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Abstract
Ever since the links between the development of new technologies and economic growth

became evident, researchers have attempted to study how the creation of knowledge fosters

progress. If pushing the frontier of knowledge has an impact on progress and well-being, it

is essential to pursue some form of science policy. Policymakers rely on the scholarly work

of researchers in order to understand the likely impact of new policies and investments, and

evaluate the state of the art in science and innovation policy. Therefore, the work of social

scientists, economists of science and information scientists, among others, is vital to the

characterisation, understanding and management of science. In recent years, the availability

and quality of science data (including bibliographic data and metadata, funding, relational

databases, ontologies and classifications) has boosted the empirical work in the depiction of

the organisational structure of science. In turn, policy analysis has been able to accurately

identify many unsuspected effects of past investments and policy decisions both at the macro

and micro level.

Using topic models, we develop a novel method for evaluating the robustness of different text-

to-text similarity models. Employing that procedure, we find that the neural-network-based

paragraph embeddings approach seems capable of providing statistically robust estimates

of document–document similarities. Finding methods to estimate the similarity between

individual publications is an area of long-standing interest in the information science and

scientometrics communities. These techniques enable researchers to build indicators and

classification methods based on the analysis of large text corpora. We show that the most

widely used techniques suffer from inconsistencies upon retraining, and provide a procedure

to evaluate and compare the quality of different methods, regardless of the data.

Next, we present a game-theoretic model of rewards to scientific contributions. Our model

of science may help explain the resulting social organisation of science from a simple social

dilemma model. We model a researcher’s payoff as a common-pool resource game, intrinsically

connecting the appropriability of scientific output to a scientist’s optimal strategy. This simple

model of reward allocation sheds new light on a variety of behaviours that have been observed

amongst researchers.

Finally, we propose an empirical analysis of the relationship between basic knowledge gener-

ation and spillovers to innovation. Using the United States’ 2001 ban on federal funding of

human embryonic stem cells (hESC), we disentangle the effect that policy had on downstream

innovation. We employ recently developed data on patent-to-scientific-article citations to

measure the spillovers, and we characterise the causal impact of the policy on subsequent
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Abstract

innovation with a difference-in-differences estimator. Our estimates suggest that in the years

following the policy, scholarly publications subject to the ban received 65 to 80 per-cent fewer

patent citations than the control group. We then apply topic modelling techniques to examine

changes in the direction of science. In particular we build a topic-variety metric. Our findings

show that variety decreased in the aftermath of the policy. Our results suggest that even the

most modest policy changes have a profound impact on downstream innovation and the

advancement at the frontier.

Keywords: Economics of Science, Economics of Innovation, Science Policy, Topic Modelling,

Scientometrics, Econometrics, Machine Learning
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Résumé
Après avoir établi les liens entre le développement de nouvelles technologies et la croissance

économique, de nombreux travaux de recherches visent à présent à évaluer le rôle de la

création de connaissances dans l’amélioration du niveau de vie. Les découvertes scientifiques

menées à la frontière de connaissance ont un impact significatif sur le progrès et le bien-être.

Les politiques économiques menées par rapport à la recherche scientifiques revêtent donc une

importance particulière. En effet, les décideurs politiques ont besoin des résultats obtenus par

les chercheurs afin d’estimer l’impact des nouvelles mesures implémentées et des nouveaux

investissements fournis. Ils évaluent en conséquence les dispositions à prendre en matière

de politiques scientifiques et d’innovation. Par conséquent, les travaux en sciences sociales,

menés par des économistes des sciences et des informaticiens, entre autres, est vital pour la

caractérisation, la compréhension et la gestion de monde de la recherche scientifique. Ces

dernières années, la disponibilité et la qualité des données scientifiques (y compris les données

bibliographiques et les métadonnées, le financement, les bases de données relationnelles, les

ontologies et les classifications) ont favorisé la mise en place de travaux empiriques intégrant la

représentation de la structure organisationnelle de la science. En parallèle, l’analyse détaillée

des politiques a permis d’identifier avec précision de nombreux effets insoupçonnés des

investissements passés.

En utilisant la technique de topic models, nous développons une nouvelle méthode permet-

tant d’évaluer la stabilité de différents modèles de similitude de texte. Nous constatons que

l’approche de vectorisation de paragraphes basée sur un réseau neuronal semble capable de

fournir des estimations statistiquement robustes des similitudes entre deux documents. La

recherche de méthodes pour estimer la similitude entre les publications individuelles est un

domaine d’intérêt pour les communautés des sciences de l’information et de la scientométrie.

Ces techniques permettent aux chercheurs de construire des indicateurs et des méthodes de

classification basés sur l’analyse de grands corpus de texte. Nous montrons enfin que les tech-

niques les plus fréquemment utilisées souffrent d’incohérences lors du ré-entrainement, et

nous fournissons une procédure pour évaluer et comparer la qualité des différentes méthodes,

pour tout type de données.

Dans un second temps, nous présentons un modèle théorique évaluant les récompenses attri-

buées aux contributions scientifiques. Notre modèle aide à expliquer l’organisation sociale de

la science qui en résulte à partir d’un simple dilemme social. Nous modélisons le gain d’un

chercheur comme un jeu de ressources communes, reliant intrinsèquement la pertinence de

la production scientifique à la stratégie optimale d’un chercheur. Ce modèle simple d’attri-
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bution de récompenses permet d’illustrer une variété de comportements observés chez les

chercheurs.

Enfin, nous proposons une analyse empirique de la relation entre la génération de connais-

sances et son impact sur l’innovation. En exploitant l’interdiction imposée aux États-Unis en

2001 sur le financement fédéral des cellules souches embryonnaires humaines (CSEh), nous

isolons l’effet de la politique sur l’innovation en aval. En utilisant des données récemment

développées sur les citations du type brevet à article scientifique, nous mesurons l’impact

causal de la politique sur l’innovation ultérieure avec un estimateur de différence dans les

différences. Nos estimations suggèrent que dans les années qui ont suivi cette politique, les

publications soumises à l’interdiction ont reçu de 65 à 80% de citations de brevets en moins

par rapport au groupe de contrôle. Nous appliquons ensuite des techniques de topic models

pour examiner les changements dans la direction de la science. En particulier, nous construi-

sons une métrique de variété de sujet. Nous constatons que la variété a diminué après la mise

en place. Ces résultats suggèrent que même les changements de politique les plus modestes

ont un impact profond sur l’innovation en aval et l’avancement à la frontière.

Mots-clés : Économie des Sciences, Économie de l’Innovation, Politique Scientifique, Topic

Modelling, Scientométrie, Économétrie, Machine Learning
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Introduction

It is difficult not to sound pompous when professing the full extent of science’s contribution

to economic growth. The truth is that, today, science is undeniably recognised as having

played a decisive role in humankind’s development. There is an almost tautological consensus

in acknowledging the impact that both basic and applied research have had on innovation,

growth and social well-being in general. Indeed, nearly all modern governments and leading

corporations strategically devote a considerable part of their budgets to research and develop-

ment. Following efforts focused on defining decision-making accountability, the systematic

study of science policy has seen an uptick in recent times. These efforts have, in turn, been

motivated by widespread public sphere enquiries on the appropriateness of large expenditures

in R&D, and on the real returns in competitiveness and economic security.

The present-day pursuit of a comprehensive science policy has its roots in Vannevar Bush’s

(1945) post-WWII report commissioned by U.S. President Franklin D. Roosevelt. This docu-

ment established science as a central concern for governments, and it set in motion decisive

lobbying for the creation of a national policy for science. The ensuing institutionalisation

of science brought together an amalgam of actors working in the context of science policy,

notably policymakers and researchers from a variety of fields (Marburger et al., 2011).

The work of this multidisciplinary community entails, broadly speaking, three areas of analysis.

First, the understanding of the organisational structure of science —i.e., the institutional and

sociological systems and networks in place. Second, the study of knowledge as a source of

productivity growth —linkages between inputs and outputs— and the measurable impacts

of policy interventions. Third, the usability of the information produced by researchers —

analysis of impact, classification, manipulation, retrieval, and dissemination of information.

The multiple dimensions that conform science policy imply that a plethora of academics from

different specialities have targeted the most pressing questions in their respective fields.

Science is, by definition, a social system. Regarding science policy, sociologists, philosophers,

historians and other social scientists alike have historically focused their research on the

relationships that connect individuals and institutions. This work has allowed practitioners

a better understanding of the organisation of science through the study of the formal (and

informal) rules that drive researchers and institutions. The motivations, rewards, competitive

nature, and social arrangements that emerge from the science system, as well as the power
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forces —including ethical questions, autonomy and social responsibility— in place are under

scrutiny in this area of research. It is, however, at the intersection between economics, sociol-

ogy and informetrics that these questions have advanced the most in recent years. Starting

with Dasgupta and David (1994), behavioural and applied economists have turned their minds

towards explaining the governing rules of science too, quantifying —and modelling— the

prevalent social norms.

That knowledge is a primary driver of economic growth goes mostly unquestioned by economists.

In a quest for understanding the basic economics of science, the work of Nelson (1959) and

Arrow (1962) constitutes the seed of an extensive line of economic writing on allocation of

resources and productivity of science. Economists’ work traditionally resides in theoretical

—structural— analysis of the sources of technology, scientific labour supply and demand, and

the empirical analysis of innovation. Economics of science —the analysis of basic science

production systems—, on the contrary, has only developed in the last decades. Much of today’s

work in economics lies at the intersection with political science, with economists focusing

their efforts on the most pressing policy questions: science funding, policy intervention effects

and mechanisms of effective science-system management.

Managing science investment portfolios requires more than just productivity or impact anal-

ysis. Bibliometricians and information scientists have developed a myriad of knowledge

management tools for the administration of the information generated by science. From

technical solutions devoted to information curation and stewardship, to the development of

indicators and characterisation of portfolios. Following Eugene Garfield’s lead (1955), this area

of work has enabled both policymakers and practitioners to acquire a deeper understanding

of what science is being produced and how it is related to previous (and future) work. Today,

the availability of electronic data has prompted the use of scientific text in the field for tasks as

disparate as information retrieval or science mapping.

This thesis constitutes an effort that may speak to the three areas of science policy research.

The aim of this work is no other than to advance the underlying fundamentals of how science

operates by filling some of the gaps that the community has identified. It is my hope that,

in covering such distinct topics, my contributions will be useful to a broad spectrum of

policymakers and practitioners.

Contributions and Structure

This thesis is structured in three chapters. The first chapter develops a technical contribution

to the use of topic models in the social sciences in general. These topic models are used in

the following two chapters, where we apply them to target different questions. The second

chapter proposes a simple game-theoretic model that helps explain some of the phenomena

observed in research communities. The third chapter provides an empirical evaluation of a

science policy shift.
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Chapter 1 develops a fresh new look at the characterisation of text data in the social sciences

in general, and in scientometrics in particular. I study the statistical robustness of different

families of topic modelling techniques, namely NMF, LDA and neural paragraph embeddings.

Using pairwise similarity metrics, I develop an original method to estimate the variability

introduced in the models by stochastic processes, extrinsic to the practitioner’s control (the

parameters that are not available for tuning upon training). I also provide a simple validation

test to account for the descriptive power of topic models as the researcher pushes the latent

space size. Finally, by training the models in a number of different representative datasets

typically used in the characterisation of science (i.e. subject headings, titles and abstracts), I

provide relevant application examples of the most recent neural techniques.

This first chapter constitutes a significant technical contribution to the use of topic models in

the social sciences. Topic models often face a number of roadblocks in their application to the

social sciences. Notably, topic models have been under scrutiny due to their instability (i.e.,

difficulty to replicate). I provide evidence that the most recent methods —based on neural

embeddings— are capable of providing more robust estimates than probabilistic techniques,

at different degrees of granularity. I present an approach to evaluation that can be easily

applied to any of the existing topic models, thus enabling practitioners to address robustness

issues to their particular problems. Even though our central results emerge from clear-cut

scholarly bibliographic data, the models and methods described in Chapter 1 apply to other

sources of text analysis such as patents, discourse or news articles.

Chapter 2 presents a thought experiment about the strategic behaviour of scientists. Based on

the extensive literature in the sociology of science, I model science as a common-pool resource

(CPR) game. I argue that introducing appropriability in a public-good game of rewards results

in a CPR game. In my model, I enable a researcher to appropriate the advances of her scientific

field proportionally to her contribution. This distributional factor results in an optimal strategy

that is supported by the weighted average of two components: the marginal and the average

contribution. I argue that the CPR game results in an optimal strategy that represents the

Kuhnian essential tension between new developments and consolidation efforts.

The exercise presented in chapter 2 is an effort to represent individual incentives in the

simplest possible manner. I derive some implications that correlate well with observations

from the present and the past. Namely, the trade-off between tradition and subversion and the

existence of “competition” in science. Based on this model, I outline explanatory hypotheses

about the links between the “old” sociology of science and the “new” economics of science.

The introduction of appropriability in the payoffs to individuals helps us understand observed

phenomena, and sheds new light on the mechanisms behind the incentives that shape science.

Chapter 3 analyses the impact of science funding policy on innovations and technology

stemming from basic science. In this chapter, I exploit an exogenous shock —the 2001 U.S.

human embryonic stem cell (hESC) policy— that impeded researchers from using certain

materials (namely, newly-derived stem cells). I use a citation-based estimator to capture the
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knowledge spillovers from frontier research to innovations. I estimate the causal effect of

the policy with a difference-in-differences approach. Our estimates suggest that scientific

articles subject to the policy restrictions received 65 to 80 per-cent fewer patent citations than

unrestricted citations. The analysis constitutes one of the first to employ non-patent-literature

citations and in-text references from patents to scholarly articles to establish the links between

the two.

Additionally, in chapter 3, I explore the mechanisms behind the decrease in patent citations. I

find that publications bound by the policy were placed in journals of comparatively lower rat-

ing and had fewer forward citations. Using publication-text data and the methods developed

in Chapter 1, I characterise the yearly diversity of hESC publications. I observe a significant

drop in variety in the aftermath of the policy, suggesting a concentration and clustering of

topics in research.

Chapter 3 is a contribution to the study of science policy in itself, by inspecting how small

changes to science funding policy have a profound effect on downstream innovation. We

conclude that beyond funding, limitations to the materials available to researchers have

negative consequences on the outlook of a field. The 2001 hESC ban affected the participation

of researchers, the subsequent involvement of private sector actors and the capability to share

and advance technology.
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1 Robust similarity measures from
topic modelling

“Remember that the primary purpose of this chapter, and the two which follow

is not to develop the physical properties of ideal gases as such. Instead we shall use the

ideal gas as an example to introduce some important thermodynamic ideas.”

— G. Carrington (Basic Thermodynamics)

Finding methods to estimate the similarity between individual publications is an area of long

standing interest in the scientometrics community. Traditional techniques have generally

relied on references and other metadata, while text mining approaches based on title and

abstract text have appeared more frequently in recent years. In principle, Topic Models have

great potential in this domain. But in practice, they are often difficult to employ successfully

and, in particular, they are notoriously inconsistent as latent space dimension grows. That is,

running the same model, with the same parameters, on the same data, but with a different

random seed, produces radically different similarity estimates as the number of topics increase.

In this chapter, we develop a simple, but novel, method for evaluating the robustness of

topic models. Employing that procedure, we find that the neural-network-based paragraph

embeddings approach seems capable of providing statistically robust estimates of document–

document similarities, even for topic spaces far larger than what is usually considered prudent

for the most common topic model approaches.

1.1 Introduction

Methods for understanding the topics and concepts of individual documents —such as patents

or scientific publications— are a matter of long-standing interest within the scientometric and

informetric communities. Indeed, going back to some of Garfield’s earliest thinking on citation
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indexes (1955), he identified a goal of an “association-of-ideas” index. In those thoughts, he

further developed the role such an index would play in the literature-search process, and

highlighted the value of a “sub-micro” or “molecular” level approach over one focused on

“classification”.

Today, document similarity and clustering is a vibrant area of research within the scientometric

and informetric community. Applications include information retrieval, the mapping of

science, and metrics to enrich studies of the individuals and institutions engaged in the

research production process. Much of today’s work, in line with Garfield’s early vision, find

citations and co-citations at the centre of their formulation of contextual similarity, even

though that relationship may be more tenuous than generally accepted (see Borner et al.

(2003) for an in-depth exploration).

Upon the digitisation of bibliographic data, researchers began to use text data to study and

characterise scientific literature. Co-word analysis, pioneered by Callon et al. (1991), laid the

foundations of today’s full-text usage for document interpretation. In parallel, the first hybrid

approaches began combining co-citation methods with word analysis to generate speciality

clusters (Braam et al., 1991). As processing power increased, different sources of text data

were incorporated to the tool-set of quantitative science studies. The work by Noyons and van

Raan (1994) framed the science-technology link by using keywords from both patents and

scientific articles. Soon thereafter, research employing a combination of classification terms,

subject headings and keywords emerged. Later, Glenisson et al. (2005) showed the potential of

full-text analysis to map scientific disciplines.

Increases in computational capacity and the availability of electronic data have opened many

new avenues for estimating document similarity and have enabled clustering. While the

range of options and ideas is vast, in this manuscript we focus on “Topic Models” — a group

of techniques arising mainly from the computer science literature. As the input to these

techniques is textual data (specifically, a collection of text documents), they offer an exciting

twist on traditional approaches for understanding the topics and concepts that make up

individual publications and, in turn, estimating document similarities and clustering. As

discussed below, these techniques are certainly not without their flaws (Velden et al., 2017),

but they are also well positioned to exploit the rapidly growing body of textual, and perhaps

even full text, data.1

In this manuscript, we develop a robust approach for calculating pair-wise similarities be-

tween documents based on state-of-the-art topic modelling techniques. We compute the

similarity between researchers which, in turn, allows us to obtain the topical overlap (or

proximity) between them. With this text-only approach, we obtain a continuous knowledge

domain space from which we can cluster and delineate topics as narrowly as desired, estimate

interdisciplinarity, and observe the evolution and direction of research.2

1In addition to the issues discussed throughout this chapter, current topic modelling techniques also fail to
exploit citation data. A gap we are working to fill with further work.

2Code for all the experiments in this chapter is available in https://github.com/oballegon/Thesis
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1.2. Background

This chapter is structured as follows. In the Section 1.2, we introduce the most common

topic modelling techniques and their applications to information science. In Section 1.3, we

describe the data and methods of our analysis. In Section 1.4, we describe the method of

evaluation of topic models, including the training set-up and the metrics of interest. Section

1.5 discusses the results extensively and their limitations. Finally, in Section 1.6, we discuss po-

tential applications of neural-network-based topic models, and provide examples of successful

applications.

1.2 Background

Topic models are statistical models designed to extract from a set of documents the relevant

“topics”, and in turn, provide a representation of each document within that “topic” or latent

space. More pragmatically, topic modelling consists on inferring a set of document-topic

vectors (i.e., establishing the extent to which each topic pertains to each document) and a

set of topic-term vectors (i.e., establishing the extent to which each topic is associated with

each term) from a set of document-term vectors. In this task, a topic model will exploit

hidden semantic structures within and across the documents. Because each document is

treated as a bag-of-words, topic models cannot exploit local structure (i.e., grammar or the

specific order of words within a sentence). Instead, they exploit the structure that emerges

at the document level. For example, that the word “table” in the context of a document also

containing the words “wood” and “legs” conveys a different meaning than the word “table”

in a document containing “row” and “column”. It is ultimately through the exploitation of

high-level correlations in the co-occurrence of individual terms (as well as groups of terms)

that the topic model produces its document-term and document-topic vectors.

In this manuscript, we will test topic models in terms of their ability to estimate pairwise

document similarities robustly. Specifically we have chosen Non-negative Matrix Factori-

sation (NMF) (Lee and Seung, 1999), Latent Dirichlet Allocation (LDA) (Blei et al., 2003b)

and paragraph embeddings (Le and Mikolov, 2014). NMF decomposes the document-term

matrix into a product of two matrices, which by design may have only non-negative entries.

LDA is based on a probabilistic model of language in which decomposition produces two

matrices stochastically. Generating paragraph embeddings, and in particular Doc2Vec, is

a relatively novel neural-network-based approach built upon the similarly new Word2Vec

word-embedding algorithm by Mikolov et al. (2013). Word2Vec formulates the problem as

one of predicting an omitted word within a short (3 to 15) contiguous sequence of text.3

Treating the neural network’s hidden layer as the latent space, one can infer document-topic

couplings from the model’s parameters. Although it should be noted that, strictly speaking,

Doc2Vec may not be considered a “true” topic model as the topic-term couplings are not easily

inferred. However, this feature (or lack thereof) is acceptable as the fundamental elements

3Thus this is not, strictly speaking, a bag-of-words approach. However, we have reproduced each analysis
within this manuscript shuffling the order of the terms, and all results are similar. Although this is curious and
begs further consideration at an appropriate moment in the future.
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of the statistical analysis presented herein are document-document similarity scores, which

require only the document-topic vectors.

A specific feature of most, if not all, topic models is that the user must define the size of the

“topic” (or latent) space. Indeed the question of what is the “best” or optimal size of the topic

space comes up often in the literature, and no clear criteria exist (Glaser et al., 2017). However,

we use the capability of models to be trained for different topic sizes as a feature rather than

a bug. Increasing the size of the latent space increases the granularity in which the model

represents ideas. Considering all journal publications as the corpus, a topic space of size five

would presumably decompose documents into the highest level disciplines one may think

of (e.g. biomedical science, the physical sciences, social sciences or humanities). A latent

space dimension of one or two hundred may decompose only well-established fields (e.g.

medicine, molecular biology, physics, economics, sociology or history). However, allowing

a topic space up into the thousands, or even tens of thousands of dimensions, allows one to

identify particular groups of documents — for example, those focusing on a specific form of

cancer within a specific model organism. Thus the question of what is the correct number of

topics should never be asked, but rather, one should ask, what is the proper number of topics

to tackle a specific question.

Despite the many new lines of research that could potentially be attacked by pushing topic

models to high dimensional topic spaces, topic models are rarely employed with a latent

dimension greater than, perhaps, a few dozen. The reluctance of researchers to use large

topic spaces does not arise, however, from a lack of vision. Rather, it originates from a

technical limitation. As one increases the number of latent dimensions, the model, eventually,

becomes unstable. To be more specific, at some point the exact same algorithm, with the exact

same parameters, on exactly the same data, but with a different random seed will produce

a quantitatively and qualitatively different set of document-topic and topic-term vectors

(Belford et al., 2017). In the topic modelling literature, a variety of information-theoretic

measures have been proposed for estimating the extent to which topic-term vectors vary from

run to run. However, it is indeed the case that changes in the topic-term vectors may not

preclude stability when considering only document-document similarities. That is, even if

the topics themselves are inconsistent from one training to the next, the measure of pairwise

similarity may not change.

In this chapter, we test and compare the performance of NMF, LDA and Doc2Vec regarding

their scalability to high dimensions and their consistency across estimations. We illustrate

the analysis on scientific bibliographic data but the concepts, methods and implementation

are extensive to any social-science research involving or using text data (e.g. patents, news

articles, social media or discourse). In the following section, we provide a detailed description

of the data and methods we use.
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1.3 Data and Methods

Before getting into the analysis, we will define the specific data and context in which we are

working. This section briefly introduces topic models, in particular LDA, NMF and a particular

case of paragraph embeddings (derived from Word2Vec) as well as the text corpus of the

subsequent analysis.

1.3.1 Data

Topic models are a subclass of dimensionality-reduction techniques which map a high-

dimensional space of document-terms into a lower-dimensional latent space of document-

topics. In the analysis below, a document is the career output of a researcher and the terms

are Medical Subject Headings (MeSH). For each researcher, we extract from their publications

all assigned MeSH. We rely on the 2014 version of PUBMED, which provides the individual

publication metadata, from which we use Journal, Year, Document Type and Medical Subject

Headings. We identify the output of each researcher from the Author-ity disambiguation of

PubMed carried out by Torvik and Smalheiser (2009).

To be explicit, the document-term vector resulting from this procedure is one in which each

vector entry corresponds to the concatenated list of MeSH terms assigned to the given re-

searcher’s publications across the entirety of her career. Disambiguation is thus crucial for

the reliability of the models. We deal with careers starting 1974 or later, noting that our data

terminate in 2009 as that is when the disambiguation ends.

Medical Subject Headings (MeSH)

The Medical Subject Headings (MeSH) thesaurus is a controlled vocabulary produced by the

National Library of Medicine and used for indexing, cataloguing, and searching for biomedical

and health-related information and documents.4 MeSH terms are, in a way, keywords that

point in the direction of the content of the full article. While the use of MeSH terms does not

fully leverage the power of the most recent natural language processing (NLP) techniques,

it provides a controlled and curated vocabulary, which largely simplifies the pre-processing

stage. Given the nature of the experiment presented in this chapter, which aims at comparing

the performance of different topic modelling techniques, the more restrictive vocabulary set

plays to our advantage. First, it reduces the document-term matrix dimension, and second,

the analysis is technically simplified by eliminating the burden of text tokenisation.

MeSH terms have several advantages for the application to topic modelling: (i) They are

standardised (both in spelling and in scientific terms — i.e., use of the prevalent terms for

neoplasms, or cell nomenclature, or technique names. (ii) MesH terms are harmonised. They

suppress the common problems of free-text including synonyms, term permutations and

4https://www.nlm.nih.gov/mesh/introduction.html
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acronyms all referring to the same subject. (iii) Unlike author-keywords, they are assigned by

a centralised agency, reducing the self-selection bias. (iv) They are content-descriptors. (v)

MeSH terms include multi-word tokens, increasing the specificity while providing a different

token for distinct or narrower concepts — e.g.: “Cell” or “Stem Cell” or “Embryonic Stem Cell”

or “Murine Stem Cell”.

Therefore, MeSH terms represent a meticulously curated description produced by a third party

(alien to the authors of the manuscript or journal). The result is a unified set of keywords that

encapsulate the content of the article they epitomise, with enough precision to identify the

precise knowledge that the publication covers.

On the other hand, one should not forget that the use of reference words only might hide

nuances in the topic structure of a text. Full-text approaches include relevant phrases for

interpretation and categorisation, thus bringing greater potential benefits than the “noise”

introduced (Glenisson et al., 2005). State-of-the-art topic models, specially neural-network-

based models, are particularly well suited for full-text analysis, given that they incorporate

contextual information upon training (as opposed to bag-of-words approaches) and their

ability to scale the data processing step Mikolov et al. (2013) efficiently. Hence, we acknowledge

that, by limiting our experiment to MeSH terms, we are not fully exploiting the capabilities of

modern tools. Our approach, however, reduces the complexity of the problem, and we can

compare the different families of topic models. In Section 1.4.3, we provide a working example

using full text from titles and abstracts.

Authors/Documents

In order to work with comparable, large enough documents, we filter out researchers with

fewer than 50 research publications.5 Our full filtered corpus comprises about 147,000 re-

searchers. We then construct a heuristic rule, based on journal classification, in order to assign

an a priori topic to each document. We do not use the rule-based classification in this chapter

for any purpose other than sub-sampling the database, or establishing comparison groups.

We do not use the labels as ground truth for topic-generation, nor we incorporate them in any

classification pipeline. To classify journals, we use Eigenfactor’s journal classification labels

(Bergstrom et al., 2008) identifying the subject family of all our indexed journals. We then

associate a subject family to a researcher whenever she satisfies one of the following: (1) if 50%

of her publications appear in journals of the same subject matter, we assign one major topic

label to her; (2) if the top N categories (by the count of publications) account for at least 20%

of all the publications each, we assign the N categories; (3) if none of the previous holds and

the top class has at least 15 publications, we assign the top class to the researcher.

In many analyses below, we focus on a subset of 13,936 researchers in the Neurosciences.

5Amongst the publications, we exclude non-research manuscripts. For this, we filter out the following
Document Types as provided by PUBMED: “News”,“Review”,“Letter”,“Comment”,“Editorial”,“Historical Arti-
cle”,“Biography”,“Portraits”,“Interview”,“Newspaper Article”,“Bibliography”.
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This choice was based purely on a desire to reduce the scale of the analysis. With this corpus,

all pairwise similarity scores can be calculated in a manageable amount of time and stored

within the hardware at our disposal. Thus, a researcher belongs to the Neurosciences if she

satisfies one of the three rules above. The full list of 371 Neuroscience Journals can be found

in Appendix A.1.

Corpus

The dataset for the central analysis performed below comprises 13,936 “documents” (re-

searchers). Each document contains, on average, 940 non-unique tokens that come from an

average of 120 distinct publications. Therefore, our corpus of publications contains MeSH

from over 1.6 million scholarly articles. In turn, each publication contributes about eight

MeSH terms randomly sorted upon introduction in the term list. Table 1.1 contains a sum-

mary of the corpus data. To prevent any undesired ordering effect at training, the array of

Table 1.1 – Corpus Statistics – Neuroscientists

Mean StD Min Max

Publications/Document 120.5 79.1 50 1111
MeSH/Document 942.7 624.8 225 9985
MeSH Incidence 594.5 2877.5 1 114306

Count

Documents 13936
Unique MeSH 22909

document-terms is stored for reuse in each of the subsequent model retrainings. We then

perform all the training and analysis on the same static corpus, using the models described

below.

1.3.2 NMF

Non-negative matrix factorisation (NMF) (Lee and Seung, 1999) is an approach to matrix

decompositions that assumes positive features (components) in the data. NMF finds a decom-

position of a matrix into two matrices, all of which have non-negative components. Since the

problem is not exactly solvable in general, it is commonly approximated numerically. Due to

the positive nature of its components, it is particularly well suited for representations of text

and image, and the resulting matrices are easily interpretable.

Although NMF is not technically a class of probabilistic topic models, when it is obtained

minimising the Kullback-Leibler divergence, the optimisation function is equivalent to proba-

bilistic latent semantic indexing (Ding et al., 2008). Furthermore, standard applications rely

on stochastic elements in their initialisation phase (Belford et al., 2017).
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In our analysis, we use Python’s implementation of NMF from the sci-kit learn library (Pe-

dregosa et al., 2011).

1.3.3 LDA

Generative models for documents are an attempt at describing how words in documents can

be generated from a set of “latent” (arbitrary) variables. Upon training, the models find the best

set of latent variables that can explain the observed words present in the documents (Steyvers

and Griffiths, 2013). The only information relevant to statistical models of documents is the

number of times words appear. This data input is known as the bag-of-words assumption.

For many years, Latent Dirichlet Allocation (LDA) (Blei et al., 2003b) has been the algorithm of

choice for modelling latent topics. LDA is a class of probabilistic topic model using a Dirichlet

prior distribution to the generative model. The most widespread interpretation of LDA is

equivalent to a dimensionality reduction (matrix factorisation) interpretation. LDA allows to

decompose the bag-of-words of a set of documents into a low-dimensional representation

of topics. The output are two sparse matrices with probabilistic interpretation. The first is

a topic-word matrix which associates each latent dimension to a distribution of words. The

second is a document-topic matrix that provides the adherence of each document to the latent

dimensions.

In our analysis, we use Python’s implementation of LDA from the sci-kit learn library (Pe-

dregosa et al., 2011).

1.3.4 Neural Network Embeddings: Word2Vec and Doc2Vec

Distributed representation of words as vectors have become a standard in natural language

processing. Amongst them, neural network-based representations have gained a reputation

of encoding many linguistic attributes. Amongst these techniques, perhaps the most widely

known is Word2Vec (Mikolov et al., 2013). Word2Vec is an algorithm based on neural networks

that generates word embeddings (word vectors) based on the word context. It is substantially

different from the previous dimensionality reduction approaches, in that it does not try to

reduce the space based on document co-occurrence (bag of words), but rather tries to extract

the semantics (meaning) associated to each word based on its surrounding text. In essence,

neural word embeddings are a class of semi-supervised algorithms. The training objective

consists of learning vector representations that correctly predict nearby words. The output is

a non-sparse vector that represents the word’s position in context.

In an attempt to generalise the success of word embeddings to larger corpora of variable

length, Le and Mikolov (2014) developed a paragraph embeddings model, based on the same

architecture as Word2Vec. The paragraph token can be thought of as another word (it is

trained at the same level of words), acting as a sort of “memory” of the missing context in the

prediction of another word. Therefore, each paragraph vector is updated in the many “next
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word” predictions that take place in each sentence of the paragraph.6

In our analysis, we use Doc2Vec. Doc2Vec is Python’s implementation of paragraph embed-

dings by Řehůřek and Sojka (2010), which follows the architecture laid out by Le and Mikolov

(2014). In our implementation, we use the Distributed Bag of Words (DBOW) approach with

negative sampling, as suggested in Levy et al. (2015) and Dai et al. (2015).

1.4 Analysis

Different applications of topic models have been extensively used in the scientometrics litera-

ture to greater or lesser success (Boyack et al., 2011). Such models are useful for a variety of

information needs, including analysis, information retrieval or data management. The most

recent developments in topic delineation take advantage of stochastic topic modelling meth-

ods. That family of models includes NMF and LDA as the most use widespread applications

(Glaser et al., 2017). Albeit general purpose in their conception, probabilistic topic models

are not newcomers in science characterisation at different levels of aggregation. Griffiths

and Steyvers (2004) were the first to apply LDA to article abstracts in order to find scientific

topics and illustrate the contextual relationships between different disciplines. The work by

Rosen-Zvi et al. (2010) and Lu and Wolfram (2012) applied stochastic topic modelling to infer

the author-research relatedness, incorporating information from several documents from the

same author. The Author-Conference-Model (ACT) by Tang et al. (2008), uses probabilistic

topic models to infer author’s and conference’s subjects of interest simultaneously. Similarly,

Hall et al. (2008) use LDA to study the dynamics of conferences topics.

In the particular case of Latent Dirichlet Allocation (LDA), Blei et al. (2010) found that, in

practice, most practitioners directly assume that the latent spaces (topic space) generated by

the model are semantically meaningful without an in-depth quantitative evaluation. Often,

researchers interpret the topics generated as “themes” (Hall et al., 2008), and use a manifold of

techniques to label the generated categories, ranging from human interpretation (Chang et al.,

2009) to automatic classification based on topic top-words (Mei et al., 2007; Newman et al.,

2010). In a review of the applications of LDA, Chang et al. (2009) argue that researchers use

model fit metrics to account for the validity of the models, completely disregarding measure-

ments of the internal representation. In practice, topic models face a trade-off between human

interpretability and improved fitness metrics (such as likelihoods or predictive probabilities).

In reality, topic models are seldom used as an all-in-one out-of-the-box topic identification

tool, but rather as an intermediate step to facilitate the human readability and interpretability

of large text corpora. One particular task that has been facilitated by topic models is similarity

analysis. The relative proximity between pairs of documents becomes relevant when we

describe knowledge as a “space” or “landscape” of ideas. In this framework, first proposed by

6Sentence in the algorithm sense: the context window of words surrounding each word that are used for
prediction. Paragraph embeddings can be trained for text of different lengths, ranging from a real sentence, a real
paragraph or a full document.
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Garfield et al. (1978), similarity is a distance metric of the spatial composition of knowledge.

As a metric, pairwise distances (or similarities) can be used for multiple purposes in the fields

of scientometrics, economics and information sciences: (i) clustering documents (Boyack

et al., 2011; Racherla and Hu, 2010); (ii) measuring interdisciplinarity (Wagner et al., 2011);

(iii) identifying emerging topics and novelty (Wang et al., 2017); (iv) characterising research

sub-specialities (Azoulay et al., 2015a; Fontana et al., 2019); (v) mapping science (Suominen

and Toivanen, 2016); (vi) or finding overlaps between groups of documents Yan et al. (2012).

Besides, information retrieval and search tasks employ text-inferred similarities (Hjaltason

and Samet, 2003; Castells et al., 2007)

Despite their widespread adoption and multiplicity of applications, stochastic topic models

suffer from systemic errors due to topic instability (Belford et al., 2017). Belford et al. (2017)

argue that variation is due to different local solutions to the optimisation problem under

different stochastic initialisations. Recent work by Hecking and Leydesdorff (2018) has tested

the validity and reproducibility of out-of-the-box LDA by fixing the stochastic parametrisation

of the data. Their work concludes that, while topics (defined by their top words) are coherent,

they are not robust to small data variations. Furthermore, Agrawal et al. (2018) show that

LDA suffers from ordering effects. Different models are generated if the data are shuffled

upon training highlighting the unreliability of such models. Our contribution goes beyond

prior art in testing stochastic topic models in that we study the stability across runs. We

propose an evaluation that is not data-dependent nor requires from “human” interpretation.

Additionally, our assessment of stability can extend to neural-network-based models such as

Word2Vec/Doc2Vec (discussed below) or others (GloVe, FastText, BERT).

To be suitable for application in the social sciences, it is our view that it must be demonstrated

that topic models possess three properties:

1. Statistical robustness. That is, running the same model on the same data with the same

parameters should produce the same, or at least highly similar results.

2. Descriptive power increases with the size of the latent dimension. That is, changing the

number of topics should alter the results both qualitatively and quantitatively.

3. Reflect reality. That is, the results produced by topic modelling, be they document-

document similarities or clustering or otherwise, must be consistent with patterns and

relations are known to exist within and across research domains.

Below we propose and execute specific statistical tests concerning the first two, while for the

third, we provide preliminary evidence and highlight paths for further work. We will discuss

the results in Section 1.5.
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1.4.1 Statistical Robustness

The first property that we study is the statistical robustness of the models. Here, we suggest an

approach to testing model stability that relies on the spatial arrangement of the document

vectors.

Given the non-linear nature of probabilistic topic models, there is no a priori ordering that

makes the topics identifiable within runs of the algorithm (Steyvers and Griffiths, 2013).

That means that, under each run, the space-vector is not necessarily the same, and the

document representation is, therefore, difficult to compare. Figure 1.1 illustrates this effect by

showing a 2D axis disposition of two different topic models. In each model, a different vector

represents Document 1 due to the difference in the vector base that defines the latent space.

For many applications, researchers have circumvented this problem by focusing on a single

topic solution (see, e.g. Agrawal et al. (2018) and Steyvers and Griffiths (2013)).

However, it is necessary to know which topics are stable and not idiosyncratic to a particular

solution. The majority of efforts to evaluate coherence in probabilistic topic models have

concentrated around expert evaluation (Blei et al., 2010) or entropy metrics — i.e., information

theory metrics closely linked to entropy, such as Pointwise Mutual Information (Velden et al.,

2017), symmetrised Kullback-Leibler distance (Steyvers and Griffiths, 2013), Jensen-Shannon

divergence (Boyack et al., 2011; Wagner et al., 2011) or Jaccard similarity (Agrawal et al., 2018).

It is not uncommon that practitioners use a hybrid approach between the two methods such

as comparing distributions over words manually (or automatically) selected from the most

relevant for each topic (Boyack et al., 2011; Yan et al., 2012; Chang et al., 2009; Greene et al.,

2014).

Cosine similarity as a metric

In light of the fact we can have these arbitrary transformations of the coordinate space, we

require a different way of measuring agreement between models. We propose to evaluate

the statistical robustness of a topic model via the extent to which it produces consistent

estimates of pairwise document-document similarities. Being more specific, after retraining a

model using the same parameters and data, one can track the mean and standard deviation of

the cosine similarity of each pair of documents. If perfectly robust, a model would produce

the same similarity each time, as conceptually represented in Figure 1.2. An imperfect, yet

useful, model will produce slight variations in each pairwise similarity score, but over many

retrainings, converge to a specific similarity value for each pair. Therefore, the use of inner

pairwise comparisons eliminates the need for a ground truth or an ad-hoc yardstick, which is

an important concern in the literature (Velden et al., 2017).

The use of cosine similarity (or, by extension, any Euclidean distance metric) enables the

practitioner to incorporate to the comparison techniques beyond probabilistic topic models.

In contrast, entropy metrics require the distributions to be probabilistic by nature. Despite
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Robust similarity measures from topic modeling: validation and use.
9th Global TechMining Conference

Atlanta 17.10.2019
O Ballester*, O. Penner

Statistical robustness

Model 1

Doc. 1

Model 2

Doc. 1

(a) Topic Model as-is

Robust similarity measures from topic modeling: validation and use.
9th Global TechMining Conference

Atlanta 17.10.2019
O Ballester*, O. Penner

Statistical robustness

Model 1

Doc. 1

Model 2

Doc. 1

(b) Rotatation of the latent in Model 2

Figure 1.1 – 2D spatial representation of topic models: In theory these should agree, but the
fact they do not, is not necessarily a problem. Because the axis is not necessarily the same.
There can be rotations.

being commonly used when constructing distance metrics when applying topic models,

cosine similarity has not, to the best of our knowledge, been used to study the robustness of

topic models. Furthermore, cosine similarity is a more intuitive interpretation of distance in

the context of a spatial representation of knowledge (Garfield et al., 1978) than entropy-based

metrics.

Robust similarity measures from topic modeling: validation and use.
9th Global TechMining Conference

Atlanta 17.10.2019
O Ballester*, O. Penner

Statistical robustness

Model 1

Doc. 1

Model 2

Doc. 1

Doc. 2Doc. 2

θ

θ

Figure 1.2 – Measuring model robustness: in light of the fact we can have these, essentially
arbitrary transformations of the coordinate space, we require a different way of measuring
agreement between models. We propose a cosine similarity.

The Experiment

Using the document-term corpus described in Section 1.3, we test the stability of LDA, NMF

and paragraph embeddings generated by Doc2Vec. In order to better capture the potential

systematic errors caused by the non-deterministic nature of the algorithms, we limit variability

in the input to the maximum. First, the corpus is the same across all runs to enable comparison

(Velden et al., 2017; Glaser et al., 2017; Klavans and Boyack, 2017), avoiding any deviation

due to slightly different samples (Hecking and Leydesdorff, 2018). Second, not only data are

the same, but the order in which they are fed to the algorithm in the training stage is the

same (Agrawal et al., 2018). Finally, we use a fixed model tuning: all hyper-parameters are

unchanged across runs with a fixed number of topics reducing the analysis of robustness to the

16



1.4. Analysis

stochastic initialisation (Belford et al., 2017). Videlicet, two different runs of the same model

with the same latent space size only differ in the random seed. In doing so, we expressly test

for the variability that cannot be controlled for by the practitioner and examine the solutions

for the idiosyncratic effects of random initialisation which, a priori, should not affect internal

coherence of topic models.

As depicted in Figure 1.2, we expect that comparable models provide compatible representa-

tions of pairwise comparisons. Therefore, each document (researcher) i for each retraining k

is represented by the vector di k where k = 1, ...,K and K the total number of retrainings. We

then compute the pairwise cosine similarity si j K = cos(di k ,d j k ) for each of the K retrainings

(the only difference being the random initialisation). Subsequently, we compute the average

similarity s̄i j K and the standard deviation σi j K associated. For each pair of documents we

have:

s̄i j K = 1

K

K∑
k

si j K (1.1)

and

σi j K =
[

1

K

K∑
k

[
si j K − s̄i j K

]2

] 1
2

(1.2)

Figure 1.3 shows the behaviour of a specific researcher-researcher similarity score produced

by NMF, LDA and Doc2Vec under K = 1,2,3...50 retrainings. The X-axis represents the number

of retrainings (k) included in the calculation of the average cosine similarity. The Y-axis is the

average cosine similarity (s̄) across the k models with the standard deviation as a confidence

interval. The confidence interval for each calculation corresponds to the standard deviation.

First note that each of the three topic models produces a different similarity score, despite

having the same number of topics (50 in (b) and 100 in (a)). Second, and most importantly,

note that the average similarity score for NMF and LDA has a far larger standard deviation of

results than Doc2Vec. That is, they display weaker convergence than Doc2Vec. It is indeed the

case that this figure is representative of the behaviour of the three models across all researcher-

researcher pairs as well as a wide range of latent space sizes.7 While LDA and NMF show a

lack of convergence to a true value, Doc2Vec converges rapidly and accurately to a single

value, independent of differing random seed. While this convergence is no guarantee of a

better classification or closer-to-reality distance measure, it is a replicable measurement that

warrants further analysis. Similar figures that compare the average similarity across the three

models for many different number of topics (10, 25, 250 and 400) can be found in Appendix

A.2. For consistency, all the figures represent the same pair of documents.

Next, we extend the analysis to measure all the document pairs and propose a general robust-

ness metric based on the dispersion of similarities.

7Although at smaller latent space sizes, around 10, NMF and LDA will also converge perfectly well
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Generalising the robustness metric

In order to measure the relative convergence of different retrainings to a pairwise similarity

value, we need to take into account the entire corpus. The marginal contribution to the average

similarity s̄i j K decreases with K (i.e., with each additional model incorporated), smoothing out

the variation. The smoothing might generate a false perception of convergence to a similarity

value between a pair of documents. This effect is particularly well illustrated in Figure 1.3

(b). Thus, in order to compare the variation within each set of pairwise similarities, we resort

to the standard deviation σi j K . In other words, in order to study the stability of multiple

retrainings, we measure how broad the distribution of similarities produced for the same pair

of documents is.

For each training k, we compute the similarity matrix Mk of all the pairwise similarities si j k . It

is then possible to calculate the average similarity s̄i j K and the standard deviations σi j K . We

finally obtain the average standard deviation across all the pairs. A schematic representation

of the experiment is represented in Figure 1.4. Our generalised robustness metric is the

asymptotic (with K) average standard deviation, calculated from all the unique (i 6= j and

i < j ) pairwise similarities:

ΦK = 1

C(N ,2)

N∑
i

N∑
j>i

σi j K (1.3)

where C(N ,2) =
(N

2

)
is the binomial coefficient of all the possible unique pairs with N documents.

The asymptotic standard deviation, ΦK , is a comparison metric, which helps us determine

the variation between retrainings of the pairwise similarities. Large values indicate more

dispersion of the average similarity for each pair of documents. The more robust a topic

model is to retrainings, the lower the value ofΦK . There is not an absolute value that denotes

goodness of fit (robustness) nor a general benchmark to compare to. Rather, it is a relative

metric, which will depend on the data, but that can be used to determine which model

introduces fewer spurious similarities.
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Figure 1.3 – Pairwise Cosine Similarity across 50 model runs: This figure shows the average
cosine similarities between a randomly selected pair of documents across multiple retrainings
of the same model. The only difference between two retrainings is the random seed. The
X-axis represents the number of retrainings (k) included in the calculation. The Y-axis is the
average cosine similarity (s̄) across the k models with the standard deviation as a confidence
interval.
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Figure 1.4 – Schematic representation of the generalised experiment We compute K similar-
ity matrices Mk for each document pair. We then average the similarity for a given pair across
the K retrainings and calculate the variation (standard deviation) for the pairwise similarity.
Finally, we obtain the average standard deviation as an indicator of model stability.
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1.4.2 Descriptive Power

One key parameter that practitioners should take into consideration when applying topic

models is the size of the latent dimension. That is the target number of topics. Albeit subject

to other interpretations, it usually varies to the likely use-case. Small latent spaces tend to

give very broad generalisations, and larger sizes provide a greater level of detail. Often, if the

granularity is pushed too high, the topics start to degrade into incoherent nonsense (Hecking

and Leydesdorff, 2018; Greene et al., 2014; Steyvers and Griffiths, 2013). These parameters are

also highly dependent on the size of the data and the variety inherently present in the text.

Determining the optimal number of topics has been the locus of research for multiple articles.

In computational linguistics, Blei et al. (2003b) and Rosen-Zvi et al. (2010) propose to use

perplexity (goodness of fit) to measure the generalisability across the different number of

topics. Blei et al. (2003a) and Teh et al. (2006) resort to Bayesian statistics to automatically

select the number of topics. In information science, the work to optimise the selection of

topics has included topic-term stability metrics (Greene et al., 2014), and human-machine

judgement tests (Chang et al., 2009). There is congruity amongst scholars from different

knowledge areas that there is, however, a trade-off between interpretability and predictive

power. As a result, as topics become increasingly fine-grained, they improve their predictive

likelihood but become less useful for human interpretation (Chang et al., 2009).

In light of these results, we advocate for basing the latent space size selection depending on

the objectives and subsequent tasks. As discussed above, a prevalent real-world task for topic

models is to determine pairwise distances. In turn, pairwise distances can too be a good metric

to evaluate topic size (Hecking and Leydesdorff, 2018). This comparison is, however, highly

dependent on both the data characteristics and the research objectives and should vary on a

case-by-case basis. Here, we take a different path. Rather than selecting the number of topics,

we suggest a way of comparing the descriptive power as a function of the number of topics.

Therefore, we can confront retrainings of the same model (i.e., changing hyperparameters),

different models (e.g. NMF vs LDA), and assess the information gained by including additional

dimensions.

To get a handle on the explanatory power of Doc2Vec, LDA or NMF (or any topic modelling

approach), we propose a straightforward procedure based on principal component analysis

(PCA). In this approach, we carry out factor decomposition (PCA) on the document-topic

vectors (researcher-topic vectors in this instance). The algorithm then reorders the principal

components explained variance, and we plot their cumulative explained variance.

The PCA explained variance plot allows us to understand the extent to which each dimension

allows differentiation among documents vis-à-vis the latent space. For example, a perfectly

straight line running from the lower left to the upper right would indicate that each dimension

contributes equally to explaining the variation among researchers, and hence, allow for the dif-

ferentiation between researchers. On the other hand, a curve that quickly reaches 1.0, perhaps

after only k < K dimensions, indicates that only those first k dimensions are contributing to
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explaining the variance. This result can, indeed, be obtained for NMF, LDA, and especially

Doc2Vec for various specific parameters. In other words, all dimensions beyond the first k

do not add useful information. Thus, the explanatory power of a given topic model can be

measured by the area over the curve (AOC) in such an explained variance plot.

1.4.3 Concordance with reality

Properly reflecting reality is, of course, the most important criterion for generating an abstract

representation of data. It is often also the most difficult one, however. Since the literature

is filled with use-cases for probabilistic matrix factorisation models, we focus on validating

the neural network approach that we are using in this chapter. Here we provide three small

examples as evidence that, at the very least, the results do not directly oppose expectations.

For this, we train document embedding vectors for different data and compare the output in

different scenarios.

Real-world communities

First, we demonstrate the ability of document embeddings to generate communities that

reflect their real-world associations. To this end, we train a single Doc2Vec model on an

extended corpus. We construct a researcher-term document following the same procedure

as for the rest of the chapter — delineated in Section 1.3. This time, instead of limiting the

number of documents to the 13,936 neuroscientists, we include the 147,000 researchers from

all biomedical sub-specialities with at least 50 relevant publications in the database. We

generate the document-term structure following the same steps as before, the only difference

being the size of the corpus. Upon training, the sub-field speciality labels are never fed into

the models in any way.8 In particular, we train for a latent space size of 400, and we project the

document embeddings into two dimensions using t-SNE van der Maaten and Hinton (2008).9

In Figure 1.5 a (2D) t-SNE projection of the researcher embeddings is shown colour-coded

by the sub-field speciality. From visual inspection, it is clear that, by and large, researchers of

the same field cluster together, even if a 2D representation is limiting even though there are

clearly some outliers and room for further investigation and/or refinement.

Going forward, we are pursuing two main avenues of analysis for evaluating the extent to

which document similarities produced by Doc2Vec reflect reality. For these tests, we will use

different levels of data aggregation to represent the documents.

8The speciality labels include, amongst others: Medicine, Molecular and Cell Biology, Dermatology, Radiology,
Orthopedics, Dentistry or Obstetrics)

9t-SNE is a tool to visualise high-dimensional data. It converts similarities between data points to joint
probabilities and tries to minimise the Kullback-Leibler divergence between the joint probabilities of the low-
dimensional embedding and the high-dimensional data.
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VETERINARY
UROLOGY
RADIOLOGY
PSYCHOLOGY
PHYSICS
Others
ORTHOPEDICS
OPHTHALMOLOGY
OBSTETRICS
None
NEUROSCIENCE
NEPHROLOGY
MOLECULAR AND CELL BIOLOGY
MEDICINE
INFECTIOUS DISEASES
GASTROENTEROLOGY
ENVIRONMENTAL HEALTH
ENVIRONMENTAL CHEMISTRY AND MICROBIOLOGY
DERMATOLOGY
DENTISTRY

Figure 1.5 – t-SNE projection in 2D of researcher embeddings: Each point is a single researcher and colour indicates the researcher’s field
(the field in which the majority of his or her papers appeared).
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Most similar to: Score Most similar to: Score
Mamm Genome 2008 0.794 J Hand Surg Am 1990 0.88
Mamm Genome 2007 0.789 J Hand Surg Br 1993 0.874
Mamm Genome 2006 0.787 J Hand Surg Br 1989 0.872
Mamm Genome 2005 0.728 J Hand Surg Br 1990 0.87
J Anim Breed Genet 2008 0.663 J Hand Surg Am 1991 0.862

PLoS Genet 2005 0.644 Handchir Mikrochir Plast 
Chir 1990 0.852

Curr Microbiol 2000 0.871 Curr Opin Neurol 1999 0.744
Curr Microbiol 1997 0.858 Neurol Clin 2002 0.743
Curr Microbiol 1999 0.83 Curr Opin Neurol 2000 0.714
Arch Microbiol 1997 0.787 Curr Opin Neurol 2003 0.7
Arch Microbiol 1999 0.783 Curr Opin Neurol 2004 0.699
FEMS Microbiol Lett 2001 0.781 Rev Neurol (Paris) 2004 0.676

Mamm 
Genome 

2009

Curr 
Microbiol 

1998

J Hand Surg 
Br 1991

Adv Neurol 
2002

Table 1.2 – Top-6 documents by similarity and scores to a representative random sample.
Trained with Doc2Vec using journal-year as documents.

Journal Pairwise Similarity

The first avenue involves using external information to identify pairs of documents that

should be highly similar and valid on the Doc2Vec based similarity measures. Therefore, we

construct a data set of Journal-Year documents using MeSH Terms as the document content.

We characterise a Journal-Year document as the compilation of Medical Subject Headings

(MeSH) published in a given periodical throughout a year. That is, we compile the MeSH terms

for each article that appeared in the same journal during a year grouping them in one single

“document”. That list of MeSH terms represents that Journal-Year.

We subsequently train a Doc2Vec topic model with Journal-Year documents ranging from

1985 to 2010 and generate inferred document embeddings (vectors) from 1985 to 2014. The

corpus comprises almost the entirety of our in-house PUBMED database, with over 55,000

Journal-Year documents. Following the same visualisation methodology presented above,

we plot the resulting embeddings. A 2D projection of these embeddings can be found in the

Appendix B in Figure B.7. The figure shows how multiple clusters emerge “naturally” from the

data, but more importantly, we observe how the same journals in consecutive years show high

similarity. In Table 1.2, we display the most similar journals-years and the similarity score to

four randomly selected documents.

Document Retrieval

For the second similarity test, we propose a document retrieval exercise. We train a Doc2Vec

model on free text (Title and Abstract) of 2 million publications in the biomedical sciences.

Each document is constituted by the concatenation of Title and Abstract words of a single

publication. We extract data from Web Of Science and PUBMED. The 2 million publications

constitute the majority of indexed articles (simultaneously in WoS and PUBMED) between
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1997 and 2005 categorised as Journal Articles (not Editorials, News nor Reviews). In the pre-

processing stage, we remove stopwords, homogenise the text to lowercase-only, stem the

words and construct bigrams, trigrams and 4-grams using a pairwise mutual information

statistic. For training, we use a latent space of size 200 and learn Word2Vec embeddings

simultaneously.

In parallel, we extract 1885 articles from the reference list of 69 hand-picked review articles

about human embryonic stem cells (hESC). We classify the sample of articles into two groups:

hESC-related and non-hESC related. To do so, we implement a rigorous keyword rule. In

particular, we include in the hESC list any document containing at least one of the following

stemmed tokens:10 “hESC”, “human embryonic stem cell”, “human ES”, “human ES cell”,

“he cell”. Additionally, we include any of the following in combination with the presence

of “Humans” amongst the associated MeSH terms or the presence of “human” in the same

paragraph (but not right next to them): “blastocyst”, “embryon stem cell”, “embryon (ES) cell”,

“ES cell”, “embryon stem (ES) cell”. This process yields 808 articles out of the 1885 that we will

consider as hESC-related.

Using the trained model, we infer document embeddings for the hand-picked 1885 articles. It

is worth noting that some escape the 1997–2005 period, and have not been part of the training

process. We then compute cosine similarities between each of the article’s embeddings and

the trained word embedding for the 4-gram “human embryonic stem cell”. Figure 1.6 shows

the density of similarities between the 1885 articles and the selected embedding, split by

keyword classification.

Despite a quasi-out-of-the-box approach to training, including over 2 million documents from

multiple disciplines in the biomedical sciences, the training provides a reasonable separation

between the two sub-sets of documents. Notably, two samples that had been originally

selected from a list of review articles on a particular subject. This example provides compelling

evidence that similarity scores reflect reality to a good extent.

1.5 Results

In this section, we discuss the results of the analysis presented above. First, we provide an

overview of the robustness metric. We compare the performance of the three analysed models

and motivate a second round of analysis that excludes the least-similar pairs of documents.

Second, we comment on the scalability of the three models.
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Figure 1.6 – Kernel Density Plot of Cosine Similarity between root articles and word embed-
ding of “human embryonic stem cell”. The blue line represents the keyword-rule-assigned
hESC articles, with which we perform the core analysis of this chapter. The red line represents
the non-hESC articles according to the keyword classification.

1.5.1 Robustness

Doc2Vec provides robust and multi-purpose topic models that overcome the main difficulties

encountered by stochastic matrix factorisation (LDA or NMF). Figures 1.7,1.8 & 1.9 display the

asymptotic convergence ofΦK for K = 75,100 trained on LDA, Doc2Vec and NMF respectively

on our corpus. Consisting of N = 13,936 documents, the number of observations on each

cosine similarity matrix C(N ,2) = 97,099,080. The results show that LDA is significantly less

robust than NMF and Doc2Vec for smaller sizes of the latent space —ΦK for LDA for 25 topics

is three times larger than Doc2Vec and four times larger than NMF. NMF behaves opposite with

a good robustness performance for lower dimensions until its internal coherence “breaks”—

ΦK stays constant for 25 to 50 topics, but doubles from 100 to 250 topics. Doc2vec seems

to perform consistently across different topic sizes, with a decrease inΦK as the number of

topics increases. This decrease is also observed for LDA, suggesting that dispersion occurs

gradually. As the number of dimensions grows, the degrees of freedom increase and the

vectors representing each document in the latent space disperse. Therefore, there should be a

larger concentration of close-to-zero similarities which would, in turn, decrease the average

standard deviationΦK .

These results are in accordance with our expectation for two reasons. First, as granularity

increases, the changes in the retrainings will be absorbed along more dimensions, smoothing

the dispersion in the pairwise similarities. Second, following each increment of the latent

space, the distribution of pairwise similarities for any given document should systematically

10We Stem the words to their roots. We capture words such as embryonal or embryonic under the same token
embryo will be captured by embryo. The bigram, trigram and 4-gram pre-processing allow us to have tokens such
as “embryon stem cell” as a single word
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approach zero, thereby reducing the room for variation. Besides, probabilistic models generate

document-topic sparse matrices, whose sparsity will increase with the number of dimensions.

This effect is not necessarily true for neural networks, which follows from the density of the

output matrices.

It is true for many applications of topic models that the practitioner will be interested in the

most similar documents. The degree of relatedness in information retrieval or the distances

for clustering applications, to name two examples, require that the higher similarity values be

well defined. In order to reduce the effect of increased granularity and test for larger cosine

similarity values, we perform a similar analysis to that of Figures 1.7,1.8 & 1.9 filtering out low

similarities. That is, Equation 1.3 takes now the following shape:

ΦK = 1

C∗
N∑
i

N∑
j>i

σi j K ·δi j (1.4)

where C∗ is the number of observations left after filtering and:

δi j =
0 if si j k < ε ∀k

1 if ∃si j k ≥ ε
(1.5)

where ε is the filtering value. That is, we calculate the robustness ΦK taking into account

only the pairwise similarities above ε it at least one of the k = 1, ...K similarity matrices (each

for one retraining of the same model). The results are summarised in Figure 1.10. The top

left figure, corresponding to an ε = 0 summarises in one single plot the findings presented

in Figures 1.7,1.8 & 1.9. Figure 1.10 allows us to grasp better the asymptotic behaviour of

the two stochastic topic models and the neural-network approach. Without any filtering, we

find evidence of a “breaking” point in both LDA and NMF, after which the model becomes

significantly less robust. For the corpus in hand, for LDA, this happens for small-sized latent

spaces. As the number of topics grows, the performance resembles that of Doc2Vec. For

NMF, it evolves in the opposite direction. Yet, as we calculate the dispersion including only

the pairwise similarities that, under at least one retraining, are larger than ε, the stochastic

topic models’ robustness degenerates. Consistently, as ε increases, LDA and NMF show higher

average dispersion of the pairwise similarities. Doc2vec, on the other hand, performs at a

similar level independent of the filter. Figures with model-by-model asymptotic behaviour

after filtering can be found in Appendix A.3

In light of these results, one should be very careful at the tasks performed subsequent to

topic modelling with stochastic dimensionality reduction methods. In the particular case

of retrieving ranks or lists of “most similar” documents, LDA and NMF display considerable

variation. Therefore, it is plausible that resulting documents are idiosyncratic to a specific

training.
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Comparison with other metrics

It seems evident that probabilistic topic models are more unstable than document embed-

dings. However, for our analysis, we have expressly omitted the discussion over other model

parameters. Optimising any of the tested models to a given task escapes the purpose of this

analysis. Nonetheless, we now provide succinct evidence that the models from our train-

ing would be considered robust under “traditional” metrics. In the benefit of conciseness,

we display results for LDA only (as discussed, the most extensively used topic modelling

technique).

Following standard practice laid out by Steyvers and Griffiths (2013), we study dissimilarity

between pairs of topics in different runs. We take two estimated topic-word distributions

— from two different retrainings — and compute the dissimilarity between topic i form the

first model (t 1
i ) and topic j from the second model (t 2

j ). We measure dissimilarity as the

Jensen-Shannon distance between the two probability distributions, t 1
i and t 2

j . The topics

of the second model are then re-ordered to correspond as best as possible (lowest Jensen-

Shannon distance) with the topics of the first run using a greedy (by brute force) algorithm.

The similarity matrix in Figure 1.11 (a) suggests that a large percentage of topics contain

similar distributions over words. Additionally, for the pair of models, we display the top words

of the two most similar and most dissimilar topics after pairing. That is: after matching topics

from one model and the other, the pair with the lowest and highest JS distance respectively.

The top-ten list of words is displayed in Figure 1.11. In all cases, the solutions from different

models give slightly different results, but in practice, the two models would be considered as

equivalent and stable across runs.

For consistency, we replicate this analysis for 25, 50 and 250 topics. The results are displayed

in Appendix A.4.
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Figure 1.7 – Average Standard Deviation for LDA: Asymptotic value over multiple retrainings
(75 or 100) of LDA for 10, 25, 50, 100, 250, 400, 800 and 1000 dimensions
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Figure 1.8 – Average Standard Deviation for Doc2Vec: Asymptotic value over multiple retrain-
ings (75 or 100) of Doc2Vec for 10, 25, 50, 100, 250, 400, 800 and 1000 dimensions
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Figure 1.9 – Average Standard Deviation for NMF: Asymptotic value over multiple retrainings
(75 or 100) of NMF for 10, 25, 50, 100, 250, 400, 800 and 1000 dimensions
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Figure 1.10 – Asymptotic Average Standard Deviation comparison: Asymptotic value over
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1000 dimensions. Left-to-right and top-to-bottom, each figure displaysΦK calculated after
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Figure 1.11 – “Traditional” stability of topics between different runs of LDA with 100 topics

33



Chapter 1. Robust similarity measures from topic modelling

1.5.2 Scalability

Another important aspect is the scalability. Matrix factorisation approaches do not handle

well large latent spaces (into the hundreds of topics) nor big increases in data (Ai et al., 2016).

As we observe, changes in the latent space size also reconfigure the topic-word relationships,

introducing noise in the similarities between researchers. Doc2Vec provides consistent results

across different sizes of the latent space, with only marginally decreasing values of similarity

with an increasing number of dimensions, as one would expect. Different latent space sizes

allow for varying levels of granularity in the topic models, and thus, a more fine-grained

clustering of topics or words.

Figure 1.12 shows the explained variance of each dimension in a PCA-transformed space

for multiple different topic sizes and two different ways of text input. The speed at which

the different models converge to 1 (the slope of the lines) explains the incremental gain of

information of each additional dimension. For our particular corpus, albeit unevenly, both

LDA and Doc2Vec carry descriptive power across the different dimensions under analysis.

NMF, on the contrary, rapidly approaches 100% of the explained variance when trained with a

large number of topics (250, 400, 800 and 100 in our analysis). Similar to the results presented

in Figure 1.9, NMF models lose descriptive power relative to LDA and Doc2Vec as the latent

space size increases, eventually “breaking” in the models above 100 topics.11

To discuss one particular example, for 250 topics we see that Doc2Vec is the closest to the

diagonal, albeit far from overlapping. Still, a good 25% of the variance does reside in the last

100 topics after the transformation. On the other hand, we see that NMF models reach 100%

of variance explained within 100 dimensions, which suggests there is no real advantage of

training larger models.

Visualising the PCA transformation does not single-handedly provide evidence of a better

model. Rather, it provides a test for the marginal increase in descriptive power by expanding

the latent space. In other words, we abstain from declaring Doc2Vec superior to LDA solely

from a smaller area under the curve in the explained-variance-ratio plots. We do, however,

argue that NMF models trained under this particular corpus, provide no significant granularity

gains for topic spaces larger than 150 topics. In general, fine-tuning the model parameters

allows to decrease the area beneath the curves, attaining a significant gain in all the dimensions

of the model. In other words, the models can scale in the number of dimensions carrying

information at all times, allowing for a different optimisation depending on the objective of

the training.

11For our data
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Figure 1.12 – PCA-transformation of document-transformed vectors Cumulative explained
variance ratio of the transformed document (researcher) vectors, sorted by decreasing ex-
plained variance. The 45◦ line represents a model in which each dimension has the same
descriptive power. The greater the Area Over the Curve (AOC), the greater the average descrip-
tive power of each dimension.
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1.6 Discussion and Limitations

In this chapter, we have focused on comparing the performance of topic models from two

different classes: dimensionality reduction and neural networks. As a representation of the first

family, we have analysed one of the simplest, NMF, and the most used LDA. From the second

family, we have provided evidence of document characterisation using Doc2Vec, a particular

case of paragraph embeddings that arises from Word2Vec (the most extensively used word-

embedding model). On a general level, there is an overlap in the representation of documents

delivered by either approach (probabilistic or neural-network-based). A vector represents

every document in a “knowledge space”, rather than in a discrete classification of topics.

However, due to the sparse and positive components of the topic-term and document-topic

matrices in topic models, LDA and NMF provide a more humanly-interpretable output, that

enables classification tasks (topic labelling). On the other hand, neural network embeddings

form a continuous space that is less readily explainable.

The comparison of models provided in this chapter is, to the best of our knowledge, the first

effort to account for the idiosyncratic variability of solutions that escape the practitioner’s

analysis. We fix the data and hyper-parameters for several retrainings, allowing only the

stochastic initialisation to vary across runs. In order to compare their performance, we devised

a robustness metric based on pairwise similarity. Furthermore, we do this for different levels of

granularity. This system allows us to measure the extent to which each model would produce

arbitrary relatedness (false positives) in the association (or disassociation) of documents.

Up until this point, we have provided evidence that neural-network based topic models, in

particular Doc2Vec, provide a more reliable — replicable — characterisation of documents. In

turn, Doc2Vec is capable of scaling (increase the number of topics) without losing descriptive

power at any point. Additionally, we provide evidence of different levels of support of the three

models for different ranges of similarities — i.e., we show that for LDA and NMF robustness

decreases as the pairwise similarity increases. Our results suggest that solutions obtained

with stochastic dimensionality reduction methods are, on many occasions, contingent to a

particular training. Even when traditional coherence metrics and ground-truth tests support

the models, the optimality is frequently incidental. However, this analysis precludes us from

claiming the superiority of one particular solution over the others. One would ideally study the

complete set hyper-parameters and data-sample combinations to determine the resolution of

a solution. Instead, our analysis provides practitioners with additional tools to evaluate their

particular applications. Additionally, we provide a quantitative measure to the well-known

issue of “instability” of probabilistic topic models.

These observations raise one question: should we then turn our backs on probabilistic models

in favour of document embeddings? Not necessarily. First, neural-network methods are rather

data-thirsty. That is, for a good embedding characterisation, one needs large amounts of data

(Mikolov et al., 2013). Under these circumstances, they outperform probabilistic methods

both in computational speed and robustness. However, for small document-term matrices,
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convergence to a workable solution is rarely achieved. In this case, dimensionality reduction

techniques (either of a probabilistic nature, such as NMF, LDA or pLSI) or factor analysis

(such as PCA) might be more suitable and accurate. Second, neural-network methods do

not provide humanly-readable topics. In contrast to “traditional” topic models, there is no

top-words output that makes neural network embeddings intelligible. Thus, for classification

or labelling tasks, additional work is required, over-complicating a task that simpler methods

may still return. Proper understanding of the data and task requirements, along with the

properties of each model, is more likely to provide the best results.

The numerous drawbacks of LDA (or NMF) should not automatically thwart previous efforts

in their applications. This chapter raises concerns related to the reproducibility and sensible-

ness of topic modelling techniques relying on stochastic initialisation. However, we cannot

generalise the findings to conclude that all topic representations be untoward. Depending on

the data characteristics (corpus size, variability, document size), traditional topic modelling

techniques might suffer from fewer issues than we highlight here. In turn, adequate analysis of

the topic space can ensure that the local optima reached by the algorithm truthfully represents

reality, which ultimately is the objective. As long as prior art has been carefully designed and

tested, one should not distrust the outcome, but rather question the applicability to similar

scenarios and aim for additional tests that prove that idiosyncratic errors are averted.

More work is needed to prove concordance with reality of neural network embeddings. Many

of these solutions are still very recent and need more testing before they gain momentum in

the scientometrics community and the social sciences in general. We have provided three

rough examples that should provide a sanity check for the conclusions extracted in the rest of

the analysis. We show how they can work in different contexts, at various aggregation levels

and for miscellaneous tasks. Ultimately, the quality and performance of these tasks improve

with parameter tuning, which we have overlooked in this chapter.

The explicit omission of parameter tuning is not the only limitation of the analysis above. Next,

we discuss some of these limitations, such as data dependence and left-out approaches.

1.6.1 Limitations

As with any empirical study, we cannot discard any biases in the analysis. The conclusions

made from this chapter must be considered with the following issues in mind: potential

misalignment with a ground truth, sampling bias errors and model omission biases. We

explain each of them in turn.

Ground Truth

A first and essential limitation to the analysis proposed above lies on the lack of a benchmark

data set that provides a comparison of topic extraction results. Nevertheless, the evolution of

research involving prior topic modelling techniques suggests that reflection of reality tasks
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will be amongst the first to be tested by the community. While still a nascent area of inter-

est, the work by Banerjee et al. (2018) provides a first successful (contrasted) effort in using

word embeddings for information categorisation tasks; Ai et al. (2016) employ paragraph

embeddings for information retrieval in short texts; and Thijs (2019) provides evidence of

Doc2Vec-generated similarity between scholarly article sections, following a priori rational ex-

pectations. In a document retrieval exercise, Dai et al. (2015) show evidence of the superiority

of paragraph embeddings over LDA and a static bag-of-words (no topic modelling) approach

on a set of arXiv publications.

Sampling Bias

Second, we tested our results with only one curated dataset. Using a compilation of MeSH

terms has multiple advantages for our testing procedure: (i) we avoid any pre-processing

bias, (ii) we work with a curated set of words, (iii) the corpus size is restricted. Additionally,

MeSH lists are freely available for any other researcher to replicate this work. The MeSH term

list approach to the corpus construction could parallel an intensive keyword-extraction and

stop-word removal that one would typically perform in pre-processing stages. However, these

advantages are offset by a lack of comparison with other samples. Furthermore, it raises

questions concerning to what extent the results are particular to the characteristics of the

dataset.

We train the model on relatively large documents (943 terms on average). Paragraph embed-

dings tend to overfit when documents are too short (Ai et al., 2016). Our corpus is at a sweet

spot in which probabilistic topic models can still be applied, and neural-network document

embeddings have enough data to converge in the training stage. For a smaller corpus, training

neural networks becomes more challenging, which compromises the conclusions of this

work. We could see a potentially better performance from traditional topic modelling meth-

ods. For shorter documents, however, it has been shown that word embedding aggregations

(Word2Vec) can represent short paragraphs adequately (Boom et al., 2016). That leads us to

the next limitation, concerning the limited set of models we have put to the test.

Model Omission Bias

This chapter has only compared NMF, LDA and paragraph embeddings generated with

Doc2Vec. The choice of models illustrates the most accessible (present in most software

packages) and widely used topic modelling techniques. Nevertheless, we have left out other

models that are commonly used and have demonstrated the ability to overcome some of

the problems discussed above. Amongst the “traditional” topic models, there have been

numerous developments which we have not tested here, such as Pairwise-Mutual Information

(PMI), probabilistic Latent Semantic Indexing (pLSI), Latent Semantic Analysis (LSA). Many

hybrid methods have been developed to complement probabilistic topic models in search

of stability (Agrawal et al., 2018; Belford et al., 2017; Velden et al., 2017). On the other hand,

38



1.6. Discussion and Limitations

there are other models amongst the “new breed” of neural-network-based models. FastText

(Bojanowski et al., 2017), GloVe (Pennington et al., 2014) and Word2Vec (from where Doc2Vec

stems) are other word (and sub-word) embedding models of the same generation (log-bilinear

prediction-based semi-supervised models that generate static embeddings). Again, the choice

of reporting Doc2Vec results lies in two factors: accessibility to training Doc2Vec and the

length of the documents in our corpus.

Recent work has leveraged word embeddings to generate representations of sentences and

small paragraphs. Most notably, researchers have used the algebraic properties of the latent

spaces to represent documents. Socher et al. (2013) show how averaging the constituting

word embeddings improves the performance on pairwise relationships, Garten et al. (2015)

compare averaging and concatenating embeddings and Boom et al. (2016) suggest aggregating

embeddings using their inverse document frequency (idf) weights.

For completeness, we tested two of these methods on our central corpus. We trained Word2Vec

embeddings on the set of 13,936 researchers (documents) from the neurosciences. We then

generated the document embeddings as the unweighted mean of all the embeddings present

in a document (reported) and as the idf-weighted mean of the embeddings (unreported).

In both cases, the results were very similar and consistent with our expectations. Although

more testing would be required to generalise the results adequately, the robustness metrics

(ΦK ) provide additional support for the use of neural-network-based models (as opposed to

probabilistic) as shown in Figure 1.13. The pairwise-similarity variation across retrainings

is much lower than stochastic models. However, neither aggregation procedure (mean and

weighted-average) supported scaling. Hence, averaged word embeddings subsequently result

in a loss of granularity which impedes segmentation tasks between documents. For these data,

the distribution of similarities using word embeddings aggregations is dense and concentrated

around very high values. Although further testing is required, we believe this loss of descrip-

tive power is due to the length of the document combined with the aggregation procedure.

Without retraining — i.e. without training the model in shorter text — we generated document

embeddings to represent each researcher using only MeSH terms from one publication. This

short text scales better than longer samples, as shown in Figure 1.14.

Previous results have provided evidence in the same direction. In a (long) document retrieval

exercise, Dai et al. (2015) show that averaging word embeddings did not provide substantial

accuracy gains, increasing the number of dimensions. On the contrary, LDA and Paragraph

Embeddings did, before reaching a breaking point. Overall, paragraph embeddings displayed

the best accuracy.

Together, these results provide suggestive evidence that, if adequately trained, neural network-

based embeddings may provide a good document representation under different data. Given

the relative novelty of neural network topic models, in the next section, we conclude by

discussing some of the applications of document embeddings generated with neural networks.
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1.6.2 Recommendations for testing topic models

In this subsection, we provide some guidelines to help practitioners test their particular

applications of topic models. This framework builds upon the findings of this chapter and the

works cited throughout.

First, researchers should allocate their efforts to the choice of the topic model. This involves

taking into account the needs (interpretation and use of the outcome) as well as the data in

hand for training. Large data corpora allow for neural network approaches, while smaller

datasets will be at odds with such techniques. In this case, traditional topic modelling tech-

niques might be more efficient. Second, we recommend that practitioners study which latent

space size best fits their objectives and train numerous instances of the chosen model to

determine the range of hyperparameters that produce models that adequately reflect reality.

At this point, ad-hoc reflection-of-reality tests are sufficient to determine whether one is in

the right direction — e.g. distribution of similarities for a set of documents, similarity ranks,

top-word analysis, meta-data comparison, or any heuristic rule that may apply to the data in

hand. These tests should be sufficiently quick to enable rapid pivoting and re-testing other

implementations of the model. This stage should also allow the practitioner to put in perspec-

tive the choice of model, and assess the validity of the output — e.g. Paragraph Embeddings

work for large corpora, but relatively short documents tend to produce highly concentrated

similarity distributions for all documents, making classification tasks more difficult while

word embeddings with vector averaging work better. In addition, we recommend the PCA-

transformation test presented in this chapter to examine the usefulness of the chosen latent

space size.

Once the model and preliminary hyperparameters have been adjusted, we recommend that

practitioners test how small variations affect the outcome of the tasks (clustering, high/low

similarity scores, rankings, topic relatedness) to perform by the topic models. As we show in

this chapter, the level of variation between two retrainings is largely affected by the similarity

threshold. Therefore, one should pay particular attention at this validation stage, since the

replication of results is largely dependent on the idiosyncratic nature of the model’s output.

Models that display small variation in the tasks they are expected to perform should be

preferred.

It is worth pointing out that there is nothing inherently wrong with a particular solution (topic

model) that suffers from large variation upon retraining if practitioners acknowledge this

feature and are exceptionally cautious in their analysis of the reflection of reality. That is,

for a particular dataset, the model can lead (by accident or intent) to the optimal solution

(best reflection of reality) and the outcome be valid for any subsequent application. However,

given highly unstable models, one must be decidedly circumspect in the validation of the

representation of reality, to eliminate any doubts.

Finally, researchers should perform the final tuning and more in-depth reality checks, to

ensure that the output is consistent with what we know to be true from the documents in the

40



1.6. Discussion and Limitations

corpus.

1.6.3 Some Applications of Neural Embeddings

In this chapter, we have quantitatively assessed the robustness and scalability of recent devel-

opments in topic modelling and compared them to the prior art. Document embeddings have

not yet been fully incorporated in the information science researcher tool-set. We hope that

our work will shed new light into the capabilities, strengths and weaknesses of neural-network-

based models. To conclude, we discuss some potential applications of non-probabilistic word

and document embeddings for science characterisation and evaluation.

In Section 1.4, we show some straightforward tasks performed by document embeddings. The

first consists of visualisation of knowledge domains. The vectors representing each document

equip the practitioner with a high dimensional spatial representation of a knowledge domain.

Traditional visualisation techniques (Borner et al., 2003) can be applied directly to dense

vector representations. In our example, we reduce the space to two dimensions using t-SNE, a

method that preserves some of the multi-dimensional clusters through the projection.

Our second example, built around journal-year embeddings, suggests that community de-

tection is possible through word embeddings. The vector representation caters euclidean

distance metrics between pairs. Adding a layer of analysis, clustering methods that rely

on distance metrics can be applied to automatically detect communities of documents (re-

searchers, journals, publications) in the data. In Chapter 2, we apply Agglomerative Clustering

on journal-year embeddings to generate communities of journals.

In our last reality-check, we suggest validating the model through retrieved and labelled

documents. By reversing the experiment, document embeddings can be used for document

retrieval. Using distance metrics as a relatedness measure (to a subject), it becomes possible

to determine similarity rankings and relevance.

Beyond these simple use cases, the embeddings can accomplish more intricate tasks. For ex-

ample, it is possible to study the dynamic properties of the knowledge space. Lenz and Winker

(2020) show how it is possible to measure the diffusion of innovations through paragraph

embeddings. Following a similar analysis, it is possible to characterise ex post novelty, hot

topics and disappearing topics through topic models. In Figure 1.15, we display the t-SNE

projection of Neuroscientists (our corpus of 13936 researchers) by 5-year window. We see

knowledge areas dissipating and new concentration points emerging. Additionally, neural

network models are not fixed entities that need complete retraining for every application. It is

possible to update, or, in other words, to sequentially train the models. Successive training

would allow for a dynamic study of vocabulary, or even to study the convergence/divergence

of disciplines through time.

Another form of analysis of document embeddings is to measure the coherence or variety

within a group of documents. In Chapter 3 we use document embeddings trained on free text to
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measure the narrowing focus of a field of study. Similarly, Ayoubi et al. (2020) use embeddings

to measure the disparity between past and present grant applications of researchers. Using

these methods, it would be possible, for instance, to characterise the distancing process

between a researcher and her mentor. Or the knowledge fit between peers in mobility events.

Finally, we are confident that future lines of work in scientometrics will exploit other geo-

metric properties of embeddings. The geometric properties of embeddings that transform

semantic meaning through addition and subtraction of vectors present an exciting avenue of

research. With adequate data and careful training, it might be possible to subtract (or add) the

contribution of, for example, a coauthor to a publication. Similarly, if researchers are capable

of disentangling the direction of methodologies, one could potentially divide empirical and

theoretical contributions in a publication. Bolukbasi et al. (2016) are capable of removing

gender bias from word embedding representation by finding the direction in which gender

is expressed in the latent space. Similar approaches could yield significant advances in the

characterisation of scientific contributions.

1.7 Conclusion

Topic models are powerful statistical techniques with great potential to contribute to sciento-

metrics, especially as textual data become more available going forward. However, they also

suffer from specific flaws that must be carefully weighed against the benefits. In particular,

establishing statistical robustness is challenging, evaluating their explanatory power is critical,

and ultimately verifying they reflect reality is necessary.

In this manuscript, we have proposed a simple approach for estimating the statistical ro-

bustness of topic models that is based on pairwise similarity scores between documents.

Applying that method, we found that Non-negative Matrix Factorisation does not appear

to be exceptionally robust for large latent spaces (dimension far greater than 10). Latent

Dirichlet Allocation is comparatively robust amongst the distant pairs. However, its instability

rapidly increases as one evaluates more closely related pairs. Doc2Vec, a neural network-based

approach does, on the other hand, appear to produce relatively stable estimates of pairwise

similarity across all scenarios.

We further proposed a principal component analysis based approach for assessing the de-

scriptive power of topic models. Applying that method to researcher-topic vectors, we find

that, while they do not produce perfect results, LDA and Doc2Vec explanatory power does

persist into the highest dimensions of the latent space. On the contrary, NMF maintains only

meaningful descriptive power in the lower dimensions.

In terms of the extent to which Doc2Vec results reflect reality, many questions remain. We

provided three small pieces of evidence that what Doc2Vec produces is not entirely out of

bounds. However, careful quantitative validation is still required.
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The analysis presented in this chapter, thus, provides ground for the application of neural

embeddings approaches in the social sciences. The remainder of this thesis provides a vivid

example of paragraph and word embeddings in practice. In Chapter 2 we use journal-year

embeddings to delineate scientific fields. In Chapter 3, we construct an alternative treatment-

control sample for an econometric analysis using a combination of word and paragraph

embeddings. In addition, we use publication similarity metrics, generated from paragraph

embeddings, to characterise the disparity in topics within a set of publications.
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Figure 1.13 – Average Standard Deviation for Word2Vec (Averaged word embeddings):
Asymptotic value over multiple retrainings (75 or 100) of w2v for 10, 25, 50, 100, 250, 400,
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plained variance. The 45◦ line represents a model in which each dimension has the same
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tive power of each dimension.

Figure 1.15 – Dynamic t-sne representation of Neuroscientists: Concentration of researchers
in the 2D knowledge space by year (2D Kernel Density).
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2 Rivalry in science: Modelling science
as a CPR game.

“There is an enormous difference between the creative work of the genius

and the monograph of a specialist. Yet in the field of empirical research

it is possible to cling to this fiction. The great innovator and the simple

routinist resort in their investigations to the same technical methods

of research. (...) The outward appearance of their work is the same.

Their publications refer to the same subjects and problems.

They are commensurable.”

— Ludwig von Mises (Human Action)

Reputation plays a key role in determining the allocation of rewards among scientists. Along-

side individual ability, reputation creates a strong path dependency in the trajectory of indi-

vidual careers. We present a theoretical model in which the rewards of scientific production

captured by an individual are proportional to the magnitude of that individual’s contribu-

tion. Our model deviates from the classical approach in which science is treated as a pure

public good. We argue that this point of view may help explain for the heterogeneity in sci-

entific production we observe among peers arising from their career choices. Specifically we

model a researcher’s payoff as a common-pool resource game, intrinsically connecting the

appropriability of scientific output to a scientist’s optimal strategy.

This simple model of reward allocation sheds new light on a variety of behaviours that have

been observed amongst researchers. In particular, actions often attributed to social networks

and community effects, but that have been measured only approximately.
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2.1 Introduction

Economic growth arises from productivity growth, which is, in turn, driven by technology.

The link between economic growth and technological advance has been long understood

in the literature (Romer, 1986; Aghion and Howitt, 1992). However, recent macroeconomic

data suggest a slowdown in the productivity of ideas. The reason behind this seems to be that

ideas are harder to find than ever before (Bloom et al., 2020; Jones, 2009). The global trend

of production of scientists has been steadily increasing for decades (Stephan, 2012), so the

observed dynamic becomes both a question of rate and direction of scientific inquiry.

The economics literature on individual incentives and rewards for scientific production is

vast. In recent years a steady stream of applied work has studied a variety of reward schemes

intercepting reputation and status. These often study the trade-offs researchers face: explore

vs exploit (Azoulay et al., 2011), specialist vs generalist (Teodoridis et al., 2018) or optimal

strategies in scientific collaboration (Bikard et al., 2015). The discovery race sets a competitive

environment that has some benefits, such as the efficient allocation of scientific effort amongst

problems (Hagstrom, 1974) and also some important downsides, e.g. when researchers

stray into fraud (Azoulay et al., 2015b; Jin et al., 2013). On the other hand, economists have

somewhat overlooked the dynamics and direction of scientific ventures, a quest targeted by

philosophers, historians and sociologists (Azoulay et al., 2015a).1 In their seminal paper The

new economics of science, Dasgupta and David (1994) suggest that interactions in science

could be modelled as a game, an idea that Kealey and Ricketts (2014) and Kiri et al. (2018)

exploit.

In this chapter, we model science as a local quasi-public good introducing appropriability,

partially challenging the assumption of non-rivalry in basic science. The beneficiaries of

science production are the actors at the heart of that process — i.e. the contributing scientists

themselves. We assume there are no free-riders in common-pool resource games. Within

this framework, we find a plausible explanation for the direction of science given the level

of congestion of a field, as well as the incentives to work on a new field. We also provide a

framework under which there exist barriers to entry and competition amongst researchers in

the space of ideas.

The remainder of this chapter is structured as follows. First, we set up the ground for the

model, laying out the prior literature that precedes this chapter. We then provide some macro

and micro empirical evidence reinforcing the idea that researchers’ strategic behaviour plays

an active role in the organisation of science. In Section 2.3 we present the model. First, we

characterise the problem as a CPR game and derive the fundamental implications. Next, we

introduce heterogeneity in the players with two illustrative cases. Finally, we discuss how the

model links to a longstanding literature in the sociology of science and discuss the model’s

many limitations.

1Except for, perhaps, the theoretical work of Jones (2009) and Bramoulle and Saint-Paul (2010).
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2.2 Background

The organisational characteristics of science

The rewards scientists receive for producing science arise both from creating a particular

new piece of knowledge and from the public recognition that they were the person to do

so (Stephan, 2012). Similar to innovations, scientific discoveries are a first-come-first-serve

notoriety monopoly. In order to increase reputation, one must first win a discovery race, as

priority is the basis by which one can legitimately claim her contribution (Dasgupta and David,

1994). This fact is well established within the sociology of science, where disputes over priority,

and the incentives arising thereof, are understood to play a central role in the organisation of

science (Merton and Storer, 1973).

The study of the direction of science has been part of the sociology literature for a long time.

Upon studying research communities, Crane (1969) identified leaders within a community,

who had a powerful influence in the direction of the field. These highly visible individuals were

considered the intellectual leaders by their peers. Crane’s findings helped explain why knowl-

edge in a field follows a Pareto distribution, with the majority of contributions corresponding

to a well-knit circle of resources, literature and academics in orbit (Swanson, 1966). While old,

these ideas are “en vogue” in economics. Numerous recent publications point in the direction

of few influential researchers guiding (or signalling) prevalent research directions (Azoulay

et al., 2010, 2015a; Agrawal et al., 2017; Higgins et al., 2011; Oettl, 2012). Others have suggested

full independence in the choice of a research agenda as a key characteristic of academic

research (Aghion et al., 2008). In either case, what really drives scientific developments are

creative ideas. Creativity leads to exploration, and the exploration of new avenues of research

is paramount for the advancement at the frontier (Azoulay et al., 2011).

Along these lines, Azoulay et al. (2011) tested empirically how the existence of the right

incentives plays a crucial role in the creativity of researchers. They show how a funding

mechanism (HHMI) organised around the principal investigator is more effective at promoting

riskier behaviour than a project-oriented program like NIH.2 The work of Manso (2011) for

the case of innovation and Bramoulle and Saint-Paul (2010) for the case of science provide a

framework in which a scheme of incentives helps explain the trade-off between exploration

and exploitation (March, 1991). The study of this dichotomy in basic sciences traces back to

Kuhnian theory of paradigm shifts (Kuhn, 1962).

Appropriability

If we want to grasp the real economic significance of science we need to recognise it as a

source of variety and to admit that it can be more or less rival or appropriable according to

the strategic configurations into which it enters. The current notion of appropriability (in

2Howard Hughes Medical Institute (HHMI) is an American non-profit research organisation with a focus on the
life sciences.
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economics) developed from Arrow’s classic 1962 paper (Arrow, 1962) — where he discussed

a model of incentives to invent — and reached maturity upon David Teece’s seminal work

(Teece, 1986). Information (and knowledge) is understood to be appropriable under rights of

exclusivity — i.e. intellectual property rights — that grant innovators an opportunity to protect

their investments in research. Appropriable (and rival) science is, thus, generally discussed

in applied developments, usually downstream in the research and innovation pipeline and

commonly supported under private foundations that derive profit under "proprietary rules"

(David, 2003; Callon and Bowker, 1994).

Basic science, however, relies on the full disclosure of findings and in a cooperative organisa-

tion of exploration and discovery. The basic science system relies on the quest for expanding

the reliable stock of knowledge alien of personal or corporate interests. The new knowledge

generated should only serve as a "public" contribution that benefits the entire community in

its cooperative program of inquiry (David, 2003). David argues that the societal benefits of

the advancement of science must be incorporated in the “incentive mechanism that induces

individual effort”. Thus, beyond the fixed monetary compensation, researchers are allowed to

appropriate non-pecuniary rewards proportional to the size of their contribution to the stock

of knowledge. These payoffs include the public recognition by peers as key contributors to

subsequent research, and the right to “own” the finding.

The prospect of gaining the non-pecuniary rewards, which, in turn, enables a better posi-

tioning in the organisational scheme for obtaining more substantial monetary (or influential)

payoffs are driving individuals in their choice of problem and the direction of their contri-

butions. Since reputation is built upon the reactivity of peers in the scientific community,

research agenda choices are biased toward “research spillovers” (David, 2003) that the individ-

uals can appropriate. The basic science regime, thus, must be looked from the standpoint of

the individual researcher.

Science from the standpoint of the researcher

Due to the complexity inherent in tracking researchers’ careers, macroeconomic trends have

never (to the best of our knowledge) looked into the headcount (input) correlation with the

number of scientific publications (output). Similarly, very few studies have leveraged micro-

data on scientists’ productivity and career choices. Disambiguation issues, as well as the

difficulty in tracking all the affiliations, have led to empirical work focusing on specific grant

programs or very limited samples. We believe that accounting for the returns to human capital

provides new insights into the dynamics of science and its organisation. In Appendix B.1, we

present descriptive evidence of the complex relationships between field growth evolution and

the direction of research, which help motivate the model presented in Section 2.3.

In particular, we observe a correlation in the data that points towards diminishing marginal

returns as the headcount increases, both in terms of publication counts and overall reach.

Furthermore, the correlation seems to be amplified as specialities mature, suggesting that
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breakthrough research is more likely to be published in smaller fields. In contrast, exploitative

research appears in subfields that attract researchers at a higher rate. This effect seems to

relate back to the notion of appropriability, as researchers are aware of the competitive nature

of a field and respond accordingly.

A large part of the empirical work studies science at a publication or grant level. Rather than

projects, we ascribe our analysis to researchers. Beyond monetary incentives, researchers are

not necessarily altruistic in their work, as they engage in a race for recognition. This reputation

(the achievements) is, in turn, a gateway for additional monetary resources (Packalen and

Bhattacharya, 2018). Thus, we question whether we can explain the direction of science,

and perhaps its organisation, from the viewpoint of scientists (be it alone or in a team). We

propose a simple game-theoretic model that introduces appropriability of the non-pecuniary

benefits from scientific output. Researchers earn higher payoffs the more significant their

contributions, which results in the exploitation-exploration trade-off to arise naturally. We

develop a model in which researchers make informed decisions based on their beliefs and

the potential payoffs. With our model we try to explain trends that emerge from researchers’

strategic behaviour.

2.3 A static game of a research speciality

In this section, we develop a game-theoretic model of knowledge proliferation, inspired by

research in ecology and plant-species competition (Gersani et al., 2001). The model builds

upon the notion of knowledge as a public good and introduces appropriability to the yield of

the newly-generated knowledge. We understand appropriability as the factors that determine

the researcher’s ability to capture the returns generated by a contribution. This derivation

results in a common-resource pool game. It predicts an evolutionary stable strategy, in the

sense that individuals cannot improve its performance by unilaterally deviating from the

optimal strategy. As expected, the optimal strategy does not coincide with the social optimum,

but rather results in a sort of tragedy of the commons, in which researchers seek to maximise

their own good over the population welfare. We argue that this model, albeit quite simple,

accounts for the competitive nature of scientific research, and sets a theoretical foundation to

the macroscopic behaviour of researchers as a group.

To understand the competitive ecosystem of researchers, it is convenient to split the ensemble

of scientists into its organisational units. On a grand scale, science is divided into fields. In

turn, each of these fields contain multiple subdivisions. The areas of knowledge covered within

these subdivisions, regardless of their root, can be significantly distant. Typically, researchers

specialise in much narrower topics, together with a community of similar individuals —a social

circle— with whom they primarily interact. Networks generally arise either directly through

collaboration or participation in the same forums or indirectly through the action/reaction

to the contributions from other stakeholders. We will call this interacting group —which

constitutes our organisational unit of analysis— a “speciality” or “sub-field”. After all, most
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competition in science will happen amongst members of the same speciality (Hagstrom,

1974).

A sub-field is a group of N researchers that is characterised by a stock of knowledge K , non-

excludable to all incumbents. Every member can easily access and build upon that stock of

knowledge as part of the social circle of researchers. As community members, researchers have

free access and the capacity to reuse this knowledge. We define K as a cumulative function

of the individual contributions υi , which is information readily available for use by other

individuals (typically papers). Thus, K =∑
υi . We will assume each contribution is a function

of a combination of elements —some chosen, some inherent to the individual characteristics—

including, but not restricted to, the ability of the researchers, the effort devoted to the contri-

bution, financial constraints, network and social skills. This stock of knowledge generates, in

turn, a set of outputs to society y . The aggregated yield of this knowledge stock K is, therefore,

y(K ). We do not consider the returns to individual contributions, but rather to the entire

knowledge capital. It is eminently complicated to isolate the specific output of a given piece of

codified knowledge. The construction of both K and y(K ) respects the notion of accrual of

information and knowledge (its cumulative nature) in the generation of rewards. The stock of

scientific work, in turn, generates a return on all active users, and not merely on the marginal

contributor.

2.3.1 Public Good vs Common Resource Pool

A Public-Good Game of Science

In a standard public-good/social dilemma game, the rewards from the total product are evenly

split amongst all players such that ri = y(K )/K . In our researcher-benefit model, the individual

captures the average return to knowledge accumulation. A public-good game requires non-

excludability as well as non-rivalry in the profit function. It can generally be reduced to a

prisoner’s dilemma game. The individual payoff π for researcher i = 1...N in such a game is

represented as:

πi = y(K )

K (υi ,ν−i , N )
−C (υi ) (2.1)

where C (υi ) is the cost associated with producing contribution υi , and ν−i are the contribu-

tions of the other researchers in the community.3 K depends on the total number of researchers

in the speciality N .

Studying science from a public-good perspective results in a social dilemma. On the one

hand, public expenditure and Government intervention on basic science is economically

justified by its intrinsic nature. Public goods generate economic inefficiencies, and the market

incentives are not sufficient to support them (Callon and Bowker, 1994). Non-rivalry and

non-exclusion imply industry and business will tend to under-invest, a market failure that

has been empirically and theoretically shown (Romer, 1990). On the other hand, research

3The cost can be understood as the amount of labour that goes into the production of a contribution.
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in experimental behavioural economics has shown that the framing of public-good games

leads to an under-contribution of effort compared to the social optimum. Gintis (2009) claims

that “people measure movements from the status quo and hence tend to under-contribute in the

public goods game and over-contribute in the common pool resource game, compared to the

social optimum”.

Another way to look at the economic inefficiencies is through the multiplicity of efforts. In

science production mechanism, redundancy and over-contribution are crucial to ensure

discoveries will take place. Duplication of efforts and replication activities are required for the

validation of theories and experimental designs, as well as for arriving to a timely solution to a

problem (Hagstrom, 1974; Merton and Storer, 1973).

The public good nature of science imposes limits on the outcomes of scientific production,

and of scientific contribution to society. As such, recent research has argued in favour of an

alternative framing. Kealey and Ricketts (2014) argue that treating science as a contribution

good has implications on the incentives that explain the mechanisms behind the organisation

of science which, in turn, changes the game from the prisoner’s dilemma above to a pure-

coordination game. For them, tacit knowledge constitutes an entry barrier to research in a

sub-field. Hence, only contributors (actively involved members) will benefit directly from an

accumulating pool of research results — hence the contribution good.

Competition lies in the organisational foundations of science. Researchers compete for the

acquisition of financial resources in order to fund their projects, but also for a limited number

of positions within academia, which are becoming more and more scarce (Stephan, 2012).

However, even beyond the monetary rewards, science is ultimately (socially) organised as a

meritocracy, where researchers capture higher rewards through priority or significance of their

contributions, awarded and recognised within their community. The non-pecuniary benefits

from science production are thus largely appropriable and sought after by the community

members.

Thus, the desirable model should have two properties:

• Result in a prisoner’s dilemma type of game that has natural inefficiencies.

• Incorporate rivalry in the appropriation of the non-pecuniary rewards, such that it

captures the competitive element and eliminates the propensity to under-invest.

We propose common-pool resource games as a solution that meets these criteria.

Science as a Common-Pool Resource Game

Common-Pool resource games (CPR) are a type of game extensively studied in a branch of

economics, the rent-dissipation literature (Gordon, 1954; Walker et al., 1990; Gardner et al.,

1990). While both public-good and CPR games reduce to a prisoner’s dilemma, there are
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significant differences in the response behaviour of players (Apesteguia and Maier-Rigaud,

2006). Apesteguia and Maier-Rigaud argue that, when players capture individual payoffs

weighted by an individual distributional factor, a degree of rivalry is introduced in the game,

generating a distinct strategic environment.

We use the contribution to the stock of knowledge by each individual, υi , as the distributional

factor. Then, the payoff becomes: ri = υi · y(K )/K . This seemingly small modification intro-

duces rivalry through appropriability of the common resource. The assumption underlying

this model is that researchers capture a larger payoff proportional to the weight of their contri-

bution. K is still a public good from which everyone can source, but the total yield y(K ) is a

limited resource, a common-pool, from which rewards are distributed amongst its members.

υi works as an individual distributional factor. Hence, from equation 2.1:

πi = υi · y(K )

K (υi ,ν−i , N )
−C (υi ) (2.2)

This model assumes monotone, increasing functions of the structural components of a con-

tribution (υ′ > 0) and a concave, monotone increasing function of returns to knowledge (y)

where

K = υ+U (2.3)

with

U=
∫ N−1

ν−i dν

Notice that υ changes with the focal individual, and π depends on the frequency distribution

of the strategic choices of the different individuals ν−i . The choice of an individual is inde-

pendent of the others. At the equilibrium, we maximise the profit function with respect to the

individual’s strategy, so we set ∂π
∂υ = 0 for an interior solution. From equation 2.2 and the first

order condition:
∂π

∂υ
=−∂C

∂υ
+ υ

K

∂y

∂K

∂K

∂υ
+ y

K 2

[
K −υ∂K

∂υ

]
= 0 (2.4)

From equation 2.3, we know that ∂K
∂υ = 1, and introducing this into equation 2.4 we get:

∂C

∂υ
= υ

K

∂y

∂K
+

[
U

K

]
y

K
(2.5)

Equation 2.5 is our main result as it describes the cost support allocation of the optimal

strategy. As we can see, there is no path dependence on the distribution of efforts since it only

affects the lump sum U and K . Two results emerge from Equation 2.5:

(a) The marginal cost for supporting a research choice is a weighted sum of the average

yield y/K and the marginal yield ∂y/∂K .

(b) The individual researcher cost supported by the average return increases with the size of

the group. An increase of size N implies an increase of the knowledge stock by others U.
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If there is no competition, N = 1, and all the weight is supported by the marginal value

of the contribution. As N goes to infinity, researchers will enlarge their production until

the average return equals the marginal cost of pursuing that strategy.

The second finding (b) results in a tragedy of the commons, where there is an over-exploitation

of the common resource. The equilibrium (the optimal strategy for the individual player)

differs from the social optimum (the one that maximises the productivity of scientific output).

In this sense, the model is consistent with the institutionalisation of science policy and gov-

ernment intervention, specifically, in public funding of science. For instance, by providing

the right incentives, governments can steer funding to breakthrough research. The model

presented, however, tries to shed new light on the individual motivations of researchers and

how these affect the dynamics of science. While it is convenient that the resulting dynamics

align with policy design at a larger scale, we must not forego the signification for the individual

researcher regarding optimal choice. Section 2.4 provides a full discussion of these two results.

2.3.2 Heterogeneity: Two illustrative (special) cases.

Weak heterogeneity amongst researchers

The solution obtained in the previous section for the general case assumes homogeneous

players which conform to the optimal —uniform— strategy (the choice of contribution). It

is a reasonable assumption that, within speciality, all established researchers are, to a good

approximation, homogeneous in their abilities and allocation of efforts. While academic

careers require of very particular skill-sets, they allow for a great degree of self-selection into

the topics of interest. It is then credible that individuals with very similar characteristics

conform the communities. Naturally, there exist differences between the researchers. In what

follows, we extend the previous results for weakly heterogeneous players, whose abilities are

concentrated around an average value.

Heterogeneous players in simple one-period simultaneous-move games have been studied ex-

tensively, with numerical solutions for complex scenarios or few numbers of players (Lockard

and Tullock, 2001). The solution proposed by Lockard and Tullock falls outside the scope

of this chapter. Given the characteristics of science, in the following, we develop a special

case for weakly heterogeneous players, which builds upon the rent-seeking game solutions

proposed by Pérez-Castrillo and Verdier (1992), Nitzan (1991) and particularly Ryvkin (2007).

For an analytical derivation, we further assume the costs C (υ) are a linear function of the

contributions C (υ) = ci ·υi .

Let c̄ denote the average cost of generating a contribution in a sub-field. Individual costs

differ slightly, but will be concentrated around c̄. To model these individual differences, we

introduce the relative abilities of the players θi such that ci = c̄(1−θi ) where |θi |¿ 1. Similarly,

following the results from Ryvkin (2007), small heterogeneity in abilities can only lead to small

heterogeneity in the contributions made by researchers, in turn concentrated around ῡ. Hence
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υi = ῡ(1+ xi ) where |xi | ¿ 1 are the relative contributions. Notice the different sign in the

construction of ci and υi . A larger relative ability results in a lower effort, while a larger relative

contribution results in a larger contribution. Equation 2.5 then takes the form:

ci = υi

K

∂y

∂K
+ (K −υi )y

K 2 (2.6)

If we introduce the expressions above, and rewrite K as a sum of its components, we get:

c̄(1−θi ) = ῡ(1+xi )∑
ῡ(1+x j )

∂y

∂K
+

∑
ῡ(1+x j )− ῡ(1+xi )[∑

ῡ(1+x j )
]2 y

= 1+xi∑
(1+x j )

∂y

∂K
+

∑
(1+x j )− (1+xi )

ῡ
[∑

(1+x j )
]2 y

Using X =∑N
j x j , K = N ῡ, ȳ = y

k and rearranging leads to:

c̄(1−θi ) = 1+xi

N +X

∂y

∂K
+ N +X − (1+xi )

ῡ [N +X ]2 y

= 1

N +X

[
(1+xi )

∂y

∂K
+N ȳ − 1+xi

N +X
N ȳ

]
And finally:

θi = 1− 1

c̄

1

N +X

[
(1+xi )

∂y

∂K
+

(
1− 1+xi

N +X

)
N ȳ

]
(2.7)

Equation 2.7 is an expression of the relative ability as a function of the size of the group N and

the relative contribution xi . From here we derive the elasticity of contribution with respect to

ability, that is, the cost:

εi j =−c j

υi

∂υi

∂c j
= ∂xi

∂θ j

For sufficiently large N , the last term of equation 2.7 becomes N ȳ , and ignoring second order

and cross derivatives,

εi j = ∂xi

∂θ j
= 1

∂θ j

∂xi

' c̄(N +X )2
(

1

(1+xi )∂y +N ȳ

)
∀i 6= j (2.8)

Hence, εi j > 1 ∀i 6= j for as long as the equilibrium holds.

Intuitively, the cross-elasticity εi j measures the reaction of player-i ’s strategy —i.e. the relative

contribution of player i — to changes in the relative ability of other members of the community.

Researchers will adjust their contributions increasingly with the ability of other members.4

On the one hand, this result motivates the belief that the most productive researchers drive

scientific fields. They can have a significant weight on the marginal returns to the stock of

4The results for the self-elasticity εi i are ambiguous, and depend on the absolute values: the response of a
researcher to her ability depends on the environment and size of the group.
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knowledge. The presence of such above-average individuals drives production-crowded fields,

while the less-able still reap the average return with their production, as equation 2.5 suggests.

On the other hand, it is compatible with the notion of rivalry and competition in science.

Researchers will respond to their perception of their peer’s ability through more impactful

contributions.

In the next section, we take a different simplifying assumption in order to observe the implica-

tions for the respective payoffs.

Fixed cost and contributions as a function of ability. Competition and the invisible college

Let us now fix the costs of a contribution in order to study the effect of ability in the rewards

of scientists. We assume that all contributions require a constant level of effort, which all

incumbents perform in order to be in the community. This premise is in line with the contri-

bution good approach by Kealey and Ricketts (2014), where the investment in tacit knowledge

acquisition is required to take part in the community. Under this scenario, we impose no

restriction in the magnitude of the relative abilities, but rather that they are bounded and

follow a given distribution. Then, equation 2.2 now becomes a profit function where υi = υ(θi ).

Note that now θi does not refer to the relative ability, but rather to the absolute ability of

researcher i . The ensemble of abilities of researchers in a group are bounded θ ∈ [
θ, θ̄

]
and

follows the distribution θ ∼ f (θ). The total stock of knowledge K is, then:

K =
∫ θ̄

θ
υ(θ) f (θ)dθ (2.9)

where
∂K

∂θ
=−υ(θ) f (θ) < 0 (2.10a)

and
∂K

∂θ̄
= υ(θ̄) f (θ̄) > 0 (2.10b)

From equation 2.9, K is a function of the bounds K = K (θ, θ̄). We will use the notation θ̂ to

generically refer to either bound, depending on which one we fix, so that K = K (θ, θ̄) = K (θ̂).

Equation 2.2 becomes then a function of ability and the bound πi =πi (θi , θ̂), so we can derive

the following result:5

∂π(θ, θ̂)

∂θ
= υ′(θ)

y(K )

K (θ̂)
> 0 (2.11)

Equation 2.11 shows that, assuming that the marginal contribution increases with ability,

υ′ > 0, a marginal increase in the ability of a researcher yields an increase in his or her profit

function. This straightforward result implies that, with a fixed level of effort, researchers with

a higher innate ability (higher θ) will have a higher payoff π. As in the previous section, the

5Dropping the subscript i in what follows, for simplicity of notation.

57



Chapter 2. Rivalry in science: Modelling science as a CPR game.

cross derivative (individual payoff with respect to the bound) yields less trivial results:

∂π(θ, θ̂)

∂θ̂
= υ(θ)

K

[
∂y

∂K
− y

K

]
∂K

∂θ̂
(2.12)

Equation 2.12 shows the effect of a change in the bounds of the researcher’s group ability on a

researcher’s profit function.

Assuming y(K ) is a strictly concave function, ∂y
∂K < y

K , combined with equations 2.10a, 2.10b,

2.12 yields:

∂π

∂θ
> 0 (2.13a)

∂π

∂θ̄
< 0 (2.13b)

Individual payoffs of members of a community increase with the lower bound of abilities, while

they decrease with an increase in the upper bound of abilities. Given the fixed distribution of

abilities θ ∼ f (θ), this means incumbents will receive larger payoffs by directly or indirectly

limiting the size of their communities. The marginal increase of the lower-bound ability,

within a collective, increases the profit function of the researchers within the group.

In the following section, we rationalise the previous results and present a framework for their

compatibility with the existing literature. We then proceed to discuss the limitations of the

model.

2.4 Discussion and Limitations

2.4.1 Discussion

The model presented in Section 2.3.1 is a simple and illustrative challenge to the notion of

science as a pure public good in economic terms. We introduce the notion of rivalry through

an individual distributional factor —namely, the weight of the individual contribution— which

affects the allocation of non-pecuniary payoffs from contributing in a scientific speciality.

The need for such a model arises from a rather naive association of ideas: science is socially

organised around priority, and rewards are attained by individuals — spurring competitive

behaviour— but knowledge (especially codified, published, accessible publications) has the

characteristics of a public good.

Much like a contribution good game, the introduction of an individual distributional factor

generates a scenario where there is no free-riding. Researchers must be individually engaged

and proactive in order to aspire to the gains —just by being a community member does not

provide any gains. From a sociological point of view, the community judges and defines the

reputation of individual researchers based on the specific merits of their work.
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The derivation of the optimal strategy for each individual from the central, represented by

equation 2.2 suggests that:

i. Assuming y is a concave monotone increasing function of K, the individual’s perceived

benefit from contributing to a large field is larger than to a small field.

ii. An area of knowledge grows optimally in its early stages as long as the marginal contri-

bution has more weight than the average.

The first finding (i) results in a tragedy of the commons. In a larger field, the strategy is

supported by the average — rather than the marginal— contribution, which represents a

deviation from the social optimum. We interpret the individual payoff pursuit (instead of

the social optimum) as the mechanism behind the economic inefficiency of science, i.e. the

multiplicity of efforts for a given problem. As discussed above, this is, in fact, a desirable

property of the science ecosystem, which ensures discoveries.

The second finding (ii) is a consequence of the weighted average represented in equation

2.2. The socially-optimal (the one that maximises welfare) allocation of effort is that which is

entirely supported by the marginal contribution. Hence, the socially optimal growth happens

for low N . We believe this result to be consistent with the first observations in the sociology of

science. Crane (1969) observes that all the high producers enter the field in the early stages (or

during exponential growth of the sub-field). She argues that this might suggest “a sensitivity to

potentialities of growth in a field in making their selection of research problems”, in line with

our suggestion that sub-fields stagnate towards average returns in time, making them less

attractive to researchers with high potential.

When average returns support the cost structure, there is an excess of production (of research).

Incumbent researchers are “foraging” the common-pool of resources at the cost of influencing

the total knowledge stock. In the branch of behavioural economics that studies these games

—the rent-seeking literature— this behaviour is known as active exploitation of the resource.

As the stock of knowledge K grows, it provides strategic support to the average player, not just

the marginal contributor, sacrificing collective socially-optimal gains.

Invention and Consolidation (explore vs. exploit)

In his highly cited public lecture at Virginia Polytechnic Institute, Callon (1994) questions

whether science is a public good. He identifies two types of knowledge being generated, one

that transcends the boundaries by taking risks and pushing the frontier limits, and one that

frames the application and consolidates the established knowledge. Within these trade-offs,

he conjectures that science is not a public good in pure economic terms.

The model we present in the previous section is the reverse exercise: introducing appropri-

ability to the payoffs of the researchers, we theorise about the dynamics of science. Equation
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2.2 shows a weighted average and suggests that the optimal strategic behaviour for the actors

weighs on the shoulders of two components. Reflecting on the work of sociologists, we suggest

interpreting the marginal and average yield as the exploration and exploitation of research,

respectively.6 Or, in words of Callon, invention and consolidation. Given the clarity of his argu-

ments, it is better to cite his work directly. Callon summarises the contributions of sociology

and anthropology of science up to that point as follows:

The first outcome [that of a well-defined community] is associated with routine

work, consolidation and continued and stubborn improvement. The second out-

come corresponds to what is generally called invention: an unexpected association

of several preexisting networks that up to that point were strangers to each other.

In this parallelism (that of our model), the researcher bears the cost of supporting her optimal

strategy by the marginal contribution and the average contribution. The first (the marginal

contribution) represents a subversive contribution and the latter, a traditional approach, a

reliable strategy to accumulate recognition. The efficient allocation between the two tasks

depends on the size of the community to which the researcher belongs. Therefore, we suggest

that breakthrough research that is highly innovative or that defies the “accepted knowledge”

will happen in smaller (unconsolidated) fields. The second (the average contribution), consol-

idation, work will follow. As fields become large, most published literature will be, to a certain

degree unsurprising and continuist (Foster et al., 2015).

Modelling science as a common pool resource game played by researchers conduces to an

optimal strategy that balances exploration and exploitation of knowledge. It is an indirect

consequence of the optimal allocation of efforts that maximise the payoffs for the individual

player, rather than an active choice. The model, in a way, frames the essential tension of

strategic choices in academia (Bourdieu, 1975). Further back in time, Kuhn (1977) had framed

fields in science as a competitive endeavour in which researchers faced a strategic choice

between succession and subversion. Recent work by Foster et al. (2015) tests Bourdieu’s model

empirically and finds supporting evidence for it.

The model presented in this chapter derives the essential tension as a result of the optimal

strategy, rather than an active choice (to explore or exploit) of academics. In Appendix B.5,

we address this limitation by turning the tables around, suggesting how a simple two-period

model in which researchers have an active choice on whether to innovate or consolidate could

6The concepts of exploration and exploitation have largely been used in the literature of learning and innovation,
especially since the seminal work of March (1991). He introduces exploration as variation-seeking, risk-taking and
experimentation oriented. Conversely, exploitation is variety-reducing and efficiency-oriented. The two concepts
have been used in a wide range of ways, making it hard to unify a definition in the context of Knowledge and
Learning. The work by Li et al. (2008) collates the main uses and suggests a consolidated definition based on the
“knowledge distance domain.” For them, one exploits by searching for knowledge within the boundaries of an
organisation, local to the existing stock. On the other hand, one explores by searching distant knowledge that is
unfamiliar
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be characterised.

Heterogeneity

The introduction of weak heterogeneity between the players —i.e. small differences in relative

abilities or contributions— allows the computation of the cross-elasticity of contribution with

respect to ability. For established specialities, one can derive Equation 2.8 where the cross-

elasticity measures the percentage change of a researcher i relative contribution following

a change in researcher j relative ability. εi j > 1 implies a positive and strong reaction to

the other player’s abilities for the members of the community. Therefore, researchers take

positive, assertive strategic reactions to the ability of their peers, competing for the gains.

The distributional factor introduced in the public-good game, we argued, introduced rivalry

in the appropriation of the payoffs of science. With the derivation of the cross-elasticity of

effort-ability, we show a degree of competition in science derived from the model.

The reactivity of researchers proposed by the model to other’s ability hints towards the most

productive researchers as guiding members of research specialities. The contributions of the

incumbent colleagues will be adjusted to respond to the existence of such leaders.

In the second particular case, using researcher’s abilities drawn from a bounded distribu-

tion, Equation 2.13 highlights a preference to be part of a group with researchers of uniform

and static characteristics.7 We suggest this introduces entry barriers — a bound in the dis-

tribution of abilities can be understood as an exclusion term below the threshold. That is,

researchers within a community perceive as detrimental the inclusion, in the same commu-

nity, of researchers below the lower-bound. On the other hand, the marginal increase of the

upper-bound ability is detrimental to the researchers within the group. The former could

potentially explain impediments to new-entrants of high ability to well-formed groups which

translates into the reluctance to adopt new high-impact ideas. These results in Equation 2.13

highlight, once again, the competitive environment of science, suggesting elitist motivation

—with the tendency to prefer a higher lower-bound for one’s group— and fear to new-entrants

that challenge the incumbents’ status-quo. They could help explain the creation of an invisible

college (Crane, 1969; Price and Beaver, 1966) within a speciality, which comprises the closest

social circles to a researcher. In turn, it theorises the existence of social entry barriers to such a

close-knit group. In other words, the model suggests a form of social-pressure effect through

the loss of gains by individual researchers amidst changes in status-quo.

Anew, sociologists of science have extensively studied the social characteristics of research

communities, and it is worth looking back at their findings to illustrate the model’s derivations.

Crane (1969) studied the social organisation of researchers. In her work, she sought to find

which type of sociological structure best described the interactions and whether there existed

leadership in the fields. In her typification of actors, she found high producers to have a

7Consistent with the assumption of weak heterogeneity used for the first special case.
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higher degree of visibility in the problem area.8 Price and Beaver (1966) argue that the most

productive researchers were the nexus that held communities together, while ties amongst

other incumbents (of similar lower productivity) were weaker. Wagner (2008) explains that the

science system evolves, splits and merges with other subfields where “nascent fields” are led

by groups that have exercised control over the direction of research in the area. Recent work

in Economics by Azoulay et al. (2015a) finds similar evidence in that the peer-pressure exerted

by colleagues of “superstar” researchers discourages “revolutionary” new entrants.

2.4.2 Limitations

Motivated by the observed phenomena and by the sociologists’ view on field dynamics, we

attempt to provide a simplified framework that uses a new type of social dilemma to explain

science. The optimal strategies for researchers result in a tragedy of the commons, as in

a public-good game. However, introducing rivalry uncovers a set of features that are miss-

ing from the classical description of science. Modelling scientific fields as a common-pool

resource game in the way presented in Section 2.3 has, still, many limitations.

First, the omission of a temporal dimension. The model provides a simplified version of a static

world — as if science was defined by static independent communities— in which researchers

have no active choice on which community to engage, they belong to one unmovable category.

Second, the oversimplification of contributions as produced by single researchers. The reputa-

tion and contribution game has a much more nuanced story with the inclusion of collective

effects, which shape the outcome of the non-pecuniary payoffs through the mechanics of

communication channels, and sociological constructions (e.g. the Matthew effect (Merton,

1968)). Team science is essential in current research (Bikard et al., 2015; Jones, 2009), so

perhaps this model is instead one of PIs. Third, we disregard the multidisciplinary researcher

and the many interactions that happen in the real world connecting communities. Scientists

often contribute to more than one stream of literature and are involved in several communities

at the same time. In each, they interact at different levels of participation, in some they might

be leaders, in some followers. Fourth, we overlook the financial constraints and the burden of

knowledge of different specialities (Jones, 2009). This omission comes as a consequence of

the previous limitations since the assumption is small within-group heterogeneity. Fifth, we

assume all knowledge present in a subfield contributes to the stock of knowledge. There is, of

course, knowledge that leads to a wrong track — i.e., contributions that open up unfruitful

avenues of research— or knowledge that destroys prior art by, for instance, finding opposing

evidence. Finally, we assume scientists have no active voice in the decision to engage in more

innovative or cumulative research. It comes as given with the optimal strategy (which would

be costly to deviate from).

Team science and barriers to entry present in fields —such as cost of laboratory set-up, or

8High Producers are the highest contributors in the research area that Crane studied, and were advisors for
several of the Moderate Producers at some stage.
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access to funding, rather than imposed by the social norms— are necessary for a full-fledged

empirical analysis of the model. They must be included in testing the validity of this or similar

models, not to incur any omitted variable bias. Furthermore, multiple examples study the

reputation effects of team construction or failure (Jin et al., 2013; Bikard et al., 2015). In order

to address time-invariance and choice, a different class of models needs to be used, such as

growth models in the likes of Jones (2009), infinite-horizon overlapping generation models

such as Bramoulle and Saint-Paul (2010), or ultimately complex dynamic discrete games

(Aguirregabiria and Mira, 2010) which are a branch of economic theory themselves, and fall

outside the scope of this chapter.

One way to simply incorporate an active choice between exploration and exploitation (and

time dependence) is through a simple two-period dynamic discrete choice model. A simple

two-period model helps illustrate how infinite-horizon games might help model science. For

the sake of completeness, we derive and discuss this model in Appendix B.5.

2.5 Conclusion

This chapter presents a simple model that tries to explain organisational characteristics of

science from a pure optimisation of strategies by the researcher. From the maximisation of

her payoff, we derive a set of observations consistent with the literature.

First, present a model of scientific rewards drawing from a common-pool resource game. The

simple configuration of the model sheds new light on several observed sociological effects

with a straightforward model of rewards. Allowing researchers their choice of a contribution,

we incorporate appropriability in the context of scientific production. This way, we account

for the incentives of subsequent choices in a researcher’s career. The most basic setting

results in optimal support being defined by a weighted average of the marginal and average

contribution. We link these results to the extensive literature on the essential tension of

researchers.9 Depending on the number of players N , contributing to a stream of literature, we

derive implications on the incentives to publish extensively (exploiting) or innovate (explore).

Introducing two particular cases with players’ heterogeneity allows us to make several claims

regarding the effect of competition on science production. Researchers respond to increases in

their peers’ abilities positively, enhancing their production. Similarly, our results suggest that

researchers with potentially above-average abilities drive new sub-fields, which leads to them

having a higher impact. Setting upper and lower bounds to the abilities within a social circle

provides a framework compatible with the existence of an invisible college. More specifically,

our model provides a setting in which that incumbent researchers of high ability will benefit

from a higher entry barrier within a given invisible college. In contrast, new entrants at the

upper bound of ability decrease the payoffs for its members. The intuition behind these

barriers to entry could be explained by resilience to challenges to status-quo.

9The dichotomy in knowledge creation that researchers face: explore vs exploit; innovate vs consolidate;
tradition vs subversion.
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The model excluded from the analysis several variables and factors that influence the or-

ganisation of research circles and their dynamics. We present the dichotomy of researchers

between succession and subversion as a consequence of a strategy-maximisation game. This

framework explicitly omits researcher conscious choice in strategy and timing.

The model presented in this chapter extends beyond science to communities with similar

characteristics such as the open-source coding. (Open) software developers build upon signif-

icant initial contributions with marginal improvements. They are rewarded by either being

active in many marginal contributions that consolidate the great leaps or by proposing original

first-mover algorithms (or languages, solutions, bugs, etc.). The incentives of community

reputation are similar, peer review works systematically, and the underlying structure seems

to follow a social circle model.

Policy implications

We argue that researchers will naturally tend to prioritise exploitation as fields mature. Funding

policy design is then crucial to ensure that innovation is not discouraged. There is evidence

that risk-supporting schemes yield greater creativity (Azoulay et al., 2011). Career pressure in

the current system drags the creative behaviour of scientists. Hence, decoupling job security

from productivity could result in more original work. Understanding that researchers will

prioritise their individual payoffs suggests that grant design (i.e., how grants are implemented)

is vital to ensure that the objectives of the grant scheme are met (Jacob and Lefgren, 2011;

McKnight, 2009; Kaplan, 2005).

The model may also help illustrate the institutional trade-off. Academics increasingly required

to reach out and disseminate their findings and are evaluated accordingly. If dissemination

work or technology transfer practices that do not always push the frontier of knowledge

report benefits to the researcher, they might represent a disincentive towards breakthrough

science. While these activities undoubtedly bring value to society, researchers may face yet

another trade-off in their effort allocation. In this sense, the model might help explain how

the use of altmetrics and technology-transfer outputs to measure productivity (and evaluate

performance) might engulf the pursuit of breakthrough research (Larédo, 2015; Philpott et al.,

2011).

Extensions

The natural extension to the work presented in this chapter is a sequential discrete game with

heterogeneous players. Such a model would overcome the temporal limitation of the work

presented above. A first-step approximation is provided in Appendix B.5 where we present a

two-period model of choice based on the essential tension.

Furthermore, evidence presented in Section B.1.2 can be explored further with a fully empirical

exercise. First, there is unobserved field-level heterogeneity that can be correlated with the size
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and growth of the field. Second, there are researcher level covariates that might influence the

decisions. Third, one should track the "landing" field of a researcher and how mentors’ private

information influences their strategic action. Fourth, exit events are as important as entry

events to model strategic behaviour. Finally, we do not track the "mode" of entry, whether

exploration or exploitation. Respecting the game structure, the work could be extended using

a model of entry-exit from a field as a dynamic discrete game of incomplete information.

These set of models are often not present in the mainstream literature due to the difficulty

of estimation. However, the sequential estimation method (Aguirregabiria and Mira, 2010)

provides a framework that works for both heterogeneous players and permanent unobserved

field heterogeneity.

External shocks might also influence the strategic best replies. Bhattacharya and Packalen

(2011) find evidence that researchers respond to demand pulls from societies fundamental

needs. Nevertheless, what if market demand happens in the exploration phase of a field? In

other words, how do researchers strategically respond to a "hot" topic when exploitation is

still not likely? The work presented in this chapter could then be extended with an empirical

setting that studies the rate and direction of science a high-growth highly-novel field where

exploitation is discouraged.

Chapter 3 provides such an environment. Using a natural experiment, we study the effect of a

funding ban on a highly novel (and with great potential) field in the life sciences.
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3 Innovation Stems from Science: The
Impact of Funding Policy on Innova-
tion

“We do not invent it ourselves and nor do we ask for it,

yet it is our job to find the hour when needs might erupt,

and salmons defiantly and insanely jump against the tide for...

who knows what reason?”

— Morrissey (List of the Lost)

This chapter explores the relationship between advances at the frontier of science and down-

stream innovations using the United States’ 2001 policy regarding the federal funding of human

embryonic stem cells (hESC). We employ patent-to-scientific-article citations to evaluate the

impact of the policy on the innovations stemming from basic science. We characterise the

causal impact of the policy on subsequent innovation with a difference-in-differences estima-

tor. Our estimates suggest that in the years following the policy, scholarly publications subject

to limitations received 65 to 80 per-cent fewer patent citations than the control group. We

show that lesser quality publications lead, at least partially, to this relative decline. Using topic

modelling techniques applied to publication abstracts, we construct a topic-variety metric.

Our findings show that diversity decreased in the aftermath of the policy, suggesting publica-

tions covered narrower topics than before. The results suggest that modest policy changes

—such as restrictions to materials— have a profound impact on downstream innovation and

the advancement at the frontier.
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3.1 Introduction

This chapter analyses the impact of the 2001 U.S. human embryonic stem cell (hESC) policy on

downstream innovations and technology. We exploit an exogenous shock to science funding

that restrained researchers from using certain materials (namely, newly-derived stem cells).

Using a citation-based approach to capture the knowledge spillovers, we estimate the causal

effect of the policy on innovation with a difference-in-differences approach. With these

techniques, we are able to quantify the differences in innovative output between the private

sector and research institutes, as well as the scientific quality of publications in the aftermath

of the ban. Therefore, our work provides evidence to answer two important policy questions:

First, what was the impact of the 2001 hESC policy on innovation? And second, how did

limitations in research materials affect the underlying quality of scientific research?

Recent research has provided concrete evidence that public funding of research plays a vital

role in enabling innovation, particularly in the biomedical sciences (Li et al., 2017). Our

analysis is thus motivated by a central question in science policy: how do basic science

funding conditions affect the rate of innovation? Measuring the spillovers generated from

science —i.e., the dollar return on frontier research expenditure— is of particular interest for

policymakers. In the U.S., the belief that public-research spillovers directly fuel innovations

has accelerated the federal investment in basic science, but there is little evidence of these

spillovers (Jaffe, 2002; Azoulay et al., 2019).

Our estimates suggest that scientific articles subject to the policy restrictions received 65 to 80

per-cent fewer patent citations than unrestricted citations. The analysis constitutes one of the

first to employ non-patent-literature citations and in-text references from patents to scholarly

articles to establish the links between the two.

Additionally, we quantify the differences in innovative output between the private sector

and research institutes. We further examine the mechanisms behind the decrease in patent

citations, and we find that publications bound by the policy were placed in journals of com-

paratively lower rating and had fewer forward citations. Using publication-text data and the

methods developed in Chapter 1, we characterise the yearly diversity of hESC publications. We

observe a significant drop in diversity in the aftermath of the policy, suggesting a concentration

of topics in research.

The remainder of this chapter is structured as follows. In the next section, we introduce the

research setting of the hESC funding ban. We detail the characteristics of biomedical research

in the late 1990s and early 2000s, as well as the particularities of the regulatory environment.

We then proceed to describe the data and methods employed for our research question,

including a sample validity check and the construction of an alternative sample for robustness

checks. In Section 3.5, we discuss the main effect of the ban and the mechanisms of response

that we believe triggered the decrease in innovative output. Finally, we comment on the

implications of our findings.

68



3.2. Background

3.2 Background

Innovation increasingly relies on scientific knowledge (Ahmadpoor and Jones, 2017). Following

a linear model of knowledge generation, basic research provides the foundations for later

applications (Bush, 1945), paving the path of innovation. This model assumes knowledge

generated from fundamental questions ultimately contributes to technological progress. At

the same time, modern growth theory embraces the idea that the productivity leaps extensively

support long-run economic growth (and welfare) that new technologies bring (Romer, 1990).

However, the free flow of ideas from basic research into innovations, i.e. the knowledge

spillovers, result in private firms that under-invest in the production of the most basic science.

As broadly discussed in Chapter 2 the market failure is due to the public good nature of

knowledge, that is non-rival and difficult to appropriate (Griliches, 1992), and therefore public

policy must intervene in order to overcome the inefficiencies.

These ideas date back to Vannevar Bush’s (1945) report. However, the views in support of

direct spillovers have been continuously challenged, and substantial evidence has only been

recently developed. The works by Ahmadpoor and Jones (2017); Fleming et al. (2019) and

Poege et al. (2019) have advanced the understanding of the linear model of spillovers between

science and technology. Using patent citation approaches, these three publications show that:

first, most scientific works links forward to future patents; second, the measured quality of

science is a good predictor of patent impact; and third, and perhaps more importantly, more

and more innovations come from government-funded research.

The impact of publicly-funded research has been thoroughly documented. Most work has

concentrated around the study of particular funding programs, measuring the direct returns to

science funding (Azoulay et al., 2018). The works of Jacob and Lefgren (2011) and Bhattacharya

and Packalen (2011) study the impact of public funding on productivity, particularly at the

frontier. Their analyses provide a deep understanding of the (scientific) returns of the NIH

funding scheme. Beyond productivity, Azoulay et al. (2011) examine how different incentives

shape the career-path decisions taken by researchers, depending on their allocated funding

schemes. The work by Furman et al. (2012) establishes a causal relationship between an

exogenous shock in funding and the advancement of knowledge at the frontier. Furman et al.

(2012) observe a decline in research output following the intervention, which differently affects

institutions of multiple status as well as shapes the international collaborations.

Today, we understand that there are numerous ways in which public funding of science

generates spillovers, including training, creating instruments or methodologies, networks and

even firms (Salter and Martin, 2001). These (sometimes overlapping) channels of spillovers

between public and private R&D are not easy to study. One particular way in which economists

have measured the knowledge flows is by examining the patenting and licensing activity at

universities. Since the 1980 Bayh-Dole Act, research institutes have actively engaged in the

entrepreneurship and innovation ecosystem. Extensive studies have turned their focus to IP-

based academic contributions, such as Henderson et al. (1998). Following the citation analysis
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proposed by Garfield (1955) in the bibliometrics literature, forward patent citation counts are

now used as a proxy for patent quality and impact (Jaffe and de Rassenfosse, 2017). IP-based

analysis provides deep insights into the technological prowess of a particular technology, but

it fails to trace the direct flows from scientific contributions. Recent work by Azoulay et al.

(2019) uses patent-to-article citations in order to study the impact of NIH Funding, linking the

innovation efforts to the sources of knowledge upon which they are built. Conversely, Hegde

and Sampat (2015) study the inverse effect by tracing money flows. In their work, they show

how private money (and lobbying) affect the funding ecosystem, and ultimately the research

output (through distributional alterations of grants).

Using patent-to-article citations, our contribution goes beyond previous work, trying to assess

the causal impact of federal-policy funding policy on innovation. In this manuscript, we

use a quasi-natural experiment (an exogenous shock) to science funding, the 2001 human

Embryonic Stem Cell (hESC) ban. In particular, we study how limitations in the methods

and materials available for research — which, as we argue below, limited the autonomy of

scientists, shaping the direction of scientific inquiry — impacted the innovation ecosystem.

To the best of our knowledge, the closest prior art used exogenous sources of variations in

funding (rather than methods) to study causal impact (Azoulay et al., 2019; Moretti et al., 2019).

Both of their contributions thoroughly document the response rate to funding shocks. Our

findings suggest a decline in follow-on innovations as a consequence of the methodological

limitations. Following the literature that exploits external shocks to the direction of science

(independent of funding policy) (Azoulay et al., 2010; Teodoridis et al., 2018), we argue that

the root cause for the negative impact of the ban was due to a decreased quality and variety at

the frontier, which resulted in lower potential applicability.

Before we dig into the analysis, we will describe the scientific ecosystem at the time of the ban,

and the particularities of the research setting.

3.2.1 Timeline

In 1997, sheep Dolly unanticipated disclosure left the public (and the scientific community)

in awe. After years of development in embryonic research and DNA implantation, the impli-

cations of the cloning of Dolly (Wilmut et al., 1997) were huge. For medicine, it meant that

cell development might be more malleable than once thought, and most importantly, that

through the appropriate techniques, differentiated cells (adult cells) could be reprogrammed

into undifferentiated cells. Beyond the scientific community, it ignited a ferocious (public)

debate on the ethics, suitability and risks of such development.

During the late 1990s and early 2000s, extraordinary advances in biomedical sciences signified

a leap forward in realising new therapeutic approaches (Holland et al., 2001). The propitious

scientific landscape was fuelled by one of the favourable funding environments for medical

research in history. The NIH budget (the single largest funding agency worldwide) roughly

doubled between 1995-2005 (Huang and Jong, 2019). Under these circumstances, and aided
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by rapid technological progress, scientists completed the expression of the human genome

sequence; simultaneously measured the expression of thousands of genes; and widely ad-

vanced recombinant-DNA techniques and cell reprogramming. On the other hand, the late

1990s and early 2000s were also characterised by a strong public debate on the ethical issues

surrounding overall progress in biotechnology. The secrecy around Dolly’s project and the

potential implications for humans added fuel to the flames, in particular surrounding embryo

and in-vitro-fertilisation research. Amidst this controversy, in 1998, the first isolation of human

Embryonic Stem Cells (hESC) was unveiled by Thomson et al. (1998).

A stem cell is an undifferentiated cell (that is, without a specific task) present in the majority of

tissues in adult mammals. Stem cells are capable of transforming themselves into the type

of cell present in their originating tissue (e.g. blood cells, muscular cells, etc.). Human adult

stem cells were isolated long before hESC, in the 1960s. Typically, the number of adult stem

cells present in a tissue is rather small, but they are fundamental to the repair regeneration of

that specific tissue (Chen et al., 2014). By contrast, embryonic stem cells are pluripotent, a

term used to designate cells that can differentiate into any other cell-type of the individual,

hence the relevance of the scientific breakthrough. As their name suggests, hESC are primarily

extracted from the inner cell mass of a blastocyst — a 5-day-old human embryo. The embryos

are sourced from donated in-vitro-fertilised eggs. These cells are then cultured indefinitely

with the help of what is known as feeder layers. Each cell cultured from a single blastocyst is

part of what is called a cell line (Russo, 2005).

Thomson’s breakthrough was not as controversial as Dolly, however. It came 16 years after sim-

ilar developments in mice were revealed, and only two years after Thomson’s lab had reported

the first isolation of monkey ESC. Nonetheless, it was the first on human cells. The relevance

and impact of this discovery were rapidly acknowledged by the community, highlighting the

importance of this tool to both basic research and applications to novel therapies in medicine

(Murray, 2007). In Thomson’s own words “hES cells capture the imagination because they are

immortal and have an almost unlimited developmental potential”. hESC had the potential to

help understand medical concepts both in the fetal and adult stages of human development.

Through hESC, it was anticipated that one could potentially test drug toxicity in the lab; pro-

pose regenerative medicine therapies; create tissues (and perhaps organs) artificially in the

lab; target some of the most prevalent chronic diseases such as diabetes and heart disease; or

understand neurodegenerative diseases such as Parkinson’s or Alzheimer’s. The list was long,

leading to human embryonic stem cells to be proclaimed Science’s “Breakthrough of the Year”

in 1999 (Vogel, 1999).

Despite this pathway to promise (NIH, 2001), in August 2001, the Bush Administration in-

troduced a controversial ban on hESC research. Following months of speculation in the

concurrent public debate, the ban came as a surprise to most. It neither prohibited hESC re-

search nor encouraged it actively. Instead, the policy became a moratorium on federal funding

(and only federal) effective only to new stem cell lines. Little and yet so much changed.
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Up until 2001, the NIH was not openly supportive of the development of new stem cell lines.

Research on embryos was amidst the 1990s life science’s ethical controversies. After multiple

amendments, since 1995 (Dickey-Wicker Amendment), federal funding was prohibited for

research that either created or destroyed human embryos. hESC were, therefore in a legal grey

area. hESC are not technically embryos, but the generation of a new cell line involved the

destruction of one embryo. Therefore, even before the ban, NIH supported hESC research but

not the creation of cell lines (Vogel, 1999). In the case of the first-ever development, Thomson

and his team used support from Geron (a biotechnology company) to derive the first cells

(Furman et al., 2012). So, in technical terms, there was no difference to the research that

could be performed under federal funding before and after the ban. However, the 2001 policy

impeded the use of any new cell lines that had not yet been developed. The moratorium

constrained researchers in the materials — cell lines — and methods —feeders—, limiting

their academic freedom.

In the aftermath of the ban, hESC research continued to gather support from both the public

and academics, while the research community profoundly criticised the ban. A report from

the National Academy of Sciences, in 2002, highlighted, once again, the relevance of hESC

for developing new therapeutic methods, while pointing out two critical problems under

the prevailing situation. The report highlighted how cultured cell lines accumulate genetic

mutations over time, which make them non-viable for human implantation (or even lab

experiments). Moreover, the majority of the (then) existing cell lines had been cultured in

the presence of non-human cells or dangerous feeders, which could lead to potential human

health risks (Council and of Medicine, 2002). In total, 71 lines from 14 different laboratories met

the eligibility criteria, but only 21 of them proved to be of any use to investigators (Murugan,

2009).

The situation even forced some labs to duplicate their structures, based on federal vs other

funding for staff, equipment and labs (Murugan, 2009; Cyranoski, 2018). The Harvard Stem

Cell Center notoriously introduced physical access (keycard) barriers to hESC labs in order to

ensure complete separation of funds and staff (Dreifus, 2006). The additional efforts meant

that, even for elite institutions, it took time to find other sources of funding and generate the

infrastructure necessary to comply with federal policies. Therefore, as opportunities arose,

many chose to take their research elsewhere (nationally or internationally) (Russo, 2005).

By 2005, the uncertainty had started to dissipate. The funding outlook for research on hESC

significantly improved as state-funded research on stem cells was promoted. While the

moratorium was still in place, California approved (not without controversy) Proposition 71,

promising an impressive US $3 billion (Vakili et al., 2015) in funding for Stem Cell research

over ten years (Russo, 2005). Other states followed, and between 2005 and 2006 Connecticut,

Illinois, Massachusetts and New Jersey had also adopted state-level funding programs. At the

federal level, a reversal started to seem plausible. The Stem Cell Research Enhancement Act

passed in 2005 by a bipartisan majority at the U.S. House of Representatives, only to receive

presidential veto. However, a general belief that the veto would be lifted sooner than later
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prevailed amongst politicians and scientists (Huang and Jong, 2019). All the efforts from

2001–2006 alongside the active limitations contributed to one of the greatest innovations

in regenerative medicine in the 2000s: the discovery of induced pluripotent stem cells (iPS)

(Takahashi and Yamanaka, 2006). The process offered, in theory, the same potential as hESC

without the ethical conundrum. The following year, Takahashi et al. (2007) achieved the same

feat in human cells.

Finally, in March 2009, President Obama fulfilled his campaign promise to end the ban. Figure

3.1 shows the summary of the timeline (1996–2006) for hESC.

3.2.2 Research setting

Following the comprehensive timeline review, we proceed to examine the setting in which

we will implement our study. We analyse the impact that changes in (basic) science funding

policy had in the innovation landscape over the period 1996-2006. In particular, we focus on

the rather unexpected nature of the US moratorium on hESC research and follow-on patents

that build on the scientific knowledge of the time.

In August 2001, an executive order by President George W Bush addressed the changes in

public funding for hESC. The policy differed greatly from the expectations of scientists - and

was received with substantial disappointment from all sides of the political spectrum (Wertz,

2002). Rather than imposing a complete ban on human embryo research, the policy prohibited

only the development of new cell lines under federal funds, and imposed no restrictions on

other sources of funding (be it private, state or local), Wertz (2002) states. In many ways, the

actions taken by the government seem to have opted for a compromise between cultural facets

in the United States.1

The policy settled the opposing currents with the following particularities:

i hESC research was enabled nationwide. Federal funding, however, would only support

research on the set of hESC lines that had already been developed before the policy.

ii Development of new lines or subsequent work with unapproved lines was prohibited

under federal funds

iii Any other source of public (state or local) or private funds was allowed.

Therefore, the ban, if we may call it so, was enacted in a particular point of time, with very

particular delineations. It applied to a singular area of research, without directly influencing

work on other areas and it was localised to the United States. Albeit the uncertainty period that

preceded the moratorium, the shock appears to have been exogenous, due to its unexpected

1On the one hand, the free agency of the private sector. Free enterprise is amongst the most treasured values by
U.S. conservatives. On the other hand, the American is a rather religious culture, and embryo-derived research has
faced hurdles for many years.
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nature and nuanced limitations, as it has also been argued by Furman et al. (2012) and Huang

and Jong (2019). The policy did not place restrictions on the topic, but rather in the materials

(namely the cell lines) that researchers could use. Thus, the years following the ban until 2006

—when state-level funding was largely introduced and iPSC were first developed— provides a

quasi-natural experiment through which to study the impact of the policy shift.

Numerous publications have explored the 2001-policy effects on science production patterns

and geographical distribution (McCormick et al., 2009; Owen-Smith and McCormick, 2006;

Scott et al., 2009; Löser et al., 2010; Levine, 2004; Furman et al., 2012). Recent work has mapped

the uncertainty to a decrease in R&D investments in the private sector for Stem Cell-related

projects (Huang and Jong, 2019). The previous literature has captured rates of production of

science as well as industry investment in the aftermath of the ban as a result of the shock using

different techniques and models. While this work has paved the path to understanding the

phenomenon, it is yet to exploit the specificity of the intervention. We, therefore, extend the

previous literature by capturing the context in which research direction (academic freedom)

was limited. A central element of our research design is the identification of the funding source

of research publications. Thus, we can accurately delineate those publications that were

limited in their materials by the ban. We subsequently use the exogenous shock to examine

the effects of such limitations on the innovation pipeline.

3.3 Setting, Data and Descriptive Statistics

In this section, we provide a detailed summary of the identification strategy, the process

through which we compiled data and the Machine Learning (topic modelling) tools we used

to characterise scientific articles and hESC research. Finally, we provide some descriptive

statistics of the sample.

Measuring the impact of basic science

The spillovers generated by basic science have been a subject of study by economists for a long

time. Mostly supported by public expenditure, the actual return to investments in science

are, however, hard to measure. Innovative activity and private sector knowledge spillovers

have, however, been largely accounted for. A common approach to measuring the innovative

activity and such spillovers is through patent citations to other patents (Jaffe et al., 1993).

While the idea of patent-to-article citations is not new (Trajtenberg et al., 1997), it has not been

thoroughly exploited to capture the impact of science in downstream innovation until recently

(Ahmadpoor and Jones, 2017; Fleming et al., 2019; Poege et al., 2019). These publications show

how a large portion of patent activity traces back to scientific advancements, and their quality

signals the patent impact. Hence, by linking patents back to the articles that they cite, we can

measure the influence of basic science on innovations.

Particularly in the life sciences, innovations are thought to be fundamental drivers of economic

75



Chapter 3. Innovation Stems from Science: The Impact of Funding Policy on Innovation

and social welfare (Azoulay et al., 2019). Due to the enormous development costs and potential

profitability, intellectual property protection is widespread in the life sciences. For the case in

hand, in 2001 hESC were seen as critical to the development of gene and cell therapy (Murray,

2007; Cyranoski, 2018). hESC showed potential to address novel therapies in yet-to-be tamed

diseases such as Parkinson’s or diabetes. It is not uncommon for biopharma companies to

collaborate with academic researchers, and gradually build up their advancements to shorten

product development times. Patents are the primary way that biotechnology and pharmaceu-

tical companies have to appropriate the returns to R&D (Cohen et al., 2000). Furthermore,

life science patents cite scientific literature more intensively than other patent categories

do (Narin and Olivastro, 1998), allowing us to capture the spillovers better. Therefore, given

that the NIH (federal funds) is the largest basic life science funding agency, it is natural to

assume that the uncertainty in the policy landscape affected the subsequent rate of innovation.

However, we argue that, since the 2001 ban did not prohibit hESC research nor its applications,

if substantial developments were still taking place, firms would commit their resources and

protect the new developments.

Suppose NIH-funded research was pushing the frontier of knowledge despite the limitations in

place. In that case, we should not observe any difference in the follow-on innovation compared

to unrestricted research (i.e., non-NIH-funded research). With this in mind, this chapter goes

beyond previous work by trying to assess the causal effect on subsequent innovation of public

policy hurdles to scientific autonomy. We use the 2001 exogenous shock in a DiD configuration.

In order to do so, we combine several data sources as detailed below.

3.3.1 Data

Treatment and Control groups. First, we construct a corpus of hESC-related research span-

ning the years before and after the ban. Finding publications dealing with a particular subject

is no easy task. Traditional approaches involve journal classification, keyword approaches or,

in the case of the life sciences, Medical Subject Headings (MeSH) terms. However, being only

a nascent sub-field of Stem Cell research, neither approach provides a fine-enough subset of

articles. We, therefore, rely upon a more canonical approach to scientific discovery. We use

review articles as a starting point, to capture the underlying (original) contributions which

constitute a significant (impactful) subset of the publications on the topic.

We are particularly interested in articles between 1996–2006. To collect them, we gather

all PUBMED articles between 2000 and 2012 related to hESC through a search engine (The

Lens).2 We match the results with PUBMED, we filter them by document type, references

and citations, limiting ourselves to “Reviews” with at least 50 references and cited at least

60 times. Consequently, we filter out concise review publications and work of lesser impact.

Finally, we restrict the sample to those publications with (explicitly) “human embryonic stem

cells” (or hESC) in their titles and abstracts. This procedure yields 69 Review articles with over

2www.lens.org
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12,000 references, of which 3930 are unique. Filtering out news, opinions, reviews and other

non-relevant references and limiting ourselves to the period between 1996–2006, we finally

obtain 1885 core articles that constitute our unit of analysis.

Once the core group of articles has been defined, the next step is to characterise the treatment

and counterfactual groups that allow us to estimate the trajectory of follow-on innovations.

To analyse the causal effect on innovation of the ban, we need to unambiguously identify the

recipients of public funds from the federal government. In order to do so, we incorporate Fund-

ing and Acknowledgement Data from Clarivate’s Web of Science, enriched with PUBMED’s API.

Despite the efforts in recent years to populate these databases backwards, there are plenty of

missing data points. About a 65% of the articles are missing some, or all, of the acknowledge-

ment data. Fortunately, the majority of omitted funding (or acknowledgements) data is for

non-U.S. publications. In either case, we manually annotate 931 full-text PDF publications to

discern whether they were a recipient of US federal funding.

Despite the careful identification above, the manual labelling allowed us to find a large propor-

tion of articles questionably related to hESC. We use topic modelling techniques, in particular,

Doc2Vec and Word2Vec (see Chapter 1 for a detailed description of the methods) to help

us differentiate hESC from other neighbouring topics. Using free text data from titles and

abstracts, we simultaneously train a Doc2Vec and a Word2Vec model for all PUBMED-indexed

journal articles between 1997 and 2005. To do so, we first group pairs, triplets and quadruplets

of words that statistically appear often together. Common combinations of words such as

“stem” and “cell” will be grouped as a single token (hence a single vector) whenever they

are found next to each other, while still being trained as individual words when other terms

surround them. We group words using “normalised mutual information” as a decision tool.3

As a result, we obtain a list of the most similar terms to “hESC”, comprised, amongst others of

tokens like: “embryoid body”, “murine stem cells” or “pluripotent cells”. By strictly selecting

the tokens that refer to embryonic stem cells amongst the most similar to hESC, we construct

a set of keyword rules to delineate hESC-related and not-hESC-related articles amongst the

1885 present in the set. In particular, we include any document containing at least one of the

following stemmed words:4 “hESC”, “human embryonic stem cell”, “human ES”, “human ES

cell”, “he cell”. Additionally — in combination with the presence of “Humans” amongst the

associated MeSH terms or the presence of “human” in the same paragraph (but not right next

to them) — we include any of the following: “blastocyst”, “embryon stem cell”, “embryon (ES)

cell”, “ES cell”, “embryon stem (ES) cell”. This process yields 808 articles out of the 1885 that

we will consider as hESC-related.5

Patents citing scientific literature. Once the treatment and control groups are properly delin-

eated, we link them with a set of patents that reflect the knowledge spillovers into innovation.

Patents include a section on Non-Patent-Literature (NPL) citations. While a high proportion

3Example source code on https://github.com/oballegon/Text-Similarity-Basics
4We stem the words to their roots so that suffixes are eliminated. We capture words such as embryonal or

embryonic under the same token embryo
5We later provide an alternative identification method which we use as a robustness check
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of patent-to-patent citations come from examiners (Sampat, 2010), non-patent-literature

is more likely to come from the inventors themselves. In addition, in-text patent citations

(in many occasions different from the header citations) provide additional linkages between

patents and articles. As a result, we are almost certain to be capturing spillovers from the

underlying basic science when we observe direct citations.

The process certainly has its limitations too. We fail to observe interrelated advancements

of second degree. That is, citations to academic articles that cite the root article that we

observe. The omission of these may lead us to estimate the effect falsely, but we believe that

the identification strategy helps to smooth the problem. Having compiled the root science

from references in review articles, we expect both the treatment and control samples to be of

similar characteristics, in terms of exposure and relevance. The review articles synthesise the

knowledge in the field by taking the most eminent (and significant) contributions. Hence, we

expect them to be central to patent knowledge too.

Recent work by de Rassenfosse and Verluise (2020) has extracted and parsed NPL citations both

from in-text and header sources. We combine their database along with The Lens (Jefferson

et al., 2018) in order to obtain 76,878 patent citations of which 26,055 are unique.

For the analysis, we further restrict the sample to USPTO granted patents with priority-year

dates no older than seven years after the root article publication.6 As a second step, we extract

patent citations to the article-citing patents. For this, we allow a 5-year window since the

patent publication. This count that we call “2nd-degree Patent Citations” aims to capture

the longer-run effects on innovation, namely the R&D developed from the initial efforts (first

patent). Finally, we use PatentsView harmonised organisation data to infer the assignee origin

by institution and country (U.S. vs non-U.S.): (1.) Research institutes include all non-profit

research-intensive centres such as universities, hospitals, institutes, national institutes; (2.)

Private Sector includes all for-profit corporations, laboratories and companies.7

Authors. Finally, we enrich the article-level data combining Author-ity (Torvik and Smalheiser,

2009), PUBMED, WoS as shown in Figure 3.2. This way we capture the origin of the coauthors,

international collaborations (two or more countries amongst the affiliations), coauthor based

in hESC-favorable countries, reprint and last author “ages” (a measure of experience, proxied

6For robustness, we also gather patents within 5 and 10 years, which provide no significant differences in the
count distribution. USPTO patent kind codes changed precisely in 2001. Therefore, in order to capture granted
patents, we compile patents with Kind Code “A” until 2001 and kind codes “B1” and “B2” afterwards.

7Despite restrictive, limiting the patent counts to USPTO granted patents is both convenient and does not
necessarily diminish the potential impact of the ban. On the one hand, it is fair to assume that highly relevant
medical innovations will seek US patent protection, regardless of origin and will, therefore, be captured by USPTO
patents. On the other hand, more than two-thirds of our citations are by USPTO patents. These figures are
not a particularity of our dataset, but rather a general trend in the time of analysis: the USPTO documents cite
3.5 times more Non-Patent-Literature than the European or Japanese counterparts (Michel and Bettels, 2001).
Therefore, we argue that despite having filtered, we are still capable of capturing the innovation spillovers at
stake. Additionally, USPTO patents are analysed in Patentsview, incorporating much relevant information on the
assignees and inventors. Thus, we can efficiently collect harmonised organisation (patent holder) data by origin,
without the burden of additional disambiguation.
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by years since their first publication indexed by PUBMED), Scholarly Citations (5-year window),

coauthors affiliated to the private sector, journals, journal quality (Scimago Journal Rank) and

the number of coauthors.

The sample contains 1170 unique principal investigators (PIs), identified as the last author in

each publication. The hESC-related article sub-sample, with 806 articles, has 6.5 authors per

paper on average. Before the ban (up to 2001), 977 researchers are cited as authors of hESC

publications, of which 769 unique. After the ban, the 4269 researchers, of which 2776 unique,

are listed as coauthors of a publication in the sample. Only 210 researchers are present and

active both before and after the ban in the sample.

3.3.2 Descriptive Statistics

Table 3.1 displays the summary statistics of the full article sample. Amongst the 1885 articles,

70% were published in 2001 or later. Overall, 35% received federal funding, representing a

large proportion of articles with at least one coauthor based in the US. Reprint authors for 44%

of the articles are based in the United States, so we capture a large proportion of research that

is led from the US, and is potentially affected by the moratorium. Scientific articles receive

almost ten patent citations on average within the first seven years after publication. Moreover,

a large proportion, 63%, are being cited by patents. Follow on innovation is rather consistent

across the sample, with 47% of the articles having 2nd-degree patent citations (within five

years of the original patent-to-article citation).

Prevalence of international collaborations is lower on the sample. Only 26% have coauthors

with affiliations pertaining to (at least) two different countries. However, about one-fourth

of the articles have collaborators from one of the hESC-affine countries (Israel, Singapore,

Denmark, UK, Taiwan).

Table 3.2 shows the summary statistics of the data grouped by hESC and Federal Funding. The

prevalence of patent citations to articles is significantly larger for publications with some sort

of federal funds. However, the average number of citations received inverts the trend. Federally

funded hESC research receives, on average, fewer citations than non-federally funded, while

the contrary is true for non-hESC articles. The same trend follows for second-degree patent

citations, suggesting the innovation spillovers from these articles might be lower. The table

also documents how the presence of authors from hESC-favorable countries is larger amongst

non-federally funded publications and significantly larger for hESC-related articles in general.

Remarkably, the average number of patent citations follows the same trend as in the full

sample described above for all the organisation origins except for private-sector U.S. patents,

which cite, on average, more Federally Funded hESC patents than non-hESC.
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Table 3.1 – Summary Statistics Full Sample

Mean StD Mi n M ax

Year 2002.05 2.99 1996 2006
Year ≥ 2001 0.69 − 0 1
Years 2001-2003 0.29 − 0 1
Federal Funding 0.35 − 0 1
hESC-related 0.43 − 0 1
At least one Author in USA 0.54 − 0 1
Reprint Author in USA 0.44 − 0 1
Number of Authors 6.24 6.26 1 223
Cited by Patent 0.63 − 0 1
Cited by 2nd degree Patent 0.47 − 0 1
Scholar Citations 5y 84.65 149.36 0 3211
Patent Citations 5y 7.82 18.18 0 347
Patent Citations 7y 9.49 22.21 0 413
Patent Citations 10y 11.05 26.11 0 447
2nd degree Pat. Cit. 30.61 105.34 0 2152
Research Institute No-US Pat Cit 0.65 2.37 0 64
Research Institute US Pat Cit 1.81 5.21 0 109
Private Sector No-US Pat Cit 1.35 3.97 0 55
Private Sector US Pat Cit 4.38 11.15 0 136
IProduct 2nd Degree 1.10 9.59 0 228
Coauthor from Priv Sector 0.15 − 0 1
International collab. 0.26 − 0 1
CoAuthor from fav. country 0.23 − 0 1
US Contract Patents 0.04 0.41 0 6
US Grant Patents 1.65 5.63 0 77
Similarity to hESC 0.37 0.12 −0.02 0.71

Articles 1885
Journals 332
P.I. 1170
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Table 3.2 – Summary Statistics by group

No Federal Funding Federal Funding
(n = 1216) (n = 669)

no hESC hESC no hESC hESC

Mean SD Mean SD Mean SD Mean SD

Year 2001.28 2.95 2003.02 2.64 2001.17 2.95 2003.40 2.74
Year ≥ 2001 0.59 0.49 0.82 0.39 0.60 0.49 0.85 0.36
Years 2001-2003 0.31 0.46 0.27 0.45 0.34 0.47 0.20 0.40
At least one Author in USA 0.30 0.46 0.27 0.44 1.00 0.00 1.00 0.00
Reprint Author in USA 0.22 0.41 0.19 0.39 0.90 0.30 0.83 0.37
Number of Authors 6.03 9.44 6.33 3.31 6.04 3.53 6.93 4.04
Cited by Patent 0.52 0.50 0.71 0.45 0.61 0.49 0.77 0.42
Cited by 2nd degree Patent 0.38 0.49 0.54 0.50 0.47 0.50 0.59 0.49
Scholar Citations 5y 62.25 104.44 75.64 161.50 121.20 185.03 101.79 139.73
Patent Citations 7y 5.48 12.74 13.23 30.18 9.18 21.47 12.19 19.98
2nd degree Pat. Cit. 19.66 84.92 39.92 136.16 32.84 102.35 34.63 70.83
Research Institute No-US Pat Cit 0.30 1.07 1.10 3.62 0.46 1.59 0.88 2.20
Research Institute US Pat Cit 1.12 3.25 2.00 6.21 2.57 6.68 1.87 3.59
Private Sector No-US Pat Cit 0.97 2.77 1.89 5.09 1.30 4.34 1.22 2.82
Private Sector US Pat Cit 2.33 7.01 6.49 15.13 3.75 8.92 6.11 11.84
IProduct 2nd Degree 0.75 8.12 1.13 10.41 1.88 12.50 0.59 3.46
CoAuthor from Priv. Sec. 0.12 0.33 0.20 0.40 0.12 0.33 0.20 0.40
International collab. 0.25 0.43 0.23 0.42 0.30 0.46 0.28 0.45
CoAuthor from fav. country 0.24 0.43 0.34 0.48 0.10 0.30 0.16 0.36
SimHesc 0.31 0.10 0.45 0.09 0.29 0.09 0.44 0.08

Observations 654 562 425 244

Summary Statistics by group
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3.3.3 Validity

In this section, we put to the test the validity of our treatment and counterfactual articles.

In order to do so, we replicate the main results from Furman et al. (2012). In their article,

the hESC-related articles are extracted from the NIH report 2001 on stem cell research. They

identify 17 articles published before 2001 which would have been subject to the ban had they

been published later. As a counterfactual, they suggest three candidates: (1) RNAi publications

(a separate, equally novel and promising field of research); (2) “nearest neighbour articles” that

appeared in the same journal issue as the core hESC articles; (3) “other stem cell articles”, i.e.

adult/animal stem cells. If anything, we would expect our counterfactual to behave similarly

to the nearest neighbour control group. Nearest neighbours will be composed of articles

describing similar methods or concrete diseases that hESC might target, and they would,

therefore, be captured trough the review-reference identification we suggest.

Without entering in too much detail here, since it escapes the purpose of this chapter, the

authors explained the effect of the ban on U.S. science and firms using a conditional fixed

effects (Hall et al., 1984) regression in the lines of:

CITESr
i t = εi t +γi +βt +ager

i t+
α0(hESCi ·2001i t )+α1(hESCi · (t > 2001i t ))+
φ0(USr

t ·hESCi ·2001i t )+φ1(USr
t ·hESCi · (t > 2001i t ))

(3.1)

where CITES is a per-year count of citations (or projects) to focal publications from two

different stacks: U.S. and non-U.S.; hESC is a dummy for hESC-related articles; 2001 and

> 2001 are time dummies that cover the specified periods; age represents the years since the

publication of the focal article; and γ are publication fixed effects. Therefore, φ0 and φ1 are

the coefficients of interest, indicating the marginal impact of the policy intervention on US

citations or projects.

We present the results of regressing Equation 3.1 on our data in Table 3.3. The coefficients (and

the Incidence Rate Ratios are consistent (and very similar in value) to the estimated coefficients

by Furman et al. (2012) (Table 4, column 4-2). We therefore conclude that, despite potential

pitfalls and selection biases, our core sample and counterfactual are correctly identified so as

to perform a quasi-replication of contrasted results.
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Table 3.3 – Data validation: replication of Furman et al. (2012)

Conditional fixed effects negative binomial, stacked
DV = Cites with reprint Author from USA

(or non USA Reprint Author)

(1) (2)

hESC×2001 0.411∗∗∗ 0.413∗∗∗

(0.103) (0.103)

hESC×(2002-2005) 0.674∗∗∗

(0.103)

hESC×(2002-2003) 0.485∗∗∗

(0.103)

hESC×(2004-2005) 0.690∗∗∗

(0.103)

USA×hESC×2001 −0.388∗∗∗ −0.388∗∗∗

(0.067) (0.067)

USA×hESC×(2002-2005) −0.496∗∗∗

(0.031)

USA×hESC×(2002-2003) −0.451∗∗∗

(.046)

USA×hESC×(2004-2005) −0.533∗∗∗

(0.041)

N 6977 6977
Number of articles 577 577
Log -likelihood −15652.191 −15653.077

Standard errors in parentheses

Models include constat, hESC*Year FEs, article age FEs and article FEs.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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3.4 Methods

Our research approach involves an econometric estimation of the causal impact of the 2001

hESC ban on the innovation pipeline. For this, we estimate the treatment effect of federally-

funded research on pooled hESC-related publications:

E
[

yi t |Xi t
]= f

[
εi t ; β0 +β1BANt +β2FedFi +β3FedFi ×BANt +δt

]
(3.2)

where the dependent variable yi t is a measure of downstream innovation impact, namely

Patent Citation counts or second-degree Patent Citation counts; BAN is an indicator variable

that switches to 1 in 2001; FedF is an indicator variable that equals one when federal funds

financially support at least one of the coauthors; δt are publication-year fixed effects; and Xi t

is a vector of article characteristics (controls).

The coefficient of the interaction term β3 identifies the difference in follow-on innovation

experienced by federally funded research on hESC relative to the control group. It is the central

focus of our analysis. In other words, it indicates the additional increment (or decrement)

to innovative output that hESC Federally-Funded articles published during the ban receive,

relative to the rest of the sample.

This model specification allows us to causally interpret whether the limitation in the cell lines

allowed by the 2001 ban had an effect on downstream applicability of advancements at the

frontier. The particular characteristics of the policy shock, which did not completely ban

research but rather put limitations on new cell lines, provides a unique framework that allows

us to study the impact of hurdles to the frontier of research. By regressing Patent Citations, we

can causally infer the effect of limiting the applicable methods in the innovation pipeline.

Matching

As an attempt to overcome the selection bias present in the data, we estimate the effects

of the ban using treatment weights for the estimation. While the Stem-Cell ban provides a

quasi-natural experiment scenario, it only affects Federally Funded Research. NIH accounts

for the vast majority of (federal) funding in the life sciences (Azoulay et al., 2019), and funding

works through grants. Financial support is allocated through a set of future expectations and

past performance of the researchers. Therefore, we must confront a selection bias in NIH-

supported research and address a potential imbalance between the treated and untreated

groups. On the other hand, the confronting effect between uncertainty, limited access to

funds and field relevance (trendiness) introduces additional heterogeneity in the publications.

There are notorious differences between state-funded and corporate science (Matheson, 2008),

which we might see in the data.

To overcome these challenges, we use coarsened-exact matching (CEM) (Iacus et al., 2012).

The difference with other matching methods happens in the coarsening stage, where indis-
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tinguishable values are grouped and then matched. The imbalances are eliminated within

strata, which results in a minimal model dependence (Ho et al., 2007) (due to the remaining

differences being constrained by the coarsening). Figure C.1 in Appendix C.2 illustrates the

results from CEM matching for Patent Citations.

To satisfy the assumption of ignorable treatment assignment, it is important to include in

the matching procedure variables known to be related to both treatment assignment and the

outcome (Rubin and Thomas, 1996; Heckman et al., 1998). We use Year, Reprint Author Origin

and Number of Coauthors. For robustness, we also tested the inclusion of journal identifiers,

with no substantial difference in the results. However, journal placement may have been

influenced by the treatment, and we finally decided to exclude the variable from the matching

procedure. In order to evaluate the performance of the matching, we use the multivariate

distance L1, as suggested by Iacus et al. (2012). L1 is effectively a distance metric between the

multivariate distribution of all the possible binings of the raw data, with values ranging from 0

to 1, increasing with the level of separation (complete overlap corresponds to L1 = 0. In our

data, CEM-matching improves the L1 imbalance metric from 0.6828 down to 0.3354. There

are just 22 unmatched samples out of 244 treated elements. For the pre-ban period, the L1

imbalance metric from 0.7056 down to 0.3871.

Model Specification

The dependent variables of interest, including citations from patents, citations from 2nd-

degree patents and scientific publications are skewed and non-negative count data. We will

use, as is standard, models for count variable outcomes, namely from the Negative Binomial

family (Hall et al., 1984). We use a logarithmic link function so that the coefficient estimates

remain consistent, and robust (sandwich) standard errors that account for heteroskedasticity.

Because the Poisson assumes equidispersion, the descriptive statistics shown on Table 3.1

suggest that the estimators will be biased (ML-based estimator). Figure C.2 in the appendix

shows the kernel density estimates of the scientific article and patent counts.

The Negative Binomial Regression Model (NBRM) adds a parameter to the Poisson Regression

Model (PRM), which allows the conditional variance of yi t to exceed the conditional mean.

This term introduces variation due to unobserved heterogeneity. There is, however, an alterna-

tive explanation to the presence of this term, which is more suitable for the current exercise. It

is based on the idea of contagion. Contagion occurs when the probability of an event occurring

changes as events occur. Given the nature of citations and the visibility they bring, it is highly

likely than receiving a citation changes the probability of receiving future citations. Hence,

the probability is likely to change with the arrival of citations. Hence, contagion violates the

independence assumption of the Poisson distribution, but not for NBRM.

We provide additional evidence in appendix C.3. Table C.1 provides a comparison of the model

statistics for PRM, NBRM and, additionally, Zero-Inflated Poisson Regression Model. For the

three main dependent variables for which we display results, both Akaike’s and Bayesian’s
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Information Criterion (AIC, BIC) point towards NBRM as the model that best describes the

data. Additionally, the one-tailed test of H0: α = 0 for NBRM is rejected at p < 0.01, where

alpha is the free parameter distinguishing NBRM from PRM.8

Alternative sample

Using the topic modelling methods described in Chapter 1 as specified in Section 3.3, we use

the trained model to generate an alternative treatment and control groups. We compute the

word embedding for the 4-gram "human embryonic stem cell", and we calculate its cosine

similarity with each of the document embeddings of the articles in the sample. The density

plots of the article-word similarities are represented in Figure 3.3 for each of the two groups:

hESC and no-hESC (manually labelled using the keyword rules previously described).
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Figure 3.3 – Kernel Density Plot of Cosine Similarity between root articles and word embed-
ding of "human embryonic stem cell". The blue line represents the keyword-rule-assigned
hESC articles, with which we perform the core analysis of this chapter. The dotted red line
represents the non-hESC articles according to the keyword classification.

For the alternative sample, we then proceed to split the sample between hESC-related and

not-hESC related publications at the similarity value of CosSim = 0.38. This value is chosen

arbitrarily while still fulfilling the following: it is the rounded value median similarity for all the

sample (1885 articles); it is the median and mean value for the articles published after 2001;

it corresponds to approximately the 25% percentile of the keyword-indexed hESC-related

articles from the entire sample. We, therefore, capture a higher number of articles, while only

discarding a small portion of the original sample. This method corrects potential false positives

in the keyword rule approach by relaxing the imposed keyword rules. Having imposed a strict

set of rules as described in Section 3.3, the false positives (i.e. the articles identified as hESC

that in reality are not) are few and still likely related to hESC. However, false negatives are,

potentially many (i.e. the articles not identified as hESC that, in reality, are hESC-related). The

8As α approaches 0, NBRM converges into PRM.
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exact combination of words might not appear in the title or abstract, but the article still be

highly related to hESC research, describing a method, or other nomenclature that we may

miss with the keyword approach. Therefore, the article-to-keyword similarity cut-off may help

incorporate these closely-related articles that were otherwise left out.

3.5 Results

In our regression analysis, we start by presenting the results that pertain to the main effect

of the Federal Funding Ban to hESC on the rate of innovation. For this, we use a difference-

in-difference approach, as shown in Equation 3.2, where the treatment is having at least

one researcher with acknowledged Federal Funds. The dependent variables of interest are

Patent Citation Counts, and 2nd-degree Patent Citation Counts to the focal publications. We

subsequently attempt to find the drivers of the effect and potential mechanisms by slicing

the dependent variables. In particular, we regress citations by origin (U.S./Non-U.S.) and

Institutional Origin (research-centred institution/corporation). Finally, we dwell into the

quality of the publications as a potential mechanism that explains the effect. For clarity, we

present only summarised tables in the body of the chapter, and full tables in Appendix C.

3.5.1 Main effect of the ban

We present our regression results, starting in Table 3.4. We include publication-year fixed

effects in order to account for the between-year citation differences. The coefficient of the

variable Federal Funding×Ban describes the average difference in the number of citations

received by focal hESC (scientific) publications from patents and 2nd Degree Patents. This co-

efficient is negative and significant under the different specifications, suggesting that, relative

to non-federally-funded research, these publications led to fewer follow-on inventions after

2001. The effect holds in sign and significance after introducing controls for the quality of the

publication (JIF), Reprint author location (U.S./non-U.S.), presence of private-sector-affiliated

researchers amongst the authors, International Collaborations, presence of coauthors from

hESC-favorable countries and researcher age (columns (2) and (4)). Transforming the co-

efficient to an incidence-rate ratio, which refers to the percentage change compared to the

reference group, suggests that federally-funded article citations from patents fell up to 65

to 85 per-cent during the ban. Unsurprisingly, the coefficients measuring the quality of the

publication (proxied by the Journal Rank Score) and the presence of a private-affiliated author

are both positive and significant (not reported).

Table 3.5 examines the alternative sample, constructed as explained in Section 3.4. Columns

(1) and (2) show the results of a negative binomial regression, while columns (3) and (4)

show the unit-offset logarithmic counts linearly regressed. The variable of interest is, once

again, negative and significant, albeit the effect is smaller.9 Similarly, although we believe

9The pattern, however, is different for the non-interacted variables. While it allows us to confirm the direction of
the results illustrated in Table 3.4, we believe these results are inherent to the construction of the sample. Through
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Table 3.4 – NB Regression; Treatment=Federal Funding, hESC=1

Patent Citations 2nd Degree Pat Cit

(1) (2) (3) (4)

Federal Funding 1.579∗∗∗ 2.805∗∗∗ 3.859∗∗∗ 7.253∗∗∗

(0.483) (0.674) (0.766) (1.295)
[4.84] [16.5] [47.4] [1412]

Ban 2.462∗∗∗ 3.746∗∗∗ 4.075∗∗∗ 6.984∗∗∗

(0.379) (0.584) (0.604) (1.122)
[11.73] [42.3] [58.9] [1079]

Federal Funding × Ban −2.070∗∗∗ −3.229∗∗∗ −4.368∗∗∗ −7.588∗∗∗

(0.524) (0.688) (0.801) (1.283)
[0.13] [0.039] [0.013] [.0005]

Year FE Y es Y es Y es Y es
Article Controls No Y es No Y es

log (α) 0.751∗∗∗ 0.636∗∗∗ 1.504∗∗∗ 1.397∗∗∗

(0.0950) (0.0939) (0.103) (0.107)

Observations 655 655 655 655
Log-likelihod −2369.8 −2331.1 −2545.2 −2510.2

Incidence-rate ratios in brackets

Standard errors in parentheses adjusted for heteroskedasticity

Including unreported constant, controls for Reprint Author location, International colab.,JIF,

CoAuthor from hESC-favorable country, Number of Authors, Researcher "age",

and Presence of Private-Sector-Affiliated Authors
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3.5 – Alternative Sample; Treatment=Federal Funding, Sim-hESC>0.38

NB Reg Unit-offset-log (OLS)

Pat Cit 2nd Pat. Cit. Pat Cit log(2nd Pat. Cit.)
(1) (2) (3) (4)

Federal Funding 0.537 0.860 0.210 0.456
(0.483) (0.578) (0.444) (0.692)

Ban 1.131∗∗ 0.0751 0.776 0.0438
(0.568) (0.628) (0.661) (1.181)

Federal Funding × Ban −1.058∗∗ −1.312∗∗ −0.818∗ −1.293∗

(0.497) (0.580) (0.473) (0.726)

Year FE and Controls Y es Y es Y es Y es

l og (α) 0.711∗∗∗ 1.376∗∗∗

(0.106) (0.105)

Observations 677 677 677 677
Adjusted R2 0.177 0.196
Log-likelihod −2486.2 −2753.5 −1153.4 −1367.2

Standard errors in parentheses adjusted for heteroskedasticity

Including unreported constant, controls for Reprint Author location, International colab.,JIF,

CoAuthor from hESC-favorable country, Number of Authors, Researcher "age",

and Presence of Private-Sector-Affiliated Authors
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

90



3.5. Results

the comparison is illustrative to demonstrate robustness with a different regression model

(OLS on log-counts), it is well known that it leads to biased coefficients. Log-linear results with

the original sample are reported in Appendix B (Table C.4). The coefficients of interest are

similarly significant under the OLS specification.

Because of the heterogeneity in regulatory environments and the particularities of the ban

itself, we extend the analysis, including the patent origin for first-degree patent citations.

Using the harmonised organisation data from PatentsView, we split the patent citation counts

by U.S./Other Country and by type of institution. Furthermore, in light of the results obtained

by Furman et al. (2012) and Huang and Jong (2019), we interact the treatment variable with

the period 2001–2003 immediately following the ban.10 Table 3.6 shows the results. Like in

the previous tables, the interaction of the ban with the treatment is the coefficient of interest.

Columns (1)–(4), then, show that the average treatment effect during the ban by patent origin.

As in Tables 3.4 and 3.5, the effect is negative and significant except for non-us research

institutes where it is not significant. Columns (5)–(6) present an entirely different picture. The

strong negative effect disappears for the private sector. The average treatment in the aftermath

of the ban (2001–2003) is small and not significant. Thus, it highlights a delayed reduction in

the effect post-ban for the private sector, in line with the results of Huang and Jong (2019),

albeit from a completely different analysis. The existence of a larger and weakly significant

effect for U.S. research institute Patents suggests a different mechanism in response to the

ban between the for-profit sector and research-oriented organisations.

The results presented so far are consistent with the claim that the moratorium enacted by

the Bush administration had a significant effect on the rate of innovation. Federally funded

research resulted in significantly less innovative developments than its counterpart.11 So, to

what extent was this decrease due to the quality of publications? And, more importantly, how

did the moratorium affect the direction of federally-funded research? To answer this questions,

we examine three new measures for the root publications, namely: (i.) the count of citations

from scientific publications as a proxy for quality;(ii.) the Journal Rank Score as another proxy

for publication-quality;(iii.) the topic variety amongst publications as a way of measuring

direction.

similarity metrics, we introduce articles in the analysis that are very close substitutes to the core hESC. Hence, they
are a control sample that is within reach of hESC researchers. The topic-based similarity implies these articles
discuss either similar techniques or concepts, albeit probably non-hESC. Researchers can transfer relatively easily,
hence resulting in not the most suitable control sample.

10Furman et al. (2012) show how the rate of publications decelerates in the U.S. in the immediate aftermath of
the ban, while researchers figure out ways of overcoming the limitations of the ban. Between 2004–2007 the rate of
arrival of citations slowly restores to the pre-ban levels.

11Marginal effects unreported due to collinearity between Ban and Year fixed effects. However, we “forced” the
calculation for the intuition of the reader, and display the Federal Funding/Ban Marginal effects in Figure C.5 the
Appendix
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Table 3.6 – NB Reg Patent Citations by Origin; Treat=Fed Fund., hESC

Research Institute Private Sector Research Institute Private Sector

(1) (2) (3) (4) (5) (6) (7) (8)
Non-US US Non-US US Non-US US Non-US US

Federal Funding 0.141 1.834∗∗∗ 3.947∗∗∗ 2.373∗∗∗ −0.395 0.0160 −0.275 −0.131
(1.606) (0.646) (1.223) (0.802) (0.270) (0.244) (0.349) (0.271)

Ban 7.564∗∗∗ 3.593∗∗∗ 3.213∗∗∗ 3.510∗∗∗

(2.492) (0.675) (1.047) (0.836)

Fed Fund × Ban −0.734 −2.142∗∗∗ −4.507∗∗∗ −2.837∗∗∗

(1.609) (0.654) (1.212) (0.822)

(2001-2003) 8.042∗∗∗ 3.639∗∗∗ 0.978 1.970∗∗∗

(2.698) (0.877) (0.960) (0.751)

Fed Fund ×(2001-03) −0.854∗ −0.884∗ −0.394 −0.527
(0.513) (0.465) (0.498) (0.448)

log (α) 0.765∗∗∗ 0.901∗∗∗ 1.226∗∗∗ 1.160∗∗∗ 0.744∗∗∗ 0.904∗∗∗ 1.296∗∗∗ 1.192∗∗∗

(0.220) (0.166) (0.149) (0.126) (0.210) (0.167) (0.139) (0.125)

Observations 655 655 655 655 655 655 655 655
Log-Likelihood −894.6 −1218.3 −1040.4 −1777.2 −893.1 −1222.3 −1055.4 −1787.0

Standard errors in parentheses adjusted for heteroskedasticity

Including unreported constant, controls for Reprint Author location, International colab.,JIF,CoAuthor from hESC-favorable country,

Number of Authors, Researcher "age", and Presence of Private-Sector-Affiliated Authors
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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3.5. Results

3.5.2 Mechanisms of Response

The analysis heretofore has focused on identifying to what extent the ban had an impact

on the innovation landscape. In Table 3.7, we examine changes in the scientific output that

may, to some extent, explain the relative decrease in innovative output from federally-funded

research. Columns (1)–(3) present a negative and (weakly) significant effect in the average

scholarly citation counts received by treated publications during the ban. This result suggests

that lower-quality output might be related to the average treatment effect observed on Table

3.4. Similarly, columns (4)–(5) show a negative and significant effect on the interaction term as

well. This time, however, the dependent variable is the Journal Rank Score. Scientific articles

with at least one acknowledged federal source of funds landed in lower-ranked periodicals.

Overall, the coefficients of Federal Funding × Ban suggest that lower-impact work might be

the root of the observed decrease in innovative output. Nevertheless, withal, the policy did not

place restrictions on expenditure, which may explain this deceleration. The ban only limited

the materials (namely new stem-cell lines) that researchers could use. We suspect that this

constraint to the autonomy of researchers may have created a niche effect for federally funded

research. Building up only on existing lines enacted an effective limitation on the direction

of science, potentially reducing the variety and scope of experiments. The triple interaction

term on Table 3.7 (column 3) puts this hypothesis to test. The average treatment effect of

a collaboration with an author whose affiliation is based on an hESC-favorable country is

positive and significant, suggesting that the lower impact might be due to the novelty and

variety (or lack thereof) of the publications.

Using the Doc2Vec model trained, as explained in Section 3.3, we compute the pairwise cosine

similarity matrix for different strata of the full sample (hESC and no-hESC) by year. That

is, we infer the document embeddings for the N (t) articles published in a given year, and

then compute the similarity matrix MN×N , where each element Mi j represents the cosine

similarity between articles i and j . Each row then represents a vector of similarities Si of

article i such that Si = (s j ) ∀ j = 1...N . The dispersion of each row di , calculated as the

standard deviation di = std(Si ) allows us to measure of how far apart, as a whole, the articles

are from article i . In other words, if an article is very close to some, and very far to others, we

will observe a large dispersion, and the group of articles has a larger variety. However, suppose

the article is very close (or very far) from the majority (concentration of similarities). In that

case, the standard deviation will be lower, and we will conclude the N articles are less spread

out (highly clustered topic). The average standard deviation d̄ is represented in the upper

row in Figure 3.4 for different groupings of articles. The standard deviation is independent of

the mean, potentially misrepresenting spread for lower means. Essentially, a small standard

deviation di in a vector Si where the average µi = mean(Si ) is small, may mean that all articles

are far apart, hence very varied. In order to overcome the magnitude problem, we introduce

variation as a measure of weighted standard deviation vi = di /µi . The lower row in Figure 3.4

shows variation across years.
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Table 3.7 – Scientific Output: Measures of Quality; Treat=Fed Fund., hESC=1

Negative Binomial Regression OLS
D.V.: Scholar Citations D.V.: Journal Score

(1) (2) (3) (4) (5)

Federal Funding 0.995 1.191 1.155 1.340∗ 1.375∗

(0.606) (0.728) (0.714) (0.781) (0.808)
Ban 2.087∗∗∗ 2.142∗∗ 2.150∗∗ −2.779∗∗∗ −2.726∗∗∗

(0.753) (0.887) (0.854) (1.064) (1.050)
Federal Funding × Ban −1.238∗∗ −1.427∗ −1.406∗ −1.416∗ −1.444∗

(0.625) (0.741) (0.734) (0.793) (0.782)
Fed Fund × CoAuthor fav. country −1.794∗∗

(0.812)
Fed Fund × Ban × CoAuthor fav. country 2.113∗∗

(0.870)
Year FE Y es Y es Y es Y es Y es
Journal FE No No No Y es Y es
Article Controls No Y es Y es No Y es

log (α) 0.320∗∗∗ 0.214 0.190
(0.119) (0.132) (0.134)

Observations 655 655 655 806 806
Adjusted R2 0.935 0.936
Log-Likelihood −3646.4 −3608.6 −3600.5 −1358.7 −1348.1

Standard errors in parentheses adjusted for heteroskedasticity

Including unreported constant, controls for Reprint Author location, International colab.,

Number of Authors, Researcher "age", and Presence of Private-Sector-Affiliated Authors
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure 3.4 – Dispersion across the root articles: Mean standard deviation (variation) by year with 95% confidence intervals by group. (left) (a)
includes the 1885 root articles. (right) (b) includes the 806 hESC-related articles only
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This experiment suggests that hESC-related research became narrower in scope in the after-

math of the ban. The effect seems to be mostly driven by federally-funded research, hinting

towards another mechanism behind the decrease in innovative impact. The similarity mea-

sures illustrate that research after the ban became decreasingly disruptive, as the limitations

in place impeded the exploration of new avenues. It seems that new work consisted increas-

ingly of consolidation of previous research, and thus, innovations also tended to cite only

the prior-art. If our interpretation is correct, unrestricted research should see its variation

increased.

In order to study the spread of the publications in our sample beyond simple conditional

means, we regress (OLS) variation. The results are presented in Table C.7 in the appendix. This

table expands the information presented in Figure 3.4 accounting for additional covariates

while interacting the variables of interest. The interaction coefficients between treatment and

ban are all negative and significant, meaning that federally-funded research was, on average,

less varied in scope. Column (5) shows a triple interaction that includes collaboration with a

coauthor from an hESC-favourable country, which is positive and significant as one would

expect from our interpretation.

In this section, we have presented the results from our regression. Using a DiD approach, we

have shown that the moratorium lowered the potential for follow-on innovation of federally

funded research. We have observed a decrease in the quality of publications with at least one

author acknowledging federal funds. Besides, the publications subject to the limitations of

the ban were placed in lower-quality journals. A striking pattern emerged post-ban: from a

text modelling analysis, hESC publications (and notably federal-funded research) approached

each other, reducing their apparent diversity. That is, the spread of the topics covered was

more limited in scope.

3.6 Discussion

Our analysis indicates that limitations in the materials researchers can use have a negative

impact on the innovation pipeline. We demonstrate that the ban on federal funding on certain

stem cell lines significantly decreased the downstream applicability of the restricted research.

hESC research performed under the federal regulations received up to 85% fewer patent

citations, relative to hESC research performed under less restrictive grounds. The relative

decline in innovative output resulting from basic science extends to the second-degree patent

counts (downstream applications), suggesting a lower quality of innovations in the first place:

not only the publications received fewer patent citations, but the citing patents also received

fewer patent citations.

In addition to quantifying the impact of Federal Funding limitations on overall patenting, we

also study which types of inventors it affects the most. The extent to which the uncertainties in

the regulatory and political landscapes affected the willingness of the private sector to invest

in hESC research and commercial applications certainly affected the outcome too (Huang
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and Jong, 2019). Additionally, we observe that, on average, the ban affected innovations

from private and research sectors in the U.S. to a similar extent. This sharp political decision

lead to a new hostile environment for stem-cell research that, interestingly, did not affect

innovation instantaneously, but with a lag. While scientific output decayed rapidly, the effect

on innovation in the (immediate) aftermath of the ban is smaller for patents from research

institutes and negligible for the private sector. These findings are in line with project initiations

data (Huang and Jong, 2019). However, previous literature had only quantified the effects of

stem cell advancements (and innovations) at large, regardless of funding source. Additional

to the prior art, our contribution draws the line between federally funded and non-federally

funded research.

It is open to interpretation whether the observed decline in patentability is a direct con-

sequence of the targeted funding policy or other unobserved factors at play. However, by

comparing hESC-only publications where the treatment is the source of funding, we are con-

fident that we estimate the impact of the limitations of the ban. Our results show that not

only research output (quantity) was lower after the ban (Furman et al., 2012), but the quality

decreased overall for federally-funded research compared to other hESC publications. Our

analysis of the mechanisms suggests that a lower quality at the frontier of hESC coming from

NIH-funded (and other U.S. national agencies) publications might be behind the decreased re-

turns to research efforts. On average, hESC publications after the ban received fewer citations

when they were under policy limitations compared to the others. They were also published in

journals of comparatively lower rating (and reach).

Discussions with then-members of the research community emphasised the poorer quality

of publications. In these, they highlighted that the timing of the ban coincided with a series

of high profile papers suggesting that adult-derived cells had pluripotency. One source, in

particular, noted that “these studies tended to be less rigorously reviewed as they allowed a

more politically-correct alternative to hESC-based cell therapies. The ban also promoted more

of that lower-quality adult stem cell work until iPS were developed”.

Considering the framing of the ban, research support for US hESC put bounds to the direction,

more than the rate, of scientific advancement. In our last set of results, we show a decrease in

diversity within the topic. Whether the decrease in variety may be the root of lower marginal

advancements is certainly debatable. We suggest that federal funds supported research that

inevitably became stalled by the lack of newer tools (new stem cells). Therefore, hESC research

under the regulated funding scheme became more concentrated around a subset of possible

topics, which subsequently hindered its development potential. One should not entirely

discard the possibility that these results are data-driven. Using text modelling analysis only, it

is possible that the lower variety merely captures a sequential homogenisation of language. It

is possible that, as the field developed, phrases and common terms were standardised, hence

decreasing the variety that we measure.

We interpret our results as consistent with a picture in which autonomy expands the scientific
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competitiveness, and allows researchers to explore new lines of inquiry. In turn, this framing is

consistent with Azoulay et al. (2011) who show that, under a less-restrictive grant environment,

researchers produce publications with higher degrees of impact and novelty. Our results

provide support for the idea that scientific autonomy is a driver of greater innovative output.

The incentives provided by the competitive environment in science assure the inevitability of

scientific findings (Merton and Storer, 1973). Furthermore, our work contributes to framing the

theoretical model by Aghion et al. (2008), which attempts to explain the process of innovation

based on the trade-off between academic freedom and private-sector focus.

At the time of the ban, hESC research was still a very recent and promising field. Thus, access

to private funds, generally available for research that is close to the market, was minimal.

Additionally, the first cell lines had been developed under public-private partnerships and

had tight IP control over them (Murray, 2007). As a consequence, the quickest way to access

funds that enabled the hESC research agenda was through accessible, yet outdated, cell

lines. The ban effectively generated lower-quality science, which resulted in a slow-down in

time-to-market, and the pursuit of marginally unproductive research strategies.

While it seems clear (taking together ours and previous results) that the ban had a spillover

effect on both the corporate and research sectors, our measure of innovation only relies

on patenting activity directly related to scientific publications. This shortcoming neglects

the effects associated with other research which stemmed from the hESC publications. For

instance, it has been argued that, without the experience acquired through trial-and-error with

hESC, the derivation of iPS cells would have taken longer (Russo, 2005). We might be, therefore,

underestimating the actual social value of research published during the ban. On the other

hand, iPSC were first derived in Japan, outside of the ban’s jurisdiction. One might argue that

the finding was on its way, regardless of the ban (Hagstrom, 1974). A survey conducted in 2010

after a court ruling against Obama’s reinstatement of hESC funding found that 41% of U.S.

stem cell scientists not working with hESCs reported that the temporary ban impacted their

research (Levine, 2011). Moreover, we observe lower quality publications. Be as it may, these

results seem to suggest that regulators play a central role in the innovative landscape, and

directly or indirectly affect scientific output (and therefore, innovation in the long run). In the

next section, we extend our analysis to the policy implications of our results, which, as we see,

caused unintended negative externalities.

One limitation and potential future extension of the work presented herein involves the study

of the policy shock with the individual researcher as a focal point. The data construction

process potentially limits the presence of many articles by the same researchers. Indeed, the

publication sample studied incorporates a large proportion of unique authors, with only 210

being active both before and after the ban in hESC-related papers. Therefore, the existence of

such a large pool of researchers raises questions surrounding the individual strategic response

to the shock, as well as the topics covered in their other publications — and publications in

their labs — around the time of the ban.
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Policy implications

The causal assessment of the policy implications on innovation provides insights on the

degree to which funding agencies (especially larger funding bodies) can shape the direction

and rate of production of research. It provides a unique assessment of how limitations or the

failure to promote novel research has downstream effects on later-stage (closer to market)

innovations. The 2001 hESC ban ultimately affected participation, involvement of the private

sector and research trajectory. In a sector highly dependent on basic research public funding,

such as biotechnology and pharma, the analysis addresses questions regarding policy effects

on research (and technology) competitiveness. The ban had distributional consequences on

the areas that researchers could engage into, which signified a decrease in their applicability.

Thus, our results add to the extensively discussed question of the relevance of public funding

in the early stages of R&D.

More broadly, our findings contribute towards the understanding and development of a

science of science funding (Azoulay and Li, 2020; Azoulay et al., 2018). Designing scientific

funding schemes is crucial to provide the right incentives that encourage the best possible

returns (Jacob and Lefgren, 2011; Li, 2017). We conclude that limitations on the methods and

materials have negative consequences both in the long-term and in the short term. Higher

science quality, unimpeded by any regulatory framework, yields greater inventive value. In the

life sciences, where social returns to inventions far exceed the private costs of development,

promoting good science is vital for a stronger innovation ecosystem. Funding should be

directed at challenging and then polishing the status quo and advancing knowledge. Free

agency, autonomy and creativity encouragement have proven to be amongst the most reliable

predictors of scientific success, regardless of the funding mechanisms (Ayoubi et al., 2019),

and our results align with these conclusions.

Our analysis opens up other relevant questions in the realm of knowledge appropriability

— and subsequently, accessibility to scientific findings. The forced over-exposure to private

funds encourages appropriability — through IP protection— of the findings. Another notable

example being the oncomouse (Murray, 2010). For hESC, the ban encouraged the entry of other

private stakeholders, which meant that the available cell lines came from private investments,

and had very tight IP control (Murray, 2007), limiting their use (and development) by third

parties. Furthermore, any downstream commercial applications derived from subsequent

research (either federally or privately funded) would be subject to the same IP protection

as the original cell line. The Open Science debate was not as active in 2001 as it is today,

but it was widely acknowledged that openness played a fundamental role in the production

of knowledge (Dasgupta and David, 1994; Stephan, 2012). The ban played a role against

openness, the capability to share results, and more importantly, the market accessibility of

downstream innovations publicly funded. Beyond simple characterisation of the causal effect

of the ban on innovation, our results provide a deeper understanding of how subtle or even

naive policy interventions affect best-practices that ultimately dampen scientific progress.
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3.7 Concluding remarks

This chapter analyses the impact of science funding policy on innovations and technology

stemming from basic science. To do so, we exploit an exogenous shock (the 2001 hESC ban)

that impeded researchers from using certain materials (namely, newly-derived stem cells) and

its subsequent effect on patents. Using a citation-based approach, we find that innovative

output substantially decreased in the aftermath of the ban compared to unrestricted science.

We argue that lower quality science emerged in the aftermath of the ban, and decreased variety

in publications emerged as a result of the limitations. Therefore, we argue, the constraints

imposed on scientific output generate contributions of lesser value and limited downstream

applicability.

Our work provides insight into the degree to which science funding policy and policy uncer-

tainty shape the direction and impact of, not only research, but also R&D. The complicated

hESC situation, however, poses limitations in the generalisation of the effect’s magnitude. By

restricting our analysis to hESC-related publications, we are capable of providing an integral

acumen of the differences in methods and materials to the direction of science. However, fail-

ing to account for the specific IP control over particular cell lines overshadows the accounted

effects. We tracked citations to hESC-research only, disregarding the displacement effect on

surrounding fields that the ban may have caused.

In addition, this chapter provides a hands-on application of the topic-modelling methods

described in Chapter 1. We use similarity metrics between the core articles to study their topic

convergence over time, to find a narrowing scope of research output. These type of analysis

provides a basis for other lines of work comprising the study of novelty, spread and scope for

many applications: from scientometric field characterisation to econometric evaluation of

specific funding programs.

The results and their limitations altogether open alluring avenues for future research. In

particular, the research trajectories of individual researchers directly affected by such a ban

would shed new light in the strategic responses of individuals to certain limitations. The

broad heterogeneity in the individual’s affiliations, prior experience and personal objectives

(within research) provide a compelling case for study for the responses to policy shocks.

Understanding the career-path dependencies that funding policy and uncertainty create,

would shed new light on the mechanisms that drive the production of science and shape its

direction, perhaps to a greater extent than the analysis of individual publications.
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3.7. Concluding remarks
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Conclusion

The body of work presented in this dissertation sets new boundaries for the consolidation of

a science of science. Each of the three chapters tackled one of the main open problems in

the discipline. Namely: (i) how to improve the instability of topic models applied to scientific

text; (ii) why it is relevant to study science from the viewpoint of researchers and (iii) how

feeble policy design hinders innovation. Because science does not spontaneously occur in

a vacuum, and its outcomes and triggers are deeply intertwined with all aspects of society,

multiple research specialities are involved in pushing the field. The analysis conducted within

the three chapters of this dissertation approaches an identical number of scientific disciplines

and methods which all speak to the methodological infrastructure required to enable more a

scientific (science) policymaking.

In this work, first, I target the automatic representation of textual data, as an enabler for richer

scientific output analysis. Second, I turn the discussion to the debate of individual incentives

and motivation in the organisation of scientific social circles. Finally, I make use of novel data

to link research to innovation and impact to measure the effect of a policy intervention. These

contributions expand the horizon for a unified, scientific and collaborative science of science

policy, as discussed at length along the dissertation. In the following, I summarise the main

takeaways from each chapter.

Chapter 1 revisited questions regarding the validity of topic modelling for the characterisation

of scientific text. I proposed a simple approach to estimate the statistical robustness of

topic models based on pairwise similarity scores between documents. I found that the most

extensively used generative model, Latent Dirichlet Allocation (LDA), does not appear to be

exceptionally robust as similarity increases. A typical matrix factorisation approach to topic

modelling, Non-Negative Matrix Factorisation (NMF), suffers from instability as the latent

space size increases, and is comparatively unstable for dimensions far higher than 10. In

contrast, Doc2Vec, a neural-network-based approach to paragraph embeddings, performs

consistently across retrainings. I further propose a principal component analysis (PCA) based

approach to assess the descriptive power of marginal increases of latent dimensions in topic

models. I find that, while not perfect, LDA and Doc2Vec produce models that maintain

explanatory power into the highest dimensions of the topic space. NMF and neural word

embedding aggregation fail to scale with the tested data.
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I conclude that neural embeddings appear to produce relatively stable estimates of pairwise

similarities, compared to other methods, that allow for different levels of granularity and

reflect reality relatively well. Neural network topic models are, thus, a promising avenue of

further research and application in the social sciences in general, and in scientometrics in

particular. Beyond providing proof of performance superiority in the quest for robustness,

Chapter 1 provides the practitioner with a tool-set to self-evaluate the performance of her

training of topic models, regardless of the method or data chosen, hoping to improve the

credibility concerns that some researchers have raised upon the application of topic models

for analytical purposes.

Chapter 2 modelled science from the viewpoint of researchers in a payoff-maximisation

game. Starting from a public-good game of equitable allocation of rewards, I introduced

appropriability of non-pecuniary payoffs as a distributional factor. This simple modification

to a simple game, equivalent to accounting for rivalry, implies that the support for the optimal

strategy is unevenly split between the marginal and the average contribution. I argued that it

is possible to interpret these components as a tension between exploration (invention) and

exploitation (consolidation) strategies. This dichotomy, which emerges from the maximisation

of individual payoffs in our model, has been primarily documented in the sociology of science.

I then introduced heterogeneity in the model through two particular examples. In the first

example, I showed that incorporating weak heterogeneity in the ability of the researchers, the

model describes the existence of competition in science. In the second example, I showed that

by incorporating upper and lower bounds to the abilities of a group, the model helps account

for the existence of well-knit social circles. These circles would explain why there exist schools

of thought and new ideas are sometimes challenged.

Science policy practitioners must understand the mechanisms that drive researchers. Chapter

2 provides a new look at how individual incentives might shape science. I argue that these

individual incentives are central to the organisation of scientific fields. This understanding

ultimately helps design better funding schemes and steer science programs in the desired di-

rection. The model lays out the groundwork for further research in modelling the interactions

between researchers, largely unexplored in theoretical economics.

Chapter 3 proposed an evaluation of the impact of science funding policy on innovations and

technology. I analysed the 2001 U.S. policy on human embryonic stem cell (hESC) research

which limited the materials available for research under federal funding (namely, newly-

derived stem cells). Taking advantage of the recent identifications of non-patent-literature

and in-text scholarly references from patents, I used a citation-based approach to measure

the knowledge spillovers from basic research into R&D. In order to determine the causal

effect of the exogenous policy shock, I employed a difference-in-differences setting. I found

that innovative output substantially decreased in the aftermath of the ban compared to

unrestricted science. I showed that lower quality science emerged after the ban, and the

limitations imposed by the new policy affected the variety of topics in published material

negatively. Therefore, the constraints imposed on scientific output generate contributions
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of lesser value and limited downstream applicability. I employed novel topic modelling

techniques to characterise the variety of topics within the core publications. I showed that the

years of the policy led to decreasing levels of diversity at the frontier or research.

Chapter 3 contributes to the understanding and development of an empirical science of

science policy. Thanks to a careful identification of the publications subject to the policy

intervention, I conclude that limitations on the materials available for research have negative

consequences in the long-term innovation landscape. This finding supports the growing

literature on science funding (Azoulay and Li, 2020), and provides evidence that even nuanced

policy modifications have a significant impact in the long-term spillovers. It will be interesting

to see, as work being carried out by other researchers, how the partial reintroduction of (state)

public funds for stem cell research affected the societal value of the investments. Alternatively,

more currently, how the top-down adoption of Open Data and Open Access practices affects

researchers’ work.

Outlook

The topic models presented in Chapter 1 are techniques with great application potential

to the study of science. The technical contribution presented in this thesis should provide

practitioners with a better understanding of the advantages and limitations of such models.

More importantly, I aim at democratising the use of topic models by suggesting an evaluation

method that should ultimately lead to better modelling. Improving the granularity and ro-

bustness of topic models, not only increases the credibility and reproducibility of the work

developed, but it opens new avenues of research. Highly granular and robust models will

enable researchers to study dynamics and changes in the direction of science to a greater

extent than ever before. Furthermore, while I demonstrate these techniques using scientific

literature, the analysis can be extended to any other source of textual data: patents or trade-

marks (direction of innovation), news articles (societal challenges)or even regulations (policy

or discourse analysis). Following the work presented above, I would like to implement neural

network techniques to characterise the mentor-mentee intellectual pathways using full-text

analysis of their publications.

Chapter 2 opens promising areas for future research. Its more descriptive and exploratory na-

ture delves into research questions that deserve further attention. However, more importantly,

it emphasizes the study of the individual as a driver of science organisation evolution. Follow-

ing the call for richer data sources in order to study researcher mobility (Fernández-Zubieta

et al., 2015), we draw the attention to tracking individual researcher’s careers in the knowledge

domain. In the parallelism between physical and epistemological “mobility”, it would be

instructive to study the determinants of entry or exit of a knowledge area as a competitive

strategic response. The tools to empirically analyse sequential discrete games are already

used in theoretical economics, and present an opportunity to study social interactions in the

public research domain as a competitive market. Likewise, the model presents a succinct
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revision of incentives in science, which is useful for policymaking. Understanding the rewards

that motivate certain behaviours is crucial for funding schemes to be successful, and for the

effective management of scientific portfolios.

Finally, the empirical analysis developed in Chapter 3 has implications on science policy and

mechanism design. On the one hand, our findings contribute to the development of a science

of science funding, and open questions in the realm of knowledge appropriability. If the limi-

tation to use certain materials in basic science discourages innovation, it is reasonable to ask

whether IP-protected basic science is affecting innovation similarly. Similarly, it raises ethical

questions regarding the market accessibility of fundamental science under protection, which

are currently under scrutiny as Open Science is slowly becoming mainstream. On the other

hand, the question of how policy affects the careers of individual researchers remains unsolved.

The 2001 hESC ban provides an excellent framework to study the career-path of individual

researchers and reflect on how different scenarios affect the direction of their research. For

this, the application of topic models such as those described in Chapter 1 presents a promising

line of future work. To be more precise, it is possible to study the intellectual-space (space of

ideas) mobility of researchers by characterising their contributions dynamically, observing

how they approach and distance themselves from given topics, particularly when affected by

an exogenous shock.

Final word

The negative effect of policy on innovation observed in Chapter 3 does not call for leaner gov-

ernment intervention, but rather for a redesign of political decision-making in the scientific

arena. Overall, my vision is that the science of science policy (and governance) should emerge

from a scientific process and a carefully designed analysis. An increasingly scientific policy-

making process must rely on the availability and accessibility of data, to test and propose policy

measures that are evidence-based and, at the same time, inform future decision-makers.

A number of structural changes — including the policy shift toward Open Access and FAIR

data practices (Hodson et al., 2018)— in data availability and interoperability will facilitate

the analysis in coming years. Besides, incremental researcher efforts that facilitate the link

between different contributions to the knowledge stock — e.g. patent-to-article citations (Marx

and Fuegi, 2020; de Rassenfosse and Verluise, 2020) or product-to-patent links (de Rassenfosse

and Higham, 2020)— are already showing their potential to address questions related to the

societal impact and value of science. Full-text disclosure of text paired with the state-of-the-art

computing power can only be expected to improve the analytical capabilities of research.

This dissertation modestly contributes to the development of such an environment, providing

a broad discussion that should appeal to practitioners at multiple levels and disciplines. Nev-

ertheless, more work is needed. The hunt for an evidence-based governance must begin by

recognising that the generation of further knowledge is among the most important uses of

new knowledge (David, 2003). Appropriate disclosure of breakthroughs not only promotes
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the creation of incremental knowledge (that increases the knowledge stock) (David and Foray,

1995) but it provides the tools to analyse the production system in place. A clear policy impli-

cation arises in the development of a scientific science policy formulation, in that however

difficult to predict the future value of discoveries, a full Open Science ecosystem is needed to

push the frontiers of knowledge adequately.

A brighter future for science, science policy, and science of science policy awaits.
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A.1 Neuroscience Journals

ISSN WoS Short Name WoS Long Name
0194-2638 PHYS OCCUP THER PEDI PHYS OCCUP THER PEDI
1047-9651 PHYS MED REH CLIN N PHYSICAL MEDICINE AND REHABILI-
TATION CLINICS OF NORTH AMERICA
1571-0645 PHYS LIFE REV Physics of Life Reviews
0091-3057 PHARMACOL BIOCHEM BE PHARMACOLOGY BIOCHEMISTRY
AND BEHAVIOR
0898-5669 PEDIATR PHYS THER PEDIATR PHYS THER
1016-2291 PEDIATR NEUROSURG PEDIATRIC NEUROSURGERY
0887-8994 PEDIATR NEUROL PEDIATRIC NEUROLOGY
1353-8020 PARKINSONISM RELAT D PARKINSONISM & RELATED DISOR-
DERS
0304-3959 PAIN PAIN
1330-1403 PAEDIATR CROAT Paediatria Croatica
1539-4492 OTJR-OCCUP PART HEAL OTJR-OCCUPATION PARTICIPATION
AND HEALTH
0966-7903 OCCUP THER INT OCCUP THER INT
1028-415X NUTR NEUROSCI NUTRITIONAL NEUROSCIENCE
1300-0667 NOROPSIKIYATRI ARS NOROPSIKIYATRI ARS
1029-8428 NEUROTOX RES NEUROTOXICITY RESEARCH
1933-7213 NEUROTHERAPEUTICS Neurotherapeutics
0148-396X NEUROSURGERY NEUROSURGERY
0344-5607 NEUROSURG REV NEUROSURGICAL REVIEW
1092-0684 NEUROSURG FOCUS NEUROSURGICAL FOCUS
1050-6438 NEUROSURG QUART NEUROSURGERY QUARTERLY
1042-3680 NEUROSURG CLIN N AM NEUROSURGERY CLINICS OF
NORTH AMERICA
1424-862X NEUROSIGNALS NEUROSIGNALS
1073-8584 NEUROSCIENTIST NEUROSCIENTIST
1319-6138 NEUROSCIENCES Neurosciences
0306-4522 NEUROSCIENCE NEUROSCIENCE
0168-0102 NEUROSCI RES NEUROSCIENCE RESEARCH
1673-7067 NEUROSCI BULL NEUROSCI BULL
0304-3940 NEUROSCI LETT NEUROSCIENCE LETTERS
0149-7634 NEUROSCI BIOBEHAV R NEUROSCIENCE AND BIOBEHAV-
IORAL REVIEWS
0959-4965 NEUROREPORT NEUROREPORT
1545-9683 NEUROREHAB NEURAL RE NEUROREHABILITATION AND
NEURAL REPAIR
1053-8135 NEUROREHABILITATION NEUROREHABILITATION
0028-3940 NEURORADIOLOGY NEURORADIOLOGY
1303-5150 NEUROQUANTOLOGY NEUROQUANTOLOGY
0893-133X NEUROPSYCHOPHARMACOL NEUROPSYCHOPHARMACOL-
OGY
0894-4105 NEUROPSYCHOLOGY NEUROPSYCHOLOGY
1040-7308 NEUROPSYCHOL REV NEUROPSYCHOLOGY REVIEW
0028-3932 NEUROPSYCHOLOGIA NEUROPSYCHOLOGIA
0960-2011 NEUROPSYCHOL REHABIL NEUROPSYCHOLOGICAL REHA-
BILITATION
0302-282X NEUROPSYCHOBIOLOGY NEUROPSYCHOBIOLOGY
1176-6328 NEUROPSYCH DIS TREAT NEUROPSYCH DIS TREAT
0090-2977 NEUROPHYSIOLOGY+ NEUROPHYSIOLOGY

0987-7053 NEUROPHYSIOL CLIN NEUROPHYSIOLOGIE CLINIQUE-
CLINICAL NEUROPHYSIOLOGY
0028-3908 NEUROPHARMACOLOGY NEUROPHARMACOLOGY
0143-4179 NEUROPEPTIDES NEUROPEPTIDES
0174-304X NEUROPEDIATRICS NEUROPEDIATRICS
0305-1846 NEUROPATH APPL NEURO NEUROPATHOLOGY AND APPLIED
NEUROBIOLOGY
0919-6544 NEUROPATHOLOGY NEUROPATHOLOGY
0896-6273 NEURON NEURON
1740-925X NEURON GLIA BIOL Neuron Glia Biology
0960-8966 NEUROMUSCULAR DISORD NEUROMUSCULAR DISORDERS
1535-1084 NEUROMOL MED NEUROMOLECULAR MEDICINE
0028-3878 NEUROLOGY NEUROLOGY
1094-7159 NEUROMODULATION NEUROMODULATION
1074-7931 NEUROLOGIST NEUROLOGIST
0213-4853 NEUROLOGIA NEUROLOGIA
0161-6412 NEUROL RES NEUROLOGICAL RESEARCH
1590-1874 NEUROL SCI NEUROLOGICAL SCIENCES
0028-3843 NEUROL NEUROCHIR POL Neurologia i Neurochirurgia Polska
0470-8105 NEUROL MED-CHIR NEUROLOGIA MEDICO-CHIRURGICA
0028-3886 NEUROL INDIA NEUROLOGY INDIA
0353-8842 NEUROL CROATICA NEUROLOGIA CROATICA
0733-8619 NEUROL CLIN NEUROLOGIC CLINICS
1823-6138 NEUROL ASIA NEUROLOGY ASIA
1539-2791 NEUROINFORMATICS NEUROINFORMATICS
1053-8119 NEUROIMAGE NEUROIMAGE
1364-6745 NEUROGENETICS NEUROGENETICS
1052-5149 NEUROIMAG CLIN N AM NEUROIMAGING CLINICS OF
NORTH AMERICA
0947-0875 NEUROFORUM NEUROFORUM
1874-5490 NEUROETHICS-NETH Neuroethics
0251-5350 NEUROEPIDEMIOLOGY NEUROEPIDEMIOLOGY
0172-780X NEUROENDOCRINOL LETT NEUROENDOCRINOLOGY LET-
TERS
1660-2854 NEURODEGENER DIS Neurodegenerative Diseases
1541-6933 NEUROCRIT CARE Neurocritical Care
1130-1473 NEUROCIRUGIA NEUROCIRUGIA
0028-3770 NEUROCHIRURGIE NEUROCHIRURGIE
0364-3190 NEUROCHEM RES NEUROCHEMICAL RESEARCH
1819-7124 NEUROCHEM J+ Neurochemical Journal
0197-0186 NEUROCHEM INT NEUROCHEMISTRY INTERNATIONAL
1355-4794 NEUROCASE NEUROCASE
1074-7427 NEUROBIOL LEARN MEM NEUROBIOLOGY OF LEARNING
AND MEMORY
0969-9961 NEUROBIOL DIS NEUROBIOLOGY OF DISEASE
0197-4580 NEUROBIOL AGING NEUROBIOLOGY OF AGING
1673-5374 NEURAL REGEN RES NEURAL REGENERATION RESEARCH
0893-6080 NEURAL NETWORKS NEURAL NETWORKS
0792-8483 NEURAL PLAST NEURAL PLAST
1749-8104 NEURAL DEV Neural Development
0899-7667 NEURAL COMPUT NEURAL COMPUTATION
0954-898X NETWORK-COMP NEURAL NETWORK-COMPUTATION IN
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NEURAL SYSTEMS
0722-1541 NERVENHEILKUNDE NERVENHEILKUNDE
0028-2804 NERVENARZT NERVENARZT
1471-0048 NAT REV NEUROSCI NATURE REVIEWS NEUROSCIENCE
1759-4758 NAT REV NEUROL Nature Reviews Neurology
1097-6256 NAT NEUROSCI NATURE NEUROSCIENCE
1745-834X NAT CLIN PRACT NEURO Nature Clinical Practice Neurology
0730-7829 MUSIC PERCEPT MUSIC PERCEPTION
0148-639X MUSCLE NERVE MUSCLE & NERVE
1352-4585 MULT SCLER J Multiple Sclerosis Journal
0885-3185 MOVEMENT DISORD MOVEMENT DISORDERS
1087-1640 MOTOR CONTROL MOTOR CONTROL
1359-4184 MOL PSYCHIATR MOLECULAR PSYCHIATRY
1744-8069 MOL PAIN Molecular Pain
1750-1326 MOL NEURODEGENER Molecular Neurodegeneration
0893-7648 MOL NEUROBIOL MOLECULAR NEUROBIOLOGY
1044-7431 MOL CELL NEUROSCI MOLECULAR AND CELLULAR NEURO-
SCIENCE
0946-7211 MINIM INVAS NEUROSUR MINIMALLY INVASIVE NEURO-
SURGERY
0885-7490 METAB BRAIN DIS METABOLIC BRAIN DISEASE
0885-1158 MED PROBL PERFORM AR MEDICAL PROBLEMS OF PER-
FORMING ARTISTS
0306-9877 MED HYPOTHESES MEDICAL HYPOTHESES
1072-0502 LEARN MEMORY LEARNING & MEMORY
1357-650X LATERALITY LATERALITY
1474-4422 LANCET NEUROL LANCET NEUROLOGY
1434-0275 KLIN NEUROPHYSIOL KLINISCHE NEUROPHYSIOLOGIE
1534-7362 J VISION JOURNAL OF VISION
0957-4271 J VESTIBUL RES-EQUIL JOURNAL OF VESTIBULAR RESEARCH-
EQUILIBRIUM & ORIENTATION
1052-3057 J STROKE CEREBROVASC J STROKE CEREBROVASC
1079-0268 J SPINAL CORD MED JOURNAL OF SPINAL CORD MEDICINE
0748-7711 J REHABIL RES DEV JOURNAL OF REHABILITATION RE-
SEARCH AND DEVELOPMENT
1650-1977 J REHABIL MED JOURNAL OF REHABILITATION MEDICINE
0269-8803 J PSYCHOPHYSIOL JOURNAL OF PSYCHOPHYSIOLOGY
0269-8811 J PSYCHOPHARMACOL JOURNAL OF PSYCHOPHARMACOL-
OGY
1180-4882 J PSYCHIATR NEUROSCI JOURNAL OF PSYCHIATRY & NEURO-
SCIENCE
0022-3751 J PHYSIOL-LONDON JOURNAL OF PHYSIOLOGY-LONDON
0928-4257 J PHYSIOL-PARIS JOURNAL OF PHYSIOLOGY-PARIS
1085-9489 J PERIPHER NERV SYST JOURNAL OF THE PERIPHERAL NER-
VOUS SYSTEM
1526-5900 J PAIN JOURNAL OF PAIN
0897-7151 J NEUROTRAUM JOURNAL OF NEUROTRAUMA
1355-0284 J NEUROVIROL JOURNAL OF NEUROVIROLOGY
1933-0707 J NEUROSURG-PEDIATR Journal of Neurosurgery-Pediatrics
0390-5616 J NEUROSURG SCI JOURNAL OF NEUROSURGICAL SCIENCES
0022-3085 J NEUROSURG JOURNAL OF NEUROSURGERY
0888-0395 J NEUROSCI NURS JOURNAL OF NEUROSCIENCE NURSING
0360-4012 J NEUROSCI RES JOURNAL OF NEUROSCIENCE RESEARCH
0165-0270 J NEUROSCI METH JOURNAL OF NEUROSCIENCE METHODS
0270-6474 J NEUROSCI JOURNAL OF NEUROSCIENCE
1748-6645 J NEUROPSYCHOL Journal of Neuropsychology
0150-9861 J NEURORADIOLOGY JOURNAL OF NEURORADIOLOGY
0895-0172 J NEUROPSYCH CLIN N JOURNAL OF NEUROPSYCHIATRY
AND CLINICAL NEUROSCIENCES
0022-3077 J NEUROPHYSIOL JOURNAL OF NEUROPHYSIOLOGY
0022-3069 J NEUROPATH EXP NEUR JOURNAL OF NEUROPATHOLOGY
AND EXPERIMENTAL NEUROLOGY
0911-6044 J NEUROLINGUIST JOURNAL OF NEUROLINGUISTICS
1302-1664 J NEUROL SCI-TURK JOURNAL OF NEUROLOGICAL
SCIENCES-TURKISH
1557-0576 J NEUROL PHYS THER J NEUROL PHYS THER
0022-510X J NEUROL SCI JOURNAL OF THE NEUROLOGICAL SCIENCES
0022-3050 J NEUROL NEUROSUR PS JOURNAL OF NEUROLOGY NEURO-
SURGERY AND PSYCHIATRY
0340-5354 J NEUROL JOURNAL OF NEUROLOGY
1742-2094 J NEUROINFLAMM Journal of Neuroinflammation
1759-8478 J NEUROINTERV SURG JOURNAL OF NEUROINTERVEN-
TIONAL SURGERY
0165-5728 J NEUROIMMUNOL JOURNAL OF NEUROIMMUNOLOGY
1051-2284 J NEUROIMAGING JOURNAL OF NEUROIMAGING
1743-0003 J NEUROENG REHABIL Journal of NeuroEngineering and Reha-
bilitation
0167-7063 J NEUROGENET JOURNAL OF NEUROGENETICS
1866-1947 J NEURODEV DISORD Journal of Neurodevelopmental Disor-
ders
0953-8194 J NEUROENDOCRINOL JOURNAL OF NEUROENDOCRINOL-

OGY
0022-3042 J NEUROCHEM JOURNAL OF NEUROCHEMISTRY
1070-8022 J NEURO-OPHTHALMOL JOURNAL OF NEURO-
OPHTHALMOLOGY
0303-6995 J NEURAL TRANSM-SUPP JOURNAL OF NEURAL
TRANSMISSION-SUPPLEMENT
1741-2560 J NEURAL ENG Journal of Neural Engineering
0300-9564 J NEURAL TRANSM JOURNAL OF NEURAL TRANSMISSION
0022-2895 J MOTOR BEHAV JOURNAL OF MOTOR BEHAVIOR
0895-8696 J MOL NEUROSCI JOURNAL OF MOLECULAR NEUROSCIENCE
0271-0137 J MIND BEHAV JOURNAL OF MIND AND BEHAVIOR
2005-3711 J KOREAN NEUROSURG S Journal of Korean Neurosurgical Soci-
ety
0219-6352 J INTEGR NEUROSCI Journal of Integrative Neuroscience
1355-6177 J INT NEUROPSYCH SOC JOURNAL OF THE INTERNATIONAL
NEUROPSYCHOLOGICAL SOCIETY
0964-704X J HIST NEUROSCI Journal of the History of the Neurosciences
0885-9701 J HEAD TRAUMA REHAB JOURNAL OF HEAD TRAUMA REHA-
BILITATION
1129-2369 J HEADACHE PAIN JOURNAL OF HEADACHE AND PAIN
0891-9887 J GERIATR PSYCH NEUR JOURNAL OF GERIATRIC PSYCHIATRY
AND NEUROLOGY
0022-0930 J EVOL BIOCHEM PHYS+ JOURNAL OF EVOLUTIONARY BIO-
CHEMISTRY AND PHYSIOLOGY
0929-5313 J COMPUT NEUROSCI JOURNAL OF COMPUTATIONAL NEU-
ROSCIENCE
0021-9967 J COMP NEUROL JOURNAL OF COMPARATIVE NEUROLOGY
0898-929X J COGNITIVE NEUROSCI JOURNAL OF COGNITIVE NEURO-
SCIENCE
0967-5868 J CLIN NEUROSCI JOURNAL OF CLINICAL NEUROSCIENCE
0736-0258 J CLIN NEUROPHYSIOL JOURNAL OF CLINICAL NEUROPHYS-
IOLOGY
1738-6586 J CLIN NEUROL Journal of Clinical Neurology
1380-3395 J CLIN EXP NEUROPSYC JOURNAL OF CLINICAL AND EXPERI-
MENTAL NEUROPSYCHOLOGY
0883-0738 J CHILD NEUROL JOURNAL OF CHILD NEUROLOGY
0891-0618 J CHEM NEUROANAT JOURNAL OF CHEMICAL NEU-
ROANATOMY
0271-678X J CEREBR BLOOD F MET JOURNAL OF CEREBRAL BLOOD
FLOW AND METABOLISM
0092-0606 J BIOL PHYS JOURNAL OF BIOLOGICAL PHYSICS
1387-2877 J ALZHEIMERS DIS JOURNAL OF ALZHEIMERS DISEASE
1123-9344 INTERV NEURORADIOL INTERVENTIONAL NEURORADIOL-
OGY
0074-7742 INT REV NEUROBIOL INTERNATIONAL REVIEW OF NEUROBI-
OLOGY
1747-4930 INT J STROKE International Journal of Stroke
0342-5282 INT J REHABIL RES INTERNATIONAL JOURNAL OF REHABILI-
TATION RESEARCH
0167-8760 INT J PSYCHOPHYSIOL INTERNATIONAL JOURNAL OF PSY-
CHOPHYSIOLOGY
0020-7454 INT J NEUROSCI INTERNATIONAL JOURNAL OF NEURO-
SCIENCE
1461-1457 INT J NEUROPSYCHOPH INTERNATIONAL JOURNAL OF NEU-
ROPSYCHOPHARMACOLOGY
0129-0657 INT J NEURAL SYST INTERNATIONAL JOURNAL OF NEURAL
SYSTEMS
0899-9457 INT J IMAG SYST TECH INTERNATIONAL JOURNAL OF IMAG-
ING SYSTEMS AND TECHNOLOGY
0736-5748 INT J DEV NEUROSCI INTERNATIONAL JOURNAL OF DEVEL-
OPMENTAL NEUROSCIENCE
1534-4320 IEEE T NEUR SYS REH IEEE TRANSACTIONS ON NEURAL SYS-
TEMS AND REHABILITATION ENGINEERING
0019-1442 IDEGGYOGY SZEMLE IDEGGYOGYASZATI SZEMLE-CLINICAL
NEUROSCIENCE
0167-9457 HUM MOVEMENT SCI HUMAN MOVEMENT SCIENCE
1065-9471 HUM BRAIN MAPP HUMAN BRAIN MAPPING
0018-506X HORM BEHAV HORMONES AND BEHAVIOR
1569-1861 HONG KONG J OCCUP TH Hong Kong Journal of Occupational
Therapy
1050-9631 HIPPOCAMPUS HIPPOCAMPUS
0017-8748 HEADACHE HEADACHE
0894-1491 GLIA GLIA
1601-1848 GENES BRAIN BEHAV GENES BRAIN AND BEHAVIOR
0393-5264 FUNCT NEUROL FUNCTIONAL NEUROLOGY
1662-5129 FRONT NEUROANAT FRONT NEUROANAT
0091-3022 FRONT NEUROENDOCRIN FRONTIERS IN NEUROEN-
DOCRINOLOGY
1662-5110 FRONT NEURAL CIRCUIT FRONTIERS IN NEURAL CIRCUITS
1662-5161 FRONT HUM NEUROSCI Frontiers in Human Neuroscience
1662-5102 FRONT CELL NEUROSCI FRONTIERS IN CELLULAR NEURO-
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SCIENCE
1662-5188 FRONT COMPUT NEUROSC FRONTIERS IN COMPUTATIONAL
NEUROSCIENCE
1641-4640 FOLIA NEUROPATHOL FOLIA NEUROPATHOLOGICA
0014-4886 EXP NEUROL EXPERIMENTAL NEUROLOGY
0014-4819 EXP BRAIN RES EXPERIMENTAL BRAIN RESEARCH
0924-977X EUR NEUROPSYCHOPHARM EUROPEAN NEUROPSY-
CHOPHARMACOLOGY
0014-3022 EUR NEUROL EUROPEAN NEUROLOGY
1090-3801 EUR J PAIN EUROPEAN JOURNAL OF PAIN
1090-3798 EUR J PAEDIATR NEURO EUROPEAN JOURNAL OF PAEDI-
ATRIC NEUROLOGY
0953-816X EUR J NEUROSCI EUROPEAN JOURNAL OF NEUROSCIENCE
1351-5101 EUR J NEUROL EUROPEAN JOURNAL OF NEUROLOGY
0920-1211 EPILEPSY RES EPILEPSY RESEARCH
1294-9361 EPILEPTIC DISORD EPILEPTIC DISORDERS
1535-7597 EPILEPSY CURR EPILEPSY CURR
1525-5050 EPILEPSY BEHAV EPILEPSY & BEHAVIOR
0013-9580 EPILEPSIA EPILEPSIA
1011-288X DOULEUR ANALG Douleur et Analgesie
0963-8288 DISABIL REHABIL DISABILITY AND REHABILITATION
0378-5866 DEV NEUROSCI-BASEL DEVELOPMENTAL NEUROSCIENCE
1932-8451 DEV NEUROBIOL Developmental Neurobiology
8756-5641 DEV NEUROPSYCHOL DEVELOPMENTAL NEUROPSYCHOL-
OGY
0012-1622 DEV MED CHILD NEUROL DEVELOPMENTAL MEDICINE AND
CHILD NEUROLOGY
1940-5510 DEV DISABIL RES REV Developmental Disabilities Research Re-
views
1420-8008 DEMENT GERIATR COGN DEMENTIA AND GERIATRIC COGNI-
TIVE DISORDERS
1092-8480 CURR TREAT OPTION NE CURRENT TREATMENT OPTIONS IN
NEUROLOGY
1531-3433 CURR PAIN HEADACHE R CURRENT PAIN AND HEADACHE
REPORTS
1350-7540 CURR OPIN NEUROL CURRENT OPINION IN NEUROLOGY
0959-4388 CURR OPIN NEUROBIOL CURRENT OPINION IN NEUROBIOL-
OGY
1567-2026 CURR NEUROVASC RES CURRENT NEUROVASCULAR RE-
SEARCH
1570-159X CURR NEUROPHARMACOL Current Neuropharmacology
1528-4042 CURR NEUROL NEUROSCI Current Neurology and Neuro-
science Reports
1567-2050 CURR ALZHEIMER RES Current Alzheimer Research
0010-9452 CORTEX CORTEX
1758-8928 COGN NEUROSCI-UK COGNITIVE NEUROSCIENCE
0264-3294 COGN NEUROPSYCHOL COGNITIVE NEUROPSYCHOLOGY
1871-4080 COGN NEURODYNAMICS Cognitive Neurodynamics
1866-9956 COGN COMPUT Cognitive Computation
1543-3633 COGN BEHAV NEUROL Cognitive and Behavioral Neurology
1530-7026 COGN AFFECT BEHAV NE COGNITIVE AFFECTIVE & BEHAV-
IORAL NEUROSCIENCE
1755-5930 CNS NEUROSCI THER CNS Neuroscience & Therapeutics
1172-7047 CNS DRUGS CNS DRUGS
1871-5273 CNS NEUROL DISORD-DR CNS & Neurological Disorders-Drug
Targets
0269-2155 CLIN REHABIL CLINICAL REHABILITATION
1869-1439 CLIN NEURORADIOL CLINICAL NEURORADIOLOGY
1385-4046 CLIN NEUROPSYCHOL CLINICAL NEUROPSYCHOLOGIST
0362-5664 CLIN NEUROPHARMACOL CLINICAL NEUROPHARMACOL-
OGY
1388-2457 CLIN NEUROPHYSIOL CLINICAL NEUROPHYSIOLOGY
0722-5091 CLIN NEUROPATHOL CLINICAL NEUROPATHOLOGY
0303-8467 CLIN NEUROL NEUROSUR CLINICAL NEUROLOGY AND NEU-
ROSURGERY
0749-8047 CLIN J PAIN CLINICAL JOURNAL OF PAIN
1550-0594 CLIN EEG NEUROSCI CLINICAL EEG AND NEUROSCIENCE
0256-7040 CHILD NERV SYST CHILDS NERVOUS SYSTEM
1936-5802 CHEMOSENS PERCEPT Chemosensory Perception
0379-864X CHEM SENSES CHEMICAL SENSES
1210-7859 CESK SLOV NEUROL N CESKA A SLOVENSKA NEUROLOGIE A
NEUROCHIRURGIE
1473-4222 CEREBELLUM CEREBELLUM
1015-9770 CEREBROVASC DIS CEREBROVASCULAR DISEASES
1047-3211 CEREB CORTEX CEREBRAL CORTEX
0333-1024 CEPHALALGIA CEPHALALGIA
0044-4251 CENT EUR NEUROSURG Central European Neurosurgery
0272-4340 CELL MOL NEUROBIOL CELLULAR AND MOLECULAR NEU-
ROBIOLOGY
0008-4174 CAN J OCCUP THER CAN J OCCUP THER
0317-1671 CAN J NEUROL SCI CANADIAN JOURNAL OF NEUROLOGICAL

SCIENCES
0268-8697 BRIT J NEUROSURG BRITISH JOURNAL OF NEUROSURGERY
0896-0267 BRAIN TOPOGR BRAIN TOPOGRAPHY
1935-861X BRAIN STIMUL Brain Stimulation
1863-2653 BRAIN STRUCT FUNCT Brain Structure & Function
0165-0173 BRAIN RES REV BRAIN RESEARCH REVIEWS
0361-9230 BRAIN RES BULL BRAIN RESEARCH BULLETIN
1015-6305 BRAIN PATHOL BRAIN PATHOLOGY
0006-8993 BRAIN RES BRAIN RESEARCH
0093-934X BRAIN LANG BRAIN AND LANGUAGE
1931-7557 BRAIN IMAGING BEHAV Brain Imaging and Behavior
1443-9646 BRAIN IMPAIR BRAIN IMPAIRMENT
0269-9052 BRAIN INJURY BRAIN INJURY
0387-7604 BRAIN DEV-JPN BRAIN & DEVELOPMENT
0278-2626 BRAIN COGNITION BRAIN AND COGNITION
0006-8977 BRAIN BEHAV EVOLUT BRAIN BEHAVIOR AND EVOLUTION
0889-1591 BRAIN BEHAV IMMUN BRAIN BEHAVIOR AND IMMUNITY
0006-8950 BRAIN BRAIN
1471-2202 BMC NEUROSCI BMC NEUROSCIENCE
1471-2377 BMC NEUROL BMC Neurology
0301-0511 BIOL PSYCHOL BIOLOGICAL PSYCHOLOGY
0006-3223 BIOL PSYCHIAT BIOLOGICAL PSYCHIATRY
0340-1200 BIOL CYBERN BIOLOGICAL CYBERNETICS
0208-5216 BIOCYBERN BIOMED ENG BIOCYBERNETICS AND BIOMEDI-
CAL ENGINEERING
0735-7044 BEHAV NEUROSCI BEHAVIORAL NEUROSCIENCE
0955-8810 BEHAV PHARMACOL BEHAVIOURAL PHARMACOLOGY
0953-4180 BEHAV NEUROL BEHAVIOURAL NEUROLOGY
1744-9081 BEHAV BRAIN FUNCT Behavioral and Brain Functions
0166-4328 BEHAV BRAIN RES BEHAVIOURAL BRAIN RESEARCH
1566-0702 AUTON NEUROSCI-BASIC AUTONOMIC NEUROSCIENCE-
BASIC & CLINICAL
0045-0766 AUST OCCUP THER J Australian Occupational Therapy Journal
1040-0435 ASSIST TECHNOL ASSISTIVE TECHNOLOGY
1759-0914 ASN NEURO ASN NEURO
0004-282X ARQ NEURO-PSIQUIAT ARQUIVOS DE NEURO-PSIQUIATRIA
0003-9993 ARCH PHYS MED REHAB ARCHIVES OF PHYSICAL MEDICINE
AND REHABILITATION
0003-9942 ARCH NEUROL-CHICAGO ARCHIVES OF NEUROLOGY
0003-9829 ARCH ITAL BIOL ARCHIVES ITALIENNES DE BIOLOGIE
0914-9465 ARCH HISTOL CYTOL ARCHIVES OF HISTOLOGY AND CYTOL-
OGY
0887-6177 ARCH CLIN NEUROPSYCH ARCHIVES OF CLINICAL NEU-
ROPSYCHOLOGY
1090-0586 APPL PSYCHOPHYS BIOF APPLIED PSYCHOPHYSIOLOGY AND
BIOFEEDBACK
0908-4282 APPL NEUROPSYCHOL APPLIED NEUROPSYCHOLOGY
0268-7038 APHASIOLOGY APHASIOLOGY
0147-006X ANNU REV NEUROSCI ANNUAL REVIEW OF NEUROSCIENCE
0364-5134 ANN NEUROL ANNALS OF NEUROLOGY
0972-2327 ANN INDIAN ACAD NEUR ANNALS OF INDIAN ACADEMY OF
NEUROLOGY
0940-9602 ANN ANAT ANNALS OF ANATOMY-ANATOMISCHER
ANZEIGER
1748-2968 AMYOTROPH LATERAL SC Amyotrophic Lateral Sclerosis
0894-9115 AM J PHYS MED REHAB AMERICAN JOURNAL OF PHYSICAL
MEDICINE & REHABILITATION
0272-9490 AM J OCCUP THER AMERICAN JOURNAL OF OCCUPATIONAL
THERAPY
0195-6108 AM J NEURORADIOL AMERICAN JOURNAL OF NEURORADI-
OLOGY
1533-3175 AM J ALZHEIMERS DIS AMERICAN JOURNAL OF ALZHEIMERS
DISEASE AND OTHER DEMENTIAS
1552-5260 ALZHEIMERS DEMENT Alzheimers & Dementia
0893-0341 ALZ DIS ASSOC DIS ALZHEIMER DISEASE & ASSOCIATED DIS-
ORDERS
0741-8329 ALCOHOL ALCOHOL
0302-4350 AKTUEL NEUROL AKTUELLE NEUROLOGIE
1355-6215 ADDICT BIOL ADDICTION BIOLOGY
0360-1293 ACUPUNCTURE ELECTRO ACUPUNCTURE & ELECTRO-
THERAPEUTICS RESEARCH
0001-6322 ACTA NEUROPATHOL ACTA NEUROPATHOLOGICA
0001-6314 ACTA NEUROL SCAND ACTA NEUROLOGICA SCANDINAVICA
0300-9009 ACTA NEUROL BELG ACTA NEUROLOGICA BELGICA
0001-6268 ACTA NEUROCHIR ACTA NEUROCHIRURGICA
0065-1400 ACTA NEUROBIOL EXP ACTA NEUROBIOLOGIAE EXPERIMEN-
TALIS
0031-9023 PHYS THER PHYSICAL THERAPY
0031-9384 PHYSIOL BEHAV PHYSIOLOGY & BEHAVIOR
0079-6123 PROG BRAIN RES PROGRESS IN BRAIN RESEARCH
0278-5846 PROG NEURO-PSYCHOPH PROGRESS IN NEURO-
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PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY
0301-0082 PROG NEUROBIOL PROGRESS IN NEUROBIOLOGY
0925-4927 PSYCHIAT RES-NEUROIM PSYCHIATRY RESEARCH-
NEUROIMAGING
0306-4530 PSYCHONEUROENDOCRINO PSYCHONEUROENDOCRINOL-
OGY
0033-3158 PSYCHOPHARMACOLOGY PSYCHOPHARMACOLOGY
0048-5772 PSYCHOPHYSIOLOGY PSYCHOPHYSIOLOGY
0922-6028 RESTOR NEUROL NEUROS RESTORATIVE NEUROLOGY AND
NEUROSCIENCE
0035-3787 REV NEUROL-FRANCE REVUE NEUROLOGIQUE
0334-1763 REV NEUROSCIENCE REVIEWS IN THE NEUROSCIENCES
0033-698X RLA-REV LINGUIST TEO RLA-REVISTA DE LINGUISTICA TEOR-
ICA Y APLICADA
1103-8128 SCAND J OCCUP THER SCANDINAVIAN JOURNAL OF OCCU-
PATIONAL THERAPY
0932-433X SCHMERZ SCHMERZ
1878-4755 SEEING PERCEIVING SEEING AND PERCEIVING
1059-1311 SEIZURE-EUR J EPILEP SEIZURE-EUROPEAN JOURNAL OF
EPILEPSY
0271-8235 SEMIN NEUROL SEMINARS IN NEUROLOGY
1071-9091 SEMIN PEDIATR NEUROL SEMINARS IN PEDIATRIC NEUROL-
OGY
1749-5016 SOC COGN AFFECT NEUR Social Cognitive and Affective Neuro-
science

1747-0919 SOC NEUROSCI-UK Social Neuroscience
0899-0220 SOMATOSENS MOT RES SOMATOSENSORY AND MOTOR RE-
SEARCH
0169-1015 SPATIAL VISION SPATIAL VISION
1362-4393 SPINAL CORD SPINAL CORD
1011-6125 STEREOT FUNCT NEUROS STEREOTACTIC AND FUNCTIONAL
NEUROSURGERY
1025-3890 STRESS STRESS-THE INTERNATIONAL JOURNAL ON THE BI-
OLOGY OF STRESS
0039-2499 STROKE STROKE
0090-3019 SURG NEUROL SURGICAL NEUROLOGY
0887-4476 SYNAPSE SYNAPSE
1074-9357 TOP STROKE REHABIL Topics in Stroke Rehabilitation
1364-6613 TRENDS COGN SCI TRENDS IN COGNITIVE SCIENCES
0166-2236 TRENDS NEUROSCI TRENDS IN NEUROSCIENCES
1019-5149 TURK NEUROSURG Turkish Neurosurgery
0042-6989 VISION RES VISION RESEARCH
0952-5238 VISUAL NEUROSCI VISUAL NEUROSCIENCE

WIRES COGN SCI WIRES COGN SCI
1878-8750 WORLD NEUROSURG World Neurosurgery
1016-264X Z NEUROPSYCHOL ZEITSCHRIFT FUR NEUROPSYCHOLOGIE
1997-7298 ZH NEVROL PSIKHIATR Zhurnal Nevrologii I Psikhiatrii imeni S
S Korsakova
0044-4677 ZH VYSSH NERV DEYAT+ ZHURNAL VYSSHEI NERVNOI DEY-
ATELNOSTI IMENI I P PAVLOVA
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Figure A.1 – Pairwise Cosine Similarity across 50 model runs
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Figure A.2 – Pairwise Cosine Similarity across 50 model runs
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A.3 AsymptoticΦK with filters
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Figure A.3 – Average Standard Deviation for LDA: Asymptotic value over multiple retrainings
(75 or 100) of LDA for 10, 25, 50, 100, 250, 400, 800 and 1000 dimensions filtering out pairwise
similarities that satisfy ε< 0.1∀k
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Figure A.4 – Average Standard Deviation for LDA: Asymptotic value over multiple retrainings
(75 or 100) of LDA for 10, 25, 50, 100, 250, 400, 800 and 1000 dimensions filtering out pairwise
similarities that satisfy ε< 0.2∀k
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Figure A.5 – Average Standard Deviation for LDA: Asymptotic value over multiple retrainings
(75 or 100) of LDA for 10, 25, 50, 100, 250, 400, 800 and 1000 dimensions filtering out pairwise
similarities that satisfy ε< 0.3∀k
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Figure A.6 – Average Standard Deviation for LDA: Asymptotic value over multiple retrainings
(75 or 100) of LDA for 10, 25, 50, 100, 250, 400, 800 and 1000 dimensions filtering out pairwise
similarities that satisfy ε< 0.4∀k
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Figure A.7 – Average Standard Deviation for LDA: Asymptotic value over multiple retrainings
(75 or 100) of LDA for 10, 25, 50, 100, 250, 400, 800 and 1000 dimensions filtering out pairwise
similarities that satisfy ε< 0.5∀k
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Figure A.8 – Average Standard Deviation for doc2vec: Asymptotic value over multiple retrain-
ings (75 or 100) of doc2vec for 10, 25, 50, 100, 250, 400, 800 and 1000 dimensions filtering out
pairwise similarities that satisfy ε< 0.1∀k
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Figure A.9 – Average Standard Deviation for doc2vec: Asymptotic value over multiple retrain-
ings (75 or 100) of doc2vec for 10, 25, 50, 100, 250, 400, 800 and 1000 dimensions filtering out
pairwise similarities that satisfy ε< 0.2∀k
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Figure A.10 – Average Standard Deviation for doc2vec: Asymptotic value over multiple re-
trainings (75 or 100) of doc2vec for 10, 25, 50, 100, 250, 400, 800 and 1000 dimensions filtering
out pairwise similarities that satisfy ε< 0.3∀k
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Figure A.11 – Average Standard Deviation for doc2vec: Asymptotic value over multiple re-
trainings (75 or 100) of doc2vec for 10, 25, 50, 100, 250, 400, 800 and 1000 dimensions filtering
out pairwise similarities that satisfy ε< 0.4∀k
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Figure A.12 – Average Standard Deviation for doc2vec: Asymptotic value over multiple re-
trainings (75 or 100) of doc2vec for 10, 25, 50, 100, 250, 400, 800 and 1000 dimensions filtering
out pairwise similarities that satisfy ε< 0.5∀k
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Figure A.13 – Average Standard Deviation for NMF: Asymptotic value over multiple retrain-
ings (75 or 100) of NMF for 10, 25, 50, 100, 250, 400, 800 and 1000 dimensions filtering out
pairwise similarities that satisfy ε< 0.1∀k
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Figure A.14 – Average Standard Deviation for NMF: Asymptotic value over multiple retrain-
ings (75 or 100) of NMF for 10, 25, 50, 100, 250, 400, 800 and 1000 dimensions filtering out
pairwise similarities that satisfy ε< 0.2∀k
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Figure A.15 – Average Standard Deviation for NMF: Asymptotic value over multiple retrain-
ings (75 or 100) of NMF for 10, 25, 50, 100, 250, 400, 800 and 1000 dimensions filtering out
pairwise similarities that satisfy ε< 0.3∀k
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Figure A.16 – Average Standard Deviation for NMF: Asymptotic value over multiple retrain-
ings (75 or 100) of NMF for 10, 25, 50, 100, 250, 400, 800 and 1000 dimensions filtering out
pairwise similarities that satisfy ε< 0.4∀k
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Figure A.17 – Average Standard Deviation for NMF: Asymptotic value over multiple retrain-
ings (75 or 100) of NMF for 10, 25, 50, 100, 250, 400, 800 and 1000 dimensions filtering out
pairwise similarities that satisfy ε< 051∀k
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A.4 Jensen-Shannon and Top Words LDA
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(b) Top 10 words between most and least similar pair

Figure A.18 – “Traditional” stability of topics: different runs of LDA with 25 topics
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(b) Top 10 words between most and least similar pair

Figure A.19 – “Traditional” stability of topics: different runs of LDA with 50 topics

0 50 100 150 200 250
topics (1st run)

0

50

100

150

200

250re
-o

rd
er

ed
 to

pi
cs

 (2
nd

 ru
n)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Je
ns

en
-S

ha
nn

on
 d

ist
an

ce

(a) Similarity of topic-terms 1 and 2 (reordered)

Model 1 Model 2
Motor Cortex Motor Cortex
Electric Stimulation Electric Stimulation
Evoked Potentials, Motor Electromyography
Transcranial Magnetic Stimulation Evoked Potentials,Motor
Electromyography Transcranial Magnetic Stimulation
Magnetics Reaction Time
Reaction Time Magnetics
Functional Laterality Movement
Neural Inhibition Hand
Hand Functional Laterality
Amino Acid Transport System X-AG Carrier Proteins
ATP-Binding Cassette Transporters Membrane Transport Proteins
Symporters Membrane Glycoproteins
Excitatory Amino Acid Transporter 2 Nerve Tissue Proteins
Glutamate Plasma Membrane Transport Proteins Symporters
Glutamic Acid Dopamine Plasma Membrane Transport Proteins
Excitatory Amino Acid Transporter 1 Serotonin Plasma Membrane Transport Proteins
Excitatory Amino Acid Transporter 3 Vesicular Monoamine Transport Proteins
Carrier Proteins Vesicular Biogenic Amine Transport Proteins
Biological Transport Serotonin

Model 1 Model 2
Genotype Genotype
Polymorphism, Genetic Polymorphism, Genetic
Genetic Predisposition to Disease Genetic Predisposition to Disease
Gene Frequency Gene Frequency
Alleles Alleles
Polymorphism, Single Nucleotide Polymorphism, Single Nucleotide
Case-Control Studies Case-Control Studies
Haplotypes Haplotypes
Genetic Linkage Schizophrenia
Linkage Disequilibrium Genetic Linkage
Alcoholism Ethanol
Alcohol Drinking Alcoholism
Ethanol Conditioning, Operant
India Alcohol Drinking
Chiroptera Cocaine
Liver Substance Withdrawal Syndrome
Aldehyde Dehydrogenase Self Administration
Temperance Behavior, Animal
Acetaldehyde Reinforcement Schedule
Digoxin Central Nervous System Depressants

Most 
sim 

topic

Least 
sim 

topic

Most 
sim 

topic

Least 
sim 

topic

(b) Top 10 words between most and least similar pair

Figure A.20 – “Traditional” stability of topics: different runs of LDA with 250 topics
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B.1 Motivation & Empirical Evidence

B.1.1 Macro Evidence

Because macroeconomic trends have never (to the best of our knowledge) looked into the

headcount statistics, we suggest two examples from the life sciences as an attempt to illustrate

better the rate and direction (choice of direction) of scientific effort. The social returns to

these scientific efforts are often measured through publication counts or allocation of funding.

However, due to the difficulty of working with researcher data (mainly due to disambiguation

issues), the returns to human capital are rarely accounted for. We believe this perspective

provides new insights into the dynamics of science and its organisation since ultimately, all

projects are performed by active researchers. In order to do so, we analyse PUBMED data, for

which we can leverage author data by using Author-ity, a high-quality disambiguated database

of researchers by Torvik and Smalheiser (2009).

The Case for Cancer

Research productivity is usually measured through publication counts, and citations are

often a proxy for scientific quality. Bloom et al. (2020) suggest an alternative approach. In

their work, they use publication counts as an input and measure productivity with societal

advancements (related to the scientific fields of the input literature). For the life sciences, they

use life expectancy increases that link to research in different sub-fields. Following Bloom et al.

(2020)’s lead, we analyse one particular example, cancer deaths (all types). However, rather

than publications, we introduce workforce (count of researchers) as input. Furthermore, we

also incorporate FDA-approved cancer-related drugs as an output.
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Figure B.1 – Cancer Mortality Decrease per Researcher: (left axis) Yearly count of Publications
containing MeSH Term “Neoplasms” (solid red). Unique count of researchers contributing to
the identified publications (dotted black). (right axis) Yearly mortality rate decrease, computed
from survival rates five years after diagnostic for ages 50+ (dashed blue). Data extracted from
PUBMED, Author-ity and https://seer.cancer.gov/

.

Figure B.1 compares the rate of arrival of publications and unique researchers to cancer re-

search. For that, we count all the scientific publications indexed in PUBMED that include the

Medical Subject Heading (MeSH) term “Neoplasms” (solid red). We then count the unique

number of researchers involved in these publications (dotted black).1 The exponential growth

in researchers has not directly translated into the same rate of growth in publications. The

same figure also shows the Mortality Rate Decrease (changes in mortality rate from the previ-

ous year) by researcher involved (dashed blue).2

There is not a single reason that can fully explain the divergence in these trends. First, as

recent literature has pointed out, there could be an exhaustion of ideas (Bloom et al., 2020).

Second, as science advances, larger teams need to work in a single problem (Jones, 2009).

Alternatively, even, it is possible that through better disease understanding and prevention

measures, marginal gains are have rarefied. The headcount growth coincides with a worldwide

paradigm shift in cancer research, which moved to more applied work (Eckhouse et al., 2008).

Moreover, with the subsequent increase in funds directly targeted at cancer research (von

Eschenbach, 2003). Figure B.2 displays similar trends. This time, however, the publication

counts are a subset of the previous, identified as “Clinical Trials” by either typology or MeSH

term. Similarly, the researcher count takes only into account scientists involved in this article

1Unit count regardless of the number of contributions per year, as long as there is at least one
2See Appendix B

134

https://seer.cancer.gov/


B.1. Motivation & Empirical Evidence

subset. Along with the frequencies, we show the number of FDA-Approved drugs per active

researcher. 3
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Figure B.2 – FDA-Approved Drugs per researcher: (left axis). Yearly count of publications
containing MeSH Term “Neoplasms” and “Clinical Trial” or where the document type is
“Clinical Trial” (solid red). Yearly (unique) count of researchers contributing to the identified
publications (dotted black). Yearly count of FDA-Approved drugs (dashed blue). Data extracted
from PUBMED, Author-ity and https://nctr-crs.fda.gov/fdalabel/ui/search

.

The cancer trends seem to suggest that scientists engaging in a mature and resourceful topic

decrease their productivity both in terms of publication counts and overall reach (societal

impact) of their research. The increase in the number of active researchers is unparalleled by

neither the publication count nor the approval of new drugs.

We should not disregard the limitations to the figure. For instance, the latest breakthrough

research in cancer, has focused on personalised treatments — such as immunotherapy or the

underlying mechanisms of the genetic mutations that ultimately cause the disease (ACI, 2020).

These techniques will certainly have an enormous impact on the mortality rate, but require

time and the effort of many, while they probably do not show in the FDA statistics (yet, if at

all). Personalised therapies are driven on a case-by-case basis, and many of the developments

may also not be published. In addition, companies seem to be publishing science less often

(Arora et al., 2018), which might lead to a lower count of publications, albeit not necessarily a

lower count of researchers.

3FDA-Approved data extracted from FDA Databases keyword search https://nctr-crs.fda.gov/fdalabel/ui/search.
Results containing “Cancer”, “Tumour”, “Metastatic” and “Chemotherapy” are aggregated together by Year of Initial
USA Approval.

135

https://nctr-crs.fda.gov/fdalabel/ui/search
https://nctr-crs.fda.gov/fdalabel/ui/search


Appendix B. Chapter 2: Appendix

Next, we provide further evidence in support of our ideas from a different disease: malaria.

The Case for Malaria

By 1950, malaria was close to eradication in Europe and the United States. The discovery

of DDT insecticides and the first antimalarials between the great wars led to a substantial

decrease of outbreaks.4 In 1955 the recently created WHO established a campaign for its full

eradication. In subsequent years, however, resistance to the first treatments and insecticides

—along with a generalised ban on DDT compounds— led to a resurgence of the disease. From

1970 onward, the scientific community engaged in a race towards the control of malaria diffu-

sion (or eradication whenever possible). These research efforts led to the first vaccine trials

in 1987 (SPf66-vaccine) and 1992 (RTS,S vaccine) and the development of several treatment

compounds in the late 1980s.

Albeit only in developing countries, a drastic increase in the malaria burden drew international

coordination efforts through the Global Malaria Control Strategy 1993–2000 (WHO). In the late

1990s international cooperation and private non-profits began targeting malaria incisively

(The Global Fund, 2002; Malaria R&D Alliance, 2004; Bill and Melinda Gates Foundation,

2003-), thus boosting the availability of funds for research up to this day (Vaughan et al., 2012).

In order to gauge the productivity of research in malaria, we examine the input-output ratio

of research. As an input measure, we employ the number of (academic) researchers who

took part in at least one contribution in any given year. The output from the human capital

is measured with either the count of scientific publications in PUBMED that have “Malaria”

or “Malaria Vaccine” as a MeSH term, or a USPTO Patent count. We target two different

counts of patents: those that cite at least one scientific publication from the sample (follow-on

patents); and those that contain the term “malaria.” Only granted patents are considered in

our analysis. Data are extracted from The Lens (Jefferson et al., 2018), and researchers are

uniquely identified through their Microsoft Academic Graph ID. 5

Figure B.3 shows a rather suggestive trend in the field of malaria. One can only speculate about

the sudden drop in workforce and scientific publications following the first potential vaccine

trials in 1987 and 1992. The coetaneous increase in malaria-related patents hints towards a

shift of focus.6 During the 1980s, the race for a big hit on malaria was on, attracting an ever-

4DDT (dichlorodiphenyltrichloroethane) pesticides was first synthesised in 1874 by the Austrian chemist
Othmar Zeidler. DDT’s insecticidal action was discovered by the Swiss chemist Paul Hermann Mueller in 1939.
DDT was used in the second half of World War II to control malaria and typhus among civilians and troops. After
its widespread adoption and commercialisation, DDT was discovered to be extremely toxic, dangerous to the
environment, likely carcinogenic, leading to its ban a few years later.

5The researcher count in the early years might be lower than the real numbers due to missing information in
the retrieved publications. Researchers are indexed by a unique Microsoft Academic Graph ID

6Although we have tried to verify the data consistency or a source of literature that points towards the drop,
we have not been successful. Therefore, we do not discard that the sudden and rather large drop in publications
is a pure data artefact. In the Appendix – Figure B.5– we tested whether there was a displacement of researchers
towards HIV research, which we do not find.
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Figure B.3 – Research input-output for malaria: Left axis is the count of unique researchers
with at least malaria-related scientific article (dotted black). Right axis is the count of: malaria-
related scientific publications (solid red); follow-on patents (dashed blue); patents containing
the word “malaria” (dash-dot purple). Data extracted from The Lens

.

growing pool of researchers thriving for the reputation gains. The search for a suitable solution

to malaria infections was, by and large, a competition for priority, that spurred exploration

of ideas. With the advent of the first clinical trials, we conjecture, the focus shifted from ex-

ploratory (basic) research to more applied, close-to-market research. This change of approach,

changed the nature of research in the field to a consolidatory (or exploitative) approach, in-

creasing patentability and effectively slowing down the rate of publications in the field during

the 1990s.7 With the arrival of private capital in the 2000s, the number of researchers rapidly

rose at a faster-than-ever rate, while the rate of arrival of publications increased at a much

slower speed. The large stipends from private funds directed towards malaria research and

the association gains attracted many researchers, who engaged in cumulative research rather

than breakthrough advancements.

Unlike cancer, malaria is an infectious viral disease. The transmission mechanisms and

potential solutions —i.e., a working vaccine— are well understood. Therefore, we wonder

whether research steered from exploratory (and competitive) to exploitative as figure B.4

seems to indicate. It shows that the rate of patents per researcher directly citing academic

work has remained constant, while the number of articles and patents per researcher has not.

The two examples provided above raise many intriguing questions, and they have motivated

7With the inclusion of follow-on patents, we hope to convince the reader that the Bayh–Dole Act is not entirely
responsible for the rapid increase in patents.
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Figure B.4 – Research output ratio for malaria: Count ratio of publications per unique active
researcher in a given year for: scientific publications (solid red); follow-on patents (dotted
blue); patents containing the word “malaria” (dashed purple). Data extracted from The Lens

.

the ones we will address in this work. We are interested in studying the organisation of science

from the researcher’s viewpoint. However, before we do so, we attempt to find evidence that

can help explain two particular problems:

• What are the characteristics of fields displaying more breakthrough research?

• To what extent are researchers aware of the competition? How do they respond?

In the next section, we provide tentative empirical evidence spanning other specialities of

the life sciences, which will help motivate the formal model of science as a common-pool

resource game presented in Section 2.3

B.1.2 Micro-Empirical Evidence

This section presents descriptive evidence of a complex relationship between field charac-

teristics and the direction of research. Guided by the two questions raised in the previous

section, we provide some suggestive results. It should be noted, however, that our analysis

does not address endogeneity nor omitted variable bias. The objective of this section is merely

to document these observations and motivate the model developed in Section 2.3. We use a

data-driven approach that makes no use of ad-hoc field classifications nor heuristic groupings.
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Using topic modelling, researchers are associated based on the contextual similarity of their

work through techniques described in Chapter 1.

B.1.3 Where is breakthrough research published?

Wang et al. (2017) show how novel research within the boundaries of a subfield (that they call

the home field to the publication) suffers from a lower impact in the short term. In contrast,

highly novel papers are more likely to be highly cited in foreign fields (other than the field

where the paper was published). They find that novel papers are more likely to become big

hits, with follow-on research that generates a larger impact. Their results are not alien to the

scientometrics literature (Yegros-Yegros et al., 2015) nor other social science’s understanding of

science (Kuhn, 1977; Bourdieu, 1975). Groundbreaking research frequently faces confrontation

in the knowledge areas where it belongs. We use this distinguishing feature as a proxy for

impact to understand the characteristics of the field where an article is published. For this, we

regress citation counts from the home and foreign field on sub-field covariates.

Data: We collect PUBMED articles published between 2000–2002. The years chosen corre-

spond to a period of almost constant growth in NIH funding, the major source of funds for the

life sciences in the United States. Moreover, these years are well covered in Author-ity (Torvik

and Smalheiser, 2009). All these characteristics during this time period allow us to have a

buffer of high-quality data (a merge between the two databases) both before and after the

period, in order to compile forward citations and determine the years a researcher has been

active.

Journal Classification methods have largely been used in order to define specialities in science

(Wang et al., 2017; Boyack et al., 2005). We use a combination of Machine Learning tools

to automatically group journals that deal with similar topics. The groupings generated by

topic similarity will be our basis to define sub-fields. We use the methods described in

Chapter 1 applied to Journals for each year. Hence, we start by defining our "documents". We

characterise a Journal-Year document as the compilation of Medical Subject Headings (MeSH)

published in a given periodical throughout a year. That is, for each article that appeared in the

same journal during a year, we compile the MeSH terms. We then group all of the terms as a

single list of tokens and generate the document that represents any given Journal-Year.

We subsequently train a Doc2Vec model on Journal-Year documents ranging from 1985 to

2010 and generate inferred document embeddings (vectors) from 1985 to 2014. That com-

prises almost the entirety of our in-house PUBMED database. Following the same visuali-

sation methodology presented in Chapter 1 (t-SNE), we plot the resulting embeddings. A

2D projection of these can be found in the Appendix B in Figure B.7.8 The figure shows how

multiple clusters emerge “naturally” from the data. We self-validate the topic model with a

similarity-coherence test: excepting counted occasions, for each Journal-Year, the document

8Interactive figure online at: https://github.com/oballegon/Thesis/blob/master/doc2vec_journalYear_
19852010_150_5year.html
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embeddings corresponding to Journal-Year(-1) and Journal-Year(+1) are within the top-five

most similar documents. Finally, we cluster the journal-year vectors using Agglomerative

Clustering (a bottom-up approach to Hierarchical Clustering) in 100 groups that constitute

sub-fields.9

Dependent variables: We use unnormalised citation counts as dependent variables.10 There

are three variables of interest. First, internal forward citations, which come from papers

that belong to the same cluster as the focus article, the home field — i.e., are published in a

Journal-Year inside the same cluster. Second, outer forward citations, which come from papers

from other clusters, the foreign clusters. Third, for robustness, we also compute the three

Nearest Neighbours to a cluster, and count the citations received from outer fields excluding

the three nearest clusters. We also regress the percentage of outer citations. The raw counts are

regressed as unit offset logs, as it is standard with count data. Given the size of the sample and

the goal of finding simple descriptive relationships, other count models (Negative Binomial

and Poisson) were not considered, and the log-linear approximation deemed sufficient for the

level of analysis.

Independent variables: we collect basic article metrics including the number of coauthors

and the principal investigator (which we identify as the last author, as it is standard in the life

sciences). Using the article data, we characterise the clusters. Size of a cluster is computed for

each cluster-year as the count of PIs with at least three (we also compute for two) publications

in the cluster in the previous two years. The Growth of a cluster is also computed yearly as

the slope of a linear regression of Size on a five-year window around the focus year (two years

before and after). Size and Growth are then standardised ∼ N (0,1).

Algorithm 1 summarises the process to obtain the data for the cluster citations. The resulting

data is a panel of Articles from all biomedical specialities between years 2000–2002. Summary

statistics are displayed in Table B.1. We estimate Equation B.1.

CITi = εi +γ j +δt +β0 +β1FSizei j t +β2FGrowi j t +Ri (B.1)

where CIT represents the home (IN) or foreign (OUT) forward citations, γ j are field fixed effects,

δt are time fixed effects, FSizei j t and FGrowi j t are the home-field Size and Growth in the year

of the publication of the main article and Ri is a vector of article characteristics including

number of coauthors and impact (total number of forward citations). The results are displayed

in Table B.2.

The home field size has a negative correlation with forward citations from foreign fields

9The choice of 100 sub-topics is entirely arbitrary, and chosen for simplicity. Agglomerative Clustering is a
hierarchical method in which each element starts on its own individual cluster, and is paired up with the nearest
in each step until the threshold is achieved. This method is equivalent to an inverse dendrogram approach, where
pairs of elements are grouped together only when they are the closest among all the possibilities. It is therefore
convenient for grouping journals together based on their relative positions in the latent (topic) space.

10The use of unnormalised data introduces aa bias that we overcome through Year and Field fixed effects in the
regression model
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Algorithm 1: Pseudo Code to generate In-Out citations

input: PUBMED Articles 1985-2014
foreach Journal do

foreach Year do
Compile all publication MeSH;
Generate document embedding;

output: Journal-Year document vectors
↓

Clusters←Cluster(Journal-Year)
↓

input: Clusters; Author-ity DB; WoS DB
foreach Article do

ArtClus←Assign cluster from clusters(J-Y);
TotCit←Get Citations;
InCit← Citations from ArtClus;
OutCit← Citations not from ArtClus;
PI← Get Principal Investigator;
NumAuth ←Get Number of Authors;

output: ArticleData (ArtClus; TotCit; InCit; OutCit; PI; NumAuth)
↓

input: Clusters; ArticleData;
foreach Article do

sizeCl-PI←Count(PI in Cluster in 2-year window);
sizeCl-J←Count(Unique Journals in Cluster);
growCl-PI←Slope of Regress(size-PI) in 5 year window;
growCl-J←Slope of Regress(size-J) in 5 year window;

output: ArticleDataEnhanced(size-PI; size-J; grow-PI; grow-J)

Table B.1 – Summary Statistics Article Data

Mean StD Mi n M ax

Year 2001.03 0.82 2000 2002
Tot Cit 27.87 73.68 0 27700
Citations from same Cluster 5.07 11.02 0 1497
Citations from other Cluster 10.50 29.38 0 5938
Cit other Clust excluding 3 NN 7.91 23.52 0 5493
Num Coauthors 4.25 3.44 1 551
Growth Field (min 3P) 52.29 160.74 −460 709
Growth Field (min 2P) 120.29 299.04 −729 1235
Cluster Size (min 3P) 1094.16 987.07 0 4169
Cluster Size (min 2P) 2475.46 2208.12 2 9047

N 1172761
Clusters 100
Unique PIs 461074
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Table B.2 – OLS - Citation from Inside-Outside the article cluster

In Cit Out Cit Out Cit - 3NN % Out Cit
(1) (2) (3) (4)

Cluster Growth 0.144∗∗∗ −0.00757 0.00256 −0.00768∗∗∗

(0.00521) (0.00585) (0.00573) (0.00129)

Cluster Size (min 3P) 0.000307 −0.0401∗∗∗ −0.0526∗∗∗ −0.0101∗∗∗

(0.00893) (0.00984) (0.00956) (0.00196)

Coauthors 0.0573∗∗∗ 0.0730∗∗∗ 0.0666∗∗∗ −0.000471∗∗∗

(0.00283) (0.00356) (0.00338) (0.000106)

Total Citations 0.00496∗∗∗ 0.00621∗∗∗ 0.00594∗∗∗

(0.000560) (0.000697) (0.000665)

Observations 1.17M 1.17M 1.17M 0.97M

Standard errors in parentheses adjusted for heteroskedasticity

Including Year FE, Cluster FE, Principal Investigator FE, controls for number of coauthors, total citations and constant.

Dependent variables (1),(2),(3) are regressed using unit-offset natural logs.

Cluster Growth and Cluster Size enter the regression after standardisation.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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controlling for total number of citations. This outcome may, of course, stem from a simple

mechanical effect. The influence increases with field distance when we exclude the nearest

fields from the citation counts, as columns (3) and (4) in Table B.2 show. On the contrary, Size

is not significantly associated with citations within the field, while field Growth (arrival of more

researchers) does. Again, this could be a mechanical effect. Altogether these results suggest

that more innovative research (i.e. more citations from foreign specialities) are more likely

to be published in smaller fields. In contrast, exploitative research is more likely to appear in

fields attracting researchers at a higher rate. But, to what extent is this an active choice? Are

researchers aware of field size? In the next section, we explore whether there is a correlation

between the size and the placement of an article.

B.1.4 Are researchers aware of field size? How do they respond?

In this subsection, we show anecdotal evidence about the researcher’s decision to enter a

field. We would expect researchers to learn about field characteristics over time, and make an

informed choice on where to publish. In order to do so, we make use of the fields constructed

following Algorithm 1, and we generate a panel of entry into a field by a researcher. We then

proceed to estimate the following probability:

Entry j i t = ε j i +β1Ri +β2F j t +γt + c j i

β3(FSize j t ·Ri exp)+β4(FGrow j t ·Ri exp)+
β5(FSize j t ·Ri qual)+β6(FGrow j t ·Ri qual)

(B.2)

where Entry is a binary variable that takes value 1 when a PI publishes at least two articles in

a given year in a cluster where she has never published before. Ri is a vector of researcher i .

F j t is a vector of field j characteristics in year t . Ri exp is the experience of a researcher, as

the number of years between the entry event and the first indexed publication. Ri qual is a

proxy of the researcher’s ability through the log(Citations). Of particular interest are the signs

of the interaction terms between field size and growth, and researcher years of experience and

ability.

Data: We extract from Author-ity all PIs whose first indexed publication in PUBMED is between

1992 and 1996. Using the field classification from algorithm 1, we compute, for each PI, the

fields where she is active yearly. Entry in a field takes value 1 whenever she publishes two or

more articles in a field for the first time within a year. Entry takes value 0 for all the other fields

where she has past or future publications. The zeroes, then, capture those fields susceptible of

an entry event in a different year. We register entry events for five years, between 1999 and 2003.

We enrich the data with the average number of citations of articles in a field, average number

of coauthors of articles in a field, number of fields in which a researcher takes part (spread), the

average number of coauthors in the researcher’s publications and forward citations received

by the researcher.

Table B.4 shows the probability regression delineated in equation B.2. The negative coefficients
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Table B.3 – Summary Statistics Entry

Mean StD Mi n M ax

Entry 0.01 −− 0 1
Year 2001.00 1.41 1999 2003
Researcher Experience 7.59 1.96 3 11
Rs Spread 9.44 4.79 1 41
Rs Avg Coauthors 5.18 1.71 1 23
Rs Avg Citations 31.65 31.31 0 903
Field Growth 34.66 130.37 −479 908
Field Size 781.49 767.45 0 3751
Field Avg Coauthors 4.68 0.82 3 7
Field Avg Citations 33.34 17.95 0 122

N 520500
Researchers 15314

of the first row suggest that researchers with more years of experience might be more aware of

the size of the field. Therefore, should the number of incumbent researcher be a good proxy

for competition in the field, there is a possible interpretation of the coefficients as awareness

of competition. The probability of entering an above-average-size field decreases steadily with

researcher experience.

In turn, researchers who ultimately receive more credit are less likely to enter fields while they

are extensively growing. The interaction term —F Growth × Res logCit — provides tentative

evidence that higher ability researchers might deter from publishing in high-growth fields.

It suggests that more impactful scientists avoid entering directly into “exploitation” fields.

Growth does not significantly correlate with the probability to enter of more experienced

researchers in the same way that size effects do not vary across ability.

Reflecting upon the empirical descriptive tables presented in the section herein hints that

researcher strategic behaviour may have an impact on the organisational characteristics

of science. The evidence is consistent with researchers that are aware of the existence of

competition and react accordingly. Scientists will then pursue the strategy that will yield the

most significant benefit. Researchers with higher impact (with more citations) seem to avoid

exploitation, while the more experienced avoid competition. At the same time, scientific

advancements yielding a higher impact are published in below-average-size fields that are not

(yet) rapidly attracting more investigators. Scientists are seemingly aware of their abilities and

surrounding and place their work accordingly. As a consequence of these observations, we

instinctively propose the introduction of appropriability in science modelling as developed in

the following section.
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Table B.4 – Field Entry Probability

OLS OLS Logit Probit
(1) (2) (3) (4)

F Size × Res Exp −0.000173∗∗ −0.0250∗∗∗ −0.00816∗∗
(0.0000681) (0.00884) (0.00320)

F Growth × Res Exp −0.000166∗∗ 0.00450 0.000166
(0.0000785) (0.00741) (0.00283)

F Size × Res logCit −0.000165 −0.000161 −0.000361
(0.000145) (0.0220) (0.00771)

F Growth × Res logCit −0.000428∗∗ −0.0329∗ −0.0126∗
(0.000207) (0.0194) (0.00716)

Field Size 0.00307∗∗∗ 0.291∗∗∗ 0.105∗∗∗
(0.000747) (0.0996) (0.0355)

Field Growth 0.00514∗∗∗ 0.322∗∗∗ 0.136∗∗∗
(0.00100) (0.0912) (0.0342)

Res Exp −0.000746∗∗∗ −0.000769∗∗∗ −0.150∗∗∗ −0.0543∗∗∗
(0.0000593) (0.0000598) (0.0126) (0.00450)

Res logCit 0.000257∗ 0.000247∗ −0.0330 −0.0117
(0.000135) (0.000134) (0.0228) (0.00811)

Res Spread 0.0316∗∗∗ 0.0117∗∗∗
(0.00333) (0.00123)

Res Coau 0.0104 0.00381
(0.0107) (0.00380)

Field Coau 0.0844∗∗∗ 0.0290∗∗∗
(0.0228) (0.00810)

Field logCit 0.0355 0.00702
(0.0459) (0.0161)

Year FE Y es Y es

Constant 0.0115∗∗∗ 0.0117∗∗∗ −4.879∗∗∗ −2.407∗∗∗
(0.000651) (0.000652) (0.187) (0.0658)

Observations 520500

Standard errors in parentheses clustered at the Researcher Level
Cluster Growth and Cluster Size enter the regression after standardisation.
Researcher Fixed Effects were considered but the models failed to converge.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B.2 HIV-Malaria

The exponential increase of resources dedicated to HIV/AIDS research in the late 80s and

early 90s meant it became the "hot topic". Figure B.5 shows that the decrease in Malaria

research is not due to academics jumping fields. The researchers with publications in both

fields within the decade never pile up to more than 1% of the total (unique) researchers per

year in HIV-related publications.
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Figure B.5 – Research input-output for HIV: Count of: scientific publications with MeSH term
"HIV" or "HIV-1" or "HIV Infections" (red); Unique Researchers contributing at least to one
publication in a given year (black); Researchers with at least one Malaria-related publication
between 1983-1992 contributing to an HIV-publication (blue). Data extracted from The Lens
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B.3 Cancer
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Figure B.6 – Mortality Rate All Cancer Age 50+: Mortality rate 5 years after diagnostic (red);
Smoothed mortality rate (blue); Decrease in Mortality rate (difference from t −1) (black). Data
from https://seer.cancer.gov/
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B.4 Clustering Fields

Figure B.7 – 2D Projection of Journal-Year embeddings Doc2Vec traning on Journal-Year
documents. 150 dimensions projected in 2D. Axes (and hence distances) have no intrinsic
meaning in this render. Color-coded by groups of 5 years.

B.5 An Extension: Researcher choices as two-period discrete choice

model

Motivating the inclusion of dynamics in the study of scientific sub-fields is an easy task.

Science is a highly volatile endeavour in which incremental contributions and technological

change vastly shape the topics with which it deals the most. In order to instil the inclusion

of active choice by the researchers, let us look back at the work of sociologists of science,
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following the discourse of the entire chapter.

Once again, sociologists have extensively discussed research choice and problem selection

(Busch et al., 1983; Gieryn, 1978; Zuckerman, 1978). Nevertheless, it is mostly the work of

Kuhn (1977) and later (Bourdieu, 1975) that defined the “interplay” between tradition and

innovation (Kuhn) [succession and subversion for Bourdieu] and provided a framework for the

consolidation of new fields.11 Albeit with some particularities, they both argued that scientists

were trained in the existing corpus of knowledge in a field. They then faced the strategic choice

between converging or deviating from the tradition. Along these lines, recent empirical work

by Foster et al. (2015) has tested the dichotomy between innovation and consolidation with

conclusive results.

Economic models of research have also explored researcher choices and given academic

freedom a high consideration. Aghion et al. (2008) model the process of innovation, stating

as a key assumption the creative independence of researchers. For them, the decision lies

between a practical and an alternative strategy entirely up to the academics to follow. Similarly,

the research cycles model by Bramoulle and Saint-Paul (2010) allows scientist to allocate their

choice of effort between “the exploitation of existing fields and the invention of new ones"

following Kuhn’s model of scientific evolution.

As an extension of 2.3, I present a single-agent two-period choice model for the individual

researcher inspired by the two-period self-employment model by Humphries (2019). The

researcher has now an active choice in the decision to either innovate or consolidate (explore

or exploit). Science is still organised around communities of topic speciality, to which a

researcher belongs. The strategic action is presented by a class of dynamic discrete choice

model, in which researchers devote their time to either task in each time period, depending

on their expectations and own abilities. With this formulation, it is possible to interpret the

rationale between the researchers’ career and their discrete choices between exploration and

exploitation within their knowledge area.

Let us assume only non-pecuniary benefits to the research choice. The per-period payoff of

choosing consolidation (the average returns as described in sub-section 2.3) is given by:

b(θ,hexploi t ,t ,hi nnovate,t )+εex,t (B.3)

where b is the average returns to the contributions in the sub-field, which depends on ability θ

and, given the time component, we incorporate the accumulated experience h in exploitation

or exploration research hex,t ,hi nn,t respectively. εex,t is the idiosyncratic shock to average

returns. On the other hand, the per-period returns to exploration are given by:

ζ(θ,hex,t ,hi nn,t )Eα
t −Et +γE1 +εi nn,t (B.4)

11While Kuhn’s book was published later, most of the research had been published before Bourdieu’s contribution;
hence the “later".
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where ζ is the weight of the individual characteristics of the researchers (ability θ and accumu-

lated experience h) to the exploration Effort E . For simplicity, let us assume the investment in

effort has a Cobb-Douglas productivity with elasticity α, and there is an upfront reward (kind

of a risk premium) γE1 for undertaking innovative activities. The key assumption here is that

successful innovations will receive a lasting reward for their effort to innovate, parametrised by

γ< 1 for each speciality. It works as a recognition prize for the successful innovator, indepen-

dent of the contribution size —i.e. the Cobb-Douglass return on Effort times the productivity

of the researcher.12 The researcher starting off the exploration of a novel research question

or an alternative formulation, will face larger efforts to attract both resources and support to

these novel ideas. Hence the γE1 term as a sunk cost.

Taking these payoffs, we construct the indirect utility function for a researcher as a 2-period

Bellman Equation (recursive expression of the dynamic programming problem) with a dis-

counting factor β for the (indirect) utility of the future periods. Hence, for period one, the

researcher’s expected utility of consolidation (exploitation) is:

V1,exploi t (E1,θ,0,0) = b(θ,0,0)+εex,t +βE [V (θ,E1,1,0)] (B.5)

and for innovation (exploration):

V1,explor e (E1,θ,0,0) = ζ(θ,0,0)Eα
1 − (1−γ)E1 +εi nn,t +βE [V (θ,E1,0,1)] (B.6)

Taking the first order condition from equation B.6 we can derive the optimal level of Effort E∗
1 :

αζ(θ,0,0)Eα−1
1 = (1−γ)+β ∂

∂E∗
1

E [V (θ,E1,0,1)] (B.7)

And, assuming that εex,t and εi nn,t both have Type-I Extreme Value Distributions, the binomial

choice problem can be expressed using a logistic choice model and equation B.7 can be written

as 13:
αζ(θ,0,0)Eα−1

1 =1+γ(−1+βPr (inn | E1,0,1)

≈ 1−γ ·Pr (ex | E1,0,1)
(B.8)

so:

E∗
1 =

[
αζ(θ,0,0)

1+γ(−1+βPr (inn | E1,0,1)

] 1
1−α

(B.9)

and:

E∗
2 =

[
αζ(θ,hex,1,hi nn,1)

1−γ
] 1

1−α
(B.10)

12γ may also be understood as an enabler. Some communities have more traditional views (more risk-averse or
sceptical). Hence, a lower γ signals less recognition, or lower propensity to, for example, obtain future grants. Low
relative γ is thus a “penalty”.

13See Appendix B.6 for details
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Discussion

In the two-period model, the optimal allocation of effort on the first period E∗
1 depends on

the probability that the researcher will consolidate in subsequent periods. If the indirect

utility function for exploitation in t = 2 has a larger value than for innovation (conditional on

innovating at t = 1), the researcher will allocate a greater effort to innovation, knowing she

will later consolidate the acquiered knowledge. Similarly, one’s self productivity influences

the optimal level of effort. On the contrary, fields in which cumulative innovative experience

has a large weight on the outcome, call for lower optimal initial levels of effort. Intuitively,

the model suggests a researcher will place her odds based on the speciality characteristics. In

those knowledge areas where mistakes are costly —experience is paramount— researchers

will choose either low innovation efforts early in their careers or consolidation research.

On the second period, the optimal allocation of effort E∗
2 , should the researcher choose to

innovate, depends on the intrinsic value given by the field to innovation γ. A researcher may

forego exploratory research early in their careers if their payoffs are lower in exploitation.

Alternatively, if the community penalises risky activities (low γ). She might find an optimal

strategy to take more risky research at the end of the career when experience compensates the

skewness in preferences towards traditional avenues of investigation.

An external positive shock to the sub-field γ may cause exploration-intensive periods. For

instance, in the outbreak of a new disease, rapid scientific advancements have a longstanding

effect on the reputation of the scientist, increasing the value of the innovation career-path.

Such a shock should be short but involve relatively large efforts. Nonetheless, a negative shock,

such as risk-averse funding schemes, will hinder the utility value of exploration, ultimately

leading researchers into exploitation. Monetary incentives lacking the adequate reward

mechanisms for scientists will enlarge the pool of contributors to consolidation research.

This outcome is particularly relevant in funding policy design: lump-sum increases in research

expenditure might lead to decreasing productivity with an ill-designed incentive scheme.

They, alone, do not suffice to guarantee great leaps forward.

The model’s implications can be summarised as follows:

• Researchers who expect to capitalise on early-career innovations (exploit later on), will

devote greater efforts if they choose to be disruptive.

• A higher productivity premium (due to either ability or experience) leads to a higher

allocation of efforts to innovation. Hence, traditional specialities will see late-stage

researchers with a propensity to innovate.

• External shocks to the reward scheme may be the cause of innovation/exploitation. A

sudden change in γ will affect the optimal effort levels and the propensity of researchers

to choose either.

• Consolidation will be preferred by the majority in mature fields where the risk premium
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is low.

• Entering late-career innovation is only possible in those specialities where experience in

exploitation and exploration are close substitutes. This transferable skill is particularly

symbolic in, perhaps, the social sciences.

This simple model provides a new perspective to the matter in hand: how are fields’ contribu-

tions distributed, between innovation and consolidation, subversion and tradition. With only

preferences from individual researchers but now including a dynamic effect, we derive new

policy implications and continue to explain the observations from the empirical literature.

B.6 Discrete Choice Model: Type-I GEV results in logit distribution

The following derivation is based on the textbooks of Amemiya (1990) and Train (2009), which

are, in turn, using the first derivation of Logit models for Discrete Choice Theory by McFadden

(1974):

In a behavioral model, the agent makes the choice between alternatives selecting the one that

provides the greates utility. For agent n there exist j = 1...J alternatives which provide utility

Un j . Thus, the agent will chose alternative i if and only if Uni >Un j∀i 6= j . The utility can

be decomposed in the observed (indirect) utility Vn j and the unobserved (by the researcher)

attributes εn j such that Un j =Vn j +εn j where εn j is unknown, and therefore treated as random

with (joint) density f (εn). Hence, the probability that the decision-maker n selects alternative

i is given by:
Pni = Prob(Uni >Un j ∀i 6= j )

= Prob(Vni +εni >Vn j +εn j ∀i 6= j )

= Prob(εn j −εni < Vni −Vn j ∀i 6= j )

=
∫
ε
(εn j −εni < Vni −Vn j ∀i 6= j ) f (εn)dεn

(B.11)

Where I (·) is an indicator function that takes value 1 when the term is true and 0 otherwise.

Under certain assumptions of the distribution of the error term εn , the integral expression in

equation B.11 has a closed form or has a numerical solution.

In order to derive equation B.8, we had assumed εn j is distributed following a Type-I Extreme

Value Distribution (also known as Gumbel distribution). The main reason behind the assump-

tion, is the simplicity in the derivation of the closed form of the integral in equation B.11 under

iid Type-I Extreme Value errors. Each error term follows then:

f (εn j ) = e−εn j e−e−εn j

and the cumulative distribution is:

F (εn j ) = e−e−εn j
(B.12)
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From B.11 we know that Pni is the cumulative distribution for each εn j evaluated at εni +Vni −
Vn j . Since ε are iid, the cumulative distribution over all j 6= i is the product of all individual

cumulative distributions. Hence, from equation B.12:

Pni |εni =
∏
j 6=i

e−e−εni +Vni −Vn j
(B.13)

and from equation B.11:

Pni =
∫ ∞

−∞

(∏
j 6=i

e−e−εni +Vni −Vn j

)
e−εni e−e−εni dεni (B.14)

some algebraic transformations, using the exponent of e, yields:

Pni =
∫ ∞

−∞
exp

(
−∑

j
−e−(εni+Vni−Vn j )

)
e−εni dεni

=
∫ ∞

−∞
exp

(
−e−εni

∑
j
−e−(Vni−Vn j )

)
e−εni dεni

And, if we define t = exp(−ε), such that −exp(−ε)dε= d t , we have that:

Pni =
∫ 0

∞
exp

(
−t

∑
j
−e−(Vni−Vn j )

)
(−d t )

=
∫ ∞

0
exp

(
−t

∑
j
−e−(Vni−Vn j )

)
(d t )

= exp
(−t

∑
j −e−(Vni−Vn j )

)
−∑

j −e−(Vni−Vn j )

∣∣∣∣∣
∞

0

= eVni∑
j eVn j

(B.15)

which corresponds to a logit choice probability as a function of the indirect utilities of the

agent.
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C.1 Review Articles

Human embryonic stem cells. Pera, MF et al.; 2000. Journal Of Cell Science

The embryonic origins of human haematopoiesis. Marshall, CJ and Thrasher, AJ; 2001.

British Journal Of Haematology

Multilineage differentiation from human embryonic stem cell lines. Odorico, JS et al.; 2001.

Stem Cells

The derivation and potential use of human embryonic stem cells. Trounson, A.O.; 2001.

Reproduction Fertility And Development

Derivation and potential applications of human embryonic stem cells. Gepstein, L.; 2002.

Circulation Research

Derivation and spontaneous differentiation of human embryonic stem cells. Amit, M and

Itskovitz-Eldor, J; 2002. Journal Of Anatomy

Characterization and differentiation of human embryonic stem cells. Carpenter, MK et al.;

2003. Cloning And Stem Cells

Human embryonic stem cells for cardiovascular repair. Nir, SG et al.; 2003. Cardiovascular

Research

Derivation, propagation and differentiation of human embryonic stem cells. Conley, BJ et al.;

2004. International Journal Of Biochemistry and Cell Biology

The immunogenicity of human embryonic stem-derived cells. Drukker, M and Benvenisty, N;

2004. Trends In Biotechnology

Derivation, characterization, and differentiation of human embryonic stem cells. Heins, N et

al.; 2004. Stem Cells

Conserved and divergent paths that regulate self-renewal in mouse and human embryonic

stem cells. Rao, M.; 2004. Developmental Biology

Immunogenicity of human embryonic stem cells: can we achieve tolerance?. Drukker, M.;

2004. Springer Seminars In Immunopathology

Derivation, growth and applications of human embryonic stem cells. Stojkovic, M et al.; 2004.

Reproduction
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Human embryonic stem cells: prospects for development. Pera, MF and Trounson, AO; 2004.

Development

The promise of human embryonic stem cells. Gerecht-Nir, S and Itskovitz-Eldor, J; 2004. Best

Practice and Research In Clinical Obstetrics and Gynaecology

Human embryonic stem cells as a model for early human development. Dvash, T and Ben-

venisty, N; 2004. Best Practice and Research In Clinical Obstetrics and Gynaecology

Characterization and culture of human embryonic stem cells. Hoffman, LM and Carpenter,

MK; 2005. Nature Biotechnology

Differentiation pathways in human embryonic stem cell-derived cardiomyocytes. Lev, S et al.;

2005. Communicative Cardiac Cell

Culture development for human embryonic stem cell propagation: molecular aspects and

challenges. Rao, BM and Zandstra, PW; 2005. Current Opinion In Biotechnology

Genetic manipulation of human embryonic stem cells: A system to study early human de-

velopment and potential therapeutic applications. Menendez, P et al.; 2005. Current Gene

Therapy

Hematopoietic development from human embryonic stem cell lines. Wang, L et al.; 2005.

Experimental Hematology

Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal

cord injury. Faulkner, J and Keirstead, HS; 2005. Transplant Immunology

Differentiation of human embryonic stem cells after transplantation in immune-deficient

mice. Przyborski, S. A. ; 2005. Stem Cells

Human blastocyst culture and derivation of embryonic stem cell lines. Bongso, Ariff and Tan,

Shawna; 2005. Stem Cell Reviews

Cloned human embryonic stem cells for tissue repair and transplantation. Hwang, Woo Suk

et al.; 2005. Stem Cell Reviews

A molecular basis for human embryonic stem cell pluripotency. Noggle, Scott A. et al.; 2005.

Stem Cell Reviews

Human embryonic stem cells - An in vitro model to study mechanisms controlling pluripo-

tency in early mammalian development. Vallier, Ludovic and Pedersen, Roger A.; 2005. Stem

Cell Reviews

Human embryonic stem cell stability. Hoffman, Lisa M. and Carpenter, Melissa K.; 2005.

Stem Cell Reviews

Manipulation of the human genome in human embryonic stem cells. Kopper, Oded and

Benvenisty, Nissim; 2005. Stem Cell Reviews

Human embryonic stem cells - Potential tool for achieving immunotolerance?. Menendez,

Pablo et al.; 2005. Stem Cell Reviews

Development and differentiation of neural rosettes derived from human embryonic stem cells.

Wilson, Patricia G. and Stice, Steve S.; 2006. Stem Cell Reviews

Human embryonic stem cells: a journey beyond cell replacement therapies. Menendez, P. et

al.; 2006. Cytotherapy

The production and directed differentiation of human embryonic stem cells. Trounson, A.;

2006. Endocrine Reviews
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Evaluating human embryonic germ cells: Concord and conflict as pluripotent stem cells.

Turnpenny, Lee et al.; 2006. Stem Cells

Hematopoiesis from human embryonic stem cells: Overcoming the immune barrier in stem

cell therapies. Priddle, Helen et al.; 2006. Stem Cells

Concise review: Scientific and ethical roadblocks to human embryonic stem cell therapy.

Gruen, Lori and Grabel, Laura; 2006. Stem Cells

Human embryonic stem cells as a powerful tool for studying human embryogenesis. Dvash,

Tamar et al.; 2006. Pediatric Research

Differences between human embryonic stem cell lines. Allegrucci, C. and Young, L. E.; 2007.

Human Reproduction Update

Strategies for preventing immunologic rejection of transplanted human embryonic stem cells.

Cabrera, C. M. et al.; 2006. Cytotherapy

Human embryonic stem cells: Long term stability, absence of senescence and a potential cell

source for neural replacement. Zeng, X. and Rao, M. S.; 2007. Neuroscience

The human embryonic stem cell-derived cardiomyocyte as a pharmacological model. Harding,

Sian E. et al.; 2007. Pharmacology and Therapeutics

The regulation of self-renewal in human embryonic stem cells. Avery, Stuart et al.; 2006. Stem

Cells And Development

Concise review: No breakthroughs for human mesenchymal and embryonic stem cell culture:

Conditioned medium, feeder layer, or feeder-free; Medium with fetal calf serum, human

serum, or enriched plasma; Serum-free, serum replacement nonconditioned medium, or ad

hoc formula? All that glitters is not gold!. Mannello, Ferdinando and Tonti, Gaetana A.; 2007.

Stem Cells

Xeno-free derivation and culture of human embryonic stem cells: current status, problems

and challenges. Lei, Ting et al.; 2007. Cell Research

Human embryonic stem cells: Current technologies and emerging industrial applications.

Ameen, Caroline et al.; 2008. Critical Reviews In Oncology Hematology

Immunogenicity of human embryonic stem cells. Grinnemo, Karl-Henrik et al.; 2008. Cell

And Tissue Research

Critical issues of clinical human embryonic stem cell therapy for brain repair. Li, Jia-Yi et al.;

2008. Trends In Neurosciences

Differentiation of embryonic stem cells to clinically relevant populations: Lessons from em-

bryonic development. Murry, Charles E. and Keller, Gordon; 2008. Cell

Genetic modification of human embryonic stem cells for derivation of target cells. Giudice,

Antonietta and Trounson, Alan; 2008. Cell Stem Cell

Deconstructing human embryonic stem cell cultures: niche regulation of self-renewal and

pluripotency. Stewart, Morag H. et al.; 2008. Journal Of Molecular Medicine-Jmm

Human embryonic stem cells: origins, characteristics and potential for regenerative therapy.

Mountford, J. C.; 2008. Transfusion Medicine

The tumorigenicity of human embryonic stem cells. Blum, Barak et al.; 2008. Advances In

Cancer Research, Vol 100

Neural Differentiation of Human Embryonic Stem Cells. Dhara, Sujoy K. and Stice, Steven L.;
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2008. Journal Of Cellular Biochemistry

Human embryonic stem cells for cardiomyogenesis. Habib, Manhal et al.; 2008. Journal Of

Molecular And Cellular Cardiology

Human Embryonic Stem Cell Differentiation Toward Regional Specific Neural Precursors.

Erceg, Slaven et al.; 2009. Stem Cells

Surface marker antigens in the characterization of human embryonic stem cells. Wright,

Andrew J. and Andrews, Peter W.; 2009. Stem Cell Research

Challenges of Stem Cell Therapy for Spinal Cord Injury: Human Embryonic Stem Cells,

Endogenous Neural Stem Cells, or Induced Pluripotent Stem Cells?. Ronaghi, Mohammad et

al.; 2010. Stem Cells

The human sperm epigenome and its potential role in embryonic development. Carrell,

Douglas T. and Hammoud, Saher Sue; 2010. Molecular Human Reproduction

Differentiation of Human Embryonic Stem Cells to Cardiomyocytes for In Vitro and In Vivo

Applications. Vidarsson, Hilmar et al.; 2010. Stem Cell Reviews And Reports

Translational potential of human embryonic and induced pluripotent stem cells for myocar-

dial repair: Insights from experimental models. Kong, Chi-Wing et al.; 2010. Thrombosis

And Haemostasis

Human motor neuron generation from embryonic stem cells and induced pluripotent stem

cells. Nizzardo, M. et al.; 2010. Cellular And Molecular Life Sciences

Human embryonic stem cells: Derivation, culture, and differentiation: A review. Vazin, Tandis

and Freed, William J.; 2010. Restorative Neurology And Neuroscience

Cardiac regeneration using human embryonic stem cells: producing cells for future therapy.

Wong, Sharon S. Y. and Bernstein, Harold S.; 2010. Regenerative Medicine

Potential of Human Embryonic Stem Cells in Cartilage Tissue Engineering and Regenerative

Medicine. Toh, Wei Seong et al.; 2011. Stem Cell Reviews And Reports

New Approaches in the Differentiation of Human Embryonic Stem Cells and Induced Pluripo-

tent Stem Cells toward Hepatocytes. Behbahan, Iman Saramipoor et al.; 2011. Stem Cell

Reviews And Reports

Biomaterials for the Feeder-Free Culture of Human Embryonic Stem Cells and Induced

Pluripotent Stem Cells. Higuchi, Akon et al.; 2011. Chemical Reviews

The tumorigenicity of human embryonic and induced pluripotent stem cells. Ben-David, Uri

and Benvenisty, Nissim; 2011. Nature Reviews Cancer

Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells to

Cardiomyocytes A Methods Overview. Mummery, Christine L. et al.; 2012. Circulation

Research

158



C.2. Matching

C.2 Matching
0

.0
5

.1
.1

5
Ke

rn
el

 D
en

si
ty

0 5 10 15 20 25
Patent Citations in 7 y window

Fed Fund Control

Unmatched Sample

(a) All sample - unmatched

0
.0

2
.0

4
.0

6
.0

8
.1

Ke
rn

el
 D

en
si

ty

0 5 10 15 20 25
Patent Citations in 7 y window

Fed Fund Control

Matched Sample

(b) All sample - matched

0
.0

5
.1

.1
5

.2
Ke

rn
el

 D
en

si
ty

0 5 10 15 20 25
Patent Citations in 7 y window

Fed Fund Control

(c) Pre-ban - unmatched

0
.0

5
.1

.1
5

.2
Ke

rn
el

 D
en

si
ty

0 5 10 15 20 25
Patent Citations in 7 y window

Fed Fund Control

(d) Pre-ban - matched

Figure C.1 – CEM Matching Densities: Comparison of Matched and Unmatched densities
for Patent Citations to root articles in a 7-year window. For the full sample, CEM-matching
improves the L1 imbalance metric from 0.6828 down to 0.3354. There are just 22 unmatched
samples out of 244 treated elements. For the pre-ban, the L1 imbalance metric from 0.7056
down to 0.3871.

C.3 Model Selection

The following tables and figures support the choice of a Negative Binomial Regression instead

of a Poisson Model Regression in Chapter 3.
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Figure C.2 – Density Plots for Citation Counts showing overdispersion of the count variables.
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C.3. Model Selection

Table C.1 – Count Model Statistics

SciCit PatCit7y PatPatCit7_5y
(1) (2) (3)

Poisson model statistics
DV = Citations from Articles (1) and Patents (2,3)

AIC 50571.0 18733.4 61755.4
BIC 50660.7 18823.1 61845.0
Log-likelihood −25265.5 −9346.7 −30857.7
Chi2 251.7 108.2 246.5
Pearson 82617.6 27510.0 142723.5
Deviance 46900.7 16507.9 59575.1

Zero Inflated Poisson model statistics
DV = Citations from Articles (1) and Patents (2,3)

AIC 37475.31 15486.07 43208.29
BIC 37578.45 15589.22 43311.43
Log-likelihood −18714.65 −7720.034 −21581.14
chi2 235.67 108.33 238.66

Negative Binomial model statistics
DV = Citations from Articles (1) and Patents (2,3)

AIC 7219.6 4711.9 5065.3
BIC 7309.3 4801.6 5155.0
Log-likelihood −3589.8 −2335.9 −2512.7
chi2 260.7 115.3 130.7
Pearson 615.7 713.9 502.4
Deviance 796.0 752.6 699.2
Alpha 1.171∗∗∗ 1.916∗∗∗ 4.075∗∗∗

(0.217) (0.179) (0.431)

Observations 656 656 656

This table presents the model statistics for Poisson, Negative Binomial and Zero Inflated
Poisson models, in order to determine the best fit to the data. The dependent variables are

Citation Counts from Scientific Articles in a 5 year window after publication; from Patents in a
7 year window; and from 2nd degree Patents in a 7+5 year window. The models fitted

correspond to that presented in 3.4
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Figure C.3 – Residual Deviance plots for Poisson Regression Model (PRM) and Negative
Binomial Regression Model (NBRM)
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C.4. Full Tables from Chapter 3

C.4 Full Tables from Chapter 3
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Table C.2 – Full Table 3.4. NB, hESC=1

Patent Citations 2nd Degree Pat Cit

Federal Funding 1.579∗∗∗ 2.805∗∗∗ 3.859∗∗∗ 7.253∗∗∗
(0.483) (0.674) (0.766) (1.295)

Ban 2.462∗∗∗ 3.746∗∗∗ 4.075∗∗∗ 6.984∗∗∗
(0.379) (0.584) (0.604) (1.122)

Federal Funding × Ban −2.070∗∗∗ −3.229∗∗∗ −4.368∗∗∗ −7.588∗∗∗
(0.524) (0.688) (0.801) (1.283)

1997 −0.403 −0.355 0.207 −0.0496
(0.612) (0.555) (0.722) (0.704)

1998 4.208∗∗∗ 4.534∗∗∗ 7.097∗∗∗ 8.622∗∗∗
(0.669) (0.786) (0.831) (1.146)

1999 1.567∗∗∗ 2.466∗∗∗ 3.747∗∗∗ 6.021∗∗∗
(0.568) (0.635) (1.049) (1.358)

2000 1.790∗∗∗ 3.887∗∗∗ 3.927∗∗∗ 8.089∗∗∗
(0.449) (0.694) (0.731) (1.267)

2001 0.113 0.110 0.396 0.622
(0.599) (0.554) (0.618) (0.558)

2002 0.145 −0.257 0.685∗ 0.129
(0.344) (0.342) (0.405) (0.334)

2003 0.118 0.353 0.257 0.724∗∗
(0.337) (0.287) (0.362) (0.304)

2004 −0.00666 −0.0198 0.0814 0.183
(0.344) (0.270) (0.381) (0.296)

2005 −0.181 0.0504 −0.318 0.0431
(0.313) (0.260) (0.354) (0.265)

2006 (.) (.) (.) (.)
Number of Authors 0.0549∗ 0.0892∗∗

(0.0315) (0.0369)
JIF 0.0622∗∗∗ 0.115∗∗∗

(0.0181) (0.0271)
Reprint Author in USA 0.499 0.568

(0.307) (0.370)
At least one Author in USA 0.384 0.387

(0.381) (0.456)
CoAuthor from fav. country 0.448∗∗ 0.459∗

(0.213) (0.267)
International collab. 0.0973 0.318

(0.246) (0.333)
Corporate 0.469∗∗ 0.804∗∗∗

(0.223) (0.254)
Last Auth Age 0.000739 0.00517

(0.00864) (0.0106)
Reprint Auth Age −0.0256∗∗ −0.0274∗∗

(0.01000) (0.0132)
Constant 0.568∗∗ −2.376∗∗∗ −0.235 −5.806∗∗∗

(0.266) (0.613) (0.546) (1.235)

log (α) 0.751∗∗∗ 0.636∗∗∗ 1.504∗∗∗ 1.397∗∗∗
(0.0950) (0.0939) (0.103) (0.107)

Observations 655 655 655 655
Log-Likelihood −2369.8 −2331.1 −2545.2 −2510.2

Standard errors in parentheses adjusted for heteroskedasticity
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table C.3 – Full Table 3.5. NB-Reg Sim-hESC>0.35

NB Reg Unit-offset-log (OLS)

Pat Cit 2nd Pat. Cit. log(PatCit) log(PatPatCit)

Federal Funding 0.537 0.860 0.210 0.456
(0.483) (0.578) (0.444) (0.692)

Ban 1.131∗∗ 0.0751 0.776 0.0438
(0.568) (0.628) (0.661) (1.181)

Federal Funding × Ban −1.058∗∗ −1.312∗∗ −0.818∗ −1.293∗
(0.497) (0.580) (0.473) (0.726)

1997 −0.191 −0.157 0.0490 −0.0621
(0.683) (0.747) (0.801) (1.250)

1998 1.475∗∗ 1.820∗∗ 0.555 0.645
(0.698) (0.789) (0.845) (1.359)

1999 −0.0154 −0.781 0.233 −0.654
(0.561) (0.818) (0.676) (1.160)

2000 1.197∗∗ 0.541 1.280∗∗ 1.397
(0.533) (0.562) (0.638) (1.031)

2001 0.796∗∗ 1.486∗∗∗ 0.692 1.087∗
(0.341) (0.407) (0.494) (0.642)

2002 −0.0476 0.260 0.373 0.944∗∗
(0.275) (0.304) (0.289) (0.386)

2003 0.615∗∗ 1.082∗∗∗ 0.606∗∗ 0.904∗∗
(0.284) (0.287) (0.281) (0.372)

2004 0.349 0.678∗∗ 0.298 0.553
(0.268) (0.306) (0.316) (0.429)

2005 0.321 0.484∗ 0.247 0.205
(0.238) (0.264) (0.256) (0.340)

2006 (.) (.) (.) (.)
Number of Authors 0.0440 0.0625∗∗ 0.0647∗∗ 0.0884∗∗

(0.0270) (0.0317) (0.0256) (0.0381)
JIF 0.0733∗∗∗ 0.126∗∗∗ 0.0378∗∗ 0.0331

(0.0227) (0.0305) (0.0172) (0.0279)
Reprint Author in USA 0.466 0.556 0.644∗∗ 0.779∗∗

(0.303) (0.367) (0.258) (0.356)
At least one Author in USA 0.512 0.604 0.490 0.819∗

(0.373) (0.447) (0.337) (0.447)
CoAuthor from fav. country 0.373∗ 0.360 0.330 0.654∗∗

(0.202) (0.243) (0.208) (0.292)
International collab. 0.124 0.525 0.0697 −0.179

(0.215) (0.320) (0.241) (0.356)
Corporate 0.544∗∗∗ 0.958∗∗∗ 0.452∗∗ 0.660∗∗

(0.210) (0.245) (0.223) (0.293)
Last Auth Age 0.00631 0.0123 0.00685 0.0132

(0.00829) (0.00896) (0.00943) (0.0131)
Reprint Auth Age −0.0268∗∗∗ −0.0319∗∗∗ −0.0227∗∗∗ −0.0267∗∗

(0.00750) (0.00977) (0.00841) (0.0122)
Constant −0.0814 0.642 −0.454 −0.268

(0.577) (0.701) (0.652) (1.188)

log (α) 0.711∗∗∗ 1.376∗∗∗
(0.106) (0.105)

Observations 677 677 677 677
Adjusted R2 0.177 0.196
Log-likelihod −2486.2 −2753.5 −1153.4 −1367.2

Standard errors in parentheses adjusted for heteroskedasticity
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table C.4 – Unit-offset Log OLS Treatment Federal Funding, hESC=1

Patent Citations 2nd Degree Pat Cit

Federal Funding 0.346 0.487 0.800 0.900
(0.431) (0.454) (0.686) (0.717)

Ban 1.226∗∗∗ 2.094∗∗∗ 1.789∗∗∗ 2.595∗∗∗
(0.282) (0.375) (0.465) (0.763)

Federal Funding × Ban −0.836∗ −1.081∗∗ −1.379∗ −1.609∗∗
(0.464) (0.475) (0.731) (0.759)

1997 −0.154 0.460 0.492 1.246
(0.511) (0.510) (0.808) (0.814)

1998 1.926 2.106∗ 3.418∗ 3.545∗∗
(1.345) (1.180) (1.860) (1.694)

1999 0.845∗ 1.840∗∗∗ 0.952 1.992∗∗
(0.470) (0.411) (0.982) (1.007)

2000 0.799∗∗ 2.089∗∗∗ 1.774∗∗∗ 3.198∗∗∗
(0.385) (0.599) (0.607) (0.925)

2001 −0.454 −0.491 −0.327 −0.352
(0.725) (0.687) (0.906) (0.848)

2002 0.343 −0.00122 0.878 0.462
(0.372) (0.329) (0.578) (0.487)

2003 0.109 0.249 0.130 0.337
(0.276) (0.271) (0.436) (0.406)

2004 0.0375 −0.0322 −0.0183 −0.0951
(0.308) (0.253) (0.487) (0.417)

2005 −0.246 −0.0842 −0.411 −0.230
(0.247) (0.235) (0.403) (0.355)

2006 (.) (.) (.) (.)
Number of Authors 0.0823∗∗∗ 0.112∗∗∗

(0.0258) (0.0426)
JIF 0.0360∗∗∗ 0.0363

(0.0122) (0.0222)
Reprint Author in USA 0.693∗∗∗ 0.832∗∗

(0.252) (0.344)
At least one Author in USA 0.634∗∗ 0.946∗∗

(0.297) (0.424)
CoAuthor from fav. country 0.647∗∗∗ 0.992∗∗∗

(0.200) (0.287)
International collab. −0.150 −0.364

(0.224) (0.353)
Corporate 0.0677 0.278

(0.212) (0.304)
Last Auth Age −0.00401 0.00514

(0.00791) (0.0139)
Reprint Auth Age −0.0172∗∗ −0.0131

(0.00815) (0.0121)
Constant 1.000∗∗∗ −1.557∗∗∗ 0.636∗∗ −2.702∗∗∗

(0.189) (0.416) (0.271) (0.820)

Observations 655 655 655 655
Adjusted R2 0.061 0.195 0.072 0.185
Log-Likelihood −1133.3 −1078.0 −1356.5 −1309.3

Standard errors in parentheses adjusted for heteroskedasticity
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table C.5 – Full Table 3.6 (part 1); NBReg hESC=1

Research Institute Patents Private Sector Patents

Non-US US Non-US US

Federal Funding 0.141 1.834∗∗∗ 3.947∗∗∗ 2.373∗∗∗
(1.606) (0.646) (1.223) (0.802)

Ban 7.564∗∗∗ 3.593∗∗∗ 3.213∗∗∗ 3.510∗∗∗
(2.492) (0.675) (1.047) (0.836)

Federal Funding × Ban −0.734 −2.142∗∗∗ −4.507∗∗∗ −2.837∗∗∗
(1.609) (0.654) (1.212) (0.822)

1997 4.262 0.995 −21.47∗∗∗ 0.246
(3.327) (0.766) (0.785) (0.681)

1998 6.571∗∗∗ 4.664∗∗∗ 4.838∗∗∗ 4.377∗∗∗
(2.407) (0.867) (1.075) (1.011)

1999 6.292∗∗ 2.584∗∗∗ −0.201 2.715∗∗∗
(2.700) (0.572) (0.704) (0.877)

2000 7.615∗∗∗ 3.055∗∗∗ 3.934∗∗∗ 3.694∗∗∗
(2.690) (0.891) (1.288) (0.859)

2001 −0.518 0.205 1.026 −0.0904
(0.560) (0.604) (0.676) (0.592)

2002 −1.368∗∗∗ 0.343 0.428 −0.616
(0.502) (0.537) (0.417) (0.394)

2003 0.0875 0.679∗ 0.930∗∗ 0.175
(0.370) (0.354) (0.407) (0.395)

2004 −0.510 0.0304 0.216 −0.148
(0.360) (0.328) (0.464) (0.372)

2005 −0.175 0.0980 0.263 −0.0270
(0.301) (0.322) (0.388) (0.350)

2006 (.) (.) (.) (.)
Number of Authors 0.0678 0.0374 0.0830∗ 0.0587

(0.0437) (0.0351) (0.0500) (0.0392)
JIF 0.137∗∗∗ 0.0750∗∗∗ 0.0814∗∗∗ 0.0297

(0.0361) (0.0166) (0.0282) (0.0258)
Reprint Author in USA 0.930∗∗ 0.430 0.102 0.417

(0.385) (0.377) (0.376) (0.354)
At least one Author in USA 0.169 0.189 0.681 0.443

(0.433) (0.462) (0.485) (0.473)
CoAuthor from fav. country 0.505∗ 0.0300 0.494∗ 0.501∗∗

(0.292) (0.301) (0.293) (0.231)
International collab. −0.312 0.0484 −0.0187 0.287

(0.291) (0.252) (0.408) (0.290)
Corporate 0.153 0.298 0.635∗∗ 0.617∗∗

(0.295) (0.255) (0.310) (0.266)
LastAuthAge 0.00732 0.00630 0.0135 −0.00500

(0.0109) (0.0118) (0.0164) (0.0121)
CorrAuthAge −0.0294∗ −0.0358∗∗∗ −0.0280 −0.0247∗

(0.0167) (0.0124) (0.0200) (0.0127)
Constant −9.021∗∗∗ −3.939∗∗∗ −4.794∗∗∗ −2.573∗∗∗

(2.718) (0.767) (1.196) (0.787)

l og (α) 0.765∗∗∗ 0.901∗∗∗ 1.226∗∗∗ 1.160∗∗∗
(0.220) (0.166) (0.149) (0.126)

Observations 655 655 655 655
Log-Likelihood −894.6 −1218.3 −1040.4 −1777.2

Standard errors in parentheses adjusted for heteroskedasticity
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table C.6 – 3.6 (part 2); NBReg hESC=1

Research Institute Patents Private Sector Patents

Non-US US Non-US US

Federal Funding −0.395 0.0160 −0.275 −0.131
(0.270) (0.244) (0.349) (0.271)

Ban Short(2001-2003) 8.042∗∗∗ 3.639∗∗∗ 0.978 1.970∗∗∗
(2.698) (0.877) (0.960) (0.751)

Federal Funding × (2001-2003) −0.854∗ −0.884∗ −0.394 −0.527
(0.513) (0.465) (0.498) (0.448)

1997 4.847∗ 1.867∗ −17.72∗∗∗ 0.892
(2.657) (1.009) (0.934) (0.916)

1998 6.846∗∗∗ 4.017∗∗∗ 1.958∗ 2.853∗∗∗
(2.461) (0.983) (1.182) (1.055)

1999 6.631∗∗∗ 2.860∗∗∗ 0.249 1.747∗∗
(2.523) (0.920) (1.146) (0.860)

2000 7.890∗∗∗ 2.536∗∗ 0.651 2.084∗∗∗
(2.741) (1.021) (1.007) (0.682)

2001 −0.684 −0.598 0.0557 −0.315
(0.604) (0.585) (0.659) (0.577)

2002 −1.509∗∗∗ −0.409 −0.464 −0.789∗∗
(0.531) (0.483) (0.440) (0.377)

2003 (.) (.) (.) (.)
2004 7.164∗∗∗ 2.642∗∗∗ 0.144 1.449∗∗

(2.676) (0.867) (0.917) (0.659)
2005 7.541∗∗∗ 2.728∗∗∗ 0.198 1.529∗∗

(2.676) (0.868) (0.887) (0.683)
2006 7.660∗∗∗ 2.661∗∗∗ 0.0123 1.641∗∗

(2.634) (0.869) (0.905) (0.749)
Number of Authors 0.0704 0.0407 0.0948∗ 0.0558

(0.0432) (0.0349) (0.0569) (0.0419)
JIF 0.142∗∗∗ 0.0637∗∗∗ 0.0397 0.0118

(0.0370) (0.0187) (0.0395) (0.0357)
Reprint Author in USA 0.848∗∗ 0.358 0.205 0.405

(0.368) (0.376) (0.383) (0.351)
At least one Author in USA 0.222 0.177 0.526 0.379

(0.421) (0.471) (0.537) (0.510)
CoAuthor from fav. country 0.470 −0.00334 0.523 0.543∗∗

(0.297) (0.302) (0.335) (0.247)
International collab. −0.368 0.0635 0.0807 0.218

(0.284) (0.265) (0.431) (0.313)
Corporate 0.138 0.300 0.560 0.617∗∗

(0.296) (0.263) (0.343) (0.285)
LastAuthAge 0.00981 0.00931 0.0116 −0.00154

(0.0110) (0.0124) (0.0171) (0.0129)
CorrAuthAge −0.0306∗ −0.0380∗∗∗ −0.0297 −0.0251∗

(0.0163) (0.0119) (0.0199) (0.0131)
Constant −9.251∗∗∗ −3.024∗∗∗ −1.354 −0.640

(2.859) (0.986) (0.927) (0.662)

log (α) 0.744∗∗∗ 0.904∗∗∗ 1.296∗∗∗ 1.192∗∗∗
(0.210) (0.167) (0.139) (0.125)

Observations 655 655 655 655
Log-Likelihood −893.1 −1222.3 −1055.4 −1787.0

Standard errors in parentheses adjusted for heteroskedasticity
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table C.7 – OLS - Topical Variety (spread); Treat=Fed Fund., hESC=1

STD Variation

(1) (2) (3) (4)

Fed Fund 0.0643∗∗∗ 0.0814∗∗∗ 0.0826∗∗∗ 0.0876∗∗∗
(0.00662) (0.0193) (0.0196) (0.0221)

Ban −0.0706∗∗∗ −0.190∗∗∗ −0.191∗∗∗ −0.197∗∗∗
(0.00848) (0.0249) (0.0249) (0.0233)

Fed Fund × Ban −0.0425∗∗∗ −0.0420∗∗ −0.0427∗∗ −0.0470∗∗
(0.00670) (0.0198) (0.0198) (0.0224)

CoAuthor fav. country −0.00145 −0.00818∗ 0.0136
(0.000973) (0.00474) (0.0186)

Fed Fund × CoAuthor fav. country −0.157∗∗∗
(0.0313)

Ban × CoAuthor fav. country −0.0258
(0.0194)

Fed Fund × Ban × CoAuthor fav. country 0.170∗∗∗
(0.0326)

1997 −0.00542 −0.0355 −0.0375 −0.0490∗∗
(0.00816) (0.0257) (0.0258) (0.0248)

1998 0.00275 −0.00900 −0.0102 −0.0253
(0.0108) (0.0279) (0.0279) (0.0281)

1999 −0.0138∗ 0.00837 0.00818 −0.00103
(0.00821) (0.0273) (0.0275) (0.0257)

2000 −0.00952 −0.0332 −0.0347 −0.0477
(0.00909) (0.0315) (0.0317) (0.0312)

2001 0.0561∗∗∗ −0.0705∗∗∗ −0.0714∗∗∗ 0.125∗∗∗
(0.00665) (0.0271) (0.0272) (0.0147)

2002 0.0356∗∗∗ 0.104∗∗∗ 0.104∗∗∗ 0.104∗∗∗
(0.00178) (0.0113) (0.0111) (0.0111)

2003 0.0150∗∗∗ 0.0418∗∗∗ 0.0417∗∗∗ 0.0421∗∗∗
(0.00116) (0.00616) (0.00608) (0.00609)

2004 0.00104 0.00519 0.00527 0.00529
(0.000994) (0.00487) (0.00483) (0.00484)

2005 −0.00291∗∗∗ −0.00566 −0.00621 −0.00619
(0.000898) (0.00458) (0.00458) (0.00458)

2006 (.) (.) (.) (.)
Number of Authors −0.0000129 0.000702 0.000620

(0.000128) (0.000549) (0.000545)
At least one Author in USA −0.000512 −0.000761 −0.00427

(0.00154) (0.00738) (0.00564)
International collab. 0.000544 0.000984 0.00248

(0.00138) (0.00584) (0.00548)
Corporate −0.000191 0.00492 0.00458

(0.000916) (0.00421) (0.00428)
Constant 0.168∗∗∗ 0.459∗∗∗ 0.459∗∗∗ 0.466∗∗∗

(0.00842) (0.0246) (0.0249) (0.0232)

Observations 806 806 806 806
Adjusted R2 0.833 0.614 0.613 0.617
Log-Likelihood 2275.5 1141.3 1144.0 1149.3

Standard errors in parentheses adjusted for heteroskedasticity
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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C.5 Marginal Effects on Academic Publications
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Figure C.4 – Marginal effects of Scholar Citations and Variation within hESC publications

C.6 Extending the analysis: close substitutes

The evidence so far has pointed towards increased academic freedom as a source of higher im-

pact. We have, however, only examined publications that are hESC-related, with the treatment
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focus on the source of the grants. In this section, we attempt to uncover trends in areas that

are close substitutes. For this, we include the whole sample of 1885 articles and re-split the

sample for three different analysis. Because there is no presumption that researchers actually

moved from one field to another, nor we cover the individual affiliations, it should be clear that

this section only documents correlations and not causal effects. However, we believe these are

interesting trends that might shed new light on the events, are encourage future work.

The prior art (econometric analysis) that has studied the effects of the ban (Furman et al., 2012;

Huang and Jong, 2019) has used, in both cases a very similar model. The authors explained

the effect of the ban on US science and firms using a regression in the lines of:

CITESr
i t = εi t +γi +βt +ager

i t+
α0(hESCi ·2001i t )+α1(hESCi · (t > 2001i t ))+
φ0(USr

t ·hESCi ·2001i t )+φ1(USr
t ·hESCi · (t > 2001i t ))

(C.1)

where CITES is a per-year count of citations (or projects) to focal publications from two

different stacks: US and non-US; hESC is a dummy for hESC-related articles; 2001 and >
2001 are time dummies that cover the specified periods; age represents the years since the

publication of the focal article; and γ are publication fixed effects. Therefore, φ0 and φ1 are

the coefficients of interest, indicating the marginal impact of the policy intervention on US

citations or projects.

We imitate their analyses but using Patent Citations. For this, we drop all publications from

2001 onward, and we count arrival of (patent) citations yearly and until 2009. Following

the literature, we split the post-ban effect into three time-periods to examine the average

treatment effect along time. Table C.8 presents the results. Without going too deep in the

analysis, the evidence points in the same direction as previous work. The drop in citations

(and overall industry reaction) is slightly delayed, drops a few years into the ban, and recovers

to previous levels in the long run. There is, however, a surprising trend. The average treatment

effect immediately after the ban, represented by the coefficient USA×hESC×(2002-2003) is led

by patent citations from non-profit research institutions, while the private sector leads the

recovery (in the long run) represented by USA×hESC×(2006-2009).

One possibility is that, in the aftermath of the ban, researchers turned their efforts into

patenting. The reasons behind this could be multiple. On the one hand, limited access to

funds may have encouraged patenting activity in order to attract private funds. While the

moratorium introduced uncertainty in the hESC landscape, it was acknowledged as an exciting

area of research with a huge prospect for private capital. On the other hand, the limitation in

the direction and tools might have encouraged more applied research — i.e. closer to patents

— with the existing cell lines. Discussions with researchers active in the field during the ban

have highlighted a rush for patenting in order to get priority. Many of the resulting patents,

however, were unfruitful due to the low maturity of the field in general. This trend could have

multiplied the patenting behaviour post-ban while slowing down research productivity.
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Table C.8 – Patent citation flows to pre-2001 scientific articles

Conditional fixed effects negative binomial, stacked
DV = Patent Cites (Granted USPTO)

Private Sector Research Inst. All Patents
(1) (2) (3)

hESC×2001 0.183 −0.299 −0.359
(0.281) (0.460) (0.248)

hESC×(2002-2003) 1.084∗∗∗ −0.142 0.483∗

(0.238) (0.373) (0.214)

hESC×(2004-2005) 0.177 1.007∗ 0.356
(0.309) (0.411) (0.234)

hESC×(2006-2009) −0.102 −0.626 −0.500∗

(0.295) (0.414) (0.244)

USA×hESC×2001 0.783∗∗∗ 0.120 0.704∗∗∗

(0.212) (0.468) (0.191)

USA×hESC×(2002-2003) 0.570∗∗∗ 1.810∗∗∗ 0.835∗∗∗

(0.118) (0.258) (0.108)

USA×hESC×(2004-2005) 0.0618 0.00625 0.0503
(0.186) (0.225) (0.145)

USA×hESC×(2006-2009) 1.197∗∗∗ 0.799∗∗∗ 1.046∗∗∗

(0.146) (0.176) (0.112)

CoAuthor Private Affil −0.342 0.458 −0.0737
(0.197) (0.265) (0.196)
(0.301) (0.516) (0.249)

N 1730 1730 1730

Standard errors in parentheses adjusted for heteroskedasticity

Models include constant, hESC*Year FEs, article age FEs and article FEs.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table C.8 points towards patents (and applied research) might be the close-substitute activities

that researchers endured. To further examine this possibility, we incorporate contemporane-

ous publications. We estimate the following model on the non-federally-funded subsample:

E
[

yi t |Xi t
]= f

[
εi t ; β0 +β1BANt +β2hESCi +β3hESCi ×BANt +δt

]
(C.2)

The estimation results are displayed on Table C.9, and point in the same direction. While

hESC-related research significantly increased the patent citations on average, the effect is not

significant for citations from US patents from research institutes. However, it is positive and

significant on average during the ban. That is, during the ban, non federally-funded hESC-

related publications received more attention from research institute patents compared to non-

hESC (and also non-federally-funded) publications. This result provides insinuating evidence

that they were more closely linked with the innovations that cite them. Finally, we compare

Table C.9 – NB Regression Patent by Origin; Fed Fund=0

Research Institute Private Sector

Non-US US Non-US US

hESC 0.868∗∗∗ 0.150 0.635∗∗ 0.801∗∗∗

(0.322) (0.334) (0.262) (0.272)
Ban 1.831∗∗ −0.380 0.718 0.305

(0.798) (0.449) (0.519) (0.485)
hESC × Ban 0.262 0.652∗ −0.112 0.266

(0.380) (0.387) (0.328) (0.332)
Year FE Y es Y es Y es Y es
Article Controls Y es Y es Y es Y es

l og (α) 1.494∗∗∗ 1.581∗∗∗ 1.549∗∗∗ 1.841∗∗∗

(0.119) (0.0845) (0.0897) (0.0631)

Observations 1212 1212 1212 1212
Adjusted R2

Log-Likelihood −1045.5 −1513.4 −1549.0 −2187.8

Standard errors in parentheses adjusted for heteroskedasticity

Including unreported constant and controls for JIF, USA author, Private-sector

affiliated Author, Author from Favorable Country
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

the interaction term hESC×Ban for research institute patent counts by the source of funding

and by counterfactual similarity. In order to do so, we increasingly limit the sample by the

similarity to hESC value (the variable we used for the robustness check, represented in Figure

3.3). This way, the average treatment effect compares to a counterfactual that is increasingly

similar to hESC-research, and thus, closer to being an outside option for researchers. Figure

C.6 shows the coefficient of the interaction term with the 95% confidence interval. The effect

is driven by non-federally funded research, and it increases as the counterfactual becomes
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more confined.
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Figure C.6 – Close substitutes analysis: Not significantly different
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