1/2) and the second line corresponds to the Q,
descendant with charges (9 +1/2,4).
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3.3. Acting on three-point functions

R-charge 1

There are no qualitative differences between the cases with R = 1 and R = 2. As before
we act on the prefactor, impose that it vanishes, and solve for the matrix M. This will
give rise to three different choices, A, B and C defined in (3.31). We will now list all
possible ways of acting on the t and show the charges of the A/ = 1 superconformal
primaries that are produced. In order to streamline the notation we will denote with
T = T? the R-charge 1 (R = 2) representation that appears in (2.28). We will also define

0,0, 1 {01021 0,0, ]2
12 2(0;2it12). (3.55)

Let us start from A

. 0,0,|B N 0,0
D4 A Ko,o, T(”(le))ABto; P = K(@0,)0, (' (213))° 2Dy o, S

B (3.56)
IDSQ -AiA IC(DlC)z T(ﬁ(zl?)))AB tg;(?z\B _ K(ngl)oz (ﬁzz(zl?))) ZDS t(9102\

These represent N' = 1 superconformal primaries with charges, respectively, (g +
3/2,§—1)and (g — 1,4+ 3/2). Then we continue with B

0,0, |B A
1D% B4 Ko,0, T(0(z213)) 2 10 % = K(20,)0, 15 (213) ¥
. 0,0, |- 13 0,043
0,0, |B
1D B Ko,0, T(0(z13)) 4" 0. *1® = K 3,00, " (213) X

x (— )( DS tg1(92|+_|_813 Ds t0102\3) '
(3.57)
These represent N' = 1 superconformal primaries with charges, respectively, (§ —
1/2,§+1)and (g + 1,4 — 1/2). Finally we have C

. 0,0,|B R
1D% CH Ko,0, T(1(213)) AP 101 1P = K (20,10, 1y (z13) %

s AIA . B 010, (B 52 (3:58)
1ID5C5" Koo, T(i(213)) 4" to, ~ = Kg,00)0, B2 (213) X
x (2Dy 1P +201 Dy 1)
Here we also used C!' = —iC1? and C!! = iC!2. These last operators represent N’ = 1

superconformal primaries with charges, respectively, (7 +1/2,7) and (gq,7+ 1/2).
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Chapter 3. Differential operators

3.4 A Mathematica package

Computations in superspace, in particular those necessary to solve (3.37), might be hard
to do by hand. We introduce a Mathematica package as a convenient tool to perform
such tasks. It can be found in the repository gitlab.com/maneandrea/spinoralgebra.
There is also a version of this package that only deals with commuting variables, which
can be used for any tensor computation in four dimensions. A complete documentation
is made available in the form of a notebook.

The package works with the index-free formalism following the same conventions as
this thesis. There are different input and output notations available: one for improved
readability and one to write code more easily. It is possible to reduce, Taylor expand
and compare expressions. Furthermore, many differential operators have been defined,
including the chiral derivatives (A.29, A.32, A.33) and all the operators appearing in
(B.10-B.15). It contains a precomputed two-point function for general values of g, 7, j, J.
By including the package CFTs4D [91] it is also possible to use the functionalities for
N = 1 superspace three-point functions. For any three given operators, the package
gives a basis of tg;oz tensor structures.

3.4.1 Note on the conventions

For two-point function we follow the conventions of [156]. Namely if a superprimary O
has a two-point function given by

(O(21)O(22)) = it np (11%15772)! (11232771 )"

20tiv. 2347 7
X152 1204

no >0, (3.59)

then any of its descendants will have a non-supersymmetric two-point function given
by

— AR X127] 7 X127 7 =7
(0/(x0) O (x2)) = i1 gy "I o) = (@'QO) ),
(3.60)

with the ratio of the respective normalizations fixed. From the package, it can be obtained
as follows

ij, +7 N, A7 e

w = operatorNorm["QfQéO' , {9,q9b}, {j,jb}l. (3.61)

i"Tnep

Explicitly, the values of (g0 for ¢ =7 =kand g = § = A/2 are given in Table 3.2.1°

Supersymmetric three-point functions instead can be computed by the function SuSY3pf.

The expressions are given directly in the space where tg;oz (X,0,0) lives, which we

10We show explicitly only the values for £ = 7 and g = § because they will be useful later on.
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3.4. A Mathematica package

(QkaO) n(QkaO)st
9] 1
— AA+O(A+D)QA+1L+T+2)
(o)™ (0+1)2(+1)22A+ L+ 1)
o 40+1)(A—C=2)(A+0)2A+0—17)
(QRO)y* T+ 1220+ 0 1-2)
. 404+1)(A—L=2)(A+0)(2A+1—0)
(QQO)™ (041220 +0—1-2)
—~ o A+ D) AL =2)(A—F—-2)2A -t -1 -2)
(QQO) A (—T—1)
(A+0)(A—C—2)2N -1+ 7) .
2520 28( 20— (+1-2 X(€H€)>
(@°Q°0) (A -0 -7 —-2)2A+L+T+2)
QA —0—1—4)A+1+7)

Table 3.2. Normalization coefficient n(QkgFO)st for the superdescendants generated by the

differential operators DS’th o+

will call “t space” in this paragraph. The notation of the package is as follows

x3 — X3, 03 — O3, ob3 — O3.

The structures are generated by calling internally the package CFTs4D and then following
the procedure explained in Section 2.2.1. Naturally one can work in t space also for
non-supersymmetric three-point functions using the non nilpotent supersymmetric
structures as a basis. Expanding any function of X3, 7;,7; in such a basis does not
require much computational effort. It may however be useful to make contact with more
familiar bases. In Table 3.3 we show the mapping between the ®, ® — 0 limit of the
non-nilpotent structures in t space and the embedding space structures in CFTs4D [91].
Every tensor structure can be constructed as a monomial over the building blocks listed
in Table 3.3. In order to pass from t space to embedding one has to multiply both sides
by the appropriate prefactors. The structures in ¢ space need to be multiplied by Ko, 0,
times an overall scaling X5. While the embedding structures should be multiplied by
the kinematic prefactor given in CFTs4D as n3KinematicFactor. In formulas one has

3
Ko,o0, X?AS*AZ*A” ‘0 . (t space) = H | |k (embedding) , (3.62)
<
-y

with
A =qi+7q;, Ki = A+ 5(i +7i) -
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tspace  Embedding t space  Embedding t space  Embedding
X372 712 : : : :
I - .
(X3)1/2 _113Xs72 23 2 K32
_ X8 21 (X3)2 ! 12
(x2)1/2 _ 13X31 P! niz 3
R O B - S
_ 73,2 12X317]3 223 (X3)V? '
— 1213 I~ — _
13 gz LR
s ’ mXsls 231 (x3)172 !
—s i1 C(X2)12 K2 _ 113X573 3
’ (X2)1/2 12

Table 3.3. Mapping between the ©, ® — 0 limit of the non nilpotent three-point tensor structures
in t space and the embedding formalism structures in [91]. The equality between neighboring

columns holds after we apply the appropriate Ko, 0, X3 prefactor to the ¢ space structures and
the kinematic prefactor to the embedding structures. See (3.62).
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Averaged Null Energy Condition

This chapter describes the implications of the averaged null energy condition on super-
conformal field theories. It is entirely based on Paper II.

4.1 Conformal collider bounds

Any local conformal field theory must satisfy a positivity constraint called the averaged
null energy condition. It states that the following integrated expectation value of the
stress tensor must be non-negative

Epi= [ dAITuly) u'a > 0. @)

Here |¢) is any state and u* is the four-velocity of a null geodesic parametrized by A
(i.e. u'uy = 0). Since we can choose ¢ to be any operator acting on the vacuum, the
condition in (4.1) represents an infinite set of linear inequalities on the OPE coefficients
Aorg- Furthermore, as it was discovered in [141], for some conformal dimensions the
inequalities have no solutions and thus they imply lower bounds typically stronger than
unitarity (1.7). This means that, schematically, we get a system of constraints as follows

Ao > AANEC(j/]_) and M(AGTO’ Ao) =0, (42)

where M is a matrix that can be computed by evaluating the integral (4.1). The goal of
this chapter is to extend the results of [141] to superconformal theories. Supersymmetry
can potentially give more stringent constraints. The reason is that a generic state may be
taken to be

) ~ (O+aQO+BQO+...)0). (4.3)

And, by varying arbitrarily the coefficients «, B, etc., we get several different inequalities
on the same set of OPE coefficients. Indeed /\(QO)T(QO)' /\(QO)T(QO)/ etc. are all related
to A5po- The problem of finding these relations has been addressed extensively in
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t
—~
=
N

Figure 4.1. The state |¢) creates a localized excitation and the decay products are measured by
calorimeters placed far away.

Chapter 3.

But before diving into the computations let us review the intuition behind (4.1) and
mention the proofs available in the literature. The intuitive explanation of the ANEC
originates from a thought experiment called conformal collider. It was described in [136]
by Hofman and Maldacena and was immediately used to get upper and lower bounds
on the OPE coefficients A%T% 2 , which can be related to the conformal anomalies 2 and c.
Later these bounds were also proven rigorously [140]. Consider the setup in Figure 4.1,
in which there is a local excitation at the origin created by the state |¢) and a series of
detectors (or calorimeters) placed far away. The energy measured by the detector placed

at the direction 7 is computed as

Ep(f) = lim r* / dta’ (| To;(t, ra')|p) . (4.4)

r—r00

An energy integrated over all times in quantum field theory must be a non-negative
quantity, therefore we must conclude £y (1) > 0. This is the origin of the ANEC. So
far this applies to all theories, but for CFTs one can make a conformal transformation
and turn this integral into an integral over a null geodesic, making it equivalent to
(4.1). Indeed, by looking at Figure 4.2, one can see that the limit at r — oo makes the
integration run over Minkowski null infinity. Then, by means of a special conformal
transformation, we can transform the integration path in any null geodesic we want.

There are rigorous proofs of the ANEC that hold in any conformal field theory and there
is also an holographic proof. We will not review them here but only cite the papers
in which they appeared. The proof in [139] relies on the principle of causality and on
the fact that in the OPE of two scalars one can always single out the stress tensor by
taking an appropriate limit, namely the lightcone limit. The holographic proof [137]
shows that a violation of the ANEC leads to superluminal propagation of signals in the
bulk. There exists also another proof that adopts a completely different strategy and
it originates from information theory [138]. Furthermore, the ANEC operator may be
seen as a particular case of a so-called light-ray operator, which were introduced in [157].
With the formalism introduced there it is also possible to prove the ANEC by using
Rindler positivity, with the only additional assumption that there exists a scalar operator
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4.2. Applying the ANEC to superconformal theories

Figure 4.2. The time integral of the energy measured by the calorimeter at large r becomes an
integral over Minkowski future null infinity. There is no contribution from past infinity since the
excitation is turned off at t = —co.

of dimension Ay < #.

It is worth to also mention that the ANEC is a special case of a series of constraints which
go under the name of “higher spin ANEC” or “deep inelastic scattering bounds” [139,
140,158,159]. They consist in similar positivity conditions on the operator Oy, ...,,, that
has minimal twist! over all operators of spin s. The statement is that the following
expectation value

£6) = / A IOl (4.5)

is non-negative. We will not explore this direction in the present work.

4.2 Applying the ANEC to superconformal theories

4.2.1 Strategy

We focus on superconformal multiplets O(x, 0, 8) for which the lowest component field
O transforms in the (j,0) irreducible representation of the Lorentz group. Our first goal
is to determine the most general form of the three-point function in superspace among
O, its complex conjugate superfield, and the Ferrara-Zumino multiplet ], which contains
the stress-energy tensor:?

(O(21)](22)O(23)) - (4.6)
In order to determine (4.6), in Section 4.3 we write the most general three-point func-
tion consistent with N' = 1 superconformal invariance, complex conjugation, and
conservation of the Ferrara-Zumino multiplet. Next, we fix certain combinations of the

IThe twist is defined as the difference between the conformal dimension and the spin T = A — s. The
stress tensor, being conserved, has necessarily minimal twist.
%In this section we only present schematic formulas. Details are given in the next sections.
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three-point function coefficients entering (4.6) by imposing the Ward identities gener-
ated by the conserved currents ],SR), Ty and Sj in J. Although in principle it should be
possible to obtain a superspace version of the Ward identities, along the lines of [115],
in this work we impose the constraints at the level of the individual primaries and
superdescendants. More specifically, we find that once the | }(lR) and T, Ward identities
are imposed in the three-point function involving the superprimary O, all other ones we
checked follow.?

As a final step, we need to decompose the superspace three-point function in the
various 8 components and extract the non -supersymmetric three-point functions of
the superprimary O and various primary superdescendants. This task is performed in
Section 4.5 and summarized in the Tables in Appendix C.3.2. We only pushed to the
fourth order in 6; or §; and computed three-point functions involving at most T,y and
superdescendants QO and QO.

After all these preparatory steps, we can impose the ANEC (4.1) on a general state of the
form of (4.3). Due to R-charge conservation, only a few three-point functions are non
vanishing. In the end we impose that*

(Ol€]0) 20,  ((QO)IE(QO)) >0

<< Q0")I€|(Q0")) <<Qo+>\e|<Qo>>> 0 “7)
((QO)IEN(QO") ((QO)El@O))) =™

We should stress that the above conditions are a subset of all conditions one can impose,
since they do not include superdescendants of the form Q%0 or QQO for example.
Nevertheless, we find that in any unitary and local SCFT superprimaries that transform
in the (j,0) representation and satisfy the usual unitarity bounds do not necessarily
satisfy the conditions (4.7).

In Section 4.6 we obtain closed-form expressions for all the correlators appearing in (4.7)
as rational functions of the spin j and dimension A. Such formulas allow us to easily
compute bounds up to large values of j and in some cases rigorously prove bounds for

any j.

Finally, we explore the consequences of our analysis for theories with extended super-
symmetry. In Section 4.7 we consider special N' = 2 and N = 4 supermultiplets and
decompose them with respect to an /' = 1 subalgebra. The ANEC constraints presented
in the next subsection are then recast as bounds on the N' = 2,4 superprimaries.

3More specifically, we checked the Ward identities for ((Q0)J(®)(Q0)), ((Q0)T(QO)) and ((Q0)SO).
In principle there could be extra relations that we did not take into account.
4For certain short supermultiplets some of these three-point functions vanish.
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4.2. Applying the ANEC to superconformal theories

4.2.2 Summary of results

Let us first mention the results of our analysis for non-supersymmetric CFTs, in the case
of a conformal primary with dimension A, transforming in the (j, ) representation, with
7 =0, 1. In Section 4.6.5 we show convincing evidence that the ANEC requires

A > min (j, &(13] +42)). 4.8)

For j = 0,1 the above expression is stronger than the corresponding unitarity bound for
j > 2,6, respectively. Although we do not have an analytic proof, we checked (4.8) up to
j=10%

Next, we summarize the results of applying the ANEC inequality to superconformal
multiplets ©OU0), We present them as bounds on the quantum numbers g, §, which are
related to the dimension and the R-charge of a given operator by the simple relations in
equation (2.5). We considered all possible shortening conditions. They were reviewed in
Section 2.1.

All cases for j = 0 In this case the ANEC requires only g > 0 and § > 0. Therefore, it
is never stronger than the unitarity bound.

A1Bforj=1 For these operators there are no free three-point function coefficients
and the dimension and R-charge are fixed. It can be easily verified that the ANEC holds.

A1 B for j >2 As shown in Table 4.1, these operators do not admit a three-point
function with the Ferrara-Zumino multiplet consistent with all conditions. They are
therefore absent in any local SCFT.>

L B for j =1 With this shortening condition, corresponding to chiral operators, there
are no free three-point function coefficients. Therefore the ANEC for any given j is
simply a system of inequalities on 4 that can be solved algebraically. The result is

A=gqg=

NI

i (4.9)

This is equivalent to the unitarity bound for j = 1 and it is stronger for all j > 1. This
result is not in contradiction with already known Lagrangian constructions, which so far
have only provided examples for j = 1 [160,161]. Also note that the bound is saturated

5This conclusion does not require the ANEC.
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by j copies of a free j = 1 superconformal chiral primary ¢

g — gl 4,;?‘1') . (4.10)

In N = 2 theories, the bound in (4.9) implies a constraint on the dimension of the so
called “exotic chiral primaries” discussed in [132]. In Section 4.7.2 we show that

Aexo’ric > %] +1. (4-11)

Then in Chapter 5 we apply the full set of constraints stemming from N' = 2 Ward
identities to show that the exotic operator are actually not allowed at all.

LLforj>1 In this case there are two free parameters g and § and two undetermined
three-point function coefficients (one for j = 1). For every value of j we fixed § and ran
a bisection algorithm on g. The results are in Figure 4.3. See also Figure 4.4 for a plot in
the (r, A) plane.

M 1[i=1
12 1 ]e5=2
I 1.j=3
100 ]
8| i
g | ., e ] =8
6} I v, .°-.. @ : =9
I (o) o © 1 |- =10
| o 4
4+ o
L o .
| O 4
2| '
- L T T T T T T T -
0 1 2 3 4 5 6 7 8 9
q

Figure 4.3. Lower bounds on the conformal dimension as a result of the ANEC for long multiples.
Each point is the result of a bisection algorithm done with sdpb [162] (see Section 4.6.4). The
solid lines are the unitarity bound: the red line is the bound on 7 and the colored lines are the
j-dependent bounds on 4. The larger dots correspond to the points with shortening conditions
L A, (for the red circled dots) and A; L (for the black circled dots).
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=1
=2
3
+j=28
cj=9
.j =10

Figure 4.4. Plot of the results in Figure 4.3 in the (7, A) plane.

LA forj>1 For this shortening condition the constraints are equivalent to [L, L] for
g = 1. The results are given in Figure 4.5 and correspond to the red circled dots on
Figure 4.3. The operators at the unitarity bound, which satisfy the [A;, A;] shortening,
are not allowed for j > 3 (see below). Therefore, for j > 3 the ANEC provides a
constraint strictly stronger than unitarity.

A1 Lforj>1 Since for this case there is only one free three-point function coefficient
and one parameter, J, the system of inequalities is considerably simpler to solve. The
results are given in Figure 4.6 and correspond to the black circled dots on Figure 4.3. As
before, for j > 3, the ANEC is strictly stronger than unitarity.

A1 Ajforj > 1 This condition admits solutions only for j < 3. In the edge case j = 3
the ANEC inequalities fix the only independent three-point function coefficient to

Co=——. (4.12)

For all j > 3 the ANEC admits no solution and thus such operators must be absent in
any local SCFT.
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14—
12 1
0] .

8| q~143j—1.79 .

Figure 4.5. Lower bounds on the conformal dimension as a result of the ANEC for L A, multi-
plets. Each point is the result of a bisection algorithm done with sdpb [162] (see Section 4.6.4).
The red line is the unitarity bound g = 1j + 1. The operators for j < 3 that lie on the red line
satisfy A Aj.

Vs

0 1 2 3 4 5 6 7 8 9 10 11

Figure 4.6. Lower bounds on the conformal dimension as a result of the ANEC for A; L multi-
plets. Each point is the result of a bisection algorithm done with Mathematica. The operators for
j < 3 that lie on the red line satisfy A1 Aj.

4.3 Setup

We can adapt the general formula in Section 2.2.1 to our case: the correlator of an

operator O, its conjugate and J. Renaming th = t the three-point function reads

(0(21)](22)O(z3)) = (QXs171) 1293952 O Xa 2

2 H(Zs; X1, X2, X2, 113) (4.13)
X2 w32 X35t x5t

where all the definitions are given in and Appendix A.3.2. We can then form fully
contracted monomials of the quantities defined above to obtain the building blocks of
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the tensor structures in t. We give a complete list in a condensed notation

U7 ~ _eue .. 0 ©
[1]] - ‘U| ’ [®®] - U7_ ’ [Z]] - 77177]/ [1]] - 771;7]1 [@ ] - |U| ’
—2 — _ — _
) (@) ) @17]' — @17]' = nUo® _ @Uﬂ]‘
[©7] = ik [©)] = a2’ [©7] = upz’ el = up2’ ©7) = |upz-
(4.14)

The correlator must satisfy the constraints stemming from the conservation of | and the
invariance under simultaneous permutation 1 <+ 3 and complex conjugation O* = O.
Moreover, the function t must satisfy the homogeneity properties of (B.3). in this case
they read

HAAX, A®, A®; k11, un, fiffa, &z) = (AA) 2 (k&) uji t(X, ®,0;1;, ;) - (4.15)

All possible tensor structures are built out of the blocks in (4.14) times a factor U3 to
take care of the A\ scaling. By the methods explained in Section 2.2 and 2.3 we can show
that t may be written as a linear combination of the following ten tensor structures

1 10
tH(Z; 111,12, 2, 13) = 8 Y CeT(Z; 11, 12,72, 173) (4.16)
k=1

where the explicit expressions for the T}’s are

T, = i[22][13)/ Te = [12][12] [©3] [30] [13]/ 2

T, = i[12][32] [13)/ ! T, = [12][©2] [@3][13)*

T5 = [30] [02][12] [13)/! Ts = [12)[32] [©0)] [13)/! (4.17)
T, = [02][02] [13) Ty = i[©?% (0] [22] [13)

Ts = [22][00)] 13} Tyo = i[©?)[07)[12) [32] [13) !

The factors of i are introduced for later convenience. If j = 1 then T¢ is not present and
if j = 0 then T3 ¢,78,10 are not present.

7710,

4.4 Constraints on the supersymmetric three-point correlator

4.4.1 Conservation

The superconformal multiplet J(z) satisfies a shortening condition as explained in
Subsection 2.1.3. In this subsection we will explore the consequences of this constraint
on the correlator at separated points. In Section 4.4.3 we will study the contact terms
instead. At separated points the prefactor in (4.13) commutes with the conservation
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differential operators acting on 75,0 thus we can express the conservation condition as
an equation involving only t and the variable Z:

anth(Z; i, 171) = aﬁzﬁt(z; 171',771‘) =0, (4.18)

where D and D have been defined in Appendix A.3.2. Equation (4.18) imposes the
following linear constraints for general j > 1:

Cs=—C3—2C4, C7=2Cr—C3—0C¢, Cg=—-4Cr+2C3+Cs, C9g=0C1p=0.
(4.19)
When j = 1 it suffices to set Cs to zero and when j = 0 one simply has

Cs=—2Cy, Co=0. (4.20)

44.2 Reality

Since O and O = O* are conjugated to each other and ] is hermitian, the correlator
under study must be real. Concretely, we want to impose that

(0(21)](22)O(23))” = (O(23)](22) O(21)) (421)

namely that taking the complex conjugation is the same as swapping points 1 and 3. The
prefactor in (4.13) is not invariant under this transformation, moreover the exchange
1 <+ 3 does not act nicely on Z3. This means that we cannot translate the reality condition
into a constraint for ¢ right away.” This obstacle can be overcome by using the results of
Appendix B.1, which lead to®

(—1)X Y (#)(Z; X1, 12, 712, Xop3) = H(Z3 13, 12, T2, 1) - (4.22)

We can then solve this equation much more easily. In doing so we find the following
linear constraints for even j > 1:
Ci"=C, G'=C, CG"=20-C—C7, C=-20+C+Ci+Co+Cr,
Cs"=Cs, C"=Cs, C7"=2C—-C3-Cs, Cs" =Cs,

Co* =Cr — %(C3+C6+C7)+C9, Ciof = —2C+C3+Cs+Cy+Cqo.
(4.23)

5Due to D5 (X93) ai /x%2 = Dg‘ (X33 )it /x%3 = 0 when xp3 # 0. B

"This is obviously a consequence of our parametrization. In the ordering (OO]) the reality condition
can be solved easily. On the other hand we would lose the fact that the conservation operator commutes
with the prefactor thus making conservation much harder to impose.

8By (t*)(Z;...) we mean: first apply the complex conjugation to t(Z; 11, 112, 72, 13), then replace 71(3)
with Xy (3). We also defined Z = (—X, —©, —@).
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If j is odd the equations are obtained by adding an overall minus sign on the right hand
side. If j = 1 it is sufficient to set Cs = C¢" = 0. For j = 0 instead one has simply

G =0, Cs* =Cy, Cs* =Cs, Co™ = Cy. (4.24)

Combined with conservation (4.19), these equations imply that the remaining Cy are
purely real (resp. imaginary) if j is even (resp. odd).

4.4.3 Ward identities

There are in principle two ways to impose the Ward identities: one could apply them
directly in superspace with the formalism of [115], or alternatively one could expand
the correlator in components and apply the non-supersymmetric Ward identity to
each triplet of superdescendants. Since we already need the three-point function in
components to make contact with the ANEC and since non-supersymmetric Ward
identities are much easier to compute, we opted for the second approach. We did
not explore all possible combinations of superdescendants but we observed that after
imposing the identities for (O](R)O) and (OTO), all other choices of superdescendants
that we investigated were not yielding any new constraints.

In Section 1.4 we reviewed the Ward identities for the R-current J(®) and the stress tensor.
The results for the former and an operator O of spin (j,0) are summarized in Table C.1
and those for O of spin (j, 1) in Table C.2. For the latter, we need to first motivate that it
is enough to consider only the Killing vectors associated to translations and dilatations.
As we argued previously, the number of independent equations equals the number of
singlets in the tensor product

po ®p5® (e @ (2,0) @ (0,2)), (4.25)

po representing the Lorentz representation of O and e the singlet. For po = (j,0) the
tensor product contains two singlets (one if j = 0) and for p = (j, 1) it contains three
singlets (two if j = 0). The equations (1.45) yield the exact same number of independent
constraints. When the operator O in (1.45) is the superconformal primary of spin (j,0),
the result is summarized in Table C.3. If instead O — QO of spin (j, 1) the results
are in Table C.4. Finally one could also consider O — QO; the result is obtained by a
simple rescaling of the coefficients in Table C.3 and a replacement j — j &+ 1. For the
reader’s convenience we report here the relative normalizations for the operators in the
O multiplet as derived in [156]:

“or _, it2 - fgor U+ D24=j=2) 0 YQ0) _ys g0

, =

co (G+1)%27 co j co

The other set of identities that we will need are those associated to the generators of
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supersymmetries S;,, Sy Let us fix the third operator to be O. We then have three
E:hoices: t0o)s0 and t(gp):50- The topologic:al operator obtained by integrating S or
S over X is precisely the supercharge Q or Q respectively. We thus readily obtain the
following identities

i _ _ _
E /EdQ(XZ3) x232 aﬂzxzaa;@ t(Qé)go(xi/' i, 771) =2 7726173 n(Q@)(Qo) (x13/ 11,3, 771,3) ’
i _ _
5 /Zdﬂ(xm) X258’ 0y, %230, t(90)+so (Xii i i) = 21120y, M 50)+(qo)+ (Y13, 71,3, T1,3)

i _ 2j _
3 /Z dQ(x23) X238 9y, x239, t g6 - s0 (X i i) = Hjlﬂzﬂs N56)- (o)~ (X13, 1113, 711,3) -
(4.27)

The two-point functions must be normalized according to (4.26). All the results are
summarized in Tables C.5, C.6 and C.7.

4.4.4 Shortening conditions

The possible shortening conditions have been reviewed in Section 2.1. For simplicity we
will refer to L B as chirality. Furthermore the conditions X} A are absent because we
are considering the case 7 = 0. Since O = O*, O will satisfy the conjugate shortening
Xg X 1. However, after imposing reality, either one of the two conditions is sufficient.

We can impose the shortening conditions directly on the t thanks to (2.24) and its
conjugate. This leads to

By or Bli ﬁlﬁt(Z;ni,ﬁi) =0, 171Dt(Z;171-,17i) =0, (4.28a)
Al : aﬂlp t(Z, i, fll) =0, (428b)
Ay or Ay: D>t(Z;n;, 1) =0,  D*H(Z;n;, 7fi) - (4.28¢)

In Table 4.2 we summarize all the constraints arising from (4.28a), (4.28b) and (4.28c¢).
All shortening conditions can be easily obtained by combining them. Table 4.1 instead
shows how many independent coefficients are left in the superspace correlator as we
choose different shortening conditions and impose all other constraints obtained before.

4.5 Expansion of the superspace correlator

In order to apply the various constraints originating from the ANEC to our three-
point function in superspace we need to express its components in a basis of non-
supersymmetric three-point functions. This will be achieved by Taylor expanding in the
Grassmann coordinates 6;, 0;. The techniques that can be used to perform such a task
have been discussed at length in Chapter 3.
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[ A B [ A, B . (L)g‘zg

L 2 2 0 L 1 1 0 A 0 0 0
2

A 11‘ Vs A 1} 0 510 o o

@j>1 b)j =1 @7 = 0

Table 4.1. Number of independent coefficients C; of the superspace correlator as different
shortening conditions are chosen. The slash means that there is no consistent three-point
function. The boldface zero means that the three-point function is identically zero. Other zeros
imply that the three-point function is completely fixed in terms of g, § and j. In all cases these
numbers refer to real degrees of freedom as the Cy, are either all real or all purely imaginary.

Constraints Conditions
Co = (j —1)Cs + L (C5 — 4Cv),
C7:—2C2+C3+‘C4—|--2fj(C5+(]'—3)C1),
Cg=4C2—C3+ﬁ]j(4C1—C5),
C10:]'C9:]'C4+%(C3—|-C5).

As 69:C4+%C5. j=0g=1

_ C9:—l(C3+C5)_C4/

As 21 67:1
C10:—§(C6—|—Cg)—67.

B C4:—2C1, 652461, 69:0. jIO,qZO
Cy =2C1, C5=—4Cy,

B Cr =20, Cg=—4C,, g=20
C3=C¢=Cyg=C190=0.

Table 4.2. Constraints on the coefficients Cy following from the various shortening conditions on
the multiplet O (here 7 = 0 is implicit). Case A; for j = 1 and cases A and B for j = 0,1 can be
obtained by setting to zero the absent coefficients (Cg for j = 1 and C; 378,10 for j = 0).

1/ /0,
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4.5.1 Lowest order

At this order we simply have J(R). Consistently with the previous sections we denote
the three-point function coefficients by

tsjo — G- (4.29)

The results, without assuming the reality condition and conservation, are shown in
Table C.8.

4.5.2 Three-point function (OTO)

At order 6,0, we have the stress-energy tensor. Consistently with the previous sections
we denote the three-point function coefficients by

toro — Dk (4.30)

The results are shown in Table C.9. The conservation of | and the reality condition are
not assumed there. In principle the expansion also contains superdescendants of | of
spin (0,0), (0,2) and (2,0). We checked that those contributions vanish after imposing
conservation and we will not report those results here.

4.5.3 Three-point functions ((QO)SO) and ((QO)SO)

At order 6105, 10, we have the supersymmetry current with the first superdescendant
of O. The naming of the coefficients is

t(Q(j)‘*’SO — Eg, t(Qé)_SO — F, t(Qé)éO — Gg.

Also in these cases the results are presented without conservation and reality applied
— they can be found in Tables C.10, C.11 and C.12. There are also contributions from
superdescendants of spin (0,1) or (1,0). As in the previous subsection we have verified
that they vanish after conservation is imposed and we will not report those results.

4.54 Three-point functions ((QO)J(QO)) and ((QO)J(QO))

At order 6103, 0,03 we extract the descendants QO, QO and their conjugates. We need
this mainly as a preliminary result for the computation of the next subsection. We named

t@oy oy — Nev Ygoy+jo)- — Oks (4.31)

tgo)-jeoyr — Pk t@o)-j@o)- — Qs
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where

In order to make the computation more manageable, this time we applied conservation
and reality from the start. The results are in Tables C.13, C.14, C.15, C.16 and C.17.

4.5.5 Three-point functions ((QO)T(QO)) and {((QO)T(QO))

At order 010,0,05, 0,0,0,05 we extract the descendants QO, QO and their conjugates
coupled with the stress tensor. These terms are needed in order to impose the ANEC on
superconformal descendants inside O. We named

t(@@)*T(QO)Jr — Jks t(Qé)JrT(QOy — Ky, (433)
tGo)-r(Qoyr — Lk, t@o)y-rgo)- — Mk,
teoyrgo) — He- (434

Also this time we applied conservation and reality from the start. The results are in
Tables C.18, C.19, C.20, C.21 and C.22.

4.6 The averaged null energy condition

Following [141, 163] we define the state |¢) of (4.1) by acting with some operator
O(x,n,17) on the CFT vacuum |0). Then we take the Fourier transform in order to
give the state a definite momentum,’ which can be set to g* = (1,0) without loss of gen-
erality. Next we multiply by (x*)2/16 and send x™ — oo to simplify the computations.
Lastly we need to specify a polarization, but using the auxiliary spinors 77 and 77 we can
obtain all possible polarizations at once.

The ANEC integral breaks rotation invariance to an SO(2) generated by o2 D‘ﬁ and 7'2% :
in the respective representations. Under a ¢ rotation of this subgroup, fundamental
spinors with a lower index transform as follows:

a ae i¢/2 7elv/2
<b> - <bei¢/2 ) ’ < ) — (Ee—iWZ > (4.35)

This will help us in the following way: in principle, if there are s choices for the polar-
ization of O and O one would have to apply the ANEC integral to each pair of choices,
diagonalize an s x s matrix and require the positivity of each eigenvalue (or equivalently

SR

9Due to translational invariance, Fourier transforming in both x; and x3 will lead to a divergent
answer. This can be fixed by using Gaussian wavepackets and taking the limit of plane waves in the end.
Alternatively we can simply keep the third point fixed and integrate in x13 only.
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require semidefinite positiveness of an s x s matrix). This rotational symmetry reduces
the matrix to a block diagonal form, making much simpler the study of its positiveness.

4.6.1 Operators of spin (j,0)

Let us focus first on the case where O(x, 77,177) has spin (j,0). We can expand the #’s in
the eigenbasis of the SO(2) spin,

%=<f>:mﬁ+ML %=<?>:ﬁﬂ+m?/ (4.36)

where the redundancy . = ¢ has been introduced for convenience. The stress tensor
is instead polarized along the null geodesic u#, which is translated to

m=g, =g, (4.37)

Now we can perform the ANEC integral (4.1) with the prescriptions defined above on
an arbitrary three-point function t5;,.1> We define x13 = x, xo3 = y and

— — (y+)2 4, —ix? .7 7
Altsrol = /_ dy yygw 6 Jrs d*x e ™ toro (%, Y 1,112, 2, 173) s s(436)"
1’_]2,7]2%(4.37)

(4.38)

In order to enforce the correct ordering, the integral in y~ must be supplemented with
the appropriate ie prescription, namely y° — y° — ie and x° — x? — 2ie. The integrals
and the limit y*© — oo remove all dependence on the points x, y. The result is therefore a
polynomial in the variables p, m, p and 1. The same considerations apply for the norm
of the state, which is computed by Fourier transforming the two-point function

Flngol = | d*xe ™ g (%71, 13) . (4.39)
R 13— (4.36)

The restrictions imposed by SO(2) invariance imply that only certain terms can appear,
ie.

j ‘ j ‘
Altorol = Z sltorol (pm)*(mpY =, Flngol = }_ Fslngol (pi)* (mp) .
= s=0
(4.40)
Each coefficient of this polynomial corresponds to a different choice for the polarizations

10The conventions are

=043 =7 xE,, =03 =7 xE, 2= —xtxm 472
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of O and O, therefore the polarization matrix is diagonal and the ANEC states

E[A; (,0);5] = “slforol

= >0, for s=0,...,j. (4.41)
Felnoo) ]

The integrals have been computed explicitly for some values of j in [141]. Here we
provide a general formula, whose proof can be found in Appendix C.2:

E[A;(j,o);s]:3n(_i)j 0-1)@+)) <D1+]'—‘s o+j=1 o

8 (61j—s—1) R —
(j—s—1)2 (6—j—2) >
+ - - D3|,
G—1)2 O+j—s-3) °

(4.42)

where § = A—1j—1and (a), = I'(a+n)/T(a) is the Pochhammer symbol. See
Table C.3 for the meaning of the three-point function coefficients. For the special cases
j = 0,11t suffices to set to zero the absent coefficient(s). Note that (4.42) is real because
the coefficients D; are purely real (resp. imaginary) if j is even (resp. odd).

4.6.2 ANEC on a superposition of states

In the previous subsection the operator O could have been either the superconformal pri-
mary or the first superdescendant QOi. However, these operators mix with each other,
i.e. the three-point function ((QO)"T(QO) ™) is nonzero. This means that we can im-
pose an even stronger constraint by demanding positivity on the general superposition

v(QO)7|0) w(QO)~[0)
[{(QO)*(QO)*)[V2 ~ [((QO)~(QO)7)[/>
A similar approach was used in [164]. Since v and w can be chosen arbitrarily, the ANEC
now becomes a semidefinite-positiveness constraintona 2(j + 1) x 2(j + 1) matrix. Such
a matrix can be decomposed in j blocks of size 2 x 2 and two 1 x 1 blocks, resulting in

[¥) = (4.43)

( EM+L(+1,0);5+1] EmlA+1;(j£1,0);]

>'0 f :0,'_"'_1,
EmlA+ 3 (G£1,0)8]  E[A+3(—1,0)5] )‘ o j

E[A+%;(j+1,0);s]>0 fors=0,j+1.
(4.44)
The diagonal entries have the same expression as (4.42) with the substitution D; — J;
or D; — M, (see Tables C.18, C.21), together with the appropriate redefinition of §. The
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“interference” terms iyt are defined as follows:!!

Ent[A+ 3;(j+1,0);5]
Asltgo) 100! (4.45)

=&nt[A+ 3 (j—1,0);8] = )1/2‘

(Fealn oty 00y sl go) 0]

Following steps similar to the ones illustrated in Appendix C.2 one can prove the general
formula

: 3re(—i) =t | S(s+1)(j—s) (5+j—1)3
EmtlA+1:(7+1,0);8] = — - .
int[A + 5 (7 £1,0);] 16 \/](]+1)((5+]—|—1)(5—|—]—S—2)4
O0+j—s—2 j—s—1
——Ki+~——K
' < S+j-1 T 2)’
(4.46)
where the coefficients K; = L; are defined in Tables C.19, C.20 and § = Agp — %] — %

Here Ago = A + § is the dimension of the superdescendant. The polarization s takes
values from 0 to j — 1.

4.6.3 Operators of spin (j,1)

The only difference when considering more general SO(1,3) representations is that the
polarization matrix will not be diagonal. This means that the ANEC will not be a set of
simple inequalities but rather semidefinite positiveness constraints. In the (j, 1) case we
further have to specify the polarizations #; and 7j3; thus together with (4.36) and (4.37)
one has

w m' Iz I x i P s 5t _ ) b
m=\ =m g +p'¢y, =\ _, |=Epo+mi. (4.47)

The ANEC integral for an arbitrary operator O of spin (j, 1) takes the form

Altsro] = ood— li (v")? ld4 —ix0 ) _
orol = | <Y yfinoo 16 Jr@ '€ 510 (%, ¥iM,23,71,23)

T3 (436) -
oy (448)

772,172%(4.37)

We also define F[ng,] in a similar way. The constraints of SO(2) invariance allow us to
express

+ 1 ) _/\ b
Alioro) = 1 Y- (Altorol)a o) o)y (55) (B5) " a9

HThe definition of As for the interference correlator is similar to (4.40) with the difference that we pick
up the term mp(pim)* (mp)I—=1 for ((QO)TT(QO)~) and mp(pm)®(mp)i—5~1 for its conjugate.
p pip p pip p Jug
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4.6. The averaged null energy condition

and similarly for F|ns,]. The terms for s = 0 and s = j + 1 are restricted to, respectively,
a=b=0and a = b = 1. Thus we can see that the polarization matrix is block diagonal
with j blocks of size 2 x 2 and two blocks of size 1 x 1. Defining

(Asltorol)ay

(E[8; (. 1);8]) = — . 75 (4.50)
((fs{néo])aa'FS[”éo])bb)
the positivity constraints are
ElA;(j,1);s] =0, fors=1,...,7,
[4; (G 1); 8] j wsn)
EIN;(j,1);s] =0, fors=0,j+1.

In the next subsection we will explain how to implement a numerical study of this system
of inequalities. We obtained a general formula for £[A; (j, 1); s|] as well—unfortunately,
however, the expression is too unwieldy to be reported here. In Appendix C.2 we briefly
explain how to obtain it.

4.6.4 The ANEC as a semidefinite programming problem

Imposing semidefinite positiveness on a symmetric matrix is a well known problem
for which there exist algorithms that go under the name of semidefinite programming.
We will make use of the implementation realized by the software sdpb [162], which
was developed for the numerical bootstrap approach for the study of CFTs [147], but is
general purpose enough to work for our problem too. For an introduction to semidefinite
programming in the context of the conformal bootstrap see Section 6.2.

In general we need to solve a system of inequalities
EB;(,7)s) =0,  fors=0,...,j+7, (4.52)

where £[A; (j,7); s] is a symmetric m; X m; matrix with ms = min{j, 7, s, j+7—s} + 1.
The matrices £ will depend on N arbitrary three-point function coefficients (given by
Table 4.1) plus an inhomogeneous part which is fixed by the Ward identities. Dropping
the A and (j, 7) labels for brevity one has

N
Els) =[] + Y A, EW[s] =0,  fors=0,...,j+]. (4.53)
n=1

This is known as the dual formulation of a semidefinite problem. We are interested in
studying the feasibility of (4.53). The algorithm we used only terminates when either
a solution A, is found, or when a numerical threshold for the internal computations12
is exceeded. For our purposes, a problem that terminates for the latter condition is

12Called -maxComplementarity.
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considered to have no solution. This means that our ANEC-disallowed points are not
disallowed in a mathematically rigorous way. We expect this to not have any practical

consequences. 13

4.6.5 Details on ANEC bounds: non-supersymmetric case

Let us briefly review the results obtained in [141] and prove a few results for generic
values of j. First let us consider conformal primaries in the (j,0) Lorentz representation.
The ANEC condition is expressed by the formula (4.42), where the coefficients D; are
given in Table C.3. In particular, one can take D; = —i/D; to be the only independent
real coefficient. By choosing the value s = 0 and s = j in (4.42) and restricting to the case
j > 2 for simplicity we obtain

(6 —1)((m®Dy — 4)6 +j(7°D1 +26 — 6) + 22 +4) =0, Dy >0, (4.54)

where 6 > 0 represents the distance from the unitarity bound. It is straightforward to
verify that the above conditions cannot be simultaneously satisfied unless § > 1.

By considering all polarizations we can obtain stronger bounds at the price of fixing the
value of j, for instance by using the function Reduce of Mathematica. We show our results
in Figure 4.7 up to j = 10°. Although the bound initially agrees with the conjecture
of [141], it departs from it for j > 21 and follows a different pattern which is well fitted
by the expression A = 3j+1+6 > 11—5(13 j +42). It would be tempting to assign a
meaning to the kink at j ~ 21, but the explanation might simply reside in the fact that,
going to large values, the integer nature of j becomes less and less important and new
solutions for D; become available.

Let us now move to the case of conformal primaries in the (j, 1) representation. The
procedure to obtain the general formula is described in Appendix C.2.2. After impos-
ing the Ward identities, whose solution is reported in Table C.4, one is left with four
independent three-point function coefficients H;. In order to systematically address the
feasibility of the ANEC we translated the linear matrix inequality into a semidefinite
problem as discussed in the previous subsection. We found agreement with the results
of [141] for j < 7 and extended the bounds up to j = 50. A lower bound on A as a
function of j is shown in Figure 4.8: again we observe that for j > 21 the bounds departs
from the conjecture A > j of [141] and closely follows the bound A > ;5(13j + 42)
instead.

In the case of conserved operators the problem simplifies considerably: only two coeffi-

B principle there is also a way to mathematically prove that no solutions exist by providing a certificate
of infeasibility [165]. By using [166-168] this amounts to finding a solution of another (larger) semidefinite
problem.
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Figure 4.7. Lower bounds on the conformal dimension A as a result of the ANEC for primaries
transforming in the (j,0) Lorentz representation. Each point is the result of a bisection in A. The
red line is the unitarity bound, A = % j + 1. The black line corresponds to the conjecture of [141],
A = j, and the green line gives an approximate behavior of the bound valid above j = 20.

cients remain independent14

exist for j > 5. For instance, we can take H9,10 = —j +1H9,10 to be the two independent
real coefficients. By considering the eigenvalues of matrices withs = j —3,...,j and the
condition at s = j + 1, we obtain the following set of inequalities:

and we can easily prove that conserved currents cannot

Hyp>0, 3H+ —2— < Hp=>—,

10 9+712]—|—1 10]_1

N N N 12 ~ 1+1
Hgy < ngO , 3Hy + — > 2Hlo].i : (4.55)

3 2 j—1

One can immediately check that the above conditions admit a solution only for j < 5,
corresponding to the cases when conserved currents can be constructed in free theories.
Interestingly, for the boundary case j = 5 the solution to the ANEC is unique:

A 4
H9: _?/

Hyy=0. (4.56)
It is easy to construct conserved operators explicitly out of free fields for the (j, 1) case
when j < 5. Denoting with ¢ a complex boson, ¢ a Weyl fermion and F a self-dual field
strength one has

(1,1): Yy, PToug,
(2,1): ik,  PaOpadp,
(3,1): PuOpithy,

> B B
Il
s> STEN BN OS]

14The relation imposed by conservation of the operator O can be easily computed using the package
CFTs4D.
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Figure 4.8. Lower bounds on the conformal dimension A as a result of the ANEC for primaries
transforming in the (j, 1) Lorentz representation. Each point is the result of a bisection in A.
The red line is the unitarity bound, A = 1j + 3. The operators for j < 5 lie on the red line. The
black line corresponds to the conjecture of [141], A = j, and the green line gives an approximate
behavior of the bound valid above j = 20.
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Similar attempts for constructing conserved operators for j > 5 will fail, as one would
expect from the ANEC bound.

4.6.6 Details on ANEC bounds: supersymmetric case

In the supersymmetric case the analysis follows the same steps as before, except that
now one needs to combine multiple conditions. Let us discuss some of the results
presented in the introduction. We first start from a multiplet whose zero component
transforms in the (j,0) representation and satisfies the L B shortening condition. These
are the generalizations to j > 1 of the usual chiral scalar and gauge-invariant spin-3
multiplets. In this case § = 0 and g = A. The multiplet contains only four conformal
primaries: O, QO* and Q?O. In this work we only consider the first three. As discussed
in Section 4.4.4 the superspace three-point function does not have any free parameters.
Let us consider, then, the ANEC applied to the superprimary only. The condition is
again encoded in (4.42), where now the coefficients D; are related to the superspace
coefficients through the relations in Table C.9, supplemented by the relations in Table 4.2.
The analog of D; > 0in (4.54) is now simply

2q-3j>0. (4.57)
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4.7. Bounds on extended supersymmetry multiplets

We explicitly checked that including other constraints does not strengthen the bound.
This is expected since one can construct chiral operators with A = 3 by taking products
of free chiral vector multiplets. The bound is therefore optimal.

Let us move to another simple case, namely A; Ay, corresponding to superprimaries
again in the (j,0) representation with g = 1j+ 1 and § = 1. This multiplet contains
conserved operators in the (j+1,1) and, due to the results of the previous subsection,
we can immediately conclude that j < 4. It turns out, however, that j = 4 is excluded
since the values Hy and Hjj fixed by supersymmetry do not satisfy (4.56). Smaller values
of j must be consistent since these operators appear in the decomposition of extended
supersymmetry multiplets in the free limit.

All other bounds found in this work were obtained with a numerical approach. For
completeness we collect here all the conditions we imposed in the most complicated case
L L. In simpler cases some of them do not appear since the corresponding superdescen-
dant is absent. At the same time, the correct three-point function coefficient relations
must be imposed. Given an L L supermultiplet with a superprimary transforming in the
(j,0) representation and g > j/2+ 1, § > 1, the ANEC can be satisfied if there exist real
coefficients C; = i/Cy, k = 2,6, such that

(OTO) :

&[N, (j,0);s] =0, for s=0,...,j,
((QO)T(QO)) :

EA+3;(G+1,0);s+1] Ent[D+ 15 (7 £1,0);5] .

- =0,...,j—

(‘fint[Aﬂ;(fil,O);s] o+ L(i—1,0)s ) =0 fors=0-ym 1
5[A+%?(j+1/0);5]>0 fors=0,j+1,
((QO)T(QO))

EA+LG,1)8] =0,  fors=0,...,j+1. (4.58)

As usual we defined A = g + 4. Whenever the above system of conditions does not
admit a solution, we conclude that the corresponding supersymmetry multiplet cannot
exist in a local unitary SCFT.

4.7 Bounds on extended supersymmetry multiplets

4.7.1 Conventions

The aim of this section is to constrain the superconformal multiplets of theories with
N > 1 supersymmetry by decomposing them into N’ = 1 multiplets. This approach
does not make use of the additional linear relations among the three-point function
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coefficients and thus may not yield optimal bounds.

We consider for any A the superalgebra generated by Q! and Q. The embedding of
the /' = 1 u(1) R-charge in the larger R-symmetry group is!°

N=2: rA—1 = —3Rs+ 3rn—2,

(4.59)
N=4: ra—1 = —5(3H1 +2H, + Hs),

where H; is the Cartan generator associated to the i-th Dynkin label in [p1, p2, p3]. The
generator Rj is the su(2) Cartan in units of % (R3 = —R/2,...,R/2).

472 N =2
Let us start by considering the so-called “exotic chiral primaries,” namely the LBy [; 0] g),r)
multiplets, with A = 37.1¢ The bound on chiral multiplets (4.9) for the N = 1 subalgebra
generated by QJ, applied to the chiral superprimary Q%M Oz’;oic_ﬂ) implies that

Y

A+323(+1) = A=3j+1. (4.60)

The unitarity bound is A > 3j + 1, and so we see that the ANEC bound is stronger for
j>0.

A similar argument can be made on operators with nonzero su(2) R-charge LB |j; 0] (AR’r),
where A = R+ Jr and R is in integer units. We considered several values of R and
performed the decomposition into N/ = 1 multiplets. Imposing (4.9) on each of the
chiral multiplets that appear yields the following pattern (which we conjecture to be
true for arbitrary R):

r>3j+2-2R = A>3j+1. (4.61)

This is stronger than unitarity (r > j 4 2) for j > R. As a consequence, short multiplets
(Rr)

of the form A;B4[j;0],"" are only allowed for j < R.

The multiplets A;B[j; 0](Al’j+2) and A1A;|j; 0] (Ao’j) with A = 3j + 2 are absent from any
local SCFT for j > 2. This is a consequence of the presence of an A1 A,[j + 1;0] multiplet
in their N' = 1 decomposition, which we have shown to be forbidden by the ANEC
when j+1 > 3.

We also considered long multiplets LL[j; O](AR’F) for some values of R. Calling J the

15For N = 2 this embedding is the same as the one explained in Subsection 2.1.2
6Denoted 5%(]-,0) in [13].
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difference of their dimension and their unitarity bound,
§=A-2—j—R+1ir, (4.62)

and calling f(R, j) the separation between the unitarity and the ANEC bound in Fig-
ure 4.4, we find the following pattern

5= f((r+1),j+1)-R. (4.63)

473 N =4

We considered a few short multiplets and found no constraints from the ANEC. Interest-
ingly, B B1[0; O]( ") contains a chiral multiplet that saturates (4.9), namely

1,01

B1B1[0;0)"" > LBy [2;0) . (4.64)

The simplest long multiplet is the Konishi multiplet LL[0;0](%%0). In its A" = 1 decompo-
sition we find a long multiplet of spin (3,0) and R-charge 1 with dimension Aggnishi + %
In terms of the Q. subalgebra, calling ¢ the Konishi operator, one has

Oy = €117k Ql, Uy Q% 1 ¢ (4.65)

Since in perturbation theory one can compute Agonishi = 2 + O(g 2), we see that the

)
ANEC and the unitarity bound for N = 1 long multiplets of spin (3,0) are saturated.

More generally, we checked some cases of long multiplets LL[j; 0](P1-7>73), namely those
with Dynkin labels [p1, p2, p3] = [0,0,0], [0,2,0] and [1,0, 1]. Calling ¢ the difference of
their dimension and their unitarity bound,

§=A—-2—j—1(3p1+2p2+p3), (4.66)

and calling f(R, j) the separation between the unitarity and the ANEC bound in Fig-
ure 4.4, we find

0,000 : 6> f(%j+2) -2,
0,20 : 5> f(%,j+3) 4, (4.67)
1,01 : o> f(%,j+3) 4.
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<) Spinning chiral primaries

This brief chapter discusses the fate of a class of superconformal chiral primaries in
N = 2 SCFTs which have been dubbed “exotic” primaries. It is based on Section 5 of
Paper IIIL

5.1 Introduction

The presence of a conserved stress tensor gives non trivial constraints on the operator
spectrum. We already saw in Chapter 4 the consequences of the ANEC. Sometimes
even simply applying the Ward identities could lead to strong results. Here we will
consider a class of operators called “exotic chiral primaries.” They are consistent with
the representation theory of four dimensional V' = 2 superconformal symmetry but
are forbidden from any local SCFT due to the stress tensor Ward identities. This result
requires the use of the differential operators defined in Chapter 3.!

The chiral operators are N = 2 superconformal multiplets that satisfy an LBy shortening
condition.? That means that they are annihilated by the Q supercharges

[Qu, X(z)} =0, I=12. (5.1)

This dictates that they must have spin (j,0), with j any non-negative integer, and their
conformal dimension must be half their 1(1) R-charge r. In terms of the g, § charges
in (2.5) one has g = r/2 and § = 0. The exotic primaries X are defined as those chiral
operators with j > 0 that are su(2) singlets. If j = 0 the chiral operators are often called
Coulomb branch operators. There exist also chiral operators with non-vanishing su(2)
R-charge but we will not consider those here.

1We should point out that the differential operator needed for the proof, while being a particular case of
the ones defined in this paper, was already known from [117].
21n the notation of [13] this shortening condition is denoted as £.
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The name "exotic" reflects the fact that such operators were proven to be absent from a
very large class of theories. Arguments that excluded them from certain theories of class
S appeared in [169].> The more general result of [132] instead excludes them from:

i) theories with a Lagrangian description,

ii) theories related to Lagrangian ones via a generalized Argyres-Seiberg-Gaiotto
duality [28,170],

iii) theories that flow to an IR Lagrangian theory via an N’ = 2-preserving deforma-
tion.

The proof that will be shown in the next section is logically independent from these
earlier results. Therefore we will not review them.

5.2 Absence of spinning chiral primaries in N = 2 SCFTs

We start by constructing a three-point function of X, its conjugate* X and the stress
tensor multiplet 7. Let us choose the following parametrization

(¥ (21) T (22) X (23) = Ky £ (Zasx1,115)- 52)
The function tj(?j must be chiral at point z;, for example. This implies
DLt (Za,x1,3) =0,  1=1,2. (5.3)

By using the representation (A.32a) of the differential operators one can see that t;‘éj
may only depend on X3 and ©). However, since the sum of R-charges is zero there
cannot be an isolated ®} and thus +1.7 is a function of X3, which can be fixed by scaling
(B.3) up to an overall constant.

tﬁJ(Zg, N1, 13) = AL@)]. (5.4)
X3
It is also easy to verify that the conservation of 7 is satisfied. The conservation operators
are (Q;)? and (Q)%. If we rewrite (5.4) as a function of X3, @3, ©} we see that there
are no terms of order @% @%. This means that we can use the representation (A.33a) for
(Q)? and the representation (A.33b) for (Q;)? and get trivially zero in both cases.

The proof now consists in showing that (5.4) does not satisfy the stress tensor Ward
identities unless j = 0. In order to obtain the Ward identities we have to expand

3Theories of class S have been introduced in [28,29]. They are obtained by compactifying a 64 SCFT on
a two dimensional puntured Riemann surface. Most of them do not admit a Lagrangian.
4The conjugate has R-charge —, spin (0, j) and charges g = 0, § = /2. It satisfies a B; L shortening.
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5.2. Absence of spinning chiral primaries in N' = 2 SCFTs

this function in components and extract the contribution from T(x,), the stress tensor,
and J(xy), the R-symmetry current. Then impose the equalities in (1.45) and (1.44).
Fortunately, however, half of the work has already been done. It suffices to extract the
contribution from the Ferrara-Zumino multiplet J(z;) inside of J(z). Then we can
use the results of Chapter 4 to apply the Ward identities. More precisely, we need the
tables C.1, C.3, C.8 and C.9 subject to the constraints in the last line of Table 4.2.

We will keep denoting as X’ the V' = 1 primary appearing as the lowest order in the
exotic operator multiplet. Extracting the contribution of the Ferrara-Zumino gives

(X(21)](22) X(23)) = K(20,9) Q5 37 (Zs, x1,13) | (5.5)

. i 4 oyt
with tt'1e definition Q 00 = £3) 00
result is

| 5,0 © defined in (3.52) and Q defined in (A.33). The

- 4i 110 X377
Q55 27 (Zs,mo ) |, = —3«4(771’73)]%, (5.6)

where now X3 follows the ' = 1 definition. A three-point function of an N/ = 1 chiral
operator instead reads’

12 X372

¥ , ; . i1 mX37
f?(z& n,13) = A1 (71im3)/ R +iAz (113)! 1232 213 (5.7)
3

X3

The comparison between (5.6) and (5.7) is straightforward and yields

A1:_§A/ A2:0/ (58)

while the Ward identities for chiral operators require

i r—3j

2j
Ay =1
1 13712’

zbzﬁ;? (5.9)

This immediately implies that there are no solutions for j > 0 and thus the exotic
primaries cannot couple consistently with the stress tensor and must be absent from any
local theory. It also tells us that if j = 0 then A is fixed to be

A=-1 (5.10)

o Am? '

As a check of our formalism we expanded (5.4) to higher orders in the supercharges and
extracted also the contributions from Q?X and Q%2X, which are all N' = 1 LB chiral
multiplets. We verified that for j = 0 all the components satisfy the Ward identities
when A takes the value in (5.10).

.....

Ci=3%C=—3Cs=A1+ A, Cr=3Cr=—1Cg=—Ay,  C34910=0.
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Conformal bootstrap

In the previous chapters we described all the elements for performing a thorough
analysis of the kinematics of a conformal or superconformal field theory. This has
already produced the results that we showed in Chapter 4 and 5. However, the main
motivation behind this thesis is different: we want to perform a bootstrap study of
(S)CFTs in four dimensions. The work that we did so far will be fundamental to this
aim. However, before diving in our case study, namely that of four abelian currents, we
would like to introduce to the reader the main ideas behind the numerical bootstrap.

The notions explained in the first two sections are very general and can be found in
any review of the conformal bootstrap (e.g. [144-147]). The rest of the chapter instead
focuses mainly on four dimensions.

6.1 Crossing equations

As we discussed in Chapter 1, operators in a CFT always admit an operator product
expansion, or OPE. In a four-point function there is more than one way to do it and they
must all agree. This gives a set of nontrivial constraints which go under the name of
crossing equations. We denote the OPE between O and O, as a contraction

n12p

O <X1 Oz X2 ZZ

0 a—1 |x12

1@

T/;l"jf; C' (3,,,x12,9,) O (0,7), 6.1)
where, x; = (x;,7;),' 17 is a polarization that contracts the indices of O, and a is an index
that runs over all three-point tensor structures. p = (A, 4, ...) is a label that contains
the quantum numbers of the conformal group (dimension and spin) and eventual other
global symmetries that might appear in the theory under consideration, whereas p*
stands for the conjugate representation. We also abbreviated n(O; - - - Oy) defined in

'We will suppress the dependence on 7; in C, for brevity.
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(1.33) as ny...x. As explained before, cp(ay, X, 8,7) is a function that can be completely
fixed by conformal symmetry but its precise form will not be important to us. With this
notation in mind, any four-point function should satisfy the following constraints

1 1
(010,0:04) = (010,050,) = (010,0304) . (6.2)
| I—— [

These three different choices for the OPE lead to different expansions of the four-point
function. Indeed, after we apply the definition in (6.1), we get the following expressions

ﬁ C(D, %11, 9y) L(xi, 1, 1") 2 (B, x5, 9,)
O, (b) p \Ous Xij, Oy ) Lo\ X1, 1], 1]") *=px \Ops Xkls ,7
90,601 -k A500,0,.000 P R T N P

, (63)

where the quantity I(x,7,7") is the two-point function tensor structure. There is only
one sum over p because the two-point function (O,0,) is proportional to J,,-. The
expression that multiplies the OPE coefficient is called conformal partial wave, which
in turn can be written as a sum of conformal blocks once a basis of four-point tensor
structures is fixed. In practice, however, the conformal blocks are computed by other,
more efficient, methods that do not require the explicit form of C,. We will discuss them
in Section 6.4.

Consider now a basis of tensor structures T; so that the four-point function reads

11234

<01(X1)02(X2)(93(X3 04 X4 Z T X1,. .o, X ﬁ(u Z)) (64)

where u and v have been defined in (1.17). An explicit definition of the T; in the case of
four dimensions will be given in Section 6.3. In the OPE (01 0,030,) the functions f;
can be expanded as

*34
b
(#,0) ZZl 21 Olozop OP*O3O4 Gy (u,0), (6.5)
0 a= b=

and Gz’g (u,v) is what we call a conformal block. The simplest way to impose the crossing
equations is to always consider the OPE among the first two and the last two operators
and then permute the order of the points. The permutations that leave the OPE invariant
are symmetries of either the cross ratios or the blocks themselves. More precisely, the
group Sy is generated by2 12, T3 and 7134. The permutations

12734 , 13724 , 147023, (6.6)

leave the OPE untouched and u and v are mapped to themselves (note that the last one

2We use the notation: 7;; to indicate the permutation that swaps i < j. Then the product 77;;7y; - - - is
just the composition where the leftmost element acts last.
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6.1. Crossing equations

is, in fact, the composition of the first two). These are called kinematic permutations.
On the other hand 71> and 734 do change u and v, but the blocks are mapped to a
multiple of themselves. For the conformal blocks of four identical scalars for example
one has [96]°

7T12 OY 7134 1 )
Gao(u,v) —— Gap(%,3) = (=1)"Gar(u,v). (6.7)
This leaves us with only 713 as a nontrivial permutation. Its action on u and v is rather
simple, it simply swaps them: u <> v. Let us first see how it acts on the tensor structures.
The permutation applied to any of the T; in general will be a linear combination of the

structures of the permuted four-point function. Thus letting

<03(X1)02(X2)01 (X3)O4(X4)> = Z Ti(x1, . ,X4) fi(u,v) P (68)
i=1
one has i
Ti‘l(—)?) - Z R Tj, (6.9)
j=1

where R is a matrix satisfying R? = 1. Since (03020104 |x,65x; = (01020304), one
has a condition like (6.9) on the functions f; as well. We can always choose a basis of
eigenvectors for R so that the first 1, functions are mapped to minus themselves and
the remaining ones are mapped to themselves. With this choice of basis we obtain the
following list of equations

~ | <

T 200,800, 01400) = T Mlo.0,48.010, G0 SN

(6.10)
where we called G the conformal block of the permuted four-point function. On its own
this constraint is not very powerful because we have different sets of OPE coefficients
on either side. That is why in the case of non identical operators one has to take into
account all possible correlators that can be made out of the operators considered. Then
the equality above will be just a part of the entire system crossing equations. Since our
case will consist in four identical operators, let us from now on consider O; = O for all
i. For convenience let us group all OPE coefficients /\(C%Op in a vector Xp. Then we can
write the crossing equations in the form

YA Vi A, =0,
%

b
(VirP(u’ v))ub = Fi}ilp
Vip(u,0)),, = Fi’f’i,p(u,v) = Gi’g(u,v) + Gf,’s(v,u) , i>n,,

(u,0) = G (u,0) = Gih(o,u), i< ny, (6.11)

3This does not mean that the crossing equations for 7115 or 7134 are useless. In this particular case, for
instance, they require all OPE coefficients of the operators of odd spin to vanish.
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Chapter 6. Conformal bootstrap

where we defined Fi as the even and odd combinations of the conformal blocks. We
can always isolate one operator from the sum, namely the identity p = (0,0,...). The
number of three-point structures n(OO1) is of course 1 and the OPE coefficients are
unit normalized. So the vector of matrices degenerates to an ordinary vector and (6.11)
can be rewritten as

Vin+ Y AT Vi Xy =0, Vig = (Vf'<°f°'--~>)11 . (6.12)
p#0 /

This form of the crossing equations is very useful. It is part of a very general class
of problems that go under the name of convex optimization. More precisely, it is a
linear programming problem if the matrices F.. are all one by one and is a semidefinite
programming problem otherwise. Finding exact or approximate solutions to (6.11)
is often out of the question, however there are several techniques to extract useful
information from the CFT and they will all be addressed in the following section.

Before concluding this section let us introduce a convenient set of variables that replace

u and v: )y )
X4 x X%, x
S B (g, (6.13)
X13%24 X13%24
In these variables the permutation 7113 sends z,Z — 1 — z,1 — z. The pointz = Z = % is
special because it corresponds to a crossing symmetric configuration
O(x1) O(x2)
[ ) [ )
2 2
Xp = X3 = X3y = X5 =1,
N , > (6.14)
\ x13 — x24 — 2 .
[ ) [ )
O(x4) O(x3)

It also prov1des the best compromise for the convergence of both OPE channels, namely

(OOOO) and (OO0O0). Indeed the former (the “s” channel) converges well for z,z ~ 0
and the latter (the “t” channel) converges well for z,z ~ 1.

We warn the reader that often we will switch from one set of variables to the other. When
writing, for instance, Gf’s(z, Z) we implicitly mean Gf”s(u(z, Z),v(z,2)).

6.2 Semidefinite programming

The first step to address (6.11) is to discretize the equations. This is done by Taylor
expanding the functions Fy (z, Z) that appear in the crossing equations around a fixed
point, retaining only a finite number of coefficients. As discussed before, the best choice
is the point z = Z = 1/2. This still leaves an infinite sum over A and ¢. The sum is thus
truncated to a maximal value of the spin and the Taylor coefficients (020 F(z,2))|,_-_1

Zij
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6.2. Semidefinite programming

are approximated by rational functions of A. After the truncation we end up with a
system of equation of the form

Y Y (A)eWViplap(Ap)y = =Via, VI (6.15)
P ab

The index I runs over all independent four-point structures times the number of Taylor
coefficients kept in the discretization of F (z,Z). The right hand side of the equation
is obtained from the vector V; y of the identity (6.12). The strategy of the conformal
bootstrap is to try and rule out possible candidate solutions to (6.11) by showing that
they lead to a contradiction. One typically starts from a set of assumptions that depend
on a small number of parameters and tries to “carve out” regions in parameter space.
The contradictions may be found with the following general strategy: suppose that there
exists a linear functional «; such that

Y a;Vi,, =0,  Vpe {assumptions},
T

(6.16)
ZD&[ V[J[ =1.
I

This looks like an infinite set of constraints because we have not restricted the conformal
dimensions A to a finite set, therefore p may assume a continuum of values. Recall,
however, that the functions appearing in V are rational and their denominator is known.
Thus one simply has to impose positivity on a polynomial in A over some interval,
typically of the form [Ag, o). This can be done rigorously with a computer since the
polynomials can be implemented as matrices. With this approach, even the case with a
single correlator requires a semidefinite programming setup. If there exists such an «,
then, by contracting a; with (6.15), one would obtain 0 < Yo /\g(zx Vp)Ap = —1, namely
a contradiction. There is a nice geometrical interpretation of this fact. We are simply
asking whether the vector —Vj lies or not in the convex hull formed by the non-negative
linear combinations of the vectors Vp.4 If the answer is no, then we will never be able to
satisfy (6.12) and the assumptions we made are inconsistent. This also means that there
is a plane that separates the vector —Vj from all other vectors V,. The normal to this
plane will have a non-negative scalar product with all V,’s and a negative scalar product
with —Vj. Therefore the plane defines the functional «. This is shown in Figure 6.1.

There is an important detail that we have glossed over: until now, the formulas we
presented implicitly assumed that the operators O, were non degenerate. Meaning
that there is only one operator per representation p = (A, /,...). This is generically
true, but we do not want to rely on this fact. For instance, we want to be agnostic
about possible additional global symmetries that have not been accounted for in the
bootstrap equations. In order to fix this issue, let us notice that the operators that share

4For this geometrical picture, let us assume that V), is a vector of one by one matrices and thus the sum
is of the form }_ A%Vp with /\% > 0.
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AN\

(a) The identity block is inside  (b) Theidentity blockis outsidethe  (c) The identity block lies on
the convex hull of the conformal  convex hull. the boundary of the convex
blocks. hull.

Figure 6.1. Different scenarios for the bootstrap equation. In case (b) there is a plane that
separates the identity from the other blocks, which defines a functional a. In case (c) some blocks
lie on the plane and thus the functional has zeros.

the same quantum numbers p enter in the sum (6.5) with the same conformal blocks.
This motivates defining the following quantity,®

ba .y @) ()
Pyt = ;%0@1\%0@, (6.17)

0

where we sum over all operators in the same representation p. It is always possible to

. e . . ()« 4 (a) < q . . .
ci]efme the three-point function basis so that /\OOOP = )‘Op* 0o, Which in turn implies
that

P, = 0. (6.18)

Namely the P’s are positive semidefinite hermitian matrices. This is fundamental for
obtaining a semidefinite programming problem. The crossing equation (6.11) now reads

Y tr (PyVip) = —Vig. (6.19)
0

We can now use the same strategy as before. We look for a functional that satisfies (6.16)

SRecall that we are assuming all external operators to be the same for simplicity. At the end, we will
only need to consider this case.
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6.2. Semidefinite programming

and if we find one we obtain the following contradiction®

—1=) tr(Ppa[Vi,]) >0. (6.20)
0

The equality holds by the linearity of a and the inequality follows from the fact that the
trace of a product of two semidefinite positive matrices is non-negative.”

The problem now consists in implementing a numerical algorithm that searches for a
functional & with the property described in (6.16). To this end, we use the program
sdpb [162,171] which is a semidefinite program solver optimized for the conformal
bootstrap.

According to the kind of assumptions that we make, the bootstrap problems that we
need to solve can be quite different. We will now explain the most common approaches.
First we start with the assumptions of the type

All operators in a representation (A, () have conformal dimension A > A,

where Ay is a function that we can choose. In the most common case it is

Ag* - A* 7
Ay = Aunitarity VO£ 0* (6.21)
- f 7 7
for a chosen representation ¢/* and a real number A*. We defined A?nitarity as the unitarity

bound (1.7) for the representation with spin £.8 The goal in this kind of problem is to
tind an upper bound on A,. This can be done by a simple binary search. Namely one
fixes two values A™> and A™", which are respectively disallowed and allowed. Then,
iteratively, the interval is divided in half and either A™® or A™" js updated according
to whether the middle point results allowed or disallowed by the bootstrap.

Another setup that can be used consists in assuming a gap for a certain class of operators,
just as in the previous case, and further assuming the following:

The lightest operator O with spin £* has conformal dimension A*. Meanwhile all
other operators in the same representation have A > A > A*.

®We denote as [V, ¢| the action of the functional in the infinite dimensional space of functions. It
reduces to Yy a;V, , when we discretize and truncate the equations.

7This can be seen by applying a Cholesky decomposition to both matrices. Namely, if A, B = 0 then
there exist L, M so that A = LTL and B = M* M. Therefore

tr(AB) = tr(LL'M*M) = tr((ML)(ML)") > 0.

8Since we only consider unitary theories, the assumption A > AU jg always the default one.
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In this case we cannot rely on a binary search and we need to scan over all values of
A* between unitarity and A’. Moreover, if the representation under consideration has
more than one three-point structure, we can get more stringent bound by considering a
variation of the bootstrap problem. Normally we should impose

DC[VA*’K*] =0, DC[VA,Z*] =0, VA> A (622)

This is a sufficient condition for getting a contradiction, but it is not necessary. We
can contract the matrix V with unit vectors directed in an arbitrary direction® iy =
(sin®,cosf) and search for ay that makes the result positive. Then, if we chose a
sufficiently dense set of 6 € [0, 71) and found a functional for all those values, we can
conclude that the point is disallowed. We thus use the stronger formulation of the
problem

wglfty - Ve 9] 20,  VO€E[0,m). (6.23)

In this particular formulation, however, we are also imposing that the operator is non-
degenerate.

Next, we would like to discuss a slightly different setup that allows us to find upper
and lower bounds on OPE coefficients without having to make multiple runs of the
semidefinite solver. Indeed sdpb can also maximize a given objective vector, subject
to certain semidefinite positiveness conditions. Suppose we are interested in the OPE
coefficients of a certain operator in the representation!? p* = (A*, ¢*). The crossing
equations can be rewritten to isolate the contribution of that operator

|)‘P*|2ﬁ6T Vor - g + ; )\g Vo Ap=—-V1. (6.24)
p7p*

If there is only one tensor structure the unit vectors are trivial (i.e. 7 = 1). Then we
search for functionals & satisfying

V| =0, Vp#p", (6.25)
Vi

B, ifs=1,

6.26
|/\p*|2>—B, ifs=-1.

9We restrict to the simple case where the matrices are at most two by two. In the more general case
clearly one would have to consider a vector in the unit n-sphere and thus introduce more angles.
10p* is an arbitrarily chosen representation. It should not be confused with p*, which is the conjugate
representation of p.
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6.3. Four-point functions

Finally we briefly introduce the extremal functional method. It is a technique that can
be used to extract an approximation of the spectrum (conformal dimensions and OPE
coefficients) of the theory that lives at the boundary of an allowed region in parameter
space. First notice that the functional « takes its normalization from the condition
&[Vshort] = 1. We can relax this to a[Vhort] > 0 while still getting a contradiction when
is found. The boundary of this region in functional space is given by all «; that satisfy

w3Vl =0 Vo, ay[Vi] =0. (6.27)

This implies that the only terms that can contribute to the sum of a consistent theory
living on the boundary must satisfy

waylfig - Vp - fig] = 0. (6.28)

In the geometric interpretation we explained earlier, this situation would correspond to
Figure 6.1c. For simplicity, let us consider only the simpler case where all }V, are one by
one matrices. The equality above together with the positivity constraint implies that the
function f, defined by

fe(B) = a3[Va,l, (6.29)

has even order zeros (typically double zeros) only on those values of A that belong to the
physical spectrum of operators with spin /. Naturally in a numerical computation we
will only find a finite number of such zeros. Then, in order to find the OPE coefficients,
we can truncate the crossing equation to that finite number of operators and solve the
linear system of equations

Z V(A,E)H(A,E) = -V, (6.30)
ALe{fi(A)=0}

with a, = )\,2). If we find a forbidden point in parameter space very close to the allowed
region,!! the functional « that excludes it will be a very good approximation of ;. We
can therefore use it to define the function f;(A) and extract the spectrum. For the results
to be meaningful one needs to both be very close to the boundary and to observe that
the position of the boundary remains stable if the size of the numerics is increased.

6.3 Four-point functions

6.3.1 Conformal frame basis

In (6.4) we introduced the four-point tensor structures T;. In this section we will
construct them explicitly for four dimensional CFTs. There are two possible approaches,

1 This can be done by either running a binary search to very high accuracy or by extremizing an OPE
coefficient with the methods explained before.
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Chapter 6. Conformal bootstrap

one is to use the embedding formalism as explained at the end of Subsection 1.2.2, the
other is to fix the coordinates to the conformal frame introduced in Section 1.3. The
first approach is convenient if we want to act on the tensor structures with differential
operators because it is manifestly covariant. The ability to do so will be essential for the
computation of conformal blocks, as we will explain in Subsection 6.4.2. The drawback
is that, as we explained before, it is very hard to obtain a list of linearly independent
tensor structures due to the complexity of the identities that arise in the in embedding
space for four points.

The situation is opposite in the conformal frame approach. Indeed, once the frame is
fixed, it suffices to list structures that are singlets under the stability group H (1.32).
In the case of four points in four dimensions this group is SO(2), which is very easy
to deal with. Furthermore, conformal frame tensor structures are manifestly linearly
independent and transform simply under permutation and crossing. On the other hand,
covariance is lost and the action of differential operators on a fixed frame is much harder
to obtain.

Let us then adopt the conformal frame approach and then explain how to translate
between the two. We will follow [91]. In four dimension the conformal frame reads

x| =(0,0,0,0),
= (3z-2),0,01(z+2), (6.31)
xf =(0,0,0,1),
xy = (0,0,0,00).

The last point being set to infinity means that we take x4 = (0,0,0, L), rescale Oy —
L?4+ (O, and that let L — oo. With this choice the stability group H = SO(2) = U(1) is
generated by M'2. This situation is analogous to the one encountered in Section 4.6. We
can write the polarizations as

x __ m; S pi
e (5). w(n)

The SO(2) charge of the complex numbers m, 171, p, p is given by

Qlpl=Qlpl =1,  Qlm] = Q[m] = —1. (6.33)

The most generic contribution to a four-point function in conformal frame will be a
function of z and Z, which we called f; in (6.4), times a function of the polarizations. This
means that the tensor structures are monomials in p, p, m, m in such a way that their
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total Q charge is zero, namely they are H singlets. We can represent them as follows!?
4 . .
q1 q2 43 44 . —qi+4i /2 qi+i/2 ——qGi+4;/2 _qi+4;/2
T,=1 > = 7 Z = . m! m, 4 , (6.34)
1 q1 ‘12 q3 q4 ] 111 P i i i P 1

where the charges g; and §; range in

7 7 4

qiE{—iz,...,l;z}, (71‘6{—621,...,621}, ;(qi—q_i)zo. (6.35)
By construction these tensor structures are all linearly independent and it is trivial to
enumerate them. Going from embedding to conformal frame is also very straightforward.
It suffices to perform the Poincaré projection defined in (1.21) and (1.25) followed by
setting the coordinates as in (6.31). The only bit of computation needed is the limit
L — oo for the fourth point. This is however easily done thanks to the scaling shown in
(1.24). The rescaled operator O, reads

124 04(X,S,5) = (L2)2+ 2D L1 0,(X,S,8) = O4(X/1%S/L,5/L). (6.36)
This means that we simply have to make the replacements

Xy — lim X4/L?, Si — lim S4/L, Ss — lim S4/L, (6.37)
L—oo L—oo

L—o0

which are easily computed.

Translating the other way around is certainly more challenging as the procedure is
bound to be ambiguous: in embedding space there are non trivial identities between
structures. However, for any specific case, once a basis is fixed one can easily write a
dictionary between the two formalisms.

We should point out that going to embedding space is not necessary, even if we want to
act with derivatives on a four point function. It is perfectly possible to do it in conformal
frame, even though it is far more involved. Due to conformal invariance it is always
true that the sum of the Ly generators annihilates the four-point function

< i Li,MN) (O1(x1)O02(x2) O3(x3) Os(x4)) = 0, (6.38)
i=1

L; pn being the conformal group generator at point i. These are 15 differential equations
that relate the various d/9x! derivatives among each other. One of them imposes the
H invariance and so does not contain xf derivatives in conformal frame. On the other
hand, the other 14 are sufficient to express the derivatives with respect to 9/ axﬁ‘ in

12By convention, in conformal frame we include the conformally covariant prefactor k4 in the definition
of the f;. E.g. (x3,x2,) % would result in a contribution (zz) ~® in the functions f;. It is important to keep
this in mind when translating to embedding or position space.
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terms of only 9/9x9, 3/9x3. Therefore we can use (6.38) to convert any derivative into
derivatives with respect to z and z. The spinor derivatives do not pose any problem as
the polarizations are not affected by going to conformal frame. Clearly this procedure is
very cumbersome but it can be automated with, for instance, Mathematica.

6.3.2 Enhanced symmetry

This discussion is based on Appendix D of [82]. The stability group of the conformal
frame H can be enhanced if the points are put in a special configuration. To see this,
imagine that in Figure 1.2 three points are chosen to be collinear. Then the plane that
they span collapses to a line and the stability group is enlarged by the rotations that
keep that line fixed. In the case at hand, namely four points in four dimensions, the
special configuration is the one that gives z = z, for which H is enhanced to SO(3).!3
Let us denote the enhanced group as H.

The representations of H appearing in the correlator are given by

4
SO(4
Ressoég & o - (6.39)
k=1
And, when z = Z, only the singlets survive. This means that the functions f; that are not
associated to singlets will satisfy the property
l_iLn fi(z,2) =0 <= T; ¢ SO(3) singlet. (6.40)
z—z
But we can say more about it: we can organize the tensor structures based on how fast
they go to zero as Z — z. The group H acts on the first three coordinates of x!'. Therefore,
by looking at the definition of x}, in (6.31), one can see that y* = (3(z — 2),0,0) is an
SO(3) vector and %(z + Z) is a scalar. This implies that we can expand any function f; as

]max

fi(z2) =Y filz+2)" Y ya - Yy, (6.41)
J=0

where ] is the SO(3) spin and Jmax is the maximal spin appearing in (6.39). This ex-
pansion does not tell us much about f; in general, but it becomes very useful if the f;’s
transform in a definite way under H. The basis that achieves this can be found by acting
with the SO(3) Casimir operator

Cso(3) = (Lo1)* 4 (Lo2)* — (L12)?, (6.42)

on the structures f;, and then diagonalizing the resulting matrix. The eigenfunctions

13 As we remarked in footnote 6, the actual stability group would be O(2), which is then enhanced to
O(3). For the purpose of this discussion we will ignore this detail.
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of the Casimir will have definite spin J; and thus they can be written as a symmetric
traceless tensor of rank J; contracted with the vectors y”. More concretely, if one has

Csop) fi =Clffe,  M-C-M'=diag(J;), (6.43)
then the new basis is f; = M.} f;. It follows that f; has spin J; and we can write it as
filz,2) = fiz+2)0y;, -y, (6.44)
which in turn implies
filz2) « (z=2)i,  f(z.2) = (-1)if(z2). (6.45)

With this knowledge one can obtain a series of smoothness conditions on the functions f;
at z = z. It is important to include in the bootstrap problem also this class of constraints.

6.4 Conformal blocks

The most important elements needed to study the crossing equations (6.11) are obviously
the conformal blocks GZ’pb. They are completely determined by the conformal group, but
they can be very difficult to compute. The main idea of the method is to define a set of
conformally covariant differential operators that add spinning indices to a correlation
function. These operators applied to a conformal block will increase the spin of its
external operators. Therefore a small set of “seed” blocks are sufficient for knowing all
conformal blocks of any external spin. We will present this concept more precisely along
the way. For now, let us discuss the simplest possible seed block: the conformal block of
four external scalars exchanging a symmetric traceless primary of spin /.

6.4.1 Conformal blocks of external scalars

The definition of conformal block given in (6.3) is rather cumbersome even for the
simplest case of external scalar operators. One would need to compute the functions
Co(9y, xij, 95 ) by matching them with three-point function and then evaluate the product
of two C,’s and the two point function (O,+O,). Nevertheless, this is the way the blocks
were first computed [94]. Later the same authors found a simpler method that requires
solving a second order differential equation: the Casimir equation [95]. Conformal
blocks can be schematically represented as a sum over all descendants of O,

KiGo~ Y. (¢1¢2A)g"" (Bosgs), (6.46)
A,BEO,

where K is the prefactor defined in (1.18) and g”? is the inverse of the matrix of two-
point functions ¢4p = (AB). Each state in a representation p = (A, £) is an eigenvector

115



Chapter 6. Conformal bootstrap

of the Casimir differential operator. In embedding coordinates this reads
L?|0) = 3LunLYN|O) = Ca(|O),

with

. d )
LMN =1 (XM - XNW

oxXN ) ;o Car=AA—d)+L(l+d-2). (6.47)

Naturally, since the correlators are conformally invariant, ;" ; L; applied on a n-point
function gives zero, as we noted in (6.38). Therefore the Casimir at points 1 and 2 applied
on (6.46) gives precisely Cp . We thus obtain the Casimir equation

(L1 + L2)* (K4 Gp) = Cay Ka Gy . (6.48)

After rewriting it in terms of the z, Z variables we are left dealing with a second order
partial differential equation. With some redefinitions, (6.48) can be seen to factorize
when d is an even integer. In those cases it is possible to find a closed form solution
in terms of »F; hypergeometric functions. Whereas if d is odd no closed form solution
exists. Without dwelling to much on the details, we will present the solution for 4 = 4.
It is expressed in terms of a function g

kp(x) = 2P 2Py (B = %, B+ %265
(=2)fz—z

(6.49)

Gy(z,2) = Kot (2)Kar2(2) — (z z)) )

2 2
where A;j = A; — Aj is the difference of the conformal dimensions of the external fields.

For numerical applications we need to find an efficient and precise approximation of the
derivatives of the conformal blocks at z = Z = 1/2 that consists in rational functions
in A. The Casimir equation is particularly useful in that regard because it allows us
to know all derivatives of the conformal block at a given point once the function and
its first derivative are known at that point. However, using the expression (6.49) for
evaluating and approximating the blocks is not the most convenient approach. Other
faster methods, which we will not review, are available in the literature. The interested
reader may consult the reviews cited at the beginning of this chapter or the references
at the end of Subsection 1.2.1. In what follows we will only worry about “spinning up”
the scalar blocks, assuming that we already have an efficient method for evaluating and
approximating them.

6.4.2 Differential operators in embedding space

In this subsection we will briefly review the work done in [90]. We are thus focusing
in four dimensions and making use of the embedding space formalism (which we
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introduced in Section 1.2.2). Unlike the previous chapters, we will from now on denote
spin labels as (¢, £) instead of (j, 7).

Before diving into the definition of the differential operators, let us understand from the
representation theoretic point of view what can we gain from them. Let us define for
convenience the conformal partial waves Wg’b (x1,...,X4) as

n1234
Wob(xa,.oxa) = ) Tilxa, . xa) G (u,0), (6.50)
i=1

where we also used a shorthand x; = (x;, ;, 7j;). Conformal partial waves can be written
schematically in the same fashion as (6.46). More precisely, it is possible to express
them as a certain pairing of three-point tensor structures [103,105], which is sometimes
denoted by
b _ b

Wpa,010203(94(xi) = t‘é)lozop(xl,xz, Xg) < t0,.050, (X0, X3, X4). (6.51)
One may think of the operation < roughly as performing an integral over the coordinates
and summing over polarizations of xo.!* Its precise definition will not be important to
us.

So, suppose we have a differential operator Dy, that takes (p1¢.O) to (O10,0), where
07 and O, are symmetric traceless tensors with nonzero spin.'> We can use it to write
a,b _ @ B) a1l

Wp,(91020304 (Xl, e ,X4) = D12 D34 WP,¢1¢2(P3¢4 (Xl, ooy X4) ’ (652)
where we used the fact that there is only one tensor structure for (¢p¢QO). The indices a, b
on D;; will be made clear later. One might naively say that, due to this, the only seed
block needed is the scalar one. After all we can generate all partial waves starting from
the one with external scalars. This would be wrong because the differential operators
cannot act on the exchanged operator!® and therefore we can only do the trick when the
three-point function (¢1¢,O) is nonzero. This is the case only for symmetric traceless

operators. The correlator with the lowest possible spin that contains an operator of spin
(¢,0) withp = | — 1| is

(pFP)O)y  or  (¢FPO), (6.53)

4Note that the b notation obscures the fact that the normalization of conformal blocks also implicitly
depends on the normalization of the two-point functions.

15The operators 01 and O, should not be thought of as real operators of the theory. The sense in which
D1 {9192, 0) = (O10,0) holds is that the left hand side has the functional form of a conformal correlator
with the quantum numbers of the operators in the right hand side. Equivalently, it may be seen as a relation
between tensor structures, without any reference to physical correlators.

16 Actually this is not correct: it is possible to act on the exchanged primary with the aid of the so-called
weight shifting operators [103] by using the crossing equations that they satisfy. We will not use this method
in the thesis and so we will not discuss it any further.
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Chapter 6. Conformal bootstrap

where F(P) is an operator of spin (p,0) and F(?) of spin (0, p). Furthermore, for these
operators the three-point structure is unique, so we do not have 4, b labels. Then, for
every p, we define the partial waves!”

W;eed — W;,’;Fz(,,) LR (6.54)
These together with the block of four external scalars complete the list of all needed
seeds. We could have equivalently chosen seeds with two F(P) and two scalars or two
F(P) and two scalars in place of (6.54). We will now address the problem of obtaining
general partial waves from the seed ones. In the next subsection we will show how
to compute the seeds. The final step would be to go from partial waves to conformal

blocks, but this is a relatively trivial task as it only requires to expand W, in the basis of
the Ti.

Now that we have our objective clear we can start writing down the differential operators
D;;. They will be constructed by simpler building blocks which modify the spin by
the smallest possible amount. We will define them for the first two point. The other
operators are obtained with the obvious replacement 1 — 3, 2 — 4. Let us list these
building blocks. The simplest ones that we can construct are

\/X121 (_%I_%|OIOIOIO)I
',  (-1-310,11,0),
™,  (-%-11,001).

These are just multiplicative operators. Next to them we wrote the shifts that they make
on the conformal dimensions and spins & := (8A1;6A;|6¢1, 801;502,502) (for example,
041 means (7" — E‘l)ld). The same notation will be used for what follows. At first order
in the number of derivatives we have

1 e d d

Dy = =$;ZMENG, [ Xop—c — Xon— | , 0;—1|1,1;0,0),

12 ) 1 1( ZMaX{\I ZNBX{VI) ( ’ )
Dy = D1ol1es2, (—=1;0/0,0;1,1), (6.55)
_ o ) a0
Dip = $1X,2N8; —— + 212§ — 217187 — | —1;0|1,1,0,0),

12 12 18X£\] 1”852a 185; ( | )
Dy = 512\192, (0;-1]0,0;1,1).

The operators listed so far do not change the overall difference between ¢ and /. Here

17The dependence on p of the left hand side is in p = (A, ¢, 7) with p = |¢ — |. The dependence on the
external dimensions is kept implicit for brevity.
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6.4. Conformal blocks

are some operators that change it by two:

_ 2 .
d12252X1£/ (_51_%|01_1/1/0)/
do = d12|1<—>22)/ (—%;—3]1,0;0,—-1), (656
dip = 5oX1 = —1.-11-1,0;0,1
12 SZ 1851’ ( 27 2‘ /O/O/ )/
dyn = di2|is2, (—3;,—1%10,1,-1,0).

There are also other operators that change the spins in a similar way, but they can be
shown to be redundant. Lastly, we need an operator to decrease the spin and change the
difference ¢1 — #1 — (¢2 — £,). This is necessary in order to connect three-point functions
with one operator of spin (¢, ) to those with an operator of spin (¢ +1,¢ F 1), while
keeping the other operators unchanged. It is sufficient to introduce the following second
order differential operators

_ 82
Vi = (X1X2)a,7, (—l;—l|0,—1;—1,0),
7951955 22 (6.57)

Va1 = Violiea, (=3 -3/ —1,0;0,—1).

One of the crucial aspects of these operators is that there is generally more than on way
to connect two three-point functions of different spins. These different ways can be used
(@)

to create a many-to-one mapping between the space of differential operators D,
the three-point tensor structures t(, (), ». That means that we can define a basis such that

and

D}; torn o (X1, X2, X3) = tp, 0,0(X1,X2,X3) - (6.58)

Typically the most natural basis from the differential operators perspective is not a very
convenient one in terms of embedding space structures, and vice versa. This is not
important as one can always work in the best basis for the purpose at hand and then
translate from one to the other when needed. The most general differential operator
reads o o

Diy = (I'"*)™2(1*!)" D}3* D} Dy D dy} dyi i3 dy} V. (6.59)
This differential operator should be applied on a three-point structure of a scalar, an
operator of spin (p = |¢ — £|,0) and an operator of spin (¢, £) with conformal dimensions
given by A}, A, and A.'® The result is a structure with spins (¢1,71),(¢2,72),(¢,?) and

181f we want to act on a correlator with an operator of spin (0, p) at the second point it suffices to replace
Vi by Va1.
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Chapter 6. Conformal bootstrap

conformal dimensions A, A; and A given as follows

(A = Ay —mys — j1 — A(mp+mn + ki + ko + ki + ko +7),

Ny =Ny —miz—jo— S(mip+ma +hki+hko+ ki +ka+71),

0 = j1 + ko —ky +myz+my,

o (6.60)
61:]1+k2—k1—|—ﬂﬁ3+77112—1’,

62:j2+k1—l_<2+m23+m12—r+p,

Uy =jo+ky — ko + moz + my .

The basis Dgg) tor( 0 is often referred to as the differential basis, while the basis given in
(1.28) is called the OPE basis. Mind that we are not claiming that the solutions to (6.60)
are in one-to-one correspondence with the elements in the OPE basis. There might still
be some redundancies. We will be content with defining a possibly overcomplete basis
here. A general prescription for when the first two operators are symmetric traceless is
given in [90].1

We end this subsection with a technical remark: often it is necessary to replace D with
D + D in the definition (6.59). This yields a different but still perfectly valid basis.
The reason for doing so is that in the former case the matrix that translates from the
differential basis to the OPE basis will contain elements with poles for unitary values of
A, ¢ and /. These are unphysical poles which should be removed.

6.4.3 Seed partial waves

We have shown in the last subsection that a general partial wave for the exchange of
p = (A,4,0) in the correlator (0;0,030;) can be obtained by acting on the “seed”
partial wave with some conformal differential operators

,b . b d
W, 0,0,0,0, = D{; D} Wpeee, (6.61)

Before giving the expressions for the seeds, we need to write down their four point-
function. The partial wave decomposition reads

(1 (1) B (2, m2) s (x3) EW) (s, 7))
=Y T ewt e, @0

=P 2o p=(AL+4) o, 1 EP) g3 EVY

9Tt should be stressed that the prescription in [90] is defined so that it works in general (when the first
two operators are symmetric traceless) but it is not necessarily optimized for minimizing the number of
terms or the order of the differential operators. Such an optimization is not necessary from a theoretical
perspective but it may make a significant difference in the numerical computation of the blocks.

120



6.4. Conformal blocks

We are interested in the waves for g = p. Next we want to decompose the partial
waves in the tensor structures T;. For these minimal four-point functions, listing the
tensor structures is not a difficult problem. Furthermore we want to be able to act with
differential operators on them. As per the discussion at the beginning of Section 6.3, it is
more convenient to use the embedding formalism. There are in total p + 1 structures
given by

Wse??@rp ’C4ZGA€e z) (I*)° (I5)"°,

(6.63)
Wse?(éiw 0) = K4 Z GA l; e ) (142) (Iglz)pie ’
where K4 is the prefactor
Pyl P11
r_1 r_1 X *Z*FEAIZ X *Z+§A34
X4 Xi3

The functions Gi 2 or é(&; . are the seed conformal blocks and they will be the object
of study of this subsection. In what follows we will suppress their dependence on
A and / for brevity. We will review the computation of [172] which uses the method
of the Casimir equation. We already explained the idea of the Casimir equation in
Subsection 6.4.1. The complications that arise in the spinning case are two: the equation
(p)

will actually be a system of partial differential equations relating G,
of e. Moreover, now the operator Lyy has also a non-vanishing spin part

for different values

) d 0 ) d
Li,MN =1 (XZ'MaXiN _XiNaXiM + S; ZMNaS —|—S ZMNaSZ> . (665)
The eigenvalue for a representation (¢, /) is given by
Cari =DA—4)+5 (L(L+2)+1(1+2)). (6.66)

After applying this operator on (6.63) and requiring that the coefficient of each tensor
structure vanishes? we obtain this system of second order partial differential equations

(Agﬁ}fe;ce) - %(CA,HM - 85)) Gép) + Al zZL(a, 1) G(p)e—1 + BeL(bet) Ge(i)l =0,

(6.67)
with the definitions
. Az — Al B . A3 A4 B B —
A, = — +4, b, := — 4+p e, C=p—e, (6.68a)
1
e =3p" — (14+2)p+2e(2+e), Al=2(p—e+1), B.:= e—zk , (6.68b)

20This is not at all a straightforward step because the action of the Casimir operator on the T; generates
many invariants which are linearly dependent. It is thus necessary to apply the various relations in
embedding space to eliminate them.
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L) = _Ziz (2(1=2)3, — 2(1 = 2)3:) + 1, (6.68¢)
D) = 22(1 — 2)R — ((a+b+1)z* —cz) 9, —abz, (6.68d)
AP .= plabie) | plabie) 4 e Zb ((1—2)3. — (1—2)ds) . (6.68¢)

In (6.67) it is understood that G(f 1) = G;(f;)l = 0. The equations for Cép ) are analogous.

It is interesting to notice a nearest-neighbor structure in the Casimir equation. Namely
(p) (p)

every block G, only couples to its neighbors G,’;.

In order to attempt solving this system we need some guidance. In particular, we can
benefit from knowing the asymptotic behavior of the solution as z,z — 0. This is not
easy to obtain from the equations themselves, but there is an alternative way to obtain
the blocks which is viable for small values of p, namely the shadow formalism [104,105].
By studying the asymptotic behavior of the solutions obtained with this latter method
we can extrapolate a pattern for all p and then we can use that knowledge to come up
with an ansatz. We will not show here the shadow formalism solution nor the general
asymptotic behavior and refer the reader to [172].

n

,,,,,,,,,,,,,,,,,,,,,,,,,,,
p .| N
i
e |

. . . . . . . . .

; m

p SR
,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 6.2. Octagon oaé*’ ) for p = 4 and e = 3 representing the values of m, n for which c7, , is

nonzero.

The solution can be parametrized by a matrix of coefficients cj, , for Gé” )

and ¢y, , for
Cﬁp ) that are nonzero only for m and n belonging to an octagon region on the plane

Octgp) C Z2 that we will describe shortly. In terms of these coefficients the solution
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6.4. Conformal blocks

reads
_ 2p+1
= ZZ ebe; Ce =
GP(z,2) = (z — Y. Fﬁ(erm,%ern(z,z) , (6.69a)
m,neOctgm
=(p) zz \ ¥ (e be;ce)
=\ =€ esVesle =
G(z,2) = ( Z—2 Y. G Fﬁl et Batetn (z,2), (6.69b)
m,nGOct;,p,)E
where we defined
_ A+l p _A—C p
51-—7**‘1, ,32-— ) +4/
_ A+0 p = A—1l 5p
pr=—F——", Bri=—7———+——1,
2 4 2 4 (6.70)

ng,b;c)(z) = 2Py F (a4 B, b+ B;c +2B;2),

.Fé‘f:?;) (z,2) = Kgi’b;c) (z) Ké’i’b"c) (2) = (z > 2).

We have already encountered x4 in (6.49) for the case of ¢ = 0. The octagon Octgp ) on

which the coefficients c}, , lie is defined by the boundaries

—psn<e+tp, e=2p<m<p,
p p p p 671)
e=2p<sm+n<p+te, —2psm—n<p.
and it contains Ne(p) = p(4p +3) — €? + ep + 1 points, which is easily seen to be invariant

under e — p — e. The shape of the octagon can be seen in Figure 6.2. The coefficients c7, ,
and ¢j, , may be obtained by means of a recursion relation, which we will not reproduce
here. The growth in the number of coefficients together with the complexity of the
recursion relation make this task very computationally demanding. Luckily, however,
the coefficients for p up to four have been already computed and can be found in this
repository: gitlab.com/bootstrapcollaboration/CFTs4D. Those are all we need for
bootstrapping four currents. Indeed, the exchanged operators in the OPE | x | can have
p=0,2o0r4.
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74 Conformal blocks

In this chapter we describe all the steps needed to prepare the bootstrap problem of four
abelian currents in four dimensions. It is based on Paper I and Paper IV. First we do the
three-point function analysis, then we study the four-point function (JJJJ), and finally
we show the computation of the conformal and superconformal blocks.

7.1 Non-supersymmetric operator product expansion

An abelian current is a primary operator of spin (1, 1) with conformal dimension A; = 3.
It therefore satisfies a shortening condition

0,0x9;7 ] (x) =0, J(x) i= %7 Jaa (x) . (7.1)

It is called abelian because it is associated to a U(1) global symmetry. If we are consid-
ering a superconformal theory then this is precisely the R-symmetry and | represents
the superprimary of the Ferrara-Zumino multiplet. This multiplet was introduced in
Subsection 2.1.3 and it satisfies the shortening condition (2.13a).

The four-point function under study is

(J(x1)J(x2)J(x3)] (x4)) - (7.2)

Associativity of the OPE requires that the crossing equations (6.2) hold. The two relations
are, in fact, not independent. It suffices therefore to impose

o) (x2)] (x3)] (x4)) = (J(x1)] (x2) ] (x3)] (x4)) - (7.3)
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Chapter 7. Conformal blocks

The contractions represent the OPE as in (6.1), which, for the case at hand, reads

nJjp ( )

S s

—~ & * [xpp[6+8°

C ay, xlz,a;«], aﬁ)Op* (0, 7], ;7), (7.4)

where O, = O, is the hermitian conjugate operator (or, equivalently, the CPT conju-
gate). The allowed values for p = (A, £, 7) in the sum are

: _ 2+ 3(L+10) 1#£0,
A=0=4=0 or A = Aunitarity(glg) = { + f( + _) _ ?é
+1(0+0) =0, (7.5)

(6,7) € {(0,0),(6,0+2),(£+2,0), (6,0 +4),(0+4,0): (€N},

where Auypitarity i given in (1.7) but was reproduced here for convenience. We also
introduce the parameter p as

as we did in Subsection 6.4.2. The allowed values of p are therefore 0, 2 and 4. For p > 0
there are two types of operators related by conjugation. We will refer to (¢, ¢ + p) as the
primal and to (£ 4 p, () as the dual. In this section we will consider all operators O, that
may appear in the OPE of two currents and study the three-point functions with two J’s
and one O and the two-point functions of O, and O+. In doing so we will make use of
the embedding formalism described in Subsection 1.2.2.

7.1.1 Two-point functions

We start by choosing the basis of local operators which appear in the OPE (7.4). First we
name all the operators with ¢ > 7 as?

of, o, of o)

All the operators with ¢ < 7 are obtained by hermitian conjugation of the ones in (7.7).

They read

o, o, o, 79

In the traceless symmetric (p = 0) case the local operators are chosen to be hermitian or

. AL . .
in other words (’)(AM) = O(A ) Secondly, we can assume that the two-point functions are
diagonal in this basis. This means that the only non-vanishing two-point functions are

! In principle there can be operators which cannot be fully specified by dimension and spin alone. For
example, there could be degeneracies given by additional global symmetries that were not taken as an
assumptions. We can ignore this detail as it is irrelevant for our purposes.
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7.1. Non-supersymmetric operator product expansion

those of an operator and its conjugate

AGD Al it=t

(08" ()08 (x2)) = () (2. (7.9)

(x%z)M_% (€+70)

See (A.22) for the definition of the invariants I/. The choice of normalization implicitly
made in (7.9) is the standard one for generic operators. On the other hand, for conserved
currents we will use a different normalization, as we are going to discuss now.

Operators with ¢/ # 0 saturating the unitarity bound Aunitarity defined in (7.5) are
necessarily conserved currents.? The cases with spin (1,1) and (2,2) are the well known
Noether current and stress tensor

j=0M, T.=0%. (7.10)

A natural normalization for | and T is one that makes their Ward identities follow
the definitions in Section 1.4. This choice is not necessarily the one that makes their
two-point functions unit normalized. Thus, instead of (7.9) one has to write

C] CT

(x5,)* (x3,)°

for some numbers C; and Ct which are called the central charges. When we are consid-

(J(xa)](x2)) = P, (T(xa)T(xe)) = (r2r*)?, (7.11)

ering the supersymmetric setup, ] and T live in the same multiplet. As a consequence
Cr and Cj are related [156]. The precise relation can also be inferred from Q)+ in
Table 3.2.

Cr ' =5C. (7.12)

7.1.2 Three-point functions

We can study the OPE (7.4) by looking at three-point functions®

(Jx1)T(x2) O (x3)). (7.13)

The allowed values for ¢ and 7 are given in (7.5). The three-point function satisfies the
permutation constraint

(J(x1) ] (x2) O (x3)) = 712 (x1) ] (x2) O (x3)), (7.14)

2Qperators saturating the unitarity bound for £Z = 0 can only appear in free theories [173].
3Indeed, by multiplying (7.4) by the conjugated operator O, and taking the vacuum expectation value,
we obtain an equality between the three-point function and the function Cp.
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due to the presence of the identical operators |. Here the permutation operation 7;; is
defined by
Thj X &7 Xj. (7.15)

The correlator also satisfies the conservation constraints

3 - J(x)J(x)O\ P (x3)) =0,  i=1,2. (7.16)

Both (7.15) and (7.16) are constraints that must be imposed the three-point function. In
order to do that, we first consider a more general correlator, by assuming only conformal
invariance .

(Vi) Vo) 08 (xa)), Vi) == OF (). (7.17)

Here V; is a generic vector operator. We then impose the constraints (7.15) and (7.16) to
obtain the final form of (7.13) at the end. The three-point function under study can be
expanded as (1.16)

_ n(4,0)
L0 a a
<V1(X1>V2<X2)O/(3 '(x3)) = )y Ai/l)VzO“'“ tvlvzogm (x1,%2,%3), (7.18)
a=1 A

where n(/, £) is a shorthand for n(V;V, (’)(AM’)) defined in (1.40) and it counts the number
of tensor structures. For these correlators the values are given by

STH1T £22 4 0>1
n(l,0) =4t +1- (=1 n(£+2,€):{3 zio n(l+4,0)=1, (7.19)
2+ (=0 B

with the superscripts plus and minus denoting the eigenvalue of the structure under a P
parity transformation. The tensor structures tj, |, , depend on the scaling dimensions
through the kinematic factor K3 defined in (1.27). In this case it reads

1 MDD A—L—B42 AP+ AHHE M- A A+
K3 =xp, X3 X3 . (7.20)

A; being the dimension of V;, which will be set to three at the end.

Generic constraints on (7.18) come from parity symmetry, time-reversal and complex
conjugation. We do not require explicitly neither parity nor time-reversal. Besides the
attempt of being more general, the requirement of these symmetries does not give any
sizable constraints on the setup. We deduce the constraints from complex conjugation
by applying it to (7.18). We get the relation*

(Vi (x1) Va(x2) O (x3))* = (Vi (x1) Va(x2) O (x3)) (7.21)

“We work in equal time quantization in Lorentzian signature, and hence for a generic correlator

(01(x1)02(x2) O3(x3))* = (O3(x3) D2(x2) O1(x1)).-
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7.1. Non-supersymmetric operator product expansion

The tensor structures ty, , , have well defined transformation properties under complex
conjugation. The condition (7.21) then translates into relations between the OPE coef-
ficients. In what follows we will define the basis of tensor structures for the operators
with £ > 7 only. The basis for the conjugate operators with ¢ < 7 is chosen in such a way
that the associated OPE coefficients are related through (7.21) to the ones with £ > 7 in
the following simple way

(@)% — 2@
/\V1V2 ol = Avlvz o) (7.22)
Since the p = 0 operators are hermitian and the three-point function is mapped to itself,
the relation above implies that all p = 0 OPE coefficients are real.

In order to obtain the conformal partial waves we also need to define the three-point
functions related to (7.18) by a 7113 permutation

_ n(4,0)
(£,0) _ (a) a
(0,7 (x1)Va(x2) Vi(x3)) = a; /\O(AM)VQW tog;,avzvl(xlfxz, X3) . (7.23)

We choose their basis in such a way that

A=A 7.24
OY’Z) %1 1% VzO(AM) ( )
Together with (7.22) this implies that there is the following relation between the OPE

coefficients

(a) _ @
/\OX/Z)Vle = Avlvz o0 (7.25)

This relation will be crucial for setting up the semidefinite problem.

Now we impose conservation (7.16) and permutation symmetry (7.14). These two
requirements lead to a system of linear equations on the OPE coefficients entering (7.18).
We solve them in terms of a smaller set of independent OPE coefficients A and plug
the solution back in (7.18). This defines in turn a basis of conserved and 7r12-symmetric
tensor structures that we denote as t ]” jo- As aresult we get

>

. (

4,0)
T (2)0{ )y = Y2 4@

Jotn rown (X1 x2x), (7.26)
a=1 A

where 7(£, 7) is the new number of independent OPE coefficients A. The values of (¢, )
are given by

2 (=2 o (=0and 0 ¢odd
a0, 0) = Y a2, = M2 p(l+4,0) = °
1 else 1 else 1 /Zeven
(7.27)
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The associated conserved and 7r1p-symmetric tensor structures can be related to the old
ones through a rectangular matrix. More specifically we can define the 7 X n matrix M
as follows

n(l+p,0) .
~a
t”O(Aiﬂz,l) (x1,X%2,X3) = a; (M,,0)" tvlvzolgup,z‘)(xlllexa)- (7.28)

It is important to check that these matrices are always non-singular for any unitary
values of A. In what follows we will precisely define the basis of tensor structures
in (7.18) and specify the matrices M for p = 0,2 and 4.

7.1.3 Basisforp =0

In the p = 0 case there are six independent tensor structures which we choose to be

ti/l 1o\ (x1,%2,%3) = 1212 (J3,)", (7.29a)
t?ﬁ 0 (x1,%2,x3) =333 (J3,)" (7.29b)
tf/l o (x1,%2,%3) = TIP3, (05,) (7.29¢)
€ (X1, X2 xa) = IPI20 5 (05) 1 (7.29d)
£ o (030, %0) = TOPT? (13,02, (7.29)
t?/lvzogé,()(xl,xz,xs) — (1[1211231131 n ]1211[131[32) J3,)01. (7.29%)

The tensor structures (7.29) have simple transformation properties under parity. More
precisely, the first five structures (7.29a)—(7.29¢) are parity even and the last one (7.29f) is
parity odd. As we already mentioned, we do not require parity symmetry in our setup.

The ¢ = 0 and ¢ = 1 are special cases since not all the six structures exist. In particular
(7.29d) is absent for ¢ < 1 and (7.29¢)—(7.29f) are absent for £ = 0.

We will now provide the matrices M appearing in (7.28). There are three different cases
to be considered. When ¢ = 0 there is a single structure therefore the matrix is 1 x 2 and
it reads

Moo= (2(3—A) A). (7.30)

When ¢ > 1 and is odd again we have a single structure and the matrix can be written
as

Moroad = (0 1), (7.31)

where 0, is a row of n(¢, ¢) zeros, which means a row of length four for ¢ = 1 and of
length five for £ > 3. In the very special case of the conserved current | when ¢ = 1 and
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7.1. Non-supersymmetric operator product expansion

A = 3 all the additional constraints are satisfied automatically. We can however use in
addition the Ward identities to relate the OPE coefficient to the two-point normalization
of the conserved current | given in (7.11). Since | has no U(1) charge and its only
three-point tensor structure is parity odd while its two-point function is parity even,
both sides of the the Ward identity vanish and therefore there are no further constraints.

The case for even ¢ > 2 is the only one with two independent structures. The associated
matrix M is therefore 2 x 6 and it reads

MO,Eeven:
244+ 0—A)A—3)  —(A+L—A)(A+0) 0 0 40(A—3) 0
( A4A—2)(A—3) 20(0+8) —2A(A+20—2) —40(A—3) 40(A—3) 0 0)'

(7.32)
A very special situation is given by the stress tensor T when ¢ = 2 and A = 4. No further
constraints appear on (7.28). However, due to the Ward identities, we can relate the OPE
coefficients to the two-point function normalization of two currents | given in (7.11) as

1@ _lim G

Mgy = 2N T g2 (7.33)
This computation follows from the discussion in Section 1.4. However, in this chapter
we have made a minor change in the conventions. Namely we do not include the factor
of two in the right hand sides of (1.45) and, of course, due to the normalization of J, the
two-point functions nj; take an overall C; factor.

The Hofman-Maldacena bounds [136] impose an inequality on a combination of these
coefficients. Following [84] we can define a parameter 7 as follows

i _ Gl —3827) 1@ _ _G+4y)
Aim = T aem 0 Mum T oz (7.34)
Then v needs to satisfy the inequality
1 1
<< —. ,
6STS3, (7.35)

The two extremes of this window are associated to free theories. More specifically
v = —1/16 corresponds to the free complex boson and y = 1/32 corresponds to the
free fermion.

7.1.4 Basisforp =2

The second class of three-point functions is given by p = 2 operators. The number of
independent structures is summarized in (7.19). For general ¢ > 1 the basis is taken to
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be
. l
o0 (X130, %5) = TPIPKE (1), (7.36a)
6 oun (x10,x) = TPIKP (%) (7.36b)
t?/ v, 020 (x1,%2,X3) = ]I13]1311[231K%3 (]]“1’2)€*1 , (7.36¢)
1V2Yp
t;L/ soten (XX, X3) = P28 K3 (33,) L. (7.36d)
1V2Yp

In the special case for / = 0 we can only write three independent structures, which are
given by

1 . ql2p237-13
tvlvzofm(xl’xz’ x3) = I I7K;7, (7.37a)
2 13721723
tvl Vzogz/o) (X], Xz, Xg) -— I[ ]I ]I<1 7 (7.37b)
3 1372312
tVleof’(D (x1,x2,x3) == I"T7K5”. (7.37¢)

The conservation and permutation conditions are very restrictive for / = 0 and happen
to not only fix the OPE coefficients but the dimension A as well. We have

A=2, My=(1 1 0). (7.38)

For this reason, only the operators saturating the unitarity bound Aypitarity in (7.5) are
allowed. According to [173] such operators can only belong to a decoupled free subsector
of the theory. The conservation condition for ¢ > 1, on the other hand, has a nontrivial
solution. We obtain a 1 x 4 matrix which, if ¢ is even, reads

legeven:(x X —z z), x=L+6—A, z:=2(A-2), (7.39)
whereas if ¢ is odd it reads

M3 reven = ( —-X Xx Yy y) , y:=2(0+2). (7.40)

7.1.5 Basisforp =4

The last case to be considered is that of p = 4. Luckily there are no special cases to be
treated separately. We only have one allowed structure which reads

ty 504 (x1,x2,%3) = IPTPKIPK2 (J3,)° . (7.41)
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This structure is automatically conserved and 7t1;-permutation symmetry forces ¢ to be
even. Thus M is a very simple 1 x 1 matrix that reads

M4,€ even — ( 1 ) ’ M4,€ odd = (O) . (742)

7.2 Four-point tensor structures

We now perform a detailed analysis of the four-point function (7.2) and the kinematic
constraints that it must satisfy. Then in Section 8.1 we will analyze the constraints due to
crossing. First, we need to define a basis of tensor structures for the four-point function
of four generic vectors

<V1 (Xl)Vz(xZ)Vg, (X3)V4(X4)> . (7.43)

Then we proceed by studying its properties under complex conjugation, permutation
and conservation and its analytic properties. Contrary to Section 7.1 we will work in
conformal frame. This formalism has been introduced in Section 1.3 and then specialized
for four-point functions in Section 6.3.

The four point function (7.43) can be expanded in a basis of 70 structures, before imposing
any kinematic constraint

(Vi () Valxa) Va ) Vi) = 30 £2(2,2). 7.4
i=1

This is going to be just an interim basis, hence the superscript “0”. The explicit definition
of all 70 structures can be found in Appendix D.2 and it uses the conformal frame
notation given in (6.34). The cross ratios z, Z have been defined in (6.13). Analogously to
the p = 0 three-point structures in (7.29), the four-point structures T? have well defined
transformation properties under P parity. It could be convenient to label them according
to these properties even if we do not require parity symmetry in our setup. However
here we decided not to do so. The 70 structures split into

n(ViVaV3Vy) =70 = 43" 427, (7.45)

where + stands for parity even and — for parity odd. Using complex conjugation®® one

can write the following identity

(V1(x1)Va(x2) Va(x3) Va(xa))" = (Va(xa) V3(x3) V2(x2) V1 (x1)) - (7.46)

The first 16 functions f? are real and the remaining ones come in complex conjugate

SSimilar to the three-point unction case, see 4, for a generic four-point function we have
(01(x1)02(x2) O3(x3) O4(x4)) " = (O4(x4) O3(x3) O2(x2) O1(x1))
We work in Lorentzian signature. In particular, Hermitian conjugation does not act on the coordinates
to the local operators and the cross ratios z, Z are real.
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pairs. In the basis that we will define later the associated functions will be all real.

7.2.1 Kinematic permutations

Let us now discuss the constraints due to permutation symmetry. As we said earlier, we
are going to discuss crossing symmetry in Section 8.1. Here we are only interested in
the permutations that map the cross ratios to themselves, so that they imply constraints
for the functions fZ-O that hold for each z, z, instead of relating the functions at different
points. The permutations that leave z, Z invariant are called kinematic and they have
been introduced in (6.6). We find that by imposing

(V(x1)V(x2)V(x3)V(x4)) = m{(V(x1)V(x2)V(x3)V(x4)), € (6.6), (7.47)
the number of independent structures is reduced to
n(VVvv) =22=19" 4+3". (7.48)

Furthermore we want to make sure that the functions have definite properties under the
exchange (: z <+ Z. This can be achieved by studying a rotation in the plane 0-2, as one
can see from (6.31). On the conformal frame structures the transformation amounts to

T2 Q| g,y Dbl | T TR T8 A ey (7.49)
q1 G2 g3 44 ' —M1 —q2 g3 —q4 '

After taking the appropriate linear combinations of structures that diagonalize { we can

write

2
(V(x1)V(x2)V(x3)V(x4)) = ZTi fi(z,2). (7.50)
i=1

These new structures are defined in Appendix D.2 in terms of the structures T? defined
in the previous subsection. This result can be obtained by acting with the permutations 7t
in (6.6) and with { in (7.49) on the conformal frame structures. The factors of z, Z appear
because the permutations do not leave the conformal frame unchanged. Therefore one
has to act with a transformation 7 to restore the points to the original frame. Since the
four operators lie on a plane, the transformation r,; can be taken to be an element of the
two dimensional conformal group SL(2,C). More details can be found in Appendix B
of [93].

The functions f; are all real and the structures T; are CPT invariant. They also have
definite properties under P parity and z <+ Z parity: the first 14 are P and z <+ Z even,
the structures T15 16,17 are P odd and z <+ Z even and the remaining ones are P even and
z <+ Z odd.
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7.2. Four-point tensor structures

7.2.2 Smoothness atz = Z

As discussed in Subsection 6.3.2, the point z = Z is a point of enhanced symmetry and
this implies that the functions f;(z, Z) must satisfy some smoothness condition as z — Z.
By diagonalizing the action of the O(3) Casimir operator on the f;’s we can define a new
basis of functions, where the smoothness properties become manifest

@2, [P0« @z-2). (7.51)

We can use the formula (6.39) to predict the number of functions in each spin sector.”
However, now we need to restrict the counting to only those structures that are permu-
tation symmetric. In order to do that, it suffices to take the singlets under the group of
kinematic permutations Z, x Z,. All in all we get

4 ZzXZz
(Re588§®<111>> —7.0t @0 @417 B 6-2" ®8-2- ® 3" @ 4T, (7.52)
k=1

where we indicated the O(3) representation of spin | and parity 7t by J™. In particular, the
number of independent functions f(g?i(s) (z,2) is eight and the non singlets are fourteen.

We will not reproduce here explicitly the Casimir operator in the basis (D.11), nor the
definition of the functions (7.51) in terms of the f;. Before studying the smoothness
conditions we introduce a modification of our basis f; so that all functions are even
under z <+ Z. As a consequence, the constraints of spin 1 will be automatically satisfied,
since the formerly odd functions now vanish as (z — z). The only orders on which the
regularity condition is not trivial are the order (z — 2)? at spin 2,4, order (z — z)* at spin
3 and order (z — z)* at spin 4. At the end it will turn out that all these constraints are
redundant when combined with conservation. This fact is nontrivial and we checked it
explicitly by doing a Taylor expansion of the functions. We will discuss this in the next
subsection.

7.2.3 Conservation

Finally we address the most important issue of this analysis: conservation. We have to
impose in the four-point function basis that the current | is a short multiplet, satisfying
d,J" = 0. Unlike the case of three-point functions, where this constraint simply results
in a system of linear relations, now we are dealing with a system of linear differential
equations. We do not need to explicitly solve this system, but we want to study it in
order to understand which functions are left unconstrained and which can be obtained
by integrating a suitable set of initial data.

7In this subsection we also take into account the parity of the structures for completeness. Therefore in
the formula SO is replaced by O.
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In the literature there have been two different approaches. In [84] the authors considered
an evolution system with initial data on the line u = v. This is precisely the crossing
symmetric point. Therefore the aim is to start from crossing symmetric data on the
line, and evolve them to a fully crossing symmetric function on the whole plane. More
concretely, one chooses a “time” direction ¢t and an orthogonal direction y as

t=u-—v, y:u+v—%, (7.53)

and then writes the conservation condition in a matrix form

22

Y A0t fi(u,v) + Bri 9y fi(u,v) + Cy fi(u,v) =0, I=1,...,20. (7.54)

i=1
Here A, B, C are matrices with t, y dependent entries and 20 is the number of tensor
structures of a scalar and three vectors. The functions that live in the kernel of A are
not affected by the evolution equation, so we have no additional information on them
and we have to impose crossing in the whole plane u, v. We call these “bulk” degrees
of freedom. The functions in the image of A instead can be evolved from the data at
u = v. Now crossing may either act trivially on those functions, thus giving no extra
constraints, or it might set them to zero. Those among the latter which are also in the
kernel of B wil be called “line” degrees of freedom. On the other hand, the functions that
are set to zero on the line and are in the image of B can be evolved from u = v = 1/4.
Then we might have a condition that sets the function to zero at that point. These last
functions will be called “point” degrees of freedom.

Unfortunately, with this method the constraints stemming from smoothness at z = Z
are not easy to impose. We will therefore describe a different approach where these
conditions can be introduced much more naturally. It was adopted in [83]. The idea is to
consider as initial condition the line z = Z. The time and the orthogonal direction can be

then defined as
z—Z _z+z-—1

2 - Y 2
The differential equation looks exactly like (7.54), but obviously the matrices A, B and C
will be different. Now the logic changes slightly. It is still true that the functions in the
kernel of A constitute the bulk degrees of freedom. Now the line degrees of freedom are
strongly constrained by the smoothness condition. Out of the functions in the image of
A, only those that belong to ker Csp(3) survive. The other vanish identically in the whole
plane as they are the evolution of vanishing initial data. Then, as before, we can use the

(7.55)

equations in the image of B to evolve the line degrees of freedom starting from the point
z = z = 1/2. Whether or not these point degrees of freedom will survive depends on
the crossing equations.

In this work, we will adopt the second method, namely the one that evolves from the
line z = z. The solution of (7.54) may be expressed as a power series in the time variable
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t. We define
Ap=Y AWy, By=Y BWr,  ci=Y clr, (7.56a)
n=0 n=0 n=0
fitky) =Y ). (7.56b)
n=0

At order t"~1 we have the following ordinary differential equation in y

n—1
(nA(o) +C(0)> -f(”)(x) - _ Z (kA(n—k) + B(ﬂ—k—l)ay +C(ﬂ—k)) -f(k)(x). (7.57)
k=0

If fl.(”) is not in the kernel of A + C(©) then we can recursively determine it from the

Taylor coefficients of lower order fl-(k), k < n. We thus study the rank of the following
matrix
E, :=nA® +CO, (7.58)

as n varies. It turns out that for all n bigger than zero rk E, = 15, while rk Ey = 14. This
means that we can determine all functions in terms of seven bulk degrees of freedom
and possibly a line degree of freedom. To complete the analysis we need to check if
some other conditions apply to the line function. Indeed one can define a matrix N such
that N - A = 0. After multiplying by N on the left we obtain the system

(N-Bo,+N-C) f; =0. (7.59)

It is possible to choose the function on the line such that N - B is nonzero when restricted
to it. Therefore we can integrate the above equation and end up with just one integration
constant. So, to summarize, we have seven bulk degrees of freedom and one point
degree of freedom.

We now make a uniform choice of all the bulk functions and the point function. The
former are defined by taking the structures T that have the following property: for every
i=1,2,3,4,atleast g; or §; is equal to +1/2 and the total charge | _; g;| = | _; §i| is even.
This choice is inspired by studying the kernel of the evolution operator A in the time
t = 2.8 The bulk structures are all parity even. The point degree of freedom instead is
parity odd. We have three structures to choose from, one of them is not in the kernel of
Eo, so we can choose any of the other two. To summarize, in terms of the basis defined
in (D.11), we have

Bulkd.of:  fi(ty), ie€{1,3,4,5910,11},

(7.60)
Point d.o.f: f15(0,0) .

81t is not obvious that a basis that works for a certain choice of time t will be suitable for other choices
too. In this case, it happens to work.
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We note that all these functions are even under z < Z.

As a final check we expanded all quantities in both t and y, in a similar fashion as (7.56)

A
fly)= Y ey, et (7.61)

n,m=0

Then we plugged this expansion in the conservation equation (7.54) and we imposed
the regularity conditions discussed in Subsection 7.2.2. We find that the system obtained
by combining all these equations has full rank when restricted to the choice of degrees
of freedom shown in (7.60). This means that they are truly unconstrained and they
can be used to determine all other functions. Moreover, we observe that the regularity
constraints do not add anything on top of conservation.

7.3 Conformal blocks

7.3.1 Decomposition into conformal blocks

By using the OPE (7.4) we can express the four-point function (7.2) as a sum over the
exchanged primary operators. In this way we can express the functions f; defined in
Section 7.2 in terms of the CFT data. In what follows we discuss this decomposition in
details.

We apply the OPE (7.4) to the first two and the last two operators. As a result, each
function f; may be expanded in conformal blocks in the same way as in (6.5). Namely

we have
_ B s b _
fi(z,2) = EZ; l; /\I]O(AI,Z)AO/gZ,€)]] Gi,A,(é,Z) (z,2). (7.62)

Notice that the blocks are not automatically 713714 Or 71147T23—symmetric. Since the
conformal block GZ’K D)
it automatically inherits their properties. Also, since all the structures are conserved, the
topology of blocks is simple (all the blocks are disconnected) and thus there is no “fake

primary effect” in this case. See Section 5 of [82].

is built out of the conserved and 715, 7134—symmetric structures,

The conformal blocks follow the normalization of two-point functions discussed previ-
ously. Namely for most operators we use (7.9) and for the conserved currents | and the
stress tensor T we use (7.11) instead. As a consequence, the associated conformal blocks
that we compute should be rescaled as’

1
Gy

1
G’ — =G, Gff — —Gf’. (7.63)
Cr

9Notice that the OPE functions C get rescaled as well but in an opposite way to two-point functions. See
footnote 3.
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Following the discussion surrounding (6.17), we will also define the matrices

Py =3 A A (7.64)

(D" Lo’
g oL ol
A

to allow for possible degeneracies in the spectrum. According to the discussion in
Section 7.1, the operators contributing to J| OPE come in five different families. Thus
there are also five families of matrices P:

p Z?(u,)r Paes2ey Paqeer2)r Pagerary, Paeera)- (7.65)

The first matrix in (7.65)is2 x 2for £ > 2 evenand 1 x 1 for / = 0and ¢ > 1 odd. The
rest are the 1 x 1 matrices or simply real non-negative numbers. The very last matrix is
non-vanishing only for £ even. Due to (7.22) we have the following relations

Pa,0,012) = Paes2,0)/ Pp,0,0+4) = Pao44,0) -

There is a corresponding relation between the non traceless symmetric partial waves'”

which reads
Wi, (t,042)(Xi) = 137024 W (142,0) (Xi) , (7.66a)
Wa,(0,044)(Xi) = 137024 W (114,0) (Xi) - (7.66b)
One can then define 7r137mp4—symmetric blocks as
W (0 (i) = Wa (r42,0) (Xi) + T137T2aWa (042,0) (Xi) 5 (7.67a)
Wg,l&?:fig) (Xl‘) = WA,(Z+4,€) (Xi) + 7T137T24WA,(5+4,K) (Xl‘) . (767b)
Using these and the relations (7.66) one can rewrite (7.62) in the following way
filz,2) =) tr (PA,W) Gin0,0)(2, Z))
ot - (7.68)
TT13 7T = -
+ Paer2n) NGy (z,2) + }_ Pa(era0) Gin(tr40) (z.2),
A a4

where Gfi&ﬁp/ () are obtained by expanding in the basis of four point tensor structures

the partial waves in (7.67).
7.3.2 Computation of the conformal blocks

We are now ready to write down the conformal blocks. We will follow the strategy
described in Section 6.4. Namely we will provide explicitly the differential operators

10Recall the relation between a partial wave and a conformal block (6.50).
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that must be applied on the seed partial waves. The latter have been already computed
for p up to four, as we reviewed in Subsection 6.4.3.

We allow ourselves to make a small abuse of notation in order to improve readability. The
differential operators D;; = {I i, Djj, 51‘]‘/ dij, d_l-j, Vij} change the conformal dimensions
at the points on which they act. This is summarized in equation (6.60). In what follows,
whenever we write one of those differential operators, we imagine to compose it with
a suitable shift in the conformal dimensions so that their action on the seed leaves the
dimensions invariant. In the notation of [91] that means that we rename

Z being the formal dimension shifting operator.

Exchanged operators with p = 0 When the exchanged operator is symmetric traceless
we can write the left and right three-point structures as

ab )
tV1VZO Z Np—o Du p=0 t¢¢0 o (xi), (7.70a)
to(ll V Vi Xl Z N/llbo D34 p= 0 }9(/04)4)()( ), (770b)
where we abbreviated the scalar operator (9( by ¢. The differential operators Dl( )p
are given by
D(l) . (x ) 1/2][z]H]z D(4) L Dﬁ
ij,p=0 " \7ij ij,p=0 — Yijtjis
@ . 5 .7
Dl]rP o = DijDiji., Dij,p:O = DjjDj;, (7.71)
D = = D;;D;i D©® . (dd;; — dsdj) DijD;;
ij, p= 0 ji s ij, p=0 ° ji%ij ji tij ij ji -

The matrices N ab and N, /b are given in Appendix D.1. Using these definition we can
write the final expression for the p = 0 conformal blocks of conserved currents'!

N 6 .
ngj(/%)(xi) = bzd: Mg, N/bd0D§2)p 0 1(34);7 Owse( )( ) (7.72)
ab,c,d=1

where W**¢d is the partial wave of a symmetric traceless exchange in the four-point
function of four scalars, defined in (6.54).

n the p = 0 case we do not need to distinguish between primal or dual seed conformal blocks.
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Exchanged operators with p = 2 For p = 2 operators we can write the left and right
three-point structures as

) — ab left (b) ‘
tV v O(5+2 ) (Xl) - }; N =2 Dlz p= ) t(PF( [+2 0) (XZ) , (7.73a)
b ht
t‘é)(Az,Hz)VSW (xi) = Z N/ﬂ ” Dglfp (2) o([ 42 )(xi) , (7.73b)

b=1

where we defined the scalar ¢ as before and F?) as O§2,0) and F®? as its conjugate. The
left differential operators are defined as

left (1) ,__ left (3) . -
Dl] p=2" vﬂ DJZ dﬂ D,], Dij,p:Z = Vji Dij ji Dji/ -
left (2) _ left (4) ~ o o~ (7.74)
Dz‘j,p: V], D]zd]z D1]; Dij,p:Z = VjiDzjd]’iDﬂ
The right differential operators are given by this simple substitution
DY) = i) . (7.75)

ij,p=2 ij,p=21V;—=V;

The matrices Ny o  and N, 'ab are defined in Appendix D.1. Now we can write the final
expression for the p=2 conformal partial waves

4
left ht
Wi (xi) = 3, Mj,M;,NyS, NMo DYy ;56:)2 D3, i Wi, (xi).  (7.76)
a,b,c,d=1

Exchanged operators with p =4 The last case we need to consider is that of p = 4.
The left and right three-point structures read

left
tb‘z/]VZO(Azﬂ,z)(Xz‘) = Np—4 D1ez p= 4t¢ ( )O(A€+4/,)(Xi) ’ (7.77a)

a N right 1 )
tO/g(/[+4)V3V4 (Xz) = Np =4 D34 p=4 O(”+4)¢F( )(Xz) ’ (7-77b)

where again F*) is a shorthand for O§€+4,12) and F) is its conjugate. The left and right
differential operators are defined as

Dllezftp 4 v]lv]lD]Zd]ld]lDl]/
D", = ViV Djid;id;: D 779
12, p= 4°

The coefficient N,—4 is given in Appendix D.1. As a result the the final expression for
the p = 4 conformal partial wave reads

ht
Wa (40 (%) = (Np=a)? DI, s DEE WG4 ) (i) (7.79)
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7.4 Supersymmetric three-point functions

Now it is time to introduce supersymmetry in our setup. In principle we should
distinguish two cases: one where the superconformal primary itself contributes to the
three-point function, and one where only its superdescendants do. For example, since
the operator ] is real, one has contributions of superprimaries with vanishing R-charge.
But in principle one can expect that a superprimary with R-charge 1 can appear at
order Q. We will now argue that the latter situation never happens. More precisely:
all three-point functions in superspace that consist of only nilpotent structures do not
have a non zero solution to the conservation equations (2.13a). For this reason, in what
follows all operators O will have vanishing R-charge.

In order to obtain this result we need to count the 7r15-symmetric and conserved super-
symmetric tensor structures by means of the conformal frame formula introduced in
Section 2.3. We will find that the number of conserved structures vanishes when the
R-charge is not zero, and furthermore we will derive (7.91).

7.4.1 Counting superconformal three-point functions

In Section 2.3 we have derived a formula to count the number of independent tensor
structures in superspace for a triplet of superconformal primaries. The formula special-
ized to the case of four dimensions can be found in (2.48). However, as we remarked
previously, the formula (2.48) does not account for the kinematic constraints of 71,
permutation and conservation. We address now this issue.

The constraints we need to impose are (see (3.8) for the definition of D, Dg)

(DgJ(z1) J(22) O(AM) (z3)) =0, (7.80a)

(D)(21) J(22) 0§ (25)) = 0. (7.80b)

These conditions are not independent. First we can observe that taking the derivative
DQ at the second point of (7.80a) and the derivative D at the second point of (7.80b)
give the same result, modulo permuting the first two operators,

(DgJ(21) D5](22) 0\ (z3)) = n12(Dg)(z1) D) (22) 0" (z3)). (7.81)

Moreover, by taking D of (7.80a) and permuting points z; and z> we obtain identically
zero. The same holds if we take DQ of (7.80b). The prescription to count the number of
conserved tensor structures [93] is to take the number of non-conserved tensor structures,
subtract all degrees of freedom contained in the equations (7.80) and add back all linear
relations between such equations. The complication with supersymmetry is that a
superspace equation decomposes into a certain number of ordinary bosonic equations
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by projecting on the various terms in (2.46). This depends on the R-charge of O. Let
us start assuming that O is real. The conservation conditions impose a number of
constraints equal to the number of tensor structures present in (7.80). This number is
given by!?

ng(D], ], 0) 4+ ngg: (D], ], 0) +ne(DJ], ], 0) + ngg(DJ, ], O). (7.83)

Even though ng = ng.g, etc., we keep them distinct to track down the various contribu-
tions. As anticipated, however, not all the tensor structures in (7.80) give a non trivial
constraint. This is a consequence of the fact that the three-point functions D(7.80a) and
DQ(7.80b) are made of identical operators. To take this into account one must subtract
from (7.83) the numbers

ng(DJ,DJ,0), (7.84a)
ne2(DJ,DJ,0). (7.84b)

Similarly, given the relation D5(7.80a) ~ D(7.80b), we should naively subtract from
(7.83) the number

n1(D], D], 0) +ngg(D], D], 0) + ngeg: (D], D], O) . (7.85)

However, the above expression would give rise to an over-counting: the conditions
given by ngg:(DJ, D], ©O) and by n1(D], D], O) are dependent. Indeed, by using a

13 one can show that the terms ©2©?2

suitable representation of the differential operators,
cannot be generated by applying Dg and D on (J]O). Consistently with Section 7.1,
we denote with a hat the number of structures after the kinematic constraints have been

applied. The correct counting is

f\1(]/]/(9/0) = n(]/]/O/O) _n(D]’]/O/]‘) _H(EIII/O/ _l)
+n(DJ,D]J,0;2) +n(DJ, D], 0; -2) (7.86)
+n1(DJ,DJ,0) 4+ ngg(DJ,DJ, 0),

where we added an extra argument to n, namely n(010,03;6), in order to emphasize
the value of the R—c:harges.14 In addition, since the currents | are identical, we need to
take into account the permutation symmetry as we explained in the previous section
by replacing the product p; ® pa by either S?p; or A%p;. There is a subtlety in the
(anti)symmetrization of two DJ’s or two D]’s: these operators get an extra minus due

12We denote the various representations in 72y (.. .) in the following way:

J=(1,1), DJ=(0,1), DJ=(1,0), O=((,7). (7.82)

13Gee Appendix A.3.2, specifically equation (A.32a).
141f ©; has R-charge 7; then 6 = r{ + 15 + 3.
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Chapter 7. Conformal blocks

to their fermionic nature. Thus for £ even (odd) we must take the S? (A?) product in
n(DJ,DJ,O; —2) and n(D], D], ©;2). Explicitly, for ¢ large enough, this formula yields

(e, e — 2, a(0,0) (¢ Z 2,
ﬁ(€+2,£)(feven) =1, ﬁ(£+2,€)(€0dd) -2, (7.87)
ﬁ<€_|_4,g)(€even) =1, ﬁ(£+4,€>(!{odd) —1,

where, as before, i(/, /) is a shorthand for @(J, J, oD, 0). This result, and the special
cases for smaller values of ¢, are summarized in (7.91).

We can similarly obtain the respective formulas when O has non-zero R-charge. Without
loss of generality we take the R-charge to be negative.!® Skipping the details of the
derivation we show the answer for R = —1,

ﬁ(],],o;—l) = n(],],o,‘l) _n(lj]/]/O; _2> - Tl1<D],],O)

_ (7.88)
- n@@(D]/]I O) +7’l@(D],D],O) —I—]’l@(D],Dl,O),

and for R = -2,

i(J,],0;-2) =n(],],0;-2) —ng(DJ],],0) +n1(D],D],0). (7.89)

In all cases with non-zero R-charge (7.88) and (7.89) yield non-positive results. Therefore
we conclude that there are no structures allowed after conservation, as mentioned at
the beginning of the section. We can thus proceed with the analysis considering only
operators with R = 0 that are superconformal primaries.

7.4.2 Generalities

We start by defining a list of supersymmetric tensor structures for the correlators under
consideration

n(4,0)
V- L (a) A _
to]g"%(z' o) = agi Cmorn, Eoun (Zoin 1)) (7.90)

The number of independent OPE coefficients in superspace n(/, £) is significantly bigger
than its non-supersymmetric analog 1 (¥, ! ). However, as we have seen in the previous
subsection, after applying the constraints of conservation and 711, permutation symmetry,
the number of independent structures is greatly reduced. Let us summarize the number

15The other case can be obtained by complex conjugation. In order to prove the same formula for R = 1
we would need a representation of the differential operators where D — 9/0@", namely (A.32b).
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7.4. Supersymmetric three-point functions

of conserved structures for each representation

2 ¢ >2even 1 ¢>2even
2 £>3o0dd 2 ¢>3o0dd
A(l,0)=<1 (=0 A(l+2,0) = . ;1 Al +4,0)=1,
2 f=1land A =3 0 /=0
1 /=1and A #3

(7.91)
By comparing with the non-supersymmetric result we see that the only cases where
i >narefor?/ = ¢ >30dd, for? = ¢+2 > 3 o0dd, for ! = ¢+ 4 odd and for
¢ =1,A = 3. The latter corresponds to the third operator being the Ferrara-Zumino
multiplet itself. The additional structures that appear in those cases are called nilpotent
because they are proportional to the Grassmann variables ®, ®. We choose a basis of
conserved supersymmetric tensor structures in such a way that the solution to

(J(2)](22) 08" (23)) .50 = I (x1) ] (x2) 08 (x3)) , (7.92)
is simply given by

e o=c® =1,...,7(67). 7.93

mol = ety aet) 799

Namely we chose the first 71(¢, £) structures to be non nilpotent and to have coefficients

exactly equal to the non-supersymmetric ones. There will be some exception to this
choice that we will emphasize later.

Since we want to construct the superconformal blocks, we will also need the other per-
mutation of the three-point function. Namely tglvz. This is not entirely straightforward
because Kp, 0, is not invariant under cyclic permutations. This problem is addressed in
Appendix B.1. We will keep adopting the convention that the coefficients multiplying
the permuted three-point structures are related to the original ones by

(@) —c@

Clotm = Curogny 759
We will now report the explicit expressions for the non-conserved tensor structures
thZ(Z, 1:,7:)® when O has spin (£ + p,£). In what follows we assume a generic
value of the dimension A. The basis of conserved structures will not be explicitly
reported here because the results are a bit too unwieldy. However we will give enough
information to make our conventions unambiguous. For the cases where fi = 7 the
choice of basis is entirely fixed by (7.93). For the other cases we will write down only the
necessary information that completely fixes the nilpotent contributions. The permutation
symmetric and conserved basis is denoted as fg (Z,1;, 7).
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Chapter 7. Conformal blocks

In order to make the expressions more compact, we use the following shorthand

T. 1:UTj; I _ 7,U® ~ OU7; I _ oUe
ij — al -’ i® — \LI|3/2' 0] — |U\3/2' 00 — 2 7’
70 o )
Kij = ninj, Kie = \Ul|1/2 , Kij = 7i1;, Ko = |U11/2 ,
020?
With these definitions, we can now list the tensor structures for all values of p. We use
the shorthand C, = C <(‘L2 1,0) for the coefficients of the structure before conservation and

permutation symmetry and C, = CA&) ) for the coefficients after such constraints have
been imposed (the operator O to which it refers will be clear from the context).

7.4.3 Basisforp =0

The basis for p = 0 reads

tV1 Vz (

olLh Z,1i,7i) =

us-o ((Cl 4+ Cor &) T o3 T (T33) 1 + (Co 4 Cos &) Ty Ton Ty (I33)' !

+ (C3+ C9 &) T13 T3 51 T2 (Z33)" % + (Ca+ C20 &) Tuo T3 Iy (Taz) "
+(C5+C31 &) T3 T T2 (T33) ' + (Co + C32 ) Tho T (T3)"

+Cr In T Too (Is3) ' Tog + Cs T3 Ioo Io1 (I33) '~ I

+Co T3 T3 Is1 T2 (Z33) T + Cro T2 T3 To1 (Z33) ' T
+CnTi3In T (Zas) ' o + Cra T T (Zs3) Zos

+ C13 K3 K15 Z13Zo3 Ta2 (Zs3) " 2 + C1a Ko Ko Z13 Loz Ta1 (Zs3) ' 2

+ C15 Kao Kog Z13 To1 (Z3) ™ + C16 Kso K15 Z12 Zos (Zaz)

+ C17 Kyg K10 Za3 Za1 Zs2 (Z33) ' 2 + Ci1s Ky Koo Z13 Zs1 Iaz (Zs3)' 2

+ C19 K5 Koo T12Za1 (Zs3) ™" + Cao Ky K10 Zo1 Za2 (Za3)

+ Co1 K30 K35 11 Tos In2 (Z33) % + Cop Kso Kag Z13 T2 To1 (Za3) 2

+ Co3 K30 Kag Z13 Tos Ta1 Ts2 (Z33) ' 2 + Cas Ko Kag Z12 T3 Ta1 (Zaz)' 2

+ Co5 Ko K35 Z13 Zo1 Zs2 (Z33)' 2 + Cas Ko Kag Z12 I (133)El> : (7.95)

If £ > 2 and is even, conservation and permutation symmetry reduces the number of
independent coefficients to two. The nilpotent structures are thus uniquely determined
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7.4. Supersymmetric three-point functions

from the non-nilpotent ones, which are in turn fixed by (7.93). Similarly, if £ = 0 or 1 the
coefficients are reduced down to a single one, whose definition is again fixed by (7.93).

By contrast, if / > 3 and is odd we get two independent coefficients after conservation
and permutation. We define C; to be the non-nilpotent one. Then C; is defined such that

(A+0)(A—L—6)
5A%Z —20A — 302 — 6{ + 24

Cs = <(A—E—2)51+(A_€_4>52> . (7.96)

4(A —2)
All other coefficients can be obtained as a consequence.

The case / = 1 and A = 3 is special as it does not follow the pattern for A # 3.
Furthermore it corresponds to the case where the operator at the third point is | itself.
This case was already analyzed long ago in [115]. Since the first superdescendant is the
stress tensor, it is convenient to define the conserved coefficients in the same way as the
non-supersymmetric ones for the stress tensor. Thus we define

R T 7
Note that this is in contrast with the general rule stated in (7.93), which says that the non-
nilpotent structures have the same coefficient as the lowest component of the multiplet.
For the reader’s convenience, here is the relation between the non-nilpotent coefficient
and the three-point function of |

AW =160, + 8. (7.98)

1
{110
If we make further use of supersymmetry we can relate these two coefficients with the
OPE coefficients of (TTT). In particular, we can express them in terms of the anomaly
coefficients 4 and c. The relation between C, and 4, ¢ reads

2(2a —3c) o> 2(2a+3c)

Ci=- 96’ C2=- 9716

(7.99)
This result can be obtained using [115, Eq. (11.7)], or, equivalently, following [140, Ap-
pendix C] and using the relation between C; and Cr stemming from supersymme-
try (7.12). After using (7.33) we could also express the c anomaly in terms of Cr, namely

!
T 40
The Hofman-Maldacena bounds [136] restrict the ratio of 4 and ¢ in any N' = 1 SCFT to
lie between the following values

c Cr. (7.100)

(7.101)

N[ =
N
ol
N
N W
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7.4.4 Basis forp =2

For p = 2 we choose the following basis

\40% ~
tol((iz,/) (Z,mi, 1) =
A

us-® ((Cl +Ca0 &) To3 Ts1 T3o K13 (T3) "t

+(Co+Cn &) Ti3Ta1 T2 Ko (T33) ' + (C3 + Co2 &) Tuo 31 Koz (Zss)'

+ (Ca+C38) T T2 K13 (Zs3) ' + C5 T3 Ts1 Tso K3 g (Zaa) ' !

+C6 T13T51 I K3 T (I33) ! + C7 T1o a1 (Ta3) T Kos

+ Cs In1 I52 K13 T (Z33)" + Co Kao Zpg Z11 Za2 (Z33)"

+ C10 Kso L5 22 Ta1 (Zs3)' + Cr1 Kso T, Z23 T1 Zao (Za3)

+ C12 K30 Zyg T12Za1 (Z33)" + C13 Kso Zyg Zo1 Iz (Zs3)"

+ C14 K30 Zyg T2 To1 (Zs3)" + Ci5 Kag K1o Za1 Loz Koz (Zs3)

+ C16 Ko Kag Zos Ta1 T2 K13 (Zs3) " 2 + C17 Ko Kag Z13 Za1 L2 Koz (Zsz) ' 2

+ C15 K30 K35 Z12Z51 K23 (Z33) ™1 + Cr9 Ko Kag Zo1 32 K13 (133)5—1> . (7.102)

When ¢ is even or / = 1 we have the same number of structures as the non-supersymmetric
case after conservation and permutation. Therefore the coefficients are fixed by (7.93) as
before. The case ¢ = 0 in particular is trivial because the three-point function is simply
vanishing.

The case of odd spin with ¢ > 3, on the other hand, contains one nilpotent coefficient,
which we define to be C, as before. Its definition is can be inferred from

4i0(0+2)(2A — 2 =200 + 150+ 16) 5  4i ~

300+ 4)(0+5) Cl-3(A--4)C. (7.103)

Ci6 =

This choice of C, ensures that the correlator is conserved at the third point when the
superprimary hits the unitarity bound A = ¢ 4 4.

7.4.5 Basis forp =4

Finally, the basis for p = 4 is given by
tzlgé/ix,e) (Z,1i, 7i) =

uh-* <(Cl +Cs &) 31 T2 K13 K3 (Z33)*
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7.4. Supersymmetric three-point functions

+Ca T3 I K13 Kas T (Zs3)" + Cs Ko Log Za1 Za2 K13 (Zs3)*
+Cs K3 Z,5Zs1 L2 Koz (Is3)" + Cs Ko Zag Z12 Za1 Koz (Zs3)"

+ C¢ K30 1—3@ InIs ]C13 (Ts3)" +C7 K30 /63@ I I K13 K03 (1.33)[_1> . (7.104)

Here after conservation and permutation we end up with just one coefficient for every
{. The non-supersymmetric case for £ even also has one coefficient, however C; is not
defined by (7.93). We added a factor to enforce the conservation at the third point when
the superprimary hits the unitarity bound A = ¢ + 6. The definition of 51 is

AWO iy = (A= —6) Cr. (7.105)
If instead ¢ is odd we define C; by
Ca=i(A—1—6)C, (7.106)

while all other coefficients follow by imposing permutation symmetry and conservation.

7.4.6 Applying the differential operators

As we discussed in the previous subsection, we will only consider superprimaries with
vanishing R-charge. This means that the only differential operators needed are Dy
for k = k.

Let us start with the three-point functions t?] since those are the ones where the operators
D and D act simply. Given a product of supercharges (Q*QF0)* with k = 0,1,2 and
s,t = %, one has the following shifts in the quantum numbers

AN =A+k, 0 ="0+s, ' =10+t. (7.107)

With this notation in mind, we want to solve the linear equation given by

AO(Z_ ae e /)] )
ngék IA (Z i, i) |®® 0~ Z gksﬂ (Xzﬂi,m)(”). (7.108)

As for the other ordering, namely (JJO), we can again use the results of Appendix B.1.
We do not need to recompute the derivatives. It suffices to use the one-to-one mapping
that relates a structure fg (Z,1:,7:)@ to a sum of f?] (Z,1:,7:)?). We then use the

k,st,|b

coefficients £, computed before, and obtain the wanted result by using the inverse
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map from f?] to /). Allin all this results in

a,r)
k,s,
D;tQka }C]It & (Z,mi,1:) ‘@@ 0o =Ky Z ]: zt) tH M' (X, 771/’71)( ), (7.109)

where the subscript “3” in D signifies that the derivative acts on the third point. The

products of coefficients F b tlaé’gs’t'b

nations that make up the superconformal blocks. We will see this in the next subsection.

are precisely those that appear in the linear combi-

7.5 Superconformal blocks

Before writing the conformal blocks we need to properly normalize the superdescen-
dants. The differential operators Dy are defined so that (QFQFO) is normalized as
in [156]. Namely we have

7\l 7 \?
k Ak 7 k Ak _ - — (nxaa72) " (12%9171)
((Q*Q*0) (x)(Q Q" O) (x2)) = i " m i) VST (7.110)
where 1151 is given in Table 3.2. As a first step, the four-point function of four J’s can
be expanded in a basis of tensor structures as before

nyy
(J(xa)J (x2)] (x3 =) ZjT X1, Xa) Gip o) (2, 2) - (7.111)

ol i=

The first sum runs over only the superconformal primaries and the function g » () is
defined as

1 ) k, k,s,t|b _
i) Z Y, FUrest Gl (), (7.112)
12 ngrgroyt oo O OX '

where the primes on A, £ and ? refer to the notation introduced in (7.107) and the func-
tions G”b Al E)(
ous sectlons The quantities Fp and £p are linear combinations of the supersymmetric
OPE coefficients. We can therefore obtain the final results, namely the superconformal
blocks Ql.”le h (z,2), as follows

z,Z) are the non-supersymmetric conformal blocks computed in the previ-

Ginn(zz) =Y C° @ 20 5 g (7). (7.113)

Note that now the sum over a and b runs from 1 to (¢, 7). The relation between the
superconformal blocks and the ordinary conformal blocks can be summarized in a
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rectangular matrix S defined by

nl

Gl (22) = St e (8,0,7) G (7.114)

(ol
ZA’ ([/,Z/) 7
k=0,1,2 ¢c,d=1
s,t=+

where, again, the primes refer to (7.107). In Appendix D.3 we report the nonzero entries
of S;js ed for all cases with ¢ > /. Naturally, the coefficients are symmetric in 4, b and
c,d. We will thus avoid listing the repeated entries.

The block of the Ferrara-Zumino multiplet itself is special because it is a short multiplet.
We can write here its expression since it is very simple compared to the others. It only
contains two blocks: the R-current and the stress tensor.!® Due to the choice made
in (7.97) of parametrizing the OPE coefficients as AE‘;}D and due to the relation between
the normalizations of | and T (7.12), we expect the block of T to simply appear with an
overall factor of 1/5. Indeed this is the result

_ 1 _
Gisa1)(22) =256 Gi311)(2,2) + £ Gl o) (2,2),
_ 1 _ _
Gi3 1) (22) =128G3 1 4y(2,2) + 0 (Gil,i,(z,z) (2.2) + Gy ) (z,z)) ,  (7.115)

1 _
giz,g,(L( )—64(311%(11)( )+5Gz4(22)( z,z).

In terms of the S matrix defined above, we have

11
SO|11 — 256, 80‘11 — 128, 80‘11 —
" s 1 (7.116)
81 A1 T 251,+,+|12 = 51,+,+\22 5

16Naturally the supersymmetry currents are not exchanged in this four-point function given that they
have spin (1,2) and (2,1).
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Numerical studies

In this chapter we present the crossing equations and propose possible directions for the
numerical studies. The actual numerical investigations and the subsequent discussions
will be left to the forthcoming Paper IV.

8.1 Crossing equations

As discussed in Subsection 7.2.3, we have in total 7 bulk degrees of freedom and poten-
tially one point degree of freedom. For convenience we will repeat them here

Bulk:  fi(z,2), i€{1,34,5910,11},

@®.1)
Point: f15(%,%).

The crossing conditions may be obtained by acting with the permutation 7113 on the
four-point tensor structures T; defined in (D.11). The equation for fi5 is odd, so the
solution is fi5(z,z) = 0 identically. This is because the crossing equations require that it
vanishesonz =z = % while conservation implies that it vanishes everywhere. For the
other functions we have

fi(z,2) = A(1—2,1—-2),
fa(z,2) = fs(1—2,1—2),
fa(z,2) = fa(l—2,1-2), (8.2)
fo(z,2) = f1u1(1—2z,1-2),

fio(z,2) = fio(1—2z,1—2).
We would like to discuss the fate of the function f;s5. If one were to redo the analysis of
the four-point correlator by assuming P parity from the start, then fi5 would have been
set to zero automatically. All the other bulk functions instead would have survived as
they are parity even. Therefore it seems that this setup wants to be parity preserving,
even if we do not require it. The explanation lies in the three-point function analysis.
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The reader can notice that the conservation matrices My, are such that parity odd
structures are coupled with parity odd ones, while parity even structures are coupled
with parity even ones.! This results in the exchanged partial waves to be effectively
parity preserving, even though that is just the result of conservation at the level of
three-point functions.

This incidentally leads to a curious puzzle: at the level of four-point functions, conserva-
tion alone is not sufficient to set to zero the parity odd functions fi5 — the assumption of
crossing is needed. However the previous argument about three-point functions implies
that all conformal blocks are parity even and therefore none of them can contribute to
fis. Therefore fi5 is a function which is perfectly consistent with conservation and yet
cannot be expanded in conformal blocks. This is not a paradox because all theories
satisfy crossing anyway, although it is an interesting fact. A possible explanation is
that fi5 can be expanded in a basis of sporadic solutions to the Casimir equation that
do not correspond to any physical operator being exchanged. We leave a more careful
treatment of this issue to future studies.

The equations (8.2) can be expanded in conformal blocks with (7.68) and they can be
studied with the numerical techniques discussed in Section 6.2. The assumption of
supersymmetry modifies the problem minimally: instead of using the blocks Gg% one
has to use the superconformal blocks QZZ in (7.114). In addition, the unitarity bounds
for operators with /¢ = 0 are different (cfr. (2.6) and (1.7) where j,7are ¢, 7).

8.2 Possible directions

The goal of this bootstrap study is twofold. On one hand we want to explore the space
of solutions to crossing in the hope of gaining evidence for a new CFT — so far, in four
dimensions, we have not observed any island, so finding one would be a remarkable
achievement. On the other hand we also want to focus on some specific theories. In
particular, we want to direct our attention to the putative theory at the kink in the N =1
setup, called minimal SCFT [25, 26].

We can certainly draw inspiration from a previous study that considered a similar setup
in three dimensions [84] and also from the three-dimensional stress tensor bootstrap [83].
An important result of [84] was that, without any assumptions other than the U(1)
global symmetry, it is possible to show numerically that the dimensions of the first parity
odd scalar and the first parity even scalar must lie within a bounded two-dimensional
region. This is a completely general result. It would be nice to see whether even in four
dimensions one can obtain a similar bound. In our setup we do not have parity odd

ISince for p > 0 parity does not map an operator to itself, the corresponding three-point structures
have no notion of intrinsic parity. Therefore the parity invariance of the p > 0 partial waves is simply a
consequence of the permutation symmetry of the four point-function.
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scalars, thus the situation is not exactly the same. We could still try to use another pair of
representations. Other than the scalar one has spin (3,1)? and spin (4, 0) as candidates.

Alternatively one could consider the dimensions of the lightest scalar and the lightest
spin two operator after the stress tensor. The situation would be identical to the one in
the plot already made in [84] since also here we can parametrize )\%[)T with the central
charge and an extra free parameter -y (see Subsection 7.1.3). Furthermore, one can make
a supersymmetric version of this plot in two different ways: one would be to look at
the first vector after the Ferrara-Zumino multiplet, the other would be to look at the
first spin two superprimary.®> Looking for bounds on the second operator in a given

representation has been proven useful in recent studies [58].

The bounds on the central charge have been studied extensively in [84]. The central
charge Cr can be thought of as a measure of the number of degrees of freedom of a
theory. If we are looking at, for instance, a gauge theory of a group G = SU(N) with
N very large, the central charge will scale with N2. Similarly, a flavor group of large
rank will also make the central charge grow. As a consequence, a CFT with Cr smaller
than the free theory value is normally expected to have the smallest possible amount
of symmetry. In this case it would be the U(1) that we have built in. Observing that
the lower bound on Cr stays below its free theory value might be an indication of
some minimal CFT without any gauge or flavor symmetry (other than U(1)). This
would be a very exciting discovery as it would defy the paradigm of the CBZ fixed
points [16,17], which are the only candidates for a non-supersymmetric four dimensional
CFT known so far. Another motivation for studying lower bounds on Cr is to compare
it with the known Hofman-Maldacena bounds [136]. The expected result, at infinitely
high numerical accuracy, is a bound that goes to the free theory value at the edges of
the allowed window of the Hofman-Maldacena bounds, and to infinity outside of the
window. This is because theories that do not satisfy those bounds cannot have a stress
tensor (due to the ANEC) and the theories at the edges have been proven to be free.
Obtaining a plot close to the expected result will give us confidence that the numerical
power of this setup is sufficiently high. Concretely, the lower bound on the central
charge can be obtained by normalizing to one the functional acting on the block of
the stress tensor and maximizing the functional acting on the identity operator. More

2Recall that, from (7.27), the operators of spin (2,0) decouple as a consequence of conservation at the
level of three-point functions.
3In interacting V' = 1 SCFTs the lightest multiplet in the spin two sector cannot be protected because it

contains higher spin currents [14]. Furthermore, the amount of OPE coefficients of Aj;; and A 1702 is the
A

same (i.e. 2).
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precisely, using the notation of Section 6.2, we need to impose

a[& Ao Vi) Auea] =1
aV,] 0 # (4,(2,2)), (8.3)

a[Vi]

Y

0,
B,

and maximize B. At first is may sound confusing that the result of maximizing the
OPE coefficient Ajjr gives us a bound on Cr even if Cr does not appear in (7.34). The
explanation lies on our normalization of the operators | and T. In particular, the identity
operator and the block of T will contribute to the crossing equations as

1 4

Al

) 3()
crum A

a b

Thus the conditions imposed in (8.3) require

CZ
2B+ L <o.
] Cr

Upper bounds on the central charge are also important, but for a more practical reason:
there are always solutions to crossing given by generalized free theories.* The operators
in a genralized free theory tend to have large gaps, and thus drive the bounds on the
scalar dimensions, potentially hiding some interesting physical theories underneath.
Assuming an upper bound on Cr has the purpose of making it finite. An infinite
central charge implies that the stress tensor has a zero two-point function, therefore it
corresponds to a non-local theory. Just like the case of three dimensions, we expect also
here the presence of generalized free theories driving the bounds. Therefore it might be
beneficial to study the effects of bounding Cr from above in order to potentially reveal
interesting features. We want to emphasize that, unlike the previous case, here we are
not searching for a bound, we are rather imposing it by hand. The way this is done in
practice is a little different from before. We have to look for functionals satisfying®

03 [Vn + ﬁ)\i (22) " Va,22) '/\4,(2,2)} =1
D‘[VP] to/ P#(4/(2/2))~

(8.5)

This isolates a stress tensor contribution in the crossing equation with coefficient

4The generalized free theory of an operator O is a nonlocal theory defined as follows: the operator
spectrum consists in all normal ordered composite operators of the form : 91 09"20 - - - 9O : and the
correlators are obtained by performing Wick contractions. The conformal dimension of O differs from the
free theory value (otherwise the theory would be just an ordinary free theory and the operators would
satisfy the equations of motion).

5For simplicity, let us consider all two-point functions to be unit normalized, so that the dependence on
Cr does not appear on the blocks but rather it appears in the OPE coefficients only.
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1/Cr — 1/CP*. Since we implicitly assume all contributions to be positive it fol-
lows that this functional will only exclude theories for which Cr < CF#.

Another interesting quantity to focus on is A;j;. It is related to a 't Hooft anomaly of
the global symmetry to which ], is associated. Such an anomaly can be diagnosed by
coupling the current to an external background gauge field. The symmetry is 't Hooft
anomalous if the partition function changes under a gauge variation the background
field. More precisely, if ], is coupled to an external gauge field A, then the partition
function Z[A] will transform as

i

A / AEA F> Z1A], (8.6)
where F = dA is the field strength. Then the "t Hooft anomaly is given by the number A.
A nonzero A represents an obstruction to gauging a global symmetry, as the partition
function is ill defined and one cannot make the field A dynamical. The symmetry is
however perfectly fine as a global symmetry and its associated Noether current satisfies
the usual conservation law and Ward identities. In our setup we have access to A thanks
to the relation

Ay
A=—7. (8.7)
cj?
In N = 1 theories the 't Hooft anomaly of the R-symmetry is particularly interesting
because it has been proven to imply also a 't Hooft anomaly for global supersymme-
try [174,175]. This means that a theory with an anomalous R-symmetry cannot be
coupled to supergravity.

Now that we have laid out some ideas for an explorative approach, let us discuss a more
targeted study: that of the minimal A/ = 1 SCFT. Such a theory, if it exists, has a chiral
primary of dimension Ay ~ 1.407 and a gap in the singlet scalar sector of approximately
AG o =32 This last feature also implies that the flavor current multiplets (scalars of
dimension 2) are excluded, therefore the only global symmetry is the R-symmetry. The
chiral multiplets are charged under U(1)gr thus ¢ will not appear in the | x | OPE.
However ¢¢ will appear, so we can try to see if there are some noticeable features
around the predicted value of Ag pe In [26] we can find estimates for the central charge
c which is very small: c/cgee ~ 8/3, where cgee = 1/24 is the central charge of a free
chiral multiplet. One thus may hope to find this theory close to the bounds on the central
charge that we discussed before. Moreover, using our setup we can find additional data,
such as the a coefficient (7.99). The knowledge of a can also be helpful for learning more
about the UV realization of the theory. This is because, due to the a-theorem [176,177],
ayy is always bigger than ajg. Therefore, if we find numerically a ~ a*, all theories
with a < a* cannot flow to the minimal SCFT in the IR under any deformation and are
therefore ruled out as microscopic realizations of the latter. Moreover, for some theories
the exact values of 2 and ¢ are known [178]. This allows us to select a specific theory and
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use the bootstrap to study its properties.

It should also be noted that the papers addressing the minimal SCFT predate the
discovery of the new “cutting surface” algorithm [57]. It is an algorithm designed to
efficiently carve out portions of OPE data. A possible strategy could be to first learn
more about the spectrum of the minimal SCFT, specifically to get an estimate on the
first vector after J. Then one could impose a safe gap after |, vary the gap on the scalar
and apply the surface cutting algorithm on the coefficients a and c. Without going too
much in the details, let us briefly mention how does the cutting surface algorithm work.
Suppose we are scanning over the values of the angles of some OPE coefficient and
searching for functionals

&o,,...00 [ﬁ(%;,,,_,en : Vp* : ﬁgl,,n,gn] =0, Vo, e RP" . (8.8)

If we do not find a functional, then the point is allowed and we stop the algorithm.
However, if we find a functional for some values of the angles 0;, then we might expect
the same functional to be good for excluding nearby values of 0; as well. The angles
excluded by the functional can be found by solving a quadratic equation. As it turns
out, most of the times this operation reduces the size of the space of angles by roughly
a half. Then the algorithm continues by choosing new values of 0; that are outside of
the region excluded so far. This is the hardest step and it involves solving a so-called
quadratically constrained quadratic program. The termination occurs when either the
whole space has been ruled out or when a set of angles does not admit a functional «.

Finally we would like to mention a possible problem that may arise in the numerics.
It goes under the name of “fake primary effect” and it was first understood in [82].
We mentioned it en-passant in Subsection 7.3.1. Due to this effect, an operator at the
unitarity bound can “simulate” another operator of lower spin. This happens because
the conformal blocks have poles at the locations of the zero norm states (in this case,
the null state that arises at unitarity), and the residue of that pole is a conformal block
itself. This is problematic because the bootstrap setup does not care about the overall
normalization, so the residue will look like any other conformal block. This in turn may
reintroduce in the spectrum operators that have been assumed to be absent by putting
gaps in the usual way. The solution is to put small gaps in all dangerous channels so that
the unitarity values are never reached. In our setup, some channels are safe from the
fake primary effect. For instance, the p = 4 operators appear only for £ even, thus there
are no blocks at spin / — 1 that can simulate a fake primary. Moreover, the symmetric
traceless operators are such that their three-point functions are automatically conserved
at unitarity. This implies that the residues are actually zero and no fake primary effect
occurs. The only problematic channel is that of p = 2. It is thus necessary to impose
some small gaps accordingly where needed. Similar phenomena could also arise at the
supersymmetric unitarity bound threshold.
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First scalar VS second spin-2 after T, (A=10,15)

p=0y
(By=2)
12
@® Free Boson
W vector GFT
10 ¢ Free Fermion
8!
6 [ ] * [ ]
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ A p=0
4 Ao

2 4 6 8

Figure 8.1. Upper bound on the second spin (2,2) operator after the stress tensor as a function
on the gap in the scalar sector.

Of course one can set goals and make proposals for various plots or specific investiga-
tions, but ultimately the numerics will guide us. We hope to be able to put into practice
all the results of this thesis in the forthcoming publication Paper IV and to obtain new
interesting results for CFTs and SCFTs in four dimensions.

8.3 Preliminary results

In this section we show some preliminary results for the non-supersymmetric case.
As we discussed in Section 6.2, the crossing equations are discretized by turning the
conformal blocks into a vector of Taylor coefficients. The number of derivatives kept is
parametrized by an integer A. More precisely, we take derivatives with respect to y and
2, defined in (7.55), around y = t = 0. Then we construct the vectors as follows

(Vl,p>1=1,...,d(A) = {( ; ?;Fp(yr t2))’y:t:0 with m < LAEHJ ;NS A}/ (8.9)
where the dimension of the vector d(A) is

(A+2)? A even,

1
d(A) =144 .
() {1(A+ 1(A+3) Aodd. (8.10)

In Figure 8.1 we show the plot of the upper bound on the second spin (2,2) operator
after the stress tensor as a function of the gap in the scalar sector. The semidefinite
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First scalar VS first spin—1 (A=15)

AP First scalar VS first {p=2,/=1} (A=15)
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(a) Upper bound on the first spin (1,1) as a function  (b) Upper bound on the first spin (3,1) as a func-
of the gap on the scalar sector tion of the gap on the scalar sector

First scalar VS first {p=4,/=0} (A=15)
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(c) Upper bound on the first spin (4,0) as a function of
the gap on the scalar sector

Figure 8.2. Upper bounds on the gap of other representations.

problem simply requires positivity on the scalar block above a certain fixed gap, on the
the stress tensor block, on the block of spin (2,2) above a certain gap and on all other
representations above unitarity. The value of the maximal gap on spin 2 is obtained by a
bisection algorithm. On the picture we also placed some known free theory values for
the conformal dimensions, which are of course in the allowed region. The remarkable
feature of this plot is that the allowed region is bounded. This means that we have
a universal upper bound on the gap of spin 0 and spin 2 which does not rely on any
assumption other than the existence of a U(1) global symmetry. The corner of the plot
might also indicate that a theory lives there, but at this value of A we have not observed
the convergence of the bounds, so that corner might in principle retract to the vector
generalized free theory point.

Similar plots can also be made for other representations. In Figure 8.2 we show the
upper bounds for the gap on the sectors of spin (1,1), (3,1)® and (4,0). In this case

®Recall that non-conserved (2,0) operators do not couple to J.
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Lower bound on Cr with some normalization (A=15)

C
0.20
0.15
0.10

0.05

32y

Figure 8.3. Lower bound on the central charge Cr as a function of the parameter -y. The scale of
Cr is on an arbitrary normalization. The vertical dashed lines indicate the Hofman-Maldacena
bound (7.35). The blue curve assumes a gap on the next spin-two operator while the yellow one
does not.

we do not require the presence of an operator at unitarity, thus, in particular, the first
plot assumes Ajj; = 0. This is not always true of course: Aj;; might be non-zero if there
is a 't Hooft anomalies for example. The plot in Figure 8.2a is particularly interesting
due to its two features. The rightmost corner is probably indicating the presence of
the vector generalized free theory. But the sudden drop around AZ:S is an interesting
feature worth exploring. At the moment we have no candidates for an explanation of
the latter. A similar drop can also be observed at a similar value of AZ:(? in Figure 8.2c.

Finally, in Figure 8.3 we show the lower bound on the central charge Cr as a function
of the parameter y defined in (7.34). The blue curve assumes a gap for the second spin
two operator — thus isolating the stress tensor — while the yellow curve does not
assume anything. The normalization of Cr is arbitrary, so the actual value of the bound
does not give us any information. It is however interesting to see that the blue grows
rapidly outside the region allowed by the Hofman-Maldacena ANEC bound (7.35).
Presumably the lower bound on Ct will go to infinity as we increase A — oo. The yellow
curve, on the other hand, does not show this behavior. The explanation is that without
assuming T, to be isolated, operators of a nearby dimension can “simulate” it, thus
invalidating the bound. The fact that we observe the ANEC bound so clearly on the plot
is a confirmation of the correctness of our setup.
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¥ Notation and conventions

A.1 Notation and conventions for four dimensions
We adopt the mostly plus signature for the metric
Suv = diag(—1,1,...,1). (A1)
The Levi-Civita tensors in two and four dimensions are defined as
12 Q0123 _

€°=—ep=1, = —¢go123 = 1. (A.2)

The Pauli matrices follow the conventions of [155]

(A.3)

with _
g — etpehp Ug 5 (A4)

The spin generators in the irreducible representations (1,0) and (0, 1) are, respectively,

8L (). 3
6;11/:5(5 _ % (&ymo_vaﬂ _ &V&aaya/}) ) (A.6)

Lorentz vectors can be written as matrices by contracting them with ¢#. Namely

=, = bt det(x) = —. (A7)
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A convenient way to deal with complicated expressions involving such matrices is to
get rid of all the indices by contracting them with bosonic polarization spinors 74, 7.
Any irreducible representation of the Lorentz group in four dimensions is given by a
tensor with j "undotted" indices and 7 "dotted" indices, separately symmetrized.! We
can therefore contract all the symmetrized indices with the same polarization without
losing any information. Thus for O € (j,7) one has

(’)(17,;7) = T ;7061 .. .,7061‘;71561 - ,71567 O(Nl'“ﬂl/),(mmﬁq) . (A.8)

If O is an operator we will often use the shorthand x to denote x, 77, 7. We use the Dynkin
label notation for the representations. This means that, for example, the vector belongs
to the representation (1,1). The spinor indices are raised and lowered with the aid of
the € tensor, namely .

Mo = €pttP,  Tla = €apiiP . (A9)
Since the polarization are taken to be bosonic, this implies that they square to zero

2= g 0, 7 =1i"=0. (A.10)
Note the convention for contracting indices: descending undotted indices and ascending
dotted ones. In principle any tensor can be recovered from its contracted form by
applying spinor derivatives 9/957" and 9/077*. These derivatives are also useful for
performing index contractions. For instance

Xy =—30,x9; nyf, (A.11)

where we abbreviated d/d#n with d; and we suppressed all contracted indices, implying
the usual rules for matrix multiplication. From the above example this formalism might
look somewhat cumbersome, but it will turn out to be very convenient. The main reason
is that it is possible to deal with all representations in the same way. Furthermore, index
contractions now can be regarded as an operator acting on some expression. This makes
it possible to neatly organize rather complicated computations.

Complex conjugation swaps barred and the unbarred quantities and then acts with the
conjugation matrix ic? = €. Due to (A.4) and (A.9) this results in

(aoPclB)* = g—g&, (5-}1154,5)* _ (—7;4,B'a’ 77& _ dm(ﬂﬁ)*' (A.12)

Finally we would like to mention a class of identities that set to zero expressions which

Here we clarify a minor clash in notations in this manuscript. We use j, 7 to denote Lorentz Dynkin
labels and ¢, 7 to denote the level of the supercharges in Parts I and II. Then for Part IIl we rename ¢ = ! —k
(we only need operators with the same number of Q and Q.) and, in order to agree with the most commonly
used notation, we rename j,7 — ¢, ‘.

166



A.2. Notation and conventions for six dimensions

are not manifestly vanishing. These are called Schouten identities and they all stem from

€"Pe”’ 4 1 ePd 4 PreM =, (A.13)

and the corresponding one with dotted indices. The above relation is a trivial conse-
quence of the fact that there are three antisymmetrized indices («,  and ) that can only
take two values. Some examples of identities that can be derived from that relation are
M2 N3h4 = 1113 1204 + 111a 1372, 2 (A14)
MXI1 M2Xi]2 = 12X1]1 §1XA2 + a2 faf2 X7,

where the subscripts now represent labels and not indices.

Even though we will not use it, it might be convenient to be able to translate between
spinor polarizations 7,7 and more familiar vector polarizations / that apply to any
symmetric traceless tensor. Namely

O(h) == %Om...whﬂl B, Ry, = 0. (A.15)

The dictionary between O(1,17) and O(h) is given by

o) = (-1) E(aﬂhaﬁ)%(q,ﬁ), hea = al3hy . (A.16)

4019

A.2 Notation and conventions for six dimensions
The six dimensional metric G is taken as
G = §uv » Gi— =1, Gt =2. (A.17)

The six dimensional Pauli matrices are defined as

0 ol ePT 0 0 —2e,5 0
B + y—1 — ay ) ap
{Zab’zab’z‘ab} - { (—(’T?’Mem 0 ) ’ <O 2€dﬁ 7 0 0 7
{iyab,iﬂzb/ ifub} _ 0 _ _€a70'}y[[$ ) —2¢% 0 , 0 O /
€45 0M7P 0 0 0 0 2e4p

wherew = a, p = b, & = a—2 and [3 = b — 2. The indices a,b are fundamental
SU(2,2) indices, namely they belong to the spinor representation of Spin(4,2). With
these matrices one can define the twistor-space coordinates as

(A.18)

Xop = XpZM = —Xp,, XU i= X EMb = _Xb7, (A.19)
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From the Clifford algebra the following relation follows
(XiX))a' + (XXi)a = 2(X; - X;)3 (A.20)

The six dimensional polarizations transform in the (anti)fundamental of SU(2,2) and
contract the respective indices of a six dimensional tensor

O(S,5) i=Say -+ S, S -+ - ST O ). (A.21)

]

Under the projection defined in (1.21) and (1.25) we have the following mapping of
three-point building blocks

‘Poinc. = Hl] = ;7]'Xij17i s (A22a)
2.2 _
Ji | T T oS (A.22b)
jk1Poinc. — Yjk " xizj xizk szk 4 :
”| =K = lﬁ ((xzk + x5 — x2) i — 4xh Ym0, m-) , (A.22¢)
k | Poinc. k 2‘xik|‘xjk‘ i ] ] ] ik™j Hvilj
. X5l (2 2 - 2V — it pi (A.22d)
k | Poinc. : ik jk xl] nit; xlkx]k Nl | - :
2 x| [

Whereas for four-point building blocks the projections read as follows
P g proj
ij _ i . 1 2 ~ 2 = 2 ~ 2 ~
I poine. = T = 5= (Cefmpxintli — 3 i) + (Kl — 3 %)
Zxkl

2 _ 2 _ . uvpA _
— X5 NXuaffi — Xig 1T — 21" Xk Xij o X1k A 17]-0,,171-) ,  (A.23a)

j 2 2 2
L;kl |Poinc. = ]kl = |x]k| |xkl|‘xl]| ( 1]xklle + xlkle;xV + lex]kxzk) WZUVVUZ ’ (A.23b)
i | — I -:#(xzx +xxx + 2t ¥y ) Iof (A.23¢)
jkI | Poinc. jkl - |xjk|‘xkl|‘xlj’ ij7kl zl ik 1t il jk ik i ;41/771 .

We refer the reader to Appendix B of [91] for more details on the formalism.

A.3 Conventions for supersymmetry

A.3.1 Superconformal algebras

Superconformal algebras can be classified according to the number of spacetime dimen-
sions d and the number of supercharges in unit of a minimal spinor NV. In Table A.1
there is a complete list. There exist also superconformal algebras for greater A/ than the
ones listed, however for d = 3 they lead to free superconformal field theories and for
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R-symmetry generators.

simply do not exist.

2

{qu Q]a} = 25} Pad ’

d = 4,5, 6 they lead to nonlocal theories. Superconformal algebras for d > 6, however,

We list below the (anti)commutators that need to be added to (1.4), for the case 4d, N = 2.
The indices I, | are su(2) indices. The case N' = 1 may be obtained by dropping the
su(2) indices and the generators R! ;- We follow the conventions of [13] except for the

{QL, sf} =4 (s (M. — 1ol D) — &L(RT) — o] r)) ,

{8", Q) = 4 (o] (M*s + 55f D) — SB(R!; — Lor)) ,

IM.F, QL) =ohQl - LoxQl,
[1\71”"3, Qul = —‘% Qlﬁ + %5§ Quy s
[D, Q] = 30,
[D,S}] = —15%,
Ky, QL = —0aa 5™
[Pwslﬂ = Qmﬁﬁa,
[R'}, Q3] = 6 Qu — 30/ QX ,
[R'), S] = —0k Sf + 3] Sk,
[r,Qa] = —Qu.
[r,ST] = ST,
[R'},R¥;] = 6F R, — 6] RX;.

where we introduced

Puy = 0l Py,

M, = —id" P My,

A.3.2 Superspace

M7 = 1)+ bS]

[M";, 5] = 6}5"" — 16657,
= Ii = T4
D,Q"=1iQ",
[KM/ QI&] = 5] Tuwic s
[P "] = —oi* Qi
[R'), Qs = =0k Qs + 367 Q
Jr KKil = K&Ji T 29071 LKa s

=li

,K'
R}, 8] = 675" —35]
[r, Qm] = Qm/

[}’, SIIX] — _Slﬂé,

SK&

7

(A.24)

sz — C—rwiwz K;t ,
_ . (A.25)
Mlx’B - _i(_TVVD‘- Ml’“/ .

We use lowercase greek letters a, & for spinor indices, lowercase latin letters i, for
operator labels and uppercase latin letters I, | for su(2)g indices (only for N' = 2). The

2Namely (RII)DO = (RI])ours - %7‘5} and 7 = —2(R'})po.
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d N Spin(d) R-symmetry Representation of Q

3 1 51(2) 7 1]

3 <8 " so(N) [V

4 1 su(2) ®su(2) u(1) [1,0/Y @ [0;1]W

4 2 " su(2) ®u(l) [1,0)5Y @ [0;1)0Y

4 3 " su(3) @u(1) [1;0]00%-D g [0;1)O11)
4 4 " su(4) [1;0](100) g [0;1](01)
5 1 sp(4) su(2) [1,0])

6 (1,0) su(4) su(2) [1,0,0](V)

6 (2,0) " sp(4) [1,0,0](10)

Table A.1. Superconformal algebras in any dimension d for any amount of supercharges \. The
notation [jy, jp, ...](R1/R2--) denotes the Dynkin labels j; of the Spin(d) group and the Dynkin
labels R; of the R-symmetry group. In d = 3 instead we call N the N-dimensional vector
representation. When the group is not simple, the factors are separated by a semicolon.

bosonic supersymmetric interval is defined as®

(Xi]-)(m = (Xi]')tm — 21'911'“9141& — 2i91jaé]ld + 4i91m§l

L

(A.26)

with x;; being a shorthand for x; — x; and x,; denoting the matrix o7,

define the matrix with upper indices and the Lorentz square as follows

x,. We can also

(%)™ = —ePetP(x;))pp, 2 = L(xi )i (X1) . (A.27)
The fermionic supersymmetric intervals are defined as

x _ pu o al
Iij_eli_ b;

1j s kij = 0 — éif (A.28)

The chiral derivatives in superspace are defined in the standard way

. — 0 0
I _ - M opl _ : H
Dizx - ae?i +Zaaa9iaaxiy ’ DIi‘j‘ - _89_1‘1& - Ze?io—aa‘aaxly :

(A.29)

The derivative D; yields zero when acting on xy;, k # i and similarly for D; when
acting on X, k # i. For three-point functions in N = 1,2 superspace we encountered
in Section 2.2 the superconformally covariant variables X3, @é and ©;;. Here is their

definition
X217 X79Xn3 — Xa5X51 X143
31X12X23 32X31X13 +
X3 = .o K= =X3,
X74X5 X34 X5
13 X37 31 X33
X703 50 O311x13  031%3 (4.3
ol — (X311 X33V3) Onr =i 311X13 321X23\ (@1)+
3 =1 R 31 =1 5 T .2 =)
X13 X33 X31 X37

SHere and in the following equations the expressions for A” = 1 are obtained by dropping the I indices.
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Similar objects X;, ®!, ©;;, i = 1,2, can be defined by a cyclic permutation of the points.
We will further define
Us = 3(X3 4+ X3). (A.31)

Also, note that X3 — X3 = 4i ®§@3 1. We can define chiral derivatives in the space of the
X;, ©;, ®,; variables

0 TR d =I 0
DIXI = a@)al - 21(Tm@lﬁ, DDZ = _a@’; ’ (ABZa)
Dy1 = 9 Dl = —i +2i0* " (A.32b)
al oe«I’ a PR aaaX]/t ’ :
I
_ — & a ~I
Dal = a®¢xl ®I our ’ Déé = a@[ ND‘W (A32C)

All three representations are equivalent, provided one regards as independent the
variables that appear therein. Furthermore we can give a list of dual derivatives Q,, o
satisfying [D, Q} = 0.

0 0 — 0
Qur = ——+ 21(7 @I Qé =——, (A.33a)
00 oxH’ 00
9 _ 9 9
-2 L _ % _gierlet 2 A.
QD(I a@"‘l 7 QO( a@ﬂ[{ l@ aa},{y 7 ( 33b)
a — i a 71 a D(I ],[
Qur = Soil + laaa ®I S Q& = a@ —iO "“"auﬂ . (A.33¢)
I

These operators are obtained from the former by letting (X, ®,0) + (—X, -0, —0),
which is also the result of swapping 1 <+ 2 for (X3,®3,03), and by introducing an
overall minus sign by convention. It is possible to derive some very useful identities
that arise from acting with D or D on a function of Z3. For N’ = 1 we have [115]

Dru f(Z2) = ~i"L% 4 By f(23),
(A.34)

Dua f(22) = ~iPS0% e, ().

=1

Similarly, for the second point we have

Dzaf(Zg,) ( 23)0604 a,B Qﬁf(ZS) ,
2" (A.35)

D f(22) = US4 ¥ 0p f(22).
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And for N' = 2 we have [117]

s (X _) i A I i3 7]
Di, f(Zs) = —lﬁ 1 (z31) e Dy f(Z3),

J— . X = . n
D141 f(Z3) = —l(xiizfclg;m 0, (z13) € D f(Z3),

having defined u 1] in (2.25). Similarly, for the second point we have

Dl £(Zs) = <§,33)>/ i, (z30) ¢ 0y £(25),

D £(a) = 1 327 1) e) € Oy £(22).
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Superconformal correlators

B.1 Acting on different points

The formulas shown in Chapter 3 only consider the application of the differential
operators at the first point. Due to the symmetry of exchanging the first two points,
it is very easy to derive similar formulas for the second one. It suffices to use (A.35)
instead of (A.34). The result amounts to simply replacing all D’s to Q’s and D’s to
Q’s and including an extra minus sign for every derivative. The result concerning the
commutativity with the prefactor clearly holds as well thanks to the symmetry of Ko, 0,
upon exchanging the first two operators.

On the other hand, the point z; is treated differently by the parametrization of (2.20). As
a consequence it is not possible to apply a differential operator on O3 using the formulas
shown here. Fortunately there is a way to switch between different parametrizations
by working on the t only. For simplicity, we will assume all three operators to be su(2)
singlets. We have

(01(21) 02(22) 03(23)) = Ko,0,(212,23) tg, 7 (Z3), (B.1)

where some arguments of the various objects are not shown for brevity. Recall z = z, 7, 7,
z = x,0, 0. By cyclically permuting the operators (which is a trivial operation) we get

(02(22)O03(23) O1(2z1)) = Ko,0,(223,21) t8203(Z1) , (B.2)

having used Z3|(153} (23,1} = Z1. The reduced three-point functions ¢ satisfy a scaling
property

(912 (AXX, 1@, A8, 1;, 7j;) = AXA% 0102( @,@,771',771')/

0,0 7 O o
tor 2 (Z, kimi, Riffi) = K3 K 1_[ K o 2 (Z, 1, 7)) -
i=1,2

(B.3)
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with ) X
a=3(q—q1—32)+ 53— q1—q2),

o, o L (B.4)
a=50 - —32)+3(0—q —q2).
Let us be now more precise with the arguments of the t. We will denote it as
0:0; _ _ _
to, (Z:mi i1, 75 e k) 5 (B.5)

implying that the spinors are associated to the operator with the matching label. Follow-
ing [115] we can then write the following formula that relates the two

t8§03(Z; 12, 72; 73X, Xnz; 1, 71) = C(X, X) tg;OZ(Z} X, X1 12,7213, 773) .~ (B.6)

with L
(—1)titrts
C(X,X) =

@R T R (B.7)

The matching involves only quantities in the Z space. If one wants to have the Xy
replacements only in one side, it is possible to consider equation (B.6) with, for instance,
11 — Xij; and 7j; — 11X and then use simply

XXiin = X, XX = =X (B.8)

The factors of X? and X? can be then taken out using the scaling in j;, 7. Often it is more
convenient to express the correlator in terms of U rather than X and X. The relation is
very simple

Xai = Ui + 20,0y, Xai = Upa — 20,0, . (B.9)

A function that solves (B.6) has been implemented in the Mathematica package of Sec. 3.4
under the name of permuteCyclic.

B.2 Superspace expansion

The expansion in N’ = 1 superspace of a general superfield reads

O(2)|y_5_0 = Ox). (B.10)

Olog= 69, (QO)" + 170y (QO)~ B
~ 1893 (QO)* + 7167 (Q0)~ |
Olgge = 16%(Q*0) + 19%(Q%0). (B.12)
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Oly5 = — 09, 89;((QQO) ™ —ic1 357 O)
— ' 61 60 ((QQO)*+ —ic2 9,057 O)

| (B.13)
%98 97((QQO)*™ —ic3179x9; O)
(1+1)(1+1 07 07((QQ0) ™~ — ics 3;9x3; O) .
Ol g0 = — 167097 ((Q°QO)" — ics 3,277 (QO) ™ — ic 7977 (QO) )
; f 787 ((Q°Q0)" —ierdyfdy (QO)' —ieayddg (QO))
+ 16209, ((Q*QO0)™* — its 79x9; (QO)* — ics 170417 (QO) ™)
{0 (@00 73000 (QO) 5020 @0) ).
o 9202 — 11? 6% ((QZQZO)
— icg 9,0x7 (QQO) " — 10779537 (QQO) ™" (B.15)

— ic11 00x77 (QQO) ™™ — ic12 79477 (QQO) ™~
— 13920 — ¢140,9x3; 19x7 O) .

The coefficients c; through c4 agree with [156]. Instead c5 through c1 and c14 differ by a
simple normalization (cfr. [156, (A.8-10)]). Finally c13 is a bit different

chere = —4(2 4 j +7) (cthere + 8clfere) . (B.16)
The reason is because they define 920 to be
— 10,0505 110x7] O + 3 110x7] 9,0x07 O = 1(2+j+7) 9,0"O, (B.17)

whereas we define it simply as 9,,0"O.

B.3 Some identities for the superspace derivatives

Let us denote in this way the following shifts of the quantum numbers in Ko, 0,

]Csiol(’)z = IC0102 gi—=q+1/27 ICS_ioloz - KQOZ J1—qa+1/2 - (B18)
j1 %]‘1 +1 ]_1 4)]_1 +1

Note that this does not correspond to the shifts that follow from applying Q or Q on O;.

Those have been defined in (3.35). This definition simply happens to be convenient for
the formulas that will follow. The factors of j are inserted to cancel the contributions
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from the factorials at the denominator of (2.21).

The first set of formulae that we need is the action of the first order derivatives on
Ko,0,- The quantum numbers of O; will be denoted as gq,43,j and j. Since in some
cases O might be a superdescendant we will denote as jy and jp the spin labels of the
superconformal primary. They will show up because they are inside the definition of
the differential operators (see (3.8)).

_ . 1 _
Do Koo, = =2(29 —j — 2)].*0 Ks_0,0, 0195, (B.19a)
29+ .
D, Koo, = —257— 1+ Ks, 0,0, X601, (B.19b)
jo+1
_ o 1
DQ IC(91(92 = —2(2q -] 2)]?0 }C§70102 ax91 . (B.19C)
520 +]
D5 Ko,0, = 227 Ko, (B.19d)

Next we need the action on Ko, 0, times a Grassmann variable. Below, the x and x that
appear on both sides of the equalities can also be replaced by 9, or d; being careful with
the signs.!

Dg Ko,0,01x = (Dg Ko,0,) 01x — ]ZO Ks_0,0, X*139% , (B.20a)
D4 Ko,0,01x = (DS Ko,0,) 01X + —— o 1 Ks, 0,0, XX13% » (B.20b)
Dé Ko,0, X01 = (Dé Ko,0,) X01 + ]?0 Ks_ 0,0, 9xX31X , (B.20¢)
DS Koo, X0 = (Df Ko,0,) %01 — 2 jr 1 Ks,0,0, 131X - (B.20d)

Finally we will also need the action of the derivatives on the . These equations will
make use of a different definition for the shifts, which can be found in (3.35). The result
is

Koo, D& tg!% = K(go,):0, DG to, (B.21a)
DE 91©:

+ 0,0
Ko,0, K@o=0,Pgto, (B.21b)

where we have used the derivatives defined in (3.38).

All these results can be easily proven by first applying the differential operators on
simple terms such as x;; and x;;* and then working our way up to more complicated
expressions. The main trick used involves shifting the labels of the prefactor. When the

n our conventions the replacement is x* — dy, and xy — —9dy«. The same holds for x.
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labels are shifted down that means that a derivative acted on # or 7, bringing down a dy
or dy respectively. When the labels are shifted up that means that we have introduced
an extra auxiliary spinor x or ¥ on which the added derivative can act and reproduce
the needed expression.
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8 Appendices for the ANEC

C.1 Supersymmetric inversion tensors

Here we list the properties needed to derive equation (4.22). The order in which they
appear is roughly the order in which one needs to apply them. First of all, the explicit

definition of the tensors is

tr(0,X1000%51) B tr(0,X130,%,1)

L (x93, x15) = Lny(x3q, %07) = =
pv(X13, X12 v\ X1, Xo1 ,
2/ Xi7 %31 2/ XiF X3¢

i7 Z] (Xli)lxl(ﬂ'él e (Xli)ﬂéj|156j)
I ('x12> = ﬁ lej ’

The covariance property of the t and its A\ scaling (4.15) imply

I (oy3) I (x13) T (213, %13) 1,5, (Z3) =

= X13}213XT33 x;f[flﬁ (Xl)li4l_3 <Xl) I)W(Xl, X1) tflvfa (Zl) .

The last identities that we need are

2 2

X2 — X33 %2 — X32
T =722 T =" 2. 2"
X31°X13 X31° X717

(C.1a)

(C.1b)

(C.10)

(C.2a)
(C.2b)
(C.20)

(C.3)

(C.4)
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C.2 Proof of the general formula

C.2.1 Formula for the (j,0) case

In this section we provide a proof of the formula (4.42) which we reproduce here for
convenience:

oon g Asltgrol 3 (—i) (6—-1)(6+) j—s 6+j—1
E G0 = T =g 6r—s—1)s <D+ j o+j-s—2
(j—s—=1) (6—j—2)

(-T2 (G+j—s5-3) >
(C.5)
The first step is to realize that the dependence on j and s is entirely coming from the
tensors (I'®)7 which appear both in tsr, at the numerator (with j = j,j —1,j — 2)
and in ng, at the denominator (with 7 = j). Let us then expand this tensor when the
polarizations are replaced as in (4.36),

Dy +

£y <2]> (7_ 2r> (2> ()T YT A (prm) (mp) o

s=0 r=0 s§—r

We obtained this result by simply doing a double binomial expansion and using
x_-x,; = x5 = (x1)? + (x?)% All terms where x_- and x, | appear with differ-
ent powers can be thrown away as they are not SO(2) neutral and there are no other
invariants in the tensor structures that can compensate for them.!
precisely the sum over polarizations, and so we can remove it and focus on one s at a
time. The second sum, instead, can be extended to )~ , since the binomial coefficients
are automatically zero when r is out of bounds. This fact will be useful later on.

The first sum is

This expansion completely takes care of the polarizations of n5, and of the structure D,
of tg7o- For the other two structures it is not hard to see that the terms (pm)*(mp)/ =
of the (I'3)/ tensor of each structure all contribute to the same term (p)*(mp)/=5.2
Concretely we find

3im

—ix0 —\s—r— j—r—5— r —A—j
Altoro] = =75 [ dhxe™ 1 () 0y ) () 2
r=0
x (I£J2 (x )2(x")2Dy — I Va2t a2 Dy + 17 (x2)? D3> ,

(C.7)

IThis statement holds in the y* — oo limit.
2To be more precise there are contributions also to the terms (pr)*+%(mp)/=~* (a = 1,2), but it can be
verified that in the limit y™ — oo they are subleading.
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C.2. Proof of the general formula

G (] j—2r\ (2r
8- Qe

Similarly, the denominator has the form

where

Filngo) = [ dtxe ™ Yo 1) (x )" (x ) () (62 22 (o)
R =0 ’

The Fourier transforms can be straightforwardly computed using the general formulas

- deL (XZ)u(xi>b — 7'Cr(1 — ;(__lzl))r(l + b) (_xfx+)1+u+b,
Zn)Z(_i)u+b(_2)ﬂ+b+2
[(—a)T(—b)

(C.10)

. dxtdx— e—i(x++x‘)/2 (x+)a(x—)b _ (

What remains now is to compute the sums in r and »’. After some simplifications all

sums can be reduced to the following general form for some 1, n:3

5 _i(—w T(A+L—7r—m)
eyl T(l—r+s)T(j—r—s+n)’

(C.11)

We stress again that even though the upper limit is co, there are actually only a finite
number of nonzero terms. After using the property

I'(X)

a-x (C.12)

[(X—r)=(-1)

of the I' function, we can rewrite this sum in the form of a ; F; hypergeometric function
evaluated at 1, for which the explicit expression is known:

T(A+1—m ) )
Yn = F(l—Es)Fij—s—)kn)ZFl(_S’l_]_n+S;1_A_é—'—m;1)
r(A+]—m) T(1-A—L+m)T(L+m+n—n)

I(14s)I(j—s+n) F(s—l—l—A—%—i—m)l”(%—i—m—kn—A—s)'

The final result will be expressed in terms of ratios ., ,, /21,1 which are rational functions
of A,jand s. It is now straightforward to check that it agrees with the general formula
(4.42).

C.2.2 Formula for the (j,1) case

In order to obtain a formula for this case we mostly need to follow the same steps as in
the previous subsection, with some minor modifications. The main difference is that

3(m,n) canbe (1,1),(2,1),(3,0) or (4, —1)
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the invariants I°!, J?, and J}, can yield contributions with SO(2) charge %1 in the limit
yT — oo. By looking at Table C.22 we see that all tensor structures have at most one of
these invariant except for Hg which contains two. Since that particular structure is zero
in our superspace correlator we will not compute a formula for it. As a consequence we
need to expand (I'®)7 keeping also terms of charge +1. This is easily done as follows:

(I8 = (mpx* + pimx™ +mmx_- +ppx,;)

Ty (D)2 () o=y (pmy(mp)

S—7r r

1 min(s,j—s—1) N 5
] j—2t—1\/2t+1 NSty b1 (2 \¢
s=0  t=0 <2t+1>< s—t ><t+1 (x7)" " (x7) () %

x (mix_- 4 ppx, i) (pm)*(mp) =t

(C.13)
As before, both sums in r and t can be extended to any range. After taking care of the
remaining polarizations and performing the Fourier transform with (C.10) we again end
up with sums in the form of (C.11). The result will be a 2 X 2 matrix whose entries are
ratios of I' functions, which can be reduced to rational functions of A, j and s. For the
extreme cases s = 0 and s = j + 1 one needs to retain only the appropriate entry of this
matrix—respectively the upper left and the lower right—and discard the other ones. As
an example we show the part of the formula that multiplies the coefficient H»:

£18; (1)) 3r(—i) 1O+ 1)(6+j+2)

5+j—s+3 s(j—s+1) (C.14)
o+j—s+1 (s+0)(6+j—s+1)
s(j—s+1) (64s5—1)(6+j—s+1)
(s+0)(6+j—s+1) (064s)(0+j—s+4)

where now § = A — j/2 — 5/2 with A the dimension of the operator of spin (j,1).

Clearly the same logic can be applied to more general cases (j,7) with 7 fixed and
j arbitrary. It suffices to expand like in (C.13) keeping terms with charge up to £u
where u is the total number of invariants 13!, 11132 and 1]213 in the tensor structure under
consideration. Then all steps follow in the same way, except that one may get sums
more complicated than %, ,,.

C.3 Tables

C.3.1 Ward identities
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C; Structure j>1 j=1 j=0
- g 1, 201 240
Ci AP e 2 - 1. 2(9-4 9—7
1 ]I13( ) 2C2 + 372 2C2 32 32
CZ ]123 (H13)j71 CZ C2 /

Table C.1. Ward identities of the R-current for the correlator (O](R)O) when O has spin (j,0).

I;  Structure j>1 j=1 j=0
L 1]2131123]132 (]113)]?1 L /
IZ 1]123]131 (II l3)j 12

1
2L+ Is — 5(11 + I+ Ly)

I 1[21]]:32 ]113 ] )
’ ) 4i(312g-7)

372
SRR ;7
s 121273 (31 Is %
o J3I1212 113y I %

Table C.2. Ward identities of the R-current for the correlator (O'J(R)0’) when O’ has spin
(j, 1), R-charge Z(g — 7) + 1 and is assumed to be unit normalized. If O’ = QO the terms not
proportional to I must be rescaled by €(g0)- The unbarred entries in the j = 1,0 columns are
obtained by setting the absent coefficients to zero.

D; Structure j>1 j= j=0
‘ i(2A -3 2A
D1 (J§)* (%) Dy ( 372 : 372
D2 H12H23H123 (]I13>j*1 —6D1 + 41](A_]) & /
2 2
Dy (I22AZPA¥)2 gD, - 2i](2A2— 3j) / /
s

Table C.3. Ward identities of the stress tensor for the correlator (OTO) when O has spin (j,0).
We have defined A = g + 4.
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H;  Structure j>1 j=1 j=0
Hi  IPI2J5]5 %)™ Hg H /
1
—-(BHs+2H¢+ H
H, 131 (J2,)2 (113 9( > 6 10) —7H6+2A_5 71,2(A—1)
13 —EH 7ij+12A—j—2 3 372 372
6" 32
1
- §(3H5+8H6+H10) 4 ” o
H 1213272, (113)i 4 g _ < 4l
3 Jis (1) 1, 21 =3) 3T 22
37 372
H, 11121[32 (]123)211213(]113)j—2 Hip / /
i 4 2
H5 ]I12]I3ll[23]]'123 (]113)] 1 H5 §H6 + ? /
H, H12H21H123]]132 (1[13)]?1 Hg H, /
i 2 2
4
(1[12)2(]123)2]]13211213 — §(2H6+H10)
H, ‘ ,
Ty 4t g g
+2(Hs + Hg) + 2
Ho (1[12)2 (]I23)2]I31 (]Il3)j72 Hog / /
Hyy (1[12)21121 ]I23]Ii°>2 (]Il3)j72 Hy / /

Table C.4. Ward identities of the stress tensor for the correlator (O’'TO’) when O’ has spin (j, 1),

dimension A + % and is assumed to be unit normalized. If O’ = QO the terms not proportional
to Hy must be rescaled by ¢(Q0)"

G; Structure j>1 j=1 j=0
G JpIBIP Ayt G Gi /

2112 13y 1 1 8ilg 1 8ig 87
Go I ]Ils(]I ) —E(G1+G4)—§G3+3? 2(G1+G4>+3n2 3772
G4 1[121[21 ]I23 (]I13>j—1 G4 G4 /

Table C.5. Ward identities of the supersymmetry current for the correlator ((Q0O)SO) when QO
has spin (1, ).
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E; Structure j>1 j=1 j=0
: 2 4il (2q +§) 2 2i(29 4+ 1) 8q
E 212 (113 il S AP P R S M7 A
1 JpleI”) 32 3712(j+1) 32 3772 3772
E, (H12)2 (H13)j71 E, E, /

Table C.6. Ward identities of the supersymmetry current for the correlator ((Q0O)SO) when QO

has spin (0,j +1).

F,  Structure j>1 j=
i (29 —j — 4i(2q —3)
E 2 K23 (13)i-1 1 4i(2q —j—2) q
1 JiKY @) 3h2 P 372
FZ 1[12 1123 ]I<213 (II 13)j—2 FZ /

Table C.7. Ward identities of the supersymmetry current for the correlator ((Q0O)SO) when QO

has spin (0,j —1).
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C.3.2 Expansion in components

C; Structure j>0 j=20
C ]I123 (][13)j i(C1 + Cz) iCq
C2 ]I23 (1113)]'71 _162 /

Table C.8. Expansion of the supersymmetric correlator in the component (O]®)O) when O has
spin (j,0).

D;  Structure j>1 j=1 j=0
Dy (J5)* (1) _E(CS‘FCS) _E(CS‘FCS) —205
D, IR2r%yZ1a3)i-! %(66 + Cg) %CS /
Dy (I2)2(1%)2(1'%)i2 _icé % Y

Table C.9. Expansion of the supersymmetric correlator in the component (OTO) when O has
spin (j,0).

E; Structure j>0 j=0
, 1 1
2 112 (13 _ - - 20 — -
Ey  JipIE (1) 20+)) (4C1 +4C2+C3—C5+C6 — Cg) 20 2C5
22yt ~ (4C2+C3+Cs—C
E, (I)7(I) 2(1+])( 2+ C3+Cs — Cs) /

Table C.10. Expansion of the supersymmetric correlator in the component ((Q0O)SO) when QO
has spin (0,j + 1). The result for j = 1 is obtained by setting C¢ = 0.

F;,  Structure j>1 j=1
. 1 1
B JRKY @By 2(C1+C2) = 5(C5+Cs) — 27-(03 +Cs)
‘ i1
BOITPKEEY G-l uce -0 %

Table C.11. Expansion of the supersymmetric correlator in the component ((QO)SO) when QO
has spin (0,j — 1). The unbarred entry in the j = 1 column is obtained by setting C¢ = 0.
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G; Structure j>1 j=1 j=0

G RIRIPAYT 6 0 /

G PRV ~2(C1+C2) - 5(C5 + Cs) ~261 - 35
Gy T2(I%)2JL, (1) —%Cé Vs Vs

Gi  TRI22(p3)i-1 Crt %(Cﬁ +Cr+Cy) /

Table C.12. Expansion of the supersymmetric correlator in the component ((QO)SO) when QO
has spin (1, j). The unbarred entries in the j = 1 column can be obtained by setting the C¢ = 0.

N; Structure j=0
; 2(29+j—-1) 1
N 2 (I3t 2 L (G 4+ C) — —5(Ci+Cs G+ C
1 J(I?) G+ 17 (C1+C2) (]+1)2( 4+ C5+C7+Cg)
. 1
N> 11121[23(][13)] (j+1)2 (ZC1 +2(2[]—|—j— 1)62 —|—C4—|—C7—|—Cg)

Table C.13. Expansion of the supersymmetric correlator in the component ((QO)] R)(Q0))
when QO has spin (0, + 1) and QO has spin (j + 1,0). The result for j = 0, 1 can be obtained by
setting the absent coefficients to zero (see caption of Table 4.2).

O; Structure j=1
_ . 1 1 1
127712 (713yj—1 _ _ _ 2
O I7K3I7) G+ (4(g —1)C2 +Cs) T 1(2C1 +C4+C7) j(C3 +Ce)

Table C.14. Expansion of the supersymmetric correlator in the component ((Q0)J®)(QO))
when QO has spin (0,j + 1) and QO has spin (j — 1,0). The result for j = 1 can be obtained by
setting Cg to zero.

P;  Structure j=1

Pl H23]I<213 (]I13)j71

(2(29 —j—3)Co+ Cs + C7) (2C1 + Ca)

jG+1) RS

Table C.15. Expansion of the supersymmetric correlator in the component ((Q0)JR)(QO))
when QO has spin (0,j — 1) and QO has spin (j +1,0).
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Q; Structure j=1
., 22 2E L1

Qi JH @By~ —7161 ].2262 c7+]c4+ > L+ CotCs) + %CS

2(j—1)E i1 ) 1 ]

U -2) 3Cz+]' (201+C4)+] -—C3 — (]+ )C6_],2 Cy
Q, 1212 (13)-2 J ] ] 5 ]

_G=1G+2),

R

Table C.16. Expansion of the supersymmetric correlator in the component ((QO)] (R)(QO))
when QO has spin (0,j — 1) and QO has spin (j — 1,0). The result for j = 1 can be obtained by
setting Cg to zero and removing the last row. Furthermore we defined

[1]

1= —2jg+5j—29+3,
2 =72 =272+ 5% —2jg +3j+29 -3,
Hs=j*—2jq+6j—4q+7.

[1]

—~

;  Structure j>1 j=1j=0

L LIP3 aBy-! C;—2Cy /
229 =1)(C1 + )
—C4—Cs—C7—Cg

Lo g1 By 2(2§—1)C; —C4 — Cs

I 1213213y 2(CL+Cp) —Cy—C7 20, —Cy

Ly ]]21311132]112]123 (]I13)j72 C6 / /
I 12133t pidy-t —2(2§—1)Cy — C3+C7 +Cs /
I6 ]Ii%zll121[21(]113)j71 703 _ Cé /

Table C.17. Expansion of the supersymmetric correlator in the component ((QO)]J (R)(Q0))
when QO has spin (1, j). The unbarred entries in the j = 1 column can be obtained by setting
Ce =0.
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Ji  Structure j>0 j=0

;
(40 + (2 +)(Cs - C
i (3%)P(@3)it 217 4G+ oG+ Co) 2iCy +i(2 — 1)Cy

—(29+j-2)(4C2 + 2C4))

1

, : 601 +3Cs— 229+ —10)C
L JARI2IS (1) (]+1)2( ! 4= 2029+] 3i(2Cy + Cy)

+(29+j—1)C3+ (29 +)Ce)

1
2+ 172

]3 (]Ilz)Z (]I23)2 (]I13>j*1 — (32C2 - 4C3 + (2q + ])06) /

Table C.18. Expansion of the supersymmetric correlator in the component ((QO)T(QO)) when
QO has spin (0,j + 1) and QO has spin (j +1,0). The result for j = 1 can be obtained by setting
Ce = 0.

K; Structure j>1 j=1
3i i

Ki KPJipIzasy 1At et
—(29+))C6 +2(29+ 7] —4)C2)

(29+j-1)Cs

K» K212 (122132 ](];1)(2(] —1)(8C2—C3) — (29 +j)66) /

Table C.19. Expansion of the supersymmetric correlator in the component ((QO)T(QO)) when
QO has spin (0, + 1) and QO has spin (j — 1,0). The unbarred entry in the j = 1 column can be
obtained by setting C¢ = 0.

L; Structure j>1 j=1
3i i
, — = 2C1 + Cy) + 29+j—-1)C
Ly K®JAI12 (1)1 ]_|_1( 1+ Ca) iG 1)(( q+j—1)Cs
—(29+/)Cs —2(29 +7j - 4)C2)
L KPIREPPY) 2 oty (- 106G -0) - g +))C)

Table C.20. Expansion of the supersymmetric correlator in the component ((QO)T(QO)) when
QO has spin (0,j — 1) and QO has spin (j + 1,0). The unbarred entry in the j = 1 column can be
obtained by setting Cs = 0. Note that this Table is identical to Table C.19.
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M;  Structure j>2 j=2 j=1
B 21(2]j— 1) it 21];**,4 Cy— 12?2563
M 212 (13)-1 . » _
1 U @) iZ , i(j—1)(Ee—29+j—1)
7.64— > C(,
2j
61(]]'— 1) C - 2i(j —.21)a7 Ca 1t 31(]].— 1) Cs
M2 ]]1231[12]123(1113)j72 - _ . L /
—1)(E74+9]—12 =
L DE 9 =12) ) B
2i(1—1)(j —2
G002, g
Ms  (I2)*(1%)*(1%)° i PR S S
i =2)(*—2jq+j—69+2)
22 Cs

Table C.21. Expansion of the supersymmetric correlator in the component ((QO)T(QO)) when
QO has spin (0,j — 1) and QO has spin (j — 1,0). The unbarred entries in the j = 2 column are
identical and the ones in the j = 1 column are obtained by setting Cs = 0. We further defined:

By =) =220~ —2jq+5]+24 4,
5= —2j°q+j*—2jg+4q — 4,
6=J —2jqg+j—29+3,

7= —2jqg—8j—4q +18,

s = /> —2/%q —2jqg+8q — 3.

[1 [ [1

[1]

190



C.3. Tables

H;  Structure j>1 j=1 j=0

HIPIRR ) 2 (e +co) /

—2i(C1+23Cy) —i(2§ —1)Cy
+i(7 —1)(Cs + Co)
Hy  T2'1%2)2(113) —i(6Cy +2C3 —3Cy +2Cs)

Hy  IP1(J)2(@PY

He 12132 (12)2 L (113)i2 _%66 Y Y

4iGCy — ZZ(q_ - 1)63

Hs 1213 12)2% (1%)i! i 3c, Y
He TP 00) 2 esco) /
H;  I2r2'®r2 byt i(C3+2Cs) /
Hy (1) (I1%)?J5,05@%) 2 0 S S
He  (I2)2(12)21% (13)i2 i(q—2)Ce / /
Hip  (I2)PT2 1273 (1%)i2 —%ice Y Y

Table C.22. Expansion of the supersymmetric correlator in the component ((QO)T(QO)) when
QO has spin (1, j). The unbarred entries in the last two columns can be obtained by setting the
absent coefficients to zero (see caption of Table 4.2).
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Appendices for the bootstrap

D.1 Differential basis

In this section we provide the matrices that translate between the OPE or embedding
space bases defined in Section 7.1 and the differential operator bases defined in Sub-
section 7.3.2. More specifically, we provide the explicit values of the matrices N, N;,”b
that appeared in (7.70), (7.73) and (7.77). We will provide the expressions by assuming
different arbitrary values A; for the external dimensions of V; and the exchanged op-
erator O. Clearly they will be set to the appropriate values at the end, but the for the
intermediate steps of the computations we need A; to be arbitrary in order to act with the
dimension shifting operators &. For the left three-point functions, which are associated
to the matrices N, one has A1, — 3 and Az — A; while for the right tree-point functions,
associated to the matrices N, itis Ay3 — 3 and A1 — A.

Matrices forp =0

Npto =1,
N2 = NiZg = Nitq = NiZy = NiS = Ni& = Nito = Nty = N2,
2

21 __

NPZO - KS ’
1

22 _ N723 N4 N5
NiZo = Njto = Njto = Ni%o = ;or—gy 5

p=0" (As—1)As0 7

A —DNy— N3 —7

NEo= Nt =

8(As —1)Asl '
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A — Ny +A3— /¢

(D.1)

(D.2)

NXy=N2, = ,

p=0 =0T 8 (A — 1) Mgl

A — N+ 7

NiLy ==

p=0 A3£ !

M =N+ A+ 1

N2Z,=NB == ,

p=0" =0T 8 (A3 —1) Asl

AN — Ny — N3+ 7

N g =NE == 22

p=0 =0T 8 (A —1) Al
N51 :_(Al—Az—A3+£)(A1—A2+A3£—€)

p=0 2(A3—1)A3(L—1)¢ ’
N A+ N5 — A — 20Ny + 405 — 02 — 2750

p=0"—" 16 (A3 — 1) As (£ —1)0 ’
NS — (Al—Az—l—Ag—f) (Al A2+A3—|—£)

p=0 16 (A3 — 1) Az (£ —1)¢ ’
N54 :(Al—AZ—Ag-FK)( Az—Ag—E)

=0 16 (A —1) Aa(f— 1)1 '
N :(Al—Az—A3+£)( A2+A3—€)

=0 16(As—1) Aa(f— 1)1 '

1

N Y= .

P=0T 4 (A3 —1)0

For the matrix NF/JZO we will only report some entries. The ones that are not listed are
given by
b b
NZo = NiZolageon, -

For the other entries we have instead

Ny — A3+ ¢

131 __ 2 3

Np=o = Ml

N DA+ DA+
p=0 8(A1—1) AL '

N BB A+l
p=0 8(A—1)A L

NAL Ay — A3+ Ml -1
PO T (A =) AL

NZ . A1 — N+ A3+ 4
p=0 8(AL—1)A L

N4 Ay — Dy + A3+ 4
P08 (AL —1) AL

NS (A — Do+ A3 — L) (A — A3+ Al — 1)
p=0 =

2(A1 —1)A(€—1)0
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D.1. Differential basis

N/ (A1+A2—A3—|—€) (A1—|—A2—A3—£)
p=0 16 (A — 1) A (£ —1)0 ’
A —A +A3—£)(A1—A2+A3+£)
Ny = (B D.
p=0 16 (A — 1) A (£ —1)¢ (D3)
The special case of spin zero is given by a smaller matrix which reads
, 1 0
Np=0 = Np—0lp, a5, 80000, 8058, = | 2 _ 1 - (D4
A—NAr—A3 (A —D2—A3) (A1 —Ar2+A3)

Matrices for p = 2

—A3 — A3+ A3+ 10071 + 201085 — 10A; — 6A3 + (2 — Azl + 60 + 4

NI — ,

P27 4 (A — A — A3+ L+ 4) (Dy — Ay + A3 +0) (10A; — 10A; 4 2A3 + Azl — 20 — 4)

N2 _ —AF — A3+ AF —10A1 + 20177 + 1007 — 203 + 2 + Azl + 20 — 4

p=2 4(A2—A1—A3+€+4)(A2—A1+A3+£)(10A2—10A2+2A3+A3£—2€—4),

N —AF — A3+ AT+ 200y — 405 + 2+ 4L

p=2 4(My— M — D3+ 0+4) (D — Ay + D3+ £) (1007 — 10A; + 203+ Azl — 20 — 4) 7

N —A2 — NS+ AT+ 2010 — 405+ 02 + 40

P27 4 (Ay — Dy — D3 +04+4) (Ay — Ay + A3+ £) (10A; —10A; +2A5 + Asl — 20 —4)
1

21 __ a724

Np=2 = Np=2 = 8 (10A; — 10A; +2A3 + Azl — 20 —4)

22 a723 21
N =2 — Np:Z - _szzr

(=D + Dy — A3+ L +6) (—2A1 +2A; —2A5+ 3030 + 20 — 4)

N3L, =— :
p=2 32A30 (=M1 + Ay — Az + £ +4) (10A; — 10A; 4 2A3 + Azl — 20 — 4)
N32 _ (—Al + Ay — A3+ 1+ 6) (—2A1 +2Ay —2A3 4+ 3A30 + 20 — 4)
P=2 7 BOA30 (—A 4+ Ay — A3 + £+ 4) (10A; — 10A; +2A3 + A3l — 20 — 4)’
—4A2 — 4N3 + 275 — 16A] +8A1 A + 16Ay — 28173 + 280 A3 — 44z + Azl? + 202
N — D30+ 2010 — 2050 — A Azl + Ay A3l + 6A30 + 40 — 16
p=2 16030 (—A1 + Ay — Az + £+ 4) (10A; — 10A; +2A3 + Azl — 20 — 4) ’
N# (=A1+ Ay — A3+ 0+ 6) (481 —4Ay —2A3 + Azl 4 20)
p=2" 16A3¢ (—Al + Ay — A3+ L0+ 4) (10A2 —10A, + 2A3 + Azl — 20 — 4) !
—2A% + 243 +2A3 4 8AT — 6A1A% + 8A3 + 281 A% — 20073 — 8% + 241 + 6ATA,
—16A10y — 240y — 203N — 2A3A5 + 401 Ay Ay — 2403 + TA3 0% — 203 — 4A3P?
F2A 0% — 20002 + A0AZ07 — 807 + TAZL + 2A30 + 2050 — 40AZ0 — 4A Ayl
N —TN3N30 — TGN+ 38A1 Azl 4 1401 Ay A3l — 38Ax Azl 4 24A30 + 240

P=27 32030 (Ay — Ay — Az + £+ 4) (Ay — Ay + A3+ 0) (10A; — 10A; + 273+ Azl — 20 — 4) 7
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—2A3 +2A3 + 203 + 8A2 — 6A1 A 4 8AS + 2010 — 20,A% — 8AS +24A1 + 6A%A,
—16A Ay — 240y — 2A3A3 — 203 A3 + 4A1 AgAg — 2403 + TA3 0% — 203 + 4A202
F2A1 0% — 2N 0% 4 24A30% — 802 + TASL 4 2030 + 2030 — 24030 — AN A0

N —TANIA30 — TASAE — 4201 Azl + 1401 Ay Azl + 4205 A3l — 8AzE + 241
P=2 7 32A30 (Ay — A — A3+ £ +4) (A — Ay — Az — £) (10Ay — 10A; +2A3 + Azl — 20 — 4)’

2A3 — 2A3 + A5 + 8AT + 6A1A3 + 8A3 — 2A1A3 + 2A0A3 — 2A3 + 81 — 6ATA,
—16A10y — 8Ay — A2A3 — A3A3 — 6A1A3 + 201 M A5 + 683 — 8A3 + 24303

— 03 £ A2 DA 0% £ 2007 4 6A30% — 207 £ 2A30 4 A2+ NS — 6A20 + 6A 1L
—2A1Apl — 6Mp8 — 20330 — 205030 — 11A1 AL + 4A1 Ay A3E + 11030 — 4A30 + 8¢

N — ,
P=27 8A3l (Mg — Ay — Az + £ +4) (A — Ay — A3 — ) (10A; — 10A; + 2A3 + Azl — 20 — 4)
203 — 2A3 + A3 — 12A% + 6A A3 — 1203 — 201 A% + 20503 — 6A% — 6A2A, + 241 A,
—A3A3 — N33+ 18A1 A3 + 201 M0 Ag — 18Ax A5 + 20303 — 13 — A30% — DA 02 + 2M,(*
H12A30% — 607 + 2030 + AT0 + A0 — 12050 — 18A1€ — 201 Mgl + 18A,0
N —2A2A30 — 2NN 4 11 Azl + 401 Ay Azl — 11ArA30 + 124050
p=2" 8A3€(A2—A1 —A3+€+4) (Az —A1+A3+€) (10A2—10A2+2A3+A3€—2£—4) !
(D.5)
NAL — N4 1
p=2 p=2 8(2A1 —10A; +10A3 + Al — 20 — 4)’
1
N2, = N/13, = ,
P=2 7 P27 8(2A; — 10A; + 10A3 + Al — 20 — 4)
N2 A3 — A3 — A3 — 671 + 100, + 20575 — 10A3 + 02 — A0+ 60 + 4
P=27 A (A — D+ Dy +L+4) (A — Ay + By +£) (201 — 10A; + 10A; + Al — 20— 4)
N2 A2 — A3 — A3 — 271 — 10A; + 20975 + 10A3 + (2 + Al + 20 — 4

P27 4 (A — Ay + A3 +0+4) (A — Dy + A3+ 0) (201 —10A; +10A3 + Al —20 — 4)

5 _ A2 — A2 — A3 — 4Ny + 205753+ (% + 40

P=2 7 4 (A — Dy + A3+ L+ 4) (A — Ay + D3+ £) (281 — 10A; + 10A3 + Al — 20 — 4)’
A3 — A3 — A3 — 4Ny + 200 A5 + (2 + 4L

4(=D =D+ D3+0+4) (A — Do+ D3+ 1) (2A1—10A2+10A3+A1€—2£—4),
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2A3 — 2A3 +2A3 — 8A — 2A1AS + 8A3 — 201 A% — 6AxA% + 8A3 — 24A, +2A2A,
+24Ay — 2A3 A3 + 6A3A; + 4 AxAg — 1685 A3 — 2405 + TALLP — 203 — 4A3(?
H40AL 0% + 200 0% — 2A30% — 802 + T30 — 40N — TA N30 + 2050 — TA A3
12020 + 24010 + 38A1 Mgl — 38A1A30 4 1401 Ay A3l — 4Ay A3l + 241

2A3 — 2A3 +2A3 — 8A% — 2A1AS + 8A3 — 21 A% — 6AxA% + 8A3 — 24A1 +2A%A,
12475 — 2A3A3 + 6A3 Az + 401 Ay Az — 16A3 A5 — 24A3 + TAL 03 — 203 4+ 4A2 (2
F24A1 02 + 20007 — 20307 — 802 + TN — 24030 — TAL NS0 4 2030 — TA A3Y

- 2020 — 8L — 4200 Al + 4201 Al + 1401 AsAsl — 4AgAsl + 240
p=2 32A1£(A1 + Ay — A3 7574) (Al 7A2+A3+€) (2A1 710A2+10A3+A1€72€74) !

A3+ 2405 — 203 — 207 — Ay A5 +8AF — A1 A] + 68,03 4+ 8A% — 8A1 — 2A%A,
—6A1Ay + 80y + 203 A3 — 6A3A3 + 6A1 A5 + 201 M A3 — 16A3A5 — 8A3 4 2A1 2
— 03 4 N2 607 — 20007 £ 2307 — 207 42030 — 6A20 — 2 ASL + N30 — 2 A3

FA2 — 4710 — T1A Mgl + 6A20 + 11A1 Azl + 401 AgAsl — 20 A3l — 630 + 81

N/33 —
2 8A1€(A1+A2—A3—€—4) (Al —A2+A3+€) (2A1 —10A2+10A3+A1€—2£—4) !

p=

A3+ 245 — 203 — 677 — A AF — 1203 — A A] + 68505 — 1205 — 203 A7 + 18A1Ay
+2A3A3 — 6A3A3 — 18A1A3 + 281 Ao Az + 2400 A5 + 20103 — (3 — A20% + 12A 47

—20p 02 4 20307 — 607 4+ 2030 — 1220 — 20 N30 + N30 — 2A A3 + N30+ 12A: 0

134 F11A1028 — 18A0 — 11A A3l + AA1 M A58 — 2Ar A3l + 18A3¢

(=D =D+ A3+ 0 +6) (—2A1 —2A5 +2A5 + 300 + 20 — 4)
T B32A10 (=AM — Ay + A3+ 0+ 4) (201 —10A; + 10A3 + Al — 20— 4)’
_ (*A17A2+A3+f+6) (*2A1*2A2+2A3+3A15+2€f4)
P=2 7 BOA10 (=N — Ay + A3+ £+ 4) (201 — 10A; + 10A3 + Al —20 — 4)’

2AT — 4A3 — 4N] — ANy — 20Dy — 16A; + 201 A3 + 8Ma A3 + 16A3 + A 0% + 202
— A2+ 610 — A Aol + 2000 + A Azl —2A30 + 40 — 16
p=2" 16A1L (=1 — Dy + Az + £ +4) (281 — 10A; + 10A3 + Al — 20 — 4) ’

B (—2A1 + 40y — 4Nz + Al +20) (=N — Dy + A3+ £+ 6)
 16AL (=D — Dy + A3+ £+ 4) (201 — 10Ay +10A3 + Al — 20 —4)

(D.6)
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Matrix for p = 4

N2y = —96(A1 — By — A3 + £ +6) (A1 — Do+ A3 + £). (D.7)

D.2 Four-point function basis

In this appendix we provide the explicit choice of basis for the four-point function of
currents defined in Section 7.2. We are working in conformal frame so the structures are
given in the notation (6.34). In particular, all structures will look like this

T —
' 1 G2 3 Q4 =

1 4
TREAE cn], Gwii=*s, Y@-1)=0. (D)

There are 70 choices of the charges g;, §; subject to the constraints of (D.8). They can all
be represented with a binary number of eight digits by taking q;, §; — q; + %, gi + % and
regarding the charges as binary digits 0, 1. If we express this number in the decimal
decimal basis we obtain a compact representation of all structures (obviously not all
numbers from 0 to 255 will appear as not all of them satisfy the constraint of zero total
charge). As an example

NI—=N[=
[STEEY ST
NI N =
[STEEY ST

TS, = [ ] — 11001010, = 202. (D.9)

With this funny notation, we now present our choice of basis

T — 255, M9 —238, Ty—221, T;—204, T2 187,
T —» 170, T —153, T 13, T —119, TJ, — 102,
T, —»8, 1,68, T 51, T =34, T 17,
T — 0, TS, — 237, M9 —235, T —219, Y — 202,
T, —201, T, =169, Ty —231, Ty —215, T — 198,
T — 197, T, —195, T — 183, T — 166, Ty — 165,
T, — 150, Ty, — 149, Ty —132, TH, — 163, Ty — 147,
T — 130, T3, — 129, T — 101, T —99, Ty, — 83,
T, - 66, Ty, =65, T —33, Ty —222, T — 190,
TS — 189, Ty, =172, T — 156, T4y — 154, T — 126,
T, — 125, Ty, —108, T —92, T —60, T — 123,
T — 106, T2 —90, T —105, T —89,  TY — 72,
T, -58, T, =57, TH—40, T, —24, T — 86,
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D.2. Four-point function basis

T — 54, T —53, TyH—36, T —20, Ty —18. (D.10)

The ordering that we chose is the default one given by n4ListStructures in CFTs4D.
These 70 structures do not satisfy the constraints of the kinematic permutation symmetry
7T € (6.6). Imposing these reduces the independent structures to 22. Since spacetime
parity and permutations do simply permute the charges, g;, ;, we can easily classify the
orbits under these permutations and define the structures by taking a representative of
each orbit and symmetrizing it. Define the total charge to be | }_; g;| = | ¥; §i|- We see
that there is one orbit at charge two, four orbits at charge one, nine orbits at charge zero
and obviously the same number orbits for negative charges. In total they are 19. We can
symmetrize them under permutations and parity, to obtain the 19" functions. We can
also antisymmetrize for parity and symmetrize for permutation symmetry. There are
only three structures in the zero charge orbit that survive. All the others are mapped
to zero. We therefore obtain the 3~ odd structures. Next we analyze one by one the 22
structures obtained and we take appropriate linear combinations of them so that the
result is either even or odd under z <+ z. The final result is

Ty = 8(T) + 1Y),

2z-1)z 0 0 2z—-1)..og 2(z2—1).o . 2z 2(z—1)z
Th=—--—T 2(T T T T T+ 22 2
2= 21)2 12+t ( 2+ 15)7L s—1 Bty Tt et -1z °
§TO,
27 2z
Ty = = (TS + TY) +2(TY, + T + T4, + T) +§(T88+T25)f

T, :Z(T(l)s"‘ngL‘FTge‘*‘ng"‘T%+T(5)1+T23+T29)f

15 = 252D (0 1) 4 2(w Y g+ ml) + 2E D (1 4wy,
Te = 42T, + 42° T3,
Ty = 4(T+19,),
Tg = 4(z — 1)*TI +4(z — 1)*TY,,
To = 4(T%; +TY,),
Ty = 4(TSH+TY),
Ty = 4(TY +T),
Ty = 2(TY + Ty + Tg, +T) +2(Th + T + T + TS;) ,
Ti3 = —(z— 1)z(T% + Tg,) — 2(2 — 1) (T + Tge) — (z — 1)2(TY, + Th)
—(2-1)z(T3 + T%,),
Tis = (1—2) (T + T + T+ Ty) + (1 — 2) (T + Ts + T + T¢5),
Tis = i(z — 1)z(TY — TY) +iz(z — 1) (T — T ) — i (z — 1)2(TY;, — TY)
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—i(z-1)z(T% ~ TS,),
Tie = i(z —1)(T9, — TS — T+ T) — iz(Th + T, — T§, — T¢;)
+i(2—1) (T — T — T + Tgs) +i2(T) + T — T, — T;),
Tiy = —i(z —1)(T9, — TS — Ty + Ty) — iz(TY + TG — T — T;)
—i(2—1)(T9 — T — T3+ Tfs) +i2(T9 + T — T, — TS) ,
Tig = 8(TY —TY) ,

2(z-1)z 2(z—1) 2(z—-1) 2z
T19=—WT(1)2+2(T3_T(1)5)+ o T3 - ) T(1)4‘|'§T(9)
2z—-1)z o 2z,
AET R0 22,
+ (z-1)z ° =z

2z o 0 0 0 0 0 2z o 0
Ty = *;(Tss +Tg) +2(T), — T + T — TY) + ;(Tzs +TY),
Ty = Z(T(lJB + 9, — T3 — T, + Tgs + T3, — Tg; — ng) /

22 1) (T8 + 1) +2(T; — TS, + T —TY,) + 2(27_11)@(1)9 +TY) .

T2=-=7 Z—

(D.11)

yooe

z <+ Z even and finally T1g19, 22 are P even and z <+ Z odd. All structures are CPT
invariant, which means that the associated functions are real. In particular, this explains
the presence of the i factor in T5 16,17

D.3 Superconformal blocks

In this appendix we will report all the values for the coefficients Sf’ft
in (7.114). We will proceed in order with p = 0,2 and 4.

od that were defined
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D.3. Superconformal blocks

D.3.1 S coefficients forp =0

For / > 2 even the results can be found in Table D.1. We named ®; some recurring
factors in the numerators for brevity. Here is their definition:

D = A% — 3+ 2A07 — 1102 — A20 + 14A0 — 400 — 12,

Dy = A —6A+ P +40+12,

D3 =A>—6A+1*48,

Dy = A3 —6A%+11A —2A0 + 40 —38,

D5 =A>—5A—AL+20+5,

Dy = A% — 12A* + 54A% — 120A? 4 145A — 8AL? + 16/7
+ 8A% — 32A0 + 241 — 76,

Oy =A*—6A+20+7.

(D.12)

Coefficient Value

11
So|11 1
1
Sz -
o2z 5
22
Soz 1
su CD%(A —{— 2)

L=l 2+ 1)2(A—€-1)
(A—3)2(A—0—2)(A+0)

Sll

L+,—[1 2(A —1)A(0+1)
s (A—(—4*A+20)
L4+ 4(A+0+1)

S12 D1y ({ —1)(A— L —2)
L——1 ((+1)2(A—1—1)
1+-[11 (A—1)A(+1)
Sn _¢4A—£—®%A+@
14411 2(A+0+1)
52 203(£ —1)2(A — £ 2)

L== (L+1)2(A—0—1)

Table D.1. Superconformal block coefficients for G; 5 (4 ¢) with £ even (continues).
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Coefficient Value (continued)
S22 2(A—=3)2(A - —-2)(A+ 1)
L+—m (A—1)A(l+1)
S22 DI(A+ 1)

Lt A

Sul DIA-L—-2)(A+7)
A 16(A—1)4A2(A—(—1)(A+L+1)

st DyPs(A — £ —2)(A+ ()
212 16(A —1)4A2(A— L —1)(A+ £+ 1)

o DA — € —2)(A+0)
222 16(A—1)4A2(A—(—1)(A+L+1)

S12 (A=2)D,(L—1)(A—L—=2)(A+ 1)
21 4(A-1)4A2(A— 4 —1)(A+£+1)

Si2 (A=2)P(A—L—-2)(A+ 1)
212 32(A—1)4A2(A— L —1)(A+ £+ 1)

Sli2 (A =2)®5P7(A—L-2)(A+ )
242 16(A - 14N (A — L —1)(A+L+1)

g (B=2P(-1)*A—-(=2)(A+{)
A (A=1)4A2(A—C—1)(A+L+1)

S2 (A —2)2D;(4 —1)(A— £ —2)(A+ )
212 4(A—1)4A2(A—L—1)(A+(+1)

S22 (A =2)2PF(A L -2)(A+ 1)
222 16(A —1)4A2(A—(—1)(A+L+1)

Table D.1. Superconformal block coefficients for G; 5 () with £ even.

The results for £ > 3 odd are in Table D.2. Also in this case we defined some factors ¥;
as follows

Y1 = —5A% +20A + 302 + 6/ — 24,

Yy = 2A% —16A 4 03 — A2 +70% — A20 4100 + 24,
¥y =A%—6A— 02+ A0—30+10,

Yy = —3A%+6A+ (>4,

Y5 = —3A% +6A + (> + 40,
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D.3. Superconformal blocks

Yo = —12A% + 110A% — 292A% + 288A + 20° + Al* + 80* — 8A%(3 + 27A (3
— 1803 4 A3% — 20A%0% + 20A0% — 807 + 6A 0 — 27A30 + 38A%¢

— 60A/¢ + 404 — 96,

Y, = 6A* — 53A3 + 162A% — 184A + 20* + AL3 + 803 — 8A>(% + 25A0% — 1447

+ A30 — 8A%0 + 26A0 — 440 + 48,

Yo = —5A% 4+ 35A% — 84A% + 84A + 3A%(% — 13AL% + 1607 + 6A%0 — 260

Coefficient Value

+ 320 —48.
58k
Si--m
Si%,-m
311,1+,+\11
Si- 2
311,1+,+\12
Si-
511,1+,+\22
Si2
Si%
S1% e

Table D.2. Superconformal block coefficients for G; 5 (5,¢) with £ odd (continues).

1

(£ —2)2(A— € —5)2(A— £ —2)(A+ ()
2(A—2)202(0 + 1)2¥3(A — € — 1)

(A—4)2(0—-1)2(A—0—-2)(A+ 1)
2(A —1)AL(L+1)Y2

(A—0—=2)2(A+L—-3)2(A+ 1)
4(A—2)2(0+1)2¥2(A+£+1)

(£—2)¥2(A—C—5)(A—C—2)(A+0)

4(A—2)202(0+1)2¥3(A— (- 1)

Y3(A—C0—2)(A+(-3)(A+¢)
8(A—2)2(L+1)2¥2(A+(+1)

Y2(A—(—2)
8(A —2)202(0 + 1)2¥3(A — £ — 1)

YZ(A+¢)
16(A —2)2(0 +1)2¥2(A+ 0 +1)

(0—2)(L+3)(L+4)Fa(A—C—5)(A—L—2)(A+1)

16(A —2)3(£ — 1)L +1)2¥2(A — £ — 1)

(A—4)(L—1)(L+4)(A—L—2)(A+0)
8(A—2)AL(L+1)¥2

Ys5(A—0—2)(A+0—-3)(A+ 1)
32(A—2)3(L+1)%¥3(A+ L +1)

(D.13)
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Coefficient Value

(continued)

312 _

(£43)(£+4)¥6(A — € —2)

812 III7(A +€)

1--112 64(A —2)3(0 —1)02(L+1)2¥2(A— £ —1)

L2 128(A —2)3(£+1)2¥3(A + £+ 1)

(0 +3)(L+4)¥2(A -0 —2)2(3A+ 1 —4)

312

312 _

L=l22 6a(A—2)3(0 - 1) (L +1)293(A — £ — 1)
¥3(A—0—4)(A+0)(BA+ 0 —2)

822

1,+,+(22 128(A —2)3(L+1)2¥3(A+ L+ 1)

(0+3)%(0+4)*¥5(A—0-2)

L==l1 0 128(A — 2)4(¢ — 1)202(£ +1)2¥3(A — £ — 1)

(A—=1)l+4)*(A—1-2)(A+0)

822 _

822
L~ 32(A —2)2AL(¢ +1)¥3
S22 Yi(A+0)

LAt 256(A —2)4(0 +1)2¥2(A+ £ +1)

(L+3)2(0+4)*Fy (A — 0 —2)2(BA+ 1 —4)

322 _

Ys(A——4)(A+0)(3BA+(—2)

822

L+12 512(A —2)4(£ +1)2¥3(A+ £+ 1)

(L+3)2(0+4)2(A—0—2)33A+ 1 —4)?

(A — € —4)?

L==22 0 512(A = 2)4(0 — 1)202(£ +1)2¥3(A — € — 1)

A+0)(3A+ £ —2)?

822

311

(
L4220 1024(A — 2)4(0 +1)2¥3(A + £+ 1)
YI(A—C0-2)(A+ )

512 _

21 16(A —1)2A2¥2(A— £ —1)(A+ £+ 1)

(6+3)(£+4)¥s(A— € —2)(A+0)

L=—12 256(A —2)4(0 —1)202(£ +1)2%3(A — £ — 1)

522

(04+3)2(0+42(A— £ —2)(A+0)

21 16(A —2)2A2¥2(A— £ —1)(A+ L+ 1)

211 16(A—2)(A—1)A2Y2(A—(—1)(A+L+1)

Table D.2. Superconformal block coefficients for G; 5 (7,¢) with £ odd.

Next we have the special case for / =0
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Coefficient Value
S&\ln 1
it (8~ 4)A
1,+,+/11 4(A—|—1)
o _(A-92a-2)
A 16(A—-1)A(A+1)

Table D.3. Superconformal block coefficients for G; s (0,0)-

And finally for £ =1

Coefficient Value

11
80\11

11
31,7,7\11

11
Sl,+,+\11

11
Sl,+,+\12

11
Sl,+,+\22

11
82\11

1
A-3
2(A—2)(A—1)2
A+1
400(A —1)2(A+2)
A+1
800(A —1)2(A +2)
A+1

1600(A — 1)2(A +2)
(A—=3)3(A+1)

16(A —2)(A—1)2(A+2)

Table D.4. Superconformal block coefficients for G; s (1,1)-

D.3.2 S coefficients for p = 2

In Table D.5 we show the coefficients for spin (¢ + 2, ¢) where ¢ is even

Coefficient Value

811

oin 1

Table D.5. Superconformal block coefficients for G; 5 (442, for £ even (continues).
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Coefficient Value (continued)

snl (L+3)(L+4)*(A—10—4)
L= 200+ 1)(0+2)(A—€—3)

(A—=3)2(L+4)2(A—1—4)(A+ 1)

Sll
1,—+11 (A=2)(A=1)(¢+2)(¢+3)
. A+1

1+,+(11 4(A—i—€—|—1)

st (A=3)2(A=2)(A—L—4)(A+0)
21 T6(A—1D)AA+1)(A—C(—3)(A+(+1)

Table D.5. Superconformal block coefficients for G; 5 (s42,¢) for £ even.

The results for odd ¢ are significantly more involved instead. We defined some recurring
factors as ();, written below. The coefficients can be found in Table D.6 for ¢ > 3 and in
Table D.7 for ¢ = 1.

O = —5A% +20A + (2 + 40 — 20,
Oy = 3A% — 16A + 50 +- 4AL + 40 + 36,
O3 = —12A% + 96A3 — 360A% + 672A + AL* + 14 + 3A2(% — 13AL° + 4405 + 3A3¢?
— 45A%0% 4 128A0% — 407 — BA*0 + 21A%0 — 168A%¢ + 532A¢ — 416/ — 480,
Oy = 12A% — 58A + 2A0% — 307 + 3A%0 — 4AL — 120+ 60,
Q5 = 60A? — 360A + 50* + 4AL% +190° + 3A%(% — 14A0* + 5802 + 27A*¢ — 170AL
4 248¢ + 480,
QO = 120A% — 960A? + 2400A + AL% + £° + 11A%0* — 49AL* + 900* + 15703 — 65A2(°
+ 2AL% 429203 — 3A? + 117307 — 722A20* 4 1372A0% — 4560% — 12A%¢
+ 318A30 — 1984A%( + 43440 — 29120 — 1920,
Oy = —3A2 +6A + 1> + 40,
Qg = —180A% + 1800A* — 6480A% + 10080A2 — 5760A + Al + ¢7 + 8A2(° — 27AL°
+ 7000 + 9A3° — B6A20° + 4N + 3640° — 21A** + 204A3 0% — 943A%¢*
+ 1710A0* — 320* — 30A°¢% 4+ 231A%7% — 423A3% — 1602A%(° + 5704A0°
— 3008/ + 9A®L? — 249A°F% + 1905A*0> — 5850A° (% + 5684A(* 4 3672A 1>
— 560002 4 36A°¢ — 741A%0 4 5190A*¢ — 16140A30 + 22344A%( — 9984A0 — 19207,
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Q9 = —15A° + 135A* — 390A% + 300A2 + 360A + 3A%¢% — 31AL° + 460° + 3A3¢?

— 27A20% 4 2A0% + 11202 — 15A*0 + 147A30 — 546 A0 + 884AL — 488( — 480.
(D.14)

Coefficient Value

11
80\11

1

st (0 —1)205(A — € —4)
L=l 184+ 1) (£ 4 2) (€ +3)02(A — £ —3)

s COE(A—1—4)
L=l 36(A —2)3(A — 1) (£ +1)2(£+2)(£ +3) (£ +4)202 (A + ¢)

sn 4£QZ(A 0—4)2(A—0-2)(A++2)
Lt~ IA(A+1)(£+1)(+4)202
s QA+ —2)?

LA 36(0+4)2(0+ 5203 (A+ 0)(A+ £+ 1)
0Q306(A — £ — 4)

511 A2 72(A=2)3(A—1)((+1)2(0+2)(£+3) (L +4)202(A+ 1)
st O2(A—1—4)
V=22 144(A — 2)3(A — 1) (€ + 1)2(€ +2) (€ + 3) (£ + 4)203 (A + £)

1)
stz (E=1)(+4)(£+5) (A -4
1,-,-11 9L +1)(€+2)(L+3)02
. 000 +5)Q307(A — £ — 4)
L= 7 36(A —2)2(A— 1)(0+1)2(£+2) (£ +3) (£ + 4) Q2 (A + )

20045)Q(A— £ —4)2(A—0—-2)(A+ 1 +2)

812 _
L= IA+T)(L+1)(£+4)03
St Qs(A— € —4)(A+£—2)

LAl 18(0+4)(0+5)Q2 (A +0)

oo - (0 +5)Qs(A— € —4)
L=z 72(A=2)2(A = 1) (£ +1)2(0+2) (£ +3) (£ + 4)O3(A + £)

St (£+5)Q6(A— € —4)2(3A+ £ —2)
L2 144(A —2)2(A = 1) (£ +1)2(0 +2) (£ +3) (L +4) Q2 (A + ()

Table D.6. Superconformal block coefficients for G; A (t+2,0) for ¢ > 3 odd (continues).

207



Appendix D. Appendices for the bootstrap

208

Coefficient Value (continued)
o 20+ 4)P(L+5*(A—L—4)(A—1-3)
L- 1 U(L+1)(€+2)(£+3)]
o (£+5)°0%(A—L—4)
L= 36(A —2)(A — 1)(£+ 1)2(0+2)(£+3)Q2(A + €)
S22 Al +52(A—L—4)*(A—L=2)(A+{+2)
L4,-11 9(A+1)E(0+1)03
” (A—C—4)2(A+10+1)
St 1 92 (A + )
o B (£+5)°Q7(A— 0 —4)*(3A+(—2)
1 +12 72(A =2)(A=T1)(£+1)2(£+2)(£ +3)Q3 (A + 1)
o (£+5)2(A—€—4)°(BA+(—2)?
L=42 Taa(A—2)(A—1)(0+ 1)2(0+2)({ +3)Q2(A + 0)
- O(A—(—4)
211 144(A —2)(A—1)A(A + DO2(A—L=3)(A+0)(A+L+1)
. (0+4)(€+5)Q9(A—(—4)
2 36(A—2)AA+1)O3(A——3)(A+ ) (A+L+1)
o (B—1)(£+4)*(L+5>(A— L —4)

2/11

9(A—2)AA+1)2(A—L—3)(A+L)(A+L+1)

Table D.6. Superconformal block coefficients for G; 5 (p12,¢) for £ > 3 odd.

Coefficient Value

Sll

oin 1

Sl _ (A-5) (4% +44 —19)°
LA T 800(A —2)3(A — 1) (A + 1)

_2(A-=5)*(A-3)(A+3)

811
L, =11 25A(A +1)
811 (A — 3)2

LA 100(A + 1) (A +2)

1 +12 9600(A —2)3(A —1)(A+1)

Table D.7. Superconformal block coefficients for ; 5 (3,1) (continues).
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Coefficient Value (continued)

Sh ~(A—5) (A% +34A —109)°
L=t22 7 19200(A —2)3(A — 1) (A + 1)

Sl (A—5)(A—-3)*A+2)
21 16(A —4)(A—2)(A —1)A(A +1)2

Table D.7. Superconformal block coefficients for G; 5 (31)-

D.3.3 S coefficients for p = 4

To conclude this appendix we present the results for (¢ + 4, £). In Table D.8 are shown
the coefficients for £ even

Coefficient Value

55‘111 (A—1—6)

)(A— € —6)
((+4)(B+0)
2(A—3)(A—L—6)(A—C—4)(A—L—2)
A+1)(A+2)(A—C—3)(A+O)(A+L+3)
X (A+C+2)(A+C+4)

si (A—4)2(0+5
L=l 4(A —3)(A—2)

—_
o)
—~
[>
I\J
N—~—
—~

11
82\11

Table D.8. Superconformal block coefficients for G; 5 (y14.¢) for £ even.

Next we show in Table D.9 the results for ¢ odd.

Coefficient Value

(L+5)({+6)2(A—L—6)(A—L—4)(A—1—2)

St m 8(A—2)20(0+1)(L+4)(A—1—3)
st (A —3)(£+6)2(A—{—6)

L=l 16(A —2)3(0 +4)(L +5)(A+ 1)

Sl (A—0—6)2(A+L+2)(A+L+4)
L 16(A —2)2(A+4)(A+(+3)

Table D.9. Superconformal block coefficients for G; 5 (y14,¢) for £ odd.
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And finally here follow the results for £ = 0

Coefficient Value

11
30\11

(A—6)?

811
L=+l 16(A —3)(A —2)A

gn  (A—6)(A—4)°(A+4)
2|11 16A(A +1)(A +3)

Table D.10. Superconformal block coefficients for G; 5 (4,0)-

210



Bibliography
[1] L Buric, V. Schomerus and E. Sobko, Superconformal Blocks: General Theory, JHEP 01

(2020) 159 [1904 . 04852].

[2] J. Polchinski, Scale and Conformal Invariance in Quantum Field Theory, Nucl. Phys. B
303 (1988) 226.

[3] M. A. Luty, J. Polchinski and R. Rattazzi, The a-theorem and the Asymptotics of 4D
Quantum Field Theory, JHEP 01 (2013) 152 [1204.5221].

. INaKayama, ocale tnmoariarice Us conjormal tnoariarice, S. kept.
[4] Y. Nakayama, Scale invari  invariance, Phys. Rept. 569 (2015) 1
[1302.0884].

[5] A.Dymarsky, Z. Komargodski, A. Schwimmer and S. Theisen, On Scale and
Conformal Invariance in Four Dimensions, [HEP 10 (2015) 171 [1309.2921].

[6] H. Georgi, Unparticle physics, Phys. Rev. Lett. 98 (2007) 221601 [hep-ph/0703260].

[7] H. Georgi, Another odd thing about unparticle physics, Phys. Lett. B 650 (2007) 275
[0704.2457].

[8] N. A. Nekrasov, Seiberg-witten prepotential from instanton counting, Adv. Theor. Math.
Phys. 7 (2003) 831.

[9] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson
loops, Commun. Math. Phys. 313 (2012) 71 [0712.2824].

[10] V. Pestun et al., Localization techniques in quantum field theories, ]. Phys. A 50 (2017)
440301 [1608.02952].

[11] W. Nahm, Supersymmetries and their Representations, Nucl. Phys. B135 (1978) 149.

[12] V. K. Dobrev and V. B. Petkova, All Positive Energy Unitary Irreducible
Representations of Extended Conformal Supersymmetry, Phys. Lett. 162B (1985) 127.

[13] F. Dolan and H. Osborn, On short and semi-short representations for four-dimensional
superconformal symmetry, Annals Phys. 307 (2003) 41 [hep-th/0209056].

211


https://doi.org/10.1007/JHEP01(2020)159
https://doi.org/10.1007/JHEP01(2020)159
https://arxiv.org/abs/1904.04852
https://doi.org/10.1016/0550-3213(88)90179-4
https://doi.org/10.1016/0550-3213(88)90179-4
https://doi.org/10.1007/JHEP01(2013)152
https://arxiv.org/abs/1204.5221
https://doi.org/10.1016/j.physrep.2014.12.003
https://arxiv.org/abs/1302.0884
https://doi.org/10.1007/JHEP10(2015)171
https://arxiv.org/abs/1309.2921
https://doi.org/10.1103/PhysRevLett.98.221601
https://arxiv.org/abs/hep-ph/0703260
https://doi.org/10.1016/j.physletb.2007.05.037
https://arxiv.org/abs/0704.2457
https://doi.org/10.1007/s00220-012-1485-0
https://arxiv.org/abs/0712.2824
https://doi.org/10.1088/1751-8121/aa63c1
https://doi.org/10.1088/1751-8121/aa63c1
https://arxiv.org/abs/1608.02952
https://doi.org/10.1016/0550-3213(78)90218-3
https://doi.org/10.1016/0370-2693(85)91073-1
https://doi.org/10.1016/S0003-4916(03)00074-5
https://arxiv.org/abs/hep-th/0209056

Bibliography

[14] C. Cordova, T. T. Dumitrescu and K. Intriligator, Multiplets of Superconformal
Symmetry in Diverse Dimensions, [HEP 03 (2019) 163 [1612.00809].

[15] M. Buican, J. Hayling and C. Papageorgakis, Aspects of Superconformal Multiplets in
D>4, JHEP 11 (2016) 091 [1606.00810].

[16] W. E. Caswell, Asymptotic behavior of non-abelian gauge theories to two-loop order,
Phys. Rev. Lett. 33 (1974) 244.

[17] T. Banks and A. Zaks, On the phase structure of vector-like gauge theories with massless
fermions, Nuclear Physics B 196 (1982) 189 .

[18] L. Di Pietro and M. Serone, Looking through the QCD Conformal Window with
Perturbation Theory, JHEP 07 (2020) 049 [2003.01742].

[19] T. DeGrand, Lattice tests of beyond Standard Model dynamics, Rev. Mod. Phys. 88
(2016) 015001 [1510.05018].

[20] T. Appelquist, J. Terning and L. Wijewardhana, The Zero temperature chiral phase
transition in SU(N) gauge theories, Phys. Rev. Lett. 77 (1996) 1214 [hep-ph/9602385].

[21] H. Gies and ]. Jaeckel, Chiral phase structure of QCD with many flavors, Eur. Phys. |.
C 46 (2006) 433 [hep-ph/0507171].

[22] S. Gukov, RG Flows and Bifurcations, Nucl. Phys. B 919 (2017) 583 [1608.06638].

[23] E. Kuipers, U. Giirsoy and Y. Kuznetsov, Bifurcations in the RG-flow of QCD, J[HEP
07 (2019) 075 [1812.05179].

[24] R. Alvares, N. Evans and K.-Y. Kim, Holography of the Conformal Window, Phys. Rev.
D 86 (2012) 026008 [1204 .2474].

[25] D. Poland, D. Simmons-Duffin and A. Vichi, Carving Out the Space of 4D CF1Ts,
JHEP 05 (2012) 110 [1109.51786].

[26] D. Poland and A. Stergiou, Exploring the Minimal 4D N' =1 SCFT, JHEP 12 (2015)
121 [1509.06368].

[27] N. Seiberg, Electric - magnetic duality in supersymmetric nonAbelian gauge theories,
Nucl. Phys. B 435 (1995) 129 [hep-th/9411149].

[28] D. Gaiotto, N=2 dualities, JHEP 08 (2012) 034 [0904..2715].

[29] D. Gaiotto, G. W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems, and the
WKB Approximation, 0907 . 3987.

[30] P.C. Argyres and M. R. Douglas, New phenomena in SU(3) supersymmetric gauge
theory, Nucl. Phys. B 448 (1995) 93 [hep-th/9505062].

212


https://doi.org/10.1007/JHEP03(2019)163
https://arxiv.org/abs/1612.00809
https://doi.org/10.1007/JHEP11(2016)091
https://arxiv.org/abs/1606.00810
https://doi.org/10.1103/PhysRevLett.33.244
https://doi.org/https://doi.org/10.1016/0550-3213(82)90035-9
https://doi.org/10.1007/JHEP07(2020)049
https://arxiv.org/abs/2003.01742
https://doi.org/10.1103/RevModPhys.88.015001
https://doi.org/10.1103/RevModPhys.88.015001
https://arxiv.org/abs/1510.05018
https://doi.org/10.1103/PhysRevLett.77.1214
https://arxiv.org/abs/hep-ph/9602385
https://doi.org/10.1140/epjc/s2006-02475-0
https://doi.org/10.1140/epjc/s2006-02475-0
https://arxiv.org/abs/hep-ph/0507171
https://doi.org/10.1016/j.nuclphysb.2017.03.025
https://arxiv.org/abs/1608.06638
https://doi.org/10.1007/JHEP07(2019)075
https://doi.org/10.1007/JHEP07(2019)075
https://arxiv.org/abs/1812.05179
https://doi.org/10.1103/PhysRevD.86.026008
https://doi.org/10.1103/PhysRevD.86.026008
https://arxiv.org/abs/1204.2474
https://doi.org/10.1007/JHEP05(2012)110
https://arxiv.org/abs/1109.5176
https://doi.org/10.1007/JHEP12(2015)121
https://doi.org/10.1007/JHEP12(2015)121
https://arxiv.org/abs/1509.06368
https://doi.org/10.1016/0550-3213(94)00023-8
https://arxiv.org/abs/hep-th/9411149
https://doi.org/10.1007/JHEP08(2012)034
https://arxiv.org/abs/0904.2715
https://arxiv.org/abs/0907.3987
https://doi.org/10.1016/0550-3213(95)00281-V
https://arxiv.org/abs/hep-th/9505062

Bibliography

[31] P. C. Argyres, M. Plesser, N. Seiberg and E. Witten, New N=2 superconformal field
theories in four-dimensions, Nucl. Phys. B 461 (1996) 71 [hep-th/9511154].

[32] P.C. Argyres, M. Crescimanno, A. D. Shapere and J. R. Wittig, Classification of N=2
superconformal field theories with two-dimensional Coulomb branches,
hep-th/0504070.

[33] P.C. Argyres and J. R. Wittig, Classification of N=2 superconformal field theories with
two-dimensional Coulomb branches. 1I., hep-th/0510226.

[34] C.Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B. C. van Rees, Infinite
Chiral Symmetry in Four Dimensions, Commun. Math. Phys. 336 (2015) 1359
[1312.5344].

[35] C.Beem, L. Rastelli and B. C. van Rees, W symmetry in six dimensions, JHEP 05
(2015) 017 [1404.1079].

[36] J. M. Maldacena, The Large N limit of superconformal field theories and supergravity,
Int. . Theor. Phys. 38 (1999) 1113 [hep-th/9711200].

[37] 1. Garcia-Etxebarria and D. Regalado, N = 3 four dimensional field theories, [HEP 03
(2016) 083 [1512.06434].

[38] O. Aharony and Y. Tachikawa, S-folds and 4d N=3 superconformal field theories, [HEP
06 (2016) 044 [1602.08638].

[39] L Garcia-Etxebarria and D. Regalado, Exceptional N° = 3 theories, [HEP 12 (2017)
042 [1611.05769].

[40] M. Lemos, P. Liendo, C. Meneghelli and V. Mitev, Bootstrapping N' = 3
superconformal theories, [HEP 04 (2017) 032 [1612.01536].

[41] G. Mack, Convergence of Operator Product Expansions on the Vacuum in Conformal
Invariant Quantum Field Theory, Commun. Math. Phys. 53 (1977) 155.

[42] D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE Convergence in
Conformal Field Theory, Phys. Rev. D 86 (2012) 105043 [1208.6449].

[43] M. Hogervorst and S. Rychkov, Radial Coordinates for Conformal Blocks, Phys. Rev. D
87 (2013) 106004 [1303.1111].

[44] G. Mack and A. Salam, Finite component field representations of the conformal group,
Annals Phys. 53 (1969) 174.

[45] S. Ferrara, A. F. Grillo and R. Gatto, Tensor representations of conformal algebra and
conformally covariant operator product expansion, Annals Phys. 76 (1973) 161.

[46] A. M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp.
Teor. Fiz. 66 (1974) 23.

213


https://doi.org/10.1016/0550-3213(95)00671-0
https://arxiv.org/abs/hep-th/9511154
https://arxiv.org/abs/hep-th/0504070
https://arxiv.org/abs/hep-th/0510226
https://doi.org/10.1007/s00220-014-2272-x
https://arxiv.org/abs/1312.5344
https://doi.org/10.1007/JHEP05(2015)017
https://doi.org/10.1007/JHEP05(2015)017
https://arxiv.org/abs/1404.1079
https://doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://doi.org/10.1007/JHEP03(2016)083
https://doi.org/10.1007/JHEP03(2016)083
https://arxiv.org/abs/1512.06434
https://doi.org/10.1007/JHEP06(2016)044
https://doi.org/10.1007/JHEP06(2016)044
https://arxiv.org/abs/1602.08638
https://doi.org/10.1007/JHEP12(2017)042
https://doi.org/10.1007/JHEP12(2017)042
https://arxiv.org/abs/1611.05769
https://doi.org/10.1007/JHEP04(2017)032
https://arxiv.org/abs/1612.01536
https://doi.org/10.1007/BF01609130
https://doi.org/10.1103/PhysRevD.86.105043
https://arxiv.org/abs/1208.6449
https://doi.org/10.1103/PhysRevD.87.106004
https://doi.org/10.1103/PhysRevD.87.106004
https://arxiv.org/abs/1303.1111
https://doi.org/10.1016/0003-4916(69)90278-4
https://doi.org/10.1016/0003-4916(73)90446-6

Bibliography

[47] M. Luscher and G. Mack, Global Conformal Invariance in Quantum Field Theory,
Commun. Math. Phys. 41 (1975) 203.

[48] V.K. Dobrev, V. B. Petkova, S. G. Petrova and I. T. Todorov, Dynamical derivation of
vacuum operator-product expansion in euclidean conformal quantum field theory, Phys.
Rev. D 13 (1976) 887.

[49] H. Dorn and H. Otto, On correlation functions for noncritical strings with c <=1d >=
1, Phys. Lett. B 291 (1992) 39 [nep-th/9206053].

[50] A.B.Zamolodchikov and A. B. Zamolodchikov, Structure constants and conformal
bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136].

[51] R. Rattazzi, V. S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator
dimensions in 4D CFT, JHEP 12 (2008) 031 [0807 .0004].

[52] S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and
A. Vichi, Solving the 3D Ising Model with the Conformal Bootstrap, Phys. Rev. D 86
(2012) 025022 [1203.6064].

[53] F.Kos, D. Poland and D. Simmons-Duffin, Bootstrapping Mixed Correlators in the
3D Ising Model, JHEP 11 (2014) 109 [1406 . 4858].

[54] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models,
JHEP 06 (2014) 091 [1307 . 6856].

[55] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N)
Archipelago, JHEP 11 (2015) 106 [1504.07997].

[56] F.Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision Islands in the Ising
and O(N) Models, JHEP 08 (2016) 036 [1603.04436].

[57] S. M. Chester, W. Landry, J. Liu, D. Poland, D. Simmons-Duffin, N. Su et al.,
Carving out OPE space and precise O(2) model critical exponents, JHEP 06 (2020) 142
[1912.03324].

[58] M. Reehorst, E. Trevisani and A. Vichi, Mixed Scalar-Current bootstrap in three
dimensions, 1911 .05747.

[59] S. M. Chester and S. S. Pufu, Towards bootstrapping QEDs3, JHEP 08 (2016) 019
[1601.03476].

[60] J. Bagger and N. Lambert, Modeling Multiple M2’s, Phys. Rev. D 75 (2007) 045020
[hep-th/0611108].

[61] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, N=6 superconformal
Chern-Simons-matter theories, M2-branes and their gravity duals, [JHEP 10 (2008) 091
[0806.1218].

214


https://doi.org/10.1007/BF01608988
https://doi.org/10.1103/PhysRevD.13.887
https://doi.org/10.1103/PhysRevD.13.887
https://doi.org/10.1016/0370-2693(92)90116-L
https://arxiv.org/abs/hep-th/9206053
https://doi.org/10.1016/0550-3213(96)00351-3
https://arxiv.org/abs/hep-th/9506136
https://doi.org/10.1088/1126-6708/2008/12/031
https://arxiv.org/abs/0807.0004
https://doi.org/10.1103/PhysRevD.86.025022
https://doi.org/10.1103/PhysRevD.86.025022
https://arxiv.org/abs/1203.6064
https://doi.org/10.1007/JHEP11(2014)109
https://arxiv.org/abs/1406.4858
https://doi.org/10.1007/JHEP06(2014)091
https://arxiv.org/abs/1307.6856
https://doi.org/10.1007/JHEP11(2015)106
https://arxiv.org/abs/1504.07997
https://doi.org/10.1007/JHEP08(2016)036
https://arxiv.org/abs/1603.04436
https://doi.org/10.1007/JHEP06(2020)142
https://arxiv.org/abs/1912.03324
https://arxiv.org/abs/1911.05747
https://doi.org/10.1007/JHEP08(2016)019
https://arxiv.org/abs/1601.03476
https://doi.org/10.1103/PhysRevD.75.045020
https://arxiv.org/abs/hep-th/0611108
https://doi.org/10.1088/1126-6708/2008/10/091
https://arxiv.org/abs/0806.1218

Bibliography

[62] O. Aharony, O. Bergman and D. L. Jafferis, Fractional M2-branes, JHEP 11 (2008)
043 [0807 . 4924].

[63] N. Lambert, M-Theory and Maximally Supersymmetric Gauge Theories, Ann. Rev.
Nucl. Part. Sci. 62 (2012) 285 [1203.4244].

[64] S. M. Chester, J. Lee, S. S. Pufu and R. Yacoby, The N' = 8 superconformal bootstrap
in three dimensions, JHEP 09 (2014) 143 [1406.4814].

[65] S. M. Chester, J. Lee, S. S. Pufu and R. Yacoby, Exact Correlators of BPS Operators
from the 3d Superconformal Bootstrap, JHEP 03 (2015) 130 [1412.0334].

[66] N.B. Agmon, S. M. Chester and S. S. Pufu, Solving M-theory with the Conformal
Bootstrap, JHEP 06 (2018) 159 [1711.07343].

[67] V.S. Rychkov and A. Vichi, Universal Constraints on Conformal Operator Dimensions,
Phys. Rev. D 80 (2009) 045006 [0905 . 2211].

[68] E. Caracciolo and V. S. Rychkov, Rigorous Limits on the Interaction Strength in
Quantum Field Theory, Phys. Rev. D 81 (2010) 085037 [0912.2726].

[69] R. Rattazzi, S. Rychkov and A. Vichi, Central Charge Bounds in 4D Conformal Field
Theory, Phys. Rev. D 83 (2011) 046011 [1009.2725].

[70] R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D Conformal Field Theories with
Global Symmetry, |. Phys. A 44 (2011) 035402 [1009.5985].

[71] A. Vichi, Improved bounds for CFT’s with global symmetries, [HEP 01 (2012) 162
[1106.4037].

[72] Z.Liand D. Poland, Searching for gauge theories with the conformal bootstrap,
2005.01721.

[73] F. Caracciolo, A. Castedo Echeverri, B. von Harling and M. Serone, Bounds on OPE
Coefficients in 4D Conformal Field Theories, JHEP 10 (2014) 020 [1406.7845].

[74] H.Iha, H. Makino and H. Suzuki, Upper bound on the mass anomalous dimension in
many-flavor gauge theories: a conformal bootstrap approach, PTEP 2016 (2016) 053B03
[1603.01995].

[75] Y. Nakayama, Bootstrap bound for conformal multi-flavor QCD on lattice, [HEP 07
(2016) 038 [1605 . 04052].

[76] D. Poland and D. Simmons-Duffin, Bounds on 4D Conformal and Superconformal
Field Theories, JHEP 05 (2011) 017 [1009.2087].

[77] C. Beem, L. Rastelli and B. C. van Rees, The N' = 4 Superconformal Bootstrap, Phys.
Rev. Lett. 111 (2013) 071601 [1304.1803].

215


https://doi.org/10.1088/1126-6708/2008/11/043
https://doi.org/10.1088/1126-6708/2008/11/043
https://arxiv.org/abs/0807.4924
https://doi.org/10.1146/annurev-nucl-102010-130248
https://doi.org/10.1146/annurev-nucl-102010-130248
https://arxiv.org/abs/1203.4244
https://doi.org/10.1007/JHEP09(2014)143
https://arxiv.org/abs/1406.4814
https://doi.org/10.1007/JHEP03(2015)130
https://arxiv.org/abs/1412.0334
https://doi.org/10.1007/JHEP06(2018)159
https://arxiv.org/abs/1711.07343
https://doi.org/10.1103/PhysRevD.80.045006
https://arxiv.org/abs/0905.2211
https://doi.org/10.1103/PhysRevD.81.085037
https://arxiv.org/abs/0912.2726
https://doi.org/10.1103/PhysRevD.83.046011
https://arxiv.org/abs/1009.2725
https://doi.org/10.1088/1751-8113/44/3/035402
https://arxiv.org/abs/1009.5985
https://doi.org/10.1007/JHEP01(2012)162
https://arxiv.org/abs/1106.4037
https://arxiv.org/abs/2005.01721
https://doi.org/10.1007/JHEP10(2014)020
https://arxiv.org/abs/1406.7845
https://doi.org/10.1093/ptep/ptw046
https://arxiv.org/abs/1603.01995
https://doi.org/10.1007/JHEP07(2016)038
https://doi.org/10.1007/JHEP07(2016)038
https://arxiv.org/abs/1605.04052
https://doi.org/10.1007/JHEP05(2011)017
https://arxiv.org/abs/1009.2087
https://doi.org/10.1103/PhysRevLett.111.071601
https://doi.org/10.1103/PhysRevLett.111.071601
https://arxiv.org/abs/1304.1803

Bibliography

[78] C. Beem, M. Lemos, P. Liendo, L. Rastelli and B. C. van Rees, The N’ = 2
superconformal bootstrap, JHEP 03 (2016) 183 [1412.7541].

[79] C. Beem, L. Rastelli and B. C. van Rees, More N = 4 superconformal bootstrap, Phys.
Rev. D 96 (2017) 046014 [1612.02363].

[80] M. Cornagliotto, M. Lemos and P. Liendo, Bootstrapping the (A1, Az)
Argyres-Douglas theory, JHEP 03 (2018) 033 [1711.00016].

[81] A. Gimenez-Grau and P. Liendo, Bootstrapping Coulomb and Higgs branch operators,
2006.01847.

[82] D. Karateev, P. Kravchuk, M. Serone and A. Vichi, Fermion Conformal Bootstrap in
4d, JHEP 06 (2019) 088 [1902.05969].

[83] A.Dymarsky, F. Kos, P. Kravchuk, D. Poland and D. Simmons-Duffin, The 3d
Stress-Tensor Bootstrap, JHEP 02 (2018) 164 [1708.05718].

[84] A.Dymarsky, J. Penedones, E. Trevisani and A. Vichi, Charting the space of 3D CFT5
with a continuous global symmetry, [HEP 05 (2019) 098 [1705.04278].

[85] H. Osborn and A. Petkou, Implications of conformal invariance in field theories for
general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010].

[86] P. A. M. Dirac, Wave equations in conformal space, Annals Math. 37 (1936) 429.

[87] M. S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal
Correlators, JHEP 11 (2011) 071 [1107 . 3554].

[88] M. S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Blocks,
JHEP 11 (2011) 154 [1109.6321].

[89] E. Elkhidir, D. Karateev and M. Serone, General Three-Point Functions in 4D CFT,
JHEP 01 (2015) 133 [1412.1796].

[90] A. Castedo Echeverri, E. Elkhidir, D. Karateev and M. Serone, Deconstructing
Conformal Blocks in 4D CFT, JHEP 08 (2015) 101 [1505.03750].

[91] G. E Cuomo, D. Karateev and P. Kravchuk, General Bootstrap Equations in 4D CFT5,
JHEP 01 (2018) 130 [1705.05401].

[92] M. S. Costa and T. Hansen, Conformal correlators of mixed-symmetry tensors, JHEP 02
(2015) 151 [1411.7351].

[93] P. Kravchuk and D. Simmons-Duffin, Counting Conformal Correlators, JHEP 02
(2018) 096 [1612.08987].

[94] F. Dolan and H. Osborn, Conformal four point functions and the operator product
expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040].

216


https://doi.org/10.1007/JHEP03(2016)183
https://arxiv.org/abs/1412.7541
https://doi.org/10.1103/PhysRevD.96.046014
https://doi.org/10.1103/PhysRevD.96.046014
https://arxiv.org/abs/1612.02363
https://doi.org/10.1007/JHEP03(2018)033
https://arxiv.org/abs/1711.00016
https://arxiv.org/abs/2006.01847
https://doi.org/10.1007/JHEP06(2019)088
https://arxiv.org/abs/1902.05969
https://doi.org/10.1007/JHEP02(2018)164
https://arxiv.org/abs/1708.05718
https://doi.org/10.1007/JHEP05(2019)098
https://arxiv.org/abs/1705.04278
https://doi.org/10.1006/aphy.1994.1045
https://arxiv.org/abs/hep-th/9307010
https://doi.org/10.2307/1968455
https://doi.org/10.1007/JHEP11(2011)071
https://arxiv.org/abs/1107.3554
https://doi.org/10.1007/JHEP11(2011)154
https://arxiv.org/abs/1109.6321
https://doi.org/10.1007/JHEP01(2015)133
https://arxiv.org/abs/1412.1796
https://doi.org/10.1007/JHEP08(2015)101
https://arxiv.org/abs/1505.03750
https://doi.org/10.1007/JHEP01(2018)130
https://arxiv.org/abs/1705.05401
https://doi.org/10.1007/JHEP02(2015)151
https://doi.org/10.1007/JHEP02(2015)151
https://arxiv.org/abs/1411.7351
https://doi.org/10.1007/JHEP02(2018)096
https://doi.org/10.1007/JHEP02(2018)096
https://arxiv.org/abs/1612.08987
https://doi.org/10.1016/S0550-3213(01)00013-X
https://arxiv.org/abs/hep-th/0011040

Bibliography

[95] F. Dolan and H. Osborn, Conformal partial waves and the operator product expansion,
Nucl. Phys. B 678 (2004) 491 [hep-th/0309180].

[96] E. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results,
1108.6194.

[97] A.B. Zamolodchikov, Conformal symmetry in two-dimensional space: Recursion
representation of conformal block, Theoretical and Mathematical Physics 73 (1987) 1088.

[98] J. Penedones, E. Trevisani and M. Yamazaki, Recursion Relations for Conformal
Blocks, JHEP 09 (2016) 070 [1509.00428].

[99] M. S. Costa, T. Hansen, J. Penedones and E. Trevisani, Radial expansion for spinning
conformal blocks, [HEP 07 (2016) 057 [1603.05552].

[100] R.S. Erramilli, L. V. Iliesiu and P. Kravchuk, Recursion relation for general 3d blocks,
JHEP 12 (2019) 116 [1907.11247].

[101] L. Iliesiu, E. Kos, D. Poland, S. S. Pufu, D. Simmons-Duffin and R. Yacoby,
Fermion-Scalar Conformal Blocks, [HEP 04 (2016) 074 [1511.01497].

[102] M. S. Costa, T. Hansen, J. Penedones and E. Trevisani, Projectors and seed conformal
blocks for traceless mixed-symmetry tensors, JHEP 07 (2016) 018 [1603.05551].

[103] D. Karateev, P. Kravchuk and D. Simmons-Duffin, Weight Shifting Operators and
Conformal Blocks, JHEP 02 (2018) 081 [1706.07813].

[104] S. Ferrara, A. F. Grillo, G. Parisi and R. Gatto, The shadow operator formalism for
conformal algebra. Vacuum expectation values and operator products, Lett. Nuovo Cim.
4S2 (1972) 115.

[105] D. Simmons-Duffin, Projectors, Shadows, and Conformal Blocks, [JHEP 04 (2014) 146
[1204.3894].

[106] ].-E. Fortin and W. Skiba, A recipe for conformal blocks, 1905.00036.

[107] J.-E. Fortin and W. Skiba, New methods for conformal correlation functions, JHEP 06
(2020) 028 [1905.00434].

[108] J.-F. Fortin, V. Prilepina and W. Skiba, Conformal two-point correlation functions from
the operator product expansion, [HEP 04 (2020) 114 [1906 . 12349].

[109] ].-F. Fortin, V. Prilepina and W. Skiba, Conformal Three-Point Correlation Functions
from the Operator Product Expansion, 1907 . 08599.

[110] J.-E Fortin, V. Prilepina and W. Skiba, Conformal Four-Point Correlation Functions
from the Operator Product Expansion, 1907 . 10506.

217


https://doi.org/10.1016/j.nuclphysb.2003.11.016
https://arxiv.org/abs/hep-th/0309180
https://arxiv.org/abs/1108.6194
https://doi.org/10.1007/BF01022967
https://doi.org/10.1007/JHEP09(2016)070
https://arxiv.org/abs/1509.00428
https://doi.org/10.1007/JHEP07(2016)057
https://arxiv.org/abs/1603.05552
https://doi.org/10.1007/JHEP12(2019)116
https://arxiv.org/abs/1907.11247
https://doi.org/10.1007/JHEP04(2016)074
https://arxiv.org/abs/1511.01497
https://doi.org/10.1007/JHEP07(2016)018
https://arxiv.org/abs/1603.05551
https://doi.org/10.1007/JHEP02(2018)081
https://arxiv.org/abs/1706.07813
https://doi.org/10.1007/BF02907130
https://doi.org/10.1007/BF02907130
https://doi.org/10.1007/JHEP04(2014)146
https://arxiv.org/abs/1204.3894
https://arxiv.org/abs/1905.00036
https://doi.org/10.1007/JHEP06(2020)028
https://doi.org/10.1007/JHEP06(2020)028
https://arxiv.org/abs/1905.00434
https://doi.org/10.1007/JHEP04(2020)114
https://arxiv.org/abs/1906.12349
https://arxiv.org/abs/1907.08599
https://arxiv.org/abs/1907.10506

Bibliography

[111] ]J.-E Fortin, W.-J. Ma, V. Prilepina and W. Skiba, Efficient Rules for All Conformal
Blocks, 2002.09007.

[112] M. Isachenkov and V. Schomerus, Superintegrability of d-dimensional Conformal
Blocks, Phys. Rev. Lett. 117 (2016) 071602 [1602.01858].

[113] V. Schomerus, E. Sobko and M. Isachenkov, Harmony of Spinning Conformal Blocks,
JHEP 03 (2017) 085 [1612.02479].

[114] ].-H. Park, N=1 superconformal symmetry in four-dimensions, Int. |. Mod. Phys. A 13
(1998) 1743 [hep-th/9703191].

[115] H. Osborn, N=1 superconformal symmetry in four-dimensional quantum field theory,
Annals Phys. 272 (1999) 243 [hep-th/9808041].

[116] J.-H. Park, Superconformal symmetry and correlation functions, Nucl. Phys. B 559
(1999) 455 [hep-th/9903230].

[117] S. M. Kuzenko and S. Theisen, Correlation functions of conserved currents in N=2
superconformal theory, Class. Quant. Grav. 17 (2000) 665 [hep-th/9907107].

[118] J.-H. Park, Superconformal symmetry in six-dimensions and its reduction to
four-dimensions, Nucl. Phys. B 539 (1999) 599 [hep-th/9807186].

[119] E Dolan and H. Osborn, Superconformal symmetry, correlation functions and the
operator product expansion, Nucl. Phys. B 629 (2002) 3 [hep-th/0112251].

[120] M. Nirschl and H. Osborn, Superconformal Ward identities and their solution, Nucl.
Phys. B 711 (2005) 409 [hep-th/0407060].

[121] M. Nirschl, Superconformal Symmetry and Correlation Functions, Ph.D. thesis,
Cambridge U., 2005. 1706.01325.

[122] W. D. Goldberger, W. Skiba and M. Son, Superembedding Methods for 4d N=1 SCFTs,
Phys. Rev. D 86 (2012) 025019 [1112.0325].

[123] W. D. Goldberger, Z. U. Khandker, D. Li and W. Skiba, Superembedding Methods for
Current Superfields, Phys. Rev. D 88 (2013) 125010 [1211.3713].

[124] Z.Liand N. Su, The Most General 4D N* = 1 Superconformal Blocks for Scalar
Operators, [JHEP 05 (2016) 163 [1602.07097].

[125] Z.Li, Superconformal partial waves for stress-tensor multiplet correlator in 4DN =2
SCFTs, JHEP 05 (2020) 101 [1806. 11550].

[126] ].-F. Fortin, K. Intriligator and A. Stergiou, Current OPEs in Superconformal Theories,
JHEP 09 (2011) 071 [1107.1721].

218


https://arxiv.org/abs/2002.09007
https://doi.org/10.1103/PhysRevLett.117.071602
https://arxiv.org/abs/1602.01858
https://doi.org/10.1007/JHEP03(2017)085
https://arxiv.org/abs/1612.02479
https://doi.org/10.1142/S0217751X98000755
https://doi.org/10.1142/S0217751X98000755
https://arxiv.org/abs/hep-th/9703191
https://doi.org/10.1006/aphy.1998.5893
https://arxiv.org/abs/hep-th/9808041
https://doi.org/10.1016/S0550-3213(99)00432-0
https://doi.org/10.1016/S0550-3213(99)00432-0
https://arxiv.org/abs/hep-th/9903230
https://doi.org/10.1088/0264-9381/17/3/307
https://arxiv.org/abs/hep-th/9907107
https://doi.org/10.1016/S0550-3213(98)00720-2
https://arxiv.org/abs/hep-th/9807186
https://doi.org/10.1016/S0550-3213(02)00096-2
https://arxiv.org/abs/hep-th/0112251
https://doi.org/10.1016/j.nuclphysb.2005.01.013
https://doi.org/10.1016/j.nuclphysb.2005.01.013
https://arxiv.org/abs/hep-th/0407060
https://arxiv.org/abs/1706.01325
https://doi.org/10.1103/PhysRevD.86.025019
https://arxiv.org/abs/1112.0325
https://doi.org/10.1103/PhysRevD.88.125010
https://arxiv.org/abs/1211.3713
https://doi.org/10.1007/JHEP05(2016)163
https://arxiv.org/abs/1602.07097
https://doi.org/10.1007/JHEP05(2020)101
https://arxiv.org/abs/1806.11550
https://doi.org/10.1007/JHEP09(2011)071
https://arxiv.org/abs/1107.1721

Bibliography

[127] A. Fitzpatrick, J. Kaplan, Z. U. Khandker, D. Li, D. Poland and
D. Simmons-Duffin, Covariant Approaches to Superconformal Blocks, [HEP 08 (2014)
129 [1402.1167].

[128] Z.U. Khandker, D. Li, D. Poland and D. Simmons-Duffin, N = 1 superconformal
blocks for general scalar operators, JHEP 08 (2014) 049 [1404.5300].

[129] L. A. Ramirez, Mixed OPEs in N' = 2 superconformal theories, [HEP 05 (2016) 043
[1602.07269].

[130] 1. A. Ramirez, Towards general super Casimir equations for 4D N' = 1 SCFTs, JHEP 03
(2019) 047 [1808.05455].

[131] K. Sen and M. Yamazaki, Polology of Superconformal Blocks, Commun. Math. Phys.
374 (2019) 785 [1810.01264].

[132] M. Buican, T. Nishinaka and C. Papageorgakis, Constraints on chiral operators in
N =2 SCFTs, JHEP 12 (2014) 095 [1407 . 2835].

[133] N. Sveshnikov and F. Tkachov, Jets and quantum field theory, Phys. Lett. B 382 (1996)
403 [hep-ph/9512370].

[134] A. V. Belitsky, G. Korchemsky and G. F. Sterman, Energy flow in QCD and event
shape functions, Phys. Lett. B 515 (2001) 297 [hep-ph/0106308].

[135] C. Lee and G. F. Sterman, Universality of nonperturbative effects in event shapes, eConf
C0601121 (2006) A001 [hep-ph/0603066].

[136] D. M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge
correlations, JHEP 05 (2008) 012 [0803. 1467].

[137] W.R. Kelly and A. C. Wall, Holographic proof of the averaged null energy condition,
Phys. Rev. D 90 (2014) 106003 [1408 . 3566].

[138] T. Faulkner, R. G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for
Deformed Half-Spaces and the Averaged Null Energy Condition, JHEP 09 (2016) 038
[1605.08072].

[139] T. Hartman, S. Kundu and A. Tajdini, Averaged Null Energy Condition from
Causality, JHEP 07 (2017) 066 [1610.05308].

[140] D. M. Hofman, D. Li, D. Meltzer, D. Poland and F. Rejon-Barrera, A Proof of the
Conformal Collider Bounds, JHEP 06 (2016) 111 [1603.03771].

[141] C. Cordova and K. Diab, Universal Bounds on Operator Dimensions from the Average
Null Energy Condition, JHEP 02 (2018) 131 [1712.01089].

[142] P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal Field Theory.
Springer-Verlag, 1997.

219


https://doi.org/10.1007/JHEP08(2014)129
https://doi.org/10.1007/JHEP08(2014)129
https://arxiv.org/abs/1402.1167
https://doi.org/10.1007/JHEP08(2014)049
https://arxiv.org/abs/1404.5300
https://doi.org/10.1007/JHEP05(2016)043
https://arxiv.org/abs/1602.07269
https://doi.org/10.1007/JHEP03(2019)047
https://doi.org/10.1007/JHEP03(2019)047
https://arxiv.org/abs/1808.05455
https://doi.org/10.1007/s00220-019-03572-8
https://doi.org/10.1007/s00220-019-03572-8
https://arxiv.org/abs/1810.01264
https://doi.org/10.1007/JHEP12(2014)095
https://arxiv.org/abs/1407.2835
https://doi.org/10.1016/0370-2693(96)00558-8
https://doi.org/10.1016/0370-2693(96)00558-8
https://arxiv.org/abs/hep-ph/9512370
https://doi.org/10.1016/S0370-2693(01)00899-1
https://arxiv.org/abs/hep-ph/0106308
https://arxiv.org/abs/hep-ph/0603066
https://doi.org/10.1088/1126-6708/2008/05/012
https://arxiv.org/abs/0803.1467
https://doi.org/10.1103/PhysRevD.90.106003
https://arxiv.org/abs/1408.3566
https://doi.org/10.1007/JHEP09(2016)038
https://arxiv.org/abs/1605.08072
https://doi.org/10.1007/JHEP07(2017)066
https://arxiv.org/abs/1610.05308
https://doi.org/10.1007/JHEP06(2016)111
https://arxiv.org/abs/1603.03771
https://doi.org/10.1007/JHEP02(2018)131
https://arxiv.org/abs/1712.01089

Bibliography

[143] G. Mack, All unitary ray representations of the conformal group SU(2,2) with positive
energy, Commun. Math. Phys. 55 (1977) 1.

[144] D. Simmons-Duffin, The Conformal Bootstrap, in Theoretical Advanced Study Institute
in Elementary Particle Physics: New Frontiers in Fields and Strings, pp. 1-74, 2017,
1602.07982, DOL.

[145] S. Rychkov, EPFL Lectures on Conformal Field Theory in D>= 3 Dimensions,
SpringerBriefs in Physics. 1, 2016, 10.1007 /978-3-319-43626-5, [1601.05000].

[146] S. M. Chester, Weizmann Lectures on the Numerical Conformal Bootstrap, 1907 .05147.

[147] D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical
Techniques, and Applications, Rev. Mod. Phys. 91 (2019) 015002 [1805 . 04405].

[148] S. Weinberg, Six-dimensional Methods for Four-dimensional Conformal Field Theories,
Phys. Rev. D 82 (2010) 045031 [1006 . 3480].

[149] I Buri¢, V. Schomerus and M. Isachenkov, Conformal Group Theory of Tensor
Structures, 1910.08099.

[150] V. K. Dobrev, G. Mack, V. B. Petkova, S. G. Petrova and 1. T. Todorov, Harmonic
Analysis on the n-Dimensional Lorentz Group and Its Application to Conformal
Quantum Field Theory, Lect. Notes Phys. 63 (1977) 1.

[151] S. Ferrara and B. Zumino, Transformation Properties of the Supercurrent, Nucl. Phys.
B87 (1975) 207.

[152] M. E. Sohnius, The Multiplet of Currents for N = 2 Extended Supersymmetry, Phys.
Lett. 81B (1979) 8.

[153] Z. Komargodski and N. Seiberg, Comments on Supercurrent Multiplets,
Supersymmetric Field Theories and Supergravity, JHEP 07 (2010) 017 [1002.2228].

[154] Y. Tachikawa, N=2 supersymmetric dynamics for pedestrians, vol. 890. 2014,
10.1007 /978-3-319-08822-8, [1312.2684].

[155] ]J. Wess and J. Bagger, Supersymmetry and Supergravity. Princeton University Press,
1992.

[156] D. Liand A. Stergiou, Two-point functions of conformal primary operators in N' = 1
superconformal theories, JHEP 10 (2014) 037 [1407 . 6354].

[157] P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory,
JHEP 11 (2018) 102 [1805.00098].

[158] Z. Komargodski, M. Kulaxizi, A. Parnachev and A. Zhiboedov, Conformal Field
Theories and Deep Inelastic Scattering, Phys. Rev. D 95 (2017) 065011 [1601.05453].

220


https://doi.org/10.1007/BF01613145
https://arxiv.org/abs/1602.07982
https://doi.org/10.1142/9789813149441_0001
https://doi.org/10.1007/978-3-319-43626-5
https://arxiv.org/abs/1601.05000
https://arxiv.org/abs/1907.05147
https://doi.org/10.1103/RevModPhys.91.015002
https://arxiv.org/abs/1805.04405
https://doi.org/10.1103/PhysRevD.82.045031
https://arxiv.org/abs/1006.3480
https://arxiv.org/abs/1910.08099
https://doi.org/10.1007/BFb0009678
https://doi.org/10.1016/0550-3213(75)90063-2
https://doi.org/10.1016/0550-3213(75)90063-2
https://doi.org/10.1016/0370-2693(79)90703-2
https://doi.org/10.1016/0370-2693(79)90703-2
https://doi.org/10.1007/JHEP07(2010)017
https://arxiv.org/abs/1002.2228
https://doi.org/10.1007/978-3-319-08822-8
https://arxiv.org/abs/1312.2684
https://doi.org/10.1007/JHEP10(2014)037
https://arxiv.org/abs/1407.6354
https://doi.org/10.1007/JHEP11(2018)102
https://arxiv.org/abs/1805.00098
https://doi.org/10.1103/PhysRevD.95.065011
https://arxiv.org/abs/1601.05453

Bibliography

[159] D. Meltzer, Higher Spin ANEC and the Space of CFTs, JHEP 07 (2019) 001
[1811.01913].

[160] A. Ceresole, G. Dall’Agata, R. D’Auria and S. Ferrara, Spectrum of type IIB
supergravity on AdS(5) x T**11: Predictions on N=1 SCFT’s, Phys. Rev. D 61 (2000)
066001 [hep-th/9905226].

[161] F. Cachazo, M. R. Douglas, N. Seiberg and E. Witten, Chiral rings and anomalies in
supersymmetric gauge theory, JHEP 12 (2002) 071 [hep-th/0211170].

[162] D. Simmons-Duffin, A Semidefinite Program Solver for the Conformal Bootstrap, [HEP
06 (2015) 174 [1502.02033].

[163] A.Zhiboedov, On Conformal Field Theories With Extremal a/c Values, JHEP 04 (2014)
038 [1304.6075].

[164] C. Cordova, J. Maldacena and G. J. Turiaci, Bounds on OPE Coefficients from
Interference Effects in the Conformal Collider, [JHEP 11 (2017) 032 [1710.03199].

[165] I. Klep and M. Schweighofer, Infeasibility certificates for linear matrix inequalities,
1108.5930.

[166] M. Laurent, Sums of Squares, Moment Matrices and Optimization Over Polynomials,
Emerging Applications of Algebraic Geometry (2009) 157.

[167] M. Kojima, Sums of squares relaxations of polynomial semidefinite programs, Technical
report, Tokyo Institute of Technology (2003) .

[168] C. W. Scherer and C. W. J. Hol, Matrix Sum-of-Squares Relaxations for Robust
Semi-Definite Programs, Mathematical Programming 107 (2006) 189.

[169] A. Gadde, L. Rastelli, S. S. Razamat and W. Yan, Gauge Theories and Macdonald
Polynomials, Commun. Math. Phys. 319 (2013) 147 [1110.3740].

[170] P.C. Argyres and N. Seiberg, S-duality in N=2 supersymmetric gauge theories, [JHEP
12 (2007) 088 [0711.0054].

[171] W. Landry and D. Simmons-Duffin, Scaling the semidefinite program solver SDPB,
1909.09745.

[172] A. Castedo Echeverri, E. Elkhidir, D. Karateev and M. Serone, Seed Conformal
Blocks in 4D CFT, JHEP 02 (2016) 183 [1601.05325].

[173] S. Weinberg, Minimal fields of canonical dimensionality are free, Phys. Rev. D 86 (2012)
105015.

[174] 1. Papadimitriou, Supercurrent anomalies in 4d SCFTs, JHEP 07 (2017) 038
[1703.04299].

221


https://doi.org/10.1007/JHEP07(2019)001
https://arxiv.org/abs/1811.01913
https://doi.org/10.1103/PhysRevD.61.066001
https://doi.org/10.1103/PhysRevD.61.066001
https://arxiv.org/abs/hep-th/9905226
https://doi.org/10.1088/1126-6708/2002/12/071
https://arxiv.org/abs/hep-th/0211170
https://doi.org/10.1007/JHEP06(2015)174
https://doi.org/10.1007/JHEP06(2015)174
https://arxiv.org/abs/1502.02033
https://doi.org/10.1007/JHEP04(2014)038
https://doi.org/10.1007/JHEP04(2014)038
https://arxiv.org/abs/1304.6075
https://doi.org/10.1007/JHEP11(2017)032
https://arxiv.org/abs/1710.03199
https://arxiv.org/abs/1108.5930
https://doi.org/10.1007/978-0-387-09686-5_7
https://doi.org/10.1007/s10107-005-0684-2
https://doi.org/10.1007/s00220-012-1607-8
https://arxiv.org/abs/1110.3740
https://doi.org/10.1088/1126-6708/2007/12/088
https://doi.org/10.1088/1126-6708/2007/12/088
https://arxiv.org/abs/0711.0054
https://arxiv.org/abs/1909.09745
https://doi.org/10.1007/JHEP02(2016)183
https://arxiv.org/abs/1601.05325
https://doi.org/10.1103/PhysRevD.86.105015
https://doi.org/10.1103/PhysRevD.86.105015
https://doi.org/10.1007/JHEP07(2017)038
https://arxiv.org/abs/1703.04299

Bibliography

[175] G. Katsianis, I. Papadimitriou, K. Skenderis and M. Taylor, Anomalous
Supersymmetry, Phys. Rev. Lett. 122 (2019) 231602 [1902.06715].

[176] H. Osborn, Derivation of a Four-dimensional c Theorem, Phys. Lett. B222 (1989) 97.

[177] Z. Komargodski and A. Schwimmer, On Renormalization Group Flows in Four
Dimensions, JHEP 12 (2011) 099 [1107.3987].

[178] D. Anselmi, D. Freedman, M. T. Grisaru and A. Johansen, Nonperturbative formulas
for central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543
[hep-th/9708042].

222


https://doi.org/10.1103/PhysRevLett.122.231602
https://arxiv.org/abs/1902.06715
https://doi.org/10.1016/0370-2693(89)90729-6
https://doi.org/10.1007/JHEP12(2011)099
https://arxiv.org/abs/1107.3987
https://doi.org/10.1016/S0550-3213(98)00278-8
https://arxiv.org/abs/hep-th/9708042

Curriculum Vitae Andrea Manenti

CONTACT
INFORMATION

ACADEMIC
EXPERIENCE

PUBLICATIONS

EDUCATION

TALKS

BSP 713.1 (Cubotron UNIL) Phone: +41795571912
Route de la Sorge E-mail: andrea.manenti@epfl.ch
1015, Lausanne, Switzerland

Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland

PhD in Physics 1/10/2016 — 9/2020
» Thesis: Bootstrapping superconformal field theories in four dimensions
= Supervisor: Prof. Alessandro Vichi

Teaching assistant

= General Physics II - Prof. Tatsuya Nakada 2/2018
= (Classical Electrodynamics — Prof. Jodo Penedones 10/2017
= Numerical Analysis — Prof. Marco Picasso 2/2017

Simons Center for Geometry and Physics, Stony Brook, New York, USA
Visiting scholar 1/10/2018 —26/9/2019

[1] L. Bartolini, F. Bigazzi, S. Bolognesi, A. L. Cotrone and A. Manenti, Neutron
electric dipole moment from gauge/string duality, Phys. Rev. Lett. 118 (2017) 091601
[1609.09513].

[2] L. Bartolini, F. Bigazzi, S. Bolognesi, A. L. Cotrone and A. Manenti, Theta
dependence in Holographic QCD, [HEP 02 (2017) 029 [1611.00048].

[3] A.Manenti, A. Stergiou and A. Vichi, R-current three-point functions in 4d N' =1
superconformal theories, [HEP 12 (2018) 108 [1804.09717].

[4] A.Manenti, Thermal CFTs in momentum space, [HEP 01 (2020) 009 [1905.01355].

[5] A.Manenti, A. Stergiou and A. Vichi, Implications of ANEC for SCFTs in four
dimensions, JHEP 01 (2020) 093 [1905.09293].

[6] A.Manenti, Differential operators for superconformal correlation functions, JHEP 04
(2020) 145 [1910.12869].

University of Pisa, Pisa, Italy

Master’s degree (Laurea Magistrale) in Physics 30/7/2014 —21/7/2016
= Thesis: Holographic computation of the neutron electric dipole moment
= Supervisor: Prof. Francesco Bigazzi

Bachelor’s degree (Laurea Triennale) in Physics 1/10/2011 —29/7/2014
» Thesis: Hamilton-Jacobi equations
= Supervisor: Prof. Damiano Anselmi

Seminar, Caltech, Pasadena, California, USA 11/2019
Seminar, Perimeter Institute, Waterloo, Ontario, Canada 9/2019
Seminar, New York University, New York, USA 9/2019
Seminar, Yale University, New Haven, Connecticut, USA 9/2019
Seminar, Cornell University, Ithaca, New York, USA 9/2019
Journal Club, Uppsala University, Uppsala, Sweden 5/2019
New Frontiers in Theoretical Physics — XXXV, Florence, Italy 5/2016

223



SCHOOLS

AWARDS

LANGUAGES

COMPUTER SKILLS

224

Caltech, Doctoral School
ICTP-SAIFR, Doctoral School

Solvay Institutes, Doctoral School
LACES, Doctoral School

Swiss National Science Foundation, Mobility grant
Fondazione Occhialini, Fourth classified — Scholarship

Italian: Native language.
English: Fluent (speaking, reading, writing).
French: Intermediate (reading); basic (speaking, writing).

Programming languages: Mathematica, Python.
High-Performance-Computing: Slurm Workload Manager.

7/2018

5/2017

10/2016 - 12/2016
11/2015

8/2018
7/2011



	Acknowledgments
	Abstract (English/Italiano)
	Foreword
	Contents
	Introduction
	The conformal bootstrap
	Studying conformal kinematics
	Locality
	Outline

	I Superconformal symmetry
	Conformal symmetry
	The conformal group
	Conformal correlators
	General notions
	Embedding formalism

	Counting tensor structures
	Conformal frame
	Group theory of tensor structures

	Ward identities

	Supersymmetry
	The superconformal group
	Representations of the superconformal algebra
	Embedding of N=1 into N=2
	Introducing superspace

	Superconformal correlators
	N = 1 superspace
	N = 2 superspace

	Counting superconformal correlators
	Group theory of superconformal tensor structures
	Rederiving the formula for the case 4d, N=1


	Differential operators
	Introduction
	Constructing the differential operators
	N = 1 case
	N = 2 case

	Acting on three-point functions
	N = 1 case
	N = 2 case

	A Mathematica package
	Note on the conventions



	II Constraints from locality
	Averaged Null Energy Condition
	Conformal collider bounds
	Applying the ANEC to superconformal theories
	Strategy
	Summary of results

	Setup
	Constraints on the supersymmetric three-point correlator
	Conservation
	Reality
	Ward identities
	Shortening conditions

	Expansion of the superspace correlator
	Lowest order
	Three-point function <Ob T O>
	Three-point functions <QbOb S O> and <QOb Sb O>
	Three-point functions <QbOb J QO> and <QOb J QbO>
	Three-point functions <QbOb T QO> and <QOb T QbO>

	The averaged null energy condition
	Operators of spin (j,0)
	ANEC on a superposition of states
	Operators of spin (j,1)
	The ANEC as a semidefinite programming problem
	Details on ANEC bounds: non-supersymmetric case
	Details on ANEC bounds: supersymmetric case

	Bounds on extended supersymmetry multiplets
	Conventions
	N=2
	N=4


	Spinning chiral primaries
	Introduction
	Absence of spinning chiral primaries in N=2 SCFTs


	III Abelian currents
	Conformal bootstrap
	Crossing equations
	Semidefinite programming
	Four-point functions
	Conformal frame basis
	Enhanced symmetry

	Conformal blocks
	Conformal blocks of external scalars
	Differential operators in embedding space
	Seed partial waves


	Conformal blocks
	Non-supersymmetric operator product expansion
	Two-point functions
	Three-point functions
	Basis for p=0
	Basis for p=2
	Basis for p=4

	Four-point tensor structures
	Kinematic permutations
	Smoothness at z=zb
	Conservation

	Conformal blocks
	Decomposition into conformal blocks
	Computation of the conformal blocks

	Supersymmetric three-point functions
	Counting superconformal three-point functions
	Generalities
	Basis for p=0
	Basis for p=2
	Basis for p=4
	Applying the differential operators

	Superconformal blocks

	Numerical studies
	Crossing equations
	Possible directions
	Preliminary results


	IV Appendices
	Notation and conventions
	Notation and conventions for four dimensions
	Notation and conventions for six dimensions
	Conventions for supersymmetry
	Superconformal algebras
	Superspace


	Superconformal correlators
	Acting on different points
	Superspace expansion
	Some identities for the superspace derivatives

	Appendices for the ANEC
	Supersymmetric inversion tensors
	Proof of the general formula
	Formula for the (j,0) case
	Formula for the (j,1) case

	Tables
	Ward identities
	Expansion in components


	Appendices for the bootstrap
	Differential basis
	Four-point function basis
	Superconformal blocks
	S coefficients for p=0
	S coefficients for p=2
	S coefficients for p=4


	Bibliography
	Curriculum Vitae




