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Abstract: Diffractive optical elements are ultra-thin optical components required for con-
structing very compact optical 3D sensors. However, the required wide-angle diffractive 2D
fan-out gratings have been elusive due to design challenges. Here, we introduce a new strategy
for optimizing such high-performance and wide-angle diffractive optical elements, offering
unprecedented control over the power distribution among the desired diffraction orders with
only low requirements with respect to computational power. The microstructure surfaces were
designed by an iterative gradient optimization procedure based on an adjoint-state method,
capable to account for application-dependent target functions while ensuring compatibility with
existing fabrication processes. The results of the experimental characterization confirm the
simulated tailored power distributions and optical efficiencies of the fabricated elements.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Diffractive optical elements (DOEs) permit the generation of the spatial distribution of light beams
by using a single element, and they are used for a variety of applications due to their high design
flexibility, compact size, and mass productivity. For instance, diffractive beam splitters, often also
referred to as fan-out gratings, have various applications, ranging from optical interconnects [1],
multifocal microscopy [2,3], camera calibration [4], optical system distortion measurement [5] to
structured light projectors [6,7]. For many applications, the goal is to propagate all the light in
the desired orders and avoid losses. Nowadays, DOEs generating wide-angle spot arrays are used
in a promising field of applications [7–9] with recent developments in fabrication technology
realizing nanoscale features.

As long as only small to moderate diffraction angles are required, the iterative Fourier transform
algorithm (IFTA) [10–12] based on the thin element approximation (TEA) [13] is widely and
successfully used for the design of the microstructure surface of the DOEs. However, when larger
angles are required, this approach suffers from several severe shortcomings and effectively gets
unusable. Among those shortcomings, the limited choice of diffraction angles and the geometric
distortions can be corrected for most easily, and IFTA’s computation scheme can be still be used
with moderate extensions and modifications [14,15]. A significantly more severe problem is
the insufficient modeling of the light field transmission through the DOE by the TEA [16,17].
A precise modeling can be obtained by rigorous electromagnetic diffraction theory, such as
rigorous coupled-wave analysis (RCWA) [18–20]. This significantly increases the computation
time, triggering efforts to improve the computation speed [21] and to find faster alternatives with
similar accuracy [22]. However, for iterative computations schemes, a projection operator in
the DOE domain for the far-field-adapted and back-propagated field is required, but cannot be
derived in a similar manner using the rigorous electromagnetic methods.
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To resolve this, some groups employed genetic algorithms or gradient-based algorithms based
on the finite-difference time-domain (FDTD) method to optimize the DOEs [23–25]. FDTD
requires high computational effort and thus have been applied only to the one-dimensional
domain. Parametric optimization is another option and was used for design and analysis of only
two-dimensional (2D) fan-out DOEs with low complexity, e.g., 3 × 3 array beam splitters [26].
The correspondingly significantly larger number of parameters poses a practical limitation to
parametric optimization for those scenarios due to resulting very large computational efforts also,
even if such microstructures and corresponding initial parameters can be found at all.
Other design approaches recently combined a genetic algorithm with the RCWA method

to design large-angle 2D fan-out DOEs [27,28]. The experimental results of the fabricated
DOEs verified the method is reliable, but the improvements were comparatively insignificant
during the optimization so that the obtained elements still have a rather low performance with
respect to uniformity error. Data-driven photonics inverse design approaches have also been
investigated for binary fan-out DOEs in the non-paraxial domain, but again only for elements
with low complexity [29]. In recent years, inverse design methods using the adjoint variable
method [30–37], have attracted attention due to their successful application to the optimization
of photonic devices. In the adjoint method, one can calculate the gradient with respect to a figure
of merit based on only two rigorous simulations, no matter how many design parameters are
utilized to describe the device. This approach resolves the mentioned problem of the missing
projection operator for computational schemes in the non-paraxial domain. However, to the best
of our knowledge, high-performance 2D fan-out DOEs with large diffraction angles have not
been previously realized using inverse design. For example, the metagratings which are one kind
of optical metasurfaces [38] have been developed extreme beam manipulation, while this design
platform focused on manipulation of one or a few diffractions orders such as beam deflectors
[39,40], not fan-out elements.
Here, we introduce a design approach for wide-angle DOEs, yielding very significant

improvements in the uniformity of the created patterns while maintaining the total diffraction
efficiency in target orders. We have focused our efforts to designing binary (i.e., 2-level)
microstructures, because they are most easy to fabricate and thus obviously are very attractive
for optical systems. A schematic of DOE generating 7 × 7 spot array is shown in Fig. 1(a).
In order to obtain a start condition for our optimization, a 7 × 7 diffractive fan-out DOE is
designed by TEA-based IFTA. Not surprisingly, the performance of this initial wide-angle

Fig. 1. (a) Scheme of two-dimension diffractive beam splitter generating 7 × 7 spot array.
(b) Uniformity of 7 × 7 diffractive beam splitter designed by TEA-based IFTA as a function
of maximum diffraction angle when the grating period Λ decreases. The Uniformity error
and NRMS calculated using Eq. (9) and (10). The insets show the layout of the single unit
cell. Black represents dielectric material and white represents air. The maximum angle is at
(3, 3)th diffracted beam and the grating’s normal vector.
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fan-out DOE is very unsatisfactory with respect to uniformity (see Fig. 1(b)). We then apply
to optimize large-angle 7 × 7 diffractive beam splitter but also beam splitter generating 7 × 5
non-square array spots. Beam-splitters creating equal intensity distribution are commonly used
to various cases, while some applications potentially require fan-out DOE with various intensity
distributions, for instance, vignetting correction [41]. Using our optimization method, we can
create tailored-power-level beam splitters meeting the application’s requirement. We measured
the performance of fabricated samples based on the optimized designs and compared to calculated
diffraction efficiency using RCWA simulation. Based on this analysis, we showed the robustness
of our designs against fabrication errors and their suitability for high-quality optical systems.

2. Inverse design of wide-angle DOEs

Despite the advancement in lithography technologies, high cost and fabrication errors are
inevitable for the fabrication of multilevel gratings. Thus, we focus on designing binary
DOEs. Figure 2(a) shows a 2D binary grating profile characterized by depth, grating period,
and distribution of relative permittivities. The binary gratings consist of pixels of relative
permittivities corresponding to air (ε1) or dielectric material (ε2). The substrate layer (Layer I) is a
dielectric material and the top layer (Layer III) is air. The permittivity distribution ε(r) in a single
grating period (Layer II) is the design variables of the optimization procedure. Electromagnetic
field distribution inside the grating can be obtained by RCWA solver [42,43]. High accuracy
of the calculation in the desired diffraction channels is achieved when enough modes [20] are
included in the calculation. To evaluate the accuracy of our numerical results, we analyze the
convergence of simulation in our grating generating 7 × 7 spot array from the main text with
incrementally increasing the number of Fourier modes. This defines the set of Fourier harmonics
retained in x and y-axis from −N to N, respectively. When N is large enough ( e.g., N>10), all of
the simulations converge to within 1% of same value. To obtain accurate converged calculation,
we thus use this value for the optimization process and final calculation of optimized devices
reproduces with a higher number of modes N = 25. All theoretical results presented in this study
show equivalent numerical accuracies.

Fig. 2. (a) The surface profile of a grating structure in a single period. (b) Schematic of the
forward and adjoint simulations in RCWA.

To design DOEs creating diffraction pattern with uniform and tailored-intensity-level distribu-
tion, we use the following figure of merit (FOM):

F =
M∑

m=−M
(ηm − ηobj)

2 (1)

where F represents the difference between the calculated diffraction efficiency ηm and the
target diffraction efficiency ηobj in diffraction orders. The gradient of the FOM with respect
to permittivity distribution ε(r) is crucial in determining the search direction to optima. For
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instance, if the total pixel number K is large, it may easily become computationally heavy to
calculate the gradient by RCWA analysis. The adjoint method, however, allows computing the
variation for a diffraction efficiency by only two rigorous simulations, no matter how many pixels
are present. The diffraction efficiencies η can be obtained by transmitted power flow going to the
diffraction order represented by plane wave E,H :

η = |t|2

=
1

4 |Λ|2

����∫
Λ

[
E(r′) ×H−i (r

′) − E−i (r
′) ×H(r′)

]
· nz dr′

����2 (2)

where both fields are evaluated at location r′ on the z = h plane above the grating and the
overlap integral is performed for a single grating period. For the sake of simplicity, we assume
the permittivity distribution does not depend on y-axis. The k-vector of Ei,Hi is (kx, 0, kz)
and k-vector of E−i ,H

−
i is (−kx, 0,−kz) and and transmitted amplitude tm is normalized by

1
2
�� (Ei ×H−i − E−i ×Hi

)
· nz

�� = 1, where nz is unit vector along z-axis. According to Eq. (13)
and (14) in the Appendix, the change of η for a small perturbation in permittivity ∆ε at a location
r in the grating layer is given by:

∆η =
1
|Λ|
<

{
t∗

∫
Λ

[
∆E(r′) ×H−i (r

′) − E−i (r
′) × ∆H(r′)

]
· nzdr′

}
(3)

Using Eq. (15) and (16) in the Appendix, the derivative of diffraction efficiency with respect to
permittivity is

∂η

∂ε(r) =
1
|Λ|
<

{
t∗

∫
Λ

[
ĜEP(r′, r)E(r) ×H−i (r

′) − E−i (r
′) × ĜHP(r′, r)E(r)

]
· nzdr′

}
(4)

Applying the triple product rule of vector identities and reciprocity of Green’s tensor in Eq. (17)
in the Appendix, we obtain the adjoint field:

∂η

∂ε(r) =
1
|Λ|
<

(
t∗

∫
Λ

{
ĜEP(r, r′)

[
H−i (r

′) × nz
]

−ĜEM(r, r′)
[
E−i (r

′) × nz
]}

dr · E(r)
)

=
1
|Λ|
<

[
t∗Eadj(r) · E(r)

] (5)

where adjoint field Eadj(r) =
∫
Λ

{
ĜEP(r, r′)

[
H−i (r

′) × nz
]
− ĜEM(r, r′)

[
E−i (r

′) × nz
]}

dr′ can
be obtained by an solution of Maxwell’s equation with illumination condition which is a plane
wave generated by the polarization (H−i (r

′) × nz) and magnetization densities (E−i (r
′) × nz)

from dipole expression. where the adjoint field Eadj(r) can be obtained by an auxiliary RCWA
simulation. The Eq. (5) shows that one requires the derivative of diffraction efficiency from only
two simulations, one direct E(r) and adjoint Eadj(r) to evaluate the derivatives for all pixels.
In other words, a very large number of design parameters can be adjusted simultaneously, and
the adjoint method unlocks the possibility to optimize particularly complex structures such as
wide-angle DOEs with a much lower computational cost.

We employ spatial filtering [44] and projection function [45] during the optimization. We
discuss our method for driving the dielectric continuum to discrete values of dielectric material
and air and maintaining the fabricable minimum feature size over the iterative process. For the
optimization, the starting point is a structure designed IFTA with applying a spatial filter to
generate the dielectric continuum. We update a design density ρ which have a value from 0 to
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1, rather than updating the permittivity distribution ε directly (see Fig. 3(a)). For generating a
structure with larger feature sizes, a spatial loss-pass filter can be applied to ρ to create a filtered
density ρ̃ :

ρ̃i =

∑
j∈Ni Wijρj∑
j∈Ni Wij

(6)

where Ni denotes the design region, and Wij is the weighting matrix, defined for a blurring radius
of R as

Wij = R −
��ri − rj�� (7)

with
��ri − rj�� being the distance between pixel i and j. This defines a spatial filter on ρ with

the effect of smoothing out features with a length scale below R. The effect of this filter with
300 nm radius of R on a sample design density distribution is illustrated in Fig. 3(b). The filtered
geometry becomes then a binary pattern using projection function. We define ¯̃ρ as the projected
density, which is created from blurred density ρ̃ as

¯̃ρi =
tanh (βγ) + tanh (β [ρ̃i − γ])
tanh (βγ) + tanh (β [1 − γ])

(8)

where a threshold factor γ between 0 and 1 which controls the threshold of the projection, typically
0.5, and β controls the strength of the projection, bigger value delivers harder binarization. The
projected density distribution in Fig. 3(c) is recreated from blurred pattern in Fig. 3(b) with
γ = 0.5 and β = 300. We also observe that the combination of circular spatial blurring filter and
projection function can remove tiny features. The final relative permittivity distribution from the
projected pattern is shown in Fig. 3(d). In addition, we can describe an analytical solution of the
determination of ∂ε

∂ ¯̃ρ ,
∂ ¯̃ρ
∂ρ̃ ,

∂ρ̃
∂ρ [45], these filters can be combined with the derivatives of figure of

merit calculated by adjoint method. The obtained gradient was used in optimization based on the
limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [46,47].

Fig. 3. Filtering and projection of an example design density. (a) the initial design density
ρ before processing. (b) the density after applying the spatial filter, ρ̃. (c) the density after
applying projection, ¯̃ρ. (d) the final relative permittivity ε .

In these filter and projection functions, we can control the strength of the projection so that the
binary structure is gradually obtained by updating the strength factor over several iterations during
the optimization process. The optimization is performed in an iterative approach and typically
100− 200 iterations are used to achieve convergence. The starting points in gradient optimization
are designs from IFTA optimizations with applied spatial filter and projection function.

3. Simulation results

Two kinds of 2D fan-out gratings were selected for verification of the proposed design approach.
The first one is a common multi-spot generator which creates a 7 × 7 array of spots with equal
intensity distribution, and the other generates a two-dimensional array of spots with the designated



Research Article Vol. 28, No. 15 / 20 July 2020 / Optics Express 22326

intensity distribution. To evaluate DOEs with various diffraction efficiency distribution, we
define uniformity error (UE) and normalized root-mean-square error (NRMS) σ as follows:

UE =
η̃max − η̃min
η̃max + η̃min

(9)

σ =

√
1

MN

∑
(η̃m,n − η̃obj)2 (10)

where η̃max and η̃min represent the maximal and minimum intensity of the relative diffraction
efficiency η̃ = η

ηobj
,respectively. The ηm,n is the diffraction efficiency in orders on 2D array and

M, N is the total number of diffraction orders along horizontal and vertical axis, respectively
(see Fig. 1(a)). The target diffraction efficiency distributions ηobj ∈ [0, 1]m×n have uniform or
specific entries. The spot energy distribution can be designed for any distribution meeting the
application’s requirements. The NRMS with scaled diffraction efficiency η̃ is preferable to with
normal diffraction efficiency η because scaled diffraction efficiency facilitates the comparison
among various diffraction efficiency distributions with different scales from diverse DOEs. Lower
values of both UE and NRMS indicate less residual variance so that our objective is to minimize
UE and NRMS of a DOE design given certain diffraction efficiency distribution. The fused silica
(SiO2) was selected as a material for DOE. The refractive index of SiO2 is assumed as n2 = 1.45.
Transverse electric (TE) polarized (i.e., electric field component along the y-axis, see Fig. 2(a)
for the coordinate system) monochromatic light with a wavelength of λ = 940 nm is incident
wave from the substrate side with normal incidence angle. We selected incident beam with TE
polarization, but beam splitters can be optimized also for transverse magnetic (TM) polarization
or both TE and TM polarization. In general, the diffracted beam through gratings has both TE
and TM polaization, the diffraction efficiency is the sum of efficiencies of both TE and TM
polarization. The grating period is 5 µm×5 µm and the pixel size is 100 nm×100 nm. The depth
of the grating was selected as d = 1.18 µm. Thus, the maximal diffraction angles of 7 × 7 and
7 × 5 diffractive beam splitter are about 53° at (3, 3)th order and 43° at (2, 3)th order from (0, 0)th
order, respectively.

3.1. Diffractive beam splitter with uniform intensity distribution

To optimize this 7 × 7 diffractive beam splitter, we define our figure of merit as Eq. (1) with the
uniform intensity distribution of target efficiency ηobj and find the local optima using L-BFGS
with the gradient calculated by the adjoint method. The objective of this design process is to
create the grating structure which can accurately diffract the incident light into 49 in different
directions with equal intensity distribution. Figure 4(a) and 4(b) show the merit function as a
function of the optimization iterations of 7 × 7 and 7 × 5 diffractive beam splitters. To minimize
the modifications of the adjoint sensitivity, the projection strength factor incrementally increases
every 10 iterations for binarization. This function results in immediate effects in the figure of
merit, which can be visualized as disconnections on the dash lines. The figure of merit converged
well and the algorithm found the optimum point after 80 iterations in both cases. The simulated
diffraction efficiency distributions of DOEs before and after optimization is shown in Fig. 4(a)
and 4(b). These results are calculated for normally incident TE polarized light, i.e., the electric
field component along the y-axis.

In the diffraction pattern, the maximal diffraction angle is about 53° at (3, 3)th order spot from
the center. For an accurate comparison, we calculated the total diffraction efficiency, UE, and
NRMS of two different situations of two diffractive beam splitters: Initial and optimized. The
total diffraction efficiency of 49 spots of initial and optimized 7 × 7 spot-array generators are
79.96%, and 79.71%, respectively. This optimized element thus has no degradation in total
diffraction efficiency while there is considerable improvement in UE from 63.79% to 16.35% and
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Fig. 4. Theoretical analysis of large-angle diffractive beam splitters. Plots of the figure of
merit over the course of the optimization process of 7 × 7 (a) and 7 × 5 (b) diffractive beam
splitter. In the bottom figures, the calculated efficiency of diffractive beam splitter before
and after optimization.

NRMS from 32.62% to 7.74%, through adjoint-based optimization. In this optimized element,
the remnant optical power goes in to reflection 9.38% and undesired orders 10.91% of incident
power. Over optimization process, 7 × 5 spot-array generator also has significant improvement in
UE from 81.1% to 6.98% and NRMS from 37.93% to 3.78%. Moreover, the total diffraction
efficiency of 35 spots created by this DOE slightly increases from 74.45% to 78.48%. By
comparison, H. Hao et al. [27] noted that they achieved 17.4% of uniformity error and 71.4%
of total efficiency in 5 × 5 beam splitter with maximal 35° of diffraction angle using a genetic
algorithm which is one kind of meta-heuristic optimization often required high computation cost.
Thus the gradient-based optimization with adjoint-state-method, with much lower computational
cost, be able to yield better results, i.e., better uniformity, higher efficiency, and larger angle, than
optimization based on genetic algorithm.

3.2. Diffractive beam splitter with tailored intensity distribution

Furthermore, we applied our optimization method to the diffractive beam splitter with tailored
power distribution corresponding to Fig. 5. As listed in Table 1, we specify different 9 groups
have spot array with a specific intensity ratio, where group A, B, C, D, E, B’, C’, D’ and E’ have
1.0, 1.5, 2.0, 2.5, 1.0, 1.5, 2.0, 2.5 and 1.0 of intensity ratio, respectively.

To optimize this diffractive beam splitter, we also use the figure of merit function in Eq. (1)
with target efficiency distribution of above entries (see Table 1). Over the course of multiple
iterations, the dielectric continuum in the device converges to the dielectric constant of either
silica or air from initial dielectric distribution designed by IFTA. We finally obtain a diffraction
pattern distribution of optimized design nearly identical to the target pattern. The optimization
convergence and pattern distribution before and after optimization are shown in the Fig. 6. The
optimization process is performed iteratively and typically takes 100 − 200 iterations to achieve
convergence. Figure 6(a) shows the merit function as a function of the optimization iterations
for beam-splitter generating the tailored spot array in the main text. The dash lines indicate the
updating of projection strength β. The bottoms figures present the patterns in a single period of
the device at different stages of the process. The simulated diffraction efficiency distributions
of DOEs after optimization is shown in Fig. 6(b). Quantitatively, total efficiency of this DOE
slightly increases from 75.20% to 78.28% and UE and NRMS consequently reach 8.45% from
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74.73% and 4.14% from 55.15%. These results prove that the optimization algorithm is suitable
for designing wide-angle diffractive beam splitters with various shapes of spot array and intensity
distributions. For instance, proposed optimization strategy can be also used for even number
fan-out beam splitters, with a zero intensity in zero-th order. Based on optimized designs, we
fabricated and characterized diffractive beam-splitters. The details of experimental results are
presented in the following section.

Fig. 5. The target diffraction pattern for diffractive beam splitter with designated intensity
distribution. The target efficiency depends on the groups, where group A, B, C, D, E, B’, C’,
D’ and E’ have 1.0, 1.5, 2.0, 2.5, 1.0, 1.5, 2.0, 2.5 and 1.0 of intensity ratio, respectively.
(see Table 1)

Fig. 6. Theoretical analysis of diffractive beam splitters generating the tailored spot array.
(a) a plot of the figure of merit over the course of the optimization process for the beam
splitter with tailored intensity distribution. The bottoms figures show refractive indices
distributions of the device at different stages of the optimization process. (b) the calculated
efficiency of diffractive beam splitter after optimization.
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Table 1. The target efficiency depends on groups in beam splitter with the tailored intensity
distribution

Groups A B C D E

B’ C’ D’ E’

Efficiency ratio 1.0 1.5 2.0 2.5 1.0

Target efficiency (%) 1.63 2.45 3.27 4.08 1.63

4. Experimental results

The diffractive beam splitters were fabricated by lithography using electron-beam and dry etching
to create a chromium etch mask, and then by reactive ion etching to obtain SiO2 binary surface
relief structures. The optical elements are optically characterized using a TE polarized 940 nm
wavelength beam as our input source. We detect the diffracted light beams using a mobile
single-pixel detector with a high dynamic range. To focus of both the simulation and experiment
to facilitate a quantitative comparison, we applied the loss by Fresnel reflection from the interface
between air and SiO2 substrate to simulated efficiency of DOEs. The comparison between
theoretical and experimental diffraction efficiencies of 7 × 7 and 7 × 5 beam-splitter creating
uniform intensity array is presented in Table 2. The experimental data show that the DOEs
operates with high-performance of uniformity. Total diffraction efficiency of of 7 × 7 and 7 × 5
beam splitters are calculated to 77.01% and 75.83%, respectively.

Table 2. Comparison with the theoretical and experimental properties of the 7 × 7 and 7 × 5 beam
splitters. The calculated efficiency takes into account the loss from Fresnel reflection in the air-SiO2

substrate interface.

7 × 7 beam splitter 7 × 5 beam splitter

Calculated Measured Calculated Measured

Diffraction efficiency (%) 77.01 75.35 75.83 73.86

UE (%) 16.35 23.35 06.98 14.42

NRMS (%) 08.35 12.76 06.10 10.50

The UE of 7 × 7 and 7 × 5 beam splitters are measured to 23.35% and 14.42%, respectively,
which is close to the calculated values. In addition, excellent agreements in NRMS values of the
DOEs are observed between the simulation and the measurement. Little discrepancies between
the simulated and experimental efficiencies are due in part to minor geometric imperfections in
the fabricated samples.

For an accurate comparison between theoretical andmeasured results, we analyze the correlation
of these data using mean absolute percentage deviation (MAPD) as a ratio defined by the formula:

MAPD =
1

MN

∑�����ηSm,n − ηEm,nηSm,n

����� (11)

where ηSm,n, ηEm,n are simulated and experimental efficiency in (m, n)th diffraction orders andM, N
is the total number of diffraction orders in two dimensional array. The MAPDs of 7× 7 and 7× 5
beam splitters are calculated to 7.24% and 5.00%, respectively, which represents measurements
demonstrate excellent reproducibility of the simulated results in a quantitative manner.

We also measured the diffraction efficiency of tailored-intensity-level beam splitter fabricated
based on optimized design. A scanning electron microscopy (SEM) image of the optical element
is presented in Fig. 7(a), and theoretical and experimental diffraction efficiencies of the beam
splitter with array groups and their objective efficiency are summarized in 7(b). Tilted SEM
images of the beam-splitter show vertical sidewalls, indicative of high-quality etching. The
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experimental plot shows that these elements operate with excellent agreement with respect to the
objective in the overall intensity distributions. For an accurate comparison, we present the total
diffraction efficiency, UE, and RMSE of simulated and measured one in Table 3. The UE and
NRMS of the fabricated sample are measured to 14.54% and 9.81%, respectively. Moreover,
the results of the comparison show that the experimental results have a strong correlation with
the theoretical results, where the MAPD of this beam splitter is calculated to 5.99%. The
only noticeable deviation in the measurement is a small mismatch of diffraction efficiency in
a few orders that emerge due to minor fabrication errors. In general the diffraction efficiency
in orders often strongly depends on the errors in fabrication processes, e.g., etching depth,
feature width, slope steepness, and feature rounding. Nevertheless, the fabricated samples based
on optimized design overall display experimental performances which are significantly higher
than the theoretical performances of initial designs before optimization. In other words, our
methodology can readily create robust high-performance, multifunctional optical elements with
wide-angle spot array that show theoretical and experimental performances that far exceed the
previous record for manufacturable diffractive beam splitters recently reported [27–29], at much
less computational cost than previous methods.

Fig. 7. Experimental characterization of the diffractive beam splitter with designated
intensity distribution. (a) Scanning electron microscopy image of the diffractive beam
splitter. Top insets: magnified tilted-view image of a grating unit cell. (b) The measured
(orange line) and simulated (blue bar) efficiency of a beam splitter with tailored power
distribution. The dash lines indicate the groups and their target efficiency

Table 3. Comparison with the simulated and experimental properties of the
beam splitters with tailored power distribution. The simulated efficiency take

into account the loss from Fresnel reflection in the air-SiO2 substrate interface.

Simulated Measured

Diffraction efficiency (%) 75.63 74.20

UE (%) 08.46 14.54

NRMS (%) 06.57 09.81

5. Conclusion

In summary, we utilized the adjoint state method in optimizing the topology of optical elements,
which is able to create high-performance, multifunctional wide-angle diffractive optical elements
at a very low computational cost. We explored properties of the optimization method, such as
efficient computation for the gradient of the target function with respect to high-dimensional
design parameters with rigorous diffraction theory, and discussed the optimization method can
readily extend to not only the diffraction beam splitter with equal intensity distribution but
also DOE with the tailored intensity distribution. As a case study, we applied gradient-based
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optimization with adjoint-state method to 7 × 7, 7 × 5 beam splitter and designated-power-level
beam splitter with non-paraxial diffraction angle, i.e., maximal diffraction angle is 53°, 43° and
37° from center, respectively. The optimized beam splitters show considerable improvement of
uniformity while maintaining the initial diffraction efficiency. The experimental results obtained
by the illumination of the fabricated optical elements using an incident laser of 940 nmwavelength
with a normal incident angle have been compared with the numerical results. As numerical
simulation and experimental results were found to be in excellent agreement, our optimization
method can be considered proven to be an effective design tool for wide-angle diffractive beam
splitters creating various diffraction distributions. We envision that these methods in diffractive
optics will extend to other high-performance, multifunctional optical elements that will enable
the next generation of photonics systems such as compact optical sensors.

Appendix

we can calculate electromagnetic field in isotropic medium from given illumination by using
time-independent Maxwell’s equation:

∇ × E = ik0µ(r)H
∇ ×H = −ik0ε(r)E

(12)

where µ(r) and ε(r) is permeability and permittivity at location r, respectively. For small
perturbation in permeability and permittivity, the variation of electromagnetic field is the solution
of following equations:

∇ × (E + ∆E) = ik0 [µ(r) + ∆µ(r)] (H + ∆H)
∇ × (H + ∆H) = −ik0 [ε(r) + ∆ε(r)] (E + ∆E) .

(13)

We can simplify Eq. (13) by neglecting the O(∆2) terms so that equation becomes:

∇ × ∆E = ik0 [µ(r)∆H + ∆µ(r)H]
∇ × ∆H = −ik0 [ε(r)∆E + ∆ε(r)E]

(14)

which is a valid approximation if the change in the electromagnetic field from ∆µ and ∆ε is
sufficiently small. The addition of this tiny perturbation ∆µ and ∆ε at location r can be treated as
the dipole with polarization density P and a magnetization density M given by:

P(r) = ∆ε(r)E(r) M(r) = ∆µ(r)H(r) (15)

By introducing Green’s tensors, this dipole produces scattered fields to location r′ ,which are
described by:

∆E(r′) = ĜEP(r′, r)P(r) + ĜEM(r′, r)M(r)
∆H(r′) = ĜHP(r′, r)P(r) + ĜHM(r′, r)M(r)

(16)

where M(r) terms can be omitted because ∆µ(r) = 0 in our material. In addition, the Green’s
tensors in a reciprocal medium can be expressed by:

ĜEP(r′, r) = ĜEP(r, r′)
ĜHP(r′, r) = −ĜEM(r, r′).

(17)

Then we can drive the adjoint field using dipole representation and the Green’s tensor expression
above equations.
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