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Résumé

Le but de cette thèse est de développer une méthodologie générale afin d’incorporer
une représentation de la demande désagrégée dans des problèmes d’optimisation orientés
vers l’offre qui permette de capter l’interaction entre le comportement des individus et
les décisions à optimiser. Pour cela, nous présentons un cadre de modélisation pour inté-
grer des modèles de choix discret (MCD) dans les problèmes linéaires à variables mixtes
(PLM), et nous montrons qu’il est à la fois flexible et opérationnel sur des cas réalistes.
En particulier, nous développons des algorithmes pour augmenter la tractabilité de ce
cadre, et nous illustrons son applicabilité avec deux problèmes d’optimisation présents
dans de nombreux contextes.

Les fonctions de demande résultants des MCD sont fortement non-linéaires et non-
convexes, et elles ne sont pas toujours données dans une forme explicite. Dans cette
thèse, nous évitons l’usage de ces fonctions en précisant la structure des préférences du
MCD directement en termes des équations structurales associées (fonctions d’utilité).
Le traitement de la nature probabiliste de ces équations se fait par simulation, avec des
tirages de la distribution du composant aléatoire associé. Cela produit un ensemble de
restrictions linéaires à variables mixtes qui peut être intégrée dans une formulation PLM
quelconque. La seule exigence est que les décisions à optimiser qui sont aussi des varia-
bles explicatives du MCD, et donc captent les interactions, apparaissent linéairement
dans les équations structurales.

La nature désagrégée des MCD, ainsi que la linéarisation basée sur la simulation asso-
ciée, comporte une complexité de calcul élevée. Inspirés par la structure décomposable du
cadre sur les deux dimensions sur lesquels il est construit, les individus et les simulations
de tirages, nous caractérisons une approche de décomposition lagrangienne qui permet
résoudre des cas de plus grande taille, au moins de façon approximative. En effet, les
tests réalisés montrent que des solutions presque optimales sont obtenues avec un temps
de calcul fortement réduit (en utilisant seulement 10% du temps de calcul utilisé par la
méthode exacte).

Ce cadre est assez général pour s’adapter à une grande variété de problèmes d’optimisa-
tion habituels. Son principal point fort est qu’il n’est pas nécessaire d’adapter le MCD
à la formulation, ce qui permet de l’emprunter directement de la littérature. En parti-
culier, on ne se limite pas à des MCD avec des hypothèses simplistes, comme par exemple

v



Résumé

le modèle logit, et nous pouvons intégrer des MCD plus avancés, notamment des mo-
dèles logit mixtes. Dans cette thèse, nous considérons et résolvons deux problèmes afin
d’illustrer la versatilité du cadre, à savoir la maximisation du profit de l’opérateur et la
conception d’un système de transport orienté vers les voyageurs. Pour le premier nous
considérons un opérateur qui fournit des services à un marché avec l’objectif de maxi-
miser son profit. Pour le second nous formulons la tarification et la conception d’un
système de transport en maximisant une mesure de bien-être social. L’élément quanti-
tatif clé de l’analyse du bien-être dans le contexte des MCD, l’utilité maximale espérée,
est aisément exploitable dans le cadre proposé. Cela représente un avantage significatif
car les formulations non-linéaires complexes qui résultent de l’intégration de cet élément
ne sont plus nécessaires.

En résumé, cette thèse fait des contributions importantes à l’intégration des MCD dans
les formulations PLM, et montre leur applicabilité sur des vrais problèmes d’optimisation.
Les modèles et algorithmes proposés mettent en lumière les avantages d’inclure le com-
portement individuel dans les décisions opérationnelles de toute industrie montrant une
forte interaction entre les décisions concernant l’offre et la demande.

Mots-clés: Modélisation mathématique du comportement, demande désagrégée, mo-
dèles de choix discret, optimisation combinatoire, problèmes linéaires à variables mixtes,
décomposition lagrangienne, maximisation du profit orientée à l’opérateur, planification
de transport orientée à l’utilisateur, analyse du bien-être.
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Abstract

The objective of this thesis is to develop a general methodology to incorporate a disag-
gregate demand representation in supply-oriented optimization problems that allows to
capture the interplay between the behavior of individuals and the decisions to be op-
timized. To this end, we propose a modeling framework for the integration of discrete
choice models (DCM) in mixed-integer linear problems (MILP), and we show that it is
both flexible and operational on realistic instances. In particular, we develop algorithms
to enhance the tractability of the framework, and we illustrate its applicability with two
relevant optimization problems that arise in a great deal of contexts.

The demand functions generated from DCM are highly non-linear and non-convex, and
are not always available in closed form. In this thesis, we avoid the use of such functions
by specifying the preference structure of DCM directly in terms of the related structural
equations (utility functions). We rely on simulation in order to handle the probabilistic
nature of these equations by drawing from the distribution of the associated random
component. This yields a mixed-integer linear set of constraints that can be embedded
in any MILP formulation. The only requirement is that the decisions to be optimized
that are also explanatory variables of the DCM, and therefore capture the interactions,
appear linearly in the structural equations.

The disaggregate nature of DCM, together with the associated simulation-based lin-
earization, comes with a high computational complexity. Motivated by the decomposable
structure of the framework along the two dimensions it is built on, the individuals and
the simulation draws, we characterize a Lagrangian decomposition scheme that enables
to solve larger instances, at least approximatively. Indeed, the performed tests show that
near-optimal solutions are obtained in a much reduced computational time (by running
only 10% of the computational time used by the exact method).

The framework is sufficiently general to accommodate a wide variety of relevant opti-
mization problems. The main strength is that the DCM does not need to be tailored to
the formulation, i.e., it can be taken as such from the literature. In particular, it does
not have to be a DCM that relies on simplistic assumptions, such as the logit model,
and more advanced DCM such as mixtures of logit models can be integrated. In this
thesis, we consider and solve two problems in order to illustrate the versatility of the
framework, namely operator-centric profit maximization and traveler-centric design of a
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Abstract

transportation system. The former assumes an operator that offers services to a market
with the aim of maximizing its profit. The latter formulates the pricing and design of a
transportation system such that a measure of welfare is maximized. The key quantita-
tive element of welfare analysis in the context of DCM, the expected maximum utility,
is readily available in the framework. This represents a significant advantage because it
allows not to deal with the complex non-linear formulations that result from the integra-
tion of this quantity as provided by the discrete choice theory.

In summary, this thesis makes relevant contributions on the integration of DCM in MILP,
and shows their applicability by relying on real-world optimization problems. The pro-
posed models and algorithms shed some light on the benefits of incorporating individual
behavior in operational decisions for any industry with close interactions between the
demand and the supply.

Keywords: Mathematical modeling of behavior, disaggregate demand, discrete choice
models, combinatorial optimization, mixed-integer linear problems, Lagrangian decom-
position, operator-centric profit maximization, user-centric transportation planning, wel-
fare analysis.
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Resumen

El objetivo de esta tesis es el desarrollo de una metodología general con el fin de in-
corporar una representación de la demanda de manera desagregada en problemas de
optimización orientados a la oferta que permita captar la interacción entre el compor-
tamiento de los individuos y las decisiones a optimizar. Para ello se propone un marco
de modelización para la integración de modelos de elección discreta (MED) en progra-
mación lineal entera-mixta (PLEM) y se comprueba que dicha estructura es flexible y
operacional en ejemplos realistas. En concreto, se desarrollan algoritmos que aumentan
la tratabilidad de este marco y se ilustra su aplicabilidad con dos problemas de opti-
mización que surgen en múltiples ámbitos.

Las funciones de demanda que se derivan de los MED son altamente no lineales y no
convexas, y no siempre están disponibles en forma cerrada. En esta tesis se evita el
uso de dichas funciones al especificar la estructura de preferencias relativa a los MED
directamente en términos de las ecuaciones estructurales correspondientes (funciones de
utilidad). La naturaleza estocástica de dichas ecuaciones es abordada con la generación
de realizaciones aleatorias de la distribución de la componente aleatoria asociada. Esto
da lugar a un conjunto de restricciones lineales con variables mixtas que puede incluirse
en cualquier formulación PLEM. El único requisito es que las decisiones a optimizar que
también sean variables explicativas del MED, y que por lo tanto captan las interacciones,
aparezcan de manera lineal en las ecuaciones estructurales.

La naturaleza desagregada de los MED, junto con la correspondiente linearización basada
en simulación, comporta una complejidad computacional elevada. Motivada por la es-
tructura descomponible del marco de modelización en las dos dimensiones sobre las que
se construye, los individuos y las realizaciones, se desarrolla una descomposición la-
grangiana que permite resolver problemas de gran tamaño de manera aproximada. En
efecto, en los tests realizados se obtienen soluciones prácticamente óptimas en un tiempo
de computación mucho más reducido (únicamente un 10% del tiempo de computación
empleado por el método exacto).

Este marco es lo suficientemente general como para albergar una amplia variedad de
problemas de optimización. La principal ventaja es que el MED no se tiene que adaptar
a la formulación, lo que permite implementarlo tal y como aparece en la bibliografía.
En particular, no es necesario que sea un MED basado en hipótesis simplistas como por
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Resumen

ejemplo el modelo logit, ya que otros MED más complejos, por ejemplo el modelo logit
mixto, pueden ser directamente integrados. En esta tesis se consideran y se resuelven
dos problemas con el objetivo de ilustrar la versatilidad del marco, concretamente la
maximización del beneficio por parte de un operador y la planificación de un sistema de
transporte orientado a los pasajeros. Para el primero se considera un operador que ofrece
servicios a un mercado de manera que se maximiza el beneficio generado por su venta.
Para el segundo se formula el diseño y la tarificación de un sistema de transporte con
el objetivo de maximizar una medida de bienestar social. El elemento cuantitativo clave
para el análisis del bienestar en el contexto de los MED, la utilidad máxima esperada,
se puede obtener de manera inmediata gracias al marco propuesto. Esto representa una
ventaja significativa porque las formulaciones no lineales que resultan de la integración
de dicho elemento ya no son necesarias.

En resumen, esta tesis hace contribuciones relevantes en relación a la integración de
los MED en formulaciones de PLEM, y demuestra su aplicabilidad en problemas de
optimización que surgen en el mundo real. Los modelos y algoritmos propuestos en esta
tesis arrojan luz sobre las ventajas de incluir el comportamiento a nivel individual en las
decisiones operacionales en cualquier sector con fuertes interacciones entre la oferta y la
demanda.

Keywords: modelización matemática del comportamiento, demanda a nivel desagre-
gado, modelos de elección discreta, programación lineal entera-mixta, descomposición
lagrangiana, maximización del beneficio con respecto a un operador, planificación de
transporte orientada al pasajero, análisis del bienestar.
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1
Introduction

1.1 Context

Amismatch between supply and demand is the imbalance between the amount of supplies
of a product or service with the corresponding willingness or need in the market. It
represents a concern that affects a great deal of contexts, such as transportation, supply
chain, health and manufacturing, to name a few. This asymmetry results in multiple
consequences, which include reduced profitability, a decrease in consumer confidence
and spillover effects. Revenue management (RM) and the analysis of welfare measures
represent two relevant examples that allow us to illustrate the extent of this subject.

RM has been widely investigated by academics and practitioners in the airline industry
(McGill and van Ryzin, 1999). The research on airline RM revolves around pricing, seat
inventory control, overbooking and demand forecasting. The latter strongly influences
the other aspects, as demand forecasting has an effect on the booking limits, which
determine the profits, and overbooking calculations depend on predictions on passenger
cancellations and no-shows. The success of airline RM has stimulated the development
of RM systems in other transportation sectors (e.g., passenger railways) and other areas
of the service sector (e.g., hospitality).

Welfare measures are defined in different settings to evaluate the performance of a policy
that wants to be put into practice by a public authority. Some examples can be found in
the labor market concerning unemployment insurance (Mukoyama, 2013) and in trans-
portation to correct the negative externalities associated with road traffic (Parry and
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Bento, 2001). A detailed demand representation enables to determine if the policy is re-
gressive, i.e., the welfare is distributed more unequally after its introduction than before,
and to identify which segments in the population are the most adversely impacted.

These two application areas illustrate the necessity of an appropriate demand represen-
tation and the importance of explicitly allowing for the interplay between the individuals
(demand) and the design and planning decisions to be made by the operator (supply),
such as the price of a flight ticket or the level of subsidy on a public transportation
mode. Aggregate representations of the demand are commonly used in the optimization
models that formulate operators’ decisions (Bierlaire and Lurkin, 2017). Nevertheless,
as the demand is the result of the decisions performed by individual actors, an aggregate
modeling is not able to capture the causal mechanisms that generate the demand. Fur-
thermore, in order to characterize the reaction of demand to changes in the operators’
decisions, such decisions need to be explanatory variables of the demand model. If they
are exogenous to the demand model, their impact on the individuals’ behavior is not
properly represented, which leads to an unrealistic description of the system. Indeed, if
the system is designed for the average consumer, individuals deviating from the mean
will not be satisfied, either because what they like is overpriced, or what they can afford
does not provide them the requested level of service.

Discrete choice models (DCM) are the state-of-the-art of demand modeling at the disag-
gregate level when the outcome of the decision-making process of individuals is discrete.
Rooted in the theoretical foundations of microeconomics, DCM allow to capture the
causality between the explanatory variables (attributes of the alternatives and socioeco-
nomic characteristics of the individuals) and the choice itself thanks to the concept of
random utility. The output of these models are the probabilities associated with each
individual to choose each alternative, which enables to represent the heterogeneity of
tastes and preferences in high detail. These probability expressions are non-linear and
non-convex in the explanatory variables, and might not even have a closed-form.

On the other hand, the optimization models that describe the supply-related decisions
typically require linearity or convexity of the involved mathematical functions in order to
ensure tractability of the resulting formulation. In fact, in convex optimization problems,
and consequently in linear optimization problems, a local optimum is also a global op-
timum. As optimization algorithms are designed to identify local optima, this property
guarantees that a global optimum will be found by the algorithm.

Thus, embedding a disaggregate demand representation given by a DCM in an opti-
mization model while explicitly allowing for the supply-demand interactions is a difficult
task, not only from the modeling point of view, but also with respect to the design of
solution methodologies. Section 1.2 provides an overview of the literature related to such
integration and motivates the work undertaken here.
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1.2 State of the art and motivation

As a consequence of the difficulty in generating demand data, demand has been typically
assumed as a given input in many problem instances addressed in the operations research
literature (Bierlaire and Lurkin, 2017). For example, in the context of facility location,
the complexity of the formulations modeling the decisions on spatial resource allocation
has historically limited the research to deterministic problems, where all input parame-
ters (including the demand) are considered as known (Laporte et al., 2015). As in reality
demand might broadly fluctuate, it is quite common to use aggregate statistical methods,
such as time series analysis, to predict the demand data. In facility location, researchers
typically assume that the demand follows a probability distribution or changes its pat-
terns under different hypothetical scenarios. Nevertheless, as pointed out in Section 1.1,
an aggregate demand modeling cannot represent the underlying causal mechanisms that
generate the demand.

Since the popularization of the logit model (McFadden, 1974), and thanks to the increas-
ingly availability of abundant and individual-based datasets, DCM based on the random
utility principle have become the most advanced and operational disaggregate demand
models. The key advantage of the logit model relies on the simplicity of its closed-form
probability expression. However, the associated assumptions might give rise to unrealis-
tic substitution patterns across alternatives. More complex models have been proposed
to relax such assumptions. Nested logit and cross nested logit models allow to account
for correlations between alternatives by defining nests that group alternatives with com-
mon features. Like the logit model, they have a closed-form expression. Furthermore,
it has been shown that the choice probabilities of any (additive) random utility model
might be approximated by a cross-nested logit model (Fosgerau et al., 2013). Mixtures
of logit models, also known as mixed logit models, provide a highly flexible framework
that can also approximate any DCM (McFadden and Train, 2000). Their attractiveness
lies on the fact that they overcome the main limitations of standard logit models by
allowing for random taste variation, unrestricted substitution patterns and correlation
in unobserved factors over time. In addition to capturing the variation of preferences
across individuals (inter-consumer heterogeneity), more advanced versions of mixed logit
models defined at the individual level (Hess and Rose, 2009, Becker et al., 2018) also
enable to incorporate the variation of preferences for the same individual across different
choice situations (intra-consumer heterogeneity).

Hence, more complex DCM are able to better forecast the behavior of individuals. Nev-
ertheless, the focus on behavioral realism results in sophisticated mathematical formu-
lations that are difficult to embed in classical operations research models. For instance,
the choice probabilities associated with mixed logit models do not have a closed-form
since they involve integrals of standard logit probabilities over a density of parameters.
Moreover, as the choice probabilities are non-linear and non-convex in the explanatory
variables (which include the optimization variables that have an impact on the individu-
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als’ behavior, and therefore capture the supply-demand interactions), so are the aggregate
demand indicators derived thereof, such as the expected revenue or the welfare measure.
As a consequence, obtaining a convex formulation with advanced DCM is unattainable,
which significantly complicates their use in exact methods of optimization.

Mixed-integer linear problems (MILP) are optimization problems that involve only linear
functions and accommodate both integer and continuous variables. The fact that these
problems naturally arise in many contexts that simultaneously face discrete and contin-
uous decisions (e.g., facility location, RM, transportation-related problems) has led to
an increased interest and a significant development in the last decades (Vielma, 2015).
The main reasons for the success of MILP models are the modeling flexibility that these
formulations provide and the availability of linear programming (LP) solvers. Indeed,
note that MILP are not convex problems, not even linear. What is crucial here is that
its relaxation is convex or, better, linear. This property is needed to design solution
algorithms based on branch-and-bound.

There exists a great variety of formulation strategies and solution techniques in MILP.
There are often alternative MILP formulations associated with an optimization problem.
Some models might be smaller in terms of the number of variables and constraints,
but might be more difficult to solve than larger models, and can make a difference in
whether or not MILP formulations can be solved quickly enough to be practically useful
(Smith and Taskin, 2008). With respect to the solution methods, commercial MILP
solvers, which employ a combination of branch-and-bound and cutting-plane techniques,
are available to practitioners and analysts to find the global optima of MILP. They can
therefore be used as a black box, which allows the user to focus on the modeling instead
of the development of a solution algorithm. Nevertheless, if the problem at hand has a
special structure that can be exploited, the solution algorithm can be adapted in order
to increase the performance of the solver.

As MILP are NP-hard, many problem instances might be intractable, and heuristic
methods must be used instead. MILP heuristics aim at finding a feasible (and hopefully
good) solution of MILP. The availability of very effective general-purpose heuristics for
MILP formulations has represented a fundamental improvement (Fischetti and Lodi,
2010). Furthermore, a large number of MILP can be viewed as potentially easy problems
to solve that are complicated by a certain set of variables and/or constraints (Fisher,
1981a). Lagrangian relaxation (Geoffrion, 1974) and Benders decomposition (Benders,
1962) are the two classical strategies that exploit the decomposable structure of the
problem in order to generate blocks that can be independently addressed and are less
complex to handle. Decomposition techniques provide comprehensive guidelines on the
separability of MILP formulations, and represent a flexible scheme that can be combined
with additional heuristic approaches to increase the efficiency of the solution algorithm.
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Notwithstanding the discussed advantages and existing developments associated with
DCM to represent the demand and with MILP to describe the supply-related decisions,
the distinct nature of both modeling approaches makes their integration rather challeng-
ing. Research in this direction is receiving increased attention in different fields where
the demand representation plays a key role in the decisions that want to be optimized.
We review some relevant works on the integration of DCM in optimization models, with
a special emphasis on MILP, in the context of facility location, RM and transportation-
related problems.

In the last years, there has been a growing body of literature on facility location prob-
lems relying on DCM (mainly the logit model) to represent the behavior of customers.
The inclusion of the choice probabilities in the problem of locating p new facilities in a
competitive market such that the captured demand is maximized, known as the maxi-
mum capture problem, has been given a significant consideration. In Benati (1999), the
resulting optimization model is reformulated as a p-median problem and solved quickly
by Lagrangian relaxation and branch-and-bound. Later, in Benati and Hansen (2002),
three solution methods are developed (one exploiting the concavity of the objective func-
tion and the other two reformulating the problem as an MILP model), and it is shown
that only moderate size problems can be solved up to optimality.

The maximum capture problem described in Haase (2009) considers homogeneous cus-
tomers within the blocks that discretize the area of interest, and obtains the choice
probabilities of a reduced choice set by linearly modeling the property of constant sub-
stitution patterns associated with the logit model. The author also allows for flexible
substitution patterns by simulating multiple individuals within each block. For each
individual, the associated utility values are obtained by generating the stochastic com-
ponent at random. The same idea is exploited in Müller et al. (2009) and Haase and
Müller (2013) in school location. The former describes a two-step approach to minimize
the location and transportation costs with respect to students choosing the school with
the highest utility (given by a mixture of logit models). The first step (quadratic con-
strained problem) allocates students for each scenario (defined as a combination of open
and closed schools) based on utility and capacity, and in the second step (combinatorial
problem), the scenario minimizing the total costs is chosen. The latter formulates an
integer formulation for the same problem that can be solved optimally (or at least close
to optimality) within a few minutes with commercial solvers.

Similar approaches mostly focus on developing MILP models that linearize the result-
ing objective function (e.g., Aros-Vera et al., 2013 in park and ride facility location and
Zhang et al., 2012 in health care facility location). Haase and Müller (2014) compare
different MILP reformulations, and the results show that the one proposed by Haase
(2009) for solving large problems using a commercial solver is the most promising one.
In Freire et al. (2016), this benchmark is extended and the computational study shows
inconclusive results, as different methods performed dissimilarly depending on the consid-
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ered dataset. Outer approximation, an algorithm used to solve mixed-integer non-linear
problems (MINLP) based on decomposition principles (Duran and Grossmann, 1986),
has been recently considered in Ljubić and Moreno (2018). They define a MILP formu-
lation based on outer approximation cuts and provide a branch-and-cut procedure that
outperforms the best performing strategies according to Freire et al. (2016).

Despite its relevance, demand has typically been assumed to be isolated from its market
environment in airline RM systems (van Ryzin, 2005), and the lack of information about
customers’ preferences and the complexity of the resulting mathematical formulations
has made disaggregate forecasting extremely difficult and infrequently used in practice
(Talluri and Van Ryzin, 2006). However, customer-behavior-oriented models of demand
represent a promising approach for RM, especially DCM (Shen and Su, 2007). Talluri
and Van Ryzin (2004) provide an exact analysis of the impact of choice behavior in RM by
explicitly modeling consumers’ behavior with a general DCM where the probabilities of
purchasing each fare product depend on the set of available fare products, and show that
significant improvements in the revenue can be achieved with respect to the traditional
methods.

The models integrating DCM in RM optimization models are known as choice-based
RM models, and have gained popularity over the last years. Such models generally aim
at maximizing both revenue and customer satisfaction by deciding about pricing while
controlling for product availability. They were first introduced by Andersson (1998),
where a logit model is assumed to compute the probability of a passenger that was
rejected at one flight-class combination to request a seat at another flight-class, called
the recapture rate (or buy-up rate). An example is considered to show that the revenue
increases when recapture and buy-up are implemented. Ratliff et al. (2008) extends this
work by involving the solution to the problem solved by Andersson (1998) in a heuristic
approach, that is, given historical bookings and RM controls, the goal is to find the
unconstrained first-choice demand, spill and recapture, which can be considered as the
inverse problem of the RM optimization. The resulting methodology can be readily
integrated into existing demand forecasting systems and should reduce forecast errors.

Schön (2007) develops a theoretical market-oriented model for airline network service
design that integrates flight schedule design, fleet assignment and pricing decisions. For
each customer segment, the demand is explicitly defined as a function of the price that
needs to satisfy certain properties, which are met by the logit model and the nested
logit model, as later specified in Schön (2008). Under suitable assumptions, the resulting
formulation is a mixed-binary maximization problem with concave objective function
and linear constraints that can be solved with standard techniques. Atasoy et al. (2014)
address a similar problem by also including spill and recapture effects based on the
logit model. The resulting formulation is a mixed-integer non-convex problem for which
solvers can provide good quality feasible solutions for instances with moderate size. More
recently, Korfmann (2018) develops a single-leg MILP model with flexible demand substi-
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tution patterns between fare classes, where the demand is represented by the individual
utility values (using Monte Carlo simulation), and the objective is the optimal allocation
of bookings to the offered fare classes.

In several transportation networks, travelers may modify their travel arrangements (e.g.,
departure time, route) depending on the level of service of the network and/or the price
associated with the available alternatives. Traffic assignment is an essential element
in transportation planning, as it allows, among others, to assess the deficiencies in the
existing transportation system, to test alternative system proposals and to provide real-
time guidance (Patriksson, 2015). Recent works in dynamic traffic assignment (Pel et al.,
2009, Qian and Zhang, 2013) investigate hybrid route choice models (usually relying on
the logit model) where all travelers have a pre-trip route but consider real-time traffic
conditions in seeking new routes. As opposed to classical approaches, where route choices
are modeled by assuming that travelers simply choose the cheapest or shortest route
presented to them, a better description of the system (e.g., congestion, queue spillovers)
is achieved with hybrid route choice models. In spite of its closed form, the logit model has
received particular criticism for its independently and identically distributed error term
assumption (Sheffi, 1984), which has motivated researchers to relax such assumptions by
proposing variants of the standard logit model (e.g., Chen et al., 2012) or alternative
approaches that assume the knowledge of marginal distributions of the error terms but
do not assume that the random error terms are independently or identically distributed
(e.g., Damla Ahipaşaoğlu et al., 2016).

The toll setting problem was introduced by Labbé et al. (1998), and consists of a bilevel
model where the authority (upper level) wants to maximize its revenues from a taxation
scheme on a transportation network at the same time that the users (lower level) mini-
mize their generalized travel costs (i.e., the tolls and the travel costs) while allowing for
those tax levels. The model is formulated as bilevel program with bilinear objectives at
both levels of decision and network constraints at the lower level. It can be efficiently
reformulated as a MILP with a small number of binary variables, large instances of which
can be solved within reasonable time. Nevertheless, as mentioned by the authors, the
considered deterministic representation of user behavior is too simplistic, since it assumes
no dispersion of traffic along the routes and the value of time is uniform throughout the
population.

The stochastic version of the toll setting problem that assigns users to paths according to
a DCM has received less attention in the literature than its deterministic counterpart. In
Gilbert et al. (2014a), a logit route choice model is used to account for users’ awareness
of the network conditions. The optimization problem is non-linear and non-convex, and
may have several local optima. An exhaustive numerical study of this problem is carried
out in Gilbert et al. (2015), where it is concluded that the problem can be solved for a
near-optimal solution by a combination of mixed-integer approximations and local ascent
methods. In Gilbert et al. (2014b), the use of a mixture of logit models (price sensitivity
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distributed across users) makes this approach numerically challenging as no closed-form
solution is available for the assignment of users to paths. Hence, approximation schemes
that provide starting points from which a local search converges to a near-optimal solution
are implemented.

The inclusion of DCM in the toll setting problem is of special interest when a welfare
measure is involved. For example, in Wu et al. (2012), a pricing or credit scheme that
maximizes the equity and the social welfare simultaneously in a general multimodal trans-
portation network is described. Travelers’ choices of modes and routes are represented by
a nested logit model, and the resulting formulation is solved with an iterative derivative-
free algorithm due to the presence of a numerical integration. Similarly, de Palma et al.
(2018) propose a methodology to compute and compare (in terms of social welfare) opti-
mal tolling systems in dollars and tokens or permits in the presence of static congestion
when both demand (governed by a mixture of logit models) and capacity are stochastic.
The benchmark is based on the optimum social welfare for each instrument obtained by
solving a non-convex optimization problem.

Simulation-based optimization integrates optimization techniques into simulation anal-
ysis and revolves around methods that require the optimization of the net rewards (or
costs) obtained from a random system (Gosavi et al., 2015). The problem at hand is usu-
ally solved to optimality (or near-optimality) with an iterative procedure that construct
sequences of progressively better approximations to a solution, i.e., a point in the search-
space that satisfies an optimality condition (Nguyen et al., 2014). This methodology has
been lately considered in traffic assignment and toll pricing with a DCM (usually the logit
model) representing the behavior of individuals. Gupta et al. (2020) propose an inte-
grated framework that combines the optimization of network control strategies, which are
solved with a genetic algorithm, with the generation of guidance information for real-time
dynamic traffic assignment systems. The complex supply-demand relationship is char-
acterized through a function named simulator that incorporates the behavioral response
into the framework as a black box. Alternatively, Osorio and Atasoy (forthcoming) intro-
duce an analytical network model formulated as a system of nonlinear equations (that
can be efficiently evaluated with standard solvers) which is embedded within a meta-
model simulation-based optimization algorithm. This enables the algorithm not to treat
the simulator as a black box. The results show that the analytical structural information
makes the proposed algorithm robust to the simulator’s stochasticity.

Along similar lines, another research direction that has received some attention in the last
years for the disaggregate representation of the demand is Markov chain choice models.
These models formulate the substitution behavior of customers by state transitions in a
Markov chain. In assortment optimization, Blanchet et al. (2016) address the problem
of identifying the right model capturing substitution patterns with Markov chain choice
models, since they provide a simultaneous approximation for all DCM based on random
utility. The authors conclude that these provide a good approximation to the true choice
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probabilities under mild assumptions, and they feature a polynomial-time algorithm
that compute the optimal assortment for a mixture of logit models. Likewise, Feldman
and Topaloglu (2017) provide a LP formulation for the assortment optimization, single
resource RM, and network RM problems under the Markov chain choice model. The
computed experiments show that the logit model might be preferable because it prevents
the fact that the Markov chain choice model may suffer from overfitting and it is able
to compute the mean utility of a product without having to reestimate the parameters
of the choice model. In traffic assignment, Ahipaşaoğlu et al. (2019) further develop on
the Markovian traffic equilibrium model proposed by Baillon and Cominetti (2008) by
relaxing the assumption that the distribution of the random utilities is known. They
describe a distributionally robust Markovian choice model under the assumption that
the joint distribution of the error terms is not known, and provide an equivalent convex
optimization reformulation and an efficient solution algorithm to obtain the link choice
probabilities and equilibrium flows.

The review of the literature shows that superior design and planning decisions can be
obtained when the interplay between such decisions and the demand is explicitly repre-
sented. For this interplay to be captured, the operator’s decisions need to be part of the
set of explanatory variables of the DCM under consideration, i.e., they are included in
the utility functions. In the case of facility location problems, if the only decisions are the
location decisions, they might be exogenous to the utility functions (in contrast to other
variables such as the price of a product or the frequency of a service). This allows to pre-
process the choice probabilities for given values of the location variables, which notably
simplifies the formulation and the associated solution methodologies. More generally,
and due to the complexity of the resulting formulations, the proposed models include
a restrained set of decision variables (e.g., only the price in RM or the toll in network
pricing), even though additional supply-related decisions might as well be interconnected
with the behavior of individuals and could therefore be simultaneously optimized.

Concerning the demand model, various authors have made some simplistic assumptions
on the DCM in order to come up with tractable and more efficient solutions (Vulcano
et al., 2010, Liu and Van Ryzin, 2008) although they might be inappropriate in reality.
This is why the logit model is broadly considered regardless of its limitations. Indeed,
more complex DCM lead to optimization problems that are more difficult to handle and
that might not even have a closed form. The demand representation is usually inte-
grated in the optimization model by embedding the corresponding choice probabilities.
In general terms, an efficient solution of the problems is pursued by linearizing the asso-
ciated formulation or by developing a tailored solution methodology, whose effectiveness
might be limited to instances of small and moderate size. Other approaches that rely
on simulation-based optimization have been recently proposed, both with DCM and
alternative demand representations provided by Markov chain choice models.

9



Chapter 1. Introduction

In conclusion, there is an opening for a general methodology that bridges the gap between
(complex) DCM and optimization models by allowing to accommodate a disaggregate
demand representation that captures the interplay between the demand and the supply-
related decisions. In this thesis, we investigate the integration of DCM in MILP with
the end of enhancing the flexibility and tractability of the resulting formulations. The
optimization problems that describe the operator’s decisions aim at optimizing an aggre-
gate performance of the system on such decisions while incorporating the corresponding
demand responsiveness. The demand being provided by a DCM based on the random
utility principle results in uncertainty within the optimization problem. We handle this
uncertainty with the generation of possible outcomes (scenarios) of the random compo-
nent associated with DCM. Hence, the general philosophy of the modeling framework
here proposed is related to stochastic programming. For each scenario, and because
of utility maximization as the decision rule, we assume that each individual solves an
optimization problem in order to come up with a choice. The introduced framework is
therefore also related to bilevel optimization since multiple problems at the lower level
(utility maximization) are nested within another problem at the upper level (operator’s
decisions).

1.3 Research objectives and scientific contributions

As discussed in Section 1.2, the goal of this thesis is to develop a framework that embeds
a disaggregate demand representation provided by a DCM in a MILP formulation that
describes the supply-related decisions to be optimized. With this aim in mind, the main
scientific objectives are the following:

1. Model: to propose operational optimization models that potentially accommodate
any advanced DCM. This allows to provide a disaggregate representation of the
demand that is able to capture the interactions between the individuals’ behavior
and the design and planning decisions to be optimized.

2. Algorithm: to design algorithms that exploit the structure of the model in order
to address its complexity and enhance its tractability and potential scaling-up.

3. Application:

(a) to give access to the huge literature on DCM that have been calibrated and
validated by experts on real data and introduce them as such in the model,
and

(b) to apply the modeling framework in realistic contexts as a proof-of-concept.

This thesis contributes to these three objectives as follows. On the modeling side, we
propose a choice-based optimization framework that allows to integrate DCM in MILP
formulations. With respect to the algorithm, we rely on Lagrangian decomposition to
exploit the decomposable structure of the model. Finally, we show the relevance of the
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proposed methodology in specific contexts where the use of advanced demand models is
of special importance. The main scientific contributions of this thesis include:

1. Model:

(a) We avoid the use of the probability expressions of DCM by specifying the asso-
ciated preference structure directly in terms of the utility functions (structural
equations of DCM).

(b) We rely on simulation in order to tackle the stochastic nature of the utilities
by drawing from the distribution of the associated random component, which
enables to incorporate DCM in a MILP formulation.

(c) We capture the interactions between the individuals’ behavior and the supply-
related decisions to be optimized by using a mixed-integer linear formulation
of the equations and behavioral preference structure of DCM.

(d) We express capacity constraints with respect to the supply-related decisions
in terms of the variables of the choice-based optimization framework.

(e) We define a flexible modeling framework that allows to accommodate differ-
ent aggregation levels when it comes to group individuals with homogeneous
behavior and to explicitly control the trade-off between model accuracy and
tractability thanks to simulation.

(f) We provide a linear approximation of the consumer surplus in terms of the
expected maximum utility, which allows to derive measures of social welfare
for public policy analysis.

2. Algorithm:

(a) We provide an assessment of the viability of various decomposition strate-
gies based on Lagrangian relaxation that are commonly used in practice with
respect to the choice-based optimization framework, as the interrelations be-
tween some of the variables and constraints make such approaches unsuitable
to this case.

(b) We develop and test a heuristic approach based on Lagrangian decomposition
in terms of a concrete MILP formulation (RM problem) that allows to rapidly
generate upper bounds on the optimal value of the objective function, at the
same time that feasible solutions that are close enough to the optimal solutions
are obtained.

3. Application:

(a) We show that the choice-based optimization framework can be directly applied
with complex DCM borrowed from the literature without modifications, i.e.,
only the original explanatory variables of the DCM are considered.

(b) We illustrate the usage and extent of the choice-based optimization framework
with two applications: the maximization of the profit obtained by an operator
that offers services to a market, and the maximization of a mesure of social
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welfare by a public authority that decides on the pricing and design variables
of a transportation system.

(c) We test the resulting formulations with different case studies that consider
a variety of complex DCM, namely a nested logit model, a mixture of logit
models and an integrated choice and latent variable (ICLV) model.

1.4 Structure of the thesis

This thesis is structured as follows.

Chapter 2 presents the choice-based optimization framework that allows to incorporate
DCM in MILP formulations, and provides a comprehensive case study that shows its
application and flexibility for the profit maximization problem.

This chapter borrows from a paper that is currently under review. Preliminary versions
of the paper are published as

Pacheco, M., Sharif Azadeh, S., Bierlaire, M., and Gendron, B. (2017b). Integrating
advanced discrete choice models in mixed integer linear optimization. Technical
Report TRANSP-OR 170714, Transport and Mobility Laboratory, ENAC, EPFL.

Pacheco, M., Sharif Azadeh, S., and Bierlaire, M. (2016). A new mathematical
representation of demand using choice-based optimization method. In 16th Swiss
Transport Research Conference.

Preliminary stages of this work have been presented in the following conferences:

• 15th International Conference on Travel Behavior Research, University of California
Santa Barbara, July 17, 2018, Santa Barbara, CA, USA

• Seminario en el Departamento de Ingeniería de Transporte y Logística, Pontificia
Universidad Católica de Chile, October 13, 2016, Santiago de Chile, Chile

• Seminario ISCI, Universidad de Chile, October 12, 2016, Santiago de Chile, Chile

• 5th Symposium of the European Association for Research in Transportation (hEART),
Delft University of Technology, September 15, 2016, Delft, Netherlands

• Ninth Triennial Symposium on Transportation Analysis (TRISTAN IX), June 14,
2016, Oranjestad, Aruba

• 16th Swiss Transport Research Conference (STRC), May 18, 2016, Monte Verità,
Ascona, Switzerland

Chapter 3 proposes an algorithmic solution approach that relies on Lagrangian decompo-
sition in order to generate near-optimal solutions in a much more reduced computational
time. The procedure is illustrated with the RM problem.
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Preliminary ideas related to this chapter are published as

Pacheco, M., Lurkin, V., Gendron, B., Sharif Azadeh, S., and Bierlaire, M. (2018).
Lagrangian relaxation for the demand-based benefit maximization problem. In 18th
Swiss Transport Research Conference (STRC), Ascona, Switzerland.

Pacheco, M., Sharif Azadeh, S., Bierlaire, M., and Gendron, B. (2017a). Integrating
advanced demand models within the framework of mixed integer linear problems:
a lagrangian relaxation method for the uncapacitated case. In 17th Swiss transport
research conference (STRC), Ascona, Switzerland.

Preliminary stages of this work have been presented in the following conferences:

• Annual international conference of the German Operations Research Society (OR
2018), Université libre de Bruxelles, September 14, 2018, Brussels, Belgium

• 7th Symposium of the European Association for Research in Transportation (hEART),
National Technical University of Athens, September 06, 2018, Athens, Greece

• Workshop on Discrete Choice Models 2018, EPFL, June 22, 2018, Lausanne,
Switzerland

• 16th Swiss Operations Research Days, Universität Bern, June 12, 2018, Bern,
Switzerland

• 8th Swiss Transport Research Conference (STRC), May 17, 2018, Monte Verità,
Ascona, Switzerland

• Annual conference of the Belgian Operational Research Society (ORBEL 32), HEC
Liège, February 02, 2018, Liège, Belgium

• Annual international conference of the German Operations Research Society (OR
2017), Freie Universität Berlin, September 07, 2017, Berlin, Germany

• 21st Conference of the International Federation of Operational Research Societies,
IFORS, July 19, 2017, Québec City, Canada

• 15th Swiss Operations Research Days, Université de Fribourg, June 30, 2017, Fri-
bourg, Switzerland

• Workshop on Discrete Choice Models 2017, EPFL, June 22, 2017, Lausanne,
Switzerland

Chapter 4 describes an application of the choice-based optimization framework in the
context of pricing and design of a transportation system when a measure of social welfare
is to be maximized. The methodology is illustrated with two case studies that rely on
different DCM.

Preliminary ideas related to this chapter are published as
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Pacheco, M., Sharif Azadeh, S., and Bierlaire, M. (2019). Passenger satisfac-
tion maximization within a demand-based optimization framework. In 19th Swiss
Transport Research Conference (STRC), Ascona, Switzerland.

Preliminary stages of this work have been presented in the following conference:

• 19th Swiss Transport Research Conference (STRC), May 16, 2019, Monte Verità,
Ascona, Switzerland

Chapter 5 summarizes the main findings and contributions of this thesis and discusses
some avenues for future research.
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2
Choice-based optimization framework

This chapter is based on the technical report (currently under review in the journal
Transportation Research Part B: Methodological)

Pacheco, M., Sharif Azadeh, S., Bierlaire, M., and Gendron, B.
(2017b). Integrating advanced discrete choice models in mixed integer
linear optimization. Technical Report TRANSP-OR 170714, Transport and
Mobility Laboratory, ENAC, EPFL.

The work has been performed by the candidate under the supervision of Prof. Shadi
Sharif Azadeh and Prof. Michel Bierlaire and the collaboration of Prof. Bernard
Gendron.

2.1 Introduction

Discrete choice models (DCM) are the state-of-the-art of demand modeling at the dis-
aggregate level. Among various advantages, these models enable to capture the hetero-
geneity of tastes and preferences in high detail, and combined with the more and more
available individual-based datasets, they allow to predict a wide range of behaviors in
a great deal of contexts. Unfortunately, their integration in optimization models for-
mulating supply-related decisions that require a disaggregate demand representation is a
challenging task, often making DCM not to be considered or, when considered, to present
the supply-related decisions as exogenous, and therefore not capturing the interactions.
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The main reason for this lack of integration is the different types of focus on both sides.
On the one hand, optimization models focus on tractability and availability of solution
techniques. This is why mixed-integer linear problems (MILP) represent a significant
share of the models reported in the literature. On the other hand, DCM focus on
behavioral realism, which results in complex mathematical formulations, certainly not
linear or even convex, that are difficult to embed in MILP.

The objective of this chapter is to define a methodology that allows to incorporate a
disaggregate demand representation that interacts with the decisions to be optimized.
To this end, we propose a general framework that allows to integrate a DCM based on the
random utility principle in MILP. The only condition that we impose on the DCM is that
the decision variables of the MILP that have an impact on the behavior of individuals,
and therefore are also present in the DCM (such as the price of a service or the frequency
of a transportation mode), appear linearly in the utility function.

The key idea is to express the demand in terms of the utility function (instead of the
probability functions of DCM), and to rely on simulation to overcome the stochastic
nature of the associated random component. Notwithstanding the potentially large size
of the formulation, the trade-off between model accuracy and tractability can be explicitly
controlled by the modeler thanks to simulation.

The contribution of this research is twofold. First, we determine a mixed-integer linear
formulation of a DCM that can be embedded in MILP. For the sake of illustration, we
define the problem of an operator that wants to maximize its profit, but other MILP
models with different objectives and/or restrictions could be specified (see Chapter 4 for
a detailed application on welfare maximization). Second, we show that the framework
can be directly applied with an existing DCM from the literature without modifications,
i.e., only the original variables that appear in the DCM are considered. We also show
the flexibility of the framework by adapting the resulting formulation to test different
contexts (e.g., price differentiation by population segmentation) and assumptions (e.g.,
grouping of individuals with homogeneous behavior).

The remainder of the chapter is organized as follows. Section 2.2 describes the modeling
framework and Section 2.3 depicts the profit maximization problem. The case study
used as a proof-of-concept is detailed in Section 2.4. Finally, some concluding remarks
and future research directions are discussed in Section 2.5.

2.2 Modeling framework

We assume that the demand is characterized by a DCM, whose parameters are estimated
at a preprocessing stage, and that the decisions to be made by an operator are governed
by an optimization model, more precisely a MILP. We consider three types of variables
within the framework: the exogenous variables explaining the choice and not involved in
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the optimization model xd ∈ RD, the exogenous optimization variables not involved in
the choice model xs ∈ RS , and the endogenous variables xe ∈ RE , which are involved in
both the choice and the optimization models, i.e., they are operator’s decisions that also
appear in the utility functions of the behavioral model. Depending on the specifications
of the model, these variables can be restricted to take integer or binary values. The
exogenous variables appear in one of the two models, but not in both. The endogenous
variables are present in both, and characterize the interactions. For the definition of the
optimization model, they are assumed to be bounded:

`e ≤ xe ≤ me, (2.1)

where `e ∈ RE is the vector of lower bounds on xe and me ∈ RE is the vector of upper
bounds.

A typical example of an endogenous variable is the price of a service. The operator
decides on a price in order to maximize its revenue, and the individual reacts to the price
to decide if they buy the service or not. If the price is too high, few individuals will
access the service, and a low revenue will be generated. If it is too low, many individuals
will use the service, but the generated revenue will also be low. This example is treated
extensively in Section 2.4. Other examples of endogenous variables are the schedule of
an event (e.g., departure of a train) and the capacity of a facility (e.g., number of coaches
in a train).

2.2.1 The discrete choice model

The choices of individuals are modeled with a DCM. The set of all potential alternatives
is called the choice set and is denoted by C. The alternatives in C are indexed by i. For
each alternative i, we denote by ci ≥ 1 its capacity, that is, the maximum number of
individuals who can choose it. We allow for a population of N individuals, indexed by
n ≥ 1. Generally, it is impossible to have access to the full population, and a sample
must be used. A synthetic population, which is constructed by combining different data
sources, is also convenient here (Farooq et al., 2013). The following description, based
on the full population, can be easily adapted to a representative sample.

The choice set of two different individuals may not be the same. The choice set of
individual n is denoted by Cn ⊆ C. It contains the alternatives considered by and
offered to individual n, as in some cases some alternatives may not be offered to some
individuals for certain reasons. For instance, from a profit maximization point of view,
a service that is not profitable will not be proposed. These decisions are modeled with
the binary variables yin, which are 1 if alternative i is considered by and offered to
individual n, and 0 otherwise (see Section 2.2.2). These variables are endogenous, i.e.,
they belong to the vector xe. Therefore, the set of offered alternatives is flexible in the
sense that it is possible not to propose some alternatives to some specific individuals, or
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in a more practical manner, groups of individuals. This feature allows the decision-maker
to investigate different marketing solutions and business models.

The preference structure of individuals is represented with a utility function, which as-
sociates a score with each alternative i ∈ Cn. This utility is defined as

Uin(xdin, x
e
in; εin) = Vin(xdin, x

e
in) + εin, (2.2)

where Vin : RD+E → R is the systematic part of the utility function, that includes
everything that can be modeled by the analyst, and εin is the random component, that
captures everything that has not been included explicitly in the model and is independent
of the exogenous demand variables xdin and endogenous variables xein associated with
alternative i and individual n. As εin is a random variable, Uin(xdin, x

e
in; εin) is also a

random variable.

The behavioral assumption is that individual n chooses alternative i if the corresponding
utility is the largest within the choice set Cn (Manski, 1977). We assume that each indi-
vidual chooses one and only one alternative. The probability that individual n chooses
alternative i within the choice set Cn is

Pn(i|xdin, xein) = Pr(Uin(xdin, x
e
in; εin) ≥ Ujn(xdjn, x

e
jn; εjn),∀j ∈ Cn). (2.3)

Throughout the thesis, it is assumed that Vin is linear in the endogenous variables xein.
This is not required as such for the derivation of the choice model, but important in our
context for its integration in MILP. For this reason, the deterministic term in (2.2) is
written as

Vin(xdin, x
e
in) =

∑
k

βinkx
e
ink + gdin(xdin), (2.4)

where xeink is the k-th endogenous variable associated with alternative i and individual
n and βink are the associated coefficients. The functions gdin : RD → R do not need to
be linear since the variables xdin are not involved in the optimization model, i.e., gdin(xdin)

is a quantity that can be preprocessed. The parameters βink of the DCM are previously
estimated (outside of the optimization scheme), i.e., they are not variables of the model.
Nevertheless, the framework here described can be adapted to address the parameter
estimation problem. We refer the reader to Fernández-Antolín et al. (2017) for further
details.

Operational choice models are obtained by assuming a distribution for the error term
εin. For example, the logit model is obtained by assuming that they are independent
and identically distributed (across both i and n), with an extreme value distribution. It
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can be shown that, for the logit model, (2.3) is written as

Pn(i|xdin, xein) =
yine

Vin(xdin,x
e
in)∑

j∈Cn yjne
Vjn(xdjn,x

e
jn)
. (2.5)

Advanced DCM, which aim at relaxing the unrealistic assumptions associated with the
logit model and have shown a better prediction power, can also be accommodated within
this framework. In the case study described in Section 2.4, a mixed logit model is con-
sidered. These models can be derived under a variety of behavioral specifications whose
choice probabilities take a specific functional form, and each derivation provides a par-
ticular interpretation. For some derivations of the mixed logit model (and specifically
the one in Section 2.4), the deterministic part of the utility specification of the standard
logit model is generalized by allowing one or some of the coefficients βink in (2.4) to be
randomly distributed across the population, which captures heterogeneity among indi-
viduals. The vector of coefficients βnk of individual n is therefore a random vector, with
probability density function f(βk|θ), θ being the parameters of the distribution of βnk,
such as their mean and variance. The probability that individual n chooses alternative i
is given by the standard logit formula conditional on βnk. As βnk is distributed, the (un-
conditional) choice probability (2.3) is the integral of the logit formula over the density
of βnk:

Pn(i|xdin, xein) =

∫
yine

Vin(xdin,x
e
in;βnk)∑

j∈Cn yjne
Vjn(xdjn,x

e
jn;βnk)

f(βk|θ)dβk. (2.6)

Latent factors, such as personal attitudes and perceptions, also allow for a more realistic
representation of the behavior inherent in the choice process. They have been integrated
in DCM through two main approaches: models with latent variables, which explicitly
model the unobserved psychological characteristics of the individual (see Section 4.4
for an application), and latent class models, which assume that the population can be
probabilistically segmented into discrete groups that have different choice behaviors. A
special case of the latter corresponds to the DCM with latent choice sets (Ben-Akiva and
Boccara, 1995), which model individual choice behavior as a two-stage process consisting
of choice set generation first followed by a choice from the resulting given choice set. This
enables to incorporate an explicit probabilistic representation of the availability of the
alternatives, instead of assuming them as given, as is the case in standard DCM.

The expected demand for each alternative i ∈ C is then given by

Di =

N∑
n=1

Pn(i|xdin, xein). (2.7)
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We note that (2.7) can be used to derive, for example, the expected gain obtained from
alternative i: Gi = piDi, where pi denotes the price associated with alternative i (see
Section 2.3). Since (2.5) and (2.6) are non-linear as a function of the variables xein, so is
the associated expression of the demand (2.7). Moreover, price is typically an endogenous
variable, which makes the formulation of the expected gain even more complex.

We illustrate the non-linearity and non-convexity of the previous expressions by means of
an example for a simple logit model. Consider a choice set composed of two alternatives:
the same service offered by a certain operator (i) and its competitor (j). A population
of N = 100 individuals consists of two groups with different behavior: group 1 (2/3 of
the population) and group 2 (1/3 of the population). The systematic term of the utility
function for alternative i is defined as Vig = βgpi+ sig, where g denotes the group, βg the
price sensitivity of an individual in group g, pi the price to access service i and sig is the
term associated with service i and group g capturing the socioeconomic characteristics
of interest. We assume that group 1 is highly sensitive to price (β1 = −10) and has
an intrinsic preference towards alternative i (si1 = 3), whereas group 2 has a lower
price sensitivity (β2 = −1) and does not have a preference for alternative i (si2 = 0).
Furthermore, we assume that no information is available about the competitor, and
therefore we define Vjg = 0 for g = 1, 2.

Figure 2.1 shows the expected revenue for service i obtained from the two groups (sepa-
rately), and the sum of the two, as a function of price. The revenue function is unimodal
within each group, while the total gain curve is bi-modal: the first local optima is reached
when both groups are attracted to service i because of the low price, and the second one
is related to group 2 only, as group 1 has decided to leave the market due to the high
price.
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Figure 2.1: Expected revenue obtained from group 1, group 2 and total as a function of
the price of alternative i (pi)
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In general, when real models involving heterogeneity in the population are considered,
the associated objective functions are multi-modal, as we have illustrated in Figure 2.1
for a simple logit model with only two groups in the population. In this thesis, we define
a framework that avoids the use of the probability expressions by specifying the DCM
directly in terms of the utility functions.

Concerning the interactions between the demand and the supply-related decisions, we
note that the binary variables yin are endogenous to the formulation, as they belong to
both the DCM (see probability expressions (2.5) and (2.6)) and the optimization model.
However, they are exogenous to the utility functions (they do not appear in Vin(xdin, x

e
in)).

The presence of endogenous variables in the utility function makes the formulation more
complex, since Vin(xdin, x

e
in) cannot be preprocessed. We propose a general approach that

allows for both types of endogenous variables, as described next in Section 2.2.2.

2.2.2 Simulation-based linearization

Commonly, when a probabilistic model like the one introduced in Section 2.2.1 wants to
be integrated in MILP, it is tackled either with simulation (to approximate the probability
expressions, especially when they do not have a closed form) or with linearization of the
non-linear probability expressions. We rely on simulation to address the stochasticity of
the random component in the utility function (2.2). This enables to approximate the
expected demand in terms of the utility function with a mixed-integer linear formulation
based on the sample average approximation (SAA) principle in the space of the utilities.

For each εin in (2.2), we generate R simulation draws ξin1,. . . ,ξinR from its distribu-
tion (e.g., Gumbel, normal) outside of the optimization procedure (known as exterior
approach in stochastic programming), where ξinr denotes the r-th draw. Each draw
can be seen as an independent behavioral scenario. We notice that variance reduction
techniques (e.g., linear control random variables method, importance sampling) could be
used to enhance convergence of the SAA estimators.

Once the draws have been generated, for each scenario r, we obtain the utility associated
with alternative i by individual n, which is denoted by Uinr(x

d
in, x

e
in), or simply Uinr.

For the specification (2.4), we have

Uinr = Vin + ξinr =
∑
k

βinkx
e
ink + fdin(xdin) + ξinr, ∀i ∈ Cn, n, r. (2.8)

As the variables xeink are bounded (see (2.1)), and the values fdin(xdin) are given, lower
and upper bounds on Uinr can be derived. They are denoted by `inr and minr:

`inr ≤ Uinr ≤ minr, ∀i ∈ Cn, n, r. (2.9)
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Notice that the idea of relying on scenarios to represent uncertainty is exploited in
stochastic programming, and in particular in one of the basic modeling approaches known
as the multi-stage stochastic programming model (Ruszczyński and Shapiro, 2003). This
general structure is usually implemented for two stages, known as the two-stage model,
and is widely used in stochastic programming. In a standard two-stage model, the deci-
sion variables are divided into two groups: first-stage and second-stage variables. First-
stage variables are decided upon before the actual realization of the random parameters
such that the expected value of an objective function (which in turn is the optimal value
of the second-stage optimization problem) is optimized. Once the uncertain events have
unfolded, further design or operational adjustments can be made through values of the
second-stage (or alternatively called recourse) variables at a particular cost.

To numerically solve the two-stage problem, the vector of random parameters is of-
ten assumed to have a discrete distribution with a finite number of possible outcomes
(scenarios) with respective probability masses, which yields a deterministic equivalent
formulation of the problem. The number of scenarios should be relatively modest such
that the deterministic equivalent formulation can be solved within reasonable computa-
tional effort. If the total number of scenarios is very large (or even infinite), the scenario
set can be reduced to a manageable size by generating a sample of replications (draws)
of the random vector. The expectation function of the formulation is then approximated
with the SAA method, which allows to solve the problem using deterministic algorithms.

In this case, by generating R draws (scenarios) of the random component εin,∀i ∈ Cn, n,
we associate a deterministic utility function with each scenario (see (2.8)). These utilities
are considered to determine a choice for each individual and scenario, which allows to
approximate the individual choice probabilities, and consequently the expected demand,
with the SAA method. A detailed description is provided next.

Availability of alternatives

An alternative may be unavailable for three reasons. First, the operator decides that
the alternative is not made available to individual n. This decision is modeled with the
binary variables yin introduced in Section 2.2.1, which are formally defined as

yin =

{
1 if alternative i is offered to individual n,
0 otherwise,

∀i ∈ C, n. (2.10)

Second, an alternative might not be considered by the individual (i /∈ Cn, where Cn comes
from external data and represents the set of alternatives considered by individual n).
This exogenous decision can be explicitly included in the MILP by adding the following
constraint:

yin = 0, ∀i /∈ Cn, n. (2.11)
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Third, the alternative may be unavailable because its capacity has been reached. This
type of unavailability is more complex to model, as it is not a direct decision as such,
but the result of the decisions of other individuals. Note that in this framework this can
vary from one draw to the next. Indeed, an alternative might be more attractive in one
scenario, generating more demand than its capacity, and less attractive in another one.

We model the availability of alternative i to individual n in scenario r with the binary
variables yinr. Note that the variables yin and yinr are related as follows:

yinr ≤ yin, ∀i ∈ C, n, r, (2.12)

which implies that alternative i is not available at scenario level (yinr = 0) if yin = 0.

Briefly, the variables yin and yinr model three different situations. If the alternative is
not offered to or considered by individual n (yin = 0), then yinr = 0 ∀r due to constraints
(2.12). If the alternative is offered and considered (yin = 1), and there is still room for
individual n, then yinr = 1. However, if the capacity of the alternative has been reached,
yinr = 0 (even if yin = 1).

Discounted utility

The behavioral assumption states that the individual selects the alternative associated
with the largest utility. To avoid that an unavailable alternative is related to the highest
utility, we introduce the concept of discounted utility, which is the utility itself when
the alternative is available, and a low value otherwise. The discounted utility associated
with alternative i by individual n in scenario r is defined as

zinr =

{
Uinr if yinr = 1,

`nr if yinr = 0,
∀i ∈ C, n, r, (2.13)

where `nr = minj∈Cn `jnr is the smallest lower bound across all alternatives.

The linear formulation of (2.13) is given by

`nr ≤ zinr, ∀i ∈ C, n, r, (2.14)

zinr ≤ `nr +Minryinr, ∀i ∈ C, n, r, (2.15)

Uinr −Minr(1− yinr) ≤ zinr, ∀i ∈ C, n, r, (2.16)

zinr ≤ Uinr, ∀i ∈ C, n, r, (2.17)

where

Minr = minr − `nr. (2.18)
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To verify that (2.13) is equivalent to constraints (2.14)–(2.17) we consider two cases.
If yinr = 0, constraints (2.14)–(2.15) impose that zinr = `nr and constraints (2.16)–
(2.17) are always satisfied (using (2.18) and the definition of `nr, respectively). If yinr =

1, constraints (2.16)–(2.17) impose that zinr = Uinr, and constraints (2.14)–(2.15) are
always satisfied (using the definition of `nr and (2.18), respectively).

Choice

The choice of individual n in scenario r is characterized by the following binary variables:

winr =

{
1 if i is chosen,
0 otherwise,

∀i ∈ C, n, r. (2.19)

As each individual is choosing exactly one alternative, we impose∑
i∈C

winr = 1, ∀n, r. (2.20)

Moreover, since an alternative that is not available cannot be selected, we add the fol-
lowing constraint:

winr ≤ yinr, ∀i ∈ C, n, r. (2.21)

In terms of the discounted utility, the chosen alternative corresponds to the one with the
highest discounted utility, which is represented by the continuous variables Unr defined
as

Unr = max
i∈C

zinr, ∀n, r. (2.22)

The linear formulation of (2.22) is given by

zinr ≤ Unr, ∀i ∈ C, n, r, (2.23)

Unr ≤ zinr +Mnr(1− winr), ∀i ∈ C, n, r, (2.24)

where

Mnr = mnr − `nr (2.25)

is the difference between the largest upper bound and the smallest lower bound, where
the largest upper bound is defined as mnr = maxj∈Cnmjnr.

To prove the equivalence between definition (2.22) and the formulation (2.23)–(2.24),
we consider two cases. If winr = 0, constraints (2.23) are consistent with (2.22), and
constraints (2.24) are always verified (using (2.25)). If winr = 1, constraints (2.23)–(2.24)
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impose that Unr = zinr, which means that alternative i is associated with the highest
discounted utility. Notice that it may happen that two alternatives correspond to the
highest utility. In this case, constraints (2.20) guarantee that only one of them is chosen,
and the actual choice will be governed by the specific optimization problem, which is
not behaviorally realistic. However, thanks to simulation, such an issue is happening
sufficiently rarely to be ignored.

Note that constraints (2.17) and (2.23) are equivalent. We have decided to keep both
in the model as it has proven to be computationally more efficient (by performing some
preliminary tests that ignore one of the two constraints at a time). Furthermore, the
characterization of the so-called big M constraints (constraints (2.14)–(2.17) and (2.23)–
(2.24)) is tailored to our problem. Indeed, the values of the M constant defined in (2.18)
and (2.25) are the tightest possible values for the associated constraints.

Expected demand

The complexity of the probability distributions of the random variables involved in the
DCM and their correlation structure are irrelevant in this context as long as it is possible
to draw from these distributions (which is performed at a preprocessing stage). Given
an independent and identically distributed sample ξin1,. . . ,ξinR of the random variable
εin, the choice variables winr allow to count the number of times that the behavioral
assumption associated with Pn(i|xdin, xein) (see (2.3)) in terms of Uinr is met, which enables
to compute the sample average

1

R

R∑
r=1

winr. (2.26)

Hence, as a consequence of the law of large numbers, the relative frequency calculated
in (2.26) provides an estimation of Pn(i|xdin, xein), and the total expected demand of
alternative i ∈ C is approximated by aggregating such estimates across individuals:

Di ≈
1

R

R∑
r=1

N∑
n=1

winr. (2.27)

Notice that the law of large numbers is valid if the expectation of the probability distribu-
tion associated with the error component εin is finite, which is the case of the operational
DCM employed in practice.

Capacity allocation

If the demand for alternative i is larger than its capacity, it is necessary to decide which
individuals have access to the alternative. We have decided to model it exogenously, using
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an externally defined priority list of individuals, similar to Binder et al. (2017). This list
determines the way in which the individuals are processed (which does not necessarily
coincide with the order in which individuals arrive), and as soon as capacity is reached,
the remaining (unprocessed) individuals will not have access to the alternative. An
individual has access to an alternative if all individuals before them in the list for which
the alternative is offered have also access to it. Thus, the numbering of individuals
reflects the priority list. Note that the construction of this priority list can consider
various aspects of the relationship between the operator and the individuals, such as
fidelity programs, VIP individuals, etc. It can also be randomly generated.

The capacity restrictions are expressed by the following constraints:

n−1∑
m=1

wimr ≤ (ci − 1)yinr + (n− 1)(1− yinr), ∀i ∈ C, n > ci, r, (2.28)

ci(yin − yinr) ≤
n−1∑
m=1

wimr, ∀i ∈ C, n > 1, r. (2.29)

Constraints (2.28) forbid the access of individuals to a certain alternative when its capac-
ity has been reached, whereas constraints (2.29) ensure the availability of the alternative
when the capacity has not been exceeded. They can be verified by considering two cases
when the alternative is offered to and considered by individual n (i.e., yin = 1):

1.
∑n−1

m=1wimr < ci, and

2.
∑n−1

m=1wimr ≥ ci.

In the first case, constraints (2.28) are always satisfied (for both yinr = 0 and yinr = 1),
and constraints (2.29) force yinr to be equal to 1 in order to be verified, which means
that the number of individuals up to and including n who have chosen alternative i does
not exceed ci, so there is still room for individuals n. In the second case, constraints
(2.29) are always satisfied, and constraints (2.28) imply yinr = 0, which means that the
capacity has been reached due to the choices of the individuals up to and including n−1,
and even if the alternative is proposed to individual n by the operator, there is no room
left for them.

Note that if alternative i is not offered to individual n by the operator or not consid-
ered by this individual (yin = 0), the variables yinr and winr are equal to 0 (due to
constraints (2.12) and (2.21), respectively), and therefore constraints (2.28)–(2.29) are
always satisfied.

2.2.3 Capacities as decision variables

In Section 2.2.2, we have assumed that the capacities ci are given. However, the model
can be easily extended to include capacity as a decision variable. In order to avoid the
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non-linearity that would appear in constraints (2.28)–(2.29) (due to the product of the
capacity with the availability variables), we formulate capacity as follows.

For each decision variable ci, a predefined list of Q feasible values for the capacity is
proposed: ci1, . . . , ciQ. Then, alternative i is duplicated Q times, each instance being
associated with the same utility function, but with a different capacity level. We define
the binary variables yiq, which take value 1 if alternative i is offered with capacity ciq,
and 0 otherwise. We also define the binary variables yiqn, which represent the extension
of the variables yin, and therefore are equal to 1 if alternative i with capacity ciq is offered
to and considered by customer n, and 0 otherwise. It is sufficient to include the following
constraints in the formulation:

Q∑
q=1

yiq ≤ 1, ∀i ∈ C, (2.30)

yiqn ≤ yiq, ∀i ∈ C, q, n. (2.31)

Constraints (2.30) guarantee that at most one of the duplicates is actually available.
Note that it is still possible for the operator to decide not to offer alternative i at all.
In that case, the sum on the left-hand side of (2.30) is equal to zero. Constraints (2.31)
ensure that the variables yiqn are set to 0 if alternative i is not offered with capacity ciq.

The remaining variables described in Section 2.2.2 need to be extended to account for
the capacity levels. We can simplify the introduced notation by redefining C as the set
of the duplicates of the original alternatives. In this case, the dimension of C would be
JQ, where J is the number of original alternatives.

2.2.4 Size of the mixed-integer linear formulation

The number of constraints comprised in this specification (when capacity is a decision
variable) is of the order of JNRQ. In real applications, where the number of individuals
can be large, this comes with a high computational price. To reduce the size of the model,
individuals can be grouped into classes of homogeneous behavior (see Section 2.4.2 and
2.4.3 for a concrete example), even though this modeling technique requires additional
assumptions on how to handle the access of groups to the services in order to fulfill the
capacity restrictions. Moreover, this formulation allows to explicitly model the trade-off
between the number of draws and the accuracy of the approximation (see Section 2.4.1).

As pointed out in Section 2.2.2, the complexity of the probability distributions of the
random variables involved in the DCM and their correlation structure is only affected
by the number of draws, and not by the nature of the underlying distributions. This is
a strength of the framework, that it is relevant for any existing complex DCM, and for
other models to be developed in the future.
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Finally, we highlight the fact that the tremendous development of advanced mathemat-
ical formulations and efficient algorithms allow to solve MILP models of gigantic sizes.
Furthermore, the structure of the described formulation is particularly well suited for
decomposition methods. This is extensively discussed in Chapter 3.

2.2.5 The optimization model

The generic mixed-integer linear formulation of a DCM presented in the previous sections
can be integrated into an optimization model consisting of:

• a linear objective function fs : RS+E+J → R that relates the decision variables
and the expected demand DR ∈ RJ (for a given R) to an aggregate performance
of the system:

fs(xs, xe, DR), (2.32)

• a set of linear constraints that identifies the feasible configurations of the variables:

g1(xs, xe, DR) = 0, (2.33)

g2(xs, xe) = 0, (2.34)

xez ∈ ZEz , (2.35)

xsz ∈ ZSz , (2.36)

`e ≤ xe ≤ me, (2.1)

`s ≤ xs ≤ ms, (2.37)

where g1 : RS+E+J → RI1 and g2 : RS+E → RI2 (with I1, I2 ≥ 0 denoting
the number of constraints) represent the constraints that do and do not involve
the demand model, respectively, xez and xsz correspond to the subsets of integer
variables in xe and xs, respectively, and `s and ms denote the lower and upper
bounds on xs, respectively.

We can prove the convergence (when R tends to infinity) of the sequence of optimal
solutions obtained with the optimization problem defined by (2.1), (2.32)–(2.37) to an
optimal solution of the same problem relying on the probability-based demand represen-
tation of DCM (as defined in (2.7)). In Appendix B we provide additional details on this
convergence property and the corresponding proof.

This formulation can be employed to model numerous applications. In Section 2.3, we
illustrate the usage of the choice-based optimization framework by considering a concrete
application. More precisely, we define a profit maximization problem that allows us to
characterize a specific objective function and feasible configuration of the variables.
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2.3 Profit maximization problem

We consider a profit maximization problem to illustrate how the framework described
in Section 2.2 can be used. This application is particularly interesting because the
calculation of revenue involves a non-linearity that needs to be addressed, and can be
found in many different contexts (e.g., airline RM, road tolling).

The operator aims at finding the best strategy in terms of pricing and capacity allocation
to maximize its profit by selling services, each of them at a certain price and with a
certain capacity, both to be decided. Regarding the cost of each service, we assume that
it is composed of a fixed cost associated with operating the service and a variable cost
associated with each unit of the service sold.

The market is composed of N customers, which are assumed to be heterogeneous and
price elastic, in the sense that each costumer may have a different behavior and sensitivity
towards price. The operator is considering a set C composed of J services, each of them
representing a service potentially offered by the operator and its associated capacity level,
as described in Section 2.2.3.

In a profit maximization context, we need to model competition. If we do not account
for competitive services, customers are captive, and the problem becomes unbounded.
Competitive services can be explicitly modeled in the choice set, or grouped into an
opt-out option that captures customers leaving the market, either because they choose a
competitor’s service or because they do not choose anything at all. To keep the illustrative
example simple, we consider the second approach. The main assumption is that the
decisions of the competitors are given, and not adjusted as a consequence of the decisions
of the operator. The opt-out option is denoted by i = 0, and it is always available to all
customers, i.e., 0 ∈ Cn ∀n (i.e., y0n = 1).

We consider the price as the only endogenous variable (xe) in the utility function (2.8).
We define pin ∈ R as the price that customer n must pay to access service i ∈ Cn \ {0}.
Note that the index n allows the operator to propose different prices to different customers
or, more realistically, to different groups of customers (e.g., students, seniors, families).
In that case, the model includes as many pi variables as the number of defined groups.

The expected gain obtained from service i ∈ C \ {0} can be derived directly from the
demand expression (2.7) and the price specification:

Gi =
1

R

N∑
n=1

R∑
r=1

pinwinr. (2.38)

As the price is an endogenous variable, (2.38) is non-linear. We note that, depending
on the context, the price can be modeled in a continuous way (as a real-valued variable)
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or in a discrete way (with a predetermined set of values). We explore the linearization
techniques that need to be developed in both cases in Sections 2.3.1 and 2.3.2.

2.3.1 Continuous price

The product of a binary and a continuous variable can be linearized if an upper bound
on the latter is known, which in this case can be set by the operator. Assume that the
price pin is bounded between a lower bound ain ∈ R and an upper bound bin ∈ R. We
define the variables ηinr = pinwinr capturing the product of the two, with linearizing
constraints (2.39)–(2.42):

ainwinr ≤ ηinr, ∀i ∈ C \ {0}, n, r, (2.39)

ηinr ≤ binwinr, ∀i ∈ C \ {0}, n, r, (2.40)

pin − (1− winr)bin ≤ ηinr, ∀i ∈ C \ {0}, n, r, (2.41)

ηinr ≤ pin − (1− winr)ain, ∀i ∈ C \ {0}, n, r. (2.42)

It is easy to verify that constraints (2.39) and (2.40) are binding when winr = 0, and
impose ηinr = 0, and constraints (2.41) and (2.42) are binding when winr = 1, and
impose ηinr = pin. The expected gain Gi is then obtained by replacing the product of
variables pinwinr by the variables ηinr in (2.38), i.e.,

Gi =
1

R

N∑
n=1

R∑
r=1

ηinr. (2.43)

Motivated by the definition of the ηinr variables, we can derive the following valid in-
equalities:

d0nrw0nr +
∑

j∈C\{0}

(djnrwjnr + βjnηjnr) ≥ zinr, ∀i ∈ C, n, r, (2.44)

where dinr = fdin(xdin)+ξinr refer to the constant term included in Uinr (see (2.8)). These
constraints are the linearized version of∑

j∈C
Ujnrwjnr ≥ zinr, ∀i ∈ C, n, r. (2.45)

Indeed, constraint (2.44) is equivalent to constraints (2.23)-(2.24), which set the choice
variable equal to 1 for the service with the highest discounted utility. We have compared
the computational times for different instances with and without (2.44), and we observe
that it helps to obtain a better LP relaxation, which allows to solve the MILP more
efficiently.
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It is easy to prove the equivalence with constraints (2.23)-(2.24). Assume that zi∗nr is the
largest discounted utility associated with individual n and draw r, i.e., zi∗nr ≥ zinr, ∀i ∈
Cn, i 6= i∗. Given that only one of the variables winr associated with individual n and
draw r can be equal to 1 due to constraints (2.20), if wj∗nr = 1 for j∗ 6= i∗, then constraint
(2.44) can be written as Uj∗nr ≥ zjnr for any j ∈ Cn, and in particular for j = i∗. Since
yj∗nr = 1 (using (2.21)), the valid inequality (2.44) can be written as zj∗nr ≥ zi∗nr
for service i∗, which implies, together with the initial assumption zi∗nr ≥ zj∗nr, that
zj∗nr = zi∗nr. This is equivalent to (2.23)-(2.24), since Unr = maxi∈C zinr = zj∗nr.

2.3.2 Discrete price

When operators are not interested in the full spectrum of prices, but in a specific subset
(e.g., round prices only), it is more convenient to assume that pin can only take a finite
number of predetermined values, called price levels. Note that any integer variable
that is bounded and can take only a finite number of values can be written as a linear
combination of binary variables. This enables to characterize the price levels with a
smaller number of binary variables, as opposed to associating a binary variable with
each price level. However, pin is not defined as an integer variable, and neither its price
levels. We can express them as integer numbers by setting a precision of k decimals and
multiplying them by 10k.

Consider pin ∈ 1/10k{ain, . . . , bin}, where {ain, . . . , bin} are the integer price levels for
service i ∈ C \ {0} and individual n, sorted from the smallest level (ain) to the largest
(bin). We define Lin binary variables λin` for each service i ∈ C \{0} and each individual
n, where Lin is the smallest integer such that bin− ain ≤ 2Lin − 1, i.e., Lin = dlog2(bin−
ain + 1)e. We can write pin as follows:

pin =
1

10k

(
ain +

Lin−1∑
`=0

2`λin`

)
, ∀i ∈ C \ {0}, n. (2.46)

Notice that (2.46) can generate prices above bin if dlog2(bin−ain+1)e > log2(bin−ain+1).
If it is important to generate prices below bin, the following constraint must be included:

ain +

Lin−1∑
`=0

2`λin` ≤ bin, ∀i ∈ C \ {0}, n. (2.47)

The expected gain Gi is written as

Gi =
1

R

1

10k

(
N∑
n=1

R∑
r=1

ainwinr +

Lin−1∑
`=0

2`λin`winr

)
. (2.48)
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In order to linearize the product of the binary variables λin` and winr in (2.48), we intro-
duce the binary variables αinr` = λin`winr, so that Gi becomes linear, with linearizing
constraints (2.49)–(2.51):

λin` + winr ≤ 1 + αinr`, ∀i ∈ C \ {0}, n, r, `, (2.49)

αinr` ≤ λin`, ∀i ∈ C \ {0}, n, r, `, (2.50)

αinr` ≤ winr, ∀i ∈ C \ {0}, n, r, `. (2.51)

Hence, (2.48) can be linearly expressed as follows:

Gi =
1

R

1

10k

(
N∑
n=1

R∑
r=1

ainwinr +

Lin−1∑
`=0

2`αinr`

)
. (2.52)

Furthermore, valid inequality (2.44) can also be derived for discrete prices:

d0nrw0nr +
∑

j∈Cn\{0}

djnrwjnr +
1

10k
βjn

Ljn−1∑
`=0

2`αjnr`

 ≥ zinr, ∀i ∈ C, n, r,

(2.53)

where dinr is defined in this case as dinr = fdin(xdin) + ξinr + 1
10k

βinain, with β0n = 0,∀n.

2.3.3 Expected profit

The generated revenues are provided by (2.43) in the case of continuous price and by
(2.52) if a discrete price is assumed. Regarding the costs, we assume that the operating
cost of service i ∈ C \ {0} is calculated as

Ci =

Q∑
q=1

(fiq + viqciq)yiq, (2.54)

where fiq is the fixed cost and viq is the cost per sold unit associated with service i and
capacity level ciq.

The expected profit is computed by subtracting the total operating costs from the gen-
erated revenues. The resulting objective function is the following:

max
∑

i∈C\{0}

(Gi − Ci). (2.55)

The constraints that are included in the optimization model are itemized next:

• Utility: (2.8)
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• Availability: (2.11), (2.12)

• Discounted utility: (2.14), (2.15), (2.16), (2.17)

• Choice: (2.20), (2.21), (2.23), (2.24)

• Capacity allocation: (2.28), (2.29), (2.30) (2.31)

• Pricing: continuous (2.39), (2.40), (2.41) (2.42) or discrete (2.47), (2.49), (2.50)
(2.51)

• Valid inequality: (2.44) for continuous prices and (2.53) for discrete prices.

Table A.1 in Appendix A summarizes the main notations used in the model for the
reader’s convenience, organized by sets, parameters, variables and aggregated quantities.
For the sake of simplicity, we do not make the distinction between the terms alternatives
and services, as it is done in Sections 2.2 and 2.3, respectively, and we refer to them
simply as alternatives.

2.4 Case study

The objective of this case study is twofold. We first deal with the integration of an
existing DCM from the literature in the MILP described in Section 2.3, and we then
perform several experiments to illustrate the extent of the resulting formulation.

Discrete choice model

The challenge of the first goal consists in embedding a non trivial DCM externally devel-
oped in the profit maximization problem. We rely on the case study of a parking services
operator, which is motivated by a published DCM for parking choice (Ibeas et al., 2014),
whose data was kindly provided by the authors and used to perform the experiments
discussed next.

The parking choice model aims at addressing the economic viability of an underground
parking in the area of study. In order to adapt the case study to the application described
in Section 2.3, we assume a park and ride situation, where the parking facilities have
public transportation connections and the users leave their vehicles during the day in
order to commute to their final destination with public transportation. In this way, we
circumvent the inherent dynamic behavior of general parking facilities, where the spots
are occupied and liberated indistinctly, and we define a setting where as soon as the
parking spot is taken, it will not be available for the users subsequently arriving next
(within the time horizon being evaluated).

We note that this characterization assumes fully informed drivers, i.e., drivers know if
there is a remaining parking spot in each parking facility, and where this spot is located,
which is not always the case. A more comprehensive analysis of a problem handling
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parking facilities should include additional features, such as the fact that finding the last
free parking space is a considerable time-consuming effort, while other parking spaces
can be freed. In any case, the focus here is not on parking management, but on showing
that a disaggregate demand model from the literature can be directly accommodated in
MILP thanks to the proposed framework.

The choice set consists of three services: paid on-street parking (PSP), paid parking in
an underground car park (PUP) and free on-street parking (FSP). Since the latter does
not provide any revenue to the operator, it represents the opt-out option, and therefore
it is always available to all users. We assume that the parking facilities are either open
to everyone or not offered at all, and that the associated price is the same for everyone.
Furthermore, we assume that Cn = C, ∀n, i.e., all users consider all facilities when
deciding where to park.

Together with the technical variables used for linearization purposes, the model for this
case study contains the availability variables yin, which are reduced to yi (i.e., yin =

yi, ∀n) based on the above-mentioned assumption, and yinr, which model the availability
at scenario level; the binary variables winr, which represent the choice; and the price
variables pin, which are simplified to pi as a single price is assumed, and we decide to
model it continuously.

The utility specification of the demand model is given by Ibeas et al. (2014). They
define a mixture of logit models (see (2.6) for the associated probability expression)
to describe the behavior of potential car park users. Since the model has a linear-in-
parameter formulation, it can be described with a specification table, which contains as
many columns as alternatives in the model (three in this case) plus one column including
the values of the coefficients, and as many rows as parameters within the DCM. Table
2.1 contains the estimates of the parameters and the specification associated with each
parking service.

Table 2.1: Specification table of the mixtures of logit model in Ibeas et al. (2014)

FSP PSP PUP
ASCPSP 32 0 1 0
ASCPUP 34 0 0 1
βAT ∼ N (−0.788, 1.06) ATFSP ATPSP ATPUP
βTD −0.612 TDFSP TDPSP TDPUP
βOriginINT_FSP

−5.76 OriginINT_FSP 0 0
βFEE ∼ N (−32.3, 14.2) 0 FEEPSP FEEPUP
βFEEPSP(LoIn) −11 0 FEEPSPLoIn 0
βFEEPSP(Res) −11.4 0 FEEPSPRes 0
βFEEPUP(LoIn) −13.7 0 0 FEEPUPLoIn
βFEEPUP(Res) −10.7 0 0 FEEPUPRes
βAgeVeh≤3 4.04 0 0 AgeVeh ≤ 3
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The random coefficients are the ones associated with the access time to the parking
place once the user arrives to the parking area (AT) and the parking fee (FEE), and
are denoted by βAT and βFEE, respectively. As mentioned by the authors, the latter
is related to an hour of use of the parking place, regardless of the time that the spot
was needed. The units are not specified. Both parameters are assumed to be normally
distributed and correlated, with cov(AT,FEE) = −12.8.

The other variables appearing in the utility specification are the following: access time to
the destination from the parking spot (TD), an indicator variable that is 1 if the origin
of the trip is internal to the town (OriginINT_FSP), an indicator variable that is 1 if the
income of the user is below 1200/month (LoIn), an indicator variable that is 1 if the user
is resident (Res), and an indicator variable that is 1 if the age of the vehicle is lower than
3 years (AgeVeh≤3). Two interactions to address the variations in taste among users are
considered: FEE with having a low income and FEE with being resident.

MILP model

For the sake of illustration, and to avoid solving huge optimization problems, we define
a sample of N = 50 users, which are randomly selected among the 197 users available in
the provided dataset. Despite the reduction in size, this sample still represents a realistic
example to test the formulation on. We define the priority list as the order of the users
in the sample, which can be interpreted as a random arrival.

In the optimization model described in Section 2.3, we assume that the price (FEE) is
the only endogenous variable. It appears linearly in the utility function (as required),
as well as the other demand variables, even though linearity on these is not necessary
because they are not decision variables of the MILP model. The values of pPSP (FEEPSP)
and pPUP (FEEPUP) will be determined by the model, whereas the exogenous demand
variables will be replaced by their corresponding values in the data. As a stated pref-
erence (SP) survey was conducted, we consider one of the choice situations presented
to the respondents in order to characterize the attributes of the alternatives previously
described.

We perform several experiments to evaluate different features of the framework. In the
first three, we assume a fixed capacity of cPSP = cPUP = 20 spots, which is large enough
to be realistic for the size of the sample but restrictive enough to force some users to opt-
out because there is not enough room for everyone. Moreover, the fixed and variable costs
of the paid alternatives are set to 0, which turns the objective function into the expected
revenue obtained from the offered services. Notice that all services are offered by the
operator in this case as we assume that either the service is offered to everyone or not
offered at all, so from a revenue maximization point of view it does not make sense not to
open a service. The last experiment deals with the profit maximization problem as such.
All the experiments have been implemented in C++ using ILOG Concert Technology
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to access CPLEX 12.8, and all the instances were performed using 12 threads in a 3.33
GHz Intel Xeon X5680 server running a 64-bit Ubuntu 16.04.2.

Section 2.4.1 provides an assessment of the computational time and obtained solutions
both for the uncapacitated and capacitated case. Section 2.4.2 deals with the segmenta-
tion of individuals by differentiating the price among market segments and by grouping
individuals with similar behavior, which involves a reduction of the size of the problem.
Section 2.4.3 evaluates the impact of the priority list when a random arrival of users is
assumed, both when the users are individually considered and when they are grouped.
Finally, Section 2.4.4 analyzes the computational expense and impact on the results of
the maximization of the profit subject to a capacity allocation strategy.

2.4.1 Price calibration

In this section, we determine the optimal price of PSP and PUP so that the revenue of
the operator is maximized, both with and without capacity restrictions on these services.
Based on the values of the variable FEE in the data, we assume pPSP ∈ [0.5, 0.65] and
pPSP ∈ [0.7, 0.85]. We analyze the performance of the framework with respect to the
number of simulation draws by running 5 replications for each value of R, each replication
corresponding to an independent generation of R draws of the error terms εin, ∀i ∈ C, n.
Furthermore, we evaluate the obtained solutions for a large number of draws, i.e., we
compute the expected optimal revenue with the obtained optimal prices with a large
number of draws in order to assess their quality, and we determine the number of draws
that will be considered for the following experiments.

Uncapacitated case

We assume first that both PSP and PUP have unlimited capacity, i.e., constraints (2.28)–
(2.29) are ignored. We include them back later in order to analyze the expected increase
in solution time due to the increase in complexity and the differences with respect to
optimal prices and expected demand.

Table 2.2 presents aggregate statistics of the expected optimal revenue and computational
time. We observe that as R increases, the standard deviation decreases, which shows
the stability of the obtained results as the number of draws becomes larger. Regarding
the computational time, we observe the expected exponential growing with respect to R,
which becomes particularly noticeable from R = 100 (average computational time of 24
minutes) to R = 250 (average computational time of 1.76 hours).

Figures 2.2 and 2.3 provide the boxplots for the optimal prices of the paid alternatives
and the expected demand for all alternatives, respectively. In all cases, the interquartile
range (the difference between the upper and lower quartiles) decreases with respect to R,
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Table 2.2: Computational results of the revenue maximization problem for the uncapac-
itated cases for 5 replications (independent generation of draws)

R Expected optimal revenue Computational time (min)

Min. Avg. Max. Std. dev. Min. Avg. Max.
2 25.794 26.790 28.284 1.030 0.002 0.003 0.003
5 26.574 27.258 27.906 0.565 0.007 0.009 0.013

10 26.547 27.262 27.642 0.425 0.042 0.050 0.060
25 26.653 26.947 27.087 0.170 0.159 0.307 0.464
50 26.749 26.867 27.071 0.126 1.364 3.267 4.844

100 26.787 26.872 27.059 0.111 15.195 24.173 32.159
250 26.792 26.889 26.967 0.077 55.721 105.445 198.026

which shows a decrease in the variability of the obtained results as the number of draws
increases.
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Figure 2.2: Boxplot of the optimal prices for the uncapacitated case for 5 replications
(independent generation of draws)
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Figure 2.3: Boxplot of the expected demand for the uncapacitated case for 5 replications
(independent generation of draws)
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Capacitated case

Table 2.3 shows the increase in computational time with respect to the uncapacitated
case, which is expected since the implementation of the priority list and the tracking of
the occupancy for each alternative hugely complicate the solution approach. Similarly
to the uncapacitated case, we can observe in Figures 2.4 and 2.5 a decreasing variability
of the optimal prices and expected demand as R increases.

Table 2.3: Computational results of the revenue maximization problem for the capaci-
tated case for 5 replications (independent generation of draws)

R Expected optimal revenue Computational time (min)

Min. Avg. Max. Std. dev. Min. Avg. Max.
2 24.972 26.183 27.699 1.011 0.006 0.010 0.022
5 25.706 26.246 26.779 0.504 0.093 0.115 0.142

10 25.616 26.404 26.810 0.486 1.157 1.656 2.155
25 25.738 26.029 26.297 0.205 7.714 13.160 22.793
50 25.676 26.000 26.280 0.244 38.119 59.885 69.313

100 25.835 26.015 26.131 0.109 204.940 300.442 450.428
250 25.933 25.977 26.067 0.053 657.679 1261.398 2020.310

Both PSP and PUP are more expensive in the capacitated case. Since the demand of
PSP was already higher than its current capacity in the uncapacitated case, its price can
be increased so that the operator obtains a higher revenue from the users accessing the
service. In the case of PUP, the price is also higher, but the demand is similar to the one
in the uncapacitated case, which might also be influenced by the capacity restriction on
PSP, since normally the opt-out option is the least attractive alternative. However, FSP
is experiencing an increase in its demand because it is capturing the users that cannot
be allocated due to capacity limitations or that are not willing to pay the current price
of the paid alternatives.
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Figure 2.4: Boxplot of the optimal prices for the capacitated case for 5 replications
(independent generation of draws)
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Figure 2.5: Boxplot of the expected demand for the capacitated case for 5 replications
(independent generation of draws)

Evaluation of optimal solutions

We now compare the expected optimal revenues for the different tested values of R and
5 replications with the expected optimal revenues obtained by evaluating the prices of
PSP and PUP of the MILP solution with a large number of draws, namely R∗ = 106.
Table 2.4 includes the relative differences (in %) with the expected optimal revenues
obtained by evaluating the optimal prices as reference values. Such differences decrease
as R increases, which indicate that the expected gain becomes more robust with larger
values of R. In this experiment, when R ≥ 25, the relative difference in both cases is
lower than 1%.

Table 2.4: Relative differences of the expected optimal revenues obtained by solving the
MILP model with respect to the expected optimal revenues obtained by evaluating the
optimal prices with R∗ = 106 for 5 replications (independent generation of draws)

R Relative diff. (%) (uncapacitated) Relative diff. (%) (capacitated)

Minimum Average Maximum Minimum Average Maximum
2 0.803 2.972 5.214 0.060 3.258 8.139
5 0.048 2.048 4.254 3.377 3.856 4.252

10 1.132 2.217 3.461 0.937 2.952 4.550
25 0.376 0.570 0.898 0.131 0.707 1.424
50 0.077 0.356 0.732 0.167 0.727 1.320

100 0.057 0.302 0.688 0.192 0.443 0.849
250 0.151 0.249 0.360 0.020 0.171 0.503

Required number of draws

The required number of draws is closely related to the variance of the error terms of the
DCM. That is, if the DCM is highly deterministic (low variance of the error terms), the
choices will mostly be driven by the systematic component of the utility function (Vin),
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and a low number of draws will be required. We illustrate the level of stochasticity in
this case by considering an error rate defined as the ratio of choices estimated by the
model that do not match the deterministic choice (the choice obtained in the absence of
error component) to the total number of estimated choices. Notice that we need to set
the distributed parameters βAT and βFEE equal to their means in order to generate the
deterministic choices. The error rate fluctuates between 50% and 52% for the different
tested values of R in the capacitated case, which indicates that the level of stochasticity
of the mixed logit model is considerable.

Nevertheless, as seen in the different analyses, the obtained quantities are stable enough
for R ≥ 25, in the sense that a low variability is experienced. For the sake of illustration,
we consider R = 50 for the experiments developed in Sections 2.4.2 and 2.4.3, as it
provides a good compromise between computational time and precision of the results.
Since the problem containing the capacity as decision variable is computationally more
expensive, Section 2.4.4 considers R = 25.

2.4.2 Population segmentation

The disaggregate representation of the demand provides a great deal of flexibility when
it comes to integrate population segmentation strategies within the framework. In this
section, we test a price differentiation scheme for two market segments based on the
residency in the area of interest, and a grouping of individuals with similar behavior.
In the first experiment, the users are still modeled individually, whereas in the second
experiment the consideration of user groups reduces the size of the formulation as a single
individual represents all the members within the corresponding group. In both cases,
capacity restrictions are assumed and 5 replications (independent generation of draws)
for each value of R are run.

Price differentiation

Imagine that the municipality provides reduced fees to residents who want to access one
of the paid alternatives. This is actually done in many cities, where residents get reduced
prices for common parking services or even exclusive areas, where only them have the
right to park. In this case, we assume a discount factor that is applied to the prices
offered to non residents.

Regarding the operator’s revenue, two situations are considered: (1) the difference be-
tween the actual price of the service and the contribution of the resident is paid by the
municipality in the form of a subsidy and, therefore, contributes to the revenue of the
operator, and (2) the operator is obliged by the municipality to offer reduced fees to res-
idents, without any other compensation than the right to operate the parking. In both
situations, the reduced prices have an impact on the utility functions of the residents,
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and consequently on their choice. In situation 1, the revenue is not impacted whereas in
situation 2 the reduced fares cause a decrease in the total gain.

Since residents only pay a part of the fee that non residents pay, the former users might
be attracted to higher fares, and we therefore expect the prices of both services to
increase. We modify the price bounds of PSP and PUP as follows: pPSP ∈ [0.6, 1.2] and
pPUP ∈ [0.8, 1.4]. The average expected optimal revenue as well as the interval defined by
the lowest and highest obtained values for the optimal prices and expected demand for
5 replications are included in Tables 2.5 and 2.6 for situations 1 and 2, respectively. In
both situations, the higher the discount, the higher the prices being offered, as expected.
However, this increase is more moderate in situation 2 because it leads to a decrease in
the total gain.

Table 2.5: Average revenue and range of obtained results for 5 replications (independent
generation of draws) for different subsidies in situation 1 for R = 50 (R denotes resident
and NR denotes non resident)

Disc. (%) Revenue Prices (NR) Demand (PSP) Demand (PUP) Demand (FSP)

PSP PUP R NR R NR R NR
20 28.94 [0.63,0.66] [0.86,0.89] [10.1,11.0] [8.7,9.3] [7.0,7.9] [10.7,11.4] [3.5,4.1] [7.7,8.2]
25 29.74 [0.67,0.70] [0.89,0.94] [10.4,11.1] [7.8,8.7] [7.5,8.1] [10.0,10.9] [3.1,3.7] [8.7,9.7]
30 30.57 [0.69,0.71] [0.91,0.95] [10.8,11.5] [7.7,8.4] [7.9,8.7] [9.8,10.4] [2.2,2.8] [9.5,9.9]
40 32.12 [0.76,0.77] [0.99,1.05] [11.3,12.8] [6.1,6.8] [7.8,9.0] [8.7,9.4] [1.3,1.7] [12.1,13.0]
50 33.91 [0.84,0.95] [1.14,1.24] [10.9,12.6] [2.6,5.6] [8.6,9.5] [6.7,8.1] [0.7,1.7] [15.0,17.4]

Table 2.6: Average revenue and range of obtained results for 5 replications (independent
generation of draws) for different subsidies in situation 2 for R = 50 (R denotes resident
and NR denotes non resident)

Disc. (%) Revenue Prices (NR) Demand (PSP) Demand (PUP) Demand (FSP)

PSP PUP R NR R NR R NR
20 26.26 [0.63,0.66] [0.86,0.89] [10.1,11.0] [8.7,9.3] [7.0,7.9] [10.7,11.4] [3.5,4.1] [7.7,8.2]
25 26.13 [0.67,0.69] [0.90,0.93] [10.4,11.4] [7.8,8.7] [7.1,8.1] [10.3,10.7] [3.3,3.6] [8.7,9.7]
30 25.93 [0.69,0.71] [0.91,0.94] [10.8,11.5] [7.7,8.6] [7.9,8.7] [10.2,10.5] [2.2,2.8] [9.2,9.9]
40 25.08 [0.71,0.76] [0.96,0.99] [11.3,12.2] [6.1,8.2] [8.7,9.6] [9.2,9.8] [1.0,1.4] [10.5,12.4]
50 23.77 [0.71,0.77] [1.01,1.05] [11.4,12.3] [6.7,8.4] [9.4,10.3] [7.9,9.0] [0.2,0.6] [11.1,12.6]

In terms of the expected demand, we observe that the higher the discount, the lower
the expected non resident demand of PSP and PUP and the higher the number of non
residents deciding to opt-out, as they are not willing to pay the offered fees and choose
FSP instead. Certainly, the expected resident demand experiences the opposite, since it
decreases for FSP and increases for PSP and PUP as the discount increases. Note that
a 20% discount almost has no impact on the optimal prices and expected demand, i.e.,
a larger discount needs to be put in place in order to alter the choices of the individuals.
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Grouping of individuals

In this experiment, we define G groups of individuals with homogeneous behavior. We
keep the same notation and denote the groups by n and their size (number of individuals)
by θn. We assume that θn ≤ ci, ∀i ∈ C \{0}, n, i.e., the size of the groups does not exceed
the capacity of the alternatives.

We rely on the socioeconomic variables that are present in the DCM to define groups
with homogeneous behavior. More precisely, we allow for all possible combinations of the
values of the binary variables Res (residency), OriginINT_FSP (origin of the trip), LoIn
(low income level) and AgeVeh≤3 (age of the vehicle). Table 2.7 includes the user groups
derived from such combinations and the sizes within the considered sample (N = 50).
Notice that 4 of the groups are not represented in the sample, so G = 12.

Table 2.7: Definition of user groups

n θn Res OriginINT_FSP LoIn AgeVeh≤3 n θn Res OriginINT_FSP LoIn AgeVeh≤3

1 2 1 1 1 1 9 0 0 1 1 1
2 10 1 1 1 0 10 0 0 1 1 0
3 1 1 1 0 1 11 1 0 1 0 1
4 2 1 1 0 0 12 0 0 1 0 0
5 6 1 0 1 1 13 7 0 0 1 1
6 1 1 0 1 0 14 11 0 0 1 0
7 1 1 0 0 1 15 5 0 0 0 1
8 0 1 0 0 0 16 4 0 0 0 0

The values of the remaining variables present in the DCM (the attributes of the alter-
natives) are the same across individuals because they correspond to one of the choice
situations of the SP experiment performed in Ibeas et al. (2014). This might not be the
case in other contexts (e.g., revealed preference data). If so, each variable needs to be
set to a single value representing the individuals in the group (e.g., the average).

Concerning the formulation, we need to make some assumptions on the access of groups
to the services with respect to capacity restrictions. In order to remain as consistent
as possible to the individual-based model, we assume that the groups cannot be split,
i.e., the group does not have access to an alternative if there is not enough capacity to
accommodate all its individuals. Furthermore, the priority list needs to be respected,
which is defined by the numbering introduced in Table 2.7, but we allow group n+ 1 to
have access to a service provided that it fits even if group n could not access because its
size exceeded the remaining capacity.

Hence, we only need to replace constraints (2.28)–(2.29) with their adaptation at the
group level given by constraints (2.56)–(2.57). Constraints (2.56) become active when
there is no room for group n, i.e.,

∑n−1
m=1 θmwimr > ci − θn, as it forces yinr to be equal

to 0. Similarly, when there is room for group n, i.e.,
∑n−1

m=1 θmwimr ≤ ci−θn, constraints
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(2.57) implies yinr = 1. Notice that there is always room for group n = 1 (first group in
the priority list) thanks to the assumption θn ≤ ci,∀i ∈ C \ {0}, n.

n−1∑
m=1

θmwimr ≤ (ci − θn)yinr +

(
n−1∑
m=1

θm

)
(1− yinr), ∀i ∈ C, n > 1, r,

(2.56)

(ci − θn + 1)(yin − yinr) ≤
n−1∑
m=1

θmwimr, ∀i ∈ C, n > 1, r.

(2.57)

Table 2.8 presents the aggregate statistics of the expected optimal revenue and compu-
tational time for the capacitated case with the user groups defined in Table 2.7. The
computational times for the different values of R are much lower than the ones obtained
at the individual level in the capacitated case (see Table 2.3), which also suggests an
exponential growing with respect to the number of individuals. For example, the aver-
age computational time for R = 250 is drastically reduced from 21 hours to less than 3
min. We observe that the expected optimal revenues fluctuate within lower values than
in the individual case, and the associated standard deviation, though it decreases as R
increases, is larger.

Table 2.8: Computational results for the user groups defined in Table 2.7 for 5 replications
(independent generation of draws)

R Expected optimal revenue Computational time (min)

Min. Avg. Max. Std. dev. Min. Avg. Max.
2 22.950 26.577 29.275 2.501 0.000 0.001 0.001
5 23.314 24.822 25.809 0.995 0.002 0.003 0.003

10 24.139 24.524 25.060 0.355 0.004 0.006 0.008
25 23.446 23.884 24.596 0.477 0.023 0.032 0.051
50 23.299 23.670 24.447 0.473 0.093 0.111 0.143

100 23.328 23.608 24.225 0.366 0.357 0.413 0.479
250 23.493 23.662 23.912 0.158 1.846 2.182 2.828

The decrease on the obtained revenues can be explained by the condition placed on the
groups of individuals to access a service. Figures 2.6 and 2.7 exhibit that the expected
demand for both PSP and PUP is lower, and even though the associated prices are
higher, it is not enough to reach the gains obtained at the individual level. In both cases,
the interquartile range is wider, even for R = 250. The increase in prices is again due
to the fact that the number of individuals that want to access the paid services is larger
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than the available capacity, although in this case it is not reached because of the group
access condition.

0.5

0.53

0.56

0.59

0.62

0.65

2 5 10 25 50 100 250
0.7

0.73

0.76

0.79

0.82

0.85

2 5 10 25 50 100 250

P
ri
ce

R

PSP

R

PUP

Figure 2.6: Optimal prices for the user groups described in Section 2.4.2 for for 5 repli-
cations (independent generation of draws)
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Figure 2.7: Expected demand for the user groups described in Section 2.4.2 for 5 repli-
cations (independent generation of draws)

We expect the random ordering of the groups to have a higher impact on the expected
optimal revenue than the random ordering at the individual level because of the aggre-
gation of individuals in groups and the fact that the resulting groups are heterogeneous
in size. We analyze such effect in Section 2.4.3.

2.4.3 Impact of the arrival of individuals

The priority list described in Section 2.2.2 states the order in which individuals are
considered to access the services. As mentioned earlier, the priority list in this case
study is defined at random. We can analyze the impact of such priority list on the
obtained results by evaluating different priority lists generated at random, both at the
individual level and at the group level.

For this experiment we consider situation 2 in Section 2.4.2, i.e., the operator is forced
by law to offer a discount on the fares for residents. This allows us to test whether
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the distribution of residents and non residents within the priority list has a remarkable
impact on the expected optimal revenue. For the sake of simplicity, we only allow for the
30% discount rate. We construct 100 different priority lists by shuffling the individuals,
so that they might arrive in a different order. We run these instances with R = 50, and
we assume the same price bounds as in the previous experiment: pPSP ∈ [0.6, 1.2] and
pPUP ∈ [0.8, 1.4].

Figures 2.8 and 2.9 present the histograms of the expected optimal revenue when the users
are individually and jointly modeled, respectively. As anticipated in Section 2.4.2, the
expected optimal revenue at the group level is more dispersed, with values that fluctuate
between 22 and 26 (standard deviation is equal to 0.79), whereas it ranges from 25 to
27 (standard deviation is equal to 0.30) at the individual level. This shows that the
distribution of residents and non residents at the group level has a stronger impact on
the expected optimal revenue. Similarly to the previous experiment (see Table 2.8), lower
values for the expected optimal revenue are obtained.
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Figure 2.8: Histogram of the expected optimal revenue in situation 2 (discount rate of
30%) for 100 priority lists and R = 50 (individual level)
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Figure 2.9: Histogram of the expected optimal revenue in situation 2 (discount rate of
30%) for 100 priority lists and R = 50 (group level)

45



Chapter 2. Choice-based optimization framework

We observe a higher concentration of values around an expected optimal revenue of about
26 at the individual level and around 23.5 at the group level. The former is in line with
the average value 25.93 obtained in Section 2.4.2 (see Table 2.6). For the latter, and given
that a 30% discount in situation 2 does not have a huge impact on the expected optimal
revenue at the individual level, we observe that is also in line with the average value 23.67
obtained in Section 2.4.2 (see Table 2.8). This is consistent with the findings of Binder
et al. (2017), who show that the aggregate indicators are stable across realizations of a
random priority list.

It is worth noticing that the average computational time of the individual approach for
a 30% discount in situation 2 (approximately 2 hours) is much larger than its grouping
counterpart (approximately 1 min). Hence, one way to address the dispersion mani-
fested at the group level consists in increasing the number of draws while keeping an
advantageous computational time. Figure 2.10 shows the histogram at the group level
for R = 100 (average computational time of 6 min). We still observe some dispersion of
the expected optimal revenue but it is less pronounced than for R = 50. Furthermore,
we note that additional assumptions such as the split of groups could be implemented to
diminish the spread and to address the fact that lower values for the expected optimal
revenue are obtained.
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Figure 2.10: Histogram of the expected optimal revenue in situation 2 (discount rate of
30%) for 100 priority lists and R = 100 (group level)

2.4.4 Profit maximization through capacity allocation

In this experiment, we test four different capacity levels for PSP and PUP. As described
in Section 2.2.3, we replicate the services as many times as capacity levels we want to
evaluate. We consider 5, 10, 15 and 20 parking spots (Q = 4) for both services, which
makes four copies of PSP and four of PUP, each of them with the same utility function
but a different capacity level. Together with FSP, this experiment contains 9 different
“services.”
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Note that constraint (2.30) does not force the opening of both paid services, since it
might be more convenient from a profit maximization point of view to allocate all the
operator’s resources to only one of the parking facilities. If we want to make sure that
both PSP and PUP are offered, we can replace this constraint by:

Q∑
q=1

yiq = 1, ∀i ∈ C \ {0}. (2.58)

As mentioned in Section 2.3, the cost associated with operating a parking facility is
composed of a fixed cost and a variable cost (in this case, a cost per parking spot).
We assume that both types of cost are the same among capacity levels. More precisely,
fPSP,q = 1.5, vPSP,q = 0.35, fPUP,q = 3 and vPUP,q = 0.5 ∀q. We also set the price
bounds to pPSP ∈ [0.6, 1.2] and pPUP ∈ [0.8, 1.4] as in Sections 2.4.2 and 2.4.3.

The results for both approaches (considering constraints (2.30) and (2.58), respectively,
and running 5 replications for each of them) are included in Table 2.9. We see that
it is beneficial to close PUP and only open PSP with the highest level of capacity.
Indeed, when we impose that both facilities have to be opened, PUP is offered with a low
capacity level (10 in all tested resplications), and a lower profit is generated. The average
solution time gives us an idea of the increase in complexity with respect to the revenue
maximization problem with fixed capacity. For R = 25, it goes from approximately 1
hour to almost 10 hours with constraint (2.30) and more than 11 hours with constraint
(2.58).

Table 2.9: Results for the profit maximization with capacities as decision variables for
5 replications (independent generation of draws) for R = 25 (in brackets the number of
replications for which the associated capacity level was obtained)

Avg. time (h) Optimal capacity Expected demand Optimal prices Avg. profit

PSP PUP PSP PUP FSP PSP PUP
(2.30) 9.72 20 (5) NA [18.2,19.56] NA [30.4,31.9] [0.78,0.85] NA 6.94
(2.58) 11.4 20 (4) 10 (5) [14.8,20.0] [8.76,9.4] [20.9,26.2] [0.65,0.73] [1.00,1.09] 5.99

2.5 Concluding remarks

We have proposed a mixed-integer linear formulation of DCM that is designed to be
included in MILP in order to provide a disaggregate demand representation that cap-
tures the interactions between the decisions to be optimized by the operator and the
individuals. It is general in the sense that it is not limited to simple DCM and it can
be embedded in any MILP formulation. The stochasticity of the model is captured by
drawing from the distribution of the involved random variables. This enables to avoid
the explicit formulation of the choice probabilities and to work directly with the utility
functions, using the first principles of utility maximization and SAA.

47



Chapter 2. Choice-based optimization framework

Concerning the operator, an illustrative MILP model on the profit maximization prob-
lem is characterized. The formulation accounts for the preferences of individuals when
deciding on the prices via the utility functions. Since the individuals are not captive,
i.e., they can leave the market by choosing the opt-out option, there exists a trade-off
between the price and their choices.

The results of the case study show that this methodology allows to configure the fea-
tures of a system (e.g., the price) based on the heterogeneous behavior of individuals.
Additional modeling strategies, such as the gathering of individuals in groups of homo-
geneous behavior, have also been explored. Despite the clear advantages with respect to
computational time, we note that the price to pay for this simplification is the fact that
the realism of the grouping assumption decreases as the size of the group increases. We
also want to notice that for this case study, the obtained results remain quite stable with
respect to the number of draws, even for relatively small values thereof. As mentioned in
Section 2.4.1, the desired number of draws depends on the accuracy of the DCM. How-
ever, we have seen that even with a considerable level of stochasticity associated with
the DCM, we can rely on a relatively low number of draws to obtain robust estimates of
the quantities of interest.

The disaggregate representation of individuals’ preferences, together with the linear na-
ture of the formulation, results in a high-dimensional problem, and therefore solving it
is computationally expensive. This is an issue that needs to be addressed because in
practice, populations are large and a high number of draws is desirable to be as close as
possible to the true value. One possibility is to add valid inequalities to the MILP model
in order to be able to solve larger instances, but we notice that they are very likely to
depend on the case study, which hinders a universal definition of such inequalities.

Decomposition techniques are convenient in this case to speed up the solution approach,
and they represent an alternative to valid inequalities because they can be applied in
a general way (although both could also be combined). A Lagrangian decomposition
scheme for the choice-based optimization framework is developed in Chapter 3.
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A Lagrangian decomposition scheme for the

choice-based optimization framework

Preliminary ideas related to this chapter are included in the conference paper

Pacheco, M., Lurkin, V., Gendron, B., Sharif Azadeh, S., and
Bierlaire, M. (2018). Lagrangian relaxation for the demand-based
benefit maximization problem. In 18th Swiss Transport Research
Conference (STRC), Ascona, Switzerland

The work in this chapter has been performed by the candidate under the supervision
of Prof. Shadi Sharif Azadeh and Prof. Michel Bierlaire and the collaboration of
Prof. Bernard Gendron and Prof. Virginie Lurkin.

3.1 Introduction

In Chapter 2, we introduced a mixed-integer linear formulation of a discrete choice model
(DCM) that allows to incorporate a disaggregate demand representation that captures
the supply-demand interplay in mixed-integer linear problems (MILP). The disaggregate
nature of DCM, together with the associated simulation-based linearization, comes with
a high computational complexity, as illustrated in Section 2.4, with large solving times for
medium-size instances, hindering its tractability and potential scaling-up. The objective
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of this chapter is to speed up the solution approach and to provide near-optimal solu-
tions thanks to decomposition techniques, which are procedures applied to optimization
problems whose decomposable structure can be advantageously exploited.

By design, the choice-based optimization framework is built on two dimensions that can
be addressed separately: the individuals, which represent the most fundamental unit
of demand, and the simulation draws. Indeed, each individual n aims at choosing the
alternative among the available ones maximizing their utility, and each draw r can be
understood as an independent behavioral scenario. Nevertheless, there are some links in
the framework that prevent a direct decomposition along these dimensions.

The individuals are tied together through the constraints that keep track of the occupancy
of each alternative and ensure that the corresponding capacity is not exceeded. The
draws are coupled in the calculation of the total expected demand, which is used to
derive other quantities, such as the expected revenue (see Section 2.3). In the following,
we rely on this application (revenue maximization problem) to characterize the evaluated
decomposition techniques.

In this chapter, we develop an approach based on Lagrangian decomposition in order to
rapidly generate upper bounds on the optimal value of the objective function. At the
same time, feasible solutions that are close enough to the optimal solutions are obtained.
Such solutions represent lower bounds on the optimal value of the objective function,
as it is to be maximized. We induce decomposition by creating copies of some of the
variables of the problem and dualizing the constraints imposing that the copies should
be identical. The multipliers associated with the dualized constraints are then updated
on an iterative basis with the well-known subgradient method.

Decomposition methods, and in particular Lagrangian decomposition, are general tech-
niques that need to be tailored to the problem of interest. As the same problem can be
seen from different perspectives, there are typically different possibilities when it comes
to apply the techniques that are available in the literature (see Section 3.3 for further
details). Due to the interrelations between some of the variables and constraints in the
choice-based optimization framework, the implementation of some of the reviewed strate-
gies turned out to be unsuitable to our particular case. More precisely, the first tested
scheme, which prompts separability for each of the agents involved in the optimization
problem (the individuals and the operator), yielded trivial subproblems. Additionally,
the precursor of the Lagrangian decomposition framework here proposed might generate
irrelevant solutions under some circumstances.

Consequently, one of the contributions of this chapter is the assessment of these decom-
position strategies with respect to the choice-based optimization framework. Second,
we propose a Lagrangian decomposition scheme that allows for these findings. It com-
prises the decomposition strategy for obtaining upper bounds and a heuristic that uses
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the Lagrangian solution to derive feasible solutions at each iteration of the subgradi-
ent method. This approach is characterized for the revenue maximization problem and
is finally tested on the parking case study introduced in Section 2.4 by scaling up the
instances investigated there.

The remaining of the chapter is organized as follows. Section 3.2 provides the differ-
ent formulations that are considered of the revenue maximization problem upon which
the decomposition techniques will be developed. Section 3.3 presents an analysis of
the related literature and the considerations that were taken into account during the
characterization of the decomposition methods. Section 3.4 introduces the evaluated de-
composition strategies and reviews their limitations with respect to the problem under
consideration. Section 3.5 describes the Lagrangian decomposition scheme, and Section
3.6 reports the results of the computational experiments. Lastly, Section 3.7 gives some
concluding remarks.

3.2 Choice-based revenue maximization problem

As mentioned in Section 3.1, we rely on the revenue maximization problem to outline the
decomposition strategies considered in this chapter. In this section, we perform some
specifications with respect to the general modeling framework introduced in Sections
2.2 and 2.3 in order to detail the formulation upon which the decomposition scheme in
Section 3.5 will be derived.

We assume that the capacity of each service is given, and therefore it is not a decision
variable of the problem. Moreover, we assume that all services are made available to all
individuals by the operator, as is the case in Section 2.4, which means that the availability
variables yin are equal to 1 if service i is considered by customer n, and 0 otherwise. We
decide to model the price in a continuous manner.

The revenue maximization problem is depicted in Model 3.1. A summary of the used no-
tations can be found in Appendix A. The objective function (3.1) represents the expected
revenue obtained from all services but the opt-out option and all customers. Constraints
(3.2) formulate the utility specification, constraints (3.3)–(3.4) provide the linearization
of the discounted utility variables, constraints (3.7)–(3.8) associate the choice with the
service with the highest discounted utility, constraints (3.9) impose that only one service
is chosen per customer and scenario, constraints (3.10) prevent an unavailable service
to be chosen, constraints (3.11)–(3.12) ensure that the capacity is not exceeded, con-
straints (3.13)–(3.16) handle the linearization of the product of the price and the choice
variables, and constraints (3.17) provide valid inequalities that help to solve the problem
more efficiently (see Sections 2.2.2 and 2.3.1 for further details).

Given the complexity introduced by the tracking of the remaining capacity of the services
(see the experiments performed in Section 2.4.1), we rely on the uncapacitated version
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of the revenue maximization problem as a starting point for the characterization of
the decomposition strategies described in Section 3.4. When an unlimited capacity is
assumed, constraints (3.11)–(3.12) are pulled out of the model and some other aspects
of the formulation are notably simplified. The availability variables at scenario level
(yinr) are no longer needed. In the absence of such variables, we can dispense with the
discounted utility variables zinr and the associated linearizing constraints. This enables
to model the choice directly in terms of the utility variables Uinr.

Z = max
1

R

∑
i∈C\{0}

N∑
n=1

R∑
r=1

ηinr (3.1)

s.t. Uinr = βinpin + dinr ∀i ∈ Cn, n, r (3.2)
`nr ≤ zinr ∀i ∈ C, n, r (3.3)
zinr ≤ `nr +Minryinr ∀i ∈ C, n, r (3.4)
Uinr −Minr(1− yinr) ≤ zinr ∀i ∈ C, n, r (3.5)
zinr ≤ Uinr ∀i ∈ C, n, r (3.6)
zinr ≤ Unr ∀i ∈ C, n, r (3.7)
Unr ≤ zinr +Minr(1− winr) ∀i ∈ C, n, r (3.8)∑
i∈C

winr = 1 ∀n, r (3.9)

winr ≤ yinr ∀i ∈ C, n, r (3.10)
n∑

m=1

wimr ≤ (ci − 1)yinr + (n− 1)(1− yinr) ∀i ∈ C, n > ci, r (3.11)

ci(1− yinr) ≤
n∑

m=1

wimr ∀i ∈ C, n > 1, r (3.12)

ainwinr ≤ ηinr ∀i ∈ C \ {0}, n, r (3.13)
ηinr ≤ binwinr ∀i ∈ C \ {0}, n, r (3.14)
pin − (1− winr)bin ≤ ηinr ∀i ∈ C \ {0}, n, r (3.15)
ηinr ≤ pin − (1− winr)ain ∀i ∈ C \ {0}, n, r (3.16)

zinr ≤ d0nrw0nr +
∑

j∈C\{0}

(βjnηjnr + djnrwjnr) ∀i ∈ C, n, r (3.17)

yinr, winr ∈ {0, 1} ∀i ∈ C, n, r (3.18)

Model 3.1: Revenue maximization problem

Model 3.2 presents the uncapacitated version of the revenue maximization problem. Con-
straints (3.20) specify the utility variables, constraints (3.21)–(3.22) linearize the variable
capturing the highest utility through the choice variables, constraints (3.23) impose ex-
actly one service to be chosen per customer and scenario, constraints (3.24)–(3.27) take
care of the linearization of the product of the price and the choice variables, and con-
straints (3.28) represent the valid inequalities.
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Zu = max
1

R

∑
i∈Cn\{0}

N∑
n=1

R∑
r=1

ηinr (3.19)

s.t. Uinr = dinr + βinpin ∀i ∈ Cn, n, r (3.20)
Uinr ≤ Unr ∀i ∈ Cn, n, r (3.21)
Unr ≤ Uinr +Minr(1− winr) ∀i ∈ Cn, n, r (3.22)∑
i∈Cn

winr = 1 ∀n, r (3.23)

ainwinr ≤ ηinr ∀i ∈ Cn \ {0}, n, r (3.24)
ηinr ≤ binwinr ∀i ∈ Cn \ {0}, n, r (3.25)
pin − (1− winr)bin ≤ ηinr ∀i ∈ Cn \ {0}, n, r (3.26)
ηinr ≤ pin − (1− winr)ain ∀i ∈ Cn \ {0}, n, r (3.27)

Uinr ≤ d0nrw0nr +
∑

j∈Cn\{0}

(βjnηjnr + djnrwjnr) ∀i ∈ Cn, n, r (3.28)

winr ∈ {0, 1} ∀i ∈ Cn, n, r (3.29)

Model 3.2: Uncapacitated version of the revenue maximization problem (Model 3.1)

Finally, we notice that the general representation of the price through the variables pin
enables the definition of a different price for each individual, even if it might be quite
unrealistic in practice. If this is the case, we notice that the complexity of the solution
approach of the revenue maximization problem (Model 3.1) is notably reduced, as it is
possible to iterate over the customers in the order determined by the priority list. For
each customer, we solve the uncapacitated version of the problem, while keeping track of
the available services to each individual. In other words, the capacity of each service is
fully available at the beginning of each scenario, and it gets updated at every iteration,
i.e., for every customer, based on the performed choices. As soon as the capacity is
reached in a scenario, the service becomes unavailable for the upcoming customers in the
priority list and that scenario. The total revenue is then obtained by aggregating the
individual contributions.

The uncapacitated revenue maximization problem associated with individual n is in-
cluded in Model 3.3. Notice that we introduce the sets Cnr, which represent the set of
services considered by individual n that are available at draw r, i.e., there is still re-
maining capacity to accommodate individual n. Notice that we could also incorporate
availability variables to capture the availability at the draw level based on the choices of
the preceding customers. Algorithm 3.1 presents the pseudocode of this procedure.

Nevertheless, the operator will typically propose different prices to different groups of
customers with similar characteristics (e.g., students, seniors), or merely a single price to
everyone. The price specification pin also allows to capture these situations, which are
more interesting not only because they are more common in real life, but also because
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Zun = max
1

R

∑
i∈Cnr\{0}

R∑
r=1

ηinr (3.30)

s.t. Uinr = dinr + βinpin ∀i ∈ Cnr, r (3.31)
Uinr ≤ Unr ∀i ∈ Cnr, r (3.32)
Unr ≤ Uinr +Minr(1− winr) ∀i ∈ Cnr, r (3.33)∑
i∈Cnr

winr = 1 ∀r (3.34)

ainwinr ≤ ηinr ∀i ∈ Cnr \ {0}, r (3.35)
ηinr ≤ binwinr ∀i ∈ Cnr \ {0}, r (3.36)
pin − (1− winr)bin ≤ ηinr ∀i ∈ Cnr \ {0}, r (3.37)
ηinr ≤ pin − (1− winr)ain ∀i ∈ Cnr \ {0}, r (3.38)

Uinr ≤ d0nrw0nr +
∑

j∈Cnr\{0}

(βjnηjnr + djnrwjnr) ∀i ∈ Cnr, r (3.39)

winr ∈ {0, 1} ∀i ∈ Cnr, r (3.40)

Model 3.3: Uncapacitated version of the revenue maximization problem (Model 3.1)
associated with individual n

Algorithm 3.1: Solution method of the revenue maximization problem (Model
3.1) when pin represent prices that are proposed at the individual level
Input: Revenue maximization problem (Model 3.1);
Output: Optimal solution of the revenue maximization problem (Model 3.1);

1 Initialize remaining capacity for each draw r: c̄ir = ci,∀i ∈ C \ {0}, r;
2 Initialize the objective function Z = 0;
3 for n = 1 . . . N do
4 for r = 1 . . . R do
5 Define Cnr = {0};
6 for i ∈ C \ {0} do
7 if c̄ir > 0 and i ∈ Cn then
8 Cnr = Cnr ∪ {i}

9 Solve Model 3.3 considering Cnr and obtain the values of the choice variables
winr and the optimal objective function Zun ;

10 Z = Z + Zun ;
11 for r = 1 . . . R do
12 for i ∈ C \ {0} do
13 if winr = 1 then
14 c̄ir = ci − 1;
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the revenue maximization problem cannot be solved in the way described above. In
the experiments performed in Section 3.6 we assume that a single price is proposed to
everyone, which hinders the use of procedures as the one described in Algorithm 3.1 to
solve Model 3.1. In the following, we keep the general notation pin, as the decomposition
techniques here explored apply to all cases, but we are concerned with the price definition
at the aggregated level.

3.3 Literature review

In order to favorably apply a decomposition technique, the optimization problem under
consideration should have the appropriate decomposable structure. Two such structures
arise in practice: one characterized by complicating variables and one characterized
by complicating constraints. In real-world systems, investment decisions are typically
integer, while the subsequent operation decisions are continuous. Dealing with integer
variables is much more complicated than dealing with continuous variables, and once
integer decisions have been made, the resulting subproblems usually decompose by blocks,
which might facilitate their solution. The formulations associated with applications with
decentralized structures typically present a set of constraints involving variables from all
structures that prevent each of the corresponding subproblems to be solved separately.

These complicating elements are not mutually exclusive, and the same optimization
problem can be seen as a problem with complicating variables or as a problem with
complicating constraints. In either case, complicating variables and constraints make
the problem more difficult to solve because they prevent an easy solution or a solution
by blocks. When the complicating variables are fixed to some values, or the complicating
constraints are ignored, the resulting problem decomposes in several simpler problems
or acquires a structure that is less challenging to solve than the original one.

Sections 3.3.1 and 3.3.2 provide an overview of classical decomposition methods and
hybrid algorithms and extensions thereof that have been widely investigated in the liter-
ature in the context of combinatorial optimization problems with complicating variables
and constraints, respectively. Section 3.3.3 evaluates these techniques and assess their
potential implementation for the choice-based optimization framework.

3.3.1 Complicating variables

The classical approach to handle problems containing complicating variables was pro-
posed by Benders (1962). It has become one of the most commonly used exact algorithms
for such problems because it exploits its structure and decentralizes the overall compu-
tational burden. In the Benders decomposition scheme, the model is first projected onto
the subspace defined by the set of complicating variables. The resulting formulation is
dualized, and the feasibility requirements (feasibility cuts) and the projected costs (op-
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timality cuts) are determined by the associated extreme points and rays, respectively.
Since the alternative formulation that enumerates all the extreme points and rays is
computationally expensive, a relaxation strategy to the feasibility and optimality cuts is
applied. This yields a master problem and subproblem(s) that are iteratively solved to
generate the violated cuts.

When applied to MILP, the Benders decomposition procedure fixes the integer variables
to given feasible integer values in order to solve the resulting continuous linear program-
ming (LP) subproblem(s), for which standard duality theory can be used to develop cuts.
This allows to obtain an upper bound on the optimal value of the objective function (for
a minimization problem). The MILP master problem, which includes only a subset of
the feasibility and optimality cuts, is solved to determine improved values of the integer
variables. This yields a lower bound of the optimal value of the objective function. The
method stops as soon as both bounds are close enough.

Generally, the MILP master problem is solved to optimality with branch-and-bound,
and the subproblem(s) with the simplex method. As the former usually lacks a special
structure and continually grows in size, a direct implementation of the classical Ben-
ders decomposition framework might require excessive computational time and memory
(Rahmaniani et al., 2017). A significant body of research is dedicated to enhance the
convergence of the algorithm by reducing two aspects: (i) the number of iterations,
which has to do with the improvement of the quality of the generated solutions and cuts,
and (ii) the time needed for each iteration, which is related to the solution procedure
considered to optimize the master problem and the subproblem(s). Furthermore, the
way in which the initial master problem and subproblem(s) are defined also has notable
consequences on the efficiency of the algorithm. For example, in partial Benders decom-
position (Crainic et al., 2016), explicit information associated with the non-complicating
variables is added to the master problem. In the non-standard decomposition strategy
by Gendron et al. (2016), the projected variables are retained in the master problem
while relaxing the integrality requirements.

The number of iterations is closely related to the strength of the optimality and feasibility
cuts and the quality of the generated solutions. The classical cut-generation scheme
associated with solving the regular subproblem obtained from the decomposition might
be inefficient, particularly when the subproblems are degenerated or infeasible. Maximal
non-dominated cut generation may be more efficient to generate optimality cuts as they
eliminate the need to solve the auxiliary problem. At the same time, feasibility cuts are
found based on a random selection of the extreme rays, being the strategy that generates
combinatorial cuts for subproblems with big-M constraints the only one that has proven
its worth in practice. The quality and computational time of the generated solutions
can be ameliorated with alternative formulations, by improving the master problem
formulation with valid inequalities that strengthen the relaxed master problem, or by
using heuristics to independently generate solutions or improve those already found.
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The structure of the master problem and subproblem(s) can be exploited in order to
improve the computational time at the iteration level. The size of the problem can
be controlled by removing unnecessary cuts, and the optimality requirement at each
iteration can be relaxed by solving, for instance, the master problem with single search
tree instead of branch-and-bound. Furthermore, when the subproblem has a special
structure, specialized algorithms are a better option than the simplex method.

3.3.2 Complicating constraints

The complicating constraints of a combinatorial optimization problem can be transferred
to the objective function in a Lagrangian fashion, i.e., with Lagrangian multipliers. In
this way, the original problem is simplified because its optimization over the set defined by
the remaining constraints is relatively easy. This Lagrangian relaxation approach started
to gain popularity after being studied by Geoffrion (1974), especially in the context of
integer programming (IP). The first attempt as we know it today is the research in Held
and Karp (1971a) and Held and Karp (1971b) on the traveling salesman problem.

The Lagrangian multipliers (or dual variables) associated with each constraint placed in
the objective function penalize their violation. For any given values of these multipliers,
the resulting relaxed problem, known as the Lagrangian subproblem, provides a lower
bound (upper bound) on the optimal value of the objective function of the original
minimization (maximization) problem. It provides a stronger (or at least equal) bound
than the one generated by the LP relaxation of the original problem (if feasible), which is
determined by dropping the integrality requirements. The equality is achieved when the
Lagrangian relaxation has the integrality property, i.e., its solution (for any admissible
values of the multipliers) is not altered by removing the integrality conditions on its
variables (Geoffrion, 1974). In any event, it can be considered instead of the LP bound
within a branch-and-bound algorithm, as well as to derive good feasible solutions.

The tightest of the Lagrangian bounds (for an original minimization problem) is obtained
by solving the problem of maximizing the Lagrangian subproblem over the set of admis-
sible Lagrangian multipliers. This problem is known as the Lagrangian dual because it
coincides with the formal Lagrangian dual of the original problem with respect to the
relaxed constraints (Geoffrion, 1971). The Lagrangian dual has a number of important
structural properties that facilitate a hill climbing algorithm to find its solution (Fisher,
1981a). Its objective function (as a function of the Lagrangian multipliers) is the lower
envelope of a finite family of linear functions, which makes it continuous and concave.
Although it is differentiable almost everywhere, it is not differentiable at any multiplier
where the associated Lagrangian subproblem has multiple optima.

A Lagrangian solution is an optimal solution of the Lagrangian subproblem for any given
values of the Lagrangian multipliers. If a Lagrangian solution satisfies complementary
slackness, it is an optimal solution of the IP problem (Guignard, 2003). If it is feasible
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but complementary slackness does not hold, it is a feasible solution of the original prob-
lem and it is still necessary to determine whether it is optimal or not. Notice that if the
constraints being relaxed are equality constraints, complementary slackness holds auto-
matically, and therefore feasibility of the Lagrangian solution for the original problem
implies optimality.

Several extensions of Lagrangian relaxation can be found in the literature (Guignard,
2003), being Lagrangian decomposition (Guignard and Kim, 1987), or variable splitting,
among the most popular ones. This technique artificially induces decomposition by
introducing copies of the original variables for a subset of constraints of the original
problem. It then dualizes the constraints that impose that these variables should be
identical to the original ones. This approach is of special interest for problems whose
constraint set is the intersection of several specially structured constraint sets. The
Lagrangian decomposition bound can strictly dominate the Lagrangian relaxation bounds
obtained by dualizing any set of constraints. Moreover, since the dualized constraints
are equality constraints, if the Lagrangian subproblems (each on the corresponding set
of copied variables) have the same optimal solution, then that solution is also optimal
for the original MILP. More generally, Lagrangian substitution (Reinoso and Maculan,
1992) induces decomposition by creating more sophisticated substitutions than the copy
constraint that imposes that the variables should be identical. This approach reduces the
number of multipliers with respect to Lagrangian decomposition. Indeed, the number
of constraints to be dualized decreases because some of them involve several variables.
It generally yields bounds that are in between the corresponding Lagrangian relaxation
and Lagrangian decomposition bounds.

Other strategies include augmented Lagrangian methods (Bertsekas, 1996), which have
been mostly used in stochastic optimization and non-linear continuous programming,
though they can also be used in linear and non-linear IP. The difference with respect
to Lagrangian relaxation is the addition of a quadratic penalty term to the Lagrangian
objective function, called augmentation. The major drawback of this approach is the
loss of separability, for which several algorithmic approaches have been proposed (e.g.,
the Auxiliary Problem Principle by Cohen and Zhu, 1984).

Additionally, extensive research has been carried in order to come up with ways of mod-
ifying Lagrangian solutions to make them feasible. Lagrangian heuristics are essentially
problem-dependent. They can attempt at modifying the solution to correct infeasibil-
ities or be embedded at every iteration of the Lagrangian relaxation scheme to derive
a feasible solution. However, if an optimal or almost optimal solution is desired, then
branch-and-bound can be adapted by replacing the LP bounds by the Lagrangian ones.

Solving the Lagrangian dual is an important part of the Lagrangian relaxation method.
This is why we find multiple approaches in the literature that exploit the structural
properties of this problem to find optimal or near-optimal solutions (Guignard, 2003).
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The subgradient method is an adaptation of the gradient method in which gradients
are replaced by subgradients. As it is easy to implement and has worked well in many
practical problems, it has become the most popular method to solve the Lagrangian dual,
whose objective function is subdifferentiable everywhere. Its computational performance
and theoretical convergence are assessed in Held et al. (1974), who show that the method
converges to the optimal value of the Lagrangian dual if the sequence of step multipliers
tends to 0 and the associated series tends to infinity. Unless we obtain a set of Lagrangian
multipliers such that the optimal objective function of the Lagrangian dual is equal to
that of a known feasible solution, there is no way of proving optimality, and the method
should terminate upon meeting a certain stopping criterion (e.g., number of iterations).
Some variants thereof have also been developed, such as the volume algorithm (Barahona
and Anbil, 2000), which uses the information on all the previously generated Lagrangian
solutions to determine the direction of motion.

Another class of algorithms to handle the Lagrangian dual consists of applying a variant
of the simplex method that uses column generation techniques to the original problem.
The goal is to generate an appropriate entering variable on each iteration by solving
the Lagrangian subproblem with Lagrangian multipliers equal to the simplex multipliers
(Fisher et al., 1975, Marsten et al., 1975). This approach is known to converge very
slowly, and compared to the subgradient method, is harder to program and has not per-
formed quite so well computationally (unless stabilization features are added). Multiplier
adjustment methods (Erlenkotter, 1978, Fisher et al., 1986) are algorithms that specify
the direction of motion with a finite and usually small set of primitive directions. For
the implementation to be successful, such a set needs to be cleverly specified and should
have a manageable size while still including enough ascent directions, which makes this
approach problem specific.

Other strategies include the bundle method (Lemaréchal, 1989), cutting-plane methods
(Kelley, 1960) and interior-point based solution approaches. The bundle method is a
dual-ascent approach that solves a master problem at each iteration. The dual solution
is often constrained to a given interval, and any deviation from the interval is penalized
by a penalty function. As opposed to the subgradient method, it does not present a
(potential) zigzagging behavior because in the worst case it provides a null step. The
stabilized column generation approach can be understood as a bundle method applied on
the dual of the restricted master problem with a polyhedral penalty function. Cutting-
plane methods represent a standard non-linear programming approach to maximize a
concave non-differentiable function which suffers from several drawbacks. Interior-point
based solution approaches, such as the Analytic Center Cutting Plane Method (ACCPM),
have also theoretically shown to have a better rate of convergence (Goffin and Vial,
2002). Combinations of the discussed procedures have also been implemented, such as a
subgradient method in the first phase and a cutting-plane method in the second phase,
or a combination of column generation with the subgradient method (Guignard, 2003).
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A combinatorial problem with complicating constraints can be alternatively viewed as
the problem of selecting a solution on the set defined by the simpler constraints that
also satisfy the complicating constraints. This results in the so-called Dantzig-Wolfe re-
formulation (Dantzig and Wolfe, 1960). It replaces the original variables with a convex
combination of the extreme points of the polyhedron corresponding to a substructure of
the formulation. As the Lagrangian dual problem is the dual of the master problem asso-
ciated with the Dantzig-Wolfe reformulation of an IP problem, both approaches provide
the same bounds for the same original problem (Geoffrion, 1974). The corresponding
equivalence is shown for Lagrangian decomposition (Guignard and Kim, 1987) when the
Dantzig-Wolfe master problem is formulated on the variable duplicates.

The Dantzig-Wolfe reformulation of an IP problem gives rise to an IP master problem that
is solved to optimality with the algorithm known as branch-and-price, which combines
column generation with branch-and-bound. There are many practical issues arising when
developing a branch-and-price algorithm, such as stabilization of the column generation
procedure (of the associated LP problems) or branching strategies. As discussed in
Vanderbeck (2000), there is a trade-off between branching efficiency and subproblem
tractability.

3.3.3 Discussion

Sections 3.3.1 and 3.3.2 clearly show that the literature on decomposition techniques is
immense. As the same formulation can be manipulated from different angles, multiple
strategies can be tailored to the problem of interest. Despite this lack of generalization,
some comprehensive guidance is available and can be taken into consideration while
building a decomposition scheme.

In the state-of-the-art survey presented in Rahmaniani et al. (2017), the Benders de-
composition method appears to be particularly appropriate for problems with few com-
plicating variables (usually binary) and so many continuous variables that solving the
problem as a whole is inefficient. There are many examples of such problems in stochas-
tic programming. Benders decomposition methods adapted to such problems (originally
proposed by Van Slyke and Wets, 1969 for stochastic LP problems) are generally known
as primal decomposition methods. They are usually illustrated in the two-stage stochas-
tic programming problem, where the set of decision variables is composed by first-stage
decisions, which are deterministic, and the second-stage (recourse) decisions, which are
allowed to depend on the random problem data (Ruszczyński, 2003). In the case of
mixed-integer two-stage problems (Wollmer, 1980, Laporte and Louveaux, 1993), the
part of the objective function on the variables that have not been fixed (the expected
value function in the two-stage model) is non-convex, so that it cannot be described
using linear cuts as in the continuous case. However, when the first-stage variables are
binary, it is possible to define a valid set of linear optimality cuts, which are iteratively
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generated in a branch-and-cut scheme as there can be a large number of such cuts. When
a finite number of scenarios (realizations of the random data in the two-stage setting)
is assumed, and therefore the deterministic equivalent formulation that relies on all sce-
narios and the associated probabilities can be considered, these methods generally lead
to master problems that are governed by non-convex and non-differentiable functions of
the same type as the value function of an IP (Carøe and Tind, 1998).

Additionally, the Benders decomposition method can handle problems with weak linear
relaxations and numerical instability as a result of big-M constraints and the associ-
ated binary variables by transferring such constraints to the subproblem(s) and using
specialized cuts to represent them. More generally, the Benders decomposition method
has been convenient for problems in which temporarily fixing the complicating variables
makes the resulting problem significantly easier to handle by, for instance, transforming
a non-convex problem into a convex one.

There are often many ways in which a given problem can be relaxed in a Lagrangian
fashion (Guignard, 2003). The most commonly used approach consists of isolating an
interesting subproblem by dualizing the non-related constraints. The Lagrangian sub-
problems are interesting because they have a special structure that can be exploited
and there might even be specialized algorithms for solving them efficiently. Lagrangian
decomposition can be applied if there is more than one interesting subproblem with com-
mon variables. Instead of relaxing the individual copies of variables, it is also possible
to apply Lagrangian substitution and dualize the aggregate copy constraints associated
with the variable duplicates. Another usual strategy involves the relaxation of the link-
ing constraints, i.e., the constraints that couple together independent structures that are
contained in the same problem. Regardless of the variant, the Lagrangian subproblem
commonly decomposes into smaller problems, which prompts a decrease in the compu-
tational complexity, as it is generally easier to solve a larger number of problems with a
reduced number of binary variables than a single problem with many binary variables.

Lagrangian relaxation strategies are as well considered in stochastic programming, and
are known as dual decomposition methods. Whereas primal decomposition methods de-
compose the problem by time stages and operate by searching for increasingly better
solutions, dual decomposition methods consider subproblems associated with scenar-
ios and are governed by finding good dual multipliers in an iterative basis by solving
the Lagrangian dual (Haneveld and van der Vlerk, 1999). Scenario decomposition for
large multistage stochastic programming problems in the continuous case was proposed
by Mulvey and Ruszczyński (1995). Carøe and Schultz (1999) characterize a scenario
decomposition algorithm for two-stage problems with mixed-integer variables in both
stages. The authors assume a finite number of scenarios and consider the deterministic
equivalent formulation of the problem. The principle is that of Lagrangian decompo-
sition. Indeed, copies of the first-stage variables, which do not depend on the random
data, are introduced for each scenario and the constraints that impose that such variables

61



Chapter 3. A Lagrangian decomposition scheme for the choice-based optimization
framework

should not depend on the scenario, known as non-anticipativity constraints, are relaxed in
a Lagrangian manner. A branch-and-bound that uses Lagrangian relaxation of the non-
anticipativity constraints as a bounding procedure is proposed to achieve convergence.
Dual decomposition methods differ with respect to the formulation of non-anticipativity
constraints, the definition of the Lagrangian, the construction of the subproblems and
the way the multipliers are updated. Furthermore, non-anticipativity constraints can be
seen as hard constraints because they couple constraints associated with different sce-
narios. Motivated by the high dimension of the vector of Lagrangian multipliers, and
based on duality results involving augmented Lagrangian (see Section 3.3.2), algorithms
like progressive hedging (e.g., Rockafellar and Wets, 1991 for multi-stage mixed-integer
0-1 problems) and the Jacobi method (e.g., Rosa and Ruszczyński, 1996 for multi-stage
convex problems) have been developed and applied to a variety of problems.

Concerning the solving of the Lagrangian dual, Frangioni et al. (2017) conclude that the
subgradient method can be competitive with more sophisticated approaches to handle the
Lagrangian dual when the tolerance required for the solution is not too tight. This is the
case when solving the Lagrangian dual of MILP. The requirement is to have appropriate
tuned parameters, which they describe as a not extremely difficult task.

The choice-based optimization framework, and particularly the revenue maximization
problem (Model 3.1), has two sets of binary variables: the choice variables, which are
the result of the linearization of the variable capturing the highest discounted utility for
a given customer and scenario, and the availability variables at the scenario level, which
are involved in the linearization of the discounted utility and the capacity constraints.
Furthermore, both variables are related in constraints (3.10), as a service that is not
available cannot be chosen.

Various complicating constraints can be identified. The utility expression (3.2) works as
the link between the DCM (customers) and the MILP model (operator). The capacity
constraints (3.11)–(3.12) complicate the solution approach and prevent a potential de-
composition by customer. The model also relies on big-M constraints to linearize the
definition of the discounted utility (constraints (3.3)–(3.6)) and the maximization of the
highest discounted utility (constraints (3.7)–(3.9)).

Since the big-M constraints are the tightest possible to our formulation, and the con-
straints mentioned above do not allow to exploit the two decomposition dimensions dis-
cerned in Section 3.1 (the customers and the scenarios), we resolve to rely on Lagrangian
relaxation to take advantage of the decomposable structure of the choice-based optimiza-
tion framework. To this end, Section 3.4 reviews the initial attempts to decompose the
revenue maximization problem, and Section 3.5 presents the proposed Lagrangian decom-
position scheme, which is inspired by the scenario decomposition method for stochastic
programing. The developed approach is built on a subgradient method that integrates
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the solution to the Lagrangian subproblems and a heuristic to derive feasible solutions
to the revenue maximization problem.

3.4 Initial attempts on the Lagrangian relaxation scheme

In this section, we summarize the first approaches based on Lagrangian relaxation that
were developed to induce separability in the choice-based optimization framework. In
Section 3.4.1, we describe the decomposition strategy that allows to isolate two interesting
subproblems that can be identified concerning the optimizer agent: one related to the
customers and one related to the operator. The former comprises the selection of the
service maximizing their utility, and the latter consists of the definition of a pricing
strategy that maximizes the expected revenue. This method yields trivial solutions of
the resulting subproblems, and hinders the derivation of feasible solutions to the original
problem.

With the aim of preserving the constraints linking the formulation blocks associated with
the operator and the customers, and motivated by the main idea in scenario decompo-
sition in stochastic programming, we rely exclusively on Lagrangian decomposition on
the price variables (the only set of variables that do not depend on the scenarios) in
Section 3.4.2. Such decomposition is later generalized in Section 3.5, as the splitting of
price variables for subsets of scenarios (rather than single scenarios) addresses one of the
identified limitations with respect to the obtained Lagrangian solution.

3.4.1 The customer and the operator subproblems

One of the common strategies pointed out in Section 3.3.3 consists of the relaxation of
the constraints that tie independent structures within the problem. Two such structures
can be distinguished in the revenue maximization problem, each of them related to an
optimizer agent: the customer and the operator. Both structures are linked via the utility
constraints (3.20). Indeed, the utility specification associates a score with each service,
which characterizes the behavior of the customers as assumed by the operator (governed
by a DCM), and determines the choice for each individual and simulation draw. Further-
more, the utility captures the sensitivity of customers towards price, which is considered
by the operator to decide on the prices to propose. We describe the resulting decom-
position strategy with the uncapacitated version of the revenue maximization problem
(Model 3.2).

Relaxation

The mixed-integer linear formulation for the DCM, i.e., constraints (3.20)–(3.23) and
(3.29), determine the problem associated with the customers. Provided that the prices
are known, such constraints assign values to the utility variables and define the choices
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associated with each customer and draw. The problem associated with the operator
consists of the revenue maximization problem that does not include the disaggregate
demand representation, i.e., constraints (3.24)–(3.27), and the objective function (3.19).
Therefore, the customer subproblem involves the variables Uinr, Unr, pin and winr, and
the operator subproblem involves pin, winr and ηinr.

In order to separate both subproblems, it is necessary to designate an independent set of
variables to each of them. Note that the valid inequalities (3.28) relate variables of both
subproblems, which prevents the decomposition. Since such constraints are equivalent to
(3.21)–(3.22), and their impact on computational savings for the Lagrangian subproblem
is expected to be less relevant than for the original problem, we decide to ignore them
in this decomposition strategy.

The decomposition in a Lagrangian fashion is constructed in two steps. First, the utility
constraints (3.20) are transferred to the objective function with associated Lagrangian
multipliers ρinr ∈ R,∀i ∈ Cn, n, r. Notice that the penalty factors are unrestricted in sign
because the relaxed constraints are equality constraints. Second, we introduce duplicates
vinr of the choice variables winr,∀i ∈ Cn, n, r, and dualize the constraints that relate both
sets of variables. Instead of writing the constraints that impose that these duplicates
should be identical to the original variables as equality constraints, we take advantage of
the structure of the problem and represent them with the following equivalent constraints:

vinr ≤ winr, ∀i ∈ Cn, n, r, (3.41)∑
i∈Cn

vinr = 1, ∀n, r, (3.42)

vinr ∈ {0, 1}, ∀i ∈ Cn, n, r. (3.43)

The advantage of this formulation is the insertion of the redundant assignment con-
straints (3.42), which strengthens the Lagrangian subproblem. Constraints (3.41) are
then relaxed with Lagrangian multipliers ψinr ∈ R≥0, ∀i ∈ Cn, n, r.

Additionally, when the utility variables are dissociated from the price variables, the
bounds on the utility derived from the price bounds need to be stated explicitly:

`inr ≤ Uinr ≤ minr, ∀i ∈ Cn, n, r. (3.44)

The Lagrangian subproblem obtained from the relaxation of constraints (3.20) and (3.41)
is presented in Model 3.4. This subproblem further splits into the operator and customer
subproblems. Note that the term

∑
i∈Cn

∑N
n=1

∑R
r=1−ρinrdinr is not included in the

objective function of any of the subproblems as it is constant to the optimization.
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ZLR(ρ, ψ) = max
∑

i∈Cn\{0}

N∑
n=1

R∑
r=1

1

R
ηinr

+
∑
i∈Cn

N∑
n=1

R∑
r=1

ρinr(Uinr − dinr − βinpin)

+
∑
i∈Cn

N∑
n=1

R∑
r=1

ψinr(vinr − winr) (3.45)

s.t. (3.21)− (3.23), (3.29), (3.44) [customer subproblem]
(3.24)− (3.27), (3.42)− (3.43) [operator subproblem]

Model 3.4: Lagrangian subproblem for the Lagrangian relaxation on the utility con-
straints for the uncapacitated version of the revenue maximization problem (Model 3.2)

Customer subproblem

The customer subproblem decomposes by individual and scenario. It is detailed in
Model 3.5. Notice that the value of Uinr can only be `inr (if ρinr ≤ 0) or minr (if
ρinr ≥ 0) in order to ensure the highest possible contribution to the objective function.
The choice variable winr associated with the service with the highest value for Uinr is then
set to 1, and if several services share such value, the one with the highest contribution
to the objective function, i.e., ρinrUinr − ψinrwinr, is selected.

ZLR,unr (ρ, ψ) = max
∑
i∈Cn

(ρinrUinr − ψinrwinr) (3.46)

s.t. Uinr ≤ Unr ∀i ∈ Cn (3.21)
Unr ≤ Uinr +Minr(1− winr) ∀i ∈ Cn (3.22)∑
i∈Cn

winr = 1 (3.23)

winr ∈ {0, 1} ∀i ∈ Cn (3.29)
`inr ≤ Uinr ≤ minr ∀i ∈ Cn (3.44)

Model 3.5: Customer subproblem associated with individual n and scenario r for the
Lagrangian subproblem in Model 3.4

Operator subproblem

Model 3.6 formulates the operator subproblem, which only decomposes by individual.
A decomposition by scenario is not possible because the price needs to be the same
across draws. It is easy to see that for each configuration of the choice variables {vinr}inr
satisfying

∑
i∈Cn vinr = 1, ∀n, r, the objective function associated with individual n is an

affine function on pin, which implies that the price variables can only take values equal
to the price bounds, i.e., pin is either equal to ain or bin.
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ZLR,on (ρ, ψ) = max
∑

i∈Cn\{0}

R∑
r=1

(
1

R
ηinr − ρinrβinpin

)

+
∑
i∈Cn

R∑
r=1

ψinrvinr (3.47)

s.t. ainvinr ≤ ηinr ∀i ∈ Cn \ {0}, r (3.24)
ηinr ≤ binvinr ∀i ∈ Cn \ {0}, r (3.25)
pin − (1− vinr)bin ≤ ηinr ∀i ∈ Cn \ {0}, r (3.26)
ηinr ≤ pin − (1− vinr)ain ∀i ∈ Cn \ {0}, r (3.27)∑
i∈Cn

vinr = 1 ∀r (3.42)

vinr ∈ {0, 1} ∀i ∈ Cn, r (3.43)

Model 3.6: Operator subproblem associated with individual n for the Lagrangian sub-
problem in Model 3.4

Discussion

Even though the resulting subproblems are less complex to solve than the original one,
the upper bound provided by the Lagrangian subproblem is restricted, in the sense that
both pin and Uinr can only take the corresponding extreme values. In practice, however,
this is not the case, and in-between values of both variables might be achieved. Hence,
the irrelevant nature of the Lagrangian solutions yields to trivial feasible solutions of the
original problem.

Consequently, the utility constraints (3.20), which establish the link between the cus-
tomers and the operator, should not be dualized, and need to be preserved in the de-
composed structures. The implementation of both subproblems for given values of the
multipliers showed the behavior previously described. This limits the integration of
this decomposition strategy in an iterative method such as the subgradient method (see
Section 3.5.3), as the directions of motion derived from the obtained solutions become
trivial.

We resolve to rely exclusively on Lagrangian decomposition in Section 3.4.2. The split-
ting of the choice variables, which are the only discrete variables in the formulation, is
meaningless if the utility constraints are not dualized because neither independent sets
of variables can be identified nor the resulting Lagrangian subproblem is provided with
any decomposable structure to be exploited. Instead, we induce separability by splitting
the price variables across draws, as they are the only variables in Model 3.2 that prevent
its decomposition at the scenario level.
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3.4.2 Lagrangian decomposition on the price variables

The uncapacitated version of the revenue maximization problem (Model 3.2) breaks up
into N problems without the need to relax the formulation. Notice that if the prices
are proposed at the group level, the problem splits into as many problems as groups
of individuals are considered, i.e., as many as different prices are being proposed. The
decomposition by scenarios, however, is not possible because the price variables pin need
to be the same across draws. The remaining variables (Uinr, Unr, winr and ηinr) and all
constraints in Model 3.2 only involve a single scenario at a time, which means that if the
price was also defined for each scenario, the subproblem associated with customer n will
in turn decompose into R subproblems.

Relaxation

In order to prompt such decomposition, we create R copies of the variables pin (one
for each draw). We then dualize the constraints that impose that these copies must be
equal to each other (the equivalent to non-anticipativity constraints in dual decompo-
sition methods in stochastic programming), such that they are equivalent to the orig-
inal variables. In this way, the original structure of the problem is preserved in the
Lagrangian subproblem because all the original constraints are kept. We denote by
pinr ∈ R,∀i ∈ Cn \ {0}, n, r the copy of pin associated with scenario r. These duplicates
are also bounded, i.e., ain ≤ pinr ≤ bin, ∀i ∈ Cn \ {0}, n, r, and they are related to each
other by means of the following equality constraints:

pinr − pin(r+1) = 0, ∀i ∈ Cn \ {0}, n, r < R, (3.48)

pinr − pin1 = 0, ∀i ∈ Cn \ {0}, n, r = R. (3.49)

Note that constraints (3.49) are redundant, as the sequence of constraints (3.48) already
ensures pin1 = pinR. For the sake of completeness, we have decided to include them in
order to obtain as many constraints as price copies.

Solving Model 3.2 is equivalent to solve its reformulation in terms of pinr, which consists
of replacing pin by pinr in constraints (3.20) and (3.26)–(3.27) and adding constraints
(3.48)–(3.49) to ensure that the price is the same across draws.

We dualize constraints (3.48)–(3.49) with associated multipliers αinr ∈ R, ∀i ∈ Cn \
{0}, n, r. The resulting Lagrangian subproblem decomposes by customer and scenario.

Subproblems

The subproblem associated with customer n and scenario r is included in Model 3.7. No-
tice that αin0 (obtained when r = 1) refers to αinR. The objective function (3.50) arises
from a simple mathematical manipulation of the relaxed constraints, as each price copy
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pinr always appears in two constraints: once with positive sign and associated multiplier
αinr, and once with negative sign and associated multiplier αin(r−1). As opposed to the
Lagrangian relaxation scheme constructed in Section 3.4.1, the valid inequality (3.60)
can be kept in the formulation.

ZLDnr (α) = max
∑

i∈Cn\{0}

[
1

R
ηinr + (αinr − αin(r−1))pinr

]
(3.50)

s.t. Uinr = βinpinr + dinr ∀i ∈ Cn (3.51)
Uinr ≤ Unr ∀i ∈ Cn (3.52)
Unr ≤ Uinr +Mnr(1− winr) ∀i ∈ Cn (3.53)∑
i∈C

winr = 1 (3.54)

ainwinr ≤ ηinr ∀i ∈ Cn \ {0} (3.55)
ηinr ≤ binwinr ∀i ∈ Cn \ {0} (3.56)
pinr − (1− winr)bin ≤ ηinr ∀i ∈ Cn \ {0} (3.57)
ηinr ≤ pinr − (1− winr)ain ∀i ∈ Cn \ {0} (3.58)

Uinr ≤ d0nrw0nr +
∑

j∈Cn\{0}

(βjnηjnr + djnrwjnr) ∀i ∈ Cn (3.59)

winr ∈ {0, 1} ∀i ∈ Cn (3.60)

Model 3.7: Lagrangian subproblem associated with individual n and scenario r for the
Lagrangian decomposition on the price variables for the uncapacitated version of the
revenue maximization problem (Model 3.2)

Such a subproblem needs to be solved for all individuals and scenarios under considera-
tion. We denote by ZLD(α) the Lagrangian subproblem that aggregates the subproblems
for all individuals and scenarios:

ZLD(α) =

N∑
n=1

R∑
r=1

ZLDnr (α). (3.61)

For given values of αinr, Model 3.7 is a MILP formulation whose only integer variables
are the binary variables winr. As the number of services is typically small, we address
the combinatorial nature of this problem with enumeration. More precisely, for each
individual n and draw r we iterate over the services in Cn. At each iteration we assume
that service j ∈ Cn is chosen, i.e., wjnr = 1 and winr = 0, ∀i ∈ Cn \ {j}, and solve the
problem for the remaining variables. The service providing the highest contribution to
the objective function is then set as the choice for that customer at that draw.

Under this assumption, we can dispense with the binary variables winr, and Model 3.7
becomes Model 3.8, which represents an LP formulation. As the choice variables have
fixed values, the variables ηinr and the associated constraints (3.55)–(3.58) are not re-
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quired, and can be replaced by constraints (3.65) to simply set the bounds on the price
variables. Moreover, Unr = Ujnr (because wjnr = 1), and therefore we can directly rely
on the valid inequalities (3.59) to impose that Ujnr is the largest among all services.
Note that constraints (3.54) are automatically satisfied by the fact that at each iteration
we enforce that only one service is selected per customer and draw.

ZLDjnr (α) = max δjnrpjnr +
∑

i∈Cn\{0,j}

(αinr − αin(r−1))pinr (3.62)

s.t. Uinr = βinpinr + dinr ∀i ∈ Cn (3.63)
Ujnr ≥ Uinr ∀i ∈ Cn \ {j} (3.64)
ain ≤ pinr ≤ bin ∀i ∈ Cn \ {0} (3.65)

where δjnr =

{
0 if j = 0
1
R + αjnr − αjn(r−1) otherwise

Model 3.8: LP problem for the Lagrangian subproblem (Model 3.7) when service j is
assumed to be chosen

Notice that the problem formulated in Model 3.8 might be infeasible because the price
pjnr guaranteeing that Ujnr is the largest among the other services in Cn might lie outside
the range set by constraints (3.65). However, by construction, there is at least one service
i ∈ Cn for which the problem formulated by Model 3.7 is feasible. Indeed, for any given
values of the variables pinr,∀i ∈ Cn \ {0}, satisfying constraints (3.65), we can calculate
the associated utility values Uinr and select the service j ∈ Cn achieving the highest
utility, i.e., wjnr = 1 and winr = 0,∀i ∈ Cn \ {j}. Expressed differently, it is always
possible to find a feasible price configuration for at least one of the services assumed to
be chosen by customer n at scenario r.

Discussion

Let us assume that the sensitivity towards price is negative (i.e., βin ≤ 0, ∀i ∈ Cn\{0}, n).
This is typically the case, as the larger the price, the lower the attraction of the customer
to the service. Given a feasible problem formulated by Model 3.8, the price associated
with unchosen service i ∈ Cn \ {0} can be characterized as follows:

pinr =

{
max{ain, p∗inr}, if αinr − αin(r−1) ≤ 0,

bin, otherwise,
∀i ∈ Cn \ {0} | winr = 0, (3.66)

where p∗inr ∈ R is such that Uinr = Ujnr. As the subproblem is feasible, there exists a
price pjnr satisfying constraints (3.65) such that Ujnr ≥ Uinr, ∀i ∈ Cn \ {j}. The price
p∗inr can be graphically pictured at the intersection between Uinr and Ujnr evaluated
at the optimal price (see Figure 3.1). If such intersection takes place outside the price
range of service i, then it is assigned to ain or bin based on the sign of the associated
difference of multipliers. Note that when this difference is positive, pinr can be simply
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set to bin because it provides the largest possible contribution to the objective function
while ensuring that service j has the largest utility (thanks to the assumption on βin).

pinr

Uinr(pinr)

p∗inr

Ujnr

Uinr(pinr)

Figure 3.1: Graphical representation of p∗inr

Thus, when the prices are defined at the individual level, the price associated with
an unchosen service might be set to one of the bounds. This has an impact on the
subgradient method, as the direction of motion to update the multipliers αinr at each
iteration is calculated in terms of the subgradient, which is defined as the constraints
being dualized, i.e., pinr − pin(r+1), evaluated at the values obtained after solving the
corresponding subproblem (see Section 3.5.3 for further details). If any of these variables
(or both) are equal to a price bound, the subgradient becomes meaningless, which hinders
the computation of good bounds and slows down the convergence of the method.

Note that a price characterization for groups of customers may reduce such behavior
because the choices of the individuals within the same group are simultaneously taken
into account to determine the prices. Hence, there might be different services being
chosen in the same subproblem, or even if a service is not chosen at all, its price needs to
guarantee that the utilities corresponding to the chosen services are the highest, which
might contribute to associate a relevant value with it.

After performing several tests on this decomposition scheme, we have observed that the
characterization of prices induced by the Lagrangian subproblems leads to irrelevant
directions of motion as dictated by the subgradient method (see Section 3.5.3). Different
definitions of the direction of motion and various paradigms to update the step size were
considered within the subgradient method. Nevertheless, this had limited impact on the
quality of the obtained bounds due to the nature of the Lagrangian subproblems.

Furthermore, the definition of a copy for each draw generates a high number of variables
that need to be reconciled throughout the subgradient method, which has a relevant
impact on its convergence. In Section 3.5, we generalize this decomposition technique
with the aim of getting over these difficulties.
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3.5 Lagrangian decomposition scheme

The Lagrangian decomposition approach described in Section 3.4.2 gives rise to a re-
laxation that is too disaggregate, especially when a different price is proposed to each
customer. Indeed, the splitting of the price variables pin at the draw level yields a large
number of constraints to be dualized, and in consequence, a large number of Lagrangian
multipliers to be updated. This affects not only the convergence of the approach, but
also the quality of the solution, as the price variables pinr might take irrelevant values
throughout the algorithm.

In order to address these limitations, we generalize the strategy by relying on copies of the
price variables pin associated with subsets of scenarios (instead of single scenarios). This
decomposition strategy has lately received increased attention in stochastic programming
after recent studies have shown that it allows to improve the obtained bounds while
reducing the computational burden of solving the Lagrangian dual (Escudero et al., 2016,
Crainic et al., 2014, Escudero et al., 2013). In this way, a lower number of constraints
needs to be relaxed, which means that the decomposition framework is strengthened.
Moreover, the more scenarios are simultaneously involved, the more likely it is to obtain
more meaningful price copies, and it is therefore less likely to end up with copies that
are equal to the price bounds.

We describe in detail the three components of the Lagrangian decomposition scheme in
the following. Section 3.5.1 presents the Lagrangian decomposition involving multiple
draws for the (capacitated) revenue maximization problem in Model 3.1, Section 3.5.2
explains the heuristic strategy to compute feasible solutions, and Section 3.5.3 integrates
the decomposition and the heuristic within the subgradient method.

3.5.1 Decomposition by subsets of draws

In contrast to Section 3.4, we characterize the Lagrangian decomposition framework
directly for the revenue maximization problem formulated by Model 3.1. Such problem
does not split by customer due to the capacity constraints (3.11)–(3.12). However, as
discussed in Section 3.2, if pin is proposed to each individual, it is possible to ignore
them and solve the uncapacitated version of the problem associated with each individual
in an iterative manner while keeping track of the occupancy of the services. We are
concerned with the more general case, where the price is defined for groups of customers
with similar characteristics, or even a single price is proposed to everyone (as is done in
Section 3.6), as it is more common in practice and more difficult to handle.

As pointed out in Section 3.4.2, we construct a Lagrangian decomposition scheme to
induce separability with respect to the draw dimension by splitting the variables pin
among subsets of draws. We consider S subsets of draws, each of them indexed by s
and denoted by Rs. With the aim of balancing the number of scenarios per subset, we
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define σ subsets with dR/Se draws and S − σ subsets with bS/Rc draws, where σ is
the remainder in the Euclidean division of R by S. For each subset s, we denote by
psin ∈ R, ain ≤ psin ≤ bin, the associated copy of pin,∀i ∈ Cn \ {0}, n. Constraints (3.67)–
(3.68) impose equality among copies. We also include redundant constraints (3.68) for
the sake of completeness.

psin − p(s+1)
in = 0, ∀i ∈ Cn \ {0}, n, s < S, (3.67)

psin − p1
in = 0, ∀i ∈ Cn \ {0}, n, s = S. (3.68)

The relaxation of constraints (3.67)–(3.68) in a Lagrangian fashion with associated mul-
tipliers αsin ∈ R,∀i ∈ Cn \ {0}, n, s, yields a Lagrangian subproblem that decomposes
into independent subproblems for each subset s, as shown by Model 3.9. Notice that α0

in

(obtained when s = 1) refers to αSin. Once such subproblems are solved for all subsets s,
we can compute the upper bound on Z as follows:

ZUB(α) =
S∑
s=1

ZUBs (α), (3.69)

where ZUB(α) denotes the Lagrangian subproblem associated with the revenue maxi-
mization problem, which provides an upper bound on Z (Model 3.1) for any admissible
values of the Lagrangian multipliers, i.e., ZUB(α) ≥ Z,∀α.

Model 3.9 is essentially Model 3.1 for a reduced number of draws. As illustrated in Section
2.4, the computational complexity does not linearly grow along the draw dimension,
which means that for a given number of individuals N , it might be more efficient to solve
multiple problems with a smaller number of scenarios each than a single problem that
contains all the scenarios. Moreover, the number of subsets S can be decided by the
analyst based on the requirements with respect to computational time and quality of the
solution, which provides a great deal of flexibility to the approach.

This methodology is a generalization of the decomposition strategy introduced in Section
3.4.2 that generates copies of the prices at the draw level because we can still define S = R

to have a single draw per subset. Nevertheless, the fact of simultaneously considering
several draws might helps to address the difficulties previously identified. Indeed, if the
price is individually defined, a problem involving multiple draws can help to increase
the variety of choices within the problem, which might yield more meaningful prices. In
the more general case, the grouping of the draws might also provide better Lagrangian
solutions as each problem also contains more information.

Since the computational time grows exponentially with respect to the number of draws, it
is important to assess the size of the subsets. If they contain a low number of draws, the
resulting subproblems will be small in size, and therefore computationally less complex.
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However, more iterations of the subgradient method might be needed to reach the same
duality gap that is achieved in less iterations with subproblems with a higher number of
draws each. Hence, there exists a trade-off between the size of the subsets, the computa-
tional complexity and the quality of the solution of the Lagrangian subproblems, and the
number of iterations of the subgradient method. This is extensively analyzed in Section
3.6.2.

ZUBs (α) = max
∑

i∈C\{0}

N∑
n=1

∑
r∈Rs

1

R
ηinr (3.70)

+
∑

i∈C\{0}

N∑
n=1

(αsin − αs−1
in )psin

s.t. Uinr = βinp
s
in + dinr ∀i ∈ C, n, r ∈ Rs (3.71)

`nr ≤ zinr ∀i ∈ C, n, r ∈ Rs (3.72)
zinr ≤ `nr +Minryinr ∀i ∈ C, n, r ∈ Rs (3.73)
Uinr −Minr(1− yinr) ≤ zinr ∀i ∈ C, n, r ∈ Rs (3.74)
zinr ≤ Uinr ∀i ∈ C, n, r ∈ Rs (3.75)
zinr ≤ Unr ∀i ∈ C, n, r ∈ Rs (3.76)
Unr ≤ zinr +Minr(1− winr) ∀i ∈ C, n, r ∈ Rs (3.77)∑
i∈C

winr = 1 ∀n, r ∈ Rs (3.78)

winr ≤ yinr ∀i ∈ C, n, r ∈ Rs (3.79)
n∑

m=1

wimr ≤ (ci − 1)yinr + (n− 1)(1− yinr) ∀i ∈ C, n > ci, r ∈ Rs (3.80)

ci(1− yinr) ≤
n∑

m=1

wimr ∀i ∈ C, n > 1, r ∈ Rs (3.81)

ainwinr ≤ ηinr ∀i ∈ C \ {0}, n, r ∈ Rs (3.82)
ηinr ≤ binwinr ∀i ∈ C \ {0}, n, r ∈ Rs (3.83)
psin − (1− winr)bin ≤ ηinr ∀i ∈ C \ {0}, n, r ∈ Rs (3.84)
ηinr ≤ psin − (1− winr)ain ∀i ∈ C \ {0}, n, r ∈ Rs (3.85)

zinr ≤ d0nrw0nr +
∑

j∈C\{0}

(βjnηjnr + djnrwjnr) ∀i ∈ C, n, r ∈ Rs (3.86)

yinr, winr ∈ {0, 1} ∀i ∈ C, n, r ∈ Rs (3.87)

Model 3.9: Lagrangian subproblem associated with subset s for the Lagrangian decom-
position on the price variables of the revenue maximization problem (Model 3.1)

3.5.2 Feasible solutions

The procedure described in Section 3.5.1 provides an upper bound of the optimal value of
the objective function of the revenue maximization problem (Model 3.1) for given values
of the Lagrangian multipliers, but it does not necessarily yield a feasible solution. We
are interested in the generation of feasible solutions for two reasons. First, we want to
determine solutions to the original problem at each iteration of the subgradient method.
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Second, it enables to obtain lower bounds for the revenue maximization problem, which
are given by any feasible solution (in the case of a maximization problem), in order to
calculate the duality gap. This gap, which is defined as the relative difference between
the upper and lower bounds, allows us to assess the quality of the feasible solution.
Hence, we can set a threshold on how low the duality gap should be (based on the
specific requirements of the solution) and use it as a stopping criterion in the subgradient
method.

The Lagrangian solution obtained after solving the subproblems defined in Section 3.5.1
for given values of the Lagrangian multipliers is feasible for the revenue maximization
problem if it satisfies the relaxed constraints, i.e., if all the price duplicates psin,∀i ∈
C \ {0}, n, are the same across subsets. In fact, given that the dualized constraints are
equality constraints, feasibility of the Lagrangian solution automatically implies optimal-
ity (Guignard, 2003).

Despite it is quite rare in practice to have feasible Lagrangian solutions, in this case we
can easily derive solutions from the values of the price duplicates that are feasible for the
revenue maximization problem. We denote the set of values associated with each subset
s by {p̄sin}s, ∀i ∈ Cn \ {0}, n. If the price variables in Model 3.1 are fixed to some values
p̄in, the resulting problem is considerably less challenging to solve. The variables ηinr
and the associated linearizing constraints (3.13)–(3.16) are no longer necessary because
the product p̄inwinr does not need to be linearized. Furthermore, the problem can be
solved by iterating over the draws and the customers while updating the availability
of the services, which is similar to the solution procedure outlined in Section 3.2 (see
Algorithm 3.1) when the price is proposed at the individual level. The solution approach
associated with the revenue maximization problem (Model 3.1) with fixed prices p̄in is
depicted in Algorithm 3.2. For each draw we initialize the occupancy level of all services
in C \ {0} to 0, which means that all the capacity is available (note that the opt-out
option is always available so it does not need to be tracked). We then iterate over the
individuals in the order provided by the priority list, and for each individual we calculate
the utilities of the available services and set the choice to the service achieving the highest
utility. Finally, we increase the occupancy associated with the chosen service by one unit
and update the total objective function.

There exist different strategies to set values for the price variables pin from the values in
{p̄sin}s. We could rely, for instance, on a statistical quantity, such as the mean or the me-
dian, or the extrema across subsets of draws. These approaches determine a single price
configuration for each service and customer, and do not allow to explore the extent of
possibilities that can be generated by considering independently the values in {p̄sin}s. We
propose a methodology that iterates over the subsets of draws and for each subset solves
Model 3.1 with the prices fixed to the values of the price copies for that subset using
Algorithm 3.2. This generates S feasible solutions for the revenue maximization prob-
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lem, among which we select the one with the highest objective function. Algorithm 3.3
summarizes this procedure.

Algorithm 3.2: Solution approach for the revenue maximization problem (Model
3.1) with fixed prices p̄in
Input: Fixed prices p̄in, revenue maximization problem (Model 3.1);
Output: Optimal values for the remaining variables (yinr, winr, Uinr and Unr)

and objective function Z;
1 Initialize the objective function Z = 0;
2 for r = 1 . . . R do
3 Initialize occupancy level oir = 0 ∀i ∈ C \ {0} and availability variables

yinr = 1, ∀i ∈ Cn \ {0}, n;
4 for n = 1 . . . N do
5 for i ∈ Cn \ {0} do
6 if oir < ci then
7 Calculate Uinr = βinp̄in + dinr;

8 else
9 Set the alternative unavailable: yinr = 0;

10 Set the utility to the corresponding lower bound: Uinr = `nr;

11 Calculate U0nr = d0nr;
12 Determine Unr = max{i∈Cn|yinr=1}∪{0} Uinr and j = argmaxUnr;
13 Set wjnr = 1 and winr = 0 ∀i ∈ Cn \ {j};
14 Update the objective function Z = Z +

∑
i∈Cn\{0}

1
Rwinrp̄in;

15 Update the occupancy level ojr = ojr + 1;

Algorithm 3.3: Computation of feasible solutions for the revenue maximization
problem (Model 3.1) by iterating over the subsets of draws
Input: Set of values for the price duplicates {p̄sin}s obtained after solving the

corresponding Lagragian subproblems (Model 3.9);
Output: The feasible solution of the revenue maximization problem (Model 3.1)

that provides the highest lower bound on Z among the generated
feasible solutions;

1 Initialize the best lower bound ZLB = −∞;
2 for s = 1 . . . S do
3 Set p̄in = p̄sin ∀i ∈ Cn \ {0}, n;
4 Solve the revenue maximization problem (Model 3.1) with fixed prices p̄in

using Algorithm 3.2 and obtain current lower bound ZsLB;
5 if ZsLB > ZLB then
6 Update ZLB and keep the associated solution as the feasible solution with

the highest objective function among the evaluated ones so far;

75



Chapter 3. A Lagrangian decomposition scheme for the choice-based optimization
framework

Notice that we do not determine all the price configurations that can be characterized
with the set {p̄sin}s, as the variables pin are fixed to the values of the price copies as-
sociated with a single subset at each iteration. This means that we do not allow for
configurations with price copies from different subsets. Hence, this procedure represents
a simplification of a brute force search where all possible candidates are evaluated. Even
though Algorithm 3.2 provides a straightforward solution approach for Model 3.1 when
the prices are fixed, trying all possible combinations might induce a notable computa-
tional burden, especially in the case of large instances (i.e., large number of draws and
customers) and/or a small size of the subsets of draws.

Section 3.5.3 explains the subgradient method. It integrates the Lagrangian subproblem
detailed in Section 3.5.1, which provides an upper bound for the revenue maximization
problem (Model 3.1), and the computation of feasible solutions via Algorithm 3.3, which
generates a lower bound.

3.5.3 Subgradient method

The tightest possible bound obtained from the upper bounds ZUB(α) for the revenue
maximization problem (Model 3.1) as a function of the Lagrangian multipliers α is at-
tained by solving the Lagrangian dual:

ZLD = min
α
ZUB(α). (3.88)

The Lagrangian subproblem (Model 3.9) does not have the integrality property because
there might be optimal solutions to its LP relaxation that are not integer. As a result,
the Lagrangian decomposition scheme yields stronger bounds than the LP relaxation,
i.e., Z ≤ ZLD ≤ ZLP, where ZLP denotes the optimal value of the objective function of
the LP relaxation of Model 3.1.

The subgradient method is an iterative procedure that can be employed to solve an
optimization problem whose objective function is a non-differentiable convex function
on a closed convex set. This is our case, as the objective function of the Lagrangian
dual is non-differentiable and convex (it is the upper envelope of a finite family of linear
functions) and R is the set of admissible values for the Lagrangian multipliers. This
method constructs a sequence {αk}k using

αk+1 = αk + γkvk, ∀k, (3.89)

where k denotes the iteration, γk a positive scalar called step size and vk a vector
representing the direction of motion called step direction. Algorithm 3.4 presents the
subgradient method. A detailed explanation is provided in the following.
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Algorithm 3.4: Subgradient method
Input: Limit on the computational time T and number of iterations ω for the

update of λk;
Output: ZUB,best, ZLB,best and a feasible solution for the revenue maximization

problem (Model 3.1);
1 Initialize k = 0, t = 0, ZUB,best = +∞, ZLB,best = −∞, λ0, α0

ins = 0 and v0
ins = 0

∀i ∈ Cn \ {0}, n, s;
2 while t < T do
3 for s = 1 . . . S do
4 Solve the Lagrangian subproblem (Model 3.9) and obtain {p̄sin}s and

ZUB(αk);

5 if ZUB(αk) < ZUB,best then
6 Update the best upper bound found so far ZUB,best = ZUB(αk);

7 Compute the feasible solution providing the largest lower bound using
Algorithm 3.3 and obtain ZLB;

8 if ZLB > ZLB,best then
9 Update the best lower bound found so far ZLB,best = ZLB;

10 if ZUB(αk) has not improved in the last ω consecutive iterations then
11 Set λk ← λk/2;

12 Calculate γk according to (3.93);
13 Update the Lagrangian multipliers αk+1

ins = αkins + γkvkins, where
vkins = −(gkins + ζkvk−1

ins ) and ζk is calculated according to (3.92);
14 Update the computational time t;
15 Set k ← k + 1;

A subgradient of ZUB(α) at ᾱ is a multidimensional vector g of dimension D = (|C| −
1)NS that satisfies

ZUB(α) ≥ ZUB(ᾱ) + g(α− ᾱ), ∀ᾱ ∈ RD. (3.90)

The vector g defined as gins = psin−p
(s+1)
in , ∀i ∈ C \{0}, n, s and evaluated at the optimal

solution of the Lagrangian subproblems is a subgradient of ZUB(α) at any admissible α
(Fisher, 1981b).

The Lagrangian multipliers are initialized to 0, i.e., αkins = 0,∀i ∈ C \ {0}, n, s, and are
updated at each iteration k ≥ 1 by taking a step size γk in the direction vkins. We take
a step in the direction of the negative subgradient (the problem to be optimized here is
the Lagrangian dual, which is a minimization problem).

Some tests performed on small instances show that the angle between the current step
direction vkins and the previous one vk−1

ins is obtuse in multiple occasions. This leads to a
next iterate that is close to the previous multiplier, which slows down the convergence
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of the procedure. This effect is known as zigzagging of kind I, and can be overcome by
deflecting the step direction (Camerini et al., 1975). Thus, we define the direction of
motion at iteration k as

vk = −(gk + ζkvk−1), (3.91)

where ζk ∈ R≥0 is a suitable scalar called deflection parameter. By defining this param-
eter as

ζk =

{
−τ gkvk−1

‖vk−1‖2 if gkvk−1 < 0,

0 otherwise,
(3.92)

with 1 ≤ τ < 2, the step direction is forced to always form an acute angle with the
preceding one, which eliminates the zigzagging of kind I. The use of τ = 1.5 is recom-
mended.

The step size most commonly used in practice is defined by Held et al. (1974) for each
iteration k as follows:

γk = λk
ZUB(αk)− Z
‖vk‖2 , (3.93)

where ZUB(αk) is the objective function of the Lagrangian subproblem for the Lagrangian
multipliers αk, Z is the optimal objective function in Model 3.1, which can be replaced by
the best lower bound found so far, ‖vk‖2 is the norm of the step direction, i.e., ‖vk‖2 =∑

i∈C\{0}
∑N

n=1

∑S
s=1(vkins)

2, and λk is a step size decreasing parameter satisfying 0 <

λk ≤ 2. As described in Fisher (1973), this value can be initially set to λ0 = 2 and
halved whenever ZUB(αk) has failed to decrease in some fixed number ω of consecutive
iterations.

Notice that unlike the ordinary gradient method, the subgradient method is not a descent
method, as the subgradient might not be a descent direction. Furthermore, even when
it is a descent direction, the step size can be such that the next iterate provides a larger
objective function. This is why we keep track of the best upper and lower bounds found
throughout the method.

With respect to the termination of the method, Algorithm 3.4 defines a stopping criteria
on the computational time, as is considered in the experiments performed in Section
3.6. This allows us to evaluate the computational performance with respect to the exact
method and the trade-off between the different dimensions the Lagrangian subproblem
is built on (namely, customers, draws and subsets of draws). Other stopping criteria
could be considered, such as a maximum number of iterations, or a certain number of
iterations after which the upper bound has not experienced an improvement.
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In summary, the subgradient method approximates the Lagrangian dual by updating
the values of the Lagrangian multipliers at every iteration. Provided initial values of the
multipliers, it produces new multipliers by applying to the previous ones a direction of
motion, which is calculated in terms of the subgradient of the objective function of the
Lagrangian subproblem, and a step size. As a result, we obtain a set of multipliers that
are employed in the next iteration to solve the Lagrangian subproblems. We also benefit
from the generation of feasible solutions in the update of the multipliers. Indeed, the
calculation of the step size here considered requires the optimal value of the objective
function of the problem being relaxed, which is typically replaced by the best lower bound
found so far (in a maximization problem).

3.6 Case study

The goal of this case study is to test the computational efficiency and quality of the
obtained solutions of the Lagrangian decomposition scheme developed in Section 3.5.
Furthermore, we also provide an assessment of the trade-off between these two elements
and the three dimensions of the approach, namely the customers (N), the draws (R) and
the size of the subsets of draws (S).

To this end, we rely on the parking choices case study described in Section 2.4. In
Ibeas et al. (2014), 197 individuals are interviewed in order to be able to model their
preferences with respect to three parking services: paid on-street parking (PSP), paid
parking in an underground car park (PUP) and free on-street parking (FSP), which
represents the opt-out option. With the collected data, a mixtures of logit model is
specified and estimated. As is the case for the error term εin of the utility function, the
parameters of the choice model that are assumed to follow a probability distribution to
capture individuals’ heterogeneity are drawn prior to solving the problem in an exact
manner or applying the decomposition scheme. Likewise, we assume that the same price
is offered to all customers, i.e., pin = pi, ∀n, not only because it is more appropriate in
a parking context, but also because it yields a problem that is more aggregated, in the
sense that a decomposition by individual or group of individuals cannot be applied.

The instances considered to evaluate the approach are defined from the available data
by setting specific values for N , R and S. For a given number of customers N , the
capacity of the services is defined accordingly such that it is appropriate for the size
of the population but restrictive enough so that some customers are forced to choose
the opt-out option because some of the services might become unavailable. Similarly to
Section 2.4, for each configuration determined by N , R and S, we define three different
instances by randomly selecting N individuals from the whole dataset, together with the
associated draws of the random parameters and the error term. Notice that the instances
with N = 197 contain the same individuals but might have a different priority list, i.e.,
the individuals might be processed in a different order.
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Section 3.6.1 analyzes the performance of the decomposition framework with respect to
the exact method, and given the complexity of the latter, we consider a single instance for
each configuration of N , R and S being tested. Section 3.6.2 assesses the computational
complexity and quality of the obtained bounds with respect to the three above-mentioned
dimensions by fixing the values for two of them at a time and varying the remaining one.

The calibration of the parameters of the subgradient method has been performed on
different configurations of N , R and S. We consider λ0 = 0.5 because larger values result
in a higher increase of the upper bound in the first iterations, and ω = 5 because in some
experiments a low number of iterations is expected. We follow the recommendations
found in the literature and we set τ = 1.5. The developed computer codes have been
implemented in C++ using ILOG Concert Technology to access CPLEX 12.8, and all
the instances were performed using 12 threads in a 3.33 GHz Intel Xeon X5680 server
running a 64-bit Ubuntu 16.04.2.

3.6.1 Comparison with optimal solutions

In this section, we compare the best feasible solution obtained from the Lagrangian
decomposition scheme with the optimal solution for three configurations consisting of
N = 50, R ∈ {100, 250, 500} and S = 5, with a capacity of 20 customers for both
PSP and PUP (cPSP = cPUP = 20). Given the computational complexity associated
with solving exactly the MILP formulation, we set restrained values for N , R and S,
the latter being selected in relation to the number of customers so that the associated
subproblems are computationally not too complex. Moreover, we run only one instance
for each configuration. For the sake of the experiment, we set a maximum running time
T equal to 10% of the computational time of the exact approach of each instance to run
the Lagrangian decomposition scheme.

Table 3.1 provides an overview of the performance of both approaches with respect to
computational efficiency and quality of the obtained solutions. For the exact method,
it includes the computational time and the optimal value of the objective function. For
the Lagrangian decomposition scheme, it reports the number of iterations K achieved
within the established time limit T (10% of the computational time reported by the
exact method), the best upper and lower bounds found together with the iteration at
which they were reached (in brackets), the average computational time per iteration t̄k,
the duality gap (gapdual) and the gap between the best feasible solution and the optimal
one (gapopt). These gaps are calculated as follows:

gapopt =
Z − ZLB,best

Z
, (3.94)

gapdual =
ZUB,best − ZLB,best

ZLB,best . (3.95)
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The number of iterations performed within the established computational time limit T
grows as R increases. As shown by the number in brackets in columns ZUB,best and
ZLB,best, the best lower bound, which provides a feasible solution, is found relatively
soon with respect to the total number of performed iterations K, as opposed to the best
upper bound, which keeps on improving. The relative difference between bounds is in all
instances lower than 2%, and the gap with respect to the optimal solution is way smaller,
with a solution almost equivalent to the optimal one for the largest tested instance.

Table 3.1: Comparison of the performance of the exact method and the Lagrangian
decomposition scheme for N = 50, R ∈ {100, 250, 500} and S = 5

Exact method Lagrangian decomposition scheme

R Time Z K ZUB,best (k) ZLB,best (k) t̄k(min) gapdual(%) gapopt(%)
100 3.76 h 26.21 5 26.70 (5) 26.18 (2) 5.16 1.98 0.11
250 36.3 h 26.04 14 26.46 (14) 26.02 (1) 16.8 1.70 0.09
500 5.07 days 25.99 21 26.40 (21) 25.99 (7) 35.8 1.58 0.02

Figure 3.2 portrays the evolution of the upper and lower bounds (ZUB and ZLB) through-
out the iterations of the subgradient method. In all cases, the upper bound experiences
an increase during the first iterations followed by a decreasing trend that tends to sta-
bilize. For R = 250 and R = 500, we observe such stabilization from (approximately)
k = 10. The lower bound, instead, remains much closer to the optimal value of the objec-
tive function (Z), already from the early iterations, and it practically does not fluctuate,
achieving the same values in more than one iteration. This means that the same price
configuration is obtained in different iterations and it reports the highest revenue at each
of them.

We can also compare the prices and expected demand of the optimal solution with
respect to the best feasible solution found in the Lagrangian decomposition scheme. As
shown in Table 3.2, the price of PSP of the best feasible solution is slightly closer to
the corresponding optimal value than the price of PUP. Modest differences are as well
observed when comparing the expected demand of both solutions, with a tendency for
the best feasible solution to generate larger values of the expected demand of FSP.

Table 3.2: Comparison of the prices and the expected demand of the optimal solution
(Ex.) and the best feasible solution (Dec.) found in the Lagrangian decomposition
scheme for N = 50, R ∈ {100, 250, 500} and S = 5

pPSP pPUP DPSP DPUP DFSP

R Ex. Dec. Ex. Dec. Ex. Dec. Ex. Dec. Ex. Dec.
100 0.609 0.610 0.840 0.837 19.07 18.99 17.39 17.45 13.54 13.56
250 0.591 0.591 0.793 0.811 19.18 19.46 18.56 17.90 12.26 12.64
500 0.588 0.591 0.790 0.792 19.29 19.56 18.55 17.24 12.16 13.20
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Figure 3.2: Evolution of the lower and upper bounds throughout the iterations of the
Lagrangian decomposition scheme for N = 50, R ∈ {100, 250, 500} and S = 5

3.6.2 Trade-off between R, N and S

We evaluate now the computational complexity and quality of the obtained bounds by
setting a base configuration for N (number of individuals), R (number of simulation
draws) and S (size of the subsets of draws) and varying one dimension at a time. More
precisely, the base configuration is defined by N = 50 as in Section 2.4, R = 500 to
ensure precision of the results, and S = 2 to deal with small subproblems so that the
algorithm is able to run multiple iterations within the established time limit. Recall that
for each configuration we run three different instances defined by a random selection of
N individuals from the whole dataset with the associated draws for the error term and
random parameters. For the sake of evaluating the performance of the algorithm, we set
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a large enough computational time limit T for each configuration such that the algorithm
is able to run for some iterations.

Variation of R

In this experiment, we allow for values of R ∈ {100, 250, 500, 1000, 2500, 5000}. Table 3.3
includes the computational time limit T , the average time per iteration associated with
the computation of the upper and lower bound (t̄k,UB and t̄k,LB, respectively), and the
average number of iterations performed within T (denoted by K̄).

We observe that the growing in t̄k,UB with respect to R is more moderate than the
exponential growing experienced with the exact method, and although t̄k,LB does not
present a similar growth rate, it corresponds to an insignificant fraction of the entire
computational time of an iteration. Nevertheless, notice that this would not be the case
if a brute force search was applied, as the resulting computational time per iteration
would be of the order of (R/S) · t̄k,LB.

Table 3.3: Computational performance of the Lagrangian decomposition scheme for the 3
considered instances defined by N = 50, S = 2 and R ∈ {100, 250, 500, 1000, 2500, 5000}

R T (min) t̄k,UB (min) t̄k,LB (s) K̄

100 30 1.33 0.013 23.3
250 75 3.67 0.078 21.3
500 150 7.91 0.32 19.3

1000 300 18.4 1.72 17
2500 750 57.1 14.6 13.7
5000 1500 145.4 62.1 11.7

Figure 3.3 exhibits gapdual for the three instances associated with each value of R, as
well as the iteration at which the best lower bound (i.e., the best feasible solution) is
achieved (in brackets). We notice an increasing trend for somewhat larger gaps as R
increases, which is related to the fact that the increase in time to solve the Lagrangian
subproblems is not linear, and therefore an increase in T would be needed to reach gaps
of the same order as the ones that are reached for lower values of R. We also observe that
the gaps are larger than the ones achieved in the previous experiment because we have
considered here S = 2 instead of S = 5 (see Section 3.6.2 for an extensive assessment on
S).

As already seen in Section 3.6.1, the best lower bound is generally obtained during the
first iterations of the subgradient method, with a couple of exceptions for the largest
values of R. Hence, it would be possible to set a threshold on the number of iterations
without improvement of the best lower bound and use it as a stopping criterion of the
algorithm (when the duality gap is below an acceptable threshold).
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Figure 3.3: Duality gap (gapdual) and iteration at which the best lower bound is achieved
(in brackets) for the 3 considered instances (1-3) for R ∈ {100, 250, 500, 1000, 2500, 5000}

Variation of N

The same analysis can be carried out with respect to the size of the population under
consideration. We consider N ∈ {50, 100, 150, 197}. Notice that in this case the capacity
of the services needs to be defined accordingly. As discussed in Section 2.4, a capacity
cPSP = cPSP = 20 spots for N = 50 is assumed for both services because it is large enough
to be realistic for the size of the sample but restrictive enough to force some individuals
to opt-out. Based on the same idea, we determine the capacity of the services for larger
values of N .

As presented in Table 3.4, the average time to solve the Lagrangian subproblems (t̄k,UB)
has an exponential growing. In the case of N = 150 and N = 197, we even obtain
larger values than the computational time limit T , which is due to the fact that the first
iteration is always performed and the stopping criterion on the computational time is
verified from k = 1.

Table 3.4: Computational performance of the Lagrangian decomposition scheme for the
3 considered instances defined by R = 500, S = 2 and N ∈ {50, 100, 150, 197}

N cPSP = cPUP T (min) t̄k,UB (min) t̄k,LB (s) K̄

50 20 150 7.91 0.32 19.3
100 40 300 95.1 0.78 3.3
150 60 450 460.7 1.54 1.3
197 80 600 1088.5 2.39 1

As shown in Figure 3.4, the duality gap presents an opposite trend than the previous
experiment, since it is inversely proportional to N . Moreover, we also observe an earlier
attainment of the best lower bound for low values of N . Hence, although less iterations
are performed as N increases, it does not appear to be a drawback because lower duality
gaps are reached.
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Figure 3.4: Duality gap (gapdual) and iteration at which the best lower bound is achieved
(in brackets) for the 3 considered instances (1-3) for N ∈ {50, 100, 150, 197}

Variation of S

For this experiment, we set the same computational time limit T for S ∈ {1, 2, 3, 4, 5, 10}.
The idea is to evaluate the trade-off between the size of the subsets of draws and the
quality of the gap obtained for each subset within the established time limit. As expected,
the larger the size of the subsets, the higher the computational time per iteration, and
the lower the total number of iterations (see Table 3.5). Furthermore, since the number
of price configurations to be tested decreases with the increase in the subset size, the
computational time dedicated to find a feasible solution diminishes as S increases.

Table 3.5: Computational performance of the Lagrangian decomposition scheme for the
3 considered instances defined by N = 50, R = 500 and S ∈ {1, 2, 3, 4, 5, 10}

S T (min) t̄k,UB (min) t̄k,LB (s) K̄

1 150 2.41 0.672 62.7
2 150 7.91 0.323 19.3
3 150 12.4 0.213 12.7
4 150 21.5 0.158 7.7
5 150 46.1 0.136 4

10 150 126.9 0.065 2

With respect to the gap, Figure 3.5 depicts its decrease with respect to the increase in S.
Such decrease is specially notable from S = 1 to S = 2, where the gap goes from values
that oscillate between 3.46% to 3.74% to 2.73% to 2.89%. This confirms our expectations
about the restricted potential of the decomposition by single draws, which has completed
in average 62.7 iterations but has not managed to lessen the gap or to improve the best
feasible solution after the first iterations.

We observe a moderate decrease in the gaps from S = 2 to S = 3, and similar values
for S = 4 and S = 5. The largest size, S = 10, reports the best gaps, with values

85



Chapter 3. A Lagrangian decomposition scheme for the choice-based optimization
framework

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 2 3 4 5 10

ga
p d

ua
l
(%

)

S

1

(0)

(0)
(5) (1) (0)

(0)

2

(2)

(0)
(2) (6) (2)

(0)

3

(2)

(1) (6)
(0) (0)

(0)

Figure 3.5: Duality gap (gapdual) and iteration at which the best lower bound is achieved
(in brackets) for the 3 considered instances (1-3) for S ∈ {1, 2, 3, 4, 5, 10}

between 1.35% and 1.51%. Hence, even though the algorithm runs for a limited number
of iterations (K = 2 for the three instances), it is beneficial to consider large subsets of
draws in order to improve the quality of the obtained bounds for a given running time.
Notice that in this case the total running time exceeds the time limit, as the stopping
criterion allows for an additional iteration if the time limit has not been reached.

Nevertheless, we cannot provide a generalization for the appropriate value of S, as it
depends on the number of customers. Indeed, S = 10 might be computationally too
complex for higher values of N (e.g., N = 197), which implies that we might need to rely
on lower sizes of the subsets for the algorithm to be operational. As we have noticed in
the experiment that varies the number of individuals N , the fact that a low value of S
is assumed for larger values of N does not necessarily imply a decrease in the quality of
the obtained bounds.

3.7 Concluding remarks

In this chapter, we have provided a comprehensive literature review on decomposition
techniques applied to mixed-integer linear optimization. In the light of the main find-
ings, we have initially developed a strategy that identifies two interesting subproblems
(one associated with the operator and one associated with the customers) and separates
them by relaxing the linking constraint. Due to the strong interactions between both
subproblems, such decomposition results in a weak relaxation. Thus, we decided to rely
on Lagrangian decomposition to induce separability while preserving all the constraints
within the resulting subproblems. This decomposition scheme is then generalized to ad-
dress some of its limitations by gathering simulation draws into subsets and generating
copies of the variables being split for each subset, as opposed to the original attempt
where a copy is introduced for each draw. The solving of the Lagrangian subproblems,
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together with the computation of feasible solutions from the Lagrangian solution, is
enclosed in the well-known subgradient method.

As is the case in Chapter 2, we specify the Lagrangian decomposition scheme in terms
of the revenue maximization problem described in Section 3.2, which considers the price
as the only endogenous variable and performs some assumptions such as fixed capacity
and availability at the operator level to all customers. Nevertheless, we notice that the
learning acquired from the initial attempts, as well as the proposed methodology, can be
applied to other problems with different endogenous variables and assumptions.

The experiments performed on the parking case study described in Section 2.4 show that
near-optimal solutions can be obtained in a much lower computational time with respect
to the exact approach. Such solutions are usually found at an early stage of the subgra-
dient method, which enables to terminate the algorithm when the best feasible solution
found by the method has not improved after a certain number of consecutive iterations
and the reported duality gap is below an acceptable threshold. Furthermore, we have
seen that as long as the corresponding subproblems are computationally manageable, a
large number of draws per subset is recommended, as it leads to smaller duality gaps for
a given running time.

Notice that it is possible to reduce the total computational time of the decompositon
framework by implementing a parallelization routine within the subgradient algorithm
that allows to solve multiple subproblems simultaneously. The values of the price copies
obtained after solving the subproblems need to be gathered so that the subgradients
can be calculated at the end of each iteration of the subgradient method. We can also
apply parallelization to the computation of feasible solutions, but as shown in Section
3.6, the associated computational burden is negligible with respect to the solving of the
subproblems, so it will have a mild impact on the total running time.
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4
Welfare-maximizing design of a transportation

system

Preliminary ideas related to this chapter are included in the conference paper

Pacheco, M., Sharif Azadeh, S., and Bierlaire, M. (2019). Passenger
satisfaction maximization within a demand-based optimization
framework. In 19th Swiss Transport Research Conference (STRC), Ascona,
Switzerland

The work has been performed by the candidate under the supervision of Prof. Shadi
Sharif Azadeh and Prof. Michel Bierlaire.

4.1 Introduction

The choice-based optimization framework detailed in Chapter 2 allows to incorporate a
disaggregate demand representation into an MILP model. In Chapters 2 and 3, we illus-
trated the idea with the example of an operator that aims at maximizing its revenue. In
this chapter, we show that the framework can accommodate other types of optimization
problems. We consider here the point of view of public authorities, who want to invest
in transportation projects to improve the social and economic welfare of the population,
or to decrease various negative externalities.
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One such relevant application can be found in the context of road pricing. According to
the theory of welfare economics and externalities (Pigou, 1920), a tax or toll is needed
to correct the negative externalities associated with urban road transportation, such
as green-house gas emissions, air pollutants and congestion. Road pricing can be seen
as a supplementary economic tool to achieve the social welfare-maximum benefit or
system-minimum overall cost of passenger transportation in a network. In practice,
policy instruments associated with road pricing include mostly congestion pricing in the
form of a toll to confront drivers with the cost of the congestion delays they impose on
other drivers.

A key factor for a successful implementation of a road pricing policy is its acceptability
(Kidokoro, 2010). Indeed, lack of public acceptance has been the most important barrier
to these pricing schemes. Acceptability improves significantly when the availability and
quality of existing public transportation (PT) service is good and the revenue raised
by road pricing is recycled (Anas and Lindsey, 2011). This means that the revenue
is allocated to the implementation of the system and to additional road and/or PT
investments or subsidies to encourage modal shift (Lyons et al., 2004). As is typically
found, in the absence of revenue recycling, the analyzed measures indicate that the
road pricing scheme is regressive, i.e., the welfare is distributed more unequally after its
introduction than before (Levinson, 2010).

Hence, a common requirement for the wide acceptance of a road pricing policy is to be
progressive, which implies that the welfare is distributed from richer to poorer groups
of society. It is therefore essential to implement welfare measures and distributional
analyses to evaluate the nature of a policy. Despite their relevance, neither the change in
total welfare nor the change in consumer surplus for different groups in the population
are usually reported in the literature. This complicates or even prevents the use of the
obtained results for public policy because it hinders the comparison of different schemes
and combinations thereof (Basso and Silva, 2014).

Furthermore, we need to take into account not only the design of the road pricing scheme
and its impacts on PT, but also the operation and planning of the latter as part of a
comprehensive strategy of the transportation system. The studies that consider the
problem of road pricing jointly with the management of PT in an economic sense gen-
erally concentrate on the effects of such interplay on system efficiency, PT operator’s
profitability and social welfare. In addition to fare policies, other organizational aspects
of PT involved in this interplay, such as scheduling and investment strategies, might be
included.

In the context of discrete choice models (DCM) based on the random utility principle,
the typical measure of consumer surplus is the expected maximum utility (Ben-Akiva
and Lerman, 1985). Although it has a relatively tractable form for the logit model, it
is non-linear. More advanced DCM, which aim at relaxing the unrealistic assumptions
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associated with the logit model and have shown a better prediction power, present an
even more complex formulation.

The expected maximum utility is readily available from the choice-based optimization
framework thanks to the variables that capture the maximum discounted utility associ-
ated with individual n and scenario r (see definition (2.22)). This is a significant advan-
tage because it prevents the use of the complex non-linear expressions of this quantity
as provided by DCM. Hence, a linear formulation for the consumer surplus facilitates
the derivation of a generalized objective function of some measure of social welfare as
the policy objective, which can be employed to assess the performance of the urban
transportation policies under consideration. Additionally, the disaggregate nature of
the formulation provides a great deal of flexibility when it comes to define groups for
distributional analyses.

We propose a model where the social welfare is to be maximized by a transportation
authority that is willing to implement a road pricing scheme at the same time that
the pricing and design of PT are to be adjusted in the presence of revenue recycling.
The decision variables of the transportation authority are endogenous variables of the
problem, as they have a direct impact on the modal split. This is a similar objective
as Basso and Silva (2014), who propose a non-linear formulation for that problem. In
this chapter, we illustrate the formulation using two case studies. First, we propose a
semi-synthetic case study that aims at introducing a road toll in the urban region of
Lausanne-Morges. Second, we translate the non-linear case study of Basso and Silva
(2014) in our framework, in order to emphasize its strengths and limitations.

The remainder of the chapter is organized as follows. Section 4.2 reviews the literature
on the modeling of road pricing and its interactions with PT. Section 4.3 describes how
the problem of interest is accommodated in the choice-based optimization framework.
Section 4.4 presents the developed case study and the numerical experiments conducted
as a proof-of-concept for the introduced methodology. Section 4.5 provides an overview
of the model presented in Basso and Silva (2014), the linearization scheme based on the
proposed methodology and the comparison of the results obtained with both approaches.
We finish the chapter with some concluding remarks in Section 4.6.

4.2 Literature review

Road pricing is an economic measure that consists of charging road users for using the
road infrastructure. It provides a tool for achieving a more efficient usage of the road
capacity, affecting travelers’ choices of departure time, route and travel mode (among
others), reducing negative external effects of road traffic (e.g., congestion, emissions),
and raising revenues for funding transportation investment, operations and maintenance
costs. As congestion is the most costly urban road transportation externality, and con-
gestion relief has been the primary objective of urban road pricing (Anas and Lindsey,
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2011), a vast portion of the literature in the context of road pricing is dedicated to
congestion pricing.

The design of a road pricing scheme, such as congestion charging, toll cordons and toll
lanes, involves decisions on when, where and how much to charge road users. Moreover, it
encompasses a mathematical representation of the transportation network and demand.
Most of the theoretical and practical considerations of such schemes are based on the
assumptions of time-uniform charges with time-invariant (fixed or elastic) demand and
travel costs (Tsekeris and Voß, 2009).

When there are no restrictions on toll locations and/or toll levels, a first-best pricing
paradigm can be achieved. Such paradigm is grounded on the concept of marginal cost
(Pigou, 1920, Knight, 1924), and corresponds to the unconstrained maximization of the
social welfare or surplus. In reality, however, tolls can be implemented only on a subset
of links of the network and/or do not include the effect of several other restrictions and
market distortions. This results in second-best pricing settings (Rouwendal and Verhoef,
2006), and optimal prices deviate from marginal costs. The associated optimization
problems are in general more difficult to solve than first-best problems. While the latter
can be formulated as a convex optimization problem, the former is non-convex and its
objective function is not everywhere differentiable.

Whereas road pricing has been extensively analyzed in the literature, its implications for
PT are only partially explored (Tsekeris and Voss, 2010). The relation between both is
usually examined as a stimulus-answer relation rather than an aspect of a global strategy
of the transportation system. The impacts of road pricing on PT can be either direct,
via changes in the generalized travel cost of private motorized modes (PMM) and PT,
or indirect, which correspond to new land use patterns and transport supply that might
alter structural characteristics of daily travel.

Existing methodological contributions integrating the problem of road (especially, con-
gestion) pricing with PT strategies are commonly isolated to specific economic and op-
erational measures. More precisely, there are studies on socially optimal combinations
of road tolls with PT fares (e.g., Huang, 2000, Huang, 2002), and/or frequencies (e.g.,
Shepherd et al., 2006, Basso and Jara-Díaz, 2012), and subsidization (e.g., De Borger and
Swysen, 1999). Other relevant aspects encompass the representation of the demand to
incorporate modal split effects, changes in multi-modal network equilibrium conditions
and revenue recycling.

The diversion of some users from PMM to PT will affect the modal split in favor of the
latter mode. Consequently, the increase in the share of PT users might have a negative
impact on the quality of the service, while partial relief of road congestion might encour-
age PMM users to use again their private modes. Disaggregate demand models enable to
capture the relation between modal split and generalized travel cost components, which
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commonly include travel time and monetary costs. DCM can provide valuable insight into
the feasibility evaluation of road pricing and PT management schemes, and the trade-offs
between efficiency and equity impacts thereof. Other travel demand models, such as the
heuristic acceptability model (Schade and Schlag, 2003) and the strategic niche manage-
ment approach (Ieromonachou et al., 2007), typically rely on a priori restrictions on the
demand elasticities and inter-modal substitutability, which are not underpinned by the
economic theory of demand. Therefore, they cannot offer a sound theoretical basis for
designing pricing policies that involve both PMM and PT users.

The effect of road pricing on PMM and PT demand has been traditionally modeled
through static traffic network equilibrium models with different classes of PMM users
(multi-class) and/or different modes (multi-modal), which can be combined with as-
sumptions about the stochasticity of multiclass user equilibrium conditions and demand
elasticity (e.g., Bellei et al., 2002, Hamdouch et al., 2007). However, the assumptions
involved in such models do not allow to explicitly incorporate dynamic features such
as traffic congestion phenomena and demand adjustment mechanisms. A small num-
ber of studies have analyzed the impact of time-varying congestion tolls (e.g., de Palma
et al., 2005). Nevertheless, these approaches are usually tested on small and simplified
networks, which implies that several issues associated with the deployment within large
scale networks have not been properly addressed yet.

The revenues raised from road pricing can be reinvested in the transportation network
to enhance the quality of PT and/or to increase the capacity of the road network, or
even in other economic sectors, such as in the form of labor subsidies (e.g., Parry and
Bento, 2001). However, as pointed out by Anas and Lindsey (2011), on the majority of
the world’s toll roads, the collected revenues are used either to cover maintenance and
amortize construction costs or to make a profit for private operators, and the use of road
pricing as a tool to manage demand is relatively rare. In any case, the reinvestment of
revenues might involve several further considerations based on the competition regime
and ownership structure of the PT market.

Early works that simultaneously address the problem of optimal road pricing and PT
service design in an urban setting can be found in a bi-modal context (car and bus)
for the evaluation of dedicated bus lanes in a static framework. In Mohring (1979), the
optimization models developed do not yield explicit relationships for the cost minimizing
values of modal split and bus service (e.g., frequency), and a fixed number of commuters
is assumed. The performed numerical simulations show that reserved bus lanes would
not substantially contribute to the total cost reduction if marginal cost bus fares and
car tolls could be charged. In Small (1983a), a disaggregate logit model for work trips is
considered (also with a fixed number of commuters), and some of the service variables
associated with bus (fare, headway and occupancy) are assumed to be constant. The
numerical results in this case show that, even if less effective than congestion tolls, priority
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measures for buses deserve serious consideration as a strategy to deal with urban highway
congestion.

Small (1983b) provides one of the first studies tackling the issue of incidence of congestion
tolls (or equity). According to the author, such incidence cannot be logically analyzed
without an explicit assumption about the use of revenues. The model assumes exogenous
PT (bus) prices and service levels. A previously estimated logit model of mode choice
for work trips in the San Francisco Bay Area is employed here, which allows to examine
distributional effects. The obtained results show that in the absence of any redistribution
of toll revenues, the welfare effects fall with income. Kraus (1989) also evaluates the
welfare gains by studying different regimes that correspond to road pricing schemes that
are technologically feasible: gas tax only, tolls via automatic vehicle identification and
tolls via time-based meters installed on cars. The demand is modeled via households,
whose utility function is Cobb-Douglas. The policy variables of the simulation model
include bus fare and headway, as well as variables specific to the regime.

In addition to congestion, Borger and Wouters (1998) take into account all relevant ex-
ternal effects (air pollution, noise and accident risks) in a model that jointly optimizes
transportation prices (for car and buses in peak and off-peak periods) and service de-
cisions (bus supply of vehicle-kilometers in both periods, fleet size and capacity of the
road infrastructure). The behavior of households is represented with deterministic util-
ity functions that account for the above mentioned external effects. The objective is to
maximize a measure of social welfare defined over the household utilities plus government
net revenues, evaluated at the marginal cost of public funds. The model is tested with
simulation experiments that consider aggregated Belgian data, which does not allow for
distributional considerations. The results show that when the budgetary constraints are
ignored, optimal prices were found well above the benchmark level for car and much
lower for bus, and optimal supply of bus was substantially above. As expected, in the
presence of budget constraints, prices in all modes and periods rise with respect to the
benchmark model.

More recently, Basso et al. (2011) analyze urban congestion management policies (conges-
tion pricing, transit subsidies and dedicated bus lanes) with a simple model that allows
travelers to choose between car, bus and biking. The users’ heterogeneity is addressed
with a simple framework with the objective of increasing tractability that assumes that
all users share the same value of time and income but differ in their valuation of some
other attributes such as safety, comfort, etc. Such difference is included as the product of
a modal-specific constant capturing these attributes and an idiosyncratic term that varies
across the population (uniformly distributed random parameter). The authors evaluate
different scenarios based on the considered policies by adding or ignoring restrictions on
revenue recycling, namely self-financing bus system and the financing of bus fares from
congestion tolls. The optimization problems associated with each scenario are numeri-
cally solved for a parameter setting representing a morning-peak hour in Santiago, Chile.
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Note that demand data was not available and had to be artificially generated such that
the modal split was reasonable. By comparing the resulting service levels, social welfare
and consumer surplus, dedicated bus lanes provide a better stand-alone policy than PT
or congestion pricing and it would count with public support.

Similarly, Basso and Silva (2014) assess the efficiency and substitutability of the same
urban transportation policies, with a special emphasis on PT subsidies. In this case,
the available demand data with respect to 5 different income groups in the population
allows to perform distributional analyses with respect to the consumer surplus. The main
results suggest that there is large efficiency substitutability between policies. This case
study is further explained in Section 4.5, where a linearization scheme of the optimization
problem associated with one of the evaluated policies is formulated and tested.

In summary, we have identified various works in the literature that simultaneously op-
timize the pricing and service design of a transportation system. Nevertheless, despite
the importance of modal split effects, we observe relevant simplifications when it comes
to represent the demand. This is related to the fact that the associated consumer sur-
plus formulation, and the measure of social welfare derived thereof, becomes complex.
As described in Section 4.3, the choice-based optimization framework provides a flexible
framework for the linear formulation of the consumer surplus, as well as revenue recycling
mechanisms. Furthermore, the disaggregate nature of the demand representation enables
the development of distributional analyses with respect to differentiated segments in the
population. This provides a tool that allows to model different contexts in order to
evaluate alternative policies with respect to the public authority’s established objectives.

4.3 Methodology

In this section, we rely on the choice-based optimization framework to model the problem
of the welfare-maximizing pricing and service design of a transportation system. Thanks
to the demand representation described in Section 2.2, we are able to incorporate not
only the heterogeneous behavior of the travelers, but also the impact of the decision
variables on the modal split and vice versa. The resulting formulation provides a tool to
evaluate the implications on the welfare of different transportation policies. Moreover,
the disaggregate nature of the demand allows to analyze distributional impacts among
different groups in the population with similar socioeconomic characteristics.

We consider a population of N individuals that aim at performing a trip within a cer-
tain time horizon H (expressed in hours). The choice set C comprises, at least, two
alternatives: PMM and PT. Both modes are managed by a single operator, such as a
transportation authority or the government. We refer the reader to Bortolomiol et al.
(2019) for the modeling framework that involves multiple operators. We assume that
both alternatives are offered to all individuals and do not interact with each other, i.e.,
we do not account for mixed traffic conditions. The choice-based optimization framework
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allows to deal with capacity of the services (e.g., number of seats in a train), either given
or as decision variables (see Section 2.2.3). As capacity introduces a high complexity
to the formulation, and the nature of the case studies considered in this chapter do not
explicitly involve capacity restrictions, we assume unlimited capacity in the case studies
described in Sections 4.4 and 4.5.

We note that the travel time of a transportation mode is typically affected by congestion
effects, especially in the case of PMM. Thus, travel time is a quantity that depends on the
demand. Congestion is out of the scope for the choice-based optimization framework,
as it is highly non-linear and it involves the explicit modeling of equilibrium. In this
chapter, we provide simple modeling solutions to accommodate congestion effects in the
case studies developed in Sections 4.4 and 4.5. We leave more advanced representations
of congestion within the choice-based optimization framework for further research.

We might also allow for an opt-out option (denoted by i = 0), i.e., an alternative that
captures the individuals that decided not to travel or that travel using a transportation
mode that is not managed by the operator, such as slow modes (bike or walk) or modes
managed by a different operator. Notice that it is possible to take into account differen-
tiated PMM (e.g., car, motorcycle) and/or PT modes (e.g., train, bus, metro) as long as
they are handled by the same operator.

The behavior of travelers is modeled with the mixed-integer linear representation of a
DCM introduced in Section 2.2.2. Recall that the utility associated by individual n
with alternative i ∈ Cn, Uin, is composed of a systematic component Vin and an error
component εin. We generate R draws from the probability distribution of the random
component, ξinr, which allows to specify a deterministic utility associated with each draw
r, individual n and alternative i ∈ Cn as Uinr = Vin + ξinr. The preference structure
of travelers is characterized by a set of linear constraints on such utilities thanks to the
choice variables winr. When the capacity of the alternatives is not considered and all
alternatives are offered to all travelers by the operator (as is the case in Sections 4.4 and
4.5), the formulation can be simplified. We can disregard the discounted utility variables
zinr and determine the choice of each individual and each scenario with the variables
representing the largest utility, Unr, defined as Unr = maxi∈Cn Uinr.

The authority needs to set the prices associated with both alternatives, i.e., a toll for
PMM and a fare for PT. As in the previous chapters, we denote the price variables
by pin, where i refers to the alternative (PMM or PT) and n to the individual (see
Section 2.3.1 for the modeling of the price in the continuous case). Recall that this
price representation also embraces the definition of different prices for different groups
of travelers or at the extreme, even a single price for everyone. Another variable to be
optimized by the operator is the frequency of PT, denoted by f , which is assumed to be
discrete, and represents the number of PT units (e.g., bus, trains) that are operated per
hour. We define Lf frequency levels, denoted by f`, which represent feasible values for
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the frequency (as determined by the public authority and/or other considerations), and
binary variables τ`, which are equal to 1 if frequency level f` is selected, and 0 otherwise,
and define f as

f =

Lf∑
`=1

f`τ`. (4.1)

We need to impose that only one frequency level is selected, i.e.,

Lf∑
`=1

τ` = 1. (4.2)

These decisions are endogenous variables of the formulation, that is, they are present in
the utility functions, and therefore have an impact on the behavior of the individuals.
Note that additional design variables, such as decisions on the capacity or the scheduling
of PT, can also be accommodated in the model.

The objective function to be maximized by the authority is a measure of social welfare,
which is described in Section 4.3.1. The budgetary constraints that allow for a revenue
recycling mechanism are depicted in Section 4.3.2. In Section 4.3.3, we provide a brief
overview of the different strategies that allow for a linear characterization of the demand-
dependent travel time. We summarize the proposed model-based algorithmic approach
in Section 4.3.4.

4.3.1 Social welfare

As reviewed in Section 4.2, the welfare measures considered to evaluate the performance
of a policy revolve around the consumer surplus. In the microeconomic consumer theory,
consumer surplus is defined as the difference between what a consumer is willing to pay
for one good and what they actually pay for it, which corresponds to the experienced
satisfaction.

The difference in consumer surplus measures the changes in the values of the utility
functions induced by alterations in the choice set and/or the attributes of the alternatives.
Such difference can be calculated for DCM that are translationally invariant, which means
that a shift in the systematic component of the utility function simply translates the joint
distribution of the utilities without altering its basic functional form. Most of the DCM
used in practice are translationally invariant or can be transformed into an equivalent
translationally invariant model. In the following, we assume DCM with this property.

As noted by Williams (1977), the difference in the consumer surplus of an individual
between two situations can be expressed as the difference between the associated ex-
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pected maximum utilities. The expected maximum utility represents the average benefit
obtained by an individual from the available alternatives. This quantity is individual-
specific, reflecting the differences across individuals on how they evaluate the alternatives.
Hence, as it provides the expected worth of a set of alternatives, Ben-Akiva and Lerman
(1985) refer to it as a measure of accessibility.

In the case of the logit model, the expected maximum utility is calculated as

E

[
max
i∈Cn

Uin

]
=

1

µ

(
ln
∑
i∈Cn

eµVin + γ

)
, ∀n, (4.3)

where µ is the scale parameter of the extreme value distribution (probability distribution
of the error terms) and γ is the Euler’s constant. This quantity is equivalent to the
individual’s consumer surplus up to a constant. The difference between the expected
maximum utilities of two situations (denoted by 1 and 2) is equal to the difference in
consumer surplus as the constant term cancels out:

1

µ

(
ln
∑
i∈Cn

eµV
2
in − ln

∑
i∈Cn

eµV
1
in

)
, ∀n, (4.4)

where V 1
in and V 2

in represent the values of the utility functions for situations 1 and 2,
respectively.

More generally, multivariate extreme value (MEV) models represent a family of DCM
that allow for correlation among the error terms of the utility functions (McFadden,
1978). The logit model, the nested logit model and the cross-nested logit model are
examples of MEV models. They are derived from the assumption that the error terms
εn = (ε1n, . . . , εJnn),∀n, Jn = |Cn|, follow a multivariate extreme value distribution,
which corresponds to the multivariate version of the extreme value distribution leading
to the logit model. The expected maximum utility of MEV models is computed by
replacing the sum in (4.3) by the corresponding choice probability generating function
(CPGF), i.e.,

E

[
max
i∈Cn

Uin

]
=

1

µ
lnG

(
eV1n , . . . , eVJnn

)
, ∀n, (4.5)

where G
(
eV1n , . . . , eVJnn

)
denotes the CPGF. This function needs to satisfy some prop-

erties (the strong alternating sign property, the µ-homogeneity property and the limit
property) in order to define a cumulative distribution function (CDF) of a multivariate
extreme value distribution. Notice that if the G function has a closed form, so have
the choice probabilities. For instance, the CPGF of the nested logit model, which is the
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DCM of the case study considered in Section 4.5, is the following:

G
(
eV1n , . . . , eVJnn

)
=

M∑
m=1

∑
j∈C

(αjme
Vjn)µm


µ
µm

, ∀n, (4.6)

where M denotes the number of nests in the model, αjm is equal to 1 if alternative j
belongs to nest m, and 0 otherwise, and µ and µm represent the scale parameter at the
upper and lower level, respectively.

Although the expected maximum utility has a relatively tractable form for the logit
model, it is non-linear. More advanced DCM, such as MEV models, present an even
more complex formulation. We can linearly approximate the expected maximum utility
of individual n thanks to the variables Unr that are available in the choice-based opti-
mization framework (see definition (2.22)). The simulation-based representation of DCM
allows to approximate the expectation of maxi∈Cn Uin with the average of Unr across R,
i.e.,

E

[
max
i∈Cn

Uin

]
≈ 1

R

R∑
r=1

Unr, ∀n. (4.7)

We consider the aggregation across individuals as the measure of social welfare to be
optimized:

1

R

N∑
n=1

R∑
r=1

Unr. (4.8)

The nice property of this expression is that it is a linear function of the decision variables
Unr, so that it can be embedded in any MILP formulation. Notice that other measures of
social welfare can be derived from (4.8), such as a the sum of the consumer surplus and
the transportation authority surplus defined by the financial result of the transportation
system (i.e., the difference between the obtained revenues and the experienced costs).

4.3.2 Budgetary constraint

In the absence of constraints limiting the investments to be made by the transportation
authority, the optimization problem defined by the maximization of the consumer surplus
(4.8) becomes meaningless, in the sense that the supply-related decisions (congestion toll,
bus fare and frequency) will reach the associated bounds since the aggregated expected
maximum utility increases as the investment on such decisions increases. Thus, we need
to include a constraint ensuring that the investment does not exceed the available budget.
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Notice that a budgetary constraint does not necessarily involve a revenue recycling mech-
anism, as the transportation authority might not consider the collected revenues as part
of the budget dedicated to cover the performed investments. In this case, we assume
that the revenues collected from the tolls and fares, together with an initial budget at
hand (it can be set to 0 if not available), define the budget, and that the investment
comprises various costs associated with the tolling infrastructure and the PT operation.
Notice that the quantities defined below are in the same monetary units (e.g., CHF) and
refer to the time horizon H under consideration.

The budget B is composed of an initial available budget B0 and the collected revenues,
i.e.,

B = B0 +
1

R

∑
i∈C\{0}

N∑
n=1

R∑
r=1

ηinr, (4.9)

where ηinr is the continuous variable that captures the product of variables pinwinr (see
constraints (2.39)–(2.42) in Section 2.3.1).

The investment I is composed of the investments IPMM and IPT. We assume that the
former involves a fixed cost FPMM, that represents the operating costs associated with
the toll facility, and a variable cost cPMM, that represents the transaction cost to be paid
by the transportation authority for each individual that makes use of the toll facility.
This cost is assumed to be the same for everyone. For the sake of simplicity, we only
take into account a variable cost for PT, cPT, associated with each operated PT unit
(e.g., bus, train), which is calculated using the frequency f . The total investment I is
calculated as

I = IPMM + IPT = FPMM +
1

R
cPMM

N∑
n=1

R∑
r=1

wPMM,nr + cPTH

Lf∑
`=1

f`τ`. (4.10)

The variable costs associated with PMM are calculated by multiplying the so-called
transaction cost by the expected PMM demand. The variable cost associated with PT
is obtained as the product of the cost associated with each PT unit by the total number
of operated PT units, which is the product of the frequency (number of PT units per
hour) and the length of the time horizon H, which is expressed in hours.

Thus, the budgetary constraint I ≤ B added to the model is the following:

FPMM +
1

R
cPMM

N∑
n=1

R∑
r=1

wPMM,nr + cPTH

Lf∑
`=1

f`τ` ≤ B0 +
1

R

∑
i∈C\{0}

N∑
n=1

R∑
r=1

ηinr.

(4.11)
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It basically assumes that the authorities are willing to invest a maximum of B0 in addition
to the revenues generated by the transportation system itself.

Notice that additional assumptions with respect to the budget and the investment can
be included in the formulation as long as it remains linear. For instance, it is possible to
impose self-financing of the PT system, i.e.,

cPTH

Lf∑
`=1

f`τ` ≤
1

R

N∑
n=1

R∑
r=1

ηPT,nr, (4.12)

or the financing of the PT fares with the road tolls, i.e.,

cPTH

Lf∑
`=1

f`τ` ≤
1

R

N∑
n=1

R∑
r=1

ηPMM,nr. (4.13)

4.3.3 Demand-dependent travel time

Since an increase in the demand of a transportation mode (especially in the case of PMM)
typically induces an increase in its travel time, it is important to take into account
congestion effects in the formulation. To this end, we rely on the standard function
introduced by the US Bureau of Public Roads (Federal Highway, 1980), known as BPR
function. For each arc, the travel time is provided by

tt(Y ) = tf

(
1 + a

(
Y

C

)b)
, (4.14)

where tf denotes the free-flow travel time (i.e., a fixed travel time when the arc is non
congested), Y denotes the flow on the arc [veh/h] and C denotes its practical capacity
[veh/h]. The practical capacity of an arc represents a threshold value for the flow beyond
which congestion becomes effective. Notice that (4.14) is expressed in the same units
as tf (e.g., hours). The parameters a and b are set to the standard values suggested in
Sheffi (1984), i.e., a = 0.15 and b = 4. Hence, when the flow Y is lower than C, the
second term in parentheses in (4.14) becomes negligible, whereas for larger values of Y
the non-linear contribution related to congestion increases. We note that the concept of
practical capacity is different from the capacity restrictions associated with the choice-
based optimization framework, as the practical capacity can be exceeded.

This formulation is usually employed to calculate the travel time by PMM. However, it
can also be considered in the case of buses, as is done in the case study described in
Section 4.5. Notice that the usage of the road by PMM involves the payment of a toll,
whose collection might as well result in an increase of the travel time depending on the
collection mechanism being employed. For the sake of illustration, we assume that such
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an increase is negligible, as is the case of wireless systems that automatically gather tolls
(e.g., electronic toll collection).

The disaggregate demand representation allows to characterize the expected flow of trans-
portation mode i (Yi) via the choice variables winr. Notice that the choice variables are
used to calculate the expected demand, and such demand allows to calculate the flow by
translating the number of individuals into vehicles (via the vehicle occupancy) and by
dividing by H (time horizon). As travel time is one of the variables explaining the choice
of travelers, it is included in the utility function Uinr. Moreover, the utilities determine
the choice variables. Thus, the demand depends on the travel time, and the travel time
also depends on the demand, so there is a fixed-point problem.

As shown in Bortolomiol et al. (2019), because of the discrete and disaggregate nature
of the choice-based optimization framework, an equilibrium of the problem might not
exist. Hence, imposing equilibrium constraints would lead to an infeasible problem.
It would be possible to consider a dynamic specification, where the decisions made at
each draw are based on state variables generated at previous draws. The implication
of this approach is that the resulting formulation is no longer draw-independent, and
decomposition methods such as those described in Chapter 3 cannot be used anymore.

For all these reasons, we have decided to develop a fixed-point iterative algorithm, as
is done in Bortolomiol et al. (2019). The idea is to solve a sequence of optimization
problems where the flow Yi is exogenous and determined by the choice of individuals
as provided by the solution of the previous problem in the sequence. This iterative
procedure is referred to as Banach iterations, and might or might not converge. In the
absence of an equilibrium, it may even be a cycle. We use it as a heuristic approach to
account for congestion effects in the case studies described in Sections 4.4 and 4.5.

The flow Y 0
i is initialized to some value and the flow Y k

i at iteration k > 0 is defined as

Y k
i =

D
(k−1)
i

H%
=

1

RH%

N∑
n=1

R∑
r=1

w̄
(k−1)
inr , (4.15)

where D(k−1)
i represents the demand of mode i at iteration k − 1, % denotes the vehi-

cle occupancy (passengers per vehicle) and w̄(k−1)
inr are the values of the choice variables

obtained when solving the welfare-maximization problem with Y (k−1). The algorithm
terminates when one of the following criteria is satisfied: a maximum number of iter-
ations K is achieved, the relative difference between two consecutive optimal objective
functions is lower than a threshold δ, or a cycle (i.e., two optimal objective functions are
alternatively generated) is obtained. The resulting optimization problem, together with
the pseudocode of the algorithm, is detailed in Section 4.3.4.
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4.3.4 Model-based algorithmic approach

The welfare maximization problem is formulated in Model 4.1. Constraints (4.17) deter-
mine the utility function associated with each individual n and draw r for each trans-
portation mode i, constraints (4.18)–(4.21) provide the linear definition of the discounted
utility variables, constraints (4.22)–(4.25) characterize the choice in terms of the dis-
counted utility variables, constraints (4.26)–(4.27) handle capacity restrictions on the
transportation modes, constraints (4.28)–(4.31) provide a linear formulation of the prod-
uct of variables pinwinr, constraint (4.32) defines the frequency, and constraints (4.33)–
(4.35) refer to the budgetary constraint.

SW (Y ) = max
1

R

N∑
n=1

R∑
r=1

Unr (4.16)

s.t. Uinr = βpinpin + βtintt(Yi) + βfinf + dinr ∀n, i ∈ Cn, r (4.17)
`nr ≤ zinr ∀i ∈ C, n, r (4.18)
zinr ≤ `nr +Minryinr ∀i ∈ C, n, r (4.19)
Uinr −Minr(1− yinr) ≤ zinr ∀i ∈ C, n, r (4.20)
zinr ≤ Uinr ∀i ∈ C, n, r (4.21)
zinr ≤ Unr ∀i ∈ C, n, r (4.22)
Unr ≤ zinr +Minr(1− winr) ∀i ∈ C, n, r (4.23)∑
i∈C

winr = 1 ∀n, r (4.24)

winr ≤ yinr ∀i ∈ C, n, r (4.25)
n∑

m=1

wimr ≤ (ci − 1)yinr + (n− 1)(1− yinr) ∀i ∈ C, n > ci, r (4.26)

ci(1− yinr) ≤
n∑

m=1

wimr ∀i ∈ C, n > 1, r (4.27)

ainwinr ≤ ηinr ∀i ∈ C \ {0}, n, r (4.28)
ηinr ≤ binwinr ∀i ∈ C \ {0}, n, r (4.29)
pin − (1− winr)bin ≤ ηinr ∀i ∈ C \ {0}, n, r (4.30)
ηinr ≤ pin − (1− winr)ain ∀i ∈ C \ {0}, n, r (4.31)

f =

Lf∑
`=1

f`τ` (4.32)

B = B0 +
1

R

∑
i∈C\{0}

N∑
n=1

R∑
r=1

ηinr (4.33)

I = FPMM +
1

R
cPMM

N∑
n=1

R∑
r=1

wPMM,nr + cPTHf (4.34)

I ≤ B (4.35)
winr, τ` ∈ {0, 1}, ∀i ∈ C, n, r, ` (4.36)

Model 4.1: Welfare maximization problem
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The pseudocode of the iterative algorithm is presented in Algorithm 4.1.

Algorithm 4.1: Fixed-point iterative algorithm for Model 4.1
Input: Number of iterations K, threshold δ;
Output: A list of fixed-point solutions;

1 Initialize Y k for k = 0, solve Model 4.1 with Y = Y 0;

2 while k < K or
∣∣∣SW (Y k−1)−SW (Y k)

SW (Y k)

∣∣∣ < δ or {SW (Y k), SW (Y k−1)} define a cycle

do
3 Solve Model 4.1 with Y = Y k and obtain the values of the choice variables

(w̄kinr);
4 Set k ← k + 1;
5 Calculate Y k using (4.15) with w̄k−1

inr ;

4.4 Introduction of a congestion toll in an urban context

In this section, we define a small but meaningful case study to test the methodology
introduced in Section 4.3. Similarly to Section 2.4, we rely on a DCM that has been
calibrated and validated by experts. More precisely, we consider the integrated choice
and latent variable (ICLV) model estimated in Atasoy et al. (2013) on travel mode choice
in suburban areas of Switzerland (an overview of the DCM is provided in Section 4.4.1).
Such areas are typically served by PostBus, the PT branch of the Swiss postal service.

Within the framework of the PostBus project, a Revealed Preference (RP) survey was
sent to households of several towns and villages considered to be representative of the
PostBus network. The respondents were asked to report information about all trips
performed in a day, together with opinions on topics related to environment, lifestyle, etc.,
and data about their mobility habits, household composition and other socioeconomic
characteristics.

As the data gathered in the survey involves multiple trips per individual and regions
across Switzerland, we define a particular setting consisting of a single origin region rep-
resenting a residential area and a single destination region representing a workplace/s-
tudy place and a one-hour time horizon. We designate the residential area in Morges and
the workplace/study place in Lausanne, being both cities in the French-speaking canton
of Vaud (Switzerland). These two cities are at the core of the Projet d’agglomération
Lausanne-Morges (PALM), which is a project on the urban development of Lausanne
and its suburbs and the city of Morges. The aim of this project revolves around the den-
sification of the regional urban tissue at the same time that an excessive urban sprawl
is avoided, being one of the main focus the improvement of the public transportation
network.
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In order to set a particular origin region within Morges and a particular destination
region within Lausanne, we get inspiration from the geographical definition of regions
in the PALM project for which the incoming, outgoing and inner trips are measured.
Figure 4.1 shows the different regions (referred to as cordons in French). In our case, we
consider trips with origin in the city center of Morges (region 4) and destination in the
city center of Lausanne (region 1).

Figure 4.1: Geographical division of the Lausanne-Morges region into subregions. Source:
Guillaume-Gentil et al. (2015)

The choice of these cities and the corresponding origin and destination regions is mo-
tivated by various reasons. First, we can assume that the alternative PMM involves
the use of the highway (and therefore individuals can be charged with a toll), since ap-
proximately 70% of the trips by PMM within the PALM region (region 6 in Figure 4.1)
use the highway (Guillaume-Gentil et al., 2015). Second, we can assume that the PT
alternative only comprises the train, as it provides the fastest connection and is the only
mode linking the two regions without the need for transfers (without taking into account
a potential additional connection by PT in the destination region for some individuals
in order to reach their final destination, see Section 4.4.2 for more details). Finally, and
given the distance between both regions (between 11 and 15 km depending on the ex-
act origin and destination of the trip), bicycle is assumed to be available to individuals,
which enables the inclusion of the SM alternative as an available transportation mode.

In Section 4.4.2, we create a semi-synthetic population to test the optimization problem
detailed in Section 4.3.4 on the defined setting. To this end, we rely on the Mobility
and Transport Microcensus (MTMC) survey, which is a statistical survey of the travel
behavior of the Swiss population that is conducted every five years by the Federal Office
for Spatial Development (ARE) and the Federal Statistical Office (FSO). We select the
respondents with residency in Morges, and we identify the questions of interest in the
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survey in order to determine the necessary socioeconomic variables of the ICLV model.
As for the generation of trips, we perform some assumptions on the attributes that are
present in the ICLV model based on the specifications of the setting.

Notice that the design variables (PMM toll and PT fare and frequency) are to be decided
by the optimization problem. Section 4.4.3 establishes a base case that will be considered
as a benchmark, and Section 4.4.4 discusses the results obtained from solving the welfare
maximization problem (using Algorithm 4.1) for three different situations with respect
to the level of congestion of the highway. All the experiments have been implemented
in C++ using ILOG Concert Technology to access CPLEX 12.8, and all the instances
were performed using 12 threads in a 3.33 GHz Intel Xeon X5680 server running a 64-bit
Ubuntu 16.04.2.

4.4.1 ICLV model

The purpose of incorporating latent attitudes of the individuals into a travel mode choice
model is to better understand their underlying choice preferences in order to increase the
forecasting power of the DCM. As mentioned in Section 2.2.1, attitudinal variables are
included into a choice context through latent variables, latent classes or a combination
thereof. In ICLV models, the attitudinal variables are included as explanatory variables
in the DCM, whereas integrated choice and latent class (ICLC) models use the attitudinal
variables to identify groups that might have different taste parameters, choice sets, or
decision protocols. These latent variables and classes are identified with the so-called
psychometric indicators, which are statements on opinions for which a level of agreement
needs to be evaluated by the respondents.

In both cases, structural equation models allow to translate attitudinal variables into a
statistical model. Such models are integrated into DCM in order to implement a simul-
taneous estimation of the choice and attitudinal variables. Hence, as the heterogeneity in
the sample is explained through structural equation models for attitudinal variables, the
resulting models can be applied for other samples provided that the required variables
are available.

In Atasoy et al. (2013), an ICLV model and an ICLC model are calibrated and tested
against a logit model that has the same model specification as the DCM comprised in both
approaches. The obtained results show that the ICLC model has the best fit compared
to the other two models. Nevertheless, as the ICLV model involves the calculation
of integrals within the associated choice probabilities that do not have a closed-form
(Walker, 2001), it is more challenging to derive welfare measures for this model. This is
why we have decided to select the ICLV model to illustrate the extent of the proposed
methodology.
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Mode choice is assumed to be between PMM, which encompass car as a user and passen-
ger, motorbike and taxi, PT, which consists of bus, train and PostBus, and SM, which
represent walking or biking. The model considers two attitudes, named pro-car (denoted
by Acar) and environmental concern (denoted by Aenv). Tables 4.1 and 4.2 provide the
specification table of the utilities and the structural equations for the attitudes, respec-
tively. The index n that represents the individual has been omitted in the explanatory
variables in order to simplify the notations. Recall that the specification table includes
both the estimates of the parameters as well as the specification that define the equations
(utilities and structural equations for the attitudes). ASCPMM and ASCSM are the con-
stants for the utilities of PMM and SM (ASCPT is set to 0 for normalization purposes),
Ācar and Āenv are the constants for the corresponding attitudes, the parameters associ-
ated with the modal attributes and individual characteristics are denoted by β, and the
parameters associated with the explanatory variables of the attitudes are denoted by ζ.

Table 4.1: Specification table of the utilities of the ICLV model (Atasoy et al., 2013)

PMM PT SM

ASCPMM −1.5 1 0 0
ASCSM 0.5 0 0 1
βcost −0.056 CPMM CPT 0
βTTPMM −0.029 TTPMM 0 0
βTTPT −0.012 0 TTPT 0
βdistance −0.224 0 0 DSM
βNcars 0.97 Ncars 0 0
βNchildren 0.215 Nchildren 0 0
βlanguage 1.06 French 0 0
βwork −0.583 WorkTrip 0 0
βurban 0.283 0 Urban 0
βstudent 3.26 0 Student 0
βAcar −0.574 0 Acar 0
βAenv 0.393 0 Aenv 0
βNbikes 0.385 0 0 Nbikes

The explanatory variables included in the equations in Tables 4.1 and 4.2 are the follow-
ing:

• travel cost (CPMM and CPT) [CHF],

• travel time (TTPMM and TTPT) [min],

• distance (DSM) [km],

• number of cars in the household (Ncars),

• number of children in the household (Nchildren),

• number of bikes in the household (Nbikes),
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Table 4.2: Specification table of the structural equations for the attitudes of the ICLV
model (Atasoy et al., 2013)

Acar Aenv

Ācar 3.02 1 0
Āenv 3.23 0 1
ζNcars 0.104 Ncars 0
ζeduc 0.235 -Educ Educ
ζNbikes 0.085 0 Nbikes
ζage 0.004 0 Age · (Age > 45)
ζValais −0.223 Valais 0
ζBern −0.361 Bern 0
ζBasel-Zurich −0.256 Basel-Zurich 0
ζEast −0.228 EastSwitzerland 0
ζGraubünden −0.303 Graubünden 0

• an indicator that is equal to 1 if the respondent is French-speaking (French),

• an indicator that is equal to 1 if the purpose of the trip is going to work (Worktrip),

• an indicator that is equal to 1 if the residency of the individual is in an urban area
(Urban),

• an indicator that is equal to 1 if the respondent is a student (Student),

• a set of indicators associated with different regions in Switzerland (Valais, Bern,
Basel-Zurich, EastSwitzerland, Graubünden) that are equal to 1 if the residency of
the individual is within the region,

• an indicator that is equal to 1 if the respondent has an university degree (Educ),
and

• a piecewise linear variable that is equal to the individual’s age if the age is larger
than 45 years, and 0 otherwise (Age · (Age > 45)).

Notice that the frequency of PT is not explicitly included in the ICLV model. In order
to capture the interaction of this design variable with the preferences of the travelers, we
express TTPT,n as the sum of its main components, namely access time, waiting time,
in-vehicle time and egress time. We formulate the waiting time in terms of the headway,
which is the inverse of the frequency. A more detailed explanation is provided in Section
4.4.2. Hence, reducing or increasing the frequency will have an impact on the travel time
TTPT,n, which will be captured by the ICLV model by means of the term βTTPTTTPT,n

that is included in the utility function associated with PT. Note that this does not
modify the ICLV model, as it simply affects the way TTPT,n is calculated.
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4.4.2 Assumptions about the demand

In this section, we design a semi-synthetic population by characterizing the variables that
are present in the ICLV model. We rely on the MTMC data to obtain the individual
characteristics and we generate the modal attributes in accordance with the defined
setting. In the MTMC data, we identify N = 100 individuals that live in Morges. For
the sake of simplicity, and in order not to check the actual location of the address of each
respondent within the city, we assume that all individuals live in region 4.

As the highway is also being used by travelers with different origins and destinations, we
need to adjust the flow YPMM that is obtained from the considered population to capture
the background traffic. One way to do it is by associating a constant weight with each
individual (assumed to be the same across individuals) in order to scale up the demand
and represent the background conditions. The weights can be fine-tuned in order to
represent different situations with respect to the existing level of congestion on the high-
way, which we define as non-congested, partially congested and heavily congested. The
weights are determined based on the assumption associated with the practical capacity
of the highway for the BPR function (4.14), which is described in Section 4.4.3.

Some of the necessary variables can be directly found on the MTMC data, whereas for
some others we need to process the available information and perform some additional
assumptions. The information on the purpose of the trip cannot be directly inferred as
multiple trips are recorded per individual, so we assume that WorkTripn is equal to 1
if individual n is not a student, and 0 otherwise. The Studentn indicator is set to 1 in
two cases: if the age of respondent n is less or equal than 16 or if they answered to be
involved in an educational institution as a student.

Notice that the variables Frenchn and Urbann are equal to 1 for all the individuals in the
sample due to the characteristics of the scenario. Furthermore, all the region indicators
(Valaisn, Bernn, Basel-Zurichn, EastSwitzerlandn, Graubündenn) are set to 0 because
Morges is in the canton of Vaud.

In order to generate the trip associated with each individual, we assume that the distance
between their origin and their destination consists of a distance to be traveled within the
origin zone (region 4) denoted by dMn , a distance to be traveled within the destination
zone (region 1) denoted by dLn, and a distance between the two zones denoted by dM,L

n .
Hence, dSM,n = dMn + dM,L

n + dLn.

Based on the origin and destination regions in Figure 4.1, we assume that dMn ranges
between 0.1 and 1.5 km, whereas dLn varies between 0.2 and 3 km. For each individual
in the sample, we impute both distances by drawing from a uniform distribution with
the specified values as minimum and maximum. We fix the distance connecting the two
zones to 12 km, i.e., dM,L

n = 12,∀n.
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The travel time by PMM is obtained by calculating the travel time associated with each
of the above defined distances. In the case of dMn and dLn, we assume that the speed in
an urban context is equal to 15 km/h (Christidis and Ibáñez-Rivas, 2012). The travel
time corresponding to dM,L

n depends on the network conditions, and is determined with
the BPR function via the iterative procedure described in Section 4.3.3. Thus, the travel
time TTPMM,n of each individual n is calculated by adding the three travel times.

As mentioned in Section 4.4.1, TTPT,n is calculated as the sum of the access time from
the individual’s home to the train station in Morges, the waiting time of the individual
at the train station, the in-vehicle time and the egress time from the Lausanne train
station to the final destination of the individual. We define the access and egress time as
the times spent to cover dMn and dLn, respectively. For the former, we assume a walking
speed of 5 km/h (i.e., common assumption of 1.4 m/s). For the latter, and given the
size of region 1, we assume the 5 km/h walking-speed if the distance is shorter than 1.5
km, and the 15 km/h driving-speed in a urban environment if the distance is larger,
representing the fact that the individual is not walking from the train station to their
final destination but taking a faster mode (e.g., bus) instead. As the ICLV model does
not take into account the departure time of the individual, we simplify the definition of
in-vehicle time by using the same value for everyone: 13.8 minutes, which is the weighted
average of the in-vehicle time of the trains connecting both cities during a one-hour time
horizon in the current schedule (2 connections with a duration of 12 minutes, 2 with a
duration of 13 minutes, 1 with a duration of 15 minutes and 1 with a duration of 18
minutes). Note that the travel times are different due to the intermediate stops of each
connection.

Since the train timetables are available on multiple online platforms and are highly
reliable in Switzerland, we can assume that individuals know the departure time of
the train they aim at taking, and do not plan to arrive to the train station way in
advance. Therefore, the usual assumption that defines the expected waiting time as half
of the headway is not appropriate here. Instead, we define the waiting time WTPT,n of
individual n as (Ingvardson et al., 2018)

WTPT,n = νn · h, (4.37)

where νn is drawn from a truncated Beta distribution with shape parameters equal to 3
and 8 (see Figure 4.2) and h denotes the headway. The distribution is truncated in the
sense that νn can only take values between 0 and 1, since the waiting time should not
exceed the headway. The headway is calculated as the inverse of the frequency multiplied
by 60 in order to be expressed in minutes. Hence, applying (4.1), h is obtained as

h =

Lf∑
l=1

60

fl
τl. (4.38)
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Figure 4.2: Distribution of νn in the definition of the waiting time (4.37)

In the next section, we specify the characteristics of the setting with respect to the
practical capacity of the highway (for the travel time formulation (4.14)) and the costs
associated with the PMM and PT alternatives. Furthermore, we use as a benchmark a
base case that sets the design variables to their current values in reality.

4.4.3 Assumptions about the supply

In order to test the methodology introduced in Section 4.3, we make some assumptions
on the practical capacity of the highway and the costs for the budgetary constraint (see
Section 4.3.2). We rely on the general literature to determine such values to provide a
realistic representation of the setting under consideration. We also define the base case
used as a benchmark by fixing the design variables to the values that they currently
have in reality. Notice that we do not consider the capacity constraints of the choice-
based optimization framework, as we assume that there is room for all individuals in all
transportation modes. The increase in demand in the case of PMM has an effect on the
behavior of individuals because it affects the travel time via congestion effects. In the
case of PT, however, the ICLV model does not account for sensitivity towards crowds,
so such an effect is not captured.

In this case study, we assume that the highway used by PMM has 3 lanes, since the
two highway stretches defining the route between Morges and Lausanne (A1 and E23)
have 3 lanes each. According to TRB (2010), a 3-lane highway with a free-flow speed of
120 km/h has a practical capacity C = 7200 veh/h.

In the non-congested case, the flow YPMM does not exceed the practical capacity C,
whereas in the partially and highly congested cases we assume an excess of 20% and
50%, respectively. With respect to the weights capturing the background traffic, they
are derived for an approximated sample flow of 40 veh/h in the non-congested case and
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30 veh/h in the congested cases, which means that the weights are equal to 180 for the
non-congested situation, 288 for the partially congested case and 400 for the heavily
congested case.

We need to set values for the costs defining the investment (4.10) in the budgetary
constraint. The transaction cost cPMM is set to CHF 0.44 (KPMG, 2015). The cost
of operating each train is obtained from the range of marginal infrastructure cost in
train-km used for policy purposes in MOVE (2014), which establishes such cost between
CHF 0.75 and CHF 1.40 per train-km for passenger trains. As the distance to be covered
is 12 km, we assume cPT = CHF 10 (which takes a low value within the range such that
the order of magnitude is appropriate to the sample size). As the fixed cost FPMM

might depend on the collection mechanism, we rely on an approximate cost per vehicle
of CHF 1.25 (Ardekani, 1991), which allows us to define FPMM = 50 by considering the
approximated sample flow of 40 veh/h.

In addition to the toll, PMM users need to pay for the variable costs associated with their
vehicles, which include maintenance and repairs, tires, gas and depreciation. According
to Touring Club Suisse (TCS), this cost corresponds to CHF/km 0.27.

For the base case used as a benchmark, we define the PT fare by dividing the cost of the
monthly ticket that enables unlimited trips between Morges and Lausanne (CHF 137 for
2019) by the number of working (studying) trips in a month (252 working days in 2019
in canton Vaud, which makes an average of 21 working days per month, i.e., 42 trips
per month), CHF 3.271, which is assumed to be the same for everyone. We assume that
there is no congestion toll in this case, as the current road pricing scheme, the vignette,
has a cost of CHF 40 (in 2019) for the whole year, so the cost per trip becomes negligible.
With respect to the PT frequency, as mentioned in Section 4.4.2, we allow for a frequency
of 6 trains per hour between both cities.

4.4.4 Numerical results

As is done for the base case, we assume that both prices are the same across individuals.
Hence, we denote the highway toll simply by pPMM and the PT fare by pPT, and pi ∈ [0, 4]

for i ∈ {PMM,PT}. The frequency levels are defined near the base case frequency:
f ∈ {4, 5, 6, 7, 8} (i.e., Lf = 5).

The social welfare associated with the base case is obtained by fixing pPMM = 0, pPT =

3.27 and f = 6 in the model-based algorithmic approach described in Section 4.3.4 for the
three levels of congestion. We then run the approach without fixing the design variables
and compare the obtained results. Similar to Section 2.4, we run Algorithm 4.1 on the
1This value is similar to the fare to be paid by travelers that own the Swiss half-fare ticket (CHF 3.70).
The full fare (CHF 7.40) is rarely paid by commuters as they either have a monthly subscription or the
half-fare ticket.
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problem formulated in Model 4.1 for three replications (each replication corresponds to
an independent generation of R draws of the error terms εin,∀i ∈ C, n).

Figures 4.3, 4.4, and 4.5 show the difference in social welfare between the optimized case
and the base case in CHF in the non-congested, partially and highly congested situations,
respectively. For the sake of illustration, if a cycle was reported by the iterative algorithm
for one of the replications, we provide the average value of the social welfare of the
two solutions. Notice that the social welfare can be expressed in monetary units by
transforming the utility into monetary units, which can be done by dividing them by the
cost coefficient βcost of the ICLV model (see Table 4.2).

We can see that the difference in the social welfare tends to stabilize as the number
of draws increases. Nevertheless, we still observe a certain degree of variability of the
objective function for large values of R, which is expected due to the nature of the func-
tion being maximized (expected maximum utility). Moreover, as the level of congestion
increases, the difference in social welfare experiences higher fluctuations. This is related
to the way the travel time is calculated. The higher the level of congestion, the larger
the weights associated with the individuals to capture the background traffic. Due to the
nature of the BPR function (4.14), an additional car user in the non-congested situation
has a much lower impact on the travel time than an additional car user in the highly
congested case.
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Figure 4.3: Difference in social welfare [CHF] with respect to the base case for the
3 considered replications (independent generation of draws, labeled as 1-3) for R ∈
{10, 25, 50, 100, 250, 500} in the non-congested situation

As for the computational time, Table 4.3 shows the average running time (for the three
considered replications) of Algorithm 4.1 for this case study (only the optimized case, as
in the base case the design variables are fixed to the given values). We observe that the
computational times for the partially congested case tend to be lower than in the other
two cases, except for R = 500, which seems to be related to the number of iterations run
by the algorithm. Despite the fact that an optimization problem needs to be solved at
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Figure 4.4: Difference in social welfare [CHF] with respect to the base case for the
3 considered replications (independent generation of draws, labeled as 1-3) for R ∈
{10, 25, 50, 100, 250, 500} in the partially congested situation
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Figure 4.5: Difference in social welfare [CHF] with respect to the base case for the
3 considered replications (independent generation of draws, labeled as 1-3) for R ∈
{10, 25, 50, 100, 250, 500} in the highly congested situation

each iteration, the solution times are not excessively high. This is due to the fact that
capacity constraints are not considered in the formulation, which have a high impact on
the computational complexity, as shown in Section 2.4.

Table 4.4 shows the values of the design variables determined by the algorithmic approach
and Table 4.5 includes the modal split and the travel time for PMM for the base case and
optimized case for the three replications and R = 500. More than one line per replication
means that a cycle is reported by the algorithm (i.e., two solutions are generated).

We observe that the three design variables (pPMM, pPT and f) remain around the same
values across replications and for the three levels of congestion. In particular, the fre-
quency is always set to 5. Additional tests show that the increase of the cost associated
with an additional train, cPT, results in a lower frequency, which indicates that the model
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Table 4.3: Average computational time (min) of Algorithm 4.1 for 3 replications (inde-
pendent generation of draws) for the optimized case

R Non-congested Partially congested Highly congested
10 0.118 0.0764 0.0781
25 0.580 0.417 0.706
50 2.86 3.60 4.82

100 20.5 15.0 38.1
250 147.0 99.3 182.0
500 351 1054 474

Table 4.4: Design variables (pPMM, pPT and f) for the 3 considered replications (inde-
pendent generation of draws, labeled as 1-3) for R = 500 (multiple lines per replication
indicate the presence of a cycle, i.e., the algorithm terminated because of a cycle and
two solutions were reported)

Level of congestion pPMM pPT f

Non-congested 1 1.50 1.06 5
Non-congested 2 1.43 1.10 5
Non-congested 3 1.50 1.06 5

Partially congested 1 1.50 1.06 5
Partially congested 1 1.44 1.10 5
Partially congested 2 1.49 1.07 5
Partially congested 3 1.50 1.06 5

Highly congested 1 1.51 1.07 5
Highly congested 2 1.42 1.10 5
Highly congested 3 1.44 1.09 5

is sensitive to cost. We notice that by fixing the frequency to the same value as in the
base case, i.e., f = 6, the obtained congestion tolls and PT fares are above the values
included in Table 4.4 (average values of CHF 1.60 for the congestion toll and CHF 1.18
for the PT fare), as a consequence of the additional train that is being operated, but
the social welfare is slightly lower for all levels of congestion. Moreover, we note that
having similar prices shows the specificity of this case (e.g., same price sensitivity across
travelers and modes in the ICLV model, assumptions on the infrastructure and operating
costs), as in general prices are used by the model to control the travel times.

The introduction of the congestion toll induces a decrease in the share of PMM with
respect to the base case for the three levels of congestion. Such decrease is more noticeable
in the non-congested situation, as the payment of the congestion toll has a low impact on
the travel time savings, whereas this saving becomes larger in the other two situations.
Similarly, the share of SM slightly decreases, as some users that were not willing to pay
the PT fare in the base case might be willing to pay the current fare. Consequently, the
share of PT increases as it captures the travelers coming from the other two modes.

115



Chapter 4. Welfare-maximizing design of a transportation system

Table 4.5: Modal split (%) and travel time for PMM [min] for the base case and the
optimized case for the 3 considered replications (independent generation of draws, labeled
as 1-3) for R = 500 (multiple lines per instance indicate the presence of a cycle, i.e., two
solutions were reported)

Congestion level Replication DPMM DPT DSM tt(YPMM)

Base Opt. Base Opt. Base Opt. Base Opt.
Non-cong. 1 38.4 33.6 55.7 60.5 5.85 5.88 12.4 11.8
Non-cong. 2 38.5 34.1 55.4 60.0 6.09 5.85 12.4 11.9
Non-cong. 3 38.4 34.0 55.7 60.3 5.93 5.73 12.4 11.9

Partially cong. 1 34.5 31.4 59.4 62.8 6.12 5.88 17.0 15.3
Partially cong. 1 31.7 62.4 5.87 15.1
Partially cong. 2 34.5 31.5 59.3 62.6 6.22 5.93 17.0 15.1
Partially cong. 3 34.5 31.4 59.3 62.8 6.26 5.88 17.0 15.2

Highly cong. 1 30.1 28.0 63.4 65.7 6.51 6.36 24.4 20.6
Highly cong. 1 30.4 63.1 6.48 24.0
Highly cong. 2 30.1 28.3 63.2 65.4 6.67 6.30 24.0 20.9
Highly cong. 2 30.2 63.2 6.66 24.0
Highly cong. 3 30.1 28.3 63.2 65.5 6.75 6.19 23.8 21.1
Highly cong. 3 30.0 63.2 6.76 23.8

Finally, we analyze why the difference in social welfare becomes larger as the level of
congestion increases. Although PMM users experience an increase in the cost of the
trip due to the congestion toll, they are also benefited from a reduction in the travel
time with respect to the base case. In the highly congested case, the contribution to the
utility function of the travel time saving is somehow balanced out with the contribution
associated with the increase in the cost (all else being equal). On the other hand,
the waiting time of PT users increases in the three congestion situations because the
frequency decreases from 6 trains/h to 5. However, this change is overcome by the
decrease in the fare, which generates an increase in the utility of PT in the optimized
case (all else being equal).

This experiment illustrates the flexibility of the choice-based optimization framework for
the welfare maximization problem and its application to a realistic case study. Decom-
position methods as the ones developed in Chapter 3 are relevant in this context because
the populations in real-world transportation instances tend to be huge. Furthermore, a
large number of draws is desired for the stabilization of the social welfare, as shown by
the performed experiments.

4.5 Evaluation of a dedicated bus lanes policy

To the best of our knowledge, Basso and Silva (2014) appears to be the closest reference to
what we propose. Although they present a non-linear optimization methodology, in this
section we aim at investigating the strengths and limitations of our approach for their
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case study. We characterize a mixed-integer linear formulation for one of the policies
that they assess based on the linear expressions introduced in Section 4.3. The authors
rely on a nested logit model to capture the substitution between private and public
transportation, inter-temporal and total demand elasticities. The model optimizes public
transportation design variables in order to maximize a measure of social welfare, and it is
used to evaluate the performance of alternative urban policies, such as congestion pricing
or dedicated bus lanes and combinations thereof.

The formulation describing the tested policies is non-linear with continuously differen-
tiable objective function and constraints. In order to solve it, they rely on a numerical
algorithm from the software Wolfram Mathematica to find a local optimum of the prob-
lem. More precisely, a built-in function that searches for a local maximum with a given
initial solution is used. As for the iterative method, the algorithm selects the best method
for that computation among the available ones (e.g., conjugate gradient, quasi-Newton
method).

The objective of this experiment is to provide a linearization scheme for the optimization
problem associated with the dedicated bus lanes policy. The goal is not to linearize all
the non-linear expressions in the optimization problem, as some simplifications are made
for the sake of illustration, but to exemplify that the linear representation of the DCM,
in addition to other linearization techniques, can be used to test urban policies in real-life
contexts, and that similar conclusions can be made. Sections 4.5.1 and 4.5.2 describe the
nested logit model and the non-linear optimization problem as defined in Basso and Silva
(2014). Section 4.5.3 introduces the simplifications that we have made and the linear
formulation that we propose, and Section 4.5.4 presents the numerical results.

4.5.1 Nested logit model

Basso and Silva (2014) model a representative kilometer of a urban road network where a
bus service is offered, and the time horizon consists of one day of operation. The demand
is composed of N = 5 groups of travelers (indexed by n), each of them representing an
income group, and θn denotes the number of travelers per kilometer that belong to income
group n. More specifically, θ1 = 1960, θ2 = 3920, θ3 = 4480, θ4 = 2380 and θ5 = 1260.
The considered DCM is a nested logit model, whose nesting structure is depicted in
Figure 4.6. The nests are defined according to the period the traveler aims at traveling
(including a no-travel option to capture travelers leaving the system), and within each
period both bus and car are considered by the individuals.

To refer to the nesting structure introduced by Basso and Silva (2014), we denote the
nest by q ∈ Q = {peak, off-peak, no-travel} and the transportation mode by i ∈ C =

{PMM,PT} (PMM represent the car and PT the bus). Note that this is equivalent
to define C as the set of the alternatives defined by a combination of a period and a
transportation mode and the no-travel option, and denote each alternative simply by i.
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Figure 4.6: Decision tree associated with each individual (nesting structure)

The systematic term of the utility associated with period q ∈ Q′ = {peak, off-peak},
transportation mode i ∈ {PMM,PT} and income group n is defined as

Vqin = ASCqin + βcncqi + βtqingtqi, ∀q ∈ Q′, i ∈ {PMM,PT}, n (4.39)

where ASCqin is the alternative-specific constant, cqi is the monetary cost of the trip,
gtqi is the generalized travel time, and βcn and βtqin are the cost and time parameters,
respectively. Notice that both the cost and the travel time are assumed to be the same for
all income groups. The systematic term of the no-travel alternative is set to a constant,
i.e., Vno-travel,n = ASCno-travel,n,∀n. The utility functions are then defined as

Uqin = Vqin + εqn + εqin, ∀q ∈ Q, i ∈ {PMM,PT}, n (4.40)

where the nest-specific error terms εqn are independent and identically distributed (iid)
EV(0, µ), and are the same for all alternatives within the nest, and εqin

iid∼ EV(0, µq) are
the alternative-specific error terms. As determined by Basso and Silva (2014), µ = 0.25

and the scale parameters at the lower level are normalized to 1, i.e., µq = 1,∀q ∈ Q.

The estimates of the parameters are directly taken from Basso and Silva (2014), and are
included in Table 4.6. Notice that all parameters but the cost are alternative-specific,
i.e., the sensitivity towards cost is assumed to be the same regardless of the period and
the mode.

The monetary cost of a bus trip is directly obtained from the bus fare, i.e.,

cq,PT = pq,PT · `, ∀q ∈ Q′, (4.41)

where pq,PT is the bus fare for period q [$/km] and ` the average trip length [km]. In
the case of car, its cost cq,PMM [$/km] is equal to the congestion toll plus an operational
cost (coc) related to expenses on fuel, tires, etc.:

cq,PMM = (pq,PMM + coc)
`

%
, ∀q ∈ Q′, (4.42)

where % is the average number of passengers in a car.
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Table 4.6: Estimates of the parameters of the nested logit model defined by (4.39)–(4.40)
(Basso and Silva, 2014)

Parameter n = 1 n = 2 n = 3 n = 4 n = 5

ASCPMM,peak 0 0 0 0 0
ASCPMM,off-peak −0.875 −1.01 −1.03 −1.11 −1.10
ASCPT,peak −1.10 −0.295 −0.870 −1.30 −2.18
ASCPT,off-peak −1.96 −1.68 −2.27 −2.56 −3.56
ASCno-travel −10.1 −8.73 −9.01 −8.79 −8.10
βc −1.69 −1.06 −0.929 −0.718 −0.422
βtPMM,peak −0.655 −0.657 −0.676 −0.678 −0.656

βtPMM,off-peak −0.478 −0.308 −0.314 −0.319 −0.190

βtPT,peak −1.13 −1.13 −1.16 −1.17 −1.13

βtPT,off-peak −1.19 −0.769 −0.785 −0.796 −0.475

The generalized travel time by bus [h] in period q (per kilometer) when dedicated bus
lanes are in place is given by

gtq,PT = tq,PT`+ φ1t
w
q + φ2tacc, ∀q ∈ Q′, (4.43)

where tq,PT is the in-vehicle travel time per kilometer in period q (described below), ` is
the average trip length, twq is the waiting time at the bus stop, tacc is the access time,
defined as the time to walk to and from the bus stop, and φ1 and φ2 are the weights
capturing the dislike of travelers towards waiting and walking times, respectively. The
waiting time twq is a fraction ν of the interval between buses, i.e.,

tqw =
ν

fq
, ∀q ∈ Q′, (4.44)

where fq is the bus frequency [bus/h] in period q. The access time tacc is calculated from
the average walking distance to access the bus stop (1/4s), where s represents the number
of equidistant stops per kilometer. Hence, as the average walking distance to access the
bus stop is the same as the average distance from the bus stop to the destination, the
access time is obtained as

tacc =
1

2sVw
, (4.45)

where Vw is the walking speed.

The in-vehicle travel time by bus in period q (per kilometer) in the case of dedicated bus
lanes is given by

tq,PT = tf

(
1 + a

(
fqυ(kPT)

mC

)b)
+ sPT

(
Dq,PT

HqfqsPT
tsb + td

)
, ∀q ∈ Q′. (4.46)
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The first term on the right-hand side corresponds to the time that a bus spends while
in motion, where tf is the free-flow travel time, a and b are the parameters of the BPR
function (see (4.14)), kPT represents the bus capacity [travelers/bus] and υ(kPT) is a
linear function on kPT providing an equivalence factor between buses and cars which
increases with kPT, C is the capacity of the road [cars/h] and m denotes the fraction of
C dedicated to bus lanes. The second-term on the right-hand side is the time spent at
bus stops, and it is given by the number of stops each bus makes in each kilometer (sPT)
multiplied by the time spent at each bus stop. The number of passengers boarding at
each bus stop is Dq,PT/(Hqfqp), where Dq,PT is the bus demand at period q, Hq is the
length (in hours) of the time period, fq is the bus frequency and tsb is the time each
passenger takes to board a bus. Finally, td is a non-linear function representing bus
congestion at the bus stop, i.e., buses queuing to get in and out of the bus stop (this
function is not specified in Basso and Silva, 2014 and has been extracted from the code
used by the authors for their experiments).

The generalized travel time for car in period q [h] is given only by the in-vehicle travel
time

gtq,PMM = tq,PMM · `, (4.47)

where tq,PMM is the travel time per kilometer. It is calculated as

tq,PMM = tf

(
1 + α

(
`Dq,PMM/(Hqa)

(1−m)C

)β)
, ∀q ∈ Q′, (4.48)

where ` ·Dq,PMM/(H
q%) is the car flow [cars/h], as Dq,PMM is the car demand at period

q per kilometer, Hq the period duration in hours, ` is the average trip length and % is
the (constant) car occupancy. Notice that the road capacity (number of lanes) available
to cars is obtained as (1−m)C (m is the fraction of lanes dedicated to buses).

4.5.2 Optimization problem

The planner can optimize the design variables of the bus system: frequency fq [bus/h] in
each period q ∈ Q′, bus capacity kPT [travelers/bus] and number of equidistant bus stops
per kilometer sPT. Notice that these variables are discrete in nature, but are defined as
continuous variables in Basso and Silva (2014). The planner can also set the prices: the
bus fare for each period pq,PT [$/km] and the congestion toll for cars for each period
pq,PMM [$/km]. Another decision that is included in the problem is the fraction m of the
capacity that is exclusively dedicated to bus lanes.

The objective function to be maximized is an unweighted social welfare defined for one
kilometer of a day of operation. It includes the consumer surplus and the difference be-
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tween the revenues obtained from congestion tolls and bus fares and the implementation
costs of the policy in place.

As described in Section 4.3.1, the consumer surplus in the nested logit model is calculated
using formula (4.5) with CPGF (4.6), and can be expressed in monetary units as follows:

CS =
N∑
n=1

 1

µ

θn
−βcn

ln
∑
q∈Q

eµAn(q)

 , (4.49)

where µ is the upper-level scale parameter of the nested logit model, θn is the size of
income group n, βcn is the cost sensitivity parameter associated with income group n, and
An(q) are the expected utilities of the nests, defined as Ano-travel,n = ASCno-travel,n,∀n
for the no-travel nest, and with the following expression for the other nests:

An(q) = ln
∑

j∈{PMM,PT}

eVqjn , ∀q ∈ Q′. (4.50)

The revenue obtained from bus fares and congestion tolls is given by:

G =
∑
q∈Q′

Dq,PT · pq,PT · `+
∑
q∈Q′

Dq,PMM · pq,PMM
`

%
(1− κ), (4.51)

where κ is a fraction of the car revenue that represents the implementation costs of
congestion pricing.

The operating costs of the bus system per day per kilometer are calculated as a function
of the bus fleet (BPT), the total number of vehicle-kilometers of each period (Λq), and
the bus size (kPT) as follows:

OC = OCB(kPT)BPT +
∑
q∈Q′

OCΛ(kPT)Λq. (4.52)

The first term of the right-hand side mainly corresponds to labor and vehicle-capital
expenses, and the second term captures operational expenses. The required fleet of
vehicles is defined as BPT = maxq∈Q′{fq · tq,PT}, and it is assumed that the peak period
is the one that characterizes the amount of buses required for operation, i.e., BPT =

fpeak · tpeak,PT. The daily number of vehicles per kilometer is obtained as Λq = Hqfq for
q ∈ Q′. The functions OCB(kPT) and OCΛ(kPT) are linear functions that respectively
transform BPT and Λq, ∀q ∈ Q′, into monetary units.

The final expression for the social welfare is

SW = CS + mcpf (G−OC−OCdl) , (4.53)
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where OCdl is the (constant) cost of implementing and operating dedicated bus lanes
(with respect to the mixed traffic case), and mcpf > 1 refers to the marginal cost of
public funds, which are considered in Basso and Silva (2014) to capture the fact that
such funds are costly, i.e., this term works as a proxy for cost inefficiencies induced by
subsidies.

The frequency fq is constrained to be positive and less than the capacity of bus stops for
period q. The capacity of a bus stop is a function of boarding and alighting times that
depend on many of the optimization variables. The bus fare pq,PT and the congestion
toll pq,PMM are restricted to be positive in both periods. In this application, as the road
capacity is equal to three lanes, the fraction m of the capacity dedicated to bus lanes
can only be one or two thirds (there has to be at least one lane for cars). The bus
capacity kPT is equal to the passenger load because the crowd dislike by travelers is not
incorporated in the nested logit model and a larger capacity will worsen the objective
function. Hence, the bus size is calculated as

kPT = max
q∈Q′

Dq,PT · `
fqHq

. (4.54)

We denote by ρ a fixed percentage of subsidization of the bus system. The following
constraint imposes the cost of the bus system that is not subsidized to be self-financed:∑

q∈Q′
Dq,PTpq,PT` = OC(100− ρ)/100. (4.55)

Notice that ρ = 0 means that no subsidization is assumed.

4.5.3 Linear formulation

In order to simplify the approach, we assume that the bus capacity kPT and the number
of equidistant stops per kilometer sPT are fixed to the optimal values obtained in Basso
and Silva (2014). We provide the values in Section 4.5.4 as they are specific to the two
situations being tested. Furthermore, as the road capacity of the considered application
has only three lanes, the fraction m of the lanes dedicated exclusively to buses can only
take two values (1/3 or 2/3), so we also fix its value to the reported optimal value (1/3).
Notice that it is possible to include these decisions as binary variables in the formulation.
Hence, as in Section 4.4, the design variables are the congestion toll, the PT fare and
the frequency, i.e., pq,PMM, pq,PT and fq, ∀q ∈ Q′. As the capacity of the modes is
not explicitly considered in Basso and Silva (2014), we formulate the problem without
capacity constraints.

For the linear formulation of the systematic parts of the utility functions (4.39), we need
to determine linear expressions on the travel time and cost as functions of the endogenous
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variables and the demand. The in-vehicle travel time by bus is linearly characterized for
each iteration k of the iterative approach described in Algorithm 4.1 with the linear
representation of the frequency (see (4.1)–(4.2)) and the demand Dk

q,PT as

tkq,PT =tf

(
1 + a

(
υ(kPT)

mC

)b( L∑
`=1

(f`q)
bτ`q

))

+
Dk
q,PT

HqsPT

(
L∑
`=1

1

f`q
τ`q

)
tsb + sPT · tkd, ∀q ∈ Q′, (4.56)

where the demand Dk
q,PT is calculated with the choice variables obtained in the previous

iteration w̄k−1
qinr, i.e.,

Dk
qi =

1

R

N∑
n=1

R∑
r=1

θnw̄
k−1
qinr, ∀q ∈ Q′, i ∈ {PMM,PT}. (4.57)

Notice that the only decision variable that appears in (4.56) is τ`q, which are the binary
variables that define the frequency associated with period q (fq). The remaining elements
are either constant values or are fixed to the values obtained at the previous iteration of
the iterative approach. This is the case of the non-linear function td, that depends on
the frequency fq and the demand Dq,PT. Thus, instead of fixing this function to some
given value, we update td at each iteration by updating the values of the corresponding
variables.

As the waiting time for the bus alternative also depends on the frequency, the linear
representation of (4.44) is given by

tqw =
L∑
`=1

ν

f`q
τ`q, ∀q ∈ Q′. (4.58)

Similar to tkq,PT, the travel time by car (4.48) is linearized by

tkq,PMM = tf

1 + α

(
`Dk

q,PMM/(Hqa)

(1−m)C

)β , ∀q ∈ Q′. (4.59)

As the demand Dk
q,PMM is provided by the iterative algorithm (given by (4.57)), this

expression does not contain any decision variable of the linear formulation.

With respect to the simulation draws, we note that in the nested logit model it is not
possible to draw directly from the random term because of the correlation structure
between the alternatives. As is done in Bortolomiol et al. (2019), we exploit the logit-
like formulation of MEV models as an approximation. We define V ′qin, ∀q ∈ Q′, i ∈
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{PMM,PT}, n as

V ′qin = Vqin + log

µ exp(Vqin(µq − 1))

∑
j∈Mq

exp(Vqjnµm)
µ
µq
−1

 , (4.60)

where Mq represents the set of alternatives included in nest q, µ is the scale parameter
associated with the upper-level nest, and µq is the scale parameter associated with the
lower-level nest (as described in Section 4.5.1). This characterization of the systematic
term of the utility allows us to draw from an extreme value distribution as in a logit
model.

Expression (4.60) is non-linear due to the presence of the endogenous variables pq,PT,
pq,PMM and fq (which are present in Vqin via the travel cost and the travel time). Thanks
to Algorithm 4.1, we can overcome this issue by fixing the values of the endogenous
variables in the logsum term (first to some initial values and then to the values reported
by the optimal solution at the previous iteration) and only optimize for those in Vqin.

For the measure of social welfare, the consumer surplus (4.49) expressed in monetary
units is calculated as follows:

CS =
1

R

N∑
n=1

θn
−βcn

R∑
r=1

Unr, (4.61)

The revenue obtained from bus fares and congestion tolls is calculated with the variables
ηqinr, i.e.,

G =
∑
q

N∑
n=1

R∑
r=1

ηq,PT,nr · `+
∑
q

N∑
n=1

R∑
r=1

ηq,PMM,nr ·
`

%
(1− κ). (4.62)

Finally, the operating costs (4.52) are obtained by calculating the fleet of vehicles BPT as
the product fpeak · tkpeak,PT, which leads to a linear expression thanks to characterization
of fq via binary variables, and the daily number of vehicles per kilometer Λq, which is
already a linear expression on fq.

With respect to the constraints, as the bus size kPT is assumed to be given, we express
(4.54) as an inequality constraint on fq, i.e.,

fq ≥
Dq,PT · `
kPTHq

, ∀q ∈ Q′, (4.63)

where Dqi is obtained as in (4.57) with the current choice variables, i.e.,

Dqi =
1

R

N∑
n=1

R∑
r=1

θnwqinr, ∀q ∈ Q′, i ∈ {PMM,PT}. (4.64)
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Constraint (4.55) is linearly expressed by considering the expression on the revenue ob-
tained from bus fares (first term in (4.62)) and the linear representation of the cost OC
previously described. The linear formulation of the optimization problem is included in
Model 4.7 (we denote by aqi and bqi the lower and upper bound on pqi, respectively).

SW (Dk) = max CS + mcpf (G−OC−OCdl) (4.65)
s.t. Uqinr = V ′qin + ξqinr ∀i ∈ C, q ∈ Q, n, r (4.66)

V ′qin = Vqin + log

µ exp(Vqin(µq − 1))

∑
j∈Mq

exp(Vqjnµm)
µ
µq
−1

 ∀i ∈ C, q ∈ Q, n (4.67)

Vqin = ASCqin + βcncqi + βtqingt
k
qi ∀i ∈ C, q ∈ Q, n (4.68)

cq,PMM = (pq,PMM + coc)
`

%
∀q ∈ Q′ (4.69)

cq,PT = pq,PT · ` ∀q ∈ Q′ (4.70)

gtkq,PMM = tkq,PMM · ` ∀q ∈ Q′ (4.71)

gtkq,PT = tkq,PT · `+ φ1t
w
q + φ2tacc ∀q ∈ Q′ (4.72)

tkq,PT = tf

1 + a

(
υ(kPT)

mC

)b Lf∑
`=1

(f`q)
bτ`q

+
Dk
q,PT

Hqs

 Lf∑
`=1

1

f`q
τ`q

 tsb + sPT · tkd ∀q ∈ Q′ (4.73)

tqw =

Lf∑
`=1

ν

f`q
τ`q ∀q ∈ Q (4.74)

tkq,PMM = tf

1 + α

(
`Dk

q,PMM/(Hqa)

(1−m)C

)β ∀q ∈ Q′ (4.75)

fq ≥
1
R

∑N
n=1

∑R
r=1 θnwq,PT,nr. · `
kPTHq

∀q ∈ Q′ (4.76)

Uqinr ≤ Unr ∀i ∈ C, q ∈ Q, n, r (4.77)
Unr ≤ Uqinr +Mqinr(1− wqinr) ∀i ∈ C, q ∈ Q, n, r (4.78)∑
i∈C

∑
q∈Q

wqinr = 1 ∀n, r (4.79)

aqiwqinr ≤ ηqinr ∀i ∈ C, q ∈ Q′, n, r (4.80)
ηqinr ≤ bqiwqinr ∀i ∈ C, q ∈ Q′, n, r (4.81)
pqi − (1− wqinr)bqin ≤ ηqinr ∀i ∈ C, q ∈ Q′, n, r (4.82)
ηqinr ≤ pqi − (1− winr)aqi ∀i ∈ C, q ∈ Q′, n, r (4.83)

fq =

Lf∑
`=1

f`τ`q ∀q ∈ Q′ (4.84)

CS =
1

R

N∑
n=1

θn
−βcn

N∑
r=1

Unr (4.85)

G =
∑
q∈Q′

N∑
n=1

R∑
r=1

ηPT,qnr · `+
∑
q∈Q′

N∑
n=1

R∑
r=1

ηPMM,qnr ·
`

%
(1− κ) (4.86)

OC = OCB(kPT)BPT +
∑
q∈Q′

OCΛ(kPT)Λq (4.87)

∑
q∈Q′

Dq,PTpq,PT` = OC(100− ρ)/100 (4.88)

BPT = fpeak · tkpeak,PT (4.89)

wqinr, τ` ∈ {0, 1}, ∀i ∈ C,∀q ∈ Q, n, r, ` (4.90)

Model 4.7: Linear formulation of the dedicated bus lanes policy (Basso and Silva, 2014)

4.5.4 Numerical results

In this section, we test the linear formulation introduced in Section 4.5.3 in the context
of dedicated bus lanes with the simulated data from the city of Santiago (Chile) used in
Basso and Silva (2014). As is done in Section 4.4, we define a base case and an optimized
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case and compare the corresponding difference in consumer surplus with the one obtained
in Basso and Silva (2014).

The base case consists on the dedicated bus lanes policy without congestion pricing,
i.e., pq,PMM = 0, ∀q ∈ {peak, off-peak}, and the optimized case adds to the dedicated
bus lanes policy the congestion pricing and the public transportation subsidization. We
use the same notation as in Basso and Silva (2014) and denote the policies by DL and
DL+CON+SUB, respectively. In both cases, the bus fare is assumed to be the same for
both periods, i.e.,

ppeak,PT = poff-peak,PT. (4.91)

As mentioned in Section 4.5.3, the variables kPT (bus capacity) and sPT (number of
equidistant stops per kilometer) are fixed to the optimal values obtained in Basso and
Silva (2014). More precisely, kPT = 152.9 and sPT = 3.04 in DL and kPT = 159.2 and
sPT = 3.08 in DL+CON+SUB.

We consider Algorithm 4.1 with the flows of PMM and PT for both periods and the
endogenous variables pq,PT, pq,PMM and fq initialized to the initial values considered
by the authors for their numerical experiments. We also consider the same subsidy for
the DL+CON+SUB policy (ρ = 55) and the same price bounds for the congestion toll
and the bus fare, i.e., pq,PMM, pq,PT ∈ [0, 0.02], ∀q ∈ {peak, off-peak}. We set L = 6

frequency levels for both periods, with fpeak ∈ {41, 42, 43, 44, 45, 46} and foff-peak ∈
{13, 14, 15, 16, 17, 18}.

Figure 4.8 compares the difference in consumer surplus between DL and DL+CON+SUB
for the 3 considered replications and different values of R. As the number of individuals
is small (N = 5), it is possible to test the problem with a larger number of draws than
in Section 4.4 for a similar computational time. Furthermore, given the large sizes of
the groups, a higher variability across simulation draws is expected, and therefore larger
values of R might be required. The reference line indicates the difference in consumer
surplus obtained in Basso and Silva (2014).

We can observe that the linear approximation of the consumer surplus gets closer to the
reference value as the number of draws increases, as expected. Even though we obtain a
rather low difference for one of the replications for R = 250, the results are in line with
the reference value, especially for R = 500 and R = 1000.

Table 4.7 shows the average computational time of Algorithm 4.1 for the problem in
Model 4.7 for three replications. As the population is composed of only 5 individuals
(each of them representing a group with homogenous behavior), the computational times
are expected to be low. The increase in computational time from DL to DL+CON+SUB
is remarkable, as the average computational time rises from 1.25 min to 17 min for
R = 500 and from 3 min to 1.8 h for R = 1000.
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Figure 4.8: Difference in consumer surplus [$/day-km] between DL and DL+CON+SUB
for the 3 considered replications (independent generation of draws, labeled as 1-3) for
R ∈ {100, 250, 500, 1000} (ref. represents the value reported by Basso and Silva (2014))

Table 4.7: Average computational time (min) of Algorithm 4.1 for 3 replications (in-
dependent generation of draws) for the problem in Model 4.7 and the two evaluated
policies

R DL DL+CON+SUB
100 0.103 0.505
250 0.922 3.47
500 1.25 16.9

1000 2.76 106.0

Table 4.8 includes the reference flows [veh/h] and the range of flows defined by the
different solutions obtained with the three replications for the linear formulation and
R = 1000. Similarly, Table 4.9 presents the reference values of the design variables (toll,
fare and frequency) and the range of values defined by the different solutions obtained
with the 3 considered replications for R = 1000. Notice that the toll is not defined in
the DL policy for any of the periods.

We observe that the flows are approximated by the linear formulation, with a slight
tendency in the off-peak period for narrower ranges and closer values to the reference
values. Even though the DL+CON+SUB policy allows for a congestion toll, it is set
to 0 by both models. The bus fare is also reproduced by the linear formulation, and
the frequency levels reported by the different solutions are in line with the continuous
reference ones.

Finally, Figure 4.9 illustrates a distributional analysis with respect to the 5 income
groups, which are labeled from the lowest to the highest. We observe that the lower
the income, the higher the benefit obtained by the traveler from the implementation of
DL+CON+SUB with respect to DL, which is expected.
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We notice that the linear formulation here proposed allows to incorporate decisions that
are discrete in nature as integer variables, i.e., we do not need to assume that such vari-
ables are real-valued in order to derive the formulation. Furthermore, the methodology
we present allows to accommodate any DCM, whereas Basso and Silva (2014) rely on
the closed-form expression of the consumer surplus of the nested logit model. Although
not explored in this experiment, additional assumptions such as capacity requirements
on a transportation mode could be incorporated in the linear formulation.

Table 4.8: Comparison of the range of flows [veh/h] obtained with 3 replications (in-
dependent generation of draws) with the results obtained in Basso and Silva (2014) for
R = 1000

Mode Period DL DL+CON+SUB
Reference Linear Reference Linear

PMM peak 380.7 [376.3,394.3] 352.8 [346.9,357.7]
PMM off-peak 196.5 [198.5,201.6] 174.3 [172.0,174.4]
PT peak 643.6 [614.2,641.2] 679.3 [652.4,681.3]
PT off-peak 241.1 [236.9,249.9] 262.7 [260.2,274.7]

Table 4.9: Comparison of the range of values of the design variables obtained with 3
replications (independent generation of draws) with the results obtained in Basso and
Silva (2014) for R = 1000

Mode Period Variable DL DL+CON+SUB
Ref. Lin. Ref. Lin.

PMM peak toll [$/km] NA NA 0 0
PMM off-peak toll [$/km] NA NA 0 0
PT peak fare [$/km] 0.047 [0.0466,0.0473] 0.021 [0.0206,0.021]
PT peak freq. [bus/h] 42.1 {41,42} 42.7 {41,42,43}
PT off-peak fare [$/km] 0.047 [0.0466,0.0473] 0.021 [0.0206,0.021]
PT off-peak freq. [bus/h] 15.8 {16,17} 16.5 {17,18}
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Figure 4.9: Average variation in consumer surplus [$/pax] between DL and
DL+CON+SUB for the 3 considered replications (independent generation of draws) for
R = 1000
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4.6 Concluding remarks

In this chapter, we show that the choice-based optimization framework can accommodate
other types of optimization problems. We address the problem of pricing and design of a
transportation system such that a measure of social welfare is maximized. Thanks to the
linear representation of DCM, an approximation of the consumer surplus, which defines
the social welfare, is indeed readily available from our formulation. We also propose
linear formulations of other relevant features in this context: a budgetary constraint
that enables to incorporate a revenue recycling mechanism and a formulation of the
travel time that depends on the demand in order to capture congestion effects.

As the travel time is assumed to depend on the demand, and travel time is one of the
variables explaining the choice of individuals (and therefore determines the demand),
there is a fixed-point problem. In order to test the methodology, we define an iterative
algorithm for the resulting optimization problem, and we develop two different case
studies. The former is a semi-synthetic case study that considers an Integrated Choice
and Latent Variable (ICLV) model to explain the behavior of users. The objective is to
evaluate the effect of the introduction of a congestion toll on the modal split and the
other design variables of the system with respect to its current state. The latter consists
of a linearization scheme for one of the policies being tested in a real-life case study from
the literature that relies on a highly non-linear formulation. The objective is to provide
general guidelines on the usage of the proposed methodology in such applications.

The described modeling framework allows to decide on the features of a transportation
system while accounting for the impact of such decisions on the social welfare and modal
split, which enables the evaluation of different policies with respect to the criteria es-
tablished by the transportation authority. In Section 4.4, the introduction of a toll for
PMM leads to an increase of the consumer surplus and a modal shift from PMM to PT.
In Section 4.5, the same outcome is obtained by introducing a PT subsidization to the
dedicated bus lanes policy.

The conducted experiments show that a larger number of draws is required for the ob-
jective function to stabilize (in comparison with the profit maximization problem, for
instance), which is expected because of the definition of the consumer surplus via the
expected maximum utilities. Nevertheless, in the absence of capacity constraints, and
thanks to the implementation of additional strategies such as the grouping of individuals,
it is possible to enlarge the number of draws without inducing an excessive computa-
tional burden. Furthermore, the Lagrangian decomposition scheme developed in Section
3.5 could be adapted to handle the welfare-maximization optimization problem for larger
instances, and/or when additional modeling features are included, such as capacity con-
straints.
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The methodology explained in this chapter provides a general framework for the evalua-
tion of alternative transportation policies with respect to a measure of social welfare and
distributional analyses. It allows to assess the nature of a policy (regressive or progres-
sive), and to identify the segments in the population that are most adversely impacted.
Moreover, the model offers a great flexibility when it comes to incorporate other features
of a transportation system, such as revenue recycling mechanisms, and to accommo-
date advanced DCM that were typically not considered because of the complexity of the
associated welfare measures.
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Conclusion

5.1 Main findings and implications

This thesis proposes a general modeling framework for the integration of discrete choice
models (DCM) in mixed-integer linear problems (MILP) in order to provide a disaggre-
gate demand representation that captures the interplay between the behavior of indi-
viduals and the supply-related decisions to be optimized. The introduced methodology
is able to keep the sophistication of DCM while ensuring that the resulting formulation
remains operational. Furthermore, the development of algorithms that exploit the de-
composable structure of the model enables to deal with its complexity in order to enhance
its tractability. The applications explored in this thesis illustrate not only the relevance
of accounting for the interactions between the demand and the supply actors, but also
the flexibility of the approach when it comes to accommodate distinct modeling features
in a variety of different contexts.

Chapter 2 introduces a choice-based optimization framework for the inclusion of ad-
vanced DCM into MILP. We have proposed a formulation that relies on simulation to
express the behavioral preference structure of individuals directly in terms of the util-
ity functions (instead of the associated probability expressions), which leads to a set of
mixed-integer linear constraints that can be embedded in any MILP formulation. The
interaction between the demand and the supply-related decisions is modeled with the
so-called endogenous variables. They represent the decisions that have an impact on
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the behavior of individuals, and must linearly appear on the utility functions for their
insertion in the MILP model.

By means of the revenue maximization problem, the problem of an operator that wants
to set a pricing strategy such that its revenue is maximized, we show how the modeling
framework can be employed. We are able to include capacity constraints on the services
being offered and provide alternative formulations for the pricing strategy to be proposed
to the individuals. The case study considered as proof-of-concept shows how an advanced
DCM from the literature can be integrated in the revenue maximization problem as
such. It also sheds light on the versatility of the framework by testing different aspects
of the formulation, such as price differentiation by market segmentation, the grouping
of individuals with homogeneous behavior and the maximization of the profit subject
to a capacity allocation strategy. These experiments also exhibit the computational
complexity prompted by the disaggregate demand representation and the simulation-
based linearization of the modeling framework.

Motivated by the fact that these two aspects represent two differentiated dimensions of
the model (the individuals and the simulation draws), in Chapter 3 we rely on decompo-
sition techniques to exploit the decomposable structure of the mathematical formulation.
Again, the revenue maximization problem is considered to characterize the strategies be-
ing explored. Various complicating constraints (i.e., utility functions) that link blocks
of the formulation can be identified. Nevertheless, Lagrangian relaxation on these con-
straints turned out to be unsuitable due to the strong interrelations between the variables
and constraints in the model. In order to overcome this issue, we develop a heuristic
approach based on Lagrangian decomposition that allows to preserve all the original
constraints within the subproblems. We induce decomposition of the formulation by
gathering simulation draws into subsets and generating duplicates of the price variables
for each subset. The grouping of simulation draws is proposed to decrease the number
of introduced price duplicates (instead of one price duplicate per draw), which we show
has an impact on the convergence of the method.

This approach is enclosed in the subgradient method, so that at every iteration the La-
grangian subproblems are solved and feasible solutions of the original optimization prob-
lem are generated. The performed tests show that near-optimal solutions are obtained
in a much reduced computational time (by running only 10% of the computational time
used by the exact method). Moreover, we observe that as long as the subproblems remain
computationally manageable, a large number of draws per subset is recommended, as it
leads to smaller duality gaps for a given running time.

Chapter 4 presents an alternative application of the choice-based optimization framework
in the context of welfare maximization in transportation, where the role of the operator
is taken by a public transportation authority. The key quantitative element of welfare
analysis in the context of DCM, the expected maximum utility, is readily available in
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the model, as it is required to determine the choices of individuals. Thus, it can be
easily included in the objective function to define a measure of social welfare. This
is a significant advantage because it enables not to deal with the complex non-linear
formulations of this quantity as provided by discrete choice theory.

We characterize a model for the pricing and design of a transportation system in the pres-
ence of a revenue recycling mechanism such that the welfare is maximized. The decision
variables of the public transportation authority (road price and public transportation
fare and frequency) are endogenous variables, as they have a direct impact on the modal
split. We test the formulation on two different case studies. The former evaluates the
effect of the introduction of a congestion toll in an urban setting on the modal split and
social welfare, and the latter provides a linearization scheme for a dedicated bus lanes
policy that is tested in a real-life case study from the literature that relies on a highly
non-linear formulation. In comparison with the revenue maximization problem, the con-
ducted experiments show that a larger number of draws is required for the objective
function to stabilize, which is expected due to the definition of the objective function
via the expected maximum utility. This can be addressed with some of the strategies
previously introduced (e.g., grouping of individuals) and by adapting the Lagrangian
decomposition scheme to this problem.

In summary, from a theoretical point of view, we have introduced an operational modeling
framework that enables the integration of DCM in MILP formulations to account for the
interactions between the demand and the supply. We have also proposed an algorithmic
approach based on Lagrangian decomposition that aims at decreasing the computational
burden associated with the modeling framework while being able to generate feasible
solutions with a low optimality gap. From a practical point of view, we have illustrated
the extent of the framework by extensively analyzing two general optimization problems
that arise in a great deal of contexts. Furthermore, we have shown a variety of modeling
features that can be accommodated in the framework. Hence, the proposed methodology
provides a tool for researchers and practitioners to rely on a more accurate representation
of the demand when planning and designing for their systems.

5.2 Future research directions

The current framework can be seen as a Stackelberg problem in which the (single) oper-
ator plays the leader role and the individuals collectively play the follower role. Indeed,
the leader knows how the follower will respond to any potential decision being made
thanks to the behavioral assumption as provided by DCM. In the context of transporta-
tion, for instance, a single supplier of transportation services or regulating agency aims
at determining an optimal operation plan, rates, and/or controls while taking into ac-
count user response (Fisk, 1984). Hence, the leader’s optimization problem contains a
nested optimization task that corresponds to the follower’s optimization problem, known
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as upper-level and lower-level optimization task, respectively, which define a bilevel pro-
gramming problem. In this case, the problem associated with the leader (operator) is the
optimization of an aggregate performance of the system on the supply-related decisions,
and the follower’s problem (individuals) is to select the alternative at each scenario such
that the utility is maximized.

As bilevel programming problems are hard to solve, reformulations as a one-level math-
ematical programming problem have been proposed. The two major reformulations that
can be found in the literature are Karush-Kuhn-Tucker (KKT) reformulation and the
optimal value reformulation (Dempe and Zemkoho, 2013). KKT reformulation (Dempe
and Dutta, 2012), which is a mathematical programming problem with complementarity
constraints (MPCC), replaces the follower’s problem by its KKT conditions provided
that it is convex in the lower-level variables and an appropriate constraint qualification
is satisfied. This reformulation introduces new variables, and therefore the two problems
are not locally equivalent. The optimal value reformulation (Outrata, 1988) is obtained
by replacing the lower-level solution set by its description via the optimal value function,
which leads to a reformulation completely equivalent to the initial problem. It should
be noticed that the optimal value function is typically non-smooth. Specific reformula-
tions have recently received attention (e.g., Li and Guo, 2017 for mixed integer bilevel
programming problems).

We find multiples examples of DCM present in the lower-level optimization task in traffic
control, where the demand model refers to the route choice behavior (e.g., Sun et al.,
2006 in optimal signal control). In the methodology described in this thesis, a set of
mixed-integer linear constraints characterizing the DCM is embedded in a single-level
formulation associated with the operator. Nonetheless, and given the increasing interest
on bilevel programming problems due to their presence in several practical applications
and the potential of evolutionary algorithms tackling these problems (Sinha et al., 2017),
the modeling framework could be as well investigated and extended from that perspective.

The interactions between the individuals and the supply-related decisions to be opti-
mized are not the only interactions that exist in the system. The predominant industry
structure in the real world is oligopolistic, where a certain number of operators compete
for the same pool of individuals and each operator aims at optimizing its own perfor-
mance function. Steps in this direction have already been taken in Bortolomiol et al.
(2019). They model competition among operators with a mixed-integer optimization
model based on the fixed-point iteration algorithm, and are able to identify equilibrium
solutions (i.e., stationary states of the system where no operator has an incentive to
change their decisions) of oligopolistic markets in two transportation case studies.

DCM are fundamentally grounded in individual behavior, and do not take into account
the interdependence that exists between the individuals’ choices. In reality, however,
individuals are influenced, for instance, by people of similar socioeconomic status who are
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nearby. These influences are especially relevant in the context of transportation, as the
choices of groups such as households or couples play an important role in travel demand
analysis. From a modeling point of view, these social interactions can be incorporated
in the utility function in the way described by Brock and Durlauf (2001). They consider
that the utility associated with each individual is composed of a private utility associated
with the own choice and a social utility that depends on other individuals’ choices. The
choice-based optimization framework allows to accommodate social influence strategies
thanks to the choice variables. However, we expect that the presence of such variables
in the utility functions will increase the complexity of the model, and simplifications on
the way social interactions are represented might need to be made.

In addition to the interactions between the actors, it might also be relevant to account
for the evolution of the system over time. The operator may change its decisions over
time (e.g., an airline might adjust it prices as a function of the remaining number of
seats), and the choices of individuals also depend on the evolution of the market and
personal experiences in the past, and might even include speculating strategies towards
the future. Dynamics are specially relevant in revenue management (RM), as both dy-
namic pricing and dynamic assortment customization have the potential to significantly
increase revenue (Bernstein et al., 2015, Talebian et al., 2014). Hence, adding a time
horizon to the framework will enable the operators to gain additional control over its
decisions and will provide a more realistic representation of the decision making process
of individuals. Moreover, adaptive learning strategies (Hopkins, 2007) could as well be
incorporated to reevaluate the behavior of individuals as they might make use of some
learning rules when they are faced to repeated decision tasks. Again, we expect the inclu-
sion of dynamic interactions to increase the complexity of the formulation, especially if
a refined time discretization is assumed. Furthermore, it might be very data demanding.

As the modeling framework considers more interactions, the necessity for heuristic algo-
rithms to speed up the solution approach becomes more apparent. We have shown that
Lagrangian decomposition provides a relevant scheme to address the tractability of the
model, but other techniques could also be explored or even combined. For instance, due
to the presence of integer (binary) variables in the formulation, Benders decomposition
strategies could also be investigated (e.g., capacity as a decision variables, as it entails
a reduced set of binary variables). Moreover, as discussed in Chapter 3, routines that
parallelize the solving of the decomposed subproblems could be implemented in order to
reduce the total computational time. Additionally, variance reduction methods, such as
control variates or importance sampling can be carried out in order to reduce the number
of simulation draws while preserving a certain degree of precision of the model.

We are convinced that many real-world applications can benefit from the procedures
developed in this thesis. The choice-based optimization framework allows to simultane-
ously consider performance indicators of the operator and measures of social welfare and
distributional analysis that assess the level of satisfaction of individuals. We highlight
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two relevant examples in the field of transportation: overbooking strategies in airlines
and rebalancing operations in vehicle sharing systems.

An important result drawn from theoretical models and empirical research in revenue
management in the context of airlines is that overselling can effectively counteract rev-
enue losses due to passenger no-shows and late cancellations. In practice, intentionally
overbooking is an important strategy for airlines to manage their perishable seats, but it
comes with the challenge of balancing the possible consequences of spoilage and denied
boarding. Indeed, ineffective and poorly executed overbooking situations can be costly,
causing not only financial losses, but also damaging customer goodwill (Ma et al., 2019).

Vehicle sharing systems are currently available in many cities around the world, and can
be easily booked by users through mobile phone applications. They provide a convenient
and affordable service, and in the case of car sharing systems, they also give drivers an
incentive to minimize their vehicle use and to rely on alternative travel options (Litman,
2000). Existing research has mainly focused on vehicle relocation and rebalancing strate-
gies (Huang et al., 2018), but multiple works in the literature stress that the estimation
of the spatial and temporal distribution of the demand is an essential aspect that needs
to be incorporated for a better performance of the system (Kaspi et al., 2016, Boyacı
et al., 2015).

In conclusion, the models and algorithms developed in this thesis open the door to a
great deal of potential research that will give rise to operations research models to have
access to the powerful and sophisticated models developed using discrete choice theory.
We believe that this is an important step towards building a bridge between the two
communities that will enhance their synergies.
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Notations of the choice-based optimization

framework

This appendix includes the main notations of the choice-based optimization framework
introduced in Chapter 2. The same notations are kept in the other chapters.
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Table A.1: Main notations used in the choice-based profit maximization problem (sets,
parameters, variables and aggregated quantities). For the sake of simplicity, we redefine
the set of alternatives C as the set of duplicates associated with each capacity level q,
and we therefore denote ciq, fiq and viq simply by ci, fi and vi, respectively.

Name Description Section
C Set of all potential alternatives (indexed by i, i = 0 denotes the opt-out) 2.2.1
N Number of individuals in the population (indexed by n ≥ 1) 2.2.1
Cn Set of the alternatives considered by individual n 2.2.1
R Number of draws from the distribution of εin (indexed by r) 2.2.2
Q Number of capacity levels (indexed by q) 2.2.3
J Number of alternatives in C 2.2.3
Lin Number of binary variables characterizing pin (indexed by `) 2.3
ξinr Draw from the distribution of εin 2.2.2
`inr Lower bound on Uinr 2.2.2
minr Upper bound on Uinr 2.2.2
`nr Smallest lower bound across alternatives 2.2.2
mnr Largest upper bound across alternatives 2.2.2
Minr minr − `nr 2.2.2
Mnr mnr − `nr 2.2.2
ci Capacity of alternative i 2.2.1
k Number of decimals associated with pin (precision) 2.3
ain Lower bound on pin (continuous case) or on 10kpin (discrete case) 2.3
bin Upper bound on pin (continuous case) or on 10kpin (discrete case) 2.3
fi Fixed cost associated with alternative i 2.3
vi Cost per sold unit of i 2.3
Uin Utility associated with alternative i by individual n 2.2.1
Vin Deterministic part of the utility function Uin 2.2.1
εin Error term of the utility function Uin 2.2.1
Uinr Utility associated with alternative i by individual n in scenario r 2.2.2

yin Availability at operator level of alternative i to individual n 2.2.1,
2.2.2

yinr Availability at scenario level of alternative i to individual n in scenario r 2.2.2
zinr Discounted utility associated with alternative i of individual n in scenario r 2.2.2
winr Choice variable associated with alternative i by individual n in scenario r 2.2.2
Unr Highest value of zinr 2.2.2
pin Price that individual n has to pay to access alternative i ∈ Cn \ {0} 2.3
ηinr Continuous variable capturing pinwinr (continuous case) 2.3
λin` Binary variable characterizing pin (discrete case) 2.3
αinr` Binary variable capturing λin`winr 2.3

Di Expected demand of alternative i 2.2.1,
2.2.2

Gi Expected gain obtained from alternative i ∈ C \ {0} 2.3
Ci Total cost associated with alternative i ∈ C \ {0} 2.3
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Convergence of the choice-based optimization

framework

This appendix outlines the proof of the convergence property described in Section 2.2.5.
The key idea is that the sequence of optimal solutions of the approximated optimization
problems (where the demand is being approximated with the mixed-integer linear for-
mulation proposed in Section 2.2) converges to a feasible solution of the original problem
(where the demand is obtained by relying on the choice probabilities).

Definition of the problems

We consider a general optimization model defined as:

min
xs,xe,D

f(xs, xe, D) (B.1)

subject to D = h(xe), (B.2)

(xs, xe) ∈ X, (B.3)

(xs, xe, D) ∈ Y. (B.4)

The demand model D ∈ R∆ is characterized in constraint (B.2) with a continuous
function:

h : RE −→ R∆

xe 7−→ h(xe) = D.
(B.5)
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Notice that h may also depend on other variables that are exogenous to the optimization
problem (xd) and, therefore, not mentioned here. The objective function f relates the
decision variables to an aggregate performance of the system:

f : RS × RE × R∆ −→ R,
(xs, xe, D) 7−→ f(xs, xe, D),

(B.6)

and is assumed to be continuous. The constraints of the optimization problem are ex-
pressed via sets. We assume that X ⊆ RS × RE is a closed subset that represents the
constraints that do not involve the demand model (integrality constraints can be char-
acterized by this subset), and Y ⊆ RS × RE × R∆ is a closed and bounded subset (and
consequently compact) that represents the constraints that involve the demand model.

In our particular case, we assume that the demand is represented with a discrete choice
model (DCM). Hence, the function h = (h1, . . . , hJ), where J is the number of alterna-
tives in the choice set C, is defined as follows:

hi : RE −→ R

xe 7−→ Di =
∑
n

Pn(i|xdin, xein),
(B.7)

where Pn(i|xdin, xein) is the choice probability as defined in (2.3). Furthermore, we assume
the optimization problem defined in Section 2.2.5. It consists of a linear objective function
f , as defined by (2.32), and the feasible configurations of the variables are identified
by X, which is defined by the linear constraints (2.33) and the (potential) integrality
constraints on a subset of the variables xe and xs (2.35)–(2.36), and Y , which is the
polyhedron defined by the linear constraints (2.34) and the bounds on the variables (2.1)
and (2.37). This specification is motivated by the need to solve to global optimality,
which requires a convex formulation, or better, linear.

We define the approximated optimization problem PR as:

min
xs,xe,D

f(xs, xe, D) (B.8)

subject to D = hR(xe), (B.9)

(xs, xe) ∈ X, (B.10)

(xs, xe, D) ∈ Y, (B.11)

where the demand model is approximated with a continuous function hR:

hR : RE −→ R∆

xe 7−→ hR(xe) =: D.
(B.12)
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It is such that, for each xe ∈ RE , we have

lim
R→∞

hR(xe) = h(xe). (B.13)

We assume that there exists R̄ such that PR is feasible ∀R ≥ R̄, and that at least an
optimal solution exists. We denote it by (xRs , xRe , DR). In the following, when we refer
to R we implicitly assume R ≥ R̄.

The function hR that approximates the demand model in our case is defined as

hiR : RE −→ R

xe 7−→ Di
R =

1

R

∑
n

∑
r

winr,
(B.14)

where winr are the binary variables that determine the choice (see Section 2.2.2). As
discussed in Section 2.2.2, the choice probabilities calculated with the simulation-based
linearization of the DCM converge when R→∞ to the choice probabilities of the DCM
(as a consequence of the law of large numbers). Hence, hR defined by (B.14) satisfies
condition (B.13).

Notice that problems P and PR have a different feasible set. In order for both problems
to have the same feasible set, we define the following penalized versions of the problems.

For a given penalty parameter ck ≥ 0, the penalized version of problem P is denoted by
Qk and defined as:

min
xs,xe,D

qk(xs, xe, D) = f(xs, xe, D) + ck‖D − h(xe)‖ (B.15)

subject to (xs, xe) ∈ X, (B.16)

(xs, xe, D) ∈ Y. (B.17)

Similarly, given a penalty parameter cRk ≥ 0, the penalized version of problem PR is
denoted by QRk and defined as:

min
xs,xe,D

qRk (xs, xe, D) = f(xs, xe, D) + cRk ‖D − hR(xe)‖ (B.18)

subject to (xs, xe) ∈ X, (B.19)

(xs, xe, D) ∈ Y. (B.20)

The penalized problems Qk and QRk are asymptotically equivalent to the original prob-
lems P and PR, respectively, in the sense determined by the following lemma.

Lemma 1 Consider any monotonically increasing sequence {ck}k of penalty parameters
ck ≥ 0, with limk→+∞ ck = +∞. Consider a sequence {(xks , xke , Dk)}k such that, for each
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k, (xks , x
k
e , D

k) is an optimal solution of the penalized problem Qk. Then, each limit point
of the sequence {(xks , xke , Dk)}k is an optimal solution of problem P.

Proof. This result is proven in Theorem 19.2 in Bierlaire (2015). �

Notice that Lemma 1 also applies to each approximation problem PR. In order to
synchronize the penalty parameters across all problems, we use the same sequence {γk}k
for each problem. It is defined such that

γk ≥ ck, (B.21)

γk ≥ cRk , ∀R. (B.22)

As both sequences {ck}k and {cRk }k go to infinity as k goes to infinity, so does the
sequence {γk}k.

Lemma 2 For each k, and each (xs, xe, D) feasible for P, we have

lim
R→∞

qRk (xs, xe, D) = f(xs, xe, D). (B.23)

Proof. We just need to consider the definition of qRk in (B.18) and use the feasibility
of (xs, xe, D) for P and (B.13). We have

‖qRk (xs, xe, D)− f(xs, xe, D)‖ = γk‖D − hR(xe)‖
= γk‖D − hR(xe) + h(xe)− h(xe)‖
≤ γk‖D − h(xe)‖+ γk‖h(xe)− hR(xe)‖. (B.24)

The first term in (B.24) is zero from the feasibility of (xs, xe, D) for P, and the second
term in (B.24) goes to zero when R→∞, from (B.13). �

Asymptotic feasibility

Lemma 3 Denote by (xRs , xRe , DR) the optimal solution of problem PR. As the sequence
{(xRs , xRe , DR)}R is bounded because (xRs , x

R
e , D

R) ∈ Y,∀R, it contains convergent subse-
quences. Consider (x+

s , x
+
e , D

+) any of the accumulation points. Then, (x+
s , x

+
e , D

+) is
feasible for P.

142



Proof. As X and Y are closed, (x+
s , x

+
e ) ∈ X and (x+

s , x
+
e , D

+) ∈ Y . So we just need
to show that D+ = h(x+

e ). We have

|hR(xRe )− h(x+
e )| = |hR(xRe )− hR(x+

e ) + hR(x+
e )− h(x+

e )|
≤ |hR(xRe )− hR(x+

e )|+ |hR(x+
e )− h(x+

e )|. (B.25)

The term |hR(xRe )− hR(x+
e )| in (B.25) converges to 0 by continuity of hR, and the term

|hR(x+
e )− h(x+

e )| in (B.25) converges to 0 by (B.13). Therefore, we have

D+ = lim
R→∞

DR = lim
R→∞

hR(xRe ) = h(x+
e ), (B.26)

where the second equality in (B.26) comes from the feasibility of DR for problem PR. �

Lemma 4 Again, denote by (xRs , xRe , DR) the optimal solution of problem PR and by
(x+
s , x

+
e , D

+) an accumulation point of the sequence {(xRs , xRe , DR)}R. Consider R and k,
and denote by (xRs (k), xRe (k), DR(k)) an optimal solution of QRk . Similarly to PR, denote
by (x+

s (k), x+
e (k), D+(k)) an accumulation point of the sequence {(xRs (k), xRe (k), DR(k))}R

when R→∞. Then,

lim
k→∞

qk(x
+
s (k), x+

e (k), D+(k)) = f(x+
s , x

+
e , D

+). (B.27)

Proof. From the optimality of (xRs (k), xRe (k), DR(k)), we have

qRk (xRs (k), xRe (k), DR(k)) ≤ qRk (xRs , x
R
e , D

R). (B.28)

From the feasibility of (xRs , x
R
e , D

R) for PR, the right hand side of (B.28) is

qRk (xRs , x
R
e , D

R) = f(xRs , x
R
e , D

R),

so that

qRk (xRs (k), xRe (k), DR(k)) ≤ f(xRs , x
R
e , D

R). (B.29)

Consider the left-hand side of (B.28). We have

qRk (xRs (k), xRe (k), DR(k)) = f(xRs (k), xRe (k), DR(k))+γk‖DR(k)−hR(xRe (k))‖. (B.30)

From (B.29), the sequence is bounded from above. Therefore, the second term vanishes
when k →∞, and (xRs (k), xRe (k), DR(k)) becomes asymptotically feasible for PR. Hence,
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from the optimality of (xRs , x
R
e , D

R) for PR and (B.29), we have

f(xRs , x
R
e , D

R) ≤ lim
k→∞

qRk (xRs (k), xRe (k), DR(k))

≤ f(xRs , x
R
e , D

R).

As a consequence, if R→∞, we obtain that

lim
k→∞

qk(x
+
s (k), x+

e (k), D+(k)) = f(x+
s , x

+
e , D

+). (B.31)

�

Asymptotic optimality

Theorem 5 Denote by (x∗s, x
∗
e, D

∗) an optimal solution of problem P and (xRs , x
R
e , D

R)

an optimal solution of problem PR. As the sequence {(xRs , xRe , DR)}R is bounded because
(xRs , x

R
e , D

R) ∈ Y, ∀R, it contains convergent subsequences. Consider (x+
s , x

+
e , D

+) any
of the accumulation points. Then, we have that (x+

s , x
+
e , D

+) is feasible for P and

f(x+
s , x

+
e , D

+) = f(x∗s, x
∗
e, D

∗) (B.32)

so that (x+
s , x

+
e , D

+) is an optimal solution of P.

Proof. The feasibility is shown by Lemma 3. Therefore,

f(x+
s , x

+
e , D

+) ≥ f(x∗s, x
∗
e, D

∗). (B.33)

Consider R and k, and define (xRs (k), xRe (k), DR(k)) an optimal solution of QRk . We de-
note by (x+

s (k), x+
e (k), D+(k)) an accumulation point of the sequence {(xRs (k), xRe (k), DR(k))}R,

when R→∞. From the optimality of (xRs (k), xRe (k), DR(k)), we have

qRk (xRs (k), xRe (k), DR(k)) ≤ qRk (x∗s, x
∗
e, D

∗). (B.34)

For the left hand side of (B.34), we have

lim
R→∞

qRk (xRs (k), xRe (k), DR(k)) = lim
R→∞

f(xRs (k), xRe (k), DR(k))

+ γk lim
R→∞

‖DR(k)− hR(xRe (k))‖

=f(x+
s (k), x+

e (k), D+(k))

+ γk‖D+(k)− h(x+
e (k))‖

=qk(x
+
s (k), x+

e (k), D+(k)). (B.35)
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For the right hand side of (B.34), we use Lemma 2, so that we have

lim
R→∞

qRk (x∗s, x
∗
e, D

∗) = f(x∗s, x
∗
e, D

∗). (B.36)

Thus, combining (B.35) and (B.36) we have

qk(x
+
s (k), x+

e (k), D+(k)) ≤ f(x∗s, x
∗
e, D

∗). (B.37)

From Lemma 4, when k →∞, we have

f(x+
s , x

+
e , D

+) ≤ f(x∗s, x
∗
e, D

∗),

which combined with (B.33) proves the result. �
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