
École polytechnique fédérale de Lausanne

School of Engineering

Master Project - M.S. Electrical Engineering

PATTERN RECOGNITION IN

NON-UNIFORMLY SAMPLED

ELECTROCARDIOGRAM SIGNAL

FOR WEARABLE SENSORS

Author:

Silvio Zanoli

Under the direction of

Dr. Tomás Teijeiro Campo and

Prof. Dr. David Atienza Alonso

In the Embedded Systems Laboratory (ESL)

EPFL

Lausanne, August 28, 2020

Don’t try.

Charles Bukowski, 2003,
“So You Want To Be A Writer?”

Acknowledgement

I would like to thanks my family for all the support they gave me during these

years. Agata Patané, my girlfriend, sextant of my travel and fixed star for my

reference system. Giulio Masinelli for being a formidable friend and always a source

of interesting reflections. Thanks to all my friend in my home country for being

there for me when I needed them the most.

Thanks to Prof. Dr. David Atienza Alonso and to Dr. Tomas Teijeiro for supporting

this work.

Finally, I would like to thank the lab os ESL at EPFL for the friendly climate in

which I was welcomed.

Abstract

In this thesis, we explore 3 main topics: non-uniform (in time) sub-

sampling, QRS detection in an event-based sub-sampled ECG (electrocar-

diogram) and implementation on a low-power MCU (Micro Controller Unit).

The main idea behind this work is to reduce the energy consumption of

a QRS detection algorithm by adapting the sampling frequency using the

local frequency of the signal while maintaining the overall performance on

the QRS detection without degradation. In particular, we will focus on the

compréhension and re-adaptation of 2 popular algorithms for QRS detection:

the Pan-Tompkins and the gQRS. This choice was guided by some constraints

given by the event-based sub-sampling. The re-adaptation, in particular, was

performed in 2 parts: the first step was to change the behavior of the algo-

rithms in order to be able to work in an event-based sampled domain. The

results achieved from the first step led to the selection of gQRS as the designed

algorithm to undergo step 2: parallelization and optimization for the chosen

low-power device. The results achieved are comparable to the results achieved

by the original version in the classical uniform-sampled domain. The selected

low-power device is the PULP platform, an MCU composed of a single core,

low power CPU and a cluster composed of other 8 smaller cores.

Keywords

PULP, Low-power computing, Event-based sampling, QRS detection

Contents

Contents

1 Introduction 6

1.1 ECG and dataset . 7

1.2 Classical ECG algorithms for QRS detection 8

1.3 Sub-sampling techniques . 8

1.4 Adopted approach . 10

1.5 Low energy MCU . 13

2 QRS detection 14

2.1 Methods considered . 14

2.2 Algorithms description . 15

2.2.1 gQRS Filtering . 15

2.2.2 gQRS Integration . 16

2.2.3 gQRS Peak detection and thresholding 17

2.3 Algorithms adaptation . 18

2.3.1 Pan-Tompkins adaptation . 18

2.3.2 gQRS adaptation . 22

2.4 Preliminary comparison . 23

3 Low power implementation 25

3.1 PULP platform . 25

3.1.1 Fabric Controller . 25

3.1.2 Cluster . 27

3.2 gQRS on PULP . 27

3.2.1 Vanilla gQRS . 28

3.2.2 Custom gQRS . 28

3.2.3 Parallel gQRS . 29

4 Results 32

4.1 Heartbeat detection comparison . 32

4.2 Energy consumption results . 36

5 Conclusions 39

5.1 Future development . 39

4

List of Tables

List of Figures

1 Uniform vs non-uniform sampled ECG segment. Black lines at the

bottom represent the sampling density 6

2 Example of the procedure used to obtain the event-based sampling . . 10

3 Raw ECG file . 11

4 Same signal of Figure 3, sub-sampled as described in 1.3 at three

thresholds . 12

5 Example of a QRS complex. In this image is possible to observe also

the P and T wave . 14

6 Real VS smoothed signal . 16

7 Impulsive response of the adapted filter used on the gQRS algorithm 17

8 F-score results of gQRS vs. Tompkins. (F-score vs ε) 24

9 PULP chip block design, from Mr.Wolf presentation 26

10 Block design for the described vector handling techniques: as we can

see on the right, only the last 2 · Tail elements needs to be stored for

the next execution . 29

11 Block design for the multi-core version of the gQRS algorithm 31

12
√
V ar for different thresholds . 33

13 Average F-score results of various versions of gQRS vs. Tompkins.

(F-score vs ε) . 34

14 Median Absolute Deviation of the F-Score for different thresholds . . 34

15 F-Score with confidence bands computed using the MAD 35

16 Average Positive Predictivity of the three algorithms 35

17 Median Absolute Deviation of the Positive Predictivity for different

thresholds . 36

18 Average Sensitivity of the three algorithm 36

19 Median Absolute Deviation of the Specificity for different thresholds . 37

List of Tables

1 Energy usage of the 3 different gQRS algorithm on PULP for the

processing of 20 seconds worth data. 38

5

https://pulp-platform.org/docs/Wolf_ESSCIRC_2018.pdf

Introduction

1 Introduction

Continuous bio-signal monitoring through Wireless Body Sensor Nodes (WBSN),

in combination with signal processing and machine learning techniques, are guiding

a paradigm change in the follow-up of patients with chronic diseases. But as the

number of users scales to hundreds of thousands or even to millions, a number of

problems arise, mainly related to the management of the large amounts of generated

data and the energy efficiency.In the last years, the pursuit of smaller, more efficient

wearable devices and with higher battery life has led to different optimizations in the

signal acquisition, processing, and communication stages. One of this optimizations

is the adoption of a non-uniform sampling scheme, which can reduce the amount of

data to be captured, processed, transmitted and stored. The sparse nature of many

bio-signals, like the electrocardiogram (ECG), makes it possible to go beyond the

classical Nyquist-Shannon sampling theorem and greatly reduce the global sampling

rate of the signal without losing significant information, by focusing on the areas

with relevant activity, in figure 1 we can see a typical ECG signal sampled uniformly

(in blue) and the event-based samples taken (green dots on the orange ECG), as we

can notice, the instantaneous sampling frequency increase proportionally with the

instantaneous frequency of the signal.

Uniform sampling:
fs=360Hz

Polygonal approximation:
fs=34.2Hz (mean)

Figure 1: Uniform vs non-uniform sampled ECG segment. Black lines at the bottom
represent the sampling density

However, this sampling scheme prevents the use of most of the existing biosignal

processing algorithms, which assume a uniform sampling frequency. Therefore, the

objective of this project is to start filling this gap by developing a set of algorithms

6

Introduction

for QRS detection in ECG signals.This task is of particular interest because it give

us the main tool for Heart rate analysis. The algorithms should also be able to

be implemented in an embedded architecture, such as the PULP ultra-low power

wearable platform (PULP), in order to make it ready for a practical implementation

in a real-life embedded wearable device. Finally, the energy efficiency of the new

algorithms will be evaluated and compared with state-of-the art methods.

In this first chapter, we’re going to discuss the general idea behind the work of

this thesis, in particular, we will make a short overview on the ECG signal, with

particular attention to one specific standard database. We will then take a short

tour around the classical techniques for QRS detection. We will then look at two

event-based methods and analyze the selected one. In order to demonstrate the

practical feasibility of our proposal we will implement the studied algorithm on a

low power MCU and analyze the energy consumption. We will describe it in the

sub-paragraph about the used platform

1.1 ECG and dataset

In this section we will try to give a fast overview of the ECG signal, according to

[1, 2].

The electrocardiogram is the description of the electrical activity of the heart,

recorded by electrodes positioned on the surface of the body. The continuous con-

traction and extension of the muscular cells that compose the heart are caused by the

depolarization and re-polarization of the excitable cardiac cells. This depolarization/re-

polarization cycle can be measured as a potential in different parts of the body.

Given the expected signal we can use the recorded ECG to be able to diagnose sev-

eral heart diseases. We can divide the ECG into 3 main sections: P complex, QRS

complex and T complex. Each of these complexes holds inside several interesting

points. In particular, we will investigate the QRS complex that corresponds with

the main ventricular contraction and is composed of 3 points: Q, R, and S. The used

database for this thesis is the MIT-BIH Arrhythmia Database[3]. This is a standard

database composed of 48 recordings performed on 47 patients of several hospitals,

each of them is 30 minutes long and already labeled. The recordings were acquired

at a sampling frequency of Fs = 360Hz per channel with 11-bit resolution over a 10

mV range with 2+1(reference) leads placed on the chest with the exception of one

recording that was registered using only 1+1 leads. In this work we will use only

the signal coming from the lower lead, often referred as V1.

7

https://www.pulp-platform.org/

Introduction

1.2 Classical ECG algorithms for QRS detection

QRS complex detection is an algorithmic task that has been largely investigated in

the past 40 years from several points of view. An extensive comparison between

several methods can be found in [4, 5]. The main problem with the QRS detection

is that normal complexes are detectable with low efforts while the most interest-

ing peaks (relative to arrhythmia and heart diseases) are complex and not always

detectable. Moreover, because the ECG is registered with leads on the skin of the pa-

tient, muscles contractions can cause artifacts that, along with the electrical noise,

lead to misdetections in common algorithms. In order to understand the perfor-

mance of an algorithm we used the F-Score that we can obtain from the Specificity

and Positive-predictivity, using the following formulae:

Sp =
Correct QRS predicted

Total number of true QRS peaks
(1)

Pp =
Correct QRS predicted

Total number of QRS predicted
(2)

F1 =
2 ∗ Sp ∗ Pp
Sp + Pp

(3)

The F-score is the average between specificity and positive-predictivity, in other

world, it tell us the average percentage of false alarms. We can separate the typi-

cal QRS detection algorithms in two families: statistical methods and determinis-

tic methods. The statistical methods rely, usually, on the description of the QRS

complex as a random variable, trying to compute P (Xi = QRS|Xi, Xi−1, ..., Xi−n),

several approaches can be taken in order to compute this, some interesting examples

can be found in [6, 7, 8]. The deterministic methods rely, indeed, on prior knowledge

and a classical algorithmic approach to the problem such as derivative and integral

estimation, dominant peak research, etc. , examples of this type of algorithms can

be found in [3, 9]. Our main task is not to solve a problem that has already been

solved in several different ways. Our objective to change and implement existing

algorithms in order to achieve similar or equal results in a event-based sampling

setting.

1.3 Sub-sampling techniques

In order to obtain an event-based sampled signal from our departure database, we

must apply a non-linear sub-sampling transformation. Note that the non-linear sub-

8

Introduction

sampling is needed here because we are using signals from a database acquired with

classical ADC(the signals in the database where acquired using a uniform sampling

at Fs = 360Hz) .

There are several techniques that can be used to sub-sample a signal, each of them

relying on different ideas. One of the most common ones is the one proposed by

[10]: the main idea behind this method is to use an ADC that output a sample only

if the change in the signal exceeds a predefined set of regularly spaced amplitude

boundaries. In this work, we decided to use a different one[11] that can be explained

as follow:

The sub-sampling used measure the error between the real signal and a linear ap-

proximation of it: given a starting point (A) we analyze every successive point (B)

and compute the integral in the interval [A-B] of the true signal minus the linear

interpolation. If this result in an error less than a given threshold, we proceed to the

next point, otherwise we stop and fix that last point (B) as the new sub-sampled

point (see figure 2).

The selected threshold tell us what’s the maximum cumulative error that we

can allow between the real signal and the linear approximation of it that we ignore

before taking a new sample, an example of a signal sub-sampled with this techniques

can be found in Figure 3(Original) and in 4(Sub-sampled). The understanding of

the basic principle of this algorithm is essential for this work: several observations

used to adapt the classic algorithms derive directly from the error model used in the

sub-sampling.

9

Introduction

0 50 100 150 200 250 300 350
Time

2000

1000

0

1000
E
C

G
 v

a
lu

e

QRS complex

ECG signal

A B

0 50 100 150 200 250 300 350
Time

2000

1000

0

1000

E
C

G
 v

a
lu

e

QRS complex

ECG signal

A

B

0 50 100 150 200 250 300 350
Time

2000

1000

0

1000

E
C

G
 v

a
lu

e

QRS complex

ECG signal

A
B

etc...

Iab > k ?

Iab > k ?

Iab > k ?

YES

NO

Figure 2: Example of the procedure used to obtain the event-based sampling

1.4 Adopted approach

As we have seen previously, plenty of algorithms exist for QRS detection. However,

not all of them can be easily (or at all) adapted in order to work in a sub-sampled

domain. Moreover, one of the main objectives of this work is to use a low power plat-

10

Introduction

160 161 162 163 164 165
Time

700

800

900

1000

1100

1200
AD

C
va

lu
e

Raw ECG

Figure 3: Raw ECG file

form. This leads the choice of the possible candidates toward deterministic methods

with light computation and memory footprint. The selected methods need, of course,

to be also reliable and achieve a high F-score while keeping the variance among dif-

ferent tests low. The first algorithm tried was a simple adaptive double-threshold

with baseline removal. This was only a preliminary test, used to understand the

structure of the data and the expected degradation of the results as a function of

the used threshold and will not be explained further. The second method tested and

adapted was the Pan-Tompkins algorithm [9]. This is one of the most historically

famous algorithms for QRS complex detection and even if more well-performing al-

gorithms exist nowadays, it still remains a light and excellent choice for low power

(and low performance) devices. During our tests, it reached a maximum F-score of

98.5% (the average among all the 48 recordings). This is considered, in nowadays

medical applications, to be a relatively bad score: considering that the human heart

beats, in average, around 100,000 times a day, this performance would mean 1,500

false alarms per day. The third algorithm tried is known as gQRS, published in

the WFDB software compilation from Physionet [3]. This algorithm, designed by

G.Moody, was designed to work on ambulatory records in the MIT format. The

base algorithm performs extremely well on all the tested files, achieving F-scores

that vary from 99 to 100% (The detailed results will be given in the dedicated chap-

ter). The baseline score of this algorithm lead to the development of a new version

adapted to event-based sampled signals. The results obtained where considered sat-

isfying also at high threshold levels (F-score = 99.1% at a high threshold level =

11

Introduction

160 161 162 163 164 165
Time

700

800

900

1000

1100

1200

AD
C

va
lu

e

ECG at threshold = 75

160 161 162 163 164 165
Time

700

800

900

1000

1100

1200

AD
C

va
lu

e

ECG at threshold = 800

160 161 162 163 164 165
Time

700

800

900

1000

1100

1200

AD
C

va
lu

e

ECG at threshold = 1900

Figure 4: Same signal of Figure 3, sub-sampled as described in 1.3 at three thresholds

12

Introduction

1000). Given these results, we decided to focus on the gQRS for the next stage: the

implementation on a low power MCU.

1.5 Low energy MCU

As previously said, the idea of a working algorithm in the sub-sampled domain

acquire even more strength when applied in a low power MCU. Several of such

platforms exist on the market. While most of them are different versions of the

low-power versions of the ARM architecture, the platform targeted is based on the

“RI5CY” architecture[12]. The platform used is one of the PULP distribution, a

low energy MCU designed by ETH and the University of Bologna jointed efforts,

in particular, Mr.Wolf[13]. This is a RISC-5 MCU with an extreme computation

capability (up to 1 GFlop/s: Mr.Wolf presentation) and low power consumption. It

is important to notice that, even if this particular platform has a floating-point unit

(FPU), it was decided to not use it and re-write the code in order to use only fixed

points data when possible. Three versions of the gQRS algorithm were developed

and tested in a simulated environment in order to get a good comparison in terms

of energy consumption of different types of implementation. We will see later in this

work the exact details of the PULP platform

13

https://pulp-platform.org/docs/Wolf_ESSCIRC_2018.pdf

QRS detection

2 QRS detection

In this chapter we will discuss further about the implementation of several algorithms

for QRS detection and then we will put our focus on the one that will go under the

optimization process for execution on the PULP platform. It is important, before

proceeding any further, to precise what we define as QRS complex: as we can see

from figure 5, we call QRS complex the signal that start at point Q and terminate

at point S. As seen in 1.1 this signal correspond to main ventricular contraction of

the heart muscles.

0 50 100 150 200 250 300 350
Time

3000

2000

1000

0

1000

2000

3000

4000

E
C

G
 v

a
lu

e

QRS complex

ECG signal

P-wave
T-wave

Q

R

S

Figure 5: Example of a QRS complex. In this image is possible to observe also the
P and T wave

2.1 Methods considered

As seen in the introduction, in 1.4, the two main methods considered were the

Pan-Tompkins algorithm[9] and the gQRS algorithm, designed by Dr. G.B. Moody

and published in the WFDB software compilation from Physionet[3]. These two

algorithms were chosen among the sea of the existing algorithms for QRS complex

recognition for two main reasons: The ability to design the full stack, from proto-

typing to implementation (in an emulator) and the possibility of being re-adapted to

a non-uniformly sampled signal. This led to exclude all methods involving wavelet

or Fourier transformations: even if a theory of wavelet on event-based sampled do-

main exist we still opted for more classical and of easier implementation solutions,

this because the duration and the scope of this thesis were not suited for the com-

plexity needed to translate “frequency” based methods to non-uniformly sampled

signals. Moreover, because one of the main objectives of this work is to obtain a

14

QRS detection

low energy QRS detection algorithm, we focused on the solutions that result to be

computationally lighter.

2.2 Algorithms description

The idea behind the Pan-Tompkins[9] is that the heart rate, once squared and

integrated, presents a more predictable structure with periodic peaks denoting where

the QRS complex is located. In order to explain this algorithm, we’re going to make

the assumption that the whole signal (or at least a chunk of it) is available. The

first operation executed is filtering with a custom designed band-pass filter that aims

to block the muscular noise, the T-wave and the electrical noise. We will call this

signal f(t). After this first step, a differentiation is performed to obtain information

about the Q-R slope duration. Then the signal gets squared, this operation makes

the signal positive and emphasize the high frequency content of the signal (i.e. the

QRS complex) because of the non-linear amplification. Lastly, the resulting signal

gets integrated with the time windows computed during the differentiation. We will

call this signal i(t). In order to obtain the QRS positions we use f(t) and i(t).

Eight adaptive parameters (4 that operate on f(t) and 4 that operate on i(t)) plus

a running time estimator is used to decide if a certain peak is a QRS complex.

The second considered algorithm is the gQRS algorithm, published in the WFDB

software compilation from Physionet[3]. This algorithm captured immediately our

attention because of its surprisingly good performance. As we will see later, this

algorithm reaches, for uniform-sampled signals, an average F-score of 99.8% and was

designed with the idea to put the positive-predictivity score over the sensitivity score.

The base gQRS algorithm implements a consistently higher amount of adaptive

thresholds with respect to the Pan-Tompkins that act on both time and amplitude.

The gQRS algorithm also needs to integrate the signal but here it is performed in a

total different way, as we are going to see. In order to understand it better, we can

divide the gQRS algorithm into 3 phases: filtering, integration and peak detection

and thresholding

2.2.1 gQRS Filtering

The first operation applied on the signal is double filtering. Since all the used

filters are digital, all of them operate with a delay times δt that is, on average,
1
4
TQRS where TQRS is the average duration of the QRS complex. This is a settable

parameter and is not learned during the execution, so we assume the default value

15

QRS detection

of TQRS = 0.07s. At first, a trapezoidal filter is used to smooth the signal and

remove motion artifact and electric noise. A trapezoidal filter is simply a low-pass

filter that emulates a hardware R-C low-pass filter, we can observe it’s behaviour in

figure 6. This filtering is obtained with an IIR (Infinite Impulsive Response) digital

0 100 200 300 400 500 600 700
Time

3000

2000

1000

0

1000

2000

3000

4000

EC
G

va
lu

e

Original VS smoothed
Smoothed signal
Original signal

Figure 6: Real VS smoothed signal

filter that takes into account the previous response of the filter and two samples at a

distance of ±2δt, hence introducing a delay on the filtered signal of
TQRS

2
. After this

first filter, a second one is used in order to enhance the QRS peak in the smoothed

signal and make the other parts of the signal lower. This is done using what Dr.

G.B. Moody calls an“adapted filter”. In figure 7 we can see the impulsive response

of the adapted filter. As we can notice, its shape is designed to resemble the shape

of a typical QRS complex. Being the filter an odd function with respect to the

central sample, this filter is able to give a strong response to both the positive and

negative QRS complexes. Moreover, it will be an extremely useful property when we

will re-adapt the code to work on a low power MCU. This filtering is obtained with

a FIR (Finite Impulsive Response) digital filter that takes into account 9 samples

(with the 5th being the currently analyzed sample) at a distance of δt, making this

filter 8δt long in time and introducing a delay on the filtered signal of TQRS(4δt).

The final latency of the two-stage filtering is, hence, 3
2
TQRS = 6δt

2.2.2 gQRS Integration

The obtained results from the filtering step undergo a successive integration opera-

tion and a squaring operation. The successive integration only has peaks when the

16

QRS detection

4 3 2 1 0 1 2 3 4
Time

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Ta
p

va
lu

e

Adapted filter

Figure 7: Impulsive response of the adapted filter used on the gQRS algorithm

adapted filter has a high and long enough response and is constant for all the parts

of the signal that does not present the required QRS signature. This is because the

ECG is a signal with zero average (once the ADC offset is removed). The squaring

is needed because, as for the Pan-Tompkins algorithm, this operation makes the

signal positive and emphasizes the high frequency content of the signal (i.e. the

QRS complex) because of the non-linear amplification.

2.2.3 gQRS Peak detection and thresholding

Finally, in the third phase, we check the presence or absence of a peak and we

determine if it is from a QRS complex or not. To do so, we first check if a peak

structure is present, checking if xt−1 < xt > xt+1, if this condition is true then the

detected peak goes through a series of thresholds needed to asses if it comes from a

QRS complex or not: firs we check if it is a significant peak using a threshold, and

secondly we check if it is possible for it to be a QRS peak using a second threshold

and timing information. This double-check is needed because in case a peak results

to be significant but not strong enough to come from a QRS complex and no QRS

complex is detected before a certain timeout then we can lower (or make higher, if

the opposite happens) the two thresholds independently, adapting our algorithm for

different scenarios. Another important check that gets performed on the founded

peaks is the dominance over a neighbour: this operation is performed recursively

and checks if the peak is the strongest in a neighbour of peaks. The interesting part

is that, in order to be dominant, a peak does not need to be the highest one in its

neighbourhood, it just needs to be higher than the previous non-dominant peak. In

other words, if a detected peak certainly comes from a QRS complex and get labeled

17

QRS detection

as dominant, this creates an interdiction time for the next peak to come in a certain

time-span. This strongly helps with discarding false positives detections.

2.3 Algorithms adaptation

The two described algorithm works with the assumption that all the samples in a

signal are uniformly sampled in time. That means that the signal is sampled at

a constant frequency fs. While this is true for our database (Fs = 360Hz), it is

completely wrong after the signal undergoes the process of event-based sub-sampling,

hence we need to redesign the chosen algorithms so that they will continue to have

similar performances even when we use signals that are non-uniformly sampled. This

section will strongly leverage on the specific type of event-based sub-sampling used.

As discussed above, the obtained sub-sampled signal can be linearly interpolated

while the error is ensured to remaining below a certain threshold ε. The first logical

approach would be to just linearly interpolate the signal in order to recover the

original sampling frequency and then apply the described algorithms as they are.

Even if this is a viable solution it still remains sub-optimal: the main objective of

this work is to drastically reduce the used energy on the MCU side while performing

these operations would only increase the workload on the target platform. In the

following subsections we are going to describe, at first, the techniques used to adapt

the Pan-Tompkins algorithm and then reuse the acquired knowledge with the gQRS

algorithm.

2.3.1 Pan-Tompkins adaptation

It’s important to notice that in our work of adaptation of the Pan-Tompkins al-

gorithm, we did not aimed to re-create the exact behaviour of the original Pan-

Tompkins algorithm. This is mainly because of two reasons:

1. The filters of the original Pan-Tompkins algorithm were designed specifically

to work with uniformly sampled signals with a certain type of noise. The

sub-sampling algorithm used, however, already performs a certain type of low-

pass filtering. Moreover, the proposed implementation in [9] would need the

modelling of an IIR filter and we will see later on why, in this scenario, the

design of this type of filter results to be of high complexity.

2. From a preliminary study, we noticed the overall higher performance of the

gQRS algorithm when compared to the Pan-Tompkins. Given this knowledge,

18

QRS detection

it was already clear that the gQRS algorithm would be the targeted algo-

rithm for the final implementation. The Pan-Tompkins (or even better, the

pseudo-Pan-Tompkins developed) was useful for understanding how to han-

dle this type of sub-sampled signal. Moreover, the baseline score achieved

by this algorithm was used as a baseline score, useful to evaluate the overall

performance of the various versions of the gQRS.

Given these premises, the biggest challenge we faced was how to obtain the integral

of a sub-sampled signal. The remaining parts of the algorithm (in which we perform

the comparisons with all the thresholds) can be easily implemented by switching

from an index-based timescale (each value are equally spaced in time, hence the

index of the obtained array of values can be used as a time scale, this is how the

original Pan-Tompkins algorithm work) to time based time-scale: each time a sample

arrive we save not only its value but also its time. Given ε to be the maximum error

allowed of the sub-sampling we know that:∣∣∣∣∣∣
b∑

n=a

xn − x̃n

∣∣∣∣∣∣ 6 ε (4)

b∑
n=a

xn + ε >
b∑

n=a

x̃n >
b∑

n=a

xn − ε (5)

where xn is the nth point of the true signal, x̃n is it’s corresponding value in the

linear approximation from a to b and ε is the wanted threshold. This tells us that

as the true error between the true numerical integral and the integral of the linear

interpolation never grow higher than ε. Because the expected value of xn and of x̃n

is 0, the expected value of the error is also 0 also for any sequence of consecutive

numerical integral, given the sequence [0, q1, q2, ..., qN] as the sequence of index that

delimit the signal x̂n in chunks that respect the Eq. 5:

E

 [qN−1,qN]∑
[a,b]=[0,q1[

b∑
n=a

xn − x̃n

 =

[qN−1,qN]∑
[a,b]=[0,q1[

E

 b∑
n=a

xn − x̃n

 = 0 (6)

This tells us that, if we continuously integrate the linear interpolated signal

chunks, the result is, in expected value, equal to the true numerical integral. Given

this result, we can now find the formula for the integration in our sub-sampled

domain. We will calculate the integral of the linear interpolation of the signal only

19

QRS detection

in the obtained sub-sampled points, and this can greatly reduce the computation

workload and the memory needed to store the obtained values. Given 2 consecutive

sub-sampled points {v1, v2} and their time {t1, t2} the easiest method to compute

such integral, would be to obtain all the values of the linear interpolation between

t1 and t2 but then again, as previously said, all the idea of this project is to reduce

the total energy consumption while this would instead increase it (when compared

to the “vanilla” implementation of the algorithm on an uniform-sampled signal).

What we could do is to notice that:

It1−t2 =

t2−1∑
i=t1

x̃n[i] =

t2−1∑
i=t1

(m · i+ q) (7)

where m = v2−v1
t2−t1 and q = v1−m · t1. Notice that the consecutive sum need to arrive

only to t2 − 1, otherwise, during the calculations for the next interval {t2, t3} the

point in t2 would be taken into account 2 times. Let’s substitute t2− 1 with l, using

the Gauss sum, we can write:

It1−t2 = m ·
l∑

i=t1

m · i+ q · (t1 − l + 1) =

m

2
· (l + t1)(l − t1 + 1) + q · (l − t1 + 1) =

m

2
· (t2(t2 + 1)− t1(t1 + 1)) + q · (t2 − t1)

(8)

This gives us the solution in closed form of the numeric integral using only the

points present in the sub-sampled signal. To write m and q in function of {v1, v2}
and {t1, t2}, even if possible, does not bring any advantage. Moreover, even if the

Pan-Tompkins algorithm does not need them, we will see that, to store those values

(m and q) will be helpful in the gQRS algorithm in order to make the workload

slightly lighter at the cost of more memory used.

In order to use the filter proposed in [9], we would need to implement an IIR

filter such that it takes as input the previous output (in our specific case, the 2 last

outputs), or, mathematically (in the notation without delays):

yn =
n∑

i=n−Q

a[i− n] · xi +
n−1∑

j=n−P

b[j − n] · yj (9)

Where P is the number of previous yn and Q the length of the direct filter on the

20

QRS detection

signal x. Given a point xn, we can linearly interpolate all the previous Q points. In

order to obtain the previous output of the filter we would actually need to calculate

them in a recursive manner, this can be theoretically equivalent to the implemen-

tation of the algorithm with a FIR filter on the signal linearly interpolated up to a

certain point. The number of points that we need to interpolate may appear to be

P +Q but this would be true only in the case of a filter with all the delay coefficients

equal to one. Otherwise, the number of needed interpolated points can grow up to

(P + 1) · Q. Moreover, even if it is true that in order to obtain y[n-j] we need to

re-apply the filter to other Q interpolated signal values, it is also true that we would

need to consider, again, the previous response of the IIR filter, making this a highly

inefficient recursive procedure. The most efficient way to compute such filter is to

obtain the fully linear interpolated signal and that would defy the objective of this

thesis as said before.

The core part of the algorithm, that relay on the use of adaptive thresholding on

the two signals (the original sub-sampled signal and the integrated one) was basically

left unchanged. Even if the signal is sampled following the described event-based

technique, we can still recover the peak structure: a prominent peak (i.e. anything

that is not noise and of enough high frequency to be considered) consists in a big

variation of the signal, hence the distance between the ground truth and the linear

approximation increase much faster than the part of the ECG where we do not have

any event. This causes the instantaneous frequency of the sub-sampled signal to

increase around a prominent peak (hence, also in the proximity of a QRS complex).

This allows us to use a classic peak detection and to use, on the detected peaks, the

classic Pan-Tompkins algorithm.

As we can see from figure 8, the algorithm has 2 regimes:

1. 0 6 ε 6 800 The performance increases up to 98.5%, This is due to the fact

that we did not implement the custom band-pass filter proposed in [9] so the

sub-sampling procedure is acting, as ε increases, as a low pass filter.

2. 800 < ε 6 2000 The performance starts to decrease almost quadratically with

ε, this is because as the threshold increases, more and more details are lost.

As said before, the achieved performances were far below the one declared in [9].

This is because, as we have seen, some very specific parts of the original algorithm

were deliberately not implemented. This is because, given previous studies, we

already knew the algorithm to target as our main option: the gQRS while leaving

21

QRS detection

this as a proof of concept.

2.3.2 gQRS adaptation

As discussed in 2.2, the gQRS algorithm can be divided into three main steps. In

this section we are going to describe how we adapted the first two steps. The third

step, as for the Pan-Tompkins, remains the same with the sole difference that in

the original algorithm, the timescale was given by the index of the sample while

in our version we use a custom time vector to identify the timestamp at which a

new sample arrives. In the original implementation, in the first step, two filters

are applied: an IIR filter and a FIR convolutional filter. As discussed before, the

implementation of an IIR filter in closed form, even if mathematically feasible, it

defies the purpose of this work. The IIR filter used is a low pass filter that emulates

an RC physical filter in order to obtain a smoother signal. Because the sub-sampling

algorithm already performs a low pass filtering we decided to try, at first, to avoid

this first filter, making the algorithm lighter. One possible option may have been the

use of a sufficiently large FIR filter that emulates the impulsive response of the IIR

low pass filter. To finish the first step, a second filter (matched filter) was applied

and then proceeded to the integration. We can write these two steps as:

y[t] =
t∑
i=0

+∞∑
j=−∞

h[j] · x[i− δj] (10)

Where δ is the delay of the filter and h[j] is the jth tap of the filter and is long 1
4

of the

average duration of a QRS complex. The computation of the value of y[t] requires

the knowledge of all the previous filter response. This is because even if it’s possible

to linearly interpolate just the points needed for the filter, given two contiguous

filter response we can not say anything about the behaviour in the middle (in this

sub-sampled environment) and, hence, we can not compute the integral needed to

obtain y[t]. One solution, again, could be to linearly sample all the signal and then

execute the filtering and integration on it, this, as before, would defy the main idea

of this thesis. Another method we could use is the following:

Using Fubini’s theorem [14] and numerating the taps from -4 to +4 (where the tap

0 is the one corresponding to the analyzed time instant) we can write:

y[t] =
4∑

j=−4

t∑
i=0

h[j] · x[i− δj] (11)

22

QRS detection

Now lets assume to know the integral of the signal:
∑t

i=0 x[i] = I[t], then

y[t] =
4∑

j=−4

h[j] · I[t− δj] (12)

We have seen in Eq. 8 that is possible to perform the computation of the integral

efficiently within an error of ±ε and a priori and can be performed on-line as the

data arrive. Anyway, this forces us to save, aside from the integral signal also, at

least, the original signal. In our prototype implementation we saved also the array of

ms and qs (y[t] = mτ ·x[t]+qτ where mτ and qτ are the m and q of the corresponding

linear chunk of the signal). We will see, in the low-power implementation, how to

reduce drastically the amount of memory required.

As we can observe from Eq. 12, if we want to compute the response for a precise

t, we would need to know the value of I[t − δj]. Because of the event-based sub-

sampling, by no mean we can be certain to have the signal x[t− δj] and, hence, we

can not be sure to have, in the vector of the integrated signal, all the needed points

to compute the response of the filter. In order to solve this problem, we can find the

nearest two points to the desired one and use the Eq. 8 and the saved past values

to obtain the integral only in the desired points.

The third step is basically left untouched aside from some minor change. It has

already been explained in section 2.2.3

2.4 Preliminary comparison

In this section, we will take a look at some preliminary results that helped us to

decide which algorithm should be optimized and ported to the PULP platform.

Further and deeper analysis will be carried on in chapter 4. As we can see from

figure 8, the gQRS algorithm reaches an average F-score of 99.8% for low thresholds

and decrease almost quadratically with the threshold. It is important to notice that,

even with a threshold of ε = 1100 the performance of the gQRS algorithm remains

still higher than the performance of the original Pan-Tompkins algorithm described

in [9] and this is the main motivation that pushed us to focus on this algorithm and

use the pseudo-Pan-Tompkins results as a scale for the evaluation of the achieved

performance. More details about variance and deeper behaviour of the algorithm

will be discussed in section 4

23

QRS detection

0 250 500 750 1000 1250 1500 1750
Threshold

95

96

97

98

99

100

F-
Sc

or
e

F-Score
tompkins
gQRS
gQRSOrig
gQRSCCode

Figure 8: F-score results of gQRS vs. Tompkins. (F-score vs ε)

24

Low power implementation

3 Low power implementation

In this chapter, we’re going to briefly describe the ultra-low power MCU targeted

(PULP) and then move on to the steps needed to implement the gQRS on such

platform. In particular, we’re going to analyze the steps needed to be able to use

the multi-core cluster present on the MCU. The code for the implementation of the

“event-based sampling gQRS” was originally prototyped in Python and then ported

to C99.

3.1 PULP platform

The targeted MCU used is one of the various versions of the PULP MCU called

Mr.Wolf[13]: an advanced microcontroller based on an ultra-low-power 32-bit RISC-

V processor. We can see the chip block design in Figure 9. This platform has

several interesting tools that can be used both for performance enhancement and

power management. In order to describe it, is helpful to split the chip in two main

domains: the Fabric Controller (FC) and the Cluster (CL). These domains are

defined by zones under the control of the main core or of the the cluster and by

separated power management. We will call SoC the portion of the chip under the

direct control of the FC

3.1.1 Fabric Controller

The FC is the main core (and domain) of Mr.Wolf. It is able to perform fast access

on 512 kB of L2 memory, divided into eight blocks. As we will see in the next section,

Mr.Wolf also has a smaller bank of L1 memory. This memory is intended to be used

as the main memory for the cluster cores. By default, the cluster and hence the

L1 memory are turned off, making the L1 memory not accessible and not retentive.

If the cluster is turned on, it is possible to access also the L1 memory directly

from the fabric controller but this would require substantially more time (measured

in numbers of clock cycles), making this operation inefficient to be performed like

a classical memory access. It is possible to switch the SoC between three power

profiles:

1. Active: while the FC is in active mode the core is executing all the code at

the maximum clock frequency possible for that operating voltage,and all the

L2 memory is powered on and retentive.

25

https://www.pulp-platform.org/

Low power implementation

Figure 9: PULP chip block design, from Mr.Wolf presentation

2. Sleep (Power gated): while in sleep, the FC is power gated. This means that

the core is not working and no energy is consumed on it. It’s important to

notice that this state is different than to be shut down: from this state it is

possible to resume the interrupted operations with a relatively low overhead

when compared to re-start from being shut down. Moreover, even if in this

state the memory is powered off and not retentive, is possible to select a

number of L2 blocks to continue to flag as retentive. This essential feature

comes at a cost: any selected bank will consume energy in order to keep them

powered on. We will see in chapter 4, how this consumption strongly impacts

on the energy profile of our application.

3. Clock gated: This power profile is managed automatically by the PULP-

platform and is entered any time the FC does not need to execute any in-

struction. In this profile, all the SoC is powered on but the clock is blocked

before entering in it. This makes the memory retentive and accessible but also

produces a big amount of leakage. This profile is useful, for example, if we

need to access data in the L2 memory from the CL while the FC is waiting

Setting the working voltage will give the maximum frequency at which the FC (and

26

https://pulp-platform.org/docs/Wolf_ESSCIRC_2018.pdf

Low power implementation

the CL) will be able to work: starting with the minimum voltage V = 0.75V the

FC will be able to reach a working clock frequency up to fclk = 125MHz. The

maximum speed is achieved with V = 1.1V and reaches fclk = 478MHz.

One of the most interesting features is the µ − DMA: inside the SoC there is a

DMA (direct memory access) module that can work even when the FC is in sleep

mode (although the needed area of memory needs to be retentive). This makes it

possible to transfer data from all the peripherals present on the SoC (I2C, UART,

etc.). This can be used to perform data acquisition while the core is doing different

things or to obtain better power performance, putting the SoC in sleep mode, retain

only the needed bank of L2 memory and wake up the FC only when the desired

amount of data has been received.

3.1.2 Cluster

The Cluster is a separated (i.e. not on the SoC as we can see from figure 9) system

composed of 8 DSP(Digital Signal Processor) enhanced RISC-V processors and 64kB

of L1 shared memory with an access time of 1 cycle. In the whole CL system it is

also present a high performance DMA that results to be extremely useful, especially

if a data transfer is needed from L2 to L1 while executing other instructions: the two

memories (L2 and L1) enable multiple access allowing data transfer and execution

to be parallelized. Setting the working voltage will give the maximum frequency at

which the CL will be able to work: starting with the minimum voltage V = 0.75V

the CL will be able to reach a working clock frequency up to fclk = 40MHz. The

maximum speed is achieved with V = 1.1V and reaches fclk = 350MHz. Because of

the difference in the working frequency between CL and FC, the operations needed

to turn on the cluster (and adjust the clock frequency) require a big amount of

time. From our experiments, this time is around 53 kCycles on average. This

can be significantly reduced if we allow the FC to go slower and match the same

frequency of the CL.

In this work, we decided to use an operating voltage of V = 0.75V and a shared

frequency between CL and FC of fclk = 40MHz. As we will see in chapter 4 these

operating conditions achieve speed performance too high for this type of application.

3.2 gQRS on PULP

As previously discussed, the only algorithm that we decided to port on PULP is

the gQRS. This because, as we will see, it uses several computational structures

27

Low power implementation

that can be easily parallelized and it can achieve good results while maintaining the

algorithm light in terms of computational power.

We divided the work into three main redesigns of the original algorithm. The first

is a porting of the original (vanilla) gQRS algorithm to the PULP platform, making

it working in an on-line mode. The second is the modification of the ported gQRS

algorithm to work on signals that are event-based sampled as we have seen in 2.3.2.

The third was a large redesign redesign of the structure of the algorithm so it can

execute, efficiently, in a multi-core environment.

3.2.1 Vanilla gQRS

The adaptation of the vanilla gQRS algorithm (that works only with uniformly

sampled signals) did not required an intensive effort: once the code was translated

from the prototyping language to plain C − 99 only few more steps were needed: in

particular we redesigned all the data-structures used in order to satisfy the memory

constraints: while in the plain C − 99 we used specific structures to emulate the

behaviour of a classic object in order to be similar to the python version, here we

redesigned the data-structures in order to work with a more classic C approach.

Moreover, we changed all the dynamic allocated data to be, instead, positioned in

the stack: even if the PULP platform gives access to specific functions to work with

dynamic allocation on an MCU environment we preferred to keep our code compliant

with the classic MCU programming techniques. The original gQRS algorithm was

using data and results in floating-point representation. Even if Mr.Wolf has a FPU

unit, we decided to avoid to use it for two reasons:

1. The FPU requires anyway both more time and power to operate. If possible,

is better to execute the computations in fixed-point.

2. Even if Mr.Wolf is a low energy MCU, it is still extremely powerful. We ere

aiming to develop a generic implementation for low low-power MCUs. These

type of MCUs not always have a FPU

Further smaller optimizations were performed on the code in order to reduce the

number of cycles needed.

3.2.2 Custom gQRS

As discussed above, the “event-based sampling gQRS” was developed, at first, using

a fast-delivery prototyping language such as Python. Once we had the Python code

28

Low power implementation

the porting in standard C-99 took a relatively small effort. Then we needed to

adapt it in order to be able to run on the FC. In order to do so, we first applied the

same optimization techniques used for the vanilla version. After that, we needed

to re-code the integral re-sampling (see 2.3.2) and the filtering. Minor corrections

were needed in order to implement an efficient sliding buffer and multiple peaks

detection.

3.2.3 Parallel gQRS

In order to be able to parallelize the gQRS algorithm a re-design of the central part

of it was needed. As discussed in the previous chapter, the “event-based sampling

gQRS” can be divided into 3 main sections: integration, filtering, and thresholding.

As we will see, it was possible to parallelize integration and filtering. Unfortunately,

the thresholding procedure adapts the thresholds based on the previous results and

it was not possible to use the same techniques used to parallelize the integration.

Not only the structure of the parallelized code was changed, but we also needed an

efficient method to transfer data between the FC and the CL. We will describe, now,

these three main steps, a schematic of the code can be found in Figure 11 while a

scheme of the vector handling can be found in figure 10.

Head Body Tail

Values vector:

Values vector:

From FC to CL

Integral vector:

Integration......

FIltered vector:

Filtering

Filtered vector:

From CL to FC

The first element of the tail (
become the first element of the next body

2 * TailHead

Next vector

u-DMA start to fill from here

) need to

Figure 10: Block design for the described vector handling techniques: as we can see
on the right, only the last 2 ·Tail elements needs to be stored for the next execution

FC-CL Bridge: in order to send data to the CL, the FC acquires two vectors: time

(tk) and value(vk) where k is the kth chunk of data. These two vectors are

composed of a tail, a body and a head with fixed dimensions. The tail and the

head are needed in order to be able to apply the matched filter to the first and

last element of the body without the need to add padding and delete a certain

amount of value later. Once these two vectors are full, the CL starts a DMA

transfer in order to bring them from the L2 to the L1 memory and start to

29

Low power implementation

operate on them (on the body). When the CL has finished, it puts the results

of the integration and filtering in a return vector rk and starts a second DMA

transfer that copy the result vector from the L1 to the L2 memory. Once this

copy is finished, the FC start the peak detection and thresholding procedure.

Once rk has been completely analyzed, the FC copies the last elements of tk

and vk at the beginning of tk+1 and vk+1 so that the next first element of the

body will be the previous first element of the tail. In other words, let Tlen be

the length of the tail, we copy the last 2 · Tlen from the end of the two vectors

to the beginning of them and we start to fill them with new values starting

from 2 · Tlen + 1.

Integration: As tk and vk arrive, we divide the body, the tail and the head in eight

parts and send them to the eight cores of the cluster. Each core applies the

integration in Eq. 8 to the chunk received and puts the results in three vectors

(The vectors of the I,m and q) shared between the cores.

Filtering: Each chunk of the body is divided again between the eight cores that

will implement the filtering to each of them in parallel. As discussed in 2.3.2,

in order to implement the filtering around a central point, we need other eight

equally spaced points at a distance of δ. To obtain them, we must use the

re-sampling technique already discussed but with some minor changes. The

integral vector used will be discontinuous from chunk to chunk. To deal with

this, whenever the adapted filter is applied to a point that is in the ith window,

we calculate the required timing of each interpolated point, knowing that every

needed point will fall between 2 points already present. For every needed point

we can have three conditions:

1. The point is in the ith−1 window. In this case, we simply implement the

discussed re-sampling algorithm

2. The point is in the ith window or between the ith window and the ith− 1

window. In this case, we sum the last value of the ith − 1 window to the

two points that we will use for the interpolation

3. The point is in the ith + 1 window or between the ith + 1 window and the

ith window. In this case we sum the last value of the ith − 1 window and

the last value of the ith window to the two points that we will use for the

interpolation

30

Low power implementation

After this check, we can apply the interpolation formula.

Start FC

u-DMA receive data

Start

NO

YES

Is buffer full ?

Start CL DMA transfer buffer
(L2 -> L1)

Distribute the buffer
to the 8 cores

integral of each
chunk

Filter each chunk

Shut-down all the
cores (except core 0)

DMA write back (L1 -
> L2)

Power off the cluster

NO

YES

CL finished ?

Standard gQRS peak
detection

Copy end of the
buffer vector to the

start

Set u-DMA and go to
sleep

Color code:

u-DMA

FC

CL, core 0

DMA

CL, all cores

FC CL

Figure 11: Block design for the multi-core version of the gQRS algorithm

It is important to notice that we did not mention anything about the used power-

state of the MCU. This because the used SDK does not allow to simulate the sleep

state of the FC and the functioning of the µ−DMA. Because in the real scenario

both the FC and CL are in sleep mode until the µ−DMA had transferred enough

data and then they light up together. We decided, for profiling, to keep them light

up and measure the performance only after the buffer has been filled and the “true”

code start to works.

Another important detail is that we only save 2 ∗ ·Tails points from one Run phase

and the other as we can see from Figure 10 and, hence, the memory footprint of

such program results to be really small. This is because of how we implemented the

integration and because of the odd symmetry of the matched filter.

31

Results

4 Results

In this chapter, we’re going to discuss the performance of the event-based version we

developed when compared to the original gQRS algorithm. Then, we are going to

apply the original gQRS algorithm to a linearly-interpolated signal and compare the

results with our version executed on the sub-sampled signal at different ε. Finally,

we will see some interesting results that we obtained from the simulations of the

execution on the PULP platform for different versions of the code.

4.1 Heartbeat detection comparison

The full-stack development of the event-based sampled gQRS algorithm was per-

formed in three steps:

1. Python prototyping

2. C-99 development

3. PULP implementation

Each of these steps served a different purpose: The Python prototyping was used

to obtain results in easy-to-test conditions, essential in the understanding of the

mathematical principles of this algorithm. The C-99 version was used to obtain

an algorithm able to run on a PC but ready to be implemented on any MCU in a

relatively short time. In this section, we are going to see the results of these first

two steps while in the next one we’re going to see the results obtained from the

implementation on the PULP platform. In order to obtain interesting metrics (i.e.

useful to compare the results of different algorithms) we performed the following

measurements:

1. Pseudo Pan-Tompkins algorithm on the sub-sampled signals: as discussed

before (see 2.3.1), the results of this algorithm are not comparable to the

one obtained by the gQRS algorithm nor to an accurate adaptation of the

Pan-Tompkins. These results remain, anyway, helpful in order to establish a

baseline used to read the results obtained from the gQRS algorithm.

2. Original gQRS algorithm on the linearly re-sampled signal: doing so we were

able to apply the original gQRS algorithm to the sub-sampled signal at a

variety of ε.

32

Results

3. Python and C-99 implementation on the sub-sampled signals.

As seen in eqs. (1) to (3) the metrics used are Positive Predictivity (PP), Sensi-

tivity (S) and F-Score. As we will see in the next figures, for every threshold ε used

and for every algorithm described we compute the average and the dispersion of the

described metrics over all the files of the MIT-BIH arrhythmia database. Because

the distribution of the results is highly non-normal, we have decided to use the Me-

dian Absolute Deviation (MAD, [15]) instead of the classic standard deviation (we

can observe the difference between them in Figure 12 and 14).

0 250 500 750 1000 1250 1500 1750
Threshold

0

2

4

6

8

Standard deviation on the F-Score
tompkins
gQRS
gQRSOrig
gQRSCCode

Figure 12:
√
V ar for different thresholds

As we can see from Figures 13 and 14 the Python (gQRS) and C-99 (gQRSC-

Code) the implementations are almost indistinguishable. Because of this, from here

on we will just show the results of the Python version. Not considering the pseudo-

Pan-Tompkins, we can observe from Figures 12 and 13 that, even if the original

gQRS algorithm has basically the same variance of the one we developed, its overall

performance degrades faster than the one designed explicitly to work in the event-

based domain, We will explain the reasons at the end of this section.

In Figure 14 It is possible to observe the behaviour at different thresholds of the

MAD of the F-Score. As we were expecting, the pseudo-Pan-Tompkins has higher

MAD due to its lower capacity to adapt to the signal.

Figure 15 should be considered as the final and most interesting result of this section:

even if sensitivity and positive predictivity remain of fundamental interest, from an

utilitarian point of view, the F-Score and the MAD confidence interval give us the

33

Results

0 250 500 750 1000 1250 1500 1750
Threshold

95

96

97

98

99

100
F-

Sc
or

e
F-Score

tompkins
gQRS
gQRSOrig
gQRSCCode

Figure 13: Average F-score results of various versions of gQRS vs. Tompkins. (F-
score vs ε)

0 250 500 750 1000 1250 1500 1750
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
AD

Medain Absolute Deviation on F-Score
tompkins
gQRS
gQRSOrig

Figure 14: Median Absolute Deviation of the F-Score for different thresholds

metric to use in order to discern the best implementation.

The results shown in Figures 16 and 17 were expected: The gQRS algorithm

was designed to prefer the Positive Predictivity over the Sensitivity while the Pan-

Tompkins the exact opposite. Moreover, in the adapted gQRS algorithm the section

responsible to discern if a peak is from a QRS complex or not (discriminator) was

not changed. The small differences that we can observe are caused by the difference

in sensitivity: if one of the algorithms detect less (or different) peaks, the adap-

tive thresholds get modified differently, making the behaviour of the discriminator

34

Results

0 250 500 750 1000 1250 1500 1750
Threshold

95

96

97

98

99

100
F-

Sc
or

e
F-Score with MAD range

tompkins
gQRS
gQRSOrig

Figure 15: F-Score with confidence bands computed using the MAD

0 250 500 750 1000 1250 1500 1750
Threshold

96.0

96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0

PP

Positive predictivity

tompkins
gQRS
gQRSOrig

Figure 16: Average Positive Predictivity of the three algorithms

slightly different.

In Figures 18 and 19 we can observe that the original gQRS behaves worse than

the one we developed due to the lower sensitivity of it as the threshold increases:

the sensitivity of the original gQRS decreases faster than the custom one and even

becoming lower than the pseudo-Pan-Tompkins. This is because of the continuous

integration on the linearly re-sampled and filtered signal (The original gQRS still

has the low-pass IIR filter). While in our version we are sure that the absolute

error between the integral on the event-based signal and the true one remains lower

35

Results

0 250 500 750 1000 1250 1500 1750
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

1.2
M

AD

Median Absolute Deviation on Positive Predictivity
tompkins
gQRS
gQRSOrig

Figure 17: Median Absolute Deviation of the Positive Predictivity for different
thresholds

0 250 500 750 1000 1250 1500 1750
Threshold

93

94

95

96

97

98

99

100

Se
ns

iti
vi

ty

Sensitivity
tompkins
gQRS
gQRSOrig

Figure 18: Average Sensitivity of the three algorithm

than a certain ε, this is not true for the original algorithm applied to the linear

interpolation.

4.2 Energy consumption results

The PULP implementations of the gQRS algorithm seen in 3.2 behave in different

ways, achieving really similar results (in terms of F-score) but with extremely dif-

ferent energy performance. The difference in terms of F-Score ranges from −0.4%

36

Results

0 250 500 750 1000 1250 1500 1750
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

1.2
M

AD

Median Absolute Deviation on Sensitivty
tompkins
gQRS
gQRSOrig

Figure 19: Median Absolute Deviation of the Specificity for different thresholds

in the worst case and +1.2% in the best case. This problem comes from avoiding

the use floating-point types on PULP. The overall results remain consistent with the

“classic” C and/or Python version. The main performance metric in which we were

interested in this phase of our work was the energy consumption. The energy con-

sumption results were obtained using the profiling tools present in the PULP SDK.

Such tools allow us to obtain a series of performance measurements, for example, the

total number of active cycles, the number of memory access for both L1 and L2, etc.

In order to obtain the energy consumption we were interested in the total number of

active cycles (the total number of cycles in which the core under exam was executing

instructions). This measure can be converted into the used energy with the help of

tabulated values that tell us the energy consumption per cycles, the leakage energy,

and the energy consumed in sleep mode. Table 1 shows the energy consumption

results for the different algorithms, that were obtained considering a sampling fre-

quency Fs = 360Hz for the original gQRS version and Fs = 17Hz(average) for the

event-based version. As we can see the energy in run is greatly improved with each

successive version. However, because even the “vanilla” version of this algorithm

is already highly efficient in terms of computation the total time in sleep remains

almost constant among all the different implementations. In particular, the mea-

surements obtained in Table 1 come from the processing of 20 seconds worth of data

and the sleep time ranges from 19.935 seconds to 19.998 seconds. This makes the

energy consumption to be dominated by the leakage current that happens while the

platform is in sleep and the energy used for the retention of one of the eight blocks

37

Results

of L2 memory. It is important to notice that the energy consumption measured

is defined by the used technology. In this work we assumed to use the Mr. Wolf

distribution developed in 40 nm technology described in [16]. As the used tech-

nology is scaled down, the energy consumption for memory retention decrease with

it. Moreover, we have seen that the energy consumption is dominated by the fact

that we must make retentive, during sleep, at least one of the eight blocks of L2

memory. Because every bank is 64 kBytes, this lead to a big waste of energy for

unused memory: the total amount of memory that is strictly needed is dependent

on the length of the window we decide to acquire and the used threshold. For the

twenty seconds window discussed the total amount of memory needed is less than

1 kByte (considering both the memory for data storage and past results storage).

This means that with a more advanced technology and with smaller custom mem-

ories we can expect a significant reduction of the energy in the sleep phase. For

example, we can achieve 240 times less energy in sleep (for memory retention) with

20 nm techonlogy and a custom 1 kByte L2 memory bank.To achieve the same en-

ergy in sleep and in run, the complexity of the Fabric Controller implementation

would need to increase around 47 times while the complexity of the Cluster version

would need to increase about 120 times. This increase would balance the energy in

run and in sleep (but not the time). In this case, the total used energy would be

3.02 mJ. These data tell us that the algorithm we designed achieves high efficiency

when compared to the original one (the energy and time passed in Run) while still

having computational resources that can be used for the implementation of other

algorithms of higher complexity.

Energy in Run [mJ] Energy in Sleep [mJ] Time in run [ms] Total Energy [mJ]
Original gQRS 0.2534 1.53 44.6 1.78
gQRS FC Implementation 0.0320 1.53 5.64 1.56
gQRS CL Implementation 0.0124 1.53 1.85 1.54

Table 1: Energy usage of the 3 different gQRS algorithm on PULP for the processing
of 20 seconds worth data.

From the results seen we can also compute the average energy per processed

point (in Run):

1. Original version: Epoint = 35nJ

2. FC Implementation: Epoint = 94nJ

3. CL Implementation: Epoint = 36nJ

38

Conclusions

5 Conclusions

The general idea behind this work of thesis was to show how it is possible to extract

interesting features form an event-based sampled signal and how to use the developed

techniques in a low power MCU such as the PULP. In particular, we focused on the

detection of the QRS complex in ECG signals. We used the ECG signals contained

in the MIT-BIH arrhythmia database. In order to achieve this task we adapted two

famous algorithms to work in this environment: the Pan-Tompkins [9] and the gQRS

algorithm [3]. The studies on the Pan-Tompkins algorithm were used to understand

some principles on how to adapt an algorithm in order to make it work with an

event-based signal while the gQRS algorithm was chosen as the target algorithm to

implement on the designed MCU due to its higher performance.

The work was divided into 3 main steps: prototyping, implementation, and op-

timization. In the implementation, we saw how re-writing the mathematical idea

behind an algorithm could lead to interesting results and allows us to use that algo-

rithm in a different environment. During the implementation, we were able to use

the powerful SDK that the PULP-project distribute as open-source and understood

how an algorithm should work on this platform. Finally, the optimization gave us

the most interesting results and allowed us to be able to parallelize the code in a

multi-core environment.

5.1 Future development

The main problem we found in this project is the amount of energy wasted while

in sleep: the gap between the energy required by the algorithm and the energy

consumption for memory retention and leakage while in sleep makes the optimized

cluster algorithm and the original version essentially identical in terms of wasted

power even if the relative improvement (i.e. the energy strictly used to execute the

algorithm) is of 20 times when we compare the original gQRS to the multi-core

version on the sub-sampled file. This problem can not be solved within the PULP

architecture but it allows us to be able to greatly increase the complexity of the

algorithm while still being energy efficient. In the foreseeable future, we plan to

implement also the QRS complex delineation[17] and then move to T and P wave

delineation, heartbeat, and arrhythmia classification.

39

References

References

[1] L. Sörnmo and P. Laguna, “Chapter 6 - The Electrocardiogram—A Brief Back-

ground,” in Bioelectrical Signal Processing in Cardiac and Neurological Appli-

cations (L. Sörnmo and P. Laguna, eds.), Biomedical Engineering, pp. 411–452,

Burlington: Academic Press, 2005.

[2] L. Sörnmo and P. Laguna, “Chapter 7 - ECG Signal Processing,” in Bioelectrical

Signal Processing in Cardiac and Neurological Applications (L. Sörnmo and

P. Laguna, eds.), Biomedical Engineering, pp. 453–566, Burlington: Academic

Press, 2005.

[3] A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: Compo-

nents of a New Research Resource for Complex Physiologic Signals,” Circula-

tion, vol. 101, pp. 215–220, June 2000.

[4] S. Raj, K. C. Ray, and O. Shankar, “Development of robust, fast and effi-

cient QRS complex detector: a methodological review,” Australasian Physical

& Engineering Sciences in Medicine, vol. 41, pp. 581–600, sep 2018.

[5] B.-U. Kohler, C. Hennig, and R. Orglmeister, “The principles of software QRS

detection,” IEEE Engineering in Medicine and Biology Magazine, vol. 21, no. 1,

pp. 42–57, 2002.

[6] Y. Suzuki, “Suzuki, y.: Self-organizing qrs-wave recognition in ecg using neu-

ral networks. ieee trans. neural netw. 6(6), 1469-1477,” IEEE transactions on

neural networks / a publication of the IEEE Neural Networks Council, vol. 6,

pp. 1469–77, 02 1995.

[7] B. Abibullaev and H. D. Seo, “A new qrs detection method using wavelets and

artificial neural networks,” J. Med. Syst., vol. 35, pp. 683–691, Aug. 2011.

[8] A. Cost and G. Cano, “Qrs detection based on hidden markov modeling,” pp. 34

– 35 vol.1, 12 1989.

[9] J. Pan and W. J. Tompkins, “A Real-Time QRS Detection Algorithm,” IEEE

Transactions on Biomedical Engineering, vol. BME-32, pp. 230–236, mar 1985.

[10] Z. Tian, R. Ying, P. Liu, G. Wang, and Y. Lian, “Event-driven analog-to-

digital converter for ultra low power wearable wireless biomedical sensors,” in

40

References

2015 IEEE 11th International Conference on ASIC (ASICON), pp. 1–4, IEEE,

nov 2015.

[11] K. Wall and P. E. Danielsson, “A fast sequential method for polygonal approx-

imation of digitized curves.,” Computer Vision, Graphics, & Image Processing,

vol. 28, pp. 220–227, nov 1984.

[12] P. D. S. Andreas Traber, Michael Gautschi, “RI5CY: User Manual.” https:

//www.pulp-platform.org/docs/ri5cy_user_manual.pdf, 2019.

[13] E. Zürich and U. of Bologna, “PULP-Platform.” https://www.

pulp-platform.org/, 2017. [Online; accessed 20/06/2019].

[14] G. Barozzi, G. Dore, and E. Obrecht, Elementi di analisi matematica. No. v. 2

in Elementi di analisi matematica, Zanichelli, 2015.

[15] T. Pham-Gia and T. Hung, “The mean and median absolute deviations,” Math-

ematical and Computer Modelling, vol. 34, no. 7, pp. 921 – 936, 2001.

[16] E. Zürich and U. of Bologna, “Mr Wolf details.” http://asic.ethz.ch/2017/

Mr.Wolf.html, 2017. [Online; accessed 20/06/2019].

[17] T. Teijeiro, P. Felix, and J. Presedo, “A noise robust QRS delineation method

based on path simplification,” in 2015 Computing in Cardiology Conference

(CinC), pp. 209–212, IEEE, sep 2015.

41

https://www.pulp-platform.org/docs/ri5cy_user_manual.pdf
https://www.pulp-platform.org/docs/ri5cy_user_manual.pdf
 https://www.pulp-platform.org/
 https://www.pulp-platform.org/
http://asic.ethz.ch/2017/Mr.Wolf.html
http://asic.ethz.ch/2017/Mr.Wolf.html

