
Probability Theory and Related Fields
https://doi.org/10.1007/s00440-020-00994-7

The probability of intransitivity in dice and close elections
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Abstract
We study the phenomenon of intransitivity in models of dice and voting. First, we
follow a recent thread of research for n-sided dice with pairwise ordering induced by
the probability, relative to 1/2, that a throw from one die is higher than the other. We
build on a recent result of Polymath showing that three dice with i.i.d. faces drawn
from the uniform distribution on {1, . . . , n} and conditioned on the average of faces
equal to (n+1)/2 are intransitivewith asymptotic probability 1/4.We show that if dice
faces are drawn from a non-uniform continuous mean zero distribution conditioned
on the average of faces equal to 0, then three dice are transitive with high probability.
We also extend our results to stationary Gaussian dice, whose faces, for example,
can be the fractional Brownian increments with Hurst index H ∈ (0, 1). Second, we
pose an analogous model in the context of Condorcet voting. We consider n voters
who rank k alternatives independently and uniformly at random. The winner between
each two alternatives is decided by a majority vote based on the preferences. We
show that in this model, if all pairwise elections are close to tied, then the asymptotic
probability of obtaining any tournament on the k alternatives is equal to 2−k(k−1)/2,
whichmarkedly differs from known results in themodel without conditioning.We also
explore the Condorcet voting model where methods other than simple majority are
used for pairwise elections. We investigate some natural definitions of “close to tied”
for general functions and exhibit an example where the distribution over tournaments
is not uniform under those definitions.
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jan.hazla@epfl.ch

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00440-020-00994-7&domain=pdf
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1 Introduction

The phenomenon of intransitivity often arises when one ranks three or more alterna-
tives. An early example is the Condorcet paradox, discovered in the eighteenth century
in the context of voting. This type of intransitivity is much more general, as proved by
Arrow in his social choice theorem [2]. A different fascinating aspect of intransitivity
arises in the context of games of chance: The striking phenomenon of non-transitive
dice. It was discovered by the statistician Brad Efron [10] and has fans such as Warren
Buffet (who reportedly tried to trick Bill Gates [19]). The main motivating question of
this paper is: What is the chance of observing intransitivity in natural random setups?
We present some quantitative answers to this question. We introduce and discuss our
results for dice and voting separately, making comparisons between the two settings
where appropriate.

1.1 Intransitive dice: transitivity of non-uniform dice

For the purposes of this paper, we call an n-sided die (think of gambling dice) any
vector a = (a1, . . . , an) of real numbers. The face-sum of a die a is

∑n
i=1 ai . We say

that die a beats die b, denoted a � b, if a uniformly random face of a has greater value
than a random face of b. In other words, a � b if

⎛

⎝
n∑

i, j=1
I[ai > b j ] − I[ai < b j ]

⎞

⎠ > 0.

We call a finite set of n-sided dice intransitive if the “beats” relation on the set cannot
be extended to a linear order. That is, a set of dice is intransitive if it contains a subset
a(1), . . . , a(k) such that a(1) � a(2) � · · · � a(k) � a(1). A well-known example
with three sides is a = (2, 4, 9), b = (1, 6, 8) and c = (3, 5, 7). One checks that
a � b � c � a. If a set of dice forms a linear ordering, then we call it transitive.
Because of ties, there can be sets that are neither transitive nor intransitive, but they
occur with negligible probability in the models we study.

Recently, there has been some interest in the quantitative study of intransitive dice.
The main quantity of interest is the probability that three independent dice are transi-
tive, under different random models. In particular, as the number of faces grows, the
dice can behave transitively, i.e., such that a triple of random dice is transitive with
high probability. At the other end of the spectrum, there can be behavior that we call,
borrowing the term from Kalai’s paper on social choice [17], chaotic: in that regime,
three dice are intransitive with probability1 approaching 1/4.

Some (mostly) experimental results were presented by Conrey, Gabbard, Grant,
Liu and Morrison [7]. Among others, they conjectured that the model where n-sided
dice are sampled uniformly frommultisets of integers between 1 and n conditioned on
the face-sum equal to n(n + 1)/2 is chaotic. A recent collaborative Polymath project

1 By considering paths of length two in the tournament graph on dice according to the “beats” relation, one
can see that 1/4 is the highest possible probability of intransitivity (see [31]).
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[32] proved this conjecture for a related, but not identical, model where a die is a
random sequence of integers between 1 and n conditioned on the face-sum equal to
n(n + 1)/2.

One may wonder what happens without the face-sum conditioning. In that case
it can be seen in [31] that if the faces are only i.i.d. (with distribution depending on
n), then as soon as the face-sums of dice a and b differ by significantly more than
n log n, the die with the higher face-sum beats the other one with high probability. In
particular, three random dice with uniform faces from {1, . . . , n}without conditioning
are transitive with high probability.

One might just as well study dice with faces drawn from a continuous probability
distribution. In particular, experiments and intuition strongly suggest that the model
where faces are uniform in (−1, 1) and conditioned on face-sum equal zero is, as in
the discrete case, chaotic.

Our first result indicates that this behavior is quite fragile. If the uniform faces are
replaced with any other continuous distribution (satisfying some reasonable assump-
tions), then whether a die beats another is determined by the value of a real function
of the faces of each die and the model becomes transitive.

Theorem 1 Take a, b and c to be three independent n-sided dice with i.i.d. faces.
Assume that the distribution of a single face has density (PDF) f and CDF F, mean
zero and variance one. Let ε0 denote the event that the face-sums of a, b and c are all
zero. Additionally, assume that the distribution of a single face:

– Has enough (say, six) finite moments.
– Has PDF f supported on a (possibly infinite) closed interval supp( f ). Further-

more, f is continuous on supp( f ).
– Is not uniform on

[−√3,
√
3
]
.

Then:

1. Conditional on ε0, with probability tending to one as n →∞,

a beats b if and only if
n∑

i=1
F(ai ) >

n∑

i=1
F(bi ) .

2. As n →∞, P [a, b, c are transitive | ε0]→ 1.

To understand the differing behavior of uniform versus non-uniform dice implied
by Theorem 1 and the Polymath result, we first recall that, as shown by Polymath [31],
for unconditioned dice with faces uniform in (0, 1), the face-sums determine if a beats
b with high probability. Taking an arbitrary single-face distribution F , without condi-
tioning on face-sums the distribution of the random variable W =∑n

i, j=1 I[ai > b j ]
does not depend on F : this is because ai > b j if and only if F(ai ) > F(b j ), and
since (F(a1), . . . , F(an)) is a die with faces uniform in (0, 1); see also our Theo-
rem 6. Therefore, considering distribution F conditioned on ε0, for the purposes of
the “beats” relation, one can just as well think of a die (F(a1), . . . , F(an)) conditioned
on

∑n
i=1 ai = 0. As long as F is not affine, one might expect that, even under ε0, the
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random variables F(ai ) are distributed (almost) uniformly in (0, 1) with only weak,
global dependencies, suggesting that the expression

sgn

(
n∑

i=1
F (ai )− F (bi )

)

still determines the winner with high probability. Note that this heuristic fails for the
uniform distribution since in that case the CDF-sum is a determinstic function of the
face-sum.

Applying the same reasoning in reverse, our result can be interpreted as showing
that

lim
n→∞P

[

a, b, c are intransitive |
n∑

i=1
G(ai ) =

n∑

i=1
G(bi ) =

n∑

i=1
G(ci ) = 0

]

= 0

for uniform dice a, b, c for a large class of continuous, increasing, non-affine functions
G : R → R. This suggests that the intransitivity phenomenon for uniform dice is
strongly linked to conditioning on the slices

∑n
i=1 ai = c.

Note that the assumptions of Theorem 1 imply that the PDF f is bounded. We
believe that they can be weakened in that respect: For example, it should be enough
that the convolution f (∗k) is bounded for some finite k (with the support interval
supp( f ) not necessarily closed) and that the assumption of continuity of f is replaced
with piecewise continuity. We do not treat those relaxed assumptions for the sake
of readability. In any case, based, among others, on experiments involving Cauchy
distribution, we suspect that the first two itemized assumptions in Theorem 1 are not
necessary for its statement to hold.

The main ingredient of the proof is a variance calculation that establishes that for
two dice

Var

⎡

⎣
n∑

i, j=1
I(ai > b j )− n

n∑

i=1

(
F(ai )− F(bi )

) | ε0
⎤

⎦ = o(n3) ,

while the variance of each term of the difference is of order n3. These two facts
and an anti-concentration argument then imply Theorem 1. The variance calculation
uses a CLT calculation with a rather attentive tracking of errors. This is interesting
in comparison with [32], since it suggests that careful application of central limit
theorems is important in establishing both transitivity and intransitivity results. We
also need to establish CLT-like anti-concentration for the random variable

∑n
i=1 F(ai )

conditioned on ε0. For that, we employ a direct argument that uses conditioning on
the values of pairs a1 + a2, . . . , an−1 + an . The proof is given in Sect. 2.
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1.2 Intransitive dice: stationary Gaussian dice

In the setting of Theorem 1 with standard GaussianN (0, 1) faces, it can be computed
that the conditioned die a = (a1, . . . , an) is distributed as a joint centered Gaussian
with Var[ai ] = 1− 1/n and Cov[ai , a j ] = −1/n for i �= j . Therefore, it can be seen
as a locally stationary Gaussian family, that is, a family where the correlation of ai and
a j depends only on n and i − j (more precisely, for our conditioning, the correlation
depends solely on whether i is equal to j , i.e., δi j ).

In this particular Gaussian case, one can provide another proof of the conclu-
sion of Theorem 1 using the so-called Malliavin–Stein machinery (see [28] for a
comprehensive treatment). Indeed, one can expand the indicator function I[• > 0]
based on Hermite polynomials (see (1.4)), then rewrite the random variable W =∑n

i, j=1 I[ai − b j > 0] into an infinite sum of multiple Wiener–Itô integrals. It is then
enough to apply (for example) Theorem 6.3.1 in [28] to get the following CLT:

1

n3/2

[
W − E(W )

]
law−−−−→

n→+∞ N (0, α)

where the limiting variance α = 1
6 − 1

2π can be deduced from standard arguments
and Newton’s 1676 identity (see Remark 4). On the other hand, one can again use the
Hermite expansion to compute that variance of W−n

∑n
i=1[F(ai )−F(bi )] is O(n2).

Then the transitivity follows from this variance estimate and the above CLT. We leave
the details for interested readers. Meanwhile, it is natural to investigate the (globally)
stationary Gaussian case. It turns out that one can use the Breuer–Major theorem [6]
to prove a version of Theorem 1 for (globally) stationary Gaussian dice.

Here is our setting: let {Gi , i ∈ N} be a centered stationary Gaussian sequence
such that E[Gi G j ] = ρ(i − j) for some (correlation) function ρ : Z → R. We
assume that ρ(0) = 1/2. The main example of such a correlation function will be
that of fractional Brownian increments. That is, we will consider a rich source of
examples where ρ(k) = sH (k) := 1

2E[B H
1 (B H|k|+1 − B H|k|)] for k ∈ Z with B H being

the fractional Brownian motion with Hurst parameter H ∈ (0, 1). The multiplicative
constant 1/2 is chosen only for normalization purposes and

sH (k) = 1

4

(|k + 1|2H + |k − 1|2H − 2|k|2H ) ; (1.1)

one can easily check that for H �= 1/2, as |k| → +∞,

sH (k) ∼ cH |k|2H−2 , (1.2)

where cH := H(2H − 1)/2 is uniformly bounded by 1/2. For a brief introduction to
the fractional Brownian motion, one can refer to the recent book [27].

In the following, we first present a very peculiar phenomenon arising from the
fractional Brownian example as a prelude, and we postpone results concerning more
general correlation functions ρ to Sect. 3.
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Theorem 2 Let a, b, c be i.i.d. copies of {G1, . . . , Gn} with correlation function sH

for any given H ∈ (0, 1). Then, with high probability,

a beats b if and only if
n∑

i=1
F(ai ) >

n∑

i=1
F(bi ) , (1.3)

where F(x) = Φ(
√
2x) is the distribution function of G1 ∼ N (0, 1/2). As a conse-

quence, the probability that three dice a, b, c are transitive tends to one, as n →+∞.

Remark 1 (i) The case H = 1/2 corresponds to the aforementioned unconditional
Gaussian dice, and by the standard integral transform, it extends to unconditional dice
with i.i.d. faces sampled from a large class of distributions; see Theorem 6. As already
mentioned, [31] gives an elementary proof for unconditioned uniform dice.
(ii) For k �= 0, sH (k) > 0 if H ∈ (1/2, 1) while sH (k) < 0 whenever H ∈ (0, 1/2).
Theorem 2 suggests that negative correlation or positive correlation among different
faces does not influence formula (1.3), and therefore also the transitivity of a, b, c.

The proof of Theorem 2 makes use of the very close relation between the Hermite
expansions of functions I[• > 0] and Φ:

I
[• > 0

] = 1

2
+

∞∑

k=0
d2k+1H2k+1, with d2k+1 = (−1)k

2kk!(2k + 1)
√
2π

, (1.4)

Φ = 1

2
+

∞∑

k=0
�2k+1H2k+1 , with �2k+1 = d2k+12−k− 1

2 , (1.5)

where the above series converge in L2(R, exp(−x2/2)dx); see Sect. 3 formore details.

1.3 Condorcet paradox: social chaos for closemajority elections

The Condorcet paradox is a well-known intransitivity phenomenon in social choice
theory. Consider n voters trying to decide between k alternatives. Each voter has
a ranking (linear ordering) of the alternatives and we would like to aggregate the n
rankings into a global one. A natural approach is as follows: given a pair of alternatives
a and b, we say that a beats b if a majority of voters put a ahead of b in their rankings
(we always assume n is odd to avoid dealing with ties). Aggregating these majority
elections for all K := (k

2

)
pairs of alternatives, we obtain a tournament graph on k

vertices, that is, a complete graph where each edge is directed.
If there exists a Condorcet winner (i.e. the alternative that beats all others), and, in

particular, if this tournament is transitive (i.e. it induces a linear ordering), we might
conclude that there is a clear global winner of the election. However, in Condorcet
paradox the pairwise rankings need not produce a Condorcet winner. For example,
we might have three voters with rankings a � b � c, b � c � a and c � a � b,
respectively. Majority aggregation results in a beating b, b beating c and c beating a.
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Assume a probabilistic model with n voters and k alternatives, where each voter
samples one of k! rankings independently and uniformly. This is called the impartial
culture assumption and is the most common model studied in social choice (see [12]
for one survey of results in related settings). Despite the example above, one might
hope that under impartial culture, the paradox is unlikely to arise for a large number of
voters. However, it was one of the earliest results in social choice theory [11,13] that
it is not so: in particular, letting PCond(k, n) to be the probability of Condorcet winner
for n voters and k alternatives, and PCond(k) := limn→∞ PCond(k, n), we have

PCond(3) = 3

2π
arccos(−1/3) ≤ 91.2% . (1.6)

For k ≥ 4 there is no simple expression, but the numerical values up to k = 50
were computed by Niemi and Weisberg [26]; for example, PCond(10) ≈ 51.1% and
PCond(27) ≈ 25.5%, and the asymptotic behavior is given by May [21] as

PCond(k) =
√
8π log k

k

(
1+ O(1/ log k)

)
, (1.7)

in particular limk→∞ PCond(k) = 0. If one is interested in the probability of a com-
pletely transitive outcome, the best asymptotic estimate known [22] is exp(−Θ(k5/3)).

Given the dice models studied in [7] and [32], it seems reasonable to study the
probability of Condorcet paradox under impartial culture, conditioned on all pairwise
elections being close to tied. The conditioning on elections being almost tied seems
natural also given the abundance of real life elections that are close to tied.

To define the model more precisely, for each pair of alternatives {a, b}, define the
random variable S(ab) to be the number of voters that prefer a to b, minus the number
of voters preferring b to a. In other words, the sign of S(ab) determines the alternative
that wins the pairwise election. Let Y (ab) := sgn(S(ab)) and Y be the random tuple
encoding the K pairwisewinners via theY (ab), having K entrieswith values in {−1, 1}.
Furthermore, for d ≥ 1, let εd be the event that

∣
∣S(ab)

∣
∣ ≤ d for every pair {a, b}. We

think of the event εd as “the elections are d-close”, with d = 1 corresponding to
almost perfectly tied elections.

Our main result for voting uses a multidimensional local limit theorem to show that
the probability of Condorcet winner for almost tied elections goes to zero much faster
than in (1.7). Actually, we prove the following stronger result.

Theorem 3 Let n be odd, d ≥ 1 and y ∈ {−1, 1}K . Then,

∣
∣
∣P [Y = y | εd ]− 1

2K

∣
∣
∣ ≤ αk

d2

n
+ ok(1) , (1.8)

where αk > 0 depends only on k and ok(1) denotes a function that depends only on k
(but not on d or y) and goes to zero, as n goes to infinity.
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In particular,

∣
∣
∣P [Y is transitive | εd ]− k!

2K

∣
∣
∣ ≤ βk

d2

n
+ ok(1) (1.9)

and

∣
∣
∣P [Y has Condorcet winner | εd ]− k

2k−1
∣
∣
∣ ≤ γk

d2

n
+ ok(1) (1.10)

for some βk, γk > 0.

One interpretation of this result is that the probability of Condorcet paradox, which
is already substantial without conditioning, increases to reach the fully chaotic behav-
ior for elections that are almost three-way ties. The event εd for d = o(

√
n) has

subconstant probability, but on the other hand such “close” elections seem to be a nat-
ural case to study (and one might argue that in practice they arise more often than the
model suggests). Furthermore, some other interesting phenomena in social choice can
be shown to arise only with polynomially small probability, see, e.g. the quantitative
Gibbard–Satterthwaite theorem [9,14,25].

Comparing Theorem 3 to intransitivity of random uniform dice conditioned on their
face-sums, first note that for almost tied elections and k = 3, the asymptotic probability
of Condorcet winner computed from (1.10) is 3/4, which is equal to the probability of
transitivity for dice. On the other hand, there is a difference in the transition between
the transitive and chaotic regimes. Assuming dice with faces uniform in (−1, 1), the
model is chaotic when conditioned on face-sums equal to zero, but, as shown by
Polymath [31], it becomes transitive as soon as we condition on face-sums of absolute
value at most d for d = ω(log n). However, the voting outcomes behave chaotically
for d-close elections for any d = o(

√
n) and transition into the “intermediate”, rather

than transitive, regime given by (1.6). Furthermore, (1.8) means that the tournament
on k alternatives determined by Y is asymptotically random. [7] conjectured that
k random dice also form a random tournament, however [32] report experimental
evidence against this conjecture.

We also note that the proof of Theorem 3 can be modified such that its statement
holds evenwhen conditioning on only K−1 out of K pairwise elections being d-close.

The above-mentioned work by Kalai [17] calls the situation when Y is a random
tournament social chaos. He considers impartial culture model (without conditioning)
and an arbitrarymonotone odd function f : {−1, 1}n → {−1, 1} for pairwise elections
(the setting we considered so far corresponds to f = Majn). Under these assumptions,
he proves that social chaos is equivalent to the asymptotic probability of Condorcet
winner for three alternatives being equal to 3/4. [17] contains another equivalent
condition for social chaos, stated in terms of noise sensitivity of function f for only
two alternatives. It is interesting to compare it with the reduction from three to two
dice in Lemma 2.1 of [32].
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1.4 Condorcet paradox: generalizing close elections—a case study

It would be interesting to extend Theorem 3 to other natural pairwise comparison
functions such as weighted majorities and recursive majorities, similar to the electoral
college in the USA. However, in order to formulate such a result, it is first necessary to
define d-close elections for an arbitrary function. The results of this section deal with
the question if such a definition exists. Somewhat surprisingly, we show that natural
definitions of close elections do not lead to a chaotic outcome when ranking three
alternatives. We do so by presenting a simple example, for which two of the most
natural definitions do not result in chaotic outcome.

For this we consider the following function. Let us assume that there are three
candidates a, b, c and a number of voters n that is divisible by three, letting m := n/3.
We take f : {−1, 1}n → {−1, 1} to be

f (x1, . . . , xn) := sgn

(
m∑

i=1
sgn (x3i−2 + x3i−1 + x3i )

)

.

In words, f is a two-level majority: majority of votes of m triplets, where the vote of
each triplet is decided by majority.

The function f possesses many pleasant properties: it is odd, transitive symmetric2

and is a polynomial threshold function of degree three. We would like to devise a
natural notion of d-close elections according to f . In light of Theorem 3 it might be
argued that the “right” notion of closeness should result in the chaotic outcome, same
as for majority. We show that for two natural definition of closeness, this is not the
case.

To start with, let wi := x3i−2 + x3i−1 + x3i . In the following we will sometimes
treat f as a function of w := (w1, . . . , wm), i.e., f : {±1,±3}m → {±1}, with the
distribution of w induced by the distribution of x, i.e., wi = ±3 and wi = ±1 with
probabilities 1/8 and 3/8, respectively. A CLT argument as in Theorem 3 implies

chaotic behavior of f if we define “d-close” as “
∣
∣∑m

i=1 sgn
(
w

(kk′)
i

)∣
∣ ≤ d” for every

pair of candidates (kk′). However, this is not very satisfactory for at least two reasons.
First, it does not seem to extend to other functions that do not have such an “obvi-
ous” summation built into them. Second, it does not accord well with our intuition of
closeness. This second problem becomes more apparent considering analogous con-
dition for another two-level majority, with

√
n groups of

√
n voters each. In this case

of “electoral college” an election that was close in every “state” in favor of a single
candidate would not be considered close overall.

Another idea is to define “d-close” the same way as in Theorem 3, that is as

“
∣
∣
∑n

i=1 x (kk′)
i

∣
∣ ≤ d ”. Clearly, this is not a good closeness measure for an arbitrary

comparison method (e.g., weighted majority with large differences between weights),
but one could argue that it is relevant at least for transitive symmetric functions. Using
another CLT argument, we find that for this definition of closeness, the behavior

2 A voting function f : {−1, 1}n → {−1, 1} is transitive symmetric if for every i, j ∈ [n] there exists
a permutation σ : [n] → [n] such that σ(i) = j and f ◦ σ = f , where ( f ◦ σ)(x1, . . . , xn) =
f (xσ(1), . . . , xσ(n)). Informally, every two voters play the same role.
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J. Hązła et al.

of o(
√

n)-close elections under f is not chaotic: the asymptotic Condorcet paradox
probability is slightly less than 25%. Note that for three candidates, the Condorcet
paradox occurs if and only if f (x(ab)) = f (x(bc)) = f (x(ca)).

Theorem 4 Under the notation above and the event εd as defined in Sect. 1.3, for
d = √n/ log n,

lim
n→∞P

[
f (x(ab)) = f (x(bc)) = f (x(ca)) | εd

]
= α∗ ,

where α∗ ≈ 23.2% is an absolute constant.

For comparison, without conditioning the Condorcet paradox probability is ≈ 12.5%
when the elections are according to f and ≈ 8.8% according to majority.

The idea for the proof of Theorem 4 is to use multivariate Berry–Esseen theorem
for random variables

(
A(kk′), B(kk′)

)

(kk′)
:=

(
n∑

i=1
x (kk′)

i ,

m∑

i=1
sgn

(
w

(kk′)
i

)
)

(kk′)

, kk′ ∈ {ab, bc, ca}.

Weare looking at sign patterns of B(kk′) conditioned on small absolute values of A(kk′).
A(kk′) and B(kk′) are not perfectly correlated and it turns out that part of (negative)
correlations between B(ab), B(bc) and B(ca) is not attributable to correlations between
A(ab), A(bc) and A(ca). Hence, even after conditioning on small A(kk′) there remains a
small constant correlation between B(kk′),which prevents completely chaotic behavior.

Another promising definition of closeness involves the noise operator Tρ from
the analysis of Boolean functions (see e.g., [29] for more details). Let ρ ∈ [−1, 1]
and x ∈ {−1, 1}n . Define a probability distribution Nρ(x) over {−1, 1}n such that
y1, . . . , yn are sampled independently with yi = −xi with probability ε := 1−ρ

2 and
yi = xi otherwise. Note that E[xi yi ] = ρ, hence we say that a pair (x, y) sampled as
uniform x and then y according to Nρ(x) is ρ-correlated. The noise operator Tρ is
defined as

Tρ f (x) := Ey∼Nρ(x)
[

f (y)
]

.

For ρ ∈ (0, 1) one can think of Nρ(x) as a distribution over {−1, 1}n with proba-
bilities that are decreasing in the Hamming distance from x. Furthermore, for f being
majority and d = o(

√
n) the condition

∣
∣∑n

i=1 xi
∣
∣ ≤ d is asymptotically equivalent to∣

∣TρMaj (x)
∣
∣ ≤ Cρd/

√
n. This suggests that it may be fruitful to define “d-close” as

“|Tρ f (x(kk′))| ≤ d/
√

n”. The idea becomes even more appealing when considering a
Fourier-analytic Condorcet formula discovered by Kalai [16]. He showed that for an
odd function g : {−1, 1}n → {−1, 1}, the probability of Condorcet paradox without
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conditioning is equal to

P

[
g(x(ab)) = g(x(bc)) = g(x(ca))

]
= 1

4

(
1− 3Ex,y

[
g(x)g(y)

])

= 1

4

(
1− 3Ex

[
g(x)T1/3g(x)

])
, (1.11)

where (x, y) are 1/3-correlated.
Another feature of the Tρ operator is that for noise sensitive functions (which [17]

proved to be exactly those that result in chaotic elections without conditioning) the
value |Tρ f (x)| is o(1) with high probability over x. If we decide to use |Tρ f (x)| as a
measure of closeness, then this fact can be given the following (though by no means
the only possible) interpretation: elections held according to a noise sensitive function
are almost always close.

Recall our “majority of triplets” function f and define the event Fρ,d as

Fρ,d :≡ max
(∣
∣Tρ f (x(ab))

∣
∣,
∣
∣Tρ f (x(bc))

∣
∣,
∣
∣Tρ f (x(ca))

∣
∣
)
≤ d√

m
.

At first sight, (1.11) suggests that the event Fρ,d , with ρ = 1/3 and d = o(
√

m),
should cause the expectation term in (1.11) to vanish and the probability of Condorcet
paradox to approach 1/4. Surprisingly, this is not the case for f :

Theorem 5 Fix ρ ∈ (0, 1) and take d := √m/ logm. Then,

lim
n→∞P

[
f (x(ab)) = f (x(bc)) = f (x(ca)) | Fρ,d

]
= α(ρ) ,

where α(ρ) ∈ [0.17, α∗] with α∗ the constant from Theorem 4 and α(ρ) → α∗ as
ρ → 0+.

Theproof ofTheorem5 is a variationon theproof ofTheorem4.Forw ∈ {±3,±1}m
and b ∈ {±3,±1}, we let Wb(w) := |{i ∈ [m] : wi = b}| and Vb(w) := Wb(w) −
Ew’ [Wb(w’)]. Then, we observe that, just as for majority the value of TρMaj(x) is
proportional to the number of ones in x minus n/2, also for f the value of Tρ f (w) is
proportional to a certain linear combination of Vb(w). This allows us to proceed with
an identical argument as in Theorem 4 with appropriately redefined random variables
A(kk′).

Some more recent results show that, without conditioning, majority in fact maxi-
mizes the probability of Condorcet winner among “low-influence functions” (see [24]
for three voters and [15,22] for general case). This contrasts with Theorems 4 and 5
for different definitions of close elections.

1.5 Arrow’s theorem for dice

To further consider the parallels between dice and social choice, we also ask if there is
a dice analogue of Arrow’s theorem (and its quantitative version). We obtain a rather
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generic statement that does not use any properties of dice and a quantitative version
which is a restatement of a result on tournaments by Fox and Sudakov [8].

Organization of the paper The proofs of our main theorems are located in Sects. 2
(Theorem 1), 3 (Theorem 2), 4 (Theorem 3) and 5 (Theorems 4 and 5). Section 6
contains the discussion of Arrow’s theorem for dice. The sections are mostly self-
contained and can be read in any order.

2 Transitivity of non-uniform dice

In this section we are going to prove Theorem 1. Let us start with some notation. For
the sake of readability, in this section we drop the bold typesetting for dice vectors.
We let

W (kk′)
i j := I(ki > k′j )

for k, k′ ∈ {a, b, c} and

W (kk′) =
n∑

i, j=1
W (kk′)

i j .

We also let V (kk′) :=∑n
i=1 F(ki )− F(k′i ). An important value that we will use is

A := E[a1F(a1)] . (2.1)

The constant A is significant because it distinguishes the uniform distribution: by
Cauchy–Schwarz we have

A2 = E[a1F(a1)]2 = E[a1(F(a1)− 1/2)]2 ≤ Var[a1] · Var[F(a1)] = 1

12

(note that F(a1) is uniform in (0, 1), soE[F(a1)] = 1/2 and Var[F(a1)] = 1/12). On
the other hand, since a1 and F(a1) are linearly dependent if and only if distribution
of a1 is uniform on (−√3,

√
3), the equality A2 = 1/12 is achieved exactly for the

uniform distribution. In the non-uniform case, this leads to a key cancellation leading
to (2.2) below.

Since for a non-uniform distribution clearly we have

P

[
n∑

i=1
F(ki ) =

n∑

i=1
F(k′i ) | ε0

]

= 0

(see also the proof of Proposition 2), the second statement of Theorem 1 follows
from the first. What needs to be done can be summed up in two propositions. In
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the following proof we assume conditioning on ε0 and drop it from the notation for
readability.We also note that constants hidden in O(·), o(·), etc., are allowed to depend
on the distribution F .

Proposition 1

Var
[
W (ab) − nV (ab)

]
= o(n3) . (2.2)

Proposition 2 For every C ∈ R and ε > 0,

P

[
V (ab)

√
n
∈ [C − ε, C + ε]

]

= O(ε)+ O

(
1√
n

)

, (2.3)

where the O(·) constants do not depend on C or ε.

We note that during the proof of Proposition 1 we establish Var[W (ab)],
Var[nV (ab)] ≥ Ω(n3), so indeed Proposition 1 is saying that these two random vari-
ables are closely correlated.

Proof (Theorem 1 follows from the propositions) Let W
(kk′) := W (kk′)−E[W (kk′)] =

W (kk′) − n2/2. It is enough to prove that

P

[
sgn

(
V (ab)

)
�= sgn

(
W

(ab)
)]
= o(1) .

For any δ > 0, note that sgn
(
V (ab)

) �= sgn
(

W
(ab)

)
implies that

either
∣
∣
∣nV (ab) −W

(ab)
∣
∣
∣ > δ or

∣
∣
∣nV (ab)

∣
∣
∣ ≤ δ.

Furthermore, by Chebyshev’s inequality and (2.2),

P

[∣
∣
∣W

(ab) − nV (ab)
∣
∣
∣ > δ

]
<

o(n3)

δ2
.

Taking appropriate δ := o(n3/2), we finally compute

P

[
sgn

(
V (ab)

)
�= sgn

(
W

(ab)
)]

≤ P

[∣
∣
∣nV (ab) −W

(ab)
∣
∣
∣ > δ

]
+ P

[∣
∣
∣nV (ab)

∣
∣
∣ ≤ δ

]

= o(1)+ O

(
δ

n3/2

)

= o(1) ,

where we used (2.3) in the last line. ��
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Remark 2 It is also true that with high probability a beats b if and only if∑n
i=1 Fn(ai ) >

∑n
i=1 Fn(bi ), where Fn is the CDF of the conditional marginal of a1

(or anyai ) conditionedon ε0, rather than the unconditionalmarginal F as inTheorem1.
(Some numerical experiments suggest that Fn is a better predictor of the “strength” of
a die than F .) To see why this is true, if V ′(ab) :=∑n

i=1 Fn(ai )− Fn(bi ), then similar
calculations to those in the proof of Proposition 1 yield

Var
[
V ′(ab) − V (ab)

]
= o(n) ,

and using this in the bound

P

[
sgn

(
V ′(ab)

)
�= sgn

(
W

(ab)
)]

≤ P

[∣
∣
∣nV (ab) −W

(ab)
∣
∣
∣ > δ

]
+ P

[∣
∣
∣nV (ab) − nV ′(ab)

∣
∣
∣ > δ

]
+ P

[∣
∣
∣nV (ab)

∣
∣
∣ ≤ δ

]
,

the result follows similar to above.

We proceed to prove the propositions, starting with the shorter proof of Proposi-
tion 2. In both proofs we do not assume conditioning on ε0 by default.

2.1 Proof of Proposition 2

For simplicity we will assume that n = 2m. The idea of the proof is as follows: First,
by independence, it is enough to establish anti-concentration for the single-die random
variable

∑n
i=1 F(ai ). Since the single-face distribution is not uniform, theremust exist

two points x∗, y∗ ∈ supp( f ) such that

F(x∗)+ F(y∗) �= 2F(z∗) , (2.4)

where z∗ := x∗+y∗
2 . Consider random variables d1, . . . , dm given by

di := a2i−1 + a2i . (2.5)

By a concentration argument, with high probability, for a constant fraction of coor-
dinates i ∈ {1, . . . , m}, it must be that di ≈ 2z∗. Furthermore, after conditioning on
d1, . . . , dm , for each such coordinate it must be that for di ≈ 2z∗, both

a2i−1 ≈ x∗, a2i ≈ y∗,
a2i−1, a2i ≈ z∗,

(2.6)

are possible with constant probability. But (2.4) and (2.6) imply that, even conditioned
on d1, . . . , dm , the variance of

∑n
i=1 F(ai ) is at least Ω(n), and that allows us to

apply Berry–Esseen theorem to establish a (conditional) CLT and anti-concentration.
Belowwe present this argument inmore detail, startingwith an auxiliary concentration
lemma.
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Lemma 1 Let x ∈ supp( f ) and δ > 0. There exist constants α := α( f , δ) > 0, β :=
β( f , δ) > 0 such that

P
[ |{i ∈ [n] : x − δ ≤ ai ≤ x + δ}| < αn | ε0

] ≤ O (exp (−βn)) . (2.7)

Proof We will think of sampling a1, . . . , an conditioned on ε0 as an experiment on
n − k-dimensional space for some k ∈ N, where the density of (a1, . . . , an−k) is
proportional to

∏n−k
i=1 f (ai ) · f (∗k)(−a0), with a0 := ∑n−k

i=1 ai and f (∗k) being the
k-fold convolution of the PDF f .

Take ε > 0 and consider a set

Ik,ε :=
{

x ∈ R : f (∗k)(x) > ε
}

.

Since f is continuous and its support is an interval that necessarily contains zero, it
must be that for every L > 0 there exist k large enough and ε small enough such that
we have the inclusion

[−L, L] ⊆ Ik,ε .

We take such large enough L (as soon specified) and fix k and ε accordingly. Consider
the i.i.d. choice of a1, . . . , an−k . By the Berry–Esseen theorem,

Pa1,...,an−k [−L ≤ −a0 ≤ L] = P

[ −L√
n − k

≤ g ≤ L√
n − k

]

+ O

(
1√
n

)

= Ω

(
1√
n

)

, (2.8)

where g is a standard Gaussian random variable, and the last equality uses that L can
be chosen large enough to overcome the (potentially negative) error in the normal
approximation.

LetF be the event from (2.7), the probability of which we are bounding and define
another event F ′ as

F ′ :≡ |{i ∈ [n − k] : x − δ ≤ ai ≤ x + δ}| < αn .

Taking M to be an upper bound on f (∗k)(y) for y ∈ R and setting α := P(x − δ ≤
a1 ≤ x + δ)/2, we compute

P [F | ε0] ≤ P
[F ′ | ε0

]

=
∫ ··· ∫ f (a1) · · · f (an−k) · f (∗k)(−a0) · I[F ′] da1 · · · dan−k∫ ··· ∫ f (a1) · · · f (an−k) · f (∗k)(−a0) da1 · · · dan−k

≤ M · Pa1,...,an−k [F ′]
ε · Pa1,...,an−k [−L ≤ −a0 ≤ L]

≤ O
(√

n
) · exp (−βn) ≤ O

(
exp(−β ′n)

)
,
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where in the last line we used a standard Chernoff bound, since the random variable

|{i ∈ [n − k] : x − δ ≤ ai ≤ x + δ}|

can be written as a sum of n − k i.i.d. Bernoulli random variables with mean 2α > 0.
��

We continue with the proof of Proposition 2, following the plan from the beginning
of the section. For now, we will focus only on one half of the expression V (ab), namely
the sum

∑n
i=1 F(ai ).

Recall that by (2.4) we have x∗, y∗, z∗ = (x∗ + y∗)/2 such that

γ := |F(x∗)+ F(y∗)− 2F(z∗)| > 0.

Furthermore, since F is continuous, we can assume that both x∗ and y∗ lie in the
interior of the support of f . Take small δ > 0 such that

[x∗ − δ, x∗ + δ], [y∗ − δ, y∗ + δ], [z∗ − δ, z∗ + δ] ⊆ supp( f )

and, at the same time,

∣
∣w − x∗

∣
∣ ≤ 2δ �⇒ ∣

∣F(w)− F(x∗)
∣
∣ ≤ γ /10,

∣
∣w − y∗

∣
∣ ≤ 2δ �⇒ ∣

∣F(w)− F(y∗)
∣
∣ ≤ γ /10,

∣
∣w − z∗

∣
∣ ≤ 2δ �⇒ ∣

∣F(w)− F(z∗)
∣
∣ ≤ γ /10.

Recall the random variables d1, . . . , dm that we defined in (2.5). Note that the distri-
bution of d1/

√
2 = (a1 + a2)/

√
2 satisfies the assumptions of Theorem 1. Therefore,

we can apply Lemma 1 to d1, . . . , dm , x = 2z∗ ∈ supp( f (∗2)) and δ to obtain that
except with probability exp(−Ω(n)), we have that, conditioned on ε0,

∣
∣
{
i ∈ [m] : 2z∗ − δ ≤ di ≤ 2z∗ + δ

}∣
∣ ≥ Ω(n) . (2.9)

Observe that the distribution a1, . . . , an conditioned on ε0 can be obtained by first
sampling d1, . . . , dm conditioned on

∑m
i=1 di = 0 and then sampling a2i−1 and a2i

conditioned on a2i−1 + a2i = di independently for each i ∈ [m].
Fix a choice of d1, . . . , dm satisfying (2.9). We will call i ∈ [m] that fulfills the

condition from (2.9) good.Wewill now show that any such good i assumes values from
(2.6) with constant probability. To that end, let us assume without loss of generality
that d1 is good and consider d ∈ [2z∗ − δ, 2z∗ + δ]. We compute (where o(1) is a
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function that uniformly goes to zero as δ goes to zero)

P
[
x∗ − δ ≤ a1 ≤ x∗ + δ | a1 + a2 = d

] =
∫ x∗+δ

x∗−δ
f (x) f (d − x) dx

∫
R

f (x) f (d − x) dx

≥
∫ x∗+δ

x∗−δ
( f (x∗)+ o(1))( f (y∗)+ o(1)) dx

maxd∈[2z∗−δ,2z∗+δ] f (2)(d)

≥ c · δ f (x∗) f (y∗) ≥ c′ > 0 , (2.10)

where c′ is a positive constant achieved for small enough δ. A similar argument gives

P
[
z∗ − δ ≤ a1 ≤ z∗ + δ | a1 + a2 = d

] ≥ c′ > 0. (2.11)

Observe that a1 ∈ [x∗ − δ, x∗ + δ] implies |F(a1)− F(x∗)| ≤ γ /10, a2 ∈ [y∗ −
2δ, y∗ + 2δ], |F(a2)− F(y∗)| ≤ γ /10 and finally

|F(a1)+ F(a2)− F(x∗)− F(y∗)| ≤ γ /5,

giving the overall conclusion

P

[
F(a1)+ F(a2) ≤ F(x∗)+ F (y∗)+ γ /5 | a1 + a2 = d

]
≥ c′. (2.12)

Similarly, a1 ∈ [z∗ − δ, z∗ + δ] implies a2 ∈ [z∗ − 2δ, z∗ + 2δ] and consequently

∣
∣F(a1)+ F(a2)− 2F(z∗)

∣
∣ ≤ γ /5,

in particular

F(a1)+ F(a2) ≥ 2F(z∗)− γ /5 ≥ F(x∗)+ F(y∗)+ γ /5+ γ /2

and

P

[
F(a1)+ F(a2) ≥ F(x∗)+ F(y∗)+ γ /5+ γ /2 | a1 + a2 = d

]
≥ c′. (2.13)

Bounds in (2.12) and (2.13) together imply that for any good i we can uniformly lower
bound the conditional variance

Var
[
F(a2i−1)+ F(a2i ) | a2i−1 + a2i = di

] ≥ Ω(γ 2) ≥ Ω(1).

Since after conditioning on d1, . . . , dm satisfying (2.9), the random variables
F(a2i−1) + F(a2i ) are bounded and independent with total variance Ω(m), we can
apply Berry–Esseen theorem and anti-concentration properties of a standard Gaussian
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to obtain

P

[

C − ε ≤
n∑

i=1

F(ai )√
n
≤ C + ε

∣
∣
∣ d1, . . . , dm

]

= P

[

C − ε ≤
m∑

i=1

F(a2i−1) + F(a2i )√
2m

≤ C + ε

∣
∣
∣ d1, . . . , dm

]

≤ O(ε)+ O

(
1√
n

)

.

Actually, since the sums
∑n

i=1 F(ai ) and
∑n

i=1 F(bi ) are independent even after
conditioning on ε0, we also get

P

[

C − ε ≤ V (ab)

√
n
≤ C + ε

∣
∣
∣ d1, . . . , dm, d ′1, . . . , d ′m

]

≤ O(ε)+ O

(
1√
n

)

.

where d ′i = b2i−1 + b2i and d ′1, . . . , d ′m satisfy condition (2.9). Finally, we get (2.3)
by averaging over d1, . . . , dm, d ′1, . . . , d ′m and absorbing exponentially small terms
coming from the choices that do not satisfy (2.9). ��
Remark 3 One could also prove a variant of Proposition 2 by a two-dimensional local
CLT argument. For example, Theorem 19.1 in [5] could be applied to show that
V (ab)/

√
n conditioned on ε0 converges in law to a Gaussian. However, to apply [5] it

needs to be shown that there exists a finite k such that the joint distribution of

(
k∑

i=1
ai ,

k∑

i=1
F(ai )

)

has bounded density. Note that since F(ai ) is a deterministic function of ai , for k = 1
the density does not exist. In some cases it is not difficult to show that a small k > 1
is enough. For example, for a shifted exponential distribution with the PDF

f (x) = exp(−x − 1)

for x ∈ [−1,+∞) we can see that (a1 + a2, F(a1) + F(a2)) has bounded density
since the equation system

a1 + a2 = a

F(a1)+ F(a2) = a′

has at most one solution for every pair (a, a′). On the other hand, a distribution with
support [−2, 2] that is (up to normalization) uniformon [−2,−1]∪[1, 2] andGaussian
on (−1, 1) does not have bounded density for any finite k.
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2.2 Proof of Proposition 1

We prove Proposition 1 by a somewhat tedious computation. Recall that in this proof
we do not assume conditioning on ε0 by default. Also, for k ∈ {a, b, c}, we will denote
by εk the single die event

∑n
i=1 ki = 0.

The variance we are looking at can be broken down as

Var

[

W − n
n∑

i=1
F(ai )− F(bi ) | ε0

]

= n2 Var

[
n∑

i=1
F(ai )− F(bi ) | ε0

]

+ Var[W | ε0] − 2n
n∑

i, j,k=1
E
[
I(ai > b j ) · (F(ak)− F(bk)) | ε0

]
. (2.14)

The idea is to subdivide each of the three terms above into yet smaller pieces, each
of which can be written down as a certain probability involving (conditioned and
unconditioned) die faces. For example,

E [I(a1 > b1)F(a2) | ε0] = P [a1 > b1 ∧ a2 > c1 | εa ∩ εb] .

Each of those probabilities can be estimated using the following idea: How does the
joint distribution of (a1, a2) change after conditioning on εa?

Let ϕ̃n−2(x) be the PDF of the distribution of the sum
∑n

i=3 ai/
√

n − 2. The joint
density fn of (a1, a2) conditioned on εa must be proportional to f (a1) f (a2)multiplied
by a “correction factor”

ϕn−2(−a1 − a2) :=
√
2πϕ̃n−2((−a1 − a2)/

√
n − 2),

which is
√
2π(n − 2) times larger than the density of

∑n−2
i=1 ai conditioned on εa (our

normalization is chosen so that ϕn−2(x) ≈ 1 for x ≈ 0):

fn(a1, a2) = Cn f (a1) f (a2)ϕn−2(−a1 − a2)

for some normalization constant Cn ≈ 1. By the CLT, we should have

ϕn−2(−x) ≈ exp

(

− x2

2(n − 2)

)

≈ 1− x2

2n
, (2.15)

and consequently

P [a1 > b1 ∧ a2 > c1 | εa ∩ εb]

≈ CnC ′n
∫∫

D
f (a1) f (a2) f (b1) f (c1)

(

1− (a1 + a2)2 + b21
2n

)

da1da2db1dc1 ,

(2.16)
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where D := {(a1, a2, b1, c1) : a1 > b1 ∧ a2 > c1} and C ′n is another normal-
ization constant corresponding to the one-dimensional “density” ϕn−1(−b1). From
here, (2.16) can be handled by elementary calculus. The actual computations are more
complicated, since we have to carefully track errors, including those introduced by
the CLT.

Calculation lemma Wewill go over the variance computation assuming the following
lemma, which will be proved afterwards.

Lemma 2 Let x be a random variable distributed according to F and let

A := E[x · F(x)],
B := E[x2 · F(x)],

α1 := 5γ 2
3

24
− γ4

8
,

α2 := γ3

2
,

where γ j denotes the j th cumulant of x. For k ∈ {a, b, c}, denote by εk the single-die
event

∑n
i=1 ki = 0. We have the following expressions:

P [a1 > b1 ∧ a2 > b2 | ε0] = 1

4
− 2A2

n
+ o(n−1) , (2.17)

P [a1 > b1 | εa] = 1

2
+ 1

4n
+ α2A

n
− B

2n
+ o(n−1), (2.18)

P [a1 > b1 ∧ a2 > b2 | εa] = 1

4
+ 1

4n
+ α2A

n
− B

2n
− A2

n
+ o(n−1), (2.19)

P [a1 > b1 ∧ a2 > c1 | εa ∩ εb] = 1

4
+ 1

8n
+ α2A

2n
− B

4n
− A2

n
+ o(n−1). (2.20)

Furthermore:

P [a1 > b1 ∧ a1 > b2 | ε0] = 1

3
+ o(1), (2.21)

P [a1 > b1 ∧ a1 > b2 | εa] = 1

3
+ o(1), (2.22)

P [a1 > b1 ∧ a1 > c1 | εa ∩ εb] = 1

3
+ o(1). (2.23)

Since these expressions might look intimidating, let us point out what we think is one
of the most important properties: In contrast to (2.17), it turns out that

P [a1 > b1 ∧ a2 > c1 | ε0] = 1

4
− A2

n
+ o(n−1) .
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The fact that the errors of order n−1 in those two expressions differ by exactly a factor
of two turns out to imply that W (ab) + W (bc) + W (ca) has small variance, which,
together with anticoncentration argument for W (ab), implies transitivity similarly as
in the proof of Theorem 1. Lemma 2 is more complicated since we are relating random
variables W (ab) and V (ab), but the A2

n terms are still crucial, with other terms canceling
out one way or another.

Proof of Proposition 1 assuming Lemma 2 We address each of the three terms in
(2.14) in turn. First, using (2.21) and (2.17),

Var[W | ε0] = Var

⎡

⎣
n∑

i, j=1
Wi j | ε0

⎤

⎦

= O(n2)+ 2n2(n − 1)Cov [W11, W12 | ε0]+ n2(n − 1)2 Cov [W11, W22 | ε0]
= O(n2)+ 2n2(n − 1)

(

P[a1 > b1 ∧ a1 > b2 | ε0] − 1

4

)

+ n2(n − 1)2
(

P[a1 > b1 ∧ a2 > b2 | ε0] − 1

4

)

= n3
(
1

6
− 2A2

)

+ o(n3) . (2.24)

Second, by (2.22), (2.18) and (2.19),

Var

[
n∑

i=1
F(ai )− F(bi ) | ε0

]

= 2Var

[
n∑

i=1
F(ai ) | ε0

]

= 2n Var[F(a1) | ε0] + 2n(n − 1)Cov[F(a1), F(a2) | ε0]
= 2n

(
E

[
F(a1)

2 | ε0
]
− E [F(a1) | ε0]2

)

+ 2n(n − 1)
(
E [F(a1)F(a2) | ε0]− E [F(a1) | ε0]2

)

= 2n
(
P [a1 > b1 ∧ a1 > b2 | εa]− P [a1 > b1 | εa]

2
)

+ 2n(n − 1)
(
P [a1 > b1 ∧ a2 > b2 | εa]− P [a1 > b1 | εa]

2
)

= n

(
1

6
− 2A2

)

+ o(n) . (2.25)
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Finally, recalling Fn is the conditional CDF of a1 given εa , and using (2.23), (2.20)
and (2.18) again, we have

n∑

i, j,k=1
E
[
I(ai > b j ) (F(ak)− F(bk)) | ε0

]

=
n∑

i, j,k=1
E

[
Fn(ai )F(ak)− (1− Fn(b j ))F(bk) | ε0

]

= 2n
n∑

i, j=1
E
[
Fn(ai )F(a j ) | ε0

]− n2
n∑

i=1
E [F(ai ) | ε0]

= 2n2
E [Fn(a1)F(a1) | ε0]+ 2n2(n − 1)E [Fn(a1)F(a2) | ε0]− n3

E [F(a1) | ε0]
= 2n2

P [a1 > b1 ∧ a1 > c1 | εa ∩ εb]+ 2n2(n − 1)P [a1 > b1 ∧ a2 > c1 | εa ∩ εb]

− n3
P [a1 > b1 | εa]

= n2
(
1

6
− 2A2

)

+ o(n2) . (2.26)

Substituting (2.24), (2.25) and (2.26) into (2.14) gives

Var

[

W − n
n∑

i=1
F(ai )− F(bi )

]

= o(n3) .

��
It remains to prove Lemma 2.

Integration lemma The technical part of the proof of Lemma 2 consists of the
following lemma that replaces the expressions for ϕn−2 and ϕn−1 with an appropriate
polynomial approximation. Recall the constants α1 and α2 defined in the statement of
Lemma 2 and that we defined ϕn−k as the PDF of

∑n−k
i=1 ai multiplied by

√
2π(n − k).

Lemma 3 Let D be a measurable set in R
4 and write

f (a, b, c, d) := f (a) f (b) f (c) f (d) and f (a, b) := f (a) f (b).

Setting a := a1 + a2 and b := b1 + b2 and denoting Lebesgue integration over
da1da2db1db2 by dab, we have

∫∫

D
f (a1, a2, b1, b2) · ϕn−2(−a)ϕn−2(−b) dab

=
∫∫

D
f (a1, a2, b1, b2) ·

(

1+ 2α1

n
+ α2(a + b)

n
− a2 + b2

2n

)

dab + o(n−1) .

(2.27)
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Furthermore, using similar notational conventions, we get, for a := a1 and b := b1
(and D ⊆ R

2):

∫∫

D
f (a, b) · ϕn−1(−a) dab

=
∫∫

D
f (a, b) ·

(

1+ α1

n
+ α2a

n
− a2

2n

)

dab + o(n−1) ; (2.28)

for a := a1 + a2 and b := b1 + b2:

∫∫

D
f (a1, a2, b1, b2) · ϕn−2(−a) dab

=
∫∫

D
f (a1, a2, b1, b2) ·

(

1+ α1

n
+ α2a

n
− a2

2n

)

dab + o(n−1) ; (2.29)

and for a := a1 + a2, b := b1 and c := c1:

∫∫

D
f (a1, a2, b, c) · ϕn−2(−a)ϕn−1(−b) dabc

=
∫∫

D
f (a1, a2, b, c) ·

(

1+ 2α1

n
+ α2(a + b)

n
− a2 + b2

2n

)

dabc + o(n−1) .

(2.30)

We state all formulas thatweneed explicitly in order to avoid defining andhandlingnew
notation, but we point out the pattern in these expressions: the α1/n factor is multiplied
by the number of the densities in the expression, the α2/n factor is multiplied by the
sum of all variables featured in the densities and the quadratic factor is consistent with
the approximation (2.15).

Before proving the lemma we point out a corollary that follows by setting D to the
full integration space and some simple integration (keeping in mind E[a1] = 0 and
E[a2

1] = 1). The corollary allows us to estimate the normalization constants Cn and
C ′n (see (2.16)).

Corollary 1 Keeping the notation from Lemma 3, we have

∫∫

R4
f (a1, a2, b1, b2) · ϕn−2(−a)ϕn−2(−b) dab = 1+ 2α1

n
− 2

n
+ o(n−1),

∫∫

R2
f (a, b) · ϕn−1(−a) dab = 1+ α1

n
− 1

2n
+ o(n−1),
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∫∫

R4
f (a1, a2, b1, b2) · ϕn−2(−a) dab = 1+ α1

n
− 1

n
+ o(n−1),

∫∫

R4
f (a1, a2, b, c) · ϕn−2(−a)ϕn−1(−b) dabc = 1+ 2α1

n
− 3

2n
+ o(n−1).

Consequently, letting D = {(a1, a2, b1, b2) : a1 > b1 ∧ a2 > b2}, we have

P [a1 > b1 ∧ a2 > b2 | ε0]
=

∫∫
D f (a1, a2, b1, b2)ϕn−2(−a)ϕn−2(−b) dab

∫∫
R4 f (a1, a2, b1, b2)ϕn−2(−a)ϕn−2(−b) dab

=
(

1− 2α1

n
+ 2

n

)∫∫

D
f (a1, a2, b1, b2)

(

1+ 2α1

n
+ α2(a + b)

n

− a2 + b2

2n

)

dab + o(n−1)

=
(

1+ 2

n

)∫∫

D
f (a1, a2, b1, b2)

(

1+ 2α2(a1 + b1)

n

− a2
1 + b21 + a1a2 + b1b2

n

)

dab + o(n−1). (2.31)

Similarly, we have

P [a1 > b1 | εa]

=
(

1− α1

n
+ 1

2n

)∫∫

D
f (a, b)

(
1+ α1

n
+ α2a

n
− a2

2n

)
dab + o(n−1),

=
(

1+ 1

2n

)∫∫

D
f (a1, b1)

(
1+ α2a1

n
− a2

1

2n

)
dab + o(n−1), (2.32)

where D = {(a1, b1) : a1 > b1};

P [a1 > b1 ∧ a2 > b2 | εa]

=
(
1− α1

n
+ 1

n

) ∫∫

D
f (a1, a2, b1, b2)

(

1+ α1

n
+ α2a

n
− a2

2n

)

dab + o(n−1)

=
(

1+ 1

n

)∫∫

D
f (a1, a2, b1, b2)

(

1+ 2α2a1
n

− a2
1 + a1a2

n

)

dab + o(n−1),

(2.33)
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where D = {(a1, a2, b1, b2) : a1 > b1 ∧ a2 > b2};

P [a1 > b1 ∧ a2 > c1 | εa ∩ εb]

=
(

1− 2α1

n
+ 3

2n

)∫∫

D
f (a1, a2, b, c)

(

1+ 2α1

n
+ α2(a + b)

n

− a2 + b2

2n

)

dabc + o(n−1)

=
(

1+ 3

2n

)∫∫

D
f (a1, a2, b1, c1)

(

1+ α2(2a1 + b1)

n

− 2a2
1 + b21 + 2a1a2

2n

)

dabc + o(n−1), (2.34)

where D = {(a1, a2, b1, c1) : a1 > b1 ∧ a2 > c1}.
We point out that an important feature of the expressions (2.31)–(2.34) is that the

number of mixed a1a2 and b1b2 terms depends on the number of ϕn−2 densities in the
expression.

Proof of Lemma 2 assuming Lemma 3 We delay the proof of Lemma 3 and prove
Lemma 2 now. For this we need some elementary integral computations. First, in the
case with two variables a, b and D2 := {(a, b) : a > b}:

∫∫

D2

f (a, b) dab = 1

2
,

∫∫

D2

f (a, b) · a dab =
∫ +∞

−∞
a f (a)

∫ a

−∞
f (b) dbda = E [a · F(a)] = A,

∫∫

D2

f (a, b) · a2 dab =
∫ +∞

−∞
a2 f (a)

∫ a

−∞
f (b) dbda = E

[
a2 · F(a)

]
= B.

(2.35)

In the four-variable case with D := {(a1, a2, b1, b2) : a1 > b1 ∧ a2 > b2},
f := f (a1, a2, b1, b2) and dab = da1da2db1db2:

∫∫

D
f dab = 1

4
,

∫∫

D
f · a1 dab = 1

2

∫∫

D2

f (a1, b1) · a1 dab = A

2
,

∫∫

D
f · b1 dab = 1

2

∫ +∞

−∞
b1 f (b1)

∫ +∞

a1
f (a1) da1db1

= 1

2

∫ +∞

−∞
b1 f (b1)(1− F(b1)) db1 = E[b1] − E[b1 · F(b1)]

2
= − A

2
,
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∫∫

D
f · a2

1 dab = 1

2

∫∫

D2

f (a1, b1) · a2
1 dab = B

2
,

∫∫

D
f · b21 dab = 1

2

∫ +∞

−∞
b21 f (b1)

∫ +∞

b1
f (a1) da1db1 = E[b21] − E[b21 · F(b1)]

2

= 1− B

2
,

∫∫

D
f · a1a2 dab =

(∫∫

D2

f (a1, b1) · a1 dab

)2

= A2,

∫∫

D
f · b1b2 dab =

(∫ +∞

−∞
b1 f (b1)

∫ +∞

b1
f (a1) da1db1

)2

= E[b1(1− F(b1)]2

= A2. (2.36)

Now all that is left is to insert the expressions computed above into Eqs. (2.31)–(2.34)
in Corollary 1. For example, in case of (2.34) we get

P [a1 > b1 ∧ a2 > c1 | εa ∩ εb]

=
(

1+ 3

2n

)∫∫

D
f (a1, a2, b1, c1)

(

1+ α2(2a1 + b1)

n

− 2a2
1 + b21 + 2a1a2

2n

)

dabc + o(n−1)

=
(

1+ 3

2n

)(
1

4
+ α2A

n
− α2A

2n
− B

2n
− 1− B

4n
− A2

n

)

+ o(n−1)

= 1

4
+ 1

8n
+ α2A

2n
− B

4n
− A2

n
+ o(n−1) , (2.37)

which is exactly (2.20) that we wanted to prove. Equations (2.17)–(2.19) and (2.21)–
(2.23) are handled in analogous ways and we provide the explicit computations only
in the “Appendix”. ��

Proof of Lemma 3 Finally, we turn to Lemma 3. Let ϕ̃ j denote the density of

j−1/2
∑ j

i=1 ai . Since the density of
∑k

i=1 ai is bounded for all k (recall that ai has
density continuous on closed support), [30, Theorem 15, pp. 206–207] implies

ϕ̃ j (y) = 1√
2π

e−y2/2

(

1+
γ3
3! H3(y)√

j
−

1
2 (

γ3
3! )

2H6(y)+ γ4
4! H4(y)

j

)

+ o( j−1),

(2.38)
where γ j denotes the j th cumulant, the error is uniform in y ∈ R, and the Hj are
Hermite polynomials:
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H3(y) = y3 − 3y,

H4(y) = y4 − 6y + 3,

H6(y) = y6 − 15y4 + 45y2 − 15.

(2.39)

Since we defined ϕ j (x) = √2πϕ̃ j (x j−1/2), (2.38) implies

ϕ j (x) = e−x2/(2 j)

(

1+
γ3
3! H3(x j−1/2)√

j
−

1
2 (

γ3
3! )

2H6(x j−1/2)+ γ4
4! H4(x j−1/2)

j

)

+ o( j−1)

= e−x2/(2 j)
(

1+ α1

j
− α2x

j

)

+ O

(
max(|x |, x6)

j3/2

)

+ o( j−1) , (2.40)

where in the last line the additional remainder term comes fromwriting out theHermite
polynomials (2.39) and then noting that what is left out of the main term has smallest
order terms j3/2 in the denominator, and largest order terms in the numerator x or x6,
depending on |x | ≤ 1 or |x | > 1. Substituting this into the left-hand side of (2.27) and
using the fact that the sixth moment is finite, we get (letting f := f (a1, a2, b1, b2))

∫∫

D
f · ϕn−2(−a)ϕn−2(−b) dab

=
∫∫

D
f ·

[

exp

(

− a2

2(n − 2)

)(
1+ α1

n − 2
+ α2a

n − 2

+ O

(
max(|a|, a6)

n3/2

)

+ o(n−1)
)]

·
[

exp

(

− b2

2(n − 2)

)(
1+ α1

n − 2
+ α2b

n − 2

+ O

(
max(|b|, b6)

n3/2

)

+ o(n−1)
)]

dab

=
∫∫

D
f · exp

(

− a2 + b2

2(n − 2)

)(

1+ 2α1

n
+ α2(a + b)

n

)

dab + o(n−1)

=
∫∫

D
f ·

(

1− a2 + b2

2(n − 2)
+ O

(

min

(
a2 + b2

n
,
(a2 + b2)2

n2

)))

·
(

1+ 2α1

n
+ α2(a + b)

n

)

dab + o(n−1)

=
∫∫

D
f ·

[

1+ 2α1

n
+ α2(a + b)

n
− a2 + b2

2n

+ O

(

min

(
a2 + b2

n
,
(a2 + b2)2

n2

))]

dab + o(n−1), (2.41)

where we used the approximation exp(−x) = 1− x + O(max(x, x2)) for x ≥ 0.
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Inspecting (2.41), we see that all that is left to establish (2.27) is to show

∫∫

R4
f ·

(

min

(
a2 + b2

n
,
(a2 + b2)2

n2

))

dab = o(n−1). (2.42)

We do that by dividing the integration area into two parts:

D1 := {(a1, a2, b1, b2) : a2 + b2 < n1/3}and D2 := R
4 \ D1,

and computing

∫∫

R4
f ·

(

min

(
a2 + b2

n
,
(a2 + b2)2

n2

))

dab

≤
∫∫

D1

f ·
(

(a2 + b2)2

n2

)

dab +
∫∫

D2

f ·
(

a2 + b2

n

)

dab = O(n−4/3),

where in the inequalitywebound theminimumbyoneof the terms, and thenuse the fact
that small moments of a and b are finite, and that on D2, we have 1 ≤ (a2+b2)n−1/3,
and therefore a2+b2

n ≤ (a2+b2)2

n4/3
. Therefore, we have shown (2.27). Similar calculations

concerning (2.28)–(2.30) are skipped here and provided in the Appendix. Note that
we always need at most sixth finite moment when estimating (2.40). ��

3 Stationary Gaussian dice

3.1 Preparation

Beforewe state and prove our results, let us start with some useful facts about Gaussian
Hilbert spaces. It is a well-known fact that the Hermite polynomials {Hk, k ≥ 0}
are orthogonal polynomials with respect to the standard Gaussian measure γ (A) =∫

A ϕ(x) dx , for any Borel set A ⊂ R. Here ϕ is the standard Gaussian density function

and Hk can be defined via Rodrigues’ formula: Hk(x) = (−1)kϕ(x)−1 dk

dxk (ϕ(x)).

For any f ∈ L2(R, γ ), we have

f =
∑

q≥0
coef(q)Hq withcoef(q) := 1

q!
∫

R

Hq(x) f (x) γ (dx) ,

where the above series converges in L2(R, γ ); see [28, Sect. 1.4]. In our work, we
only need (1.4) and (1.5). We can find the expansion (1.4), for instance, in [20, p. 7].
Suppose Z ∼ N (0, 1), noting that E

[
(I[Z > 0] − 2−1)2

] = 1/4, we deduce from the
orthogonality relation of Hermite polynomials that

1

4
=

∑

k≥0
d2
2k+1(2k + 1)! , (3.1)
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from which together with the explicit expression of d2k+1’s, we can deduce one of
Srinivasa Ramanujan’s ingenious identities (in a different form):

π =
∑

k≥0

1

22k−1(2k + 1)

(
2k

k

)

. (3.2)

Ramanujan’s identity reads as follows:

π

2
= 1+ 1

2

(
1

3

)

+ 1 · 3
2 · 4

(
1

5

)

+ 1 · 3 · 5
2 · 4 · 6

(
1

7

)

+ · · · ;

see [33].
To obtain (1.5), note that Φ(x) = E

(
I[−Z < x]), then using the expansion (1.4),

we get

Φ(x) = E
(
I[Z/

√
2+ x/

√
2 > 0]) = 1

2
+ E

⎛

⎝
∑

q≥0
d2q+1H2q+1

(
Z/
√
2+ x/

√
2
)
⎞

⎠ ,

= 1

2
+ E

⎛

⎝
∑

q≥0
d2q+1

2q+1∑

k=0

(
2q + 1

k

)

2−q− 1
2 Hk(Z)H2q+1−k(x)

⎞

⎠

wherewededuce the last equality from thewell-known identity: for a, b ∈ R satisfying
a2+b2 = 1, Hn(ax+by) =∑n

k=0
(n

k

)
akbn−k Hk(x)Hn−k(y). Note thatE[Hk(Z)

] =
0 for any k ≥ 1 and E[H0(Z)] = 1. Therefore, the expansion (1.5) is established.

Remark 4 Newton’s 1676 identity reads as follows: (see [1, p. 228])

π

6
= arcsin(1/2) = 1

2
+ 1

2
· 1

3 · 23 +
1 · 3
2 · 4 ·

1

5 · 25 +
1 · 3 · 5
2 · 4 · 6 ·

1

7 · 27 + · · · ,

which is equivalent to

π =
∞∑

q=0

3

(2q + 1)24q

(
2q

q

)

. (3.3)

Using the explicit expression (1.5) for �2q+1 and noting that Φ(G) for standard Gaus-
sian G has distribution that is uniform in (0, 1), we easily check that

1

6
=

∞∑

q=0
(2q + 1)!2−2qd2

2q+1 , (3.4)

from which we have α = 1
6 − 1

2π =
∑∞

q=1(2q + 1)!2−2qd2
2q+1.
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Lemma 4 Suppose X , Y are two centered (jointly) Gaussian random variables with
mean zero and variance one such that E[XY ] = ρ. Let Φ be the CDF of X, then,

E
[
Φ(X)Φ(Y )

] = 1

4
+

∑

q≥0
�22q+1(2q + 1)!ρ2q+1 = 1

4
+ ρ

4π
+ O(ρ3)

where �2q+1 = d2q+12−q− 1
2 = (−1)q

√
π(2q + 1)22q+1q! for each integer q ≥ 0.

Proof Recall from (1.5) the expansion Φ = 1
2 +

∑
q≥0 �2q+1H2q+1. It is also known

(see e.g. Proposition 2.2.1 in [28]) that for X , Y ∼ N (0, 1) jointly Gaussian and any
integers m, n ≥ 0,

E
[
Hm(X)Hn(Y )

] = m!(E[XY ])m
δmn . (3.5)

Therefore,

E
[
Φ(X)Φ(Y )

]

= 1

4
+

∑

q≥0
�22q+1E

[
H2q+1(X)H2q+1(Y )

] = 1

4
+

∑

q≥0
�22q+1(2q + 1)!ρ2q+1

= 1

4
+ ρ

4π
+ 1

π

∑

q≥1

1

(2q + 1)24q+2

(
2q

q

)

ρ2q+1

= 1

4
+ ρ

4π
+ O(ρ3) ,

where the last big-O estimate follows from the Newton’s identity (3.3). ��

3.2 Our results

Now we are in a position to present our results for stationary Gaussian dice. Recall
from the introduction that {Gi , i ∈ N} is a centered stationary Gaussian sequence
with the correlation function ρ such that ρ(0) = 1/2. Let a, b, c be i.i.d. copies of
{G1, . . . , Gn}, then for i, j, k, � ∈ [n], (ai−b j , ak−b�) is centered bivariateGaussian
withVar

(
ai−b j

) = Var
(
ak−b�

) = 1 andE
[
(ai−b j )(ak−b�)

] = ρ(i−k)+ρ( j−�).
Therefore, we can compute the variance of W (ab) := ∑

i, j∈[n] I[ai > b j ] using the
expansion (1.4) and the relation (3.5):

Var
(

W (ab)
)
=

∑

i, j,k,�∈[n]

{
E
(
I[ai > b j ∧ ak > b�]

)− 1

4

}

=
∑

i, j,k,�∈[n]

∑

q≥0
d2
2q+1(2q + 1)!(ρ(i − k)+ ρ( j − �)

)2q+1

=
∑

q≥0
d2
2q+1(2q + 1)!

∑

i, j,k,�∈[n]

(
ρ(i − k)+ ρ( j − �)

)2q+1
. (3.6)
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Let us first look at the almost trivial casewhere ρ = s1/2, that is, when ρ(i−k) = 1
2δik .

In this case, we have by (3.4),

Var
(

W (ab)
)
=

⎛

⎝
∑

q≥0
d2
2q+1(2q + 1)! 1

22q

⎞

⎠ n3 + O(n2) = 1

6
n3 + O(n2). (3.7)

Then, by standard computations and the above variance estimate, we have

Var

⎛

⎝W (ab) − n
∑

i∈[n]

[
F(ai )− F(bi )

]
⎞

⎠ = O(n2),

while due to the classical CLT, n−1/2
∑

i∈[n]
[
F(ai ) − F(bi )

]
converges in law to

N (0, 1/6). Therefore, we can conclude that the CDF-ordering property (1.3) occurs
with high probability in this setting. This relation also implies the following more
general result.

Theorem 6 Let x = (x1, . . . , xn) be a sequence of i.i.d random variables such that
x1 has a density function with a support which is a countable collection of (possibly
infinite) intervals. Assume y and z are two i.i.d. copies of x, then with high probability,

x beats y if and only if
n∑

i=1
F(xi ) >

n∑

i=1
F(yi ) ,

where F is the distribution function (CDF) of x1. In particular, the probability that
x, y, z are intransitive tends to zero, as n →+∞.

Proof Let a, b be given as in the casewhere ρ = s1/2 and F be the distribution function
of a1 ∼ N (0, 1/2), then by integral transform, we can assume that

{
(xi , yi ) : i ∈ N

} =
{(F−1 ◦ F(ai ),F−1 ◦ F(bi )

) : i ∈ N

}
,

where F−1(p) := inf{x ∈ R : F(x) ≥ p} is the generalized inverse of F . It is
clear that F(ai ) ∈ (0, 1) almost surely and due to our assumption on F , we have
F ◦ F−1(p) = p for any p ∈ (0, 1). It follows that

n∑

i=1
F(xi ) >

n∑

i=1
F(yi )

with prob. 1⇐⇒
n∑

i=1
F(ai ) >

n∑

i=1
F(bi )

with high prob.⇐⇒
n∑

i, j=1
I[ai > b j ] > n2

2
⇔

n∑

i, j=1
I
[
F(ai ) > F(b j )

]
>

n2

2
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with prob. 1⇐⇒
n∑

i, j=1
I[F−1 ◦ F(ai ) > F−1 ◦ F(b j )] > n2

2

⇐⇒
n∑

i, j=1
I[xi > y j ] > n2

2
.

Hence the desired conclusions follow immediately.
��

In the following, we provide the proof of our Theorem 2 as well as some results for
the general stationary Gaussian dice. We first state two results of central importance
to our approach.

Theorem 7 ([6], Breuer–Major theorem) Fix an integer d ≥ 1. Assume f ∈ L2(R, γ )

admits the following expansion in L2(γ ) (Recall γ (dx) = 1√
2π

exp(−x2/2)dx):

f =
∞∑

q=d

coef(q)Hq withcoef(d) �= 0; d is called the Hermite rank of f .

Assume also that (Xk, k ∈ Z) is a centered stationary Gaussian sequence with unit
variance3 such that its correlation function ρ̃ belongs to �d(Z), where ρ̃(i − j) =
E[Xi X j ] for any i, j ∈ Z.

Then

1√
n

n∑

k=1
f (Xk) converges in law to N (0, σ 2) as n →+∞ ,

where σ 2 :=
∑∞

q=d
q! coef(q)2

∑

v∈Z
ρ̃(v)q ∈ [0,+∞) is part of the conclusion.

For a modern proof using fourth moment theorems, one can refer to e.g., Theorem
7.2.4 in [28]. In particular, we also need one ingredient from this proof, which we state
in the following.

Lemma 5 Let the assumptions of Theorem 7 be satisfied, that is, ρ̃ ∈ �d(Z). For any
integer q ≥ d ∨ 2, and any r ∈ {1, . . . , q − 1}, we have

n−1+
r
q
∑

| j |<n

|ρ̃( j)|r = o(1) as n →+∞; see equation (7.2.7) in [28].

3 That is, ρ̃(0) = 1, which is different from ρ(0) = 1/2.
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Proof of Theorem 2 Note that we have proved the case where H = 1/2. Our proof
then consists of only two parts: in the first part, we prove our result for H ∈ (1/2, 1)
and in the second part, we prove a stronger result (Theorem 8) that includes the case
H ∈ (0, 1/2).

We proceed in the sameway as in previous subsection: we first estimate the variance
of the difference W (ab) − n

∑n
i=1

[
F(ai )− F(bi )

]
, then prove a CLT for W (ab). We

begin with the following two lemmas dealing with two variance estimates.

Lemma 6 Let a, b, c be i.i.d. copies of the centered stationary Gaussian sequence
{Gi , i ∈ N} with the correlation function ρ such that ρ(0) = 1/2. Then

Var
(

W (ab) − n
n∑

i=1

[
F(ai )− F(bi )

]) = 1

3
Var

(
W (ab) +W (bc) +W (ca)

)
(3.8)

=
∑

q≥1
d2
2q+1(2q + 1)!

2q∑

v=1

(
2q + 1

v

)
⎛

⎝
∑

|i |<n

(n − |i |)ρ(i)v

⎞

⎠

×
⎛

⎝
∑

| j |<n

(n − | j |)ρ( j)2q+1−v

⎞

⎠ . (3.9)

(1) If ρ ∈ �3(Z), then

Var

(

W (ab) − n
n∑

i=1

[
F(ai )− F(bi )

]
)

= o(n3).

(2) Consider ρ = sH , then the case H ∈ (0, 5/6) is covered by point (1); if H ∈
[5/6, 1), we have

Var
(

W (ab) − n
n∑

i=1

[
F(ai )− F(bi )

]) ∼ H2(2H − 1)

16π(4H − 3)
n6H−2.

The proofs of the above lemma and the following lemma will be postponed to the
end of this section.

Lemma 7 Let a, b and {Gi , i ∈ N} be given as in Lemma 6. The following statements
hold true.

(1) If ρ ∈ �1(Z), then, with β := 2
∑

q≥0 d2
2q+1(2q+1)!∑i∈Z ρ(i)2q+1 ∈ [0,+∞),

Var
(
W (ab)

) = βn3 + o(n3).

(2) Consider the case where ρ = sH is given as in (1.1):

(i) for H ∈ (0, 1/2], Var
(
W (ab)

) = βn3 + o(n3) with β defined as in point (1);
moreover, β > 0 in this case.
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(ii) for H ∈ (1/2, 1), Var
(
W (ab)

) = 1

2π
n2H+2 + o(n2H+2).

Assuming Lemmas 6 and 7, we prove Theorem 2 in the following. As announced, we
split our proof into two cases.
case 1: H ∈ (1/2, 1). In this case, we deduce from the above two lemmas that

Var

(

W (ab) − n
n∑

i=1
[F(ai )− F(bi )]

)
/
Var

(
W (ab)

)
= o(1). (3.10)

And we have, with �0 = 1
2
√

π
(see (1.5))

∑

i∈[n]

(

F(ai )− 1

2

)

=
∑

i∈[n]

(

F(ai )− 1

2
− �0

√
2ai

)

+√2�0
∑

i∈[n]
ai

and it is clear that the second part in the above sum is a centered Gaussian with

Var

(√
2�0

n∑

i=1
ai

)

= 1

2π

n∑

i, j=1
sH (i − j) ∼ 1

4π
n2H , as n →+∞,

where the asymptotic behavior is implied by (1.2). We know from (3.10) and point
(ii) in Lemma 7 that

Var

(
n∑

i=1

[
F(ai )− F(bi )

]
)
/

Var

(√
2�0

n∑

i=1
(ai − bi )

)
n→∞−−−→ 1. (3.11)

Recall the Slutsky’s lemma, which says

if Xn
law−−−→

n→∞ X and Yn
law−−−→

n→∞ 0, then Xn + Yn
law−−−→

n→∞ X .

Thus, we deduce from (3.11) and the orthogonality property of Hermite polynomials,
n−H ∑n

i=1
[
F(ai ) − F(bi )

]
converges in law to N

(
0, 1

2π

)
, as n → +∞. Combin-

ing (3.10) with Slutsky’s lemma again yields

1

nH+1
(

W (ab) − n2

2

)
law−−−−→

n→+∞ N
(
0,

1

2π

)
.

Hence the desired conclusions follow from similar arguments as in the proof of
Theorem 1. For the sake of completeness, we sketch it below: first we define
Vn = n

∑n
i=1

(
F(ai )− F(bi )

)
, then we have for any δ > 0,
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P

{

sgn(Vn) �= sgn
(
W (ab) − n2

2

)
}

≤ P

{
∣
∣
∣
W (ab) − n2

2 − Vn

nH+1
∣
∣
∣ > δ

}

+ P

{
∣
∣
∣
W (ab) − n2

2

nH+1
∣
∣
∣ ≤ δ

}

,

where the lim sup of the RHS, as n → +∞, is bounded by 2δ. This implies that for
H ∈ (1/2, 1), the relation (1.3) occurs with high probability and thus, the probability
of a, b, c being intransitive asymptotically vanishes.
case 2: H ∈ (0, 1/2). In this case, the correlation function sH ∈ �1(Z) and by Lemma

7, β = 2
∑

q≥0 d2
2q+1(2q + 1)!∑i∈Z sH (i)2q+1 ∈ (0,+∞). Then, case 2 is an

immediate consequence of the following theorem.

Theorem 8 Let a, b, c be i.i.d. copies of {G1, . . . , Gn} with correlation function ρ ∈
�1(Z) such that the constant β defined in Lemma 7 is strictly positive. Then, with high
probability,

n∑

i, j=1
I[ai > b j ] > n2

2
if and only if

n∑

i=1
F(ai ) >

n∑

i=1
F(bi ) , (3.12)

where F(x) = Φ(
√
2x) is the distributional function of G1 ∼ N (0, 1/2). As a

consequence, the probability of three dice a, b, c being intransitive tends to zero, as
n →+∞ .

Proof (Proof of Theorem 8) Let us first summarize what we have so far, concerning
this proof:

– Var
(
W (ab)

) = βn3 + o(n3), with β ∈ (0,+∞); see Lemma 7.

– Var

(

W (ab) − n
n∑

i=1

[
F(ai )− F(bi )

]
)

= o(n3); see Lemma 6.

Putting Xi =
√
2ai for each i ∈ N and ρ̃ = 2ρ, we apply Theorem 7 for d = 1,

f = Φ − 1/2 =∑
q≥0 �2q+1H2q+1 and we obtain the following CLT:

1√
n

n∑

k=1

(
F(ak)− 1

2

) = 1√
n

n∑

k=1
f (Xk)

law−−−−→
n→+∞ N (0, β/2),

where the limiting variance, due to Breuer–Major’s theorem, should be

∞∑

q=0
(2q + 1)!�22q+1

∑

v∈Z
(2ρ(v))2q+1 ,

which is indeed equal to β/2 because of d2
2q+1 = �22q+122q+1 for each integer q ≥ 0.
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Thus, we deduce from the above CLT and Slutsky’s lemma that

1√
n

n∑

i=1

[
F(ai )− F(bi )

] law−−−−→
n→+∞ N (0, β) and

W (ab) − n2
2

n3/2
law−−−−→

n→+∞ N (0, β).

Hence the desired conclusions follow from the same arguments as in the ending para-
graph of case 1.

��

To conclude this section, it remains to prove Lemmas 6 and 7. Onemay have noticed
that we haven’t used the relation (3.8) in the above proofs. In fact, the relation (3.8)
and the following Lemma 8 together imply the point (1) in Lemma 6, and besides
the independent interest of such a relation, its proof contains some ingredients for our
proof of Lemma 6.

Lemma 8 Let a, b, c be i.i.d. copies of {Gi , i ∈ N}. Assume that ρ ∈ �3(Z), then

Var
(

W (ab) +W (bc) +W (ca)
)
= o(n3). (3.13)

Proof Using Hermite expansion of x ∈ R �−→ I[x > 0], we have

W (ab) +W (bc) +W (ca) =
n∑

i, j=1

(
I[ai > b j ] + I[bi > c j ] + I[ci > a j ]

)

= 3n2

2
+

∑

q≥0
d2q+1

n∑

i, j=1

[
H2q+1(ai − b j )+ H2q+1(bi − c j )+ H2q+1(ci − a j )

]

so that

Var
(

W (ab) +W (bc) +W (ca)
)
=

∑

q≥0
d2
2q+1(2q + 1)!

×
n∑

i, j,k,�=1

(

E[(ai − b j )(ak − b�)]2q+1 + E[(ai − b j )(bk − c�)]2q+1

+ E[(ai − b j )(ck − a�)]2q+1 + E[(bi − c j )(ak − b�)]2q+1 + E[(bi − c j )(bk − c�)]2q+1

+ E[(bi − c j )(ck − a�)]2q+1 + E[(ci − a j )(ak − b�)]2q+1

+ E[(ci − a j )(bk − c�)]2q+1 + E[(ci − a j )(ck − a�)]2q+1
)

.

Then, using the specific correlation structure of a, b, c as well as their independence,
we get
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1

3
Var

(
W (ab) +W (bc) +W (ca)

)

=
∑

q≥1
d2
2q+1(2q + 1)!

n∑

i, j,k,�=1

[(
ρ(i − k)+ ρ( j − �)

)2q+1 − ρ(i − k)2q+1

− ρ( j − �)2q+1]. (3.14)

Let us now look at the second sum in (3.14), which can be rewritten using the
binomial formula, as follows:

n∑

i, j,k,�=1

2q∑

v=1

(
2q + 1

v

)

ρ(i − k)vρ( j − �)2q+1−v

=
2q∑

v=1

(
2q + 1

v

)
⎛

⎝
n∑

i,k=1
ρ(i − k)v

⎞

⎠

⎛

⎝
n∑

j,�=1
ρ( j − �)2q+1−v

⎞

⎠

=
2q∑

v=1

(
2q + 1

v

)

2−1−2q

⎛

⎝
∑

|i |<n

(n − |i |)ρ̃(i)v

⎞

⎠

⎛

⎝
∑

| j |<n

(n − | j |)ρ̃( j)2q+1−v

⎞

⎠

(3.15)

by putting ρ̃ = 2ρ. It is clear that the term 2−1−2q will compensate the term
∑2q

v=1
(2q+1

v

)
above. Therefore, we only need the following rough estimate: for q ≥ 1

n∑

i, j,k,�=1

[(
ρ(i − k)+ ρ( j − �)

)2q+1 − ρ(i − k)2q+1 − ρ( j − �)2q+1]

= O

⎧
⎨

⎩
n2

⎛

⎝
∑

|i |<n

|ρ̃(i)|
⎞

⎠

⎛

⎝
∑

|i |<n

|ρ̃(i)|2
⎞

⎠

⎫
⎬

⎭
,

implying

Var
(

W (ab) +W (bc) +W (ca)
)
= O

⎧
⎨

⎩
n2

⎛

⎝
∑

|i |<n

|ρ̃(i)|
⎞

⎠

⎛

⎝
∑

|i |<n

|ρ̃(i)|2
⎞

⎠

⎫
⎬

⎭
.

The desired estimate (3.13) follows from Lemma 5 and the assumption ρ̃ ∈ �3(Z).
��

Proof (Proof of Lemma 6)
As in previous variance calculations,
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we have

Var

(

W (ab) − n
n∑

i=1

[
F(ai )− F(bi )

]
)

= Var
(
W (ab)

)+ 1

2
n4 − 2n2

n∑

i, j=1
E
[
F(ai )F(a j )

]

= Var
(
W (ab)

)+ 1

2
n4 − 2n2

⎛

⎝ 1

3
n + 2

∑

1≤i< j≤n

E
[
F(ai )F(a j )

]
⎞

⎠ . (3.16)

It follows from Lemma 4 that for i �= j , (also due to d2
2q+1 = �22q+122q+1)

E
[
F(ai )F(a j )

] = E
[
Φ(
√
2ai )Φ(

√
2a j )

]

= 1

4
+

∑

q≥0
d2
2q+1(2q + 1)!ρ(i − j)2q+1. (3.17)

Therefore, it is routine to verify using (3.6), (3.16), (3.17), (3.15) and (3.14) that

Var

(

W (ab) − n
n∑

i=1

[
F(ai )− F(bi )

]
)

=
∑

q≥1
d2
2q+1(2q + 1)!

2q∑

v=1

(
2q + 1

v

)
⎛

⎝
∑

|i |<n

(n − |i |)ρ(i)v

⎞

⎠

×
⎛

⎝
∑

| j |<n

(n − | j |)ρ( j)2q+1−v

⎞

⎠ = 1

3
Var

(
W (ab) +W (bc) +W (ca)

)
. (3.18)

Therefore, the relations (3.8) and (3.9) are established. If ρ ∈ �3(Z), Lemma 8 implies
that the variance in (3.18) is o(n3).

To prove point (2), we consider the particular case where ρ = sH . One can easily
verify using the asymptotic relation (1.2) that sH ∈ �3(Z) if and only if H ∈ (0, 5/6).
Now suppose that H ∈ [5/6, 1), the relation (3.9) still holds true, that is, we have

Var

(

W (ab) − n
n∑

i=1

[
F(ai )− F(bi )

]
)

= 1

2π

⎛

⎝
∑

|i |<n

(n − |i |)sH (i)

⎞

⎠

⎛

⎝
∑

| j |<n

(n − | j |)sH ( j)2

⎞

⎠

pagebreak
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+
∑

q≥2
d2
2q+1(2q + 1)!

2q∑

v=1

(
2q + 1

v

)
⎛

⎝
∑

|i |<n

(n − |i |)sH (i)v

⎞

⎠

×
⎛

⎝
∑

| j |<n

(n − | j |)sH ( j)2q+1−v

⎞

⎠ .

One can readily check using (1.2) that for H ∈ [5/6, 1),
∑

|i |<n

(
n − |i |)sH (i) ∼ 1

2
n2H and

∑

|i |<n

(
n − |i |)sH (i)2 ∼ H2(2H − 1)

4(4H − 3)
n4H−2 ,

and

∑

|i |<n

(
n − |i |)sH (i)3 ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H3(2H − 1)3

8(6H − 5)(3H − 2)
n6H−4 if H ∈ (5/6, 1)

2(5/18)3n log n if H = 5/6.

All these estimates imply, whenever H ∈ [5/6, 1),

Var

(

W (ab) − n
n∑

i=1
[F(ai )− F(bi )]

)

= 1

3
Var

(
W (ab) +W (bc) +W (ca)

)

∼ H2(2H − 1)

16π(4H − 3)
n6H−2.

Hence the proof of Lemma 6 is completed.
��

Proof (Proof of Lemma 7) Assume first that ρ ∈ �1(Z) and recall from (3.6) that

Var
(
W (ab)

) =
∑

q≥0
d2
2q+1(2q + 1)!

n∑

i, j,k,�=1

(
ρ(i − k)+ ρ( j − �)

)2q+1

and in view of (3.14), we have

Var
(
W (ab)

) = 2
∑

q≥0
d2
2q+1(2q + 1)!

n∑

i, j,k,�=1
ρ(i − k)2q+1 + o(n3) . (3.19)

The second sum in (3.19) is equal to n2 ∑|i |<n(n − |i |)ρ(i)2q+1. Since ρ ∈ �1(Z)

and for q ≥ 0,

lim
n→+∞

∑

|i |<n

n − |i |
n

ρ(i)2q+1 =
∑

i∈Z
ρ(i)2q+1 by dominatedconvergence.
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Therefore, as n →+∞,

n−3
∑

q≥0
d2
2q+1(2q + 1)!

n∑

i, j,k,�=1
ρ(i − k)2q+1

=
∑

q≥0
d2
2q+1(2q + 1)!

∑

|i |<n

n − |i |
n

ρ(i)2q+1 →
∑

q≥0
d2
2q+1(2q + 1)!

∑

i∈Z
ρ(i)2q+1,

so that Var
(
W (ab)

) = βn3 + o(n3). Note that β ∈ [0,+∞) under the assumption
ρ ∈ �1(Z) is an easy consequence of Theorem 7. It is clear that ρ̃ = 2ρ satisfies the
assumption of Theorem 7, then using d2

2q+1 = �22q+122q+1, we get

1

2
β =

∑

q≥0
d2
2q+1(2q + 1)!2−1−2q

∑

i∈Z
ρ̃(i)2q+1 =

∑

q≥0
�22q+1(2q + 1)!

∑

i∈Z
ρ̃(i)2q+1.

So, with f (x) = Φ(x)− 1
2 and d = 1, one can see that β ∈ [0,+∞).

Now let us look at the fractional case, and note that the case H = 1/2 was stated
in (3.7).

If H < 1/2, then sH is summable so that
∑

i∈Z sH (i) is finite, which is the limit
of
∑

|k|≤n

sH (k) = 1

4

∑

|k|≤n

(|k + 1|2H + |k − 1|2H − 2|k|2H ) = 1

2

(|n + 1|2H − |n|2H )

as n → +∞. This limit is zero. For later reference, we summarize some basic prop-
erties of sH for H ∈ (0, 1/2):

sH (0) = 1

2
,−1

2
< sH (v) < 0 for v �= 0; and

∑

v∈Z
sH (v) = 0. (3.20)

It follows that for q ≥ 1, from

1 = 2sH (0) =
∑

v �=0

[− 2sH (v)
]

>
∑

v �=0

[− 2sH (v)
]2q+1

we obtain
∑

i∈Z sH (i)2q+1 ∈ (0,+∞). Thus, point (2)-(i) is proved.
If H ∈ (1/2, 1), then sH (v) > 0. One can verify by using (3.16), (3.17) and the

fact 1/6 =∑∞
q=0 d2

2q+1(2q + 1)!2−2q from Remark 4 that

Var
(
W (ab)

) = Var

(

W (ab) − n
n∑

i=1

[
F(ai )− F(bi )

]
)

+ 2n2
∑

q≥0
d2
2q+1(2q + 1)!

∑

i, j∈[n]
sH (i − j)2q+1.
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The first term in the above sum is of order o(n2H+2), by Lemma 6. It remains to use
(1.2) to estimate the second term in the above sum:

2n2d2
0

∑

i, j∈[n]
sH (i − j) ∼ 1

2π
n2H+2

gives the dominant contribution. Hence our proof of Lemma 7 is now completed.
��

4 Condorcet paradox for close elections: majority

This section contains the proof of Theorem 3.

4.1 Notation

Westartwith recalling and extending themodel and notation. There are n voters (where
n is odd) and each of them independently chooses one of k! rankings of the alternatives
uniformly at random. For voter i , such a random ranking gives rise to a random tuple
xi = (x (1)

i , . . . , x (K )
i ) in {−1, 1}K representing K := (k

2

)
pairwise choices (according

to some fixed ordering of pairs).We call each of k! tuples in the support of xi transitive.
Any other tuple is intransitive. We say that a tuple has a Condorcet winner if it has an
alternative that beats everyone else.

Wedenote aggregation over voters by boldface. Therefore,wewritex = (x1, . . . xn)

for the random vector of voter preferences (where each element is itself a random tuple
of length K ).

For j = 1, . . . , K , let S( j)
i :=∑i

i ′=1 x ( j)
i ′ and S( j) := S( j)

n , and write

Y ( j) = Majn(x( j)) = sgn(S( j)) .

Furthermore, we write Y = (
Y (1), . . . , Y (K )

)
and S = (

S(1), . . . , S(K )
)
for the aggre-

gated tuples.
Given voter preferences, we say that the voting outcome is intransitive if the aggre-

gated tuple Y is intransitive. Similarly, we say that there is a Condorcet winner if tuple
Y has a Condorcet winner.

We are interested in situations where elections are “almost tied” or, more precisely,
“d-close” for d ≥ 1. Specifically, we define εd to be the event where ‖S‖∞ ≤ d, i.e.,
|S( j)| is at most d for every j ∈ [K ].

4.2 Local CLT

We use a theorem and some definitions from the textbook on random walks by Spitzer
[34]. In accordance with the book, we make
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Definition 1 A k-dimensional random walk (Xi )i∈N is a Markov chain over Zk with
X0 = 0k and a distribution of one step Zi+1 := Xi+1 − Xi that does not depend on i .

Defining Si := (S(1)
i , . . . , S(K )

i ), note that (Si )i∈{0,...,n} is a K -dimensional random
walk and that we want to calculate P(sgn(Sn) = y|εd), for y ∈ {−1, 1}K . There is one
technicality we need to address to apply a local CLT: since the steps of our random
walk are in {−1, 1}K , the values of (Si ) lie on a proper sublattice of ZK , namely, S( j)

i

always has the same parity as i . To deal with this, we define T ( j)
i := (S( j)

2i+1 − 1)/2.
Note that (Ti ) is still a K -dimensional random walk, with one catch: the starting point
T0 is not necessarily the origin, but rather one of k! points in {−1, 0}K corresponding
to the transitive tuple picked by the first voter.

Before we state the local CLT, we need another definition:

Definition 2 [34, D1 in Sect. 5] A K -dimensional random walk is strongly aperiodic
if for every t ∈ Z

K , the subgroup of ZK generated by the points that can be reached
from t in one step is equal to ZK .

Now we are ready to state the theorem:

Theorem 9 (Local CLT, Remark after P9 in Sect. 7 of [34]) Let (Ti )i∈N be a strongly
aperiodic K -dimensional random walk, starting at origin and with a single step Z,
i.e., Ti+1 − Ti distributed according to Z.

If E[Z ] = 0K and Q is the K × K (finite) covariance matrix of Z, then matrix Q
is invertible and for every t ∈ Z

K ,

∣
∣
∣
∣(2πn)K/2

P [Tn = t]− |Q|−1/2 exp
(−t T Q−1t

2n

)∣
∣
∣
∣ = o(1) ,

where the o(1) function depends on n, but not on t.

Our main lemma states that the distribution of Tn conditioned on ‖Tn‖∞ being
small is roughly uniform.

Lemma 9 For the random walk (Ti ) defined above and t ∈ Z
K , d ≥ 1 such that

‖t‖∞ ≤ d, there are some αk, βk > 0 such that

∣
∣
∣αknK/2

P [Tn = t]− 1
∣
∣
∣ ≤ βk

d2

n
+ ok(1) . (4.1)

Proof We first deal with the technicality that we mentioned before: the starting point
T0 of the random walk is itself a random variable. In the proof below we proceed by
conditioning on T0 = 0K . After reading the proof it should be clear how to modify it
for other starting points in {−1, 0}K . Equation (4.1) is obtained from those conditional
results by triangle inequality.

We need to check that the random walk (Ti ) satisfies hypothesis of Theorem 9.
First, note that the “step” random variable Z for (Ti ) has the same distribution as
(X1 + X2)/2, i.e., two steps of our original random process.

123



The probability of intransitivity in dice and close elections

Clearly, E[Z ] = (E[X1] + E[X2])/2 = 0K . Equally clearly, all covariances in the
matrix Q are finite.

To show that (Ti ) is strongly aperiodic, let (e(1), . . . , e(K )) be the standard basis of
Z

K . Note that it is enough to show that for each z ∈ Z
K , all of z, z+e(1), . . . , z+e(K )

are reachable from z in one step. But this is so:

– It is possible to stay at z by choosing a permutation (ranking) τ for X1 and then
its reverse τ R for X2.

– We explain how one can move from z to z + e( j) on an example and hope it is
clear how to generalize it. For k = 5 and e( j) corresponding to the b versus d
comparison, one can choose a ranking b > d > a > c > e for X1 followed by
e > c > a > b > d for X2.

Since Theorem 9 applies, we have

∣
∣
∣(2πn)K/2

P [Tn = t]− |Q|−1/2 exp
(
−t T Q−1t/2n

)∣
∣
∣ = ok(1),

which can be rewritten as

∣
∣
∣αknK/2

P [Tn = t]− exp
(
−t T Q−1t/2n

)∣
∣
∣ = ok(1) .

Since 1− x ≤ exp(−x) ≤ 1 for x ≥ 0, it follows that

∣
∣
∣αknK/2

P [Tn = t]− 1
∣
∣
∣ ≤ t T Q−1t

2n
+ ok(1) .

Finally we observe that t = dt ′ for some t ′ with ‖t ′‖∞ ≤ 1, so we have

t T Q−1t

2n
≤ βk

d2

n
,

as we needed. ��

Lemma 9 implies:

Corollary 2 Let n be odd, d ≥ 1 and s ∈ (2Z+ 1)K be a tuple such that ‖s‖∞ ≤ d.
Then for some αk, βk > 0,

∣
∣
∣αk (n − 1)K/2

P [S = s]− 1
∣
∣
∣ ≤ βk

d2

n
+ ok(1) .

Proof Letting t := (s − 1K )/2, note that P[Sn = s] = P
[
T(n−1)/2 = t

]
and that

‖t‖∞ ≤ d. We get the result by applying Lemma 9. ��
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4.3 Proof of Theorem 3

Recall that we want to prove (1.8), that is

∣
∣
∣
∣P [Y = y | εd ]− 1

2K

∣
∣
∣
∣ ≤ αk

d2

n
+ o(1) .

After we have (1.8), the bounds (1.9) and (1.10) easily follow by triangle inequality.
For y ∈ {−1, 1}K , let Sy :=

{
s ∈ (2Z + 1)K : ∧

j∈[K ] sgn
(
s( j)

) = y( j) ∧
‖s‖∞ ≤ d

}
. Observe that P[Y = y ∧ εd ] =∑

s∈Sy
P[S = s]. Furthermore, note that

|Sy | = |Sy′ | for every y, y′. Set M := |Sy | as the common cardinality of the Sy sets.
First, we use Corollary 2 to show that the probability P[Y = y | εd ] must be close

to q := 1
αk (n−1)K/2 · M

P[εd ] , where αk is the constant from Corollary 2:

∣
∣
∣
∣
P[Y = y | εd ]

q
− 1

∣
∣
∣
∣ =

∣
∣
∣
∣
αk(n − 1)K/2

P[εd ]
M

· P[Y = y | εd ] − 1

∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

αk(n − 1)K/2

M
·
∑

s∈Sy

P[S = s] − 1

∣
∣
∣
∣
∣
∣

≤ 1

M

∑

s∈Sy

∣
∣
∣αk(n − 1)K/2

P[S = s] − 1
∣
∣
∣ ≤ βk

d2

n
+ o(1) .

The value of q depends on k, n and d, but not on y. The implication is that the
conditional probabilities must be almost equal for every pair y, y′:
∣
∣
∣P[Y = y | εd ] − P[Y = y′ | εd ]

∣
∣
∣ ≤

∣
∣
∣P[Y = y | εd ] − q

∣
∣
∣+

∣
∣
∣q − P[Y = y′ | εd ]

∣
∣
∣

≤ 2q

(

βk
d2

n
+ o(1)

)

≤ β ′k
d2

n
+ o(1) .

But this is all we need, since

∣
∣
∣
∣P[Y = y | εd ] − 1

2K

∣
∣
∣
∣ ≤

1

2K

∑

y′∈{−1,1}K

∣
∣
∣P[Y = y | εd ] − P[Y = y′ | εd ]

∣
∣
∣

≤ βk
d2

n
+ o(1) .

��
Remark 5 A similar bound with an explicit o(1) term of the order Ok

( d√
n

) +
Ok

( nK/2−1
d K

)
(implying chaotic behavior for n1/2−1/K � d � n1/2) can be achieved

using the multidimensional Berry–Esseen theorem instead of the local CLT.
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Remark 6 As we mentioned in Sect. 1.3, the proof of Theorem 3 can be modified to
give a similar bound

P

[
Y = y | ε(a0b0)

d

]
= 1

2K
+ o(1)

for d = o(
√

n) also in case the event ε(a0b0)
d is defined as

∣
∣S(ab)

∣
∣ ≤ d for all pairwise

comparisons (ab) different from (a0b0).
The reason for this is that if we remove conditioning from just one S(a0b0), there

are still no covariance factors in the CLT computation that would steer the distribution
of Y away from uniform.

5 Condorcet paradox for close elections: majority of triplets

Recall that we are considering odd n = 3m voters, alternatives a, b, c and random

variables x (kk′)
1 , . . . , x (kk′)

n and that the pairwise comparison is done according to
f : {−1, 1}n → {−1, 1}:

f (x1, . . . , xn) = sgn

(
m∑

i=1
sgn (wi )

)

, where wi = x3i−2 + x3i−1 + x3i .

This section contains proofs of non-chaotic behavior of f under certain conditionings.
Section 5.1 contains the proof of Theorem 4, dealing with conditioning on small
∣
∣∑n

i=1 x (kk′)
i

∣
∣. In Sect. 5.2 we prove Theorem 5, which considers conditioning on

small
∣
∣Tρ f (x (kk′))

∣
∣.

5.1 Proof of Theorem 4

For i ∈ [m], we take random tuple Zi := (
A(kk′)

i , B(kk′)
i

)
(kk′) for kk′ ∈

{ab, bc, ca}, where A(kk′)
i := w

(kk′)
i /

√
3 and B(kk′)

i := sgn
(
w

(kk′)
i

)
. Note that

Z1, . . . , Zm are i.i.d. Let us compute the first two moments of the single-voter dis-
tribution Z = (A(ab), A(bc), A(ca), B(ab), B(bc), B(ca)). For this keep in mind that

Cov
[
x (kk′)

i , x (k′k′′)
i

] = −1/3 and refer to Table 1 for the joint distribution of w(kk′)

and w(k′k′′):

E
[
A(kk′)] = E

[
B(kk′)] = 0

Var
[
A(kk′)] = Var

[
B(kk′)] = 1

Cov
[
A(kk′), A(k′k′′)] = −1

3

Cov
[
B(kk′), B(k′k′′)] = 80− 136

8 · 27 = − 7

27
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Table 1 Probabilities of values
for w(kk′), w(k′k′′) pairs
multiplied by common
denominator 8 · 27

w(kk′) versus w(k′k′′) −3 −1 1 3

−3 1 6 12 8

−1 6 27 36 12

1 12 36 27 6

3 8 12 6 1

Keep in mind that x(kk′)
i and x(k′k′′)

i ∈ {−1, 1} are equal with proba-
bility 1/3

Cov
[
A(kk′), B(kk′)] = 1√

3
· 3
2
=
√
3

2

Cov
[
A(kk′), B(k′k′′)] = 1√

3
· 3 · 14+ 66− 96− 3 · 40

8 · 27 = − 1

2
√
3

. (5.1)

Let Ã(kk′) :=∑m
i=1 A(kk′)

i /
√

m and B̃(kk′) :=∑m
i=1 B(kk′)

i /
√

m and let M̃ (kk′) and

Ñ (kk′) be joint standard Gaussians with the same covariance structure as Ã(kk′) and
B̃(kk′) respectively. After checking that our six by six covariance matrix is not singular,
by the multi-dimensional Berry–Esseen theorem (see the statement e.g., in [4]), we
can move to the Gaussian space:

P

[
f (x(ab)) = f (x(bc)) = f (x(ca)) ∧ εd

]

= 2P
[

f (x(ab)) = f (x(bc)) = f (x(ca)) = 1 ∧ εd

]

= 2P

[

‖ Ã‖∞ ≤ d√
3m

∧ B̃ ≥ 0

]

= 2P

[

‖M̃‖∞ ≤ 1

log n
∧ Ñ ≥ 0

]

+ O

(
1√
n

)

, (5.2)

where we write B̃ ≥ 0 to indicate B̃(kk′) ≥ 0 for every component of B̃. Similarly,

P[εd ] = P

[

‖M̃‖∞ ≤ 1

log n

]

+ O

(
1√
n

)

.

Let us define three more centered Gaussians R̃(kk′) according to the formula

Ñ (kk′) =
√
3

2
M̃ (kk′) + 1

2
R̃(kk′). (5.3)

Since Cov[M̃ (kk′), Ñ (kk′)] = Cov[A(kk′), B(kk′)] = √
3/2, we immediately see that

Var[R̃(kk′)] = 1 and Cov[M̃ (kk′), R̃(kk′)] = 0. Furthermore, we calculate

Cov[M̃ (kk′), R̃(k′k′′)] = 2Cov[M̃ (kk′), Ñ (k′k′′)] − √3Cov[M̃ (kk′), M̃ (k′k′′)]
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= 2Cov[A(kk′), B(k′k′′)] − √3Cov[A(kk′), A(k′k′′)] = 0,

Cov[R̃(kk′), R̃(k′k′′)] = 4Cov[Ñ (kk′), Ñ (k′k′′)] − 4
√
3Cov[M̃ (kk′), Ñ (k′k′′)]

+ 3Cov[M̃ (kk′), M̃ (k′k′′)] = − 1

27
. (5.4)

Recall the joint density function for centered Gaussians: in k dimensions, for the
distribution with covariance matrix Σ and x = (x1, . . . , xk) we have

fΣ(x) = 1
√

(2π)k |Σ | exp
(
−xT Σ−1x

)
.

In particular, letting cΣ := fΣ(0), we have basic approximation

fΣ(x) = cΣ + O(‖x‖2). (5.5)

Letting D := {m ∈ R
3 : ‖m‖∞ ≤ 1/ log n} and using this approximation, we have

P

[

‖M̃‖∞ ≤ 1

log n

]

=
∫

D
fM (m) dm = 8cM

log3 n
+ O

(
1

log5 n

)

.

As for calculating (5.2), given m ∈ D, let

Dm :=
{

r ∈ R
3 :
√
3

2
m+ 1

2
r ≥ 0

}

.

In particular, we have D0 = {r : r ≥ 0}. Let fR be the density function of the Gaussian
triple R̃ and let

α∗ := 2P[R̃ ≥ 0] = 2
∫

D0

fR(r) dr.

Note that if ‖m‖∞ ≤ 1/ log n and r ∈ D0ΔDm, then there exists at least one coordinate
on which |ri | = O(1/ log n). Therefore, we obtain

∣
∣
∣
∣

∫

Dm

fR(r) dr− α∗

2

∣
∣
∣
∣ ≤

∫

D0ΔDm

fR(r) dr

≤ 3P

[

|R̃(kk′)| ≤ O

(
1

log n

)]

= O

(
1

log n

)

,

where the error term is uniform in m.
Finally, we recall (5.4) to observe that Gaussian triples M̃ and R̃ are independent

and therefore their joint density decomposes fM,R(m, r) = fM (m) fR(r). That allows
us to calculate, using (5.3),

P

[

‖M̃‖∞ ≤ 1

log n
∧ Ñ ≥ 0

]

=
∫

D
fM (m)

∫

Dm

fR(r) drdm
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=
∫

D
fM (m)

(
α∗

2
+ O

(
1

log n

))

dm = 8cM

log3 n
· α∗

2
+ O

(
1

log4 n

)

.

In conclusion, we get

P

[
f (x(ab)) = f (x(bc)) = f (x(ca)) | εd

]

=
2P

[
‖M̃‖∞ ≤ 1/ log n ∧ Ñ ≥ 0

]
+ O(1/

√
n)

P

[
‖M̃‖∞ ≤ 1/ log n

]
+ O(1/

√
n)

=
8cM
log3 n

α∗ + O(1/ log4 n)

8cM
log3 n

+ O(1/ log5 n)
= α∗ + O

(
1

log n

)

n→∞−−−→ α∗ ≈ 23.2%,

where in the very last step we employed a computer algebra system to compute the
approximate value of α∗.

5.2 Proof of Theorem 5

The proof of Theorem 5 is a refinement of the proof of Theorem 4, which is a recom-
mended preliminary reading. In particular, we will use the notation that was developed
there. From now on the constants in the O(·) notation are allowed to depend on ρ.
Recall that for x ∈ {−1, 1}n and w ∈ {±3,±1}m we have defined

Wb(x) = Wb(w) = |{i ∈ [m] : wi = b}| ,

Vb(x) = Vb(w) = Wb(w)− Ew’ [Wb(w’)] = Wb(w)−
{

n/8 if b = ±3 ,

3n/8 if b = ±1 .

We can write Wb(w) =∑m
i=1 Wb(wi ) and Vb(w) =∑m

i=1 Vb(wi ) in an obvious way,
with Wb(wi ) ∈ {0, 1}, V±3(wi ) ∈ {−1/8, 7/8} and V±1(wi ) ∈ {−3/8, 5/8}. Note
that W3(wi )+W1(wi )+W−1(wi )+W−3(wi ) = 1 and V3(wi )+V1(wi )+V−1(wi )+
V−3(wi ) = 0.

Taking wi = x3i−2 + x3i−1 + x3i , w′i = x ′3i−2 + x ′3i−1 + x ′3i , si = sgn(wi ) and
s′i = sgn(w′i ), where (xi , x ′i ) are ρ-correlated, we also define

ε := P

[
x j �= x ′j

]
= (1− ρ)/2 , (5.6)

p3 := P
[
si = s′i | wi = 3

] = (1− ε)3 + 3ε(1− ε)2 , (5.7)

p1 := P
[
si = s′i | wi = 1

] = (1− ε)3 + ε(1− ε)2 + 2ε2(1− ε) . (5.8)
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Recall that

Tρ f (x) = Ex’∼Nρ(x)[ f (x’)]

and observe that for our particular function f the value of Tρ f depends only onw and
equals

Tρ f (w) = Es’∼Nρ(w)

[

sgn

(
m∑

i=1
s′i

)]

= 2P

[
m∑

i=1
s′i > 0

]

− 1,

where random variables s′i ∈ {−1, 1} are independent and P[si = s′i ] = pb if |wi | = b
for b = 1, 3. In particular, we can also write Tρ f (w) as a sum of four independent
binomial random variables

Tρ f (w) = 2P
[
Bin (W3(w), p3)+ Bin (W1(w), p1)

+ Bin (W−1(w), 1− p1)+ Bin (W−3(w), 1− p3) >
m

2

]
− 1 . (5.9)

Our plan is to use a CLT argument to conclude that, for most values of w under
event Fρ,d , the value of Tρ f (w) is proportional to

Tρ f (w)  p3W3(w)+ p1W1(w)+ (1− p1)W−1(w)+ (1− p3)W−3(w)− m/2√
m

= p3V3(w)+ p1V1(w)+ (1− p1)V−1(w)+ (1− p3)V−3(w)√
m

= q3V3(w)+ q1V1(w)− q1V−1(w)− q3V−3(w)√
m

,

where q3 := p3 − 1/2 and q1 := p1 − 1/2. We now state this more precisely as a
lemma, the proof of which we defer until later:

Lemma 10 Let σ 2
3 := p3(1− p3), σ 2

1 := p1(1− p1) and σ 2 := σ 2
3+3σ 2

1
4 . Let

A(kk′)
i := q3V3

(
w

(kk′)
i

)+ q1V1
(
w

(kk′)
i

)− q1V−1
(
w

(kk′)
i

)− q3V−3
(
w

(kk′)
i

)
,

Ã(kk′) := 1√
m

m∑

i=1
A(kk′)

i .

Take C :=
√

π
2 σ and define events

G1 :≡ Fρ,d ≡ max
(∣
∣Tρ f (x(ab))

∣
∣,
∣
∣Tρ f (x(bc))

∣
∣,
∣
∣Tρ f (x(ca))

∣
∣
)
≤ 1

logm
,

G2 :≡ ‖ Ã‖∞ = max
(∣
∣ Ã(ab)

∣
∣,
∣
∣ Ã(bc)

∣
∣,
∣
∣ Ã(ca)

∣
∣
)
≤ C

logm
.
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Let Δ stand for the symmetric difference of events. Then,

P [G1ΔG2] ≤ O

(
1

log5 m

)

.

Assuming Lemma 10 we continue along the lines of the proof of Theorem 4, let-

ting B(kk′)
i := sgn(w(kk′)

i ) and Zi :=
(

A(kk′)
i , B(kk′)

i

)
(kk′). The random variables

Z1, . . . , Zm are i.i.d. and for CLT purposes we can compute (again Table 1 is helpful)
the six by six covariance matrix of the distribution of Z := Z1:

E

[
A(kk′)

]
= E

[
B(kk′)

]
= 0

Var
[

A(kk′)
]
= q2

3 + 3q2
1

4

Var
[

B(kk′)
]
= 1

Cov
[

A(kk′), A(k′k′′)
]
= −14q2

3 − 24q1q3 − 18q2
1

216
(5.10)

Cov
[

B(kk′), B(k′k′′)
]
= 80− 136

8 · 27 = − 7

27

Cov
[

A(kk′), B(kk′)
]
= q3 + 3q1

4

Cov
[

A(kk′), B(k′k′′)
]
= −26q3 − 30q1

216
(5.11)

Let
(
M̃ (kk′), Ñ (kk′))

(kk′) be joint Gaussians with the same covariance structure as
(

Ã(kk′), B̃(kk′))
(kk′). Further symbolic computations in a computer algebra system lead

to expressing Ñ (kk′) as a linear combination

Ñ (kk′) = β M̃ (kk′) + β ′
(

M̃ (k′k′′) + M̃ (k′′k)
)
+ γ R̃(kk′) , (5.12)

where γ > 0, random tuples
(
M̃ (kk′))

(kk′) and
(
R̃(kk′))

(kk′) are independent of each

other and each R̃(kk′) is a standard Gaussian. Furthermore, we obtain

Cov
[

R̃(kk′), R̃(k′k′′)
]
= Cov(ρ) (5.13)

with Cov(ρ) a decreasing function of ρ ∈ (0, 1) and

Cov(ρ) ≤ − 1

27
= lim

ρ→0+
Cov(ρ).
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Since the mutual covariance Cov(ρ) is decreasing, the expression

α(ρ) := 2P[R̃ ≥ 0]

is also decreasing in ρ, with limρ→0+ α(ρ) = α∗ and α(ρ) ≥ limρ→1− α(ρ) ≥ 0.17.
Let δ := C/ logm and recall Lemma 10. We apply this lemma and similar argu-

ments as in the proof of Theorem 4 and calculate

P

[
f
(
x(ab)

)
= f

(
x(bc)

)
= f

(
x(ca)

)
| Fρ,d

]

= 2P
[

f
(
x(ab)

) = f
(
x(bc)

) = f
(
x(ca)

) = 1 ∧ G1
]

P[G1]

=
2P

[
B̃ ≥ 0 ∧ G2

]
+ O(1/ log5 m)

P[G2] + O(1/ log5 m)

=
2P

[
B̃ ≥ 0 ∧ ‖ Ã‖∞ ≤ δ

]
+ O(1/ log5 m)

P

[
‖ Ã‖∞ ≤ δ

]
+ O(1/ log5 m)

=
2P

[
Ñ ≥ 0 ∧ ‖M̃‖∞ ≤ δ

]
+ O(1/ log5 m)

P

[
‖M̃‖∞ ≤ δ

]
+ O(1/ log5 m)

= 8cMδ3 · α(ρ)+ O(1/ log4 m)

8cMδ3 + O(1/ log5 m)
= α(ρ)+ O

(
1

logm

)

. (5.14)

It remains to prove Lemma 10.

Proof (Proof of Lemma 10) Recall the definitions of Wb(w) and Vb(w). We begin with
estimating Tρ f (w) for a fixedw. In the following we will sometimes drop dependence
onw (writing, e.g., Wb, Vb, Ã instead of Wb(w), Vb(w), Ã(w)) in the interest of clarity.
Recall equation (5.9) and let Z := ∑m

i=1 Zi be the sum of m independent random
variables arising out of the four binomial distributions featured there. We have:

Tρ f (w) = 2P
[

Z >
m

2

]
− 1 ,

E

[
Z − m

2

]
= p3W3 + p1W1 + (1− p1)W−1 + (1− p3)W−3 − m

2
= p3V3 + p1V1 + (1− p1)V−1 + (1− p3)V−3
= q3V3 + q1V1 − q1V−1 − q3V−3 = √m Ã ,

Var[Z ] = σ 2
3 (W3 +W−3)+ σ 2

1 (W1 +W−1)
= mσ 2 + σ 2

3 (V3 + V−3)+ σ 2
1 (V1 + V−1) = mσ 2 (1+ t) ,

for t := t(w) := σ 2
3 (V3+V−3)+σ 2

1 (V1+V−1)
σ 2m

. Since random variables Zi are bounded,

we can apply the Berry–Esseen theorem and, using erf(x/
√
2) = 2Φ(x) − 1 where
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erf(y) := 2√
π

∫ y
0 e−s2ds, find

P

[
Z − m

2
> 0

]
= P

[
Z − m/2−√m Ã√

mσ
√
1+ t

>
− Ã

σ
√
1+ t

]

= Φ

(
Ã

σ
√
1+ t

)

+ O

(
1

√
m(1+ t)3

)

,

Tρ f (w) = erf

(
Ã√

2σ
√
1+ t

)

+ O

(
1

√
m(1+ t)3

)

. (5.15)

From now on we consider a random election with vote vectors x(ab), x(bc), x(ca) that
induce w(ab), w(bc), w(ca). First, consider the marginal distribution of w. Since t(w)

can be written as a sum of m i.i.d. random variables σ 2mt(w) = ∑m
i=1 ti (wi ) with

E[ti ] = 0 and |ti | ≤ 1, a standard concentration bound gives

P

[

|t(w)| > 1

m1/4

]

≤ 2 exp

(

−
√

mσ 4

2

)

≤ O

(
1√
m

)

. (5.16)

As a consequence of (5.15) and (5.16) and the Taylor expansion erf(x) = 2√
π

x +
O(x3), whenever |t | ≤ m−1/4 holds, we have

Tρ f (w) = Ã

C
+ O( Ã3)+ O

(
1

m1/4

)

(5.17)

and, furthermore,

|Tρ f (w)| ≤ 1

logm
�⇒ | Ã| ≤ C

logm
+ O

(
1

log3 m

)

, (5.18)

±Tρ f (w) >
1

logm
�⇒ ± Ã ≥ C

logm
− O

(
1

log3 m

)

. (5.19)

We are now ready to bound the measure of the symmetric difference

P [G1ΔG2] = P[G1 ∧ ¬G2] + P[¬G1 ∧ G2] .

We will use the union bound over a small number of cases and show that each of them
has probability O(log−5 m).

First, if G1 holds, but G2 does not, then | Ã(kk′)| > C/ logm for some comparison
(kk′). Let us assume that Ã(ab) > C/ logm, other five cases being symmetrical. We
now apply (5.16), (5.18) and multivariate Berry–Esseen and get
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P

[

G1 ∧ Ã(ab) >
C

logm

]

≤ P

[

‖ Ã‖∞ ≤ C

logm
+ O

(
1

log3 m

)

∧ Ã(ab) >
C

logm

]

+ P

[

‖t‖∞ >
1

m1/4

]

= P

[
C

logm
≤ Ã(ab) ≤ C

logm
+ O

(
1

log3 m

)

∧ | Ã(bc)|, | Ã(ca)| ≤ C

logm

]

+ O

(
1√
m

)

= P

[
C

logm
≤ M̃ (ab) ≤ C

logm
+ O

(
1

log3 m

)

∧ |M̃ (bc)|, |M̃ (ca)| ≤ C

logm

]

+ O

(
1√
m

)

= O

(
1

log5 m

)

.

Applying union bound over remaining, symmetric cases, we obtain

P[G1 ∧ ¬G2] ≤ O

(
1

log5 m

)

.

On the other hand, if G2 holds, but G1 does not, then we have |Tρ f (x(kk′))| >

1/ logm for some (kk′), for example, Tρ f (x(ab)) > 1/ logm. A similar calculation
using (5.19) gives

P

[

Tρ f (x(ab)) >
1

logm
∧ G2

]

≤ P

[

Ã(ab) ≥ C

logm
− O

(
1

log3 m

)

∧ ‖ Ã‖∞ ≤ C

logm

]

+ P

[

‖t‖∞ >
1

m1/4

]

= P

[
C

logm
− O

(
1

log3 m

)

≤ Ã(ab) ≤ C

logm
∧ | Ã(bc)|, | Ã(ca)| ≤ C

logm

]

+ O

(
1√
m

)

= P

[
C

logm
− O

(
1

log3 m

)

≤ M̃ (ab) ≤ C

logm
∧ |M̃ (bc)|, |M̃ (ca)| ≤ C

logm

]

+ O

(
1√
m

)

= O

(
1

log5 m

)
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and

P[¬G1 ∧ G2] = O

(
1

log5 m

)

.

��

6 Arrow’s theorem for dice

Arguably the most famous result in social choice theory is Arrow’s impossibility
theorem [2,3]. Intuitively, it states that the only reasonable voting systems based on
pairwise comparisons that never produce a Condorcet paradox are “dictators”, i.e.,
functions whose value depend only on a single voter.

There are also quantitative versions, proved by Kalai [16] for balanced functions
and byMossel [23] for general functions (with tighter bounds obtained byKeller [18]).
For simplicity we consider three alternatives and the impartial culture model. Then,
the quantitative Arrow’s theorem says that a reasonable pairwise comparison function
f that is ε-far from every dictator (in the sense of normalized Hamming distance),
must be such that the probability of Condorcet paradox is at least Ω(ε3).

There is an analogous question about transitive dice: What are the methods for
pairwise comparisons of k dice that always produce a linear order? In particular, we
know that comparing two dice a and b by using the “beats” relation is not one of them.

We restrict ourselves to k = 3. Assume that we look at dice with n sides labeled
with [m], i.e., multisets of elements of [m] of size n. Denote the set of such dice
as Dm,n . A pairwise comparison is an anti-symmetric function f : (Dm,n × Dm,n) \
diag(Dm,n × Dm,n) → {−1, 1}. We want to understand which pairwise comparison
functions are transitive, i.e., there are no three distinct dice a, b, c such that f (a, b) =
f (b, c) = f (c, a).
A little thought reveals that the answer is somewhat trivial. LetO be a linear order

on Dm,n . We think of O as an injective function O : Dm,n → R. If we define f as

f (a, b) = 1 if and only if O(a) < O(b) ,

then f is easily seen to be transitive.
On the other hand, every transitive f must be of this form. To see this, consider a

directed graph with vertex set Dm,n where there is an edge from a to b if and only if
f (a, b) = −1. This graph is a tournament and transitivity of f means that it does not
contain a directed triangle. But a triangle-free tournament does not contain a directed
cycle and, therefore, induces a linear order on its ground set.

We can extend this reasoning to a quantitative result. It seems easiest to assume a
model where a set of three dice is sampled u.a.r. from Dm,n .

There is a result about tournaments due to Fox and Sudakov [8]. A tournament on
n vertices is called ε-far from transitive if at least εn2 of its edges must be reversed to
obtain a transitive tournament.
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Theorem 10 [8] There exists c > 0 such that if a tournament on n vertices is ε-far
from transitive, then it contains at least cε2n3 directed triangles.

Theorem 10 can be restated as a quantitative Arrow-like statement for dice.

Corollary 3 There exists c > 0 such that if a comparison function f on Dm,n with
m, n > 1 is ε-far from transitive, then the probability that a random triple of dice is
intransitive is at least cε2.

Since [8] gives an example which is tight up to a constant factor, Corollary 3 is sim-
ilarly tight. However, the obtained comparison function does not seem to correspond
to any natural method of comparing dice.
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Missing calculations in the proof of Proposition 2

In this appendix we include, for ease of verification, several calculations that were
omitted from the proof of Proposition 2.

Proof of Lemma 2

In the proof of the calculation lemma (Lemma 2) we performed the final calculation
in (2.37) only to establish (2.20). Below we give analogous computations for (2.17)–
(2.19) and (2.21)–(2.23).

Each of the three calculations establishing (2.17)–(2.19) proceeds in the same three
steps: first, one of the conclusions (2.31)–(2.33) of Corollary 1 is applied; second,
identities given in (2.35) and (2.36) are substituted for the integrals; third, the terms
are rearranged.

For (2.17) we have, letting D = {(a1, a2, b1, b2) : a1 > b1 ∧ a2 > b2},

P [a1 > b1 ∧ a2 > b2 | ε0]
=

(

1+ 2

n

)∫∫

D
f (a1, a2, b1, b2)

(

1+ 2α2(a1 + b1)

n

− a2
1 + b21 + a1a2 + b1b2

n

)

dab + o(n−1)
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=
(

1+ 2

n

)(
1

4
+ α2A

n
− α2A

n
− B

2n
− 1− B

2n
− A2

n
− A2

n

)

+ o(n−1)

= 1

4
− 2A2

n
+ o(n−1).

For (2.18), letting D = {(a1, b1) : a1 > b1}

P [a1 > b1 | εa] =
(

1+ 1

2n

)∫∫

D
f (a1, b1)

(

1+ α2a1
n

− a2
1

2n

)

dab + o(n−1)

=
(

1+ 1

2n

)(
1

2
+ α2A

n
− B

2n

)

+ o(n−1)

= 1

2
+ 1

4n
+ α2A

n
− B

2n
+ o(n−1).

For (2.19), letting D = {(a1, a2, b1, b2 : a1 > b1 ∧ a2 > b2},

P [a1 > b1 ∧ a2 > b2 | εa]

=
(

1+ 1

n

)∫∫

D
f (a1, a2, b1, b2)

(

1+ 2α2a1
n

− a2
1 + a1a2

n

)

dab + o(n−1)

=
(

1+ 1

n

)(
1

4
+ α2A

n
− B

2n
− A2

n

)

+ o(n−1)

= 1

4
+ 1

4n
+ α2A

n
− B

2n
− A2

n
+ o(n−1).

The calculations showing (2.21)–(2.23) employ Lemma 3 directly. Each of them
applies one of (2.29)–(2.30) and uses the fact that both of those expressions can be
approximated as

∫∫

D
f (a1, a2, b1, b2) dab + o(1).

More precisely, for (2.21) we take D = {(a1, a2, b1, b2) : a1 > b1∧a1 > b2} and get

P [a1 > b1 ∧ a1 > b2 | ε0] =
∫∫

D f (a1, a2, b1, b2)ϕn−1(−a1)ϕn−2(−b1 − b2) dab
∫∫

R4 f (a1, a2, b1, b2)ϕn−1(−a1)ϕn−2(−b1 − b2) dab

=
∫∫

D f (a1, a2, b1, b2) dab + o(1)
∫∫

R4 f (a1, a2, b1, b2) dab + o(1)

= P[a1 > b1 ∧ a1 > b2] + o(1) = 1

3
+ o(1).

Similarly, for (2.22), letting D = {(a1, a2, b1, b2) : a1 > b1 ∧ a1 > b2},

P [a1 > b1 ∧ a1 > b2 | εa] =
∫∫

D f (a1, a2, b1, b2)ϕn−2(−a1 − a2) dab
∫∫

R4 f (a1, a2, b1, b2)ϕn−2(−a1 − a2) dab
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= P[a1 > b1 ∧ a1 > b2] + o(1) = 1

3
+ o(1),

and, for (2.23), letting D = {(a1, a2, b1, c1) : a1 > b1 ∧ a1 > c1}

P [a1 > b1 ∧ a1 > c1 | εa ∩ εb] =
∫∫

D f (a1, a2, b1, c1)ϕn−2(−a1 − a2)ϕn−1(−b1) dabc
∫∫

R4 f (a1, a2, b1, c1)ϕn−2(−a1 − a2)ϕn−1(−b1) dabc

= P[a1 > b1 ∧ a1 > c1] + o(1) = 1

3
+ o(1).

Proof of Lemma 3

In the proof of the integration lemma (Lemma 3), in (2.41) we included a detailed
calculation only to establish (2.27). Below we give crucial steps of similar deriva-
tions for (2.28)–(2.30). In each of them: first, we substitute (2.40) for ϕ j ; second, we
rearrange and absorb the error terms using (2.42) and (2.41).

For (2.28), we have

∫∫

D
f · ϕn−1(−a) dab

=
∫∫

D
f ·

[

exp

(

− a2

2(n − 1)

)

(

1+ α1

n − 1
+ α2a

n − 1
+ O

(
max(|a|, a6)

n3/2

)

+ o(n−1)
)]

dab

=
∫∫

D
f ·

[

1+ α1

n
+ α2a

n
− a2

2n

]

dab + o(n−1),

for (2.29),

∫∫

D
f · ϕn−2(−a) dab

=
∫∫

D
f ·

[

exp

(

− a2

2(n − 2)

)

(

1+ α1

n − 2
+ α2a

n − 2
+ O

(
max(|a|, a6)

n3/2

)

+ o(n−1)
)]

dab

=
∫∫

D
f ·

[

1+ α1

n
+ α2a

n
− a2

2n

]

dab + o(n−1),

and for (2.30),

∫∫

D
f · ϕn−2(−a)ϕn−1(−b) dabc
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=
∫∫

D
f ·

[

exp

(

− a2

2(n − 2)

)(

1+ α1

n − 2
+ α2a

n − 2
+ O

(
max(|a|, a6)

n3/2

)

+ o(n−1)
)]

·
[

exp

(

− b2

2(n − 1)

)

(

1+ α1

n − 1
+ α2b

n − 1
+ O

(
max(|b|, b6)

n3/2

)

+ o(n−1)
)]

dabc

=
∫∫

D
f ·

[

1+ 2α1

n
+ α2(a + b)

n
− a2 + b2

2n

]

dabc + o(n−1).
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