
Towards neural network approaches for
point cloud compression

Evangelos Alexiou*, Kuan Tung*, and Touradj Ebrahimi

Multimedia Signal Processing Group (MMSPG), École Polytechnique Fédérale de Lausanne
(EPFL); Lausanne, Switzerland

ABSTRACT

Point cloud imaging has emerged as an efficient and popular solution to represent immersive visual information.
However, the large volume of data generated in the acquisition process reveals the need of efficient compression
solutions in order to store and transmit such contents. Several standardization committees are in the process of
finalizing efficient compression schemes to cope with the large volume of information that point clouds require.
At the same time, recent efforts on learning-based compression approaches have been shown to exhibit good
performance in the coding of conventional image and video contents. It is currently an open question how
learning-based coding performs when applied to point cloud data. In this study, we extend recent efforts on the
matter by exploring neural network implementations for separate, or joint compression of geometric and textural
information from point cloud contents. Two alternative architectures are presented and compared; that is, a
unified model that learns to encode point clouds in a holistic way, allowing fine-tuning for quality preservation
per attribute, and a second paradigm consisting of two cascading networks that are trained separately to encode
geometry and color, individually. A baseline configuration from the best-performing option is compared to the
MPEG anchor, showing better performance for geometry and competitive performance for color encoding at
low bit-rates. Moreover, the impact of a series of parameters is examined on the network performance, such as
the selection of input block resolution for training and testing, the color space, and the loss functions. Results
provide guidelines for future efforts in learning-based point cloud compression.

Keywords: point cloud, compression, deep-learning, auto-encoder

1. INTRODUCTION

The increase of depth sensors availability that nowadays equip high-performing handheld devices, as well as the
current development of augmented reality (AR) and virtual reality (VR) applications, indicate the increasing de-
mands for flexible 3D content representations that can be efficiently captured, encoded, processed and displayed.
Among the solutions, point cloud imaging has lately attracted a strong interest. The past years, the JPEG and
MPEG standardization bodies have initiated activities focused on this visual data modality, triggering notable
advances in compression technologies. As a result of such efforts, MPEG has developed the first point cloud
compression standard,1 which will facilitate interoperability across devices, and is expected to further assist the
integration of this technology in several daily use-cases.

A point cloud can be defined as a set of points that span in the 3D space, defined by their x, y and z
coordinates. The geometric information is typically accompanied by attributes that are associated with each
point, such as color, normal vectors, curvature values, reflectance, etc. In essence, a point cloud can be considered
as an organized or unorganized data structure, which can be obtained from regular or irregular sampling of the
external surface of a 3D model. The coordinates indicate the spatial position of each sample, while the associated
attributes provide information that better describes the shape (e.g., normal vectors, curvature values), or the
texture (e.g., color, reflectivity) of the underlying continuous surface. Using discrete samples to represent a 3D
model offers high levels of flexibility, while providing the potential of per-point adjustments. Such qualities,

*Both authors contributed equally to this work.
Further author information: (Send correspondence to authors)
E-mail: firstname.lastname@epfl.ch



though, come at a cost of a vast amount of information that is required in order to faithfully represent a 3D
model. Thus, it becomes clear that efficient compression solutions are inevitably needed.

In static point cloud compression, there are different approaches aiming at reducing the data size of geometric
or textural information. Notably, the most popular solutions employ tree data structures, graphs, or patches of
projected views of a model. The first rely on data structures that can efficiently organize the spatial placement
of the points, such as KD-trees and Octrees; the second employ graph arrangements to represent a model
with nodes indicating a point, or a neighborhood; the latter approaches are based on plane projections of a
model that are typically obtained from different perspectives and can be encoded using conventional 2D imaging
compression solutions. Lately, auto-encoding neural network architectures have been proposed to encode point
cloud geometry, extending similar efforts that have preceded in 2D imaging. Despite the fact that this type of
point cloud coding is still at its infancy, the results are very promising, with the current solutions competing, if
not out-performing, state-of-the-art algorithms.

Inspired by the great potentials that neural networks show in learning transforms for compressing visual data
representations, in this study we extend previous efforts by learning geometry and color attributes of point cloud
models. In particular, we initiate by extending a publicly available geometry-only point cloud auto-encoding
solution in learning transforms for a holistic data representation including both geometry and color. We analyse
the performance of this unified network, using widely employed objective quality metrics that focus on geometric
and color degradations. Moreover, we examine the impact of assigning various weights to geometry and color
distortion terms in the loss function, to understand whether an optimal weighting scheme can be found. The
performance of this model is compared to a different architecture that is composed of two separately trained
networks dedicated to geometry and color. Furthermore, the proposed model is benchmarked against a widely-
used coding solution, which denotes the anchor in the recent point cloud compression-related efforts of the MPEG
standardization body. A set of meta-analysis studies is also reported, carried to understanding the impact of
dataset, color space, and loss function selection, among others, in the network performance. Results demonstrate
that the adopted architecture is able to perform competitively with respect to well-established solutions for point
cloud compression, both in the geometry and color domain, especially at low bitrates.

2. RELATED WORK

The prevalent approaches that have been widely explored in the literature for point cloud compression can be
clustered as model-based and projection-based. The first class can be further sub-divided to geometry and
attribute compression, with attribute encoding typically applied on the resulting encoded shape. Geometry
codecs rely on efficient data structures and, most commonly Octrees2 which allow regular grid representations
indicating points position through occupancy maps. Octree-based compression was initially introduced in,3

with a progressive encoding extension described in.4 After Octree decomposition, denser approximations can be
achieved by reconstructing the underlying surface of a model through a “Triangle Soup” (TriSoup) as described
in,5 planar surface models as proposed in6 while also graph-based enhancements and volumetric functions can
be employed as in7 and,8 respectively.

Color attribute encoding using Graph Fourier Transform (GFT) was initially presented in9 and further
extended in,10 by enabling Laplacian sparsity. In,11 the Gaussian Process Transform (GPT) is employed to
exploit geometry correlations, while the Region Adaptive Hierarchical Transform (RAHT) based on the Haar
wavelet transform is introduced in12 offering a high-performance solution with significant complexity reductions.
The above algorithms can be clustered as transform-based. Prediction-based solutions include a 3-D intra
prediction scheme that is based on neighboring blocks and is described in,13 while in,14 a hierarchical structure
is proposed with points belonging to a lower layer being used to predict attributes at a higher layer of details.

Projection-based compression solutions exploit the high performance of 2D imaging codecs, applied on pro-
jected views of point clouds. In,15 the JPEG coding engine is used to compress the colour of points that were
projected in a depth-first tree traversal order. In,14 a patch-based point cloud projection on planar surfaces is
proposed, where the patches are assembled in a video sequence. This work essentially established the basis of the
emerging MPEG Video-based Point Cloud Compression (V-PCC) test model.16 The latter employs HEVC to
encode the two video sequences that are generated to capture geometry and texture information of a point cloud.



Additional metadata to reconstruct the model are compressed separately. For a recent review and taxonomy of
compression algorithms, the interested reader can refer to.17

Recently, deep learning architectures dedicated to compression of visual data representations have been
proposed, showing promising results. The success and efficiency that has been observed in 2D imaging modalities
has driven the interest for extending data driven approaches in point cloud imaging, which denotes a higher-
dimensionality and irregular content representation. Early works on image-based solutions employ recurrent
neural networks enabling iterative residual encoding18 to achieve higher quality. In19 and,20 end-to-end network
architectures that jointly optimize rate and distortion introducing differentiable approximations for quantization
and entropy rate estimation are proposed. The latter work is extended in21 by introducing Variational Auto-
Encoding (VAE) to improve the entropy coding performance. In,22 the application of Principal Component
Analysis (PCA) on the feature maps obtained after the synthesis stage is proposed in order to exploit redundancies
in the latent representation, showing performance improvements.

Regarding deep-learning approaches on point cloud imaging, the majority of current auto-encoding architec-
tures target compressing geometry-only information. In particular, one of the first attempts is reported in,23

proposing a rather simple, yet efficient architecture composed of convolution and de-convolution layers for anal-
ysis and synthesis, respectively. In a more recent work,24 the impact of several parameters added to the initial
network version23 is evaluated through a series of experiments. Among the additions, a hyper-prior model and
deeper transforms, as well as fine tuning of the loss function and adaptive thresholding, were found to improve the
performance. Another early study on the field is presented in,25 which also adopts a small number of convolution
and de-convolution layers for analysis and synthesis. Performance evaluation results show that a larger number
of filters per layer is only beneficial at larger bitrates. The same authors extend their efforts in26 and conduct
rate-distortion performance analysis on the latent space using the same network.25 In,27 the network architecture
is enriched with a hyper-prior and the possibility of explicit quantization via down-scaling and up-scaling, before
and after feeding the latent representation to the VAE module, respectively.

In,28 a deeper auto-encoding architecture is proposed, based on 3D convolution layers stacked with Voxception-
ResNet structures and a hyper-prior implemented as a VAE. Several pre-processing steps are employed including
voxelization, scaling and partition before feeding a model block-by-block to the network, similarly to.25 The
performance of this network shows promising results, achieving comparable, if not better performance when
compared to V-PCC. Experimentation with different partition sizes and adaptive thresholding for classification
of a voxel as occupied or not, are part of the study. In,29 a multi-scale hierarchical encoder is proposed based
on local features that are extracted at each layer. The aforementioned studies are handling point clouds as 3D
occupancy maps on regular grids. In,30 raw point clouds are fed to the proposed architecture, which makes use
of the PointNet31 to extract features from unorganized coordinates in 3D space, while the synthesis transform is
represented by a generative fully-connected network.

To the best of our knowledge, there is only one study focused on compression of point cloud attributes,
described in,32 which is based on folding a 2D grid onto a point cloud and then mapping the attributes on top
of it. An advantage of this approach is the application of highly efficient 2D imaging techniques for point cloud
compression; yet, a bottleneck is the low accuracy of the folding in geometrically complex parts of a model. In
our study, we handle geometry and/or color in the 3D domain by extracting features from regular grids making
use of 3D convolutions, which enable capturing of spatial redundancies for both types of information. The study
aims to provide useful insights for future references focused on the matter.

3. EXPERIMENTAL SETUP

3.1 Data set

For the purposes of this study, a selection of high resolution point clouds from several repositories was pursued
in order to form a collection of training and testing models with diverse characteristics in geometry and color.
In particular, a total of 50 models were selected from the MPEG∗, JPEG Pleno†, PointXR,33 VSENSE,34 and
M-PCCD35 datasets, forming the so-called High Resolution Geometry and Color (HighResGC) dataset. The

∗http://mpegfs.int-evry.fr/MPEG/PCC/DataSets/pointCloud/CfP/
†https://jpeg.org/plenodb/

http://mpegfs.int-evry.fr/MPEG/PCC/DataSets/pointCloud/CfP/
https://jpeg.org/plenodb/


(a) amphoriskos (b) andrew (c) biplane (d) egyptianmask (e) matis (f) nefertiti

(g) queen (h) redandblack (i) thaidancer (j) tiki (k) ulliwegner (l) zeus

Figure 1: Sample models used for training.

(a) bumbameuboi (b) guanyin (c) longdress (d) phil (e) rhetorician (f) romanoillamp

Figure 2: Models used for testing.

JPEG Pleno and MPEG repositories consist of colored models that were assembled in the context of relevant
standardization activities, containing representative sets of real-life acquired and synthetic point clouds that span
across a variety of categories, such as, inanimate models, cultural heritage, human bodies, etc. The PointXR
data set33 consists of low-noise, high quality point clouds that represent cultural heritage models, obtained after
conversion from their original mesh content representations. The VSENSE data set34 consists of two dynamic
sequences of human bodies, thus, including several frames of the same figures at different poses. From this
repository, only a representative, low-noise frame was selected per sequence. Finally, a content coming with the
M-PCCD data set35 was recruited, to further enhance the data.

The majority of the models were voxelized at a bit depth of 10, independently of their original content
representation (i.e., raw or voxelized at a higher grid resolution). Sparser point clouds were voxelized at a bit
depth of 9, as in,25 while models with geometry originally lying at a grid of lower resolution (e.g., 9), remained
as such (e.g., Microsoft Upper Bodies). Moreover, the color attributes were normalized in a range between 0
and 1. Following previous efforts,25–28 the collected point clouds were partitioned into blocks, with the latter
denoting the input data that are fed into the network. This approach mimics the block partition in classical
image compression and is coming with two main advantages; that is, lower computational demands in handling
input units, and data augmentation, provided that every block is interpreted as an independent sample. However,
spatial redundancies cannot be largely exploited when blocks of low resolution are selected. Note that a higher
performance is expected when considering larger block sizes28 (see Section 5.1).

3.1.1 Training data

The training data consists of the entire set of point clouds that were collected, excluding 6 models that comprise
our testing set. A part of the selected models is illustrated in Figure 1. The training models were partitioned
into non-overlapping blocks of size K, with K = 32 or 64 depending on the task at hand, with each block being
handled independently in our network. Following,25 blocks that contain less than 500 occupied points were



discarded, as they carry limited relevant information. From the remaining blocks, a total of 10’000 samples were
randomly picked to form our training set.

3.1.2 Testing data

The testing data consists of the models that have been specified in the Common Test Conditions document
authored by the JPEG standardization committee as a result of its latest efforts.36 The employed models denote
a representative set of inanimate objects and human figures with a relatively wide range of geometric arrangement
and color distribution, as illustrated in Figure 2. For the testing data, block sizes of K = 128 are used, except
if otherwise mentioned. Note that it is a rather common approach23 to use different resolutions for training and
testing blocks, whose influence is investigated in Section 5.2.

3.2 Network architecture

3.2.1 Input

The geometry and texture of every input unit is initially provided in a typical format, which resembles a 6-tuple
list, with each entry denoting a point that is defined by its x, y and z coordinates followed by the r, g and b color
values. The point cloud data are already voxelized, thus, the original format can be easily converted to a 3D
voxel grid. This data representation allows us to exploit 3D convolution kernels to capture spatial redundancies
in the output feature maps. The 3D voxel grid is then partitioned into blocks of a specified resolution, and each
block is associated with a number of input channels that carry topological and potentially textural information,
depending on the task. In particular, the blocks are of resolution K×K×K× Ĉ, with Ĉ = 1 for geometry-only
compression and Ĉ = 4 for color-only or geometry-plus-color encoding. In all cases, the first channel contains
values of 0 or 1 to indicate occupied voxels. The optionally enabled additional color channels contain values
between 0 and 1, obtained after a scaling step.

3.2.2 Auto-encoder

The network architecture adopts as a baseline the model proposed in.23 As the majority of the current auto-
encoding solutions, the processing pipeline can be decomposed in three main parts; that is, an analysis stage
consisting of convolution layers, a synthesis stage that is composed of de-convolution layers, and a bottleneck
in the middle that corresponds to the latent representation. Our selection for this baseline is motivated by
the fact that it denotes a publicly available, efficient implementation of an end-to-end auto-encoder with good
performance on geometry compression. Moreover, similar core architectures have been employed in 2D image-
based paradigms, revealing high-performance in terms of compression efficiency.

Figure 3: The base model ’s structure.28 Figure 4: The unified model ’s structure.

The base model can encode only point cloud geometry.23 It is composed of three 3D convolution layers at
the encoder and their symmetric transposed convolution (i.e., de-convolution) counterparts at the decoder side,
as illustrated in Figure 3. The first term of each block of the diagram denotes the number of filters (i.e., N), the



second term denotes the size of the filters (i.e., 93), the third term is the size of the stride (i.e., 23), the forth
term is the type of activation function, and the fifth term is whether or not bias is applied.

At the encoding stage, the point cloud is partitioned into 3D blocks, as described in Section 3.1.1. A selection
of stride size higher than 1 implies down-sampling of the input representation. In our case, a stride size of
23, denotes down-sampling of the input unit by a factor of 0.5 in each dimension at the output of each layer.
Quantization is applied on the latent representation, which is obtained at the output of the encoder. During
training, the quantization is replaced by additive uniform noise,20 in order to ensure that the gradient is defined
for the back-propagation operation. Moreover, the rate is estimated using differential entropies,20 provided
that the values at the output of the quantization step are continuous. During testing, the floating point latent
representation is quantized with trained probability tables, and the bitstream is obtained by entropy coding.
At the decoding stage, the bitstream is received and passes from a set of de-convolution layers with stride size
equal to 23, which implies up-sampling by a factor of 2. Through a series of symmetric de-convolution layers, the
compact feature maps are decoded and the point cloud geometry can be recovered in the form of 3D blocks. A
loss function is employed to quantify the reconstruction distortion and train the model in an end-to-end manner
performing joint optimization of both rate and distortion. For this purpose, a multiplier is employed to steer the
trade-off at will. In particular, the loss is composed of this multiplier (weight term), λg, a distortion term, Dg,
and a rate term, R that represents bits per input occupied voxel (bpp) as follows:

L = R+ λgDg (1)

Note that by modifying the λg term, the bitrates and the reconstructed quality can be tuned; that is, by
setting a higher weight, the model will focus more on learning how to preserve geometry information and less
on compressing, thus, resulting in higher reconstruction quality at the expense of higher bitrate. The distortion
term is computed by comparing the original with the recovered point cloud. This task can be interpreted as a
binary classification problem, hence, the focal loss is employed to assess the reconstruction error, defined as in37

and given in Equation 2

FL(ptz) = −αz(1− ptz)γ log(ptz),

FL(x) =
∑
z∈S

FL(ptz),
(2)

where ptz is defined as pz if the voxel is occupied and 1 − pz if the voxel is unoccupied, pz is the output value
of the voxel indicating probability of whether the voxel is occupied or not. αz is defined as α if the voxel is
occupied and 1− α otherwise.

The unified model is able to encode point cloud geometry and/or color attributes. It follows the same
architecture as the base model, with some necessary modifications to support the enhanced functionality, as
illustrated in Figure 4. In this diagram, red color is used to highlight differences with respect to the original
version. Specifically, the number of channels for the last layer of the decoder, C, is set to either 1, 3 or 4
depending on the task. For geometry compression, C is equal to 1, for color compression C equals 3, while for
geometry-plus-color compression, C is equal to 4. Notice that a ReLU activation function is added at the final
layer of the encoder, while at the final layer of the decoder, the activation function is switched to sigmoid in
order to ensure that the output values lie in the range [0, 1].

To train the network for point cloud geometry compression, we employ a slight variation of the loss function
defined in23 and provided in Equation 1. In particular, the distortion term is normalized by dividing with the
total number of voxels, such that it represents a measurement of distortion per voxel. To train the network
for point cloud color compression, a similar formulation is adopted. In this case, the focal loss is replaced by a
simple l2 norm, which is computed between the original and the reconstructed color values across the occupied
voxels of the input block. The color loss is normalized by dividing with the number of occupied voxels of a block
to reflect the distortion per occupied voxel. Note that both geometry and color distortion terms are normalized
by the number of points that effectively contribute to the loss. For color degradation, a logarithmic function of



the l2 norm is computed to obtain scores in the same range with the geometry term. In Equation 3, the updated
loss function used for for color-only compression is provided.

L = R+ λcDc (3)

To train the network for point cloud geometry-plus-color compression, both metrics are employed and both
distortion terms are included in the loss function, as indicated in Equation 4. Notice that the overall quality of
the restored model as well as a different quality preservation scheme can be enabled for the two attribute types
by selecting different λ values. Note that subscripts g and c indicate geometry and color, respectively.

L = R+ (λgDg + λcDc), (4)

.

3.2.3 Output

For each input block, a bitstream representing the encoded latent representation is received at the decoder
side. After de-compression, an equally sized degraded version of the block is obtained. When geometry-only
compression is required, the model outputs one channel that indicates occupancy. In color-only compression,
three color channels are obtained. Notice that, in this case, the receiver knows the point cloud topology; thus,
the compressed attributes per point are found at the corresponding voxel position at the output blocks. For
geometry-plus-color compression, four channels are obtained combining occupancy and color information. In all
cases, the output blocks that are extracted from the same point cloud are merged together following a particular
order, to restore the de-compressed point cloud. Finally, the optionally compressed color values are converted
back to the original range [0, 255].

3.2.4 Configurations

To train a network, a number of filters N = 32 per layer is employed, a batch size of 16, and a number of output
channels C = 4, to involve both geometry and color information. The Adam optimizer38 is set with learning
rate equal to 10−4 and β1 = 0.9 and β2 = 0.999. The loss function given in Equation 4 is employed, using
α = 0.9 and γ = 2.0 for the focal loss computation given by Equation 2. The experiments are conducted using
Python 3.6 and Tensorflow 1.13.1. As mentioned earlier, training blocks of size K = 32 and testing blocks of
size K = 128 are in principle employed, except if otherwise declared.

3.3 Evaluation methodology

The majority of quality evaluation metrics in point cloud imaging are capturing either geometric- or textural-only
distortions.35 Lately, a number of new approaches has been reported in the literature that consider both sources
of distortion to provide a total estimation of the visual quality. Most notably, projection-based metrics,39 which
are based on conventional 2D imaging metrics and are applied on projected views of the model, while also some
model-based metrics,40,41 which combine topology and texture quality levels in a single score. Yet, the former
are sensitive to the rendering approach and the camera parameters to obtain projected views, whereas the latter
are sensitive to the selection of weights for geometric and textural attributes, since they do not capture the
visual quality of a point cloud holistically. In this study, we opt two well-established objective quality metrics
to evaluate the quality of geometry and color information for the compressed models, separately.

For evaluation of geometric distortions, we choose the symmetric point-to-point metric using the PSNR
variant, noted as D2-PSNR. The D2-PSNR captures topological distortions in a point cloud model by measuring
the deviation of the coordinates of a distorted point from a linear approximation of the reference surface. To
compute the PSNR variant, the resolution of the voxel grid that the content lies is employed as the peak value.
Two error values are obtained by setting both the compressed and the original model as a reference, and the
symmetric error is obtained by choosing the maximum out of the two error values. For evaluation of color
distortions, the symmetric color PSNR is adopted. The well-known formula from 2D imaging is employed, using
the nearest neighbors algorithm to establish associations between the reference and the content under evaluation.
To compute a quality score, the color values of the point cloud models are converted from the original RGB to the



Table 1: Selected values of λg and λc for the computation of the loss function as in Equation 4, to achieve various
distortion allocation schemes with ratios λg : λc, for different bitrate values (from smallest to largest, R1 to R4).

1:1 0:1 1:4 1:9 1:19 1:0 4:1 9:1 19:1

λg λc λg λc λg λc λg λc λg λc λg λc λg λc λg λc λg λc

R1 20 20 0 40 8 32 4 36 2 38 40 0 32 8 36 4 38 2
R2 100 100 0 200 40 160 20 180 10 190 200 0 160 40 180 20 190 10
R3 500 500 0 1000 200 800 100 900 50 950 1000 0 800 200 900 100 950 50
R4 2500 2500 0 5000 1000 4000 500 4500 150 4750 5000 0 4000 1000 4500 500 4750 150

YUV colorspace using the ITU-R Recommendation BT.709-6;42 thus, this metric is referred to as YUV-PSNR.
To compute a total score, a weighted average between the luma and the two chrominance channels is obtained
using weights 6, 1 and 1, as in.43 This procedure is repeated setting both the original and the distorted models
as the reference and the maximum error is kept to account for the symmetric YUV-PSNR score.

To compute both metrics the MPEG software version 0.13.5 is used.44 For the D2-PSNR, normal vectors
are required to be associated with the coordinates of the testing models. In this case, we used a plane fitting
algorithm with 10 nearest neighbors as implemented in MeshLab v2020.06.45

4. EXPERIMENTAL RESULTS

When compressing both the geometric structure and the color attributes of point cloud contents using neural
networks, two main approaches can be identified. The first approach relies on creating a holistic representation
of both dimensions, feeding both geometry and color information to a network designed to compress both
simultaneously. The second approach relies on designing two separate networks to be used sequentially: one
that handles geometry, and another that deals with compressing the color attributes. The first approach is
advantageous in terms of computational and time resources. Moreover, it allows for an holistic evaluation of
point cloud distortions, given a loss function that can reliably detect artifacts in both geometry and color domains
at the same time. In the second approach, networks dedicated on a particular type of information are employed
and, thus, a better performance is expected provided the usage of the same network hyper-parameters (i.e.,
number and size of filters, size of strides, etc). Furthermore, the rate allocation for each component can be
manipulated independently, thus leading to higher flexibility in the encoding process.

In this section, we describe and provide performance evaluation results for a series of experiments conducted
using the unified model as a baseline, which compresses geometry and color attributes simultaneously. In
particular, we analyse how the performance of the network is affected when different weights are given to either
geometry or color distortions. Then, we compare the performance of our unified model with respect to using
separate networks to encode geometry and color information. Finally, benchmarking results against the MPEG
anchor are depicted to indicate the performance of the network against a well-established encoding solution.

4.1 Distortion allocation for geometry and color compression using the unified network

Figures 5 and 6 depict the performance evaluation of using the unified model to compress both geometry and
color, according to geometry metric D2-PSNR and color metric YUV-PSNR, respectively, for all testing contents.
To obtain the curves, parameters λg and λc in the loss function are weighted in order to obtain different allocation
schemes, indicated by λg : λc. For these experiments, the unified model described in Section 3.2.2 and illustrated
in Figure 4 is employed.

In Table 1, the values of λg and λc that were selected to achieve the desired weighting for geometry and
color distortions, respectively, are reported. Figure 5 indicates how different weighting schemes for geometry and
color distortions affect the quality of the reconstructed point cloud in the geometry domain, expressed through
the D2-PSNR metric. In particular, the solid black line shows the performance when the color distortion is
not considered in the computation of the loss function (λc = 0). As such, it represents an upper limit on
the performance in terms of geometrical distortions. The solid red line indicates the performance when equal
weights are assigned to both color and geometry distortions, which we consider as the baseline. As expected,



0 5 10 15 20 25 30

Bit per input point (bpp)

40

45

50

55

60

65

70

D
2

-P
S

N
R

1:0

1:1

1:4

1:9

1:19

4:1

9:1

19:1

(a) bumbameuboi

0 1 2 3 4 5

Bit per input point (bpp)

58

60

62

64

66

68

70

72

74

76

D
2
-P

S
N

R

1:0

1:1

1:4

1:9

1:19

4:1

9:1

19:1

(b) guanyin

0 1 2 3 4 5

Bit per input point (bpp)

55

60

65

70

75

80

D
2
-P

S
N

R

1:0

1:1

1:4

1:9

1:19

4:1

9:1

19:1

(c) longdress

0 1 2 3 4 5 6

Bit per input point (bpp)

52

54

56

58

60

62

64

66

68

D
2
-P

S
N

R

1:0

1:1

1:4

1:9

1:19

4:1

9:1

19:1

(d) phil

0 1 2 3 4 5

Bit per input point (bpp)

45

50

55

60

65

70

75

D
2
-P

S
N

R

1:0

1:1

1:4

1:9

1:19

4:1

9:1

19:1

(e) rhetorician

0 2 4 6 8 10

Bit per input point (bpp)

58

60

62

64

66

68

70

72

74

76

D
2

-P
S

N
R

1:0

1:1

1:4

1:9

1:19

4:1

9:1

19:1

(f) romanoillamp

Figure 5: Rate-distortion performance of the unified network architecture, according to geometry metric D2-
PSNR, with different λ allocations to geometry and color (λg : λc). Solid black represents pure geometry
compression (λc = 0), solid red represents 1:1 allocation. Dashed lines represent allocations for which λg > λc,
whereas for dotted lines, λg < λc.

an increase in performance can be observed when more relative weight is assigned to the geometry distortion
in the loss function (dashed lines). However, the increase in performance is not as remarkable as the dB losses
that are observed when more relative weight is assigned to the color distortion term (dotted lines). In fact, the
performance for weight ratios 4:1, 9:1, and 19:1 is approximately equivalent for all contents.

A similar trend can be observed in Figure 6, which presents the performance of the same weighting schemes
in terms of color distortion, represented by the YUV-PSNR metric. As in Figure 5, the solid black line indicates
the performance when the color distortion is only considered in the loss function (λg = 0). It is noteworthy that,
certain allocation schemes mark an increase in performance with respect to the theoretical upper limit 0:1 at low
bitrates. This is due to the fact that the computation of the color metric depends on the underlying geometry.
Thus, in a geometry-plus-color compression scheme, the reconstructed error is measured on a different than the
input topology, which might lead to such behaviours, especially in such low color quality levels. As expected,
allocation schemes which favor color distortions (dotted lines) achieve better performance with respect to the
1:1 baseline (depicted in solid red). However, sharp loss in performance can be observed when more weight is
assigned to geometry distortions, at the expense of color information (dashed lines).

In order to better analyse the impact of varying the relative importance of color or geometry information in
the loss function calculation, we computed the Bjontegaard dB gains obtained by each allocation scheme under
exam, with respect to the 1:1 baseline. Results are depicted in Figure 7, separately for each test content. Blue
color indicates dB gains computed with respect to the color metric YUV-PSNR, whereas red color indicates
gains with respect to geometry metric D2-PSNR. Dashed lines represent the theoretical upper limit, i.e., the
gains obtained when using only geometry (1:0, red dashed) or only color (0:1, blue dashed) allocations. As
we observed before, the gains with respect to the baseline (bars above the 0 line) are quite modest, and tend
to saturate between the 1:9 and 1:19 allocation schemes in the case of color gains, and between 9:1 and 19:1



0 5 10 15 20 25 30

Bit per input point (bpp)

14

16

18

20

22

24

26

28

Y
U

V
-P

S
N

R

0:1

1:1

1:4

1:9

1:19

4:1

9:1

19:1

(a) bumbameuboi

0 1 2 3 4 5

Bit per input point (bpp)

20

21

22

23

24

25

26

27

28

29

Y
U

V
-P

S
N

R

0:1

1:1

1:4

1:9

1:19

4:1

9:1

19:1

(b) guanyin

0 1 2 3 4 5

Bit per input point (bpp)

20

21

22

23

24

25

26

27

28

29

Y
U

V
-P

S
N

R

0:1

1:1

1:4

1:9

1:19

4:1

9:1

19:1

(c) longdress

0 1 2 3 4 5 6

Bit per input point (bpp)

20

22

24

26

28

30

32

Y
U

V
-P

S
N

R

0:1

1:1

1:4

1:9

1:19

4:1

9:1

19:1

(d) phil

0 1 2 3 4 5

Bit per input point (bpp)

22

24

26

28

30

32

34

36

38

Y
U

V
-P

S
N

R

0:1

1:1

1:4

1:9

1:19

4:1

9:1

19:1

(e) rhetorician

0 2 4 6 8 10

Bit per input point (bpp)

20

22

24

26

28

30

32

Y
U

V
-P

S
N

R

0:1

1:1

1:4

1:9

1:19

4:1

9:1

19:1

(f) romanoillamp

Figure 6: Rate-distortion performance of the unified network architecture, according to geometry metric YUV-
PSNR, with different λ allocations to geometry and color (λg : λc). Solid black represents pure color compression
(λg = 0), solid red represents 1:1 allocation. Dashed lines represent allocations for which λg > λc, whereas for
dotted lines, λg < λc.

in the case of geometry gains. However, steep losses in dB are observed as the distortion allocation schemes
become more unbalanced. For content longdress, for instance, we observe a loss of -5.96 dB in the geometry
domain when the 1:19 weighting ratio is selected, whereas the corresponding gains in terms of color distortions
are limited to 1.08 dB (see Figure 7 (c)). A visual comparison for the weight ratios 1:1, 1:19, and 19:1 at the
highest bitrate under consideration is shown in Figure 8 for the content longdress. It can be observed that the
geometry distortion introduced by changing λg from 2500 to 250, is not heavily influencing the visual perception
of the content, despite the reported loss of 2.5 dB. However, in the case of distortion allocation of 19:1, the
artifacts in the color domain heavily degrade its appearance, effectively masking any improvements brought in
the geometry domain. Figure 9 shows a visual comparison for the same allocation ratios, for content guanyin,
at the second lowest bitrate under exam. It can be seen that for a weight ratio of 1:19, geometric artifacts in
the form of holes appear (see Figure 9 (c)), whereas assigning larger weight to geometry distortion term brings a
very poor performance in color compression. The 1:1 allocation, in this case, represents a compromise between
geometry and color distortions.

Results show that, while performance gains can be achieved in either geometry or color domain by assigning
larger weight to the corresponding type of distortion, they come at the cost of a loss in the other domain.
Moreover, losses are generally more pronounced, whereas gains remain modest even when remarkably imbalanced
allocation schemes are employed. The selection of the best allocation scheme must be conducted by examining
which domain leads to perceptually more pleasant results, and by carefully considering whether the gains in one
domain outweigh the costs in the other.



1:4 1:9 1:19 4:1 9:1 19:1
-6

-5

-4

-3

-2

-1

0

1

2

3
B

jo
n
te

g
a
a
rd

 d
B

 g
a
in

s

Color (YUV-PSNR)

Geometry (D2-PSNR)

(a) bumbameuboi

1:4 1:9 1:19 4:1 9:1 19:1
-6

-5

-4

-3

-2

-1

0

1

2

3

B
jo

n
te

g
a
a
rd

 d
B

 g
a
in

s

Color (YUV-PSNR)

Geometry (D2-PSNR)

(b) guanyin

1:4 1:9 1:19 4:1 9:1 19:1
-6

-5

-4

-3

-2

-1

0

1

2

3

B
jo

n
te

g
a
a
rd

 d
B

 g
a
in

s

Color (YUV-PSNR)

Geometry (D2-PSNR)

(c) longdress

1:4 1:9 1:19 4:1 9:1 19:1
-6

-5

-4

-3

-2

-1

0

1

2

3

B
jo

n
te

g
a
a
rd

 d
B

 g
a
in

s

Color (YUV-PSNR)

Geometry (D2-PSNR)

(d) phil

1:4 1:9 1:19 4:1 9:1 19:1
-6

-5

-4

-3

-2

-1

0

1

2

3

B
jo

n
te

g
a
a
rd

 d
B

 g
a
in

s

Color (YUV-PSNR)

Geometry (D2-PSNR)

(e) rhetorician

1:4 1:9 1:19 4:1 9:1 19:1
-6

-5

-4

-3

-2

-1

0

1

2

3

B
jo

n
te

g
a
a
rd

 d
B

 g
a
in

s

Color (YUV-PSNR)

Geometry (D2-PSNR)

(f) romanoillamp

Figure 7: Bjontegaard dB gains for each allocation λg : λc with respect to allocation 1:1, for color metric YUV-
PSNR (blue) and geometry metric D2-PSNR (red). Dashed lines represent dB gains when using pure color
compression (blue) or pure geometry compression (red), with respect to 1:1 baseline.

(a) Reference (b) 1:1, λg = 2500, λc = 2500 (c) 1:19, λg = 250, λc = 4750 (d) 19:1, λg = 4750, λc = 250

Figure 8: Visual comparison for content longdress, for different distortion allocation ratios.

4.2 Comparison of unified network against separately trained networks for color and
geometry

For the separately trained networks architecture, two models are employed, each dedicated to compress a par-
ticular type of attribute. In our context, we train a model on geometry-only compression and a second model on
color-only compression. The testing point clouds are compressed by initially feeding the geometric information
of the point cloud data into the geometry-only encoding network, in the form of individual blocks, as described in
Section 3.2.1 using C = 1. The de-compressed blocks are reassembled to restore the encoded point cloud topol-
ogy. Then, a re-coloring step is applied by associating the original color values to the de-compressed coordinates
using the nearest neighbor algorithm. The resulting point cloud is partitioned again into blocks (input channels
C = 4) and fed to the color-only encoding network. The output blocks are eventually stitched together, forming
the final decoded point cloud. This implementation results in two bitstreams, each corresponding to a different
type of attribute, which are both required at the received side in order to restore the encoded model. It should



(a) Reference (b) 1:1, λg = 100, λc = 100 (c) 1:19, λg = 10, λc = 190 (d) 19:1, λg = 190, λc = 10

Figure 9: Visual comparison for content guanyin, for different distortion allocation ratios.

0 5 10 15 20 25 30

Bit per input point (bpp)

56

58

60

62

64

66

68

D
2

-P
S

N
R

Unified network

Separate networks

(a) bumbameuboi

0 1 2 3 4 5

Bit per input point (bpp)

62

64

66

68

70

72

74

76

D
2

-P
S

N
R

Unified network

Separate networks

(b) guanyin

0 1 2 3 4 5

Bit per input point (bpp)

62

64

66

68

70

72

74

76

D
2

-P
S

N
R

Unified network

Separate networks

(c) longdress

0 1 2 3 4 5 6

Bit per input point (bpp)

57

58

59

60

61

62

63

64

65

66

67

D
2

-P
S

N
R

Unified network

Separate networks

(d) phil

Figure 10: Rate-distortion performance of the unified model and the separately trained networks, according to
geometry metric D2-PSNR.

0 5 10 15 20 25 30

Bit per input point (bpp)

19

20

21

22

23

24

25

26

27

28

Y
U

V
-P

S
N

R

Unified network

Separate networks

(a) bumbameuboi

0 1 2 3 4 5

Bit per input point (bpp)

20

21

22

23

24

25

26

27

28

29

Y
U

V
-P

S
N

R

Unified network

Separate networks

(b) guanyin

0 1 2 3 4 5

Bit per input point (bpp)

21

22

23

24

25

26

27

28

29

Y
U

V
-P

S
N

R

Unified network

Separate networks

(c) longdress

0 1 2 3 4 5 6

Bit per input point (bpp)

21

22

23

24

25

26

27

28

29

30

31

Y
U

V
-P

S
N

R

Unified network

Separate networks

(d) phil

Figure 11: Rate-distortion performance of the unified model and the separately trained networks, according to
color metric YUV-PSNR.

be noted that for the training of both networks, the same data and the same hyper-parameters adopted for the
unified version and described in Section 3.2.2 were applied. Moreover, a training and a testing block size of 32
and 128 were used, respectively.

Figures 10 and 11 report the performance evaluation results obtained with the unified network, with 1:1
allocation among geometry and color distortion terms, together with the results obtained from the separately
trained networks on geometry and color. Performance is shown using the geometry metric D2-PSNR and the
color metric YUV-PSNR, respectively. Due to space limitations, we only report the results for test contents
bumbameuboi, guanyin, longdress, and phil. For the unified network, the parameters for distortion allocation
1:1 were used, according to Table 1. For the separately trained networks, parameter λ was set independently for
geometry and color; curves are obtained by using (from smallest to highest bitrate), λg = λc = 20, 100, 500, 2500.

Based on our results illustrated in Figure 10, similar performance is obtained when using the unified model to
compress geometry information, with respect to employing an ad-hoc network which is trained on geometry-only
data. The two solutions are interchangeable in terms of geometric distortions. In the color domain, however,



0 5 10 15 20 25

Bits-per-input-point (bpp)

56

58

60

62

64

66

68

70

D
2

-P
S

N
R

1:1, HiResGC (32, 128)

1:1, HiResGC (64, 128)

CWI-PCL

CWI-PCL lossless geometry

(a) bumbameuboi

0 2 4 6 8 10 12

Bits-per-input-point (bpp)

55

60

65

70

75

80

D
2

-P
S

N
R

1:1, HiResGC (32, 128)

1:1, HiResGC (64, 128)

CWI-PCL

CWI-PCL lossless geometry

(b) guanyin

0 2 4 6 8 10 12

Bits-per-input-point (bpp)

55

60

65

70

75

80

D
2

-P
S

N
R

1:1, HiResGC (32, 128)

1:1, HiResGC (64, 128)

CWI-PCL

CWI-PCL lossless geometry

(c) longdress

0 5 10 15

Bits-per-input-point (bpp)

58

60

62

64

66

68

70

D
2

-P
S

N
R

1:1, HiResGC (32, 128)

1:1, HiResGC (64, 128)

CWI-PCL

CWI-PCL lossless geometry

(d) phil

Figure 12: Rate-distortion performance of the of the unified model, trained with block resolution of 32 and 64,
against the MPEG anchor, according to geometry metric D2-PSNR.

0 5 10 15 20 25

Bits-per-input-point (bpp)

20

25

30

35

Y
U

V
-P

S
N

R

1:1, HiResGC (32, 128)

1:1, HiResGC (64, 128)

CWI-PCL

(a) bumbameuboi

0 2 4 6 8 10 12

Bits-per-input-point (bpp)

20

25

30

35

40

45

Y
U

V
-P

S
N

R

1:1, HiResGC (32, 128)

1:1, HiResGC (64, 128)

CWI-PCL

(b) guanyin

0 2 4 6 8 10 12

Bits-per-input-point (bpp)

20

25

30

35

40

Y
U

V
-P

S
N

R

1:1, HiResGC (32, 128)

1:1, HiResGC (64, 128)

CWI-PCL

(c) longdress

0 5 10 15

Bits-per-input-point (bpp)

20

25

30

35

40

45

Y
U

V
-P

S
N

R

1:1, HiResGC (32, 128)

1:1, HiResGC (64, 128)

CWI-PCL

(d) phil

Figure 13: Rate-distortion performance of the unified model, trained with block resolution of 32 and 64, against
the MPEG anchor, according to color metric YUV-PSNR.

a difference in performance can be observed between the two solutions, as shown in Figure 11). In particular,
for three out of the four contents, i.e., guanyin, longdress, and phil, the two networks have similar performance
for high bitrates, whereas for low bitrates, the unified model provides better performance. For bumbameuboi,
though, notable gains can be observed for high bitrates, when a separate network is used to compress the color
information. This might be due to the complexity of the model, both in the geometric and color domain, which
might lead to diminished performance when the two types of information are considered simultaneously. Note
that this constitutes a particularly sparse point cloud, which in general behaves as an outlier.

4.3 Benchmarking of unified network

In this section, we examine the performance of the unified network, which is selected as a superior approach
based on the results of the previous section, against the anchor codec that was used in the MPEG point cloud
compression-related activities. In Figure 12 and 13, rate-distortion curves indicate the performance of the
network using a training block size of 32 and 64, which is found to better exploit spatial redundancies28 (see
also Section 5.1) and, thus, leading to lower bit rates for the same visual quality. For block resolution of 32,
the λ values for geometry and color distortion were chosen according to the 1:1 ratio in Table 1, whereas for
block resolution of 64, λg = λc = {80, 400, 2000, 10000}. For the MPEG anchor, namely, CWI-PCL,15 we
opt for geometry compression Octree bit depths of 7, 8, 9 and 10 and for color compression JPEG Quality
Parameter (QP) of 10, 50, 80 and 100, respectively, to obtain scalable visual quality levels by degrading both
attributes simultaneously. Note that when the Octree bit depth is equal or higher than the corresponding voxel
resolution of a content, lossless geometry compression is essentially applied; thus, leading to a PSNR value of
infinity for geometry distortion. These cases are noted with simple markers on the figures to allow indicating
the corresponding achieved bitrates (see Figure 12, black squares). It can be observed that for low bitrates,
the network achieves comparable or higher performance with respect to the CWI-PCL in terms of geometrical
distortions. Similar performance can be observed when considering color distortions, as depicted in Figure 13.
In particular, training the network with blocks of resolution 64 leads to better performance with respect to
resolution 32, and achieves comparable performance with respect to the CWI-PCL for low bitrates. A quality



(a) Reference (b) HiResGC(32,128), λg =
λc = 500

(c) HiResGC(64,128), λg =
λc = 2000

(d) CWI-PLC, bit depth 9,
QP 80

Figure 14: Visual comparison for content longdress, compressed using the proposed network and the MPEG
Anchor.

(a) Reference (b) HiResGC(32,128), λg =
λc = 500

(c) HiResGC(64,128), λg =
λc = 2000

(d) CWI-PLC, bit depth 9,
QP 80

Figure 15: Visual comparison for content guanyin, compressed using the proposed network and the MPEG
Anchor.

saturation is shown for the network performance as the bitrate is increasing, indicating the need for more efficient
architectures for compression at high fidelity.

Despite the similar quality values that are observed when considering the quality metric YUV-PSNR, visual
comparison between the results obtained with the proposed model and the CWI-PCL show that markedly
different distortions are introduced by the two compression solutions. Figure 14 shows a zoomed-in region of
the content longdress, for the second-highest bitrate. It can be observed that, whereas the CWI-PCL codec
contains artifacts in the form of high frequency noise in the color domain, the network tends to have a smoother
appearance, at the cost of a loss of detail. It can also be observed that increasing the block resolution from
32 to 64 leads to sharper results and more preserved details. A similar behavior can be seen for the content
guanyin, as depicted in Figure 15. In particular, smoother texture is obtained when encoding with the network
architecture with respect to CWI-PCL, as the former introduces artifacts in form of low-pass filtering, whereas
false contours are present using the latter.

5. META-ANALYSIS

Neural networks represent a powerful tool to learn a compact representation of given data. As such, they have
been largely employed to tackle compression for 2D visual data representations, and have recently been extended
in point cloud data formats. However, a number of issues remains to be faced when considering compression
of point clouds through neural network architectures, both when considering the distribution of the points in
3D space, and when trying to encode the accompanying attributes. In this section, we aim to shed some light
regarding the influence and the selection for a number of hyper-parameters that affect the learning efficiency of
a given network architecture. Note that the same network parameters and configurations specified in Section



0 2 4 6 8 10 12

Bits-per-input-point (bpp)

52

54

56

58

60

62

64

66

68

D
2

-P
S

N
R

HiResGC (32, 32)

HiResGC (64, 64)

ModelNet (32, 32)

ModelNet (64, 64)

(a) bumbameuboi

0 0.5 1 1.5 2 2.5 3

Bits-per-input-point (bpp)

58

60

62

64

66

68

70

72

74

D
2

-P
S

N
R

HiResGC (32, 32)

HiResGC (64, 64)

ModelNet (32, 32)

ModelNet (64, 64)

(b) guanyin

0 0.5 1 1.5 2 2.5 3

Bits-per-input-point (bpp)

58

60

62

64

66

68

70

72

74

76

D
2

-P
S

N
R

HiResGC (32, 32)

HiResGC (64, 64)

ModelNet (32, 32)

ModelNet (64, 64)

(c) longdress

0 0.5 1 1.5 2 2.5 3

Bits-per-input-point (bpp)

52

54

56

58

60

62

64

66

68

D
2

-P
S

N
R

HiResGC (32, 32)

HiResGC (64, 64)

ModelNet (32, 32)

ModelNet (64, 64)

(d) phil

Figure 16: Rate-distortion performance of the geometry-only network, using different datasets and training data
resolutions, according to geometry metric D2-PSNR.

5.1 Selection of training data for geometry compression

Inspired from the different approaches,23,25 in the generation of training data for point cloud geometry com-
pression, in this experiment, we aim to evaluate the impact of using different datasets and grid resolutions. In
general, there are two main lines that have been reported in the literature for the generation of relevant training
data. In the first approach,23 a mesh repository is employed and point cloud models are generated through
sampling, and potentially voxelizing at a desirable grid resolution. Typically, the original mesh models are arti-
ficially generated, and represent full-shaped colorless objects. In the second approach,25 which is adopted in our
experimental setup, high-resolution point cloud contents are collected from available repositories. Such contents
typically consist of either real-life acquired and synthetic point clouds that span across a variety of categories.

Provided that point clouds are generally comprised of a considerable amount of points, whose sheer size and
irregular structure make them unsuitable for being directly handled by neural networks, a common choice is to
apply voxelization and block partitioning at a low resolution. Nonetheless, setting a specific block size against
another influences the performance of the network, as has been shown in previous studies.28 Adding attribute
encoding increases the complexity, as they will necessarily depend on the underlying 3D structure to be encoded.

In this experiment, to account for the first approach, we use point clouds extracted from the ModelNet data
set, as described in.23 The models are scaled and regularly sampled, before being voxelized at a specific geometric
resolution. To analyse the impact of the geometric resolution on the performance efficiency, voxel grid resolutions
of 32 and 64 are employed for every model. To account for the second approach, we use the HighResGC dataset
that has been defined for our experimental setup (see Section 3), using block resolutions of 32 and 64. In both
cases, point cloud units that contain less than 500 occupied voxels are discarded, and from the remaining data,
a number of 10,000 is randomly sampled. In summary, we use four different training sets of 10,000 colorless
samples: two are extracted from the ModelNet data set and the other two from our generated data set, with
grid resolution of 32 and 64 each. In this experiment, the testing models are partitioned in blocks of the same
resolution as the one that was used for the training data (32 and 64).

In Figure 16, performance evaluation for 4 out of the 6 testing models is illustrated, using both data sets
for learning, at both grid resolutions. It can be observed that better compression efficiency is achieved by the
network when trained with the HighResGC, when compared to the ModelNet counterpart. Moreover, there is a
clear trend of reaching higher performance when using a block resolution of 64, under both training sets. It is
worth noting that the gains in compression efficiency come at the cost of higher demands in terms of resources
and time, as blocks of resolution 64 require more computational power.

5.2 Resolution of testing data

The choice of a given block resolution for training data does not imply that the same grid size must be selected for
the testing data. In fact, larger testing blocks can be chosen for compression, denoting another parameter that
can potentially affect the reconstruction quality of point clouds. In this experiment, as a first step, we quantify
the performance of our network in geometry compression by using different grid resolutions for the testing data.
For this purpose, we use 4 different variations of the network, trained with the HiResGC and the ModelNet data
sets and training blocks of size 32 and 64. The selected resolutions for the testing blocks under evaluation were



0 5 10 15

Bits-per-input-point (bpp)

50

52

54

56

58

60

62

64

66

68

D
2

-P
S

N
R

HiResGC (32, 32)

HiResGC (32, 64)

HiResGC (32, 128)

HiResGC (32, 256)

(a) bumbameuboi

0 0.5 1 1.5 2 2.5

Bits-per-input-point (bpp)

60

62

64

66

68

70

72

74

76

78

D
2

-P
S

N
R

HiResGC (32, 32)

HiResGC (32, 64)

HiResGC (32, 128)

HiResGC (32, 256)

(b) guanyin

0 1 2 3 4

Bits-per-input-point (bpp)

60

62

64

66

68

70

72

74

76

78

D
2
-P

S
N

R

HiResGC (32, 32)

HiResGC (32, 64)

HiResGC (32, 128)

HiResGC (32, 256)

(c) longdress

0 1 2 3 4 5

Bits-per-input-point (bpp)

54

56

58

60

62

64

66

68

D
2
-P

S
N

R

HiResGC (32, 32)

HiResGC (32, 64)

HiResGC (32, 128)

HiResGC (32, 256)

(d) phil

0 5 10 15

Bits-per-input-point (bpp)

50

52

54

56

58

60

62

64

66

68

D
2

-P
S

N
R

HiResGC (64, 32)

HiResGC (64, 64)

HiResGC (64, 128)

HiResGC (64, 256)

(e) bumbameuboi

0 0.5 1 1.5 2 2.5

Bits-per-input-point (bpp)

60

62

64

66

68

70

72

74

76

78

D
2

-P
S

N
R

HiResGC (64, 32)

HiResGC (64, 64)

HiResGC (64, 128)

HiResGC (64, 256)

(f) guanyin

0 1 2 3 4

Bits-per-input-point (bpp)

60

62

64

66

68

70

72

74

76

78

D
2
-P

S
N

R

HiResGC (64, 32)

HiResGC (64, 64)

HiResGC (64, 128)

HiResGC (64, 256)

(g) longdress

0 1 2 3 4 5

Bits-per-input-point (bpp)

54

56

58

60

62

64

66

68

D
2
-P

S
N

R

HiResGC (64, 32)

HiResGC (64, 64)

HiResGC (64, 128)

HiResGC (64, 256)

(h) phil

Figure 17: Rate-distortion performance of the geometry-only network, for different testing grid resolutions,
according to geometry metric D2-PSNR. First row represents results obtained with a training block resolution
of 32, whereas the second row depicts results with training block resolution of 64.

0 5 10 15 20 25 30

Bits-per-input-point (bpp)

16

18

20

22

24

26

28

Y
U

V
-P

S
N

R

HiResGC (32, 64)

HiResGC (32, 128)

HiResGC (32, 256)

(a) bumbameuboi

0 1 2 3 4 5

Bits-per-input-point (bpp)

18

20

22

24

26

28

30

Y
U

V
-P

S
N

R

HiResGC (32, 64)

HiResGC (32, 128)

HiResGC (32, 256)

(b) guanyin

0 2 4 6 8

Bits-per-input-point (bpp)

18

20

22

24

26

28

30

Y
U

V
-P

S
N

R

HiResGC (32, 64)

HiResGC (32, 128)

HiResGC (32, 256)

(c) longdress

0 2 4 6 8

Bits-per-input-point (bpp)

20

22

24

26

28

30

32

Y
U

V
-P

S
N

R

HiResGC (32, 64)

HiResGC (32, 128)

HiResGC (32, 256)

(d) phil

Figure 18: Rate-distortion performance of the color-only network, for different testing grid resolutions, according
to color metric YUV-PSNR. In parenthesis, the training data resolution that was used for the learned model.

set to: 32, 64, 128, and 256. In a second step, the HiResGC dataset and a training block size of 32 is employed
to examine the quality levels of the reconstructed color using testing block sizes of 64, 128, and 256.

In Figure 17, performance evaluation results for the geometry-only network are illustrated, showing rate-
distortion curves for 4 out of the 6 testing models; very similar results are obtained for the rest of the contents.
First row represents results obtained with networks trained with a block resolution of 32, whereas the second row
depicts results with training block resolution of 64. As can be observed, in both cases testing grid resolutions of
64 and 128 achieve the best results. Similar conclusions are obtained when using the ModelNet dataset to train
the networks, at a generally more modest overall performance.

In Figure 18, we present the performance evaluation results for the color-only network, for the same 4 contents.
As can be seen, increasing the testing resolution leads to performance saturation, as equivalent quality levels are
obtained among the models at higher bitrates. It is worth noting, however, that the influence of border artifacts,
which appear due to the block partitioning step, is not necessarily captured by the objective quality metrics.
Moreover, the independent encoding/decoding of blocks might lead to different color distributions exhibiting
among neighboring regions, which is a quite visible and annoying visual degradation for colored point clouds.
Naturally, smaller block resolutions would lead to a more evident appearance of this effect, despite the fact that



identical quality scores are obtained at the different testing resolutions.

5.3 Color space

0 5 10 15 20 25

Bits-per-input-point (bpp)

14

16

18

20

22

24

26

28

Y
U

V
-P

S
N

R

RGB (32, 128)

YUV (32, 128)

(a) bumbameuboi

0 1 2 3 4

Bits-per-input-point (bpp)

18

20

22

24

26

28

30

Y
U

V
-P

S
N

R
RGB (32, 128)

YUV (32, 128)

(b) guanyin

0 1 2 3 4 5

Bits-per-input-point (bpp)

18

20

22

24

26

28

30

Y
U

V
-P

S
N

R

RGB (32, 128)

YUV (32, 128)

(c) longdress

0 1 2 3 4 5

Bits-per-input-point (bpp)

16

18

20

22

24

26

28

30

32

Y
U

V
-P

S
N

R

RGB (32, 128)

YUV (32, 128)

(d) phil

Figure 19: Rate-distortion performance of the color-only network, for different input color spaces, according to
color metric YUV-PSNR.

Another parameter that could potentially affect the results of color learning is the type of representation the
textural information is provided to the network. Convolution neural networks typically learn local features and
optimize filter weights in order to achieve data-driven compact representations. However, it is unclear whether
using different bases in the network can effectively influence the results. In this experiment, we opt to examine the
performance of the network when using the RGB and the YCbCr/YUV color spaces. The latter has effectively
been used in classical image and video compression, while the first depicts the most widely-used color format
that has been used in machine learning applications.

For this experiment, we used the ITU-Recommendation BT.709-642 for conversion between RGB and YUV.
The RGB color values for both training and testing datasets were converted to YUV, and then normalized
between 0 and 1. Note that no color conversion is applied at any layer of the network. Thus, the loss function
is always computed in the corresponding input color space. Results of the comparison between RGB and YUV
are depicted, for 4 out of the 6 contents, in Figure 19. It can be observed that in general, both color spaces have
similar performance. Slight gains can be observed at high bitrates when the RGB color space is employed, for
the contents guanyun and, more remarkably, phil. Thus, it appears that color space selection does not have a
large impact on the compression performance of color attributes.

5.4 Loss function

0 5 10 15 20 25 30

Bits-per-input-point (bpp)

16

18

20

22

24

26

28

Y
U

V
-P

S
N

R

(a) bumbameuboi

0 1 2 3 4 5 6

Bits-per-input-point (bpp)

18

20

22

24

26

28

30

Y
U

V
-P

S
N

R

(b) guanyin

0 1 2 3 4 5 6

Bits-per-input-point (bpp)

18

20

22

24

26

28

30

Y
U

V
-P

S
N

R

(c) longdress

0 1 2 3 4 5 6 7

Bits-per-input-point (bpp)

18

20

22

24

26

28

30

32

Y
U

V
-P

S
N

R

(d) phil

Figure 20: Rate-distortion performance of the color-only network, for different loss functions, according to color
metric YUV-PSNR.

The performance of neural network architectures is affected by the choice of the loss function that is used to
train a model. In order to assess whether performance gains could be obtained by using a different loss function
for computing distortions in the color domain, we tested three different objective quality metrics, namely, l1, l2,
and SSIM, with the former two denoting the most popular approaches that are used in similar network tasks.
To obtain the loss value, the corresponding distance (l1, or l2) is computed between the color channels of the



original point cloud and the recovered point cloud across the input point coordinates. For the computation
of the SSIM, which denotes a more perceptually-relevant metric, the same equation as in46 is used. However,
instead of computing the metric on the Y channel, we decided to use it for all RGB channels. In,47 it was shown
that using SSIM on RGB channels could reflect the quality of the recovered images. Moreover, a filter size of
6, instead of the default 11, to reduce computational costs. To be consistent with the other losses, we applied
some simple manipulations to make the range of the loss be within 0, indicating no error, and 1, indicating the
largest possible error. As a result, the SSIM loss is defined as follows:

LSSIM =
1− SSIM

2
(5)

For all loss functions under exam, the logarithm function is applied at the output value.

Results of the evaluation of different loss functions for color attributes are depicted in Figure 20, for 4 out
of 6 contents in exam. It can be observed that all loss functions show similar performances. Slight gains can
be observed when using l2 at high bitrates. Thus, it can be concluded that in our setup, the choice of the loss
function does not seem to have a significant impact on the performance of the network under exam. However,
the l1 or l2 would be the most compelling choices, considering the reduced costs with respect to SSIM.

6. CONCLUSIONS

In this paper, we present a novel neural network architecture to simultaneously handle the encoding of geometry
and color attributes of point cloud contents. In principle, this study can be interpreted as a first attempt to
compress both geometry and texture of point clouds using neural networks. Several parameters are examined,
and conclusions are drawn regarding their efficiency, paving the way for next efforts. Our network competes
with the anchor encoder that was employed in the MPEG activities; however, there is a large, unexplored space
that can lead to further improvements. For instance, provided that a point cloud model is split into a series
of blocks that is handled independently, due to memory and computational limitations, there is no effort in
learning redundancies between neighboring blocks, by enabling for instance intra or inter prediction techniques.
Moreover, it has been seen that variational auto-encoders applied on the feature space can remarkably assist by
improving the learning efficiency for the entropy model; such an addition is not tested in our network. Finally,
it is well-known that high-quality training data are required for better performance; the availability of well-
established training data sets with a representative range of geometric and textural complexities are of crucial
importance, and would facilitate future efforts.

ACKNOWLEDGMENTS

This work has been conducted in the framework of the Swiss National Foundation for Scientific Research project
Advanced Visual Representation and Coding in Augmented and Virtual Reality (SNSF grant 178854).

REFERENCES

[1] Schwarz, S., Preda, M., Baroncini, V., Budagavi, M., Cesar, P., Chou, P. A., Cohen, R. A., Krivokuća,
M., Lasserre, S., Li, Z., Llach, J., Mammou, K., Mekuria, R., Nakagami, O., Siahaan, E., Tabatabai, A.,
Tourapis, A. M., and Zakharchenko, V., “Emerging MPEG Standards for Point Cloud Compression,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems 9, 133–148 (March 2019).

[2] Jackins, C. L. and Tanimoto, S. L., “Oct-trees and their use in representing three-dimensional objects,”
Computer Graphics and Image Processing 14(3), 249 – 270 (1980).

[3] Schnabel, R. and Klein, R., “Octree-based point-cloud compression,” in [Symposium on Point-Based Graph-
ics 2006 ], Botsch, M. and Chen, B., eds., Eurographics (July 2006).

[4] Huang, Y., Peng, J., Kuo, C. . J., and Gopi, M., “A generic scheme for progressive point cloud coding,”
IEEE Transactions on Visualization and Computer Graphics 14(2), 440–453 (2008).

[5] Pavez, E., Chou, P. A., de Queiroz, R. L., and Ortega, A., “Dynamic polygon clouds: representation and
compression for VR/AR,” APSIPA Transactions on Signal and Information Processing 7, e15 (2018).



[6] Dricot, A. and Ascenso, J., “Hybrid octree-plane point cloud geometry coding,” in [2019 27th European
Signal Processing Conference (EUSIPCO) ], 1–5 (2019).

[7] de Oliveira Rente, P., Brites, C., Ascenso, J., and Pereira, F., “Graph-based static 3d point clouds geometry
coding,” IEEE Transactions on Multimedia 21(2), 284–299 (2019).

[8] Krivokuća, M., Koroteev, M., and Chou, P. A., “A volumetric approach to point cloud compression,” (2018).

[9] Zhang, C., Florencio, D., and Loop, C., “Point cloud attribute compression with graph transform,” IEEE -
Institute of Electrical and Electronics Engineers (October 2014).

[10] Shao, Y., Zhang, Z., Li, Z., Fan, K., and Li, G., “Attribute compression of 3d point clouds using Laplacian
sparsity optimized graph transform,” in [2017 IEEE Visual Communications and Image Processing (VCIP) ],
1–4 (2017).

[11] de Queiroz, R. L. and Chou, P. A., “Transform coding for point clouds using a Gaussian process model,”
IEEE Transactions on Image Processing 26(7), 3507–3517 (2017).

[12] de Queiroz, R. L. and Chou, P. A., “Compression of 3D point clouds using a region-adaptive hierarchical
transform,” IEEE Transactions on Image Processing 25(8), 3947–3956 (2016).

[13] Cohen, R. A., Tian, D., and Vetro, A., “Point cloud attribute compression using 3-D intra prediction and
shape-adaptive transforms,” in [2016 Data Compression Conference (DCC) ], 141–150 (2016).

[14] Mammou, K., Tourapis, A. M., Singer, D., and Su, Y., “Video-based and hierarchical approaches point
cloud compression.” ISO/IEC JTC1/SC29/WG11 Doc. M41649 (Oct. 2017).

[15] Mekuria, R., Blom, K., and Cesar, P., “Design, implementation, and evaluation of a point cloud codec for
tele-immersive video,” IEEE Transactions on Circuits and Systems for Video Technology 27(4), 828–842
(2017).

[16] MPEg 3DG, “Video-based and hierarchical approaches point cloud compression.” ISO/IEC
JTC1/SC29/WG11 Doc. N19092 (Mar. 2020).

[17] Pereira, F., Dricot, A., Ascenso, J., and Brites, C., “Point cloud coding: A privileged view driven by a
classification taxonomy,” Signal Processing: Image Communication 85, 115862 (2020).

[18] Toderici, G., O’Malley, S. M., Hwang, S. J., Vincent, D., Minnen, D., Baluja, S., Covell, M., and Sukthankar,
R., “Variable rate image compression with recurrent neural networks,” in [4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceed-
ings ], Bengio, Y. and LeCun, Y., eds. (2016).

[19] Theis, L., Shi, W., Cunningham, A., and Huszár, F., “Lossy image compression with compressive autoen-
coders,” (2017).

[20] Ballé, J., Laparra, V., and Simoncelli, E. P., “End-to-end optimized image compression,” (2016).

[21] Ballé, J., Minnen, D., Singh, S., Hwang, S. J., and Johnston, N., “Variational image compression with a
scale hyperprior,” (2018).

[22] Cheng, Z., Sun, H., Takeuchi, M., and Katto, J., “Deep convolutional autoencoder-based lossy image
compression,” in [2018 Picture Coding Symposium, PCS 2018 - Proceedings ], 253–257 (Sept. 2018).

[23] Quach, M., Valenzise, G., and Dufaux, F., “Learning convolutional transforms for lossy point cloud geometry
compression,” in [2019 IEEE International Conference on Image Processing (ICIP) ], 4320–4324 (2019).

[24] Quach, M., Valenzise, G., and Dufaux, F., “Improved deep point cloud geometry compression,” (2020).

[25] Guarda, A. F. R., Rodrigues, N. M. M., and Pereira, F., “Point cloud coding: Adopting a deep learning-
based approach,” in [2019 Picture Coding Symposium (PCS) ], 1–5 (2019).

[26] Guarda, A. F. R., Rodrigues, N. M. M., and Pereira, F., “Deep learning-based point cloud coding: A behav-
ior and performance study,” in [2019 8th European Workshop on Visual Information Processing (EUVIP) ],
34–39 (2019).

[27] Guarda, A. F. R., Rodrigues, N. M. M., and Pereira, F., “Deep learning-based point cloud geometry
coding: Rd control through implicit and explicit quantization,” in [2020 IEEE International Conference on
Multimedia Expo Workshops (ICMEW) ], 1–6 (2020).

[28] Wang, J., Zhu, H., Ma, Z., Chen, T., Liu, H., and Shen, Q., “Learned point cloud geometry compression,”
(2019).

[29] Huang, T. and Liu, Y., “3d point cloud geometry compression on deep learning,” in [Proceedings of the 27th
ACM International Conference on Multimedia ], 890–898 (2019).



[30] Yan, W., shao, Y., Liu, S., Li, T. H., Li, Z., and Li, G., “Deep autoencoder-based lossy geometry compression
for point clouds,” (2019).

[31] Qi, C. R., Su, H., Mo, K., and Guibas, L. J., “Pointnet: Deep learning on point sets for 3d classification and
segmentation,” in [Proceedings of the IEEE conference on computer vision and pattern recognition ], 652–660
(2017).

[32] Quach, M., Valenzise, G., and Dufaux, F., “Folding-based compression of point cloud attributes,” (2020).

[33] Alexiou, E., Yang, N., and Ebrahimi, T., “Pointxr: A toolbox for visualization and subjective evaluation
of point clouds in virtual reality,” in [QoMEX 2020 International Conference on Quality of Multimedia
Experience ], (2020).

[34] Zerman, E., Gao, P., Ozcinar, C., and Smolic, A., “Subjective and objective quality assessment for vol-
umetric video compression,” in [IS&T Electronic Imaging, Image Quality and System Performance XVI ],
(2019).

[35] Alexiou, E., Viola, I., Borges, T. M., Fonseca, T. A., de Queiroz, R. L., and Ebrahimi, T., “A comprehensive
study of the rate-distortion performance in mpeg point cloud compression,” APSIPA Transactions on Signal
and Information Processing 8 (2019).

[36] Perry, S., “JPEG Pleno Point Cloud Coding Common Test Conditions v3.1.” ISO/IEC JTC1/SC29/WG1
N86044 (Jan 2020).

[37] Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P., “Focal loss for dense object detection,” in
[Proceedings of the IEEE international conference on computer vision ], 2980–2988 (2017).

[38] Kingma, D. P. and Ba, J., “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980
(2014).

[39] Torlig, E. M., Alexiou, E., Fonseca, T. A., de Queiroz, R. L., and Ebrahimi, T., “A novel methodology for
quality assessment of voxelized point clouds,” in [Applications of Digital Image Processing XLI ], 10752,
107520I, International Society for Optics and Photonics (2018).

[40] Viola, I., Subramanyam, S., and César, P., “A color-based objective quality metric for point cloud contents,”
in [2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX) ], 1–6, IEEE
(2020).

[41] Meynet, G., Nehmé, Y., Digne, J., and Lavoué, G., “PCQM: A Full-Reference Quality Metric for Colored 3D
Point Clouds,” in [2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX) ],
1–6 (2020).

[42] ITU-R BT.709-6, “Parameter values for the HDTV standards for production and international programme
exchange.” International Telecommunication Unionn (June 2015).

[43] Ohm, J.-R., Sullivan, G. J., Schwarz, H., Tan, T. K., and Wiegand, T., “Comparison of the coding efficiency
of video coding standards—including high efficiency video coding (HEVC),” IEEE Transactions on Circuits
and Systems for Video Technology 22(12), 1669–1684 (2012).

[44] Tian, D., Ochimizu, H., Feng, C., Cohen, R., and Vetro, A., “Updates and Integration of Evaluation Metric
Software for PCC.” ISO/IEC JTC1/SC29/WG11 Doc. MPEG2017/M40522 (Apr 2017).

[45] Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., and Ranzuglia, G., “MeshLab: an
Open-Source Mesh Processing Tool,” in [Eurographics Italian Chapter Conference ], Scarano, V., Chiara,
R. D., and Erra, U., eds., The Eurographics Association (2008).

[46] Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P., “Image quality assessment: from error visibility
to structural similarity,” IEEE transactions on image processing 13(4), 600–612 (2004).

[47] Zhao, H., Gallo, O., Frosio, I., and Kautz, J., “Loss functions for image restoration with neural networks,”
IEEE Transactions on computational imaging 3(1), 47–57 (2016).


	INTRODUCTION
	Related work
	Experimental setup
	Data set
	Training data
	Testing data

	Network architecture
	Input
	Auto-encoder
	Output
	Configurations

	Evaluation methodology

	Experimental results
	Distortion allocation for geometry and color compression using the unified network
	Comparison of unified network against separately trained networks for color and geometry
	Benchmarking of unified network

	Meta-analysis
	Selection of training data for geometry compression
	Resolution of testing data
	Color space
	Loss function

	Conclusions

